if_wm.c revision 1.107 1 /* $NetBSD: if_wm.c,v 1.107 2005/08/10 12:59:43 yamt Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40 *
41 * TODO (in order of importance):
42 *
43 * - Rework how parameters are loaded from the EEPROM.
44 * - Figure out what to do with the i82545GM and i82546GB
45 * SERDES controllers.
46 * - Fix hw VLAN assist.
47 */
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.107 2005/08/10 12:59:43 yamt Exp $");
51
52 #include "bpfilter.h"
53 #include "rnd.h"
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67
68 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
69
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82
83 #include <netinet/in.h> /* XXX for struct ip */
84 #include <netinet/in_systm.h> /* XXX for struct ip */
85 #include <netinet/ip.h> /* XXX for struct ip */
86 #include <netinet/tcp.h> /* XXX for struct tcphdr */
87
88 #include <machine/bus.h>
89 #include <machine/intr.h>
90 #include <machine/endian.h>
91
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99
100 #include <dev/pci/if_wmreg.h>
101
102 #ifdef WM_DEBUG
103 #define WM_DEBUG_LINK 0x01
104 #define WM_DEBUG_TX 0x02
105 #define WM_DEBUG_RX 0x04
106 #define WM_DEBUG_GMII 0x08
107 int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
108
109 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
110 #else
111 #define DPRINTF(x, y) /* nothing */
112 #endif /* WM_DEBUG */
113
114 /*
115 * Transmit descriptor list size. Due to errata, we can only have
116 * 256 hardware descriptors in the ring on < 82544, but we use 4096
117 * on >= 82544. We tell the upper layers that they can queue a lot
118 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
119 * of them at a time.
120 *
121 * We allow up to 256 (!) DMA segments per packet. Pathological packet
122 * chains containing many small mbufs have been observed in zero-copy
123 * situations with jumbo frames.
124 */
125 #define WM_NTXSEGS 256
126 #define WM_IFQUEUELEN 256
127 #define WM_TXQUEUELEN_MAX 64
128 #define WM_TXQUEUELEN_MAX_82547 16
129 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
130 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
131 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
132 #define WM_NTXDESC_82542 256
133 #define WM_NTXDESC_82544 4096
134 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
135 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
136 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
137 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
138 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
139
140 #define WM_MAXTXDMA round_page(IP_MAXPACKET) /* for TSO */
141
142 /*
143 * Receive descriptor list size. We have one Rx buffer for normal
144 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
145 * packet. We allocate 256 receive descriptors, each with a 2k
146 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
147 */
148 #define WM_NRXDESC 256
149 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
150 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
151 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
152
153 /*
154 * Control structures are DMA'd to the i82542 chip. We allocate them in
155 * a single clump that maps to a single DMA segment to make several things
156 * easier.
157 */
158 struct wm_control_data_82544 {
159 /*
160 * The receive descriptors.
161 */
162 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
163
164 /*
165 * The transmit descriptors. Put these at the end, because
166 * we might use a smaller number of them.
167 */
168 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
169 };
170
171 struct wm_control_data_82542 {
172 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
173 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
174 };
175
176 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
177 #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)])
178 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
179
180 /*
181 * Software state for transmit jobs.
182 */
183 struct wm_txsoft {
184 struct mbuf *txs_mbuf; /* head of our mbuf chain */
185 bus_dmamap_t txs_dmamap; /* our DMA map */
186 int txs_firstdesc; /* first descriptor in packet */
187 int txs_lastdesc; /* last descriptor in packet */
188 int txs_ndesc; /* # of descriptors used */
189 };
190
191 /*
192 * Software state for receive buffers. Each descriptor gets a
193 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
194 * more than one buffer, we chain them together.
195 */
196 struct wm_rxsoft {
197 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
198 bus_dmamap_t rxs_dmamap; /* our DMA map */
199 };
200
201 typedef enum {
202 WM_T_unknown = 0,
203 WM_T_82542_2_0, /* i82542 2.0 (really old) */
204 WM_T_82542_2_1, /* i82542 2.1+ (old) */
205 WM_T_82543, /* i82543 */
206 WM_T_82544, /* i82544 */
207 WM_T_82540, /* i82540 */
208 WM_T_82545, /* i82545 */
209 WM_T_82545_3, /* i82545 3.0+ */
210 WM_T_82546, /* i82546 */
211 WM_T_82546_3, /* i82546 3.0+ */
212 WM_T_82541, /* i82541 */
213 WM_T_82541_2, /* i82541 2.0+ */
214 WM_T_82547, /* i82547 */
215 WM_T_82547_2, /* i82547 2.0+ */
216 } wm_chip_type;
217
218 /*
219 * Software state per device.
220 */
221 struct wm_softc {
222 struct device sc_dev; /* generic device information */
223 bus_space_tag_t sc_st; /* bus space tag */
224 bus_space_handle_t sc_sh; /* bus space handle */
225 bus_space_tag_t sc_iot; /* I/O space tag */
226 bus_space_handle_t sc_ioh; /* I/O space handle */
227 bus_dma_tag_t sc_dmat; /* bus DMA tag */
228 struct ethercom sc_ethercom; /* ethernet common data */
229 void *sc_sdhook; /* shutdown hook */
230
231 wm_chip_type sc_type; /* chip type */
232 int sc_flags; /* flags; see below */
233 int sc_bus_speed; /* PCI/PCIX bus speed */
234 int sc_pcix_offset; /* PCIX capability register offset */
235 int sc_flowflags; /* 802.3x flow control flags */
236
237 void *sc_ih; /* interrupt cookie */
238
239 int sc_ee_addrbits; /* EEPROM address bits */
240
241 struct mii_data sc_mii; /* MII/media information */
242
243 struct callout sc_tick_ch; /* tick callout */
244
245 bus_dmamap_t sc_cddmamap; /* control data DMA map */
246 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
247
248 int sc_align_tweak;
249
250 /*
251 * Software state for the transmit and receive descriptors.
252 */
253 int sc_txnum; /* must be a power of two */
254 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
255 struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
256
257 /*
258 * Control data structures.
259 */
260 int sc_ntxdesc; /* must be a power of two */
261 struct wm_control_data_82544 *sc_control_data;
262 #define sc_txdescs sc_control_data->wcd_txdescs
263 #define sc_rxdescs sc_control_data->wcd_rxdescs
264
265 #ifdef WM_EVENT_COUNTERS
266 /* Event counters. */
267 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
268 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
269 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
270 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
271 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
272 struct evcnt sc_ev_rxintr; /* Rx interrupts */
273 struct evcnt sc_ev_linkintr; /* Link interrupts */
274
275 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
276 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
277 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
278 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
279 struct evcnt sc_ev_txtusum6; /* TCP/UDP v6 cksums comp. out-bound */
280 struct evcnt sc_ev_txtso; /* TCP seg offload out-bound */
281 struct evcnt sc_ev_txtsopain; /* painful header manip. for TSO */
282
283 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
284 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
285
286 struct evcnt sc_ev_tu; /* Tx underrun */
287
288 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
289 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
290 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
291 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
292 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
293 #endif /* WM_EVENT_COUNTERS */
294
295 bus_addr_t sc_tdt_reg; /* offset of TDT register */
296
297 int sc_txfree; /* number of free Tx descriptors */
298 int sc_txnext; /* next ready Tx descriptor */
299
300 int sc_txsfree; /* number of free Tx jobs */
301 int sc_txsnext; /* next free Tx job */
302 int sc_txsdirty; /* dirty Tx jobs */
303
304 /* These 5 variables are used only on the 82547. */
305 int sc_txfifo_size; /* Tx FIFO size */
306 int sc_txfifo_head; /* current head of FIFO */
307 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
308 int sc_txfifo_stall; /* Tx FIFO is stalled */
309 struct callout sc_txfifo_ch; /* Tx FIFO stall work-around timer */
310
311 bus_addr_t sc_rdt_reg; /* offset of RDT register */
312
313 int sc_rxptr; /* next ready Rx descriptor/queue ent */
314 int sc_rxdiscard;
315 int sc_rxlen;
316 struct mbuf *sc_rxhead;
317 struct mbuf *sc_rxtail;
318 struct mbuf **sc_rxtailp;
319
320 uint32_t sc_ctrl; /* prototype CTRL register */
321 #if 0
322 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
323 #endif
324 uint32_t sc_icr; /* prototype interrupt bits */
325 uint32_t sc_itr; /* prototype intr throttling reg */
326 uint32_t sc_tctl; /* prototype TCTL register */
327 uint32_t sc_rctl; /* prototype RCTL register */
328 uint32_t sc_txcw; /* prototype TXCW register */
329 uint32_t sc_tipg; /* prototype TIPG register */
330 uint32_t sc_fcrtl; /* prototype FCRTL register */
331 uint32_t sc_pba; /* prototype PBA register */
332
333 int sc_tbi_linkup; /* TBI link status */
334 int sc_tbi_anstate; /* autonegotiation state */
335
336 int sc_mchash_type; /* multicast filter offset */
337
338 #if NRND > 0
339 rndsource_element_t rnd_source; /* random source */
340 #endif
341 };
342
343 #define WM_RXCHAIN_RESET(sc) \
344 do { \
345 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
346 *(sc)->sc_rxtailp = NULL; \
347 (sc)->sc_rxlen = 0; \
348 } while (/*CONSTCOND*/0)
349
350 #define WM_RXCHAIN_LINK(sc, m) \
351 do { \
352 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
353 (sc)->sc_rxtailp = &(m)->m_next; \
354 } while (/*CONSTCOND*/0)
355
356 /* sc_flags */
357 #define WM_F_HAS_MII 0x01 /* has MII */
358 #define WM_F_EEPROM_HANDSHAKE 0x02 /* requires EEPROM handshake */
359 #define WM_F_EEPROM_SPI 0x04 /* EEPROM is SPI */
360 #define WM_F_IOH_VALID 0x10 /* I/O handle is valid */
361 #define WM_F_BUS64 0x20 /* bus is 64-bit */
362 #define WM_F_PCIX 0x40 /* bus is PCI-X */
363 #define WM_F_CSA 0x80 /* bus is CSA */
364
365 #ifdef WM_EVENT_COUNTERS
366 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
367 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
368 #else
369 #define WM_EVCNT_INCR(ev) /* nothing */
370 #define WM_EVCNT_ADD(ev, val) /* nothing */
371 #endif
372
373 #define CSR_READ(sc, reg) \
374 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
375 #define CSR_WRITE(sc, reg, val) \
376 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
377 #define CSR_WRITE_FLUSH(sc) \
378 (void) CSR_READ((sc), WMREG_STATUS)
379
380 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
381 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
382
383 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
384 #define WM_CDTXADDR_HI(sc, x) \
385 (sizeof(bus_addr_t) == 8 ? \
386 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
387
388 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
389 #define WM_CDRXADDR_HI(sc, x) \
390 (sizeof(bus_addr_t) == 8 ? \
391 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
392
393 #define WM_CDTXSYNC(sc, x, n, ops) \
394 do { \
395 int __x, __n; \
396 \
397 __x = (x); \
398 __n = (n); \
399 \
400 /* If it will wrap around, sync to the end of the ring. */ \
401 if ((__x + __n) > WM_NTXDESC(sc)) { \
402 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
403 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
404 (WM_NTXDESC(sc) - __x), (ops)); \
405 __n -= (WM_NTXDESC(sc) - __x); \
406 __x = 0; \
407 } \
408 \
409 /* Now sync whatever is left. */ \
410 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
411 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
412 } while (/*CONSTCOND*/0)
413
414 #define WM_CDRXSYNC(sc, x, ops) \
415 do { \
416 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
417 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
418 } while (/*CONSTCOND*/0)
419
420 #define WM_INIT_RXDESC(sc, x) \
421 do { \
422 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
423 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
424 struct mbuf *__m = __rxs->rxs_mbuf; \
425 \
426 /* \
427 * Note: We scoot the packet forward 2 bytes in the buffer \
428 * so that the payload after the Ethernet header is aligned \
429 * to a 4-byte boundary. \
430 * \
431 * XXX BRAINDAMAGE ALERT! \
432 * The stupid chip uses the same size for every buffer, which \
433 * is set in the Receive Control register. We are using the 2K \
434 * size option, but what we REALLY want is (2K - 2)! For this \
435 * reason, we can't "scoot" packets longer than the standard \
436 * Ethernet MTU. On strict-alignment platforms, if the total \
437 * size exceeds (2K - 2) we set align_tweak to 0 and let \
438 * the upper layer copy the headers. \
439 */ \
440 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
441 \
442 wm_set_dma_addr(&__rxd->wrx_addr, \
443 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
444 __rxd->wrx_len = 0; \
445 __rxd->wrx_cksum = 0; \
446 __rxd->wrx_status = 0; \
447 __rxd->wrx_errors = 0; \
448 __rxd->wrx_special = 0; \
449 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
450 \
451 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
452 } while (/*CONSTCOND*/0)
453
454 static void wm_start(struct ifnet *);
455 static void wm_watchdog(struct ifnet *);
456 static int wm_ioctl(struct ifnet *, u_long, caddr_t);
457 static int wm_init(struct ifnet *);
458 static void wm_stop(struct ifnet *, int);
459
460 static void wm_shutdown(void *);
461
462 static void wm_reset(struct wm_softc *);
463 static void wm_rxdrain(struct wm_softc *);
464 static int wm_add_rxbuf(struct wm_softc *, int);
465 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
466 static void wm_tick(void *);
467
468 static void wm_set_filter(struct wm_softc *);
469
470 static int wm_intr(void *);
471 static void wm_txintr(struct wm_softc *);
472 static void wm_rxintr(struct wm_softc *);
473 static void wm_linkintr(struct wm_softc *, uint32_t);
474
475 static void wm_tbi_mediainit(struct wm_softc *);
476 static int wm_tbi_mediachange(struct ifnet *);
477 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
478
479 static void wm_tbi_set_linkled(struct wm_softc *);
480 static void wm_tbi_check_link(struct wm_softc *);
481
482 static void wm_gmii_reset(struct wm_softc *);
483
484 static int wm_gmii_i82543_readreg(struct device *, int, int);
485 static void wm_gmii_i82543_writereg(struct device *, int, int, int);
486
487 static int wm_gmii_i82544_readreg(struct device *, int, int);
488 static void wm_gmii_i82544_writereg(struct device *, int, int, int);
489
490 static void wm_gmii_statchg(struct device *);
491
492 static void wm_gmii_mediainit(struct wm_softc *);
493 static int wm_gmii_mediachange(struct ifnet *);
494 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
495
496 static int wm_match(struct device *, struct cfdata *, void *);
497 static void wm_attach(struct device *, struct device *, void *);
498
499 CFATTACH_DECL(wm, sizeof(struct wm_softc),
500 wm_match, wm_attach, NULL, NULL);
501
502 static void wm_82547_txfifo_stall(void *);
503
504 /*
505 * Devices supported by this driver.
506 */
507 static const struct wm_product {
508 pci_vendor_id_t wmp_vendor;
509 pci_product_id_t wmp_product;
510 const char *wmp_name;
511 wm_chip_type wmp_type;
512 int wmp_flags;
513 #define WMP_F_1000X 0x01
514 #define WMP_F_1000T 0x02
515 } wm_products[] = {
516 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
517 "Intel i82542 1000BASE-X Ethernet",
518 WM_T_82542_2_1, WMP_F_1000X },
519
520 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
521 "Intel i82543GC 1000BASE-X Ethernet",
522 WM_T_82543, WMP_F_1000X },
523
524 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
525 "Intel i82543GC 1000BASE-T Ethernet",
526 WM_T_82543, WMP_F_1000T },
527
528 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
529 "Intel i82544EI 1000BASE-T Ethernet",
530 WM_T_82544, WMP_F_1000T },
531
532 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
533 "Intel i82544EI 1000BASE-X Ethernet",
534 WM_T_82544, WMP_F_1000X },
535
536 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
537 "Intel i82544GC 1000BASE-T Ethernet",
538 WM_T_82544, WMP_F_1000T },
539
540 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
541 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
542 WM_T_82544, WMP_F_1000T },
543
544 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
545 "Intel i82540EM 1000BASE-T Ethernet",
546 WM_T_82540, WMP_F_1000T },
547
548 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
549 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
550 WM_T_82540, WMP_F_1000T },
551
552 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
553 "Intel i82540EP 1000BASE-T Ethernet",
554 WM_T_82540, WMP_F_1000T },
555
556 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
557 "Intel i82540EP 1000BASE-T Ethernet",
558 WM_T_82540, WMP_F_1000T },
559
560 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
561 "Intel i82540EP 1000BASE-T Ethernet",
562 WM_T_82540, WMP_F_1000T },
563
564 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
565 "Intel i82545EM 1000BASE-T Ethernet",
566 WM_T_82545, WMP_F_1000T },
567
568 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
569 "Intel i82545GM 1000BASE-T Ethernet",
570 WM_T_82545_3, WMP_F_1000T },
571
572 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
573 "Intel i82545GM 1000BASE-X Ethernet",
574 WM_T_82545_3, WMP_F_1000X },
575 #if 0
576 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
577 "Intel i82545GM Gigabit Ethernet (SERDES)",
578 WM_T_82545_3, WMP_F_SERDES },
579 #endif
580 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
581 "Intel i82546EB 1000BASE-T Ethernet",
582 WM_T_82546, WMP_F_1000T },
583
584 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
585 "Intel i82546EB 1000BASE-T Ethernet",
586 WM_T_82546, WMP_F_1000T },
587
588 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
589 "Intel i82545EM 1000BASE-X Ethernet",
590 WM_T_82545, WMP_F_1000X },
591
592 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
593 "Intel i82546EB 1000BASE-X Ethernet",
594 WM_T_82546, WMP_F_1000X },
595
596 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
597 "Intel i82546GB 1000BASE-T Ethernet",
598 WM_T_82546_3, WMP_F_1000T },
599
600 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
601 "Intel i82546GB 1000BASE-X Ethernet",
602 WM_T_82546_3, WMP_F_1000X },
603 #if 0
604 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
605 "Intel i82546GB Gigabit Ethernet (SERDES)",
606 WM_T_82546_3, WMP_F_SERDES },
607 #endif
608 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
609 "Intel i82541EI 1000BASE-T Ethernet",
610 WM_T_82541, WMP_F_1000T },
611
612 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
613 "Intel i82541EI Mobile 1000BASE-T Ethernet",
614 WM_T_82541, WMP_F_1000T },
615
616 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
617 "Intel i82541ER 1000BASE-T Ethernet",
618 WM_T_82541_2, WMP_F_1000T },
619
620 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
621 "Intel i82541GI 1000BASE-T Ethernet",
622 WM_T_82541_2, WMP_F_1000T },
623
624 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
625 "Intel i82541GI Mobile 1000BASE-T Ethernet",
626 WM_T_82541_2, WMP_F_1000T },
627
628 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI,
629 "Intel i82541PI 1000BASE-T Ethernet",
630 WM_T_82541_2, WMP_F_1000T },
631
632 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
633 "Intel i82547EI 1000BASE-T Ethernet",
634 WM_T_82547, WMP_F_1000T },
635
636 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
637 "Intel i82547GI 1000BASE-T Ethernet",
638 WM_T_82547_2, WMP_F_1000T },
639 { 0, 0,
640 NULL,
641 0, 0 },
642 };
643
644 #ifdef WM_EVENT_COUNTERS
645 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
646 #endif /* WM_EVENT_COUNTERS */
647
648 #if 0 /* Not currently used */
649 static __inline uint32_t
650 wm_io_read(struct wm_softc *sc, int reg)
651 {
652
653 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
654 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
655 }
656 #endif
657
658 static __inline void
659 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
660 {
661
662 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
663 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
664 }
665
666 static __inline void
667 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
668 {
669 wa->wa_low = htole32(v & 0xffffffffU);
670 if (sizeof(bus_addr_t) == 8)
671 wa->wa_high = htole32((uint64_t) v >> 32);
672 else
673 wa->wa_high = 0;
674 }
675
676 static const struct wm_product *
677 wm_lookup(const struct pci_attach_args *pa)
678 {
679 const struct wm_product *wmp;
680
681 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
682 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
683 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
684 return (wmp);
685 }
686 return (NULL);
687 }
688
689 static int
690 wm_match(struct device *parent, struct cfdata *cf, void *aux)
691 {
692 struct pci_attach_args *pa = aux;
693
694 if (wm_lookup(pa) != NULL)
695 return (1);
696
697 return (0);
698 }
699
700 static void
701 wm_attach(struct device *parent, struct device *self, void *aux)
702 {
703 struct wm_softc *sc = (void *) self;
704 struct pci_attach_args *pa = aux;
705 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
706 pci_chipset_tag_t pc = pa->pa_pc;
707 pci_intr_handle_t ih;
708 size_t cdata_size;
709 const char *intrstr = NULL;
710 const char *eetype;
711 bus_space_tag_t memt;
712 bus_space_handle_t memh;
713 bus_dma_segment_t seg;
714 int memh_valid;
715 int i, rseg, error;
716 const struct wm_product *wmp;
717 uint8_t enaddr[ETHER_ADDR_LEN];
718 uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
719 pcireg_t preg, memtype;
720 uint32_t reg;
721 int pmreg;
722
723 callout_init(&sc->sc_tick_ch);
724
725 wmp = wm_lookup(pa);
726 if (wmp == NULL) {
727 printf("\n");
728 panic("wm_attach: impossible");
729 }
730
731 if (pci_dma64_available(pa))
732 sc->sc_dmat = pa->pa_dmat64;
733 else
734 sc->sc_dmat = pa->pa_dmat;
735
736 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
737 aprint_naive(": Ethernet controller\n");
738 aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
739
740 sc->sc_type = wmp->wmp_type;
741 if (sc->sc_type < WM_T_82543) {
742 if (preg < 2) {
743 aprint_error("%s: i82542 must be at least rev. 2\n",
744 sc->sc_dev.dv_xname);
745 return;
746 }
747 if (preg < 3)
748 sc->sc_type = WM_T_82542_2_0;
749 }
750
751 /*
752 * Map the device. All devices support memory-mapped acccess,
753 * and it is really required for normal operation.
754 */
755 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
756 switch (memtype) {
757 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
758 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
759 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
760 memtype, 0, &memt, &memh, NULL, NULL) == 0);
761 break;
762 default:
763 memh_valid = 0;
764 }
765
766 if (memh_valid) {
767 sc->sc_st = memt;
768 sc->sc_sh = memh;
769 } else {
770 aprint_error("%s: unable to map device registers\n",
771 sc->sc_dev.dv_xname);
772 return;
773 }
774
775 /*
776 * In addition, i82544 and later support I/O mapped indirect
777 * register access. It is not desirable (nor supported in
778 * this driver) to use it for normal operation, though it is
779 * required to work around bugs in some chip versions.
780 */
781 if (sc->sc_type >= WM_T_82544) {
782 /* First we have to find the I/O BAR. */
783 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
784 if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
785 PCI_MAPREG_TYPE_IO)
786 break;
787 }
788 if (i == PCI_MAPREG_END)
789 aprint_error("%s: WARNING: unable to find I/O BAR\n",
790 sc->sc_dev.dv_xname);
791 else {
792 /*
793 * The i8254x doesn't apparently respond when the
794 * I/O BAR is 0, which looks somewhat like it's not
795 * been configured.
796 */
797 preg = pci_conf_read(pc, pa->pa_tag, i);
798 if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
799 aprint_error("%s: WARNING: I/O BAR at zero.\n",
800 sc->sc_dev.dv_xname);
801 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
802 0, &sc->sc_iot, &sc->sc_ioh,
803 NULL, NULL) == 0) {
804 sc->sc_flags |= WM_F_IOH_VALID;
805 } else {
806 aprint_error("%s: WARNING: unable to map "
807 "I/O space\n", sc->sc_dev.dv_xname);
808 }
809 }
810
811 }
812
813 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
814 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
815 preg |= PCI_COMMAND_MASTER_ENABLE;
816 if (sc->sc_type < WM_T_82542_2_1)
817 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
818 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
819
820 /* Get it out of power save mode, if needed. */
821 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
822 preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
823 PCI_PMCSR_STATE_MASK;
824 if (preg == PCI_PMCSR_STATE_D3) {
825 /*
826 * The card has lost all configuration data in
827 * this state, so punt.
828 */
829 aprint_error("%s: unable to wake from power state D3\n",
830 sc->sc_dev.dv_xname);
831 return;
832 }
833 if (preg != PCI_PMCSR_STATE_D0) {
834 aprint_normal("%s: waking up from power state D%d\n",
835 sc->sc_dev.dv_xname, preg);
836 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
837 PCI_PMCSR_STATE_D0);
838 }
839 }
840
841 /*
842 * Map and establish our interrupt.
843 */
844 if (pci_intr_map(pa, &ih)) {
845 aprint_error("%s: unable to map interrupt\n",
846 sc->sc_dev.dv_xname);
847 return;
848 }
849 intrstr = pci_intr_string(pc, ih);
850 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
851 if (sc->sc_ih == NULL) {
852 aprint_error("%s: unable to establish interrupt",
853 sc->sc_dev.dv_xname);
854 if (intrstr != NULL)
855 aprint_normal(" at %s", intrstr);
856 aprint_normal("\n");
857 return;
858 }
859 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
860
861 /*
862 * Determine a few things about the bus we're connected to.
863 */
864 if (sc->sc_type < WM_T_82543) {
865 /* We don't really know the bus characteristics here. */
866 sc->sc_bus_speed = 33;
867 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
868 /*
869 * CSA (Communication Streaming Architecture) is about as fast
870 * a 32-bit 66MHz PCI Bus.
871 */
872 sc->sc_flags |= WM_F_CSA;
873 sc->sc_bus_speed = 66;
874 aprint_verbose("%s: Communication Streaming Architecture\n",
875 sc->sc_dev.dv_xname);
876 if (sc->sc_type == WM_T_82547) {
877 callout_init(&sc->sc_txfifo_ch);
878 callout_setfunc(&sc->sc_txfifo_ch,
879 wm_82547_txfifo_stall, sc);
880 aprint_verbose("%s: using 82547 Tx FIFO stall "
881 "work-around\n", sc->sc_dev.dv_xname);
882 }
883 } else {
884 reg = CSR_READ(sc, WMREG_STATUS);
885 if (reg & STATUS_BUS64)
886 sc->sc_flags |= WM_F_BUS64;
887 if (sc->sc_type >= WM_T_82544 &&
888 (reg & STATUS_PCIX_MODE) != 0) {
889 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
890
891 sc->sc_flags |= WM_F_PCIX;
892 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
893 PCI_CAP_PCIX,
894 &sc->sc_pcix_offset, NULL) == 0)
895 aprint_error("%s: unable to find PCIX "
896 "capability\n", sc->sc_dev.dv_xname);
897 else if (sc->sc_type != WM_T_82545_3 &&
898 sc->sc_type != WM_T_82546_3) {
899 /*
900 * Work around a problem caused by the BIOS
901 * setting the max memory read byte count
902 * incorrectly.
903 */
904 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
905 sc->sc_pcix_offset + PCI_PCIX_CMD);
906 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
907 sc->sc_pcix_offset + PCI_PCIX_STATUS);
908
909 bytecnt =
910 (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
911 PCI_PCIX_CMD_BYTECNT_SHIFT;
912 maxb =
913 (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
914 PCI_PCIX_STATUS_MAXB_SHIFT;
915 if (bytecnt > maxb) {
916 aprint_verbose("%s: resetting PCI-X "
917 "MMRBC: %d -> %d\n",
918 sc->sc_dev.dv_xname,
919 512 << bytecnt, 512 << maxb);
920 pcix_cmd = (pcix_cmd &
921 ~PCI_PCIX_CMD_BYTECNT_MASK) |
922 (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
923 pci_conf_write(pa->pa_pc, pa->pa_tag,
924 sc->sc_pcix_offset + PCI_PCIX_CMD,
925 pcix_cmd);
926 }
927 }
928 }
929 /*
930 * The quad port adapter is special; it has a PCIX-PCIX
931 * bridge on the board, and can run the secondary bus at
932 * a higher speed.
933 */
934 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
935 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
936 : 66;
937 } else if (sc->sc_flags & WM_F_PCIX) {
938 switch (reg & STATUS_PCIXSPD_MASK) {
939 case STATUS_PCIXSPD_50_66:
940 sc->sc_bus_speed = 66;
941 break;
942 case STATUS_PCIXSPD_66_100:
943 sc->sc_bus_speed = 100;
944 break;
945 case STATUS_PCIXSPD_100_133:
946 sc->sc_bus_speed = 133;
947 break;
948 default:
949 aprint_error(
950 "%s: unknown PCIXSPD %d; assuming 66MHz\n",
951 sc->sc_dev.dv_xname,
952 reg & STATUS_PCIXSPD_MASK);
953 sc->sc_bus_speed = 66;
954 }
955 } else
956 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
957 aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
958 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
959 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
960 }
961
962 /*
963 * Allocate the control data structures, and create and load the
964 * DMA map for it.
965 *
966 * NOTE: All Tx descriptors must be in the same 4G segment of
967 * memory. So must Rx descriptors. We simplify by allocating
968 * both sets within the same 4G segment.
969 */
970 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
971 WM_NTXDESC_82542 : WM_NTXDESC_82544;
972 cdata_size = sc->sc_type < WM_T_82544 ?
973 sizeof(struct wm_control_data_82542) :
974 sizeof(struct wm_control_data_82544);
975 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
976 (bus_size_t) 0x100000000ULL,
977 &seg, 1, &rseg, 0)) != 0) {
978 aprint_error(
979 "%s: unable to allocate control data, error = %d\n",
980 sc->sc_dev.dv_xname, error);
981 goto fail_0;
982 }
983
984 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
985 (caddr_t *)&sc->sc_control_data, 0)) != 0) {
986 aprint_error("%s: unable to map control data, error = %d\n",
987 sc->sc_dev.dv_xname, error);
988 goto fail_1;
989 }
990
991 if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
992 0, 0, &sc->sc_cddmamap)) != 0) {
993 aprint_error("%s: unable to create control data DMA map, "
994 "error = %d\n", sc->sc_dev.dv_xname, error);
995 goto fail_2;
996 }
997
998 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
999 sc->sc_control_data, cdata_size, NULL,
1000 0)) != 0) {
1001 aprint_error(
1002 "%s: unable to load control data DMA map, error = %d\n",
1003 sc->sc_dev.dv_xname, error);
1004 goto fail_3;
1005 }
1006
1007
1008 /*
1009 * Create the transmit buffer DMA maps.
1010 */
1011 WM_TXQUEUELEN(sc) =
1012 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1013 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1014 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1015 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1016 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1017 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1018 aprint_error("%s: unable to create Tx DMA map %d, "
1019 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1020 goto fail_4;
1021 }
1022 }
1023
1024 /*
1025 * Create the receive buffer DMA maps.
1026 */
1027 for (i = 0; i < WM_NRXDESC; i++) {
1028 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1029 MCLBYTES, 0, 0,
1030 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1031 aprint_error("%s: unable to create Rx DMA map %d, "
1032 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1033 goto fail_5;
1034 }
1035 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1036 }
1037
1038 /*
1039 * Reset the chip to a known state.
1040 */
1041 wm_reset(sc);
1042
1043 /*
1044 * Get some information about the EEPROM.
1045 */
1046 if (sc->sc_type >= WM_T_82540)
1047 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1048 if (sc->sc_type <= WM_T_82544)
1049 sc->sc_ee_addrbits = 6;
1050 else if (sc->sc_type <= WM_T_82546_3) {
1051 reg = CSR_READ(sc, WMREG_EECD);
1052 if (reg & EECD_EE_SIZE)
1053 sc->sc_ee_addrbits = 8;
1054 else
1055 sc->sc_ee_addrbits = 6;
1056 } else if (sc->sc_type <= WM_T_82547_2) {
1057 reg = CSR_READ(sc, WMREG_EECD);
1058 if (reg & EECD_EE_TYPE) {
1059 sc->sc_flags |= WM_F_EEPROM_SPI;
1060 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1061 } else
1062 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1063 } else {
1064 /* Assume everything else is SPI. */
1065 reg = CSR_READ(sc, WMREG_EECD);
1066 sc->sc_flags |= WM_F_EEPROM_SPI;
1067 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1068 }
1069 if (sc->sc_flags & WM_F_EEPROM_SPI)
1070 eetype = "SPI";
1071 else
1072 eetype = "MicroWire";
1073 aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1074 sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1075 sc->sc_ee_addrbits, eetype);
1076
1077 /*
1078 * Read the Ethernet address from the EEPROM.
1079 */
1080 if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1081 sizeof(myea) / sizeof(myea[0]), myea)) {
1082 aprint_error("%s: unable to read Ethernet address\n",
1083 sc->sc_dev.dv_xname);
1084 return;
1085 }
1086 enaddr[0] = myea[0] & 0xff;
1087 enaddr[1] = myea[0] >> 8;
1088 enaddr[2] = myea[1] & 0xff;
1089 enaddr[3] = myea[1] >> 8;
1090 enaddr[4] = myea[2] & 0xff;
1091 enaddr[5] = myea[2] >> 8;
1092
1093 /*
1094 * Toggle the LSB of the MAC address on the second port
1095 * of the i82546.
1096 */
1097 if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
1098 if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1099 enaddr[5] ^= 1;
1100 }
1101
1102 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1103 ether_sprintf(enaddr));
1104
1105 /*
1106 * Read the config info from the EEPROM, and set up various
1107 * bits in the control registers based on their contents.
1108 */
1109 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1110 aprint_error("%s: unable to read CFG1 from EEPROM\n",
1111 sc->sc_dev.dv_xname);
1112 return;
1113 }
1114 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1115 aprint_error("%s: unable to read CFG2 from EEPROM\n",
1116 sc->sc_dev.dv_xname);
1117 return;
1118 }
1119 if (sc->sc_type >= WM_T_82544) {
1120 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1121 aprint_error("%s: unable to read SWDPIN from EEPROM\n",
1122 sc->sc_dev.dv_xname);
1123 return;
1124 }
1125 }
1126
1127 if (cfg1 & EEPROM_CFG1_ILOS)
1128 sc->sc_ctrl |= CTRL_ILOS;
1129 if (sc->sc_type >= WM_T_82544) {
1130 sc->sc_ctrl |=
1131 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1132 CTRL_SWDPIO_SHIFT;
1133 sc->sc_ctrl |=
1134 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1135 CTRL_SWDPINS_SHIFT;
1136 } else {
1137 sc->sc_ctrl |=
1138 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1139 CTRL_SWDPIO_SHIFT;
1140 }
1141
1142 #if 0
1143 if (sc->sc_type >= WM_T_82544) {
1144 if (cfg1 & EEPROM_CFG1_IPS0)
1145 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1146 if (cfg1 & EEPROM_CFG1_IPS1)
1147 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1148 sc->sc_ctrl_ext |=
1149 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1150 CTRL_EXT_SWDPIO_SHIFT;
1151 sc->sc_ctrl_ext |=
1152 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1153 CTRL_EXT_SWDPINS_SHIFT;
1154 } else {
1155 sc->sc_ctrl_ext |=
1156 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1157 CTRL_EXT_SWDPIO_SHIFT;
1158 }
1159 #endif
1160
1161 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1162 #if 0
1163 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1164 #endif
1165
1166 /*
1167 * Set up some register offsets that are different between
1168 * the i82542 and the i82543 and later chips.
1169 */
1170 if (sc->sc_type < WM_T_82543) {
1171 sc->sc_rdt_reg = WMREG_OLD_RDT0;
1172 sc->sc_tdt_reg = WMREG_OLD_TDT;
1173 } else {
1174 sc->sc_rdt_reg = WMREG_RDT;
1175 sc->sc_tdt_reg = WMREG_TDT;
1176 }
1177
1178 /*
1179 * Determine if we're TBI or GMII mode, and initialize the
1180 * media structures accordingly.
1181 */
1182 if (sc->sc_type < WM_T_82543 ||
1183 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1184 if (wmp->wmp_flags & WMP_F_1000T)
1185 aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1186 "product!\n", sc->sc_dev.dv_xname);
1187 wm_tbi_mediainit(sc);
1188 } else {
1189 if (wmp->wmp_flags & WMP_F_1000X)
1190 aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1191 "product!\n", sc->sc_dev.dv_xname);
1192 wm_gmii_mediainit(sc);
1193 }
1194
1195 ifp = &sc->sc_ethercom.ec_if;
1196 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1197 ifp->if_softc = sc;
1198 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1199 ifp->if_ioctl = wm_ioctl;
1200 ifp->if_start = wm_start;
1201 ifp->if_watchdog = wm_watchdog;
1202 ifp->if_init = wm_init;
1203 ifp->if_stop = wm_stop;
1204 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1205 IFQ_SET_READY(&ifp->if_snd);
1206
1207 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1208
1209 /*
1210 * If we're a i82543 or greater, we can support VLANs.
1211 */
1212 if (sc->sc_type >= WM_T_82543)
1213 sc->sc_ethercom.ec_capabilities |=
1214 ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1215
1216 /*
1217 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
1218 * on i82543 and later.
1219 */
1220 if (sc->sc_type >= WM_T_82543)
1221 ifp->if_capabilities |=
1222 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1223 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1224 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1225 IFCAP_CSUM_TCPv6_Tx |
1226 IFCAP_CSUM_UDPv6_Tx;
1227
1228 /*
1229 * If we're a i82544 or greater (except i82547), we can do
1230 * TCP segmentation offload.
1231 */
1232 if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547)
1233 ifp->if_capabilities |= IFCAP_TSOv4;
1234
1235 /*
1236 * Attach the interface.
1237 */
1238 if_attach(ifp);
1239 ether_ifattach(ifp, enaddr);
1240 #if NRND > 0
1241 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1242 RND_TYPE_NET, 0);
1243 #endif
1244
1245 #ifdef WM_EVENT_COUNTERS
1246 /* Attach event counters. */
1247 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1248 NULL, sc->sc_dev.dv_xname, "txsstall");
1249 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1250 NULL, sc->sc_dev.dv_xname, "txdstall");
1251 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1252 NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1253 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1254 NULL, sc->sc_dev.dv_xname, "txdw");
1255 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1256 NULL, sc->sc_dev.dv_xname, "txqe");
1257 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1258 NULL, sc->sc_dev.dv_xname, "rxintr");
1259 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1260 NULL, sc->sc_dev.dv_xname, "linkintr");
1261
1262 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1263 NULL, sc->sc_dev.dv_xname, "rxipsum");
1264 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1265 NULL, sc->sc_dev.dv_xname, "rxtusum");
1266 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1267 NULL, sc->sc_dev.dv_xname, "txipsum");
1268 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1269 NULL, sc->sc_dev.dv_xname, "txtusum");
1270 evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
1271 NULL, sc->sc_dev.dv_xname, "txtusum6");
1272
1273 evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
1274 NULL, sc->sc_dev.dv_xname, "txtso");
1275 evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
1276 NULL, sc->sc_dev.dv_xname, "txtsopain");
1277
1278 for (i = 0; i < WM_NTXSEGS; i++) {
1279 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1280 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1281 NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1282 }
1283
1284 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1285 NULL, sc->sc_dev.dv_xname, "txdrop");
1286
1287 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1288 NULL, sc->sc_dev.dv_xname, "tu");
1289
1290 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1291 NULL, sc->sc_dev.dv_xname, "tx_xoff");
1292 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1293 NULL, sc->sc_dev.dv_xname, "tx_xon");
1294 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1295 NULL, sc->sc_dev.dv_xname, "rx_xoff");
1296 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1297 NULL, sc->sc_dev.dv_xname, "rx_xon");
1298 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1299 NULL, sc->sc_dev.dv_xname, "rx_macctl");
1300 #endif /* WM_EVENT_COUNTERS */
1301
1302 /*
1303 * Make sure the interface is shutdown during reboot.
1304 */
1305 sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1306 if (sc->sc_sdhook == NULL)
1307 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1308 sc->sc_dev.dv_xname);
1309 return;
1310
1311 /*
1312 * Free any resources we've allocated during the failed attach
1313 * attempt. Do this in reverse order and fall through.
1314 */
1315 fail_5:
1316 for (i = 0; i < WM_NRXDESC; i++) {
1317 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1318 bus_dmamap_destroy(sc->sc_dmat,
1319 sc->sc_rxsoft[i].rxs_dmamap);
1320 }
1321 fail_4:
1322 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1323 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1324 bus_dmamap_destroy(sc->sc_dmat,
1325 sc->sc_txsoft[i].txs_dmamap);
1326 }
1327 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1328 fail_3:
1329 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1330 fail_2:
1331 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1332 cdata_size);
1333 fail_1:
1334 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1335 fail_0:
1336 return;
1337 }
1338
1339 /*
1340 * wm_shutdown:
1341 *
1342 * Make sure the interface is stopped at reboot time.
1343 */
1344 static void
1345 wm_shutdown(void *arg)
1346 {
1347 struct wm_softc *sc = arg;
1348
1349 wm_stop(&sc->sc_ethercom.ec_if, 1);
1350 }
1351
1352 /*
1353 * wm_tx_offload:
1354 *
1355 * Set up TCP/IP checksumming parameters for the
1356 * specified packet.
1357 */
1358 static int
1359 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1360 uint8_t *fieldsp)
1361 {
1362 struct mbuf *m0 = txs->txs_mbuf;
1363 struct livengood_tcpip_ctxdesc *t;
1364 uint32_t ipcs, tucs, cmd, cmdlen, seg;
1365 struct ether_header *eh;
1366 int offset, iphl;
1367 uint8_t fields;
1368
1369 /*
1370 * XXX It would be nice if the mbuf pkthdr had offset
1371 * fields for the protocol headers.
1372 */
1373
1374 eh = mtod(m0, struct ether_header *);
1375 switch (htons(eh->ether_type)) {
1376 case ETHERTYPE_IP:
1377 case ETHERTYPE_IPV6:
1378 offset = ETHER_HDR_LEN;
1379 break;
1380
1381 case ETHERTYPE_VLAN:
1382 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1383 break;
1384
1385 default:
1386 /*
1387 * Don't support this protocol or encapsulation.
1388 */
1389 *fieldsp = 0;
1390 *cmdp = 0;
1391 return (0);
1392 }
1393
1394 if ((m0->m_pkthdr.csum_flags &
1395 (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
1396 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1397 } else {
1398 iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
1399 }
1400
1401 cmd = WTX_CMD_DEXT | WTX_DTYP_D;
1402 cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
1403 seg = 0;
1404 fields = 0;
1405
1406 if (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
1407 int hlen = offset + iphl;
1408 WM_EVCNT_INCR(&sc->sc_ev_txtso);
1409 if (__predict_false(m0->m_len <
1410 (hlen + sizeof(struct tcphdr)))) {
1411 /*
1412 * TCP/IP headers are not in the first mbuf; we need
1413 * to do this the slow and painful way. Let's just
1414 * hope this doesn't happen very often.
1415 */
1416 struct ip ip;
1417 struct tcphdr th;
1418
1419 WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
1420
1421 m_copydata(m0, offset, sizeof(ip), &ip);
1422 m_copydata(m0, hlen, sizeof(th), &th);
1423
1424 ip.ip_len = 0;
1425
1426 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
1427 sizeof(ip.ip_len), &ip.ip_len);
1428
1429 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1430 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1431
1432 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
1433 sizeof(th.th_sum), &th.th_sum);
1434
1435 hlen += th.th_off << 2;
1436 } else {
1437 /*
1438 * TCP/IP headers are in the first mbuf; we can do
1439 * this the easy way.
1440 */
1441 struct ip *ip =
1442 (struct ip *) (mtod(m0, caddr_t) + offset);
1443 struct tcphdr *th =
1444 (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
1445
1446 ip->ip_len = 0;
1447 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1448 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1449
1450 hlen += th->th_off << 2;
1451 }
1452
1453 cmd |= WTX_TCPIP_CMD_TSE;
1454 cmdlen |= WTX_TCPIP_CMD_TSE | WTX_TCPIP_CMD_IP |
1455 WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
1456 seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
1457 WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
1458 }
1459
1460 /*
1461 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1462 * offload feature, if we load the context descriptor, we
1463 * MUST provide valid values for IPCSS and TUCSS fields.
1464 */
1465
1466 ipcs = WTX_TCPIP_IPCSS(offset) |
1467 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1468 WTX_TCPIP_IPCSE(offset + iphl - 1);
1469 if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
1470 WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1471 fields |= WTX_IXSM;
1472 }
1473
1474 offset += iphl;
1475
1476 if (m0->m_pkthdr.csum_flags &
1477 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
1478 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1479 fields |= WTX_TXSM;
1480 tucs = WTX_TCPIP_TUCSS(offset) |
1481 WTX_TCPIP_TUCSO(offset +
1482 M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1483 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1484 } else if ((m0->m_pkthdr.csum_flags &
1485 (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
1486 WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
1487 fields |= WTX_TXSM;
1488 tucs = WTX_TCPIP_TUCSS(offset) |
1489 WTX_TCPIP_TUCSO(offset +
1490 M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
1491 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1492 } else {
1493 /* Just initialize it to a valid TCP context. */
1494 tucs = WTX_TCPIP_TUCSS(offset) |
1495 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1496 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1497 }
1498
1499 /* Fill in the context descriptor. */
1500 t = (struct livengood_tcpip_ctxdesc *)
1501 &sc->sc_txdescs[sc->sc_txnext];
1502 t->tcpip_ipcs = htole32(ipcs);
1503 t->tcpip_tucs = htole32(tucs);
1504 t->tcpip_cmdlen = htole32(cmdlen);
1505 t->tcpip_seg = htole32(seg);
1506 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1507
1508 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1509 txs->txs_ndesc++;
1510
1511 *cmdp = cmd;
1512 *fieldsp = fields;
1513
1514 return (0);
1515 }
1516
1517 static void
1518 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1519 {
1520 struct mbuf *m;
1521 int i;
1522
1523 log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1524 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1525 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1526 "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1527 m->m_data, m->m_len, m->m_flags);
1528 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1529 i, i == 1 ? "" : "s");
1530 }
1531
1532 /*
1533 * wm_82547_txfifo_stall:
1534 *
1535 * Callout used to wait for the 82547 Tx FIFO to drain,
1536 * reset the FIFO pointers, and restart packet transmission.
1537 */
1538 static void
1539 wm_82547_txfifo_stall(void *arg)
1540 {
1541 struct wm_softc *sc = arg;
1542 int s;
1543
1544 s = splnet();
1545
1546 if (sc->sc_txfifo_stall) {
1547 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1548 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1549 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1550 /*
1551 * Packets have drained. Stop transmitter, reset
1552 * FIFO pointers, restart transmitter, and kick
1553 * the packet queue.
1554 */
1555 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1556 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1557 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1558 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1559 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1560 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1561 CSR_WRITE(sc, WMREG_TCTL, tctl);
1562 CSR_WRITE_FLUSH(sc);
1563
1564 sc->sc_txfifo_head = 0;
1565 sc->sc_txfifo_stall = 0;
1566 wm_start(&sc->sc_ethercom.ec_if);
1567 } else {
1568 /*
1569 * Still waiting for packets to drain; try again in
1570 * another tick.
1571 */
1572 callout_schedule(&sc->sc_txfifo_ch, 1);
1573 }
1574 }
1575
1576 splx(s);
1577 }
1578
1579 /*
1580 * wm_82547_txfifo_bugchk:
1581 *
1582 * Check for bug condition in the 82547 Tx FIFO. We need to
1583 * prevent enqueueing a packet that would wrap around the end
1584 * if the Tx FIFO ring buffer, otherwise the chip will croak.
1585 *
1586 * We do this by checking the amount of space before the end
1587 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
1588 * the Tx FIFO, wait for all remaining packets to drain, reset
1589 * the internal FIFO pointers to the beginning, and restart
1590 * transmission on the interface.
1591 */
1592 #define WM_FIFO_HDR 0x10
1593 #define WM_82547_PAD_LEN 0x3e0
1594 static int
1595 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1596 {
1597 int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1598 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1599
1600 /* Just return if already stalled. */
1601 if (sc->sc_txfifo_stall)
1602 return (1);
1603
1604 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1605 /* Stall only occurs in half-duplex mode. */
1606 goto send_packet;
1607 }
1608
1609 if (len >= WM_82547_PAD_LEN + space) {
1610 sc->sc_txfifo_stall = 1;
1611 callout_schedule(&sc->sc_txfifo_ch, 1);
1612 return (1);
1613 }
1614
1615 send_packet:
1616 sc->sc_txfifo_head += len;
1617 if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1618 sc->sc_txfifo_head -= sc->sc_txfifo_size;
1619
1620 return (0);
1621 }
1622
1623 /*
1624 * wm_start: [ifnet interface function]
1625 *
1626 * Start packet transmission on the interface.
1627 */
1628 static void
1629 wm_start(struct ifnet *ifp)
1630 {
1631 struct wm_softc *sc = ifp->if_softc;
1632 struct mbuf *m0;
1633 #if 0 /* XXXJRT */
1634 struct m_tag *mtag;
1635 #endif
1636 struct wm_txsoft *txs;
1637 bus_dmamap_t dmamap;
1638 int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
1639 bus_addr_t curaddr;
1640 bus_size_t seglen, curlen;
1641 uint32_t cksumcmd;
1642 uint8_t cksumfields;
1643
1644 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1645 return;
1646
1647 /*
1648 * Remember the previous number of free descriptors.
1649 */
1650 ofree = sc->sc_txfree;
1651
1652 /*
1653 * Loop through the send queue, setting up transmit descriptors
1654 * until we drain the queue, or use up all available transmit
1655 * descriptors.
1656 */
1657 for (;;) {
1658 /* Grab a packet off the queue. */
1659 IFQ_POLL(&ifp->if_snd, m0);
1660 if (m0 == NULL)
1661 break;
1662
1663 DPRINTF(WM_DEBUG_TX,
1664 ("%s: TX: have packet to transmit: %p\n",
1665 sc->sc_dev.dv_xname, m0));
1666
1667 /* Get a work queue entry. */
1668 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1669 wm_txintr(sc);
1670 if (sc->sc_txsfree == 0) {
1671 DPRINTF(WM_DEBUG_TX,
1672 ("%s: TX: no free job descriptors\n",
1673 sc->sc_dev.dv_xname));
1674 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1675 break;
1676 }
1677 }
1678
1679 txs = &sc->sc_txsoft[sc->sc_txsnext];
1680 dmamap = txs->txs_dmamap;
1681
1682 use_tso = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1683
1684 /*
1685 * So says the Linux driver:
1686 * The controller does a simple calculation to make sure
1687 * there is enough room in the FIFO before initiating the
1688 * DMA for each buffer. The calc is:
1689 * 4 = ceil(buffer len / MSS)
1690 * To make sure we don't overrun the FIFO, adjust the max
1691 * buffer len if the MSS drops.
1692 */
1693 dmamap->dm_maxsegsz =
1694 (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
1695 ? m0->m_pkthdr.segsz << 2
1696 : WTX_MAX_LEN;
1697
1698 /*
1699 * Load the DMA map. If this fails, the packet either
1700 * didn't fit in the allotted number of segments, or we
1701 * were short on resources. For the too-many-segments
1702 * case, we simply report an error and drop the packet,
1703 * since we can't sanely copy a jumbo packet to a single
1704 * buffer.
1705 */
1706 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1707 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1708 if (error) {
1709 if (error == EFBIG) {
1710 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1711 log(LOG_ERR, "%s: Tx packet consumes too many "
1712 "DMA segments, dropping...\n",
1713 sc->sc_dev.dv_xname);
1714 IFQ_DEQUEUE(&ifp->if_snd, m0);
1715 wm_dump_mbuf_chain(sc, m0);
1716 m_freem(m0);
1717 continue;
1718 }
1719 /*
1720 * Short on resources, just stop for now.
1721 */
1722 DPRINTF(WM_DEBUG_TX,
1723 ("%s: TX: dmamap load failed: %d\n",
1724 sc->sc_dev.dv_xname, error));
1725 break;
1726 }
1727
1728 segs_needed = dmamap->dm_nsegs;
1729 if (use_tso) {
1730 /* For sentinel descriptor; see below. */
1731 segs_needed++;
1732 }
1733
1734 /*
1735 * Ensure we have enough descriptors free to describe
1736 * the packet. Note, we always reserve one descriptor
1737 * at the end of the ring due to the semantics of the
1738 * TDT register, plus one more in the event we need
1739 * to load offload context.
1740 */
1741 if (segs_needed > sc->sc_txfree - 2) {
1742 /*
1743 * Not enough free descriptors to transmit this
1744 * packet. We haven't committed anything yet,
1745 * so just unload the DMA map, put the packet
1746 * pack on the queue, and punt. Notify the upper
1747 * layer that there are no more slots left.
1748 */
1749 DPRINTF(WM_DEBUG_TX,
1750 ("%s: TX: need %d (%d) descriptors, have %d\n",
1751 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1752 sc->sc_txfree - 1));
1753 ifp->if_flags |= IFF_OACTIVE;
1754 bus_dmamap_unload(sc->sc_dmat, dmamap);
1755 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1756 break;
1757 }
1758
1759 /*
1760 * Check for 82547 Tx FIFO bug. We need to do this
1761 * once we know we can transmit the packet, since we
1762 * do some internal FIFO space accounting here.
1763 */
1764 if (sc->sc_type == WM_T_82547 &&
1765 wm_82547_txfifo_bugchk(sc, m0)) {
1766 DPRINTF(WM_DEBUG_TX,
1767 ("%s: TX: 82547 Tx FIFO bug detected\n",
1768 sc->sc_dev.dv_xname));
1769 ifp->if_flags |= IFF_OACTIVE;
1770 bus_dmamap_unload(sc->sc_dmat, dmamap);
1771 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1772 break;
1773 }
1774
1775 IFQ_DEQUEUE(&ifp->if_snd, m0);
1776
1777 /*
1778 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1779 */
1780
1781 DPRINTF(WM_DEBUG_TX,
1782 ("%s: TX: packet has %d (%d) DMA segments\n",
1783 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1784
1785 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1786
1787 /*
1788 * Store a pointer to the packet so that we can free it
1789 * later.
1790 *
1791 * Initially, we consider the number of descriptors the
1792 * packet uses the number of DMA segments. This may be
1793 * incremented by 1 if we do checksum offload (a descriptor
1794 * is used to set the checksum context).
1795 */
1796 txs->txs_mbuf = m0;
1797 txs->txs_firstdesc = sc->sc_txnext;
1798 txs->txs_ndesc = segs_needed;
1799
1800 /* Set up offload parameters for this packet. */
1801 if (m0->m_pkthdr.csum_flags &
1802 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
1803 M_CSUM_TCPv6|M_CSUM_UDPv6)) {
1804 if (wm_tx_offload(sc, txs, &cksumcmd,
1805 &cksumfields) != 0) {
1806 /* Error message already displayed. */
1807 bus_dmamap_unload(sc->sc_dmat, dmamap);
1808 continue;
1809 }
1810 } else {
1811 cksumcmd = 0;
1812 cksumfields = 0;
1813 }
1814
1815 cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
1816
1817 /* Sync the DMA map. */
1818 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1819 BUS_DMASYNC_PREWRITE);
1820
1821 /*
1822 * Initialize the transmit descriptor.
1823 */
1824 for (nexttx = sc->sc_txnext, seg = 0;
1825 seg < dmamap->dm_nsegs; seg++) {
1826 for (seglen = dmamap->dm_segs[seg].ds_len,
1827 curaddr = dmamap->dm_segs[seg].ds_addr;
1828 seglen != 0;
1829 curaddr += curlen, seglen -= curlen,
1830 nexttx = WM_NEXTTX(sc, nexttx)) {
1831 curlen = seglen;
1832
1833 /*
1834 * So says the Linux driver:
1835 * Work around for premature descriptor
1836 * write-backs in TSO mode. Append a
1837 * 4-byte sentinel descriptor.
1838 */
1839 if (use_tso &&
1840 seg == dmamap->dm_nsegs - 1 &&
1841 curlen > 8)
1842 curlen -= 4;
1843
1844 wm_set_dma_addr(
1845 &sc->sc_txdescs[nexttx].wtx_addr,
1846 curaddr);
1847 sc->sc_txdescs[nexttx].wtx_cmdlen =
1848 htole32(cksumcmd | curlen);
1849 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
1850 0;
1851 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1852 cksumfields;
1853 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1854 lasttx = nexttx;
1855
1856 DPRINTF(WM_DEBUG_TX,
1857 ("%s: TX: desc %d: low 0x%08lx, "
1858 "len 0x%04x\n",
1859 sc->sc_dev.dv_xname, nexttx,
1860 curaddr & 0xffffffffUL, (unsigned)curlen));
1861 }
1862 }
1863
1864 KASSERT(lasttx != -1);
1865
1866 /*
1867 * Set up the command byte on the last descriptor of
1868 * the packet. If we're in the interrupt delay window,
1869 * delay the interrupt.
1870 */
1871 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1872 htole32(WTX_CMD_EOP | WTX_CMD_RS);
1873
1874 #if 0 /* XXXJRT */
1875 /*
1876 * If VLANs are enabled and the packet has a VLAN tag, set
1877 * up the descriptor to encapsulate the packet for us.
1878 *
1879 * This is only valid on the last descriptor of the packet.
1880 */
1881 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1882 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1883 htole32(WTX_CMD_VLE);
1884 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
1885 = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
1886 }
1887 #endif /* XXXJRT */
1888
1889 txs->txs_lastdesc = lasttx;
1890
1891 DPRINTF(WM_DEBUG_TX,
1892 ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1893 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
1894
1895 /* Sync the descriptors we're using. */
1896 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
1897 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1898
1899 /* Give the packet to the chip. */
1900 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1901
1902 DPRINTF(WM_DEBUG_TX,
1903 ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1904
1905 DPRINTF(WM_DEBUG_TX,
1906 ("%s: TX: finished transmitting packet, job %d\n",
1907 sc->sc_dev.dv_xname, sc->sc_txsnext));
1908
1909 /* Advance the tx pointer. */
1910 sc->sc_txfree -= txs->txs_ndesc;
1911 sc->sc_txnext = nexttx;
1912
1913 sc->sc_txsfree--;
1914 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
1915
1916 #if NBPFILTER > 0
1917 /* Pass the packet to any BPF listeners. */
1918 if (ifp->if_bpf)
1919 bpf_mtap(ifp->if_bpf, m0);
1920 #endif /* NBPFILTER > 0 */
1921 }
1922
1923 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1924 /* No more slots; notify upper layer. */
1925 ifp->if_flags |= IFF_OACTIVE;
1926 }
1927
1928 if (sc->sc_txfree != ofree) {
1929 /* Set a watchdog timer in case the chip flakes out. */
1930 ifp->if_timer = 5;
1931 }
1932 }
1933
1934 /*
1935 * wm_watchdog: [ifnet interface function]
1936 *
1937 * Watchdog timer handler.
1938 */
1939 static void
1940 wm_watchdog(struct ifnet *ifp)
1941 {
1942 struct wm_softc *sc = ifp->if_softc;
1943
1944 /*
1945 * Since we're using delayed interrupts, sweep up
1946 * before we report an error.
1947 */
1948 wm_txintr(sc);
1949
1950 if (sc->sc_txfree != WM_NTXDESC(sc)) {
1951 log(LOG_ERR,
1952 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1953 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1954 sc->sc_txnext);
1955 ifp->if_oerrors++;
1956
1957 /* Reset the interface. */
1958 (void) wm_init(ifp);
1959 }
1960
1961 /* Try to get more packets going. */
1962 wm_start(ifp);
1963 }
1964
1965 /*
1966 * wm_ioctl: [ifnet interface function]
1967 *
1968 * Handle control requests from the operator.
1969 */
1970 static int
1971 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1972 {
1973 struct wm_softc *sc = ifp->if_softc;
1974 struct ifreq *ifr = (struct ifreq *) data;
1975 int s, error;
1976
1977 s = splnet();
1978
1979 switch (cmd) {
1980 case SIOCSIFMEDIA:
1981 case SIOCGIFMEDIA:
1982 /* Flow control requires full-duplex mode. */
1983 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1984 (ifr->ifr_media & IFM_FDX) == 0)
1985 ifr->ifr_media &= ~IFM_ETH_FMASK;
1986 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1987 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1988 /* We can do both TXPAUSE and RXPAUSE. */
1989 ifr->ifr_media |=
1990 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1991 }
1992 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1993 }
1994 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1995 break;
1996 default:
1997 error = ether_ioctl(ifp, cmd, data);
1998 if (error == ENETRESET) {
1999 /*
2000 * Multicast list has changed; set the hardware filter
2001 * accordingly.
2002 */
2003 if (ifp->if_flags & IFF_RUNNING)
2004 wm_set_filter(sc);
2005 error = 0;
2006 }
2007 break;
2008 }
2009
2010 /* Try to get more packets going. */
2011 wm_start(ifp);
2012
2013 splx(s);
2014 return (error);
2015 }
2016
2017 /*
2018 * wm_intr:
2019 *
2020 * Interrupt service routine.
2021 */
2022 static int
2023 wm_intr(void *arg)
2024 {
2025 struct wm_softc *sc = arg;
2026 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2027 uint32_t icr;
2028 int wantinit, handled = 0;
2029
2030 for (wantinit = 0; wantinit == 0;) {
2031 icr = CSR_READ(sc, WMREG_ICR);
2032 if ((icr & sc->sc_icr) == 0)
2033 break;
2034
2035 #if 0 /*NRND > 0*/
2036 if (RND_ENABLED(&sc->rnd_source))
2037 rnd_add_uint32(&sc->rnd_source, icr);
2038 #endif
2039
2040 handled = 1;
2041
2042 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2043 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
2044 DPRINTF(WM_DEBUG_RX,
2045 ("%s: RX: got Rx intr 0x%08x\n",
2046 sc->sc_dev.dv_xname,
2047 icr & (ICR_RXDMT0|ICR_RXT0)));
2048 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
2049 }
2050 #endif
2051 wm_rxintr(sc);
2052
2053 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2054 if (icr & ICR_TXDW) {
2055 DPRINTF(WM_DEBUG_TX,
2056 ("%s: TX: got TXDW interrupt\n",
2057 sc->sc_dev.dv_xname));
2058 WM_EVCNT_INCR(&sc->sc_ev_txdw);
2059 }
2060 #endif
2061 wm_txintr(sc);
2062
2063 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
2064 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
2065 wm_linkintr(sc, icr);
2066 }
2067
2068 if (icr & ICR_RXO) {
2069 log(LOG_WARNING, "%s: Receive overrun\n",
2070 sc->sc_dev.dv_xname);
2071 wantinit = 1;
2072 }
2073 }
2074
2075 if (handled) {
2076 if (wantinit)
2077 wm_init(ifp);
2078
2079 /* Try to get more packets going. */
2080 wm_start(ifp);
2081 }
2082
2083 return (handled);
2084 }
2085
2086 /*
2087 * wm_txintr:
2088 *
2089 * Helper; handle transmit interrupts.
2090 */
2091 static void
2092 wm_txintr(struct wm_softc *sc)
2093 {
2094 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2095 struct wm_txsoft *txs;
2096 uint8_t status;
2097 int i;
2098
2099 ifp->if_flags &= ~IFF_OACTIVE;
2100
2101 /*
2102 * Go through the Tx list and free mbufs for those
2103 * frames which have been transmitted.
2104 */
2105 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2106 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2107 txs = &sc->sc_txsoft[i];
2108
2109 DPRINTF(WM_DEBUG_TX,
2110 ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2111
2112 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2113 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2114
2115 status =
2116 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2117 if ((status & WTX_ST_DD) == 0) {
2118 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2119 BUS_DMASYNC_PREREAD);
2120 break;
2121 }
2122
2123 DPRINTF(WM_DEBUG_TX,
2124 ("%s: TX: job %d done: descs %d..%d\n",
2125 sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2126 txs->txs_lastdesc));
2127
2128 /*
2129 * XXX We should probably be using the statistics
2130 * XXX registers, but I don't know if they exist
2131 * XXX on chips before the i82544.
2132 */
2133
2134 #ifdef WM_EVENT_COUNTERS
2135 if (status & WTX_ST_TU)
2136 WM_EVCNT_INCR(&sc->sc_ev_tu);
2137 #endif /* WM_EVENT_COUNTERS */
2138
2139 if (status & (WTX_ST_EC|WTX_ST_LC)) {
2140 ifp->if_oerrors++;
2141 if (status & WTX_ST_LC)
2142 log(LOG_WARNING, "%s: late collision\n",
2143 sc->sc_dev.dv_xname);
2144 else if (status & WTX_ST_EC) {
2145 ifp->if_collisions += 16;
2146 log(LOG_WARNING, "%s: excessive collisions\n",
2147 sc->sc_dev.dv_xname);
2148 }
2149 } else
2150 ifp->if_opackets++;
2151
2152 sc->sc_txfree += txs->txs_ndesc;
2153 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2154 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2155 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2156 m_freem(txs->txs_mbuf);
2157 txs->txs_mbuf = NULL;
2158 }
2159
2160 /* Update the dirty transmit buffer pointer. */
2161 sc->sc_txsdirty = i;
2162 DPRINTF(WM_DEBUG_TX,
2163 ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2164
2165 /*
2166 * If there are no more pending transmissions, cancel the watchdog
2167 * timer.
2168 */
2169 if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2170 ifp->if_timer = 0;
2171 }
2172
2173 /*
2174 * wm_rxintr:
2175 *
2176 * Helper; handle receive interrupts.
2177 */
2178 static void
2179 wm_rxintr(struct wm_softc *sc)
2180 {
2181 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2182 struct wm_rxsoft *rxs;
2183 struct mbuf *m;
2184 int i, len;
2185 uint8_t status, errors;
2186
2187 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2188 rxs = &sc->sc_rxsoft[i];
2189
2190 DPRINTF(WM_DEBUG_RX,
2191 ("%s: RX: checking descriptor %d\n",
2192 sc->sc_dev.dv_xname, i));
2193
2194 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2195
2196 status = sc->sc_rxdescs[i].wrx_status;
2197 errors = sc->sc_rxdescs[i].wrx_errors;
2198 len = le16toh(sc->sc_rxdescs[i].wrx_len);
2199
2200 if ((status & WRX_ST_DD) == 0) {
2201 /*
2202 * We have processed all of the receive descriptors.
2203 */
2204 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2205 break;
2206 }
2207
2208 if (__predict_false(sc->sc_rxdiscard)) {
2209 DPRINTF(WM_DEBUG_RX,
2210 ("%s: RX: discarding contents of descriptor %d\n",
2211 sc->sc_dev.dv_xname, i));
2212 WM_INIT_RXDESC(sc, i);
2213 if (status & WRX_ST_EOP) {
2214 /* Reset our state. */
2215 DPRINTF(WM_DEBUG_RX,
2216 ("%s: RX: resetting rxdiscard -> 0\n",
2217 sc->sc_dev.dv_xname));
2218 sc->sc_rxdiscard = 0;
2219 }
2220 continue;
2221 }
2222
2223 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2224 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2225
2226 m = rxs->rxs_mbuf;
2227
2228 /*
2229 * Add a new receive buffer to the ring.
2230 */
2231 if (wm_add_rxbuf(sc, i) != 0) {
2232 /*
2233 * Failed, throw away what we've done so
2234 * far, and discard the rest of the packet.
2235 */
2236 ifp->if_ierrors++;
2237 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2238 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2239 WM_INIT_RXDESC(sc, i);
2240 if ((status & WRX_ST_EOP) == 0)
2241 sc->sc_rxdiscard = 1;
2242 if (sc->sc_rxhead != NULL)
2243 m_freem(sc->sc_rxhead);
2244 WM_RXCHAIN_RESET(sc);
2245 DPRINTF(WM_DEBUG_RX,
2246 ("%s: RX: Rx buffer allocation failed, "
2247 "dropping packet%s\n", sc->sc_dev.dv_xname,
2248 sc->sc_rxdiscard ? " (discard)" : ""));
2249 continue;
2250 }
2251
2252 WM_RXCHAIN_LINK(sc, m);
2253
2254 m->m_len = len;
2255
2256 DPRINTF(WM_DEBUG_RX,
2257 ("%s: RX: buffer at %p len %d\n",
2258 sc->sc_dev.dv_xname, m->m_data, len));
2259
2260 /*
2261 * If this is not the end of the packet, keep
2262 * looking.
2263 */
2264 if ((status & WRX_ST_EOP) == 0) {
2265 sc->sc_rxlen += len;
2266 DPRINTF(WM_DEBUG_RX,
2267 ("%s: RX: not yet EOP, rxlen -> %d\n",
2268 sc->sc_dev.dv_xname, sc->sc_rxlen));
2269 continue;
2270 }
2271
2272 /*
2273 * Okay, we have the entire packet now. The chip is
2274 * configured to include the FCS (not all chips can
2275 * be configured to strip it), so we need to trim it.
2276 */
2277 m->m_len -= ETHER_CRC_LEN;
2278
2279 *sc->sc_rxtailp = NULL;
2280 m = sc->sc_rxhead;
2281 len = m->m_len + sc->sc_rxlen;
2282
2283 WM_RXCHAIN_RESET(sc);
2284
2285 DPRINTF(WM_DEBUG_RX,
2286 ("%s: RX: have entire packet, len -> %d\n",
2287 sc->sc_dev.dv_xname, len));
2288
2289 /*
2290 * If an error occurred, update stats and drop the packet.
2291 */
2292 if (errors &
2293 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2294 ifp->if_ierrors++;
2295 if (errors & WRX_ER_SE)
2296 log(LOG_WARNING, "%s: symbol error\n",
2297 sc->sc_dev.dv_xname);
2298 else if (errors & WRX_ER_SEQ)
2299 log(LOG_WARNING, "%s: receive sequence error\n",
2300 sc->sc_dev.dv_xname);
2301 else if (errors & WRX_ER_CE)
2302 log(LOG_WARNING, "%s: CRC error\n",
2303 sc->sc_dev.dv_xname);
2304 m_freem(m);
2305 continue;
2306 }
2307
2308 /*
2309 * No errors. Receive the packet.
2310 */
2311 m->m_pkthdr.rcvif = ifp;
2312 m->m_pkthdr.len = len;
2313
2314 #if 0 /* XXXJRT */
2315 /*
2316 * If VLANs are enabled, VLAN packets have been unwrapped
2317 * for us. Associate the tag with the packet.
2318 */
2319 if ((status & WRX_ST_VP) != 0) {
2320 VLAN_INPUT_TAG(ifp, m,
2321 le16toh(sc->sc_rxdescs[i].wrx_special,
2322 continue);
2323 }
2324 #endif /* XXXJRT */
2325
2326 /*
2327 * Set up checksum info for this packet.
2328 */
2329 if ((status & WRX_ST_IXSM) == 0) {
2330 if (status & WRX_ST_IPCS) {
2331 WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2332 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2333 if (errors & WRX_ER_IPE)
2334 m->m_pkthdr.csum_flags |=
2335 M_CSUM_IPv4_BAD;
2336 }
2337 if (status & WRX_ST_TCPCS) {
2338 /*
2339 * Note: we don't know if this was TCP or UDP,
2340 * so we just set both bits, and expect the
2341 * upper layers to deal.
2342 */
2343 WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2344 m->m_pkthdr.csum_flags |=
2345 M_CSUM_TCPv4|M_CSUM_UDPv4;
2346 if (errors & WRX_ER_TCPE)
2347 m->m_pkthdr.csum_flags |=
2348 M_CSUM_TCP_UDP_BAD;
2349 }
2350 }
2351
2352 ifp->if_ipackets++;
2353
2354 #if NBPFILTER > 0
2355 /* Pass this up to any BPF listeners. */
2356 if (ifp->if_bpf)
2357 bpf_mtap(ifp->if_bpf, m);
2358 #endif /* NBPFILTER > 0 */
2359
2360 /* Pass it on. */
2361 (*ifp->if_input)(ifp, m);
2362 }
2363
2364 /* Update the receive pointer. */
2365 sc->sc_rxptr = i;
2366
2367 DPRINTF(WM_DEBUG_RX,
2368 ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2369 }
2370
2371 /*
2372 * wm_linkintr:
2373 *
2374 * Helper; handle link interrupts.
2375 */
2376 static void
2377 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2378 {
2379 uint32_t status;
2380
2381 /*
2382 * If we get a link status interrupt on a 1000BASE-T
2383 * device, just fall into the normal MII tick path.
2384 */
2385 if (sc->sc_flags & WM_F_HAS_MII) {
2386 if (icr & ICR_LSC) {
2387 DPRINTF(WM_DEBUG_LINK,
2388 ("%s: LINK: LSC -> mii_tick\n",
2389 sc->sc_dev.dv_xname));
2390 mii_tick(&sc->sc_mii);
2391 } else if (icr & ICR_RXSEQ) {
2392 DPRINTF(WM_DEBUG_LINK,
2393 ("%s: LINK Receive sequence error\n",
2394 sc->sc_dev.dv_xname));
2395 }
2396 return;
2397 }
2398
2399 /*
2400 * If we are now receiving /C/, check for link again in
2401 * a couple of link clock ticks.
2402 */
2403 if (icr & ICR_RXCFG) {
2404 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2405 sc->sc_dev.dv_xname));
2406 sc->sc_tbi_anstate = 2;
2407 }
2408
2409 if (icr & ICR_LSC) {
2410 status = CSR_READ(sc, WMREG_STATUS);
2411 if (status & STATUS_LU) {
2412 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2413 sc->sc_dev.dv_xname,
2414 (status & STATUS_FD) ? "FDX" : "HDX"));
2415 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2416 sc->sc_fcrtl &= ~FCRTL_XONE;
2417 if (status & STATUS_FD)
2418 sc->sc_tctl |=
2419 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2420 else
2421 sc->sc_tctl |=
2422 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2423 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2424 sc->sc_fcrtl |= FCRTL_XONE;
2425 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2426 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2427 WMREG_OLD_FCRTL : WMREG_FCRTL,
2428 sc->sc_fcrtl);
2429 sc->sc_tbi_linkup = 1;
2430 } else {
2431 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2432 sc->sc_dev.dv_xname));
2433 sc->sc_tbi_linkup = 0;
2434 }
2435 sc->sc_tbi_anstate = 2;
2436 wm_tbi_set_linkled(sc);
2437 } else if (icr & ICR_RXSEQ) {
2438 DPRINTF(WM_DEBUG_LINK,
2439 ("%s: LINK: Receive sequence error\n",
2440 sc->sc_dev.dv_xname));
2441 }
2442 }
2443
2444 /*
2445 * wm_tick:
2446 *
2447 * One second timer, used to check link status, sweep up
2448 * completed transmit jobs, etc.
2449 */
2450 static void
2451 wm_tick(void *arg)
2452 {
2453 struct wm_softc *sc = arg;
2454 int s;
2455
2456 s = splnet();
2457
2458 if (sc->sc_type >= WM_T_82542_2_1) {
2459 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2460 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2461 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2462 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2463 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2464 }
2465
2466 if (sc->sc_flags & WM_F_HAS_MII)
2467 mii_tick(&sc->sc_mii);
2468 else
2469 wm_tbi_check_link(sc);
2470
2471 splx(s);
2472
2473 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2474 }
2475
2476 /*
2477 * wm_reset:
2478 *
2479 * Reset the i82542 chip.
2480 */
2481 static void
2482 wm_reset(struct wm_softc *sc)
2483 {
2484 int i;
2485
2486 /*
2487 * Allocate on-chip memory according to the MTU size.
2488 * The Packet Buffer Allocation register must be written
2489 * before the chip is reset.
2490 */
2491 if (sc->sc_type < WM_T_82547) {
2492 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2493 PBA_40K : PBA_48K;
2494 } else {
2495 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2496 PBA_22K : PBA_30K;
2497 sc->sc_txfifo_head = 0;
2498 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2499 sc->sc_txfifo_size =
2500 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2501 sc->sc_txfifo_stall = 0;
2502 }
2503 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2504
2505 switch (sc->sc_type) {
2506 case WM_T_82544:
2507 case WM_T_82540:
2508 case WM_T_82545:
2509 case WM_T_82546:
2510 case WM_T_82541:
2511 case WM_T_82541_2:
2512 /*
2513 * On some chipsets, a reset through a memory-mapped write
2514 * cycle can cause the chip to reset before completing the
2515 * write cycle. This causes major headache that can be
2516 * avoided by issuing the reset via indirect register writes
2517 * through I/O space.
2518 *
2519 * So, if we successfully mapped the I/O BAR at attach time,
2520 * use that. Otherwise, try our luck with a memory-mapped
2521 * reset.
2522 */
2523 if (sc->sc_flags & WM_F_IOH_VALID)
2524 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2525 else
2526 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2527 break;
2528
2529 case WM_T_82545_3:
2530 case WM_T_82546_3:
2531 /* Use the shadow control register on these chips. */
2532 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2533 break;
2534
2535 default:
2536 /* Everything else can safely use the documented method. */
2537 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2538 break;
2539 }
2540 delay(10000);
2541
2542 for (i = 0; i < 1000; i++) {
2543 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2544 return;
2545 delay(20);
2546 }
2547
2548 if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2549 log(LOG_ERR, "%s: reset failed to complete\n",
2550 sc->sc_dev.dv_xname);
2551 }
2552
2553 /*
2554 * wm_init: [ifnet interface function]
2555 *
2556 * Initialize the interface. Must be called at splnet().
2557 */
2558 static int
2559 wm_init(struct ifnet *ifp)
2560 {
2561 struct wm_softc *sc = ifp->if_softc;
2562 struct wm_rxsoft *rxs;
2563 int i, error = 0;
2564 uint32_t reg;
2565
2566 /*
2567 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2568 * There is a small but measurable benefit to avoiding the adjusment
2569 * of the descriptor so that the headers are aligned, for normal mtu,
2570 * on such platforms. One possibility is that the DMA itself is
2571 * slightly more efficient if the front of the entire packet (instead
2572 * of the front of the headers) is aligned.
2573 *
2574 * Note we must always set align_tweak to 0 if we are using
2575 * jumbo frames.
2576 */
2577 #ifdef __NO_STRICT_ALIGNMENT
2578 sc->sc_align_tweak = 0;
2579 #else
2580 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2581 sc->sc_align_tweak = 0;
2582 else
2583 sc->sc_align_tweak = 2;
2584 #endif /* __NO_STRICT_ALIGNMENT */
2585
2586 /* Cancel any pending I/O. */
2587 wm_stop(ifp, 0);
2588
2589 /* Reset the chip to a known state. */
2590 wm_reset(sc);
2591
2592 /* Initialize the transmit descriptor ring. */
2593 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2594 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2595 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2596 sc->sc_txfree = WM_NTXDESC(sc);
2597 sc->sc_txnext = 0;
2598
2599 if (sc->sc_type < WM_T_82543) {
2600 CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2601 CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2602 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2603 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2604 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2605 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2606 } else {
2607 CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2608 CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2609 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2610 CSR_WRITE(sc, WMREG_TDH, 0);
2611 CSR_WRITE(sc, WMREG_TDT, 0);
2612 CSR_WRITE(sc, WMREG_TIDV, 64);
2613 CSR_WRITE(sc, WMREG_TADV, 128);
2614
2615 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2616 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2617 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2618 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2619 }
2620 CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2621 CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2622
2623 /* Initialize the transmit job descriptors. */
2624 for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2625 sc->sc_txsoft[i].txs_mbuf = NULL;
2626 sc->sc_txsfree = WM_TXQUEUELEN(sc);
2627 sc->sc_txsnext = 0;
2628 sc->sc_txsdirty = 0;
2629
2630 /*
2631 * Initialize the receive descriptor and receive job
2632 * descriptor rings.
2633 */
2634 if (sc->sc_type < WM_T_82543) {
2635 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2636 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2637 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2638 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2639 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2640 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2641
2642 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2643 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2644 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2645 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2646 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2647 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2648 } else {
2649 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2650 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2651 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2652 CSR_WRITE(sc, WMREG_RDH, 0);
2653 CSR_WRITE(sc, WMREG_RDT, 0);
2654 CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
2655 CSR_WRITE(sc, WMREG_RADV, 128);
2656 }
2657 for (i = 0; i < WM_NRXDESC; i++) {
2658 rxs = &sc->sc_rxsoft[i];
2659 if (rxs->rxs_mbuf == NULL) {
2660 if ((error = wm_add_rxbuf(sc, i)) != 0) {
2661 log(LOG_ERR, "%s: unable to allocate or map rx "
2662 "buffer %d, error = %d\n",
2663 sc->sc_dev.dv_xname, i, error);
2664 /*
2665 * XXX Should attempt to run with fewer receive
2666 * XXX buffers instead of just failing.
2667 */
2668 wm_rxdrain(sc);
2669 goto out;
2670 }
2671 } else
2672 WM_INIT_RXDESC(sc, i);
2673 }
2674 sc->sc_rxptr = 0;
2675 sc->sc_rxdiscard = 0;
2676 WM_RXCHAIN_RESET(sc);
2677
2678 /*
2679 * Clear out the VLAN table -- we don't use it (yet).
2680 */
2681 CSR_WRITE(sc, WMREG_VET, 0);
2682 for (i = 0; i < WM_VLAN_TABSIZE; i++)
2683 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2684
2685 /*
2686 * Set up flow-control parameters.
2687 *
2688 * XXX Values could probably stand some tuning.
2689 */
2690 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2691 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2692 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2693
2694 sc->sc_fcrtl = FCRTL_DFLT;
2695 if (sc->sc_type < WM_T_82543) {
2696 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2697 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2698 } else {
2699 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2700 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2701 }
2702 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2703
2704 #if 0 /* XXXJRT */
2705 /* Deal with VLAN enables. */
2706 if (VLAN_ATTACHED(&sc->sc_ethercom))
2707 sc->sc_ctrl |= CTRL_VME;
2708 else
2709 #endif /* XXXJRT */
2710 sc->sc_ctrl &= ~CTRL_VME;
2711
2712 /* Write the control registers. */
2713 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2714 #if 0
2715 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2716 #endif
2717
2718 /*
2719 * Set up checksum offload parameters.
2720 */
2721 reg = CSR_READ(sc, WMREG_RXCSUM);
2722 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
2723 reg |= RXCSUM_IPOFL;
2724 else
2725 reg &= ~RXCSUM_IPOFL;
2726 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2727 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2728 else {
2729 reg &= ~RXCSUM_TUOFL;
2730 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
2731 reg &= ~RXCSUM_IPOFL;
2732 }
2733 CSR_WRITE(sc, WMREG_RXCSUM, reg);
2734
2735 /*
2736 * Set up the interrupt registers.
2737 */
2738 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2739 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2740 ICR_RXO | ICR_RXT0;
2741 if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2742 sc->sc_icr |= ICR_RXCFG;
2743 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2744
2745 /* Set up the inter-packet gap. */
2746 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2747
2748 if (sc->sc_type >= WM_T_82543) {
2749 /* Set up the interrupt throttling register (units of 256ns) */
2750 sc->sc_itr = 1000000000 / (7000 * 256);
2751 CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
2752 }
2753
2754 #if 0 /* XXXJRT */
2755 /* Set the VLAN ethernetype. */
2756 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2757 #endif
2758
2759 /*
2760 * Set up the transmit control register; we start out with
2761 * a collision distance suitable for FDX, but update it whe
2762 * we resolve the media type.
2763 */
2764 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2765 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2766 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2767
2768 /* Set the media. */
2769 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2770
2771 /*
2772 * Set up the receive control register; we actually program
2773 * the register when we set the receive filter. Use multicast
2774 * address offset type 0.
2775 *
2776 * Only the i82544 has the ability to strip the incoming
2777 * CRC, so we don't enable that feature.
2778 */
2779 sc->sc_mchash_type = 0;
2780 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
2781 RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2782
2783 if(MCLBYTES == 2048) {
2784 sc->sc_rctl |= RCTL_2k;
2785 } else {
2786 if(sc->sc_type >= WM_T_82543) {
2787 switch(MCLBYTES) {
2788 case 4096:
2789 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2790 break;
2791 case 8192:
2792 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2793 break;
2794 case 16384:
2795 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2796 break;
2797 default:
2798 panic("wm_init: MCLBYTES %d unsupported",
2799 MCLBYTES);
2800 break;
2801 }
2802 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
2803 }
2804
2805 /* Set the receive filter. */
2806 wm_set_filter(sc);
2807
2808 /* Start the one second link check clock. */
2809 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2810
2811 /* ...all done! */
2812 ifp->if_flags |= IFF_RUNNING;
2813 ifp->if_flags &= ~IFF_OACTIVE;
2814
2815 out:
2816 if (error)
2817 log(LOG_ERR, "%s: interface not running\n",
2818 sc->sc_dev.dv_xname);
2819 return (error);
2820 }
2821
2822 /*
2823 * wm_rxdrain:
2824 *
2825 * Drain the receive queue.
2826 */
2827 static void
2828 wm_rxdrain(struct wm_softc *sc)
2829 {
2830 struct wm_rxsoft *rxs;
2831 int i;
2832
2833 for (i = 0; i < WM_NRXDESC; i++) {
2834 rxs = &sc->sc_rxsoft[i];
2835 if (rxs->rxs_mbuf != NULL) {
2836 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2837 m_freem(rxs->rxs_mbuf);
2838 rxs->rxs_mbuf = NULL;
2839 }
2840 }
2841 }
2842
2843 /*
2844 * wm_stop: [ifnet interface function]
2845 *
2846 * Stop transmission on the interface.
2847 */
2848 static void
2849 wm_stop(struct ifnet *ifp, int disable)
2850 {
2851 struct wm_softc *sc = ifp->if_softc;
2852 struct wm_txsoft *txs;
2853 int i;
2854
2855 /* Stop the one second clock. */
2856 callout_stop(&sc->sc_tick_ch);
2857
2858 /* Stop the 82547 Tx FIFO stall check timer. */
2859 if (sc->sc_type == WM_T_82547)
2860 callout_stop(&sc->sc_txfifo_ch);
2861
2862 if (sc->sc_flags & WM_F_HAS_MII) {
2863 /* Down the MII. */
2864 mii_down(&sc->sc_mii);
2865 }
2866
2867 /* Stop the transmit and receive processes. */
2868 CSR_WRITE(sc, WMREG_TCTL, 0);
2869 CSR_WRITE(sc, WMREG_RCTL, 0);
2870
2871 /*
2872 * Clear the interrupt mask to ensure the device cannot assert its
2873 * interrupt line.
2874 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
2875 * any currently pending or shared interrupt.
2876 */
2877 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2878 sc->sc_icr = 0;
2879
2880 /* Release any queued transmit buffers. */
2881 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2882 txs = &sc->sc_txsoft[i];
2883 if (txs->txs_mbuf != NULL) {
2884 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2885 m_freem(txs->txs_mbuf);
2886 txs->txs_mbuf = NULL;
2887 }
2888 }
2889
2890 if (disable)
2891 wm_rxdrain(sc);
2892
2893 /* Mark the interface as down and cancel the watchdog timer. */
2894 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2895 ifp->if_timer = 0;
2896 }
2897
2898 /*
2899 * wm_acquire_eeprom:
2900 *
2901 * Perform the EEPROM handshake required on some chips.
2902 */
2903 static int
2904 wm_acquire_eeprom(struct wm_softc *sc)
2905 {
2906 uint32_t reg;
2907 int x;
2908
2909 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2910 reg = CSR_READ(sc, WMREG_EECD);
2911
2912 /* Request EEPROM access. */
2913 reg |= EECD_EE_REQ;
2914 CSR_WRITE(sc, WMREG_EECD, reg);
2915
2916 /* ..and wait for it to be granted. */
2917 for (x = 0; x < 100; x++) {
2918 reg = CSR_READ(sc, WMREG_EECD);
2919 if (reg & EECD_EE_GNT)
2920 break;
2921 delay(5);
2922 }
2923 if ((reg & EECD_EE_GNT) == 0) {
2924 aprint_error("%s: could not acquire EEPROM GNT\n",
2925 sc->sc_dev.dv_xname);
2926 reg &= ~EECD_EE_REQ;
2927 CSR_WRITE(sc, WMREG_EECD, reg);
2928 return (1);
2929 }
2930 }
2931
2932 return (0);
2933 }
2934
2935 /*
2936 * wm_release_eeprom:
2937 *
2938 * Release the EEPROM mutex.
2939 */
2940 static void
2941 wm_release_eeprom(struct wm_softc *sc)
2942 {
2943 uint32_t reg;
2944
2945 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2946 reg = CSR_READ(sc, WMREG_EECD);
2947 reg &= ~EECD_EE_REQ;
2948 CSR_WRITE(sc, WMREG_EECD, reg);
2949 }
2950 }
2951
2952 /*
2953 * wm_eeprom_sendbits:
2954 *
2955 * Send a series of bits to the EEPROM.
2956 */
2957 static void
2958 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
2959 {
2960 uint32_t reg;
2961 int x;
2962
2963 reg = CSR_READ(sc, WMREG_EECD);
2964
2965 for (x = nbits; x > 0; x--) {
2966 if (bits & (1U << (x - 1)))
2967 reg |= EECD_DI;
2968 else
2969 reg &= ~EECD_DI;
2970 CSR_WRITE(sc, WMREG_EECD, reg);
2971 delay(2);
2972 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2973 delay(2);
2974 CSR_WRITE(sc, WMREG_EECD, reg);
2975 delay(2);
2976 }
2977 }
2978
2979 /*
2980 * wm_eeprom_recvbits:
2981 *
2982 * Receive a series of bits from the EEPROM.
2983 */
2984 static void
2985 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
2986 {
2987 uint32_t reg, val;
2988 int x;
2989
2990 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
2991
2992 val = 0;
2993 for (x = nbits; x > 0; x--) {
2994 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2995 delay(2);
2996 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
2997 val |= (1U << (x - 1));
2998 CSR_WRITE(sc, WMREG_EECD, reg);
2999 delay(2);
3000 }
3001 *valp = val;
3002 }
3003
3004 /*
3005 * wm_read_eeprom_uwire:
3006 *
3007 * Read a word from the EEPROM using the MicroWire protocol.
3008 */
3009 static int
3010 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3011 {
3012 uint32_t reg, val;
3013 int i;
3014
3015 for (i = 0; i < wordcnt; i++) {
3016 /* Clear SK and DI. */
3017 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
3018 CSR_WRITE(sc, WMREG_EECD, reg);
3019
3020 /* Set CHIP SELECT. */
3021 reg |= EECD_CS;
3022 CSR_WRITE(sc, WMREG_EECD, reg);
3023 delay(2);
3024
3025 /* Shift in the READ command. */
3026 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
3027
3028 /* Shift in address. */
3029 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
3030
3031 /* Shift out the data. */
3032 wm_eeprom_recvbits(sc, &val, 16);
3033 data[i] = val & 0xffff;
3034
3035 /* Clear CHIP SELECT. */
3036 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
3037 CSR_WRITE(sc, WMREG_EECD, reg);
3038 delay(2);
3039 }
3040
3041 return (0);
3042 }
3043
3044 /*
3045 * wm_spi_eeprom_ready:
3046 *
3047 * Wait for a SPI EEPROM to be ready for commands.
3048 */
3049 static int
3050 wm_spi_eeprom_ready(struct wm_softc *sc)
3051 {
3052 uint32_t val;
3053 int usec;
3054
3055 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
3056 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
3057 wm_eeprom_recvbits(sc, &val, 8);
3058 if ((val & SPI_SR_RDY) == 0)
3059 break;
3060 }
3061 if (usec >= SPI_MAX_RETRIES) {
3062 aprint_error("%s: EEPROM failed to become ready\n",
3063 sc->sc_dev.dv_xname);
3064 return (1);
3065 }
3066 return (0);
3067 }
3068
3069 /*
3070 * wm_read_eeprom_spi:
3071 *
3072 * Read a work from the EEPROM using the SPI protocol.
3073 */
3074 static int
3075 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3076 {
3077 uint32_t reg, val;
3078 int i;
3079 uint8_t opc;
3080
3081 /* Clear SK and CS. */
3082 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
3083 CSR_WRITE(sc, WMREG_EECD, reg);
3084 delay(2);
3085
3086 if (wm_spi_eeprom_ready(sc))
3087 return (1);
3088
3089 /* Toggle CS to flush commands. */
3090 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
3091 delay(2);
3092 CSR_WRITE(sc, WMREG_EECD, reg);
3093 delay(2);
3094
3095 opc = SPI_OPC_READ;
3096 if (sc->sc_ee_addrbits == 8 && word >= 128)
3097 opc |= SPI_OPC_A8;
3098
3099 wm_eeprom_sendbits(sc, opc, 8);
3100 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
3101
3102 for (i = 0; i < wordcnt; i++) {
3103 wm_eeprom_recvbits(sc, &val, 16);
3104 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
3105 }
3106
3107 /* Raise CS and clear SK. */
3108 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3109 CSR_WRITE(sc, WMREG_EECD, reg);
3110 delay(2);
3111
3112 return (0);
3113 }
3114
3115 /*
3116 * wm_read_eeprom:
3117 *
3118 * Read data from the serial EEPROM.
3119 */
3120 static int
3121 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3122 {
3123 int rv;
3124
3125 if (wm_acquire_eeprom(sc))
3126 return (1);
3127
3128 if (sc->sc_flags & WM_F_EEPROM_SPI)
3129 rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3130 else
3131 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3132
3133 wm_release_eeprom(sc);
3134 return (rv);
3135 }
3136
3137 /*
3138 * wm_add_rxbuf:
3139 *
3140 * Add a receive buffer to the indiciated descriptor.
3141 */
3142 static int
3143 wm_add_rxbuf(struct wm_softc *sc, int idx)
3144 {
3145 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3146 struct mbuf *m;
3147 int error;
3148
3149 MGETHDR(m, M_DONTWAIT, MT_DATA);
3150 if (m == NULL)
3151 return (ENOBUFS);
3152
3153 MCLGET(m, M_DONTWAIT);
3154 if ((m->m_flags & M_EXT) == 0) {
3155 m_freem(m);
3156 return (ENOBUFS);
3157 }
3158
3159 if (rxs->rxs_mbuf != NULL)
3160 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3161
3162 rxs->rxs_mbuf = m;
3163
3164 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3165 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3166 BUS_DMA_READ|BUS_DMA_NOWAIT);
3167 if (error) {
3168 /* XXX XXX XXX */
3169 printf("%s: unable to load rx DMA map %d, error = %d\n",
3170 sc->sc_dev.dv_xname, idx, error);
3171 panic("wm_add_rxbuf");
3172 }
3173
3174 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3175 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3176
3177 WM_INIT_RXDESC(sc, idx);
3178
3179 return (0);
3180 }
3181
3182 /*
3183 * wm_set_ral:
3184 *
3185 * Set an entery in the receive address list.
3186 */
3187 static void
3188 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3189 {
3190 uint32_t ral_lo, ral_hi;
3191
3192 if (enaddr != NULL) {
3193 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3194 (enaddr[3] << 24);
3195 ral_hi = enaddr[4] | (enaddr[5] << 8);
3196 ral_hi |= RAL_AV;
3197 } else {
3198 ral_lo = 0;
3199 ral_hi = 0;
3200 }
3201
3202 if (sc->sc_type >= WM_T_82544) {
3203 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3204 ral_lo);
3205 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3206 ral_hi);
3207 } else {
3208 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3209 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3210 }
3211 }
3212
3213 /*
3214 * wm_mchash:
3215 *
3216 * Compute the hash of the multicast address for the 4096-bit
3217 * multicast filter.
3218 */
3219 static uint32_t
3220 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3221 {
3222 static const int lo_shift[4] = { 4, 3, 2, 0 };
3223 static const int hi_shift[4] = { 4, 5, 6, 8 };
3224 uint32_t hash;
3225
3226 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3227 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3228
3229 return (hash & 0xfff);
3230 }
3231
3232 /*
3233 * wm_set_filter:
3234 *
3235 * Set up the receive filter.
3236 */
3237 static void
3238 wm_set_filter(struct wm_softc *sc)
3239 {
3240 struct ethercom *ec = &sc->sc_ethercom;
3241 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3242 struct ether_multi *enm;
3243 struct ether_multistep step;
3244 bus_addr_t mta_reg;
3245 uint32_t hash, reg, bit;
3246 int i;
3247
3248 if (sc->sc_type >= WM_T_82544)
3249 mta_reg = WMREG_CORDOVA_MTA;
3250 else
3251 mta_reg = WMREG_MTA;
3252
3253 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3254
3255 if (ifp->if_flags & IFF_BROADCAST)
3256 sc->sc_rctl |= RCTL_BAM;
3257 if (ifp->if_flags & IFF_PROMISC) {
3258 sc->sc_rctl |= RCTL_UPE;
3259 goto allmulti;
3260 }
3261
3262 /*
3263 * Set the station address in the first RAL slot, and
3264 * clear the remaining slots.
3265 */
3266 wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3267 for (i = 1; i < WM_RAL_TABSIZE; i++)
3268 wm_set_ral(sc, NULL, i);
3269
3270 /* Clear out the multicast table. */
3271 for (i = 0; i < WM_MC_TABSIZE; i++)
3272 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3273
3274 ETHER_FIRST_MULTI(step, ec, enm);
3275 while (enm != NULL) {
3276 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3277 /*
3278 * We must listen to a range of multicast addresses.
3279 * For now, just accept all multicasts, rather than
3280 * trying to set only those filter bits needed to match
3281 * the range. (At this time, the only use of address
3282 * ranges is for IP multicast routing, for which the
3283 * range is big enough to require all bits set.)
3284 */
3285 goto allmulti;
3286 }
3287
3288 hash = wm_mchash(sc, enm->enm_addrlo);
3289
3290 reg = (hash >> 5) & 0x7f;
3291 bit = hash & 0x1f;
3292
3293 hash = CSR_READ(sc, mta_reg + (reg << 2));
3294 hash |= 1U << bit;
3295
3296 /* XXX Hardware bug?? */
3297 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3298 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3299 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3300 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3301 } else
3302 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3303
3304 ETHER_NEXT_MULTI(step, enm);
3305 }
3306
3307 ifp->if_flags &= ~IFF_ALLMULTI;
3308 goto setit;
3309
3310 allmulti:
3311 ifp->if_flags |= IFF_ALLMULTI;
3312 sc->sc_rctl |= RCTL_MPE;
3313
3314 setit:
3315 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3316 }
3317
3318 /*
3319 * wm_tbi_mediainit:
3320 *
3321 * Initialize media for use on 1000BASE-X devices.
3322 */
3323 static void
3324 wm_tbi_mediainit(struct wm_softc *sc)
3325 {
3326 const char *sep = "";
3327
3328 if (sc->sc_type < WM_T_82543)
3329 sc->sc_tipg = TIPG_WM_DFLT;
3330 else
3331 sc->sc_tipg = TIPG_LG_DFLT;
3332
3333 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3334 wm_tbi_mediastatus);
3335
3336 /*
3337 * SWD Pins:
3338 *
3339 * 0 = Link LED (output)
3340 * 1 = Loss Of Signal (input)
3341 */
3342 sc->sc_ctrl |= CTRL_SWDPIO(0);
3343 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3344
3345 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3346
3347 #define ADD(ss, mm, dd) \
3348 do { \
3349 aprint_normal("%s%s", sep, ss); \
3350 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
3351 sep = ", "; \
3352 } while (/*CONSTCOND*/0)
3353
3354 aprint_normal("%s: ", sc->sc_dev.dv_xname);
3355 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3356 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3357 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3358 aprint_normal("\n");
3359
3360 #undef ADD
3361
3362 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3363 }
3364
3365 /*
3366 * wm_tbi_mediastatus: [ifmedia interface function]
3367 *
3368 * Get the current interface media status on a 1000BASE-X device.
3369 */
3370 static void
3371 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3372 {
3373 struct wm_softc *sc = ifp->if_softc;
3374 uint32_t ctrl;
3375
3376 ifmr->ifm_status = IFM_AVALID;
3377 ifmr->ifm_active = IFM_ETHER;
3378
3379 if (sc->sc_tbi_linkup == 0) {
3380 ifmr->ifm_active |= IFM_NONE;
3381 return;
3382 }
3383
3384 ifmr->ifm_status |= IFM_ACTIVE;
3385 ifmr->ifm_active |= IFM_1000_SX;
3386 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3387 ifmr->ifm_active |= IFM_FDX;
3388 ctrl = CSR_READ(sc, WMREG_CTRL);
3389 if (ctrl & CTRL_RFCE)
3390 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3391 if (ctrl & CTRL_TFCE)
3392 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3393 }
3394
3395 /*
3396 * wm_tbi_mediachange: [ifmedia interface function]
3397 *
3398 * Set hardware to newly-selected media on a 1000BASE-X device.
3399 */
3400 static int
3401 wm_tbi_mediachange(struct ifnet *ifp)
3402 {
3403 struct wm_softc *sc = ifp->if_softc;
3404 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3405 uint32_t status;
3406 int i;
3407
3408 sc->sc_txcw = ife->ifm_data;
3409 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3410 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3411 sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3412 sc->sc_txcw |= TXCW_ANE;
3413
3414 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3415 delay(10000);
3416
3417 /* NOTE: CTRL will update TFCE and RFCE automatically. */
3418
3419 sc->sc_tbi_anstate = 0;
3420
3421 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3422 /* Have signal; wait for the link to come up. */
3423 for (i = 0; i < 50; i++) {
3424 delay(10000);
3425 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3426 break;
3427 }
3428
3429 status = CSR_READ(sc, WMREG_STATUS);
3430 if (status & STATUS_LU) {
3431 /* Link is up. */
3432 DPRINTF(WM_DEBUG_LINK,
3433 ("%s: LINK: set media -> link up %s\n",
3434 sc->sc_dev.dv_xname,
3435 (status & STATUS_FD) ? "FDX" : "HDX"));
3436 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3437 sc->sc_fcrtl &= ~FCRTL_XONE;
3438 if (status & STATUS_FD)
3439 sc->sc_tctl |=
3440 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3441 else
3442 sc->sc_tctl |=
3443 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3444 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3445 sc->sc_fcrtl |= FCRTL_XONE;
3446 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3447 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3448 WMREG_OLD_FCRTL : WMREG_FCRTL,
3449 sc->sc_fcrtl);
3450 sc->sc_tbi_linkup = 1;
3451 } else {
3452 /* Link is down. */
3453 DPRINTF(WM_DEBUG_LINK,
3454 ("%s: LINK: set media -> link down\n",
3455 sc->sc_dev.dv_xname));
3456 sc->sc_tbi_linkup = 0;
3457 }
3458 } else {
3459 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3460 sc->sc_dev.dv_xname));
3461 sc->sc_tbi_linkup = 0;
3462 }
3463
3464 wm_tbi_set_linkled(sc);
3465
3466 return (0);
3467 }
3468
3469 /*
3470 * wm_tbi_set_linkled:
3471 *
3472 * Update the link LED on 1000BASE-X devices.
3473 */
3474 static void
3475 wm_tbi_set_linkled(struct wm_softc *sc)
3476 {
3477
3478 if (sc->sc_tbi_linkup)
3479 sc->sc_ctrl |= CTRL_SWDPIN(0);
3480 else
3481 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3482
3483 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3484 }
3485
3486 /*
3487 * wm_tbi_check_link:
3488 *
3489 * Check the link on 1000BASE-X devices.
3490 */
3491 static void
3492 wm_tbi_check_link(struct wm_softc *sc)
3493 {
3494 uint32_t rxcw, ctrl, status;
3495
3496 if (sc->sc_tbi_anstate == 0)
3497 return;
3498 else if (sc->sc_tbi_anstate > 1) {
3499 DPRINTF(WM_DEBUG_LINK,
3500 ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3501 sc->sc_tbi_anstate));
3502 sc->sc_tbi_anstate--;
3503 return;
3504 }
3505
3506 sc->sc_tbi_anstate = 0;
3507
3508 rxcw = CSR_READ(sc, WMREG_RXCW);
3509 ctrl = CSR_READ(sc, WMREG_CTRL);
3510 status = CSR_READ(sc, WMREG_STATUS);
3511
3512 if ((status & STATUS_LU) == 0) {
3513 DPRINTF(WM_DEBUG_LINK,
3514 ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3515 sc->sc_tbi_linkup = 0;
3516 } else {
3517 DPRINTF(WM_DEBUG_LINK,
3518 ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3519 (status & STATUS_FD) ? "FDX" : "HDX"));
3520 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3521 sc->sc_fcrtl &= ~FCRTL_XONE;
3522 if (status & STATUS_FD)
3523 sc->sc_tctl |=
3524 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3525 else
3526 sc->sc_tctl |=
3527 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3528 if (ctrl & CTRL_TFCE)
3529 sc->sc_fcrtl |= FCRTL_XONE;
3530 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3531 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3532 WMREG_OLD_FCRTL : WMREG_FCRTL,
3533 sc->sc_fcrtl);
3534 sc->sc_tbi_linkup = 1;
3535 }
3536
3537 wm_tbi_set_linkled(sc);
3538 }
3539
3540 /*
3541 * wm_gmii_reset:
3542 *
3543 * Reset the PHY.
3544 */
3545 static void
3546 wm_gmii_reset(struct wm_softc *sc)
3547 {
3548 uint32_t reg;
3549
3550 if (sc->sc_type >= WM_T_82544) {
3551 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3552 delay(20000);
3553
3554 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3555 delay(20000);
3556 } else {
3557 /* The PHY reset pin is active-low. */
3558 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3559 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3560 CTRL_EXT_SWDPIN(4));
3561 reg |= CTRL_EXT_SWDPIO(4);
3562
3563 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3564 delay(10);
3565
3566 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3567 delay(10);
3568
3569 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3570 delay(10);
3571 #if 0
3572 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3573 #endif
3574 }
3575 }
3576
3577 /*
3578 * wm_gmii_mediainit:
3579 *
3580 * Initialize media for use on 1000BASE-T devices.
3581 */
3582 static void
3583 wm_gmii_mediainit(struct wm_softc *sc)
3584 {
3585 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3586
3587 /* We have MII. */
3588 sc->sc_flags |= WM_F_HAS_MII;
3589
3590 sc->sc_tipg = TIPG_1000T_DFLT;
3591
3592 /*
3593 * Let the chip set speed/duplex on its own based on
3594 * signals from the PHY.
3595 */
3596 sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3597 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3598
3599 /* Initialize our media structures and probe the GMII. */
3600 sc->sc_mii.mii_ifp = ifp;
3601
3602 if (sc->sc_type >= WM_T_82544) {
3603 sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3604 sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3605 } else {
3606 sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3607 sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3608 }
3609 sc->sc_mii.mii_statchg = wm_gmii_statchg;
3610
3611 wm_gmii_reset(sc);
3612
3613 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3614 wm_gmii_mediastatus);
3615
3616 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3617 MII_OFFSET_ANY, MIIF_DOPAUSE);
3618 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3619 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3620 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3621 } else
3622 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3623 }
3624
3625 /*
3626 * wm_gmii_mediastatus: [ifmedia interface function]
3627 *
3628 * Get the current interface media status on a 1000BASE-T device.
3629 */
3630 static void
3631 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3632 {
3633 struct wm_softc *sc = ifp->if_softc;
3634
3635 mii_pollstat(&sc->sc_mii);
3636 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3637 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3638 sc->sc_flowflags;
3639 }
3640
3641 /*
3642 * wm_gmii_mediachange: [ifmedia interface function]
3643 *
3644 * Set hardware to newly-selected media on a 1000BASE-T device.
3645 */
3646 static int
3647 wm_gmii_mediachange(struct ifnet *ifp)
3648 {
3649 struct wm_softc *sc = ifp->if_softc;
3650
3651 if (ifp->if_flags & IFF_UP)
3652 mii_mediachg(&sc->sc_mii);
3653 return (0);
3654 }
3655
3656 #define MDI_IO CTRL_SWDPIN(2)
3657 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
3658 #define MDI_CLK CTRL_SWDPIN(3)
3659
3660 static void
3661 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3662 {
3663 uint32_t i, v;
3664
3665 v = CSR_READ(sc, WMREG_CTRL);
3666 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3667 v |= MDI_DIR | CTRL_SWDPIO(3);
3668
3669 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3670 if (data & i)
3671 v |= MDI_IO;
3672 else
3673 v &= ~MDI_IO;
3674 CSR_WRITE(sc, WMREG_CTRL, v);
3675 delay(10);
3676 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3677 delay(10);
3678 CSR_WRITE(sc, WMREG_CTRL, v);
3679 delay(10);
3680 }
3681 }
3682
3683 static uint32_t
3684 i82543_mii_recvbits(struct wm_softc *sc)
3685 {
3686 uint32_t v, i, data = 0;
3687
3688 v = CSR_READ(sc, WMREG_CTRL);
3689 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3690 v |= CTRL_SWDPIO(3);
3691
3692 CSR_WRITE(sc, WMREG_CTRL, v);
3693 delay(10);
3694 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3695 delay(10);
3696 CSR_WRITE(sc, WMREG_CTRL, v);
3697 delay(10);
3698
3699 for (i = 0; i < 16; i++) {
3700 data <<= 1;
3701 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3702 delay(10);
3703 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3704 data |= 1;
3705 CSR_WRITE(sc, WMREG_CTRL, v);
3706 delay(10);
3707 }
3708
3709 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3710 delay(10);
3711 CSR_WRITE(sc, WMREG_CTRL, v);
3712 delay(10);
3713
3714 return (data);
3715 }
3716
3717 #undef MDI_IO
3718 #undef MDI_DIR
3719 #undef MDI_CLK
3720
3721 /*
3722 * wm_gmii_i82543_readreg: [mii interface function]
3723 *
3724 * Read a PHY register on the GMII (i82543 version).
3725 */
3726 static int
3727 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3728 {
3729 struct wm_softc *sc = (void *) self;
3730 int rv;
3731
3732 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3733 i82543_mii_sendbits(sc, reg | (phy << 5) |
3734 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3735 rv = i82543_mii_recvbits(sc) & 0xffff;
3736
3737 DPRINTF(WM_DEBUG_GMII,
3738 ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3739 sc->sc_dev.dv_xname, phy, reg, rv));
3740
3741 return (rv);
3742 }
3743
3744 /*
3745 * wm_gmii_i82543_writereg: [mii interface function]
3746 *
3747 * Write a PHY register on the GMII (i82543 version).
3748 */
3749 static void
3750 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3751 {
3752 struct wm_softc *sc = (void *) self;
3753
3754 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3755 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3756 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3757 (MII_COMMAND_START << 30), 32);
3758 }
3759
3760 /*
3761 * wm_gmii_i82544_readreg: [mii interface function]
3762 *
3763 * Read a PHY register on the GMII.
3764 */
3765 static int
3766 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
3767 {
3768 struct wm_softc *sc = (void *) self;
3769 uint32_t mdic = 0;
3770 int i, rv;
3771
3772 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
3773 MDIC_REGADD(reg));
3774
3775 for (i = 0; i < 100; i++) {
3776 mdic = CSR_READ(sc, WMREG_MDIC);
3777 if (mdic & MDIC_READY)
3778 break;
3779 delay(10);
3780 }
3781
3782 if ((mdic & MDIC_READY) == 0) {
3783 log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
3784 sc->sc_dev.dv_xname, phy, reg);
3785 rv = 0;
3786 } else if (mdic & MDIC_E) {
3787 #if 0 /* This is normal if no PHY is present. */
3788 log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
3789 sc->sc_dev.dv_xname, phy, reg);
3790 #endif
3791 rv = 0;
3792 } else {
3793 rv = MDIC_DATA(mdic);
3794 if (rv == 0xffff)
3795 rv = 0;
3796 }
3797
3798 return (rv);
3799 }
3800
3801 /*
3802 * wm_gmii_i82544_writereg: [mii interface function]
3803 *
3804 * Write a PHY register on the GMII.
3805 */
3806 static void
3807 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
3808 {
3809 struct wm_softc *sc = (void *) self;
3810 uint32_t mdic = 0;
3811 int i;
3812
3813 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
3814 MDIC_REGADD(reg) | MDIC_DATA(val));
3815
3816 for (i = 0; i < 100; i++) {
3817 mdic = CSR_READ(sc, WMREG_MDIC);
3818 if (mdic & MDIC_READY)
3819 break;
3820 delay(10);
3821 }
3822
3823 if ((mdic & MDIC_READY) == 0)
3824 log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
3825 sc->sc_dev.dv_xname, phy, reg);
3826 else if (mdic & MDIC_E)
3827 log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
3828 sc->sc_dev.dv_xname, phy, reg);
3829 }
3830
3831 /*
3832 * wm_gmii_statchg: [mii interface function]
3833 *
3834 * Callback from MII layer when media changes.
3835 */
3836 static void
3837 wm_gmii_statchg(struct device *self)
3838 {
3839 struct wm_softc *sc = (void *) self;
3840 struct mii_data *mii = &sc->sc_mii;
3841
3842 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
3843 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3844 sc->sc_fcrtl &= ~FCRTL_XONE;
3845
3846 /*
3847 * Get flow control negotiation result.
3848 */
3849 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3850 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3851 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3852 mii->mii_media_active &= ~IFM_ETH_FMASK;
3853 }
3854
3855 if (sc->sc_flowflags & IFM_FLOW) {
3856 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
3857 sc->sc_ctrl |= CTRL_TFCE;
3858 sc->sc_fcrtl |= FCRTL_XONE;
3859 }
3860 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3861 sc->sc_ctrl |= CTRL_RFCE;
3862 }
3863
3864 if (sc->sc_mii.mii_media_active & IFM_FDX) {
3865 DPRINTF(WM_DEBUG_LINK,
3866 ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3867 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3868 } else {
3869 DPRINTF(WM_DEBUG_LINK,
3870 ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3871 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3872 }
3873
3874 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3875 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3876 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
3877 : WMREG_FCRTL, sc->sc_fcrtl);
3878 }
3879