if_wm.c revision 1.126 1 /* $NetBSD: if_wm.c,v 1.126 2006/10/12 01:31:30 christos Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40 *
41 * TODO (in order of importance):
42 *
43 * - Rework how parameters are loaded from the EEPROM.
44 * - Figure out what to do with the i82545GM and i82546GB
45 * SERDES controllers.
46 * - Fix hw VLAN assist.
47 */
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.126 2006/10/12 01:31:30 christos Exp $");
51
52 #include "bpfilter.h"
53 #include "rnd.h"
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67
68 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
69
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82
83 #include <netinet/in.h> /* XXX for struct ip */
84 #include <netinet/in_systm.h> /* XXX for struct ip */
85 #include <netinet/ip.h> /* XXX for struct ip */
86 #include <netinet/tcp.h> /* XXX for struct tcphdr */
87
88 #include <machine/bus.h>
89 #include <machine/intr.h>
90 #include <machine/endian.h>
91
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99
100 #include <dev/pci/if_wmreg.h>
101
102 #ifdef WM_DEBUG
103 #define WM_DEBUG_LINK 0x01
104 #define WM_DEBUG_TX 0x02
105 #define WM_DEBUG_RX 0x04
106 #define WM_DEBUG_GMII 0x08
107 int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
108
109 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
110 #else
111 #define DPRINTF(x, y) /* nothing */
112 #endif /* WM_DEBUG */
113
114 /*
115 * Transmit descriptor list size. Due to errata, we can only have
116 * 256 hardware descriptors in the ring on < 82544, but we use 4096
117 * on >= 82544. We tell the upper layers that they can queue a lot
118 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
119 * of them at a time.
120 *
121 * We allow up to 256 (!) DMA segments per packet. Pathological packet
122 * chains containing many small mbufs have been observed in zero-copy
123 * situations with jumbo frames.
124 */
125 #define WM_NTXSEGS 256
126 #define WM_IFQUEUELEN 256
127 #define WM_TXQUEUELEN_MAX 64
128 #define WM_TXQUEUELEN_MAX_82547 16
129 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
130 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
131 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
132 #define WM_NTXDESC_82542 256
133 #define WM_NTXDESC_82544 4096
134 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
135 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
136 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
137 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
138 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
139
140 #define WM_MAXTXDMA round_page(IP_MAXPACKET) /* for TSO */
141
142 /*
143 * Receive descriptor list size. We have one Rx buffer for normal
144 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
145 * packet. We allocate 256 receive descriptors, each with a 2k
146 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
147 */
148 #define WM_NRXDESC 256
149 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
150 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
151 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
152
153 /*
154 * Control structures are DMA'd to the i82542 chip. We allocate them in
155 * a single clump that maps to a single DMA segment to make several things
156 * easier.
157 */
158 struct wm_control_data_82544 {
159 /*
160 * The receive descriptors.
161 */
162 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
163
164 /*
165 * The transmit descriptors. Put these at the end, because
166 * we might use a smaller number of them.
167 */
168 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
169 };
170
171 struct wm_control_data_82542 {
172 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
173 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
174 };
175
176 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
177 #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)])
178 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
179
180 /*
181 * Software state for transmit jobs.
182 */
183 struct wm_txsoft {
184 struct mbuf *txs_mbuf; /* head of our mbuf chain */
185 bus_dmamap_t txs_dmamap; /* our DMA map */
186 int txs_firstdesc; /* first descriptor in packet */
187 int txs_lastdesc; /* last descriptor in packet */
188 int txs_ndesc; /* # of descriptors used */
189 };
190
191 /*
192 * Software state for receive buffers. Each descriptor gets a
193 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
194 * more than one buffer, we chain them together.
195 */
196 struct wm_rxsoft {
197 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
198 bus_dmamap_t rxs_dmamap; /* our DMA map */
199 };
200
201 typedef enum {
202 WM_T_unknown = 0,
203 WM_T_82542_2_0, /* i82542 2.0 (really old) */
204 WM_T_82542_2_1, /* i82542 2.1+ (old) */
205 WM_T_82543, /* i82543 */
206 WM_T_82544, /* i82544 */
207 WM_T_82540, /* i82540 */
208 WM_T_82545, /* i82545 */
209 WM_T_82545_3, /* i82545 3.0+ */
210 WM_T_82546, /* i82546 */
211 WM_T_82546_3, /* i82546 3.0+ */
212 WM_T_82541, /* i82541 */
213 WM_T_82541_2, /* i82541 2.0+ */
214 WM_T_82547, /* i82547 */
215 WM_T_82547_2, /* i82547 2.0+ */
216 WM_T_82571, /* i82571 */
217 WM_T_82572, /* i82572 */
218 WM_T_82573, /* i82573 */
219 } wm_chip_type;
220
221 /*
222 * Software state per device.
223 */
224 struct wm_softc {
225 struct device sc_dev; /* generic device information */
226 bus_space_tag_t sc_st; /* bus space tag */
227 bus_space_handle_t sc_sh; /* bus space handle */
228 bus_space_tag_t sc_iot; /* I/O space tag */
229 bus_space_handle_t sc_ioh; /* I/O space handle */
230 bus_dma_tag_t sc_dmat; /* bus DMA tag */
231 struct ethercom sc_ethercom; /* ethernet common data */
232 void *sc_sdhook; /* shutdown hook */
233 void *sc_powerhook; /* power hook */
234 pci_chipset_tag_t sc_pc;
235 pcitag_t sc_pcitag;
236 struct pci_conf_state sc_pciconf;
237
238 wm_chip_type sc_type; /* chip type */
239 int sc_flags; /* flags; see below */
240 int sc_bus_speed; /* PCI/PCIX bus speed */
241 int sc_pcix_offset; /* PCIX capability register offset */
242 int sc_flowflags; /* 802.3x flow control flags */
243
244 void *sc_ih; /* interrupt cookie */
245
246 int sc_ee_addrbits; /* EEPROM address bits */
247
248 struct mii_data sc_mii; /* MII/media information */
249
250 struct callout sc_tick_ch; /* tick callout */
251
252 bus_dmamap_t sc_cddmamap; /* control data DMA map */
253 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
254
255 int sc_align_tweak;
256
257 /*
258 * Software state for the transmit and receive descriptors.
259 */
260 int sc_txnum; /* must be a power of two */
261 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
262 struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
263
264 /*
265 * Control data structures.
266 */
267 int sc_ntxdesc; /* must be a power of two */
268 struct wm_control_data_82544 *sc_control_data;
269 #define sc_txdescs sc_control_data->wcd_txdescs
270 #define sc_rxdescs sc_control_data->wcd_rxdescs
271
272 #ifdef WM_EVENT_COUNTERS
273 /* Event counters. */
274 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
275 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
276 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
277 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
278 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
279 struct evcnt sc_ev_rxintr; /* Rx interrupts */
280 struct evcnt sc_ev_linkintr; /* Link interrupts */
281
282 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
283 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
284 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
285 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
286 struct evcnt sc_ev_txtusum6; /* TCP/UDP v6 cksums comp. out-bound */
287 struct evcnt sc_ev_txtso; /* TCP seg offload out-bound */
288 struct evcnt sc_ev_txtsopain; /* painful header manip. for TSO */
289
290 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
291 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
292
293 struct evcnt sc_ev_tu; /* Tx underrun */
294
295 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
296 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
297 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
298 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
299 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
300 #endif /* WM_EVENT_COUNTERS */
301
302 bus_addr_t sc_tdt_reg; /* offset of TDT register */
303
304 int sc_txfree; /* number of free Tx descriptors */
305 int sc_txnext; /* next ready Tx descriptor */
306
307 int sc_txsfree; /* number of free Tx jobs */
308 int sc_txsnext; /* next free Tx job */
309 int sc_txsdirty; /* dirty Tx jobs */
310
311 /* These 5 variables are used only on the 82547. */
312 int sc_txfifo_size; /* Tx FIFO size */
313 int sc_txfifo_head; /* current head of FIFO */
314 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
315 int sc_txfifo_stall; /* Tx FIFO is stalled */
316 struct callout sc_txfifo_ch; /* Tx FIFO stall work-around timer */
317
318 bus_addr_t sc_rdt_reg; /* offset of RDT register */
319
320 int sc_rxptr; /* next ready Rx descriptor/queue ent */
321 int sc_rxdiscard;
322 int sc_rxlen;
323 struct mbuf *sc_rxhead;
324 struct mbuf *sc_rxtail;
325 struct mbuf **sc_rxtailp;
326
327 uint32_t sc_ctrl; /* prototype CTRL register */
328 #if 0
329 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
330 #endif
331 uint32_t sc_icr; /* prototype interrupt bits */
332 uint32_t sc_itr; /* prototype intr throttling reg */
333 uint32_t sc_tctl; /* prototype TCTL register */
334 uint32_t sc_rctl; /* prototype RCTL register */
335 uint32_t sc_txcw; /* prototype TXCW register */
336 uint32_t sc_tipg; /* prototype TIPG register */
337 uint32_t sc_fcrtl; /* prototype FCRTL register */
338 uint32_t sc_pba; /* prototype PBA register */
339
340 int sc_tbi_linkup; /* TBI link status */
341 int sc_tbi_anstate; /* autonegotiation state */
342
343 int sc_mchash_type; /* multicast filter offset */
344
345 #if NRND > 0
346 rndsource_element_t rnd_source; /* random source */
347 #endif
348 };
349
350 #define WM_RXCHAIN_RESET(sc) \
351 do { \
352 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
353 *(sc)->sc_rxtailp = NULL; \
354 (sc)->sc_rxlen = 0; \
355 } while (/*CONSTCOND*/0)
356
357 #define WM_RXCHAIN_LINK(sc, m) \
358 do { \
359 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
360 (sc)->sc_rxtailp = &(m)->m_next; \
361 } while (/*CONSTCOND*/0)
362
363 /* sc_flags */
364 #define WM_F_HAS_MII 0x001 /* has MII */
365 #define WM_F_EEPROM_HANDSHAKE 0x002 /* requires EEPROM handshake */
366 #define WM_F_EEPROM_SEMAPHORE 0x004 /* EEPROM with semaphore */
367 #define WM_F_EEPROM_EERDEEWR 0x008 /* EEPROM access via EERD/EEWR */
368 #define WM_F_EEPROM_SPI 0x010 /* EEPROM is SPI */
369 #define WM_F_EEPROM_FLASH 0x020 /* EEPROM is FLASH */
370 #define WM_F_EEPROM_INVALID 0x040 /* EEPROM not present (bad checksum) */
371 #define WM_F_IOH_VALID 0x080 /* I/O handle is valid */
372 #define WM_F_BUS64 0x100 /* bus is 64-bit */
373 #define WM_F_PCIX 0x200 /* bus is PCI-X */
374 #define WM_F_CSA 0x400 /* bus is CSA */
375 #define WM_F_PCIE 0x800 /* bus is PCI-Express */
376
377 #ifdef WM_EVENT_COUNTERS
378 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
379 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
380 #else
381 #define WM_EVCNT_INCR(ev) /* nothing */
382 #define WM_EVCNT_ADD(ev, val) /* nothing */
383 #endif
384
385 #define CSR_READ(sc, reg) \
386 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
387 #define CSR_WRITE(sc, reg, val) \
388 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
389 #define CSR_WRITE_FLUSH(sc) \
390 (void) CSR_READ((sc), WMREG_STATUS)
391
392 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
393 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
394
395 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
396 #define WM_CDTXADDR_HI(sc, x) \
397 (sizeof(bus_addr_t) == 8 ? \
398 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
399
400 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
401 #define WM_CDRXADDR_HI(sc, x) \
402 (sizeof(bus_addr_t) == 8 ? \
403 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
404
405 #define WM_CDTXSYNC(sc, x, n, ops) \
406 do { \
407 int __x, __n; \
408 \
409 __x = (x); \
410 __n = (n); \
411 \
412 /* If it will wrap around, sync to the end of the ring. */ \
413 if ((__x + __n) > WM_NTXDESC(sc)) { \
414 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
415 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
416 (WM_NTXDESC(sc) - __x), (ops)); \
417 __n -= (WM_NTXDESC(sc) - __x); \
418 __x = 0; \
419 } \
420 \
421 /* Now sync whatever is left. */ \
422 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
423 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
424 } while (/*CONSTCOND*/0)
425
426 #define WM_CDRXSYNC(sc, x, ops) \
427 do { \
428 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
429 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
430 } while (/*CONSTCOND*/0)
431
432 #define WM_INIT_RXDESC(sc, x) \
433 do { \
434 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
435 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
436 struct mbuf *__m = __rxs->rxs_mbuf; \
437 \
438 /* \
439 * Note: We scoot the packet forward 2 bytes in the buffer \
440 * so that the payload after the Ethernet header is aligned \
441 * to a 4-byte boundary. \
442 * \
443 * XXX BRAINDAMAGE ALERT! \
444 * The stupid chip uses the same size for every buffer, which \
445 * is set in the Receive Control register. We are using the 2K \
446 * size option, but what we REALLY want is (2K - 2)! For this \
447 * reason, we can't "scoot" packets longer than the standard \
448 * Ethernet MTU. On strict-alignment platforms, if the total \
449 * size exceeds (2K - 2) we set align_tweak to 0 and let \
450 * the upper layer copy the headers. \
451 */ \
452 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
453 \
454 wm_set_dma_addr(&__rxd->wrx_addr, \
455 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
456 __rxd->wrx_len = 0; \
457 __rxd->wrx_cksum = 0; \
458 __rxd->wrx_status = 0; \
459 __rxd->wrx_errors = 0; \
460 __rxd->wrx_special = 0; \
461 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
462 \
463 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
464 } while (/*CONSTCOND*/0)
465
466 static void wm_start(struct ifnet *);
467 static void wm_watchdog(struct ifnet *);
468 static int wm_ioctl(struct ifnet *, u_long, caddr_t);
469 static int wm_init(struct ifnet *);
470 static void wm_stop(struct ifnet *, int);
471
472 static void wm_shutdown(void *);
473 static void wm_powerhook(int, void *);
474
475 static void wm_reset(struct wm_softc *);
476 static void wm_rxdrain(struct wm_softc *);
477 static int wm_add_rxbuf(struct wm_softc *, int);
478 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
479 static int wm_read_eeprom_eerd(struct wm_softc *, int, int, u_int16_t *);
480 static int wm_validate_eeprom_checksum(struct wm_softc *);
481 static void wm_tick(void *);
482
483 static void wm_set_filter(struct wm_softc *);
484
485 static int wm_intr(void *);
486 static void wm_txintr(struct wm_softc *);
487 static void wm_rxintr(struct wm_softc *);
488 static void wm_linkintr(struct wm_softc *, uint32_t);
489
490 static void wm_tbi_mediainit(struct wm_softc *);
491 static int wm_tbi_mediachange(struct ifnet *);
492 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
493
494 static void wm_tbi_set_linkled(struct wm_softc *);
495 static void wm_tbi_check_link(struct wm_softc *);
496
497 static void wm_gmii_reset(struct wm_softc *);
498
499 static int wm_gmii_i82543_readreg(struct device *, int, int);
500 static void wm_gmii_i82543_writereg(struct device *, int, int, int);
501
502 static int wm_gmii_i82544_readreg(struct device *, int, int);
503 static void wm_gmii_i82544_writereg(struct device *, int, int, int);
504
505 static void wm_gmii_statchg(struct device *);
506
507 static void wm_gmii_mediainit(struct wm_softc *);
508 static int wm_gmii_mediachange(struct ifnet *);
509 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
510
511 static int wm_match(struct device *, struct cfdata *, void *);
512 static void wm_attach(struct device *, struct device *, void *);
513 static int wm_is_onboard_nvm_eeprom(struct wm_softc *);
514 static int wm_get_eeprom_semaphore(struct wm_softc *);
515 static void wm_put_eeprom_semaphore(struct wm_softc *);
516 static int wm_poll_eerd_eewr_done(struct wm_softc *, int);
517
518 CFATTACH_DECL(wm, sizeof(struct wm_softc),
519 wm_match, wm_attach, NULL, NULL);
520
521 static void wm_82547_txfifo_stall(void *);
522
523 /*
524 * Devices supported by this driver.
525 */
526 static const struct wm_product {
527 pci_vendor_id_t wmp_vendor;
528 pci_product_id_t wmp_product;
529 const char *wmp_name;
530 wm_chip_type wmp_type;
531 int wmp_flags;
532 #define WMP_F_1000X 0x01
533 #define WMP_F_1000T 0x02
534 } wm_products[] = {
535 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
536 "Intel i82542 1000BASE-X Ethernet",
537 WM_T_82542_2_1, WMP_F_1000X },
538
539 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
540 "Intel i82543GC 1000BASE-X Ethernet",
541 WM_T_82543, WMP_F_1000X },
542
543 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
544 "Intel i82543GC 1000BASE-T Ethernet",
545 WM_T_82543, WMP_F_1000T },
546
547 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
548 "Intel i82544EI 1000BASE-T Ethernet",
549 WM_T_82544, WMP_F_1000T },
550
551 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
552 "Intel i82544EI 1000BASE-X Ethernet",
553 WM_T_82544, WMP_F_1000X },
554
555 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
556 "Intel i82544GC 1000BASE-T Ethernet",
557 WM_T_82544, WMP_F_1000T },
558
559 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
560 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
561 WM_T_82544, WMP_F_1000T },
562
563 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
564 "Intel i82540EM 1000BASE-T Ethernet",
565 WM_T_82540, WMP_F_1000T },
566
567 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
568 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
569 WM_T_82540, WMP_F_1000T },
570
571 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
572 "Intel i82540EP 1000BASE-T Ethernet",
573 WM_T_82540, WMP_F_1000T },
574
575 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
576 "Intel i82540EP 1000BASE-T Ethernet",
577 WM_T_82540, WMP_F_1000T },
578
579 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
580 "Intel i82540EP 1000BASE-T Ethernet",
581 WM_T_82540, WMP_F_1000T },
582
583 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
584 "Intel i82545EM 1000BASE-T Ethernet",
585 WM_T_82545, WMP_F_1000T },
586
587 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
588 "Intel i82545GM 1000BASE-T Ethernet",
589 WM_T_82545_3, WMP_F_1000T },
590
591 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
592 "Intel i82545GM 1000BASE-X Ethernet",
593 WM_T_82545_3, WMP_F_1000X },
594 #if 0
595 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
596 "Intel i82545GM Gigabit Ethernet (SERDES)",
597 WM_T_82545_3, WMP_F_SERDES },
598 #endif
599 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
600 "Intel i82546EB 1000BASE-T Ethernet",
601 WM_T_82546, WMP_F_1000T },
602
603 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
604 "Intel i82546EB 1000BASE-T Ethernet",
605 WM_T_82546, WMP_F_1000T },
606
607 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
608 "Intel i82545EM 1000BASE-X Ethernet",
609 WM_T_82545, WMP_F_1000X },
610
611 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
612 "Intel i82546EB 1000BASE-X Ethernet",
613 WM_T_82546, WMP_F_1000X },
614
615 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
616 "Intel i82546GB 1000BASE-T Ethernet",
617 WM_T_82546_3, WMP_F_1000T },
618
619 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
620 "Intel i82546GB 1000BASE-X Ethernet",
621 WM_T_82546_3, WMP_F_1000X },
622 #if 0
623 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
624 "Intel i82546GB Gigabit Ethernet (SERDES)",
625 WM_T_82546_3, WMP_F_SERDES },
626 #endif
627 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_PCIE,
628 "Intel PRO/1000MT (82546GB)",
629 WM_T_82546_3, WMP_F_1000T },
630
631 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
632 "Intel i82541EI 1000BASE-T Ethernet",
633 WM_T_82541, WMP_F_1000T },
634
635 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER_LOM,
636 "Intel i82541ER (LOM) 1000BASE-T Ethernet",
637 WM_T_82541, WMP_F_1000T },
638
639 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
640 "Intel i82541EI Mobile 1000BASE-T Ethernet",
641 WM_T_82541, WMP_F_1000T },
642
643 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
644 "Intel i82541ER 1000BASE-T Ethernet",
645 WM_T_82541_2, WMP_F_1000T },
646
647 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
648 "Intel i82541GI 1000BASE-T Ethernet",
649 WM_T_82541_2, WMP_F_1000T },
650
651 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
652 "Intel i82541GI Mobile 1000BASE-T Ethernet",
653 WM_T_82541_2, WMP_F_1000T },
654
655 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI,
656 "Intel i82541PI 1000BASE-T Ethernet",
657 WM_T_82541_2, WMP_F_1000T },
658
659 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
660 "Intel i82547EI 1000BASE-T Ethernet",
661 WM_T_82547, WMP_F_1000T },
662
663 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI_MOBILE,
664 "Intel i82547EI Moblie 1000BASE-T Ethernet",
665 WM_T_82547, WMP_F_1000T },
666
667 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
668 "Intel i82547GI 1000BASE-T Ethernet",
669 WM_T_82547_2, WMP_F_1000T },
670
671 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_COPPER,
672 "Intel PRO/1000 PT (82571EB)",
673 WM_T_82571, WMP_F_1000T },
674
675 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_FIBER,
676 "Intel PRO/1000 PF (82571EB)",
677 WM_T_82571, WMP_F_1000X },
678 #if 0
679 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_SERDES,
680 "Intel PRO/1000 PB (82571EB)",
681 WM_T_82571, WMP_F_SERDES },
682 #endif
683 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_COPPER,
684 "Intel i82572EI 1000baseT Ethernet",
685 WM_T_82572, WMP_F_1000T },
686
687 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_FIBER,
688 "Intel i82572EI 1000baseX Ethernet",
689 WM_T_82572, WMP_F_1000X },
690 #if 0
691 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_SERDES,
692 "Intel i82572EI Gigabit Ethernet (SERDES)",
693 WM_T_82572, WMP_F_SERDES },
694 #endif
695
696 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI,
697 "Intel i82572EI 1000baseT Ethernet",
698 WM_T_82572, WMP_F_1000T },
699
700 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E,
701 "Intel i82573E",
702 WM_T_82573, WMP_F_1000T },
703
704 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E_IAMT,
705 "Intel i82573E IAMT",
706 WM_T_82573, WMP_F_1000T },
707
708 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L,
709 "Intel i82573L Gigabit Ethernet",
710 WM_T_82573, WMP_F_1000T },
711
712 { 0, 0,
713 NULL,
714 0, 0 },
715 };
716
717 #ifdef WM_EVENT_COUNTERS
718 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
719 #endif /* WM_EVENT_COUNTERS */
720
721 #if 0 /* Not currently used */
722 static inline uint32_t
723 wm_io_read(struct wm_softc *sc, int reg)
724 {
725
726 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
727 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
728 }
729 #endif
730
731 static inline void
732 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
733 {
734
735 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
736 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
737 }
738
739 static inline void
740 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
741 {
742 wa->wa_low = htole32(v & 0xffffffffU);
743 if (sizeof(bus_addr_t) == 8)
744 wa->wa_high = htole32((uint64_t) v >> 32);
745 else
746 wa->wa_high = 0;
747 }
748
749 static const struct wm_product *
750 wm_lookup(const struct pci_attach_args *pa)
751 {
752 const struct wm_product *wmp;
753
754 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
755 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
756 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
757 return (wmp);
758 }
759 return (NULL);
760 }
761
762 static int
763 wm_match(struct device *parent __unused, struct cfdata *cf __unused, void *aux)
764 {
765 struct pci_attach_args *pa = aux;
766
767 if (wm_lookup(pa) != NULL)
768 return (1);
769
770 return (0);
771 }
772
773 static void
774 wm_attach(struct device *parent __unused, struct device *self, void *aux)
775 {
776 struct wm_softc *sc = (void *) self;
777 struct pci_attach_args *pa = aux;
778 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
779 pci_chipset_tag_t pc = pa->pa_pc;
780 pci_intr_handle_t ih;
781 size_t cdata_size;
782 const char *intrstr = NULL;
783 const char *eetype;
784 bus_space_tag_t memt;
785 bus_space_handle_t memh;
786 bus_dma_segment_t seg;
787 int memh_valid;
788 int i, rseg, error;
789 const struct wm_product *wmp;
790 prop_data_t ea;
791 prop_number_t pn;
792 uint8_t enaddr[ETHER_ADDR_LEN];
793 uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
794 pcireg_t preg, memtype;
795 uint32_t reg;
796
797 callout_init(&sc->sc_tick_ch);
798
799 wmp = wm_lookup(pa);
800 if (wmp == NULL) {
801 printf("\n");
802 panic("wm_attach: impossible");
803 }
804
805 sc->sc_pc = pa->pa_pc;
806 sc->sc_pcitag = pa->pa_tag;
807
808 if (pci_dma64_available(pa))
809 sc->sc_dmat = pa->pa_dmat64;
810 else
811 sc->sc_dmat = pa->pa_dmat;
812
813 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
814 aprint_naive(": Ethernet controller\n");
815 aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
816
817 sc->sc_type = wmp->wmp_type;
818 if (sc->sc_type < WM_T_82543) {
819 if (preg < 2) {
820 aprint_error("%s: i82542 must be at least rev. 2\n",
821 sc->sc_dev.dv_xname);
822 return;
823 }
824 if (preg < 3)
825 sc->sc_type = WM_T_82542_2_0;
826 }
827
828 /*
829 * Map the device. All devices support memory-mapped acccess,
830 * and it is really required for normal operation.
831 */
832 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
833 switch (memtype) {
834 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
835 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
836 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
837 memtype, 0, &memt, &memh, NULL, NULL) == 0);
838 break;
839 default:
840 memh_valid = 0;
841 }
842
843 if (memh_valid) {
844 sc->sc_st = memt;
845 sc->sc_sh = memh;
846 } else {
847 aprint_error("%s: unable to map device registers\n",
848 sc->sc_dev.dv_xname);
849 return;
850 }
851
852 /*
853 * In addition, i82544 and later support I/O mapped indirect
854 * register access. It is not desirable (nor supported in
855 * this driver) to use it for normal operation, though it is
856 * required to work around bugs in some chip versions.
857 */
858 if (sc->sc_type >= WM_T_82544) {
859 /* First we have to find the I/O BAR. */
860 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
861 if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
862 PCI_MAPREG_TYPE_IO)
863 break;
864 }
865 if (i == PCI_MAPREG_END)
866 aprint_error("%s: WARNING: unable to find I/O BAR\n",
867 sc->sc_dev.dv_xname);
868 else {
869 /*
870 * The i8254x doesn't apparently respond when the
871 * I/O BAR is 0, which looks somewhat like it's not
872 * been configured.
873 */
874 preg = pci_conf_read(pc, pa->pa_tag, i);
875 if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
876 aprint_error("%s: WARNING: I/O BAR at zero.\n",
877 sc->sc_dev.dv_xname);
878 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
879 0, &sc->sc_iot, &sc->sc_ioh,
880 NULL, NULL) == 0) {
881 sc->sc_flags |= WM_F_IOH_VALID;
882 } else {
883 aprint_error("%s: WARNING: unable to map "
884 "I/O space\n", sc->sc_dev.dv_xname);
885 }
886 }
887
888 }
889
890 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
891 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
892 preg |= PCI_COMMAND_MASTER_ENABLE;
893 if (sc->sc_type < WM_T_82542_2_1)
894 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
895 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
896
897 /* power up chip */
898 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
899 NULL)) && error != EOPNOTSUPP) {
900 aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
901 error);
902 return;
903 }
904
905 /*
906 * Map and establish our interrupt.
907 */
908 if (pci_intr_map(pa, &ih)) {
909 aprint_error("%s: unable to map interrupt\n",
910 sc->sc_dev.dv_xname);
911 return;
912 }
913 intrstr = pci_intr_string(pc, ih);
914 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
915 if (sc->sc_ih == NULL) {
916 aprint_error("%s: unable to establish interrupt",
917 sc->sc_dev.dv_xname);
918 if (intrstr != NULL)
919 aprint_normal(" at %s", intrstr);
920 aprint_normal("\n");
921 return;
922 }
923 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
924
925 /*
926 * Determine a few things about the bus we're connected to.
927 */
928 if (sc->sc_type < WM_T_82543) {
929 /* We don't really know the bus characteristics here. */
930 sc->sc_bus_speed = 33;
931 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
932 /*
933 * CSA (Communication Streaming Architecture) is about as fast
934 * a 32-bit 66MHz PCI Bus.
935 */
936 sc->sc_flags |= WM_F_CSA;
937 sc->sc_bus_speed = 66;
938 aprint_verbose("%s: Communication Streaming Architecture\n",
939 sc->sc_dev.dv_xname);
940 if (sc->sc_type == WM_T_82547) {
941 callout_init(&sc->sc_txfifo_ch);
942 callout_setfunc(&sc->sc_txfifo_ch,
943 wm_82547_txfifo_stall, sc);
944 aprint_verbose("%s: using 82547 Tx FIFO stall "
945 "work-around\n", sc->sc_dev.dv_xname);
946 }
947 } else if (sc->sc_type >= WM_T_82571) {
948 sc->sc_flags |= WM_F_PCIE | WM_F_EEPROM_SEMAPHORE;
949 aprint_verbose("%s: PCI-Express bus\n", sc->sc_dev.dv_xname);
950 } else {
951 reg = CSR_READ(sc, WMREG_STATUS);
952 if (reg & STATUS_BUS64)
953 sc->sc_flags |= WM_F_BUS64;
954 if (sc->sc_type >= WM_T_82544 &&
955 (reg & STATUS_PCIX_MODE) != 0) {
956 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
957
958 sc->sc_flags |= WM_F_PCIX;
959 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
960 PCI_CAP_PCIX,
961 &sc->sc_pcix_offset, NULL) == 0)
962 aprint_error("%s: unable to find PCIX "
963 "capability\n", sc->sc_dev.dv_xname);
964 else if (sc->sc_type != WM_T_82545_3 &&
965 sc->sc_type != WM_T_82546_3) {
966 /*
967 * Work around a problem caused by the BIOS
968 * setting the max memory read byte count
969 * incorrectly.
970 */
971 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
972 sc->sc_pcix_offset + PCI_PCIX_CMD);
973 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
974 sc->sc_pcix_offset + PCI_PCIX_STATUS);
975
976 bytecnt =
977 (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
978 PCI_PCIX_CMD_BYTECNT_SHIFT;
979 maxb =
980 (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
981 PCI_PCIX_STATUS_MAXB_SHIFT;
982 if (bytecnt > maxb) {
983 aprint_verbose("%s: resetting PCI-X "
984 "MMRBC: %d -> %d\n",
985 sc->sc_dev.dv_xname,
986 512 << bytecnt, 512 << maxb);
987 pcix_cmd = (pcix_cmd &
988 ~PCI_PCIX_CMD_BYTECNT_MASK) |
989 (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
990 pci_conf_write(pa->pa_pc, pa->pa_tag,
991 sc->sc_pcix_offset + PCI_PCIX_CMD,
992 pcix_cmd);
993 }
994 }
995 }
996 /*
997 * The quad port adapter is special; it has a PCIX-PCIX
998 * bridge on the board, and can run the secondary bus at
999 * a higher speed.
1000 */
1001 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
1002 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
1003 : 66;
1004 } else if (sc->sc_flags & WM_F_PCIX) {
1005 switch (reg & STATUS_PCIXSPD_MASK) {
1006 case STATUS_PCIXSPD_50_66:
1007 sc->sc_bus_speed = 66;
1008 break;
1009 case STATUS_PCIXSPD_66_100:
1010 sc->sc_bus_speed = 100;
1011 break;
1012 case STATUS_PCIXSPD_100_133:
1013 sc->sc_bus_speed = 133;
1014 break;
1015 default:
1016 aprint_error(
1017 "%s: unknown PCIXSPD %d; assuming 66MHz\n",
1018 sc->sc_dev.dv_xname,
1019 reg & STATUS_PCIXSPD_MASK);
1020 sc->sc_bus_speed = 66;
1021 }
1022 } else
1023 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
1024 aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
1025 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
1026 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
1027 }
1028
1029 /*
1030 * Allocate the control data structures, and create and load the
1031 * DMA map for it.
1032 *
1033 * NOTE: All Tx descriptors must be in the same 4G segment of
1034 * memory. So must Rx descriptors. We simplify by allocating
1035 * both sets within the same 4G segment.
1036 */
1037 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
1038 WM_NTXDESC_82542 : WM_NTXDESC_82544;
1039 cdata_size = sc->sc_type < WM_T_82544 ?
1040 sizeof(struct wm_control_data_82542) :
1041 sizeof(struct wm_control_data_82544);
1042 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
1043 (bus_size_t) 0x100000000ULL,
1044 &seg, 1, &rseg, 0)) != 0) {
1045 aprint_error(
1046 "%s: unable to allocate control data, error = %d\n",
1047 sc->sc_dev.dv_xname, error);
1048 goto fail_0;
1049 }
1050
1051 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
1052 (caddr_t *)&sc->sc_control_data, 0)) != 0) {
1053 aprint_error("%s: unable to map control data, error = %d\n",
1054 sc->sc_dev.dv_xname, error);
1055 goto fail_1;
1056 }
1057
1058 if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
1059 0, 0, &sc->sc_cddmamap)) != 0) {
1060 aprint_error("%s: unable to create control data DMA map, "
1061 "error = %d\n", sc->sc_dev.dv_xname, error);
1062 goto fail_2;
1063 }
1064
1065 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1066 sc->sc_control_data, cdata_size, NULL,
1067 0)) != 0) {
1068 aprint_error(
1069 "%s: unable to load control data DMA map, error = %d\n",
1070 sc->sc_dev.dv_xname, error);
1071 goto fail_3;
1072 }
1073
1074
1075 /*
1076 * Create the transmit buffer DMA maps.
1077 */
1078 WM_TXQUEUELEN(sc) =
1079 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1080 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1081 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1082 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1083 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1084 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1085 aprint_error("%s: unable to create Tx DMA map %d, "
1086 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1087 goto fail_4;
1088 }
1089 }
1090
1091 /*
1092 * Create the receive buffer DMA maps.
1093 */
1094 for (i = 0; i < WM_NRXDESC; i++) {
1095 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1096 MCLBYTES, 0, 0,
1097 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1098 aprint_error("%s: unable to create Rx DMA map %d, "
1099 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1100 goto fail_5;
1101 }
1102 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1103 }
1104
1105 /*
1106 * Reset the chip to a known state.
1107 */
1108 wm_reset(sc);
1109
1110 /*
1111 * Get some information about the EEPROM.
1112 */
1113 if (sc->sc_type == WM_T_82573)
1114 sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
1115 else if (sc->sc_type > WM_T_82544)
1116 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1117
1118 if (sc->sc_type <= WM_T_82544)
1119 sc->sc_ee_addrbits = 6;
1120 else if (sc->sc_type <= WM_T_82546_3) {
1121 reg = CSR_READ(sc, WMREG_EECD);
1122 if (reg & EECD_EE_SIZE)
1123 sc->sc_ee_addrbits = 8;
1124 else
1125 sc->sc_ee_addrbits = 6;
1126 } else if (sc->sc_type <= WM_T_82547_2) {
1127 reg = CSR_READ(sc, WMREG_EECD);
1128 if (reg & EECD_EE_TYPE) {
1129 sc->sc_flags |= WM_F_EEPROM_SPI;
1130 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1131 } else
1132 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1133 } else if ((sc->sc_type == WM_T_82573) &&
1134 (wm_is_onboard_nvm_eeprom(sc) == 0)) {
1135 sc->sc_flags |= WM_F_EEPROM_FLASH;
1136 } else {
1137 /* Assume everything else is SPI. */
1138 reg = CSR_READ(sc, WMREG_EECD);
1139 sc->sc_flags |= WM_F_EEPROM_SPI;
1140 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1141 }
1142
1143 /*
1144 * Defer printing the EEPROM type until after verifying the checksum
1145 * This allows the EEPROM type to be printed correctly in the case
1146 * that no EEPROM is attached.
1147 */
1148
1149
1150 /*
1151 * Validate the EEPROM checksum. If the checksum fails, flag this for
1152 * later, so we can fail future reads from the EEPROM.
1153 */
1154 if (wm_validate_eeprom_checksum(sc))
1155 sc->sc_flags |= WM_F_EEPROM_INVALID;
1156
1157 if (sc->sc_flags & WM_F_EEPROM_INVALID)
1158 aprint_verbose("%s: No EEPROM\n", sc->sc_dev.dv_xname);
1159 else if (sc->sc_flags & WM_F_EEPROM_FLASH) {
1160 aprint_verbose("%s: FLASH\n", sc->sc_dev.dv_xname);
1161 } else {
1162 if (sc->sc_flags & WM_F_EEPROM_SPI)
1163 eetype = "SPI";
1164 else
1165 eetype = "MicroWire";
1166 aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1167 sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1168 sc->sc_ee_addrbits, eetype);
1169 }
1170
1171 /*
1172 * Read the Ethernet address from the EEPROM, if not first found
1173 * in device properties.
1174 */
1175 ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
1176 if (ea != NULL) {
1177 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
1178 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
1179 memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
1180 } else {
1181 if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1182 sizeof(myea) / sizeof(myea[0]), myea)) {
1183 aprint_error("%s: unable to read Ethernet address\n",
1184 sc->sc_dev.dv_xname);
1185 return;
1186 }
1187 enaddr[0] = myea[0] & 0xff;
1188 enaddr[1] = myea[0] >> 8;
1189 enaddr[2] = myea[1] & 0xff;
1190 enaddr[3] = myea[1] >> 8;
1191 enaddr[4] = myea[2] & 0xff;
1192 enaddr[5] = myea[2] >> 8;
1193 }
1194
1195 /*
1196 * Toggle the LSB of the MAC address on the second port
1197 * of the dual port controller.
1198 */
1199 if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3
1200 || sc->sc_type == WM_T_82571) {
1201 if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1202 enaddr[5] ^= 1;
1203 }
1204
1205 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1206 ether_sprintf(enaddr));
1207
1208 /*
1209 * Read the config info from the EEPROM, and set up various
1210 * bits in the control registers based on their contents.
1211 */
1212 pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1213 "i82543-cfg1");
1214 if (pn != NULL) {
1215 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1216 cfg1 = (uint16_t) prop_number_integer_value(pn);
1217 } else {
1218 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1219 aprint_error("%s: unable to read CFG1\n",
1220 sc->sc_dev.dv_xname);
1221 return;
1222 }
1223 }
1224
1225 pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1226 "i82543-cfg2");
1227 if (pn != NULL) {
1228 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1229 cfg2 = (uint16_t) prop_number_integer_value(pn);
1230 } else {
1231 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1232 aprint_error("%s: unable to read CFG2\n",
1233 sc->sc_dev.dv_xname);
1234 return;
1235 }
1236 }
1237
1238 if (sc->sc_type >= WM_T_82544) {
1239 pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1240 "i82543-swdpin");
1241 if (pn != NULL) {
1242 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1243 swdpin = (uint16_t) prop_number_integer_value(pn);
1244 } else {
1245 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1246 aprint_error("%s: unable to read SWDPIN\n",
1247 sc->sc_dev.dv_xname);
1248 return;
1249 }
1250 }
1251 }
1252
1253 if (cfg1 & EEPROM_CFG1_ILOS)
1254 sc->sc_ctrl |= CTRL_ILOS;
1255 if (sc->sc_type >= WM_T_82544) {
1256 sc->sc_ctrl |=
1257 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1258 CTRL_SWDPIO_SHIFT;
1259 sc->sc_ctrl |=
1260 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1261 CTRL_SWDPINS_SHIFT;
1262 } else {
1263 sc->sc_ctrl |=
1264 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1265 CTRL_SWDPIO_SHIFT;
1266 }
1267
1268 #if 0
1269 if (sc->sc_type >= WM_T_82544) {
1270 if (cfg1 & EEPROM_CFG1_IPS0)
1271 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1272 if (cfg1 & EEPROM_CFG1_IPS1)
1273 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1274 sc->sc_ctrl_ext |=
1275 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1276 CTRL_EXT_SWDPIO_SHIFT;
1277 sc->sc_ctrl_ext |=
1278 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1279 CTRL_EXT_SWDPINS_SHIFT;
1280 } else {
1281 sc->sc_ctrl_ext |=
1282 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1283 CTRL_EXT_SWDPIO_SHIFT;
1284 }
1285 #endif
1286
1287 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1288 #if 0
1289 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1290 #endif
1291
1292 /*
1293 * Set up some register offsets that are different between
1294 * the i82542 and the i82543 and later chips.
1295 */
1296 if (sc->sc_type < WM_T_82543) {
1297 sc->sc_rdt_reg = WMREG_OLD_RDT0;
1298 sc->sc_tdt_reg = WMREG_OLD_TDT;
1299 } else {
1300 sc->sc_rdt_reg = WMREG_RDT;
1301 sc->sc_tdt_reg = WMREG_TDT;
1302 }
1303
1304 /*
1305 * Determine if we're TBI or GMII mode, and initialize the
1306 * media structures accordingly.
1307 */
1308 if (sc->sc_type < WM_T_82543 ||
1309 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1310 if (wmp->wmp_flags & WMP_F_1000T)
1311 aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1312 "product!\n", sc->sc_dev.dv_xname);
1313 wm_tbi_mediainit(sc);
1314 } else {
1315 if (wmp->wmp_flags & WMP_F_1000X)
1316 aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1317 "product!\n", sc->sc_dev.dv_xname);
1318 wm_gmii_mediainit(sc);
1319 }
1320
1321 ifp = &sc->sc_ethercom.ec_if;
1322 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1323 ifp->if_softc = sc;
1324 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1325 ifp->if_ioctl = wm_ioctl;
1326 ifp->if_start = wm_start;
1327 ifp->if_watchdog = wm_watchdog;
1328 ifp->if_init = wm_init;
1329 ifp->if_stop = wm_stop;
1330 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1331 IFQ_SET_READY(&ifp->if_snd);
1332
1333 if (sc->sc_type != WM_T_82573)
1334 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1335
1336 /*
1337 * If we're a i82543 or greater, we can support VLANs.
1338 */
1339 if (sc->sc_type >= WM_T_82543)
1340 sc->sc_ethercom.ec_capabilities |=
1341 ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1342
1343 /*
1344 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
1345 * on i82543 and later.
1346 */
1347 if (sc->sc_type >= WM_T_82543)
1348 ifp->if_capabilities |=
1349 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1350 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1351 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1352 IFCAP_CSUM_TCPv6_Tx |
1353 IFCAP_CSUM_UDPv6_Tx;
1354
1355 /*
1356 * If we're a i82544 or greater (except i82547), we can do
1357 * TCP segmentation offload.
1358 */
1359 if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547)
1360 ifp->if_capabilities |= IFCAP_TSOv4;
1361
1362 /*
1363 * Attach the interface.
1364 */
1365 if_attach(ifp);
1366 ether_ifattach(ifp, enaddr);
1367 #if NRND > 0
1368 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1369 RND_TYPE_NET, 0);
1370 #endif
1371
1372 #ifdef WM_EVENT_COUNTERS
1373 /* Attach event counters. */
1374 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1375 NULL, sc->sc_dev.dv_xname, "txsstall");
1376 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1377 NULL, sc->sc_dev.dv_xname, "txdstall");
1378 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1379 NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1380 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1381 NULL, sc->sc_dev.dv_xname, "txdw");
1382 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1383 NULL, sc->sc_dev.dv_xname, "txqe");
1384 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1385 NULL, sc->sc_dev.dv_xname, "rxintr");
1386 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1387 NULL, sc->sc_dev.dv_xname, "linkintr");
1388
1389 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1390 NULL, sc->sc_dev.dv_xname, "rxipsum");
1391 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1392 NULL, sc->sc_dev.dv_xname, "rxtusum");
1393 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1394 NULL, sc->sc_dev.dv_xname, "txipsum");
1395 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1396 NULL, sc->sc_dev.dv_xname, "txtusum");
1397 evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
1398 NULL, sc->sc_dev.dv_xname, "txtusum6");
1399
1400 evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
1401 NULL, sc->sc_dev.dv_xname, "txtso");
1402 evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
1403 NULL, sc->sc_dev.dv_xname, "txtsopain");
1404
1405 for (i = 0; i < WM_NTXSEGS; i++) {
1406 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1407 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1408 NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1409 }
1410
1411 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1412 NULL, sc->sc_dev.dv_xname, "txdrop");
1413
1414 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1415 NULL, sc->sc_dev.dv_xname, "tu");
1416
1417 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1418 NULL, sc->sc_dev.dv_xname, "tx_xoff");
1419 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1420 NULL, sc->sc_dev.dv_xname, "tx_xon");
1421 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1422 NULL, sc->sc_dev.dv_xname, "rx_xoff");
1423 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1424 NULL, sc->sc_dev.dv_xname, "rx_xon");
1425 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1426 NULL, sc->sc_dev.dv_xname, "rx_macctl");
1427 #endif /* WM_EVENT_COUNTERS */
1428
1429 /*
1430 * Make sure the interface is shutdown during reboot.
1431 */
1432 sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1433 if (sc->sc_sdhook == NULL)
1434 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1435 sc->sc_dev.dv_xname);
1436
1437 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
1438 wm_powerhook, sc);
1439 if (sc->sc_powerhook == NULL)
1440 aprint_error("%s: can't establish powerhook\n",
1441 sc->sc_dev.dv_xname);
1442 return;
1443
1444 /*
1445 * Free any resources we've allocated during the failed attach
1446 * attempt. Do this in reverse order and fall through.
1447 */
1448 fail_5:
1449 for (i = 0; i < WM_NRXDESC; i++) {
1450 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1451 bus_dmamap_destroy(sc->sc_dmat,
1452 sc->sc_rxsoft[i].rxs_dmamap);
1453 }
1454 fail_4:
1455 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1456 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1457 bus_dmamap_destroy(sc->sc_dmat,
1458 sc->sc_txsoft[i].txs_dmamap);
1459 }
1460 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1461 fail_3:
1462 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1463 fail_2:
1464 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1465 cdata_size);
1466 fail_1:
1467 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1468 fail_0:
1469 return;
1470 }
1471
1472 /*
1473 * wm_shutdown:
1474 *
1475 * Make sure the interface is stopped at reboot time.
1476 */
1477 static void
1478 wm_shutdown(void *arg)
1479 {
1480 struct wm_softc *sc = arg;
1481
1482 wm_stop(&sc->sc_ethercom.ec_if, 1);
1483 }
1484
1485 static void
1486 wm_powerhook(int why, void *arg)
1487 {
1488 struct wm_softc *sc = arg;
1489 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1490 pci_chipset_tag_t pc = sc->sc_pc;
1491 pcitag_t tag = sc->sc_pcitag;
1492
1493 switch (why) {
1494 case PWR_SOFTSUSPEND:
1495 wm_shutdown(sc);
1496 break;
1497 case PWR_SOFTRESUME:
1498 ifp->if_flags &= ~IFF_RUNNING;
1499 wm_init(ifp);
1500 if (ifp->if_flags & IFF_RUNNING)
1501 wm_start(ifp);
1502 break;
1503 case PWR_SUSPEND:
1504 pci_conf_capture(pc, tag, &sc->sc_pciconf);
1505 break;
1506 case PWR_RESUME:
1507 pci_conf_restore(pc, tag, &sc->sc_pciconf);
1508 break;
1509 }
1510
1511 return;
1512 }
1513
1514 /*
1515 * wm_tx_offload:
1516 *
1517 * Set up TCP/IP checksumming parameters for the
1518 * specified packet.
1519 */
1520 static int
1521 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1522 uint8_t *fieldsp)
1523 {
1524 struct mbuf *m0 = txs->txs_mbuf;
1525 struct livengood_tcpip_ctxdesc *t;
1526 uint32_t ipcs, tucs, cmd, cmdlen, seg;
1527 struct ether_header *eh;
1528 int offset, iphl;
1529 uint8_t fields;
1530
1531 /*
1532 * XXX It would be nice if the mbuf pkthdr had offset
1533 * fields for the protocol headers.
1534 */
1535
1536 eh = mtod(m0, struct ether_header *);
1537 switch (htons(eh->ether_type)) {
1538 case ETHERTYPE_IP:
1539 case ETHERTYPE_IPV6:
1540 offset = ETHER_HDR_LEN;
1541 break;
1542
1543 case ETHERTYPE_VLAN:
1544 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1545 break;
1546
1547 default:
1548 /*
1549 * Don't support this protocol or encapsulation.
1550 */
1551 *fieldsp = 0;
1552 *cmdp = 0;
1553 return (0);
1554 }
1555
1556 if ((m0->m_pkthdr.csum_flags &
1557 (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
1558 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1559 } else {
1560 iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
1561 }
1562
1563 cmd = WTX_CMD_DEXT | WTX_DTYP_D;
1564 cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
1565 seg = 0;
1566 fields = 0;
1567
1568 if (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
1569 int hlen = offset + iphl;
1570 WM_EVCNT_INCR(&sc->sc_ev_txtso);
1571 if (__predict_false(m0->m_len <
1572 (hlen + sizeof(struct tcphdr)))) {
1573 /*
1574 * TCP/IP headers are not in the first mbuf; we need
1575 * to do this the slow and painful way. Let's just
1576 * hope this doesn't happen very often.
1577 */
1578 struct ip ip;
1579 struct tcphdr th;
1580
1581 WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
1582
1583 m_copydata(m0, offset, sizeof(ip), &ip);
1584 m_copydata(m0, hlen, sizeof(th), &th);
1585
1586 ip.ip_len = 0;
1587
1588 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
1589 sizeof(ip.ip_len), &ip.ip_len);
1590
1591 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1592 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1593
1594 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
1595 sizeof(th.th_sum), &th.th_sum);
1596
1597 hlen += th.th_off << 2;
1598 } else {
1599 /*
1600 * TCP/IP headers are in the first mbuf; we can do
1601 * this the easy way.
1602 */
1603 struct ip *ip =
1604 (struct ip *) (mtod(m0, caddr_t) + offset);
1605 struct tcphdr *th =
1606 (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
1607
1608 ip->ip_len = 0;
1609 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1610 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1611
1612 hlen += th->th_off << 2;
1613 }
1614
1615 cmd |= WTX_TCPIP_CMD_TSE;
1616 cmdlen |= WTX_TCPIP_CMD_TSE | WTX_TCPIP_CMD_IP |
1617 WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
1618 seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
1619 WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
1620 }
1621
1622 /*
1623 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1624 * offload feature, if we load the context descriptor, we
1625 * MUST provide valid values for IPCSS and TUCSS fields.
1626 */
1627
1628 ipcs = WTX_TCPIP_IPCSS(offset) |
1629 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1630 WTX_TCPIP_IPCSE(offset + iphl - 1);
1631 if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
1632 WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1633 fields |= WTX_IXSM;
1634 }
1635
1636 offset += iphl;
1637
1638 if (m0->m_pkthdr.csum_flags &
1639 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
1640 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1641 fields |= WTX_TXSM;
1642 tucs = WTX_TCPIP_TUCSS(offset) |
1643 WTX_TCPIP_TUCSO(offset +
1644 M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1645 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1646 } else if ((m0->m_pkthdr.csum_flags &
1647 (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
1648 WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
1649 fields |= WTX_TXSM;
1650 tucs = WTX_TCPIP_TUCSS(offset) |
1651 WTX_TCPIP_TUCSO(offset +
1652 M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
1653 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1654 } else {
1655 /* Just initialize it to a valid TCP context. */
1656 tucs = WTX_TCPIP_TUCSS(offset) |
1657 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1658 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1659 }
1660
1661 /* Fill in the context descriptor. */
1662 t = (struct livengood_tcpip_ctxdesc *)
1663 &sc->sc_txdescs[sc->sc_txnext];
1664 t->tcpip_ipcs = htole32(ipcs);
1665 t->tcpip_tucs = htole32(tucs);
1666 t->tcpip_cmdlen = htole32(cmdlen);
1667 t->tcpip_seg = htole32(seg);
1668 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1669
1670 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1671 txs->txs_ndesc++;
1672
1673 *cmdp = cmd;
1674 *fieldsp = fields;
1675
1676 return (0);
1677 }
1678
1679 static void
1680 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1681 {
1682 struct mbuf *m;
1683 int i;
1684
1685 log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1686 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1687 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1688 "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1689 m->m_data, m->m_len, m->m_flags);
1690 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1691 i, i == 1 ? "" : "s");
1692 }
1693
1694 /*
1695 * wm_82547_txfifo_stall:
1696 *
1697 * Callout used to wait for the 82547 Tx FIFO to drain,
1698 * reset the FIFO pointers, and restart packet transmission.
1699 */
1700 static void
1701 wm_82547_txfifo_stall(void *arg)
1702 {
1703 struct wm_softc *sc = arg;
1704 int s;
1705
1706 s = splnet();
1707
1708 if (sc->sc_txfifo_stall) {
1709 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1710 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1711 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1712 /*
1713 * Packets have drained. Stop transmitter, reset
1714 * FIFO pointers, restart transmitter, and kick
1715 * the packet queue.
1716 */
1717 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1718 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1719 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1720 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1721 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1722 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1723 CSR_WRITE(sc, WMREG_TCTL, tctl);
1724 CSR_WRITE_FLUSH(sc);
1725
1726 sc->sc_txfifo_head = 0;
1727 sc->sc_txfifo_stall = 0;
1728 wm_start(&sc->sc_ethercom.ec_if);
1729 } else {
1730 /*
1731 * Still waiting for packets to drain; try again in
1732 * another tick.
1733 */
1734 callout_schedule(&sc->sc_txfifo_ch, 1);
1735 }
1736 }
1737
1738 splx(s);
1739 }
1740
1741 /*
1742 * wm_82547_txfifo_bugchk:
1743 *
1744 * Check for bug condition in the 82547 Tx FIFO. We need to
1745 * prevent enqueueing a packet that would wrap around the end
1746 * if the Tx FIFO ring buffer, otherwise the chip will croak.
1747 *
1748 * We do this by checking the amount of space before the end
1749 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
1750 * the Tx FIFO, wait for all remaining packets to drain, reset
1751 * the internal FIFO pointers to the beginning, and restart
1752 * transmission on the interface.
1753 */
1754 #define WM_FIFO_HDR 0x10
1755 #define WM_82547_PAD_LEN 0x3e0
1756 static int
1757 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1758 {
1759 int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1760 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1761
1762 /* Just return if already stalled. */
1763 if (sc->sc_txfifo_stall)
1764 return (1);
1765
1766 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1767 /* Stall only occurs in half-duplex mode. */
1768 goto send_packet;
1769 }
1770
1771 if (len >= WM_82547_PAD_LEN + space) {
1772 sc->sc_txfifo_stall = 1;
1773 callout_schedule(&sc->sc_txfifo_ch, 1);
1774 return (1);
1775 }
1776
1777 send_packet:
1778 sc->sc_txfifo_head += len;
1779 if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1780 sc->sc_txfifo_head -= sc->sc_txfifo_size;
1781
1782 return (0);
1783 }
1784
1785 /*
1786 * wm_start: [ifnet interface function]
1787 *
1788 * Start packet transmission on the interface.
1789 */
1790 static void
1791 wm_start(struct ifnet *ifp)
1792 {
1793 struct wm_softc *sc = ifp->if_softc;
1794 struct mbuf *m0;
1795 #if 0 /* XXXJRT */
1796 struct m_tag *mtag;
1797 #endif
1798 struct wm_txsoft *txs;
1799 bus_dmamap_t dmamap;
1800 int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
1801 bus_addr_t curaddr;
1802 bus_size_t seglen, curlen;
1803 uint32_t cksumcmd;
1804 uint8_t cksumfields;
1805
1806 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1807 return;
1808
1809 /*
1810 * Remember the previous number of free descriptors.
1811 */
1812 ofree = sc->sc_txfree;
1813
1814 /*
1815 * Loop through the send queue, setting up transmit descriptors
1816 * until we drain the queue, or use up all available transmit
1817 * descriptors.
1818 */
1819 for (;;) {
1820 /* Grab a packet off the queue. */
1821 IFQ_POLL(&ifp->if_snd, m0);
1822 if (m0 == NULL)
1823 break;
1824
1825 DPRINTF(WM_DEBUG_TX,
1826 ("%s: TX: have packet to transmit: %p\n",
1827 sc->sc_dev.dv_xname, m0));
1828
1829 /* Get a work queue entry. */
1830 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1831 wm_txintr(sc);
1832 if (sc->sc_txsfree == 0) {
1833 DPRINTF(WM_DEBUG_TX,
1834 ("%s: TX: no free job descriptors\n",
1835 sc->sc_dev.dv_xname));
1836 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1837 break;
1838 }
1839 }
1840
1841 txs = &sc->sc_txsoft[sc->sc_txsnext];
1842 dmamap = txs->txs_dmamap;
1843
1844 use_tso = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1845
1846 /*
1847 * So says the Linux driver:
1848 * The controller does a simple calculation to make sure
1849 * there is enough room in the FIFO before initiating the
1850 * DMA for each buffer. The calc is:
1851 * 4 = ceil(buffer len / MSS)
1852 * To make sure we don't overrun the FIFO, adjust the max
1853 * buffer len if the MSS drops.
1854 */
1855 dmamap->dm_maxsegsz =
1856 (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
1857 ? m0->m_pkthdr.segsz << 2
1858 : WTX_MAX_LEN;
1859
1860 /*
1861 * Load the DMA map. If this fails, the packet either
1862 * didn't fit in the allotted number of segments, or we
1863 * were short on resources. For the too-many-segments
1864 * case, we simply report an error and drop the packet,
1865 * since we can't sanely copy a jumbo packet to a single
1866 * buffer.
1867 */
1868 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1869 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1870 if (error) {
1871 if (error == EFBIG) {
1872 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1873 log(LOG_ERR, "%s: Tx packet consumes too many "
1874 "DMA segments, dropping...\n",
1875 sc->sc_dev.dv_xname);
1876 IFQ_DEQUEUE(&ifp->if_snd, m0);
1877 wm_dump_mbuf_chain(sc, m0);
1878 m_freem(m0);
1879 continue;
1880 }
1881 /*
1882 * Short on resources, just stop for now.
1883 */
1884 DPRINTF(WM_DEBUG_TX,
1885 ("%s: TX: dmamap load failed: %d\n",
1886 sc->sc_dev.dv_xname, error));
1887 break;
1888 }
1889
1890 segs_needed = dmamap->dm_nsegs;
1891 if (use_tso) {
1892 /* For sentinel descriptor; see below. */
1893 segs_needed++;
1894 }
1895
1896 /*
1897 * Ensure we have enough descriptors free to describe
1898 * the packet. Note, we always reserve one descriptor
1899 * at the end of the ring due to the semantics of the
1900 * TDT register, plus one more in the event we need
1901 * to load offload context.
1902 */
1903 if (segs_needed > sc->sc_txfree - 2) {
1904 /*
1905 * Not enough free descriptors to transmit this
1906 * packet. We haven't committed anything yet,
1907 * so just unload the DMA map, put the packet
1908 * pack on the queue, and punt. Notify the upper
1909 * layer that there are no more slots left.
1910 */
1911 DPRINTF(WM_DEBUG_TX,
1912 ("%s: TX: need %d (%d) descriptors, have %d\n",
1913 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1914 sc->sc_txfree - 1));
1915 ifp->if_flags |= IFF_OACTIVE;
1916 bus_dmamap_unload(sc->sc_dmat, dmamap);
1917 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1918 break;
1919 }
1920
1921 /*
1922 * Check for 82547 Tx FIFO bug. We need to do this
1923 * once we know we can transmit the packet, since we
1924 * do some internal FIFO space accounting here.
1925 */
1926 if (sc->sc_type == WM_T_82547 &&
1927 wm_82547_txfifo_bugchk(sc, m0)) {
1928 DPRINTF(WM_DEBUG_TX,
1929 ("%s: TX: 82547 Tx FIFO bug detected\n",
1930 sc->sc_dev.dv_xname));
1931 ifp->if_flags |= IFF_OACTIVE;
1932 bus_dmamap_unload(sc->sc_dmat, dmamap);
1933 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1934 break;
1935 }
1936
1937 IFQ_DEQUEUE(&ifp->if_snd, m0);
1938
1939 /*
1940 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1941 */
1942
1943 DPRINTF(WM_DEBUG_TX,
1944 ("%s: TX: packet has %d (%d) DMA segments\n",
1945 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1946
1947 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1948
1949 /*
1950 * Store a pointer to the packet so that we can free it
1951 * later.
1952 *
1953 * Initially, we consider the number of descriptors the
1954 * packet uses the number of DMA segments. This may be
1955 * incremented by 1 if we do checksum offload (a descriptor
1956 * is used to set the checksum context).
1957 */
1958 txs->txs_mbuf = m0;
1959 txs->txs_firstdesc = sc->sc_txnext;
1960 txs->txs_ndesc = segs_needed;
1961
1962 /* Set up offload parameters for this packet. */
1963 if (m0->m_pkthdr.csum_flags &
1964 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
1965 M_CSUM_TCPv6|M_CSUM_UDPv6)) {
1966 if (wm_tx_offload(sc, txs, &cksumcmd,
1967 &cksumfields) != 0) {
1968 /* Error message already displayed. */
1969 bus_dmamap_unload(sc->sc_dmat, dmamap);
1970 continue;
1971 }
1972 } else {
1973 cksumcmd = 0;
1974 cksumfields = 0;
1975 }
1976
1977 cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
1978
1979 /* Sync the DMA map. */
1980 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1981 BUS_DMASYNC_PREWRITE);
1982
1983 /*
1984 * Initialize the transmit descriptor.
1985 */
1986 for (nexttx = sc->sc_txnext, seg = 0;
1987 seg < dmamap->dm_nsegs; seg++) {
1988 for (seglen = dmamap->dm_segs[seg].ds_len,
1989 curaddr = dmamap->dm_segs[seg].ds_addr;
1990 seglen != 0;
1991 curaddr += curlen, seglen -= curlen,
1992 nexttx = WM_NEXTTX(sc, nexttx)) {
1993 curlen = seglen;
1994
1995 /*
1996 * So says the Linux driver:
1997 * Work around for premature descriptor
1998 * write-backs in TSO mode. Append a
1999 * 4-byte sentinel descriptor.
2000 */
2001 if (use_tso &&
2002 seg == dmamap->dm_nsegs - 1 &&
2003 curlen > 8)
2004 curlen -= 4;
2005
2006 wm_set_dma_addr(
2007 &sc->sc_txdescs[nexttx].wtx_addr,
2008 curaddr);
2009 sc->sc_txdescs[nexttx].wtx_cmdlen =
2010 htole32(cksumcmd | curlen);
2011 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
2012 0;
2013 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
2014 cksumfields;
2015 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
2016 lasttx = nexttx;
2017
2018 DPRINTF(WM_DEBUG_TX,
2019 ("%s: TX: desc %d: low 0x%08lx, "
2020 "len 0x%04x\n",
2021 sc->sc_dev.dv_xname, nexttx,
2022 curaddr & 0xffffffffUL, (unsigned)curlen));
2023 }
2024 }
2025
2026 KASSERT(lasttx != -1);
2027
2028 /*
2029 * Set up the command byte on the last descriptor of
2030 * the packet. If we're in the interrupt delay window,
2031 * delay the interrupt.
2032 */
2033 sc->sc_txdescs[lasttx].wtx_cmdlen |=
2034 htole32(WTX_CMD_EOP | WTX_CMD_RS);
2035
2036 #if 0 /* XXXJRT */
2037 /*
2038 * If VLANs are enabled and the packet has a VLAN tag, set
2039 * up the descriptor to encapsulate the packet for us.
2040 *
2041 * This is only valid on the last descriptor of the packet.
2042 */
2043 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
2044 sc->sc_txdescs[lasttx].wtx_cmdlen |=
2045 htole32(WTX_CMD_VLE);
2046 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
2047 = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
2048 }
2049 #endif /* XXXJRT */
2050
2051 txs->txs_lastdesc = lasttx;
2052
2053 DPRINTF(WM_DEBUG_TX,
2054 ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
2055 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
2056
2057 /* Sync the descriptors we're using. */
2058 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
2059 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2060
2061 /* Give the packet to the chip. */
2062 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
2063
2064 DPRINTF(WM_DEBUG_TX,
2065 ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
2066
2067 DPRINTF(WM_DEBUG_TX,
2068 ("%s: TX: finished transmitting packet, job %d\n",
2069 sc->sc_dev.dv_xname, sc->sc_txsnext));
2070
2071 /* Advance the tx pointer. */
2072 sc->sc_txfree -= txs->txs_ndesc;
2073 sc->sc_txnext = nexttx;
2074
2075 sc->sc_txsfree--;
2076 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
2077
2078 #if NBPFILTER > 0
2079 /* Pass the packet to any BPF listeners. */
2080 if (ifp->if_bpf)
2081 bpf_mtap(ifp->if_bpf, m0);
2082 #endif /* NBPFILTER > 0 */
2083 }
2084
2085 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
2086 /* No more slots; notify upper layer. */
2087 ifp->if_flags |= IFF_OACTIVE;
2088 }
2089
2090 if (sc->sc_txfree != ofree) {
2091 /* Set a watchdog timer in case the chip flakes out. */
2092 ifp->if_timer = 5;
2093 }
2094 }
2095
2096 /*
2097 * wm_watchdog: [ifnet interface function]
2098 *
2099 * Watchdog timer handler.
2100 */
2101 static void
2102 wm_watchdog(struct ifnet *ifp)
2103 {
2104 struct wm_softc *sc = ifp->if_softc;
2105
2106 /*
2107 * Since we're using delayed interrupts, sweep up
2108 * before we report an error.
2109 */
2110 wm_txintr(sc);
2111
2112 if (sc->sc_txfree != WM_NTXDESC(sc)) {
2113 log(LOG_ERR,
2114 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
2115 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
2116 sc->sc_txnext);
2117 ifp->if_oerrors++;
2118
2119 /* Reset the interface. */
2120 (void) wm_init(ifp);
2121 }
2122
2123 /* Try to get more packets going. */
2124 wm_start(ifp);
2125 }
2126
2127 /*
2128 * wm_ioctl: [ifnet interface function]
2129 *
2130 * Handle control requests from the operator.
2131 */
2132 static int
2133 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2134 {
2135 struct wm_softc *sc = ifp->if_softc;
2136 struct ifreq *ifr = (struct ifreq *) data;
2137 int s, error;
2138
2139 s = splnet();
2140
2141 switch (cmd) {
2142 case SIOCSIFMEDIA:
2143 case SIOCGIFMEDIA:
2144 /* Flow control requires full-duplex mode. */
2145 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
2146 (ifr->ifr_media & IFM_FDX) == 0)
2147 ifr->ifr_media &= ~IFM_ETH_FMASK;
2148 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
2149 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
2150 /* We can do both TXPAUSE and RXPAUSE. */
2151 ifr->ifr_media |=
2152 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
2153 }
2154 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
2155 }
2156 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2157 break;
2158 default:
2159 error = ether_ioctl(ifp, cmd, data);
2160 if (error == ENETRESET) {
2161 /*
2162 * Multicast list has changed; set the hardware filter
2163 * accordingly.
2164 */
2165 if (ifp->if_flags & IFF_RUNNING)
2166 wm_set_filter(sc);
2167 error = 0;
2168 }
2169 break;
2170 }
2171
2172 /* Try to get more packets going. */
2173 wm_start(ifp);
2174
2175 splx(s);
2176 return (error);
2177 }
2178
2179 /*
2180 * wm_intr:
2181 *
2182 * Interrupt service routine.
2183 */
2184 static int
2185 wm_intr(void *arg)
2186 {
2187 struct wm_softc *sc = arg;
2188 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2189 uint32_t icr;
2190 int handled = 0;
2191
2192 while (1 /* CONSTCOND */) {
2193 icr = CSR_READ(sc, WMREG_ICR);
2194 if ((icr & sc->sc_icr) == 0)
2195 break;
2196
2197 #if 0 /*NRND > 0*/
2198 if (RND_ENABLED(&sc->rnd_source))
2199 rnd_add_uint32(&sc->rnd_source, icr);
2200 #endif
2201
2202 handled = 1;
2203
2204 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2205 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
2206 DPRINTF(WM_DEBUG_RX,
2207 ("%s: RX: got Rx intr 0x%08x\n",
2208 sc->sc_dev.dv_xname,
2209 icr & (ICR_RXDMT0|ICR_RXT0)));
2210 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
2211 }
2212 #endif
2213 wm_rxintr(sc);
2214
2215 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2216 if (icr & ICR_TXDW) {
2217 DPRINTF(WM_DEBUG_TX,
2218 ("%s: TX: got TXDW interrupt\n",
2219 sc->sc_dev.dv_xname));
2220 WM_EVCNT_INCR(&sc->sc_ev_txdw);
2221 }
2222 #endif
2223 wm_txintr(sc);
2224
2225 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
2226 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
2227 wm_linkintr(sc, icr);
2228 }
2229
2230 if (icr & ICR_RXO) {
2231 ifp->if_ierrors++;
2232 #if defined(WM_DEBUG)
2233 log(LOG_WARNING, "%s: Receive overrun\n",
2234 sc->sc_dev.dv_xname);
2235 #endif /* defined(WM_DEBUG) */
2236 }
2237 }
2238
2239 if (handled) {
2240 /* Try to get more packets going. */
2241 wm_start(ifp);
2242 }
2243
2244 return (handled);
2245 }
2246
2247 /*
2248 * wm_txintr:
2249 *
2250 * Helper; handle transmit interrupts.
2251 */
2252 static void
2253 wm_txintr(struct wm_softc *sc)
2254 {
2255 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2256 struct wm_txsoft *txs;
2257 uint8_t status;
2258 int i;
2259
2260 ifp->if_flags &= ~IFF_OACTIVE;
2261
2262 /*
2263 * Go through the Tx list and free mbufs for those
2264 * frames which have been transmitted.
2265 */
2266 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2267 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2268 txs = &sc->sc_txsoft[i];
2269
2270 DPRINTF(WM_DEBUG_TX,
2271 ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2272
2273 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2274 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2275
2276 status =
2277 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2278 if ((status & WTX_ST_DD) == 0) {
2279 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2280 BUS_DMASYNC_PREREAD);
2281 break;
2282 }
2283
2284 DPRINTF(WM_DEBUG_TX,
2285 ("%s: TX: job %d done: descs %d..%d\n",
2286 sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2287 txs->txs_lastdesc));
2288
2289 /*
2290 * XXX We should probably be using the statistics
2291 * XXX registers, but I don't know if they exist
2292 * XXX on chips before the i82544.
2293 */
2294
2295 #ifdef WM_EVENT_COUNTERS
2296 if (status & WTX_ST_TU)
2297 WM_EVCNT_INCR(&sc->sc_ev_tu);
2298 #endif /* WM_EVENT_COUNTERS */
2299
2300 if (status & (WTX_ST_EC|WTX_ST_LC)) {
2301 ifp->if_oerrors++;
2302 if (status & WTX_ST_LC)
2303 log(LOG_WARNING, "%s: late collision\n",
2304 sc->sc_dev.dv_xname);
2305 else if (status & WTX_ST_EC) {
2306 ifp->if_collisions += 16;
2307 log(LOG_WARNING, "%s: excessive collisions\n",
2308 sc->sc_dev.dv_xname);
2309 }
2310 } else
2311 ifp->if_opackets++;
2312
2313 sc->sc_txfree += txs->txs_ndesc;
2314 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2315 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2316 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2317 m_freem(txs->txs_mbuf);
2318 txs->txs_mbuf = NULL;
2319 }
2320
2321 /* Update the dirty transmit buffer pointer. */
2322 sc->sc_txsdirty = i;
2323 DPRINTF(WM_DEBUG_TX,
2324 ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2325
2326 /*
2327 * If there are no more pending transmissions, cancel the watchdog
2328 * timer.
2329 */
2330 if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2331 ifp->if_timer = 0;
2332 }
2333
2334 /*
2335 * wm_rxintr:
2336 *
2337 * Helper; handle receive interrupts.
2338 */
2339 static void
2340 wm_rxintr(struct wm_softc *sc)
2341 {
2342 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2343 struct wm_rxsoft *rxs;
2344 struct mbuf *m;
2345 int i, len;
2346 uint8_t status, errors;
2347
2348 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2349 rxs = &sc->sc_rxsoft[i];
2350
2351 DPRINTF(WM_DEBUG_RX,
2352 ("%s: RX: checking descriptor %d\n",
2353 sc->sc_dev.dv_xname, i));
2354
2355 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2356
2357 status = sc->sc_rxdescs[i].wrx_status;
2358 errors = sc->sc_rxdescs[i].wrx_errors;
2359 len = le16toh(sc->sc_rxdescs[i].wrx_len);
2360
2361 if ((status & WRX_ST_DD) == 0) {
2362 /*
2363 * We have processed all of the receive descriptors.
2364 */
2365 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2366 break;
2367 }
2368
2369 if (__predict_false(sc->sc_rxdiscard)) {
2370 DPRINTF(WM_DEBUG_RX,
2371 ("%s: RX: discarding contents of descriptor %d\n",
2372 sc->sc_dev.dv_xname, i));
2373 WM_INIT_RXDESC(sc, i);
2374 if (status & WRX_ST_EOP) {
2375 /* Reset our state. */
2376 DPRINTF(WM_DEBUG_RX,
2377 ("%s: RX: resetting rxdiscard -> 0\n",
2378 sc->sc_dev.dv_xname));
2379 sc->sc_rxdiscard = 0;
2380 }
2381 continue;
2382 }
2383
2384 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2385 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2386
2387 m = rxs->rxs_mbuf;
2388
2389 /*
2390 * Add a new receive buffer to the ring, unless of
2391 * course the length is zero. Treat the latter as a
2392 * failed mapping.
2393 */
2394 if ((len == 0) || (wm_add_rxbuf(sc, i) != 0)) {
2395 /*
2396 * Failed, throw away what we've done so
2397 * far, and discard the rest of the packet.
2398 */
2399 ifp->if_ierrors++;
2400 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2401 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2402 WM_INIT_RXDESC(sc, i);
2403 if ((status & WRX_ST_EOP) == 0)
2404 sc->sc_rxdiscard = 1;
2405 if (sc->sc_rxhead != NULL)
2406 m_freem(sc->sc_rxhead);
2407 WM_RXCHAIN_RESET(sc);
2408 DPRINTF(WM_DEBUG_RX,
2409 ("%s: RX: Rx buffer allocation failed, "
2410 "dropping packet%s\n", sc->sc_dev.dv_xname,
2411 sc->sc_rxdiscard ? " (discard)" : ""));
2412 continue;
2413 }
2414
2415 WM_RXCHAIN_LINK(sc, m);
2416
2417 m->m_len = len;
2418
2419 DPRINTF(WM_DEBUG_RX,
2420 ("%s: RX: buffer at %p len %d\n",
2421 sc->sc_dev.dv_xname, m->m_data, len));
2422
2423 /*
2424 * If this is not the end of the packet, keep
2425 * looking.
2426 */
2427 if ((status & WRX_ST_EOP) == 0) {
2428 sc->sc_rxlen += len;
2429 DPRINTF(WM_DEBUG_RX,
2430 ("%s: RX: not yet EOP, rxlen -> %d\n",
2431 sc->sc_dev.dv_xname, sc->sc_rxlen));
2432 continue;
2433 }
2434
2435 /*
2436 * Okay, we have the entire packet now. The chip is
2437 * configured to include the FCS (not all chips can
2438 * be configured to strip it), so we need to trim it.
2439 */
2440 m->m_len -= ETHER_CRC_LEN;
2441
2442 *sc->sc_rxtailp = NULL;
2443 len = m->m_len + sc->sc_rxlen;
2444 m = sc->sc_rxhead;
2445
2446 WM_RXCHAIN_RESET(sc);
2447
2448 DPRINTF(WM_DEBUG_RX,
2449 ("%s: RX: have entire packet, len -> %d\n",
2450 sc->sc_dev.dv_xname, len));
2451
2452 /*
2453 * If an error occurred, update stats and drop the packet.
2454 */
2455 if (errors &
2456 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2457 ifp->if_ierrors++;
2458 if (errors & WRX_ER_SE)
2459 log(LOG_WARNING, "%s: symbol error\n",
2460 sc->sc_dev.dv_xname);
2461 else if (errors & WRX_ER_SEQ)
2462 log(LOG_WARNING, "%s: receive sequence error\n",
2463 sc->sc_dev.dv_xname);
2464 else if (errors & WRX_ER_CE)
2465 log(LOG_WARNING, "%s: CRC error\n",
2466 sc->sc_dev.dv_xname);
2467 m_freem(m);
2468 continue;
2469 }
2470
2471 /*
2472 * No errors. Receive the packet.
2473 */
2474 m->m_pkthdr.rcvif = ifp;
2475 m->m_pkthdr.len = len;
2476
2477 #if 0 /* XXXJRT */
2478 /*
2479 * If VLANs are enabled, VLAN packets have been unwrapped
2480 * for us. Associate the tag with the packet.
2481 */
2482 if ((status & WRX_ST_VP) != 0) {
2483 VLAN_INPUT_TAG(ifp, m,
2484 le16toh(sc->sc_rxdescs[i].wrx_special,
2485 continue);
2486 }
2487 #endif /* XXXJRT */
2488
2489 /*
2490 * Set up checksum info for this packet.
2491 */
2492 if ((status & WRX_ST_IXSM) == 0) {
2493 if (status & WRX_ST_IPCS) {
2494 WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2495 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2496 if (errors & WRX_ER_IPE)
2497 m->m_pkthdr.csum_flags |=
2498 M_CSUM_IPv4_BAD;
2499 }
2500 if (status & WRX_ST_TCPCS) {
2501 /*
2502 * Note: we don't know if this was TCP or UDP,
2503 * so we just set both bits, and expect the
2504 * upper layers to deal.
2505 */
2506 WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2507 m->m_pkthdr.csum_flags |=
2508 M_CSUM_TCPv4|M_CSUM_UDPv4;
2509 if (errors & WRX_ER_TCPE)
2510 m->m_pkthdr.csum_flags |=
2511 M_CSUM_TCP_UDP_BAD;
2512 }
2513 }
2514
2515 ifp->if_ipackets++;
2516
2517 #if NBPFILTER > 0
2518 /* Pass this up to any BPF listeners. */
2519 if (ifp->if_bpf)
2520 bpf_mtap(ifp->if_bpf, m);
2521 #endif /* NBPFILTER > 0 */
2522
2523 /* Pass it on. */
2524 (*ifp->if_input)(ifp, m);
2525 }
2526
2527 /* Update the receive pointer. */
2528 sc->sc_rxptr = i;
2529
2530 DPRINTF(WM_DEBUG_RX,
2531 ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2532 }
2533
2534 /*
2535 * wm_linkintr:
2536 *
2537 * Helper; handle link interrupts.
2538 */
2539 static void
2540 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2541 {
2542 uint32_t status;
2543
2544 /*
2545 * If we get a link status interrupt on a 1000BASE-T
2546 * device, just fall into the normal MII tick path.
2547 */
2548 if (sc->sc_flags & WM_F_HAS_MII) {
2549 if (icr & ICR_LSC) {
2550 DPRINTF(WM_DEBUG_LINK,
2551 ("%s: LINK: LSC -> mii_tick\n",
2552 sc->sc_dev.dv_xname));
2553 mii_tick(&sc->sc_mii);
2554 } else if (icr & ICR_RXSEQ) {
2555 DPRINTF(WM_DEBUG_LINK,
2556 ("%s: LINK Receive sequence error\n",
2557 sc->sc_dev.dv_xname));
2558 }
2559 return;
2560 }
2561
2562 /*
2563 * If we are now receiving /C/, check for link again in
2564 * a couple of link clock ticks.
2565 */
2566 if (icr & ICR_RXCFG) {
2567 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2568 sc->sc_dev.dv_xname));
2569 sc->sc_tbi_anstate = 2;
2570 }
2571
2572 if (icr & ICR_LSC) {
2573 status = CSR_READ(sc, WMREG_STATUS);
2574 if (status & STATUS_LU) {
2575 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2576 sc->sc_dev.dv_xname,
2577 (status & STATUS_FD) ? "FDX" : "HDX"));
2578 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2579 sc->sc_fcrtl &= ~FCRTL_XONE;
2580 if (status & STATUS_FD)
2581 sc->sc_tctl |=
2582 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2583 else
2584 sc->sc_tctl |=
2585 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2586 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2587 sc->sc_fcrtl |= FCRTL_XONE;
2588 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2589 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2590 WMREG_OLD_FCRTL : WMREG_FCRTL,
2591 sc->sc_fcrtl);
2592 sc->sc_tbi_linkup = 1;
2593 } else {
2594 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2595 sc->sc_dev.dv_xname));
2596 sc->sc_tbi_linkup = 0;
2597 }
2598 sc->sc_tbi_anstate = 2;
2599 wm_tbi_set_linkled(sc);
2600 } else if (icr & ICR_RXSEQ) {
2601 DPRINTF(WM_DEBUG_LINK,
2602 ("%s: LINK: Receive sequence error\n",
2603 sc->sc_dev.dv_xname));
2604 }
2605 }
2606
2607 /*
2608 * wm_tick:
2609 *
2610 * One second timer, used to check link status, sweep up
2611 * completed transmit jobs, etc.
2612 */
2613 static void
2614 wm_tick(void *arg)
2615 {
2616 struct wm_softc *sc = arg;
2617 int s;
2618
2619 s = splnet();
2620
2621 if (sc->sc_type >= WM_T_82542_2_1) {
2622 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2623 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2624 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2625 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2626 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2627 }
2628
2629 if (sc->sc_flags & WM_F_HAS_MII)
2630 mii_tick(&sc->sc_mii);
2631 else
2632 wm_tbi_check_link(sc);
2633
2634 splx(s);
2635
2636 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2637 }
2638
2639 /*
2640 * wm_reset:
2641 *
2642 * Reset the i82542 chip.
2643 */
2644 static void
2645 wm_reset(struct wm_softc *sc)
2646 {
2647 int i;
2648
2649 /*
2650 * Allocate on-chip memory according to the MTU size.
2651 * The Packet Buffer Allocation register must be written
2652 * before the chip is reset.
2653 */
2654 switch (sc->sc_type) {
2655 case WM_T_82547:
2656 case WM_T_82547_2:
2657 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2658 PBA_22K : PBA_30K;
2659 sc->sc_txfifo_head = 0;
2660 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2661 sc->sc_txfifo_size =
2662 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2663 sc->sc_txfifo_stall = 0;
2664 break;
2665 case WM_T_82571:
2666 case WM_T_82572:
2667 sc->sc_pba = PBA_32K;
2668 break;
2669 case WM_T_82573:
2670 sc->sc_pba = PBA_12K;
2671 break;
2672 default:
2673 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2674 PBA_40K : PBA_48K;
2675 break;
2676 }
2677 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2678
2679 switch (sc->sc_type) {
2680 case WM_T_82544:
2681 case WM_T_82540:
2682 case WM_T_82545:
2683 case WM_T_82546:
2684 case WM_T_82541:
2685 case WM_T_82541_2:
2686 /*
2687 * On some chipsets, a reset through a memory-mapped write
2688 * cycle can cause the chip to reset before completing the
2689 * write cycle. This causes major headache that can be
2690 * avoided by issuing the reset via indirect register writes
2691 * through I/O space.
2692 *
2693 * So, if we successfully mapped the I/O BAR at attach time,
2694 * use that. Otherwise, try our luck with a memory-mapped
2695 * reset.
2696 */
2697 if (sc->sc_flags & WM_F_IOH_VALID)
2698 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2699 else
2700 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2701 break;
2702
2703 case WM_T_82545_3:
2704 case WM_T_82546_3:
2705 /* Use the shadow control register on these chips. */
2706 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2707 break;
2708
2709 default:
2710 /* Everything else can safely use the documented method. */
2711 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2712 break;
2713 }
2714 delay(10000);
2715
2716 for (i = 0; i < 1000; i++) {
2717 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2718 return;
2719 delay(20);
2720 }
2721
2722 if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2723 log(LOG_ERR, "%s: reset failed to complete\n",
2724 sc->sc_dev.dv_xname);
2725 }
2726
2727 /*
2728 * wm_init: [ifnet interface function]
2729 *
2730 * Initialize the interface. Must be called at splnet().
2731 */
2732 static int
2733 wm_init(struct ifnet *ifp)
2734 {
2735 struct wm_softc *sc = ifp->if_softc;
2736 struct wm_rxsoft *rxs;
2737 int i, error = 0;
2738 uint32_t reg;
2739
2740 /*
2741 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2742 * There is a small but measurable benefit to avoiding the adjusment
2743 * of the descriptor so that the headers are aligned, for normal mtu,
2744 * on such platforms. One possibility is that the DMA itself is
2745 * slightly more efficient if the front of the entire packet (instead
2746 * of the front of the headers) is aligned.
2747 *
2748 * Note we must always set align_tweak to 0 if we are using
2749 * jumbo frames.
2750 */
2751 #ifdef __NO_STRICT_ALIGNMENT
2752 sc->sc_align_tweak = 0;
2753 #else
2754 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2755 sc->sc_align_tweak = 0;
2756 else
2757 sc->sc_align_tweak = 2;
2758 #endif /* __NO_STRICT_ALIGNMENT */
2759
2760 /* Cancel any pending I/O. */
2761 wm_stop(ifp, 0);
2762
2763 /* Reset the chip to a known state. */
2764 wm_reset(sc);
2765
2766 /* Initialize the transmit descriptor ring. */
2767 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2768 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2769 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2770 sc->sc_txfree = WM_NTXDESC(sc);
2771 sc->sc_txnext = 0;
2772
2773 if (sc->sc_type < WM_T_82543) {
2774 CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2775 CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2776 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2777 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2778 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2779 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2780 } else {
2781 CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2782 CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2783 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2784 CSR_WRITE(sc, WMREG_TDH, 0);
2785 CSR_WRITE(sc, WMREG_TDT, 0);
2786 CSR_WRITE(sc, WMREG_TIDV, 64);
2787 CSR_WRITE(sc, WMREG_TADV, 128);
2788
2789 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2790 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2791 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2792 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2793 }
2794 CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2795 CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2796
2797 /* Initialize the transmit job descriptors. */
2798 for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2799 sc->sc_txsoft[i].txs_mbuf = NULL;
2800 sc->sc_txsfree = WM_TXQUEUELEN(sc);
2801 sc->sc_txsnext = 0;
2802 sc->sc_txsdirty = 0;
2803
2804 /*
2805 * Initialize the receive descriptor and receive job
2806 * descriptor rings.
2807 */
2808 if (sc->sc_type < WM_T_82543) {
2809 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2810 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2811 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2812 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2813 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2814 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2815
2816 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2817 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2818 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2819 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2820 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2821 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2822 } else {
2823 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2824 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2825 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2826 CSR_WRITE(sc, WMREG_RDH, 0);
2827 CSR_WRITE(sc, WMREG_RDT, 0);
2828 CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
2829 CSR_WRITE(sc, WMREG_RADV, 128);
2830 }
2831 for (i = 0; i < WM_NRXDESC; i++) {
2832 rxs = &sc->sc_rxsoft[i];
2833 if (rxs->rxs_mbuf == NULL) {
2834 if ((error = wm_add_rxbuf(sc, i)) != 0) {
2835 log(LOG_ERR, "%s: unable to allocate or map rx "
2836 "buffer %d, error = %d\n",
2837 sc->sc_dev.dv_xname, i, error);
2838 /*
2839 * XXX Should attempt to run with fewer receive
2840 * XXX buffers instead of just failing.
2841 */
2842 wm_rxdrain(sc);
2843 goto out;
2844 }
2845 } else
2846 WM_INIT_RXDESC(sc, i);
2847 }
2848 sc->sc_rxptr = 0;
2849 sc->sc_rxdiscard = 0;
2850 WM_RXCHAIN_RESET(sc);
2851
2852 /*
2853 * Clear out the VLAN table -- we don't use it (yet).
2854 */
2855 CSR_WRITE(sc, WMREG_VET, 0);
2856 for (i = 0; i < WM_VLAN_TABSIZE; i++)
2857 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2858
2859 /*
2860 * Set up flow-control parameters.
2861 *
2862 * XXX Values could probably stand some tuning.
2863 */
2864 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2865 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2866 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2867
2868 sc->sc_fcrtl = FCRTL_DFLT;
2869 if (sc->sc_type < WM_T_82543) {
2870 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2871 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2872 } else {
2873 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2874 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2875 }
2876 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2877
2878 #if 0 /* XXXJRT */
2879 /* Deal with VLAN enables. */
2880 if (VLAN_ATTACHED(&sc->sc_ethercom))
2881 sc->sc_ctrl |= CTRL_VME;
2882 else
2883 #endif /* XXXJRT */
2884 sc->sc_ctrl &= ~CTRL_VME;
2885
2886 /* Write the control registers. */
2887 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2888 #if 0
2889 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2890 #endif
2891
2892 /*
2893 * Set up checksum offload parameters.
2894 */
2895 reg = CSR_READ(sc, WMREG_RXCSUM);
2896 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
2897 reg |= RXCSUM_IPOFL;
2898 else
2899 reg &= ~RXCSUM_IPOFL;
2900 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2901 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2902 else {
2903 reg &= ~RXCSUM_TUOFL;
2904 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
2905 reg &= ~RXCSUM_IPOFL;
2906 }
2907 CSR_WRITE(sc, WMREG_RXCSUM, reg);
2908
2909 /*
2910 * Set up the interrupt registers.
2911 */
2912 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2913 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2914 ICR_RXO | ICR_RXT0;
2915 if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2916 sc->sc_icr |= ICR_RXCFG;
2917 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2918
2919 /* Set up the inter-packet gap. */
2920 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2921
2922 if (sc->sc_type >= WM_T_82543) {
2923 /* Set up the interrupt throttling register (units of 256ns) */
2924 sc->sc_itr = 1000000000 / (7000 * 256);
2925 CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
2926 }
2927
2928 #if 0 /* XXXJRT */
2929 /* Set the VLAN ethernetype. */
2930 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2931 #endif
2932
2933 /*
2934 * Set up the transmit control register; we start out with
2935 * a collision distance suitable for FDX, but update it whe
2936 * we resolve the media type.
2937 */
2938 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2939 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2940 if (sc->sc_type >= WM_T_82571)
2941 sc->sc_tctl |= TCTL_MULR;
2942 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2943
2944 /* Set the media. */
2945 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2946
2947 /*
2948 * Set up the receive control register; we actually program
2949 * the register when we set the receive filter. Use multicast
2950 * address offset type 0.
2951 *
2952 * Only the i82544 has the ability to strip the incoming
2953 * CRC, so we don't enable that feature.
2954 */
2955 sc->sc_mchash_type = 0;
2956 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
2957 | RCTL_MO(sc->sc_mchash_type);
2958
2959 /* 82573 doesn't support jumbo frame */
2960 if (sc->sc_type != WM_T_82573)
2961 sc->sc_rctl |= RCTL_LPE;
2962
2963 if (MCLBYTES == 2048) {
2964 sc->sc_rctl |= RCTL_2k;
2965 } else {
2966 if (sc->sc_type >= WM_T_82543) {
2967 switch(MCLBYTES) {
2968 case 4096:
2969 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2970 break;
2971 case 8192:
2972 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2973 break;
2974 case 16384:
2975 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2976 break;
2977 default:
2978 panic("wm_init: MCLBYTES %d unsupported",
2979 MCLBYTES);
2980 break;
2981 }
2982 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
2983 }
2984
2985 /* Set the receive filter. */
2986 wm_set_filter(sc);
2987
2988 /* Start the one second link check clock. */
2989 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2990
2991 /* ...all done! */
2992 ifp->if_flags |= IFF_RUNNING;
2993 ifp->if_flags &= ~IFF_OACTIVE;
2994
2995 out:
2996 if (error)
2997 log(LOG_ERR, "%s: interface not running\n",
2998 sc->sc_dev.dv_xname);
2999 return (error);
3000 }
3001
3002 /*
3003 * wm_rxdrain:
3004 *
3005 * Drain the receive queue.
3006 */
3007 static void
3008 wm_rxdrain(struct wm_softc *sc)
3009 {
3010 struct wm_rxsoft *rxs;
3011 int i;
3012
3013 for (i = 0; i < WM_NRXDESC; i++) {
3014 rxs = &sc->sc_rxsoft[i];
3015 if (rxs->rxs_mbuf != NULL) {
3016 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3017 m_freem(rxs->rxs_mbuf);
3018 rxs->rxs_mbuf = NULL;
3019 }
3020 }
3021 }
3022
3023 /*
3024 * wm_stop: [ifnet interface function]
3025 *
3026 * Stop transmission on the interface.
3027 */
3028 static void
3029 wm_stop(struct ifnet *ifp, int disable)
3030 {
3031 struct wm_softc *sc = ifp->if_softc;
3032 struct wm_txsoft *txs;
3033 int i;
3034
3035 /* Stop the one second clock. */
3036 callout_stop(&sc->sc_tick_ch);
3037
3038 /* Stop the 82547 Tx FIFO stall check timer. */
3039 if (sc->sc_type == WM_T_82547)
3040 callout_stop(&sc->sc_txfifo_ch);
3041
3042 if (sc->sc_flags & WM_F_HAS_MII) {
3043 /* Down the MII. */
3044 mii_down(&sc->sc_mii);
3045 }
3046
3047 /* Stop the transmit and receive processes. */
3048 CSR_WRITE(sc, WMREG_TCTL, 0);
3049 CSR_WRITE(sc, WMREG_RCTL, 0);
3050
3051 /*
3052 * Clear the interrupt mask to ensure the device cannot assert its
3053 * interrupt line.
3054 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
3055 * any currently pending or shared interrupt.
3056 */
3057 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
3058 sc->sc_icr = 0;
3059
3060 /* Release any queued transmit buffers. */
3061 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
3062 txs = &sc->sc_txsoft[i];
3063 if (txs->txs_mbuf != NULL) {
3064 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3065 m_freem(txs->txs_mbuf);
3066 txs->txs_mbuf = NULL;
3067 }
3068 }
3069
3070 if (disable)
3071 wm_rxdrain(sc);
3072
3073 /* Mark the interface as down and cancel the watchdog timer. */
3074 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3075 ifp->if_timer = 0;
3076 }
3077
3078 /*
3079 * wm_acquire_eeprom:
3080 *
3081 * Perform the EEPROM handshake required on some chips.
3082 */
3083 static int
3084 wm_acquire_eeprom(struct wm_softc *sc)
3085 {
3086 uint32_t reg;
3087 int x;
3088
3089 /* always success */
3090 if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
3091 return 0;
3092
3093 if (wm_get_eeprom_semaphore(sc))
3094 return 1;
3095
3096 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
3097 reg = CSR_READ(sc, WMREG_EECD);
3098
3099 /* Request EEPROM access. */
3100 reg |= EECD_EE_REQ;
3101 CSR_WRITE(sc, WMREG_EECD, reg);
3102
3103 /* ..and wait for it to be granted. */
3104 for (x = 0; x < 1000; x++) {
3105 reg = CSR_READ(sc, WMREG_EECD);
3106 if (reg & EECD_EE_GNT)
3107 break;
3108 delay(5);
3109 }
3110 if ((reg & EECD_EE_GNT) == 0) {
3111 aprint_error("%s: could not acquire EEPROM GNT\n",
3112 sc->sc_dev.dv_xname);
3113 reg &= ~EECD_EE_REQ;
3114 CSR_WRITE(sc, WMREG_EECD, reg);
3115 wm_put_eeprom_semaphore(sc);
3116 return (1);
3117 }
3118 }
3119
3120 return (0);
3121 }
3122
3123 /*
3124 * wm_release_eeprom:
3125 *
3126 * Release the EEPROM mutex.
3127 */
3128 static void
3129 wm_release_eeprom(struct wm_softc *sc)
3130 {
3131 uint32_t reg;
3132
3133 /* always success */
3134 if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
3135 return;
3136
3137 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
3138 reg = CSR_READ(sc, WMREG_EECD);
3139 reg &= ~EECD_EE_REQ;
3140 CSR_WRITE(sc, WMREG_EECD, reg);
3141 }
3142
3143 wm_put_eeprom_semaphore(sc);
3144 }
3145
3146 /*
3147 * wm_eeprom_sendbits:
3148 *
3149 * Send a series of bits to the EEPROM.
3150 */
3151 static void
3152 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
3153 {
3154 uint32_t reg;
3155 int x;
3156
3157 reg = CSR_READ(sc, WMREG_EECD);
3158
3159 for (x = nbits; x > 0; x--) {
3160 if (bits & (1U << (x - 1)))
3161 reg |= EECD_DI;
3162 else
3163 reg &= ~EECD_DI;
3164 CSR_WRITE(sc, WMREG_EECD, reg);
3165 delay(2);
3166 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3167 delay(2);
3168 CSR_WRITE(sc, WMREG_EECD, reg);
3169 delay(2);
3170 }
3171 }
3172
3173 /*
3174 * wm_eeprom_recvbits:
3175 *
3176 * Receive a series of bits from the EEPROM.
3177 */
3178 static void
3179 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
3180 {
3181 uint32_t reg, val;
3182 int x;
3183
3184 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
3185
3186 val = 0;
3187 for (x = nbits; x > 0; x--) {
3188 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3189 delay(2);
3190 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
3191 val |= (1U << (x - 1));
3192 CSR_WRITE(sc, WMREG_EECD, reg);
3193 delay(2);
3194 }
3195 *valp = val;
3196 }
3197
3198 /*
3199 * wm_read_eeprom_uwire:
3200 *
3201 * Read a word from the EEPROM using the MicroWire protocol.
3202 */
3203 static int
3204 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3205 {
3206 uint32_t reg, val;
3207 int i;
3208
3209 for (i = 0; i < wordcnt; i++) {
3210 /* Clear SK and DI. */
3211 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
3212 CSR_WRITE(sc, WMREG_EECD, reg);
3213
3214 /* Set CHIP SELECT. */
3215 reg |= EECD_CS;
3216 CSR_WRITE(sc, WMREG_EECD, reg);
3217 delay(2);
3218
3219 /* Shift in the READ command. */
3220 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
3221
3222 /* Shift in address. */
3223 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
3224
3225 /* Shift out the data. */
3226 wm_eeprom_recvbits(sc, &val, 16);
3227 data[i] = val & 0xffff;
3228
3229 /* Clear CHIP SELECT. */
3230 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
3231 CSR_WRITE(sc, WMREG_EECD, reg);
3232 delay(2);
3233 }
3234
3235 return (0);
3236 }
3237
3238 /*
3239 * wm_spi_eeprom_ready:
3240 *
3241 * Wait for a SPI EEPROM to be ready for commands.
3242 */
3243 static int
3244 wm_spi_eeprom_ready(struct wm_softc *sc)
3245 {
3246 uint32_t val;
3247 int usec;
3248
3249 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
3250 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
3251 wm_eeprom_recvbits(sc, &val, 8);
3252 if ((val & SPI_SR_RDY) == 0)
3253 break;
3254 }
3255 if (usec >= SPI_MAX_RETRIES) {
3256 aprint_error("%s: EEPROM failed to become ready\n",
3257 sc->sc_dev.dv_xname);
3258 return (1);
3259 }
3260 return (0);
3261 }
3262
3263 /*
3264 * wm_read_eeprom_spi:
3265 *
3266 * Read a work from the EEPROM using the SPI protocol.
3267 */
3268 static int
3269 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3270 {
3271 uint32_t reg, val;
3272 int i;
3273 uint8_t opc;
3274
3275 /* Clear SK and CS. */
3276 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
3277 CSR_WRITE(sc, WMREG_EECD, reg);
3278 delay(2);
3279
3280 if (wm_spi_eeprom_ready(sc))
3281 return (1);
3282
3283 /* Toggle CS to flush commands. */
3284 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
3285 delay(2);
3286 CSR_WRITE(sc, WMREG_EECD, reg);
3287 delay(2);
3288
3289 opc = SPI_OPC_READ;
3290 if (sc->sc_ee_addrbits == 8 && word >= 128)
3291 opc |= SPI_OPC_A8;
3292
3293 wm_eeprom_sendbits(sc, opc, 8);
3294 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
3295
3296 for (i = 0; i < wordcnt; i++) {
3297 wm_eeprom_recvbits(sc, &val, 16);
3298 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
3299 }
3300
3301 /* Raise CS and clear SK. */
3302 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3303 CSR_WRITE(sc, WMREG_EECD, reg);
3304 delay(2);
3305
3306 return (0);
3307 }
3308
3309 #define EEPROM_CHECKSUM 0xBABA
3310 #define EEPROM_SIZE 0x0040
3311
3312 /*
3313 * wm_validate_eeprom_checksum
3314 *
3315 * The checksum is defined as the sum of the first 64 (16 bit) words.
3316 */
3317 static int
3318 wm_validate_eeprom_checksum(struct wm_softc *sc)
3319 {
3320 uint16_t checksum;
3321 uint16_t eeprom_data;
3322 int i;
3323
3324 checksum = 0;
3325
3326 for (i = 0; i < EEPROM_SIZE; i++) {
3327 if (wm_read_eeprom(sc, i, 1, &eeprom_data))
3328 return 1;
3329 checksum += eeprom_data;
3330 }
3331
3332 if (checksum != (uint16_t) EEPROM_CHECKSUM)
3333 return 1;
3334
3335 return 0;
3336 }
3337
3338 /*
3339 * wm_read_eeprom:
3340 *
3341 * Read data from the serial EEPROM.
3342 */
3343 static int
3344 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3345 {
3346 int rv;
3347
3348 if (sc->sc_flags & WM_F_EEPROM_INVALID)
3349 return 1;
3350
3351 if (wm_acquire_eeprom(sc))
3352 return 1;
3353
3354 if (sc->sc_flags & WM_F_EEPROM_EERDEEWR)
3355 rv = wm_read_eeprom_eerd(sc, word, wordcnt, data);
3356 else if (sc->sc_flags & WM_F_EEPROM_SPI)
3357 rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3358 else
3359 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3360
3361 wm_release_eeprom(sc);
3362 return rv;
3363 }
3364
3365 static int
3366 wm_read_eeprom_eerd(struct wm_softc *sc, int offset, int wordcnt,
3367 uint16_t *data)
3368 {
3369 int i, eerd = 0;
3370 int error = 0;
3371
3372 for (i = 0; i < wordcnt; i++) {
3373 eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
3374
3375 CSR_WRITE(sc, WMREG_EERD, eerd);
3376 error = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
3377 if (error != 0)
3378 break;
3379
3380 data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
3381 }
3382
3383 return error;
3384 }
3385
3386 static int
3387 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
3388 {
3389 uint32_t attempts = 100000;
3390 uint32_t i, reg = 0;
3391 int32_t done = -1;
3392
3393 for (i = 0; i < attempts; i++) {
3394 reg = CSR_READ(sc, rw);
3395
3396 if (reg & EERD_DONE) {
3397 done = 0;
3398 break;
3399 }
3400 delay(5);
3401 }
3402
3403 return done;
3404 }
3405
3406 /*
3407 * wm_add_rxbuf:
3408 *
3409 * Add a receive buffer to the indiciated descriptor.
3410 */
3411 static int
3412 wm_add_rxbuf(struct wm_softc *sc, int idx)
3413 {
3414 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3415 struct mbuf *m;
3416 int error;
3417
3418 MGETHDR(m, M_DONTWAIT, MT_DATA);
3419 if (m == NULL)
3420 return (ENOBUFS);
3421
3422 MCLGET(m, M_DONTWAIT);
3423 if ((m->m_flags & M_EXT) == 0) {
3424 m_freem(m);
3425 return (ENOBUFS);
3426 }
3427
3428 if (rxs->rxs_mbuf != NULL)
3429 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3430
3431 rxs->rxs_mbuf = m;
3432
3433 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3434 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3435 BUS_DMA_READ|BUS_DMA_NOWAIT);
3436 if (error) {
3437 /* XXX XXX XXX */
3438 printf("%s: unable to load rx DMA map %d, error = %d\n",
3439 sc->sc_dev.dv_xname, idx, error);
3440 panic("wm_add_rxbuf");
3441 }
3442
3443 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3444 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3445
3446 WM_INIT_RXDESC(sc, idx);
3447
3448 return (0);
3449 }
3450
3451 /*
3452 * wm_set_ral:
3453 *
3454 * Set an entery in the receive address list.
3455 */
3456 static void
3457 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3458 {
3459 uint32_t ral_lo, ral_hi;
3460
3461 if (enaddr != NULL) {
3462 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3463 (enaddr[3] << 24);
3464 ral_hi = enaddr[4] | (enaddr[5] << 8);
3465 ral_hi |= RAL_AV;
3466 } else {
3467 ral_lo = 0;
3468 ral_hi = 0;
3469 }
3470
3471 if (sc->sc_type >= WM_T_82544) {
3472 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3473 ral_lo);
3474 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3475 ral_hi);
3476 } else {
3477 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3478 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3479 }
3480 }
3481
3482 /*
3483 * wm_mchash:
3484 *
3485 * Compute the hash of the multicast address for the 4096-bit
3486 * multicast filter.
3487 */
3488 static uint32_t
3489 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3490 {
3491 static const int lo_shift[4] = { 4, 3, 2, 0 };
3492 static const int hi_shift[4] = { 4, 5, 6, 8 };
3493 uint32_t hash;
3494
3495 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3496 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3497
3498 return (hash & 0xfff);
3499 }
3500
3501 /*
3502 * wm_set_filter:
3503 *
3504 * Set up the receive filter.
3505 */
3506 static void
3507 wm_set_filter(struct wm_softc *sc)
3508 {
3509 struct ethercom *ec = &sc->sc_ethercom;
3510 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3511 struct ether_multi *enm;
3512 struct ether_multistep step;
3513 bus_addr_t mta_reg;
3514 uint32_t hash, reg, bit;
3515 int i;
3516
3517 if (sc->sc_type >= WM_T_82544)
3518 mta_reg = WMREG_CORDOVA_MTA;
3519 else
3520 mta_reg = WMREG_MTA;
3521
3522 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3523
3524 if (ifp->if_flags & IFF_BROADCAST)
3525 sc->sc_rctl |= RCTL_BAM;
3526 if (ifp->if_flags & IFF_PROMISC) {
3527 sc->sc_rctl |= RCTL_UPE;
3528 goto allmulti;
3529 }
3530
3531 /*
3532 * Set the station address in the first RAL slot, and
3533 * clear the remaining slots.
3534 */
3535 wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3536 for (i = 1; i < WM_RAL_TABSIZE; i++)
3537 wm_set_ral(sc, NULL, i);
3538
3539 /* Clear out the multicast table. */
3540 for (i = 0; i < WM_MC_TABSIZE; i++)
3541 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3542
3543 ETHER_FIRST_MULTI(step, ec, enm);
3544 while (enm != NULL) {
3545 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3546 /*
3547 * We must listen to a range of multicast addresses.
3548 * For now, just accept all multicasts, rather than
3549 * trying to set only those filter bits needed to match
3550 * the range. (At this time, the only use of address
3551 * ranges is for IP multicast routing, for which the
3552 * range is big enough to require all bits set.)
3553 */
3554 goto allmulti;
3555 }
3556
3557 hash = wm_mchash(sc, enm->enm_addrlo);
3558
3559 reg = (hash >> 5) & 0x7f;
3560 bit = hash & 0x1f;
3561
3562 hash = CSR_READ(sc, mta_reg + (reg << 2));
3563 hash |= 1U << bit;
3564
3565 /* XXX Hardware bug?? */
3566 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3567 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3568 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3569 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3570 } else
3571 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3572
3573 ETHER_NEXT_MULTI(step, enm);
3574 }
3575
3576 ifp->if_flags &= ~IFF_ALLMULTI;
3577 goto setit;
3578
3579 allmulti:
3580 ifp->if_flags |= IFF_ALLMULTI;
3581 sc->sc_rctl |= RCTL_MPE;
3582
3583 setit:
3584 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3585 }
3586
3587 /*
3588 * wm_tbi_mediainit:
3589 *
3590 * Initialize media for use on 1000BASE-X devices.
3591 */
3592 static void
3593 wm_tbi_mediainit(struct wm_softc *sc)
3594 {
3595 const char *sep = "";
3596
3597 if (sc->sc_type < WM_T_82543)
3598 sc->sc_tipg = TIPG_WM_DFLT;
3599 else
3600 sc->sc_tipg = TIPG_LG_DFLT;
3601
3602 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3603 wm_tbi_mediastatus);
3604
3605 /*
3606 * SWD Pins:
3607 *
3608 * 0 = Link LED (output)
3609 * 1 = Loss Of Signal (input)
3610 */
3611 sc->sc_ctrl |= CTRL_SWDPIO(0);
3612 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3613
3614 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3615
3616 #define ADD(ss, mm, dd) \
3617 do { \
3618 aprint_normal("%s%s", sep, ss); \
3619 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
3620 sep = ", "; \
3621 } while (/*CONSTCOND*/0)
3622
3623 aprint_normal("%s: ", sc->sc_dev.dv_xname);
3624 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3625 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3626 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3627 aprint_normal("\n");
3628
3629 #undef ADD
3630
3631 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3632 }
3633
3634 /*
3635 * wm_tbi_mediastatus: [ifmedia interface function]
3636 *
3637 * Get the current interface media status on a 1000BASE-X device.
3638 */
3639 static void
3640 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3641 {
3642 struct wm_softc *sc = ifp->if_softc;
3643 uint32_t ctrl;
3644
3645 ifmr->ifm_status = IFM_AVALID;
3646 ifmr->ifm_active = IFM_ETHER;
3647
3648 if (sc->sc_tbi_linkup == 0) {
3649 ifmr->ifm_active |= IFM_NONE;
3650 return;
3651 }
3652
3653 ifmr->ifm_status |= IFM_ACTIVE;
3654 ifmr->ifm_active |= IFM_1000_SX;
3655 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3656 ifmr->ifm_active |= IFM_FDX;
3657 ctrl = CSR_READ(sc, WMREG_CTRL);
3658 if (ctrl & CTRL_RFCE)
3659 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3660 if (ctrl & CTRL_TFCE)
3661 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3662 }
3663
3664 /*
3665 * wm_tbi_mediachange: [ifmedia interface function]
3666 *
3667 * Set hardware to newly-selected media on a 1000BASE-X device.
3668 */
3669 static int
3670 wm_tbi_mediachange(struct ifnet *ifp)
3671 {
3672 struct wm_softc *sc = ifp->if_softc;
3673 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3674 uint32_t status;
3675 int i;
3676
3677 sc->sc_txcw = ife->ifm_data;
3678 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3679 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3680 sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3681 sc->sc_txcw |= TXCW_ANE;
3682
3683 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3684 delay(10000);
3685
3686 /* NOTE: CTRL will update TFCE and RFCE automatically. */
3687
3688 sc->sc_tbi_anstate = 0;
3689
3690 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3691 /* Have signal; wait for the link to come up. */
3692 for (i = 0; i < 50; i++) {
3693 delay(10000);
3694 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3695 break;
3696 }
3697
3698 status = CSR_READ(sc, WMREG_STATUS);
3699 if (status & STATUS_LU) {
3700 /* Link is up. */
3701 DPRINTF(WM_DEBUG_LINK,
3702 ("%s: LINK: set media -> link up %s\n",
3703 sc->sc_dev.dv_xname,
3704 (status & STATUS_FD) ? "FDX" : "HDX"));
3705 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3706 sc->sc_fcrtl &= ~FCRTL_XONE;
3707 if (status & STATUS_FD)
3708 sc->sc_tctl |=
3709 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3710 else
3711 sc->sc_tctl |=
3712 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3713 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3714 sc->sc_fcrtl |= FCRTL_XONE;
3715 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3716 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3717 WMREG_OLD_FCRTL : WMREG_FCRTL,
3718 sc->sc_fcrtl);
3719 sc->sc_tbi_linkup = 1;
3720 } else {
3721 /* Link is down. */
3722 DPRINTF(WM_DEBUG_LINK,
3723 ("%s: LINK: set media -> link down\n",
3724 sc->sc_dev.dv_xname));
3725 sc->sc_tbi_linkup = 0;
3726 }
3727 } else {
3728 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3729 sc->sc_dev.dv_xname));
3730 sc->sc_tbi_linkup = 0;
3731 }
3732
3733 wm_tbi_set_linkled(sc);
3734
3735 return (0);
3736 }
3737
3738 /*
3739 * wm_tbi_set_linkled:
3740 *
3741 * Update the link LED on 1000BASE-X devices.
3742 */
3743 static void
3744 wm_tbi_set_linkled(struct wm_softc *sc)
3745 {
3746
3747 if (sc->sc_tbi_linkup)
3748 sc->sc_ctrl |= CTRL_SWDPIN(0);
3749 else
3750 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3751
3752 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3753 }
3754
3755 /*
3756 * wm_tbi_check_link:
3757 *
3758 * Check the link on 1000BASE-X devices.
3759 */
3760 static void
3761 wm_tbi_check_link(struct wm_softc *sc)
3762 {
3763 uint32_t rxcw, ctrl, status;
3764
3765 if (sc->sc_tbi_anstate == 0)
3766 return;
3767 else if (sc->sc_tbi_anstate > 1) {
3768 DPRINTF(WM_DEBUG_LINK,
3769 ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3770 sc->sc_tbi_anstate));
3771 sc->sc_tbi_anstate--;
3772 return;
3773 }
3774
3775 sc->sc_tbi_anstate = 0;
3776
3777 rxcw = CSR_READ(sc, WMREG_RXCW);
3778 ctrl = CSR_READ(sc, WMREG_CTRL);
3779 status = CSR_READ(sc, WMREG_STATUS);
3780
3781 if ((status & STATUS_LU) == 0) {
3782 DPRINTF(WM_DEBUG_LINK,
3783 ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3784 sc->sc_tbi_linkup = 0;
3785 } else {
3786 DPRINTF(WM_DEBUG_LINK,
3787 ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3788 (status & STATUS_FD) ? "FDX" : "HDX"));
3789 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3790 sc->sc_fcrtl &= ~FCRTL_XONE;
3791 if (status & STATUS_FD)
3792 sc->sc_tctl |=
3793 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3794 else
3795 sc->sc_tctl |=
3796 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3797 if (ctrl & CTRL_TFCE)
3798 sc->sc_fcrtl |= FCRTL_XONE;
3799 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3800 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3801 WMREG_OLD_FCRTL : WMREG_FCRTL,
3802 sc->sc_fcrtl);
3803 sc->sc_tbi_linkup = 1;
3804 }
3805
3806 wm_tbi_set_linkled(sc);
3807 }
3808
3809 /*
3810 * wm_gmii_reset:
3811 *
3812 * Reset the PHY.
3813 */
3814 static void
3815 wm_gmii_reset(struct wm_softc *sc)
3816 {
3817 uint32_t reg;
3818
3819 if (sc->sc_type >= WM_T_82544) {
3820 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3821 delay(20000);
3822
3823 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3824 delay(20000);
3825 } else {
3826 /* The PHY reset pin is active-low. */
3827 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3828 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3829 CTRL_EXT_SWDPIN(4));
3830 reg |= CTRL_EXT_SWDPIO(4);
3831
3832 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3833 delay(10);
3834
3835 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3836 delay(10);
3837
3838 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3839 delay(10);
3840 #if 0
3841 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3842 #endif
3843 }
3844 }
3845
3846 /*
3847 * wm_gmii_mediainit:
3848 *
3849 * Initialize media for use on 1000BASE-T devices.
3850 */
3851 static void
3852 wm_gmii_mediainit(struct wm_softc *sc)
3853 {
3854 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3855
3856 /* We have MII. */
3857 sc->sc_flags |= WM_F_HAS_MII;
3858
3859 sc->sc_tipg = TIPG_1000T_DFLT;
3860
3861 /*
3862 * Let the chip set speed/duplex on its own based on
3863 * signals from the PHY.
3864 */
3865 sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3866 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3867
3868 /* Initialize our media structures and probe the GMII. */
3869 sc->sc_mii.mii_ifp = ifp;
3870
3871 if (sc->sc_type >= WM_T_82544) {
3872 sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3873 sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3874 } else {
3875 sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3876 sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3877 }
3878 sc->sc_mii.mii_statchg = wm_gmii_statchg;
3879
3880 wm_gmii_reset(sc);
3881
3882 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3883 wm_gmii_mediastatus);
3884
3885 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3886 MII_OFFSET_ANY, MIIF_DOPAUSE);
3887 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3888 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3889 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3890 } else
3891 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3892 }
3893
3894 /*
3895 * wm_gmii_mediastatus: [ifmedia interface function]
3896 *
3897 * Get the current interface media status on a 1000BASE-T device.
3898 */
3899 static void
3900 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3901 {
3902 struct wm_softc *sc = ifp->if_softc;
3903
3904 mii_pollstat(&sc->sc_mii);
3905 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3906 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3907 sc->sc_flowflags;
3908 }
3909
3910 /*
3911 * wm_gmii_mediachange: [ifmedia interface function]
3912 *
3913 * Set hardware to newly-selected media on a 1000BASE-T device.
3914 */
3915 static int
3916 wm_gmii_mediachange(struct ifnet *ifp)
3917 {
3918 struct wm_softc *sc = ifp->if_softc;
3919
3920 if (ifp->if_flags & IFF_UP)
3921 mii_mediachg(&sc->sc_mii);
3922 return (0);
3923 }
3924
3925 #define MDI_IO CTRL_SWDPIN(2)
3926 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
3927 #define MDI_CLK CTRL_SWDPIN(3)
3928
3929 static void
3930 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3931 {
3932 uint32_t i, v;
3933
3934 v = CSR_READ(sc, WMREG_CTRL);
3935 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3936 v |= MDI_DIR | CTRL_SWDPIO(3);
3937
3938 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3939 if (data & i)
3940 v |= MDI_IO;
3941 else
3942 v &= ~MDI_IO;
3943 CSR_WRITE(sc, WMREG_CTRL, v);
3944 delay(10);
3945 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3946 delay(10);
3947 CSR_WRITE(sc, WMREG_CTRL, v);
3948 delay(10);
3949 }
3950 }
3951
3952 static uint32_t
3953 i82543_mii_recvbits(struct wm_softc *sc)
3954 {
3955 uint32_t v, i, data = 0;
3956
3957 v = CSR_READ(sc, WMREG_CTRL);
3958 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3959 v |= CTRL_SWDPIO(3);
3960
3961 CSR_WRITE(sc, WMREG_CTRL, v);
3962 delay(10);
3963 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3964 delay(10);
3965 CSR_WRITE(sc, WMREG_CTRL, v);
3966 delay(10);
3967
3968 for (i = 0; i < 16; i++) {
3969 data <<= 1;
3970 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3971 delay(10);
3972 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3973 data |= 1;
3974 CSR_WRITE(sc, WMREG_CTRL, v);
3975 delay(10);
3976 }
3977
3978 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3979 delay(10);
3980 CSR_WRITE(sc, WMREG_CTRL, v);
3981 delay(10);
3982
3983 return (data);
3984 }
3985
3986 #undef MDI_IO
3987 #undef MDI_DIR
3988 #undef MDI_CLK
3989
3990 /*
3991 * wm_gmii_i82543_readreg: [mii interface function]
3992 *
3993 * Read a PHY register on the GMII (i82543 version).
3994 */
3995 static int
3996 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3997 {
3998 struct wm_softc *sc = (void *) self;
3999 int rv;
4000
4001 i82543_mii_sendbits(sc, 0xffffffffU, 32);
4002 i82543_mii_sendbits(sc, reg | (phy << 5) |
4003 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
4004 rv = i82543_mii_recvbits(sc) & 0xffff;
4005
4006 DPRINTF(WM_DEBUG_GMII,
4007 ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
4008 sc->sc_dev.dv_xname, phy, reg, rv));
4009
4010 return (rv);
4011 }
4012
4013 /*
4014 * wm_gmii_i82543_writereg: [mii interface function]
4015 *
4016 * Write a PHY register on the GMII (i82543 version).
4017 */
4018 static void
4019 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
4020 {
4021 struct wm_softc *sc = (void *) self;
4022
4023 i82543_mii_sendbits(sc, 0xffffffffU, 32);
4024 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
4025 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
4026 (MII_COMMAND_START << 30), 32);
4027 }
4028
4029 /*
4030 * wm_gmii_i82544_readreg: [mii interface function]
4031 *
4032 * Read a PHY register on the GMII.
4033 */
4034 static int
4035 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
4036 {
4037 struct wm_softc *sc = (void *) self;
4038 uint32_t mdic = 0;
4039 int i, rv;
4040
4041 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
4042 MDIC_REGADD(reg));
4043
4044 for (i = 0; i < 100; i++) {
4045 mdic = CSR_READ(sc, WMREG_MDIC);
4046 if (mdic & MDIC_READY)
4047 break;
4048 delay(10);
4049 }
4050
4051 if ((mdic & MDIC_READY) == 0) {
4052 log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
4053 sc->sc_dev.dv_xname, phy, reg);
4054 rv = 0;
4055 } else if (mdic & MDIC_E) {
4056 #if 0 /* This is normal if no PHY is present. */
4057 log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
4058 sc->sc_dev.dv_xname, phy, reg);
4059 #endif
4060 rv = 0;
4061 } else {
4062 rv = MDIC_DATA(mdic);
4063 if (rv == 0xffff)
4064 rv = 0;
4065 }
4066
4067 return (rv);
4068 }
4069
4070 /*
4071 * wm_gmii_i82544_writereg: [mii interface function]
4072 *
4073 * Write a PHY register on the GMII.
4074 */
4075 static void
4076 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
4077 {
4078 struct wm_softc *sc = (void *) self;
4079 uint32_t mdic = 0;
4080 int i;
4081
4082 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
4083 MDIC_REGADD(reg) | MDIC_DATA(val));
4084
4085 for (i = 0; i < 100; i++) {
4086 mdic = CSR_READ(sc, WMREG_MDIC);
4087 if (mdic & MDIC_READY)
4088 break;
4089 delay(10);
4090 }
4091
4092 if ((mdic & MDIC_READY) == 0)
4093 log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
4094 sc->sc_dev.dv_xname, phy, reg);
4095 else if (mdic & MDIC_E)
4096 log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
4097 sc->sc_dev.dv_xname, phy, reg);
4098 }
4099
4100 /*
4101 * wm_gmii_statchg: [mii interface function]
4102 *
4103 * Callback from MII layer when media changes.
4104 */
4105 static void
4106 wm_gmii_statchg(struct device *self)
4107 {
4108 struct wm_softc *sc = (void *) self;
4109 struct mii_data *mii = &sc->sc_mii;
4110
4111 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
4112 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
4113 sc->sc_fcrtl &= ~FCRTL_XONE;
4114
4115 /*
4116 * Get flow control negotiation result.
4117 */
4118 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
4119 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
4120 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
4121 mii->mii_media_active &= ~IFM_ETH_FMASK;
4122 }
4123
4124 if (sc->sc_flowflags & IFM_FLOW) {
4125 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
4126 sc->sc_ctrl |= CTRL_TFCE;
4127 sc->sc_fcrtl |= FCRTL_XONE;
4128 }
4129 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
4130 sc->sc_ctrl |= CTRL_RFCE;
4131 }
4132
4133 if (sc->sc_mii.mii_media_active & IFM_FDX) {
4134 DPRINTF(WM_DEBUG_LINK,
4135 ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
4136 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
4137 } else {
4138 DPRINTF(WM_DEBUG_LINK,
4139 ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
4140 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
4141 }
4142
4143 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4144 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
4145 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
4146 : WMREG_FCRTL, sc->sc_fcrtl);
4147 }
4148
4149 static int
4150 wm_is_onboard_nvm_eeprom(struct wm_softc *sc)
4151 {
4152 uint32_t eecd = 0;
4153
4154 if (sc->sc_type == WM_T_82573) {
4155 eecd = CSR_READ(sc, WMREG_EECD);
4156
4157 /* Isolate bits 15 & 16 */
4158 eecd = ((eecd >> 15) & 0x03);
4159
4160 /* If both bits are set, device is Flash type */
4161 if (eecd == 0x03) {
4162 return 0;
4163 }
4164 }
4165 return 1;
4166 }
4167
4168 static int
4169 wm_get_eeprom_semaphore(struct wm_softc *sc)
4170 {
4171 int32_t timeout;
4172 uint32_t swsm;
4173
4174 if ((sc->sc_flags & WM_F_EEPROM_SEMAPHORE) == 0)
4175 return 0;
4176
4177 /* Get the FW semaphore. */
4178 timeout = 1000 + 1; /* XXX */
4179 while (timeout) {
4180 swsm = CSR_READ(sc, WMREG_SWSM);
4181 swsm |= SWSM_SWESMBI;
4182 CSR_WRITE(sc, WMREG_SWSM, swsm);
4183 /* if we managed to set the bit we got the semaphore. */
4184 swsm = CSR_READ(sc, WMREG_SWSM);
4185 if (swsm & SWSM_SWESMBI)
4186 break;
4187
4188 delay(50);
4189 timeout--;
4190 }
4191
4192 if (timeout == 0) {
4193 /* Release semaphores */
4194 wm_put_eeprom_semaphore(sc);
4195 return 1;
4196 }
4197
4198 return 0;
4199 }
4200
4201 static void
4202 wm_put_eeprom_semaphore(struct wm_softc *sc)
4203 {
4204 uint32_t swsm;
4205
4206 if ((sc->sc_flags & WM_F_EEPROM_SEMAPHORE) == 0)
4207 return;
4208
4209 swsm = CSR_READ(sc, WMREG_SWSM);
4210 swsm &= ~(SWSM_SWESMBI);
4211 CSR_WRITE(sc, WMREG_SWSM, swsm);
4212 }
4213