Home | History | Annotate | Line # | Download | only in pci
if_wm.c revision 1.145
      1 /*	$NetBSD: if_wm.c,v 1.145 2007/08/30 03:02:23 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*******************************************************************************
     39 
     40   Copyright (c) 2001-2005, Intel Corporation
     41   All rights reserved.
     42 
     43   Redistribution and use in source and binary forms, with or without
     44   modification, are permitted provided that the following conditions are met:
     45 
     46    1. Redistributions of source code must retain the above copyright notice,
     47       this list of conditions and the following disclaimer.
     48 
     49    2. Redistributions in binary form must reproduce the above copyright
     50       notice, this list of conditions and the following disclaimer in the
     51       documentation and/or other materials provided with the distribution.
     52 
     53    3. Neither the name of the Intel Corporation nor the names of its
     54       contributors may be used to endorse or promote products derived from
     55       this software without specific prior written permission.
     56 
     57   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     58   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     61   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     67   POSSIBILITY OF SUCH DAMAGE.
     68 
     69 *******************************************************************************/
     70 /*
     71  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
     72  *
     73  * TODO (in order of importance):
     74  *
     75  *	- Rework how parameters are loaded from the EEPROM.
     76  *	- Figure out what to do with the i82545GM and i82546GB
     77  *	  SERDES controllers.
     78  *	- Fix hw VLAN assist.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.145 2007/08/30 03:02:23 msaitoh Exp $");
     83 
     84 #include "bpfilter.h"
     85 #include "rnd.h"
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/malloc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/socket.h>
     94 #include <sys/ioctl.h>
     95 #include <sys/errno.h>
     96 #include <sys/device.h>
     97 #include <sys/queue.h>
     98 #include <sys/syslog.h>
     99 
    100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101 
    102 #if NRND > 0
    103 #include <sys/rnd.h>
    104 #endif
    105 
    106 #include <net/if.h>
    107 #include <net/if_dl.h>
    108 #include <net/if_media.h>
    109 #include <net/if_ether.h>
    110 
    111 #if NBPFILTER > 0
    112 #include <net/bpf.h>
    113 #endif
    114 
    115 #include <netinet/in.h>			/* XXX for struct ip */
    116 #include <netinet/in_systm.h>		/* XXX for struct ip */
    117 #include <netinet/ip.h>			/* XXX for struct ip */
    118 #include <netinet/ip6.h>		/* XXX for struct ip6_hdr */
    119 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
    120 
    121 #include <machine/bus.h>
    122 #include <machine/intr.h>
    123 #include <machine/endian.h>
    124 
    125 #include <dev/mii/mii.h>
    126 #include <dev/mii/miivar.h>
    127 #include <dev/mii/mii_bitbang.h>
    128 #include <dev/mii/ikphyreg.h>
    129 
    130 #include <dev/pci/pcireg.h>
    131 #include <dev/pci/pcivar.h>
    132 #include <dev/pci/pcidevs.h>
    133 
    134 #include <dev/pci/if_wmreg.h>
    135 
    136 #ifdef WM_DEBUG
    137 #define	WM_DEBUG_LINK		0x01
    138 #define	WM_DEBUG_TX		0x02
    139 #define	WM_DEBUG_RX		0x04
    140 #define	WM_DEBUG_GMII		0x08
    141 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK|WM_DEBUG_GMII;
    142 
    143 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
    144 #else
    145 #define	DPRINTF(x, y)	/* nothing */
    146 #endif /* WM_DEBUG */
    147 
    148 /*
    149  * Transmit descriptor list size.  Due to errata, we can only have
    150  * 256 hardware descriptors in the ring on < 82544, but we use 4096
    151  * on >= 82544.  We tell the upper layers that they can queue a lot
    152  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
    153  * of them at a time.
    154  *
    155  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
    156  * chains containing many small mbufs have been observed in zero-copy
    157  * situations with jumbo frames.
    158  */
    159 #define	WM_NTXSEGS		256
    160 #define	WM_IFQUEUELEN		256
    161 #define	WM_TXQUEUELEN_MAX	64
    162 #define	WM_TXQUEUELEN_MAX_82547	16
    163 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
    164 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
    165 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
    166 #define	WM_NTXDESC_82542	256
    167 #define	WM_NTXDESC_82544	4096
    168 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
    169 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
    170 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
    171 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
    172 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
    173 
    174 #define	WM_MAXTXDMA		round_page(IP_MAXPACKET) /* for TSO */
    175 
    176 /*
    177  * Receive descriptor list size.  We have one Rx buffer for normal
    178  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
    179  * packet.  We allocate 256 receive descriptors, each with a 2k
    180  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
    181  */
    182 #define	WM_NRXDESC		256
    183 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
    184 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
    185 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
    186 
    187 /*
    188  * Control structures are DMA'd to the i82542 chip.  We allocate them in
    189  * a single clump that maps to a single DMA segment to make several things
    190  * easier.
    191  */
    192 struct wm_control_data_82544 {
    193 	/*
    194 	 * The receive descriptors.
    195 	 */
    196 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    197 
    198 	/*
    199 	 * The transmit descriptors.  Put these at the end, because
    200 	 * we might use a smaller number of them.
    201 	 */
    202 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
    203 };
    204 
    205 struct wm_control_data_82542 {
    206 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    207 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
    208 };
    209 
    210 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
    211 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
    212 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
    213 
    214 /*
    215  * Software state for transmit jobs.
    216  */
    217 struct wm_txsoft {
    218 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    219 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    220 	int txs_firstdesc;		/* first descriptor in packet */
    221 	int txs_lastdesc;		/* last descriptor in packet */
    222 	int txs_ndesc;			/* # of descriptors used */
    223 };
    224 
    225 /*
    226  * Software state for receive buffers.  Each descriptor gets a
    227  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    228  * more than one buffer, we chain them together.
    229  */
    230 struct wm_rxsoft {
    231 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    232 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    233 };
    234 
    235 typedef enum {
    236 	WM_T_unknown		= 0,
    237 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
    238 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
    239 	WM_T_82543,			/* i82543 */
    240 	WM_T_82544,			/* i82544 */
    241 	WM_T_82540,			/* i82540 */
    242 	WM_T_82545,			/* i82545 */
    243 	WM_T_82545_3,			/* i82545 3.0+ */
    244 	WM_T_82546,			/* i82546 */
    245 	WM_T_82546_3,			/* i82546 3.0+ */
    246 	WM_T_82541,			/* i82541 */
    247 	WM_T_82541_2,			/* i82541 2.0+ */
    248 	WM_T_82547,			/* i82547 */
    249 	WM_T_82547_2,			/* i82547 2.0+ */
    250 	WM_T_82571,			/* i82571 */
    251 	WM_T_82572,			/* i82572 */
    252 	WM_T_82573,			/* i82573 */
    253 	WM_T_80003,			/* i80003 */
    254 	WM_T_ICH8,			/* ICH8 LAN */
    255 	WM_T_ICH9,			/* ICH9 LAN */
    256 } wm_chip_type;
    257 
    258 /*
    259  * Software state per device.
    260  */
    261 struct wm_softc {
    262 	struct device sc_dev;		/* generic device information */
    263 	bus_space_tag_t sc_st;		/* bus space tag */
    264 	bus_space_handle_t sc_sh;	/* bus space handle */
    265 	bus_space_tag_t sc_iot;		/* I/O space tag */
    266 	bus_space_handle_t sc_ioh;	/* I/O space handle */
    267 	bus_space_tag_t sc_flasht;	/* flash registers space tag */
    268 	bus_space_handle_t sc_flashh;	/* flash registers space handle */
    269 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    270 	struct ethercom sc_ethercom;	/* ethernet common data */
    271 	void *sc_sdhook;		/* shutdown hook */
    272 	void *sc_powerhook;		/* power hook */
    273 	pci_chipset_tag_t sc_pc;
    274 	pcitag_t sc_pcitag;
    275 	struct pci_conf_state sc_pciconf;
    276 
    277 	wm_chip_type sc_type;		/* chip type */
    278 	int sc_flags;			/* flags; see below */
    279 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    280 	int sc_pcix_offset;		/* PCIX capability register offset */
    281 	int sc_flowflags;		/* 802.3x flow control flags */
    282 
    283 	void *sc_ih;			/* interrupt cookie */
    284 
    285 	int sc_ee_addrbits;		/* EEPROM address bits */
    286 
    287 	struct mii_data sc_mii;		/* MII/media information */
    288 
    289 	callout_t sc_tick_ch;		/* tick callout */
    290 
    291 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    292 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    293 
    294 	int		sc_align_tweak;
    295 
    296 	/*
    297 	 * Software state for the transmit and receive descriptors.
    298 	 */
    299 	int			sc_txnum;	/* must be a power of two */
    300 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
    301 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
    302 
    303 	/*
    304 	 * Control data structures.
    305 	 */
    306 	int			sc_ntxdesc;	/* must be a power of two */
    307 	struct wm_control_data_82544 *sc_control_data;
    308 #define	sc_txdescs	sc_control_data->wcd_txdescs
    309 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    310 
    311 #ifdef WM_EVENT_COUNTERS
    312 	/* Event counters. */
    313 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    314 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    315 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
    316 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    317 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    318 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    319 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    320 
    321 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    322 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    323 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    324 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    325 	struct evcnt sc_ev_txtusum6;	/* TCP/UDP v6 cksums comp. out-bound */
    326 	struct evcnt sc_ev_txtso;	/* TCP seg offload out-bound (IPv4) */
    327 	struct evcnt sc_ev_txtso6;	/* TCP seg offload out-bound (IPv6) */
    328 	struct evcnt sc_ev_txtsopain;	/* painful header manip. for TSO */
    329 
    330 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
    331 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    332 
    333 	struct evcnt sc_ev_tu;		/* Tx underrun */
    334 
    335 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
    336 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
    337 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
    338 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
    339 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
    340 #endif /* WM_EVENT_COUNTERS */
    341 
    342 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
    343 
    344 	int	sc_txfree;		/* number of free Tx descriptors */
    345 	int	sc_txnext;		/* next ready Tx descriptor */
    346 
    347 	int	sc_txsfree;		/* number of free Tx jobs */
    348 	int	sc_txsnext;		/* next free Tx job */
    349 	int	sc_txsdirty;		/* dirty Tx jobs */
    350 
    351 	/* These 5 variables are used only on the 82547. */
    352 	int	sc_txfifo_size;		/* Tx FIFO size */
    353 	int	sc_txfifo_head;		/* current head of FIFO */
    354 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
    355 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
    356 	callout_t sc_txfifo_ch;		/* Tx FIFO stall work-around timer */
    357 
    358 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
    359 
    360 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    361 	int	sc_rxdiscard;
    362 	int	sc_rxlen;
    363 	struct mbuf *sc_rxhead;
    364 	struct mbuf *sc_rxtail;
    365 	struct mbuf **sc_rxtailp;
    366 
    367 	uint32_t sc_ctrl;		/* prototype CTRL register */
    368 #if 0
    369 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
    370 #endif
    371 	uint32_t sc_icr;		/* prototype interrupt bits */
    372 	uint32_t sc_itr;		/* prototype intr throttling reg */
    373 	uint32_t sc_tctl;		/* prototype TCTL register */
    374 	uint32_t sc_rctl;		/* prototype RCTL register */
    375 	uint32_t sc_txcw;		/* prototype TXCW register */
    376 	uint32_t sc_tipg;		/* prototype TIPG register */
    377 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
    378 	uint32_t sc_pba;		/* prototype PBA register */
    379 
    380 	int sc_tbi_linkup;		/* TBI link status */
    381 	int sc_tbi_anstate;		/* autonegotiation state */
    382 
    383 	int sc_mchash_type;		/* multicast filter offset */
    384 
    385 #if NRND > 0
    386 	rndsource_element_t rnd_source;	/* random source */
    387 #endif
    388 	int sc_ich8_flash_base;
    389 	int sc_ich8_flash_bank_size;
    390 };
    391 
    392 #define	WM_RXCHAIN_RESET(sc)						\
    393 do {									\
    394 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    395 	*(sc)->sc_rxtailp = NULL;					\
    396 	(sc)->sc_rxlen = 0;						\
    397 } while (/*CONSTCOND*/0)
    398 
    399 #define	WM_RXCHAIN_LINK(sc, m)						\
    400 do {									\
    401 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    402 	(sc)->sc_rxtailp = &(m)->m_next;				\
    403 } while (/*CONSTCOND*/0)
    404 
    405 /* sc_flags */
    406 #define	WM_F_HAS_MII		0x0001	/* has MII */
    407 #define	WM_F_EEPROM_HANDSHAKE	0x0002	/* requires EEPROM handshake */
    408 #define	WM_F_EEPROM_SEMAPHORE	0x0004	/* EEPROM with semaphore */
    409 #define	WM_F_EEPROM_EERDEEWR	0x0008	/* EEPROM access via EERD/EEWR */
    410 #define	WM_F_EEPROM_SPI		0x0010	/* EEPROM is SPI */
    411 #define	WM_F_EEPROM_FLASH	0x0020	/* EEPROM is FLASH */
    412 #define	WM_F_EEPROM_INVALID	0x0040	/* EEPROM not present (bad checksum) */
    413 #define	WM_F_IOH_VALID		0x0080	/* I/O handle is valid */
    414 #define	WM_F_BUS64		0x0100	/* bus is 64-bit */
    415 #define	WM_F_PCIX		0x0200	/* bus is PCI-X */
    416 #define	WM_F_CSA		0x0400	/* bus is CSA */
    417 #define	WM_F_PCIE		0x0800	/* bus is PCI-Express */
    418 #define WM_F_SWFW_SYNC		0x1000  /* Software-Firmware synchronisation */
    419 #define WM_F_SWFWHW_SYNC	0x2000  /* Software-Firmware synchronisation */
    420 
    421 #ifdef WM_EVENT_COUNTERS
    422 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
    423 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
    424 #else
    425 #define	WM_EVCNT_INCR(ev)	/* nothing */
    426 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
    427 #endif
    428 
    429 #define	CSR_READ(sc, reg)						\
    430 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    431 #define	CSR_WRITE(sc, reg, val)						\
    432 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    433 #define	CSR_WRITE_FLUSH(sc)						\
    434 	(void) CSR_READ((sc), WMREG_STATUS)
    435 
    436 #define ICH8_FLASH_READ32(sc, reg) \
    437 	bus_space_read_4((sc)->sc_flasht, (sc)->sc_flashh, (reg))
    438 #define ICH8_FLASH_WRITE32(sc, reg, data) \
    439 	bus_space_write_4((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data))
    440 
    441 #define ICH8_FLASH_READ16(sc, reg) \
    442 	bus_space_read_2((sc)->sc_flasht, (sc)->sc_flashh, (reg))
    443 #define ICH8_FLASH_WRITE16(sc, reg, data) \
    444 	bus_space_write_2((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data))
    445 
    446 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
    447 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
    448 
    449 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
    450 #define	WM_CDTXADDR_HI(sc, x)						\
    451 	(sizeof(bus_addr_t) == 8 ?					\
    452 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
    453 
    454 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
    455 #define	WM_CDRXADDR_HI(sc, x)						\
    456 	(sizeof(bus_addr_t) == 8 ?					\
    457 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
    458 
    459 #define	WM_CDTXSYNC(sc, x, n, ops)					\
    460 do {									\
    461 	int __x, __n;							\
    462 									\
    463 	__x = (x);							\
    464 	__n = (n);							\
    465 									\
    466 	/* If it will wrap around, sync to the end of the ring. */	\
    467 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
    468 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    469 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
    470 		    (WM_NTXDESC(sc) - __x), (ops));			\
    471 		__n -= (WM_NTXDESC(sc) - __x);				\
    472 		__x = 0;						\
    473 	}								\
    474 									\
    475 	/* Now sync whatever is left. */				\
    476 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    477 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
    478 } while (/*CONSTCOND*/0)
    479 
    480 #define	WM_CDRXSYNC(sc, x, ops)						\
    481 do {									\
    482 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    483 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
    484 } while (/*CONSTCOND*/0)
    485 
    486 #define	WM_INIT_RXDESC(sc, x)						\
    487 do {									\
    488 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    489 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
    490 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    491 									\
    492 	/*								\
    493 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    494 	 * so that the payload after the Ethernet header is aligned	\
    495 	 * to a 4-byte boundary.					\
    496 	 *								\
    497 	 * XXX BRAINDAMAGE ALERT!					\
    498 	 * The stupid chip uses the same size for every buffer, which	\
    499 	 * is set in the Receive Control register.  We are using the 2K	\
    500 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    501 	 * reason, we can't "scoot" packets longer than the standard	\
    502 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    503 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    504 	 * the upper layer copy the headers.				\
    505 	 */								\
    506 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    507 									\
    508 	wm_set_dma_addr(&__rxd->wrx_addr,				\
    509 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
    510 	__rxd->wrx_len = 0;						\
    511 	__rxd->wrx_cksum = 0;						\
    512 	__rxd->wrx_status = 0;						\
    513 	__rxd->wrx_errors = 0;						\
    514 	__rxd->wrx_special = 0;						\
    515 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    516 									\
    517 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
    518 } while (/*CONSTCOND*/0)
    519 
    520 static void	wm_start(struct ifnet *);
    521 static void	wm_watchdog(struct ifnet *);
    522 static int	wm_ioctl(struct ifnet *, u_long, void *);
    523 static int	wm_init(struct ifnet *);
    524 static void	wm_stop(struct ifnet *, int);
    525 
    526 static void	wm_shutdown(void *);
    527 static void	wm_powerhook(int, void *);
    528 
    529 static void	wm_reset(struct wm_softc *);
    530 static void	wm_rxdrain(struct wm_softc *);
    531 static int	wm_add_rxbuf(struct wm_softc *, int);
    532 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
    533 static int	wm_read_eeprom_eerd(struct wm_softc *, int, int, u_int16_t *);
    534 static int	wm_validate_eeprom_checksum(struct wm_softc *);
    535 static void	wm_tick(void *);
    536 
    537 static void	wm_set_filter(struct wm_softc *);
    538 
    539 static int	wm_intr(void *);
    540 static void	wm_txintr(struct wm_softc *);
    541 static void	wm_rxintr(struct wm_softc *);
    542 static void	wm_linkintr(struct wm_softc *, uint32_t);
    543 
    544 static void	wm_tbi_mediainit(struct wm_softc *);
    545 static int	wm_tbi_mediachange(struct ifnet *);
    546 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
    547 
    548 static void	wm_tbi_set_linkled(struct wm_softc *);
    549 static void	wm_tbi_check_link(struct wm_softc *);
    550 
    551 static void	wm_gmii_reset(struct wm_softc *);
    552 
    553 static int	wm_gmii_i82543_readreg(struct device *, int, int);
    554 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
    555 
    556 static int	wm_gmii_i82544_readreg(struct device *, int, int);
    557 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
    558 
    559 static int	wm_gmii_i80003_readreg(struct device *, int, int);
    560 static void	wm_gmii_i80003_writereg(struct device *, int, int, int);
    561 
    562 static void	wm_gmii_statchg(struct device *);
    563 
    564 static void	wm_gmii_mediainit(struct wm_softc *);
    565 static int	wm_gmii_mediachange(struct ifnet *);
    566 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
    567 
    568 static int	wm_kmrn_i80003_readreg(struct wm_softc *, int);
    569 static void	wm_kmrn_i80003_writereg(struct wm_softc *, int, int);
    570 
    571 static int	wm_match(struct device *, struct cfdata *, void *);
    572 static void	wm_attach(struct device *, struct device *, void *);
    573 static int	wm_is_onboard_nvm_eeprom(struct wm_softc *);
    574 static void	wm_get_auto_rd_dome(struct wm_softc *);
    575 static int	wm_get_swsm_semaphore(struct wm_softc *);
    576 static void	wm_put_swsm_semaphore(struct wm_softc *);
    577 static int	wm_poll_eerd_eewr_done(struct wm_softc *, int);
    578 static int	wm_get_swfw_semaphore(struct wm_softc *, uint16_t);
    579 static void	wm_put_swfw_semaphore(struct wm_softc *, uint16_t);
    580 static int	wm_get_swfwhw_semaphore(struct wm_softc *);
    581 static void	wm_put_swfwhw_semaphore(struct wm_softc *);
    582 
    583 static int	wm_read_eeprom_ich8(struct wm_softc *, int, int, uint16_t *);
    584 static int32_t	wm_ich8_cycle_init(struct wm_softc *);
    585 static int32_t	wm_ich8_flash_cycle(struct wm_softc *, uint32_t);
    586 static int32_t	wm_read_ich8_data(struct wm_softc *, uint32_t,
    587                      uint32_t, uint16_t *);
    588 static int32_t	wm_read_ich8_word(struct wm_softc *sc, uint32_t, uint16_t *);
    589 
    590 CFATTACH_DECL(wm, sizeof(struct wm_softc),
    591     wm_match, wm_attach, NULL, NULL);
    592 
    593 static void	wm_82547_txfifo_stall(void *);
    594 
    595 /*
    596  * Devices supported by this driver.
    597  */
    598 static const struct wm_product {
    599 	pci_vendor_id_t		wmp_vendor;
    600 	pci_product_id_t	wmp_product;
    601 	const char		*wmp_name;
    602 	wm_chip_type		wmp_type;
    603 	int			wmp_flags;
    604 #define	WMP_F_1000X		0x01
    605 #define	WMP_F_1000T		0x02
    606 } wm_products[] = {
    607 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
    608 	  "Intel i82542 1000BASE-X Ethernet",
    609 	  WM_T_82542_2_1,	WMP_F_1000X },
    610 
    611 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
    612 	  "Intel i82543GC 1000BASE-X Ethernet",
    613 	  WM_T_82543,		WMP_F_1000X },
    614 
    615 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
    616 	  "Intel i82543GC 1000BASE-T Ethernet",
    617 	  WM_T_82543,		WMP_F_1000T },
    618 
    619 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
    620 	  "Intel i82544EI 1000BASE-T Ethernet",
    621 	  WM_T_82544,		WMP_F_1000T },
    622 
    623 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
    624 	  "Intel i82544EI 1000BASE-X Ethernet",
    625 	  WM_T_82544,		WMP_F_1000X },
    626 
    627 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
    628 	  "Intel i82544GC 1000BASE-T Ethernet",
    629 	  WM_T_82544,		WMP_F_1000T },
    630 
    631 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
    632 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
    633 	  WM_T_82544,		WMP_F_1000T },
    634 
    635 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
    636 	  "Intel i82540EM 1000BASE-T Ethernet",
    637 	  WM_T_82540,		WMP_F_1000T },
    638 
    639 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
    640 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
    641 	  WM_T_82540,		WMP_F_1000T },
    642 
    643 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
    644 	  "Intel i82540EP 1000BASE-T Ethernet",
    645 	  WM_T_82540,		WMP_F_1000T },
    646 
    647 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
    648 	  "Intel i82540EP 1000BASE-T Ethernet",
    649 	  WM_T_82540,		WMP_F_1000T },
    650 
    651 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
    652 	  "Intel i82540EP 1000BASE-T Ethernet",
    653 	  WM_T_82540,		WMP_F_1000T },
    654 
    655 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
    656 	  "Intel i82545EM 1000BASE-T Ethernet",
    657 	  WM_T_82545,		WMP_F_1000T },
    658 
    659 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
    660 	  "Intel i82545GM 1000BASE-T Ethernet",
    661 	  WM_T_82545_3,		WMP_F_1000T },
    662 
    663 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
    664 	  "Intel i82545GM 1000BASE-X Ethernet",
    665 	  WM_T_82545_3,		WMP_F_1000X },
    666 #if 0
    667 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
    668 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
    669 	  WM_T_82545_3,		WMP_F_SERDES },
    670 #endif
    671 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
    672 	  "Intel i82546EB 1000BASE-T Ethernet",
    673 	  WM_T_82546,		WMP_F_1000T },
    674 
    675 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
    676 	  "Intel i82546EB 1000BASE-T Ethernet",
    677 	  WM_T_82546,		WMP_F_1000T },
    678 
    679 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
    680 	  "Intel i82545EM 1000BASE-X Ethernet",
    681 	  WM_T_82545,		WMP_F_1000X },
    682 
    683 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
    684 	  "Intel i82546EB 1000BASE-X Ethernet",
    685 	  WM_T_82546,		WMP_F_1000X },
    686 
    687 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
    688 	  "Intel i82546GB 1000BASE-T Ethernet",
    689 	  WM_T_82546_3,		WMP_F_1000T },
    690 
    691 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
    692 	  "Intel i82546GB 1000BASE-X Ethernet",
    693 	  WM_T_82546_3,		WMP_F_1000X },
    694 #if 0
    695 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
    696 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
    697 	  WM_T_82546_3,		WMP_F_SERDES },
    698 #endif
    699 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER,
    700 	  "i82546GB quad-port Gigabit Ethernet",
    701 	  WM_T_82546_3,		WMP_F_1000T },
    702 
    703 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3,
    704 	  "i82546GB quad-port Gigabit Ethernet (KSP3)",
    705 	  WM_T_82546_3,		WMP_F_1000T },
    706 
    707 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_PCIE,
    708 	  "Intel PRO/1000MT (82546GB)",
    709 	  WM_T_82546_3,		WMP_F_1000T },
    710 
    711 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
    712 	  "Intel i82541EI 1000BASE-T Ethernet",
    713 	  WM_T_82541,		WMP_F_1000T },
    714 
    715 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER_LOM,
    716 	  "Intel i82541ER (LOM) 1000BASE-T Ethernet",
    717 	  WM_T_82541,		WMP_F_1000T },
    718 
    719 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
    720 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
    721 	  WM_T_82541,		WMP_F_1000T },
    722 
    723 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
    724 	  "Intel i82541ER 1000BASE-T Ethernet",
    725 	  WM_T_82541_2,		WMP_F_1000T },
    726 
    727 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
    728 	  "Intel i82541GI 1000BASE-T Ethernet",
    729 	  WM_T_82541_2,		WMP_F_1000T },
    730 
    731 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
    732 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
    733 	  WM_T_82541_2,		WMP_F_1000T },
    734 
    735 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541PI,
    736 	  "Intel i82541PI 1000BASE-T Ethernet",
    737 	  WM_T_82541_2,		WMP_F_1000T },
    738 
    739 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
    740 	  "Intel i82547EI 1000BASE-T Ethernet",
    741 	  WM_T_82547,		WMP_F_1000T },
    742 
    743 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI_MOBILE,
    744 	  "Intel i82547EI Mobile 1000BASE-T Ethernet",
    745 	  WM_T_82547,		WMP_F_1000T },
    746 
    747 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
    748 	  "Intel i82547GI 1000BASE-T Ethernet",
    749 	  WM_T_82547_2,		WMP_F_1000T },
    750 
    751 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_COPPER,
    752 	  "Intel PRO/1000 PT (82571EB)",
    753 	  WM_T_82571,		WMP_F_1000T },
    754 
    755 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_FIBER,
    756 	  "Intel PRO/1000 PF (82571EB)",
    757 	  WM_T_82571,		WMP_F_1000X },
    758 #if 0
    759 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_SERDES,
    760 	  "Intel PRO/1000 PB (82571EB)",
    761 	  WM_T_82571,		WMP_F_SERDES },
    762 #endif
    763 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER,
    764 	  "Intel PRO/1000 QT (82571EB)",
    765 	  WM_T_82571,		WMP_F_1000T },
    766 
    767 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_COPPER,
    768 	  "Intel i82572EI 1000baseT Ethernet",
    769 	  WM_T_82572,		WMP_F_1000T },
    770 
    771 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_FIBER,
    772 	  "Intel i82572EI 1000baseX Ethernet",
    773 	  WM_T_82572,		WMP_F_1000X },
    774 #if 0
    775 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_SERDES,
    776 	  "Intel i82572EI Gigabit Ethernet (SERDES)",
    777 	  WM_T_82572,		WMP_F_SERDES },
    778 #endif
    779 
    780 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI,
    781 	  "Intel i82572EI 1000baseT Ethernet",
    782 	  WM_T_82572,		WMP_F_1000T },
    783 
    784 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573E,
    785 	  "Intel i82573E",
    786 	  WM_T_82573,		WMP_F_1000T },
    787 
    788 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573E_IAMT,
    789 	  "Intel i82573E IAMT",
    790 	  WM_T_82573,		WMP_F_1000T },
    791 
    792 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573L,
    793 	  "Intel i82573L Gigabit Ethernet",
    794 	  WM_T_82573,		WMP_F_1000T },
    795 
    796 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT,
    797 	  "i80003 dual 1000baseT Ethernet",
    798 	  WM_T_80003,		WMP_F_1000T },
    799 
    800 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT,
    801 	  "i80003 dual 1000baseX Ethernet",
    802 	  WM_T_80003,		WMP_F_1000T },
    803 #if 0
    804 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT,
    805 	  "Intel i80003ES2 dual Gigabit Ethernet (SERDES)",
    806 	  WM_T_80003,		WMP_F_SERDES },
    807 #endif
    808 
    809 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT,
    810 	  "Intel i80003 1000baseT Ethernet",
    811 	  WM_T_80003,		WMP_F_1000T },
    812 #if 0
    813 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT,
    814 	  "Intel i80003 Gigabit Ethernet (SERDES)",
    815 	  WM_T_80003,		WMP_F_SERDES },
    816 #endif
    817 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_M_AMT,
    818 	  "Intel i82801H (M_AMT) LAN Controller",
    819 	  WM_T_ICH8,		WMP_F_1000T },
    820 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_AMT,
    821 	  "Intel i82801H (AMT) LAN Controller",
    822 	  WM_T_ICH8,		WMP_F_1000T },
    823 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_LAN,
    824 	  "Intel i82801H LAN Controller",
    825 	  WM_T_ICH8,		WMP_F_1000T },
    826 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_IFE_LAN,
    827 	  "Intel i82801H (IFE) LAN Controller",
    828 	  WM_T_ICH8,		WMP_F_1000T },
    829 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_M_LAN,
    830 	  "Intel i82801H (M) LAN Controller",
    831 	  WM_T_ICH8,		WMP_F_1000T },
    832 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_IFE_GT,
    833 	  "Intel i82801H IFE (GT) LAN Controller",
    834 	  WM_T_ICH8,		WMP_F_1000T },
    835 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_IFE_G,
    836 	  "Intel i82801H IFE (G) LAN Controller",
    837 	  WM_T_ICH8,		WMP_F_1000T },
    838 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IGP_AMT,
    839 	  "82801I (AMT) LAN Controller",
    840 	  WM_T_ICH9,		WMP_F_1000T },
    841 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IFE,
    842 	  "82801I LAN Controller",
    843 	  WM_T_ICH9,		WMP_F_1000T },
    844 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IFE_G,
    845 	  "82801I (G) LAN Controller",
    846 	  WM_T_ICH9,		WMP_F_1000T },
    847 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IFE_GT,
    848 	  "82801I (GT) LAN Controller",
    849 	  WM_T_ICH9,		WMP_F_1000T },
    850 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IGP_C,
    851 	  "82801I (C) LAN Controller",
    852 	  WM_T_ICH9,		WMP_F_1000T },
    853 	{ 0,			0,
    854 	  NULL,
    855 	  0,			0 },
    856 };
    857 
    858 #ifdef WM_EVENT_COUNTERS
    859 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
    860 #endif /* WM_EVENT_COUNTERS */
    861 
    862 #if 0 /* Not currently used */
    863 static inline uint32_t
    864 wm_io_read(struct wm_softc *sc, int reg)
    865 {
    866 
    867 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    868 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
    869 }
    870 #endif
    871 
    872 static inline void
    873 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
    874 {
    875 
    876 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    877 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
    878 }
    879 
    880 static inline void
    881 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
    882 {
    883 	wa->wa_low = htole32(v & 0xffffffffU);
    884 	if (sizeof(bus_addr_t) == 8)
    885 		wa->wa_high = htole32((uint64_t) v >> 32);
    886 	else
    887 		wa->wa_high = 0;
    888 }
    889 
    890 static const struct wm_product *
    891 wm_lookup(const struct pci_attach_args *pa)
    892 {
    893 	const struct wm_product *wmp;
    894 
    895 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
    896 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
    897 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
    898 			return (wmp);
    899 	}
    900 	return (NULL);
    901 }
    902 
    903 static int
    904 wm_match(struct device *parent, struct cfdata *cf, void *aux)
    905 {
    906 	struct pci_attach_args *pa = aux;
    907 
    908 	if (wm_lookup(pa) != NULL)
    909 		return (1);
    910 
    911 	return (0);
    912 }
    913 
    914 static void
    915 wm_attach(struct device *parent, struct device *self, void *aux)
    916 {
    917 	struct wm_softc *sc = (void *) self;
    918 	struct pci_attach_args *pa = aux;
    919 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    920 	pci_chipset_tag_t pc = pa->pa_pc;
    921 	pci_intr_handle_t ih;
    922 	size_t cdata_size;
    923 	const char *intrstr = NULL;
    924 	const char *eetype;
    925 	bus_space_tag_t memt;
    926 	bus_space_handle_t memh;
    927 	bus_dma_segment_t seg;
    928 	int memh_valid;
    929 	int i, rseg, error;
    930 	const struct wm_product *wmp;
    931 	prop_data_t ea;
    932 	prop_number_t pn;
    933 	uint8_t enaddr[ETHER_ADDR_LEN];
    934 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
    935 	pcireg_t preg, memtype;
    936 	uint32_t reg;
    937 
    938 	callout_init(&sc->sc_tick_ch, 0);
    939 
    940 	wmp = wm_lookup(pa);
    941 	if (wmp == NULL) {
    942 		printf("\n");
    943 		panic("wm_attach: impossible");
    944 	}
    945 
    946 	sc->sc_pc = pa->pa_pc;
    947 	sc->sc_pcitag = pa->pa_tag;
    948 
    949 	if (pci_dma64_available(pa))
    950 		sc->sc_dmat = pa->pa_dmat64;
    951 	else
    952 		sc->sc_dmat = pa->pa_dmat;
    953 
    954 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    955 	aprint_naive(": Ethernet controller\n");
    956 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
    957 
    958 	sc->sc_type = wmp->wmp_type;
    959 	if (sc->sc_type < WM_T_82543) {
    960 		if (preg < 2) {
    961 			aprint_error("%s: i82542 must be at least rev. 2\n",
    962 			    sc->sc_dev.dv_xname);
    963 			return;
    964 		}
    965 		if (preg < 3)
    966 			sc->sc_type = WM_T_82542_2_0;
    967 	}
    968 
    969 	/*
    970 	 * Map the device.  All devices support memory-mapped acccess,
    971 	 * and it is really required for normal operation.
    972 	 */
    973 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
    974 	switch (memtype) {
    975 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    976 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    977 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
    978 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    979 		break;
    980 	default:
    981 		memh_valid = 0;
    982 	}
    983 
    984 	if (memh_valid) {
    985 		sc->sc_st = memt;
    986 		sc->sc_sh = memh;
    987 	} else {
    988 		aprint_error("%s: unable to map device registers\n",
    989 		    sc->sc_dev.dv_xname);
    990 		return;
    991 	}
    992 
    993 	/*
    994 	 * In addition, i82544 and later support I/O mapped indirect
    995 	 * register access.  It is not desirable (nor supported in
    996 	 * this driver) to use it for normal operation, though it is
    997 	 * required to work around bugs in some chip versions.
    998 	 */
    999 	if (sc->sc_type >= WM_T_82544) {
   1000 		/* First we have to find the I/O BAR. */
   1001 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
   1002 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
   1003 			    PCI_MAPREG_TYPE_IO)
   1004 				break;
   1005 		}
   1006 		if (i == PCI_MAPREG_END)
   1007 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
   1008 			    sc->sc_dev.dv_xname);
   1009 		else {
   1010 			/*
   1011 			 * The i8254x doesn't apparently respond when the
   1012 			 * I/O BAR is 0, which looks somewhat like it's not
   1013 			 * been configured.
   1014 			 */
   1015 			preg = pci_conf_read(pc, pa->pa_tag, i);
   1016 			if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
   1017 				aprint_error("%s: WARNING: I/O BAR at zero.\n",
   1018 				    sc->sc_dev.dv_xname);
   1019 			} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
   1020 					0, &sc->sc_iot, &sc->sc_ioh,
   1021 					NULL, NULL) == 0) {
   1022 				sc->sc_flags |= WM_F_IOH_VALID;
   1023 			} else {
   1024 				aprint_error("%s: WARNING: unable to map "
   1025 				    "I/O space\n", sc->sc_dev.dv_xname);
   1026 			}
   1027 		}
   1028 
   1029 	}
   1030 
   1031 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
   1032 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1033 	preg |= PCI_COMMAND_MASTER_ENABLE;
   1034 	if (sc->sc_type < WM_T_82542_2_1)
   1035 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
   1036 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
   1037 
   1038 	/* power up chip */
   1039 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
   1040 	    NULL)) && error != EOPNOTSUPP) {
   1041 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
   1042 		    error);
   1043 		return;
   1044 	}
   1045 
   1046 	/*
   1047 	 * Map and establish our interrupt.
   1048 	 */
   1049 	if (pci_intr_map(pa, &ih)) {
   1050 		aprint_error("%s: unable to map interrupt\n",
   1051 		    sc->sc_dev.dv_xname);
   1052 		return;
   1053 	}
   1054 	intrstr = pci_intr_string(pc, ih);
   1055 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
   1056 	if (sc->sc_ih == NULL) {
   1057 		aprint_error("%s: unable to establish interrupt",
   1058 		    sc->sc_dev.dv_xname);
   1059 		if (intrstr != NULL)
   1060 			aprint_normal(" at %s", intrstr);
   1061 		aprint_normal("\n");
   1062 		return;
   1063 	}
   1064 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
   1065 
   1066 	/*
   1067 	 * Determine a few things about the bus we're connected to.
   1068 	 */
   1069 	if (sc->sc_type < WM_T_82543) {
   1070 		/* We don't really know the bus characteristics here. */
   1071 		sc->sc_bus_speed = 33;
   1072 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
   1073 		/*
   1074 		 * CSA (Communication Streaming Architecture) is about as fast
   1075 		 * a 32-bit 66MHz PCI Bus.
   1076 		 */
   1077 		sc->sc_flags |= WM_F_CSA;
   1078 		sc->sc_bus_speed = 66;
   1079 		aprint_verbose("%s: Communication Streaming Architecture\n",
   1080 		    sc->sc_dev.dv_xname);
   1081 		if (sc->sc_type == WM_T_82547) {
   1082 			callout_init(&sc->sc_txfifo_ch, 0);
   1083 			callout_setfunc(&sc->sc_txfifo_ch,
   1084 					wm_82547_txfifo_stall, sc);
   1085 			aprint_verbose("%s: using 82547 Tx FIFO stall "
   1086 				       "work-around\n", sc->sc_dev.dv_xname);
   1087 		}
   1088 	} else if (sc->sc_type >= WM_T_82571) {
   1089 		sc->sc_flags |= WM_F_PCIE;
   1090 		if ((sc->sc_type != WM_T_ICH8) || (sc->sc_type != WM_T_ICH9))
   1091 			sc->sc_flags |= WM_F_EEPROM_SEMAPHORE;
   1092 		aprint_verbose("%s: PCI-Express bus\n", sc->sc_dev.dv_xname);
   1093 	} else {
   1094 		reg = CSR_READ(sc, WMREG_STATUS);
   1095 		if (reg & STATUS_BUS64)
   1096 			sc->sc_flags |= WM_F_BUS64;
   1097 		if (sc->sc_type >= WM_T_82544 &&
   1098 		    (reg & STATUS_PCIX_MODE) != 0) {
   1099 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
   1100 
   1101 			sc->sc_flags |= WM_F_PCIX;
   1102 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
   1103 					       PCI_CAP_PCIX,
   1104 					       &sc->sc_pcix_offset, NULL) == 0)
   1105 				aprint_error("%s: unable to find PCIX "
   1106 				    "capability\n", sc->sc_dev.dv_xname);
   1107 			else if (sc->sc_type != WM_T_82545_3 &&
   1108 				 sc->sc_type != WM_T_82546_3) {
   1109 				/*
   1110 				 * Work around a problem caused by the BIOS
   1111 				 * setting the max memory read byte count
   1112 				 * incorrectly.
   1113 				 */
   1114 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1115 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
   1116 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1117 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
   1118 
   1119 				bytecnt =
   1120 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
   1121 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
   1122 				maxb =
   1123 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
   1124 				    PCI_PCIX_STATUS_MAXB_SHIFT;
   1125 				if (bytecnt > maxb) {
   1126 					aprint_verbose("%s: resetting PCI-X "
   1127 					    "MMRBC: %d -> %d\n",
   1128 					    sc->sc_dev.dv_xname,
   1129 					    512 << bytecnt, 512 << maxb);
   1130 					pcix_cmd = (pcix_cmd &
   1131 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
   1132 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
   1133 					pci_conf_write(pa->pa_pc, pa->pa_tag,
   1134 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
   1135 					    pcix_cmd);
   1136 				}
   1137 			}
   1138 		}
   1139 		/*
   1140 		 * The quad port adapter is special; it has a PCIX-PCIX
   1141 		 * bridge on the board, and can run the secondary bus at
   1142 		 * a higher speed.
   1143 		 */
   1144 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
   1145 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
   1146 								      : 66;
   1147 		} else if (sc->sc_flags & WM_F_PCIX) {
   1148 			switch (reg & STATUS_PCIXSPD_MASK) {
   1149 			case STATUS_PCIXSPD_50_66:
   1150 				sc->sc_bus_speed = 66;
   1151 				break;
   1152 			case STATUS_PCIXSPD_66_100:
   1153 				sc->sc_bus_speed = 100;
   1154 				break;
   1155 			case STATUS_PCIXSPD_100_133:
   1156 				sc->sc_bus_speed = 133;
   1157 				break;
   1158 			default:
   1159 				aprint_error(
   1160 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
   1161 				    sc->sc_dev.dv_xname,
   1162 				    reg & STATUS_PCIXSPD_MASK);
   1163 				sc->sc_bus_speed = 66;
   1164 			}
   1165 		} else
   1166 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
   1167 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
   1168 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
   1169 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
   1170 	}
   1171 
   1172 	/*
   1173 	 * Allocate the control data structures, and create and load the
   1174 	 * DMA map for it.
   1175 	 *
   1176 	 * NOTE: All Tx descriptors must be in the same 4G segment of
   1177 	 * memory.  So must Rx descriptors.  We simplify by allocating
   1178 	 * both sets within the same 4G segment.
   1179 	 */
   1180 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
   1181 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
   1182 	cdata_size = sc->sc_type < WM_T_82544 ?
   1183 	    sizeof(struct wm_control_data_82542) :
   1184 	    sizeof(struct wm_control_data_82544);
   1185 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
   1186 				      (bus_size_t) 0x100000000ULL,
   1187 				      &seg, 1, &rseg, 0)) != 0) {
   1188 		aprint_error(
   1189 		    "%s: unable to allocate control data, error = %d\n",
   1190 		    sc->sc_dev.dv_xname, error);
   1191 		goto fail_0;
   1192 	}
   1193 
   1194 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
   1195 				    (void **)&sc->sc_control_data, 0)) != 0) {
   1196 		aprint_error("%s: unable to map control data, error = %d\n",
   1197 		    sc->sc_dev.dv_xname, error);
   1198 		goto fail_1;
   1199 	}
   1200 
   1201 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
   1202 				       0, 0, &sc->sc_cddmamap)) != 0) {
   1203 		aprint_error("%s: unable to create control data DMA map, "
   1204 		    "error = %d\n", sc->sc_dev.dv_xname, error);
   1205 		goto fail_2;
   1206 	}
   1207 
   1208 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
   1209 				     sc->sc_control_data, cdata_size, NULL,
   1210 				     0)) != 0) {
   1211 		aprint_error(
   1212 		    "%s: unable to load control data DMA map, error = %d\n",
   1213 		    sc->sc_dev.dv_xname, error);
   1214 		goto fail_3;
   1215 	}
   1216 
   1217 
   1218 	/*
   1219 	 * Create the transmit buffer DMA maps.
   1220 	 */
   1221 	WM_TXQUEUELEN(sc) =
   1222 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
   1223 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
   1224 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1225 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
   1226 					       WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
   1227 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1228 			aprint_error("%s: unable to create Tx DMA map %d, "
   1229 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1230 			goto fail_4;
   1231 		}
   1232 	}
   1233 
   1234 	/*
   1235 	 * Create the receive buffer DMA maps.
   1236 	 */
   1237 	for (i = 0; i < WM_NRXDESC; i++) {
   1238 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1239 					       MCLBYTES, 0, 0,
   1240 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1241 			aprint_error("%s: unable to create Rx DMA map %d, "
   1242 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1243 			goto fail_5;
   1244 		}
   1245 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1246 	}
   1247 
   1248 	/* clear interesting stat counters */
   1249 	CSR_READ(sc, WMREG_COLC);
   1250 	CSR_READ(sc, WMREG_RXERRC);
   1251 
   1252 	/*
   1253 	 * Reset the chip to a known state.
   1254 	 */
   1255 	wm_reset(sc);
   1256 
   1257 	/*
   1258 	 * Get some information about the EEPROM.
   1259 	 */
   1260 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)) {
   1261 		uint32_t flash_size;
   1262 		sc->sc_flags |= WM_F_SWFWHW_SYNC | WM_F_EEPROM_FLASH;
   1263 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_ICH8_FLASH);
   1264 		if (pci_mapreg_map(pa, WM_ICH8_FLASH, memtype, 0,
   1265 		    &sc->sc_flasht, &sc->sc_flashh, NULL, NULL)) {
   1266 			printf("%s: can't map FLASH registers\n",
   1267 			    sc->sc_dev.dv_xname);
   1268 			return;
   1269 		}
   1270 		flash_size = ICH8_FLASH_READ32(sc, ICH_FLASH_GFPREG);
   1271 		sc->sc_ich8_flash_base = (flash_size & ICH_GFPREG_BASE_MASK) *
   1272 						ICH_FLASH_SECTOR_SIZE;
   1273 		sc->sc_ich8_flash_bank_size =
   1274 			((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1;
   1275 		sc->sc_ich8_flash_bank_size -=
   1276 			(flash_size & ICH_GFPREG_BASE_MASK);
   1277 		sc->sc_ich8_flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
   1278 		sc->sc_ich8_flash_bank_size /= 2 * sizeof(uint16_t);
   1279 	} else if (sc->sc_type == WM_T_80003)
   1280 		sc->sc_flags |= WM_F_EEPROM_EERDEEWR |  WM_F_SWFW_SYNC;
   1281 	else if (sc->sc_type == WM_T_82573)
   1282 		sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
   1283 	else if (sc->sc_type > WM_T_82544)
   1284 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
   1285 
   1286 	if (sc->sc_type <= WM_T_82544)
   1287 		sc->sc_ee_addrbits = 6;
   1288 	else if (sc->sc_type <= WM_T_82546_3) {
   1289 		reg = CSR_READ(sc, WMREG_EECD);
   1290 		if (reg & EECD_EE_SIZE)
   1291 			sc->sc_ee_addrbits = 8;
   1292 		else
   1293 			sc->sc_ee_addrbits = 6;
   1294 	} else if (sc->sc_type <= WM_T_82547_2) {
   1295 		reg = CSR_READ(sc, WMREG_EECD);
   1296 		if (reg & EECD_EE_TYPE) {
   1297 			sc->sc_flags |= WM_F_EEPROM_SPI;
   1298 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1299 		} else
   1300 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
   1301 	} else if ((sc->sc_type == WM_T_82573) &&
   1302 	    (wm_is_onboard_nvm_eeprom(sc) == 0)) {
   1303 		sc->sc_flags |= WM_F_EEPROM_FLASH;
   1304 	} else {
   1305 		/* Assume everything else is SPI. */
   1306 		reg = CSR_READ(sc, WMREG_EECD);
   1307 		sc->sc_flags |= WM_F_EEPROM_SPI;
   1308 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1309 	}
   1310 
   1311 	/*
   1312 	 * Defer printing the EEPROM type until after verifying the checksum
   1313 	 * This allows the EEPROM type to be printed correctly in the case
   1314 	 * that no EEPROM is attached.
   1315 	 */
   1316 
   1317 
   1318 	/*
   1319 	 * Validate the EEPROM checksum. If the checksum fails, flag this for
   1320 	 * later, so we can fail future reads from the EEPROM.
   1321 	 */
   1322 	if (wm_validate_eeprom_checksum(sc))
   1323 		sc->sc_flags |= WM_F_EEPROM_INVALID;
   1324 
   1325 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
   1326 		aprint_verbose("%s: No EEPROM\n", sc->sc_dev.dv_xname);
   1327 	else if (sc->sc_flags & WM_F_EEPROM_FLASH) {
   1328 		aprint_verbose("%s: FLASH\n", sc->sc_dev.dv_xname);
   1329 	} else {
   1330 		if (sc->sc_flags & WM_F_EEPROM_SPI)
   1331 			eetype = "SPI";
   1332 		else
   1333 			eetype = "MicroWire";
   1334 		aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
   1335 		    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
   1336 		    sc->sc_ee_addrbits, eetype);
   1337 	}
   1338 
   1339 	/*
   1340 	 * Read the Ethernet address from the EEPROM, if not first found
   1341 	 * in device properties.
   1342 	 */
   1343 	ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
   1344 	if (ea != NULL) {
   1345 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   1346 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   1347 		memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   1348 	} else {
   1349 		if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
   1350 		    sizeof(myea) / sizeof(myea[0]), myea)) {
   1351 			aprint_error("%s: unable to read Ethernet address\n",
   1352 			    sc->sc_dev.dv_xname);
   1353 			return;
   1354 		}
   1355 		enaddr[0] = myea[0] & 0xff;
   1356 		enaddr[1] = myea[0] >> 8;
   1357 		enaddr[2] = myea[1] & 0xff;
   1358 		enaddr[3] = myea[1] >> 8;
   1359 		enaddr[4] = myea[2] & 0xff;
   1360 		enaddr[5] = myea[2] >> 8;
   1361 	}
   1362 
   1363 	/*
   1364 	 * Toggle the LSB of the MAC address on the second port
   1365 	 * of the dual port controller.
   1366 	 */
   1367 	if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3
   1368 	    || sc->sc_type ==  WM_T_82571 || sc->sc_type == WM_T_80003) {
   1369 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
   1370 			enaddr[5] ^= 1;
   1371 	}
   1372 
   1373 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
   1374 	    ether_sprintf(enaddr));
   1375 
   1376 	/*
   1377 	 * Read the config info from the EEPROM, and set up various
   1378 	 * bits in the control registers based on their contents.
   1379 	 */
   1380 	pn = prop_dictionary_get(device_properties(&sc->sc_dev),
   1381 				 "i82543-cfg1");
   1382 	if (pn != NULL) {
   1383 		KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1384 		cfg1 = (uint16_t) prop_number_integer_value(pn);
   1385 	} else {
   1386 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
   1387 			aprint_error("%s: unable to read CFG1\n",
   1388 			    sc->sc_dev.dv_xname);
   1389 			return;
   1390 		}
   1391 	}
   1392 
   1393 	pn = prop_dictionary_get(device_properties(&sc->sc_dev),
   1394 				 "i82543-cfg2");
   1395 	if (pn != NULL) {
   1396 		KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1397 		cfg2 = (uint16_t) prop_number_integer_value(pn);
   1398 	} else {
   1399 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
   1400 			aprint_error("%s: unable to read CFG2\n",
   1401 			    sc->sc_dev.dv_xname);
   1402 			return;
   1403 		}
   1404 	}
   1405 
   1406 	if (sc->sc_type >= WM_T_82544) {
   1407 		pn = prop_dictionary_get(device_properties(&sc->sc_dev),
   1408 					 "i82543-swdpin");
   1409 		if (pn != NULL) {
   1410 			KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1411 			swdpin = (uint16_t) prop_number_integer_value(pn);
   1412 		} else {
   1413 			if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
   1414 				aprint_error("%s: unable to read SWDPIN\n",
   1415 				    sc->sc_dev.dv_xname);
   1416 				return;
   1417 			}
   1418 		}
   1419 	}
   1420 
   1421 	if (cfg1 & EEPROM_CFG1_ILOS)
   1422 		sc->sc_ctrl |= CTRL_ILOS;
   1423 	if (sc->sc_type >= WM_T_82544) {
   1424 		sc->sc_ctrl |=
   1425 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
   1426 		    CTRL_SWDPIO_SHIFT;
   1427 		sc->sc_ctrl |=
   1428 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
   1429 		    CTRL_SWDPINS_SHIFT;
   1430 	} else {
   1431 		sc->sc_ctrl |=
   1432 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
   1433 		    CTRL_SWDPIO_SHIFT;
   1434 	}
   1435 
   1436 #if 0
   1437 	if (sc->sc_type >= WM_T_82544) {
   1438 		if (cfg1 & EEPROM_CFG1_IPS0)
   1439 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
   1440 		if (cfg1 & EEPROM_CFG1_IPS1)
   1441 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
   1442 		sc->sc_ctrl_ext |=
   1443 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
   1444 		    CTRL_EXT_SWDPIO_SHIFT;
   1445 		sc->sc_ctrl_ext |=
   1446 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
   1447 		    CTRL_EXT_SWDPINS_SHIFT;
   1448 	} else {
   1449 		sc->sc_ctrl_ext |=
   1450 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
   1451 		    CTRL_EXT_SWDPIO_SHIFT;
   1452 	}
   1453 #endif
   1454 
   1455 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   1456 #if 0
   1457 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   1458 #endif
   1459 
   1460 	/*
   1461 	 * Set up some register offsets that are different between
   1462 	 * the i82542 and the i82543 and later chips.
   1463 	 */
   1464 	if (sc->sc_type < WM_T_82543) {
   1465 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
   1466 		sc->sc_tdt_reg = WMREG_OLD_TDT;
   1467 	} else {
   1468 		sc->sc_rdt_reg = WMREG_RDT;
   1469 		sc->sc_tdt_reg = WMREG_TDT;
   1470 	}
   1471 
   1472 	/*
   1473 	 * Determine if we're TBI or GMII mode, and initialize the
   1474 	 * media structures accordingly.
   1475 	 */
   1476 	if (sc->sc_type == WM_T_ICH8 || sc->sc_type == WM_T_ICH9
   1477 	    || sc->sc_type == WM_T_82573) {
   1478 		/* STATUS_TBIMODE reserved/reused, can't rely on it */
   1479 		wm_gmii_mediainit(sc);
   1480 	} else if (sc->sc_type < WM_T_82543 ||
   1481 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
   1482 		if (wmp->wmp_flags & WMP_F_1000T)
   1483 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
   1484 			    "product!\n", sc->sc_dev.dv_xname);
   1485 		wm_tbi_mediainit(sc);
   1486 	} else {
   1487 		if (wmp->wmp_flags & WMP_F_1000X)
   1488 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
   1489 			    "product!\n", sc->sc_dev.dv_xname);
   1490 		wm_gmii_mediainit(sc);
   1491 	}
   1492 
   1493 	ifp = &sc->sc_ethercom.ec_if;
   1494 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
   1495 	ifp->if_softc = sc;
   1496 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1497 	ifp->if_ioctl = wm_ioctl;
   1498 	ifp->if_start = wm_start;
   1499 	ifp->if_watchdog = wm_watchdog;
   1500 	ifp->if_init = wm_init;
   1501 	ifp->if_stop = wm_stop;
   1502 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
   1503 	IFQ_SET_READY(&ifp->if_snd);
   1504 
   1505 	if (sc->sc_type != WM_T_82573 && sc->sc_type != WM_T_ICH8)
   1506 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1507 
   1508 	/*
   1509 	 * If we're a i82543 or greater, we can support VLANs.
   1510 	 */
   1511 	if (sc->sc_type >= WM_T_82543)
   1512 		sc->sc_ethercom.ec_capabilities |=
   1513 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
   1514 
   1515 	/*
   1516 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
   1517 	 * on i82543 and later.
   1518 	 */
   1519 	if (sc->sc_type >= WM_T_82543) {
   1520 		ifp->if_capabilities |=
   1521 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1522 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1523 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
   1524 		    IFCAP_CSUM_TCPv6_Tx |
   1525 		    IFCAP_CSUM_UDPv6_Tx;
   1526 	}
   1527 
   1528 	/*
   1529 	 * XXXyamt: i'm not sure which chips support RXCSUM_IPV6OFL.
   1530 	 *
   1531 	 *	82541GI (8086:1076) ... no
   1532 	 *	82572EI (8086:10b9) ... yes
   1533 	 */
   1534 	if (sc->sc_type >= WM_T_82571) {
   1535 		ifp->if_capabilities |=
   1536 		    IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
   1537 	}
   1538 
   1539 	/*
   1540 	 * If we're a i82544 or greater (except i82547), we can do
   1541 	 * TCP segmentation offload.
   1542 	 */
   1543 	if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547) {
   1544 		ifp->if_capabilities |= IFCAP_TSOv4;
   1545 	}
   1546 
   1547 	if (sc->sc_type >= WM_T_82571) {
   1548 		ifp->if_capabilities |= IFCAP_TSOv6;
   1549 	}
   1550 
   1551 	/*
   1552 	 * Attach the interface.
   1553 	 */
   1554 	if_attach(ifp);
   1555 	ether_ifattach(ifp, enaddr);
   1556 #if NRND > 0
   1557 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1558 	    RND_TYPE_NET, 0);
   1559 #endif
   1560 
   1561 #ifdef WM_EVENT_COUNTERS
   1562 	/* Attach event counters. */
   1563 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1564 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1565 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1566 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1567 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
   1568 	    NULL, sc->sc_dev.dv_xname, "txfifo_stall");
   1569 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
   1570 	    NULL, sc->sc_dev.dv_xname, "txdw");
   1571 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
   1572 	    NULL, sc->sc_dev.dv_xname, "txqe");
   1573 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1574 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1575 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
   1576 	    NULL, sc->sc_dev.dv_xname, "linkintr");
   1577 
   1578 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1579 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1580 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
   1581 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
   1582 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1583 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1584 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
   1585 	    NULL, sc->sc_dev.dv_xname, "txtusum");
   1586 	evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
   1587 	    NULL, sc->sc_dev.dv_xname, "txtusum6");
   1588 
   1589 	evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
   1590 	    NULL, sc->sc_dev.dv_xname, "txtso");
   1591 	evcnt_attach_dynamic(&sc->sc_ev_txtso6, EVCNT_TYPE_MISC,
   1592 	    NULL, sc->sc_dev.dv_xname, "txtso6");
   1593 	evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
   1594 	    NULL, sc->sc_dev.dv_xname, "txtsopain");
   1595 
   1596 	for (i = 0; i < WM_NTXSEGS; i++) {
   1597 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
   1598 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
   1599 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
   1600 	}
   1601 
   1602 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
   1603 	    NULL, sc->sc_dev.dv_xname, "txdrop");
   1604 
   1605 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
   1606 	    NULL, sc->sc_dev.dv_xname, "tu");
   1607 
   1608 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
   1609 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
   1610 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
   1611 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
   1612 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
   1613 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
   1614 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
   1615 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
   1616 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
   1617 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
   1618 #endif /* WM_EVENT_COUNTERS */
   1619 
   1620 	/*
   1621 	 * Make sure the interface is shutdown during reboot.
   1622 	 */
   1623 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
   1624 	if (sc->sc_sdhook == NULL)
   1625 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
   1626 		    sc->sc_dev.dv_xname);
   1627 
   1628 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
   1629 	    wm_powerhook, sc);
   1630 	if (sc->sc_powerhook == NULL)
   1631 		aprint_error("%s: can't establish powerhook\n",
   1632 		    sc->sc_dev.dv_xname);
   1633 	return;
   1634 
   1635 	/*
   1636 	 * Free any resources we've allocated during the failed attach
   1637 	 * attempt.  Do this in reverse order and fall through.
   1638 	 */
   1639  fail_5:
   1640 	for (i = 0; i < WM_NRXDESC; i++) {
   1641 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1642 			bus_dmamap_destroy(sc->sc_dmat,
   1643 			    sc->sc_rxsoft[i].rxs_dmamap);
   1644 	}
   1645  fail_4:
   1646 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1647 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1648 			bus_dmamap_destroy(sc->sc_dmat,
   1649 			    sc->sc_txsoft[i].txs_dmamap);
   1650 	}
   1651 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1652  fail_3:
   1653 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1654  fail_2:
   1655 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
   1656 	    cdata_size);
   1657  fail_1:
   1658 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1659  fail_0:
   1660 	return;
   1661 }
   1662 
   1663 /*
   1664  * wm_shutdown:
   1665  *
   1666  *	Make sure the interface is stopped at reboot time.
   1667  */
   1668 static void
   1669 wm_shutdown(void *arg)
   1670 {
   1671 	struct wm_softc *sc = arg;
   1672 
   1673 	wm_stop(&sc->sc_ethercom.ec_if, 1);
   1674 }
   1675 
   1676 static void
   1677 wm_powerhook(int why, void *arg)
   1678 {
   1679 	struct wm_softc *sc = arg;
   1680 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1681 	pci_chipset_tag_t pc = sc->sc_pc;
   1682 	pcitag_t tag = sc->sc_pcitag;
   1683 
   1684 	switch (why) {
   1685 	case PWR_SOFTSUSPEND:
   1686 		wm_shutdown(sc);
   1687 		break;
   1688 	case PWR_SOFTRESUME:
   1689 		ifp->if_flags &= ~IFF_RUNNING;
   1690 		wm_init(ifp);
   1691 		if (ifp->if_flags & IFF_RUNNING)
   1692 			wm_start(ifp);
   1693 		break;
   1694 	case PWR_SUSPEND:
   1695 		pci_conf_capture(pc, tag, &sc->sc_pciconf);
   1696 		break;
   1697 	case PWR_RESUME:
   1698 		pci_conf_restore(pc, tag, &sc->sc_pciconf);
   1699 		break;
   1700 	}
   1701 
   1702 	return;
   1703 }
   1704 
   1705 /*
   1706  * wm_tx_offload:
   1707  *
   1708  *	Set up TCP/IP checksumming parameters for the
   1709  *	specified packet.
   1710  */
   1711 static int
   1712 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
   1713     uint8_t *fieldsp)
   1714 {
   1715 	struct mbuf *m0 = txs->txs_mbuf;
   1716 	struct livengood_tcpip_ctxdesc *t;
   1717 	uint32_t ipcs, tucs, cmd, cmdlen, seg;
   1718 	uint32_t ipcse;
   1719 	struct ether_header *eh;
   1720 	int offset, iphl;
   1721 	uint8_t fields;
   1722 
   1723 	/*
   1724 	 * XXX It would be nice if the mbuf pkthdr had offset
   1725 	 * fields for the protocol headers.
   1726 	 */
   1727 
   1728 	eh = mtod(m0, struct ether_header *);
   1729 	switch (htons(eh->ether_type)) {
   1730 	case ETHERTYPE_IP:
   1731 	case ETHERTYPE_IPV6:
   1732 		offset = ETHER_HDR_LEN;
   1733 		break;
   1734 
   1735 	case ETHERTYPE_VLAN:
   1736 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1737 		break;
   1738 
   1739 	default:
   1740 		/*
   1741 		 * Don't support this protocol or encapsulation.
   1742 		 */
   1743 		*fieldsp = 0;
   1744 		*cmdp = 0;
   1745 		return (0);
   1746 	}
   1747 
   1748 	if ((m0->m_pkthdr.csum_flags &
   1749 	    (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
   1750 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1751 	} else {
   1752 		iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
   1753 	}
   1754 	ipcse = offset + iphl - 1;
   1755 
   1756 	cmd = WTX_CMD_DEXT | WTX_DTYP_D;
   1757 	cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
   1758 	seg = 0;
   1759 	fields = 0;
   1760 
   1761 	if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
   1762 		int hlen = offset + iphl;
   1763 		bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   1764 
   1765 		if (__predict_false(m0->m_len <
   1766 				    (hlen + sizeof(struct tcphdr)))) {
   1767 			/*
   1768 			 * TCP/IP headers are not in the first mbuf; we need
   1769 			 * to do this the slow and painful way.  Let's just
   1770 			 * hope this doesn't happen very often.
   1771 			 */
   1772 			struct tcphdr th;
   1773 
   1774 			WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
   1775 
   1776 			m_copydata(m0, hlen, sizeof(th), &th);
   1777 			if (v4) {
   1778 				struct ip ip;
   1779 
   1780 				m_copydata(m0, offset, sizeof(ip), &ip);
   1781 				ip.ip_len = 0;
   1782 				m_copyback(m0,
   1783 				    offset + offsetof(struct ip, ip_len),
   1784 				    sizeof(ip.ip_len), &ip.ip_len);
   1785 				th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   1786 				    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   1787 			} else {
   1788 				struct ip6_hdr ip6;
   1789 
   1790 				m_copydata(m0, offset, sizeof(ip6), &ip6);
   1791 				ip6.ip6_plen = 0;
   1792 				m_copyback(m0,
   1793 				    offset + offsetof(struct ip6_hdr, ip6_plen),
   1794 				    sizeof(ip6.ip6_plen), &ip6.ip6_plen);
   1795 				th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
   1796 				    &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
   1797 			}
   1798 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   1799 			    sizeof(th.th_sum), &th.th_sum);
   1800 
   1801 			hlen += th.th_off << 2;
   1802 		} else {
   1803 			/*
   1804 			 * TCP/IP headers are in the first mbuf; we can do
   1805 			 * this the easy way.
   1806 			 */
   1807 			struct tcphdr *th;
   1808 
   1809 			if (v4) {
   1810 				struct ip *ip =
   1811 				    (void *)(mtod(m0, char *) + offset);
   1812 				th = (void *)(mtod(m0, char *) + hlen);
   1813 
   1814 				ip->ip_len = 0;
   1815 				th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   1816 				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   1817 			} else {
   1818 				struct ip6_hdr *ip6 =
   1819 				    (void *)(mtod(m0, char *) + offset);
   1820 				th = (void *)(mtod(m0, char *) + hlen);
   1821 
   1822 				ip6->ip6_plen = 0;
   1823 				th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
   1824 				    &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
   1825 			}
   1826 			hlen += th->th_off << 2;
   1827 		}
   1828 
   1829 		if (v4) {
   1830 			WM_EVCNT_INCR(&sc->sc_ev_txtso);
   1831 			cmdlen |= WTX_TCPIP_CMD_IP;
   1832 		} else {
   1833 			WM_EVCNT_INCR(&sc->sc_ev_txtso6);
   1834 			ipcse = 0;
   1835 		}
   1836 		cmd |= WTX_TCPIP_CMD_TSE;
   1837 		cmdlen |= WTX_TCPIP_CMD_TSE |
   1838 		    WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
   1839 		seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
   1840 		    WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
   1841 	}
   1842 
   1843 	/*
   1844 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1845 	 * offload feature, if we load the context descriptor, we
   1846 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1847 	 */
   1848 
   1849 	ipcs = WTX_TCPIP_IPCSS(offset) |
   1850 	    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1851 	    WTX_TCPIP_IPCSE(ipcse);
   1852 	if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
   1853 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
   1854 		fields |= WTX_IXSM;
   1855 	}
   1856 
   1857 	offset += iphl;
   1858 
   1859 	if (m0->m_pkthdr.csum_flags &
   1860 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
   1861 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
   1862 		fields |= WTX_TXSM;
   1863 		tucs = WTX_TCPIP_TUCSS(offset) |
   1864 		    WTX_TCPIP_TUCSO(offset +
   1865 		    M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
   1866 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1867 	} else if ((m0->m_pkthdr.csum_flags &
   1868 	    (M_CSUM_TCPv6|M_CSUM_UDPv6|M_CSUM_TSOv6)) != 0) {
   1869 		WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
   1870 		fields |= WTX_TXSM;
   1871 		tucs = WTX_TCPIP_TUCSS(offset) |
   1872 		    WTX_TCPIP_TUCSO(offset +
   1873 		    M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
   1874 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1875 	} else {
   1876 		/* Just initialize it to a valid TCP context. */
   1877 		tucs = WTX_TCPIP_TUCSS(offset) |
   1878 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1879 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1880 	}
   1881 
   1882 	/* Fill in the context descriptor. */
   1883 	t = (struct livengood_tcpip_ctxdesc *)
   1884 	    &sc->sc_txdescs[sc->sc_txnext];
   1885 	t->tcpip_ipcs = htole32(ipcs);
   1886 	t->tcpip_tucs = htole32(tucs);
   1887 	t->tcpip_cmdlen = htole32(cmdlen);
   1888 	t->tcpip_seg = htole32(seg);
   1889 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1890 
   1891 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
   1892 	txs->txs_ndesc++;
   1893 
   1894 	*cmdp = cmd;
   1895 	*fieldsp = fields;
   1896 
   1897 	return (0);
   1898 }
   1899 
   1900 static void
   1901 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
   1902 {
   1903 	struct mbuf *m;
   1904 	int i;
   1905 
   1906 	log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
   1907 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
   1908 		log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
   1909 		    "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
   1910 		    m->m_data, m->m_len, m->m_flags);
   1911 	log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
   1912 	    i, i == 1 ? "" : "s");
   1913 }
   1914 
   1915 /*
   1916  * wm_82547_txfifo_stall:
   1917  *
   1918  *	Callout used to wait for the 82547 Tx FIFO to drain,
   1919  *	reset the FIFO pointers, and restart packet transmission.
   1920  */
   1921 static void
   1922 wm_82547_txfifo_stall(void *arg)
   1923 {
   1924 	struct wm_softc *sc = arg;
   1925 	int s;
   1926 
   1927 	s = splnet();
   1928 
   1929 	if (sc->sc_txfifo_stall) {
   1930 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
   1931 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
   1932 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
   1933 			/*
   1934 			 * Packets have drained.  Stop transmitter, reset
   1935 			 * FIFO pointers, restart transmitter, and kick
   1936 			 * the packet queue.
   1937 			 */
   1938 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
   1939 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
   1940 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
   1941 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
   1942 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
   1943 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
   1944 			CSR_WRITE(sc, WMREG_TCTL, tctl);
   1945 			CSR_WRITE_FLUSH(sc);
   1946 
   1947 			sc->sc_txfifo_head = 0;
   1948 			sc->sc_txfifo_stall = 0;
   1949 			wm_start(&sc->sc_ethercom.ec_if);
   1950 		} else {
   1951 			/*
   1952 			 * Still waiting for packets to drain; try again in
   1953 			 * another tick.
   1954 			 */
   1955 			callout_schedule(&sc->sc_txfifo_ch, 1);
   1956 		}
   1957 	}
   1958 
   1959 	splx(s);
   1960 }
   1961 
   1962 /*
   1963  * wm_82547_txfifo_bugchk:
   1964  *
   1965  *	Check for bug condition in the 82547 Tx FIFO.  We need to
   1966  *	prevent enqueueing a packet that would wrap around the end
   1967  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
   1968  *
   1969  *	We do this by checking the amount of space before the end
   1970  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
   1971  *	the Tx FIFO, wait for all remaining packets to drain, reset
   1972  *	the internal FIFO pointers to the beginning, and restart
   1973  *	transmission on the interface.
   1974  */
   1975 #define	WM_FIFO_HDR		0x10
   1976 #define	WM_82547_PAD_LEN	0x3e0
   1977 static int
   1978 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
   1979 {
   1980 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
   1981 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
   1982 
   1983 	/* Just return if already stalled. */
   1984 	if (sc->sc_txfifo_stall)
   1985 		return (1);
   1986 
   1987 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1988 		/* Stall only occurs in half-duplex mode. */
   1989 		goto send_packet;
   1990 	}
   1991 
   1992 	if (len >= WM_82547_PAD_LEN + space) {
   1993 		sc->sc_txfifo_stall = 1;
   1994 		callout_schedule(&sc->sc_txfifo_ch, 1);
   1995 		return (1);
   1996 	}
   1997 
   1998  send_packet:
   1999 	sc->sc_txfifo_head += len;
   2000 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
   2001 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
   2002 
   2003 	return (0);
   2004 }
   2005 
   2006 /*
   2007  * wm_start:		[ifnet interface function]
   2008  *
   2009  *	Start packet transmission on the interface.
   2010  */
   2011 static void
   2012 wm_start(struct ifnet *ifp)
   2013 {
   2014 	struct wm_softc *sc = ifp->if_softc;
   2015 	struct mbuf *m0;
   2016 #if 0 /* XXXJRT */
   2017 	struct m_tag *mtag;
   2018 #endif
   2019 	struct wm_txsoft *txs;
   2020 	bus_dmamap_t dmamap;
   2021 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
   2022 	bus_addr_t curaddr;
   2023 	bus_size_t seglen, curlen;
   2024 	uint32_t cksumcmd;
   2025 	uint8_t cksumfields;
   2026 
   2027 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   2028 		return;
   2029 
   2030 	/*
   2031 	 * Remember the previous number of free descriptors.
   2032 	 */
   2033 	ofree = sc->sc_txfree;
   2034 
   2035 	/*
   2036 	 * Loop through the send queue, setting up transmit descriptors
   2037 	 * until we drain the queue, or use up all available transmit
   2038 	 * descriptors.
   2039 	 */
   2040 	for (;;) {
   2041 		/* Grab a packet off the queue. */
   2042 		IFQ_POLL(&ifp->if_snd, m0);
   2043 		if (m0 == NULL)
   2044 			break;
   2045 
   2046 		DPRINTF(WM_DEBUG_TX,
   2047 		    ("%s: TX: have packet to transmit: %p\n",
   2048 		    sc->sc_dev.dv_xname, m0));
   2049 
   2050 		/* Get a work queue entry. */
   2051 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
   2052 			wm_txintr(sc);
   2053 			if (sc->sc_txsfree == 0) {
   2054 				DPRINTF(WM_DEBUG_TX,
   2055 				    ("%s: TX: no free job descriptors\n",
   2056 					sc->sc_dev.dv_xname));
   2057 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   2058 				break;
   2059 			}
   2060 		}
   2061 
   2062 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   2063 		dmamap = txs->txs_dmamap;
   2064 
   2065 		use_tso = (m0->m_pkthdr.csum_flags &
   2066 		    (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0;
   2067 
   2068 		/*
   2069 		 * So says the Linux driver:
   2070 		 * The controller does a simple calculation to make sure
   2071 		 * there is enough room in the FIFO before initiating the
   2072 		 * DMA for each buffer.  The calc is:
   2073 		 *	4 = ceil(buffer len / MSS)
   2074 		 * To make sure we don't overrun the FIFO, adjust the max
   2075 		 * buffer len if the MSS drops.
   2076 		 */
   2077 		dmamap->dm_maxsegsz =
   2078 		    (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
   2079 		    ? m0->m_pkthdr.segsz << 2
   2080 		    : WTX_MAX_LEN;
   2081 
   2082 		/*
   2083 		 * Load the DMA map.  If this fails, the packet either
   2084 		 * didn't fit in the allotted number of segments, or we
   2085 		 * were short on resources.  For the too-many-segments
   2086 		 * case, we simply report an error and drop the packet,
   2087 		 * since we can't sanely copy a jumbo packet to a single
   2088 		 * buffer.
   2089 		 */
   2090 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   2091 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   2092 		if (error) {
   2093 			if (error == EFBIG) {
   2094 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   2095 				log(LOG_ERR, "%s: Tx packet consumes too many "
   2096 				    "DMA segments, dropping...\n",
   2097 				    sc->sc_dev.dv_xname);
   2098 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   2099 				wm_dump_mbuf_chain(sc, m0);
   2100 				m_freem(m0);
   2101 				continue;
   2102 			}
   2103 			/*
   2104 			 * Short on resources, just stop for now.
   2105 			 */
   2106 			DPRINTF(WM_DEBUG_TX,
   2107 			    ("%s: TX: dmamap load failed: %d\n",
   2108 			    sc->sc_dev.dv_xname, error));
   2109 			break;
   2110 		}
   2111 
   2112 		segs_needed = dmamap->dm_nsegs;
   2113 		if (use_tso) {
   2114 			/* For sentinel descriptor; see below. */
   2115 			segs_needed++;
   2116 		}
   2117 
   2118 		/*
   2119 		 * Ensure we have enough descriptors free to describe
   2120 		 * the packet.  Note, we always reserve one descriptor
   2121 		 * at the end of the ring due to the semantics of the
   2122 		 * TDT register, plus one more in the event we need
   2123 		 * to load offload context.
   2124 		 */
   2125 		if (segs_needed > sc->sc_txfree - 2) {
   2126 			/*
   2127 			 * Not enough free descriptors to transmit this
   2128 			 * packet.  We haven't committed anything yet,
   2129 			 * so just unload the DMA map, put the packet
   2130 			 * pack on the queue, and punt.  Notify the upper
   2131 			 * layer that there are no more slots left.
   2132 			 */
   2133 			DPRINTF(WM_DEBUG_TX,
   2134 			    ("%s: TX: need %d (%d) descriptors, have %d\n",
   2135 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
   2136 			    sc->sc_txfree - 1));
   2137 			ifp->if_flags |= IFF_OACTIVE;
   2138 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   2139 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   2140 			break;
   2141 		}
   2142 
   2143 		/*
   2144 		 * Check for 82547 Tx FIFO bug.  We need to do this
   2145 		 * once we know we can transmit the packet, since we
   2146 		 * do some internal FIFO space accounting here.
   2147 		 */
   2148 		if (sc->sc_type == WM_T_82547 &&
   2149 		    wm_82547_txfifo_bugchk(sc, m0)) {
   2150 			DPRINTF(WM_DEBUG_TX,
   2151 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
   2152 			    sc->sc_dev.dv_xname));
   2153 			ifp->if_flags |= IFF_OACTIVE;
   2154 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   2155 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
   2156 			break;
   2157 		}
   2158 
   2159 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   2160 
   2161 		/*
   2162 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   2163 		 */
   2164 
   2165 		DPRINTF(WM_DEBUG_TX,
   2166 		    ("%s: TX: packet has %d (%d) DMA segments\n",
   2167 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
   2168 
   2169 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   2170 
   2171 		/*
   2172 		 * Store a pointer to the packet so that we can free it
   2173 		 * later.
   2174 		 *
   2175 		 * Initially, we consider the number of descriptors the
   2176 		 * packet uses the number of DMA segments.  This may be
   2177 		 * incremented by 1 if we do checksum offload (a descriptor
   2178 		 * is used to set the checksum context).
   2179 		 */
   2180 		txs->txs_mbuf = m0;
   2181 		txs->txs_firstdesc = sc->sc_txnext;
   2182 		txs->txs_ndesc = segs_needed;
   2183 
   2184 		/* Set up offload parameters for this packet. */
   2185 		if (m0->m_pkthdr.csum_flags &
   2186 		    (M_CSUM_TSOv4|M_CSUM_TSOv6|
   2187 		    M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
   2188 		    M_CSUM_TCPv6|M_CSUM_UDPv6)) {
   2189 			if (wm_tx_offload(sc, txs, &cksumcmd,
   2190 					  &cksumfields) != 0) {
   2191 				/* Error message already displayed. */
   2192 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   2193 				continue;
   2194 			}
   2195 		} else {
   2196 			cksumcmd = 0;
   2197 			cksumfields = 0;
   2198 		}
   2199 
   2200 		cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
   2201 
   2202 		/* Sync the DMA map. */
   2203 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   2204 		    BUS_DMASYNC_PREWRITE);
   2205 
   2206 		/*
   2207 		 * Initialize the transmit descriptor.
   2208 		 */
   2209 		for (nexttx = sc->sc_txnext, seg = 0;
   2210 		     seg < dmamap->dm_nsegs; seg++) {
   2211 			for (seglen = dmamap->dm_segs[seg].ds_len,
   2212 			     curaddr = dmamap->dm_segs[seg].ds_addr;
   2213 			     seglen != 0;
   2214 			     curaddr += curlen, seglen -= curlen,
   2215 			     nexttx = WM_NEXTTX(sc, nexttx)) {
   2216 				curlen = seglen;
   2217 
   2218 				/*
   2219 				 * So says the Linux driver:
   2220 				 * Work around for premature descriptor
   2221 				 * write-backs in TSO mode.  Append a
   2222 				 * 4-byte sentinel descriptor.
   2223 				 */
   2224 				if (use_tso &&
   2225 				    seg == dmamap->dm_nsegs - 1 &&
   2226 				    curlen > 8)
   2227 					curlen -= 4;
   2228 
   2229 				wm_set_dma_addr(
   2230 				    &sc->sc_txdescs[nexttx].wtx_addr,
   2231 				    curaddr);
   2232 				sc->sc_txdescs[nexttx].wtx_cmdlen =
   2233 				    htole32(cksumcmd | curlen);
   2234 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
   2235 				    0;
   2236 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
   2237 				    cksumfields;
   2238 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
   2239 				lasttx = nexttx;
   2240 
   2241 				DPRINTF(WM_DEBUG_TX,
   2242 				    ("%s: TX: desc %d: low 0x%08lx, "
   2243 				     "len 0x%04x\n",
   2244 				    sc->sc_dev.dv_xname, nexttx,
   2245 				    curaddr & 0xffffffffUL, (unsigned)curlen));
   2246 			}
   2247 		}
   2248 
   2249 		KASSERT(lasttx != -1);
   2250 
   2251 		/*
   2252 		 * Set up the command byte on the last descriptor of
   2253 		 * the packet.  If we're in the interrupt delay window,
   2254 		 * delay the interrupt.
   2255 		 */
   2256 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   2257 		    htole32(WTX_CMD_EOP | WTX_CMD_RS);
   2258 
   2259 #if 0 /* XXXJRT */
   2260 		/*
   2261 		 * If VLANs are enabled and the packet has a VLAN tag, set
   2262 		 * up the descriptor to encapsulate the packet for us.
   2263 		 *
   2264 		 * This is only valid on the last descriptor of the packet.
   2265 		 */
   2266 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   2267 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   2268 			    htole32(WTX_CMD_VLE);
   2269 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
   2270 			    = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
   2271 		}
   2272 #endif /* XXXJRT */
   2273 
   2274 		txs->txs_lastdesc = lasttx;
   2275 
   2276 		DPRINTF(WM_DEBUG_TX,
   2277 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   2278 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
   2279 
   2280 		/* Sync the descriptors we're using. */
   2281 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
   2282 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2283 
   2284 		/* Give the packet to the chip. */
   2285 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   2286 
   2287 		DPRINTF(WM_DEBUG_TX,
   2288 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   2289 
   2290 		DPRINTF(WM_DEBUG_TX,
   2291 		    ("%s: TX: finished transmitting packet, job %d\n",
   2292 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   2293 
   2294 		/* Advance the tx pointer. */
   2295 		sc->sc_txfree -= txs->txs_ndesc;
   2296 		sc->sc_txnext = nexttx;
   2297 
   2298 		sc->sc_txsfree--;
   2299 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
   2300 
   2301 #if NBPFILTER > 0
   2302 		/* Pass the packet to any BPF listeners. */
   2303 		if (ifp->if_bpf)
   2304 			bpf_mtap(ifp->if_bpf, m0);
   2305 #endif /* NBPFILTER > 0 */
   2306 	}
   2307 
   2308 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   2309 		/* No more slots; notify upper layer. */
   2310 		ifp->if_flags |= IFF_OACTIVE;
   2311 	}
   2312 
   2313 	if (sc->sc_txfree != ofree) {
   2314 		/* Set a watchdog timer in case the chip flakes out. */
   2315 		ifp->if_timer = 5;
   2316 	}
   2317 }
   2318 
   2319 /*
   2320  * wm_watchdog:		[ifnet interface function]
   2321  *
   2322  *	Watchdog timer handler.
   2323  */
   2324 static void
   2325 wm_watchdog(struct ifnet *ifp)
   2326 {
   2327 	struct wm_softc *sc = ifp->if_softc;
   2328 
   2329 	/*
   2330 	 * Since we're using delayed interrupts, sweep up
   2331 	 * before we report an error.
   2332 	 */
   2333 	wm_txintr(sc);
   2334 
   2335 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
   2336 		log(LOG_ERR,
   2337 		    "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   2338 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   2339 		    sc->sc_txnext);
   2340 		ifp->if_oerrors++;
   2341 
   2342 		/* Reset the interface. */
   2343 		(void) wm_init(ifp);
   2344 	}
   2345 
   2346 	/* Try to get more packets going. */
   2347 	wm_start(ifp);
   2348 }
   2349 
   2350 /*
   2351  * wm_ioctl:		[ifnet interface function]
   2352  *
   2353  *	Handle control requests from the operator.
   2354  */
   2355 static int
   2356 wm_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2357 {
   2358 	struct wm_softc *sc = ifp->if_softc;
   2359 	struct ifreq *ifr = (struct ifreq *) data;
   2360 	int s, error;
   2361 
   2362 	s = splnet();
   2363 
   2364 	switch (cmd) {
   2365 	case SIOCSIFMEDIA:
   2366 	case SIOCGIFMEDIA:
   2367 		/* Flow control requires full-duplex mode. */
   2368 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   2369 		    (ifr->ifr_media & IFM_FDX) == 0)
   2370 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   2371 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   2372 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   2373 				/* We can do both TXPAUSE and RXPAUSE. */
   2374 				ifr->ifr_media |=
   2375 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   2376 			}
   2377 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   2378 		}
   2379 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   2380 		break;
   2381 	default:
   2382 		error = ether_ioctl(ifp, cmd, data);
   2383 		if (error == ENETRESET) {
   2384 			/*
   2385 			 * Multicast list has changed; set the hardware filter
   2386 			 * accordingly.
   2387 			 */
   2388 			if (ifp->if_flags & IFF_RUNNING)
   2389 				wm_set_filter(sc);
   2390 			error = 0;
   2391 		}
   2392 		break;
   2393 	}
   2394 
   2395 	/* Try to get more packets going. */
   2396 	wm_start(ifp);
   2397 
   2398 	splx(s);
   2399 	return (error);
   2400 }
   2401 
   2402 /*
   2403  * wm_intr:
   2404  *
   2405  *	Interrupt service routine.
   2406  */
   2407 static int
   2408 wm_intr(void *arg)
   2409 {
   2410 	struct wm_softc *sc = arg;
   2411 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2412 	uint32_t icr;
   2413 	int handled = 0;
   2414 
   2415 	while (1 /* CONSTCOND */) {
   2416 		icr = CSR_READ(sc, WMREG_ICR);
   2417 		if ((icr & sc->sc_icr) == 0)
   2418 			break;
   2419 #if 0 /*NRND > 0*/
   2420 		if (RND_ENABLED(&sc->rnd_source))
   2421 			rnd_add_uint32(&sc->rnd_source, icr);
   2422 #endif
   2423 
   2424 		handled = 1;
   2425 
   2426 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   2427 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   2428 			DPRINTF(WM_DEBUG_RX,
   2429 			    ("%s: RX: got Rx intr 0x%08x\n",
   2430 			    sc->sc_dev.dv_xname,
   2431 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   2432 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
   2433 		}
   2434 #endif
   2435 		wm_rxintr(sc);
   2436 
   2437 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   2438 		if (icr & ICR_TXDW) {
   2439 			DPRINTF(WM_DEBUG_TX,
   2440 			    ("%s: TX: got TXDW interrupt\n",
   2441 			    sc->sc_dev.dv_xname));
   2442 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
   2443 		}
   2444 #endif
   2445 		wm_txintr(sc);
   2446 
   2447 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
   2448 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
   2449 			wm_linkintr(sc, icr);
   2450 		}
   2451 
   2452 		if (icr & ICR_RXO) {
   2453 			ifp->if_ierrors++;
   2454 #if defined(WM_DEBUG)
   2455 			log(LOG_WARNING, "%s: Receive overrun\n",
   2456 			    sc->sc_dev.dv_xname);
   2457 #endif /* defined(WM_DEBUG) */
   2458 		}
   2459 	}
   2460 
   2461 	if (handled) {
   2462 		/* Try to get more packets going. */
   2463 		wm_start(ifp);
   2464 	}
   2465 
   2466 	return (handled);
   2467 }
   2468 
   2469 /*
   2470  * wm_txintr:
   2471  *
   2472  *	Helper; handle transmit interrupts.
   2473  */
   2474 static void
   2475 wm_txintr(struct wm_softc *sc)
   2476 {
   2477 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2478 	struct wm_txsoft *txs;
   2479 	uint8_t status;
   2480 	int i;
   2481 
   2482 	ifp->if_flags &= ~IFF_OACTIVE;
   2483 
   2484 	/*
   2485 	 * Go through the Tx list and free mbufs for those
   2486 	 * frames which have been transmitted.
   2487 	 */
   2488 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
   2489 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
   2490 		txs = &sc->sc_txsoft[i];
   2491 
   2492 		DPRINTF(WM_DEBUG_TX,
   2493 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   2494 
   2495 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   2496 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2497 
   2498 		status =
   2499 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
   2500 		if ((status & WTX_ST_DD) == 0) {
   2501 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   2502 			    BUS_DMASYNC_PREREAD);
   2503 			break;
   2504 		}
   2505 
   2506 		DPRINTF(WM_DEBUG_TX,
   2507 		    ("%s: TX: job %d done: descs %d..%d\n",
   2508 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   2509 		    txs->txs_lastdesc));
   2510 
   2511 		/*
   2512 		 * XXX We should probably be using the statistics
   2513 		 * XXX registers, but I don't know if they exist
   2514 		 * XXX on chips before the i82544.
   2515 		 */
   2516 
   2517 #ifdef WM_EVENT_COUNTERS
   2518 		if (status & WTX_ST_TU)
   2519 			WM_EVCNT_INCR(&sc->sc_ev_tu);
   2520 #endif /* WM_EVENT_COUNTERS */
   2521 
   2522 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
   2523 			ifp->if_oerrors++;
   2524 			if (status & WTX_ST_LC)
   2525 				log(LOG_WARNING, "%s: late collision\n",
   2526 				    sc->sc_dev.dv_xname);
   2527 			else if (status & WTX_ST_EC) {
   2528 				ifp->if_collisions += 16;
   2529 				log(LOG_WARNING, "%s: excessive collisions\n",
   2530 				    sc->sc_dev.dv_xname);
   2531 			}
   2532 		} else
   2533 			ifp->if_opackets++;
   2534 
   2535 		sc->sc_txfree += txs->txs_ndesc;
   2536 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   2537 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2538 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2539 		m_freem(txs->txs_mbuf);
   2540 		txs->txs_mbuf = NULL;
   2541 	}
   2542 
   2543 	/* Update the dirty transmit buffer pointer. */
   2544 	sc->sc_txsdirty = i;
   2545 	DPRINTF(WM_DEBUG_TX,
   2546 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   2547 
   2548 	/*
   2549 	 * If there are no more pending transmissions, cancel the watchdog
   2550 	 * timer.
   2551 	 */
   2552 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
   2553 		ifp->if_timer = 0;
   2554 }
   2555 
   2556 /*
   2557  * wm_rxintr:
   2558  *
   2559  *	Helper; handle receive interrupts.
   2560  */
   2561 static void
   2562 wm_rxintr(struct wm_softc *sc)
   2563 {
   2564 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2565 	struct wm_rxsoft *rxs;
   2566 	struct mbuf *m;
   2567 	int i, len;
   2568 	uint8_t status, errors;
   2569 
   2570 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
   2571 		rxs = &sc->sc_rxsoft[i];
   2572 
   2573 		DPRINTF(WM_DEBUG_RX,
   2574 		    ("%s: RX: checking descriptor %d\n",
   2575 		    sc->sc_dev.dv_xname, i));
   2576 
   2577 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2578 
   2579 		status = sc->sc_rxdescs[i].wrx_status;
   2580 		errors = sc->sc_rxdescs[i].wrx_errors;
   2581 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
   2582 
   2583 		if ((status & WRX_ST_DD) == 0) {
   2584 			/*
   2585 			 * We have processed all of the receive descriptors.
   2586 			 */
   2587 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   2588 			break;
   2589 		}
   2590 
   2591 		if (__predict_false(sc->sc_rxdiscard)) {
   2592 			DPRINTF(WM_DEBUG_RX,
   2593 			    ("%s: RX: discarding contents of descriptor %d\n",
   2594 			    sc->sc_dev.dv_xname, i));
   2595 			WM_INIT_RXDESC(sc, i);
   2596 			if (status & WRX_ST_EOP) {
   2597 				/* Reset our state. */
   2598 				DPRINTF(WM_DEBUG_RX,
   2599 				    ("%s: RX: resetting rxdiscard -> 0\n",
   2600 				    sc->sc_dev.dv_xname));
   2601 				sc->sc_rxdiscard = 0;
   2602 			}
   2603 			continue;
   2604 		}
   2605 
   2606 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2607 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2608 
   2609 		m = rxs->rxs_mbuf;
   2610 
   2611 		/*
   2612 		 * Add a new receive buffer to the ring, unless of
   2613 		 * course the length is zero. Treat the latter as a
   2614 		 * failed mapping.
   2615 		 */
   2616 		if ((len == 0) || (wm_add_rxbuf(sc, i) != 0)) {
   2617 			/*
   2618 			 * Failed, throw away what we've done so
   2619 			 * far, and discard the rest of the packet.
   2620 			 */
   2621 			ifp->if_ierrors++;
   2622 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2623 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2624 			WM_INIT_RXDESC(sc, i);
   2625 			if ((status & WRX_ST_EOP) == 0)
   2626 				sc->sc_rxdiscard = 1;
   2627 			if (sc->sc_rxhead != NULL)
   2628 				m_freem(sc->sc_rxhead);
   2629 			WM_RXCHAIN_RESET(sc);
   2630 			DPRINTF(WM_DEBUG_RX,
   2631 			    ("%s: RX: Rx buffer allocation failed, "
   2632 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   2633 			    sc->sc_rxdiscard ? " (discard)" : ""));
   2634 			continue;
   2635 		}
   2636 
   2637 		WM_RXCHAIN_LINK(sc, m);
   2638 
   2639 		m->m_len = len;
   2640 
   2641 		DPRINTF(WM_DEBUG_RX,
   2642 		    ("%s: RX: buffer at %p len %d\n",
   2643 		    sc->sc_dev.dv_xname, m->m_data, len));
   2644 
   2645 		/*
   2646 		 * If this is not the end of the packet, keep
   2647 		 * looking.
   2648 		 */
   2649 		if ((status & WRX_ST_EOP) == 0) {
   2650 			sc->sc_rxlen += len;
   2651 			DPRINTF(WM_DEBUG_RX,
   2652 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   2653 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   2654 			continue;
   2655 		}
   2656 
   2657 		/*
   2658 		 * Okay, we have the entire packet now.  The chip is
   2659 		 * configured to include the FCS (not all chips can
   2660 		 * be configured to strip it), so we need to trim it.
   2661 		 */
   2662 		m->m_len -= ETHER_CRC_LEN;
   2663 
   2664 		*sc->sc_rxtailp = NULL;
   2665 		len = m->m_len + sc->sc_rxlen;
   2666 		m = sc->sc_rxhead;
   2667 
   2668 		WM_RXCHAIN_RESET(sc);
   2669 
   2670 		DPRINTF(WM_DEBUG_RX,
   2671 		    ("%s: RX: have entire packet, len -> %d\n",
   2672 		    sc->sc_dev.dv_xname, len));
   2673 
   2674 		/*
   2675 		 * If an error occurred, update stats and drop the packet.
   2676 		 */
   2677 		if (errors &
   2678 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
   2679 			ifp->if_ierrors++;
   2680 			if (errors & WRX_ER_SE)
   2681 				log(LOG_WARNING, "%s: symbol error\n",
   2682 				    sc->sc_dev.dv_xname);
   2683 			else if (errors & WRX_ER_SEQ)
   2684 				log(LOG_WARNING, "%s: receive sequence error\n",
   2685 				    sc->sc_dev.dv_xname);
   2686 			else if (errors & WRX_ER_CE)
   2687 				log(LOG_WARNING, "%s: CRC error\n",
   2688 				    sc->sc_dev.dv_xname);
   2689 			m_freem(m);
   2690 			continue;
   2691 		}
   2692 
   2693 		/*
   2694 		 * No errors.  Receive the packet.
   2695 		 */
   2696 		m->m_pkthdr.rcvif = ifp;
   2697 		m->m_pkthdr.len = len;
   2698 
   2699 #if 0 /* XXXJRT */
   2700 		/*
   2701 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2702 		 * for us.  Associate the tag with the packet.
   2703 		 */
   2704 		if ((status & WRX_ST_VP) != 0) {
   2705 			VLAN_INPUT_TAG(ifp, m,
   2706 			    le16toh(sc->sc_rxdescs[i].wrx_special,
   2707 			    continue);
   2708 		}
   2709 #endif /* XXXJRT */
   2710 
   2711 		/*
   2712 		 * Set up checksum info for this packet.
   2713 		 */
   2714 		if ((status & WRX_ST_IXSM) == 0) {
   2715 			if (status & WRX_ST_IPCS) {
   2716 				WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2717 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2718 				if (errors & WRX_ER_IPE)
   2719 					m->m_pkthdr.csum_flags |=
   2720 					    M_CSUM_IPv4_BAD;
   2721 			}
   2722 			if (status & WRX_ST_TCPCS) {
   2723 				/*
   2724 				 * Note: we don't know if this was TCP or UDP,
   2725 				 * so we just set both bits, and expect the
   2726 				 * upper layers to deal.
   2727 				 */
   2728 				WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
   2729 				m->m_pkthdr.csum_flags |=
   2730 				    M_CSUM_TCPv4 | M_CSUM_UDPv4 |
   2731 				    M_CSUM_TCPv6 | M_CSUM_UDPv6;
   2732 				if (errors & WRX_ER_TCPE)
   2733 					m->m_pkthdr.csum_flags |=
   2734 					    M_CSUM_TCP_UDP_BAD;
   2735 			}
   2736 		}
   2737 
   2738 		ifp->if_ipackets++;
   2739 
   2740 #if NBPFILTER > 0
   2741 		/* Pass this up to any BPF listeners. */
   2742 		if (ifp->if_bpf)
   2743 			bpf_mtap(ifp->if_bpf, m);
   2744 #endif /* NBPFILTER > 0 */
   2745 
   2746 		/* Pass it on. */
   2747 		(*ifp->if_input)(ifp, m);
   2748 	}
   2749 
   2750 	/* Update the receive pointer. */
   2751 	sc->sc_rxptr = i;
   2752 
   2753 	DPRINTF(WM_DEBUG_RX,
   2754 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   2755 }
   2756 
   2757 /*
   2758  * wm_linkintr:
   2759  *
   2760  *	Helper; handle link interrupts.
   2761  */
   2762 static void
   2763 wm_linkintr(struct wm_softc *sc, uint32_t icr)
   2764 {
   2765 	uint32_t status;
   2766 
   2767 	/*
   2768 	 * If we get a link status interrupt on a 1000BASE-T
   2769 	 * device, just fall into the normal MII tick path.
   2770 	 */
   2771 	if (sc->sc_flags & WM_F_HAS_MII) {
   2772 		if (icr & ICR_LSC) {
   2773 			DPRINTF(WM_DEBUG_LINK,
   2774 			    ("%s: LINK: LSC -> mii_tick\n",
   2775 			    sc->sc_dev.dv_xname));
   2776 			mii_tick(&sc->sc_mii);
   2777 		} else if (icr & ICR_RXSEQ) {
   2778 			DPRINTF(WM_DEBUG_LINK,
   2779 			    ("%s: LINK Receive sequence error\n",
   2780 			    sc->sc_dev.dv_xname));
   2781 		}
   2782 		return;
   2783 	}
   2784 
   2785 	/*
   2786 	 * If we are now receiving /C/, check for link again in
   2787 	 * a couple of link clock ticks.
   2788 	 */
   2789 	if (icr & ICR_RXCFG) {
   2790 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
   2791 		    sc->sc_dev.dv_xname));
   2792 		sc->sc_tbi_anstate = 2;
   2793 	}
   2794 
   2795 	if (icr & ICR_LSC) {
   2796 		status = CSR_READ(sc, WMREG_STATUS);
   2797 		if (status & STATUS_LU) {
   2798 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
   2799 			    sc->sc_dev.dv_xname,
   2800 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   2801 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2802 			sc->sc_fcrtl &= ~FCRTL_XONE;
   2803 			if (status & STATUS_FD)
   2804 				sc->sc_tctl |=
   2805 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2806 			else
   2807 				sc->sc_tctl |=
   2808 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2809 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   2810 				sc->sc_fcrtl |= FCRTL_XONE;
   2811 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2812 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   2813 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   2814 				      sc->sc_fcrtl);
   2815 			sc->sc_tbi_linkup = 1;
   2816 		} else {
   2817 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   2818 			    sc->sc_dev.dv_xname));
   2819 			sc->sc_tbi_linkup = 0;
   2820 		}
   2821 		sc->sc_tbi_anstate = 2;
   2822 		wm_tbi_set_linkled(sc);
   2823 	} else if (icr & ICR_RXSEQ) {
   2824 		DPRINTF(WM_DEBUG_LINK,
   2825 		    ("%s: LINK: Receive sequence error\n",
   2826 		    sc->sc_dev.dv_xname));
   2827 	}
   2828 }
   2829 
   2830 /*
   2831  * wm_tick:
   2832  *
   2833  *	One second timer, used to check link status, sweep up
   2834  *	completed transmit jobs, etc.
   2835  */
   2836 static void
   2837 wm_tick(void *arg)
   2838 {
   2839 	struct wm_softc *sc = arg;
   2840 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2841 	int s;
   2842 
   2843 	s = splnet();
   2844 
   2845 	if (sc->sc_type >= WM_T_82542_2_1) {
   2846 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
   2847 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
   2848 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
   2849 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
   2850 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
   2851 	}
   2852 
   2853 	ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
   2854 	ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
   2855 
   2856 
   2857 	if (sc->sc_flags & WM_F_HAS_MII)
   2858 		mii_tick(&sc->sc_mii);
   2859 	else
   2860 		wm_tbi_check_link(sc);
   2861 
   2862 	splx(s);
   2863 
   2864 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2865 }
   2866 
   2867 /*
   2868  * wm_reset:
   2869  *
   2870  *	Reset the i82542 chip.
   2871  */
   2872 static void
   2873 wm_reset(struct wm_softc *sc)
   2874 {
   2875 
   2876 	/*
   2877 	 * Allocate on-chip memory according to the MTU size.
   2878 	 * The Packet Buffer Allocation register must be written
   2879 	 * before the chip is reset.
   2880 	 */
   2881 	switch (sc->sc_type) {
   2882 	case WM_T_82547:
   2883 	case WM_T_82547_2:
   2884 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2885 		    PBA_22K : PBA_30K;
   2886 		sc->sc_txfifo_head = 0;
   2887 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
   2888 		sc->sc_txfifo_size =
   2889 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
   2890 		sc->sc_txfifo_stall = 0;
   2891 		break;
   2892 	case WM_T_82571:
   2893 	case WM_T_82572:
   2894 	case WM_T_80003:
   2895 		sc->sc_pba = PBA_32K;
   2896 		break;
   2897 	case WM_T_82573:
   2898 		sc->sc_pba = PBA_12K;
   2899 		break;
   2900 	case WM_T_ICH8:
   2901 		sc->sc_pba = PBA_8K;
   2902 		CSR_WRITE(sc, WMREG_PBS, PBA_16K);
   2903 		break;
   2904 	case WM_T_ICH9:
   2905 		sc->sc_pba = PBA_10K;
   2906 		break;
   2907 	default:
   2908 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2909 		    PBA_40K : PBA_48K;
   2910 		break;
   2911 	}
   2912 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
   2913 
   2914 	if (sc->sc_flags & WM_F_PCIE) {
   2915 		int timeout = 800;
   2916 
   2917 		sc->sc_ctrl |= CTRL_GIO_M_DIS;
   2918 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2919 
   2920 		while (timeout) {
   2921 			if ((CSR_READ(sc, WMREG_STATUS) & STATUS_GIO_M_ENA) == 0)
   2922 				break;
   2923 			delay(100);
   2924 		}
   2925 	}
   2926 
   2927 	/* clear interrupt */
   2928 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   2929 
   2930 	/*
   2931 	 * 82541 Errata 29? & 82547 Errata 28?
   2932 	 * See also the description about PHY_RST bit in CTRL register
   2933 	 * in 8254x_GBe_SDM.pdf.
   2934 	 */
   2935 	if ((sc->sc_type == WM_T_82541) || (sc->sc_type == WM_T_82547)) {
   2936 		CSR_WRITE(sc, WMREG_CTRL,
   2937 		    CSR_READ(sc, WMREG_CTRL) | CTRL_PHY_RESET);
   2938 		delay(5000);
   2939 	}
   2940 
   2941 	switch (sc->sc_type) {
   2942 	case WM_T_82544:
   2943 	case WM_T_82540:
   2944 	case WM_T_82545:
   2945 	case WM_T_82546:
   2946 	case WM_T_82541:
   2947 	case WM_T_82541_2:
   2948 		/*
   2949 		 * On some chipsets, a reset through a memory-mapped write
   2950 		 * cycle can cause the chip to reset before completing the
   2951 		 * write cycle.  This causes major headache that can be
   2952 		 * avoided by issuing the reset via indirect register writes
   2953 		 * through I/O space.
   2954 		 *
   2955 		 * So, if we successfully mapped the I/O BAR at attach time,
   2956 		 * use that.  Otherwise, try our luck with a memory-mapped
   2957 		 * reset.
   2958 		 */
   2959 		if (sc->sc_flags & WM_F_IOH_VALID)
   2960 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
   2961 		else
   2962 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2963 		break;
   2964 
   2965 	case WM_T_82545_3:
   2966 	case WM_T_82546_3:
   2967 		/* Use the shadow control register on these chips. */
   2968 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
   2969 		break;
   2970 
   2971 	case WM_T_ICH8:
   2972 	case WM_T_ICH9:
   2973 		wm_get_swfwhw_semaphore(sc);
   2974 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST | CTRL_PHY_RESET);
   2975 		delay(10000);
   2976 
   2977 	default:
   2978 		/* Everything else can safely use the documented method. */
   2979 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2980 		break;
   2981 	}
   2982 	delay(10000);
   2983 
   2984 	switch(sc->sc_type) {
   2985 	case WM_T_82542_2_0:
   2986 	case WM_T_82542_2_1:
   2987 	case WM_T_82543:
   2988 	case WM_T_82544:
   2989 		delay(10);
   2990 		delay(2000);
   2991 		break;
   2992 	case WM_T_82541:
   2993 	case WM_T_82541_2:
   2994 	case WM_T_82547:
   2995 	case WM_T_82547_2:
   2996 		delay(20000);
   2997 		break;
   2998 	case WM_T_82573:
   2999 		delay(10);
   3000 		/* FALLTHROUGH */
   3001 	default:
   3002 		/* check EECD_EE_AUTORD */
   3003 		wm_get_auto_rd_dome(sc);
   3004 	}
   3005 
   3006 #if 0
   3007 	for (i = 0; i < 1000; i++) {
   3008 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0) {
   3009 			return;
   3010 		}
   3011 		delay(20);
   3012 	}
   3013 
   3014 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
   3015 		log(LOG_ERR, "%s: reset failed to complete\n",
   3016 		    sc->sc_dev.dv_xname);
   3017 #endif
   3018 }
   3019 
   3020 /*
   3021  * wm_init:		[ifnet interface function]
   3022  *
   3023  *	Initialize the interface.  Must be called at splnet().
   3024  */
   3025 static int
   3026 wm_init(struct ifnet *ifp)
   3027 {
   3028 	struct wm_softc *sc = ifp->if_softc;
   3029 	struct wm_rxsoft *rxs;
   3030 	int i, error = 0;
   3031 	uint32_t reg;
   3032 
   3033 	/*
   3034 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   3035 	 * There is a small but measurable benefit to avoiding the adjusment
   3036 	 * of the descriptor so that the headers are aligned, for normal mtu,
   3037 	 * on such platforms.  One possibility is that the DMA itself is
   3038 	 * slightly more efficient if the front of the entire packet (instead
   3039 	 * of the front of the headers) is aligned.
   3040 	 *
   3041 	 * Note we must always set align_tweak to 0 if we are using
   3042 	 * jumbo frames.
   3043 	 */
   3044 #ifdef __NO_STRICT_ALIGNMENT
   3045 	sc->sc_align_tweak = 0;
   3046 #else
   3047 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   3048 		sc->sc_align_tweak = 0;
   3049 	else
   3050 		sc->sc_align_tweak = 2;
   3051 #endif /* __NO_STRICT_ALIGNMENT */
   3052 
   3053 	/* Cancel any pending I/O. */
   3054 	wm_stop(ifp, 0);
   3055 
   3056 	/* update statistics before reset */
   3057 	ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
   3058 	ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
   3059 
   3060 	/* Reset the chip to a known state. */
   3061 	wm_reset(sc);
   3062 
   3063 	/* Initialize the transmit descriptor ring. */
   3064 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
   3065 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
   3066 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3067 	sc->sc_txfree = WM_NTXDESC(sc);
   3068 	sc->sc_txnext = 0;
   3069 
   3070 	if (sc->sc_type < WM_T_82543) {
   3071 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
   3072 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
   3073 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
   3074 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
   3075 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
   3076 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
   3077 	} else {
   3078 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
   3079 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
   3080 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
   3081 		CSR_WRITE(sc, WMREG_TDH, 0);
   3082 		CSR_WRITE(sc, WMREG_TDT, 0);
   3083 		CSR_WRITE(sc, WMREG_TIDV, 64);
   3084 		CSR_WRITE(sc, WMREG_TADV, 128);
   3085 
   3086 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
   3087 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   3088 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
   3089 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
   3090 	}
   3091 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
   3092 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
   3093 
   3094 	/* Initialize the transmit job descriptors. */
   3095 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
   3096 		sc->sc_txsoft[i].txs_mbuf = NULL;
   3097 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
   3098 	sc->sc_txsnext = 0;
   3099 	sc->sc_txsdirty = 0;
   3100 
   3101 	/*
   3102 	 * Initialize the receive descriptor and receive job
   3103 	 * descriptor rings.
   3104 	 */
   3105 	if (sc->sc_type < WM_T_82543) {
   3106 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
   3107 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
   3108 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
   3109 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
   3110 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
   3111 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
   3112 
   3113 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
   3114 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
   3115 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
   3116 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
   3117 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
   3118 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
   3119 	} else {
   3120 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
   3121 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
   3122 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
   3123 		CSR_WRITE(sc, WMREG_RDH, 0);
   3124 		CSR_WRITE(sc, WMREG_RDT, 0);
   3125 		CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
   3126 		CSR_WRITE(sc, WMREG_RADV, 128);
   3127 	}
   3128 	for (i = 0; i < WM_NRXDESC; i++) {
   3129 		rxs = &sc->sc_rxsoft[i];
   3130 		if (rxs->rxs_mbuf == NULL) {
   3131 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
   3132 				log(LOG_ERR, "%s: unable to allocate or map rx "
   3133 				    "buffer %d, error = %d\n",
   3134 				    sc->sc_dev.dv_xname, i, error);
   3135 				/*
   3136 				 * XXX Should attempt to run with fewer receive
   3137 				 * XXX buffers instead of just failing.
   3138 				 */
   3139 				wm_rxdrain(sc);
   3140 				goto out;
   3141 			}
   3142 		} else
   3143 			WM_INIT_RXDESC(sc, i);
   3144 	}
   3145 	sc->sc_rxptr = 0;
   3146 	sc->sc_rxdiscard = 0;
   3147 	WM_RXCHAIN_RESET(sc);
   3148 
   3149 	/*
   3150 	 * Clear out the VLAN table -- we don't use it (yet).
   3151 	 */
   3152 	CSR_WRITE(sc, WMREG_VET, 0);
   3153 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
   3154 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
   3155 
   3156 	/*
   3157 	 * Set up flow-control parameters.
   3158 	 *
   3159 	 * XXX Values could probably stand some tuning.
   3160 	 */
   3161 	if (sc->sc_type != WM_T_ICH8) {
   3162 		CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
   3163 		CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
   3164 		CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
   3165 	}
   3166 
   3167 	sc->sc_fcrtl = FCRTL_DFLT;
   3168 	if (sc->sc_type < WM_T_82543) {
   3169 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
   3170 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
   3171 	} else {
   3172 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
   3173 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
   3174 	}
   3175 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
   3176 
   3177 #if 0 /* XXXJRT */
   3178 	/* Deal with VLAN enables. */
   3179 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   3180 		sc->sc_ctrl |= CTRL_VME;
   3181 	else
   3182 #endif /* XXXJRT */
   3183 		sc->sc_ctrl &= ~CTRL_VME;
   3184 
   3185 	/* Write the control registers. */
   3186 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3187 	if (sc->sc_type >= WM_T_80003 && (sc->sc_flags & WM_F_HAS_MII)) {
   3188 		int val;
   3189 		val = CSR_READ(sc, WMREG_CTRL_EXT);
   3190 		val &= ~CTRL_EXT_LINK_MODE_MASK;
   3191 		CSR_WRITE(sc, WMREG_CTRL_EXT, val);
   3192 
   3193 		/* Bypass RX and TX FIFO's */
   3194 		wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL,
   3195 		    KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
   3196 		    KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
   3197 
   3198 		wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL,
   3199 		    KUMCTRLSTA_INB_CTRL_DIS_PADDING |
   3200 		    KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT);
   3201 		/*
   3202 		 * Set the mac to wait the maximum time between each
   3203 		 * iteration and increase the max iterations when
   3204 		 * polling the phy; this fixes erroneous timeouts at 10Mbps.
   3205 		 */
   3206 		wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS, 0xFFFF);
   3207 		val = wm_kmrn_i80003_readreg(sc, KUMCTRLSTA_OFFSET_INB_PARAM);
   3208 		val |= 0x3F;
   3209 		wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_INB_PARAM, val);
   3210 	}
   3211 #if 0
   3212 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   3213 #endif
   3214 
   3215 	/*
   3216 	 * Set up checksum offload parameters.
   3217 	 */
   3218 	reg = CSR_READ(sc, WMREG_RXCSUM);
   3219 	reg &= ~(RXCSUM_IPOFL | RXCSUM_IPV6OFL | RXCSUM_TUOFL);
   3220 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   3221 		reg |= RXCSUM_IPOFL;
   3222 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   3223 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   3224 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
   3225 		reg |= RXCSUM_IPV6OFL | RXCSUM_TUOFL;
   3226 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
   3227 
   3228 	/*
   3229 	 * Set up the interrupt registers.
   3230 	 */
   3231 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   3232 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   3233 	    ICR_RXO | ICR_RXT0;
   3234 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
   3235 		sc->sc_icr |= ICR_RXCFG;
   3236 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
   3237 
   3238 	/* Set up the inter-packet gap. */
   3239 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   3240 
   3241 	if (sc->sc_type >= WM_T_82543) {
   3242 		/* Set up the interrupt throttling register (units of 256ns) */
   3243 		sc->sc_itr = 1000000000 / (7000 * 256);
   3244 		CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
   3245 	}
   3246 
   3247 #if 0 /* XXXJRT */
   3248 	/* Set the VLAN ethernetype. */
   3249 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
   3250 #endif
   3251 
   3252 	/*
   3253 	 * Set up the transmit control register; we start out with
   3254 	 * a collision distance suitable for FDX, but update it whe
   3255 	 * we resolve the media type.
   3256 	 */
   3257 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
   3258 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3259 	if (sc->sc_type >= WM_T_82571)
   3260 		sc->sc_tctl |= TCTL_MULR;
   3261 	if (sc->sc_type >= WM_T_80003)
   3262 		sc->sc_tctl |= TCTL_RTLC;
   3263 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3264 
   3265 	/* Set the media. */
   3266 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
   3267 
   3268 	/*
   3269 	 * Set up the receive control register; we actually program
   3270 	 * the register when we set the receive filter.  Use multicast
   3271 	 * address offset type 0.
   3272 	 *
   3273 	 * Only the i82544 has the ability to strip the incoming
   3274 	 * CRC, so we don't enable that feature.
   3275 	 */
   3276 	sc->sc_mchash_type = 0;
   3277 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
   3278 	    | RCTL_MO(sc->sc_mchash_type);
   3279 
   3280 	/* 82573 doesn't support jumbo frame */
   3281 	if (sc->sc_type != WM_T_82573 && sc->sc_type != WM_T_ICH8)
   3282 		sc->sc_rctl |= RCTL_LPE;
   3283 
   3284 	if (MCLBYTES == 2048) {
   3285 		sc->sc_rctl |= RCTL_2k;
   3286 	} else {
   3287 		if (sc->sc_type >= WM_T_82543) {
   3288 			switch(MCLBYTES) {
   3289 			case 4096:
   3290 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
   3291 				break;
   3292 			case 8192:
   3293 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
   3294 				break;
   3295 			case 16384:
   3296 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
   3297 				break;
   3298 			default:
   3299 				panic("wm_init: MCLBYTES %d unsupported",
   3300 				    MCLBYTES);
   3301 				break;
   3302 			}
   3303 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
   3304 	}
   3305 
   3306 	/* Set the receive filter. */
   3307 	wm_set_filter(sc);
   3308 
   3309 	/* Start the one second link check clock. */
   3310 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   3311 
   3312 	/* ...all done! */
   3313 	ifp->if_flags |= IFF_RUNNING;
   3314 	ifp->if_flags &= ~IFF_OACTIVE;
   3315 
   3316  out:
   3317 	if (error)
   3318 		log(LOG_ERR, "%s: interface not running\n",
   3319 		    sc->sc_dev.dv_xname);
   3320 	return (error);
   3321 }
   3322 
   3323 /*
   3324  * wm_rxdrain:
   3325  *
   3326  *	Drain the receive queue.
   3327  */
   3328 static void
   3329 wm_rxdrain(struct wm_softc *sc)
   3330 {
   3331 	struct wm_rxsoft *rxs;
   3332 	int i;
   3333 
   3334 	for (i = 0; i < WM_NRXDESC; i++) {
   3335 		rxs = &sc->sc_rxsoft[i];
   3336 		if (rxs->rxs_mbuf != NULL) {
   3337 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3338 			m_freem(rxs->rxs_mbuf);
   3339 			rxs->rxs_mbuf = NULL;
   3340 		}
   3341 	}
   3342 }
   3343 
   3344 /*
   3345  * wm_stop:		[ifnet interface function]
   3346  *
   3347  *	Stop transmission on the interface.
   3348  */
   3349 static void
   3350 wm_stop(struct ifnet *ifp, int disable)
   3351 {
   3352 	struct wm_softc *sc = ifp->if_softc;
   3353 	struct wm_txsoft *txs;
   3354 	int i;
   3355 
   3356 	/* Stop the one second clock. */
   3357 	callout_stop(&sc->sc_tick_ch);
   3358 
   3359 	/* Stop the 82547 Tx FIFO stall check timer. */
   3360 	if (sc->sc_type == WM_T_82547)
   3361 		callout_stop(&sc->sc_txfifo_ch);
   3362 
   3363 	if (sc->sc_flags & WM_F_HAS_MII) {
   3364 		/* Down the MII. */
   3365 		mii_down(&sc->sc_mii);
   3366 	}
   3367 
   3368 	/* Stop the transmit and receive processes. */
   3369 	CSR_WRITE(sc, WMREG_TCTL, 0);
   3370 	CSR_WRITE(sc, WMREG_RCTL, 0);
   3371 
   3372 	/*
   3373 	 * Clear the interrupt mask to ensure the device cannot assert its
   3374 	 * interrupt line.
   3375 	 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
   3376 	 * any currently pending or shared interrupt.
   3377 	 */
   3378 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   3379 	sc->sc_icr = 0;
   3380 
   3381 	/* Release any queued transmit buffers. */
   3382 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   3383 		txs = &sc->sc_txsoft[i];
   3384 		if (txs->txs_mbuf != NULL) {
   3385 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   3386 			m_freem(txs->txs_mbuf);
   3387 			txs->txs_mbuf = NULL;
   3388 		}
   3389 	}
   3390 
   3391 	if (disable)
   3392 		wm_rxdrain(sc);
   3393 
   3394 	/* Mark the interface as down and cancel the watchdog timer. */
   3395 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3396 	ifp->if_timer = 0;
   3397 }
   3398 
   3399 void
   3400 wm_get_auto_rd_dome(struct wm_softc *sc)
   3401 {
   3402 	int i;
   3403 
   3404 	/* wait for eeprom to reload */
   3405 	switch (sc->sc_type) {
   3406 	case WM_T_82571:
   3407 	case WM_T_82572:
   3408 	case WM_T_82573:
   3409 	case WM_T_80003:
   3410 	case WM_T_ICH8:
   3411 	case WM_T_ICH9:
   3412 		for (i = 10; i > 0; i--) {
   3413 			if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD)
   3414 				break;
   3415 			delay(1000);
   3416 		}
   3417 		if (i == 0) {
   3418 			log(LOG_ERR, "%s: auto read from eeprom failed to "
   3419 			    "complete\n", sc->sc_dev.dv_xname);
   3420 		}
   3421 		break;
   3422 	default:
   3423 		delay(5000);
   3424 		break;
   3425 	}
   3426 
   3427 	/* Phy configuration starts after EECD_AUTO_RD is set */
   3428 	if (sc->sc_type == WM_T_82573)
   3429 		delay(25000);
   3430 }
   3431 
   3432 /*
   3433  * wm_acquire_eeprom:
   3434  *
   3435  *	Perform the EEPROM handshake required on some chips.
   3436  */
   3437 static int
   3438 wm_acquire_eeprom(struct wm_softc *sc)
   3439 {
   3440 	uint32_t reg;
   3441 	int x;
   3442 	int ret = 0;
   3443 
   3444 	/* always success */
   3445 	if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
   3446 		return 0;
   3447 
   3448 	if (sc->sc_flags & WM_F_SWFWHW_SYNC) {
   3449 		ret = wm_get_swfwhw_semaphore(sc);
   3450 	} else if (sc->sc_flags & WM_F_SWFW_SYNC) {
   3451 		/* this will also do wm_get_swsm_semaphore() if needed */
   3452 		ret = wm_get_swfw_semaphore(sc, SWFW_EEP_SM);
   3453 	} else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
   3454 		ret = wm_get_swsm_semaphore(sc);
   3455 	}
   3456 
   3457 	if (ret)
   3458 		return 1;
   3459 
   3460 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
   3461 		reg = CSR_READ(sc, WMREG_EECD);
   3462 
   3463 		/* Request EEPROM access. */
   3464 		reg |= EECD_EE_REQ;
   3465 		CSR_WRITE(sc, WMREG_EECD, reg);
   3466 
   3467 		/* ..and wait for it to be granted. */
   3468 		for (x = 0; x < 1000; x++) {
   3469 			reg = CSR_READ(sc, WMREG_EECD);
   3470 			if (reg & EECD_EE_GNT)
   3471 				break;
   3472 			delay(5);
   3473 		}
   3474 		if ((reg & EECD_EE_GNT) == 0) {
   3475 			aprint_error("%s: could not acquire EEPROM GNT\n",
   3476 			    sc->sc_dev.dv_xname);
   3477 			reg &= ~EECD_EE_REQ;
   3478 			CSR_WRITE(sc, WMREG_EECD, reg);
   3479 			if (sc->sc_flags & WM_F_SWFWHW_SYNC)
   3480 				wm_put_swfwhw_semaphore(sc);
   3481 			if (sc->sc_flags & WM_F_SWFW_SYNC)
   3482 				wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
   3483 			else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   3484 				wm_put_swsm_semaphore(sc);
   3485 			return (1);
   3486 		}
   3487 	}
   3488 
   3489 	return (0);
   3490 }
   3491 
   3492 /*
   3493  * wm_release_eeprom:
   3494  *
   3495  *	Release the EEPROM mutex.
   3496  */
   3497 static void
   3498 wm_release_eeprom(struct wm_softc *sc)
   3499 {
   3500 	uint32_t reg;
   3501 
   3502 	/* always success */
   3503 	if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
   3504 		return;
   3505 
   3506 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
   3507 		reg = CSR_READ(sc, WMREG_EECD);
   3508 		reg &= ~EECD_EE_REQ;
   3509 		CSR_WRITE(sc, WMREG_EECD, reg);
   3510 	}
   3511 
   3512 	if (sc->sc_flags & WM_F_SWFWHW_SYNC)
   3513 		wm_put_swfwhw_semaphore(sc);
   3514 	if (sc->sc_flags & WM_F_SWFW_SYNC)
   3515 		wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
   3516 	else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   3517 		wm_put_swsm_semaphore(sc);
   3518 }
   3519 
   3520 /*
   3521  * wm_eeprom_sendbits:
   3522  *
   3523  *	Send a series of bits to the EEPROM.
   3524  */
   3525 static void
   3526 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
   3527 {
   3528 	uint32_t reg;
   3529 	int x;
   3530 
   3531 	reg = CSR_READ(sc, WMREG_EECD);
   3532 
   3533 	for (x = nbits; x > 0; x--) {
   3534 		if (bits & (1U << (x - 1)))
   3535 			reg |= EECD_DI;
   3536 		else
   3537 			reg &= ~EECD_DI;
   3538 		CSR_WRITE(sc, WMREG_EECD, reg);
   3539 		delay(2);
   3540 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   3541 		delay(2);
   3542 		CSR_WRITE(sc, WMREG_EECD, reg);
   3543 		delay(2);
   3544 	}
   3545 }
   3546 
   3547 /*
   3548  * wm_eeprom_recvbits:
   3549  *
   3550  *	Receive a series of bits from the EEPROM.
   3551  */
   3552 static void
   3553 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
   3554 {
   3555 	uint32_t reg, val;
   3556 	int x;
   3557 
   3558 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
   3559 
   3560 	val = 0;
   3561 	for (x = nbits; x > 0; x--) {
   3562 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   3563 		delay(2);
   3564 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
   3565 			val |= (1U << (x - 1));
   3566 		CSR_WRITE(sc, WMREG_EECD, reg);
   3567 		delay(2);
   3568 	}
   3569 	*valp = val;
   3570 }
   3571 
   3572 /*
   3573  * wm_read_eeprom_uwire:
   3574  *
   3575  *	Read a word from the EEPROM using the MicroWire protocol.
   3576  */
   3577 static int
   3578 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3579 {
   3580 	uint32_t reg, val;
   3581 	int i;
   3582 
   3583 	for (i = 0; i < wordcnt; i++) {
   3584 		/* Clear SK and DI. */
   3585 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
   3586 		CSR_WRITE(sc, WMREG_EECD, reg);
   3587 
   3588 		/* Set CHIP SELECT. */
   3589 		reg |= EECD_CS;
   3590 		CSR_WRITE(sc, WMREG_EECD, reg);
   3591 		delay(2);
   3592 
   3593 		/* Shift in the READ command. */
   3594 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
   3595 
   3596 		/* Shift in address. */
   3597 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
   3598 
   3599 		/* Shift out the data. */
   3600 		wm_eeprom_recvbits(sc, &val, 16);
   3601 		data[i] = val & 0xffff;
   3602 
   3603 		/* Clear CHIP SELECT. */
   3604 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
   3605 		CSR_WRITE(sc, WMREG_EECD, reg);
   3606 		delay(2);
   3607 	}
   3608 
   3609 	return (0);
   3610 }
   3611 
   3612 /*
   3613  * wm_spi_eeprom_ready:
   3614  *
   3615  *	Wait for a SPI EEPROM to be ready for commands.
   3616  */
   3617 static int
   3618 wm_spi_eeprom_ready(struct wm_softc *sc)
   3619 {
   3620 	uint32_t val;
   3621 	int usec;
   3622 
   3623 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
   3624 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
   3625 		wm_eeprom_recvbits(sc, &val, 8);
   3626 		if ((val & SPI_SR_RDY) == 0)
   3627 			break;
   3628 	}
   3629 	if (usec >= SPI_MAX_RETRIES) {
   3630 		aprint_error("%s: EEPROM failed to become ready\n",
   3631 		    sc->sc_dev.dv_xname);
   3632 		return (1);
   3633 	}
   3634 	return (0);
   3635 }
   3636 
   3637 /*
   3638  * wm_read_eeprom_spi:
   3639  *
   3640  *	Read a work from the EEPROM using the SPI protocol.
   3641  */
   3642 static int
   3643 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3644 {
   3645 	uint32_t reg, val;
   3646 	int i;
   3647 	uint8_t opc;
   3648 
   3649 	/* Clear SK and CS. */
   3650 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
   3651 	CSR_WRITE(sc, WMREG_EECD, reg);
   3652 	delay(2);
   3653 
   3654 	if (wm_spi_eeprom_ready(sc))
   3655 		return (1);
   3656 
   3657 	/* Toggle CS to flush commands. */
   3658 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
   3659 	delay(2);
   3660 	CSR_WRITE(sc, WMREG_EECD, reg);
   3661 	delay(2);
   3662 
   3663 	opc = SPI_OPC_READ;
   3664 	if (sc->sc_ee_addrbits == 8 && word >= 128)
   3665 		opc |= SPI_OPC_A8;
   3666 
   3667 	wm_eeprom_sendbits(sc, opc, 8);
   3668 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
   3669 
   3670 	for (i = 0; i < wordcnt; i++) {
   3671 		wm_eeprom_recvbits(sc, &val, 16);
   3672 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
   3673 	}
   3674 
   3675 	/* Raise CS and clear SK. */
   3676 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
   3677 	CSR_WRITE(sc, WMREG_EECD, reg);
   3678 	delay(2);
   3679 
   3680 	return (0);
   3681 }
   3682 
   3683 #define EEPROM_CHECKSUM		0xBABA
   3684 #define EEPROM_SIZE		0x0040
   3685 
   3686 /*
   3687  * wm_validate_eeprom_checksum
   3688  *
   3689  * The checksum is defined as the sum of the first 64 (16 bit) words.
   3690  */
   3691 static int
   3692 wm_validate_eeprom_checksum(struct wm_softc *sc)
   3693 {
   3694 	uint16_t checksum;
   3695 	uint16_t eeprom_data;
   3696 	int i;
   3697 
   3698 	checksum = 0;
   3699 
   3700 	for (i = 0; i < EEPROM_SIZE; i++) {
   3701 		if (wm_read_eeprom(sc, i, 1, &eeprom_data))
   3702 			return 1;
   3703 		checksum += eeprom_data;
   3704 	}
   3705 
   3706 	if (checksum != (uint16_t) EEPROM_CHECKSUM)
   3707 		return 1;
   3708 
   3709 	return 0;
   3710 }
   3711 
   3712 /*
   3713  * wm_read_eeprom:
   3714  *
   3715  *	Read data from the serial EEPROM.
   3716  */
   3717 static int
   3718 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3719 {
   3720 	int rv;
   3721 
   3722 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
   3723 		return 1;
   3724 
   3725 	if (wm_acquire_eeprom(sc))
   3726 		return 1;
   3727 
   3728 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9))
   3729 		rv = wm_read_eeprom_ich8(sc, word, wordcnt, data);
   3730 	else if (sc->sc_flags & WM_F_EEPROM_EERDEEWR)
   3731 		rv = wm_read_eeprom_eerd(sc, word, wordcnt, data);
   3732 	else if (sc->sc_flags & WM_F_EEPROM_SPI)
   3733 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
   3734 	else
   3735 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
   3736 
   3737 	wm_release_eeprom(sc);
   3738 	return rv;
   3739 }
   3740 
   3741 static int
   3742 wm_read_eeprom_eerd(struct wm_softc *sc, int offset, int wordcnt,
   3743     uint16_t *data)
   3744 {
   3745 	int i, eerd = 0;
   3746 	int error = 0;
   3747 
   3748 	for (i = 0; i < wordcnt; i++) {
   3749 		eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
   3750 
   3751 		CSR_WRITE(sc, WMREG_EERD, eerd);
   3752 		error = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
   3753 		if (error != 0)
   3754 			break;
   3755 
   3756 		data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
   3757 	}
   3758 
   3759 	return error;
   3760 }
   3761 
   3762 static int
   3763 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
   3764 {
   3765 	uint32_t attempts = 100000;
   3766 	uint32_t i, reg = 0;
   3767 	int32_t done = -1;
   3768 
   3769 	for (i = 0; i < attempts; i++) {
   3770 		reg = CSR_READ(sc, rw);
   3771 
   3772 		if (reg & EERD_DONE) {
   3773 			done = 0;
   3774 			break;
   3775 		}
   3776 		delay(5);
   3777 	}
   3778 
   3779 	return done;
   3780 }
   3781 
   3782 /*
   3783  * wm_add_rxbuf:
   3784  *
   3785  *	Add a receive buffer to the indiciated descriptor.
   3786  */
   3787 static int
   3788 wm_add_rxbuf(struct wm_softc *sc, int idx)
   3789 {
   3790 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
   3791 	struct mbuf *m;
   3792 	int error;
   3793 
   3794 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3795 	if (m == NULL)
   3796 		return (ENOBUFS);
   3797 
   3798 	MCLGET(m, M_DONTWAIT);
   3799 	if ((m->m_flags & M_EXT) == 0) {
   3800 		m_freem(m);
   3801 		return (ENOBUFS);
   3802 	}
   3803 
   3804 	if (rxs->rxs_mbuf != NULL)
   3805 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3806 
   3807 	rxs->rxs_mbuf = m;
   3808 
   3809 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   3810 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   3811 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   3812 	if (error) {
   3813 		/* XXX XXX XXX */
   3814 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   3815 		    sc->sc_dev.dv_xname, idx, error);
   3816 		panic("wm_add_rxbuf");
   3817 	}
   3818 
   3819 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3820 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3821 
   3822 	WM_INIT_RXDESC(sc, idx);
   3823 
   3824 	return (0);
   3825 }
   3826 
   3827 /*
   3828  * wm_set_ral:
   3829  *
   3830  *	Set an entery in the receive address list.
   3831  */
   3832 static void
   3833 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
   3834 {
   3835 	uint32_t ral_lo, ral_hi;
   3836 
   3837 	if (enaddr != NULL) {
   3838 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   3839 		    (enaddr[3] << 24);
   3840 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   3841 		ral_hi |= RAL_AV;
   3842 	} else {
   3843 		ral_lo = 0;
   3844 		ral_hi = 0;
   3845 	}
   3846 
   3847 	if (sc->sc_type >= WM_T_82544) {
   3848 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
   3849 		    ral_lo);
   3850 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
   3851 		    ral_hi);
   3852 	} else {
   3853 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
   3854 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
   3855 	}
   3856 }
   3857 
   3858 /*
   3859  * wm_mchash:
   3860  *
   3861  *	Compute the hash of the multicast address for the 4096-bit
   3862  *	multicast filter.
   3863  */
   3864 static uint32_t
   3865 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
   3866 {
   3867 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   3868 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   3869 	static const int ich8_lo_shift[4] = { 6, 5, 4, 2 };
   3870 	static const int ich8_hi_shift[4] = { 2, 3, 4, 6 };
   3871 	uint32_t hash;
   3872 
   3873 	if (sc->sc_type == WM_T_ICH8) {
   3874 		hash = (enaddr[4] >> ich8_lo_shift[sc->sc_mchash_type]) |
   3875 		    (((uint16_t) enaddr[5]) << ich8_hi_shift[sc->sc_mchash_type]);
   3876 		return (hash & 0x3ff);
   3877 	}
   3878 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   3879 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   3880 
   3881 	return (hash & 0xfff);
   3882 }
   3883 
   3884 /*
   3885  * wm_set_filter:
   3886  *
   3887  *	Set up the receive filter.
   3888  */
   3889 static void
   3890 wm_set_filter(struct wm_softc *sc)
   3891 {
   3892 	struct ethercom *ec = &sc->sc_ethercom;
   3893 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3894 	struct ether_multi *enm;
   3895 	struct ether_multistep step;
   3896 	bus_addr_t mta_reg;
   3897 	uint32_t hash, reg, bit;
   3898 	int i, size;
   3899 
   3900 	if (sc->sc_type >= WM_T_82544)
   3901 		mta_reg = WMREG_CORDOVA_MTA;
   3902 	else
   3903 		mta_reg = WMREG_MTA;
   3904 
   3905 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   3906 
   3907 	if (ifp->if_flags & IFF_BROADCAST)
   3908 		sc->sc_rctl |= RCTL_BAM;
   3909 	if (ifp->if_flags & IFF_PROMISC) {
   3910 		sc->sc_rctl |= RCTL_UPE;
   3911 		goto allmulti;
   3912 	}
   3913 
   3914 	/*
   3915 	 * Set the station address in the first RAL slot, and
   3916 	 * clear the remaining slots.
   3917 	 */
   3918 	if (sc->sc_type == WM_T_ICH8)
   3919 		size = WM_ICH8_RAL_TABSIZE;
   3920 	else
   3921 		size = WM_RAL_TABSIZE;
   3922 	wm_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
   3923 	for (i = 1; i < size; i++)
   3924 		wm_set_ral(sc, NULL, i);
   3925 
   3926 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9))
   3927 		size = WM_ICH8_MC_TABSIZE;
   3928 	else
   3929 		size = WM_MC_TABSIZE;
   3930 	/* Clear out the multicast table. */
   3931 	for (i = 0; i < size; i++)
   3932 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
   3933 
   3934 	ETHER_FIRST_MULTI(step, ec, enm);
   3935 	while (enm != NULL) {
   3936 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3937 			/*
   3938 			 * We must listen to a range of multicast addresses.
   3939 			 * For now, just accept all multicasts, rather than
   3940 			 * trying to set only those filter bits needed to match
   3941 			 * the range.  (At this time, the only use of address
   3942 			 * ranges is for IP multicast routing, for which the
   3943 			 * range is big enough to require all bits set.)
   3944 			 */
   3945 			goto allmulti;
   3946 		}
   3947 
   3948 		hash = wm_mchash(sc, enm->enm_addrlo);
   3949 
   3950 		reg = (hash >> 5);
   3951 		if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9))
   3952 			reg &= 0x1f;
   3953 		else
   3954 			reg &= 0x7f;
   3955 		bit = hash & 0x1f;
   3956 
   3957 		hash = CSR_READ(sc, mta_reg + (reg << 2));
   3958 		hash |= 1U << bit;
   3959 
   3960 		/* XXX Hardware bug?? */
   3961 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
   3962 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
   3963 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3964 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
   3965 		} else
   3966 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3967 
   3968 		ETHER_NEXT_MULTI(step, enm);
   3969 	}
   3970 
   3971 	ifp->if_flags &= ~IFF_ALLMULTI;
   3972 	goto setit;
   3973 
   3974  allmulti:
   3975 	ifp->if_flags |= IFF_ALLMULTI;
   3976 	sc->sc_rctl |= RCTL_MPE;
   3977 
   3978  setit:
   3979 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
   3980 }
   3981 
   3982 /*
   3983  * wm_tbi_mediainit:
   3984  *
   3985  *	Initialize media for use on 1000BASE-X devices.
   3986  */
   3987 static void
   3988 wm_tbi_mediainit(struct wm_softc *sc)
   3989 {
   3990 	const char *sep = "";
   3991 
   3992 	if (sc->sc_type < WM_T_82543)
   3993 		sc->sc_tipg = TIPG_WM_DFLT;
   3994 	else
   3995 		sc->sc_tipg = TIPG_LG_DFLT;
   3996 
   3997 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
   3998 	    wm_tbi_mediastatus);
   3999 
   4000 	/*
   4001 	 * SWD Pins:
   4002 	 *
   4003 	 *	0 = Link LED (output)
   4004 	 *	1 = Loss Of Signal (input)
   4005 	 */
   4006 	sc->sc_ctrl |= CTRL_SWDPIO(0);
   4007 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
   4008 
   4009 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4010 
   4011 #define	ADD(ss, mm, dd)							\
   4012 do {									\
   4013 	aprint_normal("%s%s", sep, ss);					\
   4014 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
   4015 	sep = ", ";							\
   4016 } while (/*CONSTCOND*/0)
   4017 
   4018 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
   4019 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
   4020 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
   4021 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
   4022 	aprint_normal("\n");
   4023 
   4024 #undef ADD
   4025 
   4026 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   4027 }
   4028 
   4029 /*
   4030  * wm_tbi_mediastatus:	[ifmedia interface function]
   4031  *
   4032  *	Get the current interface media status on a 1000BASE-X device.
   4033  */
   4034 static void
   4035 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   4036 {
   4037 	struct wm_softc *sc = ifp->if_softc;
   4038 	uint32_t ctrl;
   4039 
   4040 	ifmr->ifm_status = IFM_AVALID;
   4041 	ifmr->ifm_active = IFM_ETHER;
   4042 
   4043 	if (sc->sc_tbi_linkup == 0) {
   4044 		ifmr->ifm_active |= IFM_NONE;
   4045 		return;
   4046 	}
   4047 
   4048 	ifmr->ifm_status |= IFM_ACTIVE;
   4049 	ifmr->ifm_active |= IFM_1000_SX;
   4050 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
   4051 		ifmr->ifm_active |= IFM_FDX;
   4052 	ctrl = CSR_READ(sc, WMREG_CTRL);
   4053 	if (ctrl & CTRL_RFCE)
   4054 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   4055 	if (ctrl & CTRL_TFCE)
   4056 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   4057 }
   4058 
   4059 /*
   4060  * wm_tbi_mediachange:	[ifmedia interface function]
   4061  *
   4062  *	Set hardware to newly-selected media on a 1000BASE-X device.
   4063  */
   4064 static int
   4065 wm_tbi_mediachange(struct ifnet *ifp)
   4066 {
   4067 	struct wm_softc *sc = ifp->if_softc;
   4068 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   4069 	uint32_t status;
   4070 	int i;
   4071 
   4072 	sc->sc_txcw = ife->ifm_data;
   4073 	DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x on entry\n",
   4074 		    sc->sc_dev.dv_xname,sc->sc_txcw));
   4075 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
   4076 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
   4077 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
   4078 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
   4079 		sc->sc_txcw |= TXCW_ANE;
   4080 	} else {
   4081 		/*If autonegotiation is turned off, force link up and turn on full duplex*/
   4082 		sc->sc_txcw &= ~TXCW_ANE;
   4083 		sc->sc_ctrl |= CTRL_SLU | CTRL_FD;
   4084 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4085 		delay(1000);
   4086 	}
   4087 
   4088 	DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x after autoneg check\n",
   4089 		    sc->sc_dev.dv_xname,sc->sc_txcw));
   4090 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   4091 	delay(10000);
   4092 
   4093 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
   4094 
   4095 	sc->sc_tbi_anstate = 0;
   4096 
   4097 	i = CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1);
   4098 	DPRINTF(WM_DEBUG_LINK,("%s: i = 0x%x\n", sc->sc_dev.dv_xname,i));
   4099 
   4100 	/*
   4101 	 * On 82544 chips and later, the CTRL_SWDPIN(1) bit will be set if the
   4102 	 * optics detect a signal, 0 if they don't.
   4103 	 */
   4104 	if (((i != 0) && (sc->sc_type >= WM_T_82544)) || (i == 0)) {
   4105 		/* Have signal; wait for the link to come up. */
   4106 
   4107 		if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
   4108 			/*
   4109 			 * Reset the link, and let autonegotiation do its thing
   4110 			 */
   4111 			sc->sc_ctrl |= CTRL_LRST;
   4112 			CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4113 			delay(1000);
   4114 			sc->sc_ctrl &= ~CTRL_LRST;
   4115 			CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4116 			delay(1000);
   4117 		}
   4118 
   4119 		for (i = 0; i < 50; i++) {
   4120 			delay(10000);
   4121 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
   4122 				break;
   4123 		}
   4124 
   4125 		DPRINTF(WM_DEBUG_LINK,("%s: i = %d after waiting for link\n",
   4126 			    sc->sc_dev.dv_xname,i));
   4127 
   4128 		status = CSR_READ(sc, WMREG_STATUS);
   4129 		DPRINTF(WM_DEBUG_LINK,
   4130 		    ("%s: status after final read = 0x%x, STATUS_LU = 0x%x\n",
   4131 			sc->sc_dev.dv_xname,status, STATUS_LU));
   4132 		if (status & STATUS_LU) {
   4133 			/* Link is up. */
   4134 			DPRINTF(WM_DEBUG_LINK,
   4135 			    ("%s: LINK: set media -> link up %s\n",
   4136 			    sc->sc_dev.dv_xname,
   4137 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   4138 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   4139 			sc->sc_fcrtl &= ~FCRTL_XONE;
   4140 			if (status & STATUS_FD)
   4141 				sc->sc_tctl |=
   4142 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   4143 			else
   4144 				sc->sc_tctl |=
   4145 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   4146 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   4147 				sc->sc_fcrtl |= FCRTL_XONE;
   4148 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   4149 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   4150 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   4151 				      sc->sc_fcrtl);
   4152 			sc->sc_tbi_linkup = 1;
   4153 		} else {
   4154 			/* Link is down. */
   4155 			DPRINTF(WM_DEBUG_LINK,
   4156 			    ("%s: LINK: set media -> link down\n",
   4157 			    sc->sc_dev.dv_xname));
   4158 			sc->sc_tbi_linkup = 0;
   4159 		}
   4160 	} else {
   4161 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
   4162 		    sc->sc_dev.dv_xname));
   4163 		sc->sc_tbi_linkup = 0;
   4164 	}
   4165 
   4166 	wm_tbi_set_linkled(sc);
   4167 
   4168 	return (0);
   4169 }
   4170 
   4171 /*
   4172  * wm_tbi_set_linkled:
   4173  *
   4174  *	Update the link LED on 1000BASE-X devices.
   4175  */
   4176 static void
   4177 wm_tbi_set_linkled(struct wm_softc *sc)
   4178 {
   4179 
   4180 	if (sc->sc_tbi_linkup)
   4181 		sc->sc_ctrl |= CTRL_SWDPIN(0);
   4182 	else
   4183 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
   4184 
   4185 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4186 }
   4187 
   4188 /*
   4189  * wm_tbi_check_link:
   4190  *
   4191  *	Check the link on 1000BASE-X devices.
   4192  */
   4193 static void
   4194 wm_tbi_check_link(struct wm_softc *sc)
   4195 {
   4196 	uint32_t rxcw, ctrl, status;
   4197 
   4198 	if (sc->sc_tbi_anstate == 0)
   4199 		return;
   4200 	else if (sc->sc_tbi_anstate > 1) {
   4201 		DPRINTF(WM_DEBUG_LINK,
   4202 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
   4203 		    sc->sc_tbi_anstate));
   4204 		sc->sc_tbi_anstate--;
   4205 		return;
   4206 	}
   4207 
   4208 	sc->sc_tbi_anstate = 0;
   4209 
   4210 	rxcw = CSR_READ(sc, WMREG_RXCW);
   4211 	ctrl = CSR_READ(sc, WMREG_CTRL);
   4212 	status = CSR_READ(sc, WMREG_STATUS);
   4213 
   4214 	if ((status & STATUS_LU) == 0) {
   4215 		DPRINTF(WM_DEBUG_LINK,
   4216 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
   4217 		sc->sc_tbi_linkup = 0;
   4218 	} else {
   4219 		DPRINTF(WM_DEBUG_LINK,
   4220 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
   4221 		    (status & STATUS_FD) ? "FDX" : "HDX"));
   4222 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   4223 		sc->sc_fcrtl &= ~FCRTL_XONE;
   4224 		if (status & STATUS_FD)
   4225 			sc->sc_tctl |=
   4226 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   4227 		else
   4228 			sc->sc_tctl |=
   4229 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   4230 		if (ctrl & CTRL_TFCE)
   4231 			sc->sc_fcrtl |= FCRTL_XONE;
   4232 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   4233 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   4234 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
   4235 			      sc->sc_fcrtl);
   4236 		sc->sc_tbi_linkup = 1;
   4237 	}
   4238 
   4239 	wm_tbi_set_linkled(sc);
   4240 }
   4241 
   4242 /*
   4243  * wm_gmii_reset:
   4244  *
   4245  *	Reset the PHY.
   4246  */
   4247 static void
   4248 wm_gmii_reset(struct wm_softc *sc)
   4249 {
   4250 	uint32_t reg;
   4251 	int func = 0; /* XXX gcc */
   4252 
   4253 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)) {
   4254 		if (wm_get_swfwhw_semaphore(sc))
   4255 			return;
   4256 	}
   4257 	if (sc->sc_type == WM_T_80003) {
   4258 		func = (CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1;
   4259 		if (wm_get_swfw_semaphore(sc,
   4260 		    func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
   4261 			return;
   4262 	}
   4263 	if (sc->sc_type >= WM_T_82544) {
   4264 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   4265 		delay(20000);
   4266 
   4267 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4268 		delay(20000);
   4269 	} else {
   4270                 /*
   4271                  * With 82543, we need to force speed and duplex on the MAC
   4272                  * equal to what the PHY speed and duplex configuration is.
   4273                  * In addition, we need to perform a hardware reset on the PHY
   4274                  * to take it out of reset.
   4275                  */
   4276                 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
   4277                 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4278 
   4279 		/* The PHY reset pin is active-low. */
   4280 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   4281 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
   4282 		    CTRL_EXT_SWDPIN(4));
   4283 		reg |= CTRL_EXT_SWDPIO(4);
   4284 
   4285 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   4286 		delay(10);
   4287 
   4288 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   4289 		delay(10000);
   4290 
   4291 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   4292 		delay(10);
   4293 #if 0
   4294 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
   4295 #endif
   4296 	}
   4297 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9))
   4298 		wm_put_swfwhw_semaphore(sc);
   4299 	if (sc->sc_type == WM_T_80003)
   4300 		wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
   4301 }
   4302 
   4303 /*
   4304  * wm_gmii_mediainit:
   4305  *
   4306  *	Initialize media for use on 1000BASE-T devices.
   4307  */
   4308 static void
   4309 wm_gmii_mediainit(struct wm_softc *sc)
   4310 {
   4311 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   4312 
   4313 	/* We have MII. */
   4314 	sc->sc_flags |= WM_F_HAS_MII;
   4315 
   4316 	if (sc->sc_type >= WM_T_80003)
   4317 		sc->sc_tipg =  TIPG_1000T_80003_DFLT;
   4318 	else
   4319 		sc->sc_tipg = TIPG_1000T_DFLT;
   4320 
   4321 	/*
   4322 	 * Let the chip set speed/duplex on its own based on
   4323 	 * signals from the PHY.
   4324 	 * XXXbouyer - I'm not sure this is right for the 80003,
   4325 	 * the em driver only sets CTRL_SLU here - but it seems to work.
   4326 	 */
   4327 	sc->sc_ctrl |= CTRL_SLU;
   4328 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4329 
   4330 	/* Initialize our media structures and probe the GMII. */
   4331 	sc->sc_mii.mii_ifp = ifp;
   4332 
   4333 	if (sc->sc_type >= WM_T_80003) {
   4334 		sc->sc_mii.mii_readreg = wm_gmii_i80003_readreg;
   4335 		sc->sc_mii.mii_writereg = wm_gmii_i80003_writereg;
   4336 	} else if (sc->sc_type >= WM_T_82544) {
   4337 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
   4338 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
   4339 	} else {
   4340 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
   4341 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
   4342 	}
   4343 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
   4344 
   4345 	wm_gmii_reset(sc);
   4346 
   4347 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
   4348 	    wm_gmii_mediastatus);
   4349 
   4350 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   4351 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
   4352 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   4353 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   4354 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   4355 	} else
   4356 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   4357 }
   4358 
   4359 /*
   4360  * wm_gmii_mediastatus:	[ifmedia interface function]
   4361  *
   4362  *	Get the current interface media status on a 1000BASE-T device.
   4363  */
   4364 static void
   4365 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   4366 {
   4367 	struct wm_softc *sc = ifp->if_softc;
   4368 
   4369 	mii_pollstat(&sc->sc_mii);
   4370 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   4371 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
   4372 			   sc->sc_flowflags;
   4373 }
   4374 
   4375 /*
   4376  * wm_gmii_mediachange:	[ifmedia interface function]
   4377  *
   4378  *	Set hardware to newly-selected media on a 1000BASE-T device.
   4379  */
   4380 static int
   4381 wm_gmii_mediachange(struct ifnet *ifp)
   4382 {
   4383 	struct wm_softc *sc = ifp->if_softc;
   4384 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   4385 
   4386 	if (ifp->if_flags & IFF_UP) {
   4387 		sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
   4388 		sc->sc_ctrl |= CTRL_SLU;
   4389 		if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
   4390 		    || (sc->sc_type > WM_T_82543)) {
   4391 			sc->sc_ctrl &= ~(CTRL_FRCSPD | CTRL_FRCFDX);
   4392 		} else {
   4393 			sc->sc_ctrl &= ~CTRL_ASDE;
   4394 			sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
   4395 			if (ife->ifm_media & IFM_FDX)
   4396 				sc->sc_ctrl |= CTRL_FD;
   4397 			switch(IFM_SUBTYPE(ife->ifm_media)) {
   4398 			case IFM_10_T:
   4399 				sc->sc_ctrl |= CTRL_SPEED_10;
   4400 				break;
   4401 			case IFM_100_TX:
   4402 				sc->sc_ctrl |= CTRL_SPEED_100;
   4403 				break;
   4404 			case IFM_1000_T:
   4405 				sc->sc_ctrl |= CTRL_SPEED_1000;
   4406 				break;
   4407 			default:
   4408 				panic("wm_gmii_mediachange: bad media 0x%x",
   4409 				    ife->ifm_media);
   4410 			}
   4411 		}
   4412 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4413 		if (sc->sc_type <= WM_T_82543)
   4414 			wm_gmii_reset(sc);
   4415 		mii_mediachg(&sc->sc_mii);
   4416 	}
   4417 	return (0);
   4418 }
   4419 
   4420 #define	MDI_IO		CTRL_SWDPIN(2)
   4421 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
   4422 #define	MDI_CLK		CTRL_SWDPIN(3)
   4423 
   4424 static void
   4425 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
   4426 {
   4427 	uint32_t i, v;
   4428 
   4429 	v = CSR_READ(sc, WMREG_CTRL);
   4430 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   4431 	v |= MDI_DIR | CTRL_SWDPIO(3);
   4432 
   4433 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
   4434 		if (data & i)
   4435 			v |= MDI_IO;
   4436 		else
   4437 			v &= ~MDI_IO;
   4438 		CSR_WRITE(sc, WMREG_CTRL, v);
   4439 		delay(10);
   4440 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   4441 		delay(10);
   4442 		CSR_WRITE(sc, WMREG_CTRL, v);
   4443 		delay(10);
   4444 	}
   4445 }
   4446 
   4447 static uint32_t
   4448 i82543_mii_recvbits(struct wm_softc *sc)
   4449 {
   4450 	uint32_t v, i, data = 0;
   4451 
   4452 	v = CSR_READ(sc, WMREG_CTRL);
   4453 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   4454 	v |= CTRL_SWDPIO(3);
   4455 
   4456 	CSR_WRITE(sc, WMREG_CTRL, v);
   4457 	delay(10);
   4458 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   4459 	delay(10);
   4460 	CSR_WRITE(sc, WMREG_CTRL, v);
   4461 	delay(10);
   4462 
   4463 	for (i = 0; i < 16; i++) {
   4464 		data <<= 1;
   4465 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   4466 		delay(10);
   4467 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
   4468 			data |= 1;
   4469 		CSR_WRITE(sc, WMREG_CTRL, v);
   4470 		delay(10);
   4471 	}
   4472 
   4473 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   4474 	delay(10);
   4475 	CSR_WRITE(sc, WMREG_CTRL, v);
   4476 	delay(10);
   4477 
   4478 	return (data);
   4479 }
   4480 
   4481 #undef MDI_IO
   4482 #undef MDI_DIR
   4483 #undef MDI_CLK
   4484 
   4485 /*
   4486  * wm_gmii_i82543_readreg:	[mii interface function]
   4487  *
   4488  *	Read a PHY register on the GMII (i82543 version).
   4489  */
   4490 static int
   4491 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
   4492 {
   4493 	struct wm_softc *sc = (void *) self;
   4494 	int rv;
   4495 
   4496 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   4497 	i82543_mii_sendbits(sc, reg | (phy << 5) |
   4498 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
   4499 	rv = i82543_mii_recvbits(sc) & 0xffff;
   4500 
   4501 	DPRINTF(WM_DEBUG_GMII,
   4502 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
   4503 	    sc->sc_dev.dv_xname, phy, reg, rv));
   4504 
   4505 	return (rv);
   4506 }
   4507 
   4508 /*
   4509  * wm_gmii_i82543_writereg:	[mii interface function]
   4510  *
   4511  *	Write a PHY register on the GMII (i82543 version).
   4512  */
   4513 static void
   4514 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
   4515 {
   4516 	struct wm_softc *sc = (void *) self;
   4517 
   4518 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   4519 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
   4520 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
   4521 	    (MII_COMMAND_START << 30), 32);
   4522 }
   4523 
   4524 /*
   4525  * wm_gmii_i82544_readreg:	[mii interface function]
   4526  *
   4527  *	Read a PHY register on the GMII.
   4528  */
   4529 static int
   4530 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
   4531 {
   4532 	struct wm_softc *sc = (void *) self;
   4533 	uint32_t mdic = 0;
   4534 	int i, rv;
   4535 
   4536 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
   4537 	    MDIC_REGADD(reg));
   4538 
   4539 	for (i = 0; i < 320; i++) {
   4540 		mdic = CSR_READ(sc, WMREG_MDIC);
   4541 		if (mdic & MDIC_READY)
   4542 			break;
   4543 		delay(10);
   4544 	}
   4545 
   4546 	if ((mdic & MDIC_READY) == 0) {
   4547 		log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
   4548 		    sc->sc_dev.dv_xname, phy, reg);
   4549 		rv = 0;
   4550 	} else if (mdic & MDIC_E) {
   4551 #if 0 /* This is normal if no PHY is present. */
   4552 		log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
   4553 		    sc->sc_dev.dv_xname, phy, reg);
   4554 #endif
   4555 		rv = 0;
   4556 	} else {
   4557 		rv = MDIC_DATA(mdic);
   4558 		if (rv == 0xffff)
   4559 			rv = 0;
   4560 	}
   4561 
   4562 	return (rv);
   4563 }
   4564 
   4565 /*
   4566  * wm_gmii_i82544_writereg:	[mii interface function]
   4567  *
   4568  *	Write a PHY register on the GMII.
   4569  */
   4570 static void
   4571 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
   4572 {
   4573 	struct wm_softc *sc = (void *) self;
   4574 	uint32_t mdic = 0;
   4575 	int i;
   4576 
   4577 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
   4578 	    MDIC_REGADD(reg) | MDIC_DATA(val));
   4579 
   4580 	for (i = 0; i < 320; i++) {
   4581 		mdic = CSR_READ(sc, WMREG_MDIC);
   4582 		if (mdic & MDIC_READY)
   4583 			break;
   4584 		delay(10);
   4585 	}
   4586 
   4587 	if ((mdic & MDIC_READY) == 0)
   4588 		log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
   4589 		    sc->sc_dev.dv_xname, phy, reg);
   4590 	else if (mdic & MDIC_E)
   4591 		log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
   4592 		    sc->sc_dev.dv_xname, phy, reg);
   4593 }
   4594 
   4595 /*
   4596  * wm_gmii_i80003_readreg:	[mii interface function]
   4597  *
   4598  *	Read a PHY register on the kumeran
   4599  * This could be handled by the PHY layer if we didn't have to lock the
   4600  * ressource ...
   4601  */
   4602 static int
   4603 wm_gmii_i80003_readreg(struct device *self, int phy, int reg)
   4604 {
   4605 	struct wm_softc *sc = (void *) self;
   4606 	int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
   4607 	int rv;
   4608 
   4609 	if (phy != 1) /* only one PHY on kumeran bus */
   4610 		return 0;
   4611 
   4612 	if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
   4613 		return 0;
   4614 
   4615 	if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
   4616 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
   4617 		    reg >> GG82563_PAGE_SHIFT);
   4618 	} else {
   4619 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
   4620 		    reg >> GG82563_PAGE_SHIFT);
   4621 	}
   4622 
   4623 	rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
   4624 	wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
   4625 	return (rv);
   4626 }
   4627 
   4628 /*
   4629  * wm_gmii_i80003_writereg:	[mii interface function]
   4630  *
   4631  *	Write a PHY register on the kumeran.
   4632  * This could be handled by the PHY layer if we didn't have to lock the
   4633  * ressource ...
   4634  */
   4635 static void
   4636 wm_gmii_i80003_writereg(struct device *self, int phy, int reg, int val)
   4637 {
   4638 	struct wm_softc *sc = (void *) self;
   4639 	int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
   4640 
   4641 	if (phy != 1) /* only one PHY on kumeran bus */
   4642 		return;
   4643 
   4644 	if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
   4645 		return;
   4646 
   4647 	if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
   4648 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
   4649 		    reg >> GG82563_PAGE_SHIFT);
   4650 	} else {
   4651 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
   4652 		    reg >> GG82563_PAGE_SHIFT);
   4653 	}
   4654 
   4655 	wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
   4656 	wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
   4657 }
   4658 
   4659 /*
   4660  * wm_gmii_statchg:	[mii interface function]
   4661  *
   4662  *	Callback from MII layer when media changes.
   4663  */
   4664 static void
   4665 wm_gmii_statchg(struct device *self)
   4666 {
   4667 	struct wm_softc *sc = (void *) self;
   4668 	struct mii_data *mii = &sc->sc_mii;
   4669 
   4670 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
   4671 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   4672 	sc->sc_fcrtl &= ~FCRTL_XONE;
   4673 
   4674 	/*
   4675 	 * Get flow control negotiation result.
   4676 	 */
   4677 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   4678 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   4679 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   4680 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   4681 	}
   4682 
   4683 	if (sc->sc_flowflags & IFM_FLOW) {
   4684 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
   4685 			sc->sc_ctrl |= CTRL_TFCE;
   4686 			sc->sc_fcrtl |= FCRTL_XONE;
   4687 		}
   4688 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   4689 			sc->sc_ctrl |= CTRL_RFCE;
   4690 	}
   4691 
   4692 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   4693 		DPRINTF(WM_DEBUG_LINK,
   4694 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
   4695 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   4696 	} else  {
   4697 		DPRINTF(WM_DEBUG_LINK,
   4698 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
   4699 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   4700 	}
   4701 
   4702 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4703 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   4704 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
   4705 						 : WMREG_FCRTL, sc->sc_fcrtl);
   4706 	if (sc->sc_type >= WM_T_80003) {
   4707 		switch(IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
   4708 		case IFM_1000_T:
   4709 			wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
   4710 			    KUMCTRLSTA_HD_CTRL_1000_DEFAULT);
   4711 			sc->sc_tipg =  TIPG_1000T_80003_DFLT;
   4712 			break;
   4713 		default:
   4714 			wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
   4715 			    KUMCTRLSTA_HD_CTRL_10_100_DEFAULT);
   4716 			sc->sc_tipg =  TIPG_10_100_80003_DFLT;
   4717 			break;
   4718 		}
   4719 		CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   4720 	}
   4721 }
   4722 
   4723 /*
   4724  * wm_kmrn_i80003_readreg:
   4725  *
   4726  *	Read a kumeran register
   4727  */
   4728 static int
   4729 wm_kmrn_i80003_readreg(struct wm_softc *sc, int reg)
   4730 {
   4731 	int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
   4732 	int rv;
   4733 
   4734 	if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
   4735 		return 0;
   4736 
   4737 	CSR_WRITE(sc, WMREG_KUMCTRLSTA,
   4738 	    ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
   4739 	    KUMCTRLSTA_REN);
   4740 	delay(2);
   4741 
   4742 	rv = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK;
   4743 	wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
   4744 	return (rv);
   4745 }
   4746 
   4747 /*
   4748  * wm_kmrn_i80003_writereg:
   4749  *
   4750  *	Write a kumeran register
   4751  */
   4752 static void
   4753 wm_kmrn_i80003_writereg(struct wm_softc *sc, int reg, int val)
   4754 {
   4755 	int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
   4756 
   4757 	if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
   4758 		return;
   4759 
   4760 	CSR_WRITE(sc, WMREG_KUMCTRLSTA,
   4761 	    ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
   4762 	    (val & KUMCTRLSTA_MASK));
   4763 	wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
   4764 }
   4765 
   4766 static int
   4767 wm_is_onboard_nvm_eeprom(struct wm_softc *sc)
   4768 {
   4769 	uint32_t eecd = 0;
   4770 
   4771 	if (sc->sc_type == WM_T_82573) {
   4772 		eecd = CSR_READ(sc, WMREG_EECD);
   4773 
   4774 		/* Isolate bits 15 & 16 */
   4775 		eecd = ((eecd >> 15) & 0x03);
   4776 
   4777 		/* If both bits are set, device is Flash type */
   4778 		if (eecd == 0x03) {
   4779 			return 0;
   4780 		}
   4781 	}
   4782 	return 1;
   4783 }
   4784 
   4785 static int
   4786 wm_get_swsm_semaphore(struct wm_softc *sc)
   4787 {
   4788 	int32_t timeout;
   4789 	uint32_t swsm;
   4790 
   4791 	/* Get the FW semaphore. */
   4792 	timeout = 1000 + 1; /* XXX */
   4793 	while (timeout) {
   4794 		swsm = CSR_READ(sc, WMREG_SWSM);
   4795 		swsm |= SWSM_SWESMBI;
   4796 		CSR_WRITE(sc, WMREG_SWSM, swsm);
   4797 		/* if we managed to set the bit we got the semaphore. */
   4798 		swsm = CSR_READ(sc, WMREG_SWSM);
   4799 		if (swsm & SWSM_SWESMBI)
   4800 			break;
   4801 
   4802 		delay(50);
   4803 		timeout--;
   4804 	}
   4805 
   4806 	if (timeout == 0) {
   4807 		aprint_error("%s: could not acquire EEPROM GNT\n",
   4808 		    sc->sc_dev.dv_xname);
   4809 		/* Release semaphores */
   4810 		wm_put_swsm_semaphore(sc);
   4811 		return 1;
   4812 	}
   4813 	return 0;
   4814 }
   4815 
   4816 static void
   4817 wm_put_swsm_semaphore(struct wm_softc *sc)
   4818 {
   4819 	uint32_t swsm;
   4820 
   4821 	swsm = CSR_READ(sc, WMREG_SWSM);
   4822 	swsm &= ~(SWSM_SWESMBI);
   4823 	CSR_WRITE(sc, WMREG_SWSM, swsm);
   4824 }
   4825 
   4826 static int
   4827 wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
   4828 {
   4829 	uint32_t swfw_sync;
   4830 	uint32_t swmask = mask << SWFW_SOFT_SHIFT;
   4831 	uint32_t fwmask = mask << SWFW_FIRM_SHIFT;
   4832 	int timeout = 200;
   4833 
   4834 	for(timeout = 0; timeout < 200; timeout++) {
   4835 		if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
   4836 			if (wm_get_swsm_semaphore(sc))
   4837 				return 1;
   4838 		}
   4839 		swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
   4840 		if ((swfw_sync & (swmask | fwmask)) == 0) {
   4841 			swfw_sync |= swmask;
   4842 			CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
   4843 			if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   4844 				wm_put_swsm_semaphore(sc);
   4845 			return 0;
   4846 		}
   4847 		if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   4848 			wm_put_swsm_semaphore(sc);
   4849 		delay(5000);
   4850 	}
   4851 	printf("%s: failed to get swfw semaphore mask 0x%x swfw 0x%x\n",
   4852 	    sc->sc_dev.dv_xname, mask, swfw_sync);
   4853 	return 1;
   4854 }
   4855 
   4856 static void
   4857 wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
   4858 {
   4859 	uint32_t swfw_sync;
   4860 
   4861 	if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
   4862 		while (wm_get_swsm_semaphore(sc) != 0)
   4863 			continue;
   4864 	}
   4865 	swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
   4866 	swfw_sync &= ~(mask << SWFW_SOFT_SHIFT);
   4867 	CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
   4868 	if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   4869 		wm_put_swsm_semaphore(sc);
   4870 }
   4871 
   4872 static int
   4873 wm_get_swfwhw_semaphore(struct wm_softc *sc)
   4874 {
   4875 	uint32_t ext_ctrl;
   4876 	int timeout = 200;
   4877 
   4878 	for(timeout = 0; timeout < 200; timeout++) {
   4879 		ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
   4880 		ext_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
   4881 		CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
   4882 
   4883 		ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
   4884 		if (ext_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
   4885 			return 0;
   4886 		delay(5000);
   4887 	}
   4888 	printf("%s: failed to get swfwgw semaphore ext_ctrl 0x%x\n",
   4889 	    sc->sc_dev.dv_xname, ext_ctrl);
   4890 	return 1;
   4891 }
   4892 
   4893 static void
   4894 wm_put_swfwhw_semaphore(struct wm_softc *sc)
   4895 {
   4896 	uint32_t ext_ctrl;
   4897 	ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
   4898 	ext_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
   4899 	CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
   4900 }
   4901 
   4902 /******************************************************************************
   4903  * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
   4904  * register.
   4905  *
   4906  * sc - Struct containing variables accessed by shared code
   4907  * offset - offset of word in the EEPROM to read
   4908  * data - word read from the EEPROM
   4909  * words - number of words to read
   4910  *****************************************************************************/
   4911 static int
   4912 wm_read_eeprom_ich8(struct wm_softc *sc, int offset, int words, uint16_t *data)
   4913 {
   4914     int32_t  error = 0;
   4915     uint32_t flash_bank = 0;
   4916     uint32_t act_offset = 0;
   4917     uint32_t bank_offset = 0;
   4918     uint16_t word = 0;
   4919     uint16_t i = 0;
   4920 
   4921     /* We need to know which is the valid flash bank.  In the event
   4922      * that we didn't allocate eeprom_shadow_ram, we may not be
   4923      * managing flash_bank.  So it cannot be trusted and needs
   4924      * to be updated with each read.
   4925      */
   4926     /* Value of bit 22 corresponds to the flash bank we're on. */
   4927     flash_bank = (CSR_READ(sc, WMREG_EECD) & EECD_SEC1VAL) ? 1 : 0;
   4928 
   4929     /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
   4930     bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
   4931 
   4932     error = wm_get_swfwhw_semaphore(sc);
   4933     if (error)
   4934         return error;
   4935 
   4936     for (i = 0; i < words; i++) {
   4937             /* The NVM part needs a byte offset, hence * 2 */
   4938             act_offset = bank_offset + ((offset + i) * 2);
   4939             error = wm_read_ich8_word(sc, act_offset, &word);
   4940             if (error)
   4941                 break;
   4942             data[i] = word;
   4943     }
   4944 
   4945     wm_put_swfwhw_semaphore(sc);
   4946     return error;
   4947 }
   4948 
   4949 /******************************************************************************
   4950  * This function does initial flash setup so that a new read/write/erase cycle
   4951  * can be started.
   4952  *
   4953  * sc - The pointer to the hw structure
   4954  ****************************************************************************/
   4955 static int32_t
   4956 wm_ich8_cycle_init(struct wm_softc *sc)
   4957 {
   4958     uint16_t hsfsts;
   4959     int32_t error = 1;
   4960     int32_t i     = 0;
   4961 
   4962     hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
   4963 
   4964     /* May be check the Flash Des Valid bit in Hw status */
   4965     if ((hsfsts & HSFSTS_FLDVAL) == 0) {
   4966         return error;
   4967     }
   4968 
   4969     /* Clear FCERR in Hw status by writing 1 */
   4970     /* Clear DAEL in Hw status by writing a 1 */
   4971     hsfsts |= HSFSTS_ERR | HSFSTS_DAEL;
   4972 
   4973     ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
   4974 
   4975     /* Either we should have a hardware SPI cycle in progress bit to check
   4976      * against, in order to start a new cycle or FDONE bit should be changed
   4977      * in the hardware so that it is 1 after harware reset, which can then be
   4978      * used as an indication whether a cycle is in progress or has been
   4979      * completed .. we should also have some software semaphore mechanism to
   4980      * guard FDONE or the cycle in progress bit so that two threads access to
   4981      * those bits can be sequentiallized or a way so that 2 threads dont
   4982      * start the cycle at the same time */
   4983 
   4984     if ((hsfsts & HSFSTS_FLINPRO) == 0) {
   4985         /* There is no cycle running at present, so we can start a cycle */
   4986         /* Begin by setting Flash Cycle Done. */
   4987         hsfsts |= HSFSTS_DONE;
   4988         ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
   4989         error = 0;
   4990     } else {
   4991         /* otherwise poll for sometime so the current cycle has a chance
   4992          * to end before giving up. */
   4993         for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
   4994             hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
   4995             if ((hsfsts & HSFSTS_FLINPRO) == 0) {
   4996                 error = 0;
   4997                 break;
   4998             }
   4999             delay(1);
   5000         }
   5001         if (error == 0) {
   5002             /* Successful in waiting for previous cycle to timeout,
   5003              * now set the Flash Cycle Done. */
   5004             hsfsts |= HSFSTS_DONE;
   5005             ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
   5006         }
   5007     }
   5008     return error;
   5009 }
   5010 
   5011 /******************************************************************************
   5012  * This function starts a flash cycle and waits for its completion
   5013  *
   5014  * sc - The pointer to the hw structure
   5015  ****************************************************************************/
   5016 static int32_t
   5017 wm_ich8_flash_cycle(struct wm_softc *sc, uint32_t timeout)
   5018 {
   5019     uint16_t hsflctl;
   5020     uint16_t hsfsts;
   5021     int32_t error = 1;
   5022     uint32_t i = 0;
   5023 
   5024     /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
   5025     hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
   5026     hsflctl |= HSFCTL_GO;
   5027     ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
   5028 
   5029     /* wait till FDONE bit is set to 1 */
   5030     do {
   5031         hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
   5032         if (hsfsts & HSFSTS_DONE)
   5033             break;
   5034         delay(1);
   5035         i++;
   5036     } while (i < timeout);
   5037     if ((hsfsts & HSFSTS_DONE) == 1 && (hsfsts & HSFSTS_ERR) == 0) {
   5038         error = 0;
   5039     }
   5040     return error;
   5041 }
   5042 
   5043 /******************************************************************************
   5044  * Reads a byte or word from the NVM using the ICH8 flash access registers.
   5045  *
   5046  * sc - The pointer to the hw structure
   5047  * index - The index of the byte or word to read.
   5048  * size - Size of data to read, 1=byte 2=word
   5049  * data - Pointer to the word to store the value read.
   5050  *****************************************************************************/
   5051 static int32_t
   5052 wm_read_ich8_data(struct wm_softc *sc, uint32_t index,
   5053                      uint32_t size, uint16_t* data)
   5054 {
   5055     uint16_t hsfsts;
   5056     uint16_t hsflctl;
   5057     uint32_t flash_linear_address;
   5058     uint32_t flash_data = 0;
   5059     int32_t error = 1;
   5060     int32_t count = 0;
   5061 
   5062     if (size < 1  || size > 2 || data == 0x0 ||
   5063         index > ICH_FLASH_LINEAR_ADDR_MASK)
   5064         return error;
   5065 
   5066     flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
   5067                            sc->sc_ich8_flash_base;
   5068 
   5069     do {
   5070         delay(1);
   5071         /* Steps */
   5072         error = wm_ich8_cycle_init(sc);
   5073         if (error)
   5074             break;
   5075 
   5076         hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
   5077         /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
   5078         hsflctl |=  ((size - 1) << HSFCTL_BCOUNT_SHIFT) & HSFCTL_BCOUNT_MASK;
   5079         hsflctl |= ICH_CYCLE_READ << HSFCTL_CYCLE_SHIFT;
   5080         ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
   5081 
   5082         /* Write the last 24 bits of index into Flash Linear address field in
   5083          * Flash Address */
   5084         /* TODO: TBD maybe check the index against the size of flash */
   5085 
   5086         ICH8_FLASH_WRITE32(sc, ICH_FLASH_FADDR, flash_linear_address);
   5087 
   5088         error = wm_ich8_flash_cycle(sc, ICH_FLASH_COMMAND_TIMEOUT);
   5089 
   5090         /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
   5091          * sequence a few more times, else read in (shift in) the Flash Data0,
   5092          * the order is least significant byte first msb to lsb */
   5093         if (error == 0) {
   5094             flash_data = ICH8_FLASH_READ32(sc, ICH_FLASH_FDATA0);
   5095             if (size == 1) {
   5096                 *data = (uint8_t)(flash_data & 0x000000FF);
   5097             } else if (size == 2) {
   5098                 *data = (uint16_t)(flash_data & 0x0000FFFF);
   5099             }
   5100             break;
   5101         } else {
   5102             /* If we've gotten here, then things are probably completely hosed,
   5103              * but if the error condition is detected, it won't hurt to give
   5104              * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
   5105              */
   5106             hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
   5107             if (hsfsts & HSFSTS_ERR) {
   5108                 /* Repeat for some time before giving up. */
   5109                 continue;
   5110             } else if ((hsfsts & HSFSTS_DONE) == 0) {
   5111                 break;
   5112             }
   5113         }
   5114     } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
   5115 
   5116     return error;
   5117 }
   5118 
   5119 #if 0
   5120 /******************************************************************************
   5121  * Reads a single byte from the NVM using the ICH8 flash access registers.
   5122  *
   5123  * sc - pointer to wm_hw structure
   5124  * index - The index of the byte to read.
   5125  * data - Pointer to a byte to store the value read.
   5126  *****************************************************************************/
   5127 static int32_t
   5128 wm_read_ich8_byte(struct wm_softc *sc, uint32_t index, uint8_t* data)
   5129 {
   5130     int32_t status;
   5131     uint16_t word = 0;
   5132 
   5133     status = wm_read_ich8_data(sc, index, 1, &word);
   5134     if (status == 0) {
   5135         *data = (uint8_t)word;
   5136     }
   5137 
   5138     return status;
   5139 }
   5140 #endif
   5141 
   5142 /******************************************************************************
   5143  * Reads a word from the NVM using the ICH8 flash access registers.
   5144  *
   5145  * sc - pointer to wm_hw structure
   5146  * index - The starting byte index of the word to read.
   5147  * data - Pointer to a word to store the value read.
   5148  *****************************************************************************/
   5149 static int32_t
   5150 wm_read_ich8_word(struct wm_softc *sc, uint32_t index, uint16_t *data)
   5151 {
   5152     int32_t status;
   5153 
   5154     status = wm_read_ich8_data(sc, index, 2, data);
   5155     return status;
   5156 }
   5157