Home | History | Annotate | Line # | Download | only in pci
if_wm.c revision 1.14
      1 /*	$NetBSD: if_wm.c,v 1.14 2002/07/14 01:34:00 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
     40  *
     41  * TODO (in order of importance):
     42  *
     43  *	- Fix TCP/UDP checksums.
     44  *		Status: Several successful transmissions with offloaded
     45  *		checksums occur.  After several successful transmissions,
     46  *		the chip goes catatonic.  The watchdog timer fires, which
     47  *		resets the chip, and gets things moving again, until the
     48  *		cycle repeats.
     49  *
     50  *	- Make GMII work on the i82543.
     51  *
     52  *	- Fix hw VLAN assist.
     53  *
     54  *	- Jumbo frames -- requires changes to network stack due to
     55  *	  lame buffer length handling on chip.
     56  */
     57 
     58 #include "bpfilter.h"
     59 
     60 #include <sys/param.h>
     61 #include <sys/systm.h>
     62 #include <sys/callout.h>
     63 #include <sys/mbuf.h>
     64 #include <sys/malloc.h>
     65 #include <sys/kernel.h>
     66 #include <sys/socket.h>
     67 #include <sys/ioctl.h>
     68 #include <sys/errno.h>
     69 #include <sys/device.h>
     70 #include <sys/queue.h>
     71 
     72 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     73 
     74 #include <net/if.h>
     75 #include <net/if_dl.h>
     76 #include <net/if_media.h>
     77 #include <net/if_ether.h>
     78 
     79 #if NBPFILTER > 0
     80 #include <net/bpf.h>
     81 #endif
     82 
     83 #include <netinet/in.h>			/* XXX for struct ip */
     84 #include <netinet/in_systm.h>		/* XXX for struct ip */
     85 #include <netinet/ip.h>			/* XXX for struct ip */
     86 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
     87 
     88 #include <machine/bus.h>
     89 #include <machine/intr.h>
     90 #include <machine/endian.h>
     91 
     92 #include <dev/mii/mii.h>
     93 #include <dev/mii/miivar.h>
     94 #include <dev/mii/mii_bitbang.h>
     95 
     96 #include <dev/pci/pcireg.h>
     97 #include <dev/pci/pcivar.h>
     98 #include <dev/pci/pcidevs.h>
     99 
    100 #include <dev/pci/if_wmreg.h>
    101 
    102 #ifdef WM_DEBUG
    103 #define	WM_DEBUG_LINK		0x01
    104 #define	WM_DEBUG_TX		0x02
    105 #define	WM_DEBUG_RX		0x04
    106 #define	WM_DEBUG_GMII		0x08
    107 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
    108 
    109 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
    110 #else
    111 #define	DPRINTF(x, y)	/* nothing */
    112 #endif /* WM_DEBUG */
    113 
    114 /*
    115  * Transmit descriptor list size.  Due to errata, we can only have
    116  * 256 hardware descriptors in the ring.  We tell the upper layers
    117  * that they can queue a lot of packets, and we go ahead and mange
    118  * up to 64 of them at a time.  We allow up to 16 DMA segments per
    119  * packet.
    120  */
    121 #define	WM_NTXSEGS		16
    122 #define	WM_IFQUEUELEN		256
    123 #define	WM_TXQUEUELEN		64
    124 #define	WM_TXQUEUELEN_MASK	(WM_TXQUEUELEN - 1)
    125 #define	WM_TXQUEUE_GC		(WM_TXQUEUELEN / 8)
    126 #define	WM_NTXDESC		256
    127 #define	WM_NTXDESC_MASK		(WM_NTXDESC - 1)
    128 #define	WM_NEXTTX(x)		(((x) + 1) & WM_NTXDESC_MASK)
    129 #define	WM_NEXTTXS(x)		(((x) + 1) & WM_TXQUEUELEN_MASK)
    130 
    131 /*
    132  * Receive descriptor list size.  We have one Rx buffer for normal
    133  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
    134  * packet.  We allocate 256 receive descriptors, each with a 2k
    135  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
    136  */
    137 #define	WM_NRXDESC		256
    138 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
    139 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
    140 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
    141 
    142 /*
    143  * Control structures are DMA'd to the i82542 chip.  We allocate them in
    144  * a single clump that maps to a single DMA segment to make serveral things
    145  * easier.
    146  */
    147 struct wm_control_data {
    148 	/*
    149 	 * The transmit descriptors.
    150 	 */
    151 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC];
    152 
    153 	/*
    154 	 * The receive descriptors.
    155 	 */
    156 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    157 };
    158 
    159 #define	WM_CDOFF(x)	offsetof(struct wm_control_data, x)
    160 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
    161 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
    162 
    163 /*
    164  * Software state for transmit jobs.
    165  */
    166 struct wm_txsoft {
    167 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    168 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    169 	int txs_firstdesc;		/* first descriptor in packet */
    170 	int txs_lastdesc;		/* last descriptor in packet */
    171 	int txs_ndesc;			/* # of descriptors used */
    172 };
    173 
    174 /*
    175  * Software state for receive buffers.  Each descriptor gets a
    176  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    177  * more than one buffer, we chain them together.
    178  */
    179 struct wm_rxsoft {
    180 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    181 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    182 };
    183 
    184 /*
    185  * Software state per device.
    186  */
    187 struct wm_softc {
    188 	struct device sc_dev;		/* generic device information */
    189 	bus_space_tag_t sc_st;		/* bus space tag */
    190 	bus_space_handle_t sc_sh;	/* bus space handle */
    191 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    192 	struct ethercom sc_ethercom;	/* ethernet common data */
    193 	void *sc_sdhook;		/* shutdown hook */
    194 
    195 	int sc_type;			/* chip type; see below */
    196 	int sc_flags;			/* flags; see below */
    197 
    198 	void *sc_ih;			/* interrupt cookie */
    199 
    200 	struct mii_data sc_mii;		/* MII/media information */
    201 
    202 	struct callout sc_tick_ch;	/* tick callout */
    203 
    204 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    205 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    206 
    207 	/*
    208 	 * Software state for the transmit and receive descriptors.
    209 	 */
    210 	struct wm_txsoft sc_txsoft[WM_TXQUEUELEN];
    211 	struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
    212 
    213 	/*
    214 	 * Control data structures.
    215 	 */
    216 	struct wm_control_data *sc_control_data;
    217 #define	sc_txdescs	sc_control_data->wcd_txdescs
    218 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    219 
    220 #ifdef WM_EVENT_COUNTERS
    221 	/* Event counters. */
    222 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    223 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    224 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    225 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    226 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    227 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    228 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    229 
    230 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    231 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    232 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    233 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    234 
    235 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
    236 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
    237 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
    238 
    239 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
    240 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    241 
    242 	struct evcnt sc_ev_tu;		/* Tx underrun */
    243 #endif /* WM_EVENT_COUNTERS */
    244 
    245 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
    246 
    247 	int	sc_txfree;		/* number of free Tx descriptors */
    248 	int	sc_txnext;		/* next ready Tx descriptor */
    249 
    250 	int	sc_txsfree;		/* number of free Tx jobs */
    251 	int	sc_txsnext;		/* next free Tx job */
    252 	int	sc_txsdirty;		/* dirty Tx jobs */
    253 
    254 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
    255 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
    256 
    257 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
    258 
    259 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    260 	int	sc_rxdiscard;
    261 	int	sc_rxlen;
    262 	struct mbuf *sc_rxhead;
    263 	struct mbuf *sc_rxtail;
    264 	struct mbuf **sc_rxtailp;
    265 
    266 	uint32_t sc_ctrl;		/* prototype CTRL register */
    267 #if 0
    268 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
    269 #endif
    270 	uint32_t sc_icr;		/* prototype interrupt bits */
    271 	uint32_t sc_tctl;		/* prototype TCTL register */
    272 	uint32_t sc_rctl;		/* prototype RCTL register */
    273 	uint32_t sc_txcw;		/* prototype TXCW register */
    274 	uint32_t sc_tipg;		/* prototype TIPG register */
    275 
    276 	int sc_tbi_linkup;		/* TBI link status */
    277 	int sc_tbi_anstate;		/* autonegotiation state */
    278 
    279 	int sc_mchash_type;		/* multicast filter offset */
    280 };
    281 
    282 #define	WM_RXCHAIN_RESET(sc)						\
    283 do {									\
    284 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    285 	*(sc)->sc_rxtailp = NULL;					\
    286 	(sc)->sc_rxlen = 0;						\
    287 } while (/*CONSTCOND*/0)
    288 
    289 #define	WM_RXCHAIN_LINK(sc, m)						\
    290 do {									\
    291 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    292 	(sc)->sc_rxtailp = &(m)->m_next;				\
    293 } while (/*CONSTCOND*/0)
    294 
    295 /* sc_type */
    296 #define	WM_T_82542_2_0		0	/* i82542 2.0 (really old) */
    297 #define	WM_T_82542_2_1		1	/* i82542 2.1+ (old) */
    298 #define	WM_T_82543		2	/* i82543 */
    299 #define	WM_T_82544		3	/* i82544 */
    300 #define	WM_T_82540		4	/* i82540 */
    301 #define	WM_T_82545		5	/* i82545 */
    302 #define	WM_T_82546		6	/* i82546 */
    303 
    304 /* sc_flags */
    305 #define	WM_F_HAS_MII		0x01	/* has MII */
    306 
    307 #ifdef WM_EVENT_COUNTERS
    308 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
    309 #else
    310 #define	WM_EVCNT_INCR(ev)	/* nothing */
    311 #endif
    312 
    313 #define	CSR_READ(sc, reg)						\
    314 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    315 #define	CSR_WRITE(sc, reg, val)						\
    316 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    317 
    318 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
    319 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
    320 
    321 #define	WM_CDTXSYNC(sc, x, n, ops)					\
    322 do {									\
    323 	int __x, __n;							\
    324 									\
    325 	__x = (x);							\
    326 	__n = (n);							\
    327 									\
    328 	/* If it will wrap around, sync to the end of the ring. */	\
    329 	if ((__x + __n) > WM_NTXDESC) {					\
    330 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    331 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
    332 		    (WM_NTXDESC - __x), (ops));				\
    333 		__n -= (WM_NTXDESC - __x);				\
    334 		__x = 0;						\
    335 	}								\
    336 									\
    337 	/* Now sync whatever is left. */				\
    338 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    339 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
    340 } while (/*CONSTCOND*/0)
    341 
    342 #define	WM_CDRXSYNC(sc, x, ops)						\
    343 do {									\
    344 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    345 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
    346 } while (/*CONSTCOND*/0)
    347 
    348 #define	WM_INIT_RXDESC(sc, x)						\
    349 do {									\
    350 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    351 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
    352 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    353 									\
    354 	/*								\
    355 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    356 	 * so that the payload after the Ethernet header is aligned	\
    357 	 * to a 4-byte boundary.					\
    358 	 *								\
    359 	 * XXX BRAINDAMAGE ALERT!					\
    360 	 * The stupid chip uses the same size for every buffer, which	\
    361 	 * is set in the Receive Control register.  We are using the 2K	\
    362 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    363 	 * reason, we can't accept packets longer than the standard	\
    364 	 * Ethernet MTU, without incurring a big penalty to copy every	\
    365 	 * incoming packet to a new, suitably aligned buffer.		\
    366 	 *								\
    367 	 * We'll need to make some changes to the layer 3/4 parts of	\
    368 	 * the stack (to copy the headers to a new buffer if not	\
    369 	 * aligned) in order to support large MTU on this chip.  Lame.	\
    370 	 */								\
    371 	__m->m_data = __m->m_ext.ext_buf + 2;				\
    372 									\
    373 	__rxd->wrx_addr.wa_low =					\
    374 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);		\
    375 	__rxd->wrx_addr.wa_high = 0;					\
    376 	__rxd->wrx_len = 0;						\
    377 	__rxd->wrx_cksum = 0;						\
    378 	__rxd->wrx_status = 0;						\
    379 	__rxd->wrx_errors = 0;						\
    380 	__rxd->wrx_special = 0;						\
    381 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    382 									\
    383 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
    384 } while (/*CONSTCOND*/0)
    385 
    386 void	wm_start(struct ifnet *);
    387 void	wm_watchdog(struct ifnet *);
    388 int	wm_ioctl(struct ifnet *, u_long, caddr_t);
    389 int	wm_init(struct ifnet *);
    390 void	wm_stop(struct ifnet *, int);
    391 
    392 void	wm_shutdown(void *);
    393 
    394 void	wm_reset(struct wm_softc *);
    395 void	wm_rxdrain(struct wm_softc *);
    396 int	wm_add_rxbuf(struct wm_softc *, int);
    397 void	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
    398 void	wm_tick(void *);
    399 
    400 void	wm_set_filter(struct wm_softc *);
    401 
    402 int	wm_intr(void *);
    403 void	wm_txintr(struct wm_softc *);
    404 void	wm_rxintr(struct wm_softc *);
    405 void	wm_linkintr(struct wm_softc *, uint32_t);
    406 
    407 void	wm_tbi_mediainit(struct wm_softc *);
    408 int	wm_tbi_mediachange(struct ifnet *);
    409 void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
    410 
    411 void	wm_tbi_set_linkled(struct wm_softc *);
    412 void	wm_tbi_check_link(struct wm_softc *);
    413 
    414 void	wm_gmii_reset(struct wm_softc *);
    415 
    416 int	wm_gmii_i82543_readreg(struct device *, int, int);
    417 void	wm_gmii_i82543_writereg(struct device *, int, int, int);
    418 
    419 int	wm_gmii_i82544_readreg(struct device *, int, int);
    420 void	wm_gmii_i82544_writereg(struct device *, int, int, int);
    421 
    422 void	wm_gmii_statchg(struct device *);
    423 
    424 void	wm_gmii_mediainit(struct wm_softc *);
    425 int	wm_gmii_mediachange(struct ifnet *);
    426 void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
    427 
    428 int	wm_match(struct device *, struct cfdata *, void *);
    429 void	wm_attach(struct device *, struct device *, void *);
    430 
    431 int	wm_copy_small = 0;
    432 
    433 struct cfattach wm_ca = {
    434 	sizeof(struct wm_softc), wm_match, wm_attach,
    435 };
    436 
    437 /*
    438  * Devices supported by this driver.
    439  */
    440 const struct wm_product {
    441 	pci_vendor_id_t		wmp_vendor;
    442 	pci_product_id_t	wmp_product;
    443 	const char		*wmp_name;
    444 	int			wmp_type;
    445 	int			wmp_flags;
    446 #define	WMP_F_1000X		0x01
    447 #define	WMP_F_1000T		0x02
    448 } wm_products[] = {
    449 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
    450 	  "Intel i82542 1000BASE-X Ethernet",
    451 	  WM_T_82542_2_1,	WMP_F_1000X },
    452 
    453 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
    454 	  "Intel i82543GC 1000BASE-X Ethernet",
    455 	  WM_T_82543,		WMP_F_1000X },
    456 
    457 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
    458 	  "Intel i82543GC 1000BASE-T Ethernet",
    459 	  WM_T_82543,		WMP_F_1000T },
    460 
    461 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
    462 	  "Intel i82544EI 1000BASE-T Ethernet",
    463 	  WM_T_82544,		WMP_F_1000T },
    464 
    465 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
    466 	  "Intel i82544EI 1000BASE-X Ethernet",
    467 	  WM_T_82544,		WMP_F_1000X },
    468 
    469 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
    470 	  "Intel i82544GC 1000BASE-T Ethernet",
    471 	  WM_T_82544,		WMP_F_1000T },
    472 
    473 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
    474 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
    475 	  WM_T_82544,		WMP_F_1000T },
    476 
    477 	{ 0,			0,
    478 	  NULL,
    479 	  0,			0 },
    480 };
    481 
    482 #ifdef WM_EVENT_COUNTERS
    483 #if WM_NTXSEGS != 16
    484 #error Update wm_txseg_evcnt_names
    485 #endif
    486 static const char *wm_txseg_evcnt_names[WM_NTXSEGS] = {
    487 	"txseg1",
    488 	"txseg2",
    489 	"txseg3",
    490 	"txseg4",
    491 	"txseg5",
    492 	"txseg6",
    493 	"txseg7",
    494 	"txseg8",
    495 	"txseg9",
    496 	"txseg10",
    497 	"txseg11",
    498 	"txseg12",
    499 	"txseg13",
    500 	"txseg14",
    501 	"txseg15",
    502 	"txseg16",
    503 };
    504 #endif /* WM_EVENT_COUNTERS */
    505 
    506 static const struct wm_product *
    507 wm_lookup(const struct pci_attach_args *pa)
    508 {
    509 	const struct wm_product *wmp;
    510 
    511 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
    512 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
    513 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
    514 			return (wmp);
    515 	}
    516 	return (NULL);
    517 }
    518 
    519 int
    520 wm_match(struct device *parent, struct cfdata *cf, void *aux)
    521 {
    522 	struct pci_attach_args *pa = aux;
    523 
    524 	if (wm_lookup(pa) != NULL)
    525 		return (1);
    526 
    527 	return (0);
    528 }
    529 
    530 void
    531 wm_attach(struct device *parent, struct device *self, void *aux)
    532 {
    533 	struct wm_softc *sc = (void *) self;
    534 	struct pci_attach_args *pa = aux;
    535 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    536 	pci_chipset_tag_t pc = pa->pa_pc;
    537 	pci_intr_handle_t ih;
    538 	const char *intrstr = NULL;
    539 	bus_space_tag_t memt;
    540 	bus_space_handle_t memh;
    541 	bus_dma_segment_t seg;
    542 	int memh_valid;
    543 	int i, rseg, error;
    544 	const struct wm_product *wmp;
    545 	uint8_t enaddr[ETHER_ADDR_LEN];
    546 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
    547 	pcireg_t preg, memtype;
    548 	int pmreg;
    549 
    550 	callout_init(&sc->sc_tick_ch);
    551 
    552 	wmp = wm_lookup(pa);
    553 	if (wmp == NULL) {
    554 		printf("\n");
    555 		panic("wm_attach: impossible");
    556 	}
    557 
    558 	sc->sc_dmat = pa->pa_dmat;
    559 
    560 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    561 	printf(": %s, rev. %d\n", wmp->wmp_name, preg);
    562 
    563 	sc->sc_type = wmp->wmp_type;
    564 	if (sc->sc_type < WM_T_82543) {
    565 		if (preg < 2) {
    566 			printf("%s: i82542 must be at least rev. 2\n",
    567 			    sc->sc_dev.dv_xname);
    568 			return;
    569 		}
    570 		if (preg < 3)
    571 			sc->sc_type = WM_T_82542_2_0;
    572 	}
    573 
    574 	/*
    575 	 * Map the device.
    576 	 */
    577 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
    578 	switch (memtype) {
    579 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    580 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    581 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
    582 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    583 		break;
    584 	default:
    585 		memh_valid = 0;
    586 	}
    587 
    588 	if (memh_valid) {
    589 		sc->sc_st = memt;
    590 		sc->sc_sh = memh;
    591 	} else {
    592 		printf("%s: unable to map device registers\n",
    593 		    sc->sc_dev.dv_xname);
    594 		return;
    595 	}
    596 
    597 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
    598 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    599 	preg |= PCI_COMMAND_MASTER_ENABLE;
    600 	if (sc->sc_type < WM_T_82542_2_1)
    601 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
    602 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    603 
    604 	/* Get it out of power save mode, if needed. */
    605 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    606 		preg = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
    607 		if (preg == 3) {
    608 			/*
    609 			 * The card has lost all configuration data in
    610 			 * this state, so punt.
    611 			 */
    612 			printf("%s: unable to wake from power state D3\n",
    613 			    sc->sc_dev.dv_xname);
    614 			return;
    615 		}
    616 		if (preg != 0) {
    617 			printf("%s: waking up from power state D%d\n",
    618 			    sc->sc_dev.dv_xname, preg);
    619 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
    620 		}
    621 	}
    622 
    623 	/*
    624 	 * Map and establish our interrupt.
    625 	 */
    626 	if (pci_intr_map(pa, &ih)) {
    627 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    628 		return;
    629 	}
    630 	intrstr = pci_intr_string(pc, ih);
    631 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
    632 	if (sc->sc_ih == NULL) {
    633 		printf("%s: unable to establish interrupt",
    634 		    sc->sc_dev.dv_xname);
    635 		if (intrstr != NULL)
    636 			printf(" at %s", intrstr);
    637 		printf("\n");
    638 		return;
    639 	}
    640 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    641 
    642 	/*
    643 	 * Allocate the control data structures, and create and load the
    644 	 * DMA map for it.
    645 	 */
    646 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    647 	    sizeof(struct wm_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    648 	    0)) != 0) {
    649 		printf("%s: unable to allocate control data, error = %d\n",
    650 		    sc->sc_dev.dv_xname, error);
    651 		goto fail_0;
    652 	}
    653 
    654 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    655 	    sizeof(struct wm_control_data), (caddr_t *)&sc->sc_control_data,
    656 	    BUS_DMA_COHERENT)) != 0) {
    657 		printf("%s: unable to map control data, error = %d\n",
    658 		    sc->sc_dev.dv_xname, error);
    659 		goto fail_1;
    660 	}
    661 
    662 	if ((error = bus_dmamap_create(sc->sc_dmat,
    663 	    sizeof(struct wm_control_data), 1,
    664 	    sizeof(struct wm_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    665 		printf("%s: unable to create control data DMA map, "
    666 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    667 		goto fail_2;
    668 	}
    669 
    670 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    671 	    sc->sc_control_data, sizeof(struct wm_control_data), NULL,
    672 	    0)) != 0) {
    673 		printf("%s: unable to load control data DMA map, error = %d\n",
    674 		    sc->sc_dev.dv_xname, error);
    675 		goto fail_3;
    676 	}
    677 
    678 	/*
    679 	 * Create the transmit buffer DMA maps.
    680 	 */
    681 	for (i = 0; i < WM_TXQUEUELEN; i++) {
    682 		if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
    683 		    WM_NTXSEGS, MCLBYTES, 0, 0,
    684 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    685 			printf("%s: unable to create Tx DMA map %d, "
    686 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    687 			goto fail_4;
    688 		}
    689 	}
    690 
    691 	/*
    692 	 * Create the receive buffer DMA maps.
    693 	 */
    694 	for (i = 0; i < WM_NRXDESC; i++) {
    695 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    696 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    697 			printf("%s: unable to create Rx DMA map %d, "
    698 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    699 			goto fail_5;
    700 		}
    701 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    702 	}
    703 
    704 	/*
    705 	 * Reset the chip to a known state.
    706 	 */
    707 	wm_reset(sc);
    708 
    709 	/*
    710 	 * Read the Ethernet address from the EEPROM.
    711 	 */
    712 	wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
    713 	    sizeof(myea) / sizeof(myea[0]), myea);
    714 	enaddr[0] = myea[0] & 0xff;
    715 	enaddr[1] = myea[0] >> 8;
    716 	enaddr[2] = myea[1] & 0xff;
    717 	enaddr[3] = myea[1] >> 8;
    718 	enaddr[4] = myea[2] & 0xff;
    719 	enaddr[5] = myea[2] >> 8;
    720 
    721 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    722 	    ether_sprintf(enaddr));
    723 
    724 	/*
    725 	 * Read the config info from the EEPROM, and set up various
    726 	 * bits in the control registers based on their contents.
    727 	 */
    728 	wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1);
    729 	wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2);
    730 	if (sc->sc_type >= WM_T_82544)
    731 		wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin);
    732 
    733 	if (cfg1 & EEPROM_CFG1_ILOS)
    734 		sc->sc_ctrl |= CTRL_ILOS;
    735 	if (sc->sc_type >= WM_T_82544) {
    736 		sc->sc_ctrl |=
    737 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
    738 		    CTRL_SWDPIO_SHIFT;
    739 		sc->sc_ctrl |=
    740 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
    741 		    CTRL_SWDPINS_SHIFT;
    742 	} else {
    743 		sc->sc_ctrl |=
    744 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
    745 		    CTRL_SWDPIO_SHIFT;
    746 	}
    747 
    748 #if 0
    749 	if (sc->sc_type >= WM_T_82544) {
    750 		if (cfg1 & EEPROM_CFG1_IPS0)
    751 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
    752 		if (cfg1 & EEPROM_CFG1_IPS1)
    753 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
    754 		sc->sc_ctrl_ext |=
    755 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
    756 		    CTRL_EXT_SWDPIO_SHIFT;
    757 		sc->sc_ctrl_ext |=
    758 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
    759 		    CTRL_EXT_SWDPINS_SHIFT;
    760 	} else {
    761 		sc->sc_ctrl_ext |=
    762 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
    763 		    CTRL_EXT_SWDPIO_SHIFT;
    764 	}
    765 #endif
    766 
    767 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
    768 #if 0
    769 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
    770 #endif
    771 
    772 	/*
    773 	 * Set up some register offsets that are different between
    774 	 * the i82542 and the i82543 and later chips.
    775 	 */
    776 	if (sc->sc_type < WM_T_82543) {
    777 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
    778 		sc->sc_tdt_reg = WMREG_OLD_TDT;
    779 	} else {
    780 		sc->sc_rdt_reg = WMREG_RDT;
    781 		sc->sc_tdt_reg = WMREG_TDT;
    782 	}
    783 
    784 	/*
    785 	 * Determine if we should use flow control.  We should
    786 	 * always use it, unless we're on a i82542 < 2.1.
    787 	 */
    788 	if (sc->sc_type >= WM_T_82542_2_1)
    789 		sc->sc_ctrl |= CTRL_TFCE | CTRL_RFCE;
    790 
    791 	/*
    792 	 * Determine if we're TBI or GMII mode, and initialize the
    793 	 * media structures accordingly.
    794 	 */
    795 	if (sc->sc_type < WM_T_82543 ||
    796 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
    797 		if (wmp->wmp_flags & WMP_F_1000T)
    798 			printf("%s: WARNING: TBIMODE set on 1000BASE-T "
    799 			    "product!\n", sc->sc_dev.dv_xname);
    800 		wm_tbi_mediainit(sc);
    801 	} else {
    802 		if (wmp->wmp_flags & WMP_F_1000X)
    803 			printf("%s: WARNING: TBIMODE clear on 1000BASE-X "
    804 			    "product!\n", sc->sc_dev.dv_xname);
    805 		wm_gmii_mediainit(sc);
    806 	}
    807 
    808 	ifp = &sc->sc_ethercom.ec_if;
    809 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    810 	ifp->if_softc = sc;
    811 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    812 	ifp->if_ioctl = wm_ioctl;
    813 	ifp->if_start = wm_start;
    814 	ifp->if_watchdog = wm_watchdog;
    815 	ifp->if_init = wm_init;
    816 	ifp->if_stop = wm_stop;
    817 	IFQ_SET_MAXLEN(&ifp->if_snd, WM_IFQUEUELEN);
    818 	IFQ_SET_READY(&ifp->if_snd);
    819 
    820 	/*
    821 	 * If we're a i82543 or greater, we can support VLANs.
    822 	 */
    823 	if (sc->sc_type >= WM_T_82543)
    824 		sc->sc_ethercom.ec_capabilities |=
    825 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
    826 
    827 	/*
    828 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
    829 	 * on i82543 and later.
    830 	 */
    831 	if (sc->sc_type >= WM_T_82543)
    832 		ifp->if_capabilities |=
    833 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    834 
    835 	/*
    836 	 * Attach the interface.
    837 	 */
    838 	if_attach(ifp);
    839 	ether_ifattach(ifp, enaddr);
    840 
    841 #ifdef WM_EVENT_COUNTERS
    842 	/* Attach event counters. */
    843 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    844 	    NULL, sc->sc_dev.dv_xname, "txsstall");
    845 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    846 	    NULL, sc->sc_dev.dv_xname, "txdstall");
    847 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
    848 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
    849 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
    850 	    NULL, sc->sc_dev.dv_xname, "txdw");
    851 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
    852 	    NULL, sc->sc_dev.dv_xname, "txqe");
    853 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    854 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    855 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
    856 	    NULL, sc->sc_dev.dv_xname, "linkintr");
    857 
    858 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    859 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    860 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
    861 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
    862 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    863 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    864 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
    865 	    NULL, sc->sc_dev.dv_xname, "txtusum");
    866 
    867 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
    868 	    NULL, sc->sc_dev.dv_xname, "txctx init");
    869 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
    870 	    NULL, sc->sc_dev.dv_xname, "txctx hit");
    871 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
    872 	    NULL, sc->sc_dev.dv_xname, "txctx miss");
    873 
    874 	for (i = 0; i < WM_NTXSEGS; i++)
    875 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
    876 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
    877 
    878 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    879 	    NULL, sc->sc_dev.dv_xname, "txdrop");
    880 
    881 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
    882 	    NULL, sc->sc_dev.dv_xname, "tu");
    883 #endif /* WM_EVENT_COUNTERS */
    884 
    885 	/*
    886 	 * Make sure the interface is shutdown during reboot.
    887 	 */
    888 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
    889 	if (sc->sc_sdhook == NULL)
    890 		printf("%s: WARNING: unable to establish shutdown hook\n",
    891 		    sc->sc_dev.dv_xname);
    892 	return;
    893 
    894 	/*
    895 	 * Free any resources we've allocated during the failed attach
    896 	 * attempt.  Do this in reverse order and fall through.
    897 	 */
    898  fail_5:
    899 	for (i = 0; i < WM_NRXDESC; i++) {
    900 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    901 			bus_dmamap_destroy(sc->sc_dmat,
    902 			    sc->sc_rxsoft[i].rxs_dmamap);
    903 	}
    904  fail_4:
    905 	for (i = 0; i < WM_TXQUEUELEN; i++) {
    906 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    907 			bus_dmamap_destroy(sc->sc_dmat,
    908 			    sc->sc_txsoft[i].txs_dmamap);
    909 	}
    910 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    911  fail_3:
    912 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    913  fail_2:
    914 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    915 	    sizeof(struct wm_control_data));
    916  fail_1:
    917 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    918  fail_0:
    919 	return;
    920 }
    921 
    922 /*
    923  * wm_shutdown:
    924  *
    925  *	Make sure the interface is stopped at reboot time.
    926  */
    927 void
    928 wm_shutdown(void *arg)
    929 {
    930 	struct wm_softc *sc = arg;
    931 
    932 	wm_stop(&sc->sc_ethercom.ec_if, 1);
    933 }
    934 
    935 /*
    936  * wm_tx_cksum:
    937  *
    938  *	Set up TCP/IP checksumming parameters for the
    939  *	specified packet.
    940  */
    941 static int
    942 wm_tx_cksum(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
    943     uint32_t *fieldsp)
    944 {
    945 	struct mbuf *m0 = txs->txs_mbuf;
    946 	struct livengood_tcpip_ctxdesc *t;
    947 	uint32_t fields = 0, ipcs, tucs;
    948 	struct ip *ip;
    949 	struct ether_header *eh;
    950 	int offset, iphl;
    951 
    952 	/*
    953 	 * XXX It would be nice if the mbuf pkthdr had offset
    954 	 * fields for the protocol headers.
    955 	 */
    956 
    957 	eh = mtod(m0, struct ether_header *);
    958 	switch (htons(eh->ether_type)) {
    959 	case ETHERTYPE_IP:
    960 		iphl = sizeof(struct ip);
    961 		offset = ETHER_HDR_LEN;
    962 		break;
    963 
    964 	default:
    965 		/*
    966 		 * Don't support this protocol or encapsulation.
    967 		 */
    968 		*fieldsp = 0;
    969 		*cmdp = 0;
    970 		return (0);
    971 	}
    972 
    973 	/* XXX */
    974 	if (m0->m_len < (offset + iphl)) {
    975 		printf("%s: wm_tx_cksum: need to m_pullup, "
    976 		    "packet dropped\n", sc->sc_dev.dv_xname);
    977 		return (EINVAL);
    978 	}
    979 
    980 	ip = (struct ip *) (mtod(m0, caddr_t) + offset);
    981 	iphl = ip->ip_hl << 2;
    982 
    983 	/*
    984 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
    985 	 * offload feature, if we load the context descriptor, we
    986 	 * MUST provide valid values for IPCSS and TUCSS fields.
    987 	 */
    988 
    989 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    990 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
    991 		fields |= htole32(WTX_IXSM);
    992 		ipcs = htole32(WTX_TCPIP_IPCSS(offset) |
    993 		    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
    994 		    WTX_TCPIP_IPCSE(offset + iphl - 1));
    995 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
    996 		/* Use the cached value. */
    997 		ipcs = sc->sc_txctx_ipcs;
    998 	} else {
    999 		/* Just initialize it to the likely value anyway. */
   1000 		ipcs = htole32(WTX_TCPIP_IPCSS(offset) |
   1001 		    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1002 		    WTX_TCPIP_IPCSE(offset + iphl - 1));
   1003 	}
   1004 
   1005 	offset += iphl;
   1006 
   1007 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1008 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
   1009 		fields |= htole32(WTX_TXSM);
   1010 		tucs = htole32(WTX_TCPIP_TUCSS(offset) |
   1011 		    WTX_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
   1012 		    WTX_TCPIP_TUCSE(0) /* rest of packet */);
   1013 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
   1014 		/* Use the cached value. */
   1015 		tucs = sc->sc_txctx_tucs;
   1016 	} else {
   1017 		/* Just initialize it to a valid TCP context. */
   1018 		tucs = htole32(WTX_TCPIP_TUCSS(offset) |
   1019 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1020 		    WTX_TCPIP_TUCSE(0) /* rest of packet */);
   1021 	}
   1022 
   1023 	if (sc->sc_txctx_ipcs == ipcs &&
   1024 	    sc->sc_txctx_tucs == tucs) {
   1025 		/* Cached context is fine. */
   1026 		WM_EVCNT_INCR(&sc->sc_ev_txctx_hit);
   1027 	} else {
   1028 		/* Fill in the context descriptor. */
   1029 #ifdef WM_EVENT_COUNTERS
   1030 		if (sc->sc_txctx_ipcs == 0xffffffff &&
   1031 		    sc->sc_txctx_tucs == 0xffffffff)
   1032 			WM_EVCNT_INCR(&sc->sc_ev_txctx_init);
   1033 		else
   1034 			WM_EVCNT_INCR(&sc->sc_ev_txctx_miss);
   1035 #endif
   1036 		t = (struct livengood_tcpip_ctxdesc *)
   1037 		    &sc->sc_txdescs[sc->sc_txnext];
   1038 		t->tcpip_ipcs = ipcs;
   1039 		t->tcpip_tucs = tucs;
   1040 		t->tcpip_cmdlen =
   1041 		    htole32(WTX_CMD_DEXT | WTX_DTYP_C);
   1042 		t->tcpip_seg = 0;
   1043 		WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1044 
   1045 		sc->sc_txctx_ipcs = ipcs;
   1046 		sc->sc_txctx_tucs = tucs;
   1047 
   1048 		sc->sc_txnext = WM_NEXTTX(sc->sc_txnext);
   1049 		txs->txs_ndesc++;
   1050 	}
   1051 
   1052 	*cmdp = WTX_CMD_DEXT | WTC_DTYP_D;
   1053 	*fieldsp = fields;
   1054 
   1055 	return (0);
   1056 }
   1057 
   1058 /*
   1059  * wm_start:		[ifnet interface function]
   1060  *
   1061  *	Start packet transmission on the interface.
   1062  */
   1063 void
   1064 wm_start(struct ifnet *ifp)
   1065 {
   1066 	struct wm_softc *sc = ifp->if_softc;
   1067 	struct mbuf *m0/*, *m*/;
   1068 	struct wm_txsoft *txs;
   1069 	bus_dmamap_t dmamap;
   1070 	int error, nexttx, lasttx, ofree, seg;
   1071 	uint32_t cksumcmd, cksumfields;
   1072 
   1073 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1074 		return;
   1075 
   1076 	/*
   1077 	 * Remember the previous number of free descriptors.
   1078 	 */
   1079 	ofree = sc->sc_txfree;
   1080 
   1081 	/*
   1082 	 * Loop through the send queue, setting up transmit descriptors
   1083 	 * until we drain the queue, or use up all available transmit
   1084 	 * descriptors.
   1085 	 */
   1086 	for (;;) {
   1087 		/* Grab a packet off the queue. */
   1088 		IFQ_POLL(&ifp->if_snd, m0);
   1089 		if (m0 == NULL)
   1090 			break;
   1091 
   1092 		DPRINTF(WM_DEBUG_TX,
   1093 		    ("%s: TX: have packet to transmit: %p\n",
   1094 		    sc->sc_dev.dv_xname, m0));
   1095 
   1096 		/* Get a work queue entry. */
   1097 		if (sc->sc_txsfree < WM_TXQUEUE_GC) {
   1098 			wm_txintr(sc);
   1099 			if (sc->sc_txsfree == 0) {
   1100 				DPRINTF(WM_DEBUG_TX,
   1101 				    ("%s: TX: no free job descriptors\n",
   1102 					sc->sc_dev.dv_xname));
   1103 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   1104 				break;
   1105 			}
   1106 		}
   1107 
   1108 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1109 		dmamap = txs->txs_dmamap;
   1110 
   1111 		/*
   1112 		 * Load the DMA map.  If this fails, the packet either
   1113 		 * didn't fit in the allotted number of segments, or we
   1114 		 * were short on resources.  For the too-many-segments
   1115 		 * case, we simply report an error and drop the packet,
   1116 		 * since we can't sanely copy a jumbo packet to a single
   1117 		 * buffer.
   1118 		 */
   1119 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1120 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1121 		if (error) {
   1122 			if (error == EFBIG) {
   1123 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   1124 				printf("%s: Tx packet consumes too many "
   1125 				    "DMA segments, dropping...\n",
   1126 				    sc->sc_dev.dv_xname);
   1127 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1128 				m_freem(m0);
   1129 				continue;
   1130 			}
   1131 			/*
   1132 			 * Short on resources, just stop for now.
   1133 			 */
   1134 			DPRINTF(WM_DEBUG_TX,
   1135 			    ("%s: TX: dmamap load failed: %d\n",
   1136 			    sc->sc_dev.dv_xname, error));
   1137 			break;
   1138 		}
   1139 
   1140 		/*
   1141 		 * Ensure we have enough descriptors free to describe
   1142 		 * the packet.  Note, we always reserve one descriptor
   1143 		 * at the end of the ring due to the semantics of the
   1144 		 * TDT register, plus one more in the event we need
   1145 		 * to re-load checksum offload context.
   1146 		 */
   1147 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
   1148 			/*
   1149 			 * Not enough free descriptors to transmit this
   1150 			 * packet.  We haven't committed anything yet,
   1151 			 * so just unload the DMA map, put the packet
   1152 			 * pack on the queue, and punt.  Notify the upper
   1153 			 * layer that there are no more slots left.
   1154 			 */
   1155 			DPRINTF(WM_DEBUG_TX,
   1156 			    ("%s: TX: need %d descriptors, have %d\n",
   1157 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs,
   1158 			    sc->sc_txfree - 1));
   1159 			ifp->if_flags |= IFF_OACTIVE;
   1160 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1161 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   1162 			break;
   1163 		}
   1164 
   1165 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1166 
   1167 		/*
   1168 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1169 		 */
   1170 
   1171 		/* Sync the DMA map. */
   1172 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1173 		    BUS_DMASYNC_PREWRITE);
   1174 
   1175 		DPRINTF(WM_DEBUG_TX,
   1176 		    ("%s: TX: packet has %d DMA segments\n",
   1177 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs));
   1178 
   1179 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1180 
   1181 		/*
   1182 		 * Store a pointer to the packet so that we can free it
   1183 		 * later.
   1184 		 *
   1185 		 * Initially, we consider the number of descriptors the
   1186 		 * packet uses the number of DMA segments.  This may be
   1187 		 * incremented by 1 if we do checksum offload (a descriptor
   1188 		 * is used to set the checksum context).
   1189 		 */
   1190 		txs->txs_mbuf = m0;
   1191 		txs->txs_firstdesc = sc->sc_txnext;
   1192 		txs->txs_ndesc = dmamap->dm_nsegs;
   1193 
   1194 		/*
   1195 		 * Set up checksum offload parameters for
   1196 		 * this packet.
   1197 		 */
   1198 		if (m0->m_pkthdr.csum_flags &
   1199 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1200 			if (wm_tx_cksum(sc, txs, &cksumcmd,
   1201 					&cksumfields) != 0) {
   1202 				/* Error message already displayed. */
   1203 				m_freem(m0);
   1204 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1205 				txs->txs_mbuf = NULL;
   1206 				continue;
   1207 			}
   1208 		} else {
   1209 			cksumcmd = 0;
   1210 			cksumfields = 0;
   1211 		}
   1212 
   1213 		cksumcmd |= htole32(WTX_CMD_IDE);
   1214 
   1215 		/*
   1216 		 * Initialize the transmit descriptor.
   1217 		 */
   1218 		for (nexttx = sc->sc_txnext, seg = 0;
   1219 		     seg < dmamap->dm_nsegs;
   1220 		     seg++, nexttx = WM_NEXTTX(nexttx)) {
   1221 			/*
   1222 			 * Note: we currently only use 32-bit DMA
   1223 			 * addresses.
   1224 			 */
   1225 			sc->sc_txdescs[nexttx].wtx_addr.wa_low =
   1226 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1227 			sc->sc_txdescs[nexttx].wtx_cmdlen = cksumcmd |
   1228 			    htole32(dmamap->dm_segs[seg].ds_len);
   1229 			sc->sc_txdescs[nexttx].wtx_fields.wtxu_bits =
   1230 			    cksumfields;
   1231 			lasttx = nexttx;
   1232 
   1233 			DPRINTF(WM_DEBUG_TX,
   1234 			    ("%s: TX: desc %d: low 0x%08x, len 0x%04x\n",
   1235 			    sc->sc_dev.dv_xname, nexttx,
   1236 			    (uint32_t) dmamap->dm_segs[seg].ds_addr,
   1237 			    (uint32_t) dmamap->dm_segs[seg].ds_len));
   1238 		}
   1239 
   1240 		/*
   1241 		 * Set up the command byte on the last descriptor of
   1242 		 * the packet.  If we're in the interrupt delay window,
   1243 		 * delay the interrupt.
   1244 		 */
   1245 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1246 		    htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS);
   1247 
   1248 #if 0 /* XXXJRT */
   1249 		/*
   1250 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1251 		 * up the descriptor to encapsulate the packet for us.
   1252 		 *
   1253 		 * This is only valid on the last descriptor of the packet.
   1254 		 */
   1255 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1256 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
   1257 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1258 			    htole32(WTX_CMD_VLE);
   1259 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_fields.wtxu_vlan
   1260 			    = htole16(*mtod(m, int *) & 0xffff);
   1261 		}
   1262 #endif /* XXXJRT */
   1263 
   1264 		txs->txs_lastdesc = lasttx;
   1265 
   1266 		DPRINTF(WM_DEBUG_TX,
   1267 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   1268 		    lasttx, sc->sc_txdescs[lasttx].wtx_cmdlen));
   1269 
   1270 		/* Sync the descriptors we're using. */
   1271 		WM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1272 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1273 
   1274 		/* Give the packet to the chip. */
   1275 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   1276 
   1277 		DPRINTF(WM_DEBUG_TX,
   1278 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   1279 
   1280 		DPRINTF(WM_DEBUG_TX,
   1281 		    ("%s: TX: finished transmitting packet, job %d\n",
   1282 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   1283 
   1284 		/* Advance the tx pointer. */
   1285 		sc->sc_txfree -= txs->txs_ndesc;
   1286 		sc->sc_txnext = nexttx;
   1287 
   1288 		sc->sc_txsfree--;
   1289 		sc->sc_txsnext = WM_NEXTTXS(sc->sc_txsnext);
   1290 
   1291 #if NBPFILTER > 0
   1292 		/* Pass the packet to any BPF listeners. */
   1293 		if (ifp->if_bpf)
   1294 			bpf_mtap(ifp->if_bpf, m0);
   1295 #endif /* NBPFILTER > 0 */
   1296 	}
   1297 
   1298 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1299 		/* No more slots; notify upper layer. */
   1300 		ifp->if_flags |= IFF_OACTIVE;
   1301 	}
   1302 
   1303 	if (sc->sc_txfree != ofree) {
   1304 		/* Set a watchdog timer in case the chip flakes out. */
   1305 		ifp->if_timer = 5;
   1306 	}
   1307 }
   1308 
   1309 /*
   1310  * wm_watchdog:		[ifnet interface function]
   1311  *
   1312  *	Watchdog timer handler.
   1313  */
   1314 void
   1315 wm_watchdog(struct ifnet *ifp)
   1316 {
   1317 	struct wm_softc *sc = ifp->if_softc;
   1318 
   1319 	/*
   1320 	 * Since we're using delayed interrupts, sweep up
   1321 	 * before we report an error.
   1322 	 */
   1323 	wm_txintr(sc);
   1324 
   1325 	if (sc->sc_txfree != WM_NTXDESC) {
   1326 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1327 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   1328 		    sc->sc_txnext);
   1329 		ifp->if_oerrors++;
   1330 
   1331 		/* Reset the interface. */
   1332 		(void) wm_init(ifp);
   1333 	}
   1334 
   1335 	/* Try to get more packets going. */
   1336 	wm_start(ifp);
   1337 }
   1338 
   1339 /*
   1340  * wm_ioctl:		[ifnet interface function]
   1341  *
   1342  *	Handle control requests from the operator.
   1343  */
   1344 int
   1345 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1346 {
   1347 	struct wm_softc *sc = ifp->if_softc;
   1348 	struct ifreq *ifr = (struct ifreq *) data;
   1349 	int s, error;
   1350 
   1351 	s = splnet();
   1352 
   1353 	switch (cmd) {
   1354 	case SIOCSIFMEDIA:
   1355 	case SIOCGIFMEDIA:
   1356 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1357 		break;
   1358 
   1359 	default:
   1360 		error = ether_ioctl(ifp, cmd, data);
   1361 		if (error == ENETRESET) {
   1362 			/*
   1363 			 * Multicast list has changed; set the hardware filter
   1364 			 * accordingly.
   1365 			 */
   1366 			wm_set_filter(sc);
   1367 			error = 0;
   1368 		}
   1369 		break;
   1370 	}
   1371 
   1372 	/* Try to get more packets going. */
   1373 	wm_start(ifp);
   1374 
   1375 	splx(s);
   1376 	return (error);
   1377 }
   1378 
   1379 /*
   1380  * wm_intr:
   1381  *
   1382  *	Interrupt service routine.
   1383  */
   1384 int
   1385 wm_intr(void *arg)
   1386 {
   1387 	struct wm_softc *sc = arg;
   1388 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1389 	uint32_t icr;
   1390 	int wantinit, handled = 0;
   1391 
   1392 	for (wantinit = 0; wantinit == 0;) {
   1393 		icr = CSR_READ(sc, WMREG_ICR);
   1394 		if ((icr & sc->sc_icr) == 0)
   1395 			break;
   1396 
   1397 		handled = 1;
   1398 
   1399 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   1400 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1401 			DPRINTF(WM_DEBUG_RX,
   1402 			    ("%s: RX: got Rx intr 0x%08x\n",
   1403 			    sc->sc_dev.dv_xname,
   1404 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1405 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
   1406 		}
   1407 #endif
   1408 		wm_rxintr(sc);
   1409 
   1410 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   1411 		if (icr & ICR_TXDW) {
   1412 			DPRINTF(WM_DEBUG_TX,
   1413 			    ("%s: TX: got TDXW interrupt\n",
   1414 			    sc->sc_dev.dv_xname));
   1415 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
   1416 		}
   1417 #endif
   1418 		wm_txintr(sc);
   1419 
   1420 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
   1421 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
   1422 			wm_linkintr(sc, icr);
   1423 		}
   1424 
   1425 		if (icr & ICR_RXO) {
   1426 			printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
   1427 			wantinit = 1;
   1428 		}
   1429 	}
   1430 
   1431 	if (handled) {
   1432 		if (wantinit)
   1433 			wm_init(ifp);
   1434 
   1435 		/* Try to get more packets going. */
   1436 		wm_start(ifp);
   1437 	}
   1438 
   1439 	return (handled);
   1440 }
   1441 
   1442 /*
   1443  * wm_txintr:
   1444  *
   1445  *	Helper; handle transmit interrupts.
   1446  */
   1447 void
   1448 wm_txintr(struct wm_softc *sc)
   1449 {
   1450 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1451 	struct wm_txsoft *txs;
   1452 	uint8_t status;
   1453 	int i;
   1454 
   1455 	ifp->if_flags &= ~IFF_OACTIVE;
   1456 
   1457 	/*
   1458 	 * Go through the Tx list and free mbufs for those
   1459 	 * frams which have been transmitted.
   1460 	 */
   1461 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN;
   1462 	     i = WM_NEXTTXS(i), sc->sc_txsfree++) {
   1463 		txs = &sc->sc_txsoft[i];
   1464 
   1465 		DPRINTF(WM_DEBUG_TX,
   1466 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   1467 
   1468 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1469 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1470 
   1471 		status = le32toh(sc->sc_txdescs[
   1472 		    txs->txs_lastdesc].wtx_fields.wtxu_bits);
   1473 		if ((status & WTX_ST_DD) == 0)
   1474 			break;
   1475 
   1476 		DPRINTF(WM_DEBUG_TX,
   1477 		    ("%s: TX: job %d done: descs %d..%d\n",
   1478 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   1479 		    txs->txs_lastdesc));
   1480 
   1481 		/*
   1482 		 * XXX We should probably be using the statistics
   1483 		 * XXX registers, but I don't know if they exist
   1484 		 * XXX on chips before the i82544.
   1485 		 */
   1486 
   1487 #ifdef WM_EVENT_COUNTERS
   1488 		if (status & WTX_ST_TU)
   1489 			WM_EVCNT_INCR(&sc->sc_ev_tu);
   1490 #endif /* WM_EVENT_COUNTERS */
   1491 
   1492 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
   1493 			ifp->if_oerrors++;
   1494 			if (status & WTX_ST_LC)
   1495 				printf("%s: late collision\n",
   1496 				    sc->sc_dev.dv_xname);
   1497 			else if (status & WTX_ST_EC) {
   1498 				ifp->if_collisions += 16;
   1499 				printf("%s: excessive collisions\n",
   1500 				    sc->sc_dev.dv_xname);
   1501 			}
   1502 		} else
   1503 			ifp->if_opackets++;
   1504 
   1505 		sc->sc_txfree += txs->txs_ndesc;
   1506 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1507 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1508 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1509 		m_freem(txs->txs_mbuf);
   1510 		txs->txs_mbuf = NULL;
   1511 	}
   1512 
   1513 	/* Update the dirty transmit buffer pointer. */
   1514 	sc->sc_txsdirty = i;
   1515 	DPRINTF(WM_DEBUG_TX,
   1516 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   1517 
   1518 	/*
   1519 	 * If there are no more pending transmissions, cancel the watchdog
   1520 	 * timer.
   1521 	 */
   1522 	if (sc->sc_txsfree == WM_TXQUEUELEN)
   1523 		ifp->if_timer = 0;
   1524 }
   1525 
   1526 /*
   1527  * wm_rxintr:
   1528  *
   1529  *	Helper; handle receive interrupts.
   1530  */
   1531 void
   1532 wm_rxintr(struct wm_softc *sc)
   1533 {
   1534 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1535 	struct wm_rxsoft *rxs;
   1536 	struct mbuf *m;
   1537 	int i, len;
   1538 	uint8_t status, errors;
   1539 
   1540 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
   1541 		rxs = &sc->sc_rxsoft[i];
   1542 
   1543 		DPRINTF(WM_DEBUG_RX,
   1544 		    ("%s: RX: checking descriptor %d\n",
   1545 		    sc->sc_dev.dv_xname, i));
   1546 
   1547 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1548 
   1549 		status = sc->sc_rxdescs[i].wrx_status;
   1550 		errors = sc->sc_rxdescs[i].wrx_errors;
   1551 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
   1552 
   1553 		if ((status & WRX_ST_DD) == 0) {
   1554 			/*
   1555 			 * We have processed all of the receive descriptors.
   1556 			 */
   1557 			break;
   1558 		}
   1559 
   1560 		if (__predict_false(sc->sc_rxdiscard)) {
   1561 			DPRINTF(WM_DEBUG_RX,
   1562 			    ("%s: RX: discarding contents of descriptor %d\n",
   1563 			    sc->sc_dev.dv_xname, i));
   1564 			WM_INIT_RXDESC(sc, i);
   1565 			if (status & WRX_ST_EOP) {
   1566 				/* Reset our state. */
   1567 				DPRINTF(WM_DEBUG_RX,
   1568 				    ("%s: RX: resetting rxdiscard -> 0\n",
   1569 				    sc->sc_dev.dv_xname));
   1570 				sc->sc_rxdiscard = 0;
   1571 			}
   1572 			continue;
   1573 		}
   1574 
   1575 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1576 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1577 
   1578 		m = rxs->rxs_mbuf;
   1579 
   1580 		/*
   1581 		 * Add a new receive buffer to the ring.
   1582 		 */
   1583 		if (wm_add_rxbuf(sc, i) != 0) {
   1584 			/*
   1585 			 * Failed, throw away what we've done so
   1586 			 * far, and discard the rest of the packet.
   1587 			 */
   1588 			ifp->if_ierrors++;
   1589 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1590 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1591 			WM_INIT_RXDESC(sc, i);
   1592 			if ((status & WRX_ST_EOP) == 0)
   1593 				sc->sc_rxdiscard = 1;
   1594 			if (sc->sc_rxhead != NULL)
   1595 				m_freem(sc->sc_rxhead);
   1596 			WM_RXCHAIN_RESET(sc);
   1597 			DPRINTF(WM_DEBUG_RX,
   1598 			    ("%s: RX: Rx buffer allocation failed, "
   1599 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   1600 			    sc->sc_rxdiscard ? " (discard)" : ""));
   1601 			continue;
   1602 		}
   1603 
   1604 		WM_RXCHAIN_LINK(sc, m);
   1605 
   1606 		m->m_len = len;
   1607 
   1608 		DPRINTF(WM_DEBUG_RX,
   1609 		    ("%s: RX: buffer at %p len %d\n",
   1610 		    sc->sc_dev.dv_xname, m->m_data, len));
   1611 
   1612 		/*
   1613 		 * If this is not the end of the packet, keep
   1614 		 * looking.
   1615 		 */
   1616 		if ((status & WRX_ST_EOP) == 0) {
   1617 			sc->sc_rxlen += len;
   1618 			DPRINTF(WM_DEBUG_RX,
   1619 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   1620 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   1621 			continue;
   1622 		}
   1623 
   1624 		/*
   1625 		 * Okay, we have the entire packet now...
   1626 		 */
   1627 		*sc->sc_rxtailp = NULL;
   1628 		m = sc->sc_rxhead;
   1629 		len += sc->sc_rxlen;
   1630 
   1631 		WM_RXCHAIN_RESET(sc);
   1632 
   1633 		DPRINTF(WM_DEBUG_RX,
   1634 		    ("%s: RX: have entire packet, len -> %d\n",
   1635 		    sc->sc_dev.dv_xname, len));
   1636 
   1637 		/*
   1638 		 * If an error occurred, update stats and drop the packet.
   1639 		 */
   1640 		if (errors &
   1641 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
   1642 			ifp->if_ierrors++;
   1643 			if (errors & WRX_ER_SE)
   1644 				printf("%s: symbol error\n",
   1645 				    sc->sc_dev.dv_xname);
   1646 			else if (errors & WRX_ER_SEQ)
   1647 				printf("%s: receive sequence error\n",
   1648 				    sc->sc_dev.dv_xname);
   1649 			else if (errors & WRX_ER_CE)
   1650 				printf("%s: CRC error\n",
   1651 				    sc->sc_dev.dv_xname);
   1652 			m_freem(m);
   1653 			continue;
   1654 		}
   1655 
   1656 		/*
   1657 		 * No errors.  Receive the packet.
   1658 		 *
   1659 		 * Note, we have configured the chip to include the
   1660 		 * CRC with every packet.
   1661 		 */
   1662 		m->m_flags |= M_HASFCS;
   1663 		m->m_pkthdr.rcvif = ifp;
   1664 		m->m_pkthdr.len = len;
   1665 
   1666 #if 0 /* XXXJRT */
   1667 		/*
   1668 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1669 		 * for us.  Associate the tag with the packet.
   1670 		 */
   1671 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1672 		    (status & WRX_ST_VP) != 0) {
   1673 			struct mbuf *vtag;
   1674 
   1675 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
   1676 			if (vtag == NULL) {
   1677 				ifp->if_ierrors++;
   1678 				printf("%s: unable to allocate VLAN tag\n",
   1679 				    sc->sc_dev.dv_xname);
   1680 				m_freem(m);
   1681 				continue;
   1682 			}
   1683 
   1684 			*mtod(m, int *) =
   1685 			    le16toh(sc->sc_rxdescs[i].wrx_special);
   1686 			vtag->m_len = sizeof(int);
   1687 		}
   1688 #endif /* XXXJRT */
   1689 
   1690 		/*
   1691 		 * Set up checksum info for this packet.
   1692 		 */
   1693 		if (status & WRX_ST_IPCS) {
   1694 			WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1695 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1696 			if (errors & WRX_ER_IPE)
   1697 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1698 		}
   1699 		if (status & WRX_ST_TCPCS) {
   1700 			/*
   1701 			 * Note: we don't know if this was TCP or UDP,
   1702 			 * so we just set both bits, and expect the
   1703 			 * upper layers to deal.
   1704 			 */
   1705 			WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
   1706 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   1707 			if (errors & WRX_ER_TCPE)
   1708 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1709 		}
   1710 
   1711 		ifp->if_ipackets++;
   1712 
   1713 #if NBPFILTER > 0
   1714 		/* Pass this up to any BPF listeners. */
   1715 		if (ifp->if_bpf)
   1716 			bpf_mtap(ifp->if_bpf, m);
   1717 #endif /* NBPFILTER > 0 */
   1718 
   1719 		/* Pass it on. */
   1720 		(*ifp->if_input)(ifp, m);
   1721 	}
   1722 
   1723 	/* Update the receive pointer. */
   1724 	sc->sc_rxptr = i;
   1725 
   1726 	DPRINTF(WM_DEBUG_RX,
   1727 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   1728 }
   1729 
   1730 /*
   1731  * wm_linkintr:
   1732  *
   1733  *	Helper; handle link interrupts.
   1734  */
   1735 void
   1736 wm_linkintr(struct wm_softc *sc, uint32_t icr)
   1737 {
   1738 	uint32_t status;
   1739 
   1740 	/*
   1741 	 * If we get a link status interrupt on a 1000BASE-T
   1742 	 * device, just fall into the normal MII tick path.
   1743 	 */
   1744 	if (sc->sc_flags & WM_F_HAS_MII) {
   1745 		if (icr & ICR_LSC) {
   1746 			DPRINTF(WM_DEBUG_LINK,
   1747 			    ("%s: LINK: LSC -> mii_tick\n",
   1748 			    sc->sc_dev.dv_xname));
   1749 			mii_tick(&sc->sc_mii);
   1750 		} else if (icr & ICR_RXSEQ) {
   1751 			DPRINTF(WM_DEBUG_LINK,
   1752 			    ("%s: LINK Receive sequence error\n",
   1753 			    sc->sc_dev.dv_xname));
   1754 		}
   1755 		return;
   1756 	}
   1757 
   1758 	/*
   1759 	 * If we are now receiving /C/, check for link again in
   1760 	 * a couple of link clock ticks.
   1761 	 */
   1762 	if (icr & ICR_RXCFG) {
   1763 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
   1764 		    sc->sc_dev.dv_xname));
   1765 		sc->sc_tbi_anstate = 2;
   1766 	}
   1767 
   1768 	if (icr & ICR_LSC) {
   1769 		status = CSR_READ(sc, WMREG_STATUS);
   1770 		if (status & STATUS_LU) {
   1771 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
   1772 			    sc->sc_dev.dv_xname,
   1773 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   1774 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   1775 			if (status & STATUS_FD)
   1776 				sc->sc_tctl |=
   1777 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   1778 			else
   1779 				sc->sc_tctl |=
   1780 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   1781 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   1782 			sc->sc_tbi_linkup = 1;
   1783 		} else {
   1784 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   1785 			    sc->sc_dev.dv_xname));
   1786 			sc->sc_tbi_linkup = 0;
   1787 		}
   1788 		sc->sc_tbi_anstate = 2;
   1789 		wm_tbi_set_linkled(sc);
   1790 	} else if (icr & ICR_RXSEQ) {
   1791 		DPRINTF(WM_DEBUG_LINK,
   1792 		    ("%s: LINK: Receive sequence error\n",
   1793 		    sc->sc_dev.dv_xname));
   1794 	}
   1795 }
   1796 
   1797 /*
   1798  * wm_tick:
   1799  *
   1800  *	One second timer, used to check link status, sweep up
   1801  *	completed transmit jobs, etc.
   1802  */
   1803 void
   1804 wm_tick(void *arg)
   1805 {
   1806 	struct wm_softc *sc = arg;
   1807 	int s;
   1808 
   1809 	s = splnet();
   1810 
   1811 	if (sc->sc_flags & WM_F_HAS_MII)
   1812 		mii_tick(&sc->sc_mii);
   1813 	else
   1814 		wm_tbi_check_link(sc);
   1815 
   1816 	splx(s);
   1817 
   1818 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   1819 }
   1820 
   1821 /*
   1822  * wm_reset:
   1823  *
   1824  *	Reset the i82542 chip.
   1825  */
   1826 void
   1827 wm_reset(struct wm_softc *sc)
   1828 {
   1829 	int i;
   1830 
   1831 	CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   1832 	delay(10000);
   1833 
   1834 	for (i = 0; i < 1000; i++) {
   1835 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
   1836 			return;
   1837 		delay(20);
   1838 	}
   1839 
   1840 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
   1841 		printf("%s: WARNING: reset failed to complete\n",
   1842 		    sc->sc_dev.dv_xname);
   1843 }
   1844 
   1845 /*
   1846  * wm_init:		[ifnet interface function]
   1847  *
   1848  *	Initialize the interface.  Must be called at splnet().
   1849  */
   1850 int
   1851 wm_init(struct ifnet *ifp)
   1852 {
   1853 	struct wm_softc *sc = ifp->if_softc;
   1854 	struct wm_rxsoft *rxs;
   1855 	int i, error = 0;
   1856 	uint32_t reg;
   1857 
   1858 	/* Cancel any pending I/O. */
   1859 	wm_stop(ifp, 0);
   1860 
   1861 	/* Reset the chip to a known state. */
   1862 	wm_reset(sc);
   1863 
   1864 	/* Initialize the transmit descriptor ring. */
   1865 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1866 	WM_CDTXSYNC(sc, 0, WM_NTXDESC,
   1867 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1868 	sc->sc_txfree = WM_NTXDESC;
   1869 	sc->sc_txnext = 0;
   1870 
   1871 	sc->sc_txctx_ipcs = 0xffffffff;
   1872 	sc->sc_txctx_tucs = 0xffffffff;
   1873 
   1874 	if (sc->sc_type < WM_T_82543) {
   1875 		CSR_WRITE(sc, WMREG_OLD_TBDAH, 0);
   1876 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR(sc, 0));
   1877 		CSR_WRITE(sc, WMREG_OLD_TDLEN, sizeof(sc->sc_txdescs));
   1878 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
   1879 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
   1880 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
   1881 	} else {
   1882 		CSR_WRITE(sc, WMREG_TBDAH, 0);
   1883 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR(sc, 0));
   1884 		CSR_WRITE(sc, WMREG_TDLEN, sizeof(sc->sc_txdescs));
   1885 		CSR_WRITE(sc, WMREG_TDH, 0);
   1886 		CSR_WRITE(sc, WMREG_TDT, 0);
   1887 		CSR_WRITE(sc, WMREG_TIDV, 128);
   1888 
   1889 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
   1890 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   1891 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
   1892 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
   1893 	}
   1894 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
   1895 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
   1896 
   1897 	/* Initialize the transmit job descriptors. */
   1898 	for (i = 0; i < WM_TXQUEUELEN; i++)
   1899 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1900 	sc->sc_txsfree = WM_TXQUEUELEN;
   1901 	sc->sc_txsnext = 0;
   1902 	sc->sc_txsdirty = 0;
   1903 
   1904 	/*
   1905 	 * Initialize the receive descriptor and receive job
   1906 	 * descriptor rings.
   1907 	 */
   1908 	if (sc->sc_type < WM_T_82543) {
   1909 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, 0);
   1910 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR(sc, 0));
   1911 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
   1912 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
   1913 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
   1914 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
   1915 
   1916 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
   1917 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
   1918 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
   1919 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
   1920 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
   1921 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
   1922 	} else {
   1923 		CSR_WRITE(sc, WMREG_RDBAH, 0);
   1924 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR(sc, 0));
   1925 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
   1926 		CSR_WRITE(sc, WMREG_RDH, 0);
   1927 		CSR_WRITE(sc, WMREG_RDT, 0);
   1928 		CSR_WRITE(sc, WMREG_RDTR, 28 | RDTR_FPD);
   1929 	}
   1930 	for (i = 0; i < WM_NRXDESC; i++) {
   1931 		rxs = &sc->sc_rxsoft[i];
   1932 		if (rxs->rxs_mbuf == NULL) {
   1933 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
   1934 				printf("%s: unable to allocate or map rx "
   1935 				    "buffer %d, error = %d\n",
   1936 				    sc->sc_dev.dv_xname, i, error);
   1937 				/*
   1938 				 * XXX Should attempt to run with fewer receive
   1939 				 * XXX buffers instead of just failing.
   1940 				 */
   1941 				wm_rxdrain(sc);
   1942 				goto out;
   1943 			}
   1944 		} else
   1945 			WM_INIT_RXDESC(sc, i);
   1946 	}
   1947 	sc->sc_rxptr = 0;
   1948 	sc->sc_rxdiscard = 0;
   1949 	WM_RXCHAIN_RESET(sc);
   1950 
   1951 	/*
   1952 	 * Clear out the VLAN table -- we don't use it (yet).
   1953 	 */
   1954 	CSR_WRITE(sc, WMREG_VET, 0);
   1955 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
   1956 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
   1957 
   1958 	/*
   1959 	 * Set up flow-control parameters.
   1960 	 *
   1961 	 * XXX Values could probably stand some tuning.
   1962 	 */
   1963 	if (sc->sc_ctrl & (CTRL_RFCE|CTRL_TFCE)) {
   1964 		CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
   1965 		CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
   1966 		CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
   1967 
   1968 		if (sc->sc_type < WM_T_82543) {
   1969 			CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
   1970 			CSR_WRITE(sc, WMREG_OLD_FCRTL, FCRTL_DFLT);
   1971 		} else {
   1972 			CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
   1973 			CSR_WRITE(sc, WMREG_FCRTL, FCRTL_DFLT);
   1974 		}
   1975 		CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
   1976 	}
   1977 
   1978 #if 0 /* XXXJRT */
   1979 	/* Deal with VLAN enables. */
   1980 	if (sc->sc_ethercom.ec_nvlans != 0)
   1981 		sc->sc_ctrl |= CTRL_VME;
   1982 	else
   1983 #endif /* XXXJRT */
   1984 		sc->sc_ctrl &= ~CTRL_VME;
   1985 
   1986 	/* Write the control registers. */
   1987 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   1988 #if 0
   1989 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   1990 #endif
   1991 
   1992 	/*
   1993 	 * Set up checksum offload parameters.
   1994 	 */
   1995 	reg = CSR_READ(sc, WMREG_RXCSUM);
   1996 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
   1997 		reg |= RXCSUM_IPOFL;
   1998 	else
   1999 		reg &= ~RXCSUM_IPOFL;
   2000 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
   2001 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   2002 	else {
   2003 		reg &= ~RXCSUM_TUOFL;
   2004 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
   2005 			reg &= ~RXCSUM_IPOFL;
   2006 	}
   2007 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
   2008 
   2009 	/*
   2010 	 * Set up the interrupt registers.
   2011 	 */
   2012 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   2013 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   2014 	    ICR_RXO | ICR_RXT0;
   2015 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
   2016 		sc->sc_icr |= ICR_RXCFG;
   2017 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
   2018 
   2019 	/* Set up the inter-packet gap. */
   2020 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   2021 
   2022 #if 0 /* XXXJRT */
   2023 	/* Set the VLAN ethernetype. */
   2024 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
   2025 #endif
   2026 
   2027 	/*
   2028 	 * Set up the transmit control register; we start out with
   2029 	 * a collision distance suitable for FDX, but update it whe
   2030 	 * we resolve the media type.
   2031 	 */
   2032 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
   2033 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2034 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2035 
   2036 	/* Set the media. */
   2037 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
   2038 
   2039 	/*
   2040 	 * Set up the receive control register; we actually program
   2041 	 * the register when we set the receive filter.  Use multicast
   2042 	 * address offset type 0.
   2043 	 *
   2044 	 * Only the i82544 has the ability to strip the incoming
   2045 	 * CRC, so we don't enable that feature.
   2046 	 */
   2047 	sc->sc_mchash_type = 0;
   2048 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_2k |
   2049 	    RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
   2050 
   2051 	/* Set the receive filter. */
   2052 	wm_set_filter(sc);
   2053 
   2054 	/* Start the one second link check clock. */
   2055 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2056 
   2057 	/* ...all done! */
   2058 	ifp->if_flags |= IFF_RUNNING;
   2059 	ifp->if_flags &= ~IFF_OACTIVE;
   2060 
   2061  out:
   2062 	if (error)
   2063 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2064 	return (error);
   2065 }
   2066 
   2067 /*
   2068  * wm_rxdrain:
   2069  *
   2070  *	Drain the receive queue.
   2071  */
   2072 void
   2073 wm_rxdrain(struct wm_softc *sc)
   2074 {
   2075 	struct wm_rxsoft *rxs;
   2076 	int i;
   2077 
   2078 	for (i = 0; i < WM_NRXDESC; i++) {
   2079 		rxs = &sc->sc_rxsoft[i];
   2080 		if (rxs->rxs_mbuf != NULL) {
   2081 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2082 			m_freem(rxs->rxs_mbuf);
   2083 			rxs->rxs_mbuf = NULL;
   2084 		}
   2085 	}
   2086 }
   2087 
   2088 /*
   2089  * wm_stop:		[ifnet interface function]
   2090  *
   2091  *	Stop transmission on the interface.
   2092  */
   2093 void
   2094 wm_stop(struct ifnet *ifp, int disable)
   2095 {
   2096 	struct wm_softc *sc = ifp->if_softc;
   2097 	struct wm_txsoft *txs;
   2098 	int i;
   2099 
   2100 	/* Stop the one second clock. */
   2101 	callout_stop(&sc->sc_tick_ch);
   2102 
   2103 	if (sc->sc_flags & WM_F_HAS_MII) {
   2104 		/* Down the MII. */
   2105 		mii_down(&sc->sc_mii);
   2106 	}
   2107 
   2108 	/* Stop the transmit and receive processes. */
   2109 	CSR_WRITE(sc, WMREG_TCTL, 0);
   2110 	CSR_WRITE(sc, WMREG_RCTL, 0);
   2111 
   2112 	/* Release any queued transmit buffers. */
   2113 	for (i = 0; i < WM_TXQUEUELEN; i++) {
   2114 		txs = &sc->sc_txsoft[i];
   2115 		if (txs->txs_mbuf != NULL) {
   2116 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2117 			m_freem(txs->txs_mbuf);
   2118 			txs->txs_mbuf = NULL;
   2119 		}
   2120 	}
   2121 
   2122 	if (disable)
   2123 		wm_rxdrain(sc);
   2124 
   2125 	/* Mark the interface as down and cancel the watchdog timer. */
   2126 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2127 	ifp->if_timer = 0;
   2128 }
   2129 
   2130 /*
   2131  * wm_read_eeprom:
   2132  *
   2133  *	Read data from the serial EEPROM.
   2134  */
   2135 void
   2136 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   2137 {
   2138 	uint32_t reg;
   2139 	int i, x;
   2140 
   2141 	for (i = 0; i < wordcnt; i++) {
   2142 		/* Send CHIP SELECT for one clock tick. */
   2143 		CSR_WRITE(sc, WMREG_EECD, EECD_CS);
   2144 		delay(2);
   2145 
   2146 		/* Shift in the READ command. */
   2147 		for (x = 3; x > 0; x--) {
   2148 			reg = EECD_CS;
   2149 			if (UWIRE_OPC_READ & (1 << (x - 1)))
   2150 				reg |= EECD_DI;
   2151 			CSR_WRITE(sc, WMREG_EECD, reg);
   2152 			delay(2);
   2153 			CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2154 			delay(2);
   2155 			CSR_WRITE(sc, WMREG_EECD, reg);
   2156 			delay(2);
   2157 		}
   2158 
   2159 		/* Shift in address. */
   2160 		for (x = 6; x > 0; x--) {
   2161 			reg = EECD_CS;
   2162 			if ((word + i) & (1 << (x - 1)))
   2163 				reg |= EECD_DI;
   2164 			CSR_WRITE(sc, WMREG_EECD, reg);
   2165 			delay(2);
   2166 			CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2167 			delay(2);
   2168 			CSR_WRITE(sc, WMREG_EECD, reg);
   2169 			delay(2);
   2170 		}
   2171 
   2172 		/* Shift out the data. */
   2173 		reg = EECD_CS;
   2174 		data[i] = 0;
   2175 		for (x = 16; x > 0; x--) {
   2176 			CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2177 			delay(2);
   2178 			if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
   2179 				data[i] |= (1 << (x - 1));
   2180 			CSR_WRITE(sc, WMREG_EECD, reg);
   2181 			delay(2);
   2182 		}
   2183 
   2184 		/* Clear CHIP SELECT. */
   2185 		CSR_WRITE(sc, WMREG_EECD, 0);
   2186 	}
   2187 }
   2188 
   2189 /*
   2190  * wm_add_rxbuf:
   2191  *
   2192  *	Add a receive buffer to the indiciated descriptor.
   2193  */
   2194 int
   2195 wm_add_rxbuf(struct wm_softc *sc, int idx)
   2196 {
   2197 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2198 	struct mbuf *m;
   2199 	int error;
   2200 
   2201 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2202 	if (m == NULL)
   2203 		return (ENOBUFS);
   2204 
   2205 	MCLGET(m, M_DONTWAIT);
   2206 	if ((m->m_flags & M_EXT) == 0) {
   2207 		m_freem(m);
   2208 		return (ENOBUFS);
   2209 	}
   2210 
   2211 	if (rxs->rxs_mbuf != NULL)
   2212 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2213 
   2214 	rxs->rxs_mbuf = m;
   2215 
   2216 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2217 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2218 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2219 	if (error) {
   2220 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   2221 		    sc->sc_dev.dv_xname, idx, error);
   2222 		panic("wm_add_rxbuf");	/* XXX XXX XXX */
   2223 	}
   2224 
   2225 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2226 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2227 
   2228 	WM_INIT_RXDESC(sc, idx);
   2229 
   2230 	return (0);
   2231 }
   2232 
   2233 /*
   2234  * wm_set_ral:
   2235  *
   2236  *	Set an entery in the receive address list.
   2237  */
   2238 static void
   2239 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
   2240 {
   2241 	uint32_t ral_lo, ral_hi;
   2242 
   2243 	if (enaddr != NULL) {
   2244 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   2245 		    (enaddr[3] << 24);
   2246 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   2247 		ral_hi |= RAL_AV;
   2248 	} else {
   2249 		ral_lo = 0;
   2250 		ral_hi = 0;
   2251 	}
   2252 
   2253 	if (sc->sc_type >= WM_T_82544) {
   2254 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
   2255 		    ral_lo);
   2256 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
   2257 		    ral_hi);
   2258 	} else {
   2259 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
   2260 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
   2261 	}
   2262 }
   2263 
   2264 /*
   2265  * wm_mchash:
   2266  *
   2267  *	Compute the hash of the multicast address for the 4096-bit
   2268  *	multicast filter.
   2269  */
   2270 static uint32_t
   2271 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
   2272 {
   2273 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   2274 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   2275 	uint32_t hash;
   2276 
   2277 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   2278 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   2279 
   2280 	return (hash & 0xfff);
   2281 }
   2282 
   2283 /*
   2284  * wm_set_filter:
   2285  *
   2286  *	Set up the receive filter.
   2287  */
   2288 void
   2289 wm_set_filter(struct wm_softc *sc)
   2290 {
   2291 	struct ethercom *ec = &sc->sc_ethercom;
   2292 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2293 	struct ether_multi *enm;
   2294 	struct ether_multistep step;
   2295 	bus_addr_t mta_reg;
   2296 	uint32_t hash, reg, bit;
   2297 	int i;
   2298 
   2299 	if (sc->sc_type >= WM_T_82544)
   2300 		mta_reg = WMREG_CORDOVA_MTA;
   2301 	else
   2302 		mta_reg = WMREG_MTA;
   2303 
   2304 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   2305 
   2306 	if (ifp->if_flags & IFF_BROADCAST)
   2307 		sc->sc_rctl |= RCTL_BAM;
   2308 	if (ifp->if_flags & IFF_PROMISC) {
   2309 		sc->sc_rctl |= RCTL_UPE;
   2310 		goto allmulti;
   2311 	}
   2312 
   2313 	/*
   2314 	 * Set the station address in the first RAL slot, and
   2315 	 * clear the remaining slots.
   2316 	 */
   2317 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
   2318 	for (i = 1; i < WM_RAL_TABSIZE; i++)
   2319 		wm_set_ral(sc, NULL, i);
   2320 
   2321 	/* Clear out the multicast table. */
   2322 	for (i = 0; i < WM_MC_TABSIZE; i++)
   2323 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
   2324 
   2325 	ETHER_FIRST_MULTI(step, ec, enm);
   2326 	while (enm != NULL) {
   2327 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2328 			/*
   2329 			 * We must listen to a range of multicast addresses.
   2330 			 * For now, just accept all multicasts, rather than
   2331 			 * trying to set only those filter bits needed to match
   2332 			 * the range.  (At this time, the only use of address
   2333 			 * ranges is for IP multicast routing, for which the
   2334 			 * range is big enough to require all bits set.)
   2335 			 */
   2336 			goto allmulti;
   2337 		}
   2338 
   2339 		hash = wm_mchash(sc, enm->enm_addrlo);
   2340 
   2341 		reg = (hash >> 5) & 0x7f;
   2342 		bit = hash & 0x1f;
   2343 
   2344 		hash = CSR_READ(sc, mta_reg + (reg << 2));
   2345 		hash |= 1U << bit;
   2346 
   2347 		/* XXX Hardware bug?? */
   2348 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
   2349 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
   2350 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   2351 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
   2352 		} else
   2353 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   2354 
   2355 		ETHER_NEXT_MULTI(step, enm);
   2356 	}
   2357 
   2358 	ifp->if_flags &= ~IFF_ALLMULTI;
   2359 	goto setit;
   2360 
   2361  allmulti:
   2362 	ifp->if_flags |= IFF_ALLMULTI;
   2363 	sc->sc_rctl |= RCTL_MPE;
   2364 
   2365  setit:
   2366 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
   2367 }
   2368 
   2369 /*
   2370  * wm_tbi_mediainit:
   2371  *
   2372  *	Initialize media for use on 1000BASE-X devices.
   2373  */
   2374 void
   2375 wm_tbi_mediainit(struct wm_softc *sc)
   2376 {
   2377 	const char *sep = "";
   2378 
   2379 	if (sc->sc_type < WM_T_82543)
   2380 		sc->sc_tipg = TIPG_WM_DFLT;
   2381 	else
   2382 		sc->sc_tipg = TIPG_LG_DFLT;
   2383 
   2384 	ifmedia_init(&sc->sc_mii.mii_media, 0, wm_tbi_mediachange,
   2385 	    wm_tbi_mediastatus);
   2386 
   2387 	/*
   2388 	 * SWD Pins:
   2389 	 *
   2390 	 *	0 = Link LED (output)
   2391 	 *	1 = Loss Of Signal (input)
   2392 	 */
   2393 	sc->sc_ctrl |= CTRL_SWDPIO(0);
   2394 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
   2395 
   2396 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2397 
   2398 #define	ADD(s, m, d)							\
   2399 do {									\
   2400 	printf("%s%s", sep, s);						\
   2401 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL);	\
   2402 	sep = ", ";							\
   2403 } while (/*CONSTCOND*/0)
   2404 
   2405 	printf("%s: ", sc->sc_dev.dv_xname);
   2406 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
   2407 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
   2408 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
   2409 	printf("\n");
   2410 
   2411 #undef ADD
   2412 
   2413 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   2414 }
   2415 
   2416 /*
   2417  * wm_tbi_mediastatus:	[ifmedia interface function]
   2418  *
   2419  *	Get the current interface media status on a 1000BASE-X device.
   2420  */
   2421 void
   2422 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2423 {
   2424 	struct wm_softc *sc = ifp->if_softc;
   2425 
   2426 	ifmr->ifm_status = IFM_AVALID;
   2427 	ifmr->ifm_active = IFM_ETHER;
   2428 
   2429 	if (sc->sc_tbi_linkup == 0) {
   2430 		ifmr->ifm_active |= IFM_NONE;
   2431 		return;
   2432 	}
   2433 
   2434 	ifmr->ifm_status |= IFM_ACTIVE;
   2435 	ifmr->ifm_active |= IFM_1000_SX;
   2436 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
   2437 		ifmr->ifm_active |= IFM_FDX;
   2438 }
   2439 
   2440 /*
   2441  * wm_tbi_mediachange:	[ifmedia interface function]
   2442  *
   2443  *	Set hardware to newly-selected media on a 1000BASE-X device.
   2444  */
   2445 int
   2446 wm_tbi_mediachange(struct ifnet *ifp)
   2447 {
   2448 	struct wm_softc *sc = ifp->if_softc;
   2449 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   2450 	uint32_t status;
   2451 	int i;
   2452 
   2453 	sc->sc_txcw = ife->ifm_data;
   2454 	if (sc->sc_ctrl & CTRL_RFCE)
   2455 		sc->sc_txcw |= ANAR_X_PAUSE_TOWARDS;
   2456 	if (sc->sc_ctrl & CTRL_TFCE)
   2457 		sc->sc_txcw |= ANAR_X_PAUSE_ASYM;
   2458 	sc->sc_txcw |= TXCW_ANE;
   2459 
   2460 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   2461 	delay(10000);
   2462 
   2463 	sc->sc_tbi_anstate = 0;
   2464 
   2465 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
   2466 		/* Have signal; wait for the link to come up. */
   2467 		for (i = 0; i < 50; i++) {
   2468 			delay(10000);
   2469 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
   2470 				break;
   2471 		}
   2472 
   2473 		status = CSR_READ(sc, WMREG_STATUS);
   2474 		if (status & STATUS_LU) {
   2475 			/* Link is up. */
   2476 			DPRINTF(WM_DEBUG_LINK,
   2477 			    ("%s: LINK: set media -> link up %s\n",
   2478 			    sc->sc_dev.dv_xname,
   2479 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   2480 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2481 			if (status & STATUS_FD)
   2482 				sc->sc_tctl |=
   2483 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2484 			else
   2485 				sc->sc_tctl |=
   2486 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2487 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2488 			sc->sc_tbi_linkup = 1;
   2489 		} else {
   2490 			/* Link is down. */
   2491 			DPRINTF(WM_DEBUG_LINK,
   2492 			    ("%s: LINK: set media -> link down\n",
   2493 			    sc->sc_dev.dv_xname));
   2494 			sc->sc_tbi_linkup = 0;
   2495 		}
   2496 	} else {
   2497 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
   2498 		    sc->sc_dev.dv_xname));
   2499 		sc->sc_tbi_linkup = 0;
   2500 	}
   2501 
   2502 	wm_tbi_set_linkled(sc);
   2503 
   2504 	return (0);
   2505 }
   2506 
   2507 /*
   2508  * wm_tbi_set_linkled:
   2509  *
   2510  *	Update the link LED on 1000BASE-X devices.
   2511  */
   2512 void
   2513 wm_tbi_set_linkled(struct wm_softc *sc)
   2514 {
   2515 
   2516 	if (sc->sc_tbi_linkup)
   2517 		sc->sc_ctrl |= CTRL_SWDPIN(0);
   2518 	else
   2519 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
   2520 
   2521 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2522 }
   2523 
   2524 /*
   2525  * wm_tbi_check_link:
   2526  *
   2527  *	Check the link on 1000BASE-X devices.
   2528  */
   2529 void
   2530 wm_tbi_check_link(struct wm_softc *sc)
   2531 {
   2532 	uint32_t rxcw, ctrl, status;
   2533 
   2534 	if (sc->sc_tbi_anstate == 0)
   2535 		return;
   2536 	else if (sc->sc_tbi_anstate > 1) {
   2537 		DPRINTF(WM_DEBUG_LINK,
   2538 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
   2539 		    sc->sc_tbi_anstate));
   2540 		sc->sc_tbi_anstate--;
   2541 		return;
   2542 	}
   2543 
   2544 	sc->sc_tbi_anstate = 0;
   2545 
   2546 	rxcw = CSR_READ(sc, WMREG_RXCW);
   2547 	ctrl = CSR_READ(sc, WMREG_CTRL);
   2548 	status = CSR_READ(sc, WMREG_STATUS);
   2549 
   2550 	if ((status & STATUS_LU) == 0) {
   2551 		DPRINTF(WM_DEBUG_LINK,
   2552 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
   2553 		sc->sc_tbi_linkup = 0;
   2554 	} else {
   2555 		DPRINTF(WM_DEBUG_LINK,
   2556 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
   2557 		    (status & STATUS_FD) ? "FDX" : "HDX"));
   2558 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2559 		if (status & STATUS_FD)
   2560 			sc->sc_tctl |=
   2561 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2562 		else
   2563 			sc->sc_tctl |=
   2564 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2565 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2566 		sc->sc_tbi_linkup = 1;
   2567 	}
   2568 
   2569 	wm_tbi_set_linkled(sc);
   2570 }
   2571 
   2572 /*
   2573  * wm_gmii_reset:
   2574  *
   2575  *	Reset the PHY.
   2576  */
   2577 void
   2578 wm_gmii_reset(struct wm_softc *sc)
   2579 {
   2580 	uint32_t reg;
   2581 
   2582 	if (sc->sc_type >= WM_T_82544) {
   2583 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   2584 		delay(20000);
   2585 
   2586 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2587 		delay(20000);
   2588 	} else {
   2589 		/* The PHY reset pin is active-low. */
   2590 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   2591 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
   2592 		    CTRL_EXT_SWDPIN(4));
   2593 		reg |= CTRL_EXT_SWDPIO(4);
   2594 
   2595 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   2596 		delay(10);
   2597 
   2598 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   2599 		delay(10);
   2600 
   2601 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   2602 		delay(10);
   2603 #if 0
   2604 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
   2605 #endif
   2606 	}
   2607 }
   2608 
   2609 /*
   2610  * wm_gmii_mediainit:
   2611  *
   2612  *	Initialize media for use on 1000BASE-T devices.
   2613  */
   2614 void
   2615 wm_gmii_mediainit(struct wm_softc *sc)
   2616 {
   2617 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2618 
   2619 	/* We have MII. */
   2620 	sc->sc_flags |= WM_F_HAS_MII;
   2621 
   2622 	sc->sc_tipg = TIPG_1000T_DFLT;
   2623 
   2624 	/*
   2625 	 * Let the chip set speed/duplex on its own based on
   2626 	 * signals from the PHY.
   2627 	 */
   2628 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
   2629 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2630 
   2631 	/* Initialize our media structures and probe the GMII. */
   2632 	sc->sc_mii.mii_ifp = ifp;
   2633 
   2634 	if (sc->sc_type >= WM_T_82544) {
   2635 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
   2636 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
   2637 	} else {
   2638 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
   2639 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
   2640 	}
   2641 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
   2642 
   2643 	wm_gmii_reset(sc);
   2644 
   2645 	ifmedia_init(&sc->sc_mii.mii_media, 0, wm_gmii_mediachange,
   2646 	    wm_gmii_mediastatus);
   2647 
   2648 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   2649 	    MII_OFFSET_ANY, 0);
   2650 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   2651 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   2652 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   2653 	} else
   2654 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   2655 }
   2656 
   2657 /*
   2658  * wm_gmii_mediastatus:	[ifmedia interface function]
   2659  *
   2660  *	Get the current interface media status on a 1000BASE-T device.
   2661  */
   2662 void
   2663 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2664 {
   2665 	struct wm_softc *sc = ifp->if_softc;
   2666 
   2667 	mii_pollstat(&sc->sc_mii);
   2668 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2669 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2670 }
   2671 
   2672 /*
   2673  * wm_gmii_mediachange:	[ifmedia interface function]
   2674  *
   2675  *	Set hardware to newly-selected media on a 1000BASE-T device.
   2676  */
   2677 int
   2678 wm_gmii_mediachange(struct ifnet *ifp)
   2679 {
   2680 	struct wm_softc *sc = ifp->if_softc;
   2681 
   2682 	if (ifp->if_flags & IFF_UP)
   2683 		mii_mediachg(&sc->sc_mii);
   2684 	return (0);
   2685 }
   2686 
   2687 #define	MDI_IO		CTRL_SWDPIN(2)
   2688 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
   2689 #define	MDI_CLK		CTRL_SWDPIN(3)
   2690 
   2691 static void
   2692 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
   2693 {
   2694 	uint32_t i, v;
   2695 
   2696 	v = CSR_READ(sc, WMREG_CTRL);
   2697 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   2698 	v |= MDI_DIR | CTRL_SWDPIO(3);
   2699 
   2700 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
   2701 		if (data & i)
   2702 			v |= MDI_IO;
   2703 		else
   2704 			v &= ~MDI_IO;
   2705 		CSR_WRITE(sc, WMREG_CTRL, v);
   2706 		delay(10);
   2707 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   2708 		delay(10);
   2709 		CSR_WRITE(sc, WMREG_CTRL, v);
   2710 		delay(10);
   2711 	}
   2712 }
   2713 
   2714 static uint32_t
   2715 i82543_mii_recvbits(struct wm_softc *sc)
   2716 {
   2717 	uint32_t v, i, data = 0;
   2718 
   2719 	v = CSR_READ(sc, WMREG_CTRL);
   2720 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   2721 	v |= CTRL_SWDPIO(3);
   2722 
   2723 	CSR_WRITE(sc, WMREG_CTRL, v);
   2724 	delay(10);
   2725 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   2726 	delay(10);
   2727 	CSR_WRITE(sc, WMREG_CTRL, v);
   2728 	delay(10);
   2729 
   2730 	for (i = 0; i < 16; i++) {
   2731 		data <<= 1;
   2732 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   2733 		delay(10);
   2734 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
   2735 			data |= 1;
   2736 		CSR_WRITE(sc, WMREG_CTRL, v);
   2737 		delay(10);
   2738 	}
   2739 
   2740 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   2741 	delay(10);
   2742 	CSR_WRITE(sc, WMREG_CTRL, v);
   2743 	delay(10);
   2744 
   2745 	return (data);
   2746 }
   2747 
   2748 #undef MDI_IO
   2749 #undef MDI_DIR
   2750 #undef MDI_CLK
   2751 
   2752 /*
   2753  * wm_gmii_i82543_readreg:	[mii interface function]
   2754  *
   2755  *	Read a PHY register on the GMII (i82543 version).
   2756  */
   2757 int
   2758 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
   2759 {
   2760 	struct wm_softc *sc = (void *) self;
   2761 	int rv;
   2762 
   2763 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   2764 	i82543_mii_sendbits(sc, reg | (phy << 5) |
   2765 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
   2766 	rv = i82543_mii_recvbits(sc) & 0xffff;
   2767 
   2768 	DPRINTF(WM_DEBUG_GMII,
   2769 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
   2770 	    sc->sc_dev.dv_xname, phy, reg, rv));
   2771 
   2772 	return (rv);
   2773 }
   2774 
   2775 /*
   2776  * wm_gmii_i82543_writereg:	[mii interface function]
   2777  *
   2778  *	Write a PHY register on the GMII (i82543 version).
   2779  */
   2780 void
   2781 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
   2782 {
   2783 	struct wm_softc *sc = (void *) self;
   2784 
   2785 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   2786 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
   2787 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
   2788 	    (MII_COMMAND_START << 30), 32);
   2789 }
   2790 
   2791 /*
   2792  * wm_gmii_i82544_readreg:	[mii interface function]
   2793  *
   2794  *	Read a PHY register on the GMII.
   2795  */
   2796 int
   2797 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
   2798 {
   2799 	struct wm_softc *sc = (void *) self;
   2800 	uint32_t mdic;
   2801 	int i, rv;
   2802 
   2803 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
   2804 	    MDIC_REGADD(reg));
   2805 
   2806 	for (i = 0; i < 100; i++) {
   2807 		mdic = CSR_READ(sc, WMREG_MDIC);
   2808 		if (mdic & MDIC_READY)
   2809 			break;
   2810 		delay(10);
   2811 	}
   2812 
   2813 	if ((mdic & MDIC_READY) == 0) {
   2814 		printf("%s: MDIC read timed out: phy %d reg %d\n",
   2815 		    sc->sc_dev.dv_xname, phy, reg);
   2816 		rv = 0;
   2817 	} else if (mdic & MDIC_E) {
   2818 #if 0 /* This is normal if no PHY is present. */
   2819 		printf("%s: MDIC read error: phy %d reg %d\n",
   2820 		    sc->sc_dev.dv_xname, phy, reg);
   2821 #endif
   2822 		rv = 0;
   2823 	} else {
   2824 		rv = MDIC_DATA(mdic);
   2825 		if (rv == 0xffff)
   2826 			rv = 0;
   2827 	}
   2828 
   2829 	return (rv);
   2830 }
   2831 
   2832 /*
   2833  * wm_gmii_i82544_writereg:	[mii interface function]
   2834  *
   2835  *	Write a PHY register on the GMII.
   2836  */
   2837 void
   2838 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
   2839 {
   2840 	struct wm_softc *sc = (void *) self;
   2841 	uint32_t mdic;
   2842 	int i;
   2843 
   2844 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
   2845 	    MDIC_REGADD(reg) | MDIC_DATA(val));
   2846 
   2847 	for (i = 0; i < 100; i++) {
   2848 		mdic = CSR_READ(sc, WMREG_MDIC);
   2849 		if (mdic & MDIC_READY)
   2850 			break;
   2851 		delay(10);
   2852 	}
   2853 
   2854 	if ((mdic & MDIC_READY) == 0)
   2855 		printf("%s: MDIC write timed out: phy %d reg %d\n",
   2856 		    sc->sc_dev.dv_xname, phy, reg);
   2857 	else if (mdic & MDIC_E)
   2858 		printf("%s: MDIC write error: phy %d reg %d\n",
   2859 		    sc->sc_dev.dv_xname, phy, reg);
   2860 }
   2861 
   2862 /*
   2863  * wm_gmii_statchg:	[mii interface function]
   2864  *
   2865  *	Callback from MII layer when media changes.
   2866  */
   2867 void
   2868 wm_gmii_statchg(struct device *self)
   2869 {
   2870 	struct wm_softc *sc = (void *) self;
   2871 
   2872 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2873 
   2874 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   2875 		DPRINTF(WM_DEBUG_LINK,
   2876 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
   2877 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2878 	} else  {
   2879 		DPRINTF(WM_DEBUG_LINK,
   2880 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
   2881 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2882 	}
   2883 
   2884 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2885 }
   2886