if_wm.c revision 1.101 1 /* $NetBSD: if_wm.c,v 1.101 2005/03/19 11:58:03 tron Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40 *
41 * TODO (in order of importance):
42 *
43 * - Rework how parameters are loaded from the EEPROM.
44 * - Figure out what to do with the i82545GM and i82546GB
45 * SERDES controllers.
46 * - Fix hw VLAN assist.
47 */
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.101 2005/03/19 11:58:03 tron Exp $");
51
52 #include "bpfilter.h"
53 #include "rnd.h"
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67
68 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
69
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82
83 #include <netinet/in.h> /* XXX for struct ip */
84 #include <netinet/in_systm.h> /* XXX for struct ip */
85 #include <netinet/ip.h> /* XXX for struct ip */
86 #include <netinet/tcp.h> /* XXX for struct tcphdr */
87
88 #include <machine/bus.h>
89 #include <machine/intr.h>
90 #include <machine/endian.h>
91
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99
100 #include <dev/pci/if_wmreg.h>
101
102 #ifdef WM_DEBUG
103 #define WM_DEBUG_LINK 0x01
104 #define WM_DEBUG_TX 0x02
105 #define WM_DEBUG_RX 0x04
106 #define WM_DEBUG_GMII 0x08
107 int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
108
109 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
110 #else
111 #define DPRINTF(x, y) /* nothing */
112 #endif /* WM_DEBUG */
113
114 /*
115 * Transmit descriptor list size. Due to errata, we can only have
116 * 256 hardware descriptors in the ring on < 82544, but we use 4096
117 * on >= 82544. We tell the upper layers that they can queue a lot
118 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
119 * of them at a time.
120 *
121 * We allow up to 256 (!) DMA segments per packet. Pathological packet
122 * chains containing many small mbufs have been observed in zero-copy
123 * situations with jumbo frames.
124 */
125 #define WM_NTXSEGS 256
126 #define WM_IFQUEUELEN 256
127 #define WM_TXQUEUELEN_MAX 64
128 #define WM_TXQUEUELEN_MAX_82547 16
129 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
130 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
131 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
132 #define WM_NTXDESC_82542 256
133 #define WM_NTXDESC_82544 4096
134 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
135 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
136 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
137 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
138 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
139
140 #define WM_MAXTXDMA round_page(IP_MAXPACKET) /* for TSO */
141
142 /*
143 * Receive descriptor list size. We have one Rx buffer for normal
144 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
145 * packet. We allocate 256 receive descriptors, each with a 2k
146 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
147 */
148 #define WM_NRXDESC 256
149 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
150 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
151 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
152
153 /*
154 * Control structures are DMA'd to the i82542 chip. We allocate them in
155 * a single clump that maps to a single DMA segment to make serveral things
156 * easier.
157 */
158 struct wm_control_data_82544 {
159 /*
160 * The receive descriptors.
161 */
162 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
163
164 /*
165 * The transmit descriptors. Put these at the end, because
166 * we might use a smaller number of them.
167 */
168 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
169 };
170
171 struct wm_control_data_82542 {
172 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
173 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
174 };
175
176 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
177 #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)])
178 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
179
180 /*
181 * Software state for transmit jobs.
182 */
183 struct wm_txsoft {
184 struct mbuf *txs_mbuf; /* head of our mbuf chain */
185 bus_dmamap_t txs_dmamap; /* our DMA map */
186 int txs_firstdesc; /* first descriptor in packet */
187 int txs_lastdesc; /* last descriptor in packet */
188 int txs_ndesc; /* # of descriptors used */
189 };
190
191 /*
192 * Software state for receive buffers. Each descriptor gets a
193 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
194 * more than one buffer, we chain them together.
195 */
196 struct wm_rxsoft {
197 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
198 bus_dmamap_t rxs_dmamap; /* our DMA map */
199 };
200
201 typedef enum {
202 WM_T_unknown = 0,
203 WM_T_82542_2_0, /* i82542 2.0 (really old) */
204 WM_T_82542_2_1, /* i82542 2.1+ (old) */
205 WM_T_82543, /* i82543 */
206 WM_T_82544, /* i82544 */
207 WM_T_82540, /* i82540 */
208 WM_T_82545, /* i82545 */
209 WM_T_82545_3, /* i82545 3.0+ */
210 WM_T_82546, /* i82546 */
211 WM_T_82546_3, /* i82546 3.0+ */
212 WM_T_82541, /* i82541 */
213 WM_T_82541_2, /* i82541 2.0+ */
214 WM_T_82547, /* i82547 */
215 WM_T_82547_2, /* i82547 2.0+ */
216 } wm_chip_type;
217
218 /*
219 * Software state per device.
220 */
221 struct wm_softc {
222 struct device sc_dev; /* generic device information */
223 bus_space_tag_t sc_st; /* bus space tag */
224 bus_space_handle_t sc_sh; /* bus space handle */
225 bus_space_tag_t sc_iot; /* I/O space tag */
226 bus_space_handle_t sc_ioh; /* I/O space handle */
227 bus_dma_tag_t sc_dmat; /* bus DMA tag */
228 struct ethercom sc_ethercom; /* ethernet common data */
229 void *sc_sdhook; /* shutdown hook */
230
231 wm_chip_type sc_type; /* chip type */
232 int sc_flags; /* flags; see below */
233 int sc_bus_speed; /* PCI/PCIX bus speed */
234 int sc_pcix_offset; /* PCIX capability register offset */
235 int sc_flowflags; /* 802.3x flow control flags */
236
237 void *sc_ih; /* interrupt cookie */
238
239 int sc_ee_addrbits; /* EEPROM address bits */
240
241 struct mii_data sc_mii; /* MII/media information */
242
243 struct callout sc_tick_ch; /* tick callout */
244
245 bus_dmamap_t sc_cddmamap; /* control data DMA map */
246 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
247
248 int sc_align_tweak;
249
250 /*
251 * Software state for the transmit and receive descriptors.
252 */
253 int sc_txnum; /* must be a power of two */
254 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
255 struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
256
257 /*
258 * Control data structures.
259 */
260 int sc_ntxdesc; /* must be a power of two */
261 struct wm_control_data_82544 *sc_control_data;
262 #define sc_txdescs sc_control_data->wcd_txdescs
263 #define sc_rxdescs sc_control_data->wcd_rxdescs
264
265 #ifdef WM_EVENT_COUNTERS
266 /* Event counters. */
267 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
268 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
269 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
270 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
271 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
272 struct evcnt sc_ev_rxintr; /* Rx interrupts */
273 struct evcnt sc_ev_linkintr; /* Link interrupts */
274
275 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
276 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
277 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
278 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
279 struct evcnt sc_ev_txtso; /* TCP seg offload out-bound */
280 struct evcnt sc_ev_txtsopain; /* painful header manip. for TSO */
281
282 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
283 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
284
285 struct evcnt sc_ev_tu; /* Tx underrun */
286
287 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
288 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
289 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
290 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
291 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
292 #endif /* WM_EVENT_COUNTERS */
293
294 bus_addr_t sc_tdt_reg; /* offset of TDT register */
295
296 int sc_txfree; /* number of free Tx descriptors */
297 int sc_txnext; /* next ready Tx descriptor */
298
299 int sc_txsfree; /* number of free Tx jobs */
300 int sc_txsnext; /* next free Tx job */
301 int sc_txsdirty; /* dirty Tx jobs */
302
303 /* These 5 variables are used only on the 82547. */
304 int sc_txfifo_size; /* Tx FIFO size */
305 int sc_txfifo_head; /* current head of FIFO */
306 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
307 int sc_txfifo_stall; /* Tx FIFO is stalled */
308 struct callout sc_txfifo_ch; /* Tx FIFO stall work-around timer */
309
310 bus_addr_t sc_rdt_reg; /* offset of RDT register */
311
312 int sc_rxptr; /* next ready Rx descriptor/queue ent */
313 int sc_rxdiscard;
314 int sc_rxlen;
315 struct mbuf *sc_rxhead;
316 struct mbuf *sc_rxtail;
317 struct mbuf **sc_rxtailp;
318
319 uint32_t sc_ctrl; /* prototype CTRL register */
320 #if 0
321 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
322 #endif
323 uint32_t sc_icr; /* prototype interrupt bits */
324 uint32_t sc_itr; /* prototype intr throttling reg */
325 uint32_t sc_tctl; /* prototype TCTL register */
326 uint32_t sc_rctl; /* prototype RCTL register */
327 uint32_t sc_txcw; /* prototype TXCW register */
328 uint32_t sc_tipg; /* prototype TIPG register */
329 uint32_t sc_fcrtl; /* prototype FCRTL register */
330 uint32_t sc_pba; /* prototype PBA register */
331
332 int sc_tbi_linkup; /* TBI link status */
333 int sc_tbi_anstate; /* autonegotiation state */
334
335 int sc_mchash_type; /* multicast filter offset */
336
337 #if NRND > 0
338 rndsource_element_t rnd_source; /* random source */
339 #endif
340 };
341
342 #define WM_RXCHAIN_RESET(sc) \
343 do { \
344 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
345 *(sc)->sc_rxtailp = NULL; \
346 (sc)->sc_rxlen = 0; \
347 } while (/*CONSTCOND*/0)
348
349 #define WM_RXCHAIN_LINK(sc, m) \
350 do { \
351 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
352 (sc)->sc_rxtailp = &(m)->m_next; \
353 } while (/*CONSTCOND*/0)
354
355 /* sc_flags */
356 #define WM_F_HAS_MII 0x01 /* has MII */
357 #define WM_F_EEPROM_HANDSHAKE 0x02 /* requires EEPROM handshake */
358 #define WM_F_EEPROM_SPI 0x04 /* EEPROM is SPI */
359 #define WM_F_IOH_VALID 0x10 /* I/O handle is valid */
360 #define WM_F_BUS64 0x20 /* bus is 64-bit */
361 #define WM_F_PCIX 0x40 /* bus is PCI-X */
362 #define WM_F_CSA 0x80 /* bus is CSA */
363
364 #ifdef WM_EVENT_COUNTERS
365 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
366 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
367 #else
368 #define WM_EVCNT_INCR(ev) /* nothing */
369 #define WM_EVCNT_ADD(ev, val) /* nothing */
370 #endif
371
372 #define CSR_READ(sc, reg) \
373 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
374 #define CSR_WRITE(sc, reg, val) \
375 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
376 #define CSR_WRITE_FLUSH(sc) \
377 (void) CSR_READ((sc), WMREG_STATUS)
378
379 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
380 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
381
382 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
383 #define WM_CDTXADDR_HI(sc, x) \
384 (sizeof(bus_addr_t) == 8 ? \
385 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
386
387 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
388 #define WM_CDRXADDR_HI(sc, x) \
389 (sizeof(bus_addr_t) == 8 ? \
390 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
391
392 #define WM_CDTXSYNC(sc, x, n, ops) \
393 do { \
394 int __x, __n; \
395 \
396 __x = (x); \
397 __n = (n); \
398 \
399 /* If it will wrap around, sync to the end of the ring. */ \
400 if ((__x + __n) > WM_NTXDESC(sc)) { \
401 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
402 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
403 (WM_NTXDESC(sc) - __x), (ops)); \
404 __n -= (WM_NTXDESC(sc) - __x); \
405 __x = 0; \
406 } \
407 \
408 /* Now sync whatever is left. */ \
409 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
410 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
411 } while (/*CONSTCOND*/0)
412
413 #define WM_CDRXSYNC(sc, x, ops) \
414 do { \
415 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
416 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
417 } while (/*CONSTCOND*/0)
418
419 #define WM_INIT_RXDESC(sc, x) \
420 do { \
421 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
422 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
423 struct mbuf *__m = __rxs->rxs_mbuf; \
424 \
425 /* \
426 * Note: We scoot the packet forward 2 bytes in the buffer \
427 * so that the payload after the Ethernet header is aligned \
428 * to a 4-byte boundary. \
429 * \
430 * XXX BRAINDAMAGE ALERT! \
431 * The stupid chip uses the same size for every buffer, which \
432 * is set in the Receive Control register. We are using the 2K \
433 * size option, but what we REALLY want is (2K - 2)! For this \
434 * reason, we can't "scoot" packets longer than the standard \
435 * Ethernet MTU. On strict-alignment platforms, if the total \
436 * size exceeds (2K - 2) we set align_tweak to 0 and let \
437 * the upper layer copy the headers. \
438 */ \
439 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
440 \
441 wm_set_dma_addr(&__rxd->wrx_addr, \
442 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
443 __rxd->wrx_len = 0; \
444 __rxd->wrx_cksum = 0; \
445 __rxd->wrx_status = 0; \
446 __rxd->wrx_errors = 0; \
447 __rxd->wrx_special = 0; \
448 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
449 \
450 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
451 } while (/*CONSTCOND*/0)
452
453 static void wm_start(struct ifnet *);
454 static void wm_watchdog(struct ifnet *);
455 static int wm_ioctl(struct ifnet *, u_long, caddr_t);
456 static int wm_init(struct ifnet *);
457 static void wm_stop(struct ifnet *, int);
458
459 static void wm_shutdown(void *);
460
461 static void wm_reset(struct wm_softc *);
462 static void wm_rxdrain(struct wm_softc *);
463 static int wm_add_rxbuf(struct wm_softc *, int);
464 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
465 static void wm_tick(void *);
466
467 static void wm_set_filter(struct wm_softc *);
468
469 static int wm_intr(void *);
470 static void wm_txintr(struct wm_softc *);
471 static void wm_rxintr(struct wm_softc *);
472 static void wm_linkintr(struct wm_softc *, uint32_t);
473
474 static void wm_tbi_mediainit(struct wm_softc *);
475 static int wm_tbi_mediachange(struct ifnet *);
476 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
477
478 static void wm_tbi_set_linkled(struct wm_softc *);
479 static void wm_tbi_check_link(struct wm_softc *);
480
481 static void wm_gmii_reset(struct wm_softc *);
482
483 static int wm_gmii_i82543_readreg(struct device *, int, int);
484 static void wm_gmii_i82543_writereg(struct device *, int, int, int);
485
486 static int wm_gmii_i82544_readreg(struct device *, int, int);
487 static void wm_gmii_i82544_writereg(struct device *, int, int, int);
488
489 static void wm_gmii_statchg(struct device *);
490
491 static void wm_gmii_mediainit(struct wm_softc *);
492 static int wm_gmii_mediachange(struct ifnet *);
493 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
494
495 static int wm_match(struct device *, struct cfdata *, void *);
496 static void wm_attach(struct device *, struct device *, void *);
497
498 CFATTACH_DECL(wm, sizeof(struct wm_softc),
499 wm_match, wm_attach, NULL, NULL);
500
501 static void wm_82547_txfifo_stall(void *);
502
503 /*
504 * Devices supported by this driver.
505 */
506 static const struct wm_product {
507 pci_vendor_id_t wmp_vendor;
508 pci_product_id_t wmp_product;
509 const char *wmp_name;
510 wm_chip_type wmp_type;
511 int wmp_flags;
512 #define WMP_F_1000X 0x01
513 #define WMP_F_1000T 0x02
514 } wm_products[] = {
515 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
516 "Intel i82542 1000BASE-X Ethernet",
517 WM_T_82542_2_1, WMP_F_1000X },
518
519 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
520 "Intel i82543GC 1000BASE-X Ethernet",
521 WM_T_82543, WMP_F_1000X },
522
523 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
524 "Intel i82543GC 1000BASE-T Ethernet",
525 WM_T_82543, WMP_F_1000T },
526
527 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
528 "Intel i82544EI 1000BASE-T Ethernet",
529 WM_T_82544, WMP_F_1000T },
530
531 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
532 "Intel i82544EI 1000BASE-X Ethernet",
533 WM_T_82544, WMP_F_1000X },
534
535 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
536 "Intel i82544GC 1000BASE-T Ethernet",
537 WM_T_82544, WMP_F_1000T },
538
539 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
540 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
541 WM_T_82544, WMP_F_1000T },
542
543 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
544 "Intel i82540EM 1000BASE-T Ethernet",
545 WM_T_82540, WMP_F_1000T },
546
547 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
548 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
549 WM_T_82540, WMP_F_1000T },
550
551 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
552 "Intel i82540EP 1000BASE-T Ethernet",
553 WM_T_82540, WMP_F_1000T },
554
555 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
556 "Intel i82540EP 1000BASE-T Ethernet",
557 WM_T_82540, WMP_F_1000T },
558
559 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
560 "Intel i82540EP 1000BASE-T Ethernet",
561 WM_T_82540, WMP_F_1000T },
562
563 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
564 "Intel i82545EM 1000BASE-T Ethernet",
565 WM_T_82545, WMP_F_1000T },
566
567 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
568 "Intel i82545GM 1000BASE-T Ethernet",
569 WM_T_82545_3, WMP_F_1000T },
570
571 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
572 "Intel i82545GM 1000BASE-X Ethernet",
573 WM_T_82545_3, WMP_F_1000X },
574 #if 0
575 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
576 "Intel i82545GM Gigabit Ethernet (SERDES)",
577 WM_T_82545_3, WMP_F_SERDES },
578 #endif
579 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
580 "Intel i82546EB 1000BASE-T Ethernet",
581 WM_T_82546, WMP_F_1000T },
582
583 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
584 "Intel i82546EB 1000BASE-T Ethernet",
585 WM_T_82546, WMP_F_1000T },
586
587 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
588 "Intel i82545EM 1000BASE-X Ethernet",
589 WM_T_82545, WMP_F_1000X },
590
591 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
592 "Intel i82546EB 1000BASE-X Ethernet",
593 WM_T_82546, WMP_F_1000X },
594
595 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
596 "Intel i82546GB 1000BASE-T Ethernet",
597 WM_T_82546_3, WMP_F_1000T },
598
599 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
600 "Intel i82546GB 1000BASE-X Ethernet",
601 WM_T_82546_3, WMP_F_1000X },
602 #if 0
603 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
604 "Intel i82546GB Gigabit Ethernet (SERDES)",
605 WM_T_82546_3, WMP_F_SERDES },
606 #endif
607 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
608 "Intel i82541EI 1000BASE-T Ethernet",
609 WM_T_82541, WMP_F_1000T },
610
611 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
612 "Intel i82541EI Mobile 1000BASE-T Ethernet",
613 WM_T_82541, WMP_F_1000T },
614
615 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
616 "Intel i82541ER 1000BASE-T Ethernet",
617 WM_T_82541_2, WMP_F_1000T },
618
619 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
620 "Intel i82541GI 1000BASE-T Ethernet",
621 WM_T_82541_2, WMP_F_1000T },
622
623 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
624 "Intel i82541GI Mobile 1000BASE-T Ethernet",
625 WM_T_82541_2, WMP_F_1000T },
626
627 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI,
628 "Intel i82541PI 1000BASE-T Ethernet",
629 WM_T_82541_2, WMP_F_1000T },
630
631 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
632 "Intel i82547EI 1000BASE-T Ethernet",
633 WM_T_82547, WMP_F_1000T },
634
635 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
636 "Intel i82547GI 1000BASE-T Ethernet",
637 WM_T_82547_2, WMP_F_1000T },
638 { 0, 0,
639 NULL,
640 0, 0 },
641 };
642
643 #ifdef WM_EVENT_COUNTERS
644 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
645 #endif /* WM_EVENT_COUNTERS */
646
647 #if 0 /* Not currently used */
648 static __inline uint32_t
649 wm_io_read(struct wm_softc *sc, int reg)
650 {
651
652 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
653 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
654 }
655 #endif
656
657 static __inline void
658 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
659 {
660
661 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
662 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
663 }
664
665 static __inline void
666 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
667 {
668 wa->wa_low = htole32(v & 0xffffffffU);
669 if (sizeof(bus_addr_t) == 8)
670 wa->wa_high = htole32((uint64_t) v >> 32);
671 else
672 wa->wa_high = 0;
673 }
674
675 static const struct wm_product *
676 wm_lookup(const struct pci_attach_args *pa)
677 {
678 const struct wm_product *wmp;
679
680 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
681 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
682 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
683 return (wmp);
684 }
685 return (NULL);
686 }
687
688 static int
689 wm_match(struct device *parent, struct cfdata *cf, void *aux)
690 {
691 struct pci_attach_args *pa = aux;
692
693 if (wm_lookup(pa) != NULL)
694 return (1);
695
696 return (0);
697 }
698
699 static void
700 wm_attach(struct device *parent, struct device *self, void *aux)
701 {
702 struct wm_softc *sc = (void *) self;
703 struct pci_attach_args *pa = aux;
704 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
705 pci_chipset_tag_t pc = pa->pa_pc;
706 pci_intr_handle_t ih;
707 size_t cdata_size;
708 const char *intrstr = NULL;
709 const char *eetype;
710 bus_space_tag_t memt;
711 bus_space_handle_t memh;
712 bus_dma_segment_t seg;
713 int memh_valid;
714 int i, rseg, error;
715 const struct wm_product *wmp;
716 uint8_t enaddr[ETHER_ADDR_LEN];
717 uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
718 pcireg_t preg, memtype;
719 uint32_t reg;
720 int pmreg;
721
722 callout_init(&sc->sc_tick_ch);
723
724 wmp = wm_lookup(pa);
725 if (wmp == NULL) {
726 printf("\n");
727 panic("wm_attach: impossible");
728 }
729
730 if (pci_dma64_available(pa))
731 sc->sc_dmat = pa->pa_dmat64;
732 else
733 sc->sc_dmat = pa->pa_dmat;
734
735 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
736 aprint_naive(": Ethernet controller\n");
737 aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
738
739 sc->sc_type = wmp->wmp_type;
740 if (sc->sc_type < WM_T_82543) {
741 if (preg < 2) {
742 aprint_error("%s: i82542 must be at least rev. 2\n",
743 sc->sc_dev.dv_xname);
744 return;
745 }
746 if (preg < 3)
747 sc->sc_type = WM_T_82542_2_0;
748 }
749
750 /*
751 * Map the device. All devices support memory-mapped acccess,
752 * and it is really required for normal operation.
753 */
754 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
755 switch (memtype) {
756 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
757 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
758 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
759 memtype, 0, &memt, &memh, NULL, NULL) == 0);
760 break;
761 default:
762 memh_valid = 0;
763 }
764
765 if (memh_valid) {
766 sc->sc_st = memt;
767 sc->sc_sh = memh;
768 } else {
769 aprint_error("%s: unable to map device registers\n",
770 sc->sc_dev.dv_xname);
771 return;
772 }
773
774 /*
775 * In addition, i82544 and later support I/O mapped indirect
776 * register access. It is not desirable (nor supported in
777 * this driver) to use it for normal operation, though it is
778 * required to work around bugs in some chip versions.
779 */
780 if (sc->sc_type >= WM_T_82544) {
781 /* First we have to find the I/O BAR. */
782 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
783 if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
784 PCI_MAPREG_TYPE_IO)
785 break;
786 }
787 if (i == PCI_MAPREG_END)
788 aprint_error("%s: WARNING: unable to find I/O BAR\n",
789 sc->sc_dev.dv_xname);
790 else {
791 /*
792 * The i8254x doesn't apparently respond when the
793 * I/O BAR is 0, which looks somewhat like it's not
794 * been configured.
795 */
796 preg = pci_conf_read(pc, pa->pa_tag, i);
797 if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
798 aprint_error("%s: WARNING: I/O BAR at zero.\n",
799 sc->sc_dev.dv_xname);
800 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
801 0, &sc->sc_iot, &sc->sc_ioh,
802 NULL, NULL) == 0) {
803 sc->sc_flags |= WM_F_IOH_VALID;
804 } else {
805 aprint_error("%s: WARNING: unable to map "
806 "I/O space\n", sc->sc_dev.dv_xname);
807 }
808 }
809
810 }
811
812 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
813 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
814 preg |= PCI_COMMAND_MASTER_ENABLE;
815 if (sc->sc_type < WM_T_82542_2_1)
816 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
817 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
818
819 /* Get it out of power save mode, if needed. */
820 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
821 preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
822 PCI_PMCSR_STATE_MASK;
823 if (preg == PCI_PMCSR_STATE_D3) {
824 /*
825 * The card has lost all configuration data in
826 * this state, so punt.
827 */
828 aprint_error("%s: unable to wake from power state D3\n",
829 sc->sc_dev.dv_xname);
830 return;
831 }
832 if (preg != PCI_PMCSR_STATE_D0) {
833 aprint_normal("%s: waking up from power state D%d\n",
834 sc->sc_dev.dv_xname, preg);
835 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
836 PCI_PMCSR_STATE_D0);
837 }
838 }
839
840 /*
841 * Map and establish our interrupt.
842 */
843 if (pci_intr_map(pa, &ih)) {
844 aprint_error("%s: unable to map interrupt\n",
845 sc->sc_dev.dv_xname);
846 return;
847 }
848 intrstr = pci_intr_string(pc, ih);
849 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
850 if (sc->sc_ih == NULL) {
851 aprint_error("%s: unable to establish interrupt",
852 sc->sc_dev.dv_xname);
853 if (intrstr != NULL)
854 aprint_normal(" at %s", intrstr);
855 aprint_normal("\n");
856 return;
857 }
858 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
859
860 /*
861 * Determine a few things about the bus we're connected to.
862 */
863 if (sc->sc_type < WM_T_82543) {
864 /* We don't really know the bus characteristics here. */
865 sc->sc_bus_speed = 33;
866 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
867 /*
868 * CSA (Communication Streaming Architecture) is about as fast
869 * a 32-bit 66MHz PCI Bus.
870 */
871 sc->sc_flags |= WM_F_CSA;
872 sc->sc_bus_speed = 66;
873 aprint_verbose("%s: Communication Streaming Architecture\n",
874 sc->sc_dev.dv_xname);
875 if (sc->sc_type == WM_T_82547) {
876 callout_init(&sc->sc_txfifo_ch);
877 callout_setfunc(&sc->sc_txfifo_ch,
878 wm_82547_txfifo_stall, sc);
879 aprint_verbose("%s: using 82547 Tx FIFO stall "
880 "work-around\n", sc->sc_dev.dv_xname);
881 }
882 } else {
883 reg = CSR_READ(sc, WMREG_STATUS);
884 if (reg & STATUS_BUS64)
885 sc->sc_flags |= WM_F_BUS64;
886 if (sc->sc_type >= WM_T_82544 &&
887 (reg & STATUS_PCIX_MODE) != 0) {
888 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
889
890 sc->sc_flags |= WM_F_PCIX;
891 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
892 PCI_CAP_PCIX,
893 &sc->sc_pcix_offset, NULL) == 0)
894 aprint_error("%s: unable to find PCIX "
895 "capability\n", sc->sc_dev.dv_xname);
896 else if (sc->sc_type != WM_T_82545_3 &&
897 sc->sc_type != WM_T_82546_3) {
898 /*
899 * Work around a problem caused by the BIOS
900 * setting the max memory read byte count
901 * incorrectly.
902 */
903 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
904 sc->sc_pcix_offset + PCI_PCIX_CMD);
905 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
906 sc->sc_pcix_offset + PCI_PCIX_STATUS);
907
908 bytecnt =
909 (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
910 PCI_PCIX_CMD_BYTECNT_SHIFT;
911 maxb =
912 (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
913 PCI_PCIX_STATUS_MAXB_SHIFT;
914 if (bytecnt > maxb) {
915 aprint_verbose("%s: resetting PCI-X "
916 "MMRBC: %d -> %d\n",
917 sc->sc_dev.dv_xname,
918 512 << bytecnt, 512 << maxb);
919 pcix_cmd = (pcix_cmd &
920 ~PCI_PCIX_CMD_BYTECNT_MASK) |
921 (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
922 pci_conf_write(pa->pa_pc, pa->pa_tag,
923 sc->sc_pcix_offset + PCI_PCIX_CMD,
924 pcix_cmd);
925 }
926 }
927 }
928 /*
929 * The quad port adapter is special; it has a PCIX-PCIX
930 * bridge on the board, and can run the secondary bus at
931 * a higher speed.
932 */
933 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
934 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
935 : 66;
936 } else if (sc->sc_flags & WM_F_PCIX) {
937 switch (reg & STATUS_PCIXSPD_MASK) {
938 case STATUS_PCIXSPD_50_66:
939 sc->sc_bus_speed = 66;
940 break;
941 case STATUS_PCIXSPD_66_100:
942 sc->sc_bus_speed = 100;
943 break;
944 case STATUS_PCIXSPD_100_133:
945 sc->sc_bus_speed = 133;
946 break;
947 default:
948 aprint_error(
949 "%s: unknown PCIXSPD %d; assuming 66MHz\n",
950 sc->sc_dev.dv_xname,
951 reg & STATUS_PCIXSPD_MASK);
952 sc->sc_bus_speed = 66;
953 }
954 } else
955 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
956 aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
957 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
958 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
959 }
960
961 /*
962 * Allocate the control data structures, and create and load the
963 * DMA map for it.
964 *
965 * NOTE: All Tx descriptors must be in the same 4G segment of
966 * memory. So must Rx descriptors. We simplify by allocating
967 * both sets within the same 4G segment.
968 */
969 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
970 WM_NTXDESC_82542 : WM_NTXDESC_82544;
971 cdata_size = sc->sc_type < WM_T_82544 ?
972 sizeof(struct wm_control_data_82542) :
973 sizeof(struct wm_control_data_82544);
974 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
975 (bus_size_t) 0x100000000ULL,
976 &seg, 1, &rseg, 0)) != 0) {
977 aprint_error(
978 "%s: unable to allocate control data, error = %d\n",
979 sc->sc_dev.dv_xname, error);
980 goto fail_0;
981 }
982
983 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
984 (caddr_t *)&sc->sc_control_data, 0)) != 0) {
985 aprint_error("%s: unable to map control data, error = %d\n",
986 sc->sc_dev.dv_xname, error);
987 goto fail_1;
988 }
989
990 if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
991 0, 0, &sc->sc_cddmamap)) != 0) {
992 aprint_error("%s: unable to create control data DMA map, "
993 "error = %d\n", sc->sc_dev.dv_xname, error);
994 goto fail_2;
995 }
996
997 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
998 sc->sc_control_data, cdata_size, NULL,
999 0)) != 0) {
1000 aprint_error(
1001 "%s: unable to load control data DMA map, error = %d\n",
1002 sc->sc_dev.dv_xname, error);
1003 goto fail_3;
1004 }
1005
1006
1007 /*
1008 * Create the transmit buffer DMA maps.
1009 */
1010 WM_TXQUEUELEN(sc) =
1011 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1012 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1013 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1014 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1015 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1016 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1017 aprint_error("%s: unable to create Tx DMA map %d, "
1018 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1019 goto fail_4;
1020 }
1021 }
1022
1023 /*
1024 * Create the receive buffer DMA maps.
1025 */
1026 for (i = 0; i < WM_NRXDESC; i++) {
1027 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1028 MCLBYTES, 0, 0,
1029 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1030 aprint_error("%s: unable to create Rx DMA map %d, "
1031 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1032 goto fail_5;
1033 }
1034 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1035 }
1036
1037 /*
1038 * Reset the chip to a known state.
1039 */
1040 wm_reset(sc);
1041
1042 /*
1043 * Get some information about the EEPROM.
1044 */
1045 if (sc->sc_type >= WM_T_82540)
1046 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1047 if (sc->sc_type <= WM_T_82544)
1048 sc->sc_ee_addrbits = 6;
1049 else if (sc->sc_type <= WM_T_82546_3) {
1050 reg = CSR_READ(sc, WMREG_EECD);
1051 if (reg & EECD_EE_SIZE)
1052 sc->sc_ee_addrbits = 8;
1053 else
1054 sc->sc_ee_addrbits = 6;
1055 } else if (sc->sc_type <= WM_T_82547_2) {
1056 reg = CSR_READ(sc, WMREG_EECD);
1057 if (reg & EECD_EE_TYPE) {
1058 sc->sc_flags |= WM_F_EEPROM_SPI;
1059 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1060 } else
1061 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1062 } else {
1063 /* Assume everything else is SPI. */
1064 reg = CSR_READ(sc, WMREG_EECD);
1065 sc->sc_flags |= WM_F_EEPROM_SPI;
1066 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1067 }
1068 if (sc->sc_flags & WM_F_EEPROM_SPI)
1069 eetype = "SPI";
1070 else
1071 eetype = "MicroWire";
1072 aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1073 sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1074 sc->sc_ee_addrbits, eetype);
1075
1076 /*
1077 * Read the Ethernet address from the EEPROM.
1078 */
1079 if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1080 sizeof(myea) / sizeof(myea[0]), myea)) {
1081 aprint_error("%s: unable to read Ethernet address\n",
1082 sc->sc_dev.dv_xname);
1083 return;
1084 }
1085 enaddr[0] = myea[0] & 0xff;
1086 enaddr[1] = myea[0] >> 8;
1087 enaddr[2] = myea[1] & 0xff;
1088 enaddr[3] = myea[1] >> 8;
1089 enaddr[4] = myea[2] & 0xff;
1090 enaddr[5] = myea[2] >> 8;
1091
1092 /*
1093 * Toggle the LSB of the MAC address on the second port
1094 * of the i82546.
1095 */
1096 if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
1097 if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1098 enaddr[5] ^= 1;
1099 }
1100
1101 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1102 ether_sprintf(enaddr));
1103
1104 /*
1105 * Read the config info from the EEPROM, and set up various
1106 * bits in the control registers based on their contents.
1107 */
1108 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1109 aprint_error("%s: unable to read CFG1 from EEPROM\n",
1110 sc->sc_dev.dv_xname);
1111 return;
1112 }
1113 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1114 aprint_error("%s: unable to read CFG2 from EEPROM\n",
1115 sc->sc_dev.dv_xname);
1116 return;
1117 }
1118 if (sc->sc_type >= WM_T_82544) {
1119 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1120 aprint_error("%s: unable to read SWDPIN from EEPROM\n",
1121 sc->sc_dev.dv_xname);
1122 return;
1123 }
1124 }
1125
1126 if (cfg1 & EEPROM_CFG1_ILOS)
1127 sc->sc_ctrl |= CTRL_ILOS;
1128 if (sc->sc_type >= WM_T_82544) {
1129 sc->sc_ctrl |=
1130 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1131 CTRL_SWDPIO_SHIFT;
1132 sc->sc_ctrl |=
1133 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1134 CTRL_SWDPINS_SHIFT;
1135 } else {
1136 sc->sc_ctrl |=
1137 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1138 CTRL_SWDPIO_SHIFT;
1139 }
1140
1141 #if 0
1142 if (sc->sc_type >= WM_T_82544) {
1143 if (cfg1 & EEPROM_CFG1_IPS0)
1144 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1145 if (cfg1 & EEPROM_CFG1_IPS1)
1146 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1147 sc->sc_ctrl_ext |=
1148 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1149 CTRL_EXT_SWDPIO_SHIFT;
1150 sc->sc_ctrl_ext |=
1151 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1152 CTRL_EXT_SWDPINS_SHIFT;
1153 } else {
1154 sc->sc_ctrl_ext |=
1155 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1156 CTRL_EXT_SWDPIO_SHIFT;
1157 }
1158 #endif
1159
1160 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1161 #if 0
1162 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1163 #endif
1164
1165 /*
1166 * Set up some register offsets that are different between
1167 * the i82542 and the i82543 and later chips.
1168 */
1169 if (sc->sc_type < WM_T_82543) {
1170 sc->sc_rdt_reg = WMREG_OLD_RDT0;
1171 sc->sc_tdt_reg = WMREG_OLD_TDT;
1172 } else {
1173 sc->sc_rdt_reg = WMREG_RDT;
1174 sc->sc_tdt_reg = WMREG_TDT;
1175 }
1176
1177 /*
1178 * Determine if we're TBI or GMII mode, and initialize the
1179 * media structures accordingly.
1180 */
1181 if (sc->sc_type < WM_T_82543 ||
1182 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1183 if (wmp->wmp_flags & WMP_F_1000T)
1184 aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1185 "product!\n", sc->sc_dev.dv_xname);
1186 wm_tbi_mediainit(sc);
1187 } else {
1188 if (wmp->wmp_flags & WMP_F_1000X)
1189 aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1190 "product!\n", sc->sc_dev.dv_xname);
1191 wm_gmii_mediainit(sc);
1192 }
1193
1194 ifp = &sc->sc_ethercom.ec_if;
1195 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1196 ifp->if_softc = sc;
1197 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1198 ifp->if_ioctl = wm_ioctl;
1199 ifp->if_start = wm_start;
1200 ifp->if_watchdog = wm_watchdog;
1201 ifp->if_init = wm_init;
1202 ifp->if_stop = wm_stop;
1203 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1204 IFQ_SET_READY(&ifp->if_snd);
1205
1206 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1207
1208 /*
1209 * If we're a i82543 or greater, we can support VLANs.
1210 */
1211 if (sc->sc_type >= WM_T_82543)
1212 sc->sc_ethercom.ec_capabilities |=
1213 ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1214
1215 /*
1216 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
1217 * on i82543 and later.
1218 */
1219 if (sc->sc_type >= WM_T_82543)
1220 ifp->if_capabilities |=
1221 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
1222
1223 /*
1224 * If we're a i82544 or greater (except i82547), we can do
1225 * TCP segmentation offload.
1226 */
1227 if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547)
1228 ifp->if_capabilities |= IFCAP_TSOv4;
1229
1230 /*
1231 * Attach the interface.
1232 */
1233 if_attach(ifp);
1234 ether_ifattach(ifp, enaddr);
1235 #if NRND > 0
1236 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1237 RND_TYPE_NET, 0);
1238 #endif
1239
1240 #ifdef WM_EVENT_COUNTERS
1241 /* Attach event counters. */
1242 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1243 NULL, sc->sc_dev.dv_xname, "txsstall");
1244 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1245 NULL, sc->sc_dev.dv_xname, "txdstall");
1246 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1247 NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1248 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1249 NULL, sc->sc_dev.dv_xname, "txdw");
1250 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1251 NULL, sc->sc_dev.dv_xname, "txqe");
1252 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1253 NULL, sc->sc_dev.dv_xname, "rxintr");
1254 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1255 NULL, sc->sc_dev.dv_xname, "linkintr");
1256
1257 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1258 NULL, sc->sc_dev.dv_xname, "rxipsum");
1259 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1260 NULL, sc->sc_dev.dv_xname, "rxtusum");
1261 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1262 NULL, sc->sc_dev.dv_xname, "txipsum");
1263 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1264 NULL, sc->sc_dev.dv_xname, "txtusum");
1265
1266 evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
1267 NULL, sc->sc_dev.dv_xname, "txtso");
1268 evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
1269 NULL, sc->sc_dev.dv_xname, "txtsopain");
1270
1271 for (i = 0; i < WM_NTXSEGS; i++) {
1272 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1273 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1274 NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1275 }
1276
1277 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1278 NULL, sc->sc_dev.dv_xname, "txdrop");
1279
1280 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1281 NULL, sc->sc_dev.dv_xname, "tu");
1282
1283 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1284 NULL, sc->sc_dev.dv_xname, "tx_xoff");
1285 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1286 NULL, sc->sc_dev.dv_xname, "tx_xon");
1287 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1288 NULL, sc->sc_dev.dv_xname, "rx_xoff");
1289 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1290 NULL, sc->sc_dev.dv_xname, "rx_xon");
1291 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1292 NULL, sc->sc_dev.dv_xname, "rx_macctl");
1293 #endif /* WM_EVENT_COUNTERS */
1294
1295 /*
1296 * Make sure the interface is shutdown during reboot.
1297 */
1298 sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1299 if (sc->sc_sdhook == NULL)
1300 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1301 sc->sc_dev.dv_xname);
1302 return;
1303
1304 /*
1305 * Free any resources we've allocated during the failed attach
1306 * attempt. Do this in reverse order and fall through.
1307 */
1308 fail_5:
1309 for (i = 0; i < WM_NRXDESC; i++) {
1310 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1311 bus_dmamap_destroy(sc->sc_dmat,
1312 sc->sc_rxsoft[i].rxs_dmamap);
1313 }
1314 fail_4:
1315 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1316 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1317 bus_dmamap_destroy(sc->sc_dmat,
1318 sc->sc_txsoft[i].txs_dmamap);
1319 }
1320 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1321 fail_3:
1322 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1323 fail_2:
1324 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1325 cdata_size);
1326 fail_1:
1327 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1328 fail_0:
1329 return;
1330 }
1331
1332 /*
1333 * wm_shutdown:
1334 *
1335 * Make sure the interface is stopped at reboot time.
1336 */
1337 static void
1338 wm_shutdown(void *arg)
1339 {
1340 struct wm_softc *sc = arg;
1341
1342 wm_stop(&sc->sc_ethercom.ec_if, 1);
1343 }
1344
1345 /*
1346 * wm_tx_offload:
1347 *
1348 * Set up TCP/IP checksumming parameters for the
1349 * specified packet.
1350 */
1351 static int
1352 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1353 uint8_t *fieldsp)
1354 {
1355 struct mbuf *m0 = txs->txs_mbuf;
1356 struct livengood_tcpip_ctxdesc *t;
1357 uint32_t ipcs, tucs, cmd, cmdlen, seg;
1358 struct ether_header *eh;
1359 int offset, iphl;
1360 uint8_t fields;
1361
1362 /*
1363 * XXX It would be nice if the mbuf pkthdr had offset
1364 * fields for the protocol headers.
1365 */
1366
1367 eh = mtod(m0, struct ether_header *);
1368 switch (htons(eh->ether_type)) {
1369 case ETHERTYPE_IP:
1370 offset = ETHER_HDR_LEN;
1371 break;
1372
1373 case ETHERTYPE_VLAN:
1374 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1375 break;
1376
1377 default:
1378 /*
1379 * Don't support this protocol or encapsulation.
1380 */
1381 *fieldsp = 0;
1382 *cmdp = 0;
1383 return (0);
1384 }
1385
1386 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1387
1388 cmd = WTX_CMD_DEXT | WTX_DTYP_D;
1389 cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
1390 seg = 0;
1391 fields = 0;
1392
1393 if (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
1394 int hlen = offset + iphl;
1395 WM_EVCNT_INCR(&sc->sc_ev_txtso);
1396 if (__predict_false(m0->m_len <
1397 (hlen + sizeof(struct tcphdr)))) {
1398 /*
1399 * TCP/IP headers are not in the first mbuf; we need
1400 * to do this the slow and painful way. Let's just
1401 * hope this doesn't happen very often.
1402 */
1403 struct ip ip;
1404 struct tcphdr th;
1405
1406 WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
1407
1408 m_copydata(m0, offset, sizeof(ip), &ip);
1409 m_copydata(m0, hlen, sizeof(th), &th);
1410
1411 ip.ip_len = 0;
1412
1413 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
1414 sizeof(ip.ip_len), &ip.ip_len);
1415
1416 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1417 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1418
1419 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
1420 sizeof(th.th_sum), &th.th_sum);
1421
1422 hlen += th.th_off << 2;
1423 } else {
1424 /*
1425 * TCP/IP headers are in the first mbuf; we can do
1426 * this the easy way.
1427 */
1428 struct ip *ip =
1429 (struct ip *) (mtod(m0, caddr_t) + offset);
1430 struct tcphdr *th =
1431 (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
1432
1433 ip->ip_len = 0;
1434 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1435 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1436
1437 hlen += th->th_off << 2;
1438 }
1439
1440 cmd |= WTX_TCPIP_CMD_TSE;
1441 cmdlen |= WTX_TCPIP_CMD_TSE | WTX_TCPIP_CMD_IP |
1442 WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
1443 seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
1444 WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
1445 }
1446
1447 /*
1448 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1449 * offload feature, if we load the context descriptor, we
1450 * MUST provide valid values for IPCSS and TUCSS fields.
1451 */
1452
1453 ipcs = WTX_TCPIP_IPCSS(offset) |
1454 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1455 WTX_TCPIP_IPCSE(offset + iphl - 1);
1456 if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
1457 WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1458 fields |= WTX_IXSM;
1459 }
1460
1461 offset += iphl;
1462
1463 if (m0->m_pkthdr.csum_flags &
1464 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
1465 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1466 fields |= WTX_TXSM;
1467 tucs = WTX_TCPIP_TUCSS(offset) |
1468 WTX_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1469 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1470 } else {
1471 /* Just initialize it to a valid TCP context. */
1472 tucs = WTX_TCPIP_TUCSS(offset) |
1473 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1474 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1475 }
1476
1477 /* Fill in the context descriptor. */
1478 t = (struct livengood_tcpip_ctxdesc *)
1479 &sc->sc_txdescs[sc->sc_txnext];
1480 t->tcpip_ipcs = htole32(ipcs);
1481 t->tcpip_tucs = htole32(tucs);
1482 t->tcpip_cmdlen = htole32(cmdlen);
1483 t->tcpip_seg = htole32(seg);
1484 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1485
1486 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1487 txs->txs_ndesc++;
1488
1489 *cmdp = cmd;
1490 *fieldsp = fields;
1491
1492 return (0);
1493 }
1494
1495 static void
1496 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1497 {
1498 struct mbuf *m;
1499 int i;
1500
1501 log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1502 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1503 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1504 "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1505 m->m_data, m->m_len, m->m_flags);
1506 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1507 i, i == 1 ? "" : "s");
1508 }
1509
1510 /*
1511 * wm_82547_txfifo_stall:
1512 *
1513 * Callout used to wait for the 82547 Tx FIFO to drain,
1514 * reset the FIFO pointers, and restart packet transmission.
1515 */
1516 static void
1517 wm_82547_txfifo_stall(void *arg)
1518 {
1519 struct wm_softc *sc = arg;
1520 int s;
1521
1522 s = splnet();
1523
1524 if (sc->sc_txfifo_stall) {
1525 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1526 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1527 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1528 /*
1529 * Packets have drained. Stop transmitter, reset
1530 * FIFO pointers, restart transmitter, and kick
1531 * the packet queue.
1532 */
1533 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1534 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1535 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1536 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1537 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1538 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1539 CSR_WRITE(sc, WMREG_TCTL, tctl);
1540 CSR_WRITE_FLUSH(sc);
1541
1542 sc->sc_txfifo_head = 0;
1543 sc->sc_txfifo_stall = 0;
1544 wm_start(&sc->sc_ethercom.ec_if);
1545 } else {
1546 /*
1547 * Still waiting for packets to drain; try again in
1548 * another tick.
1549 */
1550 callout_schedule(&sc->sc_txfifo_ch, 1);
1551 }
1552 }
1553
1554 splx(s);
1555 }
1556
1557 /*
1558 * wm_82547_txfifo_bugchk:
1559 *
1560 * Check for bug condition in the 82547 Tx FIFO. We need to
1561 * prevent enqueueing a packet that would wrap around the end
1562 * if the Tx FIFO ring buffer, otherwise the chip will croak.
1563 *
1564 * We do this by checking the amount of space before the end
1565 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
1566 * the Tx FIFO, wait for all remaining packets to drain, reset
1567 * the internal FIFO pointers to the beginning, and restart
1568 * transmission on the interface.
1569 */
1570 #define WM_FIFO_HDR 0x10
1571 #define WM_82547_PAD_LEN 0x3e0
1572 static int
1573 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1574 {
1575 int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1576 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1577
1578 /* Just return if already stalled. */
1579 if (sc->sc_txfifo_stall)
1580 return (1);
1581
1582 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1583 /* Stall only occurs in half-duplex mode. */
1584 goto send_packet;
1585 }
1586
1587 if (len >= WM_82547_PAD_LEN + space) {
1588 sc->sc_txfifo_stall = 1;
1589 callout_schedule(&sc->sc_txfifo_ch, 1);
1590 return (1);
1591 }
1592
1593 send_packet:
1594 sc->sc_txfifo_head += len;
1595 if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1596 sc->sc_txfifo_head -= sc->sc_txfifo_size;
1597
1598 return (0);
1599 }
1600
1601 /*
1602 * wm_start: [ifnet interface function]
1603 *
1604 * Start packet transmission on the interface.
1605 */
1606 static void
1607 wm_start(struct ifnet *ifp)
1608 {
1609 struct wm_softc *sc = ifp->if_softc;
1610 struct mbuf *m0;
1611 #if 0 /* XXXJRT */
1612 struct m_tag *mtag;
1613 #endif
1614 struct wm_txsoft *txs;
1615 bus_dmamap_t dmamap;
1616 int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
1617 bus_addr_t curaddr;
1618 bus_size_t seglen, curlen;
1619 uint32_t cksumcmd;
1620 uint8_t cksumfields;
1621
1622 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1623 return;
1624
1625 /*
1626 * Remember the previous number of free descriptors.
1627 */
1628 ofree = sc->sc_txfree;
1629
1630 /*
1631 * Loop through the send queue, setting up transmit descriptors
1632 * until we drain the queue, or use up all available transmit
1633 * descriptors.
1634 */
1635 for (;;) {
1636 /* Grab a packet off the queue. */
1637 IFQ_POLL(&ifp->if_snd, m0);
1638 if (m0 == NULL)
1639 break;
1640
1641 DPRINTF(WM_DEBUG_TX,
1642 ("%s: TX: have packet to transmit: %p\n",
1643 sc->sc_dev.dv_xname, m0));
1644
1645 /* Get a work queue entry. */
1646 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1647 wm_txintr(sc);
1648 if (sc->sc_txsfree == 0) {
1649 DPRINTF(WM_DEBUG_TX,
1650 ("%s: TX: no free job descriptors\n",
1651 sc->sc_dev.dv_xname));
1652 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1653 break;
1654 }
1655 }
1656
1657 txs = &sc->sc_txsoft[sc->sc_txsnext];
1658 dmamap = txs->txs_dmamap;
1659
1660 use_tso = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1661
1662 /*
1663 * So says the Linux driver:
1664 * The controller does a simple calculation to make sure
1665 * there is enough room in the FIFO before initiating the
1666 * DMA for each buffer. The calc is:
1667 * 4 = ceil(buffer len / MSS)
1668 * To make sure we don't overrun the FIFO, adjust the max
1669 * buffer len if the MSS drops.
1670 */
1671 dmamap->dm_maxsegsz =
1672 (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
1673 ? m0->m_pkthdr.segsz << 2
1674 : WTX_MAX_LEN;
1675
1676 /*
1677 * Load the DMA map. If this fails, the packet either
1678 * didn't fit in the allotted number of segments, or we
1679 * were short on resources. For the too-many-segments
1680 * case, we simply report an error and drop the packet,
1681 * since we can't sanely copy a jumbo packet to a single
1682 * buffer.
1683 */
1684 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1685 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1686 if (error) {
1687 if (error == EFBIG) {
1688 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1689 log(LOG_ERR, "%s: Tx packet consumes too many "
1690 "DMA segments, dropping...\n",
1691 sc->sc_dev.dv_xname);
1692 IFQ_DEQUEUE(&ifp->if_snd, m0);
1693 wm_dump_mbuf_chain(sc, m0);
1694 m_freem(m0);
1695 continue;
1696 }
1697 /*
1698 * Short on resources, just stop for now.
1699 */
1700 DPRINTF(WM_DEBUG_TX,
1701 ("%s: TX: dmamap load failed: %d\n",
1702 sc->sc_dev.dv_xname, error));
1703 break;
1704 }
1705
1706 segs_needed = dmamap->dm_nsegs;
1707 if (use_tso) {
1708 /* For sentinel descriptor; see below. */
1709 segs_needed++;
1710 }
1711
1712 /*
1713 * Ensure we have enough descriptors free to describe
1714 * the packet. Note, we always reserve one descriptor
1715 * at the end of the ring due to the semantics of the
1716 * TDT register, plus one more in the event we need
1717 * to load offload context.
1718 */
1719 if (segs_needed > sc->sc_txfree - 2) {
1720 /*
1721 * Not enough free descriptors to transmit this
1722 * packet. We haven't committed anything yet,
1723 * so just unload the DMA map, put the packet
1724 * pack on the queue, and punt. Notify the upper
1725 * layer that there are no more slots left.
1726 */
1727 DPRINTF(WM_DEBUG_TX,
1728 ("%s: TX: need %d (%) descriptors, have %d\n",
1729 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1730 sc->sc_txfree - 1));
1731 ifp->if_flags |= IFF_OACTIVE;
1732 bus_dmamap_unload(sc->sc_dmat, dmamap);
1733 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1734 break;
1735 }
1736
1737 /*
1738 * Check for 82547 Tx FIFO bug. We need to do this
1739 * once we know we can transmit the packet, since we
1740 * do some internal FIFO space accounting here.
1741 */
1742 if (sc->sc_type == WM_T_82547 &&
1743 wm_82547_txfifo_bugchk(sc, m0)) {
1744 DPRINTF(WM_DEBUG_TX,
1745 ("%s: TX: 82547 Tx FIFO bug detected\n",
1746 sc->sc_dev.dv_xname));
1747 ifp->if_flags |= IFF_OACTIVE;
1748 bus_dmamap_unload(sc->sc_dmat, dmamap);
1749 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1750 break;
1751 }
1752
1753 IFQ_DEQUEUE(&ifp->if_snd, m0);
1754
1755 /*
1756 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1757 */
1758
1759 DPRINTF(WM_DEBUG_TX,
1760 ("%s: TX: packet has %d (%d) DMA segments\n",
1761 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1762
1763 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1764
1765 /*
1766 * Store a pointer to the packet so that we can free it
1767 * later.
1768 *
1769 * Initially, we consider the number of descriptors the
1770 * packet uses the number of DMA segments. This may be
1771 * incremented by 1 if we do checksum offload (a descriptor
1772 * is used to set the checksum context).
1773 */
1774 txs->txs_mbuf = m0;
1775 txs->txs_firstdesc = sc->sc_txnext;
1776 txs->txs_ndesc = segs_needed;
1777
1778 /* Set up offload parameters for this packet. */
1779 if (m0->m_pkthdr.csum_flags &
1780 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1781 if (wm_tx_offload(sc, txs, &cksumcmd,
1782 &cksumfields) != 0) {
1783 /* Error message already displayed. */
1784 bus_dmamap_unload(sc->sc_dmat, dmamap);
1785 continue;
1786 }
1787 } else {
1788 cksumcmd = 0;
1789 cksumfields = 0;
1790 }
1791
1792 cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
1793
1794 /* Sync the DMA map. */
1795 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1796 BUS_DMASYNC_PREWRITE);
1797
1798 /*
1799 * Initialize the transmit descriptor.
1800 */
1801 for (nexttx = sc->sc_txnext, seg = 0;
1802 seg < dmamap->dm_nsegs; seg++) {
1803 for (seglen = dmamap->dm_segs[seg].ds_len,
1804 curaddr = dmamap->dm_segs[seg].ds_addr;
1805 seglen != 0;
1806 curaddr += curlen, seglen -= curlen,
1807 nexttx = WM_NEXTTX(sc, nexttx)) {
1808 curlen = seglen;
1809
1810 /*
1811 * So says the Linux driver:
1812 * Work around for premature descriptor
1813 * write-backs in TSO mode. Append a
1814 * 4-byte sentinel descriptor.
1815 */
1816 if (use_tso &&
1817 seg == dmamap->dm_nsegs - 1 &&
1818 curlen > 8)
1819 curlen -= 4;
1820
1821 wm_set_dma_addr(
1822 &sc->sc_txdescs[nexttx].wtx_addr,
1823 curaddr);
1824 sc->sc_txdescs[nexttx].wtx_cmdlen =
1825 htole32(cksumcmd | curlen);
1826 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
1827 0;
1828 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1829 cksumfields;
1830 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1831 lasttx = nexttx;
1832
1833 DPRINTF(WM_DEBUG_TX,
1834 ("%s: TX: desc %d: low 0x%08x, "
1835 "len 0x%04x\n",
1836 sc->sc_dev.dv_xname, nexttx,
1837 curaddr & 0xffffffffU, curlen, curlen));
1838 }
1839 }
1840
1841 KASSERT(lasttx != -1);
1842
1843 /*
1844 * Set up the command byte on the last descriptor of
1845 * the packet. If we're in the interrupt delay window,
1846 * delay the interrupt.
1847 */
1848 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1849 htole32(WTX_CMD_EOP | WTX_CMD_RS);
1850
1851 #if 0 /* XXXJRT */
1852 /*
1853 * If VLANs are enabled and the packet has a VLAN tag, set
1854 * up the descriptor to encapsulate the packet for us.
1855 *
1856 * This is only valid on the last descriptor of the packet.
1857 */
1858 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1859 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1860 htole32(WTX_CMD_VLE);
1861 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
1862 = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
1863 }
1864 #endif /* XXXJRT */
1865
1866 txs->txs_lastdesc = lasttx;
1867
1868 DPRINTF(WM_DEBUG_TX,
1869 ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1870 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
1871
1872 /* Sync the descriptors we're using. */
1873 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
1874 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1875
1876 /* Give the packet to the chip. */
1877 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1878
1879 DPRINTF(WM_DEBUG_TX,
1880 ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1881
1882 DPRINTF(WM_DEBUG_TX,
1883 ("%s: TX: finished transmitting packet, job %d\n",
1884 sc->sc_dev.dv_xname, sc->sc_txsnext));
1885
1886 /* Advance the tx pointer. */
1887 sc->sc_txfree -= txs->txs_ndesc;
1888 sc->sc_txnext = nexttx;
1889
1890 sc->sc_txsfree--;
1891 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
1892
1893 #if NBPFILTER > 0
1894 /* Pass the packet to any BPF listeners. */
1895 if (ifp->if_bpf)
1896 bpf_mtap(ifp->if_bpf, m0);
1897 #endif /* NBPFILTER > 0 */
1898 }
1899
1900 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1901 /* No more slots; notify upper layer. */
1902 ifp->if_flags |= IFF_OACTIVE;
1903 }
1904
1905 if (sc->sc_txfree != ofree) {
1906 /* Set a watchdog timer in case the chip flakes out. */
1907 ifp->if_timer = 5;
1908 }
1909 }
1910
1911 /*
1912 * wm_watchdog: [ifnet interface function]
1913 *
1914 * Watchdog timer handler.
1915 */
1916 static void
1917 wm_watchdog(struct ifnet *ifp)
1918 {
1919 struct wm_softc *sc = ifp->if_softc;
1920
1921 /*
1922 * Since we're using delayed interrupts, sweep up
1923 * before we report an error.
1924 */
1925 wm_txintr(sc);
1926
1927 if (sc->sc_txfree != WM_NTXDESC(sc)) {
1928 log(LOG_ERR,
1929 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1930 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1931 sc->sc_txnext);
1932 ifp->if_oerrors++;
1933
1934 /* Reset the interface. */
1935 (void) wm_init(ifp);
1936 }
1937
1938 /* Try to get more packets going. */
1939 wm_start(ifp);
1940 }
1941
1942 /*
1943 * wm_ioctl: [ifnet interface function]
1944 *
1945 * Handle control requests from the operator.
1946 */
1947 static int
1948 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1949 {
1950 struct wm_softc *sc = ifp->if_softc;
1951 struct ifreq *ifr = (struct ifreq *) data;
1952 int s, error;
1953
1954 s = splnet();
1955
1956 switch (cmd) {
1957 case SIOCSIFMEDIA:
1958 case SIOCGIFMEDIA:
1959 /* Flow control requires full-duplex mode. */
1960 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1961 (ifr->ifr_media & IFM_FDX) == 0)
1962 ifr->ifr_media &= ~IFM_ETH_FMASK;
1963 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1964 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1965 /* We can do both TXPAUSE and RXPAUSE. */
1966 ifr->ifr_media |=
1967 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1968 }
1969 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1970 }
1971 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1972 break;
1973 default:
1974 error = ether_ioctl(ifp, cmd, data);
1975 if (error == ENETRESET) {
1976 /*
1977 * Multicast list has changed; set the hardware filter
1978 * accordingly.
1979 */
1980 if (ifp->if_flags & IFF_RUNNING)
1981 wm_set_filter(sc);
1982 error = 0;
1983 }
1984 break;
1985 }
1986
1987 /* Try to get more packets going. */
1988 wm_start(ifp);
1989
1990 splx(s);
1991 return (error);
1992 }
1993
1994 /*
1995 * wm_intr:
1996 *
1997 * Interrupt service routine.
1998 */
1999 static int
2000 wm_intr(void *arg)
2001 {
2002 struct wm_softc *sc = arg;
2003 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2004 uint32_t icr;
2005 int wantinit, handled = 0;
2006
2007 for (wantinit = 0; wantinit == 0;) {
2008 icr = CSR_READ(sc, WMREG_ICR);
2009 if ((icr & sc->sc_icr) == 0)
2010 break;
2011
2012 #if 0 /*NRND > 0*/
2013 if (RND_ENABLED(&sc->rnd_source))
2014 rnd_add_uint32(&sc->rnd_source, icr);
2015 #endif
2016
2017 handled = 1;
2018
2019 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2020 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
2021 DPRINTF(WM_DEBUG_RX,
2022 ("%s: RX: got Rx intr 0x%08x\n",
2023 sc->sc_dev.dv_xname,
2024 icr & (ICR_RXDMT0|ICR_RXT0)));
2025 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
2026 }
2027 #endif
2028 wm_rxintr(sc);
2029
2030 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2031 if (icr & ICR_TXDW) {
2032 DPRINTF(WM_DEBUG_TX,
2033 ("%s: TX: got TXDW interrupt\n",
2034 sc->sc_dev.dv_xname));
2035 WM_EVCNT_INCR(&sc->sc_ev_txdw);
2036 }
2037 #endif
2038 wm_txintr(sc);
2039
2040 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
2041 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
2042 wm_linkintr(sc, icr);
2043 }
2044
2045 if (icr & ICR_RXO) {
2046 log(LOG_WARNING, "%s: Receive overrun\n",
2047 sc->sc_dev.dv_xname);
2048 wantinit = 1;
2049 }
2050 }
2051
2052 if (handled) {
2053 if (wantinit)
2054 wm_init(ifp);
2055
2056 /* Try to get more packets going. */
2057 wm_start(ifp);
2058 }
2059
2060 return (handled);
2061 }
2062
2063 /*
2064 * wm_txintr:
2065 *
2066 * Helper; handle transmit interrupts.
2067 */
2068 static void
2069 wm_txintr(struct wm_softc *sc)
2070 {
2071 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2072 struct wm_txsoft *txs;
2073 uint8_t status;
2074 int i;
2075
2076 ifp->if_flags &= ~IFF_OACTIVE;
2077
2078 /*
2079 * Go through the Tx list and free mbufs for those
2080 * frames which have been transmitted.
2081 */
2082 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2083 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2084 txs = &sc->sc_txsoft[i];
2085
2086 DPRINTF(WM_DEBUG_TX,
2087 ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2088
2089 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2090 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2091
2092 status =
2093 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2094 if ((status & WTX_ST_DD) == 0) {
2095 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2096 BUS_DMASYNC_PREREAD);
2097 break;
2098 }
2099
2100 DPRINTF(WM_DEBUG_TX,
2101 ("%s: TX: job %d done: descs %d..%d\n",
2102 sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2103 txs->txs_lastdesc));
2104
2105 /*
2106 * XXX We should probably be using the statistics
2107 * XXX registers, but I don't know if they exist
2108 * XXX on chips before the i82544.
2109 */
2110
2111 #ifdef WM_EVENT_COUNTERS
2112 if (status & WTX_ST_TU)
2113 WM_EVCNT_INCR(&sc->sc_ev_tu);
2114 #endif /* WM_EVENT_COUNTERS */
2115
2116 if (status & (WTX_ST_EC|WTX_ST_LC)) {
2117 ifp->if_oerrors++;
2118 if (status & WTX_ST_LC)
2119 log(LOG_WARNING, "%s: late collision\n",
2120 sc->sc_dev.dv_xname);
2121 else if (status & WTX_ST_EC) {
2122 ifp->if_collisions += 16;
2123 log(LOG_WARNING, "%s: excessive collisions\n",
2124 sc->sc_dev.dv_xname);
2125 }
2126 } else
2127 ifp->if_opackets++;
2128
2129 sc->sc_txfree += txs->txs_ndesc;
2130 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2131 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2132 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2133 m_freem(txs->txs_mbuf);
2134 txs->txs_mbuf = NULL;
2135 }
2136
2137 /* Update the dirty transmit buffer pointer. */
2138 sc->sc_txsdirty = i;
2139 DPRINTF(WM_DEBUG_TX,
2140 ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2141
2142 /*
2143 * If there are no more pending transmissions, cancel the watchdog
2144 * timer.
2145 */
2146 if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2147 ifp->if_timer = 0;
2148 }
2149
2150 /*
2151 * wm_rxintr:
2152 *
2153 * Helper; handle receive interrupts.
2154 */
2155 static void
2156 wm_rxintr(struct wm_softc *sc)
2157 {
2158 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2159 struct wm_rxsoft *rxs;
2160 struct mbuf *m;
2161 int i, len;
2162 uint8_t status, errors;
2163
2164 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2165 rxs = &sc->sc_rxsoft[i];
2166
2167 DPRINTF(WM_DEBUG_RX,
2168 ("%s: RX: checking descriptor %d\n",
2169 sc->sc_dev.dv_xname, i));
2170
2171 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2172
2173 status = sc->sc_rxdescs[i].wrx_status;
2174 errors = sc->sc_rxdescs[i].wrx_errors;
2175 len = le16toh(sc->sc_rxdescs[i].wrx_len);
2176
2177 if ((status & WRX_ST_DD) == 0) {
2178 /*
2179 * We have processed all of the receive descriptors.
2180 */
2181 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2182 break;
2183 }
2184
2185 if (__predict_false(sc->sc_rxdiscard)) {
2186 DPRINTF(WM_DEBUG_RX,
2187 ("%s: RX: discarding contents of descriptor %d\n",
2188 sc->sc_dev.dv_xname, i));
2189 WM_INIT_RXDESC(sc, i);
2190 if (status & WRX_ST_EOP) {
2191 /* Reset our state. */
2192 DPRINTF(WM_DEBUG_RX,
2193 ("%s: RX: resetting rxdiscard -> 0\n",
2194 sc->sc_dev.dv_xname));
2195 sc->sc_rxdiscard = 0;
2196 }
2197 continue;
2198 }
2199
2200 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2201 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2202
2203 m = rxs->rxs_mbuf;
2204
2205 /*
2206 * Add a new receive buffer to the ring.
2207 */
2208 if (wm_add_rxbuf(sc, i) != 0) {
2209 /*
2210 * Failed, throw away what we've done so
2211 * far, and discard the rest of the packet.
2212 */
2213 ifp->if_ierrors++;
2214 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2215 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2216 WM_INIT_RXDESC(sc, i);
2217 if ((status & WRX_ST_EOP) == 0)
2218 sc->sc_rxdiscard = 1;
2219 if (sc->sc_rxhead != NULL)
2220 m_freem(sc->sc_rxhead);
2221 WM_RXCHAIN_RESET(sc);
2222 DPRINTF(WM_DEBUG_RX,
2223 ("%s: RX: Rx buffer allocation failed, "
2224 "dropping packet%s\n", sc->sc_dev.dv_xname,
2225 sc->sc_rxdiscard ? " (discard)" : ""));
2226 continue;
2227 }
2228
2229 WM_RXCHAIN_LINK(sc, m);
2230
2231 m->m_len = len;
2232
2233 DPRINTF(WM_DEBUG_RX,
2234 ("%s: RX: buffer at %p len %d\n",
2235 sc->sc_dev.dv_xname, m->m_data, len));
2236
2237 /*
2238 * If this is not the end of the packet, keep
2239 * looking.
2240 */
2241 if ((status & WRX_ST_EOP) == 0) {
2242 sc->sc_rxlen += len;
2243 DPRINTF(WM_DEBUG_RX,
2244 ("%s: RX: not yet EOP, rxlen -> %d\n",
2245 sc->sc_dev.dv_xname, sc->sc_rxlen));
2246 continue;
2247 }
2248
2249 /*
2250 * Okay, we have the entire packet now. The chip is
2251 * configured to include the FCS (not all chips can
2252 * be configured to strip it), so we need to trim it.
2253 */
2254 m->m_len -= ETHER_CRC_LEN;
2255
2256 *sc->sc_rxtailp = NULL;
2257 m = sc->sc_rxhead;
2258 len = m->m_len + sc->sc_rxlen;
2259
2260 WM_RXCHAIN_RESET(sc);
2261
2262 DPRINTF(WM_DEBUG_RX,
2263 ("%s: RX: have entire packet, len -> %d\n",
2264 sc->sc_dev.dv_xname, len));
2265
2266 /*
2267 * If an error occurred, update stats and drop the packet.
2268 */
2269 if (errors &
2270 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2271 ifp->if_ierrors++;
2272 if (errors & WRX_ER_SE)
2273 log(LOG_WARNING, "%s: symbol error\n",
2274 sc->sc_dev.dv_xname);
2275 else if (errors & WRX_ER_SEQ)
2276 log(LOG_WARNING, "%s: receive sequence error\n",
2277 sc->sc_dev.dv_xname);
2278 else if (errors & WRX_ER_CE)
2279 log(LOG_WARNING, "%s: CRC error\n",
2280 sc->sc_dev.dv_xname);
2281 m_freem(m);
2282 continue;
2283 }
2284
2285 /*
2286 * No errors. Receive the packet.
2287 */
2288 m->m_pkthdr.rcvif = ifp;
2289 m->m_pkthdr.len = len;
2290
2291 #if 0 /* XXXJRT */
2292 /*
2293 * If VLANs are enabled, VLAN packets have been unwrapped
2294 * for us. Associate the tag with the packet.
2295 */
2296 if ((status & WRX_ST_VP) != 0) {
2297 VLAN_INPUT_TAG(ifp, m,
2298 le16toh(sc->sc_rxdescs[i].wrx_special,
2299 continue);
2300 }
2301 #endif /* XXXJRT */
2302
2303 /*
2304 * Set up checksum info for this packet.
2305 */
2306 if (status & WRX_ST_IPCS) {
2307 WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2308 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2309 if (errors & WRX_ER_IPE)
2310 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2311 }
2312 if (status & WRX_ST_TCPCS) {
2313 /*
2314 * Note: we don't know if this was TCP or UDP,
2315 * so we just set both bits, and expect the
2316 * upper layers to deal.
2317 */
2318 WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2319 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
2320 if (errors & WRX_ER_TCPE)
2321 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
2322 }
2323
2324 ifp->if_ipackets++;
2325
2326 #if NBPFILTER > 0
2327 /* Pass this up to any BPF listeners. */
2328 if (ifp->if_bpf)
2329 bpf_mtap(ifp->if_bpf, m);
2330 #endif /* NBPFILTER > 0 */
2331
2332 /* Pass it on. */
2333 (*ifp->if_input)(ifp, m);
2334 }
2335
2336 /* Update the receive pointer. */
2337 sc->sc_rxptr = i;
2338
2339 DPRINTF(WM_DEBUG_RX,
2340 ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2341 }
2342
2343 /*
2344 * wm_linkintr:
2345 *
2346 * Helper; handle link interrupts.
2347 */
2348 static void
2349 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2350 {
2351 uint32_t status;
2352
2353 /*
2354 * If we get a link status interrupt on a 1000BASE-T
2355 * device, just fall into the normal MII tick path.
2356 */
2357 if (sc->sc_flags & WM_F_HAS_MII) {
2358 if (icr & ICR_LSC) {
2359 DPRINTF(WM_DEBUG_LINK,
2360 ("%s: LINK: LSC -> mii_tick\n",
2361 sc->sc_dev.dv_xname));
2362 mii_tick(&sc->sc_mii);
2363 } else if (icr & ICR_RXSEQ) {
2364 DPRINTF(WM_DEBUG_LINK,
2365 ("%s: LINK Receive sequence error\n",
2366 sc->sc_dev.dv_xname));
2367 }
2368 return;
2369 }
2370
2371 /*
2372 * If we are now receiving /C/, check for link again in
2373 * a couple of link clock ticks.
2374 */
2375 if (icr & ICR_RXCFG) {
2376 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2377 sc->sc_dev.dv_xname));
2378 sc->sc_tbi_anstate = 2;
2379 }
2380
2381 if (icr & ICR_LSC) {
2382 status = CSR_READ(sc, WMREG_STATUS);
2383 if (status & STATUS_LU) {
2384 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2385 sc->sc_dev.dv_xname,
2386 (status & STATUS_FD) ? "FDX" : "HDX"));
2387 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2388 sc->sc_fcrtl &= ~FCRTL_XONE;
2389 if (status & STATUS_FD)
2390 sc->sc_tctl |=
2391 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2392 else
2393 sc->sc_tctl |=
2394 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2395 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2396 sc->sc_fcrtl |= FCRTL_XONE;
2397 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2398 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2399 WMREG_OLD_FCRTL : WMREG_FCRTL,
2400 sc->sc_fcrtl);
2401 sc->sc_tbi_linkup = 1;
2402 } else {
2403 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2404 sc->sc_dev.dv_xname));
2405 sc->sc_tbi_linkup = 0;
2406 }
2407 sc->sc_tbi_anstate = 2;
2408 wm_tbi_set_linkled(sc);
2409 } else if (icr & ICR_RXSEQ) {
2410 DPRINTF(WM_DEBUG_LINK,
2411 ("%s: LINK: Receive sequence error\n",
2412 sc->sc_dev.dv_xname));
2413 }
2414 }
2415
2416 /*
2417 * wm_tick:
2418 *
2419 * One second timer, used to check link status, sweep up
2420 * completed transmit jobs, etc.
2421 */
2422 static void
2423 wm_tick(void *arg)
2424 {
2425 struct wm_softc *sc = arg;
2426 int s;
2427
2428 s = splnet();
2429
2430 if (sc->sc_type >= WM_T_82542_2_1) {
2431 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2432 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2433 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2434 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2435 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2436 }
2437
2438 if (sc->sc_flags & WM_F_HAS_MII)
2439 mii_tick(&sc->sc_mii);
2440 else
2441 wm_tbi_check_link(sc);
2442
2443 splx(s);
2444
2445 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2446 }
2447
2448 /*
2449 * wm_reset:
2450 *
2451 * Reset the i82542 chip.
2452 */
2453 static void
2454 wm_reset(struct wm_softc *sc)
2455 {
2456 int i;
2457
2458 /*
2459 * Allocate on-chip memory according to the MTU size.
2460 * The Packet Buffer Allocation register must be written
2461 * before the chip is reset.
2462 */
2463 if (sc->sc_type < WM_T_82547) {
2464 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2465 PBA_40K : PBA_48K;
2466 } else {
2467 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2468 PBA_22K : PBA_30K;
2469 sc->sc_txfifo_head = 0;
2470 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2471 sc->sc_txfifo_size =
2472 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2473 sc->sc_txfifo_stall = 0;
2474 }
2475 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2476
2477 switch (sc->sc_type) {
2478 case WM_T_82544:
2479 case WM_T_82540:
2480 case WM_T_82545:
2481 case WM_T_82546:
2482 case WM_T_82541:
2483 case WM_T_82541_2:
2484 /*
2485 * On some chipsets, a reset through a memory-mapped write
2486 * cycle can cause the chip to reset before completing the
2487 * write cycle. This causes major headache that can be
2488 * avoided by issuing the reset via indirect register writes
2489 * through I/O space.
2490 *
2491 * So, if we successfully mapped the I/O BAR at attach time,
2492 * use that. Otherwise, try our luck with a memory-mapped
2493 * reset.
2494 */
2495 if (sc->sc_flags & WM_F_IOH_VALID)
2496 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2497 else
2498 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2499 break;
2500
2501 case WM_T_82545_3:
2502 case WM_T_82546_3:
2503 /* Use the shadow control register on these chips. */
2504 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2505 break;
2506
2507 default:
2508 /* Everything else can safely use the documented method. */
2509 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2510 break;
2511 }
2512 delay(10000);
2513
2514 for (i = 0; i < 1000; i++) {
2515 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2516 return;
2517 delay(20);
2518 }
2519
2520 if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2521 log(LOG_ERR, "%s: reset failed to complete\n",
2522 sc->sc_dev.dv_xname);
2523 }
2524
2525 /*
2526 * wm_init: [ifnet interface function]
2527 *
2528 * Initialize the interface. Must be called at splnet().
2529 */
2530 static int
2531 wm_init(struct ifnet *ifp)
2532 {
2533 struct wm_softc *sc = ifp->if_softc;
2534 struct wm_rxsoft *rxs;
2535 int i, error = 0;
2536 uint32_t reg;
2537
2538 /*
2539 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2540 * There is a small but measurable benefit to avoiding the adjusment
2541 * of the descriptor so that the headers are aligned, for normal mtu,
2542 * on such platforms. One possibility is that the DMA itself is
2543 * slightly more efficient if the front of the entire packet (instead
2544 * of the front of the headers) is aligned.
2545 *
2546 * Note we must always set align_tweak to 0 if we are using
2547 * jumbo frames.
2548 */
2549 #ifdef __NO_STRICT_ALIGNMENT
2550 sc->sc_align_tweak = 0;
2551 #else
2552 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2553 sc->sc_align_tweak = 0;
2554 else
2555 sc->sc_align_tweak = 2;
2556 #endif /* __NO_STRICT_ALIGNMENT */
2557
2558 /* Cancel any pending I/O. */
2559 wm_stop(ifp, 0);
2560
2561 /* Reset the chip to a known state. */
2562 wm_reset(sc);
2563
2564 /* Initialize the transmit descriptor ring. */
2565 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2566 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2567 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2568 sc->sc_txfree = WM_NTXDESC(sc);
2569 sc->sc_txnext = 0;
2570
2571 if (sc->sc_type < WM_T_82543) {
2572 CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2573 CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2574 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2575 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2576 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2577 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2578 } else {
2579 CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2580 CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2581 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2582 CSR_WRITE(sc, WMREG_TDH, 0);
2583 CSR_WRITE(sc, WMREG_TDT, 0);
2584 CSR_WRITE(sc, WMREG_TIDV, 64);
2585 CSR_WRITE(sc, WMREG_TADV, 128);
2586
2587 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2588 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2589 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2590 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2591 }
2592 CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2593 CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2594
2595 /* Initialize the transmit job descriptors. */
2596 for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2597 sc->sc_txsoft[i].txs_mbuf = NULL;
2598 sc->sc_txsfree = WM_TXQUEUELEN(sc);
2599 sc->sc_txsnext = 0;
2600 sc->sc_txsdirty = 0;
2601
2602 /*
2603 * Initialize the receive descriptor and receive job
2604 * descriptor rings.
2605 */
2606 if (sc->sc_type < WM_T_82543) {
2607 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2608 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2609 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2610 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2611 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2612 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2613
2614 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2615 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2616 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2617 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2618 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2619 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2620 } else {
2621 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2622 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2623 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2624 CSR_WRITE(sc, WMREG_RDH, 0);
2625 CSR_WRITE(sc, WMREG_RDT, 0);
2626 CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
2627 CSR_WRITE(sc, WMREG_RADV, 128);
2628 }
2629 for (i = 0; i < WM_NRXDESC; i++) {
2630 rxs = &sc->sc_rxsoft[i];
2631 if (rxs->rxs_mbuf == NULL) {
2632 if ((error = wm_add_rxbuf(sc, i)) != 0) {
2633 log(LOG_ERR, "%s: unable to allocate or map rx "
2634 "buffer %d, error = %d\n",
2635 sc->sc_dev.dv_xname, i, error);
2636 /*
2637 * XXX Should attempt to run with fewer receive
2638 * XXX buffers instead of just failing.
2639 */
2640 wm_rxdrain(sc);
2641 goto out;
2642 }
2643 } else
2644 WM_INIT_RXDESC(sc, i);
2645 }
2646 sc->sc_rxptr = 0;
2647 sc->sc_rxdiscard = 0;
2648 WM_RXCHAIN_RESET(sc);
2649
2650 /*
2651 * Clear out the VLAN table -- we don't use it (yet).
2652 */
2653 CSR_WRITE(sc, WMREG_VET, 0);
2654 for (i = 0; i < WM_VLAN_TABSIZE; i++)
2655 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2656
2657 /*
2658 * Set up flow-control parameters.
2659 *
2660 * XXX Values could probably stand some tuning.
2661 */
2662 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2663 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2664 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2665
2666 sc->sc_fcrtl = FCRTL_DFLT;
2667 if (sc->sc_type < WM_T_82543) {
2668 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2669 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2670 } else {
2671 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2672 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2673 }
2674 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2675
2676 #if 0 /* XXXJRT */
2677 /* Deal with VLAN enables. */
2678 if (VLAN_ATTACHED(&sc->sc_ethercom))
2679 sc->sc_ctrl |= CTRL_VME;
2680 else
2681 #endif /* XXXJRT */
2682 sc->sc_ctrl &= ~CTRL_VME;
2683
2684 /* Write the control registers. */
2685 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2686 #if 0
2687 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2688 #endif
2689
2690 /*
2691 * Set up checksum offload parameters.
2692 */
2693 reg = CSR_READ(sc, WMREG_RXCSUM);
2694 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
2695 reg |= RXCSUM_IPOFL;
2696 else
2697 reg &= ~RXCSUM_IPOFL;
2698 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
2699 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2700 else {
2701 reg &= ~RXCSUM_TUOFL;
2702 if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
2703 reg &= ~RXCSUM_IPOFL;
2704 }
2705 CSR_WRITE(sc, WMREG_RXCSUM, reg);
2706
2707 /*
2708 * Set up the interrupt registers.
2709 */
2710 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2711 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2712 ICR_RXO | ICR_RXT0;
2713 if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2714 sc->sc_icr |= ICR_RXCFG;
2715 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2716
2717 /* Set up the inter-packet gap. */
2718 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2719
2720 if (sc->sc_type >= WM_T_82543) {
2721 /* Set up the interrupt throttling register (units of 256ns) */
2722 sc->sc_itr = 1000000000 / (7000 * 256);
2723 CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
2724 }
2725
2726 #if 0 /* XXXJRT */
2727 /* Set the VLAN ethernetype. */
2728 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2729 #endif
2730
2731 /*
2732 * Set up the transmit control register; we start out with
2733 * a collision distance suitable for FDX, but update it whe
2734 * we resolve the media type.
2735 */
2736 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2737 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2738 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2739
2740 /* Set the media. */
2741 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2742
2743 /*
2744 * Set up the receive control register; we actually program
2745 * the register when we set the receive filter. Use multicast
2746 * address offset type 0.
2747 *
2748 * Only the i82544 has the ability to strip the incoming
2749 * CRC, so we don't enable that feature.
2750 */
2751 sc->sc_mchash_type = 0;
2752 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
2753 RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2754
2755 if(MCLBYTES == 2048) {
2756 sc->sc_rctl |= RCTL_2k;
2757 } else {
2758 if(sc->sc_type >= WM_T_82543) {
2759 switch(MCLBYTES) {
2760 case 4096:
2761 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2762 break;
2763 case 8192:
2764 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2765 break;
2766 case 16384:
2767 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2768 break;
2769 default:
2770 panic("wm_init: MCLBYTES %d unsupported",
2771 MCLBYTES);
2772 break;
2773 }
2774 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
2775 }
2776
2777 /* Set the receive filter. */
2778 wm_set_filter(sc);
2779
2780 /* Start the one second link check clock. */
2781 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2782
2783 /* ...all done! */
2784 ifp->if_flags |= IFF_RUNNING;
2785 ifp->if_flags &= ~IFF_OACTIVE;
2786
2787 out:
2788 if (error)
2789 log(LOG_ERR, "%s: interface not running\n",
2790 sc->sc_dev.dv_xname);
2791 return (error);
2792 }
2793
2794 /*
2795 * wm_rxdrain:
2796 *
2797 * Drain the receive queue.
2798 */
2799 static void
2800 wm_rxdrain(struct wm_softc *sc)
2801 {
2802 struct wm_rxsoft *rxs;
2803 int i;
2804
2805 for (i = 0; i < WM_NRXDESC; i++) {
2806 rxs = &sc->sc_rxsoft[i];
2807 if (rxs->rxs_mbuf != NULL) {
2808 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2809 m_freem(rxs->rxs_mbuf);
2810 rxs->rxs_mbuf = NULL;
2811 }
2812 }
2813 }
2814
2815 /*
2816 * wm_stop: [ifnet interface function]
2817 *
2818 * Stop transmission on the interface.
2819 */
2820 static void
2821 wm_stop(struct ifnet *ifp, int disable)
2822 {
2823 struct wm_softc *sc = ifp->if_softc;
2824 struct wm_txsoft *txs;
2825 int i;
2826
2827 /* Stop the one second clock. */
2828 callout_stop(&sc->sc_tick_ch);
2829
2830 /* Stop the 82547 Tx FIFO stall check timer. */
2831 if (sc->sc_type == WM_T_82547)
2832 callout_stop(&sc->sc_txfifo_ch);
2833
2834 if (sc->sc_flags & WM_F_HAS_MII) {
2835 /* Down the MII. */
2836 mii_down(&sc->sc_mii);
2837 }
2838
2839 /* Stop the transmit and receive processes. */
2840 CSR_WRITE(sc, WMREG_TCTL, 0);
2841 CSR_WRITE(sc, WMREG_RCTL, 0);
2842
2843 /* Release any queued transmit buffers. */
2844 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2845 txs = &sc->sc_txsoft[i];
2846 if (txs->txs_mbuf != NULL) {
2847 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2848 m_freem(txs->txs_mbuf);
2849 txs->txs_mbuf = NULL;
2850 }
2851 }
2852
2853 if (disable)
2854 wm_rxdrain(sc);
2855
2856 /* Mark the interface as down and cancel the watchdog timer. */
2857 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2858 ifp->if_timer = 0;
2859 }
2860
2861 /*
2862 * wm_acquire_eeprom:
2863 *
2864 * Perform the EEPROM handshake required on some chips.
2865 */
2866 static int
2867 wm_acquire_eeprom(struct wm_softc *sc)
2868 {
2869 uint32_t reg;
2870 int x;
2871
2872 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2873 reg = CSR_READ(sc, WMREG_EECD);
2874
2875 /* Request EEPROM access. */
2876 reg |= EECD_EE_REQ;
2877 CSR_WRITE(sc, WMREG_EECD, reg);
2878
2879 /* ..and wait for it to be granted. */
2880 for (x = 0; x < 100; x++) {
2881 reg = CSR_READ(sc, WMREG_EECD);
2882 if (reg & EECD_EE_GNT)
2883 break;
2884 delay(5);
2885 }
2886 if ((reg & EECD_EE_GNT) == 0) {
2887 aprint_error("%s: could not acquire EEPROM GNT\n",
2888 sc->sc_dev.dv_xname);
2889 reg &= ~EECD_EE_REQ;
2890 CSR_WRITE(sc, WMREG_EECD, reg);
2891 return (1);
2892 }
2893 }
2894
2895 return (0);
2896 }
2897
2898 /*
2899 * wm_release_eeprom:
2900 *
2901 * Release the EEPROM mutex.
2902 */
2903 static void
2904 wm_release_eeprom(struct wm_softc *sc)
2905 {
2906 uint32_t reg;
2907
2908 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2909 reg = CSR_READ(sc, WMREG_EECD);
2910 reg &= ~EECD_EE_REQ;
2911 CSR_WRITE(sc, WMREG_EECD, reg);
2912 }
2913 }
2914
2915 /*
2916 * wm_eeprom_sendbits:
2917 *
2918 * Send a series of bits to the EEPROM.
2919 */
2920 static void
2921 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
2922 {
2923 uint32_t reg;
2924 int x;
2925
2926 reg = CSR_READ(sc, WMREG_EECD);
2927
2928 for (x = nbits; x > 0; x--) {
2929 if (bits & (1U << (x - 1)))
2930 reg |= EECD_DI;
2931 else
2932 reg &= ~EECD_DI;
2933 CSR_WRITE(sc, WMREG_EECD, reg);
2934 delay(2);
2935 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2936 delay(2);
2937 CSR_WRITE(sc, WMREG_EECD, reg);
2938 delay(2);
2939 }
2940 }
2941
2942 /*
2943 * wm_eeprom_recvbits:
2944 *
2945 * Receive a series of bits from the EEPROM.
2946 */
2947 static void
2948 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
2949 {
2950 uint32_t reg, val;
2951 int x;
2952
2953 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
2954
2955 val = 0;
2956 for (x = nbits; x > 0; x--) {
2957 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2958 delay(2);
2959 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
2960 val |= (1U << (x - 1));
2961 CSR_WRITE(sc, WMREG_EECD, reg);
2962 delay(2);
2963 }
2964 *valp = val;
2965 }
2966
2967 /*
2968 * wm_read_eeprom_uwire:
2969 *
2970 * Read a word from the EEPROM using the MicroWire protocol.
2971 */
2972 static int
2973 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2974 {
2975 uint32_t reg, val;
2976 int i;
2977
2978 for (i = 0; i < wordcnt; i++) {
2979 /* Clear SK and DI. */
2980 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
2981 CSR_WRITE(sc, WMREG_EECD, reg);
2982
2983 /* Set CHIP SELECT. */
2984 reg |= EECD_CS;
2985 CSR_WRITE(sc, WMREG_EECD, reg);
2986 delay(2);
2987
2988 /* Shift in the READ command. */
2989 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
2990
2991 /* Shift in address. */
2992 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
2993
2994 /* Shift out the data. */
2995 wm_eeprom_recvbits(sc, &val, 16);
2996 data[i] = val & 0xffff;
2997
2998 /* Clear CHIP SELECT. */
2999 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
3000 CSR_WRITE(sc, WMREG_EECD, reg);
3001 delay(2);
3002 }
3003
3004 return (0);
3005 }
3006
3007 /*
3008 * wm_spi_eeprom_ready:
3009 *
3010 * Wait for a SPI EEPROM to be ready for commands.
3011 */
3012 static int
3013 wm_spi_eeprom_ready(struct wm_softc *sc)
3014 {
3015 uint32_t val;
3016 int usec;
3017
3018 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
3019 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
3020 wm_eeprom_recvbits(sc, &val, 8);
3021 if ((val & SPI_SR_RDY) == 0)
3022 break;
3023 }
3024 if (usec >= SPI_MAX_RETRIES) {
3025 aprint_error("%s: EEPROM failed to become ready\n",
3026 sc->sc_dev.dv_xname);
3027 return (1);
3028 }
3029 return (0);
3030 }
3031
3032 /*
3033 * wm_read_eeprom_spi:
3034 *
3035 * Read a work from the EEPROM using the SPI protocol.
3036 */
3037 static int
3038 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3039 {
3040 uint32_t reg, val;
3041 int i;
3042 uint8_t opc;
3043
3044 /* Clear SK and CS. */
3045 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
3046 CSR_WRITE(sc, WMREG_EECD, reg);
3047 delay(2);
3048
3049 if (wm_spi_eeprom_ready(sc))
3050 return (1);
3051
3052 /* Toggle CS to flush commands. */
3053 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
3054 delay(2);
3055 CSR_WRITE(sc, WMREG_EECD, reg);
3056 delay(2);
3057
3058 opc = SPI_OPC_READ;
3059 if (sc->sc_ee_addrbits == 8 && word >= 128)
3060 opc |= SPI_OPC_A8;
3061
3062 wm_eeprom_sendbits(sc, opc, 8);
3063 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
3064
3065 for (i = 0; i < wordcnt; i++) {
3066 wm_eeprom_recvbits(sc, &val, 16);
3067 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
3068 }
3069
3070 /* Raise CS and clear SK. */
3071 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3072 CSR_WRITE(sc, WMREG_EECD, reg);
3073 delay(2);
3074
3075 return (0);
3076 }
3077
3078 /*
3079 * wm_read_eeprom:
3080 *
3081 * Read data from the serial EEPROM.
3082 */
3083 static int
3084 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3085 {
3086 int rv;
3087
3088 if (wm_acquire_eeprom(sc))
3089 return (1);
3090
3091 if (sc->sc_flags & WM_F_EEPROM_SPI)
3092 rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3093 else
3094 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3095
3096 wm_release_eeprom(sc);
3097 return (rv);
3098 }
3099
3100 /*
3101 * wm_add_rxbuf:
3102 *
3103 * Add a receive buffer to the indiciated descriptor.
3104 */
3105 static int
3106 wm_add_rxbuf(struct wm_softc *sc, int idx)
3107 {
3108 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3109 struct mbuf *m;
3110 int error;
3111
3112 MGETHDR(m, M_DONTWAIT, MT_DATA);
3113 if (m == NULL)
3114 return (ENOBUFS);
3115
3116 MCLGET(m, M_DONTWAIT);
3117 if ((m->m_flags & M_EXT) == 0) {
3118 m_freem(m);
3119 return (ENOBUFS);
3120 }
3121
3122 if (rxs->rxs_mbuf != NULL)
3123 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3124
3125 rxs->rxs_mbuf = m;
3126
3127 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3128 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3129 BUS_DMA_READ|BUS_DMA_NOWAIT);
3130 if (error) {
3131 /* XXX XXX XXX */
3132 printf("%s: unable to load rx DMA map %d, error = %d\n",
3133 sc->sc_dev.dv_xname, idx, error);
3134 panic("wm_add_rxbuf");
3135 }
3136
3137 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3138 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3139
3140 WM_INIT_RXDESC(sc, idx);
3141
3142 return (0);
3143 }
3144
3145 /*
3146 * wm_set_ral:
3147 *
3148 * Set an entery in the receive address list.
3149 */
3150 static void
3151 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3152 {
3153 uint32_t ral_lo, ral_hi;
3154
3155 if (enaddr != NULL) {
3156 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3157 (enaddr[3] << 24);
3158 ral_hi = enaddr[4] | (enaddr[5] << 8);
3159 ral_hi |= RAL_AV;
3160 } else {
3161 ral_lo = 0;
3162 ral_hi = 0;
3163 }
3164
3165 if (sc->sc_type >= WM_T_82544) {
3166 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3167 ral_lo);
3168 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3169 ral_hi);
3170 } else {
3171 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3172 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3173 }
3174 }
3175
3176 /*
3177 * wm_mchash:
3178 *
3179 * Compute the hash of the multicast address for the 4096-bit
3180 * multicast filter.
3181 */
3182 static uint32_t
3183 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3184 {
3185 static const int lo_shift[4] = { 4, 3, 2, 0 };
3186 static const int hi_shift[4] = { 4, 5, 6, 8 };
3187 uint32_t hash;
3188
3189 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3190 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3191
3192 return (hash & 0xfff);
3193 }
3194
3195 /*
3196 * wm_set_filter:
3197 *
3198 * Set up the receive filter.
3199 */
3200 static void
3201 wm_set_filter(struct wm_softc *sc)
3202 {
3203 struct ethercom *ec = &sc->sc_ethercom;
3204 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3205 struct ether_multi *enm;
3206 struct ether_multistep step;
3207 bus_addr_t mta_reg;
3208 uint32_t hash, reg, bit;
3209 int i;
3210
3211 if (sc->sc_type >= WM_T_82544)
3212 mta_reg = WMREG_CORDOVA_MTA;
3213 else
3214 mta_reg = WMREG_MTA;
3215
3216 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3217
3218 if (ifp->if_flags & IFF_BROADCAST)
3219 sc->sc_rctl |= RCTL_BAM;
3220 if (ifp->if_flags & IFF_PROMISC) {
3221 sc->sc_rctl |= RCTL_UPE;
3222 goto allmulti;
3223 }
3224
3225 /*
3226 * Set the station address in the first RAL slot, and
3227 * clear the remaining slots.
3228 */
3229 wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3230 for (i = 1; i < WM_RAL_TABSIZE; i++)
3231 wm_set_ral(sc, NULL, i);
3232
3233 /* Clear out the multicast table. */
3234 for (i = 0; i < WM_MC_TABSIZE; i++)
3235 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3236
3237 ETHER_FIRST_MULTI(step, ec, enm);
3238 while (enm != NULL) {
3239 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3240 /*
3241 * We must listen to a range of multicast addresses.
3242 * For now, just accept all multicasts, rather than
3243 * trying to set only those filter bits needed to match
3244 * the range. (At this time, the only use of address
3245 * ranges is for IP multicast routing, for which the
3246 * range is big enough to require all bits set.)
3247 */
3248 goto allmulti;
3249 }
3250
3251 hash = wm_mchash(sc, enm->enm_addrlo);
3252
3253 reg = (hash >> 5) & 0x7f;
3254 bit = hash & 0x1f;
3255
3256 hash = CSR_READ(sc, mta_reg + (reg << 2));
3257 hash |= 1U << bit;
3258
3259 /* XXX Hardware bug?? */
3260 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3261 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3262 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3263 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3264 } else
3265 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3266
3267 ETHER_NEXT_MULTI(step, enm);
3268 }
3269
3270 ifp->if_flags &= ~IFF_ALLMULTI;
3271 goto setit;
3272
3273 allmulti:
3274 ifp->if_flags |= IFF_ALLMULTI;
3275 sc->sc_rctl |= RCTL_MPE;
3276
3277 setit:
3278 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3279 }
3280
3281 /*
3282 * wm_tbi_mediainit:
3283 *
3284 * Initialize media for use on 1000BASE-X devices.
3285 */
3286 static void
3287 wm_tbi_mediainit(struct wm_softc *sc)
3288 {
3289 const char *sep = "";
3290
3291 if (sc->sc_type < WM_T_82543)
3292 sc->sc_tipg = TIPG_WM_DFLT;
3293 else
3294 sc->sc_tipg = TIPG_LG_DFLT;
3295
3296 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3297 wm_tbi_mediastatus);
3298
3299 /*
3300 * SWD Pins:
3301 *
3302 * 0 = Link LED (output)
3303 * 1 = Loss Of Signal (input)
3304 */
3305 sc->sc_ctrl |= CTRL_SWDPIO(0);
3306 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3307
3308 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3309
3310 #define ADD(ss, mm, dd) \
3311 do { \
3312 aprint_normal("%s%s", sep, ss); \
3313 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
3314 sep = ", "; \
3315 } while (/*CONSTCOND*/0)
3316
3317 aprint_normal("%s: ", sc->sc_dev.dv_xname);
3318 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3319 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3320 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3321 aprint_normal("\n");
3322
3323 #undef ADD
3324
3325 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3326 }
3327
3328 /*
3329 * wm_tbi_mediastatus: [ifmedia interface function]
3330 *
3331 * Get the current interface media status on a 1000BASE-X device.
3332 */
3333 static void
3334 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3335 {
3336 struct wm_softc *sc = ifp->if_softc;
3337 uint32_t ctrl;
3338
3339 ifmr->ifm_status = IFM_AVALID;
3340 ifmr->ifm_active = IFM_ETHER;
3341
3342 if (sc->sc_tbi_linkup == 0) {
3343 ifmr->ifm_active |= IFM_NONE;
3344 return;
3345 }
3346
3347 ifmr->ifm_status |= IFM_ACTIVE;
3348 ifmr->ifm_active |= IFM_1000_SX;
3349 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3350 ifmr->ifm_active |= IFM_FDX;
3351 ctrl = CSR_READ(sc, WMREG_CTRL);
3352 if (ctrl & CTRL_RFCE)
3353 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3354 if (ctrl & CTRL_TFCE)
3355 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3356 }
3357
3358 /*
3359 * wm_tbi_mediachange: [ifmedia interface function]
3360 *
3361 * Set hardware to newly-selected media on a 1000BASE-X device.
3362 */
3363 static int
3364 wm_tbi_mediachange(struct ifnet *ifp)
3365 {
3366 struct wm_softc *sc = ifp->if_softc;
3367 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3368 uint32_t status;
3369 int i;
3370
3371 sc->sc_txcw = ife->ifm_data;
3372 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3373 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3374 sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3375 sc->sc_txcw |= TXCW_ANE;
3376
3377 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3378 delay(10000);
3379
3380 /* NOTE: CTRL will update TFCE and RFCE automatically. */
3381
3382 sc->sc_tbi_anstate = 0;
3383
3384 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3385 /* Have signal; wait for the link to come up. */
3386 for (i = 0; i < 50; i++) {
3387 delay(10000);
3388 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3389 break;
3390 }
3391
3392 status = CSR_READ(sc, WMREG_STATUS);
3393 if (status & STATUS_LU) {
3394 /* Link is up. */
3395 DPRINTF(WM_DEBUG_LINK,
3396 ("%s: LINK: set media -> link up %s\n",
3397 sc->sc_dev.dv_xname,
3398 (status & STATUS_FD) ? "FDX" : "HDX"));
3399 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3400 sc->sc_fcrtl &= ~FCRTL_XONE;
3401 if (status & STATUS_FD)
3402 sc->sc_tctl |=
3403 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3404 else
3405 sc->sc_tctl |=
3406 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3407 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3408 sc->sc_fcrtl |= FCRTL_XONE;
3409 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3410 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3411 WMREG_OLD_FCRTL : WMREG_FCRTL,
3412 sc->sc_fcrtl);
3413 sc->sc_tbi_linkup = 1;
3414 } else {
3415 /* Link is down. */
3416 DPRINTF(WM_DEBUG_LINK,
3417 ("%s: LINK: set media -> link down\n",
3418 sc->sc_dev.dv_xname));
3419 sc->sc_tbi_linkup = 0;
3420 }
3421 } else {
3422 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3423 sc->sc_dev.dv_xname));
3424 sc->sc_tbi_linkup = 0;
3425 }
3426
3427 wm_tbi_set_linkled(sc);
3428
3429 return (0);
3430 }
3431
3432 /*
3433 * wm_tbi_set_linkled:
3434 *
3435 * Update the link LED on 1000BASE-X devices.
3436 */
3437 static void
3438 wm_tbi_set_linkled(struct wm_softc *sc)
3439 {
3440
3441 if (sc->sc_tbi_linkup)
3442 sc->sc_ctrl |= CTRL_SWDPIN(0);
3443 else
3444 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3445
3446 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3447 }
3448
3449 /*
3450 * wm_tbi_check_link:
3451 *
3452 * Check the link on 1000BASE-X devices.
3453 */
3454 static void
3455 wm_tbi_check_link(struct wm_softc *sc)
3456 {
3457 uint32_t rxcw, ctrl, status;
3458
3459 if (sc->sc_tbi_anstate == 0)
3460 return;
3461 else if (sc->sc_tbi_anstate > 1) {
3462 DPRINTF(WM_DEBUG_LINK,
3463 ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3464 sc->sc_tbi_anstate));
3465 sc->sc_tbi_anstate--;
3466 return;
3467 }
3468
3469 sc->sc_tbi_anstate = 0;
3470
3471 rxcw = CSR_READ(sc, WMREG_RXCW);
3472 ctrl = CSR_READ(sc, WMREG_CTRL);
3473 status = CSR_READ(sc, WMREG_STATUS);
3474
3475 if ((status & STATUS_LU) == 0) {
3476 DPRINTF(WM_DEBUG_LINK,
3477 ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3478 sc->sc_tbi_linkup = 0;
3479 } else {
3480 DPRINTF(WM_DEBUG_LINK,
3481 ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3482 (status & STATUS_FD) ? "FDX" : "HDX"));
3483 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3484 sc->sc_fcrtl &= ~FCRTL_XONE;
3485 if (status & STATUS_FD)
3486 sc->sc_tctl |=
3487 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3488 else
3489 sc->sc_tctl |=
3490 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3491 if (ctrl & CTRL_TFCE)
3492 sc->sc_fcrtl |= FCRTL_XONE;
3493 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3494 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3495 WMREG_OLD_FCRTL : WMREG_FCRTL,
3496 sc->sc_fcrtl);
3497 sc->sc_tbi_linkup = 1;
3498 }
3499
3500 wm_tbi_set_linkled(sc);
3501 }
3502
3503 /*
3504 * wm_gmii_reset:
3505 *
3506 * Reset the PHY.
3507 */
3508 static void
3509 wm_gmii_reset(struct wm_softc *sc)
3510 {
3511 uint32_t reg;
3512
3513 if (sc->sc_type >= WM_T_82544) {
3514 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3515 delay(20000);
3516
3517 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3518 delay(20000);
3519 } else {
3520 /* The PHY reset pin is active-low. */
3521 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3522 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3523 CTRL_EXT_SWDPIN(4));
3524 reg |= CTRL_EXT_SWDPIO(4);
3525
3526 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3527 delay(10);
3528
3529 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3530 delay(10);
3531
3532 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3533 delay(10);
3534 #if 0
3535 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3536 #endif
3537 }
3538 }
3539
3540 /*
3541 * wm_gmii_mediainit:
3542 *
3543 * Initialize media for use on 1000BASE-T devices.
3544 */
3545 static void
3546 wm_gmii_mediainit(struct wm_softc *sc)
3547 {
3548 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3549
3550 /* We have MII. */
3551 sc->sc_flags |= WM_F_HAS_MII;
3552
3553 sc->sc_tipg = TIPG_1000T_DFLT;
3554
3555 /*
3556 * Let the chip set speed/duplex on its own based on
3557 * signals from the PHY.
3558 */
3559 sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3560 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3561
3562 /* Initialize our media structures and probe the GMII. */
3563 sc->sc_mii.mii_ifp = ifp;
3564
3565 if (sc->sc_type >= WM_T_82544) {
3566 sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3567 sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3568 } else {
3569 sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3570 sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3571 }
3572 sc->sc_mii.mii_statchg = wm_gmii_statchg;
3573
3574 wm_gmii_reset(sc);
3575
3576 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3577 wm_gmii_mediastatus);
3578
3579 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3580 MII_OFFSET_ANY, MIIF_DOPAUSE);
3581 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3582 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3583 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3584 } else
3585 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3586 }
3587
3588 /*
3589 * wm_gmii_mediastatus: [ifmedia interface function]
3590 *
3591 * Get the current interface media status on a 1000BASE-T device.
3592 */
3593 static void
3594 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3595 {
3596 struct wm_softc *sc = ifp->if_softc;
3597
3598 mii_pollstat(&sc->sc_mii);
3599 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3600 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3601 sc->sc_flowflags;
3602 }
3603
3604 /*
3605 * wm_gmii_mediachange: [ifmedia interface function]
3606 *
3607 * Set hardware to newly-selected media on a 1000BASE-T device.
3608 */
3609 static int
3610 wm_gmii_mediachange(struct ifnet *ifp)
3611 {
3612 struct wm_softc *sc = ifp->if_softc;
3613
3614 if (ifp->if_flags & IFF_UP)
3615 mii_mediachg(&sc->sc_mii);
3616 return (0);
3617 }
3618
3619 #define MDI_IO CTRL_SWDPIN(2)
3620 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
3621 #define MDI_CLK CTRL_SWDPIN(3)
3622
3623 static void
3624 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3625 {
3626 uint32_t i, v;
3627
3628 v = CSR_READ(sc, WMREG_CTRL);
3629 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3630 v |= MDI_DIR | CTRL_SWDPIO(3);
3631
3632 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3633 if (data & i)
3634 v |= MDI_IO;
3635 else
3636 v &= ~MDI_IO;
3637 CSR_WRITE(sc, WMREG_CTRL, v);
3638 delay(10);
3639 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3640 delay(10);
3641 CSR_WRITE(sc, WMREG_CTRL, v);
3642 delay(10);
3643 }
3644 }
3645
3646 static uint32_t
3647 i82543_mii_recvbits(struct wm_softc *sc)
3648 {
3649 uint32_t v, i, data = 0;
3650
3651 v = CSR_READ(sc, WMREG_CTRL);
3652 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3653 v |= CTRL_SWDPIO(3);
3654
3655 CSR_WRITE(sc, WMREG_CTRL, v);
3656 delay(10);
3657 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3658 delay(10);
3659 CSR_WRITE(sc, WMREG_CTRL, v);
3660 delay(10);
3661
3662 for (i = 0; i < 16; i++) {
3663 data <<= 1;
3664 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3665 delay(10);
3666 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3667 data |= 1;
3668 CSR_WRITE(sc, WMREG_CTRL, v);
3669 delay(10);
3670 }
3671
3672 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3673 delay(10);
3674 CSR_WRITE(sc, WMREG_CTRL, v);
3675 delay(10);
3676
3677 return (data);
3678 }
3679
3680 #undef MDI_IO
3681 #undef MDI_DIR
3682 #undef MDI_CLK
3683
3684 /*
3685 * wm_gmii_i82543_readreg: [mii interface function]
3686 *
3687 * Read a PHY register on the GMII (i82543 version).
3688 */
3689 static int
3690 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3691 {
3692 struct wm_softc *sc = (void *) self;
3693 int rv;
3694
3695 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3696 i82543_mii_sendbits(sc, reg | (phy << 5) |
3697 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3698 rv = i82543_mii_recvbits(sc) & 0xffff;
3699
3700 DPRINTF(WM_DEBUG_GMII,
3701 ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3702 sc->sc_dev.dv_xname, phy, reg, rv));
3703
3704 return (rv);
3705 }
3706
3707 /*
3708 * wm_gmii_i82543_writereg: [mii interface function]
3709 *
3710 * Write a PHY register on the GMII (i82543 version).
3711 */
3712 static void
3713 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3714 {
3715 struct wm_softc *sc = (void *) self;
3716
3717 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3718 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3719 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3720 (MII_COMMAND_START << 30), 32);
3721 }
3722
3723 /*
3724 * wm_gmii_i82544_readreg: [mii interface function]
3725 *
3726 * Read a PHY register on the GMII.
3727 */
3728 static int
3729 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
3730 {
3731 struct wm_softc *sc = (void *) self;
3732 uint32_t mdic = 0;
3733 int i, rv;
3734
3735 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
3736 MDIC_REGADD(reg));
3737
3738 for (i = 0; i < 100; i++) {
3739 mdic = CSR_READ(sc, WMREG_MDIC);
3740 if (mdic & MDIC_READY)
3741 break;
3742 delay(10);
3743 }
3744
3745 if ((mdic & MDIC_READY) == 0) {
3746 log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
3747 sc->sc_dev.dv_xname, phy, reg);
3748 rv = 0;
3749 } else if (mdic & MDIC_E) {
3750 #if 0 /* This is normal if no PHY is present. */
3751 log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
3752 sc->sc_dev.dv_xname, phy, reg);
3753 #endif
3754 rv = 0;
3755 } else {
3756 rv = MDIC_DATA(mdic);
3757 if (rv == 0xffff)
3758 rv = 0;
3759 }
3760
3761 return (rv);
3762 }
3763
3764 /*
3765 * wm_gmii_i82544_writereg: [mii interface function]
3766 *
3767 * Write a PHY register on the GMII.
3768 */
3769 static void
3770 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
3771 {
3772 struct wm_softc *sc = (void *) self;
3773 uint32_t mdic = 0;
3774 int i;
3775
3776 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
3777 MDIC_REGADD(reg) | MDIC_DATA(val));
3778
3779 for (i = 0; i < 100; i++) {
3780 mdic = CSR_READ(sc, WMREG_MDIC);
3781 if (mdic & MDIC_READY)
3782 break;
3783 delay(10);
3784 }
3785
3786 if ((mdic & MDIC_READY) == 0)
3787 log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
3788 sc->sc_dev.dv_xname, phy, reg);
3789 else if (mdic & MDIC_E)
3790 log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
3791 sc->sc_dev.dv_xname, phy, reg);
3792 }
3793
3794 /*
3795 * wm_gmii_statchg: [mii interface function]
3796 *
3797 * Callback from MII layer when media changes.
3798 */
3799 static void
3800 wm_gmii_statchg(struct device *self)
3801 {
3802 struct wm_softc *sc = (void *) self;
3803 struct mii_data *mii = &sc->sc_mii;
3804
3805 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
3806 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3807 sc->sc_fcrtl &= ~FCRTL_XONE;
3808
3809 /*
3810 * Get flow control negotiation result.
3811 */
3812 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3813 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3814 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3815 mii->mii_media_active &= ~IFM_ETH_FMASK;
3816 }
3817
3818 if (sc->sc_flowflags & IFM_FLOW) {
3819 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
3820 sc->sc_ctrl |= CTRL_TFCE;
3821 sc->sc_fcrtl |= FCRTL_XONE;
3822 }
3823 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3824 sc->sc_ctrl |= CTRL_RFCE;
3825 }
3826
3827 if (sc->sc_mii.mii_media_active & IFM_FDX) {
3828 DPRINTF(WM_DEBUG_LINK,
3829 ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3830 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3831 } else {
3832 DPRINTF(WM_DEBUG_LINK,
3833 ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3834 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3835 }
3836
3837 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3838 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3839 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
3840 : WMREG_FCRTL, sc->sc_fcrtl);
3841 }
3842