Home | History | Annotate | Line # | Download | only in pci
if_wm.c revision 1.123
      1 /*	$NetBSD: if_wm.c,v 1.123 2006/06/20 01:16:23 jmcneill Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
     40  *
     41  * TODO (in order of importance):
     42  *
     43  *	- Rework how parameters are loaded from the EEPROM.
     44  *	- Figure out what to do with the i82545GM and i82546GB
     45  *	  SERDES controllers.
     46  *	- Fix hw VLAN assist.
     47  */
     48 
     49 #include <sys/cdefs.h>
     50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.123 2006/06/20 01:16:23 jmcneill Exp $");
     51 
     52 #include "bpfilter.h"
     53 #include "rnd.h"
     54 
     55 #include <sys/param.h>
     56 #include <sys/systm.h>
     57 #include <sys/callout.h>
     58 #include <sys/mbuf.h>
     59 #include <sys/malloc.h>
     60 #include <sys/kernel.h>
     61 #include <sys/socket.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/errno.h>
     64 #include <sys/device.h>
     65 #include <sys/queue.h>
     66 #include <sys/syslog.h>
     67 
     68 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     69 
     70 #if NRND > 0
     71 #include <sys/rnd.h>
     72 #endif
     73 
     74 #include <net/if.h>
     75 #include <net/if_dl.h>
     76 #include <net/if_media.h>
     77 #include <net/if_ether.h>
     78 
     79 #if NBPFILTER > 0
     80 #include <net/bpf.h>
     81 #endif
     82 
     83 #include <netinet/in.h>			/* XXX for struct ip */
     84 #include <netinet/in_systm.h>		/* XXX for struct ip */
     85 #include <netinet/ip.h>			/* XXX for struct ip */
     86 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
     87 
     88 #include <machine/bus.h>
     89 #include <machine/intr.h>
     90 #include <machine/endian.h>
     91 
     92 #include <dev/mii/mii.h>
     93 #include <dev/mii/miivar.h>
     94 #include <dev/mii/mii_bitbang.h>
     95 
     96 #include <dev/pci/pcireg.h>
     97 #include <dev/pci/pcivar.h>
     98 #include <dev/pci/pcidevs.h>
     99 
    100 #include <dev/pci/if_wmreg.h>
    101 
    102 #ifdef WM_DEBUG
    103 #define	WM_DEBUG_LINK		0x01
    104 #define	WM_DEBUG_TX		0x02
    105 #define	WM_DEBUG_RX		0x04
    106 #define	WM_DEBUG_GMII		0x08
    107 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
    108 
    109 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
    110 #else
    111 #define	DPRINTF(x, y)	/* nothing */
    112 #endif /* WM_DEBUG */
    113 
    114 /*
    115  * Transmit descriptor list size.  Due to errata, we can only have
    116  * 256 hardware descriptors in the ring on < 82544, but we use 4096
    117  * on >= 82544.  We tell the upper layers that they can queue a lot
    118  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
    119  * of them at a time.
    120  *
    121  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
    122  * chains containing many small mbufs have been observed in zero-copy
    123  * situations with jumbo frames.
    124  */
    125 #define	WM_NTXSEGS		256
    126 #define	WM_IFQUEUELEN		256
    127 #define	WM_TXQUEUELEN_MAX	64
    128 #define	WM_TXQUEUELEN_MAX_82547	16
    129 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
    130 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
    131 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
    132 #define	WM_NTXDESC_82542	256
    133 #define	WM_NTXDESC_82544	4096
    134 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
    135 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
    136 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
    137 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
    138 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
    139 
    140 #define	WM_MAXTXDMA		round_page(IP_MAXPACKET) /* for TSO */
    141 
    142 /*
    143  * Receive descriptor list size.  We have one Rx buffer for normal
    144  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
    145  * packet.  We allocate 256 receive descriptors, each with a 2k
    146  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
    147  */
    148 #define	WM_NRXDESC		256
    149 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
    150 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
    151 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
    152 
    153 /*
    154  * Control structures are DMA'd to the i82542 chip.  We allocate them in
    155  * a single clump that maps to a single DMA segment to make several things
    156  * easier.
    157  */
    158 struct wm_control_data_82544 {
    159 	/*
    160 	 * The receive descriptors.
    161 	 */
    162 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    163 
    164 	/*
    165 	 * The transmit descriptors.  Put these at the end, because
    166 	 * we might use a smaller number of them.
    167 	 */
    168 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
    169 };
    170 
    171 struct wm_control_data_82542 {
    172 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    173 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
    174 };
    175 
    176 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
    177 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
    178 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
    179 
    180 /*
    181  * Software state for transmit jobs.
    182  */
    183 struct wm_txsoft {
    184 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    185 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    186 	int txs_firstdesc;		/* first descriptor in packet */
    187 	int txs_lastdesc;		/* last descriptor in packet */
    188 	int txs_ndesc;			/* # of descriptors used */
    189 };
    190 
    191 /*
    192  * Software state for receive buffers.  Each descriptor gets a
    193  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    194  * more than one buffer, we chain them together.
    195  */
    196 struct wm_rxsoft {
    197 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    198 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    199 };
    200 
    201 typedef enum {
    202 	WM_T_unknown		= 0,
    203 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
    204 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
    205 	WM_T_82543,			/* i82543 */
    206 	WM_T_82544,			/* i82544 */
    207 	WM_T_82540,			/* i82540 */
    208 	WM_T_82545,			/* i82545 */
    209 	WM_T_82545_3,			/* i82545 3.0+ */
    210 	WM_T_82546,			/* i82546 */
    211 	WM_T_82546_3,			/* i82546 3.0+ */
    212 	WM_T_82541,			/* i82541 */
    213 	WM_T_82541_2,			/* i82541 2.0+ */
    214 	WM_T_82547,			/* i82547 */
    215 	WM_T_82547_2,			/* i82547 2.0+ */
    216 	WM_T_82571,			/* i82571 */
    217 	WM_T_82572,			/* i82572 */
    218 	WM_T_82573,			/* i82573 */
    219 } wm_chip_type;
    220 
    221 /*
    222  * Software state per device.
    223  */
    224 struct wm_softc {
    225 	struct device sc_dev;		/* generic device information */
    226 	bus_space_tag_t sc_st;		/* bus space tag */
    227 	bus_space_handle_t sc_sh;	/* bus space handle */
    228 	bus_space_tag_t sc_iot;		/* I/O space tag */
    229 	bus_space_handle_t sc_ioh;	/* I/O space handle */
    230 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    231 	struct ethercom sc_ethercom;	/* ethernet common data */
    232 	void *sc_sdhook;		/* shutdown hook */
    233 	void *sc_powerhook;		/* power hook */
    234 	pci_chipset_tag_t sc_pc;
    235 	pcitag_t sc_pcitag;
    236 	struct pci_conf_state sc_pciconf;
    237 
    238 	wm_chip_type sc_type;		/* chip type */
    239 	int sc_flags;			/* flags; see below */
    240 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    241 	int sc_pcix_offset;		/* PCIX capability register offset */
    242 	int sc_flowflags;		/* 802.3x flow control flags */
    243 
    244 	void *sc_ih;			/* interrupt cookie */
    245 
    246 	int sc_ee_addrbits;		/* EEPROM address bits */
    247 
    248 	struct mii_data sc_mii;		/* MII/media information */
    249 
    250 	struct callout sc_tick_ch;	/* tick callout */
    251 
    252 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    253 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    254 
    255 	int		sc_align_tweak;
    256 
    257 	/*
    258 	 * Software state for the transmit and receive descriptors.
    259 	 */
    260 	int			sc_txnum;	/* must be a power of two */
    261 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
    262 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
    263 
    264 	/*
    265 	 * Control data structures.
    266 	 */
    267 	int			sc_ntxdesc;	/* must be a power of two */
    268 	struct wm_control_data_82544 *sc_control_data;
    269 #define	sc_txdescs	sc_control_data->wcd_txdescs
    270 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    271 
    272 #ifdef WM_EVENT_COUNTERS
    273 	/* Event counters. */
    274 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    275 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    276 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
    277 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    278 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    279 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    280 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    281 
    282 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    283 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    284 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    285 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    286 	struct evcnt sc_ev_txtusum6;	/* TCP/UDP v6 cksums comp. out-bound */
    287 	struct evcnt sc_ev_txtso;	/* TCP seg offload out-bound */
    288 	struct evcnt sc_ev_txtsopain;	/* painful header manip. for TSO */
    289 
    290 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
    291 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    292 
    293 	struct evcnt sc_ev_tu;		/* Tx underrun */
    294 
    295 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
    296 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
    297 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
    298 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
    299 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
    300 #endif /* WM_EVENT_COUNTERS */
    301 
    302 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
    303 
    304 	int	sc_txfree;		/* number of free Tx descriptors */
    305 	int	sc_txnext;		/* next ready Tx descriptor */
    306 
    307 	int	sc_txsfree;		/* number of free Tx jobs */
    308 	int	sc_txsnext;		/* next free Tx job */
    309 	int	sc_txsdirty;		/* dirty Tx jobs */
    310 
    311 	/* These 5 variables are used only on the 82547. */
    312 	int	sc_txfifo_size;		/* Tx FIFO size */
    313 	int	sc_txfifo_head;		/* current head of FIFO */
    314 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
    315 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
    316 	struct callout sc_txfifo_ch;	/* Tx FIFO stall work-around timer */
    317 
    318 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
    319 
    320 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    321 	int	sc_rxdiscard;
    322 	int	sc_rxlen;
    323 	struct mbuf *sc_rxhead;
    324 	struct mbuf *sc_rxtail;
    325 	struct mbuf **sc_rxtailp;
    326 
    327 	uint32_t sc_ctrl;		/* prototype CTRL register */
    328 #if 0
    329 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
    330 #endif
    331 	uint32_t sc_icr;		/* prototype interrupt bits */
    332 	uint32_t sc_itr;		/* prototype intr throttling reg */
    333 	uint32_t sc_tctl;		/* prototype TCTL register */
    334 	uint32_t sc_rctl;		/* prototype RCTL register */
    335 	uint32_t sc_txcw;		/* prototype TXCW register */
    336 	uint32_t sc_tipg;		/* prototype TIPG register */
    337 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
    338 	uint32_t sc_pba;		/* prototype PBA register */
    339 
    340 	int sc_tbi_linkup;		/* TBI link status */
    341 	int sc_tbi_anstate;		/* autonegotiation state */
    342 
    343 	int sc_mchash_type;		/* multicast filter offset */
    344 
    345 #if NRND > 0
    346 	rndsource_element_t rnd_source;	/* random source */
    347 #endif
    348 };
    349 
    350 #define	WM_RXCHAIN_RESET(sc)						\
    351 do {									\
    352 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    353 	*(sc)->sc_rxtailp = NULL;					\
    354 	(sc)->sc_rxlen = 0;						\
    355 } while (/*CONSTCOND*/0)
    356 
    357 #define	WM_RXCHAIN_LINK(sc, m)						\
    358 do {									\
    359 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    360 	(sc)->sc_rxtailp = &(m)->m_next;				\
    361 } while (/*CONSTCOND*/0)
    362 
    363 /* sc_flags */
    364 #define	WM_F_HAS_MII		0x001	/* has MII */
    365 #define	WM_F_EEPROM_HANDSHAKE	0x002	/* requires EEPROM handshake */
    366 #define	WM_F_EEPROM_SEMAPHORE	0x004	/* EEPROM with semaphore */
    367 #define	WM_F_EEPROM_EERDEEWR	0x008	/* EEPROM access via EERD/EEWR */
    368 #define	WM_F_EEPROM_SPI		0x010	/* EEPROM is SPI */
    369 #define	WM_F_EEPROM_FLASH	0x020	/* EEPROM is FLASH */
    370 #define	WM_F_EEPROM_INVALID	0x040	/* EEPROM not present (bad checksum) */
    371 #define	WM_F_IOH_VALID		0x080	/* I/O handle is valid */
    372 #define	WM_F_BUS64		0x100	/* bus is 64-bit */
    373 #define	WM_F_PCIX		0x200	/* bus is PCI-X */
    374 #define	WM_F_CSA		0x400	/* bus is CSA */
    375 #define	WM_F_PCIE		0x800	/* bus is PCI-Express */
    376 
    377 #ifdef WM_EVENT_COUNTERS
    378 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
    379 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
    380 #else
    381 #define	WM_EVCNT_INCR(ev)	/* nothing */
    382 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
    383 #endif
    384 
    385 #define	CSR_READ(sc, reg)						\
    386 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    387 #define	CSR_WRITE(sc, reg, val)						\
    388 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    389 #define	CSR_WRITE_FLUSH(sc)						\
    390 	(void) CSR_READ((sc), WMREG_STATUS)
    391 
    392 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
    393 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
    394 
    395 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
    396 #define	WM_CDTXADDR_HI(sc, x)						\
    397 	(sizeof(bus_addr_t) == 8 ?					\
    398 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
    399 
    400 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
    401 #define	WM_CDRXADDR_HI(sc, x)						\
    402 	(sizeof(bus_addr_t) == 8 ?					\
    403 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
    404 
    405 #define	WM_CDTXSYNC(sc, x, n, ops)					\
    406 do {									\
    407 	int __x, __n;							\
    408 									\
    409 	__x = (x);							\
    410 	__n = (n);							\
    411 									\
    412 	/* If it will wrap around, sync to the end of the ring. */	\
    413 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
    414 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    415 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
    416 		    (WM_NTXDESC(sc) - __x), (ops));			\
    417 		__n -= (WM_NTXDESC(sc) - __x);				\
    418 		__x = 0;						\
    419 	}								\
    420 									\
    421 	/* Now sync whatever is left. */				\
    422 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    423 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
    424 } while (/*CONSTCOND*/0)
    425 
    426 #define	WM_CDRXSYNC(sc, x, ops)						\
    427 do {									\
    428 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    429 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
    430 } while (/*CONSTCOND*/0)
    431 
    432 #define	WM_INIT_RXDESC(sc, x)						\
    433 do {									\
    434 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    435 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
    436 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    437 									\
    438 	/*								\
    439 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    440 	 * so that the payload after the Ethernet header is aligned	\
    441 	 * to a 4-byte boundary.					\
    442 	 *								\
    443 	 * XXX BRAINDAMAGE ALERT!					\
    444 	 * The stupid chip uses the same size for every buffer, which	\
    445 	 * is set in the Receive Control register.  We are using the 2K	\
    446 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    447 	 * reason, we can't "scoot" packets longer than the standard	\
    448 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    449 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    450 	 * the upper layer copy the headers.				\
    451 	 */								\
    452 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    453 									\
    454 	wm_set_dma_addr(&__rxd->wrx_addr,				\
    455 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
    456 	__rxd->wrx_len = 0;						\
    457 	__rxd->wrx_cksum = 0;						\
    458 	__rxd->wrx_status = 0;						\
    459 	__rxd->wrx_errors = 0;						\
    460 	__rxd->wrx_special = 0;						\
    461 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    462 									\
    463 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
    464 } while (/*CONSTCOND*/0)
    465 
    466 static void	wm_start(struct ifnet *);
    467 static void	wm_watchdog(struct ifnet *);
    468 static int	wm_ioctl(struct ifnet *, u_long, caddr_t);
    469 static int	wm_init(struct ifnet *);
    470 static void	wm_stop(struct ifnet *, int);
    471 
    472 static void	wm_shutdown(void *);
    473 static void	wm_powerhook(int, void *);
    474 
    475 static void	wm_reset(struct wm_softc *);
    476 static void	wm_rxdrain(struct wm_softc *);
    477 static int	wm_add_rxbuf(struct wm_softc *, int);
    478 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
    479 static int	wm_read_eeprom_eerd(struct wm_softc *, int, int, u_int16_t *);
    480 static int	wm_validate_eeprom_checksum(struct wm_softc *);
    481 static void	wm_tick(void *);
    482 
    483 static void	wm_set_filter(struct wm_softc *);
    484 
    485 static int	wm_intr(void *);
    486 static void	wm_txintr(struct wm_softc *);
    487 static void	wm_rxintr(struct wm_softc *);
    488 static void	wm_linkintr(struct wm_softc *, uint32_t);
    489 
    490 static void	wm_tbi_mediainit(struct wm_softc *);
    491 static int	wm_tbi_mediachange(struct ifnet *);
    492 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
    493 
    494 static void	wm_tbi_set_linkled(struct wm_softc *);
    495 static void	wm_tbi_check_link(struct wm_softc *);
    496 
    497 static void	wm_gmii_reset(struct wm_softc *);
    498 
    499 static int	wm_gmii_i82543_readreg(struct device *, int, int);
    500 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
    501 
    502 static int	wm_gmii_i82544_readreg(struct device *, int, int);
    503 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
    504 
    505 static void	wm_gmii_statchg(struct device *);
    506 
    507 static void	wm_gmii_mediainit(struct wm_softc *);
    508 static int	wm_gmii_mediachange(struct ifnet *);
    509 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
    510 
    511 static int	wm_match(struct device *, struct cfdata *, void *);
    512 static void	wm_attach(struct device *, struct device *, void *);
    513 static int	wm_is_onboard_nvm_eeprom(struct wm_softc *);
    514 static int	wm_get_eeprom_semaphore(struct wm_softc *);
    515 static void	wm_put_eeprom_semaphore(struct wm_softc *);
    516 static int	wm_poll_eerd_eewr_done(struct wm_softc *, int);
    517 
    518 CFATTACH_DECL(wm, sizeof(struct wm_softc),
    519     wm_match, wm_attach, NULL, NULL);
    520 
    521 static void	wm_82547_txfifo_stall(void *);
    522 
    523 /*
    524  * Devices supported by this driver.
    525  */
    526 static const struct wm_product {
    527 	pci_vendor_id_t		wmp_vendor;
    528 	pci_product_id_t	wmp_product;
    529 	const char		*wmp_name;
    530 	wm_chip_type		wmp_type;
    531 	int			wmp_flags;
    532 #define	WMP_F_1000X		0x01
    533 #define	WMP_F_1000T		0x02
    534 } wm_products[] = {
    535 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
    536 	  "Intel i82542 1000BASE-X Ethernet",
    537 	  WM_T_82542_2_1,	WMP_F_1000X },
    538 
    539 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
    540 	  "Intel i82543GC 1000BASE-X Ethernet",
    541 	  WM_T_82543,		WMP_F_1000X },
    542 
    543 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
    544 	  "Intel i82543GC 1000BASE-T Ethernet",
    545 	  WM_T_82543,		WMP_F_1000T },
    546 
    547 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
    548 	  "Intel i82544EI 1000BASE-T Ethernet",
    549 	  WM_T_82544,		WMP_F_1000T },
    550 
    551 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
    552 	  "Intel i82544EI 1000BASE-X Ethernet",
    553 	  WM_T_82544,		WMP_F_1000X },
    554 
    555 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
    556 	  "Intel i82544GC 1000BASE-T Ethernet",
    557 	  WM_T_82544,		WMP_F_1000T },
    558 
    559 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
    560 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
    561 	  WM_T_82544,		WMP_F_1000T },
    562 
    563 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
    564 	  "Intel i82540EM 1000BASE-T Ethernet",
    565 	  WM_T_82540,		WMP_F_1000T },
    566 
    567 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
    568 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
    569 	  WM_T_82540,		WMP_F_1000T },
    570 
    571 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
    572 	  "Intel i82540EP 1000BASE-T Ethernet",
    573 	  WM_T_82540,		WMP_F_1000T },
    574 
    575 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
    576 	  "Intel i82540EP 1000BASE-T Ethernet",
    577 	  WM_T_82540,		WMP_F_1000T },
    578 
    579 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
    580 	  "Intel i82540EP 1000BASE-T Ethernet",
    581 	  WM_T_82540,		WMP_F_1000T },
    582 
    583 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
    584 	  "Intel i82545EM 1000BASE-T Ethernet",
    585 	  WM_T_82545,		WMP_F_1000T },
    586 
    587 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
    588 	  "Intel i82545GM 1000BASE-T Ethernet",
    589 	  WM_T_82545_3,		WMP_F_1000T },
    590 
    591 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
    592 	  "Intel i82545GM 1000BASE-X Ethernet",
    593 	  WM_T_82545_3,		WMP_F_1000X },
    594 #if 0
    595 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
    596 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
    597 	  WM_T_82545_3,		WMP_F_SERDES },
    598 #endif
    599 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
    600 	  "Intel i82546EB 1000BASE-T Ethernet",
    601 	  WM_T_82546,		WMP_F_1000T },
    602 
    603 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
    604 	  "Intel i82546EB 1000BASE-T Ethernet",
    605 	  WM_T_82546,		WMP_F_1000T },
    606 
    607 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
    608 	  "Intel i82545EM 1000BASE-X Ethernet",
    609 	  WM_T_82545,		WMP_F_1000X },
    610 
    611 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
    612 	  "Intel i82546EB 1000BASE-X Ethernet",
    613 	  WM_T_82546,		WMP_F_1000X },
    614 
    615 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
    616 	  "Intel i82546GB 1000BASE-T Ethernet",
    617 	  WM_T_82546_3,		WMP_F_1000T },
    618 
    619 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
    620 	  "Intel i82546GB 1000BASE-X Ethernet",
    621 	  WM_T_82546_3,		WMP_F_1000X },
    622 #if 0
    623 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
    624 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
    625 	  WM_T_82546_3,		WMP_F_SERDES },
    626 #endif
    627 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_PCIE,
    628 	  "Intel PRO/1000MT (82546GB)",
    629 	  WM_T_82546_3,		WMP_F_1000T },
    630 
    631 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
    632 	  "Intel i82541EI 1000BASE-T Ethernet",
    633 	  WM_T_82541,		WMP_F_1000T },
    634 
    635 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER_LOM,
    636 	  "Intel i82541ER (LOM) 1000BASE-T Ethernet",
    637 	  WM_T_82541,		WMP_F_1000T },
    638 
    639 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
    640 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
    641 	  WM_T_82541,		WMP_F_1000T },
    642 
    643 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
    644 	  "Intel i82541ER 1000BASE-T Ethernet",
    645 	  WM_T_82541_2,		WMP_F_1000T },
    646 
    647 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
    648 	  "Intel i82541GI 1000BASE-T Ethernet",
    649 	  WM_T_82541_2,		WMP_F_1000T },
    650 
    651 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
    652 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
    653 	  WM_T_82541_2,		WMP_F_1000T },
    654 
    655 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541PI,
    656 	  "Intel i82541PI 1000BASE-T Ethernet",
    657 	  WM_T_82541_2,		WMP_F_1000T },
    658 
    659 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
    660 	  "Intel i82547EI 1000BASE-T Ethernet",
    661 	  WM_T_82547,		WMP_F_1000T },
    662 
    663 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI_MOBILE,
    664 	  "Intel i82547EI Moblie 1000BASE-T Ethernet",
    665 	  WM_T_82547,		WMP_F_1000T },
    666 
    667 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
    668 	  "Intel i82547GI 1000BASE-T Ethernet",
    669 	  WM_T_82547_2,		WMP_F_1000T },
    670 
    671 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_COPPER,
    672 	  "Intel PRO/1000 PT (82571EB)",
    673 	  WM_T_82571,		WMP_F_1000T },
    674 
    675 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_FIBER,
    676 	  "Intel PRO/1000 PF (82571EB)",
    677 	  WM_T_82571,		WMP_F_1000X },
    678 #if 0
    679 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_SERDES,
    680 	  "Intel PRO/1000 PB (82571EB)",
    681 	  WM_T_82571,		WMP_F_SERDES },
    682 #endif
    683 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_COPPER,
    684 	  "Intel i82572EI 1000baseT Ethernet",
    685 	  WM_T_82572,		WMP_F_1000T },
    686 
    687 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_FIBER,
    688 	  "Intel i82572EI 1000baseX Ethernet",
    689 	  WM_T_82572,		WMP_F_1000X },
    690 #if 0
    691 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_SERDES,
    692 	  "Intel i82572EI Gigabit Ethernet (SERDES)",
    693 	  WM_T_82572,		WMP_F_SERDES },
    694 #endif
    695 
    696 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI,
    697 	  "Intel i82572EI 1000baseT Ethernet",
    698 	  WM_T_82572,		WMP_F_1000T },
    699 
    700 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573E,
    701 	  "Intel i82573E",
    702 	  WM_T_82573,		WMP_F_1000T },
    703 
    704 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573E_IAMT,
    705 	  "Intel i82573E IAMT",
    706 	  WM_T_82573,		WMP_F_1000T },
    707 
    708 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573L,
    709 	  "Intel i82573L Gigabit Ethernet",
    710 	  WM_T_82573,		WMP_F_1000T },
    711 
    712 	{ 0,			0,
    713 	  NULL,
    714 	  0,			0 },
    715 };
    716 
    717 #ifdef WM_EVENT_COUNTERS
    718 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
    719 #endif /* WM_EVENT_COUNTERS */
    720 
    721 #if 0 /* Not currently used */
    722 static inline uint32_t
    723 wm_io_read(struct wm_softc *sc, int reg)
    724 {
    725 
    726 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    727 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
    728 }
    729 #endif
    730 
    731 static inline void
    732 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
    733 {
    734 
    735 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    736 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
    737 }
    738 
    739 static inline void
    740 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
    741 {
    742 	wa->wa_low = htole32(v & 0xffffffffU);
    743 	if (sizeof(bus_addr_t) == 8)
    744 		wa->wa_high = htole32((uint64_t) v >> 32);
    745 	else
    746 		wa->wa_high = 0;
    747 }
    748 
    749 static const struct wm_product *
    750 wm_lookup(const struct pci_attach_args *pa)
    751 {
    752 	const struct wm_product *wmp;
    753 
    754 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
    755 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
    756 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
    757 			return (wmp);
    758 	}
    759 	return (NULL);
    760 }
    761 
    762 static int
    763 wm_match(struct device *parent, struct cfdata *cf, void *aux)
    764 {
    765 	struct pci_attach_args *pa = aux;
    766 
    767 	if (wm_lookup(pa) != NULL)
    768 		return (1);
    769 
    770 	return (0);
    771 }
    772 
    773 static void
    774 wm_attach(struct device *parent, struct device *self, void *aux)
    775 {
    776 	struct wm_softc *sc = (void *) self;
    777 	struct pci_attach_args *pa = aux;
    778 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    779 	pci_chipset_tag_t pc = pa->pa_pc;
    780 	pci_intr_handle_t ih;
    781 	size_t cdata_size;
    782 	const char *intrstr = NULL;
    783 	const char *eetype;
    784 	bus_space_tag_t memt;
    785 	bus_space_handle_t memh;
    786 	bus_dma_segment_t seg;
    787 	int memh_valid;
    788 	int i, rseg, error;
    789 	const struct wm_product *wmp;
    790 	prop_data_t ea;
    791 	prop_number_t pn;
    792 	uint8_t enaddr[ETHER_ADDR_LEN];
    793 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
    794 	pcireg_t preg, memtype;
    795 	uint32_t reg;
    796 
    797 	callout_init(&sc->sc_tick_ch);
    798 
    799 	wmp = wm_lookup(pa);
    800 	if (wmp == NULL) {
    801 		printf("\n");
    802 		panic("wm_attach: impossible");
    803 	}
    804 
    805 	sc->sc_pc = pa->pa_pc;
    806 	sc->sc_pcitag = pa->pa_tag;
    807 
    808 	if (pci_dma64_available(pa))
    809 		sc->sc_dmat = pa->pa_dmat64;
    810 	else
    811 		sc->sc_dmat = pa->pa_dmat;
    812 
    813 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    814 	aprint_naive(": Ethernet controller\n");
    815 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
    816 
    817 	sc->sc_type = wmp->wmp_type;
    818 	if (sc->sc_type < WM_T_82543) {
    819 		if (preg < 2) {
    820 			aprint_error("%s: i82542 must be at least rev. 2\n",
    821 			    sc->sc_dev.dv_xname);
    822 			return;
    823 		}
    824 		if (preg < 3)
    825 			sc->sc_type = WM_T_82542_2_0;
    826 	}
    827 
    828 	/*
    829 	 * Map the device.  All devices support memory-mapped acccess,
    830 	 * and it is really required for normal operation.
    831 	 */
    832 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
    833 	switch (memtype) {
    834 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    835 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    836 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
    837 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    838 		break;
    839 	default:
    840 		memh_valid = 0;
    841 	}
    842 
    843 	if (memh_valid) {
    844 		sc->sc_st = memt;
    845 		sc->sc_sh = memh;
    846 	} else {
    847 		aprint_error("%s: unable to map device registers\n",
    848 		    sc->sc_dev.dv_xname);
    849 		return;
    850 	}
    851 
    852 	/*
    853 	 * In addition, i82544 and later support I/O mapped indirect
    854 	 * register access.  It is not desirable (nor supported in
    855 	 * this driver) to use it for normal operation, though it is
    856 	 * required to work around bugs in some chip versions.
    857 	 */
    858 	if (sc->sc_type >= WM_T_82544) {
    859 		/* First we have to find the I/O BAR. */
    860 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
    861 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
    862 			    PCI_MAPREG_TYPE_IO)
    863 				break;
    864 		}
    865 		if (i == PCI_MAPREG_END)
    866 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
    867 			    sc->sc_dev.dv_xname);
    868 		else {
    869 			/*
    870 			 * The i8254x doesn't apparently respond when the
    871 			 * I/O BAR is 0, which looks somewhat like it's not
    872 			 * been configured.
    873 			 */
    874 			preg = pci_conf_read(pc, pa->pa_tag, i);
    875 			if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
    876 				aprint_error("%s: WARNING: I/O BAR at zero.\n",
    877 				    sc->sc_dev.dv_xname);
    878 			} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
    879 					0, &sc->sc_iot, &sc->sc_ioh,
    880 					NULL, NULL) == 0) {
    881 				sc->sc_flags |= WM_F_IOH_VALID;
    882 			} else {
    883 				aprint_error("%s: WARNING: unable to map "
    884 				    "I/O space\n", sc->sc_dev.dv_xname);
    885 			}
    886 		}
    887 
    888 	}
    889 
    890 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
    891 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    892 	preg |= PCI_COMMAND_MASTER_ENABLE;
    893 	if (sc->sc_type < WM_T_82542_2_1)
    894 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
    895 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    896 
    897 	/* power up chip */
    898 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
    899 	    NULL)) && error != EOPNOTSUPP) {
    900 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
    901 		    error);
    902 		return;
    903 	}
    904 
    905 	/*
    906 	 * Map and establish our interrupt.
    907 	 */
    908 	if (pci_intr_map(pa, &ih)) {
    909 		aprint_error("%s: unable to map interrupt\n",
    910 		    sc->sc_dev.dv_xname);
    911 		return;
    912 	}
    913 	intrstr = pci_intr_string(pc, ih);
    914 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
    915 	if (sc->sc_ih == NULL) {
    916 		aprint_error("%s: unable to establish interrupt",
    917 		    sc->sc_dev.dv_xname);
    918 		if (intrstr != NULL)
    919 			aprint_normal(" at %s", intrstr);
    920 		aprint_normal("\n");
    921 		return;
    922 	}
    923 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    924 
    925 	/*
    926 	 * Determine a few things about the bus we're connected to.
    927 	 */
    928 	if (sc->sc_type < WM_T_82543) {
    929 		/* We don't really know the bus characteristics here. */
    930 		sc->sc_bus_speed = 33;
    931 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
    932 		/*
    933 		 * CSA (Communication Streaming Architecture) is about as fast
    934 		 * a 32-bit 66MHz PCI Bus.
    935 		 */
    936 		sc->sc_flags |= WM_F_CSA;
    937 		sc->sc_bus_speed = 66;
    938 		aprint_verbose("%s: Communication Streaming Architecture\n",
    939 		    sc->sc_dev.dv_xname);
    940 		if (sc->sc_type == WM_T_82547) {
    941 			callout_init(&sc->sc_txfifo_ch);
    942 			callout_setfunc(&sc->sc_txfifo_ch,
    943 					wm_82547_txfifo_stall, sc);
    944 			aprint_verbose("%s: using 82547 Tx FIFO stall "
    945 				       "work-around\n", sc->sc_dev.dv_xname);
    946 		}
    947 	} else if (sc->sc_type >= WM_T_82571) {
    948 		sc->sc_flags |= WM_F_PCIE | WM_F_EEPROM_SEMAPHORE;
    949 		aprint_verbose("%s: PCI-Express bus\n", sc->sc_dev.dv_xname);
    950 	} else {
    951 		reg = CSR_READ(sc, WMREG_STATUS);
    952 		if (reg & STATUS_BUS64)
    953 			sc->sc_flags |= WM_F_BUS64;
    954 		if (sc->sc_type >= WM_T_82544 &&
    955 		    (reg & STATUS_PCIX_MODE) != 0) {
    956 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
    957 
    958 			sc->sc_flags |= WM_F_PCIX;
    959 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    960 					       PCI_CAP_PCIX,
    961 					       &sc->sc_pcix_offset, NULL) == 0)
    962 				aprint_error("%s: unable to find PCIX "
    963 				    "capability\n", sc->sc_dev.dv_xname);
    964 			else if (sc->sc_type != WM_T_82545_3 &&
    965 				 sc->sc_type != WM_T_82546_3) {
    966 				/*
    967 				 * Work around a problem caused by the BIOS
    968 				 * setting the max memory read byte count
    969 				 * incorrectly.
    970 				 */
    971 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
    972 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
    973 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
    974 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
    975 
    976 				bytecnt =
    977 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
    978 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
    979 				maxb =
    980 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
    981 				    PCI_PCIX_STATUS_MAXB_SHIFT;
    982 				if (bytecnt > maxb) {
    983 					aprint_verbose("%s: resetting PCI-X "
    984 					    "MMRBC: %d -> %d\n",
    985 					    sc->sc_dev.dv_xname,
    986 					    512 << bytecnt, 512 << maxb);
    987 					pcix_cmd = (pcix_cmd &
    988 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
    989 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
    990 					pci_conf_write(pa->pa_pc, pa->pa_tag,
    991 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
    992 					    pcix_cmd);
    993 				}
    994 			}
    995 		}
    996 		/*
    997 		 * The quad port adapter is special; it has a PCIX-PCIX
    998 		 * bridge on the board, and can run the secondary bus at
    999 		 * a higher speed.
   1000 		 */
   1001 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
   1002 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
   1003 								      : 66;
   1004 		} else if (sc->sc_flags & WM_F_PCIX) {
   1005 			switch (reg & STATUS_PCIXSPD_MASK) {
   1006 			case STATUS_PCIXSPD_50_66:
   1007 				sc->sc_bus_speed = 66;
   1008 				break;
   1009 			case STATUS_PCIXSPD_66_100:
   1010 				sc->sc_bus_speed = 100;
   1011 				break;
   1012 			case STATUS_PCIXSPD_100_133:
   1013 				sc->sc_bus_speed = 133;
   1014 				break;
   1015 			default:
   1016 				aprint_error(
   1017 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
   1018 				    sc->sc_dev.dv_xname,
   1019 				    reg & STATUS_PCIXSPD_MASK);
   1020 				sc->sc_bus_speed = 66;
   1021 			}
   1022 		} else
   1023 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
   1024 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
   1025 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
   1026 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
   1027 	}
   1028 
   1029 	/*
   1030 	 * Allocate the control data structures, and create and load the
   1031 	 * DMA map for it.
   1032 	 *
   1033 	 * NOTE: All Tx descriptors must be in the same 4G segment of
   1034 	 * memory.  So must Rx descriptors.  We simplify by allocating
   1035 	 * both sets within the same 4G segment.
   1036 	 */
   1037 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
   1038 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
   1039 	cdata_size = sc->sc_type < WM_T_82544 ?
   1040 	    sizeof(struct wm_control_data_82542) :
   1041 	    sizeof(struct wm_control_data_82544);
   1042 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
   1043 				      (bus_size_t) 0x100000000ULL,
   1044 				      &seg, 1, &rseg, 0)) != 0) {
   1045 		aprint_error(
   1046 		    "%s: unable to allocate control data, error = %d\n",
   1047 		    sc->sc_dev.dv_xname, error);
   1048 		goto fail_0;
   1049 	}
   1050 
   1051 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
   1052 				    (caddr_t *)&sc->sc_control_data, 0)) != 0) {
   1053 		aprint_error("%s: unable to map control data, error = %d\n",
   1054 		    sc->sc_dev.dv_xname, error);
   1055 		goto fail_1;
   1056 	}
   1057 
   1058 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
   1059 				       0, 0, &sc->sc_cddmamap)) != 0) {
   1060 		aprint_error("%s: unable to create control data DMA map, "
   1061 		    "error = %d\n", sc->sc_dev.dv_xname, error);
   1062 		goto fail_2;
   1063 	}
   1064 
   1065 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
   1066 				     sc->sc_control_data, cdata_size, NULL,
   1067 				     0)) != 0) {
   1068 		aprint_error(
   1069 		    "%s: unable to load control data DMA map, error = %d\n",
   1070 		    sc->sc_dev.dv_xname, error);
   1071 		goto fail_3;
   1072 	}
   1073 
   1074 
   1075 	/*
   1076 	 * Create the transmit buffer DMA maps.
   1077 	 */
   1078 	WM_TXQUEUELEN(sc) =
   1079 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
   1080 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
   1081 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1082 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
   1083 					       WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
   1084 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1085 			aprint_error("%s: unable to create Tx DMA map %d, "
   1086 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1087 			goto fail_4;
   1088 		}
   1089 	}
   1090 
   1091 	/*
   1092 	 * Create the receive buffer DMA maps.
   1093 	 */
   1094 	for (i = 0; i < WM_NRXDESC; i++) {
   1095 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1096 					       MCLBYTES, 0, 0,
   1097 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1098 			aprint_error("%s: unable to create Rx DMA map %d, "
   1099 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1100 			goto fail_5;
   1101 		}
   1102 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1103 	}
   1104 
   1105 	/*
   1106 	 * Reset the chip to a known state.
   1107 	 */
   1108 	wm_reset(sc);
   1109 
   1110 	/*
   1111 	 * Get some information about the EEPROM.
   1112 	 */
   1113 	if (sc->sc_type == WM_T_82573)
   1114  		sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
   1115 	else if (sc->sc_type > WM_T_82544)
   1116 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
   1117 
   1118 	if (sc->sc_type <= WM_T_82544)
   1119 		sc->sc_ee_addrbits = 6;
   1120 	else if (sc->sc_type <= WM_T_82546_3) {
   1121 		reg = CSR_READ(sc, WMREG_EECD);
   1122 		if (reg & EECD_EE_SIZE)
   1123 			sc->sc_ee_addrbits = 8;
   1124 		else
   1125 			sc->sc_ee_addrbits = 6;
   1126 	} else if (sc->sc_type <= WM_T_82547_2) {
   1127 		reg = CSR_READ(sc, WMREG_EECD);
   1128 		if (reg & EECD_EE_TYPE) {
   1129 			sc->sc_flags |= WM_F_EEPROM_SPI;
   1130 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1131 		} else
   1132 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
   1133 	} else if ((sc->sc_type == WM_T_82573) &&
   1134 	    (wm_is_onboard_nvm_eeprom(sc) == 0)) {
   1135 		sc->sc_flags |= WM_F_EEPROM_FLASH;
   1136 	} else {
   1137 		/* Assume everything else is SPI. */
   1138 		reg = CSR_READ(sc, WMREG_EECD);
   1139 		sc->sc_flags |= WM_F_EEPROM_SPI;
   1140 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1141 	}
   1142 
   1143 	/*
   1144 	 * Defer printing the EEPROM type until after verifying the checksum
   1145 	 * This allows the EEPROM type to be printed correctly in the case
   1146 	 * that no EEPROM is attached.
   1147 	 */
   1148 
   1149 
   1150 	/*
   1151 	 * Validate the EEPROM checksum. If the checksum fails, flag this for
   1152 	 * later, so we can fail future reads from the EEPROM.
   1153 	 */
   1154 	if (wm_validate_eeprom_checksum(sc))
   1155 		sc->sc_flags |= WM_F_EEPROM_INVALID;
   1156 
   1157 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
   1158 		aprint_verbose("%s: No EEPROM\n", sc->sc_dev.dv_xname);
   1159 	else if (sc->sc_flags & WM_F_EEPROM_FLASH) {
   1160 		aprint_verbose("%s: FLASH\n", sc->sc_dev.dv_xname);
   1161 	} else {
   1162 		if (sc->sc_flags & WM_F_EEPROM_SPI)
   1163 			eetype = "SPI";
   1164 		else
   1165 			eetype = "MicroWire";
   1166 		aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
   1167 		    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
   1168 		    sc->sc_ee_addrbits, eetype);
   1169 	}
   1170 
   1171 	/*
   1172 	 * Read the Ethernet address from the EEPROM, if not first found
   1173 	 * in device properties.
   1174 	 */
   1175 	ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
   1176 	if (ea != NULL) {
   1177 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   1178 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   1179 		memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   1180 	} else {
   1181 		if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
   1182 		    sizeof(myea) / sizeof(myea[0]), myea)) {
   1183 			aprint_error("%s: unable to read Ethernet address\n",
   1184 			    sc->sc_dev.dv_xname);
   1185 			return;
   1186 		}
   1187 		enaddr[0] = myea[0] & 0xff;
   1188 		enaddr[1] = myea[0] >> 8;
   1189 		enaddr[2] = myea[1] & 0xff;
   1190 		enaddr[3] = myea[1] >> 8;
   1191 		enaddr[4] = myea[2] & 0xff;
   1192 		enaddr[5] = myea[2] >> 8;
   1193 	}
   1194 
   1195 	/*
   1196 	 * Toggle the LSB of the MAC address on the second port
   1197 	 * of the dual port controller.
   1198 	 */
   1199 	if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3
   1200 	    || sc->sc_type ==  WM_T_82571) {
   1201 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
   1202 			enaddr[5] ^= 1;
   1203 	}
   1204 
   1205 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
   1206 	    ether_sprintf(enaddr));
   1207 
   1208 	/*
   1209 	 * Read the config info from the EEPROM, and set up various
   1210 	 * bits in the control registers based on their contents.
   1211 	 */
   1212 	pn = prop_dictionary_get(device_properties(&sc->sc_dev),
   1213 				 "i82543-cfg1");
   1214 	if (pn != NULL) {
   1215 		KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1216 		cfg1 = (uint16_t) prop_number_integer_value(pn);
   1217 	} else {
   1218 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
   1219 			aprint_error("%s: unable to read CFG1\n",
   1220 			    sc->sc_dev.dv_xname);
   1221 			return;
   1222 		}
   1223 	}
   1224 
   1225 	pn = prop_dictionary_get(device_properties(&sc->sc_dev),
   1226 				 "i82543-cfg2");
   1227 	if (pn != NULL) {
   1228 		KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1229 		cfg2 = (uint16_t) prop_number_integer_value(pn);
   1230 	} else {
   1231 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
   1232 			aprint_error("%s: unable to read CFG2\n",
   1233 			    sc->sc_dev.dv_xname);
   1234 			return;
   1235 		}
   1236 	}
   1237 
   1238 	if (sc->sc_type >= WM_T_82544) {
   1239 		pn = prop_dictionary_get(device_properties(&sc->sc_dev),
   1240 					 "i82543-swdpin");
   1241 		if (pn != NULL) {
   1242 			KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1243 			swdpin = (uint16_t) prop_number_integer_value(pn);
   1244 		} else {
   1245 			if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
   1246 				aprint_error("%s: unable to read SWDPIN\n",
   1247 				    sc->sc_dev.dv_xname);
   1248 				return;
   1249 			}
   1250 		}
   1251 	}
   1252 
   1253 	if (cfg1 & EEPROM_CFG1_ILOS)
   1254 		sc->sc_ctrl |= CTRL_ILOS;
   1255 	if (sc->sc_type >= WM_T_82544) {
   1256 		sc->sc_ctrl |=
   1257 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
   1258 		    CTRL_SWDPIO_SHIFT;
   1259 		sc->sc_ctrl |=
   1260 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
   1261 		    CTRL_SWDPINS_SHIFT;
   1262 	} else {
   1263 		sc->sc_ctrl |=
   1264 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
   1265 		    CTRL_SWDPIO_SHIFT;
   1266 	}
   1267 
   1268 #if 0
   1269 	if (sc->sc_type >= WM_T_82544) {
   1270 		if (cfg1 & EEPROM_CFG1_IPS0)
   1271 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
   1272 		if (cfg1 & EEPROM_CFG1_IPS1)
   1273 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
   1274 		sc->sc_ctrl_ext |=
   1275 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
   1276 		    CTRL_EXT_SWDPIO_SHIFT;
   1277 		sc->sc_ctrl_ext |=
   1278 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
   1279 		    CTRL_EXT_SWDPINS_SHIFT;
   1280 	} else {
   1281 		sc->sc_ctrl_ext |=
   1282 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
   1283 		    CTRL_EXT_SWDPIO_SHIFT;
   1284 	}
   1285 #endif
   1286 
   1287 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   1288 #if 0
   1289 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   1290 #endif
   1291 
   1292 	/*
   1293 	 * Set up some register offsets that are different between
   1294 	 * the i82542 and the i82543 and later chips.
   1295 	 */
   1296 	if (sc->sc_type < WM_T_82543) {
   1297 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
   1298 		sc->sc_tdt_reg = WMREG_OLD_TDT;
   1299 	} else {
   1300 		sc->sc_rdt_reg = WMREG_RDT;
   1301 		sc->sc_tdt_reg = WMREG_TDT;
   1302 	}
   1303 
   1304 	/*
   1305 	 * Determine if we're TBI or GMII mode, and initialize the
   1306 	 * media structures accordingly.
   1307 	 */
   1308 	if (sc->sc_type < WM_T_82543 ||
   1309 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
   1310 		if (wmp->wmp_flags & WMP_F_1000T)
   1311 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
   1312 			    "product!\n", sc->sc_dev.dv_xname);
   1313 		wm_tbi_mediainit(sc);
   1314 	} else {
   1315 		if (wmp->wmp_flags & WMP_F_1000X)
   1316 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
   1317 			    "product!\n", sc->sc_dev.dv_xname);
   1318 		wm_gmii_mediainit(sc);
   1319 	}
   1320 
   1321 	ifp = &sc->sc_ethercom.ec_if;
   1322 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
   1323 	ifp->if_softc = sc;
   1324 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1325 	ifp->if_ioctl = wm_ioctl;
   1326 	ifp->if_start = wm_start;
   1327 	ifp->if_watchdog = wm_watchdog;
   1328 	ifp->if_init = wm_init;
   1329 	ifp->if_stop = wm_stop;
   1330 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
   1331 	IFQ_SET_READY(&ifp->if_snd);
   1332 
   1333 	if (sc->sc_type != WM_T_82573)
   1334 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1335 
   1336 	/*
   1337 	 * If we're a i82543 or greater, we can support VLANs.
   1338 	 */
   1339 	if (sc->sc_type >= WM_T_82543)
   1340 		sc->sc_ethercom.ec_capabilities |=
   1341 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
   1342 
   1343 	/*
   1344 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
   1345 	 * on i82543 and later.
   1346 	 */
   1347 	if (sc->sc_type >= WM_T_82543)
   1348 		ifp->if_capabilities |=
   1349 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1350 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1351 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
   1352 		    IFCAP_CSUM_TCPv6_Tx |
   1353 		    IFCAP_CSUM_UDPv6_Tx;
   1354 
   1355 	/*
   1356 	 * If we're a i82544 or greater (except i82547), we can do
   1357 	 * TCP segmentation offload.
   1358 	 */
   1359 	if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547)
   1360 		ifp->if_capabilities |= IFCAP_TSOv4;
   1361 
   1362 	/*
   1363 	 * Attach the interface.
   1364 	 */
   1365 	if_attach(ifp);
   1366 	ether_ifattach(ifp, enaddr);
   1367 #if NRND > 0
   1368 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1369 	    RND_TYPE_NET, 0);
   1370 #endif
   1371 
   1372 #ifdef WM_EVENT_COUNTERS
   1373 	/* Attach event counters. */
   1374 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1375 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1376 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1377 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1378 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
   1379 	    NULL, sc->sc_dev.dv_xname, "txfifo_stall");
   1380 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
   1381 	    NULL, sc->sc_dev.dv_xname, "txdw");
   1382 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
   1383 	    NULL, sc->sc_dev.dv_xname, "txqe");
   1384 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1385 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1386 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
   1387 	    NULL, sc->sc_dev.dv_xname, "linkintr");
   1388 
   1389 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1390 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1391 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
   1392 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
   1393 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1394 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1395 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
   1396 	    NULL, sc->sc_dev.dv_xname, "txtusum");
   1397 	evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
   1398 	    NULL, sc->sc_dev.dv_xname, "txtusum6");
   1399 
   1400 	evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
   1401 	    NULL, sc->sc_dev.dv_xname, "txtso");
   1402 	evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
   1403 	    NULL, sc->sc_dev.dv_xname, "txtsopain");
   1404 
   1405 	for (i = 0; i < WM_NTXSEGS; i++) {
   1406 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
   1407 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
   1408 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
   1409 	}
   1410 
   1411 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
   1412 	    NULL, sc->sc_dev.dv_xname, "txdrop");
   1413 
   1414 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
   1415 	    NULL, sc->sc_dev.dv_xname, "tu");
   1416 
   1417 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
   1418 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
   1419 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
   1420 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
   1421 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
   1422 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
   1423 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
   1424 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
   1425 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
   1426 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
   1427 #endif /* WM_EVENT_COUNTERS */
   1428 
   1429 	/*
   1430 	 * Make sure the interface is shutdown during reboot.
   1431 	 */
   1432 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
   1433 	if (sc->sc_sdhook == NULL)
   1434 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
   1435 		    sc->sc_dev.dv_xname);
   1436 
   1437 	sc->sc_powerhook = powerhook_establish(wm_powerhook, sc);
   1438 	if (sc->sc_powerhook == NULL)
   1439 		aprint_error("%s: can't establish powerhook\n",
   1440 		    sc->sc_dev.dv_xname);
   1441 	return;
   1442 
   1443 	/*
   1444 	 * Free any resources we've allocated during the failed attach
   1445 	 * attempt.  Do this in reverse order and fall through.
   1446 	 */
   1447  fail_5:
   1448 	for (i = 0; i < WM_NRXDESC; i++) {
   1449 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1450 			bus_dmamap_destroy(sc->sc_dmat,
   1451 			    sc->sc_rxsoft[i].rxs_dmamap);
   1452 	}
   1453  fail_4:
   1454 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1455 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1456 			bus_dmamap_destroy(sc->sc_dmat,
   1457 			    sc->sc_txsoft[i].txs_dmamap);
   1458 	}
   1459 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1460  fail_3:
   1461 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1462  fail_2:
   1463 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1464 	    cdata_size);
   1465  fail_1:
   1466 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1467  fail_0:
   1468 	return;
   1469 }
   1470 
   1471 /*
   1472  * wm_shutdown:
   1473  *
   1474  *	Make sure the interface is stopped at reboot time.
   1475  */
   1476 static void
   1477 wm_shutdown(void *arg)
   1478 {
   1479 	struct wm_softc *sc = arg;
   1480 
   1481 	wm_stop(&sc->sc_ethercom.ec_if, 1);
   1482 }
   1483 
   1484 static void
   1485 wm_powerhook(int why, void *arg)
   1486 {
   1487 	struct wm_softc *sc = arg;
   1488 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1489 	pci_chipset_tag_t pc = sc->sc_pc;
   1490 	pcitag_t tag = sc->sc_pcitag;
   1491 
   1492 	switch (why) {
   1493 	case PWR_SOFTSUSPEND:
   1494 		wm_shutdown(sc);
   1495 		break;
   1496 	case PWR_SOFTRESUME:
   1497 		ifp->if_flags &= ~IFF_RUNNING;
   1498 		wm_init(ifp);
   1499 		if (ifp->if_flags & IFF_RUNNING)
   1500 			wm_start(ifp);
   1501 		break;
   1502 	case PWR_SUSPEND:
   1503 		pci_conf_capture(pc, tag, &sc->sc_pciconf);
   1504 		break;
   1505 	case PWR_RESUME:
   1506 		pci_conf_restore(pc, tag, &sc->sc_pciconf);
   1507 		break;
   1508 	}
   1509 
   1510 	return;
   1511 }
   1512 
   1513 /*
   1514  * wm_tx_offload:
   1515  *
   1516  *	Set up TCP/IP checksumming parameters for the
   1517  *	specified packet.
   1518  */
   1519 static int
   1520 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
   1521     uint8_t *fieldsp)
   1522 {
   1523 	struct mbuf *m0 = txs->txs_mbuf;
   1524 	struct livengood_tcpip_ctxdesc *t;
   1525 	uint32_t ipcs, tucs, cmd, cmdlen, seg;
   1526 	struct ether_header *eh;
   1527 	int offset, iphl;
   1528 	uint8_t fields;
   1529 
   1530 	/*
   1531 	 * XXX It would be nice if the mbuf pkthdr had offset
   1532 	 * fields for the protocol headers.
   1533 	 */
   1534 
   1535 	eh = mtod(m0, struct ether_header *);
   1536 	switch (htons(eh->ether_type)) {
   1537 	case ETHERTYPE_IP:
   1538 	case ETHERTYPE_IPV6:
   1539 		offset = ETHER_HDR_LEN;
   1540 		break;
   1541 
   1542 	case ETHERTYPE_VLAN:
   1543 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1544 		break;
   1545 
   1546 	default:
   1547 		/*
   1548 		 * Don't support this protocol or encapsulation.
   1549 		 */
   1550 		*fieldsp = 0;
   1551 		*cmdp = 0;
   1552 		return (0);
   1553 	}
   1554 
   1555 	if ((m0->m_pkthdr.csum_flags &
   1556 	    (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
   1557 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1558 	} else {
   1559 		iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
   1560 	}
   1561 
   1562 	cmd = WTX_CMD_DEXT | WTX_DTYP_D;
   1563 	cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
   1564 	seg = 0;
   1565 	fields = 0;
   1566 
   1567 	if (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
   1568 		int hlen = offset + iphl;
   1569 		WM_EVCNT_INCR(&sc->sc_ev_txtso);
   1570 		if (__predict_false(m0->m_len <
   1571 				    (hlen + sizeof(struct tcphdr)))) {
   1572 			/*
   1573 			 * TCP/IP headers are not in the first mbuf; we need
   1574 			 * to do this the slow and painful way.  Let's just
   1575 			 * hope this doesn't happen very often.
   1576 			 */
   1577 			struct ip ip;
   1578 			struct tcphdr th;
   1579 
   1580 			WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
   1581 
   1582 			m_copydata(m0, offset, sizeof(ip), &ip);
   1583 			m_copydata(m0, hlen, sizeof(th), &th);
   1584 
   1585 			ip.ip_len = 0;
   1586 
   1587 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   1588 			    sizeof(ip.ip_len), &ip.ip_len);
   1589 
   1590 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   1591 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   1592 
   1593 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   1594 			    sizeof(th.th_sum), &th.th_sum);
   1595 
   1596 			hlen += th.th_off << 2;
   1597 		} else {
   1598 			/*
   1599 			 * TCP/IP headers are in the first mbuf; we can do
   1600 			 * this the easy way.
   1601 			 */
   1602 			struct ip *ip =
   1603 			    (struct ip *) (mtod(m0, caddr_t) + offset);
   1604 			struct tcphdr *th =
   1605 			    (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
   1606 
   1607 			ip->ip_len = 0;
   1608 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   1609 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   1610 
   1611 			hlen += th->th_off << 2;
   1612 		}
   1613 
   1614 		cmd |= WTX_TCPIP_CMD_TSE;
   1615 		cmdlen |= WTX_TCPIP_CMD_TSE | WTX_TCPIP_CMD_IP |
   1616 		    WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
   1617 		seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
   1618 		    WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
   1619 	}
   1620 
   1621 	/*
   1622 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1623 	 * offload feature, if we load the context descriptor, we
   1624 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1625 	 */
   1626 
   1627 	ipcs = WTX_TCPIP_IPCSS(offset) |
   1628 	    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1629 	    WTX_TCPIP_IPCSE(offset + iphl - 1);
   1630 	if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
   1631 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
   1632 		fields |= WTX_IXSM;
   1633 	}
   1634 
   1635 	offset += iphl;
   1636 
   1637 	if (m0->m_pkthdr.csum_flags &
   1638 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
   1639 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
   1640 		fields |= WTX_TXSM;
   1641 		tucs = WTX_TCPIP_TUCSS(offset) |
   1642 		    WTX_TCPIP_TUCSO(offset +
   1643 		    M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
   1644 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1645 	} else if ((m0->m_pkthdr.csum_flags &
   1646 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
   1647 		WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
   1648 		fields |= WTX_TXSM;
   1649 		tucs = WTX_TCPIP_TUCSS(offset) |
   1650 		    WTX_TCPIP_TUCSO(offset +
   1651 		    M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
   1652 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1653 	} else {
   1654 		/* Just initialize it to a valid TCP context. */
   1655 		tucs = WTX_TCPIP_TUCSS(offset) |
   1656 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1657 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1658 	}
   1659 
   1660 	/* Fill in the context descriptor. */
   1661 	t = (struct livengood_tcpip_ctxdesc *)
   1662 	    &sc->sc_txdescs[sc->sc_txnext];
   1663 	t->tcpip_ipcs = htole32(ipcs);
   1664 	t->tcpip_tucs = htole32(tucs);
   1665 	t->tcpip_cmdlen = htole32(cmdlen);
   1666 	t->tcpip_seg = htole32(seg);
   1667 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1668 
   1669 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
   1670 	txs->txs_ndesc++;
   1671 
   1672 	*cmdp = cmd;
   1673 	*fieldsp = fields;
   1674 
   1675 	return (0);
   1676 }
   1677 
   1678 static void
   1679 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
   1680 {
   1681 	struct mbuf *m;
   1682 	int i;
   1683 
   1684 	log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
   1685 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
   1686 		log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
   1687 		    "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
   1688 		    m->m_data, m->m_len, m->m_flags);
   1689 	log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
   1690 	    i, i == 1 ? "" : "s");
   1691 }
   1692 
   1693 /*
   1694  * wm_82547_txfifo_stall:
   1695  *
   1696  *	Callout used to wait for the 82547 Tx FIFO to drain,
   1697  *	reset the FIFO pointers, and restart packet transmission.
   1698  */
   1699 static void
   1700 wm_82547_txfifo_stall(void *arg)
   1701 {
   1702 	struct wm_softc *sc = arg;
   1703 	int s;
   1704 
   1705 	s = splnet();
   1706 
   1707 	if (sc->sc_txfifo_stall) {
   1708 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
   1709 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
   1710 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
   1711 			/*
   1712 			 * Packets have drained.  Stop transmitter, reset
   1713 			 * FIFO pointers, restart transmitter, and kick
   1714 			 * the packet queue.
   1715 			 */
   1716 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
   1717 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
   1718 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
   1719 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
   1720 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
   1721 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
   1722 			CSR_WRITE(sc, WMREG_TCTL, tctl);
   1723 			CSR_WRITE_FLUSH(sc);
   1724 
   1725 			sc->sc_txfifo_head = 0;
   1726 			sc->sc_txfifo_stall = 0;
   1727 			wm_start(&sc->sc_ethercom.ec_if);
   1728 		} else {
   1729 			/*
   1730 			 * Still waiting for packets to drain; try again in
   1731 			 * another tick.
   1732 			 */
   1733 			callout_schedule(&sc->sc_txfifo_ch, 1);
   1734 		}
   1735 	}
   1736 
   1737 	splx(s);
   1738 }
   1739 
   1740 /*
   1741  * wm_82547_txfifo_bugchk:
   1742  *
   1743  *	Check for bug condition in the 82547 Tx FIFO.  We need to
   1744  *	prevent enqueueing a packet that would wrap around the end
   1745  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
   1746  *
   1747  *	We do this by checking the amount of space before the end
   1748  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
   1749  *	the Tx FIFO, wait for all remaining packets to drain, reset
   1750  *	the internal FIFO pointers to the beginning, and restart
   1751  *	transmission on the interface.
   1752  */
   1753 #define	WM_FIFO_HDR		0x10
   1754 #define	WM_82547_PAD_LEN	0x3e0
   1755 static int
   1756 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
   1757 {
   1758 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
   1759 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
   1760 
   1761 	/* Just return if already stalled. */
   1762 	if (sc->sc_txfifo_stall)
   1763 		return (1);
   1764 
   1765 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1766 		/* Stall only occurs in half-duplex mode. */
   1767 		goto send_packet;
   1768 	}
   1769 
   1770 	if (len >= WM_82547_PAD_LEN + space) {
   1771 		sc->sc_txfifo_stall = 1;
   1772 		callout_schedule(&sc->sc_txfifo_ch, 1);
   1773 		return (1);
   1774 	}
   1775 
   1776  send_packet:
   1777 	sc->sc_txfifo_head += len;
   1778 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
   1779 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
   1780 
   1781 	return (0);
   1782 }
   1783 
   1784 /*
   1785  * wm_start:		[ifnet interface function]
   1786  *
   1787  *	Start packet transmission on the interface.
   1788  */
   1789 static void
   1790 wm_start(struct ifnet *ifp)
   1791 {
   1792 	struct wm_softc *sc = ifp->if_softc;
   1793 	struct mbuf *m0;
   1794 #if 0 /* XXXJRT */
   1795 	struct m_tag *mtag;
   1796 #endif
   1797 	struct wm_txsoft *txs;
   1798 	bus_dmamap_t dmamap;
   1799 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
   1800 	bus_addr_t curaddr;
   1801 	bus_size_t seglen, curlen;
   1802 	uint32_t cksumcmd;
   1803 	uint8_t cksumfields;
   1804 
   1805 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1806 		return;
   1807 
   1808 	/*
   1809 	 * Remember the previous number of free descriptors.
   1810 	 */
   1811 	ofree = sc->sc_txfree;
   1812 
   1813 	/*
   1814 	 * Loop through the send queue, setting up transmit descriptors
   1815 	 * until we drain the queue, or use up all available transmit
   1816 	 * descriptors.
   1817 	 */
   1818 	for (;;) {
   1819 		/* Grab a packet off the queue. */
   1820 		IFQ_POLL(&ifp->if_snd, m0);
   1821 		if (m0 == NULL)
   1822 			break;
   1823 
   1824 		DPRINTF(WM_DEBUG_TX,
   1825 		    ("%s: TX: have packet to transmit: %p\n",
   1826 		    sc->sc_dev.dv_xname, m0));
   1827 
   1828 		/* Get a work queue entry. */
   1829 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
   1830 			wm_txintr(sc);
   1831 			if (sc->sc_txsfree == 0) {
   1832 				DPRINTF(WM_DEBUG_TX,
   1833 				    ("%s: TX: no free job descriptors\n",
   1834 					sc->sc_dev.dv_xname));
   1835 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   1836 				break;
   1837 			}
   1838 		}
   1839 
   1840 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1841 		dmamap = txs->txs_dmamap;
   1842 
   1843 		use_tso = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   1844 
   1845 		/*
   1846 		 * So says the Linux driver:
   1847 		 * The controller does a simple calculation to make sure
   1848 		 * there is enough room in the FIFO before initiating the
   1849 		 * DMA for each buffer.  The calc is:
   1850 		 *	4 = ceil(buffer len / MSS)
   1851 		 * To make sure we don't overrun the FIFO, adjust the max
   1852 		 * buffer len if the MSS drops.
   1853 		 */
   1854 		dmamap->dm_maxsegsz =
   1855 		    (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
   1856 		    ? m0->m_pkthdr.segsz << 2
   1857 		    : WTX_MAX_LEN;
   1858 
   1859 		/*
   1860 		 * Load the DMA map.  If this fails, the packet either
   1861 		 * didn't fit in the allotted number of segments, or we
   1862 		 * were short on resources.  For the too-many-segments
   1863 		 * case, we simply report an error and drop the packet,
   1864 		 * since we can't sanely copy a jumbo packet to a single
   1865 		 * buffer.
   1866 		 */
   1867 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1868 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1869 		if (error) {
   1870 			if (error == EFBIG) {
   1871 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   1872 				log(LOG_ERR, "%s: Tx packet consumes too many "
   1873 				    "DMA segments, dropping...\n",
   1874 				    sc->sc_dev.dv_xname);
   1875 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1876 				wm_dump_mbuf_chain(sc, m0);
   1877 				m_freem(m0);
   1878 				continue;
   1879 			}
   1880 			/*
   1881 			 * Short on resources, just stop for now.
   1882 			 */
   1883 			DPRINTF(WM_DEBUG_TX,
   1884 			    ("%s: TX: dmamap load failed: %d\n",
   1885 			    sc->sc_dev.dv_xname, error));
   1886 			break;
   1887 		}
   1888 
   1889 		segs_needed = dmamap->dm_nsegs;
   1890 		if (use_tso) {
   1891 			/* For sentinel descriptor; see below. */
   1892 			segs_needed++;
   1893 		}
   1894 
   1895 		/*
   1896 		 * Ensure we have enough descriptors free to describe
   1897 		 * the packet.  Note, we always reserve one descriptor
   1898 		 * at the end of the ring due to the semantics of the
   1899 		 * TDT register, plus one more in the event we need
   1900 		 * to load offload context.
   1901 		 */
   1902 		if (segs_needed > sc->sc_txfree - 2) {
   1903 			/*
   1904 			 * Not enough free descriptors to transmit this
   1905 			 * packet.  We haven't committed anything yet,
   1906 			 * so just unload the DMA map, put the packet
   1907 			 * pack on the queue, and punt.  Notify the upper
   1908 			 * layer that there are no more slots left.
   1909 			 */
   1910 			DPRINTF(WM_DEBUG_TX,
   1911 			    ("%s: TX: need %d (%d) descriptors, have %d\n",
   1912 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
   1913 			    sc->sc_txfree - 1));
   1914 			ifp->if_flags |= IFF_OACTIVE;
   1915 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1916 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   1917 			break;
   1918 		}
   1919 
   1920 		/*
   1921 		 * Check for 82547 Tx FIFO bug.  We need to do this
   1922 		 * once we know we can transmit the packet, since we
   1923 		 * do some internal FIFO space accounting here.
   1924 		 */
   1925 		if (sc->sc_type == WM_T_82547 &&
   1926 		    wm_82547_txfifo_bugchk(sc, m0)) {
   1927 			DPRINTF(WM_DEBUG_TX,
   1928 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
   1929 			    sc->sc_dev.dv_xname));
   1930 			ifp->if_flags |= IFF_OACTIVE;
   1931 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1932 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
   1933 			break;
   1934 		}
   1935 
   1936 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1937 
   1938 		/*
   1939 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1940 		 */
   1941 
   1942 		DPRINTF(WM_DEBUG_TX,
   1943 		    ("%s: TX: packet has %d (%d) DMA segments\n",
   1944 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
   1945 
   1946 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1947 
   1948 		/*
   1949 		 * Store a pointer to the packet so that we can free it
   1950 		 * later.
   1951 		 *
   1952 		 * Initially, we consider the number of descriptors the
   1953 		 * packet uses the number of DMA segments.  This may be
   1954 		 * incremented by 1 if we do checksum offload (a descriptor
   1955 		 * is used to set the checksum context).
   1956 		 */
   1957 		txs->txs_mbuf = m0;
   1958 		txs->txs_firstdesc = sc->sc_txnext;
   1959 		txs->txs_ndesc = segs_needed;
   1960 
   1961 		/* Set up offload parameters for this packet. */
   1962 		if (m0->m_pkthdr.csum_flags &
   1963 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
   1964 		    M_CSUM_TCPv6|M_CSUM_UDPv6)) {
   1965 			if (wm_tx_offload(sc, txs, &cksumcmd,
   1966 					  &cksumfields) != 0) {
   1967 				/* Error message already displayed. */
   1968 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1969 				continue;
   1970 			}
   1971 		} else {
   1972 			cksumcmd = 0;
   1973 			cksumfields = 0;
   1974 		}
   1975 
   1976 		cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
   1977 
   1978 		/* Sync the DMA map. */
   1979 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1980 		    BUS_DMASYNC_PREWRITE);
   1981 
   1982 		/*
   1983 		 * Initialize the transmit descriptor.
   1984 		 */
   1985 		for (nexttx = sc->sc_txnext, seg = 0;
   1986 		     seg < dmamap->dm_nsegs; seg++) {
   1987 			for (seglen = dmamap->dm_segs[seg].ds_len,
   1988 			     curaddr = dmamap->dm_segs[seg].ds_addr;
   1989 			     seglen != 0;
   1990 			     curaddr += curlen, seglen -= curlen,
   1991 			     nexttx = WM_NEXTTX(sc, nexttx)) {
   1992 				curlen = seglen;
   1993 
   1994 				/*
   1995 				 * So says the Linux driver:
   1996 				 * Work around for premature descriptor
   1997 				 * write-backs in TSO mode.  Append a
   1998 				 * 4-byte sentinel descriptor.
   1999 				 */
   2000 				if (use_tso &&
   2001 				    seg == dmamap->dm_nsegs - 1 &&
   2002 				    curlen > 8)
   2003 					curlen -= 4;
   2004 
   2005 				wm_set_dma_addr(
   2006 				    &sc->sc_txdescs[nexttx].wtx_addr,
   2007 				    curaddr);
   2008 				sc->sc_txdescs[nexttx].wtx_cmdlen =
   2009 				    htole32(cksumcmd | curlen);
   2010 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
   2011 				    0;
   2012 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
   2013 				    cksumfields;
   2014 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
   2015 				lasttx = nexttx;
   2016 
   2017 				DPRINTF(WM_DEBUG_TX,
   2018 				    ("%s: TX: desc %d: low 0x%08lx, "
   2019 				     "len 0x%04x\n",
   2020 				    sc->sc_dev.dv_xname, nexttx,
   2021 				    curaddr & 0xffffffffUL, (unsigned)curlen));
   2022 			}
   2023 		}
   2024 
   2025 		KASSERT(lasttx != -1);
   2026 
   2027 		/*
   2028 		 * Set up the command byte on the last descriptor of
   2029 		 * the packet.  If we're in the interrupt delay window,
   2030 		 * delay the interrupt.
   2031 		 */
   2032 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   2033 		    htole32(WTX_CMD_EOP | WTX_CMD_RS);
   2034 
   2035 #if 0 /* XXXJRT */
   2036 		/*
   2037 		 * If VLANs are enabled and the packet has a VLAN tag, set
   2038 		 * up the descriptor to encapsulate the packet for us.
   2039 		 *
   2040 		 * This is only valid on the last descriptor of the packet.
   2041 		 */
   2042 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   2043 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   2044 			    htole32(WTX_CMD_VLE);
   2045 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
   2046 			    = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
   2047 		}
   2048 #endif /* XXXJRT */
   2049 
   2050 		txs->txs_lastdesc = lasttx;
   2051 
   2052 		DPRINTF(WM_DEBUG_TX,
   2053 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   2054 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
   2055 
   2056 		/* Sync the descriptors we're using. */
   2057 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
   2058 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2059 
   2060 		/* Give the packet to the chip. */
   2061 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   2062 
   2063 		DPRINTF(WM_DEBUG_TX,
   2064 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   2065 
   2066 		DPRINTF(WM_DEBUG_TX,
   2067 		    ("%s: TX: finished transmitting packet, job %d\n",
   2068 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   2069 
   2070 		/* Advance the tx pointer. */
   2071 		sc->sc_txfree -= txs->txs_ndesc;
   2072 		sc->sc_txnext = nexttx;
   2073 
   2074 		sc->sc_txsfree--;
   2075 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
   2076 
   2077 #if NBPFILTER > 0
   2078 		/* Pass the packet to any BPF listeners. */
   2079 		if (ifp->if_bpf)
   2080 			bpf_mtap(ifp->if_bpf, m0);
   2081 #endif /* NBPFILTER > 0 */
   2082 	}
   2083 
   2084 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   2085 		/* No more slots; notify upper layer. */
   2086 		ifp->if_flags |= IFF_OACTIVE;
   2087 	}
   2088 
   2089 	if (sc->sc_txfree != ofree) {
   2090 		/* Set a watchdog timer in case the chip flakes out. */
   2091 		ifp->if_timer = 5;
   2092 	}
   2093 }
   2094 
   2095 /*
   2096  * wm_watchdog:		[ifnet interface function]
   2097  *
   2098  *	Watchdog timer handler.
   2099  */
   2100 static void
   2101 wm_watchdog(struct ifnet *ifp)
   2102 {
   2103 	struct wm_softc *sc = ifp->if_softc;
   2104 
   2105 	/*
   2106 	 * Since we're using delayed interrupts, sweep up
   2107 	 * before we report an error.
   2108 	 */
   2109 	wm_txintr(sc);
   2110 
   2111 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
   2112 		log(LOG_ERR,
   2113 		    "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   2114 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   2115 		    sc->sc_txnext);
   2116 		ifp->if_oerrors++;
   2117 
   2118 		/* Reset the interface. */
   2119 		(void) wm_init(ifp);
   2120 	}
   2121 
   2122 	/* Try to get more packets going. */
   2123 	wm_start(ifp);
   2124 }
   2125 
   2126 /*
   2127  * wm_ioctl:		[ifnet interface function]
   2128  *
   2129  *	Handle control requests from the operator.
   2130  */
   2131 static int
   2132 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   2133 {
   2134 	struct wm_softc *sc = ifp->if_softc;
   2135 	struct ifreq *ifr = (struct ifreq *) data;
   2136 	int s, error;
   2137 
   2138 	s = splnet();
   2139 
   2140 	switch (cmd) {
   2141 	case SIOCSIFMEDIA:
   2142 	case SIOCGIFMEDIA:
   2143 		/* Flow control requires full-duplex mode. */
   2144 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   2145 		    (ifr->ifr_media & IFM_FDX) == 0)
   2146 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   2147 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   2148 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   2149 				/* We can do both TXPAUSE and RXPAUSE. */
   2150 				ifr->ifr_media |=
   2151 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   2152 			}
   2153 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   2154 		}
   2155 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   2156 		break;
   2157 	default:
   2158 		error = ether_ioctl(ifp, cmd, data);
   2159 		if (error == ENETRESET) {
   2160 			/*
   2161 			 * Multicast list has changed; set the hardware filter
   2162 			 * accordingly.
   2163 			 */
   2164 			if (ifp->if_flags & IFF_RUNNING)
   2165 				wm_set_filter(sc);
   2166 			error = 0;
   2167 		}
   2168 		break;
   2169 	}
   2170 
   2171 	/* Try to get more packets going. */
   2172 	wm_start(ifp);
   2173 
   2174 	splx(s);
   2175 	return (error);
   2176 }
   2177 
   2178 /*
   2179  * wm_intr:
   2180  *
   2181  *	Interrupt service routine.
   2182  */
   2183 static int
   2184 wm_intr(void *arg)
   2185 {
   2186 	struct wm_softc *sc = arg;
   2187 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2188 	uint32_t icr;
   2189 	int handled = 0;
   2190 
   2191 	while (1 /* CONSTCOND */) {
   2192 		icr = CSR_READ(sc, WMREG_ICR);
   2193 		if ((icr & sc->sc_icr) == 0)
   2194 			break;
   2195 
   2196 #if 0 /*NRND > 0*/
   2197 		if (RND_ENABLED(&sc->rnd_source))
   2198 			rnd_add_uint32(&sc->rnd_source, icr);
   2199 #endif
   2200 
   2201 		handled = 1;
   2202 
   2203 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   2204 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   2205 			DPRINTF(WM_DEBUG_RX,
   2206 			    ("%s: RX: got Rx intr 0x%08x\n",
   2207 			    sc->sc_dev.dv_xname,
   2208 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   2209 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
   2210 		}
   2211 #endif
   2212 		wm_rxintr(sc);
   2213 
   2214 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   2215 		if (icr & ICR_TXDW) {
   2216 			DPRINTF(WM_DEBUG_TX,
   2217 			    ("%s: TX: got TXDW interrupt\n",
   2218 			    sc->sc_dev.dv_xname));
   2219 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
   2220 		}
   2221 #endif
   2222 		wm_txintr(sc);
   2223 
   2224 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
   2225 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
   2226 			wm_linkintr(sc, icr);
   2227 		}
   2228 
   2229 		if (icr & ICR_RXO) {
   2230 			ifp->if_ierrors++;
   2231 #if defined(WM_DEBUG)
   2232 			log(LOG_WARNING, "%s: Receive overrun\n",
   2233 			    sc->sc_dev.dv_xname);
   2234 #endif /* defined(WM_DEBUG) */
   2235 		}
   2236 	}
   2237 
   2238 	if (handled) {
   2239 		/* Try to get more packets going. */
   2240 		wm_start(ifp);
   2241 	}
   2242 
   2243 	return (handled);
   2244 }
   2245 
   2246 /*
   2247  * wm_txintr:
   2248  *
   2249  *	Helper; handle transmit interrupts.
   2250  */
   2251 static void
   2252 wm_txintr(struct wm_softc *sc)
   2253 {
   2254 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2255 	struct wm_txsoft *txs;
   2256 	uint8_t status;
   2257 	int i;
   2258 
   2259 	ifp->if_flags &= ~IFF_OACTIVE;
   2260 
   2261 	/*
   2262 	 * Go through the Tx list and free mbufs for those
   2263 	 * frames which have been transmitted.
   2264 	 */
   2265 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
   2266 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
   2267 		txs = &sc->sc_txsoft[i];
   2268 
   2269 		DPRINTF(WM_DEBUG_TX,
   2270 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   2271 
   2272 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   2273 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2274 
   2275 		status =
   2276 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
   2277 		if ((status & WTX_ST_DD) == 0) {
   2278 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   2279 			    BUS_DMASYNC_PREREAD);
   2280 			break;
   2281 		}
   2282 
   2283 		DPRINTF(WM_DEBUG_TX,
   2284 		    ("%s: TX: job %d done: descs %d..%d\n",
   2285 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   2286 		    txs->txs_lastdesc));
   2287 
   2288 		/*
   2289 		 * XXX We should probably be using the statistics
   2290 		 * XXX registers, but I don't know if they exist
   2291 		 * XXX on chips before the i82544.
   2292 		 */
   2293 
   2294 #ifdef WM_EVENT_COUNTERS
   2295 		if (status & WTX_ST_TU)
   2296 			WM_EVCNT_INCR(&sc->sc_ev_tu);
   2297 #endif /* WM_EVENT_COUNTERS */
   2298 
   2299 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
   2300 			ifp->if_oerrors++;
   2301 			if (status & WTX_ST_LC)
   2302 				log(LOG_WARNING, "%s: late collision\n",
   2303 				    sc->sc_dev.dv_xname);
   2304 			else if (status & WTX_ST_EC) {
   2305 				ifp->if_collisions += 16;
   2306 				log(LOG_WARNING, "%s: excessive collisions\n",
   2307 				    sc->sc_dev.dv_xname);
   2308 			}
   2309 		} else
   2310 			ifp->if_opackets++;
   2311 
   2312 		sc->sc_txfree += txs->txs_ndesc;
   2313 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   2314 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2315 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2316 		m_freem(txs->txs_mbuf);
   2317 		txs->txs_mbuf = NULL;
   2318 	}
   2319 
   2320 	/* Update the dirty transmit buffer pointer. */
   2321 	sc->sc_txsdirty = i;
   2322 	DPRINTF(WM_DEBUG_TX,
   2323 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   2324 
   2325 	/*
   2326 	 * If there are no more pending transmissions, cancel the watchdog
   2327 	 * timer.
   2328 	 */
   2329 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
   2330 		ifp->if_timer = 0;
   2331 }
   2332 
   2333 /*
   2334  * wm_rxintr:
   2335  *
   2336  *	Helper; handle receive interrupts.
   2337  */
   2338 static void
   2339 wm_rxintr(struct wm_softc *sc)
   2340 {
   2341 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2342 	struct wm_rxsoft *rxs;
   2343 	struct mbuf *m;
   2344 	int i, len;
   2345 	uint8_t status, errors;
   2346 
   2347 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
   2348 		rxs = &sc->sc_rxsoft[i];
   2349 
   2350 		DPRINTF(WM_DEBUG_RX,
   2351 		    ("%s: RX: checking descriptor %d\n",
   2352 		    sc->sc_dev.dv_xname, i));
   2353 
   2354 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2355 
   2356 		status = sc->sc_rxdescs[i].wrx_status;
   2357 		errors = sc->sc_rxdescs[i].wrx_errors;
   2358 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
   2359 
   2360 		if ((status & WRX_ST_DD) == 0) {
   2361 			/*
   2362 			 * We have processed all of the receive descriptors.
   2363 			 */
   2364 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   2365 			break;
   2366 		}
   2367 
   2368 		if (__predict_false(sc->sc_rxdiscard)) {
   2369 			DPRINTF(WM_DEBUG_RX,
   2370 			    ("%s: RX: discarding contents of descriptor %d\n",
   2371 			    sc->sc_dev.dv_xname, i));
   2372 			WM_INIT_RXDESC(sc, i);
   2373 			if (status & WRX_ST_EOP) {
   2374 				/* Reset our state. */
   2375 				DPRINTF(WM_DEBUG_RX,
   2376 				    ("%s: RX: resetting rxdiscard -> 0\n",
   2377 				    sc->sc_dev.dv_xname));
   2378 				sc->sc_rxdiscard = 0;
   2379 			}
   2380 			continue;
   2381 		}
   2382 
   2383 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2384 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2385 
   2386 		m = rxs->rxs_mbuf;
   2387 
   2388 		/*
   2389 		 * Add a new receive buffer to the ring.
   2390 		 */
   2391 		if (wm_add_rxbuf(sc, i) != 0) {
   2392 			/*
   2393 			 * Failed, throw away what we've done so
   2394 			 * far, and discard the rest of the packet.
   2395 			 */
   2396 			ifp->if_ierrors++;
   2397 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2398 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2399 			WM_INIT_RXDESC(sc, i);
   2400 			if ((status & WRX_ST_EOP) == 0)
   2401 				sc->sc_rxdiscard = 1;
   2402 			if (sc->sc_rxhead != NULL)
   2403 				m_freem(sc->sc_rxhead);
   2404 			WM_RXCHAIN_RESET(sc);
   2405 			DPRINTF(WM_DEBUG_RX,
   2406 			    ("%s: RX: Rx buffer allocation failed, "
   2407 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   2408 			    sc->sc_rxdiscard ? " (discard)" : ""));
   2409 			continue;
   2410 		}
   2411 
   2412 		WM_RXCHAIN_LINK(sc, m);
   2413 
   2414 		m->m_len = len;
   2415 
   2416 		DPRINTF(WM_DEBUG_RX,
   2417 		    ("%s: RX: buffer at %p len %d\n",
   2418 		    sc->sc_dev.dv_xname, m->m_data, len));
   2419 
   2420 		/*
   2421 		 * If this is not the end of the packet, keep
   2422 		 * looking.
   2423 		 */
   2424 		if ((status & WRX_ST_EOP) == 0) {
   2425 			sc->sc_rxlen += len;
   2426 			DPRINTF(WM_DEBUG_RX,
   2427 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   2428 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   2429 			continue;
   2430 		}
   2431 
   2432 		/*
   2433 		 * Okay, we have the entire packet now.  The chip is
   2434 		 * configured to include the FCS (not all chips can
   2435 		 * be configured to strip it), so we need to trim it.
   2436 		 */
   2437 		m->m_len -= ETHER_CRC_LEN;
   2438 
   2439 		*sc->sc_rxtailp = NULL;
   2440 		len = m->m_len + sc->sc_rxlen;
   2441 		m = sc->sc_rxhead;
   2442 
   2443 		WM_RXCHAIN_RESET(sc);
   2444 
   2445 		DPRINTF(WM_DEBUG_RX,
   2446 		    ("%s: RX: have entire packet, len -> %d\n",
   2447 		    sc->sc_dev.dv_xname, len));
   2448 
   2449 		/*
   2450 		 * If an error occurred, update stats and drop the packet.
   2451 		 */
   2452 		if (errors &
   2453 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
   2454 			ifp->if_ierrors++;
   2455 			if (errors & WRX_ER_SE)
   2456 				log(LOG_WARNING, "%s: symbol error\n",
   2457 				    sc->sc_dev.dv_xname);
   2458 			else if (errors & WRX_ER_SEQ)
   2459 				log(LOG_WARNING, "%s: receive sequence error\n",
   2460 				    sc->sc_dev.dv_xname);
   2461 			else if (errors & WRX_ER_CE)
   2462 				log(LOG_WARNING, "%s: CRC error\n",
   2463 				    sc->sc_dev.dv_xname);
   2464 			m_freem(m);
   2465 			continue;
   2466 		}
   2467 
   2468 		/*
   2469 		 * No errors.  Receive the packet.
   2470 		 */
   2471 		m->m_pkthdr.rcvif = ifp;
   2472 		m->m_pkthdr.len = len;
   2473 
   2474 #if 0 /* XXXJRT */
   2475 		/*
   2476 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2477 		 * for us.  Associate the tag with the packet.
   2478 		 */
   2479 		if ((status & WRX_ST_VP) != 0) {
   2480 			VLAN_INPUT_TAG(ifp, m,
   2481 			    le16toh(sc->sc_rxdescs[i].wrx_special,
   2482 			    continue);
   2483 		}
   2484 #endif /* XXXJRT */
   2485 
   2486 		/*
   2487 		 * Set up checksum info for this packet.
   2488 		 */
   2489 		if ((status & WRX_ST_IXSM) == 0) {
   2490 			if (status & WRX_ST_IPCS) {
   2491 				WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2492 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2493 				if (errors & WRX_ER_IPE)
   2494 					m->m_pkthdr.csum_flags |=
   2495 					    M_CSUM_IPv4_BAD;
   2496 			}
   2497 			if (status & WRX_ST_TCPCS) {
   2498 				/*
   2499 				 * Note: we don't know if this was TCP or UDP,
   2500 				 * so we just set both bits, and expect the
   2501 				 * upper layers to deal.
   2502 				 */
   2503 				WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
   2504 				m->m_pkthdr.csum_flags |=
   2505 				    M_CSUM_TCPv4|M_CSUM_UDPv4;
   2506 				if (errors & WRX_ER_TCPE)
   2507 					m->m_pkthdr.csum_flags |=
   2508 					    M_CSUM_TCP_UDP_BAD;
   2509 			}
   2510 		}
   2511 
   2512 		ifp->if_ipackets++;
   2513 
   2514 #if NBPFILTER > 0
   2515 		/* Pass this up to any BPF listeners. */
   2516 		if (ifp->if_bpf)
   2517 			bpf_mtap(ifp->if_bpf, m);
   2518 #endif /* NBPFILTER > 0 */
   2519 
   2520 		/* Pass it on. */
   2521 		(*ifp->if_input)(ifp, m);
   2522 	}
   2523 
   2524 	/* Update the receive pointer. */
   2525 	sc->sc_rxptr = i;
   2526 
   2527 	DPRINTF(WM_DEBUG_RX,
   2528 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   2529 }
   2530 
   2531 /*
   2532  * wm_linkintr:
   2533  *
   2534  *	Helper; handle link interrupts.
   2535  */
   2536 static void
   2537 wm_linkintr(struct wm_softc *sc, uint32_t icr)
   2538 {
   2539 	uint32_t status;
   2540 
   2541 	/*
   2542 	 * If we get a link status interrupt on a 1000BASE-T
   2543 	 * device, just fall into the normal MII tick path.
   2544 	 */
   2545 	if (sc->sc_flags & WM_F_HAS_MII) {
   2546 		if (icr & ICR_LSC) {
   2547 			DPRINTF(WM_DEBUG_LINK,
   2548 			    ("%s: LINK: LSC -> mii_tick\n",
   2549 			    sc->sc_dev.dv_xname));
   2550 			mii_tick(&sc->sc_mii);
   2551 		} else if (icr & ICR_RXSEQ) {
   2552 			DPRINTF(WM_DEBUG_LINK,
   2553 			    ("%s: LINK Receive sequence error\n",
   2554 			    sc->sc_dev.dv_xname));
   2555 		}
   2556 		return;
   2557 	}
   2558 
   2559 	/*
   2560 	 * If we are now receiving /C/, check for link again in
   2561 	 * a couple of link clock ticks.
   2562 	 */
   2563 	if (icr & ICR_RXCFG) {
   2564 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
   2565 		    sc->sc_dev.dv_xname));
   2566 		sc->sc_tbi_anstate = 2;
   2567 	}
   2568 
   2569 	if (icr & ICR_LSC) {
   2570 		status = CSR_READ(sc, WMREG_STATUS);
   2571 		if (status & STATUS_LU) {
   2572 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
   2573 			    sc->sc_dev.dv_xname,
   2574 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   2575 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2576 			sc->sc_fcrtl &= ~FCRTL_XONE;
   2577 			if (status & STATUS_FD)
   2578 				sc->sc_tctl |=
   2579 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2580 			else
   2581 				sc->sc_tctl |=
   2582 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2583 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   2584 				sc->sc_fcrtl |= FCRTL_XONE;
   2585 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2586 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   2587 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   2588 				      sc->sc_fcrtl);
   2589 			sc->sc_tbi_linkup = 1;
   2590 		} else {
   2591 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   2592 			    sc->sc_dev.dv_xname));
   2593 			sc->sc_tbi_linkup = 0;
   2594 		}
   2595 		sc->sc_tbi_anstate = 2;
   2596 		wm_tbi_set_linkled(sc);
   2597 	} else if (icr & ICR_RXSEQ) {
   2598 		DPRINTF(WM_DEBUG_LINK,
   2599 		    ("%s: LINK: Receive sequence error\n",
   2600 		    sc->sc_dev.dv_xname));
   2601 	}
   2602 }
   2603 
   2604 /*
   2605  * wm_tick:
   2606  *
   2607  *	One second timer, used to check link status, sweep up
   2608  *	completed transmit jobs, etc.
   2609  */
   2610 static void
   2611 wm_tick(void *arg)
   2612 {
   2613 	struct wm_softc *sc = arg;
   2614 	int s;
   2615 
   2616 	s = splnet();
   2617 
   2618 	if (sc->sc_type >= WM_T_82542_2_1) {
   2619 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
   2620 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
   2621 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
   2622 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
   2623 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
   2624 	}
   2625 
   2626 	if (sc->sc_flags & WM_F_HAS_MII)
   2627 		mii_tick(&sc->sc_mii);
   2628 	else
   2629 		wm_tbi_check_link(sc);
   2630 
   2631 	splx(s);
   2632 
   2633 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2634 }
   2635 
   2636 /*
   2637  * wm_reset:
   2638  *
   2639  *	Reset the i82542 chip.
   2640  */
   2641 static void
   2642 wm_reset(struct wm_softc *sc)
   2643 {
   2644 	int i;
   2645 
   2646 	/*
   2647 	 * Allocate on-chip memory according to the MTU size.
   2648 	 * The Packet Buffer Allocation register must be written
   2649 	 * before the chip is reset.
   2650 	 */
   2651 	switch (sc->sc_type) {
   2652 	case WM_T_82547:
   2653 	case WM_T_82547_2:
   2654 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2655 		    PBA_22K : PBA_30K;
   2656 		sc->sc_txfifo_head = 0;
   2657 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
   2658 		sc->sc_txfifo_size =
   2659 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
   2660 		sc->sc_txfifo_stall = 0;
   2661 		break;
   2662 	case WM_T_82571:
   2663 	case WM_T_82572:
   2664 		sc->sc_pba = PBA_32K;
   2665 		break;
   2666 	case WM_T_82573:
   2667 		sc->sc_pba = PBA_12K;
   2668 		break;
   2669 	default:
   2670 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2671 		    PBA_40K : PBA_48K;
   2672 		break;
   2673 	}
   2674 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
   2675 
   2676 	switch (sc->sc_type) {
   2677 	case WM_T_82544:
   2678 	case WM_T_82540:
   2679 	case WM_T_82545:
   2680 	case WM_T_82546:
   2681 	case WM_T_82541:
   2682 	case WM_T_82541_2:
   2683 		/*
   2684 		 * On some chipsets, a reset through a memory-mapped write
   2685 		 * cycle can cause the chip to reset before completing the
   2686 		 * write cycle.  This causes major headache that can be
   2687 		 * avoided by issuing the reset via indirect register writes
   2688 		 * through I/O space.
   2689 		 *
   2690 		 * So, if we successfully mapped the I/O BAR at attach time,
   2691 		 * use that.  Otherwise, try our luck with a memory-mapped
   2692 		 * reset.
   2693 		 */
   2694 		if (sc->sc_flags & WM_F_IOH_VALID)
   2695 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
   2696 		else
   2697 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2698 		break;
   2699 
   2700 	case WM_T_82545_3:
   2701 	case WM_T_82546_3:
   2702 		/* Use the shadow control register on these chips. */
   2703 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
   2704 		break;
   2705 
   2706 	default:
   2707 		/* Everything else can safely use the documented method. */
   2708 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2709 		break;
   2710 	}
   2711 	delay(10000);
   2712 
   2713 	for (i = 0; i < 1000; i++) {
   2714 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
   2715 			return;
   2716 		delay(20);
   2717 	}
   2718 
   2719 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
   2720 		log(LOG_ERR, "%s: reset failed to complete\n",
   2721 		    sc->sc_dev.dv_xname);
   2722 }
   2723 
   2724 /*
   2725  * wm_init:		[ifnet interface function]
   2726  *
   2727  *	Initialize the interface.  Must be called at splnet().
   2728  */
   2729 static int
   2730 wm_init(struct ifnet *ifp)
   2731 {
   2732 	struct wm_softc *sc = ifp->if_softc;
   2733 	struct wm_rxsoft *rxs;
   2734 	int i, error = 0;
   2735 	uint32_t reg;
   2736 
   2737 	/*
   2738 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   2739 	 * There is a small but measurable benefit to avoiding the adjusment
   2740 	 * of the descriptor so that the headers are aligned, for normal mtu,
   2741 	 * on such platforms.  One possibility is that the DMA itself is
   2742 	 * slightly more efficient if the front of the entire packet (instead
   2743 	 * of the front of the headers) is aligned.
   2744 	 *
   2745 	 * Note we must always set align_tweak to 0 if we are using
   2746 	 * jumbo frames.
   2747 	 */
   2748 #ifdef __NO_STRICT_ALIGNMENT
   2749 	sc->sc_align_tweak = 0;
   2750 #else
   2751 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   2752 		sc->sc_align_tweak = 0;
   2753 	else
   2754 		sc->sc_align_tweak = 2;
   2755 #endif /* __NO_STRICT_ALIGNMENT */
   2756 
   2757 	/* Cancel any pending I/O. */
   2758 	wm_stop(ifp, 0);
   2759 
   2760 	/* Reset the chip to a known state. */
   2761 	wm_reset(sc);
   2762 
   2763 	/* Initialize the transmit descriptor ring. */
   2764 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
   2765 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
   2766 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2767 	sc->sc_txfree = WM_NTXDESC(sc);
   2768 	sc->sc_txnext = 0;
   2769 
   2770 	if (sc->sc_type < WM_T_82543) {
   2771 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
   2772 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
   2773 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
   2774 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
   2775 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
   2776 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
   2777 	} else {
   2778 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
   2779 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
   2780 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
   2781 		CSR_WRITE(sc, WMREG_TDH, 0);
   2782 		CSR_WRITE(sc, WMREG_TDT, 0);
   2783 		CSR_WRITE(sc, WMREG_TIDV, 64);
   2784 		CSR_WRITE(sc, WMREG_TADV, 128);
   2785 
   2786 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
   2787 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   2788 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
   2789 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
   2790 	}
   2791 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
   2792 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
   2793 
   2794 	/* Initialize the transmit job descriptors. */
   2795 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
   2796 		sc->sc_txsoft[i].txs_mbuf = NULL;
   2797 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
   2798 	sc->sc_txsnext = 0;
   2799 	sc->sc_txsdirty = 0;
   2800 
   2801 	/*
   2802 	 * Initialize the receive descriptor and receive job
   2803 	 * descriptor rings.
   2804 	 */
   2805 	if (sc->sc_type < WM_T_82543) {
   2806 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
   2807 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
   2808 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
   2809 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
   2810 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
   2811 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
   2812 
   2813 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
   2814 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
   2815 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
   2816 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
   2817 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
   2818 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
   2819 	} else {
   2820 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
   2821 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
   2822 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
   2823 		CSR_WRITE(sc, WMREG_RDH, 0);
   2824 		CSR_WRITE(sc, WMREG_RDT, 0);
   2825 		CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
   2826 		CSR_WRITE(sc, WMREG_RADV, 128);
   2827 	}
   2828 	for (i = 0; i < WM_NRXDESC; i++) {
   2829 		rxs = &sc->sc_rxsoft[i];
   2830 		if (rxs->rxs_mbuf == NULL) {
   2831 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
   2832 				log(LOG_ERR, "%s: unable to allocate or map rx "
   2833 				    "buffer %d, error = %d\n",
   2834 				    sc->sc_dev.dv_xname, i, error);
   2835 				/*
   2836 				 * XXX Should attempt to run with fewer receive
   2837 				 * XXX buffers instead of just failing.
   2838 				 */
   2839 				wm_rxdrain(sc);
   2840 				goto out;
   2841 			}
   2842 		} else
   2843 			WM_INIT_RXDESC(sc, i);
   2844 	}
   2845 	sc->sc_rxptr = 0;
   2846 	sc->sc_rxdiscard = 0;
   2847 	WM_RXCHAIN_RESET(sc);
   2848 
   2849 	/*
   2850 	 * Clear out the VLAN table -- we don't use it (yet).
   2851 	 */
   2852 	CSR_WRITE(sc, WMREG_VET, 0);
   2853 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
   2854 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
   2855 
   2856 	/*
   2857 	 * Set up flow-control parameters.
   2858 	 *
   2859 	 * XXX Values could probably stand some tuning.
   2860 	 */
   2861 	CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
   2862 	CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
   2863 	CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
   2864 
   2865 	sc->sc_fcrtl = FCRTL_DFLT;
   2866 	if (sc->sc_type < WM_T_82543) {
   2867 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
   2868 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
   2869 	} else {
   2870 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
   2871 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
   2872 	}
   2873 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
   2874 
   2875 #if 0 /* XXXJRT */
   2876 	/* Deal with VLAN enables. */
   2877 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2878 		sc->sc_ctrl |= CTRL_VME;
   2879 	else
   2880 #endif /* XXXJRT */
   2881 		sc->sc_ctrl &= ~CTRL_VME;
   2882 
   2883 	/* Write the control registers. */
   2884 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2885 #if 0
   2886 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   2887 #endif
   2888 
   2889 	/*
   2890 	 * Set up checksum offload parameters.
   2891 	 */
   2892 	reg = CSR_READ(sc, WMREG_RXCSUM);
   2893 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   2894 		reg |= RXCSUM_IPOFL;
   2895 	else
   2896 		reg &= ~RXCSUM_IPOFL;
   2897 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   2898 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   2899 	else {
   2900 		reg &= ~RXCSUM_TUOFL;
   2901 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
   2902 			reg &= ~RXCSUM_IPOFL;
   2903 	}
   2904 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
   2905 
   2906 	/*
   2907 	 * Set up the interrupt registers.
   2908 	 */
   2909 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   2910 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   2911 	    ICR_RXO | ICR_RXT0;
   2912 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
   2913 		sc->sc_icr |= ICR_RXCFG;
   2914 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
   2915 
   2916 	/* Set up the inter-packet gap. */
   2917 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   2918 
   2919 	if (sc->sc_type >= WM_T_82543) {
   2920 		/* Set up the interrupt throttling register (units of 256ns) */
   2921 		sc->sc_itr = 1000000000 / (7000 * 256);
   2922 		CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
   2923 	}
   2924 
   2925 #if 0 /* XXXJRT */
   2926 	/* Set the VLAN ethernetype. */
   2927 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
   2928 #endif
   2929 
   2930 	/*
   2931 	 * Set up the transmit control register; we start out with
   2932 	 * a collision distance suitable for FDX, but update it whe
   2933 	 * we resolve the media type.
   2934 	 */
   2935 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
   2936 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2937 	if (sc->sc_type >= WM_T_82571)
   2938 		sc->sc_tctl |= TCTL_MULR;
   2939 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2940 
   2941 	/* Set the media. */
   2942 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
   2943 
   2944 	/*
   2945 	 * Set up the receive control register; we actually program
   2946 	 * the register when we set the receive filter.  Use multicast
   2947 	 * address offset type 0.
   2948 	 *
   2949 	 * Only the i82544 has the ability to strip the incoming
   2950 	 * CRC, so we don't enable that feature.
   2951 	 */
   2952 	sc->sc_mchash_type = 0;
   2953 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
   2954 	    | RCTL_MO(sc->sc_mchash_type);
   2955 
   2956 	/* 82573 doesn't support jumbo frame */
   2957 	if (sc->sc_type != WM_T_82573)
   2958 		sc->sc_rctl |= RCTL_LPE;
   2959 
   2960 	if (MCLBYTES == 2048) {
   2961 		sc->sc_rctl |= RCTL_2k;
   2962 	} else {
   2963 		if (sc->sc_type >= WM_T_82543) {
   2964 			switch(MCLBYTES) {
   2965 			case 4096:
   2966 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
   2967 				break;
   2968 			case 8192:
   2969 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
   2970 				break;
   2971 			case 16384:
   2972 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
   2973 				break;
   2974 			default:
   2975 				panic("wm_init: MCLBYTES %d unsupported",
   2976 				    MCLBYTES);
   2977 				break;
   2978 			}
   2979 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
   2980 	}
   2981 
   2982 	/* Set the receive filter. */
   2983 	wm_set_filter(sc);
   2984 
   2985 	/* Start the one second link check clock. */
   2986 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2987 
   2988 	/* ...all done! */
   2989 	ifp->if_flags |= IFF_RUNNING;
   2990 	ifp->if_flags &= ~IFF_OACTIVE;
   2991 
   2992  out:
   2993 	if (error)
   2994 		log(LOG_ERR, "%s: interface not running\n",
   2995 		    sc->sc_dev.dv_xname);
   2996 	return (error);
   2997 }
   2998 
   2999 /*
   3000  * wm_rxdrain:
   3001  *
   3002  *	Drain the receive queue.
   3003  */
   3004 static void
   3005 wm_rxdrain(struct wm_softc *sc)
   3006 {
   3007 	struct wm_rxsoft *rxs;
   3008 	int i;
   3009 
   3010 	for (i = 0; i < WM_NRXDESC; i++) {
   3011 		rxs = &sc->sc_rxsoft[i];
   3012 		if (rxs->rxs_mbuf != NULL) {
   3013 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3014 			m_freem(rxs->rxs_mbuf);
   3015 			rxs->rxs_mbuf = NULL;
   3016 		}
   3017 	}
   3018 }
   3019 
   3020 /*
   3021  * wm_stop:		[ifnet interface function]
   3022  *
   3023  *	Stop transmission on the interface.
   3024  */
   3025 static void
   3026 wm_stop(struct ifnet *ifp, int disable)
   3027 {
   3028 	struct wm_softc *sc = ifp->if_softc;
   3029 	struct wm_txsoft *txs;
   3030 	int i;
   3031 
   3032 	/* Stop the one second clock. */
   3033 	callout_stop(&sc->sc_tick_ch);
   3034 
   3035 	/* Stop the 82547 Tx FIFO stall check timer. */
   3036 	if (sc->sc_type == WM_T_82547)
   3037 		callout_stop(&sc->sc_txfifo_ch);
   3038 
   3039 	if (sc->sc_flags & WM_F_HAS_MII) {
   3040 		/* Down the MII. */
   3041 		mii_down(&sc->sc_mii);
   3042 	}
   3043 
   3044 	/* Stop the transmit and receive processes. */
   3045 	CSR_WRITE(sc, WMREG_TCTL, 0);
   3046 	CSR_WRITE(sc, WMREG_RCTL, 0);
   3047 
   3048 	/*
   3049 	 * Clear the interrupt mask to ensure the device cannot assert its
   3050 	 * interrupt line.
   3051 	 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
   3052 	 * any currently pending or shared interrupt.
   3053 	 */
   3054 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   3055 	sc->sc_icr = 0;
   3056 
   3057 	/* Release any queued transmit buffers. */
   3058 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   3059 		txs = &sc->sc_txsoft[i];
   3060 		if (txs->txs_mbuf != NULL) {
   3061 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   3062 			m_freem(txs->txs_mbuf);
   3063 			txs->txs_mbuf = NULL;
   3064 		}
   3065 	}
   3066 
   3067 	if (disable)
   3068 		wm_rxdrain(sc);
   3069 
   3070 	/* Mark the interface as down and cancel the watchdog timer. */
   3071 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3072 	ifp->if_timer = 0;
   3073 }
   3074 
   3075 /*
   3076  * wm_acquire_eeprom:
   3077  *
   3078  *	Perform the EEPROM handshake required on some chips.
   3079  */
   3080 static int
   3081 wm_acquire_eeprom(struct wm_softc *sc)
   3082 {
   3083 	uint32_t reg;
   3084 	int x;
   3085 
   3086 	/* always success */
   3087 	if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
   3088 		return 0;
   3089 
   3090 	if (wm_get_eeprom_semaphore(sc))
   3091 		return 1;
   3092 
   3093 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
   3094 		reg = CSR_READ(sc, WMREG_EECD);
   3095 
   3096 		/* Request EEPROM access. */
   3097 		reg |= EECD_EE_REQ;
   3098 		CSR_WRITE(sc, WMREG_EECD, reg);
   3099 
   3100 		/* ..and wait for it to be granted. */
   3101 		for (x = 0; x < 1000; x++) {
   3102 			reg = CSR_READ(sc, WMREG_EECD);
   3103 			if (reg & EECD_EE_GNT)
   3104 				break;
   3105 			delay(5);
   3106 		}
   3107 		if ((reg & EECD_EE_GNT) == 0) {
   3108 			aprint_error("%s: could not acquire EEPROM GNT\n",
   3109 			    sc->sc_dev.dv_xname);
   3110 			reg &= ~EECD_EE_REQ;
   3111 			CSR_WRITE(sc, WMREG_EECD, reg);
   3112 			wm_put_eeprom_semaphore(sc);
   3113 			return (1);
   3114 		}
   3115 	}
   3116 
   3117 	return (0);
   3118 }
   3119 
   3120 /*
   3121  * wm_release_eeprom:
   3122  *
   3123  *	Release the EEPROM mutex.
   3124  */
   3125 static void
   3126 wm_release_eeprom(struct wm_softc *sc)
   3127 {
   3128 	uint32_t reg;
   3129 
   3130 	/* always success */
   3131 	if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
   3132 		return;
   3133 
   3134 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
   3135 		reg = CSR_READ(sc, WMREG_EECD);
   3136 		reg &= ~EECD_EE_REQ;
   3137 		CSR_WRITE(sc, WMREG_EECD, reg);
   3138 	}
   3139 
   3140 	wm_put_eeprom_semaphore(sc);
   3141 }
   3142 
   3143 /*
   3144  * wm_eeprom_sendbits:
   3145  *
   3146  *	Send a series of bits to the EEPROM.
   3147  */
   3148 static void
   3149 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
   3150 {
   3151 	uint32_t reg;
   3152 	int x;
   3153 
   3154 	reg = CSR_READ(sc, WMREG_EECD);
   3155 
   3156 	for (x = nbits; x > 0; x--) {
   3157 		if (bits & (1U << (x - 1)))
   3158 			reg |= EECD_DI;
   3159 		else
   3160 			reg &= ~EECD_DI;
   3161 		CSR_WRITE(sc, WMREG_EECD, reg);
   3162 		delay(2);
   3163 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   3164 		delay(2);
   3165 		CSR_WRITE(sc, WMREG_EECD, reg);
   3166 		delay(2);
   3167 	}
   3168 }
   3169 
   3170 /*
   3171  * wm_eeprom_recvbits:
   3172  *
   3173  *	Receive a series of bits from the EEPROM.
   3174  */
   3175 static void
   3176 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
   3177 {
   3178 	uint32_t reg, val;
   3179 	int x;
   3180 
   3181 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
   3182 
   3183 	val = 0;
   3184 	for (x = nbits; x > 0; x--) {
   3185 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   3186 		delay(2);
   3187 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
   3188 			val |= (1U << (x - 1));
   3189 		CSR_WRITE(sc, WMREG_EECD, reg);
   3190 		delay(2);
   3191 	}
   3192 	*valp = val;
   3193 }
   3194 
   3195 /*
   3196  * wm_read_eeprom_uwire:
   3197  *
   3198  *	Read a word from the EEPROM using the MicroWire protocol.
   3199  */
   3200 static int
   3201 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3202 {
   3203 	uint32_t reg, val;
   3204 	int i;
   3205 
   3206 	for (i = 0; i < wordcnt; i++) {
   3207 		/* Clear SK and DI. */
   3208 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
   3209 		CSR_WRITE(sc, WMREG_EECD, reg);
   3210 
   3211 		/* Set CHIP SELECT. */
   3212 		reg |= EECD_CS;
   3213 		CSR_WRITE(sc, WMREG_EECD, reg);
   3214 		delay(2);
   3215 
   3216 		/* Shift in the READ command. */
   3217 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
   3218 
   3219 		/* Shift in address. */
   3220 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
   3221 
   3222 		/* Shift out the data. */
   3223 		wm_eeprom_recvbits(sc, &val, 16);
   3224 		data[i] = val & 0xffff;
   3225 
   3226 		/* Clear CHIP SELECT. */
   3227 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
   3228 		CSR_WRITE(sc, WMREG_EECD, reg);
   3229 		delay(2);
   3230 	}
   3231 
   3232 	return (0);
   3233 }
   3234 
   3235 /*
   3236  * wm_spi_eeprom_ready:
   3237  *
   3238  *	Wait for a SPI EEPROM to be ready for commands.
   3239  */
   3240 static int
   3241 wm_spi_eeprom_ready(struct wm_softc *sc)
   3242 {
   3243 	uint32_t val;
   3244 	int usec;
   3245 
   3246 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
   3247 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
   3248 		wm_eeprom_recvbits(sc, &val, 8);
   3249 		if ((val & SPI_SR_RDY) == 0)
   3250 			break;
   3251 	}
   3252 	if (usec >= SPI_MAX_RETRIES) {
   3253 		aprint_error("%s: EEPROM failed to become ready\n",
   3254 		    sc->sc_dev.dv_xname);
   3255 		return (1);
   3256 	}
   3257 	return (0);
   3258 }
   3259 
   3260 /*
   3261  * wm_read_eeprom_spi:
   3262  *
   3263  *	Read a work from the EEPROM using the SPI protocol.
   3264  */
   3265 static int
   3266 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3267 {
   3268 	uint32_t reg, val;
   3269 	int i;
   3270 	uint8_t opc;
   3271 
   3272 	/* Clear SK and CS. */
   3273 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
   3274 	CSR_WRITE(sc, WMREG_EECD, reg);
   3275 	delay(2);
   3276 
   3277 	if (wm_spi_eeprom_ready(sc))
   3278 		return (1);
   3279 
   3280 	/* Toggle CS to flush commands. */
   3281 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
   3282 	delay(2);
   3283 	CSR_WRITE(sc, WMREG_EECD, reg);
   3284 	delay(2);
   3285 
   3286 	opc = SPI_OPC_READ;
   3287 	if (sc->sc_ee_addrbits == 8 && word >= 128)
   3288 		opc |= SPI_OPC_A8;
   3289 
   3290 	wm_eeprom_sendbits(sc, opc, 8);
   3291 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
   3292 
   3293 	for (i = 0; i < wordcnt; i++) {
   3294 		wm_eeprom_recvbits(sc, &val, 16);
   3295 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
   3296 	}
   3297 
   3298 	/* Raise CS and clear SK. */
   3299 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
   3300 	CSR_WRITE(sc, WMREG_EECD, reg);
   3301 	delay(2);
   3302 
   3303 	return (0);
   3304 }
   3305 
   3306 #define EEPROM_CHECKSUM		0xBABA
   3307 #define EEPROM_SIZE		0x0040
   3308 
   3309 /*
   3310  * wm_validate_eeprom_checksum
   3311  *
   3312  * The checksum is defined as the sum of the first 64 (16 bit) words.
   3313  */
   3314 static int
   3315 wm_validate_eeprom_checksum(struct wm_softc *sc)
   3316 {
   3317 	uint16_t checksum;
   3318 	uint16_t eeprom_data;
   3319 	int i;
   3320 
   3321 	checksum = 0;
   3322 
   3323 	for (i = 0; i < EEPROM_SIZE; i++) {
   3324 		if (wm_read_eeprom(sc, i, 1, &eeprom_data))
   3325 			return 1;
   3326 		checksum += eeprom_data;
   3327 	}
   3328 
   3329 	if (checksum != (uint16_t) EEPROM_CHECKSUM)
   3330 		return 1;
   3331 
   3332 	return 0;
   3333 }
   3334 
   3335 /*
   3336  * wm_read_eeprom:
   3337  *
   3338  *	Read data from the serial EEPROM.
   3339  */
   3340 static int
   3341 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3342 {
   3343 	int rv;
   3344 
   3345 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
   3346 		return 1;
   3347 
   3348 	if (wm_acquire_eeprom(sc))
   3349 		return 1;
   3350 
   3351 	if (sc->sc_flags & WM_F_EEPROM_EERDEEWR)
   3352 		rv = wm_read_eeprom_eerd(sc, word, wordcnt, data);
   3353 	else if (sc->sc_flags & WM_F_EEPROM_SPI)
   3354 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
   3355 	else
   3356 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
   3357 
   3358 	wm_release_eeprom(sc);
   3359 	return rv;
   3360 }
   3361 
   3362 static int
   3363 wm_read_eeprom_eerd(struct wm_softc *sc, int offset, int wordcnt,
   3364     uint16_t *data)
   3365 {
   3366 	int i, eerd = 0;
   3367 	int error = 0;
   3368 
   3369 	for (i = 0; i < wordcnt; i++) {
   3370 		eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
   3371 
   3372 		CSR_WRITE(sc, WMREG_EERD, eerd);
   3373 		error = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
   3374 		if (error != 0)
   3375 			break;
   3376 
   3377 		data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
   3378 	}
   3379 
   3380 	return error;
   3381 }
   3382 
   3383 static int
   3384 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
   3385 {
   3386 	uint32_t attempts = 100000;
   3387 	uint32_t i, reg = 0;
   3388 	int32_t done = -1;
   3389 
   3390 	for (i = 0; i < attempts; i++) {
   3391 		reg = CSR_READ(sc, rw);
   3392 
   3393 		if (reg & EERD_DONE) {
   3394 			done = 0;
   3395 			break;
   3396 		}
   3397 		delay(5);
   3398 	}
   3399 
   3400 	return done;
   3401 }
   3402 
   3403 /*
   3404  * wm_add_rxbuf:
   3405  *
   3406  *	Add a receive buffer to the indiciated descriptor.
   3407  */
   3408 static int
   3409 wm_add_rxbuf(struct wm_softc *sc, int idx)
   3410 {
   3411 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
   3412 	struct mbuf *m;
   3413 	int error;
   3414 
   3415 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3416 	if (m == NULL)
   3417 		return (ENOBUFS);
   3418 
   3419 	MCLGET(m, M_DONTWAIT);
   3420 	if ((m->m_flags & M_EXT) == 0) {
   3421 		m_freem(m);
   3422 		return (ENOBUFS);
   3423 	}
   3424 
   3425 	if (rxs->rxs_mbuf != NULL)
   3426 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3427 
   3428 	rxs->rxs_mbuf = m;
   3429 
   3430 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   3431 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   3432 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   3433 	if (error) {
   3434 		/* XXX XXX XXX */
   3435 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   3436 		    sc->sc_dev.dv_xname, idx, error);
   3437 		panic("wm_add_rxbuf");
   3438 	}
   3439 
   3440 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3441 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3442 
   3443 	WM_INIT_RXDESC(sc, idx);
   3444 
   3445 	return (0);
   3446 }
   3447 
   3448 /*
   3449  * wm_set_ral:
   3450  *
   3451  *	Set an entery in the receive address list.
   3452  */
   3453 static void
   3454 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
   3455 {
   3456 	uint32_t ral_lo, ral_hi;
   3457 
   3458 	if (enaddr != NULL) {
   3459 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   3460 		    (enaddr[3] << 24);
   3461 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   3462 		ral_hi |= RAL_AV;
   3463 	} else {
   3464 		ral_lo = 0;
   3465 		ral_hi = 0;
   3466 	}
   3467 
   3468 	if (sc->sc_type >= WM_T_82544) {
   3469 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
   3470 		    ral_lo);
   3471 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
   3472 		    ral_hi);
   3473 	} else {
   3474 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
   3475 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
   3476 	}
   3477 }
   3478 
   3479 /*
   3480  * wm_mchash:
   3481  *
   3482  *	Compute the hash of the multicast address for the 4096-bit
   3483  *	multicast filter.
   3484  */
   3485 static uint32_t
   3486 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
   3487 {
   3488 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   3489 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   3490 	uint32_t hash;
   3491 
   3492 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   3493 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   3494 
   3495 	return (hash & 0xfff);
   3496 }
   3497 
   3498 /*
   3499  * wm_set_filter:
   3500  *
   3501  *	Set up the receive filter.
   3502  */
   3503 static void
   3504 wm_set_filter(struct wm_softc *sc)
   3505 {
   3506 	struct ethercom *ec = &sc->sc_ethercom;
   3507 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3508 	struct ether_multi *enm;
   3509 	struct ether_multistep step;
   3510 	bus_addr_t mta_reg;
   3511 	uint32_t hash, reg, bit;
   3512 	int i;
   3513 
   3514 	if (sc->sc_type >= WM_T_82544)
   3515 		mta_reg = WMREG_CORDOVA_MTA;
   3516 	else
   3517 		mta_reg = WMREG_MTA;
   3518 
   3519 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   3520 
   3521 	if (ifp->if_flags & IFF_BROADCAST)
   3522 		sc->sc_rctl |= RCTL_BAM;
   3523 	if (ifp->if_flags & IFF_PROMISC) {
   3524 		sc->sc_rctl |= RCTL_UPE;
   3525 		goto allmulti;
   3526 	}
   3527 
   3528 	/*
   3529 	 * Set the station address in the first RAL slot, and
   3530 	 * clear the remaining slots.
   3531 	 */
   3532 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
   3533 	for (i = 1; i < WM_RAL_TABSIZE; i++)
   3534 		wm_set_ral(sc, NULL, i);
   3535 
   3536 	/* Clear out the multicast table. */
   3537 	for (i = 0; i < WM_MC_TABSIZE; i++)
   3538 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
   3539 
   3540 	ETHER_FIRST_MULTI(step, ec, enm);
   3541 	while (enm != NULL) {
   3542 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3543 			/*
   3544 			 * We must listen to a range of multicast addresses.
   3545 			 * For now, just accept all multicasts, rather than
   3546 			 * trying to set only those filter bits needed to match
   3547 			 * the range.  (At this time, the only use of address
   3548 			 * ranges is for IP multicast routing, for which the
   3549 			 * range is big enough to require all bits set.)
   3550 			 */
   3551 			goto allmulti;
   3552 		}
   3553 
   3554 		hash = wm_mchash(sc, enm->enm_addrlo);
   3555 
   3556 		reg = (hash >> 5) & 0x7f;
   3557 		bit = hash & 0x1f;
   3558 
   3559 		hash = CSR_READ(sc, mta_reg + (reg << 2));
   3560 		hash |= 1U << bit;
   3561 
   3562 		/* XXX Hardware bug?? */
   3563 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
   3564 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
   3565 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3566 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
   3567 		} else
   3568 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3569 
   3570 		ETHER_NEXT_MULTI(step, enm);
   3571 	}
   3572 
   3573 	ifp->if_flags &= ~IFF_ALLMULTI;
   3574 	goto setit;
   3575 
   3576  allmulti:
   3577 	ifp->if_flags |= IFF_ALLMULTI;
   3578 	sc->sc_rctl |= RCTL_MPE;
   3579 
   3580  setit:
   3581 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
   3582 }
   3583 
   3584 /*
   3585  * wm_tbi_mediainit:
   3586  *
   3587  *	Initialize media for use on 1000BASE-X devices.
   3588  */
   3589 static void
   3590 wm_tbi_mediainit(struct wm_softc *sc)
   3591 {
   3592 	const char *sep = "";
   3593 
   3594 	if (sc->sc_type < WM_T_82543)
   3595 		sc->sc_tipg = TIPG_WM_DFLT;
   3596 	else
   3597 		sc->sc_tipg = TIPG_LG_DFLT;
   3598 
   3599 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
   3600 	    wm_tbi_mediastatus);
   3601 
   3602 	/*
   3603 	 * SWD Pins:
   3604 	 *
   3605 	 *	0 = Link LED (output)
   3606 	 *	1 = Loss Of Signal (input)
   3607 	 */
   3608 	sc->sc_ctrl |= CTRL_SWDPIO(0);
   3609 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
   3610 
   3611 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3612 
   3613 #define	ADD(ss, mm, dd)							\
   3614 do {									\
   3615 	aprint_normal("%s%s", sep, ss);					\
   3616 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
   3617 	sep = ", ";							\
   3618 } while (/*CONSTCOND*/0)
   3619 
   3620 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
   3621 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
   3622 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
   3623 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
   3624 	aprint_normal("\n");
   3625 
   3626 #undef ADD
   3627 
   3628 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   3629 }
   3630 
   3631 /*
   3632  * wm_tbi_mediastatus:	[ifmedia interface function]
   3633  *
   3634  *	Get the current interface media status on a 1000BASE-X device.
   3635  */
   3636 static void
   3637 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3638 {
   3639 	struct wm_softc *sc = ifp->if_softc;
   3640 	uint32_t ctrl;
   3641 
   3642 	ifmr->ifm_status = IFM_AVALID;
   3643 	ifmr->ifm_active = IFM_ETHER;
   3644 
   3645 	if (sc->sc_tbi_linkup == 0) {
   3646 		ifmr->ifm_active |= IFM_NONE;
   3647 		return;
   3648 	}
   3649 
   3650 	ifmr->ifm_status |= IFM_ACTIVE;
   3651 	ifmr->ifm_active |= IFM_1000_SX;
   3652 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
   3653 		ifmr->ifm_active |= IFM_FDX;
   3654 	ctrl = CSR_READ(sc, WMREG_CTRL);
   3655 	if (ctrl & CTRL_RFCE)
   3656 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   3657 	if (ctrl & CTRL_TFCE)
   3658 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   3659 }
   3660 
   3661 /*
   3662  * wm_tbi_mediachange:	[ifmedia interface function]
   3663  *
   3664  *	Set hardware to newly-selected media on a 1000BASE-X device.
   3665  */
   3666 static int
   3667 wm_tbi_mediachange(struct ifnet *ifp)
   3668 {
   3669 	struct wm_softc *sc = ifp->if_softc;
   3670 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   3671 	uint32_t status;
   3672 	int i;
   3673 
   3674 	sc->sc_txcw = ife->ifm_data;
   3675 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
   3676 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
   3677 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
   3678 	sc->sc_txcw |= TXCW_ANE;
   3679 
   3680 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   3681 	delay(10000);
   3682 
   3683 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
   3684 
   3685 	sc->sc_tbi_anstate = 0;
   3686 
   3687 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
   3688 		/* Have signal; wait for the link to come up. */
   3689 		for (i = 0; i < 50; i++) {
   3690 			delay(10000);
   3691 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
   3692 				break;
   3693 		}
   3694 
   3695 		status = CSR_READ(sc, WMREG_STATUS);
   3696 		if (status & STATUS_LU) {
   3697 			/* Link is up. */
   3698 			DPRINTF(WM_DEBUG_LINK,
   3699 			    ("%s: LINK: set media -> link up %s\n",
   3700 			    sc->sc_dev.dv_xname,
   3701 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   3702 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3703 			sc->sc_fcrtl &= ~FCRTL_XONE;
   3704 			if (status & STATUS_FD)
   3705 				sc->sc_tctl |=
   3706 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3707 			else
   3708 				sc->sc_tctl |=
   3709 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3710 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   3711 				sc->sc_fcrtl |= FCRTL_XONE;
   3712 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3713 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   3714 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   3715 				      sc->sc_fcrtl);
   3716 			sc->sc_tbi_linkup = 1;
   3717 		} else {
   3718 			/* Link is down. */
   3719 			DPRINTF(WM_DEBUG_LINK,
   3720 			    ("%s: LINK: set media -> link down\n",
   3721 			    sc->sc_dev.dv_xname));
   3722 			sc->sc_tbi_linkup = 0;
   3723 		}
   3724 	} else {
   3725 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
   3726 		    sc->sc_dev.dv_xname));
   3727 		sc->sc_tbi_linkup = 0;
   3728 	}
   3729 
   3730 	wm_tbi_set_linkled(sc);
   3731 
   3732 	return (0);
   3733 }
   3734 
   3735 /*
   3736  * wm_tbi_set_linkled:
   3737  *
   3738  *	Update the link LED on 1000BASE-X devices.
   3739  */
   3740 static void
   3741 wm_tbi_set_linkled(struct wm_softc *sc)
   3742 {
   3743 
   3744 	if (sc->sc_tbi_linkup)
   3745 		sc->sc_ctrl |= CTRL_SWDPIN(0);
   3746 	else
   3747 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
   3748 
   3749 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3750 }
   3751 
   3752 /*
   3753  * wm_tbi_check_link:
   3754  *
   3755  *	Check the link on 1000BASE-X devices.
   3756  */
   3757 static void
   3758 wm_tbi_check_link(struct wm_softc *sc)
   3759 {
   3760 	uint32_t rxcw, ctrl, status;
   3761 
   3762 	if (sc->sc_tbi_anstate == 0)
   3763 		return;
   3764 	else if (sc->sc_tbi_anstate > 1) {
   3765 		DPRINTF(WM_DEBUG_LINK,
   3766 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
   3767 		    sc->sc_tbi_anstate));
   3768 		sc->sc_tbi_anstate--;
   3769 		return;
   3770 	}
   3771 
   3772 	sc->sc_tbi_anstate = 0;
   3773 
   3774 	rxcw = CSR_READ(sc, WMREG_RXCW);
   3775 	ctrl = CSR_READ(sc, WMREG_CTRL);
   3776 	status = CSR_READ(sc, WMREG_STATUS);
   3777 
   3778 	if ((status & STATUS_LU) == 0) {
   3779 		DPRINTF(WM_DEBUG_LINK,
   3780 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
   3781 		sc->sc_tbi_linkup = 0;
   3782 	} else {
   3783 		DPRINTF(WM_DEBUG_LINK,
   3784 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
   3785 		    (status & STATUS_FD) ? "FDX" : "HDX"));
   3786 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3787 		sc->sc_fcrtl &= ~FCRTL_XONE;
   3788 		if (status & STATUS_FD)
   3789 			sc->sc_tctl |=
   3790 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3791 		else
   3792 			sc->sc_tctl |=
   3793 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3794 		if (ctrl & CTRL_TFCE)
   3795 			sc->sc_fcrtl |= FCRTL_XONE;
   3796 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3797 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   3798 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
   3799 			      sc->sc_fcrtl);
   3800 		sc->sc_tbi_linkup = 1;
   3801 	}
   3802 
   3803 	wm_tbi_set_linkled(sc);
   3804 }
   3805 
   3806 /*
   3807  * wm_gmii_reset:
   3808  *
   3809  *	Reset the PHY.
   3810  */
   3811 static void
   3812 wm_gmii_reset(struct wm_softc *sc)
   3813 {
   3814 	uint32_t reg;
   3815 
   3816 	if (sc->sc_type >= WM_T_82544) {
   3817 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   3818 		delay(20000);
   3819 
   3820 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3821 		delay(20000);
   3822 	} else {
   3823 		/* The PHY reset pin is active-low. */
   3824 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   3825 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
   3826 		    CTRL_EXT_SWDPIN(4));
   3827 		reg |= CTRL_EXT_SWDPIO(4);
   3828 
   3829 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   3830 		delay(10);
   3831 
   3832 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   3833 		delay(10);
   3834 
   3835 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   3836 		delay(10);
   3837 #if 0
   3838 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
   3839 #endif
   3840 	}
   3841 }
   3842 
   3843 /*
   3844  * wm_gmii_mediainit:
   3845  *
   3846  *	Initialize media for use on 1000BASE-T devices.
   3847  */
   3848 static void
   3849 wm_gmii_mediainit(struct wm_softc *sc)
   3850 {
   3851 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3852 
   3853 	/* We have MII. */
   3854 	sc->sc_flags |= WM_F_HAS_MII;
   3855 
   3856 	sc->sc_tipg = TIPG_1000T_DFLT;
   3857 
   3858 	/*
   3859 	 * Let the chip set speed/duplex on its own based on
   3860 	 * signals from the PHY.
   3861 	 */
   3862 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
   3863 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3864 
   3865 	/* Initialize our media structures and probe the GMII. */
   3866 	sc->sc_mii.mii_ifp = ifp;
   3867 
   3868 	if (sc->sc_type >= WM_T_82544) {
   3869 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
   3870 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
   3871 	} else {
   3872 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
   3873 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
   3874 	}
   3875 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
   3876 
   3877 	wm_gmii_reset(sc);
   3878 
   3879 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
   3880 	    wm_gmii_mediastatus);
   3881 
   3882 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   3883 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
   3884 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   3885 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   3886 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   3887 	} else
   3888 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   3889 }
   3890 
   3891 /*
   3892  * wm_gmii_mediastatus:	[ifmedia interface function]
   3893  *
   3894  *	Get the current interface media status on a 1000BASE-T device.
   3895  */
   3896 static void
   3897 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3898 {
   3899 	struct wm_softc *sc = ifp->if_softc;
   3900 
   3901 	mii_pollstat(&sc->sc_mii);
   3902 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3903 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
   3904 			   sc->sc_flowflags;
   3905 }
   3906 
   3907 /*
   3908  * wm_gmii_mediachange:	[ifmedia interface function]
   3909  *
   3910  *	Set hardware to newly-selected media on a 1000BASE-T device.
   3911  */
   3912 static int
   3913 wm_gmii_mediachange(struct ifnet *ifp)
   3914 {
   3915 	struct wm_softc *sc = ifp->if_softc;
   3916 
   3917 	if (ifp->if_flags & IFF_UP)
   3918 		mii_mediachg(&sc->sc_mii);
   3919 	return (0);
   3920 }
   3921 
   3922 #define	MDI_IO		CTRL_SWDPIN(2)
   3923 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
   3924 #define	MDI_CLK		CTRL_SWDPIN(3)
   3925 
   3926 static void
   3927 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
   3928 {
   3929 	uint32_t i, v;
   3930 
   3931 	v = CSR_READ(sc, WMREG_CTRL);
   3932 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   3933 	v |= MDI_DIR | CTRL_SWDPIO(3);
   3934 
   3935 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
   3936 		if (data & i)
   3937 			v |= MDI_IO;
   3938 		else
   3939 			v &= ~MDI_IO;
   3940 		CSR_WRITE(sc, WMREG_CTRL, v);
   3941 		delay(10);
   3942 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3943 		delay(10);
   3944 		CSR_WRITE(sc, WMREG_CTRL, v);
   3945 		delay(10);
   3946 	}
   3947 }
   3948 
   3949 static uint32_t
   3950 i82543_mii_recvbits(struct wm_softc *sc)
   3951 {
   3952 	uint32_t v, i, data = 0;
   3953 
   3954 	v = CSR_READ(sc, WMREG_CTRL);
   3955 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   3956 	v |= CTRL_SWDPIO(3);
   3957 
   3958 	CSR_WRITE(sc, WMREG_CTRL, v);
   3959 	delay(10);
   3960 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3961 	delay(10);
   3962 	CSR_WRITE(sc, WMREG_CTRL, v);
   3963 	delay(10);
   3964 
   3965 	for (i = 0; i < 16; i++) {
   3966 		data <<= 1;
   3967 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3968 		delay(10);
   3969 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
   3970 			data |= 1;
   3971 		CSR_WRITE(sc, WMREG_CTRL, v);
   3972 		delay(10);
   3973 	}
   3974 
   3975 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3976 	delay(10);
   3977 	CSR_WRITE(sc, WMREG_CTRL, v);
   3978 	delay(10);
   3979 
   3980 	return (data);
   3981 }
   3982 
   3983 #undef MDI_IO
   3984 #undef MDI_DIR
   3985 #undef MDI_CLK
   3986 
   3987 /*
   3988  * wm_gmii_i82543_readreg:	[mii interface function]
   3989  *
   3990  *	Read a PHY register on the GMII (i82543 version).
   3991  */
   3992 static int
   3993 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
   3994 {
   3995 	struct wm_softc *sc = (void *) self;
   3996 	int rv;
   3997 
   3998 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   3999 	i82543_mii_sendbits(sc, reg | (phy << 5) |
   4000 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
   4001 	rv = i82543_mii_recvbits(sc) & 0xffff;
   4002 
   4003 	DPRINTF(WM_DEBUG_GMII,
   4004 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
   4005 	    sc->sc_dev.dv_xname, phy, reg, rv));
   4006 
   4007 	return (rv);
   4008 }
   4009 
   4010 /*
   4011  * wm_gmii_i82543_writereg:	[mii interface function]
   4012  *
   4013  *	Write a PHY register on the GMII (i82543 version).
   4014  */
   4015 static void
   4016 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
   4017 {
   4018 	struct wm_softc *sc = (void *) self;
   4019 
   4020 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   4021 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
   4022 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
   4023 	    (MII_COMMAND_START << 30), 32);
   4024 }
   4025 
   4026 /*
   4027  * wm_gmii_i82544_readreg:	[mii interface function]
   4028  *
   4029  *	Read a PHY register on the GMII.
   4030  */
   4031 static int
   4032 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
   4033 {
   4034 	struct wm_softc *sc = (void *) self;
   4035 	uint32_t mdic = 0;
   4036 	int i, rv;
   4037 
   4038 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
   4039 	    MDIC_REGADD(reg));
   4040 
   4041 	for (i = 0; i < 100; i++) {
   4042 		mdic = CSR_READ(sc, WMREG_MDIC);
   4043 		if (mdic & MDIC_READY)
   4044 			break;
   4045 		delay(10);
   4046 	}
   4047 
   4048 	if ((mdic & MDIC_READY) == 0) {
   4049 		log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
   4050 		    sc->sc_dev.dv_xname, phy, reg);
   4051 		rv = 0;
   4052 	} else if (mdic & MDIC_E) {
   4053 #if 0 /* This is normal if no PHY is present. */
   4054 		log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
   4055 		    sc->sc_dev.dv_xname, phy, reg);
   4056 #endif
   4057 		rv = 0;
   4058 	} else {
   4059 		rv = MDIC_DATA(mdic);
   4060 		if (rv == 0xffff)
   4061 			rv = 0;
   4062 	}
   4063 
   4064 	return (rv);
   4065 }
   4066 
   4067 /*
   4068  * wm_gmii_i82544_writereg:	[mii interface function]
   4069  *
   4070  *	Write a PHY register on the GMII.
   4071  */
   4072 static void
   4073 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
   4074 {
   4075 	struct wm_softc *sc = (void *) self;
   4076 	uint32_t mdic = 0;
   4077 	int i;
   4078 
   4079 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
   4080 	    MDIC_REGADD(reg) | MDIC_DATA(val));
   4081 
   4082 	for (i = 0; i < 100; i++) {
   4083 		mdic = CSR_READ(sc, WMREG_MDIC);
   4084 		if (mdic & MDIC_READY)
   4085 			break;
   4086 		delay(10);
   4087 	}
   4088 
   4089 	if ((mdic & MDIC_READY) == 0)
   4090 		log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
   4091 		    sc->sc_dev.dv_xname, phy, reg);
   4092 	else if (mdic & MDIC_E)
   4093 		log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
   4094 		    sc->sc_dev.dv_xname, phy, reg);
   4095 }
   4096 
   4097 /*
   4098  * wm_gmii_statchg:	[mii interface function]
   4099  *
   4100  *	Callback from MII layer when media changes.
   4101  */
   4102 static void
   4103 wm_gmii_statchg(struct device *self)
   4104 {
   4105 	struct wm_softc *sc = (void *) self;
   4106 	struct mii_data *mii = &sc->sc_mii;
   4107 
   4108 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
   4109 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   4110 	sc->sc_fcrtl &= ~FCRTL_XONE;
   4111 
   4112 	/*
   4113 	 * Get flow control negotiation result.
   4114 	 */
   4115 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   4116 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   4117 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   4118 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   4119 	}
   4120 
   4121 	if (sc->sc_flowflags & IFM_FLOW) {
   4122 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
   4123 			sc->sc_ctrl |= CTRL_TFCE;
   4124 			sc->sc_fcrtl |= FCRTL_XONE;
   4125 		}
   4126 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   4127 			sc->sc_ctrl |= CTRL_RFCE;
   4128 	}
   4129 
   4130 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   4131 		DPRINTF(WM_DEBUG_LINK,
   4132 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
   4133 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   4134 	} else  {
   4135 		DPRINTF(WM_DEBUG_LINK,
   4136 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
   4137 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   4138 	}
   4139 
   4140 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4141 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   4142 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
   4143 						 : WMREG_FCRTL, sc->sc_fcrtl);
   4144 }
   4145 
   4146 static int
   4147 wm_is_onboard_nvm_eeprom(struct wm_softc *sc)
   4148 {
   4149 	uint32_t eecd = 0;
   4150 
   4151 	if (sc->sc_type == WM_T_82573) {
   4152 		eecd = CSR_READ(sc, WMREG_EECD);
   4153 
   4154 		/* Isolate bits 15 & 16 */
   4155 		eecd = ((eecd >> 15) & 0x03);
   4156 
   4157 		/* If both bits are set, device is Flash type */
   4158 		if (eecd == 0x03) {
   4159 			return 0;
   4160 		}
   4161 	}
   4162 	return 1;
   4163 }
   4164 
   4165 static int
   4166 wm_get_eeprom_semaphore(struct wm_softc *sc)
   4167 {
   4168 	int32_t timeout;
   4169 	uint32_t swsm;
   4170 
   4171 	if ((sc->sc_flags & WM_F_EEPROM_SEMAPHORE) == 0)
   4172 		return 0;
   4173 
   4174 	/* Get the FW semaphore. */
   4175 	timeout = 1000 + 1; /* XXX */
   4176 	while (timeout) {
   4177 		swsm = CSR_READ(sc, WMREG_SWSM);
   4178 		swsm |= SWSM_SWESMBI;
   4179 		CSR_WRITE(sc, WMREG_SWSM, swsm);
   4180 		/* if we managed to set the bit we got the semaphore. */
   4181 		swsm = CSR_READ(sc, WMREG_SWSM);
   4182 		if (swsm & SWSM_SWESMBI)
   4183 			break;
   4184 
   4185 		delay(50);
   4186 		timeout--;
   4187 	}
   4188 
   4189 	if (timeout == 0) {
   4190 		/* Release semaphores */
   4191 		wm_put_eeprom_semaphore(sc);
   4192 		return 1;
   4193 	}
   4194 
   4195 	return 0;
   4196 }
   4197 
   4198 static void
   4199 wm_put_eeprom_semaphore(struct wm_softc *sc)
   4200 {
   4201 	uint32_t swsm;
   4202 
   4203 	if ((sc->sc_flags & WM_F_EEPROM_SEMAPHORE) == 0)
   4204 		return;
   4205 
   4206 	swsm = CSR_READ(sc, WMREG_SWSM);
   4207 	swsm &= ~(SWSM_SWESMBI);
   4208 	CSR_WRITE(sc, WMREG_SWSM, swsm);
   4209 }
   4210