if_wm.c revision 1.152 1 1.152 dyoung /* $NetBSD: if_wm.c,v 1.152 2008/01/19 22:10:20 dyoung Exp $ */
2 1.1 thorpej
3 1.1 thorpej /*
4 1.69 thorpej * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 1.1 thorpej * All rights reserved.
6 1.1 thorpej *
7 1.1 thorpej * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 1.1 thorpej *
9 1.1 thorpej * Redistribution and use in source and binary forms, with or without
10 1.1 thorpej * modification, are permitted provided that the following conditions
11 1.1 thorpej * are met:
12 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
13 1.1 thorpej * notice, this list of conditions and the following disclaimer.
14 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
16 1.1 thorpej * documentation and/or other materials provided with the distribution.
17 1.1 thorpej * 3. All advertising materials mentioning features or use of this software
18 1.1 thorpej * must display the following acknowledgement:
19 1.1 thorpej * This product includes software developed for the NetBSD Project by
20 1.1 thorpej * Wasabi Systems, Inc.
21 1.1 thorpej * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.1 thorpej * or promote products derived from this software without specific prior
23 1.1 thorpej * written permission.
24 1.1 thorpej *
25 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.1 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.1 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 thorpej * POSSIBILITY OF SUCH DAMAGE.
36 1.1 thorpej */
37 1.1 thorpej
38 1.139 bouyer /*******************************************************************************
39 1.139 bouyer
40 1.139 bouyer Copyright (c) 2001-2005, Intel Corporation
41 1.139 bouyer All rights reserved.
42 1.139 bouyer
43 1.139 bouyer Redistribution and use in source and binary forms, with or without
44 1.139 bouyer modification, are permitted provided that the following conditions are met:
45 1.139 bouyer
46 1.139 bouyer 1. Redistributions of source code must retain the above copyright notice,
47 1.139 bouyer this list of conditions and the following disclaimer.
48 1.139 bouyer
49 1.139 bouyer 2. Redistributions in binary form must reproduce the above copyright
50 1.139 bouyer notice, this list of conditions and the following disclaimer in the
51 1.139 bouyer documentation and/or other materials provided with the distribution.
52 1.139 bouyer
53 1.139 bouyer 3. Neither the name of the Intel Corporation nor the names of its
54 1.139 bouyer contributors may be used to endorse or promote products derived from
55 1.139 bouyer this software without specific prior written permission.
56 1.139 bouyer
57 1.139 bouyer THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
58 1.139 bouyer AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 1.139 bouyer IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 1.139 bouyer ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
61 1.139 bouyer LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 1.139 bouyer CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 1.139 bouyer SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 1.139 bouyer INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 1.139 bouyer CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 1.139 bouyer ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67 1.139 bouyer POSSIBILITY OF SUCH DAMAGE.
68 1.139 bouyer
69 1.139 bouyer *******************************************************************************/
70 1.1 thorpej /*
71 1.11 thorpej * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
72 1.1 thorpej *
73 1.1 thorpej * TODO (in order of importance):
74 1.1 thorpej *
75 1.61 thorpej * - Rework how parameters are loaded from the EEPROM.
76 1.56 thorpej * - Figure out what to do with the i82545GM and i82546GB
77 1.56 thorpej * SERDES controllers.
78 1.61 thorpej * - Fix hw VLAN assist.
79 1.1 thorpej */
80 1.38 lukem
81 1.38 lukem #include <sys/cdefs.h>
82 1.152 dyoung __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.152 2008/01/19 22:10:20 dyoung Exp $");
83 1.1 thorpej
84 1.1 thorpej #include "bpfilter.h"
85 1.21 itojun #include "rnd.h"
86 1.1 thorpej
87 1.1 thorpej #include <sys/param.h>
88 1.1 thorpej #include <sys/systm.h>
89 1.96 perry #include <sys/callout.h>
90 1.1 thorpej #include <sys/mbuf.h>
91 1.1 thorpej #include <sys/malloc.h>
92 1.1 thorpej #include <sys/kernel.h>
93 1.1 thorpej #include <sys/socket.h>
94 1.1 thorpej #include <sys/ioctl.h>
95 1.1 thorpej #include <sys/errno.h>
96 1.1 thorpej #include <sys/device.h>
97 1.1 thorpej #include <sys/queue.h>
98 1.84 thorpej #include <sys/syslog.h>
99 1.1 thorpej
100 1.1 thorpej #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101 1.1 thorpej
102 1.21 itojun #if NRND > 0
103 1.21 itojun #include <sys/rnd.h>
104 1.21 itojun #endif
105 1.21 itojun
106 1.1 thorpej #include <net/if.h>
107 1.96 perry #include <net/if_dl.h>
108 1.1 thorpej #include <net/if_media.h>
109 1.1 thorpej #include <net/if_ether.h>
110 1.1 thorpej
111 1.96 perry #if NBPFILTER > 0
112 1.1 thorpej #include <net/bpf.h>
113 1.1 thorpej #endif
114 1.1 thorpej
115 1.1 thorpej #include <netinet/in.h> /* XXX for struct ip */
116 1.1 thorpej #include <netinet/in_systm.h> /* XXX for struct ip */
117 1.1 thorpej #include <netinet/ip.h> /* XXX for struct ip */
118 1.131 yamt #include <netinet/ip6.h> /* XXX for struct ip6_hdr */
119 1.13 thorpej #include <netinet/tcp.h> /* XXX for struct tcphdr */
120 1.1 thorpej
121 1.147 ad #include <sys/bus.h>
122 1.147 ad #include <sys/intr.h>
123 1.1 thorpej #include <machine/endian.h>
124 1.1 thorpej
125 1.1 thorpej #include <dev/mii/mii.h>
126 1.1 thorpej #include <dev/mii/miivar.h>
127 1.1 thorpej #include <dev/mii/mii_bitbang.h>
128 1.127 bouyer #include <dev/mii/ikphyreg.h>
129 1.1 thorpej
130 1.1 thorpej #include <dev/pci/pcireg.h>
131 1.1 thorpej #include <dev/pci/pcivar.h>
132 1.1 thorpej #include <dev/pci/pcidevs.h>
133 1.1 thorpej
134 1.1 thorpej #include <dev/pci/if_wmreg.h>
135 1.1 thorpej
136 1.1 thorpej #ifdef WM_DEBUG
137 1.1 thorpej #define WM_DEBUG_LINK 0x01
138 1.1 thorpej #define WM_DEBUG_TX 0x02
139 1.1 thorpej #define WM_DEBUG_RX 0x04
140 1.1 thorpej #define WM_DEBUG_GMII 0x08
141 1.127 bouyer int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK|WM_DEBUG_GMII;
142 1.1 thorpej
143 1.1 thorpej #define DPRINTF(x, y) if (wm_debug & (x)) printf y
144 1.1 thorpej #else
145 1.1 thorpej #define DPRINTF(x, y) /* nothing */
146 1.1 thorpej #endif /* WM_DEBUG */
147 1.1 thorpej
148 1.1 thorpej /*
149 1.2 thorpej * Transmit descriptor list size. Due to errata, we can only have
150 1.75 thorpej * 256 hardware descriptors in the ring on < 82544, but we use 4096
151 1.75 thorpej * on >= 82544. We tell the upper layers that they can queue a lot
152 1.75 thorpej * of packets, and we go ahead and manage up to 64 (16 for the i82547)
153 1.75 thorpej * of them at a time.
154 1.75 thorpej *
155 1.75 thorpej * We allow up to 256 (!) DMA segments per packet. Pathological packet
156 1.75 thorpej * chains containing many small mbufs have been observed in zero-copy
157 1.75 thorpej * situations with jumbo frames.
158 1.1 thorpej */
159 1.75 thorpej #define WM_NTXSEGS 256
160 1.2 thorpej #define WM_IFQUEUELEN 256
161 1.74 tron #define WM_TXQUEUELEN_MAX 64
162 1.74 tron #define WM_TXQUEUELEN_MAX_82547 16
163 1.74 tron #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
164 1.74 tron #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
165 1.74 tron #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
166 1.75 thorpej #define WM_NTXDESC_82542 256
167 1.75 thorpej #define WM_NTXDESC_82544 4096
168 1.75 thorpej #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
169 1.75 thorpej #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
170 1.75 thorpej #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
171 1.75 thorpej #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
172 1.74 tron #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
173 1.1 thorpej
174 1.99 matt #define WM_MAXTXDMA round_page(IP_MAXPACKET) /* for TSO */
175 1.82 thorpej
176 1.1 thorpej /*
177 1.1 thorpej * Receive descriptor list size. We have one Rx buffer for normal
178 1.1 thorpej * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
179 1.10 thorpej * packet. We allocate 256 receive descriptors, each with a 2k
180 1.10 thorpej * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
181 1.1 thorpej */
182 1.10 thorpej #define WM_NRXDESC 256
183 1.1 thorpej #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
184 1.1 thorpej #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
185 1.1 thorpej #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
186 1.1 thorpej
187 1.1 thorpej /*
188 1.1 thorpej * Control structures are DMA'd to the i82542 chip. We allocate them in
189 1.105 skrll * a single clump that maps to a single DMA segment to make several things
190 1.1 thorpej * easier.
191 1.1 thorpej */
192 1.75 thorpej struct wm_control_data_82544 {
193 1.1 thorpej /*
194 1.75 thorpej * The receive descriptors.
195 1.1 thorpej */
196 1.75 thorpej wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
197 1.1 thorpej
198 1.1 thorpej /*
199 1.75 thorpej * The transmit descriptors. Put these at the end, because
200 1.75 thorpej * we might use a smaller number of them.
201 1.1 thorpej */
202 1.75 thorpej wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
203 1.75 thorpej };
204 1.75 thorpej
205 1.75 thorpej struct wm_control_data_82542 {
206 1.1 thorpej wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
207 1.75 thorpej wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
208 1.1 thorpej };
209 1.1 thorpej
210 1.75 thorpej #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
211 1.1 thorpej #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)])
212 1.1 thorpej #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
213 1.1 thorpej
214 1.1 thorpej /*
215 1.1 thorpej * Software state for transmit jobs.
216 1.1 thorpej */
217 1.1 thorpej struct wm_txsoft {
218 1.1 thorpej struct mbuf *txs_mbuf; /* head of our mbuf chain */
219 1.1 thorpej bus_dmamap_t txs_dmamap; /* our DMA map */
220 1.1 thorpej int txs_firstdesc; /* first descriptor in packet */
221 1.1 thorpej int txs_lastdesc; /* last descriptor in packet */
222 1.4 thorpej int txs_ndesc; /* # of descriptors used */
223 1.1 thorpej };
224 1.1 thorpej
225 1.1 thorpej /*
226 1.1 thorpej * Software state for receive buffers. Each descriptor gets a
227 1.1 thorpej * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
228 1.1 thorpej * more than one buffer, we chain them together.
229 1.1 thorpej */
230 1.1 thorpej struct wm_rxsoft {
231 1.1 thorpej struct mbuf *rxs_mbuf; /* head of our mbuf chain */
232 1.1 thorpej bus_dmamap_t rxs_dmamap; /* our DMA map */
233 1.1 thorpej };
234 1.1 thorpej
235 1.43 thorpej typedef enum {
236 1.43 thorpej WM_T_unknown = 0,
237 1.43 thorpej WM_T_82542_2_0, /* i82542 2.0 (really old) */
238 1.43 thorpej WM_T_82542_2_1, /* i82542 2.1+ (old) */
239 1.43 thorpej WM_T_82543, /* i82543 */
240 1.43 thorpej WM_T_82544, /* i82544 */
241 1.43 thorpej WM_T_82540, /* i82540 */
242 1.43 thorpej WM_T_82545, /* i82545 */
243 1.43 thorpej WM_T_82545_3, /* i82545 3.0+ */
244 1.43 thorpej WM_T_82546, /* i82546 */
245 1.43 thorpej WM_T_82546_3, /* i82546 3.0+ */
246 1.43 thorpej WM_T_82541, /* i82541 */
247 1.43 thorpej WM_T_82541_2, /* i82541 2.0+ */
248 1.43 thorpej WM_T_82547, /* i82547 */
249 1.43 thorpej WM_T_82547_2, /* i82547 2.0+ */
250 1.117 msaitoh WM_T_82571, /* i82571 */
251 1.117 msaitoh WM_T_82572, /* i82572 */
252 1.117 msaitoh WM_T_82573, /* i82573 */
253 1.127 bouyer WM_T_80003, /* i80003 */
254 1.139 bouyer WM_T_ICH8, /* ICH8 LAN */
255 1.144 msaitoh WM_T_ICH9, /* ICH9 LAN */
256 1.43 thorpej } wm_chip_type;
257 1.43 thorpej
258 1.1 thorpej /*
259 1.1 thorpej * Software state per device.
260 1.1 thorpej */
261 1.1 thorpej struct wm_softc {
262 1.1 thorpej struct device sc_dev; /* generic device information */
263 1.1 thorpej bus_space_tag_t sc_st; /* bus space tag */
264 1.1 thorpej bus_space_handle_t sc_sh; /* bus space handle */
265 1.53 thorpej bus_space_tag_t sc_iot; /* I/O space tag */
266 1.53 thorpej bus_space_handle_t sc_ioh; /* I/O space handle */
267 1.139 bouyer bus_space_tag_t sc_flasht; /* flash registers space tag */
268 1.139 bouyer bus_space_handle_t sc_flashh; /* flash registers space handle */
269 1.1 thorpej bus_dma_tag_t sc_dmat; /* bus DMA tag */
270 1.1 thorpej struct ethercom sc_ethercom; /* ethernet common data */
271 1.123 jmcneill pci_chipset_tag_t sc_pc;
272 1.123 jmcneill pcitag_t sc_pcitag;
273 1.1 thorpej
274 1.43 thorpej wm_chip_type sc_type; /* chip type */
275 1.1 thorpej int sc_flags; /* flags; see below */
276 1.52 thorpej int sc_bus_speed; /* PCI/PCIX bus speed */
277 1.54 thorpej int sc_pcix_offset; /* PCIX capability register offset */
278 1.71 thorpej int sc_flowflags; /* 802.3x flow control flags */
279 1.1 thorpej
280 1.1 thorpej void *sc_ih; /* interrupt cookie */
281 1.1 thorpej
282 1.44 thorpej int sc_ee_addrbits; /* EEPROM address bits */
283 1.44 thorpej
284 1.1 thorpej struct mii_data sc_mii; /* MII/media information */
285 1.1 thorpej
286 1.142 ad callout_t sc_tick_ch; /* tick callout */
287 1.1 thorpej
288 1.1 thorpej bus_dmamap_t sc_cddmamap; /* control data DMA map */
289 1.1 thorpej #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
290 1.1 thorpej
291 1.42 thorpej int sc_align_tweak;
292 1.42 thorpej
293 1.1 thorpej /*
294 1.1 thorpej * Software state for the transmit and receive descriptors.
295 1.1 thorpej */
296 1.74 tron int sc_txnum; /* must be a power of two */
297 1.74 tron struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
298 1.74 tron struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
299 1.1 thorpej
300 1.1 thorpej /*
301 1.1 thorpej * Control data structures.
302 1.1 thorpej */
303 1.75 thorpej int sc_ntxdesc; /* must be a power of two */
304 1.75 thorpej struct wm_control_data_82544 *sc_control_data;
305 1.1 thorpej #define sc_txdescs sc_control_data->wcd_txdescs
306 1.1 thorpej #define sc_rxdescs sc_control_data->wcd_rxdescs
307 1.1 thorpej
308 1.1 thorpej #ifdef WM_EVENT_COUNTERS
309 1.1 thorpej /* Event counters. */
310 1.1 thorpej struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
311 1.1 thorpej struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
312 1.78 thorpej struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
313 1.4 thorpej struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
314 1.4 thorpej struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
315 1.1 thorpej struct evcnt sc_ev_rxintr; /* Rx interrupts */
316 1.1 thorpej struct evcnt sc_ev_linkintr; /* Link interrupts */
317 1.1 thorpej
318 1.1 thorpej struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
319 1.1 thorpej struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
320 1.1 thorpej struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
321 1.1 thorpej struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
322 1.107 yamt struct evcnt sc_ev_txtusum6; /* TCP/UDP v6 cksums comp. out-bound */
323 1.131 yamt struct evcnt sc_ev_txtso; /* TCP seg offload out-bound (IPv4) */
324 1.131 yamt struct evcnt sc_ev_txtso6; /* TCP seg offload out-bound (IPv6) */
325 1.99 matt struct evcnt sc_ev_txtsopain; /* painful header manip. for TSO */
326 1.1 thorpej
327 1.2 thorpej struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
328 1.1 thorpej struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
329 1.1 thorpej
330 1.1 thorpej struct evcnt sc_ev_tu; /* Tx underrun */
331 1.71 thorpej
332 1.71 thorpej struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
333 1.71 thorpej struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
334 1.71 thorpej struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
335 1.71 thorpej struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
336 1.71 thorpej struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
337 1.1 thorpej #endif /* WM_EVENT_COUNTERS */
338 1.1 thorpej
339 1.1 thorpej bus_addr_t sc_tdt_reg; /* offset of TDT register */
340 1.1 thorpej
341 1.1 thorpej int sc_txfree; /* number of free Tx descriptors */
342 1.1 thorpej int sc_txnext; /* next ready Tx descriptor */
343 1.1 thorpej
344 1.1 thorpej int sc_txsfree; /* number of free Tx jobs */
345 1.1 thorpej int sc_txsnext; /* next free Tx job */
346 1.1 thorpej int sc_txsdirty; /* dirty Tx jobs */
347 1.1 thorpej
348 1.78 thorpej /* These 5 variables are used only on the 82547. */
349 1.78 thorpej int sc_txfifo_size; /* Tx FIFO size */
350 1.78 thorpej int sc_txfifo_head; /* current head of FIFO */
351 1.78 thorpej uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
352 1.78 thorpej int sc_txfifo_stall; /* Tx FIFO is stalled */
353 1.142 ad callout_t sc_txfifo_ch; /* Tx FIFO stall work-around timer */
354 1.78 thorpej
355 1.1 thorpej bus_addr_t sc_rdt_reg; /* offset of RDT register */
356 1.1 thorpej
357 1.1 thorpej int sc_rxptr; /* next ready Rx descriptor/queue ent */
358 1.1 thorpej int sc_rxdiscard;
359 1.1 thorpej int sc_rxlen;
360 1.1 thorpej struct mbuf *sc_rxhead;
361 1.1 thorpej struct mbuf *sc_rxtail;
362 1.1 thorpej struct mbuf **sc_rxtailp;
363 1.1 thorpej
364 1.1 thorpej uint32_t sc_ctrl; /* prototype CTRL register */
365 1.1 thorpej #if 0
366 1.1 thorpej uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
367 1.1 thorpej #endif
368 1.1 thorpej uint32_t sc_icr; /* prototype interrupt bits */
369 1.92 briggs uint32_t sc_itr; /* prototype intr throttling reg */
370 1.1 thorpej uint32_t sc_tctl; /* prototype TCTL register */
371 1.1 thorpej uint32_t sc_rctl; /* prototype RCTL register */
372 1.1 thorpej uint32_t sc_txcw; /* prototype TXCW register */
373 1.1 thorpej uint32_t sc_tipg; /* prototype TIPG register */
374 1.71 thorpej uint32_t sc_fcrtl; /* prototype FCRTL register */
375 1.78 thorpej uint32_t sc_pba; /* prototype PBA register */
376 1.1 thorpej
377 1.1 thorpej int sc_tbi_linkup; /* TBI link status */
378 1.1 thorpej int sc_tbi_anstate; /* autonegotiation state */
379 1.1 thorpej
380 1.1 thorpej int sc_mchash_type; /* multicast filter offset */
381 1.21 itojun
382 1.21 itojun #if NRND > 0
383 1.21 itojun rndsource_element_t rnd_source; /* random source */
384 1.21 itojun #endif
385 1.139 bouyer int sc_ich8_flash_base;
386 1.139 bouyer int sc_ich8_flash_bank_size;
387 1.1 thorpej };
388 1.1 thorpej
389 1.1 thorpej #define WM_RXCHAIN_RESET(sc) \
390 1.1 thorpej do { \
391 1.1 thorpej (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
392 1.1 thorpej *(sc)->sc_rxtailp = NULL; \
393 1.1 thorpej (sc)->sc_rxlen = 0; \
394 1.1 thorpej } while (/*CONSTCOND*/0)
395 1.1 thorpej
396 1.1 thorpej #define WM_RXCHAIN_LINK(sc, m) \
397 1.1 thorpej do { \
398 1.1 thorpej *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
399 1.1 thorpej (sc)->sc_rxtailp = &(m)->m_next; \
400 1.1 thorpej } while (/*CONSTCOND*/0)
401 1.1 thorpej
402 1.1 thorpej /* sc_flags */
403 1.127 bouyer #define WM_F_HAS_MII 0x0001 /* has MII */
404 1.127 bouyer #define WM_F_EEPROM_HANDSHAKE 0x0002 /* requires EEPROM handshake */
405 1.127 bouyer #define WM_F_EEPROM_SEMAPHORE 0x0004 /* EEPROM with semaphore */
406 1.127 bouyer #define WM_F_EEPROM_EERDEEWR 0x0008 /* EEPROM access via EERD/EEWR */
407 1.127 bouyer #define WM_F_EEPROM_SPI 0x0010 /* EEPROM is SPI */
408 1.127 bouyer #define WM_F_EEPROM_FLASH 0x0020 /* EEPROM is FLASH */
409 1.127 bouyer #define WM_F_EEPROM_INVALID 0x0040 /* EEPROM not present (bad checksum) */
410 1.127 bouyer #define WM_F_IOH_VALID 0x0080 /* I/O handle is valid */
411 1.127 bouyer #define WM_F_BUS64 0x0100 /* bus is 64-bit */
412 1.127 bouyer #define WM_F_PCIX 0x0200 /* bus is PCI-X */
413 1.127 bouyer #define WM_F_CSA 0x0400 /* bus is CSA */
414 1.127 bouyer #define WM_F_PCIE 0x0800 /* bus is PCI-Express */
415 1.127 bouyer #define WM_F_SWFW_SYNC 0x1000 /* Software-Firmware synchronisation */
416 1.139 bouyer #define WM_F_SWFWHW_SYNC 0x2000 /* Software-Firmware synchronisation */
417 1.1 thorpej
418 1.1 thorpej #ifdef WM_EVENT_COUNTERS
419 1.1 thorpej #define WM_EVCNT_INCR(ev) (ev)->ev_count++
420 1.71 thorpej #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
421 1.1 thorpej #else
422 1.1 thorpej #define WM_EVCNT_INCR(ev) /* nothing */
423 1.71 thorpej #define WM_EVCNT_ADD(ev, val) /* nothing */
424 1.1 thorpej #endif
425 1.1 thorpej
426 1.1 thorpej #define CSR_READ(sc, reg) \
427 1.1 thorpej bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
428 1.1 thorpej #define CSR_WRITE(sc, reg, val) \
429 1.1 thorpej bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
430 1.78 thorpej #define CSR_WRITE_FLUSH(sc) \
431 1.78 thorpej (void) CSR_READ((sc), WMREG_STATUS)
432 1.1 thorpej
433 1.139 bouyer #define ICH8_FLASH_READ32(sc, reg) \
434 1.139 bouyer bus_space_read_4((sc)->sc_flasht, (sc)->sc_flashh, (reg))
435 1.139 bouyer #define ICH8_FLASH_WRITE32(sc, reg, data) \
436 1.139 bouyer bus_space_write_4((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data))
437 1.139 bouyer
438 1.139 bouyer #define ICH8_FLASH_READ16(sc, reg) \
439 1.139 bouyer bus_space_read_2((sc)->sc_flasht, (sc)->sc_flashh, (reg))
440 1.139 bouyer #define ICH8_FLASH_WRITE16(sc, reg, data) \
441 1.139 bouyer bus_space_write_2((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data))
442 1.139 bouyer
443 1.1 thorpej #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
444 1.1 thorpej #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
445 1.1 thorpej
446 1.69 thorpej #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
447 1.69 thorpej #define WM_CDTXADDR_HI(sc, x) \
448 1.69 thorpej (sizeof(bus_addr_t) == 8 ? \
449 1.69 thorpej (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
450 1.69 thorpej
451 1.69 thorpej #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
452 1.69 thorpej #define WM_CDRXADDR_HI(sc, x) \
453 1.69 thorpej (sizeof(bus_addr_t) == 8 ? \
454 1.69 thorpej (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
455 1.69 thorpej
456 1.1 thorpej #define WM_CDTXSYNC(sc, x, n, ops) \
457 1.1 thorpej do { \
458 1.1 thorpej int __x, __n; \
459 1.1 thorpej \
460 1.1 thorpej __x = (x); \
461 1.1 thorpej __n = (n); \
462 1.1 thorpej \
463 1.1 thorpej /* If it will wrap around, sync to the end of the ring. */ \
464 1.75 thorpej if ((__x + __n) > WM_NTXDESC(sc)) { \
465 1.1 thorpej bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
466 1.1 thorpej WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
467 1.75 thorpej (WM_NTXDESC(sc) - __x), (ops)); \
468 1.75 thorpej __n -= (WM_NTXDESC(sc) - __x); \
469 1.1 thorpej __x = 0; \
470 1.1 thorpej } \
471 1.1 thorpej \
472 1.1 thorpej /* Now sync whatever is left. */ \
473 1.1 thorpej bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
474 1.1 thorpej WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
475 1.1 thorpej } while (/*CONSTCOND*/0)
476 1.1 thorpej
477 1.1 thorpej #define WM_CDRXSYNC(sc, x, ops) \
478 1.1 thorpej do { \
479 1.1 thorpej bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
480 1.1 thorpej WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
481 1.1 thorpej } while (/*CONSTCOND*/0)
482 1.1 thorpej
483 1.1 thorpej #define WM_INIT_RXDESC(sc, x) \
484 1.1 thorpej do { \
485 1.1 thorpej struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
486 1.1 thorpej wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
487 1.1 thorpej struct mbuf *__m = __rxs->rxs_mbuf; \
488 1.1 thorpej \
489 1.1 thorpej /* \
490 1.1 thorpej * Note: We scoot the packet forward 2 bytes in the buffer \
491 1.1 thorpej * so that the payload after the Ethernet header is aligned \
492 1.1 thorpej * to a 4-byte boundary. \
493 1.1 thorpej * \
494 1.1 thorpej * XXX BRAINDAMAGE ALERT! \
495 1.1 thorpej * The stupid chip uses the same size for every buffer, which \
496 1.1 thorpej * is set in the Receive Control register. We are using the 2K \
497 1.1 thorpej * size option, but what we REALLY want is (2K - 2)! For this \
498 1.41 tls * reason, we can't "scoot" packets longer than the standard \
499 1.41 tls * Ethernet MTU. On strict-alignment platforms, if the total \
500 1.42 thorpej * size exceeds (2K - 2) we set align_tweak to 0 and let \
501 1.41 tls * the upper layer copy the headers. \
502 1.1 thorpej */ \
503 1.42 thorpej __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
504 1.1 thorpej \
505 1.69 thorpej wm_set_dma_addr(&__rxd->wrx_addr, \
506 1.69 thorpej __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
507 1.1 thorpej __rxd->wrx_len = 0; \
508 1.1 thorpej __rxd->wrx_cksum = 0; \
509 1.1 thorpej __rxd->wrx_status = 0; \
510 1.1 thorpej __rxd->wrx_errors = 0; \
511 1.1 thorpej __rxd->wrx_special = 0; \
512 1.1 thorpej WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
513 1.1 thorpej \
514 1.1 thorpej CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
515 1.1 thorpej } while (/*CONSTCOND*/0)
516 1.1 thorpej
517 1.47 thorpej static void wm_start(struct ifnet *);
518 1.47 thorpej static void wm_watchdog(struct ifnet *);
519 1.135 christos static int wm_ioctl(struct ifnet *, u_long, void *);
520 1.47 thorpej static int wm_init(struct ifnet *);
521 1.47 thorpej static void wm_stop(struct ifnet *, int);
522 1.1 thorpej
523 1.47 thorpej static void wm_reset(struct wm_softc *);
524 1.47 thorpej static void wm_rxdrain(struct wm_softc *);
525 1.47 thorpej static int wm_add_rxbuf(struct wm_softc *, int);
526 1.51 thorpej static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
527 1.117 msaitoh static int wm_read_eeprom_eerd(struct wm_softc *, int, int, u_int16_t *);
528 1.112 gavan static int wm_validate_eeprom_checksum(struct wm_softc *);
529 1.47 thorpej static void wm_tick(void *);
530 1.1 thorpej
531 1.47 thorpej static void wm_set_filter(struct wm_softc *);
532 1.1 thorpej
533 1.47 thorpej static int wm_intr(void *);
534 1.47 thorpej static void wm_txintr(struct wm_softc *);
535 1.47 thorpej static void wm_rxintr(struct wm_softc *);
536 1.47 thorpej static void wm_linkintr(struct wm_softc *, uint32_t);
537 1.1 thorpej
538 1.47 thorpej static void wm_tbi_mediainit(struct wm_softc *);
539 1.47 thorpej static int wm_tbi_mediachange(struct ifnet *);
540 1.47 thorpej static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
541 1.1 thorpej
542 1.47 thorpej static void wm_tbi_set_linkled(struct wm_softc *);
543 1.47 thorpej static void wm_tbi_check_link(struct wm_softc *);
544 1.1 thorpej
545 1.47 thorpej static void wm_gmii_reset(struct wm_softc *);
546 1.1 thorpej
547 1.47 thorpej static int wm_gmii_i82543_readreg(struct device *, int, int);
548 1.47 thorpej static void wm_gmii_i82543_writereg(struct device *, int, int, int);
549 1.1 thorpej
550 1.47 thorpej static int wm_gmii_i82544_readreg(struct device *, int, int);
551 1.47 thorpej static void wm_gmii_i82544_writereg(struct device *, int, int, int);
552 1.1 thorpej
553 1.127 bouyer static int wm_gmii_i80003_readreg(struct device *, int, int);
554 1.127 bouyer static void wm_gmii_i80003_writereg(struct device *, int, int, int);
555 1.127 bouyer
556 1.47 thorpej static void wm_gmii_statchg(struct device *);
557 1.1 thorpej
558 1.47 thorpej static void wm_gmii_mediainit(struct wm_softc *);
559 1.47 thorpej static int wm_gmii_mediachange(struct ifnet *);
560 1.47 thorpej static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
561 1.1 thorpej
562 1.127 bouyer static int wm_kmrn_i80003_readreg(struct wm_softc *, int);
563 1.127 bouyer static void wm_kmrn_i80003_writereg(struct wm_softc *, int, int);
564 1.127 bouyer
565 1.47 thorpej static int wm_match(struct device *, struct cfdata *, void *);
566 1.47 thorpej static void wm_attach(struct device *, struct device *, void *);
567 1.117 msaitoh static int wm_is_onboard_nvm_eeprom(struct wm_softc *);
568 1.146 msaitoh static void wm_get_auto_rd_done(struct wm_softc *);
569 1.127 bouyer static int wm_get_swsm_semaphore(struct wm_softc *);
570 1.127 bouyer static void wm_put_swsm_semaphore(struct wm_softc *);
571 1.117 msaitoh static int wm_poll_eerd_eewr_done(struct wm_softc *, int);
572 1.127 bouyer static int wm_get_swfw_semaphore(struct wm_softc *, uint16_t);
573 1.127 bouyer static void wm_put_swfw_semaphore(struct wm_softc *, uint16_t);
574 1.139 bouyer static int wm_get_swfwhw_semaphore(struct wm_softc *);
575 1.139 bouyer static void wm_put_swfwhw_semaphore(struct wm_softc *);
576 1.139 bouyer
577 1.139 bouyer static int wm_read_eeprom_ich8(struct wm_softc *, int, int, uint16_t *);
578 1.139 bouyer static int32_t wm_ich8_cycle_init(struct wm_softc *);
579 1.139 bouyer static int32_t wm_ich8_flash_cycle(struct wm_softc *, uint32_t);
580 1.139 bouyer static int32_t wm_read_ich8_data(struct wm_softc *, uint32_t,
581 1.148 simonb uint32_t, uint16_t *);
582 1.139 bouyer static int32_t wm_read_ich8_word(struct wm_softc *sc, uint32_t, uint16_t *);
583 1.1 thorpej
584 1.24 thorpej CFATTACH_DECL(wm, sizeof(struct wm_softc),
585 1.25 thorpej wm_match, wm_attach, NULL, NULL);
586 1.1 thorpej
587 1.78 thorpej static void wm_82547_txfifo_stall(void *);
588 1.78 thorpej
589 1.1 thorpej /*
590 1.1 thorpej * Devices supported by this driver.
591 1.1 thorpej */
592 1.76 thorpej static const struct wm_product {
593 1.1 thorpej pci_vendor_id_t wmp_vendor;
594 1.1 thorpej pci_product_id_t wmp_product;
595 1.1 thorpej const char *wmp_name;
596 1.43 thorpej wm_chip_type wmp_type;
597 1.1 thorpej int wmp_flags;
598 1.1 thorpej #define WMP_F_1000X 0x01
599 1.1 thorpej #define WMP_F_1000T 0x02
600 1.1 thorpej } wm_products[] = {
601 1.1 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
602 1.1 thorpej "Intel i82542 1000BASE-X Ethernet",
603 1.11 thorpej WM_T_82542_2_1, WMP_F_1000X },
604 1.1 thorpej
605 1.11 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
606 1.11 thorpej "Intel i82543GC 1000BASE-X Ethernet",
607 1.11 thorpej WM_T_82543, WMP_F_1000X },
608 1.1 thorpej
609 1.11 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
610 1.11 thorpej "Intel i82543GC 1000BASE-T Ethernet",
611 1.11 thorpej WM_T_82543, WMP_F_1000T },
612 1.1 thorpej
613 1.11 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
614 1.11 thorpej "Intel i82544EI 1000BASE-T Ethernet",
615 1.11 thorpej WM_T_82544, WMP_F_1000T },
616 1.1 thorpej
617 1.11 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
618 1.11 thorpej "Intel i82544EI 1000BASE-X Ethernet",
619 1.11 thorpej WM_T_82544, WMP_F_1000X },
620 1.1 thorpej
621 1.11 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
622 1.1 thorpej "Intel i82544GC 1000BASE-T Ethernet",
623 1.11 thorpej WM_T_82544, WMP_F_1000T },
624 1.1 thorpej
625 1.11 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
626 1.11 thorpej "Intel i82544GC (LOM) 1000BASE-T Ethernet",
627 1.11 thorpej WM_T_82544, WMP_F_1000T },
628 1.1 thorpej
629 1.17 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
630 1.17 thorpej "Intel i82540EM 1000BASE-T Ethernet",
631 1.34 kent WM_T_82540, WMP_F_1000T },
632 1.34 kent
633 1.55 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
634 1.55 thorpej "Intel i82540EM (LOM) 1000BASE-T Ethernet",
635 1.55 thorpej WM_T_82540, WMP_F_1000T },
636 1.55 thorpej
637 1.34 kent { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
638 1.34 kent "Intel i82540EP 1000BASE-T Ethernet",
639 1.34 kent WM_T_82540, WMP_F_1000T },
640 1.34 kent
641 1.34 kent { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
642 1.34 kent "Intel i82540EP 1000BASE-T Ethernet",
643 1.33 kent WM_T_82540, WMP_F_1000T },
644 1.33 kent
645 1.33 kent { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
646 1.33 kent "Intel i82540EP 1000BASE-T Ethernet",
647 1.17 thorpej WM_T_82540, WMP_F_1000T },
648 1.17 thorpej
649 1.17 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
650 1.17 thorpej "Intel i82545EM 1000BASE-T Ethernet",
651 1.17 thorpej WM_T_82545, WMP_F_1000T },
652 1.17 thorpej
653 1.55 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
654 1.55 thorpej "Intel i82545GM 1000BASE-T Ethernet",
655 1.55 thorpej WM_T_82545_3, WMP_F_1000T },
656 1.55 thorpej
657 1.55 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
658 1.55 thorpej "Intel i82545GM 1000BASE-X Ethernet",
659 1.55 thorpej WM_T_82545_3, WMP_F_1000X },
660 1.55 thorpej #if 0
661 1.55 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
662 1.55 thorpej "Intel i82545GM Gigabit Ethernet (SERDES)",
663 1.55 thorpej WM_T_82545_3, WMP_F_SERDES },
664 1.55 thorpej #endif
665 1.17 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
666 1.39 thorpej "Intel i82546EB 1000BASE-T Ethernet",
667 1.39 thorpej WM_T_82546, WMP_F_1000T },
668 1.39 thorpej
669 1.39 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
670 1.17 thorpej "Intel i82546EB 1000BASE-T Ethernet",
671 1.17 thorpej WM_T_82546, WMP_F_1000T },
672 1.17 thorpej
673 1.17 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
674 1.17 thorpej "Intel i82545EM 1000BASE-X Ethernet",
675 1.17 thorpej WM_T_82545, WMP_F_1000X },
676 1.17 thorpej
677 1.17 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
678 1.17 thorpej "Intel i82546EB 1000BASE-X Ethernet",
679 1.17 thorpej WM_T_82546, WMP_F_1000X },
680 1.17 thorpej
681 1.55 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
682 1.55 thorpej "Intel i82546GB 1000BASE-T Ethernet",
683 1.55 thorpej WM_T_82546_3, WMP_F_1000T },
684 1.55 thorpej
685 1.55 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
686 1.55 thorpej "Intel i82546GB 1000BASE-X Ethernet",
687 1.55 thorpej WM_T_82546_3, WMP_F_1000X },
688 1.55 thorpej #if 0
689 1.55 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
690 1.55 thorpej "Intel i82546GB Gigabit Ethernet (SERDES)",
691 1.55 thorpej WM_T_82546_3, WMP_F_SERDES },
692 1.55 thorpej #endif
693 1.127 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER,
694 1.127 bouyer "i82546GB quad-port Gigabit Ethernet",
695 1.127 bouyer WM_T_82546_3, WMP_F_1000T },
696 1.127 bouyer
697 1.127 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3,
698 1.127 bouyer "i82546GB quad-port Gigabit Ethernet (KSP3)",
699 1.127 bouyer WM_T_82546_3, WMP_F_1000T },
700 1.127 bouyer
701 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_PCIE,
702 1.116 msaitoh "Intel PRO/1000MT (82546GB)",
703 1.116 msaitoh WM_T_82546_3, WMP_F_1000T },
704 1.116 msaitoh
705 1.63 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
706 1.63 thorpej "Intel i82541EI 1000BASE-T Ethernet",
707 1.63 thorpej WM_T_82541, WMP_F_1000T },
708 1.63 thorpej
709 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER_LOM,
710 1.116 msaitoh "Intel i82541ER (LOM) 1000BASE-T Ethernet",
711 1.116 msaitoh WM_T_82541, WMP_F_1000T },
712 1.116 msaitoh
713 1.57 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
714 1.57 thorpej "Intel i82541EI Mobile 1000BASE-T Ethernet",
715 1.57 thorpej WM_T_82541, WMP_F_1000T },
716 1.57 thorpej
717 1.57 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
718 1.57 thorpej "Intel i82541ER 1000BASE-T Ethernet",
719 1.57 thorpej WM_T_82541_2, WMP_F_1000T },
720 1.57 thorpej
721 1.57 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
722 1.57 thorpej "Intel i82541GI 1000BASE-T Ethernet",
723 1.57 thorpej WM_T_82541_2, WMP_F_1000T },
724 1.57 thorpej
725 1.57 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
726 1.57 thorpej "Intel i82541GI Mobile 1000BASE-T Ethernet",
727 1.57 thorpej WM_T_82541_2, WMP_F_1000T },
728 1.57 thorpej
729 1.101 tron { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI,
730 1.101 tron "Intel i82541PI 1000BASE-T Ethernet",
731 1.101 tron WM_T_82541_2, WMP_F_1000T },
732 1.101 tron
733 1.57 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
734 1.57 thorpej "Intel i82547EI 1000BASE-T Ethernet",
735 1.57 thorpej WM_T_82547, WMP_F_1000T },
736 1.57 thorpej
737 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI_MOBILE,
738 1.141 simonb "Intel i82547EI Mobile 1000BASE-T Ethernet",
739 1.116 msaitoh WM_T_82547, WMP_F_1000T },
740 1.116 msaitoh
741 1.57 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
742 1.57 thorpej "Intel i82547GI 1000BASE-T Ethernet",
743 1.57 thorpej WM_T_82547_2, WMP_F_1000T },
744 1.116 msaitoh
745 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_COPPER,
746 1.116 msaitoh "Intel PRO/1000 PT (82571EB)",
747 1.116 msaitoh WM_T_82571, WMP_F_1000T },
748 1.116 msaitoh
749 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_FIBER,
750 1.116 msaitoh "Intel PRO/1000 PF (82571EB)",
751 1.116 msaitoh WM_T_82571, WMP_F_1000X },
752 1.116 msaitoh #if 0
753 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_SERDES,
754 1.116 msaitoh "Intel PRO/1000 PB (82571EB)",
755 1.116 msaitoh WM_T_82571, WMP_F_SERDES },
756 1.116 msaitoh #endif
757 1.127 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER,
758 1.127 bouyer "Intel PRO/1000 QT (82571EB)",
759 1.127 bouyer WM_T_82571, WMP_F_1000T },
760 1.127 bouyer
761 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_COPPER,
762 1.116 msaitoh "Intel i82572EI 1000baseT Ethernet",
763 1.116 msaitoh WM_T_82572, WMP_F_1000T },
764 1.116 msaitoh
765 1.151 ragge { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER,
766 1.151 ragge "Intel PRO/1000 PT Quad Port Server Adapter",
767 1.151 ragge WM_T_82571, WMP_F_1000T, },
768 1.151 ragge
769 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_FIBER,
770 1.116 msaitoh "Intel i82572EI 1000baseX Ethernet",
771 1.116 msaitoh WM_T_82572, WMP_F_1000X },
772 1.116 msaitoh #if 0
773 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_SERDES,
774 1.116 msaitoh "Intel i82572EI Gigabit Ethernet (SERDES)",
775 1.116 msaitoh WM_T_82572, WMP_F_SERDES },
776 1.116 msaitoh #endif
777 1.116 msaitoh
778 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI,
779 1.116 msaitoh "Intel i82572EI 1000baseT Ethernet",
780 1.116 msaitoh WM_T_82572, WMP_F_1000T },
781 1.116 msaitoh
782 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E,
783 1.116 msaitoh "Intel i82573E",
784 1.116 msaitoh WM_T_82573, WMP_F_1000T },
785 1.116 msaitoh
786 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E_IAMT,
787 1.117 msaitoh "Intel i82573E IAMT",
788 1.116 msaitoh WM_T_82573, WMP_F_1000T },
789 1.116 msaitoh
790 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L,
791 1.116 msaitoh "Intel i82573L Gigabit Ethernet",
792 1.116 msaitoh WM_T_82573, WMP_F_1000T },
793 1.116 msaitoh
794 1.127 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT,
795 1.127 bouyer "i80003 dual 1000baseT Ethernet",
796 1.127 bouyer WM_T_80003, WMP_F_1000T },
797 1.127 bouyer
798 1.127 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT,
799 1.127 bouyer "i80003 dual 1000baseX Ethernet",
800 1.127 bouyer WM_T_80003, WMP_F_1000T },
801 1.127 bouyer #if 0
802 1.127 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT,
803 1.127 bouyer "Intel i80003ES2 dual Gigabit Ethernet (SERDES)",
804 1.127 bouyer WM_T_80003, WMP_F_SERDES },
805 1.127 bouyer #endif
806 1.127 bouyer
807 1.127 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT,
808 1.127 bouyer "Intel i80003 1000baseT Ethernet",
809 1.127 bouyer WM_T_80003, WMP_F_1000T },
810 1.127 bouyer #if 0
811 1.127 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT,
812 1.127 bouyer "Intel i80003 Gigabit Ethernet (SERDES)",
813 1.127 bouyer WM_T_80003, WMP_F_SERDES },
814 1.127 bouyer #endif
815 1.139 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_AMT,
816 1.139 bouyer "Intel i82801H (M_AMT) LAN Controller",
817 1.139 bouyer WM_T_ICH8, WMP_F_1000T },
818 1.139 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_AMT,
819 1.139 bouyer "Intel i82801H (AMT) LAN Controller",
820 1.139 bouyer WM_T_ICH8, WMP_F_1000T },
821 1.139 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_LAN,
822 1.139 bouyer "Intel i82801H LAN Controller",
823 1.139 bouyer WM_T_ICH8, WMP_F_1000T },
824 1.139 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_LAN,
825 1.139 bouyer "Intel i82801H (IFE) LAN Controller",
826 1.139 bouyer WM_T_ICH8, WMP_F_1000T },
827 1.139 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_LAN,
828 1.139 bouyer "Intel i82801H (M) LAN Controller",
829 1.139 bouyer WM_T_ICH8, WMP_F_1000T },
830 1.139 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_GT,
831 1.139 bouyer "Intel i82801H IFE (GT) LAN Controller",
832 1.139 bouyer WM_T_ICH8, WMP_F_1000T },
833 1.139 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_G,
834 1.139 bouyer "Intel i82801H IFE (G) LAN Controller",
835 1.139 bouyer WM_T_ICH8, WMP_F_1000T },
836 1.144 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_AMT,
837 1.144 msaitoh "82801I (AMT) LAN Controller",
838 1.144 msaitoh WM_T_ICH9, WMP_F_1000T },
839 1.144 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE,
840 1.144 msaitoh "82801I LAN Controller",
841 1.144 msaitoh WM_T_ICH9, WMP_F_1000T },
842 1.144 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_G,
843 1.144 msaitoh "82801I (G) LAN Controller",
844 1.144 msaitoh WM_T_ICH9, WMP_F_1000T },
845 1.144 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_GT,
846 1.144 msaitoh "82801I (GT) LAN Controller",
847 1.144 msaitoh WM_T_ICH9, WMP_F_1000T },
848 1.144 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_C,
849 1.144 msaitoh "82801I (C) LAN Controller",
850 1.144 msaitoh WM_T_ICH9, WMP_F_1000T },
851 1.1 thorpej { 0, 0,
852 1.1 thorpej NULL,
853 1.1 thorpej 0, 0 },
854 1.1 thorpej };
855 1.1 thorpej
856 1.2 thorpej #ifdef WM_EVENT_COUNTERS
857 1.75 thorpej static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
858 1.2 thorpej #endif /* WM_EVENT_COUNTERS */
859 1.2 thorpej
860 1.53 thorpej #if 0 /* Not currently used */
861 1.110 perry static inline uint32_t
862 1.53 thorpej wm_io_read(struct wm_softc *sc, int reg)
863 1.53 thorpej {
864 1.53 thorpej
865 1.53 thorpej bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
866 1.53 thorpej return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
867 1.53 thorpej }
868 1.53 thorpej #endif
869 1.53 thorpej
870 1.110 perry static inline void
871 1.53 thorpej wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
872 1.53 thorpej {
873 1.53 thorpej
874 1.53 thorpej bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
875 1.53 thorpej bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
876 1.53 thorpej }
877 1.53 thorpej
878 1.110 perry static inline void
879 1.110 perry wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
880 1.69 thorpej {
881 1.69 thorpej wa->wa_low = htole32(v & 0xffffffffU);
882 1.69 thorpej if (sizeof(bus_addr_t) == 8)
883 1.69 thorpej wa->wa_high = htole32((uint64_t) v >> 32);
884 1.69 thorpej else
885 1.69 thorpej wa->wa_high = 0;
886 1.69 thorpej }
887 1.69 thorpej
888 1.1 thorpej static const struct wm_product *
889 1.1 thorpej wm_lookup(const struct pci_attach_args *pa)
890 1.1 thorpej {
891 1.1 thorpej const struct wm_product *wmp;
892 1.1 thorpej
893 1.1 thorpej for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
894 1.1 thorpej if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
895 1.1 thorpej PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
896 1.1 thorpej return (wmp);
897 1.1 thorpej }
898 1.1 thorpej return (NULL);
899 1.1 thorpej }
900 1.1 thorpej
901 1.47 thorpej static int
902 1.128 yamt wm_match(struct device *parent, struct cfdata *cf, void *aux)
903 1.1 thorpej {
904 1.1 thorpej struct pci_attach_args *pa = aux;
905 1.1 thorpej
906 1.1 thorpej if (wm_lookup(pa) != NULL)
907 1.1 thorpej return (1);
908 1.1 thorpej
909 1.1 thorpej return (0);
910 1.1 thorpej }
911 1.1 thorpej
912 1.47 thorpej static void
913 1.128 yamt wm_attach(struct device *parent, struct device *self, void *aux)
914 1.1 thorpej {
915 1.1 thorpej struct wm_softc *sc = (void *) self;
916 1.1 thorpej struct pci_attach_args *pa = aux;
917 1.1 thorpej struct ifnet *ifp = &sc->sc_ethercom.ec_if;
918 1.1 thorpej pci_chipset_tag_t pc = pa->pa_pc;
919 1.1 thorpej pci_intr_handle_t ih;
920 1.75 thorpej size_t cdata_size;
921 1.1 thorpej const char *intrstr = NULL;
922 1.44 thorpej const char *eetype;
923 1.1 thorpej bus_space_tag_t memt;
924 1.1 thorpej bus_space_handle_t memh;
925 1.1 thorpej bus_dma_segment_t seg;
926 1.1 thorpej int memh_valid;
927 1.1 thorpej int i, rseg, error;
928 1.1 thorpej const struct wm_product *wmp;
929 1.115 thorpej prop_data_t ea;
930 1.115 thorpej prop_number_t pn;
931 1.1 thorpej uint8_t enaddr[ETHER_ADDR_LEN];
932 1.1 thorpej uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
933 1.1 thorpej pcireg_t preg, memtype;
934 1.44 thorpej uint32_t reg;
935 1.1 thorpej
936 1.142 ad callout_init(&sc->sc_tick_ch, 0);
937 1.1 thorpej
938 1.1 thorpej wmp = wm_lookup(pa);
939 1.1 thorpej if (wmp == NULL) {
940 1.1 thorpej printf("\n");
941 1.1 thorpej panic("wm_attach: impossible");
942 1.1 thorpej }
943 1.1 thorpej
944 1.123 jmcneill sc->sc_pc = pa->pa_pc;
945 1.123 jmcneill sc->sc_pcitag = pa->pa_tag;
946 1.123 jmcneill
947 1.69 thorpej if (pci_dma64_available(pa))
948 1.69 thorpej sc->sc_dmat = pa->pa_dmat64;
949 1.69 thorpej else
950 1.69 thorpej sc->sc_dmat = pa->pa_dmat;
951 1.1 thorpej
952 1.1 thorpej preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
953 1.37 thorpej aprint_naive(": Ethernet controller\n");
954 1.37 thorpej aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
955 1.1 thorpej
956 1.1 thorpej sc->sc_type = wmp->wmp_type;
957 1.11 thorpej if (sc->sc_type < WM_T_82543) {
958 1.1 thorpej if (preg < 2) {
959 1.37 thorpej aprint_error("%s: i82542 must be at least rev. 2\n",
960 1.1 thorpej sc->sc_dev.dv_xname);
961 1.1 thorpej return;
962 1.1 thorpej }
963 1.1 thorpej if (preg < 3)
964 1.11 thorpej sc->sc_type = WM_T_82542_2_0;
965 1.1 thorpej }
966 1.1 thorpej
967 1.1 thorpej /*
968 1.53 thorpej * Map the device. All devices support memory-mapped acccess,
969 1.53 thorpej * and it is really required for normal operation.
970 1.1 thorpej */
971 1.1 thorpej memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
972 1.1 thorpej switch (memtype) {
973 1.1 thorpej case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
974 1.1 thorpej case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
975 1.1 thorpej memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
976 1.1 thorpej memtype, 0, &memt, &memh, NULL, NULL) == 0);
977 1.1 thorpej break;
978 1.1 thorpej default:
979 1.1 thorpej memh_valid = 0;
980 1.1 thorpej }
981 1.1 thorpej
982 1.1 thorpej if (memh_valid) {
983 1.1 thorpej sc->sc_st = memt;
984 1.1 thorpej sc->sc_sh = memh;
985 1.1 thorpej } else {
986 1.37 thorpej aprint_error("%s: unable to map device registers\n",
987 1.1 thorpej sc->sc_dev.dv_xname);
988 1.1 thorpej return;
989 1.1 thorpej }
990 1.1 thorpej
991 1.53 thorpej /*
992 1.53 thorpej * In addition, i82544 and later support I/O mapped indirect
993 1.53 thorpej * register access. It is not desirable (nor supported in
994 1.53 thorpej * this driver) to use it for normal operation, though it is
995 1.53 thorpej * required to work around bugs in some chip versions.
996 1.53 thorpej */
997 1.53 thorpej if (sc->sc_type >= WM_T_82544) {
998 1.53 thorpej /* First we have to find the I/O BAR. */
999 1.53 thorpej for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
1000 1.53 thorpej if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
1001 1.53 thorpej PCI_MAPREG_TYPE_IO)
1002 1.53 thorpej break;
1003 1.53 thorpej }
1004 1.53 thorpej if (i == PCI_MAPREG_END)
1005 1.53 thorpej aprint_error("%s: WARNING: unable to find I/O BAR\n",
1006 1.53 thorpej sc->sc_dev.dv_xname);
1007 1.88 briggs else {
1008 1.88 briggs /*
1009 1.88 briggs * The i8254x doesn't apparently respond when the
1010 1.88 briggs * I/O BAR is 0, which looks somewhat like it's not
1011 1.88 briggs * been configured.
1012 1.88 briggs */
1013 1.88 briggs preg = pci_conf_read(pc, pa->pa_tag, i);
1014 1.88 briggs if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
1015 1.93 thorpej aprint_error("%s: WARNING: I/O BAR at zero.\n",
1016 1.88 briggs sc->sc_dev.dv_xname);
1017 1.88 briggs } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
1018 1.53 thorpej 0, &sc->sc_iot, &sc->sc_ioh,
1019 1.88 briggs NULL, NULL) == 0) {
1020 1.88 briggs sc->sc_flags |= WM_F_IOH_VALID;
1021 1.88 briggs } else {
1022 1.88 briggs aprint_error("%s: WARNING: unable to map "
1023 1.88 briggs "I/O space\n", sc->sc_dev.dv_xname);
1024 1.88 briggs }
1025 1.88 briggs }
1026 1.88 briggs
1027 1.53 thorpej }
1028 1.53 thorpej
1029 1.11 thorpej /* Enable bus mastering. Disable MWI on the i82542 2.0. */
1030 1.1 thorpej preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1031 1.1 thorpej preg |= PCI_COMMAND_MASTER_ENABLE;
1032 1.11 thorpej if (sc->sc_type < WM_T_82542_2_1)
1033 1.1 thorpej preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
1034 1.1 thorpej pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
1035 1.1 thorpej
1036 1.122 christos /* power up chip */
1037 1.122 christos if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
1038 1.122 christos NULL)) && error != EOPNOTSUPP) {
1039 1.122 christos aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
1040 1.122 christos error);
1041 1.122 christos return;
1042 1.1 thorpej }
1043 1.1 thorpej
1044 1.1 thorpej /*
1045 1.1 thorpej * Map and establish our interrupt.
1046 1.1 thorpej */
1047 1.1 thorpej if (pci_intr_map(pa, &ih)) {
1048 1.37 thorpej aprint_error("%s: unable to map interrupt\n",
1049 1.37 thorpej sc->sc_dev.dv_xname);
1050 1.1 thorpej return;
1051 1.1 thorpej }
1052 1.1 thorpej intrstr = pci_intr_string(pc, ih);
1053 1.1 thorpej sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
1054 1.1 thorpej if (sc->sc_ih == NULL) {
1055 1.37 thorpej aprint_error("%s: unable to establish interrupt",
1056 1.1 thorpej sc->sc_dev.dv_xname);
1057 1.1 thorpej if (intrstr != NULL)
1058 1.37 thorpej aprint_normal(" at %s", intrstr);
1059 1.37 thorpej aprint_normal("\n");
1060 1.1 thorpej return;
1061 1.1 thorpej }
1062 1.37 thorpej aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1063 1.52 thorpej
1064 1.52 thorpej /*
1065 1.52 thorpej * Determine a few things about the bus we're connected to.
1066 1.52 thorpej */
1067 1.52 thorpej if (sc->sc_type < WM_T_82543) {
1068 1.52 thorpej /* We don't really know the bus characteristics here. */
1069 1.52 thorpej sc->sc_bus_speed = 33;
1070 1.73 tron } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
1071 1.73 tron /*
1072 1.73 tron * CSA (Communication Streaming Architecture) is about as fast
1073 1.73 tron * a 32-bit 66MHz PCI Bus.
1074 1.73 tron */
1075 1.73 tron sc->sc_flags |= WM_F_CSA;
1076 1.73 tron sc->sc_bus_speed = 66;
1077 1.73 tron aprint_verbose("%s: Communication Streaming Architecture\n",
1078 1.73 tron sc->sc_dev.dv_xname);
1079 1.78 thorpej if (sc->sc_type == WM_T_82547) {
1080 1.142 ad callout_init(&sc->sc_txfifo_ch, 0);
1081 1.78 thorpej callout_setfunc(&sc->sc_txfifo_ch,
1082 1.78 thorpej wm_82547_txfifo_stall, sc);
1083 1.78 thorpej aprint_verbose("%s: using 82547 Tx FIFO stall "
1084 1.78 thorpej "work-around\n", sc->sc_dev.dv_xname);
1085 1.78 thorpej }
1086 1.116 msaitoh } else if (sc->sc_type >= WM_T_82571) {
1087 1.139 bouyer sc->sc_flags |= WM_F_PCIE;
1088 1.144 msaitoh if ((sc->sc_type != WM_T_ICH8) || (sc->sc_type != WM_T_ICH9))
1089 1.139 bouyer sc->sc_flags |= WM_F_EEPROM_SEMAPHORE;
1090 1.116 msaitoh aprint_verbose("%s: PCI-Express bus\n", sc->sc_dev.dv_xname);
1091 1.73 tron } else {
1092 1.52 thorpej reg = CSR_READ(sc, WMREG_STATUS);
1093 1.52 thorpej if (reg & STATUS_BUS64)
1094 1.52 thorpej sc->sc_flags |= WM_F_BUS64;
1095 1.52 thorpej if (sc->sc_type >= WM_T_82544 &&
1096 1.54 thorpej (reg & STATUS_PCIX_MODE) != 0) {
1097 1.54 thorpej pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
1098 1.54 thorpej
1099 1.52 thorpej sc->sc_flags |= WM_F_PCIX;
1100 1.54 thorpej if (pci_get_capability(pa->pa_pc, pa->pa_tag,
1101 1.54 thorpej PCI_CAP_PCIX,
1102 1.54 thorpej &sc->sc_pcix_offset, NULL) == 0)
1103 1.54 thorpej aprint_error("%s: unable to find PCIX "
1104 1.54 thorpej "capability\n", sc->sc_dev.dv_xname);
1105 1.54 thorpej else if (sc->sc_type != WM_T_82545_3 &&
1106 1.54 thorpej sc->sc_type != WM_T_82546_3) {
1107 1.54 thorpej /*
1108 1.54 thorpej * Work around a problem caused by the BIOS
1109 1.54 thorpej * setting the max memory read byte count
1110 1.54 thorpej * incorrectly.
1111 1.54 thorpej */
1112 1.54 thorpej pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
1113 1.54 thorpej sc->sc_pcix_offset + PCI_PCIX_CMD);
1114 1.54 thorpej pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
1115 1.54 thorpej sc->sc_pcix_offset + PCI_PCIX_STATUS);
1116 1.54 thorpej
1117 1.54 thorpej bytecnt =
1118 1.54 thorpej (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
1119 1.54 thorpej PCI_PCIX_CMD_BYTECNT_SHIFT;
1120 1.54 thorpej maxb =
1121 1.54 thorpej (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
1122 1.54 thorpej PCI_PCIX_STATUS_MAXB_SHIFT;
1123 1.54 thorpej if (bytecnt > maxb) {
1124 1.54 thorpej aprint_verbose("%s: resetting PCI-X "
1125 1.54 thorpej "MMRBC: %d -> %d\n",
1126 1.54 thorpej sc->sc_dev.dv_xname,
1127 1.54 thorpej 512 << bytecnt, 512 << maxb);
1128 1.54 thorpej pcix_cmd = (pcix_cmd &
1129 1.54 thorpej ~PCI_PCIX_CMD_BYTECNT_MASK) |
1130 1.54 thorpej (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
1131 1.54 thorpej pci_conf_write(pa->pa_pc, pa->pa_tag,
1132 1.54 thorpej sc->sc_pcix_offset + PCI_PCIX_CMD,
1133 1.54 thorpej pcix_cmd);
1134 1.54 thorpej }
1135 1.54 thorpej }
1136 1.54 thorpej }
1137 1.52 thorpej /*
1138 1.52 thorpej * The quad port adapter is special; it has a PCIX-PCIX
1139 1.52 thorpej * bridge on the board, and can run the secondary bus at
1140 1.52 thorpej * a higher speed.
1141 1.52 thorpej */
1142 1.52 thorpej if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
1143 1.52 thorpej sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
1144 1.52 thorpej : 66;
1145 1.52 thorpej } else if (sc->sc_flags & WM_F_PCIX) {
1146 1.62 thorpej switch (reg & STATUS_PCIXSPD_MASK) {
1147 1.52 thorpej case STATUS_PCIXSPD_50_66:
1148 1.52 thorpej sc->sc_bus_speed = 66;
1149 1.52 thorpej break;
1150 1.52 thorpej case STATUS_PCIXSPD_66_100:
1151 1.52 thorpej sc->sc_bus_speed = 100;
1152 1.52 thorpej break;
1153 1.52 thorpej case STATUS_PCIXSPD_100_133:
1154 1.52 thorpej sc->sc_bus_speed = 133;
1155 1.52 thorpej break;
1156 1.52 thorpej default:
1157 1.52 thorpej aprint_error(
1158 1.52 thorpej "%s: unknown PCIXSPD %d; assuming 66MHz\n",
1159 1.62 thorpej sc->sc_dev.dv_xname,
1160 1.62 thorpej reg & STATUS_PCIXSPD_MASK);
1161 1.52 thorpej sc->sc_bus_speed = 66;
1162 1.52 thorpej }
1163 1.52 thorpej } else
1164 1.52 thorpej sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
1165 1.52 thorpej aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
1166 1.52 thorpej (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
1167 1.52 thorpej (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
1168 1.52 thorpej }
1169 1.1 thorpej
1170 1.1 thorpej /*
1171 1.1 thorpej * Allocate the control data structures, and create and load the
1172 1.1 thorpej * DMA map for it.
1173 1.69 thorpej *
1174 1.69 thorpej * NOTE: All Tx descriptors must be in the same 4G segment of
1175 1.69 thorpej * memory. So must Rx descriptors. We simplify by allocating
1176 1.69 thorpej * both sets within the same 4G segment.
1177 1.1 thorpej */
1178 1.75 thorpej WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
1179 1.75 thorpej WM_NTXDESC_82542 : WM_NTXDESC_82544;
1180 1.75 thorpej cdata_size = sc->sc_type < WM_T_82544 ?
1181 1.75 thorpej sizeof(struct wm_control_data_82542) :
1182 1.75 thorpej sizeof(struct wm_control_data_82544);
1183 1.75 thorpej if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
1184 1.75 thorpej (bus_size_t) 0x100000000ULL,
1185 1.69 thorpej &seg, 1, &rseg, 0)) != 0) {
1186 1.37 thorpej aprint_error(
1187 1.37 thorpej "%s: unable to allocate control data, error = %d\n",
1188 1.1 thorpej sc->sc_dev.dv_xname, error);
1189 1.1 thorpej goto fail_0;
1190 1.1 thorpej }
1191 1.1 thorpej
1192 1.75 thorpej if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
1193 1.135 christos (void **)&sc->sc_control_data, 0)) != 0) {
1194 1.37 thorpej aprint_error("%s: unable to map control data, error = %d\n",
1195 1.1 thorpej sc->sc_dev.dv_xname, error);
1196 1.1 thorpej goto fail_1;
1197 1.1 thorpej }
1198 1.1 thorpej
1199 1.75 thorpej if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
1200 1.75 thorpej 0, 0, &sc->sc_cddmamap)) != 0) {
1201 1.37 thorpej aprint_error("%s: unable to create control data DMA map, "
1202 1.1 thorpej "error = %d\n", sc->sc_dev.dv_xname, error);
1203 1.1 thorpej goto fail_2;
1204 1.1 thorpej }
1205 1.1 thorpej
1206 1.1 thorpej if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1207 1.75 thorpej sc->sc_control_data, cdata_size, NULL,
1208 1.69 thorpej 0)) != 0) {
1209 1.37 thorpej aprint_error(
1210 1.37 thorpej "%s: unable to load control data DMA map, error = %d\n",
1211 1.1 thorpej sc->sc_dev.dv_xname, error);
1212 1.1 thorpej goto fail_3;
1213 1.1 thorpej }
1214 1.1 thorpej
1215 1.74 tron
1216 1.1 thorpej /*
1217 1.1 thorpej * Create the transmit buffer DMA maps.
1218 1.1 thorpej */
1219 1.74 tron WM_TXQUEUELEN(sc) =
1220 1.74 tron (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1221 1.74 tron WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1222 1.74 tron for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1223 1.82 thorpej if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1224 1.79 thorpej WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1225 1.69 thorpej &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1226 1.37 thorpej aprint_error("%s: unable to create Tx DMA map %d, "
1227 1.1 thorpej "error = %d\n", sc->sc_dev.dv_xname, i, error);
1228 1.1 thorpej goto fail_4;
1229 1.1 thorpej }
1230 1.1 thorpej }
1231 1.1 thorpej
1232 1.1 thorpej /*
1233 1.1 thorpej * Create the receive buffer DMA maps.
1234 1.1 thorpej */
1235 1.1 thorpej for (i = 0; i < WM_NRXDESC; i++) {
1236 1.1 thorpej if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1237 1.69 thorpej MCLBYTES, 0, 0,
1238 1.69 thorpej &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1239 1.37 thorpej aprint_error("%s: unable to create Rx DMA map %d, "
1240 1.1 thorpej "error = %d\n", sc->sc_dev.dv_xname, i, error);
1241 1.1 thorpej goto fail_5;
1242 1.1 thorpej }
1243 1.1 thorpej sc->sc_rxsoft[i].rxs_mbuf = NULL;
1244 1.1 thorpej }
1245 1.1 thorpej
1246 1.127 bouyer /* clear interesting stat counters */
1247 1.127 bouyer CSR_READ(sc, WMREG_COLC);
1248 1.127 bouyer CSR_READ(sc, WMREG_RXERRC);
1249 1.127 bouyer
1250 1.1 thorpej /*
1251 1.1 thorpej * Reset the chip to a known state.
1252 1.1 thorpej */
1253 1.1 thorpej wm_reset(sc);
1254 1.1 thorpej
1255 1.1 thorpej /*
1256 1.44 thorpej * Get some information about the EEPROM.
1257 1.44 thorpej */
1258 1.144 msaitoh if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)) {
1259 1.139 bouyer uint32_t flash_size;
1260 1.139 bouyer sc->sc_flags |= WM_F_SWFWHW_SYNC | WM_F_EEPROM_FLASH;
1261 1.139 bouyer memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_ICH8_FLASH);
1262 1.139 bouyer if (pci_mapreg_map(pa, WM_ICH8_FLASH, memtype, 0,
1263 1.139 bouyer &sc->sc_flasht, &sc->sc_flashh, NULL, NULL)) {
1264 1.139 bouyer printf("%s: can't map FLASH registers\n",
1265 1.139 bouyer sc->sc_dev.dv_xname);
1266 1.139 bouyer return;
1267 1.139 bouyer }
1268 1.139 bouyer flash_size = ICH8_FLASH_READ32(sc, ICH_FLASH_GFPREG);
1269 1.139 bouyer sc->sc_ich8_flash_base = (flash_size & ICH_GFPREG_BASE_MASK) *
1270 1.139 bouyer ICH_FLASH_SECTOR_SIZE;
1271 1.139 bouyer sc->sc_ich8_flash_bank_size =
1272 1.139 bouyer ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1;
1273 1.139 bouyer sc->sc_ich8_flash_bank_size -=
1274 1.139 bouyer (flash_size & ICH_GFPREG_BASE_MASK);
1275 1.139 bouyer sc->sc_ich8_flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
1276 1.139 bouyer sc->sc_ich8_flash_bank_size /= 2 * sizeof(uint16_t);
1277 1.139 bouyer } else if (sc->sc_type == WM_T_80003)
1278 1.136 msaitoh sc->sc_flags |= WM_F_EEPROM_EERDEEWR | WM_F_SWFW_SYNC;
1279 1.127 bouyer else if (sc->sc_type == WM_T_82573)
1280 1.136 msaitoh sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
1281 1.117 msaitoh else if (sc->sc_type > WM_T_82544)
1282 1.44 thorpej sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1283 1.117 msaitoh
1284 1.44 thorpej if (sc->sc_type <= WM_T_82544)
1285 1.44 thorpej sc->sc_ee_addrbits = 6;
1286 1.44 thorpej else if (sc->sc_type <= WM_T_82546_3) {
1287 1.44 thorpej reg = CSR_READ(sc, WMREG_EECD);
1288 1.44 thorpej if (reg & EECD_EE_SIZE)
1289 1.44 thorpej sc->sc_ee_addrbits = 8;
1290 1.44 thorpej else
1291 1.44 thorpej sc->sc_ee_addrbits = 6;
1292 1.57 thorpej } else if (sc->sc_type <= WM_T_82547_2) {
1293 1.57 thorpej reg = CSR_READ(sc, WMREG_EECD);
1294 1.57 thorpej if (reg & EECD_EE_TYPE) {
1295 1.57 thorpej sc->sc_flags |= WM_F_EEPROM_SPI;
1296 1.57 thorpej sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1297 1.57 thorpej } else
1298 1.57 thorpej sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1299 1.117 msaitoh } else if ((sc->sc_type == WM_T_82573) &&
1300 1.117 msaitoh (wm_is_onboard_nvm_eeprom(sc) == 0)) {
1301 1.117 msaitoh sc->sc_flags |= WM_F_EEPROM_FLASH;
1302 1.57 thorpej } else {
1303 1.57 thorpej /* Assume everything else is SPI. */
1304 1.57 thorpej reg = CSR_READ(sc, WMREG_EECD);
1305 1.57 thorpej sc->sc_flags |= WM_F_EEPROM_SPI;
1306 1.57 thorpej sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1307 1.44 thorpej }
1308 1.112 gavan
1309 1.112 gavan /*
1310 1.112 gavan * Defer printing the EEPROM type until after verifying the checksum
1311 1.112 gavan * This allows the EEPROM type to be printed correctly in the case
1312 1.112 gavan * that no EEPROM is attached.
1313 1.112 gavan */
1314 1.112 gavan
1315 1.112 gavan
1316 1.112 gavan /*
1317 1.113 gavan * Validate the EEPROM checksum. If the checksum fails, flag this for
1318 1.113 gavan * later, so we can fail future reads from the EEPROM.
1319 1.1 thorpej */
1320 1.113 gavan if (wm_validate_eeprom_checksum(sc))
1321 1.113 gavan sc->sc_flags |= WM_F_EEPROM_INVALID;
1322 1.112 gavan
1323 1.113 gavan if (sc->sc_flags & WM_F_EEPROM_INVALID)
1324 1.112 gavan aprint_verbose("%s: No EEPROM\n", sc->sc_dev.dv_xname);
1325 1.117 msaitoh else if (sc->sc_flags & WM_F_EEPROM_FLASH) {
1326 1.118 msaitoh aprint_verbose("%s: FLASH\n", sc->sc_dev.dv_xname);
1327 1.117 msaitoh } else {
1328 1.112 gavan if (sc->sc_flags & WM_F_EEPROM_SPI)
1329 1.112 gavan eetype = "SPI";
1330 1.112 gavan else
1331 1.112 gavan eetype = "MicroWire";
1332 1.112 gavan aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1333 1.112 gavan sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1334 1.112 gavan sc->sc_ee_addrbits, eetype);
1335 1.112 gavan }
1336 1.112 gavan
1337 1.113 gavan /*
1338 1.113 gavan * Read the Ethernet address from the EEPROM, if not first found
1339 1.113 gavan * in device properties.
1340 1.113 gavan */
1341 1.115 thorpej ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
1342 1.115 thorpej if (ea != NULL) {
1343 1.115 thorpej KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
1344 1.115 thorpej KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
1345 1.115 thorpej memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
1346 1.115 thorpej } else {
1347 1.113 gavan if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1348 1.113 gavan sizeof(myea) / sizeof(myea[0]), myea)) {
1349 1.113 gavan aprint_error("%s: unable to read Ethernet address\n",
1350 1.113 gavan sc->sc_dev.dv_xname);
1351 1.113 gavan return;
1352 1.113 gavan }
1353 1.113 gavan enaddr[0] = myea[0] & 0xff;
1354 1.113 gavan enaddr[1] = myea[0] >> 8;
1355 1.113 gavan enaddr[2] = myea[1] & 0xff;
1356 1.113 gavan enaddr[3] = myea[1] >> 8;
1357 1.113 gavan enaddr[4] = myea[2] & 0xff;
1358 1.113 gavan enaddr[5] = myea[2] >> 8;
1359 1.113 gavan }
1360 1.1 thorpej
1361 1.17 thorpej /*
1362 1.17 thorpej * Toggle the LSB of the MAC address on the second port
1363 1.121 msaitoh * of the dual port controller.
1364 1.17 thorpej */
1365 1.121 msaitoh if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3
1366 1.127 bouyer || sc->sc_type == WM_T_82571 || sc->sc_type == WM_T_80003) {
1367 1.17 thorpej if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1368 1.17 thorpej enaddr[5] ^= 1;
1369 1.17 thorpej }
1370 1.17 thorpej
1371 1.37 thorpej aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1372 1.1 thorpej ether_sprintf(enaddr));
1373 1.1 thorpej
1374 1.1 thorpej /*
1375 1.1 thorpej * Read the config info from the EEPROM, and set up various
1376 1.1 thorpej * bits in the control registers based on their contents.
1377 1.1 thorpej */
1378 1.115 thorpej pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1379 1.115 thorpej "i82543-cfg1");
1380 1.115 thorpej if (pn != NULL) {
1381 1.115 thorpej KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1382 1.115 thorpej cfg1 = (uint16_t) prop_number_integer_value(pn);
1383 1.115 thorpej } else {
1384 1.113 gavan if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1385 1.113 gavan aprint_error("%s: unable to read CFG1\n",
1386 1.113 gavan sc->sc_dev.dv_xname);
1387 1.113 gavan return;
1388 1.113 gavan }
1389 1.51 thorpej }
1390 1.115 thorpej
1391 1.115 thorpej pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1392 1.115 thorpej "i82543-cfg2");
1393 1.115 thorpej if (pn != NULL) {
1394 1.115 thorpej KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1395 1.115 thorpej cfg2 = (uint16_t) prop_number_integer_value(pn);
1396 1.115 thorpej } else {
1397 1.113 gavan if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1398 1.113 gavan aprint_error("%s: unable to read CFG2\n",
1399 1.113 gavan sc->sc_dev.dv_xname);
1400 1.113 gavan return;
1401 1.113 gavan }
1402 1.51 thorpej }
1403 1.115 thorpej
1404 1.51 thorpej if (sc->sc_type >= WM_T_82544) {
1405 1.115 thorpej pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1406 1.115 thorpej "i82543-swdpin");
1407 1.115 thorpej if (pn != NULL) {
1408 1.115 thorpej KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1409 1.115 thorpej swdpin = (uint16_t) prop_number_integer_value(pn);
1410 1.115 thorpej } else {
1411 1.113 gavan if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1412 1.113 gavan aprint_error("%s: unable to read SWDPIN\n",
1413 1.113 gavan sc->sc_dev.dv_xname);
1414 1.113 gavan return;
1415 1.113 gavan }
1416 1.51 thorpej }
1417 1.51 thorpej }
1418 1.1 thorpej
1419 1.1 thorpej if (cfg1 & EEPROM_CFG1_ILOS)
1420 1.1 thorpej sc->sc_ctrl |= CTRL_ILOS;
1421 1.11 thorpej if (sc->sc_type >= WM_T_82544) {
1422 1.1 thorpej sc->sc_ctrl |=
1423 1.1 thorpej ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1424 1.1 thorpej CTRL_SWDPIO_SHIFT;
1425 1.1 thorpej sc->sc_ctrl |=
1426 1.1 thorpej ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1427 1.1 thorpej CTRL_SWDPINS_SHIFT;
1428 1.1 thorpej } else {
1429 1.1 thorpej sc->sc_ctrl |=
1430 1.1 thorpej ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1431 1.1 thorpej CTRL_SWDPIO_SHIFT;
1432 1.1 thorpej }
1433 1.1 thorpej
1434 1.1 thorpej #if 0
1435 1.11 thorpej if (sc->sc_type >= WM_T_82544) {
1436 1.1 thorpej if (cfg1 & EEPROM_CFG1_IPS0)
1437 1.1 thorpej sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1438 1.1 thorpej if (cfg1 & EEPROM_CFG1_IPS1)
1439 1.1 thorpej sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1440 1.1 thorpej sc->sc_ctrl_ext |=
1441 1.1 thorpej ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1442 1.1 thorpej CTRL_EXT_SWDPIO_SHIFT;
1443 1.1 thorpej sc->sc_ctrl_ext |=
1444 1.1 thorpej ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1445 1.1 thorpej CTRL_EXT_SWDPINS_SHIFT;
1446 1.1 thorpej } else {
1447 1.1 thorpej sc->sc_ctrl_ext |=
1448 1.1 thorpej ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1449 1.1 thorpej CTRL_EXT_SWDPIO_SHIFT;
1450 1.1 thorpej }
1451 1.1 thorpej #endif
1452 1.1 thorpej
1453 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1454 1.1 thorpej #if 0
1455 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1456 1.1 thorpej #endif
1457 1.1 thorpej
1458 1.1 thorpej /*
1459 1.1 thorpej * Set up some register offsets that are different between
1460 1.11 thorpej * the i82542 and the i82543 and later chips.
1461 1.1 thorpej */
1462 1.11 thorpej if (sc->sc_type < WM_T_82543) {
1463 1.1 thorpej sc->sc_rdt_reg = WMREG_OLD_RDT0;
1464 1.1 thorpej sc->sc_tdt_reg = WMREG_OLD_TDT;
1465 1.1 thorpej } else {
1466 1.1 thorpej sc->sc_rdt_reg = WMREG_RDT;
1467 1.1 thorpej sc->sc_tdt_reg = WMREG_TDT;
1468 1.1 thorpej }
1469 1.1 thorpej
1470 1.1 thorpej /*
1471 1.1 thorpej * Determine if we're TBI or GMII mode, and initialize the
1472 1.1 thorpej * media structures accordingly.
1473 1.1 thorpej */
1474 1.144 msaitoh if (sc->sc_type == WM_T_ICH8 || sc->sc_type == WM_T_ICH9
1475 1.144 msaitoh || sc->sc_type == WM_T_82573) {
1476 1.139 bouyer /* STATUS_TBIMODE reserved/reused, can't rely on it */
1477 1.139 bouyer wm_gmii_mediainit(sc);
1478 1.139 bouyer } else if (sc->sc_type < WM_T_82543 ||
1479 1.1 thorpej (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1480 1.1 thorpej if (wmp->wmp_flags & WMP_F_1000T)
1481 1.37 thorpej aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1482 1.1 thorpej "product!\n", sc->sc_dev.dv_xname);
1483 1.1 thorpej wm_tbi_mediainit(sc);
1484 1.1 thorpej } else {
1485 1.1 thorpej if (wmp->wmp_flags & WMP_F_1000X)
1486 1.37 thorpej aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1487 1.1 thorpej "product!\n", sc->sc_dev.dv_xname);
1488 1.1 thorpej wm_gmii_mediainit(sc);
1489 1.1 thorpej }
1490 1.1 thorpej
1491 1.1 thorpej ifp = &sc->sc_ethercom.ec_if;
1492 1.1 thorpej strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1493 1.1 thorpej ifp->if_softc = sc;
1494 1.1 thorpej ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1495 1.1 thorpej ifp->if_ioctl = wm_ioctl;
1496 1.1 thorpej ifp->if_start = wm_start;
1497 1.1 thorpej ifp->if_watchdog = wm_watchdog;
1498 1.1 thorpej ifp->if_init = wm_init;
1499 1.1 thorpej ifp->if_stop = wm_stop;
1500 1.58 ragge IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1501 1.1 thorpej IFQ_SET_READY(&ifp->if_snd);
1502 1.1 thorpej
1503 1.139 bouyer if (sc->sc_type != WM_T_82573 && sc->sc_type != WM_T_ICH8)
1504 1.120 msaitoh sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1505 1.41 tls
1506 1.1 thorpej /*
1507 1.11 thorpej * If we're a i82543 or greater, we can support VLANs.
1508 1.1 thorpej */
1509 1.11 thorpej if (sc->sc_type >= WM_T_82543)
1510 1.1 thorpej sc->sc_ethercom.ec_capabilities |=
1511 1.1 thorpej ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1512 1.1 thorpej
1513 1.1 thorpej /*
1514 1.1 thorpej * We can perform TCPv4 and UDPv4 checkums in-bound. Only
1515 1.11 thorpej * on i82543 and later.
1516 1.1 thorpej */
1517 1.130 yamt if (sc->sc_type >= WM_T_82543) {
1518 1.1 thorpej ifp->if_capabilities |=
1519 1.103 yamt IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1520 1.103 yamt IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1521 1.107 yamt IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1522 1.107 yamt IFCAP_CSUM_TCPv6_Tx |
1523 1.107 yamt IFCAP_CSUM_UDPv6_Tx;
1524 1.130 yamt }
1525 1.130 yamt
1526 1.130 yamt /*
1527 1.130 yamt * XXXyamt: i'm not sure which chips support RXCSUM_IPV6OFL.
1528 1.130 yamt *
1529 1.130 yamt * 82541GI (8086:1076) ... no
1530 1.130 yamt * 82572EI (8086:10b9) ... yes
1531 1.130 yamt */
1532 1.130 yamt if (sc->sc_type >= WM_T_82571) {
1533 1.130 yamt ifp->if_capabilities |=
1534 1.130 yamt IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
1535 1.130 yamt }
1536 1.1 thorpej
1537 1.99 matt /*
1538 1.99 matt * If we're a i82544 or greater (except i82547), we can do
1539 1.99 matt * TCP segmentation offload.
1540 1.99 matt */
1541 1.131 yamt if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547) {
1542 1.99 matt ifp->if_capabilities |= IFCAP_TSOv4;
1543 1.131 yamt }
1544 1.131 yamt
1545 1.131 yamt if (sc->sc_type >= WM_T_82571) {
1546 1.131 yamt ifp->if_capabilities |= IFCAP_TSOv6;
1547 1.131 yamt }
1548 1.99 matt
1549 1.1 thorpej /*
1550 1.1 thorpej * Attach the interface.
1551 1.1 thorpej */
1552 1.1 thorpej if_attach(ifp);
1553 1.1 thorpej ether_ifattach(ifp, enaddr);
1554 1.21 itojun #if NRND > 0
1555 1.21 itojun rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1556 1.21 itojun RND_TYPE_NET, 0);
1557 1.21 itojun #endif
1558 1.1 thorpej
1559 1.1 thorpej #ifdef WM_EVENT_COUNTERS
1560 1.1 thorpej /* Attach event counters. */
1561 1.1 thorpej evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1562 1.1 thorpej NULL, sc->sc_dev.dv_xname, "txsstall");
1563 1.1 thorpej evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1564 1.1 thorpej NULL, sc->sc_dev.dv_xname, "txdstall");
1565 1.78 thorpej evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1566 1.78 thorpej NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1567 1.4 thorpej evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1568 1.4 thorpej NULL, sc->sc_dev.dv_xname, "txdw");
1569 1.4 thorpej evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1570 1.4 thorpej NULL, sc->sc_dev.dv_xname, "txqe");
1571 1.1 thorpej evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1572 1.1 thorpej NULL, sc->sc_dev.dv_xname, "rxintr");
1573 1.1 thorpej evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1574 1.1 thorpej NULL, sc->sc_dev.dv_xname, "linkintr");
1575 1.1 thorpej
1576 1.1 thorpej evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1577 1.1 thorpej NULL, sc->sc_dev.dv_xname, "rxipsum");
1578 1.1 thorpej evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1579 1.1 thorpej NULL, sc->sc_dev.dv_xname, "rxtusum");
1580 1.1 thorpej evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1581 1.1 thorpej NULL, sc->sc_dev.dv_xname, "txipsum");
1582 1.1 thorpej evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1583 1.1 thorpej NULL, sc->sc_dev.dv_xname, "txtusum");
1584 1.107 yamt evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
1585 1.107 yamt NULL, sc->sc_dev.dv_xname, "txtusum6");
1586 1.1 thorpej
1587 1.99 matt evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
1588 1.99 matt NULL, sc->sc_dev.dv_xname, "txtso");
1589 1.131 yamt evcnt_attach_dynamic(&sc->sc_ev_txtso6, EVCNT_TYPE_MISC,
1590 1.131 yamt NULL, sc->sc_dev.dv_xname, "txtso6");
1591 1.99 matt evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
1592 1.99 matt NULL, sc->sc_dev.dv_xname, "txtsopain");
1593 1.99 matt
1594 1.75 thorpej for (i = 0; i < WM_NTXSEGS; i++) {
1595 1.75 thorpej sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1596 1.2 thorpej evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1597 1.2 thorpej NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1598 1.75 thorpej }
1599 1.2 thorpej
1600 1.1 thorpej evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1601 1.1 thorpej NULL, sc->sc_dev.dv_xname, "txdrop");
1602 1.1 thorpej
1603 1.1 thorpej evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1604 1.1 thorpej NULL, sc->sc_dev.dv_xname, "tu");
1605 1.71 thorpej
1606 1.71 thorpej evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1607 1.71 thorpej NULL, sc->sc_dev.dv_xname, "tx_xoff");
1608 1.71 thorpej evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1609 1.71 thorpej NULL, sc->sc_dev.dv_xname, "tx_xon");
1610 1.71 thorpej evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1611 1.71 thorpej NULL, sc->sc_dev.dv_xname, "rx_xoff");
1612 1.71 thorpej evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1613 1.71 thorpej NULL, sc->sc_dev.dv_xname, "rx_xon");
1614 1.71 thorpej evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1615 1.71 thorpej NULL, sc->sc_dev.dv_xname, "rx_macctl");
1616 1.1 thorpej #endif /* WM_EVENT_COUNTERS */
1617 1.1 thorpej
1618 1.149 jmcneill if (!pmf_device_register(self, NULL, NULL))
1619 1.149 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
1620 1.149 jmcneill else
1621 1.149 jmcneill pmf_class_network_register(self, ifp);
1622 1.123 jmcneill
1623 1.1 thorpej return;
1624 1.1 thorpej
1625 1.1 thorpej /*
1626 1.1 thorpej * Free any resources we've allocated during the failed attach
1627 1.1 thorpej * attempt. Do this in reverse order and fall through.
1628 1.1 thorpej */
1629 1.1 thorpej fail_5:
1630 1.1 thorpej for (i = 0; i < WM_NRXDESC; i++) {
1631 1.1 thorpej if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1632 1.1 thorpej bus_dmamap_destroy(sc->sc_dmat,
1633 1.1 thorpej sc->sc_rxsoft[i].rxs_dmamap);
1634 1.1 thorpej }
1635 1.1 thorpej fail_4:
1636 1.74 tron for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1637 1.1 thorpej if (sc->sc_txsoft[i].txs_dmamap != NULL)
1638 1.1 thorpej bus_dmamap_destroy(sc->sc_dmat,
1639 1.1 thorpej sc->sc_txsoft[i].txs_dmamap);
1640 1.1 thorpej }
1641 1.1 thorpej bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1642 1.1 thorpej fail_3:
1643 1.1 thorpej bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1644 1.1 thorpej fail_2:
1645 1.135 christos bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1646 1.75 thorpej cdata_size);
1647 1.1 thorpej fail_1:
1648 1.1 thorpej bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1649 1.1 thorpej fail_0:
1650 1.1 thorpej return;
1651 1.1 thorpej }
1652 1.1 thorpej
1653 1.1 thorpej /*
1654 1.86 thorpej * wm_tx_offload:
1655 1.1 thorpej *
1656 1.1 thorpej * Set up TCP/IP checksumming parameters for the
1657 1.1 thorpej * specified packet.
1658 1.1 thorpej */
1659 1.1 thorpej static int
1660 1.86 thorpej wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1661 1.65 tsutsui uint8_t *fieldsp)
1662 1.1 thorpej {
1663 1.4 thorpej struct mbuf *m0 = txs->txs_mbuf;
1664 1.1 thorpej struct livengood_tcpip_ctxdesc *t;
1665 1.98 thorpej uint32_t ipcs, tucs, cmd, cmdlen, seg;
1666 1.131 yamt uint32_t ipcse;
1667 1.13 thorpej struct ether_header *eh;
1668 1.1 thorpej int offset, iphl;
1669 1.98 thorpej uint8_t fields;
1670 1.1 thorpej
1671 1.1 thorpej /*
1672 1.1 thorpej * XXX It would be nice if the mbuf pkthdr had offset
1673 1.1 thorpej * fields for the protocol headers.
1674 1.1 thorpej */
1675 1.1 thorpej
1676 1.13 thorpej eh = mtod(m0, struct ether_header *);
1677 1.13 thorpej switch (htons(eh->ether_type)) {
1678 1.13 thorpej case ETHERTYPE_IP:
1679 1.107 yamt case ETHERTYPE_IPV6:
1680 1.13 thorpej offset = ETHER_HDR_LEN;
1681 1.35 thorpej break;
1682 1.35 thorpej
1683 1.35 thorpej case ETHERTYPE_VLAN:
1684 1.35 thorpej offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1685 1.13 thorpej break;
1686 1.13 thorpej
1687 1.13 thorpej default:
1688 1.13 thorpej /*
1689 1.13 thorpej * Don't support this protocol or encapsulation.
1690 1.13 thorpej */
1691 1.13 thorpej *fieldsp = 0;
1692 1.13 thorpej *cmdp = 0;
1693 1.13 thorpej return (0);
1694 1.13 thorpej }
1695 1.1 thorpej
1696 1.107 yamt if ((m0->m_pkthdr.csum_flags &
1697 1.107 yamt (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
1698 1.107 yamt iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1699 1.107 yamt } else {
1700 1.107 yamt iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
1701 1.107 yamt }
1702 1.131 yamt ipcse = offset + iphl - 1;
1703 1.1 thorpej
1704 1.98 thorpej cmd = WTX_CMD_DEXT | WTX_DTYP_D;
1705 1.98 thorpej cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
1706 1.98 thorpej seg = 0;
1707 1.98 thorpej fields = 0;
1708 1.98 thorpej
1709 1.131 yamt if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
1710 1.99 matt int hlen = offset + iphl;
1711 1.132 thorpej bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1712 1.131 yamt
1713 1.99 matt if (__predict_false(m0->m_len <
1714 1.99 matt (hlen + sizeof(struct tcphdr)))) {
1715 1.99 matt /*
1716 1.99 matt * TCP/IP headers are not in the first mbuf; we need
1717 1.99 matt * to do this the slow and painful way. Let's just
1718 1.99 matt * hope this doesn't happen very often.
1719 1.99 matt */
1720 1.99 matt struct tcphdr th;
1721 1.99 matt
1722 1.99 matt WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
1723 1.99 matt
1724 1.99 matt m_copydata(m0, hlen, sizeof(th), &th);
1725 1.131 yamt if (v4) {
1726 1.131 yamt struct ip ip;
1727 1.99 matt
1728 1.131 yamt m_copydata(m0, offset, sizeof(ip), &ip);
1729 1.131 yamt ip.ip_len = 0;
1730 1.131 yamt m_copyback(m0,
1731 1.131 yamt offset + offsetof(struct ip, ip_len),
1732 1.131 yamt sizeof(ip.ip_len), &ip.ip_len);
1733 1.131 yamt th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1734 1.131 yamt ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1735 1.131 yamt } else {
1736 1.131 yamt struct ip6_hdr ip6;
1737 1.99 matt
1738 1.131 yamt m_copydata(m0, offset, sizeof(ip6), &ip6);
1739 1.131 yamt ip6.ip6_plen = 0;
1740 1.131 yamt m_copyback(m0,
1741 1.131 yamt offset + offsetof(struct ip6_hdr, ip6_plen),
1742 1.131 yamt sizeof(ip6.ip6_plen), &ip6.ip6_plen);
1743 1.131 yamt th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
1744 1.131 yamt &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
1745 1.131 yamt }
1746 1.99 matt m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
1747 1.99 matt sizeof(th.th_sum), &th.th_sum);
1748 1.99 matt
1749 1.99 matt hlen += th.th_off << 2;
1750 1.99 matt } else {
1751 1.99 matt /*
1752 1.99 matt * TCP/IP headers are in the first mbuf; we can do
1753 1.99 matt * this the easy way.
1754 1.99 matt */
1755 1.131 yamt struct tcphdr *th;
1756 1.99 matt
1757 1.131 yamt if (v4) {
1758 1.131 yamt struct ip *ip =
1759 1.135 christos (void *)(mtod(m0, char *) + offset);
1760 1.135 christos th = (void *)(mtod(m0, char *) + hlen);
1761 1.131 yamt
1762 1.131 yamt ip->ip_len = 0;
1763 1.131 yamt th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1764 1.131 yamt ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1765 1.131 yamt } else {
1766 1.131 yamt struct ip6_hdr *ip6 =
1767 1.131 yamt (void *)(mtod(m0, char *) + offset);
1768 1.131 yamt th = (void *)(mtod(m0, char *) + hlen);
1769 1.131 yamt
1770 1.131 yamt ip6->ip6_plen = 0;
1771 1.131 yamt th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
1772 1.131 yamt &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
1773 1.131 yamt }
1774 1.99 matt hlen += th->th_off << 2;
1775 1.99 matt }
1776 1.99 matt
1777 1.131 yamt if (v4) {
1778 1.131 yamt WM_EVCNT_INCR(&sc->sc_ev_txtso);
1779 1.131 yamt cmdlen |= WTX_TCPIP_CMD_IP;
1780 1.131 yamt } else {
1781 1.131 yamt WM_EVCNT_INCR(&sc->sc_ev_txtso6);
1782 1.131 yamt ipcse = 0;
1783 1.131 yamt }
1784 1.99 matt cmd |= WTX_TCPIP_CMD_TSE;
1785 1.131 yamt cmdlen |= WTX_TCPIP_CMD_TSE |
1786 1.99 matt WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
1787 1.99 matt seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
1788 1.99 matt WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
1789 1.99 matt }
1790 1.99 matt
1791 1.13 thorpej /*
1792 1.13 thorpej * NOTE: Even if we're not using the IP or TCP/UDP checksum
1793 1.13 thorpej * offload feature, if we load the context descriptor, we
1794 1.13 thorpej * MUST provide valid values for IPCSS and TUCSS fields.
1795 1.13 thorpej */
1796 1.13 thorpej
1797 1.87 thorpej ipcs = WTX_TCPIP_IPCSS(offset) |
1798 1.87 thorpej WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1799 1.131 yamt WTX_TCPIP_IPCSE(ipcse);
1800 1.99 matt if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
1801 1.1 thorpej WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1802 1.65 tsutsui fields |= WTX_IXSM;
1803 1.13 thorpej }
1804 1.1 thorpej
1805 1.1 thorpej offset += iphl;
1806 1.1 thorpej
1807 1.99 matt if (m0->m_pkthdr.csum_flags &
1808 1.99 matt (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
1809 1.1 thorpej WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1810 1.65 tsutsui fields |= WTX_TXSM;
1811 1.65 tsutsui tucs = WTX_TCPIP_TUCSS(offset) |
1812 1.107 yamt WTX_TCPIP_TUCSO(offset +
1813 1.107 yamt M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1814 1.107 yamt WTX_TCPIP_TUCSE(0) /* rest of packet */;
1815 1.107 yamt } else if ((m0->m_pkthdr.csum_flags &
1816 1.131 yamt (M_CSUM_TCPv6|M_CSUM_UDPv6|M_CSUM_TSOv6)) != 0) {
1817 1.107 yamt WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
1818 1.107 yamt fields |= WTX_TXSM;
1819 1.107 yamt tucs = WTX_TCPIP_TUCSS(offset) |
1820 1.107 yamt WTX_TCPIP_TUCSO(offset +
1821 1.107 yamt M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
1822 1.107 yamt WTX_TCPIP_TUCSE(0) /* rest of packet */;
1823 1.13 thorpej } else {
1824 1.13 thorpej /* Just initialize it to a valid TCP context. */
1825 1.65 tsutsui tucs = WTX_TCPIP_TUCSS(offset) |
1826 1.13 thorpej WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1827 1.65 tsutsui WTX_TCPIP_TUCSE(0) /* rest of packet */;
1828 1.13 thorpej }
1829 1.1 thorpej
1830 1.87 thorpej /* Fill in the context descriptor. */
1831 1.87 thorpej t = (struct livengood_tcpip_ctxdesc *)
1832 1.87 thorpej &sc->sc_txdescs[sc->sc_txnext];
1833 1.87 thorpej t->tcpip_ipcs = htole32(ipcs);
1834 1.87 thorpej t->tcpip_tucs = htole32(tucs);
1835 1.98 thorpej t->tcpip_cmdlen = htole32(cmdlen);
1836 1.98 thorpej t->tcpip_seg = htole32(seg);
1837 1.87 thorpej WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1838 1.5 thorpej
1839 1.87 thorpej sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1840 1.87 thorpej txs->txs_ndesc++;
1841 1.1 thorpej
1842 1.98 thorpej *cmdp = cmd;
1843 1.1 thorpej *fieldsp = fields;
1844 1.1 thorpej
1845 1.1 thorpej return (0);
1846 1.1 thorpej }
1847 1.1 thorpej
1848 1.75 thorpej static void
1849 1.75 thorpej wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1850 1.75 thorpej {
1851 1.75 thorpej struct mbuf *m;
1852 1.75 thorpej int i;
1853 1.75 thorpej
1854 1.84 thorpej log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1855 1.75 thorpej for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1856 1.84 thorpej log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1857 1.84 thorpej "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1858 1.75 thorpej m->m_data, m->m_len, m->m_flags);
1859 1.84 thorpej log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1860 1.84 thorpej i, i == 1 ? "" : "s");
1861 1.75 thorpej }
1862 1.75 thorpej
1863 1.1 thorpej /*
1864 1.78 thorpej * wm_82547_txfifo_stall:
1865 1.78 thorpej *
1866 1.78 thorpej * Callout used to wait for the 82547 Tx FIFO to drain,
1867 1.78 thorpej * reset the FIFO pointers, and restart packet transmission.
1868 1.78 thorpej */
1869 1.78 thorpej static void
1870 1.78 thorpej wm_82547_txfifo_stall(void *arg)
1871 1.78 thorpej {
1872 1.78 thorpej struct wm_softc *sc = arg;
1873 1.78 thorpej int s;
1874 1.78 thorpej
1875 1.78 thorpej s = splnet();
1876 1.78 thorpej
1877 1.78 thorpej if (sc->sc_txfifo_stall) {
1878 1.78 thorpej if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1879 1.78 thorpej CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1880 1.78 thorpej CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1881 1.78 thorpej /*
1882 1.78 thorpej * Packets have drained. Stop transmitter, reset
1883 1.78 thorpej * FIFO pointers, restart transmitter, and kick
1884 1.78 thorpej * the packet queue.
1885 1.78 thorpej */
1886 1.78 thorpej uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1887 1.78 thorpej CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1888 1.78 thorpej CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1889 1.78 thorpej CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1890 1.78 thorpej CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1891 1.78 thorpej CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1892 1.78 thorpej CSR_WRITE(sc, WMREG_TCTL, tctl);
1893 1.78 thorpej CSR_WRITE_FLUSH(sc);
1894 1.78 thorpej
1895 1.78 thorpej sc->sc_txfifo_head = 0;
1896 1.78 thorpej sc->sc_txfifo_stall = 0;
1897 1.78 thorpej wm_start(&sc->sc_ethercom.ec_if);
1898 1.78 thorpej } else {
1899 1.78 thorpej /*
1900 1.78 thorpej * Still waiting for packets to drain; try again in
1901 1.78 thorpej * another tick.
1902 1.78 thorpej */
1903 1.78 thorpej callout_schedule(&sc->sc_txfifo_ch, 1);
1904 1.78 thorpej }
1905 1.78 thorpej }
1906 1.78 thorpej
1907 1.78 thorpej splx(s);
1908 1.78 thorpej }
1909 1.78 thorpej
1910 1.78 thorpej /*
1911 1.78 thorpej * wm_82547_txfifo_bugchk:
1912 1.78 thorpej *
1913 1.78 thorpej * Check for bug condition in the 82547 Tx FIFO. We need to
1914 1.78 thorpej * prevent enqueueing a packet that would wrap around the end
1915 1.78 thorpej * if the Tx FIFO ring buffer, otherwise the chip will croak.
1916 1.78 thorpej *
1917 1.78 thorpej * We do this by checking the amount of space before the end
1918 1.78 thorpej * of the Tx FIFO buffer. If the packet will not fit, we "stall"
1919 1.78 thorpej * the Tx FIFO, wait for all remaining packets to drain, reset
1920 1.78 thorpej * the internal FIFO pointers to the beginning, and restart
1921 1.78 thorpej * transmission on the interface.
1922 1.78 thorpej */
1923 1.78 thorpej #define WM_FIFO_HDR 0x10
1924 1.78 thorpej #define WM_82547_PAD_LEN 0x3e0
1925 1.78 thorpej static int
1926 1.78 thorpej wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1927 1.78 thorpej {
1928 1.78 thorpej int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1929 1.78 thorpej int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1930 1.78 thorpej
1931 1.78 thorpej /* Just return if already stalled. */
1932 1.78 thorpej if (sc->sc_txfifo_stall)
1933 1.78 thorpej return (1);
1934 1.78 thorpej
1935 1.78 thorpej if (sc->sc_mii.mii_media_active & IFM_FDX) {
1936 1.78 thorpej /* Stall only occurs in half-duplex mode. */
1937 1.78 thorpej goto send_packet;
1938 1.78 thorpej }
1939 1.78 thorpej
1940 1.78 thorpej if (len >= WM_82547_PAD_LEN + space) {
1941 1.78 thorpej sc->sc_txfifo_stall = 1;
1942 1.78 thorpej callout_schedule(&sc->sc_txfifo_ch, 1);
1943 1.78 thorpej return (1);
1944 1.78 thorpej }
1945 1.78 thorpej
1946 1.78 thorpej send_packet:
1947 1.78 thorpej sc->sc_txfifo_head += len;
1948 1.78 thorpej if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1949 1.78 thorpej sc->sc_txfifo_head -= sc->sc_txfifo_size;
1950 1.78 thorpej
1951 1.78 thorpej return (0);
1952 1.78 thorpej }
1953 1.78 thorpej
1954 1.78 thorpej /*
1955 1.1 thorpej * wm_start: [ifnet interface function]
1956 1.1 thorpej *
1957 1.1 thorpej * Start packet transmission on the interface.
1958 1.1 thorpej */
1959 1.47 thorpej static void
1960 1.1 thorpej wm_start(struct ifnet *ifp)
1961 1.1 thorpej {
1962 1.1 thorpej struct wm_softc *sc = ifp->if_softc;
1963 1.30 itojun struct mbuf *m0;
1964 1.30 itojun #if 0 /* XXXJRT */
1965 1.30 itojun struct m_tag *mtag;
1966 1.30 itojun #endif
1967 1.1 thorpej struct wm_txsoft *txs;
1968 1.1 thorpej bus_dmamap_t dmamap;
1969 1.99 matt int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
1970 1.80 thorpej bus_addr_t curaddr;
1971 1.80 thorpej bus_size_t seglen, curlen;
1972 1.65 tsutsui uint32_t cksumcmd;
1973 1.65 tsutsui uint8_t cksumfields;
1974 1.1 thorpej
1975 1.1 thorpej if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1976 1.1 thorpej return;
1977 1.1 thorpej
1978 1.1 thorpej /*
1979 1.1 thorpej * Remember the previous number of free descriptors.
1980 1.1 thorpej */
1981 1.1 thorpej ofree = sc->sc_txfree;
1982 1.1 thorpej
1983 1.1 thorpej /*
1984 1.1 thorpej * Loop through the send queue, setting up transmit descriptors
1985 1.1 thorpej * until we drain the queue, or use up all available transmit
1986 1.1 thorpej * descriptors.
1987 1.1 thorpej */
1988 1.1 thorpej for (;;) {
1989 1.1 thorpej /* Grab a packet off the queue. */
1990 1.1 thorpej IFQ_POLL(&ifp->if_snd, m0);
1991 1.1 thorpej if (m0 == NULL)
1992 1.1 thorpej break;
1993 1.1 thorpej
1994 1.1 thorpej DPRINTF(WM_DEBUG_TX,
1995 1.1 thorpej ("%s: TX: have packet to transmit: %p\n",
1996 1.1 thorpej sc->sc_dev.dv_xname, m0));
1997 1.1 thorpej
1998 1.1 thorpej /* Get a work queue entry. */
1999 1.74 tron if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
2000 1.10 thorpej wm_txintr(sc);
2001 1.10 thorpej if (sc->sc_txsfree == 0) {
2002 1.10 thorpej DPRINTF(WM_DEBUG_TX,
2003 1.10 thorpej ("%s: TX: no free job descriptors\n",
2004 1.10 thorpej sc->sc_dev.dv_xname));
2005 1.10 thorpej WM_EVCNT_INCR(&sc->sc_ev_txsstall);
2006 1.10 thorpej break;
2007 1.10 thorpej }
2008 1.1 thorpej }
2009 1.1 thorpej
2010 1.1 thorpej txs = &sc->sc_txsoft[sc->sc_txsnext];
2011 1.1 thorpej dmamap = txs->txs_dmamap;
2012 1.1 thorpej
2013 1.131 yamt use_tso = (m0->m_pkthdr.csum_flags &
2014 1.131 yamt (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0;
2015 1.99 matt
2016 1.99 matt /*
2017 1.99 matt * So says the Linux driver:
2018 1.99 matt * The controller does a simple calculation to make sure
2019 1.99 matt * there is enough room in the FIFO before initiating the
2020 1.99 matt * DMA for each buffer. The calc is:
2021 1.99 matt * 4 = ceil(buffer len / MSS)
2022 1.99 matt * To make sure we don't overrun the FIFO, adjust the max
2023 1.99 matt * buffer len if the MSS drops.
2024 1.99 matt */
2025 1.99 matt dmamap->dm_maxsegsz =
2026 1.99 matt (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
2027 1.99 matt ? m0->m_pkthdr.segsz << 2
2028 1.99 matt : WTX_MAX_LEN;
2029 1.99 matt
2030 1.1 thorpej /*
2031 1.1 thorpej * Load the DMA map. If this fails, the packet either
2032 1.1 thorpej * didn't fit in the allotted number of segments, or we
2033 1.1 thorpej * were short on resources. For the too-many-segments
2034 1.1 thorpej * case, we simply report an error and drop the packet,
2035 1.1 thorpej * since we can't sanely copy a jumbo packet to a single
2036 1.1 thorpej * buffer.
2037 1.1 thorpej */
2038 1.1 thorpej error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
2039 1.1 thorpej BUS_DMA_WRITE|BUS_DMA_NOWAIT);
2040 1.1 thorpej if (error) {
2041 1.1 thorpej if (error == EFBIG) {
2042 1.1 thorpej WM_EVCNT_INCR(&sc->sc_ev_txdrop);
2043 1.84 thorpej log(LOG_ERR, "%s: Tx packet consumes too many "
2044 1.1 thorpej "DMA segments, dropping...\n",
2045 1.1 thorpej sc->sc_dev.dv_xname);
2046 1.1 thorpej IFQ_DEQUEUE(&ifp->if_snd, m0);
2047 1.75 thorpej wm_dump_mbuf_chain(sc, m0);
2048 1.1 thorpej m_freem(m0);
2049 1.1 thorpej continue;
2050 1.1 thorpej }
2051 1.1 thorpej /*
2052 1.1 thorpej * Short on resources, just stop for now.
2053 1.1 thorpej */
2054 1.1 thorpej DPRINTF(WM_DEBUG_TX,
2055 1.1 thorpej ("%s: TX: dmamap load failed: %d\n",
2056 1.1 thorpej sc->sc_dev.dv_xname, error));
2057 1.1 thorpej break;
2058 1.1 thorpej }
2059 1.1 thorpej
2060 1.80 thorpej segs_needed = dmamap->dm_nsegs;
2061 1.99 matt if (use_tso) {
2062 1.99 matt /* For sentinel descriptor; see below. */
2063 1.99 matt segs_needed++;
2064 1.99 matt }
2065 1.80 thorpej
2066 1.1 thorpej /*
2067 1.1 thorpej * Ensure we have enough descriptors free to describe
2068 1.1 thorpej * the packet. Note, we always reserve one descriptor
2069 1.1 thorpej * at the end of the ring due to the semantics of the
2070 1.1 thorpej * TDT register, plus one more in the event we need
2071 1.87 thorpej * to load offload context.
2072 1.1 thorpej */
2073 1.80 thorpej if (segs_needed > sc->sc_txfree - 2) {
2074 1.1 thorpej /*
2075 1.1 thorpej * Not enough free descriptors to transmit this
2076 1.1 thorpej * packet. We haven't committed anything yet,
2077 1.1 thorpej * so just unload the DMA map, put the packet
2078 1.1 thorpej * pack on the queue, and punt. Notify the upper
2079 1.1 thorpej * layer that there are no more slots left.
2080 1.1 thorpej */
2081 1.1 thorpej DPRINTF(WM_DEBUG_TX,
2082 1.104 ross ("%s: TX: need %d (%d) descriptors, have %d\n",
2083 1.80 thorpej sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
2084 1.1 thorpej sc->sc_txfree - 1));
2085 1.1 thorpej ifp->if_flags |= IFF_OACTIVE;
2086 1.1 thorpej bus_dmamap_unload(sc->sc_dmat, dmamap);
2087 1.1 thorpej WM_EVCNT_INCR(&sc->sc_ev_txdstall);
2088 1.1 thorpej break;
2089 1.1 thorpej }
2090 1.1 thorpej
2091 1.78 thorpej /*
2092 1.78 thorpej * Check for 82547 Tx FIFO bug. We need to do this
2093 1.78 thorpej * once we know we can transmit the packet, since we
2094 1.78 thorpej * do some internal FIFO space accounting here.
2095 1.78 thorpej */
2096 1.78 thorpej if (sc->sc_type == WM_T_82547 &&
2097 1.78 thorpej wm_82547_txfifo_bugchk(sc, m0)) {
2098 1.78 thorpej DPRINTF(WM_DEBUG_TX,
2099 1.78 thorpej ("%s: TX: 82547 Tx FIFO bug detected\n",
2100 1.78 thorpej sc->sc_dev.dv_xname));
2101 1.78 thorpej ifp->if_flags |= IFF_OACTIVE;
2102 1.78 thorpej bus_dmamap_unload(sc->sc_dmat, dmamap);
2103 1.78 thorpej WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
2104 1.78 thorpej break;
2105 1.78 thorpej }
2106 1.78 thorpej
2107 1.1 thorpej IFQ_DEQUEUE(&ifp->if_snd, m0);
2108 1.1 thorpej
2109 1.1 thorpej /*
2110 1.1 thorpej * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
2111 1.1 thorpej */
2112 1.1 thorpej
2113 1.1 thorpej DPRINTF(WM_DEBUG_TX,
2114 1.80 thorpej ("%s: TX: packet has %d (%d) DMA segments\n",
2115 1.80 thorpej sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
2116 1.1 thorpej
2117 1.2 thorpej WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
2118 1.1 thorpej
2119 1.1 thorpej /*
2120 1.4 thorpej * Store a pointer to the packet so that we can free it
2121 1.4 thorpej * later.
2122 1.4 thorpej *
2123 1.4 thorpej * Initially, we consider the number of descriptors the
2124 1.4 thorpej * packet uses the number of DMA segments. This may be
2125 1.4 thorpej * incremented by 1 if we do checksum offload (a descriptor
2126 1.4 thorpej * is used to set the checksum context).
2127 1.4 thorpej */
2128 1.4 thorpej txs->txs_mbuf = m0;
2129 1.6 thorpej txs->txs_firstdesc = sc->sc_txnext;
2130 1.80 thorpej txs->txs_ndesc = segs_needed;
2131 1.4 thorpej
2132 1.86 thorpej /* Set up offload parameters for this packet. */
2133 1.1 thorpej if (m0->m_pkthdr.csum_flags &
2134 1.131 yamt (M_CSUM_TSOv4|M_CSUM_TSOv6|
2135 1.131 yamt M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
2136 1.107 yamt M_CSUM_TCPv6|M_CSUM_UDPv6)) {
2137 1.86 thorpej if (wm_tx_offload(sc, txs, &cksumcmd,
2138 1.86 thorpej &cksumfields) != 0) {
2139 1.1 thorpej /* Error message already displayed. */
2140 1.1 thorpej bus_dmamap_unload(sc->sc_dmat, dmamap);
2141 1.1 thorpej continue;
2142 1.1 thorpej }
2143 1.1 thorpej } else {
2144 1.1 thorpej cksumcmd = 0;
2145 1.1 thorpej cksumfields = 0;
2146 1.1 thorpej }
2147 1.1 thorpej
2148 1.98 thorpej cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
2149 1.6 thorpej
2150 1.81 thorpej /* Sync the DMA map. */
2151 1.81 thorpej bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2152 1.81 thorpej BUS_DMASYNC_PREWRITE);
2153 1.81 thorpej
2154 1.1 thorpej /*
2155 1.1 thorpej * Initialize the transmit descriptor.
2156 1.1 thorpej */
2157 1.1 thorpej for (nexttx = sc->sc_txnext, seg = 0;
2158 1.80 thorpej seg < dmamap->dm_nsegs; seg++) {
2159 1.80 thorpej for (seglen = dmamap->dm_segs[seg].ds_len,
2160 1.80 thorpej curaddr = dmamap->dm_segs[seg].ds_addr;
2161 1.80 thorpej seglen != 0;
2162 1.80 thorpej curaddr += curlen, seglen -= curlen,
2163 1.80 thorpej nexttx = WM_NEXTTX(sc, nexttx)) {
2164 1.80 thorpej curlen = seglen;
2165 1.80 thorpej
2166 1.99 matt /*
2167 1.99 matt * So says the Linux driver:
2168 1.99 matt * Work around for premature descriptor
2169 1.99 matt * write-backs in TSO mode. Append a
2170 1.99 matt * 4-byte sentinel descriptor.
2171 1.99 matt */
2172 1.99 matt if (use_tso &&
2173 1.99 matt seg == dmamap->dm_nsegs - 1 &&
2174 1.99 matt curlen > 8)
2175 1.99 matt curlen -= 4;
2176 1.99 matt
2177 1.80 thorpej wm_set_dma_addr(
2178 1.80 thorpej &sc->sc_txdescs[nexttx].wtx_addr,
2179 1.80 thorpej curaddr);
2180 1.80 thorpej sc->sc_txdescs[nexttx].wtx_cmdlen =
2181 1.80 thorpej htole32(cksumcmd | curlen);
2182 1.80 thorpej sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
2183 1.80 thorpej 0;
2184 1.80 thorpej sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
2185 1.80 thorpej cksumfields;
2186 1.80 thorpej sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
2187 1.80 thorpej lasttx = nexttx;
2188 1.1 thorpej
2189 1.80 thorpej DPRINTF(WM_DEBUG_TX,
2190 1.104 ross ("%s: TX: desc %d: low 0x%08lx, "
2191 1.80 thorpej "len 0x%04x\n",
2192 1.80 thorpej sc->sc_dev.dv_xname, nexttx,
2193 1.104 ross curaddr & 0xffffffffUL, (unsigned)curlen));
2194 1.80 thorpej }
2195 1.1 thorpej }
2196 1.59 christos
2197 1.59 christos KASSERT(lasttx != -1);
2198 1.1 thorpej
2199 1.1 thorpej /*
2200 1.1 thorpej * Set up the command byte on the last descriptor of
2201 1.1 thorpej * the packet. If we're in the interrupt delay window,
2202 1.1 thorpej * delay the interrupt.
2203 1.1 thorpej */
2204 1.1 thorpej sc->sc_txdescs[lasttx].wtx_cmdlen |=
2205 1.98 thorpej htole32(WTX_CMD_EOP | WTX_CMD_RS);
2206 1.1 thorpej
2207 1.1 thorpej #if 0 /* XXXJRT */
2208 1.1 thorpej /*
2209 1.1 thorpej * If VLANs are enabled and the packet has a VLAN tag, set
2210 1.1 thorpej * up the descriptor to encapsulate the packet for us.
2211 1.1 thorpej *
2212 1.1 thorpej * This is only valid on the last descriptor of the packet.
2213 1.1 thorpej */
2214 1.94 jdolecek if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
2215 1.1 thorpej sc->sc_txdescs[lasttx].wtx_cmdlen |=
2216 1.1 thorpej htole32(WTX_CMD_VLE);
2217 1.65 tsutsui sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
2218 1.94 jdolecek = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
2219 1.1 thorpej }
2220 1.1 thorpej #endif /* XXXJRT */
2221 1.1 thorpej
2222 1.6 thorpej txs->txs_lastdesc = lasttx;
2223 1.6 thorpej
2224 1.1 thorpej DPRINTF(WM_DEBUG_TX,
2225 1.1 thorpej ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
2226 1.65 tsutsui lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
2227 1.1 thorpej
2228 1.1 thorpej /* Sync the descriptors we're using. */
2229 1.80 thorpej WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
2230 1.1 thorpej BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2231 1.1 thorpej
2232 1.1 thorpej /* Give the packet to the chip. */
2233 1.1 thorpej CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
2234 1.1 thorpej
2235 1.1 thorpej DPRINTF(WM_DEBUG_TX,
2236 1.1 thorpej ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
2237 1.1 thorpej
2238 1.1 thorpej DPRINTF(WM_DEBUG_TX,
2239 1.1 thorpej ("%s: TX: finished transmitting packet, job %d\n",
2240 1.1 thorpej sc->sc_dev.dv_xname, sc->sc_txsnext));
2241 1.1 thorpej
2242 1.1 thorpej /* Advance the tx pointer. */
2243 1.4 thorpej sc->sc_txfree -= txs->txs_ndesc;
2244 1.1 thorpej sc->sc_txnext = nexttx;
2245 1.1 thorpej
2246 1.1 thorpej sc->sc_txsfree--;
2247 1.74 tron sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
2248 1.1 thorpej
2249 1.1 thorpej #if NBPFILTER > 0
2250 1.1 thorpej /* Pass the packet to any BPF listeners. */
2251 1.1 thorpej if (ifp->if_bpf)
2252 1.1 thorpej bpf_mtap(ifp->if_bpf, m0);
2253 1.1 thorpej #endif /* NBPFILTER > 0 */
2254 1.1 thorpej }
2255 1.1 thorpej
2256 1.6 thorpej if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
2257 1.1 thorpej /* No more slots; notify upper layer. */
2258 1.1 thorpej ifp->if_flags |= IFF_OACTIVE;
2259 1.1 thorpej }
2260 1.1 thorpej
2261 1.1 thorpej if (sc->sc_txfree != ofree) {
2262 1.1 thorpej /* Set a watchdog timer in case the chip flakes out. */
2263 1.1 thorpej ifp->if_timer = 5;
2264 1.1 thorpej }
2265 1.1 thorpej }
2266 1.1 thorpej
2267 1.1 thorpej /*
2268 1.1 thorpej * wm_watchdog: [ifnet interface function]
2269 1.1 thorpej *
2270 1.1 thorpej * Watchdog timer handler.
2271 1.1 thorpej */
2272 1.47 thorpej static void
2273 1.1 thorpej wm_watchdog(struct ifnet *ifp)
2274 1.1 thorpej {
2275 1.1 thorpej struct wm_softc *sc = ifp->if_softc;
2276 1.1 thorpej
2277 1.1 thorpej /*
2278 1.1 thorpej * Since we're using delayed interrupts, sweep up
2279 1.1 thorpej * before we report an error.
2280 1.1 thorpej */
2281 1.1 thorpej wm_txintr(sc);
2282 1.1 thorpej
2283 1.75 thorpej if (sc->sc_txfree != WM_NTXDESC(sc)) {
2284 1.84 thorpej log(LOG_ERR,
2285 1.84 thorpej "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
2286 1.2 thorpej sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
2287 1.2 thorpej sc->sc_txnext);
2288 1.1 thorpej ifp->if_oerrors++;
2289 1.1 thorpej
2290 1.1 thorpej /* Reset the interface. */
2291 1.1 thorpej (void) wm_init(ifp);
2292 1.1 thorpej }
2293 1.1 thorpej
2294 1.1 thorpej /* Try to get more packets going. */
2295 1.1 thorpej wm_start(ifp);
2296 1.1 thorpej }
2297 1.1 thorpej
2298 1.1 thorpej /*
2299 1.1 thorpej * wm_ioctl: [ifnet interface function]
2300 1.1 thorpej *
2301 1.1 thorpej * Handle control requests from the operator.
2302 1.1 thorpej */
2303 1.47 thorpej static int
2304 1.135 christos wm_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2305 1.1 thorpej {
2306 1.1 thorpej struct wm_softc *sc = ifp->if_softc;
2307 1.1 thorpej struct ifreq *ifr = (struct ifreq *) data;
2308 1.1 thorpej int s, error;
2309 1.1 thorpej
2310 1.1 thorpej s = splnet();
2311 1.1 thorpej
2312 1.1 thorpej switch (cmd) {
2313 1.1 thorpej case SIOCSIFMEDIA:
2314 1.1 thorpej case SIOCGIFMEDIA:
2315 1.71 thorpej /* Flow control requires full-duplex mode. */
2316 1.71 thorpej if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
2317 1.71 thorpej (ifr->ifr_media & IFM_FDX) == 0)
2318 1.71 thorpej ifr->ifr_media &= ~IFM_ETH_FMASK;
2319 1.71 thorpej if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
2320 1.71 thorpej if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
2321 1.71 thorpej /* We can do both TXPAUSE and RXPAUSE. */
2322 1.71 thorpej ifr->ifr_media |=
2323 1.71 thorpej IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
2324 1.71 thorpej }
2325 1.71 thorpej sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
2326 1.71 thorpej }
2327 1.1 thorpej error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2328 1.1 thorpej break;
2329 1.1 thorpej default:
2330 1.1 thorpej error = ether_ioctl(ifp, cmd, data);
2331 1.1 thorpej if (error == ENETRESET) {
2332 1.1 thorpej /*
2333 1.1 thorpej * Multicast list has changed; set the hardware filter
2334 1.1 thorpej * accordingly.
2335 1.1 thorpej */
2336 1.83 thorpej if (ifp->if_flags & IFF_RUNNING)
2337 1.83 thorpej wm_set_filter(sc);
2338 1.1 thorpej error = 0;
2339 1.1 thorpej }
2340 1.1 thorpej break;
2341 1.1 thorpej }
2342 1.1 thorpej
2343 1.1 thorpej /* Try to get more packets going. */
2344 1.1 thorpej wm_start(ifp);
2345 1.1 thorpej
2346 1.1 thorpej splx(s);
2347 1.1 thorpej return (error);
2348 1.1 thorpej }
2349 1.1 thorpej
2350 1.1 thorpej /*
2351 1.1 thorpej * wm_intr:
2352 1.1 thorpej *
2353 1.1 thorpej * Interrupt service routine.
2354 1.1 thorpej */
2355 1.47 thorpej static int
2356 1.1 thorpej wm_intr(void *arg)
2357 1.1 thorpej {
2358 1.1 thorpej struct wm_softc *sc = arg;
2359 1.1 thorpej struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2360 1.1 thorpej uint32_t icr;
2361 1.108 yamt int handled = 0;
2362 1.1 thorpej
2363 1.108 yamt while (1 /* CONSTCOND */) {
2364 1.1 thorpej icr = CSR_READ(sc, WMREG_ICR);
2365 1.1 thorpej if ((icr & sc->sc_icr) == 0)
2366 1.1 thorpej break;
2367 1.22 itojun #if 0 /*NRND > 0*/
2368 1.21 itojun if (RND_ENABLED(&sc->rnd_source))
2369 1.21 itojun rnd_add_uint32(&sc->rnd_source, icr);
2370 1.21 itojun #endif
2371 1.1 thorpej
2372 1.1 thorpej handled = 1;
2373 1.1 thorpej
2374 1.10 thorpej #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2375 1.1 thorpej if (icr & (ICR_RXDMT0|ICR_RXT0)) {
2376 1.1 thorpej DPRINTF(WM_DEBUG_RX,
2377 1.1 thorpej ("%s: RX: got Rx intr 0x%08x\n",
2378 1.1 thorpej sc->sc_dev.dv_xname,
2379 1.1 thorpej icr & (ICR_RXDMT0|ICR_RXT0)));
2380 1.1 thorpej WM_EVCNT_INCR(&sc->sc_ev_rxintr);
2381 1.1 thorpej }
2382 1.10 thorpej #endif
2383 1.10 thorpej wm_rxintr(sc);
2384 1.1 thorpej
2385 1.10 thorpej #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2386 1.10 thorpej if (icr & ICR_TXDW) {
2387 1.1 thorpej DPRINTF(WM_DEBUG_TX,
2388 1.67 thorpej ("%s: TX: got TXDW interrupt\n",
2389 1.1 thorpej sc->sc_dev.dv_xname));
2390 1.10 thorpej WM_EVCNT_INCR(&sc->sc_ev_txdw);
2391 1.10 thorpej }
2392 1.4 thorpej #endif
2393 1.10 thorpej wm_txintr(sc);
2394 1.1 thorpej
2395 1.1 thorpej if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
2396 1.1 thorpej WM_EVCNT_INCR(&sc->sc_ev_linkintr);
2397 1.1 thorpej wm_linkintr(sc, icr);
2398 1.1 thorpej }
2399 1.1 thorpej
2400 1.1 thorpej if (icr & ICR_RXO) {
2401 1.108 yamt ifp->if_ierrors++;
2402 1.108 yamt #if defined(WM_DEBUG)
2403 1.84 thorpej log(LOG_WARNING, "%s: Receive overrun\n",
2404 1.84 thorpej sc->sc_dev.dv_xname);
2405 1.108 yamt #endif /* defined(WM_DEBUG) */
2406 1.1 thorpej }
2407 1.1 thorpej }
2408 1.1 thorpej
2409 1.1 thorpej if (handled) {
2410 1.1 thorpej /* Try to get more packets going. */
2411 1.1 thorpej wm_start(ifp);
2412 1.1 thorpej }
2413 1.1 thorpej
2414 1.1 thorpej return (handled);
2415 1.1 thorpej }
2416 1.1 thorpej
2417 1.1 thorpej /*
2418 1.1 thorpej * wm_txintr:
2419 1.1 thorpej *
2420 1.1 thorpej * Helper; handle transmit interrupts.
2421 1.1 thorpej */
2422 1.47 thorpej static void
2423 1.1 thorpej wm_txintr(struct wm_softc *sc)
2424 1.1 thorpej {
2425 1.1 thorpej struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2426 1.1 thorpej struct wm_txsoft *txs;
2427 1.1 thorpej uint8_t status;
2428 1.1 thorpej int i;
2429 1.1 thorpej
2430 1.1 thorpej ifp->if_flags &= ~IFF_OACTIVE;
2431 1.1 thorpej
2432 1.1 thorpej /*
2433 1.1 thorpej * Go through the Tx list and free mbufs for those
2434 1.16 simonb * frames which have been transmitted.
2435 1.1 thorpej */
2436 1.74 tron for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2437 1.74 tron i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2438 1.1 thorpej txs = &sc->sc_txsoft[i];
2439 1.1 thorpej
2440 1.1 thorpej DPRINTF(WM_DEBUG_TX,
2441 1.1 thorpej ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2442 1.1 thorpej
2443 1.80 thorpej WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2444 1.1 thorpej BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2445 1.1 thorpej
2446 1.65 tsutsui status =
2447 1.65 tsutsui sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2448 1.20 thorpej if ((status & WTX_ST_DD) == 0) {
2449 1.20 thorpej WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2450 1.20 thorpej BUS_DMASYNC_PREREAD);
2451 1.1 thorpej break;
2452 1.20 thorpej }
2453 1.1 thorpej
2454 1.1 thorpej DPRINTF(WM_DEBUG_TX,
2455 1.1 thorpej ("%s: TX: job %d done: descs %d..%d\n",
2456 1.1 thorpej sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2457 1.1 thorpej txs->txs_lastdesc));
2458 1.1 thorpej
2459 1.1 thorpej /*
2460 1.1 thorpej * XXX We should probably be using the statistics
2461 1.1 thorpej * XXX registers, but I don't know if they exist
2462 1.11 thorpej * XXX on chips before the i82544.
2463 1.1 thorpej */
2464 1.1 thorpej
2465 1.1 thorpej #ifdef WM_EVENT_COUNTERS
2466 1.1 thorpej if (status & WTX_ST_TU)
2467 1.1 thorpej WM_EVCNT_INCR(&sc->sc_ev_tu);
2468 1.1 thorpej #endif /* WM_EVENT_COUNTERS */
2469 1.1 thorpej
2470 1.1 thorpej if (status & (WTX_ST_EC|WTX_ST_LC)) {
2471 1.1 thorpej ifp->if_oerrors++;
2472 1.1 thorpej if (status & WTX_ST_LC)
2473 1.84 thorpej log(LOG_WARNING, "%s: late collision\n",
2474 1.1 thorpej sc->sc_dev.dv_xname);
2475 1.1 thorpej else if (status & WTX_ST_EC) {
2476 1.1 thorpej ifp->if_collisions += 16;
2477 1.84 thorpej log(LOG_WARNING, "%s: excessive collisions\n",
2478 1.1 thorpej sc->sc_dev.dv_xname);
2479 1.1 thorpej }
2480 1.1 thorpej } else
2481 1.1 thorpej ifp->if_opackets++;
2482 1.1 thorpej
2483 1.4 thorpej sc->sc_txfree += txs->txs_ndesc;
2484 1.1 thorpej bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2485 1.1 thorpej 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2486 1.1 thorpej bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2487 1.1 thorpej m_freem(txs->txs_mbuf);
2488 1.1 thorpej txs->txs_mbuf = NULL;
2489 1.1 thorpej }
2490 1.1 thorpej
2491 1.1 thorpej /* Update the dirty transmit buffer pointer. */
2492 1.1 thorpej sc->sc_txsdirty = i;
2493 1.1 thorpej DPRINTF(WM_DEBUG_TX,
2494 1.1 thorpej ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2495 1.1 thorpej
2496 1.1 thorpej /*
2497 1.1 thorpej * If there are no more pending transmissions, cancel the watchdog
2498 1.1 thorpej * timer.
2499 1.1 thorpej */
2500 1.74 tron if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2501 1.1 thorpej ifp->if_timer = 0;
2502 1.1 thorpej }
2503 1.1 thorpej
2504 1.1 thorpej /*
2505 1.1 thorpej * wm_rxintr:
2506 1.1 thorpej *
2507 1.1 thorpej * Helper; handle receive interrupts.
2508 1.1 thorpej */
2509 1.47 thorpej static void
2510 1.1 thorpej wm_rxintr(struct wm_softc *sc)
2511 1.1 thorpej {
2512 1.1 thorpej struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2513 1.1 thorpej struct wm_rxsoft *rxs;
2514 1.1 thorpej struct mbuf *m;
2515 1.1 thorpej int i, len;
2516 1.1 thorpej uint8_t status, errors;
2517 1.1 thorpej
2518 1.1 thorpej for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2519 1.1 thorpej rxs = &sc->sc_rxsoft[i];
2520 1.1 thorpej
2521 1.1 thorpej DPRINTF(WM_DEBUG_RX,
2522 1.1 thorpej ("%s: RX: checking descriptor %d\n",
2523 1.1 thorpej sc->sc_dev.dv_xname, i));
2524 1.1 thorpej
2525 1.1 thorpej WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2526 1.1 thorpej
2527 1.1 thorpej status = sc->sc_rxdescs[i].wrx_status;
2528 1.1 thorpej errors = sc->sc_rxdescs[i].wrx_errors;
2529 1.1 thorpej len = le16toh(sc->sc_rxdescs[i].wrx_len);
2530 1.1 thorpej
2531 1.1 thorpej if ((status & WRX_ST_DD) == 0) {
2532 1.1 thorpej /*
2533 1.1 thorpej * We have processed all of the receive descriptors.
2534 1.1 thorpej */
2535 1.20 thorpej WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2536 1.1 thorpej break;
2537 1.1 thorpej }
2538 1.1 thorpej
2539 1.1 thorpej if (__predict_false(sc->sc_rxdiscard)) {
2540 1.1 thorpej DPRINTF(WM_DEBUG_RX,
2541 1.1 thorpej ("%s: RX: discarding contents of descriptor %d\n",
2542 1.1 thorpej sc->sc_dev.dv_xname, i));
2543 1.1 thorpej WM_INIT_RXDESC(sc, i);
2544 1.1 thorpej if (status & WRX_ST_EOP) {
2545 1.1 thorpej /* Reset our state. */
2546 1.1 thorpej DPRINTF(WM_DEBUG_RX,
2547 1.1 thorpej ("%s: RX: resetting rxdiscard -> 0\n",
2548 1.1 thorpej sc->sc_dev.dv_xname));
2549 1.1 thorpej sc->sc_rxdiscard = 0;
2550 1.1 thorpej }
2551 1.1 thorpej continue;
2552 1.1 thorpej }
2553 1.1 thorpej
2554 1.1 thorpej bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2555 1.1 thorpej rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2556 1.1 thorpej
2557 1.1 thorpej m = rxs->rxs_mbuf;
2558 1.1 thorpej
2559 1.1 thorpej /*
2560 1.124 wrstuden * Add a new receive buffer to the ring, unless of
2561 1.124 wrstuden * course the length is zero. Treat the latter as a
2562 1.124 wrstuden * failed mapping.
2563 1.1 thorpej */
2564 1.124 wrstuden if ((len == 0) || (wm_add_rxbuf(sc, i) != 0)) {
2565 1.1 thorpej /*
2566 1.1 thorpej * Failed, throw away what we've done so
2567 1.1 thorpej * far, and discard the rest of the packet.
2568 1.1 thorpej */
2569 1.1 thorpej ifp->if_ierrors++;
2570 1.1 thorpej bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2571 1.1 thorpej rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2572 1.1 thorpej WM_INIT_RXDESC(sc, i);
2573 1.1 thorpej if ((status & WRX_ST_EOP) == 0)
2574 1.1 thorpej sc->sc_rxdiscard = 1;
2575 1.1 thorpej if (sc->sc_rxhead != NULL)
2576 1.1 thorpej m_freem(sc->sc_rxhead);
2577 1.1 thorpej WM_RXCHAIN_RESET(sc);
2578 1.1 thorpej DPRINTF(WM_DEBUG_RX,
2579 1.1 thorpej ("%s: RX: Rx buffer allocation failed, "
2580 1.1 thorpej "dropping packet%s\n", sc->sc_dev.dv_xname,
2581 1.1 thorpej sc->sc_rxdiscard ? " (discard)" : ""));
2582 1.1 thorpej continue;
2583 1.1 thorpej }
2584 1.1 thorpej
2585 1.1 thorpej WM_RXCHAIN_LINK(sc, m);
2586 1.1 thorpej
2587 1.1 thorpej m->m_len = len;
2588 1.1 thorpej
2589 1.1 thorpej DPRINTF(WM_DEBUG_RX,
2590 1.1 thorpej ("%s: RX: buffer at %p len %d\n",
2591 1.1 thorpej sc->sc_dev.dv_xname, m->m_data, len));
2592 1.1 thorpej
2593 1.1 thorpej /*
2594 1.1 thorpej * If this is not the end of the packet, keep
2595 1.1 thorpej * looking.
2596 1.1 thorpej */
2597 1.1 thorpej if ((status & WRX_ST_EOP) == 0) {
2598 1.1 thorpej sc->sc_rxlen += len;
2599 1.1 thorpej DPRINTF(WM_DEBUG_RX,
2600 1.1 thorpej ("%s: RX: not yet EOP, rxlen -> %d\n",
2601 1.1 thorpej sc->sc_dev.dv_xname, sc->sc_rxlen));
2602 1.1 thorpej continue;
2603 1.1 thorpej }
2604 1.1 thorpej
2605 1.1 thorpej /*
2606 1.93 thorpej * Okay, we have the entire packet now. The chip is
2607 1.93 thorpej * configured to include the FCS (not all chips can
2608 1.93 thorpej * be configured to strip it), so we need to trim it.
2609 1.1 thorpej */
2610 1.93 thorpej m->m_len -= ETHER_CRC_LEN;
2611 1.93 thorpej
2612 1.1 thorpej *sc->sc_rxtailp = NULL;
2613 1.111 thorpej len = m->m_len + sc->sc_rxlen;
2614 1.1 thorpej m = sc->sc_rxhead;
2615 1.1 thorpej
2616 1.1 thorpej WM_RXCHAIN_RESET(sc);
2617 1.1 thorpej
2618 1.1 thorpej DPRINTF(WM_DEBUG_RX,
2619 1.1 thorpej ("%s: RX: have entire packet, len -> %d\n",
2620 1.1 thorpej sc->sc_dev.dv_xname, len));
2621 1.1 thorpej
2622 1.1 thorpej /*
2623 1.1 thorpej * If an error occurred, update stats and drop the packet.
2624 1.1 thorpej */
2625 1.1 thorpej if (errors &
2626 1.1 thorpej (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2627 1.1 thorpej ifp->if_ierrors++;
2628 1.1 thorpej if (errors & WRX_ER_SE)
2629 1.84 thorpej log(LOG_WARNING, "%s: symbol error\n",
2630 1.1 thorpej sc->sc_dev.dv_xname);
2631 1.1 thorpej else if (errors & WRX_ER_SEQ)
2632 1.84 thorpej log(LOG_WARNING, "%s: receive sequence error\n",
2633 1.1 thorpej sc->sc_dev.dv_xname);
2634 1.1 thorpej else if (errors & WRX_ER_CE)
2635 1.84 thorpej log(LOG_WARNING, "%s: CRC error\n",
2636 1.1 thorpej sc->sc_dev.dv_xname);
2637 1.1 thorpej m_freem(m);
2638 1.1 thorpej continue;
2639 1.1 thorpej }
2640 1.1 thorpej
2641 1.1 thorpej /*
2642 1.1 thorpej * No errors. Receive the packet.
2643 1.1 thorpej */
2644 1.1 thorpej m->m_pkthdr.rcvif = ifp;
2645 1.1 thorpej m->m_pkthdr.len = len;
2646 1.1 thorpej
2647 1.1 thorpej #if 0 /* XXXJRT */
2648 1.1 thorpej /*
2649 1.1 thorpej * If VLANs are enabled, VLAN packets have been unwrapped
2650 1.1 thorpej * for us. Associate the tag with the packet.
2651 1.1 thorpej */
2652 1.94 jdolecek if ((status & WRX_ST_VP) != 0) {
2653 1.94 jdolecek VLAN_INPUT_TAG(ifp, m,
2654 1.94 jdolecek le16toh(sc->sc_rxdescs[i].wrx_special,
2655 1.94 jdolecek continue);
2656 1.1 thorpej }
2657 1.1 thorpej #endif /* XXXJRT */
2658 1.1 thorpej
2659 1.1 thorpej /*
2660 1.1 thorpej * Set up checksum info for this packet.
2661 1.1 thorpej */
2662 1.106 yamt if ((status & WRX_ST_IXSM) == 0) {
2663 1.106 yamt if (status & WRX_ST_IPCS) {
2664 1.106 yamt WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2665 1.106 yamt m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2666 1.106 yamt if (errors & WRX_ER_IPE)
2667 1.106 yamt m->m_pkthdr.csum_flags |=
2668 1.106 yamt M_CSUM_IPv4_BAD;
2669 1.106 yamt }
2670 1.106 yamt if (status & WRX_ST_TCPCS) {
2671 1.106 yamt /*
2672 1.106 yamt * Note: we don't know if this was TCP or UDP,
2673 1.106 yamt * so we just set both bits, and expect the
2674 1.106 yamt * upper layers to deal.
2675 1.106 yamt */
2676 1.106 yamt WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2677 1.106 yamt m->m_pkthdr.csum_flags |=
2678 1.130 yamt M_CSUM_TCPv4 | M_CSUM_UDPv4 |
2679 1.130 yamt M_CSUM_TCPv6 | M_CSUM_UDPv6;
2680 1.106 yamt if (errors & WRX_ER_TCPE)
2681 1.106 yamt m->m_pkthdr.csum_flags |=
2682 1.106 yamt M_CSUM_TCP_UDP_BAD;
2683 1.106 yamt }
2684 1.1 thorpej }
2685 1.1 thorpej
2686 1.1 thorpej ifp->if_ipackets++;
2687 1.1 thorpej
2688 1.1 thorpej #if NBPFILTER > 0
2689 1.1 thorpej /* Pass this up to any BPF listeners. */
2690 1.1 thorpej if (ifp->if_bpf)
2691 1.1 thorpej bpf_mtap(ifp->if_bpf, m);
2692 1.1 thorpej #endif /* NBPFILTER > 0 */
2693 1.1 thorpej
2694 1.1 thorpej /* Pass it on. */
2695 1.1 thorpej (*ifp->if_input)(ifp, m);
2696 1.1 thorpej }
2697 1.1 thorpej
2698 1.1 thorpej /* Update the receive pointer. */
2699 1.1 thorpej sc->sc_rxptr = i;
2700 1.1 thorpej
2701 1.1 thorpej DPRINTF(WM_DEBUG_RX,
2702 1.1 thorpej ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2703 1.1 thorpej }
2704 1.1 thorpej
2705 1.1 thorpej /*
2706 1.1 thorpej * wm_linkintr:
2707 1.1 thorpej *
2708 1.1 thorpej * Helper; handle link interrupts.
2709 1.1 thorpej */
2710 1.47 thorpej static void
2711 1.1 thorpej wm_linkintr(struct wm_softc *sc, uint32_t icr)
2712 1.1 thorpej {
2713 1.1 thorpej uint32_t status;
2714 1.1 thorpej
2715 1.1 thorpej /*
2716 1.1 thorpej * If we get a link status interrupt on a 1000BASE-T
2717 1.1 thorpej * device, just fall into the normal MII tick path.
2718 1.1 thorpej */
2719 1.1 thorpej if (sc->sc_flags & WM_F_HAS_MII) {
2720 1.1 thorpej if (icr & ICR_LSC) {
2721 1.1 thorpej DPRINTF(WM_DEBUG_LINK,
2722 1.1 thorpej ("%s: LINK: LSC -> mii_tick\n",
2723 1.1 thorpej sc->sc_dev.dv_xname));
2724 1.1 thorpej mii_tick(&sc->sc_mii);
2725 1.1 thorpej } else if (icr & ICR_RXSEQ) {
2726 1.1 thorpej DPRINTF(WM_DEBUG_LINK,
2727 1.1 thorpej ("%s: LINK Receive sequence error\n",
2728 1.1 thorpej sc->sc_dev.dv_xname));
2729 1.1 thorpej }
2730 1.1 thorpej return;
2731 1.1 thorpej }
2732 1.1 thorpej
2733 1.1 thorpej /*
2734 1.1 thorpej * If we are now receiving /C/, check for link again in
2735 1.1 thorpej * a couple of link clock ticks.
2736 1.1 thorpej */
2737 1.1 thorpej if (icr & ICR_RXCFG) {
2738 1.1 thorpej DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2739 1.1 thorpej sc->sc_dev.dv_xname));
2740 1.1 thorpej sc->sc_tbi_anstate = 2;
2741 1.1 thorpej }
2742 1.1 thorpej
2743 1.1 thorpej if (icr & ICR_LSC) {
2744 1.1 thorpej status = CSR_READ(sc, WMREG_STATUS);
2745 1.1 thorpej if (status & STATUS_LU) {
2746 1.1 thorpej DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2747 1.1 thorpej sc->sc_dev.dv_xname,
2748 1.1 thorpej (status & STATUS_FD) ? "FDX" : "HDX"));
2749 1.1 thorpej sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2750 1.71 thorpej sc->sc_fcrtl &= ~FCRTL_XONE;
2751 1.1 thorpej if (status & STATUS_FD)
2752 1.1 thorpej sc->sc_tctl |=
2753 1.1 thorpej TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2754 1.1 thorpej else
2755 1.1 thorpej sc->sc_tctl |=
2756 1.1 thorpej TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2757 1.71 thorpej if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2758 1.71 thorpej sc->sc_fcrtl |= FCRTL_XONE;
2759 1.1 thorpej CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2760 1.71 thorpej CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2761 1.71 thorpej WMREG_OLD_FCRTL : WMREG_FCRTL,
2762 1.71 thorpej sc->sc_fcrtl);
2763 1.1 thorpej sc->sc_tbi_linkup = 1;
2764 1.1 thorpej } else {
2765 1.1 thorpej DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2766 1.1 thorpej sc->sc_dev.dv_xname));
2767 1.1 thorpej sc->sc_tbi_linkup = 0;
2768 1.1 thorpej }
2769 1.1 thorpej sc->sc_tbi_anstate = 2;
2770 1.1 thorpej wm_tbi_set_linkled(sc);
2771 1.1 thorpej } else if (icr & ICR_RXSEQ) {
2772 1.1 thorpej DPRINTF(WM_DEBUG_LINK,
2773 1.1 thorpej ("%s: LINK: Receive sequence error\n",
2774 1.1 thorpej sc->sc_dev.dv_xname));
2775 1.1 thorpej }
2776 1.1 thorpej }
2777 1.1 thorpej
2778 1.1 thorpej /*
2779 1.1 thorpej * wm_tick:
2780 1.1 thorpej *
2781 1.1 thorpej * One second timer, used to check link status, sweep up
2782 1.1 thorpej * completed transmit jobs, etc.
2783 1.1 thorpej */
2784 1.47 thorpej static void
2785 1.1 thorpej wm_tick(void *arg)
2786 1.1 thorpej {
2787 1.1 thorpej struct wm_softc *sc = arg;
2788 1.127 bouyer struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2789 1.1 thorpej int s;
2790 1.1 thorpej
2791 1.1 thorpej s = splnet();
2792 1.1 thorpej
2793 1.71 thorpej if (sc->sc_type >= WM_T_82542_2_1) {
2794 1.71 thorpej WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2795 1.71 thorpej WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2796 1.71 thorpej WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2797 1.71 thorpej WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2798 1.71 thorpej WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2799 1.71 thorpej }
2800 1.71 thorpej
2801 1.127 bouyer ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
2802 1.127 bouyer ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
2803 1.127 bouyer
2804 1.127 bouyer
2805 1.1 thorpej if (sc->sc_flags & WM_F_HAS_MII)
2806 1.1 thorpej mii_tick(&sc->sc_mii);
2807 1.1 thorpej else
2808 1.1 thorpej wm_tbi_check_link(sc);
2809 1.1 thorpej
2810 1.1 thorpej splx(s);
2811 1.1 thorpej
2812 1.1 thorpej callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2813 1.1 thorpej }
2814 1.1 thorpej
2815 1.1 thorpej /*
2816 1.1 thorpej * wm_reset:
2817 1.1 thorpej *
2818 1.1 thorpej * Reset the i82542 chip.
2819 1.1 thorpej */
2820 1.47 thorpej static void
2821 1.1 thorpej wm_reset(struct wm_softc *sc)
2822 1.1 thorpej {
2823 1.146 msaitoh uint32_t reg;
2824 1.1 thorpej
2825 1.78 thorpej /*
2826 1.78 thorpej * Allocate on-chip memory according to the MTU size.
2827 1.78 thorpej * The Packet Buffer Allocation register must be written
2828 1.78 thorpej * before the chip is reset.
2829 1.78 thorpej */
2830 1.120 msaitoh switch (sc->sc_type) {
2831 1.120 msaitoh case WM_T_82547:
2832 1.120 msaitoh case WM_T_82547_2:
2833 1.78 thorpej sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2834 1.78 thorpej PBA_22K : PBA_30K;
2835 1.78 thorpej sc->sc_txfifo_head = 0;
2836 1.78 thorpej sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2837 1.78 thorpej sc->sc_txfifo_size =
2838 1.78 thorpej (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2839 1.78 thorpej sc->sc_txfifo_stall = 0;
2840 1.120 msaitoh break;
2841 1.120 msaitoh case WM_T_82571:
2842 1.120 msaitoh case WM_T_82572:
2843 1.127 bouyer case WM_T_80003:
2844 1.120 msaitoh sc->sc_pba = PBA_32K;
2845 1.120 msaitoh break;
2846 1.120 msaitoh case WM_T_82573:
2847 1.120 msaitoh sc->sc_pba = PBA_12K;
2848 1.120 msaitoh break;
2849 1.139 bouyer case WM_T_ICH8:
2850 1.139 bouyer sc->sc_pba = PBA_8K;
2851 1.139 bouyer CSR_WRITE(sc, WMREG_PBS, PBA_16K);
2852 1.139 bouyer break;
2853 1.144 msaitoh case WM_T_ICH9:
2854 1.144 msaitoh sc->sc_pba = PBA_10K;
2855 1.144 msaitoh break;
2856 1.120 msaitoh default:
2857 1.120 msaitoh sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2858 1.120 msaitoh PBA_40K : PBA_48K;
2859 1.120 msaitoh break;
2860 1.78 thorpej }
2861 1.78 thorpej CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2862 1.78 thorpej
2863 1.144 msaitoh if (sc->sc_flags & WM_F_PCIE) {
2864 1.144 msaitoh int timeout = 800;
2865 1.144 msaitoh
2866 1.144 msaitoh sc->sc_ctrl |= CTRL_GIO_M_DIS;
2867 1.144 msaitoh CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2868 1.144 msaitoh
2869 1.144 msaitoh while (timeout) {
2870 1.144 msaitoh if ((CSR_READ(sc, WMREG_STATUS) & STATUS_GIO_M_ENA) == 0)
2871 1.144 msaitoh break;
2872 1.144 msaitoh delay(100);
2873 1.144 msaitoh }
2874 1.144 msaitoh }
2875 1.144 msaitoh
2876 1.144 msaitoh /* clear interrupt */
2877 1.144 msaitoh CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2878 1.144 msaitoh
2879 1.137 msaitoh /*
2880 1.138 salo * 82541 Errata 29? & 82547 Errata 28?
2881 1.137 msaitoh * See also the description about PHY_RST bit in CTRL register
2882 1.137 msaitoh * in 8254x_GBe_SDM.pdf.
2883 1.137 msaitoh */
2884 1.137 msaitoh if ((sc->sc_type == WM_T_82541) || (sc->sc_type == WM_T_82547)) {
2885 1.137 msaitoh CSR_WRITE(sc, WMREG_CTRL,
2886 1.137 msaitoh CSR_READ(sc, WMREG_CTRL) | CTRL_PHY_RESET);
2887 1.137 msaitoh delay(5000);
2888 1.137 msaitoh }
2889 1.137 msaitoh
2890 1.53 thorpej switch (sc->sc_type) {
2891 1.53 thorpej case WM_T_82544:
2892 1.53 thorpej case WM_T_82540:
2893 1.53 thorpej case WM_T_82545:
2894 1.53 thorpej case WM_T_82546:
2895 1.53 thorpej case WM_T_82541:
2896 1.53 thorpej case WM_T_82541_2:
2897 1.53 thorpej /*
2898 1.88 briggs * On some chipsets, a reset through a memory-mapped write
2899 1.88 briggs * cycle can cause the chip to reset before completing the
2900 1.88 briggs * write cycle. This causes major headache that can be
2901 1.88 briggs * avoided by issuing the reset via indirect register writes
2902 1.88 briggs * through I/O space.
2903 1.88 briggs *
2904 1.88 briggs * So, if we successfully mapped the I/O BAR at attach time,
2905 1.88 briggs * use that. Otherwise, try our luck with a memory-mapped
2906 1.88 briggs * reset.
2907 1.53 thorpej */
2908 1.53 thorpej if (sc->sc_flags & WM_F_IOH_VALID)
2909 1.53 thorpej wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2910 1.53 thorpej else
2911 1.53 thorpej CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2912 1.53 thorpej break;
2913 1.53 thorpej
2914 1.53 thorpej case WM_T_82545_3:
2915 1.53 thorpej case WM_T_82546_3:
2916 1.53 thorpej /* Use the shadow control register on these chips. */
2917 1.53 thorpej CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2918 1.53 thorpej break;
2919 1.53 thorpej
2920 1.139 bouyer case WM_T_ICH8:
2921 1.144 msaitoh case WM_T_ICH9:
2922 1.139 bouyer wm_get_swfwhw_semaphore(sc);
2923 1.139 bouyer CSR_WRITE(sc, WMREG_CTRL, CTRL_RST | CTRL_PHY_RESET);
2924 1.144 msaitoh delay(10000);
2925 1.139 bouyer
2926 1.53 thorpej default:
2927 1.53 thorpej /* Everything else can safely use the documented method. */
2928 1.53 thorpej CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2929 1.53 thorpej break;
2930 1.53 thorpej }
2931 1.1 thorpej delay(10000);
2932 1.1 thorpej
2933 1.146 msaitoh /* reload EEPROM */
2934 1.144 msaitoh switch(sc->sc_type) {
2935 1.144 msaitoh case WM_T_82542_2_0:
2936 1.144 msaitoh case WM_T_82542_2_1:
2937 1.144 msaitoh case WM_T_82543:
2938 1.144 msaitoh case WM_T_82544:
2939 1.144 msaitoh delay(10);
2940 1.146 msaitoh reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
2941 1.146 msaitoh CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
2942 1.144 msaitoh delay(2000);
2943 1.144 msaitoh break;
2944 1.144 msaitoh case WM_T_82541:
2945 1.144 msaitoh case WM_T_82541_2:
2946 1.144 msaitoh case WM_T_82547:
2947 1.144 msaitoh case WM_T_82547_2:
2948 1.144 msaitoh delay(20000);
2949 1.144 msaitoh break;
2950 1.144 msaitoh case WM_T_82573:
2951 1.146 msaitoh if (sc->sc_flags & WM_F_EEPROM_FLASH) {
2952 1.146 msaitoh delay(10);
2953 1.146 msaitoh reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
2954 1.146 msaitoh CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
2955 1.146 msaitoh }
2956 1.144 msaitoh /* FALLTHROUGH */
2957 1.144 msaitoh default:
2958 1.145 msaitoh /* check EECD_EE_AUTORD */
2959 1.146 msaitoh wm_get_auto_rd_done(sc);
2960 1.127 bouyer }
2961 1.144 msaitoh
2962 1.144 msaitoh #if 0
2963 1.144 msaitoh for (i = 0; i < 1000; i++) {
2964 1.144 msaitoh if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0) {
2965 1.144 msaitoh return;
2966 1.144 msaitoh }
2967 1.144 msaitoh delay(20);
2968 1.144 msaitoh }
2969 1.144 msaitoh
2970 1.144 msaitoh if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2971 1.144 msaitoh log(LOG_ERR, "%s: reset failed to complete\n",
2972 1.144 msaitoh sc->sc_dev.dv_xname);
2973 1.144 msaitoh #endif
2974 1.1 thorpej }
2975 1.1 thorpej
2976 1.1 thorpej /*
2977 1.1 thorpej * wm_init: [ifnet interface function]
2978 1.1 thorpej *
2979 1.1 thorpej * Initialize the interface. Must be called at splnet().
2980 1.1 thorpej */
2981 1.47 thorpej static int
2982 1.1 thorpej wm_init(struct ifnet *ifp)
2983 1.1 thorpej {
2984 1.1 thorpej struct wm_softc *sc = ifp->if_softc;
2985 1.1 thorpej struct wm_rxsoft *rxs;
2986 1.1 thorpej int i, error = 0;
2987 1.1 thorpej uint32_t reg;
2988 1.1 thorpej
2989 1.42 thorpej /*
2990 1.42 thorpej * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2991 1.42 thorpej * There is a small but measurable benefit to avoiding the adjusment
2992 1.42 thorpej * of the descriptor so that the headers are aligned, for normal mtu,
2993 1.42 thorpej * on such platforms. One possibility is that the DMA itself is
2994 1.42 thorpej * slightly more efficient if the front of the entire packet (instead
2995 1.42 thorpej * of the front of the headers) is aligned.
2996 1.42 thorpej *
2997 1.42 thorpej * Note we must always set align_tweak to 0 if we are using
2998 1.42 thorpej * jumbo frames.
2999 1.42 thorpej */
3000 1.42 thorpej #ifdef __NO_STRICT_ALIGNMENT
3001 1.42 thorpej sc->sc_align_tweak = 0;
3002 1.41 tls #else
3003 1.42 thorpej if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
3004 1.42 thorpej sc->sc_align_tweak = 0;
3005 1.42 thorpej else
3006 1.42 thorpej sc->sc_align_tweak = 2;
3007 1.42 thorpej #endif /* __NO_STRICT_ALIGNMENT */
3008 1.41 tls
3009 1.1 thorpej /* Cancel any pending I/O. */
3010 1.1 thorpej wm_stop(ifp, 0);
3011 1.1 thorpej
3012 1.127 bouyer /* update statistics before reset */
3013 1.127 bouyer ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
3014 1.127 bouyer ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
3015 1.127 bouyer
3016 1.1 thorpej /* Reset the chip to a known state. */
3017 1.1 thorpej wm_reset(sc);
3018 1.1 thorpej
3019 1.1 thorpej /* Initialize the transmit descriptor ring. */
3020 1.75 thorpej memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
3021 1.75 thorpej WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
3022 1.1 thorpej BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3023 1.75 thorpej sc->sc_txfree = WM_NTXDESC(sc);
3024 1.1 thorpej sc->sc_txnext = 0;
3025 1.5 thorpej
3026 1.11 thorpej if (sc->sc_type < WM_T_82543) {
3027 1.69 thorpej CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
3028 1.69 thorpej CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
3029 1.75 thorpej CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
3030 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_TDH, 0);
3031 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_TDT, 0);
3032 1.10 thorpej CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
3033 1.1 thorpej } else {
3034 1.69 thorpej CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
3035 1.69 thorpej CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
3036 1.75 thorpej CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
3037 1.1 thorpej CSR_WRITE(sc, WMREG_TDH, 0);
3038 1.1 thorpej CSR_WRITE(sc, WMREG_TDT, 0);
3039 1.150 tls CSR_WRITE(sc, WMREG_TIDV, 375); /* ITR / 4 */
3040 1.150 tls CSR_WRITE(sc, WMREG_TADV, 375); /* should be same */
3041 1.1 thorpej
3042 1.1 thorpej CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
3043 1.1 thorpej TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
3044 1.1 thorpej CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
3045 1.1 thorpej RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
3046 1.1 thorpej }
3047 1.1 thorpej CSR_WRITE(sc, WMREG_TQSA_LO, 0);
3048 1.1 thorpej CSR_WRITE(sc, WMREG_TQSA_HI, 0);
3049 1.1 thorpej
3050 1.1 thorpej /* Initialize the transmit job descriptors. */
3051 1.74 tron for (i = 0; i < WM_TXQUEUELEN(sc); i++)
3052 1.1 thorpej sc->sc_txsoft[i].txs_mbuf = NULL;
3053 1.74 tron sc->sc_txsfree = WM_TXQUEUELEN(sc);
3054 1.1 thorpej sc->sc_txsnext = 0;
3055 1.1 thorpej sc->sc_txsdirty = 0;
3056 1.1 thorpej
3057 1.1 thorpej /*
3058 1.1 thorpej * Initialize the receive descriptor and receive job
3059 1.1 thorpej * descriptor rings.
3060 1.1 thorpej */
3061 1.11 thorpej if (sc->sc_type < WM_T_82543) {
3062 1.69 thorpej CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
3063 1.69 thorpej CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
3064 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
3065 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
3066 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
3067 1.10 thorpej CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
3068 1.1 thorpej
3069 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
3070 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
3071 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
3072 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
3073 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
3074 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
3075 1.1 thorpej } else {
3076 1.69 thorpej CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
3077 1.69 thorpej CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
3078 1.1 thorpej CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
3079 1.1 thorpej CSR_WRITE(sc, WMREG_RDH, 0);
3080 1.1 thorpej CSR_WRITE(sc, WMREG_RDT, 0);
3081 1.150 tls CSR_WRITE(sc, WMREG_RDTR, 375 | RDTR_FPD); /* ITR/4 */
3082 1.150 tls CSR_WRITE(sc, WMREG_RADV, 375); /* MUST be same */
3083 1.1 thorpej }
3084 1.1 thorpej for (i = 0; i < WM_NRXDESC; i++) {
3085 1.1 thorpej rxs = &sc->sc_rxsoft[i];
3086 1.1 thorpej if (rxs->rxs_mbuf == NULL) {
3087 1.1 thorpej if ((error = wm_add_rxbuf(sc, i)) != 0) {
3088 1.84 thorpej log(LOG_ERR, "%s: unable to allocate or map rx "
3089 1.1 thorpej "buffer %d, error = %d\n",
3090 1.1 thorpej sc->sc_dev.dv_xname, i, error);
3091 1.1 thorpej /*
3092 1.1 thorpej * XXX Should attempt to run with fewer receive
3093 1.1 thorpej * XXX buffers instead of just failing.
3094 1.1 thorpej */
3095 1.1 thorpej wm_rxdrain(sc);
3096 1.1 thorpej goto out;
3097 1.1 thorpej }
3098 1.1 thorpej } else
3099 1.1 thorpej WM_INIT_RXDESC(sc, i);
3100 1.1 thorpej }
3101 1.1 thorpej sc->sc_rxptr = 0;
3102 1.1 thorpej sc->sc_rxdiscard = 0;
3103 1.1 thorpej WM_RXCHAIN_RESET(sc);
3104 1.1 thorpej
3105 1.1 thorpej /*
3106 1.1 thorpej * Clear out the VLAN table -- we don't use it (yet).
3107 1.1 thorpej */
3108 1.1 thorpej CSR_WRITE(sc, WMREG_VET, 0);
3109 1.1 thorpej for (i = 0; i < WM_VLAN_TABSIZE; i++)
3110 1.1 thorpej CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
3111 1.1 thorpej
3112 1.1 thorpej /*
3113 1.1 thorpej * Set up flow-control parameters.
3114 1.1 thorpej *
3115 1.1 thorpej * XXX Values could probably stand some tuning.
3116 1.1 thorpej */
3117 1.139 bouyer if (sc->sc_type != WM_T_ICH8) {
3118 1.139 bouyer CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
3119 1.139 bouyer CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
3120 1.139 bouyer CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
3121 1.139 bouyer }
3122 1.71 thorpej
3123 1.71 thorpej sc->sc_fcrtl = FCRTL_DFLT;
3124 1.71 thorpej if (sc->sc_type < WM_T_82543) {
3125 1.71 thorpej CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
3126 1.71 thorpej CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
3127 1.71 thorpej } else {
3128 1.71 thorpej CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
3129 1.71 thorpej CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
3130 1.1 thorpej }
3131 1.71 thorpej CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
3132 1.1 thorpej
3133 1.1 thorpej #if 0 /* XXXJRT */
3134 1.1 thorpej /* Deal with VLAN enables. */
3135 1.94 jdolecek if (VLAN_ATTACHED(&sc->sc_ethercom))
3136 1.1 thorpej sc->sc_ctrl |= CTRL_VME;
3137 1.1 thorpej else
3138 1.1 thorpej #endif /* XXXJRT */
3139 1.1 thorpej sc->sc_ctrl &= ~CTRL_VME;
3140 1.1 thorpej
3141 1.1 thorpej /* Write the control registers. */
3142 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3143 1.127 bouyer if (sc->sc_type >= WM_T_80003 && (sc->sc_flags & WM_F_HAS_MII)) {
3144 1.127 bouyer int val;
3145 1.127 bouyer val = CSR_READ(sc, WMREG_CTRL_EXT);
3146 1.127 bouyer val &= ~CTRL_EXT_LINK_MODE_MASK;
3147 1.127 bouyer CSR_WRITE(sc, WMREG_CTRL_EXT, val);
3148 1.127 bouyer
3149 1.127 bouyer /* Bypass RX and TX FIFO's */
3150 1.127 bouyer wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL,
3151 1.127 bouyer KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
3152 1.127 bouyer KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
3153 1.127 bouyer
3154 1.127 bouyer wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL,
3155 1.127 bouyer KUMCTRLSTA_INB_CTRL_DIS_PADDING |
3156 1.127 bouyer KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT);
3157 1.127 bouyer /*
3158 1.127 bouyer * Set the mac to wait the maximum time between each
3159 1.127 bouyer * iteration and increase the max iterations when
3160 1.127 bouyer * polling the phy; this fixes erroneous timeouts at 10Mbps.
3161 1.127 bouyer */
3162 1.127 bouyer wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS, 0xFFFF);
3163 1.127 bouyer val = wm_kmrn_i80003_readreg(sc, KUMCTRLSTA_OFFSET_INB_PARAM);
3164 1.127 bouyer val |= 0x3F;
3165 1.127 bouyer wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_INB_PARAM, val);
3166 1.127 bouyer }
3167 1.1 thorpej #if 0
3168 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
3169 1.1 thorpej #endif
3170 1.1 thorpej
3171 1.1 thorpej /*
3172 1.1 thorpej * Set up checksum offload parameters.
3173 1.1 thorpej */
3174 1.1 thorpej reg = CSR_READ(sc, WMREG_RXCSUM);
3175 1.130 yamt reg &= ~(RXCSUM_IPOFL | RXCSUM_IPV6OFL | RXCSUM_TUOFL);
3176 1.103 yamt if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
3177 1.1 thorpej reg |= RXCSUM_IPOFL;
3178 1.103 yamt if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
3179 1.12 thorpej reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
3180 1.130 yamt if (ifp->if_capenable & (IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
3181 1.130 yamt reg |= RXCSUM_IPV6OFL | RXCSUM_TUOFL;
3182 1.1 thorpej CSR_WRITE(sc, WMREG_RXCSUM, reg);
3183 1.1 thorpej
3184 1.1 thorpej /*
3185 1.1 thorpej * Set up the interrupt registers.
3186 1.1 thorpej */
3187 1.1 thorpej CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
3188 1.10 thorpej sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
3189 1.1 thorpej ICR_RXO | ICR_RXT0;
3190 1.1 thorpej if ((sc->sc_flags & WM_F_HAS_MII) == 0)
3191 1.1 thorpej sc->sc_icr |= ICR_RXCFG;
3192 1.1 thorpej CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
3193 1.1 thorpej
3194 1.1 thorpej /* Set up the inter-packet gap. */
3195 1.1 thorpej CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
3196 1.1 thorpej
3197 1.92 briggs if (sc->sc_type >= WM_T_82543) {
3198 1.150 tls /*
3199 1.150 tls * Set up the interrupt throttling register (units of 256ns)
3200 1.150 tls * Note that a footnote in Intel's documentation says this
3201 1.150 tls * ticker runs at 1/4 the rate when the chip is in 100Mbit
3202 1.150 tls * or 10Mbit mode. Empirically, it appears to be the case
3203 1.150 tls * that that is also true for the 1024ns units of the other
3204 1.150 tls * interrupt-related timer registers -- so, really, we ought
3205 1.150 tls * to divide this value by 4 when the link speed is low.
3206 1.150 tls *
3207 1.150 tls * XXX implement this division at link speed change!
3208 1.150 tls */
3209 1.150 tls sc->sc_itr = 1000000000 / (1500 * 256); /* 2604 ints/sec */
3210 1.92 briggs CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
3211 1.92 briggs }
3212 1.92 briggs
3213 1.1 thorpej #if 0 /* XXXJRT */
3214 1.1 thorpej /* Set the VLAN ethernetype. */
3215 1.1 thorpej CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
3216 1.1 thorpej #endif
3217 1.1 thorpej
3218 1.1 thorpej /*
3219 1.1 thorpej * Set up the transmit control register; we start out with
3220 1.1 thorpej * a collision distance suitable for FDX, but update it whe
3221 1.1 thorpej * we resolve the media type.
3222 1.1 thorpej */
3223 1.1 thorpej sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
3224 1.1 thorpej TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3225 1.120 msaitoh if (sc->sc_type >= WM_T_82571)
3226 1.120 msaitoh sc->sc_tctl |= TCTL_MULR;
3227 1.127 bouyer if (sc->sc_type >= WM_T_80003)
3228 1.127 bouyer sc->sc_tctl |= TCTL_RTLC;
3229 1.1 thorpej CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3230 1.1 thorpej
3231 1.1 thorpej /* Set the media. */
3232 1.152 dyoung if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
3233 1.152 dyoung goto out;
3234 1.1 thorpej
3235 1.1 thorpej /*
3236 1.1 thorpej * Set up the receive control register; we actually program
3237 1.1 thorpej * the register when we set the receive filter. Use multicast
3238 1.1 thorpej * address offset type 0.
3239 1.1 thorpej *
3240 1.11 thorpej * Only the i82544 has the ability to strip the incoming
3241 1.1 thorpej * CRC, so we don't enable that feature.
3242 1.1 thorpej */
3243 1.1 thorpej sc->sc_mchash_type = 0;
3244 1.120 msaitoh sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
3245 1.120 msaitoh | RCTL_MO(sc->sc_mchash_type);
3246 1.120 msaitoh
3247 1.120 msaitoh /* 82573 doesn't support jumbo frame */
3248 1.139 bouyer if (sc->sc_type != WM_T_82573 && sc->sc_type != WM_T_ICH8)
3249 1.120 msaitoh sc->sc_rctl |= RCTL_LPE;
3250 1.41 tls
3251 1.119 uebayasi if (MCLBYTES == 2048) {
3252 1.41 tls sc->sc_rctl |= RCTL_2k;
3253 1.41 tls } else {
3254 1.119 uebayasi if (sc->sc_type >= WM_T_82543) {
3255 1.41 tls switch(MCLBYTES) {
3256 1.41 tls case 4096:
3257 1.41 tls sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
3258 1.41 tls break;
3259 1.41 tls case 8192:
3260 1.41 tls sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
3261 1.41 tls break;
3262 1.41 tls case 16384:
3263 1.41 tls sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
3264 1.41 tls break;
3265 1.41 tls default:
3266 1.41 tls panic("wm_init: MCLBYTES %d unsupported",
3267 1.41 tls MCLBYTES);
3268 1.41 tls break;
3269 1.41 tls }
3270 1.41 tls } else panic("wm_init: i82542 requires MCLBYTES = 2048");
3271 1.41 tls }
3272 1.1 thorpej
3273 1.1 thorpej /* Set the receive filter. */
3274 1.1 thorpej wm_set_filter(sc);
3275 1.1 thorpej
3276 1.1 thorpej /* Start the one second link check clock. */
3277 1.1 thorpej callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
3278 1.1 thorpej
3279 1.1 thorpej /* ...all done! */
3280 1.96 perry ifp->if_flags |= IFF_RUNNING;
3281 1.1 thorpej ifp->if_flags &= ~IFF_OACTIVE;
3282 1.1 thorpej
3283 1.1 thorpej out:
3284 1.1 thorpej if (error)
3285 1.84 thorpej log(LOG_ERR, "%s: interface not running\n",
3286 1.84 thorpej sc->sc_dev.dv_xname);
3287 1.1 thorpej return (error);
3288 1.1 thorpej }
3289 1.1 thorpej
3290 1.1 thorpej /*
3291 1.1 thorpej * wm_rxdrain:
3292 1.1 thorpej *
3293 1.1 thorpej * Drain the receive queue.
3294 1.1 thorpej */
3295 1.47 thorpej static void
3296 1.1 thorpej wm_rxdrain(struct wm_softc *sc)
3297 1.1 thorpej {
3298 1.1 thorpej struct wm_rxsoft *rxs;
3299 1.1 thorpej int i;
3300 1.1 thorpej
3301 1.1 thorpej for (i = 0; i < WM_NRXDESC; i++) {
3302 1.1 thorpej rxs = &sc->sc_rxsoft[i];
3303 1.1 thorpej if (rxs->rxs_mbuf != NULL) {
3304 1.1 thorpej bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3305 1.1 thorpej m_freem(rxs->rxs_mbuf);
3306 1.1 thorpej rxs->rxs_mbuf = NULL;
3307 1.1 thorpej }
3308 1.1 thorpej }
3309 1.1 thorpej }
3310 1.1 thorpej
3311 1.1 thorpej /*
3312 1.1 thorpej * wm_stop: [ifnet interface function]
3313 1.1 thorpej *
3314 1.1 thorpej * Stop transmission on the interface.
3315 1.1 thorpej */
3316 1.47 thorpej static void
3317 1.1 thorpej wm_stop(struct ifnet *ifp, int disable)
3318 1.1 thorpej {
3319 1.1 thorpej struct wm_softc *sc = ifp->if_softc;
3320 1.1 thorpej struct wm_txsoft *txs;
3321 1.1 thorpej int i;
3322 1.1 thorpej
3323 1.1 thorpej /* Stop the one second clock. */
3324 1.1 thorpej callout_stop(&sc->sc_tick_ch);
3325 1.1 thorpej
3326 1.78 thorpej /* Stop the 82547 Tx FIFO stall check timer. */
3327 1.78 thorpej if (sc->sc_type == WM_T_82547)
3328 1.78 thorpej callout_stop(&sc->sc_txfifo_ch);
3329 1.78 thorpej
3330 1.1 thorpej if (sc->sc_flags & WM_F_HAS_MII) {
3331 1.1 thorpej /* Down the MII. */
3332 1.1 thorpej mii_down(&sc->sc_mii);
3333 1.1 thorpej }
3334 1.1 thorpej
3335 1.1 thorpej /* Stop the transmit and receive processes. */
3336 1.1 thorpej CSR_WRITE(sc, WMREG_TCTL, 0);
3337 1.1 thorpej CSR_WRITE(sc, WMREG_RCTL, 0);
3338 1.1 thorpej
3339 1.102 scw /*
3340 1.102 scw * Clear the interrupt mask to ensure the device cannot assert its
3341 1.102 scw * interrupt line.
3342 1.102 scw * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
3343 1.102 scw * any currently pending or shared interrupt.
3344 1.102 scw */
3345 1.102 scw CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
3346 1.102 scw sc->sc_icr = 0;
3347 1.102 scw
3348 1.1 thorpej /* Release any queued transmit buffers. */
3349 1.74 tron for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
3350 1.1 thorpej txs = &sc->sc_txsoft[i];
3351 1.1 thorpej if (txs->txs_mbuf != NULL) {
3352 1.1 thorpej bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3353 1.1 thorpej m_freem(txs->txs_mbuf);
3354 1.1 thorpej txs->txs_mbuf = NULL;
3355 1.1 thorpej }
3356 1.1 thorpej }
3357 1.1 thorpej
3358 1.1 thorpej if (disable)
3359 1.1 thorpej wm_rxdrain(sc);
3360 1.1 thorpej
3361 1.1 thorpej /* Mark the interface as down and cancel the watchdog timer. */
3362 1.1 thorpej ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3363 1.1 thorpej ifp->if_timer = 0;
3364 1.1 thorpej }
3365 1.1 thorpej
3366 1.145 msaitoh void
3367 1.146 msaitoh wm_get_auto_rd_done(struct wm_softc *sc)
3368 1.145 msaitoh {
3369 1.145 msaitoh int i;
3370 1.145 msaitoh
3371 1.145 msaitoh /* wait for eeprom to reload */
3372 1.145 msaitoh switch (sc->sc_type) {
3373 1.145 msaitoh case WM_T_82571:
3374 1.145 msaitoh case WM_T_82572:
3375 1.145 msaitoh case WM_T_82573:
3376 1.145 msaitoh case WM_T_80003:
3377 1.145 msaitoh case WM_T_ICH8:
3378 1.145 msaitoh case WM_T_ICH9:
3379 1.145 msaitoh for (i = 10; i > 0; i--) {
3380 1.145 msaitoh if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD)
3381 1.145 msaitoh break;
3382 1.145 msaitoh delay(1000);
3383 1.145 msaitoh }
3384 1.145 msaitoh if (i == 0) {
3385 1.145 msaitoh log(LOG_ERR, "%s: auto read from eeprom failed to "
3386 1.145 msaitoh "complete\n", sc->sc_dev.dv_xname);
3387 1.145 msaitoh }
3388 1.145 msaitoh break;
3389 1.145 msaitoh default:
3390 1.145 msaitoh delay(5000);
3391 1.145 msaitoh break;
3392 1.145 msaitoh }
3393 1.145 msaitoh
3394 1.145 msaitoh /* Phy configuration starts after EECD_AUTO_RD is set */
3395 1.145 msaitoh if (sc->sc_type == WM_T_82573)
3396 1.145 msaitoh delay(25000);
3397 1.145 msaitoh }
3398 1.145 msaitoh
3399 1.1 thorpej /*
3400 1.45 thorpej * wm_acquire_eeprom:
3401 1.45 thorpej *
3402 1.45 thorpej * Perform the EEPROM handshake required on some chips.
3403 1.45 thorpej */
3404 1.45 thorpej static int
3405 1.45 thorpej wm_acquire_eeprom(struct wm_softc *sc)
3406 1.45 thorpej {
3407 1.45 thorpej uint32_t reg;
3408 1.45 thorpej int x;
3409 1.127 bouyer int ret = 0;
3410 1.45 thorpej
3411 1.117 msaitoh /* always success */
3412 1.117 msaitoh if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
3413 1.117 msaitoh return 0;
3414 1.117 msaitoh
3415 1.139 bouyer if (sc->sc_flags & WM_F_SWFWHW_SYNC) {
3416 1.139 bouyer ret = wm_get_swfwhw_semaphore(sc);
3417 1.139 bouyer } else if (sc->sc_flags & WM_F_SWFW_SYNC) {
3418 1.127 bouyer /* this will also do wm_get_swsm_semaphore() if needed */
3419 1.127 bouyer ret = wm_get_swfw_semaphore(sc, SWFW_EEP_SM);
3420 1.127 bouyer } else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
3421 1.127 bouyer ret = wm_get_swsm_semaphore(sc);
3422 1.127 bouyer }
3423 1.127 bouyer
3424 1.127 bouyer if (ret)
3425 1.117 msaitoh return 1;
3426 1.117 msaitoh
3427 1.45 thorpej if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
3428 1.45 thorpej reg = CSR_READ(sc, WMREG_EECD);
3429 1.45 thorpej
3430 1.45 thorpej /* Request EEPROM access. */
3431 1.45 thorpej reg |= EECD_EE_REQ;
3432 1.45 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3433 1.45 thorpej
3434 1.45 thorpej /* ..and wait for it to be granted. */
3435 1.117 msaitoh for (x = 0; x < 1000; x++) {
3436 1.45 thorpej reg = CSR_READ(sc, WMREG_EECD);
3437 1.45 thorpej if (reg & EECD_EE_GNT)
3438 1.45 thorpej break;
3439 1.45 thorpej delay(5);
3440 1.45 thorpej }
3441 1.45 thorpej if ((reg & EECD_EE_GNT) == 0) {
3442 1.51 thorpej aprint_error("%s: could not acquire EEPROM GNT\n",
3443 1.45 thorpej sc->sc_dev.dv_xname);
3444 1.45 thorpej reg &= ~EECD_EE_REQ;
3445 1.45 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3446 1.139 bouyer if (sc->sc_flags & WM_F_SWFWHW_SYNC)
3447 1.139 bouyer wm_put_swfwhw_semaphore(sc);
3448 1.127 bouyer if (sc->sc_flags & WM_F_SWFW_SYNC)
3449 1.127 bouyer wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
3450 1.127 bouyer else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
3451 1.127 bouyer wm_put_swsm_semaphore(sc);
3452 1.45 thorpej return (1);
3453 1.45 thorpej }
3454 1.45 thorpej }
3455 1.45 thorpej
3456 1.45 thorpej return (0);
3457 1.45 thorpej }
3458 1.45 thorpej
3459 1.45 thorpej /*
3460 1.45 thorpej * wm_release_eeprom:
3461 1.45 thorpej *
3462 1.45 thorpej * Release the EEPROM mutex.
3463 1.45 thorpej */
3464 1.45 thorpej static void
3465 1.45 thorpej wm_release_eeprom(struct wm_softc *sc)
3466 1.45 thorpej {
3467 1.45 thorpej uint32_t reg;
3468 1.45 thorpej
3469 1.117 msaitoh /* always success */
3470 1.117 msaitoh if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
3471 1.117 msaitoh return;
3472 1.117 msaitoh
3473 1.45 thorpej if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
3474 1.45 thorpej reg = CSR_READ(sc, WMREG_EECD);
3475 1.45 thorpej reg &= ~EECD_EE_REQ;
3476 1.45 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3477 1.45 thorpej }
3478 1.117 msaitoh
3479 1.139 bouyer if (sc->sc_flags & WM_F_SWFWHW_SYNC)
3480 1.139 bouyer wm_put_swfwhw_semaphore(sc);
3481 1.127 bouyer if (sc->sc_flags & WM_F_SWFW_SYNC)
3482 1.127 bouyer wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
3483 1.127 bouyer else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
3484 1.127 bouyer wm_put_swsm_semaphore(sc);
3485 1.45 thorpej }
3486 1.45 thorpej
3487 1.45 thorpej /*
3488 1.46 thorpej * wm_eeprom_sendbits:
3489 1.46 thorpej *
3490 1.46 thorpej * Send a series of bits to the EEPROM.
3491 1.46 thorpej */
3492 1.46 thorpej static void
3493 1.46 thorpej wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
3494 1.46 thorpej {
3495 1.46 thorpej uint32_t reg;
3496 1.46 thorpej int x;
3497 1.46 thorpej
3498 1.46 thorpej reg = CSR_READ(sc, WMREG_EECD);
3499 1.46 thorpej
3500 1.46 thorpej for (x = nbits; x > 0; x--) {
3501 1.46 thorpej if (bits & (1U << (x - 1)))
3502 1.46 thorpej reg |= EECD_DI;
3503 1.46 thorpej else
3504 1.46 thorpej reg &= ~EECD_DI;
3505 1.46 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3506 1.46 thorpej delay(2);
3507 1.46 thorpej CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3508 1.46 thorpej delay(2);
3509 1.46 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3510 1.46 thorpej delay(2);
3511 1.46 thorpej }
3512 1.46 thorpej }
3513 1.46 thorpej
3514 1.46 thorpej /*
3515 1.48 thorpej * wm_eeprom_recvbits:
3516 1.48 thorpej *
3517 1.48 thorpej * Receive a series of bits from the EEPROM.
3518 1.48 thorpej */
3519 1.48 thorpej static void
3520 1.48 thorpej wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
3521 1.48 thorpej {
3522 1.48 thorpej uint32_t reg, val;
3523 1.48 thorpej int x;
3524 1.48 thorpej
3525 1.48 thorpej reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
3526 1.48 thorpej
3527 1.48 thorpej val = 0;
3528 1.48 thorpej for (x = nbits; x > 0; x--) {
3529 1.48 thorpej CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3530 1.48 thorpej delay(2);
3531 1.48 thorpej if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
3532 1.48 thorpej val |= (1U << (x - 1));
3533 1.48 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3534 1.48 thorpej delay(2);
3535 1.48 thorpej }
3536 1.48 thorpej *valp = val;
3537 1.48 thorpej }
3538 1.48 thorpej
3539 1.48 thorpej /*
3540 1.50 thorpej * wm_read_eeprom_uwire:
3541 1.50 thorpej *
3542 1.50 thorpej * Read a word from the EEPROM using the MicroWire protocol.
3543 1.50 thorpej */
3544 1.51 thorpej static int
3545 1.51 thorpej wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3546 1.50 thorpej {
3547 1.50 thorpej uint32_t reg, val;
3548 1.51 thorpej int i;
3549 1.51 thorpej
3550 1.51 thorpej for (i = 0; i < wordcnt; i++) {
3551 1.51 thorpej /* Clear SK and DI. */
3552 1.51 thorpej reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
3553 1.51 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3554 1.50 thorpej
3555 1.51 thorpej /* Set CHIP SELECT. */
3556 1.51 thorpej reg |= EECD_CS;
3557 1.51 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3558 1.51 thorpej delay(2);
3559 1.51 thorpej
3560 1.51 thorpej /* Shift in the READ command. */
3561 1.51 thorpej wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
3562 1.51 thorpej
3563 1.51 thorpej /* Shift in address. */
3564 1.51 thorpej wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
3565 1.51 thorpej
3566 1.51 thorpej /* Shift out the data. */
3567 1.51 thorpej wm_eeprom_recvbits(sc, &val, 16);
3568 1.51 thorpej data[i] = val & 0xffff;
3569 1.51 thorpej
3570 1.51 thorpej /* Clear CHIP SELECT. */
3571 1.51 thorpej reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
3572 1.51 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3573 1.51 thorpej delay(2);
3574 1.51 thorpej }
3575 1.51 thorpej
3576 1.51 thorpej return (0);
3577 1.50 thorpej }
3578 1.50 thorpej
3579 1.50 thorpej /*
3580 1.57 thorpej * wm_spi_eeprom_ready:
3581 1.57 thorpej *
3582 1.57 thorpej * Wait for a SPI EEPROM to be ready for commands.
3583 1.57 thorpej */
3584 1.57 thorpej static int
3585 1.57 thorpej wm_spi_eeprom_ready(struct wm_softc *sc)
3586 1.57 thorpej {
3587 1.57 thorpej uint32_t val;
3588 1.57 thorpej int usec;
3589 1.57 thorpej
3590 1.57 thorpej for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
3591 1.57 thorpej wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
3592 1.57 thorpej wm_eeprom_recvbits(sc, &val, 8);
3593 1.57 thorpej if ((val & SPI_SR_RDY) == 0)
3594 1.57 thorpej break;
3595 1.57 thorpej }
3596 1.57 thorpej if (usec >= SPI_MAX_RETRIES) {
3597 1.57 thorpej aprint_error("%s: EEPROM failed to become ready\n",
3598 1.57 thorpej sc->sc_dev.dv_xname);
3599 1.57 thorpej return (1);
3600 1.57 thorpej }
3601 1.57 thorpej return (0);
3602 1.57 thorpej }
3603 1.57 thorpej
3604 1.57 thorpej /*
3605 1.57 thorpej * wm_read_eeprom_spi:
3606 1.57 thorpej *
3607 1.57 thorpej * Read a work from the EEPROM using the SPI protocol.
3608 1.57 thorpej */
3609 1.57 thorpej static int
3610 1.57 thorpej wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3611 1.57 thorpej {
3612 1.57 thorpej uint32_t reg, val;
3613 1.57 thorpej int i;
3614 1.57 thorpej uint8_t opc;
3615 1.57 thorpej
3616 1.57 thorpej /* Clear SK and CS. */
3617 1.57 thorpej reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
3618 1.57 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3619 1.57 thorpej delay(2);
3620 1.57 thorpej
3621 1.57 thorpej if (wm_spi_eeprom_ready(sc))
3622 1.57 thorpej return (1);
3623 1.57 thorpej
3624 1.57 thorpej /* Toggle CS to flush commands. */
3625 1.57 thorpej CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
3626 1.57 thorpej delay(2);
3627 1.57 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3628 1.57 thorpej delay(2);
3629 1.57 thorpej
3630 1.57 thorpej opc = SPI_OPC_READ;
3631 1.57 thorpej if (sc->sc_ee_addrbits == 8 && word >= 128)
3632 1.57 thorpej opc |= SPI_OPC_A8;
3633 1.57 thorpej
3634 1.57 thorpej wm_eeprom_sendbits(sc, opc, 8);
3635 1.57 thorpej wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
3636 1.57 thorpej
3637 1.57 thorpej for (i = 0; i < wordcnt; i++) {
3638 1.57 thorpej wm_eeprom_recvbits(sc, &val, 16);
3639 1.57 thorpej data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
3640 1.57 thorpej }
3641 1.57 thorpej
3642 1.57 thorpej /* Raise CS and clear SK. */
3643 1.57 thorpej reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3644 1.57 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3645 1.57 thorpej delay(2);
3646 1.57 thorpej
3647 1.57 thorpej return (0);
3648 1.57 thorpej }
3649 1.57 thorpej
3650 1.112 gavan #define EEPROM_CHECKSUM 0xBABA
3651 1.112 gavan #define EEPROM_SIZE 0x0040
3652 1.112 gavan
3653 1.112 gavan /*
3654 1.112 gavan * wm_validate_eeprom_checksum
3655 1.112 gavan *
3656 1.112 gavan * The checksum is defined as the sum of the first 64 (16 bit) words.
3657 1.112 gavan */
3658 1.112 gavan static int
3659 1.112 gavan wm_validate_eeprom_checksum(struct wm_softc *sc)
3660 1.112 gavan {
3661 1.112 gavan uint16_t checksum;
3662 1.112 gavan uint16_t eeprom_data;
3663 1.112 gavan int i;
3664 1.112 gavan
3665 1.112 gavan checksum = 0;
3666 1.112 gavan
3667 1.112 gavan for (i = 0; i < EEPROM_SIZE; i++) {
3668 1.119 uebayasi if (wm_read_eeprom(sc, i, 1, &eeprom_data))
3669 1.112 gavan return 1;
3670 1.112 gavan checksum += eeprom_data;
3671 1.112 gavan }
3672 1.112 gavan
3673 1.112 gavan if (checksum != (uint16_t) EEPROM_CHECKSUM)
3674 1.112 gavan return 1;
3675 1.112 gavan
3676 1.112 gavan return 0;
3677 1.112 gavan }
3678 1.112 gavan
3679 1.57 thorpej /*
3680 1.1 thorpej * wm_read_eeprom:
3681 1.1 thorpej *
3682 1.1 thorpej * Read data from the serial EEPROM.
3683 1.1 thorpej */
3684 1.51 thorpej static int
3685 1.1 thorpej wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3686 1.1 thorpej {
3687 1.51 thorpej int rv;
3688 1.1 thorpej
3689 1.113 gavan if (sc->sc_flags & WM_F_EEPROM_INVALID)
3690 1.113 gavan return 1;
3691 1.112 gavan
3692 1.51 thorpej if (wm_acquire_eeprom(sc))
3693 1.113 gavan return 1;
3694 1.17 thorpej
3695 1.144 msaitoh if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9))
3696 1.139 bouyer rv = wm_read_eeprom_ich8(sc, word, wordcnt, data);
3697 1.139 bouyer else if (sc->sc_flags & WM_F_EEPROM_EERDEEWR)
3698 1.117 msaitoh rv = wm_read_eeprom_eerd(sc, word, wordcnt, data);
3699 1.117 msaitoh else if (sc->sc_flags & WM_F_EEPROM_SPI)
3700 1.57 thorpej rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3701 1.57 thorpej else
3702 1.57 thorpej rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3703 1.17 thorpej
3704 1.51 thorpej wm_release_eeprom(sc);
3705 1.113 gavan return rv;
3706 1.1 thorpej }
3707 1.1 thorpej
3708 1.117 msaitoh static int
3709 1.117 msaitoh wm_read_eeprom_eerd(struct wm_softc *sc, int offset, int wordcnt,
3710 1.117 msaitoh uint16_t *data)
3711 1.117 msaitoh {
3712 1.117 msaitoh int i, eerd = 0;
3713 1.117 msaitoh int error = 0;
3714 1.117 msaitoh
3715 1.117 msaitoh for (i = 0; i < wordcnt; i++) {
3716 1.117 msaitoh eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
3717 1.117 msaitoh
3718 1.117 msaitoh CSR_WRITE(sc, WMREG_EERD, eerd);
3719 1.117 msaitoh error = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
3720 1.117 msaitoh if (error != 0)
3721 1.117 msaitoh break;
3722 1.117 msaitoh
3723 1.117 msaitoh data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
3724 1.117 msaitoh }
3725 1.119 uebayasi
3726 1.117 msaitoh return error;
3727 1.117 msaitoh }
3728 1.117 msaitoh
3729 1.117 msaitoh static int
3730 1.117 msaitoh wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
3731 1.117 msaitoh {
3732 1.117 msaitoh uint32_t attempts = 100000;
3733 1.117 msaitoh uint32_t i, reg = 0;
3734 1.117 msaitoh int32_t done = -1;
3735 1.117 msaitoh
3736 1.119 uebayasi for (i = 0; i < attempts; i++) {
3737 1.117 msaitoh reg = CSR_READ(sc, rw);
3738 1.117 msaitoh
3739 1.119 uebayasi if (reg & EERD_DONE) {
3740 1.117 msaitoh done = 0;
3741 1.117 msaitoh break;
3742 1.117 msaitoh }
3743 1.117 msaitoh delay(5);
3744 1.117 msaitoh }
3745 1.117 msaitoh
3746 1.117 msaitoh return done;
3747 1.117 msaitoh }
3748 1.117 msaitoh
3749 1.1 thorpej /*
3750 1.1 thorpej * wm_add_rxbuf:
3751 1.1 thorpej *
3752 1.1 thorpej * Add a receive buffer to the indiciated descriptor.
3753 1.1 thorpej */
3754 1.47 thorpej static int
3755 1.1 thorpej wm_add_rxbuf(struct wm_softc *sc, int idx)
3756 1.1 thorpej {
3757 1.1 thorpej struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3758 1.1 thorpej struct mbuf *m;
3759 1.1 thorpej int error;
3760 1.1 thorpej
3761 1.1 thorpej MGETHDR(m, M_DONTWAIT, MT_DATA);
3762 1.1 thorpej if (m == NULL)
3763 1.1 thorpej return (ENOBUFS);
3764 1.1 thorpej
3765 1.1 thorpej MCLGET(m, M_DONTWAIT);
3766 1.1 thorpej if ((m->m_flags & M_EXT) == 0) {
3767 1.1 thorpej m_freem(m);
3768 1.1 thorpej return (ENOBUFS);
3769 1.1 thorpej }
3770 1.1 thorpej
3771 1.1 thorpej if (rxs->rxs_mbuf != NULL)
3772 1.1 thorpej bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3773 1.1 thorpej
3774 1.1 thorpej rxs->rxs_mbuf = m;
3775 1.1 thorpej
3776 1.32 thorpej m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3777 1.32 thorpej error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3778 1.1 thorpej BUS_DMA_READ|BUS_DMA_NOWAIT);
3779 1.1 thorpej if (error) {
3780 1.84 thorpej /* XXX XXX XXX */
3781 1.1 thorpej printf("%s: unable to load rx DMA map %d, error = %d\n",
3782 1.1 thorpej sc->sc_dev.dv_xname, idx, error);
3783 1.84 thorpej panic("wm_add_rxbuf");
3784 1.1 thorpej }
3785 1.1 thorpej
3786 1.1 thorpej bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3787 1.1 thorpej rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3788 1.1 thorpej
3789 1.1 thorpej WM_INIT_RXDESC(sc, idx);
3790 1.1 thorpej
3791 1.1 thorpej return (0);
3792 1.1 thorpej }
3793 1.1 thorpej
3794 1.1 thorpej /*
3795 1.1 thorpej * wm_set_ral:
3796 1.1 thorpej *
3797 1.1 thorpej * Set an entery in the receive address list.
3798 1.1 thorpej */
3799 1.1 thorpej static void
3800 1.1 thorpej wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3801 1.1 thorpej {
3802 1.1 thorpej uint32_t ral_lo, ral_hi;
3803 1.1 thorpej
3804 1.1 thorpej if (enaddr != NULL) {
3805 1.1 thorpej ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3806 1.1 thorpej (enaddr[3] << 24);
3807 1.1 thorpej ral_hi = enaddr[4] | (enaddr[5] << 8);
3808 1.1 thorpej ral_hi |= RAL_AV;
3809 1.1 thorpej } else {
3810 1.1 thorpej ral_lo = 0;
3811 1.1 thorpej ral_hi = 0;
3812 1.1 thorpej }
3813 1.1 thorpej
3814 1.11 thorpej if (sc->sc_type >= WM_T_82544) {
3815 1.1 thorpej CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3816 1.1 thorpej ral_lo);
3817 1.1 thorpej CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3818 1.1 thorpej ral_hi);
3819 1.1 thorpej } else {
3820 1.1 thorpej CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3821 1.1 thorpej CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3822 1.1 thorpej }
3823 1.1 thorpej }
3824 1.1 thorpej
3825 1.1 thorpej /*
3826 1.1 thorpej * wm_mchash:
3827 1.1 thorpej *
3828 1.1 thorpej * Compute the hash of the multicast address for the 4096-bit
3829 1.1 thorpej * multicast filter.
3830 1.1 thorpej */
3831 1.1 thorpej static uint32_t
3832 1.1 thorpej wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3833 1.1 thorpej {
3834 1.1 thorpej static const int lo_shift[4] = { 4, 3, 2, 0 };
3835 1.1 thorpej static const int hi_shift[4] = { 4, 5, 6, 8 };
3836 1.139 bouyer static const int ich8_lo_shift[4] = { 6, 5, 4, 2 };
3837 1.139 bouyer static const int ich8_hi_shift[4] = { 2, 3, 4, 6 };
3838 1.1 thorpej uint32_t hash;
3839 1.1 thorpej
3840 1.139 bouyer if (sc->sc_type == WM_T_ICH8) {
3841 1.139 bouyer hash = (enaddr[4] >> ich8_lo_shift[sc->sc_mchash_type]) |
3842 1.139 bouyer (((uint16_t) enaddr[5]) << ich8_hi_shift[sc->sc_mchash_type]);
3843 1.139 bouyer return (hash & 0x3ff);
3844 1.139 bouyer }
3845 1.1 thorpej hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3846 1.1 thorpej (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3847 1.1 thorpej
3848 1.1 thorpej return (hash & 0xfff);
3849 1.1 thorpej }
3850 1.1 thorpej
3851 1.1 thorpej /*
3852 1.1 thorpej * wm_set_filter:
3853 1.1 thorpej *
3854 1.1 thorpej * Set up the receive filter.
3855 1.1 thorpej */
3856 1.47 thorpej static void
3857 1.1 thorpej wm_set_filter(struct wm_softc *sc)
3858 1.1 thorpej {
3859 1.1 thorpej struct ethercom *ec = &sc->sc_ethercom;
3860 1.1 thorpej struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3861 1.1 thorpej struct ether_multi *enm;
3862 1.1 thorpej struct ether_multistep step;
3863 1.1 thorpej bus_addr_t mta_reg;
3864 1.1 thorpej uint32_t hash, reg, bit;
3865 1.139 bouyer int i, size;
3866 1.1 thorpej
3867 1.11 thorpej if (sc->sc_type >= WM_T_82544)
3868 1.1 thorpej mta_reg = WMREG_CORDOVA_MTA;
3869 1.1 thorpej else
3870 1.1 thorpej mta_reg = WMREG_MTA;
3871 1.1 thorpej
3872 1.1 thorpej sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3873 1.1 thorpej
3874 1.1 thorpej if (ifp->if_flags & IFF_BROADCAST)
3875 1.1 thorpej sc->sc_rctl |= RCTL_BAM;
3876 1.1 thorpej if (ifp->if_flags & IFF_PROMISC) {
3877 1.1 thorpej sc->sc_rctl |= RCTL_UPE;
3878 1.1 thorpej goto allmulti;
3879 1.1 thorpej }
3880 1.1 thorpej
3881 1.1 thorpej /*
3882 1.1 thorpej * Set the station address in the first RAL slot, and
3883 1.1 thorpej * clear the remaining slots.
3884 1.1 thorpej */
3885 1.139 bouyer if (sc->sc_type == WM_T_ICH8)
3886 1.139 bouyer size = WM_ICH8_RAL_TABSIZE;
3887 1.139 bouyer else
3888 1.139 bouyer size = WM_RAL_TABSIZE;
3889 1.143 dyoung wm_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
3890 1.139 bouyer for (i = 1; i < size; i++)
3891 1.1 thorpej wm_set_ral(sc, NULL, i);
3892 1.1 thorpej
3893 1.144 msaitoh if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9))
3894 1.139 bouyer size = WM_ICH8_MC_TABSIZE;
3895 1.139 bouyer else
3896 1.139 bouyer size = WM_MC_TABSIZE;
3897 1.1 thorpej /* Clear out the multicast table. */
3898 1.139 bouyer for (i = 0; i < size; i++)
3899 1.1 thorpej CSR_WRITE(sc, mta_reg + (i << 2), 0);
3900 1.1 thorpej
3901 1.1 thorpej ETHER_FIRST_MULTI(step, ec, enm);
3902 1.1 thorpej while (enm != NULL) {
3903 1.1 thorpej if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3904 1.1 thorpej /*
3905 1.1 thorpej * We must listen to a range of multicast addresses.
3906 1.1 thorpej * For now, just accept all multicasts, rather than
3907 1.1 thorpej * trying to set only those filter bits needed to match
3908 1.1 thorpej * the range. (At this time, the only use of address
3909 1.1 thorpej * ranges is for IP multicast routing, for which the
3910 1.1 thorpej * range is big enough to require all bits set.)
3911 1.1 thorpej */
3912 1.1 thorpej goto allmulti;
3913 1.1 thorpej }
3914 1.1 thorpej
3915 1.1 thorpej hash = wm_mchash(sc, enm->enm_addrlo);
3916 1.1 thorpej
3917 1.139 bouyer reg = (hash >> 5);
3918 1.144 msaitoh if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9))
3919 1.139 bouyer reg &= 0x1f;
3920 1.139 bouyer else
3921 1.139 bouyer reg &= 0x7f;
3922 1.1 thorpej bit = hash & 0x1f;
3923 1.1 thorpej
3924 1.1 thorpej hash = CSR_READ(sc, mta_reg + (reg << 2));
3925 1.1 thorpej hash |= 1U << bit;
3926 1.1 thorpej
3927 1.1 thorpej /* XXX Hardware bug?? */
3928 1.11 thorpej if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3929 1.1 thorpej bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3930 1.1 thorpej CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3931 1.1 thorpej CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3932 1.1 thorpej } else
3933 1.1 thorpej CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3934 1.1 thorpej
3935 1.1 thorpej ETHER_NEXT_MULTI(step, enm);
3936 1.1 thorpej }
3937 1.1 thorpej
3938 1.1 thorpej ifp->if_flags &= ~IFF_ALLMULTI;
3939 1.1 thorpej goto setit;
3940 1.1 thorpej
3941 1.1 thorpej allmulti:
3942 1.1 thorpej ifp->if_flags |= IFF_ALLMULTI;
3943 1.1 thorpej sc->sc_rctl |= RCTL_MPE;
3944 1.1 thorpej
3945 1.1 thorpej setit:
3946 1.1 thorpej CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3947 1.1 thorpej }
3948 1.1 thorpej
3949 1.1 thorpej /*
3950 1.1 thorpej * wm_tbi_mediainit:
3951 1.1 thorpej *
3952 1.1 thorpej * Initialize media for use on 1000BASE-X devices.
3953 1.1 thorpej */
3954 1.47 thorpej static void
3955 1.1 thorpej wm_tbi_mediainit(struct wm_softc *sc)
3956 1.1 thorpej {
3957 1.1 thorpej const char *sep = "";
3958 1.1 thorpej
3959 1.11 thorpej if (sc->sc_type < WM_T_82543)
3960 1.1 thorpej sc->sc_tipg = TIPG_WM_DFLT;
3961 1.1 thorpej else
3962 1.1 thorpej sc->sc_tipg = TIPG_LG_DFLT;
3963 1.1 thorpej
3964 1.26 fair ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3965 1.1 thorpej wm_tbi_mediastatus);
3966 1.1 thorpej
3967 1.1 thorpej /*
3968 1.1 thorpej * SWD Pins:
3969 1.1 thorpej *
3970 1.1 thorpej * 0 = Link LED (output)
3971 1.1 thorpej * 1 = Loss Of Signal (input)
3972 1.1 thorpej */
3973 1.1 thorpej sc->sc_ctrl |= CTRL_SWDPIO(0);
3974 1.1 thorpej sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3975 1.1 thorpej
3976 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3977 1.1 thorpej
3978 1.27 christos #define ADD(ss, mm, dd) \
3979 1.1 thorpej do { \
3980 1.84 thorpej aprint_normal("%s%s", sep, ss); \
3981 1.27 christos ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
3982 1.1 thorpej sep = ", "; \
3983 1.1 thorpej } while (/*CONSTCOND*/0)
3984 1.1 thorpej
3985 1.84 thorpej aprint_normal("%s: ", sc->sc_dev.dv_xname);
3986 1.1 thorpej ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3987 1.1 thorpej ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3988 1.1 thorpej ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3989 1.84 thorpej aprint_normal("\n");
3990 1.1 thorpej
3991 1.1 thorpej #undef ADD
3992 1.1 thorpej
3993 1.1 thorpej ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3994 1.1 thorpej }
3995 1.1 thorpej
3996 1.1 thorpej /*
3997 1.1 thorpej * wm_tbi_mediastatus: [ifmedia interface function]
3998 1.1 thorpej *
3999 1.1 thorpej * Get the current interface media status on a 1000BASE-X device.
4000 1.1 thorpej */
4001 1.47 thorpej static void
4002 1.1 thorpej wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
4003 1.1 thorpej {
4004 1.1 thorpej struct wm_softc *sc = ifp->if_softc;
4005 1.71 thorpej uint32_t ctrl;
4006 1.1 thorpej
4007 1.1 thorpej ifmr->ifm_status = IFM_AVALID;
4008 1.1 thorpej ifmr->ifm_active = IFM_ETHER;
4009 1.1 thorpej
4010 1.1 thorpej if (sc->sc_tbi_linkup == 0) {
4011 1.1 thorpej ifmr->ifm_active |= IFM_NONE;
4012 1.1 thorpej return;
4013 1.1 thorpej }
4014 1.1 thorpej
4015 1.1 thorpej ifmr->ifm_status |= IFM_ACTIVE;
4016 1.1 thorpej ifmr->ifm_active |= IFM_1000_SX;
4017 1.1 thorpej if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
4018 1.1 thorpej ifmr->ifm_active |= IFM_FDX;
4019 1.71 thorpej ctrl = CSR_READ(sc, WMREG_CTRL);
4020 1.71 thorpej if (ctrl & CTRL_RFCE)
4021 1.71 thorpej ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
4022 1.71 thorpej if (ctrl & CTRL_TFCE)
4023 1.71 thorpej ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
4024 1.1 thorpej }
4025 1.1 thorpej
4026 1.1 thorpej /*
4027 1.1 thorpej * wm_tbi_mediachange: [ifmedia interface function]
4028 1.1 thorpej *
4029 1.1 thorpej * Set hardware to newly-selected media on a 1000BASE-X device.
4030 1.1 thorpej */
4031 1.47 thorpej static int
4032 1.1 thorpej wm_tbi_mediachange(struct ifnet *ifp)
4033 1.1 thorpej {
4034 1.1 thorpej struct wm_softc *sc = ifp->if_softc;
4035 1.1 thorpej struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
4036 1.1 thorpej uint32_t status;
4037 1.1 thorpej int i;
4038 1.1 thorpej
4039 1.1 thorpej sc->sc_txcw = ife->ifm_data;
4040 1.134 msaitoh DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x on entry\n",
4041 1.134 msaitoh sc->sc_dev.dv_xname,sc->sc_txcw));
4042 1.71 thorpej if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
4043 1.71 thorpej (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
4044 1.71 thorpej sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
4045 1.134 msaitoh if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
4046 1.134 msaitoh sc->sc_txcw |= TXCW_ANE;
4047 1.134 msaitoh } else {
4048 1.134 msaitoh /*If autonegotiation is turned off, force link up and turn on full duplex*/
4049 1.134 msaitoh sc->sc_txcw &= ~TXCW_ANE;
4050 1.134 msaitoh sc->sc_ctrl |= CTRL_SLU | CTRL_FD;
4051 1.134 msaitoh CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4052 1.134 msaitoh delay(1000);
4053 1.134 msaitoh }
4054 1.1 thorpej
4055 1.134 msaitoh DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x after autoneg check\n",
4056 1.134 msaitoh sc->sc_dev.dv_xname,sc->sc_txcw));
4057 1.1 thorpej CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
4058 1.1 thorpej delay(10000);
4059 1.1 thorpej
4060 1.71 thorpej /* NOTE: CTRL will update TFCE and RFCE automatically. */
4061 1.71 thorpej
4062 1.1 thorpej sc->sc_tbi_anstate = 0;
4063 1.1 thorpej
4064 1.134 msaitoh i = CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1);
4065 1.134 msaitoh DPRINTF(WM_DEBUG_LINK,("%s: i = 0x%x\n", sc->sc_dev.dv_xname,i));
4066 1.134 msaitoh
4067 1.134 msaitoh /*
4068 1.134 msaitoh * On 82544 chips and later, the CTRL_SWDPIN(1) bit will be set if the
4069 1.134 msaitoh * optics detect a signal, 0 if they don't.
4070 1.134 msaitoh */
4071 1.134 msaitoh if (((i != 0) && (sc->sc_type >= WM_T_82544)) || (i == 0)) {
4072 1.1 thorpej /* Have signal; wait for the link to come up. */
4073 1.134 msaitoh
4074 1.134 msaitoh if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
4075 1.134 msaitoh /*
4076 1.134 msaitoh * Reset the link, and let autonegotiation do its thing
4077 1.134 msaitoh */
4078 1.134 msaitoh sc->sc_ctrl |= CTRL_LRST;
4079 1.134 msaitoh CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4080 1.134 msaitoh delay(1000);
4081 1.134 msaitoh sc->sc_ctrl &= ~CTRL_LRST;
4082 1.134 msaitoh CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4083 1.134 msaitoh delay(1000);
4084 1.134 msaitoh }
4085 1.134 msaitoh
4086 1.1 thorpej for (i = 0; i < 50; i++) {
4087 1.1 thorpej delay(10000);
4088 1.1 thorpej if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
4089 1.1 thorpej break;
4090 1.1 thorpej }
4091 1.1 thorpej
4092 1.134 msaitoh DPRINTF(WM_DEBUG_LINK,("%s: i = %d after waiting for link\n",
4093 1.134 msaitoh sc->sc_dev.dv_xname,i));
4094 1.134 msaitoh
4095 1.1 thorpej status = CSR_READ(sc, WMREG_STATUS);
4096 1.134 msaitoh DPRINTF(WM_DEBUG_LINK,
4097 1.134 msaitoh ("%s: status after final read = 0x%x, STATUS_LU = 0x%x\n",
4098 1.134 msaitoh sc->sc_dev.dv_xname,status, STATUS_LU));
4099 1.1 thorpej if (status & STATUS_LU) {
4100 1.1 thorpej /* Link is up. */
4101 1.1 thorpej DPRINTF(WM_DEBUG_LINK,
4102 1.1 thorpej ("%s: LINK: set media -> link up %s\n",
4103 1.1 thorpej sc->sc_dev.dv_xname,
4104 1.1 thorpej (status & STATUS_FD) ? "FDX" : "HDX"));
4105 1.1 thorpej sc->sc_tctl &= ~TCTL_COLD(0x3ff);
4106 1.71 thorpej sc->sc_fcrtl &= ~FCRTL_XONE;
4107 1.1 thorpej if (status & STATUS_FD)
4108 1.1 thorpej sc->sc_tctl |=
4109 1.1 thorpej TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
4110 1.1 thorpej else
4111 1.1 thorpej sc->sc_tctl |=
4112 1.1 thorpej TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
4113 1.71 thorpej if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
4114 1.71 thorpej sc->sc_fcrtl |= FCRTL_XONE;
4115 1.1 thorpej CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
4116 1.71 thorpej CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
4117 1.71 thorpej WMREG_OLD_FCRTL : WMREG_FCRTL,
4118 1.71 thorpej sc->sc_fcrtl);
4119 1.1 thorpej sc->sc_tbi_linkup = 1;
4120 1.1 thorpej } else {
4121 1.1 thorpej /* Link is down. */
4122 1.1 thorpej DPRINTF(WM_DEBUG_LINK,
4123 1.1 thorpej ("%s: LINK: set media -> link down\n",
4124 1.1 thorpej sc->sc_dev.dv_xname));
4125 1.1 thorpej sc->sc_tbi_linkup = 0;
4126 1.1 thorpej }
4127 1.1 thorpej } else {
4128 1.1 thorpej DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
4129 1.1 thorpej sc->sc_dev.dv_xname));
4130 1.1 thorpej sc->sc_tbi_linkup = 0;
4131 1.1 thorpej }
4132 1.1 thorpej
4133 1.1 thorpej wm_tbi_set_linkled(sc);
4134 1.1 thorpej
4135 1.1 thorpej return (0);
4136 1.1 thorpej }
4137 1.1 thorpej
4138 1.1 thorpej /*
4139 1.1 thorpej * wm_tbi_set_linkled:
4140 1.1 thorpej *
4141 1.1 thorpej * Update the link LED on 1000BASE-X devices.
4142 1.1 thorpej */
4143 1.47 thorpej static void
4144 1.1 thorpej wm_tbi_set_linkled(struct wm_softc *sc)
4145 1.1 thorpej {
4146 1.1 thorpej
4147 1.1 thorpej if (sc->sc_tbi_linkup)
4148 1.1 thorpej sc->sc_ctrl |= CTRL_SWDPIN(0);
4149 1.1 thorpej else
4150 1.1 thorpej sc->sc_ctrl &= ~CTRL_SWDPIN(0);
4151 1.1 thorpej
4152 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4153 1.1 thorpej }
4154 1.1 thorpej
4155 1.1 thorpej /*
4156 1.1 thorpej * wm_tbi_check_link:
4157 1.1 thorpej *
4158 1.1 thorpej * Check the link on 1000BASE-X devices.
4159 1.1 thorpej */
4160 1.47 thorpej static void
4161 1.1 thorpej wm_tbi_check_link(struct wm_softc *sc)
4162 1.1 thorpej {
4163 1.1 thorpej uint32_t rxcw, ctrl, status;
4164 1.1 thorpej
4165 1.1 thorpej if (sc->sc_tbi_anstate == 0)
4166 1.1 thorpej return;
4167 1.1 thorpej else if (sc->sc_tbi_anstate > 1) {
4168 1.1 thorpej DPRINTF(WM_DEBUG_LINK,
4169 1.1 thorpej ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
4170 1.1 thorpej sc->sc_tbi_anstate));
4171 1.1 thorpej sc->sc_tbi_anstate--;
4172 1.1 thorpej return;
4173 1.1 thorpej }
4174 1.1 thorpej
4175 1.1 thorpej sc->sc_tbi_anstate = 0;
4176 1.1 thorpej
4177 1.1 thorpej rxcw = CSR_READ(sc, WMREG_RXCW);
4178 1.1 thorpej ctrl = CSR_READ(sc, WMREG_CTRL);
4179 1.1 thorpej status = CSR_READ(sc, WMREG_STATUS);
4180 1.1 thorpej
4181 1.1 thorpej if ((status & STATUS_LU) == 0) {
4182 1.1 thorpej DPRINTF(WM_DEBUG_LINK,
4183 1.1 thorpej ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
4184 1.1 thorpej sc->sc_tbi_linkup = 0;
4185 1.1 thorpej } else {
4186 1.1 thorpej DPRINTF(WM_DEBUG_LINK,
4187 1.1 thorpej ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
4188 1.1 thorpej (status & STATUS_FD) ? "FDX" : "HDX"));
4189 1.1 thorpej sc->sc_tctl &= ~TCTL_COLD(0x3ff);
4190 1.71 thorpej sc->sc_fcrtl &= ~FCRTL_XONE;
4191 1.1 thorpej if (status & STATUS_FD)
4192 1.1 thorpej sc->sc_tctl |=
4193 1.1 thorpej TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
4194 1.1 thorpej else
4195 1.1 thorpej sc->sc_tctl |=
4196 1.1 thorpej TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
4197 1.71 thorpej if (ctrl & CTRL_TFCE)
4198 1.71 thorpej sc->sc_fcrtl |= FCRTL_XONE;
4199 1.1 thorpej CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
4200 1.71 thorpej CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
4201 1.71 thorpej WMREG_OLD_FCRTL : WMREG_FCRTL,
4202 1.71 thorpej sc->sc_fcrtl);
4203 1.1 thorpej sc->sc_tbi_linkup = 1;
4204 1.1 thorpej }
4205 1.1 thorpej
4206 1.1 thorpej wm_tbi_set_linkled(sc);
4207 1.1 thorpej }
4208 1.1 thorpej
4209 1.1 thorpej /*
4210 1.1 thorpej * wm_gmii_reset:
4211 1.1 thorpej *
4212 1.1 thorpej * Reset the PHY.
4213 1.1 thorpej */
4214 1.47 thorpej static void
4215 1.1 thorpej wm_gmii_reset(struct wm_softc *sc)
4216 1.1 thorpej {
4217 1.1 thorpej uint32_t reg;
4218 1.127 bouyer int func = 0; /* XXX gcc */
4219 1.1 thorpej
4220 1.144 msaitoh if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)) {
4221 1.139 bouyer if (wm_get_swfwhw_semaphore(sc))
4222 1.139 bouyer return;
4223 1.139 bouyer }
4224 1.139 bouyer if (sc->sc_type == WM_T_80003) {
4225 1.127 bouyer func = (CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1;
4226 1.127 bouyer if (wm_get_swfw_semaphore(sc,
4227 1.127 bouyer func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
4228 1.127 bouyer return;
4229 1.127 bouyer }
4230 1.11 thorpej if (sc->sc_type >= WM_T_82544) {
4231 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
4232 1.1 thorpej delay(20000);
4233 1.1 thorpej
4234 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4235 1.1 thorpej delay(20000);
4236 1.1 thorpej } else {
4237 1.148 simonb /*
4238 1.148 simonb * With 82543, we need to force speed and duplex on the MAC
4239 1.148 simonb * equal to what the PHY speed and duplex configuration is.
4240 1.148 simonb * In addition, we need to perform a hardware reset on the PHY
4241 1.148 simonb * to take it out of reset.
4242 1.148 simonb */
4243 1.148 simonb sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
4244 1.148 simonb CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4245 1.133 msaitoh
4246 1.1 thorpej /* The PHY reset pin is active-low. */
4247 1.1 thorpej reg = CSR_READ(sc, WMREG_CTRL_EXT);
4248 1.1 thorpej reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
4249 1.1 thorpej CTRL_EXT_SWDPIN(4));
4250 1.1 thorpej reg |= CTRL_EXT_SWDPIO(4);
4251 1.1 thorpej
4252 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
4253 1.1 thorpej delay(10);
4254 1.1 thorpej
4255 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
4256 1.133 msaitoh delay(10000);
4257 1.1 thorpej
4258 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
4259 1.1 thorpej delay(10);
4260 1.1 thorpej #if 0
4261 1.1 thorpej sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
4262 1.1 thorpej #endif
4263 1.1 thorpej }
4264 1.144 msaitoh if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9))
4265 1.139 bouyer wm_put_swfwhw_semaphore(sc);
4266 1.139 bouyer if (sc->sc_type == WM_T_80003)
4267 1.127 bouyer wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4268 1.1 thorpej }
4269 1.1 thorpej
4270 1.1 thorpej /*
4271 1.1 thorpej * wm_gmii_mediainit:
4272 1.1 thorpej *
4273 1.1 thorpej * Initialize media for use on 1000BASE-T devices.
4274 1.1 thorpej */
4275 1.47 thorpej static void
4276 1.1 thorpej wm_gmii_mediainit(struct wm_softc *sc)
4277 1.1 thorpej {
4278 1.1 thorpej struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4279 1.1 thorpej
4280 1.1 thorpej /* We have MII. */
4281 1.1 thorpej sc->sc_flags |= WM_F_HAS_MII;
4282 1.1 thorpej
4283 1.127 bouyer if (sc->sc_type >= WM_T_80003)
4284 1.127 bouyer sc->sc_tipg = TIPG_1000T_80003_DFLT;
4285 1.127 bouyer else
4286 1.127 bouyer sc->sc_tipg = TIPG_1000T_DFLT;
4287 1.1 thorpej
4288 1.1 thorpej /*
4289 1.1 thorpej * Let the chip set speed/duplex on its own based on
4290 1.1 thorpej * signals from the PHY.
4291 1.127 bouyer * XXXbouyer - I'm not sure this is right for the 80003,
4292 1.127 bouyer * the em driver only sets CTRL_SLU here - but it seems to work.
4293 1.1 thorpej */
4294 1.133 msaitoh sc->sc_ctrl |= CTRL_SLU;
4295 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4296 1.1 thorpej
4297 1.1 thorpej /* Initialize our media structures and probe the GMII. */
4298 1.1 thorpej sc->sc_mii.mii_ifp = ifp;
4299 1.1 thorpej
4300 1.127 bouyer if (sc->sc_type >= WM_T_80003) {
4301 1.127 bouyer sc->sc_mii.mii_readreg = wm_gmii_i80003_readreg;
4302 1.127 bouyer sc->sc_mii.mii_writereg = wm_gmii_i80003_writereg;
4303 1.127 bouyer } else if (sc->sc_type >= WM_T_82544) {
4304 1.11 thorpej sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
4305 1.11 thorpej sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
4306 1.1 thorpej } else {
4307 1.11 thorpej sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
4308 1.11 thorpej sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
4309 1.1 thorpej }
4310 1.1 thorpej sc->sc_mii.mii_statchg = wm_gmii_statchg;
4311 1.1 thorpej
4312 1.1 thorpej wm_gmii_reset(sc);
4313 1.1 thorpej
4314 1.152 dyoung sc->sc_ethercom.ec_mii = &sc->sc_mii;
4315 1.26 fair ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
4316 1.1 thorpej wm_gmii_mediastatus);
4317 1.1 thorpej
4318 1.1 thorpej mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
4319 1.71 thorpej MII_OFFSET_ANY, MIIF_DOPAUSE);
4320 1.1 thorpej if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
4321 1.1 thorpej ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
4322 1.1 thorpej ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
4323 1.1 thorpej } else
4324 1.1 thorpej ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
4325 1.1 thorpej }
4326 1.1 thorpej
4327 1.1 thorpej /*
4328 1.1 thorpej * wm_gmii_mediastatus: [ifmedia interface function]
4329 1.1 thorpej *
4330 1.1 thorpej * Get the current interface media status on a 1000BASE-T device.
4331 1.1 thorpej */
4332 1.47 thorpej static void
4333 1.1 thorpej wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
4334 1.1 thorpej {
4335 1.1 thorpej struct wm_softc *sc = ifp->if_softc;
4336 1.1 thorpej
4337 1.152 dyoung ether_mediastatus(ifp, ifmr);
4338 1.152 dyoung ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
4339 1.71 thorpej sc->sc_flowflags;
4340 1.1 thorpej }
4341 1.1 thorpej
4342 1.1 thorpej /*
4343 1.1 thorpej * wm_gmii_mediachange: [ifmedia interface function]
4344 1.1 thorpej *
4345 1.1 thorpej * Set hardware to newly-selected media on a 1000BASE-T device.
4346 1.1 thorpej */
4347 1.47 thorpej static int
4348 1.1 thorpej wm_gmii_mediachange(struct ifnet *ifp)
4349 1.1 thorpej {
4350 1.1 thorpej struct wm_softc *sc = ifp->if_softc;
4351 1.127 bouyer struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
4352 1.152 dyoung int rc;
4353 1.1 thorpej
4354 1.152 dyoung if ((ifp->if_flags & IFF_UP) == 0)
4355 1.152 dyoung return 0;
4356 1.152 dyoung
4357 1.152 dyoung sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
4358 1.152 dyoung sc->sc_ctrl |= CTRL_SLU;
4359 1.152 dyoung if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
4360 1.152 dyoung || (sc->sc_type > WM_T_82543)) {
4361 1.152 dyoung sc->sc_ctrl &= ~(CTRL_FRCSPD | CTRL_FRCFDX);
4362 1.152 dyoung } else {
4363 1.152 dyoung sc->sc_ctrl &= ~CTRL_ASDE;
4364 1.152 dyoung sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
4365 1.152 dyoung if (ife->ifm_media & IFM_FDX)
4366 1.152 dyoung sc->sc_ctrl |= CTRL_FD;
4367 1.152 dyoung switch(IFM_SUBTYPE(ife->ifm_media)) {
4368 1.152 dyoung case IFM_10_T:
4369 1.152 dyoung sc->sc_ctrl |= CTRL_SPEED_10;
4370 1.152 dyoung break;
4371 1.152 dyoung case IFM_100_TX:
4372 1.152 dyoung sc->sc_ctrl |= CTRL_SPEED_100;
4373 1.152 dyoung break;
4374 1.152 dyoung case IFM_1000_T:
4375 1.152 dyoung sc->sc_ctrl |= CTRL_SPEED_1000;
4376 1.152 dyoung break;
4377 1.152 dyoung default:
4378 1.152 dyoung panic("wm_gmii_mediachange: bad media 0x%x",
4379 1.152 dyoung ife->ifm_media);
4380 1.127 bouyer }
4381 1.127 bouyer }
4382 1.152 dyoung CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4383 1.152 dyoung if (sc->sc_type <= WM_T_82543)
4384 1.152 dyoung wm_gmii_reset(sc);
4385 1.152 dyoung
4386 1.152 dyoung if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
4387 1.152 dyoung return 0;
4388 1.152 dyoung return rc;
4389 1.1 thorpej }
4390 1.1 thorpej
4391 1.1 thorpej #define MDI_IO CTRL_SWDPIN(2)
4392 1.1 thorpej #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
4393 1.1 thorpej #define MDI_CLK CTRL_SWDPIN(3)
4394 1.1 thorpej
4395 1.1 thorpej static void
4396 1.11 thorpej i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
4397 1.1 thorpej {
4398 1.1 thorpej uint32_t i, v;
4399 1.1 thorpej
4400 1.1 thorpej v = CSR_READ(sc, WMREG_CTRL);
4401 1.1 thorpej v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
4402 1.1 thorpej v |= MDI_DIR | CTRL_SWDPIO(3);
4403 1.1 thorpej
4404 1.1 thorpej for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
4405 1.1 thorpej if (data & i)
4406 1.1 thorpej v |= MDI_IO;
4407 1.1 thorpej else
4408 1.1 thorpej v &= ~MDI_IO;
4409 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, v);
4410 1.1 thorpej delay(10);
4411 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
4412 1.1 thorpej delay(10);
4413 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, v);
4414 1.1 thorpej delay(10);
4415 1.1 thorpej }
4416 1.1 thorpej }
4417 1.1 thorpej
4418 1.1 thorpej static uint32_t
4419 1.11 thorpej i82543_mii_recvbits(struct wm_softc *sc)
4420 1.1 thorpej {
4421 1.1 thorpej uint32_t v, i, data = 0;
4422 1.1 thorpej
4423 1.1 thorpej v = CSR_READ(sc, WMREG_CTRL);
4424 1.1 thorpej v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
4425 1.1 thorpej v |= CTRL_SWDPIO(3);
4426 1.1 thorpej
4427 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, v);
4428 1.1 thorpej delay(10);
4429 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
4430 1.1 thorpej delay(10);
4431 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, v);
4432 1.1 thorpej delay(10);
4433 1.1 thorpej
4434 1.1 thorpej for (i = 0; i < 16; i++) {
4435 1.1 thorpej data <<= 1;
4436 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
4437 1.1 thorpej delay(10);
4438 1.1 thorpej if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
4439 1.1 thorpej data |= 1;
4440 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, v);
4441 1.1 thorpej delay(10);
4442 1.1 thorpej }
4443 1.1 thorpej
4444 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
4445 1.1 thorpej delay(10);
4446 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, v);
4447 1.1 thorpej delay(10);
4448 1.1 thorpej
4449 1.1 thorpej return (data);
4450 1.1 thorpej }
4451 1.1 thorpej
4452 1.1 thorpej #undef MDI_IO
4453 1.1 thorpej #undef MDI_DIR
4454 1.1 thorpej #undef MDI_CLK
4455 1.1 thorpej
4456 1.1 thorpej /*
4457 1.11 thorpej * wm_gmii_i82543_readreg: [mii interface function]
4458 1.1 thorpej *
4459 1.11 thorpej * Read a PHY register on the GMII (i82543 version).
4460 1.1 thorpej */
4461 1.47 thorpej static int
4462 1.11 thorpej wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
4463 1.1 thorpej {
4464 1.1 thorpej struct wm_softc *sc = (void *) self;
4465 1.1 thorpej int rv;
4466 1.1 thorpej
4467 1.11 thorpej i82543_mii_sendbits(sc, 0xffffffffU, 32);
4468 1.11 thorpej i82543_mii_sendbits(sc, reg | (phy << 5) |
4469 1.1 thorpej (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
4470 1.11 thorpej rv = i82543_mii_recvbits(sc) & 0xffff;
4471 1.1 thorpej
4472 1.1 thorpej DPRINTF(WM_DEBUG_GMII,
4473 1.1 thorpej ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
4474 1.1 thorpej sc->sc_dev.dv_xname, phy, reg, rv));
4475 1.1 thorpej
4476 1.1 thorpej return (rv);
4477 1.1 thorpej }
4478 1.1 thorpej
4479 1.1 thorpej /*
4480 1.11 thorpej * wm_gmii_i82543_writereg: [mii interface function]
4481 1.1 thorpej *
4482 1.11 thorpej * Write a PHY register on the GMII (i82543 version).
4483 1.1 thorpej */
4484 1.47 thorpej static void
4485 1.11 thorpej wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
4486 1.1 thorpej {
4487 1.1 thorpej struct wm_softc *sc = (void *) self;
4488 1.1 thorpej
4489 1.11 thorpej i82543_mii_sendbits(sc, 0xffffffffU, 32);
4490 1.11 thorpej i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
4491 1.1 thorpej (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
4492 1.1 thorpej (MII_COMMAND_START << 30), 32);
4493 1.1 thorpej }
4494 1.1 thorpej
4495 1.1 thorpej /*
4496 1.11 thorpej * wm_gmii_i82544_readreg: [mii interface function]
4497 1.1 thorpej *
4498 1.1 thorpej * Read a PHY register on the GMII.
4499 1.1 thorpej */
4500 1.47 thorpej static int
4501 1.11 thorpej wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
4502 1.1 thorpej {
4503 1.1 thorpej struct wm_softc *sc = (void *) self;
4504 1.60 ichiro uint32_t mdic = 0;
4505 1.1 thorpej int i, rv;
4506 1.1 thorpej
4507 1.1 thorpej CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
4508 1.1 thorpej MDIC_REGADD(reg));
4509 1.1 thorpej
4510 1.127 bouyer for (i = 0; i < 320; i++) {
4511 1.1 thorpej mdic = CSR_READ(sc, WMREG_MDIC);
4512 1.1 thorpej if (mdic & MDIC_READY)
4513 1.1 thorpej break;
4514 1.1 thorpej delay(10);
4515 1.1 thorpej }
4516 1.1 thorpej
4517 1.1 thorpej if ((mdic & MDIC_READY) == 0) {
4518 1.84 thorpej log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
4519 1.1 thorpej sc->sc_dev.dv_xname, phy, reg);
4520 1.1 thorpej rv = 0;
4521 1.1 thorpej } else if (mdic & MDIC_E) {
4522 1.1 thorpej #if 0 /* This is normal if no PHY is present. */
4523 1.84 thorpej log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
4524 1.1 thorpej sc->sc_dev.dv_xname, phy, reg);
4525 1.1 thorpej #endif
4526 1.1 thorpej rv = 0;
4527 1.1 thorpej } else {
4528 1.1 thorpej rv = MDIC_DATA(mdic);
4529 1.1 thorpej if (rv == 0xffff)
4530 1.1 thorpej rv = 0;
4531 1.1 thorpej }
4532 1.1 thorpej
4533 1.1 thorpej return (rv);
4534 1.1 thorpej }
4535 1.1 thorpej
4536 1.1 thorpej /*
4537 1.11 thorpej * wm_gmii_i82544_writereg: [mii interface function]
4538 1.1 thorpej *
4539 1.1 thorpej * Write a PHY register on the GMII.
4540 1.1 thorpej */
4541 1.47 thorpej static void
4542 1.11 thorpej wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
4543 1.1 thorpej {
4544 1.1 thorpej struct wm_softc *sc = (void *) self;
4545 1.60 ichiro uint32_t mdic = 0;
4546 1.1 thorpej int i;
4547 1.1 thorpej
4548 1.1 thorpej CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
4549 1.1 thorpej MDIC_REGADD(reg) | MDIC_DATA(val));
4550 1.1 thorpej
4551 1.127 bouyer for (i = 0; i < 320; i++) {
4552 1.1 thorpej mdic = CSR_READ(sc, WMREG_MDIC);
4553 1.1 thorpej if (mdic & MDIC_READY)
4554 1.1 thorpej break;
4555 1.1 thorpej delay(10);
4556 1.1 thorpej }
4557 1.1 thorpej
4558 1.1 thorpej if ((mdic & MDIC_READY) == 0)
4559 1.84 thorpej log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
4560 1.1 thorpej sc->sc_dev.dv_xname, phy, reg);
4561 1.1 thorpej else if (mdic & MDIC_E)
4562 1.84 thorpej log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
4563 1.1 thorpej sc->sc_dev.dv_xname, phy, reg);
4564 1.1 thorpej }
4565 1.1 thorpej
4566 1.1 thorpej /*
4567 1.127 bouyer * wm_gmii_i80003_readreg: [mii interface function]
4568 1.127 bouyer *
4569 1.127 bouyer * Read a PHY register on the kumeran
4570 1.127 bouyer * This could be handled by the PHY layer if we didn't have to lock the
4571 1.127 bouyer * ressource ...
4572 1.127 bouyer */
4573 1.127 bouyer static int
4574 1.127 bouyer wm_gmii_i80003_readreg(struct device *self, int phy, int reg)
4575 1.127 bouyer {
4576 1.127 bouyer struct wm_softc *sc = (void *) self;
4577 1.127 bouyer int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4578 1.127 bouyer int rv;
4579 1.127 bouyer
4580 1.127 bouyer if (phy != 1) /* only one PHY on kumeran bus */
4581 1.127 bouyer return 0;
4582 1.127 bouyer
4583 1.127 bouyer if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
4584 1.127 bouyer return 0;
4585 1.127 bouyer
4586 1.127 bouyer if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
4587 1.127 bouyer wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
4588 1.127 bouyer reg >> GG82563_PAGE_SHIFT);
4589 1.127 bouyer } else {
4590 1.127 bouyer wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
4591 1.127 bouyer reg >> GG82563_PAGE_SHIFT);
4592 1.127 bouyer }
4593 1.127 bouyer
4594 1.127 bouyer rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
4595 1.127 bouyer wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4596 1.127 bouyer return (rv);
4597 1.127 bouyer }
4598 1.127 bouyer
4599 1.127 bouyer /*
4600 1.127 bouyer * wm_gmii_i80003_writereg: [mii interface function]
4601 1.127 bouyer *
4602 1.127 bouyer * Write a PHY register on the kumeran.
4603 1.127 bouyer * This could be handled by the PHY layer if we didn't have to lock the
4604 1.127 bouyer * ressource ...
4605 1.127 bouyer */
4606 1.127 bouyer static void
4607 1.127 bouyer wm_gmii_i80003_writereg(struct device *self, int phy, int reg, int val)
4608 1.127 bouyer {
4609 1.127 bouyer struct wm_softc *sc = (void *) self;
4610 1.127 bouyer int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4611 1.127 bouyer
4612 1.127 bouyer if (phy != 1) /* only one PHY on kumeran bus */
4613 1.127 bouyer return;
4614 1.127 bouyer
4615 1.127 bouyer if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
4616 1.127 bouyer return;
4617 1.127 bouyer
4618 1.127 bouyer if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
4619 1.127 bouyer wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
4620 1.127 bouyer reg >> GG82563_PAGE_SHIFT);
4621 1.127 bouyer } else {
4622 1.127 bouyer wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
4623 1.127 bouyer reg >> GG82563_PAGE_SHIFT);
4624 1.127 bouyer }
4625 1.127 bouyer
4626 1.127 bouyer wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
4627 1.127 bouyer wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4628 1.127 bouyer }
4629 1.127 bouyer
4630 1.127 bouyer /*
4631 1.1 thorpej * wm_gmii_statchg: [mii interface function]
4632 1.1 thorpej *
4633 1.1 thorpej * Callback from MII layer when media changes.
4634 1.1 thorpej */
4635 1.47 thorpej static void
4636 1.1 thorpej wm_gmii_statchg(struct device *self)
4637 1.1 thorpej {
4638 1.1 thorpej struct wm_softc *sc = (void *) self;
4639 1.71 thorpej struct mii_data *mii = &sc->sc_mii;
4640 1.1 thorpej
4641 1.71 thorpej sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
4642 1.1 thorpej sc->sc_tctl &= ~TCTL_COLD(0x3ff);
4643 1.71 thorpej sc->sc_fcrtl &= ~FCRTL_XONE;
4644 1.71 thorpej
4645 1.71 thorpej /*
4646 1.71 thorpej * Get flow control negotiation result.
4647 1.71 thorpej */
4648 1.71 thorpej if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
4649 1.71 thorpej (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
4650 1.71 thorpej sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
4651 1.71 thorpej mii->mii_media_active &= ~IFM_ETH_FMASK;
4652 1.71 thorpej }
4653 1.71 thorpej
4654 1.71 thorpej if (sc->sc_flowflags & IFM_FLOW) {
4655 1.71 thorpej if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
4656 1.71 thorpej sc->sc_ctrl |= CTRL_TFCE;
4657 1.71 thorpej sc->sc_fcrtl |= FCRTL_XONE;
4658 1.71 thorpej }
4659 1.71 thorpej if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
4660 1.71 thorpej sc->sc_ctrl |= CTRL_RFCE;
4661 1.71 thorpej }
4662 1.1 thorpej
4663 1.1 thorpej if (sc->sc_mii.mii_media_active & IFM_FDX) {
4664 1.1 thorpej DPRINTF(WM_DEBUG_LINK,
4665 1.1 thorpej ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
4666 1.1 thorpej sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
4667 1.1 thorpej } else {
4668 1.1 thorpej DPRINTF(WM_DEBUG_LINK,
4669 1.1 thorpej ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
4670 1.1 thorpej sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
4671 1.1 thorpej }
4672 1.1 thorpej
4673 1.71 thorpej CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4674 1.1 thorpej CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
4675 1.71 thorpej CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
4676 1.71 thorpej : WMREG_FCRTL, sc->sc_fcrtl);
4677 1.127 bouyer if (sc->sc_type >= WM_T_80003) {
4678 1.127 bouyer switch(IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
4679 1.127 bouyer case IFM_1000_T:
4680 1.127 bouyer wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
4681 1.127 bouyer KUMCTRLSTA_HD_CTRL_1000_DEFAULT);
4682 1.127 bouyer sc->sc_tipg = TIPG_1000T_80003_DFLT;
4683 1.127 bouyer break;
4684 1.127 bouyer default:
4685 1.127 bouyer wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
4686 1.127 bouyer KUMCTRLSTA_HD_CTRL_10_100_DEFAULT);
4687 1.127 bouyer sc->sc_tipg = TIPG_10_100_80003_DFLT;
4688 1.127 bouyer break;
4689 1.127 bouyer }
4690 1.127 bouyer CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
4691 1.127 bouyer }
4692 1.127 bouyer }
4693 1.127 bouyer
4694 1.127 bouyer /*
4695 1.127 bouyer * wm_kmrn_i80003_readreg:
4696 1.127 bouyer *
4697 1.127 bouyer * Read a kumeran register
4698 1.127 bouyer */
4699 1.127 bouyer static int
4700 1.127 bouyer wm_kmrn_i80003_readreg(struct wm_softc *sc, int reg)
4701 1.127 bouyer {
4702 1.127 bouyer int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4703 1.127 bouyer int rv;
4704 1.127 bouyer
4705 1.127 bouyer if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
4706 1.127 bouyer return 0;
4707 1.127 bouyer
4708 1.127 bouyer CSR_WRITE(sc, WMREG_KUMCTRLSTA,
4709 1.127 bouyer ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
4710 1.127 bouyer KUMCTRLSTA_REN);
4711 1.127 bouyer delay(2);
4712 1.127 bouyer
4713 1.127 bouyer rv = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK;
4714 1.127 bouyer wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4715 1.127 bouyer return (rv);
4716 1.127 bouyer }
4717 1.127 bouyer
4718 1.127 bouyer /*
4719 1.127 bouyer * wm_kmrn_i80003_writereg:
4720 1.127 bouyer *
4721 1.127 bouyer * Write a kumeran register
4722 1.127 bouyer */
4723 1.127 bouyer static void
4724 1.127 bouyer wm_kmrn_i80003_writereg(struct wm_softc *sc, int reg, int val)
4725 1.127 bouyer {
4726 1.127 bouyer int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4727 1.127 bouyer
4728 1.127 bouyer if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
4729 1.127 bouyer return;
4730 1.127 bouyer
4731 1.127 bouyer CSR_WRITE(sc, WMREG_KUMCTRLSTA,
4732 1.127 bouyer ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
4733 1.127 bouyer (val & KUMCTRLSTA_MASK));
4734 1.127 bouyer wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4735 1.1 thorpej }
4736 1.117 msaitoh
4737 1.117 msaitoh static int
4738 1.117 msaitoh wm_is_onboard_nvm_eeprom(struct wm_softc *sc)
4739 1.117 msaitoh {
4740 1.117 msaitoh uint32_t eecd = 0;
4741 1.117 msaitoh
4742 1.119 uebayasi if (sc->sc_type == WM_T_82573) {
4743 1.117 msaitoh eecd = CSR_READ(sc, WMREG_EECD);
4744 1.117 msaitoh
4745 1.117 msaitoh /* Isolate bits 15 & 16 */
4746 1.117 msaitoh eecd = ((eecd >> 15) & 0x03);
4747 1.117 msaitoh
4748 1.117 msaitoh /* If both bits are set, device is Flash type */
4749 1.119 uebayasi if (eecd == 0x03) {
4750 1.117 msaitoh return 0;
4751 1.117 msaitoh }
4752 1.117 msaitoh }
4753 1.117 msaitoh return 1;
4754 1.117 msaitoh }
4755 1.117 msaitoh
4756 1.117 msaitoh static int
4757 1.127 bouyer wm_get_swsm_semaphore(struct wm_softc *sc)
4758 1.117 msaitoh {
4759 1.117 msaitoh int32_t timeout;
4760 1.117 msaitoh uint32_t swsm;
4761 1.117 msaitoh
4762 1.117 msaitoh /* Get the FW semaphore. */
4763 1.117 msaitoh timeout = 1000 + 1; /* XXX */
4764 1.117 msaitoh while (timeout) {
4765 1.117 msaitoh swsm = CSR_READ(sc, WMREG_SWSM);
4766 1.117 msaitoh swsm |= SWSM_SWESMBI;
4767 1.117 msaitoh CSR_WRITE(sc, WMREG_SWSM, swsm);
4768 1.117 msaitoh /* if we managed to set the bit we got the semaphore. */
4769 1.117 msaitoh swsm = CSR_READ(sc, WMREG_SWSM);
4770 1.119 uebayasi if (swsm & SWSM_SWESMBI)
4771 1.117 msaitoh break;
4772 1.117 msaitoh
4773 1.117 msaitoh delay(50);
4774 1.117 msaitoh timeout--;
4775 1.117 msaitoh }
4776 1.117 msaitoh
4777 1.117 msaitoh if (timeout == 0) {
4778 1.127 bouyer aprint_error("%s: could not acquire EEPROM GNT\n",
4779 1.127 bouyer sc->sc_dev.dv_xname);
4780 1.117 msaitoh /* Release semaphores */
4781 1.127 bouyer wm_put_swsm_semaphore(sc);
4782 1.117 msaitoh return 1;
4783 1.117 msaitoh }
4784 1.117 msaitoh return 0;
4785 1.117 msaitoh }
4786 1.117 msaitoh
4787 1.117 msaitoh static void
4788 1.127 bouyer wm_put_swsm_semaphore(struct wm_softc *sc)
4789 1.117 msaitoh {
4790 1.117 msaitoh uint32_t swsm;
4791 1.117 msaitoh
4792 1.117 msaitoh swsm = CSR_READ(sc, WMREG_SWSM);
4793 1.119 uebayasi swsm &= ~(SWSM_SWESMBI);
4794 1.117 msaitoh CSR_WRITE(sc, WMREG_SWSM, swsm);
4795 1.117 msaitoh }
4796 1.127 bouyer
4797 1.127 bouyer static int
4798 1.136 msaitoh wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
4799 1.136 msaitoh {
4800 1.127 bouyer uint32_t swfw_sync;
4801 1.127 bouyer uint32_t swmask = mask << SWFW_SOFT_SHIFT;
4802 1.127 bouyer uint32_t fwmask = mask << SWFW_FIRM_SHIFT;
4803 1.127 bouyer int timeout = 200;
4804 1.127 bouyer
4805 1.127 bouyer for(timeout = 0; timeout < 200; timeout++) {
4806 1.127 bouyer if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
4807 1.127 bouyer if (wm_get_swsm_semaphore(sc))
4808 1.127 bouyer return 1;
4809 1.127 bouyer }
4810 1.127 bouyer swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
4811 1.127 bouyer if ((swfw_sync & (swmask | fwmask)) == 0) {
4812 1.127 bouyer swfw_sync |= swmask;
4813 1.127 bouyer CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
4814 1.127 bouyer if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
4815 1.127 bouyer wm_put_swsm_semaphore(sc);
4816 1.127 bouyer return 0;
4817 1.127 bouyer }
4818 1.127 bouyer if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
4819 1.127 bouyer wm_put_swsm_semaphore(sc);
4820 1.127 bouyer delay(5000);
4821 1.127 bouyer }
4822 1.127 bouyer printf("%s: failed to get swfw semaphore mask 0x%x swfw 0x%x\n",
4823 1.127 bouyer sc->sc_dev.dv_xname, mask, swfw_sync);
4824 1.127 bouyer return 1;
4825 1.127 bouyer }
4826 1.127 bouyer
4827 1.127 bouyer static void
4828 1.136 msaitoh wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
4829 1.136 msaitoh {
4830 1.127 bouyer uint32_t swfw_sync;
4831 1.127 bouyer
4832 1.127 bouyer if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
4833 1.127 bouyer while (wm_get_swsm_semaphore(sc) != 0)
4834 1.127 bouyer continue;
4835 1.127 bouyer }
4836 1.127 bouyer swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
4837 1.127 bouyer swfw_sync &= ~(mask << SWFW_SOFT_SHIFT);
4838 1.127 bouyer CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
4839 1.127 bouyer if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
4840 1.127 bouyer wm_put_swsm_semaphore(sc);
4841 1.127 bouyer }
4842 1.139 bouyer
4843 1.139 bouyer static int
4844 1.139 bouyer wm_get_swfwhw_semaphore(struct wm_softc *sc)
4845 1.139 bouyer {
4846 1.139 bouyer uint32_t ext_ctrl;
4847 1.139 bouyer int timeout = 200;
4848 1.139 bouyer
4849 1.139 bouyer for(timeout = 0; timeout < 200; timeout++) {
4850 1.139 bouyer ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
4851 1.139 bouyer ext_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
4852 1.139 bouyer CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
4853 1.139 bouyer
4854 1.139 bouyer ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
4855 1.139 bouyer if (ext_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
4856 1.139 bouyer return 0;
4857 1.139 bouyer delay(5000);
4858 1.139 bouyer }
4859 1.139 bouyer printf("%s: failed to get swfwgw semaphore ext_ctrl 0x%x\n",
4860 1.139 bouyer sc->sc_dev.dv_xname, ext_ctrl);
4861 1.139 bouyer return 1;
4862 1.139 bouyer }
4863 1.139 bouyer
4864 1.139 bouyer static void
4865 1.139 bouyer wm_put_swfwhw_semaphore(struct wm_softc *sc)
4866 1.139 bouyer {
4867 1.139 bouyer uint32_t ext_ctrl;
4868 1.139 bouyer ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
4869 1.139 bouyer ext_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
4870 1.139 bouyer CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
4871 1.139 bouyer }
4872 1.139 bouyer
4873 1.139 bouyer /******************************************************************************
4874 1.139 bouyer * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
4875 1.139 bouyer * register.
4876 1.139 bouyer *
4877 1.139 bouyer * sc - Struct containing variables accessed by shared code
4878 1.139 bouyer * offset - offset of word in the EEPROM to read
4879 1.139 bouyer * data - word read from the EEPROM
4880 1.139 bouyer * words - number of words to read
4881 1.139 bouyer *****************************************************************************/
4882 1.139 bouyer static int
4883 1.139 bouyer wm_read_eeprom_ich8(struct wm_softc *sc, int offset, int words, uint16_t *data)
4884 1.139 bouyer {
4885 1.139 bouyer int32_t error = 0;
4886 1.139 bouyer uint32_t flash_bank = 0;
4887 1.139 bouyer uint32_t act_offset = 0;
4888 1.139 bouyer uint32_t bank_offset = 0;
4889 1.139 bouyer uint16_t word = 0;
4890 1.139 bouyer uint16_t i = 0;
4891 1.139 bouyer
4892 1.139 bouyer /* We need to know which is the valid flash bank. In the event
4893 1.139 bouyer * that we didn't allocate eeprom_shadow_ram, we may not be
4894 1.139 bouyer * managing flash_bank. So it cannot be trusted and needs
4895 1.139 bouyer * to be updated with each read.
4896 1.139 bouyer */
4897 1.139 bouyer /* Value of bit 22 corresponds to the flash bank we're on. */
4898 1.139 bouyer flash_bank = (CSR_READ(sc, WMREG_EECD) & EECD_SEC1VAL) ? 1 : 0;
4899 1.139 bouyer
4900 1.139 bouyer /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
4901 1.139 bouyer bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
4902 1.139 bouyer
4903 1.139 bouyer error = wm_get_swfwhw_semaphore(sc);
4904 1.139 bouyer if (error)
4905 1.139 bouyer return error;
4906 1.139 bouyer
4907 1.139 bouyer for (i = 0; i < words; i++) {
4908 1.139 bouyer /* The NVM part needs a byte offset, hence * 2 */
4909 1.139 bouyer act_offset = bank_offset + ((offset + i) * 2);
4910 1.139 bouyer error = wm_read_ich8_word(sc, act_offset, &word);
4911 1.139 bouyer if (error)
4912 1.139 bouyer break;
4913 1.139 bouyer data[i] = word;
4914 1.139 bouyer }
4915 1.139 bouyer
4916 1.139 bouyer wm_put_swfwhw_semaphore(sc);
4917 1.139 bouyer return error;
4918 1.139 bouyer }
4919 1.139 bouyer
4920 1.139 bouyer /******************************************************************************
4921 1.139 bouyer * This function does initial flash setup so that a new read/write/erase cycle
4922 1.139 bouyer * can be started.
4923 1.139 bouyer *
4924 1.139 bouyer * sc - The pointer to the hw structure
4925 1.139 bouyer ****************************************************************************/
4926 1.139 bouyer static int32_t
4927 1.139 bouyer wm_ich8_cycle_init(struct wm_softc *sc)
4928 1.139 bouyer {
4929 1.139 bouyer uint16_t hsfsts;
4930 1.139 bouyer int32_t error = 1;
4931 1.139 bouyer int32_t i = 0;
4932 1.139 bouyer
4933 1.139 bouyer hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
4934 1.139 bouyer
4935 1.139 bouyer /* May be check the Flash Des Valid bit in Hw status */
4936 1.139 bouyer if ((hsfsts & HSFSTS_FLDVAL) == 0) {
4937 1.139 bouyer return error;
4938 1.139 bouyer }
4939 1.139 bouyer
4940 1.139 bouyer /* Clear FCERR in Hw status by writing 1 */
4941 1.139 bouyer /* Clear DAEL in Hw status by writing a 1 */
4942 1.139 bouyer hsfsts |= HSFSTS_ERR | HSFSTS_DAEL;
4943 1.139 bouyer
4944 1.139 bouyer ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
4945 1.139 bouyer
4946 1.139 bouyer /* Either we should have a hardware SPI cycle in progress bit to check
4947 1.139 bouyer * against, in order to start a new cycle or FDONE bit should be changed
4948 1.139 bouyer * in the hardware so that it is 1 after harware reset, which can then be
4949 1.139 bouyer * used as an indication whether a cycle is in progress or has been
4950 1.139 bouyer * completed .. we should also have some software semaphore mechanism to
4951 1.139 bouyer * guard FDONE or the cycle in progress bit so that two threads access to
4952 1.139 bouyer * those bits can be sequentiallized or a way so that 2 threads dont
4953 1.139 bouyer * start the cycle at the same time */
4954 1.139 bouyer
4955 1.139 bouyer if ((hsfsts & HSFSTS_FLINPRO) == 0) {
4956 1.139 bouyer /* There is no cycle running at present, so we can start a cycle */
4957 1.139 bouyer /* Begin by setting Flash Cycle Done. */
4958 1.139 bouyer hsfsts |= HSFSTS_DONE;
4959 1.139 bouyer ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
4960 1.139 bouyer error = 0;
4961 1.139 bouyer } else {
4962 1.139 bouyer /* otherwise poll for sometime so the current cycle has a chance
4963 1.139 bouyer * to end before giving up. */
4964 1.139 bouyer for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
4965 1.139 bouyer hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
4966 1.139 bouyer if ((hsfsts & HSFSTS_FLINPRO) == 0) {
4967 1.139 bouyer error = 0;
4968 1.139 bouyer break;
4969 1.139 bouyer }
4970 1.139 bouyer delay(1);
4971 1.139 bouyer }
4972 1.139 bouyer if (error == 0) {
4973 1.139 bouyer /* Successful in waiting for previous cycle to timeout,
4974 1.139 bouyer * now set the Flash Cycle Done. */
4975 1.139 bouyer hsfsts |= HSFSTS_DONE;
4976 1.139 bouyer ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
4977 1.139 bouyer }
4978 1.139 bouyer }
4979 1.139 bouyer return error;
4980 1.139 bouyer }
4981 1.139 bouyer
4982 1.139 bouyer /******************************************************************************
4983 1.139 bouyer * This function starts a flash cycle and waits for its completion
4984 1.139 bouyer *
4985 1.139 bouyer * sc - The pointer to the hw structure
4986 1.139 bouyer ****************************************************************************/
4987 1.139 bouyer static int32_t
4988 1.139 bouyer wm_ich8_flash_cycle(struct wm_softc *sc, uint32_t timeout)
4989 1.139 bouyer {
4990 1.139 bouyer uint16_t hsflctl;
4991 1.139 bouyer uint16_t hsfsts;
4992 1.139 bouyer int32_t error = 1;
4993 1.139 bouyer uint32_t i = 0;
4994 1.139 bouyer
4995 1.139 bouyer /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
4996 1.139 bouyer hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
4997 1.139 bouyer hsflctl |= HSFCTL_GO;
4998 1.139 bouyer ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
4999 1.139 bouyer
5000 1.139 bouyer /* wait till FDONE bit is set to 1 */
5001 1.139 bouyer do {
5002 1.139 bouyer hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
5003 1.139 bouyer if (hsfsts & HSFSTS_DONE)
5004 1.139 bouyer break;
5005 1.139 bouyer delay(1);
5006 1.139 bouyer i++;
5007 1.139 bouyer } while (i < timeout);
5008 1.139 bouyer if ((hsfsts & HSFSTS_DONE) == 1 && (hsfsts & HSFSTS_ERR) == 0) {
5009 1.139 bouyer error = 0;
5010 1.139 bouyer }
5011 1.139 bouyer return error;
5012 1.139 bouyer }
5013 1.139 bouyer
5014 1.139 bouyer /******************************************************************************
5015 1.139 bouyer * Reads a byte or word from the NVM using the ICH8 flash access registers.
5016 1.139 bouyer *
5017 1.139 bouyer * sc - The pointer to the hw structure
5018 1.139 bouyer * index - The index of the byte or word to read.
5019 1.139 bouyer * size - Size of data to read, 1=byte 2=word
5020 1.139 bouyer * data - Pointer to the word to store the value read.
5021 1.139 bouyer *****************************************************************************/
5022 1.139 bouyer static int32_t
5023 1.139 bouyer wm_read_ich8_data(struct wm_softc *sc, uint32_t index,
5024 1.139 bouyer uint32_t size, uint16_t* data)
5025 1.139 bouyer {
5026 1.139 bouyer uint16_t hsfsts;
5027 1.139 bouyer uint16_t hsflctl;
5028 1.139 bouyer uint32_t flash_linear_address;
5029 1.139 bouyer uint32_t flash_data = 0;
5030 1.139 bouyer int32_t error = 1;
5031 1.139 bouyer int32_t count = 0;
5032 1.139 bouyer
5033 1.139 bouyer if (size < 1 || size > 2 || data == 0x0 ||
5034 1.139 bouyer index > ICH_FLASH_LINEAR_ADDR_MASK)
5035 1.139 bouyer return error;
5036 1.139 bouyer
5037 1.139 bouyer flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
5038 1.139 bouyer sc->sc_ich8_flash_base;
5039 1.139 bouyer
5040 1.139 bouyer do {
5041 1.139 bouyer delay(1);
5042 1.139 bouyer /* Steps */
5043 1.139 bouyer error = wm_ich8_cycle_init(sc);
5044 1.139 bouyer if (error)
5045 1.139 bouyer break;
5046 1.139 bouyer
5047 1.139 bouyer hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
5048 1.139 bouyer /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
5049 1.139 bouyer hsflctl |= ((size - 1) << HSFCTL_BCOUNT_SHIFT) & HSFCTL_BCOUNT_MASK;
5050 1.139 bouyer hsflctl |= ICH_CYCLE_READ << HSFCTL_CYCLE_SHIFT;
5051 1.139 bouyer ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
5052 1.139 bouyer
5053 1.139 bouyer /* Write the last 24 bits of index into Flash Linear address field in
5054 1.139 bouyer * Flash Address */
5055 1.139 bouyer /* TODO: TBD maybe check the index against the size of flash */
5056 1.139 bouyer
5057 1.139 bouyer ICH8_FLASH_WRITE32(sc, ICH_FLASH_FADDR, flash_linear_address);
5058 1.139 bouyer
5059 1.139 bouyer error = wm_ich8_flash_cycle(sc, ICH_FLASH_COMMAND_TIMEOUT);
5060 1.139 bouyer
5061 1.139 bouyer /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
5062 1.139 bouyer * sequence a few more times, else read in (shift in) the Flash Data0,
5063 1.139 bouyer * the order is least significant byte first msb to lsb */
5064 1.139 bouyer if (error == 0) {
5065 1.139 bouyer flash_data = ICH8_FLASH_READ32(sc, ICH_FLASH_FDATA0);
5066 1.139 bouyer if (size == 1) {
5067 1.139 bouyer *data = (uint8_t)(flash_data & 0x000000FF);
5068 1.139 bouyer } else if (size == 2) {
5069 1.139 bouyer *data = (uint16_t)(flash_data & 0x0000FFFF);
5070 1.139 bouyer }
5071 1.139 bouyer break;
5072 1.139 bouyer } else {
5073 1.139 bouyer /* If we've gotten here, then things are probably completely hosed,
5074 1.139 bouyer * but if the error condition is detected, it won't hurt to give
5075 1.139 bouyer * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
5076 1.139 bouyer */
5077 1.139 bouyer hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
5078 1.139 bouyer if (hsfsts & HSFSTS_ERR) {
5079 1.139 bouyer /* Repeat for some time before giving up. */
5080 1.139 bouyer continue;
5081 1.139 bouyer } else if ((hsfsts & HSFSTS_DONE) == 0) {
5082 1.139 bouyer break;
5083 1.139 bouyer }
5084 1.139 bouyer }
5085 1.139 bouyer } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
5086 1.139 bouyer
5087 1.139 bouyer return error;
5088 1.139 bouyer }
5089 1.139 bouyer
5090 1.139 bouyer #if 0
5091 1.139 bouyer /******************************************************************************
5092 1.139 bouyer * Reads a single byte from the NVM using the ICH8 flash access registers.
5093 1.139 bouyer *
5094 1.139 bouyer * sc - pointer to wm_hw structure
5095 1.139 bouyer * index - The index of the byte to read.
5096 1.139 bouyer * data - Pointer to a byte to store the value read.
5097 1.139 bouyer *****************************************************************************/
5098 1.139 bouyer static int32_t
5099 1.139 bouyer wm_read_ich8_byte(struct wm_softc *sc, uint32_t index, uint8_t* data)
5100 1.139 bouyer {
5101 1.144 msaitoh int32_t status;
5102 1.139 bouyer uint16_t word = 0;
5103 1.139 bouyer
5104 1.139 bouyer status = wm_read_ich8_data(sc, index, 1, &word);
5105 1.139 bouyer if (status == 0) {
5106 1.139 bouyer *data = (uint8_t)word;
5107 1.139 bouyer }
5108 1.139 bouyer
5109 1.139 bouyer return status;
5110 1.139 bouyer }
5111 1.139 bouyer #endif
5112 1.139 bouyer
5113 1.139 bouyer /******************************************************************************
5114 1.139 bouyer * Reads a word from the NVM using the ICH8 flash access registers.
5115 1.139 bouyer *
5116 1.139 bouyer * sc - pointer to wm_hw structure
5117 1.139 bouyer * index - The starting byte index of the word to read.
5118 1.139 bouyer * data - Pointer to a word to store the value read.
5119 1.139 bouyer *****************************************************************************/
5120 1.139 bouyer static int32_t
5121 1.139 bouyer wm_read_ich8_word(struct wm_softc *sc, uint32_t index, uint16_t *data)
5122 1.139 bouyer {
5123 1.144 msaitoh int32_t status;
5124 1.144 msaitoh
5125 1.139 bouyer status = wm_read_ich8_data(sc, index, 2, data);
5126 1.139 bouyer return status;
5127 1.139 bouyer }
5128