Home | History | Annotate | Line # | Download | only in pci
if_wm.c revision 1.1
      1 /*	$NetBSD: if_wm.c,v 1.1 2002/03/28 04:54:35 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Register description for the Intel i82542 (``Wiseman''),
     40  * i82543 (``Livengood''), and i82544 (``Cordova'') Gigabit
     41  * Ethernet chips.
     42  *
     43  * TODO (in order of importance):
     44  *
     45  *	- Fix hw VLAN assist.
     46  *
     47  *	- Make GMII work on the Livengood.
     48  *
     49  *	- Fix out-bound IP header checksums.
     50  *
     51  *	- Fix UDP checksums.
     52  *
     53  *	- Jumbo frames -- requires changes to network stack due to
     54  *	  lame buffer length handling on chip.
     55  *
     56  * ...and, of course, performance tuning.
     57  */
     58 
     59 #include "bpfilter.h"
     60 
     61 #include <sys/param.h>
     62 #include <sys/systm.h>
     63 #include <sys/callout.h>
     64 #include <sys/mbuf.h>
     65 #include <sys/malloc.h>
     66 #include <sys/kernel.h>
     67 #include <sys/socket.h>
     68 #include <sys/ioctl.h>
     69 #include <sys/errno.h>
     70 #include <sys/device.h>
     71 #include <sys/queue.h>
     72 
     73 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     74 
     75 #include <net/if.h>
     76 #include <net/if_dl.h>
     77 #include <net/if_media.h>
     78 #include <net/if_ether.h>
     79 
     80 #if NBPFILTER > 0
     81 #include <net/bpf.h>
     82 #endif
     83 
     84 #include <netinet/in.h>			/* XXX for struct ip */
     85 #include <netinet/in_systm.h>		/* XXX for struct ip */
     86 #include <netinet/ip.h>			/* XXX for struct ip */
     87 
     88 #include <machine/bus.h>
     89 #include <machine/intr.h>
     90 #include <machine/endian.h>
     91 
     92 #include <dev/mii/mii.h>
     93 #include <dev/mii/miivar.h>
     94 #include <dev/mii/mii_bitbang.h>
     95 
     96 #include <dev/pci/pcireg.h>
     97 #include <dev/pci/pcivar.h>
     98 #include <dev/pci/pcidevs.h>
     99 
    100 #include <dev/pci/if_wmreg.h>
    101 
    102 #ifdef WM_DEBUG
    103 #define	WM_DEBUG_LINK		0x01
    104 #define	WM_DEBUG_TX		0x02
    105 #define	WM_DEBUG_RX		0x04
    106 #define	WM_DEBUG_GMII		0x08
    107 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
    108 
    109 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
    110 #else
    111 #define	DPRINTF(x, y)	/* nothing */
    112 #endif /* WM_DEBUG */
    113 
    114 /*
    115  * Transmit descriptor list size.  This is arbitrary, but allocate
    116  * enough descriptors for 128 pending transmissions, and 8 segments
    117  * per packet.  This MUST work out to a power of 2, and also must
    118  * be evenly divisible by 8.
    119  */
    120 #define	WM_NTXSEGS		8
    121 
    122 #define	WM_TXQUEUELEN		128
    123 #define	WM_TXQUEUELEN_MASK	(WM_TXQUEUELEN - 1)
    124 #define	WM_NTXDESC		(WM_TXQUEUELEN * WM_NTXSEGS)
    125 #define	WM_NTXDESC_MASK		(WM_NTXDESC - 1)
    126 #define	WM_NEXTTX(x)		(((x) + 1) & WM_NTXDESC_MASK)
    127 #define	WM_NEXTTXS(x)		(((x) + 1) & WM_TXQUEUELEN_MASK)
    128 
    129 /*
    130  * The interrupt mitigation feature of the Wiseman is pretty cool -- as
    131  * long as you're transmitting, you don't have to take an interrupt at
    132  * all.  However, we force an interrupt to happen every N + 1 packets
    133  * in order to kick us in a reasonable amount of time when we run out
    134  * of descriptors.
    135  */
    136 #define	WM_TXINTR_MASK		7
    137 
    138 /*
    139  * Receive descriptor list size.  We have one Rx buffer for normal
    140  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
    141  * packet.  We allocate 128 receive descriptors, each with a 2k
    142  * buffer (MCLBYTES), which gives us room for 25 jumbo packets.
    143  */
    144 #define	WM_NRXDESC		128
    145 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
    146 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
    147 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
    148 
    149 /*
    150  * Control structures are DMA'd to the i82542 chip.  We allocate them in
    151  * a single clump that maps to a single DMA segment to make serveral things
    152  * easier.
    153  */
    154 struct wm_control_data {
    155 	/*
    156 	 * The transmit descriptors.
    157 	 */
    158 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC];
    159 
    160 	/*
    161 	 * The receive descriptors.
    162 	 */
    163 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    164 };
    165 
    166 #define	WM_CDOFF(x)	offsetof(struct wm_control_data, x)
    167 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
    168 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
    169 
    170 /*
    171  * Software state for transmit jobs.
    172  */
    173 struct wm_txsoft {
    174 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    175 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    176 	int txs_firstdesc;		/* first descriptor in packet */
    177 	int txs_lastdesc;		/* last descriptor in packet */
    178 };
    179 
    180 /*
    181  * Software state for receive buffers.  Each descriptor gets a
    182  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    183  * more than one buffer, we chain them together.
    184  */
    185 struct wm_rxsoft {
    186 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    187 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    188 };
    189 
    190 /*
    191  * Software state per device.
    192  */
    193 struct wm_softc {
    194 	struct device sc_dev;		/* generic device information */
    195 	bus_space_tag_t sc_st;		/* bus space tag */
    196 	bus_space_handle_t sc_sh;	/* bus space handle */
    197 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    198 	struct ethercom sc_ethercom;	/* ethernet common data */
    199 	void *sc_sdhook;		/* shutdown hook */
    200 
    201 	int sc_type;			/* chip type; see below */
    202 	int sc_flags;			/* flags; see below */
    203 
    204 	void *sc_ih;			/* interrupt cookie */
    205 
    206 	struct mii_data sc_mii;		/* MII/media information */
    207 
    208 	struct callout sc_tick_ch;	/* tick callout */
    209 
    210 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    211 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    212 
    213 	/*
    214 	 * Software state for the transmit and receive descriptors.
    215 	 */
    216 	struct wm_txsoft sc_txsoft[WM_TXQUEUELEN];
    217 	struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
    218 
    219 	/*
    220 	 * Control data structures.
    221 	 */
    222 	struct wm_control_data *sc_control_data;
    223 #define	sc_txdescs	sc_control_data->wcd_txdescs
    224 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    225 
    226 #ifdef WM_EVENT_COUNTERS
    227 	/* Event counters. */
    228 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    229 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    230 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
    231 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    232 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    233 
    234 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    235 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    236 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    237 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    238 
    239 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
    240 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
    241 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
    242 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
    243 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
    244 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
    245 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    246 
    247 	struct evcnt sc_ev_tu;		/* Tx underrun */
    248 #endif /* WM_EVENT_COUNTERS */
    249 
    250 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
    251 
    252 	int	sc_txfree;		/* number of free Tx descriptors */
    253 	int	sc_txnext;		/* next ready Tx descriptor */
    254 
    255 	int	sc_txsfree;		/* number of free Tx jobs */
    256 	int	sc_txsnext;		/* next free Tx job */
    257 	int	sc_txsdirty;		/* dirty Tx jobs */
    258 
    259 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
    260 
    261 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    262 	int	sc_rxdiscard;
    263 	int	sc_rxlen;
    264 	struct mbuf *sc_rxhead;
    265 	struct mbuf *sc_rxtail;
    266 	struct mbuf **sc_rxtailp;
    267 
    268 	uint32_t sc_ctrl;		/* prototype CTRL register */
    269 #if 0
    270 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
    271 #endif
    272 	uint32_t sc_icr;		/* prototype interrupt bits */
    273 	uint32_t sc_tctl;		/* prototype TCTL register */
    274 	uint32_t sc_rctl;		/* prototype RCTL register */
    275 	uint32_t sc_txcw;		/* prototype TXCW register */
    276 	uint32_t sc_tipg;		/* prototype TIPG register */
    277 
    278 	int sc_tbi_linkup;		/* TBI link status */
    279 	int sc_tbi_anstate;		/* autonegotiation state */
    280 
    281 	int sc_mchash_type;		/* multicast filter offset */
    282 };
    283 
    284 #define	WM_RXCHAIN_RESET(sc)						\
    285 do {									\
    286 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    287 	*(sc)->sc_rxtailp = NULL;					\
    288 	(sc)->sc_rxlen = 0;						\
    289 } while (/*CONSTCOND*/0)
    290 
    291 #define	WM_RXCHAIN_LINK(sc, m)						\
    292 do {									\
    293 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    294 	(sc)->sc_rxtailp = &(m)->m_next;				\
    295 } while (/*CONSTCOND*/0)
    296 
    297 /* sc_type */
    298 #define	WM_T_WISEMAN_2_0	0	/* Wiseman (i82542) 2.0 (really old) */
    299 #define	WM_T_WISEMAN_2_1	1	/* Wiseman (i82542) 2.1+ (old) */
    300 #define	WM_T_LIVENGOOD		2	/* Livengood (i82543) */
    301 #define	WM_T_CORDOVA		3	/* Cordova (i82544) */
    302 
    303 /* sc_flags */
    304 #define	WM_F_HAS_MII		0x01	/* has MII */
    305 
    306 #ifdef WM_EVENT_COUNTERS
    307 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
    308 #else
    309 #define	WM_EVCNT_INCR(ev)	/* nothing */
    310 #endif
    311 
    312 #define	CSR_READ(sc, reg)						\
    313 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    314 #define	CSR_WRITE(sc, reg, val)						\
    315 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    316 
    317 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
    318 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
    319 
    320 #define	WM_CDTXSYNC(sc, x, n, ops)					\
    321 do {									\
    322 	int __x, __n;							\
    323 									\
    324 	__x = (x);							\
    325 	__n = (n);							\
    326 									\
    327 	/* If it will wrap around, sync to the end of the ring. */	\
    328 	if ((__x + __n) > WM_NTXDESC) {					\
    329 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    330 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
    331 		    (WM_NTXDESC - __x), (ops));				\
    332 		__n -= (WM_NTXDESC - __x);				\
    333 		__x = 0;						\
    334 	}								\
    335 									\
    336 	/* Now sync whatever is left. */				\
    337 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    338 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
    339 } while (/*CONSTCOND*/0)
    340 
    341 #define	WM_CDRXSYNC(sc, x, ops)						\
    342 do {									\
    343 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    344 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
    345 } while (/*CONSTCOND*/0)
    346 
    347 #define	WM_INIT_RXDESC(sc, x)						\
    348 do {									\
    349 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    350 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
    351 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    352 									\
    353 	/*								\
    354 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    355 	 * so that the payload after the Ethernet header is aligned	\
    356 	 * to a 4-byte boundary.					\
    357 	 *								\
    358 	 * XXX BRAINDAMAGE ALERT!					\
    359 	 * The stupid chip uses the same size for every buffer, which	\
    360 	 * is set in the Receive Control register.  We are using the 2K	\
    361 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    362 	 * reason, we can't accept packets longer than the standard	\
    363 	 * Ethernet MTU, without incurring a big penalty to copy every	\
    364 	 * incoming packet to a new, suitably aligned buffer.		\
    365 	 *								\
    366 	 * We'll need to make some changes to the layer 3/4 parts of	\
    367 	 * the stack (to copy the headers to a new buffer if not	\
    368 	 * aligned) in order to support large MTU on this chip.  Lame.	\
    369 	 */								\
    370 	__m->m_data = __m->m_ext.ext_buf + 2;				\
    371 									\
    372 	__rxd->wrx_addr.wa_low =					\
    373 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);		\
    374 	__rxd->wrx_addr.wa_high = 0;					\
    375 	__rxd->wrx_len = 0;						\
    376 	__rxd->wrx_cksum = 0;						\
    377 	__rxd->wrx_status = 0;						\
    378 	__rxd->wrx_errors = 0;						\
    379 	__rxd->wrx_special = 0;						\
    380 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    381 									\
    382 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
    383 } while (/*CONSTCOND*/0)
    384 
    385 void	wm_start(struct ifnet *);
    386 void	wm_watchdog(struct ifnet *);
    387 int	wm_ioctl(struct ifnet *, u_long, caddr_t);
    388 int	wm_init(struct ifnet *);
    389 void	wm_stop(struct ifnet *, int);
    390 
    391 void	wm_shutdown(void *);
    392 
    393 void	wm_reset(struct wm_softc *);
    394 void	wm_rxdrain(struct wm_softc *);
    395 int	wm_add_rxbuf(struct wm_softc *, int);
    396 void	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
    397 void	wm_tick(void *);
    398 
    399 void	wm_set_filter(struct wm_softc *);
    400 
    401 int	wm_intr(void *);
    402 void	wm_txintr(struct wm_softc *);
    403 void	wm_rxintr(struct wm_softc *);
    404 void	wm_linkintr(struct wm_softc *, uint32_t);
    405 
    406 void	wm_tbi_mediainit(struct wm_softc *);
    407 int	wm_tbi_mediachange(struct ifnet *);
    408 void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
    409 
    410 void	wm_tbi_set_linkled(struct wm_softc *);
    411 void	wm_tbi_check_link(struct wm_softc *);
    412 
    413 void	wm_gmii_reset(struct wm_softc *);
    414 
    415 int	wm_gmii_livengood_readreg(struct device *, int, int);
    416 void	wm_gmii_livengood_writereg(struct device *, int, int, int);
    417 
    418 int	wm_gmii_cordova_readreg(struct device *, int, int);
    419 void	wm_gmii_cordova_writereg(struct device *, int, int, int);
    420 
    421 void	wm_gmii_statchg(struct device *);
    422 
    423 void	wm_gmii_mediainit(struct wm_softc *);
    424 int	wm_gmii_mediachange(struct ifnet *);
    425 void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
    426 
    427 int	wm_match(struct device *, struct cfdata *, void *);
    428 void	wm_attach(struct device *, struct device *, void *);
    429 
    430 int	wm_copy_small = 0;
    431 
    432 struct cfattach wm_ca = {
    433 	sizeof(struct wm_softc), wm_match, wm_attach,
    434 };
    435 
    436 /*
    437  * Devices supported by this driver.
    438  */
    439 const struct wm_product {
    440 	pci_vendor_id_t		wmp_vendor;
    441 	pci_product_id_t	wmp_product;
    442 	const char		*wmp_name;
    443 	int			wmp_type;
    444 	int			wmp_flags;
    445 #define	WMP_F_1000X		0x01
    446 #define	WMP_F_1000T		0x02
    447 } wm_products[] = {
    448 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
    449 	  "Intel i82542 1000BASE-X Ethernet",
    450 	  WM_T_WISEMAN_2_1,	WMP_F_1000X },
    451 
    452 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543_FIBER,
    453 	  "Intel i82543 1000BASE-X Ethernet",
    454 	  WM_T_LIVENGOOD,	WMP_F_1000X },
    455 
    456 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543_SC,
    457 	  "Intel i82543-SC 1000BASE-X Ethernet",
    458 	  WM_T_LIVENGOOD,	WMP_F_1000X },
    459 
    460 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543_COPPER,
    461 	  "Intel i82543 1000BASE-T Ethernet",
    462 	  WM_T_LIVENGOOD,	WMP_F_1000T },
    463 
    464 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544_XT,
    465 	  "Intel i82544 1000BASE-T Ethernet",
    466 	  WM_T_CORDOVA,		WMP_F_1000T },
    467 
    468 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544_XF,
    469 	  "Intel i82544 1000BASE-X Ethernet",
    470 	  WM_T_CORDOVA,		WMP_F_1000X },
    471 
    472 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC,
    473 	  "Intel i82544GC 1000BASE-T Ethernet",
    474 	  WM_T_CORDOVA,		WMP_F_1000T },
    475 
    476 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_64,
    477 	  "Intel i82544GC 1000BASE-T Ethernet",
    478 	  WM_T_CORDOVA,		WMP_F_1000T },
    479 
    480 	{ 0,			0,
    481 	  NULL,
    482 	  0,			0 },
    483 };
    484 
    485 static const struct wm_product *
    486 wm_lookup(const struct pci_attach_args *pa)
    487 {
    488 	const struct wm_product *wmp;
    489 
    490 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
    491 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
    492 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
    493 			return (wmp);
    494 	}
    495 	return (NULL);
    496 }
    497 
    498 int
    499 wm_match(struct device *parent, struct cfdata *cf, void *aux)
    500 {
    501 	struct pci_attach_args *pa = aux;
    502 
    503 	if (wm_lookup(pa) != NULL)
    504 		return (1);
    505 
    506 	return (0);
    507 }
    508 
    509 void
    510 wm_attach(struct device *parent, struct device *self, void *aux)
    511 {
    512 	struct wm_softc *sc = (void *) self;
    513 	struct pci_attach_args *pa = aux;
    514 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    515 	pci_chipset_tag_t pc = pa->pa_pc;
    516 	pci_intr_handle_t ih;
    517 	const char *intrstr = NULL;
    518 	bus_space_tag_t memt;
    519 	bus_space_handle_t memh;
    520 	bus_dma_segment_t seg;
    521 	int memh_valid;
    522 	int i, rseg, error;
    523 	const struct wm_product *wmp;
    524 	uint8_t enaddr[ETHER_ADDR_LEN];
    525 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
    526 	pcireg_t preg, memtype;
    527 	int pmreg;
    528 
    529 	callout_init(&sc->sc_tick_ch);
    530 
    531 	wmp = wm_lookup(pa);
    532 	if (wmp == NULL) {
    533 		printf("\n");
    534 		panic("wm_attach: impossible");
    535 	}
    536 
    537 	sc->sc_dmat = pa->pa_dmat;
    538 
    539 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    540 	printf(": %s, rev. %d\n", wmp->wmp_name, preg);
    541 
    542 	sc->sc_type = wmp->wmp_type;
    543 	if (sc->sc_type < WM_T_LIVENGOOD) {
    544 		if (preg < 2) {
    545 			printf("%s: Wiseman must be at least rev. 2\n",
    546 			    sc->sc_dev.dv_xname);
    547 			return;
    548 		}
    549 		if (preg < 3)
    550 			sc->sc_type = WM_T_WISEMAN_2_0;
    551 	}
    552 
    553 	/*
    554 	 * Map the device.
    555 	 */
    556 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
    557 	switch (memtype) {
    558 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    559 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    560 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
    561 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    562 		break;
    563 	default:
    564 		memh_valid = 0;
    565 	}
    566 
    567 	if (memh_valid) {
    568 		sc->sc_st = memt;
    569 		sc->sc_sh = memh;
    570 	} else {
    571 		printf("%s: unable to map device registers\n",
    572 		    sc->sc_dev.dv_xname);
    573 		return;
    574 	}
    575 
    576 	/* Enable bus mastering.  Disable MWI on the Wiseman 2.0. */
    577 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    578 	preg |= PCI_COMMAND_MASTER_ENABLE;
    579 	if (sc->sc_type < WM_T_WISEMAN_2_1)
    580 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
    581 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    582 
    583 	/* Get it out of power save mode, if needed. */
    584 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    585 		preg = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
    586 		if (preg == 3) {
    587 			/*
    588 			 * The card has lost all configuration data in
    589 			 * this state, so punt.
    590 			 */
    591 			printf("%s: unable to wake from power state D3\n",
    592 			    sc->sc_dev.dv_xname);
    593 			return;
    594 		}
    595 		if (preg != 0) {
    596 			printf("%s: waking up from power state D%d\n",
    597 			    sc->sc_dev.dv_xname, preg);
    598 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
    599 		}
    600 	}
    601 
    602 	/*
    603 	 * Map and establish our interrupt.
    604 	 */
    605 	if (pci_intr_map(pa, &ih)) {
    606 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    607 		return;
    608 	}
    609 	intrstr = pci_intr_string(pc, ih);
    610 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
    611 	if (sc->sc_ih == NULL) {
    612 		printf("%s: unable to establish interrupt",
    613 		    sc->sc_dev.dv_xname);
    614 		if (intrstr != NULL)
    615 			printf(" at %s", intrstr);
    616 		printf("\n");
    617 		return;
    618 	}
    619 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    620 
    621 	/*
    622 	 * Allocate the control data structures, and create and load the
    623 	 * DMA map for it.
    624 	 */
    625 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    626 	    sizeof(struct wm_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    627 	    0)) != 0) {
    628 		printf("%s: unable to allocate control data, error = %d\n",
    629 		    sc->sc_dev.dv_xname, error);
    630 		goto fail_0;
    631 	}
    632 
    633 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    634 	    sizeof(struct wm_control_data), (caddr_t *)&sc->sc_control_data,
    635 	    BUS_DMA_COHERENT)) != 0) {
    636 		printf("%s: unable to map control data, error = %d\n",
    637 		    sc->sc_dev.dv_xname, error);
    638 		goto fail_1;
    639 	}
    640 
    641 	if ((error = bus_dmamap_create(sc->sc_dmat,
    642 	    sizeof(struct wm_control_data), 1,
    643 	    sizeof(struct wm_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    644 		printf("%s: unable to create control data DMA map, "
    645 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    646 		goto fail_2;
    647 	}
    648 
    649 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    650 	    sc->sc_control_data, sizeof(struct wm_control_data), NULL,
    651 	    0)) != 0) {
    652 		printf("%s: unable to load control data DMA map, error = %d\n",
    653 		    sc->sc_dev.dv_xname, error);
    654 		goto fail_3;
    655 	}
    656 
    657 	/*
    658 	 * Create the transmit buffer DMA maps.
    659 	 */
    660 	for (i = 0; i < WM_TXQUEUELEN; i++) {
    661 		if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
    662 		    WM_NTXSEGS, MCLBYTES, 0, 0,
    663 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    664 			printf("%s: unable to create Tx DMA map %d, "
    665 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    666 			goto fail_4;
    667 		}
    668 	}
    669 
    670 	/*
    671 	 * Create the receive buffer DMA maps.
    672 	 */
    673 	for (i = 0; i < WM_NRXDESC; i++) {
    674 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    675 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    676 			printf("%s: unable to create Rx DMA map %d, "
    677 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    678 			goto fail_5;
    679 		}
    680 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    681 	}
    682 
    683 	/*
    684 	 * Reset the chip to a known state.
    685 	 */
    686 	wm_reset(sc);
    687 
    688 	/*
    689 	 * Read the Ethernet address from the EEPROM.
    690 	 */
    691 	wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
    692 	    sizeof(myea) / sizeof(myea[0]), myea);
    693 	enaddr[0] = myea[0] & 0xff;
    694 	enaddr[1] = myea[0] >> 8;
    695 	enaddr[2] = myea[1] & 0xff;
    696 	enaddr[3] = myea[1] >> 8;
    697 	enaddr[4] = myea[2] & 0xff;
    698 	enaddr[5] = myea[2] >> 8;
    699 
    700 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    701 	    ether_sprintf(enaddr));
    702 
    703 	/*
    704 	 * Read the config info from the EEPROM, and set up various
    705 	 * bits in the control registers based on their contents.
    706 	 */
    707 	wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1);
    708 	wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2);
    709 	if (sc->sc_type >= WM_T_CORDOVA)
    710 		wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin);
    711 
    712 	if (cfg1 & EEPROM_CFG1_ILOS)
    713 		sc->sc_ctrl |= CTRL_ILOS;
    714 	if (sc->sc_type >= WM_T_CORDOVA) {
    715 		sc->sc_ctrl |=
    716 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
    717 		    CTRL_SWDPIO_SHIFT;
    718 		sc->sc_ctrl |=
    719 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
    720 		    CTRL_SWDPINS_SHIFT;
    721 	} else {
    722 		sc->sc_ctrl |=
    723 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
    724 		    CTRL_SWDPIO_SHIFT;
    725 	}
    726 
    727 #if 0
    728 	if (sc->sc_type >= WM_T_CORDOVA) {
    729 		if (cfg1 & EEPROM_CFG1_IPS0)
    730 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
    731 		if (cfg1 & EEPROM_CFG1_IPS1)
    732 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
    733 		sc->sc_ctrl_ext |=
    734 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
    735 		    CTRL_EXT_SWDPIO_SHIFT;
    736 		sc->sc_ctrl_ext |=
    737 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
    738 		    CTRL_EXT_SWDPINS_SHIFT;
    739 	} else {
    740 		sc->sc_ctrl_ext |=
    741 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
    742 		    CTRL_EXT_SWDPIO_SHIFT;
    743 	}
    744 #endif
    745 
    746 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
    747 #if 0
    748 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
    749 #endif
    750 
    751 	/*
    752 	 * Set up some register offsets that are different between
    753 	 * the Wiseman and the Livengood and later chips.
    754 	 */
    755 	if (sc->sc_type < WM_T_LIVENGOOD) {
    756 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
    757 		sc->sc_tdt_reg = WMREG_OLD_TDT;
    758 	} else {
    759 		sc->sc_rdt_reg = WMREG_RDT;
    760 		sc->sc_tdt_reg = WMREG_TDT;
    761 	}
    762 
    763 	/*
    764 	 * Determine if we should use flow control.  We should
    765 	 * always use it, unless we're on a Wiseman < 2.1.
    766 	 */
    767 	if (sc->sc_type >= WM_T_WISEMAN_2_1)
    768 		sc->sc_ctrl |= CTRL_TFCE | CTRL_RFCE;
    769 
    770 	/*
    771 	 * Determine if we're TBI or GMII mode, and initialize the
    772 	 * media structures accordingly.
    773 	 */
    774 	if (sc->sc_type < WM_T_LIVENGOOD ||
    775 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
    776 		if (wmp->wmp_flags & WMP_F_1000T)
    777 			printf("%s: WARNING: TBIMODE set on 1000BASE-T "
    778 			    "product!\n", sc->sc_dev.dv_xname);
    779 		wm_tbi_mediainit(sc);
    780 	} else {
    781 		if (wmp->wmp_flags & WMP_F_1000X)
    782 			printf("%s: WARNING: TBIMODE clear on 1000BASE-X "
    783 			    "product!\n", sc->sc_dev.dv_xname);
    784 		wm_gmii_mediainit(sc);
    785 	}
    786 
    787 	ifp = &sc->sc_ethercom.ec_if;
    788 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    789 	ifp->if_softc = sc;
    790 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    791 	ifp->if_ioctl = wm_ioctl;
    792 	ifp->if_start = wm_start;
    793 	ifp->if_watchdog = wm_watchdog;
    794 	ifp->if_init = wm_init;
    795 	ifp->if_stop = wm_stop;
    796 	IFQ_SET_READY(&ifp->if_snd);
    797 
    798 	/*
    799 	 * If we're a Livengood or greater, we can support VLANs.
    800 	 */
    801 	if (sc->sc_type >= WM_T_LIVENGOOD)
    802 		sc->sc_ethercom.ec_capabilities |=
    803 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
    804 
    805 	/*
    806 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
    807 	 * on Livengood and later.
    808 	 */
    809 	if (sc->sc_type >= WM_T_LIVENGOOD)
    810 		ifp->if_capabilities |=
    811 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    812 
    813 	/*
    814 	 * Attach the interface.
    815 	 */
    816 	if_attach(ifp);
    817 	ether_ifattach(ifp, enaddr);
    818 
    819 #ifdef WM_EVENT_COUNTERS
    820 	/* Attach event counters. */
    821 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    822 	    NULL, sc->sc_dev.dv_xname, "txsstall");
    823 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    824 	    NULL, sc->sc_dev.dv_xname, "txdstall");
    825 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
    826 	    NULL, sc->sc_dev.dv_xname, "txintr");
    827 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    828 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    829 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
    830 	    NULL, sc->sc_dev.dv_xname, "linkintr");
    831 
    832 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    833 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    834 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
    835 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
    836 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    837 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    838 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
    839 	    NULL, sc->sc_dev.dv_xname, "txtusum");
    840 
    841 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
    842 	    NULL, sc->sc_dev.dv_xname, "txseg1");
    843 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
    844 	    NULL, sc->sc_dev.dv_xname, "txseg2");
    845 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
    846 	    NULL, sc->sc_dev.dv_xname, "txseg3");
    847 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
    848 	    NULL, sc->sc_dev.dv_xname, "txseg4");
    849 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
    850 	    NULL, sc->sc_dev.dv_xname, "txseg5");
    851 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
    852 	    NULL, sc->sc_dev.dv_xname, "txsegmore");
    853 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    854 	    NULL, sc->sc_dev.dv_xname, "txdrop");
    855 
    856 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
    857 	    NULL, sc->sc_dev.dv_xname, "tu");
    858 #endif /* WM_EVENT_COUNTERS */
    859 
    860 	/*
    861 	 * Make sure the interface is shutdown during reboot.
    862 	 */
    863 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
    864 	if (sc->sc_sdhook == NULL)
    865 		printf("%s: WARNING: unable to establish shutdown hook\n",
    866 		    sc->sc_dev.dv_xname);
    867 	return;
    868 
    869 	/*
    870 	 * Free any resources we've allocated during the failed attach
    871 	 * attempt.  Do this in reverse order and fall through.
    872 	 */
    873  fail_5:
    874 	for (i = 0; i < WM_NRXDESC; i++) {
    875 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    876 			bus_dmamap_destroy(sc->sc_dmat,
    877 			    sc->sc_rxsoft[i].rxs_dmamap);
    878 	}
    879  fail_4:
    880 	for (i = 0; i < WM_TXQUEUELEN; i++) {
    881 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    882 			bus_dmamap_destroy(sc->sc_dmat,
    883 			    sc->sc_txsoft[i].txs_dmamap);
    884 	}
    885 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    886  fail_3:
    887 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    888  fail_2:
    889 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    890 	    sizeof(struct wm_control_data));
    891  fail_1:
    892 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    893  fail_0:
    894 	return;
    895 }
    896 
    897 /*
    898  * wm_shutdown:
    899  *
    900  *	Make sure the interface is stopped at reboot time.
    901  */
    902 void
    903 wm_shutdown(void *arg)
    904 {
    905 	struct wm_softc *sc = arg;
    906 
    907 	wm_stop(&sc->sc_ethercom.ec_if, 1);
    908 }
    909 
    910 /*
    911  * wm_tx_cksum:
    912  *
    913  *	Set up TCP/IP checksumming parameters for the
    914  *	specified packet.
    915  */
    916 static int
    917 wm_tx_cksum(struct wm_softc *sc, struct mbuf *m0, uint32_t *cmdp,
    918     uint32_t *fieldsp)
    919 {
    920 	struct livengood_tcpip_ctxdesc *t;
    921 	uint32_t fields = 0, tcmd = 0, ipcs, tucs;
    922 	struct ip *ip;
    923 	int offset, iphl;
    924 
    925 	/*
    926 	 * XXX It would be nice if the mbuf pkthdr had offset
    927 	 * fields for the protocol headers.
    928 	 */
    929 
    930 	/* XXX Assumes normal Ethernet encap. */
    931 	offset = ETHER_HDR_LEN;
    932 
    933 	/* XXX */
    934 	if (m0->m_len < (offset + sizeof(struct ip))) {
    935 		printf("%s: wm_tx_cksum: need to m_pullup, "
    936 		    "packet dropped\n", sc->sc_dev.dv_xname);
    937 		return (EINVAL);
    938 	}
    939 
    940 	ip = (struct ip *) (mtod(m0, caddr_t) + offset);
    941 	iphl = ip->ip_hl << 2;
    942 
    943 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    944 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
    945 		tcmd |= htole32(WTX_TCPIP_CMD_IP);
    946 		fields |= htole32(WTX_IXSM);
    947 		ipcs = htole32(WTX_TCPIP_IPCSS(offset) |
    948 		    WTX_TCPIP_IPCSO(offsetof(struct ip, ip_sum)) |
    949 		    WTX_TCPIP_IPCSE(offset + iphl - 1));
    950 	} else
    951 		ipcs = 0;
    952 
    953 	offset += iphl;
    954 
    955 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    956 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
    957 		tcmd |= WTX_TCPIP_CMD_TCP;
    958 		fields |= htole32(WTX_TXSM);
    959 		tucs = htole32(WTX_TCPIP_TUCSS(offset) |
    960 		    WTX_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
    961 		    WTX_TCPIP_TUCSE(0) /* rest of packet */);
    962 	} else
    963 		tucs = 0;
    964 
    965 	/* Fill in the context descriptor. */
    966 	t = (struct livengood_tcpip_ctxdesc *) &sc->sc_txdescs[sc->sc_txnext];
    967 	t->tcpip_ipcs = ipcs;
    968 	t->tcpip_tucs = tucs;
    969 	t->tcpip_cmdlen = htole32(WTX_CMD_DEXT | WTX_DTYP_C) | tcmd;
    970 	t->tcpip_seg = 0;
    971 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
    972 
    973 	sc->sc_txnext = WM_NEXTTX(sc->sc_txnext);
    974 
    975 	*cmdp = WTX_CMD_DEXT | WTC_DTYP_D;
    976 	*fieldsp = fields;
    977 
    978 	return (0);
    979 }
    980 
    981 /*
    982  * wm_start:		[ifnet interface function]
    983  *
    984  *	Start packet transmission on the interface.
    985  */
    986 void
    987 wm_start(struct ifnet *ifp)
    988 {
    989 	struct wm_softc *sc = ifp->if_softc;
    990 	struct mbuf *m0/*, *m*/;
    991 	struct wm_txsoft *txs;
    992 	bus_dmamap_t dmamap;
    993 	int error, nexttx, lasttx, ofree, seg;
    994 	uint32_t cksumcmd, cksumfields;
    995 
    996 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    997 		return;
    998 
    999 	/*
   1000 	 * Remember the previous number of free descriptors.
   1001 	 */
   1002 	ofree = sc->sc_txfree;
   1003 
   1004 	/*
   1005 	 * Loop through the send queue, setting up transmit descriptors
   1006 	 * until we drain the queue, or use up all available transmit
   1007 	 * descriptors.
   1008 	 */
   1009 	for (;;) {
   1010 		/* Grab a packet off the queue. */
   1011 		IFQ_POLL(&ifp->if_snd, m0);
   1012 		if (m0 == NULL)
   1013 			break;
   1014 
   1015 		DPRINTF(WM_DEBUG_TX,
   1016 		    ("%s: TX: have packet to transmit: %p\n",
   1017 		    sc->sc_dev.dv_xname, m0));
   1018 
   1019 		/* Get a work queue entry. */
   1020 		if (sc->sc_txsfree == 0) {
   1021 			DPRINTF(WM_DEBUG_TX,
   1022 			    ("%s: TX: no free job descriptors\n",
   1023 				sc->sc_dev.dv_xname));
   1024 			WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   1025 			break;
   1026 		}
   1027 
   1028 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1029 		dmamap = txs->txs_dmamap;
   1030 
   1031 		/*
   1032 		 * Load the DMA map.  If this fails, the packet either
   1033 		 * didn't fit in the allotted number of segments, or we
   1034 		 * were short on resources.  For the too-many-segments
   1035 		 * case, we simply report an error and drop the packet,
   1036 		 * since we can't sanely copy a jumbo packet to a single
   1037 		 * buffer.
   1038 		 */
   1039 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1040 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1041 		if (error) {
   1042 			if (error == EFBIG) {
   1043 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   1044 				printf("%s: Tx packet consumes too many "
   1045 				    "DMA segments, dropping...\n",
   1046 				    sc->sc_dev.dv_xname);
   1047 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1048 				m_freem(m0);
   1049 				continue;
   1050 			}
   1051 			/*
   1052 			 * Short on resources, just stop for now.
   1053 			 */
   1054 			DPRINTF(WM_DEBUG_TX,
   1055 			    ("%s: TX: dmamap load failed: %d\n",
   1056 			    sc->sc_dev.dv_xname, error));
   1057 			break;
   1058 		}
   1059 
   1060 		/*
   1061 		 * Ensure we have enough descriptors free to describe
   1062 		 * the packet.  Note, we always reserve one descriptor
   1063 		 * at the end of the ring due to the semantics of the
   1064 		 * TDT register, plus one more in the event we need
   1065 		 * to re-load checksum offload context.
   1066 		 */
   1067 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
   1068 			/*
   1069 			 * Not enough free descriptors to transmit this
   1070 			 * packet.  We haven't committed anything yet,
   1071 			 * so just unload the DMA map, put the packet
   1072 			 * pack on the queue, and punt.  Notify the upper
   1073 			 * layer that there are no more slots left.
   1074 			 */
   1075 			DPRINTF(WM_DEBUG_TX,
   1076 			    ("%s: TX: need %d descriptors, have %d\n",
   1077 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs,
   1078 			    sc->sc_txfree - 1));
   1079 			ifp->if_flags |= IFF_OACTIVE;
   1080 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1081 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   1082 			break;
   1083 		}
   1084 
   1085 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1086 
   1087 		/*
   1088 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1089 		 */
   1090 
   1091 		/* Sync the DMA map. */
   1092 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1093 		    BUS_DMASYNC_PREWRITE);
   1094 
   1095 		DPRINTF(WM_DEBUG_TX,
   1096 		    ("%s: TX: packet has %d DMA segments\n",
   1097 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs));
   1098 
   1099 #ifdef WM_EVENT_COUNTERS
   1100 		switch (dmamap->dm_nsegs) {
   1101 		case 1:
   1102 			WM_EVCNT_INCR(&sc->sc_ev_txseg1);
   1103 			break;
   1104 		case 2:
   1105 			WM_EVCNT_INCR(&sc->sc_ev_txseg2);
   1106 			break;
   1107 		case 3:
   1108 			WM_EVCNT_INCR(&sc->sc_ev_txseg3);
   1109 			break;
   1110 		case 4:
   1111 			WM_EVCNT_INCR(&sc->sc_ev_txseg4);
   1112 			break;
   1113 		case 5:
   1114 			WM_EVCNT_INCR(&sc->sc_ev_txseg5);
   1115 			break;
   1116 		default:
   1117 			WM_EVCNT_INCR(&sc->sc_ev_txsegmore);
   1118 			break;
   1119 		}
   1120 #endif /* WM_EVENT_COUNTERS */
   1121 
   1122 		/*
   1123 		 * Set up checksum offload parameters for
   1124 		 * this packet.
   1125 		 */
   1126 		if (m0->m_pkthdr.csum_flags &
   1127 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1128 			if (wm_tx_cksum(sc, m0, &cksumcmd, &cksumfields) != 0) {
   1129 				/* Error message already displayed. */
   1130 				m_freem(m0);
   1131 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1132 				continue;
   1133 			}
   1134 		} else {
   1135 			cksumcmd = 0;
   1136 			cksumfields = 0;
   1137 		}
   1138 
   1139 		/*
   1140 		 * Initialize the transmit descriptor.
   1141 		 */
   1142 		for (nexttx = sc->sc_txnext, seg = 0;
   1143 		     seg < dmamap->dm_nsegs;
   1144 		     seg++, nexttx = WM_NEXTTX(nexttx)) {
   1145 			/*
   1146 			 * Note: we currently only use 32-bit DMA
   1147 			 * addresses.
   1148 			 */
   1149 			sc->sc_txdescs[nexttx].wtx_addr.wa_low =
   1150 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1151 			sc->sc_txdescs[nexttx].wtx_cmdlen = cksumcmd |
   1152 			    htole32(dmamap->dm_segs[seg].ds_len);
   1153 			sc->sc_txdescs[nexttx].wtx_fields.wtxu_bits =
   1154 			    cksumfields;
   1155 			lasttx = nexttx;
   1156 
   1157 			DPRINTF(WM_DEBUG_TX,
   1158 			    ("%s: TX: desc %d: low 0x%08x, len 0x%04x\n",
   1159 			    sc->sc_dev.dv_xname, nexttx,
   1160 			    (uint32_t) dmamap->dm_segs[seg].ds_addr,
   1161 			    (uint32_t) dmamap->dm_segs[seg].ds_len));
   1162 		}
   1163 
   1164 		/*
   1165 		 * Set up the command byte on the last descriptor of
   1166 		 * the packet.  If we're in the interrupt delay window,
   1167 		 * delay the interrupt.
   1168 		 */
   1169 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1170 		    htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS |
   1171 		    WTX_CMD_RPS);
   1172 		if (sc->sc_txsnext & WM_TXINTR_MASK)
   1173 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1174 			    htole32(WTX_CMD_IDE);
   1175 
   1176 #if 0 /* XXXJRT */
   1177 		/*
   1178 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1179 		 * up the descriptor to encapsulate the packet for us.
   1180 		 *
   1181 		 * This is only valid on the last descriptor of the packet.
   1182 		 */
   1183 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1184 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
   1185 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1186 			    htole32(WTX_CMD_VLE);
   1187 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_fields.wtxu_vlan
   1188 			    = htole16(*mtod(m, int *) & 0xffff);
   1189 		}
   1190 #endif /* XXXJRT */
   1191 
   1192 		DPRINTF(WM_DEBUG_TX,
   1193 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   1194 		    lasttx, sc->sc_txdescs[lasttx].wtx_cmdlen));
   1195 
   1196 		/* Sync the descriptors we're using. */
   1197 		WM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1198 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1199 
   1200 		/* Give the packet to the chip. */
   1201 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   1202 
   1203 		DPRINTF(WM_DEBUG_TX,
   1204 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   1205 
   1206 		/*
   1207 		 * Store a pointer to the packet so we can free it later,
   1208 		 * and remember that txdirty will be once the packet is
   1209 		 * done.
   1210 		 */
   1211 		txs->txs_mbuf = m0;
   1212 		txs->txs_firstdesc = sc->sc_txnext;
   1213 		txs->txs_lastdesc = lasttx;
   1214 
   1215 		DPRINTF(WM_DEBUG_TX,
   1216 		    ("%s: TX: finished transmitting packet, job %d\n",
   1217 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   1218 
   1219 		/* Advance the tx pointer. */
   1220 		sc->sc_txfree -= dmamap->dm_nsegs;
   1221 		sc->sc_txnext = nexttx;
   1222 
   1223 		sc->sc_txsfree--;
   1224 		sc->sc_txsnext = WM_NEXTTXS(sc->sc_txsnext);
   1225 
   1226 #if NBPFILTER > 0
   1227 		/* Pass the packet to any BPF listeners. */
   1228 		if (ifp->if_bpf)
   1229 			bpf_mtap(ifp->if_bpf, m0);
   1230 #endif /* NBPFILTER > 0 */
   1231 	}
   1232 
   1233 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
   1234 		/* No more slots; notify upper layer. */
   1235 		ifp->if_flags |= IFF_OACTIVE;
   1236 	}
   1237 
   1238 	if (sc->sc_txfree != ofree) {
   1239 		/* Set a watchdog timer in case the chip flakes out. */
   1240 		ifp->if_timer = 5;
   1241 	}
   1242 }
   1243 
   1244 /*
   1245  * wm_watchdog:		[ifnet interface function]
   1246  *
   1247  *	Watchdog timer handler.
   1248  */
   1249 void
   1250 wm_watchdog(struct ifnet *ifp)
   1251 {
   1252 	struct wm_softc *sc = ifp->if_softc;
   1253 
   1254 	/*
   1255 	 * Since we're using delayed interrupts, sweep up
   1256 	 * before we report an error.
   1257 	 */
   1258 	wm_txintr(sc);
   1259 
   1260 	if (sc->sc_txfree != WM_NTXDESC) {
   1261 		printf("%s: device timeout (txfree %d txsfree %d)\n",
   1262 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree);
   1263 		ifp->if_oerrors++;
   1264 
   1265 		/* Reset the interface. */
   1266 		(void) wm_init(ifp);
   1267 	}
   1268 
   1269 	/* Try to get more packets going. */
   1270 	wm_start(ifp);
   1271 }
   1272 
   1273 /*
   1274  * wm_ioctl:		[ifnet interface function]
   1275  *
   1276  *	Handle control requests from the operator.
   1277  */
   1278 int
   1279 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1280 {
   1281 	struct wm_softc *sc = ifp->if_softc;
   1282 	struct ifreq *ifr = (struct ifreq *) data;
   1283 	int s, error;
   1284 
   1285 	s = splnet();
   1286 
   1287 	switch (cmd) {
   1288 	case SIOCSIFMEDIA:
   1289 	case SIOCGIFMEDIA:
   1290 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1291 		break;
   1292 
   1293 	default:
   1294 		error = ether_ioctl(ifp, cmd, data);
   1295 		if (error == ENETRESET) {
   1296 			/*
   1297 			 * Multicast list has changed; set the hardware filter
   1298 			 * accordingly.
   1299 			 */
   1300 			wm_set_filter(sc);
   1301 			error = 0;
   1302 		}
   1303 		break;
   1304 	}
   1305 
   1306 	/* Try to get more packets going. */
   1307 	wm_start(ifp);
   1308 
   1309 	splx(s);
   1310 	return (error);
   1311 }
   1312 
   1313 /*
   1314  * wm_intr:
   1315  *
   1316  *	Interrupt service routine.
   1317  */
   1318 int
   1319 wm_intr(void *arg)
   1320 {
   1321 	struct wm_softc *sc = arg;
   1322 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1323 	uint32_t icr;
   1324 	int wantinit, handled = 0;
   1325 
   1326 	for (wantinit = 0; wantinit == 0;) {
   1327 		icr = CSR_READ(sc, WMREG_ICR);
   1328 		if ((icr & sc->sc_icr) == 0)
   1329 			break;
   1330 
   1331 		handled = 1;
   1332 
   1333 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1334 			DPRINTF(WM_DEBUG_RX,
   1335 			    ("%s: RX: got Rx intr 0x%08x\n",
   1336 			    sc->sc_dev.dv_xname,
   1337 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1338 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
   1339 			wm_rxintr(sc);
   1340 		}
   1341 
   1342 		if (icr & ICR_TXDW) {
   1343 			DPRINTF(WM_DEBUG_TX,
   1344 			    ("%s: TX: got TXDW interrupt\n",
   1345 			    sc->sc_dev.dv_xname));
   1346 			WM_EVCNT_INCR(&sc->sc_ev_txintr);
   1347 			wm_txintr(sc);
   1348 		}
   1349 
   1350 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
   1351 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
   1352 			wm_linkintr(sc, icr);
   1353 		}
   1354 
   1355 		if (icr & ICR_RXO) {
   1356 			printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
   1357 			wantinit = 1;
   1358 		}
   1359 	}
   1360 
   1361 	if (handled) {
   1362 		if (wantinit)
   1363 			wm_init(ifp);
   1364 
   1365 		/* Try to get more packets going. */
   1366 		wm_start(ifp);
   1367 	}
   1368 
   1369 	return (handled);
   1370 }
   1371 
   1372 /*
   1373  * wm_txintr:
   1374  *
   1375  *	Helper; handle transmit interrupts.
   1376  */
   1377 void
   1378 wm_txintr(struct wm_softc *sc)
   1379 {
   1380 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1381 	struct wm_txsoft *txs;
   1382 	uint8_t status;
   1383 	int i;
   1384 
   1385 	ifp->if_flags &= ~IFF_OACTIVE;
   1386 
   1387 	/*
   1388 	 * Go through the Tx list and free mbufs for those
   1389 	 * frams which have been transmitted.
   1390 	 */
   1391 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN;
   1392 	     i = WM_NEXTTXS(i), sc->sc_txsfree++) {
   1393 		txs = &sc->sc_txsoft[i];
   1394 
   1395 		DPRINTF(WM_DEBUG_TX,
   1396 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   1397 
   1398 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1399 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1400 
   1401 		status = le32toh(sc->sc_txdescs[
   1402 		    txs->txs_lastdesc].wtx_fields.wtxu_bits);
   1403 		if ((status & WTX_ST_DD) == 0)
   1404 			break;
   1405 
   1406 		DPRINTF(WM_DEBUG_TX,
   1407 		    ("%s: TX: job %d done: descs %d..%d\n",
   1408 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   1409 		    txs->txs_lastdesc));
   1410 
   1411 		/*
   1412 		 * XXX We should probably be using the statistics
   1413 		 * XXX registers, but I don't know if they exist
   1414 		 * XXX on chips before the Cordova.
   1415 		 */
   1416 
   1417 #ifdef WM_EVENT_COUNTERS
   1418 		if (status & WTX_ST_TU)
   1419 			WM_EVCNT_INCR(&sc->sc_ev_tu);
   1420 #endif /* WM_EVENT_COUNTERS */
   1421 
   1422 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
   1423 			ifp->if_oerrors++;
   1424 			if (status & WTX_ST_LC)
   1425 				printf("%s: late collision\n",
   1426 				    sc->sc_dev.dv_xname);
   1427 			else if (status & WTX_ST_EC) {
   1428 				ifp->if_collisions += 16;
   1429 				printf("%s: excessive collisions\n",
   1430 				    sc->sc_dev.dv_xname);
   1431 			}
   1432 		} else
   1433 			ifp->if_opackets++;
   1434 
   1435 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1436 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1437 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1438 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1439 		m_freem(txs->txs_mbuf);
   1440 		txs->txs_mbuf = NULL;
   1441 	}
   1442 
   1443 	/* Update the dirty transmit buffer pointer. */
   1444 	sc->sc_txsdirty = i;
   1445 	DPRINTF(WM_DEBUG_TX,
   1446 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   1447 
   1448 	/*
   1449 	 * If there are no more pending transmissions, cancel the watchdog
   1450 	 * timer.
   1451 	 */
   1452 	if (sc->sc_txsfree == WM_TXQUEUELEN)
   1453 		ifp->if_timer = 0;
   1454 }
   1455 
   1456 /*
   1457  * wm_rxintr:
   1458  *
   1459  *	Helper; handle receive interrupts.
   1460  */
   1461 void
   1462 wm_rxintr(struct wm_softc *sc)
   1463 {
   1464 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1465 	struct wm_rxsoft *rxs;
   1466 	struct mbuf *m;
   1467 	int i, len;
   1468 	uint8_t status, errors;
   1469 
   1470 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
   1471 		rxs = &sc->sc_rxsoft[i];
   1472 
   1473 		DPRINTF(WM_DEBUG_RX,
   1474 		    ("%s: RX: checking descriptor %d\n",
   1475 		    sc->sc_dev.dv_xname, i));
   1476 
   1477 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1478 
   1479 		status = sc->sc_rxdescs[i].wrx_status;
   1480 		errors = sc->sc_rxdescs[i].wrx_errors;
   1481 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
   1482 
   1483 		if ((status & WRX_ST_DD) == 0) {
   1484 			/*
   1485 			 * We have processed all of the receive descriptors.
   1486 			 */
   1487 			break;
   1488 		}
   1489 
   1490 		if (__predict_false(sc->sc_rxdiscard)) {
   1491 			DPRINTF(WM_DEBUG_RX,
   1492 			    ("%s: RX: discarding contents of descriptor %d\n",
   1493 			    sc->sc_dev.dv_xname, i));
   1494 			WM_INIT_RXDESC(sc, i);
   1495 			if (status & WRX_ST_EOP) {
   1496 				/* Reset our state. */
   1497 				DPRINTF(WM_DEBUG_RX,
   1498 				    ("%s: RX: resetting rxdiscard -> 0\n",
   1499 				    sc->sc_dev.dv_xname));
   1500 				sc->sc_rxdiscard = 0;
   1501 			}
   1502 			continue;
   1503 		}
   1504 
   1505 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1506 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1507 
   1508 		m = rxs->rxs_mbuf;
   1509 
   1510 		/*
   1511 		 * Add a new receive buffer to the ring.
   1512 		 */
   1513 		if (wm_add_rxbuf(sc, i) != 0) {
   1514 			/*
   1515 			 * Failed, throw away what we've done so
   1516 			 * far, and discard the rest of the packet.
   1517 			 */
   1518 			ifp->if_ierrors++;
   1519 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1520 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1521 			WM_INIT_RXDESC(sc, i);
   1522 			if ((status & WRX_ST_EOP) == 0)
   1523 				sc->sc_rxdiscard = 1;
   1524 			if (sc->sc_rxhead != NULL)
   1525 				m_freem(sc->sc_rxhead);
   1526 			WM_RXCHAIN_RESET(sc);
   1527 			DPRINTF(WM_DEBUG_RX,
   1528 			    ("%s: RX: Rx buffer allocation failed, "
   1529 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   1530 			    sc->sc_rxdiscard ? " (discard)" : ""));
   1531 			continue;
   1532 		}
   1533 
   1534 		WM_RXCHAIN_LINK(sc, m);
   1535 
   1536 		m->m_len = len;
   1537 
   1538 		DPRINTF(WM_DEBUG_RX,
   1539 		    ("%s: RX: buffer at %p len %d\n",
   1540 		    sc->sc_dev.dv_xname, m->m_data, len));
   1541 
   1542 		/*
   1543 		 * If this is not the end of the packet, keep
   1544 		 * looking.
   1545 		 */
   1546 		if ((status & WRX_ST_EOP) == 0) {
   1547 			sc->sc_rxlen += len;
   1548 			DPRINTF(WM_DEBUG_RX,
   1549 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   1550 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   1551 			continue;
   1552 		}
   1553 
   1554 		/*
   1555 		 * Okay, we have the entire packet now...
   1556 		 */
   1557 		*sc->sc_rxtailp = NULL;
   1558 		m = sc->sc_rxhead;
   1559 		len += sc->sc_rxlen;
   1560 
   1561 		WM_RXCHAIN_RESET(sc);
   1562 
   1563 		DPRINTF(WM_DEBUG_RX,
   1564 		    ("%s: RX: have entire packet, len -> %d\n",
   1565 		    sc->sc_dev.dv_xname, len));
   1566 
   1567 		/*
   1568 		 * If an error occurred, update stats and drop the packet.
   1569 		 */
   1570 		if (errors &
   1571 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
   1572 			ifp->if_ierrors++;
   1573 			if (errors & WRX_ER_SE)
   1574 				printf("%s: symbol error\n",
   1575 				    sc->sc_dev.dv_xname);
   1576 			else if (errors & WRX_ER_SEQ)
   1577 				printf("%s: receive sequence error\n",
   1578 				    sc->sc_dev.dv_xname);
   1579 			else if (errors & WRX_ER_CE)
   1580 				printf("%s: CRC error\n",
   1581 				    sc->sc_dev.dv_xname);
   1582 			m_freem(m);
   1583 			continue;
   1584 		}
   1585 
   1586 		/*
   1587 		 * No errors.  Receive the packet.
   1588 		 *
   1589 		 * Note, we have configured the chip to include the
   1590 		 * CRC with every packet.
   1591 		 */
   1592 		m->m_flags |= M_HASFCS;
   1593 		m->m_pkthdr.rcvif = ifp;
   1594 		m->m_pkthdr.len = len;
   1595 
   1596 #if 0 /* XXXJRT */
   1597 		/*
   1598 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1599 		 * for us.  Associate the tag with the packet.
   1600 		 */
   1601 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1602 		    (status & WRX_ST_VP) != 0) {
   1603 			struct mbuf *vtag;
   1604 
   1605 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
   1606 			if (vtag == NULL) {
   1607 				ifp->if_ierrors++;
   1608 				printf("%s: unable to allocate VLAN tag\n",
   1609 				    sc->sc_dev.dv_xname);
   1610 				m_freem(m);
   1611 				continue;
   1612 			}
   1613 
   1614 			*mtod(m, int *) =
   1615 			    le16toh(sc->sc_rxdescs[i].wrx_special);
   1616 			vtag->m_len = sizeof(int);
   1617 		}
   1618 #endif /* XXXJRT */
   1619 
   1620 		/*
   1621 		 * Set up checksum info for this packet.
   1622 		 */
   1623 		if (status & WRX_ST_IPCS) {
   1624 			WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1625 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1626 			if (errors & WRX_ER_IPE)
   1627 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1628 		}
   1629 		if (status & WRX_ST_TCPCS) {
   1630 			/*
   1631 			 * Note: we don't know if this was TCP or UDP,
   1632 			 * so we just set both bits, and expect the
   1633 			 * upper layers to deal.
   1634 			 */
   1635 			WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
   1636 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   1637 			if (errors & WRX_ER_TCPE)
   1638 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1639 		}
   1640 
   1641 		ifp->if_ipackets++;
   1642 
   1643 #if NBPFILTER > 0
   1644 		/* Pass this up to any BPF listeners. */
   1645 		if (ifp->if_bpf)
   1646 			bpf_mtap(ifp->if_bpf, m);
   1647 #endif /* NBPFILTER > 0 */
   1648 
   1649 		/* Pass it on. */
   1650 		(*ifp->if_input)(ifp, m);
   1651 	}
   1652 
   1653 	/* Update the receive pointer. */
   1654 	sc->sc_rxptr = i;
   1655 
   1656 	DPRINTF(WM_DEBUG_RX,
   1657 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   1658 }
   1659 
   1660 /*
   1661  * wm_linkintr:
   1662  *
   1663  *	Helper; handle link interrupts.
   1664  */
   1665 void
   1666 wm_linkintr(struct wm_softc *sc, uint32_t icr)
   1667 {
   1668 	uint32_t status;
   1669 
   1670 	/*
   1671 	 * If we get a link status interrupt on a 1000BASE-T
   1672 	 * device, just fall into the normal MII tick path.
   1673 	 */
   1674 	if (sc->sc_flags & WM_F_HAS_MII) {
   1675 		if (icr & ICR_LSC) {
   1676 			DPRINTF(WM_DEBUG_LINK,
   1677 			    ("%s: LINK: LSC -> mii_tick\n",
   1678 			    sc->sc_dev.dv_xname));
   1679 			mii_tick(&sc->sc_mii);
   1680 		} else if (icr & ICR_RXSEQ) {
   1681 			DPRINTF(WM_DEBUG_LINK,
   1682 			    ("%s: LINK Receive sequence error\n",
   1683 			    sc->sc_dev.dv_xname));
   1684 		}
   1685 		return;
   1686 	}
   1687 
   1688 	/*
   1689 	 * If we are now receiving /C/, check for link again in
   1690 	 * a couple of link clock ticks.
   1691 	 */
   1692 	if (icr & ICR_RXCFG) {
   1693 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
   1694 		    sc->sc_dev.dv_xname));
   1695 		sc->sc_tbi_anstate = 2;
   1696 	}
   1697 
   1698 	if (icr & ICR_LSC) {
   1699 		status = CSR_READ(sc, WMREG_STATUS);
   1700 		if (status & STATUS_LU) {
   1701 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
   1702 			    sc->sc_dev.dv_xname,
   1703 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   1704 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   1705 			if (status & STATUS_FD)
   1706 				sc->sc_tctl |=
   1707 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   1708 			else
   1709 				sc->sc_tctl |=
   1710 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   1711 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   1712 			sc->sc_tbi_linkup = 1;
   1713 		} else {
   1714 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   1715 			    sc->sc_dev.dv_xname));
   1716 			sc->sc_tbi_linkup = 0;
   1717 		}
   1718 		sc->sc_tbi_anstate = 2;
   1719 		wm_tbi_set_linkled(sc);
   1720 	} else if (icr & ICR_RXSEQ) {
   1721 		DPRINTF(WM_DEBUG_LINK,
   1722 		    ("%s: LINK: Receive sequence error\n",
   1723 		    sc->sc_dev.dv_xname));
   1724 	}
   1725 }
   1726 
   1727 /*
   1728  * wm_tick:
   1729  *
   1730  *	One second timer, used to check link status, sweep up
   1731  *	completed transmit jobs, etc.
   1732  */
   1733 void
   1734 wm_tick(void *arg)
   1735 {
   1736 	struct wm_softc *sc = arg;
   1737 	int s;
   1738 
   1739 	s = splnet();
   1740 
   1741 	if (sc->sc_flags & WM_F_HAS_MII)
   1742 		mii_tick(&sc->sc_mii);
   1743 	else
   1744 		wm_tbi_check_link(sc);
   1745 
   1746 	splx(s);
   1747 
   1748 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   1749 }
   1750 
   1751 /*
   1752  * wm_reset:
   1753  *
   1754  *	Reset the i82542 chip.
   1755  */
   1756 void
   1757 wm_reset(struct wm_softc *sc)
   1758 {
   1759 	int i;
   1760 
   1761 	CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   1762 	delay(10000);
   1763 
   1764 	for (i = 0; i < 1000; i++) {
   1765 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
   1766 			return;
   1767 		delay(20);
   1768 	}
   1769 
   1770 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
   1771 		printf("%s: WARNING: reset failed to complete\n",
   1772 		    sc->sc_dev.dv_xname);
   1773 }
   1774 
   1775 /*
   1776  * wm_init:		[ifnet interface function]
   1777  *
   1778  *	Initialize the interface.  Must be called at splnet().
   1779  */
   1780 int
   1781 wm_init(struct ifnet *ifp)
   1782 {
   1783 	struct wm_softc *sc = ifp->if_softc;
   1784 	struct wm_rxsoft *rxs;
   1785 	int i, error = 0;
   1786 	uint32_t reg;
   1787 
   1788 	/* Cancel any pending I/O. */
   1789 	wm_stop(ifp, 0);
   1790 
   1791 	/* Reset the chip to a known state. */
   1792 	wm_reset(sc);
   1793 
   1794 	/* Initialize the transmit descriptor ring. */
   1795 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1796 	WM_CDTXSYNC(sc, 0, WM_NTXDESC,
   1797 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1798 	sc->sc_txfree = WM_NTXDESC;
   1799 	sc->sc_txnext = 0;
   1800 
   1801 	if (sc->sc_type < WM_T_LIVENGOOD) {
   1802 		CSR_WRITE(sc, WMREG_OLD_TBDAH, 0);
   1803 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR(sc, 0));
   1804 		CSR_WRITE(sc, WMREG_OLD_TDLEN, sizeof(sc->sc_txdescs));
   1805 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
   1806 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
   1807 		CSR_WRITE(sc, WMREG_OLD_TIDV, 64);
   1808 	} else {
   1809 		CSR_WRITE(sc, WMREG_TBDAH, 0);
   1810 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR(sc, 0));
   1811 		CSR_WRITE(sc, WMREG_TDLEN, sizeof(sc->sc_txdescs));
   1812 		CSR_WRITE(sc, WMREG_TDH, 0);
   1813 		CSR_WRITE(sc, WMREG_TDT, 0);
   1814 		CSR_WRITE(sc, WMREG_TIDV, 64);
   1815 
   1816 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
   1817 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   1818 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
   1819 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
   1820 	}
   1821 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
   1822 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
   1823 
   1824 	/* Initialize the transmit job descriptors. */
   1825 	for (i = 0; i < WM_TXQUEUELEN; i++)
   1826 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1827 	sc->sc_txsfree = WM_TXQUEUELEN;
   1828 	sc->sc_txsnext = 0;
   1829 	sc->sc_txsdirty = 0;
   1830 
   1831 	/*
   1832 	 * Initialize the receive descriptor and receive job
   1833 	 * descriptor rings.
   1834 	 */
   1835 	if (sc->sc_type < WM_T_LIVENGOOD) {
   1836 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, 0);
   1837 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR(sc, 0));
   1838 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
   1839 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
   1840 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
   1841 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 64 | RDTR_FPD);
   1842 
   1843 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
   1844 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
   1845 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
   1846 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
   1847 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
   1848 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
   1849 	} else {
   1850 		CSR_WRITE(sc, WMREG_RDBAH, 0);
   1851 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR(sc, 0));
   1852 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
   1853 		CSR_WRITE(sc, WMREG_RDH, 0);
   1854 		CSR_WRITE(sc, WMREG_RDT, 0);
   1855 		CSR_WRITE(sc, WMREG_RDTR, 64 | RDTR_FPD);
   1856 	}
   1857 	for (i = 0; i < WM_NRXDESC; i++) {
   1858 		rxs = &sc->sc_rxsoft[i];
   1859 		if (rxs->rxs_mbuf == NULL) {
   1860 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
   1861 				printf("%s: unable to allocate or map rx "
   1862 				    "buffer %d, error = %d\n",
   1863 				    sc->sc_dev.dv_xname, i, error);
   1864 				/*
   1865 				 * XXX Should attempt to run with fewer receive
   1866 				 * XXX buffers instead of just failing.
   1867 				 */
   1868 				wm_rxdrain(sc);
   1869 				goto out;
   1870 			}
   1871 		} else
   1872 			WM_INIT_RXDESC(sc, i);
   1873 	}
   1874 	sc->sc_rxptr = 0;
   1875 	sc->sc_rxdiscard = 0;
   1876 	WM_RXCHAIN_RESET(sc);
   1877 
   1878 	/*
   1879 	 * Clear out the VLAN table -- we don't use it (yet).
   1880 	 */
   1881 	CSR_WRITE(sc, WMREG_VET, 0);
   1882 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
   1883 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
   1884 
   1885 	/*
   1886 	 * Set up flow-control parameters.
   1887 	 *
   1888 	 * XXX Values could probably stand some tuning.
   1889 	 */
   1890 	if (sc->sc_ctrl & (CTRL_RFCE|CTRL_TFCE)) {
   1891 		CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
   1892 		CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
   1893 		CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
   1894 
   1895 		if (sc->sc_type < WM_T_LIVENGOOD) {
   1896 			CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
   1897 			CSR_WRITE(sc, WMREG_OLD_FCRTL, FCRTL_DFLT);
   1898 		} else {
   1899 			CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
   1900 			CSR_WRITE(sc, WMREG_FCRTL, FCRTL_DFLT);
   1901 		}
   1902 		CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
   1903 	}
   1904 
   1905 #if 0 /* XXXJRT */
   1906 	/* Deal with VLAN enables. */
   1907 	if (sc->sc_ethercom.ec_nvlans != 0)
   1908 		sc->sc_ctrl |= CTRL_VME;
   1909 	else
   1910 #endif /* XXXJRT */
   1911 		sc->sc_ctrl &= ~CTRL_VME;
   1912 
   1913 	/* Write the control registers. */
   1914 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   1915 #if 0
   1916 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   1917 #endif
   1918 
   1919 	/*
   1920 	 * Set up checksum offload parameters.
   1921 	 */
   1922 	reg = CSR_READ(sc, WMREG_RXCSUM);
   1923 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
   1924 		reg |= RXCSUM_IPOFL;
   1925 	else
   1926 		reg &= ~RXCSUM_IPOFL;
   1927 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
   1928 		reg |= RXCSUM_TUOFL;
   1929 	else
   1930 		reg &= ~RXCSUM_TUOFL;
   1931 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
   1932 
   1933 	/*
   1934 	 * Set up the interrupt registers.
   1935 	 */
   1936 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   1937 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   1938 	    ICR_RXO | ICR_RXT0;
   1939 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
   1940 		sc->sc_icr |= ICR_RXCFG;
   1941 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
   1942 
   1943 	/* Set up the inter-packet gap. */
   1944 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   1945 
   1946 #if 0 /* XXXJRT */
   1947 	/* Set the VLAN ethernetype. */
   1948 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
   1949 #endif
   1950 
   1951 	/*
   1952 	 * Set up the transmit control register; we start out with
   1953 	 * a collision distance suitable for FDX, but update it whe
   1954 	 * we resolve the media type.
   1955 	 */
   1956 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
   1957 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   1958 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   1959 
   1960 	/* Set the media. */
   1961 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
   1962 
   1963 	/*
   1964 	 * Set up the receive control register; we actually program
   1965 	 * the register when we set the receive filter.  Use multicast
   1966 	 * address offset type 0.
   1967 	 *
   1968 	 * Only the Cordova has the ability to strip the incoming
   1969 	 * CRC, so we don't enable that feature.
   1970 	 */
   1971 	sc->sc_mchash_type = 0;
   1972 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_2k |
   1973 	    RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
   1974 
   1975 	/* Set the receive filter. */
   1976 	wm_set_filter(sc);
   1977 
   1978 	/* Start the one second link check clock. */
   1979 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   1980 
   1981 	/* ...all done! */
   1982 	ifp->if_flags |= IFF_RUNNING;
   1983 	ifp->if_flags &= ~IFF_OACTIVE;
   1984 
   1985  out:
   1986 	if (error)
   1987 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1988 	return (error);
   1989 }
   1990 
   1991 /*
   1992  * wm_rxdrain:
   1993  *
   1994  *	Drain the receive queue.
   1995  */
   1996 void
   1997 wm_rxdrain(struct wm_softc *sc)
   1998 {
   1999 	struct wm_rxsoft *rxs;
   2000 	int i;
   2001 
   2002 	for (i = 0; i < WM_NRXDESC; i++) {
   2003 		rxs = &sc->sc_rxsoft[i];
   2004 		if (rxs->rxs_mbuf != NULL) {
   2005 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2006 			m_freem(rxs->rxs_mbuf);
   2007 			rxs->rxs_mbuf = NULL;
   2008 		}
   2009 	}
   2010 }
   2011 
   2012 /*
   2013  * wm_stop:		[ifnet interface function]
   2014  *
   2015  *	Stop transmission on the interface.
   2016  */
   2017 void
   2018 wm_stop(struct ifnet *ifp, int disable)
   2019 {
   2020 	struct wm_softc *sc = ifp->if_softc;
   2021 	struct wm_txsoft *txs;
   2022 	int i;
   2023 
   2024 	/* Stop the one second clock. */
   2025 	callout_stop(&sc->sc_tick_ch);
   2026 
   2027 	if (sc->sc_flags & WM_F_HAS_MII) {
   2028 		/* Down the MII. */
   2029 		mii_down(&sc->sc_mii);
   2030 	}
   2031 
   2032 	/* Stop the transmit and receive processes. */
   2033 	CSR_WRITE(sc, WMREG_TCTL, 0);
   2034 	CSR_WRITE(sc, WMREG_RCTL, 0);
   2035 
   2036 	/* Release any queued transmit buffers. */
   2037 	for (i = 0; i < WM_TXQUEUELEN; i++) {
   2038 		txs = &sc->sc_txsoft[i];
   2039 		if (txs->txs_mbuf != NULL) {
   2040 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2041 			m_freem(txs->txs_mbuf);
   2042 			txs->txs_mbuf = NULL;
   2043 		}
   2044 	}
   2045 
   2046 	if (disable)
   2047 		wm_rxdrain(sc);
   2048 
   2049 	/* Mark the interface as down and cancel the watchdog timer. */
   2050 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2051 	ifp->if_timer = 0;
   2052 }
   2053 
   2054 /*
   2055  * wm_read_eeprom:
   2056  *
   2057  *	Read data from the serial EEPROM.
   2058  */
   2059 void
   2060 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   2061 {
   2062 	uint32_t reg;
   2063 	int i, x;
   2064 
   2065 	for (i = 0; i < wordcnt; i++) {
   2066 		/* Send CHIP SELECT for one clock tick. */
   2067 		CSR_WRITE(sc, WMREG_EECD, EECD_CS);
   2068 		delay(2);
   2069 
   2070 		/* Shift in the READ command. */
   2071 		for (x = 3; x > 0; x--) {
   2072 			reg = EECD_CS;
   2073 			if (UWIRE_OPC_READ & (1 << (x - 1)))
   2074 				reg |= EECD_DI;
   2075 			CSR_WRITE(sc, WMREG_EECD, reg);
   2076 			delay(2);
   2077 			CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2078 			delay(2);
   2079 			CSR_WRITE(sc, WMREG_EECD, reg);
   2080 			delay(2);
   2081 		}
   2082 
   2083 		/* Shift in address. */
   2084 		for (x = 6; x > 0; x--) {
   2085 			reg = EECD_CS;
   2086 			if ((word + i) & (1 << (x - 1)))
   2087 				reg |= EECD_DI;
   2088 			CSR_WRITE(sc, WMREG_EECD, reg);
   2089 			delay(2);
   2090 			CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2091 			delay(2);
   2092 			CSR_WRITE(sc, WMREG_EECD, reg);
   2093 			delay(2);
   2094 		}
   2095 
   2096 		/* Shift out the data. */
   2097 		reg = EECD_CS;
   2098 		data[i] = 0;
   2099 		for (x = 16; x > 0; x--) {
   2100 			CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2101 			delay(2);
   2102 			if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
   2103 				data[i] |= (1 << (x - 1));
   2104 			CSR_WRITE(sc, WMREG_EECD, reg);
   2105 			delay(2);
   2106 		}
   2107 
   2108 		/* Clear CHIP SELECT. */
   2109 		CSR_WRITE(sc, WMREG_EECD, 0);
   2110 	}
   2111 }
   2112 
   2113 /*
   2114  * wm_add_rxbuf:
   2115  *
   2116  *	Add a receive buffer to the indiciated descriptor.
   2117  */
   2118 int
   2119 wm_add_rxbuf(struct wm_softc *sc, int idx)
   2120 {
   2121 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2122 	struct mbuf *m;
   2123 	int error;
   2124 
   2125 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2126 	if (m == NULL)
   2127 		return (ENOBUFS);
   2128 
   2129 	MCLGET(m, M_DONTWAIT);
   2130 	if ((m->m_flags & M_EXT) == 0) {
   2131 		m_freem(m);
   2132 		return (ENOBUFS);
   2133 	}
   2134 
   2135 	if (rxs->rxs_mbuf != NULL)
   2136 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2137 
   2138 	rxs->rxs_mbuf = m;
   2139 
   2140 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2141 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2142 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2143 	if (error) {
   2144 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   2145 		    sc->sc_dev.dv_xname, idx, error);
   2146 		panic("wm_add_rxbuf");	/* XXX XXX XXX */
   2147 	}
   2148 
   2149 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2150 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2151 
   2152 	WM_INIT_RXDESC(sc, idx);
   2153 
   2154 	return (0);
   2155 }
   2156 
   2157 /*
   2158  * wm_set_ral:
   2159  *
   2160  *	Set an entery in the receive address list.
   2161  */
   2162 static void
   2163 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
   2164 {
   2165 	uint32_t ral_lo, ral_hi;
   2166 
   2167 	if (enaddr != NULL) {
   2168 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   2169 		    (enaddr[3] << 24);
   2170 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   2171 		ral_hi |= RAL_AV;
   2172 	} else {
   2173 		ral_lo = 0;
   2174 		ral_hi = 0;
   2175 	}
   2176 
   2177 	if (sc->sc_type >= WM_T_CORDOVA) {
   2178 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
   2179 		    ral_lo);
   2180 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
   2181 		    ral_hi);
   2182 	} else {
   2183 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
   2184 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
   2185 	}
   2186 }
   2187 
   2188 /*
   2189  * wm_mchash:
   2190  *
   2191  *	Compute the hash of the multicast address for the 4096-bit
   2192  *	multicast filter.
   2193  */
   2194 static uint32_t
   2195 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
   2196 {
   2197 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   2198 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   2199 	uint32_t hash;
   2200 
   2201 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   2202 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   2203 
   2204 	return (hash & 0xfff);
   2205 }
   2206 
   2207 /*
   2208  * wm_set_filter:
   2209  *
   2210  *	Set up the receive filter.
   2211  */
   2212 void
   2213 wm_set_filter(struct wm_softc *sc)
   2214 {
   2215 	struct ethercom *ec = &sc->sc_ethercom;
   2216 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2217 	struct ether_multi *enm;
   2218 	struct ether_multistep step;
   2219 	bus_addr_t mta_reg;
   2220 	uint32_t hash, reg, bit;
   2221 	int i;
   2222 
   2223 	if (sc->sc_type >= WM_T_CORDOVA)
   2224 		mta_reg = WMREG_CORDOVA_MTA;
   2225 	else
   2226 		mta_reg = WMREG_MTA;
   2227 
   2228 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   2229 
   2230 	if (ifp->if_flags & IFF_BROADCAST)
   2231 		sc->sc_rctl |= RCTL_BAM;
   2232 	if (ifp->if_flags & IFF_PROMISC) {
   2233 		sc->sc_rctl |= RCTL_UPE;
   2234 		goto allmulti;
   2235 	}
   2236 
   2237 	/*
   2238 	 * Set the station address in the first RAL slot, and
   2239 	 * clear the remaining slots.
   2240 	 */
   2241 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
   2242 	for (i = 1; i < WM_RAL_TABSIZE; i++)
   2243 		wm_set_ral(sc, NULL, i);
   2244 
   2245 	/* Clear out the multicast table. */
   2246 	for (i = 0; i < WM_MC_TABSIZE; i++)
   2247 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
   2248 
   2249 	ETHER_FIRST_MULTI(step, ec, enm);
   2250 	while (enm != NULL) {
   2251 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2252 			/*
   2253 			 * We must listen to a range of multicast addresses.
   2254 			 * For now, just accept all multicasts, rather than
   2255 			 * trying to set only those filter bits needed to match
   2256 			 * the range.  (At this time, the only use of address
   2257 			 * ranges is for IP multicast routing, for which the
   2258 			 * range is big enough to require all bits set.)
   2259 			 */
   2260 			goto allmulti;
   2261 		}
   2262 
   2263 		hash = wm_mchash(sc, enm->enm_addrlo);
   2264 
   2265 		reg = (hash >> 5) & 0x7f;
   2266 		bit = hash & 0x1f;
   2267 
   2268 		hash = CSR_READ(sc, mta_reg + (reg << 2));
   2269 		hash |= 1U << bit;
   2270 
   2271 		/* XXX Hardware bug?? */
   2272 		if (sc->sc_type == WM_T_CORDOVA && (reg & 0xe) == 1) {
   2273 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
   2274 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   2275 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
   2276 		} else
   2277 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   2278 
   2279 		ETHER_NEXT_MULTI(step, enm);
   2280 	}
   2281 
   2282 	ifp->if_flags &= ~IFF_ALLMULTI;
   2283 	goto setit;
   2284 
   2285  allmulti:
   2286 	ifp->if_flags |= IFF_ALLMULTI;
   2287 	sc->sc_rctl |= RCTL_MPE;
   2288 
   2289  setit:
   2290 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
   2291 }
   2292 
   2293 /*
   2294  * wm_tbi_mediainit:
   2295  *
   2296  *	Initialize media for use on 1000BASE-X devices.
   2297  */
   2298 void
   2299 wm_tbi_mediainit(struct wm_softc *sc)
   2300 {
   2301 	const char *sep = "";
   2302 
   2303 	if (sc->sc_type < WM_T_LIVENGOOD)
   2304 		sc->sc_tipg = TIPG_WM_DFLT;
   2305 	else
   2306 		sc->sc_tipg = TIPG_LG_DFLT;
   2307 
   2308 	ifmedia_init(&sc->sc_mii.mii_media, 0, wm_tbi_mediachange,
   2309 	    wm_tbi_mediastatus);
   2310 
   2311 	/*
   2312 	 * SWD Pins:
   2313 	 *
   2314 	 *	0 = Link LED (output)
   2315 	 *	1 = Loss Of Signal (input)
   2316 	 */
   2317 	sc->sc_ctrl |= CTRL_SWDPIO(0);
   2318 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
   2319 
   2320 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2321 
   2322 #define	ADD(s, m, d)							\
   2323 do {									\
   2324 	printf("%s%s", sep, s);						\
   2325 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL);	\
   2326 	sep = ", ";							\
   2327 } while (/*CONSTCOND*/0)
   2328 
   2329 	printf("%s: ", sc->sc_dev.dv_xname);
   2330 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
   2331 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
   2332 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
   2333 	printf("\n");
   2334 
   2335 #undef ADD
   2336 
   2337 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   2338 }
   2339 
   2340 /*
   2341  * wm_tbi_mediastatus:	[ifmedia interface function]
   2342  *
   2343  *	Get the current interface media status on a 1000BASE-X device.
   2344  */
   2345 void
   2346 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2347 {
   2348 	struct wm_softc *sc = ifp->if_softc;
   2349 
   2350 	ifmr->ifm_status = IFM_AVALID;
   2351 	ifmr->ifm_active = IFM_ETHER;
   2352 
   2353 	if (sc->sc_tbi_linkup == 0) {
   2354 		ifmr->ifm_active |= IFM_NONE;
   2355 		return;
   2356 	}
   2357 
   2358 	ifmr->ifm_status |= IFM_ACTIVE;
   2359 	ifmr->ifm_active |= IFM_1000_SX;
   2360 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
   2361 		ifmr->ifm_active |= IFM_FDX;
   2362 }
   2363 
   2364 /*
   2365  * wm_tbi_mediachange:	[ifmedia interface function]
   2366  *
   2367  *	Set hardware to newly-selected media on a 1000BASE-X device.
   2368  */
   2369 int
   2370 wm_tbi_mediachange(struct ifnet *ifp)
   2371 {
   2372 	struct wm_softc *sc = ifp->if_softc;
   2373 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   2374 	uint32_t status;
   2375 	int i;
   2376 
   2377 	sc->sc_txcw = ife->ifm_data;
   2378 	if (sc->sc_ctrl & CTRL_RFCE)
   2379 		sc->sc_txcw |= ANAR_X_PAUSE_TOWARDS;
   2380 	if (sc->sc_ctrl & CTRL_TFCE)
   2381 		sc->sc_txcw |= ANAR_X_PAUSE_ASYM;
   2382 	sc->sc_txcw |= TXCW_ANE;
   2383 
   2384 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   2385 	delay(10000);
   2386 
   2387 	sc->sc_tbi_anstate = 0;
   2388 
   2389 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
   2390 		/* Have signal; wait for the link to come up. */
   2391 		for (i = 0; i < 50; i++) {
   2392 			delay(10000);
   2393 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
   2394 				break;
   2395 		}
   2396 
   2397 		status = CSR_READ(sc, WMREG_STATUS);
   2398 		if (status & STATUS_LU) {
   2399 			/* Link is up. */
   2400 			DPRINTF(WM_DEBUG_LINK,
   2401 			    ("%s: LINK: set media -> link up %s\n",
   2402 			    sc->sc_dev.dv_xname,
   2403 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   2404 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2405 			if (status & STATUS_FD)
   2406 				sc->sc_tctl |=
   2407 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2408 			else
   2409 				sc->sc_tctl |=
   2410 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2411 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2412 			sc->sc_tbi_linkup = 1;
   2413 		} else {
   2414 			/* Link is down. */
   2415 			DPRINTF(WM_DEBUG_LINK,
   2416 			    ("%s: LINK: set media -> link down\n",
   2417 			    sc->sc_dev.dv_xname));
   2418 			sc->sc_tbi_linkup = 0;
   2419 		}
   2420 	} else {
   2421 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
   2422 		    sc->sc_dev.dv_xname));
   2423 		sc->sc_tbi_linkup = 0;
   2424 	}
   2425 
   2426 	wm_tbi_set_linkled(sc);
   2427 
   2428 	return (0);
   2429 }
   2430 
   2431 /*
   2432  * wm_tbi_set_linkled:
   2433  *
   2434  *	Update the link LED on 1000BASE-X devices.
   2435  */
   2436 void
   2437 wm_tbi_set_linkled(struct wm_softc *sc)
   2438 {
   2439 
   2440 	if (sc->sc_tbi_linkup)
   2441 		sc->sc_ctrl |= CTRL_SWDPIN(0);
   2442 	else
   2443 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
   2444 
   2445 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2446 }
   2447 
   2448 /*
   2449  * wm_tbi_check_link:
   2450  *
   2451  *	Check the link on 1000BASE-X devices.
   2452  */
   2453 void
   2454 wm_tbi_check_link(struct wm_softc *sc)
   2455 {
   2456 	uint32_t rxcw, ctrl, status;
   2457 
   2458 	if (sc->sc_tbi_anstate == 0)
   2459 		return;
   2460 	else if (sc->sc_tbi_anstate > 1) {
   2461 		DPRINTF(WM_DEBUG_LINK,
   2462 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
   2463 		    sc->sc_tbi_anstate));
   2464 		sc->sc_tbi_anstate--;
   2465 		return;
   2466 	}
   2467 
   2468 	sc->sc_tbi_anstate = 0;
   2469 
   2470 	rxcw = CSR_READ(sc, WMREG_RXCW);
   2471 	ctrl = CSR_READ(sc, WMREG_CTRL);
   2472 	status = CSR_READ(sc, WMREG_STATUS);
   2473 
   2474 	if ((status & STATUS_LU) == 0) {
   2475 		DPRINTF(WM_DEBUG_LINK,
   2476 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
   2477 		sc->sc_tbi_linkup = 0;
   2478 	} else {
   2479 		DPRINTF(WM_DEBUG_LINK,
   2480 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
   2481 		    (status & STATUS_FD) ? "FDX" : "HDX"));
   2482 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2483 		if (status & STATUS_FD)
   2484 			sc->sc_tctl |=
   2485 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2486 		else
   2487 			sc->sc_tctl |=
   2488 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2489 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2490 		sc->sc_tbi_linkup = 1;
   2491 	}
   2492 
   2493 	wm_tbi_set_linkled(sc);
   2494 }
   2495 
   2496 /*
   2497  * wm_gmii_reset:
   2498  *
   2499  *	Reset the PHY.
   2500  */
   2501 void
   2502 wm_gmii_reset(struct wm_softc *sc)
   2503 {
   2504 	uint32_t reg;
   2505 
   2506 	if (sc->sc_type >= WM_T_CORDOVA) {
   2507 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   2508 		delay(20000);
   2509 
   2510 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2511 		delay(20000);
   2512 	} else {
   2513 		/* The PHY reset pin is active-low. */
   2514 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   2515 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
   2516 		    CTRL_EXT_SWDPIN(4));
   2517 		reg |= CTRL_EXT_SWDPIO(4);
   2518 
   2519 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   2520 		delay(10);
   2521 
   2522 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   2523 		delay(10);
   2524 
   2525 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   2526 		delay(10);
   2527 #if 0
   2528 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
   2529 #endif
   2530 	}
   2531 }
   2532 
   2533 /*
   2534  * wm_gmii_mediainit:
   2535  *
   2536  *	Initialize media for use on 1000BASE-T devices.
   2537  */
   2538 void
   2539 wm_gmii_mediainit(struct wm_softc *sc)
   2540 {
   2541 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2542 
   2543 	/* We have MII. */
   2544 	sc->sc_flags |= WM_F_HAS_MII;
   2545 
   2546 	sc->sc_tipg = TIPG_1000T_DFLT;
   2547 
   2548 	/*
   2549 	 * Let the chip set speed/duplex on its own based on
   2550 	 * signals from the PHY.
   2551 	 */
   2552 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
   2553 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2554 
   2555 	/* Initialize our media structures and probe the GMII. */
   2556 	sc->sc_mii.mii_ifp = ifp;
   2557 
   2558 	if (sc->sc_type >= WM_T_CORDOVA) {
   2559 		sc->sc_mii.mii_readreg = wm_gmii_cordova_readreg;
   2560 		sc->sc_mii.mii_writereg = wm_gmii_cordova_writereg;
   2561 	} else {
   2562 		sc->sc_mii.mii_readreg = wm_gmii_livengood_readreg;
   2563 		sc->sc_mii.mii_writereg = wm_gmii_livengood_writereg;
   2564 	}
   2565 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
   2566 
   2567 	wm_gmii_reset(sc);
   2568 
   2569 	ifmedia_init(&sc->sc_mii.mii_media, 0, wm_gmii_mediachange,
   2570 	    wm_gmii_mediastatus);
   2571 
   2572 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   2573 	    MII_OFFSET_ANY, 0);
   2574 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   2575 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   2576 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   2577 	} else
   2578 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   2579 }
   2580 
   2581 /*
   2582  * wm_gmii_mediastatus:	[ifmedia interface function]
   2583  *
   2584  *	Get the current interface media status on a 1000BASE-T device.
   2585  */
   2586 void
   2587 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2588 {
   2589 	struct wm_softc *sc = ifp->if_softc;
   2590 
   2591 	mii_pollstat(&sc->sc_mii);
   2592 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2593 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2594 }
   2595 
   2596 /*
   2597  * wm_gmii_mediachange:	[ifmedia interface function]
   2598  *
   2599  *	Set hardware to newly-selected media on a 1000BASE-T device.
   2600  */
   2601 int
   2602 wm_gmii_mediachange(struct ifnet *ifp)
   2603 {
   2604 	struct wm_softc *sc = ifp->if_softc;
   2605 
   2606 	if (ifp->if_flags & IFF_UP)
   2607 		mii_mediachg(&sc->sc_mii);
   2608 	return (0);
   2609 }
   2610 
   2611 #define	MDI_IO		CTRL_SWDPIN(2)
   2612 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
   2613 #define	MDI_CLK		CTRL_SWDPIN(3)
   2614 
   2615 static void
   2616 livengood_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
   2617 {
   2618 	uint32_t i, v;
   2619 
   2620 	v = CSR_READ(sc, WMREG_CTRL);
   2621 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   2622 	v |= MDI_DIR | CTRL_SWDPIO(3);
   2623 
   2624 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
   2625 		if (data & i)
   2626 			v |= MDI_IO;
   2627 		else
   2628 			v &= ~MDI_IO;
   2629 		CSR_WRITE(sc, WMREG_CTRL, v);
   2630 		delay(10);
   2631 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   2632 		delay(10);
   2633 		CSR_WRITE(sc, WMREG_CTRL, v);
   2634 		delay(10);
   2635 	}
   2636 }
   2637 
   2638 static uint32_t
   2639 livengood_mii_recvbits(struct wm_softc *sc)
   2640 {
   2641 	uint32_t v, i, data = 0;
   2642 
   2643 	v = CSR_READ(sc, WMREG_CTRL);
   2644 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   2645 	v |= CTRL_SWDPIO(3);
   2646 
   2647 	CSR_WRITE(sc, WMREG_CTRL, v);
   2648 	delay(10);
   2649 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   2650 	delay(10);
   2651 	CSR_WRITE(sc, WMREG_CTRL, v);
   2652 	delay(10);
   2653 
   2654 	for (i = 0; i < 16; i++) {
   2655 		data <<= 1;
   2656 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   2657 		delay(10);
   2658 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
   2659 			data |= 1;
   2660 		CSR_WRITE(sc, WMREG_CTRL, v);
   2661 		delay(10);
   2662 	}
   2663 
   2664 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   2665 	delay(10);
   2666 	CSR_WRITE(sc, WMREG_CTRL, v);
   2667 	delay(10);
   2668 
   2669 	return (data);
   2670 }
   2671 
   2672 #undef MDI_IO
   2673 #undef MDI_DIR
   2674 #undef MDI_CLK
   2675 
   2676 /*
   2677  * wm_gmii_livengood_readreg:	[mii interface function]
   2678  *
   2679  *	Read a PHY register on the GMII (Livengood version).
   2680  */
   2681 int
   2682 wm_gmii_livengood_readreg(struct device *self, int phy, int reg)
   2683 {
   2684 	struct wm_softc *sc = (void *) self;
   2685 	int rv;
   2686 
   2687 	livengood_mii_sendbits(sc, 0xffffffffU, 32);
   2688 	livengood_mii_sendbits(sc, reg | (phy << 5) |
   2689 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
   2690 	rv = livengood_mii_recvbits(sc) & 0xffff;
   2691 
   2692 	DPRINTF(WM_DEBUG_GMII,
   2693 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
   2694 	    sc->sc_dev.dv_xname, phy, reg, rv));
   2695 
   2696 	return (rv);
   2697 }
   2698 
   2699 /*
   2700  * wm_gmii_livengood_writereg:	[mii interface function]
   2701  *
   2702  *	Write a PHY register on the GMII (Livengood version).
   2703  */
   2704 void
   2705 wm_gmii_livengood_writereg(struct device *self, int phy, int reg, int val)
   2706 {
   2707 	struct wm_softc *sc = (void *) self;
   2708 
   2709 	livengood_mii_sendbits(sc, 0xffffffffU, 32);
   2710 	livengood_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
   2711 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
   2712 	    (MII_COMMAND_START << 30), 32);
   2713 }
   2714 
   2715 /*
   2716  * wm_gmii_cordova_readreg:	[mii interface function]
   2717  *
   2718  *	Read a PHY register on the GMII.
   2719  */
   2720 int
   2721 wm_gmii_cordova_readreg(struct device *self, int phy, int reg)
   2722 {
   2723 	struct wm_softc *sc = (void *) self;
   2724 	uint32_t mdic;
   2725 	int i, rv;
   2726 
   2727 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
   2728 	    MDIC_REGADD(reg));
   2729 
   2730 	for (i = 0; i < 100; i++) {
   2731 		mdic = CSR_READ(sc, WMREG_MDIC);
   2732 		if (mdic & MDIC_READY)
   2733 			break;
   2734 		delay(10);
   2735 	}
   2736 
   2737 	if ((mdic & MDIC_READY) == 0) {
   2738 		printf("%s: MDIC read timed out: phy %d reg %d\n",
   2739 		    sc->sc_dev.dv_xname, phy, reg);
   2740 		rv = 0;
   2741 	} else if (mdic & MDIC_E) {
   2742 #if 0 /* This is normal if no PHY is present. */
   2743 		printf("%s: MDIC read error: phy %d reg %d\n",
   2744 		    sc->sc_dev.dv_xname, phy, reg);
   2745 #endif
   2746 		rv = 0;
   2747 	} else {
   2748 		rv = MDIC_DATA(mdic);
   2749 		if (rv == 0xffff)
   2750 			rv = 0;
   2751 	}
   2752 
   2753 	return (rv);
   2754 }
   2755 
   2756 /*
   2757  * wm_gmii_cordova_writereg:	[mii interface function]
   2758  *
   2759  *	Write a PHY register on the GMII.
   2760  */
   2761 void
   2762 wm_gmii_cordova_writereg(struct device *self, int phy, int reg, int val)
   2763 {
   2764 	struct wm_softc *sc = (void *) self;
   2765 	uint32_t mdic;
   2766 	int i;
   2767 
   2768 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
   2769 	    MDIC_REGADD(reg) | MDIC_DATA(val));
   2770 
   2771 	for (i = 0; i < 100; i++) {
   2772 		mdic = CSR_READ(sc, WMREG_MDIC);
   2773 		if (mdic & MDIC_READY)
   2774 			break;
   2775 		delay(10);
   2776 	}
   2777 
   2778 	if ((mdic & MDIC_READY) == 0)
   2779 		printf("%s: MDIC write timed out: phy %d reg %d\n",
   2780 		    sc->sc_dev.dv_xname, phy, reg);
   2781 	else if (mdic & MDIC_E)
   2782 		printf("%s: MDIC write error: phy %d reg %d\n",
   2783 		    sc->sc_dev.dv_xname, phy, reg);
   2784 }
   2785 
   2786 /*
   2787  * wm_gmii_statchg:	[mii interface function]
   2788  *
   2789  *	Callback from MII layer when media changes.
   2790  */
   2791 void
   2792 wm_gmii_statchg(struct device *self)
   2793 {
   2794 	struct wm_softc *sc = (void *) self;
   2795 
   2796 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2797 
   2798 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   2799 		DPRINTF(WM_DEBUG_LINK,
   2800 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
   2801 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2802 	} else  {
   2803 		DPRINTF(WM_DEBUG_LINK,
   2804 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
   2805 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2806 	}
   2807 
   2808 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2809 }
   2810