if_wm.c revision 1.115 1 /* $NetBSD: if_wm.c,v 1.115 2006/05/05 18:04:42 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40 *
41 * TODO (in order of importance):
42 *
43 * - Rework how parameters are loaded from the EEPROM.
44 * - Figure out what to do with the i82545GM and i82546GB
45 * SERDES controllers.
46 * - Fix hw VLAN assist.
47 */
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.115 2006/05/05 18:04:42 thorpej Exp $");
51
52 #include "bpfilter.h"
53 #include "rnd.h"
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67
68 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
69
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82
83 #include <netinet/in.h> /* XXX for struct ip */
84 #include <netinet/in_systm.h> /* XXX for struct ip */
85 #include <netinet/ip.h> /* XXX for struct ip */
86 #include <netinet/tcp.h> /* XXX for struct tcphdr */
87
88 #include <machine/bus.h>
89 #include <machine/intr.h>
90 #include <machine/endian.h>
91
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99
100 #include <dev/pci/if_wmreg.h>
101
102 #ifdef WM_DEBUG
103 #define WM_DEBUG_LINK 0x01
104 #define WM_DEBUG_TX 0x02
105 #define WM_DEBUG_RX 0x04
106 #define WM_DEBUG_GMII 0x08
107 int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
108
109 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
110 #else
111 #define DPRINTF(x, y) /* nothing */
112 #endif /* WM_DEBUG */
113
114 /*
115 * Transmit descriptor list size. Due to errata, we can only have
116 * 256 hardware descriptors in the ring on < 82544, but we use 4096
117 * on >= 82544. We tell the upper layers that they can queue a lot
118 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
119 * of them at a time.
120 *
121 * We allow up to 256 (!) DMA segments per packet. Pathological packet
122 * chains containing many small mbufs have been observed in zero-copy
123 * situations with jumbo frames.
124 */
125 #define WM_NTXSEGS 256
126 #define WM_IFQUEUELEN 256
127 #define WM_TXQUEUELEN_MAX 64
128 #define WM_TXQUEUELEN_MAX_82547 16
129 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
130 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
131 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
132 #define WM_NTXDESC_82542 256
133 #define WM_NTXDESC_82544 4096
134 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
135 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
136 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
137 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
138 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
139
140 #define WM_MAXTXDMA round_page(IP_MAXPACKET) /* for TSO */
141
142 /*
143 * Receive descriptor list size. We have one Rx buffer for normal
144 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
145 * packet. We allocate 256 receive descriptors, each with a 2k
146 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
147 */
148 #define WM_NRXDESC 256
149 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
150 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
151 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
152
153 /*
154 * Control structures are DMA'd to the i82542 chip. We allocate them in
155 * a single clump that maps to a single DMA segment to make several things
156 * easier.
157 */
158 struct wm_control_data_82544 {
159 /*
160 * The receive descriptors.
161 */
162 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
163
164 /*
165 * The transmit descriptors. Put these at the end, because
166 * we might use a smaller number of them.
167 */
168 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
169 };
170
171 struct wm_control_data_82542 {
172 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
173 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
174 };
175
176 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
177 #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)])
178 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
179
180 /*
181 * Software state for transmit jobs.
182 */
183 struct wm_txsoft {
184 struct mbuf *txs_mbuf; /* head of our mbuf chain */
185 bus_dmamap_t txs_dmamap; /* our DMA map */
186 int txs_firstdesc; /* first descriptor in packet */
187 int txs_lastdesc; /* last descriptor in packet */
188 int txs_ndesc; /* # of descriptors used */
189 };
190
191 /*
192 * Software state for receive buffers. Each descriptor gets a
193 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
194 * more than one buffer, we chain them together.
195 */
196 struct wm_rxsoft {
197 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
198 bus_dmamap_t rxs_dmamap; /* our DMA map */
199 };
200
201 typedef enum {
202 WM_T_unknown = 0,
203 WM_T_82542_2_0, /* i82542 2.0 (really old) */
204 WM_T_82542_2_1, /* i82542 2.1+ (old) */
205 WM_T_82543, /* i82543 */
206 WM_T_82544, /* i82544 */
207 WM_T_82540, /* i82540 */
208 WM_T_82545, /* i82545 */
209 WM_T_82545_3, /* i82545 3.0+ */
210 WM_T_82546, /* i82546 */
211 WM_T_82546_3, /* i82546 3.0+ */
212 WM_T_82541, /* i82541 */
213 WM_T_82541_2, /* i82541 2.0+ */
214 WM_T_82547, /* i82547 */
215 WM_T_82547_2, /* i82547 2.0+ */
216 } wm_chip_type;
217
218 /*
219 * Software state per device.
220 */
221 struct wm_softc {
222 struct device sc_dev; /* generic device information */
223 bus_space_tag_t sc_st; /* bus space tag */
224 bus_space_handle_t sc_sh; /* bus space handle */
225 bus_space_tag_t sc_iot; /* I/O space tag */
226 bus_space_handle_t sc_ioh; /* I/O space handle */
227 bus_dma_tag_t sc_dmat; /* bus DMA tag */
228 struct ethercom sc_ethercom; /* ethernet common data */
229 void *sc_sdhook; /* shutdown hook */
230
231 wm_chip_type sc_type; /* chip type */
232 int sc_flags; /* flags; see below */
233 int sc_bus_speed; /* PCI/PCIX bus speed */
234 int sc_pcix_offset; /* PCIX capability register offset */
235 int sc_flowflags; /* 802.3x flow control flags */
236
237 void *sc_ih; /* interrupt cookie */
238
239 int sc_ee_addrbits; /* EEPROM address bits */
240
241 struct mii_data sc_mii; /* MII/media information */
242
243 struct callout sc_tick_ch; /* tick callout */
244
245 bus_dmamap_t sc_cddmamap; /* control data DMA map */
246 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
247
248 int sc_align_tweak;
249
250 /*
251 * Software state for the transmit and receive descriptors.
252 */
253 int sc_txnum; /* must be a power of two */
254 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
255 struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
256
257 /*
258 * Control data structures.
259 */
260 int sc_ntxdesc; /* must be a power of two */
261 struct wm_control_data_82544 *sc_control_data;
262 #define sc_txdescs sc_control_data->wcd_txdescs
263 #define sc_rxdescs sc_control_data->wcd_rxdescs
264
265 #ifdef WM_EVENT_COUNTERS
266 /* Event counters. */
267 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
268 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
269 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
270 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
271 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
272 struct evcnt sc_ev_rxintr; /* Rx interrupts */
273 struct evcnt sc_ev_linkintr; /* Link interrupts */
274
275 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
276 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
277 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
278 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
279 struct evcnt sc_ev_txtusum6; /* TCP/UDP v6 cksums comp. out-bound */
280 struct evcnt sc_ev_txtso; /* TCP seg offload out-bound */
281 struct evcnt sc_ev_txtsopain; /* painful header manip. for TSO */
282
283 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
284 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
285
286 struct evcnt sc_ev_tu; /* Tx underrun */
287
288 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
289 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
290 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
291 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
292 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
293 #endif /* WM_EVENT_COUNTERS */
294
295 bus_addr_t sc_tdt_reg; /* offset of TDT register */
296
297 int sc_txfree; /* number of free Tx descriptors */
298 int sc_txnext; /* next ready Tx descriptor */
299
300 int sc_txsfree; /* number of free Tx jobs */
301 int sc_txsnext; /* next free Tx job */
302 int sc_txsdirty; /* dirty Tx jobs */
303
304 /* These 5 variables are used only on the 82547. */
305 int sc_txfifo_size; /* Tx FIFO size */
306 int sc_txfifo_head; /* current head of FIFO */
307 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
308 int sc_txfifo_stall; /* Tx FIFO is stalled */
309 struct callout sc_txfifo_ch; /* Tx FIFO stall work-around timer */
310
311 bus_addr_t sc_rdt_reg; /* offset of RDT register */
312
313 int sc_rxptr; /* next ready Rx descriptor/queue ent */
314 int sc_rxdiscard;
315 int sc_rxlen;
316 struct mbuf *sc_rxhead;
317 struct mbuf *sc_rxtail;
318 struct mbuf **sc_rxtailp;
319
320 uint32_t sc_ctrl; /* prototype CTRL register */
321 #if 0
322 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
323 #endif
324 uint32_t sc_icr; /* prototype interrupt bits */
325 uint32_t sc_itr; /* prototype intr throttling reg */
326 uint32_t sc_tctl; /* prototype TCTL register */
327 uint32_t sc_rctl; /* prototype RCTL register */
328 uint32_t sc_txcw; /* prototype TXCW register */
329 uint32_t sc_tipg; /* prototype TIPG register */
330 uint32_t sc_fcrtl; /* prototype FCRTL register */
331 uint32_t sc_pba; /* prototype PBA register */
332
333 int sc_tbi_linkup; /* TBI link status */
334 int sc_tbi_anstate; /* autonegotiation state */
335
336 int sc_mchash_type; /* multicast filter offset */
337
338 #if NRND > 0
339 rndsource_element_t rnd_source; /* random source */
340 #endif
341 };
342
343 #define WM_RXCHAIN_RESET(sc) \
344 do { \
345 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
346 *(sc)->sc_rxtailp = NULL; \
347 (sc)->sc_rxlen = 0; \
348 } while (/*CONSTCOND*/0)
349
350 #define WM_RXCHAIN_LINK(sc, m) \
351 do { \
352 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
353 (sc)->sc_rxtailp = &(m)->m_next; \
354 } while (/*CONSTCOND*/0)
355
356 /* sc_flags */
357 #define WM_F_HAS_MII 0x01 /* has MII */
358 #define WM_F_EEPROM_HANDSHAKE 0x02 /* requires EEPROM handshake */
359 #define WM_F_EEPROM_SPI 0x04 /* EEPROM is SPI */
360 #define WM_F_EEPROM_INVALID 0x08 /* EEPROM not present (bad checksum) */
361 #define WM_F_IOH_VALID 0x10 /* I/O handle is valid */
362 #define WM_F_BUS64 0x20 /* bus is 64-bit */
363 #define WM_F_PCIX 0x40 /* bus is PCI-X */
364 #define WM_F_CSA 0x80 /* bus is CSA */
365
366 #ifdef WM_EVENT_COUNTERS
367 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
368 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
369 #else
370 #define WM_EVCNT_INCR(ev) /* nothing */
371 #define WM_EVCNT_ADD(ev, val) /* nothing */
372 #endif
373
374 #define CSR_READ(sc, reg) \
375 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
376 #define CSR_WRITE(sc, reg, val) \
377 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
378 #define CSR_WRITE_FLUSH(sc) \
379 (void) CSR_READ((sc), WMREG_STATUS)
380
381 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
382 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
383
384 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
385 #define WM_CDTXADDR_HI(sc, x) \
386 (sizeof(bus_addr_t) == 8 ? \
387 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
388
389 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
390 #define WM_CDRXADDR_HI(sc, x) \
391 (sizeof(bus_addr_t) == 8 ? \
392 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
393
394 #define WM_CDTXSYNC(sc, x, n, ops) \
395 do { \
396 int __x, __n; \
397 \
398 __x = (x); \
399 __n = (n); \
400 \
401 /* If it will wrap around, sync to the end of the ring. */ \
402 if ((__x + __n) > WM_NTXDESC(sc)) { \
403 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
404 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
405 (WM_NTXDESC(sc) - __x), (ops)); \
406 __n -= (WM_NTXDESC(sc) - __x); \
407 __x = 0; \
408 } \
409 \
410 /* Now sync whatever is left. */ \
411 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
412 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
413 } while (/*CONSTCOND*/0)
414
415 #define WM_CDRXSYNC(sc, x, ops) \
416 do { \
417 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
418 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
419 } while (/*CONSTCOND*/0)
420
421 #define WM_INIT_RXDESC(sc, x) \
422 do { \
423 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
424 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
425 struct mbuf *__m = __rxs->rxs_mbuf; \
426 \
427 /* \
428 * Note: We scoot the packet forward 2 bytes in the buffer \
429 * so that the payload after the Ethernet header is aligned \
430 * to a 4-byte boundary. \
431 * \
432 * XXX BRAINDAMAGE ALERT! \
433 * The stupid chip uses the same size for every buffer, which \
434 * is set in the Receive Control register. We are using the 2K \
435 * size option, but what we REALLY want is (2K - 2)! For this \
436 * reason, we can't "scoot" packets longer than the standard \
437 * Ethernet MTU. On strict-alignment platforms, if the total \
438 * size exceeds (2K - 2) we set align_tweak to 0 and let \
439 * the upper layer copy the headers. \
440 */ \
441 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
442 \
443 wm_set_dma_addr(&__rxd->wrx_addr, \
444 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
445 __rxd->wrx_len = 0; \
446 __rxd->wrx_cksum = 0; \
447 __rxd->wrx_status = 0; \
448 __rxd->wrx_errors = 0; \
449 __rxd->wrx_special = 0; \
450 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
451 \
452 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
453 } while (/*CONSTCOND*/0)
454
455 static void wm_start(struct ifnet *);
456 static void wm_watchdog(struct ifnet *);
457 static int wm_ioctl(struct ifnet *, u_long, caddr_t);
458 static int wm_init(struct ifnet *);
459 static void wm_stop(struct ifnet *, int);
460
461 static void wm_shutdown(void *);
462
463 static void wm_reset(struct wm_softc *);
464 static void wm_rxdrain(struct wm_softc *);
465 static int wm_add_rxbuf(struct wm_softc *, int);
466 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
467 static int wm_validate_eeprom_checksum(struct wm_softc *);
468 static void wm_tick(void *);
469
470 static void wm_set_filter(struct wm_softc *);
471
472 static int wm_intr(void *);
473 static void wm_txintr(struct wm_softc *);
474 static void wm_rxintr(struct wm_softc *);
475 static void wm_linkintr(struct wm_softc *, uint32_t);
476
477 static void wm_tbi_mediainit(struct wm_softc *);
478 static int wm_tbi_mediachange(struct ifnet *);
479 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
480
481 static void wm_tbi_set_linkled(struct wm_softc *);
482 static void wm_tbi_check_link(struct wm_softc *);
483
484 static void wm_gmii_reset(struct wm_softc *);
485
486 static int wm_gmii_i82543_readreg(struct device *, int, int);
487 static void wm_gmii_i82543_writereg(struct device *, int, int, int);
488
489 static int wm_gmii_i82544_readreg(struct device *, int, int);
490 static void wm_gmii_i82544_writereg(struct device *, int, int, int);
491
492 static void wm_gmii_statchg(struct device *);
493
494 static void wm_gmii_mediainit(struct wm_softc *);
495 static int wm_gmii_mediachange(struct ifnet *);
496 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
497
498 static int wm_match(struct device *, struct cfdata *, void *);
499 static void wm_attach(struct device *, struct device *, void *);
500
501 CFATTACH_DECL(wm, sizeof(struct wm_softc),
502 wm_match, wm_attach, NULL, NULL);
503
504 static void wm_82547_txfifo_stall(void *);
505
506 /*
507 * Devices supported by this driver.
508 */
509 static const struct wm_product {
510 pci_vendor_id_t wmp_vendor;
511 pci_product_id_t wmp_product;
512 const char *wmp_name;
513 wm_chip_type wmp_type;
514 int wmp_flags;
515 #define WMP_F_1000X 0x01
516 #define WMP_F_1000T 0x02
517 } wm_products[] = {
518 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
519 "Intel i82542 1000BASE-X Ethernet",
520 WM_T_82542_2_1, WMP_F_1000X },
521
522 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
523 "Intel i82543GC 1000BASE-X Ethernet",
524 WM_T_82543, WMP_F_1000X },
525
526 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
527 "Intel i82543GC 1000BASE-T Ethernet",
528 WM_T_82543, WMP_F_1000T },
529
530 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
531 "Intel i82544EI 1000BASE-T Ethernet",
532 WM_T_82544, WMP_F_1000T },
533
534 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
535 "Intel i82544EI 1000BASE-X Ethernet",
536 WM_T_82544, WMP_F_1000X },
537
538 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
539 "Intel i82544GC 1000BASE-T Ethernet",
540 WM_T_82544, WMP_F_1000T },
541
542 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
543 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
544 WM_T_82544, WMP_F_1000T },
545
546 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
547 "Intel i82540EM 1000BASE-T Ethernet",
548 WM_T_82540, WMP_F_1000T },
549
550 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
551 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
552 WM_T_82540, WMP_F_1000T },
553
554 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
555 "Intel i82540EP 1000BASE-T Ethernet",
556 WM_T_82540, WMP_F_1000T },
557
558 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
559 "Intel i82540EP 1000BASE-T Ethernet",
560 WM_T_82540, WMP_F_1000T },
561
562 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
563 "Intel i82540EP 1000BASE-T Ethernet",
564 WM_T_82540, WMP_F_1000T },
565
566 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
567 "Intel i82545EM 1000BASE-T Ethernet",
568 WM_T_82545, WMP_F_1000T },
569
570 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
571 "Intel i82545GM 1000BASE-T Ethernet",
572 WM_T_82545_3, WMP_F_1000T },
573
574 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
575 "Intel i82545GM 1000BASE-X Ethernet",
576 WM_T_82545_3, WMP_F_1000X },
577 #if 0
578 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
579 "Intel i82545GM Gigabit Ethernet (SERDES)",
580 WM_T_82545_3, WMP_F_SERDES },
581 #endif
582 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
583 "Intel i82546EB 1000BASE-T Ethernet",
584 WM_T_82546, WMP_F_1000T },
585
586 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
587 "Intel i82546EB 1000BASE-T Ethernet",
588 WM_T_82546, WMP_F_1000T },
589
590 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
591 "Intel i82545EM 1000BASE-X Ethernet",
592 WM_T_82545, WMP_F_1000X },
593
594 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
595 "Intel i82546EB 1000BASE-X Ethernet",
596 WM_T_82546, WMP_F_1000X },
597
598 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
599 "Intel i82546GB 1000BASE-T Ethernet",
600 WM_T_82546_3, WMP_F_1000T },
601
602 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
603 "Intel i82546GB 1000BASE-X Ethernet",
604 WM_T_82546_3, WMP_F_1000X },
605 #if 0
606 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
607 "Intel i82546GB Gigabit Ethernet (SERDES)",
608 WM_T_82546_3, WMP_F_SERDES },
609 #endif
610 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
611 "Intel i82541EI 1000BASE-T Ethernet",
612 WM_T_82541, WMP_F_1000T },
613
614 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
615 "Intel i82541EI Mobile 1000BASE-T Ethernet",
616 WM_T_82541, WMP_F_1000T },
617
618 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
619 "Intel i82541ER 1000BASE-T Ethernet",
620 WM_T_82541_2, WMP_F_1000T },
621
622 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
623 "Intel i82541GI 1000BASE-T Ethernet",
624 WM_T_82541_2, WMP_F_1000T },
625
626 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
627 "Intel i82541GI Mobile 1000BASE-T Ethernet",
628 WM_T_82541_2, WMP_F_1000T },
629
630 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI,
631 "Intel i82541PI 1000BASE-T Ethernet",
632 WM_T_82541_2, WMP_F_1000T },
633
634 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
635 "Intel i82547EI 1000BASE-T Ethernet",
636 WM_T_82547, WMP_F_1000T },
637
638 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
639 "Intel i82547GI 1000BASE-T Ethernet",
640 WM_T_82547_2, WMP_F_1000T },
641 { 0, 0,
642 NULL,
643 0, 0 },
644 };
645
646 #ifdef WM_EVENT_COUNTERS
647 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
648 #endif /* WM_EVENT_COUNTERS */
649
650 #if 0 /* Not currently used */
651 static inline uint32_t
652 wm_io_read(struct wm_softc *sc, int reg)
653 {
654
655 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
656 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
657 }
658 #endif
659
660 static inline void
661 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
662 {
663
664 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
665 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
666 }
667
668 static inline void
669 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
670 {
671 wa->wa_low = htole32(v & 0xffffffffU);
672 if (sizeof(bus_addr_t) == 8)
673 wa->wa_high = htole32((uint64_t) v >> 32);
674 else
675 wa->wa_high = 0;
676 }
677
678 static const struct wm_product *
679 wm_lookup(const struct pci_attach_args *pa)
680 {
681 const struct wm_product *wmp;
682
683 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
684 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
685 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
686 return (wmp);
687 }
688 return (NULL);
689 }
690
691 static int
692 wm_match(struct device *parent, struct cfdata *cf, void *aux)
693 {
694 struct pci_attach_args *pa = aux;
695
696 if (wm_lookup(pa) != NULL)
697 return (1);
698
699 return (0);
700 }
701
702 static void
703 wm_attach(struct device *parent, struct device *self, void *aux)
704 {
705 struct wm_softc *sc = (void *) self;
706 struct pci_attach_args *pa = aux;
707 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
708 pci_chipset_tag_t pc = pa->pa_pc;
709 pci_intr_handle_t ih;
710 size_t cdata_size;
711 const char *intrstr = NULL;
712 const char *eetype;
713 bus_space_tag_t memt;
714 bus_space_handle_t memh;
715 bus_dma_segment_t seg;
716 int memh_valid;
717 int i, rseg, error;
718 const struct wm_product *wmp;
719 prop_data_t ea;
720 prop_number_t pn;
721 uint8_t enaddr[ETHER_ADDR_LEN];
722 uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
723 pcireg_t preg, memtype;
724 uint32_t reg;
725 int pmreg;
726
727 callout_init(&sc->sc_tick_ch);
728
729 wmp = wm_lookup(pa);
730 if (wmp == NULL) {
731 printf("\n");
732 panic("wm_attach: impossible");
733 }
734
735 if (pci_dma64_available(pa))
736 sc->sc_dmat = pa->pa_dmat64;
737 else
738 sc->sc_dmat = pa->pa_dmat;
739
740 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
741 aprint_naive(": Ethernet controller\n");
742 aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
743
744 sc->sc_type = wmp->wmp_type;
745 if (sc->sc_type < WM_T_82543) {
746 if (preg < 2) {
747 aprint_error("%s: i82542 must be at least rev. 2\n",
748 sc->sc_dev.dv_xname);
749 return;
750 }
751 if (preg < 3)
752 sc->sc_type = WM_T_82542_2_0;
753 }
754
755 /*
756 * Map the device. All devices support memory-mapped acccess,
757 * and it is really required for normal operation.
758 */
759 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
760 switch (memtype) {
761 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
762 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
763 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
764 memtype, 0, &memt, &memh, NULL, NULL) == 0);
765 break;
766 default:
767 memh_valid = 0;
768 }
769
770 if (memh_valid) {
771 sc->sc_st = memt;
772 sc->sc_sh = memh;
773 } else {
774 aprint_error("%s: unable to map device registers\n",
775 sc->sc_dev.dv_xname);
776 return;
777 }
778
779 /*
780 * In addition, i82544 and later support I/O mapped indirect
781 * register access. It is not desirable (nor supported in
782 * this driver) to use it for normal operation, though it is
783 * required to work around bugs in some chip versions.
784 */
785 if (sc->sc_type >= WM_T_82544) {
786 /* First we have to find the I/O BAR. */
787 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
788 if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
789 PCI_MAPREG_TYPE_IO)
790 break;
791 }
792 if (i == PCI_MAPREG_END)
793 aprint_error("%s: WARNING: unable to find I/O BAR\n",
794 sc->sc_dev.dv_xname);
795 else {
796 /*
797 * The i8254x doesn't apparently respond when the
798 * I/O BAR is 0, which looks somewhat like it's not
799 * been configured.
800 */
801 preg = pci_conf_read(pc, pa->pa_tag, i);
802 if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
803 aprint_error("%s: WARNING: I/O BAR at zero.\n",
804 sc->sc_dev.dv_xname);
805 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
806 0, &sc->sc_iot, &sc->sc_ioh,
807 NULL, NULL) == 0) {
808 sc->sc_flags |= WM_F_IOH_VALID;
809 } else {
810 aprint_error("%s: WARNING: unable to map "
811 "I/O space\n", sc->sc_dev.dv_xname);
812 }
813 }
814
815 }
816
817 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
818 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
819 preg |= PCI_COMMAND_MASTER_ENABLE;
820 if (sc->sc_type < WM_T_82542_2_1)
821 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
822 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
823
824 /* Get it out of power save mode, if needed. */
825 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
826 preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
827 PCI_PMCSR_STATE_MASK;
828 if (preg == PCI_PMCSR_STATE_D3) {
829 /*
830 * The card has lost all configuration data in
831 * this state, so punt.
832 */
833 aprint_error("%s: unable to wake from power state D3\n",
834 sc->sc_dev.dv_xname);
835 return;
836 }
837 if (preg != PCI_PMCSR_STATE_D0) {
838 aprint_normal("%s: waking up from power state D%d\n",
839 sc->sc_dev.dv_xname, preg);
840 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
841 PCI_PMCSR_STATE_D0);
842 }
843 }
844
845 /*
846 * Map and establish our interrupt.
847 */
848 if (pci_intr_map(pa, &ih)) {
849 aprint_error("%s: unable to map interrupt\n",
850 sc->sc_dev.dv_xname);
851 return;
852 }
853 intrstr = pci_intr_string(pc, ih);
854 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
855 if (sc->sc_ih == NULL) {
856 aprint_error("%s: unable to establish interrupt",
857 sc->sc_dev.dv_xname);
858 if (intrstr != NULL)
859 aprint_normal(" at %s", intrstr);
860 aprint_normal("\n");
861 return;
862 }
863 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
864
865 /*
866 * Determine a few things about the bus we're connected to.
867 */
868 if (sc->sc_type < WM_T_82543) {
869 /* We don't really know the bus characteristics here. */
870 sc->sc_bus_speed = 33;
871 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
872 /*
873 * CSA (Communication Streaming Architecture) is about as fast
874 * a 32-bit 66MHz PCI Bus.
875 */
876 sc->sc_flags |= WM_F_CSA;
877 sc->sc_bus_speed = 66;
878 aprint_verbose("%s: Communication Streaming Architecture\n",
879 sc->sc_dev.dv_xname);
880 if (sc->sc_type == WM_T_82547) {
881 callout_init(&sc->sc_txfifo_ch);
882 callout_setfunc(&sc->sc_txfifo_ch,
883 wm_82547_txfifo_stall, sc);
884 aprint_verbose("%s: using 82547 Tx FIFO stall "
885 "work-around\n", sc->sc_dev.dv_xname);
886 }
887 } else {
888 reg = CSR_READ(sc, WMREG_STATUS);
889 if (reg & STATUS_BUS64)
890 sc->sc_flags |= WM_F_BUS64;
891 if (sc->sc_type >= WM_T_82544 &&
892 (reg & STATUS_PCIX_MODE) != 0) {
893 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
894
895 sc->sc_flags |= WM_F_PCIX;
896 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
897 PCI_CAP_PCIX,
898 &sc->sc_pcix_offset, NULL) == 0)
899 aprint_error("%s: unable to find PCIX "
900 "capability\n", sc->sc_dev.dv_xname);
901 else if (sc->sc_type != WM_T_82545_3 &&
902 sc->sc_type != WM_T_82546_3) {
903 /*
904 * Work around a problem caused by the BIOS
905 * setting the max memory read byte count
906 * incorrectly.
907 */
908 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
909 sc->sc_pcix_offset + PCI_PCIX_CMD);
910 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
911 sc->sc_pcix_offset + PCI_PCIX_STATUS);
912
913 bytecnt =
914 (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
915 PCI_PCIX_CMD_BYTECNT_SHIFT;
916 maxb =
917 (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
918 PCI_PCIX_STATUS_MAXB_SHIFT;
919 if (bytecnt > maxb) {
920 aprint_verbose("%s: resetting PCI-X "
921 "MMRBC: %d -> %d\n",
922 sc->sc_dev.dv_xname,
923 512 << bytecnt, 512 << maxb);
924 pcix_cmd = (pcix_cmd &
925 ~PCI_PCIX_CMD_BYTECNT_MASK) |
926 (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
927 pci_conf_write(pa->pa_pc, pa->pa_tag,
928 sc->sc_pcix_offset + PCI_PCIX_CMD,
929 pcix_cmd);
930 }
931 }
932 }
933 /*
934 * The quad port adapter is special; it has a PCIX-PCIX
935 * bridge on the board, and can run the secondary bus at
936 * a higher speed.
937 */
938 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
939 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
940 : 66;
941 } else if (sc->sc_flags & WM_F_PCIX) {
942 switch (reg & STATUS_PCIXSPD_MASK) {
943 case STATUS_PCIXSPD_50_66:
944 sc->sc_bus_speed = 66;
945 break;
946 case STATUS_PCIXSPD_66_100:
947 sc->sc_bus_speed = 100;
948 break;
949 case STATUS_PCIXSPD_100_133:
950 sc->sc_bus_speed = 133;
951 break;
952 default:
953 aprint_error(
954 "%s: unknown PCIXSPD %d; assuming 66MHz\n",
955 sc->sc_dev.dv_xname,
956 reg & STATUS_PCIXSPD_MASK);
957 sc->sc_bus_speed = 66;
958 }
959 } else
960 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
961 aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
962 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
963 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
964 }
965
966 /*
967 * Allocate the control data structures, and create and load the
968 * DMA map for it.
969 *
970 * NOTE: All Tx descriptors must be in the same 4G segment of
971 * memory. So must Rx descriptors. We simplify by allocating
972 * both sets within the same 4G segment.
973 */
974 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
975 WM_NTXDESC_82542 : WM_NTXDESC_82544;
976 cdata_size = sc->sc_type < WM_T_82544 ?
977 sizeof(struct wm_control_data_82542) :
978 sizeof(struct wm_control_data_82544);
979 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
980 (bus_size_t) 0x100000000ULL,
981 &seg, 1, &rseg, 0)) != 0) {
982 aprint_error(
983 "%s: unable to allocate control data, error = %d\n",
984 sc->sc_dev.dv_xname, error);
985 goto fail_0;
986 }
987
988 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
989 (caddr_t *)&sc->sc_control_data, 0)) != 0) {
990 aprint_error("%s: unable to map control data, error = %d\n",
991 sc->sc_dev.dv_xname, error);
992 goto fail_1;
993 }
994
995 if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
996 0, 0, &sc->sc_cddmamap)) != 0) {
997 aprint_error("%s: unable to create control data DMA map, "
998 "error = %d\n", sc->sc_dev.dv_xname, error);
999 goto fail_2;
1000 }
1001
1002 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1003 sc->sc_control_data, cdata_size, NULL,
1004 0)) != 0) {
1005 aprint_error(
1006 "%s: unable to load control data DMA map, error = %d\n",
1007 sc->sc_dev.dv_xname, error);
1008 goto fail_3;
1009 }
1010
1011
1012 /*
1013 * Create the transmit buffer DMA maps.
1014 */
1015 WM_TXQUEUELEN(sc) =
1016 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1017 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1018 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1019 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1020 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1021 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1022 aprint_error("%s: unable to create Tx DMA map %d, "
1023 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1024 goto fail_4;
1025 }
1026 }
1027
1028 /*
1029 * Create the receive buffer DMA maps.
1030 */
1031 for (i = 0; i < WM_NRXDESC; i++) {
1032 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1033 MCLBYTES, 0, 0,
1034 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1035 aprint_error("%s: unable to create Rx DMA map %d, "
1036 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1037 goto fail_5;
1038 }
1039 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1040 }
1041
1042 /*
1043 * Reset the chip to a known state.
1044 */
1045 wm_reset(sc);
1046
1047 /*
1048 * Get some information about the EEPROM.
1049 */
1050 if (sc->sc_type >= WM_T_82540)
1051 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1052 if (sc->sc_type <= WM_T_82544)
1053 sc->sc_ee_addrbits = 6;
1054 else if (sc->sc_type <= WM_T_82546_3) {
1055 reg = CSR_READ(sc, WMREG_EECD);
1056 if (reg & EECD_EE_SIZE)
1057 sc->sc_ee_addrbits = 8;
1058 else
1059 sc->sc_ee_addrbits = 6;
1060 } else if (sc->sc_type <= WM_T_82547_2) {
1061 reg = CSR_READ(sc, WMREG_EECD);
1062 if (reg & EECD_EE_TYPE) {
1063 sc->sc_flags |= WM_F_EEPROM_SPI;
1064 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1065 } else
1066 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1067 } else {
1068 /* Assume everything else is SPI. */
1069 reg = CSR_READ(sc, WMREG_EECD);
1070 sc->sc_flags |= WM_F_EEPROM_SPI;
1071 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1072 }
1073
1074 /*
1075 * Defer printing the EEPROM type until after verifying the checksum
1076 * This allows the EEPROM type to be printed correctly in the case
1077 * that no EEPROM is attached.
1078 */
1079
1080
1081 /*
1082 * Validate the EEPROM checksum. If the checksum fails, flag this for
1083 * later, so we can fail future reads from the EEPROM.
1084 */
1085 if (wm_validate_eeprom_checksum(sc))
1086 sc->sc_flags |= WM_F_EEPROM_INVALID;
1087
1088 if (sc->sc_flags & WM_F_EEPROM_INVALID)
1089 aprint_verbose("%s: No EEPROM\n", sc->sc_dev.dv_xname);
1090 else {
1091 if (sc->sc_flags & WM_F_EEPROM_SPI)
1092 eetype = "SPI";
1093 else
1094 eetype = "MicroWire";
1095 aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1096 sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1097 sc->sc_ee_addrbits, eetype);
1098 }
1099
1100 /*
1101 * Read the Ethernet address from the EEPROM, if not first found
1102 * in device properties.
1103 */
1104 ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
1105 if (ea != NULL) {
1106 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
1107 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
1108 memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
1109 } else {
1110 if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1111 sizeof(myea) / sizeof(myea[0]), myea)) {
1112 aprint_error("%s: unable to read Ethernet address\n",
1113 sc->sc_dev.dv_xname);
1114 return;
1115 }
1116 enaddr[0] = myea[0] & 0xff;
1117 enaddr[1] = myea[0] >> 8;
1118 enaddr[2] = myea[1] & 0xff;
1119 enaddr[3] = myea[1] >> 8;
1120 enaddr[4] = myea[2] & 0xff;
1121 enaddr[5] = myea[2] >> 8;
1122 }
1123
1124 /*
1125 * Toggle the LSB of the MAC address on the second port
1126 * of the i82546.
1127 */
1128 if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
1129 if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1130 enaddr[5] ^= 1;
1131 }
1132
1133 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1134 ether_sprintf(enaddr));
1135
1136 /*
1137 * Read the config info from the EEPROM, and set up various
1138 * bits in the control registers based on their contents.
1139 */
1140 pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1141 "i82543-cfg1");
1142 if (pn != NULL) {
1143 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1144 cfg1 = (uint16_t) prop_number_integer_value(pn);
1145 } else {
1146 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1147 aprint_error("%s: unable to read CFG1\n",
1148 sc->sc_dev.dv_xname);
1149 return;
1150 }
1151 }
1152
1153 pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1154 "i82543-cfg2");
1155 if (pn != NULL) {
1156 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1157 cfg2 = (uint16_t) prop_number_integer_value(pn);
1158 } else {
1159 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1160 aprint_error("%s: unable to read CFG2\n",
1161 sc->sc_dev.dv_xname);
1162 return;
1163 }
1164 }
1165
1166 if (sc->sc_type >= WM_T_82544) {
1167 pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1168 "i82543-swdpin");
1169 if (pn != NULL) {
1170 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1171 swdpin = (uint16_t) prop_number_integer_value(pn);
1172 } else {
1173 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1174 aprint_error("%s: unable to read SWDPIN\n",
1175 sc->sc_dev.dv_xname);
1176 return;
1177 }
1178 }
1179 }
1180
1181 if (cfg1 & EEPROM_CFG1_ILOS)
1182 sc->sc_ctrl |= CTRL_ILOS;
1183 if (sc->sc_type >= WM_T_82544) {
1184 sc->sc_ctrl |=
1185 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1186 CTRL_SWDPIO_SHIFT;
1187 sc->sc_ctrl |=
1188 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1189 CTRL_SWDPINS_SHIFT;
1190 } else {
1191 sc->sc_ctrl |=
1192 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1193 CTRL_SWDPIO_SHIFT;
1194 }
1195
1196 #if 0
1197 if (sc->sc_type >= WM_T_82544) {
1198 if (cfg1 & EEPROM_CFG1_IPS0)
1199 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1200 if (cfg1 & EEPROM_CFG1_IPS1)
1201 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1202 sc->sc_ctrl_ext |=
1203 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1204 CTRL_EXT_SWDPIO_SHIFT;
1205 sc->sc_ctrl_ext |=
1206 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1207 CTRL_EXT_SWDPINS_SHIFT;
1208 } else {
1209 sc->sc_ctrl_ext |=
1210 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1211 CTRL_EXT_SWDPIO_SHIFT;
1212 }
1213 #endif
1214
1215 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1216 #if 0
1217 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1218 #endif
1219
1220 /*
1221 * Set up some register offsets that are different between
1222 * the i82542 and the i82543 and later chips.
1223 */
1224 if (sc->sc_type < WM_T_82543) {
1225 sc->sc_rdt_reg = WMREG_OLD_RDT0;
1226 sc->sc_tdt_reg = WMREG_OLD_TDT;
1227 } else {
1228 sc->sc_rdt_reg = WMREG_RDT;
1229 sc->sc_tdt_reg = WMREG_TDT;
1230 }
1231
1232 /*
1233 * Determine if we're TBI or GMII mode, and initialize the
1234 * media structures accordingly.
1235 */
1236 if (sc->sc_type < WM_T_82543 ||
1237 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1238 if (wmp->wmp_flags & WMP_F_1000T)
1239 aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1240 "product!\n", sc->sc_dev.dv_xname);
1241 wm_tbi_mediainit(sc);
1242 } else {
1243 if (wmp->wmp_flags & WMP_F_1000X)
1244 aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1245 "product!\n", sc->sc_dev.dv_xname);
1246 wm_gmii_mediainit(sc);
1247 }
1248
1249 ifp = &sc->sc_ethercom.ec_if;
1250 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1251 ifp->if_softc = sc;
1252 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1253 ifp->if_ioctl = wm_ioctl;
1254 ifp->if_start = wm_start;
1255 ifp->if_watchdog = wm_watchdog;
1256 ifp->if_init = wm_init;
1257 ifp->if_stop = wm_stop;
1258 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1259 IFQ_SET_READY(&ifp->if_snd);
1260
1261 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1262
1263 /*
1264 * If we're a i82543 or greater, we can support VLANs.
1265 */
1266 if (sc->sc_type >= WM_T_82543)
1267 sc->sc_ethercom.ec_capabilities |=
1268 ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1269
1270 /*
1271 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
1272 * on i82543 and later.
1273 */
1274 if (sc->sc_type >= WM_T_82543)
1275 ifp->if_capabilities |=
1276 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1277 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1278 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1279 IFCAP_CSUM_TCPv6_Tx |
1280 IFCAP_CSUM_UDPv6_Tx;
1281
1282 /*
1283 * If we're a i82544 or greater (except i82547), we can do
1284 * TCP segmentation offload.
1285 */
1286 if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547)
1287 ifp->if_capabilities |= IFCAP_TSOv4;
1288
1289 /*
1290 * Attach the interface.
1291 */
1292 if_attach(ifp);
1293 ether_ifattach(ifp, enaddr);
1294 #if NRND > 0
1295 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1296 RND_TYPE_NET, 0);
1297 #endif
1298
1299 #ifdef WM_EVENT_COUNTERS
1300 /* Attach event counters. */
1301 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1302 NULL, sc->sc_dev.dv_xname, "txsstall");
1303 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1304 NULL, sc->sc_dev.dv_xname, "txdstall");
1305 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1306 NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1307 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1308 NULL, sc->sc_dev.dv_xname, "txdw");
1309 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1310 NULL, sc->sc_dev.dv_xname, "txqe");
1311 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1312 NULL, sc->sc_dev.dv_xname, "rxintr");
1313 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1314 NULL, sc->sc_dev.dv_xname, "linkintr");
1315
1316 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1317 NULL, sc->sc_dev.dv_xname, "rxipsum");
1318 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1319 NULL, sc->sc_dev.dv_xname, "rxtusum");
1320 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1321 NULL, sc->sc_dev.dv_xname, "txipsum");
1322 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1323 NULL, sc->sc_dev.dv_xname, "txtusum");
1324 evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
1325 NULL, sc->sc_dev.dv_xname, "txtusum6");
1326
1327 evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
1328 NULL, sc->sc_dev.dv_xname, "txtso");
1329 evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
1330 NULL, sc->sc_dev.dv_xname, "txtsopain");
1331
1332 for (i = 0; i < WM_NTXSEGS; i++) {
1333 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1334 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1335 NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1336 }
1337
1338 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1339 NULL, sc->sc_dev.dv_xname, "txdrop");
1340
1341 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1342 NULL, sc->sc_dev.dv_xname, "tu");
1343
1344 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1345 NULL, sc->sc_dev.dv_xname, "tx_xoff");
1346 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1347 NULL, sc->sc_dev.dv_xname, "tx_xon");
1348 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1349 NULL, sc->sc_dev.dv_xname, "rx_xoff");
1350 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1351 NULL, sc->sc_dev.dv_xname, "rx_xon");
1352 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1353 NULL, sc->sc_dev.dv_xname, "rx_macctl");
1354 #endif /* WM_EVENT_COUNTERS */
1355
1356 /*
1357 * Make sure the interface is shutdown during reboot.
1358 */
1359 sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1360 if (sc->sc_sdhook == NULL)
1361 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1362 sc->sc_dev.dv_xname);
1363 return;
1364
1365 /*
1366 * Free any resources we've allocated during the failed attach
1367 * attempt. Do this in reverse order and fall through.
1368 */
1369 fail_5:
1370 for (i = 0; i < WM_NRXDESC; i++) {
1371 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1372 bus_dmamap_destroy(sc->sc_dmat,
1373 sc->sc_rxsoft[i].rxs_dmamap);
1374 }
1375 fail_4:
1376 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1377 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1378 bus_dmamap_destroy(sc->sc_dmat,
1379 sc->sc_txsoft[i].txs_dmamap);
1380 }
1381 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1382 fail_3:
1383 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1384 fail_2:
1385 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1386 cdata_size);
1387 fail_1:
1388 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1389 fail_0:
1390 return;
1391 }
1392
1393 /*
1394 * wm_shutdown:
1395 *
1396 * Make sure the interface is stopped at reboot time.
1397 */
1398 static void
1399 wm_shutdown(void *arg)
1400 {
1401 struct wm_softc *sc = arg;
1402
1403 wm_stop(&sc->sc_ethercom.ec_if, 1);
1404 }
1405
1406 /*
1407 * wm_tx_offload:
1408 *
1409 * Set up TCP/IP checksumming parameters for the
1410 * specified packet.
1411 */
1412 static int
1413 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1414 uint8_t *fieldsp)
1415 {
1416 struct mbuf *m0 = txs->txs_mbuf;
1417 struct livengood_tcpip_ctxdesc *t;
1418 uint32_t ipcs, tucs, cmd, cmdlen, seg;
1419 struct ether_header *eh;
1420 int offset, iphl;
1421 uint8_t fields;
1422
1423 /*
1424 * XXX It would be nice if the mbuf pkthdr had offset
1425 * fields for the protocol headers.
1426 */
1427
1428 eh = mtod(m0, struct ether_header *);
1429 switch (htons(eh->ether_type)) {
1430 case ETHERTYPE_IP:
1431 case ETHERTYPE_IPV6:
1432 offset = ETHER_HDR_LEN;
1433 break;
1434
1435 case ETHERTYPE_VLAN:
1436 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1437 break;
1438
1439 default:
1440 /*
1441 * Don't support this protocol or encapsulation.
1442 */
1443 *fieldsp = 0;
1444 *cmdp = 0;
1445 return (0);
1446 }
1447
1448 if ((m0->m_pkthdr.csum_flags &
1449 (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
1450 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1451 } else {
1452 iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
1453 }
1454
1455 cmd = WTX_CMD_DEXT | WTX_DTYP_D;
1456 cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
1457 seg = 0;
1458 fields = 0;
1459
1460 if (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
1461 int hlen = offset + iphl;
1462 WM_EVCNT_INCR(&sc->sc_ev_txtso);
1463 if (__predict_false(m0->m_len <
1464 (hlen + sizeof(struct tcphdr)))) {
1465 /*
1466 * TCP/IP headers are not in the first mbuf; we need
1467 * to do this the slow and painful way. Let's just
1468 * hope this doesn't happen very often.
1469 */
1470 struct ip ip;
1471 struct tcphdr th;
1472
1473 WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
1474
1475 m_copydata(m0, offset, sizeof(ip), &ip);
1476 m_copydata(m0, hlen, sizeof(th), &th);
1477
1478 ip.ip_len = 0;
1479
1480 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
1481 sizeof(ip.ip_len), &ip.ip_len);
1482
1483 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1484 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1485
1486 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
1487 sizeof(th.th_sum), &th.th_sum);
1488
1489 hlen += th.th_off << 2;
1490 } else {
1491 /*
1492 * TCP/IP headers are in the first mbuf; we can do
1493 * this the easy way.
1494 */
1495 struct ip *ip =
1496 (struct ip *) (mtod(m0, caddr_t) + offset);
1497 struct tcphdr *th =
1498 (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
1499
1500 ip->ip_len = 0;
1501 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1502 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1503
1504 hlen += th->th_off << 2;
1505 }
1506
1507 cmd |= WTX_TCPIP_CMD_TSE;
1508 cmdlen |= WTX_TCPIP_CMD_TSE | WTX_TCPIP_CMD_IP |
1509 WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
1510 seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
1511 WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
1512 }
1513
1514 /*
1515 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1516 * offload feature, if we load the context descriptor, we
1517 * MUST provide valid values for IPCSS and TUCSS fields.
1518 */
1519
1520 ipcs = WTX_TCPIP_IPCSS(offset) |
1521 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1522 WTX_TCPIP_IPCSE(offset + iphl - 1);
1523 if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
1524 WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1525 fields |= WTX_IXSM;
1526 }
1527
1528 offset += iphl;
1529
1530 if (m0->m_pkthdr.csum_flags &
1531 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
1532 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1533 fields |= WTX_TXSM;
1534 tucs = WTX_TCPIP_TUCSS(offset) |
1535 WTX_TCPIP_TUCSO(offset +
1536 M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1537 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1538 } else if ((m0->m_pkthdr.csum_flags &
1539 (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
1540 WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
1541 fields |= WTX_TXSM;
1542 tucs = WTX_TCPIP_TUCSS(offset) |
1543 WTX_TCPIP_TUCSO(offset +
1544 M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
1545 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1546 } else {
1547 /* Just initialize it to a valid TCP context. */
1548 tucs = WTX_TCPIP_TUCSS(offset) |
1549 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1550 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1551 }
1552
1553 /* Fill in the context descriptor. */
1554 t = (struct livengood_tcpip_ctxdesc *)
1555 &sc->sc_txdescs[sc->sc_txnext];
1556 t->tcpip_ipcs = htole32(ipcs);
1557 t->tcpip_tucs = htole32(tucs);
1558 t->tcpip_cmdlen = htole32(cmdlen);
1559 t->tcpip_seg = htole32(seg);
1560 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1561
1562 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1563 txs->txs_ndesc++;
1564
1565 *cmdp = cmd;
1566 *fieldsp = fields;
1567
1568 return (0);
1569 }
1570
1571 static void
1572 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1573 {
1574 struct mbuf *m;
1575 int i;
1576
1577 log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1578 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1579 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1580 "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1581 m->m_data, m->m_len, m->m_flags);
1582 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1583 i, i == 1 ? "" : "s");
1584 }
1585
1586 /*
1587 * wm_82547_txfifo_stall:
1588 *
1589 * Callout used to wait for the 82547 Tx FIFO to drain,
1590 * reset the FIFO pointers, and restart packet transmission.
1591 */
1592 static void
1593 wm_82547_txfifo_stall(void *arg)
1594 {
1595 struct wm_softc *sc = arg;
1596 int s;
1597
1598 s = splnet();
1599
1600 if (sc->sc_txfifo_stall) {
1601 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1602 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1603 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1604 /*
1605 * Packets have drained. Stop transmitter, reset
1606 * FIFO pointers, restart transmitter, and kick
1607 * the packet queue.
1608 */
1609 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1610 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1611 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1612 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1613 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1614 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1615 CSR_WRITE(sc, WMREG_TCTL, tctl);
1616 CSR_WRITE_FLUSH(sc);
1617
1618 sc->sc_txfifo_head = 0;
1619 sc->sc_txfifo_stall = 0;
1620 wm_start(&sc->sc_ethercom.ec_if);
1621 } else {
1622 /*
1623 * Still waiting for packets to drain; try again in
1624 * another tick.
1625 */
1626 callout_schedule(&sc->sc_txfifo_ch, 1);
1627 }
1628 }
1629
1630 splx(s);
1631 }
1632
1633 /*
1634 * wm_82547_txfifo_bugchk:
1635 *
1636 * Check for bug condition in the 82547 Tx FIFO. We need to
1637 * prevent enqueueing a packet that would wrap around the end
1638 * if the Tx FIFO ring buffer, otherwise the chip will croak.
1639 *
1640 * We do this by checking the amount of space before the end
1641 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
1642 * the Tx FIFO, wait for all remaining packets to drain, reset
1643 * the internal FIFO pointers to the beginning, and restart
1644 * transmission on the interface.
1645 */
1646 #define WM_FIFO_HDR 0x10
1647 #define WM_82547_PAD_LEN 0x3e0
1648 static int
1649 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1650 {
1651 int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1652 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1653
1654 /* Just return if already stalled. */
1655 if (sc->sc_txfifo_stall)
1656 return (1);
1657
1658 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1659 /* Stall only occurs in half-duplex mode. */
1660 goto send_packet;
1661 }
1662
1663 if (len >= WM_82547_PAD_LEN + space) {
1664 sc->sc_txfifo_stall = 1;
1665 callout_schedule(&sc->sc_txfifo_ch, 1);
1666 return (1);
1667 }
1668
1669 send_packet:
1670 sc->sc_txfifo_head += len;
1671 if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1672 sc->sc_txfifo_head -= sc->sc_txfifo_size;
1673
1674 return (0);
1675 }
1676
1677 /*
1678 * wm_start: [ifnet interface function]
1679 *
1680 * Start packet transmission on the interface.
1681 */
1682 static void
1683 wm_start(struct ifnet *ifp)
1684 {
1685 struct wm_softc *sc = ifp->if_softc;
1686 struct mbuf *m0;
1687 #if 0 /* XXXJRT */
1688 struct m_tag *mtag;
1689 #endif
1690 struct wm_txsoft *txs;
1691 bus_dmamap_t dmamap;
1692 int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
1693 bus_addr_t curaddr;
1694 bus_size_t seglen, curlen;
1695 uint32_t cksumcmd;
1696 uint8_t cksumfields;
1697
1698 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1699 return;
1700
1701 /*
1702 * Remember the previous number of free descriptors.
1703 */
1704 ofree = sc->sc_txfree;
1705
1706 /*
1707 * Loop through the send queue, setting up transmit descriptors
1708 * until we drain the queue, or use up all available transmit
1709 * descriptors.
1710 */
1711 for (;;) {
1712 /* Grab a packet off the queue. */
1713 IFQ_POLL(&ifp->if_snd, m0);
1714 if (m0 == NULL)
1715 break;
1716
1717 DPRINTF(WM_DEBUG_TX,
1718 ("%s: TX: have packet to transmit: %p\n",
1719 sc->sc_dev.dv_xname, m0));
1720
1721 /* Get a work queue entry. */
1722 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1723 wm_txintr(sc);
1724 if (sc->sc_txsfree == 0) {
1725 DPRINTF(WM_DEBUG_TX,
1726 ("%s: TX: no free job descriptors\n",
1727 sc->sc_dev.dv_xname));
1728 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1729 break;
1730 }
1731 }
1732
1733 txs = &sc->sc_txsoft[sc->sc_txsnext];
1734 dmamap = txs->txs_dmamap;
1735
1736 use_tso = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1737
1738 /*
1739 * So says the Linux driver:
1740 * The controller does a simple calculation to make sure
1741 * there is enough room in the FIFO before initiating the
1742 * DMA for each buffer. The calc is:
1743 * 4 = ceil(buffer len / MSS)
1744 * To make sure we don't overrun the FIFO, adjust the max
1745 * buffer len if the MSS drops.
1746 */
1747 dmamap->dm_maxsegsz =
1748 (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
1749 ? m0->m_pkthdr.segsz << 2
1750 : WTX_MAX_LEN;
1751
1752 /*
1753 * Load the DMA map. If this fails, the packet either
1754 * didn't fit in the allotted number of segments, or we
1755 * were short on resources. For the too-many-segments
1756 * case, we simply report an error and drop the packet,
1757 * since we can't sanely copy a jumbo packet to a single
1758 * buffer.
1759 */
1760 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1761 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1762 if (error) {
1763 if (error == EFBIG) {
1764 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1765 log(LOG_ERR, "%s: Tx packet consumes too many "
1766 "DMA segments, dropping...\n",
1767 sc->sc_dev.dv_xname);
1768 IFQ_DEQUEUE(&ifp->if_snd, m0);
1769 wm_dump_mbuf_chain(sc, m0);
1770 m_freem(m0);
1771 continue;
1772 }
1773 /*
1774 * Short on resources, just stop for now.
1775 */
1776 DPRINTF(WM_DEBUG_TX,
1777 ("%s: TX: dmamap load failed: %d\n",
1778 sc->sc_dev.dv_xname, error));
1779 break;
1780 }
1781
1782 segs_needed = dmamap->dm_nsegs;
1783 if (use_tso) {
1784 /* For sentinel descriptor; see below. */
1785 segs_needed++;
1786 }
1787
1788 /*
1789 * Ensure we have enough descriptors free to describe
1790 * the packet. Note, we always reserve one descriptor
1791 * at the end of the ring due to the semantics of the
1792 * TDT register, plus one more in the event we need
1793 * to load offload context.
1794 */
1795 if (segs_needed > sc->sc_txfree - 2) {
1796 /*
1797 * Not enough free descriptors to transmit this
1798 * packet. We haven't committed anything yet,
1799 * so just unload the DMA map, put the packet
1800 * pack on the queue, and punt. Notify the upper
1801 * layer that there are no more slots left.
1802 */
1803 DPRINTF(WM_DEBUG_TX,
1804 ("%s: TX: need %d (%d) descriptors, have %d\n",
1805 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1806 sc->sc_txfree - 1));
1807 ifp->if_flags |= IFF_OACTIVE;
1808 bus_dmamap_unload(sc->sc_dmat, dmamap);
1809 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1810 break;
1811 }
1812
1813 /*
1814 * Check for 82547 Tx FIFO bug. We need to do this
1815 * once we know we can transmit the packet, since we
1816 * do some internal FIFO space accounting here.
1817 */
1818 if (sc->sc_type == WM_T_82547 &&
1819 wm_82547_txfifo_bugchk(sc, m0)) {
1820 DPRINTF(WM_DEBUG_TX,
1821 ("%s: TX: 82547 Tx FIFO bug detected\n",
1822 sc->sc_dev.dv_xname));
1823 ifp->if_flags |= IFF_OACTIVE;
1824 bus_dmamap_unload(sc->sc_dmat, dmamap);
1825 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1826 break;
1827 }
1828
1829 IFQ_DEQUEUE(&ifp->if_snd, m0);
1830
1831 /*
1832 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1833 */
1834
1835 DPRINTF(WM_DEBUG_TX,
1836 ("%s: TX: packet has %d (%d) DMA segments\n",
1837 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1838
1839 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1840
1841 /*
1842 * Store a pointer to the packet so that we can free it
1843 * later.
1844 *
1845 * Initially, we consider the number of descriptors the
1846 * packet uses the number of DMA segments. This may be
1847 * incremented by 1 if we do checksum offload (a descriptor
1848 * is used to set the checksum context).
1849 */
1850 txs->txs_mbuf = m0;
1851 txs->txs_firstdesc = sc->sc_txnext;
1852 txs->txs_ndesc = segs_needed;
1853
1854 /* Set up offload parameters for this packet. */
1855 if (m0->m_pkthdr.csum_flags &
1856 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
1857 M_CSUM_TCPv6|M_CSUM_UDPv6)) {
1858 if (wm_tx_offload(sc, txs, &cksumcmd,
1859 &cksumfields) != 0) {
1860 /* Error message already displayed. */
1861 bus_dmamap_unload(sc->sc_dmat, dmamap);
1862 continue;
1863 }
1864 } else {
1865 cksumcmd = 0;
1866 cksumfields = 0;
1867 }
1868
1869 cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
1870
1871 /* Sync the DMA map. */
1872 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1873 BUS_DMASYNC_PREWRITE);
1874
1875 /*
1876 * Initialize the transmit descriptor.
1877 */
1878 for (nexttx = sc->sc_txnext, seg = 0;
1879 seg < dmamap->dm_nsegs; seg++) {
1880 for (seglen = dmamap->dm_segs[seg].ds_len,
1881 curaddr = dmamap->dm_segs[seg].ds_addr;
1882 seglen != 0;
1883 curaddr += curlen, seglen -= curlen,
1884 nexttx = WM_NEXTTX(sc, nexttx)) {
1885 curlen = seglen;
1886
1887 /*
1888 * So says the Linux driver:
1889 * Work around for premature descriptor
1890 * write-backs in TSO mode. Append a
1891 * 4-byte sentinel descriptor.
1892 */
1893 if (use_tso &&
1894 seg == dmamap->dm_nsegs - 1 &&
1895 curlen > 8)
1896 curlen -= 4;
1897
1898 wm_set_dma_addr(
1899 &sc->sc_txdescs[nexttx].wtx_addr,
1900 curaddr);
1901 sc->sc_txdescs[nexttx].wtx_cmdlen =
1902 htole32(cksumcmd | curlen);
1903 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
1904 0;
1905 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1906 cksumfields;
1907 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1908 lasttx = nexttx;
1909
1910 DPRINTF(WM_DEBUG_TX,
1911 ("%s: TX: desc %d: low 0x%08lx, "
1912 "len 0x%04x\n",
1913 sc->sc_dev.dv_xname, nexttx,
1914 curaddr & 0xffffffffUL, (unsigned)curlen));
1915 }
1916 }
1917
1918 KASSERT(lasttx != -1);
1919
1920 /*
1921 * Set up the command byte on the last descriptor of
1922 * the packet. If we're in the interrupt delay window,
1923 * delay the interrupt.
1924 */
1925 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1926 htole32(WTX_CMD_EOP | WTX_CMD_RS);
1927
1928 #if 0 /* XXXJRT */
1929 /*
1930 * If VLANs are enabled and the packet has a VLAN tag, set
1931 * up the descriptor to encapsulate the packet for us.
1932 *
1933 * This is only valid on the last descriptor of the packet.
1934 */
1935 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1936 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1937 htole32(WTX_CMD_VLE);
1938 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
1939 = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
1940 }
1941 #endif /* XXXJRT */
1942
1943 txs->txs_lastdesc = lasttx;
1944
1945 DPRINTF(WM_DEBUG_TX,
1946 ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1947 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
1948
1949 /* Sync the descriptors we're using. */
1950 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
1951 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1952
1953 /* Give the packet to the chip. */
1954 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1955
1956 DPRINTF(WM_DEBUG_TX,
1957 ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1958
1959 DPRINTF(WM_DEBUG_TX,
1960 ("%s: TX: finished transmitting packet, job %d\n",
1961 sc->sc_dev.dv_xname, sc->sc_txsnext));
1962
1963 /* Advance the tx pointer. */
1964 sc->sc_txfree -= txs->txs_ndesc;
1965 sc->sc_txnext = nexttx;
1966
1967 sc->sc_txsfree--;
1968 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
1969
1970 #if NBPFILTER > 0
1971 /* Pass the packet to any BPF listeners. */
1972 if (ifp->if_bpf)
1973 bpf_mtap(ifp->if_bpf, m0);
1974 #endif /* NBPFILTER > 0 */
1975 }
1976
1977 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1978 /* No more slots; notify upper layer. */
1979 ifp->if_flags |= IFF_OACTIVE;
1980 }
1981
1982 if (sc->sc_txfree != ofree) {
1983 /* Set a watchdog timer in case the chip flakes out. */
1984 ifp->if_timer = 5;
1985 }
1986 }
1987
1988 /*
1989 * wm_watchdog: [ifnet interface function]
1990 *
1991 * Watchdog timer handler.
1992 */
1993 static void
1994 wm_watchdog(struct ifnet *ifp)
1995 {
1996 struct wm_softc *sc = ifp->if_softc;
1997
1998 /*
1999 * Since we're using delayed interrupts, sweep up
2000 * before we report an error.
2001 */
2002 wm_txintr(sc);
2003
2004 if (sc->sc_txfree != WM_NTXDESC(sc)) {
2005 log(LOG_ERR,
2006 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
2007 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
2008 sc->sc_txnext);
2009 ifp->if_oerrors++;
2010
2011 /* Reset the interface. */
2012 (void) wm_init(ifp);
2013 }
2014
2015 /* Try to get more packets going. */
2016 wm_start(ifp);
2017 }
2018
2019 /*
2020 * wm_ioctl: [ifnet interface function]
2021 *
2022 * Handle control requests from the operator.
2023 */
2024 static int
2025 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2026 {
2027 struct wm_softc *sc = ifp->if_softc;
2028 struct ifreq *ifr = (struct ifreq *) data;
2029 int s, error;
2030
2031 s = splnet();
2032
2033 switch (cmd) {
2034 case SIOCSIFMEDIA:
2035 case SIOCGIFMEDIA:
2036 /* Flow control requires full-duplex mode. */
2037 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
2038 (ifr->ifr_media & IFM_FDX) == 0)
2039 ifr->ifr_media &= ~IFM_ETH_FMASK;
2040 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
2041 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
2042 /* We can do both TXPAUSE and RXPAUSE. */
2043 ifr->ifr_media |=
2044 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
2045 }
2046 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
2047 }
2048 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2049 break;
2050 default:
2051 error = ether_ioctl(ifp, cmd, data);
2052 if (error == ENETRESET) {
2053 /*
2054 * Multicast list has changed; set the hardware filter
2055 * accordingly.
2056 */
2057 if (ifp->if_flags & IFF_RUNNING)
2058 wm_set_filter(sc);
2059 error = 0;
2060 }
2061 break;
2062 }
2063
2064 /* Try to get more packets going. */
2065 wm_start(ifp);
2066
2067 splx(s);
2068 return (error);
2069 }
2070
2071 /*
2072 * wm_intr:
2073 *
2074 * Interrupt service routine.
2075 */
2076 static int
2077 wm_intr(void *arg)
2078 {
2079 struct wm_softc *sc = arg;
2080 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2081 uint32_t icr;
2082 int handled = 0;
2083
2084 while (1 /* CONSTCOND */) {
2085 icr = CSR_READ(sc, WMREG_ICR);
2086 if ((icr & sc->sc_icr) == 0)
2087 break;
2088
2089 #if 0 /*NRND > 0*/
2090 if (RND_ENABLED(&sc->rnd_source))
2091 rnd_add_uint32(&sc->rnd_source, icr);
2092 #endif
2093
2094 handled = 1;
2095
2096 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2097 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
2098 DPRINTF(WM_DEBUG_RX,
2099 ("%s: RX: got Rx intr 0x%08x\n",
2100 sc->sc_dev.dv_xname,
2101 icr & (ICR_RXDMT0|ICR_RXT0)));
2102 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
2103 }
2104 #endif
2105 wm_rxintr(sc);
2106
2107 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2108 if (icr & ICR_TXDW) {
2109 DPRINTF(WM_DEBUG_TX,
2110 ("%s: TX: got TXDW interrupt\n",
2111 sc->sc_dev.dv_xname));
2112 WM_EVCNT_INCR(&sc->sc_ev_txdw);
2113 }
2114 #endif
2115 wm_txintr(sc);
2116
2117 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
2118 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
2119 wm_linkintr(sc, icr);
2120 }
2121
2122 if (icr & ICR_RXO) {
2123 ifp->if_ierrors++;
2124 #if defined(WM_DEBUG)
2125 log(LOG_WARNING, "%s: Receive overrun\n",
2126 sc->sc_dev.dv_xname);
2127 #endif /* defined(WM_DEBUG) */
2128 }
2129 }
2130
2131 if (handled) {
2132 /* Try to get more packets going. */
2133 wm_start(ifp);
2134 }
2135
2136 return (handled);
2137 }
2138
2139 /*
2140 * wm_txintr:
2141 *
2142 * Helper; handle transmit interrupts.
2143 */
2144 static void
2145 wm_txintr(struct wm_softc *sc)
2146 {
2147 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2148 struct wm_txsoft *txs;
2149 uint8_t status;
2150 int i;
2151
2152 ifp->if_flags &= ~IFF_OACTIVE;
2153
2154 /*
2155 * Go through the Tx list and free mbufs for those
2156 * frames which have been transmitted.
2157 */
2158 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2159 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2160 txs = &sc->sc_txsoft[i];
2161
2162 DPRINTF(WM_DEBUG_TX,
2163 ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2164
2165 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2166 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2167
2168 status =
2169 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2170 if ((status & WTX_ST_DD) == 0) {
2171 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2172 BUS_DMASYNC_PREREAD);
2173 break;
2174 }
2175
2176 DPRINTF(WM_DEBUG_TX,
2177 ("%s: TX: job %d done: descs %d..%d\n",
2178 sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2179 txs->txs_lastdesc));
2180
2181 /*
2182 * XXX We should probably be using the statistics
2183 * XXX registers, but I don't know if they exist
2184 * XXX on chips before the i82544.
2185 */
2186
2187 #ifdef WM_EVENT_COUNTERS
2188 if (status & WTX_ST_TU)
2189 WM_EVCNT_INCR(&sc->sc_ev_tu);
2190 #endif /* WM_EVENT_COUNTERS */
2191
2192 if (status & (WTX_ST_EC|WTX_ST_LC)) {
2193 ifp->if_oerrors++;
2194 if (status & WTX_ST_LC)
2195 log(LOG_WARNING, "%s: late collision\n",
2196 sc->sc_dev.dv_xname);
2197 else if (status & WTX_ST_EC) {
2198 ifp->if_collisions += 16;
2199 log(LOG_WARNING, "%s: excessive collisions\n",
2200 sc->sc_dev.dv_xname);
2201 }
2202 } else
2203 ifp->if_opackets++;
2204
2205 sc->sc_txfree += txs->txs_ndesc;
2206 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2207 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2208 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2209 m_freem(txs->txs_mbuf);
2210 txs->txs_mbuf = NULL;
2211 }
2212
2213 /* Update the dirty transmit buffer pointer. */
2214 sc->sc_txsdirty = i;
2215 DPRINTF(WM_DEBUG_TX,
2216 ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2217
2218 /*
2219 * If there are no more pending transmissions, cancel the watchdog
2220 * timer.
2221 */
2222 if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2223 ifp->if_timer = 0;
2224 }
2225
2226 /*
2227 * wm_rxintr:
2228 *
2229 * Helper; handle receive interrupts.
2230 */
2231 static void
2232 wm_rxintr(struct wm_softc *sc)
2233 {
2234 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2235 struct wm_rxsoft *rxs;
2236 struct mbuf *m;
2237 int i, len;
2238 uint8_t status, errors;
2239
2240 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2241 rxs = &sc->sc_rxsoft[i];
2242
2243 DPRINTF(WM_DEBUG_RX,
2244 ("%s: RX: checking descriptor %d\n",
2245 sc->sc_dev.dv_xname, i));
2246
2247 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2248
2249 status = sc->sc_rxdescs[i].wrx_status;
2250 errors = sc->sc_rxdescs[i].wrx_errors;
2251 len = le16toh(sc->sc_rxdescs[i].wrx_len);
2252
2253 if ((status & WRX_ST_DD) == 0) {
2254 /*
2255 * We have processed all of the receive descriptors.
2256 */
2257 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2258 break;
2259 }
2260
2261 if (__predict_false(sc->sc_rxdiscard)) {
2262 DPRINTF(WM_DEBUG_RX,
2263 ("%s: RX: discarding contents of descriptor %d\n",
2264 sc->sc_dev.dv_xname, i));
2265 WM_INIT_RXDESC(sc, i);
2266 if (status & WRX_ST_EOP) {
2267 /* Reset our state. */
2268 DPRINTF(WM_DEBUG_RX,
2269 ("%s: RX: resetting rxdiscard -> 0\n",
2270 sc->sc_dev.dv_xname));
2271 sc->sc_rxdiscard = 0;
2272 }
2273 continue;
2274 }
2275
2276 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2277 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2278
2279 m = rxs->rxs_mbuf;
2280
2281 /*
2282 * Add a new receive buffer to the ring.
2283 */
2284 if (wm_add_rxbuf(sc, i) != 0) {
2285 /*
2286 * Failed, throw away what we've done so
2287 * far, and discard the rest of the packet.
2288 */
2289 ifp->if_ierrors++;
2290 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2291 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2292 WM_INIT_RXDESC(sc, i);
2293 if ((status & WRX_ST_EOP) == 0)
2294 sc->sc_rxdiscard = 1;
2295 if (sc->sc_rxhead != NULL)
2296 m_freem(sc->sc_rxhead);
2297 WM_RXCHAIN_RESET(sc);
2298 DPRINTF(WM_DEBUG_RX,
2299 ("%s: RX: Rx buffer allocation failed, "
2300 "dropping packet%s\n", sc->sc_dev.dv_xname,
2301 sc->sc_rxdiscard ? " (discard)" : ""));
2302 continue;
2303 }
2304
2305 WM_RXCHAIN_LINK(sc, m);
2306
2307 m->m_len = len;
2308
2309 DPRINTF(WM_DEBUG_RX,
2310 ("%s: RX: buffer at %p len %d\n",
2311 sc->sc_dev.dv_xname, m->m_data, len));
2312
2313 /*
2314 * If this is not the end of the packet, keep
2315 * looking.
2316 */
2317 if ((status & WRX_ST_EOP) == 0) {
2318 sc->sc_rxlen += len;
2319 DPRINTF(WM_DEBUG_RX,
2320 ("%s: RX: not yet EOP, rxlen -> %d\n",
2321 sc->sc_dev.dv_xname, sc->sc_rxlen));
2322 continue;
2323 }
2324
2325 /*
2326 * Okay, we have the entire packet now. The chip is
2327 * configured to include the FCS (not all chips can
2328 * be configured to strip it), so we need to trim it.
2329 */
2330 m->m_len -= ETHER_CRC_LEN;
2331
2332 *sc->sc_rxtailp = NULL;
2333 len = m->m_len + sc->sc_rxlen;
2334 m = sc->sc_rxhead;
2335
2336 WM_RXCHAIN_RESET(sc);
2337
2338 DPRINTF(WM_DEBUG_RX,
2339 ("%s: RX: have entire packet, len -> %d\n",
2340 sc->sc_dev.dv_xname, len));
2341
2342 /*
2343 * If an error occurred, update stats and drop the packet.
2344 */
2345 if (errors &
2346 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2347 ifp->if_ierrors++;
2348 if (errors & WRX_ER_SE)
2349 log(LOG_WARNING, "%s: symbol error\n",
2350 sc->sc_dev.dv_xname);
2351 else if (errors & WRX_ER_SEQ)
2352 log(LOG_WARNING, "%s: receive sequence error\n",
2353 sc->sc_dev.dv_xname);
2354 else if (errors & WRX_ER_CE)
2355 log(LOG_WARNING, "%s: CRC error\n",
2356 sc->sc_dev.dv_xname);
2357 m_freem(m);
2358 continue;
2359 }
2360
2361 /*
2362 * No errors. Receive the packet.
2363 */
2364 m->m_pkthdr.rcvif = ifp;
2365 m->m_pkthdr.len = len;
2366
2367 #if 0 /* XXXJRT */
2368 /*
2369 * If VLANs are enabled, VLAN packets have been unwrapped
2370 * for us. Associate the tag with the packet.
2371 */
2372 if ((status & WRX_ST_VP) != 0) {
2373 VLAN_INPUT_TAG(ifp, m,
2374 le16toh(sc->sc_rxdescs[i].wrx_special,
2375 continue);
2376 }
2377 #endif /* XXXJRT */
2378
2379 /*
2380 * Set up checksum info for this packet.
2381 */
2382 if ((status & WRX_ST_IXSM) == 0) {
2383 if (status & WRX_ST_IPCS) {
2384 WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2385 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2386 if (errors & WRX_ER_IPE)
2387 m->m_pkthdr.csum_flags |=
2388 M_CSUM_IPv4_BAD;
2389 }
2390 if (status & WRX_ST_TCPCS) {
2391 /*
2392 * Note: we don't know if this was TCP or UDP,
2393 * so we just set both bits, and expect the
2394 * upper layers to deal.
2395 */
2396 WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2397 m->m_pkthdr.csum_flags |=
2398 M_CSUM_TCPv4|M_CSUM_UDPv4;
2399 if (errors & WRX_ER_TCPE)
2400 m->m_pkthdr.csum_flags |=
2401 M_CSUM_TCP_UDP_BAD;
2402 }
2403 }
2404
2405 ifp->if_ipackets++;
2406
2407 #if NBPFILTER > 0
2408 /* Pass this up to any BPF listeners. */
2409 if (ifp->if_bpf)
2410 bpf_mtap(ifp->if_bpf, m);
2411 #endif /* NBPFILTER > 0 */
2412
2413 /* Pass it on. */
2414 (*ifp->if_input)(ifp, m);
2415 }
2416
2417 /* Update the receive pointer. */
2418 sc->sc_rxptr = i;
2419
2420 DPRINTF(WM_DEBUG_RX,
2421 ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2422 }
2423
2424 /*
2425 * wm_linkintr:
2426 *
2427 * Helper; handle link interrupts.
2428 */
2429 static void
2430 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2431 {
2432 uint32_t status;
2433
2434 /*
2435 * If we get a link status interrupt on a 1000BASE-T
2436 * device, just fall into the normal MII tick path.
2437 */
2438 if (sc->sc_flags & WM_F_HAS_MII) {
2439 if (icr & ICR_LSC) {
2440 DPRINTF(WM_DEBUG_LINK,
2441 ("%s: LINK: LSC -> mii_tick\n",
2442 sc->sc_dev.dv_xname));
2443 mii_tick(&sc->sc_mii);
2444 } else if (icr & ICR_RXSEQ) {
2445 DPRINTF(WM_DEBUG_LINK,
2446 ("%s: LINK Receive sequence error\n",
2447 sc->sc_dev.dv_xname));
2448 }
2449 return;
2450 }
2451
2452 /*
2453 * If we are now receiving /C/, check for link again in
2454 * a couple of link clock ticks.
2455 */
2456 if (icr & ICR_RXCFG) {
2457 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2458 sc->sc_dev.dv_xname));
2459 sc->sc_tbi_anstate = 2;
2460 }
2461
2462 if (icr & ICR_LSC) {
2463 status = CSR_READ(sc, WMREG_STATUS);
2464 if (status & STATUS_LU) {
2465 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2466 sc->sc_dev.dv_xname,
2467 (status & STATUS_FD) ? "FDX" : "HDX"));
2468 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2469 sc->sc_fcrtl &= ~FCRTL_XONE;
2470 if (status & STATUS_FD)
2471 sc->sc_tctl |=
2472 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2473 else
2474 sc->sc_tctl |=
2475 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2476 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2477 sc->sc_fcrtl |= FCRTL_XONE;
2478 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2479 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2480 WMREG_OLD_FCRTL : WMREG_FCRTL,
2481 sc->sc_fcrtl);
2482 sc->sc_tbi_linkup = 1;
2483 } else {
2484 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2485 sc->sc_dev.dv_xname));
2486 sc->sc_tbi_linkup = 0;
2487 }
2488 sc->sc_tbi_anstate = 2;
2489 wm_tbi_set_linkled(sc);
2490 } else if (icr & ICR_RXSEQ) {
2491 DPRINTF(WM_DEBUG_LINK,
2492 ("%s: LINK: Receive sequence error\n",
2493 sc->sc_dev.dv_xname));
2494 }
2495 }
2496
2497 /*
2498 * wm_tick:
2499 *
2500 * One second timer, used to check link status, sweep up
2501 * completed transmit jobs, etc.
2502 */
2503 static void
2504 wm_tick(void *arg)
2505 {
2506 struct wm_softc *sc = arg;
2507 int s;
2508
2509 s = splnet();
2510
2511 if (sc->sc_type >= WM_T_82542_2_1) {
2512 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2513 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2514 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2515 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2516 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2517 }
2518
2519 if (sc->sc_flags & WM_F_HAS_MII)
2520 mii_tick(&sc->sc_mii);
2521 else
2522 wm_tbi_check_link(sc);
2523
2524 splx(s);
2525
2526 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2527 }
2528
2529 /*
2530 * wm_reset:
2531 *
2532 * Reset the i82542 chip.
2533 */
2534 static void
2535 wm_reset(struct wm_softc *sc)
2536 {
2537 int i;
2538
2539 /*
2540 * Allocate on-chip memory according to the MTU size.
2541 * The Packet Buffer Allocation register must be written
2542 * before the chip is reset.
2543 */
2544 if (sc->sc_type < WM_T_82547) {
2545 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2546 PBA_40K : PBA_48K;
2547 } else {
2548 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2549 PBA_22K : PBA_30K;
2550 sc->sc_txfifo_head = 0;
2551 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2552 sc->sc_txfifo_size =
2553 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2554 sc->sc_txfifo_stall = 0;
2555 }
2556 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2557
2558 switch (sc->sc_type) {
2559 case WM_T_82544:
2560 case WM_T_82540:
2561 case WM_T_82545:
2562 case WM_T_82546:
2563 case WM_T_82541:
2564 case WM_T_82541_2:
2565 /*
2566 * On some chipsets, a reset through a memory-mapped write
2567 * cycle can cause the chip to reset before completing the
2568 * write cycle. This causes major headache that can be
2569 * avoided by issuing the reset via indirect register writes
2570 * through I/O space.
2571 *
2572 * So, if we successfully mapped the I/O BAR at attach time,
2573 * use that. Otherwise, try our luck with a memory-mapped
2574 * reset.
2575 */
2576 if (sc->sc_flags & WM_F_IOH_VALID)
2577 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2578 else
2579 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2580 break;
2581
2582 case WM_T_82545_3:
2583 case WM_T_82546_3:
2584 /* Use the shadow control register on these chips. */
2585 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2586 break;
2587
2588 default:
2589 /* Everything else can safely use the documented method. */
2590 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2591 break;
2592 }
2593 delay(10000);
2594
2595 for (i = 0; i < 1000; i++) {
2596 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2597 return;
2598 delay(20);
2599 }
2600
2601 if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2602 log(LOG_ERR, "%s: reset failed to complete\n",
2603 sc->sc_dev.dv_xname);
2604 }
2605
2606 /*
2607 * wm_init: [ifnet interface function]
2608 *
2609 * Initialize the interface. Must be called at splnet().
2610 */
2611 static int
2612 wm_init(struct ifnet *ifp)
2613 {
2614 struct wm_softc *sc = ifp->if_softc;
2615 struct wm_rxsoft *rxs;
2616 int i, error = 0;
2617 uint32_t reg;
2618
2619 /*
2620 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2621 * There is a small but measurable benefit to avoiding the adjusment
2622 * of the descriptor so that the headers are aligned, for normal mtu,
2623 * on such platforms. One possibility is that the DMA itself is
2624 * slightly more efficient if the front of the entire packet (instead
2625 * of the front of the headers) is aligned.
2626 *
2627 * Note we must always set align_tweak to 0 if we are using
2628 * jumbo frames.
2629 */
2630 #ifdef __NO_STRICT_ALIGNMENT
2631 sc->sc_align_tweak = 0;
2632 #else
2633 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2634 sc->sc_align_tweak = 0;
2635 else
2636 sc->sc_align_tweak = 2;
2637 #endif /* __NO_STRICT_ALIGNMENT */
2638
2639 /* Cancel any pending I/O. */
2640 wm_stop(ifp, 0);
2641
2642 /* Reset the chip to a known state. */
2643 wm_reset(sc);
2644
2645 /* Initialize the transmit descriptor ring. */
2646 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2647 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2648 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2649 sc->sc_txfree = WM_NTXDESC(sc);
2650 sc->sc_txnext = 0;
2651
2652 if (sc->sc_type < WM_T_82543) {
2653 CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2654 CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2655 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2656 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2657 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2658 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2659 } else {
2660 CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2661 CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2662 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2663 CSR_WRITE(sc, WMREG_TDH, 0);
2664 CSR_WRITE(sc, WMREG_TDT, 0);
2665 CSR_WRITE(sc, WMREG_TIDV, 64);
2666 CSR_WRITE(sc, WMREG_TADV, 128);
2667
2668 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2669 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2670 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2671 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2672 }
2673 CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2674 CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2675
2676 /* Initialize the transmit job descriptors. */
2677 for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2678 sc->sc_txsoft[i].txs_mbuf = NULL;
2679 sc->sc_txsfree = WM_TXQUEUELEN(sc);
2680 sc->sc_txsnext = 0;
2681 sc->sc_txsdirty = 0;
2682
2683 /*
2684 * Initialize the receive descriptor and receive job
2685 * descriptor rings.
2686 */
2687 if (sc->sc_type < WM_T_82543) {
2688 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2689 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2690 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2691 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2692 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2693 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2694
2695 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2696 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2697 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2698 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2699 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2700 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2701 } else {
2702 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2703 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2704 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2705 CSR_WRITE(sc, WMREG_RDH, 0);
2706 CSR_WRITE(sc, WMREG_RDT, 0);
2707 CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
2708 CSR_WRITE(sc, WMREG_RADV, 128);
2709 }
2710 for (i = 0; i < WM_NRXDESC; i++) {
2711 rxs = &sc->sc_rxsoft[i];
2712 if (rxs->rxs_mbuf == NULL) {
2713 if ((error = wm_add_rxbuf(sc, i)) != 0) {
2714 log(LOG_ERR, "%s: unable to allocate or map rx "
2715 "buffer %d, error = %d\n",
2716 sc->sc_dev.dv_xname, i, error);
2717 /*
2718 * XXX Should attempt to run with fewer receive
2719 * XXX buffers instead of just failing.
2720 */
2721 wm_rxdrain(sc);
2722 goto out;
2723 }
2724 } else
2725 WM_INIT_RXDESC(sc, i);
2726 }
2727 sc->sc_rxptr = 0;
2728 sc->sc_rxdiscard = 0;
2729 WM_RXCHAIN_RESET(sc);
2730
2731 /*
2732 * Clear out the VLAN table -- we don't use it (yet).
2733 */
2734 CSR_WRITE(sc, WMREG_VET, 0);
2735 for (i = 0; i < WM_VLAN_TABSIZE; i++)
2736 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2737
2738 /*
2739 * Set up flow-control parameters.
2740 *
2741 * XXX Values could probably stand some tuning.
2742 */
2743 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2744 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2745 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2746
2747 sc->sc_fcrtl = FCRTL_DFLT;
2748 if (sc->sc_type < WM_T_82543) {
2749 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2750 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2751 } else {
2752 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2753 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2754 }
2755 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2756
2757 #if 0 /* XXXJRT */
2758 /* Deal with VLAN enables. */
2759 if (VLAN_ATTACHED(&sc->sc_ethercom))
2760 sc->sc_ctrl |= CTRL_VME;
2761 else
2762 #endif /* XXXJRT */
2763 sc->sc_ctrl &= ~CTRL_VME;
2764
2765 /* Write the control registers. */
2766 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2767 #if 0
2768 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2769 #endif
2770
2771 /*
2772 * Set up checksum offload parameters.
2773 */
2774 reg = CSR_READ(sc, WMREG_RXCSUM);
2775 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
2776 reg |= RXCSUM_IPOFL;
2777 else
2778 reg &= ~RXCSUM_IPOFL;
2779 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2780 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2781 else {
2782 reg &= ~RXCSUM_TUOFL;
2783 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
2784 reg &= ~RXCSUM_IPOFL;
2785 }
2786 CSR_WRITE(sc, WMREG_RXCSUM, reg);
2787
2788 /*
2789 * Set up the interrupt registers.
2790 */
2791 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2792 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2793 ICR_RXO | ICR_RXT0;
2794 if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2795 sc->sc_icr |= ICR_RXCFG;
2796 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2797
2798 /* Set up the inter-packet gap. */
2799 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2800
2801 if (sc->sc_type >= WM_T_82543) {
2802 /* Set up the interrupt throttling register (units of 256ns) */
2803 sc->sc_itr = 1000000000 / (7000 * 256);
2804 CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
2805 }
2806
2807 #if 0 /* XXXJRT */
2808 /* Set the VLAN ethernetype. */
2809 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2810 #endif
2811
2812 /*
2813 * Set up the transmit control register; we start out with
2814 * a collision distance suitable for FDX, but update it whe
2815 * we resolve the media type.
2816 */
2817 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2818 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2819 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2820
2821 /* Set the media. */
2822 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2823
2824 /*
2825 * Set up the receive control register; we actually program
2826 * the register when we set the receive filter. Use multicast
2827 * address offset type 0.
2828 *
2829 * Only the i82544 has the ability to strip the incoming
2830 * CRC, so we don't enable that feature.
2831 */
2832 sc->sc_mchash_type = 0;
2833 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
2834 RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2835
2836 if(MCLBYTES == 2048) {
2837 sc->sc_rctl |= RCTL_2k;
2838 } else {
2839 if(sc->sc_type >= WM_T_82543) {
2840 switch(MCLBYTES) {
2841 case 4096:
2842 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2843 break;
2844 case 8192:
2845 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2846 break;
2847 case 16384:
2848 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2849 break;
2850 default:
2851 panic("wm_init: MCLBYTES %d unsupported",
2852 MCLBYTES);
2853 break;
2854 }
2855 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
2856 }
2857
2858 /* Set the receive filter. */
2859 wm_set_filter(sc);
2860
2861 /* Start the one second link check clock. */
2862 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2863
2864 /* ...all done! */
2865 ifp->if_flags |= IFF_RUNNING;
2866 ifp->if_flags &= ~IFF_OACTIVE;
2867
2868 out:
2869 if (error)
2870 log(LOG_ERR, "%s: interface not running\n",
2871 sc->sc_dev.dv_xname);
2872 return (error);
2873 }
2874
2875 /*
2876 * wm_rxdrain:
2877 *
2878 * Drain the receive queue.
2879 */
2880 static void
2881 wm_rxdrain(struct wm_softc *sc)
2882 {
2883 struct wm_rxsoft *rxs;
2884 int i;
2885
2886 for (i = 0; i < WM_NRXDESC; i++) {
2887 rxs = &sc->sc_rxsoft[i];
2888 if (rxs->rxs_mbuf != NULL) {
2889 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2890 m_freem(rxs->rxs_mbuf);
2891 rxs->rxs_mbuf = NULL;
2892 }
2893 }
2894 }
2895
2896 /*
2897 * wm_stop: [ifnet interface function]
2898 *
2899 * Stop transmission on the interface.
2900 */
2901 static void
2902 wm_stop(struct ifnet *ifp, int disable)
2903 {
2904 struct wm_softc *sc = ifp->if_softc;
2905 struct wm_txsoft *txs;
2906 int i;
2907
2908 /* Stop the one second clock. */
2909 callout_stop(&sc->sc_tick_ch);
2910
2911 /* Stop the 82547 Tx FIFO stall check timer. */
2912 if (sc->sc_type == WM_T_82547)
2913 callout_stop(&sc->sc_txfifo_ch);
2914
2915 if (sc->sc_flags & WM_F_HAS_MII) {
2916 /* Down the MII. */
2917 mii_down(&sc->sc_mii);
2918 }
2919
2920 /* Stop the transmit and receive processes. */
2921 CSR_WRITE(sc, WMREG_TCTL, 0);
2922 CSR_WRITE(sc, WMREG_RCTL, 0);
2923
2924 /*
2925 * Clear the interrupt mask to ensure the device cannot assert its
2926 * interrupt line.
2927 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
2928 * any currently pending or shared interrupt.
2929 */
2930 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2931 sc->sc_icr = 0;
2932
2933 /* Release any queued transmit buffers. */
2934 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2935 txs = &sc->sc_txsoft[i];
2936 if (txs->txs_mbuf != NULL) {
2937 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2938 m_freem(txs->txs_mbuf);
2939 txs->txs_mbuf = NULL;
2940 }
2941 }
2942
2943 if (disable)
2944 wm_rxdrain(sc);
2945
2946 /* Mark the interface as down and cancel the watchdog timer. */
2947 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2948 ifp->if_timer = 0;
2949 }
2950
2951 /*
2952 * wm_acquire_eeprom:
2953 *
2954 * Perform the EEPROM handshake required on some chips.
2955 */
2956 static int
2957 wm_acquire_eeprom(struct wm_softc *sc)
2958 {
2959 uint32_t reg;
2960 int x;
2961
2962 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2963 reg = CSR_READ(sc, WMREG_EECD);
2964
2965 /* Request EEPROM access. */
2966 reg |= EECD_EE_REQ;
2967 CSR_WRITE(sc, WMREG_EECD, reg);
2968
2969 /* ..and wait for it to be granted. */
2970 for (x = 0; x < 100; x++) {
2971 reg = CSR_READ(sc, WMREG_EECD);
2972 if (reg & EECD_EE_GNT)
2973 break;
2974 delay(5);
2975 }
2976 if ((reg & EECD_EE_GNT) == 0) {
2977 aprint_error("%s: could not acquire EEPROM GNT\n",
2978 sc->sc_dev.dv_xname);
2979 reg &= ~EECD_EE_REQ;
2980 CSR_WRITE(sc, WMREG_EECD, reg);
2981 return (1);
2982 }
2983 }
2984
2985 return (0);
2986 }
2987
2988 /*
2989 * wm_release_eeprom:
2990 *
2991 * Release the EEPROM mutex.
2992 */
2993 static void
2994 wm_release_eeprom(struct wm_softc *sc)
2995 {
2996 uint32_t reg;
2997
2998 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2999 reg = CSR_READ(sc, WMREG_EECD);
3000 reg &= ~EECD_EE_REQ;
3001 CSR_WRITE(sc, WMREG_EECD, reg);
3002 }
3003 }
3004
3005 /*
3006 * wm_eeprom_sendbits:
3007 *
3008 * Send a series of bits to the EEPROM.
3009 */
3010 static void
3011 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
3012 {
3013 uint32_t reg;
3014 int x;
3015
3016 reg = CSR_READ(sc, WMREG_EECD);
3017
3018 for (x = nbits; x > 0; x--) {
3019 if (bits & (1U << (x - 1)))
3020 reg |= EECD_DI;
3021 else
3022 reg &= ~EECD_DI;
3023 CSR_WRITE(sc, WMREG_EECD, reg);
3024 delay(2);
3025 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3026 delay(2);
3027 CSR_WRITE(sc, WMREG_EECD, reg);
3028 delay(2);
3029 }
3030 }
3031
3032 /*
3033 * wm_eeprom_recvbits:
3034 *
3035 * Receive a series of bits from the EEPROM.
3036 */
3037 static void
3038 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
3039 {
3040 uint32_t reg, val;
3041 int x;
3042
3043 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
3044
3045 val = 0;
3046 for (x = nbits; x > 0; x--) {
3047 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3048 delay(2);
3049 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
3050 val |= (1U << (x - 1));
3051 CSR_WRITE(sc, WMREG_EECD, reg);
3052 delay(2);
3053 }
3054 *valp = val;
3055 }
3056
3057 /*
3058 * wm_read_eeprom_uwire:
3059 *
3060 * Read a word from the EEPROM using the MicroWire protocol.
3061 */
3062 static int
3063 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3064 {
3065 uint32_t reg, val;
3066 int i;
3067
3068 for (i = 0; i < wordcnt; i++) {
3069 /* Clear SK and DI. */
3070 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
3071 CSR_WRITE(sc, WMREG_EECD, reg);
3072
3073 /* Set CHIP SELECT. */
3074 reg |= EECD_CS;
3075 CSR_WRITE(sc, WMREG_EECD, reg);
3076 delay(2);
3077
3078 /* Shift in the READ command. */
3079 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
3080
3081 /* Shift in address. */
3082 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
3083
3084 /* Shift out the data. */
3085 wm_eeprom_recvbits(sc, &val, 16);
3086 data[i] = val & 0xffff;
3087
3088 /* Clear CHIP SELECT. */
3089 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
3090 CSR_WRITE(sc, WMREG_EECD, reg);
3091 delay(2);
3092 }
3093
3094 return (0);
3095 }
3096
3097 /*
3098 * wm_spi_eeprom_ready:
3099 *
3100 * Wait for a SPI EEPROM to be ready for commands.
3101 */
3102 static int
3103 wm_spi_eeprom_ready(struct wm_softc *sc)
3104 {
3105 uint32_t val;
3106 int usec;
3107
3108 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
3109 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
3110 wm_eeprom_recvbits(sc, &val, 8);
3111 if ((val & SPI_SR_RDY) == 0)
3112 break;
3113 }
3114 if (usec >= SPI_MAX_RETRIES) {
3115 aprint_error("%s: EEPROM failed to become ready\n",
3116 sc->sc_dev.dv_xname);
3117 return (1);
3118 }
3119 return (0);
3120 }
3121
3122 /*
3123 * wm_read_eeprom_spi:
3124 *
3125 * Read a work from the EEPROM using the SPI protocol.
3126 */
3127 static int
3128 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3129 {
3130 uint32_t reg, val;
3131 int i;
3132 uint8_t opc;
3133
3134 /* Clear SK and CS. */
3135 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
3136 CSR_WRITE(sc, WMREG_EECD, reg);
3137 delay(2);
3138
3139 if (wm_spi_eeprom_ready(sc))
3140 return (1);
3141
3142 /* Toggle CS to flush commands. */
3143 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
3144 delay(2);
3145 CSR_WRITE(sc, WMREG_EECD, reg);
3146 delay(2);
3147
3148 opc = SPI_OPC_READ;
3149 if (sc->sc_ee_addrbits == 8 && word >= 128)
3150 opc |= SPI_OPC_A8;
3151
3152 wm_eeprom_sendbits(sc, opc, 8);
3153 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
3154
3155 for (i = 0; i < wordcnt; i++) {
3156 wm_eeprom_recvbits(sc, &val, 16);
3157 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
3158 }
3159
3160 /* Raise CS and clear SK. */
3161 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3162 CSR_WRITE(sc, WMREG_EECD, reg);
3163 delay(2);
3164
3165 return (0);
3166 }
3167
3168 #define EEPROM_CHECKSUM 0xBABA
3169 #define EEPROM_SIZE 0x0040
3170
3171 /*
3172 * wm_validate_eeprom_checksum
3173 *
3174 * The checksum is defined as the sum of the first 64 (16 bit) words.
3175 */
3176 static int
3177 wm_validate_eeprom_checksum(struct wm_softc *sc)
3178 {
3179 uint16_t checksum;
3180 uint16_t eeprom_data;
3181 int i;
3182
3183 checksum = 0;
3184
3185 for (i = 0; i < EEPROM_SIZE; i++) {
3186 if(wm_read_eeprom(sc, i, 1, &eeprom_data))
3187 return 1;
3188 checksum += eeprom_data;
3189 }
3190
3191 if (checksum != (uint16_t) EEPROM_CHECKSUM)
3192 return 1;
3193
3194 return 0;
3195 }
3196
3197 /*
3198 * wm_read_eeprom:
3199 *
3200 * Read data from the serial EEPROM.
3201 */
3202 static int
3203 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3204 {
3205 int rv;
3206
3207 if (sc->sc_flags & WM_F_EEPROM_INVALID)
3208 return 1;
3209
3210 if (wm_acquire_eeprom(sc))
3211 return 1;
3212
3213 if (sc->sc_flags & WM_F_EEPROM_SPI)
3214 rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3215 else
3216 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3217
3218 wm_release_eeprom(sc);
3219 return rv;
3220 }
3221
3222 /*
3223 * wm_add_rxbuf:
3224 *
3225 * Add a receive buffer to the indiciated descriptor.
3226 */
3227 static int
3228 wm_add_rxbuf(struct wm_softc *sc, int idx)
3229 {
3230 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3231 struct mbuf *m;
3232 int error;
3233
3234 MGETHDR(m, M_DONTWAIT, MT_DATA);
3235 if (m == NULL)
3236 return (ENOBUFS);
3237
3238 MCLGET(m, M_DONTWAIT);
3239 if ((m->m_flags & M_EXT) == 0) {
3240 m_freem(m);
3241 return (ENOBUFS);
3242 }
3243
3244 if (rxs->rxs_mbuf != NULL)
3245 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3246
3247 rxs->rxs_mbuf = m;
3248
3249 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3250 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3251 BUS_DMA_READ|BUS_DMA_NOWAIT);
3252 if (error) {
3253 /* XXX XXX XXX */
3254 printf("%s: unable to load rx DMA map %d, error = %d\n",
3255 sc->sc_dev.dv_xname, idx, error);
3256 panic("wm_add_rxbuf");
3257 }
3258
3259 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3260 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3261
3262 WM_INIT_RXDESC(sc, idx);
3263
3264 return (0);
3265 }
3266
3267 /*
3268 * wm_set_ral:
3269 *
3270 * Set an entery in the receive address list.
3271 */
3272 static void
3273 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3274 {
3275 uint32_t ral_lo, ral_hi;
3276
3277 if (enaddr != NULL) {
3278 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3279 (enaddr[3] << 24);
3280 ral_hi = enaddr[4] | (enaddr[5] << 8);
3281 ral_hi |= RAL_AV;
3282 } else {
3283 ral_lo = 0;
3284 ral_hi = 0;
3285 }
3286
3287 if (sc->sc_type >= WM_T_82544) {
3288 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3289 ral_lo);
3290 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3291 ral_hi);
3292 } else {
3293 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3294 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3295 }
3296 }
3297
3298 /*
3299 * wm_mchash:
3300 *
3301 * Compute the hash of the multicast address for the 4096-bit
3302 * multicast filter.
3303 */
3304 static uint32_t
3305 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3306 {
3307 static const int lo_shift[4] = { 4, 3, 2, 0 };
3308 static const int hi_shift[4] = { 4, 5, 6, 8 };
3309 uint32_t hash;
3310
3311 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3312 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3313
3314 return (hash & 0xfff);
3315 }
3316
3317 /*
3318 * wm_set_filter:
3319 *
3320 * Set up the receive filter.
3321 */
3322 static void
3323 wm_set_filter(struct wm_softc *sc)
3324 {
3325 struct ethercom *ec = &sc->sc_ethercom;
3326 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3327 struct ether_multi *enm;
3328 struct ether_multistep step;
3329 bus_addr_t mta_reg;
3330 uint32_t hash, reg, bit;
3331 int i;
3332
3333 if (sc->sc_type >= WM_T_82544)
3334 mta_reg = WMREG_CORDOVA_MTA;
3335 else
3336 mta_reg = WMREG_MTA;
3337
3338 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3339
3340 if (ifp->if_flags & IFF_BROADCAST)
3341 sc->sc_rctl |= RCTL_BAM;
3342 if (ifp->if_flags & IFF_PROMISC) {
3343 sc->sc_rctl |= RCTL_UPE;
3344 goto allmulti;
3345 }
3346
3347 /*
3348 * Set the station address in the first RAL slot, and
3349 * clear the remaining slots.
3350 */
3351 wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3352 for (i = 1; i < WM_RAL_TABSIZE; i++)
3353 wm_set_ral(sc, NULL, i);
3354
3355 /* Clear out the multicast table. */
3356 for (i = 0; i < WM_MC_TABSIZE; i++)
3357 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3358
3359 ETHER_FIRST_MULTI(step, ec, enm);
3360 while (enm != NULL) {
3361 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3362 /*
3363 * We must listen to a range of multicast addresses.
3364 * For now, just accept all multicasts, rather than
3365 * trying to set only those filter bits needed to match
3366 * the range. (At this time, the only use of address
3367 * ranges is for IP multicast routing, for which the
3368 * range is big enough to require all bits set.)
3369 */
3370 goto allmulti;
3371 }
3372
3373 hash = wm_mchash(sc, enm->enm_addrlo);
3374
3375 reg = (hash >> 5) & 0x7f;
3376 bit = hash & 0x1f;
3377
3378 hash = CSR_READ(sc, mta_reg + (reg << 2));
3379 hash |= 1U << bit;
3380
3381 /* XXX Hardware bug?? */
3382 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3383 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3384 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3385 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3386 } else
3387 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3388
3389 ETHER_NEXT_MULTI(step, enm);
3390 }
3391
3392 ifp->if_flags &= ~IFF_ALLMULTI;
3393 goto setit;
3394
3395 allmulti:
3396 ifp->if_flags |= IFF_ALLMULTI;
3397 sc->sc_rctl |= RCTL_MPE;
3398
3399 setit:
3400 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3401 }
3402
3403 /*
3404 * wm_tbi_mediainit:
3405 *
3406 * Initialize media for use on 1000BASE-X devices.
3407 */
3408 static void
3409 wm_tbi_mediainit(struct wm_softc *sc)
3410 {
3411 const char *sep = "";
3412
3413 if (sc->sc_type < WM_T_82543)
3414 sc->sc_tipg = TIPG_WM_DFLT;
3415 else
3416 sc->sc_tipg = TIPG_LG_DFLT;
3417
3418 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3419 wm_tbi_mediastatus);
3420
3421 /*
3422 * SWD Pins:
3423 *
3424 * 0 = Link LED (output)
3425 * 1 = Loss Of Signal (input)
3426 */
3427 sc->sc_ctrl |= CTRL_SWDPIO(0);
3428 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3429
3430 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3431
3432 #define ADD(ss, mm, dd) \
3433 do { \
3434 aprint_normal("%s%s", sep, ss); \
3435 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
3436 sep = ", "; \
3437 } while (/*CONSTCOND*/0)
3438
3439 aprint_normal("%s: ", sc->sc_dev.dv_xname);
3440 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3441 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3442 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3443 aprint_normal("\n");
3444
3445 #undef ADD
3446
3447 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3448 }
3449
3450 /*
3451 * wm_tbi_mediastatus: [ifmedia interface function]
3452 *
3453 * Get the current interface media status on a 1000BASE-X device.
3454 */
3455 static void
3456 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3457 {
3458 struct wm_softc *sc = ifp->if_softc;
3459 uint32_t ctrl;
3460
3461 ifmr->ifm_status = IFM_AVALID;
3462 ifmr->ifm_active = IFM_ETHER;
3463
3464 if (sc->sc_tbi_linkup == 0) {
3465 ifmr->ifm_active |= IFM_NONE;
3466 return;
3467 }
3468
3469 ifmr->ifm_status |= IFM_ACTIVE;
3470 ifmr->ifm_active |= IFM_1000_SX;
3471 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3472 ifmr->ifm_active |= IFM_FDX;
3473 ctrl = CSR_READ(sc, WMREG_CTRL);
3474 if (ctrl & CTRL_RFCE)
3475 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3476 if (ctrl & CTRL_TFCE)
3477 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3478 }
3479
3480 /*
3481 * wm_tbi_mediachange: [ifmedia interface function]
3482 *
3483 * Set hardware to newly-selected media on a 1000BASE-X device.
3484 */
3485 static int
3486 wm_tbi_mediachange(struct ifnet *ifp)
3487 {
3488 struct wm_softc *sc = ifp->if_softc;
3489 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3490 uint32_t status;
3491 int i;
3492
3493 sc->sc_txcw = ife->ifm_data;
3494 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3495 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3496 sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3497 sc->sc_txcw |= TXCW_ANE;
3498
3499 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3500 delay(10000);
3501
3502 /* NOTE: CTRL will update TFCE and RFCE automatically. */
3503
3504 sc->sc_tbi_anstate = 0;
3505
3506 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3507 /* Have signal; wait for the link to come up. */
3508 for (i = 0; i < 50; i++) {
3509 delay(10000);
3510 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3511 break;
3512 }
3513
3514 status = CSR_READ(sc, WMREG_STATUS);
3515 if (status & STATUS_LU) {
3516 /* Link is up. */
3517 DPRINTF(WM_DEBUG_LINK,
3518 ("%s: LINK: set media -> link up %s\n",
3519 sc->sc_dev.dv_xname,
3520 (status & STATUS_FD) ? "FDX" : "HDX"));
3521 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3522 sc->sc_fcrtl &= ~FCRTL_XONE;
3523 if (status & STATUS_FD)
3524 sc->sc_tctl |=
3525 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3526 else
3527 sc->sc_tctl |=
3528 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3529 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3530 sc->sc_fcrtl |= FCRTL_XONE;
3531 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3532 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3533 WMREG_OLD_FCRTL : WMREG_FCRTL,
3534 sc->sc_fcrtl);
3535 sc->sc_tbi_linkup = 1;
3536 } else {
3537 /* Link is down. */
3538 DPRINTF(WM_DEBUG_LINK,
3539 ("%s: LINK: set media -> link down\n",
3540 sc->sc_dev.dv_xname));
3541 sc->sc_tbi_linkup = 0;
3542 }
3543 } else {
3544 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3545 sc->sc_dev.dv_xname));
3546 sc->sc_tbi_linkup = 0;
3547 }
3548
3549 wm_tbi_set_linkled(sc);
3550
3551 return (0);
3552 }
3553
3554 /*
3555 * wm_tbi_set_linkled:
3556 *
3557 * Update the link LED on 1000BASE-X devices.
3558 */
3559 static void
3560 wm_tbi_set_linkled(struct wm_softc *sc)
3561 {
3562
3563 if (sc->sc_tbi_linkup)
3564 sc->sc_ctrl |= CTRL_SWDPIN(0);
3565 else
3566 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3567
3568 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3569 }
3570
3571 /*
3572 * wm_tbi_check_link:
3573 *
3574 * Check the link on 1000BASE-X devices.
3575 */
3576 static void
3577 wm_tbi_check_link(struct wm_softc *sc)
3578 {
3579 uint32_t rxcw, ctrl, status;
3580
3581 if (sc->sc_tbi_anstate == 0)
3582 return;
3583 else if (sc->sc_tbi_anstate > 1) {
3584 DPRINTF(WM_DEBUG_LINK,
3585 ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3586 sc->sc_tbi_anstate));
3587 sc->sc_tbi_anstate--;
3588 return;
3589 }
3590
3591 sc->sc_tbi_anstate = 0;
3592
3593 rxcw = CSR_READ(sc, WMREG_RXCW);
3594 ctrl = CSR_READ(sc, WMREG_CTRL);
3595 status = CSR_READ(sc, WMREG_STATUS);
3596
3597 if ((status & STATUS_LU) == 0) {
3598 DPRINTF(WM_DEBUG_LINK,
3599 ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3600 sc->sc_tbi_linkup = 0;
3601 } else {
3602 DPRINTF(WM_DEBUG_LINK,
3603 ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3604 (status & STATUS_FD) ? "FDX" : "HDX"));
3605 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3606 sc->sc_fcrtl &= ~FCRTL_XONE;
3607 if (status & STATUS_FD)
3608 sc->sc_tctl |=
3609 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3610 else
3611 sc->sc_tctl |=
3612 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3613 if (ctrl & CTRL_TFCE)
3614 sc->sc_fcrtl |= FCRTL_XONE;
3615 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3616 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3617 WMREG_OLD_FCRTL : WMREG_FCRTL,
3618 sc->sc_fcrtl);
3619 sc->sc_tbi_linkup = 1;
3620 }
3621
3622 wm_tbi_set_linkled(sc);
3623 }
3624
3625 /*
3626 * wm_gmii_reset:
3627 *
3628 * Reset the PHY.
3629 */
3630 static void
3631 wm_gmii_reset(struct wm_softc *sc)
3632 {
3633 uint32_t reg;
3634
3635 if (sc->sc_type >= WM_T_82544) {
3636 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3637 delay(20000);
3638
3639 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3640 delay(20000);
3641 } else {
3642 /* The PHY reset pin is active-low. */
3643 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3644 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3645 CTRL_EXT_SWDPIN(4));
3646 reg |= CTRL_EXT_SWDPIO(4);
3647
3648 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3649 delay(10);
3650
3651 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3652 delay(10);
3653
3654 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3655 delay(10);
3656 #if 0
3657 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3658 #endif
3659 }
3660 }
3661
3662 /*
3663 * wm_gmii_mediainit:
3664 *
3665 * Initialize media for use on 1000BASE-T devices.
3666 */
3667 static void
3668 wm_gmii_mediainit(struct wm_softc *sc)
3669 {
3670 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3671
3672 /* We have MII. */
3673 sc->sc_flags |= WM_F_HAS_MII;
3674
3675 sc->sc_tipg = TIPG_1000T_DFLT;
3676
3677 /*
3678 * Let the chip set speed/duplex on its own based on
3679 * signals from the PHY.
3680 */
3681 sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3682 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3683
3684 /* Initialize our media structures and probe the GMII. */
3685 sc->sc_mii.mii_ifp = ifp;
3686
3687 if (sc->sc_type >= WM_T_82544) {
3688 sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3689 sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3690 } else {
3691 sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3692 sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3693 }
3694 sc->sc_mii.mii_statchg = wm_gmii_statchg;
3695
3696 wm_gmii_reset(sc);
3697
3698 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3699 wm_gmii_mediastatus);
3700
3701 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3702 MII_OFFSET_ANY, MIIF_DOPAUSE);
3703 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3704 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3705 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3706 } else
3707 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3708 }
3709
3710 /*
3711 * wm_gmii_mediastatus: [ifmedia interface function]
3712 *
3713 * Get the current interface media status on a 1000BASE-T device.
3714 */
3715 static void
3716 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3717 {
3718 struct wm_softc *sc = ifp->if_softc;
3719
3720 mii_pollstat(&sc->sc_mii);
3721 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3722 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3723 sc->sc_flowflags;
3724 }
3725
3726 /*
3727 * wm_gmii_mediachange: [ifmedia interface function]
3728 *
3729 * Set hardware to newly-selected media on a 1000BASE-T device.
3730 */
3731 static int
3732 wm_gmii_mediachange(struct ifnet *ifp)
3733 {
3734 struct wm_softc *sc = ifp->if_softc;
3735
3736 if (ifp->if_flags & IFF_UP)
3737 mii_mediachg(&sc->sc_mii);
3738 return (0);
3739 }
3740
3741 #define MDI_IO CTRL_SWDPIN(2)
3742 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
3743 #define MDI_CLK CTRL_SWDPIN(3)
3744
3745 static void
3746 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3747 {
3748 uint32_t i, v;
3749
3750 v = CSR_READ(sc, WMREG_CTRL);
3751 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3752 v |= MDI_DIR | CTRL_SWDPIO(3);
3753
3754 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3755 if (data & i)
3756 v |= MDI_IO;
3757 else
3758 v &= ~MDI_IO;
3759 CSR_WRITE(sc, WMREG_CTRL, v);
3760 delay(10);
3761 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3762 delay(10);
3763 CSR_WRITE(sc, WMREG_CTRL, v);
3764 delay(10);
3765 }
3766 }
3767
3768 static uint32_t
3769 i82543_mii_recvbits(struct wm_softc *sc)
3770 {
3771 uint32_t v, i, data = 0;
3772
3773 v = CSR_READ(sc, WMREG_CTRL);
3774 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3775 v |= CTRL_SWDPIO(3);
3776
3777 CSR_WRITE(sc, WMREG_CTRL, v);
3778 delay(10);
3779 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3780 delay(10);
3781 CSR_WRITE(sc, WMREG_CTRL, v);
3782 delay(10);
3783
3784 for (i = 0; i < 16; i++) {
3785 data <<= 1;
3786 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3787 delay(10);
3788 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3789 data |= 1;
3790 CSR_WRITE(sc, WMREG_CTRL, v);
3791 delay(10);
3792 }
3793
3794 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3795 delay(10);
3796 CSR_WRITE(sc, WMREG_CTRL, v);
3797 delay(10);
3798
3799 return (data);
3800 }
3801
3802 #undef MDI_IO
3803 #undef MDI_DIR
3804 #undef MDI_CLK
3805
3806 /*
3807 * wm_gmii_i82543_readreg: [mii interface function]
3808 *
3809 * Read a PHY register on the GMII (i82543 version).
3810 */
3811 static int
3812 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3813 {
3814 struct wm_softc *sc = (void *) self;
3815 int rv;
3816
3817 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3818 i82543_mii_sendbits(sc, reg | (phy << 5) |
3819 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3820 rv = i82543_mii_recvbits(sc) & 0xffff;
3821
3822 DPRINTF(WM_DEBUG_GMII,
3823 ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3824 sc->sc_dev.dv_xname, phy, reg, rv));
3825
3826 return (rv);
3827 }
3828
3829 /*
3830 * wm_gmii_i82543_writereg: [mii interface function]
3831 *
3832 * Write a PHY register on the GMII (i82543 version).
3833 */
3834 static void
3835 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3836 {
3837 struct wm_softc *sc = (void *) self;
3838
3839 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3840 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3841 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3842 (MII_COMMAND_START << 30), 32);
3843 }
3844
3845 /*
3846 * wm_gmii_i82544_readreg: [mii interface function]
3847 *
3848 * Read a PHY register on the GMII.
3849 */
3850 static int
3851 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
3852 {
3853 struct wm_softc *sc = (void *) self;
3854 uint32_t mdic = 0;
3855 int i, rv;
3856
3857 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
3858 MDIC_REGADD(reg));
3859
3860 for (i = 0; i < 100; i++) {
3861 mdic = CSR_READ(sc, WMREG_MDIC);
3862 if (mdic & MDIC_READY)
3863 break;
3864 delay(10);
3865 }
3866
3867 if ((mdic & MDIC_READY) == 0) {
3868 log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
3869 sc->sc_dev.dv_xname, phy, reg);
3870 rv = 0;
3871 } else if (mdic & MDIC_E) {
3872 #if 0 /* This is normal if no PHY is present. */
3873 log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
3874 sc->sc_dev.dv_xname, phy, reg);
3875 #endif
3876 rv = 0;
3877 } else {
3878 rv = MDIC_DATA(mdic);
3879 if (rv == 0xffff)
3880 rv = 0;
3881 }
3882
3883 return (rv);
3884 }
3885
3886 /*
3887 * wm_gmii_i82544_writereg: [mii interface function]
3888 *
3889 * Write a PHY register on the GMII.
3890 */
3891 static void
3892 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
3893 {
3894 struct wm_softc *sc = (void *) self;
3895 uint32_t mdic = 0;
3896 int i;
3897
3898 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
3899 MDIC_REGADD(reg) | MDIC_DATA(val));
3900
3901 for (i = 0; i < 100; i++) {
3902 mdic = CSR_READ(sc, WMREG_MDIC);
3903 if (mdic & MDIC_READY)
3904 break;
3905 delay(10);
3906 }
3907
3908 if ((mdic & MDIC_READY) == 0)
3909 log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
3910 sc->sc_dev.dv_xname, phy, reg);
3911 else if (mdic & MDIC_E)
3912 log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
3913 sc->sc_dev.dv_xname, phy, reg);
3914 }
3915
3916 /*
3917 * wm_gmii_statchg: [mii interface function]
3918 *
3919 * Callback from MII layer when media changes.
3920 */
3921 static void
3922 wm_gmii_statchg(struct device *self)
3923 {
3924 struct wm_softc *sc = (void *) self;
3925 struct mii_data *mii = &sc->sc_mii;
3926
3927 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
3928 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3929 sc->sc_fcrtl &= ~FCRTL_XONE;
3930
3931 /*
3932 * Get flow control negotiation result.
3933 */
3934 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3935 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3936 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3937 mii->mii_media_active &= ~IFM_ETH_FMASK;
3938 }
3939
3940 if (sc->sc_flowflags & IFM_FLOW) {
3941 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
3942 sc->sc_ctrl |= CTRL_TFCE;
3943 sc->sc_fcrtl |= FCRTL_XONE;
3944 }
3945 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3946 sc->sc_ctrl |= CTRL_RFCE;
3947 }
3948
3949 if (sc->sc_mii.mii_media_active & IFM_FDX) {
3950 DPRINTF(WM_DEBUG_LINK,
3951 ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3952 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3953 } else {
3954 DPRINTF(WM_DEBUG_LINK,
3955 ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3956 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3957 }
3958
3959 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3960 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3961 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
3962 : WMREG_FCRTL, sc->sc_fcrtl);
3963 }
3964