if_wm.c revision 1.129 1 /* $NetBSD: if_wm.c,v 1.129 2006/11/16 04:30:02 yamt Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40 *
41 * TODO (in order of importance):
42 *
43 * - Rework how parameters are loaded from the EEPROM.
44 * - Figure out what to do with the i82545GM and i82546GB
45 * SERDES controllers.
46 * - Fix hw VLAN assist.
47 */
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.129 2006/11/16 04:30:02 yamt Exp $");
51
52 #include "bpfilter.h"
53 #include "rnd.h"
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67
68 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
69
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82
83 #include <netinet/in.h> /* XXX for struct ip */
84 #include <netinet/in_systm.h> /* XXX for struct ip */
85 #include <netinet/ip.h> /* XXX for struct ip */
86 #include <netinet/tcp.h> /* XXX for struct tcphdr */
87
88 #include <machine/bus.h>
89 #include <machine/intr.h>
90 #include <machine/endian.h>
91
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95 #include <dev/mii/ikphyreg.h>
96
97 #include <dev/pci/pcireg.h>
98 #include <dev/pci/pcivar.h>
99 #include <dev/pci/pcidevs.h>
100
101 #include <dev/pci/if_wmreg.h>
102
103 #ifdef WM_DEBUG
104 #define WM_DEBUG_LINK 0x01
105 #define WM_DEBUG_TX 0x02
106 #define WM_DEBUG_RX 0x04
107 #define WM_DEBUG_GMII 0x08
108 int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK|WM_DEBUG_GMII;
109
110 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
111 #else
112 #define DPRINTF(x, y) /* nothing */
113 #endif /* WM_DEBUG */
114
115 /*
116 * Transmit descriptor list size. Due to errata, we can only have
117 * 256 hardware descriptors in the ring on < 82544, but we use 4096
118 * on >= 82544. We tell the upper layers that they can queue a lot
119 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
120 * of them at a time.
121 *
122 * We allow up to 256 (!) DMA segments per packet. Pathological packet
123 * chains containing many small mbufs have been observed in zero-copy
124 * situations with jumbo frames.
125 */
126 #define WM_NTXSEGS 256
127 #define WM_IFQUEUELEN 256
128 #define WM_TXQUEUELEN_MAX 64
129 #define WM_TXQUEUELEN_MAX_82547 16
130 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
131 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
132 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
133 #define WM_NTXDESC_82542 256
134 #define WM_NTXDESC_82544 4096
135 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
136 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
137 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
138 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
139 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
140
141 #define WM_MAXTXDMA round_page(IP_MAXPACKET) /* for TSO */
142
143 /*
144 * Receive descriptor list size. We have one Rx buffer for normal
145 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
146 * packet. We allocate 256 receive descriptors, each with a 2k
147 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
148 */
149 #define WM_NRXDESC 256
150 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
151 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
152 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
153
154 /*
155 * Control structures are DMA'd to the i82542 chip. We allocate them in
156 * a single clump that maps to a single DMA segment to make several things
157 * easier.
158 */
159 struct wm_control_data_82544 {
160 /*
161 * The receive descriptors.
162 */
163 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
164
165 /*
166 * The transmit descriptors. Put these at the end, because
167 * we might use a smaller number of them.
168 */
169 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
170 };
171
172 struct wm_control_data_82542 {
173 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
174 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
175 };
176
177 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
178 #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)])
179 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
180
181 /*
182 * Software state for transmit jobs.
183 */
184 struct wm_txsoft {
185 struct mbuf *txs_mbuf; /* head of our mbuf chain */
186 bus_dmamap_t txs_dmamap; /* our DMA map */
187 int txs_firstdesc; /* first descriptor in packet */
188 int txs_lastdesc; /* last descriptor in packet */
189 int txs_ndesc; /* # of descriptors used */
190 };
191
192 /*
193 * Software state for receive buffers. Each descriptor gets a
194 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
195 * more than one buffer, we chain them together.
196 */
197 struct wm_rxsoft {
198 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
199 bus_dmamap_t rxs_dmamap; /* our DMA map */
200 };
201
202 typedef enum {
203 WM_T_unknown = 0,
204 WM_T_82542_2_0, /* i82542 2.0 (really old) */
205 WM_T_82542_2_1, /* i82542 2.1+ (old) */
206 WM_T_82543, /* i82543 */
207 WM_T_82544, /* i82544 */
208 WM_T_82540, /* i82540 */
209 WM_T_82545, /* i82545 */
210 WM_T_82545_3, /* i82545 3.0+ */
211 WM_T_82546, /* i82546 */
212 WM_T_82546_3, /* i82546 3.0+ */
213 WM_T_82541, /* i82541 */
214 WM_T_82541_2, /* i82541 2.0+ */
215 WM_T_82547, /* i82547 */
216 WM_T_82547_2, /* i82547 2.0+ */
217 WM_T_82571, /* i82571 */
218 WM_T_82572, /* i82572 */
219 WM_T_82573, /* i82573 */
220 WM_T_80003, /* i80003 */
221 } wm_chip_type;
222
223 /*
224 * Software state per device.
225 */
226 struct wm_softc {
227 struct device sc_dev; /* generic device information */
228 bus_space_tag_t sc_st; /* bus space tag */
229 bus_space_handle_t sc_sh; /* bus space handle */
230 bus_space_tag_t sc_iot; /* I/O space tag */
231 bus_space_handle_t sc_ioh; /* I/O space handle */
232 bus_dma_tag_t sc_dmat; /* bus DMA tag */
233 struct ethercom sc_ethercom; /* ethernet common data */
234 void *sc_sdhook; /* shutdown hook */
235 void *sc_powerhook; /* power hook */
236 pci_chipset_tag_t sc_pc;
237 pcitag_t sc_pcitag;
238 struct pci_conf_state sc_pciconf;
239
240 wm_chip_type sc_type; /* chip type */
241 int sc_flags; /* flags; see below */
242 int sc_bus_speed; /* PCI/PCIX bus speed */
243 int sc_pcix_offset; /* PCIX capability register offset */
244 int sc_flowflags; /* 802.3x flow control flags */
245
246 void *sc_ih; /* interrupt cookie */
247
248 int sc_ee_addrbits; /* EEPROM address bits */
249
250 struct mii_data sc_mii; /* MII/media information */
251
252 struct callout sc_tick_ch; /* tick callout */
253
254 bus_dmamap_t sc_cddmamap; /* control data DMA map */
255 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
256
257 int sc_align_tweak;
258
259 /*
260 * Software state for the transmit and receive descriptors.
261 */
262 int sc_txnum; /* must be a power of two */
263 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
264 struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
265
266 /*
267 * Control data structures.
268 */
269 int sc_ntxdesc; /* must be a power of two */
270 struct wm_control_data_82544 *sc_control_data;
271 #define sc_txdescs sc_control_data->wcd_txdescs
272 #define sc_rxdescs sc_control_data->wcd_rxdescs
273
274 #ifdef WM_EVENT_COUNTERS
275 /* Event counters. */
276 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
277 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
278 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
279 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
280 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
281 struct evcnt sc_ev_rxintr; /* Rx interrupts */
282 struct evcnt sc_ev_linkintr; /* Link interrupts */
283
284 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
285 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
286 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
287 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
288 struct evcnt sc_ev_txtusum6; /* TCP/UDP v6 cksums comp. out-bound */
289 struct evcnt sc_ev_txtso; /* TCP seg offload out-bound */
290 struct evcnt sc_ev_txtsopain; /* painful header manip. for TSO */
291
292 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
293 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
294
295 struct evcnt sc_ev_tu; /* Tx underrun */
296
297 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
298 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
299 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
300 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
301 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
302 #endif /* WM_EVENT_COUNTERS */
303
304 bus_addr_t sc_tdt_reg; /* offset of TDT register */
305
306 int sc_txfree; /* number of free Tx descriptors */
307 int sc_txnext; /* next ready Tx descriptor */
308
309 int sc_txsfree; /* number of free Tx jobs */
310 int sc_txsnext; /* next free Tx job */
311 int sc_txsdirty; /* dirty Tx jobs */
312
313 /* These 5 variables are used only on the 82547. */
314 int sc_txfifo_size; /* Tx FIFO size */
315 int sc_txfifo_head; /* current head of FIFO */
316 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
317 int sc_txfifo_stall; /* Tx FIFO is stalled */
318 struct callout sc_txfifo_ch; /* Tx FIFO stall work-around timer */
319
320 bus_addr_t sc_rdt_reg; /* offset of RDT register */
321
322 int sc_rxptr; /* next ready Rx descriptor/queue ent */
323 int sc_rxdiscard;
324 int sc_rxlen;
325 struct mbuf *sc_rxhead;
326 struct mbuf *sc_rxtail;
327 struct mbuf **sc_rxtailp;
328
329 uint32_t sc_ctrl; /* prototype CTRL register */
330 #if 0
331 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
332 #endif
333 uint32_t sc_icr; /* prototype interrupt bits */
334 uint32_t sc_itr; /* prototype intr throttling reg */
335 uint32_t sc_tctl; /* prototype TCTL register */
336 uint32_t sc_rctl; /* prototype RCTL register */
337 uint32_t sc_txcw; /* prototype TXCW register */
338 uint32_t sc_tipg; /* prototype TIPG register */
339 uint32_t sc_fcrtl; /* prototype FCRTL register */
340 uint32_t sc_pba; /* prototype PBA register */
341
342 int sc_tbi_linkup; /* TBI link status */
343 int sc_tbi_anstate; /* autonegotiation state */
344
345 int sc_mchash_type; /* multicast filter offset */
346
347 #if NRND > 0
348 rndsource_element_t rnd_source; /* random source */
349 #endif
350 };
351
352 #define WM_RXCHAIN_RESET(sc) \
353 do { \
354 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
355 *(sc)->sc_rxtailp = NULL; \
356 (sc)->sc_rxlen = 0; \
357 } while (/*CONSTCOND*/0)
358
359 #define WM_RXCHAIN_LINK(sc, m) \
360 do { \
361 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
362 (sc)->sc_rxtailp = &(m)->m_next; \
363 } while (/*CONSTCOND*/0)
364
365 /* sc_flags */
366 #define WM_F_HAS_MII 0x0001 /* has MII */
367 #define WM_F_EEPROM_HANDSHAKE 0x0002 /* requires EEPROM handshake */
368 #define WM_F_EEPROM_SEMAPHORE 0x0004 /* EEPROM with semaphore */
369 #define WM_F_EEPROM_EERDEEWR 0x0008 /* EEPROM access via EERD/EEWR */
370 #define WM_F_EEPROM_SPI 0x0010 /* EEPROM is SPI */
371 #define WM_F_EEPROM_FLASH 0x0020 /* EEPROM is FLASH */
372 #define WM_F_EEPROM_INVALID 0x0040 /* EEPROM not present (bad checksum) */
373 #define WM_F_IOH_VALID 0x0080 /* I/O handle is valid */
374 #define WM_F_BUS64 0x0100 /* bus is 64-bit */
375 #define WM_F_PCIX 0x0200 /* bus is PCI-X */
376 #define WM_F_CSA 0x0400 /* bus is CSA */
377 #define WM_F_PCIE 0x0800 /* bus is PCI-Express */
378 #define WM_F_SWFW_SYNC 0x1000 /* Software-Firmware synchronisation */
379
380 #ifdef WM_EVENT_COUNTERS
381 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
382 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
383 #else
384 #define WM_EVCNT_INCR(ev) /* nothing */
385 #define WM_EVCNT_ADD(ev, val) /* nothing */
386 #endif
387
388 #define CSR_READ(sc, reg) \
389 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
390 #define CSR_WRITE(sc, reg, val) \
391 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
392 #define CSR_WRITE_FLUSH(sc) \
393 (void) CSR_READ((sc), WMREG_STATUS)
394
395 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
396 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
397
398 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
399 #define WM_CDTXADDR_HI(sc, x) \
400 (sizeof(bus_addr_t) == 8 ? \
401 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
402
403 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
404 #define WM_CDRXADDR_HI(sc, x) \
405 (sizeof(bus_addr_t) == 8 ? \
406 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
407
408 #define WM_CDTXSYNC(sc, x, n, ops) \
409 do { \
410 int __x, __n; \
411 \
412 __x = (x); \
413 __n = (n); \
414 \
415 /* If it will wrap around, sync to the end of the ring. */ \
416 if ((__x + __n) > WM_NTXDESC(sc)) { \
417 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
418 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
419 (WM_NTXDESC(sc) - __x), (ops)); \
420 __n -= (WM_NTXDESC(sc) - __x); \
421 __x = 0; \
422 } \
423 \
424 /* Now sync whatever is left. */ \
425 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
426 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
427 } while (/*CONSTCOND*/0)
428
429 #define WM_CDRXSYNC(sc, x, ops) \
430 do { \
431 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
432 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
433 } while (/*CONSTCOND*/0)
434
435 #define WM_INIT_RXDESC(sc, x) \
436 do { \
437 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
438 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
439 struct mbuf *__m = __rxs->rxs_mbuf; \
440 \
441 /* \
442 * Note: We scoot the packet forward 2 bytes in the buffer \
443 * so that the payload after the Ethernet header is aligned \
444 * to a 4-byte boundary. \
445 * \
446 * XXX BRAINDAMAGE ALERT! \
447 * The stupid chip uses the same size for every buffer, which \
448 * is set in the Receive Control register. We are using the 2K \
449 * size option, but what we REALLY want is (2K - 2)! For this \
450 * reason, we can't "scoot" packets longer than the standard \
451 * Ethernet MTU. On strict-alignment platforms, if the total \
452 * size exceeds (2K - 2) we set align_tweak to 0 and let \
453 * the upper layer copy the headers. \
454 */ \
455 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
456 \
457 wm_set_dma_addr(&__rxd->wrx_addr, \
458 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
459 __rxd->wrx_len = 0; \
460 __rxd->wrx_cksum = 0; \
461 __rxd->wrx_status = 0; \
462 __rxd->wrx_errors = 0; \
463 __rxd->wrx_special = 0; \
464 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
465 \
466 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
467 } while (/*CONSTCOND*/0)
468
469 static void wm_start(struct ifnet *);
470 static void wm_watchdog(struct ifnet *);
471 static int wm_ioctl(struct ifnet *, u_long, caddr_t);
472 static int wm_init(struct ifnet *);
473 static void wm_stop(struct ifnet *, int);
474
475 static void wm_shutdown(void *);
476 static void wm_powerhook(int, void *);
477
478 static void wm_reset(struct wm_softc *);
479 static void wm_rxdrain(struct wm_softc *);
480 static int wm_add_rxbuf(struct wm_softc *, int);
481 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
482 static int wm_read_eeprom_eerd(struct wm_softc *, int, int, u_int16_t *);
483 static int wm_validate_eeprom_checksum(struct wm_softc *);
484 static void wm_tick(void *);
485
486 static void wm_set_filter(struct wm_softc *);
487
488 static int wm_intr(void *);
489 static void wm_txintr(struct wm_softc *);
490 static void wm_rxintr(struct wm_softc *);
491 static void wm_linkintr(struct wm_softc *, uint32_t);
492
493 static void wm_tbi_mediainit(struct wm_softc *);
494 static int wm_tbi_mediachange(struct ifnet *);
495 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
496
497 static void wm_tbi_set_linkled(struct wm_softc *);
498 static void wm_tbi_check_link(struct wm_softc *);
499
500 static void wm_gmii_reset(struct wm_softc *);
501
502 static int wm_gmii_i82543_readreg(struct device *, int, int);
503 static void wm_gmii_i82543_writereg(struct device *, int, int, int);
504
505 static int wm_gmii_i82544_readreg(struct device *, int, int);
506 static void wm_gmii_i82544_writereg(struct device *, int, int, int);
507
508 static int wm_gmii_i80003_readreg(struct device *, int, int);
509 static void wm_gmii_i80003_writereg(struct device *, int, int, int);
510
511 static void wm_gmii_statchg(struct device *);
512
513 static void wm_gmii_mediainit(struct wm_softc *);
514 static int wm_gmii_mediachange(struct ifnet *);
515 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
516
517 static int wm_kmrn_i80003_readreg(struct wm_softc *, int);
518 static void wm_kmrn_i80003_writereg(struct wm_softc *, int, int);
519
520 static int wm_match(struct device *, struct cfdata *, void *);
521 static void wm_attach(struct device *, struct device *, void *);
522 static int wm_is_onboard_nvm_eeprom(struct wm_softc *);
523 static int wm_get_swsm_semaphore(struct wm_softc *);
524 static void wm_put_swsm_semaphore(struct wm_softc *);
525 static int wm_poll_eerd_eewr_done(struct wm_softc *, int);
526 static int wm_get_swfw_semaphore(struct wm_softc *, uint16_t);
527 static void wm_put_swfw_semaphore(struct wm_softc *, uint16_t);
528
529 CFATTACH_DECL(wm, sizeof(struct wm_softc),
530 wm_match, wm_attach, NULL, NULL);
531
532 static void wm_82547_txfifo_stall(void *);
533
534 /*
535 * Devices supported by this driver.
536 */
537 static const struct wm_product {
538 pci_vendor_id_t wmp_vendor;
539 pci_product_id_t wmp_product;
540 const char *wmp_name;
541 wm_chip_type wmp_type;
542 int wmp_flags;
543 #define WMP_F_1000X 0x01
544 #define WMP_F_1000T 0x02
545 } wm_products[] = {
546 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
547 "Intel i82542 1000BASE-X Ethernet",
548 WM_T_82542_2_1, WMP_F_1000X },
549
550 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
551 "Intel i82543GC 1000BASE-X Ethernet",
552 WM_T_82543, WMP_F_1000X },
553
554 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
555 "Intel i82543GC 1000BASE-T Ethernet",
556 WM_T_82543, WMP_F_1000T },
557
558 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
559 "Intel i82544EI 1000BASE-T Ethernet",
560 WM_T_82544, WMP_F_1000T },
561
562 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
563 "Intel i82544EI 1000BASE-X Ethernet",
564 WM_T_82544, WMP_F_1000X },
565
566 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
567 "Intel i82544GC 1000BASE-T Ethernet",
568 WM_T_82544, WMP_F_1000T },
569
570 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
571 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
572 WM_T_82544, WMP_F_1000T },
573
574 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
575 "Intel i82540EM 1000BASE-T Ethernet",
576 WM_T_82540, WMP_F_1000T },
577
578 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
579 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
580 WM_T_82540, WMP_F_1000T },
581
582 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
583 "Intel i82540EP 1000BASE-T Ethernet",
584 WM_T_82540, WMP_F_1000T },
585
586 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
587 "Intel i82540EP 1000BASE-T Ethernet",
588 WM_T_82540, WMP_F_1000T },
589
590 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
591 "Intel i82540EP 1000BASE-T Ethernet",
592 WM_T_82540, WMP_F_1000T },
593
594 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
595 "Intel i82545EM 1000BASE-T Ethernet",
596 WM_T_82545, WMP_F_1000T },
597
598 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
599 "Intel i82545GM 1000BASE-T Ethernet",
600 WM_T_82545_3, WMP_F_1000T },
601
602 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
603 "Intel i82545GM 1000BASE-X Ethernet",
604 WM_T_82545_3, WMP_F_1000X },
605 #if 0
606 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
607 "Intel i82545GM Gigabit Ethernet (SERDES)",
608 WM_T_82545_3, WMP_F_SERDES },
609 #endif
610 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
611 "Intel i82546EB 1000BASE-T Ethernet",
612 WM_T_82546, WMP_F_1000T },
613
614 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
615 "Intel i82546EB 1000BASE-T Ethernet",
616 WM_T_82546, WMP_F_1000T },
617
618 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
619 "Intel i82545EM 1000BASE-X Ethernet",
620 WM_T_82545, WMP_F_1000X },
621
622 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
623 "Intel i82546EB 1000BASE-X Ethernet",
624 WM_T_82546, WMP_F_1000X },
625
626 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
627 "Intel i82546GB 1000BASE-T Ethernet",
628 WM_T_82546_3, WMP_F_1000T },
629
630 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
631 "Intel i82546GB 1000BASE-X Ethernet",
632 WM_T_82546_3, WMP_F_1000X },
633 #if 0
634 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
635 "Intel i82546GB Gigabit Ethernet (SERDES)",
636 WM_T_82546_3, WMP_F_SERDES },
637 #endif
638 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER,
639 "i82546GB quad-port Gigabit Ethernet",
640 WM_T_82546_3, WMP_F_1000T },
641
642 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3,
643 "i82546GB quad-port Gigabit Ethernet (KSP3)",
644 WM_T_82546_3, WMP_F_1000T },
645
646 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_PCIE,
647 "Intel PRO/1000MT (82546GB)",
648 WM_T_82546_3, WMP_F_1000T },
649
650 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
651 "Intel i82541EI 1000BASE-T Ethernet",
652 WM_T_82541, WMP_F_1000T },
653
654 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER_LOM,
655 "Intel i82541ER (LOM) 1000BASE-T Ethernet",
656 WM_T_82541, WMP_F_1000T },
657
658 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
659 "Intel i82541EI Mobile 1000BASE-T Ethernet",
660 WM_T_82541, WMP_F_1000T },
661
662 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
663 "Intel i82541ER 1000BASE-T Ethernet",
664 WM_T_82541_2, WMP_F_1000T },
665
666 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
667 "Intel i82541GI 1000BASE-T Ethernet",
668 WM_T_82541_2, WMP_F_1000T },
669
670 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
671 "Intel i82541GI Mobile 1000BASE-T Ethernet",
672 WM_T_82541_2, WMP_F_1000T },
673
674 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI,
675 "Intel i82541PI 1000BASE-T Ethernet",
676 WM_T_82541_2, WMP_F_1000T },
677
678 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
679 "Intel i82547EI 1000BASE-T Ethernet",
680 WM_T_82547, WMP_F_1000T },
681
682 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI_MOBILE,
683 "Intel i82547EI Moblie 1000BASE-T Ethernet",
684 WM_T_82547, WMP_F_1000T },
685
686 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
687 "Intel i82547GI 1000BASE-T Ethernet",
688 WM_T_82547_2, WMP_F_1000T },
689
690 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_COPPER,
691 "Intel PRO/1000 PT (82571EB)",
692 WM_T_82571, WMP_F_1000T },
693
694 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_FIBER,
695 "Intel PRO/1000 PF (82571EB)",
696 WM_T_82571, WMP_F_1000X },
697 #if 0
698 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_SERDES,
699 "Intel PRO/1000 PB (82571EB)",
700 WM_T_82571, WMP_F_SERDES },
701 #endif
702 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER,
703 "Intel PRO/1000 QT (82571EB)",
704 WM_T_82571, WMP_F_1000T },
705
706 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_COPPER,
707 "Intel i82572EI 1000baseT Ethernet",
708 WM_T_82572, WMP_F_1000T },
709
710 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_FIBER,
711 "Intel i82572EI 1000baseX Ethernet",
712 WM_T_82572, WMP_F_1000X },
713 #if 0
714 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_SERDES,
715 "Intel i82572EI Gigabit Ethernet (SERDES)",
716 WM_T_82572, WMP_F_SERDES },
717 #endif
718
719 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI,
720 "Intel i82572EI 1000baseT Ethernet",
721 WM_T_82572, WMP_F_1000T },
722
723 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E,
724 "Intel i82573E",
725 WM_T_82573, WMP_F_1000T },
726
727 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E_IAMT,
728 "Intel i82573E IAMT",
729 WM_T_82573, WMP_F_1000T },
730
731 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L,
732 "Intel i82573L Gigabit Ethernet",
733 WM_T_82573, WMP_F_1000T },
734
735 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT,
736 "i80003 dual 1000baseT Ethernet",
737 WM_T_80003, WMP_F_1000T },
738
739 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT,
740 "i80003 dual 1000baseX Ethernet",
741 WM_T_80003, WMP_F_1000T },
742 #if 0
743 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT,
744 "Intel i80003ES2 dual Gigabit Ethernet (SERDES)",
745 WM_T_80003, WMP_F_SERDES },
746 #endif
747
748 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT,
749 "Intel i80003 1000baseT Ethernet",
750 WM_T_80003, WMP_F_1000T },
751 #if 0
752 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT,
753 "Intel i80003 Gigabit Ethernet (SERDES)",
754 WM_T_80003, WMP_F_SERDES },
755 #endif
756
757 { 0, 0,
758 NULL,
759 0, 0 },
760 };
761
762 #ifdef WM_EVENT_COUNTERS
763 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
764 #endif /* WM_EVENT_COUNTERS */
765
766 #if 0 /* Not currently used */
767 static inline uint32_t
768 wm_io_read(struct wm_softc *sc, int reg)
769 {
770
771 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
772 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
773 }
774 #endif
775
776 static inline void
777 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
778 {
779
780 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
781 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
782 }
783
784 static inline void
785 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
786 {
787 wa->wa_low = htole32(v & 0xffffffffU);
788 if (sizeof(bus_addr_t) == 8)
789 wa->wa_high = htole32((uint64_t) v >> 32);
790 else
791 wa->wa_high = 0;
792 }
793
794 static const struct wm_product *
795 wm_lookup(const struct pci_attach_args *pa)
796 {
797 const struct wm_product *wmp;
798
799 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
800 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
801 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
802 return (wmp);
803 }
804 return (NULL);
805 }
806
807 static int
808 wm_match(struct device *parent, struct cfdata *cf, void *aux)
809 {
810 struct pci_attach_args *pa = aux;
811
812 if (wm_lookup(pa) != NULL)
813 return (1);
814
815 return (0);
816 }
817
818 static void
819 wm_attach(struct device *parent, struct device *self, void *aux)
820 {
821 struct wm_softc *sc = (void *) self;
822 struct pci_attach_args *pa = aux;
823 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
824 pci_chipset_tag_t pc = pa->pa_pc;
825 pci_intr_handle_t ih;
826 size_t cdata_size;
827 const char *intrstr = NULL;
828 const char *eetype;
829 bus_space_tag_t memt;
830 bus_space_handle_t memh;
831 bus_dma_segment_t seg;
832 int memh_valid;
833 int i, rseg, error;
834 const struct wm_product *wmp;
835 prop_data_t ea;
836 prop_number_t pn;
837 uint8_t enaddr[ETHER_ADDR_LEN];
838 uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
839 pcireg_t preg, memtype;
840 uint32_t reg;
841
842 callout_init(&sc->sc_tick_ch);
843
844 wmp = wm_lookup(pa);
845 if (wmp == NULL) {
846 printf("\n");
847 panic("wm_attach: impossible");
848 }
849
850 sc->sc_pc = pa->pa_pc;
851 sc->sc_pcitag = pa->pa_tag;
852
853 if (pci_dma64_available(pa))
854 sc->sc_dmat = pa->pa_dmat64;
855 else
856 sc->sc_dmat = pa->pa_dmat;
857
858 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
859 aprint_naive(": Ethernet controller\n");
860 aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
861
862 sc->sc_type = wmp->wmp_type;
863 if (sc->sc_type < WM_T_82543) {
864 if (preg < 2) {
865 aprint_error("%s: i82542 must be at least rev. 2\n",
866 sc->sc_dev.dv_xname);
867 return;
868 }
869 if (preg < 3)
870 sc->sc_type = WM_T_82542_2_0;
871 }
872
873 /*
874 * Map the device. All devices support memory-mapped acccess,
875 * and it is really required for normal operation.
876 */
877 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
878 switch (memtype) {
879 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
880 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
881 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
882 memtype, 0, &memt, &memh, NULL, NULL) == 0);
883 break;
884 default:
885 memh_valid = 0;
886 }
887
888 if (memh_valid) {
889 sc->sc_st = memt;
890 sc->sc_sh = memh;
891 } else {
892 aprint_error("%s: unable to map device registers\n",
893 sc->sc_dev.dv_xname);
894 return;
895 }
896
897 /*
898 * In addition, i82544 and later support I/O mapped indirect
899 * register access. It is not desirable (nor supported in
900 * this driver) to use it for normal operation, though it is
901 * required to work around bugs in some chip versions.
902 */
903 if (sc->sc_type >= WM_T_82544) {
904 /* First we have to find the I/O BAR. */
905 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
906 if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
907 PCI_MAPREG_TYPE_IO)
908 break;
909 }
910 if (i == PCI_MAPREG_END)
911 aprint_error("%s: WARNING: unable to find I/O BAR\n",
912 sc->sc_dev.dv_xname);
913 else {
914 /*
915 * The i8254x doesn't apparently respond when the
916 * I/O BAR is 0, which looks somewhat like it's not
917 * been configured.
918 */
919 preg = pci_conf_read(pc, pa->pa_tag, i);
920 if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
921 aprint_error("%s: WARNING: I/O BAR at zero.\n",
922 sc->sc_dev.dv_xname);
923 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
924 0, &sc->sc_iot, &sc->sc_ioh,
925 NULL, NULL) == 0) {
926 sc->sc_flags |= WM_F_IOH_VALID;
927 } else {
928 aprint_error("%s: WARNING: unable to map "
929 "I/O space\n", sc->sc_dev.dv_xname);
930 }
931 }
932
933 }
934
935 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
936 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
937 preg |= PCI_COMMAND_MASTER_ENABLE;
938 if (sc->sc_type < WM_T_82542_2_1)
939 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
940 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
941
942 /* power up chip */
943 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
944 NULL)) && error != EOPNOTSUPP) {
945 aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
946 error);
947 return;
948 }
949
950 /*
951 * Map and establish our interrupt.
952 */
953 if (pci_intr_map(pa, &ih)) {
954 aprint_error("%s: unable to map interrupt\n",
955 sc->sc_dev.dv_xname);
956 return;
957 }
958 intrstr = pci_intr_string(pc, ih);
959 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
960 if (sc->sc_ih == NULL) {
961 aprint_error("%s: unable to establish interrupt",
962 sc->sc_dev.dv_xname);
963 if (intrstr != NULL)
964 aprint_normal(" at %s", intrstr);
965 aprint_normal("\n");
966 return;
967 }
968 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
969
970 /*
971 * Determine a few things about the bus we're connected to.
972 */
973 if (sc->sc_type < WM_T_82543) {
974 /* We don't really know the bus characteristics here. */
975 sc->sc_bus_speed = 33;
976 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
977 /*
978 * CSA (Communication Streaming Architecture) is about as fast
979 * a 32-bit 66MHz PCI Bus.
980 */
981 sc->sc_flags |= WM_F_CSA;
982 sc->sc_bus_speed = 66;
983 aprint_verbose("%s: Communication Streaming Architecture\n",
984 sc->sc_dev.dv_xname);
985 if (sc->sc_type == WM_T_82547) {
986 callout_init(&sc->sc_txfifo_ch);
987 callout_setfunc(&sc->sc_txfifo_ch,
988 wm_82547_txfifo_stall, sc);
989 aprint_verbose("%s: using 82547 Tx FIFO stall "
990 "work-around\n", sc->sc_dev.dv_xname);
991 }
992 } else if (sc->sc_type >= WM_T_82571) {
993 sc->sc_flags |= WM_F_PCIE | WM_F_EEPROM_SEMAPHORE;
994 aprint_verbose("%s: PCI-Express bus\n", sc->sc_dev.dv_xname);
995 } else {
996 reg = CSR_READ(sc, WMREG_STATUS);
997 if (reg & STATUS_BUS64)
998 sc->sc_flags |= WM_F_BUS64;
999 if (sc->sc_type >= WM_T_82544 &&
1000 (reg & STATUS_PCIX_MODE) != 0) {
1001 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
1002
1003 sc->sc_flags |= WM_F_PCIX;
1004 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
1005 PCI_CAP_PCIX,
1006 &sc->sc_pcix_offset, NULL) == 0)
1007 aprint_error("%s: unable to find PCIX "
1008 "capability\n", sc->sc_dev.dv_xname);
1009 else if (sc->sc_type != WM_T_82545_3 &&
1010 sc->sc_type != WM_T_82546_3) {
1011 /*
1012 * Work around a problem caused by the BIOS
1013 * setting the max memory read byte count
1014 * incorrectly.
1015 */
1016 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
1017 sc->sc_pcix_offset + PCI_PCIX_CMD);
1018 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
1019 sc->sc_pcix_offset + PCI_PCIX_STATUS);
1020
1021 bytecnt =
1022 (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
1023 PCI_PCIX_CMD_BYTECNT_SHIFT;
1024 maxb =
1025 (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
1026 PCI_PCIX_STATUS_MAXB_SHIFT;
1027 if (bytecnt > maxb) {
1028 aprint_verbose("%s: resetting PCI-X "
1029 "MMRBC: %d -> %d\n",
1030 sc->sc_dev.dv_xname,
1031 512 << bytecnt, 512 << maxb);
1032 pcix_cmd = (pcix_cmd &
1033 ~PCI_PCIX_CMD_BYTECNT_MASK) |
1034 (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
1035 pci_conf_write(pa->pa_pc, pa->pa_tag,
1036 sc->sc_pcix_offset + PCI_PCIX_CMD,
1037 pcix_cmd);
1038 }
1039 }
1040 }
1041 /*
1042 * The quad port adapter is special; it has a PCIX-PCIX
1043 * bridge on the board, and can run the secondary bus at
1044 * a higher speed.
1045 */
1046 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
1047 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
1048 : 66;
1049 } else if (sc->sc_flags & WM_F_PCIX) {
1050 switch (reg & STATUS_PCIXSPD_MASK) {
1051 case STATUS_PCIXSPD_50_66:
1052 sc->sc_bus_speed = 66;
1053 break;
1054 case STATUS_PCIXSPD_66_100:
1055 sc->sc_bus_speed = 100;
1056 break;
1057 case STATUS_PCIXSPD_100_133:
1058 sc->sc_bus_speed = 133;
1059 break;
1060 default:
1061 aprint_error(
1062 "%s: unknown PCIXSPD %d; assuming 66MHz\n",
1063 sc->sc_dev.dv_xname,
1064 reg & STATUS_PCIXSPD_MASK);
1065 sc->sc_bus_speed = 66;
1066 }
1067 } else
1068 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
1069 aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
1070 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
1071 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
1072 }
1073
1074 /*
1075 * Allocate the control data structures, and create and load the
1076 * DMA map for it.
1077 *
1078 * NOTE: All Tx descriptors must be in the same 4G segment of
1079 * memory. So must Rx descriptors. We simplify by allocating
1080 * both sets within the same 4G segment.
1081 */
1082 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
1083 WM_NTXDESC_82542 : WM_NTXDESC_82544;
1084 cdata_size = sc->sc_type < WM_T_82544 ?
1085 sizeof(struct wm_control_data_82542) :
1086 sizeof(struct wm_control_data_82544);
1087 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
1088 (bus_size_t) 0x100000000ULL,
1089 &seg, 1, &rseg, 0)) != 0) {
1090 aprint_error(
1091 "%s: unable to allocate control data, error = %d\n",
1092 sc->sc_dev.dv_xname, error);
1093 goto fail_0;
1094 }
1095
1096 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
1097 (caddr_t *)&sc->sc_control_data, 0)) != 0) {
1098 aprint_error("%s: unable to map control data, error = %d\n",
1099 sc->sc_dev.dv_xname, error);
1100 goto fail_1;
1101 }
1102
1103 if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
1104 0, 0, &sc->sc_cddmamap)) != 0) {
1105 aprint_error("%s: unable to create control data DMA map, "
1106 "error = %d\n", sc->sc_dev.dv_xname, error);
1107 goto fail_2;
1108 }
1109
1110 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1111 sc->sc_control_data, cdata_size, NULL,
1112 0)) != 0) {
1113 aprint_error(
1114 "%s: unable to load control data DMA map, error = %d\n",
1115 sc->sc_dev.dv_xname, error);
1116 goto fail_3;
1117 }
1118
1119
1120 /*
1121 * Create the transmit buffer DMA maps.
1122 */
1123 WM_TXQUEUELEN(sc) =
1124 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1125 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1126 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1127 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1128 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1129 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1130 aprint_error("%s: unable to create Tx DMA map %d, "
1131 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1132 goto fail_4;
1133 }
1134 }
1135
1136 /*
1137 * Create the receive buffer DMA maps.
1138 */
1139 for (i = 0; i < WM_NRXDESC; i++) {
1140 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1141 MCLBYTES, 0, 0,
1142 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1143 aprint_error("%s: unable to create Rx DMA map %d, "
1144 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1145 goto fail_5;
1146 }
1147 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1148 }
1149
1150 /* clear interesting stat counters */
1151 CSR_READ(sc, WMREG_COLC);
1152 CSR_READ(sc, WMREG_RXERRC);
1153
1154 /*
1155 * Reset the chip to a known state.
1156 */
1157 wm_reset(sc);
1158
1159 /*
1160 * Get some information about the EEPROM.
1161 */
1162 if (sc->sc_type == WM_T_80003)
1163 sc->sc_flags |= WM_F_EEPROM_EERDEEWR | WM_F_SWFW_SYNC;
1164 else if (sc->sc_type == WM_T_82573)
1165 sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
1166 else if (sc->sc_type > WM_T_82544)
1167 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1168
1169 if (sc->sc_type <= WM_T_82544)
1170 sc->sc_ee_addrbits = 6;
1171 else if (sc->sc_type <= WM_T_82546_3) {
1172 reg = CSR_READ(sc, WMREG_EECD);
1173 if (reg & EECD_EE_SIZE)
1174 sc->sc_ee_addrbits = 8;
1175 else
1176 sc->sc_ee_addrbits = 6;
1177 } else if (sc->sc_type <= WM_T_82547_2) {
1178 reg = CSR_READ(sc, WMREG_EECD);
1179 if (reg & EECD_EE_TYPE) {
1180 sc->sc_flags |= WM_F_EEPROM_SPI;
1181 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1182 } else
1183 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1184 } else if ((sc->sc_type == WM_T_82573) &&
1185 (wm_is_onboard_nvm_eeprom(sc) == 0)) {
1186 sc->sc_flags |= WM_F_EEPROM_FLASH;
1187 } else {
1188 /* Assume everything else is SPI. */
1189 reg = CSR_READ(sc, WMREG_EECD);
1190 sc->sc_flags |= WM_F_EEPROM_SPI;
1191 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1192 }
1193
1194 /*
1195 * Defer printing the EEPROM type until after verifying the checksum
1196 * This allows the EEPROM type to be printed correctly in the case
1197 * that no EEPROM is attached.
1198 */
1199
1200
1201 /*
1202 * Validate the EEPROM checksum. If the checksum fails, flag this for
1203 * later, so we can fail future reads from the EEPROM.
1204 */
1205 if (wm_validate_eeprom_checksum(sc))
1206 sc->sc_flags |= WM_F_EEPROM_INVALID;
1207
1208 if (sc->sc_flags & WM_F_EEPROM_INVALID)
1209 aprint_verbose("%s: No EEPROM\n", sc->sc_dev.dv_xname);
1210 else if (sc->sc_flags & WM_F_EEPROM_FLASH) {
1211 aprint_verbose("%s: FLASH\n", sc->sc_dev.dv_xname);
1212 } else {
1213 if (sc->sc_flags & WM_F_EEPROM_SPI)
1214 eetype = "SPI";
1215 else
1216 eetype = "MicroWire";
1217 aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1218 sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1219 sc->sc_ee_addrbits, eetype);
1220 }
1221
1222 /*
1223 * Read the Ethernet address from the EEPROM, if not first found
1224 * in device properties.
1225 */
1226 ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
1227 if (ea != NULL) {
1228 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
1229 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
1230 memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
1231 } else {
1232 if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1233 sizeof(myea) / sizeof(myea[0]), myea)) {
1234 aprint_error("%s: unable to read Ethernet address\n",
1235 sc->sc_dev.dv_xname);
1236 return;
1237 }
1238 enaddr[0] = myea[0] & 0xff;
1239 enaddr[1] = myea[0] >> 8;
1240 enaddr[2] = myea[1] & 0xff;
1241 enaddr[3] = myea[1] >> 8;
1242 enaddr[4] = myea[2] & 0xff;
1243 enaddr[5] = myea[2] >> 8;
1244 }
1245
1246 /*
1247 * Toggle the LSB of the MAC address on the second port
1248 * of the dual port controller.
1249 */
1250 if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3
1251 || sc->sc_type == WM_T_82571 || sc->sc_type == WM_T_80003) {
1252 if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1253 enaddr[5] ^= 1;
1254 }
1255
1256 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1257 ether_sprintf(enaddr));
1258
1259 /*
1260 * Read the config info from the EEPROM, and set up various
1261 * bits in the control registers based on their contents.
1262 */
1263 pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1264 "i82543-cfg1");
1265 if (pn != NULL) {
1266 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1267 cfg1 = (uint16_t) prop_number_integer_value(pn);
1268 } else {
1269 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1270 aprint_error("%s: unable to read CFG1\n",
1271 sc->sc_dev.dv_xname);
1272 return;
1273 }
1274 }
1275
1276 pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1277 "i82543-cfg2");
1278 if (pn != NULL) {
1279 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1280 cfg2 = (uint16_t) prop_number_integer_value(pn);
1281 } else {
1282 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1283 aprint_error("%s: unable to read CFG2\n",
1284 sc->sc_dev.dv_xname);
1285 return;
1286 }
1287 }
1288
1289 if (sc->sc_type >= WM_T_82544) {
1290 pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1291 "i82543-swdpin");
1292 if (pn != NULL) {
1293 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1294 swdpin = (uint16_t) prop_number_integer_value(pn);
1295 } else {
1296 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1297 aprint_error("%s: unable to read SWDPIN\n",
1298 sc->sc_dev.dv_xname);
1299 return;
1300 }
1301 }
1302 }
1303
1304 if (cfg1 & EEPROM_CFG1_ILOS)
1305 sc->sc_ctrl |= CTRL_ILOS;
1306 if (sc->sc_type >= WM_T_82544) {
1307 sc->sc_ctrl |=
1308 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1309 CTRL_SWDPIO_SHIFT;
1310 sc->sc_ctrl |=
1311 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1312 CTRL_SWDPINS_SHIFT;
1313 } else {
1314 sc->sc_ctrl |=
1315 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1316 CTRL_SWDPIO_SHIFT;
1317 }
1318
1319 #if 0
1320 if (sc->sc_type >= WM_T_82544) {
1321 if (cfg1 & EEPROM_CFG1_IPS0)
1322 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1323 if (cfg1 & EEPROM_CFG1_IPS1)
1324 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1325 sc->sc_ctrl_ext |=
1326 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1327 CTRL_EXT_SWDPIO_SHIFT;
1328 sc->sc_ctrl_ext |=
1329 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1330 CTRL_EXT_SWDPINS_SHIFT;
1331 } else {
1332 sc->sc_ctrl_ext |=
1333 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1334 CTRL_EXT_SWDPIO_SHIFT;
1335 }
1336 #endif
1337
1338 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1339 #if 0
1340 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1341 #endif
1342
1343 /*
1344 * Set up some register offsets that are different between
1345 * the i82542 and the i82543 and later chips.
1346 */
1347 if (sc->sc_type < WM_T_82543) {
1348 sc->sc_rdt_reg = WMREG_OLD_RDT0;
1349 sc->sc_tdt_reg = WMREG_OLD_TDT;
1350 } else {
1351 sc->sc_rdt_reg = WMREG_RDT;
1352 sc->sc_tdt_reg = WMREG_TDT;
1353 }
1354
1355 /*
1356 * Determine if we're TBI or GMII mode, and initialize the
1357 * media structures accordingly.
1358 */
1359 if (sc->sc_type < WM_T_82543 ||
1360 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1361 if (wmp->wmp_flags & WMP_F_1000T)
1362 aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1363 "product!\n", sc->sc_dev.dv_xname);
1364 wm_tbi_mediainit(sc);
1365 } else {
1366 if (wmp->wmp_flags & WMP_F_1000X)
1367 aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1368 "product!\n", sc->sc_dev.dv_xname);
1369 wm_gmii_mediainit(sc);
1370 }
1371
1372 ifp = &sc->sc_ethercom.ec_if;
1373 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1374 ifp->if_softc = sc;
1375 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1376 ifp->if_ioctl = wm_ioctl;
1377 ifp->if_start = wm_start;
1378 ifp->if_watchdog = wm_watchdog;
1379 ifp->if_init = wm_init;
1380 ifp->if_stop = wm_stop;
1381 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1382 IFQ_SET_READY(&ifp->if_snd);
1383
1384 if (sc->sc_type != WM_T_82573)
1385 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1386
1387 /*
1388 * If we're a i82543 or greater, we can support VLANs.
1389 */
1390 if (sc->sc_type >= WM_T_82543)
1391 sc->sc_ethercom.ec_capabilities |=
1392 ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1393
1394 /*
1395 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
1396 * on i82543 and later.
1397 */
1398 if (sc->sc_type >= WM_T_82543)
1399 ifp->if_capabilities |=
1400 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1401 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1402 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1403 IFCAP_CSUM_TCPv6_Tx |
1404 IFCAP_CSUM_UDPv6_Tx;
1405
1406 /*
1407 * If we're a i82544 or greater (except i82547), we can do
1408 * TCP segmentation offload.
1409 */
1410 if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547)
1411 ifp->if_capabilities |= IFCAP_TSOv4;
1412
1413 /*
1414 * Attach the interface.
1415 */
1416 if_attach(ifp);
1417 ether_ifattach(ifp, enaddr);
1418 #if NRND > 0
1419 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1420 RND_TYPE_NET, 0);
1421 #endif
1422
1423 #ifdef WM_EVENT_COUNTERS
1424 /* Attach event counters. */
1425 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1426 NULL, sc->sc_dev.dv_xname, "txsstall");
1427 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1428 NULL, sc->sc_dev.dv_xname, "txdstall");
1429 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1430 NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1431 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1432 NULL, sc->sc_dev.dv_xname, "txdw");
1433 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1434 NULL, sc->sc_dev.dv_xname, "txqe");
1435 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1436 NULL, sc->sc_dev.dv_xname, "rxintr");
1437 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1438 NULL, sc->sc_dev.dv_xname, "linkintr");
1439
1440 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1441 NULL, sc->sc_dev.dv_xname, "rxipsum");
1442 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1443 NULL, sc->sc_dev.dv_xname, "rxtusum");
1444 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1445 NULL, sc->sc_dev.dv_xname, "txipsum");
1446 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1447 NULL, sc->sc_dev.dv_xname, "txtusum");
1448 evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
1449 NULL, sc->sc_dev.dv_xname, "txtusum6");
1450
1451 evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
1452 NULL, sc->sc_dev.dv_xname, "txtso");
1453 evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
1454 NULL, sc->sc_dev.dv_xname, "txtsopain");
1455
1456 for (i = 0; i < WM_NTXSEGS; i++) {
1457 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1458 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1459 NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1460 }
1461
1462 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1463 NULL, sc->sc_dev.dv_xname, "txdrop");
1464
1465 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1466 NULL, sc->sc_dev.dv_xname, "tu");
1467
1468 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1469 NULL, sc->sc_dev.dv_xname, "tx_xoff");
1470 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1471 NULL, sc->sc_dev.dv_xname, "tx_xon");
1472 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1473 NULL, sc->sc_dev.dv_xname, "rx_xoff");
1474 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1475 NULL, sc->sc_dev.dv_xname, "rx_xon");
1476 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1477 NULL, sc->sc_dev.dv_xname, "rx_macctl");
1478 #endif /* WM_EVENT_COUNTERS */
1479
1480 /*
1481 * Make sure the interface is shutdown during reboot.
1482 */
1483 sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1484 if (sc->sc_sdhook == NULL)
1485 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1486 sc->sc_dev.dv_xname);
1487
1488 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
1489 wm_powerhook, sc);
1490 if (sc->sc_powerhook == NULL)
1491 aprint_error("%s: can't establish powerhook\n",
1492 sc->sc_dev.dv_xname);
1493 return;
1494
1495 /*
1496 * Free any resources we've allocated during the failed attach
1497 * attempt. Do this in reverse order and fall through.
1498 */
1499 fail_5:
1500 for (i = 0; i < WM_NRXDESC; i++) {
1501 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1502 bus_dmamap_destroy(sc->sc_dmat,
1503 sc->sc_rxsoft[i].rxs_dmamap);
1504 }
1505 fail_4:
1506 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1507 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1508 bus_dmamap_destroy(sc->sc_dmat,
1509 sc->sc_txsoft[i].txs_dmamap);
1510 }
1511 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1512 fail_3:
1513 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1514 fail_2:
1515 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1516 cdata_size);
1517 fail_1:
1518 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1519 fail_0:
1520 return;
1521 }
1522
1523 /*
1524 * wm_shutdown:
1525 *
1526 * Make sure the interface is stopped at reboot time.
1527 */
1528 static void
1529 wm_shutdown(void *arg)
1530 {
1531 struct wm_softc *sc = arg;
1532
1533 wm_stop(&sc->sc_ethercom.ec_if, 1);
1534 }
1535
1536 static void
1537 wm_powerhook(int why, void *arg)
1538 {
1539 struct wm_softc *sc = arg;
1540 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1541 pci_chipset_tag_t pc = sc->sc_pc;
1542 pcitag_t tag = sc->sc_pcitag;
1543
1544 switch (why) {
1545 case PWR_SOFTSUSPEND:
1546 wm_shutdown(sc);
1547 break;
1548 case PWR_SOFTRESUME:
1549 ifp->if_flags &= ~IFF_RUNNING;
1550 wm_init(ifp);
1551 if (ifp->if_flags & IFF_RUNNING)
1552 wm_start(ifp);
1553 break;
1554 case PWR_SUSPEND:
1555 pci_conf_capture(pc, tag, &sc->sc_pciconf);
1556 break;
1557 case PWR_RESUME:
1558 pci_conf_restore(pc, tag, &sc->sc_pciconf);
1559 break;
1560 }
1561
1562 return;
1563 }
1564
1565 /*
1566 * wm_tx_offload:
1567 *
1568 * Set up TCP/IP checksumming parameters for the
1569 * specified packet.
1570 */
1571 static int
1572 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1573 uint8_t *fieldsp)
1574 {
1575 struct mbuf *m0 = txs->txs_mbuf;
1576 struct livengood_tcpip_ctxdesc *t;
1577 uint32_t ipcs, tucs, cmd, cmdlen, seg;
1578 struct ether_header *eh;
1579 int offset, iphl;
1580 uint8_t fields;
1581
1582 /*
1583 * XXX It would be nice if the mbuf pkthdr had offset
1584 * fields for the protocol headers.
1585 */
1586
1587 eh = mtod(m0, struct ether_header *);
1588 switch (htons(eh->ether_type)) {
1589 case ETHERTYPE_IP:
1590 case ETHERTYPE_IPV6:
1591 offset = ETHER_HDR_LEN;
1592 break;
1593
1594 case ETHERTYPE_VLAN:
1595 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1596 break;
1597
1598 default:
1599 /*
1600 * Don't support this protocol or encapsulation.
1601 */
1602 *fieldsp = 0;
1603 *cmdp = 0;
1604 return (0);
1605 }
1606
1607 if ((m0->m_pkthdr.csum_flags &
1608 (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
1609 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1610 } else {
1611 iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
1612 }
1613
1614 cmd = WTX_CMD_DEXT | WTX_DTYP_D;
1615 cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
1616 seg = 0;
1617 fields = 0;
1618
1619 if (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
1620 int hlen = offset + iphl;
1621 WM_EVCNT_INCR(&sc->sc_ev_txtso);
1622 if (__predict_false(m0->m_len <
1623 (hlen + sizeof(struct tcphdr)))) {
1624 /*
1625 * TCP/IP headers are not in the first mbuf; we need
1626 * to do this the slow and painful way. Let's just
1627 * hope this doesn't happen very often.
1628 */
1629 struct ip ip;
1630 struct tcphdr th;
1631
1632 WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
1633
1634 m_copydata(m0, offset, sizeof(ip), &ip);
1635 m_copydata(m0, hlen, sizeof(th), &th);
1636
1637 ip.ip_len = 0;
1638
1639 m_copyback(m0, offset + offsetof(struct ip, ip_len),
1640 sizeof(ip.ip_len), &ip.ip_len);
1641
1642 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1643 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1644
1645 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
1646 sizeof(th.th_sum), &th.th_sum);
1647
1648 hlen += th.th_off << 2;
1649 } else {
1650 /*
1651 * TCP/IP headers are in the first mbuf; we can do
1652 * this the easy way.
1653 */
1654 struct ip *ip =
1655 (struct ip *) (mtod(m0, caddr_t) + offset);
1656 struct tcphdr *th =
1657 (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
1658
1659 ip->ip_len = 0;
1660 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1661 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1662
1663 hlen += th->th_off << 2;
1664 }
1665
1666 cmd |= WTX_TCPIP_CMD_TSE;
1667 cmdlen |= WTX_TCPIP_CMD_TSE | WTX_TCPIP_CMD_IP |
1668 WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
1669 seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
1670 WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
1671 }
1672
1673 /*
1674 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1675 * offload feature, if we load the context descriptor, we
1676 * MUST provide valid values for IPCSS and TUCSS fields.
1677 */
1678
1679 ipcs = WTX_TCPIP_IPCSS(offset) |
1680 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1681 WTX_TCPIP_IPCSE(offset + iphl - 1);
1682 if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
1683 WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1684 fields |= WTX_IXSM;
1685 }
1686
1687 offset += iphl;
1688
1689 if (m0->m_pkthdr.csum_flags &
1690 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
1691 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1692 fields |= WTX_TXSM;
1693 tucs = WTX_TCPIP_TUCSS(offset) |
1694 WTX_TCPIP_TUCSO(offset +
1695 M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1696 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1697 } else if ((m0->m_pkthdr.csum_flags &
1698 (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
1699 WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
1700 fields |= WTX_TXSM;
1701 tucs = WTX_TCPIP_TUCSS(offset) |
1702 WTX_TCPIP_TUCSO(offset +
1703 M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
1704 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1705 } else {
1706 /* Just initialize it to a valid TCP context. */
1707 tucs = WTX_TCPIP_TUCSS(offset) |
1708 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1709 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1710 }
1711
1712 /* Fill in the context descriptor. */
1713 t = (struct livengood_tcpip_ctxdesc *)
1714 &sc->sc_txdescs[sc->sc_txnext];
1715 t->tcpip_ipcs = htole32(ipcs);
1716 t->tcpip_tucs = htole32(tucs);
1717 t->tcpip_cmdlen = htole32(cmdlen);
1718 t->tcpip_seg = htole32(seg);
1719 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1720
1721 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1722 txs->txs_ndesc++;
1723
1724 *cmdp = cmd;
1725 *fieldsp = fields;
1726
1727 return (0);
1728 }
1729
1730 static void
1731 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1732 {
1733 struct mbuf *m;
1734 int i;
1735
1736 log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1737 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1738 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1739 "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1740 m->m_data, m->m_len, m->m_flags);
1741 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1742 i, i == 1 ? "" : "s");
1743 }
1744
1745 /*
1746 * wm_82547_txfifo_stall:
1747 *
1748 * Callout used to wait for the 82547 Tx FIFO to drain,
1749 * reset the FIFO pointers, and restart packet transmission.
1750 */
1751 static void
1752 wm_82547_txfifo_stall(void *arg)
1753 {
1754 struct wm_softc *sc = arg;
1755 int s;
1756
1757 s = splnet();
1758
1759 if (sc->sc_txfifo_stall) {
1760 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1761 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1762 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1763 /*
1764 * Packets have drained. Stop transmitter, reset
1765 * FIFO pointers, restart transmitter, and kick
1766 * the packet queue.
1767 */
1768 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1769 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1770 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1771 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1772 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1773 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1774 CSR_WRITE(sc, WMREG_TCTL, tctl);
1775 CSR_WRITE_FLUSH(sc);
1776
1777 sc->sc_txfifo_head = 0;
1778 sc->sc_txfifo_stall = 0;
1779 wm_start(&sc->sc_ethercom.ec_if);
1780 } else {
1781 /*
1782 * Still waiting for packets to drain; try again in
1783 * another tick.
1784 */
1785 callout_schedule(&sc->sc_txfifo_ch, 1);
1786 }
1787 }
1788
1789 splx(s);
1790 }
1791
1792 /*
1793 * wm_82547_txfifo_bugchk:
1794 *
1795 * Check for bug condition in the 82547 Tx FIFO. We need to
1796 * prevent enqueueing a packet that would wrap around the end
1797 * if the Tx FIFO ring buffer, otherwise the chip will croak.
1798 *
1799 * We do this by checking the amount of space before the end
1800 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
1801 * the Tx FIFO, wait for all remaining packets to drain, reset
1802 * the internal FIFO pointers to the beginning, and restart
1803 * transmission on the interface.
1804 */
1805 #define WM_FIFO_HDR 0x10
1806 #define WM_82547_PAD_LEN 0x3e0
1807 static int
1808 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1809 {
1810 int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1811 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1812
1813 /* Just return if already stalled. */
1814 if (sc->sc_txfifo_stall)
1815 return (1);
1816
1817 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1818 /* Stall only occurs in half-duplex mode. */
1819 goto send_packet;
1820 }
1821
1822 if (len >= WM_82547_PAD_LEN + space) {
1823 sc->sc_txfifo_stall = 1;
1824 callout_schedule(&sc->sc_txfifo_ch, 1);
1825 return (1);
1826 }
1827
1828 send_packet:
1829 sc->sc_txfifo_head += len;
1830 if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1831 sc->sc_txfifo_head -= sc->sc_txfifo_size;
1832
1833 return (0);
1834 }
1835
1836 /*
1837 * wm_start: [ifnet interface function]
1838 *
1839 * Start packet transmission on the interface.
1840 */
1841 static void
1842 wm_start(struct ifnet *ifp)
1843 {
1844 struct wm_softc *sc = ifp->if_softc;
1845 struct mbuf *m0;
1846 #if 0 /* XXXJRT */
1847 struct m_tag *mtag;
1848 #endif
1849 struct wm_txsoft *txs;
1850 bus_dmamap_t dmamap;
1851 int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
1852 bus_addr_t curaddr;
1853 bus_size_t seglen, curlen;
1854 uint32_t cksumcmd;
1855 uint8_t cksumfields;
1856
1857 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1858 return;
1859
1860 /*
1861 * Remember the previous number of free descriptors.
1862 */
1863 ofree = sc->sc_txfree;
1864
1865 /*
1866 * Loop through the send queue, setting up transmit descriptors
1867 * until we drain the queue, or use up all available transmit
1868 * descriptors.
1869 */
1870 for (;;) {
1871 /* Grab a packet off the queue. */
1872 IFQ_POLL(&ifp->if_snd, m0);
1873 if (m0 == NULL)
1874 break;
1875
1876 DPRINTF(WM_DEBUG_TX,
1877 ("%s: TX: have packet to transmit: %p\n",
1878 sc->sc_dev.dv_xname, m0));
1879
1880 /* Get a work queue entry. */
1881 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1882 wm_txintr(sc);
1883 if (sc->sc_txsfree == 0) {
1884 DPRINTF(WM_DEBUG_TX,
1885 ("%s: TX: no free job descriptors\n",
1886 sc->sc_dev.dv_xname));
1887 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1888 break;
1889 }
1890 }
1891
1892 txs = &sc->sc_txsoft[sc->sc_txsnext];
1893 dmamap = txs->txs_dmamap;
1894
1895 use_tso = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1896
1897 /*
1898 * So says the Linux driver:
1899 * The controller does a simple calculation to make sure
1900 * there is enough room in the FIFO before initiating the
1901 * DMA for each buffer. The calc is:
1902 * 4 = ceil(buffer len / MSS)
1903 * To make sure we don't overrun the FIFO, adjust the max
1904 * buffer len if the MSS drops.
1905 */
1906 dmamap->dm_maxsegsz =
1907 (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
1908 ? m0->m_pkthdr.segsz << 2
1909 : WTX_MAX_LEN;
1910
1911 /*
1912 * Load the DMA map. If this fails, the packet either
1913 * didn't fit in the allotted number of segments, or we
1914 * were short on resources. For the too-many-segments
1915 * case, we simply report an error and drop the packet,
1916 * since we can't sanely copy a jumbo packet to a single
1917 * buffer.
1918 */
1919 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1920 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1921 if (error) {
1922 if (error == EFBIG) {
1923 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1924 log(LOG_ERR, "%s: Tx packet consumes too many "
1925 "DMA segments, dropping...\n",
1926 sc->sc_dev.dv_xname);
1927 IFQ_DEQUEUE(&ifp->if_snd, m0);
1928 wm_dump_mbuf_chain(sc, m0);
1929 m_freem(m0);
1930 continue;
1931 }
1932 /*
1933 * Short on resources, just stop for now.
1934 */
1935 DPRINTF(WM_DEBUG_TX,
1936 ("%s: TX: dmamap load failed: %d\n",
1937 sc->sc_dev.dv_xname, error));
1938 break;
1939 }
1940
1941 segs_needed = dmamap->dm_nsegs;
1942 if (use_tso) {
1943 /* For sentinel descriptor; see below. */
1944 segs_needed++;
1945 }
1946
1947 /*
1948 * Ensure we have enough descriptors free to describe
1949 * the packet. Note, we always reserve one descriptor
1950 * at the end of the ring due to the semantics of the
1951 * TDT register, plus one more in the event we need
1952 * to load offload context.
1953 */
1954 if (segs_needed > sc->sc_txfree - 2) {
1955 /*
1956 * Not enough free descriptors to transmit this
1957 * packet. We haven't committed anything yet,
1958 * so just unload the DMA map, put the packet
1959 * pack on the queue, and punt. Notify the upper
1960 * layer that there are no more slots left.
1961 */
1962 DPRINTF(WM_DEBUG_TX,
1963 ("%s: TX: need %d (%d) descriptors, have %d\n",
1964 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1965 sc->sc_txfree - 1));
1966 ifp->if_flags |= IFF_OACTIVE;
1967 bus_dmamap_unload(sc->sc_dmat, dmamap);
1968 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1969 break;
1970 }
1971
1972 /*
1973 * Check for 82547 Tx FIFO bug. We need to do this
1974 * once we know we can transmit the packet, since we
1975 * do some internal FIFO space accounting here.
1976 */
1977 if (sc->sc_type == WM_T_82547 &&
1978 wm_82547_txfifo_bugchk(sc, m0)) {
1979 DPRINTF(WM_DEBUG_TX,
1980 ("%s: TX: 82547 Tx FIFO bug detected\n",
1981 sc->sc_dev.dv_xname));
1982 ifp->if_flags |= IFF_OACTIVE;
1983 bus_dmamap_unload(sc->sc_dmat, dmamap);
1984 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1985 break;
1986 }
1987
1988 IFQ_DEQUEUE(&ifp->if_snd, m0);
1989
1990 /*
1991 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1992 */
1993
1994 DPRINTF(WM_DEBUG_TX,
1995 ("%s: TX: packet has %d (%d) DMA segments\n",
1996 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1997
1998 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1999
2000 /*
2001 * Store a pointer to the packet so that we can free it
2002 * later.
2003 *
2004 * Initially, we consider the number of descriptors the
2005 * packet uses the number of DMA segments. This may be
2006 * incremented by 1 if we do checksum offload (a descriptor
2007 * is used to set the checksum context).
2008 */
2009 txs->txs_mbuf = m0;
2010 txs->txs_firstdesc = sc->sc_txnext;
2011 txs->txs_ndesc = segs_needed;
2012
2013 /* Set up offload parameters for this packet. */
2014 if (m0->m_pkthdr.csum_flags &
2015 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
2016 M_CSUM_TCPv6|M_CSUM_UDPv6)) {
2017 if (wm_tx_offload(sc, txs, &cksumcmd,
2018 &cksumfields) != 0) {
2019 /* Error message already displayed. */
2020 bus_dmamap_unload(sc->sc_dmat, dmamap);
2021 continue;
2022 }
2023 } else {
2024 cksumcmd = 0;
2025 cksumfields = 0;
2026 }
2027
2028 cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
2029
2030 /* Sync the DMA map. */
2031 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2032 BUS_DMASYNC_PREWRITE);
2033
2034 /*
2035 * Initialize the transmit descriptor.
2036 */
2037 for (nexttx = sc->sc_txnext, seg = 0;
2038 seg < dmamap->dm_nsegs; seg++) {
2039 for (seglen = dmamap->dm_segs[seg].ds_len,
2040 curaddr = dmamap->dm_segs[seg].ds_addr;
2041 seglen != 0;
2042 curaddr += curlen, seglen -= curlen,
2043 nexttx = WM_NEXTTX(sc, nexttx)) {
2044 curlen = seglen;
2045
2046 /*
2047 * So says the Linux driver:
2048 * Work around for premature descriptor
2049 * write-backs in TSO mode. Append a
2050 * 4-byte sentinel descriptor.
2051 */
2052 if (use_tso &&
2053 seg == dmamap->dm_nsegs - 1 &&
2054 curlen > 8)
2055 curlen -= 4;
2056
2057 wm_set_dma_addr(
2058 &sc->sc_txdescs[nexttx].wtx_addr,
2059 curaddr);
2060 sc->sc_txdescs[nexttx].wtx_cmdlen =
2061 htole32(cksumcmd | curlen);
2062 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
2063 0;
2064 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
2065 cksumfields;
2066 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
2067 lasttx = nexttx;
2068
2069 DPRINTF(WM_DEBUG_TX,
2070 ("%s: TX: desc %d: low 0x%08lx, "
2071 "len 0x%04x\n",
2072 sc->sc_dev.dv_xname, nexttx,
2073 curaddr & 0xffffffffUL, (unsigned)curlen));
2074 }
2075 }
2076
2077 KASSERT(lasttx != -1);
2078
2079 /*
2080 * Set up the command byte on the last descriptor of
2081 * the packet. If we're in the interrupt delay window,
2082 * delay the interrupt.
2083 */
2084 sc->sc_txdescs[lasttx].wtx_cmdlen |=
2085 htole32(WTX_CMD_EOP | WTX_CMD_RS);
2086
2087 #if 0 /* XXXJRT */
2088 /*
2089 * If VLANs are enabled and the packet has a VLAN tag, set
2090 * up the descriptor to encapsulate the packet for us.
2091 *
2092 * This is only valid on the last descriptor of the packet.
2093 */
2094 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
2095 sc->sc_txdescs[lasttx].wtx_cmdlen |=
2096 htole32(WTX_CMD_VLE);
2097 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
2098 = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
2099 }
2100 #endif /* XXXJRT */
2101
2102 txs->txs_lastdesc = lasttx;
2103
2104 DPRINTF(WM_DEBUG_TX,
2105 ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
2106 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
2107
2108 /* Sync the descriptors we're using. */
2109 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
2110 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2111
2112 /* Give the packet to the chip. */
2113 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
2114
2115 DPRINTF(WM_DEBUG_TX,
2116 ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
2117
2118 DPRINTF(WM_DEBUG_TX,
2119 ("%s: TX: finished transmitting packet, job %d\n",
2120 sc->sc_dev.dv_xname, sc->sc_txsnext));
2121
2122 /* Advance the tx pointer. */
2123 sc->sc_txfree -= txs->txs_ndesc;
2124 sc->sc_txnext = nexttx;
2125
2126 sc->sc_txsfree--;
2127 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
2128
2129 #if NBPFILTER > 0
2130 /* Pass the packet to any BPF listeners. */
2131 if (ifp->if_bpf)
2132 bpf_mtap(ifp->if_bpf, m0);
2133 #endif /* NBPFILTER > 0 */
2134 }
2135
2136 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
2137 /* No more slots; notify upper layer. */
2138 ifp->if_flags |= IFF_OACTIVE;
2139 }
2140
2141 if (sc->sc_txfree != ofree) {
2142 /* Set a watchdog timer in case the chip flakes out. */
2143 ifp->if_timer = 5;
2144 }
2145 }
2146
2147 /*
2148 * wm_watchdog: [ifnet interface function]
2149 *
2150 * Watchdog timer handler.
2151 */
2152 static void
2153 wm_watchdog(struct ifnet *ifp)
2154 {
2155 struct wm_softc *sc = ifp->if_softc;
2156
2157 /*
2158 * Since we're using delayed interrupts, sweep up
2159 * before we report an error.
2160 */
2161 wm_txintr(sc);
2162
2163 if (sc->sc_txfree != WM_NTXDESC(sc)) {
2164 log(LOG_ERR,
2165 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
2166 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
2167 sc->sc_txnext);
2168 ifp->if_oerrors++;
2169
2170 /* Reset the interface. */
2171 (void) wm_init(ifp);
2172 }
2173
2174 /* Try to get more packets going. */
2175 wm_start(ifp);
2176 }
2177
2178 /*
2179 * wm_ioctl: [ifnet interface function]
2180 *
2181 * Handle control requests from the operator.
2182 */
2183 static int
2184 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2185 {
2186 struct wm_softc *sc = ifp->if_softc;
2187 struct ifreq *ifr = (struct ifreq *) data;
2188 int s, error;
2189
2190 s = splnet();
2191
2192 switch (cmd) {
2193 case SIOCSIFMEDIA:
2194 case SIOCGIFMEDIA:
2195 /* Flow control requires full-duplex mode. */
2196 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
2197 (ifr->ifr_media & IFM_FDX) == 0)
2198 ifr->ifr_media &= ~IFM_ETH_FMASK;
2199 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
2200 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
2201 /* We can do both TXPAUSE and RXPAUSE. */
2202 ifr->ifr_media |=
2203 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
2204 }
2205 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
2206 }
2207 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2208 break;
2209 default:
2210 error = ether_ioctl(ifp, cmd, data);
2211 if (error == ENETRESET) {
2212 /*
2213 * Multicast list has changed; set the hardware filter
2214 * accordingly.
2215 */
2216 if (ifp->if_flags & IFF_RUNNING)
2217 wm_set_filter(sc);
2218 error = 0;
2219 }
2220 break;
2221 }
2222
2223 /* Try to get more packets going. */
2224 wm_start(ifp);
2225
2226 splx(s);
2227 return (error);
2228 }
2229
2230 /*
2231 * wm_intr:
2232 *
2233 * Interrupt service routine.
2234 */
2235 static int
2236 wm_intr(void *arg)
2237 {
2238 struct wm_softc *sc = arg;
2239 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2240 uint32_t icr;
2241 int handled = 0;
2242
2243 while (1 /* CONSTCOND */) {
2244 icr = CSR_READ(sc, WMREG_ICR);
2245 if ((icr & sc->sc_icr) == 0)
2246 break;
2247 #if 0 /*NRND > 0*/
2248 if (RND_ENABLED(&sc->rnd_source))
2249 rnd_add_uint32(&sc->rnd_source, icr);
2250 #endif
2251
2252 handled = 1;
2253
2254 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2255 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
2256 DPRINTF(WM_DEBUG_RX,
2257 ("%s: RX: got Rx intr 0x%08x\n",
2258 sc->sc_dev.dv_xname,
2259 icr & (ICR_RXDMT0|ICR_RXT0)));
2260 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
2261 }
2262 #endif
2263 wm_rxintr(sc);
2264
2265 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2266 if (icr & ICR_TXDW) {
2267 DPRINTF(WM_DEBUG_TX,
2268 ("%s: TX: got TXDW interrupt\n",
2269 sc->sc_dev.dv_xname));
2270 WM_EVCNT_INCR(&sc->sc_ev_txdw);
2271 }
2272 #endif
2273 wm_txintr(sc);
2274
2275 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
2276 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
2277 wm_linkintr(sc, icr);
2278 }
2279
2280 if (icr & ICR_RXO) {
2281 ifp->if_ierrors++;
2282 #if defined(WM_DEBUG)
2283 log(LOG_WARNING, "%s: Receive overrun\n",
2284 sc->sc_dev.dv_xname);
2285 #endif /* defined(WM_DEBUG) */
2286 }
2287 }
2288
2289 if (handled) {
2290 /* Try to get more packets going. */
2291 wm_start(ifp);
2292 }
2293
2294 return (handled);
2295 }
2296
2297 /*
2298 * wm_txintr:
2299 *
2300 * Helper; handle transmit interrupts.
2301 */
2302 static void
2303 wm_txintr(struct wm_softc *sc)
2304 {
2305 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2306 struct wm_txsoft *txs;
2307 uint8_t status;
2308 int i;
2309
2310 ifp->if_flags &= ~IFF_OACTIVE;
2311
2312 /*
2313 * Go through the Tx list and free mbufs for those
2314 * frames which have been transmitted.
2315 */
2316 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2317 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2318 txs = &sc->sc_txsoft[i];
2319
2320 DPRINTF(WM_DEBUG_TX,
2321 ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2322
2323 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2324 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2325
2326 status =
2327 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2328 if ((status & WTX_ST_DD) == 0) {
2329 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2330 BUS_DMASYNC_PREREAD);
2331 break;
2332 }
2333
2334 DPRINTF(WM_DEBUG_TX,
2335 ("%s: TX: job %d done: descs %d..%d\n",
2336 sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2337 txs->txs_lastdesc));
2338
2339 /*
2340 * XXX We should probably be using the statistics
2341 * XXX registers, but I don't know if they exist
2342 * XXX on chips before the i82544.
2343 */
2344
2345 #ifdef WM_EVENT_COUNTERS
2346 if (status & WTX_ST_TU)
2347 WM_EVCNT_INCR(&sc->sc_ev_tu);
2348 #endif /* WM_EVENT_COUNTERS */
2349
2350 if (status & (WTX_ST_EC|WTX_ST_LC)) {
2351 ifp->if_oerrors++;
2352 if (status & WTX_ST_LC)
2353 log(LOG_WARNING, "%s: late collision\n",
2354 sc->sc_dev.dv_xname);
2355 else if (status & WTX_ST_EC) {
2356 ifp->if_collisions += 16;
2357 log(LOG_WARNING, "%s: excessive collisions\n",
2358 sc->sc_dev.dv_xname);
2359 }
2360 } else
2361 ifp->if_opackets++;
2362
2363 sc->sc_txfree += txs->txs_ndesc;
2364 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2365 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2366 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2367 m_freem(txs->txs_mbuf);
2368 txs->txs_mbuf = NULL;
2369 }
2370
2371 /* Update the dirty transmit buffer pointer. */
2372 sc->sc_txsdirty = i;
2373 DPRINTF(WM_DEBUG_TX,
2374 ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2375
2376 /*
2377 * If there are no more pending transmissions, cancel the watchdog
2378 * timer.
2379 */
2380 if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2381 ifp->if_timer = 0;
2382 }
2383
2384 /*
2385 * wm_rxintr:
2386 *
2387 * Helper; handle receive interrupts.
2388 */
2389 static void
2390 wm_rxintr(struct wm_softc *sc)
2391 {
2392 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2393 struct wm_rxsoft *rxs;
2394 struct mbuf *m;
2395 int i, len;
2396 uint8_t status, errors;
2397
2398 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2399 rxs = &sc->sc_rxsoft[i];
2400
2401 DPRINTF(WM_DEBUG_RX,
2402 ("%s: RX: checking descriptor %d\n",
2403 sc->sc_dev.dv_xname, i));
2404
2405 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2406
2407 status = sc->sc_rxdescs[i].wrx_status;
2408 errors = sc->sc_rxdescs[i].wrx_errors;
2409 len = le16toh(sc->sc_rxdescs[i].wrx_len);
2410
2411 if ((status & WRX_ST_DD) == 0) {
2412 /*
2413 * We have processed all of the receive descriptors.
2414 */
2415 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2416 break;
2417 }
2418
2419 if (__predict_false(sc->sc_rxdiscard)) {
2420 DPRINTF(WM_DEBUG_RX,
2421 ("%s: RX: discarding contents of descriptor %d\n",
2422 sc->sc_dev.dv_xname, i));
2423 WM_INIT_RXDESC(sc, i);
2424 if (status & WRX_ST_EOP) {
2425 /* Reset our state. */
2426 DPRINTF(WM_DEBUG_RX,
2427 ("%s: RX: resetting rxdiscard -> 0\n",
2428 sc->sc_dev.dv_xname));
2429 sc->sc_rxdiscard = 0;
2430 }
2431 continue;
2432 }
2433
2434 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2435 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2436
2437 m = rxs->rxs_mbuf;
2438
2439 /*
2440 * Add a new receive buffer to the ring, unless of
2441 * course the length is zero. Treat the latter as a
2442 * failed mapping.
2443 */
2444 if ((len == 0) || (wm_add_rxbuf(sc, i) != 0)) {
2445 /*
2446 * Failed, throw away what we've done so
2447 * far, and discard the rest of the packet.
2448 */
2449 ifp->if_ierrors++;
2450 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2451 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2452 WM_INIT_RXDESC(sc, i);
2453 if ((status & WRX_ST_EOP) == 0)
2454 sc->sc_rxdiscard = 1;
2455 if (sc->sc_rxhead != NULL)
2456 m_freem(sc->sc_rxhead);
2457 WM_RXCHAIN_RESET(sc);
2458 DPRINTF(WM_DEBUG_RX,
2459 ("%s: RX: Rx buffer allocation failed, "
2460 "dropping packet%s\n", sc->sc_dev.dv_xname,
2461 sc->sc_rxdiscard ? " (discard)" : ""));
2462 continue;
2463 }
2464
2465 WM_RXCHAIN_LINK(sc, m);
2466
2467 m->m_len = len;
2468
2469 DPRINTF(WM_DEBUG_RX,
2470 ("%s: RX: buffer at %p len %d\n",
2471 sc->sc_dev.dv_xname, m->m_data, len));
2472
2473 /*
2474 * If this is not the end of the packet, keep
2475 * looking.
2476 */
2477 if ((status & WRX_ST_EOP) == 0) {
2478 sc->sc_rxlen += len;
2479 DPRINTF(WM_DEBUG_RX,
2480 ("%s: RX: not yet EOP, rxlen -> %d\n",
2481 sc->sc_dev.dv_xname, sc->sc_rxlen));
2482 continue;
2483 }
2484
2485 /*
2486 * Okay, we have the entire packet now. The chip is
2487 * configured to include the FCS (not all chips can
2488 * be configured to strip it), so we need to trim it.
2489 */
2490 m->m_len -= ETHER_CRC_LEN;
2491
2492 *sc->sc_rxtailp = NULL;
2493 len = m->m_len + sc->sc_rxlen;
2494 m = sc->sc_rxhead;
2495
2496 WM_RXCHAIN_RESET(sc);
2497
2498 DPRINTF(WM_DEBUG_RX,
2499 ("%s: RX: have entire packet, len -> %d\n",
2500 sc->sc_dev.dv_xname, len));
2501
2502 /*
2503 * If an error occurred, update stats and drop the packet.
2504 */
2505 if (errors &
2506 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2507 ifp->if_ierrors++;
2508 if (errors & WRX_ER_SE)
2509 log(LOG_WARNING, "%s: symbol error\n",
2510 sc->sc_dev.dv_xname);
2511 else if (errors & WRX_ER_SEQ)
2512 log(LOG_WARNING, "%s: receive sequence error\n",
2513 sc->sc_dev.dv_xname);
2514 else if (errors & WRX_ER_CE)
2515 log(LOG_WARNING, "%s: CRC error\n",
2516 sc->sc_dev.dv_xname);
2517 m_freem(m);
2518 continue;
2519 }
2520
2521 /*
2522 * No errors. Receive the packet.
2523 */
2524 m->m_pkthdr.rcvif = ifp;
2525 m->m_pkthdr.len = len;
2526
2527 #if 0 /* XXXJRT */
2528 /*
2529 * If VLANs are enabled, VLAN packets have been unwrapped
2530 * for us. Associate the tag with the packet.
2531 */
2532 if ((status & WRX_ST_VP) != 0) {
2533 VLAN_INPUT_TAG(ifp, m,
2534 le16toh(sc->sc_rxdescs[i].wrx_special,
2535 continue);
2536 }
2537 #endif /* XXXJRT */
2538
2539 /*
2540 * Set up checksum info for this packet.
2541 */
2542 if ((status & WRX_ST_IXSM) == 0) {
2543 if (status & WRX_ST_IPCS) {
2544 WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2545 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2546 if (errors & WRX_ER_IPE)
2547 m->m_pkthdr.csum_flags |=
2548 M_CSUM_IPv4_BAD;
2549 }
2550 if (status & WRX_ST_TCPCS) {
2551 /*
2552 * Note: we don't know if this was TCP or UDP,
2553 * so we just set both bits, and expect the
2554 * upper layers to deal.
2555 */
2556 WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2557 m->m_pkthdr.csum_flags |=
2558 M_CSUM_TCPv4|M_CSUM_UDPv4;
2559 if (errors & WRX_ER_TCPE)
2560 m->m_pkthdr.csum_flags |=
2561 M_CSUM_TCP_UDP_BAD;
2562 }
2563 }
2564
2565 ifp->if_ipackets++;
2566
2567 #if NBPFILTER > 0
2568 /* Pass this up to any BPF listeners. */
2569 if (ifp->if_bpf)
2570 bpf_mtap(ifp->if_bpf, m);
2571 #endif /* NBPFILTER > 0 */
2572
2573 /* Pass it on. */
2574 (*ifp->if_input)(ifp, m);
2575 }
2576
2577 /* Update the receive pointer. */
2578 sc->sc_rxptr = i;
2579
2580 DPRINTF(WM_DEBUG_RX,
2581 ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2582 }
2583
2584 /*
2585 * wm_linkintr:
2586 *
2587 * Helper; handle link interrupts.
2588 */
2589 static void
2590 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2591 {
2592 uint32_t status;
2593
2594 /*
2595 * If we get a link status interrupt on a 1000BASE-T
2596 * device, just fall into the normal MII tick path.
2597 */
2598 if (sc->sc_flags & WM_F_HAS_MII) {
2599 if (icr & ICR_LSC) {
2600 DPRINTF(WM_DEBUG_LINK,
2601 ("%s: LINK: LSC -> mii_tick\n",
2602 sc->sc_dev.dv_xname));
2603 mii_tick(&sc->sc_mii);
2604 } else if (icr & ICR_RXSEQ) {
2605 DPRINTF(WM_DEBUG_LINK,
2606 ("%s: LINK Receive sequence error\n",
2607 sc->sc_dev.dv_xname));
2608 }
2609 return;
2610 }
2611
2612 /*
2613 * If we are now receiving /C/, check for link again in
2614 * a couple of link clock ticks.
2615 */
2616 if (icr & ICR_RXCFG) {
2617 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2618 sc->sc_dev.dv_xname));
2619 sc->sc_tbi_anstate = 2;
2620 }
2621
2622 if (icr & ICR_LSC) {
2623 status = CSR_READ(sc, WMREG_STATUS);
2624 if (status & STATUS_LU) {
2625 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2626 sc->sc_dev.dv_xname,
2627 (status & STATUS_FD) ? "FDX" : "HDX"));
2628 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2629 sc->sc_fcrtl &= ~FCRTL_XONE;
2630 if (status & STATUS_FD)
2631 sc->sc_tctl |=
2632 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2633 else
2634 sc->sc_tctl |=
2635 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2636 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2637 sc->sc_fcrtl |= FCRTL_XONE;
2638 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2639 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2640 WMREG_OLD_FCRTL : WMREG_FCRTL,
2641 sc->sc_fcrtl);
2642 sc->sc_tbi_linkup = 1;
2643 } else {
2644 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2645 sc->sc_dev.dv_xname));
2646 sc->sc_tbi_linkup = 0;
2647 }
2648 sc->sc_tbi_anstate = 2;
2649 wm_tbi_set_linkled(sc);
2650 } else if (icr & ICR_RXSEQ) {
2651 DPRINTF(WM_DEBUG_LINK,
2652 ("%s: LINK: Receive sequence error\n",
2653 sc->sc_dev.dv_xname));
2654 }
2655 }
2656
2657 /*
2658 * wm_tick:
2659 *
2660 * One second timer, used to check link status, sweep up
2661 * completed transmit jobs, etc.
2662 */
2663 static void
2664 wm_tick(void *arg)
2665 {
2666 struct wm_softc *sc = arg;
2667 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2668 int s;
2669
2670 s = splnet();
2671
2672 if (sc->sc_type >= WM_T_82542_2_1) {
2673 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2674 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2675 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2676 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2677 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2678 }
2679
2680 ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
2681 ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
2682
2683
2684 if (sc->sc_flags & WM_F_HAS_MII)
2685 mii_tick(&sc->sc_mii);
2686 else
2687 wm_tbi_check_link(sc);
2688
2689 splx(s);
2690
2691 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2692 }
2693
2694 /*
2695 * wm_reset:
2696 *
2697 * Reset the i82542 chip.
2698 */
2699 static void
2700 wm_reset(struct wm_softc *sc)
2701 {
2702 int i;
2703
2704 /*
2705 * Allocate on-chip memory according to the MTU size.
2706 * The Packet Buffer Allocation register must be written
2707 * before the chip is reset.
2708 */
2709 switch (sc->sc_type) {
2710 case WM_T_82547:
2711 case WM_T_82547_2:
2712 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2713 PBA_22K : PBA_30K;
2714 sc->sc_txfifo_head = 0;
2715 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2716 sc->sc_txfifo_size =
2717 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2718 sc->sc_txfifo_stall = 0;
2719 break;
2720 case WM_T_82571:
2721 case WM_T_82572:
2722 case WM_T_80003:
2723 sc->sc_pba = PBA_32K;
2724 break;
2725 case WM_T_82573:
2726 sc->sc_pba = PBA_12K;
2727 break;
2728 default:
2729 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2730 PBA_40K : PBA_48K;
2731 break;
2732 }
2733 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2734
2735 switch (sc->sc_type) {
2736 case WM_T_82544:
2737 case WM_T_82540:
2738 case WM_T_82545:
2739 case WM_T_82546:
2740 case WM_T_82541:
2741 case WM_T_82541_2:
2742 /*
2743 * On some chipsets, a reset through a memory-mapped write
2744 * cycle can cause the chip to reset before completing the
2745 * write cycle. This causes major headache that can be
2746 * avoided by issuing the reset via indirect register writes
2747 * through I/O space.
2748 *
2749 * So, if we successfully mapped the I/O BAR at attach time,
2750 * use that. Otherwise, try our luck with a memory-mapped
2751 * reset.
2752 */
2753 if (sc->sc_flags & WM_F_IOH_VALID)
2754 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2755 else
2756 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2757 break;
2758
2759 case WM_T_82545_3:
2760 case WM_T_82546_3:
2761 /* Use the shadow control register on these chips. */
2762 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2763 break;
2764
2765 default:
2766 /* Everything else can safely use the documented method. */
2767 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2768 break;
2769 }
2770 delay(10000);
2771
2772 for (i = 0; i < 1000; i++) {
2773 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2774 return;
2775 delay(20);
2776 }
2777
2778 if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2779 log(LOG_ERR, "%s: reset failed to complete\n",
2780 sc->sc_dev.dv_xname);
2781
2782 if (sc->sc_type == WM_T_80003) {
2783 /* wait for eeprom to reload */
2784 for (i = 1000; i > 0; i--) {
2785 if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD)
2786 break;
2787 }
2788 if (i == 0) {
2789 log(LOG_ERR, "%s: auto read from eeprom failed to "
2790 "complete\n", sc->sc_dev.dv_xname);
2791 }
2792 }
2793 }
2794
2795 /*
2796 * wm_init: [ifnet interface function]
2797 *
2798 * Initialize the interface. Must be called at splnet().
2799 */
2800 static int
2801 wm_init(struct ifnet *ifp)
2802 {
2803 struct wm_softc *sc = ifp->if_softc;
2804 struct wm_rxsoft *rxs;
2805 int i, error = 0;
2806 uint32_t reg;
2807
2808 /*
2809 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2810 * There is a small but measurable benefit to avoiding the adjusment
2811 * of the descriptor so that the headers are aligned, for normal mtu,
2812 * on such platforms. One possibility is that the DMA itself is
2813 * slightly more efficient if the front of the entire packet (instead
2814 * of the front of the headers) is aligned.
2815 *
2816 * Note we must always set align_tweak to 0 if we are using
2817 * jumbo frames.
2818 */
2819 #ifdef __NO_STRICT_ALIGNMENT
2820 sc->sc_align_tweak = 0;
2821 #else
2822 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2823 sc->sc_align_tweak = 0;
2824 else
2825 sc->sc_align_tweak = 2;
2826 #endif /* __NO_STRICT_ALIGNMENT */
2827
2828 /* Cancel any pending I/O. */
2829 wm_stop(ifp, 0);
2830
2831 /* update statistics before reset */
2832 ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
2833 ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
2834
2835 /* Reset the chip to a known state. */
2836 wm_reset(sc);
2837
2838 /* Initialize the transmit descriptor ring. */
2839 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2840 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2841 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2842 sc->sc_txfree = WM_NTXDESC(sc);
2843 sc->sc_txnext = 0;
2844
2845 if (sc->sc_type < WM_T_82543) {
2846 CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2847 CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2848 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2849 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2850 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2851 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2852 } else {
2853 CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2854 CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2855 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2856 CSR_WRITE(sc, WMREG_TDH, 0);
2857 CSR_WRITE(sc, WMREG_TDT, 0);
2858 CSR_WRITE(sc, WMREG_TIDV, 64);
2859 CSR_WRITE(sc, WMREG_TADV, 128);
2860
2861 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2862 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2863 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2864 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2865 }
2866 CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2867 CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2868
2869 /* Initialize the transmit job descriptors. */
2870 for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2871 sc->sc_txsoft[i].txs_mbuf = NULL;
2872 sc->sc_txsfree = WM_TXQUEUELEN(sc);
2873 sc->sc_txsnext = 0;
2874 sc->sc_txsdirty = 0;
2875
2876 /*
2877 * Initialize the receive descriptor and receive job
2878 * descriptor rings.
2879 */
2880 if (sc->sc_type < WM_T_82543) {
2881 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2882 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2883 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2884 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2885 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2886 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2887
2888 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2889 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2890 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2891 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2892 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2893 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2894 } else {
2895 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2896 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2897 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2898 CSR_WRITE(sc, WMREG_RDH, 0);
2899 CSR_WRITE(sc, WMREG_RDT, 0);
2900 CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
2901 CSR_WRITE(sc, WMREG_RADV, 128);
2902 }
2903 for (i = 0; i < WM_NRXDESC; i++) {
2904 rxs = &sc->sc_rxsoft[i];
2905 if (rxs->rxs_mbuf == NULL) {
2906 if ((error = wm_add_rxbuf(sc, i)) != 0) {
2907 log(LOG_ERR, "%s: unable to allocate or map rx "
2908 "buffer %d, error = %d\n",
2909 sc->sc_dev.dv_xname, i, error);
2910 /*
2911 * XXX Should attempt to run with fewer receive
2912 * XXX buffers instead of just failing.
2913 */
2914 wm_rxdrain(sc);
2915 goto out;
2916 }
2917 } else
2918 WM_INIT_RXDESC(sc, i);
2919 }
2920 sc->sc_rxptr = 0;
2921 sc->sc_rxdiscard = 0;
2922 WM_RXCHAIN_RESET(sc);
2923
2924 /*
2925 * Clear out the VLAN table -- we don't use it (yet).
2926 */
2927 CSR_WRITE(sc, WMREG_VET, 0);
2928 for (i = 0; i < WM_VLAN_TABSIZE; i++)
2929 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2930
2931 /*
2932 * Set up flow-control parameters.
2933 *
2934 * XXX Values could probably stand some tuning.
2935 */
2936 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2937 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2938 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2939
2940 sc->sc_fcrtl = FCRTL_DFLT;
2941 if (sc->sc_type < WM_T_82543) {
2942 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2943 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2944 } else {
2945 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2946 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2947 }
2948 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2949
2950 #if 0 /* XXXJRT */
2951 /* Deal with VLAN enables. */
2952 if (VLAN_ATTACHED(&sc->sc_ethercom))
2953 sc->sc_ctrl |= CTRL_VME;
2954 else
2955 #endif /* XXXJRT */
2956 sc->sc_ctrl &= ~CTRL_VME;
2957
2958 /* Write the control registers. */
2959 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2960 if (sc->sc_type >= WM_T_80003 && (sc->sc_flags & WM_F_HAS_MII)) {
2961 int val;
2962 val = CSR_READ(sc, WMREG_CTRL_EXT);
2963 val &= ~CTRL_EXT_LINK_MODE_MASK;
2964 CSR_WRITE(sc, WMREG_CTRL_EXT, val);
2965
2966 /* Bypass RX and TX FIFO's */
2967 wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL,
2968 KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
2969 KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2970
2971 wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL,
2972 KUMCTRLSTA_INB_CTRL_DIS_PADDING |
2973 KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT);
2974 /*
2975 * Set the mac to wait the maximum time between each
2976 * iteration and increase the max iterations when
2977 * polling the phy; this fixes erroneous timeouts at 10Mbps.
2978 */
2979 wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS, 0xFFFF);
2980 val = wm_kmrn_i80003_readreg(sc, KUMCTRLSTA_OFFSET_INB_PARAM);
2981 val |= 0x3F;
2982 wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_INB_PARAM, val);
2983 }
2984 #if 0
2985 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2986 #endif
2987
2988 /*
2989 * Set up checksum offload parameters.
2990 */
2991 reg = CSR_READ(sc, WMREG_RXCSUM);
2992 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
2993 reg |= RXCSUM_IPOFL;
2994 else
2995 reg &= ~RXCSUM_IPOFL;
2996 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2997 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2998 else {
2999 reg &= ~RXCSUM_TUOFL;
3000 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
3001 reg &= ~RXCSUM_IPOFL;
3002 }
3003 CSR_WRITE(sc, WMREG_RXCSUM, reg);
3004
3005 /*
3006 * Set up the interrupt registers.
3007 */
3008 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
3009 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
3010 ICR_RXO | ICR_RXT0;
3011 if ((sc->sc_flags & WM_F_HAS_MII) == 0)
3012 sc->sc_icr |= ICR_RXCFG;
3013 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
3014
3015 /* Set up the inter-packet gap. */
3016 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
3017
3018 if (sc->sc_type >= WM_T_82543) {
3019 /* Set up the interrupt throttling register (units of 256ns) */
3020 sc->sc_itr = 1000000000 / (7000 * 256);
3021 CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
3022 }
3023
3024 #if 0 /* XXXJRT */
3025 /* Set the VLAN ethernetype. */
3026 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
3027 #endif
3028
3029 /*
3030 * Set up the transmit control register; we start out with
3031 * a collision distance suitable for FDX, but update it whe
3032 * we resolve the media type.
3033 */
3034 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
3035 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3036 if (sc->sc_type >= WM_T_82571)
3037 sc->sc_tctl |= TCTL_MULR;
3038 if (sc->sc_type >= WM_T_80003)
3039 sc->sc_tctl |= TCTL_RTLC;
3040 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3041
3042 /* Set the media. */
3043 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
3044
3045 /*
3046 * Set up the receive control register; we actually program
3047 * the register when we set the receive filter. Use multicast
3048 * address offset type 0.
3049 *
3050 * Only the i82544 has the ability to strip the incoming
3051 * CRC, so we don't enable that feature.
3052 */
3053 sc->sc_mchash_type = 0;
3054 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
3055 | RCTL_MO(sc->sc_mchash_type);
3056
3057 /* 82573 doesn't support jumbo frame */
3058 if (sc->sc_type != WM_T_82573)
3059 sc->sc_rctl |= RCTL_LPE;
3060
3061 if (MCLBYTES == 2048) {
3062 sc->sc_rctl |= RCTL_2k;
3063 } else {
3064 if (sc->sc_type >= WM_T_82543) {
3065 switch(MCLBYTES) {
3066 case 4096:
3067 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
3068 break;
3069 case 8192:
3070 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
3071 break;
3072 case 16384:
3073 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
3074 break;
3075 default:
3076 panic("wm_init: MCLBYTES %d unsupported",
3077 MCLBYTES);
3078 break;
3079 }
3080 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
3081 }
3082
3083 /* Set the receive filter. */
3084 wm_set_filter(sc);
3085
3086 /* Start the one second link check clock. */
3087 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
3088
3089 /* ...all done! */
3090 ifp->if_flags |= IFF_RUNNING;
3091 ifp->if_flags &= ~IFF_OACTIVE;
3092
3093 out:
3094 if (error)
3095 log(LOG_ERR, "%s: interface not running\n",
3096 sc->sc_dev.dv_xname);
3097 return (error);
3098 }
3099
3100 /*
3101 * wm_rxdrain:
3102 *
3103 * Drain the receive queue.
3104 */
3105 static void
3106 wm_rxdrain(struct wm_softc *sc)
3107 {
3108 struct wm_rxsoft *rxs;
3109 int i;
3110
3111 for (i = 0; i < WM_NRXDESC; i++) {
3112 rxs = &sc->sc_rxsoft[i];
3113 if (rxs->rxs_mbuf != NULL) {
3114 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3115 m_freem(rxs->rxs_mbuf);
3116 rxs->rxs_mbuf = NULL;
3117 }
3118 }
3119 }
3120
3121 /*
3122 * wm_stop: [ifnet interface function]
3123 *
3124 * Stop transmission on the interface.
3125 */
3126 static void
3127 wm_stop(struct ifnet *ifp, int disable)
3128 {
3129 struct wm_softc *sc = ifp->if_softc;
3130 struct wm_txsoft *txs;
3131 int i;
3132
3133 /* Stop the one second clock. */
3134 callout_stop(&sc->sc_tick_ch);
3135
3136 /* Stop the 82547 Tx FIFO stall check timer. */
3137 if (sc->sc_type == WM_T_82547)
3138 callout_stop(&sc->sc_txfifo_ch);
3139
3140 if (sc->sc_flags & WM_F_HAS_MII) {
3141 /* Down the MII. */
3142 mii_down(&sc->sc_mii);
3143 }
3144
3145 /* Stop the transmit and receive processes. */
3146 CSR_WRITE(sc, WMREG_TCTL, 0);
3147 CSR_WRITE(sc, WMREG_RCTL, 0);
3148
3149 /*
3150 * Clear the interrupt mask to ensure the device cannot assert its
3151 * interrupt line.
3152 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
3153 * any currently pending or shared interrupt.
3154 */
3155 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
3156 sc->sc_icr = 0;
3157
3158 /* Release any queued transmit buffers. */
3159 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
3160 txs = &sc->sc_txsoft[i];
3161 if (txs->txs_mbuf != NULL) {
3162 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3163 m_freem(txs->txs_mbuf);
3164 txs->txs_mbuf = NULL;
3165 }
3166 }
3167
3168 if (disable)
3169 wm_rxdrain(sc);
3170
3171 /* Mark the interface as down and cancel the watchdog timer. */
3172 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3173 ifp->if_timer = 0;
3174 }
3175
3176 /*
3177 * wm_acquire_eeprom:
3178 *
3179 * Perform the EEPROM handshake required on some chips.
3180 */
3181 static int
3182 wm_acquire_eeprom(struct wm_softc *sc)
3183 {
3184 uint32_t reg;
3185 int x;
3186 int ret = 0;
3187
3188 /* always success */
3189 if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
3190 return 0;
3191
3192 if (sc->sc_flags & WM_F_SWFW_SYNC) {
3193 /* this will also do wm_get_swsm_semaphore() if needed */
3194 ret = wm_get_swfw_semaphore(sc, SWFW_EEP_SM);
3195 } else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
3196 ret = wm_get_swsm_semaphore(sc);
3197 }
3198
3199 if (ret)
3200 return 1;
3201
3202 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
3203 reg = CSR_READ(sc, WMREG_EECD);
3204
3205 /* Request EEPROM access. */
3206 reg |= EECD_EE_REQ;
3207 CSR_WRITE(sc, WMREG_EECD, reg);
3208
3209 /* ..and wait for it to be granted. */
3210 for (x = 0; x < 1000; x++) {
3211 reg = CSR_READ(sc, WMREG_EECD);
3212 if (reg & EECD_EE_GNT)
3213 break;
3214 delay(5);
3215 }
3216 if ((reg & EECD_EE_GNT) == 0) {
3217 aprint_error("%s: could not acquire EEPROM GNT\n",
3218 sc->sc_dev.dv_xname);
3219 reg &= ~EECD_EE_REQ;
3220 CSR_WRITE(sc, WMREG_EECD, reg);
3221 if (sc->sc_flags & WM_F_SWFW_SYNC)
3222 wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
3223 else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
3224 wm_put_swsm_semaphore(sc);
3225 return (1);
3226 }
3227 }
3228
3229 return (0);
3230 }
3231
3232 /*
3233 * wm_release_eeprom:
3234 *
3235 * Release the EEPROM mutex.
3236 */
3237 static void
3238 wm_release_eeprom(struct wm_softc *sc)
3239 {
3240 uint32_t reg;
3241
3242 /* always success */
3243 if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
3244 return;
3245
3246 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
3247 reg = CSR_READ(sc, WMREG_EECD);
3248 reg &= ~EECD_EE_REQ;
3249 CSR_WRITE(sc, WMREG_EECD, reg);
3250 }
3251
3252 if (sc->sc_flags & WM_F_SWFW_SYNC)
3253 wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
3254 else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
3255 wm_put_swsm_semaphore(sc);
3256 }
3257
3258 /*
3259 * wm_eeprom_sendbits:
3260 *
3261 * Send a series of bits to the EEPROM.
3262 */
3263 static void
3264 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
3265 {
3266 uint32_t reg;
3267 int x;
3268
3269 reg = CSR_READ(sc, WMREG_EECD);
3270
3271 for (x = nbits; x > 0; x--) {
3272 if (bits & (1U << (x - 1)))
3273 reg |= EECD_DI;
3274 else
3275 reg &= ~EECD_DI;
3276 CSR_WRITE(sc, WMREG_EECD, reg);
3277 delay(2);
3278 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3279 delay(2);
3280 CSR_WRITE(sc, WMREG_EECD, reg);
3281 delay(2);
3282 }
3283 }
3284
3285 /*
3286 * wm_eeprom_recvbits:
3287 *
3288 * Receive a series of bits from the EEPROM.
3289 */
3290 static void
3291 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
3292 {
3293 uint32_t reg, val;
3294 int x;
3295
3296 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
3297
3298 val = 0;
3299 for (x = nbits; x > 0; x--) {
3300 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3301 delay(2);
3302 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
3303 val |= (1U << (x - 1));
3304 CSR_WRITE(sc, WMREG_EECD, reg);
3305 delay(2);
3306 }
3307 *valp = val;
3308 }
3309
3310 /*
3311 * wm_read_eeprom_uwire:
3312 *
3313 * Read a word from the EEPROM using the MicroWire protocol.
3314 */
3315 static int
3316 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3317 {
3318 uint32_t reg, val;
3319 int i;
3320
3321 for (i = 0; i < wordcnt; i++) {
3322 /* Clear SK and DI. */
3323 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
3324 CSR_WRITE(sc, WMREG_EECD, reg);
3325
3326 /* Set CHIP SELECT. */
3327 reg |= EECD_CS;
3328 CSR_WRITE(sc, WMREG_EECD, reg);
3329 delay(2);
3330
3331 /* Shift in the READ command. */
3332 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
3333
3334 /* Shift in address. */
3335 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
3336
3337 /* Shift out the data. */
3338 wm_eeprom_recvbits(sc, &val, 16);
3339 data[i] = val & 0xffff;
3340
3341 /* Clear CHIP SELECT. */
3342 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
3343 CSR_WRITE(sc, WMREG_EECD, reg);
3344 delay(2);
3345 }
3346
3347 return (0);
3348 }
3349
3350 /*
3351 * wm_spi_eeprom_ready:
3352 *
3353 * Wait for a SPI EEPROM to be ready for commands.
3354 */
3355 static int
3356 wm_spi_eeprom_ready(struct wm_softc *sc)
3357 {
3358 uint32_t val;
3359 int usec;
3360
3361 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
3362 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
3363 wm_eeprom_recvbits(sc, &val, 8);
3364 if ((val & SPI_SR_RDY) == 0)
3365 break;
3366 }
3367 if (usec >= SPI_MAX_RETRIES) {
3368 aprint_error("%s: EEPROM failed to become ready\n",
3369 sc->sc_dev.dv_xname);
3370 return (1);
3371 }
3372 return (0);
3373 }
3374
3375 /*
3376 * wm_read_eeprom_spi:
3377 *
3378 * Read a work from the EEPROM using the SPI protocol.
3379 */
3380 static int
3381 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3382 {
3383 uint32_t reg, val;
3384 int i;
3385 uint8_t opc;
3386
3387 /* Clear SK and CS. */
3388 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
3389 CSR_WRITE(sc, WMREG_EECD, reg);
3390 delay(2);
3391
3392 if (wm_spi_eeprom_ready(sc))
3393 return (1);
3394
3395 /* Toggle CS to flush commands. */
3396 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
3397 delay(2);
3398 CSR_WRITE(sc, WMREG_EECD, reg);
3399 delay(2);
3400
3401 opc = SPI_OPC_READ;
3402 if (sc->sc_ee_addrbits == 8 && word >= 128)
3403 opc |= SPI_OPC_A8;
3404
3405 wm_eeprom_sendbits(sc, opc, 8);
3406 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
3407
3408 for (i = 0; i < wordcnt; i++) {
3409 wm_eeprom_recvbits(sc, &val, 16);
3410 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
3411 }
3412
3413 /* Raise CS and clear SK. */
3414 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3415 CSR_WRITE(sc, WMREG_EECD, reg);
3416 delay(2);
3417
3418 return (0);
3419 }
3420
3421 #define EEPROM_CHECKSUM 0xBABA
3422 #define EEPROM_SIZE 0x0040
3423
3424 /*
3425 * wm_validate_eeprom_checksum
3426 *
3427 * The checksum is defined as the sum of the first 64 (16 bit) words.
3428 */
3429 static int
3430 wm_validate_eeprom_checksum(struct wm_softc *sc)
3431 {
3432 uint16_t checksum;
3433 uint16_t eeprom_data;
3434 int i;
3435
3436 checksum = 0;
3437
3438 for (i = 0; i < EEPROM_SIZE; i++) {
3439 if (wm_read_eeprom(sc, i, 1, &eeprom_data))
3440 return 1;
3441 checksum += eeprom_data;
3442 }
3443
3444 if (checksum != (uint16_t) EEPROM_CHECKSUM)
3445 return 1;
3446
3447 return 0;
3448 }
3449
3450 /*
3451 * wm_read_eeprom:
3452 *
3453 * Read data from the serial EEPROM.
3454 */
3455 static int
3456 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3457 {
3458 int rv;
3459
3460 if (sc->sc_flags & WM_F_EEPROM_INVALID)
3461 return 1;
3462
3463 if (wm_acquire_eeprom(sc))
3464 return 1;
3465
3466 if (sc->sc_flags & WM_F_EEPROM_EERDEEWR)
3467 rv = wm_read_eeprom_eerd(sc, word, wordcnt, data);
3468 else if (sc->sc_flags & WM_F_EEPROM_SPI)
3469 rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3470 else
3471 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3472
3473 wm_release_eeprom(sc);
3474 return rv;
3475 }
3476
3477 static int
3478 wm_read_eeprom_eerd(struct wm_softc *sc, int offset, int wordcnt,
3479 uint16_t *data)
3480 {
3481 int i, eerd = 0;
3482 int error = 0;
3483
3484 for (i = 0; i < wordcnt; i++) {
3485 eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
3486
3487 CSR_WRITE(sc, WMREG_EERD, eerd);
3488 error = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
3489 if (error != 0)
3490 break;
3491
3492 data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
3493 }
3494
3495 return error;
3496 }
3497
3498 static int
3499 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
3500 {
3501 uint32_t attempts = 100000;
3502 uint32_t i, reg = 0;
3503 int32_t done = -1;
3504
3505 for (i = 0; i < attempts; i++) {
3506 reg = CSR_READ(sc, rw);
3507
3508 if (reg & EERD_DONE) {
3509 done = 0;
3510 break;
3511 }
3512 delay(5);
3513 }
3514
3515 return done;
3516 }
3517
3518 /*
3519 * wm_add_rxbuf:
3520 *
3521 * Add a receive buffer to the indiciated descriptor.
3522 */
3523 static int
3524 wm_add_rxbuf(struct wm_softc *sc, int idx)
3525 {
3526 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3527 struct mbuf *m;
3528 int error;
3529
3530 MGETHDR(m, M_DONTWAIT, MT_DATA);
3531 if (m == NULL)
3532 return (ENOBUFS);
3533
3534 MCLGET(m, M_DONTWAIT);
3535 if ((m->m_flags & M_EXT) == 0) {
3536 m_freem(m);
3537 return (ENOBUFS);
3538 }
3539
3540 if (rxs->rxs_mbuf != NULL)
3541 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3542
3543 rxs->rxs_mbuf = m;
3544
3545 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3546 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3547 BUS_DMA_READ|BUS_DMA_NOWAIT);
3548 if (error) {
3549 /* XXX XXX XXX */
3550 printf("%s: unable to load rx DMA map %d, error = %d\n",
3551 sc->sc_dev.dv_xname, idx, error);
3552 panic("wm_add_rxbuf");
3553 }
3554
3555 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3556 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3557
3558 WM_INIT_RXDESC(sc, idx);
3559
3560 return (0);
3561 }
3562
3563 /*
3564 * wm_set_ral:
3565 *
3566 * Set an entery in the receive address list.
3567 */
3568 static void
3569 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3570 {
3571 uint32_t ral_lo, ral_hi;
3572
3573 if (enaddr != NULL) {
3574 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3575 (enaddr[3] << 24);
3576 ral_hi = enaddr[4] | (enaddr[5] << 8);
3577 ral_hi |= RAL_AV;
3578 } else {
3579 ral_lo = 0;
3580 ral_hi = 0;
3581 }
3582
3583 if (sc->sc_type >= WM_T_82544) {
3584 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3585 ral_lo);
3586 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3587 ral_hi);
3588 } else {
3589 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3590 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3591 }
3592 }
3593
3594 /*
3595 * wm_mchash:
3596 *
3597 * Compute the hash of the multicast address for the 4096-bit
3598 * multicast filter.
3599 */
3600 static uint32_t
3601 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3602 {
3603 static const int lo_shift[4] = { 4, 3, 2, 0 };
3604 static const int hi_shift[4] = { 4, 5, 6, 8 };
3605 uint32_t hash;
3606
3607 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3608 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3609
3610 return (hash & 0xfff);
3611 }
3612
3613 /*
3614 * wm_set_filter:
3615 *
3616 * Set up the receive filter.
3617 */
3618 static void
3619 wm_set_filter(struct wm_softc *sc)
3620 {
3621 struct ethercom *ec = &sc->sc_ethercom;
3622 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3623 struct ether_multi *enm;
3624 struct ether_multistep step;
3625 bus_addr_t mta_reg;
3626 uint32_t hash, reg, bit;
3627 int i;
3628
3629 if (sc->sc_type >= WM_T_82544)
3630 mta_reg = WMREG_CORDOVA_MTA;
3631 else
3632 mta_reg = WMREG_MTA;
3633
3634 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3635
3636 if (ifp->if_flags & IFF_BROADCAST)
3637 sc->sc_rctl |= RCTL_BAM;
3638 if (ifp->if_flags & IFF_PROMISC) {
3639 sc->sc_rctl |= RCTL_UPE;
3640 goto allmulti;
3641 }
3642
3643 /*
3644 * Set the station address in the first RAL slot, and
3645 * clear the remaining slots.
3646 */
3647 wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3648 for (i = 1; i < WM_RAL_TABSIZE; i++)
3649 wm_set_ral(sc, NULL, i);
3650
3651 /* Clear out the multicast table. */
3652 for (i = 0; i < WM_MC_TABSIZE; i++)
3653 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3654
3655 ETHER_FIRST_MULTI(step, ec, enm);
3656 while (enm != NULL) {
3657 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3658 /*
3659 * We must listen to a range of multicast addresses.
3660 * For now, just accept all multicasts, rather than
3661 * trying to set only those filter bits needed to match
3662 * the range. (At this time, the only use of address
3663 * ranges is for IP multicast routing, for which the
3664 * range is big enough to require all bits set.)
3665 */
3666 goto allmulti;
3667 }
3668
3669 hash = wm_mchash(sc, enm->enm_addrlo);
3670
3671 reg = (hash >> 5) & 0x7f;
3672 bit = hash & 0x1f;
3673
3674 hash = CSR_READ(sc, mta_reg + (reg << 2));
3675 hash |= 1U << bit;
3676
3677 /* XXX Hardware bug?? */
3678 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3679 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3680 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3681 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3682 } else
3683 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3684
3685 ETHER_NEXT_MULTI(step, enm);
3686 }
3687
3688 ifp->if_flags &= ~IFF_ALLMULTI;
3689 goto setit;
3690
3691 allmulti:
3692 ifp->if_flags |= IFF_ALLMULTI;
3693 sc->sc_rctl |= RCTL_MPE;
3694
3695 setit:
3696 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3697 }
3698
3699 /*
3700 * wm_tbi_mediainit:
3701 *
3702 * Initialize media for use on 1000BASE-X devices.
3703 */
3704 static void
3705 wm_tbi_mediainit(struct wm_softc *sc)
3706 {
3707 const char *sep = "";
3708
3709 if (sc->sc_type < WM_T_82543)
3710 sc->sc_tipg = TIPG_WM_DFLT;
3711 else
3712 sc->sc_tipg = TIPG_LG_DFLT;
3713
3714 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3715 wm_tbi_mediastatus);
3716
3717 /*
3718 * SWD Pins:
3719 *
3720 * 0 = Link LED (output)
3721 * 1 = Loss Of Signal (input)
3722 */
3723 sc->sc_ctrl |= CTRL_SWDPIO(0);
3724 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3725
3726 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3727
3728 #define ADD(ss, mm, dd) \
3729 do { \
3730 aprint_normal("%s%s", sep, ss); \
3731 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
3732 sep = ", "; \
3733 } while (/*CONSTCOND*/0)
3734
3735 aprint_normal("%s: ", sc->sc_dev.dv_xname);
3736 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3737 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3738 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3739 aprint_normal("\n");
3740
3741 #undef ADD
3742
3743 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3744 }
3745
3746 /*
3747 * wm_tbi_mediastatus: [ifmedia interface function]
3748 *
3749 * Get the current interface media status on a 1000BASE-X device.
3750 */
3751 static void
3752 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3753 {
3754 struct wm_softc *sc = ifp->if_softc;
3755 uint32_t ctrl;
3756
3757 ifmr->ifm_status = IFM_AVALID;
3758 ifmr->ifm_active = IFM_ETHER;
3759
3760 if (sc->sc_tbi_linkup == 0) {
3761 ifmr->ifm_active |= IFM_NONE;
3762 return;
3763 }
3764
3765 ifmr->ifm_status |= IFM_ACTIVE;
3766 ifmr->ifm_active |= IFM_1000_SX;
3767 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3768 ifmr->ifm_active |= IFM_FDX;
3769 ctrl = CSR_READ(sc, WMREG_CTRL);
3770 if (ctrl & CTRL_RFCE)
3771 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3772 if (ctrl & CTRL_TFCE)
3773 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3774 }
3775
3776 /*
3777 * wm_tbi_mediachange: [ifmedia interface function]
3778 *
3779 * Set hardware to newly-selected media on a 1000BASE-X device.
3780 */
3781 static int
3782 wm_tbi_mediachange(struct ifnet *ifp)
3783 {
3784 struct wm_softc *sc = ifp->if_softc;
3785 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3786 uint32_t status;
3787 int i;
3788
3789 sc->sc_txcw = ife->ifm_data;
3790 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3791 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3792 sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3793 sc->sc_txcw |= TXCW_ANE;
3794
3795 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3796 delay(10000);
3797
3798 /* NOTE: CTRL will update TFCE and RFCE automatically. */
3799
3800 sc->sc_tbi_anstate = 0;
3801
3802 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3803 /* Have signal; wait for the link to come up. */
3804 for (i = 0; i < 50; i++) {
3805 delay(10000);
3806 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3807 break;
3808 }
3809
3810 status = CSR_READ(sc, WMREG_STATUS);
3811 if (status & STATUS_LU) {
3812 /* Link is up. */
3813 DPRINTF(WM_DEBUG_LINK,
3814 ("%s: LINK: set media -> link up %s\n",
3815 sc->sc_dev.dv_xname,
3816 (status & STATUS_FD) ? "FDX" : "HDX"));
3817 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3818 sc->sc_fcrtl &= ~FCRTL_XONE;
3819 if (status & STATUS_FD)
3820 sc->sc_tctl |=
3821 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3822 else
3823 sc->sc_tctl |=
3824 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3825 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3826 sc->sc_fcrtl |= FCRTL_XONE;
3827 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3828 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3829 WMREG_OLD_FCRTL : WMREG_FCRTL,
3830 sc->sc_fcrtl);
3831 sc->sc_tbi_linkup = 1;
3832 } else {
3833 /* Link is down. */
3834 DPRINTF(WM_DEBUG_LINK,
3835 ("%s: LINK: set media -> link down\n",
3836 sc->sc_dev.dv_xname));
3837 sc->sc_tbi_linkup = 0;
3838 }
3839 } else {
3840 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3841 sc->sc_dev.dv_xname));
3842 sc->sc_tbi_linkup = 0;
3843 }
3844
3845 wm_tbi_set_linkled(sc);
3846
3847 return (0);
3848 }
3849
3850 /*
3851 * wm_tbi_set_linkled:
3852 *
3853 * Update the link LED on 1000BASE-X devices.
3854 */
3855 static void
3856 wm_tbi_set_linkled(struct wm_softc *sc)
3857 {
3858
3859 if (sc->sc_tbi_linkup)
3860 sc->sc_ctrl |= CTRL_SWDPIN(0);
3861 else
3862 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3863
3864 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3865 }
3866
3867 /*
3868 * wm_tbi_check_link:
3869 *
3870 * Check the link on 1000BASE-X devices.
3871 */
3872 static void
3873 wm_tbi_check_link(struct wm_softc *sc)
3874 {
3875 uint32_t rxcw, ctrl, status;
3876
3877 if (sc->sc_tbi_anstate == 0)
3878 return;
3879 else if (sc->sc_tbi_anstate > 1) {
3880 DPRINTF(WM_DEBUG_LINK,
3881 ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3882 sc->sc_tbi_anstate));
3883 sc->sc_tbi_anstate--;
3884 return;
3885 }
3886
3887 sc->sc_tbi_anstate = 0;
3888
3889 rxcw = CSR_READ(sc, WMREG_RXCW);
3890 ctrl = CSR_READ(sc, WMREG_CTRL);
3891 status = CSR_READ(sc, WMREG_STATUS);
3892
3893 if ((status & STATUS_LU) == 0) {
3894 DPRINTF(WM_DEBUG_LINK,
3895 ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3896 sc->sc_tbi_linkup = 0;
3897 } else {
3898 DPRINTF(WM_DEBUG_LINK,
3899 ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3900 (status & STATUS_FD) ? "FDX" : "HDX"));
3901 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3902 sc->sc_fcrtl &= ~FCRTL_XONE;
3903 if (status & STATUS_FD)
3904 sc->sc_tctl |=
3905 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3906 else
3907 sc->sc_tctl |=
3908 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3909 if (ctrl & CTRL_TFCE)
3910 sc->sc_fcrtl |= FCRTL_XONE;
3911 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3912 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3913 WMREG_OLD_FCRTL : WMREG_FCRTL,
3914 sc->sc_fcrtl);
3915 sc->sc_tbi_linkup = 1;
3916 }
3917
3918 wm_tbi_set_linkled(sc);
3919 }
3920
3921 /*
3922 * wm_gmii_reset:
3923 *
3924 * Reset the PHY.
3925 */
3926 static void
3927 wm_gmii_reset(struct wm_softc *sc)
3928 {
3929 uint32_t reg;
3930 int func = 0; /* XXX gcc */
3931
3932 if (sc->sc_type >= WM_T_80003) {
3933 func = (CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1;
3934 if (wm_get_swfw_semaphore(sc,
3935 func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
3936 return;
3937 }
3938 if (sc->sc_type >= WM_T_82544) {
3939 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3940 delay(20000);
3941
3942 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3943 delay(20000);
3944 } else {
3945 /* The PHY reset pin is active-low. */
3946 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3947 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3948 CTRL_EXT_SWDPIN(4));
3949 reg |= CTRL_EXT_SWDPIO(4);
3950
3951 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3952 delay(10);
3953
3954 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3955 delay(10);
3956
3957 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3958 delay(10);
3959 #if 0
3960 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3961 #endif
3962 }
3963 if (sc->sc_type >= WM_T_80003)
3964 wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
3965 }
3966
3967 /*
3968 * wm_gmii_mediainit:
3969 *
3970 * Initialize media for use on 1000BASE-T devices.
3971 */
3972 static void
3973 wm_gmii_mediainit(struct wm_softc *sc)
3974 {
3975 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3976
3977 /* We have MII. */
3978 sc->sc_flags |= WM_F_HAS_MII;
3979
3980 if (sc->sc_type >= WM_T_80003)
3981 sc->sc_tipg = TIPG_1000T_80003_DFLT;
3982 else
3983 sc->sc_tipg = TIPG_1000T_DFLT;
3984
3985 /*
3986 * Let the chip set speed/duplex on its own based on
3987 * signals from the PHY.
3988 * XXXbouyer - I'm not sure this is right for the 80003,
3989 * the em driver only sets CTRL_SLU here - but it seems to work.
3990 */
3991 sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3992 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3993
3994 /* Initialize our media structures and probe the GMII. */
3995 sc->sc_mii.mii_ifp = ifp;
3996
3997 if (sc->sc_type >= WM_T_80003) {
3998 sc->sc_mii.mii_readreg = wm_gmii_i80003_readreg;
3999 sc->sc_mii.mii_writereg = wm_gmii_i80003_writereg;
4000 } else if (sc->sc_type >= WM_T_82544) {
4001 sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
4002 sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
4003 } else {
4004 sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
4005 sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
4006 }
4007 sc->sc_mii.mii_statchg = wm_gmii_statchg;
4008
4009 wm_gmii_reset(sc);
4010
4011 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
4012 wm_gmii_mediastatus);
4013
4014 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
4015 MII_OFFSET_ANY, MIIF_DOPAUSE);
4016 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
4017 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
4018 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
4019 } else
4020 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
4021 }
4022
4023 /*
4024 * wm_gmii_mediastatus: [ifmedia interface function]
4025 *
4026 * Get the current interface media status on a 1000BASE-T device.
4027 */
4028 static void
4029 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
4030 {
4031 struct wm_softc *sc = ifp->if_softc;
4032
4033 mii_pollstat(&sc->sc_mii);
4034 ifmr->ifm_status = sc->sc_mii.mii_media_status;
4035 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
4036 sc->sc_flowflags;
4037 }
4038
4039 /*
4040 * wm_gmii_mediachange: [ifmedia interface function]
4041 *
4042 * Set hardware to newly-selected media on a 1000BASE-T device.
4043 */
4044 static int
4045 wm_gmii_mediachange(struct ifnet *ifp)
4046 {
4047 struct wm_softc *sc = ifp->if_softc;
4048 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
4049
4050 if (ifp->if_flags & IFF_UP) {
4051 sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
4052 sc->sc_ctrl |= CTRL_SLU;
4053 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
4054 sc->sc_ctrl |= CTRL_ASDE;
4055 } else {
4056 sc->sc_ctrl &= ~CTRL_ASDE;
4057 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
4058 if (ife->ifm_media & IFM_FDX)
4059 sc->sc_ctrl |= CTRL_FD;
4060 switch(IFM_SUBTYPE(ife->ifm_media)) {
4061 case IFM_10_T:
4062 sc->sc_ctrl |= CTRL_SPEED_10;
4063 break;
4064 case IFM_100_TX:
4065 sc->sc_ctrl |= CTRL_SPEED_100;
4066 break;
4067 case IFM_1000_T:
4068 sc->sc_ctrl |= CTRL_SPEED_1000;
4069 break;
4070 default:
4071 panic("wm_gmii_mediachange: bad media 0x%x",
4072 ife->ifm_media);
4073 }
4074 }
4075 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4076 mii_mediachg(&sc->sc_mii);
4077 }
4078 return (0);
4079 }
4080
4081 #define MDI_IO CTRL_SWDPIN(2)
4082 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
4083 #define MDI_CLK CTRL_SWDPIN(3)
4084
4085 static void
4086 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
4087 {
4088 uint32_t i, v;
4089
4090 v = CSR_READ(sc, WMREG_CTRL);
4091 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
4092 v |= MDI_DIR | CTRL_SWDPIO(3);
4093
4094 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
4095 if (data & i)
4096 v |= MDI_IO;
4097 else
4098 v &= ~MDI_IO;
4099 CSR_WRITE(sc, WMREG_CTRL, v);
4100 delay(10);
4101 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
4102 delay(10);
4103 CSR_WRITE(sc, WMREG_CTRL, v);
4104 delay(10);
4105 }
4106 }
4107
4108 static uint32_t
4109 i82543_mii_recvbits(struct wm_softc *sc)
4110 {
4111 uint32_t v, i, data = 0;
4112
4113 v = CSR_READ(sc, WMREG_CTRL);
4114 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
4115 v |= CTRL_SWDPIO(3);
4116
4117 CSR_WRITE(sc, WMREG_CTRL, v);
4118 delay(10);
4119 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
4120 delay(10);
4121 CSR_WRITE(sc, WMREG_CTRL, v);
4122 delay(10);
4123
4124 for (i = 0; i < 16; i++) {
4125 data <<= 1;
4126 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
4127 delay(10);
4128 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
4129 data |= 1;
4130 CSR_WRITE(sc, WMREG_CTRL, v);
4131 delay(10);
4132 }
4133
4134 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
4135 delay(10);
4136 CSR_WRITE(sc, WMREG_CTRL, v);
4137 delay(10);
4138
4139 return (data);
4140 }
4141
4142 #undef MDI_IO
4143 #undef MDI_DIR
4144 #undef MDI_CLK
4145
4146 /*
4147 * wm_gmii_i82543_readreg: [mii interface function]
4148 *
4149 * Read a PHY register on the GMII (i82543 version).
4150 */
4151 static int
4152 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
4153 {
4154 struct wm_softc *sc = (void *) self;
4155 int rv;
4156
4157 i82543_mii_sendbits(sc, 0xffffffffU, 32);
4158 i82543_mii_sendbits(sc, reg | (phy << 5) |
4159 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
4160 rv = i82543_mii_recvbits(sc) & 0xffff;
4161
4162 DPRINTF(WM_DEBUG_GMII,
4163 ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
4164 sc->sc_dev.dv_xname, phy, reg, rv));
4165
4166 return (rv);
4167 }
4168
4169 /*
4170 * wm_gmii_i82543_writereg: [mii interface function]
4171 *
4172 * Write a PHY register on the GMII (i82543 version).
4173 */
4174 static void
4175 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
4176 {
4177 struct wm_softc *sc = (void *) self;
4178
4179 i82543_mii_sendbits(sc, 0xffffffffU, 32);
4180 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
4181 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
4182 (MII_COMMAND_START << 30), 32);
4183 }
4184
4185 /*
4186 * wm_gmii_i82544_readreg: [mii interface function]
4187 *
4188 * Read a PHY register on the GMII.
4189 */
4190 static int
4191 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
4192 {
4193 struct wm_softc *sc = (void *) self;
4194 uint32_t mdic = 0;
4195 int i, rv;
4196
4197 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
4198 MDIC_REGADD(reg));
4199
4200 for (i = 0; i < 320; i++) {
4201 mdic = CSR_READ(sc, WMREG_MDIC);
4202 if (mdic & MDIC_READY)
4203 break;
4204 delay(10);
4205 }
4206
4207 if ((mdic & MDIC_READY) == 0) {
4208 log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
4209 sc->sc_dev.dv_xname, phy, reg);
4210 rv = 0;
4211 } else if (mdic & MDIC_E) {
4212 #if 0 /* This is normal if no PHY is present. */
4213 log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
4214 sc->sc_dev.dv_xname, phy, reg);
4215 #endif
4216 rv = 0;
4217 } else {
4218 rv = MDIC_DATA(mdic);
4219 if (rv == 0xffff)
4220 rv = 0;
4221 }
4222
4223 return (rv);
4224 }
4225
4226 /*
4227 * wm_gmii_i82544_writereg: [mii interface function]
4228 *
4229 * Write a PHY register on the GMII.
4230 */
4231 static void
4232 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
4233 {
4234 struct wm_softc *sc = (void *) self;
4235 uint32_t mdic = 0;
4236 int i;
4237
4238 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
4239 MDIC_REGADD(reg) | MDIC_DATA(val));
4240
4241 for (i = 0; i < 320; i++) {
4242 mdic = CSR_READ(sc, WMREG_MDIC);
4243 if (mdic & MDIC_READY)
4244 break;
4245 delay(10);
4246 }
4247
4248 if ((mdic & MDIC_READY) == 0)
4249 log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
4250 sc->sc_dev.dv_xname, phy, reg);
4251 else if (mdic & MDIC_E)
4252 log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
4253 sc->sc_dev.dv_xname, phy, reg);
4254 }
4255
4256 /*
4257 * wm_gmii_i80003_readreg: [mii interface function]
4258 *
4259 * Read a PHY register on the kumeran
4260 * This could be handled by the PHY layer if we didn't have to lock the
4261 * ressource ...
4262 */
4263 static int
4264 wm_gmii_i80003_readreg(struct device *self, int phy, int reg)
4265 {
4266 struct wm_softc *sc = (void *) self;
4267 int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4268 int rv;
4269
4270 if (phy != 1) /* only one PHY on kumeran bus */
4271 return 0;
4272
4273 if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
4274 return 0;
4275
4276 if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
4277 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
4278 reg >> GG82563_PAGE_SHIFT);
4279 } else {
4280 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
4281 reg >> GG82563_PAGE_SHIFT);
4282 }
4283
4284 rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
4285 wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4286 return (rv);
4287 }
4288
4289 /*
4290 * wm_gmii_i80003_writereg: [mii interface function]
4291 *
4292 * Write a PHY register on the kumeran.
4293 * This could be handled by the PHY layer if we didn't have to lock the
4294 * ressource ...
4295 */
4296 static void
4297 wm_gmii_i80003_writereg(struct device *self, int phy, int reg, int val)
4298 {
4299 struct wm_softc *sc = (void *) self;
4300 int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4301
4302 if (phy != 1) /* only one PHY on kumeran bus */
4303 return;
4304
4305 if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
4306 return;
4307
4308 if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
4309 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
4310 reg >> GG82563_PAGE_SHIFT);
4311 } else {
4312 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
4313 reg >> GG82563_PAGE_SHIFT);
4314 }
4315
4316 wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
4317 wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4318 }
4319
4320 /*
4321 * wm_gmii_statchg: [mii interface function]
4322 *
4323 * Callback from MII layer when media changes.
4324 */
4325 static void
4326 wm_gmii_statchg(struct device *self)
4327 {
4328 struct wm_softc *sc = (void *) self;
4329 struct mii_data *mii = &sc->sc_mii;
4330
4331 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
4332 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
4333 sc->sc_fcrtl &= ~FCRTL_XONE;
4334
4335 /*
4336 * Get flow control negotiation result.
4337 */
4338 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
4339 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
4340 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
4341 mii->mii_media_active &= ~IFM_ETH_FMASK;
4342 }
4343
4344 if (sc->sc_flowflags & IFM_FLOW) {
4345 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
4346 sc->sc_ctrl |= CTRL_TFCE;
4347 sc->sc_fcrtl |= FCRTL_XONE;
4348 }
4349 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
4350 sc->sc_ctrl |= CTRL_RFCE;
4351 }
4352
4353 if (sc->sc_mii.mii_media_active & IFM_FDX) {
4354 DPRINTF(WM_DEBUG_LINK,
4355 ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
4356 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
4357 } else {
4358 DPRINTF(WM_DEBUG_LINK,
4359 ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
4360 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
4361 }
4362
4363 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4364 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
4365 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
4366 : WMREG_FCRTL, sc->sc_fcrtl);
4367 if (sc->sc_type >= WM_T_80003) {
4368 switch(IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
4369 case IFM_1000_T:
4370 wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
4371 KUMCTRLSTA_HD_CTRL_1000_DEFAULT);
4372 sc->sc_tipg = TIPG_1000T_80003_DFLT;
4373 break;
4374 default:
4375 wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
4376 KUMCTRLSTA_HD_CTRL_10_100_DEFAULT);
4377 sc->sc_tipg = TIPG_10_100_80003_DFLT;
4378 break;
4379 }
4380 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
4381 }
4382 }
4383
4384 /*
4385 * wm_kmrn_i80003_readreg:
4386 *
4387 * Read a kumeran register
4388 */
4389 static int
4390 wm_kmrn_i80003_readreg(struct wm_softc *sc, int reg)
4391 {
4392 int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4393 int rv;
4394
4395 if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
4396 return 0;
4397
4398 CSR_WRITE(sc, WMREG_KUMCTRLSTA,
4399 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
4400 KUMCTRLSTA_REN);
4401 delay(2);
4402
4403 rv = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK;
4404 wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4405 return (rv);
4406 }
4407
4408 /*
4409 * wm_kmrn_i80003_writereg:
4410 *
4411 * Write a kumeran register
4412 */
4413 static void
4414 wm_kmrn_i80003_writereg(struct wm_softc *sc, int reg, int val)
4415 {
4416 int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4417
4418 if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
4419 return;
4420
4421 CSR_WRITE(sc, WMREG_KUMCTRLSTA,
4422 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
4423 (val & KUMCTRLSTA_MASK));
4424 wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4425 }
4426
4427 static int
4428 wm_is_onboard_nvm_eeprom(struct wm_softc *sc)
4429 {
4430 uint32_t eecd = 0;
4431
4432 if (sc->sc_type == WM_T_82573) {
4433 eecd = CSR_READ(sc, WMREG_EECD);
4434
4435 /* Isolate bits 15 & 16 */
4436 eecd = ((eecd >> 15) & 0x03);
4437
4438 /* If both bits are set, device is Flash type */
4439 if (eecd == 0x03) {
4440 return 0;
4441 }
4442 }
4443 return 1;
4444 }
4445
4446 static int
4447 wm_get_swsm_semaphore(struct wm_softc *sc)
4448 {
4449 int32_t timeout;
4450 uint32_t swsm;
4451
4452 /* Get the FW semaphore. */
4453 timeout = 1000 + 1; /* XXX */
4454 while (timeout) {
4455 swsm = CSR_READ(sc, WMREG_SWSM);
4456 swsm |= SWSM_SWESMBI;
4457 CSR_WRITE(sc, WMREG_SWSM, swsm);
4458 /* if we managed to set the bit we got the semaphore. */
4459 swsm = CSR_READ(sc, WMREG_SWSM);
4460 if (swsm & SWSM_SWESMBI)
4461 break;
4462
4463 delay(50);
4464 timeout--;
4465 }
4466
4467 if (timeout == 0) {
4468 aprint_error("%s: could not acquire EEPROM GNT\n",
4469 sc->sc_dev.dv_xname);
4470 /* Release semaphores */
4471 wm_put_swsm_semaphore(sc);
4472 return 1;
4473 }
4474 return 0;
4475 }
4476
4477 static void
4478 wm_put_swsm_semaphore(struct wm_softc *sc)
4479 {
4480 uint32_t swsm;
4481
4482 swsm = CSR_READ(sc, WMREG_SWSM);
4483 swsm &= ~(SWSM_SWESMBI);
4484 CSR_WRITE(sc, WMREG_SWSM, swsm);
4485 }
4486
4487 static int
4488 wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask) {
4489 uint32_t swfw_sync;
4490 uint32_t swmask = mask << SWFW_SOFT_SHIFT;
4491 uint32_t fwmask = mask << SWFW_FIRM_SHIFT;
4492 int timeout = 200;
4493
4494 for(timeout = 0; timeout < 200; timeout++) {
4495 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
4496 if (wm_get_swsm_semaphore(sc))
4497 return 1;
4498 }
4499 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
4500 if ((swfw_sync & (swmask | fwmask)) == 0) {
4501 swfw_sync |= swmask;
4502 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
4503 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
4504 wm_put_swsm_semaphore(sc);
4505 return 0;
4506 }
4507 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
4508 wm_put_swsm_semaphore(sc);
4509 delay(5000);
4510 }
4511 printf("%s: failed to get swfw semaphore mask 0x%x swfw 0x%x\n",
4512 sc->sc_dev.dv_xname, mask, swfw_sync);
4513 return 1;
4514 }
4515
4516 static void
4517 wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask) {
4518 uint32_t swfw_sync;
4519
4520 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
4521 while (wm_get_swsm_semaphore(sc) != 0)
4522 continue;
4523 }
4524 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
4525 swfw_sync &= ~(mask << SWFW_SOFT_SHIFT);
4526 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
4527 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
4528 wm_put_swsm_semaphore(sc);
4529 }
4530