Home | History | Annotate | Line # | Download | only in pci
if_wm.c revision 1.10
      1 /*	$NetBSD: if_wm.c,v 1.10 2002/07/09 14:52:37 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Device driver for the Intel i82542 (``Wiseman''), i82543 (``Livengood''),
     40  * and i82544 (``Cordova'') Gigabit Ethernet chips.
     41  *
     42  * TODO (in order of importance):
     43  *
     44  *	- Fix hw VLAN assist.
     45  *
     46  *	- Make GMII work on the Livengood.
     47  *
     48  *	- Fix out-bound IP header checksums.
     49  *
     50  *	- Fix UDP checksums.
     51  *
     52  *	- Jumbo frames -- requires changes to network stack due to
     53  *	  lame buffer length handling on chip.
     54  *
     55  * ...and, of course, performance tuning.
     56  */
     57 
     58 #include "bpfilter.h"
     59 
     60 #include <sys/param.h>
     61 #include <sys/systm.h>
     62 #include <sys/callout.h>
     63 #include <sys/mbuf.h>
     64 #include <sys/malloc.h>
     65 #include <sys/kernel.h>
     66 #include <sys/socket.h>
     67 #include <sys/ioctl.h>
     68 #include <sys/errno.h>
     69 #include <sys/device.h>
     70 #include <sys/queue.h>
     71 
     72 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     73 
     74 #include <net/if.h>
     75 #include <net/if_dl.h>
     76 #include <net/if_media.h>
     77 #include <net/if_ether.h>
     78 
     79 #if NBPFILTER > 0
     80 #include <net/bpf.h>
     81 #endif
     82 
     83 #include <netinet/in.h>			/* XXX for struct ip */
     84 #include <netinet/in_systm.h>		/* XXX for struct ip */
     85 #include <netinet/ip.h>			/* XXX for struct ip */
     86 
     87 #include <machine/bus.h>
     88 #include <machine/intr.h>
     89 #include <machine/endian.h>
     90 
     91 #include <dev/mii/mii.h>
     92 #include <dev/mii/miivar.h>
     93 #include <dev/mii/mii_bitbang.h>
     94 
     95 #include <dev/pci/pcireg.h>
     96 #include <dev/pci/pcivar.h>
     97 #include <dev/pci/pcidevs.h>
     98 
     99 #include <dev/pci/if_wmreg.h>
    100 
    101 #ifdef WM_DEBUG
    102 #define	WM_DEBUG_LINK		0x01
    103 #define	WM_DEBUG_TX		0x02
    104 #define	WM_DEBUG_RX		0x04
    105 #define	WM_DEBUG_GMII		0x08
    106 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
    107 
    108 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
    109 #else
    110 #define	DPRINTF(x, y)	/* nothing */
    111 #endif /* WM_DEBUG */
    112 
    113 /*
    114  * Transmit descriptor list size.  Due to errata, we can only have
    115  * 256 hardware descriptors in the ring.  We tell the upper layers
    116  * that they can queue a lot of packets, and we go ahead and mange
    117  * up to 64 of them at a time.  We allow up to 16 DMA segments per
    118  * packet.
    119  */
    120 #define	WM_NTXSEGS		16
    121 #define	WM_IFQUEUELEN		256
    122 #define	WM_TXQUEUELEN		64
    123 #define	WM_TXQUEUELEN_MASK	(WM_TXQUEUELEN - 1)
    124 #define	WM_TXQUEUE_GC		(WM_TXQUEUELEN / 8)
    125 #define	WM_NTXDESC		256
    126 #define	WM_NTXDESC_MASK		(WM_NTXDESC - 1)
    127 #define	WM_NEXTTX(x)		(((x) + 1) & WM_NTXDESC_MASK)
    128 #define	WM_NEXTTXS(x)		(((x) + 1) & WM_TXQUEUELEN_MASK)
    129 
    130 /*
    131  * Receive descriptor list size.  We have one Rx buffer for normal
    132  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
    133  * packet.  We allocate 256 receive descriptors, each with a 2k
    134  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
    135  */
    136 #define	WM_NRXDESC		256
    137 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
    138 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
    139 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
    140 
    141 /*
    142  * Control structures are DMA'd to the i82542 chip.  We allocate them in
    143  * a single clump that maps to a single DMA segment to make serveral things
    144  * easier.
    145  */
    146 struct wm_control_data {
    147 	/*
    148 	 * The transmit descriptors.
    149 	 */
    150 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC];
    151 
    152 	/*
    153 	 * The receive descriptors.
    154 	 */
    155 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    156 };
    157 
    158 #define	WM_CDOFF(x)	offsetof(struct wm_control_data, x)
    159 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
    160 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
    161 
    162 /*
    163  * Software state for transmit jobs.
    164  */
    165 struct wm_txsoft {
    166 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    167 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    168 	int txs_firstdesc;		/* first descriptor in packet */
    169 	int txs_lastdesc;		/* last descriptor in packet */
    170 	int txs_ndesc;			/* # of descriptors used */
    171 };
    172 
    173 /*
    174  * Software state for receive buffers.  Each descriptor gets a
    175  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    176  * more than one buffer, we chain them together.
    177  */
    178 struct wm_rxsoft {
    179 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    180 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    181 };
    182 
    183 /*
    184  * Software state per device.
    185  */
    186 struct wm_softc {
    187 	struct device sc_dev;		/* generic device information */
    188 	bus_space_tag_t sc_st;		/* bus space tag */
    189 	bus_space_handle_t sc_sh;	/* bus space handle */
    190 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    191 	struct ethercom sc_ethercom;	/* ethernet common data */
    192 	void *sc_sdhook;		/* shutdown hook */
    193 
    194 	int sc_type;			/* chip type; see below */
    195 	int sc_flags;			/* flags; see below */
    196 
    197 	void *sc_ih;			/* interrupt cookie */
    198 
    199 	struct mii_data sc_mii;		/* MII/media information */
    200 
    201 	struct callout sc_tick_ch;	/* tick callout */
    202 
    203 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    204 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    205 
    206 	/*
    207 	 * Software state for the transmit and receive descriptors.
    208 	 */
    209 	struct wm_txsoft sc_txsoft[WM_TXQUEUELEN];
    210 	struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
    211 
    212 	/*
    213 	 * Control data structures.
    214 	 */
    215 	struct wm_control_data *sc_control_data;
    216 #define	sc_txdescs	sc_control_data->wcd_txdescs
    217 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    218 
    219 #ifdef WM_EVENT_COUNTERS
    220 	/* Event counters. */
    221 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    222 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    223 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    224 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    225 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    226 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    227 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    228 
    229 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    230 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    231 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    232 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    233 
    234 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
    235 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
    236 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
    237 
    238 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
    239 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    240 
    241 	struct evcnt sc_ev_tu;		/* Tx underrun */
    242 #endif /* WM_EVENT_COUNTERS */
    243 
    244 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
    245 
    246 	int	sc_txfree;		/* number of free Tx descriptors */
    247 	int	sc_txnext;		/* next ready Tx descriptor */
    248 
    249 	int	sc_txsfree;		/* number of free Tx jobs */
    250 	int	sc_txsnext;		/* next free Tx job */
    251 	int	sc_txsdirty;		/* dirty Tx jobs */
    252 
    253 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
    254 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
    255 
    256 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
    257 
    258 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    259 	int	sc_rxdiscard;
    260 	int	sc_rxlen;
    261 	struct mbuf *sc_rxhead;
    262 	struct mbuf *sc_rxtail;
    263 	struct mbuf **sc_rxtailp;
    264 
    265 	uint32_t sc_ctrl;		/* prototype CTRL register */
    266 #if 0
    267 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
    268 #endif
    269 	uint32_t sc_icr;		/* prototype interrupt bits */
    270 	uint32_t sc_tctl;		/* prototype TCTL register */
    271 	uint32_t sc_rctl;		/* prototype RCTL register */
    272 	uint32_t sc_txcw;		/* prototype TXCW register */
    273 	uint32_t sc_tipg;		/* prototype TIPG register */
    274 
    275 	int sc_tbi_linkup;		/* TBI link status */
    276 	int sc_tbi_anstate;		/* autonegotiation state */
    277 
    278 	int sc_mchash_type;		/* multicast filter offset */
    279 };
    280 
    281 #define	WM_RXCHAIN_RESET(sc)						\
    282 do {									\
    283 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    284 	*(sc)->sc_rxtailp = NULL;					\
    285 	(sc)->sc_rxlen = 0;						\
    286 } while (/*CONSTCOND*/0)
    287 
    288 #define	WM_RXCHAIN_LINK(sc, m)						\
    289 do {									\
    290 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    291 	(sc)->sc_rxtailp = &(m)->m_next;				\
    292 } while (/*CONSTCOND*/0)
    293 
    294 /* sc_type */
    295 #define	WM_T_WISEMAN_2_0	0	/* Wiseman (i82542) 2.0 (really old) */
    296 #define	WM_T_WISEMAN_2_1	1	/* Wiseman (i82542) 2.1+ (old) */
    297 #define	WM_T_LIVENGOOD		2	/* Livengood (i82543) */
    298 #define	WM_T_CORDOVA		3	/* Cordova (i82544) */
    299 
    300 /* sc_flags */
    301 #define	WM_F_HAS_MII		0x01	/* has MII */
    302 
    303 #ifdef WM_EVENT_COUNTERS
    304 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
    305 #else
    306 #define	WM_EVCNT_INCR(ev)	/* nothing */
    307 #endif
    308 
    309 #define	CSR_READ(sc, reg)						\
    310 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    311 #define	CSR_WRITE(sc, reg, val)						\
    312 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    313 
    314 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
    315 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
    316 
    317 #define	WM_CDTXSYNC(sc, x, n, ops)					\
    318 do {									\
    319 	int __x, __n;							\
    320 									\
    321 	__x = (x);							\
    322 	__n = (n);							\
    323 									\
    324 	/* If it will wrap around, sync to the end of the ring. */	\
    325 	if ((__x + __n) > WM_NTXDESC) {					\
    326 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    327 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
    328 		    (WM_NTXDESC - __x), (ops));				\
    329 		__n -= (WM_NTXDESC - __x);				\
    330 		__x = 0;						\
    331 	}								\
    332 									\
    333 	/* Now sync whatever is left. */				\
    334 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    335 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
    336 } while (/*CONSTCOND*/0)
    337 
    338 #define	WM_CDRXSYNC(sc, x, ops)						\
    339 do {									\
    340 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    341 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
    342 } while (/*CONSTCOND*/0)
    343 
    344 #define	WM_INIT_RXDESC(sc, x)						\
    345 do {									\
    346 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    347 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
    348 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    349 									\
    350 	/*								\
    351 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    352 	 * so that the payload after the Ethernet header is aligned	\
    353 	 * to a 4-byte boundary.					\
    354 	 *								\
    355 	 * XXX BRAINDAMAGE ALERT!					\
    356 	 * The stupid chip uses the same size for every buffer, which	\
    357 	 * is set in the Receive Control register.  We are using the 2K	\
    358 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    359 	 * reason, we can't accept packets longer than the standard	\
    360 	 * Ethernet MTU, without incurring a big penalty to copy every	\
    361 	 * incoming packet to a new, suitably aligned buffer.		\
    362 	 *								\
    363 	 * We'll need to make some changes to the layer 3/4 parts of	\
    364 	 * the stack (to copy the headers to a new buffer if not	\
    365 	 * aligned) in order to support large MTU on this chip.  Lame.	\
    366 	 */								\
    367 	__m->m_data = __m->m_ext.ext_buf + 2;				\
    368 									\
    369 	__rxd->wrx_addr.wa_low =					\
    370 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);		\
    371 	__rxd->wrx_addr.wa_high = 0;					\
    372 	__rxd->wrx_len = 0;						\
    373 	__rxd->wrx_cksum = 0;						\
    374 	__rxd->wrx_status = 0;						\
    375 	__rxd->wrx_errors = 0;						\
    376 	__rxd->wrx_special = 0;						\
    377 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    378 									\
    379 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
    380 } while (/*CONSTCOND*/0)
    381 
    382 void	wm_start(struct ifnet *);
    383 void	wm_watchdog(struct ifnet *);
    384 int	wm_ioctl(struct ifnet *, u_long, caddr_t);
    385 int	wm_init(struct ifnet *);
    386 void	wm_stop(struct ifnet *, int);
    387 
    388 void	wm_shutdown(void *);
    389 
    390 void	wm_reset(struct wm_softc *);
    391 void	wm_rxdrain(struct wm_softc *);
    392 int	wm_add_rxbuf(struct wm_softc *, int);
    393 void	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
    394 void	wm_tick(void *);
    395 
    396 void	wm_set_filter(struct wm_softc *);
    397 
    398 int	wm_intr(void *);
    399 void	wm_txintr(struct wm_softc *);
    400 void	wm_rxintr(struct wm_softc *);
    401 void	wm_linkintr(struct wm_softc *, uint32_t);
    402 
    403 void	wm_tbi_mediainit(struct wm_softc *);
    404 int	wm_tbi_mediachange(struct ifnet *);
    405 void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
    406 
    407 void	wm_tbi_set_linkled(struct wm_softc *);
    408 void	wm_tbi_check_link(struct wm_softc *);
    409 
    410 void	wm_gmii_reset(struct wm_softc *);
    411 
    412 int	wm_gmii_livengood_readreg(struct device *, int, int);
    413 void	wm_gmii_livengood_writereg(struct device *, int, int, int);
    414 
    415 int	wm_gmii_cordova_readreg(struct device *, int, int);
    416 void	wm_gmii_cordova_writereg(struct device *, int, int, int);
    417 
    418 void	wm_gmii_statchg(struct device *);
    419 
    420 void	wm_gmii_mediainit(struct wm_softc *);
    421 int	wm_gmii_mediachange(struct ifnet *);
    422 void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
    423 
    424 int	wm_match(struct device *, struct cfdata *, void *);
    425 void	wm_attach(struct device *, struct device *, void *);
    426 
    427 int	wm_copy_small = 0;
    428 
    429 struct cfattach wm_ca = {
    430 	sizeof(struct wm_softc), wm_match, wm_attach,
    431 };
    432 
    433 /*
    434  * Devices supported by this driver.
    435  */
    436 const struct wm_product {
    437 	pci_vendor_id_t		wmp_vendor;
    438 	pci_product_id_t	wmp_product;
    439 	const char		*wmp_name;
    440 	int			wmp_type;
    441 	int			wmp_flags;
    442 #define	WMP_F_1000X		0x01
    443 #define	WMP_F_1000T		0x02
    444 } wm_products[] = {
    445 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
    446 	  "Intel i82542 1000BASE-X Ethernet",
    447 	  WM_T_WISEMAN_2_1,	WMP_F_1000X },
    448 
    449 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543_FIBER,
    450 	  "Intel i82543 1000BASE-X Ethernet",
    451 	  WM_T_LIVENGOOD,	WMP_F_1000X },
    452 
    453 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543_SC,
    454 	  "Intel i82543-SC 1000BASE-X Ethernet",
    455 	  WM_T_LIVENGOOD,	WMP_F_1000X },
    456 
    457 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543_COPPER,
    458 	  "Intel i82543 1000BASE-T Ethernet",
    459 	  WM_T_LIVENGOOD,	WMP_F_1000T },
    460 
    461 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544_XT,
    462 	  "Intel i82544 1000BASE-T Ethernet",
    463 	  WM_T_CORDOVA,		WMP_F_1000T },
    464 
    465 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544_XF,
    466 	  "Intel i82544 1000BASE-X Ethernet",
    467 	  WM_T_CORDOVA,		WMP_F_1000X },
    468 
    469 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC,
    470 	  "Intel i82544GC 1000BASE-T Ethernet",
    471 	  WM_T_CORDOVA,		WMP_F_1000T },
    472 
    473 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_64,
    474 	  "Intel i82544GC 1000BASE-T Ethernet",
    475 	  WM_T_CORDOVA,		WMP_F_1000T },
    476 
    477 	{ 0,			0,
    478 	  NULL,
    479 	  0,			0 },
    480 };
    481 
    482 #ifdef WM_EVENT_COUNTERS
    483 #if WM_NTXSEGS != 16
    484 #error Update wm_txseg_evcnt_names
    485 #endif
    486 static const char *wm_txseg_evcnt_names[WM_NTXSEGS] = {
    487 	"txseg1",
    488 	"txseg2",
    489 	"txseg3",
    490 	"txseg4",
    491 	"txseg5",
    492 	"txseg6",
    493 	"txseg7",
    494 	"txseg8",
    495 	"txseg9",
    496 	"txseg10",
    497 	"txseg11",
    498 	"txseg12",
    499 	"txseg13",
    500 	"txseg14",
    501 	"txseg15",
    502 	"txseg16",
    503 };
    504 #endif /* WM_EVENT_COUNTERS */
    505 
    506 static const struct wm_product *
    507 wm_lookup(const struct pci_attach_args *pa)
    508 {
    509 	const struct wm_product *wmp;
    510 
    511 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
    512 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
    513 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
    514 			return (wmp);
    515 	}
    516 	return (NULL);
    517 }
    518 
    519 int
    520 wm_match(struct device *parent, struct cfdata *cf, void *aux)
    521 {
    522 	struct pci_attach_args *pa = aux;
    523 
    524 	if (wm_lookup(pa) != NULL)
    525 		return (1);
    526 
    527 	return (0);
    528 }
    529 
    530 void
    531 wm_attach(struct device *parent, struct device *self, void *aux)
    532 {
    533 	struct wm_softc *sc = (void *) self;
    534 	struct pci_attach_args *pa = aux;
    535 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    536 	pci_chipset_tag_t pc = pa->pa_pc;
    537 	pci_intr_handle_t ih;
    538 	const char *intrstr = NULL;
    539 	bus_space_tag_t memt;
    540 	bus_space_handle_t memh;
    541 	bus_dma_segment_t seg;
    542 	int memh_valid;
    543 	int i, rseg, error;
    544 	const struct wm_product *wmp;
    545 	uint8_t enaddr[ETHER_ADDR_LEN];
    546 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
    547 	pcireg_t preg, memtype;
    548 	int pmreg;
    549 
    550 	callout_init(&sc->sc_tick_ch);
    551 
    552 	wmp = wm_lookup(pa);
    553 	if (wmp == NULL) {
    554 		printf("\n");
    555 		panic("wm_attach: impossible");
    556 	}
    557 
    558 	sc->sc_dmat = pa->pa_dmat;
    559 
    560 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    561 	printf(": %s, rev. %d\n", wmp->wmp_name, preg);
    562 
    563 	sc->sc_type = wmp->wmp_type;
    564 	if (sc->sc_type < WM_T_LIVENGOOD) {
    565 		if (preg < 2) {
    566 			printf("%s: Wiseman must be at least rev. 2\n",
    567 			    sc->sc_dev.dv_xname);
    568 			return;
    569 		}
    570 		if (preg < 3)
    571 			sc->sc_type = WM_T_WISEMAN_2_0;
    572 	}
    573 
    574 	/*
    575 	 * Map the device.
    576 	 */
    577 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
    578 	switch (memtype) {
    579 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    580 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    581 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
    582 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    583 		break;
    584 	default:
    585 		memh_valid = 0;
    586 	}
    587 
    588 	if (memh_valid) {
    589 		sc->sc_st = memt;
    590 		sc->sc_sh = memh;
    591 	} else {
    592 		printf("%s: unable to map device registers\n",
    593 		    sc->sc_dev.dv_xname);
    594 		return;
    595 	}
    596 
    597 	/* Enable bus mastering.  Disable MWI on the Wiseman 2.0. */
    598 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    599 	preg |= PCI_COMMAND_MASTER_ENABLE;
    600 	if (sc->sc_type < WM_T_WISEMAN_2_1)
    601 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
    602 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    603 
    604 	/* Get it out of power save mode, if needed. */
    605 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    606 		preg = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
    607 		if (preg == 3) {
    608 			/*
    609 			 * The card has lost all configuration data in
    610 			 * this state, so punt.
    611 			 */
    612 			printf("%s: unable to wake from power state D3\n",
    613 			    sc->sc_dev.dv_xname);
    614 			return;
    615 		}
    616 		if (preg != 0) {
    617 			printf("%s: waking up from power state D%d\n",
    618 			    sc->sc_dev.dv_xname, preg);
    619 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
    620 		}
    621 	}
    622 
    623 	/*
    624 	 * Map and establish our interrupt.
    625 	 */
    626 	if (pci_intr_map(pa, &ih)) {
    627 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    628 		return;
    629 	}
    630 	intrstr = pci_intr_string(pc, ih);
    631 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
    632 	if (sc->sc_ih == NULL) {
    633 		printf("%s: unable to establish interrupt",
    634 		    sc->sc_dev.dv_xname);
    635 		if (intrstr != NULL)
    636 			printf(" at %s", intrstr);
    637 		printf("\n");
    638 		return;
    639 	}
    640 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    641 
    642 	/*
    643 	 * Allocate the control data structures, and create and load the
    644 	 * DMA map for it.
    645 	 */
    646 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    647 	    sizeof(struct wm_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    648 	    0)) != 0) {
    649 		printf("%s: unable to allocate control data, error = %d\n",
    650 		    sc->sc_dev.dv_xname, error);
    651 		goto fail_0;
    652 	}
    653 
    654 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    655 	    sizeof(struct wm_control_data), (caddr_t *)&sc->sc_control_data,
    656 	    BUS_DMA_COHERENT)) != 0) {
    657 		printf("%s: unable to map control data, error = %d\n",
    658 		    sc->sc_dev.dv_xname, error);
    659 		goto fail_1;
    660 	}
    661 
    662 	if ((error = bus_dmamap_create(sc->sc_dmat,
    663 	    sizeof(struct wm_control_data), 1,
    664 	    sizeof(struct wm_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    665 		printf("%s: unable to create control data DMA map, "
    666 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    667 		goto fail_2;
    668 	}
    669 
    670 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    671 	    sc->sc_control_data, sizeof(struct wm_control_data), NULL,
    672 	    0)) != 0) {
    673 		printf("%s: unable to load control data DMA map, error = %d\n",
    674 		    sc->sc_dev.dv_xname, error);
    675 		goto fail_3;
    676 	}
    677 
    678 	/*
    679 	 * Create the transmit buffer DMA maps.
    680 	 */
    681 	for (i = 0; i < WM_TXQUEUELEN; i++) {
    682 		if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
    683 		    WM_NTXSEGS, MCLBYTES, 0, 0,
    684 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    685 			printf("%s: unable to create Tx DMA map %d, "
    686 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    687 			goto fail_4;
    688 		}
    689 	}
    690 
    691 	/*
    692 	 * Create the receive buffer DMA maps.
    693 	 */
    694 	for (i = 0; i < WM_NRXDESC; i++) {
    695 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    696 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    697 			printf("%s: unable to create Rx DMA map %d, "
    698 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    699 			goto fail_5;
    700 		}
    701 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    702 	}
    703 
    704 	/*
    705 	 * Reset the chip to a known state.
    706 	 */
    707 	wm_reset(sc);
    708 
    709 	/*
    710 	 * Read the Ethernet address from the EEPROM.
    711 	 */
    712 	wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
    713 	    sizeof(myea) / sizeof(myea[0]), myea);
    714 	enaddr[0] = myea[0] & 0xff;
    715 	enaddr[1] = myea[0] >> 8;
    716 	enaddr[2] = myea[1] & 0xff;
    717 	enaddr[3] = myea[1] >> 8;
    718 	enaddr[4] = myea[2] & 0xff;
    719 	enaddr[5] = myea[2] >> 8;
    720 
    721 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    722 	    ether_sprintf(enaddr));
    723 
    724 	/*
    725 	 * Read the config info from the EEPROM, and set up various
    726 	 * bits in the control registers based on their contents.
    727 	 */
    728 	wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1);
    729 	wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2);
    730 	if (sc->sc_type >= WM_T_CORDOVA)
    731 		wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin);
    732 
    733 	if (cfg1 & EEPROM_CFG1_ILOS)
    734 		sc->sc_ctrl |= CTRL_ILOS;
    735 	if (sc->sc_type >= WM_T_CORDOVA) {
    736 		sc->sc_ctrl |=
    737 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
    738 		    CTRL_SWDPIO_SHIFT;
    739 		sc->sc_ctrl |=
    740 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
    741 		    CTRL_SWDPINS_SHIFT;
    742 	} else {
    743 		sc->sc_ctrl |=
    744 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
    745 		    CTRL_SWDPIO_SHIFT;
    746 	}
    747 
    748 #if 0
    749 	if (sc->sc_type >= WM_T_CORDOVA) {
    750 		if (cfg1 & EEPROM_CFG1_IPS0)
    751 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
    752 		if (cfg1 & EEPROM_CFG1_IPS1)
    753 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
    754 		sc->sc_ctrl_ext |=
    755 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
    756 		    CTRL_EXT_SWDPIO_SHIFT;
    757 		sc->sc_ctrl_ext |=
    758 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
    759 		    CTRL_EXT_SWDPINS_SHIFT;
    760 	} else {
    761 		sc->sc_ctrl_ext |=
    762 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
    763 		    CTRL_EXT_SWDPIO_SHIFT;
    764 	}
    765 #endif
    766 
    767 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
    768 #if 0
    769 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
    770 #endif
    771 
    772 	/*
    773 	 * Set up some register offsets that are different between
    774 	 * the Wiseman and the Livengood and later chips.
    775 	 */
    776 	if (sc->sc_type < WM_T_LIVENGOOD) {
    777 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
    778 		sc->sc_tdt_reg = WMREG_OLD_TDT;
    779 	} else {
    780 		sc->sc_rdt_reg = WMREG_RDT;
    781 		sc->sc_tdt_reg = WMREG_TDT;
    782 	}
    783 
    784 	/*
    785 	 * Determine if we should use flow control.  We should
    786 	 * always use it, unless we're on a Wiseman < 2.1.
    787 	 */
    788 	if (sc->sc_type >= WM_T_WISEMAN_2_1)
    789 		sc->sc_ctrl |= CTRL_TFCE | CTRL_RFCE;
    790 
    791 	/*
    792 	 * Determine if we're TBI or GMII mode, and initialize the
    793 	 * media structures accordingly.
    794 	 */
    795 	if (sc->sc_type < WM_T_LIVENGOOD ||
    796 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
    797 		if (wmp->wmp_flags & WMP_F_1000T)
    798 			printf("%s: WARNING: TBIMODE set on 1000BASE-T "
    799 			    "product!\n", sc->sc_dev.dv_xname);
    800 		wm_tbi_mediainit(sc);
    801 	} else {
    802 		if (wmp->wmp_flags & WMP_F_1000X)
    803 			printf("%s: WARNING: TBIMODE clear on 1000BASE-X "
    804 			    "product!\n", sc->sc_dev.dv_xname);
    805 		wm_gmii_mediainit(sc);
    806 	}
    807 
    808 	ifp = &sc->sc_ethercom.ec_if;
    809 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    810 	ifp->if_softc = sc;
    811 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    812 	ifp->if_ioctl = wm_ioctl;
    813 	ifp->if_start = wm_start;
    814 	ifp->if_watchdog = wm_watchdog;
    815 	ifp->if_init = wm_init;
    816 	ifp->if_stop = wm_stop;
    817 	IFQ_SET_MAXLEN(&ifp->if_snd, WM_IFQUEUELEN);
    818 	IFQ_SET_READY(&ifp->if_snd);
    819 
    820 	/*
    821 	 * If we're a Livengood or greater, we can support VLANs.
    822 	 */
    823 	if (sc->sc_type >= WM_T_LIVENGOOD)
    824 		sc->sc_ethercom.ec_capabilities |=
    825 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
    826 
    827 	/*
    828 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
    829 	 * on Livengood and later.
    830 	 */
    831 	if (sc->sc_type >= WM_T_LIVENGOOD)
    832 		ifp->if_capabilities |=
    833 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    834 
    835 	/*
    836 	 * Attach the interface.
    837 	 */
    838 	if_attach(ifp);
    839 	ether_ifattach(ifp, enaddr);
    840 
    841 #ifdef WM_EVENT_COUNTERS
    842 	/* Attach event counters. */
    843 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    844 	    NULL, sc->sc_dev.dv_xname, "txsstall");
    845 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    846 	    NULL, sc->sc_dev.dv_xname, "txdstall");
    847 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
    848 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
    849 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
    850 	    NULL, sc->sc_dev.dv_xname, "txdw");
    851 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
    852 	    NULL, sc->sc_dev.dv_xname, "txqe");
    853 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    854 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    855 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
    856 	    NULL, sc->sc_dev.dv_xname, "linkintr");
    857 
    858 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    859 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    860 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
    861 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
    862 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    863 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    864 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
    865 	    NULL, sc->sc_dev.dv_xname, "txtusum");
    866 
    867 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
    868 	    NULL, sc->sc_dev.dv_xname, "txctx init");
    869 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
    870 	    NULL, sc->sc_dev.dv_xname, "txctx hit");
    871 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
    872 	    NULL, sc->sc_dev.dv_xname, "txctx miss");
    873 
    874 	for (i = 0; i < WM_NTXSEGS; i++)
    875 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
    876 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
    877 
    878 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    879 	    NULL, sc->sc_dev.dv_xname, "txdrop");
    880 
    881 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
    882 	    NULL, sc->sc_dev.dv_xname, "tu");
    883 #endif /* WM_EVENT_COUNTERS */
    884 
    885 	/*
    886 	 * Make sure the interface is shutdown during reboot.
    887 	 */
    888 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
    889 	if (sc->sc_sdhook == NULL)
    890 		printf("%s: WARNING: unable to establish shutdown hook\n",
    891 		    sc->sc_dev.dv_xname);
    892 	return;
    893 
    894 	/*
    895 	 * Free any resources we've allocated during the failed attach
    896 	 * attempt.  Do this in reverse order and fall through.
    897 	 */
    898  fail_5:
    899 	for (i = 0; i < WM_NRXDESC; i++) {
    900 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    901 			bus_dmamap_destroy(sc->sc_dmat,
    902 			    sc->sc_rxsoft[i].rxs_dmamap);
    903 	}
    904  fail_4:
    905 	for (i = 0; i < WM_TXQUEUELEN; i++) {
    906 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    907 			bus_dmamap_destroy(sc->sc_dmat,
    908 			    sc->sc_txsoft[i].txs_dmamap);
    909 	}
    910 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    911  fail_3:
    912 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    913  fail_2:
    914 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    915 	    sizeof(struct wm_control_data));
    916  fail_1:
    917 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    918  fail_0:
    919 	return;
    920 }
    921 
    922 /*
    923  * wm_shutdown:
    924  *
    925  *	Make sure the interface is stopped at reboot time.
    926  */
    927 void
    928 wm_shutdown(void *arg)
    929 {
    930 	struct wm_softc *sc = arg;
    931 
    932 	wm_stop(&sc->sc_ethercom.ec_if, 1);
    933 }
    934 
    935 /*
    936  * wm_tx_cksum:
    937  *
    938  *	Set up TCP/IP checksumming parameters for the
    939  *	specified packet.
    940  */
    941 static int
    942 wm_tx_cksum(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
    943     uint32_t *fieldsp)
    944 {
    945 	struct mbuf *m0 = txs->txs_mbuf;
    946 	struct livengood_tcpip_ctxdesc *t;
    947 	uint32_t fields = 0, ipcs, tucs;
    948 	struct ip *ip;
    949 	int offset, iphl;
    950 
    951 	/*
    952 	 * XXX It would be nice if the mbuf pkthdr had offset
    953 	 * fields for the protocol headers.
    954 	 */
    955 
    956 	/* XXX Assumes normal Ethernet encap. */
    957 	offset = ETHER_HDR_LEN;
    958 
    959 	/* XXX */
    960 	if (m0->m_len < (offset + sizeof(struct ip))) {
    961 		printf("%s: wm_tx_cksum: need to m_pullup, "
    962 		    "packet dropped\n", sc->sc_dev.dv_xname);
    963 		return (EINVAL);
    964 	}
    965 
    966 	ip = (struct ip *) (mtod(m0, caddr_t) + offset);
    967 	iphl = ip->ip_hl << 2;
    968 
    969 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    970 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
    971 		fields |= htole32(WTX_IXSM);
    972 		ipcs = htole32(WTX_TCPIP_IPCSS(offset) |
    973 		    WTX_TCPIP_IPCSO(offsetof(struct ip, ip_sum)) |
    974 		    WTX_TCPIP_IPCSE(offset + iphl - 1));
    975 	} else
    976 		ipcs = 0;
    977 
    978 	offset += iphl;
    979 
    980 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    981 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
    982 		fields |= htole32(WTX_TXSM);
    983 		tucs = htole32(WTX_TCPIP_TUCSS(offset) |
    984 		    WTX_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
    985 		    WTX_TCPIP_TUCSE(0) /* rest of packet */);
    986 	} else
    987 		tucs = 0;
    988 
    989 	if (sc->sc_txctx_ipcs == ipcs &&
    990 	    sc->sc_txctx_tucs == tucs) {
    991 		/* Cached context is fine. */
    992 		WM_EVCNT_INCR(&sc->sc_ev_txctx_hit);
    993 	} else {
    994 		/* Fill in the context descriptor. */
    995 #ifdef WM_EVENT_COUNTERS
    996 		if (sc->sc_txctx_ipcs == 0xffffffff &&
    997 		    sc->sc_txctx_tucs == 0xffffffff)
    998 			WM_EVCNT_INCR(&sc->sc_ev_txctx_init);
    999 		else
   1000 			WM_EVCNT_INCR(&sc->sc_ev_txctx_miss);
   1001 #endif
   1002 		t = (struct livengood_tcpip_ctxdesc *)
   1003 		    &sc->sc_txdescs[sc->sc_txnext];
   1004 		t->tcpip_ipcs = ipcs;
   1005 		t->tcpip_tucs = tucs;
   1006 		t->tcpip_cmdlen =
   1007 		    htole32(WTX_CMD_DEXT | WTX_DTYP_C);
   1008 		t->tcpip_seg = 0;
   1009 		WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1010 
   1011 		sc->sc_txctx_ipcs = ipcs;
   1012 		sc->sc_txctx_tucs = tucs;
   1013 
   1014 		sc->sc_txnext = WM_NEXTTX(sc->sc_txnext);
   1015 		txs->txs_ndesc++;
   1016 	}
   1017 
   1018 	*cmdp = WTX_CMD_DEXT | WTC_DTYP_D;
   1019 	*fieldsp = fields;
   1020 
   1021 	return (0);
   1022 }
   1023 
   1024 /*
   1025  * wm_start:		[ifnet interface function]
   1026  *
   1027  *	Start packet transmission on the interface.
   1028  */
   1029 void
   1030 wm_start(struct ifnet *ifp)
   1031 {
   1032 	struct wm_softc *sc = ifp->if_softc;
   1033 	struct mbuf *m0/*, *m*/;
   1034 	struct wm_txsoft *txs;
   1035 	bus_dmamap_t dmamap;
   1036 	int error, nexttx, lasttx, ofree, seg;
   1037 	uint32_t cksumcmd, cksumfields;
   1038 
   1039 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1040 		return;
   1041 
   1042 	/*
   1043 	 * Remember the previous number of free descriptors.
   1044 	 */
   1045 	ofree = sc->sc_txfree;
   1046 
   1047 	/*
   1048 	 * Loop through the send queue, setting up transmit descriptors
   1049 	 * until we drain the queue, or use up all available transmit
   1050 	 * descriptors.
   1051 	 */
   1052 	for (;;) {
   1053 		/* Grab a packet off the queue. */
   1054 		IFQ_POLL(&ifp->if_snd, m0);
   1055 		if (m0 == NULL)
   1056 			break;
   1057 
   1058 		DPRINTF(WM_DEBUG_TX,
   1059 		    ("%s: TX: have packet to transmit: %p\n",
   1060 		    sc->sc_dev.dv_xname, m0));
   1061 
   1062 		/* Get a work queue entry. */
   1063 		if (sc->sc_txsfree < WM_TXQUEUE_GC) {
   1064 			wm_txintr(sc);
   1065 			if (sc->sc_txsfree == 0) {
   1066 				DPRINTF(WM_DEBUG_TX,
   1067 				    ("%s: TX: no free job descriptors\n",
   1068 					sc->sc_dev.dv_xname));
   1069 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   1070 				break;
   1071 			}
   1072 		}
   1073 
   1074 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1075 		dmamap = txs->txs_dmamap;
   1076 
   1077 		/*
   1078 		 * Load the DMA map.  If this fails, the packet either
   1079 		 * didn't fit in the allotted number of segments, or we
   1080 		 * were short on resources.  For the too-many-segments
   1081 		 * case, we simply report an error and drop the packet,
   1082 		 * since we can't sanely copy a jumbo packet to a single
   1083 		 * buffer.
   1084 		 */
   1085 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1086 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1087 		if (error) {
   1088 			if (error == EFBIG) {
   1089 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   1090 				printf("%s: Tx packet consumes too many "
   1091 				    "DMA segments, dropping...\n",
   1092 				    sc->sc_dev.dv_xname);
   1093 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1094 				m_freem(m0);
   1095 				continue;
   1096 			}
   1097 			/*
   1098 			 * Short on resources, just stop for now.
   1099 			 */
   1100 			DPRINTF(WM_DEBUG_TX,
   1101 			    ("%s: TX: dmamap load failed: %d\n",
   1102 			    sc->sc_dev.dv_xname, error));
   1103 			break;
   1104 		}
   1105 
   1106 		/*
   1107 		 * Ensure we have enough descriptors free to describe
   1108 		 * the packet.  Note, we always reserve one descriptor
   1109 		 * at the end of the ring due to the semantics of the
   1110 		 * TDT register, plus one more in the event we need
   1111 		 * to re-load checksum offload context.
   1112 		 */
   1113 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
   1114 			/*
   1115 			 * Not enough free descriptors to transmit this
   1116 			 * packet.  We haven't committed anything yet,
   1117 			 * so just unload the DMA map, put the packet
   1118 			 * pack on the queue, and punt.  Notify the upper
   1119 			 * layer that there are no more slots left.
   1120 			 */
   1121 			DPRINTF(WM_DEBUG_TX,
   1122 			    ("%s: TX: need %d descriptors, have %d\n",
   1123 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs,
   1124 			    sc->sc_txfree - 1));
   1125 			ifp->if_flags |= IFF_OACTIVE;
   1126 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1127 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   1128 			break;
   1129 		}
   1130 
   1131 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1132 
   1133 		/*
   1134 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1135 		 */
   1136 
   1137 		/* Sync the DMA map. */
   1138 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1139 		    BUS_DMASYNC_PREWRITE);
   1140 
   1141 		DPRINTF(WM_DEBUG_TX,
   1142 		    ("%s: TX: packet has %d DMA segments\n",
   1143 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs));
   1144 
   1145 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1146 
   1147 		/*
   1148 		 * Store a pointer to the packet so that we can free it
   1149 		 * later.
   1150 		 *
   1151 		 * Initially, we consider the number of descriptors the
   1152 		 * packet uses the number of DMA segments.  This may be
   1153 		 * incremented by 1 if we do checksum offload (a descriptor
   1154 		 * is used to set the checksum context).
   1155 		 */
   1156 		txs->txs_mbuf = m0;
   1157 		txs->txs_firstdesc = sc->sc_txnext;
   1158 		txs->txs_ndesc = dmamap->dm_nsegs;
   1159 
   1160 		/*
   1161 		 * Set up checksum offload parameters for
   1162 		 * this packet.
   1163 		 */
   1164 		if (m0->m_pkthdr.csum_flags &
   1165 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1166 			if (wm_tx_cksum(sc, txs, &cksumcmd,
   1167 					&cksumfields) != 0) {
   1168 				/* Error message already displayed. */
   1169 				m_freem(m0);
   1170 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1171 				txs->txs_mbuf = NULL;
   1172 				continue;
   1173 			}
   1174 		} else {
   1175 			cksumcmd = 0;
   1176 			cksumfields = 0;
   1177 		}
   1178 
   1179 		cksumcmd |= htole32(WTX_CMD_IDE);
   1180 
   1181 		/*
   1182 		 * Initialize the transmit descriptor.
   1183 		 */
   1184 		for (nexttx = sc->sc_txnext, seg = 0;
   1185 		     seg < dmamap->dm_nsegs;
   1186 		     seg++, nexttx = WM_NEXTTX(nexttx)) {
   1187 			/*
   1188 			 * Note: we currently only use 32-bit DMA
   1189 			 * addresses.
   1190 			 */
   1191 			sc->sc_txdescs[nexttx].wtx_addr.wa_low =
   1192 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1193 			sc->sc_txdescs[nexttx].wtx_cmdlen = cksumcmd |
   1194 			    htole32(dmamap->dm_segs[seg].ds_len);
   1195 			sc->sc_txdescs[nexttx].wtx_fields.wtxu_bits =
   1196 			    cksumfields;
   1197 			lasttx = nexttx;
   1198 
   1199 			DPRINTF(WM_DEBUG_TX,
   1200 			    ("%s: TX: desc %d: low 0x%08x, len 0x%04x\n",
   1201 			    sc->sc_dev.dv_xname, nexttx,
   1202 			    (uint32_t) dmamap->dm_segs[seg].ds_addr,
   1203 			    (uint32_t) dmamap->dm_segs[seg].ds_len));
   1204 		}
   1205 
   1206 		/*
   1207 		 * Set up the command byte on the last descriptor of
   1208 		 * the packet.  If we're in the interrupt delay window,
   1209 		 * delay the interrupt.
   1210 		 */
   1211 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1212 		    htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS);
   1213 
   1214 #if 0 /* XXXJRT */
   1215 		/*
   1216 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1217 		 * up the descriptor to encapsulate the packet for us.
   1218 		 *
   1219 		 * This is only valid on the last descriptor of the packet.
   1220 		 */
   1221 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1222 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
   1223 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1224 			    htole32(WTX_CMD_VLE);
   1225 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_fields.wtxu_vlan
   1226 			    = htole16(*mtod(m, int *) & 0xffff);
   1227 		}
   1228 #endif /* XXXJRT */
   1229 
   1230 		txs->txs_lastdesc = lasttx;
   1231 
   1232 		DPRINTF(WM_DEBUG_TX,
   1233 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   1234 		    lasttx, sc->sc_txdescs[lasttx].wtx_cmdlen));
   1235 
   1236 		/* Sync the descriptors we're using. */
   1237 		WM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1238 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1239 
   1240 		/* Give the packet to the chip. */
   1241 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   1242 
   1243 		DPRINTF(WM_DEBUG_TX,
   1244 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   1245 
   1246 		DPRINTF(WM_DEBUG_TX,
   1247 		    ("%s: TX: finished transmitting packet, job %d\n",
   1248 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   1249 
   1250 		/* Advance the tx pointer. */
   1251 		sc->sc_txfree -= txs->txs_ndesc;
   1252 		sc->sc_txnext = nexttx;
   1253 
   1254 		sc->sc_txsfree--;
   1255 		sc->sc_txsnext = WM_NEXTTXS(sc->sc_txsnext);
   1256 
   1257 #if NBPFILTER > 0
   1258 		/* Pass the packet to any BPF listeners. */
   1259 		if (ifp->if_bpf)
   1260 			bpf_mtap(ifp->if_bpf, m0);
   1261 #endif /* NBPFILTER > 0 */
   1262 	}
   1263 
   1264 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1265 		/* No more slots; notify upper layer. */
   1266 		ifp->if_flags |= IFF_OACTIVE;
   1267 	}
   1268 
   1269 	if (sc->sc_txfree != ofree) {
   1270 		/* Set a watchdog timer in case the chip flakes out. */
   1271 		ifp->if_timer = 5;
   1272 	}
   1273 }
   1274 
   1275 /*
   1276  * wm_watchdog:		[ifnet interface function]
   1277  *
   1278  *	Watchdog timer handler.
   1279  */
   1280 void
   1281 wm_watchdog(struct ifnet *ifp)
   1282 {
   1283 	struct wm_softc *sc = ifp->if_softc;
   1284 
   1285 	/*
   1286 	 * Since we're using delayed interrupts, sweep up
   1287 	 * before we report an error.
   1288 	 */
   1289 	wm_txintr(sc);
   1290 
   1291 	if (sc->sc_txfree != WM_NTXDESC) {
   1292 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1293 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   1294 		    sc->sc_txnext);
   1295 		ifp->if_oerrors++;
   1296 
   1297 		/* Reset the interface. */
   1298 		(void) wm_init(ifp);
   1299 	}
   1300 
   1301 	/* Try to get more packets going. */
   1302 	wm_start(ifp);
   1303 }
   1304 
   1305 /*
   1306  * wm_ioctl:		[ifnet interface function]
   1307  *
   1308  *	Handle control requests from the operator.
   1309  */
   1310 int
   1311 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1312 {
   1313 	struct wm_softc *sc = ifp->if_softc;
   1314 	struct ifreq *ifr = (struct ifreq *) data;
   1315 	int s, error;
   1316 
   1317 	s = splnet();
   1318 
   1319 	switch (cmd) {
   1320 	case SIOCSIFMEDIA:
   1321 	case SIOCGIFMEDIA:
   1322 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1323 		break;
   1324 
   1325 	default:
   1326 		error = ether_ioctl(ifp, cmd, data);
   1327 		if (error == ENETRESET) {
   1328 			/*
   1329 			 * Multicast list has changed; set the hardware filter
   1330 			 * accordingly.
   1331 			 */
   1332 			wm_set_filter(sc);
   1333 			error = 0;
   1334 		}
   1335 		break;
   1336 	}
   1337 
   1338 	/* Try to get more packets going. */
   1339 	wm_start(ifp);
   1340 
   1341 	splx(s);
   1342 	return (error);
   1343 }
   1344 
   1345 /*
   1346  * wm_intr:
   1347  *
   1348  *	Interrupt service routine.
   1349  */
   1350 int
   1351 wm_intr(void *arg)
   1352 {
   1353 	struct wm_softc *sc = arg;
   1354 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1355 	uint32_t icr;
   1356 	int wantinit, handled = 0;
   1357 
   1358 	for (wantinit = 0; wantinit == 0;) {
   1359 		icr = CSR_READ(sc, WMREG_ICR);
   1360 		if ((icr & sc->sc_icr) == 0)
   1361 			break;
   1362 
   1363 		handled = 1;
   1364 
   1365 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   1366 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1367 			DPRINTF(WM_DEBUG_RX,
   1368 			    ("%s: RX: got Rx intr 0x%08x\n",
   1369 			    sc->sc_dev.dv_xname,
   1370 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1371 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
   1372 		}
   1373 #endif
   1374 		wm_rxintr(sc);
   1375 
   1376 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   1377 		if (icr & ICR_TXDW) {
   1378 			DPRINTF(WM_DEBUG_TX,
   1379 			    ("%s: TX: got TDXW interrupt\n",
   1380 			    sc->sc_dev.dv_xname));
   1381 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
   1382 		}
   1383 #endif
   1384 		wm_txintr(sc);
   1385 
   1386 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
   1387 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
   1388 			wm_linkintr(sc, icr);
   1389 		}
   1390 
   1391 		if (icr & ICR_RXO) {
   1392 			printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
   1393 			wantinit = 1;
   1394 		}
   1395 	}
   1396 
   1397 	if (handled) {
   1398 		if (wantinit)
   1399 			wm_init(ifp);
   1400 
   1401 		/* Try to get more packets going. */
   1402 		wm_start(ifp);
   1403 	}
   1404 
   1405 	return (handled);
   1406 }
   1407 
   1408 /*
   1409  * wm_txintr:
   1410  *
   1411  *	Helper; handle transmit interrupts.
   1412  */
   1413 void
   1414 wm_txintr(struct wm_softc *sc)
   1415 {
   1416 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1417 	struct wm_txsoft *txs;
   1418 	uint8_t status;
   1419 	int i;
   1420 
   1421 	ifp->if_flags &= ~IFF_OACTIVE;
   1422 
   1423 	/*
   1424 	 * Go through the Tx list and free mbufs for those
   1425 	 * frams which have been transmitted.
   1426 	 */
   1427 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN;
   1428 	     i = WM_NEXTTXS(i), sc->sc_txsfree++) {
   1429 		txs = &sc->sc_txsoft[i];
   1430 
   1431 		DPRINTF(WM_DEBUG_TX,
   1432 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   1433 
   1434 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1435 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1436 
   1437 		status = le32toh(sc->sc_txdescs[
   1438 		    txs->txs_lastdesc].wtx_fields.wtxu_bits);
   1439 		if ((status & WTX_ST_DD) == 0)
   1440 			break;
   1441 
   1442 		DPRINTF(WM_DEBUG_TX,
   1443 		    ("%s: TX: job %d done: descs %d..%d\n",
   1444 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   1445 		    txs->txs_lastdesc));
   1446 
   1447 		/*
   1448 		 * XXX We should probably be using the statistics
   1449 		 * XXX registers, but I don't know if they exist
   1450 		 * XXX on chips before the Cordova.
   1451 		 */
   1452 
   1453 #ifdef WM_EVENT_COUNTERS
   1454 		if (status & WTX_ST_TU)
   1455 			WM_EVCNT_INCR(&sc->sc_ev_tu);
   1456 #endif /* WM_EVENT_COUNTERS */
   1457 
   1458 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
   1459 			ifp->if_oerrors++;
   1460 			if (status & WTX_ST_LC)
   1461 				printf("%s: late collision\n",
   1462 				    sc->sc_dev.dv_xname);
   1463 			else if (status & WTX_ST_EC) {
   1464 				ifp->if_collisions += 16;
   1465 				printf("%s: excessive collisions\n",
   1466 				    sc->sc_dev.dv_xname);
   1467 			}
   1468 		} else
   1469 			ifp->if_opackets++;
   1470 
   1471 		sc->sc_txfree += txs->txs_ndesc;
   1472 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1473 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1474 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1475 		m_freem(txs->txs_mbuf);
   1476 		txs->txs_mbuf = NULL;
   1477 	}
   1478 
   1479 	/* Update the dirty transmit buffer pointer. */
   1480 	sc->sc_txsdirty = i;
   1481 	DPRINTF(WM_DEBUG_TX,
   1482 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   1483 
   1484 	/*
   1485 	 * If there are no more pending transmissions, cancel the watchdog
   1486 	 * timer.
   1487 	 */
   1488 	if (sc->sc_txsfree == WM_TXQUEUELEN)
   1489 		ifp->if_timer = 0;
   1490 }
   1491 
   1492 /*
   1493  * wm_rxintr:
   1494  *
   1495  *	Helper; handle receive interrupts.
   1496  */
   1497 void
   1498 wm_rxintr(struct wm_softc *sc)
   1499 {
   1500 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1501 	struct wm_rxsoft *rxs;
   1502 	struct mbuf *m;
   1503 	int i, len;
   1504 	uint8_t status, errors;
   1505 
   1506 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
   1507 		rxs = &sc->sc_rxsoft[i];
   1508 
   1509 		DPRINTF(WM_DEBUG_RX,
   1510 		    ("%s: RX: checking descriptor %d\n",
   1511 		    sc->sc_dev.dv_xname, i));
   1512 
   1513 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1514 
   1515 		status = sc->sc_rxdescs[i].wrx_status;
   1516 		errors = sc->sc_rxdescs[i].wrx_errors;
   1517 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
   1518 
   1519 		if ((status & WRX_ST_DD) == 0) {
   1520 			/*
   1521 			 * We have processed all of the receive descriptors.
   1522 			 */
   1523 			break;
   1524 		}
   1525 
   1526 		if (__predict_false(sc->sc_rxdiscard)) {
   1527 			DPRINTF(WM_DEBUG_RX,
   1528 			    ("%s: RX: discarding contents of descriptor %d\n",
   1529 			    sc->sc_dev.dv_xname, i));
   1530 			WM_INIT_RXDESC(sc, i);
   1531 			if (status & WRX_ST_EOP) {
   1532 				/* Reset our state. */
   1533 				DPRINTF(WM_DEBUG_RX,
   1534 				    ("%s: RX: resetting rxdiscard -> 0\n",
   1535 				    sc->sc_dev.dv_xname));
   1536 				sc->sc_rxdiscard = 0;
   1537 			}
   1538 			continue;
   1539 		}
   1540 
   1541 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1542 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1543 
   1544 		m = rxs->rxs_mbuf;
   1545 
   1546 		/*
   1547 		 * Add a new receive buffer to the ring.
   1548 		 */
   1549 		if (wm_add_rxbuf(sc, i) != 0) {
   1550 			/*
   1551 			 * Failed, throw away what we've done so
   1552 			 * far, and discard the rest of the packet.
   1553 			 */
   1554 			ifp->if_ierrors++;
   1555 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1556 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1557 			WM_INIT_RXDESC(sc, i);
   1558 			if ((status & WRX_ST_EOP) == 0)
   1559 				sc->sc_rxdiscard = 1;
   1560 			if (sc->sc_rxhead != NULL)
   1561 				m_freem(sc->sc_rxhead);
   1562 			WM_RXCHAIN_RESET(sc);
   1563 			DPRINTF(WM_DEBUG_RX,
   1564 			    ("%s: RX: Rx buffer allocation failed, "
   1565 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   1566 			    sc->sc_rxdiscard ? " (discard)" : ""));
   1567 			continue;
   1568 		}
   1569 
   1570 		WM_RXCHAIN_LINK(sc, m);
   1571 
   1572 		m->m_len = len;
   1573 
   1574 		DPRINTF(WM_DEBUG_RX,
   1575 		    ("%s: RX: buffer at %p len %d\n",
   1576 		    sc->sc_dev.dv_xname, m->m_data, len));
   1577 
   1578 		/*
   1579 		 * If this is not the end of the packet, keep
   1580 		 * looking.
   1581 		 */
   1582 		if ((status & WRX_ST_EOP) == 0) {
   1583 			sc->sc_rxlen += len;
   1584 			DPRINTF(WM_DEBUG_RX,
   1585 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   1586 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   1587 			continue;
   1588 		}
   1589 
   1590 		/*
   1591 		 * Okay, we have the entire packet now...
   1592 		 */
   1593 		*sc->sc_rxtailp = NULL;
   1594 		m = sc->sc_rxhead;
   1595 		len += sc->sc_rxlen;
   1596 
   1597 		WM_RXCHAIN_RESET(sc);
   1598 
   1599 		DPRINTF(WM_DEBUG_RX,
   1600 		    ("%s: RX: have entire packet, len -> %d\n",
   1601 		    sc->sc_dev.dv_xname, len));
   1602 
   1603 		/*
   1604 		 * If an error occurred, update stats and drop the packet.
   1605 		 */
   1606 		if (errors &
   1607 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
   1608 			ifp->if_ierrors++;
   1609 			if (errors & WRX_ER_SE)
   1610 				printf("%s: symbol error\n",
   1611 				    sc->sc_dev.dv_xname);
   1612 			else if (errors & WRX_ER_SEQ)
   1613 				printf("%s: receive sequence error\n",
   1614 				    sc->sc_dev.dv_xname);
   1615 			else if (errors & WRX_ER_CE)
   1616 				printf("%s: CRC error\n",
   1617 				    sc->sc_dev.dv_xname);
   1618 			m_freem(m);
   1619 			continue;
   1620 		}
   1621 
   1622 		/*
   1623 		 * No errors.  Receive the packet.
   1624 		 *
   1625 		 * Note, we have configured the chip to include the
   1626 		 * CRC with every packet.
   1627 		 */
   1628 		m->m_flags |= M_HASFCS;
   1629 		m->m_pkthdr.rcvif = ifp;
   1630 		m->m_pkthdr.len = len;
   1631 
   1632 #if 0 /* XXXJRT */
   1633 		/*
   1634 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1635 		 * for us.  Associate the tag with the packet.
   1636 		 */
   1637 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1638 		    (status & WRX_ST_VP) != 0) {
   1639 			struct mbuf *vtag;
   1640 
   1641 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
   1642 			if (vtag == NULL) {
   1643 				ifp->if_ierrors++;
   1644 				printf("%s: unable to allocate VLAN tag\n",
   1645 				    sc->sc_dev.dv_xname);
   1646 				m_freem(m);
   1647 				continue;
   1648 			}
   1649 
   1650 			*mtod(m, int *) =
   1651 			    le16toh(sc->sc_rxdescs[i].wrx_special);
   1652 			vtag->m_len = sizeof(int);
   1653 		}
   1654 #endif /* XXXJRT */
   1655 
   1656 		/*
   1657 		 * Set up checksum info for this packet.
   1658 		 */
   1659 		if (status & WRX_ST_IPCS) {
   1660 			WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1661 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1662 			if (errors & WRX_ER_IPE)
   1663 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1664 		}
   1665 		if (status & WRX_ST_TCPCS) {
   1666 			/*
   1667 			 * Note: we don't know if this was TCP or UDP,
   1668 			 * so we just set both bits, and expect the
   1669 			 * upper layers to deal.
   1670 			 */
   1671 			WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
   1672 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   1673 			if (errors & WRX_ER_TCPE)
   1674 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1675 		}
   1676 
   1677 		ifp->if_ipackets++;
   1678 
   1679 #if NBPFILTER > 0
   1680 		/* Pass this up to any BPF listeners. */
   1681 		if (ifp->if_bpf)
   1682 			bpf_mtap(ifp->if_bpf, m);
   1683 #endif /* NBPFILTER > 0 */
   1684 
   1685 		/* Pass it on. */
   1686 		(*ifp->if_input)(ifp, m);
   1687 	}
   1688 
   1689 	/* Update the receive pointer. */
   1690 	sc->sc_rxptr = i;
   1691 
   1692 	DPRINTF(WM_DEBUG_RX,
   1693 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   1694 }
   1695 
   1696 /*
   1697  * wm_linkintr:
   1698  *
   1699  *	Helper; handle link interrupts.
   1700  */
   1701 void
   1702 wm_linkintr(struct wm_softc *sc, uint32_t icr)
   1703 {
   1704 	uint32_t status;
   1705 
   1706 	/*
   1707 	 * If we get a link status interrupt on a 1000BASE-T
   1708 	 * device, just fall into the normal MII tick path.
   1709 	 */
   1710 	if (sc->sc_flags & WM_F_HAS_MII) {
   1711 		if (icr & ICR_LSC) {
   1712 			DPRINTF(WM_DEBUG_LINK,
   1713 			    ("%s: LINK: LSC -> mii_tick\n",
   1714 			    sc->sc_dev.dv_xname));
   1715 			mii_tick(&sc->sc_mii);
   1716 		} else if (icr & ICR_RXSEQ) {
   1717 			DPRINTF(WM_DEBUG_LINK,
   1718 			    ("%s: LINK Receive sequence error\n",
   1719 			    sc->sc_dev.dv_xname));
   1720 		}
   1721 		return;
   1722 	}
   1723 
   1724 	/*
   1725 	 * If we are now receiving /C/, check for link again in
   1726 	 * a couple of link clock ticks.
   1727 	 */
   1728 	if (icr & ICR_RXCFG) {
   1729 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
   1730 		    sc->sc_dev.dv_xname));
   1731 		sc->sc_tbi_anstate = 2;
   1732 	}
   1733 
   1734 	if (icr & ICR_LSC) {
   1735 		status = CSR_READ(sc, WMREG_STATUS);
   1736 		if (status & STATUS_LU) {
   1737 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
   1738 			    sc->sc_dev.dv_xname,
   1739 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   1740 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   1741 			if (status & STATUS_FD)
   1742 				sc->sc_tctl |=
   1743 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   1744 			else
   1745 				sc->sc_tctl |=
   1746 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   1747 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   1748 			sc->sc_tbi_linkup = 1;
   1749 		} else {
   1750 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   1751 			    sc->sc_dev.dv_xname));
   1752 			sc->sc_tbi_linkup = 0;
   1753 		}
   1754 		sc->sc_tbi_anstate = 2;
   1755 		wm_tbi_set_linkled(sc);
   1756 	} else if (icr & ICR_RXSEQ) {
   1757 		DPRINTF(WM_DEBUG_LINK,
   1758 		    ("%s: LINK: Receive sequence error\n",
   1759 		    sc->sc_dev.dv_xname));
   1760 	}
   1761 }
   1762 
   1763 /*
   1764  * wm_tick:
   1765  *
   1766  *	One second timer, used to check link status, sweep up
   1767  *	completed transmit jobs, etc.
   1768  */
   1769 void
   1770 wm_tick(void *arg)
   1771 {
   1772 	struct wm_softc *sc = arg;
   1773 	int s;
   1774 
   1775 	s = splnet();
   1776 
   1777 	if (sc->sc_flags & WM_F_HAS_MII)
   1778 		mii_tick(&sc->sc_mii);
   1779 	else
   1780 		wm_tbi_check_link(sc);
   1781 
   1782 	splx(s);
   1783 
   1784 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   1785 }
   1786 
   1787 /*
   1788  * wm_reset:
   1789  *
   1790  *	Reset the i82542 chip.
   1791  */
   1792 void
   1793 wm_reset(struct wm_softc *sc)
   1794 {
   1795 	int i;
   1796 
   1797 	CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   1798 	delay(10000);
   1799 
   1800 	for (i = 0; i < 1000; i++) {
   1801 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
   1802 			return;
   1803 		delay(20);
   1804 	}
   1805 
   1806 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
   1807 		printf("%s: WARNING: reset failed to complete\n",
   1808 		    sc->sc_dev.dv_xname);
   1809 }
   1810 
   1811 /*
   1812  * wm_init:		[ifnet interface function]
   1813  *
   1814  *	Initialize the interface.  Must be called at splnet().
   1815  */
   1816 int
   1817 wm_init(struct ifnet *ifp)
   1818 {
   1819 	struct wm_softc *sc = ifp->if_softc;
   1820 	struct wm_rxsoft *rxs;
   1821 	int i, error = 0;
   1822 	uint32_t reg;
   1823 
   1824 	/* Cancel any pending I/O. */
   1825 	wm_stop(ifp, 0);
   1826 
   1827 	/* Reset the chip to a known state. */
   1828 	wm_reset(sc);
   1829 
   1830 	/* Initialize the transmit descriptor ring. */
   1831 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1832 	WM_CDTXSYNC(sc, 0, WM_NTXDESC,
   1833 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1834 	sc->sc_txfree = WM_NTXDESC;
   1835 	sc->sc_txnext = 0;
   1836 
   1837 	sc->sc_txctx_ipcs = 0xffffffff;
   1838 	sc->sc_txctx_tucs = 0xffffffff;
   1839 
   1840 	if (sc->sc_type < WM_T_LIVENGOOD) {
   1841 		CSR_WRITE(sc, WMREG_OLD_TBDAH, 0);
   1842 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR(sc, 0));
   1843 		CSR_WRITE(sc, WMREG_OLD_TDLEN, sizeof(sc->sc_txdescs));
   1844 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
   1845 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
   1846 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
   1847 	} else {
   1848 		CSR_WRITE(sc, WMREG_TBDAH, 0);
   1849 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR(sc, 0));
   1850 		CSR_WRITE(sc, WMREG_TDLEN, sizeof(sc->sc_txdescs));
   1851 		CSR_WRITE(sc, WMREG_TDH, 0);
   1852 		CSR_WRITE(sc, WMREG_TDT, 0);
   1853 		CSR_WRITE(sc, WMREG_TIDV, 128);
   1854 
   1855 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
   1856 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   1857 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
   1858 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
   1859 	}
   1860 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
   1861 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
   1862 
   1863 	/* Initialize the transmit job descriptors. */
   1864 	for (i = 0; i < WM_TXQUEUELEN; i++)
   1865 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1866 	sc->sc_txsfree = WM_TXQUEUELEN;
   1867 	sc->sc_txsnext = 0;
   1868 	sc->sc_txsdirty = 0;
   1869 
   1870 	/*
   1871 	 * Initialize the receive descriptor and receive job
   1872 	 * descriptor rings.
   1873 	 */
   1874 	if (sc->sc_type < WM_T_LIVENGOOD) {
   1875 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, 0);
   1876 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR(sc, 0));
   1877 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
   1878 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
   1879 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
   1880 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
   1881 
   1882 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
   1883 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
   1884 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
   1885 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
   1886 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
   1887 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
   1888 	} else {
   1889 		CSR_WRITE(sc, WMREG_RDBAH, 0);
   1890 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR(sc, 0));
   1891 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
   1892 		CSR_WRITE(sc, WMREG_RDH, 0);
   1893 		CSR_WRITE(sc, WMREG_RDT, 0);
   1894 		CSR_WRITE(sc, WMREG_RDTR, 28 | RDTR_FPD);
   1895 	}
   1896 	for (i = 0; i < WM_NRXDESC; i++) {
   1897 		rxs = &sc->sc_rxsoft[i];
   1898 		if (rxs->rxs_mbuf == NULL) {
   1899 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
   1900 				printf("%s: unable to allocate or map rx "
   1901 				    "buffer %d, error = %d\n",
   1902 				    sc->sc_dev.dv_xname, i, error);
   1903 				/*
   1904 				 * XXX Should attempt to run with fewer receive
   1905 				 * XXX buffers instead of just failing.
   1906 				 */
   1907 				wm_rxdrain(sc);
   1908 				goto out;
   1909 			}
   1910 		} else
   1911 			WM_INIT_RXDESC(sc, i);
   1912 	}
   1913 	sc->sc_rxptr = 0;
   1914 	sc->sc_rxdiscard = 0;
   1915 	WM_RXCHAIN_RESET(sc);
   1916 
   1917 	/*
   1918 	 * Clear out the VLAN table -- we don't use it (yet).
   1919 	 */
   1920 	CSR_WRITE(sc, WMREG_VET, 0);
   1921 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
   1922 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
   1923 
   1924 	/*
   1925 	 * Set up flow-control parameters.
   1926 	 *
   1927 	 * XXX Values could probably stand some tuning.
   1928 	 */
   1929 	if (sc->sc_ctrl & (CTRL_RFCE|CTRL_TFCE)) {
   1930 		CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
   1931 		CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
   1932 		CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
   1933 
   1934 		if (sc->sc_type < WM_T_LIVENGOOD) {
   1935 			CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
   1936 			CSR_WRITE(sc, WMREG_OLD_FCRTL, FCRTL_DFLT);
   1937 		} else {
   1938 			CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
   1939 			CSR_WRITE(sc, WMREG_FCRTL, FCRTL_DFLT);
   1940 		}
   1941 		CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
   1942 	}
   1943 
   1944 #if 0 /* XXXJRT */
   1945 	/* Deal with VLAN enables. */
   1946 	if (sc->sc_ethercom.ec_nvlans != 0)
   1947 		sc->sc_ctrl |= CTRL_VME;
   1948 	else
   1949 #endif /* XXXJRT */
   1950 		sc->sc_ctrl &= ~CTRL_VME;
   1951 
   1952 	/* Write the control registers. */
   1953 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   1954 #if 0
   1955 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   1956 #endif
   1957 
   1958 	/*
   1959 	 * Set up checksum offload parameters.
   1960 	 */
   1961 	reg = CSR_READ(sc, WMREG_RXCSUM);
   1962 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
   1963 		reg |= RXCSUM_IPOFL;
   1964 	else
   1965 		reg &= ~RXCSUM_IPOFL;
   1966 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
   1967 		reg |= RXCSUM_TUOFL;
   1968 	else
   1969 		reg &= ~RXCSUM_TUOFL;
   1970 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
   1971 
   1972 	/*
   1973 	 * Set up the interrupt registers.
   1974 	 */
   1975 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   1976 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   1977 	    ICR_RXO | ICR_RXT0;
   1978 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
   1979 		sc->sc_icr |= ICR_RXCFG;
   1980 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
   1981 
   1982 	/* Set up the inter-packet gap. */
   1983 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   1984 
   1985 #if 0 /* XXXJRT */
   1986 	/* Set the VLAN ethernetype. */
   1987 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
   1988 #endif
   1989 
   1990 	/*
   1991 	 * Set up the transmit control register; we start out with
   1992 	 * a collision distance suitable for FDX, but update it whe
   1993 	 * we resolve the media type.
   1994 	 */
   1995 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
   1996 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   1997 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   1998 
   1999 	/* Set the media. */
   2000 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
   2001 
   2002 	/*
   2003 	 * Set up the receive control register; we actually program
   2004 	 * the register when we set the receive filter.  Use multicast
   2005 	 * address offset type 0.
   2006 	 *
   2007 	 * Only the Cordova has the ability to strip the incoming
   2008 	 * CRC, so we don't enable that feature.
   2009 	 */
   2010 	sc->sc_mchash_type = 0;
   2011 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_2k |
   2012 	    RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
   2013 
   2014 	/* Set the receive filter. */
   2015 	wm_set_filter(sc);
   2016 
   2017 	/* Start the one second link check clock. */
   2018 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2019 
   2020 	/* ...all done! */
   2021 	ifp->if_flags |= IFF_RUNNING;
   2022 	ifp->if_flags &= ~IFF_OACTIVE;
   2023 
   2024  out:
   2025 	if (error)
   2026 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2027 	return (error);
   2028 }
   2029 
   2030 /*
   2031  * wm_rxdrain:
   2032  *
   2033  *	Drain the receive queue.
   2034  */
   2035 void
   2036 wm_rxdrain(struct wm_softc *sc)
   2037 {
   2038 	struct wm_rxsoft *rxs;
   2039 	int i;
   2040 
   2041 	for (i = 0; i < WM_NRXDESC; i++) {
   2042 		rxs = &sc->sc_rxsoft[i];
   2043 		if (rxs->rxs_mbuf != NULL) {
   2044 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2045 			m_freem(rxs->rxs_mbuf);
   2046 			rxs->rxs_mbuf = NULL;
   2047 		}
   2048 	}
   2049 }
   2050 
   2051 /*
   2052  * wm_stop:		[ifnet interface function]
   2053  *
   2054  *	Stop transmission on the interface.
   2055  */
   2056 void
   2057 wm_stop(struct ifnet *ifp, int disable)
   2058 {
   2059 	struct wm_softc *sc = ifp->if_softc;
   2060 	struct wm_txsoft *txs;
   2061 	int i;
   2062 
   2063 	/* Stop the one second clock. */
   2064 	callout_stop(&sc->sc_tick_ch);
   2065 
   2066 	if (sc->sc_flags & WM_F_HAS_MII) {
   2067 		/* Down the MII. */
   2068 		mii_down(&sc->sc_mii);
   2069 	}
   2070 
   2071 	/* Stop the transmit and receive processes. */
   2072 	CSR_WRITE(sc, WMREG_TCTL, 0);
   2073 	CSR_WRITE(sc, WMREG_RCTL, 0);
   2074 
   2075 	/* Release any queued transmit buffers. */
   2076 	for (i = 0; i < WM_TXQUEUELEN; i++) {
   2077 		txs = &sc->sc_txsoft[i];
   2078 		if (txs->txs_mbuf != NULL) {
   2079 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2080 			m_freem(txs->txs_mbuf);
   2081 			txs->txs_mbuf = NULL;
   2082 		}
   2083 	}
   2084 
   2085 	if (disable)
   2086 		wm_rxdrain(sc);
   2087 
   2088 	/* Mark the interface as down and cancel the watchdog timer. */
   2089 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2090 	ifp->if_timer = 0;
   2091 }
   2092 
   2093 /*
   2094  * wm_read_eeprom:
   2095  *
   2096  *	Read data from the serial EEPROM.
   2097  */
   2098 void
   2099 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   2100 {
   2101 	uint32_t reg;
   2102 	int i, x;
   2103 
   2104 	for (i = 0; i < wordcnt; i++) {
   2105 		/* Send CHIP SELECT for one clock tick. */
   2106 		CSR_WRITE(sc, WMREG_EECD, EECD_CS);
   2107 		delay(2);
   2108 
   2109 		/* Shift in the READ command. */
   2110 		for (x = 3; x > 0; x--) {
   2111 			reg = EECD_CS;
   2112 			if (UWIRE_OPC_READ & (1 << (x - 1)))
   2113 				reg |= EECD_DI;
   2114 			CSR_WRITE(sc, WMREG_EECD, reg);
   2115 			delay(2);
   2116 			CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2117 			delay(2);
   2118 			CSR_WRITE(sc, WMREG_EECD, reg);
   2119 			delay(2);
   2120 		}
   2121 
   2122 		/* Shift in address. */
   2123 		for (x = 6; x > 0; x--) {
   2124 			reg = EECD_CS;
   2125 			if ((word + i) & (1 << (x - 1)))
   2126 				reg |= EECD_DI;
   2127 			CSR_WRITE(sc, WMREG_EECD, reg);
   2128 			delay(2);
   2129 			CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2130 			delay(2);
   2131 			CSR_WRITE(sc, WMREG_EECD, reg);
   2132 			delay(2);
   2133 		}
   2134 
   2135 		/* Shift out the data. */
   2136 		reg = EECD_CS;
   2137 		data[i] = 0;
   2138 		for (x = 16; x > 0; x--) {
   2139 			CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2140 			delay(2);
   2141 			if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
   2142 				data[i] |= (1 << (x - 1));
   2143 			CSR_WRITE(sc, WMREG_EECD, reg);
   2144 			delay(2);
   2145 		}
   2146 
   2147 		/* Clear CHIP SELECT. */
   2148 		CSR_WRITE(sc, WMREG_EECD, 0);
   2149 	}
   2150 }
   2151 
   2152 /*
   2153  * wm_add_rxbuf:
   2154  *
   2155  *	Add a receive buffer to the indiciated descriptor.
   2156  */
   2157 int
   2158 wm_add_rxbuf(struct wm_softc *sc, int idx)
   2159 {
   2160 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2161 	struct mbuf *m;
   2162 	int error;
   2163 
   2164 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2165 	if (m == NULL)
   2166 		return (ENOBUFS);
   2167 
   2168 	MCLGET(m, M_DONTWAIT);
   2169 	if ((m->m_flags & M_EXT) == 0) {
   2170 		m_freem(m);
   2171 		return (ENOBUFS);
   2172 	}
   2173 
   2174 	if (rxs->rxs_mbuf != NULL)
   2175 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2176 
   2177 	rxs->rxs_mbuf = m;
   2178 
   2179 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2180 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2181 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2182 	if (error) {
   2183 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   2184 		    sc->sc_dev.dv_xname, idx, error);
   2185 		panic("wm_add_rxbuf");	/* XXX XXX XXX */
   2186 	}
   2187 
   2188 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2189 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2190 
   2191 	WM_INIT_RXDESC(sc, idx);
   2192 
   2193 	return (0);
   2194 }
   2195 
   2196 /*
   2197  * wm_set_ral:
   2198  *
   2199  *	Set an entery in the receive address list.
   2200  */
   2201 static void
   2202 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
   2203 {
   2204 	uint32_t ral_lo, ral_hi;
   2205 
   2206 	if (enaddr != NULL) {
   2207 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   2208 		    (enaddr[3] << 24);
   2209 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   2210 		ral_hi |= RAL_AV;
   2211 	} else {
   2212 		ral_lo = 0;
   2213 		ral_hi = 0;
   2214 	}
   2215 
   2216 	if (sc->sc_type >= WM_T_CORDOVA) {
   2217 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
   2218 		    ral_lo);
   2219 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
   2220 		    ral_hi);
   2221 	} else {
   2222 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
   2223 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
   2224 	}
   2225 }
   2226 
   2227 /*
   2228  * wm_mchash:
   2229  *
   2230  *	Compute the hash of the multicast address for the 4096-bit
   2231  *	multicast filter.
   2232  */
   2233 static uint32_t
   2234 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
   2235 {
   2236 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   2237 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   2238 	uint32_t hash;
   2239 
   2240 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   2241 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   2242 
   2243 	return (hash & 0xfff);
   2244 }
   2245 
   2246 /*
   2247  * wm_set_filter:
   2248  *
   2249  *	Set up the receive filter.
   2250  */
   2251 void
   2252 wm_set_filter(struct wm_softc *sc)
   2253 {
   2254 	struct ethercom *ec = &sc->sc_ethercom;
   2255 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2256 	struct ether_multi *enm;
   2257 	struct ether_multistep step;
   2258 	bus_addr_t mta_reg;
   2259 	uint32_t hash, reg, bit;
   2260 	int i;
   2261 
   2262 	if (sc->sc_type >= WM_T_CORDOVA)
   2263 		mta_reg = WMREG_CORDOVA_MTA;
   2264 	else
   2265 		mta_reg = WMREG_MTA;
   2266 
   2267 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   2268 
   2269 	if (ifp->if_flags & IFF_BROADCAST)
   2270 		sc->sc_rctl |= RCTL_BAM;
   2271 	if (ifp->if_flags & IFF_PROMISC) {
   2272 		sc->sc_rctl |= RCTL_UPE;
   2273 		goto allmulti;
   2274 	}
   2275 
   2276 	/*
   2277 	 * Set the station address in the first RAL slot, and
   2278 	 * clear the remaining slots.
   2279 	 */
   2280 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
   2281 	for (i = 1; i < WM_RAL_TABSIZE; i++)
   2282 		wm_set_ral(sc, NULL, i);
   2283 
   2284 	/* Clear out the multicast table. */
   2285 	for (i = 0; i < WM_MC_TABSIZE; i++)
   2286 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
   2287 
   2288 	ETHER_FIRST_MULTI(step, ec, enm);
   2289 	while (enm != NULL) {
   2290 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2291 			/*
   2292 			 * We must listen to a range of multicast addresses.
   2293 			 * For now, just accept all multicasts, rather than
   2294 			 * trying to set only those filter bits needed to match
   2295 			 * the range.  (At this time, the only use of address
   2296 			 * ranges is for IP multicast routing, for which the
   2297 			 * range is big enough to require all bits set.)
   2298 			 */
   2299 			goto allmulti;
   2300 		}
   2301 
   2302 		hash = wm_mchash(sc, enm->enm_addrlo);
   2303 
   2304 		reg = (hash >> 5) & 0x7f;
   2305 		bit = hash & 0x1f;
   2306 
   2307 		hash = CSR_READ(sc, mta_reg + (reg << 2));
   2308 		hash |= 1U << bit;
   2309 
   2310 		/* XXX Hardware bug?? */
   2311 		if (sc->sc_type == WM_T_CORDOVA && (reg & 0xe) == 1) {
   2312 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
   2313 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   2314 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
   2315 		} else
   2316 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   2317 
   2318 		ETHER_NEXT_MULTI(step, enm);
   2319 	}
   2320 
   2321 	ifp->if_flags &= ~IFF_ALLMULTI;
   2322 	goto setit;
   2323 
   2324  allmulti:
   2325 	ifp->if_flags |= IFF_ALLMULTI;
   2326 	sc->sc_rctl |= RCTL_MPE;
   2327 
   2328  setit:
   2329 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
   2330 }
   2331 
   2332 /*
   2333  * wm_tbi_mediainit:
   2334  *
   2335  *	Initialize media for use on 1000BASE-X devices.
   2336  */
   2337 void
   2338 wm_tbi_mediainit(struct wm_softc *sc)
   2339 {
   2340 	const char *sep = "";
   2341 
   2342 	if (sc->sc_type < WM_T_LIVENGOOD)
   2343 		sc->sc_tipg = TIPG_WM_DFLT;
   2344 	else
   2345 		sc->sc_tipg = TIPG_LG_DFLT;
   2346 
   2347 	ifmedia_init(&sc->sc_mii.mii_media, 0, wm_tbi_mediachange,
   2348 	    wm_tbi_mediastatus);
   2349 
   2350 	/*
   2351 	 * SWD Pins:
   2352 	 *
   2353 	 *	0 = Link LED (output)
   2354 	 *	1 = Loss Of Signal (input)
   2355 	 */
   2356 	sc->sc_ctrl |= CTRL_SWDPIO(0);
   2357 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
   2358 
   2359 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2360 
   2361 #define	ADD(s, m, d)							\
   2362 do {									\
   2363 	printf("%s%s", sep, s);						\
   2364 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL);	\
   2365 	sep = ", ";							\
   2366 } while (/*CONSTCOND*/0)
   2367 
   2368 	printf("%s: ", sc->sc_dev.dv_xname);
   2369 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
   2370 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
   2371 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
   2372 	printf("\n");
   2373 
   2374 #undef ADD
   2375 
   2376 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   2377 }
   2378 
   2379 /*
   2380  * wm_tbi_mediastatus:	[ifmedia interface function]
   2381  *
   2382  *	Get the current interface media status on a 1000BASE-X device.
   2383  */
   2384 void
   2385 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2386 {
   2387 	struct wm_softc *sc = ifp->if_softc;
   2388 
   2389 	ifmr->ifm_status = IFM_AVALID;
   2390 	ifmr->ifm_active = IFM_ETHER;
   2391 
   2392 	if (sc->sc_tbi_linkup == 0) {
   2393 		ifmr->ifm_active |= IFM_NONE;
   2394 		return;
   2395 	}
   2396 
   2397 	ifmr->ifm_status |= IFM_ACTIVE;
   2398 	ifmr->ifm_active |= IFM_1000_SX;
   2399 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
   2400 		ifmr->ifm_active |= IFM_FDX;
   2401 }
   2402 
   2403 /*
   2404  * wm_tbi_mediachange:	[ifmedia interface function]
   2405  *
   2406  *	Set hardware to newly-selected media on a 1000BASE-X device.
   2407  */
   2408 int
   2409 wm_tbi_mediachange(struct ifnet *ifp)
   2410 {
   2411 	struct wm_softc *sc = ifp->if_softc;
   2412 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   2413 	uint32_t status;
   2414 	int i;
   2415 
   2416 	sc->sc_txcw = ife->ifm_data;
   2417 	if (sc->sc_ctrl & CTRL_RFCE)
   2418 		sc->sc_txcw |= ANAR_X_PAUSE_TOWARDS;
   2419 	if (sc->sc_ctrl & CTRL_TFCE)
   2420 		sc->sc_txcw |= ANAR_X_PAUSE_ASYM;
   2421 	sc->sc_txcw |= TXCW_ANE;
   2422 
   2423 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   2424 	delay(10000);
   2425 
   2426 	sc->sc_tbi_anstate = 0;
   2427 
   2428 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
   2429 		/* Have signal; wait for the link to come up. */
   2430 		for (i = 0; i < 50; i++) {
   2431 			delay(10000);
   2432 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
   2433 				break;
   2434 		}
   2435 
   2436 		status = CSR_READ(sc, WMREG_STATUS);
   2437 		if (status & STATUS_LU) {
   2438 			/* Link is up. */
   2439 			DPRINTF(WM_DEBUG_LINK,
   2440 			    ("%s: LINK: set media -> link up %s\n",
   2441 			    sc->sc_dev.dv_xname,
   2442 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   2443 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2444 			if (status & STATUS_FD)
   2445 				sc->sc_tctl |=
   2446 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2447 			else
   2448 				sc->sc_tctl |=
   2449 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2450 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2451 			sc->sc_tbi_linkup = 1;
   2452 		} else {
   2453 			/* Link is down. */
   2454 			DPRINTF(WM_DEBUG_LINK,
   2455 			    ("%s: LINK: set media -> link down\n",
   2456 			    sc->sc_dev.dv_xname));
   2457 			sc->sc_tbi_linkup = 0;
   2458 		}
   2459 	} else {
   2460 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
   2461 		    sc->sc_dev.dv_xname));
   2462 		sc->sc_tbi_linkup = 0;
   2463 	}
   2464 
   2465 	wm_tbi_set_linkled(sc);
   2466 
   2467 	return (0);
   2468 }
   2469 
   2470 /*
   2471  * wm_tbi_set_linkled:
   2472  *
   2473  *	Update the link LED on 1000BASE-X devices.
   2474  */
   2475 void
   2476 wm_tbi_set_linkled(struct wm_softc *sc)
   2477 {
   2478 
   2479 	if (sc->sc_tbi_linkup)
   2480 		sc->sc_ctrl |= CTRL_SWDPIN(0);
   2481 	else
   2482 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
   2483 
   2484 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2485 }
   2486 
   2487 /*
   2488  * wm_tbi_check_link:
   2489  *
   2490  *	Check the link on 1000BASE-X devices.
   2491  */
   2492 void
   2493 wm_tbi_check_link(struct wm_softc *sc)
   2494 {
   2495 	uint32_t rxcw, ctrl, status;
   2496 
   2497 	if (sc->sc_tbi_anstate == 0)
   2498 		return;
   2499 	else if (sc->sc_tbi_anstate > 1) {
   2500 		DPRINTF(WM_DEBUG_LINK,
   2501 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
   2502 		    sc->sc_tbi_anstate));
   2503 		sc->sc_tbi_anstate--;
   2504 		return;
   2505 	}
   2506 
   2507 	sc->sc_tbi_anstate = 0;
   2508 
   2509 	rxcw = CSR_READ(sc, WMREG_RXCW);
   2510 	ctrl = CSR_READ(sc, WMREG_CTRL);
   2511 	status = CSR_READ(sc, WMREG_STATUS);
   2512 
   2513 	if ((status & STATUS_LU) == 0) {
   2514 		DPRINTF(WM_DEBUG_LINK,
   2515 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
   2516 		sc->sc_tbi_linkup = 0;
   2517 	} else {
   2518 		DPRINTF(WM_DEBUG_LINK,
   2519 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
   2520 		    (status & STATUS_FD) ? "FDX" : "HDX"));
   2521 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2522 		if (status & STATUS_FD)
   2523 			sc->sc_tctl |=
   2524 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2525 		else
   2526 			sc->sc_tctl |=
   2527 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2528 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2529 		sc->sc_tbi_linkup = 1;
   2530 	}
   2531 
   2532 	wm_tbi_set_linkled(sc);
   2533 }
   2534 
   2535 /*
   2536  * wm_gmii_reset:
   2537  *
   2538  *	Reset the PHY.
   2539  */
   2540 void
   2541 wm_gmii_reset(struct wm_softc *sc)
   2542 {
   2543 	uint32_t reg;
   2544 
   2545 	if (sc->sc_type >= WM_T_CORDOVA) {
   2546 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   2547 		delay(20000);
   2548 
   2549 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2550 		delay(20000);
   2551 	} else {
   2552 		/* The PHY reset pin is active-low. */
   2553 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   2554 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
   2555 		    CTRL_EXT_SWDPIN(4));
   2556 		reg |= CTRL_EXT_SWDPIO(4);
   2557 
   2558 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   2559 		delay(10);
   2560 
   2561 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   2562 		delay(10);
   2563 
   2564 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   2565 		delay(10);
   2566 #if 0
   2567 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
   2568 #endif
   2569 	}
   2570 }
   2571 
   2572 /*
   2573  * wm_gmii_mediainit:
   2574  *
   2575  *	Initialize media for use on 1000BASE-T devices.
   2576  */
   2577 void
   2578 wm_gmii_mediainit(struct wm_softc *sc)
   2579 {
   2580 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2581 
   2582 	/* We have MII. */
   2583 	sc->sc_flags |= WM_F_HAS_MII;
   2584 
   2585 	sc->sc_tipg = TIPG_1000T_DFLT;
   2586 
   2587 	/*
   2588 	 * Let the chip set speed/duplex on its own based on
   2589 	 * signals from the PHY.
   2590 	 */
   2591 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
   2592 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2593 
   2594 	/* Initialize our media structures and probe the GMII. */
   2595 	sc->sc_mii.mii_ifp = ifp;
   2596 
   2597 	if (sc->sc_type >= WM_T_CORDOVA) {
   2598 		sc->sc_mii.mii_readreg = wm_gmii_cordova_readreg;
   2599 		sc->sc_mii.mii_writereg = wm_gmii_cordova_writereg;
   2600 	} else {
   2601 		sc->sc_mii.mii_readreg = wm_gmii_livengood_readreg;
   2602 		sc->sc_mii.mii_writereg = wm_gmii_livengood_writereg;
   2603 	}
   2604 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
   2605 
   2606 	wm_gmii_reset(sc);
   2607 
   2608 	ifmedia_init(&sc->sc_mii.mii_media, 0, wm_gmii_mediachange,
   2609 	    wm_gmii_mediastatus);
   2610 
   2611 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   2612 	    MII_OFFSET_ANY, 0);
   2613 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   2614 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   2615 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   2616 	} else
   2617 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   2618 }
   2619 
   2620 /*
   2621  * wm_gmii_mediastatus:	[ifmedia interface function]
   2622  *
   2623  *	Get the current interface media status on a 1000BASE-T device.
   2624  */
   2625 void
   2626 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2627 {
   2628 	struct wm_softc *sc = ifp->if_softc;
   2629 
   2630 	mii_pollstat(&sc->sc_mii);
   2631 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2632 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2633 }
   2634 
   2635 /*
   2636  * wm_gmii_mediachange:	[ifmedia interface function]
   2637  *
   2638  *	Set hardware to newly-selected media on a 1000BASE-T device.
   2639  */
   2640 int
   2641 wm_gmii_mediachange(struct ifnet *ifp)
   2642 {
   2643 	struct wm_softc *sc = ifp->if_softc;
   2644 
   2645 	if (ifp->if_flags & IFF_UP)
   2646 		mii_mediachg(&sc->sc_mii);
   2647 	return (0);
   2648 }
   2649 
   2650 #define	MDI_IO		CTRL_SWDPIN(2)
   2651 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
   2652 #define	MDI_CLK		CTRL_SWDPIN(3)
   2653 
   2654 static void
   2655 livengood_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
   2656 {
   2657 	uint32_t i, v;
   2658 
   2659 	v = CSR_READ(sc, WMREG_CTRL);
   2660 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   2661 	v |= MDI_DIR | CTRL_SWDPIO(3);
   2662 
   2663 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
   2664 		if (data & i)
   2665 			v |= MDI_IO;
   2666 		else
   2667 			v &= ~MDI_IO;
   2668 		CSR_WRITE(sc, WMREG_CTRL, v);
   2669 		delay(10);
   2670 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   2671 		delay(10);
   2672 		CSR_WRITE(sc, WMREG_CTRL, v);
   2673 		delay(10);
   2674 	}
   2675 }
   2676 
   2677 static uint32_t
   2678 livengood_mii_recvbits(struct wm_softc *sc)
   2679 {
   2680 	uint32_t v, i, data = 0;
   2681 
   2682 	v = CSR_READ(sc, WMREG_CTRL);
   2683 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   2684 	v |= CTRL_SWDPIO(3);
   2685 
   2686 	CSR_WRITE(sc, WMREG_CTRL, v);
   2687 	delay(10);
   2688 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   2689 	delay(10);
   2690 	CSR_WRITE(sc, WMREG_CTRL, v);
   2691 	delay(10);
   2692 
   2693 	for (i = 0; i < 16; i++) {
   2694 		data <<= 1;
   2695 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   2696 		delay(10);
   2697 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
   2698 			data |= 1;
   2699 		CSR_WRITE(sc, WMREG_CTRL, v);
   2700 		delay(10);
   2701 	}
   2702 
   2703 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   2704 	delay(10);
   2705 	CSR_WRITE(sc, WMREG_CTRL, v);
   2706 	delay(10);
   2707 
   2708 	return (data);
   2709 }
   2710 
   2711 #undef MDI_IO
   2712 #undef MDI_DIR
   2713 #undef MDI_CLK
   2714 
   2715 /*
   2716  * wm_gmii_livengood_readreg:	[mii interface function]
   2717  *
   2718  *	Read a PHY register on the GMII (Livengood version).
   2719  */
   2720 int
   2721 wm_gmii_livengood_readreg(struct device *self, int phy, int reg)
   2722 {
   2723 	struct wm_softc *sc = (void *) self;
   2724 	int rv;
   2725 
   2726 	livengood_mii_sendbits(sc, 0xffffffffU, 32);
   2727 	livengood_mii_sendbits(sc, reg | (phy << 5) |
   2728 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
   2729 	rv = livengood_mii_recvbits(sc) & 0xffff;
   2730 
   2731 	DPRINTF(WM_DEBUG_GMII,
   2732 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
   2733 	    sc->sc_dev.dv_xname, phy, reg, rv));
   2734 
   2735 	return (rv);
   2736 }
   2737 
   2738 /*
   2739  * wm_gmii_livengood_writereg:	[mii interface function]
   2740  *
   2741  *	Write a PHY register on the GMII (Livengood version).
   2742  */
   2743 void
   2744 wm_gmii_livengood_writereg(struct device *self, int phy, int reg, int val)
   2745 {
   2746 	struct wm_softc *sc = (void *) self;
   2747 
   2748 	livengood_mii_sendbits(sc, 0xffffffffU, 32);
   2749 	livengood_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
   2750 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
   2751 	    (MII_COMMAND_START << 30), 32);
   2752 }
   2753 
   2754 /*
   2755  * wm_gmii_cordova_readreg:	[mii interface function]
   2756  *
   2757  *	Read a PHY register on the GMII.
   2758  */
   2759 int
   2760 wm_gmii_cordova_readreg(struct device *self, int phy, int reg)
   2761 {
   2762 	struct wm_softc *sc = (void *) self;
   2763 	uint32_t mdic;
   2764 	int i, rv;
   2765 
   2766 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
   2767 	    MDIC_REGADD(reg));
   2768 
   2769 	for (i = 0; i < 100; i++) {
   2770 		mdic = CSR_READ(sc, WMREG_MDIC);
   2771 		if (mdic & MDIC_READY)
   2772 			break;
   2773 		delay(10);
   2774 	}
   2775 
   2776 	if ((mdic & MDIC_READY) == 0) {
   2777 		printf("%s: MDIC read timed out: phy %d reg %d\n",
   2778 		    sc->sc_dev.dv_xname, phy, reg);
   2779 		rv = 0;
   2780 	} else if (mdic & MDIC_E) {
   2781 #if 0 /* This is normal if no PHY is present. */
   2782 		printf("%s: MDIC read error: phy %d reg %d\n",
   2783 		    sc->sc_dev.dv_xname, phy, reg);
   2784 #endif
   2785 		rv = 0;
   2786 	} else {
   2787 		rv = MDIC_DATA(mdic);
   2788 		if (rv == 0xffff)
   2789 			rv = 0;
   2790 	}
   2791 
   2792 	return (rv);
   2793 }
   2794 
   2795 /*
   2796  * wm_gmii_cordova_writereg:	[mii interface function]
   2797  *
   2798  *	Write a PHY register on the GMII.
   2799  */
   2800 void
   2801 wm_gmii_cordova_writereg(struct device *self, int phy, int reg, int val)
   2802 {
   2803 	struct wm_softc *sc = (void *) self;
   2804 	uint32_t mdic;
   2805 	int i;
   2806 
   2807 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
   2808 	    MDIC_REGADD(reg) | MDIC_DATA(val));
   2809 
   2810 	for (i = 0; i < 100; i++) {
   2811 		mdic = CSR_READ(sc, WMREG_MDIC);
   2812 		if (mdic & MDIC_READY)
   2813 			break;
   2814 		delay(10);
   2815 	}
   2816 
   2817 	if ((mdic & MDIC_READY) == 0)
   2818 		printf("%s: MDIC write timed out: phy %d reg %d\n",
   2819 		    sc->sc_dev.dv_xname, phy, reg);
   2820 	else if (mdic & MDIC_E)
   2821 		printf("%s: MDIC write error: phy %d reg %d\n",
   2822 		    sc->sc_dev.dv_xname, phy, reg);
   2823 }
   2824 
   2825 /*
   2826  * wm_gmii_statchg:	[mii interface function]
   2827  *
   2828  *	Callback from MII layer when media changes.
   2829  */
   2830 void
   2831 wm_gmii_statchg(struct device *self)
   2832 {
   2833 	struct wm_softc *sc = (void *) self;
   2834 
   2835 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2836 
   2837 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   2838 		DPRINTF(WM_DEBUG_LINK,
   2839 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
   2840 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2841 	} else  {
   2842 		DPRINTF(WM_DEBUG_LINK,
   2843 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
   2844 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2845 	}
   2846 
   2847 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2848 }
   2849