Home | History | Annotate | Line # | Download | only in pci
if_wm.c revision 1.138
      1 /*	$NetBSD: if_wm.c,v 1.138 2007/03/27 13:13:49 salo Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
     40  *
     41  * TODO (in order of importance):
     42  *
     43  *	- Rework how parameters are loaded from the EEPROM.
     44  *	- Figure out what to do with the i82545GM and i82546GB
     45  *	  SERDES controllers.
     46  *	- Fix hw VLAN assist.
     47  */
     48 
     49 #include <sys/cdefs.h>
     50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.138 2007/03/27 13:13:49 salo Exp $");
     51 
     52 #include "bpfilter.h"
     53 #include "rnd.h"
     54 
     55 #include <sys/param.h>
     56 #include <sys/systm.h>
     57 #include <sys/callout.h>
     58 #include <sys/mbuf.h>
     59 #include <sys/malloc.h>
     60 #include <sys/kernel.h>
     61 #include <sys/socket.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/errno.h>
     64 #include <sys/device.h>
     65 #include <sys/queue.h>
     66 #include <sys/syslog.h>
     67 
     68 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     69 
     70 #if NRND > 0
     71 #include <sys/rnd.h>
     72 #endif
     73 
     74 #include <net/if.h>
     75 #include <net/if_dl.h>
     76 #include <net/if_media.h>
     77 #include <net/if_ether.h>
     78 
     79 #if NBPFILTER > 0
     80 #include <net/bpf.h>
     81 #endif
     82 
     83 #include <netinet/in.h>			/* XXX for struct ip */
     84 #include <netinet/in_systm.h>		/* XXX for struct ip */
     85 #include <netinet/ip.h>			/* XXX for struct ip */
     86 #include <netinet/ip6.h>		/* XXX for struct ip6_hdr */
     87 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
     88 
     89 #include <machine/bus.h>
     90 #include <machine/intr.h>
     91 #include <machine/endian.h>
     92 
     93 #include <dev/mii/mii.h>
     94 #include <dev/mii/miivar.h>
     95 #include <dev/mii/mii_bitbang.h>
     96 #include <dev/mii/ikphyreg.h>
     97 
     98 #include <dev/pci/pcireg.h>
     99 #include <dev/pci/pcivar.h>
    100 #include <dev/pci/pcidevs.h>
    101 
    102 #include <dev/pci/if_wmreg.h>
    103 
    104 #ifdef WM_DEBUG
    105 #define	WM_DEBUG_LINK		0x01
    106 #define	WM_DEBUG_TX		0x02
    107 #define	WM_DEBUG_RX		0x04
    108 #define	WM_DEBUG_GMII		0x08
    109 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK|WM_DEBUG_GMII;
    110 
    111 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
    112 #else
    113 #define	DPRINTF(x, y)	/* nothing */
    114 #endif /* WM_DEBUG */
    115 
    116 /*
    117  * Transmit descriptor list size.  Due to errata, we can only have
    118  * 256 hardware descriptors in the ring on < 82544, but we use 4096
    119  * on >= 82544.  We tell the upper layers that they can queue a lot
    120  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
    121  * of them at a time.
    122  *
    123  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
    124  * chains containing many small mbufs have been observed in zero-copy
    125  * situations with jumbo frames.
    126  */
    127 #define	WM_NTXSEGS		256
    128 #define	WM_IFQUEUELEN		256
    129 #define	WM_TXQUEUELEN_MAX	64
    130 #define	WM_TXQUEUELEN_MAX_82547	16
    131 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
    132 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
    133 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
    134 #define	WM_NTXDESC_82542	256
    135 #define	WM_NTXDESC_82544	4096
    136 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
    137 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
    138 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
    139 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
    140 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
    141 
    142 #define	WM_MAXTXDMA		round_page(IP_MAXPACKET) /* for TSO */
    143 
    144 /*
    145  * Receive descriptor list size.  We have one Rx buffer for normal
    146  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
    147  * packet.  We allocate 256 receive descriptors, each with a 2k
    148  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
    149  */
    150 #define	WM_NRXDESC		256
    151 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
    152 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
    153 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
    154 
    155 /*
    156  * Control structures are DMA'd to the i82542 chip.  We allocate them in
    157  * a single clump that maps to a single DMA segment to make several things
    158  * easier.
    159  */
    160 struct wm_control_data_82544 {
    161 	/*
    162 	 * The receive descriptors.
    163 	 */
    164 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    165 
    166 	/*
    167 	 * The transmit descriptors.  Put these at the end, because
    168 	 * we might use a smaller number of them.
    169 	 */
    170 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
    171 };
    172 
    173 struct wm_control_data_82542 {
    174 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    175 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
    176 };
    177 
    178 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
    179 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
    180 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
    181 
    182 /*
    183  * Software state for transmit jobs.
    184  */
    185 struct wm_txsoft {
    186 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    187 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    188 	int txs_firstdesc;		/* first descriptor in packet */
    189 	int txs_lastdesc;		/* last descriptor in packet */
    190 	int txs_ndesc;			/* # of descriptors used */
    191 };
    192 
    193 /*
    194  * Software state for receive buffers.  Each descriptor gets a
    195  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    196  * more than one buffer, we chain them together.
    197  */
    198 struct wm_rxsoft {
    199 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    200 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    201 };
    202 
    203 typedef enum {
    204 	WM_T_unknown		= 0,
    205 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
    206 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
    207 	WM_T_82543,			/* i82543 */
    208 	WM_T_82544,			/* i82544 */
    209 	WM_T_82540,			/* i82540 */
    210 	WM_T_82545,			/* i82545 */
    211 	WM_T_82545_3,			/* i82545 3.0+ */
    212 	WM_T_82546,			/* i82546 */
    213 	WM_T_82546_3,			/* i82546 3.0+ */
    214 	WM_T_82541,			/* i82541 */
    215 	WM_T_82541_2,			/* i82541 2.0+ */
    216 	WM_T_82547,			/* i82547 */
    217 	WM_T_82547_2,			/* i82547 2.0+ */
    218 	WM_T_82571,			/* i82571 */
    219 	WM_T_82572,			/* i82572 */
    220 	WM_T_82573,			/* i82573 */
    221 	WM_T_80003,			/* i80003 */
    222 } wm_chip_type;
    223 
    224 /*
    225  * Software state per device.
    226  */
    227 struct wm_softc {
    228 	struct device sc_dev;		/* generic device information */
    229 	bus_space_tag_t sc_st;		/* bus space tag */
    230 	bus_space_handle_t sc_sh;	/* bus space handle */
    231 	bus_space_tag_t sc_iot;		/* I/O space tag */
    232 	bus_space_handle_t sc_ioh;	/* I/O space handle */
    233 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    234 	struct ethercom sc_ethercom;	/* ethernet common data */
    235 	void *sc_sdhook;		/* shutdown hook */
    236 	void *sc_powerhook;		/* power hook */
    237 	pci_chipset_tag_t sc_pc;
    238 	pcitag_t sc_pcitag;
    239 	struct pci_conf_state sc_pciconf;
    240 
    241 	wm_chip_type sc_type;		/* chip type */
    242 	int sc_flags;			/* flags; see below */
    243 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    244 	int sc_pcix_offset;		/* PCIX capability register offset */
    245 	int sc_flowflags;		/* 802.3x flow control flags */
    246 
    247 	void *sc_ih;			/* interrupt cookie */
    248 
    249 	int sc_ee_addrbits;		/* EEPROM address bits */
    250 
    251 	struct mii_data sc_mii;		/* MII/media information */
    252 
    253 	struct callout sc_tick_ch;	/* tick callout */
    254 
    255 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    256 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    257 
    258 	int		sc_align_tweak;
    259 
    260 	/*
    261 	 * Software state for the transmit and receive descriptors.
    262 	 */
    263 	int			sc_txnum;	/* must be a power of two */
    264 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
    265 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
    266 
    267 	/*
    268 	 * Control data structures.
    269 	 */
    270 	int			sc_ntxdesc;	/* must be a power of two */
    271 	struct wm_control_data_82544 *sc_control_data;
    272 #define	sc_txdescs	sc_control_data->wcd_txdescs
    273 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    274 
    275 #ifdef WM_EVENT_COUNTERS
    276 	/* Event counters. */
    277 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    278 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    279 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
    280 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    281 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    282 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    283 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    284 
    285 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    286 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    287 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    288 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    289 	struct evcnt sc_ev_txtusum6;	/* TCP/UDP v6 cksums comp. out-bound */
    290 	struct evcnt sc_ev_txtso;	/* TCP seg offload out-bound (IPv4) */
    291 	struct evcnt sc_ev_txtso6;	/* TCP seg offload out-bound (IPv6) */
    292 	struct evcnt sc_ev_txtsopain;	/* painful header manip. for TSO */
    293 
    294 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
    295 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    296 
    297 	struct evcnt sc_ev_tu;		/* Tx underrun */
    298 
    299 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
    300 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
    301 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
    302 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
    303 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
    304 #endif /* WM_EVENT_COUNTERS */
    305 
    306 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
    307 
    308 	int	sc_txfree;		/* number of free Tx descriptors */
    309 	int	sc_txnext;		/* next ready Tx descriptor */
    310 
    311 	int	sc_txsfree;		/* number of free Tx jobs */
    312 	int	sc_txsnext;		/* next free Tx job */
    313 	int	sc_txsdirty;		/* dirty Tx jobs */
    314 
    315 	/* These 5 variables are used only on the 82547. */
    316 	int	sc_txfifo_size;		/* Tx FIFO size */
    317 	int	sc_txfifo_head;		/* current head of FIFO */
    318 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
    319 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
    320 	struct callout sc_txfifo_ch;	/* Tx FIFO stall work-around timer */
    321 
    322 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
    323 
    324 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    325 	int	sc_rxdiscard;
    326 	int	sc_rxlen;
    327 	struct mbuf *sc_rxhead;
    328 	struct mbuf *sc_rxtail;
    329 	struct mbuf **sc_rxtailp;
    330 
    331 	uint32_t sc_ctrl;		/* prototype CTRL register */
    332 #if 0
    333 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
    334 #endif
    335 	uint32_t sc_icr;		/* prototype interrupt bits */
    336 	uint32_t sc_itr;		/* prototype intr throttling reg */
    337 	uint32_t sc_tctl;		/* prototype TCTL register */
    338 	uint32_t sc_rctl;		/* prototype RCTL register */
    339 	uint32_t sc_txcw;		/* prototype TXCW register */
    340 	uint32_t sc_tipg;		/* prototype TIPG register */
    341 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
    342 	uint32_t sc_pba;		/* prototype PBA register */
    343 
    344 	int sc_tbi_linkup;		/* TBI link status */
    345 	int sc_tbi_anstate;		/* autonegotiation state */
    346 
    347 	int sc_mchash_type;		/* multicast filter offset */
    348 
    349 #if NRND > 0
    350 	rndsource_element_t rnd_source;	/* random source */
    351 #endif
    352 };
    353 
    354 #define	WM_RXCHAIN_RESET(sc)						\
    355 do {									\
    356 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    357 	*(sc)->sc_rxtailp = NULL;					\
    358 	(sc)->sc_rxlen = 0;						\
    359 } while (/*CONSTCOND*/0)
    360 
    361 #define	WM_RXCHAIN_LINK(sc, m)						\
    362 do {									\
    363 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    364 	(sc)->sc_rxtailp = &(m)->m_next;				\
    365 } while (/*CONSTCOND*/0)
    366 
    367 /* sc_flags */
    368 #define	WM_F_HAS_MII		0x0001	/* has MII */
    369 #define	WM_F_EEPROM_HANDSHAKE	0x0002	/* requires EEPROM handshake */
    370 #define	WM_F_EEPROM_SEMAPHORE	0x0004	/* EEPROM with semaphore */
    371 #define	WM_F_EEPROM_EERDEEWR	0x0008	/* EEPROM access via EERD/EEWR */
    372 #define	WM_F_EEPROM_SPI		0x0010	/* EEPROM is SPI */
    373 #define	WM_F_EEPROM_FLASH	0x0020	/* EEPROM is FLASH */
    374 #define	WM_F_EEPROM_INVALID	0x0040	/* EEPROM not present (bad checksum) */
    375 #define	WM_F_IOH_VALID		0x0080	/* I/O handle is valid */
    376 #define	WM_F_BUS64		0x0100	/* bus is 64-bit */
    377 #define	WM_F_PCIX		0x0200	/* bus is PCI-X */
    378 #define	WM_F_CSA		0x0400	/* bus is CSA */
    379 #define	WM_F_PCIE		0x0800	/* bus is PCI-Express */
    380 #define WM_F_SWFW_SYNC		0x1000  /* Software-Firmware synchronisation */
    381 
    382 #ifdef WM_EVENT_COUNTERS
    383 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
    384 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
    385 #else
    386 #define	WM_EVCNT_INCR(ev)	/* nothing */
    387 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
    388 #endif
    389 
    390 #define	CSR_READ(sc, reg)						\
    391 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    392 #define	CSR_WRITE(sc, reg, val)						\
    393 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    394 #define	CSR_WRITE_FLUSH(sc)						\
    395 	(void) CSR_READ((sc), WMREG_STATUS)
    396 
    397 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
    398 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
    399 
    400 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
    401 #define	WM_CDTXADDR_HI(sc, x)						\
    402 	(sizeof(bus_addr_t) == 8 ?					\
    403 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
    404 
    405 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
    406 #define	WM_CDRXADDR_HI(sc, x)						\
    407 	(sizeof(bus_addr_t) == 8 ?					\
    408 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
    409 
    410 #define	WM_CDTXSYNC(sc, x, n, ops)					\
    411 do {									\
    412 	int __x, __n;							\
    413 									\
    414 	__x = (x);							\
    415 	__n = (n);							\
    416 									\
    417 	/* If it will wrap around, sync to the end of the ring. */	\
    418 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
    419 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    420 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
    421 		    (WM_NTXDESC(sc) - __x), (ops));			\
    422 		__n -= (WM_NTXDESC(sc) - __x);				\
    423 		__x = 0;						\
    424 	}								\
    425 									\
    426 	/* Now sync whatever is left. */				\
    427 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    428 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
    429 } while (/*CONSTCOND*/0)
    430 
    431 #define	WM_CDRXSYNC(sc, x, ops)						\
    432 do {									\
    433 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    434 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
    435 } while (/*CONSTCOND*/0)
    436 
    437 #define	WM_INIT_RXDESC(sc, x)						\
    438 do {									\
    439 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    440 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
    441 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    442 									\
    443 	/*								\
    444 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    445 	 * so that the payload after the Ethernet header is aligned	\
    446 	 * to a 4-byte boundary.					\
    447 	 *								\
    448 	 * XXX BRAINDAMAGE ALERT!					\
    449 	 * The stupid chip uses the same size for every buffer, which	\
    450 	 * is set in the Receive Control register.  We are using the 2K	\
    451 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    452 	 * reason, we can't "scoot" packets longer than the standard	\
    453 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    454 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    455 	 * the upper layer copy the headers.				\
    456 	 */								\
    457 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    458 									\
    459 	wm_set_dma_addr(&__rxd->wrx_addr,				\
    460 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
    461 	__rxd->wrx_len = 0;						\
    462 	__rxd->wrx_cksum = 0;						\
    463 	__rxd->wrx_status = 0;						\
    464 	__rxd->wrx_errors = 0;						\
    465 	__rxd->wrx_special = 0;						\
    466 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    467 									\
    468 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
    469 } while (/*CONSTCOND*/0)
    470 
    471 static void	wm_start(struct ifnet *);
    472 static void	wm_watchdog(struct ifnet *);
    473 static int	wm_ioctl(struct ifnet *, u_long, void *);
    474 static int	wm_init(struct ifnet *);
    475 static void	wm_stop(struct ifnet *, int);
    476 
    477 static void	wm_shutdown(void *);
    478 static void	wm_powerhook(int, void *);
    479 
    480 static void	wm_reset(struct wm_softc *);
    481 static void	wm_rxdrain(struct wm_softc *);
    482 static int	wm_add_rxbuf(struct wm_softc *, int);
    483 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
    484 static int	wm_read_eeprom_eerd(struct wm_softc *, int, int, u_int16_t *);
    485 static int	wm_validate_eeprom_checksum(struct wm_softc *);
    486 static void	wm_tick(void *);
    487 
    488 static void	wm_set_filter(struct wm_softc *);
    489 
    490 static int	wm_intr(void *);
    491 static void	wm_txintr(struct wm_softc *);
    492 static void	wm_rxintr(struct wm_softc *);
    493 static void	wm_linkintr(struct wm_softc *, uint32_t);
    494 
    495 static void	wm_tbi_mediainit(struct wm_softc *);
    496 static int	wm_tbi_mediachange(struct ifnet *);
    497 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
    498 
    499 static void	wm_tbi_set_linkled(struct wm_softc *);
    500 static void	wm_tbi_check_link(struct wm_softc *);
    501 
    502 static void	wm_gmii_reset(struct wm_softc *);
    503 
    504 static int	wm_gmii_i82543_readreg(struct device *, int, int);
    505 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
    506 
    507 static int	wm_gmii_i82544_readreg(struct device *, int, int);
    508 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
    509 
    510 static int	wm_gmii_i80003_readreg(struct device *, int, int);
    511 static void	wm_gmii_i80003_writereg(struct device *, int, int, int);
    512 
    513 static void	wm_gmii_statchg(struct device *);
    514 
    515 static void	wm_gmii_mediainit(struct wm_softc *);
    516 static int	wm_gmii_mediachange(struct ifnet *);
    517 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
    518 
    519 static int	wm_kmrn_i80003_readreg(struct wm_softc *, int);
    520 static void	wm_kmrn_i80003_writereg(struct wm_softc *, int, int);
    521 
    522 static int	wm_match(struct device *, struct cfdata *, void *);
    523 static void	wm_attach(struct device *, struct device *, void *);
    524 static int	wm_is_onboard_nvm_eeprom(struct wm_softc *);
    525 static int	wm_get_swsm_semaphore(struct wm_softc *);
    526 static void	wm_put_swsm_semaphore(struct wm_softc *);
    527 static int	wm_poll_eerd_eewr_done(struct wm_softc *, int);
    528 static int	wm_get_swfw_semaphore(struct wm_softc *, uint16_t);
    529 static void	wm_put_swfw_semaphore(struct wm_softc *, uint16_t);
    530 
    531 CFATTACH_DECL(wm, sizeof(struct wm_softc),
    532     wm_match, wm_attach, NULL, NULL);
    533 
    534 static void	wm_82547_txfifo_stall(void *);
    535 
    536 /*
    537  * Devices supported by this driver.
    538  */
    539 static const struct wm_product {
    540 	pci_vendor_id_t		wmp_vendor;
    541 	pci_product_id_t	wmp_product;
    542 	const char		*wmp_name;
    543 	wm_chip_type		wmp_type;
    544 	int			wmp_flags;
    545 #define	WMP_F_1000X		0x01
    546 #define	WMP_F_1000T		0x02
    547 } wm_products[] = {
    548 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
    549 	  "Intel i82542 1000BASE-X Ethernet",
    550 	  WM_T_82542_2_1,	WMP_F_1000X },
    551 
    552 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
    553 	  "Intel i82543GC 1000BASE-X Ethernet",
    554 	  WM_T_82543,		WMP_F_1000X },
    555 
    556 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
    557 	  "Intel i82543GC 1000BASE-T Ethernet",
    558 	  WM_T_82543,		WMP_F_1000T },
    559 
    560 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
    561 	  "Intel i82544EI 1000BASE-T Ethernet",
    562 	  WM_T_82544,		WMP_F_1000T },
    563 
    564 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
    565 	  "Intel i82544EI 1000BASE-X Ethernet",
    566 	  WM_T_82544,		WMP_F_1000X },
    567 
    568 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
    569 	  "Intel i82544GC 1000BASE-T Ethernet",
    570 	  WM_T_82544,		WMP_F_1000T },
    571 
    572 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
    573 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
    574 	  WM_T_82544,		WMP_F_1000T },
    575 
    576 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
    577 	  "Intel i82540EM 1000BASE-T Ethernet",
    578 	  WM_T_82540,		WMP_F_1000T },
    579 
    580 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
    581 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
    582 	  WM_T_82540,		WMP_F_1000T },
    583 
    584 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
    585 	  "Intel i82540EP 1000BASE-T Ethernet",
    586 	  WM_T_82540,		WMP_F_1000T },
    587 
    588 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
    589 	  "Intel i82540EP 1000BASE-T Ethernet",
    590 	  WM_T_82540,		WMP_F_1000T },
    591 
    592 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
    593 	  "Intel i82540EP 1000BASE-T Ethernet",
    594 	  WM_T_82540,		WMP_F_1000T },
    595 
    596 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
    597 	  "Intel i82545EM 1000BASE-T Ethernet",
    598 	  WM_T_82545,		WMP_F_1000T },
    599 
    600 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
    601 	  "Intel i82545GM 1000BASE-T Ethernet",
    602 	  WM_T_82545_3,		WMP_F_1000T },
    603 
    604 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
    605 	  "Intel i82545GM 1000BASE-X Ethernet",
    606 	  WM_T_82545_3,		WMP_F_1000X },
    607 #if 0
    608 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
    609 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
    610 	  WM_T_82545_3,		WMP_F_SERDES },
    611 #endif
    612 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
    613 	  "Intel i82546EB 1000BASE-T Ethernet",
    614 	  WM_T_82546,		WMP_F_1000T },
    615 
    616 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
    617 	  "Intel i82546EB 1000BASE-T Ethernet",
    618 	  WM_T_82546,		WMP_F_1000T },
    619 
    620 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
    621 	  "Intel i82545EM 1000BASE-X Ethernet",
    622 	  WM_T_82545,		WMP_F_1000X },
    623 
    624 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
    625 	  "Intel i82546EB 1000BASE-X Ethernet",
    626 	  WM_T_82546,		WMP_F_1000X },
    627 
    628 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
    629 	  "Intel i82546GB 1000BASE-T Ethernet",
    630 	  WM_T_82546_3,		WMP_F_1000T },
    631 
    632 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
    633 	  "Intel i82546GB 1000BASE-X Ethernet",
    634 	  WM_T_82546_3,		WMP_F_1000X },
    635 #if 0
    636 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
    637 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
    638 	  WM_T_82546_3,		WMP_F_SERDES },
    639 #endif
    640 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER,
    641 	  "i82546GB quad-port Gigabit Ethernet",
    642 	  WM_T_82546_3,		WMP_F_1000T },
    643 
    644 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3,
    645 	  "i82546GB quad-port Gigabit Ethernet (KSP3)",
    646 	  WM_T_82546_3,		WMP_F_1000T },
    647 
    648 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_PCIE,
    649 	  "Intel PRO/1000MT (82546GB)",
    650 	  WM_T_82546_3,		WMP_F_1000T },
    651 
    652 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
    653 	  "Intel i82541EI 1000BASE-T Ethernet",
    654 	  WM_T_82541,		WMP_F_1000T },
    655 
    656 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER_LOM,
    657 	  "Intel i82541ER (LOM) 1000BASE-T Ethernet",
    658 	  WM_T_82541,		WMP_F_1000T },
    659 
    660 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
    661 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
    662 	  WM_T_82541,		WMP_F_1000T },
    663 
    664 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
    665 	  "Intel i82541ER 1000BASE-T Ethernet",
    666 	  WM_T_82541_2,		WMP_F_1000T },
    667 
    668 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
    669 	  "Intel i82541GI 1000BASE-T Ethernet",
    670 	  WM_T_82541_2,		WMP_F_1000T },
    671 
    672 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
    673 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
    674 	  WM_T_82541_2,		WMP_F_1000T },
    675 
    676 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541PI,
    677 	  "Intel i82541PI 1000BASE-T Ethernet",
    678 	  WM_T_82541_2,		WMP_F_1000T },
    679 
    680 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
    681 	  "Intel i82547EI 1000BASE-T Ethernet",
    682 	  WM_T_82547,		WMP_F_1000T },
    683 
    684 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI_MOBILE,
    685 	  "Intel i82547EI Moblie 1000BASE-T Ethernet",
    686 	  WM_T_82547,		WMP_F_1000T },
    687 
    688 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
    689 	  "Intel i82547GI 1000BASE-T Ethernet",
    690 	  WM_T_82547_2,		WMP_F_1000T },
    691 
    692 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_COPPER,
    693 	  "Intel PRO/1000 PT (82571EB)",
    694 	  WM_T_82571,		WMP_F_1000T },
    695 
    696 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_FIBER,
    697 	  "Intel PRO/1000 PF (82571EB)",
    698 	  WM_T_82571,		WMP_F_1000X },
    699 #if 0
    700 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_SERDES,
    701 	  "Intel PRO/1000 PB (82571EB)",
    702 	  WM_T_82571,		WMP_F_SERDES },
    703 #endif
    704 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER,
    705 	  "Intel PRO/1000 QT (82571EB)",
    706 	  WM_T_82571,		WMP_F_1000T },
    707 
    708 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_COPPER,
    709 	  "Intel i82572EI 1000baseT Ethernet",
    710 	  WM_T_82572,		WMP_F_1000T },
    711 
    712 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_FIBER,
    713 	  "Intel i82572EI 1000baseX Ethernet",
    714 	  WM_T_82572,		WMP_F_1000X },
    715 #if 0
    716 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_SERDES,
    717 	  "Intel i82572EI Gigabit Ethernet (SERDES)",
    718 	  WM_T_82572,		WMP_F_SERDES },
    719 #endif
    720 
    721 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI,
    722 	  "Intel i82572EI 1000baseT Ethernet",
    723 	  WM_T_82572,		WMP_F_1000T },
    724 
    725 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573E,
    726 	  "Intel i82573E",
    727 	  WM_T_82573,		WMP_F_1000T },
    728 
    729 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573E_IAMT,
    730 	  "Intel i82573E IAMT",
    731 	  WM_T_82573,		WMP_F_1000T },
    732 
    733 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573L,
    734 	  "Intel i82573L Gigabit Ethernet",
    735 	  WM_T_82573,		WMP_F_1000T },
    736 
    737 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT,
    738 	  "i80003 dual 1000baseT Ethernet",
    739 	  WM_T_80003,		WMP_F_1000T },
    740 
    741 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT,
    742 	  "i80003 dual 1000baseX Ethernet",
    743 	  WM_T_80003,		WMP_F_1000T },
    744 #if 0
    745 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT,
    746 	  "Intel i80003ES2 dual Gigabit Ethernet (SERDES)",
    747 	  WM_T_80003,		WMP_F_SERDES },
    748 #endif
    749 
    750 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT,
    751 	  "Intel i80003 1000baseT Ethernet",
    752 	  WM_T_80003,		WMP_F_1000T },
    753 #if 0
    754 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT,
    755 	  "Intel i80003 Gigabit Ethernet (SERDES)",
    756 	  WM_T_80003,		WMP_F_SERDES },
    757 #endif
    758 
    759 	{ 0,			0,
    760 	  NULL,
    761 	  0,			0 },
    762 };
    763 
    764 #ifdef WM_EVENT_COUNTERS
    765 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
    766 #endif /* WM_EVENT_COUNTERS */
    767 
    768 #if 0 /* Not currently used */
    769 static inline uint32_t
    770 wm_io_read(struct wm_softc *sc, int reg)
    771 {
    772 
    773 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    774 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
    775 }
    776 #endif
    777 
    778 static inline void
    779 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
    780 {
    781 
    782 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    783 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
    784 }
    785 
    786 static inline void
    787 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
    788 {
    789 	wa->wa_low = htole32(v & 0xffffffffU);
    790 	if (sizeof(bus_addr_t) == 8)
    791 		wa->wa_high = htole32((uint64_t) v >> 32);
    792 	else
    793 		wa->wa_high = 0;
    794 }
    795 
    796 static const struct wm_product *
    797 wm_lookup(const struct pci_attach_args *pa)
    798 {
    799 	const struct wm_product *wmp;
    800 
    801 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
    802 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
    803 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
    804 			return (wmp);
    805 	}
    806 	return (NULL);
    807 }
    808 
    809 static int
    810 wm_match(struct device *parent, struct cfdata *cf, void *aux)
    811 {
    812 	struct pci_attach_args *pa = aux;
    813 
    814 	if (wm_lookup(pa) != NULL)
    815 		return (1);
    816 
    817 	return (0);
    818 }
    819 
    820 static void
    821 wm_attach(struct device *parent, struct device *self, void *aux)
    822 {
    823 	struct wm_softc *sc = (void *) self;
    824 	struct pci_attach_args *pa = aux;
    825 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    826 	pci_chipset_tag_t pc = pa->pa_pc;
    827 	pci_intr_handle_t ih;
    828 	size_t cdata_size;
    829 	const char *intrstr = NULL;
    830 	const char *eetype;
    831 	bus_space_tag_t memt;
    832 	bus_space_handle_t memh;
    833 	bus_dma_segment_t seg;
    834 	int memh_valid;
    835 	int i, rseg, error;
    836 	const struct wm_product *wmp;
    837 	prop_data_t ea;
    838 	prop_number_t pn;
    839 	uint8_t enaddr[ETHER_ADDR_LEN];
    840 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
    841 	pcireg_t preg, memtype;
    842 	uint32_t reg;
    843 
    844 	callout_init(&sc->sc_tick_ch);
    845 
    846 	wmp = wm_lookup(pa);
    847 	if (wmp == NULL) {
    848 		printf("\n");
    849 		panic("wm_attach: impossible");
    850 	}
    851 
    852 	sc->sc_pc = pa->pa_pc;
    853 	sc->sc_pcitag = pa->pa_tag;
    854 
    855 	if (pci_dma64_available(pa))
    856 		sc->sc_dmat = pa->pa_dmat64;
    857 	else
    858 		sc->sc_dmat = pa->pa_dmat;
    859 
    860 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    861 	aprint_naive(": Ethernet controller\n");
    862 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
    863 
    864 	sc->sc_type = wmp->wmp_type;
    865 	if (sc->sc_type < WM_T_82543) {
    866 		if (preg < 2) {
    867 			aprint_error("%s: i82542 must be at least rev. 2\n",
    868 			    sc->sc_dev.dv_xname);
    869 			return;
    870 		}
    871 		if (preg < 3)
    872 			sc->sc_type = WM_T_82542_2_0;
    873 	}
    874 
    875 	/*
    876 	 * Map the device.  All devices support memory-mapped acccess,
    877 	 * and it is really required for normal operation.
    878 	 */
    879 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
    880 	switch (memtype) {
    881 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    882 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    883 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
    884 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    885 		break;
    886 	default:
    887 		memh_valid = 0;
    888 	}
    889 
    890 	if (memh_valid) {
    891 		sc->sc_st = memt;
    892 		sc->sc_sh = memh;
    893 	} else {
    894 		aprint_error("%s: unable to map device registers\n",
    895 		    sc->sc_dev.dv_xname);
    896 		return;
    897 	}
    898 
    899 	/*
    900 	 * In addition, i82544 and later support I/O mapped indirect
    901 	 * register access.  It is not desirable (nor supported in
    902 	 * this driver) to use it for normal operation, though it is
    903 	 * required to work around bugs in some chip versions.
    904 	 */
    905 	if (sc->sc_type >= WM_T_82544) {
    906 		/* First we have to find the I/O BAR. */
    907 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
    908 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
    909 			    PCI_MAPREG_TYPE_IO)
    910 				break;
    911 		}
    912 		if (i == PCI_MAPREG_END)
    913 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
    914 			    sc->sc_dev.dv_xname);
    915 		else {
    916 			/*
    917 			 * The i8254x doesn't apparently respond when the
    918 			 * I/O BAR is 0, which looks somewhat like it's not
    919 			 * been configured.
    920 			 */
    921 			preg = pci_conf_read(pc, pa->pa_tag, i);
    922 			if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
    923 				aprint_error("%s: WARNING: I/O BAR at zero.\n",
    924 				    sc->sc_dev.dv_xname);
    925 			} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
    926 					0, &sc->sc_iot, &sc->sc_ioh,
    927 					NULL, NULL) == 0) {
    928 				sc->sc_flags |= WM_F_IOH_VALID;
    929 			} else {
    930 				aprint_error("%s: WARNING: unable to map "
    931 				    "I/O space\n", sc->sc_dev.dv_xname);
    932 			}
    933 		}
    934 
    935 	}
    936 
    937 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
    938 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    939 	preg |= PCI_COMMAND_MASTER_ENABLE;
    940 	if (sc->sc_type < WM_T_82542_2_1)
    941 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
    942 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    943 
    944 	/* power up chip */
    945 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
    946 	    NULL)) && error != EOPNOTSUPP) {
    947 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
    948 		    error);
    949 		return;
    950 	}
    951 
    952 	/*
    953 	 * Map and establish our interrupt.
    954 	 */
    955 	if (pci_intr_map(pa, &ih)) {
    956 		aprint_error("%s: unable to map interrupt\n",
    957 		    sc->sc_dev.dv_xname);
    958 		return;
    959 	}
    960 	intrstr = pci_intr_string(pc, ih);
    961 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
    962 	if (sc->sc_ih == NULL) {
    963 		aprint_error("%s: unable to establish interrupt",
    964 		    sc->sc_dev.dv_xname);
    965 		if (intrstr != NULL)
    966 			aprint_normal(" at %s", intrstr);
    967 		aprint_normal("\n");
    968 		return;
    969 	}
    970 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    971 
    972 	/*
    973 	 * Determine a few things about the bus we're connected to.
    974 	 */
    975 	if (sc->sc_type < WM_T_82543) {
    976 		/* We don't really know the bus characteristics here. */
    977 		sc->sc_bus_speed = 33;
    978 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
    979 		/*
    980 		 * CSA (Communication Streaming Architecture) is about as fast
    981 		 * a 32-bit 66MHz PCI Bus.
    982 		 */
    983 		sc->sc_flags |= WM_F_CSA;
    984 		sc->sc_bus_speed = 66;
    985 		aprint_verbose("%s: Communication Streaming Architecture\n",
    986 		    sc->sc_dev.dv_xname);
    987 		if (sc->sc_type == WM_T_82547) {
    988 			callout_init(&sc->sc_txfifo_ch);
    989 			callout_setfunc(&sc->sc_txfifo_ch,
    990 					wm_82547_txfifo_stall, sc);
    991 			aprint_verbose("%s: using 82547 Tx FIFO stall "
    992 				       "work-around\n", sc->sc_dev.dv_xname);
    993 		}
    994 	} else if (sc->sc_type >= WM_T_82571) {
    995 		sc->sc_flags |= WM_F_PCIE | WM_F_EEPROM_SEMAPHORE;
    996 		aprint_verbose("%s: PCI-Express bus\n", sc->sc_dev.dv_xname);
    997 	} else {
    998 		reg = CSR_READ(sc, WMREG_STATUS);
    999 		if (reg & STATUS_BUS64)
   1000 			sc->sc_flags |= WM_F_BUS64;
   1001 		if (sc->sc_type >= WM_T_82544 &&
   1002 		    (reg & STATUS_PCIX_MODE) != 0) {
   1003 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
   1004 
   1005 			sc->sc_flags |= WM_F_PCIX;
   1006 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
   1007 					       PCI_CAP_PCIX,
   1008 					       &sc->sc_pcix_offset, NULL) == 0)
   1009 				aprint_error("%s: unable to find PCIX "
   1010 				    "capability\n", sc->sc_dev.dv_xname);
   1011 			else if (sc->sc_type != WM_T_82545_3 &&
   1012 				 sc->sc_type != WM_T_82546_3) {
   1013 				/*
   1014 				 * Work around a problem caused by the BIOS
   1015 				 * setting the max memory read byte count
   1016 				 * incorrectly.
   1017 				 */
   1018 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1019 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
   1020 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1021 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
   1022 
   1023 				bytecnt =
   1024 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
   1025 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
   1026 				maxb =
   1027 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
   1028 				    PCI_PCIX_STATUS_MAXB_SHIFT;
   1029 				if (bytecnt > maxb) {
   1030 					aprint_verbose("%s: resetting PCI-X "
   1031 					    "MMRBC: %d -> %d\n",
   1032 					    sc->sc_dev.dv_xname,
   1033 					    512 << bytecnt, 512 << maxb);
   1034 					pcix_cmd = (pcix_cmd &
   1035 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
   1036 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
   1037 					pci_conf_write(pa->pa_pc, pa->pa_tag,
   1038 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
   1039 					    pcix_cmd);
   1040 				}
   1041 			}
   1042 		}
   1043 		/*
   1044 		 * The quad port adapter is special; it has a PCIX-PCIX
   1045 		 * bridge on the board, and can run the secondary bus at
   1046 		 * a higher speed.
   1047 		 */
   1048 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
   1049 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
   1050 								      : 66;
   1051 		} else if (sc->sc_flags & WM_F_PCIX) {
   1052 			switch (reg & STATUS_PCIXSPD_MASK) {
   1053 			case STATUS_PCIXSPD_50_66:
   1054 				sc->sc_bus_speed = 66;
   1055 				break;
   1056 			case STATUS_PCIXSPD_66_100:
   1057 				sc->sc_bus_speed = 100;
   1058 				break;
   1059 			case STATUS_PCIXSPD_100_133:
   1060 				sc->sc_bus_speed = 133;
   1061 				break;
   1062 			default:
   1063 				aprint_error(
   1064 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
   1065 				    sc->sc_dev.dv_xname,
   1066 				    reg & STATUS_PCIXSPD_MASK);
   1067 				sc->sc_bus_speed = 66;
   1068 			}
   1069 		} else
   1070 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
   1071 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
   1072 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
   1073 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
   1074 	}
   1075 
   1076 	/*
   1077 	 * Allocate the control data structures, and create and load the
   1078 	 * DMA map for it.
   1079 	 *
   1080 	 * NOTE: All Tx descriptors must be in the same 4G segment of
   1081 	 * memory.  So must Rx descriptors.  We simplify by allocating
   1082 	 * both sets within the same 4G segment.
   1083 	 */
   1084 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
   1085 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
   1086 	cdata_size = sc->sc_type < WM_T_82544 ?
   1087 	    sizeof(struct wm_control_data_82542) :
   1088 	    sizeof(struct wm_control_data_82544);
   1089 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
   1090 				      (bus_size_t) 0x100000000ULL,
   1091 				      &seg, 1, &rseg, 0)) != 0) {
   1092 		aprint_error(
   1093 		    "%s: unable to allocate control data, error = %d\n",
   1094 		    sc->sc_dev.dv_xname, error);
   1095 		goto fail_0;
   1096 	}
   1097 
   1098 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
   1099 				    (void **)&sc->sc_control_data, 0)) != 0) {
   1100 		aprint_error("%s: unable to map control data, error = %d\n",
   1101 		    sc->sc_dev.dv_xname, error);
   1102 		goto fail_1;
   1103 	}
   1104 
   1105 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
   1106 				       0, 0, &sc->sc_cddmamap)) != 0) {
   1107 		aprint_error("%s: unable to create control data DMA map, "
   1108 		    "error = %d\n", sc->sc_dev.dv_xname, error);
   1109 		goto fail_2;
   1110 	}
   1111 
   1112 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
   1113 				     sc->sc_control_data, cdata_size, NULL,
   1114 				     0)) != 0) {
   1115 		aprint_error(
   1116 		    "%s: unable to load control data DMA map, error = %d\n",
   1117 		    sc->sc_dev.dv_xname, error);
   1118 		goto fail_3;
   1119 	}
   1120 
   1121 
   1122 	/*
   1123 	 * Create the transmit buffer DMA maps.
   1124 	 */
   1125 	WM_TXQUEUELEN(sc) =
   1126 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
   1127 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
   1128 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1129 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
   1130 					       WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
   1131 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1132 			aprint_error("%s: unable to create Tx DMA map %d, "
   1133 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1134 			goto fail_4;
   1135 		}
   1136 	}
   1137 
   1138 	/*
   1139 	 * Create the receive buffer DMA maps.
   1140 	 */
   1141 	for (i = 0; i < WM_NRXDESC; i++) {
   1142 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1143 					       MCLBYTES, 0, 0,
   1144 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1145 			aprint_error("%s: unable to create Rx DMA map %d, "
   1146 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1147 			goto fail_5;
   1148 		}
   1149 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1150 	}
   1151 
   1152 	/* clear interesting stat counters */
   1153 	CSR_READ(sc, WMREG_COLC);
   1154 	CSR_READ(sc, WMREG_RXERRC);
   1155 
   1156 	/*
   1157 	 * Reset the chip to a known state.
   1158 	 */
   1159 	wm_reset(sc);
   1160 
   1161 	/*
   1162 	 * Get some information about the EEPROM.
   1163 	 */
   1164 	if (sc->sc_type == WM_T_80003)
   1165 		sc->sc_flags |= WM_F_EEPROM_EERDEEWR |  WM_F_SWFW_SYNC;
   1166 	else if (sc->sc_type == WM_T_82573)
   1167 		sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
   1168 	else if (sc->sc_type > WM_T_82544)
   1169 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
   1170 
   1171 	if (sc->sc_type <= WM_T_82544)
   1172 		sc->sc_ee_addrbits = 6;
   1173 	else if (sc->sc_type <= WM_T_82546_3) {
   1174 		reg = CSR_READ(sc, WMREG_EECD);
   1175 		if (reg & EECD_EE_SIZE)
   1176 			sc->sc_ee_addrbits = 8;
   1177 		else
   1178 			sc->sc_ee_addrbits = 6;
   1179 	} else if (sc->sc_type <= WM_T_82547_2) {
   1180 		reg = CSR_READ(sc, WMREG_EECD);
   1181 		if (reg & EECD_EE_TYPE) {
   1182 			sc->sc_flags |= WM_F_EEPROM_SPI;
   1183 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1184 		} else
   1185 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
   1186 	} else if ((sc->sc_type == WM_T_82573) &&
   1187 	    (wm_is_onboard_nvm_eeprom(sc) == 0)) {
   1188 		sc->sc_flags |= WM_F_EEPROM_FLASH;
   1189 	} else {
   1190 		/* Assume everything else is SPI. */
   1191 		reg = CSR_READ(sc, WMREG_EECD);
   1192 		sc->sc_flags |= WM_F_EEPROM_SPI;
   1193 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1194 	}
   1195 
   1196 	/*
   1197 	 * Defer printing the EEPROM type until after verifying the checksum
   1198 	 * This allows the EEPROM type to be printed correctly in the case
   1199 	 * that no EEPROM is attached.
   1200 	 */
   1201 
   1202 
   1203 	/*
   1204 	 * Validate the EEPROM checksum. If the checksum fails, flag this for
   1205 	 * later, so we can fail future reads from the EEPROM.
   1206 	 */
   1207 	if (wm_validate_eeprom_checksum(sc))
   1208 		sc->sc_flags |= WM_F_EEPROM_INVALID;
   1209 
   1210 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
   1211 		aprint_verbose("%s: No EEPROM\n", sc->sc_dev.dv_xname);
   1212 	else if (sc->sc_flags & WM_F_EEPROM_FLASH) {
   1213 		aprint_verbose("%s: FLASH\n", sc->sc_dev.dv_xname);
   1214 	} else {
   1215 		if (sc->sc_flags & WM_F_EEPROM_SPI)
   1216 			eetype = "SPI";
   1217 		else
   1218 			eetype = "MicroWire";
   1219 		aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
   1220 		    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
   1221 		    sc->sc_ee_addrbits, eetype);
   1222 	}
   1223 
   1224 	/*
   1225 	 * Read the Ethernet address from the EEPROM, if not first found
   1226 	 * in device properties.
   1227 	 */
   1228 	ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
   1229 	if (ea != NULL) {
   1230 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   1231 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   1232 		memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   1233 	} else {
   1234 		if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
   1235 		    sizeof(myea) / sizeof(myea[0]), myea)) {
   1236 			aprint_error("%s: unable to read Ethernet address\n",
   1237 			    sc->sc_dev.dv_xname);
   1238 			return;
   1239 		}
   1240 		enaddr[0] = myea[0] & 0xff;
   1241 		enaddr[1] = myea[0] >> 8;
   1242 		enaddr[2] = myea[1] & 0xff;
   1243 		enaddr[3] = myea[1] >> 8;
   1244 		enaddr[4] = myea[2] & 0xff;
   1245 		enaddr[5] = myea[2] >> 8;
   1246 	}
   1247 
   1248 	/*
   1249 	 * Toggle the LSB of the MAC address on the second port
   1250 	 * of the dual port controller.
   1251 	 */
   1252 	if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3
   1253 	    || sc->sc_type ==  WM_T_82571 || sc->sc_type == WM_T_80003) {
   1254 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
   1255 			enaddr[5] ^= 1;
   1256 	}
   1257 
   1258 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
   1259 	    ether_sprintf(enaddr));
   1260 
   1261 	/*
   1262 	 * Read the config info from the EEPROM, and set up various
   1263 	 * bits in the control registers based on their contents.
   1264 	 */
   1265 	pn = prop_dictionary_get(device_properties(&sc->sc_dev),
   1266 				 "i82543-cfg1");
   1267 	if (pn != NULL) {
   1268 		KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1269 		cfg1 = (uint16_t) prop_number_integer_value(pn);
   1270 	} else {
   1271 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
   1272 			aprint_error("%s: unable to read CFG1\n",
   1273 			    sc->sc_dev.dv_xname);
   1274 			return;
   1275 		}
   1276 	}
   1277 
   1278 	pn = prop_dictionary_get(device_properties(&sc->sc_dev),
   1279 				 "i82543-cfg2");
   1280 	if (pn != NULL) {
   1281 		KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1282 		cfg2 = (uint16_t) prop_number_integer_value(pn);
   1283 	} else {
   1284 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
   1285 			aprint_error("%s: unable to read CFG2\n",
   1286 			    sc->sc_dev.dv_xname);
   1287 			return;
   1288 		}
   1289 	}
   1290 
   1291 	if (sc->sc_type >= WM_T_82544) {
   1292 		pn = prop_dictionary_get(device_properties(&sc->sc_dev),
   1293 					 "i82543-swdpin");
   1294 		if (pn != NULL) {
   1295 			KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1296 			swdpin = (uint16_t) prop_number_integer_value(pn);
   1297 		} else {
   1298 			if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
   1299 				aprint_error("%s: unable to read SWDPIN\n",
   1300 				    sc->sc_dev.dv_xname);
   1301 				return;
   1302 			}
   1303 		}
   1304 	}
   1305 
   1306 	if (cfg1 & EEPROM_CFG1_ILOS)
   1307 		sc->sc_ctrl |= CTRL_ILOS;
   1308 	if (sc->sc_type >= WM_T_82544) {
   1309 		sc->sc_ctrl |=
   1310 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
   1311 		    CTRL_SWDPIO_SHIFT;
   1312 		sc->sc_ctrl |=
   1313 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
   1314 		    CTRL_SWDPINS_SHIFT;
   1315 	} else {
   1316 		sc->sc_ctrl |=
   1317 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
   1318 		    CTRL_SWDPIO_SHIFT;
   1319 	}
   1320 
   1321 #if 0
   1322 	if (sc->sc_type >= WM_T_82544) {
   1323 		if (cfg1 & EEPROM_CFG1_IPS0)
   1324 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
   1325 		if (cfg1 & EEPROM_CFG1_IPS1)
   1326 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
   1327 		sc->sc_ctrl_ext |=
   1328 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
   1329 		    CTRL_EXT_SWDPIO_SHIFT;
   1330 		sc->sc_ctrl_ext |=
   1331 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
   1332 		    CTRL_EXT_SWDPINS_SHIFT;
   1333 	} else {
   1334 		sc->sc_ctrl_ext |=
   1335 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
   1336 		    CTRL_EXT_SWDPIO_SHIFT;
   1337 	}
   1338 #endif
   1339 
   1340 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   1341 #if 0
   1342 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   1343 #endif
   1344 
   1345 	/*
   1346 	 * Set up some register offsets that are different between
   1347 	 * the i82542 and the i82543 and later chips.
   1348 	 */
   1349 	if (sc->sc_type < WM_T_82543) {
   1350 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
   1351 		sc->sc_tdt_reg = WMREG_OLD_TDT;
   1352 	} else {
   1353 		sc->sc_rdt_reg = WMREG_RDT;
   1354 		sc->sc_tdt_reg = WMREG_TDT;
   1355 	}
   1356 
   1357 	/*
   1358 	 * Determine if we're TBI or GMII mode, and initialize the
   1359 	 * media structures accordingly.
   1360 	 */
   1361 	if (sc->sc_type < WM_T_82543 ||
   1362 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
   1363 		if (wmp->wmp_flags & WMP_F_1000T)
   1364 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
   1365 			    "product!\n", sc->sc_dev.dv_xname);
   1366 		wm_tbi_mediainit(sc);
   1367 	} else {
   1368 		if (wmp->wmp_flags & WMP_F_1000X)
   1369 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
   1370 			    "product!\n", sc->sc_dev.dv_xname);
   1371 		wm_gmii_mediainit(sc);
   1372 	}
   1373 
   1374 	ifp = &sc->sc_ethercom.ec_if;
   1375 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
   1376 	ifp->if_softc = sc;
   1377 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1378 	ifp->if_ioctl = wm_ioctl;
   1379 	ifp->if_start = wm_start;
   1380 	ifp->if_watchdog = wm_watchdog;
   1381 	ifp->if_init = wm_init;
   1382 	ifp->if_stop = wm_stop;
   1383 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
   1384 	IFQ_SET_READY(&ifp->if_snd);
   1385 
   1386 	if (sc->sc_type != WM_T_82573)
   1387 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1388 
   1389 	/*
   1390 	 * If we're a i82543 or greater, we can support VLANs.
   1391 	 */
   1392 	if (sc->sc_type >= WM_T_82543)
   1393 		sc->sc_ethercom.ec_capabilities |=
   1394 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
   1395 
   1396 	/*
   1397 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
   1398 	 * on i82543 and later.
   1399 	 */
   1400 	if (sc->sc_type >= WM_T_82543) {
   1401 		ifp->if_capabilities |=
   1402 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1403 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1404 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
   1405 		    IFCAP_CSUM_TCPv6_Tx |
   1406 		    IFCAP_CSUM_UDPv6_Tx;
   1407 	}
   1408 
   1409 	/*
   1410 	 * XXXyamt: i'm not sure which chips support RXCSUM_IPV6OFL.
   1411 	 *
   1412 	 *	82541GI (8086:1076) ... no
   1413 	 *	82572EI (8086:10b9) ... yes
   1414 	 */
   1415 	if (sc->sc_type >= WM_T_82571) {
   1416 		ifp->if_capabilities |=
   1417 		    IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
   1418 	}
   1419 
   1420 	/*
   1421 	 * If we're a i82544 or greater (except i82547), we can do
   1422 	 * TCP segmentation offload.
   1423 	 */
   1424 	if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547) {
   1425 		ifp->if_capabilities |= IFCAP_TSOv4;
   1426 	}
   1427 
   1428 	if (sc->sc_type >= WM_T_82571) {
   1429 		ifp->if_capabilities |= IFCAP_TSOv6;
   1430 	}
   1431 
   1432 	/*
   1433 	 * Attach the interface.
   1434 	 */
   1435 	if_attach(ifp);
   1436 	ether_ifattach(ifp, enaddr);
   1437 #if NRND > 0
   1438 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1439 	    RND_TYPE_NET, 0);
   1440 #endif
   1441 
   1442 #ifdef WM_EVENT_COUNTERS
   1443 	/* Attach event counters. */
   1444 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1445 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1446 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1447 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1448 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
   1449 	    NULL, sc->sc_dev.dv_xname, "txfifo_stall");
   1450 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
   1451 	    NULL, sc->sc_dev.dv_xname, "txdw");
   1452 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
   1453 	    NULL, sc->sc_dev.dv_xname, "txqe");
   1454 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1455 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1456 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
   1457 	    NULL, sc->sc_dev.dv_xname, "linkintr");
   1458 
   1459 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1460 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1461 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
   1462 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
   1463 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1464 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1465 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
   1466 	    NULL, sc->sc_dev.dv_xname, "txtusum");
   1467 	evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
   1468 	    NULL, sc->sc_dev.dv_xname, "txtusum6");
   1469 
   1470 	evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
   1471 	    NULL, sc->sc_dev.dv_xname, "txtso");
   1472 	evcnt_attach_dynamic(&sc->sc_ev_txtso6, EVCNT_TYPE_MISC,
   1473 	    NULL, sc->sc_dev.dv_xname, "txtso6");
   1474 	evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
   1475 	    NULL, sc->sc_dev.dv_xname, "txtsopain");
   1476 
   1477 	for (i = 0; i < WM_NTXSEGS; i++) {
   1478 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
   1479 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
   1480 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
   1481 	}
   1482 
   1483 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
   1484 	    NULL, sc->sc_dev.dv_xname, "txdrop");
   1485 
   1486 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
   1487 	    NULL, sc->sc_dev.dv_xname, "tu");
   1488 
   1489 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
   1490 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
   1491 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
   1492 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
   1493 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
   1494 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
   1495 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
   1496 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
   1497 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
   1498 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
   1499 #endif /* WM_EVENT_COUNTERS */
   1500 
   1501 	/*
   1502 	 * Make sure the interface is shutdown during reboot.
   1503 	 */
   1504 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
   1505 	if (sc->sc_sdhook == NULL)
   1506 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
   1507 		    sc->sc_dev.dv_xname);
   1508 
   1509 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
   1510 	    wm_powerhook, sc);
   1511 	if (sc->sc_powerhook == NULL)
   1512 		aprint_error("%s: can't establish powerhook\n",
   1513 		    sc->sc_dev.dv_xname);
   1514 	return;
   1515 
   1516 	/*
   1517 	 * Free any resources we've allocated during the failed attach
   1518 	 * attempt.  Do this in reverse order and fall through.
   1519 	 */
   1520  fail_5:
   1521 	for (i = 0; i < WM_NRXDESC; i++) {
   1522 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1523 			bus_dmamap_destroy(sc->sc_dmat,
   1524 			    sc->sc_rxsoft[i].rxs_dmamap);
   1525 	}
   1526  fail_4:
   1527 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1528 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1529 			bus_dmamap_destroy(sc->sc_dmat,
   1530 			    sc->sc_txsoft[i].txs_dmamap);
   1531 	}
   1532 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1533  fail_3:
   1534 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1535  fail_2:
   1536 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
   1537 	    cdata_size);
   1538  fail_1:
   1539 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1540  fail_0:
   1541 	return;
   1542 }
   1543 
   1544 /*
   1545  * wm_shutdown:
   1546  *
   1547  *	Make sure the interface is stopped at reboot time.
   1548  */
   1549 static void
   1550 wm_shutdown(void *arg)
   1551 {
   1552 	struct wm_softc *sc = arg;
   1553 
   1554 	wm_stop(&sc->sc_ethercom.ec_if, 1);
   1555 }
   1556 
   1557 static void
   1558 wm_powerhook(int why, void *arg)
   1559 {
   1560 	struct wm_softc *sc = arg;
   1561 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1562 	pci_chipset_tag_t pc = sc->sc_pc;
   1563 	pcitag_t tag = sc->sc_pcitag;
   1564 
   1565 	switch (why) {
   1566 	case PWR_SOFTSUSPEND:
   1567 		wm_shutdown(sc);
   1568 		break;
   1569 	case PWR_SOFTRESUME:
   1570 		ifp->if_flags &= ~IFF_RUNNING;
   1571 		wm_init(ifp);
   1572 		if (ifp->if_flags & IFF_RUNNING)
   1573 			wm_start(ifp);
   1574 		break;
   1575 	case PWR_SUSPEND:
   1576 		pci_conf_capture(pc, tag, &sc->sc_pciconf);
   1577 		break;
   1578 	case PWR_RESUME:
   1579 		pci_conf_restore(pc, tag, &sc->sc_pciconf);
   1580 		break;
   1581 	}
   1582 
   1583 	return;
   1584 }
   1585 
   1586 /*
   1587  * wm_tx_offload:
   1588  *
   1589  *	Set up TCP/IP checksumming parameters for the
   1590  *	specified packet.
   1591  */
   1592 static int
   1593 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
   1594     uint8_t *fieldsp)
   1595 {
   1596 	struct mbuf *m0 = txs->txs_mbuf;
   1597 	struct livengood_tcpip_ctxdesc *t;
   1598 	uint32_t ipcs, tucs, cmd, cmdlen, seg;
   1599 	uint32_t ipcse;
   1600 	struct ether_header *eh;
   1601 	int offset, iphl;
   1602 	uint8_t fields;
   1603 
   1604 	/*
   1605 	 * XXX It would be nice if the mbuf pkthdr had offset
   1606 	 * fields for the protocol headers.
   1607 	 */
   1608 
   1609 	eh = mtod(m0, struct ether_header *);
   1610 	switch (htons(eh->ether_type)) {
   1611 	case ETHERTYPE_IP:
   1612 	case ETHERTYPE_IPV6:
   1613 		offset = ETHER_HDR_LEN;
   1614 		break;
   1615 
   1616 	case ETHERTYPE_VLAN:
   1617 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1618 		break;
   1619 
   1620 	default:
   1621 		/*
   1622 		 * Don't support this protocol or encapsulation.
   1623 		 */
   1624 		*fieldsp = 0;
   1625 		*cmdp = 0;
   1626 		return (0);
   1627 	}
   1628 
   1629 	if ((m0->m_pkthdr.csum_flags &
   1630 	    (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
   1631 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1632 	} else {
   1633 		iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
   1634 	}
   1635 	ipcse = offset + iphl - 1;
   1636 
   1637 	cmd = WTX_CMD_DEXT | WTX_DTYP_D;
   1638 	cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
   1639 	seg = 0;
   1640 	fields = 0;
   1641 
   1642 	if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
   1643 		int hlen = offset + iphl;
   1644 		bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   1645 
   1646 		if (__predict_false(m0->m_len <
   1647 				    (hlen + sizeof(struct tcphdr)))) {
   1648 			/*
   1649 			 * TCP/IP headers are not in the first mbuf; we need
   1650 			 * to do this the slow and painful way.  Let's just
   1651 			 * hope this doesn't happen very often.
   1652 			 */
   1653 			struct tcphdr th;
   1654 
   1655 			WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
   1656 
   1657 			m_copydata(m0, hlen, sizeof(th), &th);
   1658 			if (v4) {
   1659 				struct ip ip;
   1660 
   1661 				m_copydata(m0, offset, sizeof(ip), &ip);
   1662 				ip.ip_len = 0;
   1663 				m_copyback(m0,
   1664 				    offset + offsetof(struct ip, ip_len),
   1665 				    sizeof(ip.ip_len), &ip.ip_len);
   1666 				th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   1667 				    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   1668 			} else {
   1669 				struct ip6_hdr ip6;
   1670 
   1671 				m_copydata(m0, offset, sizeof(ip6), &ip6);
   1672 				ip6.ip6_plen = 0;
   1673 				m_copyback(m0,
   1674 				    offset + offsetof(struct ip6_hdr, ip6_plen),
   1675 				    sizeof(ip6.ip6_plen), &ip6.ip6_plen);
   1676 				th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
   1677 				    &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
   1678 			}
   1679 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   1680 			    sizeof(th.th_sum), &th.th_sum);
   1681 
   1682 			hlen += th.th_off << 2;
   1683 		} else {
   1684 			/*
   1685 			 * TCP/IP headers are in the first mbuf; we can do
   1686 			 * this the easy way.
   1687 			 */
   1688 			struct tcphdr *th;
   1689 
   1690 			if (v4) {
   1691 				struct ip *ip =
   1692 				    (void *)(mtod(m0, char *) + offset);
   1693 				th = (void *)(mtod(m0, char *) + hlen);
   1694 
   1695 				ip->ip_len = 0;
   1696 				th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   1697 				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   1698 			} else {
   1699 				struct ip6_hdr *ip6 =
   1700 				    (void *)(mtod(m0, char *) + offset);
   1701 				th = (void *)(mtod(m0, char *) + hlen);
   1702 
   1703 				ip6->ip6_plen = 0;
   1704 				th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
   1705 				    &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
   1706 			}
   1707 			hlen += th->th_off << 2;
   1708 		}
   1709 
   1710 		if (v4) {
   1711 			WM_EVCNT_INCR(&sc->sc_ev_txtso);
   1712 			cmdlen |= WTX_TCPIP_CMD_IP;
   1713 		} else {
   1714 			WM_EVCNT_INCR(&sc->sc_ev_txtso6);
   1715 			ipcse = 0;
   1716 		}
   1717 		cmd |= WTX_TCPIP_CMD_TSE;
   1718 		cmdlen |= WTX_TCPIP_CMD_TSE |
   1719 		    WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
   1720 		seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
   1721 		    WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
   1722 	}
   1723 
   1724 	/*
   1725 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1726 	 * offload feature, if we load the context descriptor, we
   1727 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1728 	 */
   1729 
   1730 	ipcs = WTX_TCPIP_IPCSS(offset) |
   1731 	    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1732 	    WTX_TCPIP_IPCSE(ipcse);
   1733 	if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
   1734 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
   1735 		fields |= WTX_IXSM;
   1736 	}
   1737 
   1738 	offset += iphl;
   1739 
   1740 	if (m0->m_pkthdr.csum_flags &
   1741 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
   1742 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
   1743 		fields |= WTX_TXSM;
   1744 		tucs = WTX_TCPIP_TUCSS(offset) |
   1745 		    WTX_TCPIP_TUCSO(offset +
   1746 		    M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
   1747 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1748 	} else if ((m0->m_pkthdr.csum_flags &
   1749 	    (M_CSUM_TCPv6|M_CSUM_UDPv6|M_CSUM_TSOv6)) != 0) {
   1750 		WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
   1751 		fields |= WTX_TXSM;
   1752 		tucs = WTX_TCPIP_TUCSS(offset) |
   1753 		    WTX_TCPIP_TUCSO(offset +
   1754 		    M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
   1755 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1756 	} else {
   1757 		/* Just initialize it to a valid TCP context. */
   1758 		tucs = WTX_TCPIP_TUCSS(offset) |
   1759 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1760 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1761 	}
   1762 
   1763 	/* Fill in the context descriptor. */
   1764 	t = (struct livengood_tcpip_ctxdesc *)
   1765 	    &sc->sc_txdescs[sc->sc_txnext];
   1766 	t->tcpip_ipcs = htole32(ipcs);
   1767 	t->tcpip_tucs = htole32(tucs);
   1768 	t->tcpip_cmdlen = htole32(cmdlen);
   1769 	t->tcpip_seg = htole32(seg);
   1770 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1771 
   1772 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
   1773 	txs->txs_ndesc++;
   1774 
   1775 	*cmdp = cmd;
   1776 	*fieldsp = fields;
   1777 
   1778 	return (0);
   1779 }
   1780 
   1781 static void
   1782 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
   1783 {
   1784 	struct mbuf *m;
   1785 	int i;
   1786 
   1787 	log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
   1788 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
   1789 		log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
   1790 		    "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
   1791 		    m->m_data, m->m_len, m->m_flags);
   1792 	log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
   1793 	    i, i == 1 ? "" : "s");
   1794 }
   1795 
   1796 /*
   1797  * wm_82547_txfifo_stall:
   1798  *
   1799  *	Callout used to wait for the 82547 Tx FIFO to drain,
   1800  *	reset the FIFO pointers, and restart packet transmission.
   1801  */
   1802 static void
   1803 wm_82547_txfifo_stall(void *arg)
   1804 {
   1805 	struct wm_softc *sc = arg;
   1806 	int s;
   1807 
   1808 	s = splnet();
   1809 
   1810 	if (sc->sc_txfifo_stall) {
   1811 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
   1812 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
   1813 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
   1814 			/*
   1815 			 * Packets have drained.  Stop transmitter, reset
   1816 			 * FIFO pointers, restart transmitter, and kick
   1817 			 * the packet queue.
   1818 			 */
   1819 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
   1820 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
   1821 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
   1822 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
   1823 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
   1824 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
   1825 			CSR_WRITE(sc, WMREG_TCTL, tctl);
   1826 			CSR_WRITE_FLUSH(sc);
   1827 
   1828 			sc->sc_txfifo_head = 0;
   1829 			sc->sc_txfifo_stall = 0;
   1830 			wm_start(&sc->sc_ethercom.ec_if);
   1831 		} else {
   1832 			/*
   1833 			 * Still waiting for packets to drain; try again in
   1834 			 * another tick.
   1835 			 */
   1836 			callout_schedule(&sc->sc_txfifo_ch, 1);
   1837 		}
   1838 	}
   1839 
   1840 	splx(s);
   1841 }
   1842 
   1843 /*
   1844  * wm_82547_txfifo_bugchk:
   1845  *
   1846  *	Check for bug condition in the 82547 Tx FIFO.  We need to
   1847  *	prevent enqueueing a packet that would wrap around the end
   1848  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
   1849  *
   1850  *	We do this by checking the amount of space before the end
   1851  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
   1852  *	the Tx FIFO, wait for all remaining packets to drain, reset
   1853  *	the internal FIFO pointers to the beginning, and restart
   1854  *	transmission on the interface.
   1855  */
   1856 #define	WM_FIFO_HDR		0x10
   1857 #define	WM_82547_PAD_LEN	0x3e0
   1858 static int
   1859 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
   1860 {
   1861 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
   1862 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
   1863 
   1864 	/* Just return if already stalled. */
   1865 	if (sc->sc_txfifo_stall)
   1866 		return (1);
   1867 
   1868 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1869 		/* Stall only occurs in half-duplex mode. */
   1870 		goto send_packet;
   1871 	}
   1872 
   1873 	if (len >= WM_82547_PAD_LEN + space) {
   1874 		sc->sc_txfifo_stall = 1;
   1875 		callout_schedule(&sc->sc_txfifo_ch, 1);
   1876 		return (1);
   1877 	}
   1878 
   1879  send_packet:
   1880 	sc->sc_txfifo_head += len;
   1881 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
   1882 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
   1883 
   1884 	return (0);
   1885 }
   1886 
   1887 /*
   1888  * wm_start:		[ifnet interface function]
   1889  *
   1890  *	Start packet transmission on the interface.
   1891  */
   1892 static void
   1893 wm_start(struct ifnet *ifp)
   1894 {
   1895 	struct wm_softc *sc = ifp->if_softc;
   1896 	struct mbuf *m0;
   1897 #if 0 /* XXXJRT */
   1898 	struct m_tag *mtag;
   1899 #endif
   1900 	struct wm_txsoft *txs;
   1901 	bus_dmamap_t dmamap;
   1902 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
   1903 	bus_addr_t curaddr;
   1904 	bus_size_t seglen, curlen;
   1905 	uint32_t cksumcmd;
   1906 	uint8_t cksumfields;
   1907 
   1908 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1909 		return;
   1910 
   1911 	/*
   1912 	 * Remember the previous number of free descriptors.
   1913 	 */
   1914 	ofree = sc->sc_txfree;
   1915 
   1916 	/*
   1917 	 * Loop through the send queue, setting up transmit descriptors
   1918 	 * until we drain the queue, or use up all available transmit
   1919 	 * descriptors.
   1920 	 */
   1921 	for (;;) {
   1922 		/* Grab a packet off the queue. */
   1923 		IFQ_POLL(&ifp->if_snd, m0);
   1924 		if (m0 == NULL)
   1925 			break;
   1926 
   1927 		DPRINTF(WM_DEBUG_TX,
   1928 		    ("%s: TX: have packet to transmit: %p\n",
   1929 		    sc->sc_dev.dv_xname, m0));
   1930 
   1931 		/* Get a work queue entry. */
   1932 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
   1933 			wm_txintr(sc);
   1934 			if (sc->sc_txsfree == 0) {
   1935 				DPRINTF(WM_DEBUG_TX,
   1936 				    ("%s: TX: no free job descriptors\n",
   1937 					sc->sc_dev.dv_xname));
   1938 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   1939 				break;
   1940 			}
   1941 		}
   1942 
   1943 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1944 		dmamap = txs->txs_dmamap;
   1945 
   1946 		use_tso = (m0->m_pkthdr.csum_flags &
   1947 		    (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0;
   1948 
   1949 		/*
   1950 		 * So says the Linux driver:
   1951 		 * The controller does a simple calculation to make sure
   1952 		 * there is enough room in the FIFO before initiating the
   1953 		 * DMA for each buffer.  The calc is:
   1954 		 *	4 = ceil(buffer len / MSS)
   1955 		 * To make sure we don't overrun the FIFO, adjust the max
   1956 		 * buffer len if the MSS drops.
   1957 		 */
   1958 		dmamap->dm_maxsegsz =
   1959 		    (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
   1960 		    ? m0->m_pkthdr.segsz << 2
   1961 		    : WTX_MAX_LEN;
   1962 
   1963 		/*
   1964 		 * Load the DMA map.  If this fails, the packet either
   1965 		 * didn't fit in the allotted number of segments, or we
   1966 		 * were short on resources.  For the too-many-segments
   1967 		 * case, we simply report an error and drop the packet,
   1968 		 * since we can't sanely copy a jumbo packet to a single
   1969 		 * buffer.
   1970 		 */
   1971 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1972 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1973 		if (error) {
   1974 			if (error == EFBIG) {
   1975 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   1976 				log(LOG_ERR, "%s: Tx packet consumes too many "
   1977 				    "DMA segments, dropping...\n",
   1978 				    sc->sc_dev.dv_xname);
   1979 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1980 				wm_dump_mbuf_chain(sc, m0);
   1981 				m_freem(m0);
   1982 				continue;
   1983 			}
   1984 			/*
   1985 			 * Short on resources, just stop for now.
   1986 			 */
   1987 			DPRINTF(WM_DEBUG_TX,
   1988 			    ("%s: TX: dmamap load failed: %d\n",
   1989 			    sc->sc_dev.dv_xname, error));
   1990 			break;
   1991 		}
   1992 
   1993 		segs_needed = dmamap->dm_nsegs;
   1994 		if (use_tso) {
   1995 			/* For sentinel descriptor; see below. */
   1996 			segs_needed++;
   1997 		}
   1998 
   1999 		/*
   2000 		 * Ensure we have enough descriptors free to describe
   2001 		 * the packet.  Note, we always reserve one descriptor
   2002 		 * at the end of the ring due to the semantics of the
   2003 		 * TDT register, plus one more in the event we need
   2004 		 * to load offload context.
   2005 		 */
   2006 		if (segs_needed > sc->sc_txfree - 2) {
   2007 			/*
   2008 			 * Not enough free descriptors to transmit this
   2009 			 * packet.  We haven't committed anything yet,
   2010 			 * so just unload the DMA map, put the packet
   2011 			 * pack on the queue, and punt.  Notify the upper
   2012 			 * layer that there are no more slots left.
   2013 			 */
   2014 			DPRINTF(WM_DEBUG_TX,
   2015 			    ("%s: TX: need %d (%d) descriptors, have %d\n",
   2016 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
   2017 			    sc->sc_txfree - 1));
   2018 			ifp->if_flags |= IFF_OACTIVE;
   2019 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   2020 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   2021 			break;
   2022 		}
   2023 
   2024 		/*
   2025 		 * Check for 82547 Tx FIFO bug.  We need to do this
   2026 		 * once we know we can transmit the packet, since we
   2027 		 * do some internal FIFO space accounting here.
   2028 		 */
   2029 		if (sc->sc_type == WM_T_82547 &&
   2030 		    wm_82547_txfifo_bugchk(sc, m0)) {
   2031 			DPRINTF(WM_DEBUG_TX,
   2032 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
   2033 			    sc->sc_dev.dv_xname));
   2034 			ifp->if_flags |= IFF_OACTIVE;
   2035 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   2036 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
   2037 			break;
   2038 		}
   2039 
   2040 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   2041 
   2042 		/*
   2043 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   2044 		 */
   2045 
   2046 		DPRINTF(WM_DEBUG_TX,
   2047 		    ("%s: TX: packet has %d (%d) DMA segments\n",
   2048 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
   2049 
   2050 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   2051 
   2052 		/*
   2053 		 * Store a pointer to the packet so that we can free it
   2054 		 * later.
   2055 		 *
   2056 		 * Initially, we consider the number of descriptors the
   2057 		 * packet uses the number of DMA segments.  This may be
   2058 		 * incremented by 1 if we do checksum offload (a descriptor
   2059 		 * is used to set the checksum context).
   2060 		 */
   2061 		txs->txs_mbuf = m0;
   2062 		txs->txs_firstdesc = sc->sc_txnext;
   2063 		txs->txs_ndesc = segs_needed;
   2064 
   2065 		/* Set up offload parameters for this packet. */
   2066 		if (m0->m_pkthdr.csum_flags &
   2067 		    (M_CSUM_TSOv4|M_CSUM_TSOv6|
   2068 		    M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
   2069 		    M_CSUM_TCPv6|M_CSUM_UDPv6)) {
   2070 			if (wm_tx_offload(sc, txs, &cksumcmd,
   2071 					  &cksumfields) != 0) {
   2072 				/* Error message already displayed. */
   2073 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   2074 				continue;
   2075 			}
   2076 		} else {
   2077 			cksumcmd = 0;
   2078 			cksumfields = 0;
   2079 		}
   2080 
   2081 		cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
   2082 
   2083 		/* Sync the DMA map. */
   2084 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   2085 		    BUS_DMASYNC_PREWRITE);
   2086 
   2087 		/*
   2088 		 * Initialize the transmit descriptor.
   2089 		 */
   2090 		for (nexttx = sc->sc_txnext, seg = 0;
   2091 		     seg < dmamap->dm_nsegs; seg++) {
   2092 			for (seglen = dmamap->dm_segs[seg].ds_len,
   2093 			     curaddr = dmamap->dm_segs[seg].ds_addr;
   2094 			     seglen != 0;
   2095 			     curaddr += curlen, seglen -= curlen,
   2096 			     nexttx = WM_NEXTTX(sc, nexttx)) {
   2097 				curlen = seglen;
   2098 
   2099 				/*
   2100 				 * So says the Linux driver:
   2101 				 * Work around for premature descriptor
   2102 				 * write-backs in TSO mode.  Append a
   2103 				 * 4-byte sentinel descriptor.
   2104 				 */
   2105 				if (use_tso &&
   2106 				    seg == dmamap->dm_nsegs - 1 &&
   2107 				    curlen > 8)
   2108 					curlen -= 4;
   2109 
   2110 				wm_set_dma_addr(
   2111 				    &sc->sc_txdescs[nexttx].wtx_addr,
   2112 				    curaddr);
   2113 				sc->sc_txdescs[nexttx].wtx_cmdlen =
   2114 				    htole32(cksumcmd | curlen);
   2115 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
   2116 				    0;
   2117 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
   2118 				    cksumfields;
   2119 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
   2120 				lasttx = nexttx;
   2121 
   2122 				DPRINTF(WM_DEBUG_TX,
   2123 				    ("%s: TX: desc %d: low 0x%08lx, "
   2124 				     "len 0x%04x\n",
   2125 				    sc->sc_dev.dv_xname, nexttx,
   2126 				    curaddr & 0xffffffffUL, (unsigned)curlen));
   2127 			}
   2128 		}
   2129 
   2130 		KASSERT(lasttx != -1);
   2131 
   2132 		/*
   2133 		 * Set up the command byte on the last descriptor of
   2134 		 * the packet.  If we're in the interrupt delay window,
   2135 		 * delay the interrupt.
   2136 		 */
   2137 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   2138 		    htole32(WTX_CMD_EOP | WTX_CMD_RS);
   2139 
   2140 #if 0 /* XXXJRT */
   2141 		/*
   2142 		 * If VLANs are enabled and the packet has a VLAN tag, set
   2143 		 * up the descriptor to encapsulate the packet for us.
   2144 		 *
   2145 		 * This is only valid on the last descriptor of the packet.
   2146 		 */
   2147 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   2148 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   2149 			    htole32(WTX_CMD_VLE);
   2150 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
   2151 			    = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
   2152 		}
   2153 #endif /* XXXJRT */
   2154 
   2155 		txs->txs_lastdesc = lasttx;
   2156 
   2157 		DPRINTF(WM_DEBUG_TX,
   2158 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   2159 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
   2160 
   2161 		/* Sync the descriptors we're using. */
   2162 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
   2163 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2164 
   2165 		/* Give the packet to the chip. */
   2166 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   2167 
   2168 		DPRINTF(WM_DEBUG_TX,
   2169 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   2170 
   2171 		DPRINTF(WM_DEBUG_TX,
   2172 		    ("%s: TX: finished transmitting packet, job %d\n",
   2173 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   2174 
   2175 		/* Advance the tx pointer. */
   2176 		sc->sc_txfree -= txs->txs_ndesc;
   2177 		sc->sc_txnext = nexttx;
   2178 
   2179 		sc->sc_txsfree--;
   2180 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
   2181 
   2182 #if NBPFILTER > 0
   2183 		/* Pass the packet to any BPF listeners. */
   2184 		if (ifp->if_bpf)
   2185 			bpf_mtap(ifp->if_bpf, m0);
   2186 #endif /* NBPFILTER > 0 */
   2187 	}
   2188 
   2189 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   2190 		/* No more slots; notify upper layer. */
   2191 		ifp->if_flags |= IFF_OACTIVE;
   2192 	}
   2193 
   2194 	if (sc->sc_txfree != ofree) {
   2195 		/* Set a watchdog timer in case the chip flakes out. */
   2196 		ifp->if_timer = 5;
   2197 	}
   2198 }
   2199 
   2200 /*
   2201  * wm_watchdog:		[ifnet interface function]
   2202  *
   2203  *	Watchdog timer handler.
   2204  */
   2205 static void
   2206 wm_watchdog(struct ifnet *ifp)
   2207 {
   2208 	struct wm_softc *sc = ifp->if_softc;
   2209 
   2210 	/*
   2211 	 * Since we're using delayed interrupts, sweep up
   2212 	 * before we report an error.
   2213 	 */
   2214 	wm_txintr(sc);
   2215 
   2216 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
   2217 		log(LOG_ERR,
   2218 		    "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   2219 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   2220 		    sc->sc_txnext);
   2221 		ifp->if_oerrors++;
   2222 
   2223 		/* Reset the interface. */
   2224 		(void) wm_init(ifp);
   2225 	}
   2226 
   2227 	/* Try to get more packets going. */
   2228 	wm_start(ifp);
   2229 }
   2230 
   2231 /*
   2232  * wm_ioctl:		[ifnet interface function]
   2233  *
   2234  *	Handle control requests from the operator.
   2235  */
   2236 static int
   2237 wm_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2238 {
   2239 	struct wm_softc *sc = ifp->if_softc;
   2240 	struct ifreq *ifr = (struct ifreq *) data;
   2241 	int s, error;
   2242 
   2243 	s = splnet();
   2244 
   2245 	switch (cmd) {
   2246 	case SIOCSIFMEDIA:
   2247 	case SIOCGIFMEDIA:
   2248 		/* Flow control requires full-duplex mode. */
   2249 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   2250 		    (ifr->ifr_media & IFM_FDX) == 0)
   2251 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   2252 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   2253 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   2254 				/* We can do both TXPAUSE and RXPAUSE. */
   2255 				ifr->ifr_media |=
   2256 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   2257 			}
   2258 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   2259 		}
   2260 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   2261 		break;
   2262 	default:
   2263 		error = ether_ioctl(ifp, cmd, data);
   2264 		if (error == ENETRESET) {
   2265 			/*
   2266 			 * Multicast list has changed; set the hardware filter
   2267 			 * accordingly.
   2268 			 */
   2269 			if (ifp->if_flags & IFF_RUNNING)
   2270 				wm_set_filter(sc);
   2271 			error = 0;
   2272 		}
   2273 		break;
   2274 	}
   2275 
   2276 	/* Try to get more packets going. */
   2277 	wm_start(ifp);
   2278 
   2279 	splx(s);
   2280 	return (error);
   2281 }
   2282 
   2283 /*
   2284  * wm_intr:
   2285  *
   2286  *	Interrupt service routine.
   2287  */
   2288 static int
   2289 wm_intr(void *arg)
   2290 {
   2291 	struct wm_softc *sc = arg;
   2292 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2293 	uint32_t icr;
   2294 	int handled = 0;
   2295 
   2296 	while (1 /* CONSTCOND */) {
   2297 		icr = CSR_READ(sc, WMREG_ICR);
   2298 		if ((icr & sc->sc_icr) == 0)
   2299 			break;
   2300 #if 0 /*NRND > 0*/
   2301 		if (RND_ENABLED(&sc->rnd_source))
   2302 			rnd_add_uint32(&sc->rnd_source, icr);
   2303 #endif
   2304 
   2305 		handled = 1;
   2306 
   2307 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   2308 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   2309 			DPRINTF(WM_DEBUG_RX,
   2310 			    ("%s: RX: got Rx intr 0x%08x\n",
   2311 			    sc->sc_dev.dv_xname,
   2312 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   2313 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
   2314 		}
   2315 #endif
   2316 		wm_rxintr(sc);
   2317 
   2318 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   2319 		if (icr & ICR_TXDW) {
   2320 			DPRINTF(WM_DEBUG_TX,
   2321 			    ("%s: TX: got TXDW interrupt\n",
   2322 			    sc->sc_dev.dv_xname));
   2323 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
   2324 		}
   2325 #endif
   2326 		wm_txintr(sc);
   2327 
   2328 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
   2329 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
   2330 			wm_linkintr(sc, icr);
   2331 		}
   2332 
   2333 		if (icr & ICR_RXO) {
   2334 			ifp->if_ierrors++;
   2335 #if defined(WM_DEBUG)
   2336 			log(LOG_WARNING, "%s: Receive overrun\n",
   2337 			    sc->sc_dev.dv_xname);
   2338 #endif /* defined(WM_DEBUG) */
   2339 		}
   2340 	}
   2341 
   2342 	if (handled) {
   2343 		/* Try to get more packets going. */
   2344 		wm_start(ifp);
   2345 	}
   2346 
   2347 	return (handled);
   2348 }
   2349 
   2350 /*
   2351  * wm_txintr:
   2352  *
   2353  *	Helper; handle transmit interrupts.
   2354  */
   2355 static void
   2356 wm_txintr(struct wm_softc *sc)
   2357 {
   2358 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2359 	struct wm_txsoft *txs;
   2360 	uint8_t status;
   2361 	int i;
   2362 
   2363 	ifp->if_flags &= ~IFF_OACTIVE;
   2364 
   2365 	/*
   2366 	 * Go through the Tx list and free mbufs for those
   2367 	 * frames which have been transmitted.
   2368 	 */
   2369 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
   2370 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
   2371 		txs = &sc->sc_txsoft[i];
   2372 
   2373 		DPRINTF(WM_DEBUG_TX,
   2374 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   2375 
   2376 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   2377 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2378 
   2379 		status =
   2380 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
   2381 		if ((status & WTX_ST_DD) == 0) {
   2382 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   2383 			    BUS_DMASYNC_PREREAD);
   2384 			break;
   2385 		}
   2386 
   2387 		DPRINTF(WM_DEBUG_TX,
   2388 		    ("%s: TX: job %d done: descs %d..%d\n",
   2389 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   2390 		    txs->txs_lastdesc));
   2391 
   2392 		/*
   2393 		 * XXX We should probably be using the statistics
   2394 		 * XXX registers, but I don't know if they exist
   2395 		 * XXX on chips before the i82544.
   2396 		 */
   2397 
   2398 #ifdef WM_EVENT_COUNTERS
   2399 		if (status & WTX_ST_TU)
   2400 			WM_EVCNT_INCR(&sc->sc_ev_tu);
   2401 #endif /* WM_EVENT_COUNTERS */
   2402 
   2403 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
   2404 			ifp->if_oerrors++;
   2405 			if (status & WTX_ST_LC)
   2406 				log(LOG_WARNING, "%s: late collision\n",
   2407 				    sc->sc_dev.dv_xname);
   2408 			else if (status & WTX_ST_EC) {
   2409 				ifp->if_collisions += 16;
   2410 				log(LOG_WARNING, "%s: excessive collisions\n",
   2411 				    sc->sc_dev.dv_xname);
   2412 			}
   2413 		} else
   2414 			ifp->if_opackets++;
   2415 
   2416 		sc->sc_txfree += txs->txs_ndesc;
   2417 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   2418 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2419 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2420 		m_freem(txs->txs_mbuf);
   2421 		txs->txs_mbuf = NULL;
   2422 	}
   2423 
   2424 	/* Update the dirty transmit buffer pointer. */
   2425 	sc->sc_txsdirty = i;
   2426 	DPRINTF(WM_DEBUG_TX,
   2427 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   2428 
   2429 	/*
   2430 	 * If there are no more pending transmissions, cancel the watchdog
   2431 	 * timer.
   2432 	 */
   2433 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
   2434 		ifp->if_timer = 0;
   2435 }
   2436 
   2437 /*
   2438  * wm_rxintr:
   2439  *
   2440  *	Helper; handle receive interrupts.
   2441  */
   2442 static void
   2443 wm_rxintr(struct wm_softc *sc)
   2444 {
   2445 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2446 	struct wm_rxsoft *rxs;
   2447 	struct mbuf *m;
   2448 	int i, len;
   2449 	uint8_t status, errors;
   2450 
   2451 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
   2452 		rxs = &sc->sc_rxsoft[i];
   2453 
   2454 		DPRINTF(WM_DEBUG_RX,
   2455 		    ("%s: RX: checking descriptor %d\n",
   2456 		    sc->sc_dev.dv_xname, i));
   2457 
   2458 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2459 
   2460 		status = sc->sc_rxdescs[i].wrx_status;
   2461 		errors = sc->sc_rxdescs[i].wrx_errors;
   2462 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
   2463 
   2464 		if ((status & WRX_ST_DD) == 0) {
   2465 			/*
   2466 			 * We have processed all of the receive descriptors.
   2467 			 */
   2468 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   2469 			break;
   2470 		}
   2471 
   2472 		if (__predict_false(sc->sc_rxdiscard)) {
   2473 			DPRINTF(WM_DEBUG_RX,
   2474 			    ("%s: RX: discarding contents of descriptor %d\n",
   2475 			    sc->sc_dev.dv_xname, i));
   2476 			WM_INIT_RXDESC(sc, i);
   2477 			if (status & WRX_ST_EOP) {
   2478 				/* Reset our state. */
   2479 				DPRINTF(WM_DEBUG_RX,
   2480 				    ("%s: RX: resetting rxdiscard -> 0\n",
   2481 				    sc->sc_dev.dv_xname));
   2482 				sc->sc_rxdiscard = 0;
   2483 			}
   2484 			continue;
   2485 		}
   2486 
   2487 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2488 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2489 
   2490 		m = rxs->rxs_mbuf;
   2491 
   2492 		/*
   2493 		 * Add a new receive buffer to the ring, unless of
   2494 		 * course the length is zero. Treat the latter as a
   2495 		 * failed mapping.
   2496 		 */
   2497 		if ((len == 0) || (wm_add_rxbuf(sc, i) != 0)) {
   2498 			/*
   2499 			 * Failed, throw away what we've done so
   2500 			 * far, and discard the rest of the packet.
   2501 			 */
   2502 			ifp->if_ierrors++;
   2503 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2504 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2505 			WM_INIT_RXDESC(sc, i);
   2506 			if ((status & WRX_ST_EOP) == 0)
   2507 				sc->sc_rxdiscard = 1;
   2508 			if (sc->sc_rxhead != NULL)
   2509 				m_freem(sc->sc_rxhead);
   2510 			WM_RXCHAIN_RESET(sc);
   2511 			DPRINTF(WM_DEBUG_RX,
   2512 			    ("%s: RX: Rx buffer allocation failed, "
   2513 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   2514 			    sc->sc_rxdiscard ? " (discard)" : ""));
   2515 			continue;
   2516 		}
   2517 
   2518 		WM_RXCHAIN_LINK(sc, m);
   2519 
   2520 		m->m_len = len;
   2521 
   2522 		DPRINTF(WM_DEBUG_RX,
   2523 		    ("%s: RX: buffer at %p len %d\n",
   2524 		    sc->sc_dev.dv_xname, m->m_data, len));
   2525 
   2526 		/*
   2527 		 * If this is not the end of the packet, keep
   2528 		 * looking.
   2529 		 */
   2530 		if ((status & WRX_ST_EOP) == 0) {
   2531 			sc->sc_rxlen += len;
   2532 			DPRINTF(WM_DEBUG_RX,
   2533 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   2534 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   2535 			continue;
   2536 		}
   2537 
   2538 		/*
   2539 		 * Okay, we have the entire packet now.  The chip is
   2540 		 * configured to include the FCS (not all chips can
   2541 		 * be configured to strip it), so we need to trim it.
   2542 		 */
   2543 		m->m_len -= ETHER_CRC_LEN;
   2544 
   2545 		*sc->sc_rxtailp = NULL;
   2546 		len = m->m_len + sc->sc_rxlen;
   2547 		m = sc->sc_rxhead;
   2548 
   2549 		WM_RXCHAIN_RESET(sc);
   2550 
   2551 		DPRINTF(WM_DEBUG_RX,
   2552 		    ("%s: RX: have entire packet, len -> %d\n",
   2553 		    sc->sc_dev.dv_xname, len));
   2554 
   2555 		/*
   2556 		 * If an error occurred, update stats and drop the packet.
   2557 		 */
   2558 		if (errors &
   2559 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
   2560 			ifp->if_ierrors++;
   2561 			if (errors & WRX_ER_SE)
   2562 				log(LOG_WARNING, "%s: symbol error\n",
   2563 				    sc->sc_dev.dv_xname);
   2564 			else if (errors & WRX_ER_SEQ)
   2565 				log(LOG_WARNING, "%s: receive sequence error\n",
   2566 				    sc->sc_dev.dv_xname);
   2567 			else if (errors & WRX_ER_CE)
   2568 				log(LOG_WARNING, "%s: CRC error\n",
   2569 				    sc->sc_dev.dv_xname);
   2570 			m_freem(m);
   2571 			continue;
   2572 		}
   2573 
   2574 		/*
   2575 		 * No errors.  Receive the packet.
   2576 		 */
   2577 		m->m_pkthdr.rcvif = ifp;
   2578 		m->m_pkthdr.len = len;
   2579 
   2580 #if 0 /* XXXJRT */
   2581 		/*
   2582 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2583 		 * for us.  Associate the tag with the packet.
   2584 		 */
   2585 		if ((status & WRX_ST_VP) != 0) {
   2586 			VLAN_INPUT_TAG(ifp, m,
   2587 			    le16toh(sc->sc_rxdescs[i].wrx_special,
   2588 			    continue);
   2589 		}
   2590 #endif /* XXXJRT */
   2591 
   2592 		/*
   2593 		 * Set up checksum info for this packet.
   2594 		 */
   2595 		if ((status & WRX_ST_IXSM) == 0) {
   2596 			if (status & WRX_ST_IPCS) {
   2597 				WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2598 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2599 				if (errors & WRX_ER_IPE)
   2600 					m->m_pkthdr.csum_flags |=
   2601 					    M_CSUM_IPv4_BAD;
   2602 			}
   2603 			if (status & WRX_ST_TCPCS) {
   2604 				/*
   2605 				 * Note: we don't know if this was TCP or UDP,
   2606 				 * so we just set both bits, and expect the
   2607 				 * upper layers to deal.
   2608 				 */
   2609 				WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
   2610 				m->m_pkthdr.csum_flags |=
   2611 				    M_CSUM_TCPv4 | M_CSUM_UDPv4 |
   2612 				    M_CSUM_TCPv6 | M_CSUM_UDPv6;
   2613 				if (errors & WRX_ER_TCPE)
   2614 					m->m_pkthdr.csum_flags |=
   2615 					    M_CSUM_TCP_UDP_BAD;
   2616 			}
   2617 		}
   2618 
   2619 		ifp->if_ipackets++;
   2620 
   2621 #if NBPFILTER > 0
   2622 		/* Pass this up to any BPF listeners. */
   2623 		if (ifp->if_bpf)
   2624 			bpf_mtap(ifp->if_bpf, m);
   2625 #endif /* NBPFILTER > 0 */
   2626 
   2627 		/* Pass it on. */
   2628 		(*ifp->if_input)(ifp, m);
   2629 	}
   2630 
   2631 	/* Update the receive pointer. */
   2632 	sc->sc_rxptr = i;
   2633 
   2634 	DPRINTF(WM_DEBUG_RX,
   2635 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   2636 }
   2637 
   2638 /*
   2639  * wm_linkintr:
   2640  *
   2641  *	Helper; handle link interrupts.
   2642  */
   2643 static void
   2644 wm_linkintr(struct wm_softc *sc, uint32_t icr)
   2645 {
   2646 	uint32_t status;
   2647 
   2648 	/*
   2649 	 * If we get a link status interrupt on a 1000BASE-T
   2650 	 * device, just fall into the normal MII tick path.
   2651 	 */
   2652 	if (sc->sc_flags & WM_F_HAS_MII) {
   2653 		if (icr & ICR_LSC) {
   2654 			DPRINTF(WM_DEBUG_LINK,
   2655 			    ("%s: LINK: LSC -> mii_tick\n",
   2656 			    sc->sc_dev.dv_xname));
   2657 			mii_tick(&sc->sc_mii);
   2658 		} else if (icr & ICR_RXSEQ) {
   2659 			DPRINTF(WM_DEBUG_LINK,
   2660 			    ("%s: LINK Receive sequence error\n",
   2661 			    sc->sc_dev.dv_xname));
   2662 		}
   2663 		return;
   2664 	}
   2665 
   2666 	/*
   2667 	 * If we are now receiving /C/, check for link again in
   2668 	 * a couple of link clock ticks.
   2669 	 */
   2670 	if (icr & ICR_RXCFG) {
   2671 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
   2672 		    sc->sc_dev.dv_xname));
   2673 		sc->sc_tbi_anstate = 2;
   2674 	}
   2675 
   2676 	if (icr & ICR_LSC) {
   2677 		status = CSR_READ(sc, WMREG_STATUS);
   2678 		if (status & STATUS_LU) {
   2679 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
   2680 			    sc->sc_dev.dv_xname,
   2681 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   2682 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2683 			sc->sc_fcrtl &= ~FCRTL_XONE;
   2684 			if (status & STATUS_FD)
   2685 				sc->sc_tctl |=
   2686 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2687 			else
   2688 				sc->sc_tctl |=
   2689 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2690 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   2691 				sc->sc_fcrtl |= FCRTL_XONE;
   2692 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2693 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   2694 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   2695 				      sc->sc_fcrtl);
   2696 			sc->sc_tbi_linkup = 1;
   2697 		} else {
   2698 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   2699 			    sc->sc_dev.dv_xname));
   2700 			sc->sc_tbi_linkup = 0;
   2701 		}
   2702 		sc->sc_tbi_anstate = 2;
   2703 		wm_tbi_set_linkled(sc);
   2704 	} else if (icr & ICR_RXSEQ) {
   2705 		DPRINTF(WM_DEBUG_LINK,
   2706 		    ("%s: LINK: Receive sequence error\n",
   2707 		    sc->sc_dev.dv_xname));
   2708 	}
   2709 }
   2710 
   2711 /*
   2712  * wm_tick:
   2713  *
   2714  *	One second timer, used to check link status, sweep up
   2715  *	completed transmit jobs, etc.
   2716  */
   2717 static void
   2718 wm_tick(void *arg)
   2719 {
   2720 	struct wm_softc *sc = arg;
   2721 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2722 	int s;
   2723 
   2724 	s = splnet();
   2725 
   2726 	if (sc->sc_type >= WM_T_82542_2_1) {
   2727 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
   2728 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
   2729 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
   2730 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
   2731 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
   2732 	}
   2733 
   2734 	ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
   2735 	ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
   2736 
   2737 
   2738 	if (sc->sc_flags & WM_F_HAS_MII)
   2739 		mii_tick(&sc->sc_mii);
   2740 	else
   2741 		wm_tbi_check_link(sc);
   2742 
   2743 	splx(s);
   2744 
   2745 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2746 }
   2747 
   2748 /*
   2749  * wm_reset:
   2750  *
   2751  *	Reset the i82542 chip.
   2752  */
   2753 static void
   2754 wm_reset(struct wm_softc *sc)
   2755 {
   2756 	int i;
   2757 
   2758 	/*
   2759 	 * Allocate on-chip memory according to the MTU size.
   2760 	 * The Packet Buffer Allocation register must be written
   2761 	 * before the chip is reset.
   2762 	 */
   2763 	switch (sc->sc_type) {
   2764 	case WM_T_82547:
   2765 	case WM_T_82547_2:
   2766 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2767 		    PBA_22K : PBA_30K;
   2768 		sc->sc_txfifo_head = 0;
   2769 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
   2770 		sc->sc_txfifo_size =
   2771 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
   2772 		sc->sc_txfifo_stall = 0;
   2773 		break;
   2774 	case WM_T_82571:
   2775 	case WM_T_82572:
   2776 	case WM_T_80003:
   2777 		sc->sc_pba = PBA_32K;
   2778 		break;
   2779 	case WM_T_82573:
   2780 		sc->sc_pba = PBA_12K;
   2781 		break;
   2782 	default:
   2783 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2784 		    PBA_40K : PBA_48K;
   2785 		break;
   2786 	}
   2787 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
   2788 
   2789 	/*
   2790 	 * 82541 Errata 29? & 82547 Errata 28?
   2791 	 * See also the description about PHY_RST bit in CTRL register
   2792 	 * in 8254x_GBe_SDM.pdf.
   2793 	 */
   2794 	if ((sc->sc_type == WM_T_82541) || (sc->sc_type == WM_T_82547)) {
   2795 		CSR_WRITE(sc, WMREG_CTRL,
   2796 		    CSR_READ(sc, WMREG_CTRL) | CTRL_PHY_RESET);
   2797 		delay(5000);
   2798 	}
   2799 
   2800 	switch (sc->sc_type) {
   2801 	case WM_T_82544:
   2802 	case WM_T_82540:
   2803 	case WM_T_82545:
   2804 	case WM_T_82546:
   2805 	case WM_T_82541:
   2806 	case WM_T_82541_2:
   2807 		/*
   2808 		 * On some chipsets, a reset through a memory-mapped write
   2809 		 * cycle can cause the chip to reset before completing the
   2810 		 * write cycle.  This causes major headache that can be
   2811 		 * avoided by issuing the reset via indirect register writes
   2812 		 * through I/O space.
   2813 		 *
   2814 		 * So, if we successfully mapped the I/O BAR at attach time,
   2815 		 * use that.  Otherwise, try our luck with a memory-mapped
   2816 		 * reset.
   2817 		 */
   2818 		if (sc->sc_flags & WM_F_IOH_VALID)
   2819 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
   2820 		else
   2821 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2822 		break;
   2823 
   2824 	case WM_T_82545_3:
   2825 	case WM_T_82546_3:
   2826 		/* Use the shadow control register on these chips. */
   2827 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
   2828 		break;
   2829 
   2830 	default:
   2831 		/* Everything else can safely use the documented method. */
   2832 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2833 		break;
   2834 	}
   2835 	delay(10000);
   2836 
   2837 	for (i = 0; i < 1000; i++) {
   2838 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
   2839 			return;
   2840 		delay(20);
   2841 	}
   2842 
   2843 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
   2844 		log(LOG_ERR, "%s: reset failed to complete\n",
   2845 		    sc->sc_dev.dv_xname);
   2846 
   2847 	if (sc->sc_type == WM_T_80003) {
   2848 		/* wait for eeprom to reload */
   2849 		for (i = 1000; i > 0; i--) {
   2850 			if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD)
   2851 				break;
   2852 		}
   2853 		if (i == 0) {
   2854 			log(LOG_ERR, "%s: auto read from eeprom failed to "
   2855 			    "complete\n", sc->sc_dev.dv_xname);
   2856 		}
   2857 	}
   2858 }
   2859 
   2860 /*
   2861  * wm_init:		[ifnet interface function]
   2862  *
   2863  *	Initialize the interface.  Must be called at splnet().
   2864  */
   2865 static int
   2866 wm_init(struct ifnet *ifp)
   2867 {
   2868 	struct wm_softc *sc = ifp->if_softc;
   2869 	struct wm_rxsoft *rxs;
   2870 	int i, error = 0;
   2871 	uint32_t reg;
   2872 
   2873 	/*
   2874 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   2875 	 * There is a small but measurable benefit to avoiding the adjusment
   2876 	 * of the descriptor so that the headers are aligned, for normal mtu,
   2877 	 * on such platforms.  One possibility is that the DMA itself is
   2878 	 * slightly more efficient if the front of the entire packet (instead
   2879 	 * of the front of the headers) is aligned.
   2880 	 *
   2881 	 * Note we must always set align_tweak to 0 if we are using
   2882 	 * jumbo frames.
   2883 	 */
   2884 #ifdef __NO_STRICT_ALIGNMENT
   2885 	sc->sc_align_tweak = 0;
   2886 #else
   2887 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   2888 		sc->sc_align_tweak = 0;
   2889 	else
   2890 		sc->sc_align_tweak = 2;
   2891 #endif /* __NO_STRICT_ALIGNMENT */
   2892 
   2893 	/* Cancel any pending I/O. */
   2894 	wm_stop(ifp, 0);
   2895 
   2896 	/* update statistics before reset */
   2897 	ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
   2898 	ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
   2899 
   2900 	/* Reset the chip to a known state. */
   2901 	wm_reset(sc);
   2902 
   2903 	/* Initialize the transmit descriptor ring. */
   2904 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
   2905 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
   2906 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2907 	sc->sc_txfree = WM_NTXDESC(sc);
   2908 	sc->sc_txnext = 0;
   2909 
   2910 	if (sc->sc_type < WM_T_82543) {
   2911 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
   2912 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
   2913 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
   2914 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
   2915 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
   2916 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
   2917 	} else {
   2918 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
   2919 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
   2920 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
   2921 		CSR_WRITE(sc, WMREG_TDH, 0);
   2922 		CSR_WRITE(sc, WMREG_TDT, 0);
   2923 		CSR_WRITE(sc, WMREG_TIDV, 64);
   2924 		CSR_WRITE(sc, WMREG_TADV, 128);
   2925 
   2926 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
   2927 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   2928 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
   2929 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
   2930 	}
   2931 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
   2932 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
   2933 
   2934 	/* Initialize the transmit job descriptors. */
   2935 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
   2936 		sc->sc_txsoft[i].txs_mbuf = NULL;
   2937 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
   2938 	sc->sc_txsnext = 0;
   2939 	sc->sc_txsdirty = 0;
   2940 
   2941 	/*
   2942 	 * Initialize the receive descriptor and receive job
   2943 	 * descriptor rings.
   2944 	 */
   2945 	if (sc->sc_type < WM_T_82543) {
   2946 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
   2947 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
   2948 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
   2949 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
   2950 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
   2951 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
   2952 
   2953 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
   2954 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
   2955 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
   2956 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
   2957 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
   2958 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
   2959 	} else {
   2960 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
   2961 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
   2962 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
   2963 		CSR_WRITE(sc, WMREG_RDH, 0);
   2964 		CSR_WRITE(sc, WMREG_RDT, 0);
   2965 		CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
   2966 		CSR_WRITE(sc, WMREG_RADV, 128);
   2967 	}
   2968 	for (i = 0; i < WM_NRXDESC; i++) {
   2969 		rxs = &sc->sc_rxsoft[i];
   2970 		if (rxs->rxs_mbuf == NULL) {
   2971 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
   2972 				log(LOG_ERR, "%s: unable to allocate or map rx "
   2973 				    "buffer %d, error = %d\n",
   2974 				    sc->sc_dev.dv_xname, i, error);
   2975 				/*
   2976 				 * XXX Should attempt to run with fewer receive
   2977 				 * XXX buffers instead of just failing.
   2978 				 */
   2979 				wm_rxdrain(sc);
   2980 				goto out;
   2981 			}
   2982 		} else
   2983 			WM_INIT_RXDESC(sc, i);
   2984 	}
   2985 	sc->sc_rxptr = 0;
   2986 	sc->sc_rxdiscard = 0;
   2987 	WM_RXCHAIN_RESET(sc);
   2988 
   2989 	/*
   2990 	 * Clear out the VLAN table -- we don't use it (yet).
   2991 	 */
   2992 	CSR_WRITE(sc, WMREG_VET, 0);
   2993 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
   2994 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
   2995 
   2996 	/*
   2997 	 * Set up flow-control parameters.
   2998 	 *
   2999 	 * XXX Values could probably stand some tuning.
   3000 	 */
   3001 	CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
   3002 	CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
   3003 	CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
   3004 
   3005 	sc->sc_fcrtl = FCRTL_DFLT;
   3006 	if (sc->sc_type < WM_T_82543) {
   3007 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
   3008 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
   3009 	} else {
   3010 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
   3011 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
   3012 	}
   3013 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
   3014 
   3015 #if 0 /* XXXJRT */
   3016 	/* Deal with VLAN enables. */
   3017 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   3018 		sc->sc_ctrl |= CTRL_VME;
   3019 	else
   3020 #endif /* XXXJRT */
   3021 		sc->sc_ctrl &= ~CTRL_VME;
   3022 
   3023 	/* Write the control registers. */
   3024 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3025 	if (sc->sc_type >= WM_T_80003 && (sc->sc_flags & WM_F_HAS_MII)) {
   3026 		int val;
   3027 		val = CSR_READ(sc, WMREG_CTRL_EXT);
   3028 		val &= ~CTRL_EXT_LINK_MODE_MASK;
   3029 		CSR_WRITE(sc, WMREG_CTRL_EXT, val);
   3030 
   3031 		/* Bypass RX and TX FIFO's */
   3032 		wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL,
   3033 		    KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
   3034 		    KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
   3035 
   3036 		wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL,
   3037 		    KUMCTRLSTA_INB_CTRL_DIS_PADDING |
   3038 		    KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT);
   3039 		/*
   3040 		 * Set the mac to wait the maximum time between each
   3041 		 * iteration and increase the max iterations when
   3042 		 * polling the phy; this fixes erroneous timeouts at 10Mbps.
   3043 		 */
   3044 		wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS, 0xFFFF);
   3045 		val = wm_kmrn_i80003_readreg(sc, KUMCTRLSTA_OFFSET_INB_PARAM);
   3046 		val |= 0x3F;
   3047 		wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_INB_PARAM, val);
   3048 	}
   3049 #if 0
   3050 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   3051 #endif
   3052 
   3053 	/*
   3054 	 * Set up checksum offload parameters.
   3055 	 */
   3056 	reg = CSR_READ(sc, WMREG_RXCSUM);
   3057 	reg &= ~(RXCSUM_IPOFL | RXCSUM_IPV6OFL | RXCSUM_TUOFL);
   3058 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   3059 		reg |= RXCSUM_IPOFL;
   3060 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   3061 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   3062 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
   3063 		reg |= RXCSUM_IPV6OFL | RXCSUM_TUOFL;
   3064 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
   3065 
   3066 	/*
   3067 	 * Set up the interrupt registers.
   3068 	 */
   3069 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   3070 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   3071 	    ICR_RXO | ICR_RXT0;
   3072 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
   3073 		sc->sc_icr |= ICR_RXCFG;
   3074 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
   3075 
   3076 	/* Set up the inter-packet gap. */
   3077 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   3078 
   3079 	if (sc->sc_type >= WM_T_82543) {
   3080 		/* Set up the interrupt throttling register (units of 256ns) */
   3081 		sc->sc_itr = 1000000000 / (7000 * 256);
   3082 		CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
   3083 	}
   3084 
   3085 #if 0 /* XXXJRT */
   3086 	/* Set the VLAN ethernetype. */
   3087 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
   3088 #endif
   3089 
   3090 	/*
   3091 	 * Set up the transmit control register; we start out with
   3092 	 * a collision distance suitable for FDX, but update it whe
   3093 	 * we resolve the media type.
   3094 	 */
   3095 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
   3096 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3097 	if (sc->sc_type >= WM_T_82571)
   3098 		sc->sc_tctl |= TCTL_MULR;
   3099 	if (sc->sc_type >= WM_T_80003)
   3100 		sc->sc_tctl |= TCTL_RTLC;
   3101 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3102 
   3103 	/* Set the media. */
   3104 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
   3105 
   3106 	/*
   3107 	 * Set up the receive control register; we actually program
   3108 	 * the register when we set the receive filter.  Use multicast
   3109 	 * address offset type 0.
   3110 	 *
   3111 	 * Only the i82544 has the ability to strip the incoming
   3112 	 * CRC, so we don't enable that feature.
   3113 	 */
   3114 	sc->sc_mchash_type = 0;
   3115 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
   3116 	    | RCTL_MO(sc->sc_mchash_type);
   3117 
   3118 	/* 82573 doesn't support jumbo frame */
   3119 	if (sc->sc_type != WM_T_82573)
   3120 		sc->sc_rctl |= RCTL_LPE;
   3121 
   3122 	if (MCLBYTES == 2048) {
   3123 		sc->sc_rctl |= RCTL_2k;
   3124 	} else {
   3125 		if (sc->sc_type >= WM_T_82543) {
   3126 			switch(MCLBYTES) {
   3127 			case 4096:
   3128 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
   3129 				break;
   3130 			case 8192:
   3131 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
   3132 				break;
   3133 			case 16384:
   3134 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
   3135 				break;
   3136 			default:
   3137 				panic("wm_init: MCLBYTES %d unsupported",
   3138 				    MCLBYTES);
   3139 				break;
   3140 			}
   3141 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
   3142 	}
   3143 
   3144 	/* Set the receive filter. */
   3145 	wm_set_filter(sc);
   3146 
   3147 	/* Start the one second link check clock. */
   3148 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   3149 
   3150 	/* ...all done! */
   3151 	ifp->if_flags |= IFF_RUNNING;
   3152 	ifp->if_flags &= ~IFF_OACTIVE;
   3153 
   3154  out:
   3155 	if (error)
   3156 		log(LOG_ERR, "%s: interface not running\n",
   3157 		    sc->sc_dev.dv_xname);
   3158 	return (error);
   3159 }
   3160 
   3161 /*
   3162  * wm_rxdrain:
   3163  *
   3164  *	Drain the receive queue.
   3165  */
   3166 static void
   3167 wm_rxdrain(struct wm_softc *sc)
   3168 {
   3169 	struct wm_rxsoft *rxs;
   3170 	int i;
   3171 
   3172 	for (i = 0; i < WM_NRXDESC; i++) {
   3173 		rxs = &sc->sc_rxsoft[i];
   3174 		if (rxs->rxs_mbuf != NULL) {
   3175 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3176 			m_freem(rxs->rxs_mbuf);
   3177 			rxs->rxs_mbuf = NULL;
   3178 		}
   3179 	}
   3180 }
   3181 
   3182 /*
   3183  * wm_stop:		[ifnet interface function]
   3184  *
   3185  *	Stop transmission on the interface.
   3186  */
   3187 static void
   3188 wm_stop(struct ifnet *ifp, int disable)
   3189 {
   3190 	struct wm_softc *sc = ifp->if_softc;
   3191 	struct wm_txsoft *txs;
   3192 	int i;
   3193 
   3194 	/* Stop the one second clock. */
   3195 	callout_stop(&sc->sc_tick_ch);
   3196 
   3197 	/* Stop the 82547 Tx FIFO stall check timer. */
   3198 	if (sc->sc_type == WM_T_82547)
   3199 		callout_stop(&sc->sc_txfifo_ch);
   3200 
   3201 	if (sc->sc_flags & WM_F_HAS_MII) {
   3202 		/* Down the MII. */
   3203 		mii_down(&sc->sc_mii);
   3204 	}
   3205 
   3206 	/* Stop the transmit and receive processes. */
   3207 	CSR_WRITE(sc, WMREG_TCTL, 0);
   3208 	CSR_WRITE(sc, WMREG_RCTL, 0);
   3209 
   3210 	/*
   3211 	 * Clear the interrupt mask to ensure the device cannot assert its
   3212 	 * interrupt line.
   3213 	 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
   3214 	 * any currently pending or shared interrupt.
   3215 	 */
   3216 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   3217 	sc->sc_icr = 0;
   3218 
   3219 	/* Release any queued transmit buffers. */
   3220 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   3221 		txs = &sc->sc_txsoft[i];
   3222 		if (txs->txs_mbuf != NULL) {
   3223 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   3224 			m_freem(txs->txs_mbuf);
   3225 			txs->txs_mbuf = NULL;
   3226 		}
   3227 	}
   3228 
   3229 	if (disable)
   3230 		wm_rxdrain(sc);
   3231 
   3232 	/* Mark the interface as down and cancel the watchdog timer. */
   3233 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3234 	ifp->if_timer = 0;
   3235 }
   3236 
   3237 /*
   3238  * wm_acquire_eeprom:
   3239  *
   3240  *	Perform the EEPROM handshake required on some chips.
   3241  */
   3242 static int
   3243 wm_acquire_eeprom(struct wm_softc *sc)
   3244 {
   3245 	uint32_t reg;
   3246 	int x;
   3247 	int ret = 0;
   3248 
   3249 	/* always success */
   3250 	if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
   3251 		return 0;
   3252 
   3253 	if (sc->sc_flags & WM_F_SWFW_SYNC) {
   3254 		/* this will also do wm_get_swsm_semaphore() if needed */
   3255 		ret = wm_get_swfw_semaphore(sc, SWFW_EEP_SM);
   3256 	} else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
   3257 		ret = wm_get_swsm_semaphore(sc);
   3258 	}
   3259 
   3260 	if (ret)
   3261 		return 1;
   3262 
   3263 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
   3264 		reg = CSR_READ(sc, WMREG_EECD);
   3265 
   3266 		/* Request EEPROM access. */
   3267 		reg |= EECD_EE_REQ;
   3268 		CSR_WRITE(sc, WMREG_EECD, reg);
   3269 
   3270 		/* ..and wait for it to be granted. */
   3271 		for (x = 0; x < 1000; x++) {
   3272 			reg = CSR_READ(sc, WMREG_EECD);
   3273 			if (reg & EECD_EE_GNT)
   3274 				break;
   3275 			delay(5);
   3276 		}
   3277 		if ((reg & EECD_EE_GNT) == 0) {
   3278 			aprint_error("%s: could not acquire EEPROM GNT\n",
   3279 			    sc->sc_dev.dv_xname);
   3280 			reg &= ~EECD_EE_REQ;
   3281 			CSR_WRITE(sc, WMREG_EECD, reg);
   3282 			if (sc->sc_flags & WM_F_SWFW_SYNC)
   3283 				wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
   3284 			else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   3285 				wm_put_swsm_semaphore(sc);
   3286 			return (1);
   3287 		}
   3288 	}
   3289 
   3290 	return (0);
   3291 }
   3292 
   3293 /*
   3294  * wm_release_eeprom:
   3295  *
   3296  *	Release the EEPROM mutex.
   3297  */
   3298 static void
   3299 wm_release_eeprom(struct wm_softc *sc)
   3300 {
   3301 	uint32_t reg;
   3302 
   3303 	/* always success */
   3304 	if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
   3305 		return;
   3306 
   3307 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
   3308 		reg = CSR_READ(sc, WMREG_EECD);
   3309 		reg &= ~EECD_EE_REQ;
   3310 		CSR_WRITE(sc, WMREG_EECD, reg);
   3311 	}
   3312 
   3313 	if (sc->sc_flags & WM_F_SWFW_SYNC)
   3314 		wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
   3315 	else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   3316 		wm_put_swsm_semaphore(sc);
   3317 }
   3318 
   3319 /*
   3320  * wm_eeprom_sendbits:
   3321  *
   3322  *	Send a series of bits to the EEPROM.
   3323  */
   3324 static void
   3325 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
   3326 {
   3327 	uint32_t reg;
   3328 	int x;
   3329 
   3330 	reg = CSR_READ(sc, WMREG_EECD);
   3331 
   3332 	for (x = nbits; x > 0; x--) {
   3333 		if (bits & (1U << (x - 1)))
   3334 			reg |= EECD_DI;
   3335 		else
   3336 			reg &= ~EECD_DI;
   3337 		CSR_WRITE(sc, WMREG_EECD, reg);
   3338 		delay(2);
   3339 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   3340 		delay(2);
   3341 		CSR_WRITE(sc, WMREG_EECD, reg);
   3342 		delay(2);
   3343 	}
   3344 }
   3345 
   3346 /*
   3347  * wm_eeprom_recvbits:
   3348  *
   3349  *	Receive a series of bits from the EEPROM.
   3350  */
   3351 static void
   3352 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
   3353 {
   3354 	uint32_t reg, val;
   3355 	int x;
   3356 
   3357 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
   3358 
   3359 	val = 0;
   3360 	for (x = nbits; x > 0; x--) {
   3361 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   3362 		delay(2);
   3363 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
   3364 			val |= (1U << (x - 1));
   3365 		CSR_WRITE(sc, WMREG_EECD, reg);
   3366 		delay(2);
   3367 	}
   3368 	*valp = val;
   3369 }
   3370 
   3371 /*
   3372  * wm_read_eeprom_uwire:
   3373  *
   3374  *	Read a word from the EEPROM using the MicroWire protocol.
   3375  */
   3376 static int
   3377 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3378 {
   3379 	uint32_t reg, val;
   3380 	int i;
   3381 
   3382 	for (i = 0; i < wordcnt; i++) {
   3383 		/* Clear SK and DI. */
   3384 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
   3385 		CSR_WRITE(sc, WMREG_EECD, reg);
   3386 
   3387 		/* Set CHIP SELECT. */
   3388 		reg |= EECD_CS;
   3389 		CSR_WRITE(sc, WMREG_EECD, reg);
   3390 		delay(2);
   3391 
   3392 		/* Shift in the READ command. */
   3393 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
   3394 
   3395 		/* Shift in address. */
   3396 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
   3397 
   3398 		/* Shift out the data. */
   3399 		wm_eeprom_recvbits(sc, &val, 16);
   3400 		data[i] = val & 0xffff;
   3401 
   3402 		/* Clear CHIP SELECT. */
   3403 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
   3404 		CSR_WRITE(sc, WMREG_EECD, reg);
   3405 		delay(2);
   3406 	}
   3407 
   3408 	return (0);
   3409 }
   3410 
   3411 /*
   3412  * wm_spi_eeprom_ready:
   3413  *
   3414  *	Wait for a SPI EEPROM to be ready for commands.
   3415  */
   3416 static int
   3417 wm_spi_eeprom_ready(struct wm_softc *sc)
   3418 {
   3419 	uint32_t val;
   3420 	int usec;
   3421 
   3422 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
   3423 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
   3424 		wm_eeprom_recvbits(sc, &val, 8);
   3425 		if ((val & SPI_SR_RDY) == 0)
   3426 			break;
   3427 	}
   3428 	if (usec >= SPI_MAX_RETRIES) {
   3429 		aprint_error("%s: EEPROM failed to become ready\n",
   3430 		    sc->sc_dev.dv_xname);
   3431 		return (1);
   3432 	}
   3433 	return (0);
   3434 }
   3435 
   3436 /*
   3437  * wm_read_eeprom_spi:
   3438  *
   3439  *	Read a work from the EEPROM using the SPI protocol.
   3440  */
   3441 static int
   3442 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3443 {
   3444 	uint32_t reg, val;
   3445 	int i;
   3446 	uint8_t opc;
   3447 
   3448 	/* Clear SK and CS. */
   3449 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
   3450 	CSR_WRITE(sc, WMREG_EECD, reg);
   3451 	delay(2);
   3452 
   3453 	if (wm_spi_eeprom_ready(sc))
   3454 		return (1);
   3455 
   3456 	/* Toggle CS to flush commands. */
   3457 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
   3458 	delay(2);
   3459 	CSR_WRITE(sc, WMREG_EECD, reg);
   3460 	delay(2);
   3461 
   3462 	opc = SPI_OPC_READ;
   3463 	if (sc->sc_ee_addrbits == 8 && word >= 128)
   3464 		opc |= SPI_OPC_A8;
   3465 
   3466 	wm_eeprom_sendbits(sc, opc, 8);
   3467 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
   3468 
   3469 	for (i = 0; i < wordcnt; i++) {
   3470 		wm_eeprom_recvbits(sc, &val, 16);
   3471 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
   3472 	}
   3473 
   3474 	/* Raise CS and clear SK. */
   3475 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
   3476 	CSR_WRITE(sc, WMREG_EECD, reg);
   3477 	delay(2);
   3478 
   3479 	return (0);
   3480 }
   3481 
   3482 #define EEPROM_CHECKSUM		0xBABA
   3483 #define EEPROM_SIZE		0x0040
   3484 
   3485 /*
   3486  * wm_validate_eeprom_checksum
   3487  *
   3488  * The checksum is defined as the sum of the first 64 (16 bit) words.
   3489  */
   3490 static int
   3491 wm_validate_eeprom_checksum(struct wm_softc *sc)
   3492 {
   3493 	uint16_t checksum;
   3494 	uint16_t eeprom_data;
   3495 	int i;
   3496 
   3497 	checksum = 0;
   3498 
   3499 	for (i = 0; i < EEPROM_SIZE; i++) {
   3500 		if (wm_read_eeprom(sc, i, 1, &eeprom_data))
   3501 			return 1;
   3502 		checksum += eeprom_data;
   3503 	}
   3504 
   3505 	if (checksum != (uint16_t) EEPROM_CHECKSUM)
   3506 		return 1;
   3507 
   3508 	return 0;
   3509 }
   3510 
   3511 /*
   3512  * wm_read_eeprom:
   3513  *
   3514  *	Read data from the serial EEPROM.
   3515  */
   3516 static int
   3517 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3518 {
   3519 	int rv;
   3520 
   3521 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
   3522 		return 1;
   3523 
   3524 	if (wm_acquire_eeprom(sc))
   3525 		return 1;
   3526 
   3527 	if (sc->sc_flags & WM_F_EEPROM_EERDEEWR)
   3528 		rv = wm_read_eeprom_eerd(sc, word, wordcnt, data);
   3529 	else if (sc->sc_flags & WM_F_EEPROM_SPI)
   3530 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
   3531 	else
   3532 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
   3533 
   3534 	wm_release_eeprom(sc);
   3535 	return rv;
   3536 }
   3537 
   3538 static int
   3539 wm_read_eeprom_eerd(struct wm_softc *sc, int offset, int wordcnt,
   3540     uint16_t *data)
   3541 {
   3542 	int i, eerd = 0;
   3543 	int error = 0;
   3544 
   3545 	for (i = 0; i < wordcnt; i++) {
   3546 		eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
   3547 
   3548 		CSR_WRITE(sc, WMREG_EERD, eerd);
   3549 		error = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
   3550 		if (error != 0)
   3551 			break;
   3552 
   3553 		data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
   3554 	}
   3555 
   3556 	return error;
   3557 }
   3558 
   3559 static int
   3560 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
   3561 {
   3562 	uint32_t attempts = 100000;
   3563 	uint32_t i, reg = 0;
   3564 	int32_t done = -1;
   3565 
   3566 	for (i = 0; i < attempts; i++) {
   3567 		reg = CSR_READ(sc, rw);
   3568 
   3569 		if (reg & EERD_DONE) {
   3570 			done = 0;
   3571 			break;
   3572 		}
   3573 		delay(5);
   3574 	}
   3575 
   3576 	return done;
   3577 }
   3578 
   3579 /*
   3580  * wm_add_rxbuf:
   3581  *
   3582  *	Add a receive buffer to the indiciated descriptor.
   3583  */
   3584 static int
   3585 wm_add_rxbuf(struct wm_softc *sc, int idx)
   3586 {
   3587 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
   3588 	struct mbuf *m;
   3589 	int error;
   3590 
   3591 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3592 	if (m == NULL)
   3593 		return (ENOBUFS);
   3594 
   3595 	MCLGET(m, M_DONTWAIT);
   3596 	if ((m->m_flags & M_EXT) == 0) {
   3597 		m_freem(m);
   3598 		return (ENOBUFS);
   3599 	}
   3600 
   3601 	if (rxs->rxs_mbuf != NULL)
   3602 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3603 
   3604 	rxs->rxs_mbuf = m;
   3605 
   3606 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   3607 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   3608 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   3609 	if (error) {
   3610 		/* XXX XXX XXX */
   3611 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   3612 		    sc->sc_dev.dv_xname, idx, error);
   3613 		panic("wm_add_rxbuf");
   3614 	}
   3615 
   3616 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3617 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3618 
   3619 	WM_INIT_RXDESC(sc, idx);
   3620 
   3621 	return (0);
   3622 }
   3623 
   3624 /*
   3625  * wm_set_ral:
   3626  *
   3627  *	Set an entery in the receive address list.
   3628  */
   3629 static void
   3630 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
   3631 {
   3632 	uint32_t ral_lo, ral_hi;
   3633 
   3634 	if (enaddr != NULL) {
   3635 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   3636 		    (enaddr[3] << 24);
   3637 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   3638 		ral_hi |= RAL_AV;
   3639 	} else {
   3640 		ral_lo = 0;
   3641 		ral_hi = 0;
   3642 	}
   3643 
   3644 	if (sc->sc_type >= WM_T_82544) {
   3645 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
   3646 		    ral_lo);
   3647 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
   3648 		    ral_hi);
   3649 	} else {
   3650 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
   3651 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
   3652 	}
   3653 }
   3654 
   3655 /*
   3656  * wm_mchash:
   3657  *
   3658  *	Compute the hash of the multicast address for the 4096-bit
   3659  *	multicast filter.
   3660  */
   3661 static uint32_t
   3662 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
   3663 {
   3664 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   3665 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   3666 	uint32_t hash;
   3667 
   3668 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   3669 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   3670 
   3671 	return (hash & 0xfff);
   3672 }
   3673 
   3674 /*
   3675  * wm_set_filter:
   3676  *
   3677  *	Set up the receive filter.
   3678  */
   3679 static void
   3680 wm_set_filter(struct wm_softc *sc)
   3681 {
   3682 	struct ethercom *ec = &sc->sc_ethercom;
   3683 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3684 	struct ether_multi *enm;
   3685 	struct ether_multistep step;
   3686 	bus_addr_t mta_reg;
   3687 	uint32_t hash, reg, bit;
   3688 	int i;
   3689 
   3690 	if (sc->sc_type >= WM_T_82544)
   3691 		mta_reg = WMREG_CORDOVA_MTA;
   3692 	else
   3693 		mta_reg = WMREG_MTA;
   3694 
   3695 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   3696 
   3697 	if (ifp->if_flags & IFF_BROADCAST)
   3698 		sc->sc_rctl |= RCTL_BAM;
   3699 	if (ifp->if_flags & IFF_PROMISC) {
   3700 		sc->sc_rctl |= RCTL_UPE;
   3701 		goto allmulti;
   3702 	}
   3703 
   3704 	/*
   3705 	 * Set the station address in the first RAL slot, and
   3706 	 * clear the remaining slots.
   3707 	 */
   3708 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
   3709 	for (i = 1; i < WM_RAL_TABSIZE; i++)
   3710 		wm_set_ral(sc, NULL, i);
   3711 
   3712 	/* Clear out the multicast table. */
   3713 	for (i = 0; i < WM_MC_TABSIZE; i++)
   3714 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
   3715 
   3716 	ETHER_FIRST_MULTI(step, ec, enm);
   3717 	while (enm != NULL) {
   3718 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3719 			/*
   3720 			 * We must listen to a range of multicast addresses.
   3721 			 * For now, just accept all multicasts, rather than
   3722 			 * trying to set only those filter bits needed to match
   3723 			 * the range.  (At this time, the only use of address
   3724 			 * ranges is for IP multicast routing, for which the
   3725 			 * range is big enough to require all bits set.)
   3726 			 */
   3727 			goto allmulti;
   3728 		}
   3729 
   3730 		hash = wm_mchash(sc, enm->enm_addrlo);
   3731 
   3732 		reg = (hash >> 5) & 0x7f;
   3733 		bit = hash & 0x1f;
   3734 
   3735 		hash = CSR_READ(sc, mta_reg + (reg << 2));
   3736 		hash |= 1U << bit;
   3737 
   3738 		/* XXX Hardware bug?? */
   3739 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
   3740 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
   3741 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3742 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
   3743 		} else
   3744 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3745 
   3746 		ETHER_NEXT_MULTI(step, enm);
   3747 	}
   3748 
   3749 	ifp->if_flags &= ~IFF_ALLMULTI;
   3750 	goto setit;
   3751 
   3752  allmulti:
   3753 	ifp->if_flags |= IFF_ALLMULTI;
   3754 	sc->sc_rctl |= RCTL_MPE;
   3755 
   3756  setit:
   3757 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
   3758 }
   3759 
   3760 /*
   3761  * wm_tbi_mediainit:
   3762  *
   3763  *	Initialize media for use on 1000BASE-X devices.
   3764  */
   3765 static void
   3766 wm_tbi_mediainit(struct wm_softc *sc)
   3767 {
   3768 	const char *sep = "";
   3769 
   3770 	if (sc->sc_type < WM_T_82543)
   3771 		sc->sc_tipg = TIPG_WM_DFLT;
   3772 	else
   3773 		sc->sc_tipg = TIPG_LG_DFLT;
   3774 
   3775 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
   3776 	    wm_tbi_mediastatus);
   3777 
   3778 	/*
   3779 	 * SWD Pins:
   3780 	 *
   3781 	 *	0 = Link LED (output)
   3782 	 *	1 = Loss Of Signal (input)
   3783 	 */
   3784 	sc->sc_ctrl |= CTRL_SWDPIO(0);
   3785 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
   3786 
   3787 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3788 
   3789 #define	ADD(ss, mm, dd)							\
   3790 do {									\
   3791 	aprint_normal("%s%s", sep, ss);					\
   3792 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
   3793 	sep = ", ";							\
   3794 } while (/*CONSTCOND*/0)
   3795 
   3796 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
   3797 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
   3798 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
   3799 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
   3800 	aprint_normal("\n");
   3801 
   3802 #undef ADD
   3803 
   3804 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   3805 }
   3806 
   3807 /*
   3808  * wm_tbi_mediastatus:	[ifmedia interface function]
   3809  *
   3810  *	Get the current interface media status on a 1000BASE-X device.
   3811  */
   3812 static void
   3813 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3814 {
   3815 	struct wm_softc *sc = ifp->if_softc;
   3816 	uint32_t ctrl;
   3817 
   3818 	ifmr->ifm_status = IFM_AVALID;
   3819 	ifmr->ifm_active = IFM_ETHER;
   3820 
   3821 	if (sc->sc_tbi_linkup == 0) {
   3822 		ifmr->ifm_active |= IFM_NONE;
   3823 		return;
   3824 	}
   3825 
   3826 	ifmr->ifm_status |= IFM_ACTIVE;
   3827 	ifmr->ifm_active |= IFM_1000_SX;
   3828 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
   3829 		ifmr->ifm_active |= IFM_FDX;
   3830 	ctrl = CSR_READ(sc, WMREG_CTRL);
   3831 	if (ctrl & CTRL_RFCE)
   3832 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   3833 	if (ctrl & CTRL_TFCE)
   3834 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   3835 }
   3836 
   3837 /*
   3838  * wm_tbi_mediachange:	[ifmedia interface function]
   3839  *
   3840  *	Set hardware to newly-selected media on a 1000BASE-X device.
   3841  */
   3842 static int
   3843 wm_tbi_mediachange(struct ifnet *ifp)
   3844 {
   3845 	struct wm_softc *sc = ifp->if_softc;
   3846 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   3847 	uint32_t status;
   3848 	int i;
   3849 
   3850 	sc->sc_txcw = ife->ifm_data;
   3851 	DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x on entry\n",
   3852 		    sc->sc_dev.dv_xname,sc->sc_txcw));
   3853 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
   3854 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
   3855 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
   3856 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
   3857 		sc->sc_txcw |= TXCW_ANE;
   3858 	} else {
   3859 		/*If autonegotiation is turned off, force link up and turn on full duplex*/
   3860 		sc->sc_txcw &= ~TXCW_ANE;
   3861 		sc->sc_ctrl |= CTRL_SLU | CTRL_FD;
   3862 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3863 		delay(1000);
   3864 	}
   3865 
   3866 	DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x after autoneg check\n",
   3867 		    sc->sc_dev.dv_xname,sc->sc_txcw));
   3868 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   3869 	delay(10000);
   3870 
   3871 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
   3872 
   3873 	sc->sc_tbi_anstate = 0;
   3874 
   3875 	i = CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1);
   3876 	DPRINTF(WM_DEBUG_LINK,("%s: i = 0x%x\n", sc->sc_dev.dv_xname,i));
   3877 
   3878 	/*
   3879 	 * On 82544 chips and later, the CTRL_SWDPIN(1) bit will be set if the
   3880 	 * optics detect a signal, 0 if they don't.
   3881 	 */
   3882 	if (((i != 0) && (sc->sc_type >= WM_T_82544)) || (i == 0)) {
   3883 		/* Have signal; wait for the link to come up. */
   3884 
   3885 		if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
   3886 			/*
   3887 			 * Reset the link, and let autonegotiation do its thing
   3888 			 */
   3889 			sc->sc_ctrl |= CTRL_LRST;
   3890 			CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3891 			delay(1000);
   3892 			sc->sc_ctrl &= ~CTRL_LRST;
   3893 			CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3894 			delay(1000);
   3895 		}
   3896 
   3897 		for (i = 0; i < 50; i++) {
   3898 			delay(10000);
   3899 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
   3900 				break;
   3901 		}
   3902 
   3903 		DPRINTF(WM_DEBUG_LINK,("%s: i = %d after waiting for link\n",
   3904 			    sc->sc_dev.dv_xname,i));
   3905 
   3906 		status = CSR_READ(sc, WMREG_STATUS);
   3907 		DPRINTF(WM_DEBUG_LINK,
   3908 		    ("%s: status after final read = 0x%x, STATUS_LU = 0x%x\n",
   3909 			sc->sc_dev.dv_xname,status, STATUS_LU));
   3910 		if (status & STATUS_LU) {
   3911 			/* Link is up. */
   3912 			DPRINTF(WM_DEBUG_LINK,
   3913 			    ("%s: LINK: set media -> link up %s\n",
   3914 			    sc->sc_dev.dv_xname,
   3915 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   3916 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3917 			sc->sc_fcrtl &= ~FCRTL_XONE;
   3918 			if (status & STATUS_FD)
   3919 				sc->sc_tctl |=
   3920 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3921 			else
   3922 				sc->sc_tctl |=
   3923 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3924 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   3925 				sc->sc_fcrtl |= FCRTL_XONE;
   3926 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3927 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   3928 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   3929 				      sc->sc_fcrtl);
   3930 			sc->sc_tbi_linkup = 1;
   3931 		} else {
   3932 			/* Link is down. */
   3933 			DPRINTF(WM_DEBUG_LINK,
   3934 			    ("%s: LINK: set media -> link down\n",
   3935 			    sc->sc_dev.dv_xname));
   3936 			sc->sc_tbi_linkup = 0;
   3937 		}
   3938 	} else {
   3939 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
   3940 		    sc->sc_dev.dv_xname));
   3941 		sc->sc_tbi_linkup = 0;
   3942 	}
   3943 
   3944 	wm_tbi_set_linkled(sc);
   3945 
   3946 	return (0);
   3947 }
   3948 
   3949 /*
   3950  * wm_tbi_set_linkled:
   3951  *
   3952  *	Update the link LED on 1000BASE-X devices.
   3953  */
   3954 static void
   3955 wm_tbi_set_linkled(struct wm_softc *sc)
   3956 {
   3957 
   3958 	if (sc->sc_tbi_linkup)
   3959 		sc->sc_ctrl |= CTRL_SWDPIN(0);
   3960 	else
   3961 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
   3962 
   3963 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3964 }
   3965 
   3966 /*
   3967  * wm_tbi_check_link:
   3968  *
   3969  *	Check the link on 1000BASE-X devices.
   3970  */
   3971 static void
   3972 wm_tbi_check_link(struct wm_softc *sc)
   3973 {
   3974 	uint32_t rxcw, ctrl, status;
   3975 
   3976 	if (sc->sc_tbi_anstate == 0)
   3977 		return;
   3978 	else if (sc->sc_tbi_anstate > 1) {
   3979 		DPRINTF(WM_DEBUG_LINK,
   3980 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
   3981 		    sc->sc_tbi_anstate));
   3982 		sc->sc_tbi_anstate--;
   3983 		return;
   3984 	}
   3985 
   3986 	sc->sc_tbi_anstate = 0;
   3987 
   3988 	rxcw = CSR_READ(sc, WMREG_RXCW);
   3989 	ctrl = CSR_READ(sc, WMREG_CTRL);
   3990 	status = CSR_READ(sc, WMREG_STATUS);
   3991 
   3992 	if ((status & STATUS_LU) == 0) {
   3993 		DPRINTF(WM_DEBUG_LINK,
   3994 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
   3995 		sc->sc_tbi_linkup = 0;
   3996 	} else {
   3997 		DPRINTF(WM_DEBUG_LINK,
   3998 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
   3999 		    (status & STATUS_FD) ? "FDX" : "HDX"));
   4000 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   4001 		sc->sc_fcrtl &= ~FCRTL_XONE;
   4002 		if (status & STATUS_FD)
   4003 			sc->sc_tctl |=
   4004 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   4005 		else
   4006 			sc->sc_tctl |=
   4007 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   4008 		if (ctrl & CTRL_TFCE)
   4009 			sc->sc_fcrtl |= FCRTL_XONE;
   4010 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   4011 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   4012 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
   4013 			      sc->sc_fcrtl);
   4014 		sc->sc_tbi_linkup = 1;
   4015 	}
   4016 
   4017 	wm_tbi_set_linkled(sc);
   4018 }
   4019 
   4020 /*
   4021  * wm_gmii_reset:
   4022  *
   4023  *	Reset the PHY.
   4024  */
   4025 static void
   4026 wm_gmii_reset(struct wm_softc *sc)
   4027 {
   4028 	uint32_t reg;
   4029 	int func = 0; /* XXX gcc */
   4030 
   4031 	if (sc->sc_type >= WM_T_80003) {
   4032 		func = (CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1;
   4033 		if (wm_get_swfw_semaphore(sc,
   4034 		    func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
   4035 			return;
   4036 	}
   4037 	if (sc->sc_type >= WM_T_82544) {
   4038 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   4039 		delay(20000);
   4040 
   4041 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4042 		delay(20000);
   4043 	} else {
   4044                 /*
   4045                  * With 82543, we need to force speed and duplex on the MAC
   4046                  * equal to what the PHY speed and duplex configuration is.
   4047                  * In addition, we need to perform a hardware reset on the PHY
   4048                  * to take it out of reset.
   4049                  */
   4050                 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
   4051                 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4052 
   4053 		/* The PHY reset pin is active-low. */
   4054 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   4055 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
   4056 		    CTRL_EXT_SWDPIN(4));
   4057 		reg |= CTRL_EXT_SWDPIO(4);
   4058 
   4059 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   4060 		delay(10);
   4061 
   4062 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   4063 		delay(10000);
   4064 
   4065 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   4066 		delay(10);
   4067 #if 0
   4068 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
   4069 #endif
   4070 	}
   4071 	if (sc->sc_type >= WM_T_80003)
   4072 		wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
   4073 }
   4074 
   4075 /*
   4076  * wm_gmii_mediainit:
   4077  *
   4078  *	Initialize media for use on 1000BASE-T devices.
   4079  */
   4080 static void
   4081 wm_gmii_mediainit(struct wm_softc *sc)
   4082 {
   4083 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   4084 
   4085 	/* We have MII. */
   4086 	sc->sc_flags |= WM_F_HAS_MII;
   4087 
   4088 	if (sc->sc_type >= WM_T_80003)
   4089 		sc->sc_tipg =  TIPG_1000T_80003_DFLT;
   4090 	else
   4091 		sc->sc_tipg = TIPG_1000T_DFLT;
   4092 
   4093 	/*
   4094 	 * Let the chip set speed/duplex on its own based on
   4095 	 * signals from the PHY.
   4096 	 * XXXbouyer - I'm not sure this is right for the 80003,
   4097 	 * the em driver only sets CTRL_SLU here - but it seems to work.
   4098 	 */
   4099 	sc->sc_ctrl |= CTRL_SLU;
   4100 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4101 
   4102 	/* Initialize our media structures and probe the GMII. */
   4103 	sc->sc_mii.mii_ifp = ifp;
   4104 
   4105 	if (sc->sc_type >= WM_T_80003) {
   4106 		sc->sc_mii.mii_readreg = wm_gmii_i80003_readreg;
   4107 		sc->sc_mii.mii_writereg = wm_gmii_i80003_writereg;
   4108 	} else if (sc->sc_type >= WM_T_82544) {
   4109 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
   4110 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
   4111 	} else {
   4112 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
   4113 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
   4114 	}
   4115 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
   4116 
   4117 	wm_gmii_reset(sc);
   4118 
   4119 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
   4120 	    wm_gmii_mediastatus);
   4121 
   4122 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   4123 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
   4124 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   4125 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   4126 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   4127 	} else
   4128 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   4129 }
   4130 
   4131 /*
   4132  * wm_gmii_mediastatus:	[ifmedia interface function]
   4133  *
   4134  *	Get the current interface media status on a 1000BASE-T device.
   4135  */
   4136 static void
   4137 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   4138 {
   4139 	struct wm_softc *sc = ifp->if_softc;
   4140 
   4141 	mii_pollstat(&sc->sc_mii);
   4142 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   4143 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
   4144 			   sc->sc_flowflags;
   4145 }
   4146 
   4147 /*
   4148  * wm_gmii_mediachange:	[ifmedia interface function]
   4149  *
   4150  *	Set hardware to newly-selected media on a 1000BASE-T device.
   4151  */
   4152 static int
   4153 wm_gmii_mediachange(struct ifnet *ifp)
   4154 {
   4155 	struct wm_softc *sc = ifp->if_softc;
   4156 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   4157 
   4158 	if (ifp->if_flags & IFF_UP) {
   4159 		sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
   4160 		sc->sc_ctrl |= CTRL_SLU;
   4161 		if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
   4162 		    || (sc->sc_type > WM_T_82543)) {
   4163 			sc->sc_ctrl &= ~(CTRL_FRCSPD | CTRL_FRCFDX);
   4164 		} else {
   4165 			sc->sc_ctrl &= ~CTRL_ASDE;
   4166 			sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
   4167 			if (ife->ifm_media & IFM_FDX)
   4168 				sc->sc_ctrl |= CTRL_FD;
   4169 			switch(IFM_SUBTYPE(ife->ifm_media)) {
   4170 			case IFM_10_T:
   4171 				sc->sc_ctrl |= CTRL_SPEED_10;
   4172 				break;
   4173 			case IFM_100_TX:
   4174 				sc->sc_ctrl |= CTRL_SPEED_100;
   4175 				break;
   4176 			case IFM_1000_T:
   4177 				sc->sc_ctrl |= CTRL_SPEED_1000;
   4178 				break;
   4179 			default:
   4180 				panic("wm_gmii_mediachange: bad media 0x%x",
   4181 				    ife->ifm_media);
   4182 			}
   4183 		}
   4184 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4185 		if (sc->sc_type <= WM_T_82543)
   4186 			wm_gmii_reset(sc);
   4187 		mii_mediachg(&sc->sc_mii);
   4188 	}
   4189 	return (0);
   4190 }
   4191 
   4192 #define	MDI_IO		CTRL_SWDPIN(2)
   4193 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
   4194 #define	MDI_CLK		CTRL_SWDPIN(3)
   4195 
   4196 static void
   4197 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
   4198 {
   4199 	uint32_t i, v;
   4200 
   4201 	v = CSR_READ(sc, WMREG_CTRL);
   4202 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   4203 	v |= MDI_DIR | CTRL_SWDPIO(3);
   4204 
   4205 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
   4206 		if (data & i)
   4207 			v |= MDI_IO;
   4208 		else
   4209 			v &= ~MDI_IO;
   4210 		CSR_WRITE(sc, WMREG_CTRL, v);
   4211 		delay(10);
   4212 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   4213 		delay(10);
   4214 		CSR_WRITE(sc, WMREG_CTRL, v);
   4215 		delay(10);
   4216 	}
   4217 }
   4218 
   4219 static uint32_t
   4220 i82543_mii_recvbits(struct wm_softc *sc)
   4221 {
   4222 	uint32_t v, i, data = 0;
   4223 
   4224 	v = CSR_READ(sc, WMREG_CTRL);
   4225 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   4226 	v |= CTRL_SWDPIO(3);
   4227 
   4228 	CSR_WRITE(sc, WMREG_CTRL, v);
   4229 	delay(10);
   4230 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   4231 	delay(10);
   4232 	CSR_WRITE(sc, WMREG_CTRL, v);
   4233 	delay(10);
   4234 
   4235 	for (i = 0; i < 16; i++) {
   4236 		data <<= 1;
   4237 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   4238 		delay(10);
   4239 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
   4240 			data |= 1;
   4241 		CSR_WRITE(sc, WMREG_CTRL, v);
   4242 		delay(10);
   4243 	}
   4244 
   4245 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   4246 	delay(10);
   4247 	CSR_WRITE(sc, WMREG_CTRL, v);
   4248 	delay(10);
   4249 
   4250 	return (data);
   4251 }
   4252 
   4253 #undef MDI_IO
   4254 #undef MDI_DIR
   4255 #undef MDI_CLK
   4256 
   4257 /*
   4258  * wm_gmii_i82543_readreg:	[mii interface function]
   4259  *
   4260  *	Read a PHY register on the GMII (i82543 version).
   4261  */
   4262 static int
   4263 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
   4264 {
   4265 	struct wm_softc *sc = (void *) self;
   4266 	int rv;
   4267 
   4268 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   4269 	i82543_mii_sendbits(sc, reg | (phy << 5) |
   4270 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
   4271 	rv = i82543_mii_recvbits(sc) & 0xffff;
   4272 
   4273 	DPRINTF(WM_DEBUG_GMII,
   4274 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
   4275 	    sc->sc_dev.dv_xname, phy, reg, rv));
   4276 
   4277 	return (rv);
   4278 }
   4279 
   4280 /*
   4281  * wm_gmii_i82543_writereg:	[mii interface function]
   4282  *
   4283  *	Write a PHY register on the GMII (i82543 version).
   4284  */
   4285 static void
   4286 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
   4287 {
   4288 	struct wm_softc *sc = (void *) self;
   4289 
   4290 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   4291 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
   4292 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
   4293 	    (MII_COMMAND_START << 30), 32);
   4294 }
   4295 
   4296 /*
   4297  * wm_gmii_i82544_readreg:	[mii interface function]
   4298  *
   4299  *	Read a PHY register on the GMII.
   4300  */
   4301 static int
   4302 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
   4303 {
   4304 	struct wm_softc *sc = (void *) self;
   4305 	uint32_t mdic = 0;
   4306 	int i, rv;
   4307 
   4308 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
   4309 	    MDIC_REGADD(reg));
   4310 
   4311 	for (i = 0; i < 320; i++) {
   4312 		mdic = CSR_READ(sc, WMREG_MDIC);
   4313 		if (mdic & MDIC_READY)
   4314 			break;
   4315 		delay(10);
   4316 	}
   4317 
   4318 	if ((mdic & MDIC_READY) == 0) {
   4319 		log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
   4320 		    sc->sc_dev.dv_xname, phy, reg);
   4321 		rv = 0;
   4322 	} else if (mdic & MDIC_E) {
   4323 #if 0 /* This is normal if no PHY is present. */
   4324 		log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
   4325 		    sc->sc_dev.dv_xname, phy, reg);
   4326 #endif
   4327 		rv = 0;
   4328 	} else {
   4329 		rv = MDIC_DATA(mdic);
   4330 		if (rv == 0xffff)
   4331 			rv = 0;
   4332 	}
   4333 
   4334 	return (rv);
   4335 }
   4336 
   4337 /*
   4338  * wm_gmii_i82544_writereg:	[mii interface function]
   4339  *
   4340  *	Write a PHY register on the GMII.
   4341  */
   4342 static void
   4343 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
   4344 {
   4345 	struct wm_softc *sc = (void *) self;
   4346 	uint32_t mdic = 0;
   4347 	int i;
   4348 
   4349 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
   4350 	    MDIC_REGADD(reg) | MDIC_DATA(val));
   4351 
   4352 	for (i = 0; i < 320; i++) {
   4353 		mdic = CSR_READ(sc, WMREG_MDIC);
   4354 		if (mdic & MDIC_READY)
   4355 			break;
   4356 		delay(10);
   4357 	}
   4358 
   4359 	if ((mdic & MDIC_READY) == 0)
   4360 		log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
   4361 		    sc->sc_dev.dv_xname, phy, reg);
   4362 	else if (mdic & MDIC_E)
   4363 		log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
   4364 		    sc->sc_dev.dv_xname, phy, reg);
   4365 }
   4366 
   4367 /*
   4368  * wm_gmii_i80003_readreg:	[mii interface function]
   4369  *
   4370  *	Read a PHY register on the kumeran
   4371  * This could be handled by the PHY layer if we didn't have to lock the
   4372  * ressource ...
   4373  */
   4374 static int
   4375 wm_gmii_i80003_readreg(struct device *self, int phy, int reg)
   4376 {
   4377 	struct wm_softc *sc = (void *) self;
   4378 	int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
   4379 	int rv;
   4380 
   4381 	if (phy != 1) /* only one PHY on kumeran bus */
   4382 		return 0;
   4383 
   4384 	if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
   4385 		return 0;
   4386 
   4387 	if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
   4388 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
   4389 		    reg >> GG82563_PAGE_SHIFT);
   4390 	} else {
   4391 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
   4392 		    reg >> GG82563_PAGE_SHIFT);
   4393 	}
   4394 
   4395 	rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
   4396 	wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
   4397 	return (rv);
   4398 }
   4399 
   4400 /*
   4401  * wm_gmii_i80003_writereg:	[mii interface function]
   4402  *
   4403  *	Write a PHY register on the kumeran.
   4404  * This could be handled by the PHY layer if we didn't have to lock the
   4405  * ressource ...
   4406  */
   4407 static void
   4408 wm_gmii_i80003_writereg(struct device *self, int phy, int reg, int val)
   4409 {
   4410 	struct wm_softc *sc = (void *) self;
   4411 	int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
   4412 
   4413 	if (phy != 1) /* only one PHY on kumeran bus */
   4414 		return;
   4415 
   4416 	if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
   4417 		return;
   4418 
   4419 	if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
   4420 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
   4421 		    reg >> GG82563_PAGE_SHIFT);
   4422 	} else {
   4423 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
   4424 		    reg >> GG82563_PAGE_SHIFT);
   4425 	}
   4426 
   4427 	wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
   4428 	wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
   4429 }
   4430 
   4431 /*
   4432  * wm_gmii_statchg:	[mii interface function]
   4433  *
   4434  *	Callback from MII layer when media changes.
   4435  */
   4436 static void
   4437 wm_gmii_statchg(struct device *self)
   4438 {
   4439 	struct wm_softc *sc = (void *) self;
   4440 	struct mii_data *mii = &sc->sc_mii;
   4441 
   4442 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
   4443 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   4444 	sc->sc_fcrtl &= ~FCRTL_XONE;
   4445 
   4446 	/*
   4447 	 * Get flow control negotiation result.
   4448 	 */
   4449 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   4450 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   4451 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   4452 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   4453 	}
   4454 
   4455 	if (sc->sc_flowflags & IFM_FLOW) {
   4456 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
   4457 			sc->sc_ctrl |= CTRL_TFCE;
   4458 			sc->sc_fcrtl |= FCRTL_XONE;
   4459 		}
   4460 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   4461 			sc->sc_ctrl |= CTRL_RFCE;
   4462 	}
   4463 
   4464 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   4465 		DPRINTF(WM_DEBUG_LINK,
   4466 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
   4467 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   4468 	} else  {
   4469 		DPRINTF(WM_DEBUG_LINK,
   4470 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
   4471 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   4472 	}
   4473 
   4474 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4475 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   4476 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
   4477 						 : WMREG_FCRTL, sc->sc_fcrtl);
   4478 	if (sc->sc_type >= WM_T_80003) {
   4479 		switch(IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
   4480 		case IFM_1000_T:
   4481 			wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
   4482 			    KUMCTRLSTA_HD_CTRL_1000_DEFAULT);
   4483 			sc->sc_tipg =  TIPG_1000T_80003_DFLT;
   4484 			break;
   4485 		default:
   4486 			wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
   4487 			    KUMCTRLSTA_HD_CTRL_10_100_DEFAULT);
   4488 			sc->sc_tipg =  TIPG_10_100_80003_DFLT;
   4489 			break;
   4490 		}
   4491 		CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   4492 	}
   4493 }
   4494 
   4495 /*
   4496  * wm_kmrn_i80003_readreg:
   4497  *
   4498  *	Read a kumeran register
   4499  */
   4500 static int
   4501 wm_kmrn_i80003_readreg(struct wm_softc *sc, int reg)
   4502 {
   4503 	int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
   4504 	int rv;
   4505 
   4506 	if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
   4507 		return 0;
   4508 
   4509 	CSR_WRITE(sc, WMREG_KUMCTRLSTA,
   4510 	    ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
   4511 	    KUMCTRLSTA_REN);
   4512 	delay(2);
   4513 
   4514 	rv = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK;
   4515 	wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
   4516 	return (rv);
   4517 }
   4518 
   4519 /*
   4520  * wm_kmrn_i80003_writereg:
   4521  *
   4522  *	Write a kumeran register
   4523  */
   4524 static void
   4525 wm_kmrn_i80003_writereg(struct wm_softc *sc, int reg, int val)
   4526 {
   4527 	int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
   4528 
   4529 	if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
   4530 		return;
   4531 
   4532 	CSR_WRITE(sc, WMREG_KUMCTRLSTA,
   4533 	    ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
   4534 	    (val & KUMCTRLSTA_MASK));
   4535 	wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
   4536 }
   4537 
   4538 static int
   4539 wm_is_onboard_nvm_eeprom(struct wm_softc *sc)
   4540 {
   4541 	uint32_t eecd = 0;
   4542 
   4543 	if (sc->sc_type == WM_T_82573) {
   4544 		eecd = CSR_READ(sc, WMREG_EECD);
   4545 
   4546 		/* Isolate bits 15 & 16 */
   4547 		eecd = ((eecd >> 15) & 0x03);
   4548 
   4549 		/* If both bits are set, device is Flash type */
   4550 		if (eecd == 0x03) {
   4551 			return 0;
   4552 		}
   4553 	}
   4554 	return 1;
   4555 }
   4556 
   4557 static int
   4558 wm_get_swsm_semaphore(struct wm_softc *sc)
   4559 {
   4560 	int32_t timeout;
   4561 	uint32_t swsm;
   4562 
   4563 	/* Get the FW semaphore. */
   4564 	timeout = 1000 + 1; /* XXX */
   4565 	while (timeout) {
   4566 		swsm = CSR_READ(sc, WMREG_SWSM);
   4567 		swsm |= SWSM_SWESMBI;
   4568 		CSR_WRITE(sc, WMREG_SWSM, swsm);
   4569 		/* if we managed to set the bit we got the semaphore. */
   4570 		swsm = CSR_READ(sc, WMREG_SWSM);
   4571 		if (swsm & SWSM_SWESMBI)
   4572 			break;
   4573 
   4574 		delay(50);
   4575 		timeout--;
   4576 	}
   4577 
   4578 	if (timeout == 0) {
   4579 		aprint_error("%s: could not acquire EEPROM GNT\n",
   4580 		    sc->sc_dev.dv_xname);
   4581 		/* Release semaphores */
   4582 		wm_put_swsm_semaphore(sc);
   4583 		return 1;
   4584 	}
   4585 	return 0;
   4586 }
   4587 
   4588 static void
   4589 wm_put_swsm_semaphore(struct wm_softc *sc)
   4590 {
   4591 	uint32_t swsm;
   4592 
   4593 	swsm = CSR_READ(sc, WMREG_SWSM);
   4594 	swsm &= ~(SWSM_SWESMBI);
   4595 	CSR_WRITE(sc, WMREG_SWSM, swsm);
   4596 }
   4597 
   4598 static int
   4599 wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
   4600 {
   4601 	uint32_t swfw_sync;
   4602 	uint32_t swmask = mask << SWFW_SOFT_SHIFT;
   4603 	uint32_t fwmask = mask << SWFW_FIRM_SHIFT;
   4604 	int timeout = 200;
   4605 
   4606 	for(timeout = 0; timeout < 200; timeout++) {
   4607 		if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
   4608 			if (wm_get_swsm_semaphore(sc))
   4609 				return 1;
   4610 		}
   4611 		swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
   4612 		if ((swfw_sync & (swmask | fwmask)) == 0) {
   4613 			swfw_sync |= swmask;
   4614 			CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
   4615 			if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   4616 				wm_put_swsm_semaphore(sc);
   4617 			return 0;
   4618 		}
   4619 		if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   4620 			wm_put_swsm_semaphore(sc);
   4621 		delay(5000);
   4622 	}
   4623 	printf("%s: failed to get swfw semaphore mask 0x%x swfw 0x%x\n",
   4624 	    sc->sc_dev.dv_xname, mask, swfw_sync);
   4625 	return 1;
   4626 }
   4627 
   4628 static void
   4629 wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
   4630 {
   4631 	uint32_t swfw_sync;
   4632 
   4633 	if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
   4634 		while (wm_get_swsm_semaphore(sc) != 0)
   4635 			continue;
   4636 	}
   4637 	swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
   4638 	swfw_sync &= ~(mask << SWFW_SOFT_SHIFT);
   4639 	CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
   4640 	if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   4641 		wm_put_swsm_semaphore(sc);
   4642 }
   4643