if_wm.c revision 1.120 1 /* $NetBSD: if_wm.c,v 1.120 2006/06/10 14:26:52 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40 *
41 * TODO (in order of importance):
42 *
43 * - Rework how parameters are loaded from the EEPROM.
44 * - Figure out what to do with the i82545GM and i82546GB
45 * SERDES controllers.
46 * - Fix hw VLAN assist.
47 */
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.120 2006/06/10 14:26:52 msaitoh Exp $");
51
52 #include "bpfilter.h"
53 #include "rnd.h"
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67
68 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
69
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82
83 #include <netinet/in.h> /* XXX for struct ip */
84 #include <netinet/in_systm.h> /* XXX for struct ip */
85 #include <netinet/ip.h> /* XXX for struct ip */
86 #include <netinet/tcp.h> /* XXX for struct tcphdr */
87
88 #include <machine/bus.h>
89 #include <machine/intr.h>
90 #include <machine/endian.h>
91
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99
100 #include <dev/pci/if_wmreg.h>
101
102 #ifdef WM_DEBUG
103 #define WM_DEBUG_LINK 0x01
104 #define WM_DEBUG_TX 0x02
105 #define WM_DEBUG_RX 0x04
106 #define WM_DEBUG_GMII 0x08
107 int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
108
109 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
110 #else
111 #define DPRINTF(x, y) /* nothing */
112 #endif /* WM_DEBUG */
113
114 /*
115 * Transmit descriptor list size. Due to errata, we can only have
116 * 256 hardware descriptors in the ring on < 82544, but we use 4096
117 * on >= 82544. We tell the upper layers that they can queue a lot
118 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
119 * of them at a time.
120 *
121 * We allow up to 256 (!) DMA segments per packet. Pathological packet
122 * chains containing many small mbufs have been observed in zero-copy
123 * situations with jumbo frames.
124 */
125 #define WM_NTXSEGS 256
126 #define WM_IFQUEUELEN 256
127 #define WM_TXQUEUELEN_MAX 64
128 #define WM_TXQUEUELEN_MAX_82547 16
129 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
130 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
131 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
132 #define WM_NTXDESC_82542 256
133 #define WM_NTXDESC_82544 4096
134 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
135 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
136 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
137 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
138 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
139
140 #define WM_MAXTXDMA round_page(IP_MAXPACKET) /* for TSO */
141
142 /*
143 * Receive descriptor list size. We have one Rx buffer for normal
144 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
145 * packet. We allocate 256 receive descriptors, each with a 2k
146 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
147 */
148 #define WM_NRXDESC 256
149 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
150 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
151 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
152
153 /*
154 * Control structures are DMA'd to the i82542 chip. We allocate them in
155 * a single clump that maps to a single DMA segment to make several things
156 * easier.
157 */
158 struct wm_control_data_82544 {
159 /*
160 * The receive descriptors.
161 */
162 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
163
164 /*
165 * The transmit descriptors. Put these at the end, because
166 * we might use a smaller number of them.
167 */
168 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
169 };
170
171 struct wm_control_data_82542 {
172 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
173 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
174 };
175
176 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
177 #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)])
178 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
179
180 /*
181 * Software state for transmit jobs.
182 */
183 struct wm_txsoft {
184 struct mbuf *txs_mbuf; /* head of our mbuf chain */
185 bus_dmamap_t txs_dmamap; /* our DMA map */
186 int txs_firstdesc; /* first descriptor in packet */
187 int txs_lastdesc; /* last descriptor in packet */
188 int txs_ndesc; /* # of descriptors used */
189 };
190
191 /*
192 * Software state for receive buffers. Each descriptor gets a
193 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
194 * more than one buffer, we chain them together.
195 */
196 struct wm_rxsoft {
197 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
198 bus_dmamap_t rxs_dmamap; /* our DMA map */
199 };
200
201 typedef enum {
202 WM_T_unknown = 0,
203 WM_T_82542_2_0, /* i82542 2.0 (really old) */
204 WM_T_82542_2_1, /* i82542 2.1+ (old) */
205 WM_T_82543, /* i82543 */
206 WM_T_82544, /* i82544 */
207 WM_T_82540, /* i82540 */
208 WM_T_82545, /* i82545 */
209 WM_T_82545_3, /* i82545 3.0+ */
210 WM_T_82546, /* i82546 */
211 WM_T_82546_3, /* i82546 3.0+ */
212 WM_T_82541, /* i82541 */
213 WM_T_82541_2, /* i82541 2.0+ */
214 WM_T_82547, /* i82547 */
215 WM_T_82547_2, /* i82547 2.0+ */
216 WM_T_82571, /* i82571 */
217 WM_T_82572, /* i82572 */
218 WM_T_82573, /* i82573 */
219 } wm_chip_type;
220
221 /*
222 * Software state per device.
223 */
224 struct wm_softc {
225 struct device sc_dev; /* generic device information */
226 bus_space_tag_t sc_st; /* bus space tag */
227 bus_space_handle_t sc_sh; /* bus space handle */
228 bus_space_tag_t sc_iot; /* I/O space tag */
229 bus_space_handle_t sc_ioh; /* I/O space handle */
230 bus_dma_tag_t sc_dmat; /* bus DMA tag */
231 struct ethercom sc_ethercom; /* ethernet common data */
232 void *sc_sdhook; /* shutdown hook */
233
234 wm_chip_type sc_type; /* chip type */
235 int sc_flags; /* flags; see below */
236 int sc_bus_speed; /* PCI/PCIX bus speed */
237 int sc_pcix_offset; /* PCIX capability register offset */
238 int sc_flowflags; /* 802.3x flow control flags */
239
240 void *sc_ih; /* interrupt cookie */
241
242 int sc_ee_addrbits; /* EEPROM address bits */
243
244 struct mii_data sc_mii; /* MII/media information */
245
246 struct callout sc_tick_ch; /* tick callout */
247
248 bus_dmamap_t sc_cddmamap; /* control data DMA map */
249 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
250
251 int sc_align_tweak;
252
253 /*
254 * Software state for the transmit and receive descriptors.
255 */
256 int sc_txnum; /* must be a power of two */
257 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
258 struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
259
260 /*
261 * Control data structures.
262 */
263 int sc_ntxdesc; /* must be a power of two */
264 struct wm_control_data_82544 *sc_control_data;
265 #define sc_txdescs sc_control_data->wcd_txdescs
266 #define sc_rxdescs sc_control_data->wcd_rxdescs
267
268 #ifdef WM_EVENT_COUNTERS
269 /* Event counters. */
270 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
271 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
272 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
273 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
274 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
275 struct evcnt sc_ev_rxintr; /* Rx interrupts */
276 struct evcnt sc_ev_linkintr; /* Link interrupts */
277
278 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
279 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
280 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
281 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
282 struct evcnt sc_ev_txtusum6; /* TCP/UDP v6 cksums comp. out-bound */
283 struct evcnt sc_ev_txtso; /* TCP seg offload out-bound */
284 struct evcnt sc_ev_txtsopain; /* painful header manip. for TSO */
285
286 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
287 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
288
289 struct evcnt sc_ev_tu; /* Tx underrun */
290
291 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
292 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
293 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
294 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
295 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
296 #endif /* WM_EVENT_COUNTERS */
297
298 bus_addr_t sc_tdt_reg; /* offset of TDT register */
299
300 int sc_txfree; /* number of free Tx descriptors */
301 int sc_txnext; /* next ready Tx descriptor */
302
303 int sc_txsfree; /* number of free Tx jobs */
304 int sc_txsnext; /* next free Tx job */
305 int sc_txsdirty; /* dirty Tx jobs */
306
307 /* These 5 variables are used only on the 82547. */
308 int sc_txfifo_size; /* Tx FIFO size */
309 int sc_txfifo_head; /* current head of FIFO */
310 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
311 int sc_txfifo_stall; /* Tx FIFO is stalled */
312 struct callout sc_txfifo_ch; /* Tx FIFO stall work-around timer */
313
314 bus_addr_t sc_rdt_reg; /* offset of RDT register */
315
316 int sc_rxptr; /* next ready Rx descriptor/queue ent */
317 int sc_rxdiscard;
318 int sc_rxlen;
319 struct mbuf *sc_rxhead;
320 struct mbuf *sc_rxtail;
321 struct mbuf **sc_rxtailp;
322
323 uint32_t sc_ctrl; /* prototype CTRL register */
324 #if 0
325 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
326 #endif
327 uint32_t sc_icr; /* prototype interrupt bits */
328 uint32_t sc_itr; /* prototype intr throttling reg */
329 uint32_t sc_tctl; /* prototype TCTL register */
330 uint32_t sc_rctl; /* prototype RCTL register */
331 uint32_t sc_txcw; /* prototype TXCW register */
332 uint32_t sc_tipg; /* prototype TIPG register */
333 uint32_t sc_fcrtl; /* prototype FCRTL register */
334 uint32_t sc_pba; /* prototype PBA register */
335
336 int sc_tbi_linkup; /* TBI link status */
337 int sc_tbi_anstate; /* autonegotiation state */
338
339 int sc_mchash_type; /* multicast filter offset */
340
341 #if NRND > 0
342 rndsource_element_t rnd_source; /* random source */
343 #endif
344 };
345
346 #define WM_RXCHAIN_RESET(sc) \
347 do { \
348 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
349 *(sc)->sc_rxtailp = NULL; \
350 (sc)->sc_rxlen = 0; \
351 } while (/*CONSTCOND*/0)
352
353 #define WM_RXCHAIN_LINK(sc, m) \
354 do { \
355 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
356 (sc)->sc_rxtailp = &(m)->m_next; \
357 } while (/*CONSTCOND*/0)
358
359 /* sc_flags */
360 #define WM_F_HAS_MII 0x001 /* has MII */
361 #define WM_F_EEPROM_HANDSHAKE 0x002 /* requires EEPROM handshake */
362 #define WM_F_EEPROM_SEMAPHORE 0x004 /* EEPROM with semaphore */
363 #define WM_F_EEPROM_EERDEEWR 0x008 /* EEPROM access via EERD/EEWR */
364 #define WM_F_EEPROM_SPI 0x010 /* EEPROM is SPI */
365 #define WM_F_EEPROM_FLASH 0x020 /* EEPROM is FLASH */
366 #define WM_F_EEPROM_INVALID 0x040 /* EEPROM not present (bad checksum) */
367 #define WM_F_IOH_VALID 0x080 /* I/O handle is valid */
368 #define WM_F_BUS64 0x100 /* bus is 64-bit */
369 #define WM_F_PCIX 0x200 /* bus is PCI-X */
370 #define WM_F_CSA 0x400 /* bus is CSA */
371 #define WM_F_PCIE 0x800 /* bus is PCI-Express */
372
373 #ifdef WM_EVENT_COUNTERS
374 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
375 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
376 #else
377 #define WM_EVCNT_INCR(ev) /* nothing */
378 #define WM_EVCNT_ADD(ev, val) /* nothing */
379 #endif
380
381 #define CSR_READ(sc, reg) \
382 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
383 #define CSR_WRITE(sc, reg, val) \
384 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
385 #define CSR_WRITE_FLUSH(sc) \
386 (void) CSR_READ((sc), WMREG_STATUS)
387
388 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
389 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
390
391 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
392 #define WM_CDTXADDR_HI(sc, x) \
393 (sizeof(bus_addr_t) == 8 ? \
394 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
395
396 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
397 #define WM_CDRXADDR_HI(sc, x) \
398 (sizeof(bus_addr_t) == 8 ? \
399 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
400
401 #define WM_CDTXSYNC(sc, x, n, ops) \
402 do { \
403 int __x, __n; \
404 \
405 __x = (x); \
406 __n = (n); \
407 \
408 /* If it will wrap around, sync to the end of the ring. */ \
409 if ((__x + __n) > WM_NTXDESC(sc)) { \
410 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
411 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
412 (WM_NTXDESC(sc) - __x), (ops)); \
413 __n -= (WM_NTXDESC(sc) - __x); \
414 __x = 0; \
415 } \
416 \
417 /* Now sync whatever is left. */ \
418 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
419 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
420 } while (/*CONSTCOND*/0)
421
422 #define WM_CDRXSYNC(sc, x, ops) \
423 do { \
424 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
425 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
426 } while (/*CONSTCOND*/0)
427
428 #define WM_INIT_RXDESC(sc, x) \
429 do { \
430 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
431 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
432 struct mbuf *__m = __rxs->rxs_mbuf; \
433 \
434 /* \
435 * Note: We scoot the packet forward 2 bytes in the buffer \
436 * so that the payload after the Ethernet header is aligned \
437 * to a 4-byte boundary. \
438 * \
439 * XXX BRAINDAMAGE ALERT! \
440 * The stupid chip uses the same size for every buffer, which \
441 * is set in the Receive Control register. We are using the 2K \
442 * size option, but what we REALLY want is (2K - 2)! For this \
443 * reason, we can't "scoot" packets longer than the standard \
444 * Ethernet MTU. On strict-alignment platforms, if the total \
445 * size exceeds (2K - 2) we set align_tweak to 0 and let \
446 * the upper layer copy the headers. \
447 */ \
448 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
449 \
450 wm_set_dma_addr(&__rxd->wrx_addr, \
451 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
452 __rxd->wrx_len = 0; \
453 __rxd->wrx_cksum = 0; \
454 __rxd->wrx_status = 0; \
455 __rxd->wrx_errors = 0; \
456 __rxd->wrx_special = 0; \
457 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
458 \
459 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
460 } while (/*CONSTCOND*/0)
461
462 static void wm_start(struct ifnet *);
463 static void wm_watchdog(struct ifnet *);
464 static int wm_ioctl(struct ifnet *, u_long, caddr_t);
465 static int wm_init(struct ifnet *);
466 static void wm_stop(struct ifnet *, int);
467
468 static void wm_shutdown(void *);
469
470 static void wm_reset(struct wm_softc *);
471 static void wm_rxdrain(struct wm_softc *);
472 static int wm_add_rxbuf(struct wm_softc *, int);
473 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
474 static int wm_read_eeprom_eerd(struct wm_softc *, int, int, u_int16_t *);
475 static int wm_validate_eeprom_checksum(struct wm_softc *);
476 static void wm_tick(void *);
477
478 static void wm_set_filter(struct wm_softc *);
479
480 static int wm_intr(void *);
481 static void wm_txintr(struct wm_softc *);
482 static void wm_rxintr(struct wm_softc *);
483 static void wm_linkintr(struct wm_softc *, uint32_t);
484
485 static void wm_tbi_mediainit(struct wm_softc *);
486 static int wm_tbi_mediachange(struct ifnet *);
487 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
488
489 static void wm_tbi_set_linkled(struct wm_softc *);
490 static void wm_tbi_check_link(struct wm_softc *);
491
492 static void wm_gmii_reset(struct wm_softc *);
493
494 static int wm_gmii_i82543_readreg(struct device *, int, int);
495 static void wm_gmii_i82543_writereg(struct device *, int, int, int);
496
497 static int wm_gmii_i82544_readreg(struct device *, int, int);
498 static void wm_gmii_i82544_writereg(struct device *, int, int, int);
499
500 static void wm_gmii_statchg(struct device *);
501
502 static void wm_gmii_mediainit(struct wm_softc *);
503 static int wm_gmii_mediachange(struct ifnet *);
504 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
505
506 static int wm_match(struct device *, struct cfdata *, void *);
507 static void wm_attach(struct device *, struct device *, void *);
508 static int wm_is_onboard_nvm_eeprom(struct wm_softc *);
509 static int wm_get_eeprom_semaphore(struct wm_softc *);
510 static void wm_put_eeprom_semaphore(struct wm_softc *);
511 static int wm_poll_eerd_eewr_done(struct wm_softc *, int);
512
513 CFATTACH_DECL(wm, sizeof(struct wm_softc),
514 wm_match, wm_attach, NULL, NULL);
515
516 static void wm_82547_txfifo_stall(void *);
517
518 /*
519 * Devices supported by this driver.
520 */
521 static const struct wm_product {
522 pci_vendor_id_t wmp_vendor;
523 pci_product_id_t wmp_product;
524 const char *wmp_name;
525 wm_chip_type wmp_type;
526 int wmp_flags;
527 #define WMP_F_1000X 0x01
528 #define WMP_F_1000T 0x02
529 } wm_products[] = {
530 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
531 "Intel i82542 1000BASE-X Ethernet",
532 WM_T_82542_2_1, WMP_F_1000X },
533
534 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
535 "Intel i82543GC 1000BASE-X Ethernet",
536 WM_T_82543, WMP_F_1000X },
537
538 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
539 "Intel i82543GC 1000BASE-T Ethernet",
540 WM_T_82543, WMP_F_1000T },
541
542 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
543 "Intel i82544EI 1000BASE-T Ethernet",
544 WM_T_82544, WMP_F_1000T },
545
546 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
547 "Intel i82544EI 1000BASE-X Ethernet",
548 WM_T_82544, WMP_F_1000X },
549
550 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
551 "Intel i82544GC 1000BASE-T Ethernet",
552 WM_T_82544, WMP_F_1000T },
553
554 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
555 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
556 WM_T_82544, WMP_F_1000T },
557
558 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
559 "Intel i82540EM 1000BASE-T Ethernet",
560 WM_T_82540, WMP_F_1000T },
561
562 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
563 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
564 WM_T_82540, WMP_F_1000T },
565
566 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
567 "Intel i82540EP 1000BASE-T Ethernet",
568 WM_T_82540, WMP_F_1000T },
569
570 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
571 "Intel i82540EP 1000BASE-T Ethernet",
572 WM_T_82540, WMP_F_1000T },
573
574 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
575 "Intel i82540EP 1000BASE-T Ethernet",
576 WM_T_82540, WMP_F_1000T },
577
578 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
579 "Intel i82545EM 1000BASE-T Ethernet",
580 WM_T_82545, WMP_F_1000T },
581
582 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
583 "Intel i82545GM 1000BASE-T Ethernet",
584 WM_T_82545_3, WMP_F_1000T },
585
586 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
587 "Intel i82545GM 1000BASE-X Ethernet",
588 WM_T_82545_3, WMP_F_1000X },
589 #if 0
590 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
591 "Intel i82545GM Gigabit Ethernet (SERDES)",
592 WM_T_82545_3, WMP_F_SERDES },
593 #endif
594 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
595 "Intel i82546EB 1000BASE-T Ethernet",
596 WM_T_82546, WMP_F_1000T },
597
598 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
599 "Intel i82546EB 1000BASE-T Ethernet",
600 WM_T_82546, WMP_F_1000T },
601
602 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
603 "Intel i82545EM 1000BASE-X Ethernet",
604 WM_T_82545, WMP_F_1000X },
605
606 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
607 "Intel i82546EB 1000BASE-X Ethernet",
608 WM_T_82546, WMP_F_1000X },
609
610 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
611 "Intel i82546GB 1000BASE-T Ethernet",
612 WM_T_82546_3, WMP_F_1000T },
613
614 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
615 "Intel i82546GB 1000BASE-X Ethernet",
616 WM_T_82546_3, WMP_F_1000X },
617 #if 0
618 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
619 "Intel i82546GB Gigabit Ethernet (SERDES)",
620 WM_T_82546_3, WMP_F_SERDES },
621 #endif
622 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_PCIE,
623 "Intel PRO/1000MT (82546GB)",
624 WM_T_82546_3, WMP_F_1000T },
625
626 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
627 "Intel i82541EI 1000BASE-T Ethernet",
628 WM_T_82541, WMP_F_1000T },
629
630 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER_LOM,
631 "Intel i82541ER (LOM) 1000BASE-T Ethernet",
632 WM_T_82541, WMP_F_1000T },
633
634 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
635 "Intel i82541EI Mobile 1000BASE-T Ethernet",
636 WM_T_82541, WMP_F_1000T },
637
638 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
639 "Intel i82541ER 1000BASE-T Ethernet",
640 WM_T_82541_2, WMP_F_1000T },
641
642 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
643 "Intel i82541GI 1000BASE-T Ethernet",
644 WM_T_82541_2, WMP_F_1000T },
645
646 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
647 "Intel i82541GI Mobile 1000BASE-T Ethernet",
648 WM_T_82541_2, WMP_F_1000T },
649
650 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI,
651 "Intel i82541PI 1000BASE-T Ethernet",
652 WM_T_82541_2, WMP_F_1000T },
653
654 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
655 "Intel i82547EI 1000BASE-T Ethernet",
656 WM_T_82547, WMP_F_1000T },
657
658 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI_MOBILE,
659 "Intel i82547EI Moblie 1000BASE-T Ethernet",
660 WM_T_82547, WMP_F_1000T },
661
662 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
663 "Intel i82547GI 1000BASE-T Ethernet",
664 WM_T_82547_2, WMP_F_1000T },
665
666 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_COPPER,
667 "Intel PRO/1000 PT (82571EB)",
668 WM_T_82571, WMP_F_1000T },
669
670 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_FIBER,
671 "Intel PRO/1000 PF (82571EB)",
672 WM_T_82571, WMP_F_1000X },
673 #if 0
674 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_SERDES,
675 "Intel PRO/1000 PB (82571EB)",
676 WM_T_82571, WMP_F_SERDES },
677 #endif
678 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_COPPER,
679 "Intel i82572EI 1000baseT Ethernet",
680 WM_T_82572, WMP_F_1000T },
681
682 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_FIBER,
683 "Intel i82572EI 1000baseX Ethernet",
684 WM_T_82572, WMP_F_1000X },
685 #if 0
686 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_SERDES,
687 "Intel i82572EI Gigabit Ethernet (SERDES)",
688 WM_T_82572, WMP_F_SERDES },
689 #endif
690
691 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI,
692 "Intel i82572EI 1000baseT Ethernet",
693 WM_T_82572, WMP_F_1000T },
694
695 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E,
696 "Intel i82573E",
697 WM_T_82573, WMP_F_1000T },
698
699 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E_IAMT,
700 "Intel i82573E IAMT",
701 WM_T_82573, WMP_F_1000T },
702
703 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L,
704 "Intel i82573L Gigabit Ethernet",
705 WM_T_82573, WMP_F_1000T },
706
707 { 0, 0,
708 NULL,
709 0, 0 },
710 };
711
712 #ifdef WM_EVENT_COUNTERS
713 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
714 #endif /* WM_EVENT_COUNTERS */
715
716 #if 0 /* Not currently used */
717 static inline uint32_t
718 wm_io_read(struct wm_softc *sc, int reg)
719 {
720
721 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
722 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
723 }
724 #endif
725
726 static inline void
727 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
728 {
729
730 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
731 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
732 }
733
734 static inline void
735 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
736 {
737 wa->wa_low = htole32(v & 0xffffffffU);
738 if (sizeof(bus_addr_t) == 8)
739 wa->wa_high = htole32((uint64_t) v >> 32);
740 else
741 wa->wa_high = 0;
742 }
743
744 static const struct wm_product *
745 wm_lookup(const struct pci_attach_args *pa)
746 {
747 const struct wm_product *wmp;
748
749 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
750 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
751 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
752 return (wmp);
753 }
754 return (NULL);
755 }
756
757 static int
758 wm_match(struct device *parent, struct cfdata *cf, void *aux)
759 {
760 struct pci_attach_args *pa = aux;
761
762 if (wm_lookup(pa) != NULL)
763 return (1);
764
765 return (0);
766 }
767
768 static void
769 wm_attach(struct device *parent, struct device *self, void *aux)
770 {
771 struct wm_softc *sc = (void *) self;
772 struct pci_attach_args *pa = aux;
773 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
774 pci_chipset_tag_t pc = pa->pa_pc;
775 pci_intr_handle_t ih;
776 size_t cdata_size;
777 const char *intrstr = NULL;
778 const char *eetype;
779 bus_space_tag_t memt;
780 bus_space_handle_t memh;
781 bus_dma_segment_t seg;
782 int memh_valid;
783 int i, rseg, error;
784 const struct wm_product *wmp;
785 prop_data_t ea;
786 prop_number_t pn;
787 uint8_t enaddr[ETHER_ADDR_LEN];
788 uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
789 pcireg_t preg, memtype;
790 uint32_t reg;
791 int pmreg;
792
793 callout_init(&sc->sc_tick_ch);
794
795 wmp = wm_lookup(pa);
796 if (wmp == NULL) {
797 printf("\n");
798 panic("wm_attach: impossible");
799 }
800
801 if (pci_dma64_available(pa))
802 sc->sc_dmat = pa->pa_dmat64;
803 else
804 sc->sc_dmat = pa->pa_dmat;
805
806 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
807 aprint_naive(": Ethernet controller\n");
808 aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
809
810 sc->sc_type = wmp->wmp_type;
811 if (sc->sc_type < WM_T_82543) {
812 if (preg < 2) {
813 aprint_error("%s: i82542 must be at least rev. 2\n",
814 sc->sc_dev.dv_xname);
815 return;
816 }
817 if (preg < 3)
818 sc->sc_type = WM_T_82542_2_0;
819 }
820
821 /*
822 * Map the device. All devices support memory-mapped acccess,
823 * and it is really required for normal operation.
824 */
825 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
826 switch (memtype) {
827 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
828 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
829 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
830 memtype, 0, &memt, &memh, NULL, NULL) == 0);
831 break;
832 default:
833 memh_valid = 0;
834 }
835
836 if (memh_valid) {
837 sc->sc_st = memt;
838 sc->sc_sh = memh;
839 } else {
840 aprint_error("%s: unable to map device registers\n",
841 sc->sc_dev.dv_xname);
842 return;
843 }
844
845 /*
846 * In addition, i82544 and later support I/O mapped indirect
847 * register access. It is not desirable (nor supported in
848 * this driver) to use it for normal operation, though it is
849 * required to work around bugs in some chip versions.
850 */
851 if (sc->sc_type >= WM_T_82544) {
852 /* First we have to find the I/O BAR. */
853 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
854 if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
855 PCI_MAPREG_TYPE_IO)
856 break;
857 }
858 if (i == PCI_MAPREG_END)
859 aprint_error("%s: WARNING: unable to find I/O BAR\n",
860 sc->sc_dev.dv_xname);
861 else {
862 /*
863 * The i8254x doesn't apparently respond when the
864 * I/O BAR is 0, which looks somewhat like it's not
865 * been configured.
866 */
867 preg = pci_conf_read(pc, pa->pa_tag, i);
868 if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
869 aprint_error("%s: WARNING: I/O BAR at zero.\n",
870 sc->sc_dev.dv_xname);
871 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
872 0, &sc->sc_iot, &sc->sc_ioh,
873 NULL, NULL) == 0) {
874 sc->sc_flags |= WM_F_IOH_VALID;
875 } else {
876 aprint_error("%s: WARNING: unable to map "
877 "I/O space\n", sc->sc_dev.dv_xname);
878 }
879 }
880
881 }
882
883 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
884 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
885 preg |= PCI_COMMAND_MASTER_ENABLE;
886 if (sc->sc_type < WM_T_82542_2_1)
887 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
888 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
889
890 /* Get it out of power save mode, if needed. */
891 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
892 preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
893 PCI_PMCSR_STATE_MASK;
894 if (preg == PCI_PMCSR_STATE_D3) {
895 /*
896 * The card has lost all configuration data in
897 * this state, so punt.
898 */
899 aprint_error("%s: unable to wake from power state D3\n",
900 sc->sc_dev.dv_xname);
901 return;
902 }
903 if (preg != PCI_PMCSR_STATE_D0) {
904 aprint_normal("%s: waking up from power state D%d\n",
905 sc->sc_dev.dv_xname, preg);
906 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
907 PCI_PMCSR_STATE_D0);
908 }
909 }
910
911 /*
912 * Map and establish our interrupt.
913 */
914 if (pci_intr_map(pa, &ih)) {
915 aprint_error("%s: unable to map interrupt\n",
916 sc->sc_dev.dv_xname);
917 return;
918 }
919 intrstr = pci_intr_string(pc, ih);
920 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
921 if (sc->sc_ih == NULL) {
922 aprint_error("%s: unable to establish interrupt",
923 sc->sc_dev.dv_xname);
924 if (intrstr != NULL)
925 aprint_normal(" at %s", intrstr);
926 aprint_normal("\n");
927 return;
928 }
929 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
930
931 /*
932 * Determine a few things about the bus we're connected to.
933 */
934 if (sc->sc_type < WM_T_82543) {
935 /* We don't really know the bus characteristics here. */
936 sc->sc_bus_speed = 33;
937 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
938 /*
939 * CSA (Communication Streaming Architecture) is about as fast
940 * a 32-bit 66MHz PCI Bus.
941 */
942 sc->sc_flags |= WM_F_CSA;
943 sc->sc_bus_speed = 66;
944 aprint_verbose("%s: Communication Streaming Architecture\n",
945 sc->sc_dev.dv_xname);
946 if (sc->sc_type == WM_T_82547) {
947 callout_init(&sc->sc_txfifo_ch);
948 callout_setfunc(&sc->sc_txfifo_ch,
949 wm_82547_txfifo_stall, sc);
950 aprint_verbose("%s: using 82547 Tx FIFO stall "
951 "work-around\n", sc->sc_dev.dv_xname);
952 }
953 } else if (sc->sc_type >= WM_T_82571) {
954 sc->sc_flags |= WM_F_PCIE | WM_F_EEPROM_SEMAPHORE;
955 aprint_verbose("%s: PCI-Express bus\n", sc->sc_dev.dv_xname);
956 } else {
957 reg = CSR_READ(sc, WMREG_STATUS);
958 if (reg & STATUS_BUS64)
959 sc->sc_flags |= WM_F_BUS64;
960 if (sc->sc_type >= WM_T_82544 &&
961 (reg & STATUS_PCIX_MODE) != 0) {
962 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
963
964 sc->sc_flags |= WM_F_PCIX;
965 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
966 PCI_CAP_PCIX,
967 &sc->sc_pcix_offset, NULL) == 0)
968 aprint_error("%s: unable to find PCIX "
969 "capability\n", sc->sc_dev.dv_xname);
970 else if (sc->sc_type != WM_T_82545_3 &&
971 sc->sc_type != WM_T_82546_3) {
972 /*
973 * Work around a problem caused by the BIOS
974 * setting the max memory read byte count
975 * incorrectly.
976 */
977 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
978 sc->sc_pcix_offset + PCI_PCIX_CMD);
979 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
980 sc->sc_pcix_offset + PCI_PCIX_STATUS);
981
982 bytecnt =
983 (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
984 PCI_PCIX_CMD_BYTECNT_SHIFT;
985 maxb =
986 (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
987 PCI_PCIX_STATUS_MAXB_SHIFT;
988 if (bytecnt > maxb) {
989 aprint_verbose("%s: resetting PCI-X "
990 "MMRBC: %d -> %d\n",
991 sc->sc_dev.dv_xname,
992 512 << bytecnt, 512 << maxb);
993 pcix_cmd = (pcix_cmd &
994 ~PCI_PCIX_CMD_BYTECNT_MASK) |
995 (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
996 pci_conf_write(pa->pa_pc, pa->pa_tag,
997 sc->sc_pcix_offset + PCI_PCIX_CMD,
998 pcix_cmd);
999 }
1000 }
1001 }
1002 /*
1003 * The quad port adapter is special; it has a PCIX-PCIX
1004 * bridge on the board, and can run the secondary bus at
1005 * a higher speed.
1006 */
1007 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
1008 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
1009 : 66;
1010 } else if (sc->sc_flags & WM_F_PCIX) {
1011 switch (reg & STATUS_PCIXSPD_MASK) {
1012 case STATUS_PCIXSPD_50_66:
1013 sc->sc_bus_speed = 66;
1014 break;
1015 case STATUS_PCIXSPD_66_100:
1016 sc->sc_bus_speed = 100;
1017 break;
1018 case STATUS_PCIXSPD_100_133:
1019 sc->sc_bus_speed = 133;
1020 break;
1021 default:
1022 aprint_error(
1023 "%s: unknown PCIXSPD %d; assuming 66MHz\n",
1024 sc->sc_dev.dv_xname,
1025 reg & STATUS_PCIXSPD_MASK);
1026 sc->sc_bus_speed = 66;
1027 }
1028 } else
1029 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
1030 aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
1031 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
1032 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
1033 }
1034
1035 /*
1036 * Allocate the control data structures, and create and load the
1037 * DMA map for it.
1038 *
1039 * NOTE: All Tx descriptors must be in the same 4G segment of
1040 * memory. So must Rx descriptors. We simplify by allocating
1041 * both sets within the same 4G segment.
1042 */
1043 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
1044 WM_NTXDESC_82542 : WM_NTXDESC_82544;
1045 cdata_size = sc->sc_type < WM_T_82544 ?
1046 sizeof(struct wm_control_data_82542) :
1047 sizeof(struct wm_control_data_82544);
1048 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
1049 (bus_size_t) 0x100000000ULL,
1050 &seg, 1, &rseg, 0)) != 0) {
1051 aprint_error(
1052 "%s: unable to allocate control data, error = %d\n",
1053 sc->sc_dev.dv_xname, error);
1054 goto fail_0;
1055 }
1056
1057 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
1058 (caddr_t *)&sc->sc_control_data, 0)) != 0) {
1059 aprint_error("%s: unable to map control data, error = %d\n",
1060 sc->sc_dev.dv_xname, error);
1061 goto fail_1;
1062 }
1063
1064 if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
1065 0, 0, &sc->sc_cddmamap)) != 0) {
1066 aprint_error("%s: unable to create control data DMA map, "
1067 "error = %d\n", sc->sc_dev.dv_xname, error);
1068 goto fail_2;
1069 }
1070
1071 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1072 sc->sc_control_data, cdata_size, NULL,
1073 0)) != 0) {
1074 aprint_error(
1075 "%s: unable to load control data DMA map, error = %d\n",
1076 sc->sc_dev.dv_xname, error);
1077 goto fail_3;
1078 }
1079
1080
1081 /*
1082 * Create the transmit buffer DMA maps.
1083 */
1084 WM_TXQUEUELEN(sc) =
1085 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1086 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1087 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1088 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1089 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1090 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1091 aprint_error("%s: unable to create Tx DMA map %d, "
1092 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1093 goto fail_4;
1094 }
1095 }
1096
1097 /*
1098 * Create the receive buffer DMA maps.
1099 */
1100 for (i = 0; i < WM_NRXDESC; i++) {
1101 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1102 MCLBYTES, 0, 0,
1103 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1104 aprint_error("%s: unable to create Rx DMA map %d, "
1105 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1106 goto fail_5;
1107 }
1108 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1109 }
1110
1111 /*
1112 * Reset the chip to a known state.
1113 */
1114 wm_reset(sc);
1115
1116 /*
1117 * Get some information about the EEPROM.
1118 */
1119 if (sc->sc_type == WM_T_82573)
1120 sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
1121 else if (sc->sc_type > WM_T_82544)
1122 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1123
1124 if (sc->sc_type <= WM_T_82544)
1125 sc->sc_ee_addrbits = 6;
1126 else if (sc->sc_type <= WM_T_82546_3) {
1127 reg = CSR_READ(sc, WMREG_EECD);
1128 if (reg & EECD_EE_SIZE)
1129 sc->sc_ee_addrbits = 8;
1130 else
1131 sc->sc_ee_addrbits = 6;
1132 } else if (sc->sc_type <= WM_T_82547_2) {
1133 reg = CSR_READ(sc, WMREG_EECD);
1134 if (reg & EECD_EE_TYPE) {
1135 sc->sc_flags |= WM_F_EEPROM_SPI;
1136 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1137 } else
1138 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1139 } else if ((sc->sc_type == WM_T_82573) &&
1140 (wm_is_onboard_nvm_eeprom(sc) == 0)) {
1141 sc->sc_flags |= WM_F_EEPROM_FLASH;
1142 } else {
1143 /* Assume everything else is SPI. */
1144 reg = CSR_READ(sc, WMREG_EECD);
1145 sc->sc_flags |= WM_F_EEPROM_SPI;
1146 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1147 }
1148
1149 /*
1150 * Defer printing the EEPROM type until after verifying the checksum
1151 * This allows the EEPROM type to be printed correctly in the case
1152 * that no EEPROM is attached.
1153 */
1154
1155
1156 /*
1157 * Validate the EEPROM checksum. If the checksum fails, flag this for
1158 * later, so we can fail future reads from the EEPROM.
1159 */
1160 if (wm_validate_eeprom_checksum(sc))
1161 sc->sc_flags |= WM_F_EEPROM_INVALID;
1162
1163 if (sc->sc_flags & WM_F_EEPROM_INVALID)
1164 aprint_verbose("%s: No EEPROM\n", sc->sc_dev.dv_xname);
1165 else if (sc->sc_flags & WM_F_EEPROM_FLASH) {
1166 aprint_verbose("%s: FLASH\n", sc->sc_dev.dv_xname);
1167 } else {
1168 if (sc->sc_flags & WM_F_EEPROM_SPI)
1169 eetype = "SPI";
1170 else
1171 eetype = "MicroWire";
1172 aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1173 sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1174 sc->sc_ee_addrbits, eetype);
1175 }
1176
1177 /*
1178 * Read the Ethernet address from the EEPROM, if not first found
1179 * in device properties.
1180 */
1181 ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
1182 if (ea != NULL) {
1183 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
1184 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
1185 memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
1186 } else {
1187 if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1188 sizeof(myea) / sizeof(myea[0]), myea)) {
1189 aprint_error("%s: unable to read Ethernet address\n",
1190 sc->sc_dev.dv_xname);
1191 return;
1192 }
1193 enaddr[0] = myea[0] & 0xff;
1194 enaddr[1] = myea[0] >> 8;
1195 enaddr[2] = myea[1] & 0xff;
1196 enaddr[3] = myea[1] >> 8;
1197 enaddr[4] = myea[2] & 0xff;
1198 enaddr[5] = myea[2] >> 8;
1199 }
1200
1201 /*
1202 * Toggle the LSB of the MAC address on the second port
1203 * of the i82546.
1204 */
1205 if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
1206 if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1207 enaddr[5] ^= 1;
1208 }
1209
1210 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1211 ether_sprintf(enaddr));
1212
1213 /*
1214 * Read the config info from the EEPROM, and set up various
1215 * bits in the control registers based on their contents.
1216 */
1217 pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1218 "i82543-cfg1");
1219 if (pn != NULL) {
1220 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1221 cfg1 = (uint16_t) prop_number_integer_value(pn);
1222 } else {
1223 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1224 aprint_error("%s: unable to read CFG1\n",
1225 sc->sc_dev.dv_xname);
1226 return;
1227 }
1228 }
1229
1230 pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1231 "i82543-cfg2");
1232 if (pn != NULL) {
1233 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1234 cfg2 = (uint16_t) prop_number_integer_value(pn);
1235 } else {
1236 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1237 aprint_error("%s: unable to read CFG2\n",
1238 sc->sc_dev.dv_xname);
1239 return;
1240 }
1241 }
1242
1243 if (sc->sc_type >= WM_T_82544) {
1244 pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1245 "i82543-swdpin");
1246 if (pn != NULL) {
1247 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1248 swdpin = (uint16_t) prop_number_integer_value(pn);
1249 } else {
1250 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1251 aprint_error("%s: unable to read SWDPIN\n",
1252 sc->sc_dev.dv_xname);
1253 return;
1254 }
1255 }
1256 }
1257
1258 if (cfg1 & EEPROM_CFG1_ILOS)
1259 sc->sc_ctrl |= CTRL_ILOS;
1260 if (sc->sc_type >= WM_T_82544) {
1261 sc->sc_ctrl |=
1262 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1263 CTRL_SWDPIO_SHIFT;
1264 sc->sc_ctrl |=
1265 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1266 CTRL_SWDPINS_SHIFT;
1267 } else {
1268 sc->sc_ctrl |=
1269 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1270 CTRL_SWDPIO_SHIFT;
1271 }
1272
1273 #if 0
1274 if (sc->sc_type >= WM_T_82544) {
1275 if (cfg1 & EEPROM_CFG1_IPS0)
1276 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1277 if (cfg1 & EEPROM_CFG1_IPS1)
1278 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1279 sc->sc_ctrl_ext |=
1280 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1281 CTRL_EXT_SWDPIO_SHIFT;
1282 sc->sc_ctrl_ext |=
1283 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1284 CTRL_EXT_SWDPINS_SHIFT;
1285 } else {
1286 sc->sc_ctrl_ext |=
1287 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1288 CTRL_EXT_SWDPIO_SHIFT;
1289 }
1290 #endif
1291
1292 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1293 #if 0
1294 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1295 #endif
1296
1297 /*
1298 * Set up some register offsets that are different between
1299 * the i82542 and the i82543 and later chips.
1300 */
1301 if (sc->sc_type < WM_T_82543) {
1302 sc->sc_rdt_reg = WMREG_OLD_RDT0;
1303 sc->sc_tdt_reg = WMREG_OLD_TDT;
1304 } else {
1305 sc->sc_rdt_reg = WMREG_RDT;
1306 sc->sc_tdt_reg = WMREG_TDT;
1307 }
1308
1309 /*
1310 * Determine if we're TBI or GMII mode, and initialize the
1311 * media structures accordingly.
1312 */
1313 if (sc->sc_type < WM_T_82543 ||
1314 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1315 if (wmp->wmp_flags & WMP_F_1000T)
1316 aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1317 "product!\n", sc->sc_dev.dv_xname);
1318 wm_tbi_mediainit(sc);
1319 } else {
1320 if (wmp->wmp_flags & WMP_F_1000X)
1321 aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1322 "product!\n", sc->sc_dev.dv_xname);
1323 wm_gmii_mediainit(sc);
1324 }
1325
1326 ifp = &sc->sc_ethercom.ec_if;
1327 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1328 ifp->if_softc = sc;
1329 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1330 ifp->if_ioctl = wm_ioctl;
1331 ifp->if_start = wm_start;
1332 ifp->if_watchdog = wm_watchdog;
1333 ifp->if_init = wm_init;
1334 ifp->if_stop = wm_stop;
1335 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1336 IFQ_SET_READY(&ifp->if_snd);
1337
1338 if (sc->sc_type != WM_T_82573)
1339 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1340
1341 /*
1342 * If we're a i82543 or greater, we can support VLANs.
1343 */
1344 if (sc->sc_type >= WM_T_82543)
1345 sc->sc_ethercom.ec_capabilities |=
1346 ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1347
1348 /*
1349 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
1350 * on i82543 and later.
1351 */
1352 if (sc->sc_type >= WM_T_82543)
1353 ifp->if_capabilities |=
1354 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1355 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1356 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1357 IFCAP_CSUM_TCPv6_Tx |
1358 IFCAP_CSUM_UDPv6_Tx;
1359
1360 /*
1361 * If we're a i82544 or greater (except i82547), we can do
1362 * TCP segmentation offload.
1363 */
1364 if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547)
1365 ifp->if_capabilities |= IFCAP_TSOv4;
1366
1367 /*
1368 * Attach the interface.
1369 */
1370 if_attach(ifp);
1371 ether_ifattach(ifp, enaddr);
1372 #if NRND > 0
1373 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1374 RND_TYPE_NET, 0);
1375 #endif
1376
1377 #ifdef WM_EVENT_COUNTERS
1378 /* Attach event counters. */
1379 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1380 NULL, sc->sc_dev.dv_xname, "txsstall");
1381 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1382 NULL, sc->sc_dev.dv_xname, "txdstall");
1383 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1384 NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1385 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1386 NULL, sc->sc_dev.dv_xname, "txdw");
1387 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1388 NULL, sc->sc_dev.dv_xname, "txqe");
1389 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1390 NULL, sc->sc_dev.dv_xname, "rxintr");
1391 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1392 NULL, sc->sc_dev.dv_xname, "linkintr");
1393
1394 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1395 NULL, sc->sc_dev.dv_xname, "rxipsum");
1396 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1397 NULL, sc->sc_dev.dv_xname, "rxtusum");
1398 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1399 NULL, sc->sc_dev.dv_xname, "txipsum");
1400 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1401 NULL, sc->sc_dev.dv_xname, "txtusum");
1402 evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
1403 NULL, sc->sc_dev.dv_xname, "txtusum6");
1404
1405 evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
1406 NULL, sc->sc_dev.dv_xname, "txtso");
1407 evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
1408 NULL, sc->sc_dev.dv_xname, "txtsopain");
1409
1410 for (i = 0; i < WM_NTXSEGS; i++) {
1411 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1412 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1413 NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1414 }
1415
1416 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1417 NULL, sc->sc_dev.dv_xname, "txdrop");
1418
1419 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1420 NULL, sc->sc_dev.dv_xname, "tu");
1421
1422 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1423 NULL, sc->sc_dev.dv_xname, "tx_xoff");
1424 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1425 NULL, sc->sc_dev.dv_xname, "tx_xon");
1426 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1427 NULL, sc->sc_dev.dv_xname, "rx_xoff");
1428 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1429 NULL, sc->sc_dev.dv_xname, "rx_xon");
1430 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1431 NULL, sc->sc_dev.dv_xname, "rx_macctl");
1432 #endif /* WM_EVENT_COUNTERS */
1433
1434 /*
1435 * Make sure the interface is shutdown during reboot.
1436 */
1437 sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1438 if (sc->sc_sdhook == NULL)
1439 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1440 sc->sc_dev.dv_xname);
1441 return;
1442
1443 /*
1444 * Free any resources we've allocated during the failed attach
1445 * attempt. Do this in reverse order and fall through.
1446 */
1447 fail_5:
1448 for (i = 0; i < WM_NRXDESC; i++) {
1449 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1450 bus_dmamap_destroy(sc->sc_dmat,
1451 sc->sc_rxsoft[i].rxs_dmamap);
1452 }
1453 fail_4:
1454 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1455 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1456 bus_dmamap_destroy(sc->sc_dmat,
1457 sc->sc_txsoft[i].txs_dmamap);
1458 }
1459 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1460 fail_3:
1461 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1462 fail_2:
1463 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1464 cdata_size);
1465 fail_1:
1466 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1467 fail_0:
1468 return;
1469 }
1470
1471 /*
1472 * wm_shutdown:
1473 *
1474 * Make sure the interface is stopped at reboot time.
1475 */
1476 static void
1477 wm_shutdown(void *arg)
1478 {
1479 struct wm_softc *sc = arg;
1480
1481 wm_stop(&sc->sc_ethercom.ec_if, 1);
1482 }
1483
1484 /*
1485 * wm_tx_offload:
1486 *
1487 * Set up TCP/IP checksumming parameters for the
1488 * specified packet.
1489 */
1490 static int
1491 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1492 uint8_t *fieldsp)
1493 {
1494 struct mbuf *m0 = txs->txs_mbuf;
1495 struct livengood_tcpip_ctxdesc *t;
1496 uint32_t ipcs, tucs, cmd, cmdlen, seg;
1497 struct ether_header *eh;
1498 int offset, iphl;
1499 uint8_t fields;
1500
1501 /*
1502 * XXX It would be nice if the mbuf pkthdr had offset
1503 * fields for the protocol headers.
1504 */
1505
1506 eh = mtod(m0, struct ether_header *);
1507 switch (htons(eh->ether_type)) {
1508 case ETHERTYPE_IP:
1509 case ETHERTYPE_IPV6:
1510 offset = ETHER_HDR_LEN;
1511 break;
1512
1513 case ETHERTYPE_VLAN:
1514 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1515 break;
1516
1517 default:
1518 /*
1519 * Don't support this protocol or encapsulation.
1520 */
1521 *fieldsp = 0;
1522 *cmdp = 0;
1523 return (0);
1524 }
1525
1526 if ((m0->m_pkthdr.csum_flags &
1527 (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
1528 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1529 } else {
1530 iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
1531 }
1532
1533 cmd = WTX_CMD_DEXT | WTX_DTYP_D;
1534 cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
1535 seg = 0;
1536 fields = 0;
1537
1538 if (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
1539 int hlen = offset + iphl;
1540 WM_EVCNT_INCR(&sc->sc_ev_txtso);
1541 if (__predict_false(m0->m_len <
1542 (hlen + sizeof(struct tcphdr)))) {
1543 /*
1544 * TCP/IP headers are not in the first mbuf; we need
1545 * to do this the slow and painful way. Let's just
1546 * hope this doesn't happen very often.
1547 */
1548 struct ip ip;
1549 struct tcphdr th;
1550
1551 WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
1552
1553 m_copydata(m0, offset, sizeof(ip), &ip);
1554 m_copydata(m0, hlen, sizeof(th), &th);
1555
1556 ip.ip_len = 0;
1557
1558 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
1559 sizeof(ip.ip_len), &ip.ip_len);
1560
1561 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1562 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1563
1564 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
1565 sizeof(th.th_sum), &th.th_sum);
1566
1567 hlen += th.th_off << 2;
1568 } else {
1569 /*
1570 * TCP/IP headers are in the first mbuf; we can do
1571 * this the easy way.
1572 */
1573 struct ip *ip =
1574 (struct ip *) (mtod(m0, caddr_t) + offset);
1575 struct tcphdr *th =
1576 (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
1577
1578 ip->ip_len = 0;
1579 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1580 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1581
1582 hlen += th->th_off << 2;
1583 }
1584
1585 cmd |= WTX_TCPIP_CMD_TSE;
1586 cmdlen |= WTX_TCPIP_CMD_TSE | WTX_TCPIP_CMD_IP |
1587 WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
1588 seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
1589 WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
1590 }
1591
1592 /*
1593 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1594 * offload feature, if we load the context descriptor, we
1595 * MUST provide valid values for IPCSS and TUCSS fields.
1596 */
1597
1598 ipcs = WTX_TCPIP_IPCSS(offset) |
1599 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1600 WTX_TCPIP_IPCSE(offset + iphl - 1);
1601 if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
1602 WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1603 fields |= WTX_IXSM;
1604 }
1605
1606 offset += iphl;
1607
1608 if (m0->m_pkthdr.csum_flags &
1609 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
1610 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1611 fields |= WTX_TXSM;
1612 tucs = WTX_TCPIP_TUCSS(offset) |
1613 WTX_TCPIP_TUCSO(offset +
1614 M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1615 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1616 } else if ((m0->m_pkthdr.csum_flags &
1617 (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
1618 WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
1619 fields |= WTX_TXSM;
1620 tucs = WTX_TCPIP_TUCSS(offset) |
1621 WTX_TCPIP_TUCSO(offset +
1622 M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
1623 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1624 } else {
1625 /* Just initialize it to a valid TCP context. */
1626 tucs = WTX_TCPIP_TUCSS(offset) |
1627 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1628 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1629 }
1630
1631 /* Fill in the context descriptor. */
1632 t = (struct livengood_tcpip_ctxdesc *)
1633 &sc->sc_txdescs[sc->sc_txnext];
1634 t->tcpip_ipcs = htole32(ipcs);
1635 t->tcpip_tucs = htole32(tucs);
1636 t->tcpip_cmdlen = htole32(cmdlen);
1637 t->tcpip_seg = htole32(seg);
1638 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1639
1640 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1641 txs->txs_ndesc++;
1642
1643 *cmdp = cmd;
1644 *fieldsp = fields;
1645
1646 return (0);
1647 }
1648
1649 static void
1650 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1651 {
1652 struct mbuf *m;
1653 int i;
1654
1655 log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1656 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1657 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1658 "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1659 m->m_data, m->m_len, m->m_flags);
1660 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1661 i, i == 1 ? "" : "s");
1662 }
1663
1664 /*
1665 * wm_82547_txfifo_stall:
1666 *
1667 * Callout used to wait for the 82547 Tx FIFO to drain,
1668 * reset the FIFO pointers, and restart packet transmission.
1669 */
1670 static void
1671 wm_82547_txfifo_stall(void *arg)
1672 {
1673 struct wm_softc *sc = arg;
1674 int s;
1675
1676 s = splnet();
1677
1678 if (sc->sc_txfifo_stall) {
1679 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1680 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1681 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1682 /*
1683 * Packets have drained. Stop transmitter, reset
1684 * FIFO pointers, restart transmitter, and kick
1685 * the packet queue.
1686 */
1687 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1688 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1689 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1690 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1691 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1692 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1693 CSR_WRITE(sc, WMREG_TCTL, tctl);
1694 CSR_WRITE_FLUSH(sc);
1695
1696 sc->sc_txfifo_head = 0;
1697 sc->sc_txfifo_stall = 0;
1698 wm_start(&sc->sc_ethercom.ec_if);
1699 } else {
1700 /*
1701 * Still waiting for packets to drain; try again in
1702 * another tick.
1703 */
1704 callout_schedule(&sc->sc_txfifo_ch, 1);
1705 }
1706 }
1707
1708 splx(s);
1709 }
1710
1711 /*
1712 * wm_82547_txfifo_bugchk:
1713 *
1714 * Check for bug condition in the 82547 Tx FIFO. We need to
1715 * prevent enqueueing a packet that would wrap around the end
1716 * if the Tx FIFO ring buffer, otherwise the chip will croak.
1717 *
1718 * We do this by checking the amount of space before the end
1719 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
1720 * the Tx FIFO, wait for all remaining packets to drain, reset
1721 * the internal FIFO pointers to the beginning, and restart
1722 * transmission on the interface.
1723 */
1724 #define WM_FIFO_HDR 0x10
1725 #define WM_82547_PAD_LEN 0x3e0
1726 static int
1727 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1728 {
1729 int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1730 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1731
1732 /* Just return if already stalled. */
1733 if (sc->sc_txfifo_stall)
1734 return (1);
1735
1736 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1737 /* Stall only occurs in half-duplex mode. */
1738 goto send_packet;
1739 }
1740
1741 if (len >= WM_82547_PAD_LEN + space) {
1742 sc->sc_txfifo_stall = 1;
1743 callout_schedule(&sc->sc_txfifo_ch, 1);
1744 return (1);
1745 }
1746
1747 send_packet:
1748 sc->sc_txfifo_head += len;
1749 if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1750 sc->sc_txfifo_head -= sc->sc_txfifo_size;
1751
1752 return (0);
1753 }
1754
1755 /*
1756 * wm_start: [ifnet interface function]
1757 *
1758 * Start packet transmission on the interface.
1759 */
1760 static void
1761 wm_start(struct ifnet *ifp)
1762 {
1763 struct wm_softc *sc = ifp->if_softc;
1764 struct mbuf *m0;
1765 #if 0 /* XXXJRT */
1766 struct m_tag *mtag;
1767 #endif
1768 struct wm_txsoft *txs;
1769 bus_dmamap_t dmamap;
1770 int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
1771 bus_addr_t curaddr;
1772 bus_size_t seglen, curlen;
1773 uint32_t cksumcmd;
1774 uint8_t cksumfields;
1775
1776 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1777 return;
1778
1779 /*
1780 * Remember the previous number of free descriptors.
1781 */
1782 ofree = sc->sc_txfree;
1783
1784 /*
1785 * Loop through the send queue, setting up transmit descriptors
1786 * until we drain the queue, or use up all available transmit
1787 * descriptors.
1788 */
1789 for (;;) {
1790 /* Grab a packet off the queue. */
1791 IFQ_POLL(&ifp->if_snd, m0);
1792 if (m0 == NULL)
1793 break;
1794
1795 DPRINTF(WM_DEBUG_TX,
1796 ("%s: TX: have packet to transmit: %p\n",
1797 sc->sc_dev.dv_xname, m0));
1798
1799 /* Get a work queue entry. */
1800 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1801 wm_txintr(sc);
1802 if (sc->sc_txsfree == 0) {
1803 DPRINTF(WM_DEBUG_TX,
1804 ("%s: TX: no free job descriptors\n",
1805 sc->sc_dev.dv_xname));
1806 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1807 break;
1808 }
1809 }
1810
1811 txs = &sc->sc_txsoft[sc->sc_txsnext];
1812 dmamap = txs->txs_dmamap;
1813
1814 use_tso = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1815
1816 /*
1817 * So says the Linux driver:
1818 * The controller does a simple calculation to make sure
1819 * there is enough room in the FIFO before initiating the
1820 * DMA for each buffer. The calc is:
1821 * 4 = ceil(buffer len / MSS)
1822 * To make sure we don't overrun the FIFO, adjust the max
1823 * buffer len if the MSS drops.
1824 */
1825 dmamap->dm_maxsegsz =
1826 (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
1827 ? m0->m_pkthdr.segsz << 2
1828 : WTX_MAX_LEN;
1829
1830 /*
1831 * Load the DMA map. If this fails, the packet either
1832 * didn't fit in the allotted number of segments, or we
1833 * were short on resources. For the too-many-segments
1834 * case, we simply report an error and drop the packet,
1835 * since we can't sanely copy a jumbo packet to a single
1836 * buffer.
1837 */
1838 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1839 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1840 if (error) {
1841 if (error == EFBIG) {
1842 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1843 log(LOG_ERR, "%s: Tx packet consumes too many "
1844 "DMA segments, dropping...\n",
1845 sc->sc_dev.dv_xname);
1846 IFQ_DEQUEUE(&ifp->if_snd, m0);
1847 wm_dump_mbuf_chain(sc, m0);
1848 m_freem(m0);
1849 continue;
1850 }
1851 /*
1852 * Short on resources, just stop for now.
1853 */
1854 DPRINTF(WM_DEBUG_TX,
1855 ("%s: TX: dmamap load failed: %d\n",
1856 sc->sc_dev.dv_xname, error));
1857 break;
1858 }
1859
1860 segs_needed = dmamap->dm_nsegs;
1861 if (use_tso) {
1862 /* For sentinel descriptor; see below. */
1863 segs_needed++;
1864 }
1865
1866 /*
1867 * Ensure we have enough descriptors free to describe
1868 * the packet. Note, we always reserve one descriptor
1869 * at the end of the ring due to the semantics of the
1870 * TDT register, plus one more in the event we need
1871 * to load offload context.
1872 */
1873 if (segs_needed > sc->sc_txfree - 2) {
1874 /*
1875 * Not enough free descriptors to transmit this
1876 * packet. We haven't committed anything yet,
1877 * so just unload the DMA map, put the packet
1878 * pack on the queue, and punt. Notify the upper
1879 * layer that there are no more slots left.
1880 */
1881 DPRINTF(WM_DEBUG_TX,
1882 ("%s: TX: need %d (%d) descriptors, have %d\n",
1883 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1884 sc->sc_txfree - 1));
1885 ifp->if_flags |= IFF_OACTIVE;
1886 bus_dmamap_unload(sc->sc_dmat, dmamap);
1887 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1888 break;
1889 }
1890
1891 /*
1892 * Check for 82547 Tx FIFO bug. We need to do this
1893 * once we know we can transmit the packet, since we
1894 * do some internal FIFO space accounting here.
1895 */
1896 if (sc->sc_type == WM_T_82547 &&
1897 wm_82547_txfifo_bugchk(sc, m0)) {
1898 DPRINTF(WM_DEBUG_TX,
1899 ("%s: TX: 82547 Tx FIFO bug detected\n",
1900 sc->sc_dev.dv_xname));
1901 ifp->if_flags |= IFF_OACTIVE;
1902 bus_dmamap_unload(sc->sc_dmat, dmamap);
1903 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1904 break;
1905 }
1906
1907 IFQ_DEQUEUE(&ifp->if_snd, m0);
1908
1909 /*
1910 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1911 */
1912
1913 DPRINTF(WM_DEBUG_TX,
1914 ("%s: TX: packet has %d (%d) DMA segments\n",
1915 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1916
1917 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1918
1919 /*
1920 * Store a pointer to the packet so that we can free it
1921 * later.
1922 *
1923 * Initially, we consider the number of descriptors the
1924 * packet uses the number of DMA segments. This may be
1925 * incremented by 1 if we do checksum offload (a descriptor
1926 * is used to set the checksum context).
1927 */
1928 txs->txs_mbuf = m0;
1929 txs->txs_firstdesc = sc->sc_txnext;
1930 txs->txs_ndesc = segs_needed;
1931
1932 /* Set up offload parameters for this packet. */
1933 if (m0->m_pkthdr.csum_flags &
1934 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
1935 M_CSUM_TCPv6|M_CSUM_UDPv6)) {
1936 if (wm_tx_offload(sc, txs, &cksumcmd,
1937 &cksumfields) != 0) {
1938 /* Error message already displayed. */
1939 bus_dmamap_unload(sc->sc_dmat, dmamap);
1940 continue;
1941 }
1942 } else {
1943 cksumcmd = 0;
1944 cksumfields = 0;
1945 }
1946
1947 cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
1948
1949 /* Sync the DMA map. */
1950 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1951 BUS_DMASYNC_PREWRITE);
1952
1953 /*
1954 * Initialize the transmit descriptor.
1955 */
1956 for (nexttx = sc->sc_txnext, seg = 0;
1957 seg < dmamap->dm_nsegs; seg++) {
1958 for (seglen = dmamap->dm_segs[seg].ds_len,
1959 curaddr = dmamap->dm_segs[seg].ds_addr;
1960 seglen != 0;
1961 curaddr += curlen, seglen -= curlen,
1962 nexttx = WM_NEXTTX(sc, nexttx)) {
1963 curlen = seglen;
1964
1965 /*
1966 * So says the Linux driver:
1967 * Work around for premature descriptor
1968 * write-backs in TSO mode. Append a
1969 * 4-byte sentinel descriptor.
1970 */
1971 if (use_tso &&
1972 seg == dmamap->dm_nsegs - 1 &&
1973 curlen > 8)
1974 curlen -= 4;
1975
1976 wm_set_dma_addr(
1977 &sc->sc_txdescs[nexttx].wtx_addr,
1978 curaddr);
1979 sc->sc_txdescs[nexttx].wtx_cmdlen =
1980 htole32(cksumcmd | curlen);
1981 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
1982 0;
1983 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1984 cksumfields;
1985 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1986 lasttx = nexttx;
1987
1988 DPRINTF(WM_DEBUG_TX,
1989 ("%s: TX: desc %d: low 0x%08lx, "
1990 "len 0x%04x\n",
1991 sc->sc_dev.dv_xname, nexttx,
1992 curaddr & 0xffffffffUL, (unsigned)curlen));
1993 }
1994 }
1995
1996 KASSERT(lasttx != -1);
1997
1998 /*
1999 * Set up the command byte on the last descriptor of
2000 * the packet. If we're in the interrupt delay window,
2001 * delay the interrupt.
2002 */
2003 sc->sc_txdescs[lasttx].wtx_cmdlen |=
2004 htole32(WTX_CMD_EOP | WTX_CMD_RS);
2005
2006 #if 0 /* XXXJRT */
2007 /*
2008 * If VLANs are enabled and the packet has a VLAN tag, set
2009 * up the descriptor to encapsulate the packet for us.
2010 *
2011 * This is only valid on the last descriptor of the packet.
2012 */
2013 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
2014 sc->sc_txdescs[lasttx].wtx_cmdlen |=
2015 htole32(WTX_CMD_VLE);
2016 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
2017 = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
2018 }
2019 #endif /* XXXJRT */
2020
2021 txs->txs_lastdesc = lasttx;
2022
2023 DPRINTF(WM_DEBUG_TX,
2024 ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
2025 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
2026
2027 /* Sync the descriptors we're using. */
2028 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
2029 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2030
2031 /* Give the packet to the chip. */
2032 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
2033
2034 DPRINTF(WM_DEBUG_TX,
2035 ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
2036
2037 DPRINTF(WM_DEBUG_TX,
2038 ("%s: TX: finished transmitting packet, job %d\n",
2039 sc->sc_dev.dv_xname, sc->sc_txsnext));
2040
2041 /* Advance the tx pointer. */
2042 sc->sc_txfree -= txs->txs_ndesc;
2043 sc->sc_txnext = nexttx;
2044
2045 sc->sc_txsfree--;
2046 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
2047
2048 #if NBPFILTER > 0
2049 /* Pass the packet to any BPF listeners. */
2050 if (ifp->if_bpf)
2051 bpf_mtap(ifp->if_bpf, m0);
2052 #endif /* NBPFILTER > 0 */
2053 }
2054
2055 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
2056 /* No more slots; notify upper layer. */
2057 ifp->if_flags |= IFF_OACTIVE;
2058 }
2059
2060 if (sc->sc_txfree != ofree) {
2061 /* Set a watchdog timer in case the chip flakes out. */
2062 ifp->if_timer = 5;
2063 }
2064 }
2065
2066 /*
2067 * wm_watchdog: [ifnet interface function]
2068 *
2069 * Watchdog timer handler.
2070 */
2071 static void
2072 wm_watchdog(struct ifnet *ifp)
2073 {
2074 struct wm_softc *sc = ifp->if_softc;
2075
2076 /*
2077 * Since we're using delayed interrupts, sweep up
2078 * before we report an error.
2079 */
2080 wm_txintr(sc);
2081
2082 if (sc->sc_txfree != WM_NTXDESC(sc)) {
2083 log(LOG_ERR,
2084 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
2085 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
2086 sc->sc_txnext);
2087 ifp->if_oerrors++;
2088
2089 /* Reset the interface. */
2090 (void) wm_init(ifp);
2091 }
2092
2093 /* Try to get more packets going. */
2094 wm_start(ifp);
2095 }
2096
2097 /*
2098 * wm_ioctl: [ifnet interface function]
2099 *
2100 * Handle control requests from the operator.
2101 */
2102 static int
2103 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2104 {
2105 struct wm_softc *sc = ifp->if_softc;
2106 struct ifreq *ifr = (struct ifreq *) data;
2107 int s, error;
2108
2109 s = splnet();
2110
2111 switch (cmd) {
2112 case SIOCSIFMEDIA:
2113 case SIOCGIFMEDIA:
2114 /* Flow control requires full-duplex mode. */
2115 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
2116 (ifr->ifr_media & IFM_FDX) == 0)
2117 ifr->ifr_media &= ~IFM_ETH_FMASK;
2118 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
2119 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
2120 /* We can do both TXPAUSE and RXPAUSE. */
2121 ifr->ifr_media |=
2122 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
2123 }
2124 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
2125 }
2126 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2127 break;
2128 default:
2129 error = ether_ioctl(ifp, cmd, data);
2130 if (error == ENETRESET) {
2131 /*
2132 * Multicast list has changed; set the hardware filter
2133 * accordingly.
2134 */
2135 if (ifp->if_flags & IFF_RUNNING)
2136 wm_set_filter(sc);
2137 error = 0;
2138 }
2139 break;
2140 }
2141
2142 /* Try to get more packets going. */
2143 wm_start(ifp);
2144
2145 splx(s);
2146 return (error);
2147 }
2148
2149 /*
2150 * wm_intr:
2151 *
2152 * Interrupt service routine.
2153 */
2154 static int
2155 wm_intr(void *arg)
2156 {
2157 struct wm_softc *sc = arg;
2158 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2159 uint32_t icr;
2160 int handled = 0;
2161
2162 while (1 /* CONSTCOND */) {
2163 icr = CSR_READ(sc, WMREG_ICR);
2164 if ((icr & sc->sc_icr) == 0)
2165 break;
2166
2167 #if 0 /*NRND > 0*/
2168 if (RND_ENABLED(&sc->rnd_source))
2169 rnd_add_uint32(&sc->rnd_source, icr);
2170 #endif
2171
2172 handled = 1;
2173
2174 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2175 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
2176 DPRINTF(WM_DEBUG_RX,
2177 ("%s: RX: got Rx intr 0x%08x\n",
2178 sc->sc_dev.dv_xname,
2179 icr & (ICR_RXDMT0|ICR_RXT0)));
2180 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
2181 }
2182 #endif
2183 wm_rxintr(sc);
2184
2185 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2186 if (icr & ICR_TXDW) {
2187 DPRINTF(WM_DEBUG_TX,
2188 ("%s: TX: got TXDW interrupt\n",
2189 sc->sc_dev.dv_xname));
2190 WM_EVCNT_INCR(&sc->sc_ev_txdw);
2191 }
2192 #endif
2193 wm_txintr(sc);
2194
2195 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
2196 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
2197 wm_linkintr(sc, icr);
2198 }
2199
2200 if (icr & ICR_RXO) {
2201 ifp->if_ierrors++;
2202 #if defined(WM_DEBUG)
2203 log(LOG_WARNING, "%s: Receive overrun\n",
2204 sc->sc_dev.dv_xname);
2205 #endif /* defined(WM_DEBUG) */
2206 }
2207 }
2208
2209 if (handled) {
2210 /* Try to get more packets going. */
2211 wm_start(ifp);
2212 }
2213
2214 return (handled);
2215 }
2216
2217 /*
2218 * wm_txintr:
2219 *
2220 * Helper; handle transmit interrupts.
2221 */
2222 static void
2223 wm_txintr(struct wm_softc *sc)
2224 {
2225 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2226 struct wm_txsoft *txs;
2227 uint8_t status;
2228 int i;
2229
2230 ifp->if_flags &= ~IFF_OACTIVE;
2231
2232 /*
2233 * Go through the Tx list and free mbufs for those
2234 * frames which have been transmitted.
2235 */
2236 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2237 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2238 txs = &sc->sc_txsoft[i];
2239
2240 DPRINTF(WM_DEBUG_TX,
2241 ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2242
2243 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2244 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2245
2246 status =
2247 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2248 if ((status & WTX_ST_DD) == 0) {
2249 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2250 BUS_DMASYNC_PREREAD);
2251 break;
2252 }
2253
2254 DPRINTF(WM_DEBUG_TX,
2255 ("%s: TX: job %d done: descs %d..%d\n",
2256 sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2257 txs->txs_lastdesc));
2258
2259 /*
2260 * XXX We should probably be using the statistics
2261 * XXX registers, but I don't know if they exist
2262 * XXX on chips before the i82544.
2263 */
2264
2265 #ifdef WM_EVENT_COUNTERS
2266 if (status & WTX_ST_TU)
2267 WM_EVCNT_INCR(&sc->sc_ev_tu);
2268 #endif /* WM_EVENT_COUNTERS */
2269
2270 if (status & (WTX_ST_EC|WTX_ST_LC)) {
2271 ifp->if_oerrors++;
2272 if (status & WTX_ST_LC)
2273 log(LOG_WARNING, "%s: late collision\n",
2274 sc->sc_dev.dv_xname);
2275 else if (status & WTX_ST_EC) {
2276 ifp->if_collisions += 16;
2277 log(LOG_WARNING, "%s: excessive collisions\n",
2278 sc->sc_dev.dv_xname);
2279 }
2280 } else
2281 ifp->if_opackets++;
2282
2283 sc->sc_txfree += txs->txs_ndesc;
2284 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2285 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2286 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2287 m_freem(txs->txs_mbuf);
2288 txs->txs_mbuf = NULL;
2289 }
2290
2291 /* Update the dirty transmit buffer pointer. */
2292 sc->sc_txsdirty = i;
2293 DPRINTF(WM_DEBUG_TX,
2294 ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2295
2296 /*
2297 * If there are no more pending transmissions, cancel the watchdog
2298 * timer.
2299 */
2300 if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2301 ifp->if_timer = 0;
2302 }
2303
2304 /*
2305 * wm_rxintr:
2306 *
2307 * Helper; handle receive interrupts.
2308 */
2309 static void
2310 wm_rxintr(struct wm_softc *sc)
2311 {
2312 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2313 struct wm_rxsoft *rxs;
2314 struct mbuf *m;
2315 int i, len;
2316 uint8_t status, errors;
2317
2318 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2319 rxs = &sc->sc_rxsoft[i];
2320
2321 DPRINTF(WM_DEBUG_RX,
2322 ("%s: RX: checking descriptor %d\n",
2323 sc->sc_dev.dv_xname, i));
2324
2325 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2326
2327 status = sc->sc_rxdescs[i].wrx_status;
2328 errors = sc->sc_rxdescs[i].wrx_errors;
2329 len = le16toh(sc->sc_rxdescs[i].wrx_len);
2330
2331 if ((status & WRX_ST_DD) == 0) {
2332 /*
2333 * We have processed all of the receive descriptors.
2334 */
2335 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2336 break;
2337 }
2338
2339 if (__predict_false(sc->sc_rxdiscard)) {
2340 DPRINTF(WM_DEBUG_RX,
2341 ("%s: RX: discarding contents of descriptor %d\n",
2342 sc->sc_dev.dv_xname, i));
2343 WM_INIT_RXDESC(sc, i);
2344 if (status & WRX_ST_EOP) {
2345 /* Reset our state. */
2346 DPRINTF(WM_DEBUG_RX,
2347 ("%s: RX: resetting rxdiscard -> 0\n",
2348 sc->sc_dev.dv_xname));
2349 sc->sc_rxdiscard = 0;
2350 }
2351 continue;
2352 }
2353
2354 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2355 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2356
2357 m = rxs->rxs_mbuf;
2358
2359 /*
2360 * Add a new receive buffer to the ring.
2361 */
2362 if (wm_add_rxbuf(sc, i) != 0) {
2363 /*
2364 * Failed, throw away what we've done so
2365 * far, and discard the rest of the packet.
2366 */
2367 ifp->if_ierrors++;
2368 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2369 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2370 WM_INIT_RXDESC(sc, i);
2371 if ((status & WRX_ST_EOP) == 0)
2372 sc->sc_rxdiscard = 1;
2373 if (sc->sc_rxhead != NULL)
2374 m_freem(sc->sc_rxhead);
2375 WM_RXCHAIN_RESET(sc);
2376 DPRINTF(WM_DEBUG_RX,
2377 ("%s: RX: Rx buffer allocation failed, "
2378 "dropping packet%s\n", sc->sc_dev.dv_xname,
2379 sc->sc_rxdiscard ? " (discard)" : ""));
2380 continue;
2381 }
2382
2383 WM_RXCHAIN_LINK(sc, m);
2384
2385 m->m_len = len;
2386
2387 DPRINTF(WM_DEBUG_RX,
2388 ("%s: RX: buffer at %p len %d\n",
2389 sc->sc_dev.dv_xname, m->m_data, len));
2390
2391 /*
2392 * If this is not the end of the packet, keep
2393 * looking.
2394 */
2395 if ((status & WRX_ST_EOP) == 0) {
2396 sc->sc_rxlen += len;
2397 DPRINTF(WM_DEBUG_RX,
2398 ("%s: RX: not yet EOP, rxlen -> %d\n",
2399 sc->sc_dev.dv_xname, sc->sc_rxlen));
2400 continue;
2401 }
2402
2403 /*
2404 * Okay, we have the entire packet now. The chip is
2405 * configured to include the FCS (not all chips can
2406 * be configured to strip it), so we need to trim it.
2407 */
2408 m->m_len -= ETHER_CRC_LEN;
2409
2410 *sc->sc_rxtailp = NULL;
2411 len = m->m_len + sc->sc_rxlen;
2412 m = sc->sc_rxhead;
2413
2414 WM_RXCHAIN_RESET(sc);
2415
2416 DPRINTF(WM_DEBUG_RX,
2417 ("%s: RX: have entire packet, len -> %d\n",
2418 sc->sc_dev.dv_xname, len));
2419
2420 /*
2421 * If an error occurred, update stats and drop the packet.
2422 */
2423 if (errors &
2424 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2425 ifp->if_ierrors++;
2426 if (errors & WRX_ER_SE)
2427 log(LOG_WARNING, "%s: symbol error\n",
2428 sc->sc_dev.dv_xname);
2429 else if (errors & WRX_ER_SEQ)
2430 log(LOG_WARNING, "%s: receive sequence error\n",
2431 sc->sc_dev.dv_xname);
2432 else if (errors & WRX_ER_CE)
2433 log(LOG_WARNING, "%s: CRC error\n",
2434 sc->sc_dev.dv_xname);
2435 m_freem(m);
2436 continue;
2437 }
2438
2439 /*
2440 * No errors. Receive the packet.
2441 */
2442 m->m_pkthdr.rcvif = ifp;
2443 m->m_pkthdr.len = len;
2444
2445 #if 0 /* XXXJRT */
2446 /*
2447 * If VLANs are enabled, VLAN packets have been unwrapped
2448 * for us. Associate the tag with the packet.
2449 */
2450 if ((status & WRX_ST_VP) != 0) {
2451 VLAN_INPUT_TAG(ifp, m,
2452 le16toh(sc->sc_rxdescs[i].wrx_special,
2453 continue);
2454 }
2455 #endif /* XXXJRT */
2456
2457 /*
2458 * Set up checksum info for this packet.
2459 */
2460 if ((status & WRX_ST_IXSM) == 0) {
2461 if (status & WRX_ST_IPCS) {
2462 WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2463 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2464 if (errors & WRX_ER_IPE)
2465 m->m_pkthdr.csum_flags |=
2466 M_CSUM_IPv4_BAD;
2467 }
2468 if (status & WRX_ST_TCPCS) {
2469 /*
2470 * Note: we don't know if this was TCP or UDP,
2471 * so we just set both bits, and expect the
2472 * upper layers to deal.
2473 */
2474 WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2475 m->m_pkthdr.csum_flags |=
2476 M_CSUM_TCPv4|M_CSUM_UDPv4;
2477 if (errors & WRX_ER_TCPE)
2478 m->m_pkthdr.csum_flags |=
2479 M_CSUM_TCP_UDP_BAD;
2480 }
2481 }
2482
2483 ifp->if_ipackets++;
2484
2485 #if NBPFILTER > 0
2486 /* Pass this up to any BPF listeners. */
2487 if (ifp->if_bpf)
2488 bpf_mtap(ifp->if_bpf, m);
2489 #endif /* NBPFILTER > 0 */
2490
2491 /* Pass it on. */
2492 (*ifp->if_input)(ifp, m);
2493 }
2494
2495 /* Update the receive pointer. */
2496 sc->sc_rxptr = i;
2497
2498 DPRINTF(WM_DEBUG_RX,
2499 ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2500 }
2501
2502 /*
2503 * wm_linkintr:
2504 *
2505 * Helper; handle link interrupts.
2506 */
2507 static void
2508 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2509 {
2510 uint32_t status;
2511
2512 /*
2513 * If we get a link status interrupt on a 1000BASE-T
2514 * device, just fall into the normal MII tick path.
2515 */
2516 if (sc->sc_flags & WM_F_HAS_MII) {
2517 if (icr & ICR_LSC) {
2518 DPRINTF(WM_DEBUG_LINK,
2519 ("%s: LINK: LSC -> mii_tick\n",
2520 sc->sc_dev.dv_xname));
2521 mii_tick(&sc->sc_mii);
2522 } else if (icr & ICR_RXSEQ) {
2523 DPRINTF(WM_DEBUG_LINK,
2524 ("%s: LINK Receive sequence error\n",
2525 sc->sc_dev.dv_xname));
2526 }
2527 return;
2528 }
2529
2530 /*
2531 * If we are now receiving /C/, check for link again in
2532 * a couple of link clock ticks.
2533 */
2534 if (icr & ICR_RXCFG) {
2535 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2536 sc->sc_dev.dv_xname));
2537 sc->sc_tbi_anstate = 2;
2538 }
2539
2540 if (icr & ICR_LSC) {
2541 status = CSR_READ(sc, WMREG_STATUS);
2542 if (status & STATUS_LU) {
2543 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2544 sc->sc_dev.dv_xname,
2545 (status & STATUS_FD) ? "FDX" : "HDX"));
2546 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2547 sc->sc_fcrtl &= ~FCRTL_XONE;
2548 if (status & STATUS_FD)
2549 sc->sc_tctl |=
2550 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2551 else
2552 sc->sc_tctl |=
2553 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2554 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2555 sc->sc_fcrtl |= FCRTL_XONE;
2556 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2557 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2558 WMREG_OLD_FCRTL : WMREG_FCRTL,
2559 sc->sc_fcrtl);
2560 sc->sc_tbi_linkup = 1;
2561 } else {
2562 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2563 sc->sc_dev.dv_xname));
2564 sc->sc_tbi_linkup = 0;
2565 }
2566 sc->sc_tbi_anstate = 2;
2567 wm_tbi_set_linkled(sc);
2568 } else if (icr & ICR_RXSEQ) {
2569 DPRINTF(WM_DEBUG_LINK,
2570 ("%s: LINK: Receive sequence error\n",
2571 sc->sc_dev.dv_xname));
2572 }
2573 }
2574
2575 /*
2576 * wm_tick:
2577 *
2578 * One second timer, used to check link status, sweep up
2579 * completed transmit jobs, etc.
2580 */
2581 static void
2582 wm_tick(void *arg)
2583 {
2584 struct wm_softc *sc = arg;
2585 int s;
2586
2587 s = splnet();
2588
2589 if (sc->sc_type >= WM_T_82542_2_1) {
2590 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2591 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2592 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2593 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2594 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2595 }
2596
2597 if (sc->sc_flags & WM_F_HAS_MII)
2598 mii_tick(&sc->sc_mii);
2599 else
2600 wm_tbi_check_link(sc);
2601
2602 splx(s);
2603
2604 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2605 }
2606
2607 /*
2608 * wm_reset:
2609 *
2610 * Reset the i82542 chip.
2611 */
2612 static void
2613 wm_reset(struct wm_softc *sc)
2614 {
2615 int i;
2616
2617 /*
2618 * Allocate on-chip memory according to the MTU size.
2619 * The Packet Buffer Allocation register must be written
2620 * before the chip is reset.
2621 */
2622 switch (sc->sc_type) {
2623 case WM_T_82547:
2624 case WM_T_82547_2:
2625 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2626 PBA_22K : PBA_30K;
2627 sc->sc_txfifo_head = 0;
2628 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2629 sc->sc_txfifo_size =
2630 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2631 sc->sc_txfifo_stall = 0;
2632 break;
2633 case WM_T_82571:
2634 case WM_T_82572:
2635 sc->sc_pba = PBA_32K;
2636 break;
2637 case WM_T_82573:
2638 sc->sc_pba = PBA_12K;
2639 break;
2640 default:
2641 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2642 PBA_40K : PBA_48K;
2643 break;
2644 }
2645 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2646
2647 switch (sc->sc_type) {
2648 case WM_T_82544:
2649 case WM_T_82540:
2650 case WM_T_82545:
2651 case WM_T_82546:
2652 case WM_T_82541:
2653 case WM_T_82541_2:
2654 /*
2655 * On some chipsets, a reset through a memory-mapped write
2656 * cycle can cause the chip to reset before completing the
2657 * write cycle. This causes major headache that can be
2658 * avoided by issuing the reset via indirect register writes
2659 * through I/O space.
2660 *
2661 * So, if we successfully mapped the I/O BAR at attach time,
2662 * use that. Otherwise, try our luck with a memory-mapped
2663 * reset.
2664 */
2665 if (sc->sc_flags & WM_F_IOH_VALID)
2666 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2667 else
2668 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2669 break;
2670
2671 case WM_T_82545_3:
2672 case WM_T_82546_3:
2673 /* Use the shadow control register on these chips. */
2674 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2675 break;
2676
2677 default:
2678 /* Everything else can safely use the documented method. */
2679 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2680 break;
2681 }
2682 delay(10000);
2683
2684 for (i = 0; i < 1000; i++) {
2685 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2686 return;
2687 delay(20);
2688 }
2689
2690 if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2691 log(LOG_ERR, "%s: reset failed to complete\n",
2692 sc->sc_dev.dv_xname);
2693 }
2694
2695 /*
2696 * wm_init: [ifnet interface function]
2697 *
2698 * Initialize the interface. Must be called at splnet().
2699 */
2700 static int
2701 wm_init(struct ifnet *ifp)
2702 {
2703 struct wm_softc *sc = ifp->if_softc;
2704 struct wm_rxsoft *rxs;
2705 int i, error = 0;
2706 uint32_t reg;
2707
2708 /*
2709 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2710 * There is a small but measurable benefit to avoiding the adjusment
2711 * of the descriptor so that the headers are aligned, for normal mtu,
2712 * on such platforms. One possibility is that the DMA itself is
2713 * slightly more efficient if the front of the entire packet (instead
2714 * of the front of the headers) is aligned.
2715 *
2716 * Note we must always set align_tweak to 0 if we are using
2717 * jumbo frames.
2718 */
2719 #ifdef __NO_STRICT_ALIGNMENT
2720 sc->sc_align_tweak = 0;
2721 #else
2722 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2723 sc->sc_align_tweak = 0;
2724 else
2725 sc->sc_align_tweak = 2;
2726 #endif /* __NO_STRICT_ALIGNMENT */
2727
2728 /* Cancel any pending I/O. */
2729 wm_stop(ifp, 0);
2730
2731 /* Reset the chip to a known state. */
2732 wm_reset(sc);
2733
2734 /* Initialize the transmit descriptor ring. */
2735 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2736 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2737 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2738 sc->sc_txfree = WM_NTXDESC(sc);
2739 sc->sc_txnext = 0;
2740
2741 if (sc->sc_type < WM_T_82543) {
2742 CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2743 CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2744 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2745 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2746 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2747 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2748 } else {
2749 CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2750 CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2751 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2752 CSR_WRITE(sc, WMREG_TDH, 0);
2753 CSR_WRITE(sc, WMREG_TDT, 0);
2754 CSR_WRITE(sc, WMREG_TIDV, 64);
2755 CSR_WRITE(sc, WMREG_TADV, 128);
2756
2757 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2758 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2759 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2760 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2761 }
2762 CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2763 CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2764
2765 /* Initialize the transmit job descriptors. */
2766 for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2767 sc->sc_txsoft[i].txs_mbuf = NULL;
2768 sc->sc_txsfree = WM_TXQUEUELEN(sc);
2769 sc->sc_txsnext = 0;
2770 sc->sc_txsdirty = 0;
2771
2772 /*
2773 * Initialize the receive descriptor and receive job
2774 * descriptor rings.
2775 */
2776 if (sc->sc_type < WM_T_82543) {
2777 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2778 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2779 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2780 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2781 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2782 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2783
2784 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2785 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2786 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2787 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2788 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2789 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2790 } else {
2791 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2792 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2793 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2794 CSR_WRITE(sc, WMREG_RDH, 0);
2795 CSR_WRITE(sc, WMREG_RDT, 0);
2796 CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
2797 CSR_WRITE(sc, WMREG_RADV, 128);
2798 }
2799 for (i = 0; i < WM_NRXDESC; i++) {
2800 rxs = &sc->sc_rxsoft[i];
2801 if (rxs->rxs_mbuf == NULL) {
2802 if ((error = wm_add_rxbuf(sc, i)) != 0) {
2803 log(LOG_ERR, "%s: unable to allocate or map rx "
2804 "buffer %d, error = %d\n",
2805 sc->sc_dev.dv_xname, i, error);
2806 /*
2807 * XXX Should attempt to run with fewer receive
2808 * XXX buffers instead of just failing.
2809 */
2810 wm_rxdrain(sc);
2811 goto out;
2812 }
2813 } else
2814 WM_INIT_RXDESC(sc, i);
2815 }
2816 sc->sc_rxptr = 0;
2817 sc->sc_rxdiscard = 0;
2818 WM_RXCHAIN_RESET(sc);
2819
2820 /*
2821 * Clear out the VLAN table -- we don't use it (yet).
2822 */
2823 CSR_WRITE(sc, WMREG_VET, 0);
2824 for (i = 0; i < WM_VLAN_TABSIZE; i++)
2825 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2826
2827 /*
2828 * Set up flow-control parameters.
2829 *
2830 * XXX Values could probably stand some tuning.
2831 */
2832 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2833 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2834 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2835
2836 sc->sc_fcrtl = FCRTL_DFLT;
2837 if (sc->sc_type < WM_T_82543) {
2838 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2839 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2840 } else {
2841 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2842 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2843 }
2844 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2845
2846 #if 0 /* XXXJRT */
2847 /* Deal with VLAN enables. */
2848 if (VLAN_ATTACHED(&sc->sc_ethercom))
2849 sc->sc_ctrl |= CTRL_VME;
2850 else
2851 #endif /* XXXJRT */
2852 sc->sc_ctrl &= ~CTRL_VME;
2853
2854 /* Write the control registers. */
2855 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2856 #if 0
2857 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2858 #endif
2859
2860 /*
2861 * Set up checksum offload parameters.
2862 */
2863 reg = CSR_READ(sc, WMREG_RXCSUM);
2864 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
2865 reg |= RXCSUM_IPOFL;
2866 else
2867 reg &= ~RXCSUM_IPOFL;
2868 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2869 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2870 else {
2871 reg &= ~RXCSUM_TUOFL;
2872 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
2873 reg &= ~RXCSUM_IPOFL;
2874 }
2875 CSR_WRITE(sc, WMREG_RXCSUM, reg);
2876
2877 /*
2878 * Set up the interrupt registers.
2879 */
2880 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2881 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2882 ICR_RXO | ICR_RXT0;
2883 if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2884 sc->sc_icr |= ICR_RXCFG;
2885 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2886
2887 /* Set up the inter-packet gap. */
2888 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2889
2890 if (sc->sc_type >= WM_T_82543) {
2891 /* Set up the interrupt throttling register (units of 256ns) */
2892 sc->sc_itr = 1000000000 / (7000 * 256);
2893 CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
2894 }
2895
2896 #if 0 /* XXXJRT */
2897 /* Set the VLAN ethernetype. */
2898 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2899 #endif
2900
2901 /*
2902 * Set up the transmit control register; we start out with
2903 * a collision distance suitable for FDX, but update it whe
2904 * we resolve the media type.
2905 */
2906 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2907 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2908 if (sc->sc_type >= WM_T_82571)
2909 sc->sc_tctl |= TCTL_MULR;
2910 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2911
2912 /* Set the media. */
2913 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2914
2915 /*
2916 * Set up the receive control register; we actually program
2917 * the register when we set the receive filter. Use multicast
2918 * address offset type 0.
2919 *
2920 * Only the i82544 has the ability to strip the incoming
2921 * CRC, so we don't enable that feature.
2922 */
2923 sc->sc_mchash_type = 0;
2924 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
2925 | RCTL_MO(sc->sc_mchash_type);
2926
2927 /* 82573 doesn't support jumbo frame */
2928 if (sc->sc_type != WM_T_82573)
2929 sc->sc_rctl |= RCTL_LPE;
2930
2931 if (MCLBYTES == 2048) {
2932 sc->sc_rctl |= RCTL_2k;
2933 } else {
2934 if (sc->sc_type >= WM_T_82543) {
2935 switch(MCLBYTES) {
2936 case 4096:
2937 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2938 break;
2939 case 8192:
2940 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2941 break;
2942 case 16384:
2943 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2944 break;
2945 default:
2946 panic("wm_init: MCLBYTES %d unsupported",
2947 MCLBYTES);
2948 break;
2949 }
2950 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
2951 }
2952
2953 /* Set the receive filter. */
2954 wm_set_filter(sc);
2955
2956 /* Start the one second link check clock. */
2957 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2958
2959 /* ...all done! */
2960 ifp->if_flags |= IFF_RUNNING;
2961 ifp->if_flags &= ~IFF_OACTIVE;
2962
2963 out:
2964 if (error)
2965 log(LOG_ERR, "%s: interface not running\n",
2966 sc->sc_dev.dv_xname);
2967 return (error);
2968 }
2969
2970 /*
2971 * wm_rxdrain:
2972 *
2973 * Drain the receive queue.
2974 */
2975 static void
2976 wm_rxdrain(struct wm_softc *sc)
2977 {
2978 struct wm_rxsoft *rxs;
2979 int i;
2980
2981 for (i = 0; i < WM_NRXDESC; i++) {
2982 rxs = &sc->sc_rxsoft[i];
2983 if (rxs->rxs_mbuf != NULL) {
2984 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2985 m_freem(rxs->rxs_mbuf);
2986 rxs->rxs_mbuf = NULL;
2987 }
2988 }
2989 }
2990
2991 /*
2992 * wm_stop: [ifnet interface function]
2993 *
2994 * Stop transmission on the interface.
2995 */
2996 static void
2997 wm_stop(struct ifnet *ifp, int disable)
2998 {
2999 struct wm_softc *sc = ifp->if_softc;
3000 struct wm_txsoft *txs;
3001 int i;
3002
3003 /* Stop the one second clock. */
3004 callout_stop(&sc->sc_tick_ch);
3005
3006 /* Stop the 82547 Tx FIFO stall check timer. */
3007 if (sc->sc_type == WM_T_82547)
3008 callout_stop(&sc->sc_txfifo_ch);
3009
3010 if (sc->sc_flags & WM_F_HAS_MII) {
3011 /* Down the MII. */
3012 mii_down(&sc->sc_mii);
3013 }
3014
3015 /* Stop the transmit and receive processes. */
3016 CSR_WRITE(sc, WMREG_TCTL, 0);
3017 CSR_WRITE(sc, WMREG_RCTL, 0);
3018
3019 /*
3020 * Clear the interrupt mask to ensure the device cannot assert its
3021 * interrupt line.
3022 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
3023 * any currently pending or shared interrupt.
3024 */
3025 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
3026 sc->sc_icr = 0;
3027
3028 /* Release any queued transmit buffers. */
3029 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
3030 txs = &sc->sc_txsoft[i];
3031 if (txs->txs_mbuf != NULL) {
3032 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3033 m_freem(txs->txs_mbuf);
3034 txs->txs_mbuf = NULL;
3035 }
3036 }
3037
3038 if (disable)
3039 wm_rxdrain(sc);
3040
3041 /* Mark the interface as down and cancel the watchdog timer. */
3042 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3043 ifp->if_timer = 0;
3044 }
3045
3046 /*
3047 * wm_acquire_eeprom:
3048 *
3049 * Perform the EEPROM handshake required on some chips.
3050 */
3051 static int
3052 wm_acquire_eeprom(struct wm_softc *sc)
3053 {
3054 uint32_t reg;
3055 int x;
3056
3057 /* always success */
3058 if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
3059 return 0;
3060
3061 if (wm_get_eeprom_semaphore(sc))
3062 return 1;
3063
3064 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
3065 reg = CSR_READ(sc, WMREG_EECD);
3066
3067 /* Request EEPROM access. */
3068 reg |= EECD_EE_REQ;
3069 CSR_WRITE(sc, WMREG_EECD, reg);
3070
3071 /* ..and wait for it to be granted. */
3072 for (x = 0; x < 1000; x++) {
3073 reg = CSR_READ(sc, WMREG_EECD);
3074 if (reg & EECD_EE_GNT)
3075 break;
3076 delay(5);
3077 }
3078 if ((reg & EECD_EE_GNT) == 0) {
3079 aprint_error("%s: could not acquire EEPROM GNT\n",
3080 sc->sc_dev.dv_xname);
3081 reg &= ~EECD_EE_REQ;
3082 CSR_WRITE(sc, WMREG_EECD, reg);
3083 wm_put_eeprom_semaphore(sc);
3084 return (1);
3085 }
3086 }
3087
3088 return (0);
3089 }
3090
3091 /*
3092 * wm_release_eeprom:
3093 *
3094 * Release the EEPROM mutex.
3095 */
3096 static void
3097 wm_release_eeprom(struct wm_softc *sc)
3098 {
3099 uint32_t reg;
3100
3101 /* always success */
3102 if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
3103 return;
3104
3105 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
3106 reg = CSR_READ(sc, WMREG_EECD);
3107 reg &= ~EECD_EE_REQ;
3108 CSR_WRITE(sc, WMREG_EECD, reg);
3109 }
3110
3111 wm_put_eeprom_semaphore(sc);
3112 }
3113
3114 /*
3115 * wm_eeprom_sendbits:
3116 *
3117 * Send a series of bits to the EEPROM.
3118 */
3119 static void
3120 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
3121 {
3122 uint32_t reg;
3123 int x;
3124
3125 reg = CSR_READ(sc, WMREG_EECD);
3126
3127 for (x = nbits; x > 0; x--) {
3128 if (bits & (1U << (x - 1)))
3129 reg |= EECD_DI;
3130 else
3131 reg &= ~EECD_DI;
3132 CSR_WRITE(sc, WMREG_EECD, reg);
3133 delay(2);
3134 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3135 delay(2);
3136 CSR_WRITE(sc, WMREG_EECD, reg);
3137 delay(2);
3138 }
3139 }
3140
3141 /*
3142 * wm_eeprom_recvbits:
3143 *
3144 * Receive a series of bits from the EEPROM.
3145 */
3146 static void
3147 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
3148 {
3149 uint32_t reg, val;
3150 int x;
3151
3152 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
3153
3154 val = 0;
3155 for (x = nbits; x > 0; x--) {
3156 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3157 delay(2);
3158 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
3159 val |= (1U << (x - 1));
3160 CSR_WRITE(sc, WMREG_EECD, reg);
3161 delay(2);
3162 }
3163 *valp = val;
3164 }
3165
3166 /*
3167 * wm_read_eeprom_uwire:
3168 *
3169 * Read a word from the EEPROM using the MicroWire protocol.
3170 */
3171 static int
3172 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3173 {
3174 uint32_t reg, val;
3175 int i;
3176
3177 for (i = 0; i < wordcnt; i++) {
3178 /* Clear SK and DI. */
3179 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
3180 CSR_WRITE(sc, WMREG_EECD, reg);
3181
3182 /* Set CHIP SELECT. */
3183 reg |= EECD_CS;
3184 CSR_WRITE(sc, WMREG_EECD, reg);
3185 delay(2);
3186
3187 /* Shift in the READ command. */
3188 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
3189
3190 /* Shift in address. */
3191 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
3192
3193 /* Shift out the data. */
3194 wm_eeprom_recvbits(sc, &val, 16);
3195 data[i] = val & 0xffff;
3196
3197 /* Clear CHIP SELECT. */
3198 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
3199 CSR_WRITE(sc, WMREG_EECD, reg);
3200 delay(2);
3201 }
3202
3203 return (0);
3204 }
3205
3206 /*
3207 * wm_spi_eeprom_ready:
3208 *
3209 * Wait for a SPI EEPROM to be ready for commands.
3210 */
3211 static int
3212 wm_spi_eeprom_ready(struct wm_softc *sc)
3213 {
3214 uint32_t val;
3215 int usec;
3216
3217 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
3218 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
3219 wm_eeprom_recvbits(sc, &val, 8);
3220 if ((val & SPI_SR_RDY) == 0)
3221 break;
3222 }
3223 if (usec >= SPI_MAX_RETRIES) {
3224 aprint_error("%s: EEPROM failed to become ready\n",
3225 sc->sc_dev.dv_xname);
3226 return (1);
3227 }
3228 return (0);
3229 }
3230
3231 /*
3232 * wm_read_eeprom_spi:
3233 *
3234 * Read a work from the EEPROM using the SPI protocol.
3235 */
3236 static int
3237 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3238 {
3239 uint32_t reg, val;
3240 int i;
3241 uint8_t opc;
3242
3243 /* Clear SK and CS. */
3244 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
3245 CSR_WRITE(sc, WMREG_EECD, reg);
3246 delay(2);
3247
3248 if (wm_spi_eeprom_ready(sc))
3249 return (1);
3250
3251 /* Toggle CS to flush commands. */
3252 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
3253 delay(2);
3254 CSR_WRITE(sc, WMREG_EECD, reg);
3255 delay(2);
3256
3257 opc = SPI_OPC_READ;
3258 if (sc->sc_ee_addrbits == 8 && word >= 128)
3259 opc |= SPI_OPC_A8;
3260
3261 wm_eeprom_sendbits(sc, opc, 8);
3262 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
3263
3264 for (i = 0; i < wordcnt; i++) {
3265 wm_eeprom_recvbits(sc, &val, 16);
3266 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
3267 }
3268
3269 /* Raise CS and clear SK. */
3270 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3271 CSR_WRITE(sc, WMREG_EECD, reg);
3272 delay(2);
3273
3274 return (0);
3275 }
3276
3277 #define EEPROM_CHECKSUM 0xBABA
3278 #define EEPROM_SIZE 0x0040
3279
3280 /*
3281 * wm_validate_eeprom_checksum
3282 *
3283 * The checksum is defined as the sum of the first 64 (16 bit) words.
3284 */
3285 static int
3286 wm_validate_eeprom_checksum(struct wm_softc *sc)
3287 {
3288 uint16_t checksum;
3289 uint16_t eeprom_data;
3290 int i;
3291
3292 checksum = 0;
3293
3294 for (i = 0; i < EEPROM_SIZE; i++) {
3295 if (wm_read_eeprom(sc, i, 1, &eeprom_data))
3296 return 1;
3297 checksum += eeprom_data;
3298 }
3299
3300 if (checksum != (uint16_t) EEPROM_CHECKSUM)
3301 return 1;
3302
3303 return 0;
3304 }
3305
3306 /*
3307 * wm_read_eeprom:
3308 *
3309 * Read data from the serial EEPROM.
3310 */
3311 static int
3312 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3313 {
3314 int rv;
3315
3316 if (sc->sc_flags & WM_F_EEPROM_INVALID)
3317 return 1;
3318
3319 if (wm_acquire_eeprom(sc))
3320 return 1;
3321
3322 if (sc->sc_flags & WM_F_EEPROM_EERDEEWR)
3323 rv = wm_read_eeprom_eerd(sc, word, wordcnt, data);
3324 else if (sc->sc_flags & WM_F_EEPROM_SPI)
3325 rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3326 else
3327 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3328
3329 wm_release_eeprom(sc);
3330 return rv;
3331 }
3332
3333 static int
3334 wm_read_eeprom_eerd(struct wm_softc *sc, int offset, int wordcnt,
3335 uint16_t *data)
3336 {
3337 int i, eerd = 0;
3338 int error = 0;
3339
3340 for (i = 0; i < wordcnt; i++) {
3341 eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
3342
3343 CSR_WRITE(sc, WMREG_EERD, eerd);
3344 error = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
3345 if (error != 0)
3346 break;
3347
3348 data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
3349 }
3350
3351 return error;
3352 }
3353
3354 static int
3355 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
3356 {
3357 uint32_t attempts = 100000;
3358 uint32_t i, reg = 0;
3359 int32_t done = -1;
3360
3361 for (i = 0; i < attempts; i++) {
3362 reg = CSR_READ(sc, rw);
3363
3364 if (reg & EERD_DONE) {
3365 done = 0;
3366 break;
3367 }
3368 delay(5);
3369 }
3370
3371 return done;
3372 }
3373
3374 /*
3375 * wm_add_rxbuf:
3376 *
3377 * Add a receive buffer to the indiciated descriptor.
3378 */
3379 static int
3380 wm_add_rxbuf(struct wm_softc *sc, int idx)
3381 {
3382 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3383 struct mbuf *m;
3384 int error;
3385
3386 MGETHDR(m, M_DONTWAIT, MT_DATA);
3387 if (m == NULL)
3388 return (ENOBUFS);
3389
3390 MCLGET(m, M_DONTWAIT);
3391 if ((m->m_flags & M_EXT) == 0) {
3392 m_freem(m);
3393 return (ENOBUFS);
3394 }
3395
3396 if (rxs->rxs_mbuf != NULL)
3397 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3398
3399 rxs->rxs_mbuf = m;
3400
3401 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3402 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3403 BUS_DMA_READ|BUS_DMA_NOWAIT);
3404 if (error) {
3405 /* XXX XXX XXX */
3406 printf("%s: unable to load rx DMA map %d, error = %d\n",
3407 sc->sc_dev.dv_xname, idx, error);
3408 panic("wm_add_rxbuf");
3409 }
3410
3411 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3412 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3413
3414 WM_INIT_RXDESC(sc, idx);
3415
3416 return (0);
3417 }
3418
3419 /*
3420 * wm_set_ral:
3421 *
3422 * Set an entery in the receive address list.
3423 */
3424 static void
3425 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3426 {
3427 uint32_t ral_lo, ral_hi;
3428
3429 if (enaddr != NULL) {
3430 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3431 (enaddr[3] << 24);
3432 ral_hi = enaddr[4] | (enaddr[5] << 8);
3433 ral_hi |= RAL_AV;
3434 } else {
3435 ral_lo = 0;
3436 ral_hi = 0;
3437 }
3438
3439 if (sc->sc_type >= WM_T_82544) {
3440 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3441 ral_lo);
3442 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3443 ral_hi);
3444 } else {
3445 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3446 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3447 }
3448 }
3449
3450 /*
3451 * wm_mchash:
3452 *
3453 * Compute the hash of the multicast address for the 4096-bit
3454 * multicast filter.
3455 */
3456 static uint32_t
3457 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3458 {
3459 static const int lo_shift[4] = { 4, 3, 2, 0 };
3460 static const int hi_shift[4] = { 4, 5, 6, 8 };
3461 uint32_t hash;
3462
3463 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3464 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3465
3466 return (hash & 0xfff);
3467 }
3468
3469 /*
3470 * wm_set_filter:
3471 *
3472 * Set up the receive filter.
3473 */
3474 static void
3475 wm_set_filter(struct wm_softc *sc)
3476 {
3477 struct ethercom *ec = &sc->sc_ethercom;
3478 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3479 struct ether_multi *enm;
3480 struct ether_multistep step;
3481 bus_addr_t mta_reg;
3482 uint32_t hash, reg, bit;
3483 int i;
3484
3485 if (sc->sc_type >= WM_T_82544)
3486 mta_reg = WMREG_CORDOVA_MTA;
3487 else
3488 mta_reg = WMREG_MTA;
3489
3490 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3491
3492 if (ifp->if_flags & IFF_BROADCAST)
3493 sc->sc_rctl |= RCTL_BAM;
3494 if (ifp->if_flags & IFF_PROMISC) {
3495 sc->sc_rctl |= RCTL_UPE;
3496 goto allmulti;
3497 }
3498
3499 /*
3500 * Set the station address in the first RAL slot, and
3501 * clear the remaining slots.
3502 */
3503 wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3504 for (i = 1; i < WM_RAL_TABSIZE; i++)
3505 wm_set_ral(sc, NULL, i);
3506
3507 /* Clear out the multicast table. */
3508 for (i = 0; i < WM_MC_TABSIZE; i++)
3509 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3510
3511 ETHER_FIRST_MULTI(step, ec, enm);
3512 while (enm != NULL) {
3513 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3514 /*
3515 * We must listen to a range of multicast addresses.
3516 * For now, just accept all multicasts, rather than
3517 * trying to set only those filter bits needed to match
3518 * the range. (At this time, the only use of address
3519 * ranges is for IP multicast routing, for which the
3520 * range is big enough to require all bits set.)
3521 */
3522 goto allmulti;
3523 }
3524
3525 hash = wm_mchash(sc, enm->enm_addrlo);
3526
3527 reg = (hash >> 5) & 0x7f;
3528 bit = hash & 0x1f;
3529
3530 hash = CSR_READ(sc, mta_reg + (reg << 2));
3531 hash |= 1U << bit;
3532
3533 /* XXX Hardware bug?? */
3534 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3535 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3536 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3537 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3538 } else
3539 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3540
3541 ETHER_NEXT_MULTI(step, enm);
3542 }
3543
3544 ifp->if_flags &= ~IFF_ALLMULTI;
3545 goto setit;
3546
3547 allmulti:
3548 ifp->if_flags |= IFF_ALLMULTI;
3549 sc->sc_rctl |= RCTL_MPE;
3550
3551 setit:
3552 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3553 }
3554
3555 /*
3556 * wm_tbi_mediainit:
3557 *
3558 * Initialize media for use on 1000BASE-X devices.
3559 */
3560 static void
3561 wm_tbi_mediainit(struct wm_softc *sc)
3562 {
3563 const char *sep = "";
3564
3565 if (sc->sc_type < WM_T_82543)
3566 sc->sc_tipg = TIPG_WM_DFLT;
3567 else
3568 sc->sc_tipg = TIPG_LG_DFLT;
3569
3570 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3571 wm_tbi_mediastatus);
3572
3573 /*
3574 * SWD Pins:
3575 *
3576 * 0 = Link LED (output)
3577 * 1 = Loss Of Signal (input)
3578 */
3579 sc->sc_ctrl |= CTRL_SWDPIO(0);
3580 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3581
3582 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3583
3584 #define ADD(ss, mm, dd) \
3585 do { \
3586 aprint_normal("%s%s", sep, ss); \
3587 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
3588 sep = ", "; \
3589 } while (/*CONSTCOND*/0)
3590
3591 aprint_normal("%s: ", sc->sc_dev.dv_xname);
3592 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3593 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3594 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3595 aprint_normal("\n");
3596
3597 #undef ADD
3598
3599 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3600 }
3601
3602 /*
3603 * wm_tbi_mediastatus: [ifmedia interface function]
3604 *
3605 * Get the current interface media status on a 1000BASE-X device.
3606 */
3607 static void
3608 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3609 {
3610 struct wm_softc *sc = ifp->if_softc;
3611 uint32_t ctrl;
3612
3613 ifmr->ifm_status = IFM_AVALID;
3614 ifmr->ifm_active = IFM_ETHER;
3615
3616 if (sc->sc_tbi_linkup == 0) {
3617 ifmr->ifm_active |= IFM_NONE;
3618 return;
3619 }
3620
3621 ifmr->ifm_status |= IFM_ACTIVE;
3622 ifmr->ifm_active |= IFM_1000_SX;
3623 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3624 ifmr->ifm_active |= IFM_FDX;
3625 ctrl = CSR_READ(sc, WMREG_CTRL);
3626 if (ctrl & CTRL_RFCE)
3627 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3628 if (ctrl & CTRL_TFCE)
3629 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3630 }
3631
3632 /*
3633 * wm_tbi_mediachange: [ifmedia interface function]
3634 *
3635 * Set hardware to newly-selected media on a 1000BASE-X device.
3636 */
3637 static int
3638 wm_tbi_mediachange(struct ifnet *ifp)
3639 {
3640 struct wm_softc *sc = ifp->if_softc;
3641 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3642 uint32_t status;
3643 int i;
3644
3645 sc->sc_txcw = ife->ifm_data;
3646 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3647 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3648 sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3649 sc->sc_txcw |= TXCW_ANE;
3650
3651 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3652 delay(10000);
3653
3654 /* NOTE: CTRL will update TFCE and RFCE automatically. */
3655
3656 sc->sc_tbi_anstate = 0;
3657
3658 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3659 /* Have signal; wait for the link to come up. */
3660 for (i = 0; i < 50; i++) {
3661 delay(10000);
3662 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3663 break;
3664 }
3665
3666 status = CSR_READ(sc, WMREG_STATUS);
3667 if (status & STATUS_LU) {
3668 /* Link is up. */
3669 DPRINTF(WM_DEBUG_LINK,
3670 ("%s: LINK: set media -> link up %s\n",
3671 sc->sc_dev.dv_xname,
3672 (status & STATUS_FD) ? "FDX" : "HDX"));
3673 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3674 sc->sc_fcrtl &= ~FCRTL_XONE;
3675 if (status & STATUS_FD)
3676 sc->sc_tctl |=
3677 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3678 else
3679 sc->sc_tctl |=
3680 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3681 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3682 sc->sc_fcrtl |= FCRTL_XONE;
3683 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3684 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3685 WMREG_OLD_FCRTL : WMREG_FCRTL,
3686 sc->sc_fcrtl);
3687 sc->sc_tbi_linkup = 1;
3688 } else {
3689 /* Link is down. */
3690 DPRINTF(WM_DEBUG_LINK,
3691 ("%s: LINK: set media -> link down\n",
3692 sc->sc_dev.dv_xname));
3693 sc->sc_tbi_linkup = 0;
3694 }
3695 } else {
3696 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3697 sc->sc_dev.dv_xname));
3698 sc->sc_tbi_linkup = 0;
3699 }
3700
3701 wm_tbi_set_linkled(sc);
3702
3703 return (0);
3704 }
3705
3706 /*
3707 * wm_tbi_set_linkled:
3708 *
3709 * Update the link LED on 1000BASE-X devices.
3710 */
3711 static void
3712 wm_tbi_set_linkled(struct wm_softc *sc)
3713 {
3714
3715 if (sc->sc_tbi_linkup)
3716 sc->sc_ctrl |= CTRL_SWDPIN(0);
3717 else
3718 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3719
3720 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3721 }
3722
3723 /*
3724 * wm_tbi_check_link:
3725 *
3726 * Check the link on 1000BASE-X devices.
3727 */
3728 static void
3729 wm_tbi_check_link(struct wm_softc *sc)
3730 {
3731 uint32_t rxcw, ctrl, status;
3732
3733 if (sc->sc_tbi_anstate == 0)
3734 return;
3735 else if (sc->sc_tbi_anstate > 1) {
3736 DPRINTF(WM_DEBUG_LINK,
3737 ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3738 sc->sc_tbi_anstate));
3739 sc->sc_tbi_anstate--;
3740 return;
3741 }
3742
3743 sc->sc_tbi_anstate = 0;
3744
3745 rxcw = CSR_READ(sc, WMREG_RXCW);
3746 ctrl = CSR_READ(sc, WMREG_CTRL);
3747 status = CSR_READ(sc, WMREG_STATUS);
3748
3749 if ((status & STATUS_LU) == 0) {
3750 DPRINTF(WM_DEBUG_LINK,
3751 ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3752 sc->sc_tbi_linkup = 0;
3753 } else {
3754 DPRINTF(WM_DEBUG_LINK,
3755 ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3756 (status & STATUS_FD) ? "FDX" : "HDX"));
3757 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3758 sc->sc_fcrtl &= ~FCRTL_XONE;
3759 if (status & STATUS_FD)
3760 sc->sc_tctl |=
3761 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3762 else
3763 sc->sc_tctl |=
3764 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3765 if (ctrl & CTRL_TFCE)
3766 sc->sc_fcrtl |= FCRTL_XONE;
3767 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3768 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3769 WMREG_OLD_FCRTL : WMREG_FCRTL,
3770 sc->sc_fcrtl);
3771 sc->sc_tbi_linkup = 1;
3772 }
3773
3774 wm_tbi_set_linkled(sc);
3775 }
3776
3777 /*
3778 * wm_gmii_reset:
3779 *
3780 * Reset the PHY.
3781 */
3782 static void
3783 wm_gmii_reset(struct wm_softc *sc)
3784 {
3785 uint32_t reg;
3786
3787 if (sc->sc_type >= WM_T_82544) {
3788 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3789 delay(20000);
3790
3791 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3792 delay(20000);
3793 } else {
3794 /* The PHY reset pin is active-low. */
3795 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3796 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3797 CTRL_EXT_SWDPIN(4));
3798 reg |= CTRL_EXT_SWDPIO(4);
3799
3800 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3801 delay(10);
3802
3803 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3804 delay(10);
3805
3806 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3807 delay(10);
3808 #if 0
3809 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3810 #endif
3811 }
3812 }
3813
3814 /*
3815 * wm_gmii_mediainit:
3816 *
3817 * Initialize media for use on 1000BASE-T devices.
3818 */
3819 static void
3820 wm_gmii_mediainit(struct wm_softc *sc)
3821 {
3822 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3823
3824 /* We have MII. */
3825 sc->sc_flags |= WM_F_HAS_MII;
3826
3827 sc->sc_tipg = TIPG_1000T_DFLT;
3828
3829 /*
3830 * Let the chip set speed/duplex on its own based on
3831 * signals from the PHY.
3832 */
3833 sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3834 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3835
3836 /* Initialize our media structures and probe the GMII. */
3837 sc->sc_mii.mii_ifp = ifp;
3838
3839 if (sc->sc_type >= WM_T_82544) {
3840 sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3841 sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3842 } else {
3843 sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3844 sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3845 }
3846 sc->sc_mii.mii_statchg = wm_gmii_statchg;
3847
3848 wm_gmii_reset(sc);
3849
3850 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3851 wm_gmii_mediastatus);
3852
3853 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3854 MII_OFFSET_ANY, MIIF_DOPAUSE);
3855 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3856 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3857 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3858 } else
3859 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3860 }
3861
3862 /*
3863 * wm_gmii_mediastatus: [ifmedia interface function]
3864 *
3865 * Get the current interface media status on a 1000BASE-T device.
3866 */
3867 static void
3868 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3869 {
3870 struct wm_softc *sc = ifp->if_softc;
3871
3872 mii_pollstat(&sc->sc_mii);
3873 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3874 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3875 sc->sc_flowflags;
3876 }
3877
3878 /*
3879 * wm_gmii_mediachange: [ifmedia interface function]
3880 *
3881 * Set hardware to newly-selected media on a 1000BASE-T device.
3882 */
3883 static int
3884 wm_gmii_mediachange(struct ifnet *ifp)
3885 {
3886 struct wm_softc *sc = ifp->if_softc;
3887
3888 if (ifp->if_flags & IFF_UP)
3889 mii_mediachg(&sc->sc_mii);
3890 return (0);
3891 }
3892
3893 #define MDI_IO CTRL_SWDPIN(2)
3894 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
3895 #define MDI_CLK CTRL_SWDPIN(3)
3896
3897 static void
3898 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3899 {
3900 uint32_t i, v;
3901
3902 v = CSR_READ(sc, WMREG_CTRL);
3903 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3904 v |= MDI_DIR | CTRL_SWDPIO(3);
3905
3906 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3907 if (data & i)
3908 v |= MDI_IO;
3909 else
3910 v &= ~MDI_IO;
3911 CSR_WRITE(sc, WMREG_CTRL, v);
3912 delay(10);
3913 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3914 delay(10);
3915 CSR_WRITE(sc, WMREG_CTRL, v);
3916 delay(10);
3917 }
3918 }
3919
3920 static uint32_t
3921 i82543_mii_recvbits(struct wm_softc *sc)
3922 {
3923 uint32_t v, i, data = 0;
3924
3925 v = CSR_READ(sc, WMREG_CTRL);
3926 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3927 v |= CTRL_SWDPIO(3);
3928
3929 CSR_WRITE(sc, WMREG_CTRL, v);
3930 delay(10);
3931 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3932 delay(10);
3933 CSR_WRITE(sc, WMREG_CTRL, v);
3934 delay(10);
3935
3936 for (i = 0; i < 16; i++) {
3937 data <<= 1;
3938 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3939 delay(10);
3940 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3941 data |= 1;
3942 CSR_WRITE(sc, WMREG_CTRL, v);
3943 delay(10);
3944 }
3945
3946 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3947 delay(10);
3948 CSR_WRITE(sc, WMREG_CTRL, v);
3949 delay(10);
3950
3951 return (data);
3952 }
3953
3954 #undef MDI_IO
3955 #undef MDI_DIR
3956 #undef MDI_CLK
3957
3958 /*
3959 * wm_gmii_i82543_readreg: [mii interface function]
3960 *
3961 * Read a PHY register on the GMII (i82543 version).
3962 */
3963 static int
3964 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3965 {
3966 struct wm_softc *sc = (void *) self;
3967 int rv;
3968
3969 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3970 i82543_mii_sendbits(sc, reg | (phy << 5) |
3971 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3972 rv = i82543_mii_recvbits(sc) & 0xffff;
3973
3974 DPRINTF(WM_DEBUG_GMII,
3975 ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3976 sc->sc_dev.dv_xname, phy, reg, rv));
3977
3978 return (rv);
3979 }
3980
3981 /*
3982 * wm_gmii_i82543_writereg: [mii interface function]
3983 *
3984 * Write a PHY register on the GMII (i82543 version).
3985 */
3986 static void
3987 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3988 {
3989 struct wm_softc *sc = (void *) self;
3990
3991 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3992 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3993 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3994 (MII_COMMAND_START << 30), 32);
3995 }
3996
3997 /*
3998 * wm_gmii_i82544_readreg: [mii interface function]
3999 *
4000 * Read a PHY register on the GMII.
4001 */
4002 static int
4003 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
4004 {
4005 struct wm_softc *sc = (void *) self;
4006 uint32_t mdic = 0;
4007 int i, rv;
4008
4009 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
4010 MDIC_REGADD(reg));
4011
4012 for (i = 0; i < 100; i++) {
4013 mdic = CSR_READ(sc, WMREG_MDIC);
4014 if (mdic & MDIC_READY)
4015 break;
4016 delay(10);
4017 }
4018
4019 if ((mdic & MDIC_READY) == 0) {
4020 log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
4021 sc->sc_dev.dv_xname, phy, reg);
4022 rv = 0;
4023 } else if (mdic & MDIC_E) {
4024 #if 0 /* This is normal if no PHY is present. */
4025 log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
4026 sc->sc_dev.dv_xname, phy, reg);
4027 #endif
4028 rv = 0;
4029 } else {
4030 rv = MDIC_DATA(mdic);
4031 if (rv == 0xffff)
4032 rv = 0;
4033 }
4034
4035 return (rv);
4036 }
4037
4038 /*
4039 * wm_gmii_i82544_writereg: [mii interface function]
4040 *
4041 * Write a PHY register on the GMII.
4042 */
4043 static void
4044 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
4045 {
4046 struct wm_softc *sc = (void *) self;
4047 uint32_t mdic = 0;
4048 int i;
4049
4050 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
4051 MDIC_REGADD(reg) | MDIC_DATA(val));
4052
4053 for (i = 0; i < 100; i++) {
4054 mdic = CSR_READ(sc, WMREG_MDIC);
4055 if (mdic & MDIC_READY)
4056 break;
4057 delay(10);
4058 }
4059
4060 if ((mdic & MDIC_READY) == 0)
4061 log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
4062 sc->sc_dev.dv_xname, phy, reg);
4063 else if (mdic & MDIC_E)
4064 log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
4065 sc->sc_dev.dv_xname, phy, reg);
4066 }
4067
4068 /*
4069 * wm_gmii_statchg: [mii interface function]
4070 *
4071 * Callback from MII layer when media changes.
4072 */
4073 static void
4074 wm_gmii_statchg(struct device *self)
4075 {
4076 struct wm_softc *sc = (void *) self;
4077 struct mii_data *mii = &sc->sc_mii;
4078
4079 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
4080 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
4081 sc->sc_fcrtl &= ~FCRTL_XONE;
4082
4083 /*
4084 * Get flow control negotiation result.
4085 */
4086 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
4087 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
4088 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
4089 mii->mii_media_active &= ~IFM_ETH_FMASK;
4090 }
4091
4092 if (sc->sc_flowflags & IFM_FLOW) {
4093 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
4094 sc->sc_ctrl |= CTRL_TFCE;
4095 sc->sc_fcrtl |= FCRTL_XONE;
4096 }
4097 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
4098 sc->sc_ctrl |= CTRL_RFCE;
4099 }
4100
4101 if (sc->sc_mii.mii_media_active & IFM_FDX) {
4102 DPRINTF(WM_DEBUG_LINK,
4103 ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
4104 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
4105 } else {
4106 DPRINTF(WM_DEBUG_LINK,
4107 ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
4108 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
4109 }
4110
4111 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4112 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
4113 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
4114 : WMREG_FCRTL, sc->sc_fcrtl);
4115 }
4116
4117 static int
4118 wm_is_onboard_nvm_eeprom(struct wm_softc *sc)
4119 {
4120 uint32_t eecd = 0;
4121
4122 if (sc->sc_type == WM_T_82573) {
4123 eecd = CSR_READ(sc, WMREG_EECD);
4124
4125 /* Isolate bits 15 & 16 */
4126 eecd = ((eecd >> 15) & 0x03);
4127
4128 /* If both bits are set, device is Flash type */
4129 if (eecd == 0x03) {
4130 return 0;
4131 }
4132 }
4133 return 1;
4134 }
4135
4136 static int
4137 wm_get_eeprom_semaphore(struct wm_softc *sc)
4138 {
4139 int32_t timeout;
4140 uint32_t swsm;
4141
4142 if ((sc->sc_flags & WM_F_EEPROM_SEMAPHORE) == 0)
4143 return 0;
4144
4145 /* Get the FW semaphore. */
4146 timeout = 1000 + 1; /* XXX */
4147 while (timeout) {
4148 swsm = CSR_READ(sc, WMREG_SWSM);
4149 swsm |= SWSM_SWESMBI;
4150 CSR_WRITE(sc, WMREG_SWSM, swsm);
4151 /* if we managed to set the bit we got the semaphore. */
4152 swsm = CSR_READ(sc, WMREG_SWSM);
4153 if (swsm & SWSM_SWESMBI)
4154 break;
4155
4156 delay(50);
4157 timeout--;
4158 }
4159
4160 if (timeout == 0) {
4161 /* Release semaphores */
4162 wm_put_eeprom_semaphore(sc);
4163 return 1;
4164 }
4165
4166 return 0;
4167 }
4168
4169 static void
4170 wm_put_eeprom_semaphore(struct wm_softc *sc)
4171 {
4172 uint32_t swsm;
4173
4174 if ((sc->sc_flags & WM_F_EEPROM_SEMAPHORE) == 0)
4175 return;
4176
4177 swsm = CSR_READ(sc, WMREG_SWSM);
4178 swsm &= ~(SWSM_SWESMBI);
4179 CSR_WRITE(sc, WMREG_SWSM, swsm);
4180 }
4181