Home | History | Annotate | Line # | Download | only in pci
if_wm.c revision 1.113
      1 /*	$NetBSD: if_wm.c,v 1.113 2006/02/22 00:17:43 gavan Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
     40  *
     41  * TODO (in order of importance):
     42  *
     43  *	- Rework how parameters are loaded from the EEPROM.
     44  *	- Figure out what to do with the i82545GM and i82546GB
     45  *	  SERDES controllers.
     46  *	- Fix hw VLAN assist.
     47  */
     48 
     49 #include <sys/cdefs.h>
     50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.113 2006/02/22 00:17:43 gavan Exp $");
     51 
     52 #include "bpfilter.h"
     53 #include "rnd.h"
     54 
     55 #include <sys/param.h>
     56 #include <sys/systm.h>
     57 #include <sys/callout.h>
     58 #include <sys/mbuf.h>
     59 #include <sys/malloc.h>
     60 #include <sys/kernel.h>
     61 #include <sys/socket.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/errno.h>
     64 #include <sys/device.h>
     65 #include <sys/queue.h>
     66 #include <sys/syslog.h>
     67 
     68 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     69 
     70 #if NRND > 0
     71 #include <sys/rnd.h>
     72 #endif
     73 
     74 #include <net/if.h>
     75 #include <net/if_dl.h>
     76 #include <net/if_media.h>
     77 #include <net/if_ether.h>
     78 
     79 #if NBPFILTER > 0
     80 #include <net/bpf.h>
     81 #endif
     82 
     83 #include <netinet/in.h>			/* XXX for struct ip */
     84 #include <netinet/in_systm.h>		/* XXX for struct ip */
     85 #include <netinet/ip.h>			/* XXX for struct ip */
     86 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
     87 
     88 #include <machine/bus.h>
     89 #include <machine/intr.h>
     90 #include <machine/endian.h>
     91 
     92 #include <dev/mii/mii.h>
     93 #include <dev/mii/miivar.h>
     94 #include <dev/mii/mii_bitbang.h>
     95 
     96 #include <dev/pci/pcireg.h>
     97 #include <dev/pci/pcivar.h>
     98 #include <dev/pci/pcidevs.h>
     99 
    100 #include <dev/pci/if_wmreg.h>
    101 
    102 #ifdef WM_DEBUG
    103 #define	WM_DEBUG_LINK		0x01
    104 #define	WM_DEBUG_TX		0x02
    105 #define	WM_DEBUG_RX		0x04
    106 #define	WM_DEBUG_GMII		0x08
    107 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
    108 
    109 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
    110 #else
    111 #define	DPRINTF(x, y)	/* nothing */
    112 #endif /* WM_DEBUG */
    113 
    114 /*
    115  * Transmit descriptor list size.  Due to errata, we can only have
    116  * 256 hardware descriptors in the ring on < 82544, but we use 4096
    117  * on >= 82544.  We tell the upper layers that they can queue a lot
    118  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
    119  * of them at a time.
    120  *
    121  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
    122  * chains containing many small mbufs have been observed in zero-copy
    123  * situations with jumbo frames.
    124  */
    125 #define	WM_NTXSEGS		256
    126 #define	WM_IFQUEUELEN		256
    127 #define	WM_TXQUEUELEN_MAX	64
    128 #define	WM_TXQUEUELEN_MAX_82547	16
    129 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
    130 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
    131 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
    132 #define	WM_NTXDESC_82542	256
    133 #define	WM_NTXDESC_82544	4096
    134 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
    135 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
    136 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
    137 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
    138 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
    139 
    140 #define	WM_MAXTXDMA		round_page(IP_MAXPACKET) /* for TSO */
    141 
    142 /*
    143  * Receive descriptor list size.  We have one Rx buffer for normal
    144  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
    145  * packet.  We allocate 256 receive descriptors, each with a 2k
    146  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
    147  */
    148 #define	WM_NRXDESC		256
    149 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
    150 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
    151 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
    152 
    153 /*
    154  * Control structures are DMA'd to the i82542 chip.  We allocate them in
    155  * a single clump that maps to a single DMA segment to make several things
    156  * easier.
    157  */
    158 struct wm_control_data_82544 {
    159 	/*
    160 	 * The receive descriptors.
    161 	 */
    162 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    163 
    164 	/*
    165 	 * The transmit descriptors.  Put these at the end, because
    166 	 * we might use a smaller number of them.
    167 	 */
    168 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
    169 };
    170 
    171 struct wm_control_data_82542 {
    172 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    173 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
    174 };
    175 
    176 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
    177 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
    178 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
    179 
    180 /*
    181  * Software state for transmit jobs.
    182  */
    183 struct wm_txsoft {
    184 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    185 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    186 	int txs_firstdesc;		/* first descriptor in packet */
    187 	int txs_lastdesc;		/* last descriptor in packet */
    188 	int txs_ndesc;			/* # of descriptors used */
    189 };
    190 
    191 /*
    192  * Software state for receive buffers.  Each descriptor gets a
    193  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    194  * more than one buffer, we chain them together.
    195  */
    196 struct wm_rxsoft {
    197 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    198 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    199 };
    200 
    201 typedef enum {
    202 	WM_T_unknown		= 0,
    203 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
    204 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
    205 	WM_T_82543,			/* i82543 */
    206 	WM_T_82544,			/* i82544 */
    207 	WM_T_82540,			/* i82540 */
    208 	WM_T_82545,			/* i82545 */
    209 	WM_T_82545_3,			/* i82545 3.0+ */
    210 	WM_T_82546,			/* i82546 */
    211 	WM_T_82546_3,			/* i82546 3.0+ */
    212 	WM_T_82541,			/* i82541 */
    213 	WM_T_82541_2,			/* i82541 2.0+ */
    214 	WM_T_82547,			/* i82547 */
    215 	WM_T_82547_2,			/* i82547 2.0+ */
    216 } wm_chip_type;
    217 
    218 /*
    219  * Software state per device.
    220  */
    221 struct wm_softc {
    222 	struct device sc_dev;		/* generic device information */
    223 	bus_space_tag_t sc_st;		/* bus space tag */
    224 	bus_space_handle_t sc_sh;	/* bus space handle */
    225 	bus_space_tag_t sc_iot;		/* I/O space tag */
    226 	bus_space_handle_t sc_ioh;	/* I/O space handle */
    227 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    228 	struct ethercom sc_ethercom;	/* ethernet common data */
    229 	void *sc_sdhook;		/* shutdown hook */
    230 
    231 	wm_chip_type sc_type;		/* chip type */
    232 	int sc_flags;			/* flags; see below */
    233 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    234 	int sc_pcix_offset;		/* PCIX capability register offset */
    235 	int sc_flowflags;		/* 802.3x flow control flags */
    236 
    237 	void *sc_ih;			/* interrupt cookie */
    238 
    239 	int sc_ee_addrbits;		/* EEPROM address bits */
    240 
    241 	struct mii_data sc_mii;		/* MII/media information */
    242 
    243 	struct callout sc_tick_ch;	/* tick callout */
    244 
    245 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    246 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    247 
    248 	int		sc_align_tweak;
    249 
    250 	/*
    251 	 * Software state for the transmit and receive descriptors.
    252 	 */
    253 	int			sc_txnum;	/* must be a power of two */
    254 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
    255 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
    256 
    257 	/*
    258 	 * Control data structures.
    259 	 */
    260 	int			sc_ntxdesc;	/* must be a power of two */
    261 	struct wm_control_data_82544 *sc_control_data;
    262 #define	sc_txdescs	sc_control_data->wcd_txdescs
    263 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    264 
    265 #ifdef WM_EVENT_COUNTERS
    266 	/* Event counters. */
    267 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    268 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    269 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
    270 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    271 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    272 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    273 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    274 
    275 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    276 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    277 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    278 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    279 	struct evcnt sc_ev_txtusum6;	/* TCP/UDP v6 cksums comp. out-bound */
    280 	struct evcnt sc_ev_txtso;	/* TCP seg offload out-bound */
    281 	struct evcnt sc_ev_txtsopain;	/* painful header manip. for TSO */
    282 
    283 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
    284 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    285 
    286 	struct evcnt sc_ev_tu;		/* Tx underrun */
    287 
    288 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
    289 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
    290 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
    291 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
    292 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
    293 #endif /* WM_EVENT_COUNTERS */
    294 
    295 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
    296 
    297 	int	sc_txfree;		/* number of free Tx descriptors */
    298 	int	sc_txnext;		/* next ready Tx descriptor */
    299 
    300 	int	sc_txsfree;		/* number of free Tx jobs */
    301 	int	sc_txsnext;		/* next free Tx job */
    302 	int	sc_txsdirty;		/* dirty Tx jobs */
    303 
    304 	/* These 5 variables are used only on the 82547. */
    305 	int	sc_txfifo_size;		/* Tx FIFO size */
    306 	int	sc_txfifo_head;		/* current head of FIFO */
    307 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
    308 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
    309 	struct callout sc_txfifo_ch;	/* Tx FIFO stall work-around timer */
    310 
    311 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
    312 
    313 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    314 	int	sc_rxdiscard;
    315 	int	sc_rxlen;
    316 	struct mbuf *sc_rxhead;
    317 	struct mbuf *sc_rxtail;
    318 	struct mbuf **sc_rxtailp;
    319 
    320 	uint32_t sc_ctrl;		/* prototype CTRL register */
    321 #if 0
    322 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
    323 #endif
    324 	uint32_t sc_icr;		/* prototype interrupt bits */
    325 	uint32_t sc_itr;		/* prototype intr throttling reg */
    326 	uint32_t sc_tctl;		/* prototype TCTL register */
    327 	uint32_t sc_rctl;		/* prototype RCTL register */
    328 	uint32_t sc_txcw;		/* prototype TXCW register */
    329 	uint32_t sc_tipg;		/* prototype TIPG register */
    330 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
    331 	uint32_t sc_pba;		/* prototype PBA register */
    332 
    333 	int sc_tbi_linkup;		/* TBI link status */
    334 	int sc_tbi_anstate;		/* autonegotiation state */
    335 
    336 	int sc_mchash_type;		/* multicast filter offset */
    337 
    338 #if NRND > 0
    339 	rndsource_element_t rnd_source;	/* random source */
    340 #endif
    341 };
    342 
    343 #define	WM_RXCHAIN_RESET(sc)						\
    344 do {									\
    345 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    346 	*(sc)->sc_rxtailp = NULL;					\
    347 	(sc)->sc_rxlen = 0;						\
    348 } while (/*CONSTCOND*/0)
    349 
    350 #define	WM_RXCHAIN_LINK(sc, m)						\
    351 do {									\
    352 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    353 	(sc)->sc_rxtailp = &(m)->m_next;				\
    354 } while (/*CONSTCOND*/0)
    355 
    356 /* sc_flags */
    357 #define	WM_F_HAS_MII		0x01	/* has MII */
    358 #define	WM_F_EEPROM_HANDSHAKE	0x02	/* requires EEPROM handshake */
    359 #define	WM_F_EEPROM_SPI		0x04	/* EEPROM is SPI */
    360 #define	WM_F_EEPROM_INVALID	0x08	/* EEPROM not present (bad checksum) */
    361 #define	WM_F_IOH_VALID		0x10	/* I/O handle is valid */
    362 #define	WM_F_BUS64		0x20	/* bus is 64-bit */
    363 #define	WM_F_PCIX		0x40	/* bus is PCI-X */
    364 #define	WM_F_CSA		0x80	/* bus is CSA */
    365 
    366 #ifdef WM_EVENT_COUNTERS
    367 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
    368 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
    369 #else
    370 #define	WM_EVCNT_INCR(ev)	/* nothing */
    371 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
    372 #endif
    373 
    374 #define	CSR_READ(sc, reg)						\
    375 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    376 #define	CSR_WRITE(sc, reg, val)						\
    377 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    378 #define	CSR_WRITE_FLUSH(sc)						\
    379 	(void) CSR_READ((sc), WMREG_STATUS)
    380 
    381 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
    382 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
    383 
    384 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
    385 #define	WM_CDTXADDR_HI(sc, x)						\
    386 	(sizeof(bus_addr_t) == 8 ?					\
    387 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
    388 
    389 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
    390 #define	WM_CDRXADDR_HI(sc, x)						\
    391 	(sizeof(bus_addr_t) == 8 ?					\
    392 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
    393 
    394 #define	WM_CDTXSYNC(sc, x, n, ops)					\
    395 do {									\
    396 	int __x, __n;							\
    397 									\
    398 	__x = (x);							\
    399 	__n = (n);							\
    400 									\
    401 	/* If it will wrap around, sync to the end of the ring. */	\
    402 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
    403 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    404 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
    405 		    (WM_NTXDESC(sc) - __x), (ops));			\
    406 		__n -= (WM_NTXDESC(sc) - __x);				\
    407 		__x = 0;						\
    408 	}								\
    409 									\
    410 	/* Now sync whatever is left. */				\
    411 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    412 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
    413 } while (/*CONSTCOND*/0)
    414 
    415 #define	WM_CDRXSYNC(sc, x, ops)						\
    416 do {									\
    417 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    418 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
    419 } while (/*CONSTCOND*/0)
    420 
    421 #define	WM_INIT_RXDESC(sc, x)						\
    422 do {									\
    423 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    424 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
    425 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    426 									\
    427 	/*								\
    428 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    429 	 * so that the payload after the Ethernet header is aligned	\
    430 	 * to a 4-byte boundary.					\
    431 	 *								\
    432 	 * XXX BRAINDAMAGE ALERT!					\
    433 	 * The stupid chip uses the same size for every buffer, which	\
    434 	 * is set in the Receive Control register.  We are using the 2K	\
    435 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    436 	 * reason, we can't "scoot" packets longer than the standard	\
    437 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    438 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    439 	 * the upper layer copy the headers.				\
    440 	 */								\
    441 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    442 									\
    443 	wm_set_dma_addr(&__rxd->wrx_addr,				\
    444 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
    445 	__rxd->wrx_len = 0;						\
    446 	__rxd->wrx_cksum = 0;						\
    447 	__rxd->wrx_status = 0;						\
    448 	__rxd->wrx_errors = 0;						\
    449 	__rxd->wrx_special = 0;						\
    450 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    451 									\
    452 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
    453 } while (/*CONSTCOND*/0)
    454 
    455 static void	wm_start(struct ifnet *);
    456 static void	wm_watchdog(struct ifnet *);
    457 static int	wm_ioctl(struct ifnet *, u_long, caddr_t);
    458 static int	wm_init(struct ifnet *);
    459 static void	wm_stop(struct ifnet *, int);
    460 
    461 static void	wm_shutdown(void *);
    462 
    463 static void	wm_reset(struct wm_softc *);
    464 static void	wm_rxdrain(struct wm_softc *);
    465 static int	wm_add_rxbuf(struct wm_softc *, int);
    466 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
    467 static int	wm_validate_eeprom_checksum(struct wm_softc *);
    468 static void	wm_tick(void *);
    469 
    470 static void	wm_set_filter(struct wm_softc *);
    471 
    472 static int	wm_intr(void *);
    473 static void	wm_txintr(struct wm_softc *);
    474 static void	wm_rxintr(struct wm_softc *);
    475 static void	wm_linkintr(struct wm_softc *, uint32_t);
    476 
    477 static void	wm_tbi_mediainit(struct wm_softc *);
    478 static int	wm_tbi_mediachange(struct ifnet *);
    479 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
    480 
    481 static void	wm_tbi_set_linkled(struct wm_softc *);
    482 static void	wm_tbi_check_link(struct wm_softc *);
    483 
    484 static void	wm_gmii_reset(struct wm_softc *);
    485 
    486 static int	wm_gmii_i82543_readreg(struct device *, int, int);
    487 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
    488 
    489 static int	wm_gmii_i82544_readreg(struct device *, int, int);
    490 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
    491 
    492 static void	wm_gmii_statchg(struct device *);
    493 
    494 static void	wm_gmii_mediainit(struct wm_softc *);
    495 static int	wm_gmii_mediachange(struct ifnet *);
    496 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
    497 
    498 static int	wm_match(struct device *, struct cfdata *, void *);
    499 static void	wm_attach(struct device *, struct device *, void *);
    500 
    501 CFATTACH_DECL(wm, sizeof(struct wm_softc),
    502     wm_match, wm_attach, NULL, NULL);
    503 
    504 static void	wm_82547_txfifo_stall(void *);
    505 
    506 /*
    507  * Devices supported by this driver.
    508  */
    509 static const struct wm_product {
    510 	pci_vendor_id_t		wmp_vendor;
    511 	pci_product_id_t	wmp_product;
    512 	const char		*wmp_name;
    513 	wm_chip_type		wmp_type;
    514 	int			wmp_flags;
    515 #define	WMP_F_1000X		0x01
    516 #define	WMP_F_1000T		0x02
    517 } wm_products[] = {
    518 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
    519 	  "Intel i82542 1000BASE-X Ethernet",
    520 	  WM_T_82542_2_1,	WMP_F_1000X },
    521 
    522 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
    523 	  "Intel i82543GC 1000BASE-X Ethernet",
    524 	  WM_T_82543,		WMP_F_1000X },
    525 
    526 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
    527 	  "Intel i82543GC 1000BASE-T Ethernet",
    528 	  WM_T_82543,		WMP_F_1000T },
    529 
    530 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
    531 	  "Intel i82544EI 1000BASE-T Ethernet",
    532 	  WM_T_82544,		WMP_F_1000T },
    533 
    534 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
    535 	  "Intel i82544EI 1000BASE-X Ethernet",
    536 	  WM_T_82544,		WMP_F_1000X },
    537 
    538 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
    539 	  "Intel i82544GC 1000BASE-T Ethernet",
    540 	  WM_T_82544,		WMP_F_1000T },
    541 
    542 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
    543 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
    544 	  WM_T_82544,		WMP_F_1000T },
    545 
    546 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
    547 	  "Intel i82540EM 1000BASE-T Ethernet",
    548 	  WM_T_82540,		WMP_F_1000T },
    549 
    550 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
    551 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
    552 	  WM_T_82540,		WMP_F_1000T },
    553 
    554 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
    555 	  "Intel i82540EP 1000BASE-T Ethernet",
    556 	  WM_T_82540,		WMP_F_1000T },
    557 
    558 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
    559 	  "Intel i82540EP 1000BASE-T Ethernet",
    560 	  WM_T_82540,		WMP_F_1000T },
    561 
    562 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
    563 	  "Intel i82540EP 1000BASE-T Ethernet",
    564 	  WM_T_82540,		WMP_F_1000T },
    565 
    566 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
    567 	  "Intel i82545EM 1000BASE-T Ethernet",
    568 	  WM_T_82545,		WMP_F_1000T },
    569 
    570 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
    571 	  "Intel i82545GM 1000BASE-T Ethernet",
    572 	  WM_T_82545_3,		WMP_F_1000T },
    573 
    574 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
    575 	  "Intel i82545GM 1000BASE-X Ethernet",
    576 	  WM_T_82545_3,		WMP_F_1000X },
    577 #if 0
    578 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
    579 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
    580 	  WM_T_82545_3,		WMP_F_SERDES },
    581 #endif
    582 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
    583 	  "Intel i82546EB 1000BASE-T Ethernet",
    584 	  WM_T_82546,		WMP_F_1000T },
    585 
    586 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
    587 	  "Intel i82546EB 1000BASE-T Ethernet",
    588 	  WM_T_82546,		WMP_F_1000T },
    589 
    590 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
    591 	  "Intel i82545EM 1000BASE-X Ethernet",
    592 	  WM_T_82545,		WMP_F_1000X },
    593 
    594 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
    595 	  "Intel i82546EB 1000BASE-X Ethernet",
    596 	  WM_T_82546,		WMP_F_1000X },
    597 
    598 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
    599 	  "Intel i82546GB 1000BASE-T Ethernet",
    600 	  WM_T_82546_3,		WMP_F_1000T },
    601 
    602 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
    603 	  "Intel i82546GB 1000BASE-X Ethernet",
    604 	  WM_T_82546_3,		WMP_F_1000X },
    605 #if 0
    606 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
    607 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
    608 	  WM_T_82546_3,		WMP_F_SERDES },
    609 #endif
    610 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
    611 	  "Intel i82541EI 1000BASE-T Ethernet",
    612 	  WM_T_82541,		WMP_F_1000T },
    613 
    614 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
    615 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
    616 	  WM_T_82541,		WMP_F_1000T },
    617 
    618 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
    619 	  "Intel i82541ER 1000BASE-T Ethernet",
    620 	  WM_T_82541_2,		WMP_F_1000T },
    621 
    622 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
    623 	  "Intel i82541GI 1000BASE-T Ethernet",
    624 	  WM_T_82541_2,		WMP_F_1000T },
    625 
    626 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
    627 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
    628 	  WM_T_82541_2,		WMP_F_1000T },
    629 
    630 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541PI,
    631 	  "Intel i82541PI 1000BASE-T Ethernet",
    632 	  WM_T_82541_2,		WMP_F_1000T },
    633 
    634 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
    635 	  "Intel i82547EI 1000BASE-T Ethernet",
    636 	  WM_T_82547,		WMP_F_1000T },
    637 
    638 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
    639 	  "Intel i82547GI 1000BASE-T Ethernet",
    640 	  WM_T_82547_2,		WMP_F_1000T },
    641 	{ 0,			0,
    642 	  NULL,
    643 	  0,			0 },
    644 };
    645 
    646 #ifdef WM_EVENT_COUNTERS
    647 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
    648 #endif /* WM_EVENT_COUNTERS */
    649 
    650 #if 0 /* Not currently used */
    651 static inline uint32_t
    652 wm_io_read(struct wm_softc *sc, int reg)
    653 {
    654 
    655 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    656 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
    657 }
    658 #endif
    659 
    660 static inline void
    661 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
    662 {
    663 
    664 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    665 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
    666 }
    667 
    668 static inline void
    669 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
    670 {
    671 	wa->wa_low = htole32(v & 0xffffffffU);
    672 	if (sizeof(bus_addr_t) == 8)
    673 		wa->wa_high = htole32((uint64_t) v >> 32);
    674 	else
    675 		wa->wa_high = 0;
    676 }
    677 
    678 static const struct wm_product *
    679 wm_lookup(const struct pci_attach_args *pa)
    680 {
    681 	const struct wm_product *wmp;
    682 
    683 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
    684 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
    685 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
    686 			return (wmp);
    687 	}
    688 	return (NULL);
    689 }
    690 
    691 static int
    692 wm_match(struct device *parent, struct cfdata *cf, void *aux)
    693 {
    694 	struct pci_attach_args *pa = aux;
    695 
    696 	if (wm_lookup(pa) != NULL)
    697 		return (1);
    698 
    699 	return (0);
    700 }
    701 
    702 static void
    703 wm_attach(struct device *parent, struct device *self, void *aux)
    704 {
    705 	struct wm_softc *sc = (void *) self;
    706 	struct pci_attach_args *pa = aux;
    707 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    708 	pci_chipset_tag_t pc = pa->pa_pc;
    709 	pci_intr_handle_t ih;
    710 	size_t cdata_size;
    711 	const char *intrstr = NULL;
    712 	const char *eetype;
    713 	bus_space_tag_t memt;
    714 	bus_space_handle_t memh;
    715 	bus_dma_segment_t seg;
    716 	int memh_valid;
    717 	int i, rseg, error;
    718 	const struct wm_product *wmp;
    719 	uint8_t enaddr[ETHER_ADDR_LEN];
    720 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
    721 	pcireg_t preg, memtype;
    722 	uint32_t reg;
    723 	int pmreg;
    724 
    725 	callout_init(&sc->sc_tick_ch);
    726 
    727 	wmp = wm_lookup(pa);
    728 	if (wmp == NULL) {
    729 		printf("\n");
    730 		panic("wm_attach: impossible");
    731 	}
    732 
    733 	if (pci_dma64_available(pa))
    734 		sc->sc_dmat = pa->pa_dmat64;
    735 	else
    736 		sc->sc_dmat = pa->pa_dmat;
    737 
    738 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    739 	aprint_naive(": Ethernet controller\n");
    740 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
    741 
    742 	sc->sc_type = wmp->wmp_type;
    743 	if (sc->sc_type < WM_T_82543) {
    744 		if (preg < 2) {
    745 			aprint_error("%s: i82542 must be at least rev. 2\n",
    746 			    sc->sc_dev.dv_xname);
    747 			return;
    748 		}
    749 		if (preg < 3)
    750 			sc->sc_type = WM_T_82542_2_0;
    751 	}
    752 
    753 	/*
    754 	 * Map the device.  All devices support memory-mapped acccess,
    755 	 * and it is really required for normal operation.
    756 	 */
    757 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
    758 	switch (memtype) {
    759 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    760 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    761 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
    762 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    763 		break;
    764 	default:
    765 		memh_valid = 0;
    766 	}
    767 
    768 	if (memh_valid) {
    769 		sc->sc_st = memt;
    770 		sc->sc_sh = memh;
    771 	} else {
    772 		aprint_error("%s: unable to map device registers\n",
    773 		    sc->sc_dev.dv_xname);
    774 		return;
    775 	}
    776 
    777 	/*
    778 	 * In addition, i82544 and later support I/O mapped indirect
    779 	 * register access.  It is not desirable (nor supported in
    780 	 * this driver) to use it for normal operation, though it is
    781 	 * required to work around bugs in some chip versions.
    782 	 */
    783 	if (sc->sc_type >= WM_T_82544) {
    784 		/* First we have to find the I/O BAR. */
    785 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
    786 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
    787 			    PCI_MAPREG_TYPE_IO)
    788 				break;
    789 		}
    790 		if (i == PCI_MAPREG_END)
    791 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
    792 			    sc->sc_dev.dv_xname);
    793 		else {
    794 			/*
    795 			 * The i8254x doesn't apparently respond when the
    796 			 * I/O BAR is 0, which looks somewhat like it's not
    797 			 * been configured.
    798 			 */
    799 			preg = pci_conf_read(pc, pa->pa_tag, i);
    800 			if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
    801 				aprint_error("%s: WARNING: I/O BAR at zero.\n",
    802 				    sc->sc_dev.dv_xname);
    803 			} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
    804 					0, &sc->sc_iot, &sc->sc_ioh,
    805 					NULL, NULL) == 0) {
    806 				sc->sc_flags |= WM_F_IOH_VALID;
    807 			} else {
    808 				aprint_error("%s: WARNING: unable to map "
    809 				    "I/O space\n", sc->sc_dev.dv_xname);
    810 			}
    811 		}
    812 
    813 	}
    814 
    815 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
    816 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    817 	preg |= PCI_COMMAND_MASTER_ENABLE;
    818 	if (sc->sc_type < WM_T_82542_2_1)
    819 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
    820 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    821 
    822 	/* Get it out of power save mode, if needed. */
    823 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    824 		preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    825 		    PCI_PMCSR_STATE_MASK;
    826 		if (preg == PCI_PMCSR_STATE_D3) {
    827 			/*
    828 			 * The card has lost all configuration data in
    829 			 * this state, so punt.
    830 			 */
    831 			aprint_error("%s: unable to wake from power state D3\n",
    832 			    sc->sc_dev.dv_xname);
    833 			return;
    834 		}
    835 		if (preg != PCI_PMCSR_STATE_D0) {
    836 			aprint_normal("%s: waking up from power state D%d\n",
    837 			    sc->sc_dev.dv_xname, preg);
    838 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    839 			    PCI_PMCSR_STATE_D0);
    840 		}
    841 	}
    842 
    843 	/*
    844 	 * Map and establish our interrupt.
    845 	 */
    846 	if (pci_intr_map(pa, &ih)) {
    847 		aprint_error("%s: unable to map interrupt\n",
    848 		    sc->sc_dev.dv_xname);
    849 		return;
    850 	}
    851 	intrstr = pci_intr_string(pc, ih);
    852 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
    853 	if (sc->sc_ih == NULL) {
    854 		aprint_error("%s: unable to establish interrupt",
    855 		    sc->sc_dev.dv_xname);
    856 		if (intrstr != NULL)
    857 			aprint_normal(" at %s", intrstr);
    858 		aprint_normal("\n");
    859 		return;
    860 	}
    861 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    862 
    863 	/*
    864 	 * Determine a few things about the bus we're connected to.
    865 	 */
    866 	if (sc->sc_type < WM_T_82543) {
    867 		/* We don't really know the bus characteristics here. */
    868 		sc->sc_bus_speed = 33;
    869 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
    870 		/*
    871 		 * CSA (Communication Streaming Architecture) is about as fast
    872 		 * a 32-bit 66MHz PCI Bus.
    873 		 */
    874 		sc->sc_flags |= WM_F_CSA;
    875 		sc->sc_bus_speed = 66;
    876 		aprint_verbose("%s: Communication Streaming Architecture\n",
    877 		    sc->sc_dev.dv_xname);
    878 		if (sc->sc_type == WM_T_82547) {
    879 			callout_init(&sc->sc_txfifo_ch);
    880 			callout_setfunc(&sc->sc_txfifo_ch,
    881 					wm_82547_txfifo_stall, sc);
    882 			aprint_verbose("%s: using 82547 Tx FIFO stall "
    883 				       "work-around\n", sc->sc_dev.dv_xname);
    884 		}
    885 	} else {
    886 		reg = CSR_READ(sc, WMREG_STATUS);
    887 		if (reg & STATUS_BUS64)
    888 			sc->sc_flags |= WM_F_BUS64;
    889 		if (sc->sc_type >= WM_T_82544 &&
    890 		    (reg & STATUS_PCIX_MODE) != 0) {
    891 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
    892 
    893 			sc->sc_flags |= WM_F_PCIX;
    894 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    895 					       PCI_CAP_PCIX,
    896 					       &sc->sc_pcix_offset, NULL) == 0)
    897 				aprint_error("%s: unable to find PCIX "
    898 				    "capability\n", sc->sc_dev.dv_xname);
    899 			else if (sc->sc_type != WM_T_82545_3 &&
    900 				 sc->sc_type != WM_T_82546_3) {
    901 				/*
    902 				 * Work around a problem caused by the BIOS
    903 				 * setting the max memory read byte count
    904 				 * incorrectly.
    905 				 */
    906 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
    907 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
    908 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
    909 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
    910 
    911 				bytecnt =
    912 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
    913 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
    914 				maxb =
    915 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
    916 				    PCI_PCIX_STATUS_MAXB_SHIFT;
    917 				if (bytecnt > maxb) {
    918 					aprint_verbose("%s: resetting PCI-X "
    919 					    "MMRBC: %d -> %d\n",
    920 					    sc->sc_dev.dv_xname,
    921 					    512 << bytecnt, 512 << maxb);
    922 					pcix_cmd = (pcix_cmd &
    923 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
    924 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
    925 					pci_conf_write(pa->pa_pc, pa->pa_tag,
    926 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
    927 					    pcix_cmd);
    928 				}
    929 			}
    930 		}
    931 		/*
    932 		 * The quad port adapter is special; it has a PCIX-PCIX
    933 		 * bridge on the board, and can run the secondary bus at
    934 		 * a higher speed.
    935 		 */
    936 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
    937 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
    938 								      : 66;
    939 		} else if (sc->sc_flags & WM_F_PCIX) {
    940 			switch (reg & STATUS_PCIXSPD_MASK) {
    941 			case STATUS_PCIXSPD_50_66:
    942 				sc->sc_bus_speed = 66;
    943 				break;
    944 			case STATUS_PCIXSPD_66_100:
    945 				sc->sc_bus_speed = 100;
    946 				break;
    947 			case STATUS_PCIXSPD_100_133:
    948 				sc->sc_bus_speed = 133;
    949 				break;
    950 			default:
    951 				aprint_error(
    952 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
    953 				    sc->sc_dev.dv_xname,
    954 				    reg & STATUS_PCIXSPD_MASK);
    955 				sc->sc_bus_speed = 66;
    956 			}
    957 		} else
    958 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
    959 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
    960 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
    961 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
    962 	}
    963 
    964 	/*
    965 	 * Allocate the control data structures, and create and load the
    966 	 * DMA map for it.
    967 	 *
    968 	 * NOTE: All Tx descriptors must be in the same 4G segment of
    969 	 * memory.  So must Rx descriptors.  We simplify by allocating
    970 	 * both sets within the same 4G segment.
    971 	 */
    972 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
    973 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
    974 	cdata_size = sc->sc_type < WM_T_82544 ?
    975 	    sizeof(struct wm_control_data_82542) :
    976 	    sizeof(struct wm_control_data_82544);
    977 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
    978 				      (bus_size_t) 0x100000000ULL,
    979 				      &seg, 1, &rseg, 0)) != 0) {
    980 		aprint_error(
    981 		    "%s: unable to allocate control data, error = %d\n",
    982 		    sc->sc_dev.dv_xname, error);
    983 		goto fail_0;
    984 	}
    985 
    986 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
    987 				    (caddr_t *)&sc->sc_control_data, 0)) != 0) {
    988 		aprint_error("%s: unable to map control data, error = %d\n",
    989 		    sc->sc_dev.dv_xname, error);
    990 		goto fail_1;
    991 	}
    992 
    993 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
    994 				       0, 0, &sc->sc_cddmamap)) != 0) {
    995 		aprint_error("%s: unable to create control data DMA map, "
    996 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    997 		goto fail_2;
    998 	}
    999 
   1000 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
   1001 				     sc->sc_control_data, cdata_size, NULL,
   1002 				     0)) != 0) {
   1003 		aprint_error(
   1004 		    "%s: unable to load control data DMA map, error = %d\n",
   1005 		    sc->sc_dev.dv_xname, error);
   1006 		goto fail_3;
   1007 	}
   1008 
   1009 
   1010 	/*
   1011 	 * Create the transmit buffer DMA maps.
   1012 	 */
   1013 	WM_TXQUEUELEN(sc) =
   1014 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
   1015 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
   1016 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1017 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
   1018 					       WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
   1019 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1020 			aprint_error("%s: unable to create Tx DMA map %d, "
   1021 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1022 			goto fail_4;
   1023 		}
   1024 	}
   1025 
   1026 	/*
   1027 	 * Create the receive buffer DMA maps.
   1028 	 */
   1029 	for (i = 0; i < WM_NRXDESC; i++) {
   1030 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1031 					       MCLBYTES, 0, 0,
   1032 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1033 			aprint_error("%s: unable to create Rx DMA map %d, "
   1034 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1035 			goto fail_5;
   1036 		}
   1037 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1038 	}
   1039 
   1040 	/*
   1041 	 * Reset the chip to a known state.
   1042 	 */
   1043 	wm_reset(sc);
   1044 
   1045 	/*
   1046 	 * Get some information about the EEPROM.
   1047 	 */
   1048 	if (sc->sc_type >= WM_T_82540)
   1049 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
   1050 	if (sc->sc_type <= WM_T_82544)
   1051 		sc->sc_ee_addrbits = 6;
   1052 	else if (sc->sc_type <= WM_T_82546_3) {
   1053 		reg = CSR_READ(sc, WMREG_EECD);
   1054 		if (reg & EECD_EE_SIZE)
   1055 			sc->sc_ee_addrbits = 8;
   1056 		else
   1057 			sc->sc_ee_addrbits = 6;
   1058 	} else if (sc->sc_type <= WM_T_82547_2) {
   1059 		reg = CSR_READ(sc, WMREG_EECD);
   1060 		if (reg & EECD_EE_TYPE) {
   1061 			sc->sc_flags |= WM_F_EEPROM_SPI;
   1062 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1063 		} else
   1064 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
   1065 	} else {
   1066 		/* Assume everything else is SPI. */
   1067 		reg = CSR_READ(sc, WMREG_EECD);
   1068 		sc->sc_flags |= WM_F_EEPROM_SPI;
   1069 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1070 	}
   1071 
   1072 	/*
   1073 	 * Defer printing the EEPROM type until after verifying the checksum
   1074 	 * This allows the EEPROM type to be printed correctly in the case
   1075 	 * that no EEPROM is attached.
   1076 	 */
   1077 
   1078 
   1079 	/*
   1080 	 * Validate the EEPROM checksum. If the checksum fails, flag this for
   1081 	 * later, so we can fail future reads from the EEPROM.
   1082 	 */
   1083 	if (wm_validate_eeprom_checksum(sc))
   1084 		sc->sc_flags |= WM_F_EEPROM_INVALID;
   1085 
   1086 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
   1087 		aprint_verbose("%s: No EEPROM\n", sc->sc_dev.dv_xname);
   1088 	else {
   1089 		if (sc->sc_flags & WM_F_EEPROM_SPI)
   1090 			eetype = "SPI";
   1091 		else
   1092 			eetype = "MicroWire";
   1093 		aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
   1094 		    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
   1095 		    sc->sc_ee_addrbits, eetype);
   1096 	}
   1097 
   1098 	/*
   1099 	 * Read the Ethernet address from the EEPROM, if not first found
   1100 	 * in device properties.
   1101 	 */
   1102 	if (devprop_get(&sc->sc_dev, "mac-addr",
   1103 	    enaddr, sizeof(enaddr), NULL) != sizeof(enaddr)) {
   1104 		if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
   1105 		    sizeof(myea) / sizeof(myea[0]), myea)) {
   1106 			aprint_error("%s: unable to read Ethernet address\n",
   1107 			    sc->sc_dev.dv_xname);
   1108 			return;
   1109 		}
   1110 		enaddr[0] = myea[0] & 0xff;
   1111 		enaddr[1] = myea[0] >> 8;
   1112 		enaddr[2] = myea[1] & 0xff;
   1113 		enaddr[3] = myea[1] >> 8;
   1114 		enaddr[4] = myea[2] & 0xff;
   1115 		enaddr[5] = myea[2] >> 8;
   1116 	}
   1117 
   1118 	/*
   1119 	 * Toggle the LSB of the MAC address on the second port
   1120 	 * of the i82546.
   1121 	 */
   1122 	if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
   1123 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
   1124 			enaddr[5] ^= 1;
   1125 	}
   1126 
   1127 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
   1128 	    ether_sprintf(enaddr));
   1129 
   1130 	/*
   1131 	 * Read the config info from the EEPROM, and set up various
   1132 	 * bits in the control registers based on their contents.
   1133 	 */
   1134 	if (devprop_get(&sc->sc_dev, "cfg1",
   1135 	    &cfg1, sizeof(cfg1), NULL) != sizeof(cfg1)) {
   1136 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
   1137 			aprint_error("%s: unable to read CFG1\n",
   1138 			    sc->sc_dev.dv_xname);
   1139 			return;
   1140 		}
   1141 	}
   1142 	if (devprop_get(&sc->sc_dev, "cfg2",
   1143 	    &cfg2, sizeof(cfg2), NULL) != sizeof(cfg2)) {
   1144 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
   1145 			aprint_error("%s: unable to read CFG2\n",
   1146 			    sc->sc_dev.dv_xname);
   1147 			return;
   1148 		}
   1149 	}
   1150 	if (sc->sc_type >= WM_T_82544) {
   1151 		if (devprop_get(&sc->sc_dev, "swdpin",
   1152 		    &swdpin, sizeof(swdpin), NULL) != sizeof(swdpin)) {
   1153 			if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
   1154 				aprint_error("%s: unable to read SWDPIN\n",
   1155 				    sc->sc_dev.dv_xname);
   1156 				return;
   1157 			}
   1158 		}
   1159 	}
   1160 
   1161 	if (cfg1 & EEPROM_CFG1_ILOS)
   1162 		sc->sc_ctrl |= CTRL_ILOS;
   1163 	if (sc->sc_type >= WM_T_82544) {
   1164 		sc->sc_ctrl |=
   1165 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
   1166 		    CTRL_SWDPIO_SHIFT;
   1167 		sc->sc_ctrl |=
   1168 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
   1169 		    CTRL_SWDPINS_SHIFT;
   1170 	} else {
   1171 		sc->sc_ctrl |=
   1172 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
   1173 		    CTRL_SWDPIO_SHIFT;
   1174 	}
   1175 
   1176 #if 0
   1177 	if (sc->sc_type >= WM_T_82544) {
   1178 		if (cfg1 & EEPROM_CFG1_IPS0)
   1179 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
   1180 		if (cfg1 & EEPROM_CFG1_IPS1)
   1181 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
   1182 		sc->sc_ctrl_ext |=
   1183 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
   1184 		    CTRL_EXT_SWDPIO_SHIFT;
   1185 		sc->sc_ctrl_ext |=
   1186 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
   1187 		    CTRL_EXT_SWDPINS_SHIFT;
   1188 	} else {
   1189 		sc->sc_ctrl_ext |=
   1190 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
   1191 		    CTRL_EXT_SWDPIO_SHIFT;
   1192 	}
   1193 #endif
   1194 
   1195 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   1196 #if 0
   1197 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   1198 #endif
   1199 
   1200 	/*
   1201 	 * Set up some register offsets that are different between
   1202 	 * the i82542 and the i82543 and later chips.
   1203 	 */
   1204 	if (sc->sc_type < WM_T_82543) {
   1205 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
   1206 		sc->sc_tdt_reg = WMREG_OLD_TDT;
   1207 	} else {
   1208 		sc->sc_rdt_reg = WMREG_RDT;
   1209 		sc->sc_tdt_reg = WMREG_TDT;
   1210 	}
   1211 
   1212 	/*
   1213 	 * Determine if we're TBI or GMII mode, and initialize the
   1214 	 * media structures accordingly.
   1215 	 */
   1216 	if (sc->sc_type < WM_T_82543 ||
   1217 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
   1218 		if (wmp->wmp_flags & WMP_F_1000T)
   1219 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
   1220 			    "product!\n", sc->sc_dev.dv_xname);
   1221 		wm_tbi_mediainit(sc);
   1222 	} else {
   1223 		if (wmp->wmp_flags & WMP_F_1000X)
   1224 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
   1225 			    "product!\n", sc->sc_dev.dv_xname);
   1226 		wm_gmii_mediainit(sc);
   1227 	}
   1228 
   1229 	ifp = &sc->sc_ethercom.ec_if;
   1230 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
   1231 	ifp->if_softc = sc;
   1232 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1233 	ifp->if_ioctl = wm_ioctl;
   1234 	ifp->if_start = wm_start;
   1235 	ifp->if_watchdog = wm_watchdog;
   1236 	ifp->if_init = wm_init;
   1237 	ifp->if_stop = wm_stop;
   1238 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
   1239 	IFQ_SET_READY(&ifp->if_snd);
   1240 
   1241 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1242 
   1243 	/*
   1244 	 * If we're a i82543 or greater, we can support VLANs.
   1245 	 */
   1246 	if (sc->sc_type >= WM_T_82543)
   1247 		sc->sc_ethercom.ec_capabilities |=
   1248 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
   1249 
   1250 	/*
   1251 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
   1252 	 * on i82543 and later.
   1253 	 */
   1254 	if (sc->sc_type >= WM_T_82543)
   1255 		ifp->if_capabilities |=
   1256 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1257 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1258 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
   1259 		    IFCAP_CSUM_TCPv6_Tx |
   1260 		    IFCAP_CSUM_UDPv6_Tx;
   1261 
   1262 	/*
   1263 	 * If we're a i82544 or greater (except i82547), we can do
   1264 	 * TCP segmentation offload.
   1265 	 */
   1266 	if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547)
   1267 		ifp->if_capabilities |= IFCAP_TSOv4;
   1268 
   1269 	/*
   1270 	 * Attach the interface.
   1271 	 */
   1272 	if_attach(ifp);
   1273 	ether_ifattach(ifp, enaddr);
   1274 #if NRND > 0
   1275 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1276 	    RND_TYPE_NET, 0);
   1277 #endif
   1278 
   1279 #ifdef WM_EVENT_COUNTERS
   1280 	/* Attach event counters. */
   1281 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1282 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1283 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1284 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1285 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
   1286 	    NULL, sc->sc_dev.dv_xname, "txfifo_stall");
   1287 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
   1288 	    NULL, sc->sc_dev.dv_xname, "txdw");
   1289 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
   1290 	    NULL, sc->sc_dev.dv_xname, "txqe");
   1291 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1292 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1293 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
   1294 	    NULL, sc->sc_dev.dv_xname, "linkintr");
   1295 
   1296 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1297 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1298 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
   1299 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
   1300 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1301 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1302 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
   1303 	    NULL, sc->sc_dev.dv_xname, "txtusum");
   1304 	evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
   1305 	    NULL, sc->sc_dev.dv_xname, "txtusum6");
   1306 
   1307 	evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
   1308 	    NULL, sc->sc_dev.dv_xname, "txtso");
   1309 	evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
   1310 	    NULL, sc->sc_dev.dv_xname, "txtsopain");
   1311 
   1312 	for (i = 0; i < WM_NTXSEGS; i++) {
   1313 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
   1314 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
   1315 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
   1316 	}
   1317 
   1318 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
   1319 	    NULL, sc->sc_dev.dv_xname, "txdrop");
   1320 
   1321 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
   1322 	    NULL, sc->sc_dev.dv_xname, "tu");
   1323 
   1324 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
   1325 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
   1326 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
   1327 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
   1328 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
   1329 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
   1330 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
   1331 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
   1332 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
   1333 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
   1334 #endif /* WM_EVENT_COUNTERS */
   1335 
   1336 	/*
   1337 	 * Make sure the interface is shutdown during reboot.
   1338 	 */
   1339 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
   1340 	if (sc->sc_sdhook == NULL)
   1341 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
   1342 		    sc->sc_dev.dv_xname);
   1343 	return;
   1344 
   1345 	/*
   1346 	 * Free any resources we've allocated during the failed attach
   1347 	 * attempt.  Do this in reverse order and fall through.
   1348 	 */
   1349  fail_5:
   1350 	for (i = 0; i < WM_NRXDESC; i++) {
   1351 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1352 			bus_dmamap_destroy(sc->sc_dmat,
   1353 			    sc->sc_rxsoft[i].rxs_dmamap);
   1354 	}
   1355  fail_4:
   1356 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1357 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1358 			bus_dmamap_destroy(sc->sc_dmat,
   1359 			    sc->sc_txsoft[i].txs_dmamap);
   1360 	}
   1361 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1362  fail_3:
   1363 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1364  fail_2:
   1365 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1366 	    cdata_size);
   1367  fail_1:
   1368 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1369  fail_0:
   1370 	return;
   1371 }
   1372 
   1373 /*
   1374  * wm_shutdown:
   1375  *
   1376  *	Make sure the interface is stopped at reboot time.
   1377  */
   1378 static void
   1379 wm_shutdown(void *arg)
   1380 {
   1381 	struct wm_softc *sc = arg;
   1382 
   1383 	wm_stop(&sc->sc_ethercom.ec_if, 1);
   1384 }
   1385 
   1386 /*
   1387  * wm_tx_offload:
   1388  *
   1389  *	Set up TCP/IP checksumming parameters for the
   1390  *	specified packet.
   1391  */
   1392 static int
   1393 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
   1394     uint8_t *fieldsp)
   1395 {
   1396 	struct mbuf *m0 = txs->txs_mbuf;
   1397 	struct livengood_tcpip_ctxdesc *t;
   1398 	uint32_t ipcs, tucs, cmd, cmdlen, seg;
   1399 	struct ether_header *eh;
   1400 	int offset, iphl;
   1401 	uint8_t fields;
   1402 
   1403 	/*
   1404 	 * XXX It would be nice if the mbuf pkthdr had offset
   1405 	 * fields for the protocol headers.
   1406 	 */
   1407 
   1408 	eh = mtod(m0, struct ether_header *);
   1409 	switch (htons(eh->ether_type)) {
   1410 	case ETHERTYPE_IP:
   1411 	case ETHERTYPE_IPV6:
   1412 		offset = ETHER_HDR_LEN;
   1413 		break;
   1414 
   1415 	case ETHERTYPE_VLAN:
   1416 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1417 		break;
   1418 
   1419 	default:
   1420 		/*
   1421 		 * Don't support this protocol or encapsulation.
   1422 		 */
   1423 		*fieldsp = 0;
   1424 		*cmdp = 0;
   1425 		return (0);
   1426 	}
   1427 
   1428 	if ((m0->m_pkthdr.csum_flags &
   1429 	    (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
   1430 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1431 	} else {
   1432 		iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
   1433 	}
   1434 
   1435 	cmd = WTX_CMD_DEXT | WTX_DTYP_D;
   1436 	cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
   1437 	seg = 0;
   1438 	fields = 0;
   1439 
   1440 	if (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
   1441 		int hlen = offset + iphl;
   1442 		WM_EVCNT_INCR(&sc->sc_ev_txtso);
   1443 		if (__predict_false(m0->m_len <
   1444 				    (hlen + sizeof(struct tcphdr)))) {
   1445 			/*
   1446 			 * TCP/IP headers are not in the first mbuf; we need
   1447 			 * to do this the slow and painful way.  Let's just
   1448 			 * hope this doesn't happen very often.
   1449 			 */
   1450 			struct ip ip;
   1451 			struct tcphdr th;
   1452 
   1453 			WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
   1454 
   1455 			m_copydata(m0, offset, sizeof(ip), &ip);
   1456 			m_copydata(m0, hlen, sizeof(th), &th);
   1457 
   1458 			ip.ip_len = 0;
   1459 
   1460 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   1461 			    sizeof(ip.ip_len), &ip.ip_len);
   1462 
   1463 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   1464 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   1465 
   1466 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   1467 			    sizeof(th.th_sum), &th.th_sum);
   1468 
   1469 			hlen += th.th_off << 2;
   1470 		} else {
   1471 			/*
   1472 			 * TCP/IP headers are in the first mbuf; we can do
   1473 			 * this the easy way.
   1474 			 */
   1475 			struct ip *ip =
   1476 			    (struct ip *) (mtod(m0, caddr_t) + offset);
   1477 			struct tcphdr *th =
   1478 			    (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
   1479 
   1480 			ip->ip_len = 0;
   1481 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   1482 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   1483 
   1484 			hlen += th->th_off << 2;
   1485 		}
   1486 
   1487 		cmd |= WTX_TCPIP_CMD_TSE;
   1488 		cmdlen |= WTX_TCPIP_CMD_TSE | WTX_TCPIP_CMD_IP |
   1489 		    WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
   1490 		seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
   1491 		    WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
   1492 	}
   1493 
   1494 	/*
   1495 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1496 	 * offload feature, if we load the context descriptor, we
   1497 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1498 	 */
   1499 
   1500 	ipcs = WTX_TCPIP_IPCSS(offset) |
   1501 	    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1502 	    WTX_TCPIP_IPCSE(offset + iphl - 1);
   1503 	if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
   1504 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
   1505 		fields |= WTX_IXSM;
   1506 	}
   1507 
   1508 	offset += iphl;
   1509 
   1510 	if (m0->m_pkthdr.csum_flags &
   1511 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
   1512 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
   1513 		fields |= WTX_TXSM;
   1514 		tucs = WTX_TCPIP_TUCSS(offset) |
   1515 		    WTX_TCPIP_TUCSO(offset +
   1516 		    M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
   1517 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1518 	} else if ((m0->m_pkthdr.csum_flags &
   1519 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
   1520 		WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
   1521 		fields |= WTX_TXSM;
   1522 		tucs = WTX_TCPIP_TUCSS(offset) |
   1523 		    WTX_TCPIP_TUCSO(offset +
   1524 		    M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
   1525 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1526 	} else {
   1527 		/* Just initialize it to a valid TCP context. */
   1528 		tucs = WTX_TCPIP_TUCSS(offset) |
   1529 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1530 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1531 	}
   1532 
   1533 	/* Fill in the context descriptor. */
   1534 	t = (struct livengood_tcpip_ctxdesc *)
   1535 	    &sc->sc_txdescs[sc->sc_txnext];
   1536 	t->tcpip_ipcs = htole32(ipcs);
   1537 	t->tcpip_tucs = htole32(tucs);
   1538 	t->tcpip_cmdlen = htole32(cmdlen);
   1539 	t->tcpip_seg = htole32(seg);
   1540 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1541 
   1542 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
   1543 	txs->txs_ndesc++;
   1544 
   1545 	*cmdp = cmd;
   1546 	*fieldsp = fields;
   1547 
   1548 	return (0);
   1549 }
   1550 
   1551 static void
   1552 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
   1553 {
   1554 	struct mbuf *m;
   1555 	int i;
   1556 
   1557 	log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
   1558 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
   1559 		log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
   1560 		    "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
   1561 		    m->m_data, m->m_len, m->m_flags);
   1562 	log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
   1563 	    i, i == 1 ? "" : "s");
   1564 }
   1565 
   1566 /*
   1567  * wm_82547_txfifo_stall:
   1568  *
   1569  *	Callout used to wait for the 82547 Tx FIFO to drain,
   1570  *	reset the FIFO pointers, and restart packet transmission.
   1571  */
   1572 static void
   1573 wm_82547_txfifo_stall(void *arg)
   1574 {
   1575 	struct wm_softc *sc = arg;
   1576 	int s;
   1577 
   1578 	s = splnet();
   1579 
   1580 	if (sc->sc_txfifo_stall) {
   1581 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
   1582 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
   1583 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
   1584 			/*
   1585 			 * Packets have drained.  Stop transmitter, reset
   1586 			 * FIFO pointers, restart transmitter, and kick
   1587 			 * the packet queue.
   1588 			 */
   1589 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
   1590 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
   1591 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
   1592 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
   1593 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
   1594 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
   1595 			CSR_WRITE(sc, WMREG_TCTL, tctl);
   1596 			CSR_WRITE_FLUSH(sc);
   1597 
   1598 			sc->sc_txfifo_head = 0;
   1599 			sc->sc_txfifo_stall = 0;
   1600 			wm_start(&sc->sc_ethercom.ec_if);
   1601 		} else {
   1602 			/*
   1603 			 * Still waiting for packets to drain; try again in
   1604 			 * another tick.
   1605 			 */
   1606 			callout_schedule(&sc->sc_txfifo_ch, 1);
   1607 		}
   1608 	}
   1609 
   1610 	splx(s);
   1611 }
   1612 
   1613 /*
   1614  * wm_82547_txfifo_bugchk:
   1615  *
   1616  *	Check for bug condition in the 82547 Tx FIFO.  We need to
   1617  *	prevent enqueueing a packet that would wrap around the end
   1618  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
   1619  *
   1620  *	We do this by checking the amount of space before the end
   1621  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
   1622  *	the Tx FIFO, wait for all remaining packets to drain, reset
   1623  *	the internal FIFO pointers to the beginning, and restart
   1624  *	transmission on the interface.
   1625  */
   1626 #define	WM_FIFO_HDR		0x10
   1627 #define	WM_82547_PAD_LEN	0x3e0
   1628 static int
   1629 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
   1630 {
   1631 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
   1632 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
   1633 
   1634 	/* Just return if already stalled. */
   1635 	if (sc->sc_txfifo_stall)
   1636 		return (1);
   1637 
   1638 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1639 		/* Stall only occurs in half-duplex mode. */
   1640 		goto send_packet;
   1641 	}
   1642 
   1643 	if (len >= WM_82547_PAD_LEN + space) {
   1644 		sc->sc_txfifo_stall = 1;
   1645 		callout_schedule(&sc->sc_txfifo_ch, 1);
   1646 		return (1);
   1647 	}
   1648 
   1649  send_packet:
   1650 	sc->sc_txfifo_head += len;
   1651 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
   1652 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
   1653 
   1654 	return (0);
   1655 }
   1656 
   1657 /*
   1658  * wm_start:		[ifnet interface function]
   1659  *
   1660  *	Start packet transmission on the interface.
   1661  */
   1662 static void
   1663 wm_start(struct ifnet *ifp)
   1664 {
   1665 	struct wm_softc *sc = ifp->if_softc;
   1666 	struct mbuf *m0;
   1667 #if 0 /* XXXJRT */
   1668 	struct m_tag *mtag;
   1669 #endif
   1670 	struct wm_txsoft *txs;
   1671 	bus_dmamap_t dmamap;
   1672 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
   1673 	bus_addr_t curaddr;
   1674 	bus_size_t seglen, curlen;
   1675 	uint32_t cksumcmd;
   1676 	uint8_t cksumfields;
   1677 
   1678 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1679 		return;
   1680 
   1681 	/*
   1682 	 * Remember the previous number of free descriptors.
   1683 	 */
   1684 	ofree = sc->sc_txfree;
   1685 
   1686 	/*
   1687 	 * Loop through the send queue, setting up transmit descriptors
   1688 	 * until we drain the queue, or use up all available transmit
   1689 	 * descriptors.
   1690 	 */
   1691 	for (;;) {
   1692 		/* Grab a packet off the queue. */
   1693 		IFQ_POLL(&ifp->if_snd, m0);
   1694 		if (m0 == NULL)
   1695 			break;
   1696 
   1697 		DPRINTF(WM_DEBUG_TX,
   1698 		    ("%s: TX: have packet to transmit: %p\n",
   1699 		    sc->sc_dev.dv_xname, m0));
   1700 
   1701 		/* Get a work queue entry. */
   1702 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
   1703 			wm_txintr(sc);
   1704 			if (sc->sc_txsfree == 0) {
   1705 				DPRINTF(WM_DEBUG_TX,
   1706 				    ("%s: TX: no free job descriptors\n",
   1707 					sc->sc_dev.dv_xname));
   1708 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   1709 				break;
   1710 			}
   1711 		}
   1712 
   1713 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1714 		dmamap = txs->txs_dmamap;
   1715 
   1716 		use_tso = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   1717 
   1718 		/*
   1719 		 * So says the Linux driver:
   1720 		 * The controller does a simple calculation to make sure
   1721 		 * there is enough room in the FIFO before initiating the
   1722 		 * DMA for each buffer.  The calc is:
   1723 		 *	4 = ceil(buffer len / MSS)
   1724 		 * To make sure we don't overrun the FIFO, adjust the max
   1725 		 * buffer len if the MSS drops.
   1726 		 */
   1727 		dmamap->dm_maxsegsz =
   1728 		    (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
   1729 		    ? m0->m_pkthdr.segsz << 2
   1730 		    : WTX_MAX_LEN;
   1731 
   1732 		/*
   1733 		 * Load the DMA map.  If this fails, the packet either
   1734 		 * didn't fit in the allotted number of segments, or we
   1735 		 * were short on resources.  For the too-many-segments
   1736 		 * case, we simply report an error and drop the packet,
   1737 		 * since we can't sanely copy a jumbo packet to a single
   1738 		 * buffer.
   1739 		 */
   1740 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1741 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1742 		if (error) {
   1743 			if (error == EFBIG) {
   1744 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   1745 				log(LOG_ERR, "%s: Tx packet consumes too many "
   1746 				    "DMA segments, dropping...\n",
   1747 				    sc->sc_dev.dv_xname);
   1748 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1749 				wm_dump_mbuf_chain(sc, m0);
   1750 				m_freem(m0);
   1751 				continue;
   1752 			}
   1753 			/*
   1754 			 * Short on resources, just stop for now.
   1755 			 */
   1756 			DPRINTF(WM_DEBUG_TX,
   1757 			    ("%s: TX: dmamap load failed: %d\n",
   1758 			    sc->sc_dev.dv_xname, error));
   1759 			break;
   1760 		}
   1761 
   1762 		segs_needed = dmamap->dm_nsegs;
   1763 		if (use_tso) {
   1764 			/* For sentinel descriptor; see below. */
   1765 			segs_needed++;
   1766 		}
   1767 
   1768 		/*
   1769 		 * Ensure we have enough descriptors free to describe
   1770 		 * the packet.  Note, we always reserve one descriptor
   1771 		 * at the end of the ring due to the semantics of the
   1772 		 * TDT register, plus one more in the event we need
   1773 		 * to load offload context.
   1774 		 */
   1775 		if (segs_needed > sc->sc_txfree - 2) {
   1776 			/*
   1777 			 * Not enough free descriptors to transmit this
   1778 			 * packet.  We haven't committed anything yet,
   1779 			 * so just unload the DMA map, put the packet
   1780 			 * pack on the queue, and punt.  Notify the upper
   1781 			 * layer that there are no more slots left.
   1782 			 */
   1783 			DPRINTF(WM_DEBUG_TX,
   1784 			    ("%s: TX: need %d (%d) descriptors, have %d\n",
   1785 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
   1786 			    sc->sc_txfree - 1));
   1787 			ifp->if_flags |= IFF_OACTIVE;
   1788 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1789 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   1790 			break;
   1791 		}
   1792 
   1793 		/*
   1794 		 * Check for 82547 Tx FIFO bug.  We need to do this
   1795 		 * once we know we can transmit the packet, since we
   1796 		 * do some internal FIFO space accounting here.
   1797 		 */
   1798 		if (sc->sc_type == WM_T_82547 &&
   1799 		    wm_82547_txfifo_bugchk(sc, m0)) {
   1800 			DPRINTF(WM_DEBUG_TX,
   1801 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
   1802 			    sc->sc_dev.dv_xname));
   1803 			ifp->if_flags |= IFF_OACTIVE;
   1804 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1805 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
   1806 			break;
   1807 		}
   1808 
   1809 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1810 
   1811 		/*
   1812 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1813 		 */
   1814 
   1815 		DPRINTF(WM_DEBUG_TX,
   1816 		    ("%s: TX: packet has %d (%d) DMA segments\n",
   1817 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
   1818 
   1819 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1820 
   1821 		/*
   1822 		 * Store a pointer to the packet so that we can free it
   1823 		 * later.
   1824 		 *
   1825 		 * Initially, we consider the number of descriptors the
   1826 		 * packet uses the number of DMA segments.  This may be
   1827 		 * incremented by 1 if we do checksum offload (a descriptor
   1828 		 * is used to set the checksum context).
   1829 		 */
   1830 		txs->txs_mbuf = m0;
   1831 		txs->txs_firstdesc = sc->sc_txnext;
   1832 		txs->txs_ndesc = segs_needed;
   1833 
   1834 		/* Set up offload parameters for this packet. */
   1835 		if (m0->m_pkthdr.csum_flags &
   1836 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
   1837 		    M_CSUM_TCPv6|M_CSUM_UDPv6)) {
   1838 			if (wm_tx_offload(sc, txs, &cksumcmd,
   1839 					  &cksumfields) != 0) {
   1840 				/* Error message already displayed. */
   1841 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1842 				continue;
   1843 			}
   1844 		} else {
   1845 			cksumcmd = 0;
   1846 			cksumfields = 0;
   1847 		}
   1848 
   1849 		cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
   1850 
   1851 		/* Sync the DMA map. */
   1852 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1853 		    BUS_DMASYNC_PREWRITE);
   1854 
   1855 		/*
   1856 		 * Initialize the transmit descriptor.
   1857 		 */
   1858 		for (nexttx = sc->sc_txnext, seg = 0;
   1859 		     seg < dmamap->dm_nsegs; seg++) {
   1860 			for (seglen = dmamap->dm_segs[seg].ds_len,
   1861 			     curaddr = dmamap->dm_segs[seg].ds_addr;
   1862 			     seglen != 0;
   1863 			     curaddr += curlen, seglen -= curlen,
   1864 			     nexttx = WM_NEXTTX(sc, nexttx)) {
   1865 				curlen = seglen;
   1866 
   1867 				/*
   1868 				 * So says the Linux driver:
   1869 				 * Work around for premature descriptor
   1870 				 * write-backs in TSO mode.  Append a
   1871 				 * 4-byte sentinel descriptor.
   1872 				 */
   1873 				if (use_tso &&
   1874 				    seg == dmamap->dm_nsegs - 1 &&
   1875 				    curlen > 8)
   1876 					curlen -= 4;
   1877 
   1878 				wm_set_dma_addr(
   1879 				    &sc->sc_txdescs[nexttx].wtx_addr,
   1880 				    curaddr);
   1881 				sc->sc_txdescs[nexttx].wtx_cmdlen =
   1882 				    htole32(cksumcmd | curlen);
   1883 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
   1884 				    0;
   1885 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
   1886 				    cksumfields;
   1887 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
   1888 				lasttx = nexttx;
   1889 
   1890 				DPRINTF(WM_DEBUG_TX,
   1891 				    ("%s: TX: desc %d: low 0x%08lx, "
   1892 				     "len 0x%04x\n",
   1893 				    sc->sc_dev.dv_xname, nexttx,
   1894 				    curaddr & 0xffffffffUL, (unsigned)curlen));
   1895 			}
   1896 		}
   1897 
   1898 		KASSERT(lasttx != -1);
   1899 
   1900 		/*
   1901 		 * Set up the command byte on the last descriptor of
   1902 		 * the packet.  If we're in the interrupt delay window,
   1903 		 * delay the interrupt.
   1904 		 */
   1905 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1906 		    htole32(WTX_CMD_EOP | WTX_CMD_RS);
   1907 
   1908 #if 0 /* XXXJRT */
   1909 		/*
   1910 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1911 		 * up the descriptor to encapsulate the packet for us.
   1912 		 *
   1913 		 * This is only valid on the last descriptor of the packet.
   1914 		 */
   1915 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   1916 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1917 			    htole32(WTX_CMD_VLE);
   1918 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
   1919 			    = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
   1920 		}
   1921 #endif /* XXXJRT */
   1922 
   1923 		txs->txs_lastdesc = lasttx;
   1924 
   1925 		DPRINTF(WM_DEBUG_TX,
   1926 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   1927 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
   1928 
   1929 		/* Sync the descriptors we're using. */
   1930 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
   1931 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1932 
   1933 		/* Give the packet to the chip. */
   1934 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   1935 
   1936 		DPRINTF(WM_DEBUG_TX,
   1937 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   1938 
   1939 		DPRINTF(WM_DEBUG_TX,
   1940 		    ("%s: TX: finished transmitting packet, job %d\n",
   1941 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   1942 
   1943 		/* Advance the tx pointer. */
   1944 		sc->sc_txfree -= txs->txs_ndesc;
   1945 		sc->sc_txnext = nexttx;
   1946 
   1947 		sc->sc_txsfree--;
   1948 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
   1949 
   1950 #if NBPFILTER > 0
   1951 		/* Pass the packet to any BPF listeners. */
   1952 		if (ifp->if_bpf)
   1953 			bpf_mtap(ifp->if_bpf, m0);
   1954 #endif /* NBPFILTER > 0 */
   1955 	}
   1956 
   1957 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1958 		/* No more slots; notify upper layer. */
   1959 		ifp->if_flags |= IFF_OACTIVE;
   1960 	}
   1961 
   1962 	if (sc->sc_txfree != ofree) {
   1963 		/* Set a watchdog timer in case the chip flakes out. */
   1964 		ifp->if_timer = 5;
   1965 	}
   1966 }
   1967 
   1968 /*
   1969  * wm_watchdog:		[ifnet interface function]
   1970  *
   1971  *	Watchdog timer handler.
   1972  */
   1973 static void
   1974 wm_watchdog(struct ifnet *ifp)
   1975 {
   1976 	struct wm_softc *sc = ifp->if_softc;
   1977 
   1978 	/*
   1979 	 * Since we're using delayed interrupts, sweep up
   1980 	 * before we report an error.
   1981 	 */
   1982 	wm_txintr(sc);
   1983 
   1984 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
   1985 		log(LOG_ERR,
   1986 		    "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1987 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   1988 		    sc->sc_txnext);
   1989 		ifp->if_oerrors++;
   1990 
   1991 		/* Reset the interface. */
   1992 		(void) wm_init(ifp);
   1993 	}
   1994 
   1995 	/* Try to get more packets going. */
   1996 	wm_start(ifp);
   1997 }
   1998 
   1999 /*
   2000  * wm_ioctl:		[ifnet interface function]
   2001  *
   2002  *	Handle control requests from the operator.
   2003  */
   2004 static int
   2005 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   2006 {
   2007 	struct wm_softc *sc = ifp->if_softc;
   2008 	struct ifreq *ifr = (struct ifreq *) data;
   2009 	int s, error;
   2010 
   2011 	s = splnet();
   2012 
   2013 	switch (cmd) {
   2014 	case SIOCSIFMEDIA:
   2015 	case SIOCGIFMEDIA:
   2016 		/* Flow control requires full-duplex mode. */
   2017 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   2018 		    (ifr->ifr_media & IFM_FDX) == 0)
   2019 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   2020 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   2021 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   2022 				/* We can do both TXPAUSE and RXPAUSE. */
   2023 				ifr->ifr_media |=
   2024 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   2025 			}
   2026 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   2027 		}
   2028 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   2029 		break;
   2030 	default:
   2031 		error = ether_ioctl(ifp, cmd, data);
   2032 		if (error == ENETRESET) {
   2033 			/*
   2034 			 * Multicast list has changed; set the hardware filter
   2035 			 * accordingly.
   2036 			 */
   2037 			if (ifp->if_flags & IFF_RUNNING)
   2038 				wm_set_filter(sc);
   2039 			error = 0;
   2040 		}
   2041 		break;
   2042 	}
   2043 
   2044 	/* Try to get more packets going. */
   2045 	wm_start(ifp);
   2046 
   2047 	splx(s);
   2048 	return (error);
   2049 }
   2050 
   2051 /*
   2052  * wm_intr:
   2053  *
   2054  *	Interrupt service routine.
   2055  */
   2056 static int
   2057 wm_intr(void *arg)
   2058 {
   2059 	struct wm_softc *sc = arg;
   2060 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2061 	uint32_t icr;
   2062 	int handled = 0;
   2063 
   2064 	while (1 /* CONSTCOND */) {
   2065 		icr = CSR_READ(sc, WMREG_ICR);
   2066 		if ((icr & sc->sc_icr) == 0)
   2067 			break;
   2068 
   2069 #if 0 /*NRND > 0*/
   2070 		if (RND_ENABLED(&sc->rnd_source))
   2071 			rnd_add_uint32(&sc->rnd_source, icr);
   2072 #endif
   2073 
   2074 		handled = 1;
   2075 
   2076 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   2077 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   2078 			DPRINTF(WM_DEBUG_RX,
   2079 			    ("%s: RX: got Rx intr 0x%08x\n",
   2080 			    sc->sc_dev.dv_xname,
   2081 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   2082 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
   2083 		}
   2084 #endif
   2085 		wm_rxintr(sc);
   2086 
   2087 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   2088 		if (icr & ICR_TXDW) {
   2089 			DPRINTF(WM_DEBUG_TX,
   2090 			    ("%s: TX: got TXDW interrupt\n",
   2091 			    sc->sc_dev.dv_xname));
   2092 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
   2093 		}
   2094 #endif
   2095 		wm_txintr(sc);
   2096 
   2097 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
   2098 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
   2099 			wm_linkintr(sc, icr);
   2100 		}
   2101 
   2102 		if (icr & ICR_RXO) {
   2103 			ifp->if_ierrors++;
   2104 #if defined(WM_DEBUG)
   2105 			log(LOG_WARNING, "%s: Receive overrun\n",
   2106 			    sc->sc_dev.dv_xname);
   2107 #endif /* defined(WM_DEBUG) */
   2108 		}
   2109 	}
   2110 
   2111 	if (handled) {
   2112 		/* Try to get more packets going. */
   2113 		wm_start(ifp);
   2114 	}
   2115 
   2116 	return (handled);
   2117 }
   2118 
   2119 /*
   2120  * wm_txintr:
   2121  *
   2122  *	Helper; handle transmit interrupts.
   2123  */
   2124 static void
   2125 wm_txintr(struct wm_softc *sc)
   2126 {
   2127 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2128 	struct wm_txsoft *txs;
   2129 	uint8_t status;
   2130 	int i;
   2131 
   2132 	ifp->if_flags &= ~IFF_OACTIVE;
   2133 
   2134 	/*
   2135 	 * Go through the Tx list and free mbufs for those
   2136 	 * frames which have been transmitted.
   2137 	 */
   2138 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
   2139 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
   2140 		txs = &sc->sc_txsoft[i];
   2141 
   2142 		DPRINTF(WM_DEBUG_TX,
   2143 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   2144 
   2145 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   2146 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2147 
   2148 		status =
   2149 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
   2150 		if ((status & WTX_ST_DD) == 0) {
   2151 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   2152 			    BUS_DMASYNC_PREREAD);
   2153 			break;
   2154 		}
   2155 
   2156 		DPRINTF(WM_DEBUG_TX,
   2157 		    ("%s: TX: job %d done: descs %d..%d\n",
   2158 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   2159 		    txs->txs_lastdesc));
   2160 
   2161 		/*
   2162 		 * XXX We should probably be using the statistics
   2163 		 * XXX registers, but I don't know if they exist
   2164 		 * XXX on chips before the i82544.
   2165 		 */
   2166 
   2167 #ifdef WM_EVENT_COUNTERS
   2168 		if (status & WTX_ST_TU)
   2169 			WM_EVCNT_INCR(&sc->sc_ev_tu);
   2170 #endif /* WM_EVENT_COUNTERS */
   2171 
   2172 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
   2173 			ifp->if_oerrors++;
   2174 			if (status & WTX_ST_LC)
   2175 				log(LOG_WARNING, "%s: late collision\n",
   2176 				    sc->sc_dev.dv_xname);
   2177 			else if (status & WTX_ST_EC) {
   2178 				ifp->if_collisions += 16;
   2179 				log(LOG_WARNING, "%s: excessive collisions\n",
   2180 				    sc->sc_dev.dv_xname);
   2181 			}
   2182 		} else
   2183 			ifp->if_opackets++;
   2184 
   2185 		sc->sc_txfree += txs->txs_ndesc;
   2186 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   2187 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2188 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2189 		m_freem(txs->txs_mbuf);
   2190 		txs->txs_mbuf = NULL;
   2191 	}
   2192 
   2193 	/* Update the dirty transmit buffer pointer. */
   2194 	sc->sc_txsdirty = i;
   2195 	DPRINTF(WM_DEBUG_TX,
   2196 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   2197 
   2198 	/*
   2199 	 * If there are no more pending transmissions, cancel the watchdog
   2200 	 * timer.
   2201 	 */
   2202 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
   2203 		ifp->if_timer = 0;
   2204 }
   2205 
   2206 /*
   2207  * wm_rxintr:
   2208  *
   2209  *	Helper; handle receive interrupts.
   2210  */
   2211 static void
   2212 wm_rxintr(struct wm_softc *sc)
   2213 {
   2214 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2215 	struct wm_rxsoft *rxs;
   2216 	struct mbuf *m;
   2217 	int i, len;
   2218 	uint8_t status, errors;
   2219 
   2220 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
   2221 		rxs = &sc->sc_rxsoft[i];
   2222 
   2223 		DPRINTF(WM_DEBUG_RX,
   2224 		    ("%s: RX: checking descriptor %d\n",
   2225 		    sc->sc_dev.dv_xname, i));
   2226 
   2227 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2228 
   2229 		status = sc->sc_rxdescs[i].wrx_status;
   2230 		errors = sc->sc_rxdescs[i].wrx_errors;
   2231 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
   2232 
   2233 		if ((status & WRX_ST_DD) == 0) {
   2234 			/*
   2235 			 * We have processed all of the receive descriptors.
   2236 			 */
   2237 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   2238 			break;
   2239 		}
   2240 
   2241 		if (__predict_false(sc->sc_rxdiscard)) {
   2242 			DPRINTF(WM_DEBUG_RX,
   2243 			    ("%s: RX: discarding contents of descriptor %d\n",
   2244 			    sc->sc_dev.dv_xname, i));
   2245 			WM_INIT_RXDESC(sc, i);
   2246 			if (status & WRX_ST_EOP) {
   2247 				/* Reset our state. */
   2248 				DPRINTF(WM_DEBUG_RX,
   2249 				    ("%s: RX: resetting rxdiscard -> 0\n",
   2250 				    sc->sc_dev.dv_xname));
   2251 				sc->sc_rxdiscard = 0;
   2252 			}
   2253 			continue;
   2254 		}
   2255 
   2256 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2257 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2258 
   2259 		m = rxs->rxs_mbuf;
   2260 
   2261 		/*
   2262 		 * Add a new receive buffer to the ring.
   2263 		 */
   2264 		if (wm_add_rxbuf(sc, i) != 0) {
   2265 			/*
   2266 			 * Failed, throw away what we've done so
   2267 			 * far, and discard the rest of the packet.
   2268 			 */
   2269 			ifp->if_ierrors++;
   2270 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2271 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2272 			WM_INIT_RXDESC(sc, i);
   2273 			if ((status & WRX_ST_EOP) == 0)
   2274 				sc->sc_rxdiscard = 1;
   2275 			if (sc->sc_rxhead != NULL)
   2276 				m_freem(sc->sc_rxhead);
   2277 			WM_RXCHAIN_RESET(sc);
   2278 			DPRINTF(WM_DEBUG_RX,
   2279 			    ("%s: RX: Rx buffer allocation failed, "
   2280 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   2281 			    sc->sc_rxdiscard ? " (discard)" : ""));
   2282 			continue;
   2283 		}
   2284 
   2285 		WM_RXCHAIN_LINK(sc, m);
   2286 
   2287 		m->m_len = len;
   2288 
   2289 		DPRINTF(WM_DEBUG_RX,
   2290 		    ("%s: RX: buffer at %p len %d\n",
   2291 		    sc->sc_dev.dv_xname, m->m_data, len));
   2292 
   2293 		/*
   2294 		 * If this is not the end of the packet, keep
   2295 		 * looking.
   2296 		 */
   2297 		if ((status & WRX_ST_EOP) == 0) {
   2298 			sc->sc_rxlen += len;
   2299 			DPRINTF(WM_DEBUG_RX,
   2300 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   2301 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   2302 			continue;
   2303 		}
   2304 
   2305 		/*
   2306 		 * Okay, we have the entire packet now.  The chip is
   2307 		 * configured to include the FCS (not all chips can
   2308 		 * be configured to strip it), so we need to trim it.
   2309 		 */
   2310 		m->m_len -= ETHER_CRC_LEN;
   2311 
   2312 		*sc->sc_rxtailp = NULL;
   2313 		len = m->m_len + sc->sc_rxlen;
   2314 		m = sc->sc_rxhead;
   2315 
   2316 		WM_RXCHAIN_RESET(sc);
   2317 
   2318 		DPRINTF(WM_DEBUG_RX,
   2319 		    ("%s: RX: have entire packet, len -> %d\n",
   2320 		    sc->sc_dev.dv_xname, len));
   2321 
   2322 		/*
   2323 		 * If an error occurred, update stats and drop the packet.
   2324 		 */
   2325 		if (errors &
   2326 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
   2327 			ifp->if_ierrors++;
   2328 			if (errors & WRX_ER_SE)
   2329 				log(LOG_WARNING, "%s: symbol error\n",
   2330 				    sc->sc_dev.dv_xname);
   2331 			else if (errors & WRX_ER_SEQ)
   2332 				log(LOG_WARNING, "%s: receive sequence error\n",
   2333 				    sc->sc_dev.dv_xname);
   2334 			else if (errors & WRX_ER_CE)
   2335 				log(LOG_WARNING, "%s: CRC error\n",
   2336 				    sc->sc_dev.dv_xname);
   2337 			m_freem(m);
   2338 			continue;
   2339 		}
   2340 
   2341 		/*
   2342 		 * No errors.  Receive the packet.
   2343 		 */
   2344 		m->m_pkthdr.rcvif = ifp;
   2345 		m->m_pkthdr.len = len;
   2346 
   2347 #if 0 /* XXXJRT */
   2348 		/*
   2349 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2350 		 * for us.  Associate the tag with the packet.
   2351 		 */
   2352 		if ((status & WRX_ST_VP) != 0) {
   2353 			VLAN_INPUT_TAG(ifp, m,
   2354 			    le16toh(sc->sc_rxdescs[i].wrx_special,
   2355 			    continue);
   2356 		}
   2357 #endif /* XXXJRT */
   2358 
   2359 		/*
   2360 		 * Set up checksum info for this packet.
   2361 		 */
   2362 		if ((status & WRX_ST_IXSM) == 0) {
   2363 			if (status & WRX_ST_IPCS) {
   2364 				WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2365 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2366 				if (errors & WRX_ER_IPE)
   2367 					m->m_pkthdr.csum_flags |=
   2368 					    M_CSUM_IPv4_BAD;
   2369 			}
   2370 			if (status & WRX_ST_TCPCS) {
   2371 				/*
   2372 				 * Note: we don't know if this was TCP or UDP,
   2373 				 * so we just set both bits, and expect the
   2374 				 * upper layers to deal.
   2375 				 */
   2376 				WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
   2377 				m->m_pkthdr.csum_flags |=
   2378 				    M_CSUM_TCPv4|M_CSUM_UDPv4;
   2379 				if (errors & WRX_ER_TCPE)
   2380 					m->m_pkthdr.csum_flags |=
   2381 					    M_CSUM_TCP_UDP_BAD;
   2382 			}
   2383 		}
   2384 
   2385 		ifp->if_ipackets++;
   2386 
   2387 #if NBPFILTER > 0
   2388 		/* Pass this up to any BPF listeners. */
   2389 		if (ifp->if_bpf)
   2390 			bpf_mtap(ifp->if_bpf, m);
   2391 #endif /* NBPFILTER > 0 */
   2392 
   2393 		/* Pass it on. */
   2394 		(*ifp->if_input)(ifp, m);
   2395 	}
   2396 
   2397 	/* Update the receive pointer. */
   2398 	sc->sc_rxptr = i;
   2399 
   2400 	DPRINTF(WM_DEBUG_RX,
   2401 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   2402 }
   2403 
   2404 /*
   2405  * wm_linkintr:
   2406  *
   2407  *	Helper; handle link interrupts.
   2408  */
   2409 static void
   2410 wm_linkintr(struct wm_softc *sc, uint32_t icr)
   2411 {
   2412 	uint32_t status;
   2413 
   2414 	/*
   2415 	 * If we get a link status interrupt on a 1000BASE-T
   2416 	 * device, just fall into the normal MII tick path.
   2417 	 */
   2418 	if (sc->sc_flags & WM_F_HAS_MII) {
   2419 		if (icr & ICR_LSC) {
   2420 			DPRINTF(WM_DEBUG_LINK,
   2421 			    ("%s: LINK: LSC -> mii_tick\n",
   2422 			    sc->sc_dev.dv_xname));
   2423 			mii_tick(&sc->sc_mii);
   2424 		} else if (icr & ICR_RXSEQ) {
   2425 			DPRINTF(WM_DEBUG_LINK,
   2426 			    ("%s: LINK Receive sequence error\n",
   2427 			    sc->sc_dev.dv_xname));
   2428 		}
   2429 		return;
   2430 	}
   2431 
   2432 	/*
   2433 	 * If we are now receiving /C/, check for link again in
   2434 	 * a couple of link clock ticks.
   2435 	 */
   2436 	if (icr & ICR_RXCFG) {
   2437 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
   2438 		    sc->sc_dev.dv_xname));
   2439 		sc->sc_tbi_anstate = 2;
   2440 	}
   2441 
   2442 	if (icr & ICR_LSC) {
   2443 		status = CSR_READ(sc, WMREG_STATUS);
   2444 		if (status & STATUS_LU) {
   2445 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
   2446 			    sc->sc_dev.dv_xname,
   2447 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   2448 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2449 			sc->sc_fcrtl &= ~FCRTL_XONE;
   2450 			if (status & STATUS_FD)
   2451 				sc->sc_tctl |=
   2452 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2453 			else
   2454 				sc->sc_tctl |=
   2455 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2456 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   2457 				sc->sc_fcrtl |= FCRTL_XONE;
   2458 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2459 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   2460 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   2461 				      sc->sc_fcrtl);
   2462 			sc->sc_tbi_linkup = 1;
   2463 		} else {
   2464 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   2465 			    sc->sc_dev.dv_xname));
   2466 			sc->sc_tbi_linkup = 0;
   2467 		}
   2468 		sc->sc_tbi_anstate = 2;
   2469 		wm_tbi_set_linkled(sc);
   2470 	} else if (icr & ICR_RXSEQ) {
   2471 		DPRINTF(WM_DEBUG_LINK,
   2472 		    ("%s: LINK: Receive sequence error\n",
   2473 		    sc->sc_dev.dv_xname));
   2474 	}
   2475 }
   2476 
   2477 /*
   2478  * wm_tick:
   2479  *
   2480  *	One second timer, used to check link status, sweep up
   2481  *	completed transmit jobs, etc.
   2482  */
   2483 static void
   2484 wm_tick(void *arg)
   2485 {
   2486 	struct wm_softc *sc = arg;
   2487 	int s;
   2488 
   2489 	s = splnet();
   2490 
   2491 	if (sc->sc_type >= WM_T_82542_2_1) {
   2492 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
   2493 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
   2494 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
   2495 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
   2496 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
   2497 	}
   2498 
   2499 	if (sc->sc_flags & WM_F_HAS_MII)
   2500 		mii_tick(&sc->sc_mii);
   2501 	else
   2502 		wm_tbi_check_link(sc);
   2503 
   2504 	splx(s);
   2505 
   2506 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2507 }
   2508 
   2509 /*
   2510  * wm_reset:
   2511  *
   2512  *	Reset the i82542 chip.
   2513  */
   2514 static void
   2515 wm_reset(struct wm_softc *sc)
   2516 {
   2517 	int i;
   2518 
   2519 	/*
   2520 	 * Allocate on-chip memory according to the MTU size.
   2521 	 * The Packet Buffer Allocation register must be written
   2522 	 * before the chip is reset.
   2523 	 */
   2524 	if (sc->sc_type < WM_T_82547) {
   2525 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2526 		    PBA_40K : PBA_48K;
   2527 	} else {
   2528 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2529 		    PBA_22K : PBA_30K;
   2530 		sc->sc_txfifo_head = 0;
   2531 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
   2532 		sc->sc_txfifo_size =
   2533 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
   2534 		sc->sc_txfifo_stall = 0;
   2535 	}
   2536 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
   2537 
   2538 	switch (sc->sc_type) {
   2539 	case WM_T_82544:
   2540 	case WM_T_82540:
   2541 	case WM_T_82545:
   2542 	case WM_T_82546:
   2543 	case WM_T_82541:
   2544 	case WM_T_82541_2:
   2545 		/*
   2546 		 * On some chipsets, a reset through a memory-mapped write
   2547 		 * cycle can cause the chip to reset before completing the
   2548 		 * write cycle.  This causes major headache that can be
   2549 		 * avoided by issuing the reset via indirect register writes
   2550 		 * through I/O space.
   2551 		 *
   2552 		 * So, if we successfully mapped the I/O BAR at attach time,
   2553 		 * use that.  Otherwise, try our luck with a memory-mapped
   2554 		 * reset.
   2555 		 */
   2556 		if (sc->sc_flags & WM_F_IOH_VALID)
   2557 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
   2558 		else
   2559 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2560 		break;
   2561 
   2562 	case WM_T_82545_3:
   2563 	case WM_T_82546_3:
   2564 		/* Use the shadow control register on these chips. */
   2565 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
   2566 		break;
   2567 
   2568 	default:
   2569 		/* Everything else can safely use the documented method. */
   2570 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2571 		break;
   2572 	}
   2573 	delay(10000);
   2574 
   2575 	for (i = 0; i < 1000; i++) {
   2576 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
   2577 			return;
   2578 		delay(20);
   2579 	}
   2580 
   2581 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
   2582 		log(LOG_ERR, "%s: reset failed to complete\n",
   2583 		    sc->sc_dev.dv_xname);
   2584 }
   2585 
   2586 /*
   2587  * wm_init:		[ifnet interface function]
   2588  *
   2589  *	Initialize the interface.  Must be called at splnet().
   2590  */
   2591 static int
   2592 wm_init(struct ifnet *ifp)
   2593 {
   2594 	struct wm_softc *sc = ifp->if_softc;
   2595 	struct wm_rxsoft *rxs;
   2596 	int i, error = 0;
   2597 	uint32_t reg;
   2598 
   2599 	/*
   2600 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   2601 	 * There is a small but measurable benefit to avoiding the adjusment
   2602 	 * of the descriptor so that the headers are aligned, for normal mtu,
   2603 	 * on such platforms.  One possibility is that the DMA itself is
   2604 	 * slightly more efficient if the front of the entire packet (instead
   2605 	 * of the front of the headers) is aligned.
   2606 	 *
   2607 	 * Note we must always set align_tweak to 0 if we are using
   2608 	 * jumbo frames.
   2609 	 */
   2610 #ifdef __NO_STRICT_ALIGNMENT
   2611 	sc->sc_align_tweak = 0;
   2612 #else
   2613 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   2614 		sc->sc_align_tweak = 0;
   2615 	else
   2616 		sc->sc_align_tweak = 2;
   2617 #endif /* __NO_STRICT_ALIGNMENT */
   2618 
   2619 	/* Cancel any pending I/O. */
   2620 	wm_stop(ifp, 0);
   2621 
   2622 	/* Reset the chip to a known state. */
   2623 	wm_reset(sc);
   2624 
   2625 	/* Initialize the transmit descriptor ring. */
   2626 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
   2627 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
   2628 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2629 	sc->sc_txfree = WM_NTXDESC(sc);
   2630 	sc->sc_txnext = 0;
   2631 
   2632 	if (sc->sc_type < WM_T_82543) {
   2633 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
   2634 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
   2635 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
   2636 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
   2637 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
   2638 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
   2639 	} else {
   2640 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
   2641 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
   2642 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
   2643 		CSR_WRITE(sc, WMREG_TDH, 0);
   2644 		CSR_WRITE(sc, WMREG_TDT, 0);
   2645 		CSR_WRITE(sc, WMREG_TIDV, 64);
   2646 		CSR_WRITE(sc, WMREG_TADV, 128);
   2647 
   2648 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
   2649 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   2650 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
   2651 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
   2652 	}
   2653 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
   2654 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
   2655 
   2656 	/* Initialize the transmit job descriptors. */
   2657 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
   2658 		sc->sc_txsoft[i].txs_mbuf = NULL;
   2659 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
   2660 	sc->sc_txsnext = 0;
   2661 	sc->sc_txsdirty = 0;
   2662 
   2663 	/*
   2664 	 * Initialize the receive descriptor and receive job
   2665 	 * descriptor rings.
   2666 	 */
   2667 	if (sc->sc_type < WM_T_82543) {
   2668 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
   2669 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
   2670 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
   2671 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
   2672 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
   2673 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
   2674 
   2675 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
   2676 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
   2677 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
   2678 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
   2679 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
   2680 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
   2681 	} else {
   2682 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
   2683 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
   2684 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
   2685 		CSR_WRITE(sc, WMREG_RDH, 0);
   2686 		CSR_WRITE(sc, WMREG_RDT, 0);
   2687 		CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
   2688 		CSR_WRITE(sc, WMREG_RADV, 128);
   2689 	}
   2690 	for (i = 0; i < WM_NRXDESC; i++) {
   2691 		rxs = &sc->sc_rxsoft[i];
   2692 		if (rxs->rxs_mbuf == NULL) {
   2693 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
   2694 				log(LOG_ERR, "%s: unable to allocate or map rx "
   2695 				    "buffer %d, error = %d\n",
   2696 				    sc->sc_dev.dv_xname, i, error);
   2697 				/*
   2698 				 * XXX Should attempt to run with fewer receive
   2699 				 * XXX buffers instead of just failing.
   2700 				 */
   2701 				wm_rxdrain(sc);
   2702 				goto out;
   2703 			}
   2704 		} else
   2705 			WM_INIT_RXDESC(sc, i);
   2706 	}
   2707 	sc->sc_rxptr = 0;
   2708 	sc->sc_rxdiscard = 0;
   2709 	WM_RXCHAIN_RESET(sc);
   2710 
   2711 	/*
   2712 	 * Clear out the VLAN table -- we don't use it (yet).
   2713 	 */
   2714 	CSR_WRITE(sc, WMREG_VET, 0);
   2715 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
   2716 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
   2717 
   2718 	/*
   2719 	 * Set up flow-control parameters.
   2720 	 *
   2721 	 * XXX Values could probably stand some tuning.
   2722 	 */
   2723 	CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
   2724 	CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
   2725 	CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
   2726 
   2727 	sc->sc_fcrtl = FCRTL_DFLT;
   2728 	if (sc->sc_type < WM_T_82543) {
   2729 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
   2730 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
   2731 	} else {
   2732 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
   2733 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
   2734 	}
   2735 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
   2736 
   2737 #if 0 /* XXXJRT */
   2738 	/* Deal with VLAN enables. */
   2739 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2740 		sc->sc_ctrl |= CTRL_VME;
   2741 	else
   2742 #endif /* XXXJRT */
   2743 		sc->sc_ctrl &= ~CTRL_VME;
   2744 
   2745 	/* Write the control registers. */
   2746 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2747 #if 0
   2748 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   2749 #endif
   2750 
   2751 	/*
   2752 	 * Set up checksum offload parameters.
   2753 	 */
   2754 	reg = CSR_READ(sc, WMREG_RXCSUM);
   2755 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   2756 		reg |= RXCSUM_IPOFL;
   2757 	else
   2758 		reg &= ~RXCSUM_IPOFL;
   2759 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   2760 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   2761 	else {
   2762 		reg &= ~RXCSUM_TUOFL;
   2763 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
   2764 			reg &= ~RXCSUM_IPOFL;
   2765 	}
   2766 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
   2767 
   2768 	/*
   2769 	 * Set up the interrupt registers.
   2770 	 */
   2771 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   2772 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   2773 	    ICR_RXO | ICR_RXT0;
   2774 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
   2775 		sc->sc_icr |= ICR_RXCFG;
   2776 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
   2777 
   2778 	/* Set up the inter-packet gap. */
   2779 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   2780 
   2781 	if (sc->sc_type >= WM_T_82543) {
   2782 		/* Set up the interrupt throttling register (units of 256ns) */
   2783 		sc->sc_itr = 1000000000 / (7000 * 256);
   2784 		CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
   2785 	}
   2786 
   2787 #if 0 /* XXXJRT */
   2788 	/* Set the VLAN ethernetype. */
   2789 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
   2790 #endif
   2791 
   2792 	/*
   2793 	 * Set up the transmit control register; we start out with
   2794 	 * a collision distance suitable for FDX, but update it whe
   2795 	 * we resolve the media type.
   2796 	 */
   2797 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
   2798 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2799 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2800 
   2801 	/* Set the media. */
   2802 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
   2803 
   2804 	/*
   2805 	 * Set up the receive control register; we actually program
   2806 	 * the register when we set the receive filter.  Use multicast
   2807 	 * address offset type 0.
   2808 	 *
   2809 	 * Only the i82544 has the ability to strip the incoming
   2810 	 * CRC, so we don't enable that feature.
   2811 	 */
   2812 	sc->sc_mchash_type = 0;
   2813 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
   2814 	    RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
   2815 
   2816 	if(MCLBYTES == 2048) {
   2817 		sc->sc_rctl |= RCTL_2k;
   2818 	} else {
   2819 		if(sc->sc_type >= WM_T_82543) {
   2820 			switch(MCLBYTES) {
   2821 			case 4096:
   2822 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
   2823 				break;
   2824 			case 8192:
   2825 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
   2826 				break;
   2827 			case 16384:
   2828 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
   2829 				break;
   2830 			default:
   2831 				panic("wm_init: MCLBYTES %d unsupported",
   2832 				    MCLBYTES);
   2833 				break;
   2834 			}
   2835 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
   2836 	}
   2837 
   2838 	/* Set the receive filter. */
   2839 	wm_set_filter(sc);
   2840 
   2841 	/* Start the one second link check clock. */
   2842 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2843 
   2844 	/* ...all done! */
   2845 	ifp->if_flags |= IFF_RUNNING;
   2846 	ifp->if_flags &= ~IFF_OACTIVE;
   2847 
   2848  out:
   2849 	if (error)
   2850 		log(LOG_ERR, "%s: interface not running\n",
   2851 		    sc->sc_dev.dv_xname);
   2852 	return (error);
   2853 }
   2854 
   2855 /*
   2856  * wm_rxdrain:
   2857  *
   2858  *	Drain the receive queue.
   2859  */
   2860 static void
   2861 wm_rxdrain(struct wm_softc *sc)
   2862 {
   2863 	struct wm_rxsoft *rxs;
   2864 	int i;
   2865 
   2866 	for (i = 0; i < WM_NRXDESC; i++) {
   2867 		rxs = &sc->sc_rxsoft[i];
   2868 		if (rxs->rxs_mbuf != NULL) {
   2869 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2870 			m_freem(rxs->rxs_mbuf);
   2871 			rxs->rxs_mbuf = NULL;
   2872 		}
   2873 	}
   2874 }
   2875 
   2876 /*
   2877  * wm_stop:		[ifnet interface function]
   2878  *
   2879  *	Stop transmission on the interface.
   2880  */
   2881 static void
   2882 wm_stop(struct ifnet *ifp, int disable)
   2883 {
   2884 	struct wm_softc *sc = ifp->if_softc;
   2885 	struct wm_txsoft *txs;
   2886 	int i;
   2887 
   2888 	/* Stop the one second clock. */
   2889 	callout_stop(&sc->sc_tick_ch);
   2890 
   2891 	/* Stop the 82547 Tx FIFO stall check timer. */
   2892 	if (sc->sc_type == WM_T_82547)
   2893 		callout_stop(&sc->sc_txfifo_ch);
   2894 
   2895 	if (sc->sc_flags & WM_F_HAS_MII) {
   2896 		/* Down the MII. */
   2897 		mii_down(&sc->sc_mii);
   2898 	}
   2899 
   2900 	/* Stop the transmit and receive processes. */
   2901 	CSR_WRITE(sc, WMREG_TCTL, 0);
   2902 	CSR_WRITE(sc, WMREG_RCTL, 0);
   2903 
   2904 	/*
   2905 	 * Clear the interrupt mask to ensure the device cannot assert its
   2906 	 * interrupt line.
   2907 	 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
   2908 	 * any currently pending or shared interrupt.
   2909 	 */
   2910 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   2911 	sc->sc_icr = 0;
   2912 
   2913 	/* Release any queued transmit buffers. */
   2914 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   2915 		txs = &sc->sc_txsoft[i];
   2916 		if (txs->txs_mbuf != NULL) {
   2917 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2918 			m_freem(txs->txs_mbuf);
   2919 			txs->txs_mbuf = NULL;
   2920 		}
   2921 	}
   2922 
   2923 	if (disable)
   2924 		wm_rxdrain(sc);
   2925 
   2926 	/* Mark the interface as down and cancel the watchdog timer. */
   2927 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2928 	ifp->if_timer = 0;
   2929 }
   2930 
   2931 /*
   2932  * wm_acquire_eeprom:
   2933  *
   2934  *	Perform the EEPROM handshake required on some chips.
   2935  */
   2936 static int
   2937 wm_acquire_eeprom(struct wm_softc *sc)
   2938 {
   2939 	uint32_t reg;
   2940 	int x;
   2941 
   2942 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
   2943 		reg = CSR_READ(sc, WMREG_EECD);
   2944 
   2945 		/* Request EEPROM access. */
   2946 		reg |= EECD_EE_REQ;
   2947 		CSR_WRITE(sc, WMREG_EECD, reg);
   2948 
   2949 		/* ..and wait for it to be granted. */
   2950 		for (x = 0; x < 100; x++) {
   2951 			reg = CSR_READ(sc, WMREG_EECD);
   2952 			if (reg & EECD_EE_GNT)
   2953 				break;
   2954 			delay(5);
   2955 		}
   2956 		if ((reg & EECD_EE_GNT) == 0) {
   2957 			aprint_error("%s: could not acquire EEPROM GNT\n",
   2958 			    sc->sc_dev.dv_xname);
   2959 			reg &= ~EECD_EE_REQ;
   2960 			CSR_WRITE(sc, WMREG_EECD, reg);
   2961 			return (1);
   2962 		}
   2963 	}
   2964 
   2965 	return (0);
   2966 }
   2967 
   2968 /*
   2969  * wm_release_eeprom:
   2970  *
   2971  *	Release the EEPROM mutex.
   2972  */
   2973 static void
   2974 wm_release_eeprom(struct wm_softc *sc)
   2975 {
   2976 	uint32_t reg;
   2977 
   2978 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
   2979 		reg = CSR_READ(sc, WMREG_EECD);
   2980 		reg &= ~EECD_EE_REQ;
   2981 		CSR_WRITE(sc, WMREG_EECD, reg);
   2982 	}
   2983 }
   2984 
   2985 /*
   2986  * wm_eeprom_sendbits:
   2987  *
   2988  *	Send a series of bits to the EEPROM.
   2989  */
   2990 static void
   2991 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
   2992 {
   2993 	uint32_t reg;
   2994 	int x;
   2995 
   2996 	reg = CSR_READ(sc, WMREG_EECD);
   2997 
   2998 	for (x = nbits; x > 0; x--) {
   2999 		if (bits & (1U << (x - 1)))
   3000 			reg |= EECD_DI;
   3001 		else
   3002 			reg &= ~EECD_DI;
   3003 		CSR_WRITE(sc, WMREG_EECD, reg);
   3004 		delay(2);
   3005 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   3006 		delay(2);
   3007 		CSR_WRITE(sc, WMREG_EECD, reg);
   3008 		delay(2);
   3009 	}
   3010 }
   3011 
   3012 /*
   3013  * wm_eeprom_recvbits:
   3014  *
   3015  *	Receive a series of bits from the EEPROM.
   3016  */
   3017 static void
   3018 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
   3019 {
   3020 	uint32_t reg, val;
   3021 	int x;
   3022 
   3023 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
   3024 
   3025 	val = 0;
   3026 	for (x = nbits; x > 0; x--) {
   3027 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   3028 		delay(2);
   3029 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
   3030 			val |= (1U << (x - 1));
   3031 		CSR_WRITE(sc, WMREG_EECD, reg);
   3032 		delay(2);
   3033 	}
   3034 	*valp = val;
   3035 }
   3036 
   3037 /*
   3038  * wm_read_eeprom_uwire:
   3039  *
   3040  *	Read a word from the EEPROM using the MicroWire protocol.
   3041  */
   3042 static int
   3043 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3044 {
   3045 	uint32_t reg, val;
   3046 	int i;
   3047 
   3048 	for (i = 0; i < wordcnt; i++) {
   3049 		/* Clear SK and DI. */
   3050 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
   3051 		CSR_WRITE(sc, WMREG_EECD, reg);
   3052 
   3053 		/* Set CHIP SELECT. */
   3054 		reg |= EECD_CS;
   3055 		CSR_WRITE(sc, WMREG_EECD, reg);
   3056 		delay(2);
   3057 
   3058 		/* Shift in the READ command. */
   3059 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
   3060 
   3061 		/* Shift in address. */
   3062 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
   3063 
   3064 		/* Shift out the data. */
   3065 		wm_eeprom_recvbits(sc, &val, 16);
   3066 		data[i] = val & 0xffff;
   3067 
   3068 		/* Clear CHIP SELECT. */
   3069 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
   3070 		CSR_WRITE(sc, WMREG_EECD, reg);
   3071 		delay(2);
   3072 	}
   3073 
   3074 	return (0);
   3075 }
   3076 
   3077 /*
   3078  * wm_spi_eeprom_ready:
   3079  *
   3080  *	Wait for a SPI EEPROM to be ready for commands.
   3081  */
   3082 static int
   3083 wm_spi_eeprom_ready(struct wm_softc *sc)
   3084 {
   3085 	uint32_t val;
   3086 	int usec;
   3087 
   3088 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
   3089 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
   3090 		wm_eeprom_recvbits(sc, &val, 8);
   3091 		if ((val & SPI_SR_RDY) == 0)
   3092 			break;
   3093 	}
   3094 	if (usec >= SPI_MAX_RETRIES) {
   3095 		aprint_error("%s: EEPROM failed to become ready\n",
   3096 		    sc->sc_dev.dv_xname);
   3097 		return (1);
   3098 	}
   3099 	return (0);
   3100 }
   3101 
   3102 /*
   3103  * wm_read_eeprom_spi:
   3104  *
   3105  *	Read a work from the EEPROM using the SPI protocol.
   3106  */
   3107 static int
   3108 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3109 {
   3110 	uint32_t reg, val;
   3111 	int i;
   3112 	uint8_t opc;
   3113 
   3114 	/* Clear SK and CS. */
   3115 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
   3116 	CSR_WRITE(sc, WMREG_EECD, reg);
   3117 	delay(2);
   3118 
   3119 	if (wm_spi_eeprom_ready(sc))
   3120 		return (1);
   3121 
   3122 	/* Toggle CS to flush commands. */
   3123 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
   3124 	delay(2);
   3125 	CSR_WRITE(sc, WMREG_EECD, reg);
   3126 	delay(2);
   3127 
   3128 	opc = SPI_OPC_READ;
   3129 	if (sc->sc_ee_addrbits == 8 && word >= 128)
   3130 		opc |= SPI_OPC_A8;
   3131 
   3132 	wm_eeprom_sendbits(sc, opc, 8);
   3133 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
   3134 
   3135 	for (i = 0; i < wordcnt; i++) {
   3136 		wm_eeprom_recvbits(sc, &val, 16);
   3137 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
   3138 	}
   3139 
   3140 	/* Raise CS and clear SK. */
   3141 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
   3142 	CSR_WRITE(sc, WMREG_EECD, reg);
   3143 	delay(2);
   3144 
   3145 	return (0);
   3146 }
   3147 
   3148 #define EEPROM_CHECKSUM		0xBABA
   3149 #define EEPROM_SIZE		0x0040
   3150 
   3151 /*
   3152  * wm_validate_eeprom_checksum
   3153  *
   3154  * The checksum is defined as the sum of the first 64 (16 bit) words.
   3155  */
   3156 static int
   3157 wm_validate_eeprom_checksum(struct wm_softc *sc)
   3158 {
   3159 	uint16_t checksum;
   3160 	uint16_t eeprom_data;
   3161 	int i;
   3162 
   3163 	checksum = 0;
   3164 
   3165 	for (i = 0; i < EEPROM_SIZE; i++) {
   3166 		if(wm_read_eeprom(sc, i, 1, &eeprom_data))
   3167 			return 1;
   3168 		checksum += eeprom_data;
   3169 	}
   3170 
   3171 	if (checksum != (uint16_t) EEPROM_CHECKSUM)
   3172 		return 1;
   3173 
   3174 	return 0;
   3175 }
   3176 
   3177 /*
   3178  * wm_read_eeprom:
   3179  *
   3180  *	Read data from the serial EEPROM.
   3181  */
   3182 static int
   3183 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3184 {
   3185 	int rv;
   3186 
   3187 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
   3188 		return 1;
   3189 
   3190 	if (wm_acquire_eeprom(sc))
   3191 		return 1;
   3192 
   3193 	if (sc->sc_flags & WM_F_EEPROM_SPI)
   3194 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
   3195 	else
   3196 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
   3197 
   3198 	wm_release_eeprom(sc);
   3199 	return rv;
   3200 }
   3201 
   3202 /*
   3203  * wm_add_rxbuf:
   3204  *
   3205  *	Add a receive buffer to the indiciated descriptor.
   3206  */
   3207 static int
   3208 wm_add_rxbuf(struct wm_softc *sc, int idx)
   3209 {
   3210 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
   3211 	struct mbuf *m;
   3212 	int error;
   3213 
   3214 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3215 	if (m == NULL)
   3216 		return (ENOBUFS);
   3217 
   3218 	MCLGET(m, M_DONTWAIT);
   3219 	if ((m->m_flags & M_EXT) == 0) {
   3220 		m_freem(m);
   3221 		return (ENOBUFS);
   3222 	}
   3223 
   3224 	if (rxs->rxs_mbuf != NULL)
   3225 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3226 
   3227 	rxs->rxs_mbuf = m;
   3228 
   3229 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   3230 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   3231 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   3232 	if (error) {
   3233 		/* XXX XXX XXX */
   3234 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   3235 		    sc->sc_dev.dv_xname, idx, error);
   3236 		panic("wm_add_rxbuf");
   3237 	}
   3238 
   3239 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3240 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3241 
   3242 	WM_INIT_RXDESC(sc, idx);
   3243 
   3244 	return (0);
   3245 }
   3246 
   3247 /*
   3248  * wm_set_ral:
   3249  *
   3250  *	Set an entery in the receive address list.
   3251  */
   3252 static void
   3253 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
   3254 {
   3255 	uint32_t ral_lo, ral_hi;
   3256 
   3257 	if (enaddr != NULL) {
   3258 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   3259 		    (enaddr[3] << 24);
   3260 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   3261 		ral_hi |= RAL_AV;
   3262 	} else {
   3263 		ral_lo = 0;
   3264 		ral_hi = 0;
   3265 	}
   3266 
   3267 	if (sc->sc_type >= WM_T_82544) {
   3268 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
   3269 		    ral_lo);
   3270 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
   3271 		    ral_hi);
   3272 	} else {
   3273 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
   3274 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
   3275 	}
   3276 }
   3277 
   3278 /*
   3279  * wm_mchash:
   3280  *
   3281  *	Compute the hash of the multicast address for the 4096-bit
   3282  *	multicast filter.
   3283  */
   3284 static uint32_t
   3285 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
   3286 {
   3287 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   3288 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   3289 	uint32_t hash;
   3290 
   3291 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   3292 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   3293 
   3294 	return (hash & 0xfff);
   3295 }
   3296 
   3297 /*
   3298  * wm_set_filter:
   3299  *
   3300  *	Set up the receive filter.
   3301  */
   3302 static void
   3303 wm_set_filter(struct wm_softc *sc)
   3304 {
   3305 	struct ethercom *ec = &sc->sc_ethercom;
   3306 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3307 	struct ether_multi *enm;
   3308 	struct ether_multistep step;
   3309 	bus_addr_t mta_reg;
   3310 	uint32_t hash, reg, bit;
   3311 	int i;
   3312 
   3313 	if (sc->sc_type >= WM_T_82544)
   3314 		mta_reg = WMREG_CORDOVA_MTA;
   3315 	else
   3316 		mta_reg = WMREG_MTA;
   3317 
   3318 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   3319 
   3320 	if (ifp->if_flags & IFF_BROADCAST)
   3321 		sc->sc_rctl |= RCTL_BAM;
   3322 	if (ifp->if_flags & IFF_PROMISC) {
   3323 		sc->sc_rctl |= RCTL_UPE;
   3324 		goto allmulti;
   3325 	}
   3326 
   3327 	/*
   3328 	 * Set the station address in the first RAL slot, and
   3329 	 * clear the remaining slots.
   3330 	 */
   3331 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
   3332 	for (i = 1; i < WM_RAL_TABSIZE; i++)
   3333 		wm_set_ral(sc, NULL, i);
   3334 
   3335 	/* Clear out the multicast table. */
   3336 	for (i = 0; i < WM_MC_TABSIZE; i++)
   3337 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
   3338 
   3339 	ETHER_FIRST_MULTI(step, ec, enm);
   3340 	while (enm != NULL) {
   3341 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3342 			/*
   3343 			 * We must listen to a range of multicast addresses.
   3344 			 * For now, just accept all multicasts, rather than
   3345 			 * trying to set only those filter bits needed to match
   3346 			 * the range.  (At this time, the only use of address
   3347 			 * ranges is for IP multicast routing, for which the
   3348 			 * range is big enough to require all bits set.)
   3349 			 */
   3350 			goto allmulti;
   3351 		}
   3352 
   3353 		hash = wm_mchash(sc, enm->enm_addrlo);
   3354 
   3355 		reg = (hash >> 5) & 0x7f;
   3356 		bit = hash & 0x1f;
   3357 
   3358 		hash = CSR_READ(sc, mta_reg + (reg << 2));
   3359 		hash |= 1U << bit;
   3360 
   3361 		/* XXX Hardware bug?? */
   3362 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
   3363 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
   3364 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3365 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
   3366 		} else
   3367 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3368 
   3369 		ETHER_NEXT_MULTI(step, enm);
   3370 	}
   3371 
   3372 	ifp->if_flags &= ~IFF_ALLMULTI;
   3373 	goto setit;
   3374 
   3375  allmulti:
   3376 	ifp->if_flags |= IFF_ALLMULTI;
   3377 	sc->sc_rctl |= RCTL_MPE;
   3378 
   3379  setit:
   3380 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
   3381 }
   3382 
   3383 /*
   3384  * wm_tbi_mediainit:
   3385  *
   3386  *	Initialize media for use on 1000BASE-X devices.
   3387  */
   3388 static void
   3389 wm_tbi_mediainit(struct wm_softc *sc)
   3390 {
   3391 	const char *sep = "";
   3392 
   3393 	if (sc->sc_type < WM_T_82543)
   3394 		sc->sc_tipg = TIPG_WM_DFLT;
   3395 	else
   3396 		sc->sc_tipg = TIPG_LG_DFLT;
   3397 
   3398 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
   3399 	    wm_tbi_mediastatus);
   3400 
   3401 	/*
   3402 	 * SWD Pins:
   3403 	 *
   3404 	 *	0 = Link LED (output)
   3405 	 *	1 = Loss Of Signal (input)
   3406 	 */
   3407 	sc->sc_ctrl |= CTRL_SWDPIO(0);
   3408 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
   3409 
   3410 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3411 
   3412 #define	ADD(ss, mm, dd)							\
   3413 do {									\
   3414 	aprint_normal("%s%s", sep, ss);					\
   3415 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
   3416 	sep = ", ";							\
   3417 } while (/*CONSTCOND*/0)
   3418 
   3419 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
   3420 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
   3421 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
   3422 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
   3423 	aprint_normal("\n");
   3424 
   3425 #undef ADD
   3426 
   3427 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   3428 }
   3429 
   3430 /*
   3431  * wm_tbi_mediastatus:	[ifmedia interface function]
   3432  *
   3433  *	Get the current interface media status on a 1000BASE-X device.
   3434  */
   3435 static void
   3436 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3437 {
   3438 	struct wm_softc *sc = ifp->if_softc;
   3439 	uint32_t ctrl;
   3440 
   3441 	ifmr->ifm_status = IFM_AVALID;
   3442 	ifmr->ifm_active = IFM_ETHER;
   3443 
   3444 	if (sc->sc_tbi_linkup == 0) {
   3445 		ifmr->ifm_active |= IFM_NONE;
   3446 		return;
   3447 	}
   3448 
   3449 	ifmr->ifm_status |= IFM_ACTIVE;
   3450 	ifmr->ifm_active |= IFM_1000_SX;
   3451 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
   3452 		ifmr->ifm_active |= IFM_FDX;
   3453 	ctrl = CSR_READ(sc, WMREG_CTRL);
   3454 	if (ctrl & CTRL_RFCE)
   3455 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   3456 	if (ctrl & CTRL_TFCE)
   3457 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   3458 }
   3459 
   3460 /*
   3461  * wm_tbi_mediachange:	[ifmedia interface function]
   3462  *
   3463  *	Set hardware to newly-selected media on a 1000BASE-X device.
   3464  */
   3465 static int
   3466 wm_tbi_mediachange(struct ifnet *ifp)
   3467 {
   3468 	struct wm_softc *sc = ifp->if_softc;
   3469 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   3470 	uint32_t status;
   3471 	int i;
   3472 
   3473 	sc->sc_txcw = ife->ifm_data;
   3474 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
   3475 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
   3476 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
   3477 	sc->sc_txcw |= TXCW_ANE;
   3478 
   3479 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   3480 	delay(10000);
   3481 
   3482 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
   3483 
   3484 	sc->sc_tbi_anstate = 0;
   3485 
   3486 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
   3487 		/* Have signal; wait for the link to come up. */
   3488 		for (i = 0; i < 50; i++) {
   3489 			delay(10000);
   3490 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
   3491 				break;
   3492 		}
   3493 
   3494 		status = CSR_READ(sc, WMREG_STATUS);
   3495 		if (status & STATUS_LU) {
   3496 			/* Link is up. */
   3497 			DPRINTF(WM_DEBUG_LINK,
   3498 			    ("%s: LINK: set media -> link up %s\n",
   3499 			    sc->sc_dev.dv_xname,
   3500 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   3501 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3502 			sc->sc_fcrtl &= ~FCRTL_XONE;
   3503 			if (status & STATUS_FD)
   3504 				sc->sc_tctl |=
   3505 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3506 			else
   3507 				sc->sc_tctl |=
   3508 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3509 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   3510 				sc->sc_fcrtl |= FCRTL_XONE;
   3511 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3512 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   3513 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   3514 				      sc->sc_fcrtl);
   3515 			sc->sc_tbi_linkup = 1;
   3516 		} else {
   3517 			/* Link is down. */
   3518 			DPRINTF(WM_DEBUG_LINK,
   3519 			    ("%s: LINK: set media -> link down\n",
   3520 			    sc->sc_dev.dv_xname));
   3521 			sc->sc_tbi_linkup = 0;
   3522 		}
   3523 	} else {
   3524 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
   3525 		    sc->sc_dev.dv_xname));
   3526 		sc->sc_tbi_linkup = 0;
   3527 	}
   3528 
   3529 	wm_tbi_set_linkled(sc);
   3530 
   3531 	return (0);
   3532 }
   3533 
   3534 /*
   3535  * wm_tbi_set_linkled:
   3536  *
   3537  *	Update the link LED on 1000BASE-X devices.
   3538  */
   3539 static void
   3540 wm_tbi_set_linkled(struct wm_softc *sc)
   3541 {
   3542 
   3543 	if (sc->sc_tbi_linkup)
   3544 		sc->sc_ctrl |= CTRL_SWDPIN(0);
   3545 	else
   3546 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
   3547 
   3548 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3549 }
   3550 
   3551 /*
   3552  * wm_tbi_check_link:
   3553  *
   3554  *	Check the link on 1000BASE-X devices.
   3555  */
   3556 static void
   3557 wm_tbi_check_link(struct wm_softc *sc)
   3558 {
   3559 	uint32_t rxcw, ctrl, status;
   3560 
   3561 	if (sc->sc_tbi_anstate == 0)
   3562 		return;
   3563 	else if (sc->sc_tbi_anstate > 1) {
   3564 		DPRINTF(WM_DEBUG_LINK,
   3565 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
   3566 		    sc->sc_tbi_anstate));
   3567 		sc->sc_tbi_anstate--;
   3568 		return;
   3569 	}
   3570 
   3571 	sc->sc_tbi_anstate = 0;
   3572 
   3573 	rxcw = CSR_READ(sc, WMREG_RXCW);
   3574 	ctrl = CSR_READ(sc, WMREG_CTRL);
   3575 	status = CSR_READ(sc, WMREG_STATUS);
   3576 
   3577 	if ((status & STATUS_LU) == 0) {
   3578 		DPRINTF(WM_DEBUG_LINK,
   3579 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
   3580 		sc->sc_tbi_linkup = 0;
   3581 	} else {
   3582 		DPRINTF(WM_DEBUG_LINK,
   3583 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
   3584 		    (status & STATUS_FD) ? "FDX" : "HDX"));
   3585 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3586 		sc->sc_fcrtl &= ~FCRTL_XONE;
   3587 		if (status & STATUS_FD)
   3588 			sc->sc_tctl |=
   3589 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3590 		else
   3591 			sc->sc_tctl |=
   3592 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3593 		if (ctrl & CTRL_TFCE)
   3594 			sc->sc_fcrtl |= FCRTL_XONE;
   3595 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3596 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   3597 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
   3598 			      sc->sc_fcrtl);
   3599 		sc->sc_tbi_linkup = 1;
   3600 	}
   3601 
   3602 	wm_tbi_set_linkled(sc);
   3603 }
   3604 
   3605 /*
   3606  * wm_gmii_reset:
   3607  *
   3608  *	Reset the PHY.
   3609  */
   3610 static void
   3611 wm_gmii_reset(struct wm_softc *sc)
   3612 {
   3613 	uint32_t reg;
   3614 
   3615 	if (sc->sc_type >= WM_T_82544) {
   3616 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   3617 		delay(20000);
   3618 
   3619 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3620 		delay(20000);
   3621 	} else {
   3622 		/* The PHY reset pin is active-low. */
   3623 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   3624 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
   3625 		    CTRL_EXT_SWDPIN(4));
   3626 		reg |= CTRL_EXT_SWDPIO(4);
   3627 
   3628 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   3629 		delay(10);
   3630 
   3631 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   3632 		delay(10);
   3633 
   3634 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   3635 		delay(10);
   3636 #if 0
   3637 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
   3638 #endif
   3639 	}
   3640 }
   3641 
   3642 /*
   3643  * wm_gmii_mediainit:
   3644  *
   3645  *	Initialize media for use on 1000BASE-T devices.
   3646  */
   3647 static void
   3648 wm_gmii_mediainit(struct wm_softc *sc)
   3649 {
   3650 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3651 
   3652 	/* We have MII. */
   3653 	sc->sc_flags |= WM_F_HAS_MII;
   3654 
   3655 	sc->sc_tipg = TIPG_1000T_DFLT;
   3656 
   3657 	/*
   3658 	 * Let the chip set speed/duplex on its own based on
   3659 	 * signals from the PHY.
   3660 	 */
   3661 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
   3662 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3663 
   3664 	/* Initialize our media structures and probe the GMII. */
   3665 	sc->sc_mii.mii_ifp = ifp;
   3666 
   3667 	if (sc->sc_type >= WM_T_82544) {
   3668 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
   3669 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
   3670 	} else {
   3671 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
   3672 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
   3673 	}
   3674 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
   3675 
   3676 	wm_gmii_reset(sc);
   3677 
   3678 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
   3679 	    wm_gmii_mediastatus);
   3680 
   3681 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   3682 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
   3683 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   3684 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   3685 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   3686 	} else
   3687 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   3688 }
   3689 
   3690 /*
   3691  * wm_gmii_mediastatus:	[ifmedia interface function]
   3692  *
   3693  *	Get the current interface media status on a 1000BASE-T device.
   3694  */
   3695 static void
   3696 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3697 {
   3698 	struct wm_softc *sc = ifp->if_softc;
   3699 
   3700 	mii_pollstat(&sc->sc_mii);
   3701 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3702 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
   3703 			   sc->sc_flowflags;
   3704 }
   3705 
   3706 /*
   3707  * wm_gmii_mediachange:	[ifmedia interface function]
   3708  *
   3709  *	Set hardware to newly-selected media on a 1000BASE-T device.
   3710  */
   3711 static int
   3712 wm_gmii_mediachange(struct ifnet *ifp)
   3713 {
   3714 	struct wm_softc *sc = ifp->if_softc;
   3715 
   3716 	if (ifp->if_flags & IFF_UP)
   3717 		mii_mediachg(&sc->sc_mii);
   3718 	return (0);
   3719 }
   3720 
   3721 #define	MDI_IO		CTRL_SWDPIN(2)
   3722 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
   3723 #define	MDI_CLK		CTRL_SWDPIN(3)
   3724 
   3725 static void
   3726 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
   3727 {
   3728 	uint32_t i, v;
   3729 
   3730 	v = CSR_READ(sc, WMREG_CTRL);
   3731 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   3732 	v |= MDI_DIR | CTRL_SWDPIO(3);
   3733 
   3734 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
   3735 		if (data & i)
   3736 			v |= MDI_IO;
   3737 		else
   3738 			v &= ~MDI_IO;
   3739 		CSR_WRITE(sc, WMREG_CTRL, v);
   3740 		delay(10);
   3741 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3742 		delay(10);
   3743 		CSR_WRITE(sc, WMREG_CTRL, v);
   3744 		delay(10);
   3745 	}
   3746 }
   3747 
   3748 static uint32_t
   3749 i82543_mii_recvbits(struct wm_softc *sc)
   3750 {
   3751 	uint32_t v, i, data = 0;
   3752 
   3753 	v = CSR_READ(sc, WMREG_CTRL);
   3754 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   3755 	v |= CTRL_SWDPIO(3);
   3756 
   3757 	CSR_WRITE(sc, WMREG_CTRL, v);
   3758 	delay(10);
   3759 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3760 	delay(10);
   3761 	CSR_WRITE(sc, WMREG_CTRL, v);
   3762 	delay(10);
   3763 
   3764 	for (i = 0; i < 16; i++) {
   3765 		data <<= 1;
   3766 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3767 		delay(10);
   3768 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
   3769 			data |= 1;
   3770 		CSR_WRITE(sc, WMREG_CTRL, v);
   3771 		delay(10);
   3772 	}
   3773 
   3774 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3775 	delay(10);
   3776 	CSR_WRITE(sc, WMREG_CTRL, v);
   3777 	delay(10);
   3778 
   3779 	return (data);
   3780 }
   3781 
   3782 #undef MDI_IO
   3783 #undef MDI_DIR
   3784 #undef MDI_CLK
   3785 
   3786 /*
   3787  * wm_gmii_i82543_readreg:	[mii interface function]
   3788  *
   3789  *	Read a PHY register on the GMII (i82543 version).
   3790  */
   3791 static int
   3792 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
   3793 {
   3794 	struct wm_softc *sc = (void *) self;
   3795 	int rv;
   3796 
   3797 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   3798 	i82543_mii_sendbits(sc, reg | (phy << 5) |
   3799 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
   3800 	rv = i82543_mii_recvbits(sc) & 0xffff;
   3801 
   3802 	DPRINTF(WM_DEBUG_GMII,
   3803 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
   3804 	    sc->sc_dev.dv_xname, phy, reg, rv));
   3805 
   3806 	return (rv);
   3807 }
   3808 
   3809 /*
   3810  * wm_gmii_i82543_writereg:	[mii interface function]
   3811  *
   3812  *	Write a PHY register on the GMII (i82543 version).
   3813  */
   3814 static void
   3815 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
   3816 {
   3817 	struct wm_softc *sc = (void *) self;
   3818 
   3819 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   3820 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
   3821 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
   3822 	    (MII_COMMAND_START << 30), 32);
   3823 }
   3824 
   3825 /*
   3826  * wm_gmii_i82544_readreg:	[mii interface function]
   3827  *
   3828  *	Read a PHY register on the GMII.
   3829  */
   3830 static int
   3831 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
   3832 {
   3833 	struct wm_softc *sc = (void *) self;
   3834 	uint32_t mdic = 0;
   3835 	int i, rv;
   3836 
   3837 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
   3838 	    MDIC_REGADD(reg));
   3839 
   3840 	for (i = 0; i < 100; i++) {
   3841 		mdic = CSR_READ(sc, WMREG_MDIC);
   3842 		if (mdic & MDIC_READY)
   3843 			break;
   3844 		delay(10);
   3845 	}
   3846 
   3847 	if ((mdic & MDIC_READY) == 0) {
   3848 		log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
   3849 		    sc->sc_dev.dv_xname, phy, reg);
   3850 		rv = 0;
   3851 	} else if (mdic & MDIC_E) {
   3852 #if 0 /* This is normal if no PHY is present. */
   3853 		log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
   3854 		    sc->sc_dev.dv_xname, phy, reg);
   3855 #endif
   3856 		rv = 0;
   3857 	} else {
   3858 		rv = MDIC_DATA(mdic);
   3859 		if (rv == 0xffff)
   3860 			rv = 0;
   3861 	}
   3862 
   3863 	return (rv);
   3864 }
   3865 
   3866 /*
   3867  * wm_gmii_i82544_writereg:	[mii interface function]
   3868  *
   3869  *	Write a PHY register on the GMII.
   3870  */
   3871 static void
   3872 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
   3873 {
   3874 	struct wm_softc *sc = (void *) self;
   3875 	uint32_t mdic = 0;
   3876 	int i;
   3877 
   3878 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
   3879 	    MDIC_REGADD(reg) | MDIC_DATA(val));
   3880 
   3881 	for (i = 0; i < 100; i++) {
   3882 		mdic = CSR_READ(sc, WMREG_MDIC);
   3883 		if (mdic & MDIC_READY)
   3884 			break;
   3885 		delay(10);
   3886 	}
   3887 
   3888 	if ((mdic & MDIC_READY) == 0)
   3889 		log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
   3890 		    sc->sc_dev.dv_xname, phy, reg);
   3891 	else if (mdic & MDIC_E)
   3892 		log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
   3893 		    sc->sc_dev.dv_xname, phy, reg);
   3894 }
   3895 
   3896 /*
   3897  * wm_gmii_statchg:	[mii interface function]
   3898  *
   3899  *	Callback from MII layer when media changes.
   3900  */
   3901 static void
   3902 wm_gmii_statchg(struct device *self)
   3903 {
   3904 	struct wm_softc *sc = (void *) self;
   3905 	struct mii_data *mii = &sc->sc_mii;
   3906 
   3907 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
   3908 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3909 	sc->sc_fcrtl &= ~FCRTL_XONE;
   3910 
   3911 	/*
   3912 	 * Get flow control negotiation result.
   3913 	 */
   3914 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3915 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3916 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3917 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3918 	}
   3919 
   3920 	if (sc->sc_flowflags & IFM_FLOW) {
   3921 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
   3922 			sc->sc_ctrl |= CTRL_TFCE;
   3923 			sc->sc_fcrtl |= FCRTL_XONE;
   3924 		}
   3925 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3926 			sc->sc_ctrl |= CTRL_RFCE;
   3927 	}
   3928 
   3929 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   3930 		DPRINTF(WM_DEBUG_LINK,
   3931 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
   3932 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3933 	} else  {
   3934 		DPRINTF(WM_DEBUG_LINK,
   3935 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
   3936 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3937 	}
   3938 
   3939 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3940 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3941 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
   3942 						 : WMREG_FCRTL, sc->sc_fcrtl);
   3943 }
   3944