Home | History | Annotate | Line # | Download | only in pci
if_wm.c revision 1.116
      1 /*	$NetBSD: if_wm.c,v 1.116 2006/06/05 16:06:10 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
     40  *
     41  * TODO (in order of importance):
     42  *
     43  *	- Rework how parameters are loaded from the EEPROM.
     44  *	- Figure out what to do with the i82545GM and i82546GB
     45  *	  SERDES controllers.
     46  *	- Fix hw VLAN assist.
     47  */
     48 
     49 #include <sys/cdefs.h>
     50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.116 2006/06/05 16:06:10 msaitoh Exp $");
     51 
     52 #include "bpfilter.h"
     53 #include "rnd.h"
     54 
     55 #include <sys/param.h>
     56 #include <sys/systm.h>
     57 #include <sys/callout.h>
     58 #include <sys/mbuf.h>
     59 #include <sys/malloc.h>
     60 #include <sys/kernel.h>
     61 #include <sys/socket.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/errno.h>
     64 #include <sys/device.h>
     65 #include <sys/queue.h>
     66 #include <sys/syslog.h>
     67 
     68 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     69 
     70 #if NRND > 0
     71 #include <sys/rnd.h>
     72 #endif
     73 
     74 #include <net/if.h>
     75 #include <net/if_dl.h>
     76 #include <net/if_media.h>
     77 #include <net/if_ether.h>
     78 
     79 #if NBPFILTER > 0
     80 #include <net/bpf.h>
     81 #endif
     82 
     83 #include <netinet/in.h>			/* XXX for struct ip */
     84 #include <netinet/in_systm.h>		/* XXX for struct ip */
     85 #include <netinet/ip.h>			/* XXX for struct ip */
     86 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
     87 
     88 #include <machine/bus.h>
     89 #include <machine/intr.h>
     90 #include <machine/endian.h>
     91 
     92 #include <dev/mii/mii.h>
     93 #include <dev/mii/miivar.h>
     94 #include <dev/mii/mii_bitbang.h>
     95 
     96 #include <dev/pci/pcireg.h>
     97 #include <dev/pci/pcivar.h>
     98 #include <dev/pci/pcidevs.h>
     99 
    100 #include <dev/pci/if_wmreg.h>
    101 
    102 #ifdef WM_DEBUG
    103 #define	WM_DEBUG_LINK		0x01
    104 #define	WM_DEBUG_TX		0x02
    105 #define	WM_DEBUG_RX		0x04
    106 #define	WM_DEBUG_GMII		0x08
    107 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
    108 
    109 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
    110 #else
    111 #define	DPRINTF(x, y)	/* nothing */
    112 #endif /* WM_DEBUG */
    113 
    114 /*
    115  * Transmit descriptor list size.  Due to errata, we can only have
    116  * 256 hardware descriptors in the ring on < 82544, but we use 4096
    117  * on >= 82544.  We tell the upper layers that they can queue a lot
    118  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
    119  * of them at a time.
    120  *
    121  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
    122  * chains containing many small mbufs have been observed in zero-copy
    123  * situations with jumbo frames.
    124  */
    125 #define	WM_NTXSEGS		256
    126 #define	WM_IFQUEUELEN		256
    127 #define	WM_TXQUEUELEN_MAX	64
    128 #define	WM_TXQUEUELEN_MAX_82547	16
    129 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
    130 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
    131 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
    132 #define	WM_NTXDESC_82542	256
    133 #define	WM_NTXDESC_82544	4096
    134 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
    135 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
    136 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
    137 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
    138 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
    139 
    140 #define	WM_MAXTXDMA		round_page(IP_MAXPACKET) /* for TSO */
    141 
    142 /*
    143  * Receive descriptor list size.  We have one Rx buffer for normal
    144  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
    145  * packet.  We allocate 256 receive descriptors, each with a 2k
    146  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
    147  */
    148 #define	WM_NRXDESC		256
    149 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
    150 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
    151 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
    152 
    153 /*
    154  * Control structures are DMA'd to the i82542 chip.  We allocate them in
    155  * a single clump that maps to a single DMA segment to make several things
    156  * easier.
    157  */
    158 struct wm_control_data_82544 {
    159 	/*
    160 	 * The receive descriptors.
    161 	 */
    162 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    163 
    164 	/*
    165 	 * The transmit descriptors.  Put these at the end, because
    166 	 * we might use a smaller number of them.
    167 	 */
    168 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
    169 };
    170 
    171 struct wm_control_data_82542 {
    172 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    173 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
    174 };
    175 
    176 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
    177 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
    178 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
    179 
    180 /*
    181  * Software state for transmit jobs.
    182  */
    183 struct wm_txsoft {
    184 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    185 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    186 	int txs_firstdesc;		/* first descriptor in packet */
    187 	int txs_lastdesc;		/* last descriptor in packet */
    188 	int txs_ndesc;			/* # of descriptors used */
    189 };
    190 
    191 /*
    192  * Software state for receive buffers.  Each descriptor gets a
    193  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    194  * more than one buffer, we chain them together.
    195  */
    196 struct wm_rxsoft {
    197 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    198 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    199 };
    200 
    201 typedef enum {
    202 	WM_T_unknown		= 0,
    203 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
    204 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
    205 	WM_T_82543,			/* i82543 */
    206 	WM_T_82544,			/* i82544 */
    207 	WM_T_82540,			/* i82540 */
    208 	WM_T_82545,			/* i82545 */
    209 	WM_T_82545_3,			/* i82545 3.0+ */
    210 	WM_T_82546,			/* i82546 */
    211 	WM_T_82546_3,			/* i82546 3.0+ */
    212 	WM_T_82541,			/* i82541 */
    213 	WM_T_82541_2,			/* i82541 2.0+ */
    214 	WM_T_82547,			/* i82547 */
    215 	WM_T_82547_2,			/* i82547 2.0+ */
    216 	WM_T_82571,
    217 	WM_T_82572,
    218 	WM_T_82573,
    219 } wm_chip_type;
    220 
    221 /*
    222  * Software state per device.
    223  */
    224 struct wm_softc {
    225 	struct device sc_dev;		/* generic device information */
    226 	bus_space_tag_t sc_st;		/* bus space tag */
    227 	bus_space_handle_t sc_sh;	/* bus space handle */
    228 	bus_space_tag_t sc_iot;		/* I/O space tag */
    229 	bus_space_handle_t sc_ioh;	/* I/O space handle */
    230 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    231 	struct ethercom sc_ethercom;	/* ethernet common data */
    232 	void *sc_sdhook;		/* shutdown hook */
    233 
    234 	wm_chip_type sc_type;		/* chip type */
    235 	int sc_flags;			/* flags; see below */
    236 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    237 	int sc_pcix_offset;		/* PCIX capability register offset */
    238 	int sc_flowflags;		/* 802.3x flow control flags */
    239 
    240 	void *sc_ih;			/* interrupt cookie */
    241 
    242 	int sc_ee_addrbits;		/* EEPROM address bits */
    243 
    244 	struct mii_data sc_mii;		/* MII/media information */
    245 
    246 	struct callout sc_tick_ch;	/* tick callout */
    247 
    248 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    249 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    250 
    251 	int		sc_align_tweak;
    252 
    253 	/*
    254 	 * Software state for the transmit and receive descriptors.
    255 	 */
    256 	int			sc_txnum;	/* must be a power of two */
    257 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
    258 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
    259 
    260 	/*
    261 	 * Control data structures.
    262 	 */
    263 	int			sc_ntxdesc;	/* must be a power of two */
    264 	struct wm_control_data_82544 *sc_control_data;
    265 #define	sc_txdescs	sc_control_data->wcd_txdescs
    266 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    267 
    268 #ifdef WM_EVENT_COUNTERS
    269 	/* Event counters. */
    270 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    271 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    272 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
    273 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    274 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    275 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    276 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    277 
    278 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    279 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    280 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    281 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    282 	struct evcnt sc_ev_txtusum6;	/* TCP/UDP v6 cksums comp. out-bound */
    283 	struct evcnt sc_ev_txtso;	/* TCP seg offload out-bound */
    284 	struct evcnt sc_ev_txtsopain;	/* painful header manip. for TSO */
    285 
    286 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
    287 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    288 
    289 	struct evcnt sc_ev_tu;		/* Tx underrun */
    290 
    291 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
    292 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
    293 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
    294 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
    295 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
    296 #endif /* WM_EVENT_COUNTERS */
    297 
    298 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
    299 
    300 	int	sc_txfree;		/* number of free Tx descriptors */
    301 	int	sc_txnext;		/* next ready Tx descriptor */
    302 
    303 	int	sc_txsfree;		/* number of free Tx jobs */
    304 	int	sc_txsnext;		/* next free Tx job */
    305 	int	sc_txsdirty;		/* dirty Tx jobs */
    306 
    307 	/* These 5 variables are used only on the 82547. */
    308 	int	sc_txfifo_size;		/* Tx FIFO size */
    309 	int	sc_txfifo_head;		/* current head of FIFO */
    310 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
    311 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
    312 	struct callout sc_txfifo_ch;	/* Tx FIFO stall work-around timer */
    313 
    314 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
    315 
    316 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    317 	int	sc_rxdiscard;
    318 	int	sc_rxlen;
    319 	struct mbuf *sc_rxhead;
    320 	struct mbuf *sc_rxtail;
    321 	struct mbuf **sc_rxtailp;
    322 
    323 	uint32_t sc_ctrl;		/* prototype CTRL register */
    324 #if 0
    325 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
    326 #endif
    327 	uint32_t sc_icr;		/* prototype interrupt bits */
    328 	uint32_t sc_itr;		/* prototype intr throttling reg */
    329 	uint32_t sc_tctl;		/* prototype TCTL register */
    330 	uint32_t sc_rctl;		/* prototype RCTL register */
    331 	uint32_t sc_txcw;		/* prototype TXCW register */
    332 	uint32_t sc_tipg;		/* prototype TIPG register */
    333 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
    334 	uint32_t sc_pba;		/* prototype PBA register */
    335 
    336 	int sc_tbi_linkup;		/* TBI link status */
    337 	int sc_tbi_anstate;		/* autonegotiation state */
    338 
    339 	int sc_mchash_type;		/* multicast filter offset */
    340 
    341 #if NRND > 0
    342 	rndsource_element_t rnd_source;	/* random source */
    343 #endif
    344 };
    345 
    346 #define	WM_RXCHAIN_RESET(sc)						\
    347 do {									\
    348 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    349 	*(sc)->sc_rxtailp = NULL;					\
    350 	(sc)->sc_rxlen = 0;						\
    351 } while (/*CONSTCOND*/0)
    352 
    353 #define	WM_RXCHAIN_LINK(sc, m)						\
    354 do {									\
    355 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    356 	(sc)->sc_rxtailp = &(m)->m_next;				\
    357 } while (/*CONSTCOND*/0)
    358 
    359 /* sc_flags */
    360 #define	WM_F_HAS_MII		0x01	/* has MII */
    361 #define	WM_F_EEPROM_HANDSHAKE	0x02	/* requires EEPROM handshake */
    362 #define	WM_F_EEPROM_SPI		0x04	/* EEPROM is SPI */
    363 #define	WM_F_EEPROM_INVALID	0x08	/* EEPROM not present (bad checksum) */
    364 #define	WM_F_IOH_VALID		0x10	/* I/O handle is valid */
    365 #define	WM_F_BUS64		0x20	/* bus is 64-bit */
    366 #define	WM_F_PCIX		0x40	/* bus is PCI-X */
    367 #define	WM_F_CSA		0x80	/* bus is CSA */
    368 #define	WM_F_PCIE		0x100	/* bus is PCI-Express */
    369 
    370 #ifdef WM_EVENT_COUNTERS
    371 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
    372 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
    373 #else
    374 #define	WM_EVCNT_INCR(ev)	/* nothing */
    375 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
    376 #endif
    377 
    378 #define	CSR_READ(sc, reg)						\
    379 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    380 #define	CSR_WRITE(sc, reg, val)						\
    381 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    382 #define	CSR_WRITE_FLUSH(sc)						\
    383 	(void) CSR_READ((sc), WMREG_STATUS)
    384 
    385 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
    386 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
    387 
    388 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
    389 #define	WM_CDTXADDR_HI(sc, x)						\
    390 	(sizeof(bus_addr_t) == 8 ?					\
    391 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
    392 
    393 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
    394 #define	WM_CDRXADDR_HI(sc, x)						\
    395 	(sizeof(bus_addr_t) == 8 ?					\
    396 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
    397 
    398 #define	WM_CDTXSYNC(sc, x, n, ops)					\
    399 do {									\
    400 	int __x, __n;							\
    401 									\
    402 	__x = (x);							\
    403 	__n = (n);							\
    404 									\
    405 	/* If it will wrap around, sync to the end of the ring. */	\
    406 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
    407 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    408 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
    409 		    (WM_NTXDESC(sc) - __x), (ops));			\
    410 		__n -= (WM_NTXDESC(sc) - __x);				\
    411 		__x = 0;						\
    412 	}								\
    413 									\
    414 	/* Now sync whatever is left. */				\
    415 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    416 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
    417 } while (/*CONSTCOND*/0)
    418 
    419 #define	WM_CDRXSYNC(sc, x, ops)						\
    420 do {									\
    421 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    422 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
    423 } while (/*CONSTCOND*/0)
    424 
    425 #define	WM_INIT_RXDESC(sc, x)						\
    426 do {									\
    427 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    428 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
    429 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    430 									\
    431 	/*								\
    432 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    433 	 * so that the payload after the Ethernet header is aligned	\
    434 	 * to a 4-byte boundary.					\
    435 	 *								\
    436 	 * XXX BRAINDAMAGE ALERT!					\
    437 	 * The stupid chip uses the same size for every buffer, which	\
    438 	 * is set in the Receive Control register.  We are using the 2K	\
    439 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    440 	 * reason, we can't "scoot" packets longer than the standard	\
    441 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    442 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    443 	 * the upper layer copy the headers.				\
    444 	 */								\
    445 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    446 									\
    447 	wm_set_dma_addr(&__rxd->wrx_addr,				\
    448 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
    449 	__rxd->wrx_len = 0;						\
    450 	__rxd->wrx_cksum = 0;						\
    451 	__rxd->wrx_status = 0;						\
    452 	__rxd->wrx_errors = 0;						\
    453 	__rxd->wrx_special = 0;						\
    454 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    455 									\
    456 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
    457 } while (/*CONSTCOND*/0)
    458 
    459 static void	wm_start(struct ifnet *);
    460 static void	wm_watchdog(struct ifnet *);
    461 static int	wm_ioctl(struct ifnet *, u_long, caddr_t);
    462 static int	wm_init(struct ifnet *);
    463 static void	wm_stop(struct ifnet *, int);
    464 
    465 static void	wm_shutdown(void *);
    466 
    467 static void	wm_reset(struct wm_softc *);
    468 static void	wm_rxdrain(struct wm_softc *);
    469 static int	wm_add_rxbuf(struct wm_softc *, int);
    470 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
    471 static int	wm_validate_eeprom_checksum(struct wm_softc *);
    472 static void	wm_tick(void *);
    473 
    474 static void	wm_set_filter(struct wm_softc *);
    475 
    476 static int	wm_intr(void *);
    477 static void	wm_txintr(struct wm_softc *);
    478 static void	wm_rxintr(struct wm_softc *);
    479 static void	wm_linkintr(struct wm_softc *, uint32_t);
    480 
    481 static void	wm_tbi_mediainit(struct wm_softc *);
    482 static int	wm_tbi_mediachange(struct ifnet *);
    483 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
    484 
    485 static void	wm_tbi_set_linkled(struct wm_softc *);
    486 static void	wm_tbi_check_link(struct wm_softc *);
    487 
    488 static void	wm_gmii_reset(struct wm_softc *);
    489 
    490 static int	wm_gmii_i82543_readreg(struct device *, int, int);
    491 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
    492 
    493 static int	wm_gmii_i82544_readreg(struct device *, int, int);
    494 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
    495 
    496 static void	wm_gmii_statchg(struct device *);
    497 
    498 static void	wm_gmii_mediainit(struct wm_softc *);
    499 static int	wm_gmii_mediachange(struct ifnet *);
    500 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
    501 
    502 static int	wm_match(struct device *, struct cfdata *, void *);
    503 static void	wm_attach(struct device *, struct device *, void *);
    504 
    505 CFATTACH_DECL(wm, sizeof(struct wm_softc),
    506     wm_match, wm_attach, NULL, NULL);
    507 
    508 static void	wm_82547_txfifo_stall(void *);
    509 
    510 /*
    511  * Devices supported by this driver.
    512  */
    513 static const struct wm_product {
    514 	pci_vendor_id_t		wmp_vendor;
    515 	pci_product_id_t	wmp_product;
    516 	const char		*wmp_name;
    517 	wm_chip_type		wmp_type;
    518 	int			wmp_flags;
    519 #define	WMP_F_1000X		0x01
    520 #define	WMP_F_1000T		0x02
    521 } wm_products[] = {
    522 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
    523 	  "Intel i82542 1000BASE-X Ethernet",
    524 	  WM_T_82542_2_1,	WMP_F_1000X },
    525 
    526 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
    527 	  "Intel i82543GC 1000BASE-X Ethernet",
    528 	  WM_T_82543,		WMP_F_1000X },
    529 
    530 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
    531 	  "Intel i82543GC 1000BASE-T Ethernet",
    532 	  WM_T_82543,		WMP_F_1000T },
    533 
    534 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
    535 	  "Intel i82544EI 1000BASE-T Ethernet",
    536 	  WM_T_82544,		WMP_F_1000T },
    537 
    538 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
    539 	  "Intel i82544EI 1000BASE-X Ethernet",
    540 	  WM_T_82544,		WMP_F_1000X },
    541 
    542 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
    543 	  "Intel i82544GC 1000BASE-T Ethernet",
    544 	  WM_T_82544,		WMP_F_1000T },
    545 
    546 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
    547 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
    548 	  WM_T_82544,		WMP_F_1000T },
    549 
    550 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
    551 	  "Intel i82540EM 1000BASE-T Ethernet",
    552 	  WM_T_82540,		WMP_F_1000T },
    553 
    554 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
    555 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
    556 	  WM_T_82540,		WMP_F_1000T },
    557 
    558 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
    559 	  "Intel i82540EP 1000BASE-T Ethernet",
    560 	  WM_T_82540,		WMP_F_1000T },
    561 
    562 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
    563 	  "Intel i82540EP 1000BASE-T Ethernet",
    564 	  WM_T_82540,		WMP_F_1000T },
    565 
    566 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
    567 	  "Intel i82540EP 1000BASE-T Ethernet",
    568 	  WM_T_82540,		WMP_F_1000T },
    569 
    570 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
    571 	  "Intel i82545EM 1000BASE-T Ethernet",
    572 	  WM_T_82545,		WMP_F_1000T },
    573 
    574 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
    575 	  "Intel i82545GM 1000BASE-T Ethernet",
    576 	  WM_T_82545_3,		WMP_F_1000T },
    577 
    578 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
    579 	  "Intel i82545GM 1000BASE-X Ethernet",
    580 	  WM_T_82545_3,		WMP_F_1000X },
    581 #if 0
    582 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
    583 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
    584 	  WM_T_82545_3,		WMP_F_SERDES },
    585 #endif
    586 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
    587 	  "Intel i82546EB 1000BASE-T Ethernet",
    588 	  WM_T_82546,		WMP_F_1000T },
    589 
    590 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
    591 	  "Intel i82546EB 1000BASE-T Ethernet",
    592 	  WM_T_82546,		WMP_F_1000T },
    593 
    594 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
    595 	  "Intel i82545EM 1000BASE-X Ethernet",
    596 	  WM_T_82545,		WMP_F_1000X },
    597 
    598 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
    599 	  "Intel i82546EB 1000BASE-X Ethernet",
    600 	  WM_T_82546,		WMP_F_1000X },
    601 
    602 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
    603 	  "Intel i82546GB 1000BASE-T Ethernet",
    604 	  WM_T_82546_3,		WMP_F_1000T },
    605 
    606 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
    607 	  "Intel i82546GB 1000BASE-X Ethernet",
    608 	  WM_T_82546_3,		WMP_F_1000X },
    609 #if 0
    610 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
    611 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
    612 	  WM_T_82546_3,		WMP_F_SERDES },
    613 #endif
    614 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_PCIE,
    615 	  "Intel PRO/1000MT (82546GB)",
    616 	  WM_T_82546_3,		WMP_F_1000T },
    617 
    618 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
    619 	  "Intel i82541EI 1000BASE-T Ethernet",
    620 	  WM_T_82541,		WMP_F_1000T },
    621 
    622 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER_LOM,
    623 	  "Intel i82541ER (LOM) 1000BASE-T Ethernet",
    624 	  WM_T_82541,		WMP_F_1000T },
    625 
    626 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
    627 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
    628 	  WM_T_82541,		WMP_F_1000T },
    629 
    630 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
    631 	  "Intel i82541ER 1000BASE-T Ethernet",
    632 	  WM_T_82541_2,		WMP_F_1000T },
    633 
    634 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
    635 	  "Intel i82541GI 1000BASE-T Ethernet",
    636 	  WM_T_82541_2,		WMP_F_1000T },
    637 
    638 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
    639 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
    640 	  WM_T_82541_2,		WMP_F_1000T },
    641 
    642 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541PI,
    643 	  "Intel i82541PI 1000BASE-T Ethernet",
    644 	  WM_T_82541_2,		WMP_F_1000T },
    645 
    646 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
    647 	  "Intel i82547EI 1000BASE-T Ethernet",
    648 	  WM_T_82547,		WMP_F_1000T },
    649 
    650 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI_MOBILE,
    651 	  "Intel i82547EI Moblie 1000BASE-T Ethernet",
    652 	  WM_T_82547,		WMP_F_1000T },
    653 
    654 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
    655 	  "Intel i82547GI 1000BASE-T Ethernet",
    656 	  WM_T_82547_2,		WMP_F_1000T },
    657 
    658 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_COPPER,
    659 	  "Intel PRO/1000 PT (82571EB)",
    660 	  WM_T_82571,		WMP_F_1000T },
    661 
    662 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_FIBER,
    663 	  "Intel PRO/1000 PF (82571EB)",
    664 	  WM_T_82571,		WMP_F_1000X },
    665 #if 0
    666 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_SERDES,
    667 	  "Intel PRO/1000 PB (82571EB)",
    668 	  WM_T_82571,		WMP_F_SERDES },
    669 #endif
    670 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_COPPER,
    671 	  "Intel i82572EI 1000baseT Ethernet",
    672 	  WM_T_82572,		WMP_F_1000T },
    673 
    674 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_FIBER,
    675 	  "Intel i82572EI 1000baseX Ethernet",
    676 	  WM_T_82572,		WMP_F_1000X },
    677 #if 0
    678 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_SERDES,
    679 	  "Intel i82572EI Gigabit Ethernet (SERDES)",
    680 	  WM_T_82572,		WMP_F_SERDES },
    681 #endif
    682 
    683 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI,
    684 	  "Intel i82572EI 1000baseT Ethernet",
    685 	  WM_T_82572,		WMP_F_1000T },
    686 
    687 #if 0
    688 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573E,
    689 	  "Intel i82573E",
    690 	  WM_T_82573,		WMP_F_1000T },
    691 
    692 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573E_IAMT,
    693 	  "Intel i82573E",
    694 	  WM_T_82573,		WMP_F_1000T },
    695 
    696 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573L,
    697 	  "Intel i82573L Gigabit Ethernet",
    698 	  WM_T_82573,		WMP_F_1000T },
    699 #endif
    700 
    701 	{ 0,			0,
    702 	  NULL,
    703 	  0,			0 },
    704 };
    705 
    706 #ifdef WM_EVENT_COUNTERS
    707 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
    708 #endif /* WM_EVENT_COUNTERS */
    709 
    710 #if 0 /* Not currently used */
    711 static inline uint32_t
    712 wm_io_read(struct wm_softc *sc, int reg)
    713 {
    714 
    715 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    716 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
    717 }
    718 #endif
    719 
    720 static inline void
    721 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
    722 {
    723 
    724 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    725 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
    726 }
    727 
    728 static inline void
    729 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
    730 {
    731 	wa->wa_low = htole32(v & 0xffffffffU);
    732 	if (sizeof(bus_addr_t) == 8)
    733 		wa->wa_high = htole32((uint64_t) v >> 32);
    734 	else
    735 		wa->wa_high = 0;
    736 }
    737 
    738 static const struct wm_product *
    739 wm_lookup(const struct pci_attach_args *pa)
    740 {
    741 	const struct wm_product *wmp;
    742 
    743 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
    744 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
    745 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
    746 			return (wmp);
    747 	}
    748 	return (NULL);
    749 }
    750 
    751 static int
    752 wm_match(struct device *parent, struct cfdata *cf, void *aux)
    753 {
    754 	struct pci_attach_args *pa = aux;
    755 
    756 	if (wm_lookup(pa) != NULL)
    757 		return (1);
    758 
    759 	return (0);
    760 }
    761 
    762 static void
    763 wm_attach(struct device *parent, struct device *self, void *aux)
    764 {
    765 	struct wm_softc *sc = (void *) self;
    766 	struct pci_attach_args *pa = aux;
    767 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    768 	pci_chipset_tag_t pc = pa->pa_pc;
    769 	pci_intr_handle_t ih;
    770 	size_t cdata_size;
    771 	const char *intrstr = NULL;
    772 	const char *eetype;
    773 	bus_space_tag_t memt;
    774 	bus_space_handle_t memh;
    775 	bus_dma_segment_t seg;
    776 	int memh_valid;
    777 	int i, rseg, error;
    778 	const struct wm_product *wmp;
    779 	prop_data_t ea;
    780 	prop_number_t pn;
    781 	uint8_t enaddr[ETHER_ADDR_LEN];
    782 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
    783 	pcireg_t preg, memtype;
    784 	uint32_t reg;
    785 	int pmreg;
    786 
    787 	callout_init(&sc->sc_tick_ch);
    788 
    789 	wmp = wm_lookup(pa);
    790 	if (wmp == NULL) {
    791 		printf("\n");
    792 		panic("wm_attach: impossible");
    793 	}
    794 
    795 	if (pci_dma64_available(pa))
    796 		sc->sc_dmat = pa->pa_dmat64;
    797 	else
    798 		sc->sc_dmat = pa->pa_dmat;
    799 
    800 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    801 	aprint_naive(": Ethernet controller\n");
    802 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
    803 
    804 	sc->sc_type = wmp->wmp_type;
    805 	if (sc->sc_type < WM_T_82543) {
    806 		if (preg < 2) {
    807 			aprint_error("%s: i82542 must be at least rev. 2\n",
    808 			    sc->sc_dev.dv_xname);
    809 			return;
    810 		}
    811 		if (preg < 3)
    812 			sc->sc_type = WM_T_82542_2_0;
    813 	}
    814 
    815 	/*
    816 	 * Map the device.  All devices support memory-mapped acccess,
    817 	 * and it is really required for normal operation.
    818 	 */
    819 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
    820 	switch (memtype) {
    821 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    822 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    823 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
    824 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    825 		break;
    826 	default:
    827 		memh_valid = 0;
    828 	}
    829 
    830 	if (memh_valid) {
    831 		sc->sc_st = memt;
    832 		sc->sc_sh = memh;
    833 	} else {
    834 		aprint_error("%s: unable to map device registers\n",
    835 		    sc->sc_dev.dv_xname);
    836 		return;
    837 	}
    838 
    839 	/*
    840 	 * In addition, i82544 and later support I/O mapped indirect
    841 	 * register access.  It is not desirable (nor supported in
    842 	 * this driver) to use it for normal operation, though it is
    843 	 * required to work around bugs in some chip versions.
    844 	 */
    845 	if (sc->sc_type >= WM_T_82544) {
    846 		/* First we have to find the I/O BAR. */
    847 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
    848 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
    849 			    PCI_MAPREG_TYPE_IO)
    850 				break;
    851 		}
    852 		if (i == PCI_MAPREG_END)
    853 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
    854 			    sc->sc_dev.dv_xname);
    855 		else {
    856 			/*
    857 			 * The i8254x doesn't apparently respond when the
    858 			 * I/O BAR is 0, which looks somewhat like it's not
    859 			 * been configured.
    860 			 */
    861 			preg = pci_conf_read(pc, pa->pa_tag, i);
    862 			if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
    863 				aprint_error("%s: WARNING: I/O BAR at zero.\n",
    864 				    sc->sc_dev.dv_xname);
    865 			} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
    866 					0, &sc->sc_iot, &sc->sc_ioh,
    867 					NULL, NULL) == 0) {
    868 				sc->sc_flags |= WM_F_IOH_VALID;
    869 			} else {
    870 				aprint_error("%s: WARNING: unable to map "
    871 				    "I/O space\n", sc->sc_dev.dv_xname);
    872 			}
    873 		}
    874 
    875 	}
    876 
    877 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
    878 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    879 	preg |= PCI_COMMAND_MASTER_ENABLE;
    880 	if (sc->sc_type < WM_T_82542_2_1)
    881 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
    882 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    883 
    884 	/* Get it out of power save mode, if needed. */
    885 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    886 		preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    887 		    PCI_PMCSR_STATE_MASK;
    888 		if (preg == PCI_PMCSR_STATE_D3) {
    889 			/*
    890 			 * The card has lost all configuration data in
    891 			 * this state, so punt.
    892 			 */
    893 			aprint_error("%s: unable to wake from power state D3\n",
    894 			    sc->sc_dev.dv_xname);
    895 			return;
    896 		}
    897 		if (preg != PCI_PMCSR_STATE_D0) {
    898 			aprint_normal("%s: waking up from power state D%d\n",
    899 			    sc->sc_dev.dv_xname, preg);
    900 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    901 			    PCI_PMCSR_STATE_D0);
    902 		}
    903 	}
    904 
    905 	/*
    906 	 * Map and establish our interrupt.
    907 	 */
    908 	if (pci_intr_map(pa, &ih)) {
    909 		aprint_error("%s: unable to map interrupt\n",
    910 		    sc->sc_dev.dv_xname);
    911 		return;
    912 	}
    913 	intrstr = pci_intr_string(pc, ih);
    914 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
    915 	if (sc->sc_ih == NULL) {
    916 		aprint_error("%s: unable to establish interrupt",
    917 		    sc->sc_dev.dv_xname);
    918 		if (intrstr != NULL)
    919 			aprint_normal(" at %s", intrstr);
    920 		aprint_normal("\n");
    921 		return;
    922 	}
    923 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    924 
    925 	/*
    926 	 * Determine a few things about the bus we're connected to.
    927 	 */
    928 	if (sc->sc_type < WM_T_82543) {
    929 		/* We don't really know the bus characteristics here. */
    930 		sc->sc_bus_speed = 33;
    931 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
    932 		/*
    933 		 * CSA (Communication Streaming Architecture) is about as fast
    934 		 * a 32-bit 66MHz PCI Bus.
    935 		 */
    936 		sc->sc_flags |= WM_F_CSA;
    937 		sc->sc_bus_speed = 66;
    938 		aprint_verbose("%s: Communication Streaming Architecture\n",
    939 		    sc->sc_dev.dv_xname);
    940 		if (sc->sc_type == WM_T_82547) {
    941 			callout_init(&sc->sc_txfifo_ch);
    942 			callout_setfunc(&sc->sc_txfifo_ch,
    943 					wm_82547_txfifo_stall, sc);
    944 			aprint_verbose("%s: using 82547 Tx FIFO stall "
    945 				       "work-around\n", sc->sc_dev.dv_xname);
    946 		}
    947 	} else if (sc->sc_type >= WM_T_82571) {
    948 		sc->sc_flags |= WM_F_PCIE;
    949 		aprint_verbose("%s: PCI-Express bus\n", sc->sc_dev.dv_xname);
    950 	} else {
    951 		reg = CSR_READ(sc, WMREG_STATUS);
    952 		if (reg & STATUS_BUS64)
    953 			sc->sc_flags |= WM_F_BUS64;
    954 		if (sc->sc_type >= WM_T_82544 &&
    955 		    (reg & STATUS_PCIX_MODE) != 0) {
    956 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
    957 
    958 			sc->sc_flags |= WM_F_PCIX;
    959 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    960 					       PCI_CAP_PCIX,
    961 					       &sc->sc_pcix_offset, NULL) == 0)
    962 				aprint_error("%s: unable to find PCIX "
    963 				    "capability\n", sc->sc_dev.dv_xname);
    964 			else if (sc->sc_type != WM_T_82545_3 &&
    965 				 sc->sc_type != WM_T_82546_3) {
    966 				/*
    967 				 * Work around a problem caused by the BIOS
    968 				 * setting the max memory read byte count
    969 				 * incorrectly.
    970 				 */
    971 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
    972 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
    973 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
    974 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
    975 
    976 				bytecnt =
    977 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
    978 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
    979 				maxb =
    980 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
    981 				    PCI_PCIX_STATUS_MAXB_SHIFT;
    982 				if (bytecnt > maxb) {
    983 					aprint_verbose("%s: resetting PCI-X "
    984 					    "MMRBC: %d -> %d\n",
    985 					    sc->sc_dev.dv_xname,
    986 					    512 << bytecnt, 512 << maxb);
    987 					pcix_cmd = (pcix_cmd &
    988 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
    989 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
    990 					pci_conf_write(pa->pa_pc, pa->pa_tag,
    991 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
    992 					    pcix_cmd);
    993 				}
    994 			}
    995 		}
    996 		/*
    997 		 * The quad port adapter is special; it has a PCIX-PCIX
    998 		 * bridge on the board, and can run the secondary bus at
    999 		 * a higher speed.
   1000 		 */
   1001 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
   1002 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
   1003 								      : 66;
   1004 		} else if (sc->sc_flags & WM_F_PCIX) {
   1005 			switch (reg & STATUS_PCIXSPD_MASK) {
   1006 			case STATUS_PCIXSPD_50_66:
   1007 				sc->sc_bus_speed = 66;
   1008 				break;
   1009 			case STATUS_PCIXSPD_66_100:
   1010 				sc->sc_bus_speed = 100;
   1011 				break;
   1012 			case STATUS_PCIXSPD_100_133:
   1013 				sc->sc_bus_speed = 133;
   1014 				break;
   1015 			default:
   1016 				aprint_error(
   1017 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
   1018 				    sc->sc_dev.dv_xname,
   1019 				    reg & STATUS_PCIXSPD_MASK);
   1020 				sc->sc_bus_speed = 66;
   1021 			}
   1022 		} else
   1023 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
   1024 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
   1025 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
   1026 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
   1027 	}
   1028 
   1029 	/*
   1030 	 * Allocate the control data structures, and create and load the
   1031 	 * DMA map for it.
   1032 	 *
   1033 	 * NOTE: All Tx descriptors must be in the same 4G segment of
   1034 	 * memory.  So must Rx descriptors.  We simplify by allocating
   1035 	 * both sets within the same 4G segment.
   1036 	 */
   1037 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
   1038 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
   1039 	cdata_size = sc->sc_type < WM_T_82544 ?
   1040 	    sizeof(struct wm_control_data_82542) :
   1041 	    sizeof(struct wm_control_data_82544);
   1042 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
   1043 				      (bus_size_t) 0x100000000ULL,
   1044 				      &seg, 1, &rseg, 0)) != 0) {
   1045 		aprint_error(
   1046 		    "%s: unable to allocate control data, error = %d\n",
   1047 		    sc->sc_dev.dv_xname, error);
   1048 		goto fail_0;
   1049 	}
   1050 
   1051 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
   1052 				    (caddr_t *)&sc->sc_control_data, 0)) != 0) {
   1053 		aprint_error("%s: unable to map control data, error = %d\n",
   1054 		    sc->sc_dev.dv_xname, error);
   1055 		goto fail_1;
   1056 	}
   1057 
   1058 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
   1059 				       0, 0, &sc->sc_cddmamap)) != 0) {
   1060 		aprint_error("%s: unable to create control data DMA map, "
   1061 		    "error = %d\n", sc->sc_dev.dv_xname, error);
   1062 		goto fail_2;
   1063 	}
   1064 
   1065 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
   1066 				     sc->sc_control_data, cdata_size, NULL,
   1067 				     0)) != 0) {
   1068 		aprint_error(
   1069 		    "%s: unable to load control data DMA map, error = %d\n",
   1070 		    sc->sc_dev.dv_xname, error);
   1071 		goto fail_3;
   1072 	}
   1073 
   1074 
   1075 	/*
   1076 	 * Create the transmit buffer DMA maps.
   1077 	 */
   1078 	WM_TXQUEUELEN(sc) =
   1079 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
   1080 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
   1081 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1082 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
   1083 					       WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
   1084 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1085 			aprint_error("%s: unable to create Tx DMA map %d, "
   1086 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1087 			goto fail_4;
   1088 		}
   1089 	}
   1090 
   1091 	/*
   1092 	 * Create the receive buffer DMA maps.
   1093 	 */
   1094 	for (i = 0; i < WM_NRXDESC; i++) {
   1095 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1096 					       MCLBYTES, 0, 0,
   1097 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1098 			aprint_error("%s: unable to create Rx DMA map %d, "
   1099 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1100 			goto fail_5;
   1101 		}
   1102 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1103 	}
   1104 
   1105 	/*
   1106 	 * Reset the chip to a known state.
   1107 	 */
   1108 	wm_reset(sc);
   1109 
   1110 	/*
   1111 	 * Get some information about the EEPROM.
   1112 	 */
   1113 	if (sc->sc_type >= WM_T_82540)
   1114 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
   1115 	if (sc->sc_type <= WM_T_82544)
   1116 		sc->sc_ee_addrbits = 6;
   1117 	else if (sc->sc_type <= WM_T_82546_3) {
   1118 		reg = CSR_READ(sc, WMREG_EECD);
   1119 		if (reg & EECD_EE_SIZE)
   1120 			sc->sc_ee_addrbits = 8;
   1121 		else
   1122 			sc->sc_ee_addrbits = 6;
   1123 	} else if (sc->sc_type <= WM_T_82547_2) {
   1124 		reg = CSR_READ(sc, WMREG_EECD);
   1125 		if (reg & EECD_EE_TYPE) {
   1126 			sc->sc_flags |= WM_F_EEPROM_SPI;
   1127 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1128 		} else
   1129 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
   1130 	} else {
   1131 		/* Assume everything else is SPI. */
   1132 		reg = CSR_READ(sc, WMREG_EECD);
   1133 		sc->sc_flags |= WM_F_EEPROM_SPI;
   1134 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1135 	}
   1136 
   1137 	/*
   1138 	 * Defer printing the EEPROM type until after verifying the checksum
   1139 	 * This allows the EEPROM type to be printed correctly in the case
   1140 	 * that no EEPROM is attached.
   1141 	 */
   1142 
   1143 
   1144 	/*
   1145 	 * Validate the EEPROM checksum. If the checksum fails, flag this for
   1146 	 * later, so we can fail future reads from the EEPROM.
   1147 	 */
   1148 	if (wm_validate_eeprom_checksum(sc))
   1149 		sc->sc_flags |= WM_F_EEPROM_INVALID;
   1150 
   1151 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
   1152 		aprint_verbose("%s: No EEPROM\n", sc->sc_dev.dv_xname);
   1153 	else {
   1154 		if (sc->sc_flags & WM_F_EEPROM_SPI)
   1155 			eetype = "SPI";
   1156 		else
   1157 			eetype = "MicroWire";
   1158 		aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
   1159 		    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
   1160 		    sc->sc_ee_addrbits, eetype);
   1161 	}
   1162 
   1163 	/*
   1164 	 * Read the Ethernet address from the EEPROM, if not first found
   1165 	 * in device properties.
   1166 	 */
   1167 	ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
   1168 	if (ea != NULL) {
   1169 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   1170 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   1171 		memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   1172 	} else {
   1173 		if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
   1174 		    sizeof(myea) / sizeof(myea[0]), myea)) {
   1175 			aprint_error("%s: unable to read Ethernet address\n",
   1176 			    sc->sc_dev.dv_xname);
   1177 			return;
   1178 		}
   1179 		enaddr[0] = myea[0] & 0xff;
   1180 		enaddr[1] = myea[0] >> 8;
   1181 		enaddr[2] = myea[1] & 0xff;
   1182 		enaddr[3] = myea[1] >> 8;
   1183 		enaddr[4] = myea[2] & 0xff;
   1184 		enaddr[5] = myea[2] >> 8;
   1185 	}
   1186 
   1187 	/*
   1188 	 * Toggle the LSB of the MAC address on the second port
   1189 	 * of the i82546.
   1190 	 */
   1191 	if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
   1192 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
   1193 			enaddr[5] ^= 1;
   1194 	}
   1195 
   1196 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
   1197 	    ether_sprintf(enaddr));
   1198 
   1199 	/*
   1200 	 * Read the config info from the EEPROM, and set up various
   1201 	 * bits in the control registers based on their contents.
   1202 	 */
   1203 	pn = prop_dictionary_get(device_properties(&sc->sc_dev),
   1204 				 "i82543-cfg1");
   1205 	if (pn != NULL) {
   1206 		KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1207 		cfg1 = (uint16_t) prop_number_integer_value(pn);
   1208 	} else {
   1209 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
   1210 			aprint_error("%s: unable to read CFG1\n",
   1211 			    sc->sc_dev.dv_xname);
   1212 			return;
   1213 		}
   1214 	}
   1215 
   1216 	pn = prop_dictionary_get(device_properties(&sc->sc_dev),
   1217 				 "i82543-cfg2");
   1218 	if (pn != NULL) {
   1219 		KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1220 		cfg2 = (uint16_t) prop_number_integer_value(pn);
   1221 	} else {
   1222 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
   1223 			aprint_error("%s: unable to read CFG2\n",
   1224 			    sc->sc_dev.dv_xname);
   1225 			return;
   1226 		}
   1227 	}
   1228 
   1229 	if (sc->sc_type >= WM_T_82544) {
   1230 		pn = prop_dictionary_get(device_properties(&sc->sc_dev),
   1231 					 "i82543-swdpin");
   1232 		if (pn != NULL) {
   1233 			KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1234 			swdpin = (uint16_t) prop_number_integer_value(pn);
   1235 		} else {
   1236 			if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
   1237 				aprint_error("%s: unable to read SWDPIN\n",
   1238 				    sc->sc_dev.dv_xname);
   1239 				return;
   1240 			}
   1241 		}
   1242 	}
   1243 
   1244 	if (cfg1 & EEPROM_CFG1_ILOS)
   1245 		sc->sc_ctrl |= CTRL_ILOS;
   1246 	if (sc->sc_type >= WM_T_82544) {
   1247 		sc->sc_ctrl |=
   1248 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
   1249 		    CTRL_SWDPIO_SHIFT;
   1250 		sc->sc_ctrl |=
   1251 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
   1252 		    CTRL_SWDPINS_SHIFT;
   1253 	} else {
   1254 		sc->sc_ctrl |=
   1255 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
   1256 		    CTRL_SWDPIO_SHIFT;
   1257 	}
   1258 
   1259 #if 0
   1260 	if (sc->sc_type >= WM_T_82544) {
   1261 		if (cfg1 & EEPROM_CFG1_IPS0)
   1262 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
   1263 		if (cfg1 & EEPROM_CFG1_IPS1)
   1264 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
   1265 		sc->sc_ctrl_ext |=
   1266 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
   1267 		    CTRL_EXT_SWDPIO_SHIFT;
   1268 		sc->sc_ctrl_ext |=
   1269 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
   1270 		    CTRL_EXT_SWDPINS_SHIFT;
   1271 	} else {
   1272 		sc->sc_ctrl_ext |=
   1273 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
   1274 		    CTRL_EXT_SWDPIO_SHIFT;
   1275 	}
   1276 #endif
   1277 
   1278 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   1279 #if 0
   1280 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   1281 #endif
   1282 
   1283 	/*
   1284 	 * Set up some register offsets that are different between
   1285 	 * the i82542 and the i82543 and later chips.
   1286 	 */
   1287 	if (sc->sc_type < WM_T_82543) {
   1288 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
   1289 		sc->sc_tdt_reg = WMREG_OLD_TDT;
   1290 	} else {
   1291 		sc->sc_rdt_reg = WMREG_RDT;
   1292 		sc->sc_tdt_reg = WMREG_TDT;
   1293 	}
   1294 
   1295 	/*
   1296 	 * Determine if we're TBI or GMII mode, and initialize the
   1297 	 * media structures accordingly.
   1298 	 */
   1299 	if (sc->sc_type < WM_T_82543 ||
   1300 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
   1301 		if (wmp->wmp_flags & WMP_F_1000T)
   1302 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
   1303 			    "product!\n", sc->sc_dev.dv_xname);
   1304 		wm_tbi_mediainit(sc);
   1305 	} else {
   1306 		if (wmp->wmp_flags & WMP_F_1000X)
   1307 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
   1308 			    "product!\n", sc->sc_dev.dv_xname);
   1309 		wm_gmii_mediainit(sc);
   1310 	}
   1311 
   1312 	ifp = &sc->sc_ethercom.ec_if;
   1313 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
   1314 	ifp->if_softc = sc;
   1315 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1316 	ifp->if_ioctl = wm_ioctl;
   1317 	ifp->if_start = wm_start;
   1318 	ifp->if_watchdog = wm_watchdog;
   1319 	ifp->if_init = wm_init;
   1320 	ifp->if_stop = wm_stop;
   1321 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
   1322 	IFQ_SET_READY(&ifp->if_snd);
   1323 
   1324 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1325 
   1326 	/*
   1327 	 * If we're a i82543 or greater, we can support VLANs.
   1328 	 */
   1329 	if (sc->sc_type >= WM_T_82543)
   1330 		sc->sc_ethercom.ec_capabilities |=
   1331 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
   1332 
   1333 	/*
   1334 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
   1335 	 * on i82543 and later.
   1336 	 */
   1337 	if (sc->sc_type >= WM_T_82543)
   1338 		ifp->if_capabilities |=
   1339 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1340 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1341 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
   1342 		    IFCAP_CSUM_TCPv6_Tx |
   1343 		    IFCAP_CSUM_UDPv6_Tx;
   1344 
   1345 	/*
   1346 	 * If we're a i82544 or greater (except i82547), we can do
   1347 	 * TCP segmentation offload.
   1348 	 */
   1349 	if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547)
   1350 		ifp->if_capabilities |= IFCAP_TSOv4;
   1351 
   1352 	/*
   1353 	 * Attach the interface.
   1354 	 */
   1355 	if_attach(ifp);
   1356 	ether_ifattach(ifp, enaddr);
   1357 #if NRND > 0
   1358 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1359 	    RND_TYPE_NET, 0);
   1360 #endif
   1361 
   1362 #ifdef WM_EVENT_COUNTERS
   1363 	/* Attach event counters. */
   1364 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1365 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1366 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1367 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1368 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
   1369 	    NULL, sc->sc_dev.dv_xname, "txfifo_stall");
   1370 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
   1371 	    NULL, sc->sc_dev.dv_xname, "txdw");
   1372 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
   1373 	    NULL, sc->sc_dev.dv_xname, "txqe");
   1374 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1375 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1376 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
   1377 	    NULL, sc->sc_dev.dv_xname, "linkintr");
   1378 
   1379 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1380 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1381 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
   1382 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
   1383 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1384 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1385 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
   1386 	    NULL, sc->sc_dev.dv_xname, "txtusum");
   1387 	evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
   1388 	    NULL, sc->sc_dev.dv_xname, "txtusum6");
   1389 
   1390 	evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
   1391 	    NULL, sc->sc_dev.dv_xname, "txtso");
   1392 	evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
   1393 	    NULL, sc->sc_dev.dv_xname, "txtsopain");
   1394 
   1395 	for (i = 0; i < WM_NTXSEGS; i++) {
   1396 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
   1397 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
   1398 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
   1399 	}
   1400 
   1401 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
   1402 	    NULL, sc->sc_dev.dv_xname, "txdrop");
   1403 
   1404 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
   1405 	    NULL, sc->sc_dev.dv_xname, "tu");
   1406 
   1407 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
   1408 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
   1409 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
   1410 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
   1411 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
   1412 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
   1413 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
   1414 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
   1415 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
   1416 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
   1417 #endif /* WM_EVENT_COUNTERS */
   1418 
   1419 	/*
   1420 	 * Make sure the interface is shutdown during reboot.
   1421 	 */
   1422 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
   1423 	if (sc->sc_sdhook == NULL)
   1424 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
   1425 		    sc->sc_dev.dv_xname);
   1426 	return;
   1427 
   1428 	/*
   1429 	 * Free any resources we've allocated during the failed attach
   1430 	 * attempt.  Do this in reverse order and fall through.
   1431 	 */
   1432  fail_5:
   1433 	for (i = 0; i < WM_NRXDESC; i++) {
   1434 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1435 			bus_dmamap_destroy(sc->sc_dmat,
   1436 			    sc->sc_rxsoft[i].rxs_dmamap);
   1437 	}
   1438  fail_4:
   1439 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1440 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1441 			bus_dmamap_destroy(sc->sc_dmat,
   1442 			    sc->sc_txsoft[i].txs_dmamap);
   1443 	}
   1444 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1445  fail_3:
   1446 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1447  fail_2:
   1448 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1449 	    cdata_size);
   1450  fail_1:
   1451 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1452  fail_0:
   1453 	return;
   1454 }
   1455 
   1456 /*
   1457  * wm_shutdown:
   1458  *
   1459  *	Make sure the interface is stopped at reboot time.
   1460  */
   1461 static void
   1462 wm_shutdown(void *arg)
   1463 {
   1464 	struct wm_softc *sc = arg;
   1465 
   1466 	wm_stop(&sc->sc_ethercom.ec_if, 1);
   1467 }
   1468 
   1469 /*
   1470  * wm_tx_offload:
   1471  *
   1472  *	Set up TCP/IP checksumming parameters for the
   1473  *	specified packet.
   1474  */
   1475 static int
   1476 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
   1477     uint8_t *fieldsp)
   1478 {
   1479 	struct mbuf *m0 = txs->txs_mbuf;
   1480 	struct livengood_tcpip_ctxdesc *t;
   1481 	uint32_t ipcs, tucs, cmd, cmdlen, seg;
   1482 	struct ether_header *eh;
   1483 	int offset, iphl;
   1484 	uint8_t fields;
   1485 
   1486 	/*
   1487 	 * XXX It would be nice if the mbuf pkthdr had offset
   1488 	 * fields for the protocol headers.
   1489 	 */
   1490 
   1491 	eh = mtod(m0, struct ether_header *);
   1492 	switch (htons(eh->ether_type)) {
   1493 	case ETHERTYPE_IP:
   1494 	case ETHERTYPE_IPV6:
   1495 		offset = ETHER_HDR_LEN;
   1496 		break;
   1497 
   1498 	case ETHERTYPE_VLAN:
   1499 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1500 		break;
   1501 
   1502 	default:
   1503 		/*
   1504 		 * Don't support this protocol or encapsulation.
   1505 		 */
   1506 		*fieldsp = 0;
   1507 		*cmdp = 0;
   1508 		return (0);
   1509 	}
   1510 
   1511 	if ((m0->m_pkthdr.csum_flags &
   1512 	    (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
   1513 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1514 	} else {
   1515 		iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
   1516 	}
   1517 
   1518 	cmd = WTX_CMD_DEXT | WTX_DTYP_D;
   1519 	cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
   1520 	seg = 0;
   1521 	fields = 0;
   1522 
   1523 	if (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
   1524 		int hlen = offset + iphl;
   1525 		WM_EVCNT_INCR(&sc->sc_ev_txtso);
   1526 		if (__predict_false(m0->m_len <
   1527 				    (hlen + sizeof(struct tcphdr)))) {
   1528 			/*
   1529 			 * TCP/IP headers are not in the first mbuf; we need
   1530 			 * to do this the slow and painful way.  Let's just
   1531 			 * hope this doesn't happen very often.
   1532 			 */
   1533 			struct ip ip;
   1534 			struct tcphdr th;
   1535 
   1536 			WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
   1537 
   1538 			m_copydata(m0, offset, sizeof(ip), &ip);
   1539 			m_copydata(m0, hlen, sizeof(th), &th);
   1540 
   1541 			ip.ip_len = 0;
   1542 
   1543 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   1544 			    sizeof(ip.ip_len), &ip.ip_len);
   1545 
   1546 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   1547 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   1548 
   1549 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   1550 			    sizeof(th.th_sum), &th.th_sum);
   1551 
   1552 			hlen += th.th_off << 2;
   1553 		} else {
   1554 			/*
   1555 			 * TCP/IP headers are in the first mbuf; we can do
   1556 			 * this the easy way.
   1557 			 */
   1558 			struct ip *ip =
   1559 			    (struct ip *) (mtod(m0, caddr_t) + offset);
   1560 			struct tcphdr *th =
   1561 			    (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
   1562 
   1563 			ip->ip_len = 0;
   1564 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   1565 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   1566 
   1567 			hlen += th->th_off << 2;
   1568 		}
   1569 
   1570 		cmd |= WTX_TCPIP_CMD_TSE;
   1571 		cmdlen |= WTX_TCPIP_CMD_TSE | WTX_TCPIP_CMD_IP |
   1572 		    WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
   1573 		seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
   1574 		    WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
   1575 	}
   1576 
   1577 	/*
   1578 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1579 	 * offload feature, if we load the context descriptor, we
   1580 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1581 	 */
   1582 
   1583 	ipcs = WTX_TCPIP_IPCSS(offset) |
   1584 	    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1585 	    WTX_TCPIP_IPCSE(offset + iphl - 1);
   1586 	if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
   1587 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
   1588 		fields |= WTX_IXSM;
   1589 	}
   1590 
   1591 	offset += iphl;
   1592 
   1593 	if (m0->m_pkthdr.csum_flags &
   1594 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
   1595 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
   1596 		fields |= WTX_TXSM;
   1597 		tucs = WTX_TCPIP_TUCSS(offset) |
   1598 		    WTX_TCPIP_TUCSO(offset +
   1599 		    M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
   1600 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1601 	} else if ((m0->m_pkthdr.csum_flags &
   1602 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
   1603 		WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
   1604 		fields |= WTX_TXSM;
   1605 		tucs = WTX_TCPIP_TUCSS(offset) |
   1606 		    WTX_TCPIP_TUCSO(offset +
   1607 		    M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
   1608 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1609 	} else {
   1610 		/* Just initialize it to a valid TCP context. */
   1611 		tucs = WTX_TCPIP_TUCSS(offset) |
   1612 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1613 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1614 	}
   1615 
   1616 	/* Fill in the context descriptor. */
   1617 	t = (struct livengood_tcpip_ctxdesc *)
   1618 	    &sc->sc_txdescs[sc->sc_txnext];
   1619 	t->tcpip_ipcs = htole32(ipcs);
   1620 	t->tcpip_tucs = htole32(tucs);
   1621 	t->tcpip_cmdlen = htole32(cmdlen);
   1622 	t->tcpip_seg = htole32(seg);
   1623 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1624 
   1625 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
   1626 	txs->txs_ndesc++;
   1627 
   1628 	*cmdp = cmd;
   1629 	*fieldsp = fields;
   1630 
   1631 	return (0);
   1632 }
   1633 
   1634 static void
   1635 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
   1636 {
   1637 	struct mbuf *m;
   1638 	int i;
   1639 
   1640 	log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
   1641 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
   1642 		log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
   1643 		    "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
   1644 		    m->m_data, m->m_len, m->m_flags);
   1645 	log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
   1646 	    i, i == 1 ? "" : "s");
   1647 }
   1648 
   1649 /*
   1650  * wm_82547_txfifo_stall:
   1651  *
   1652  *	Callout used to wait for the 82547 Tx FIFO to drain,
   1653  *	reset the FIFO pointers, and restart packet transmission.
   1654  */
   1655 static void
   1656 wm_82547_txfifo_stall(void *arg)
   1657 {
   1658 	struct wm_softc *sc = arg;
   1659 	int s;
   1660 
   1661 	s = splnet();
   1662 
   1663 	if (sc->sc_txfifo_stall) {
   1664 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
   1665 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
   1666 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
   1667 			/*
   1668 			 * Packets have drained.  Stop transmitter, reset
   1669 			 * FIFO pointers, restart transmitter, and kick
   1670 			 * the packet queue.
   1671 			 */
   1672 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
   1673 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
   1674 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
   1675 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
   1676 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
   1677 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
   1678 			CSR_WRITE(sc, WMREG_TCTL, tctl);
   1679 			CSR_WRITE_FLUSH(sc);
   1680 
   1681 			sc->sc_txfifo_head = 0;
   1682 			sc->sc_txfifo_stall = 0;
   1683 			wm_start(&sc->sc_ethercom.ec_if);
   1684 		} else {
   1685 			/*
   1686 			 * Still waiting for packets to drain; try again in
   1687 			 * another tick.
   1688 			 */
   1689 			callout_schedule(&sc->sc_txfifo_ch, 1);
   1690 		}
   1691 	}
   1692 
   1693 	splx(s);
   1694 }
   1695 
   1696 /*
   1697  * wm_82547_txfifo_bugchk:
   1698  *
   1699  *	Check for bug condition in the 82547 Tx FIFO.  We need to
   1700  *	prevent enqueueing a packet that would wrap around the end
   1701  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
   1702  *
   1703  *	We do this by checking the amount of space before the end
   1704  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
   1705  *	the Tx FIFO, wait for all remaining packets to drain, reset
   1706  *	the internal FIFO pointers to the beginning, and restart
   1707  *	transmission on the interface.
   1708  */
   1709 #define	WM_FIFO_HDR		0x10
   1710 #define	WM_82547_PAD_LEN	0x3e0
   1711 static int
   1712 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
   1713 {
   1714 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
   1715 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
   1716 
   1717 	/* Just return if already stalled. */
   1718 	if (sc->sc_txfifo_stall)
   1719 		return (1);
   1720 
   1721 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1722 		/* Stall only occurs in half-duplex mode. */
   1723 		goto send_packet;
   1724 	}
   1725 
   1726 	if (len >= WM_82547_PAD_LEN + space) {
   1727 		sc->sc_txfifo_stall = 1;
   1728 		callout_schedule(&sc->sc_txfifo_ch, 1);
   1729 		return (1);
   1730 	}
   1731 
   1732  send_packet:
   1733 	sc->sc_txfifo_head += len;
   1734 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
   1735 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
   1736 
   1737 	return (0);
   1738 }
   1739 
   1740 /*
   1741  * wm_start:		[ifnet interface function]
   1742  *
   1743  *	Start packet transmission on the interface.
   1744  */
   1745 static void
   1746 wm_start(struct ifnet *ifp)
   1747 {
   1748 	struct wm_softc *sc = ifp->if_softc;
   1749 	struct mbuf *m0;
   1750 #if 0 /* XXXJRT */
   1751 	struct m_tag *mtag;
   1752 #endif
   1753 	struct wm_txsoft *txs;
   1754 	bus_dmamap_t dmamap;
   1755 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
   1756 	bus_addr_t curaddr;
   1757 	bus_size_t seglen, curlen;
   1758 	uint32_t cksumcmd;
   1759 	uint8_t cksumfields;
   1760 
   1761 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1762 		return;
   1763 
   1764 	/*
   1765 	 * Remember the previous number of free descriptors.
   1766 	 */
   1767 	ofree = sc->sc_txfree;
   1768 
   1769 	/*
   1770 	 * Loop through the send queue, setting up transmit descriptors
   1771 	 * until we drain the queue, or use up all available transmit
   1772 	 * descriptors.
   1773 	 */
   1774 	for (;;) {
   1775 		/* Grab a packet off the queue. */
   1776 		IFQ_POLL(&ifp->if_snd, m0);
   1777 		if (m0 == NULL)
   1778 			break;
   1779 
   1780 		DPRINTF(WM_DEBUG_TX,
   1781 		    ("%s: TX: have packet to transmit: %p\n",
   1782 		    sc->sc_dev.dv_xname, m0));
   1783 
   1784 		/* Get a work queue entry. */
   1785 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
   1786 			wm_txintr(sc);
   1787 			if (sc->sc_txsfree == 0) {
   1788 				DPRINTF(WM_DEBUG_TX,
   1789 				    ("%s: TX: no free job descriptors\n",
   1790 					sc->sc_dev.dv_xname));
   1791 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   1792 				break;
   1793 			}
   1794 		}
   1795 
   1796 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1797 		dmamap = txs->txs_dmamap;
   1798 
   1799 		use_tso = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   1800 
   1801 		/*
   1802 		 * So says the Linux driver:
   1803 		 * The controller does a simple calculation to make sure
   1804 		 * there is enough room in the FIFO before initiating the
   1805 		 * DMA for each buffer.  The calc is:
   1806 		 *	4 = ceil(buffer len / MSS)
   1807 		 * To make sure we don't overrun the FIFO, adjust the max
   1808 		 * buffer len if the MSS drops.
   1809 		 */
   1810 		dmamap->dm_maxsegsz =
   1811 		    (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
   1812 		    ? m0->m_pkthdr.segsz << 2
   1813 		    : WTX_MAX_LEN;
   1814 
   1815 		/*
   1816 		 * Load the DMA map.  If this fails, the packet either
   1817 		 * didn't fit in the allotted number of segments, or we
   1818 		 * were short on resources.  For the too-many-segments
   1819 		 * case, we simply report an error and drop the packet,
   1820 		 * since we can't sanely copy a jumbo packet to a single
   1821 		 * buffer.
   1822 		 */
   1823 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1824 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1825 		if (error) {
   1826 			if (error == EFBIG) {
   1827 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   1828 				log(LOG_ERR, "%s: Tx packet consumes too many "
   1829 				    "DMA segments, dropping...\n",
   1830 				    sc->sc_dev.dv_xname);
   1831 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1832 				wm_dump_mbuf_chain(sc, m0);
   1833 				m_freem(m0);
   1834 				continue;
   1835 			}
   1836 			/*
   1837 			 * Short on resources, just stop for now.
   1838 			 */
   1839 			DPRINTF(WM_DEBUG_TX,
   1840 			    ("%s: TX: dmamap load failed: %d\n",
   1841 			    sc->sc_dev.dv_xname, error));
   1842 			break;
   1843 		}
   1844 
   1845 		segs_needed = dmamap->dm_nsegs;
   1846 		if (use_tso) {
   1847 			/* For sentinel descriptor; see below. */
   1848 			segs_needed++;
   1849 		}
   1850 
   1851 		/*
   1852 		 * Ensure we have enough descriptors free to describe
   1853 		 * the packet.  Note, we always reserve one descriptor
   1854 		 * at the end of the ring due to the semantics of the
   1855 		 * TDT register, plus one more in the event we need
   1856 		 * to load offload context.
   1857 		 */
   1858 		if (segs_needed > sc->sc_txfree - 2) {
   1859 			/*
   1860 			 * Not enough free descriptors to transmit this
   1861 			 * packet.  We haven't committed anything yet,
   1862 			 * so just unload the DMA map, put the packet
   1863 			 * pack on the queue, and punt.  Notify the upper
   1864 			 * layer that there are no more slots left.
   1865 			 */
   1866 			DPRINTF(WM_DEBUG_TX,
   1867 			    ("%s: TX: need %d (%d) descriptors, have %d\n",
   1868 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
   1869 			    sc->sc_txfree - 1));
   1870 			ifp->if_flags |= IFF_OACTIVE;
   1871 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1872 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   1873 			break;
   1874 		}
   1875 
   1876 		/*
   1877 		 * Check for 82547 Tx FIFO bug.  We need to do this
   1878 		 * once we know we can transmit the packet, since we
   1879 		 * do some internal FIFO space accounting here.
   1880 		 */
   1881 		if (sc->sc_type == WM_T_82547 &&
   1882 		    wm_82547_txfifo_bugchk(sc, m0)) {
   1883 			DPRINTF(WM_DEBUG_TX,
   1884 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
   1885 			    sc->sc_dev.dv_xname));
   1886 			ifp->if_flags |= IFF_OACTIVE;
   1887 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1888 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
   1889 			break;
   1890 		}
   1891 
   1892 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1893 
   1894 		/*
   1895 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1896 		 */
   1897 
   1898 		DPRINTF(WM_DEBUG_TX,
   1899 		    ("%s: TX: packet has %d (%d) DMA segments\n",
   1900 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
   1901 
   1902 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1903 
   1904 		/*
   1905 		 * Store a pointer to the packet so that we can free it
   1906 		 * later.
   1907 		 *
   1908 		 * Initially, we consider the number of descriptors the
   1909 		 * packet uses the number of DMA segments.  This may be
   1910 		 * incremented by 1 if we do checksum offload (a descriptor
   1911 		 * is used to set the checksum context).
   1912 		 */
   1913 		txs->txs_mbuf = m0;
   1914 		txs->txs_firstdesc = sc->sc_txnext;
   1915 		txs->txs_ndesc = segs_needed;
   1916 
   1917 		/* Set up offload parameters for this packet. */
   1918 		if (m0->m_pkthdr.csum_flags &
   1919 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
   1920 		    M_CSUM_TCPv6|M_CSUM_UDPv6)) {
   1921 			if (wm_tx_offload(sc, txs, &cksumcmd,
   1922 					  &cksumfields) != 0) {
   1923 				/* Error message already displayed. */
   1924 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1925 				continue;
   1926 			}
   1927 		} else {
   1928 			cksumcmd = 0;
   1929 			cksumfields = 0;
   1930 		}
   1931 
   1932 		cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
   1933 
   1934 		/* Sync the DMA map. */
   1935 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1936 		    BUS_DMASYNC_PREWRITE);
   1937 
   1938 		/*
   1939 		 * Initialize the transmit descriptor.
   1940 		 */
   1941 		for (nexttx = sc->sc_txnext, seg = 0;
   1942 		     seg < dmamap->dm_nsegs; seg++) {
   1943 			for (seglen = dmamap->dm_segs[seg].ds_len,
   1944 			     curaddr = dmamap->dm_segs[seg].ds_addr;
   1945 			     seglen != 0;
   1946 			     curaddr += curlen, seglen -= curlen,
   1947 			     nexttx = WM_NEXTTX(sc, nexttx)) {
   1948 				curlen = seglen;
   1949 
   1950 				/*
   1951 				 * So says the Linux driver:
   1952 				 * Work around for premature descriptor
   1953 				 * write-backs in TSO mode.  Append a
   1954 				 * 4-byte sentinel descriptor.
   1955 				 */
   1956 				if (use_tso &&
   1957 				    seg == dmamap->dm_nsegs - 1 &&
   1958 				    curlen > 8)
   1959 					curlen -= 4;
   1960 
   1961 				wm_set_dma_addr(
   1962 				    &sc->sc_txdescs[nexttx].wtx_addr,
   1963 				    curaddr);
   1964 				sc->sc_txdescs[nexttx].wtx_cmdlen =
   1965 				    htole32(cksumcmd | curlen);
   1966 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
   1967 				    0;
   1968 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
   1969 				    cksumfields;
   1970 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
   1971 				lasttx = nexttx;
   1972 
   1973 				DPRINTF(WM_DEBUG_TX,
   1974 				    ("%s: TX: desc %d: low 0x%08lx, "
   1975 				     "len 0x%04x\n",
   1976 				    sc->sc_dev.dv_xname, nexttx,
   1977 				    curaddr & 0xffffffffUL, (unsigned)curlen));
   1978 			}
   1979 		}
   1980 
   1981 		KASSERT(lasttx != -1);
   1982 
   1983 		/*
   1984 		 * Set up the command byte on the last descriptor of
   1985 		 * the packet.  If we're in the interrupt delay window,
   1986 		 * delay the interrupt.
   1987 		 */
   1988 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1989 		    htole32(WTX_CMD_EOP | WTX_CMD_RS);
   1990 
   1991 #if 0 /* XXXJRT */
   1992 		/*
   1993 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1994 		 * up the descriptor to encapsulate the packet for us.
   1995 		 *
   1996 		 * This is only valid on the last descriptor of the packet.
   1997 		 */
   1998 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   1999 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   2000 			    htole32(WTX_CMD_VLE);
   2001 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
   2002 			    = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
   2003 		}
   2004 #endif /* XXXJRT */
   2005 
   2006 		txs->txs_lastdesc = lasttx;
   2007 
   2008 		DPRINTF(WM_DEBUG_TX,
   2009 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   2010 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
   2011 
   2012 		/* Sync the descriptors we're using. */
   2013 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
   2014 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2015 
   2016 		/* Give the packet to the chip. */
   2017 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   2018 
   2019 		DPRINTF(WM_DEBUG_TX,
   2020 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   2021 
   2022 		DPRINTF(WM_DEBUG_TX,
   2023 		    ("%s: TX: finished transmitting packet, job %d\n",
   2024 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   2025 
   2026 		/* Advance the tx pointer. */
   2027 		sc->sc_txfree -= txs->txs_ndesc;
   2028 		sc->sc_txnext = nexttx;
   2029 
   2030 		sc->sc_txsfree--;
   2031 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
   2032 
   2033 #if NBPFILTER > 0
   2034 		/* Pass the packet to any BPF listeners. */
   2035 		if (ifp->if_bpf)
   2036 			bpf_mtap(ifp->if_bpf, m0);
   2037 #endif /* NBPFILTER > 0 */
   2038 	}
   2039 
   2040 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   2041 		/* No more slots; notify upper layer. */
   2042 		ifp->if_flags |= IFF_OACTIVE;
   2043 	}
   2044 
   2045 	if (sc->sc_txfree != ofree) {
   2046 		/* Set a watchdog timer in case the chip flakes out. */
   2047 		ifp->if_timer = 5;
   2048 	}
   2049 }
   2050 
   2051 /*
   2052  * wm_watchdog:		[ifnet interface function]
   2053  *
   2054  *	Watchdog timer handler.
   2055  */
   2056 static void
   2057 wm_watchdog(struct ifnet *ifp)
   2058 {
   2059 	struct wm_softc *sc = ifp->if_softc;
   2060 
   2061 	/*
   2062 	 * Since we're using delayed interrupts, sweep up
   2063 	 * before we report an error.
   2064 	 */
   2065 	wm_txintr(sc);
   2066 
   2067 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
   2068 		log(LOG_ERR,
   2069 		    "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   2070 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   2071 		    sc->sc_txnext);
   2072 		ifp->if_oerrors++;
   2073 
   2074 		/* Reset the interface. */
   2075 		(void) wm_init(ifp);
   2076 	}
   2077 
   2078 	/* Try to get more packets going. */
   2079 	wm_start(ifp);
   2080 }
   2081 
   2082 /*
   2083  * wm_ioctl:		[ifnet interface function]
   2084  *
   2085  *	Handle control requests from the operator.
   2086  */
   2087 static int
   2088 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   2089 {
   2090 	struct wm_softc *sc = ifp->if_softc;
   2091 	struct ifreq *ifr = (struct ifreq *) data;
   2092 	int s, error;
   2093 
   2094 	s = splnet();
   2095 
   2096 	switch (cmd) {
   2097 	case SIOCSIFMEDIA:
   2098 	case SIOCGIFMEDIA:
   2099 		/* Flow control requires full-duplex mode. */
   2100 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   2101 		    (ifr->ifr_media & IFM_FDX) == 0)
   2102 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   2103 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   2104 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   2105 				/* We can do both TXPAUSE and RXPAUSE. */
   2106 				ifr->ifr_media |=
   2107 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   2108 			}
   2109 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   2110 		}
   2111 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   2112 		break;
   2113 	default:
   2114 		error = ether_ioctl(ifp, cmd, data);
   2115 		if (error == ENETRESET) {
   2116 			/*
   2117 			 * Multicast list has changed; set the hardware filter
   2118 			 * accordingly.
   2119 			 */
   2120 			if (ifp->if_flags & IFF_RUNNING)
   2121 				wm_set_filter(sc);
   2122 			error = 0;
   2123 		}
   2124 		break;
   2125 	}
   2126 
   2127 	/* Try to get more packets going. */
   2128 	wm_start(ifp);
   2129 
   2130 	splx(s);
   2131 	return (error);
   2132 }
   2133 
   2134 /*
   2135  * wm_intr:
   2136  *
   2137  *	Interrupt service routine.
   2138  */
   2139 static int
   2140 wm_intr(void *arg)
   2141 {
   2142 	struct wm_softc *sc = arg;
   2143 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2144 	uint32_t icr;
   2145 	int handled = 0;
   2146 
   2147 	while (1 /* CONSTCOND */) {
   2148 		icr = CSR_READ(sc, WMREG_ICR);
   2149 		if ((icr & sc->sc_icr) == 0)
   2150 			break;
   2151 
   2152 #if 0 /*NRND > 0*/
   2153 		if (RND_ENABLED(&sc->rnd_source))
   2154 			rnd_add_uint32(&sc->rnd_source, icr);
   2155 #endif
   2156 
   2157 		handled = 1;
   2158 
   2159 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   2160 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   2161 			DPRINTF(WM_DEBUG_RX,
   2162 			    ("%s: RX: got Rx intr 0x%08x\n",
   2163 			    sc->sc_dev.dv_xname,
   2164 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   2165 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
   2166 		}
   2167 #endif
   2168 		wm_rxintr(sc);
   2169 
   2170 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   2171 		if (icr & ICR_TXDW) {
   2172 			DPRINTF(WM_DEBUG_TX,
   2173 			    ("%s: TX: got TXDW interrupt\n",
   2174 			    sc->sc_dev.dv_xname));
   2175 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
   2176 		}
   2177 #endif
   2178 		wm_txintr(sc);
   2179 
   2180 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
   2181 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
   2182 			wm_linkintr(sc, icr);
   2183 		}
   2184 
   2185 		if (icr & ICR_RXO) {
   2186 			ifp->if_ierrors++;
   2187 #if defined(WM_DEBUG)
   2188 			log(LOG_WARNING, "%s: Receive overrun\n",
   2189 			    sc->sc_dev.dv_xname);
   2190 #endif /* defined(WM_DEBUG) */
   2191 		}
   2192 	}
   2193 
   2194 	if (handled) {
   2195 		/* Try to get more packets going. */
   2196 		wm_start(ifp);
   2197 	}
   2198 
   2199 	return (handled);
   2200 }
   2201 
   2202 /*
   2203  * wm_txintr:
   2204  *
   2205  *	Helper; handle transmit interrupts.
   2206  */
   2207 static void
   2208 wm_txintr(struct wm_softc *sc)
   2209 {
   2210 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2211 	struct wm_txsoft *txs;
   2212 	uint8_t status;
   2213 	int i;
   2214 
   2215 	ifp->if_flags &= ~IFF_OACTIVE;
   2216 
   2217 	/*
   2218 	 * Go through the Tx list and free mbufs for those
   2219 	 * frames which have been transmitted.
   2220 	 */
   2221 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
   2222 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
   2223 		txs = &sc->sc_txsoft[i];
   2224 
   2225 		DPRINTF(WM_DEBUG_TX,
   2226 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   2227 
   2228 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   2229 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2230 
   2231 		status =
   2232 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
   2233 		if ((status & WTX_ST_DD) == 0) {
   2234 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   2235 			    BUS_DMASYNC_PREREAD);
   2236 			break;
   2237 		}
   2238 
   2239 		DPRINTF(WM_DEBUG_TX,
   2240 		    ("%s: TX: job %d done: descs %d..%d\n",
   2241 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   2242 		    txs->txs_lastdesc));
   2243 
   2244 		/*
   2245 		 * XXX We should probably be using the statistics
   2246 		 * XXX registers, but I don't know if they exist
   2247 		 * XXX on chips before the i82544.
   2248 		 */
   2249 
   2250 #ifdef WM_EVENT_COUNTERS
   2251 		if (status & WTX_ST_TU)
   2252 			WM_EVCNT_INCR(&sc->sc_ev_tu);
   2253 #endif /* WM_EVENT_COUNTERS */
   2254 
   2255 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
   2256 			ifp->if_oerrors++;
   2257 			if (status & WTX_ST_LC)
   2258 				log(LOG_WARNING, "%s: late collision\n",
   2259 				    sc->sc_dev.dv_xname);
   2260 			else if (status & WTX_ST_EC) {
   2261 				ifp->if_collisions += 16;
   2262 				log(LOG_WARNING, "%s: excessive collisions\n",
   2263 				    sc->sc_dev.dv_xname);
   2264 			}
   2265 		} else
   2266 			ifp->if_opackets++;
   2267 
   2268 		sc->sc_txfree += txs->txs_ndesc;
   2269 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   2270 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2271 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2272 		m_freem(txs->txs_mbuf);
   2273 		txs->txs_mbuf = NULL;
   2274 	}
   2275 
   2276 	/* Update the dirty transmit buffer pointer. */
   2277 	sc->sc_txsdirty = i;
   2278 	DPRINTF(WM_DEBUG_TX,
   2279 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   2280 
   2281 	/*
   2282 	 * If there are no more pending transmissions, cancel the watchdog
   2283 	 * timer.
   2284 	 */
   2285 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
   2286 		ifp->if_timer = 0;
   2287 }
   2288 
   2289 /*
   2290  * wm_rxintr:
   2291  *
   2292  *	Helper; handle receive interrupts.
   2293  */
   2294 static void
   2295 wm_rxintr(struct wm_softc *sc)
   2296 {
   2297 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2298 	struct wm_rxsoft *rxs;
   2299 	struct mbuf *m;
   2300 	int i, len;
   2301 	uint8_t status, errors;
   2302 
   2303 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
   2304 		rxs = &sc->sc_rxsoft[i];
   2305 
   2306 		DPRINTF(WM_DEBUG_RX,
   2307 		    ("%s: RX: checking descriptor %d\n",
   2308 		    sc->sc_dev.dv_xname, i));
   2309 
   2310 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2311 
   2312 		status = sc->sc_rxdescs[i].wrx_status;
   2313 		errors = sc->sc_rxdescs[i].wrx_errors;
   2314 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
   2315 
   2316 		if ((status & WRX_ST_DD) == 0) {
   2317 			/*
   2318 			 * We have processed all of the receive descriptors.
   2319 			 */
   2320 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   2321 			break;
   2322 		}
   2323 
   2324 		if (__predict_false(sc->sc_rxdiscard)) {
   2325 			DPRINTF(WM_DEBUG_RX,
   2326 			    ("%s: RX: discarding contents of descriptor %d\n",
   2327 			    sc->sc_dev.dv_xname, i));
   2328 			WM_INIT_RXDESC(sc, i);
   2329 			if (status & WRX_ST_EOP) {
   2330 				/* Reset our state. */
   2331 				DPRINTF(WM_DEBUG_RX,
   2332 				    ("%s: RX: resetting rxdiscard -> 0\n",
   2333 				    sc->sc_dev.dv_xname));
   2334 				sc->sc_rxdiscard = 0;
   2335 			}
   2336 			continue;
   2337 		}
   2338 
   2339 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2340 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2341 
   2342 		m = rxs->rxs_mbuf;
   2343 
   2344 		/*
   2345 		 * Add a new receive buffer to the ring.
   2346 		 */
   2347 		if (wm_add_rxbuf(sc, i) != 0) {
   2348 			/*
   2349 			 * Failed, throw away what we've done so
   2350 			 * far, and discard the rest of the packet.
   2351 			 */
   2352 			ifp->if_ierrors++;
   2353 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2354 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2355 			WM_INIT_RXDESC(sc, i);
   2356 			if ((status & WRX_ST_EOP) == 0)
   2357 				sc->sc_rxdiscard = 1;
   2358 			if (sc->sc_rxhead != NULL)
   2359 				m_freem(sc->sc_rxhead);
   2360 			WM_RXCHAIN_RESET(sc);
   2361 			DPRINTF(WM_DEBUG_RX,
   2362 			    ("%s: RX: Rx buffer allocation failed, "
   2363 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   2364 			    sc->sc_rxdiscard ? " (discard)" : ""));
   2365 			continue;
   2366 		}
   2367 
   2368 		WM_RXCHAIN_LINK(sc, m);
   2369 
   2370 		m->m_len = len;
   2371 
   2372 		DPRINTF(WM_DEBUG_RX,
   2373 		    ("%s: RX: buffer at %p len %d\n",
   2374 		    sc->sc_dev.dv_xname, m->m_data, len));
   2375 
   2376 		/*
   2377 		 * If this is not the end of the packet, keep
   2378 		 * looking.
   2379 		 */
   2380 		if ((status & WRX_ST_EOP) == 0) {
   2381 			sc->sc_rxlen += len;
   2382 			DPRINTF(WM_DEBUG_RX,
   2383 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   2384 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   2385 			continue;
   2386 		}
   2387 
   2388 		/*
   2389 		 * Okay, we have the entire packet now.  The chip is
   2390 		 * configured to include the FCS (not all chips can
   2391 		 * be configured to strip it), so we need to trim it.
   2392 		 */
   2393 		m->m_len -= ETHER_CRC_LEN;
   2394 
   2395 		*sc->sc_rxtailp = NULL;
   2396 		len = m->m_len + sc->sc_rxlen;
   2397 		m = sc->sc_rxhead;
   2398 
   2399 		WM_RXCHAIN_RESET(sc);
   2400 
   2401 		DPRINTF(WM_DEBUG_RX,
   2402 		    ("%s: RX: have entire packet, len -> %d\n",
   2403 		    sc->sc_dev.dv_xname, len));
   2404 
   2405 		/*
   2406 		 * If an error occurred, update stats and drop the packet.
   2407 		 */
   2408 		if (errors &
   2409 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
   2410 			ifp->if_ierrors++;
   2411 			if (errors & WRX_ER_SE)
   2412 				log(LOG_WARNING, "%s: symbol error\n",
   2413 				    sc->sc_dev.dv_xname);
   2414 			else if (errors & WRX_ER_SEQ)
   2415 				log(LOG_WARNING, "%s: receive sequence error\n",
   2416 				    sc->sc_dev.dv_xname);
   2417 			else if (errors & WRX_ER_CE)
   2418 				log(LOG_WARNING, "%s: CRC error\n",
   2419 				    sc->sc_dev.dv_xname);
   2420 			m_freem(m);
   2421 			continue;
   2422 		}
   2423 
   2424 		/*
   2425 		 * No errors.  Receive the packet.
   2426 		 */
   2427 		m->m_pkthdr.rcvif = ifp;
   2428 		m->m_pkthdr.len = len;
   2429 
   2430 #if 0 /* XXXJRT */
   2431 		/*
   2432 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2433 		 * for us.  Associate the tag with the packet.
   2434 		 */
   2435 		if ((status & WRX_ST_VP) != 0) {
   2436 			VLAN_INPUT_TAG(ifp, m,
   2437 			    le16toh(sc->sc_rxdescs[i].wrx_special,
   2438 			    continue);
   2439 		}
   2440 #endif /* XXXJRT */
   2441 
   2442 		/*
   2443 		 * Set up checksum info for this packet.
   2444 		 */
   2445 		if ((status & WRX_ST_IXSM) == 0) {
   2446 			if (status & WRX_ST_IPCS) {
   2447 				WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2448 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2449 				if (errors & WRX_ER_IPE)
   2450 					m->m_pkthdr.csum_flags |=
   2451 					    M_CSUM_IPv4_BAD;
   2452 			}
   2453 			if (status & WRX_ST_TCPCS) {
   2454 				/*
   2455 				 * Note: we don't know if this was TCP or UDP,
   2456 				 * so we just set both bits, and expect the
   2457 				 * upper layers to deal.
   2458 				 */
   2459 				WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
   2460 				m->m_pkthdr.csum_flags |=
   2461 				    M_CSUM_TCPv4|M_CSUM_UDPv4;
   2462 				if (errors & WRX_ER_TCPE)
   2463 					m->m_pkthdr.csum_flags |=
   2464 					    M_CSUM_TCP_UDP_BAD;
   2465 			}
   2466 		}
   2467 
   2468 		ifp->if_ipackets++;
   2469 
   2470 #if NBPFILTER > 0
   2471 		/* Pass this up to any BPF listeners. */
   2472 		if (ifp->if_bpf)
   2473 			bpf_mtap(ifp->if_bpf, m);
   2474 #endif /* NBPFILTER > 0 */
   2475 
   2476 		/* Pass it on. */
   2477 		(*ifp->if_input)(ifp, m);
   2478 	}
   2479 
   2480 	/* Update the receive pointer. */
   2481 	sc->sc_rxptr = i;
   2482 
   2483 	DPRINTF(WM_DEBUG_RX,
   2484 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   2485 }
   2486 
   2487 /*
   2488  * wm_linkintr:
   2489  *
   2490  *	Helper; handle link interrupts.
   2491  */
   2492 static void
   2493 wm_linkintr(struct wm_softc *sc, uint32_t icr)
   2494 {
   2495 	uint32_t status;
   2496 
   2497 	/*
   2498 	 * If we get a link status interrupt on a 1000BASE-T
   2499 	 * device, just fall into the normal MII tick path.
   2500 	 */
   2501 	if (sc->sc_flags & WM_F_HAS_MII) {
   2502 		if (icr & ICR_LSC) {
   2503 			DPRINTF(WM_DEBUG_LINK,
   2504 			    ("%s: LINK: LSC -> mii_tick\n",
   2505 			    sc->sc_dev.dv_xname));
   2506 			mii_tick(&sc->sc_mii);
   2507 		} else if (icr & ICR_RXSEQ) {
   2508 			DPRINTF(WM_DEBUG_LINK,
   2509 			    ("%s: LINK Receive sequence error\n",
   2510 			    sc->sc_dev.dv_xname));
   2511 		}
   2512 		return;
   2513 	}
   2514 
   2515 	/*
   2516 	 * If we are now receiving /C/, check for link again in
   2517 	 * a couple of link clock ticks.
   2518 	 */
   2519 	if (icr & ICR_RXCFG) {
   2520 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
   2521 		    sc->sc_dev.dv_xname));
   2522 		sc->sc_tbi_anstate = 2;
   2523 	}
   2524 
   2525 	if (icr & ICR_LSC) {
   2526 		status = CSR_READ(sc, WMREG_STATUS);
   2527 		if (status & STATUS_LU) {
   2528 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
   2529 			    sc->sc_dev.dv_xname,
   2530 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   2531 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2532 			sc->sc_fcrtl &= ~FCRTL_XONE;
   2533 			if (status & STATUS_FD)
   2534 				sc->sc_tctl |=
   2535 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2536 			else
   2537 				sc->sc_tctl |=
   2538 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2539 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   2540 				sc->sc_fcrtl |= FCRTL_XONE;
   2541 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2542 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   2543 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   2544 				      sc->sc_fcrtl);
   2545 			sc->sc_tbi_linkup = 1;
   2546 		} else {
   2547 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   2548 			    sc->sc_dev.dv_xname));
   2549 			sc->sc_tbi_linkup = 0;
   2550 		}
   2551 		sc->sc_tbi_anstate = 2;
   2552 		wm_tbi_set_linkled(sc);
   2553 	} else if (icr & ICR_RXSEQ) {
   2554 		DPRINTF(WM_DEBUG_LINK,
   2555 		    ("%s: LINK: Receive sequence error\n",
   2556 		    sc->sc_dev.dv_xname));
   2557 	}
   2558 }
   2559 
   2560 /*
   2561  * wm_tick:
   2562  *
   2563  *	One second timer, used to check link status, sweep up
   2564  *	completed transmit jobs, etc.
   2565  */
   2566 static void
   2567 wm_tick(void *arg)
   2568 {
   2569 	struct wm_softc *sc = arg;
   2570 	int s;
   2571 
   2572 	s = splnet();
   2573 
   2574 	if (sc->sc_type >= WM_T_82542_2_1) {
   2575 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
   2576 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
   2577 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
   2578 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
   2579 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
   2580 	}
   2581 
   2582 	if (sc->sc_flags & WM_F_HAS_MII)
   2583 		mii_tick(&sc->sc_mii);
   2584 	else
   2585 		wm_tbi_check_link(sc);
   2586 
   2587 	splx(s);
   2588 
   2589 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2590 }
   2591 
   2592 /*
   2593  * wm_reset:
   2594  *
   2595  *	Reset the i82542 chip.
   2596  */
   2597 static void
   2598 wm_reset(struct wm_softc *sc)
   2599 {
   2600 	int i;
   2601 
   2602 	/*
   2603 	 * Allocate on-chip memory according to the MTU size.
   2604 	 * The Packet Buffer Allocation register must be written
   2605 	 * before the chip is reset.
   2606 	 */
   2607 	if (sc->sc_type < WM_T_82547) {
   2608 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2609 		    PBA_40K : PBA_48K;
   2610 	} else {
   2611 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2612 		    PBA_22K : PBA_30K;
   2613 		sc->sc_txfifo_head = 0;
   2614 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
   2615 		sc->sc_txfifo_size =
   2616 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
   2617 		sc->sc_txfifo_stall = 0;
   2618 	}
   2619 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
   2620 
   2621 	switch (sc->sc_type) {
   2622 	case WM_T_82544:
   2623 	case WM_T_82540:
   2624 	case WM_T_82545:
   2625 	case WM_T_82546:
   2626 	case WM_T_82541:
   2627 	case WM_T_82541_2:
   2628 		/*
   2629 		 * On some chipsets, a reset through a memory-mapped write
   2630 		 * cycle can cause the chip to reset before completing the
   2631 		 * write cycle.  This causes major headache that can be
   2632 		 * avoided by issuing the reset via indirect register writes
   2633 		 * through I/O space.
   2634 		 *
   2635 		 * So, if we successfully mapped the I/O BAR at attach time,
   2636 		 * use that.  Otherwise, try our luck with a memory-mapped
   2637 		 * reset.
   2638 		 */
   2639 		if (sc->sc_flags & WM_F_IOH_VALID)
   2640 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
   2641 		else
   2642 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2643 		break;
   2644 
   2645 	case WM_T_82545_3:
   2646 	case WM_T_82546_3:
   2647 		/* Use the shadow control register on these chips. */
   2648 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
   2649 		break;
   2650 
   2651 	default:
   2652 		/* Everything else can safely use the documented method. */
   2653 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2654 		break;
   2655 	}
   2656 	delay(10000);
   2657 
   2658 	for (i = 0; i < 1000; i++) {
   2659 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
   2660 			return;
   2661 		delay(20);
   2662 	}
   2663 
   2664 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
   2665 		log(LOG_ERR, "%s: reset failed to complete\n",
   2666 		    sc->sc_dev.dv_xname);
   2667 }
   2668 
   2669 /*
   2670  * wm_init:		[ifnet interface function]
   2671  *
   2672  *	Initialize the interface.  Must be called at splnet().
   2673  */
   2674 static int
   2675 wm_init(struct ifnet *ifp)
   2676 {
   2677 	struct wm_softc *sc = ifp->if_softc;
   2678 	struct wm_rxsoft *rxs;
   2679 	int i, error = 0;
   2680 	uint32_t reg;
   2681 
   2682 	/*
   2683 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   2684 	 * There is a small but measurable benefit to avoiding the adjusment
   2685 	 * of the descriptor so that the headers are aligned, for normal mtu,
   2686 	 * on such platforms.  One possibility is that the DMA itself is
   2687 	 * slightly more efficient if the front of the entire packet (instead
   2688 	 * of the front of the headers) is aligned.
   2689 	 *
   2690 	 * Note we must always set align_tweak to 0 if we are using
   2691 	 * jumbo frames.
   2692 	 */
   2693 #ifdef __NO_STRICT_ALIGNMENT
   2694 	sc->sc_align_tweak = 0;
   2695 #else
   2696 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   2697 		sc->sc_align_tweak = 0;
   2698 	else
   2699 		sc->sc_align_tweak = 2;
   2700 #endif /* __NO_STRICT_ALIGNMENT */
   2701 
   2702 	/* Cancel any pending I/O. */
   2703 	wm_stop(ifp, 0);
   2704 
   2705 	/* Reset the chip to a known state. */
   2706 	wm_reset(sc);
   2707 
   2708 	/* Initialize the transmit descriptor ring. */
   2709 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
   2710 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
   2711 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2712 	sc->sc_txfree = WM_NTXDESC(sc);
   2713 	sc->sc_txnext = 0;
   2714 
   2715 	if (sc->sc_type < WM_T_82543) {
   2716 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
   2717 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
   2718 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
   2719 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
   2720 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
   2721 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
   2722 	} else {
   2723 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
   2724 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
   2725 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
   2726 		CSR_WRITE(sc, WMREG_TDH, 0);
   2727 		CSR_WRITE(sc, WMREG_TDT, 0);
   2728 		CSR_WRITE(sc, WMREG_TIDV, 64);
   2729 		CSR_WRITE(sc, WMREG_TADV, 128);
   2730 
   2731 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
   2732 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   2733 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
   2734 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
   2735 	}
   2736 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
   2737 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
   2738 
   2739 	/* Initialize the transmit job descriptors. */
   2740 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
   2741 		sc->sc_txsoft[i].txs_mbuf = NULL;
   2742 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
   2743 	sc->sc_txsnext = 0;
   2744 	sc->sc_txsdirty = 0;
   2745 
   2746 	/*
   2747 	 * Initialize the receive descriptor and receive job
   2748 	 * descriptor rings.
   2749 	 */
   2750 	if (sc->sc_type < WM_T_82543) {
   2751 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
   2752 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
   2753 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
   2754 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
   2755 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
   2756 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
   2757 
   2758 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
   2759 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
   2760 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
   2761 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
   2762 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
   2763 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
   2764 	} else {
   2765 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
   2766 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
   2767 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
   2768 		CSR_WRITE(sc, WMREG_RDH, 0);
   2769 		CSR_WRITE(sc, WMREG_RDT, 0);
   2770 		CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
   2771 		CSR_WRITE(sc, WMREG_RADV, 128);
   2772 	}
   2773 	for (i = 0; i < WM_NRXDESC; i++) {
   2774 		rxs = &sc->sc_rxsoft[i];
   2775 		if (rxs->rxs_mbuf == NULL) {
   2776 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
   2777 				log(LOG_ERR, "%s: unable to allocate or map rx "
   2778 				    "buffer %d, error = %d\n",
   2779 				    sc->sc_dev.dv_xname, i, error);
   2780 				/*
   2781 				 * XXX Should attempt to run with fewer receive
   2782 				 * XXX buffers instead of just failing.
   2783 				 */
   2784 				wm_rxdrain(sc);
   2785 				goto out;
   2786 			}
   2787 		} else
   2788 			WM_INIT_RXDESC(sc, i);
   2789 	}
   2790 	sc->sc_rxptr = 0;
   2791 	sc->sc_rxdiscard = 0;
   2792 	WM_RXCHAIN_RESET(sc);
   2793 
   2794 	/*
   2795 	 * Clear out the VLAN table -- we don't use it (yet).
   2796 	 */
   2797 	CSR_WRITE(sc, WMREG_VET, 0);
   2798 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
   2799 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
   2800 
   2801 	/*
   2802 	 * Set up flow-control parameters.
   2803 	 *
   2804 	 * XXX Values could probably stand some tuning.
   2805 	 */
   2806 	CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
   2807 	CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
   2808 	CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
   2809 
   2810 	sc->sc_fcrtl = FCRTL_DFLT;
   2811 	if (sc->sc_type < WM_T_82543) {
   2812 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
   2813 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
   2814 	} else {
   2815 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
   2816 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
   2817 	}
   2818 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
   2819 
   2820 #if 0 /* XXXJRT */
   2821 	/* Deal with VLAN enables. */
   2822 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2823 		sc->sc_ctrl |= CTRL_VME;
   2824 	else
   2825 #endif /* XXXJRT */
   2826 		sc->sc_ctrl &= ~CTRL_VME;
   2827 
   2828 	/* Write the control registers. */
   2829 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2830 #if 0
   2831 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   2832 #endif
   2833 
   2834 	/*
   2835 	 * Set up checksum offload parameters.
   2836 	 */
   2837 	reg = CSR_READ(sc, WMREG_RXCSUM);
   2838 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   2839 		reg |= RXCSUM_IPOFL;
   2840 	else
   2841 		reg &= ~RXCSUM_IPOFL;
   2842 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   2843 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   2844 	else {
   2845 		reg &= ~RXCSUM_TUOFL;
   2846 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
   2847 			reg &= ~RXCSUM_IPOFL;
   2848 	}
   2849 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
   2850 
   2851 	/*
   2852 	 * Set up the interrupt registers.
   2853 	 */
   2854 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   2855 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   2856 	    ICR_RXO | ICR_RXT0;
   2857 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
   2858 		sc->sc_icr |= ICR_RXCFG;
   2859 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
   2860 
   2861 	/* Set up the inter-packet gap. */
   2862 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   2863 
   2864 	if (sc->sc_type >= WM_T_82543) {
   2865 		/* Set up the interrupt throttling register (units of 256ns) */
   2866 		sc->sc_itr = 1000000000 / (7000 * 256);
   2867 		CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
   2868 	}
   2869 
   2870 #if 0 /* XXXJRT */
   2871 	/* Set the VLAN ethernetype. */
   2872 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
   2873 #endif
   2874 
   2875 	/*
   2876 	 * Set up the transmit control register; we start out with
   2877 	 * a collision distance suitable for FDX, but update it whe
   2878 	 * we resolve the media type.
   2879 	 */
   2880 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
   2881 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2882 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2883 
   2884 	/* Set the media. */
   2885 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
   2886 
   2887 	/*
   2888 	 * Set up the receive control register; we actually program
   2889 	 * the register when we set the receive filter.  Use multicast
   2890 	 * address offset type 0.
   2891 	 *
   2892 	 * Only the i82544 has the ability to strip the incoming
   2893 	 * CRC, so we don't enable that feature.
   2894 	 */
   2895 	sc->sc_mchash_type = 0;
   2896 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
   2897 	    RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
   2898 
   2899 	if(MCLBYTES == 2048) {
   2900 		sc->sc_rctl |= RCTL_2k;
   2901 	} else {
   2902 		if(sc->sc_type >= WM_T_82543) {
   2903 			switch(MCLBYTES) {
   2904 			case 4096:
   2905 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
   2906 				break;
   2907 			case 8192:
   2908 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
   2909 				break;
   2910 			case 16384:
   2911 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
   2912 				break;
   2913 			default:
   2914 				panic("wm_init: MCLBYTES %d unsupported",
   2915 				    MCLBYTES);
   2916 				break;
   2917 			}
   2918 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
   2919 	}
   2920 
   2921 	/* Set the receive filter. */
   2922 	wm_set_filter(sc);
   2923 
   2924 	/* Start the one second link check clock. */
   2925 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2926 
   2927 	/* ...all done! */
   2928 	ifp->if_flags |= IFF_RUNNING;
   2929 	ifp->if_flags &= ~IFF_OACTIVE;
   2930 
   2931  out:
   2932 	if (error)
   2933 		log(LOG_ERR, "%s: interface not running\n",
   2934 		    sc->sc_dev.dv_xname);
   2935 	return (error);
   2936 }
   2937 
   2938 /*
   2939  * wm_rxdrain:
   2940  *
   2941  *	Drain the receive queue.
   2942  */
   2943 static void
   2944 wm_rxdrain(struct wm_softc *sc)
   2945 {
   2946 	struct wm_rxsoft *rxs;
   2947 	int i;
   2948 
   2949 	for (i = 0; i < WM_NRXDESC; i++) {
   2950 		rxs = &sc->sc_rxsoft[i];
   2951 		if (rxs->rxs_mbuf != NULL) {
   2952 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2953 			m_freem(rxs->rxs_mbuf);
   2954 			rxs->rxs_mbuf = NULL;
   2955 		}
   2956 	}
   2957 }
   2958 
   2959 /*
   2960  * wm_stop:		[ifnet interface function]
   2961  *
   2962  *	Stop transmission on the interface.
   2963  */
   2964 static void
   2965 wm_stop(struct ifnet *ifp, int disable)
   2966 {
   2967 	struct wm_softc *sc = ifp->if_softc;
   2968 	struct wm_txsoft *txs;
   2969 	int i;
   2970 
   2971 	/* Stop the one second clock. */
   2972 	callout_stop(&sc->sc_tick_ch);
   2973 
   2974 	/* Stop the 82547 Tx FIFO stall check timer. */
   2975 	if (sc->sc_type == WM_T_82547)
   2976 		callout_stop(&sc->sc_txfifo_ch);
   2977 
   2978 	if (sc->sc_flags & WM_F_HAS_MII) {
   2979 		/* Down the MII. */
   2980 		mii_down(&sc->sc_mii);
   2981 	}
   2982 
   2983 	/* Stop the transmit and receive processes. */
   2984 	CSR_WRITE(sc, WMREG_TCTL, 0);
   2985 	CSR_WRITE(sc, WMREG_RCTL, 0);
   2986 
   2987 	/*
   2988 	 * Clear the interrupt mask to ensure the device cannot assert its
   2989 	 * interrupt line.
   2990 	 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
   2991 	 * any currently pending or shared interrupt.
   2992 	 */
   2993 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   2994 	sc->sc_icr = 0;
   2995 
   2996 	/* Release any queued transmit buffers. */
   2997 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   2998 		txs = &sc->sc_txsoft[i];
   2999 		if (txs->txs_mbuf != NULL) {
   3000 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   3001 			m_freem(txs->txs_mbuf);
   3002 			txs->txs_mbuf = NULL;
   3003 		}
   3004 	}
   3005 
   3006 	if (disable)
   3007 		wm_rxdrain(sc);
   3008 
   3009 	/* Mark the interface as down and cancel the watchdog timer. */
   3010 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3011 	ifp->if_timer = 0;
   3012 }
   3013 
   3014 /*
   3015  * wm_acquire_eeprom:
   3016  *
   3017  *	Perform the EEPROM handshake required on some chips.
   3018  */
   3019 static int
   3020 wm_acquire_eeprom(struct wm_softc *sc)
   3021 {
   3022 	uint32_t reg;
   3023 	int x;
   3024 
   3025 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
   3026 		reg = CSR_READ(sc, WMREG_EECD);
   3027 
   3028 		/* Request EEPROM access. */
   3029 		reg |= EECD_EE_REQ;
   3030 		CSR_WRITE(sc, WMREG_EECD, reg);
   3031 
   3032 		/* ..and wait for it to be granted. */
   3033 		for (x = 0; x < 100; x++) {
   3034 			reg = CSR_READ(sc, WMREG_EECD);
   3035 			if (reg & EECD_EE_GNT)
   3036 				break;
   3037 			delay(5);
   3038 		}
   3039 		if ((reg & EECD_EE_GNT) == 0) {
   3040 			aprint_error("%s: could not acquire EEPROM GNT\n",
   3041 			    sc->sc_dev.dv_xname);
   3042 			reg &= ~EECD_EE_REQ;
   3043 			CSR_WRITE(sc, WMREG_EECD, reg);
   3044 			return (1);
   3045 		}
   3046 	}
   3047 
   3048 	return (0);
   3049 }
   3050 
   3051 /*
   3052  * wm_release_eeprom:
   3053  *
   3054  *	Release the EEPROM mutex.
   3055  */
   3056 static void
   3057 wm_release_eeprom(struct wm_softc *sc)
   3058 {
   3059 	uint32_t reg;
   3060 
   3061 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
   3062 		reg = CSR_READ(sc, WMREG_EECD);
   3063 		reg &= ~EECD_EE_REQ;
   3064 		CSR_WRITE(sc, WMREG_EECD, reg);
   3065 	}
   3066 }
   3067 
   3068 /*
   3069  * wm_eeprom_sendbits:
   3070  *
   3071  *	Send a series of bits to the EEPROM.
   3072  */
   3073 static void
   3074 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
   3075 {
   3076 	uint32_t reg;
   3077 	int x;
   3078 
   3079 	reg = CSR_READ(sc, WMREG_EECD);
   3080 
   3081 	for (x = nbits; x > 0; x--) {
   3082 		if (bits & (1U << (x - 1)))
   3083 			reg |= EECD_DI;
   3084 		else
   3085 			reg &= ~EECD_DI;
   3086 		CSR_WRITE(sc, WMREG_EECD, reg);
   3087 		delay(2);
   3088 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   3089 		delay(2);
   3090 		CSR_WRITE(sc, WMREG_EECD, reg);
   3091 		delay(2);
   3092 	}
   3093 }
   3094 
   3095 /*
   3096  * wm_eeprom_recvbits:
   3097  *
   3098  *	Receive a series of bits from the EEPROM.
   3099  */
   3100 static void
   3101 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
   3102 {
   3103 	uint32_t reg, val;
   3104 	int x;
   3105 
   3106 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
   3107 
   3108 	val = 0;
   3109 	for (x = nbits; x > 0; x--) {
   3110 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   3111 		delay(2);
   3112 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
   3113 			val |= (1U << (x - 1));
   3114 		CSR_WRITE(sc, WMREG_EECD, reg);
   3115 		delay(2);
   3116 	}
   3117 	*valp = val;
   3118 }
   3119 
   3120 /*
   3121  * wm_read_eeprom_uwire:
   3122  *
   3123  *	Read a word from the EEPROM using the MicroWire protocol.
   3124  */
   3125 static int
   3126 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3127 {
   3128 	uint32_t reg, val;
   3129 	int i;
   3130 
   3131 	for (i = 0; i < wordcnt; i++) {
   3132 		/* Clear SK and DI. */
   3133 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
   3134 		CSR_WRITE(sc, WMREG_EECD, reg);
   3135 
   3136 		/* Set CHIP SELECT. */
   3137 		reg |= EECD_CS;
   3138 		CSR_WRITE(sc, WMREG_EECD, reg);
   3139 		delay(2);
   3140 
   3141 		/* Shift in the READ command. */
   3142 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
   3143 
   3144 		/* Shift in address. */
   3145 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
   3146 
   3147 		/* Shift out the data. */
   3148 		wm_eeprom_recvbits(sc, &val, 16);
   3149 		data[i] = val & 0xffff;
   3150 
   3151 		/* Clear CHIP SELECT. */
   3152 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
   3153 		CSR_WRITE(sc, WMREG_EECD, reg);
   3154 		delay(2);
   3155 	}
   3156 
   3157 	return (0);
   3158 }
   3159 
   3160 /*
   3161  * wm_spi_eeprom_ready:
   3162  *
   3163  *	Wait for a SPI EEPROM to be ready for commands.
   3164  */
   3165 static int
   3166 wm_spi_eeprom_ready(struct wm_softc *sc)
   3167 {
   3168 	uint32_t val;
   3169 	int usec;
   3170 
   3171 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
   3172 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
   3173 		wm_eeprom_recvbits(sc, &val, 8);
   3174 		if ((val & SPI_SR_RDY) == 0)
   3175 			break;
   3176 	}
   3177 	if (usec >= SPI_MAX_RETRIES) {
   3178 		aprint_error("%s: EEPROM failed to become ready\n",
   3179 		    sc->sc_dev.dv_xname);
   3180 		return (1);
   3181 	}
   3182 	return (0);
   3183 }
   3184 
   3185 /*
   3186  * wm_read_eeprom_spi:
   3187  *
   3188  *	Read a work from the EEPROM using the SPI protocol.
   3189  */
   3190 static int
   3191 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3192 {
   3193 	uint32_t reg, val;
   3194 	int i;
   3195 	uint8_t opc;
   3196 
   3197 	/* Clear SK and CS. */
   3198 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
   3199 	CSR_WRITE(sc, WMREG_EECD, reg);
   3200 	delay(2);
   3201 
   3202 	if (wm_spi_eeprom_ready(sc))
   3203 		return (1);
   3204 
   3205 	/* Toggle CS to flush commands. */
   3206 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
   3207 	delay(2);
   3208 	CSR_WRITE(sc, WMREG_EECD, reg);
   3209 	delay(2);
   3210 
   3211 	opc = SPI_OPC_READ;
   3212 	if (sc->sc_ee_addrbits == 8 && word >= 128)
   3213 		opc |= SPI_OPC_A8;
   3214 
   3215 	wm_eeprom_sendbits(sc, opc, 8);
   3216 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
   3217 
   3218 	for (i = 0; i < wordcnt; i++) {
   3219 		wm_eeprom_recvbits(sc, &val, 16);
   3220 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
   3221 	}
   3222 
   3223 	/* Raise CS and clear SK. */
   3224 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
   3225 	CSR_WRITE(sc, WMREG_EECD, reg);
   3226 	delay(2);
   3227 
   3228 	return (0);
   3229 }
   3230 
   3231 #define EEPROM_CHECKSUM		0xBABA
   3232 #define EEPROM_SIZE		0x0040
   3233 
   3234 /*
   3235  * wm_validate_eeprom_checksum
   3236  *
   3237  * The checksum is defined as the sum of the first 64 (16 bit) words.
   3238  */
   3239 static int
   3240 wm_validate_eeprom_checksum(struct wm_softc *sc)
   3241 {
   3242 	uint16_t checksum;
   3243 	uint16_t eeprom_data;
   3244 	int i;
   3245 
   3246 	checksum = 0;
   3247 
   3248 	for (i = 0; i < EEPROM_SIZE; i++) {
   3249 		if(wm_read_eeprom(sc, i, 1, &eeprom_data))
   3250 			return 1;
   3251 		checksum += eeprom_data;
   3252 	}
   3253 
   3254 	if (checksum != (uint16_t) EEPROM_CHECKSUM)
   3255 		return 1;
   3256 
   3257 	return 0;
   3258 }
   3259 
   3260 /*
   3261  * wm_read_eeprom:
   3262  *
   3263  *	Read data from the serial EEPROM.
   3264  */
   3265 static int
   3266 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3267 {
   3268 	int rv;
   3269 
   3270 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
   3271 		return 1;
   3272 
   3273 	if (wm_acquire_eeprom(sc))
   3274 		return 1;
   3275 
   3276 	if (sc->sc_flags & WM_F_EEPROM_SPI)
   3277 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
   3278 	else
   3279 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
   3280 
   3281 	wm_release_eeprom(sc);
   3282 	return rv;
   3283 }
   3284 
   3285 /*
   3286  * wm_add_rxbuf:
   3287  *
   3288  *	Add a receive buffer to the indiciated descriptor.
   3289  */
   3290 static int
   3291 wm_add_rxbuf(struct wm_softc *sc, int idx)
   3292 {
   3293 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
   3294 	struct mbuf *m;
   3295 	int error;
   3296 
   3297 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3298 	if (m == NULL)
   3299 		return (ENOBUFS);
   3300 
   3301 	MCLGET(m, M_DONTWAIT);
   3302 	if ((m->m_flags & M_EXT) == 0) {
   3303 		m_freem(m);
   3304 		return (ENOBUFS);
   3305 	}
   3306 
   3307 	if (rxs->rxs_mbuf != NULL)
   3308 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3309 
   3310 	rxs->rxs_mbuf = m;
   3311 
   3312 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   3313 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   3314 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   3315 	if (error) {
   3316 		/* XXX XXX XXX */
   3317 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   3318 		    sc->sc_dev.dv_xname, idx, error);
   3319 		panic("wm_add_rxbuf");
   3320 	}
   3321 
   3322 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3323 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3324 
   3325 	WM_INIT_RXDESC(sc, idx);
   3326 
   3327 	return (0);
   3328 }
   3329 
   3330 /*
   3331  * wm_set_ral:
   3332  *
   3333  *	Set an entery in the receive address list.
   3334  */
   3335 static void
   3336 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
   3337 {
   3338 	uint32_t ral_lo, ral_hi;
   3339 
   3340 	if (enaddr != NULL) {
   3341 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   3342 		    (enaddr[3] << 24);
   3343 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   3344 		ral_hi |= RAL_AV;
   3345 	} else {
   3346 		ral_lo = 0;
   3347 		ral_hi = 0;
   3348 	}
   3349 
   3350 	if (sc->sc_type >= WM_T_82544) {
   3351 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
   3352 		    ral_lo);
   3353 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
   3354 		    ral_hi);
   3355 	} else {
   3356 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
   3357 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
   3358 	}
   3359 }
   3360 
   3361 /*
   3362  * wm_mchash:
   3363  *
   3364  *	Compute the hash of the multicast address for the 4096-bit
   3365  *	multicast filter.
   3366  */
   3367 static uint32_t
   3368 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
   3369 {
   3370 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   3371 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   3372 	uint32_t hash;
   3373 
   3374 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   3375 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   3376 
   3377 	return (hash & 0xfff);
   3378 }
   3379 
   3380 /*
   3381  * wm_set_filter:
   3382  *
   3383  *	Set up the receive filter.
   3384  */
   3385 static void
   3386 wm_set_filter(struct wm_softc *sc)
   3387 {
   3388 	struct ethercom *ec = &sc->sc_ethercom;
   3389 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3390 	struct ether_multi *enm;
   3391 	struct ether_multistep step;
   3392 	bus_addr_t mta_reg;
   3393 	uint32_t hash, reg, bit;
   3394 	int i;
   3395 
   3396 	if (sc->sc_type >= WM_T_82544)
   3397 		mta_reg = WMREG_CORDOVA_MTA;
   3398 	else
   3399 		mta_reg = WMREG_MTA;
   3400 
   3401 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   3402 
   3403 	if (ifp->if_flags & IFF_BROADCAST)
   3404 		sc->sc_rctl |= RCTL_BAM;
   3405 	if (ifp->if_flags & IFF_PROMISC) {
   3406 		sc->sc_rctl |= RCTL_UPE;
   3407 		goto allmulti;
   3408 	}
   3409 
   3410 	/*
   3411 	 * Set the station address in the first RAL slot, and
   3412 	 * clear the remaining slots.
   3413 	 */
   3414 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
   3415 	for (i = 1; i < WM_RAL_TABSIZE; i++)
   3416 		wm_set_ral(sc, NULL, i);
   3417 
   3418 	/* Clear out the multicast table. */
   3419 	for (i = 0; i < WM_MC_TABSIZE; i++)
   3420 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
   3421 
   3422 	ETHER_FIRST_MULTI(step, ec, enm);
   3423 	while (enm != NULL) {
   3424 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3425 			/*
   3426 			 * We must listen to a range of multicast addresses.
   3427 			 * For now, just accept all multicasts, rather than
   3428 			 * trying to set only those filter bits needed to match
   3429 			 * the range.  (At this time, the only use of address
   3430 			 * ranges is for IP multicast routing, for which the
   3431 			 * range is big enough to require all bits set.)
   3432 			 */
   3433 			goto allmulti;
   3434 		}
   3435 
   3436 		hash = wm_mchash(sc, enm->enm_addrlo);
   3437 
   3438 		reg = (hash >> 5) & 0x7f;
   3439 		bit = hash & 0x1f;
   3440 
   3441 		hash = CSR_READ(sc, mta_reg + (reg << 2));
   3442 		hash |= 1U << bit;
   3443 
   3444 		/* XXX Hardware bug?? */
   3445 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
   3446 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
   3447 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3448 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
   3449 		} else
   3450 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3451 
   3452 		ETHER_NEXT_MULTI(step, enm);
   3453 	}
   3454 
   3455 	ifp->if_flags &= ~IFF_ALLMULTI;
   3456 	goto setit;
   3457 
   3458  allmulti:
   3459 	ifp->if_flags |= IFF_ALLMULTI;
   3460 	sc->sc_rctl |= RCTL_MPE;
   3461 
   3462  setit:
   3463 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
   3464 }
   3465 
   3466 /*
   3467  * wm_tbi_mediainit:
   3468  *
   3469  *	Initialize media for use on 1000BASE-X devices.
   3470  */
   3471 static void
   3472 wm_tbi_mediainit(struct wm_softc *sc)
   3473 {
   3474 	const char *sep = "";
   3475 
   3476 	if (sc->sc_type < WM_T_82543)
   3477 		sc->sc_tipg = TIPG_WM_DFLT;
   3478 	else
   3479 		sc->sc_tipg = TIPG_LG_DFLT;
   3480 
   3481 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
   3482 	    wm_tbi_mediastatus);
   3483 
   3484 	/*
   3485 	 * SWD Pins:
   3486 	 *
   3487 	 *	0 = Link LED (output)
   3488 	 *	1 = Loss Of Signal (input)
   3489 	 */
   3490 	sc->sc_ctrl |= CTRL_SWDPIO(0);
   3491 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
   3492 
   3493 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3494 
   3495 #define	ADD(ss, mm, dd)							\
   3496 do {									\
   3497 	aprint_normal("%s%s", sep, ss);					\
   3498 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
   3499 	sep = ", ";							\
   3500 } while (/*CONSTCOND*/0)
   3501 
   3502 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
   3503 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
   3504 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
   3505 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
   3506 	aprint_normal("\n");
   3507 
   3508 #undef ADD
   3509 
   3510 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   3511 }
   3512 
   3513 /*
   3514  * wm_tbi_mediastatus:	[ifmedia interface function]
   3515  *
   3516  *	Get the current interface media status on a 1000BASE-X device.
   3517  */
   3518 static void
   3519 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3520 {
   3521 	struct wm_softc *sc = ifp->if_softc;
   3522 	uint32_t ctrl;
   3523 
   3524 	ifmr->ifm_status = IFM_AVALID;
   3525 	ifmr->ifm_active = IFM_ETHER;
   3526 
   3527 	if (sc->sc_tbi_linkup == 0) {
   3528 		ifmr->ifm_active |= IFM_NONE;
   3529 		return;
   3530 	}
   3531 
   3532 	ifmr->ifm_status |= IFM_ACTIVE;
   3533 	ifmr->ifm_active |= IFM_1000_SX;
   3534 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
   3535 		ifmr->ifm_active |= IFM_FDX;
   3536 	ctrl = CSR_READ(sc, WMREG_CTRL);
   3537 	if (ctrl & CTRL_RFCE)
   3538 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   3539 	if (ctrl & CTRL_TFCE)
   3540 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   3541 }
   3542 
   3543 /*
   3544  * wm_tbi_mediachange:	[ifmedia interface function]
   3545  *
   3546  *	Set hardware to newly-selected media on a 1000BASE-X device.
   3547  */
   3548 static int
   3549 wm_tbi_mediachange(struct ifnet *ifp)
   3550 {
   3551 	struct wm_softc *sc = ifp->if_softc;
   3552 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   3553 	uint32_t status;
   3554 	int i;
   3555 
   3556 	sc->sc_txcw = ife->ifm_data;
   3557 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
   3558 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
   3559 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
   3560 	sc->sc_txcw |= TXCW_ANE;
   3561 
   3562 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   3563 	delay(10000);
   3564 
   3565 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
   3566 
   3567 	sc->sc_tbi_anstate = 0;
   3568 
   3569 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
   3570 		/* Have signal; wait for the link to come up. */
   3571 		for (i = 0; i < 50; i++) {
   3572 			delay(10000);
   3573 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
   3574 				break;
   3575 		}
   3576 
   3577 		status = CSR_READ(sc, WMREG_STATUS);
   3578 		if (status & STATUS_LU) {
   3579 			/* Link is up. */
   3580 			DPRINTF(WM_DEBUG_LINK,
   3581 			    ("%s: LINK: set media -> link up %s\n",
   3582 			    sc->sc_dev.dv_xname,
   3583 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   3584 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3585 			sc->sc_fcrtl &= ~FCRTL_XONE;
   3586 			if (status & STATUS_FD)
   3587 				sc->sc_tctl |=
   3588 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3589 			else
   3590 				sc->sc_tctl |=
   3591 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3592 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   3593 				sc->sc_fcrtl |= FCRTL_XONE;
   3594 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3595 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   3596 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   3597 				      sc->sc_fcrtl);
   3598 			sc->sc_tbi_linkup = 1;
   3599 		} else {
   3600 			/* Link is down. */
   3601 			DPRINTF(WM_DEBUG_LINK,
   3602 			    ("%s: LINK: set media -> link down\n",
   3603 			    sc->sc_dev.dv_xname));
   3604 			sc->sc_tbi_linkup = 0;
   3605 		}
   3606 	} else {
   3607 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
   3608 		    sc->sc_dev.dv_xname));
   3609 		sc->sc_tbi_linkup = 0;
   3610 	}
   3611 
   3612 	wm_tbi_set_linkled(sc);
   3613 
   3614 	return (0);
   3615 }
   3616 
   3617 /*
   3618  * wm_tbi_set_linkled:
   3619  *
   3620  *	Update the link LED on 1000BASE-X devices.
   3621  */
   3622 static void
   3623 wm_tbi_set_linkled(struct wm_softc *sc)
   3624 {
   3625 
   3626 	if (sc->sc_tbi_linkup)
   3627 		sc->sc_ctrl |= CTRL_SWDPIN(0);
   3628 	else
   3629 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
   3630 
   3631 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3632 }
   3633 
   3634 /*
   3635  * wm_tbi_check_link:
   3636  *
   3637  *	Check the link on 1000BASE-X devices.
   3638  */
   3639 static void
   3640 wm_tbi_check_link(struct wm_softc *sc)
   3641 {
   3642 	uint32_t rxcw, ctrl, status;
   3643 
   3644 	if (sc->sc_tbi_anstate == 0)
   3645 		return;
   3646 	else if (sc->sc_tbi_anstate > 1) {
   3647 		DPRINTF(WM_DEBUG_LINK,
   3648 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
   3649 		    sc->sc_tbi_anstate));
   3650 		sc->sc_tbi_anstate--;
   3651 		return;
   3652 	}
   3653 
   3654 	sc->sc_tbi_anstate = 0;
   3655 
   3656 	rxcw = CSR_READ(sc, WMREG_RXCW);
   3657 	ctrl = CSR_READ(sc, WMREG_CTRL);
   3658 	status = CSR_READ(sc, WMREG_STATUS);
   3659 
   3660 	if ((status & STATUS_LU) == 0) {
   3661 		DPRINTF(WM_DEBUG_LINK,
   3662 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
   3663 		sc->sc_tbi_linkup = 0;
   3664 	} else {
   3665 		DPRINTF(WM_DEBUG_LINK,
   3666 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
   3667 		    (status & STATUS_FD) ? "FDX" : "HDX"));
   3668 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3669 		sc->sc_fcrtl &= ~FCRTL_XONE;
   3670 		if (status & STATUS_FD)
   3671 			sc->sc_tctl |=
   3672 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3673 		else
   3674 			sc->sc_tctl |=
   3675 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3676 		if (ctrl & CTRL_TFCE)
   3677 			sc->sc_fcrtl |= FCRTL_XONE;
   3678 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3679 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   3680 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
   3681 			      sc->sc_fcrtl);
   3682 		sc->sc_tbi_linkup = 1;
   3683 	}
   3684 
   3685 	wm_tbi_set_linkled(sc);
   3686 }
   3687 
   3688 /*
   3689  * wm_gmii_reset:
   3690  *
   3691  *	Reset the PHY.
   3692  */
   3693 static void
   3694 wm_gmii_reset(struct wm_softc *sc)
   3695 {
   3696 	uint32_t reg;
   3697 
   3698 	if (sc->sc_type >= WM_T_82544) {
   3699 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   3700 		delay(20000);
   3701 
   3702 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3703 		delay(20000);
   3704 	} else {
   3705 		/* The PHY reset pin is active-low. */
   3706 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   3707 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
   3708 		    CTRL_EXT_SWDPIN(4));
   3709 		reg |= CTRL_EXT_SWDPIO(4);
   3710 
   3711 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   3712 		delay(10);
   3713 
   3714 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   3715 		delay(10);
   3716 
   3717 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   3718 		delay(10);
   3719 #if 0
   3720 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
   3721 #endif
   3722 	}
   3723 }
   3724 
   3725 /*
   3726  * wm_gmii_mediainit:
   3727  *
   3728  *	Initialize media for use on 1000BASE-T devices.
   3729  */
   3730 static void
   3731 wm_gmii_mediainit(struct wm_softc *sc)
   3732 {
   3733 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3734 
   3735 	/* We have MII. */
   3736 	sc->sc_flags |= WM_F_HAS_MII;
   3737 
   3738 	sc->sc_tipg = TIPG_1000T_DFLT;
   3739 
   3740 	/*
   3741 	 * Let the chip set speed/duplex on its own based on
   3742 	 * signals from the PHY.
   3743 	 */
   3744 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
   3745 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3746 
   3747 	/* Initialize our media structures and probe the GMII. */
   3748 	sc->sc_mii.mii_ifp = ifp;
   3749 
   3750 	if (sc->sc_type >= WM_T_82544) {
   3751 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
   3752 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
   3753 	} else {
   3754 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
   3755 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
   3756 	}
   3757 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
   3758 
   3759 	wm_gmii_reset(sc);
   3760 
   3761 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
   3762 	    wm_gmii_mediastatus);
   3763 
   3764 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   3765 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
   3766 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   3767 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   3768 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   3769 	} else
   3770 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   3771 }
   3772 
   3773 /*
   3774  * wm_gmii_mediastatus:	[ifmedia interface function]
   3775  *
   3776  *	Get the current interface media status on a 1000BASE-T device.
   3777  */
   3778 static void
   3779 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3780 {
   3781 	struct wm_softc *sc = ifp->if_softc;
   3782 
   3783 	mii_pollstat(&sc->sc_mii);
   3784 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3785 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
   3786 			   sc->sc_flowflags;
   3787 }
   3788 
   3789 /*
   3790  * wm_gmii_mediachange:	[ifmedia interface function]
   3791  *
   3792  *	Set hardware to newly-selected media on a 1000BASE-T device.
   3793  */
   3794 static int
   3795 wm_gmii_mediachange(struct ifnet *ifp)
   3796 {
   3797 	struct wm_softc *sc = ifp->if_softc;
   3798 
   3799 	if (ifp->if_flags & IFF_UP)
   3800 		mii_mediachg(&sc->sc_mii);
   3801 	return (0);
   3802 }
   3803 
   3804 #define	MDI_IO		CTRL_SWDPIN(2)
   3805 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
   3806 #define	MDI_CLK		CTRL_SWDPIN(3)
   3807 
   3808 static void
   3809 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
   3810 {
   3811 	uint32_t i, v;
   3812 
   3813 	v = CSR_READ(sc, WMREG_CTRL);
   3814 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   3815 	v |= MDI_DIR | CTRL_SWDPIO(3);
   3816 
   3817 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
   3818 		if (data & i)
   3819 			v |= MDI_IO;
   3820 		else
   3821 			v &= ~MDI_IO;
   3822 		CSR_WRITE(sc, WMREG_CTRL, v);
   3823 		delay(10);
   3824 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3825 		delay(10);
   3826 		CSR_WRITE(sc, WMREG_CTRL, v);
   3827 		delay(10);
   3828 	}
   3829 }
   3830 
   3831 static uint32_t
   3832 i82543_mii_recvbits(struct wm_softc *sc)
   3833 {
   3834 	uint32_t v, i, data = 0;
   3835 
   3836 	v = CSR_READ(sc, WMREG_CTRL);
   3837 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   3838 	v |= CTRL_SWDPIO(3);
   3839 
   3840 	CSR_WRITE(sc, WMREG_CTRL, v);
   3841 	delay(10);
   3842 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3843 	delay(10);
   3844 	CSR_WRITE(sc, WMREG_CTRL, v);
   3845 	delay(10);
   3846 
   3847 	for (i = 0; i < 16; i++) {
   3848 		data <<= 1;
   3849 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3850 		delay(10);
   3851 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
   3852 			data |= 1;
   3853 		CSR_WRITE(sc, WMREG_CTRL, v);
   3854 		delay(10);
   3855 	}
   3856 
   3857 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3858 	delay(10);
   3859 	CSR_WRITE(sc, WMREG_CTRL, v);
   3860 	delay(10);
   3861 
   3862 	return (data);
   3863 }
   3864 
   3865 #undef MDI_IO
   3866 #undef MDI_DIR
   3867 #undef MDI_CLK
   3868 
   3869 /*
   3870  * wm_gmii_i82543_readreg:	[mii interface function]
   3871  *
   3872  *	Read a PHY register on the GMII (i82543 version).
   3873  */
   3874 static int
   3875 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
   3876 {
   3877 	struct wm_softc *sc = (void *) self;
   3878 	int rv;
   3879 
   3880 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   3881 	i82543_mii_sendbits(sc, reg | (phy << 5) |
   3882 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
   3883 	rv = i82543_mii_recvbits(sc) & 0xffff;
   3884 
   3885 	DPRINTF(WM_DEBUG_GMII,
   3886 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
   3887 	    sc->sc_dev.dv_xname, phy, reg, rv));
   3888 
   3889 	return (rv);
   3890 }
   3891 
   3892 /*
   3893  * wm_gmii_i82543_writereg:	[mii interface function]
   3894  *
   3895  *	Write a PHY register on the GMII (i82543 version).
   3896  */
   3897 static void
   3898 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
   3899 {
   3900 	struct wm_softc *sc = (void *) self;
   3901 
   3902 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   3903 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
   3904 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
   3905 	    (MII_COMMAND_START << 30), 32);
   3906 }
   3907 
   3908 /*
   3909  * wm_gmii_i82544_readreg:	[mii interface function]
   3910  *
   3911  *	Read a PHY register on the GMII.
   3912  */
   3913 static int
   3914 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
   3915 {
   3916 	struct wm_softc *sc = (void *) self;
   3917 	uint32_t mdic = 0;
   3918 	int i, rv;
   3919 
   3920 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
   3921 	    MDIC_REGADD(reg));
   3922 
   3923 	for (i = 0; i < 100; i++) {
   3924 		mdic = CSR_READ(sc, WMREG_MDIC);
   3925 		if (mdic & MDIC_READY)
   3926 			break;
   3927 		delay(10);
   3928 	}
   3929 
   3930 	if ((mdic & MDIC_READY) == 0) {
   3931 		log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
   3932 		    sc->sc_dev.dv_xname, phy, reg);
   3933 		rv = 0;
   3934 	} else if (mdic & MDIC_E) {
   3935 #if 0 /* This is normal if no PHY is present. */
   3936 		log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
   3937 		    sc->sc_dev.dv_xname, phy, reg);
   3938 #endif
   3939 		rv = 0;
   3940 	} else {
   3941 		rv = MDIC_DATA(mdic);
   3942 		if (rv == 0xffff)
   3943 			rv = 0;
   3944 	}
   3945 
   3946 	return (rv);
   3947 }
   3948 
   3949 /*
   3950  * wm_gmii_i82544_writereg:	[mii interface function]
   3951  *
   3952  *	Write a PHY register on the GMII.
   3953  */
   3954 static void
   3955 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
   3956 {
   3957 	struct wm_softc *sc = (void *) self;
   3958 	uint32_t mdic = 0;
   3959 	int i;
   3960 
   3961 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
   3962 	    MDIC_REGADD(reg) | MDIC_DATA(val));
   3963 
   3964 	for (i = 0; i < 100; i++) {
   3965 		mdic = CSR_READ(sc, WMREG_MDIC);
   3966 		if (mdic & MDIC_READY)
   3967 			break;
   3968 		delay(10);
   3969 	}
   3970 
   3971 	if ((mdic & MDIC_READY) == 0)
   3972 		log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
   3973 		    sc->sc_dev.dv_xname, phy, reg);
   3974 	else if (mdic & MDIC_E)
   3975 		log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
   3976 		    sc->sc_dev.dv_xname, phy, reg);
   3977 }
   3978 
   3979 /*
   3980  * wm_gmii_statchg:	[mii interface function]
   3981  *
   3982  *	Callback from MII layer when media changes.
   3983  */
   3984 static void
   3985 wm_gmii_statchg(struct device *self)
   3986 {
   3987 	struct wm_softc *sc = (void *) self;
   3988 	struct mii_data *mii = &sc->sc_mii;
   3989 
   3990 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
   3991 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3992 	sc->sc_fcrtl &= ~FCRTL_XONE;
   3993 
   3994 	/*
   3995 	 * Get flow control negotiation result.
   3996 	 */
   3997 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3998 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3999 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   4000 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   4001 	}
   4002 
   4003 	if (sc->sc_flowflags & IFM_FLOW) {
   4004 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
   4005 			sc->sc_ctrl |= CTRL_TFCE;
   4006 			sc->sc_fcrtl |= FCRTL_XONE;
   4007 		}
   4008 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   4009 			sc->sc_ctrl |= CTRL_RFCE;
   4010 	}
   4011 
   4012 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   4013 		DPRINTF(WM_DEBUG_LINK,
   4014 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
   4015 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   4016 	} else  {
   4017 		DPRINTF(WM_DEBUG_LINK,
   4018 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
   4019 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   4020 	}
   4021 
   4022 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4023 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   4024 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
   4025 						 : WMREG_FCRTL, sc->sc_fcrtl);
   4026 }
   4027