if_wm.c revision 1.112 1 /* $NetBSD: if_wm.c,v 1.112 2006/02/16 00:02:00 gavan Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40 *
41 * TODO (in order of importance):
42 *
43 * - Rework how parameters are loaded from the EEPROM.
44 * - Figure out what to do with the i82545GM and i82546GB
45 * SERDES controllers.
46 * - Fix hw VLAN assist.
47 */
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.112 2006/02/16 00:02:00 gavan Exp $");
51
52 #include "bpfilter.h"
53 #include "rnd.h"
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67
68 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
69
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82
83 #include <netinet/in.h> /* XXX for struct ip */
84 #include <netinet/in_systm.h> /* XXX for struct ip */
85 #include <netinet/ip.h> /* XXX for struct ip */
86 #include <netinet/tcp.h> /* XXX for struct tcphdr */
87
88 #include <machine/bus.h>
89 #include <machine/intr.h>
90 #include <machine/endian.h>
91
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99
100 #include <dev/pci/if_wmreg.h>
101 #include <dev/pci/if_wmvar.h>
102
103 #ifdef WM_DEBUG
104 #define WM_DEBUG_LINK 0x01
105 #define WM_DEBUG_TX 0x02
106 #define WM_DEBUG_RX 0x04
107 #define WM_DEBUG_GMII 0x08
108 int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
109
110 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
111 #else
112 #define DPRINTF(x, y) /* nothing */
113 #endif /* WM_DEBUG */
114
115 /*
116 * Transmit descriptor list size. Due to errata, we can only have
117 * 256 hardware descriptors in the ring on < 82544, but we use 4096
118 * on >= 82544. We tell the upper layers that they can queue a lot
119 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
120 * of them at a time.
121 *
122 * We allow up to 256 (!) DMA segments per packet. Pathological packet
123 * chains containing many small mbufs have been observed in zero-copy
124 * situations with jumbo frames.
125 */
126 #define WM_NTXSEGS 256
127 #define WM_IFQUEUELEN 256
128 #define WM_TXQUEUELEN_MAX 64
129 #define WM_TXQUEUELEN_MAX_82547 16
130 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
131 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
132 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
133 #define WM_NTXDESC_82542 256
134 #define WM_NTXDESC_82544 4096
135 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
136 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
137 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
138 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
139 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
140
141 #define WM_MAXTXDMA round_page(IP_MAXPACKET) /* for TSO */
142
143 /*
144 * Receive descriptor list size. We have one Rx buffer for normal
145 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
146 * packet. We allocate 256 receive descriptors, each with a 2k
147 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
148 */
149 #define WM_NRXDESC 256
150 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
151 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
152 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
153
154 /*
155 * Control structures are DMA'd to the i82542 chip. We allocate them in
156 * a single clump that maps to a single DMA segment to make several things
157 * easier.
158 */
159 struct wm_control_data_82544 {
160 /*
161 * The receive descriptors.
162 */
163 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
164
165 /*
166 * The transmit descriptors. Put these at the end, because
167 * we might use a smaller number of them.
168 */
169 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
170 };
171
172 struct wm_control_data_82542 {
173 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
174 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
175 };
176
177 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
178 #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)])
179 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
180
181 /*
182 * Software state for transmit jobs.
183 */
184 struct wm_txsoft {
185 struct mbuf *txs_mbuf; /* head of our mbuf chain */
186 bus_dmamap_t txs_dmamap; /* our DMA map */
187 int txs_firstdesc; /* first descriptor in packet */
188 int txs_lastdesc; /* last descriptor in packet */
189 int txs_ndesc; /* # of descriptors used */
190 };
191
192 /*
193 * Software state for receive buffers. Each descriptor gets a
194 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
195 * more than one buffer, we chain them together.
196 */
197 struct wm_rxsoft {
198 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
199 bus_dmamap_t rxs_dmamap; /* our DMA map */
200 };
201
202 typedef enum {
203 WM_T_unknown = 0,
204 WM_T_82542_2_0, /* i82542 2.0 (really old) */
205 WM_T_82542_2_1, /* i82542 2.1+ (old) */
206 WM_T_82543, /* i82543 */
207 WM_T_82544, /* i82544 */
208 WM_T_82540, /* i82540 */
209 WM_T_82545, /* i82545 */
210 WM_T_82545_3, /* i82545 3.0+ */
211 WM_T_82546, /* i82546 */
212 WM_T_82546_3, /* i82546 3.0+ */
213 WM_T_82541, /* i82541 */
214 WM_T_82541_2, /* i82541 2.0+ */
215 WM_T_82547, /* i82547 */
216 WM_T_82547_2, /* i82547 2.0+ */
217 } wm_chip_type;
218
219 /*
220 * Software state per device.
221 */
222 struct wm_softc {
223 struct device sc_dev; /* generic device information */
224 bus_space_tag_t sc_st; /* bus space tag */
225 bus_space_handle_t sc_sh; /* bus space handle */
226 bus_space_tag_t sc_iot; /* I/O space tag */
227 bus_space_handle_t sc_ioh; /* I/O space handle */
228 bus_dma_tag_t sc_dmat; /* bus DMA tag */
229 struct ethercom sc_ethercom; /* ethernet common data */
230 void *sc_sdhook; /* shutdown hook */
231
232 wm_chip_type sc_type; /* chip type */
233 int sc_flags; /* flags; see below */
234 int sc_bus_speed; /* PCI/PCIX bus speed */
235 int sc_pcix_offset; /* PCIX capability register offset */
236 int sc_flowflags; /* 802.3x flow control flags */
237
238 void *sc_ih; /* interrupt cookie */
239
240 int sc_ee_addrbits; /* EEPROM address bits */
241
242 struct mii_data sc_mii; /* MII/media information */
243
244 struct callout sc_tick_ch; /* tick callout */
245
246 bus_dmamap_t sc_cddmamap; /* control data DMA map */
247 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
248
249 int sc_align_tweak;
250
251 /*
252 * Software state for the transmit and receive descriptors.
253 */
254 int sc_txnum; /* must be a power of two */
255 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
256 struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
257
258 /*
259 * Control data structures.
260 */
261 int sc_ntxdesc; /* must be a power of two */
262 struct wm_control_data_82544 *sc_control_data;
263 #define sc_txdescs sc_control_data->wcd_txdescs
264 #define sc_rxdescs sc_control_data->wcd_rxdescs
265
266 #ifdef WM_EVENT_COUNTERS
267 /* Event counters. */
268 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
269 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
270 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
271 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
272 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
273 struct evcnt sc_ev_rxintr; /* Rx interrupts */
274 struct evcnt sc_ev_linkintr; /* Link interrupts */
275
276 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
277 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
278 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
279 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
280 struct evcnt sc_ev_txtusum6; /* TCP/UDP v6 cksums comp. out-bound */
281 struct evcnt sc_ev_txtso; /* TCP seg offload out-bound */
282 struct evcnt sc_ev_txtsopain; /* painful header manip. for TSO */
283
284 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
285 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
286
287 struct evcnt sc_ev_tu; /* Tx underrun */
288
289 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
290 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
291 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
292 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
293 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
294 #endif /* WM_EVENT_COUNTERS */
295
296 bus_addr_t sc_tdt_reg; /* offset of TDT register */
297
298 int sc_txfree; /* number of free Tx descriptors */
299 int sc_txnext; /* next ready Tx descriptor */
300
301 int sc_txsfree; /* number of free Tx jobs */
302 int sc_txsnext; /* next free Tx job */
303 int sc_txsdirty; /* dirty Tx jobs */
304
305 /* These 5 variables are used only on the 82547. */
306 int sc_txfifo_size; /* Tx FIFO size */
307 int sc_txfifo_head; /* current head of FIFO */
308 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
309 int sc_txfifo_stall; /* Tx FIFO is stalled */
310 struct callout sc_txfifo_ch; /* Tx FIFO stall work-around timer */
311
312 bus_addr_t sc_rdt_reg; /* offset of RDT register */
313
314 int sc_rxptr; /* next ready Rx descriptor/queue ent */
315 int sc_rxdiscard;
316 int sc_rxlen;
317 struct mbuf *sc_rxhead;
318 struct mbuf *sc_rxtail;
319 struct mbuf **sc_rxtailp;
320
321 uint32_t sc_ctrl; /* prototype CTRL register */
322 #if 0
323 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
324 #endif
325 uint32_t sc_icr; /* prototype interrupt bits */
326 uint32_t sc_itr; /* prototype intr throttling reg */
327 uint32_t sc_tctl; /* prototype TCTL register */
328 uint32_t sc_rctl; /* prototype RCTL register */
329 uint32_t sc_txcw; /* prototype TXCW register */
330 uint32_t sc_tipg; /* prototype TIPG register */
331 uint32_t sc_fcrtl; /* prototype FCRTL register */
332 uint32_t sc_pba; /* prototype PBA register */
333
334 int sc_tbi_linkup; /* TBI link status */
335 int sc_tbi_anstate; /* autonegotiation state */
336
337 int sc_mchash_type; /* multicast filter offset */
338
339 #if NRND > 0
340 rndsource_element_t rnd_source; /* random source */
341 #endif
342 };
343
344 #define WM_RXCHAIN_RESET(sc) \
345 do { \
346 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
347 *(sc)->sc_rxtailp = NULL; \
348 (sc)->sc_rxlen = 0; \
349 } while (/*CONSTCOND*/0)
350
351 #define WM_RXCHAIN_LINK(sc, m) \
352 do { \
353 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
354 (sc)->sc_rxtailp = &(m)->m_next; \
355 } while (/*CONSTCOND*/0)
356
357 /* sc_flags */
358 #define WM_F_HAS_MII 0x01 /* has MII */
359 #define WM_F_EEPROM_HANDSHAKE 0x02 /* requires EEPROM handshake */
360 #define WM_F_EEPROM_SPI 0x04 /* EEPROM is SPI */
361 #define WM_F_EEPROM_MD 0x08 /* EEPROM not present, use MD hook */
362 #define WM_F_IOH_VALID 0x10 /* I/O handle is valid */
363 #define WM_F_BUS64 0x20 /* bus is 64-bit */
364 #define WM_F_PCIX 0x40 /* bus is PCI-X */
365 #define WM_F_CSA 0x80 /* bus is CSA */
366
367 #ifdef WM_EVENT_COUNTERS
368 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
369 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
370 #else
371 #define WM_EVCNT_INCR(ev) /* nothing */
372 #define WM_EVCNT_ADD(ev, val) /* nothing */
373 #endif
374
375 #define CSR_READ(sc, reg) \
376 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
377 #define CSR_WRITE(sc, reg, val) \
378 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
379 #define CSR_WRITE_FLUSH(sc) \
380 (void) CSR_READ((sc), WMREG_STATUS)
381
382 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
383 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
384
385 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
386 #define WM_CDTXADDR_HI(sc, x) \
387 (sizeof(bus_addr_t) == 8 ? \
388 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
389
390 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
391 #define WM_CDRXADDR_HI(sc, x) \
392 (sizeof(bus_addr_t) == 8 ? \
393 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
394
395 #define WM_CDTXSYNC(sc, x, n, ops) \
396 do { \
397 int __x, __n; \
398 \
399 __x = (x); \
400 __n = (n); \
401 \
402 /* If it will wrap around, sync to the end of the ring. */ \
403 if ((__x + __n) > WM_NTXDESC(sc)) { \
404 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
405 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
406 (WM_NTXDESC(sc) - __x), (ops)); \
407 __n -= (WM_NTXDESC(sc) - __x); \
408 __x = 0; \
409 } \
410 \
411 /* Now sync whatever is left. */ \
412 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
413 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
414 } while (/*CONSTCOND*/0)
415
416 #define WM_CDRXSYNC(sc, x, ops) \
417 do { \
418 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
419 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
420 } while (/*CONSTCOND*/0)
421
422 #define WM_INIT_RXDESC(sc, x) \
423 do { \
424 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
425 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
426 struct mbuf *__m = __rxs->rxs_mbuf; \
427 \
428 /* \
429 * Note: We scoot the packet forward 2 bytes in the buffer \
430 * so that the payload after the Ethernet header is aligned \
431 * to a 4-byte boundary. \
432 * \
433 * XXX BRAINDAMAGE ALERT! \
434 * The stupid chip uses the same size for every buffer, which \
435 * is set in the Receive Control register. We are using the 2K \
436 * size option, but what we REALLY want is (2K - 2)! For this \
437 * reason, we can't "scoot" packets longer than the standard \
438 * Ethernet MTU. On strict-alignment platforms, if the total \
439 * size exceeds (2K - 2) we set align_tweak to 0 and let \
440 * the upper layer copy the headers. \
441 */ \
442 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
443 \
444 wm_set_dma_addr(&__rxd->wrx_addr, \
445 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
446 __rxd->wrx_len = 0; \
447 __rxd->wrx_cksum = 0; \
448 __rxd->wrx_status = 0; \
449 __rxd->wrx_errors = 0; \
450 __rxd->wrx_special = 0; \
451 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
452 \
453 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
454 } while (/*CONSTCOND*/0)
455
456 static void wm_start(struct ifnet *);
457 static void wm_watchdog(struct ifnet *);
458 static int wm_ioctl(struct ifnet *, u_long, caddr_t);
459 static int wm_init(struct ifnet *);
460 static void wm_stop(struct ifnet *, int);
461
462 static void wm_shutdown(void *);
463
464 static void wm_reset(struct wm_softc *);
465 static void wm_rxdrain(struct wm_softc *);
466 static int wm_add_rxbuf(struct wm_softc *, int);
467 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
468 static int wm_validate_eeprom_checksum(struct wm_softc *);
469 static void wm_tick(void *);
470 #ifdef __HAVE_WM_READ_EEPROM_HOOK
471 extern int wm_read_eeprom_hook(int, int, u_int16_t *);
472 #endif
473
474 static void wm_set_filter(struct wm_softc *);
475
476 static int wm_intr(void *);
477 static void wm_txintr(struct wm_softc *);
478 static void wm_rxintr(struct wm_softc *);
479 static void wm_linkintr(struct wm_softc *, uint32_t);
480
481 static void wm_tbi_mediainit(struct wm_softc *);
482 static int wm_tbi_mediachange(struct ifnet *);
483 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
484
485 static void wm_tbi_set_linkled(struct wm_softc *);
486 static void wm_tbi_check_link(struct wm_softc *);
487
488 static void wm_gmii_reset(struct wm_softc *);
489
490 static int wm_gmii_i82543_readreg(struct device *, int, int);
491 static void wm_gmii_i82543_writereg(struct device *, int, int, int);
492
493 static int wm_gmii_i82544_readreg(struct device *, int, int);
494 static void wm_gmii_i82544_writereg(struct device *, int, int, int);
495
496 static void wm_gmii_statchg(struct device *);
497
498 static void wm_gmii_mediainit(struct wm_softc *);
499 static int wm_gmii_mediachange(struct ifnet *);
500 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
501
502 static int wm_match(struct device *, struct cfdata *, void *);
503 static void wm_attach(struct device *, struct device *, void *);
504
505 CFATTACH_DECL(wm, sizeof(struct wm_softc),
506 wm_match, wm_attach, NULL, NULL);
507
508 static void wm_82547_txfifo_stall(void *);
509
510 /*
511 * Devices supported by this driver.
512 */
513 static const struct wm_product {
514 pci_vendor_id_t wmp_vendor;
515 pci_product_id_t wmp_product;
516 const char *wmp_name;
517 wm_chip_type wmp_type;
518 int wmp_flags;
519 #define WMP_F_1000X 0x01
520 #define WMP_F_1000T 0x02
521 } wm_products[] = {
522 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
523 "Intel i82542 1000BASE-X Ethernet",
524 WM_T_82542_2_1, WMP_F_1000X },
525
526 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
527 "Intel i82543GC 1000BASE-X Ethernet",
528 WM_T_82543, WMP_F_1000X },
529
530 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
531 "Intel i82543GC 1000BASE-T Ethernet",
532 WM_T_82543, WMP_F_1000T },
533
534 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
535 "Intel i82544EI 1000BASE-T Ethernet",
536 WM_T_82544, WMP_F_1000T },
537
538 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
539 "Intel i82544EI 1000BASE-X Ethernet",
540 WM_T_82544, WMP_F_1000X },
541
542 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
543 "Intel i82544GC 1000BASE-T Ethernet",
544 WM_T_82544, WMP_F_1000T },
545
546 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
547 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
548 WM_T_82544, WMP_F_1000T },
549
550 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
551 "Intel i82540EM 1000BASE-T Ethernet",
552 WM_T_82540, WMP_F_1000T },
553
554 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
555 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
556 WM_T_82540, WMP_F_1000T },
557
558 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
559 "Intel i82540EP 1000BASE-T Ethernet",
560 WM_T_82540, WMP_F_1000T },
561
562 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
563 "Intel i82540EP 1000BASE-T Ethernet",
564 WM_T_82540, WMP_F_1000T },
565
566 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
567 "Intel i82540EP 1000BASE-T Ethernet",
568 WM_T_82540, WMP_F_1000T },
569
570 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
571 "Intel i82545EM 1000BASE-T Ethernet",
572 WM_T_82545, WMP_F_1000T },
573
574 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
575 "Intel i82545GM 1000BASE-T Ethernet",
576 WM_T_82545_3, WMP_F_1000T },
577
578 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
579 "Intel i82545GM 1000BASE-X Ethernet",
580 WM_T_82545_3, WMP_F_1000X },
581 #if 0
582 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
583 "Intel i82545GM Gigabit Ethernet (SERDES)",
584 WM_T_82545_3, WMP_F_SERDES },
585 #endif
586 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
587 "Intel i82546EB 1000BASE-T Ethernet",
588 WM_T_82546, WMP_F_1000T },
589
590 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
591 "Intel i82546EB 1000BASE-T Ethernet",
592 WM_T_82546, WMP_F_1000T },
593
594 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
595 "Intel i82545EM 1000BASE-X Ethernet",
596 WM_T_82545, WMP_F_1000X },
597
598 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
599 "Intel i82546EB 1000BASE-X Ethernet",
600 WM_T_82546, WMP_F_1000X },
601
602 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
603 "Intel i82546GB 1000BASE-T Ethernet",
604 WM_T_82546_3, WMP_F_1000T },
605
606 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
607 "Intel i82546GB 1000BASE-X Ethernet",
608 WM_T_82546_3, WMP_F_1000X },
609 #if 0
610 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
611 "Intel i82546GB Gigabit Ethernet (SERDES)",
612 WM_T_82546_3, WMP_F_SERDES },
613 #endif
614 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
615 "Intel i82541EI 1000BASE-T Ethernet",
616 WM_T_82541, WMP_F_1000T },
617
618 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
619 "Intel i82541EI Mobile 1000BASE-T Ethernet",
620 WM_T_82541, WMP_F_1000T },
621
622 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
623 "Intel i82541ER 1000BASE-T Ethernet",
624 WM_T_82541_2, WMP_F_1000T },
625
626 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
627 "Intel i82541GI 1000BASE-T Ethernet",
628 WM_T_82541_2, WMP_F_1000T },
629
630 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
631 "Intel i82541GI Mobile 1000BASE-T Ethernet",
632 WM_T_82541_2, WMP_F_1000T },
633
634 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI,
635 "Intel i82541PI 1000BASE-T Ethernet",
636 WM_T_82541_2, WMP_F_1000T },
637
638 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
639 "Intel i82547EI 1000BASE-T Ethernet",
640 WM_T_82547, WMP_F_1000T },
641
642 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
643 "Intel i82547GI 1000BASE-T Ethernet",
644 WM_T_82547_2, WMP_F_1000T },
645 { 0, 0,
646 NULL,
647 0, 0 },
648 };
649
650 #ifdef WM_EVENT_COUNTERS
651 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
652 #endif /* WM_EVENT_COUNTERS */
653
654 #if 0 /* Not currently used */
655 static inline uint32_t
656 wm_io_read(struct wm_softc *sc, int reg)
657 {
658
659 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
660 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
661 }
662 #endif
663
664 static inline void
665 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
666 {
667
668 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
669 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
670 }
671
672 static inline void
673 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
674 {
675 wa->wa_low = htole32(v & 0xffffffffU);
676 if (sizeof(bus_addr_t) == 8)
677 wa->wa_high = htole32((uint64_t) v >> 32);
678 else
679 wa->wa_high = 0;
680 }
681
682 static const struct wm_product *
683 wm_lookup(const struct pci_attach_args *pa)
684 {
685 const struct wm_product *wmp;
686
687 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
688 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
689 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
690 return (wmp);
691 }
692 return (NULL);
693 }
694
695 static int
696 wm_match(struct device *parent, struct cfdata *cf, void *aux)
697 {
698 struct pci_attach_args *pa = aux;
699
700 if (wm_lookup(pa) != NULL)
701 return (1);
702
703 return (0);
704 }
705
706 static void
707 wm_attach(struct device *parent, struct device *self, void *aux)
708 {
709 struct wm_softc *sc = (void *) self;
710 struct pci_attach_args *pa = aux;
711 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
712 pci_chipset_tag_t pc = pa->pa_pc;
713 pci_intr_handle_t ih;
714 size_t cdata_size;
715 const char *intrstr = NULL;
716 const char *eetype;
717 bus_space_tag_t memt;
718 bus_space_handle_t memh;
719 bus_dma_segment_t seg;
720 int memh_valid;
721 int i, rseg, error;
722 const struct wm_product *wmp;
723 uint8_t enaddr[ETHER_ADDR_LEN];
724 uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
725 pcireg_t preg, memtype;
726 uint32_t reg;
727 int pmreg;
728
729 callout_init(&sc->sc_tick_ch);
730
731 wmp = wm_lookup(pa);
732 if (wmp == NULL) {
733 printf("\n");
734 panic("wm_attach: impossible");
735 }
736
737 if (pci_dma64_available(pa))
738 sc->sc_dmat = pa->pa_dmat64;
739 else
740 sc->sc_dmat = pa->pa_dmat;
741
742 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
743 aprint_naive(": Ethernet controller\n");
744 aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
745
746 sc->sc_type = wmp->wmp_type;
747 if (sc->sc_type < WM_T_82543) {
748 if (preg < 2) {
749 aprint_error("%s: i82542 must be at least rev. 2\n",
750 sc->sc_dev.dv_xname);
751 return;
752 }
753 if (preg < 3)
754 sc->sc_type = WM_T_82542_2_0;
755 }
756
757 /*
758 * Map the device. All devices support memory-mapped acccess,
759 * and it is really required for normal operation.
760 */
761 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
762 switch (memtype) {
763 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
764 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
765 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
766 memtype, 0, &memt, &memh, NULL, NULL) == 0);
767 break;
768 default:
769 memh_valid = 0;
770 }
771
772 if (memh_valid) {
773 sc->sc_st = memt;
774 sc->sc_sh = memh;
775 } else {
776 aprint_error("%s: unable to map device registers\n",
777 sc->sc_dev.dv_xname);
778 return;
779 }
780
781 /*
782 * In addition, i82544 and later support I/O mapped indirect
783 * register access. It is not desirable (nor supported in
784 * this driver) to use it for normal operation, though it is
785 * required to work around bugs in some chip versions.
786 */
787 if (sc->sc_type >= WM_T_82544) {
788 /* First we have to find the I/O BAR. */
789 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
790 if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
791 PCI_MAPREG_TYPE_IO)
792 break;
793 }
794 if (i == PCI_MAPREG_END)
795 aprint_error("%s: WARNING: unable to find I/O BAR\n",
796 sc->sc_dev.dv_xname);
797 else {
798 /*
799 * The i8254x doesn't apparently respond when the
800 * I/O BAR is 0, which looks somewhat like it's not
801 * been configured.
802 */
803 preg = pci_conf_read(pc, pa->pa_tag, i);
804 if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
805 aprint_error("%s: WARNING: I/O BAR at zero.\n",
806 sc->sc_dev.dv_xname);
807 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
808 0, &sc->sc_iot, &sc->sc_ioh,
809 NULL, NULL) == 0) {
810 sc->sc_flags |= WM_F_IOH_VALID;
811 } else {
812 aprint_error("%s: WARNING: unable to map "
813 "I/O space\n", sc->sc_dev.dv_xname);
814 }
815 }
816
817 }
818
819 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
820 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
821 preg |= PCI_COMMAND_MASTER_ENABLE;
822 if (sc->sc_type < WM_T_82542_2_1)
823 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
824 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
825
826 /* Get it out of power save mode, if needed. */
827 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
828 preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
829 PCI_PMCSR_STATE_MASK;
830 if (preg == PCI_PMCSR_STATE_D3) {
831 /*
832 * The card has lost all configuration data in
833 * this state, so punt.
834 */
835 aprint_error("%s: unable to wake from power state D3\n",
836 sc->sc_dev.dv_xname);
837 return;
838 }
839 if (preg != PCI_PMCSR_STATE_D0) {
840 aprint_normal("%s: waking up from power state D%d\n",
841 sc->sc_dev.dv_xname, preg);
842 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
843 PCI_PMCSR_STATE_D0);
844 }
845 }
846
847 /*
848 * Map and establish our interrupt.
849 */
850 if (pci_intr_map(pa, &ih)) {
851 aprint_error("%s: unable to map interrupt\n",
852 sc->sc_dev.dv_xname);
853 return;
854 }
855 intrstr = pci_intr_string(pc, ih);
856 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
857 if (sc->sc_ih == NULL) {
858 aprint_error("%s: unable to establish interrupt",
859 sc->sc_dev.dv_xname);
860 if (intrstr != NULL)
861 aprint_normal(" at %s", intrstr);
862 aprint_normal("\n");
863 return;
864 }
865 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
866
867 /*
868 * Determine a few things about the bus we're connected to.
869 */
870 if (sc->sc_type < WM_T_82543) {
871 /* We don't really know the bus characteristics here. */
872 sc->sc_bus_speed = 33;
873 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
874 /*
875 * CSA (Communication Streaming Architecture) is about as fast
876 * a 32-bit 66MHz PCI Bus.
877 */
878 sc->sc_flags |= WM_F_CSA;
879 sc->sc_bus_speed = 66;
880 aprint_verbose("%s: Communication Streaming Architecture\n",
881 sc->sc_dev.dv_xname);
882 if (sc->sc_type == WM_T_82547) {
883 callout_init(&sc->sc_txfifo_ch);
884 callout_setfunc(&sc->sc_txfifo_ch,
885 wm_82547_txfifo_stall, sc);
886 aprint_verbose("%s: using 82547 Tx FIFO stall "
887 "work-around\n", sc->sc_dev.dv_xname);
888 }
889 } else {
890 reg = CSR_READ(sc, WMREG_STATUS);
891 if (reg & STATUS_BUS64)
892 sc->sc_flags |= WM_F_BUS64;
893 if (sc->sc_type >= WM_T_82544 &&
894 (reg & STATUS_PCIX_MODE) != 0) {
895 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
896
897 sc->sc_flags |= WM_F_PCIX;
898 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
899 PCI_CAP_PCIX,
900 &sc->sc_pcix_offset, NULL) == 0)
901 aprint_error("%s: unable to find PCIX "
902 "capability\n", sc->sc_dev.dv_xname);
903 else if (sc->sc_type != WM_T_82545_3 &&
904 sc->sc_type != WM_T_82546_3) {
905 /*
906 * Work around a problem caused by the BIOS
907 * setting the max memory read byte count
908 * incorrectly.
909 */
910 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
911 sc->sc_pcix_offset + PCI_PCIX_CMD);
912 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
913 sc->sc_pcix_offset + PCI_PCIX_STATUS);
914
915 bytecnt =
916 (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
917 PCI_PCIX_CMD_BYTECNT_SHIFT;
918 maxb =
919 (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
920 PCI_PCIX_STATUS_MAXB_SHIFT;
921 if (bytecnt > maxb) {
922 aprint_verbose("%s: resetting PCI-X "
923 "MMRBC: %d -> %d\n",
924 sc->sc_dev.dv_xname,
925 512 << bytecnt, 512 << maxb);
926 pcix_cmd = (pcix_cmd &
927 ~PCI_PCIX_CMD_BYTECNT_MASK) |
928 (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
929 pci_conf_write(pa->pa_pc, pa->pa_tag,
930 sc->sc_pcix_offset + PCI_PCIX_CMD,
931 pcix_cmd);
932 }
933 }
934 }
935 /*
936 * The quad port adapter is special; it has a PCIX-PCIX
937 * bridge on the board, and can run the secondary bus at
938 * a higher speed.
939 */
940 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
941 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
942 : 66;
943 } else if (sc->sc_flags & WM_F_PCIX) {
944 switch (reg & STATUS_PCIXSPD_MASK) {
945 case STATUS_PCIXSPD_50_66:
946 sc->sc_bus_speed = 66;
947 break;
948 case STATUS_PCIXSPD_66_100:
949 sc->sc_bus_speed = 100;
950 break;
951 case STATUS_PCIXSPD_100_133:
952 sc->sc_bus_speed = 133;
953 break;
954 default:
955 aprint_error(
956 "%s: unknown PCIXSPD %d; assuming 66MHz\n",
957 sc->sc_dev.dv_xname,
958 reg & STATUS_PCIXSPD_MASK);
959 sc->sc_bus_speed = 66;
960 }
961 } else
962 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
963 aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
964 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
965 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
966 }
967
968 /*
969 * Allocate the control data structures, and create and load the
970 * DMA map for it.
971 *
972 * NOTE: All Tx descriptors must be in the same 4G segment of
973 * memory. So must Rx descriptors. We simplify by allocating
974 * both sets within the same 4G segment.
975 */
976 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
977 WM_NTXDESC_82542 : WM_NTXDESC_82544;
978 cdata_size = sc->sc_type < WM_T_82544 ?
979 sizeof(struct wm_control_data_82542) :
980 sizeof(struct wm_control_data_82544);
981 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
982 (bus_size_t) 0x100000000ULL,
983 &seg, 1, &rseg, 0)) != 0) {
984 aprint_error(
985 "%s: unable to allocate control data, error = %d\n",
986 sc->sc_dev.dv_xname, error);
987 goto fail_0;
988 }
989
990 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
991 (caddr_t *)&sc->sc_control_data, 0)) != 0) {
992 aprint_error("%s: unable to map control data, error = %d\n",
993 sc->sc_dev.dv_xname, error);
994 goto fail_1;
995 }
996
997 if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
998 0, 0, &sc->sc_cddmamap)) != 0) {
999 aprint_error("%s: unable to create control data DMA map, "
1000 "error = %d\n", sc->sc_dev.dv_xname, error);
1001 goto fail_2;
1002 }
1003
1004 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1005 sc->sc_control_data, cdata_size, NULL,
1006 0)) != 0) {
1007 aprint_error(
1008 "%s: unable to load control data DMA map, error = %d\n",
1009 sc->sc_dev.dv_xname, error);
1010 goto fail_3;
1011 }
1012
1013
1014 /*
1015 * Create the transmit buffer DMA maps.
1016 */
1017 WM_TXQUEUELEN(sc) =
1018 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1019 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1020 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1021 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1022 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1023 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1024 aprint_error("%s: unable to create Tx DMA map %d, "
1025 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1026 goto fail_4;
1027 }
1028 }
1029
1030 /*
1031 * Create the receive buffer DMA maps.
1032 */
1033 for (i = 0; i < WM_NRXDESC; i++) {
1034 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1035 MCLBYTES, 0, 0,
1036 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1037 aprint_error("%s: unable to create Rx DMA map %d, "
1038 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1039 goto fail_5;
1040 }
1041 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1042 }
1043
1044 /*
1045 * Reset the chip to a known state.
1046 */
1047 wm_reset(sc);
1048
1049 /*
1050 * Get some information about the EEPROM.
1051 */
1052 if (sc->sc_type >= WM_T_82540)
1053 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1054 if (sc->sc_type <= WM_T_82544)
1055 sc->sc_ee_addrbits = 6;
1056 else if (sc->sc_type <= WM_T_82546_3) {
1057 reg = CSR_READ(sc, WMREG_EECD);
1058 if (reg & EECD_EE_SIZE)
1059 sc->sc_ee_addrbits = 8;
1060 else
1061 sc->sc_ee_addrbits = 6;
1062 } else if (sc->sc_type <= WM_T_82547_2) {
1063 reg = CSR_READ(sc, WMREG_EECD);
1064 if (reg & EECD_EE_TYPE) {
1065 sc->sc_flags |= WM_F_EEPROM_SPI;
1066 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1067 } else
1068 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1069 } else {
1070 /* Assume everything else is SPI. */
1071 reg = CSR_READ(sc, WMREG_EECD);
1072 sc->sc_flags |= WM_F_EEPROM_SPI;
1073 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1074 }
1075
1076 /*
1077 * Defer printing the EEPROM type until after verifying the checksum
1078 * This allows the EEPROM type to be printed correctly in the case
1079 * that no EEPROM is attached.
1080 */
1081
1082
1083 /*
1084 * Validate the EEPROM checksum. If the checksum fails:
1085 *
1086 * If __HAVE_WM_READ_EEPROM_HOOK, we defer to the device-specific
1087 * hook for EEPROM reads. Otherwise we have run out of options,
1088 * so bail.
1089 */
1090 if (wm_validate_eeprom_checksum(sc)) {
1091 #ifdef __HAVE_WM_READ_EEPROM_HOOK
1092 sc->sc_flags |= WM_F_EEPROM_MD;
1093 #else
1094 aprint_error("%s: EEPROM failed checksum\n",
1095 sc->sc_dev.dv_xname);
1096 return;
1097 #endif
1098 }
1099
1100 /*
1101 * Read the Ethernet address from the EEPROM.
1102 */
1103 if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1104 sizeof(myea) / sizeof(myea[0]), myea)) {
1105 aprint_error("%s: unable to read Ethernet address\n",
1106 sc->sc_dev.dv_xname);
1107 return;
1108 }
1109
1110 if (sc->sc_flags & WM_F_EEPROM_MD)
1111 aprint_verbose("%s: No EEPROM\n", sc->sc_dev.dv_xname);
1112 else {
1113 if (sc->sc_flags & WM_F_EEPROM_SPI)
1114 eetype = "SPI";
1115 else
1116 eetype = "MicroWire";
1117 aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1118 sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1119 sc->sc_ee_addrbits, eetype);
1120 }
1121
1122 enaddr[0] = myea[0] & 0xff;
1123 enaddr[1] = myea[0] >> 8;
1124 enaddr[2] = myea[1] & 0xff;
1125 enaddr[3] = myea[1] >> 8;
1126 enaddr[4] = myea[2] & 0xff;
1127 enaddr[5] = myea[2] >> 8;
1128
1129 /*
1130 * Toggle the LSB of the MAC address on the second port
1131 * of the i82546.
1132 */
1133 if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
1134 if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1135 enaddr[5] ^= 1;
1136 }
1137
1138 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1139 ether_sprintf(enaddr));
1140
1141 /*
1142 * Read the config info from the EEPROM, and set up various
1143 * bits in the control registers based on their contents.
1144 */
1145 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1146 aprint_error("%s: unable to read CFG1 from EEPROM\n",
1147 sc->sc_dev.dv_xname);
1148 return;
1149 }
1150 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1151 aprint_error("%s: unable to read CFG2 from EEPROM\n",
1152 sc->sc_dev.dv_xname);
1153 return;
1154 }
1155 if (sc->sc_type >= WM_T_82544) {
1156 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1157 aprint_error("%s: unable to read SWDPIN from EEPROM\n",
1158 sc->sc_dev.dv_xname);
1159 return;
1160 }
1161 }
1162
1163 if (cfg1 & EEPROM_CFG1_ILOS)
1164 sc->sc_ctrl |= CTRL_ILOS;
1165 if (sc->sc_type >= WM_T_82544) {
1166 sc->sc_ctrl |=
1167 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1168 CTRL_SWDPIO_SHIFT;
1169 sc->sc_ctrl |=
1170 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1171 CTRL_SWDPINS_SHIFT;
1172 } else {
1173 sc->sc_ctrl |=
1174 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1175 CTRL_SWDPIO_SHIFT;
1176 }
1177
1178 #if 0
1179 if (sc->sc_type >= WM_T_82544) {
1180 if (cfg1 & EEPROM_CFG1_IPS0)
1181 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1182 if (cfg1 & EEPROM_CFG1_IPS1)
1183 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1184 sc->sc_ctrl_ext |=
1185 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1186 CTRL_EXT_SWDPIO_SHIFT;
1187 sc->sc_ctrl_ext |=
1188 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1189 CTRL_EXT_SWDPINS_SHIFT;
1190 } else {
1191 sc->sc_ctrl_ext |=
1192 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1193 CTRL_EXT_SWDPIO_SHIFT;
1194 }
1195 #endif
1196
1197 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1198 #if 0
1199 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1200 #endif
1201
1202 /*
1203 * Set up some register offsets that are different between
1204 * the i82542 and the i82543 and later chips.
1205 */
1206 if (sc->sc_type < WM_T_82543) {
1207 sc->sc_rdt_reg = WMREG_OLD_RDT0;
1208 sc->sc_tdt_reg = WMREG_OLD_TDT;
1209 } else {
1210 sc->sc_rdt_reg = WMREG_RDT;
1211 sc->sc_tdt_reg = WMREG_TDT;
1212 }
1213
1214 /*
1215 * Determine if we're TBI or GMII mode, and initialize the
1216 * media structures accordingly.
1217 */
1218 if (sc->sc_type < WM_T_82543 ||
1219 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1220 if (wmp->wmp_flags & WMP_F_1000T)
1221 aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1222 "product!\n", sc->sc_dev.dv_xname);
1223 wm_tbi_mediainit(sc);
1224 } else {
1225 if (wmp->wmp_flags & WMP_F_1000X)
1226 aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1227 "product!\n", sc->sc_dev.dv_xname);
1228 wm_gmii_mediainit(sc);
1229 }
1230
1231 ifp = &sc->sc_ethercom.ec_if;
1232 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1233 ifp->if_softc = sc;
1234 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1235 ifp->if_ioctl = wm_ioctl;
1236 ifp->if_start = wm_start;
1237 ifp->if_watchdog = wm_watchdog;
1238 ifp->if_init = wm_init;
1239 ifp->if_stop = wm_stop;
1240 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1241 IFQ_SET_READY(&ifp->if_snd);
1242
1243 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1244
1245 /*
1246 * If we're a i82543 or greater, we can support VLANs.
1247 */
1248 if (sc->sc_type >= WM_T_82543)
1249 sc->sc_ethercom.ec_capabilities |=
1250 ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1251
1252 /*
1253 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
1254 * on i82543 and later.
1255 */
1256 if (sc->sc_type >= WM_T_82543)
1257 ifp->if_capabilities |=
1258 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1259 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1260 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1261 IFCAP_CSUM_TCPv6_Tx |
1262 IFCAP_CSUM_UDPv6_Tx;
1263
1264 /*
1265 * If we're a i82544 or greater (except i82547), we can do
1266 * TCP segmentation offload.
1267 */
1268 if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547)
1269 ifp->if_capabilities |= IFCAP_TSOv4;
1270
1271 /*
1272 * Attach the interface.
1273 */
1274 if_attach(ifp);
1275 ether_ifattach(ifp, enaddr);
1276 #if NRND > 0
1277 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1278 RND_TYPE_NET, 0);
1279 #endif
1280
1281 #ifdef WM_EVENT_COUNTERS
1282 /* Attach event counters. */
1283 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1284 NULL, sc->sc_dev.dv_xname, "txsstall");
1285 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1286 NULL, sc->sc_dev.dv_xname, "txdstall");
1287 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1288 NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1289 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1290 NULL, sc->sc_dev.dv_xname, "txdw");
1291 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1292 NULL, sc->sc_dev.dv_xname, "txqe");
1293 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1294 NULL, sc->sc_dev.dv_xname, "rxintr");
1295 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1296 NULL, sc->sc_dev.dv_xname, "linkintr");
1297
1298 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1299 NULL, sc->sc_dev.dv_xname, "rxipsum");
1300 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1301 NULL, sc->sc_dev.dv_xname, "rxtusum");
1302 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1303 NULL, sc->sc_dev.dv_xname, "txipsum");
1304 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1305 NULL, sc->sc_dev.dv_xname, "txtusum");
1306 evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
1307 NULL, sc->sc_dev.dv_xname, "txtusum6");
1308
1309 evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
1310 NULL, sc->sc_dev.dv_xname, "txtso");
1311 evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
1312 NULL, sc->sc_dev.dv_xname, "txtsopain");
1313
1314 for (i = 0; i < WM_NTXSEGS; i++) {
1315 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1316 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1317 NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1318 }
1319
1320 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1321 NULL, sc->sc_dev.dv_xname, "txdrop");
1322
1323 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1324 NULL, sc->sc_dev.dv_xname, "tu");
1325
1326 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1327 NULL, sc->sc_dev.dv_xname, "tx_xoff");
1328 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1329 NULL, sc->sc_dev.dv_xname, "tx_xon");
1330 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1331 NULL, sc->sc_dev.dv_xname, "rx_xoff");
1332 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1333 NULL, sc->sc_dev.dv_xname, "rx_xon");
1334 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1335 NULL, sc->sc_dev.dv_xname, "rx_macctl");
1336 #endif /* WM_EVENT_COUNTERS */
1337
1338 /*
1339 * Make sure the interface is shutdown during reboot.
1340 */
1341 sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1342 if (sc->sc_sdhook == NULL)
1343 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1344 sc->sc_dev.dv_xname);
1345 return;
1346
1347 /*
1348 * Free any resources we've allocated during the failed attach
1349 * attempt. Do this in reverse order and fall through.
1350 */
1351 fail_5:
1352 for (i = 0; i < WM_NRXDESC; i++) {
1353 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1354 bus_dmamap_destroy(sc->sc_dmat,
1355 sc->sc_rxsoft[i].rxs_dmamap);
1356 }
1357 fail_4:
1358 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1359 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1360 bus_dmamap_destroy(sc->sc_dmat,
1361 sc->sc_txsoft[i].txs_dmamap);
1362 }
1363 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1364 fail_3:
1365 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1366 fail_2:
1367 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1368 cdata_size);
1369 fail_1:
1370 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1371 fail_0:
1372 return;
1373 }
1374
1375 /*
1376 * wm_shutdown:
1377 *
1378 * Make sure the interface is stopped at reboot time.
1379 */
1380 static void
1381 wm_shutdown(void *arg)
1382 {
1383 struct wm_softc *sc = arg;
1384
1385 wm_stop(&sc->sc_ethercom.ec_if, 1);
1386 }
1387
1388 /*
1389 * wm_tx_offload:
1390 *
1391 * Set up TCP/IP checksumming parameters for the
1392 * specified packet.
1393 */
1394 static int
1395 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1396 uint8_t *fieldsp)
1397 {
1398 struct mbuf *m0 = txs->txs_mbuf;
1399 struct livengood_tcpip_ctxdesc *t;
1400 uint32_t ipcs, tucs, cmd, cmdlen, seg;
1401 struct ether_header *eh;
1402 int offset, iphl;
1403 uint8_t fields;
1404
1405 /*
1406 * XXX It would be nice if the mbuf pkthdr had offset
1407 * fields for the protocol headers.
1408 */
1409
1410 eh = mtod(m0, struct ether_header *);
1411 switch (htons(eh->ether_type)) {
1412 case ETHERTYPE_IP:
1413 case ETHERTYPE_IPV6:
1414 offset = ETHER_HDR_LEN;
1415 break;
1416
1417 case ETHERTYPE_VLAN:
1418 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1419 break;
1420
1421 default:
1422 /*
1423 * Don't support this protocol or encapsulation.
1424 */
1425 *fieldsp = 0;
1426 *cmdp = 0;
1427 return (0);
1428 }
1429
1430 if ((m0->m_pkthdr.csum_flags &
1431 (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
1432 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1433 } else {
1434 iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
1435 }
1436
1437 cmd = WTX_CMD_DEXT | WTX_DTYP_D;
1438 cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
1439 seg = 0;
1440 fields = 0;
1441
1442 if (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
1443 int hlen = offset + iphl;
1444 WM_EVCNT_INCR(&sc->sc_ev_txtso);
1445 if (__predict_false(m0->m_len <
1446 (hlen + sizeof(struct tcphdr)))) {
1447 /*
1448 * TCP/IP headers are not in the first mbuf; we need
1449 * to do this the slow and painful way. Let's just
1450 * hope this doesn't happen very often.
1451 */
1452 struct ip ip;
1453 struct tcphdr th;
1454
1455 WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
1456
1457 m_copydata(m0, offset, sizeof(ip), &ip);
1458 m_copydata(m0, hlen, sizeof(th), &th);
1459
1460 ip.ip_len = 0;
1461
1462 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
1463 sizeof(ip.ip_len), &ip.ip_len);
1464
1465 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1466 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1467
1468 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
1469 sizeof(th.th_sum), &th.th_sum);
1470
1471 hlen += th.th_off << 2;
1472 } else {
1473 /*
1474 * TCP/IP headers are in the first mbuf; we can do
1475 * this the easy way.
1476 */
1477 struct ip *ip =
1478 (struct ip *) (mtod(m0, caddr_t) + offset);
1479 struct tcphdr *th =
1480 (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
1481
1482 ip->ip_len = 0;
1483 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1484 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1485
1486 hlen += th->th_off << 2;
1487 }
1488
1489 cmd |= WTX_TCPIP_CMD_TSE;
1490 cmdlen |= WTX_TCPIP_CMD_TSE | WTX_TCPIP_CMD_IP |
1491 WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
1492 seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
1493 WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
1494 }
1495
1496 /*
1497 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1498 * offload feature, if we load the context descriptor, we
1499 * MUST provide valid values for IPCSS and TUCSS fields.
1500 */
1501
1502 ipcs = WTX_TCPIP_IPCSS(offset) |
1503 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1504 WTX_TCPIP_IPCSE(offset + iphl - 1);
1505 if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
1506 WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1507 fields |= WTX_IXSM;
1508 }
1509
1510 offset += iphl;
1511
1512 if (m0->m_pkthdr.csum_flags &
1513 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
1514 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1515 fields |= WTX_TXSM;
1516 tucs = WTX_TCPIP_TUCSS(offset) |
1517 WTX_TCPIP_TUCSO(offset +
1518 M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1519 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1520 } else if ((m0->m_pkthdr.csum_flags &
1521 (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
1522 WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
1523 fields |= WTX_TXSM;
1524 tucs = WTX_TCPIP_TUCSS(offset) |
1525 WTX_TCPIP_TUCSO(offset +
1526 M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
1527 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1528 } else {
1529 /* Just initialize it to a valid TCP context. */
1530 tucs = WTX_TCPIP_TUCSS(offset) |
1531 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1532 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1533 }
1534
1535 /* Fill in the context descriptor. */
1536 t = (struct livengood_tcpip_ctxdesc *)
1537 &sc->sc_txdescs[sc->sc_txnext];
1538 t->tcpip_ipcs = htole32(ipcs);
1539 t->tcpip_tucs = htole32(tucs);
1540 t->tcpip_cmdlen = htole32(cmdlen);
1541 t->tcpip_seg = htole32(seg);
1542 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1543
1544 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1545 txs->txs_ndesc++;
1546
1547 *cmdp = cmd;
1548 *fieldsp = fields;
1549
1550 return (0);
1551 }
1552
1553 static void
1554 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1555 {
1556 struct mbuf *m;
1557 int i;
1558
1559 log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1560 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1561 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1562 "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1563 m->m_data, m->m_len, m->m_flags);
1564 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1565 i, i == 1 ? "" : "s");
1566 }
1567
1568 /*
1569 * wm_82547_txfifo_stall:
1570 *
1571 * Callout used to wait for the 82547 Tx FIFO to drain,
1572 * reset the FIFO pointers, and restart packet transmission.
1573 */
1574 static void
1575 wm_82547_txfifo_stall(void *arg)
1576 {
1577 struct wm_softc *sc = arg;
1578 int s;
1579
1580 s = splnet();
1581
1582 if (sc->sc_txfifo_stall) {
1583 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1584 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1585 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1586 /*
1587 * Packets have drained. Stop transmitter, reset
1588 * FIFO pointers, restart transmitter, and kick
1589 * the packet queue.
1590 */
1591 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1592 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1593 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1594 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1595 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1596 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1597 CSR_WRITE(sc, WMREG_TCTL, tctl);
1598 CSR_WRITE_FLUSH(sc);
1599
1600 sc->sc_txfifo_head = 0;
1601 sc->sc_txfifo_stall = 0;
1602 wm_start(&sc->sc_ethercom.ec_if);
1603 } else {
1604 /*
1605 * Still waiting for packets to drain; try again in
1606 * another tick.
1607 */
1608 callout_schedule(&sc->sc_txfifo_ch, 1);
1609 }
1610 }
1611
1612 splx(s);
1613 }
1614
1615 /*
1616 * wm_82547_txfifo_bugchk:
1617 *
1618 * Check for bug condition in the 82547 Tx FIFO. We need to
1619 * prevent enqueueing a packet that would wrap around the end
1620 * if the Tx FIFO ring buffer, otherwise the chip will croak.
1621 *
1622 * We do this by checking the amount of space before the end
1623 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
1624 * the Tx FIFO, wait for all remaining packets to drain, reset
1625 * the internal FIFO pointers to the beginning, and restart
1626 * transmission on the interface.
1627 */
1628 #define WM_FIFO_HDR 0x10
1629 #define WM_82547_PAD_LEN 0x3e0
1630 static int
1631 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1632 {
1633 int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1634 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1635
1636 /* Just return if already stalled. */
1637 if (sc->sc_txfifo_stall)
1638 return (1);
1639
1640 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1641 /* Stall only occurs in half-duplex mode. */
1642 goto send_packet;
1643 }
1644
1645 if (len >= WM_82547_PAD_LEN + space) {
1646 sc->sc_txfifo_stall = 1;
1647 callout_schedule(&sc->sc_txfifo_ch, 1);
1648 return (1);
1649 }
1650
1651 send_packet:
1652 sc->sc_txfifo_head += len;
1653 if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1654 sc->sc_txfifo_head -= sc->sc_txfifo_size;
1655
1656 return (0);
1657 }
1658
1659 /*
1660 * wm_start: [ifnet interface function]
1661 *
1662 * Start packet transmission on the interface.
1663 */
1664 static void
1665 wm_start(struct ifnet *ifp)
1666 {
1667 struct wm_softc *sc = ifp->if_softc;
1668 struct mbuf *m0;
1669 #if 0 /* XXXJRT */
1670 struct m_tag *mtag;
1671 #endif
1672 struct wm_txsoft *txs;
1673 bus_dmamap_t dmamap;
1674 int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
1675 bus_addr_t curaddr;
1676 bus_size_t seglen, curlen;
1677 uint32_t cksumcmd;
1678 uint8_t cksumfields;
1679
1680 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1681 return;
1682
1683 /*
1684 * Remember the previous number of free descriptors.
1685 */
1686 ofree = sc->sc_txfree;
1687
1688 /*
1689 * Loop through the send queue, setting up transmit descriptors
1690 * until we drain the queue, or use up all available transmit
1691 * descriptors.
1692 */
1693 for (;;) {
1694 /* Grab a packet off the queue. */
1695 IFQ_POLL(&ifp->if_snd, m0);
1696 if (m0 == NULL)
1697 break;
1698
1699 DPRINTF(WM_DEBUG_TX,
1700 ("%s: TX: have packet to transmit: %p\n",
1701 sc->sc_dev.dv_xname, m0));
1702
1703 /* Get a work queue entry. */
1704 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1705 wm_txintr(sc);
1706 if (sc->sc_txsfree == 0) {
1707 DPRINTF(WM_DEBUG_TX,
1708 ("%s: TX: no free job descriptors\n",
1709 sc->sc_dev.dv_xname));
1710 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1711 break;
1712 }
1713 }
1714
1715 txs = &sc->sc_txsoft[sc->sc_txsnext];
1716 dmamap = txs->txs_dmamap;
1717
1718 use_tso = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1719
1720 /*
1721 * So says the Linux driver:
1722 * The controller does a simple calculation to make sure
1723 * there is enough room in the FIFO before initiating the
1724 * DMA for each buffer. The calc is:
1725 * 4 = ceil(buffer len / MSS)
1726 * To make sure we don't overrun the FIFO, adjust the max
1727 * buffer len if the MSS drops.
1728 */
1729 dmamap->dm_maxsegsz =
1730 (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
1731 ? m0->m_pkthdr.segsz << 2
1732 : WTX_MAX_LEN;
1733
1734 /*
1735 * Load the DMA map. If this fails, the packet either
1736 * didn't fit in the allotted number of segments, or we
1737 * were short on resources. For the too-many-segments
1738 * case, we simply report an error and drop the packet,
1739 * since we can't sanely copy a jumbo packet to a single
1740 * buffer.
1741 */
1742 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1743 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1744 if (error) {
1745 if (error == EFBIG) {
1746 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1747 log(LOG_ERR, "%s: Tx packet consumes too many "
1748 "DMA segments, dropping...\n",
1749 sc->sc_dev.dv_xname);
1750 IFQ_DEQUEUE(&ifp->if_snd, m0);
1751 wm_dump_mbuf_chain(sc, m0);
1752 m_freem(m0);
1753 continue;
1754 }
1755 /*
1756 * Short on resources, just stop for now.
1757 */
1758 DPRINTF(WM_DEBUG_TX,
1759 ("%s: TX: dmamap load failed: %d\n",
1760 sc->sc_dev.dv_xname, error));
1761 break;
1762 }
1763
1764 segs_needed = dmamap->dm_nsegs;
1765 if (use_tso) {
1766 /* For sentinel descriptor; see below. */
1767 segs_needed++;
1768 }
1769
1770 /*
1771 * Ensure we have enough descriptors free to describe
1772 * the packet. Note, we always reserve one descriptor
1773 * at the end of the ring due to the semantics of the
1774 * TDT register, plus one more in the event we need
1775 * to load offload context.
1776 */
1777 if (segs_needed > sc->sc_txfree - 2) {
1778 /*
1779 * Not enough free descriptors to transmit this
1780 * packet. We haven't committed anything yet,
1781 * so just unload the DMA map, put the packet
1782 * pack on the queue, and punt. Notify the upper
1783 * layer that there are no more slots left.
1784 */
1785 DPRINTF(WM_DEBUG_TX,
1786 ("%s: TX: need %d (%d) descriptors, have %d\n",
1787 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1788 sc->sc_txfree - 1));
1789 ifp->if_flags |= IFF_OACTIVE;
1790 bus_dmamap_unload(sc->sc_dmat, dmamap);
1791 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1792 break;
1793 }
1794
1795 /*
1796 * Check for 82547 Tx FIFO bug. We need to do this
1797 * once we know we can transmit the packet, since we
1798 * do some internal FIFO space accounting here.
1799 */
1800 if (sc->sc_type == WM_T_82547 &&
1801 wm_82547_txfifo_bugchk(sc, m0)) {
1802 DPRINTF(WM_DEBUG_TX,
1803 ("%s: TX: 82547 Tx FIFO bug detected\n",
1804 sc->sc_dev.dv_xname));
1805 ifp->if_flags |= IFF_OACTIVE;
1806 bus_dmamap_unload(sc->sc_dmat, dmamap);
1807 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1808 break;
1809 }
1810
1811 IFQ_DEQUEUE(&ifp->if_snd, m0);
1812
1813 /*
1814 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1815 */
1816
1817 DPRINTF(WM_DEBUG_TX,
1818 ("%s: TX: packet has %d (%d) DMA segments\n",
1819 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1820
1821 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1822
1823 /*
1824 * Store a pointer to the packet so that we can free it
1825 * later.
1826 *
1827 * Initially, we consider the number of descriptors the
1828 * packet uses the number of DMA segments. This may be
1829 * incremented by 1 if we do checksum offload (a descriptor
1830 * is used to set the checksum context).
1831 */
1832 txs->txs_mbuf = m0;
1833 txs->txs_firstdesc = sc->sc_txnext;
1834 txs->txs_ndesc = segs_needed;
1835
1836 /* Set up offload parameters for this packet. */
1837 if (m0->m_pkthdr.csum_flags &
1838 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
1839 M_CSUM_TCPv6|M_CSUM_UDPv6)) {
1840 if (wm_tx_offload(sc, txs, &cksumcmd,
1841 &cksumfields) != 0) {
1842 /* Error message already displayed. */
1843 bus_dmamap_unload(sc->sc_dmat, dmamap);
1844 continue;
1845 }
1846 } else {
1847 cksumcmd = 0;
1848 cksumfields = 0;
1849 }
1850
1851 cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
1852
1853 /* Sync the DMA map. */
1854 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1855 BUS_DMASYNC_PREWRITE);
1856
1857 /*
1858 * Initialize the transmit descriptor.
1859 */
1860 for (nexttx = sc->sc_txnext, seg = 0;
1861 seg < dmamap->dm_nsegs; seg++) {
1862 for (seglen = dmamap->dm_segs[seg].ds_len,
1863 curaddr = dmamap->dm_segs[seg].ds_addr;
1864 seglen != 0;
1865 curaddr += curlen, seglen -= curlen,
1866 nexttx = WM_NEXTTX(sc, nexttx)) {
1867 curlen = seglen;
1868
1869 /*
1870 * So says the Linux driver:
1871 * Work around for premature descriptor
1872 * write-backs in TSO mode. Append a
1873 * 4-byte sentinel descriptor.
1874 */
1875 if (use_tso &&
1876 seg == dmamap->dm_nsegs - 1 &&
1877 curlen > 8)
1878 curlen -= 4;
1879
1880 wm_set_dma_addr(
1881 &sc->sc_txdescs[nexttx].wtx_addr,
1882 curaddr);
1883 sc->sc_txdescs[nexttx].wtx_cmdlen =
1884 htole32(cksumcmd | curlen);
1885 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
1886 0;
1887 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1888 cksumfields;
1889 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1890 lasttx = nexttx;
1891
1892 DPRINTF(WM_DEBUG_TX,
1893 ("%s: TX: desc %d: low 0x%08lx, "
1894 "len 0x%04x\n",
1895 sc->sc_dev.dv_xname, nexttx,
1896 curaddr & 0xffffffffUL, (unsigned)curlen));
1897 }
1898 }
1899
1900 KASSERT(lasttx != -1);
1901
1902 /*
1903 * Set up the command byte on the last descriptor of
1904 * the packet. If we're in the interrupt delay window,
1905 * delay the interrupt.
1906 */
1907 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1908 htole32(WTX_CMD_EOP | WTX_CMD_RS);
1909
1910 #if 0 /* XXXJRT */
1911 /*
1912 * If VLANs are enabled and the packet has a VLAN tag, set
1913 * up the descriptor to encapsulate the packet for us.
1914 *
1915 * This is only valid on the last descriptor of the packet.
1916 */
1917 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1918 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1919 htole32(WTX_CMD_VLE);
1920 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
1921 = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
1922 }
1923 #endif /* XXXJRT */
1924
1925 txs->txs_lastdesc = lasttx;
1926
1927 DPRINTF(WM_DEBUG_TX,
1928 ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1929 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
1930
1931 /* Sync the descriptors we're using. */
1932 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
1933 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1934
1935 /* Give the packet to the chip. */
1936 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1937
1938 DPRINTF(WM_DEBUG_TX,
1939 ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1940
1941 DPRINTF(WM_DEBUG_TX,
1942 ("%s: TX: finished transmitting packet, job %d\n",
1943 sc->sc_dev.dv_xname, sc->sc_txsnext));
1944
1945 /* Advance the tx pointer. */
1946 sc->sc_txfree -= txs->txs_ndesc;
1947 sc->sc_txnext = nexttx;
1948
1949 sc->sc_txsfree--;
1950 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
1951
1952 #if NBPFILTER > 0
1953 /* Pass the packet to any BPF listeners. */
1954 if (ifp->if_bpf)
1955 bpf_mtap(ifp->if_bpf, m0);
1956 #endif /* NBPFILTER > 0 */
1957 }
1958
1959 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1960 /* No more slots; notify upper layer. */
1961 ifp->if_flags |= IFF_OACTIVE;
1962 }
1963
1964 if (sc->sc_txfree != ofree) {
1965 /* Set a watchdog timer in case the chip flakes out. */
1966 ifp->if_timer = 5;
1967 }
1968 }
1969
1970 /*
1971 * wm_watchdog: [ifnet interface function]
1972 *
1973 * Watchdog timer handler.
1974 */
1975 static void
1976 wm_watchdog(struct ifnet *ifp)
1977 {
1978 struct wm_softc *sc = ifp->if_softc;
1979
1980 /*
1981 * Since we're using delayed interrupts, sweep up
1982 * before we report an error.
1983 */
1984 wm_txintr(sc);
1985
1986 if (sc->sc_txfree != WM_NTXDESC(sc)) {
1987 log(LOG_ERR,
1988 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1989 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1990 sc->sc_txnext);
1991 ifp->if_oerrors++;
1992
1993 /* Reset the interface. */
1994 (void) wm_init(ifp);
1995 }
1996
1997 /* Try to get more packets going. */
1998 wm_start(ifp);
1999 }
2000
2001 /*
2002 * wm_ioctl: [ifnet interface function]
2003 *
2004 * Handle control requests from the operator.
2005 */
2006 static int
2007 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2008 {
2009 struct wm_softc *sc = ifp->if_softc;
2010 struct ifreq *ifr = (struct ifreq *) data;
2011 int s, error;
2012
2013 s = splnet();
2014
2015 switch (cmd) {
2016 case SIOCSIFMEDIA:
2017 case SIOCGIFMEDIA:
2018 /* Flow control requires full-duplex mode. */
2019 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
2020 (ifr->ifr_media & IFM_FDX) == 0)
2021 ifr->ifr_media &= ~IFM_ETH_FMASK;
2022 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
2023 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
2024 /* We can do both TXPAUSE and RXPAUSE. */
2025 ifr->ifr_media |=
2026 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
2027 }
2028 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
2029 }
2030 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2031 break;
2032 default:
2033 error = ether_ioctl(ifp, cmd, data);
2034 if (error == ENETRESET) {
2035 /*
2036 * Multicast list has changed; set the hardware filter
2037 * accordingly.
2038 */
2039 if (ifp->if_flags & IFF_RUNNING)
2040 wm_set_filter(sc);
2041 error = 0;
2042 }
2043 break;
2044 }
2045
2046 /* Try to get more packets going. */
2047 wm_start(ifp);
2048
2049 splx(s);
2050 return (error);
2051 }
2052
2053 /*
2054 * wm_intr:
2055 *
2056 * Interrupt service routine.
2057 */
2058 static int
2059 wm_intr(void *arg)
2060 {
2061 struct wm_softc *sc = arg;
2062 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2063 uint32_t icr;
2064 int handled = 0;
2065
2066 while (1 /* CONSTCOND */) {
2067 icr = CSR_READ(sc, WMREG_ICR);
2068 if ((icr & sc->sc_icr) == 0)
2069 break;
2070
2071 #if 0 /*NRND > 0*/
2072 if (RND_ENABLED(&sc->rnd_source))
2073 rnd_add_uint32(&sc->rnd_source, icr);
2074 #endif
2075
2076 handled = 1;
2077
2078 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2079 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
2080 DPRINTF(WM_DEBUG_RX,
2081 ("%s: RX: got Rx intr 0x%08x\n",
2082 sc->sc_dev.dv_xname,
2083 icr & (ICR_RXDMT0|ICR_RXT0)));
2084 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
2085 }
2086 #endif
2087 wm_rxintr(sc);
2088
2089 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2090 if (icr & ICR_TXDW) {
2091 DPRINTF(WM_DEBUG_TX,
2092 ("%s: TX: got TXDW interrupt\n",
2093 sc->sc_dev.dv_xname));
2094 WM_EVCNT_INCR(&sc->sc_ev_txdw);
2095 }
2096 #endif
2097 wm_txintr(sc);
2098
2099 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
2100 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
2101 wm_linkintr(sc, icr);
2102 }
2103
2104 if (icr & ICR_RXO) {
2105 ifp->if_ierrors++;
2106 #if defined(WM_DEBUG)
2107 log(LOG_WARNING, "%s: Receive overrun\n",
2108 sc->sc_dev.dv_xname);
2109 #endif /* defined(WM_DEBUG) */
2110 }
2111 }
2112
2113 if (handled) {
2114 /* Try to get more packets going. */
2115 wm_start(ifp);
2116 }
2117
2118 return (handled);
2119 }
2120
2121 /*
2122 * wm_txintr:
2123 *
2124 * Helper; handle transmit interrupts.
2125 */
2126 static void
2127 wm_txintr(struct wm_softc *sc)
2128 {
2129 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2130 struct wm_txsoft *txs;
2131 uint8_t status;
2132 int i;
2133
2134 ifp->if_flags &= ~IFF_OACTIVE;
2135
2136 /*
2137 * Go through the Tx list and free mbufs for those
2138 * frames which have been transmitted.
2139 */
2140 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2141 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2142 txs = &sc->sc_txsoft[i];
2143
2144 DPRINTF(WM_DEBUG_TX,
2145 ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2146
2147 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2148 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2149
2150 status =
2151 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2152 if ((status & WTX_ST_DD) == 0) {
2153 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2154 BUS_DMASYNC_PREREAD);
2155 break;
2156 }
2157
2158 DPRINTF(WM_DEBUG_TX,
2159 ("%s: TX: job %d done: descs %d..%d\n",
2160 sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2161 txs->txs_lastdesc));
2162
2163 /*
2164 * XXX We should probably be using the statistics
2165 * XXX registers, but I don't know if they exist
2166 * XXX on chips before the i82544.
2167 */
2168
2169 #ifdef WM_EVENT_COUNTERS
2170 if (status & WTX_ST_TU)
2171 WM_EVCNT_INCR(&sc->sc_ev_tu);
2172 #endif /* WM_EVENT_COUNTERS */
2173
2174 if (status & (WTX_ST_EC|WTX_ST_LC)) {
2175 ifp->if_oerrors++;
2176 if (status & WTX_ST_LC)
2177 log(LOG_WARNING, "%s: late collision\n",
2178 sc->sc_dev.dv_xname);
2179 else if (status & WTX_ST_EC) {
2180 ifp->if_collisions += 16;
2181 log(LOG_WARNING, "%s: excessive collisions\n",
2182 sc->sc_dev.dv_xname);
2183 }
2184 } else
2185 ifp->if_opackets++;
2186
2187 sc->sc_txfree += txs->txs_ndesc;
2188 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2189 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2190 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2191 m_freem(txs->txs_mbuf);
2192 txs->txs_mbuf = NULL;
2193 }
2194
2195 /* Update the dirty transmit buffer pointer. */
2196 sc->sc_txsdirty = i;
2197 DPRINTF(WM_DEBUG_TX,
2198 ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2199
2200 /*
2201 * If there are no more pending transmissions, cancel the watchdog
2202 * timer.
2203 */
2204 if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2205 ifp->if_timer = 0;
2206 }
2207
2208 /*
2209 * wm_rxintr:
2210 *
2211 * Helper; handle receive interrupts.
2212 */
2213 static void
2214 wm_rxintr(struct wm_softc *sc)
2215 {
2216 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2217 struct wm_rxsoft *rxs;
2218 struct mbuf *m;
2219 int i, len;
2220 uint8_t status, errors;
2221
2222 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2223 rxs = &sc->sc_rxsoft[i];
2224
2225 DPRINTF(WM_DEBUG_RX,
2226 ("%s: RX: checking descriptor %d\n",
2227 sc->sc_dev.dv_xname, i));
2228
2229 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2230
2231 status = sc->sc_rxdescs[i].wrx_status;
2232 errors = sc->sc_rxdescs[i].wrx_errors;
2233 len = le16toh(sc->sc_rxdescs[i].wrx_len);
2234
2235 if ((status & WRX_ST_DD) == 0) {
2236 /*
2237 * We have processed all of the receive descriptors.
2238 */
2239 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2240 break;
2241 }
2242
2243 if (__predict_false(sc->sc_rxdiscard)) {
2244 DPRINTF(WM_DEBUG_RX,
2245 ("%s: RX: discarding contents of descriptor %d\n",
2246 sc->sc_dev.dv_xname, i));
2247 WM_INIT_RXDESC(sc, i);
2248 if (status & WRX_ST_EOP) {
2249 /* Reset our state. */
2250 DPRINTF(WM_DEBUG_RX,
2251 ("%s: RX: resetting rxdiscard -> 0\n",
2252 sc->sc_dev.dv_xname));
2253 sc->sc_rxdiscard = 0;
2254 }
2255 continue;
2256 }
2257
2258 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2259 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2260
2261 m = rxs->rxs_mbuf;
2262
2263 /*
2264 * Add a new receive buffer to the ring.
2265 */
2266 if (wm_add_rxbuf(sc, i) != 0) {
2267 /*
2268 * Failed, throw away what we've done so
2269 * far, and discard the rest of the packet.
2270 */
2271 ifp->if_ierrors++;
2272 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2273 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2274 WM_INIT_RXDESC(sc, i);
2275 if ((status & WRX_ST_EOP) == 0)
2276 sc->sc_rxdiscard = 1;
2277 if (sc->sc_rxhead != NULL)
2278 m_freem(sc->sc_rxhead);
2279 WM_RXCHAIN_RESET(sc);
2280 DPRINTF(WM_DEBUG_RX,
2281 ("%s: RX: Rx buffer allocation failed, "
2282 "dropping packet%s\n", sc->sc_dev.dv_xname,
2283 sc->sc_rxdiscard ? " (discard)" : ""));
2284 continue;
2285 }
2286
2287 WM_RXCHAIN_LINK(sc, m);
2288
2289 m->m_len = len;
2290
2291 DPRINTF(WM_DEBUG_RX,
2292 ("%s: RX: buffer at %p len %d\n",
2293 sc->sc_dev.dv_xname, m->m_data, len));
2294
2295 /*
2296 * If this is not the end of the packet, keep
2297 * looking.
2298 */
2299 if ((status & WRX_ST_EOP) == 0) {
2300 sc->sc_rxlen += len;
2301 DPRINTF(WM_DEBUG_RX,
2302 ("%s: RX: not yet EOP, rxlen -> %d\n",
2303 sc->sc_dev.dv_xname, sc->sc_rxlen));
2304 continue;
2305 }
2306
2307 /*
2308 * Okay, we have the entire packet now. The chip is
2309 * configured to include the FCS (not all chips can
2310 * be configured to strip it), so we need to trim it.
2311 */
2312 m->m_len -= ETHER_CRC_LEN;
2313
2314 *sc->sc_rxtailp = NULL;
2315 len = m->m_len + sc->sc_rxlen;
2316 m = sc->sc_rxhead;
2317
2318 WM_RXCHAIN_RESET(sc);
2319
2320 DPRINTF(WM_DEBUG_RX,
2321 ("%s: RX: have entire packet, len -> %d\n",
2322 sc->sc_dev.dv_xname, len));
2323
2324 /*
2325 * If an error occurred, update stats and drop the packet.
2326 */
2327 if (errors &
2328 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2329 ifp->if_ierrors++;
2330 if (errors & WRX_ER_SE)
2331 log(LOG_WARNING, "%s: symbol error\n",
2332 sc->sc_dev.dv_xname);
2333 else if (errors & WRX_ER_SEQ)
2334 log(LOG_WARNING, "%s: receive sequence error\n",
2335 sc->sc_dev.dv_xname);
2336 else if (errors & WRX_ER_CE)
2337 log(LOG_WARNING, "%s: CRC error\n",
2338 sc->sc_dev.dv_xname);
2339 m_freem(m);
2340 continue;
2341 }
2342
2343 /*
2344 * No errors. Receive the packet.
2345 */
2346 m->m_pkthdr.rcvif = ifp;
2347 m->m_pkthdr.len = len;
2348
2349 #if 0 /* XXXJRT */
2350 /*
2351 * If VLANs are enabled, VLAN packets have been unwrapped
2352 * for us. Associate the tag with the packet.
2353 */
2354 if ((status & WRX_ST_VP) != 0) {
2355 VLAN_INPUT_TAG(ifp, m,
2356 le16toh(sc->sc_rxdescs[i].wrx_special,
2357 continue);
2358 }
2359 #endif /* XXXJRT */
2360
2361 /*
2362 * Set up checksum info for this packet.
2363 */
2364 if ((status & WRX_ST_IXSM) == 0) {
2365 if (status & WRX_ST_IPCS) {
2366 WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2367 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2368 if (errors & WRX_ER_IPE)
2369 m->m_pkthdr.csum_flags |=
2370 M_CSUM_IPv4_BAD;
2371 }
2372 if (status & WRX_ST_TCPCS) {
2373 /*
2374 * Note: we don't know if this was TCP or UDP,
2375 * so we just set both bits, and expect the
2376 * upper layers to deal.
2377 */
2378 WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2379 m->m_pkthdr.csum_flags |=
2380 M_CSUM_TCPv4|M_CSUM_UDPv4;
2381 if (errors & WRX_ER_TCPE)
2382 m->m_pkthdr.csum_flags |=
2383 M_CSUM_TCP_UDP_BAD;
2384 }
2385 }
2386
2387 ifp->if_ipackets++;
2388
2389 #if NBPFILTER > 0
2390 /* Pass this up to any BPF listeners. */
2391 if (ifp->if_bpf)
2392 bpf_mtap(ifp->if_bpf, m);
2393 #endif /* NBPFILTER > 0 */
2394
2395 /* Pass it on. */
2396 (*ifp->if_input)(ifp, m);
2397 }
2398
2399 /* Update the receive pointer. */
2400 sc->sc_rxptr = i;
2401
2402 DPRINTF(WM_DEBUG_RX,
2403 ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2404 }
2405
2406 /*
2407 * wm_linkintr:
2408 *
2409 * Helper; handle link interrupts.
2410 */
2411 static void
2412 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2413 {
2414 uint32_t status;
2415
2416 /*
2417 * If we get a link status interrupt on a 1000BASE-T
2418 * device, just fall into the normal MII tick path.
2419 */
2420 if (sc->sc_flags & WM_F_HAS_MII) {
2421 if (icr & ICR_LSC) {
2422 DPRINTF(WM_DEBUG_LINK,
2423 ("%s: LINK: LSC -> mii_tick\n",
2424 sc->sc_dev.dv_xname));
2425 mii_tick(&sc->sc_mii);
2426 } else if (icr & ICR_RXSEQ) {
2427 DPRINTF(WM_DEBUG_LINK,
2428 ("%s: LINK Receive sequence error\n",
2429 sc->sc_dev.dv_xname));
2430 }
2431 return;
2432 }
2433
2434 /*
2435 * If we are now receiving /C/, check for link again in
2436 * a couple of link clock ticks.
2437 */
2438 if (icr & ICR_RXCFG) {
2439 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2440 sc->sc_dev.dv_xname));
2441 sc->sc_tbi_anstate = 2;
2442 }
2443
2444 if (icr & ICR_LSC) {
2445 status = CSR_READ(sc, WMREG_STATUS);
2446 if (status & STATUS_LU) {
2447 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2448 sc->sc_dev.dv_xname,
2449 (status & STATUS_FD) ? "FDX" : "HDX"));
2450 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2451 sc->sc_fcrtl &= ~FCRTL_XONE;
2452 if (status & STATUS_FD)
2453 sc->sc_tctl |=
2454 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2455 else
2456 sc->sc_tctl |=
2457 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2458 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2459 sc->sc_fcrtl |= FCRTL_XONE;
2460 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2461 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2462 WMREG_OLD_FCRTL : WMREG_FCRTL,
2463 sc->sc_fcrtl);
2464 sc->sc_tbi_linkup = 1;
2465 } else {
2466 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2467 sc->sc_dev.dv_xname));
2468 sc->sc_tbi_linkup = 0;
2469 }
2470 sc->sc_tbi_anstate = 2;
2471 wm_tbi_set_linkled(sc);
2472 } else if (icr & ICR_RXSEQ) {
2473 DPRINTF(WM_DEBUG_LINK,
2474 ("%s: LINK: Receive sequence error\n",
2475 sc->sc_dev.dv_xname));
2476 }
2477 }
2478
2479 /*
2480 * wm_tick:
2481 *
2482 * One second timer, used to check link status, sweep up
2483 * completed transmit jobs, etc.
2484 */
2485 static void
2486 wm_tick(void *arg)
2487 {
2488 struct wm_softc *sc = arg;
2489 int s;
2490
2491 s = splnet();
2492
2493 if (sc->sc_type >= WM_T_82542_2_1) {
2494 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2495 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2496 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2497 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2498 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2499 }
2500
2501 if (sc->sc_flags & WM_F_HAS_MII)
2502 mii_tick(&sc->sc_mii);
2503 else
2504 wm_tbi_check_link(sc);
2505
2506 splx(s);
2507
2508 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2509 }
2510
2511 /*
2512 * wm_reset:
2513 *
2514 * Reset the i82542 chip.
2515 */
2516 static void
2517 wm_reset(struct wm_softc *sc)
2518 {
2519 int i;
2520
2521 /*
2522 * Allocate on-chip memory according to the MTU size.
2523 * The Packet Buffer Allocation register must be written
2524 * before the chip is reset.
2525 */
2526 if (sc->sc_type < WM_T_82547) {
2527 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2528 PBA_40K : PBA_48K;
2529 } else {
2530 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2531 PBA_22K : PBA_30K;
2532 sc->sc_txfifo_head = 0;
2533 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2534 sc->sc_txfifo_size =
2535 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2536 sc->sc_txfifo_stall = 0;
2537 }
2538 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2539
2540 switch (sc->sc_type) {
2541 case WM_T_82544:
2542 case WM_T_82540:
2543 case WM_T_82545:
2544 case WM_T_82546:
2545 case WM_T_82541:
2546 case WM_T_82541_2:
2547 /*
2548 * On some chipsets, a reset through a memory-mapped write
2549 * cycle can cause the chip to reset before completing the
2550 * write cycle. This causes major headache that can be
2551 * avoided by issuing the reset via indirect register writes
2552 * through I/O space.
2553 *
2554 * So, if we successfully mapped the I/O BAR at attach time,
2555 * use that. Otherwise, try our luck with a memory-mapped
2556 * reset.
2557 */
2558 if (sc->sc_flags & WM_F_IOH_VALID)
2559 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2560 else
2561 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2562 break;
2563
2564 case WM_T_82545_3:
2565 case WM_T_82546_3:
2566 /* Use the shadow control register on these chips. */
2567 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2568 break;
2569
2570 default:
2571 /* Everything else can safely use the documented method. */
2572 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2573 break;
2574 }
2575 delay(10000);
2576
2577 for (i = 0; i < 1000; i++) {
2578 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2579 return;
2580 delay(20);
2581 }
2582
2583 if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2584 log(LOG_ERR, "%s: reset failed to complete\n",
2585 sc->sc_dev.dv_xname);
2586 }
2587
2588 /*
2589 * wm_init: [ifnet interface function]
2590 *
2591 * Initialize the interface. Must be called at splnet().
2592 */
2593 static int
2594 wm_init(struct ifnet *ifp)
2595 {
2596 struct wm_softc *sc = ifp->if_softc;
2597 struct wm_rxsoft *rxs;
2598 int i, error = 0;
2599 uint32_t reg;
2600
2601 /*
2602 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2603 * There is a small but measurable benefit to avoiding the adjusment
2604 * of the descriptor so that the headers are aligned, for normal mtu,
2605 * on such platforms. One possibility is that the DMA itself is
2606 * slightly more efficient if the front of the entire packet (instead
2607 * of the front of the headers) is aligned.
2608 *
2609 * Note we must always set align_tweak to 0 if we are using
2610 * jumbo frames.
2611 */
2612 #ifdef __NO_STRICT_ALIGNMENT
2613 sc->sc_align_tweak = 0;
2614 #else
2615 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2616 sc->sc_align_tweak = 0;
2617 else
2618 sc->sc_align_tweak = 2;
2619 #endif /* __NO_STRICT_ALIGNMENT */
2620
2621 /* Cancel any pending I/O. */
2622 wm_stop(ifp, 0);
2623
2624 /* Reset the chip to a known state. */
2625 wm_reset(sc);
2626
2627 /* Initialize the transmit descriptor ring. */
2628 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2629 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2630 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2631 sc->sc_txfree = WM_NTXDESC(sc);
2632 sc->sc_txnext = 0;
2633
2634 if (sc->sc_type < WM_T_82543) {
2635 CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2636 CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2637 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2638 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2639 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2640 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2641 } else {
2642 CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2643 CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2644 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2645 CSR_WRITE(sc, WMREG_TDH, 0);
2646 CSR_WRITE(sc, WMREG_TDT, 0);
2647 CSR_WRITE(sc, WMREG_TIDV, 64);
2648 CSR_WRITE(sc, WMREG_TADV, 128);
2649
2650 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2651 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2652 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2653 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2654 }
2655 CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2656 CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2657
2658 /* Initialize the transmit job descriptors. */
2659 for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2660 sc->sc_txsoft[i].txs_mbuf = NULL;
2661 sc->sc_txsfree = WM_TXQUEUELEN(sc);
2662 sc->sc_txsnext = 0;
2663 sc->sc_txsdirty = 0;
2664
2665 /*
2666 * Initialize the receive descriptor and receive job
2667 * descriptor rings.
2668 */
2669 if (sc->sc_type < WM_T_82543) {
2670 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2671 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2672 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2673 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2674 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2675 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2676
2677 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2678 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2679 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2680 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2681 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2682 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2683 } else {
2684 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2685 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2686 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2687 CSR_WRITE(sc, WMREG_RDH, 0);
2688 CSR_WRITE(sc, WMREG_RDT, 0);
2689 CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
2690 CSR_WRITE(sc, WMREG_RADV, 128);
2691 }
2692 for (i = 0; i < WM_NRXDESC; i++) {
2693 rxs = &sc->sc_rxsoft[i];
2694 if (rxs->rxs_mbuf == NULL) {
2695 if ((error = wm_add_rxbuf(sc, i)) != 0) {
2696 log(LOG_ERR, "%s: unable to allocate or map rx "
2697 "buffer %d, error = %d\n",
2698 sc->sc_dev.dv_xname, i, error);
2699 /*
2700 * XXX Should attempt to run with fewer receive
2701 * XXX buffers instead of just failing.
2702 */
2703 wm_rxdrain(sc);
2704 goto out;
2705 }
2706 } else
2707 WM_INIT_RXDESC(sc, i);
2708 }
2709 sc->sc_rxptr = 0;
2710 sc->sc_rxdiscard = 0;
2711 WM_RXCHAIN_RESET(sc);
2712
2713 /*
2714 * Clear out the VLAN table -- we don't use it (yet).
2715 */
2716 CSR_WRITE(sc, WMREG_VET, 0);
2717 for (i = 0; i < WM_VLAN_TABSIZE; i++)
2718 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2719
2720 /*
2721 * Set up flow-control parameters.
2722 *
2723 * XXX Values could probably stand some tuning.
2724 */
2725 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2726 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2727 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2728
2729 sc->sc_fcrtl = FCRTL_DFLT;
2730 if (sc->sc_type < WM_T_82543) {
2731 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2732 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2733 } else {
2734 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2735 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2736 }
2737 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2738
2739 #if 0 /* XXXJRT */
2740 /* Deal with VLAN enables. */
2741 if (VLAN_ATTACHED(&sc->sc_ethercom))
2742 sc->sc_ctrl |= CTRL_VME;
2743 else
2744 #endif /* XXXJRT */
2745 sc->sc_ctrl &= ~CTRL_VME;
2746
2747 /* Write the control registers. */
2748 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2749 #if 0
2750 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2751 #endif
2752
2753 /*
2754 * Set up checksum offload parameters.
2755 */
2756 reg = CSR_READ(sc, WMREG_RXCSUM);
2757 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
2758 reg |= RXCSUM_IPOFL;
2759 else
2760 reg &= ~RXCSUM_IPOFL;
2761 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2762 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2763 else {
2764 reg &= ~RXCSUM_TUOFL;
2765 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
2766 reg &= ~RXCSUM_IPOFL;
2767 }
2768 CSR_WRITE(sc, WMREG_RXCSUM, reg);
2769
2770 /*
2771 * Set up the interrupt registers.
2772 */
2773 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2774 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2775 ICR_RXO | ICR_RXT0;
2776 if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2777 sc->sc_icr |= ICR_RXCFG;
2778 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2779
2780 /* Set up the inter-packet gap. */
2781 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2782
2783 if (sc->sc_type >= WM_T_82543) {
2784 /* Set up the interrupt throttling register (units of 256ns) */
2785 sc->sc_itr = 1000000000 / (7000 * 256);
2786 CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
2787 }
2788
2789 #if 0 /* XXXJRT */
2790 /* Set the VLAN ethernetype. */
2791 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2792 #endif
2793
2794 /*
2795 * Set up the transmit control register; we start out with
2796 * a collision distance suitable for FDX, but update it whe
2797 * we resolve the media type.
2798 */
2799 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2800 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2801 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2802
2803 /* Set the media. */
2804 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2805
2806 /*
2807 * Set up the receive control register; we actually program
2808 * the register when we set the receive filter. Use multicast
2809 * address offset type 0.
2810 *
2811 * Only the i82544 has the ability to strip the incoming
2812 * CRC, so we don't enable that feature.
2813 */
2814 sc->sc_mchash_type = 0;
2815 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
2816 RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2817
2818 if(MCLBYTES == 2048) {
2819 sc->sc_rctl |= RCTL_2k;
2820 } else {
2821 if(sc->sc_type >= WM_T_82543) {
2822 switch(MCLBYTES) {
2823 case 4096:
2824 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2825 break;
2826 case 8192:
2827 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2828 break;
2829 case 16384:
2830 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2831 break;
2832 default:
2833 panic("wm_init: MCLBYTES %d unsupported",
2834 MCLBYTES);
2835 break;
2836 }
2837 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
2838 }
2839
2840 /* Set the receive filter. */
2841 wm_set_filter(sc);
2842
2843 /* Start the one second link check clock. */
2844 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2845
2846 /* ...all done! */
2847 ifp->if_flags |= IFF_RUNNING;
2848 ifp->if_flags &= ~IFF_OACTIVE;
2849
2850 out:
2851 if (error)
2852 log(LOG_ERR, "%s: interface not running\n",
2853 sc->sc_dev.dv_xname);
2854 return (error);
2855 }
2856
2857 /*
2858 * wm_rxdrain:
2859 *
2860 * Drain the receive queue.
2861 */
2862 static void
2863 wm_rxdrain(struct wm_softc *sc)
2864 {
2865 struct wm_rxsoft *rxs;
2866 int i;
2867
2868 for (i = 0; i < WM_NRXDESC; i++) {
2869 rxs = &sc->sc_rxsoft[i];
2870 if (rxs->rxs_mbuf != NULL) {
2871 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2872 m_freem(rxs->rxs_mbuf);
2873 rxs->rxs_mbuf = NULL;
2874 }
2875 }
2876 }
2877
2878 /*
2879 * wm_stop: [ifnet interface function]
2880 *
2881 * Stop transmission on the interface.
2882 */
2883 static void
2884 wm_stop(struct ifnet *ifp, int disable)
2885 {
2886 struct wm_softc *sc = ifp->if_softc;
2887 struct wm_txsoft *txs;
2888 int i;
2889
2890 /* Stop the one second clock. */
2891 callout_stop(&sc->sc_tick_ch);
2892
2893 /* Stop the 82547 Tx FIFO stall check timer. */
2894 if (sc->sc_type == WM_T_82547)
2895 callout_stop(&sc->sc_txfifo_ch);
2896
2897 if (sc->sc_flags & WM_F_HAS_MII) {
2898 /* Down the MII. */
2899 mii_down(&sc->sc_mii);
2900 }
2901
2902 /* Stop the transmit and receive processes. */
2903 CSR_WRITE(sc, WMREG_TCTL, 0);
2904 CSR_WRITE(sc, WMREG_RCTL, 0);
2905
2906 /*
2907 * Clear the interrupt mask to ensure the device cannot assert its
2908 * interrupt line.
2909 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
2910 * any currently pending or shared interrupt.
2911 */
2912 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2913 sc->sc_icr = 0;
2914
2915 /* Release any queued transmit buffers. */
2916 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2917 txs = &sc->sc_txsoft[i];
2918 if (txs->txs_mbuf != NULL) {
2919 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2920 m_freem(txs->txs_mbuf);
2921 txs->txs_mbuf = NULL;
2922 }
2923 }
2924
2925 if (disable)
2926 wm_rxdrain(sc);
2927
2928 /* Mark the interface as down and cancel the watchdog timer. */
2929 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2930 ifp->if_timer = 0;
2931 }
2932
2933 /*
2934 * wm_acquire_eeprom:
2935 *
2936 * Perform the EEPROM handshake required on some chips.
2937 */
2938 static int
2939 wm_acquire_eeprom(struct wm_softc *sc)
2940 {
2941 uint32_t reg;
2942 int x;
2943
2944 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2945 reg = CSR_READ(sc, WMREG_EECD);
2946
2947 /* Request EEPROM access. */
2948 reg |= EECD_EE_REQ;
2949 CSR_WRITE(sc, WMREG_EECD, reg);
2950
2951 /* ..and wait for it to be granted. */
2952 for (x = 0; x < 100; x++) {
2953 reg = CSR_READ(sc, WMREG_EECD);
2954 if (reg & EECD_EE_GNT)
2955 break;
2956 delay(5);
2957 }
2958 if ((reg & EECD_EE_GNT) == 0) {
2959 aprint_error("%s: could not acquire EEPROM GNT\n",
2960 sc->sc_dev.dv_xname);
2961 reg &= ~EECD_EE_REQ;
2962 CSR_WRITE(sc, WMREG_EECD, reg);
2963 return (1);
2964 }
2965 }
2966
2967 return (0);
2968 }
2969
2970 /*
2971 * wm_release_eeprom:
2972 *
2973 * Release the EEPROM mutex.
2974 */
2975 static void
2976 wm_release_eeprom(struct wm_softc *sc)
2977 {
2978 uint32_t reg;
2979
2980 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2981 reg = CSR_READ(sc, WMREG_EECD);
2982 reg &= ~EECD_EE_REQ;
2983 CSR_WRITE(sc, WMREG_EECD, reg);
2984 }
2985 }
2986
2987 /*
2988 * wm_eeprom_sendbits:
2989 *
2990 * Send a series of bits to the EEPROM.
2991 */
2992 static void
2993 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
2994 {
2995 uint32_t reg;
2996 int x;
2997
2998 reg = CSR_READ(sc, WMREG_EECD);
2999
3000 for (x = nbits; x > 0; x--) {
3001 if (bits & (1U << (x - 1)))
3002 reg |= EECD_DI;
3003 else
3004 reg &= ~EECD_DI;
3005 CSR_WRITE(sc, WMREG_EECD, reg);
3006 delay(2);
3007 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3008 delay(2);
3009 CSR_WRITE(sc, WMREG_EECD, reg);
3010 delay(2);
3011 }
3012 }
3013
3014 /*
3015 * wm_eeprom_recvbits:
3016 *
3017 * Receive a series of bits from the EEPROM.
3018 */
3019 static void
3020 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
3021 {
3022 uint32_t reg, val;
3023 int x;
3024
3025 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
3026
3027 val = 0;
3028 for (x = nbits; x > 0; x--) {
3029 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3030 delay(2);
3031 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
3032 val |= (1U << (x - 1));
3033 CSR_WRITE(sc, WMREG_EECD, reg);
3034 delay(2);
3035 }
3036 *valp = val;
3037 }
3038
3039 /*
3040 * wm_read_eeprom_uwire:
3041 *
3042 * Read a word from the EEPROM using the MicroWire protocol.
3043 */
3044 static int
3045 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3046 {
3047 uint32_t reg, val;
3048 int i;
3049
3050 for (i = 0; i < wordcnt; i++) {
3051 /* Clear SK and DI. */
3052 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
3053 CSR_WRITE(sc, WMREG_EECD, reg);
3054
3055 /* Set CHIP SELECT. */
3056 reg |= EECD_CS;
3057 CSR_WRITE(sc, WMREG_EECD, reg);
3058 delay(2);
3059
3060 /* Shift in the READ command. */
3061 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
3062
3063 /* Shift in address. */
3064 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
3065
3066 /* Shift out the data. */
3067 wm_eeprom_recvbits(sc, &val, 16);
3068 data[i] = val & 0xffff;
3069
3070 /* Clear CHIP SELECT. */
3071 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
3072 CSR_WRITE(sc, WMREG_EECD, reg);
3073 delay(2);
3074 }
3075
3076 return (0);
3077 }
3078
3079 /*
3080 * wm_spi_eeprom_ready:
3081 *
3082 * Wait for a SPI EEPROM to be ready for commands.
3083 */
3084 static int
3085 wm_spi_eeprom_ready(struct wm_softc *sc)
3086 {
3087 uint32_t val;
3088 int usec;
3089
3090 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
3091 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
3092 wm_eeprom_recvbits(sc, &val, 8);
3093 if ((val & SPI_SR_RDY) == 0)
3094 break;
3095 }
3096 if (usec >= SPI_MAX_RETRIES) {
3097 aprint_error("%s: EEPROM failed to become ready\n",
3098 sc->sc_dev.dv_xname);
3099 return (1);
3100 }
3101 return (0);
3102 }
3103
3104 /*
3105 * wm_read_eeprom_spi:
3106 *
3107 * Read a work from the EEPROM using the SPI protocol.
3108 */
3109 static int
3110 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3111 {
3112 uint32_t reg, val;
3113 int i;
3114 uint8_t opc;
3115
3116 /* Clear SK and CS. */
3117 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
3118 CSR_WRITE(sc, WMREG_EECD, reg);
3119 delay(2);
3120
3121 if (wm_spi_eeprom_ready(sc))
3122 return (1);
3123
3124 /* Toggle CS to flush commands. */
3125 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
3126 delay(2);
3127 CSR_WRITE(sc, WMREG_EECD, reg);
3128 delay(2);
3129
3130 opc = SPI_OPC_READ;
3131 if (sc->sc_ee_addrbits == 8 && word >= 128)
3132 opc |= SPI_OPC_A8;
3133
3134 wm_eeprom_sendbits(sc, opc, 8);
3135 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
3136
3137 for (i = 0; i < wordcnt; i++) {
3138 wm_eeprom_recvbits(sc, &val, 16);
3139 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
3140 }
3141
3142 /* Raise CS and clear SK. */
3143 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3144 CSR_WRITE(sc, WMREG_EECD, reg);
3145 delay(2);
3146
3147 return (0);
3148 }
3149
3150 #define EEPROM_CHECKSUM 0xBABA
3151 #define EEPROM_SIZE 0x0040
3152
3153 /*
3154 * wm_validate_eeprom_checksum
3155 *
3156 * The checksum is defined as the sum of the first 64 (16 bit) words.
3157 */
3158 static int
3159 wm_validate_eeprom_checksum(struct wm_softc *sc)
3160 {
3161 uint16_t checksum;
3162 uint16_t eeprom_data;
3163 int i;
3164
3165 checksum = 0;
3166
3167 for (i = 0; i < EEPROM_SIZE; i++) {
3168 if(wm_read_eeprom(sc, i, 1, &eeprom_data))
3169 return 1;
3170 checksum += eeprom_data;
3171 }
3172
3173 if (checksum != (uint16_t) EEPROM_CHECKSUM)
3174 return 1;
3175
3176 return 0;
3177 }
3178
3179 /*
3180 * wm_read_eeprom:
3181 *
3182 * Read data from the serial EEPROM.
3183 */
3184 static int
3185 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3186 {
3187 int rv;
3188
3189 #ifdef __HAVE_WM_READ_EEPROM_HOOK
3190 if (sc->sc_flags & WM_F_EEPROM_MD) {
3191 rv = wm_read_eeprom_hook(word, wordcnt, data);
3192 return (rv);
3193 }
3194 #endif
3195
3196 if (wm_acquire_eeprom(sc))
3197 return (1);
3198
3199 if (sc->sc_flags & WM_F_EEPROM_SPI)
3200 rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3201 else
3202 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3203
3204 wm_release_eeprom(sc);
3205 return (rv);
3206 }
3207
3208 /*
3209 * wm_add_rxbuf:
3210 *
3211 * Add a receive buffer to the indiciated descriptor.
3212 */
3213 static int
3214 wm_add_rxbuf(struct wm_softc *sc, int idx)
3215 {
3216 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3217 struct mbuf *m;
3218 int error;
3219
3220 MGETHDR(m, M_DONTWAIT, MT_DATA);
3221 if (m == NULL)
3222 return (ENOBUFS);
3223
3224 MCLGET(m, M_DONTWAIT);
3225 if ((m->m_flags & M_EXT) == 0) {
3226 m_freem(m);
3227 return (ENOBUFS);
3228 }
3229
3230 if (rxs->rxs_mbuf != NULL)
3231 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3232
3233 rxs->rxs_mbuf = m;
3234
3235 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3236 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3237 BUS_DMA_READ|BUS_DMA_NOWAIT);
3238 if (error) {
3239 /* XXX XXX XXX */
3240 printf("%s: unable to load rx DMA map %d, error = %d\n",
3241 sc->sc_dev.dv_xname, idx, error);
3242 panic("wm_add_rxbuf");
3243 }
3244
3245 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3246 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3247
3248 WM_INIT_RXDESC(sc, idx);
3249
3250 return (0);
3251 }
3252
3253 /*
3254 * wm_set_ral:
3255 *
3256 * Set an entery in the receive address list.
3257 */
3258 static void
3259 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3260 {
3261 uint32_t ral_lo, ral_hi;
3262
3263 if (enaddr != NULL) {
3264 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3265 (enaddr[3] << 24);
3266 ral_hi = enaddr[4] | (enaddr[5] << 8);
3267 ral_hi |= RAL_AV;
3268 } else {
3269 ral_lo = 0;
3270 ral_hi = 0;
3271 }
3272
3273 if (sc->sc_type >= WM_T_82544) {
3274 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3275 ral_lo);
3276 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3277 ral_hi);
3278 } else {
3279 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3280 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3281 }
3282 }
3283
3284 /*
3285 * wm_mchash:
3286 *
3287 * Compute the hash of the multicast address for the 4096-bit
3288 * multicast filter.
3289 */
3290 static uint32_t
3291 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3292 {
3293 static const int lo_shift[4] = { 4, 3, 2, 0 };
3294 static const int hi_shift[4] = { 4, 5, 6, 8 };
3295 uint32_t hash;
3296
3297 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3298 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3299
3300 return (hash & 0xfff);
3301 }
3302
3303 /*
3304 * wm_set_filter:
3305 *
3306 * Set up the receive filter.
3307 */
3308 static void
3309 wm_set_filter(struct wm_softc *sc)
3310 {
3311 struct ethercom *ec = &sc->sc_ethercom;
3312 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3313 struct ether_multi *enm;
3314 struct ether_multistep step;
3315 bus_addr_t mta_reg;
3316 uint32_t hash, reg, bit;
3317 int i;
3318
3319 if (sc->sc_type >= WM_T_82544)
3320 mta_reg = WMREG_CORDOVA_MTA;
3321 else
3322 mta_reg = WMREG_MTA;
3323
3324 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3325
3326 if (ifp->if_flags & IFF_BROADCAST)
3327 sc->sc_rctl |= RCTL_BAM;
3328 if (ifp->if_flags & IFF_PROMISC) {
3329 sc->sc_rctl |= RCTL_UPE;
3330 goto allmulti;
3331 }
3332
3333 /*
3334 * Set the station address in the first RAL slot, and
3335 * clear the remaining slots.
3336 */
3337 wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3338 for (i = 1; i < WM_RAL_TABSIZE; i++)
3339 wm_set_ral(sc, NULL, i);
3340
3341 /* Clear out the multicast table. */
3342 for (i = 0; i < WM_MC_TABSIZE; i++)
3343 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3344
3345 ETHER_FIRST_MULTI(step, ec, enm);
3346 while (enm != NULL) {
3347 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3348 /*
3349 * We must listen to a range of multicast addresses.
3350 * For now, just accept all multicasts, rather than
3351 * trying to set only those filter bits needed to match
3352 * the range. (At this time, the only use of address
3353 * ranges is for IP multicast routing, for which the
3354 * range is big enough to require all bits set.)
3355 */
3356 goto allmulti;
3357 }
3358
3359 hash = wm_mchash(sc, enm->enm_addrlo);
3360
3361 reg = (hash >> 5) & 0x7f;
3362 bit = hash & 0x1f;
3363
3364 hash = CSR_READ(sc, mta_reg + (reg << 2));
3365 hash |= 1U << bit;
3366
3367 /* XXX Hardware bug?? */
3368 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3369 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3370 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3371 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3372 } else
3373 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3374
3375 ETHER_NEXT_MULTI(step, enm);
3376 }
3377
3378 ifp->if_flags &= ~IFF_ALLMULTI;
3379 goto setit;
3380
3381 allmulti:
3382 ifp->if_flags |= IFF_ALLMULTI;
3383 sc->sc_rctl |= RCTL_MPE;
3384
3385 setit:
3386 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3387 }
3388
3389 /*
3390 * wm_tbi_mediainit:
3391 *
3392 * Initialize media for use on 1000BASE-X devices.
3393 */
3394 static void
3395 wm_tbi_mediainit(struct wm_softc *sc)
3396 {
3397 const char *sep = "";
3398
3399 if (sc->sc_type < WM_T_82543)
3400 sc->sc_tipg = TIPG_WM_DFLT;
3401 else
3402 sc->sc_tipg = TIPG_LG_DFLT;
3403
3404 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3405 wm_tbi_mediastatus);
3406
3407 /*
3408 * SWD Pins:
3409 *
3410 * 0 = Link LED (output)
3411 * 1 = Loss Of Signal (input)
3412 */
3413 sc->sc_ctrl |= CTRL_SWDPIO(0);
3414 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3415
3416 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3417
3418 #define ADD(ss, mm, dd) \
3419 do { \
3420 aprint_normal("%s%s", sep, ss); \
3421 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
3422 sep = ", "; \
3423 } while (/*CONSTCOND*/0)
3424
3425 aprint_normal("%s: ", sc->sc_dev.dv_xname);
3426 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3427 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3428 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3429 aprint_normal("\n");
3430
3431 #undef ADD
3432
3433 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3434 }
3435
3436 /*
3437 * wm_tbi_mediastatus: [ifmedia interface function]
3438 *
3439 * Get the current interface media status on a 1000BASE-X device.
3440 */
3441 static void
3442 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3443 {
3444 struct wm_softc *sc = ifp->if_softc;
3445 uint32_t ctrl;
3446
3447 ifmr->ifm_status = IFM_AVALID;
3448 ifmr->ifm_active = IFM_ETHER;
3449
3450 if (sc->sc_tbi_linkup == 0) {
3451 ifmr->ifm_active |= IFM_NONE;
3452 return;
3453 }
3454
3455 ifmr->ifm_status |= IFM_ACTIVE;
3456 ifmr->ifm_active |= IFM_1000_SX;
3457 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3458 ifmr->ifm_active |= IFM_FDX;
3459 ctrl = CSR_READ(sc, WMREG_CTRL);
3460 if (ctrl & CTRL_RFCE)
3461 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3462 if (ctrl & CTRL_TFCE)
3463 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3464 }
3465
3466 /*
3467 * wm_tbi_mediachange: [ifmedia interface function]
3468 *
3469 * Set hardware to newly-selected media on a 1000BASE-X device.
3470 */
3471 static int
3472 wm_tbi_mediachange(struct ifnet *ifp)
3473 {
3474 struct wm_softc *sc = ifp->if_softc;
3475 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3476 uint32_t status;
3477 int i;
3478
3479 sc->sc_txcw = ife->ifm_data;
3480 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3481 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3482 sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3483 sc->sc_txcw |= TXCW_ANE;
3484
3485 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3486 delay(10000);
3487
3488 /* NOTE: CTRL will update TFCE and RFCE automatically. */
3489
3490 sc->sc_tbi_anstate = 0;
3491
3492 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3493 /* Have signal; wait for the link to come up. */
3494 for (i = 0; i < 50; i++) {
3495 delay(10000);
3496 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3497 break;
3498 }
3499
3500 status = CSR_READ(sc, WMREG_STATUS);
3501 if (status & STATUS_LU) {
3502 /* Link is up. */
3503 DPRINTF(WM_DEBUG_LINK,
3504 ("%s: LINK: set media -> link up %s\n",
3505 sc->sc_dev.dv_xname,
3506 (status & STATUS_FD) ? "FDX" : "HDX"));
3507 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3508 sc->sc_fcrtl &= ~FCRTL_XONE;
3509 if (status & STATUS_FD)
3510 sc->sc_tctl |=
3511 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3512 else
3513 sc->sc_tctl |=
3514 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3515 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3516 sc->sc_fcrtl |= FCRTL_XONE;
3517 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3518 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3519 WMREG_OLD_FCRTL : WMREG_FCRTL,
3520 sc->sc_fcrtl);
3521 sc->sc_tbi_linkup = 1;
3522 } else {
3523 /* Link is down. */
3524 DPRINTF(WM_DEBUG_LINK,
3525 ("%s: LINK: set media -> link down\n",
3526 sc->sc_dev.dv_xname));
3527 sc->sc_tbi_linkup = 0;
3528 }
3529 } else {
3530 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3531 sc->sc_dev.dv_xname));
3532 sc->sc_tbi_linkup = 0;
3533 }
3534
3535 wm_tbi_set_linkled(sc);
3536
3537 return (0);
3538 }
3539
3540 /*
3541 * wm_tbi_set_linkled:
3542 *
3543 * Update the link LED on 1000BASE-X devices.
3544 */
3545 static void
3546 wm_tbi_set_linkled(struct wm_softc *sc)
3547 {
3548
3549 if (sc->sc_tbi_linkup)
3550 sc->sc_ctrl |= CTRL_SWDPIN(0);
3551 else
3552 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3553
3554 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3555 }
3556
3557 /*
3558 * wm_tbi_check_link:
3559 *
3560 * Check the link on 1000BASE-X devices.
3561 */
3562 static void
3563 wm_tbi_check_link(struct wm_softc *sc)
3564 {
3565 uint32_t rxcw, ctrl, status;
3566
3567 if (sc->sc_tbi_anstate == 0)
3568 return;
3569 else if (sc->sc_tbi_anstate > 1) {
3570 DPRINTF(WM_DEBUG_LINK,
3571 ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3572 sc->sc_tbi_anstate));
3573 sc->sc_tbi_anstate--;
3574 return;
3575 }
3576
3577 sc->sc_tbi_anstate = 0;
3578
3579 rxcw = CSR_READ(sc, WMREG_RXCW);
3580 ctrl = CSR_READ(sc, WMREG_CTRL);
3581 status = CSR_READ(sc, WMREG_STATUS);
3582
3583 if ((status & STATUS_LU) == 0) {
3584 DPRINTF(WM_DEBUG_LINK,
3585 ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3586 sc->sc_tbi_linkup = 0;
3587 } else {
3588 DPRINTF(WM_DEBUG_LINK,
3589 ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3590 (status & STATUS_FD) ? "FDX" : "HDX"));
3591 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3592 sc->sc_fcrtl &= ~FCRTL_XONE;
3593 if (status & STATUS_FD)
3594 sc->sc_tctl |=
3595 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3596 else
3597 sc->sc_tctl |=
3598 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3599 if (ctrl & CTRL_TFCE)
3600 sc->sc_fcrtl |= FCRTL_XONE;
3601 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3602 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3603 WMREG_OLD_FCRTL : WMREG_FCRTL,
3604 sc->sc_fcrtl);
3605 sc->sc_tbi_linkup = 1;
3606 }
3607
3608 wm_tbi_set_linkled(sc);
3609 }
3610
3611 /*
3612 * wm_gmii_reset:
3613 *
3614 * Reset the PHY.
3615 */
3616 static void
3617 wm_gmii_reset(struct wm_softc *sc)
3618 {
3619 uint32_t reg;
3620
3621 if (sc->sc_type >= WM_T_82544) {
3622 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3623 delay(20000);
3624
3625 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3626 delay(20000);
3627 } else {
3628 /* The PHY reset pin is active-low. */
3629 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3630 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3631 CTRL_EXT_SWDPIN(4));
3632 reg |= CTRL_EXT_SWDPIO(4);
3633
3634 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3635 delay(10);
3636
3637 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3638 delay(10);
3639
3640 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3641 delay(10);
3642 #if 0
3643 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3644 #endif
3645 }
3646 }
3647
3648 /*
3649 * wm_gmii_mediainit:
3650 *
3651 * Initialize media for use on 1000BASE-T devices.
3652 */
3653 static void
3654 wm_gmii_mediainit(struct wm_softc *sc)
3655 {
3656 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3657
3658 /* We have MII. */
3659 sc->sc_flags |= WM_F_HAS_MII;
3660
3661 sc->sc_tipg = TIPG_1000T_DFLT;
3662
3663 /*
3664 * Let the chip set speed/duplex on its own based on
3665 * signals from the PHY.
3666 */
3667 sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3668 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3669
3670 /* Initialize our media structures and probe the GMII. */
3671 sc->sc_mii.mii_ifp = ifp;
3672
3673 if (sc->sc_type >= WM_T_82544) {
3674 sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3675 sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3676 } else {
3677 sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3678 sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3679 }
3680 sc->sc_mii.mii_statchg = wm_gmii_statchg;
3681
3682 wm_gmii_reset(sc);
3683
3684 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3685 wm_gmii_mediastatus);
3686
3687 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3688 MII_OFFSET_ANY, MIIF_DOPAUSE);
3689 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3690 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3691 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3692 } else
3693 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3694 }
3695
3696 /*
3697 * wm_gmii_mediastatus: [ifmedia interface function]
3698 *
3699 * Get the current interface media status on a 1000BASE-T device.
3700 */
3701 static void
3702 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3703 {
3704 struct wm_softc *sc = ifp->if_softc;
3705
3706 mii_pollstat(&sc->sc_mii);
3707 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3708 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3709 sc->sc_flowflags;
3710 }
3711
3712 /*
3713 * wm_gmii_mediachange: [ifmedia interface function]
3714 *
3715 * Set hardware to newly-selected media on a 1000BASE-T device.
3716 */
3717 static int
3718 wm_gmii_mediachange(struct ifnet *ifp)
3719 {
3720 struct wm_softc *sc = ifp->if_softc;
3721
3722 if (ifp->if_flags & IFF_UP)
3723 mii_mediachg(&sc->sc_mii);
3724 return (0);
3725 }
3726
3727 #define MDI_IO CTRL_SWDPIN(2)
3728 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
3729 #define MDI_CLK CTRL_SWDPIN(3)
3730
3731 static void
3732 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3733 {
3734 uint32_t i, v;
3735
3736 v = CSR_READ(sc, WMREG_CTRL);
3737 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3738 v |= MDI_DIR | CTRL_SWDPIO(3);
3739
3740 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3741 if (data & i)
3742 v |= MDI_IO;
3743 else
3744 v &= ~MDI_IO;
3745 CSR_WRITE(sc, WMREG_CTRL, v);
3746 delay(10);
3747 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3748 delay(10);
3749 CSR_WRITE(sc, WMREG_CTRL, v);
3750 delay(10);
3751 }
3752 }
3753
3754 static uint32_t
3755 i82543_mii_recvbits(struct wm_softc *sc)
3756 {
3757 uint32_t v, i, data = 0;
3758
3759 v = CSR_READ(sc, WMREG_CTRL);
3760 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3761 v |= CTRL_SWDPIO(3);
3762
3763 CSR_WRITE(sc, WMREG_CTRL, v);
3764 delay(10);
3765 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3766 delay(10);
3767 CSR_WRITE(sc, WMREG_CTRL, v);
3768 delay(10);
3769
3770 for (i = 0; i < 16; i++) {
3771 data <<= 1;
3772 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3773 delay(10);
3774 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3775 data |= 1;
3776 CSR_WRITE(sc, WMREG_CTRL, v);
3777 delay(10);
3778 }
3779
3780 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3781 delay(10);
3782 CSR_WRITE(sc, WMREG_CTRL, v);
3783 delay(10);
3784
3785 return (data);
3786 }
3787
3788 #undef MDI_IO
3789 #undef MDI_DIR
3790 #undef MDI_CLK
3791
3792 /*
3793 * wm_gmii_i82543_readreg: [mii interface function]
3794 *
3795 * Read a PHY register on the GMII (i82543 version).
3796 */
3797 static int
3798 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3799 {
3800 struct wm_softc *sc = (void *) self;
3801 int rv;
3802
3803 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3804 i82543_mii_sendbits(sc, reg | (phy << 5) |
3805 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3806 rv = i82543_mii_recvbits(sc) & 0xffff;
3807
3808 DPRINTF(WM_DEBUG_GMII,
3809 ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3810 sc->sc_dev.dv_xname, phy, reg, rv));
3811
3812 return (rv);
3813 }
3814
3815 /*
3816 * wm_gmii_i82543_writereg: [mii interface function]
3817 *
3818 * Write a PHY register on the GMII (i82543 version).
3819 */
3820 static void
3821 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3822 {
3823 struct wm_softc *sc = (void *) self;
3824
3825 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3826 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3827 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3828 (MII_COMMAND_START << 30), 32);
3829 }
3830
3831 /*
3832 * wm_gmii_i82544_readreg: [mii interface function]
3833 *
3834 * Read a PHY register on the GMII.
3835 */
3836 static int
3837 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
3838 {
3839 struct wm_softc *sc = (void *) self;
3840 uint32_t mdic = 0;
3841 int i, rv;
3842
3843 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
3844 MDIC_REGADD(reg));
3845
3846 for (i = 0; i < 100; i++) {
3847 mdic = CSR_READ(sc, WMREG_MDIC);
3848 if (mdic & MDIC_READY)
3849 break;
3850 delay(10);
3851 }
3852
3853 if ((mdic & MDIC_READY) == 0) {
3854 log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
3855 sc->sc_dev.dv_xname, phy, reg);
3856 rv = 0;
3857 } else if (mdic & MDIC_E) {
3858 #if 0 /* This is normal if no PHY is present. */
3859 log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
3860 sc->sc_dev.dv_xname, phy, reg);
3861 #endif
3862 rv = 0;
3863 } else {
3864 rv = MDIC_DATA(mdic);
3865 if (rv == 0xffff)
3866 rv = 0;
3867 }
3868
3869 return (rv);
3870 }
3871
3872 /*
3873 * wm_gmii_i82544_writereg: [mii interface function]
3874 *
3875 * Write a PHY register on the GMII.
3876 */
3877 static void
3878 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
3879 {
3880 struct wm_softc *sc = (void *) self;
3881 uint32_t mdic = 0;
3882 int i;
3883
3884 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
3885 MDIC_REGADD(reg) | MDIC_DATA(val));
3886
3887 for (i = 0; i < 100; i++) {
3888 mdic = CSR_READ(sc, WMREG_MDIC);
3889 if (mdic & MDIC_READY)
3890 break;
3891 delay(10);
3892 }
3893
3894 if ((mdic & MDIC_READY) == 0)
3895 log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
3896 sc->sc_dev.dv_xname, phy, reg);
3897 else if (mdic & MDIC_E)
3898 log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
3899 sc->sc_dev.dv_xname, phy, reg);
3900 }
3901
3902 /*
3903 * wm_gmii_statchg: [mii interface function]
3904 *
3905 * Callback from MII layer when media changes.
3906 */
3907 static void
3908 wm_gmii_statchg(struct device *self)
3909 {
3910 struct wm_softc *sc = (void *) self;
3911 struct mii_data *mii = &sc->sc_mii;
3912
3913 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
3914 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3915 sc->sc_fcrtl &= ~FCRTL_XONE;
3916
3917 /*
3918 * Get flow control negotiation result.
3919 */
3920 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3921 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3922 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3923 mii->mii_media_active &= ~IFM_ETH_FMASK;
3924 }
3925
3926 if (sc->sc_flowflags & IFM_FLOW) {
3927 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
3928 sc->sc_ctrl |= CTRL_TFCE;
3929 sc->sc_fcrtl |= FCRTL_XONE;
3930 }
3931 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3932 sc->sc_ctrl |= CTRL_RFCE;
3933 }
3934
3935 if (sc->sc_mii.mii_media_active & IFM_FDX) {
3936 DPRINTF(WM_DEBUG_LINK,
3937 ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3938 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3939 } else {
3940 DPRINTF(WM_DEBUG_LINK,
3941 ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3942 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3943 }
3944
3945 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3946 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3947 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
3948 : WMREG_FCRTL, sc->sc_fcrtl);
3949 }
3950