if_wm.c revision 1.169 1 1.168 msaitoh /* $NetBSD: if_wm.c,v 1.169 2009/03/20 07:29:15 msaitoh Exp $ */
2 1.1 thorpej
3 1.1 thorpej /*
4 1.69 thorpej * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 1.1 thorpej * All rights reserved.
6 1.1 thorpej *
7 1.1 thorpej * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 1.1 thorpej *
9 1.1 thorpej * Redistribution and use in source and binary forms, with or without
10 1.1 thorpej * modification, are permitted provided that the following conditions
11 1.1 thorpej * are met:
12 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
13 1.1 thorpej * notice, this list of conditions and the following disclaimer.
14 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
16 1.1 thorpej * documentation and/or other materials provided with the distribution.
17 1.1 thorpej * 3. All advertising materials mentioning features or use of this software
18 1.1 thorpej * must display the following acknowledgement:
19 1.1 thorpej * This product includes software developed for the NetBSD Project by
20 1.1 thorpej * Wasabi Systems, Inc.
21 1.1 thorpej * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.1 thorpej * or promote products derived from this software without specific prior
23 1.1 thorpej * written permission.
24 1.1 thorpej *
25 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.1 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.1 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 thorpej * POSSIBILITY OF SUCH DAMAGE.
36 1.1 thorpej */
37 1.1 thorpej
38 1.139 bouyer /*******************************************************************************
39 1.139 bouyer
40 1.139 bouyer Copyright (c) 2001-2005, Intel Corporation
41 1.139 bouyer All rights reserved.
42 1.139 bouyer
43 1.139 bouyer Redistribution and use in source and binary forms, with or without
44 1.139 bouyer modification, are permitted provided that the following conditions are met:
45 1.139 bouyer
46 1.139 bouyer 1. Redistributions of source code must retain the above copyright notice,
47 1.139 bouyer this list of conditions and the following disclaimer.
48 1.139 bouyer
49 1.139 bouyer 2. Redistributions in binary form must reproduce the above copyright
50 1.139 bouyer notice, this list of conditions and the following disclaimer in the
51 1.139 bouyer documentation and/or other materials provided with the distribution.
52 1.139 bouyer
53 1.139 bouyer 3. Neither the name of the Intel Corporation nor the names of its
54 1.139 bouyer contributors may be used to endorse or promote products derived from
55 1.139 bouyer this software without specific prior written permission.
56 1.139 bouyer
57 1.139 bouyer THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
58 1.139 bouyer AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 1.139 bouyer IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 1.139 bouyer ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
61 1.139 bouyer LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 1.139 bouyer CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 1.139 bouyer SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 1.139 bouyer INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 1.139 bouyer CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 1.139 bouyer ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67 1.139 bouyer POSSIBILITY OF SUCH DAMAGE.
68 1.139 bouyer
69 1.139 bouyer *******************************************************************************/
70 1.1 thorpej /*
71 1.11 thorpej * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
72 1.1 thorpej *
73 1.1 thorpej * TODO (in order of importance):
74 1.1 thorpej *
75 1.61 thorpej * - Rework how parameters are loaded from the EEPROM.
76 1.56 thorpej * - Figure out what to do with the i82545GM and i82546GB
77 1.56 thorpej * SERDES controllers.
78 1.61 thorpej * - Fix hw VLAN assist.
79 1.1 thorpej */
80 1.38 lukem
81 1.38 lukem #include <sys/cdefs.h>
82 1.168 msaitoh __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.169 2009/03/20 07:29:15 msaitoh Exp $");
83 1.1 thorpej
84 1.1 thorpej #include "bpfilter.h"
85 1.21 itojun #include "rnd.h"
86 1.1 thorpej
87 1.1 thorpej #include <sys/param.h>
88 1.1 thorpej #include <sys/systm.h>
89 1.96 perry #include <sys/callout.h>
90 1.1 thorpej #include <sys/mbuf.h>
91 1.1 thorpej #include <sys/malloc.h>
92 1.1 thorpej #include <sys/kernel.h>
93 1.1 thorpej #include <sys/socket.h>
94 1.1 thorpej #include <sys/ioctl.h>
95 1.1 thorpej #include <sys/errno.h>
96 1.1 thorpej #include <sys/device.h>
97 1.1 thorpej #include <sys/queue.h>
98 1.84 thorpej #include <sys/syslog.h>
99 1.1 thorpej
100 1.1 thorpej #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101 1.1 thorpej
102 1.21 itojun #if NRND > 0
103 1.21 itojun #include <sys/rnd.h>
104 1.21 itojun #endif
105 1.21 itojun
106 1.1 thorpej #include <net/if.h>
107 1.96 perry #include <net/if_dl.h>
108 1.1 thorpej #include <net/if_media.h>
109 1.1 thorpej #include <net/if_ether.h>
110 1.1 thorpej
111 1.96 perry #if NBPFILTER > 0
112 1.1 thorpej #include <net/bpf.h>
113 1.1 thorpej #endif
114 1.1 thorpej
115 1.1 thorpej #include <netinet/in.h> /* XXX for struct ip */
116 1.1 thorpej #include <netinet/in_systm.h> /* XXX for struct ip */
117 1.1 thorpej #include <netinet/ip.h> /* XXX for struct ip */
118 1.131 yamt #include <netinet/ip6.h> /* XXX for struct ip6_hdr */
119 1.13 thorpej #include <netinet/tcp.h> /* XXX for struct tcphdr */
120 1.1 thorpej
121 1.147 ad #include <sys/bus.h>
122 1.147 ad #include <sys/intr.h>
123 1.1 thorpej #include <machine/endian.h>
124 1.1 thorpej
125 1.1 thorpej #include <dev/mii/mii.h>
126 1.1 thorpej #include <dev/mii/miivar.h>
127 1.1 thorpej #include <dev/mii/mii_bitbang.h>
128 1.127 bouyer #include <dev/mii/ikphyreg.h>
129 1.1 thorpej
130 1.1 thorpej #include <dev/pci/pcireg.h>
131 1.1 thorpej #include <dev/pci/pcivar.h>
132 1.1 thorpej #include <dev/pci/pcidevs.h>
133 1.1 thorpej
134 1.1 thorpej #include <dev/pci/if_wmreg.h>
135 1.1 thorpej
136 1.1 thorpej #ifdef WM_DEBUG
137 1.1 thorpej #define WM_DEBUG_LINK 0x01
138 1.1 thorpej #define WM_DEBUG_TX 0x02
139 1.1 thorpej #define WM_DEBUG_RX 0x04
140 1.1 thorpej #define WM_DEBUG_GMII 0x08
141 1.127 bouyer int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK|WM_DEBUG_GMII;
142 1.1 thorpej
143 1.1 thorpej #define DPRINTF(x, y) if (wm_debug & (x)) printf y
144 1.1 thorpej #else
145 1.1 thorpej #define DPRINTF(x, y) /* nothing */
146 1.1 thorpej #endif /* WM_DEBUG */
147 1.1 thorpej
148 1.1 thorpej /*
149 1.2 thorpej * Transmit descriptor list size. Due to errata, we can only have
150 1.75 thorpej * 256 hardware descriptors in the ring on < 82544, but we use 4096
151 1.75 thorpej * on >= 82544. We tell the upper layers that they can queue a lot
152 1.75 thorpej * of packets, and we go ahead and manage up to 64 (16 for the i82547)
153 1.75 thorpej * of them at a time.
154 1.75 thorpej *
155 1.75 thorpej * We allow up to 256 (!) DMA segments per packet. Pathological packet
156 1.75 thorpej * chains containing many small mbufs have been observed in zero-copy
157 1.75 thorpej * situations with jumbo frames.
158 1.1 thorpej */
159 1.75 thorpej #define WM_NTXSEGS 256
160 1.2 thorpej #define WM_IFQUEUELEN 256
161 1.74 tron #define WM_TXQUEUELEN_MAX 64
162 1.74 tron #define WM_TXQUEUELEN_MAX_82547 16
163 1.74 tron #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
164 1.74 tron #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
165 1.74 tron #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
166 1.75 thorpej #define WM_NTXDESC_82542 256
167 1.75 thorpej #define WM_NTXDESC_82544 4096
168 1.75 thorpej #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
169 1.75 thorpej #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
170 1.75 thorpej #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
171 1.75 thorpej #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
172 1.74 tron #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
173 1.1 thorpej
174 1.99 matt #define WM_MAXTXDMA round_page(IP_MAXPACKET) /* for TSO */
175 1.82 thorpej
176 1.1 thorpej /*
177 1.1 thorpej * Receive descriptor list size. We have one Rx buffer for normal
178 1.1 thorpej * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
179 1.10 thorpej * packet. We allocate 256 receive descriptors, each with a 2k
180 1.10 thorpej * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
181 1.1 thorpej */
182 1.10 thorpej #define WM_NRXDESC 256
183 1.1 thorpej #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
184 1.1 thorpej #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
185 1.1 thorpej #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
186 1.1 thorpej
187 1.1 thorpej /*
188 1.1 thorpej * Control structures are DMA'd to the i82542 chip. We allocate them in
189 1.105 skrll * a single clump that maps to a single DMA segment to make several things
190 1.1 thorpej * easier.
191 1.1 thorpej */
192 1.75 thorpej struct wm_control_data_82544 {
193 1.1 thorpej /*
194 1.75 thorpej * The receive descriptors.
195 1.1 thorpej */
196 1.75 thorpej wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
197 1.1 thorpej
198 1.1 thorpej /*
199 1.75 thorpej * The transmit descriptors. Put these at the end, because
200 1.75 thorpej * we might use a smaller number of them.
201 1.1 thorpej */
202 1.75 thorpej wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
203 1.75 thorpej };
204 1.75 thorpej
205 1.75 thorpej struct wm_control_data_82542 {
206 1.1 thorpej wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
207 1.75 thorpej wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
208 1.1 thorpej };
209 1.1 thorpej
210 1.75 thorpej #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
211 1.1 thorpej #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)])
212 1.1 thorpej #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
213 1.1 thorpej
214 1.1 thorpej /*
215 1.1 thorpej * Software state for transmit jobs.
216 1.1 thorpej */
217 1.1 thorpej struct wm_txsoft {
218 1.1 thorpej struct mbuf *txs_mbuf; /* head of our mbuf chain */
219 1.1 thorpej bus_dmamap_t txs_dmamap; /* our DMA map */
220 1.1 thorpej int txs_firstdesc; /* first descriptor in packet */
221 1.1 thorpej int txs_lastdesc; /* last descriptor in packet */
222 1.4 thorpej int txs_ndesc; /* # of descriptors used */
223 1.1 thorpej };
224 1.1 thorpej
225 1.1 thorpej /*
226 1.1 thorpej * Software state for receive buffers. Each descriptor gets a
227 1.1 thorpej * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
228 1.1 thorpej * more than one buffer, we chain them together.
229 1.1 thorpej */
230 1.1 thorpej struct wm_rxsoft {
231 1.1 thorpej struct mbuf *rxs_mbuf; /* head of our mbuf chain */
232 1.1 thorpej bus_dmamap_t rxs_dmamap; /* our DMA map */
233 1.1 thorpej };
234 1.1 thorpej
235 1.43 thorpej typedef enum {
236 1.43 thorpej WM_T_unknown = 0,
237 1.43 thorpej WM_T_82542_2_0, /* i82542 2.0 (really old) */
238 1.43 thorpej WM_T_82542_2_1, /* i82542 2.1+ (old) */
239 1.43 thorpej WM_T_82543, /* i82543 */
240 1.43 thorpej WM_T_82544, /* i82544 */
241 1.43 thorpej WM_T_82540, /* i82540 */
242 1.43 thorpej WM_T_82545, /* i82545 */
243 1.43 thorpej WM_T_82545_3, /* i82545 3.0+ */
244 1.43 thorpej WM_T_82546, /* i82546 */
245 1.43 thorpej WM_T_82546_3, /* i82546 3.0+ */
246 1.43 thorpej WM_T_82541, /* i82541 */
247 1.43 thorpej WM_T_82541_2, /* i82541 2.0+ */
248 1.43 thorpej WM_T_82547, /* i82547 */
249 1.43 thorpej WM_T_82547_2, /* i82547 2.0+ */
250 1.117 msaitoh WM_T_82571, /* i82571 */
251 1.117 msaitoh WM_T_82572, /* i82572 */
252 1.117 msaitoh WM_T_82573, /* i82573 */
253 1.165 sborrill WM_T_82574, /* i82574 */
254 1.127 bouyer WM_T_80003, /* i80003 */
255 1.139 bouyer WM_T_ICH8, /* ICH8 LAN */
256 1.144 msaitoh WM_T_ICH9, /* ICH9 LAN */
257 1.167 msaitoh WM_T_ICH10, /* ICH10 LAN */
258 1.43 thorpej } wm_chip_type;
259 1.43 thorpej
260 1.1 thorpej /*
261 1.1 thorpej * Software state per device.
262 1.1 thorpej */
263 1.1 thorpej struct wm_softc {
264 1.160 christos device_t sc_dev; /* generic device information */
265 1.1 thorpej bus_space_tag_t sc_st; /* bus space tag */
266 1.1 thorpej bus_space_handle_t sc_sh; /* bus space handle */
267 1.53 thorpej bus_space_tag_t sc_iot; /* I/O space tag */
268 1.53 thorpej bus_space_handle_t sc_ioh; /* I/O space handle */
269 1.139 bouyer bus_space_tag_t sc_flasht; /* flash registers space tag */
270 1.139 bouyer bus_space_handle_t sc_flashh; /* flash registers space handle */
271 1.1 thorpej bus_dma_tag_t sc_dmat; /* bus DMA tag */
272 1.1 thorpej struct ethercom sc_ethercom; /* ethernet common data */
273 1.123 jmcneill pci_chipset_tag_t sc_pc;
274 1.123 jmcneill pcitag_t sc_pcitag;
275 1.1 thorpej
276 1.43 thorpej wm_chip_type sc_type; /* chip type */
277 1.1 thorpej int sc_flags; /* flags; see below */
278 1.52 thorpej int sc_bus_speed; /* PCI/PCIX bus speed */
279 1.54 thorpej int sc_pcix_offset; /* PCIX capability register offset */
280 1.71 thorpej int sc_flowflags; /* 802.3x flow control flags */
281 1.1 thorpej
282 1.1 thorpej void *sc_ih; /* interrupt cookie */
283 1.1 thorpej
284 1.44 thorpej int sc_ee_addrbits; /* EEPROM address bits */
285 1.44 thorpej
286 1.1 thorpej struct mii_data sc_mii; /* MII/media information */
287 1.1 thorpej
288 1.142 ad callout_t sc_tick_ch; /* tick callout */
289 1.1 thorpej
290 1.1 thorpej bus_dmamap_t sc_cddmamap; /* control data DMA map */
291 1.1 thorpej #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
292 1.1 thorpej
293 1.42 thorpej int sc_align_tweak;
294 1.42 thorpej
295 1.1 thorpej /*
296 1.1 thorpej * Software state for the transmit and receive descriptors.
297 1.1 thorpej */
298 1.74 tron int sc_txnum; /* must be a power of two */
299 1.74 tron struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
300 1.74 tron struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
301 1.1 thorpej
302 1.1 thorpej /*
303 1.1 thorpej * Control data structures.
304 1.1 thorpej */
305 1.75 thorpej int sc_ntxdesc; /* must be a power of two */
306 1.75 thorpej struct wm_control_data_82544 *sc_control_data;
307 1.1 thorpej #define sc_txdescs sc_control_data->wcd_txdescs
308 1.1 thorpej #define sc_rxdescs sc_control_data->wcd_rxdescs
309 1.1 thorpej
310 1.1 thorpej #ifdef WM_EVENT_COUNTERS
311 1.1 thorpej /* Event counters. */
312 1.1 thorpej struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
313 1.1 thorpej struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
314 1.78 thorpej struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
315 1.4 thorpej struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
316 1.4 thorpej struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
317 1.1 thorpej struct evcnt sc_ev_rxintr; /* Rx interrupts */
318 1.1 thorpej struct evcnt sc_ev_linkintr; /* Link interrupts */
319 1.1 thorpej
320 1.1 thorpej struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
321 1.1 thorpej struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
322 1.1 thorpej struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
323 1.1 thorpej struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
324 1.107 yamt struct evcnt sc_ev_txtusum6; /* TCP/UDP v6 cksums comp. out-bound */
325 1.131 yamt struct evcnt sc_ev_txtso; /* TCP seg offload out-bound (IPv4) */
326 1.131 yamt struct evcnt sc_ev_txtso6; /* TCP seg offload out-bound (IPv6) */
327 1.99 matt struct evcnt sc_ev_txtsopain; /* painful header manip. for TSO */
328 1.1 thorpej
329 1.2 thorpej struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
330 1.1 thorpej struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
331 1.1 thorpej
332 1.1 thorpej struct evcnt sc_ev_tu; /* Tx underrun */
333 1.71 thorpej
334 1.71 thorpej struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
335 1.71 thorpej struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
336 1.71 thorpej struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
337 1.71 thorpej struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
338 1.71 thorpej struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
339 1.1 thorpej #endif /* WM_EVENT_COUNTERS */
340 1.1 thorpej
341 1.1 thorpej bus_addr_t sc_tdt_reg; /* offset of TDT register */
342 1.1 thorpej
343 1.1 thorpej int sc_txfree; /* number of free Tx descriptors */
344 1.1 thorpej int sc_txnext; /* next ready Tx descriptor */
345 1.1 thorpej
346 1.1 thorpej int sc_txsfree; /* number of free Tx jobs */
347 1.1 thorpej int sc_txsnext; /* next free Tx job */
348 1.1 thorpej int sc_txsdirty; /* dirty Tx jobs */
349 1.1 thorpej
350 1.78 thorpej /* These 5 variables are used only on the 82547. */
351 1.78 thorpej int sc_txfifo_size; /* Tx FIFO size */
352 1.78 thorpej int sc_txfifo_head; /* current head of FIFO */
353 1.78 thorpej uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
354 1.78 thorpej int sc_txfifo_stall; /* Tx FIFO is stalled */
355 1.142 ad callout_t sc_txfifo_ch; /* Tx FIFO stall work-around timer */
356 1.78 thorpej
357 1.1 thorpej bus_addr_t sc_rdt_reg; /* offset of RDT register */
358 1.1 thorpej
359 1.1 thorpej int sc_rxptr; /* next ready Rx descriptor/queue ent */
360 1.1 thorpej int sc_rxdiscard;
361 1.1 thorpej int sc_rxlen;
362 1.1 thorpej struct mbuf *sc_rxhead;
363 1.1 thorpej struct mbuf *sc_rxtail;
364 1.1 thorpej struct mbuf **sc_rxtailp;
365 1.1 thorpej
366 1.1 thorpej uint32_t sc_ctrl; /* prototype CTRL register */
367 1.1 thorpej #if 0
368 1.1 thorpej uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
369 1.1 thorpej #endif
370 1.1 thorpej uint32_t sc_icr; /* prototype interrupt bits */
371 1.92 briggs uint32_t sc_itr; /* prototype intr throttling reg */
372 1.1 thorpej uint32_t sc_tctl; /* prototype TCTL register */
373 1.1 thorpej uint32_t sc_rctl; /* prototype RCTL register */
374 1.1 thorpej uint32_t sc_txcw; /* prototype TXCW register */
375 1.1 thorpej uint32_t sc_tipg; /* prototype TIPG register */
376 1.71 thorpej uint32_t sc_fcrtl; /* prototype FCRTL register */
377 1.78 thorpej uint32_t sc_pba; /* prototype PBA register */
378 1.1 thorpej
379 1.1 thorpej int sc_tbi_linkup; /* TBI link status */
380 1.1 thorpej int sc_tbi_anstate; /* autonegotiation state */
381 1.1 thorpej
382 1.1 thorpej int sc_mchash_type; /* multicast filter offset */
383 1.21 itojun
384 1.21 itojun #if NRND > 0
385 1.21 itojun rndsource_element_t rnd_source; /* random source */
386 1.21 itojun #endif
387 1.139 bouyer int sc_ich8_flash_base;
388 1.139 bouyer int sc_ich8_flash_bank_size;
389 1.1 thorpej };
390 1.1 thorpej
391 1.1 thorpej #define WM_RXCHAIN_RESET(sc) \
392 1.1 thorpej do { \
393 1.1 thorpej (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
394 1.1 thorpej *(sc)->sc_rxtailp = NULL; \
395 1.1 thorpej (sc)->sc_rxlen = 0; \
396 1.1 thorpej } while (/*CONSTCOND*/0)
397 1.1 thorpej
398 1.1 thorpej #define WM_RXCHAIN_LINK(sc, m) \
399 1.1 thorpej do { \
400 1.1 thorpej *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
401 1.1 thorpej (sc)->sc_rxtailp = &(m)->m_next; \
402 1.1 thorpej } while (/*CONSTCOND*/0)
403 1.1 thorpej
404 1.1 thorpej /* sc_flags */
405 1.127 bouyer #define WM_F_HAS_MII 0x0001 /* has MII */
406 1.127 bouyer #define WM_F_EEPROM_HANDSHAKE 0x0002 /* requires EEPROM handshake */
407 1.127 bouyer #define WM_F_EEPROM_SEMAPHORE 0x0004 /* EEPROM with semaphore */
408 1.127 bouyer #define WM_F_EEPROM_EERDEEWR 0x0008 /* EEPROM access via EERD/EEWR */
409 1.127 bouyer #define WM_F_EEPROM_SPI 0x0010 /* EEPROM is SPI */
410 1.127 bouyer #define WM_F_EEPROM_FLASH 0x0020 /* EEPROM is FLASH */
411 1.127 bouyer #define WM_F_EEPROM_INVALID 0x0040 /* EEPROM not present (bad checksum) */
412 1.127 bouyer #define WM_F_IOH_VALID 0x0080 /* I/O handle is valid */
413 1.127 bouyer #define WM_F_BUS64 0x0100 /* bus is 64-bit */
414 1.127 bouyer #define WM_F_PCIX 0x0200 /* bus is PCI-X */
415 1.127 bouyer #define WM_F_CSA 0x0400 /* bus is CSA */
416 1.127 bouyer #define WM_F_PCIE 0x0800 /* bus is PCI-Express */
417 1.127 bouyer #define WM_F_SWFW_SYNC 0x1000 /* Software-Firmware synchronisation */
418 1.139 bouyer #define WM_F_SWFWHW_SYNC 0x2000 /* Software-Firmware synchronisation */
419 1.1 thorpej
420 1.1 thorpej #ifdef WM_EVENT_COUNTERS
421 1.1 thorpej #define WM_EVCNT_INCR(ev) (ev)->ev_count++
422 1.71 thorpej #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
423 1.1 thorpej #else
424 1.1 thorpej #define WM_EVCNT_INCR(ev) /* nothing */
425 1.71 thorpej #define WM_EVCNT_ADD(ev, val) /* nothing */
426 1.1 thorpej #endif
427 1.1 thorpej
428 1.1 thorpej #define CSR_READ(sc, reg) \
429 1.1 thorpej bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
430 1.1 thorpej #define CSR_WRITE(sc, reg, val) \
431 1.1 thorpej bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
432 1.78 thorpej #define CSR_WRITE_FLUSH(sc) \
433 1.78 thorpej (void) CSR_READ((sc), WMREG_STATUS)
434 1.1 thorpej
435 1.139 bouyer #define ICH8_FLASH_READ32(sc, reg) \
436 1.139 bouyer bus_space_read_4((sc)->sc_flasht, (sc)->sc_flashh, (reg))
437 1.139 bouyer #define ICH8_FLASH_WRITE32(sc, reg, data) \
438 1.139 bouyer bus_space_write_4((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data))
439 1.139 bouyer
440 1.139 bouyer #define ICH8_FLASH_READ16(sc, reg) \
441 1.139 bouyer bus_space_read_2((sc)->sc_flasht, (sc)->sc_flashh, (reg))
442 1.139 bouyer #define ICH8_FLASH_WRITE16(sc, reg, data) \
443 1.139 bouyer bus_space_write_2((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data))
444 1.139 bouyer
445 1.1 thorpej #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
446 1.1 thorpej #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
447 1.1 thorpej
448 1.69 thorpej #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
449 1.69 thorpej #define WM_CDTXADDR_HI(sc, x) \
450 1.69 thorpej (sizeof(bus_addr_t) == 8 ? \
451 1.69 thorpej (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
452 1.69 thorpej
453 1.69 thorpej #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
454 1.69 thorpej #define WM_CDRXADDR_HI(sc, x) \
455 1.69 thorpej (sizeof(bus_addr_t) == 8 ? \
456 1.69 thorpej (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
457 1.69 thorpej
458 1.1 thorpej #define WM_CDTXSYNC(sc, x, n, ops) \
459 1.1 thorpej do { \
460 1.1 thorpej int __x, __n; \
461 1.1 thorpej \
462 1.1 thorpej __x = (x); \
463 1.1 thorpej __n = (n); \
464 1.1 thorpej \
465 1.1 thorpej /* If it will wrap around, sync to the end of the ring. */ \
466 1.75 thorpej if ((__x + __n) > WM_NTXDESC(sc)) { \
467 1.1 thorpej bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
468 1.1 thorpej WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
469 1.75 thorpej (WM_NTXDESC(sc) - __x), (ops)); \
470 1.75 thorpej __n -= (WM_NTXDESC(sc) - __x); \
471 1.1 thorpej __x = 0; \
472 1.1 thorpej } \
473 1.1 thorpej \
474 1.1 thorpej /* Now sync whatever is left. */ \
475 1.1 thorpej bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
476 1.1 thorpej WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
477 1.1 thorpej } while (/*CONSTCOND*/0)
478 1.1 thorpej
479 1.1 thorpej #define WM_CDRXSYNC(sc, x, ops) \
480 1.1 thorpej do { \
481 1.1 thorpej bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
482 1.1 thorpej WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
483 1.1 thorpej } while (/*CONSTCOND*/0)
484 1.1 thorpej
485 1.1 thorpej #define WM_INIT_RXDESC(sc, x) \
486 1.1 thorpej do { \
487 1.1 thorpej struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
488 1.1 thorpej wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
489 1.1 thorpej struct mbuf *__m = __rxs->rxs_mbuf; \
490 1.1 thorpej \
491 1.1 thorpej /* \
492 1.1 thorpej * Note: We scoot the packet forward 2 bytes in the buffer \
493 1.1 thorpej * so that the payload after the Ethernet header is aligned \
494 1.1 thorpej * to a 4-byte boundary. \
495 1.1 thorpej * \
496 1.1 thorpej * XXX BRAINDAMAGE ALERT! \
497 1.1 thorpej * The stupid chip uses the same size for every buffer, which \
498 1.1 thorpej * is set in the Receive Control register. We are using the 2K \
499 1.1 thorpej * size option, but what we REALLY want is (2K - 2)! For this \
500 1.41 tls * reason, we can't "scoot" packets longer than the standard \
501 1.41 tls * Ethernet MTU. On strict-alignment platforms, if the total \
502 1.42 thorpej * size exceeds (2K - 2) we set align_tweak to 0 and let \
503 1.41 tls * the upper layer copy the headers. \
504 1.1 thorpej */ \
505 1.42 thorpej __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
506 1.1 thorpej \
507 1.69 thorpej wm_set_dma_addr(&__rxd->wrx_addr, \
508 1.69 thorpej __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
509 1.1 thorpej __rxd->wrx_len = 0; \
510 1.1 thorpej __rxd->wrx_cksum = 0; \
511 1.1 thorpej __rxd->wrx_status = 0; \
512 1.1 thorpej __rxd->wrx_errors = 0; \
513 1.1 thorpej __rxd->wrx_special = 0; \
514 1.1 thorpej WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
515 1.1 thorpej \
516 1.1 thorpej CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
517 1.1 thorpej } while (/*CONSTCOND*/0)
518 1.1 thorpej
519 1.47 thorpej static void wm_start(struct ifnet *);
520 1.47 thorpej static void wm_watchdog(struct ifnet *);
521 1.135 christos static int wm_ioctl(struct ifnet *, u_long, void *);
522 1.47 thorpej static int wm_init(struct ifnet *);
523 1.47 thorpej static void wm_stop(struct ifnet *, int);
524 1.1 thorpej
525 1.47 thorpej static void wm_reset(struct wm_softc *);
526 1.47 thorpej static void wm_rxdrain(struct wm_softc *);
527 1.47 thorpej static int wm_add_rxbuf(struct wm_softc *, int);
528 1.51 thorpej static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
529 1.117 msaitoh static int wm_read_eeprom_eerd(struct wm_softc *, int, int, u_int16_t *);
530 1.112 gavan static int wm_validate_eeprom_checksum(struct wm_softc *);
531 1.47 thorpej static void wm_tick(void *);
532 1.1 thorpej
533 1.47 thorpej static void wm_set_filter(struct wm_softc *);
534 1.1 thorpej
535 1.47 thorpej static int wm_intr(void *);
536 1.47 thorpej static void wm_txintr(struct wm_softc *);
537 1.47 thorpej static void wm_rxintr(struct wm_softc *);
538 1.47 thorpej static void wm_linkintr(struct wm_softc *, uint32_t);
539 1.1 thorpej
540 1.47 thorpej static void wm_tbi_mediainit(struct wm_softc *);
541 1.47 thorpej static int wm_tbi_mediachange(struct ifnet *);
542 1.47 thorpej static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
543 1.1 thorpej
544 1.47 thorpej static void wm_tbi_set_linkled(struct wm_softc *);
545 1.47 thorpej static void wm_tbi_check_link(struct wm_softc *);
546 1.1 thorpej
547 1.47 thorpej static void wm_gmii_reset(struct wm_softc *);
548 1.1 thorpej
549 1.157 dyoung static int wm_gmii_i82543_readreg(device_t, int, int);
550 1.157 dyoung static void wm_gmii_i82543_writereg(device_t, int, int, int);
551 1.1 thorpej
552 1.157 dyoung static int wm_gmii_i82544_readreg(device_t, int, int);
553 1.157 dyoung static void wm_gmii_i82544_writereg(device_t, int, int, int);
554 1.1 thorpej
555 1.157 dyoung static int wm_gmii_i80003_readreg(device_t, int, int);
556 1.157 dyoung static void wm_gmii_i80003_writereg(device_t, int, int, int);
557 1.127 bouyer
558 1.167 msaitoh static int wm_gmii_bm_readreg(device_t, int, int);
559 1.167 msaitoh static void wm_gmii_bm_writereg(device_t, int, int, int);
560 1.167 msaitoh
561 1.157 dyoung static void wm_gmii_statchg(device_t);
562 1.1 thorpej
563 1.47 thorpej static void wm_gmii_mediainit(struct wm_softc *);
564 1.47 thorpej static int wm_gmii_mediachange(struct ifnet *);
565 1.47 thorpej static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
566 1.1 thorpej
567 1.127 bouyer static int wm_kmrn_i80003_readreg(struct wm_softc *, int);
568 1.127 bouyer static void wm_kmrn_i80003_writereg(struct wm_softc *, int, int);
569 1.127 bouyer
570 1.160 christos static int wm_match(device_t, cfdata_t, void *);
571 1.157 dyoung static void wm_attach(device_t, device_t, void *);
572 1.117 msaitoh static int wm_is_onboard_nvm_eeprom(struct wm_softc *);
573 1.146 msaitoh static void wm_get_auto_rd_done(struct wm_softc *);
574 1.127 bouyer static int wm_get_swsm_semaphore(struct wm_softc *);
575 1.127 bouyer static void wm_put_swsm_semaphore(struct wm_softc *);
576 1.117 msaitoh static int wm_poll_eerd_eewr_done(struct wm_softc *, int);
577 1.127 bouyer static int wm_get_swfw_semaphore(struct wm_softc *, uint16_t);
578 1.127 bouyer static void wm_put_swfw_semaphore(struct wm_softc *, uint16_t);
579 1.139 bouyer static int wm_get_swfwhw_semaphore(struct wm_softc *);
580 1.139 bouyer static void wm_put_swfwhw_semaphore(struct wm_softc *);
581 1.139 bouyer
582 1.139 bouyer static int wm_read_eeprom_ich8(struct wm_softc *, int, int, uint16_t *);
583 1.139 bouyer static int32_t wm_ich8_cycle_init(struct wm_softc *);
584 1.139 bouyer static int32_t wm_ich8_flash_cycle(struct wm_softc *, uint32_t);
585 1.139 bouyer static int32_t wm_read_ich8_data(struct wm_softc *, uint32_t,
586 1.148 simonb uint32_t, uint16_t *);
587 1.167 msaitoh static int32_t wm_read_ich8_byte(struct wm_softc *sc, uint32_t, uint8_t *);
588 1.139 bouyer static int32_t wm_read_ich8_word(struct wm_softc *sc, uint32_t, uint16_t *);
589 1.169 msaitoh static void wm_82547_txfifo_stall(void *);
590 1.169 msaitoh static int wm_check_mng_mode(struct wm_softc *);
591 1.169 msaitoh static int wm_check_mng_mode_ich8lan(struct wm_softc *);
592 1.169 msaitoh #if 0
593 1.169 msaitoh static int wm_check_mng_mode_82574(struct wm_softc *);
594 1.169 msaitoh #endif
595 1.169 msaitoh static int wm_check_mng_mode_generic(struct wm_softc *);
596 1.169 msaitoh static void wm_get_hw_control(struct wm_softc *);
597 1.1 thorpej
598 1.160 christos CFATTACH_DECL_NEW(wm, sizeof(struct wm_softc),
599 1.25 thorpej wm_match, wm_attach, NULL, NULL);
600 1.1 thorpej
601 1.78 thorpej
602 1.1 thorpej /*
603 1.1 thorpej * Devices supported by this driver.
604 1.1 thorpej */
605 1.76 thorpej static const struct wm_product {
606 1.1 thorpej pci_vendor_id_t wmp_vendor;
607 1.1 thorpej pci_product_id_t wmp_product;
608 1.1 thorpej const char *wmp_name;
609 1.43 thorpej wm_chip_type wmp_type;
610 1.1 thorpej int wmp_flags;
611 1.1 thorpej #define WMP_F_1000X 0x01
612 1.1 thorpej #define WMP_F_1000T 0x02
613 1.1 thorpej } wm_products[] = {
614 1.1 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
615 1.1 thorpej "Intel i82542 1000BASE-X Ethernet",
616 1.11 thorpej WM_T_82542_2_1, WMP_F_1000X },
617 1.1 thorpej
618 1.11 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
619 1.11 thorpej "Intel i82543GC 1000BASE-X Ethernet",
620 1.11 thorpej WM_T_82543, WMP_F_1000X },
621 1.1 thorpej
622 1.11 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
623 1.11 thorpej "Intel i82543GC 1000BASE-T Ethernet",
624 1.11 thorpej WM_T_82543, WMP_F_1000T },
625 1.1 thorpej
626 1.11 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
627 1.11 thorpej "Intel i82544EI 1000BASE-T Ethernet",
628 1.11 thorpej WM_T_82544, WMP_F_1000T },
629 1.1 thorpej
630 1.11 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
631 1.11 thorpej "Intel i82544EI 1000BASE-X Ethernet",
632 1.11 thorpej WM_T_82544, WMP_F_1000X },
633 1.1 thorpej
634 1.11 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
635 1.1 thorpej "Intel i82544GC 1000BASE-T Ethernet",
636 1.11 thorpej WM_T_82544, WMP_F_1000T },
637 1.1 thorpej
638 1.11 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
639 1.11 thorpej "Intel i82544GC (LOM) 1000BASE-T Ethernet",
640 1.11 thorpej WM_T_82544, WMP_F_1000T },
641 1.1 thorpej
642 1.17 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
643 1.17 thorpej "Intel i82540EM 1000BASE-T Ethernet",
644 1.34 kent WM_T_82540, WMP_F_1000T },
645 1.34 kent
646 1.55 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
647 1.55 thorpej "Intel i82540EM (LOM) 1000BASE-T Ethernet",
648 1.55 thorpej WM_T_82540, WMP_F_1000T },
649 1.55 thorpej
650 1.34 kent { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
651 1.34 kent "Intel i82540EP 1000BASE-T Ethernet",
652 1.34 kent WM_T_82540, WMP_F_1000T },
653 1.34 kent
654 1.34 kent { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
655 1.34 kent "Intel i82540EP 1000BASE-T Ethernet",
656 1.33 kent WM_T_82540, WMP_F_1000T },
657 1.33 kent
658 1.33 kent { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
659 1.33 kent "Intel i82540EP 1000BASE-T Ethernet",
660 1.17 thorpej WM_T_82540, WMP_F_1000T },
661 1.17 thorpej
662 1.17 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
663 1.17 thorpej "Intel i82545EM 1000BASE-T Ethernet",
664 1.17 thorpej WM_T_82545, WMP_F_1000T },
665 1.17 thorpej
666 1.55 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
667 1.55 thorpej "Intel i82545GM 1000BASE-T Ethernet",
668 1.55 thorpej WM_T_82545_3, WMP_F_1000T },
669 1.55 thorpej
670 1.55 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
671 1.55 thorpej "Intel i82545GM 1000BASE-X Ethernet",
672 1.55 thorpej WM_T_82545_3, WMP_F_1000X },
673 1.55 thorpej #if 0
674 1.55 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
675 1.55 thorpej "Intel i82545GM Gigabit Ethernet (SERDES)",
676 1.55 thorpej WM_T_82545_3, WMP_F_SERDES },
677 1.55 thorpej #endif
678 1.17 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
679 1.39 thorpej "Intel i82546EB 1000BASE-T Ethernet",
680 1.39 thorpej WM_T_82546, WMP_F_1000T },
681 1.39 thorpej
682 1.39 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
683 1.17 thorpej "Intel i82546EB 1000BASE-T Ethernet",
684 1.17 thorpej WM_T_82546, WMP_F_1000T },
685 1.17 thorpej
686 1.17 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
687 1.17 thorpej "Intel i82545EM 1000BASE-X Ethernet",
688 1.17 thorpej WM_T_82545, WMP_F_1000X },
689 1.17 thorpej
690 1.17 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
691 1.17 thorpej "Intel i82546EB 1000BASE-X Ethernet",
692 1.17 thorpej WM_T_82546, WMP_F_1000X },
693 1.17 thorpej
694 1.55 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
695 1.55 thorpej "Intel i82546GB 1000BASE-T Ethernet",
696 1.55 thorpej WM_T_82546_3, WMP_F_1000T },
697 1.55 thorpej
698 1.55 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
699 1.55 thorpej "Intel i82546GB 1000BASE-X Ethernet",
700 1.55 thorpej WM_T_82546_3, WMP_F_1000X },
701 1.55 thorpej #if 0
702 1.55 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
703 1.55 thorpej "Intel i82546GB Gigabit Ethernet (SERDES)",
704 1.55 thorpej WM_T_82546_3, WMP_F_SERDES },
705 1.55 thorpej #endif
706 1.127 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER,
707 1.127 bouyer "i82546GB quad-port Gigabit Ethernet",
708 1.127 bouyer WM_T_82546_3, WMP_F_1000T },
709 1.127 bouyer
710 1.127 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3,
711 1.127 bouyer "i82546GB quad-port Gigabit Ethernet (KSP3)",
712 1.127 bouyer WM_T_82546_3, WMP_F_1000T },
713 1.127 bouyer
714 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_PCIE,
715 1.116 msaitoh "Intel PRO/1000MT (82546GB)",
716 1.116 msaitoh WM_T_82546_3, WMP_F_1000T },
717 1.116 msaitoh
718 1.63 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
719 1.63 thorpej "Intel i82541EI 1000BASE-T Ethernet",
720 1.63 thorpej WM_T_82541, WMP_F_1000T },
721 1.63 thorpej
722 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER_LOM,
723 1.116 msaitoh "Intel i82541ER (LOM) 1000BASE-T Ethernet",
724 1.116 msaitoh WM_T_82541, WMP_F_1000T },
725 1.116 msaitoh
726 1.57 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
727 1.57 thorpej "Intel i82541EI Mobile 1000BASE-T Ethernet",
728 1.57 thorpej WM_T_82541, WMP_F_1000T },
729 1.57 thorpej
730 1.57 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
731 1.57 thorpej "Intel i82541ER 1000BASE-T Ethernet",
732 1.57 thorpej WM_T_82541_2, WMP_F_1000T },
733 1.57 thorpej
734 1.57 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
735 1.57 thorpej "Intel i82541GI 1000BASE-T Ethernet",
736 1.57 thorpej WM_T_82541_2, WMP_F_1000T },
737 1.57 thorpej
738 1.57 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
739 1.57 thorpej "Intel i82541GI Mobile 1000BASE-T Ethernet",
740 1.57 thorpej WM_T_82541_2, WMP_F_1000T },
741 1.57 thorpej
742 1.101 tron { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI,
743 1.101 tron "Intel i82541PI 1000BASE-T Ethernet",
744 1.101 tron WM_T_82541_2, WMP_F_1000T },
745 1.101 tron
746 1.57 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
747 1.57 thorpej "Intel i82547EI 1000BASE-T Ethernet",
748 1.57 thorpej WM_T_82547, WMP_F_1000T },
749 1.57 thorpej
750 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI_MOBILE,
751 1.141 simonb "Intel i82547EI Mobile 1000BASE-T Ethernet",
752 1.116 msaitoh WM_T_82547, WMP_F_1000T },
753 1.116 msaitoh
754 1.57 thorpej { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
755 1.57 thorpej "Intel i82547GI 1000BASE-T Ethernet",
756 1.57 thorpej WM_T_82547_2, WMP_F_1000T },
757 1.116 msaitoh
758 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_COPPER,
759 1.116 msaitoh "Intel PRO/1000 PT (82571EB)",
760 1.116 msaitoh WM_T_82571, WMP_F_1000T },
761 1.116 msaitoh
762 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_FIBER,
763 1.116 msaitoh "Intel PRO/1000 PF (82571EB)",
764 1.116 msaitoh WM_T_82571, WMP_F_1000X },
765 1.116 msaitoh #if 0
766 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_SERDES,
767 1.116 msaitoh "Intel PRO/1000 PB (82571EB)",
768 1.116 msaitoh WM_T_82571, WMP_F_SERDES },
769 1.116 msaitoh #endif
770 1.127 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER,
771 1.127 bouyer "Intel PRO/1000 QT (82571EB)",
772 1.127 bouyer WM_T_82571, WMP_F_1000T },
773 1.127 bouyer
774 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_COPPER,
775 1.116 msaitoh "Intel i82572EI 1000baseT Ethernet",
776 1.116 msaitoh WM_T_82572, WMP_F_1000T },
777 1.116 msaitoh
778 1.151 ragge { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER,
779 1.151 ragge "Intel PRO/1000 PT Quad Port Server Adapter",
780 1.151 ragge WM_T_82571, WMP_F_1000T, },
781 1.151 ragge
782 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_FIBER,
783 1.116 msaitoh "Intel i82572EI 1000baseX Ethernet",
784 1.116 msaitoh WM_T_82572, WMP_F_1000X },
785 1.116 msaitoh #if 0
786 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_SERDES,
787 1.116 msaitoh "Intel i82572EI Gigabit Ethernet (SERDES)",
788 1.116 msaitoh WM_T_82572, WMP_F_SERDES },
789 1.116 msaitoh #endif
790 1.116 msaitoh
791 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI,
792 1.116 msaitoh "Intel i82572EI 1000baseT Ethernet",
793 1.116 msaitoh WM_T_82572, WMP_F_1000T },
794 1.116 msaitoh
795 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E,
796 1.116 msaitoh "Intel i82573E",
797 1.116 msaitoh WM_T_82573, WMP_F_1000T },
798 1.116 msaitoh
799 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E_IAMT,
800 1.117 msaitoh "Intel i82573E IAMT",
801 1.116 msaitoh WM_T_82573, WMP_F_1000T },
802 1.116 msaitoh
803 1.116 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L,
804 1.116 msaitoh "Intel i82573L Gigabit Ethernet",
805 1.116 msaitoh WM_T_82573, WMP_F_1000T },
806 1.116 msaitoh
807 1.165 sborrill { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82574L,
808 1.165 sborrill "Intel i82574L",
809 1.165 sborrill WM_T_82574, WMP_F_1000T },
810 1.165 sborrill
811 1.127 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT,
812 1.127 bouyer "i80003 dual 1000baseT Ethernet",
813 1.127 bouyer WM_T_80003, WMP_F_1000T },
814 1.127 bouyer
815 1.127 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT,
816 1.127 bouyer "i80003 dual 1000baseX Ethernet",
817 1.127 bouyer WM_T_80003, WMP_F_1000T },
818 1.127 bouyer #if 0
819 1.127 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT,
820 1.127 bouyer "Intel i80003ES2 dual Gigabit Ethernet (SERDES)",
821 1.127 bouyer WM_T_80003, WMP_F_SERDES },
822 1.127 bouyer #endif
823 1.127 bouyer
824 1.127 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT,
825 1.127 bouyer "Intel i80003 1000baseT Ethernet",
826 1.127 bouyer WM_T_80003, WMP_F_1000T },
827 1.127 bouyer #if 0
828 1.127 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT,
829 1.127 bouyer "Intel i80003 Gigabit Ethernet (SERDES)",
830 1.127 bouyer WM_T_80003, WMP_F_SERDES },
831 1.127 bouyer #endif
832 1.139 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_AMT,
833 1.139 bouyer "Intel i82801H (M_AMT) LAN Controller",
834 1.139 bouyer WM_T_ICH8, WMP_F_1000T },
835 1.139 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_AMT,
836 1.139 bouyer "Intel i82801H (AMT) LAN Controller",
837 1.139 bouyer WM_T_ICH8, WMP_F_1000T },
838 1.139 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_LAN,
839 1.139 bouyer "Intel i82801H LAN Controller",
840 1.139 bouyer WM_T_ICH8, WMP_F_1000T },
841 1.139 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_LAN,
842 1.139 bouyer "Intel i82801H (IFE) LAN Controller",
843 1.139 bouyer WM_T_ICH8, WMP_F_1000T },
844 1.139 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_LAN,
845 1.139 bouyer "Intel i82801H (M) LAN Controller",
846 1.139 bouyer WM_T_ICH8, WMP_F_1000T },
847 1.139 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_GT,
848 1.139 bouyer "Intel i82801H IFE (GT) LAN Controller",
849 1.139 bouyer WM_T_ICH8, WMP_F_1000T },
850 1.139 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_G,
851 1.139 bouyer "Intel i82801H IFE (G) LAN Controller",
852 1.139 bouyer WM_T_ICH8, WMP_F_1000T },
853 1.144 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_AMT,
854 1.144 msaitoh "82801I (AMT) LAN Controller",
855 1.144 msaitoh WM_T_ICH9, WMP_F_1000T },
856 1.144 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE,
857 1.144 msaitoh "82801I LAN Controller",
858 1.144 msaitoh WM_T_ICH9, WMP_F_1000T },
859 1.144 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_G,
860 1.144 msaitoh "82801I (G) LAN Controller",
861 1.144 msaitoh WM_T_ICH9, WMP_F_1000T },
862 1.144 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_GT,
863 1.144 msaitoh "82801I (GT) LAN Controller",
864 1.144 msaitoh WM_T_ICH9, WMP_F_1000T },
865 1.144 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_C,
866 1.144 msaitoh "82801I (C) LAN Controller",
867 1.144 msaitoh WM_T_ICH9, WMP_F_1000T },
868 1.162 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M,
869 1.162 bouyer "82801I mobile LAN Controller",
870 1.162 bouyer WM_T_ICH9, WMP_F_1000T },
871 1.162 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IGP_M_V,
872 1.162 bouyer "82801I mobile (V) LAN Controller",
873 1.162 bouyer WM_T_ICH9, WMP_F_1000T },
874 1.162 bouyer { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M_AMT,
875 1.162 bouyer "82801I mobile (AMT) LAN Controller",
876 1.162 bouyer WM_T_ICH9, WMP_F_1000T },
877 1.164 markd { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82567LM_3,
878 1.164 markd "82567LM-3 LAN Controller",
879 1.167 msaitoh WM_T_ICH10, WMP_F_1000T },
880 1.167 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82567LF_3,
881 1.167 msaitoh "82567LF-3 LAN Controller",
882 1.167 msaitoh WM_T_ICH10, WMP_F_1000T },
883 1.1 thorpej { 0, 0,
884 1.1 thorpej NULL,
885 1.1 thorpej 0, 0 },
886 1.1 thorpej };
887 1.1 thorpej
888 1.2 thorpej #ifdef WM_EVENT_COUNTERS
889 1.75 thorpej static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
890 1.2 thorpej #endif /* WM_EVENT_COUNTERS */
891 1.2 thorpej
892 1.53 thorpej #if 0 /* Not currently used */
893 1.110 perry static inline uint32_t
894 1.53 thorpej wm_io_read(struct wm_softc *sc, int reg)
895 1.53 thorpej {
896 1.53 thorpej
897 1.53 thorpej bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
898 1.53 thorpej return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
899 1.53 thorpej }
900 1.53 thorpej #endif
901 1.53 thorpej
902 1.110 perry static inline void
903 1.53 thorpej wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
904 1.53 thorpej {
905 1.53 thorpej
906 1.53 thorpej bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
907 1.53 thorpej bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
908 1.53 thorpej }
909 1.53 thorpej
910 1.110 perry static inline void
911 1.110 perry wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
912 1.69 thorpej {
913 1.69 thorpej wa->wa_low = htole32(v & 0xffffffffU);
914 1.69 thorpej if (sizeof(bus_addr_t) == 8)
915 1.69 thorpej wa->wa_high = htole32((uint64_t) v >> 32);
916 1.69 thorpej else
917 1.69 thorpej wa->wa_high = 0;
918 1.69 thorpej }
919 1.69 thorpej
920 1.1 thorpej static const struct wm_product *
921 1.1 thorpej wm_lookup(const struct pci_attach_args *pa)
922 1.1 thorpej {
923 1.1 thorpej const struct wm_product *wmp;
924 1.1 thorpej
925 1.1 thorpej for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
926 1.1 thorpej if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
927 1.1 thorpej PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
928 1.1 thorpej return (wmp);
929 1.1 thorpej }
930 1.1 thorpej return (NULL);
931 1.1 thorpej }
932 1.1 thorpej
933 1.47 thorpej static int
934 1.160 christos wm_match(device_t parent, cfdata_t cf, void *aux)
935 1.1 thorpej {
936 1.1 thorpej struct pci_attach_args *pa = aux;
937 1.1 thorpej
938 1.1 thorpej if (wm_lookup(pa) != NULL)
939 1.1 thorpej return (1);
940 1.1 thorpej
941 1.1 thorpej return (0);
942 1.1 thorpej }
943 1.1 thorpej
944 1.47 thorpej static void
945 1.157 dyoung wm_attach(device_t parent, device_t self, void *aux)
946 1.1 thorpej {
947 1.157 dyoung struct wm_softc *sc = device_private(self);
948 1.1 thorpej struct pci_attach_args *pa = aux;
949 1.1 thorpej struct ifnet *ifp = &sc->sc_ethercom.ec_if;
950 1.1 thorpej pci_chipset_tag_t pc = pa->pa_pc;
951 1.1 thorpej pci_intr_handle_t ih;
952 1.75 thorpej size_t cdata_size;
953 1.1 thorpej const char *intrstr = NULL;
954 1.160 christos const char *eetype, *xname;
955 1.1 thorpej bus_space_tag_t memt;
956 1.1 thorpej bus_space_handle_t memh;
957 1.1 thorpej bus_dma_segment_t seg;
958 1.1 thorpej int memh_valid;
959 1.1 thorpej int i, rseg, error;
960 1.1 thorpej const struct wm_product *wmp;
961 1.115 thorpej prop_data_t ea;
962 1.115 thorpej prop_number_t pn;
963 1.1 thorpej uint8_t enaddr[ETHER_ADDR_LEN];
964 1.1 thorpej uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
965 1.1 thorpej pcireg_t preg, memtype;
966 1.44 thorpej uint32_t reg;
967 1.1 thorpej
968 1.160 christos sc->sc_dev = self;
969 1.142 ad callout_init(&sc->sc_tick_ch, 0);
970 1.1 thorpej
971 1.1 thorpej wmp = wm_lookup(pa);
972 1.1 thorpej if (wmp == NULL) {
973 1.1 thorpej printf("\n");
974 1.1 thorpej panic("wm_attach: impossible");
975 1.1 thorpej }
976 1.1 thorpej
977 1.123 jmcneill sc->sc_pc = pa->pa_pc;
978 1.123 jmcneill sc->sc_pcitag = pa->pa_tag;
979 1.123 jmcneill
980 1.69 thorpej if (pci_dma64_available(pa))
981 1.69 thorpej sc->sc_dmat = pa->pa_dmat64;
982 1.69 thorpej else
983 1.69 thorpej sc->sc_dmat = pa->pa_dmat;
984 1.1 thorpej
985 1.1 thorpej preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
986 1.37 thorpej aprint_naive(": Ethernet controller\n");
987 1.37 thorpej aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
988 1.1 thorpej
989 1.1 thorpej sc->sc_type = wmp->wmp_type;
990 1.11 thorpej if (sc->sc_type < WM_T_82543) {
991 1.1 thorpej if (preg < 2) {
992 1.160 christos aprint_error_dev(sc->sc_dev,
993 1.160 christos "i82542 must be at least rev. 2\n");
994 1.1 thorpej return;
995 1.1 thorpej }
996 1.1 thorpej if (preg < 3)
997 1.11 thorpej sc->sc_type = WM_T_82542_2_0;
998 1.1 thorpej }
999 1.1 thorpej
1000 1.1 thorpej /*
1001 1.53 thorpej * Map the device. All devices support memory-mapped acccess,
1002 1.53 thorpej * and it is really required for normal operation.
1003 1.1 thorpej */
1004 1.1 thorpej memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
1005 1.1 thorpej switch (memtype) {
1006 1.1 thorpej case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1007 1.1 thorpej case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1008 1.1 thorpej memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
1009 1.1 thorpej memtype, 0, &memt, &memh, NULL, NULL) == 0);
1010 1.1 thorpej break;
1011 1.1 thorpej default:
1012 1.1 thorpej memh_valid = 0;
1013 1.1 thorpej }
1014 1.1 thorpej
1015 1.1 thorpej if (memh_valid) {
1016 1.1 thorpej sc->sc_st = memt;
1017 1.1 thorpej sc->sc_sh = memh;
1018 1.1 thorpej } else {
1019 1.160 christos aprint_error_dev(sc->sc_dev,
1020 1.160 christos "unable to map device registers\n");
1021 1.1 thorpej return;
1022 1.1 thorpej }
1023 1.1 thorpej
1024 1.53 thorpej /*
1025 1.53 thorpej * In addition, i82544 and later support I/O mapped indirect
1026 1.53 thorpej * register access. It is not desirable (nor supported in
1027 1.53 thorpej * this driver) to use it for normal operation, though it is
1028 1.53 thorpej * required to work around bugs in some chip versions.
1029 1.53 thorpej */
1030 1.53 thorpej if (sc->sc_type >= WM_T_82544) {
1031 1.53 thorpej /* First we have to find the I/O BAR. */
1032 1.53 thorpej for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
1033 1.53 thorpej if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
1034 1.53 thorpej PCI_MAPREG_TYPE_IO)
1035 1.53 thorpej break;
1036 1.53 thorpej }
1037 1.53 thorpej if (i == PCI_MAPREG_END)
1038 1.160 christos aprint_error_dev(sc->sc_dev,
1039 1.160 christos "WARNING: unable to find I/O BAR\n");
1040 1.88 briggs else {
1041 1.88 briggs /*
1042 1.88 briggs * The i8254x doesn't apparently respond when the
1043 1.88 briggs * I/O BAR is 0, which looks somewhat like it's not
1044 1.88 briggs * been configured.
1045 1.88 briggs */
1046 1.88 briggs preg = pci_conf_read(pc, pa->pa_tag, i);
1047 1.88 briggs if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
1048 1.160 christos aprint_error_dev(sc->sc_dev,
1049 1.160 christos "WARNING: I/O BAR at zero.\n");
1050 1.88 briggs } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
1051 1.53 thorpej 0, &sc->sc_iot, &sc->sc_ioh,
1052 1.88 briggs NULL, NULL) == 0) {
1053 1.88 briggs sc->sc_flags |= WM_F_IOH_VALID;
1054 1.88 briggs } else {
1055 1.160 christos aprint_error_dev(sc->sc_dev,
1056 1.160 christos "WARNING: unable to map I/O space\n");
1057 1.88 briggs }
1058 1.88 briggs }
1059 1.88 briggs
1060 1.53 thorpej }
1061 1.53 thorpej
1062 1.11 thorpej /* Enable bus mastering. Disable MWI on the i82542 2.0. */
1063 1.1 thorpej preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1064 1.1 thorpej preg |= PCI_COMMAND_MASTER_ENABLE;
1065 1.11 thorpej if (sc->sc_type < WM_T_82542_2_1)
1066 1.1 thorpej preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
1067 1.1 thorpej pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
1068 1.1 thorpej
1069 1.122 christos /* power up chip */
1070 1.157 dyoung if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1071 1.122 christos NULL)) && error != EOPNOTSUPP) {
1072 1.160 christos aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1073 1.122 christos return;
1074 1.1 thorpej }
1075 1.1 thorpej
1076 1.1 thorpej /*
1077 1.1 thorpej * Map and establish our interrupt.
1078 1.1 thorpej */
1079 1.1 thorpej if (pci_intr_map(pa, &ih)) {
1080 1.160 christos aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1081 1.1 thorpej return;
1082 1.1 thorpej }
1083 1.1 thorpej intrstr = pci_intr_string(pc, ih);
1084 1.1 thorpej sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
1085 1.1 thorpej if (sc->sc_ih == NULL) {
1086 1.160 christos aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1087 1.1 thorpej if (intrstr != NULL)
1088 1.37 thorpej aprint_normal(" at %s", intrstr);
1089 1.37 thorpej aprint_normal("\n");
1090 1.1 thorpej return;
1091 1.1 thorpej }
1092 1.160 christos aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1093 1.52 thorpej
1094 1.52 thorpej /*
1095 1.52 thorpej * Determine a few things about the bus we're connected to.
1096 1.52 thorpej */
1097 1.52 thorpej if (sc->sc_type < WM_T_82543) {
1098 1.52 thorpej /* We don't really know the bus characteristics here. */
1099 1.52 thorpej sc->sc_bus_speed = 33;
1100 1.73 tron } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
1101 1.73 tron /*
1102 1.73 tron * CSA (Communication Streaming Architecture) is about as fast
1103 1.73 tron * a 32-bit 66MHz PCI Bus.
1104 1.73 tron */
1105 1.73 tron sc->sc_flags |= WM_F_CSA;
1106 1.73 tron sc->sc_bus_speed = 66;
1107 1.160 christos aprint_verbose_dev(sc->sc_dev,
1108 1.160 christos "Communication Streaming Architecture\n");
1109 1.78 thorpej if (sc->sc_type == WM_T_82547) {
1110 1.142 ad callout_init(&sc->sc_txfifo_ch, 0);
1111 1.78 thorpej callout_setfunc(&sc->sc_txfifo_ch,
1112 1.78 thorpej wm_82547_txfifo_stall, sc);
1113 1.160 christos aprint_verbose_dev(sc->sc_dev,
1114 1.160 christos "using 82547 Tx FIFO stall work-around\n");
1115 1.78 thorpej }
1116 1.116 msaitoh } else if (sc->sc_type >= WM_T_82571) {
1117 1.139 bouyer sc->sc_flags |= WM_F_PCIE;
1118 1.167 msaitoh if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9)
1119 1.167 msaitoh && (sc->sc_type != WM_T_ICH10))
1120 1.139 bouyer sc->sc_flags |= WM_F_EEPROM_SEMAPHORE;
1121 1.160 christos aprint_verbose_dev(sc->sc_dev, "PCI-Express bus\n");
1122 1.73 tron } else {
1123 1.52 thorpej reg = CSR_READ(sc, WMREG_STATUS);
1124 1.52 thorpej if (reg & STATUS_BUS64)
1125 1.52 thorpej sc->sc_flags |= WM_F_BUS64;
1126 1.52 thorpej if (sc->sc_type >= WM_T_82544 &&
1127 1.54 thorpej (reg & STATUS_PCIX_MODE) != 0) {
1128 1.54 thorpej pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
1129 1.54 thorpej
1130 1.52 thorpej sc->sc_flags |= WM_F_PCIX;
1131 1.54 thorpej if (pci_get_capability(pa->pa_pc, pa->pa_tag,
1132 1.54 thorpej PCI_CAP_PCIX,
1133 1.54 thorpej &sc->sc_pcix_offset, NULL) == 0)
1134 1.160 christos aprint_error_dev(sc->sc_dev,
1135 1.160 christos "unable to find PCIX capability\n");
1136 1.54 thorpej else if (sc->sc_type != WM_T_82545_3 &&
1137 1.54 thorpej sc->sc_type != WM_T_82546_3) {
1138 1.54 thorpej /*
1139 1.54 thorpej * Work around a problem caused by the BIOS
1140 1.54 thorpej * setting the max memory read byte count
1141 1.54 thorpej * incorrectly.
1142 1.54 thorpej */
1143 1.54 thorpej pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
1144 1.54 thorpej sc->sc_pcix_offset + PCI_PCIX_CMD);
1145 1.54 thorpej pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
1146 1.54 thorpej sc->sc_pcix_offset + PCI_PCIX_STATUS);
1147 1.54 thorpej
1148 1.54 thorpej bytecnt =
1149 1.54 thorpej (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
1150 1.54 thorpej PCI_PCIX_CMD_BYTECNT_SHIFT;
1151 1.54 thorpej maxb =
1152 1.54 thorpej (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
1153 1.54 thorpej PCI_PCIX_STATUS_MAXB_SHIFT;
1154 1.54 thorpej if (bytecnt > maxb) {
1155 1.160 christos aprint_verbose_dev(sc->sc_dev,
1156 1.160 christos "resetting PCI-X MMRBC: %d -> %d\n",
1157 1.54 thorpej 512 << bytecnt, 512 << maxb);
1158 1.54 thorpej pcix_cmd = (pcix_cmd &
1159 1.54 thorpej ~PCI_PCIX_CMD_BYTECNT_MASK) |
1160 1.54 thorpej (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
1161 1.54 thorpej pci_conf_write(pa->pa_pc, pa->pa_tag,
1162 1.54 thorpej sc->sc_pcix_offset + PCI_PCIX_CMD,
1163 1.54 thorpej pcix_cmd);
1164 1.54 thorpej }
1165 1.54 thorpej }
1166 1.54 thorpej }
1167 1.52 thorpej /*
1168 1.52 thorpej * The quad port adapter is special; it has a PCIX-PCIX
1169 1.52 thorpej * bridge on the board, and can run the secondary bus at
1170 1.52 thorpej * a higher speed.
1171 1.52 thorpej */
1172 1.52 thorpej if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
1173 1.52 thorpej sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
1174 1.52 thorpej : 66;
1175 1.52 thorpej } else if (sc->sc_flags & WM_F_PCIX) {
1176 1.62 thorpej switch (reg & STATUS_PCIXSPD_MASK) {
1177 1.52 thorpej case STATUS_PCIXSPD_50_66:
1178 1.52 thorpej sc->sc_bus_speed = 66;
1179 1.52 thorpej break;
1180 1.52 thorpej case STATUS_PCIXSPD_66_100:
1181 1.52 thorpej sc->sc_bus_speed = 100;
1182 1.52 thorpej break;
1183 1.52 thorpej case STATUS_PCIXSPD_100_133:
1184 1.52 thorpej sc->sc_bus_speed = 133;
1185 1.52 thorpej break;
1186 1.52 thorpej default:
1187 1.160 christos aprint_error_dev(sc->sc_dev,
1188 1.158 cegger "unknown PCIXSPD %d; assuming 66MHz\n",
1189 1.62 thorpej reg & STATUS_PCIXSPD_MASK);
1190 1.52 thorpej sc->sc_bus_speed = 66;
1191 1.52 thorpej }
1192 1.52 thorpej } else
1193 1.52 thorpej sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
1194 1.160 christos aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
1195 1.52 thorpej (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
1196 1.52 thorpej (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
1197 1.52 thorpej }
1198 1.1 thorpej
1199 1.1 thorpej /*
1200 1.1 thorpej * Allocate the control data structures, and create and load the
1201 1.1 thorpej * DMA map for it.
1202 1.69 thorpej *
1203 1.69 thorpej * NOTE: All Tx descriptors must be in the same 4G segment of
1204 1.69 thorpej * memory. So must Rx descriptors. We simplify by allocating
1205 1.69 thorpej * both sets within the same 4G segment.
1206 1.1 thorpej */
1207 1.75 thorpej WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
1208 1.75 thorpej WM_NTXDESC_82542 : WM_NTXDESC_82544;
1209 1.75 thorpej cdata_size = sc->sc_type < WM_T_82544 ?
1210 1.75 thorpej sizeof(struct wm_control_data_82542) :
1211 1.75 thorpej sizeof(struct wm_control_data_82544);
1212 1.75 thorpej if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
1213 1.75 thorpej (bus_size_t) 0x100000000ULL,
1214 1.69 thorpej &seg, 1, &rseg, 0)) != 0) {
1215 1.160 christos aprint_error_dev(sc->sc_dev,
1216 1.158 cegger "unable to allocate control data, error = %d\n",
1217 1.158 cegger error);
1218 1.1 thorpej goto fail_0;
1219 1.1 thorpej }
1220 1.1 thorpej
1221 1.75 thorpej if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
1222 1.155 rafal (void **)&sc->sc_control_data,
1223 1.155 rafal BUS_DMA_COHERENT)) != 0) {
1224 1.160 christos aprint_error_dev(sc->sc_dev,
1225 1.160 christos "unable to map control data, error = %d\n", error);
1226 1.1 thorpej goto fail_1;
1227 1.1 thorpej }
1228 1.1 thorpej
1229 1.75 thorpej if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
1230 1.75 thorpej 0, 0, &sc->sc_cddmamap)) != 0) {
1231 1.160 christos aprint_error_dev(sc->sc_dev,
1232 1.160 christos "unable to create control data DMA map, error = %d\n",
1233 1.160 christos error);
1234 1.1 thorpej goto fail_2;
1235 1.1 thorpej }
1236 1.1 thorpej
1237 1.1 thorpej if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1238 1.75 thorpej sc->sc_control_data, cdata_size, NULL,
1239 1.69 thorpej 0)) != 0) {
1240 1.160 christos aprint_error_dev(sc->sc_dev,
1241 1.158 cegger "unable to load control data DMA map, error = %d\n",
1242 1.158 cegger error);
1243 1.1 thorpej goto fail_3;
1244 1.1 thorpej }
1245 1.1 thorpej
1246 1.74 tron
1247 1.1 thorpej /*
1248 1.1 thorpej * Create the transmit buffer DMA maps.
1249 1.1 thorpej */
1250 1.74 tron WM_TXQUEUELEN(sc) =
1251 1.74 tron (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1252 1.74 tron WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1253 1.74 tron for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1254 1.82 thorpej if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1255 1.79 thorpej WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1256 1.69 thorpej &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1257 1.160 christos aprint_error_dev(sc->sc_dev,
1258 1.160 christos "unable to create Tx DMA map %d, error = %d\n",
1259 1.160 christos i, error);
1260 1.1 thorpej goto fail_4;
1261 1.1 thorpej }
1262 1.1 thorpej }
1263 1.1 thorpej
1264 1.1 thorpej /*
1265 1.1 thorpej * Create the receive buffer DMA maps.
1266 1.1 thorpej */
1267 1.1 thorpej for (i = 0; i < WM_NRXDESC; i++) {
1268 1.1 thorpej if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1269 1.69 thorpej MCLBYTES, 0, 0,
1270 1.69 thorpej &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1271 1.160 christos aprint_error_dev(sc->sc_dev,
1272 1.160 christos "unable to create Rx DMA map %d error = %d\n",
1273 1.160 christos i, error);
1274 1.1 thorpej goto fail_5;
1275 1.1 thorpej }
1276 1.1 thorpej sc->sc_rxsoft[i].rxs_mbuf = NULL;
1277 1.1 thorpej }
1278 1.1 thorpej
1279 1.127 bouyer /* clear interesting stat counters */
1280 1.127 bouyer CSR_READ(sc, WMREG_COLC);
1281 1.127 bouyer CSR_READ(sc, WMREG_RXERRC);
1282 1.127 bouyer
1283 1.1 thorpej /*
1284 1.1 thorpej * Reset the chip to a known state.
1285 1.1 thorpej */
1286 1.1 thorpej wm_reset(sc);
1287 1.1 thorpej
1288 1.169 msaitoh switch (sc->sc_type) {
1289 1.169 msaitoh case WM_T_82571:
1290 1.169 msaitoh case WM_T_82572:
1291 1.169 msaitoh case WM_T_82573:
1292 1.169 msaitoh case WM_T_82574:
1293 1.169 msaitoh case WM_T_80003:
1294 1.169 msaitoh case WM_T_ICH8:
1295 1.169 msaitoh case WM_T_ICH9:
1296 1.169 msaitoh case WM_T_ICH10:
1297 1.169 msaitoh if (wm_check_mng_mode(sc) != 0)
1298 1.169 msaitoh wm_get_hw_control(sc);
1299 1.169 msaitoh break;
1300 1.169 msaitoh default:
1301 1.169 msaitoh break;
1302 1.169 msaitoh }
1303 1.169 msaitoh
1304 1.1 thorpej /*
1305 1.44 thorpej * Get some information about the EEPROM.
1306 1.44 thorpej */
1307 1.167 msaitoh if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
1308 1.167 msaitoh || (sc->sc_type == WM_T_ICH10)) {
1309 1.139 bouyer uint32_t flash_size;
1310 1.139 bouyer sc->sc_flags |= WM_F_SWFWHW_SYNC | WM_F_EEPROM_FLASH;
1311 1.139 bouyer memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_ICH8_FLASH);
1312 1.139 bouyer if (pci_mapreg_map(pa, WM_ICH8_FLASH, memtype, 0,
1313 1.139 bouyer &sc->sc_flasht, &sc->sc_flashh, NULL, NULL)) {
1314 1.160 christos aprint_error_dev(sc->sc_dev,
1315 1.160 christos "can't map FLASH registers\n");
1316 1.139 bouyer return;
1317 1.139 bouyer }
1318 1.139 bouyer flash_size = ICH8_FLASH_READ32(sc, ICH_FLASH_GFPREG);
1319 1.139 bouyer sc->sc_ich8_flash_base = (flash_size & ICH_GFPREG_BASE_MASK) *
1320 1.139 bouyer ICH_FLASH_SECTOR_SIZE;
1321 1.139 bouyer sc->sc_ich8_flash_bank_size =
1322 1.139 bouyer ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1;
1323 1.139 bouyer sc->sc_ich8_flash_bank_size -=
1324 1.139 bouyer (flash_size & ICH_GFPREG_BASE_MASK);
1325 1.139 bouyer sc->sc_ich8_flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
1326 1.139 bouyer sc->sc_ich8_flash_bank_size /= 2 * sizeof(uint16_t);
1327 1.139 bouyer } else if (sc->sc_type == WM_T_80003)
1328 1.136 msaitoh sc->sc_flags |= WM_F_EEPROM_EERDEEWR | WM_F_SWFW_SYNC;
1329 1.127 bouyer else if (sc->sc_type == WM_T_82573)
1330 1.136 msaitoh sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
1331 1.165 sborrill else if (sc->sc_type == WM_T_82574)
1332 1.165 sborrill sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
1333 1.117 msaitoh else if (sc->sc_type > WM_T_82544)
1334 1.44 thorpej sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1335 1.117 msaitoh
1336 1.44 thorpej if (sc->sc_type <= WM_T_82544)
1337 1.44 thorpej sc->sc_ee_addrbits = 6;
1338 1.44 thorpej else if (sc->sc_type <= WM_T_82546_3) {
1339 1.44 thorpej reg = CSR_READ(sc, WMREG_EECD);
1340 1.44 thorpej if (reg & EECD_EE_SIZE)
1341 1.44 thorpej sc->sc_ee_addrbits = 8;
1342 1.44 thorpej else
1343 1.44 thorpej sc->sc_ee_addrbits = 6;
1344 1.57 thorpej } else if (sc->sc_type <= WM_T_82547_2) {
1345 1.57 thorpej reg = CSR_READ(sc, WMREG_EECD);
1346 1.57 thorpej if (reg & EECD_EE_TYPE) {
1347 1.57 thorpej sc->sc_flags |= WM_F_EEPROM_SPI;
1348 1.57 thorpej sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1349 1.57 thorpej } else
1350 1.57 thorpej sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1351 1.165 sborrill } else if ((sc->sc_type == WM_T_82573 || sc->sc_type == WM_T_82574) &&
1352 1.117 msaitoh (wm_is_onboard_nvm_eeprom(sc) == 0)) {
1353 1.117 msaitoh sc->sc_flags |= WM_F_EEPROM_FLASH;
1354 1.57 thorpej } else {
1355 1.57 thorpej /* Assume everything else is SPI. */
1356 1.57 thorpej reg = CSR_READ(sc, WMREG_EECD);
1357 1.57 thorpej sc->sc_flags |= WM_F_EEPROM_SPI;
1358 1.57 thorpej sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1359 1.44 thorpej }
1360 1.112 gavan
1361 1.112 gavan /*
1362 1.112 gavan * Defer printing the EEPROM type until after verifying the checksum
1363 1.112 gavan * This allows the EEPROM type to be printed correctly in the case
1364 1.112 gavan * that no EEPROM is attached.
1365 1.112 gavan */
1366 1.112 gavan
1367 1.112 gavan /*
1368 1.113 gavan * Validate the EEPROM checksum. If the checksum fails, flag this for
1369 1.113 gavan * later, so we can fail future reads from the EEPROM.
1370 1.1 thorpej */
1371 1.169 msaitoh if (wm_validate_eeprom_checksum(sc)) {
1372 1.169 msaitoh /*
1373 1.169 msaitoh * Read twice again because some PCI-e parts fail the first
1374 1.169 msaitoh * check due to the link being in sleep state.
1375 1.169 msaitoh */
1376 1.169 msaitoh if (wm_validate_eeprom_checksum(sc))
1377 1.169 msaitoh sc->sc_flags |= WM_F_EEPROM_INVALID;
1378 1.169 msaitoh }
1379 1.112 gavan
1380 1.113 gavan if (sc->sc_flags & WM_F_EEPROM_INVALID)
1381 1.160 christos aprint_verbose_dev(sc->sc_dev, "No EEPROM\n");
1382 1.117 msaitoh else if (sc->sc_flags & WM_F_EEPROM_FLASH) {
1383 1.160 christos aprint_verbose_dev(sc->sc_dev, "FLASH\n");
1384 1.117 msaitoh } else {
1385 1.112 gavan if (sc->sc_flags & WM_F_EEPROM_SPI)
1386 1.112 gavan eetype = "SPI";
1387 1.112 gavan else
1388 1.112 gavan eetype = "MicroWire";
1389 1.160 christos aprint_verbose_dev(sc->sc_dev,
1390 1.160 christos "%u word (%d address bits) %s EEPROM\n",
1391 1.158 cegger 1U << sc->sc_ee_addrbits,
1392 1.112 gavan sc->sc_ee_addrbits, eetype);
1393 1.112 gavan }
1394 1.112 gavan
1395 1.113 gavan /*
1396 1.113 gavan * Read the Ethernet address from the EEPROM, if not first found
1397 1.113 gavan * in device properties.
1398 1.113 gavan */
1399 1.160 christos ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-addr");
1400 1.115 thorpej if (ea != NULL) {
1401 1.115 thorpej KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
1402 1.115 thorpej KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
1403 1.115 thorpej memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
1404 1.115 thorpej } else {
1405 1.113 gavan if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1406 1.113 gavan sizeof(myea) / sizeof(myea[0]), myea)) {
1407 1.160 christos aprint_error_dev(sc->sc_dev,
1408 1.160 christos "unable to read Ethernet address\n");
1409 1.113 gavan return;
1410 1.113 gavan }
1411 1.113 gavan enaddr[0] = myea[0] & 0xff;
1412 1.113 gavan enaddr[1] = myea[0] >> 8;
1413 1.113 gavan enaddr[2] = myea[1] & 0xff;
1414 1.113 gavan enaddr[3] = myea[1] >> 8;
1415 1.113 gavan enaddr[4] = myea[2] & 0xff;
1416 1.113 gavan enaddr[5] = myea[2] >> 8;
1417 1.113 gavan }
1418 1.1 thorpej
1419 1.17 thorpej /*
1420 1.17 thorpej * Toggle the LSB of the MAC address on the second port
1421 1.121 msaitoh * of the dual port controller.
1422 1.17 thorpej */
1423 1.121 msaitoh if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3
1424 1.127 bouyer || sc->sc_type == WM_T_82571 || sc->sc_type == WM_T_80003) {
1425 1.17 thorpej if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1426 1.17 thorpej enaddr[5] ^= 1;
1427 1.17 thorpej }
1428 1.17 thorpej
1429 1.160 christos aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
1430 1.1 thorpej ether_sprintf(enaddr));
1431 1.1 thorpej
1432 1.1 thorpej /*
1433 1.1 thorpej * Read the config info from the EEPROM, and set up various
1434 1.1 thorpej * bits in the control registers based on their contents.
1435 1.1 thorpej */
1436 1.160 christos pn = prop_dictionary_get(device_properties(sc->sc_dev),
1437 1.115 thorpej "i82543-cfg1");
1438 1.115 thorpej if (pn != NULL) {
1439 1.115 thorpej KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1440 1.115 thorpej cfg1 = (uint16_t) prop_number_integer_value(pn);
1441 1.115 thorpej } else {
1442 1.113 gavan if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1443 1.160 christos aprint_error_dev(sc->sc_dev, "unable to read CFG1\n");
1444 1.113 gavan return;
1445 1.113 gavan }
1446 1.51 thorpej }
1447 1.115 thorpej
1448 1.160 christos pn = prop_dictionary_get(device_properties(sc->sc_dev),
1449 1.115 thorpej "i82543-cfg2");
1450 1.115 thorpej if (pn != NULL) {
1451 1.115 thorpej KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1452 1.115 thorpej cfg2 = (uint16_t) prop_number_integer_value(pn);
1453 1.115 thorpej } else {
1454 1.113 gavan if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1455 1.160 christos aprint_error_dev(sc->sc_dev, "unable to read CFG2\n");
1456 1.113 gavan return;
1457 1.113 gavan }
1458 1.51 thorpej }
1459 1.115 thorpej
1460 1.51 thorpej if (sc->sc_type >= WM_T_82544) {
1461 1.160 christos pn = prop_dictionary_get(device_properties(sc->sc_dev),
1462 1.115 thorpej "i82543-swdpin");
1463 1.115 thorpej if (pn != NULL) {
1464 1.115 thorpej KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1465 1.115 thorpej swdpin = (uint16_t) prop_number_integer_value(pn);
1466 1.115 thorpej } else {
1467 1.113 gavan if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1468 1.160 christos aprint_error_dev(sc->sc_dev,
1469 1.160 christos "unable to read SWDPIN\n");
1470 1.113 gavan return;
1471 1.113 gavan }
1472 1.51 thorpej }
1473 1.51 thorpej }
1474 1.1 thorpej
1475 1.1 thorpej if (cfg1 & EEPROM_CFG1_ILOS)
1476 1.1 thorpej sc->sc_ctrl |= CTRL_ILOS;
1477 1.11 thorpej if (sc->sc_type >= WM_T_82544) {
1478 1.1 thorpej sc->sc_ctrl |=
1479 1.1 thorpej ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1480 1.1 thorpej CTRL_SWDPIO_SHIFT;
1481 1.1 thorpej sc->sc_ctrl |=
1482 1.1 thorpej ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1483 1.1 thorpej CTRL_SWDPINS_SHIFT;
1484 1.1 thorpej } else {
1485 1.1 thorpej sc->sc_ctrl |=
1486 1.1 thorpej ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1487 1.1 thorpej CTRL_SWDPIO_SHIFT;
1488 1.1 thorpej }
1489 1.1 thorpej
1490 1.1 thorpej #if 0
1491 1.11 thorpej if (sc->sc_type >= WM_T_82544) {
1492 1.1 thorpej if (cfg1 & EEPROM_CFG1_IPS0)
1493 1.1 thorpej sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1494 1.1 thorpej if (cfg1 & EEPROM_CFG1_IPS1)
1495 1.1 thorpej sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1496 1.1 thorpej sc->sc_ctrl_ext |=
1497 1.1 thorpej ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1498 1.1 thorpej CTRL_EXT_SWDPIO_SHIFT;
1499 1.1 thorpej sc->sc_ctrl_ext |=
1500 1.1 thorpej ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1501 1.1 thorpej CTRL_EXT_SWDPINS_SHIFT;
1502 1.1 thorpej } else {
1503 1.1 thorpej sc->sc_ctrl_ext |=
1504 1.1 thorpej ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1505 1.1 thorpej CTRL_EXT_SWDPIO_SHIFT;
1506 1.1 thorpej }
1507 1.1 thorpej #endif
1508 1.1 thorpej
1509 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1510 1.1 thorpej #if 0
1511 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1512 1.1 thorpej #endif
1513 1.1 thorpej
1514 1.1 thorpej /*
1515 1.1 thorpej * Set up some register offsets that are different between
1516 1.11 thorpej * the i82542 and the i82543 and later chips.
1517 1.1 thorpej */
1518 1.11 thorpej if (sc->sc_type < WM_T_82543) {
1519 1.1 thorpej sc->sc_rdt_reg = WMREG_OLD_RDT0;
1520 1.1 thorpej sc->sc_tdt_reg = WMREG_OLD_TDT;
1521 1.1 thorpej } else {
1522 1.1 thorpej sc->sc_rdt_reg = WMREG_RDT;
1523 1.1 thorpej sc->sc_tdt_reg = WMREG_TDT;
1524 1.1 thorpej }
1525 1.1 thorpej
1526 1.1 thorpej /*
1527 1.1 thorpej * Determine if we're TBI or GMII mode, and initialize the
1528 1.1 thorpej * media structures accordingly.
1529 1.1 thorpej */
1530 1.144 msaitoh if (sc->sc_type == WM_T_ICH8 || sc->sc_type == WM_T_ICH9
1531 1.167 msaitoh || sc->sc_type == WM_T_ICH10 || sc->sc_type == WM_T_82573
1532 1.167 msaitoh || sc->sc_type == WM_T_82574) {
1533 1.139 bouyer /* STATUS_TBIMODE reserved/reused, can't rely on it */
1534 1.139 bouyer wm_gmii_mediainit(sc);
1535 1.139 bouyer } else if (sc->sc_type < WM_T_82543 ||
1536 1.1 thorpej (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1537 1.1 thorpej if (wmp->wmp_flags & WMP_F_1000T)
1538 1.160 christos aprint_error_dev(sc->sc_dev,
1539 1.160 christos "WARNING: TBIMODE set on 1000BASE-T product!\n");
1540 1.1 thorpej wm_tbi_mediainit(sc);
1541 1.1 thorpej } else {
1542 1.1 thorpej if (wmp->wmp_flags & WMP_F_1000X)
1543 1.160 christos aprint_error_dev(sc->sc_dev,
1544 1.160 christos "WARNING: TBIMODE clear on 1000BASE-X product!\n");
1545 1.1 thorpej wm_gmii_mediainit(sc);
1546 1.1 thorpej }
1547 1.1 thorpej
1548 1.1 thorpej ifp = &sc->sc_ethercom.ec_if;
1549 1.160 christos xname = device_xname(sc->sc_dev);
1550 1.160 christos strlcpy(ifp->if_xname, xname, IFNAMSIZ);
1551 1.1 thorpej ifp->if_softc = sc;
1552 1.1 thorpej ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1553 1.1 thorpej ifp->if_ioctl = wm_ioctl;
1554 1.1 thorpej ifp->if_start = wm_start;
1555 1.1 thorpej ifp->if_watchdog = wm_watchdog;
1556 1.1 thorpej ifp->if_init = wm_init;
1557 1.1 thorpej ifp->if_stop = wm_stop;
1558 1.58 ragge IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1559 1.1 thorpej IFQ_SET_READY(&ifp->if_snd);
1560 1.1 thorpej
1561 1.165 sborrill if (sc->sc_type != WM_T_82573 && sc->sc_type != WM_T_82574 &&
1562 1.165 sborrill sc->sc_type != WM_T_ICH8)
1563 1.120 msaitoh sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1564 1.41 tls
1565 1.1 thorpej /*
1566 1.11 thorpej * If we're a i82543 or greater, we can support VLANs.
1567 1.1 thorpej */
1568 1.11 thorpej if (sc->sc_type >= WM_T_82543)
1569 1.1 thorpej sc->sc_ethercom.ec_capabilities |=
1570 1.1 thorpej ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1571 1.1 thorpej
1572 1.1 thorpej /*
1573 1.1 thorpej * We can perform TCPv4 and UDPv4 checkums in-bound. Only
1574 1.11 thorpej * on i82543 and later.
1575 1.1 thorpej */
1576 1.130 yamt if (sc->sc_type >= WM_T_82543) {
1577 1.1 thorpej ifp->if_capabilities |=
1578 1.103 yamt IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1579 1.103 yamt IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1580 1.107 yamt IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1581 1.107 yamt IFCAP_CSUM_TCPv6_Tx |
1582 1.107 yamt IFCAP_CSUM_UDPv6_Tx;
1583 1.130 yamt }
1584 1.130 yamt
1585 1.130 yamt /*
1586 1.130 yamt * XXXyamt: i'm not sure which chips support RXCSUM_IPV6OFL.
1587 1.130 yamt *
1588 1.130 yamt * 82541GI (8086:1076) ... no
1589 1.130 yamt * 82572EI (8086:10b9) ... yes
1590 1.130 yamt */
1591 1.130 yamt if (sc->sc_type >= WM_T_82571) {
1592 1.130 yamt ifp->if_capabilities |=
1593 1.130 yamt IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
1594 1.130 yamt }
1595 1.1 thorpej
1596 1.99 matt /*
1597 1.99 matt * If we're a i82544 or greater (except i82547), we can do
1598 1.99 matt * TCP segmentation offload.
1599 1.99 matt */
1600 1.131 yamt if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547) {
1601 1.99 matt ifp->if_capabilities |= IFCAP_TSOv4;
1602 1.131 yamt }
1603 1.131 yamt
1604 1.131 yamt if (sc->sc_type >= WM_T_82571) {
1605 1.131 yamt ifp->if_capabilities |= IFCAP_TSOv6;
1606 1.131 yamt }
1607 1.99 matt
1608 1.1 thorpej /*
1609 1.1 thorpej * Attach the interface.
1610 1.1 thorpej */
1611 1.1 thorpej if_attach(ifp);
1612 1.1 thorpej ether_ifattach(ifp, enaddr);
1613 1.21 itojun #if NRND > 0
1614 1.160 christos rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET, 0);
1615 1.21 itojun #endif
1616 1.1 thorpej
1617 1.1 thorpej #ifdef WM_EVENT_COUNTERS
1618 1.1 thorpej /* Attach event counters. */
1619 1.1 thorpej evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1620 1.160 christos NULL, xname, "txsstall");
1621 1.1 thorpej evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1622 1.160 christos NULL, xname, "txdstall");
1623 1.78 thorpej evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1624 1.160 christos NULL, xname, "txfifo_stall");
1625 1.4 thorpej evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1626 1.160 christos NULL, xname, "txdw");
1627 1.4 thorpej evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1628 1.160 christos NULL, xname, "txqe");
1629 1.1 thorpej evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1630 1.160 christos NULL, xname, "rxintr");
1631 1.1 thorpej evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1632 1.160 christos NULL, xname, "linkintr");
1633 1.1 thorpej
1634 1.1 thorpej evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1635 1.160 christos NULL, xname, "rxipsum");
1636 1.1 thorpej evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1637 1.160 christos NULL, xname, "rxtusum");
1638 1.1 thorpej evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1639 1.160 christos NULL, xname, "txipsum");
1640 1.1 thorpej evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1641 1.160 christos NULL, xname, "txtusum");
1642 1.107 yamt evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
1643 1.160 christos NULL, xname, "txtusum6");
1644 1.1 thorpej
1645 1.99 matt evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
1646 1.160 christos NULL, xname, "txtso");
1647 1.131 yamt evcnt_attach_dynamic(&sc->sc_ev_txtso6, EVCNT_TYPE_MISC,
1648 1.160 christos NULL, xname, "txtso6");
1649 1.99 matt evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
1650 1.160 christos NULL, xname, "txtsopain");
1651 1.99 matt
1652 1.75 thorpej for (i = 0; i < WM_NTXSEGS; i++) {
1653 1.75 thorpej sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1654 1.2 thorpej evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1655 1.160 christos NULL, xname, wm_txseg_evcnt_names[i]);
1656 1.75 thorpej }
1657 1.2 thorpej
1658 1.1 thorpej evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1659 1.160 christos NULL, xname, "txdrop");
1660 1.1 thorpej
1661 1.1 thorpej evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1662 1.160 christos NULL, xname, "tu");
1663 1.71 thorpej
1664 1.71 thorpej evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1665 1.160 christos NULL, xname, "tx_xoff");
1666 1.71 thorpej evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1667 1.160 christos NULL, xname, "tx_xon");
1668 1.71 thorpej evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1669 1.160 christos NULL, xname, "rx_xoff");
1670 1.71 thorpej evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1671 1.160 christos NULL, xname, "rx_xon");
1672 1.71 thorpej evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1673 1.160 christos NULL, xname, "rx_macctl");
1674 1.1 thorpej #endif /* WM_EVENT_COUNTERS */
1675 1.1 thorpej
1676 1.149 jmcneill if (!pmf_device_register(self, NULL, NULL))
1677 1.149 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
1678 1.149 jmcneill else
1679 1.149 jmcneill pmf_class_network_register(self, ifp);
1680 1.123 jmcneill
1681 1.1 thorpej return;
1682 1.1 thorpej
1683 1.1 thorpej /*
1684 1.1 thorpej * Free any resources we've allocated during the failed attach
1685 1.1 thorpej * attempt. Do this in reverse order and fall through.
1686 1.1 thorpej */
1687 1.1 thorpej fail_5:
1688 1.1 thorpej for (i = 0; i < WM_NRXDESC; i++) {
1689 1.1 thorpej if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1690 1.1 thorpej bus_dmamap_destroy(sc->sc_dmat,
1691 1.1 thorpej sc->sc_rxsoft[i].rxs_dmamap);
1692 1.1 thorpej }
1693 1.1 thorpej fail_4:
1694 1.74 tron for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1695 1.1 thorpej if (sc->sc_txsoft[i].txs_dmamap != NULL)
1696 1.1 thorpej bus_dmamap_destroy(sc->sc_dmat,
1697 1.1 thorpej sc->sc_txsoft[i].txs_dmamap);
1698 1.1 thorpej }
1699 1.1 thorpej bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1700 1.1 thorpej fail_3:
1701 1.1 thorpej bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1702 1.1 thorpej fail_2:
1703 1.135 christos bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1704 1.75 thorpej cdata_size);
1705 1.1 thorpej fail_1:
1706 1.1 thorpej bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1707 1.1 thorpej fail_0:
1708 1.1 thorpej return;
1709 1.1 thorpej }
1710 1.1 thorpej
1711 1.1 thorpej /*
1712 1.86 thorpej * wm_tx_offload:
1713 1.1 thorpej *
1714 1.1 thorpej * Set up TCP/IP checksumming parameters for the
1715 1.1 thorpej * specified packet.
1716 1.1 thorpej */
1717 1.1 thorpej static int
1718 1.86 thorpej wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1719 1.65 tsutsui uint8_t *fieldsp)
1720 1.1 thorpej {
1721 1.4 thorpej struct mbuf *m0 = txs->txs_mbuf;
1722 1.1 thorpej struct livengood_tcpip_ctxdesc *t;
1723 1.98 thorpej uint32_t ipcs, tucs, cmd, cmdlen, seg;
1724 1.131 yamt uint32_t ipcse;
1725 1.13 thorpej struct ether_header *eh;
1726 1.1 thorpej int offset, iphl;
1727 1.98 thorpej uint8_t fields;
1728 1.1 thorpej
1729 1.1 thorpej /*
1730 1.1 thorpej * XXX It would be nice if the mbuf pkthdr had offset
1731 1.1 thorpej * fields for the protocol headers.
1732 1.1 thorpej */
1733 1.1 thorpej
1734 1.13 thorpej eh = mtod(m0, struct ether_header *);
1735 1.13 thorpej switch (htons(eh->ether_type)) {
1736 1.13 thorpej case ETHERTYPE_IP:
1737 1.107 yamt case ETHERTYPE_IPV6:
1738 1.13 thorpej offset = ETHER_HDR_LEN;
1739 1.35 thorpej break;
1740 1.35 thorpej
1741 1.35 thorpej case ETHERTYPE_VLAN:
1742 1.35 thorpej offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1743 1.13 thorpej break;
1744 1.13 thorpej
1745 1.13 thorpej default:
1746 1.13 thorpej /*
1747 1.13 thorpej * Don't support this protocol or encapsulation.
1748 1.13 thorpej */
1749 1.13 thorpej *fieldsp = 0;
1750 1.13 thorpej *cmdp = 0;
1751 1.13 thorpej return (0);
1752 1.13 thorpej }
1753 1.1 thorpej
1754 1.107 yamt if ((m0->m_pkthdr.csum_flags &
1755 1.107 yamt (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
1756 1.107 yamt iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1757 1.107 yamt } else {
1758 1.107 yamt iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
1759 1.107 yamt }
1760 1.131 yamt ipcse = offset + iphl - 1;
1761 1.1 thorpej
1762 1.98 thorpej cmd = WTX_CMD_DEXT | WTX_DTYP_D;
1763 1.98 thorpej cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
1764 1.98 thorpej seg = 0;
1765 1.98 thorpej fields = 0;
1766 1.98 thorpej
1767 1.131 yamt if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
1768 1.99 matt int hlen = offset + iphl;
1769 1.132 thorpej bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1770 1.131 yamt
1771 1.99 matt if (__predict_false(m0->m_len <
1772 1.99 matt (hlen + sizeof(struct tcphdr)))) {
1773 1.99 matt /*
1774 1.99 matt * TCP/IP headers are not in the first mbuf; we need
1775 1.99 matt * to do this the slow and painful way. Let's just
1776 1.99 matt * hope this doesn't happen very often.
1777 1.99 matt */
1778 1.99 matt struct tcphdr th;
1779 1.99 matt
1780 1.99 matt WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
1781 1.99 matt
1782 1.99 matt m_copydata(m0, hlen, sizeof(th), &th);
1783 1.131 yamt if (v4) {
1784 1.131 yamt struct ip ip;
1785 1.99 matt
1786 1.131 yamt m_copydata(m0, offset, sizeof(ip), &ip);
1787 1.131 yamt ip.ip_len = 0;
1788 1.131 yamt m_copyback(m0,
1789 1.131 yamt offset + offsetof(struct ip, ip_len),
1790 1.131 yamt sizeof(ip.ip_len), &ip.ip_len);
1791 1.131 yamt th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1792 1.131 yamt ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1793 1.131 yamt } else {
1794 1.131 yamt struct ip6_hdr ip6;
1795 1.99 matt
1796 1.131 yamt m_copydata(m0, offset, sizeof(ip6), &ip6);
1797 1.131 yamt ip6.ip6_plen = 0;
1798 1.131 yamt m_copyback(m0,
1799 1.131 yamt offset + offsetof(struct ip6_hdr, ip6_plen),
1800 1.131 yamt sizeof(ip6.ip6_plen), &ip6.ip6_plen);
1801 1.131 yamt th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
1802 1.131 yamt &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
1803 1.131 yamt }
1804 1.99 matt m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
1805 1.99 matt sizeof(th.th_sum), &th.th_sum);
1806 1.99 matt
1807 1.99 matt hlen += th.th_off << 2;
1808 1.99 matt } else {
1809 1.99 matt /*
1810 1.99 matt * TCP/IP headers are in the first mbuf; we can do
1811 1.99 matt * this the easy way.
1812 1.99 matt */
1813 1.131 yamt struct tcphdr *th;
1814 1.99 matt
1815 1.131 yamt if (v4) {
1816 1.131 yamt struct ip *ip =
1817 1.135 christos (void *)(mtod(m0, char *) + offset);
1818 1.135 christos th = (void *)(mtod(m0, char *) + hlen);
1819 1.131 yamt
1820 1.131 yamt ip->ip_len = 0;
1821 1.131 yamt th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1822 1.131 yamt ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1823 1.131 yamt } else {
1824 1.131 yamt struct ip6_hdr *ip6 =
1825 1.131 yamt (void *)(mtod(m0, char *) + offset);
1826 1.131 yamt th = (void *)(mtod(m0, char *) + hlen);
1827 1.131 yamt
1828 1.131 yamt ip6->ip6_plen = 0;
1829 1.131 yamt th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
1830 1.131 yamt &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
1831 1.131 yamt }
1832 1.99 matt hlen += th->th_off << 2;
1833 1.99 matt }
1834 1.99 matt
1835 1.131 yamt if (v4) {
1836 1.131 yamt WM_EVCNT_INCR(&sc->sc_ev_txtso);
1837 1.131 yamt cmdlen |= WTX_TCPIP_CMD_IP;
1838 1.131 yamt } else {
1839 1.131 yamt WM_EVCNT_INCR(&sc->sc_ev_txtso6);
1840 1.131 yamt ipcse = 0;
1841 1.131 yamt }
1842 1.99 matt cmd |= WTX_TCPIP_CMD_TSE;
1843 1.131 yamt cmdlen |= WTX_TCPIP_CMD_TSE |
1844 1.99 matt WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
1845 1.99 matt seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
1846 1.99 matt WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
1847 1.99 matt }
1848 1.99 matt
1849 1.13 thorpej /*
1850 1.13 thorpej * NOTE: Even if we're not using the IP or TCP/UDP checksum
1851 1.13 thorpej * offload feature, if we load the context descriptor, we
1852 1.13 thorpej * MUST provide valid values for IPCSS and TUCSS fields.
1853 1.13 thorpej */
1854 1.13 thorpej
1855 1.87 thorpej ipcs = WTX_TCPIP_IPCSS(offset) |
1856 1.87 thorpej WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1857 1.131 yamt WTX_TCPIP_IPCSE(ipcse);
1858 1.99 matt if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
1859 1.1 thorpej WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1860 1.65 tsutsui fields |= WTX_IXSM;
1861 1.13 thorpej }
1862 1.1 thorpej
1863 1.1 thorpej offset += iphl;
1864 1.1 thorpej
1865 1.99 matt if (m0->m_pkthdr.csum_flags &
1866 1.99 matt (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
1867 1.1 thorpej WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1868 1.65 tsutsui fields |= WTX_TXSM;
1869 1.65 tsutsui tucs = WTX_TCPIP_TUCSS(offset) |
1870 1.107 yamt WTX_TCPIP_TUCSO(offset +
1871 1.107 yamt M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1872 1.107 yamt WTX_TCPIP_TUCSE(0) /* rest of packet */;
1873 1.107 yamt } else if ((m0->m_pkthdr.csum_flags &
1874 1.131 yamt (M_CSUM_TCPv6|M_CSUM_UDPv6|M_CSUM_TSOv6)) != 0) {
1875 1.107 yamt WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
1876 1.107 yamt fields |= WTX_TXSM;
1877 1.107 yamt tucs = WTX_TCPIP_TUCSS(offset) |
1878 1.107 yamt WTX_TCPIP_TUCSO(offset +
1879 1.107 yamt M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
1880 1.107 yamt WTX_TCPIP_TUCSE(0) /* rest of packet */;
1881 1.13 thorpej } else {
1882 1.13 thorpej /* Just initialize it to a valid TCP context. */
1883 1.65 tsutsui tucs = WTX_TCPIP_TUCSS(offset) |
1884 1.13 thorpej WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1885 1.65 tsutsui WTX_TCPIP_TUCSE(0) /* rest of packet */;
1886 1.13 thorpej }
1887 1.1 thorpej
1888 1.87 thorpej /* Fill in the context descriptor. */
1889 1.87 thorpej t = (struct livengood_tcpip_ctxdesc *)
1890 1.87 thorpej &sc->sc_txdescs[sc->sc_txnext];
1891 1.87 thorpej t->tcpip_ipcs = htole32(ipcs);
1892 1.87 thorpej t->tcpip_tucs = htole32(tucs);
1893 1.98 thorpej t->tcpip_cmdlen = htole32(cmdlen);
1894 1.98 thorpej t->tcpip_seg = htole32(seg);
1895 1.87 thorpej WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1896 1.5 thorpej
1897 1.87 thorpej sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1898 1.87 thorpej txs->txs_ndesc++;
1899 1.1 thorpej
1900 1.98 thorpej *cmdp = cmd;
1901 1.1 thorpej *fieldsp = fields;
1902 1.1 thorpej
1903 1.1 thorpej return (0);
1904 1.1 thorpej }
1905 1.1 thorpej
1906 1.75 thorpej static void
1907 1.75 thorpej wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1908 1.75 thorpej {
1909 1.75 thorpej struct mbuf *m;
1910 1.75 thorpej int i;
1911 1.75 thorpej
1912 1.160 christos log(LOG_DEBUG, "%s: mbuf chain:\n", device_xname(sc->sc_dev));
1913 1.75 thorpej for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1914 1.84 thorpej log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1915 1.160 christos "m_flags = 0x%08x\n", device_xname(sc->sc_dev),
1916 1.75 thorpej m->m_data, m->m_len, m->m_flags);
1917 1.160 christos log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", device_xname(sc->sc_dev),
1918 1.84 thorpej i, i == 1 ? "" : "s");
1919 1.75 thorpej }
1920 1.75 thorpej
1921 1.1 thorpej /*
1922 1.78 thorpej * wm_82547_txfifo_stall:
1923 1.78 thorpej *
1924 1.78 thorpej * Callout used to wait for the 82547 Tx FIFO to drain,
1925 1.78 thorpej * reset the FIFO pointers, and restart packet transmission.
1926 1.78 thorpej */
1927 1.78 thorpej static void
1928 1.78 thorpej wm_82547_txfifo_stall(void *arg)
1929 1.78 thorpej {
1930 1.78 thorpej struct wm_softc *sc = arg;
1931 1.78 thorpej int s;
1932 1.78 thorpej
1933 1.78 thorpej s = splnet();
1934 1.78 thorpej
1935 1.78 thorpej if (sc->sc_txfifo_stall) {
1936 1.78 thorpej if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1937 1.78 thorpej CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1938 1.78 thorpej CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1939 1.78 thorpej /*
1940 1.78 thorpej * Packets have drained. Stop transmitter, reset
1941 1.78 thorpej * FIFO pointers, restart transmitter, and kick
1942 1.78 thorpej * the packet queue.
1943 1.78 thorpej */
1944 1.78 thorpej uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1945 1.78 thorpej CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1946 1.78 thorpej CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1947 1.78 thorpej CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1948 1.78 thorpej CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1949 1.78 thorpej CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1950 1.78 thorpej CSR_WRITE(sc, WMREG_TCTL, tctl);
1951 1.78 thorpej CSR_WRITE_FLUSH(sc);
1952 1.78 thorpej
1953 1.78 thorpej sc->sc_txfifo_head = 0;
1954 1.78 thorpej sc->sc_txfifo_stall = 0;
1955 1.78 thorpej wm_start(&sc->sc_ethercom.ec_if);
1956 1.78 thorpej } else {
1957 1.78 thorpej /*
1958 1.78 thorpej * Still waiting for packets to drain; try again in
1959 1.78 thorpej * another tick.
1960 1.78 thorpej */
1961 1.78 thorpej callout_schedule(&sc->sc_txfifo_ch, 1);
1962 1.78 thorpej }
1963 1.78 thorpej }
1964 1.78 thorpej
1965 1.78 thorpej splx(s);
1966 1.78 thorpej }
1967 1.78 thorpej
1968 1.78 thorpej /*
1969 1.78 thorpej * wm_82547_txfifo_bugchk:
1970 1.78 thorpej *
1971 1.78 thorpej * Check for bug condition in the 82547 Tx FIFO. We need to
1972 1.78 thorpej * prevent enqueueing a packet that would wrap around the end
1973 1.78 thorpej * if the Tx FIFO ring buffer, otherwise the chip will croak.
1974 1.78 thorpej *
1975 1.78 thorpej * We do this by checking the amount of space before the end
1976 1.78 thorpej * of the Tx FIFO buffer. If the packet will not fit, we "stall"
1977 1.78 thorpej * the Tx FIFO, wait for all remaining packets to drain, reset
1978 1.78 thorpej * the internal FIFO pointers to the beginning, and restart
1979 1.78 thorpej * transmission on the interface.
1980 1.78 thorpej */
1981 1.78 thorpej #define WM_FIFO_HDR 0x10
1982 1.78 thorpej #define WM_82547_PAD_LEN 0x3e0
1983 1.78 thorpej static int
1984 1.78 thorpej wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1985 1.78 thorpej {
1986 1.78 thorpej int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1987 1.78 thorpej int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1988 1.78 thorpej
1989 1.78 thorpej /* Just return if already stalled. */
1990 1.78 thorpej if (sc->sc_txfifo_stall)
1991 1.78 thorpej return (1);
1992 1.78 thorpej
1993 1.78 thorpej if (sc->sc_mii.mii_media_active & IFM_FDX) {
1994 1.78 thorpej /* Stall only occurs in half-duplex mode. */
1995 1.78 thorpej goto send_packet;
1996 1.78 thorpej }
1997 1.78 thorpej
1998 1.78 thorpej if (len >= WM_82547_PAD_LEN + space) {
1999 1.78 thorpej sc->sc_txfifo_stall = 1;
2000 1.78 thorpej callout_schedule(&sc->sc_txfifo_ch, 1);
2001 1.78 thorpej return (1);
2002 1.78 thorpej }
2003 1.78 thorpej
2004 1.78 thorpej send_packet:
2005 1.78 thorpej sc->sc_txfifo_head += len;
2006 1.78 thorpej if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
2007 1.78 thorpej sc->sc_txfifo_head -= sc->sc_txfifo_size;
2008 1.78 thorpej
2009 1.78 thorpej return (0);
2010 1.78 thorpej }
2011 1.78 thorpej
2012 1.78 thorpej /*
2013 1.1 thorpej * wm_start: [ifnet interface function]
2014 1.1 thorpej *
2015 1.1 thorpej * Start packet transmission on the interface.
2016 1.1 thorpej */
2017 1.47 thorpej static void
2018 1.1 thorpej wm_start(struct ifnet *ifp)
2019 1.1 thorpej {
2020 1.1 thorpej struct wm_softc *sc = ifp->if_softc;
2021 1.30 itojun struct mbuf *m0;
2022 1.30 itojun #if 0 /* XXXJRT */
2023 1.30 itojun struct m_tag *mtag;
2024 1.30 itojun #endif
2025 1.1 thorpej struct wm_txsoft *txs;
2026 1.1 thorpej bus_dmamap_t dmamap;
2027 1.99 matt int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
2028 1.80 thorpej bus_addr_t curaddr;
2029 1.80 thorpej bus_size_t seglen, curlen;
2030 1.65 tsutsui uint32_t cksumcmd;
2031 1.65 tsutsui uint8_t cksumfields;
2032 1.1 thorpej
2033 1.1 thorpej if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
2034 1.1 thorpej return;
2035 1.1 thorpej
2036 1.1 thorpej /*
2037 1.1 thorpej * Remember the previous number of free descriptors.
2038 1.1 thorpej */
2039 1.1 thorpej ofree = sc->sc_txfree;
2040 1.1 thorpej
2041 1.1 thorpej /*
2042 1.1 thorpej * Loop through the send queue, setting up transmit descriptors
2043 1.1 thorpej * until we drain the queue, or use up all available transmit
2044 1.1 thorpej * descriptors.
2045 1.1 thorpej */
2046 1.1 thorpej for (;;) {
2047 1.1 thorpej /* Grab a packet off the queue. */
2048 1.1 thorpej IFQ_POLL(&ifp->if_snd, m0);
2049 1.1 thorpej if (m0 == NULL)
2050 1.1 thorpej break;
2051 1.1 thorpej
2052 1.1 thorpej DPRINTF(WM_DEBUG_TX,
2053 1.1 thorpej ("%s: TX: have packet to transmit: %p\n",
2054 1.160 christos device_xname(sc->sc_dev), m0));
2055 1.1 thorpej
2056 1.1 thorpej /* Get a work queue entry. */
2057 1.74 tron if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
2058 1.10 thorpej wm_txintr(sc);
2059 1.10 thorpej if (sc->sc_txsfree == 0) {
2060 1.10 thorpej DPRINTF(WM_DEBUG_TX,
2061 1.10 thorpej ("%s: TX: no free job descriptors\n",
2062 1.160 christos device_xname(sc->sc_dev)));
2063 1.10 thorpej WM_EVCNT_INCR(&sc->sc_ev_txsstall);
2064 1.10 thorpej break;
2065 1.10 thorpej }
2066 1.1 thorpej }
2067 1.1 thorpej
2068 1.1 thorpej txs = &sc->sc_txsoft[sc->sc_txsnext];
2069 1.1 thorpej dmamap = txs->txs_dmamap;
2070 1.1 thorpej
2071 1.131 yamt use_tso = (m0->m_pkthdr.csum_flags &
2072 1.131 yamt (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0;
2073 1.99 matt
2074 1.99 matt /*
2075 1.99 matt * So says the Linux driver:
2076 1.99 matt * The controller does a simple calculation to make sure
2077 1.99 matt * there is enough room in the FIFO before initiating the
2078 1.99 matt * DMA for each buffer. The calc is:
2079 1.99 matt * 4 = ceil(buffer len / MSS)
2080 1.99 matt * To make sure we don't overrun the FIFO, adjust the max
2081 1.99 matt * buffer len if the MSS drops.
2082 1.99 matt */
2083 1.99 matt dmamap->dm_maxsegsz =
2084 1.99 matt (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
2085 1.99 matt ? m0->m_pkthdr.segsz << 2
2086 1.99 matt : WTX_MAX_LEN;
2087 1.99 matt
2088 1.1 thorpej /*
2089 1.1 thorpej * Load the DMA map. If this fails, the packet either
2090 1.1 thorpej * didn't fit in the allotted number of segments, or we
2091 1.1 thorpej * were short on resources. For the too-many-segments
2092 1.1 thorpej * case, we simply report an error and drop the packet,
2093 1.1 thorpej * since we can't sanely copy a jumbo packet to a single
2094 1.1 thorpej * buffer.
2095 1.1 thorpej */
2096 1.1 thorpej error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
2097 1.1 thorpej BUS_DMA_WRITE|BUS_DMA_NOWAIT);
2098 1.1 thorpej if (error) {
2099 1.1 thorpej if (error == EFBIG) {
2100 1.1 thorpej WM_EVCNT_INCR(&sc->sc_ev_txdrop);
2101 1.84 thorpej log(LOG_ERR, "%s: Tx packet consumes too many "
2102 1.1 thorpej "DMA segments, dropping...\n",
2103 1.160 christos device_xname(sc->sc_dev));
2104 1.1 thorpej IFQ_DEQUEUE(&ifp->if_snd, m0);
2105 1.75 thorpej wm_dump_mbuf_chain(sc, m0);
2106 1.1 thorpej m_freem(m0);
2107 1.1 thorpej continue;
2108 1.1 thorpej }
2109 1.1 thorpej /*
2110 1.1 thorpej * Short on resources, just stop for now.
2111 1.1 thorpej */
2112 1.1 thorpej DPRINTF(WM_DEBUG_TX,
2113 1.1 thorpej ("%s: TX: dmamap load failed: %d\n",
2114 1.160 christos device_xname(sc->sc_dev), error));
2115 1.1 thorpej break;
2116 1.1 thorpej }
2117 1.1 thorpej
2118 1.80 thorpej segs_needed = dmamap->dm_nsegs;
2119 1.99 matt if (use_tso) {
2120 1.99 matt /* For sentinel descriptor; see below. */
2121 1.99 matt segs_needed++;
2122 1.99 matt }
2123 1.80 thorpej
2124 1.1 thorpej /*
2125 1.1 thorpej * Ensure we have enough descriptors free to describe
2126 1.1 thorpej * the packet. Note, we always reserve one descriptor
2127 1.1 thorpej * at the end of the ring due to the semantics of the
2128 1.1 thorpej * TDT register, plus one more in the event we need
2129 1.87 thorpej * to load offload context.
2130 1.1 thorpej */
2131 1.80 thorpej if (segs_needed > sc->sc_txfree - 2) {
2132 1.1 thorpej /*
2133 1.1 thorpej * Not enough free descriptors to transmit this
2134 1.1 thorpej * packet. We haven't committed anything yet,
2135 1.1 thorpej * so just unload the DMA map, put the packet
2136 1.1 thorpej * pack on the queue, and punt. Notify the upper
2137 1.1 thorpej * layer that there are no more slots left.
2138 1.1 thorpej */
2139 1.1 thorpej DPRINTF(WM_DEBUG_TX,
2140 1.104 ross ("%s: TX: need %d (%d) descriptors, have %d\n",
2141 1.160 christos device_xname(sc->sc_dev), dmamap->dm_nsegs,
2142 1.160 christos segs_needed, sc->sc_txfree - 1));
2143 1.1 thorpej ifp->if_flags |= IFF_OACTIVE;
2144 1.1 thorpej bus_dmamap_unload(sc->sc_dmat, dmamap);
2145 1.1 thorpej WM_EVCNT_INCR(&sc->sc_ev_txdstall);
2146 1.1 thorpej break;
2147 1.1 thorpej }
2148 1.1 thorpej
2149 1.78 thorpej /*
2150 1.78 thorpej * Check for 82547 Tx FIFO bug. We need to do this
2151 1.78 thorpej * once we know we can transmit the packet, since we
2152 1.78 thorpej * do some internal FIFO space accounting here.
2153 1.78 thorpej */
2154 1.78 thorpej if (sc->sc_type == WM_T_82547 &&
2155 1.78 thorpej wm_82547_txfifo_bugchk(sc, m0)) {
2156 1.78 thorpej DPRINTF(WM_DEBUG_TX,
2157 1.78 thorpej ("%s: TX: 82547 Tx FIFO bug detected\n",
2158 1.160 christos device_xname(sc->sc_dev)));
2159 1.78 thorpej ifp->if_flags |= IFF_OACTIVE;
2160 1.78 thorpej bus_dmamap_unload(sc->sc_dmat, dmamap);
2161 1.78 thorpej WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
2162 1.78 thorpej break;
2163 1.78 thorpej }
2164 1.78 thorpej
2165 1.1 thorpej IFQ_DEQUEUE(&ifp->if_snd, m0);
2166 1.1 thorpej
2167 1.1 thorpej /*
2168 1.1 thorpej * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
2169 1.1 thorpej */
2170 1.1 thorpej
2171 1.1 thorpej DPRINTF(WM_DEBUG_TX,
2172 1.80 thorpej ("%s: TX: packet has %d (%d) DMA segments\n",
2173 1.160 christos device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed));
2174 1.1 thorpej
2175 1.2 thorpej WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
2176 1.1 thorpej
2177 1.1 thorpej /*
2178 1.4 thorpej * Store a pointer to the packet so that we can free it
2179 1.4 thorpej * later.
2180 1.4 thorpej *
2181 1.4 thorpej * Initially, we consider the number of descriptors the
2182 1.4 thorpej * packet uses the number of DMA segments. This may be
2183 1.4 thorpej * incremented by 1 if we do checksum offload (a descriptor
2184 1.4 thorpej * is used to set the checksum context).
2185 1.4 thorpej */
2186 1.4 thorpej txs->txs_mbuf = m0;
2187 1.6 thorpej txs->txs_firstdesc = sc->sc_txnext;
2188 1.80 thorpej txs->txs_ndesc = segs_needed;
2189 1.4 thorpej
2190 1.86 thorpej /* Set up offload parameters for this packet. */
2191 1.1 thorpej if (m0->m_pkthdr.csum_flags &
2192 1.131 yamt (M_CSUM_TSOv4|M_CSUM_TSOv6|
2193 1.131 yamt M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
2194 1.107 yamt M_CSUM_TCPv6|M_CSUM_UDPv6)) {
2195 1.86 thorpej if (wm_tx_offload(sc, txs, &cksumcmd,
2196 1.86 thorpej &cksumfields) != 0) {
2197 1.1 thorpej /* Error message already displayed. */
2198 1.1 thorpej bus_dmamap_unload(sc->sc_dmat, dmamap);
2199 1.1 thorpej continue;
2200 1.1 thorpej }
2201 1.1 thorpej } else {
2202 1.1 thorpej cksumcmd = 0;
2203 1.1 thorpej cksumfields = 0;
2204 1.1 thorpej }
2205 1.1 thorpej
2206 1.98 thorpej cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
2207 1.6 thorpej
2208 1.81 thorpej /* Sync the DMA map. */
2209 1.81 thorpej bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2210 1.81 thorpej BUS_DMASYNC_PREWRITE);
2211 1.81 thorpej
2212 1.1 thorpej /*
2213 1.1 thorpej * Initialize the transmit descriptor.
2214 1.1 thorpej */
2215 1.1 thorpej for (nexttx = sc->sc_txnext, seg = 0;
2216 1.80 thorpej seg < dmamap->dm_nsegs; seg++) {
2217 1.80 thorpej for (seglen = dmamap->dm_segs[seg].ds_len,
2218 1.80 thorpej curaddr = dmamap->dm_segs[seg].ds_addr;
2219 1.80 thorpej seglen != 0;
2220 1.80 thorpej curaddr += curlen, seglen -= curlen,
2221 1.80 thorpej nexttx = WM_NEXTTX(sc, nexttx)) {
2222 1.80 thorpej curlen = seglen;
2223 1.80 thorpej
2224 1.99 matt /*
2225 1.99 matt * So says the Linux driver:
2226 1.99 matt * Work around for premature descriptor
2227 1.99 matt * write-backs in TSO mode. Append a
2228 1.99 matt * 4-byte sentinel descriptor.
2229 1.99 matt */
2230 1.99 matt if (use_tso &&
2231 1.99 matt seg == dmamap->dm_nsegs - 1 &&
2232 1.99 matt curlen > 8)
2233 1.99 matt curlen -= 4;
2234 1.99 matt
2235 1.80 thorpej wm_set_dma_addr(
2236 1.80 thorpej &sc->sc_txdescs[nexttx].wtx_addr,
2237 1.80 thorpej curaddr);
2238 1.80 thorpej sc->sc_txdescs[nexttx].wtx_cmdlen =
2239 1.80 thorpej htole32(cksumcmd | curlen);
2240 1.80 thorpej sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
2241 1.80 thorpej 0;
2242 1.80 thorpej sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
2243 1.80 thorpej cksumfields;
2244 1.80 thorpej sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
2245 1.80 thorpej lasttx = nexttx;
2246 1.1 thorpej
2247 1.80 thorpej DPRINTF(WM_DEBUG_TX,
2248 1.104 ross ("%s: TX: desc %d: low 0x%08lx, "
2249 1.80 thorpej "len 0x%04x\n",
2250 1.160 christos device_xname(sc->sc_dev), nexttx,
2251 1.104 ross curaddr & 0xffffffffUL, (unsigned)curlen));
2252 1.80 thorpej }
2253 1.1 thorpej }
2254 1.59 christos
2255 1.59 christos KASSERT(lasttx != -1);
2256 1.1 thorpej
2257 1.1 thorpej /*
2258 1.1 thorpej * Set up the command byte on the last descriptor of
2259 1.1 thorpej * the packet. If we're in the interrupt delay window,
2260 1.1 thorpej * delay the interrupt.
2261 1.1 thorpej */
2262 1.1 thorpej sc->sc_txdescs[lasttx].wtx_cmdlen |=
2263 1.98 thorpej htole32(WTX_CMD_EOP | WTX_CMD_RS);
2264 1.1 thorpej
2265 1.1 thorpej #if 0 /* XXXJRT */
2266 1.1 thorpej /*
2267 1.1 thorpej * If VLANs are enabled and the packet has a VLAN tag, set
2268 1.1 thorpej * up the descriptor to encapsulate the packet for us.
2269 1.1 thorpej *
2270 1.1 thorpej * This is only valid on the last descriptor of the packet.
2271 1.1 thorpej */
2272 1.94 jdolecek if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
2273 1.1 thorpej sc->sc_txdescs[lasttx].wtx_cmdlen |=
2274 1.1 thorpej htole32(WTX_CMD_VLE);
2275 1.65 tsutsui sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
2276 1.94 jdolecek = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
2277 1.1 thorpej }
2278 1.1 thorpej #endif /* XXXJRT */
2279 1.1 thorpej
2280 1.6 thorpej txs->txs_lastdesc = lasttx;
2281 1.6 thorpej
2282 1.1 thorpej DPRINTF(WM_DEBUG_TX,
2283 1.160 christos ("%s: TX: desc %d: cmdlen 0x%08x\n",
2284 1.160 christos device_xname(sc->sc_dev),
2285 1.65 tsutsui lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
2286 1.1 thorpej
2287 1.1 thorpej /* Sync the descriptors we're using. */
2288 1.80 thorpej WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
2289 1.1 thorpej BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2290 1.1 thorpej
2291 1.1 thorpej /* Give the packet to the chip. */
2292 1.1 thorpej CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
2293 1.1 thorpej
2294 1.1 thorpej DPRINTF(WM_DEBUG_TX,
2295 1.160 christos ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
2296 1.1 thorpej
2297 1.1 thorpej DPRINTF(WM_DEBUG_TX,
2298 1.1 thorpej ("%s: TX: finished transmitting packet, job %d\n",
2299 1.160 christos device_xname(sc->sc_dev), sc->sc_txsnext));
2300 1.1 thorpej
2301 1.1 thorpej /* Advance the tx pointer. */
2302 1.4 thorpej sc->sc_txfree -= txs->txs_ndesc;
2303 1.1 thorpej sc->sc_txnext = nexttx;
2304 1.1 thorpej
2305 1.1 thorpej sc->sc_txsfree--;
2306 1.74 tron sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
2307 1.1 thorpej
2308 1.1 thorpej #if NBPFILTER > 0
2309 1.1 thorpej /* Pass the packet to any BPF listeners. */
2310 1.1 thorpej if (ifp->if_bpf)
2311 1.1 thorpej bpf_mtap(ifp->if_bpf, m0);
2312 1.1 thorpej #endif /* NBPFILTER > 0 */
2313 1.1 thorpej }
2314 1.1 thorpej
2315 1.6 thorpej if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
2316 1.1 thorpej /* No more slots; notify upper layer. */
2317 1.1 thorpej ifp->if_flags |= IFF_OACTIVE;
2318 1.1 thorpej }
2319 1.1 thorpej
2320 1.1 thorpej if (sc->sc_txfree != ofree) {
2321 1.1 thorpej /* Set a watchdog timer in case the chip flakes out. */
2322 1.1 thorpej ifp->if_timer = 5;
2323 1.1 thorpej }
2324 1.1 thorpej }
2325 1.1 thorpej
2326 1.1 thorpej /*
2327 1.1 thorpej * wm_watchdog: [ifnet interface function]
2328 1.1 thorpej *
2329 1.1 thorpej * Watchdog timer handler.
2330 1.1 thorpej */
2331 1.47 thorpej static void
2332 1.1 thorpej wm_watchdog(struct ifnet *ifp)
2333 1.1 thorpej {
2334 1.1 thorpej struct wm_softc *sc = ifp->if_softc;
2335 1.1 thorpej
2336 1.1 thorpej /*
2337 1.1 thorpej * Since we're using delayed interrupts, sweep up
2338 1.1 thorpej * before we report an error.
2339 1.1 thorpej */
2340 1.1 thorpej wm_txintr(sc);
2341 1.1 thorpej
2342 1.75 thorpej if (sc->sc_txfree != WM_NTXDESC(sc)) {
2343 1.84 thorpej log(LOG_ERR,
2344 1.84 thorpej "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
2345 1.160 christos device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
2346 1.2 thorpej sc->sc_txnext);
2347 1.1 thorpej ifp->if_oerrors++;
2348 1.1 thorpej
2349 1.1 thorpej /* Reset the interface. */
2350 1.1 thorpej (void) wm_init(ifp);
2351 1.1 thorpej }
2352 1.1 thorpej
2353 1.1 thorpej /* Try to get more packets going. */
2354 1.1 thorpej wm_start(ifp);
2355 1.1 thorpej }
2356 1.1 thorpej
2357 1.1 thorpej /*
2358 1.1 thorpej * wm_ioctl: [ifnet interface function]
2359 1.1 thorpej *
2360 1.1 thorpej * Handle control requests from the operator.
2361 1.1 thorpej */
2362 1.47 thorpej static int
2363 1.135 christos wm_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2364 1.1 thorpej {
2365 1.1 thorpej struct wm_softc *sc = ifp->if_softc;
2366 1.1 thorpej struct ifreq *ifr = (struct ifreq *) data;
2367 1.1 thorpej int s, error;
2368 1.1 thorpej
2369 1.1 thorpej s = splnet();
2370 1.1 thorpej
2371 1.1 thorpej switch (cmd) {
2372 1.1 thorpej case SIOCSIFMEDIA:
2373 1.1 thorpej case SIOCGIFMEDIA:
2374 1.71 thorpej /* Flow control requires full-duplex mode. */
2375 1.71 thorpej if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
2376 1.71 thorpej (ifr->ifr_media & IFM_FDX) == 0)
2377 1.71 thorpej ifr->ifr_media &= ~IFM_ETH_FMASK;
2378 1.71 thorpej if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
2379 1.71 thorpej if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
2380 1.71 thorpej /* We can do both TXPAUSE and RXPAUSE. */
2381 1.71 thorpej ifr->ifr_media |=
2382 1.71 thorpej IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
2383 1.71 thorpej }
2384 1.71 thorpej sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
2385 1.71 thorpej }
2386 1.1 thorpej error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2387 1.1 thorpej break;
2388 1.1 thorpej default:
2389 1.154 dyoung if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2390 1.154 dyoung break;
2391 1.154 dyoung
2392 1.154 dyoung error = 0;
2393 1.154 dyoung
2394 1.154 dyoung if (cmd == SIOCSIFCAP)
2395 1.154 dyoung error = (*ifp->if_init)(ifp);
2396 1.154 dyoung else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2397 1.154 dyoung ;
2398 1.154 dyoung else if (ifp->if_flags & IFF_RUNNING) {
2399 1.1 thorpej /*
2400 1.1 thorpej * Multicast list has changed; set the hardware filter
2401 1.1 thorpej * accordingly.
2402 1.1 thorpej */
2403 1.154 dyoung wm_set_filter(sc);
2404 1.1 thorpej }
2405 1.1 thorpej break;
2406 1.1 thorpej }
2407 1.1 thorpej
2408 1.1 thorpej /* Try to get more packets going. */
2409 1.1 thorpej wm_start(ifp);
2410 1.1 thorpej
2411 1.1 thorpej splx(s);
2412 1.1 thorpej return (error);
2413 1.1 thorpej }
2414 1.1 thorpej
2415 1.1 thorpej /*
2416 1.1 thorpej * wm_intr:
2417 1.1 thorpej *
2418 1.1 thorpej * Interrupt service routine.
2419 1.1 thorpej */
2420 1.47 thorpej static int
2421 1.1 thorpej wm_intr(void *arg)
2422 1.1 thorpej {
2423 1.1 thorpej struct wm_softc *sc = arg;
2424 1.1 thorpej struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2425 1.1 thorpej uint32_t icr;
2426 1.108 yamt int handled = 0;
2427 1.1 thorpej
2428 1.108 yamt while (1 /* CONSTCOND */) {
2429 1.1 thorpej icr = CSR_READ(sc, WMREG_ICR);
2430 1.1 thorpej if ((icr & sc->sc_icr) == 0)
2431 1.1 thorpej break;
2432 1.22 itojun #if 0 /*NRND > 0*/
2433 1.21 itojun if (RND_ENABLED(&sc->rnd_source))
2434 1.21 itojun rnd_add_uint32(&sc->rnd_source, icr);
2435 1.21 itojun #endif
2436 1.1 thorpej
2437 1.1 thorpej handled = 1;
2438 1.1 thorpej
2439 1.10 thorpej #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2440 1.1 thorpej if (icr & (ICR_RXDMT0|ICR_RXT0)) {
2441 1.1 thorpej DPRINTF(WM_DEBUG_RX,
2442 1.1 thorpej ("%s: RX: got Rx intr 0x%08x\n",
2443 1.160 christos device_xname(sc->sc_dev),
2444 1.1 thorpej icr & (ICR_RXDMT0|ICR_RXT0)));
2445 1.1 thorpej WM_EVCNT_INCR(&sc->sc_ev_rxintr);
2446 1.1 thorpej }
2447 1.10 thorpej #endif
2448 1.10 thorpej wm_rxintr(sc);
2449 1.1 thorpej
2450 1.10 thorpej #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2451 1.10 thorpej if (icr & ICR_TXDW) {
2452 1.1 thorpej DPRINTF(WM_DEBUG_TX,
2453 1.67 thorpej ("%s: TX: got TXDW interrupt\n",
2454 1.160 christos device_xname(sc->sc_dev)));
2455 1.10 thorpej WM_EVCNT_INCR(&sc->sc_ev_txdw);
2456 1.10 thorpej }
2457 1.4 thorpej #endif
2458 1.10 thorpej wm_txintr(sc);
2459 1.1 thorpej
2460 1.1 thorpej if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
2461 1.1 thorpej WM_EVCNT_INCR(&sc->sc_ev_linkintr);
2462 1.1 thorpej wm_linkintr(sc, icr);
2463 1.1 thorpej }
2464 1.1 thorpej
2465 1.1 thorpej if (icr & ICR_RXO) {
2466 1.108 yamt ifp->if_ierrors++;
2467 1.108 yamt #if defined(WM_DEBUG)
2468 1.84 thorpej log(LOG_WARNING, "%s: Receive overrun\n",
2469 1.160 christos device_xname(sc->sc_dev));
2470 1.108 yamt #endif /* defined(WM_DEBUG) */
2471 1.1 thorpej }
2472 1.1 thorpej }
2473 1.1 thorpej
2474 1.1 thorpej if (handled) {
2475 1.1 thorpej /* Try to get more packets going. */
2476 1.1 thorpej wm_start(ifp);
2477 1.1 thorpej }
2478 1.1 thorpej
2479 1.1 thorpej return (handled);
2480 1.1 thorpej }
2481 1.1 thorpej
2482 1.1 thorpej /*
2483 1.1 thorpej * wm_txintr:
2484 1.1 thorpej *
2485 1.1 thorpej * Helper; handle transmit interrupts.
2486 1.1 thorpej */
2487 1.47 thorpej static void
2488 1.1 thorpej wm_txintr(struct wm_softc *sc)
2489 1.1 thorpej {
2490 1.1 thorpej struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2491 1.1 thorpej struct wm_txsoft *txs;
2492 1.1 thorpej uint8_t status;
2493 1.1 thorpej int i;
2494 1.1 thorpej
2495 1.1 thorpej ifp->if_flags &= ~IFF_OACTIVE;
2496 1.1 thorpej
2497 1.1 thorpej /*
2498 1.1 thorpej * Go through the Tx list and free mbufs for those
2499 1.16 simonb * frames which have been transmitted.
2500 1.1 thorpej */
2501 1.74 tron for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2502 1.74 tron i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2503 1.1 thorpej txs = &sc->sc_txsoft[i];
2504 1.1 thorpej
2505 1.1 thorpej DPRINTF(WM_DEBUG_TX,
2506 1.160 christos ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i));
2507 1.1 thorpej
2508 1.80 thorpej WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2509 1.1 thorpej BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2510 1.1 thorpej
2511 1.65 tsutsui status =
2512 1.65 tsutsui sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2513 1.20 thorpej if ((status & WTX_ST_DD) == 0) {
2514 1.20 thorpej WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2515 1.20 thorpej BUS_DMASYNC_PREREAD);
2516 1.1 thorpej break;
2517 1.20 thorpej }
2518 1.1 thorpej
2519 1.1 thorpej DPRINTF(WM_DEBUG_TX,
2520 1.1 thorpej ("%s: TX: job %d done: descs %d..%d\n",
2521 1.160 christos device_xname(sc->sc_dev), i, txs->txs_firstdesc,
2522 1.1 thorpej txs->txs_lastdesc));
2523 1.1 thorpej
2524 1.1 thorpej /*
2525 1.1 thorpej * XXX We should probably be using the statistics
2526 1.1 thorpej * XXX registers, but I don't know if they exist
2527 1.11 thorpej * XXX on chips before the i82544.
2528 1.1 thorpej */
2529 1.1 thorpej
2530 1.1 thorpej #ifdef WM_EVENT_COUNTERS
2531 1.1 thorpej if (status & WTX_ST_TU)
2532 1.1 thorpej WM_EVCNT_INCR(&sc->sc_ev_tu);
2533 1.1 thorpej #endif /* WM_EVENT_COUNTERS */
2534 1.1 thorpej
2535 1.1 thorpej if (status & (WTX_ST_EC|WTX_ST_LC)) {
2536 1.1 thorpej ifp->if_oerrors++;
2537 1.1 thorpej if (status & WTX_ST_LC)
2538 1.84 thorpej log(LOG_WARNING, "%s: late collision\n",
2539 1.160 christos device_xname(sc->sc_dev));
2540 1.1 thorpej else if (status & WTX_ST_EC) {
2541 1.1 thorpej ifp->if_collisions += 16;
2542 1.84 thorpej log(LOG_WARNING, "%s: excessive collisions\n",
2543 1.160 christos device_xname(sc->sc_dev));
2544 1.1 thorpej }
2545 1.1 thorpej } else
2546 1.1 thorpej ifp->if_opackets++;
2547 1.1 thorpej
2548 1.4 thorpej sc->sc_txfree += txs->txs_ndesc;
2549 1.1 thorpej bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2550 1.1 thorpej 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2551 1.1 thorpej bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2552 1.1 thorpej m_freem(txs->txs_mbuf);
2553 1.1 thorpej txs->txs_mbuf = NULL;
2554 1.1 thorpej }
2555 1.1 thorpej
2556 1.1 thorpej /* Update the dirty transmit buffer pointer. */
2557 1.1 thorpej sc->sc_txsdirty = i;
2558 1.1 thorpej DPRINTF(WM_DEBUG_TX,
2559 1.160 christos ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
2560 1.1 thorpej
2561 1.1 thorpej /*
2562 1.1 thorpej * If there are no more pending transmissions, cancel the watchdog
2563 1.1 thorpej * timer.
2564 1.1 thorpej */
2565 1.74 tron if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2566 1.1 thorpej ifp->if_timer = 0;
2567 1.1 thorpej }
2568 1.1 thorpej
2569 1.1 thorpej /*
2570 1.1 thorpej * wm_rxintr:
2571 1.1 thorpej *
2572 1.1 thorpej * Helper; handle receive interrupts.
2573 1.1 thorpej */
2574 1.47 thorpej static void
2575 1.1 thorpej wm_rxintr(struct wm_softc *sc)
2576 1.1 thorpej {
2577 1.1 thorpej struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2578 1.1 thorpej struct wm_rxsoft *rxs;
2579 1.1 thorpej struct mbuf *m;
2580 1.1 thorpej int i, len;
2581 1.1 thorpej uint8_t status, errors;
2582 1.1 thorpej
2583 1.1 thorpej for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2584 1.1 thorpej rxs = &sc->sc_rxsoft[i];
2585 1.1 thorpej
2586 1.1 thorpej DPRINTF(WM_DEBUG_RX,
2587 1.1 thorpej ("%s: RX: checking descriptor %d\n",
2588 1.160 christos device_xname(sc->sc_dev), i));
2589 1.1 thorpej
2590 1.1 thorpej WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2591 1.1 thorpej
2592 1.1 thorpej status = sc->sc_rxdescs[i].wrx_status;
2593 1.1 thorpej errors = sc->sc_rxdescs[i].wrx_errors;
2594 1.1 thorpej len = le16toh(sc->sc_rxdescs[i].wrx_len);
2595 1.1 thorpej
2596 1.1 thorpej if ((status & WRX_ST_DD) == 0) {
2597 1.1 thorpej /*
2598 1.1 thorpej * We have processed all of the receive descriptors.
2599 1.1 thorpej */
2600 1.20 thorpej WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2601 1.1 thorpej break;
2602 1.1 thorpej }
2603 1.1 thorpej
2604 1.1 thorpej if (__predict_false(sc->sc_rxdiscard)) {
2605 1.1 thorpej DPRINTF(WM_DEBUG_RX,
2606 1.1 thorpej ("%s: RX: discarding contents of descriptor %d\n",
2607 1.160 christos device_xname(sc->sc_dev), i));
2608 1.1 thorpej WM_INIT_RXDESC(sc, i);
2609 1.1 thorpej if (status & WRX_ST_EOP) {
2610 1.1 thorpej /* Reset our state. */
2611 1.1 thorpej DPRINTF(WM_DEBUG_RX,
2612 1.1 thorpej ("%s: RX: resetting rxdiscard -> 0\n",
2613 1.160 christos device_xname(sc->sc_dev)));
2614 1.1 thorpej sc->sc_rxdiscard = 0;
2615 1.1 thorpej }
2616 1.1 thorpej continue;
2617 1.1 thorpej }
2618 1.1 thorpej
2619 1.1 thorpej bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2620 1.1 thorpej rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2621 1.1 thorpej
2622 1.1 thorpej m = rxs->rxs_mbuf;
2623 1.1 thorpej
2624 1.1 thorpej /*
2625 1.124 wrstuden * Add a new receive buffer to the ring, unless of
2626 1.124 wrstuden * course the length is zero. Treat the latter as a
2627 1.124 wrstuden * failed mapping.
2628 1.1 thorpej */
2629 1.124 wrstuden if ((len == 0) || (wm_add_rxbuf(sc, i) != 0)) {
2630 1.1 thorpej /*
2631 1.1 thorpej * Failed, throw away what we've done so
2632 1.1 thorpej * far, and discard the rest of the packet.
2633 1.1 thorpej */
2634 1.1 thorpej ifp->if_ierrors++;
2635 1.1 thorpej bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2636 1.1 thorpej rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2637 1.1 thorpej WM_INIT_RXDESC(sc, i);
2638 1.1 thorpej if ((status & WRX_ST_EOP) == 0)
2639 1.1 thorpej sc->sc_rxdiscard = 1;
2640 1.1 thorpej if (sc->sc_rxhead != NULL)
2641 1.1 thorpej m_freem(sc->sc_rxhead);
2642 1.1 thorpej WM_RXCHAIN_RESET(sc);
2643 1.1 thorpej DPRINTF(WM_DEBUG_RX,
2644 1.1 thorpej ("%s: RX: Rx buffer allocation failed, "
2645 1.160 christos "dropping packet%s\n", device_xname(sc->sc_dev),
2646 1.1 thorpej sc->sc_rxdiscard ? " (discard)" : ""));
2647 1.1 thorpej continue;
2648 1.1 thorpej }
2649 1.1 thorpej
2650 1.1 thorpej m->m_len = len;
2651 1.159 simonb sc->sc_rxlen += len;
2652 1.1 thorpej DPRINTF(WM_DEBUG_RX,
2653 1.1 thorpej ("%s: RX: buffer at %p len %d\n",
2654 1.160 christos device_xname(sc->sc_dev), m->m_data, len));
2655 1.1 thorpej
2656 1.1 thorpej /*
2657 1.1 thorpej * If this is not the end of the packet, keep
2658 1.1 thorpej * looking.
2659 1.1 thorpej */
2660 1.1 thorpej if ((status & WRX_ST_EOP) == 0) {
2661 1.159 simonb WM_RXCHAIN_LINK(sc, m);
2662 1.1 thorpej DPRINTF(WM_DEBUG_RX,
2663 1.1 thorpej ("%s: RX: not yet EOP, rxlen -> %d\n",
2664 1.160 christos device_xname(sc->sc_dev), sc->sc_rxlen));
2665 1.1 thorpej continue;
2666 1.1 thorpej }
2667 1.1 thorpej
2668 1.1 thorpej /*
2669 1.93 thorpej * Okay, we have the entire packet now. The chip is
2670 1.93 thorpej * configured to include the FCS (not all chips can
2671 1.93 thorpej * be configured to strip it), so we need to trim it.
2672 1.159 simonb * May need to adjust length of previous mbuf in the
2673 1.159 simonb * chain if the current mbuf is too short.
2674 1.1 thorpej */
2675 1.159 simonb if (m->m_len < ETHER_CRC_LEN) {
2676 1.159 simonb sc->sc_rxtail->m_len -= (ETHER_CRC_LEN - m->m_len);
2677 1.159 simonb m->m_len = 0;
2678 1.159 simonb } else {
2679 1.159 simonb m->m_len -= ETHER_CRC_LEN;
2680 1.159 simonb }
2681 1.159 simonb len = sc->sc_rxlen - ETHER_CRC_LEN;
2682 1.159 simonb
2683 1.159 simonb WM_RXCHAIN_LINK(sc, m);
2684 1.93 thorpej
2685 1.1 thorpej *sc->sc_rxtailp = NULL;
2686 1.1 thorpej m = sc->sc_rxhead;
2687 1.1 thorpej
2688 1.1 thorpej WM_RXCHAIN_RESET(sc);
2689 1.1 thorpej
2690 1.1 thorpej DPRINTF(WM_DEBUG_RX,
2691 1.1 thorpej ("%s: RX: have entire packet, len -> %d\n",
2692 1.160 christos device_xname(sc->sc_dev), len));
2693 1.1 thorpej
2694 1.1 thorpej /*
2695 1.1 thorpej * If an error occurred, update stats and drop the packet.
2696 1.1 thorpej */
2697 1.1 thorpej if (errors &
2698 1.1 thorpej (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2699 1.1 thorpej ifp->if_ierrors++;
2700 1.1 thorpej if (errors & WRX_ER_SE)
2701 1.84 thorpej log(LOG_WARNING, "%s: symbol error\n",
2702 1.160 christos device_xname(sc->sc_dev));
2703 1.1 thorpej else if (errors & WRX_ER_SEQ)
2704 1.84 thorpej log(LOG_WARNING, "%s: receive sequence error\n",
2705 1.160 christos device_xname(sc->sc_dev));
2706 1.1 thorpej else if (errors & WRX_ER_CE)
2707 1.84 thorpej log(LOG_WARNING, "%s: CRC error\n",
2708 1.160 christos device_xname(sc->sc_dev));
2709 1.1 thorpej m_freem(m);
2710 1.1 thorpej continue;
2711 1.1 thorpej }
2712 1.1 thorpej
2713 1.1 thorpej /*
2714 1.1 thorpej * No errors. Receive the packet.
2715 1.1 thorpej */
2716 1.1 thorpej m->m_pkthdr.rcvif = ifp;
2717 1.1 thorpej m->m_pkthdr.len = len;
2718 1.1 thorpej
2719 1.1 thorpej #if 0 /* XXXJRT */
2720 1.1 thorpej /*
2721 1.1 thorpej * If VLANs are enabled, VLAN packets have been unwrapped
2722 1.1 thorpej * for us. Associate the tag with the packet.
2723 1.1 thorpej */
2724 1.94 jdolecek if ((status & WRX_ST_VP) != 0) {
2725 1.94 jdolecek VLAN_INPUT_TAG(ifp, m,
2726 1.94 jdolecek le16toh(sc->sc_rxdescs[i].wrx_special,
2727 1.94 jdolecek continue);
2728 1.1 thorpej }
2729 1.1 thorpej #endif /* XXXJRT */
2730 1.1 thorpej
2731 1.1 thorpej /*
2732 1.1 thorpej * Set up checksum info for this packet.
2733 1.1 thorpej */
2734 1.106 yamt if ((status & WRX_ST_IXSM) == 0) {
2735 1.106 yamt if (status & WRX_ST_IPCS) {
2736 1.106 yamt WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2737 1.106 yamt m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2738 1.106 yamt if (errors & WRX_ER_IPE)
2739 1.106 yamt m->m_pkthdr.csum_flags |=
2740 1.106 yamt M_CSUM_IPv4_BAD;
2741 1.106 yamt }
2742 1.106 yamt if (status & WRX_ST_TCPCS) {
2743 1.106 yamt /*
2744 1.106 yamt * Note: we don't know if this was TCP or UDP,
2745 1.106 yamt * so we just set both bits, and expect the
2746 1.106 yamt * upper layers to deal.
2747 1.106 yamt */
2748 1.106 yamt WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2749 1.106 yamt m->m_pkthdr.csum_flags |=
2750 1.130 yamt M_CSUM_TCPv4 | M_CSUM_UDPv4 |
2751 1.130 yamt M_CSUM_TCPv6 | M_CSUM_UDPv6;
2752 1.106 yamt if (errors & WRX_ER_TCPE)
2753 1.106 yamt m->m_pkthdr.csum_flags |=
2754 1.106 yamt M_CSUM_TCP_UDP_BAD;
2755 1.106 yamt }
2756 1.1 thorpej }
2757 1.1 thorpej
2758 1.1 thorpej ifp->if_ipackets++;
2759 1.1 thorpej
2760 1.1 thorpej #if NBPFILTER > 0
2761 1.1 thorpej /* Pass this up to any BPF listeners. */
2762 1.1 thorpej if (ifp->if_bpf)
2763 1.1 thorpej bpf_mtap(ifp->if_bpf, m);
2764 1.1 thorpej #endif /* NBPFILTER > 0 */
2765 1.1 thorpej
2766 1.1 thorpej /* Pass it on. */
2767 1.1 thorpej (*ifp->if_input)(ifp, m);
2768 1.1 thorpej }
2769 1.1 thorpej
2770 1.1 thorpej /* Update the receive pointer. */
2771 1.1 thorpej sc->sc_rxptr = i;
2772 1.1 thorpej
2773 1.1 thorpej DPRINTF(WM_DEBUG_RX,
2774 1.160 christos ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
2775 1.1 thorpej }
2776 1.1 thorpej
2777 1.1 thorpej /*
2778 1.1 thorpej * wm_linkintr:
2779 1.1 thorpej *
2780 1.1 thorpej * Helper; handle link interrupts.
2781 1.1 thorpej */
2782 1.47 thorpej static void
2783 1.1 thorpej wm_linkintr(struct wm_softc *sc, uint32_t icr)
2784 1.1 thorpej {
2785 1.1 thorpej uint32_t status;
2786 1.1 thorpej
2787 1.1 thorpej /*
2788 1.1 thorpej * If we get a link status interrupt on a 1000BASE-T
2789 1.1 thorpej * device, just fall into the normal MII tick path.
2790 1.1 thorpej */
2791 1.1 thorpej if (sc->sc_flags & WM_F_HAS_MII) {
2792 1.1 thorpej if (icr & ICR_LSC) {
2793 1.1 thorpej DPRINTF(WM_DEBUG_LINK,
2794 1.1 thorpej ("%s: LINK: LSC -> mii_tick\n",
2795 1.160 christos device_xname(sc->sc_dev)));
2796 1.1 thorpej mii_tick(&sc->sc_mii);
2797 1.1 thorpej } else if (icr & ICR_RXSEQ) {
2798 1.1 thorpej DPRINTF(WM_DEBUG_LINK,
2799 1.1 thorpej ("%s: LINK Receive sequence error\n",
2800 1.160 christos device_xname(sc->sc_dev)));
2801 1.1 thorpej }
2802 1.1 thorpej return;
2803 1.1 thorpej }
2804 1.1 thorpej
2805 1.1 thorpej /*
2806 1.1 thorpej * If we are now receiving /C/, check for link again in
2807 1.1 thorpej * a couple of link clock ticks.
2808 1.1 thorpej */
2809 1.1 thorpej if (icr & ICR_RXCFG) {
2810 1.1 thorpej DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2811 1.160 christos device_xname(sc->sc_dev)));
2812 1.1 thorpej sc->sc_tbi_anstate = 2;
2813 1.1 thorpej }
2814 1.1 thorpej
2815 1.1 thorpej if (icr & ICR_LSC) {
2816 1.1 thorpej status = CSR_READ(sc, WMREG_STATUS);
2817 1.1 thorpej if (status & STATUS_LU) {
2818 1.1 thorpej DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2819 1.160 christos device_xname(sc->sc_dev),
2820 1.1 thorpej (status & STATUS_FD) ? "FDX" : "HDX"));
2821 1.1 thorpej sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2822 1.71 thorpej sc->sc_fcrtl &= ~FCRTL_XONE;
2823 1.1 thorpej if (status & STATUS_FD)
2824 1.1 thorpej sc->sc_tctl |=
2825 1.1 thorpej TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2826 1.1 thorpej else
2827 1.1 thorpej sc->sc_tctl |=
2828 1.1 thorpej TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2829 1.71 thorpej if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2830 1.71 thorpej sc->sc_fcrtl |= FCRTL_XONE;
2831 1.1 thorpej CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2832 1.71 thorpej CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2833 1.71 thorpej WMREG_OLD_FCRTL : WMREG_FCRTL,
2834 1.71 thorpej sc->sc_fcrtl);
2835 1.1 thorpej sc->sc_tbi_linkup = 1;
2836 1.1 thorpej } else {
2837 1.1 thorpej DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2838 1.161 cegger device_xname(sc->sc_dev)));
2839 1.1 thorpej sc->sc_tbi_linkup = 0;
2840 1.1 thorpej }
2841 1.1 thorpej sc->sc_tbi_anstate = 2;
2842 1.1 thorpej wm_tbi_set_linkled(sc);
2843 1.1 thorpej } else if (icr & ICR_RXSEQ) {
2844 1.1 thorpej DPRINTF(WM_DEBUG_LINK,
2845 1.1 thorpej ("%s: LINK: Receive sequence error\n",
2846 1.160 christos device_xname(sc->sc_dev)));
2847 1.1 thorpej }
2848 1.1 thorpej }
2849 1.1 thorpej
2850 1.1 thorpej /*
2851 1.1 thorpej * wm_tick:
2852 1.1 thorpej *
2853 1.1 thorpej * One second timer, used to check link status, sweep up
2854 1.1 thorpej * completed transmit jobs, etc.
2855 1.1 thorpej */
2856 1.47 thorpej static void
2857 1.1 thorpej wm_tick(void *arg)
2858 1.1 thorpej {
2859 1.1 thorpej struct wm_softc *sc = arg;
2860 1.127 bouyer struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2861 1.1 thorpej int s;
2862 1.1 thorpej
2863 1.1 thorpej s = splnet();
2864 1.1 thorpej
2865 1.71 thorpej if (sc->sc_type >= WM_T_82542_2_1) {
2866 1.71 thorpej WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2867 1.71 thorpej WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2868 1.71 thorpej WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2869 1.71 thorpej WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2870 1.71 thorpej WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2871 1.71 thorpej }
2872 1.71 thorpej
2873 1.127 bouyer ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
2874 1.127 bouyer ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
2875 1.127 bouyer
2876 1.127 bouyer
2877 1.1 thorpej if (sc->sc_flags & WM_F_HAS_MII)
2878 1.1 thorpej mii_tick(&sc->sc_mii);
2879 1.1 thorpej else
2880 1.1 thorpej wm_tbi_check_link(sc);
2881 1.1 thorpej
2882 1.1 thorpej splx(s);
2883 1.1 thorpej
2884 1.1 thorpej callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2885 1.1 thorpej }
2886 1.1 thorpej
2887 1.1 thorpej /*
2888 1.1 thorpej * wm_reset:
2889 1.1 thorpej *
2890 1.1 thorpej * Reset the i82542 chip.
2891 1.1 thorpej */
2892 1.47 thorpej static void
2893 1.1 thorpej wm_reset(struct wm_softc *sc)
2894 1.1 thorpej {
2895 1.146 msaitoh uint32_t reg;
2896 1.1 thorpej
2897 1.78 thorpej /*
2898 1.78 thorpej * Allocate on-chip memory according to the MTU size.
2899 1.78 thorpej * The Packet Buffer Allocation register must be written
2900 1.78 thorpej * before the chip is reset.
2901 1.78 thorpej */
2902 1.120 msaitoh switch (sc->sc_type) {
2903 1.120 msaitoh case WM_T_82547:
2904 1.120 msaitoh case WM_T_82547_2:
2905 1.78 thorpej sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2906 1.78 thorpej PBA_22K : PBA_30K;
2907 1.78 thorpej sc->sc_txfifo_head = 0;
2908 1.78 thorpej sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2909 1.78 thorpej sc->sc_txfifo_size =
2910 1.78 thorpej (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2911 1.78 thorpej sc->sc_txfifo_stall = 0;
2912 1.120 msaitoh break;
2913 1.120 msaitoh case WM_T_82571:
2914 1.120 msaitoh case WM_T_82572:
2915 1.127 bouyer case WM_T_80003:
2916 1.120 msaitoh sc->sc_pba = PBA_32K;
2917 1.120 msaitoh break;
2918 1.120 msaitoh case WM_T_82573:
2919 1.165 sborrill case WM_T_82574:
2920 1.120 msaitoh sc->sc_pba = PBA_12K;
2921 1.120 msaitoh break;
2922 1.139 bouyer case WM_T_ICH8:
2923 1.139 bouyer sc->sc_pba = PBA_8K;
2924 1.139 bouyer CSR_WRITE(sc, WMREG_PBS, PBA_16K);
2925 1.139 bouyer break;
2926 1.144 msaitoh case WM_T_ICH9:
2927 1.167 msaitoh case WM_T_ICH10:
2928 1.144 msaitoh sc->sc_pba = PBA_10K;
2929 1.144 msaitoh break;
2930 1.120 msaitoh default:
2931 1.120 msaitoh sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2932 1.120 msaitoh PBA_40K : PBA_48K;
2933 1.120 msaitoh break;
2934 1.78 thorpej }
2935 1.78 thorpej CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2936 1.78 thorpej
2937 1.144 msaitoh if (sc->sc_flags & WM_F_PCIE) {
2938 1.144 msaitoh int timeout = 800;
2939 1.144 msaitoh
2940 1.144 msaitoh sc->sc_ctrl |= CTRL_GIO_M_DIS;
2941 1.144 msaitoh CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2942 1.144 msaitoh
2943 1.144 msaitoh while (timeout) {
2944 1.144 msaitoh if ((CSR_READ(sc, WMREG_STATUS) & STATUS_GIO_M_ENA) == 0)
2945 1.144 msaitoh break;
2946 1.144 msaitoh delay(100);
2947 1.144 msaitoh }
2948 1.144 msaitoh }
2949 1.144 msaitoh
2950 1.144 msaitoh /* clear interrupt */
2951 1.144 msaitoh CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2952 1.144 msaitoh
2953 1.137 msaitoh /*
2954 1.138 salo * 82541 Errata 29? & 82547 Errata 28?
2955 1.137 msaitoh * See also the description about PHY_RST bit in CTRL register
2956 1.137 msaitoh * in 8254x_GBe_SDM.pdf.
2957 1.137 msaitoh */
2958 1.137 msaitoh if ((sc->sc_type == WM_T_82541) || (sc->sc_type == WM_T_82547)) {
2959 1.137 msaitoh CSR_WRITE(sc, WMREG_CTRL,
2960 1.137 msaitoh CSR_READ(sc, WMREG_CTRL) | CTRL_PHY_RESET);
2961 1.137 msaitoh delay(5000);
2962 1.137 msaitoh }
2963 1.137 msaitoh
2964 1.53 thorpej switch (sc->sc_type) {
2965 1.53 thorpej case WM_T_82544:
2966 1.53 thorpej case WM_T_82540:
2967 1.53 thorpej case WM_T_82545:
2968 1.53 thorpej case WM_T_82546:
2969 1.53 thorpej case WM_T_82541:
2970 1.53 thorpej case WM_T_82541_2:
2971 1.53 thorpej /*
2972 1.88 briggs * On some chipsets, a reset through a memory-mapped write
2973 1.88 briggs * cycle can cause the chip to reset before completing the
2974 1.88 briggs * write cycle. This causes major headache that can be
2975 1.88 briggs * avoided by issuing the reset via indirect register writes
2976 1.88 briggs * through I/O space.
2977 1.88 briggs *
2978 1.88 briggs * So, if we successfully mapped the I/O BAR at attach time,
2979 1.88 briggs * use that. Otherwise, try our luck with a memory-mapped
2980 1.88 briggs * reset.
2981 1.53 thorpej */
2982 1.53 thorpej if (sc->sc_flags & WM_F_IOH_VALID)
2983 1.53 thorpej wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2984 1.53 thorpej else
2985 1.53 thorpej CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2986 1.53 thorpej break;
2987 1.53 thorpej
2988 1.53 thorpej case WM_T_82545_3:
2989 1.53 thorpej case WM_T_82546_3:
2990 1.53 thorpej /* Use the shadow control register on these chips. */
2991 1.53 thorpej CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2992 1.53 thorpej break;
2993 1.53 thorpej
2994 1.139 bouyer case WM_T_ICH8:
2995 1.144 msaitoh case WM_T_ICH9:
2996 1.167 msaitoh case WM_T_ICH10:
2997 1.139 bouyer wm_get_swfwhw_semaphore(sc);
2998 1.139 bouyer CSR_WRITE(sc, WMREG_CTRL, CTRL_RST | CTRL_PHY_RESET);
2999 1.144 msaitoh delay(10000);
3000 1.139 bouyer
3001 1.53 thorpej default:
3002 1.53 thorpej /* Everything else can safely use the documented method. */
3003 1.53 thorpej CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
3004 1.53 thorpej break;
3005 1.53 thorpej }
3006 1.1 thorpej delay(10000);
3007 1.1 thorpej
3008 1.146 msaitoh /* reload EEPROM */
3009 1.144 msaitoh switch(sc->sc_type) {
3010 1.144 msaitoh case WM_T_82542_2_0:
3011 1.144 msaitoh case WM_T_82542_2_1:
3012 1.144 msaitoh case WM_T_82543:
3013 1.144 msaitoh case WM_T_82544:
3014 1.144 msaitoh delay(10);
3015 1.146 msaitoh reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
3016 1.146 msaitoh CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3017 1.144 msaitoh delay(2000);
3018 1.144 msaitoh break;
3019 1.144 msaitoh case WM_T_82541:
3020 1.144 msaitoh case WM_T_82541_2:
3021 1.144 msaitoh case WM_T_82547:
3022 1.144 msaitoh case WM_T_82547_2:
3023 1.144 msaitoh delay(20000);
3024 1.144 msaitoh break;
3025 1.144 msaitoh case WM_T_82573:
3026 1.165 sborrill case WM_T_82574:
3027 1.146 msaitoh if (sc->sc_flags & WM_F_EEPROM_FLASH) {
3028 1.146 msaitoh delay(10);
3029 1.146 msaitoh reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
3030 1.146 msaitoh CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3031 1.146 msaitoh }
3032 1.144 msaitoh /* FALLTHROUGH */
3033 1.144 msaitoh default:
3034 1.145 msaitoh /* check EECD_EE_AUTORD */
3035 1.146 msaitoh wm_get_auto_rd_done(sc);
3036 1.127 bouyer }
3037 1.144 msaitoh
3038 1.144 msaitoh #if 0
3039 1.144 msaitoh for (i = 0; i < 1000; i++) {
3040 1.144 msaitoh if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0) {
3041 1.144 msaitoh return;
3042 1.144 msaitoh }
3043 1.144 msaitoh delay(20);
3044 1.144 msaitoh }
3045 1.144 msaitoh
3046 1.144 msaitoh if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
3047 1.144 msaitoh log(LOG_ERR, "%s: reset failed to complete\n",
3048 1.160 christos device_xname(sc->sc_dev));
3049 1.144 msaitoh #endif
3050 1.1 thorpej }
3051 1.1 thorpej
3052 1.1 thorpej /*
3053 1.1 thorpej * wm_init: [ifnet interface function]
3054 1.1 thorpej *
3055 1.1 thorpej * Initialize the interface. Must be called at splnet().
3056 1.1 thorpej */
3057 1.47 thorpej static int
3058 1.1 thorpej wm_init(struct ifnet *ifp)
3059 1.1 thorpej {
3060 1.1 thorpej struct wm_softc *sc = ifp->if_softc;
3061 1.1 thorpej struct wm_rxsoft *rxs;
3062 1.1 thorpej int i, error = 0;
3063 1.1 thorpej uint32_t reg;
3064 1.1 thorpej
3065 1.42 thorpej /*
3066 1.42 thorpej * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
3067 1.42 thorpej * There is a small but measurable benefit to avoiding the adjusment
3068 1.42 thorpej * of the descriptor so that the headers are aligned, for normal mtu,
3069 1.42 thorpej * on such platforms. One possibility is that the DMA itself is
3070 1.42 thorpej * slightly more efficient if the front of the entire packet (instead
3071 1.42 thorpej * of the front of the headers) is aligned.
3072 1.42 thorpej *
3073 1.42 thorpej * Note we must always set align_tweak to 0 if we are using
3074 1.42 thorpej * jumbo frames.
3075 1.42 thorpej */
3076 1.42 thorpej #ifdef __NO_STRICT_ALIGNMENT
3077 1.42 thorpej sc->sc_align_tweak = 0;
3078 1.41 tls #else
3079 1.42 thorpej if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
3080 1.42 thorpej sc->sc_align_tweak = 0;
3081 1.42 thorpej else
3082 1.42 thorpej sc->sc_align_tweak = 2;
3083 1.42 thorpej #endif /* __NO_STRICT_ALIGNMENT */
3084 1.41 tls
3085 1.1 thorpej /* Cancel any pending I/O. */
3086 1.1 thorpej wm_stop(ifp, 0);
3087 1.1 thorpej
3088 1.127 bouyer /* update statistics before reset */
3089 1.127 bouyer ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
3090 1.127 bouyer ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
3091 1.127 bouyer
3092 1.1 thorpej /* Reset the chip to a known state. */
3093 1.1 thorpej wm_reset(sc);
3094 1.1 thorpej
3095 1.169 msaitoh switch (sc->sc_type) {
3096 1.169 msaitoh case WM_T_82571:
3097 1.169 msaitoh case WM_T_82572:
3098 1.169 msaitoh case WM_T_82573:
3099 1.169 msaitoh case WM_T_82574:
3100 1.169 msaitoh case WM_T_80003:
3101 1.169 msaitoh case WM_T_ICH8:
3102 1.169 msaitoh case WM_T_ICH9:
3103 1.169 msaitoh case WM_T_ICH10:
3104 1.169 msaitoh if (wm_check_mng_mode(sc) != 0)
3105 1.169 msaitoh wm_get_hw_control(sc);
3106 1.169 msaitoh break;
3107 1.169 msaitoh default:
3108 1.169 msaitoh break;
3109 1.169 msaitoh }
3110 1.169 msaitoh
3111 1.1 thorpej /* Initialize the transmit descriptor ring. */
3112 1.75 thorpej memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
3113 1.75 thorpej WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
3114 1.1 thorpej BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3115 1.75 thorpej sc->sc_txfree = WM_NTXDESC(sc);
3116 1.1 thorpej sc->sc_txnext = 0;
3117 1.5 thorpej
3118 1.11 thorpej if (sc->sc_type < WM_T_82543) {
3119 1.69 thorpej CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
3120 1.69 thorpej CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
3121 1.75 thorpej CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
3122 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_TDH, 0);
3123 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_TDT, 0);
3124 1.10 thorpej CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
3125 1.1 thorpej } else {
3126 1.69 thorpej CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
3127 1.69 thorpej CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
3128 1.75 thorpej CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
3129 1.1 thorpej CSR_WRITE(sc, WMREG_TDH, 0);
3130 1.1 thorpej CSR_WRITE(sc, WMREG_TDT, 0);
3131 1.150 tls CSR_WRITE(sc, WMREG_TIDV, 375); /* ITR / 4 */
3132 1.150 tls CSR_WRITE(sc, WMREG_TADV, 375); /* should be same */
3133 1.1 thorpej
3134 1.1 thorpej CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
3135 1.1 thorpej TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
3136 1.1 thorpej CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
3137 1.1 thorpej RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
3138 1.1 thorpej }
3139 1.1 thorpej CSR_WRITE(sc, WMREG_TQSA_LO, 0);
3140 1.1 thorpej CSR_WRITE(sc, WMREG_TQSA_HI, 0);
3141 1.1 thorpej
3142 1.1 thorpej /* Initialize the transmit job descriptors. */
3143 1.74 tron for (i = 0; i < WM_TXQUEUELEN(sc); i++)
3144 1.1 thorpej sc->sc_txsoft[i].txs_mbuf = NULL;
3145 1.74 tron sc->sc_txsfree = WM_TXQUEUELEN(sc);
3146 1.1 thorpej sc->sc_txsnext = 0;
3147 1.1 thorpej sc->sc_txsdirty = 0;
3148 1.1 thorpej
3149 1.1 thorpej /*
3150 1.1 thorpej * Initialize the receive descriptor and receive job
3151 1.1 thorpej * descriptor rings.
3152 1.1 thorpej */
3153 1.11 thorpej if (sc->sc_type < WM_T_82543) {
3154 1.69 thorpej CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
3155 1.69 thorpej CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
3156 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
3157 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
3158 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
3159 1.10 thorpej CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
3160 1.1 thorpej
3161 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
3162 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
3163 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
3164 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
3165 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
3166 1.1 thorpej CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
3167 1.1 thorpej } else {
3168 1.69 thorpej CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
3169 1.69 thorpej CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
3170 1.1 thorpej CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
3171 1.1 thorpej CSR_WRITE(sc, WMREG_RDH, 0);
3172 1.1 thorpej CSR_WRITE(sc, WMREG_RDT, 0);
3173 1.150 tls CSR_WRITE(sc, WMREG_RDTR, 375 | RDTR_FPD); /* ITR/4 */
3174 1.150 tls CSR_WRITE(sc, WMREG_RADV, 375); /* MUST be same */
3175 1.1 thorpej }
3176 1.1 thorpej for (i = 0; i < WM_NRXDESC; i++) {
3177 1.1 thorpej rxs = &sc->sc_rxsoft[i];
3178 1.1 thorpej if (rxs->rxs_mbuf == NULL) {
3179 1.1 thorpej if ((error = wm_add_rxbuf(sc, i)) != 0) {
3180 1.84 thorpej log(LOG_ERR, "%s: unable to allocate or map rx "
3181 1.1 thorpej "buffer %d, error = %d\n",
3182 1.160 christos device_xname(sc->sc_dev), i, error);
3183 1.1 thorpej /*
3184 1.1 thorpej * XXX Should attempt to run with fewer receive
3185 1.1 thorpej * XXX buffers instead of just failing.
3186 1.1 thorpej */
3187 1.1 thorpej wm_rxdrain(sc);
3188 1.1 thorpej goto out;
3189 1.1 thorpej }
3190 1.1 thorpej } else
3191 1.1 thorpej WM_INIT_RXDESC(sc, i);
3192 1.1 thorpej }
3193 1.1 thorpej sc->sc_rxptr = 0;
3194 1.1 thorpej sc->sc_rxdiscard = 0;
3195 1.1 thorpej WM_RXCHAIN_RESET(sc);
3196 1.1 thorpej
3197 1.1 thorpej /*
3198 1.1 thorpej * Clear out the VLAN table -- we don't use it (yet).
3199 1.1 thorpej */
3200 1.1 thorpej CSR_WRITE(sc, WMREG_VET, 0);
3201 1.1 thorpej for (i = 0; i < WM_VLAN_TABSIZE; i++)
3202 1.1 thorpej CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
3203 1.1 thorpej
3204 1.1 thorpej /*
3205 1.1 thorpej * Set up flow-control parameters.
3206 1.1 thorpej *
3207 1.1 thorpej * XXX Values could probably stand some tuning.
3208 1.1 thorpej */
3209 1.139 bouyer if (sc->sc_type != WM_T_ICH8) {
3210 1.139 bouyer CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
3211 1.139 bouyer CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
3212 1.139 bouyer CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
3213 1.139 bouyer }
3214 1.71 thorpej
3215 1.71 thorpej sc->sc_fcrtl = FCRTL_DFLT;
3216 1.71 thorpej if (sc->sc_type < WM_T_82543) {
3217 1.71 thorpej CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
3218 1.71 thorpej CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
3219 1.71 thorpej } else {
3220 1.71 thorpej CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
3221 1.71 thorpej CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
3222 1.1 thorpej }
3223 1.71 thorpej CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
3224 1.1 thorpej
3225 1.1 thorpej #if 0 /* XXXJRT */
3226 1.1 thorpej /* Deal with VLAN enables. */
3227 1.94 jdolecek if (VLAN_ATTACHED(&sc->sc_ethercom))
3228 1.1 thorpej sc->sc_ctrl |= CTRL_VME;
3229 1.1 thorpej else
3230 1.1 thorpej #endif /* XXXJRT */
3231 1.1 thorpej sc->sc_ctrl &= ~CTRL_VME;
3232 1.1 thorpej
3233 1.1 thorpej /* Write the control registers. */
3234 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3235 1.127 bouyer if (sc->sc_type >= WM_T_80003 && (sc->sc_flags & WM_F_HAS_MII)) {
3236 1.127 bouyer int val;
3237 1.127 bouyer val = CSR_READ(sc, WMREG_CTRL_EXT);
3238 1.127 bouyer val &= ~CTRL_EXT_LINK_MODE_MASK;
3239 1.127 bouyer CSR_WRITE(sc, WMREG_CTRL_EXT, val);
3240 1.127 bouyer
3241 1.127 bouyer /* Bypass RX and TX FIFO's */
3242 1.127 bouyer wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL,
3243 1.127 bouyer KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
3244 1.127 bouyer KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
3245 1.127 bouyer
3246 1.127 bouyer wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL,
3247 1.127 bouyer KUMCTRLSTA_INB_CTRL_DIS_PADDING |
3248 1.127 bouyer KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT);
3249 1.127 bouyer /*
3250 1.127 bouyer * Set the mac to wait the maximum time between each
3251 1.127 bouyer * iteration and increase the max iterations when
3252 1.127 bouyer * polling the phy; this fixes erroneous timeouts at 10Mbps.
3253 1.127 bouyer */
3254 1.127 bouyer wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS, 0xFFFF);
3255 1.127 bouyer val = wm_kmrn_i80003_readreg(sc, KUMCTRLSTA_OFFSET_INB_PARAM);
3256 1.127 bouyer val |= 0x3F;
3257 1.127 bouyer wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_INB_PARAM, val);
3258 1.127 bouyer }
3259 1.1 thorpej #if 0
3260 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
3261 1.1 thorpej #endif
3262 1.1 thorpej
3263 1.1 thorpej /*
3264 1.1 thorpej * Set up checksum offload parameters.
3265 1.1 thorpej */
3266 1.1 thorpej reg = CSR_READ(sc, WMREG_RXCSUM);
3267 1.130 yamt reg &= ~(RXCSUM_IPOFL | RXCSUM_IPV6OFL | RXCSUM_TUOFL);
3268 1.103 yamt if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
3269 1.1 thorpej reg |= RXCSUM_IPOFL;
3270 1.103 yamt if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
3271 1.12 thorpej reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
3272 1.130 yamt if (ifp->if_capenable & (IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
3273 1.130 yamt reg |= RXCSUM_IPV6OFL | RXCSUM_TUOFL;
3274 1.1 thorpej CSR_WRITE(sc, WMREG_RXCSUM, reg);
3275 1.1 thorpej
3276 1.1 thorpej /*
3277 1.1 thorpej * Set up the interrupt registers.
3278 1.1 thorpej */
3279 1.1 thorpej CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
3280 1.10 thorpej sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
3281 1.1 thorpej ICR_RXO | ICR_RXT0;
3282 1.1 thorpej if ((sc->sc_flags & WM_F_HAS_MII) == 0)
3283 1.1 thorpej sc->sc_icr |= ICR_RXCFG;
3284 1.1 thorpej CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
3285 1.1 thorpej
3286 1.1 thorpej /* Set up the inter-packet gap. */
3287 1.1 thorpej CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
3288 1.1 thorpej
3289 1.92 briggs if (sc->sc_type >= WM_T_82543) {
3290 1.150 tls /*
3291 1.150 tls * Set up the interrupt throttling register (units of 256ns)
3292 1.150 tls * Note that a footnote in Intel's documentation says this
3293 1.150 tls * ticker runs at 1/4 the rate when the chip is in 100Mbit
3294 1.150 tls * or 10Mbit mode. Empirically, it appears to be the case
3295 1.150 tls * that that is also true for the 1024ns units of the other
3296 1.150 tls * interrupt-related timer registers -- so, really, we ought
3297 1.150 tls * to divide this value by 4 when the link speed is low.
3298 1.150 tls *
3299 1.150 tls * XXX implement this division at link speed change!
3300 1.150 tls */
3301 1.153 tls
3302 1.153 tls /*
3303 1.153 tls * For N interrupts/sec, set this value to:
3304 1.153 tls * 1000000000 / (N * 256). Note that we set the
3305 1.153 tls * absolute and packet timer values to this value
3306 1.153 tls * divided by 4 to get "simple timer" behavior.
3307 1.153 tls */
3308 1.153 tls
3309 1.153 tls sc->sc_itr = 1500; /* 2604 ints/sec */
3310 1.92 briggs CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
3311 1.92 briggs }
3312 1.92 briggs
3313 1.1 thorpej #if 0 /* XXXJRT */
3314 1.1 thorpej /* Set the VLAN ethernetype. */
3315 1.1 thorpej CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
3316 1.1 thorpej #endif
3317 1.1 thorpej
3318 1.1 thorpej /*
3319 1.1 thorpej * Set up the transmit control register; we start out with
3320 1.1 thorpej * a collision distance suitable for FDX, but update it whe
3321 1.1 thorpej * we resolve the media type.
3322 1.1 thorpej */
3323 1.1 thorpej sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
3324 1.1 thorpej TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3325 1.120 msaitoh if (sc->sc_type >= WM_T_82571)
3326 1.120 msaitoh sc->sc_tctl |= TCTL_MULR;
3327 1.127 bouyer if (sc->sc_type >= WM_T_80003)
3328 1.127 bouyer sc->sc_tctl |= TCTL_RTLC;
3329 1.1 thorpej CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3330 1.1 thorpej
3331 1.1 thorpej /* Set the media. */
3332 1.152 dyoung if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
3333 1.152 dyoung goto out;
3334 1.1 thorpej
3335 1.1 thorpej /*
3336 1.1 thorpej * Set up the receive control register; we actually program
3337 1.1 thorpej * the register when we set the receive filter. Use multicast
3338 1.1 thorpej * address offset type 0.
3339 1.1 thorpej *
3340 1.11 thorpej * Only the i82544 has the ability to strip the incoming
3341 1.1 thorpej * CRC, so we don't enable that feature.
3342 1.1 thorpej */
3343 1.1 thorpej sc->sc_mchash_type = 0;
3344 1.120 msaitoh sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
3345 1.120 msaitoh | RCTL_MO(sc->sc_mchash_type);
3346 1.120 msaitoh
3347 1.120 msaitoh /* 82573 doesn't support jumbo frame */
3348 1.165 sborrill if (sc->sc_type != WM_T_82573 && sc->sc_type != WM_T_82574 &&
3349 1.165 sborrill sc->sc_type != WM_T_ICH8)
3350 1.120 msaitoh sc->sc_rctl |= RCTL_LPE;
3351 1.41 tls
3352 1.119 uebayasi if (MCLBYTES == 2048) {
3353 1.41 tls sc->sc_rctl |= RCTL_2k;
3354 1.41 tls } else {
3355 1.119 uebayasi if (sc->sc_type >= WM_T_82543) {
3356 1.41 tls switch(MCLBYTES) {
3357 1.41 tls case 4096:
3358 1.41 tls sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
3359 1.41 tls break;
3360 1.41 tls case 8192:
3361 1.41 tls sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
3362 1.41 tls break;
3363 1.41 tls case 16384:
3364 1.41 tls sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
3365 1.41 tls break;
3366 1.41 tls default:
3367 1.41 tls panic("wm_init: MCLBYTES %d unsupported",
3368 1.41 tls MCLBYTES);
3369 1.41 tls break;
3370 1.41 tls }
3371 1.41 tls } else panic("wm_init: i82542 requires MCLBYTES = 2048");
3372 1.41 tls }
3373 1.1 thorpej
3374 1.1 thorpej /* Set the receive filter. */
3375 1.1 thorpej wm_set_filter(sc);
3376 1.1 thorpej
3377 1.1 thorpej /* Start the one second link check clock. */
3378 1.1 thorpej callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
3379 1.1 thorpej
3380 1.1 thorpej /* ...all done! */
3381 1.96 perry ifp->if_flags |= IFF_RUNNING;
3382 1.1 thorpej ifp->if_flags &= ~IFF_OACTIVE;
3383 1.1 thorpej
3384 1.1 thorpej out:
3385 1.1 thorpej if (error)
3386 1.84 thorpej log(LOG_ERR, "%s: interface not running\n",
3387 1.160 christos device_xname(sc->sc_dev));
3388 1.1 thorpej return (error);
3389 1.1 thorpej }
3390 1.1 thorpej
3391 1.1 thorpej /*
3392 1.1 thorpej * wm_rxdrain:
3393 1.1 thorpej *
3394 1.1 thorpej * Drain the receive queue.
3395 1.1 thorpej */
3396 1.47 thorpej static void
3397 1.1 thorpej wm_rxdrain(struct wm_softc *sc)
3398 1.1 thorpej {
3399 1.1 thorpej struct wm_rxsoft *rxs;
3400 1.1 thorpej int i;
3401 1.1 thorpej
3402 1.1 thorpej for (i = 0; i < WM_NRXDESC; i++) {
3403 1.1 thorpej rxs = &sc->sc_rxsoft[i];
3404 1.1 thorpej if (rxs->rxs_mbuf != NULL) {
3405 1.1 thorpej bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3406 1.1 thorpej m_freem(rxs->rxs_mbuf);
3407 1.1 thorpej rxs->rxs_mbuf = NULL;
3408 1.1 thorpej }
3409 1.1 thorpej }
3410 1.1 thorpej }
3411 1.1 thorpej
3412 1.1 thorpej /*
3413 1.1 thorpej * wm_stop: [ifnet interface function]
3414 1.1 thorpej *
3415 1.1 thorpej * Stop transmission on the interface.
3416 1.1 thorpej */
3417 1.47 thorpej static void
3418 1.1 thorpej wm_stop(struct ifnet *ifp, int disable)
3419 1.1 thorpej {
3420 1.1 thorpej struct wm_softc *sc = ifp->if_softc;
3421 1.1 thorpej struct wm_txsoft *txs;
3422 1.1 thorpej int i;
3423 1.1 thorpej
3424 1.1 thorpej /* Stop the one second clock. */
3425 1.1 thorpej callout_stop(&sc->sc_tick_ch);
3426 1.1 thorpej
3427 1.78 thorpej /* Stop the 82547 Tx FIFO stall check timer. */
3428 1.78 thorpej if (sc->sc_type == WM_T_82547)
3429 1.78 thorpej callout_stop(&sc->sc_txfifo_ch);
3430 1.78 thorpej
3431 1.1 thorpej if (sc->sc_flags & WM_F_HAS_MII) {
3432 1.1 thorpej /* Down the MII. */
3433 1.1 thorpej mii_down(&sc->sc_mii);
3434 1.1 thorpej }
3435 1.1 thorpej
3436 1.1 thorpej /* Stop the transmit and receive processes. */
3437 1.1 thorpej CSR_WRITE(sc, WMREG_TCTL, 0);
3438 1.1 thorpej CSR_WRITE(sc, WMREG_RCTL, 0);
3439 1.1 thorpej
3440 1.102 scw /*
3441 1.102 scw * Clear the interrupt mask to ensure the device cannot assert its
3442 1.102 scw * interrupt line.
3443 1.102 scw * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
3444 1.102 scw * any currently pending or shared interrupt.
3445 1.102 scw */
3446 1.102 scw CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
3447 1.102 scw sc->sc_icr = 0;
3448 1.102 scw
3449 1.1 thorpej /* Release any queued transmit buffers. */
3450 1.74 tron for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
3451 1.1 thorpej txs = &sc->sc_txsoft[i];
3452 1.1 thorpej if (txs->txs_mbuf != NULL) {
3453 1.1 thorpej bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3454 1.1 thorpej m_freem(txs->txs_mbuf);
3455 1.1 thorpej txs->txs_mbuf = NULL;
3456 1.1 thorpej }
3457 1.1 thorpej }
3458 1.1 thorpej
3459 1.1 thorpej /* Mark the interface as down and cancel the watchdog timer. */
3460 1.1 thorpej ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3461 1.1 thorpej ifp->if_timer = 0;
3462 1.156 dyoung
3463 1.156 dyoung if (disable)
3464 1.156 dyoung wm_rxdrain(sc);
3465 1.1 thorpej }
3466 1.1 thorpej
3467 1.145 msaitoh void
3468 1.146 msaitoh wm_get_auto_rd_done(struct wm_softc *sc)
3469 1.145 msaitoh {
3470 1.145 msaitoh int i;
3471 1.145 msaitoh
3472 1.145 msaitoh /* wait for eeprom to reload */
3473 1.145 msaitoh switch (sc->sc_type) {
3474 1.145 msaitoh case WM_T_82571:
3475 1.145 msaitoh case WM_T_82572:
3476 1.145 msaitoh case WM_T_82573:
3477 1.165 sborrill case WM_T_82574:
3478 1.145 msaitoh case WM_T_80003:
3479 1.145 msaitoh case WM_T_ICH8:
3480 1.145 msaitoh case WM_T_ICH9:
3481 1.167 msaitoh case WM_T_ICH10:
3482 1.145 msaitoh for (i = 10; i > 0; i--) {
3483 1.145 msaitoh if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD)
3484 1.145 msaitoh break;
3485 1.145 msaitoh delay(1000);
3486 1.145 msaitoh }
3487 1.145 msaitoh if (i == 0) {
3488 1.145 msaitoh log(LOG_ERR, "%s: auto read from eeprom failed to "
3489 1.160 christos "complete\n", device_xname(sc->sc_dev));
3490 1.145 msaitoh }
3491 1.145 msaitoh break;
3492 1.145 msaitoh default:
3493 1.145 msaitoh delay(5000);
3494 1.145 msaitoh break;
3495 1.145 msaitoh }
3496 1.145 msaitoh
3497 1.145 msaitoh /* Phy configuration starts after EECD_AUTO_RD is set */
3498 1.165 sborrill if (sc->sc_type == WM_T_82573 || sc->sc_type == WM_T_82574)
3499 1.145 msaitoh delay(25000);
3500 1.145 msaitoh }
3501 1.145 msaitoh
3502 1.1 thorpej /*
3503 1.45 thorpej * wm_acquire_eeprom:
3504 1.45 thorpej *
3505 1.45 thorpej * Perform the EEPROM handshake required on some chips.
3506 1.45 thorpej */
3507 1.45 thorpej static int
3508 1.45 thorpej wm_acquire_eeprom(struct wm_softc *sc)
3509 1.45 thorpej {
3510 1.45 thorpej uint32_t reg;
3511 1.45 thorpej int x;
3512 1.127 bouyer int ret = 0;
3513 1.45 thorpej
3514 1.117 msaitoh /* always success */
3515 1.117 msaitoh if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
3516 1.117 msaitoh return 0;
3517 1.117 msaitoh
3518 1.139 bouyer if (sc->sc_flags & WM_F_SWFWHW_SYNC) {
3519 1.139 bouyer ret = wm_get_swfwhw_semaphore(sc);
3520 1.139 bouyer } else if (sc->sc_flags & WM_F_SWFW_SYNC) {
3521 1.127 bouyer /* this will also do wm_get_swsm_semaphore() if needed */
3522 1.127 bouyer ret = wm_get_swfw_semaphore(sc, SWFW_EEP_SM);
3523 1.127 bouyer } else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
3524 1.127 bouyer ret = wm_get_swsm_semaphore(sc);
3525 1.127 bouyer }
3526 1.127 bouyer
3527 1.169 msaitoh if (ret) {
3528 1.169 msaitoh aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
3529 1.169 msaitoh __func__);
3530 1.117 msaitoh return 1;
3531 1.169 msaitoh }
3532 1.117 msaitoh
3533 1.45 thorpej if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
3534 1.45 thorpej reg = CSR_READ(sc, WMREG_EECD);
3535 1.45 thorpej
3536 1.45 thorpej /* Request EEPROM access. */
3537 1.45 thorpej reg |= EECD_EE_REQ;
3538 1.45 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3539 1.45 thorpej
3540 1.45 thorpej /* ..and wait for it to be granted. */
3541 1.117 msaitoh for (x = 0; x < 1000; x++) {
3542 1.45 thorpej reg = CSR_READ(sc, WMREG_EECD);
3543 1.45 thorpej if (reg & EECD_EE_GNT)
3544 1.45 thorpej break;
3545 1.45 thorpej delay(5);
3546 1.45 thorpej }
3547 1.45 thorpej if ((reg & EECD_EE_GNT) == 0) {
3548 1.160 christos aprint_error_dev(sc->sc_dev,
3549 1.160 christos "could not acquire EEPROM GNT\n");
3550 1.45 thorpej reg &= ~EECD_EE_REQ;
3551 1.45 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3552 1.139 bouyer if (sc->sc_flags & WM_F_SWFWHW_SYNC)
3553 1.139 bouyer wm_put_swfwhw_semaphore(sc);
3554 1.127 bouyer if (sc->sc_flags & WM_F_SWFW_SYNC)
3555 1.127 bouyer wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
3556 1.127 bouyer else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
3557 1.127 bouyer wm_put_swsm_semaphore(sc);
3558 1.45 thorpej return (1);
3559 1.45 thorpej }
3560 1.45 thorpej }
3561 1.45 thorpej
3562 1.45 thorpej return (0);
3563 1.45 thorpej }
3564 1.45 thorpej
3565 1.45 thorpej /*
3566 1.45 thorpej * wm_release_eeprom:
3567 1.45 thorpej *
3568 1.45 thorpej * Release the EEPROM mutex.
3569 1.45 thorpej */
3570 1.45 thorpej static void
3571 1.45 thorpej wm_release_eeprom(struct wm_softc *sc)
3572 1.45 thorpej {
3573 1.45 thorpej uint32_t reg;
3574 1.45 thorpej
3575 1.117 msaitoh /* always success */
3576 1.117 msaitoh if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
3577 1.117 msaitoh return;
3578 1.117 msaitoh
3579 1.45 thorpej if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
3580 1.45 thorpej reg = CSR_READ(sc, WMREG_EECD);
3581 1.45 thorpej reg &= ~EECD_EE_REQ;
3582 1.45 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3583 1.45 thorpej }
3584 1.117 msaitoh
3585 1.139 bouyer if (sc->sc_flags & WM_F_SWFWHW_SYNC)
3586 1.139 bouyer wm_put_swfwhw_semaphore(sc);
3587 1.127 bouyer if (sc->sc_flags & WM_F_SWFW_SYNC)
3588 1.127 bouyer wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
3589 1.127 bouyer else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
3590 1.127 bouyer wm_put_swsm_semaphore(sc);
3591 1.45 thorpej }
3592 1.45 thorpej
3593 1.45 thorpej /*
3594 1.46 thorpej * wm_eeprom_sendbits:
3595 1.46 thorpej *
3596 1.46 thorpej * Send a series of bits to the EEPROM.
3597 1.46 thorpej */
3598 1.46 thorpej static void
3599 1.46 thorpej wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
3600 1.46 thorpej {
3601 1.46 thorpej uint32_t reg;
3602 1.46 thorpej int x;
3603 1.46 thorpej
3604 1.46 thorpej reg = CSR_READ(sc, WMREG_EECD);
3605 1.46 thorpej
3606 1.46 thorpej for (x = nbits; x > 0; x--) {
3607 1.46 thorpej if (bits & (1U << (x - 1)))
3608 1.46 thorpej reg |= EECD_DI;
3609 1.46 thorpej else
3610 1.46 thorpej reg &= ~EECD_DI;
3611 1.46 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3612 1.46 thorpej delay(2);
3613 1.46 thorpej CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3614 1.46 thorpej delay(2);
3615 1.46 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3616 1.46 thorpej delay(2);
3617 1.46 thorpej }
3618 1.46 thorpej }
3619 1.46 thorpej
3620 1.46 thorpej /*
3621 1.48 thorpej * wm_eeprom_recvbits:
3622 1.48 thorpej *
3623 1.48 thorpej * Receive a series of bits from the EEPROM.
3624 1.48 thorpej */
3625 1.48 thorpej static void
3626 1.48 thorpej wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
3627 1.48 thorpej {
3628 1.48 thorpej uint32_t reg, val;
3629 1.48 thorpej int x;
3630 1.48 thorpej
3631 1.48 thorpej reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
3632 1.48 thorpej
3633 1.48 thorpej val = 0;
3634 1.48 thorpej for (x = nbits; x > 0; x--) {
3635 1.48 thorpej CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3636 1.48 thorpej delay(2);
3637 1.48 thorpej if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
3638 1.48 thorpej val |= (1U << (x - 1));
3639 1.48 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3640 1.48 thorpej delay(2);
3641 1.48 thorpej }
3642 1.48 thorpej *valp = val;
3643 1.48 thorpej }
3644 1.48 thorpej
3645 1.48 thorpej /*
3646 1.50 thorpej * wm_read_eeprom_uwire:
3647 1.50 thorpej *
3648 1.50 thorpej * Read a word from the EEPROM using the MicroWire protocol.
3649 1.50 thorpej */
3650 1.51 thorpej static int
3651 1.51 thorpej wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3652 1.50 thorpej {
3653 1.50 thorpej uint32_t reg, val;
3654 1.51 thorpej int i;
3655 1.51 thorpej
3656 1.51 thorpej for (i = 0; i < wordcnt; i++) {
3657 1.51 thorpej /* Clear SK and DI. */
3658 1.51 thorpej reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
3659 1.51 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3660 1.50 thorpej
3661 1.51 thorpej /* Set CHIP SELECT. */
3662 1.51 thorpej reg |= EECD_CS;
3663 1.51 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3664 1.51 thorpej delay(2);
3665 1.51 thorpej
3666 1.51 thorpej /* Shift in the READ command. */
3667 1.51 thorpej wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
3668 1.51 thorpej
3669 1.51 thorpej /* Shift in address. */
3670 1.51 thorpej wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
3671 1.51 thorpej
3672 1.51 thorpej /* Shift out the data. */
3673 1.51 thorpej wm_eeprom_recvbits(sc, &val, 16);
3674 1.51 thorpej data[i] = val & 0xffff;
3675 1.51 thorpej
3676 1.51 thorpej /* Clear CHIP SELECT. */
3677 1.51 thorpej reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
3678 1.51 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3679 1.51 thorpej delay(2);
3680 1.51 thorpej }
3681 1.51 thorpej
3682 1.51 thorpej return (0);
3683 1.50 thorpej }
3684 1.50 thorpej
3685 1.50 thorpej /*
3686 1.57 thorpej * wm_spi_eeprom_ready:
3687 1.57 thorpej *
3688 1.57 thorpej * Wait for a SPI EEPROM to be ready for commands.
3689 1.57 thorpej */
3690 1.57 thorpej static int
3691 1.57 thorpej wm_spi_eeprom_ready(struct wm_softc *sc)
3692 1.57 thorpej {
3693 1.57 thorpej uint32_t val;
3694 1.57 thorpej int usec;
3695 1.57 thorpej
3696 1.57 thorpej for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
3697 1.57 thorpej wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
3698 1.57 thorpej wm_eeprom_recvbits(sc, &val, 8);
3699 1.57 thorpej if ((val & SPI_SR_RDY) == 0)
3700 1.57 thorpej break;
3701 1.57 thorpej }
3702 1.57 thorpej if (usec >= SPI_MAX_RETRIES) {
3703 1.160 christos aprint_error_dev(sc->sc_dev, "EEPROM failed to become ready\n");
3704 1.57 thorpej return (1);
3705 1.57 thorpej }
3706 1.57 thorpej return (0);
3707 1.57 thorpej }
3708 1.57 thorpej
3709 1.57 thorpej /*
3710 1.57 thorpej * wm_read_eeprom_spi:
3711 1.57 thorpej *
3712 1.57 thorpej * Read a work from the EEPROM using the SPI protocol.
3713 1.57 thorpej */
3714 1.57 thorpej static int
3715 1.57 thorpej wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3716 1.57 thorpej {
3717 1.57 thorpej uint32_t reg, val;
3718 1.57 thorpej int i;
3719 1.57 thorpej uint8_t opc;
3720 1.57 thorpej
3721 1.57 thorpej /* Clear SK and CS. */
3722 1.57 thorpej reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
3723 1.57 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3724 1.57 thorpej delay(2);
3725 1.57 thorpej
3726 1.57 thorpej if (wm_spi_eeprom_ready(sc))
3727 1.57 thorpej return (1);
3728 1.57 thorpej
3729 1.57 thorpej /* Toggle CS to flush commands. */
3730 1.57 thorpej CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
3731 1.57 thorpej delay(2);
3732 1.57 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3733 1.57 thorpej delay(2);
3734 1.57 thorpej
3735 1.57 thorpej opc = SPI_OPC_READ;
3736 1.57 thorpej if (sc->sc_ee_addrbits == 8 && word >= 128)
3737 1.57 thorpej opc |= SPI_OPC_A8;
3738 1.57 thorpej
3739 1.57 thorpej wm_eeprom_sendbits(sc, opc, 8);
3740 1.57 thorpej wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
3741 1.57 thorpej
3742 1.57 thorpej for (i = 0; i < wordcnt; i++) {
3743 1.57 thorpej wm_eeprom_recvbits(sc, &val, 16);
3744 1.57 thorpej data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
3745 1.57 thorpej }
3746 1.57 thorpej
3747 1.57 thorpej /* Raise CS and clear SK. */
3748 1.57 thorpej reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3749 1.57 thorpej CSR_WRITE(sc, WMREG_EECD, reg);
3750 1.57 thorpej delay(2);
3751 1.57 thorpej
3752 1.57 thorpej return (0);
3753 1.57 thorpej }
3754 1.57 thorpej
3755 1.112 gavan #define EEPROM_CHECKSUM 0xBABA
3756 1.112 gavan #define EEPROM_SIZE 0x0040
3757 1.112 gavan
3758 1.112 gavan /*
3759 1.112 gavan * wm_validate_eeprom_checksum
3760 1.112 gavan *
3761 1.112 gavan * The checksum is defined as the sum of the first 64 (16 bit) words.
3762 1.112 gavan */
3763 1.112 gavan static int
3764 1.112 gavan wm_validate_eeprom_checksum(struct wm_softc *sc)
3765 1.112 gavan {
3766 1.112 gavan uint16_t checksum;
3767 1.112 gavan uint16_t eeprom_data;
3768 1.112 gavan int i;
3769 1.112 gavan
3770 1.112 gavan checksum = 0;
3771 1.112 gavan
3772 1.112 gavan for (i = 0; i < EEPROM_SIZE; i++) {
3773 1.119 uebayasi if (wm_read_eeprom(sc, i, 1, &eeprom_data))
3774 1.112 gavan return 1;
3775 1.112 gavan checksum += eeprom_data;
3776 1.112 gavan }
3777 1.112 gavan
3778 1.112 gavan if (checksum != (uint16_t) EEPROM_CHECKSUM)
3779 1.112 gavan return 1;
3780 1.112 gavan
3781 1.112 gavan return 0;
3782 1.112 gavan }
3783 1.112 gavan
3784 1.57 thorpej /*
3785 1.1 thorpej * wm_read_eeprom:
3786 1.1 thorpej *
3787 1.1 thorpej * Read data from the serial EEPROM.
3788 1.1 thorpej */
3789 1.51 thorpej static int
3790 1.1 thorpej wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3791 1.1 thorpej {
3792 1.51 thorpej int rv;
3793 1.1 thorpej
3794 1.113 gavan if (sc->sc_flags & WM_F_EEPROM_INVALID)
3795 1.113 gavan return 1;
3796 1.112 gavan
3797 1.51 thorpej if (wm_acquire_eeprom(sc))
3798 1.113 gavan return 1;
3799 1.17 thorpej
3800 1.167 msaitoh if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
3801 1.167 msaitoh || (sc->sc_type == WM_T_ICH10))
3802 1.139 bouyer rv = wm_read_eeprom_ich8(sc, word, wordcnt, data);
3803 1.139 bouyer else if (sc->sc_flags & WM_F_EEPROM_EERDEEWR)
3804 1.117 msaitoh rv = wm_read_eeprom_eerd(sc, word, wordcnt, data);
3805 1.117 msaitoh else if (sc->sc_flags & WM_F_EEPROM_SPI)
3806 1.57 thorpej rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3807 1.57 thorpej else
3808 1.57 thorpej rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3809 1.17 thorpej
3810 1.51 thorpej wm_release_eeprom(sc);
3811 1.113 gavan return rv;
3812 1.1 thorpej }
3813 1.1 thorpej
3814 1.117 msaitoh static int
3815 1.117 msaitoh wm_read_eeprom_eerd(struct wm_softc *sc, int offset, int wordcnt,
3816 1.117 msaitoh uint16_t *data)
3817 1.117 msaitoh {
3818 1.117 msaitoh int i, eerd = 0;
3819 1.117 msaitoh int error = 0;
3820 1.117 msaitoh
3821 1.117 msaitoh for (i = 0; i < wordcnt; i++) {
3822 1.117 msaitoh eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
3823 1.117 msaitoh
3824 1.117 msaitoh CSR_WRITE(sc, WMREG_EERD, eerd);
3825 1.117 msaitoh error = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
3826 1.117 msaitoh if (error != 0)
3827 1.117 msaitoh break;
3828 1.117 msaitoh
3829 1.117 msaitoh data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
3830 1.117 msaitoh }
3831 1.119 uebayasi
3832 1.117 msaitoh return error;
3833 1.117 msaitoh }
3834 1.117 msaitoh
3835 1.117 msaitoh static int
3836 1.117 msaitoh wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
3837 1.117 msaitoh {
3838 1.117 msaitoh uint32_t attempts = 100000;
3839 1.117 msaitoh uint32_t i, reg = 0;
3840 1.117 msaitoh int32_t done = -1;
3841 1.117 msaitoh
3842 1.119 uebayasi for (i = 0; i < attempts; i++) {
3843 1.117 msaitoh reg = CSR_READ(sc, rw);
3844 1.117 msaitoh
3845 1.119 uebayasi if (reg & EERD_DONE) {
3846 1.117 msaitoh done = 0;
3847 1.117 msaitoh break;
3848 1.117 msaitoh }
3849 1.117 msaitoh delay(5);
3850 1.117 msaitoh }
3851 1.117 msaitoh
3852 1.117 msaitoh return done;
3853 1.117 msaitoh }
3854 1.117 msaitoh
3855 1.1 thorpej /*
3856 1.1 thorpej * wm_add_rxbuf:
3857 1.1 thorpej *
3858 1.1 thorpej * Add a receive buffer to the indiciated descriptor.
3859 1.1 thorpej */
3860 1.47 thorpej static int
3861 1.1 thorpej wm_add_rxbuf(struct wm_softc *sc, int idx)
3862 1.1 thorpej {
3863 1.1 thorpej struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3864 1.1 thorpej struct mbuf *m;
3865 1.1 thorpej int error;
3866 1.1 thorpej
3867 1.1 thorpej MGETHDR(m, M_DONTWAIT, MT_DATA);
3868 1.1 thorpej if (m == NULL)
3869 1.1 thorpej return (ENOBUFS);
3870 1.1 thorpej
3871 1.1 thorpej MCLGET(m, M_DONTWAIT);
3872 1.1 thorpej if ((m->m_flags & M_EXT) == 0) {
3873 1.1 thorpej m_freem(m);
3874 1.1 thorpej return (ENOBUFS);
3875 1.1 thorpej }
3876 1.1 thorpej
3877 1.1 thorpej if (rxs->rxs_mbuf != NULL)
3878 1.1 thorpej bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3879 1.1 thorpej
3880 1.1 thorpej rxs->rxs_mbuf = m;
3881 1.1 thorpej
3882 1.32 thorpej m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3883 1.32 thorpej error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3884 1.1 thorpej BUS_DMA_READ|BUS_DMA_NOWAIT);
3885 1.1 thorpej if (error) {
3886 1.84 thorpej /* XXX XXX XXX */
3887 1.160 christos aprint_error_dev(sc->sc_dev,
3888 1.160 christos "unable to load rx DMA map %d, error = %d\n",
3889 1.158 cegger idx, error);
3890 1.84 thorpej panic("wm_add_rxbuf");
3891 1.1 thorpej }
3892 1.1 thorpej
3893 1.1 thorpej bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3894 1.1 thorpej rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3895 1.1 thorpej
3896 1.1 thorpej WM_INIT_RXDESC(sc, idx);
3897 1.1 thorpej
3898 1.1 thorpej return (0);
3899 1.1 thorpej }
3900 1.1 thorpej
3901 1.1 thorpej /*
3902 1.1 thorpej * wm_set_ral:
3903 1.1 thorpej *
3904 1.1 thorpej * Set an entery in the receive address list.
3905 1.1 thorpej */
3906 1.1 thorpej static void
3907 1.1 thorpej wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3908 1.1 thorpej {
3909 1.1 thorpej uint32_t ral_lo, ral_hi;
3910 1.1 thorpej
3911 1.1 thorpej if (enaddr != NULL) {
3912 1.1 thorpej ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3913 1.1 thorpej (enaddr[3] << 24);
3914 1.1 thorpej ral_hi = enaddr[4] | (enaddr[5] << 8);
3915 1.1 thorpej ral_hi |= RAL_AV;
3916 1.1 thorpej } else {
3917 1.1 thorpej ral_lo = 0;
3918 1.1 thorpej ral_hi = 0;
3919 1.1 thorpej }
3920 1.1 thorpej
3921 1.11 thorpej if (sc->sc_type >= WM_T_82544) {
3922 1.1 thorpej CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3923 1.1 thorpej ral_lo);
3924 1.1 thorpej CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3925 1.1 thorpej ral_hi);
3926 1.1 thorpej } else {
3927 1.1 thorpej CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3928 1.1 thorpej CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3929 1.1 thorpej }
3930 1.1 thorpej }
3931 1.1 thorpej
3932 1.1 thorpej /*
3933 1.1 thorpej * wm_mchash:
3934 1.1 thorpej *
3935 1.1 thorpej * Compute the hash of the multicast address for the 4096-bit
3936 1.1 thorpej * multicast filter.
3937 1.1 thorpej */
3938 1.1 thorpej static uint32_t
3939 1.1 thorpej wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3940 1.1 thorpej {
3941 1.1 thorpej static const int lo_shift[4] = { 4, 3, 2, 0 };
3942 1.1 thorpej static const int hi_shift[4] = { 4, 5, 6, 8 };
3943 1.139 bouyer static const int ich8_lo_shift[4] = { 6, 5, 4, 2 };
3944 1.139 bouyer static const int ich8_hi_shift[4] = { 2, 3, 4, 6 };
3945 1.1 thorpej uint32_t hash;
3946 1.1 thorpej
3947 1.167 msaitoh if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
3948 1.167 msaitoh || (sc->sc_type == WM_T_ICH10)) {
3949 1.139 bouyer hash = (enaddr[4] >> ich8_lo_shift[sc->sc_mchash_type]) |
3950 1.139 bouyer (((uint16_t) enaddr[5]) << ich8_hi_shift[sc->sc_mchash_type]);
3951 1.139 bouyer return (hash & 0x3ff);
3952 1.139 bouyer }
3953 1.1 thorpej hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3954 1.1 thorpej (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3955 1.1 thorpej
3956 1.1 thorpej return (hash & 0xfff);
3957 1.1 thorpej }
3958 1.1 thorpej
3959 1.1 thorpej /*
3960 1.1 thorpej * wm_set_filter:
3961 1.1 thorpej *
3962 1.1 thorpej * Set up the receive filter.
3963 1.1 thorpej */
3964 1.47 thorpej static void
3965 1.1 thorpej wm_set_filter(struct wm_softc *sc)
3966 1.1 thorpej {
3967 1.1 thorpej struct ethercom *ec = &sc->sc_ethercom;
3968 1.1 thorpej struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3969 1.1 thorpej struct ether_multi *enm;
3970 1.1 thorpej struct ether_multistep step;
3971 1.1 thorpej bus_addr_t mta_reg;
3972 1.1 thorpej uint32_t hash, reg, bit;
3973 1.139 bouyer int i, size;
3974 1.1 thorpej
3975 1.11 thorpej if (sc->sc_type >= WM_T_82544)
3976 1.1 thorpej mta_reg = WMREG_CORDOVA_MTA;
3977 1.1 thorpej else
3978 1.1 thorpej mta_reg = WMREG_MTA;
3979 1.1 thorpej
3980 1.1 thorpej sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3981 1.1 thorpej
3982 1.1 thorpej if (ifp->if_flags & IFF_BROADCAST)
3983 1.1 thorpej sc->sc_rctl |= RCTL_BAM;
3984 1.1 thorpej if (ifp->if_flags & IFF_PROMISC) {
3985 1.1 thorpej sc->sc_rctl |= RCTL_UPE;
3986 1.1 thorpej goto allmulti;
3987 1.1 thorpej }
3988 1.1 thorpej
3989 1.1 thorpej /*
3990 1.1 thorpej * Set the station address in the first RAL slot, and
3991 1.1 thorpej * clear the remaining slots.
3992 1.1 thorpej */
3993 1.167 msaitoh if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
3994 1.167 msaitoh || (sc->sc_type == WM_T_ICH10))
3995 1.139 bouyer size = WM_ICH8_RAL_TABSIZE;
3996 1.139 bouyer else
3997 1.139 bouyer size = WM_RAL_TABSIZE;
3998 1.143 dyoung wm_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
3999 1.139 bouyer for (i = 1; i < size; i++)
4000 1.1 thorpej wm_set_ral(sc, NULL, i);
4001 1.1 thorpej
4002 1.167 msaitoh if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
4003 1.167 msaitoh || (sc->sc_type == WM_T_ICH10))
4004 1.139 bouyer size = WM_ICH8_MC_TABSIZE;
4005 1.139 bouyer else
4006 1.139 bouyer size = WM_MC_TABSIZE;
4007 1.1 thorpej /* Clear out the multicast table. */
4008 1.139 bouyer for (i = 0; i < size; i++)
4009 1.1 thorpej CSR_WRITE(sc, mta_reg + (i << 2), 0);
4010 1.1 thorpej
4011 1.1 thorpej ETHER_FIRST_MULTI(step, ec, enm);
4012 1.1 thorpej while (enm != NULL) {
4013 1.1 thorpej if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
4014 1.1 thorpej /*
4015 1.1 thorpej * We must listen to a range of multicast addresses.
4016 1.1 thorpej * For now, just accept all multicasts, rather than
4017 1.1 thorpej * trying to set only those filter bits needed to match
4018 1.1 thorpej * the range. (At this time, the only use of address
4019 1.1 thorpej * ranges is for IP multicast routing, for which the
4020 1.1 thorpej * range is big enough to require all bits set.)
4021 1.1 thorpej */
4022 1.1 thorpej goto allmulti;
4023 1.1 thorpej }
4024 1.1 thorpej
4025 1.1 thorpej hash = wm_mchash(sc, enm->enm_addrlo);
4026 1.1 thorpej
4027 1.139 bouyer reg = (hash >> 5);
4028 1.167 msaitoh if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
4029 1.167 msaitoh || (sc->sc_type == WM_T_ICH10))
4030 1.139 bouyer reg &= 0x1f;
4031 1.139 bouyer else
4032 1.139 bouyer reg &= 0x7f;
4033 1.1 thorpej bit = hash & 0x1f;
4034 1.1 thorpej
4035 1.1 thorpej hash = CSR_READ(sc, mta_reg + (reg << 2));
4036 1.1 thorpej hash |= 1U << bit;
4037 1.1 thorpej
4038 1.1 thorpej /* XXX Hardware bug?? */
4039 1.11 thorpej if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
4040 1.1 thorpej bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
4041 1.1 thorpej CSR_WRITE(sc, mta_reg + (reg << 2), hash);
4042 1.1 thorpej CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
4043 1.1 thorpej } else
4044 1.1 thorpej CSR_WRITE(sc, mta_reg + (reg << 2), hash);
4045 1.1 thorpej
4046 1.1 thorpej ETHER_NEXT_MULTI(step, enm);
4047 1.1 thorpej }
4048 1.1 thorpej
4049 1.1 thorpej ifp->if_flags &= ~IFF_ALLMULTI;
4050 1.1 thorpej goto setit;
4051 1.1 thorpej
4052 1.1 thorpej allmulti:
4053 1.1 thorpej ifp->if_flags |= IFF_ALLMULTI;
4054 1.1 thorpej sc->sc_rctl |= RCTL_MPE;
4055 1.1 thorpej
4056 1.1 thorpej setit:
4057 1.1 thorpej CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
4058 1.1 thorpej }
4059 1.1 thorpej
4060 1.1 thorpej /*
4061 1.1 thorpej * wm_tbi_mediainit:
4062 1.1 thorpej *
4063 1.1 thorpej * Initialize media for use on 1000BASE-X devices.
4064 1.1 thorpej */
4065 1.47 thorpej static void
4066 1.1 thorpej wm_tbi_mediainit(struct wm_softc *sc)
4067 1.1 thorpej {
4068 1.1 thorpej const char *sep = "";
4069 1.1 thorpej
4070 1.11 thorpej if (sc->sc_type < WM_T_82543)
4071 1.1 thorpej sc->sc_tipg = TIPG_WM_DFLT;
4072 1.1 thorpej else
4073 1.1 thorpej sc->sc_tipg = TIPG_LG_DFLT;
4074 1.1 thorpej
4075 1.26 fair ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
4076 1.1 thorpej wm_tbi_mediastatus);
4077 1.1 thorpej
4078 1.1 thorpej /*
4079 1.1 thorpej * SWD Pins:
4080 1.1 thorpej *
4081 1.1 thorpej * 0 = Link LED (output)
4082 1.1 thorpej * 1 = Loss Of Signal (input)
4083 1.1 thorpej */
4084 1.1 thorpej sc->sc_ctrl |= CTRL_SWDPIO(0);
4085 1.1 thorpej sc->sc_ctrl &= ~CTRL_SWDPIO(1);
4086 1.1 thorpej
4087 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4088 1.1 thorpej
4089 1.27 christos #define ADD(ss, mm, dd) \
4090 1.1 thorpej do { \
4091 1.84 thorpej aprint_normal("%s%s", sep, ss); \
4092 1.27 christos ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
4093 1.1 thorpej sep = ", "; \
4094 1.1 thorpej } while (/*CONSTCOND*/0)
4095 1.1 thorpej
4096 1.160 christos aprint_normal_dev(sc->sc_dev, "");
4097 1.1 thorpej ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
4098 1.1 thorpej ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
4099 1.1 thorpej ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
4100 1.84 thorpej aprint_normal("\n");
4101 1.1 thorpej
4102 1.1 thorpej #undef ADD
4103 1.1 thorpej
4104 1.1 thorpej ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
4105 1.1 thorpej }
4106 1.1 thorpej
4107 1.1 thorpej /*
4108 1.1 thorpej * wm_tbi_mediastatus: [ifmedia interface function]
4109 1.1 thorpej *
4110 1.1 thorpej * Get the current interface media status on a 1000BASE-X device.
4111 1.1 thorpej */
4112 1.47 thorpej static void
4113 1.1 thorpej wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
4114 1.1 thorpej {
4115 1.1 thorpej struct wm_softc *sc = ifp->if_softc;
4116 1.71 thorpej uint32_t ctrl;
4117 1.1 thorpej
4118 1.1 thorpej ifmr->ifm_status = IFM_AVALID;
4119 1.1 thorpej ifmr->ifm_active = IFM_ETHER;
4120 1.1 thorpej
4121 1.1 thorpej if (sc->sc_tbi_linkup == 0) {
4122 1.1 thorpej ifmr->ifm_active |= IFM_NONE;
4123 1.1 thorpej return;
4124 1.1 thorpej }
4125 1.1 thorpej
4126 1.1 thorpej ifmr->ifm_status |= IFM_ACTIVE;
4127 1.1 thorpej ifmr->ifm_active |= IFM_1000_SX;
4128 1.1 thorpej if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
4129 1.1 thorpej ifmr->ifm_active |= IFM_FDX;
4130 1.71 thorpej ctrl = CSR_READ(sc, WMREG_CTRL);
4131 1.71 thorpej if (ctrl & CTRL_RFCE)
4132 1.71 thorpej ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
4133 1.71 thorpej if (ctrl & CTRL_TFCE)
4134 1.71 thorpej ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
4135 1.1 thorpej }
4136 1.1 thorpej
4137 1.1 thorpej /*
4138 1.1 thorpej * wm_tbi_mediachange: [ifmedia interface function]
4139 1.1 thorpej *
4140 1.1 thorpej * Set hardware to newly-selected media on a 1000BASE-X device.
4141 1.1 thorpej */
4142 1.47 thorpej static int
4143 1.1 thorpej wm_tbi_mediachange(struct ifnet *ifp)
4144 1.1 thorpej {
4145 1.1 thorpej struct wm_softc *sc = ifp->if_softc;
4146 1.1 thorpej struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
4147 1.1 thorpej uint32_t status;
4148 1.1 thorpej int i;
4149 1.1 thorpej
4150 1.1 thorpej sc->sc_txcw = ife->ifm_data;
4151 1.134 msaitoh DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x on entry\n",
4152 1.160 christos device_xname(sc->sc_dev),sc->sc_txcw));
4153 1.71 thorpej if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
4154 1.71 thorpej (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
4155 1.71 thorpej sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
4156 1.134 msaitoh if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
4157 1.134 msaitoh sc->sc_txcw |= TXCW_ANE;
4158 1.134 msaitoh } else {
4159 1.134 msaitoh /*If autonegotiation is turned off, force link up and turn on full duplex*/
4160 1.134 msaitoh sc->sc_txcw &= ~TXCW_ANE;
4161 1.134 msaitoh sc->sc_ctrl |= CTRL_SLU | CTRL_FD;
4162 1.134 msaitoh CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4163 1.134 msaitoh delay(1000);
4164 1.134 msaitoh }
4165 1.1 thorpej
4166 1.134 msaitoh DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x after autoneg check\n",
4167 1.160 christos device_xname(sc->sc_dev),sc->sc_txcw));
4168 1.1 thorpej CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
4169 1.1 thorpej delay(10000);
4170 1.1 thorpej
4171 1.71 thorpej /* NOTE: CTRL will update TFCE and RFCE automatically. */
4172 1.71 thorpej
4173 1.1 thorpej sc->sc_tbi_anstate = 0;
4174 1.1 thorpej
4175 1.134 msaitoh i = CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1);
4176 1.160 christos DPRINTF(WM_DEBUG_LINK,("%s: i = 0x%x\n", device_xname(sc->sc_dev),i));
4177 1.134 msaitoh
4178 1.134 msaitoh /*
4179 1.134 msaitoh * On 82544 chips and later, the CTRL_SWDPIN(1) bit will be set if the
4180 1.134 msaitoh * optics detect a signal, 0 if they don't.
4181 1.134 msaitoh */
4182 1.134 msaitoh if (((i != 0) && (sc->sc_type >= WM_T_82544)) || (i == 0)) {
4183 1.1 thorpej /* Have signal; wait for the link to come up. */
4184 1.134 msaitoh
4185 1.134 msaitoh if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
4186 1.134 msaitoh /*
4187 1.134 msaitoh * Reset the link, and let autonegotiation do its thing
4188 1.134 msaitoh */
4189 1.134 msaitoh sc->sc_ctrl |= CTRL_LRST;
4190 1.134 msaitoh CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4191 1.134 msaitoh delay(1000);
4192 1.134 msaitoh sc->sc_ctrl &= ~CTRL_LRST;
4193 1.134 msaitoh CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4194 1.134 msaitoh delay(1000);
4195 1.134 msaitoh }
4196 1.134 msaitoh
4197 1.1 thorpej for (i = 0; i < 50; i++) {
4198 1.1 thorpej delay(10000);
4199 1.1 thorpej if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
4200 1.1 thorpej break;
4201 1.1 thorpej }
4202 1.1 thorpej
4203 1.134 msaitoh DPRINTF(WM_DEBUG_LINK,("%s: i = %d after waiting for link\n",
4204 1.160 christos device_xname(sc->sc_dev),i));
4205 1.134 msaitoh
4206 1.1 thorpej status = CSR_READ(sc, WMREG_STATUS);
4207 1.134 msaitoh DPRINTF(WM_DEBUG_LINK,
4208 1.134 msaitoh ("%s: status after final read = 0x%x, STATUS_LU = 0x%x\n",
4209 1.160 christos device_xname(sc->sc_dev),status, STATUS_LU));
4210 1.1 thorpej if (status & STATUS_LU) {
4211 1.1 thorpej /* Link is up. */
4212 1.1 thorpej DPRINTF(WM_DEBUG_LINK,
4213 1.1 thorpej ("%s: LINK: set media -> link up %s\n",
4214 1.160 christos device_xname(sc->sc_dev),
4215 1.1 thorpej (status & STATUS_FD) ? "FDX" : "HDX"));
4216 1.1 thorpej sc->sc_tctl &= ~TCTL_COLD(0x3ff);
4217 1.71 thorpej sc->sc_fcrtl &= ~FCRTL_XONE;
4218 1.1 thorpej if (status & STATUS_FD)
4219 1.1 thorpej sc->sc_tctl |=
4220 1.1 thorpej TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
4221 1.1 thorpej else
4222 1.1 thorpej sc->sc_tctl |=
4223 1.1 thorpej TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
4224 1.71 thorpej if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
4225 1.71 thorpej sc->sc_fcrtl |= FCRTL_XONE;
4226 1.1 thorpej CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
4227 1.71 thorpej CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
4228 1.71 thorpej WMREG_OLD_FCRTL : WMREG_FCRTL,
4229 1.71 thorpej sc->sc_fcrtl);
4230 1.1 thorpej sc->sc_tbi_linkup = 1;
4231 1.1 thorpej } else {
4232 1.1 thorpej /* Link is down. */
4233 1.1 thorpej DPRINTF(WM_DEBUG_LINK,
4234 1.1 thorpej ("%s: LINK: set media -> link down\n",
4235 1.160 christos device_xname(sc->sc_dev)));
4236 1.1 thorpej sc->sc_tbi_linkup = 0;
4237 1.1 thorpej }
4238 1.1 thorpej } else {
4239 1.1 thorpej DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
4240 1.160 christos device_xname(sc->sc_dev)));
4241 1.1 thorpej sc->sc_tbi_linkup = 0;
4242 1.1 thorpej }
4243 1.1 thorpej
4244 1.1 thorpej wm_tbi_set_linkled(sc);
4245 1.1 thorpej
4246 1.1 thorpej return (0);
4247 1.1 thorpej }
4248 1.1 thorpej
4249 1.1 thorpej /*
4250 1.1 thorpej * wm_tbi_set_linkled:
4251 1.1 thorpej *
4252 1.1 thorpej * Update the link LED on 1000BASE-X devices.
4253 1.1 thorpej */
4254 1.47 thorpej static void
4255 1.1 thorpej wm_tbi_set_linkled(struct wm_softc *sc)
4256 1.1 thorpej {
4257 1.1 thorpej
4258 1.1 thorpej if (sc->sc_tbi_linkup)
4259 1.1 thorpej sc->sc_ctrl |= CTRL_SWDPIN(0);
4260 1.1 thorpej else
4261 1.1 thorpej sc->sc_ctrl &= ~CTRL_SWDPIN(0);
4262 1.1 thorpej
4263 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4264 1.1 thorpej }
4265 1.1 thorpej
4266 1.1 thorpej /*
4267 1.1 thorpej * wm_tbi_check_link:
4268 1.1 thorpej *
4269 1.1 thorpej * Check the link on 1000BASE-X devices.
4270 1.1 thorpej */
4271 1.47 thorpej static void
4272 1.1 thorpej wm_tbi_check_link(struct wm_softc *sc)
4273 1.1 thorpej {
4274 1.1 thorpej uint32_t rxcw, ctrl, status;
4275 1.1 thorpej
4276 1.1 thorpej if (sc->sc_tbi_anstate == 0)
4277 1.1 thorpej return;
4278 1.1 thorpej else if (sc->sc_tbi_anstate > 1) {
4279 1.1 thorpej DPRINTF(WM_DEBUG_LINK,
4280 1.160 christos ("%s: LINK: anstate %d\n", device_xname(sc->sc_dev),
4281 1.1 thorpej sc->sc_tbi_anstate));
4282 1.1 thorpej sc->sc_tbi_anstate--;
4283 1.1 thorpej return;
4284 1.1 thorpej }
4285 1.1 thorpej
4286 1.1 thorpej sc->sc_tbi_anstate = 0;
4287 1.1 thorpej
4288 1.1 thorpej rxcw = CSR_READ(sc, WMREG_RXCW);
4289 1.1 thorpej ctrl = CSR_READ(sc, WMREG_CTRL);
4290 1.1 thorpej status = CSR_READ(sc, WMREG_STATUS);
4291 1.1 thorpej
4292 1.1 thorpej if ((status & STATUS_LU) == 0) {
4293 1.1 thorpej DPRINTF(WM_DEBUG_LINK,
4294 1.160 christos ("%s: LINK: checklink -> down\n", device_xname(sc->sc_dev)));
4295 1.1 thorpej sc->sc_tbi_linkup = 0;
4296 1.1 thorpej } else {
4297 1.1 thorpej DPRINTF(WM_DEBUG_LINK,
4298 1.160 christos ("%s: LINK: checklink -> up %s\n", device_xname(sc->sc_dev),
4299 1.1 thorpej (status & STATUS_FD) ? "FDX" : "HDX"));
4300 1.1 thorpej sc->sc_tctl &= ~TCTL_COLD(0x3ff);
4301 1.71 thorpej sc->sc_fcrtl &= ~FCRTL_XONE;
4302 1.1 thorpej if (status & STATUS_FD)
4303 1.1 thorpej sc->sc_tctl |=
4304 1.1 thorpej TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
4305 1.1 thorpej else
4306 1.1 thorpej sc->sc_tctl |=
4307 1.1 thorpej TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
4308 1.71 thorpej if (ctrl & CTRL_TFCE)
4309 1.71 thorpej sc->sc_fcrtl |= FCRTL_XONE;
4310 1.1 thorpej CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
4311 1.71 thorpej CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
4312 1.71 thorpej WMREG_OLD_FCRTL : WMREG_FCRTL,
4313 1.71 thorpej sc->sc_fcrtl);
4314 1.1 thorpej sc->sc_tbi_linkup = 1;
4315 1.1 thorpej }
4316 1.1 thorpej
4317 1.1 thorpej wm_tbi_set_linkled(sc);
4318 1.1 thorpej }
4319 1.1 thorpej
4320 1.1 thorpej /*
4321 1.1 thorpej * wm_gmii_reset:
4322 1.1 thorpej *
4323 1.1 thorpej * Reset the PHY.
4324 1.1 thorpej */
4325 1.47 thorpej static void
4326 1.1 thorpej wm_gmii_reset(struct wm_softc *sc)
4327 1.1 thorpej {
4328 1.1 thorpej uint32_t reg;
4329 1.127 bouyer int func = 0; /* XXX gcc */
4330 1.1 thorpej
4331 1.167 msaitoh if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
4332 1.167 msaitoh || (sc->sc_type == WM_T_ICH10)) {
4333 1.169 msaitoh if (wm_get_swfwhw_semaphore(sc)) {
4334 1.169 msaitoh aprint_error_dev(sc->sc_dev,
4335 1.169 msaitoh "%s: failed to get semaphore\n", __func__);
4336 1.139 bouyer return;
4337 1.169 msaitoh }
4338 1.139 bouyer }
4339 1.139 bouyer if (sc->sc_type == WM_T_80003) {
4340 1.127 bouyer func = (CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1;
4341 1.127 bouyer if (wm_get_swfw_semaphore(sc,
4342 1.169 msaitoh func ? SWFW_PHY1_SM : SWFW_PHY0_SM)) {
4343 1.169 msaitoh aprint_error_dev(sc->sc_dev,
4344 1.169 msaitoh "%s: failed to get semaphore\n", __func__);
4345 1.127 bouyer return;
4346 1.169 msaitoh }
4347 1.127 bouyer }
4348 1.11 thorpej if (sc->sc_type >= WM_T_82544) {
4349 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
4350 1.1 thorpej delay(20000);
4351 1.1 thorpej
4352 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4353 1.1 thorpej delay(20000);
4354 1.1 thorpej } else {
4355 1.148 simonb /*
4356 1.148 simonb * With 82543, we need to force speed and duplex on the MAC
4357 1.148 simonb * equal to what the PHY speed and duplex configuration is.
4358 1.148 simonb * In addition, we need to perform a hardware reset on the PHY
4359 1.148 simonb * to take it out of reset.
4360 1.148 simonb */
4361 1.148 simonb sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
4362 1.148 simonb CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4363 1.133 msaitoh
4364 1.1 thorpej /* The PHY reset pin is active-low. */
4365 1.1 thorpej reg = CSR_READ(sc, WMREG_CTRL_EXT);
4366 1.1 thorpej reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
4367 1.1 thorpej CTRL_EXT_SWDPIN(4));
4368 1.1 thorpej reg |= CTRL_EXT_SWDPIO(4);
4369 1.1 thorpej
4370 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
4371 1.1 thorpej delay(10);
4372 1.1 thorpej
4373 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
4374 1.133 msaitoh delay(10000);
4375 1.1 thorpej
4376 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
4377 1.1 thorpej delay(10);
4378 1.1 thorpej #if 0
4379 1.1 thorpej sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
4380 1.1 thorpej #endif
4381 1.1 thorpej }
4382 1.167 msaitoh if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
4383 1.167 msaitoh || (sc->sc_type == WM_T_ICH10))
4384 1.139 bouyer wm_put_swfwhw_semaphore(sc);
4385 1.139 bouyer if (sc->sc_type == WM_T_80003)
4386 1.127 bouyer wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4387 1.1 thorpej }
4388 1.1 thorpej
4389 1.1 thorpej /*
4390 1.1 thorpej * wm_gmii_mediainit:
4391 1.1 thorpej *
4392 1.1 thorpej * Initialize media for use on 1000BASE-T devices.
4393 1.1 thorpej */
4394 1.47 thorpej static void
4395 1.1 thorpej wm_gmii_mediainit(struct wm_softc *sc)
4396 1.1 thorpej {
4397 1.1 thorpej struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4398 1.1 thorpej
4399 1.1 thorpej /* We have MII. */
4400 1.1 thorpej sc->sc_flags |= WM_F_HAS_MII;
4401 1.1 thorpej
4402 1.127 bouyer if (sc->sc_type >= WM_T_80003)
4403 1.127 bouyer sc->sc_tipg = TIPG_1000T_80003_DFLT;
4404 1.127 bouyer else
4405 1.127 bouyer sc->sc_tipg = TIPG_1000T_DFLT;
4406 1.1 thorpej
4407 1.1 thorpej /*
4408 1.1 thorpej * Let the chip set speed/duplex on its own based on
4409 1.1 thorpej * signals from the PHY.
4410 1.127 bouyer * XXXbouyer - I'm not sure this is right for the 80003,
4411 1.127 bouyer * the em driver only sets CTRL_SLU here - but it seems to work.
4412 1.1 thorpej */
4413 1.133 msaitoh sc->sc_ctrl |= CTRL_SLU;
4414 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4415 1.1 thorpej
4416 1.1 thorpej /* Initialize our media structures and probe the GMII. */
4417 1.1 thorpej sc->sc_mii.mii_ifp = ifp;
4418 1.1 thorpej
4419 1.167 msaitoh if (sc->sc_type == WM_T_ICH10) {
4420 1.167 msaitoh sc->sc_mii.mii_readreg = wm_gmii_bm_readreg;
4421 1.167 msaitoh sc->sc_mii.mii_writereg = wm_gmii_bm_writereg;
4422 1.167 msaitoh } else if (sc->sc_type >= WM_T_80003) {
4423 1.127 bouyer sc->sc_mii.mii_readreg = wm_gmii_i80003_readreg;
4424 1.127 bouyer sc->sc_mii.mii_writereg = wm_gmii_i80003_writereg;
4425 1.127 bouyer } else if (sc->sc_type >= WM_T_82544) {
4426 1.11 thorpej sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
4427 1.11 thorpej sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
4428 1.1 thorpej } else {
4429 1.11 thorpej sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
4430 1.11 thorpej sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
4431 1.1 thorpej }
4432 1.1 thorpej sc->sc_mii.mii_statchg = wm_gmii_statchg;
4433 1.1 thorpej
4434 1.1 thorpej wm_gmii_reset(sc);
4435 1.1 thorpej
4436 1.152 dyoung sc->sc_ethercom.ec_mii = &sc->sc_mii;
4437 1.26 fair ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
4438 1.1 thorpej wm_gmii_mediastatus);
4439 1.1 thorpej
4440 1.160 christos mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
4441 1.71 thorpej MII_OFFSET_ANY, MIIF_DOPAUSE);
4442 1.1 thorpej if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
4443 1.1 thorpej ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
4444 1.1 thorpej ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
4445 1.1 thorpej } else
4446 1.1 thorpej ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
4447 1.1 thorpej }
4448 1.1 thorpej
4449 1.1 thorpej /*
4450 1.1 thorpej * wm_gmii_mediastatus: [ifmedia interface function]
4451 1.1 thorpej *
4452 1.1 thorpej * Get the current interface media status on a 1000BASE-T device.
4453 1.1 thorpej */
4454 1.47 thorpej static void
4455 1.1 thorpej wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
4456 1.1 thorpej {
4457 1.1 thorpej struct wm_softc *sc = ifp->if_softc;
4458 1.1 thorpej
4459 1.152 dyoung ether_mediastatus(ifp, ifmr);
4460 1.152 dyoung ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
4461 1.71 thorpej sc->sc_flowflags;
4462 1.1 thorpej }
4463 1.1 thorpej
4464 1.1 thorpej /*
4465 1.1 thorpej * wm_gmii_mediachange: [ifmedia interface function]
4466 1.1 thorpej *
4467 1.1 thorpej * Set hardware to newly-selected media on a 1000BASE-T device.
4468 1.1 thorpej */
4469 1.47 thorpej static int
4470 1.1 thorpej wm_gmii_mediachange(struct ifnet *ifp)
4471 1.1 thorpej {
4472 1.1 thorpej struct wm_softc *sc = ifp->if_softc;
4473 1.127 bouyer struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
4474 1.152 dyoung int rc;
4475 1.1 thorpej
4476 1.152 dyoung if ((ifp->if_flags & IFF_UP) == 0)
4477 1.152 dyoung return 0;
4478 1.152 dyoung
4479 1.152 dyoung sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
4480 1.152 dyoung sc->sc_ctrl |= CTRL_SLU;
4481 1.152 dyoung if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
4482 1.152 dyoung || (sc->sc_type > WM_T_82543)) {
4483 1.152 dyoung sc->sc_ctrl &= ~(CTRL_FRCSPD | CTRL_FRCFDX);
4484 1.152 dyoung } else {
4485 1.152 dyoung sc->sc_ctrl &= ~CTRL_ASDE;
4486 1.152 dyoung sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
4487 1.152 dyoung if (ife->ifm_media & IFM_FDX)
4488 1.152 dyoung sc->sc_ctrl |= CTRL_FD;
4489 1.152 dyoung switch(IFM_SUBTYPE(ife->ifm_media)) {
4490 1.152 dyoung case IFM_10_T:
4491 1.152 dyoung sc->sc_ctrl |= CTRL_SPEED_10;
4492 1.152 dyoung break;
4493 1.152 dyoung case IFM_100_TX:
4494 1.152 dyoung sc->sc_ctrl |= CTRL_SPEED_100;
4495 1.152 dyoung break;
4496 1.152 dyoung case IFM_1000_T:
4497 1.152 dyoung sc->sc_ctrl |= CTRL_SPEED_1000;
4498 1.152 dyoung break;
4499 1.152 dyoung default:
4500 1.152 dyoung panic("wm_gmii_mediachange: bad media 0x%x",
4501 1.152 dyoung ife->ifm_media);
4502 1.127 bouyer }
4503 1.127 bouyer }
4504 1.152 dyoung CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4505 1.152 dyoung if (sc->sc_type <= WM_T_82543)
4506 1.152 dyoung wm_gmii_reset(sc);
4507 1.152 dyoung
4508 1.152 dyoung if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
4509 1.152 dyoung return 0;
4510 1.152 dyoung return rc;
4511 1.1 thorpej }
4512 1.1 thorpej
4513 1.1 thorpej #define MDI_IO CTRL_SWDPIN(2)
4514 1.1 thorpej #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
4515 1.1 thorpej #define MDI_CLK CTRL_SWDPIN(3)
4516 1.1 thorpej
4517 1.1 thorpej static void
4518 1.11 thorpej i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
4519 1.1 thorpej {
4520 1.1 thorpej uint32_t i, v;
4521 1.1 thorpej
4522 1.1 thorpej v = CSR_READ(sc, WMREG_CTRL);
4523 1.1 thorpej v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
4524 1.1 thorpej v |= MDI_DIR | CTRL_SWDPIO(3);
4525 1.1 thorpej
4526 1.1 thorpej for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
4527 1.1 thorpej if (data & i)
4528 1.1 thorpej v |= MDI_IO;
4529 1.1 thorpej else
4530 1.1 thorpej v &= ~MDI_IO;
4531 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, v);
4532 1.1 thorpej delay(10);
4533 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
4534 1.1 thorpej delay(10);
4535 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, v);
4536 1.1 thorpej delay(10);
4537 1.1 thorpej }
4538 1.1 thorpej }
4539 1.1 thorpej
4540 1.1 thorpej static uint32_t
4541 1.11 thorpej i82543_mii_recvbits(struct wm_softc *sc)
4542 1.1 thorpej {
4543 1.1 thorpej uint32_t v, i, data = 0;
4544 1.1 thorpej
4545 1.1 thorpej v = CSR_READ(sc, WMREG_CTRL);
4546 1.1 thorpej v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
4547 1.1 thorpej v |= CTRL_SWDPIO(3);
4548 1.1 thorpej
4549 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, v);
4550 1.1 thorpej delay(10);
4551 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
4552 1.1 thorpej delay(10);
4553 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, v);
4554 1.1 thorpej delay(10);
4555 1.1 thorpej
4556 1.1 thorpej for (i = 0; i < 16; i++) {
4557 1.1 thorpej data <<= 1;
4558 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
4559 1.1 thorpej delay(10);
4560 1.1 thorpej if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
4561 1.1 thorpej data |= 1;
4562 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, v);
4563 1.1 thorpej delay(10);
4564 1.1 thorpej }
4565 1.1 thorpej
4566 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
4567 1.1 thorpej delay(10);
4568 1.1 thorpej CSR_WRITE(sc, WMREG_CTRL, v);
4569 1.1 thorpej delay(10);
4570 1.1 thorpej
4571 1.1 thorpej return (data);
4572 1.1 thorpej }
4573 1.1 thorpej
4574 1.1 thorpej #undef MDI_IO
4575 1.1 thorpej #undef MDI_DIR
4576 1.1 thorpej #undef MDI_CLK
4577 1.1 thorpej
4578 1.1 thorpej /*
4579 1.11 thorpej * wm_gmii_i82543_readreg: [mii interface function]
4580 1.1 thorpej *
4581 1.11 thorpej * Read a PHY register on the GMII (i82543 version).
4582 1.1 thorpej */
4583 1.47 thorpej static int
4584 1.157 dyoung wm_gmii_i82543_readreg(device_t self, int phy, int reg)
4585 1.1 thorpej {
4586 1.157 dyoung struct wm_softc *sc = device_private(self);
4587 1.1 thorpej int rv;
4588 1.1 thorpej
4589 1.11 thorpej i82543_mii_sendbits(sc, 0xffffffffU, 32);
4590 1.11 thorpej i82543_mii_sendbits(sc, reg | (phy << 5) |
4591 1.1 thorpej (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
4592 1.11 thorpej rv = i82543_mii_recvbits(sc) & 0xffff;
4593 1.1 thorpej
4594 1.1 thorpej DPRINTF(WM_DEBUG_GMII,
4595 1.1 thorpej ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
4596 1.160 christos device_xname(sc->sc_dev), phy, reg, rv));
4597 1.1 thorpej
4598 1.1 thorpej return (rv);
4599 1.1 thorpej }
4600 1.1 thorpej
4601 1.1 thorpej /*
4602 1.11 thorpej * wm_gmii_i82543_writereg: [mii interface function]
4603 1.1 thorpej *
4604 1.11 thorpej * Write a PHY register on the GMII (i82543 version).
4605 1.1 thorpej */
4606 1.47 thorpej static void
4607 1.157 dyoung wm_gmii_i82543_writereg(device_t self, int phy, int reg, int val)
4608 1.1 thorpej {
4609 1.157 dyoung struct wm_softc *sc = device_private(self);
4610 1.1 thorpej
4611 1.11 thorpej i82543_mii_sendbits(sc, 0xffffffffU, 32);
4612 1.11 thorpej i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
4613 1.1 thorpej (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
4614 1.1 thorpej (MII_COMMAND_START << 30), 32);
4615 1.1 thorpej }
4616 1.1 thorpej
4617 1.1 thorpej /*
4618 1.11 thorpej * wm_gmii_i82544_readreg: [mii interface function]
4619 1.1 thorpej *
4620 1.1 thorpej * Read a PHY register on the GMII.
4621 1.1 thorpej */
4622 1.47 thorpej static int
4623 1.157 dyoung wm_gmii_i82544_readreg(device_t self, int phy, int reg)
4624 1.1 thorpej {
4625 1.157 dyoung struct wm_softc *sc = device_private(self);
4626 1.60 ichiro uint32_t mdic = 0;
4627 1.1 thorpej int i, rv;
4628 1.1 thorpej
4629 1.1 thorpej CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
4630 1.1 thorpej MDIC_REGADD(reg));
4631 1.1 thorpej
4632 1.127 bouyer for (i = 0; i < 320; i++) {
4633 1.1 thorpej mdic = CSR_READ(sc, WMREG_MDIC);
4634 1.1 thorpej if (mdic & MDIC_READY)
4635 1.1 thorpej break;
4636 1.1 thorpej delay(10);
4637 1.1 thorpej }
4638 1.1 thorpej
4639 1.1 thorpej if ((mdic & MDIC_READY) == 0) {
4640 1.84 thorpej log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
4641 1.160 christos device_xname(sc->sc_dev), phy, reg);
4642 1.1 thorpej rv = 0;
4643 1.1 thorpej } else if (mdic & MDIC_E) {
4644 1.1 thorpej #if 0 /* This is normal if no PHY is present. */
4645 1.84 thorpej log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
4646 1.160 christos device_xname(sc->sc_dev), phy, reg);
4647 1.1 thorpej #endif
4648 1.1 thorpej rv = 0;
4649 1.1 thorpej } else {
4650 1.1 thorpej rv = MDIC_DATA(mdic);
4651 1.1 thorpej if (rv == 0xffff)
4652 1.1 thorpej rv = 0;
4653 1.1 thorpej }
4654 1.1 thorpej
4655 1.1 thorpej return (rv);
4656 1.1 thorpej }
4657 1.1 thorpej
4658 1.1 thorpej /*
4659 1.11 thorpej * wm_gmii_i82544_writereg: [mii interface function]
4660 1.1 thorpej *
4661 1.1 thorpej * Write a PHY register on the GMII.
4662 1.1 thorpej */
4663 1.47 thorpej static void
4664 1.157 dyoung wm_gmii_i82544_writereg(device_t self, int phy, int reg, int val)
4665 1.1 thorpej {
4666 1.157 dyoung struct wm_softc *sc = device_private(self);
4667 1.60 ichiro uint32_t mdic = 0;
4668 1.1 thorpej int i;
4669 1.1 thorpej
4670 1.1 thorpej CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
4671 1.1 thorpej MDIC_REGADD(reg) | MDIC_DATA(val));
4672 1.1 thorpej
4673 1.127 bouyer for (i = 0; i < 320; i++) {
4674 1.1 thorpej mdic = CSR_READ(sc, WMREG_MDIC);
4675 1.1 thorpej if (mdic & MDIC_READY)
4676 1.1 thorpej break;
4677 1.1 thorpej delay(10);
4678 1.1 thorpej }
4679 1.1 thorpej
4680 1.1 thorpej if ((mdic & MDIC_READY) == 0)
4681 1.84 thorpej log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
4682 1.160 christos device_xname(sc->sc_dev), phy, reg);
4683 1.1 thorpej else if (mdic & MDIC_E)
4684 1.84 thorpej log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
4685 1.160 christos device_xname(sc->sc_dev), phy, reg);
4686 1.1 thorpej }
4687 1.1 thorpej
4688 1.1 thorpej /*
4689 1.127 bouyer * wm_gmii_i80003_readreg: [mii interface function]
4690 1.127 bouyer *
4691 1.127 bouyer * Read a PHY register on the kumeran
4692 1.127 bouyer * This could be handled by the PHY layer if we didn't have to lock the
4693 1.127 bouyer * ressource ...
4694 1.127 bouyer */
4695 1.127 bouyer static int
4696 1.157 dyoung wm_gmii_i80003_readreg(device_t self, int phy, int reg)
4697 1.127 bouyer {
4698 1.157 dyoung struct wm_softc *sc = device_private(self);
4699 1.127 bouyer int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4700 1.127 bouyer int rv;
4701 1.127 bouyer
4702 1.127 bouyer if (phy != 1) /* only one PHY on kumeran bus */
4703 1.127 bouyer return 0;
4704 1.127 bouyer
4705 1.169 msaitoh if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM)) {
4706 1.169 msaitoh aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
4707 1.169 msaitoh __func__);
4708 1.127 bouyer return 0;
4709 1.169 msaitoh }
4710 1.127 bouyer
4711 1.127 bouyer if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
4712 1.127 bouyer wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
4713 1.127 bouyer reg >> GG82563_PAGE_SHIFT);
4714 1.127 bouyer } else {
4715 1.127 bouyer wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
4716 1.127 bouyer reg >> GG82563_PAGE_SHIFT);
4717 1.127 bouyer }
4718 1.168 msaitoh /* Wait more 200us for a bug of the ready bit in the MDIC register */
4719 1.168 msaitoh delay(200);
4720 1.168 msaitoh rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
4721 1.168 msaitoh delay(200);
4722 1.127 bouyer
4723 1.127 bouyer wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4724 1.127 bouyer return (rv);
4725 1.127 bouyer }
4726 1.127 bouyer
4727 1.127 bouyer /*
4728 1.127 bouyer * wm_gmii_i80003_writereg: [mii interface function]
4729 1.127 bouyer *
4730 1.127 bouyer * Write a PHY register on the kumeran.
4731 1.127 bouyer * This could be handled by the PHY layer if we didn't have to lock the
4732 1.127 bouyer * ressource ...
4733 1.127 bouyer */
4734 1.127 bouyer static void
4735 1.157 dyoung wm_gmii_i80003_writereg(device_t self, int phy, int reg, int val)
4736 1.127 bouyer {
4737 1.157 dyoung struct wm_softc *sc = device_private(self);
4738 1.127 bouyer int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4739 1.127 bouyer
4740 1.127 bouyer if (phy != 1) /* only one PHY on kumeran bus */
4741 1.127 bouyer return;
4742 1.127 bouyer
4743 1.169 msaitoh if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM)) {
4744 1.169 msaitoh aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
4745 1.169 msaitoh __func__);
4746 1.127 bouyer return;
4747 1.169 msaitoh }
4748 1.127 bouyer
4749 1.127 bouyer if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
4750 1.127 bouyer wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
4751 1.127 bouyer reg >> GG82563_PAGE_SHIFT);
4752 1.127 bouyer } else {
4753 1.127 bouyer wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
4754 1.127 bouyer reg >> GG82563_PAGE_SHIFT);
4755 1.127 bouyer }
4756 1.168 msaitoh /* Wait more 200us for a bug of the ready bit in the MDIC register */
4757 1.168 msaitoh delay(200);
4758 1.168 msaitoh wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
4759 1.168 msaitoh delay(200);
4760 1.127 bouyer
4761 1.127 bouyer wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4762 1.127 bouyer }
4763 1.127 bouyer
4764 1.127 bouyer /*
4765 1.167 msaitoh * wm_gmii_bm_readreg: [mii interface function]
4766 1.167 msaitoh *
4767 1.167 msaitoh * Read a PHY register on the kumeran
4768 1.167 msaitoh * This could be handled by the PHY layer if we didn't have to lock the
4769 1.167 msaitoh * ressource ...
4770 1.167 msaitoh */
4771 1.167 msaitoh static int
4772 1.167 msaitoh wm_gmii_bm_readreg(device_t self, int phy, int reg)
4773 1.167 msaitoh {
4774 1.167 msaitoh struct wm_softc *sc = device_private(self);
4775 1.167 msaitoh int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4776 1.167 msaitoh int rv;
4777 1.167 msaitoh
4778 1.169 msaitoh if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM)) {
4779 1.169 msaitoh aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
4780 1.169 msaitoh __func__);
4781 1.167 msaitoh return 0;
4782 1.169 msaitoh }
4783 1.167 msaitoh
4784 1.167 msaitoh if (reg > GG82563_MAX_REG_ADDRESS) {
4785 1.167 msaitoh if (phy == 1)
4786 1.167 msaitoh wm_gmii_i82544_writereg(self, phy, 0x1f,
4787 1.167 msaitoh reg);
4788 1.167 msaitoh else
4789 1.167 msaitoh wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
4790 1.167 msaitoh reg >> GG82563_PAGE_SHIFT);
4791 1.167 msaitoh
4792 1.167 msaitoh }
4793 1.167 msaitoh
4794 1.167 msaitoh rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
4795 1.167 msaitoh wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4796 1.167 msaitoh return (rv);
4797 1.167 msaitoh }
4798 1.167 msaitoh
4799 1.167 msaitoh /*
4800 1.167 msaitoh * wm_gmii_bm_writereg: [mii interface function]
4801 1.167 msaitoh *
4802 1.167 msaitoh * Write a PHY register on the kumeran.
4803 1.167 msaitoh * This could be handled by the PHY layer if we didn't have to lock the
4804 1.167 msaitoh * ressource ...
4805 1.167 msaitoh */
4806 1.167 msaitoh static void
4807 1.167 msaitoh wm_gmii_bm_writereg(device_t self, int phy, int reg, int val)
4808 1.167 msaitoh {
4809 1.167 msaitoh struct wm_softc *sc = device_private(self);
4810 1.167 msaitoh int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4811 1.167 msaitoh
4812 1.169 msaitoh if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM)) {
4813 1.169 msaitoh aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
4814 1.169 msaitoh __func__);
4815 1.167 msaitoh return;
4816 1.169 msaitoh }
4817 1.167 msaitoh
4818 1.167 msaitoh if (reg > GG82563_MAX_REG_ADDRESS) {
4819 1.167 msaitoh if (phy == 1)
4820 1.167 msaitoh wm_gmii_i82544_writereg(self, phy, 0x1f,
4821 1.167 msaitoh reg);
4822 1.167 msaitoh else
4823 1.167 msaitoh wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
4824 1.167 msaitoh reg >> GG82563_PAGE_SHIFT);
4825 1.167 msaitoh
4826 1.167 msaitoh }
4827 1.167 msaitoh
4828 1.167 msaitoh wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
4829 1.167 msaitoh wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4830 1.167 msaitoh }
4831 1.167 msaitoh
4832 1.167 msaitoh /*
4833 1.1 thorpej * wm_gmii_statchg: [mii interface function]
4834 1.1 thorpej *
4835 1.1 thorpej * Callback from MII layer when media changes.
4836 1.1 thorpej */
4837 1.47 thorpej static void
4838 1.157 dyoung wm_gmii_statchg(device_t self)
4839 1.1 thorpej {
4840 1.157 dyoung struct wm_softc *sc = device_private(self);
4841 1.71 thorpej struct mii_data *mii = &sc->sc_mii;
4842 1.1 thorpej
4843 1.71 thorpej sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
4844 1.1 thorpej sc->sc_tctl &= ~TCTL_COLD(0x3ff);
4845 1.71 thorpej sc->sc_fcrtl &= ~FCRTL_XONE;
4846 1.71 thorpej
4847 1.71 thorpej /*
4848 1.71 thorpej * Get flow control negotiation result.
4849 1.71 thorpej */
4850 1.71 thorpej if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
4851 1.71 thorpej (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
4852 1.71 thorpej sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
4853 1.71 thorpej mii->mii_media_active &= ~IFM_ETH_FMASK;
4854 1.71 thorpej }
4855 1.71 thorpej
4856 1.71 thorpej if (sc->sc_flowflags & IFM_FLOW) {
4857 1.71 thorpej if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
4858 1.71 thorpej sc->sc_ctrl |= CTRL_TFCE;
4859 1.71 thorpej sc->sc_fcrtl |= FCRTL_XONE;
4860 1.71 thorpej }
4861 1.71 thorpej if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
4862 1.71 thorpej sc->sc_ctrl |= CTRL_RFCE;
4863 1.71 thorpej }
4864 1.1 thorpej
4865 1.1 thorpej if (sc->sc_mii.mii_media_active & IFM_FDX) {
4866 1.1 thorpej DPRINTF(WM_DEBUG_LINK,
4867 1.160 christos ("%s: LINK: statchg: FDX\n", device_xname(sc->sc_dev)));
4868 1.1 thorpej sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
4869 1.1 thorpej } else {
4870 1.1 thorpej DPRINTF(WM_DEBUG_LINK,
4871 1.160 christos ("%s: LINK: statchg: HDX\n", device_xname(sc->sc_dev)));
4872 1.1 thorpej sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
4873 1.1 thorpej }
4874 1.1 thorpej
4875 1.71 thorpej CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4876 1.1 thorpej CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
4877 1.71 thorpej CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
4878 1.71 thorpej : WMREG_FCRTL, sc->sc_fcrtl);
4879 1.127 bouyer if (sc->sc_type >= WM_T_80003) {
4880 1.127 bouyer switch(IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
4881 1.127 bouyer case IFM_1000_T:
4882 1.127 bouyer wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
4883 1.127 bouyer KUMCTRLSTA_HD_CTRL_1000_DEFAULT);
4884 1.127 bouyer sc->sc_tipg = TIPG_1000T_80003_DFLT;
4885 1.127 bouyer break;
4886 1.127 bouyer default:
4887 1.127 bouyer wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
4888 1.127 bouyer KUMCTRLSTA_HD_CTRL_10_100_DEFAULT);
4889 1.127 bouyer sc->sc_tipg = TIPG_10_100_80003_DFLT;
4890 1.127 bouyer break;
4891 1.127 bouyer }
4892 1.127 bouyer CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
4893 1.127 bouyer }
4894 1.127 bouyer }
4895 1.127 bouyer
4896 1.127 bouyer /*
4897 1.127 bouyer * wm_kmrn_i80003_readreg:
4898 1.127 bouyer *
4899 1.127 bouyer * Read a kumeran register
4900 1.127 bouyer */
4901 1.127 bouyer static int
4902 1.127 bouyer wm_kmrn_i80003_readreg(struct wm_softc *sc, int reg)
4903 1.127 bouyer {
4904 1.127 bouyer int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4905 1.127 bouyer int rv;
4906 1.127 bouyer
4907 1.169 msaitoh if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM)) {
4908 1.169 msaitoh aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
4909 1.169 msaitoh __func__);
4910 1.127 bouyer return 0;
4911 1.169 msaitoh }
4912 1.127 bouyer
4913 1.127 bouyer CSR_WRITE(sc, WMREG_KUMCTRLSTA,
4914 1.127 bouyer ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
4915 1.127 bouyer KUMCTRLSTA_REN);
4916 1.127 bouyer delay(2);
4917 1.127 bouyer
4918 1.127 bouyer rv = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK;
4919 1.127 bouyer wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4920 1.127 bouyer return (rv);
4921 1.127 bouyer }
4922 1.127 bouyer
4923 1.127 bouyer /*
4924 1.127 bouyer * wm_kmrn_i80003_writereg:
4925 1.127 bouyer *
4926 1.127 bouyer * Write a kumeran register
4927 1.127 bouyer */
4928 1.127 bouyer static void
4929 1.127 bouyer wm_kmrn_i80003_writereg(struct wm_softc *sc, int reg, int val)
4930 1.127 bouyer {
4931 1.127 bouyer int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4932 1.127 bouyer
4933 1.169 msaitoh if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM)) {
4934 1.169 msaitoh aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
4935 1.169 msaitoh __func__);
4936 1.127 bouyer return;
4937 1.169 msaitoh }
4938 1.127 bouyer
4939 1.127 bouyer CSR_WRITE(sc, WMREG_KUMCTRLSTA,
4940 1.127 bouyer ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
4941 1.127 bouyer (val & KUMCTRLSTA_MASK));
4942 1.127 bouyer wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4943 1.1 thorpej }
4944 1.117 msaitoh
4945 1.117 msaitoh static int
4946 1.117 msaitoh wm_is_onboard_nvm_eeprom(struct wm_softc *sc)
4947 1.117 msaitoh {
4948 1.117 msaitoh uint32_t eecd = 0;
4949 1.117 msaitoh
4950 1.165 sborrill if (sc->sc_type == WM_T_82573 || sc->sc_type == WM_T_82574) {
4951 1.117 msaitoh eecd = CSR_READ(sc, WMREG_EECD);
4952 1.117 msaitoh
4953 1.117 msaitoh /* Isolate bits 15 & 16 */
4954 1.117 msaitoh eecd = ((eecd >> 15) & 0x03);
4955 1.117 msaitoh
4956 1.117 msaitoh /* If both bits are set, device is Flash type */
4957 1.119 uebayasi if (eecd == 0x03) {
4958 1.117 msaitoh return 0;
4959 1.117 msaitoh }
4960 1.117 msaitoh }
4961 1.117 msaitoh return 1;
4962 1.117 msaitoh }
4963 1.117 msaitoh
4964 1.117 msaitoh static int
4965 1.127 bouyer wm_get_swsm_semaphore(struct wm_softc *sc)
4966 1.117 msaitoh {
4967 1.117 msaitoh int32_t timeout;
4968 1.117 msaitoh uint32_t swsm;
4969 1.117 msaitoh
4970 1.117 msaitoh /* Get the FW semaphore. */
4971 1.117 msaitoh timeout = 1000 + 1; /* XXX */
4972 1.117 msaitoh while (timeout) {
4973 1.117 msaitoh swsm = CSR_READ(sc, WMREG_SWSM);
4974 1.117 msaitoh swsm |= SWSM_SWESMBI;
4975 1.117 msaitoh CSR_WRITE(sc, WMREG_SWSM, swsm);
4976 1.117 msaitoh /* if we managed to set the bit we got the semaphore. */
4977 1.117 msaitoh swsm = CSR_READ(sc, WMREG_SWSM);
4978 1.119 uebayasi if (swsm & SWSM_SWESMBI)
4979 1.117 msaitoh break;
4980 1.117 msaitoh
4981 1.117 msaitoh delay(50);
4982 1.117 msaitoh timeout--;
4983 1.117 msaitoh }
4984 1.117 msaitoh
4985 1.117 msaitoh if (timeout == 0) {
4986 1.160 christos aprint_error_dev(sc->sc_dev, "could not acquire EEPROM GNT\n");
4987 1.117 msaitoh /* Release semaphores */
4988 1.127 bouyer wm_put_swsm_semaphore(sc);
4989 1.117 msaitoh return 1;
4990 1.117 msaitoh }
4991 1.117 msaitoh return 0;
4992 1.117 msaitoh }
4993 1.117 msaitoh
4994 1.117 msaitoh static void
4995 1.127 bouyer wm_put_swsm_semaphore(struct wm_softc *sc)
4996 1.117 msaitoh {
4997 1.117 msaitoh uint32_t swsm;
4998 1.117 msaitoh
4999 1.117 msaitoh swsm = CSR_READ(sc, WMREG_SWSM);
5000 1.119 uebayasi swsm &= ~(SWSM_SWESMBI);
5001 1.117 msaitoh CSR_WRITE(sc, WMREG_SWSM, swsm);
5002 1.117 msaitoh }
5003 1.127 bouyer
5004 1.127 bouyer static int
5005 1.136 msaitoh wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
5006 1.136 msaitoh {
5007 1.127 bouyer uint32_t swfw_sync;
5008 1.127 bouyer uint32_t swmask = mask << SWFW_SOFT_SHIFT;
5009 1.127 bouyer uint32_t fwmask = mask << SWFW_FIRM_SHIFT;
5010 1.127 bouyer int timeout = 200;
5011 1.127 bouyer
5012 1.127 bouyer for(timeout = 0; timeout < 200; timeout++) {
5013 1.127 bouyer if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
5014 1.169 msaitoh if (wm_get_swsm_semaphore(sc)) {
5015 1.169 msaitoh aprint_error_dev(sc->sc_dev,
5016 1.169 msaitoh "%s: failed to get semaphore\n",
5017 1.169 msaitoh __func__);
5018 1.127 bouyer return 1;
5019 1.169 msaitoh }
5020 1.127 bouyer }
5021 1.127 bouyer swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
5022 1.127 bouyer if ((swfw_sync & (swmask | fwmask)) == 0) {
5023 1.127 bouyer swfw_sync |= swmask;
5024 1.127 bouyer CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
5025 1.127 bouyer if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
5026 1.127 bouyer wm_put_swsm_semaphore(sc);
5027 1.127 bouyer return 0;
5028 1.127 bouyer }
5029 1.127 bouyer if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
5030 1.127 bouyer wm_put_swsm_semaphore(sc);
5031 1.127 bouyer delay(5000);
5032 1.127 bouyer }
5033 1.127 bouyer printf("%s: failed to get swfw semaphore mask 0x%x swfw 0x%x\n",
5034 1.160 christos device_xname(sc->sc_dev), mask, swfw_sync);
5035 1.127 bouyer return 1;
5036 1.127 bouyer }
5037 1.127 bouyer
5038 1.127 bouyer static void
5039 1.136 msaitoh wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
5040 1.136 msaitoh {
5041 1.127 bouyer uint32_t swfw_sync;
5042 1.127 bouyer
5043 1.127 bouyer if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
5044 1.127 bouyer while (wm_get_swsm_semaphore(sc) != 0)
5045 1.127 bouyer continue;
5046 1.127 bouyer }
5047 1.127 bouyer swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
5048 1.127 bouyer swfw_sync &= ~(mask << SWFW_SOFT_SHIFT);
5049 1.127 bouyer CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
5050 1.127 bouyer if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
5051 1.127 bouyer wm_put_swsm_semaphore(sc);
5052 1.127 bouyer }
5053 1.139 bouyer
5054 1.139 bouyer static int
5055 1.139 bouyer wm_get_swfwhw_semaphore(struct wm_softc *sc)
5056 1.139 bouyer {
5057 1.139 bouyer uint32_t ext_ctrl;
5058 1.139 bouyer int timeout = 200;
5059 1.139 bouyer
5060 1.139 bouyer for(timeout = 0; timeout < 200; timeout++) {
5061 1.139 bouyer ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
5062 1.139 bouyer ext_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
5063 1.139 bouyer CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
5064 1.139 bouyer
5065 1.139 bouyer ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
5066 1.139 bouyer if (ext_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
5067 1.139 bouyer return 0;
5068 1.139 bouyer delay(5000);
5069 1.139 bouyer }
5070 1.139 bouyer printf("%s: failed to get swfwgw semaphore ext_ctrl 0x%x\n",
5071 1.160 christos device_xname(sc->sc_dev), ext_ctrl);
5072 1.139 bouyer return 1;
5073 1.139 bouyer }
5074 1.139 bouyer
5075 1.139 bouyer static void
5076 1.139 bouyer wm_put_swfwhw_semaphore(struct wm_softc *sc)
5077 1.139 bouyer {
5078 1.139 bouyer uint32_t ext_ctrl;
5079 1.139 bouyer ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
5080 1.139 bouyer ext_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
5081 1.139 bouyer CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
5082 1.139 bouyer }
5083 1.139 bouyer
5084 1.169 msaitoh static int
5085 1.169 msaitoh wm_valid_nvm_bank_detect_ich8lan(struct wm_softc *sc, unsigned int *bank)
5086 1.169 msaitoh {
5087 1.169 msaitoh uint32_t act_offset = ICH_NVM_SIG_WORD * 2 + 1;
5088 1.169 msaitoh uint8_t bank_high_byte;
5089 1.169 msaitoh uint32_t bank1_offset = sc->sc_ich8_flash_bank_size * sizeof(uint16_t);
5090 1.169 msaitoh
5091 1.169 msaitoh if (sc->sc_type != WM_T_ICH10) {
5092 1.169 msaitoh /* Value of bit 22 corresponds to the flash bank we're on. */
5093 1.169 msaitoh *bank = (CSR_READ(sc, WMREG_EECD) & EECD_SEC1VAL) ? 1 : 0;
5094 1.169 msaitoh } else {
5095 1.169 msaitoh wm_read_ich8_byte(sc, act_offset, &bank_high_byte);
5096 1.169 msaitoh if ((bank_high_byte & 0xc0) == 0x80)
5097 1.169 msaitoh *bank = 0;
5098 1.169 msaitoh else {
5099 1.169 msaitoh wm_read_ich8_byte(sc, act_offset + bank1_offset,
5100 1.169 msaitoh &bank_high_byte);
5101 1.169 msaitoh if ((bank_high_byte & 0xc0) == 0x80)
5102 1.169 msaitoh *bank = 1;
5103 1.169 msaitoh else {
5104 1.169 msaitoh aprint_error_dev(sc->sc_dev,
5105 1.169 msaitoh "EEPROM not present\n");
5106 1.169 msaitoh return -1;
5107 1.169 msaitoh }
5108 1.169 msaitoh }
5109 1.169 msaitoh }
5110 1.169 msaitoh
5111 1.169 msaitoh return 0;
5112 1.169 msaitoh }
5113 1.169 msaitoh
5114 1.139 bouyer /******************************************************************************
5115 1.139 bouyer * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
5116 1.139 bouyer * register.
5117 1.139 bouyer *
5118 1.139 bouyer * sc - Struct containing variables accessed by shared code
5119 1.139 bouyer * offset - offset of word in the EEPROM to read
5120 1.139 bouyer * data - word read from the EEPROM
5121 1.139 bouyer * words - number of words to read
5122 1.139 bouyer *****************************************************************************/
5123 1.139 bouyer static int
5124 1.139 bouyer wm_read_eeprom_ich8(struct wm_softc *sc, int offset, int words, uint16_t *data)
5125 1.139 bouyer {
5126 1.139 bouyer int32_t error = 0;
5127 1.139 bouyer uint32_t flash_bank = 0;
5128 1.139 bouyer uint32_t act_offset = 0;
5129 1.139 bouyer uint32_t bank_offset = 0;
5130 1.139 bouyer uint16_t word = 0;
5131 1.139 bouyer uint16_t i = 0;
5132 1.139 bouyer
5133 1.139 bouyer /* We need to know which is the valid flash bank. In the event
5134 1.139 bouyer * that we didn't allocate eeprom_shadow_ram, we may not be
5135 1.139 bouyer * managing flash_bank. So it cannot be trusted and needs
5136 1.139 bouyer * to be updated with each read.
5137 1.139 bouyer */
5138 1.169 msaitoh error = wm_valid_nvm_bank_detect_ich8lan(sc, &flash_bank);
5139 1.169 msaitoh if (error) {
5140 1.169 msaitoh aprint_error_dev(sc->sc_dev, "%s: failed to detect NVM bank\n",
5141 1.169 msaitoh __func__);
5142 1.169 msaitoh return error;
5143 1.167 msaitoh }
5144 1.139 bouyer
5145 1.139 bouyer /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
5146 1.139 bouyer bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
5147 1.139 bouyer
5148 1.139 bouyer error = wm_get_swfwhw_semaphore(sc);
5149 1.169 msaitoh if (error) {
5150 1.169 msaitoh aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
5151 1.169 msaitoh __func__);
5152 1.139 bouyer return error;
5153 1.169 msaitoh }
5154 1.139 bouyer
5155 1.139 bouyer for (i = 0; i < words; i++) {
5156 1.139 bouyer /* The NVM part needs a byte offset, hence * 2 */
5157 1.139 bouyer act_offset = bank_offset + ((offset + i) * 2);
5158 1.139 bouyer error = wm_read_ich8_word(sc, act_offset, &word);
5159 1.169 msaitoh if (error) {
5160 1.169 msaitoh aprint_error_dev(sc->sc_dev, "%s: failed to read NVM\n",
5161 1.169 msaitoh __func__);
5162 1.139 bouyer break;
5163 1.169 msaitoh }
5164 1.139 bouyer data[i] = word;
5165 1.139 bouyer }
5166 1.139 bouyer
5167 1.139 bouyer wm_put_swfwhw_semaphore(sc);
5168 1.139 bouyer return error;
5169 1.139 bouyer }
5170 1.139 bouyer
5171 1.139 bouyer /******************************************************************************
5172 1.139 bouyer * This function does initial flash setup so that a new read/write/erase cycle
5173 1.139 bouyer * can be started.
5174 1.139 bouyer *
5175 1.139 bouyer * sc - The pointer to the hw structure
5176 1.139 bouyer ****************************************************************************/
5177 1.139 bouyer static int32_t
5178 1.139 bouyer wm_ich8_cycle_init(struct wm_softc *sc)
5179 1.139 bouyer {
5180 1.139 bouyer uint16_t hsfsts;
5181 1.139 bouyer int32_t error = 1;
5182 1.139 bouyer int32_t i = 0;
5183 1.139 bouyer
5184 1.139 bouyer hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
5185 1.139 bouyer
5186 1.139 bouyer /* May be check the Flash Des Valid bit in Hw status */
5187 1.139 bouyer if ((hsfsts & HSFSTS_FLDVAL) == 0) {
5188 1.139 bouyer return error;
5189 1.139 bouyer }
5190 1.139 bouyer
5191 1.139 bouyer /* Clear FCERR in Hw status by writing 1 */
5192 1.139 bouyer /* Clear DAEL in Hw status by writing a 1 */
5193 1.139 bouyer hsfsts |= HSFSTS_ERR | HSFSTS_DAEL;
5194 1.139 bouyer
5195 1.139 bouyer ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
5196 1.139 bouyer
5197 1.139 bouyer /* Either we should have a hardware SPI cycle in progress bit to check
5198 1.139 bouyer * against, in order to start a new cycle or FDONE bit should be changed
5199 1.139 bouyer * in the hardware so that it is 1 after harware reset, which can then be
5200 1.139 bouyer * used as an indication whether a cycle is in progress or has been
5201 1.139 bouyer * completed .. we should also have some software semaphore mechanism to
5202 1.139 bouyer * guard FDONE or the cycle in progress bit so that two threads access to
5203 1.139 bouyer * those bits can be sequentiallized or a way so that 2 threads dont
5204 1.139 bouyer * start the cycle at the same time */
5205 1.139 bouyer
5206 1.139 bouyer if ((hsfsts & HSFSTS_FLINPRO) == 0) {
5207 1.139 bouyer /* There is no cycle running at present, so we can start a cycle */
5208 1.139 bouyer /* Begin by setting Flash Cycle Done. */
5209 1.139 bouyer hsfsts |= HSFSTS_DONE;
5210 1.139 bouyer ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
5211 1.139 bouyer error = 0;
5212 1.139 bouyer } else {
5213 1.139 bouyer /* otherwise poll for sometime so the current cycle has a chance
5214 1.139 bouyer * to end before giving up. */
5215 1.139 bouyer for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
5216 1.139 bouyer hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
5217 1.139 bouyer if ((hsfsts & HSFSTS_FLINPRO) == 0) {
5218 1.139 bouyer error = 0;
5219 1.139 bouyer break;
5220 1.139 bouyer }
5221 1.139 bouyer delay(1);
5222 1.139 bouyer }
5223 1.139 bouyer if (error == 0) {
5224 1.139 bouyer /* Successful in waiting for previous cycle to timeout,
5225 1.139 bouyer * now set the Flash Cycle Done. */
5226 1.139 bouyer hsfsts |= HSFSTS_DONE;
5227 1.139 bouyer ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
5228 1.139 bouyer }
5229 1.139 bouyer }
5230 1.139 bouyer return error;
5231 1.139 bouyer }
5232 1.139 bouyer
5233 1.139 bouyer /******************************************************************************
5234 1.139 bouyer * This function starts a flash cycle and waits for its completion
5235 1.139 bouyer *
5236 1.139 bouyer * sc - The pointer to the hw structure
5237 1.139 bouyer ****************************************************************************/
5238 1.139 bouyer static int32_t
5239 1.139 bouyer wm_ich8_flash_cycle(struct wm_softc *sc, uint32_t timeout)
5240 1.139 bouyer {
5241 1.139 bouyer uint16_t hsflctl;
5242 1.139 bouyer uint16_t hsfsts;
5243 1.139 bouyer int32_t error = 1;
5244 1.139 bouyer uint32_t i = 0;
5245 1.139 bouyer
5246 1.139 bouyer /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
5247 1.139 bouyer hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
5248 1.139 bouyer hsflctl |= HSFCTL_GO;
5249 1.139 bouyer ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
5250 1.139 bouyer
5251 1.139 bouyer /* wait till FDONE bit is set to 1 */
5252 1.139 bouyer do {
5253 1.139 bouyer hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
5254 1.139 bouyer if (hsfsts & HSFSTS_DONE)
5255 1.139 bouyer break;
5256 1.139 bouyer delay(1);
5257 1.139 bouyer i++;
5258 1.139 bouyer } while (i < timeout);
5259 1.139 bouyer if ((hsfsts & HSFSTS_DONE) == 1 && (hsfsts & HSFSTS_ERR) == 0) {
5260 1.139 bouyer error = 0;
5261 1.139 bouyer }
5262 1.139 bouyer return error;
5263 1.139 bouyer }
5264 1.139 bouyer
5265 1.139 bouyer /******************************************************************************
5266 1.139 bouyer * Reads a byte or word from the NVM using the ICH8 flash access registers.
5267 1.139 bouyer *
5268 1.139 bouyer * sc - The pointer to the hw structure
5269 1.139 bouyer * index - The index of the byte or word to read.
5270 1.139 bouyer * size - Size of data to read, 1=byte 2=word
5271 1.139 bouyer * data - Pointer to the word to store the value read.
5272 1.139 bouyer *****************************************************************************/
5273 1.139 bouyer static int32_t
5274 1.139 bouyer wm_read_ich8_data(struct wm_softc *sc, uint32_t index,
5275 1.139 bouyer uint32_t size, uint16_t* data)
5276 1.139 bouyer {
5277 1.139 bouyer uint16_t hsfsts;
5278 1.139 bouyer uint16_t hsflctl;
5279 1.139 bouyer uint32_t flash_linear_address;
5280 1.139 bouyer uint32_t flash_data = 0;
5281 1.139 bouyer int32_t error = 1;
5282 1.139 bouyer int32_t count = 0;
5283 1.139 bouyer
5284 1.139 bouyer if (size < 1 || size > 2 || data == 0x0 ||
5285 1.139 bouyer index > ICH_FLASH_LINEAR_ADDR_MASK)
5286 1.139 bouyer return error;
5287 1.139 bouyer
5288 1.139 bouyer flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
5289 1.139 bouyer sc->sc_ich8_flash_base;
5290 1.139 bouyer
5291 1.139 bouyer do {
5292 1.139 bouyer delay(1);
5293 1.139 bouyer /* Steps */
5294 1.139 bouyer error = wm_ich8_cycle_init(sc);
5295 1.139 bouyer if (error)
5296 1.139 bouyer break;
5297 1.139 bouyer
5298 1.139 bouyer hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
5299 1.139 bouyer /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
5300 1.139 bouyer hsflctl |= ((size - 1) << HSFCTL_BCOUNT_SHIFT) & HSFCTL_BCOUNT_MASK;
5301 1.139 bouyer hsflctl |= ICH_CYCLE_READ << HSFCTL_CYCLE_SHIFT;
5302 1.139 bouyer ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
5303 1.139 bouyer
5304 1.139 bouyer /* Write the last 24 bits of index into Flash Linear address field in
5305 1.139 bouyer * Flash Address */
5306 1.139 bouyer /* TODO: TBD maybe check the index against the size of flash */
5307 1.139 bouyer
5308 1.139 bouyer ICH8_FLASH_WRITE32(sc, ICH_FLASH_FADDR, flash_linear_address);
5309 1.139 bouyer
5310 1.139 bouyer error = wm_ich8_flash_cycle(sc, ICH_FLASH_COMMAND_TIMEOUT);
5311 1.139 bouyer
5312 1.139 bouyer /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
5313 1.139 bouyer * sequence a few more times, else read in (shift in) the Flash Data0,
5314 1.139 bouyer * the order is least significant byte first msb to lsb */
5315 1.139 bouyer if (error == 0) {
5316 1.139 bouyer flash_data = ICH8_FLASH_READ32(sc, ICH_FLASH_FDATA0);
5317 1.139 bouyer if (size == 1) {
5318 1.139 bouyer *data = (uint8_t)(flash_data & 0x000000FF);
5319 1.139 bouyer } else if (size == 2) {
5320 1.139 bouyer *data = (uint16_t)(flash_data & 0x0000FFFF);
5321 1.139 bouyer }
5322 1.139 bouyer break;
5323 1.139 bouyer } else {
5324 1.139 bouyer /* If we've gotten here, then things are probably completely hosed,
5325 1.139 bouyer * but if the error condition is detected, it won't hurt to give
5326 1.139 bouyer * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
5327 1.139 bouyer */
5328 1.139 bouyer hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
5329 1.139 bouyer if (hsfsts & HSFSTS_ERR) {
5330 1.139 bouyer /* Repeat for some time before giving up. */
5331 1.139 bouyer continue;
5332 1.139 bouyer } else if ((hsfsts & HSFSTS_DONE) == 0) {
5333 1.139 bouyer break;
5334 1.139 bouyer }
5335 1.139 bouyer }
5336 1.139 bouyer } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
5337 1.139 bouyer
5338 1.139 bouyer return error;
5339 1.139 bouyer }
5340 1.139 bouyer
5341 1.139 bouyer /******************************************************************************
5342 1.139 bouyer * Reads a single byte from the NVM using the ICH8 flash access registers.
5343 1.139 bouyer *
5344 1.139 bouyer * sc - pointer to wm_hw structure
5345 1.139 bouyer * index - The index of the byte to read.
5346 1.139 bouyer * data - Pointer to a byte to store the value read.
5347 1.139 bouyer *****************************************************************************/
5348 1.139 bouyer static int32_t
5349 1.139 bouyer wm_read_ich8_byte(struct wm_softc *sc, uint32_t index, uint8_t* data)
5350 1.139 bouyer {
5351 1.144 msaitoh int32_t status;
5352 1.139 bouyer uint16_t word = 0;
5353 1.139 bouyer
5354 1.139 bouyer status = wm_read_ich8_data(sc, index, 1, &word);
5355 1.139 bouyer if (status == 0) {
5356 1.139 bouyer *data = (uint8_t)word;
5357 1.139 bouyer }
5358 1.139 bouyer
5359 1.139 bouyer return status;
5360 1.139 bouyer }
5361 1.139 bouyer
5362 1.139 bouyer /******************************************************************************
5363 1.139 bouyer * Reads a word from the NVM using the ICH8 flash access registers.
5364 1.139 bouyer *
5365 1.139 bouyer * sc - pointer to wm_hw structure
5366 1.139 bouyer * index - The starting byte index of the word to read.
5367 1.139 bouyer * data - Pointer to a word to store the value read.
5368 1.139 bouyer *****************************************************************************/
5369 1.139 bouyer static int32_t
5370 1.139 bouyer wm_read_ich8_word(struct wm_softc *sc, uint32_t index, uint16_t *data)
5371 1.139 bouyer {
5372 1.144 msaitoh int32_t status;
5373 1.144 msaitoh
5374 1.139 bouyer status = wm_read_ich8_data(sc, index, 2, data);
5375 1.139 bouyer return status;
5376 1.139 bouyer }
5377 1.169 msaitoh
5378 1.169 msaitoh static int
5379 1.169 msaitoh wm_check_mng_mode(struct wm_softc *sc)
5380 1.169 msaitoh {
5381 1.169 msaitoh int rv;
5382 1.169 msaitoh
5383 1.169 msaitoh switch (sc->sc_type) {
5384 1.169 msaitoh case WM_T_ICH8:
5385 1.169 msaitoh case WM_T_ICH9:
5386 1.169 msaitoh case WM_T_ICH10:
5387 1.169 msaitoh rv = wm_check_mng_mode_ich8lan(sc);
5388 1.169 msaitoh break;
5389 1.169 msaitoh #if 0
5390 1.169 msaitoh case WM_T_82574:
5391 1.169 msaitoh /*
5392 1.169 msaitoh * The function is provided in em driver, but it's not
5393 1.169 msaitoh * used. Why?
5394 1.169 msaitoh */
5395 1.169 msaitoh rv = wm_check_mng_mode_82574(sc);
5396 1.169 msaitoh break;
5397 1.169 msaitoh #endif
5398 1.169 msaitoh case WM_T_82571:
5399 1.169 msaitoh case WM_T_82572:
5400 1.169 msaitoh case WM_T_82573:
5401 1.169 msaitoh case WM_T_80003:
5402 1.169 msaitoh rv = wm_check_mng_mode_generic(sc);
5403 1.169 msaitoh break;
5404 1.169 msaitoh default:
5405 1.169 msaitoh /* noting to do */
5406 1.169 msaitoh rv = 0;
5407 1.169 msaitoh break;
5408 1.169 msaitoh }
5409 1.169 msaitoh
5410 1.169 msaitoh return rv;
5411 1.169 msaitoh }
5412 1.169 msaitoh
5413 1.169 msaitoh static int
5414 1.169 msaitoh wm_check_mng_mode_ich8lan(struct wm_softc *sc)
5415 1.169 msaitoh {
5416 1.169 msaitoh uint32_t fwsm;
5417 1.169 msaitoh
5418 1.169 msaitoh fwsm = CSR_READ(sc, WMREG_FWSM);
5419 1.169 msaitoh
5420 1.169 msaitoh if ((fwsm & FWSM_MODE_MASK) == (MNG_ICH_IAMT_MODE << FWSM_MODE_SHIFT))
5421 1.169 msaitoh return 1;
5422 1.169 msaitoh
5423 1.169 msaitoh return 0;
5424 1.169 msaitoh }
5425 1.169 msaitoh
5426 1.169 msaitoh #if 0
5427 1.169 msaitoh static int
5428 1.169 msaitoh wm_check_mng_mode_82574(struct wm_softc *sc)
5429 1.169 msaitoh {
5430 1.169 msaitoh uint16_t data;
5431 1.169 msaitoh
5432 1.169 msaitoh wm_read_eeprom(sc, NVM_INIT_CONTROL2_REG, 1, &data);
5433 1.169 msaitoh
5434 1.169 msaitoh if ((data & NVM_INIT_CTRL2_MNGM) != 0)
5435 1.169 msaitoh return 1;
5436 1.169 msaitoh
5437 1.169 msaitoh return 0;
5438 1.169 msaitoh }
5439 1.169 msaitoh #endif
5440 1.169 msaitoh
5441 1.169 msaitoh static int
5442 1.169 msaitoh wm_check_mng_mode_generic(struct wm_softc *sc)
5443 1.169 msaitoh {
5444 1.169 msaitoh uint32_t fwsm;
5445 1.169 msaitoh
5446 1.169 msaitoh fwsm = CSR_READ(sc, WMREG_FWSM);
5447 1.169 msaitoh
5448 1.169 msaitoh if ((fwsm & FWSM_MODE_MASK) == (MNG_IAMT_MODE << FWSM_MODE_SHIFT))
5449 1.169 msaitoh return 1;
5450 1.169 msaitoh
5451 1.169 msaitoh return 0;
5452 1.169 msaitoh }
5453 1.169 msaitoh
5454 1.169 msaitoh static void
5455 1.169 msaitoh wm_get_hw_control(struct wm_softc *sc)
5456 1.169 msaitoh {
5457 1.169 msaitoh uint32_t reg;
5458 1.169 msaitoh
5459 1.169 msaitoh switch (sc->sc_type) {
5460 1.169 msaitoh case WM_T_82573:
5461 1.169 msaitoh #if 0
5462 1.169 msaitoh case WM_T_82574:
5463 1.169 msaitoh /*
5464 1.169 msaitoh * FreeBSD's em driver has the function for 82574 to checks
5465 1.169 msaitoh * the management mode, but it's not used. Why?
5466 1.169 msaitoh */
5467 1.169 msaitoh #endif
5468 1.169 msaitoh reg = CSR_READ(sc, WMREG_SWSM);
5469 1.169 msaitoh CSR_WRITE(sc, WMREG_SWSM, reg | SWSM_DRV_LOAD);
5470 1.169 msaitoh break;
5471 1.169 msaitoh case WM_T_82571:
5472 1.169 msaitoh case WM_T_82572:
5473 1.169 msaitoh case WM_T_80003:
5474 1.169 msaitoh case WM_T_ICH8:
5475 1.169 msaitoh case WM_T_ICH9:
5476 1.169 msaitoh case WM_T_ICH10:
5477 1.169 msaitoh reg = CSR_READ(sc, WMREG_CTRL_EXT);
5478 1.169 msaitoh CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_DRV_LOAD);
5479 1.169 msaitoh break;
5480 1.169 msaitoh default:
5481 1.169 msaitoh break;
5482 1.169 msaitoh }
5483 1.169 msaitoh }
5484