if_wm.c revision 1.104 1 /* $NetBSD: if_wm.c,v 1.104 2005/07/25 18:26:24 ross Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40 *
41 * TODO (in order of importance):
42 *
43 * - Rework how parameters are loaded from the EEPROM.
44 * - Figure out what to do with the i82545GM and i82546GB
45 * SERDES controllers.
46 * - Fix hw VLAN assist.
47 */
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.104 2005/07/25 18:26:24 ross Exp $");
51
52 #include "bpfilter.h"
53 #include "rnd.h"
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67
68 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
69
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82
83 #include <netinet/in.h> /* XXX for struct ip */
84 #include <netinet/in_systm.h> /* XXX for struct ip */
85 #include <netinet/ip.h> /* XXX for struct ip */
86 #include <netinet/tcp.h> /* XXX for struct tcphdr */
87
88 #include <machine/bus.h>
89 #include <machine/intr.h>
90 #include <machine/endian.h>
91
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99
100 #include <dev/pci/if_wmreg.h>
101
102 #ifdef WM_DEBUG
103 #define WM_DEBUG_LINK 0x01
104 #define WM_DEBUG_TX 0x02
105 #define WM_DEBUG_RX 0x04
106 #define WM_DEBUG_GMII 0x08
107 int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
108
109 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
110 #else
111 #define DPRINTF(x, y) /* nothing */
112 #endif /* WM_DEBUG */
113
114 /*
115 * Transmit descriptor list size. Due to errata, we can only have
116 * 256 hardware descriptors in the ring on < 82544, but we use 4096
117 * on >= 82544. We tell the upper layers that they can queue a lot
118 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
119 * of them at a time.
120 *
121 * We allow up to 256 (!) DMA segments per packet. Pathological packet
122 * chains containing many small mbufs have been observed in zero-copy
123 * situations with jumbo frames.
124 */
125 #define WM_NTXSEGS 256
126 #define WM_IFQUEUELEN 256
127 #define WM_TXQUEUELEN_MAX 64
128 #define WM_TXQUEUELEN_MAX_82547 16
129 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
130 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
131 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
132 #define WM_NTXDESC_82542 256
133 #define WM_NTXDESC_82544 4096
134 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
135 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
136 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
137 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
138 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
139
140 #define WM_MAXTXDMA round_page(IP_MAXPACKET) /* for TSO */
141
142 /*
143 * Receive descriptor list size. We have one Rx buffer for normal
144 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
145 * packet. We allocate 256 receive descriptors, each with a 2k
146 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
147 */
148 #define WM_NRXDESC 256
149 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
150 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
151 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
152
153 /*
154 * Control structures are DMA'd to the i82542 chip. We allocate them in
155 * a single clump that maps to a single DMA segment to make serveral things
156 * easier.
157 */
158 struct wm_control_data_82544 {
159 /*
160 * The receive descriptors.
161 */
162 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
163
164 /*
165 * The transmit descriptors. Put these at the end, because
166 * we might use a smaller number of them.
167 */
168 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
169 };
170
171 struct wm_control_data_82542 {
172 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
173 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
174 };
175
176 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
177 #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)])
178 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
179
180 /*
181 * Software state for transmit jobs.
182 */
183 struct wm_txsoft {
184 struct mbuf *txs_mbuf; /* head of our mbuf chain */
185 bus_dmamap_t txs_dmamap; /* our DMA map */
186 int txs_firstdesc; /* first descriptor in packet */
187 int txs_lastdesc; /* last descriptor in packet */
188 int txs_ndesc; /* # of descriptors used */
189 };
190
191 /*
192 * Software state for receive buffers. Each descriptor gets a
193 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
194 * more than one buffer, we chain them together.
195 */
196 struct wm_rxsoft {
197 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
198 bus_dmamap_t rxs_dmamap; /* our DMA map */
199 };
200
201 typedef enum {
202 WM_T_unknown = 0,
203 WM_T_82542_2_0, /* i82542 2.0 (really old) */
204 WM_T_82542_2_1, /* i82542 2.1+ (old) */
205 WM_T_82543, /* i82543 */
206 WM_T_82544, /* i82544 */
207 WM_T_82540, /* i82540 */
208 WM_T_82545, /* i82545 */
209 WM_T_82545_3, /* i82545 3.0+ */
210 WM_T_82546, /* i82546 */
211 WM_T_82546_3, /* i82546 3.0+ */
212 WM_T_82541, /* i82541 */
213 WM_T_82541_2, /* i82541 2.0+ */
214 WM_T_82547, /* i82547 */
215 WM_T_82547_2, /* i82547 2.0+ */
216 } wm_chip_type;
217
218 /*
219 * Software state per device.
220 */
221 struct wm_softc {
222 struct device sc_dev; /* generic device information */
223 bus_space_tag_t sc_st; /* bus space tag */
224 bus_space_handle_t sc_sh; /* bus space handle */
225 bus_space_tag_t sc_iot; /* I/O space tag */
226 bus_space_handle_t sc_ioh; /* I/O space handle */
227 bus_dma_tag_t sc_dmat; /* bus DMA tag */
228 struct ethercom sc_ethercom; /* ethernet common data */
229 void *sc_sdhook; /* shutdown hook */
230
231 wm_chip_type sc_type; /* chip type */
232 int sc_flags; /* flags; see below */
233 int sc_bus_speed; /* PCI/PCIX bus speed */
234 int sc_pcix_offset; /* PCIX capability register offset */
235 int sc_flowflags; /* 802.3x flow control flags */
236
237 void *sc_ih; /* interrupt cookie */
238
239 int sc_ee_addrbits; /* EEPROM address bits */
240
241 struct mii_data sc_mii; /* MII/media information */
242
243 struct callout sc_tick_ch; /* tick callout */
244
245 bus_dmamap_t sc_cddmamap; /* control data DMA map */
246 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
247
248 int sc_align_tweak;
249
250 /*
251 * Software state for the transmit and receive descriptors.
252 */
253 int sc_txnum; /* must be a power of two */
254 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
255 struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
256
257 /*
258 * Control data structures.
259 */
260 int sc_ntxdesc; /* must be a power of two */
261 struct wm_control_data_82544 *sc_control_data;
262 #define sc_txdescs sc_control_data->wcd_txdescs
263 #define sc_rxdescs sc_control_data->wcd_rxdescs
264
265 #ifdef WM_EVENT_COUNTERS
266 /* Event counters. */
267 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
268 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
269 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
270 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
271 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
272 struct evcnt sc_ev_rxintr; /* Rx interrupts */
273 struct evcnt sc_ev_linkintr; /* Link interrupts */
274
275 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
276 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
277 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
278 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
279 struct evcnt sc_ev_txtso; /* TCP seg offload out-bound */
280 struct evcnt sc_ev_txtsopain; /* painful header manip. for TSO */
281
282 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
283 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
284
285 struct evcnt sc_ev_tu; /* Tx underrun */
286
287 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
288 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
289 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
290 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
291 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
292 #endif /* WM_EVENT_COUNTERS */
293
294 bus_addr_t sc_tdt_reg; /* offset of TDT register */
295
296 int sc_txfree; /* number of free Tx descriptors */
297 int sc_txnext; /* next ready Tx descriptor */
298
299 int sc_txsfree; /* number of free Tx jobs */
300 int sc_txsnext; /* next free Tx job */
301 int sc_txsdirty; /* dirty Tx jobs */
302
303 /* These 5 variables are used only on the 82547. */
304 int sc_txfifo_size; /* Tx FIFO size */
305 int sc_txfifo_head; /* current head of FIFO */
306 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
307 int sc_txfifo_stall; /* Tx FIFO is stalled */
308 struct callout sc_txfifo_ch; /* Tx FIFO stall work-around timer */
309
310 bus_addr_t sc_rdt_reg; /* offset of RDT register */
311
312 int sc_rxptr; /* next ready Rx descriptor/queue ent */
313 int sc_rxdiscard;
314 int sc_rxlen;
315 struct mbuf *sc_rxhead;
316 struct mbuf *sc_rxtail;
317 struct mbuf **sc_rxtailp;
318
319 uint32_t sc_ctrl; /* prototype CTRL register */
320 #if 0
321 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
322 #endif
323 uint32_t sc_icr; /* prototype interrupt bits */
324 uint32_t sc_itr; /* prototype intr throttling reg */
325 uint32_t sc_tctl; /* prototype TCTL register */
326 uint32_t sc_rctl; /* prototype RCTL register */
327 uint32_t sc_txcw; /* prototype TXCW register */
328 uint32_t sc_tipg; /* prototype TIPG register */
329 uint32_t sc_fcrtl; /* prototype FCRTL register */
330 uint32_t sc_pba; /* prototype PBA register */
331
332 int sc_tbi_linkup; /* TBI link status */
333 int sc_tbi_anstate; /* autonegotiation state */
334
335 int sc_mchash_type; /* multicast filter offset */
336
337 #if NRND > 0
338 rndsource_element_t rnd_source; /* random source */
339 #endif
340 };
341
342 #define WM_RXCHAIN_RESET(sc) \
343 do { \
344 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
345 *(sc)->sc_rxtailp = NULL; \
346 (sc)->sc_rxlen = 0; \
347 } while (/*CONSTCOND*/0)
348
349 #define WM_RXCHAIN_LINK(sc, m) \
350 do { \
351 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
352 (sc)->sc_rxtailp = &(m)->m_next; \
353 } while (/*CONSTCOND*/0)
354
355 /* sc_flags */
356 #define WM_F_HAS_MII 0x01 /* has MII */
357 #define WM_F_EEPROM_HANDSHAKE 0x02 /* requires EEPROM handshake */
358 #define WM_F_EEPROM_SPI 0x04 /* EEPROM is SPI */
359 #define WM_F_IOH_VALID 0x10 /* I/O handle is valid */
360 #define WM_F_BUS64 0x20 /* bus is 64-bit */
361 #define WM_F_PCIX 0x40 /* bus is PCI-X */
362 #define WM_F_CSA 0x80 /* bus is CSA */
363
364 #ifdef WM_EVENT_COUNTERS
365 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
366 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
367 #else
368 #define WM_EVCNT_INCR(ev) /* nothing */
369 #define WM_EVCNT_ADD(ev, val) /* nothing */
370 #endif
371
372 #define CSR_READ(sc, reg) \
373 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
374 #define CSR_WRITE(sc, reg, val) \
375 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
376 #define CSR_WRITE_FLUSH(sc) \
377 (void) CSR_READ((sc), WMREG_STATUS)
378
379 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
380 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
381
382 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
383 #define WM_CDTXADDR_HI(sc, x) \
384 (sizeof(bus_addr_t) == 8 ? \
385 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
386
387 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
388 #define WM_CDRXADDR_HI(sc, x) \
389 (sizeof(bus_addr_t) == 8 ? \
390 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
391
392 #define WM_CDTXSYNC(sc, x, n, ops) \
393 do { \
394 int __x, __n; \
395 \
396 __x = (x); \
397 __n = (n); \
398 \
399 /* If it will wrap around, sync to the end of the ring. */ \
400 if ((__x + __n) > WM_NTXDESC(sc)) { \
401 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
402 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
403 (WM_NTXDESC(sc) - __x), (ops)); \
404 __n -= (WM_NTXDESC(sc) - __x); \
405 __x = 0; \
406 } \
407 \
408 /* Now sync whatever is left. */ \
409 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
410 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
411 } while (/*CONSTCOND*/0)
412
413 #define WM_CDRXSYNC(sc, x, ops) \
414 do { \
415 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
416 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
417 } while (/*CONSTCOND*/0)
418
419 #define WM_INIT_RXDESC(sc, x) \
420 do { \
421 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
422 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
423 struct mbuf *__m = __rxs->rxs_mbuf; \
424 \
425 /* \
426 * Note: We scoot the packet forward 2 bytes in the buffer \
427 * so that the payload after the Ethernet header is aligned \
428 * to a 4-byte boundary. \
429 * \
430 * XXX BRAINDAMAGE ALERT! \
431 * The stupid chip uses the same size for every buffer, which \
432 * is set in the Receive Control register. We are using the 2K \
433 * size option, but what we REALLY want is (2K - 2)! For this \
434 * reason, we can't "scoot" packets longer than the standard \
435 * Ethernet MTU. On strict-alignment platforms, if the total \
436 * size exceeds (2K - 2) we set align_tweak to 0 and let \
437 * the upper layer copy the headers. \
438 */ \
439 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
440 \
441 wm_set_dma_addr(&__rxd->wrx_addr, \
442 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
443 __rxd->wrx_len = 0; \
444 __rxd->wrx_cksum = 0; \
445 __rxd->wrx_status = 0; \
446 __rxd->wrx_errors = 0; \
447 __rxd->wrx_special = 0; \
448 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
449 \
450 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
451 } while (/*CONSTCOND*/0)
452
453 static void wm_start(struct ifnet *);
454 static void wm_watchdog(struct ifnet *);
455 static int wm_ioctl(struct ifnet *, u_long, caddr_t);
456 static int wm_init(struct ifnet *);
457 static void wm_stop(struct ifnet *, int);
458
459 static void wm_shutdown(void *);
460
461 static void wm_reset(struct wm_softc *);
462 static void wm_rxdrain(struct wm_softc *);
463 static int wm_add_rxbuf(struct wm_softc *, int);
464 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
465 static void wm_tick(void *);
466
467 static void wm_set_filter(struct wm_softc *);
468
469 static int wm_intr(void *);
470 static void wm_txintr(struct wm_softc *);
471 static void wm_rxintr(struct wm_softc *);
472 static void wm_linkintr(struct wm_softc *, uint32_t);
473
474 static void wm_tbi_mediainit(struct wm_softc *);
475 static int wm_tbi_mediachange(struct ifnet *);
476 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
477
478 static void wm_tbi_set_linkled(struct wm_softc *);
479 static void wm_tbi_check_link(struct wm_softc *);
480
481 static void wm_gmii_reset(struct wm_softc *);
482
483 static int wm_gmii_i82543_readreg(struct device *, int, int);
484 static void wm_gmii_i82543_writereg(struct device *, int, int, int);
485
486 static int wm_gmii_i82544_readreg(struct device *, int, int);
487 static void wm_gmii_i82544_writereg(struct device *, int, int, int);
488
489 static void wm_gmii_statchg(struct device *);
490
491 static void wm_gmii_mediainit(struct wm_softc *);
492 static int wm_gmii_mediachange(struct ifnet *);
493 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
494
495 static int wm_match(struct device *, struct cfdata *, void *);
496 static void wm_attach(struct device *, struct device *, void *);
497
498 CFATTACH_DECL(wm, sizeof(struct wm_softc),
499 wm_match, wm_attach, NULL, NULL);
500
501 static void wm_82547_txfifo_stall(void *);
502
503 /*
504 * Devices supported by this driver.
505 */
506 static const struct wm_product {
507 pci_vendor_id_t wmp_vendor;
508 pci_product_id_t wmp_product;
509 const char *wmp_name;
510 wm_chip_type wmp_type;
511 int wmp_flags;
512 #define WMP_F_1000X 0x01
513 #define WMP_F_1000T 0x02
514 } wm_products[] = {
515 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
516 "Intel i82542 1000BASE-X Ethernet",
517 WM_T_82542_2_1, WMP_F_1000X },
518
519 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
520 "Intel i82543GC 1000BASE-X Ethernet",
521 WM_T_82543, WMP_F_1000X },
522
523 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
524 "Intel i82543GC 1000BASE-T Ethernet",
525 WM_T_82543, WMP_F_1000T },
526
527 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
528 "Intel i82544EI 1000BASE-T Ethernet",
529 WM_T_82544, WMP_F_1000T },
530
531 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
532 "Intel i82544EI 1000BASE-X Ethernet",
533 WM_T_82544, WMP_F_1000X },
534
535 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
536 "Intel i82544GC 1000BASE-T Ethernet",
537 WM_T_82544, WMP_F_1000T },
538
539 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
540 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
541 WM_T_82544, WMP_F_1000T },
542
543 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
544 "Intel i82540EM 1000BASE-T Ethernet",
545 WM_T_82540, WMP_F_1000T },
546
547 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
548 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
549 WM_T_82540, WMP_F_1000T },
550
551 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
552 "Intel i82540EP 1000BASE-T Ethernet",
553 WM_T_82540, WMP_F_1000T },
554
555 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
556 "Intel i82540EP 1000BASE-T Ethernet",
557 WM_T_82540, WMP_F_1000T },
558
559 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
560 "Intel i82540EP 1000BASE-T Ethernet",
561 WM_T_82540, WMP_F_1000T },
562
563 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
564 "Intel i82545EM 1000BASE-T Ethernet",
565 WM_T_82545, WMP_F_1000T },
566
567 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
568 "Intel i82545GM 1000BASE-T Ethernet",
569 WM_T_82545_3, WMP_F_1000T },
570
571 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
572 "Intel i82545GM 1000BASE-X Ethernet",
573 WM_T_82545_3, WMP_F_1000X },
574 #if 0
575 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
576 "Intel i82545GM Gigabit Ethernet (SERDES)",
577 WM_T_82545_3, WMP_F_SERDES },
578 #endif
579 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
580 "Intel i82546EB 1000BASE-T Ethernet",
581 WM_T_82546, WMP_F_1000T },
582
583 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
584 "Intel i82546EB 1000BASE-T Ethernet",
585 WM_T_82546, WMP_F_1000T },
586
587 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
588 "Intel i82545EM 1000BASE-X Ethernet",
589 WM_T_82545, WMP_F_1000X },
590
591 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
592 "Intel i82546EB 1000BASE-X Ethernet",
593 WM_T_82546, WMP_F_1000X },
594
595 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
596 "Intel i82546GB 1000BASE-T Ethernet",
597 WM_T_82546_3, WMP_F_1000T },
598
599 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
600 "Intel i82546GB 1000BASE-X Ethernet",
601 WM_T_82546_3, WMP_F_1000X },
602 #if 0
603 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
604 "Intel i82546GB Gigabit Ethernet (SERDES)",
605 WM_T_82546_3, WMP_F_SERDES },
606 #endif
607 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
608 "Intel i82541EI 1000BASE-T Ethernet",
609 WM_T_82541, WMP_F_1000T },
610
611 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
612 "Intel i82541EI Mobile 1000BASE-T Ethernet",
613 WM_T_82541, WMP_F_1000T },
614
615 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
616 "Intel i82541ER 1000BASE-T Ethernet",
617 WM_T_82541_2, WMP_F_1000T },
618
619 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
620 "Intel i82541GI 1000BASE-T Ethernet",
621 WM_T_82541_2, WMP_F_1000T },
622
623 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
624 "Intel i82541GI Mobile 1000BASE-T Ethernet",
625 WM_T_82541_2, WMP_F_1000T },
626
627 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI,
628 "Intel i82541PI 1000BASE-T Ethernet",
629 WM_T_82541_2, WMP_F_1000T },
630
631 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
632 "Intel i82547EI 1000BASE-T Ethernet",
633 WM_T_82547, WMP_F_1000T },
634
635 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
636 "Intel i82547GI 1000BASE-T Ethernet",
637 WM_T_82547_2, WMP_F_1000T },
638 { 0, 0,
639 NULL,
640 0, 0 },
641 };
642
643 #ifdef WM_EVENT_COUNTERS
644 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
645 #endif /* WM_EVENT_COUNTERS */
646
647 #if 0 /* Not currently used */
648 static __inline uint32_t
649 wm_io_read(struct wm_softc *sc, int reg)
650 {
651
652 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
653 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
654 }
655 #endif
656
657 static __inline void
658 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
659 {
660
661 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
662 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
663 }
664
665 static __inline void
666 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
667 {
668 wa->wa_low = htole32(v & 0xffffffffU);
669 if (sizeof(bus_addr_t) == 8)
670 wa->wa_high = htole32((uint64_t) v >> 32);
671 else
672 wa->wa_high = 0;
673 }
674
675 static const struct wm_product *
676 wm_lookup(const struct pci_attach_args *pa)
677 {
678 const struct wm_product *wmp;
679
680 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
681 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
682 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
683 return (wmp);
684 }
685 return (NULL);
686 }
687
688 static int
689 wm_match(struct device *parent, struct cfdata *cf, void *aux)
690 {
691 struct pci_attach_args *pa = aux;
692
693 if (wm_lookup(pa) != NULL)
694 return (1);
695
696 return (0);
697 }
698
699 static void
700 wm_attach(struct device *parent, struct device *self, void *aux)
701 {
702 struct wm_softc *sc = (void *) self;
703 struct pci_attach_args *pa = aux;
704 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
705 pci_chipset_tag_t pc = pa->pa_pc;
706 pci_intr_handle_t ih;
707 size_t cdata_size;
708 const char *intrstr = NULL;
709 const char *eetype;
710 bus_space_tag_t memt;
711 bus_space_handle_t memh;
712 bus_dma_segment_t seg;
713 int memh_valid;
714 int i, rseg, error;
715 const struct wm_product *wmp;
716 uint8_t enaddr[ETHER_ADDR_LEN];
717 uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
718 pcireg_t preg, memtype;
719 uint32_t reg;
720 int pmreg;
721
722 callout_init(&sc->sc_tick_ch);
723
724 wmp = wm_lookup(pa);
725 if (wmp == NULL) {
726 printf("\n");
727 panic("wm_attach: impossible");
728 }
729
730 if (pci_dma64_available(pa))
731 sc->sc_dmat = pa->pa_dmat64;
732 else
733 sc->sc_dmat = pa->pa_dmat;
734
735 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
736 aprint_naive(": Ethernet controller\n");
737 aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
738
739 sc->sc_type = wmp->wmp_type;
740 if (sc->sc_type < WM_T_82543) {
741 if (preg < 2) {
742 aprint_error("%s: i82542 must be at least rev. 2\n",
743 sc->sc_dev.dv_xname);
744 return;
745 }
746 if (preg < 3)
747 sc->sc_type = WM_T_82542_2_0;
748 }
749
750 /*
751 * Map the device. All devices support memory-mapped acccess,
752 * and it is really required for normal operation.
753 */
754 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
755 switch (memtype) {
756 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
757 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
758 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
759 memtype, 0, &memt, &memh, NULL, NULL) == 0);
760 break;
761 default:
762 memh_valid = 0;
763 }
764
765 if (memh_valid) {
766 sc->sc_st = memt;
767 sc->sc_sh = memh;
768 } else {
769 aprint_error("%s: unable to map device registers\n",
770 sc->sc_dev.dv_xname);
771 return;
772 }
773
774 /*
775 * In addition, i82544 and later support I/O mapped indirect
776 * register access. It is not desirable (nor supported in
777 * this driver) to use it for normal operation, though it is
778 * required to work around bugs in some chip versions.
779 */
780 if (sc->sc_type >= WM_T_82544) {
781 /* First we have to find the I/O BAR. */
782 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
783 if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
784 PCI_MAPREG_TYPE_IO)
785 break;
786 }
787 if (i == PCI_MAPREG_END)
788 aprint_error("%s: WARNING: unable to find I/O BAR\n",
789 sc->sc_dev.dv_xname);
790 else {
791 /*
792 * The i8254x doesn't apparently respond when the
793 * I/O BAR is 0, which looks somewhat like it's not
794 * been configured.
795 */
796 preg = pci_conf_read(pc, pa->pa_tag, i);
797 if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
798 aprint_error("%s: WARNING: I/O BAR at zero.\n",
799 sc->sc_dev.dv_xname);
800 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
801 0, &sc->sc_iot, &sc->sc_ioh,
802 NULL, NULL) == 0) {
803 sc->sc_flags |= WM_F_IOH_VALID;
804 } else {
805 aprint_error("%s: WARNING: unable to map "
806 "I/O space\n", sc->sc_dev.dv_xname);
807 }
808 }
809
810 }
811
812 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
813 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
814 preg |= PCI_COMMAND_MASTER_ENABLE;
815 if (sc->sc_type < WM_T_82542_2_1)
816 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
817 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
818
819 /* Get it out of power save mode, if needed. */
820 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
821 preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
822 PCI_PMCSR_STATE_MASK;
823 if (preg == PCI_PMCSR_STATE_D3) {
824 /*
825 * The card has lost all configuration data in
826 * this state, so punt.
827 */
828 aprint_error("%s: unable to wake from power state D3\n",
829 sc->sc_dev.dv_xname);
830 return;
831 }
832 if (preg != PCI_PMCSR_STATE_D0) {
833 aprint_normal("%s: waking up from power state D%d\n",
834 sc->sc_dev.dv_xname, preg);
835 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
836 PCI_PMCSR_STATE_D0);
837 }
838 }
839
840 /*
841 * Map and establish our interrupt.
842 */
843 if (pci_intr_map(pa, &ih)) {
844 aprint_error("%s: unable to map interrupt\n",
845 sc->sc_dev.dv_xname);
846 return;
847 }
848 intrstr = pci_intr_string(pc, ih);
849 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
850 if (sc->sc_ih == NULL) {
851 aprint_error("%s: unable to establish interrupt",
852 sc->sc_dev.dv_xname);
853 if (intrstr != NULL)
854 aprint_normal(" at %s", intrstr);
855 aprint_normal("\n");
856 return;
857 }
858 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
859
860 /*
861 * Determine a few things about the bus we're connected to.
862 */
863 if (sc->sc_type < WM_T_82543) {
864 /* We don't really know the bus characteristics here. */
865 sc->sc_bus_speed = 33;
866 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
867 /*
868 * CSA (Communication Streaming Architecture) is about as fast
869 * a 32-bit 66MHz PCI Bus.
870 */
871 sc->sc_flags |= WM_F_CSA;
872 sc->sc_bus_speed = 66;
873 aprint_verbose("%s: Communication Streaming Architecture\n",
874 sc->sc_dev.dv_xname);
875 if (sc->sc_type == WM_T_82547) {
876 callout_init(&sc->sc_txfifo_ch);
877 callout_setfunc(&sc->sc_txfifo_ch,
878 wm_82547_txfifo_stall, sc);
879 aprint_verbose("%s: using 82547 Tx FIFO stall "
880 "work-around\n", sc->sc_dev.dv_xname);
881 }
882 } else {
883 reg = CSR_READ(sc, WMREG_STATUS);
884 if (reg & STATUS_BUS64)
885 sc->sc_flags |= WM_F_BUS64;
886 if (sc->sc_type >= WM_T_82544 &&
887 (reg & STATUS_PCIX_MODE) != 0) {
888 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
889
890 sc->sc_flags |= WM_F_PCIX;
891 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
892 PCI_CAP_PCIX,
893 &sc->sc_pcix_offset, NULL) == 0)
894 aprint_error("%s: unable to find PCIX "
895 "capability\n", sc->sc_dev.dv_xname);
896 else if (sc->sc_type != WM_T_82545_3 &&
897 sc->sc_type != WM_T_82546_3) {
898 /*
899 * Work around a problem caused by the BIOS
900 * setting the max memory read byte count
901 * incorrectly.
902 */
903 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
904 sc->sc_pcix_offset + PCI_PCIX_CMD);
905 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
906 sc->sc_pcix_offset + PCI_PCIX_STATUS);
907
908 bytecnt =
909 (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
910 PCI_PCIX_CMD_BYTECNT_SHIFT;
911 maxb =
912 (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
913 PCI_PCIX_STATUS_MAXB_SHIFT;
914 if (bytecnt > maxb) {
915 aprint_verbose("%s: resetting PCI-X "
916 "MMRBC: %d -> %d\n",
917 sc->sc_dev.dv_xname,
918 512 << bytecnt, 512 << maxb);
919 pcix_cmd = (pcix_cmd &
920 ~PCI_PCIX_CMD_BYTECNT_MASK) |
921 (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
922 pci_conf_write(pa->pa_pc, pa->pa_tag,
923 sc->sc_pcix_offset + PCI_PCIX_CMD,
924 pcix_cmd);
925 }
926 }
927 }
928 /*
929 * The quad port adapter is special; it has a PCIX-PCIX
930 * bridge on the board, and can run the secondary bus at
931 * a higher speed.
932 */
933 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
934 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
935 : 66;
936 } else if (sc->sc_flags & WM_F_PCIX) {
937 switch (reg & STATUS_PCIXSPD_MASK) {
938 case STATUS_PCIXSPD_50_66:
939 sc->sc_bus_speed = 66;
940 break;
941 case STATUS_PCIXSPD_66_100:
942 sc->sc_bus_speed = 100;
943 break;
944 case STATUS_PCIXSPD_100_133:
945 sc->sc_bus_speed = 133;
946 break;
947 default:
948 aprint_error(
949 "%s: unknown PCIXSPD %d; assuming 66MHz\n",
950 sc->sc_dev.dv_xname,
951 reg & STATUS_PCIXSPD_MASK);
952 sc->sc_bus_speed = 66;
953 }
954 } else
955 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
956 aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
957 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
958 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
959 }
960
961 /*
962 * Allocate the control data structures, and create and load the
963 * DMA map for it.
964 *
965 * NOTE: All Tx descriptors must be in the same 4G segment of
966 * memory. So must Rx descriptors. We simplify by allocating
967 * both sets within the same 4G segment.
968 */
969 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
970 WM_NTXDESC_82542 : WM_NTXDESC_82544;
971 cdata_size = sc->sc_type < WM_T_82544 ?
972 sizeof(struct wm_control_data_82542) :
973 sizeof(struct wm_control_data_82544);
974 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
975 (bus_size_t) 0x100000000ULL,
976 &seg, 1, &rseg, 0)) != 0) {
977 aprint_error(
978 "%s: unable to allocate control data, error = %d\n",
979 sc->sc_dev.dv_xname, error);
980 goto fail_0;
981 }
982
983 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
984 (caddr_t *)&sc->sc_control_data, 0)) != 0) {
985 aprint_error("%s: unable to map control data, error = %d\n",
986 sc->sc_dev.dv_xname, error);
987 goto fail_1;
988 }
989
990 if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
991 0, 0, &sc->sc_cddmamap)) != 0) {
992 aprint_error("%s: unable to create control data DMA map, "
993 "error = %d\n", sc->sc_dev.dv_xname, error);
994 goto fail_2;
995 }
996
997 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
998 sc->sc_control_data, cdata_size, NULL,
999 0)) != 0) {
1000 aprint_error(
1001 "%s: unable to load control data DMA map, error = %d\n",
1002 sc->sc_dev.dv_xname, error);
1003 goto fail_3;
1004 }
1005
1006
1007 /*
1008 * Create the transmit buffer DMA maps.
1009 */
1010 WM_TXQUEUELEN(sc) =
1011 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1012 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1013 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1014 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1015 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1016 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1017 aprint_error("%s: unable to create Tx DMA map %d, "
1018 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1019 goto fail_4;
1020 }
1021 }
1022
1023 /*
1024 * Create the receive buffer DMA maps.
1025 */
1026 for (i = 0; i < WM_NRXDESC; i++) {
1027 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1028 MCLBYTES, 0, 0,
1029 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1030 aprint_error("%s: unable to create Rx DMA map %d, "
1031 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1032 goto fail_5;
1033 }
1034 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1035 }
1036
1037 /*
1038 * Reset the chip to a known state.
1039 */
1040 wm_reset(sc);
1041
1042 /*
1043 * Get some information about the EEPROM.
1044 */
1045 if (sc->sc_type >= WM_T_82540)
1046 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1047 if (sc->sc_type <= WM_T_82544)
1048 sc->sc_ee_addrbits = 6;
1049 else if (sc->sc_type <= WM_T_82546_3) {
1050 reg = CSR_READ(sc, WMREG_EECD);
1051 if (reg & EECD_EE_SIZE)
1052 sc->sc_ee_addrbits = 8;
1053 else
1054 sc->sc_ee_addrbits = 6;
1055 } else if (sc->sc_type <= WM_T_82547_2) {
1056 reg = CSR_READ(sc, WMREG_EECD);
1057 if (reg & EECD_EE_TYPE) {
1058 sc->sc_flags |= WM_F_EEPROM_SPI;
1059 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1060 } else
1061 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1062 } else {
1063 /* Assume everything else is SPI. */
1064 reg = CSR_READ(sc, WMREG_EECD);
1065 sc->sc_flags |= WM_F_EEPROM_SPI;
1066 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1067 }
1068 if (sc->sc_flags & WM_F_EEPROM_SPI)
1069 eetype = "SPI";
1070 else
1071 eetype = "MicroWire";
1072 aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1073 sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1074 sc->sc_ee_addrbits, eetype);
1075
1076 /*
1077 * Read the Ethernet address from the EEPROM.
1078 */
1079 if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1080 sizeof(myea) / sizeof(myea[0]), myea)) {
1081 aprint_error("%s: unable to read Ethernet address\n",
1082 sc->sc_dev.dv_xname);
1083 return;
1084 }
1085 enaddr[0] = myea[0] & 0xff;
1086 enaddr[1] = myea[0] >> 8;
1087 enaddr[2] = myea[1] & 0xff;
1088 enaddr[3] = myea[1] >> 8;
1089 enaddr[4] = myea[2] & 0xff;
1090 enaddr[5] = myea[2] >> 8;
1091
1092 /*
1093 * Toggle the LSB of the MAC address on the second port
1094 * of the i82546.
1095 */
1096 if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
1097 if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1098 enaddr[5] ^= 1;
1099 }
1100
1101 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1102 ether_sprintf(enaddr));
1103
1104 /*
1105 * Read the config info from the EEPROM, and set up various
1106 * bits in the control registers based on their contents.
1107 */
1108 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1109 aprint_error("%s: unable to read CFG1 from EEPROM\n",
1110 sc->sc_dev.dv_xname);
1111 return;
1112 }
1113 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1114 aprint_error("%s: unable to read CFG2 from EEPROM\n",
1115 sc->sc_dev.dv_xname);
1116 return;
1117 }
1118 if (sc->sc_type >= WM_T_82544) {
1119 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1120 aprint_error("%s: unable to read SWDPIN from EEPROM\n",
1121 sc->sc_dev.dv_xname);
1122 return;
1123 }
1124 }
1125
1126 if (cfg1 & EEPROM_CFG1_ILOS)
1127 sc->sc_ctrl |= CTRL_ILOS;
1128 if (sc->sc_type >= WM_T_82544) {
1129 sc->sc_ctrl |=
1130 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1131 CTRL_SWDPIO_SHIFT;
1132 sc->sc_ctrl |=
1133 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1134 CTRL_SWDPINS_SHIFT;
1135 } else {
1136 sc->sc_ctrl |=
1137 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1138 CTRL_SWDPIO_SHIFT;
1139 }
1140
1141 #if 0
1142 if (sc->sc_type >= WM_T_82544) {
1143 if (cfg1 & EEPROM_CFG1_IPS0)
1144 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1145 if (cfg1 & EEPROM_CFG1_IPS1)
1146 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1147 sc->sc_ctrl_ext |=
1148 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1149 CTRL_EXT_SWDPIO_SHIFT;
1150 sc->sc_ctrl_ext |=
1151 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1152 CTRL_EXT_SWDPINS_SHIFT;
1153 } else {
1154 sc->sc_ctrl_ext |=
1155 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1156 CTRL_EXT_SWDPIO_SHIFT;
1157 }
1158 #endif
1159
1160 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1161 #if 0
1162 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1163 #endif
1164
1165 /*
1166 * Set up some register offsets that are different between
1167 * the i82542 and the i82543 and later chips.
1168 */
1169 if (sc->sc_type < WM_T_82543) {
1170 sc->sc_rdt_reg = WMREG_OLD_RDT0;
1171 sc->sc_tdt_reg = WMREG_OLD_TDT;
1172 } else {
1173 sc->sc_rdt_reg = WMREG_RDT;
1174 sc->sc_tdt_reg = WMREG_TDT;
1175 }
1176
1177 /*
1178 * Determine if we're TBI or GMII mode, and initialize the
1179 * media structures accordingly.
1180 */
1181 if (sc->sc_type < WM_T_82543 ||
1182 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1183 if (wmp->wmp_flags & WMP_F_1000T)
1184 aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1185 "product!\n", sc->sc_dev.dv_xname);
1186 wm_tbi_mediainit(sc);
1187 } else {
1188 if (wmp->wmp_flags & WMP_F_1000X)
1189 aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1190 "product!\n", sc->sc_dev.dv_xname);
1191 wm_gmii_mediainit(sc);
1192 }
1193
1194 ifp = &sc->sc_ethercom.ec_if;
1195 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1196 ifp->if_softc = sc;
1197 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1198 ifp->if_ioctl = wm_ioctl;
1199 ifp->if_start = wm_start;
1200 ifp->if_watchdog = wm_watchdog;
1201 ifp->if_init = wm_init;
1202 ifp->if_stop = wm_stop;
1203 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1204 IFQ_SET_READY(&ifp->if_snd);
1205
1206 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1207
1208 /*
1209 * If we're a i82543 or greater, we can support VLANs.
1210 */
1211 if (sc->sc_type >= WM_T_82543)
1212 sc->sc_ethercom.ec_capabilities |=
1213 ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1214
1215 /*
1216 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
1217 * on i82543 and later.
1218 */
1219 if (sc->sc_type >= WM_T_82543)
1220 ifp->if_capabilities |=
1221 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1222 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1223 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1224
1225 /*
1226 * If we're a i82544 or greater (except i82547), we can do
1227 * TCP segmentation offload.
1228 */
1229 if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547)
1230 ifp->if_capabilities |= IFCAP_TSOv4;
1231
1232 /*
1233 * Attach the interface.
1234 */
1235 if_attach(ifp);
1236 ether_ifattach(ifp, enaddr);
1237 #if NRND > 0
1238 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1239 RND_TYPE_NET, 0);
1240 #endif
1241
1242 #ifdef WM_EVENT_COUNTERS
1243 /* Attach event counters. */
1244 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1245 NULL, sc->sc_dev.dv_xname, "txsstall");
1246 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1247 NULL, sc->sc_dev.dv_xname, "txdstall");
1248 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1249 NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1250 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1251 NULL, sc->sc_dev.dv_xname, "txdw");
1252 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1253 NULL, sc->sc_dev.dv_xname, "txqe");
1254 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1255 NULL, sc->sc_dev.dv_xname, "rxintr");
1256 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1257 NULL, sc->sc_dev.dv_xname, "linkintr");
1258
1259 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1260 NULL, sc->sc_dev.dv_xname, "rxipsum");
1261 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1262 NULL, sc->sc_dev.dv_xname, "rxtusum");
1263 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1264 NULL, sc->sc_dev.dv_xname, "txipsum");
1265 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1266 NULL, sc->sc_dev.dv_xname, "txtusum");
1267
1268 evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
1269 NULL, sc->sc_dev.dv_xname, "txtso");
1270 evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
1271 NULL, sc->sc_dev.dv_xname, "txtsopain");
1272
1273 for (i = 0; i < WM_NTXSEGS; i++) {
1274 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1275 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1276 NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1277 }
1278
1279 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1280 NULL, sc->sc_dev.dv_xname, "txdrop");
1281
1282 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1283 NULL, sc->sc_dev.dv_xname, "tu");
1284
1285 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1286 NULL, sc->sc_dev.dv_xname, "tx_xoff");
1287 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1288 NULL, sc->sc_dev.dv_xname, "tx_xon");
1289 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1290 NULL, sc->sc_dev.dv_xname, "rx_xoff");
1291 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1292 NULL, sc->sc_dev.dv_xname, "rx_xon");
1293 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1294 NULL, sc->sc_dev.dv_xname, "rx_macctl");
1295 #endif /* WM_EVENT_COUNTERS */
1296
1297 /*
1298 * Make sure the interface is shutdown during reboot.
1299 */
1300 sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1301 if (sc->sc_sdhook == NULL)
1302 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1303 sc->sc_dev.dv_xname);
1304 return;
1305
1306 /*
1307 * Free any resources we've allocated during the failed attach
1308 * attempt. Do this in reverse order and fall through.
1309 */
1310 fail_5:
1311 for (i = 0; i < WM_NRXDESC; i++) {
1312 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1313 bus_dmamap_destroy(sc->sc_dmat,
1314 sc->sc_rxsoft[i].rxs_dmamap);
1315 }
1316 fail_4:
1317 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1318 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1319 bus_dmamap_destroy(sc->sc_dmat,
1320 sc->sc_txsoft[i].txs_dmamap);
1321 }
1322 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1323 fail_3:
1324 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1325 fail_2:
1326 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1327 cdata_size);
1328 fail_1:
1329 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1330 fail_0:
1331 return;
1332 }
1333
1334 /*
1335 * wm_shutdown:
1336 *
1337 * Make sure the interface is stopped at reboot time.
1338 */
1339 static void
1340 wm_shutdown(void *arg)
1341 {
1342 struct wm_softc *sc = arg;
1343
1344 wm_stop(&sc->sc_ethercom.ec_if, 1);
1345 }
1346
1347 /*
1348 * wm_tx_offload:
1349 *
1350 * Set up TCP/IP checksumming parameters for the
1351 * specified packet.
1352 */
1353 static int
1354 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1355 uint8_t *fieldsp)
1356 {
1357 struct mbuf *m0 = txs->txs_mbuf;
1358 struct livengood_tcpip_ctxdesc *t;
1359 uint32_t ipcs, tucs, cmd, cmdlen, seg;
1360 struct ether_header *eh;
1361 int offset, iphl;
1362 uint8_t fields;
1363
1364 /*
1365 * XXX It would be nice if the mbuf pkthdr had offset
1366 * fields for the protocol headers.
1367 */
1368
1369 eh = mtod(m0, struct ether_header *);
1370 switch (htons(eh->ether_type)) {
1371 case ETHERTYPE_IP:
1372 offset = ETHER_HDR_LEN;
1373 break;
1374
1375 case ETHERTYPE_VLAN:
1376 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1377 break;
1378
1379 default:
1380 /*
1381 * Don't support this protocol or encapsulation.
1382 */
1383 *fieldsp = 0;
1384 *cmdp = 0;
1385 return (0);
1386 }
1387
1388 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1389
1390 cmd = WTX_CMD_DEXT | WTX_DTYP_D;
1391 cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
1392 seg = 0;
1393 fields = 0;
1394
1395 if (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
1396 int hlen = offset + iphl;
1397 WM_EVCNT_INCR(&sc->sc_ev_txtso);
1398 if (__predict_false(m0->m_len <
1399 (hlen + sizeof(struct tcphdr)))) {
1400 /*
1401 * TCP/IP headers are not in the first mbuf; we need
1402 * to do this the slow and painful way. Let's just
1403 * hope this doesn't happen very often.
1404 */
1405 struct ip ip;
1406 struct tcphdr th;
1407
1408 WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
1409
1410 m_copydata(m0, offset, sizeof(ip), &ip);
1411 m_copydata(m0, hlen, sizeof(th), &th);
1412
1413 ip.ip_len = 0;
1414
1415 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
1416 sizeof(ip.ip_len), &ip.ip_len);
1417
1418 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1419 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1420
1421 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
1422 sizeof(th.th_sum), &th.th_sum);
1423
1424 hlen += th.th_off << 2;
1425 } else {
1426 /*
1427 * TCP/IP headers are in the first mbuf; we can do
1428 * this the easy way.
1429 */
1430 struct ip *ip =
1431 (struct ip *) (mtod(m0, caddr_t) + offset);
1432 struct tcphdr *th =
1433 (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
1434
1435 ip->ip_len = 0;
1436 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1437 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1438
1439 hlen += th->th_off << 2;
1440 }
1441
1442 cmd |= WTX_TCPIP_CMD_TSE;
1443 cmdlen |= WTX_TCPIP_CMD_TSE | WTX_TCPIP_CMD_IP |
1444 WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
1445 seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
1446 WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
1447 }
1448
1449 /*
1450 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1451 * offload feature, if we load the context descriptor, we
1452 * MUST provide valid values for IPCSS and TUCSS fields.
1453 */
1454
1455 ipcs = WTX_TCPIP_IPCSS(offset) |
1456 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1457 WTX_TCPIP_IPCSE(offset + iphl - 1);
1458 if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
1459 WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1460 fields |= WTX_IXSM;
1461 }
1462
1463 offset += iphl;
1464
1465 if (m0->m_pkthdr.csum_flags &
1466 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
1467 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1468 fields |= WTX_TXSM;
1469 tucs = WTX_TCPIP_TUCSS(offset) |
1470 WTX_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1471 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1472 } else {
1473 /* Just initialize it to a valid TCP context. */
1474 tucs = WTX_TCPIP_TUCSS(offset) |
1475 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1476 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1477 }
1478
1479 /* Fill in the context descriptor. */
1480 t = (struct livengood_tcpip_ctxdesc *)
1481 &sc->sc_txdescs[sc->sc_txnext];
1482 t->tcpip_ipcs = htole32(ipcs);
1483 t->tcpip_tucs = htole32(tucs);
1484 t->tcpip_cmdlen = htole32(cmdlen);
1485 t->tcpip_seg = htole32(seg);
1486 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1487
1488 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1489 txs->txs_ndesc++;
1490
1491 *cmdp = cmd;
1492 *fieldsp = fields;
1493
1494 return (0);
1495 }
1496
1497 static void
1498 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1499 {
1500 struct mbuf *m;
1501 int i;
1502
1503 log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1504 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1505 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1506 "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1507 m->m_data, m->m_len, m->m_flags);
1508 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1509 i, i == 1 ? "" : "s");
1510 }
1511
1512 /*
1513 * wm_82547_txfifo_stall:
1514 *
1515 * Callout used to wait for the 82547 Tx FIFO to drain,
1516 * reset the FIFO pointers, and restart packet transmission.
1517 */
1518 static void
1519 wm_82547_txfifo_stall(void *arg)
1520 {
1521 struct wm_softc *sc = arg;
1522 int s;
1523
1524 s = splnet();
1525
1526 if (sc->sc_txfifo_stall) {
1527 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1528 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1529 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1530 /*
1531 * Packets have drained. Stop transmitter, reset
1532 * FIFO pointers, restart transmitter, and kick
1533 * the packet queue.
1534 */
1535 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1536 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1537 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1538 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1539 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1540 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1541 CSR_WRITE(sc, WMREG_TCTL, tctl);
1542 CSR_WRITE_FLUSH(sc);
1543
1544 sc->sc_txfifo_head = 0;
1545 sc->sc_txfifo_stall = 0;
1546 wm_start(&sc->sc_ethercom.ec_if);
1547 } else {
1548 /*
1549 * Still waiting for packets to drain; try again in
1550 * another tick.
1551 */
1552 callout_schedule(&sc->sc_txfifo_ch, 1);
1553 }
1554 }
1555
1556 splx(s);
1557 }
1558
1559 /*
1560 * wm_82547_txfifo_bugchk:
1561 *
1562 * Check for bug condition in the 82547 Tx FIFO. We need to
1563 * prevent enqueueing a packet that would wrap around the end
1564 * if the Tx FIFO ring buffer, otherwise the chip will croak.
1565 *
1566 * We do this by checking the amount of space before the end
1567 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
1568 * the Tx FIFO, wait for all remaining packets to drain, reset
1569 * the internal FIFO pointers to the beginning, and restart
1570 * transmission on the interface.
1571 */
1572 #define WM_FIFO_HDR 0x10
1573 #define WM_82547_PAD_LEN 0x3e0
1574 static int
1575 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1576 {
1577 int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1578 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1579
1580 /* Just return if already stalled. */
1581 if (sc->sc_txfifo_stall)
1582 return (1);
1583
1584 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1585 /* Stall only occurs in half-duplex mode. */
1586 goto send_packet;
1587 }
1588
1589 if (len >= WM_82547_PAD_LEN + space) {
1590 sc->sc_txfifo_stall = 1;
1591 callout_schedule(&sc->sc_txfifo_ch, 1);
1592 return (1);
1593 }
1594
1595 send_packet:
1596 sc->sc_txfifo_head += len;
1597 if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1598 sc->sc_txfifo_head -= sc->sc_txfifo_size;
1599
1600 return (0);
1601 }
1602
1603 /*
1604 * wm_start: [ifnet interface function]
1605 *
1606 * Start packet transmission on the interface.
1607 */
1608 static void
1609 wm_start(struct ifnet *ifp)
1610 {
1611 struct wm_softc *sc = ifp->if_softc;
1612 struct mbuf *m0;
1613 #if 0 /* XXXJRT */
1614 struct m_tag *mtag;
1615 #endif
1616 struct wm_txsoft *txs;
1617 bus_dmamap_t dmamap;
1618 int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
1619 bus_addr_t curaddr;
1620 bus_size_t seglen, curlen;
1621 uint32_t cksumcmd;
1622 uint8_t cksumfields;
1623
1624 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1625 return;
1626
1627 /*
1628 * Remember the previous number of free descriptors.
1629 */
1630 ofree = sc->sc_txfree;
1631
1632 /*
1633 * Loop through the send queue, setting up transmit descriptors
1634 * until we drain the queue, or use up all available transmit
1635 * descriptors.
1636 */
1637 for (;;) {
1638 /* Grab a packet off the queue. */
1639 IFQ_POLL(&ifp->if_snd, m0);
1640 if (m0 == NULL)
1641 break;
1642
1643 DPRINTF(WM_DEBUG_TX,
1644 ("%s: TX: have packet to transmit: %p\n",
1645 sc->sc_dev.dv_xname, m0));
1646
1647 /* Get a work queue entry. */
1648 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1649 wm_txintr(sc);
1650 if (sc->sc_txsfree == 0) {
1651 DPRINTF(WM_DEBUG_TX,
1652 ("%s: TX: no free job descriptors\n",
1653 sc->sc_dev.dv_xname));
1654 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1655 break;
1656 }
1657 }
1658
1659 txs = &sc->sc_txsoft[sc->sc_txsnext];
1660 dmamap = txs->txs_dmamap;
1661
1662 use_tso = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1663
1664 /*
1665 * So says the Linux driver:
1666 * The controller does a simple calculation to make sure
1667 * there is enough room in the FIFO before initiating the
1668 * DMA for each buffer. The calc is:
1669 * 4 = ceil(buffer len / MSS)
1670 * To make sure we don't overrun the FIFO, adjust the max
1671 * buffer len if the MSS drops.
1672 */
1673 dmamap->dm_maxsegsz =
1674 (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
1675 ? m0->m_pkthdr.segsz << 2
1676 : WTX_MAX_LEN;
1677
1678 /*
1679 * Load the DMA map. If this fails, the packet either
1680 * didn't fit in the allotted number of segments, or we
1681 * were short on resources. For the too-many-segments
1682 * case, we simply report an error and drop the packet,
1683 * since we can't sanely copy a jumbo packet to a single
1684 * buffer.
1685 */
1686 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1687 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1688 if (error) {
1689 if (error == EFBIG) {
1690 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1691 log(LOG_ERR, "%s: Tx packet consumes too many "
1692 "DMA segments, dropping...\n",
1693 sc->sc_dev.dv_xname);
1694 IFQ_DEQUEUE(&ifp->if_snd, m0);
1695 wm_dump_mbuf_chain(sc, m0);
1696 m_freem(m0);
1697 continue;
1698 }
1699 /*
1700 * Short on resources, just stop for now.
1701 */
1702 DPRINTF(WM_DEBUG_TX,
1703 ("%s: TX: dmamap load failed: %d\n",
1704 sc->sc_dev.dv_xname, error));
1705 break;
1706 }
1707
1708 segs_needed = dmamap->dm_nsegs;
1709 if (use_tso) {
1710 /* For sentinel descriptor; see below. */
1711 segs_needed++;
1712 }
1713
1714 /*
1715 * Ensure we have enough descriptors free to describe
1716 * the packet. Note, we always reserve one descriptor
1717 * at the end of the ring due to the semantics of the
1718 * TDT register, plus one more in the event we need
1719 * to load offload context.
1720 */
1721 if (segs_needed > sc->sc_txfree - 2) {
1722 /*
1723 * Not enough free descriptors to transmit this
1724 * packet. We haven't committed anything yet,
1725 * so just unload the DMA map, put the packet
1726 * pack on the queue, and punt. Notify the upper
1727 * layer that there are no more slots left.
1728 */
1729 DPRINTF(WM_DEBUG_TX,
1730 ("%s: TX: need %d (%d) descriptors, have %d\n",
1731 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1732 sc->sc_txfree - 1));
1733 ifp->if_flags |= IFF_OACTIVE;
1734 bus_dmamap_unload(sc->sc_dmat, dmamap);
1735 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1736 break;
1737 }
1738
1739 /*
1740 * Check for 82547 Tx FIFO bug. We need to do this
1741 * once we know we can transmit the packet, since we
1742 * do some internal FIFO space accounting here.
1743 */
1744 if (sc->sc_type == WM_T_82547 &&
1745 wm_82547_txfifo_bugchk(sc, m0)) {
1746 DPRINTF(WM_DEBUG_TX,
1747 ("%s: TX: 82547 Tx FIFO bug detected\n",
1748 sc->sc_dev.dv_xname));
1749 ifp->if_flags |= IFF_OACTIVE;
1750 bus_dmamap_unload(sc->sc_dmat, dmamap);
1751 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1752 break;
1753 }
1754
1755 IFQ_DEQUEUE(&ifp->if_snd, m0);
1756
1757 /*
1758 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1759 */
1760
1761 DPRINTF(WM_DEBUG_TX,
1762 ("%s: TX: packet has %d (%d) DMA segments\n",
1763 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1764
1765 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1766
1767 /*
1768 * Store a pointer to the packet so that we can free it
1769 * later.
1770 *
1771 * Initially, we consider the number of descriptors the
1772 * packet uses the number of DMA segments. This may be
1773 * incremented by 1 if we do checksum offload (a descriptor
1774 * is used to set the checksum context).
1775 */
1776 txs->txs_mbuf = m0;
1777 txs->txs_firstdesc = sc->sc_txnext;
1778 txs->txs_ndesc = segs_needed;
1779
1780 /* Set up offload parameters for this packet. */
1781 if (m0->m_pkthdr.csum_flags &
1782 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1783 if (wm_tx_offload(sc, txs, &cksumcmd,
1784 &cksumfields) != 0) {
1785 /* Error message already displayed. */
1786 bus_dmamap_unload(sc->sc_dmat, dmamap);
1787 continue;
1788 }
1789 } else {
1790 cksumcmd = 0;
1791 cksumfields = 0;
1792 }
1793
1794 cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
1795
1796 /* Sync the DMA map. */
1797 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1798 BUS_DMASYNC_PREWRITE);
1799
1800 /*
1801 * Initialize the transmit descriptor.
1802 */
1803 for (nexttx = sc->sc_txnext, seg = 0;
1804 seg < dmamap->dm_nsegs; seg++) {
1805 for (seglen = dmamap->dm_segs[seg].ds_len,
1806 curaddr = dmamap->dm_segs[seg].ds_addr;
1807 seglen != 0;
1808 curaddr += curlen, seglen -= curlen,
1809 nexttx = WM_NEXTTX(sc, nexttx)) {
1810 curlen = seglen;
1811
1812 /*
1813 * So says the Linux driver:
1814 * Work around for premature descriptor
1815 * write-backs in TSO mode. Append a
1816 * 4-byte sentinel descriptor.
1817 */
1818 if (use_tso &&
1819 seg == dmamap->dm_nsegs - 1 &&
1820 curlen > 8)
1821 curlen -= 4;
1822
1823 wm_set_dma_addr(
1824 &sc->sc_txdescs[nexttx].wtx_addr,
1825 curaddr);
1826 sc->sc_txdescs[nexttx].wtx_cmdlen =
1827 htole32(cksumcmd | curlen);
1828 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
1829 0;
1830 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1831 cksumfields;
1832 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1833 lasttx = nexttx;
1834
1835 DPRINTF(WM_DEBUG_TX,
1836 ("%s: TX: desc %d: low 0x%08lx, "
1837 "len 0x%04x\n",
1838 sc->sc_dev.dv_xname, nexttx,
1839 curaddr & 0xffffffffUL, (unsigned)curlen));
1840 }
1841 }
1842
1843 KASSERT(lasttx != -1);
1844
1845 /*
1846 * Set up the command byte on the last descriptor of
1847 * the packet. If we're in the interrupt delay window,
1848 * delay the interrupt.
1849 */
1850 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1851 htole32(WTX_CMD_EOP | WTX_CMD_RS);
1852
1853 #if 0 /* XXXJRT */
1854 /*
1855 * If VLANs are enabled and the packet has a VLAN tag, set
1856 * up the descriptor to encapsulate the packet for us.
1857 *
1858 * This is only valid on the last descriptor of the packet.
1859 */
1860 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1861 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1862 htole32(WTX_CMD_VLE);
1863 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
1864 = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
1865 }
1866 #endif /* XXXJRT */
1867
1868 txs->txs_lastdesc = lasttx;
1869
1870 DPRINTF(WM_DEBUG_TX,
1871 ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1872 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
1873
1874 /* Sync the descriptors we're using. */
1875 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
1876 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1877
1878 /* Give the packet to the chip. */
1879 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1880
1881 DPRINTF(WM_DEBUG_TX,
1882 ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1883
1884 DPRINTF(WM_DEBUG_TX,
1885 ("%s: TX: finished transmitting packet, job %d\n",
1886 sc->sc_dev.dv_xname, sc->sc_txsnext));
1887
1888 /* Advance the tx pointer. */
1889 sc->sc_txfree -= txs->txs_ndesc;
1890 sc->sc_txnext = nexttx;
1891
1892 sc->sc_txsfree--;
1893 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
1894
1895 #if NBPFILTER > 0
1896 /* Pass the packet to any BPF listeners. */
1897 if (ifp->if_bpf)
1898 bpf_mtap(ifp->if_bpf, m0);
1899 #endif /* NBPFILTER > 0 */
1900 }
1901
1902 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1903 /* No more slots; notify upper layer. */
1904 ifp->if_flags |= IFF_OACTIVE;
1905 }
1906
1907 if (sc->sc_txfree != ofree) {
1908 /* Set a watchdog timer in case the chip flakes out. */
1909 ifp->if_timer = 5;
1910 }
1911 }
1912
1913 /*
1914 * wm_watchdog: [ifnet interface function]
1915 *
1916 * Watchdog timer handler.
1917 */
1918 static void
1919 wm_watchdog(struct ifnet *ifp)
1920 {
1921 struct wm_softc *sc = ifp->if_softc;
1922
1923 /*
1924 * Since we're using delayed interrupts, sweep up
1925 * before we report an error.
1926 */
1927 wm_txintr(sc);
1928
1929 if (sc->sc_txfree != WM_NTXDESC(sc)) {
1930 log(LOG_ERR,
1931 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1932 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1933 sc->sc_txnext);
1934 ifp->if_oerrors++;
1935
1936 /* Reset the interface. */
1937 (void) wm_init(ifp);
1938 }
1939
1940 /* Try to get more packets going. */
1941 wm_start(ifp);
1942 }
1943
1944 /*
1945 * wm_ioctl: [ifnet interface function]
1946 *
1947 * Handle control requests from the operator.
1948 */
1949 static int
1950 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1951 {
1952 struct wm_softc *sc = ifp->if_softc;
1953 struct ifreq *ifr = (struct ifreq *) data;
1954 int s, error;
1955
1956 s = splnet();
1957
1958 switch (cmd) {
1959 case SIOCSIFMEDIA:
1960 case SIOCGIFMEDIA:
1961 /* Flow control requires full-duplex mode. */
1962 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1963 (ifr->ifr_media & IFM_FDX) == 0)
1964 ifr->ifr_media &= ~IFM_ETH_FMASK;
1965 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1966 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1967 /* We can do both TXPAUSE and RXPAUSE. */
1968 ifr->ifr_media |=
1969 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1970 }
1971 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1972 }
1973 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1974 break;
1975 default:
1976 error = ether_ioctl(ifp, cmd, data);
1977 if (error == ENETRESET) {
1978 /*
1979 * Multicast list has changed; set the hardware filter
1980 * accordingly.
1981 */
1982 if (ifp->if_flags & IFF_RUNNING)
1983 wm_set_filter(sc);
1984 error = 0;
1985 }
1986 break;
1987 }
1988
1989 /* Try to get more packets going. */
1990 wm_start(ifp);
1991
1992 splx(s);
1993 return (error);
1994 }
1995
1996 /*
1997 * wm_intr:
1998 *
1999 * Interrupt service routine.
2000 */
2001 static int
2002 wm_intr(void *arg)
2003 {
2004 struct wm_softc *sc = arg;
2005 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2006 uint32_t icr;
2007 int wantinit, handled = 0;
2008
2009 for (wantinit = 0; wantinit == 0;) {
2010 icr = CSR_READ(sc, WMREG_ICR);
2011 if ((icr & sc->sc_icr) == 0)
2012 break;
2013
2014 #if 0 /*NRND > 0*/
2015 if (RND_ENABLED(&sc->rnd_source))
2016 rnd_add_uint32(&sc->rnd_source, icr);
2017 #endif
2018
2019 handled = 1;
2020
2021 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2022 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
2023 DPRINTF(WM_DEBUG_RX,
2024 ("%s: RX: got Rx intr 0x%08x\n",
2025 sc->sc_dev.dv_xname,
2026 icr & (ICR_RXDMT0|ICR_RXT0)));
2027 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
2028 }
2029 #endif
2030 wm_rxintr(sc);
2031
2032 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2033 if (icr & ICR_TXDW) {
2034 DPRINTF(WM_DEBUG_TX,
2035 ("%s: TX: got TXDW interrupt\n",
2036 sc->sc_dev.dv_xname));
2037 WM_EVCNT_INCR(&sc->sc_ev_txdw);
2038 }
2039 #endif
2040 wm_txintr(sc);
2041
2042 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
2043 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
2044 wm_linkintr(sc, icr);
2045 }
2046
2047 if (icr & ICR_RXO) {
2048 log(LOG_WARNING, "%s: Receive overrun\n",
2049 sc->sc_dev.dv_xname);
2050 wantinit = 1;
2051 }
2052 }
2053
2054 if (handled) {
2055 if (wantinit)
2056 wm_init(ifp);
2057
2058 /* Try to get more packets going. */
2059 wm_start(ifp);
2060 }
2061
2062 return (handled);
2063 }
2064
2065 /*
2066 * wm_txintr:
2067 *
2068 * Helper; handle transmit interrupts.
2069 */
2070 static void
2071 wm_txintr(struct wm_softc *sc)
2072 {
2073 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2074 struct wm_txsoft *txs;
2075 uint8_t status;
2076 int i;
2077
2078 ifp->if_flags &= ~IFF_OACTIVE;
2079
2080 /*
2081 * Go through the Tx list and free mbufs for those
2082 * frames which have been transmitted.
2083 */
2084 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2085 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2086 txs = &sc->sc_txsoft[i];
2087
2088 DPRINTF(WM_DEBUG_TX,
2089 ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2090
2091 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2092 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2093
2094 status =
2095 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2096 if ((status & WTX_ST_DD) == 0) {
2097 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2098 BUS_DMASYNC_PREREAD);
2099 break;
2100 }
2101
2102 DPRINTF(WM_DEBUG_TX,
2103 ("%s: TX: job %d done: descs %d..%d\n",
2104 sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2105 txs->txs_lastdesc));
2106
2107 /*
2108 * XXX We should probably be using the statistics
2109 * XXX registers, but I don't know if they exist
2110 * XXX on chips before the i82544.
2111 */
2112
2113 #ifdef WM_EVENT_COUNTERS
2114 if (status & WTX_ST_TU)
2115 WM_EVCNT_INCR(&sc->sc_ev_tu);
2116 #endif /* WM_EVENT_COUNTERS */
2117
2118 if (status & (WTX_ST_EC|WTX_ST_LC)) {
2119 ifp->if_oerrors++;
2120 if (status & WTX_ST_LC)
2121 log(LOG_WARNING, "%s: late collision\n",
2122 sc->sc_dev.dv_xname);
2123 else if (status & WTX_ST_EC) {
2124 ifp->if_collisions += 16;
2125 log(LOG_WARNING, "%s: excessive collisions\n",
2126 sc->sc_dev.dv_xname);
2127 }
2128 } else
2129 ifp->if_opackets++;
2130
2131 sc->sc_txfree += txs->txs_ndesc;
2132 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2133 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2134 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2135 m_freem(txs->txs_mbuf);
2136 txs->txs_mbuf = NULL;
2137 }
2138
2139 /* Update the dirty transmit buffer pointer. */
2140 sc->sc_txsdirty = i;
2141 DPRINTF(WM_DEBUG_TX,
2142 ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2143
2144 /*
2145 * If there are no more pending transmissions, cancel the watchdog
2146 * timer.
2147 */
2148 if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2149 ifp->if_timer = 0;
2150 }
2151
2152 /*
2153 * wm_rxintr:
2154 *
2155 * Helper; handle receive interrupts.
2156 */
2157 static void
2158 wm_rxintr(struct wm_softc *sc)
2159 {
2160 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2161 struct wm_rxsoft *rxs;
2162 struct mbuf *m;
2163 int i, len;
2164 uint8_t status, errors;
2165
2166 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2167 rxs = &sc->sc_rxsoft[i];
2168
2169 DPRINTF(WM_DEBUG_RX,
2170 ("%s: RX: checking descriptor %d\n",
2171 sc->sc_dev.dv_xname, i));
2172
2173 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2174
2175 status = sc->sc_rxdescs[i].wrx_status;
2176 errors = sc->sc_rxdescs[i].wrx_errors;
2177 len = le16toh(sc->sc_rxdescs[i].wrx_len);
2178
2179 if ((status & WRX_ST_DD) == 0) {
2180 /*
2181 * We have processed all of the receive descriptors.
2182 */
2183 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2184 break;
2185 }
2186
2187 if (__predict_false(sc->sc_rxdiscard)) {
2188 DPRINTF(WM_DEBUG_RX,
2189 ("%s: RX: discarding contents of descriptor %d\n",
2190 sc->sc_dev.dv_xname, i));
2191 WM_INIT_RXDESC(sc, i);
2192 if (status & WRX_ST_EOP) {
2193 /* Reset our state. */
2194 DPRINTF(WM_DEBUG_RX,
2195 ("%s: RX: resetting rxdiscard -> 0\n",
2196 sc->sc_dev.dv_xname));
2197 sc->sc_rxdiscard = 0;
2198 }
2199 continue;
2200 }
2201
2202 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2203 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2204
2205 m = rxs->rxs_mbuf;
2206
2207 /*
2208 * Add a new receive buffer to the ring.
2209 */
2210 if (wm_add_rxbuf(sc, i) != 0) {
2211 /*
2212 * Failed, throw away what we've done so
2213 * far, and discard the rest of the packet.
2214 */
2215 ifp->if_ierrors++;
2216 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2217 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2218 WM_INIT_RXDESC(sc, i);
2219 if ((status & WRX_ST_EOP) == 0)
2220 sc->sc_rxdiscard = 1;
2221 if (sc->sc_rxhead != NULL)
2222 m_freem(sc->sc_rxhead);
2223 WM_RXCHAIN_RESET(sc);
2224 DPRINTF(WM_DEBUG_RX,
2225 ("%s: RX: Rx buffer allocation failed, "
2226 "dropping packet%s\n", sc->sc_dev.dv_xname,
2227 sc->sc_rxdiscard ? " (discard)" : ""));
2228 continue;
2229 }
2230
2231 WM_RXCHAIN_LINK(sc, m);
2232
2233 m->m_len = len;
2234
2235 DPRINTF(WM_DEBUG_RX,
2236 ("%s: RX: buffer at %p len %d\n",
2237 sc->sc_dev.dv_xname, m->m_data, len));
2238
2239 /*
2240 * If this is not the end of the packet, keep
2241 * looking.
2242 */
2243 if ((status & WRX_ST_EOP) == 0) {
2244 sc->sc_rxlen += len;
2245 DPRINTF(WM_DEBUG_RX,
2246 ("%s: RX: not yet EOP, rxlen -> %d\n",
2247 sc->sc_dev.dv_xname, sc->sc_rxlen));
2248 continue;
2249 }
2250
2251 /*
2252 * Okay, we have the entire packet now. The chip is
2253 * configured to include the FCS (not all chips can
2254 * be configured to strip it), so we need to trim it.
2255 */
2256 m->m_len -= ETHER_CRC_LEN;
2257
2258 *sc->sc_rxtailp = NULL;
2259 m = sc->sc_rxhead;
2260 len = m->m_len + sc->sc_rxlen;
2261
2262 WM_RXCHAIN_RESET(sc);
2263
2264 DPRINTF(WM_DEBUG_RX,
2265 ("%s: RX: have entire packet, len -> %d\n",
2266 sc->sc_dev.dv_xname, len));
2267
2268 /*
2269 * If an error occurred, update stats and drop the packet.
2270 */
2271 if (errors &
2272 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2273 ifp->if_ierrors++;
2274 if (errors & WRX_ER_SE)
2275 log(LOG_WARNING, "%s: symbol error\n",
2276 sc->sc_dev.dv_xname);
2277 else if (errors & WRX_ER_SEQ)
2278 log(LOG_WARNING, "%s: receive sequence error\n",
2279 sc->sc_dev.dv_xname);
2280 else if (errors & WRX_ER_CE)
2281 log(LOG_WARNING, "%s: CRC error\n",
2282 sc->sc_dev.dv_xname);
2283 m_freem(m);
2284 continue;
2285 }
2286
2287 /*
2288 * No errors. Receive the packet.
2289 */
2290 m->m_pkthdr.rcvif = ifp;
2291 m->m_pkthdr.len = len;
2292
2293 #if 0 /* XXXJRT */
2294 /*
2295 * If VLANs are enabled, VLAN packets have been unwrapped
2296 * for us. Associate the tag with the packet.
2297 */
2298 if ((status & WRX_ST_VP) != 0) {
2299 VLAN_INPUT_TAG(ifp, m,
2300 le16toh(sc->sc_rxdescs[i].wrx_special,
2301 continue);
2302 }
2303 #endif /* XXXJRT */
2304
2305 /*
2306 * Set up checksum info for this packet.
2307 */
2308 if (status & WRX_ST_IPCS) {
2309 WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2310 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2311 if (errors & WRX_ER_IPE)
2312 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2313 }
2314 if (status & WRX_ST_TCPCS) {
2315 /*
2316 * Note: we don't know if this was TCP or UDP,
2317 * so we just set both bits, and expect the
2318 * upper layers to deal.
2319 */
2320 WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2321 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
2322 if (errors & WRX_ER_TCPE)
2323 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
2324 }
2325
2326 ifp->if_ipackets++;
2327
2328 #if NBPFILTER > 0
2329 /* Pass this up to any BPF listeners. */
2330 if (ifp->if_bpf)
2331 bpf_mtap(ifp->if_bpf, m);
2332 #endif /* NBPFILTER > 0 */
2333
2334 /* Pass it on. */
2335 (*ifp->if_input)(ifp, m);
2336 }
2337
2338 /* Update the receive pointer. */
2339 sc->sc_rxptr = i;
2340
2341 DPRINTF(WM_DEBUG_RX,
2342 ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2343 }
2344
2345 /*
2346 * wm_linkintr:
2347 *
2348 * Helper; handle link interrupts.
2349 */
2350 static void
2351 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2352 {
2353 uint32_t status;
2354
2355 /*
2356 * If we get a link status interrupt on a 1000BASE-T
2357 * device, just fall into the normal MII tick path.
2358 */
2359 if (sc->sc_flags & WM_F_HAS_MII) {
2360 if (icr & ICR_LSC) {
2361 DPRINTF(WM_DEBUG_LINK,
2362 ("%s: LINK: LSC -> mii_tick\n",
2363 sc->sc_dev.dv_xname));
2364 mii_tick(&sc->sc_mii);
2365 } else if (icr & ICR_RXSEQ) {
2366 DPRINTF(WM_DEBUG_LINK,
2367 ("%s: LINK Receive sequence error\n",
2368 sc->sc_dev.dv_xname));
2369 }
2370 return;
2371 }
2372
2373 /*
2374 * If we are now receiving /C/, check for link again in
2375 * a couple of link clock ticks.
2376 */
2377 if (icr & ICR_RXCFG) {
2378 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2379 sc->sc_dev.dv_xname));
2380 sc->sc_tbi_anstate = 2;
2381 }
2382
2383 if (icr & ICR_LSC) {
2384 status = CSR_READ(sc, WMREG_STATUS);
2385 if (status & STATUS_LU) {
2386 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2387 sc->sc_dev.dv_xname,
2388 (status & STATUS_FD) ? "FDX" : "HDX"));
2389 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2390 sc->sc_fcrtl &= ~FCRTL_XONE;
2391 if (status & STATUS_FD)
2392 sc->sc_tctl |=
2393 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2394 else
2395 sc->sc_tctl |=
2396 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2397 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2398 sc->sc_fcrtl |= FCRTL_XONE;
2399 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2400 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2401 WMREG_OLD_FCRTL : WMREG_FCRTL,
2402 sc->sc_fcrtl);
2403 sc->sc_tbi_linkup = 1;
2404 } else {
2405 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2406 sc->sc_dev.dv_xname));
2407 sc->sc_tbi_linkup = 0;
2408 }
2409 sc->sc_tbi_anstate = 2;
2410 wm_tbi_set_linkled(sc);
2411 } else if (icr & ICR_RXSEQ) {
2412 DPRINTF(WM_DEBUG_LINK,
2413 ("%s: LINK: Receive sequence error\n",
2414 sc->sc_dev.dv_xname));
2415 }
2416 }
2417
2418 /*
2419 * wm_tick:
2420 *
2421 * One second timer, used to check link status, sweep up
2422 * completed transmit jobs, etc.
2423 */
2424 static void
2425 wm_tick(void *arg)
2426 {
2427 struct wm_softc *sc = arg;
2428 int s;
2429
2430 s = splnet();
2431
2432 if (sc->sc_type >= WM_T_82542_2_1) {
2433 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2434 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2435 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2436 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2437 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2438 }
2439
2440 if (sc->sc_flags & WM_F_HAS_MII)
2441 mii_tick(&sc->sc_mii);
2442 else
2443 wm_tbi_check_link(sc);
2444
2445 splx(s);
2446
2447 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2448 }
2449
2450 /*
2451 * wm_reset:
2452 *
2453 * Reset the i82542 chip.
2454 */
2455 static void
2456 wm_reset(struct wm_softc *sc)
2457 {
2458 int i;
2459
2460 /*
2461 * Allocate on-chip memory according to the MTU size.
2462 * The Packet Buffer Allocation register must be written
2463 * before the chip is reset.
2464 */
2465 if (sc->sc_type < WM_T_82547) {
2466 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2467 PBA_40K : PBA_48K;
2468 } else {
2469 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2470 PBA_22K : PBA_30K;
2471 sc->sc_txfifo_head = 0;
2472 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2473 sc->sc_txfifo_size =
2474 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2475 sc->sc_txfifo_stall = 0;
2476 }
2477 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2478
2479 switch (sc->sc_type) {
2480 case WM_T_82544:
2481 case WM_T_82540:
2482 case WM_T_82545:
2483 case WM_T_82546:
2484 case WM_T_82541:
2485 case WM_T_82541_2:
2486 /*
2487 * On some chipsets, a reset through a memory-mapped write
2488 * cycle can cause the chip to reset before completing the
2489 * write cycle. This causes major headache that can be
2490 * avoided by issuing the reset via indirect register writes
2491 * through I/O space.
2492 *
2493 * So, if we successfully mapped the I/O BAR at attach time,
2494 * use that. Otherwise, try our luck with a memory-mapped
2495 * reset.
2496 */
2497 if (sc->sc_flags & WM_F_IOH_VALID)
2498 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2499 else
2500 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2501 break;
2502
2503 case WM_T_82545_3:
2504 case WM_T_82546_3:
2505 /* Use the shadow control register on these chips. */
2506 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2507 break;
2508
2509 default:
2510 /* Everything else can safely use the documented method. */
2511 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2512 break;
2513 }
2514 delay(10000);
2515
2516 for (i = 0; i < 1000; i++) {
2517 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2518 return;
2519 delay(20);
2520 }
2521
2522 if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2523 log(LOG_ERR, "%s: reset failed to complete\n",
2524 sc->sc_dev.dv_xname);
2525 }
2526
2527 /*
2528 * wm_init: [ifnet interface function]
2529 *
2530 * Initialize the interface. Must be called at splnet().
2531 */
2532 static int
2533 wm_init(struct ifnet *ifp)
2534 {
2535 struct wm_softc *sc = ifp->if_softc;
2536 struct wm_rxsoft *rxs;
2537 int i, error = 0;
2538 uint32_t reg;
2539
2540 /*
2541 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2542 * There is a small but measurable benefit to avoiding the adjusment
2543 * of the descriptor so that the headers are aligned, for normal mtu,
2544 * on such platforms. One possibility is that the DMA itself is
2545 * slightly more efficient if the front of the entire packet (instead
2546 * of the front of the headers) is aligned.
2547 *
2548 * Note we must always set align_tweak to 0 if we are using
2549 * jumbo frames.
2550 */
2551 #ifdef __NO_STRICT_ALIGNMENT
2552 sc->sc_align_tweak = 0;
2553 #else
2554 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2555 sc->sc_align_tweak = 0;
2556 else
2557 sc->sc_align_tweak = 2;
2558 #endif /* __NO_STRICT_ALIGNMENT */
2559
2560 /* Cancel any pending I/O. */
2561 wm_stop(ifp, 0);
2562
2563 /* Reset the chip to a known state. */
2564 wm_reset(sc);
2565
2566 /* Initialize the transmit descriptor ring. */
2567 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2568 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2569 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2570 sc->sc_txfree = WM_NTXDESC(sc);
2571 sc->sc_txnext = 0;
2572
2573 if (sc->sc_type < WM_T_82543) {
2574 CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2575 CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2576 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2577 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2578 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2579 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2580 } else {
2581 CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2582 CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2583 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2584 CSR_WRITE(sc, WMREG_TDH, 0);
2585 CSR_WRITE(sc, WMREG_TDT, 0);
2586 CSR_WRITE(sc, WMREG_TIDV, 64);
2587 CSR_WRITE(sc, WMREG_TADV, 128);
2588
2589 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2590 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2591 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2592 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2593 }
2594 CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2595 CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2596
2597 /* Initialize the transmit job descriptors. */
2598 for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2599 sc->sc_txsoft[i].txs_mbuf = NULL;
2600 sc->sc_txsfree = WM_TXQUEUELEN(sc);
2601 sc->sc_txsnext = 0;
2602 sc->sc_txsdirty = 0;
2603
2604 /*
2605 * Initialize the receive descriptor and receive job
2606 * descriptor rings.
2607 */
2608 if (sc->sc_type < WM_T_82543) {
2609 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2610 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2611 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2612 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2613 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2614 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2615
2616 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2617 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2618 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2619 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2620 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2621 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2622 } else {
2623 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2624 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2625 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2626 CSR_WRITE(sc, WMREG_RDH, 0);
2627 CSR_WRITE(sc, WMREG_RDT, 0);
2628 CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
2629 CSR_WRITE(sc, WMREG_RADV, 128);
2630 }
2631 for (i = 0; i < WM_NRXDESC; i++) {
2632 rxs = &sc->sc_rxsoft[i];
2633 if (rxs->rxs_mbuf == NULL) {
2634 if ((error = wm_add_rxbuf(sc, i)) != 0) {
2635 log(LOG_ERR, "%s: unable to allocate or map rx "
2636 "buffer %d, error = %d\n",
2637 sc->sc_dev.dv_xname, i, error);
2638 /*
2639 * XXX Should attempt to run with fewer receive
2640 * XXX buffers instead of just failing.
2641 */
2642 wm_rxdrain(sc);
2643 goto out;
2644 }
2645 } else
2646 WM_INIT_RXDESC(sc, i);
2647 }
2648 sc->sc_rxptr = 0;
2649 sc->sc_rxdiscard = 0;
2650 WM_RXCHAIN_RESET(sc);
2651
2652 /*
2653 * Clear out the VLAN table -- we don't use it (yet).
2654 */
2655 CSR_WRITE(sc, WMREG_VET, 0);
2656 for (i = 0; i < WM_VLAN_TABSIZE; i++)
2657 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2658
2659 /*
2660 * Set up flow-control parameters.
2661 *
2662 * XXX Values could probably stand some tuning.
2663 */
2664 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2665 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2666 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2667
2668 sc->sc_fcrtl = FCRTL_DFLT;
2669 if (sc->sc_type < WM_T_82543) {
2670 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2671 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2672 } else {
2673 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2674 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2675 }
2676 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2677
2678 #if 0 /* XXXJRT */
2679 /* Deal with VLAN enables. */
2680 if (VLAN_ATTACHED(&sc->sc_ethercom))
2681 sc->sc_ctrl |= CTRL_VME;
2682 else
2683 #endif /* XXXJRT */
2684 sc->sc_ctrl &= ~CTRL_VME;
2685
2686 /* Write the control registers. */
2687 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2688 #if 0
2689 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2690 #endif
2691
2692 /*
2693 * Set up checksum offload parameters.
2694 */
2695 reg = CSR_READ(sc, WMREG_RXCSUM);
2696 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
2697 reg |= RXCSUM_IPOFL;
2698 else
2699 reg &= ~RXCSUM_IPOFL;
2700 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2701 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2702 else {
2703 reg &= ~RXCSUM_TUOFL;
2704 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
2705 reg &= ~RXCSUM_IPOFL;
2706 }
2707 CSR_WRITE(sc, WMREG_RXCSUM, reg);
2708
2709 /*
2710 * Set up the interrupt registers.
2711 */
2712 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2713 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2714 ICR_RXO | ICR_RXT0;
2715 if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2716 sc->sc_icr |= ICR_RXCFG;
2717 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2718
2719 /* Set up the inter-packet gap. */
2720 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2721
2722 if (sc->sc_type >= WM_T_82543) {
2723 /* Set up the interrupt throttling register (units of 256ns) */
2724 sc->sc_itr = 1000000000 / (7000 * 256);
2725 CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
2726 }
2727
2728 #if 0 /* XXXJRT */
2729 /* Set the VLAN ethernetype. */
2730 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2731 #endif
2732
2733 /*
2734 * Set up the transmit control register; we start out with
2735 * a collision distance suitable for FDX, but update it whe
2736 * we resolve the media type.
2737 */
2738 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2739 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2740 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2741
2742 /* Set the media. */
2743 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2744
2745 /*
2746 * Set up the receive control register; we actually program
2747 * the register when we set the receive filter. Use multicast
2748 * address offset type 0.
2749 *
2750 * Only the i82544 has the ability to strip the incoming
2751 * CRC, so we don't enable that feature.
2752 */
2753 sc->sc_mchash_type = 0;
2754 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
2755 RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2756
2757 if(MCLBYTES == 2048) {
2758 sc->sc_rctl |= RCTL_2k;
2759 } else {
2760 if(sc->sc_type >= WM_T_82543) {
2761 switch(MCLBYTES) {
2762 case 4096:
2763 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2764 break;
2765 case 8192:
2766 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2767 break;
2768 case 16384:
2769 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2770 break;
2771 default:
2772 panic("wm_init: MCLBYTES %d unsupported",
2773 MCLBYTES);
2774 break;
2775 }
2776 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
2777 }
2778
2779 /* Set the receive filter. */
2780 wm_set_filter(sc);
2781
2782 /* Start the one second link check clock. */
2783 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2784
2785 /* ...all done! */
2786 ifp->if_flags |= IFF_RUNNING;
2787 ifp->if_flags &= ~IFF_OACTIVE;
2788
2789 out:
2790 if (error)
2791 log(LOG_ERR, "%s: interface not running\n",
2792 sc->sc_dev.dv_xname);
2793 return (error);
2794 }
2795
2796 /*
2797 * wm_rxdrain:
2798 *
2799 * Drain the receive queue.
2800 */
2801 static void
2802 wm_rxdrain(struct wm_softc *sc)
2803 {
2804 struct wm_rxsoft *rxs;
2805 int i;
2806
2807 for (i = 0; i < WM_NRXDESC; i++) {
2808 rxs = &sc->sc_rxsoft[i];
2809 if (rxs->rxs_mbuf != NULL) {
2810 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2811 m_freem(rxs->rxs_mbuf);
2812 rxs->rxs_mbuf = NULL;
2813 }
2814 }
2815 }
2816
2817 /*
2818 * wm_stop: [ifnet interface function]
2819 *
2820 * Stop transmission on the interface.
2821 */
2822 static void
2823 wm_stop(struct ifnet *ifp, int disable)
2824 {
2825 struct wm_softc *sc = ifp->if_softc;
2826 struct wm_txsoft *txs;
2827 int i;
2828
2829 /* Stop the one second clock. */
2830 callout_stop(&sc->sc_tick_ch);
2831
2832 /* Stop the 82547 Tx FIFO stall check timer. */
2833 if (sc->sc_type == WM_T_82547)
2834 callout_stop(&sc->sc_txfifo_ch);
2835
2836 if (sc->sc_flags & WM_F_HAS_MII) {
2837 /* Down the MII. */
2838 mii_down(&sc->sc_mii);
2839 }
2840
2841 /* Stop the transmit and receive processes. */
2842 CSR_WRITE(sc, WMREG_TCTL, 0);
2843 CSR_WRITE(sc, WMREG_RCTL, 0);
2844
2845 /*
2846 * Clear the interrupt mask to ensure the device cannot assert its
2847 * interrupt line.
2848 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
2849 * any currently pending or shared interrupt.
2850 */
2851 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2852 sc->sc_icr = 0;
2853
2854 /* Release any queued transmit buffers. */
2855 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2856 txs = &sc->sc_txsoft[i];
2857 if (txs->txs_mbuf != NULL) {
2858 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2859 m_freem(txs->txs_mbuf);
2860 txs->txs_mbuf = NULL;
2861 }
2862 }
2863
2864 if (disable)
2865 wm_rxdrain(sc);
2866
2867 /* Mark the interface as down and cancel the watchdog timer. */
2868 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2869 ifp->if_timer = 0;
2870 }
2871
2872 /*
2873 * wm_acquire_eeprom:
2874 *
2875 * Perform the EEPROM handshake required on some chips.
2876 */
2877 static int
2878 wm_acquire_eeprom(struct wm_softc *sc)
2879 {
2880 uint32_t reg;
2881 int x;
2882
2883 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2884 reg = CSR_READ(sc, WMREG_EECD);
2885
2886 /* Request EEPROM access. */
2887 reg |= EECD_EE_REQ;
2888 CSR_WRITE(sc, WMREG_EECD, reg);
2889
2890 /* ..and wait for it to be granted. */
2891 for (x = 0; x < 100; x++) {
2892 reg = CSR_READ(sc, WMREG_EECD);
2893 if (reg & EECD_EE_GNT)
2894 break;
2895 delay(5);
2896 }
2897 if ((reg & EECD_EE_GNT) == 0) {
2898 aprint_error("%s: could not acquire EEPROM GNT\n",
2899 sc->sc_dev.dv_xname);
2900 reg &= ~EECD_EE_REQ;
2901 CSR_WRITE(sc, WMREG_EECD, reg);
2902 return (1);
2903 }
2904 }
2905
2906 return (0);
2907 }
2908
2909 /*
2910 * wm_release_eeprom:
2911 *
2912 * Release the EEPROM mutex.
2913 */
2914 static void
2915 wm_release_eeprom(struct wm_softc *sc)
2916 {
2917 uint32_t reg;
2918
2919 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2920 reg = CSR_READ(sc, WMREG_EECD);
2921 reg &= ~EECD_EE_REQ;
2922 CSR_WRITE(sc, WMREG_EECD, reg);
2923 }
2924 }
2925
2926 /*
2927 * wm_eeprom_sendbits:
2928 *
2929 * Send a series of bits to the EEPROM.
2930 */
2931 static void
2932 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
2933 {
2934 uint32_t reg;
2935 int x;
2936
2937 reg = CSR_READ(sc, WMREG_EECD);
2938
2939 for (x = nbits; x > 0; x--) {
2940 if (bits & (1U << (x - 1)))
2941 reg |= EECD_DI;
2942 else
2943 reg &= ~EECD_DI;
2944 CSR_WRITE(sc, WMREG_EECD, reg);
2945 delay(2);
2946 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2947 delay(2);
2948 CSR_WRITE(sc, WMREG_EECD, reg);
2949 delay(2);
2950 }
2951 }
2952
2953 /*
2954 * wm_eeprom_recvbits:
2955 *
2956 * Receive a series of bits from the EEPROM.
2957 */
2958 static void
2959 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
2960 {
2961 uint32_t reg, val;
2962 int x;
2963
2964 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
2965
2966 val = 0;
2967 for (x = nbits; x > 0; x--) {
2968 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2969 delay(2);
2970 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
2971 val |= (1U << (x - 1));
2972 CSR_WRITE(sc, WMREG_EECD, reg);
2973 delay(2);
2974 }
2975 *valp = val;
2976 }
2977
2978 /*
2979 * wm_read_eeprom_uwire:
2980 *
2981 * Read a word from the EEPROM using the MicroWire protocol.
2982 */
2983 static int
2984 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2985 {
2986 uint32_t reg, val;
2987 int i;
2988
2989 for (i = 0; i < wordcnt; i++) {
2990 /* Clear SK and DI. */
2991 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
2992 CSR_WRITE(sc, WMREG_EECD, reg);
2993
2994 /* Set CHIP SELECT. */
2995 reg |= EECD_CS;
2996 CSR_WRITE(sc, WMREG_EECD, reg);
2997 delay(2);
2998
2999 /* Shift in the READ command. */
3000 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
3001
3002 /* Shift in address. */
3003 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
3004
3005 /* Shift out the data. */
3006 wm_eeprom_recvbits(sc, &val, 16);
3007 data[i] = val & 0xffff;
3008
3009 /* Clear CHIP SELECT. */
3010 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
3011 CSR_WRITE(sc, WMREG_EECD, reg);
3012 delay(2);
3013 }
3014
3015 return (0);
3016 }
3017
3018 /*
3019 * wm_spi_eeprom_ready:
3020 *
3021 * Wait for a SPI EEPROM to be ready for commands.
3022 */
3023 static int
3024 wm_spi_eeprom_ready(struct wm_softc *sc)
3025 {
3026 uint32_t val;
3027 int usec;
3028
3029 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
3030 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
3031 wm_eeprom_recvbits(sc, &val, 8);
3032 if ((val & SPI_SR_RDY) == 0)
3033 break;
3034 }
3035 if (usec >= SPI_MAX_RETRIES) {
3036 aprint_error("%s: EEPROM failed to become ready\n",
3037 sc->sc_dev.dv_xname);
3038 return (1);
3039 }
3040 return (0);
3041 }
3042
3043 /*
3044 * wm_read_eeprom_spi:
3045 *
3046 * Read a work from the EEPROM using the SPI protocol.
3047 */
3048 static int
3049 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3050 {
3051 uint32_t reg, val;
3052 int i;
3053 uint8_t opc;
3054
3055 /* Clear SK and CS. */
3056 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
3057 CSR_WRITE(sc, WMREG_EECD, reg);
3058 delay(2);
3059
3060 if (wm_spi_eeprom_ready(sc))
3061 return (1);
3062
3063 /* Toggle CS to flush commands. */
3064 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
3065 delay(2);
3066 CSR_WRITE(sc, WMREG_EECD, reg);
3067 delay(2);
3068
3069 opc = SPI_OPC_READ;
3070 if (sc->sc_ee_addrbits == 8 && word >= 128)
3071 opc |= SPI_OPC_A8;
3072
3073 wm_eeprom_sendbits(sc, opc, 8);
3074 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
3075
3076 for (i = 0; i < wordcnt; i++) {
3077 wm_eeprom_recvbits(sc, &val, 16);
3078 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
3079 }
3080
3081 /* Raise CS and clear SK. */
3082 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3083 CSR_WRITE(sc, WMREG_EECD, reg);
3084 delay(2);
3085
3086 return (0);
3087 }
3088
3089 /*
3090 * wm_read_eeprom:
3091 *
3092 * Read data from the serial EEPROM.
3093 */
3094 static int
3095 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3096 {
3097 int rv;
3098
3099 if (wm_acquire_eeprom(sc))
3100 return (1);
3101
3102 if (sc->sc_flags & WM_F_EEPROM_SPI)
3103 rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3104 else
3105 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3106
3107 wm_release_eeprom(sc);
3108 return (rv);
3109 }
3110
3111 /*
3112 * wm_add_rxbuf:
3113 *
3114 * Add a receive buffer to the indiciated descriptor.
3115 */
3116 static int
3117 wm_add_rxbuf(struct wm_softc *sc, int idx)
3118 {
3119 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3120 struct mbuf *m;
3121 int error;
3122
3123 MGETHDR(m, M_DONTWAIT, MT_DATA);
3124 if (m == NULL)
3125 return (ENOBUFS);
3126
3127 MCLGET(m, M_DONTWAIT);
3128 if ((m->m_flags & M_EXT) == 0) {
3129 m_freem(m);
3130 return (ENOBUFS);
3131 }
3132
3133 if (rxs->rxs_mbuf != NULL)
3134 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3135
3136 rxs->rxs_mbuf = m;
3137
3138 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3139 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3140 BUS_DMA_READ|BUS_DMA_NOWAIT);
3141 if (error) {
3142 /* XXX XXX XXX */
3143 printf("%s: unable to load rx DMA map %d, error = %d\n",
3144 sc->sc_dev.dv_xname, idx, error);
3145 panic("wm_add_rxbuf");
3146 }
3147
3148 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3149 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3150
3151 WM_INIT_RXDESC(sc, idx);
3152
3153 return (0);
3154 }
3155
3156 /*
3157 * wm_set_ral:
3158 *
3159 * Set an entery in the receive address list.
3160 */
3161 static void
3162 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3163 {
3164 uint32_t ral_lo, ral_hi;
3165
3166 if (enaddr != NULL) {
3167 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3168 (enaddr[3] << 24);
3169 ral_hi = enaddr[4] | (enaddr[5] << 8);
3170 ral_hi |= RAL_AV;
3171 } else {
3172 ral_lo = 0;
3173 ral_hi = 0;
3174 }
3175
3176 if (sc->sc_type >= WM_T_82544) {
3177 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3178 ral_lo);
3179 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3180 ral_hi);
3181 } else {
3182 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3183 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3184 }
3185 }
3186
3187 /*
3188 * wm_mchash:
3189 *
3190 * Compute the hash of the multicast address for the 4096-bit
3191 * multicast filter.
3192 */
3193 static uint32_t
3194 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3195 {
3196 static const int lo_shift[4] = { 4, 3, 2, 0 };
3197 static const int hi_shift[4] = { 4, 5, 6, 8 };
3198 uint32_t hash;
3199
3200 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3201 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3202
3203 return (hash & 0xfff);
3204 }
3205
3206 /*
3207 * wm_set_filter:
3208 *
3209 * Set up the receive filter.
3210 */
3211 static void
3212 wm_set_filter(struct wm_softc *sc)
3213 {
3214 struct ethercom *ec = &sc->sc_ethercom;
3215 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3216 struct ether_multi *enm;
3217 struct ether_multistep step;
3218 bus_addr_t mta_reg;
3219 uint32_t hash, reg, bit;
3220 int i;
3221
3222 if (sc->sc_type >= WM_T_82544)
3223 mta_reg = WMREG_CORDOVA_MTA;
3224 else
3225 mta_reg = WMREG_MTA;
3226
3227 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3228
3229 if (ifp->if_flags & IFF_BROADCAST)
3230 sc->sc_rctl |= RCTL_BAM;
3231 if (ifp->if_flags & IFF_PROMISC) {
3232 sc->sc_rctl |= RCTL_UPE;
3233 goto allmulti;
3234 }
3235
3236 /*
3237 * Set the station address in the first RAL slot, and
3238 * clear the remaining slots.
3239 */
3240 wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3241 for (i = 1; i < WM_RAL_TABSIZE; i++)
3242 wm_set_ral(sc, NULL, i);
3243
3244 /* Clear out the multicast table. */
3245 for (i = 0; i < WM_MC_TABSIZE; i++)
3246 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3247
3248 ETHER_FIRST_MULTI(step, ec, enm);
3249 while (enm != NULL) {
3250 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3251 /*
3252 * We must listen to a range of multicast addresses.
3253 * For now, just accept all multicasts, rather than
3254 * trying to set only those filter bits needed to match
3255 * the range. (At this time, the only use of address
3256 * ranges is for IP multicast routing, for which the
3257 * range is big enough to require all bits set.)
3258 */
3259 goto allmulti;
3260 }
3261
3262 hash = wm_mchash(sc, enm->enm_addrlo);
3263
3264 reg = (hash >> 5) & 0x7f;
3265 bit = hash & 0x1f;
3266
3267 hash = CSR_READ(sc, mta_reg + (reg << 2));
3268 hash |= 1U << bit;
3269
3270 /* XXX Hardware bug?? */
3271 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3272 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3273 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3274 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3275 } else
3276 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3277
3278 ETHER_NEXT_MULTI(step, enm);
3279 }
3280
3281 ifp->if_flags &= ~IFF_ALLMULTI;
3282 goto setit;
3283
3284 allmulti:
3285 ifp->if_flags |= IFF_ALLMULTI;
3286 sc->sc_rctl |= RCTL_MPE;
3287
3288 setit:
3289 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3290 }
3291
3292 /*
3293 * wm_tbi_mediainit:
3294 *
3295 * Initialize media for use on 1000BASE-X devices.
3296 */
3297 static void
3298 wm_tbi_mediainit(struct wm_softc *sc)
3299 {
3300 const char *sep = "";
3301
3302 if (sc->sc_type < WM_T_82543)
3303 sc->sc_tipg = TIPG_WM_DFLT;
3304 else
3305 sc->sc_tipg = TIPG_LG_DFLT;
3306
3307 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3308 wm_tbi_mediastatus);
3309
3310 /*
3311 * SWD Pins:
3312 *
3313 * 0 = Link LED (output)
3314 * 1 = Loss Of Signal (input)
3315 */
3316 sc->sc_ctrl |= CTRL_SWDPIO(0);
3317 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3318
3319 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3320
3321 #define ADD(ss, mm, dd) \
3322 do { \
3323 aprint_normal("%s%s", sep, ss); \
3324 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
3325 sep = ", "; \
3326 } while (/*CONSTCOND*/0)
3327
3328 aprint_normal("%s: ", sc->sc_dev.dv_xname);
3329 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3330 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3331 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3332 aprint_normal("\n");
3333
3334 #undef ADD
3335
3336 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3337 }
3338
3339 /*
3340 * wm_tbi_mediastatus: [ifmedia interface function]
3341 *
3342 * Get the current interface media status on a 1000BASE-X device.
3343 */
3344 static void
3345 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3346 {
3347 struct wm_softc *sc = ifp->if_softc;
3348 uint32_t ctrl;
3349
3350 ifmr->ifm_status = IFM_AVALID;
3351 ifmr->ifm_active = IFM_ETHER;
3352
3353 if (sc->sc_tbi_linkup == 0) {
3354 ifmr->ifm_active |= IFM_NONE;
3355 return;
3356 }
3357
3358 ifmr->ifm_status |= IFM_ACTIVE;
3359 ifmr->ifm_active |= IFM_1000_SX;
3360 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3361 ifmr->ifm_active |= IFM_FDX;
3362 ctrl = CSR_READ(sc, WMREG_CTRL);
3363 if (ctrl & CTRL_RFCE)
3364 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3365 if (ctrl & CTRL_TFCE)
3366 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3367 }
3368
3369 /*
3370 * wm_tbi_mediachange: [ifmedia interface function]
3371 *
3372 * Set hardware to newly-selected media on a 1000BASE-X device.
3373 */
3374 static int
3375 wm_tbi_mediachange(struct ifnet *ifp)
3376 {
3377 struct wm_softc *sc = ifp->if_softc;
3378 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3379 uint32_t status;
3380 int i;
3381
3382 sc->sc_txcw = ife->ifm_data;
3383 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3384 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3385 sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3386 sc->sc_txcw |= TXCW_ANE;
3387
3388 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3389 delay(10000);
3390
3391 /* NOTE: CTRL will update TFCE and RFCE automatically. */
3392
3393 sc->sc_tbi_anstate = 0;
3394
3395 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3396 /* Have signal; wait for the link to come up. */
3397 for (i = 0; i < 50; i++) {
3398 delay(10000);
3399 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3400 break;
3401 }
3402
3403 status = CSR_READ(sc, WMREG_STATUS);
3404 if (status & STATUS_LU) {
3405 /* Link is up. */
3406 DPRINTF(WM_DEBUG_LINK,
3407 ("%s: LINK: set media -> link up %s\n",
3408 sc->sc_dev.dv_xname,
3409 (status & STATUS_FD) ? "FDX" : "HDX"));
3410 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3411 sc->sc_fcrtl &= ~FCRTL_XONE;
3412 if (status & STATUS_FD)
3413 sc->sc_tctl |=
3414 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3415 else
3416 sc->sc_tctl |=
3417 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3418 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3419 sc->sc_fcrtl |= FCRTL_XONE;
3420 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3421 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3422 WMREG_OLD_FCRTL : WMREG_FCRTL,
3423 sc->sc_fcrtl);
3424 sc->sc_tbi_linkup = 1;
3425 } else {
3426 /* Link is down. */
3427 DPRINTF(WM_DEBUG_LINK,
3428 ("%s: LINK: set media -> link down\n",
3429 sc->sc_dev.dv_xname));
3430 sc->sc_tbi_linkup = 0;
3431 }
3432 } else {
3433 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3434 sc->sc_dev.dv_xname));
3435 sc->sc_tbi_linkup = 0;
3436 }
3437
3438 wm_tbi_set_linkled(sc);
3439
3440 return (0);
3441 }
3442
3443 /*
3444 * wm_tbi_set_linkled:
3445 *
3446 * Update the link LED on 1000BASE-X devices.
3447 */
3448 static void
3449 wm_tbi_set_linkled(struct wm_softc *sc)
3450 {
3451
3452 if (sc->sc_tbi_linkup)
3453 sc->sc_ctrl |= CTRL_SWDPIN(0);
3454 else
3455 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3456
3457 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3458 }
3459
3460 /*
3461 * wm_tbi_check_link:
3462 *
3463 * Check the link on 1000BASE-X devices.
3464 */
3465 static void
3466 wm_tbi_check_link(struct wm_softc *sc)
3467 {
3468 uint32_t rxcw, ctrl, status;
3469
3470 if (sc->sc_tbi_anstate == 0)
3471 return;
3472 else if (sc->sc_tbi_anstate > 1) {
3473 DPRINTF(WM_DEBUG_LINK,
3474 ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3475 sc->sc_tbi_anstate));
3476 sc->sc_tbi_anstate--;
3477 return;
3478 }
3479
3480 sc->sc_tbi_anstate = 0;
3481
3482 rxcw = CSR_READ(sc, WMREG_RXCW);
3483 ctrl = CSR_READ(sc, WMREG_CTRL);
3484 status = CSR_READ(sc, WMREG_STATUS);
3485
3486 if ((status & STATUS_LU) == 0) {
3487 DPRINTF(WM_DEBUG_LINK,
3488 ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3489 sc->sc_tbi_linkup = 0;
3490 } else {
3491 DPRINTF(WM_DEBUG_LINK,
3492 ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3493 (status & STATUS_FD) ? "FDX" : "HDX"));
3494 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3495 sc->sc_fcrtl &= ~FCRTL_XONE;
3496 if (status & STATUS_FD)
3497 sc->sc_tctl |=
3498 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3499 else
3500 sc->sc_tctl |=
3501 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3502 if (ctrl & CTRL_TFCE)
3503 sc->sc_fcrtl |= FCRTL_XONE;
3504 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3505 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3506 WMREG_OLD_FCRTL : WMREG_FCRTL,
3507 sc->sc_fcrtl);
3508 sc->sc_tbi_linkup = 1;
3509 }
3510
3511 wm_tbi_set_linkled(sc);
3512 }
3513
3514 /*
3515 * wm_gmii_reset:
3516 *
3517 * Reset the PHY.
3518 */
3519 static void
3520 wm_gmii_reset(struct wm_softc *sc)
3521 {
3522 uint32_t reg;
3523
3524 if (sc->sc_type >= WM_T_82544) {
3525 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3526 delay(20000);
3527
3528 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3529 delay(20000);
3530 } else {
3531 /* The PHY reset pin is active-low. */
3532 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3533 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3534 CTRL_EXT_SWDPIN(4));
3535 reg |= CTRL_EXT_SWDPIO(4);
3536
3537 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3538 delay(10);
3539
3540 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3541 delay(10);
3542
3543 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3544 delay(10);
3545 #if 0
3546 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3547 #endif
3548 }
3549 }
3550
3551 /*
3552 * wm_gmii_mediainit:
3553 *
3554 * Initialize media for use on 1000BASE-T devices.
3555 */
3556 static void
3557 wm_gmii_mediainit(struct wm_softc *sc)
3558 {
3559 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3560
3561 /* We have MII. */
3562 sc->sc_flags |= WM_F_HAS_MII;
3563
3564 sc->sc_tipg = TIPG_1000T_DFLT;
3565
3566 /*
3567 * Let the chip set speed/duplex on its own based on
3568 * signals from the PHY.
3569 */
3570 sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3571 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3572
3573 /* Initialize our media structures and probe the GMII. */
3574 sc->sc_mii.mii_ifp = ifp;
3575
3576 if (sc->sc_type >= WM_T_82544) {
3577 sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3578 sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3579 } else {
3580 sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3581 sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3582 }
3583 sc->sc_mii.mii_statchg = wm_gmii_statchg;
3584
3585 wm_gmii_reset(sc);
3586
3587 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3588 wm_gmii_mediastatus);
3589
3590 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3591 MII_OFFSET_ANY, MIIF_DOPAUSE);
3592 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3593 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3594 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3595 } else
3596 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3597 }
3598
3599 /*
3600 * wm_gmii_mediastatus: [ifmedia interface function]
3601 *
3602 * Get the current interface media status on a 1000BASE-T device.
3603 */
3604 static void
3605 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3606 {
3607 struct wm_softc *sc = ifp->if_softc;
3608
3609 mii_pollstat(&sc->sc_mii);
3610 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3611 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3612 sc->sc_flowflags;
3613 }
3614
3615 /*
3616 * wm_gmii_mediachange: [ifmedia interface function]
3617 *
3618 * Set hardware to newly-selected media on a 1000BASE-T device.
3619 */
3620 static int
3621 wm_gmii_mediachange(struct ifnet *ifp)
3622 {
3623 struct wm_softc *sc = ifp->if_softc;
3624
3625 if (ifp->if_flags & IFF_UP)
3626 mii_mediachg(&sc->sc_mii);
3627 return (0);
3628 }
3629
3630 #define MDI_IO CTRL_SWDPIN(2)
3631 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
3632 #define MDI_CLK CTRL_SWDPIN(3)
3633
3634 static void
3635 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3636 {
3637 uint32_t i, v;
3638
3639 v = CSR_READ(sc, WMREG_CTRL);
3640 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3641 v |= MDI_DIR | CTRL_SWDPIO(3);
3642
3643 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3644 if (data & i)
3645 v |= MDI_IO;
3646 else
3647 v &= ~MDI_IO;
3648 CSR_WRITE(sc, WMREG_CTRL, v);
3649 delay(10);
3650 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3651 delay(10);
3652 CSR_WRITE(sc, WMREG_CTRL, v);
3653 delay(10);
3654 }
3655 }
3656
3657 static uint32_t
3658 i82543_mii_recvbits(struct wm_softc *sc)
3659 {
3660 uint32_t v, i, data = 0;
3661
3662 v = CSR_READ(sc, WMREG_CTRL);
3663 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3664 v |= CTRL_SWDPIO(3);
3665
3666 CSR_WRITE(sc, WMREG_CTRL, v);
3667 delay(10);
3668 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3669 delay(10);
3670 CSR_WRITE(sc, WMREG_CTRL, v);
3671 delay(10);
3672
3673 for (i = 0; i < 16; i++) {
3674 data <<= 1;
3675 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3676 delay(10);
3677 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3678 data |= 1;
3679 CSR_WRITE(sc, WMREG_CTRL, v);
3680 delay(10);
3681 }
3682
3683 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3684 delay(10);
3685 CSR_WRITE(sc, WMREG_CTRL, v);
3686 delay(10);
3687
3688 return (data);
3689 }
3690
3691 #undef MDI_IO
3692 #undef MDI_DIR
3693 #undef MDI_CLK
3694
3695 /*
3696 * wm_gmii_i82543_readreg: [mii interface function]
3697 *
3698 * Read a PHY register on the GMII (i82543 version).
3699 */
3700 static int
3701 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3702 {
3703 struct wm_softc *sc = (void *) self;
3704 int rv;
3705
3706 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3707 i82543_mii_sendbits(sc, reg | (phy << 5) |
3708 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3709 rv = i82543_mii_recvbits(sc) & 0xffff;
3710
3711 DPRINTF(WM_DEBUG_GMII,
3712 ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3713 sc->sc_dev.dv_xname, phy, reg, rv));
3714
3715 return (rv);
3716 }
3717
3718 /*
3719 * wm_gmii_i82543_writereg: [mii interface function]
3720 *
3721 * Write a PHY register on the GMII (i82543 version).
3722 */
3723 static void
3724 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3725 {
3726 struct wm_softc *sc = (void *) self;
3727
3728 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3729 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3730 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3731 (MII_COMMAND_START << 30), 32);
3732 }
3733
3734 /*
3735 * wm_gmii_i82544_readreg: [mii interface function]
3736 *
3737 * Read a PHY register on the GMII.
3738 */
3739 static int
3740 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
3741 {
3742 struct wm_softc *sc = (void *) self;
3743 uint32_t mdic = 0;
3744 int i, rv;
3745
3746 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
3747 MDIC_REGADD(reg));
3748
3749 for (i = 0; i < 100; i++) {
3750 mdic = CSR_READ(sc, WMREG_MDIC);
3751 if (mdic & MDIC_READY)
3752 break;
3753 delay(10);
3754 }
3755
3756 if ((mdic & MDIC_READY) == 0) {
3757 log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
3758 sc->sc_dev.dv_xname, phy, reg);
3759 rv = 0;
3760 } else if (mdic & MDIC_E) {
3761 #if 0 /* This is normal if no PHY is present. */
3762 log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
3763 sc->sc_dev.dv_xname, phy, reg);
3764 #endif
3765 rv = 0;
3766 } else {
3767 rv = MDIC_DATA(mdic);
3768 if (rv == 0xffff)
3769 rv = 0;
3770 }
3771
3772 return (rv);
3773 }
3774
3775 /*
3776 * wm_gmii_i82544_writereg: [mii interface function]
3777 *
3778 * Write a PHY register on the GMII.
3779 */
3780 static void
3781 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
3782 {
3783 struct wm_softc *sc = (void *) self;
3784 uint32_t mdic = 0;
3785 int i;
3786
3787 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
3788 MDIC_REGADD(reg) | MDIC_DATA(val));
3789
3790 for (i = 0; i < 100; i++) {
3791 mdic = CSR_READ(sc, WMREG_MDIC);
3792 if (mdic & MDIC_READY)
3793 break;
3794 delay(10);
3795 }
3796
3797 if ((mdic & MDIC_READY) == 0)
3798 log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
3799 sc->sc_dev.dv_xname, phy, reg);
3800 else if (mdic & MDIC_E)
3801 log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
3802 sc->sc_dev.dv_xname, phy, reg);
3803 }
3804
3805 /*
3806 * wm_gmii_statchg: [mii interface function]
3807 *
3808 * Callback from MII layer when media changes.
3809 */
3810 static void
3811 wm_gmii_statchg(struct device *self)
3812 {
3813 struct wm_softc *sc = (void *) self;
3814 struct mii_data *mii = &sc->sc_mii;
3815
3816 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
3817 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3818 sc->sc_fcrtl &= ~FCRTL_XONE;
3819
3820 /*
3821 * Get flow control negotiation result.
3822 */
3823 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3824 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3825 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3826 mii->mii_media_active &= ~IFM_ETH_FMASK;
3827 }
3828
3829 if (sc->sc_flowflags & IFM_FLOW) {
3830 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
3831 sc->sc_ctrl |= CTRL_TFCE;
3832 sc->sc_fcrtl |= FCRTL_XONE;
3833 }
3834 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3835 sc->sc_ctrl |= CTRL_RFCE;
3836 }
3837
3838 if (sc->sc_mii.mii_media_active & IFM_FDX) {
3839 DPRINTF(WM_DEBUG_LINK,
3840 ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3841 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3842 } else {
3843 DPRINTF(WM_DEBUG_LINK,
3844 ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3845 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3846 }
3847
3848 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3849 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3850 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
3851 : WMREG_FCRTL, sc->sc_fcrtl);
3852 }
3853