Home | History | Annotate | Line # | Download | only in pci
if_wm.c revision 1.151
      1 /*	$NetBSD: if_wm.c,v 1.151 2008/01/11 13:04:39 ragge Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*******************************************************************************
     39 
     40   Copyright (c) 2001-2005, Intel Corporation
     41   All rights reserved.
     42 
     43   Redistribution and use in source and binary forms, with or without
     44   modification, are permitted provided that the following conditions are met:
     45 
     46    1. Redistributions of source code must retain the above copyright notice,
     47       this list of conditions and the following disclaimer.
     48 
     49    2. Redistributions in binary form must reproduce the above copyright
     50       notice, this list of conditions and the following disclaimer in the
     51       documentation and/or other materials provided with the distribution.
     52 
     53    3. Neither the name of the Intel Corporation nor the names of its
     54       contributors may be used to endorse or promote products derived from
     55       this software without specific prior written permission.
     56 
     57   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     58   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     61   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     67   POSSIBILITY OF SUCH DAMAGE.
     68 
     69 *******************************************************************************/
     70 /*
     71  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
     72  *
     73  * TODO (in order of importance):
     74  *
     75  *	- Rework how parameters are loaded from the EEPROM.
     76  *	- Figure out what to do with the i82545GM and i82546GB
     77  *	  SERDES controllers.
     78  *	- Fix hw VLAN assist.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.151 2008/01/11 13:04:39 ragge Exp $");
     83 
     84 #include "bpfilter.h"
     85 #include "rnd.h"
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/malloc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/socket.h>
     94 #include <sys/ioctl.h>
     95 #include <sys/errno.h>
     96 #include <sys/device.h>
     97 #include <sys/queue.h>
     98 #include <sys/syslog.h>
     99 
    100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101 
    102 #if NRND > 0
    103 #include <sys/rnd.h>
    104 #endif
    105 
    106 #include <net/if.h>
    107 #include <net/if_dl.h>
    108 #include <net/if_media.h>
    109 #include <net/if_ether.h>
    110 
    111 #if NBPFILTER > 0
    112 #include <net/bpf.h>
    113 #endif
    114 
    115 #include <netinet/in.h>			/* XXX for struct ip */
    116 #include <netinet/in_systm.h>		/* XXX for struct ip */
    117 #include <netinet/ip.h>			/* XXX for struct ip */
    118 #include <netinet/ip6.h>		/* XXX for struct ip6_hdr */
    119 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
    120 
    121 #include <sys/bus.h>
    122 #include <sys/intr.h>
    123 #include <machine/endian.h>
    124 
    125 #include <dev/mii/mii.h>
    126 #include <dev/mii/miivar.h>
    127 #include <dev/mii/mii_bitbang.h>
    128 #include <dev/mii/ikphyreg.h>
    129 
    130 #include <dev/pci/pcireg.h>
    131 #include <dev/pci/pcivar.h>
    132 #include <dev/pci/pcidevs.h>
    133 
    134 #include <dev/pci/if_wmreg.h>
    135 
    136 #ifdef WM_DEBUG
    137 #define	WM_DEBUG_LINK		0x01
    138 #define	WM_DEBUG_TX		0x02
    139 #define	WM_DEBUG_RX		0x04
    140 #define	WM_DEBUG_GMII		0x08
    141 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK|WM_DEBUG_GMII;
    142 
    143 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
    144 #else
    145 #define	DPRINTF(x, y)	/* nothing */
    146 #endif /* WM_DEBUG */
    147 
    148 /*
    149  * Transmit descriptor list size.  Due to errata, we can only have
    150  * 256 hardware descriptors in the ring on < 82544, but we use 4096
    151  * on >= 82544.  We tell the upper layers that they can queue a lot
    152  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
    153  * of them at a time.
    154  *
    155  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
    156  * chains containing many small mbufs have been observed in zero-copy
    157  * situations with jumbo frames.
    158  */
    159 #define	WM_NTXSEGS		256
    160 #define	WM_IFQUEUELEN		256
    161 #define	WM_TXQUEUELEN_MAX	64
    162 #define	WM_TXQUEUELEN_MAX_82547	16
    163 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
    164 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
    165 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
    166 #define	WM_NTXDESC_82542	256
    167 #define	WM_NTXDESC_82544	4096
    168 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
    169 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
    170 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
    171 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
    172 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
    173 
    174 #define	WM_MAXTXDMA		round_page(IP_MAXPACKET) /* for TSO */
    175 
    176 /*
    177  * Receive descriptor list size.  We have one Rx buffer for normal
    178  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
    179  * packet.  We allocate 256 receive descriptors, each with a 2k
    180  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
    181  */
    182 #define	WM_NRXDESC		256
    183 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
    184 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
    185 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
    186 
    187 /*
    188  * Control structures are DMA'd to the i82542 chip.  We allocate them in
    189  * a single clump that maps to a single DMA segment to make several things
    190  * easier.
    191  */
    192 struct wm_control_data_82544 {
    193 	/*
    194 	 * The receive descriptors.
    195 	 */
    196 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    197 
    198 	/*
    199 	 * The transmit descriptors.  Put these at the end, because
    200 	 * we might use a smaller number of them.
    201 	 */
    202 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
    203 };
    204 
    205 struct wm_control_data_82542 {
    206 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    207 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
    208 };
    209 
    210 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
    211 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
    212 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
    213 
    214 /*
    215  * Software state for transmit jobs.
    216  */
    217 struct wm_txsoft {
    218 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    219 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    220 	int txs_firstdesc;		/* first descriptor in packet */
    221 	int txs_lastdesc;		/* last descriptor in packet */
    222 	int txs_ndesc;			/* # of descriptors used */
    223 };
    224 
    225 /*
    226  * Software state for receive buffers.  Each descriptor gets a
    227  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    228  * more than one buffer, we chain them together.
    229  */
    230 struct wm_rxsoft {
    231 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    232 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    233 };
    234 
    235 typedef enum {
    236 	WM_T_unknown		= 0,
    237 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
    238 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
    239 	WM_T_82543,			/* i82543 */
    240 	WM_T_82544,			/* i82544 */
    241 	WM_T_82540,			/* i82540 */
    242 	WM_T_82545,			/* i82545 */
    243 	WM_T_82545_3,			/* i82545 3.0+ */
    244 	WM_T_82546,			/* i82546 */
    245 	WM_T_82546_3,			/* i82546 3.0+ */
    246 	WM_T_82541,			/* i82541 */
    247 	WM_T_82541_2,			/* i82541 2.0+ */
    248 	WM_T_82547,			/* i82547 */
    249 	WM_T_82547_2,			/* i82547 2.0+ */
    250 	WM_T_82571,			/* i82571 */
    251 	WM_T_82572,			/* i82572 */
    252 	WM_T_82573,			/* i82573 */
    253 	WM_T_80003,			/* i80003 */
    254 	WM_T_ICH8,			/* ICH8 LAN */
    255 	WM_T_ICH9,			/* ICH9 LAN */
    256 } wm_chip_type;
    257 
    258 /*
    259  * Software state per device.
    260  */
    261 struct wm_softc {
    262 	struct device sc_dev;		/* generic device information */
    263 	bus_space_tag_t sc_st;		/* bus space tag */
    264 	bus_space_handle_t sc_sh;	/* bus space handle */
    265 	bus_space_tag_t sc_iot;		/* I/O space tag */
    266 	bus_space_handle_t sc_ioh;	/* I/O space handle */
    267 	bus_space_tag_t sc_flasht;	/* flash registers space tag */
    268 	bus_space_handle_t sc_flashh;	/* flash registers space handle */
    269 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    270 	struct ethercom sc_ethercom;	/* ethernet common data */
    271 	pci_chipset_tag_t sc_pc;
    272 	pcitag_t sc_pcitag;
    273 
    274 	wm_chip_type sc_type;		/* chip type */
    275 	int sc_flags;			/* flags; see below */
    276 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    277 	int sc_pcix_offset;		/* PCIX capability register offset */
    278 	int sc_flowflags;		/* 802.3x flow control flags */
    279 
    280 	void *sc_ih;			/* interrupt cookie */
    281 
    282 	int sc_ee_addrbits;		/* EEPROM address bits */
    283 
    284 	struct mii_data sc_mii;		/* MII/media information */
    285 
    286 	callout_t sc_tick_ch;		/* tick callout */
    287 
    288 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    289 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    290 
    291 	int		sc_align_tweak;
    292 
    293 	/*
    294 	 * Software state for the transmit and receive descriptors.
    295 	 */
    296 	int			sc_txnum;	/* must be a power of two */
    297 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
    298 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
    299 
    300 	/*
    301 	 * Control data structures.
    302 	 */
    303 	int			sc_ntxdesc;	/* must be a power of two */
    304 	struct wm_control_data_82544 *sc_control_data;
    305 #define	sc_txdescs	sc_control_data->wcd_txdescs
    306 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    307 
    308 #ifdef WM_EVENT_COUNTERS
    309 	/* Event counters. */
    310 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    311 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    312 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
    313 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    314 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    315 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    316 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    317 
    318 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    319 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    320 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    321 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    322 	struct evcnt sc_ev_txtusum6;	/* TCP/UDP v6 cksums comp. out-bound */
    323 	struct evcnt sc_ev_txtso;	/* TCP seg offload out-bound (IPv4) */
    324 	struct evcnt sc_ev_txtso6;	/* TCP seg offload out-bound (IPv6) */
    325 	struct evcnt sc_ev_txtsopain;	/* painful header manip. for TSO */
    326 
    327 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
    328 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    329 
    330 	struct evcnt sc_ev_tu;		/* Tx underrun */
    331 
    332 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
    333 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
    334 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
    335 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
    336 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
    337 #endif /* WM_EVENT_COUNTERS */
    338 
    339 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
    340 
    341 	int	sc_txfree;		/* number of free Tx descriptors */
    342 	int	sc_txnext;		/* next ready Tx descriptor */
    343 
    344 	int	sc_txsfree;		/* number of free Tx jobs */
    345 	int	sc_txsnext;		/* next free Tx job */
    346 	int	sc_txsdirty;		/* dirty Tx jobs */
    347 
    348 	/* These 5 variables are used only on the 82547. */
    349 	int	sc_txfifo_size;		/* Tx FIFO size */
    350 	int	sc_txfifo_head;		/* current head of FIFO */
    351 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
    352 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
    353 	callout_t sc_txfifo_ch;		/* Tx FIFO stall work-around timer */
    354 
    355 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
    356 
    357 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    358 	int	sc_rxdiscard;
    359 	int	sc_rxlen;
    360 	struct mbuf *sc_rxhead;
    361 	struct mbuf *sc_rxtail;
    362 	struct mbuf **sc_rxtailp;
    363 
    364 	uint32_t sc_ctrl;		/* prototype CTRL register */
    365 #if 0
    366 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
    367 #endif
    368 	uint32_t sc_icr;		/* prototype interrupt bits */
    369 	uint32_t sc_itr;		/* prototype intr throttling reg */
    370 	uint32_t sc_tctl;		/* prototype TCTL register */
    371 	uint32_t sc_rctl;		/* prototype RCTL register */
    372 	uint32_t sc_txcw;		/* prototype TXCW register */
    373 	uint32_t sc_tipg;		/* prototype TIPG register */
    374 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
    375 	uint32_t sc_pba;		/* prototype PBA register */
    376 
    377 	int sc_tbi_linkup;		/* TBI link status */
    378 	int sc_tbi_anstate;		/* autonegotiation state */
    379 
    380 	int sc_mchash_type;		/* multicast filter offset */
    381 
    382 #if NRND > 0
    383 	rndsource_element_t rnd_source;	/* random source */
    384 #endif
    385 	int sc_ich8_flash_base;
    386 	int sc_ich8_flash_bank_size;
    387 };
    388 
    389 #define	WM_RXCHAIN_RESET(sc)						\
    390 do {									\
    391 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    392 	*(sc)->sc_rxtailp = NULL;					\
    393 	(sc)->sc_rxlen = 0;						\
    394 } while (/*CONSTCOND*/0)
    395 
    396 #define	WM_RXCHAIN_LINK(sc, m)						\
    397 do {									\
    398 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    399 	(sc)->sc_rxtailp = &(m)->m_next;				\
    400 } while (/*CONSTCOND*/0)
    401 
    402 /* sc_flags */
    403 #define	WM_F_HAS_MII		0x0001	/* has MII */
    404 #define	WM_F_EEPROM_HANDSHAKE	0x0002	/* requires EEPROM handshake */
    405 #define	WM_F_EEPROM_SEMAPHORE	0x0004	/* EEPROM with semaphore */
    406 #define	WM_F_EEPROM_EERDEEWR	0x0008	/* EEPROM access via EERD/EEWR */
    407 #define	WM_F_EEPROM_SPI		0x0010	/* EEPROM is SPI */
    408 #define	WM_F_EEPROM_FLASH	0x0020	/* EEPROM is FLASH */
    409 #define	WM_F_EEPROM_INVALID	0x0040	/* EEPROM not present (bad checksum) */
    410 #define	WM_F_IOH_VALID		0x0080	/* I/O handle is valid */
    411 #define	WM_F_BUS64		0x0100	/* bus is 64-bit */
    412 #define	WM_F_PCIX		0x0200	/* bus is PCI-X */
    413 #define	WM_F_CSA		0x0400	/* bus is CSA */
    414 #define	WM_F_PCIE		0x0800	/* bus is PCI-Express */
    415 #define WM_F_SWFW_SYNC		0x1000  /* Software-Firmware synchronisation */
    416 #define WM_F_SWFWHW_SYNC	0x2000  /* Software-Firmware synchronisation */
    417 
    418 #ifdef WM_EVENT_COUNTERS
    419 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
    420 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
    421 #else
    422 #define	WM_EVCNT_INCR(ev)	/* nothing */
    423 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
    424 #endif
    425 
    426 #define	CSR_READ(sc, reg)						\
    427 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    428 #define	CSR_WRITE(sc, reg, val)						\
    429 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    430 #define	CSR_WRITE_FLUSH(sc)						\
    431 	(void) CSR_READ((sc), WMREG_STATUS)
    432 
    433 #define ICH8_FLASH_READ32(sc, reg) \
    434 	bus_space_read_4((sc)->sc_flasht, (sc)->sc_flashh, (reg))
    435 #define ICH8_FLASH_WRITE32(sc, reg, data) \
    436 	bus_space_write_4((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data))
    437 
    438 #define ICH8_FLASH_READ16(sc, reg) \
    439 	bus_space_read_2((sc)->sc_flasht, (sc)->sc_flashh, (reg))
    440 #define ICH8_FLASH_WRITE16(sc, reg, data) \
    441 	bus_space_write_2((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data))
    442 
    443 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
    444 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
    445 
    446 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
    447 #define	WM_CDTXADDR_HI(sc, x)						\
    448 	(sizeof(bus_addr_t) == 8 ?					\
    449 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
    450 
    451 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
    452 #define	WM_CDRXADDR_HI(sc, x)						\
    453 	(sizeof(bus_addr_t) == 8 ?					\
    454 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
    455 
    456 #define	WM_CDTXSYNC(sc, x, n, ops)					\
    457 do {									\
    458 	int __x, __n;							\
    459 									\
    460 	__x = (x);							\
    461 	__n = (n);							\
    462 									\
    463 	/* If it will wrap around, sync to the end of the ring. */	\
    464 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
    465 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    466 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
    467 		    (WM_NTXDESC(sc) - __x), (ops));			\
    468 		__n -= (WM_NTXDESC(sc) - __x);				\
    469 		__x = 0;						\
    470 	}								\
    471 									\
    472 	/* Now sync whatever is left. */				\
    473 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    474 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
    475 } while (/*CONSTCOND*/0)
    476 
    477 #define	WM_CDRXSYNC(sc, x, ops)						\
    478 do {									\
    479 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    480 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
    481 } while (/*CONSTCOND*/0)
    482 
    483 #define	WM_INIT_RXDESC(sc, x)						\
    484 do {									\
    485 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    486 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
    487 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    488 									\
    489 	/*								\
    490 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    491 	 * so that the payload after the Ethernet header is aligned	\
    492 	 * to a 4-byte boundary.					\
    493 	 *								\
    494 	 * XXX BRAINDAMAGE ALERT!					\
    495 	 * The stupid chip uses the same size for every buffer, which	\
    496 	 * is set in the Receive Control register.  We are using the 2K	\
    497 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    498 	 * reason, we can't "scoot" packets longer than the standard	\
    499 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    500 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    501 	 * the upper layer copy the headers.				\
    502 	 */								\
    503 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    504 									\
    505 	wm_set_dma_addr(&__rxd->wrx_addr,				\
    506 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
    507 	__rxd->wrx_len = 0;						\
    508 	__rxd->wrx_cksum = 0;						\
    509 	__rxd->wrx_status = 0;						\
    510 	__rxd->wrx_errors = 0;						\
    511 	__rxd->wrx_special = 0;						\
    512 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    513 									\
    514 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
    515 } while (/*CONSTCOND*/0)
    516 
    517 static void	wm_start(struct ifnet *);
    518 static void	wm_watchdog(struct ifnet *);
    519 static int	wm_ioctl(struct ifnet *, u_long, void *);
    520 static int	wm_init(struct ifnet *);
    521 static void	wm_stop(struct ifnet *, int);
    522 
    523 static void	wm_reset(struct wm_softc *);
    524 static void	wm_rxdrain(struct wm_softc *);
    525 static int	wm_add_rxbuf(struct wm_softc *, int);
    526 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
    527 static int	wm_read_eeprom_eerd(struct wm_softc *, int, int, u_int16_t *);
    528 static int	wm_validate_eeprom_checksum(struct wm_softc *);
    529 static void	wm_tick(void *);
    530 
    531 static void	wm_set_filter(struct wm_softc *);
    532 
    533 static int	wm_intr(void *);
    534 static void	wm_txintr(struct wm_softc *);
    535 static void	wm_rxintr(struct wm_softc *);
    536 static void	wm_linkintr(struct wm_softc *, uint32_t);
    537 
    538 static void	wm_tbi_mediainit(struct wm_softc *);
    539 static int	wm_tbi_mediachange(struct ifnet *);
    540 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
    541 
    542 static void	wm_tbi_set_linkled(struct wm_softc *);
    543 static void	wm_tbi_check_link(struct wm_softc *);
    544 
    545 static void	wm_gmii_reset(struct wm_softc *);
    546 
    547 static int	wm_gmii_i82543_readreg(struct device *, int, int);
    548 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
    549 
    550 static int	wm_gmii_i82544_readreg(struct device *, int, int);
    551 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
    552 
    553 static int	wm_gmii_i80003_readreg(struct device *, int, int);
    554 static void	wm_gmii_i80003_writereg(struct device *, int, int, int);
    555 
    556 static void	wm_gmii_statchg(struct device *);
    557 
    558 static void	wm_gmii_mediainit(struct wm_softc *);
    559 static int	wm_gmii_mediachange(struct ifnet *);
    560 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
    561 
    562 static int	wm_kmrn_i80003_readreg(struct wm_softc *, int);
    563 static void	wm_kmrn_i80003_writereg(struct wm_softc *, int, int);
    564 
    565 static int	wm_match(struct device *, struct cfdata *, void *);
    566 static void	wm_attach(struct device *, struct device *, void *);
    567 static int	wm_is_onboard_nvm_eeprom(struct wm_softc *);
    568 static void	wm_get_auto_rd_done(struct wm_softc *);
    569 static int	wm_get_swsm_semaphore(struct wm_softc *);
    570 static void	wm_put_swsm_semaphore(struct wm_softc *);
    571 static int	wm_poll_eerd_eewr_done(struct wm_softc *, int);
    572 static int	wm_get_swfw_semaphore(struct wm_softc *, uint16_t);
    573 static void	wm_put_swfw_semaphore(struct wm_softc *, uint16_t);
    574 static int	wm_get_swfwhw_semaphore(struct wm_softc *);
    575 static void	wm_put_swfwhw_semaphore(struct wm_softc *);
    576 
    577 static int	wm_read_eeprom_ich8(struct wm_softc *, int, int, uint16_t *);
    578 static int32_t	wm_ich8_cycle_init(struct wm_softc *);
    579 static int32_t	wm_ich8_flash_cycle(struct wm_softc *, uint32_t);
    580 static int32_t	wm_read_ich8_data(struct wm_softc *, uint32_t,
    581 		     uint32_t, uint16_t *);
    582 static int32_t	wm_read_ich8_word(struct wm_softc *sc, uint32_t, uint16_t *);
    583 
    584 CFATTACH_DECL(wm, sizeof(struct wm_softc),
    585     wm_match, wm_attach, NULL, NULL);
    586 
    587 static void	wm_82547_txfifo_stall(void *);
    588 
    589 /*
    590  * Devices supported by this driver.
    591  */
    592 static const struct wm_product {
    593 	pci_vendor_id_t		wmp_vendor;
    594 	pci_product_id_t	wmp_product;
    595 	const char		*wmp_name;
    596 	wm_chip_type		wmp_type;
    597 	int			wmp_flags;
    598 #define	WMP_F_1000X		0x01
    599 #define	WMP_F_1000T		0x02
    600 } wm_products[] = {
    601 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
    602 	  "Intel i82542 1000BASE-X Ethernet",
    603 	  WM_T_82542_2_1,	WMP_F_1000X },
    604 
    605 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
    606 	  "Intel i82543GC 1000BASE-X Ethernet",
    607 	  WM_T_82543,		WMP_F_1000X },
    608 
    609 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
    610 	  "Intel i82543GC 1000BASE-T Ethernet",
    611 	  WM_T_82543,		WMP_F_1000T },
    612 
    613 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
    614 	  "Intel i82544EI 1000BASE-T Ethernet",
    615 	  WM_T_82544,		WMP_F_1000T },
    616 
    617 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
    618 	  "Intel i82544EI 1000BASE-X Ethernet",
    619 	  WM_T_82544,		WMP_F_1000X },
    620 
    621 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
    622 	  "Intel i82544GC 1000BASE-T Ethernet",
    623 	  WM_T_82544,		WMP_F_1000T },
    624 
    625 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
    626 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
    627 	  WM_T_82544,		WMP_F_1000T },
    628 
    629 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
    630 	  "Intel i82540EM 1000BASE-T Ethernet",
    631 	  WM_T_82540,		WMP_F_1000T },
    632 
    633 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
    634 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
    635 	  WM_T_82540,		WMP_F_1000T },
    636 
    637 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
    638 	  "Intel i82540EP 1000BASE-T Ethernet",
    639 	  WM_T_82540,		WMP_F_1000T },
    640 
    641 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
    642 	  "Intel i82540EP 1000BASE-T Ethernet",
    643 	  WM_T_82540,		WMP_F_1000T },
    644 
    645 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
    646 	  "Intel i82540EP 1000BASE-T Ethernet",
    647 	  WM_T_82540,		WMP_F_1000T },
    648 
    649 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
    650 	  "Intel i82545EM 1000BASE-T Ethernet",
    651 	  WM_T_82545,		WMP_F_1000T },
    652 
    653 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
    654 	  "Intel i82545GM 1000BASE-T Ethernet",
    655 	  WM_T_82545_3,		WMP_F_1000T },
    656 
    657 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
    658 	  "Intel i82545GM 1000BASE-X Ethernet",
    659 	  WM_T_82545_3,		WMP_F_1000X },
    660 #if 0
    661 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
    662 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
    663 	  WM_T_82545_3,		WMP_F_SERDES },
    664 #endif
    665 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
    666 	  "Intel i82546EB 1000BASE-T Ethernet",
    667 	  WM_T_82546,		WMP_F_1000T },
    668 
    669 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
    670 	  "Intel i82546EB 1000BASE-T Ethernet",
    671 	  WM_T_82546,		WMP_F_1000T },
    672 
    673 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
    674 	  "Intel i82545EM 1000BASE-X Ethernet",
    675 	  WM_T_82545,		WMP_F_1000X },
    676 
    677 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
    678 	  "Intel i82546EB 1000BASE-X Ethernet",
    679 	  WM_T_82546,		WMP_F_1000X },
    680 
    681 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
    682 	  "Intel i82546GB 1000BASE-T Ethernet",
    683 	  WM_T_82546_3,		WMP_F_1000T },
    684 
    685 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
    686 	  "Intel i82546GB 1000BASE-X Ethernet",
    687 	  WM_T_82546_3,		WMP_F_1000X },
    688 #if 0
    689 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
    690 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
    691 	  WM_T_82546_3,		WMP_F_SERDES },
    692 #endif
    693 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER,
    694 	  "i82546GB quad-port Gigabit Ethernet",
    695 	  WM_T_82546_3,		WMP_F_1000T },
    696 
    697 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3,
    698 	  "i82546GB quad-port Gigabit Ethernet (KSP3)",
    699 	  WM_T_82546_3,		WMP_F_1000T },
    700 
    701 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_PCIE,
    702 	  "Intel PRO/1000MT (82546GB)",
    703 	  WM_T_82546_3,		WMP_F_1000T },
    704 
    705 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
    706 	  "Intel i82541EI 1000BASE-T Ethernet",
    707 	  WM_T_82541,		WMP_F_1000T },
    708 
    709 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER_LOM,
    710 	  "Intel i82541ER (LOM) 1000BASE-T Ethernet",
    711 	  WM_T_82541,		WMP_F_1000T },
    712 
    713 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
    714 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
    715 	  WM_T_82541,		WMP_F_1000T },
    716 
    717 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
    718 	  "Intel i82541ER 1000BASE-T Ethernet",
    719 	  WM_T_82541_2,		WMP_F_1000T },
    720 
    721 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
    722 	  "Intel i82541GI 1000BASE-T Ethernet",
    723 	  WM_T_82541_2,		WMP_F_1000T },
    724 
    725 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
    726 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
    727 	  WM_T_82541_2,		WMP_F_1000T },
    728 
    729 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541PI,
    730 	  "Intel i82541PI 1000BASE-T Ethernet",
    731 	  WM_T_82541_2,		WMP_F_1000T },
    732 
    733 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
    734 	  "Intel i82547EI 1000BASE-T Ethernet",
    735 	  WM_T_82547,		WMP_F_1000T },
    736 
    737 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI_MOBILE,
    738 	  "Intel i82547EI Mobile 1000BASE-T Ethernet",
    739 	  WM_T_82547,		WMP_F_1000T },
    740 
    741 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
    742 	  "Intel i82547GI 1000BASE-T Ethernet",
    743 	  WM_T_82547_2,		WMP_F_1000T },
    744 
    745 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_COPPER,
    746 	  "Intel PRO/1000 PT (82571EB)",
    747 	  WM_T_82571,		WMP_F_1000T },
    748 
    749 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_FIBER,
    750 	  "Intel PRO/1000 PF (82571EB)",
    751 	  WM_T_82571,		WMP_F_1000X },
    752 #if 0
    753 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_SERDES,
    754 	  "Intel PRO/1000 PB (82571EB)",
    755 	  WM_T_82571,		WMP_F_SERDES },
    756 #endif
    757 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER,
    758 	  "Intel PRO/1000 QT (82571EB)",
    759 	  WM_T_82571,		WMP_F_1000T },
    760 
    761 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_COPPER,
    762 	  "Intel i82572EI 1000baseT Ethernet",
    763 	  WM_T_82572,		WMP_F_1000T },
    764 
    765 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER,
    766 	  "Intel PRO/1000 PT Quad Port Server Adapter",
    767 	  WM_T_82571,		WMP_F_1000T, },
    768 
    769 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_FIBER,
    770 	  "Intel i82572EI 1000baseX Ethernet",
    771 	  WM_T_82572,		WMP_F_1000X },
    772 #if 0
    773 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_SERDES,
    774 	  "Intel i82572EI Gigabit Ethernet (SERDES)",
    775 	  WM_T_82572,		WMP_F_SERDES },
    776 #endif
    777 
    778 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI,
    779 	  "Intel i82572EI 1000baseT Ethernet",
    780 	  WM_T_82572,		WMP_F_1000T },
    781 
    782 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573E,
    783 	  "Intel i82573E",
    784 	  WM_T_82573,		WMP_F_1000T },
    785 
    786 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573E_IAMT,
    787 	  "Intel i82573E IAMT",
    788 	  WM_T_82573,		WMP_F_1000T },
    789 
    790 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573L,
    791 	  "Intel i82573L Gigabit Ethernet",
    792 	  WM_T_82573,		WMP_F_1000T },
    793 
    794 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT,
    795 	  "i80003 dual 1000baseT Ethernet",
    796 	  WM_T_80003,		WMP_F_1000T },
    797 
    798 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT,
    799 	  "i80003 dual 1000baseX Ethernet",
    800 	  WM_T_80003,		WMP_F_1000T },
    801 #if 0
    802 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT,
    803 	  "Intel i80003ES2 dual Gigabit Ethernet (SERDES)",
    804 	  WM_T_80003,		WMP_F_SERDES },
    805 #endif
    806 
    807 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT,
    808 	  "Intel i80003 1000baseT Ethernet",
    809 	  WM_T_80003,		WMP_F_1000T },
    810 #if 0
    811 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT,
    812 	  "Intel i80003 Gigabit Ethernet (SERDES)",
    813 	  WM_T_80003,		WMP_F_SERDES },
    814 #endif
    815 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_M_AMT,
    816 	  "Intel i82801H (M_AMT) LAN Controller",
    817 	  WM_T_ICH8,		WMP_F_1000T },
    818 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_AMT,
    819 	  "Intel i82801H (AMT) LAN Controller",
    820 	  WM_T_ICH8,		WMP_F_1000T },
    821 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_LAN,
    822 	  "Intel i82801H LAN Controller",
    823 	  WM_T_ICH8,		WMP_F_1000T },
    824 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_IFE_LAN,
    825 	  "Intel i82801H (IFE) LAN Controller",
    826 	  WM_T_ICH8,		WMP_F_1000T },
    827 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_M_LAN,
    828 	  "Intel i82801H (M) LAN Controller",
    829 	  WM_T_ICH8,		WMP_F_1000T },
    830 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_IFE_GT,
    831 	  "Intel i82801H IFE (GT) LAN Controller",
    832 	  WM_T_ICH8,		WMP_F_1000T },
    833 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_IFE_G,
    834 	  "Intel i82801H IFE (G) LAN Controller",
    835 	  WM_T_ICH8,		WMP_F_1000T },
    836 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IGP_AMT,
    837 	  "82801I (AMT) LAN Controller",
    838 	  WM_T_ICH9,		WMP_F_1000T },
    839 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IFE,
    840 	  "82801I LAN Controller",
    841 	  WM_T_ICH9,		WMP_F_1000T },
    842 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IFE_G,
    843 	  "82801I (G) LAN Controller",
    844 	  WM_T_ICH9,		WMP_F_1000T },
    845 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IFE_GT,
    846 	  "82801I (GT) LAN Controller",
    847 	  WM_T_ICH9,		WMP_F_1000T },
    848 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IGP_C,
    849 	  "82801I (C) LAN Controller",
    850 	  WM_T_ICH9,		WMP_F_1000T },
    851 	{ 0,			0,
    852 	  NULL,
    853 	  0,			0 },
    854 };
    855 
    856 #ifdef WM_EVENT_COUNTERS
    857 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
    858 #endif /* WM_EVENT_COUNTERS */
    859 
    860 #if 0 /* Not currently used */
    861 static inline uint32_t
    862 wm_io_read(struct wm_softc *sc, int reg)
    863 {
    864 
    865 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    866 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
    867 }
    868 #endif
    869 
    870 static inline void
    871 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
    872 {
    873 
    874 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    875 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
    876 }
    877 
    878 static inline void
    879 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
    880 {
    881 	wa->wa_low = htole32(v & 0xffffffffU);
    882 	if (sizeof(bus_addr_t) == 8)
    883 		wa->wa_high = htole32((uint64_t) v >> 32);
    884 	else
    885 		wa->wa_high = 0;
    886 }
    887 
    888 static const struct wm_product *
    889 wm_lookup(const struct pci_attach_args *pa)
    890 {
    891 	const struct wm_product *wmp;
    892 
    893 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
    894 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
    895 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
    896 			return (wmp);
    897 	}
    898 	return (NULL);
    899 }
    900 
    901 static int
    902 wm_match(struct device *parent, struct cfdata *cf, void *aux)
    903 {
    904 	struct pci_attach_args *pa = aux;
    905 
    906 	if (wm_lookup(pa) != NULL)
    907 		return (1);
    908 
    909 	return (0);
    910 }
    911 
    912 static void
    913 wm_attach(struct device *parent, struct device *self, void *aux)
    914 {
    915 	struct wm_softc *sc = (void *) self;
    916 	struct pci_attach_args *pa = aux;
    917 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    918 	pci_chipset_tag_t pc = pa->pa_pc;
    919 	pci_intr_handle_t ih;
    920 	size_t cdata_size;
    921 	const char *intrstr = NULL;
    922 	const char *eetype;
    923 	bus_space_tag_t memt;
    924 	bus_space_handle_t memh;
    925 	bus_dma_segment_t seg;
    926 	int memh_valid;
    927 	int i, rseg, error;
    928 	const struct wm_product *wmp;
    929 	prop_data_t ea;
    930 	prop_number_t pn;
    931 	uint8_t enaddr[ETHER_ADDR_LEN];
    932 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
    933 	pcireg_t preg, memtype;
    934 	uint32_t reg;
    935 
    936 	callout_init(&sc->sc_tick_ch, 0);
    937 
    938 	wmp = wm_lookup(pa);
    939 	if (wmp == NULL) {
    940 		printf("\n");
    941 		panic("wm_attach: impossible");
    942 	}
    943 
    944 	sc->sc_pc = pa->pa_pc;
    945 	sc->sc_pcitag = pa->pa_tag;
    946 
    947 	if (pci_dma64_available(pa))
    948 		sc->sc_dmat = pa->pa_dmat64;
    949 	else
    950 		sc->sc_dmat = pa->pa_dmat;
    951 
    952 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    953 	aprint_naive(": Ethernet controller\n");
    954 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
    955 
    956 	sc->sc_type = wmp->wmp_type;
    957 	if (sc->sc_type < WM_T_82543) {
    958 		if (preg < 2) {
    959 			aprint_error("%s: i82542 must be at least rev. 2\n",
    960 			    sc->sc_dev.dv_xname);
    961 			return;
    962 		}
    963 		if (preg < 3)
    964 			sc->sc_type = WM_T_82542_2_0;
    965 	}
    966 
    967 	/*
    968 	 * Map the device.  All devices support memory-mapped acccess,
    969 	 * and it is really required for normal operation.
    970 	 */
    971 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
    972 	switch (memtype) {
    973 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    974 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    975 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
    976 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    977 		break;
    978 	default:
    979 		memh_valid = 0;
    980 	}
    981 
    982 	if (memh_valid) {
    983 		sc->sc_st = memt;
    984 		sc->sc_sh = memh;
    985 	} else {
    986 		aprint_error("%s: unable to map device registers\n",
    987 		    sc->sc_dev.dv_xname);
    988 		return;
    989 	}
    990 
    991 	/*
    992 	 * In addition, i82544 and later support I/O mapped indirect
    993 	 * register access.  It is not desirable (nor supported in
    994 	 * this driver) to use it for normal operation, though it is
    995 	 * required to work around bugs in some chip versions.
    996 	 */
    997 	if (sc->sc_type >= WM_T_82544) {
    998 		/* First we have to find the I/O BAR. */
    999 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
   1000 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
   1001 			    PCI_MAPREG_TYPE_IO)
   1002 				break;
   1003 		}
   1004 		if (i == PCI_MAPREG_END)
   1005 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
   1006 			    sc->sc_dev.dv_xname);
   1007 		else {
   1008 			/*
   1009 			 * The i8254x doesn't apparently respond when the
   1010 			 * I/O BAR is 0, which looks somewhat like it's not
   1011 			 * been configured.
   1012 			 */
   1013 			preg = pci_conf_read(pc, pa->pa_tag, i);
   1014 			if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
   1015 				aprint_error("%s: WARNING: I/O BAR at zero.\n",
   1016 				    sc->sc_dev.dv_xname);
   1017 			} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
   1018 					0, &sc->sc_iot, &sc->sc_ioh,
   1019 					NULL, NULL) == 0) {
   1020 				sc->sc_flags |= WM_F_IOH_VALID;
   1021 			} else {
   1022 				aprint_error("%s: WARNING: unable to map "
   1023 				    "I/O space\n", sc->sc_dev.dv_xname);
   1024 			}
   1025 		}
   1026 
   1027 	}
   1028 
   1029 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
   1030 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1031 	preg |= PCI_COMMAND_MASTER_ENABLE;
   1032 	if (sc->sc_type < WM_T_82542_2_1)
   1033 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
   1034 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
   1035 
   1036 	/* power up chip */
   1037 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
   1038 	    NULL)) && error != EOPNOTSUPP) {
   1039 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
   1040 		    error);
   1041 		return;
   1042 	}
   1043 
   1044 	/*
   1045 	 * Map and establish our interrupt.
   1046 	 */
   1047 	if (pci_intr_map(pa, &ih)) {
   1048 		aprint_error("%s: unable to map interrupt\n",
   1049 		    sc->sc_dev.dv_xname);
   1050 		return;
   1051 	}
   1052 	intrstr = pci_intr_string(pc, ih);
   1053 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
   1054 	if (sc->sc_ih == NULL) {
   1055 		aprint_error("%s: unable to establish interrupt",
   1056 		    sc->sc_dev.dv_xname);
   1057 		if (intrstr != NULL)
   1058 			aprint_normal(" at %s", intrstr);
   1059 		aprint_normal("\n");
   1060 		return;
   1061 	}
   1062 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
   1063 
   1064 	/*
   1065 	 * Determine a few things about the bus we're connected to.
   1066 	 */
   1067 	if (sc->sc_type < WM_T_82543) {
   1068 		/* We don't really know the bus characteristics here. */
   1069 		sc->sc_bus_speed = 33;
   1070 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
   1071 		/*
   1072 		 * CSA (Communication Streaming Architecture) is about as fast
   1073 		 * a 32-bit 66MHz PCI Bus.
   1074 		 */
   1075 		sc->sc_flags |= WM_F_CSA;
   1076 		sc->sc_bus_speed = 66;
   1077 		aprint_verbose("%s: Communication Streaming Architecture\n",
   1078 		    sc->sc_dev.dv_xname);
   1079 		if (sc->sc_type == WM_T_82547) {
   1080 			callout_init(&sc->sc_txfifo_ch, 0);
   1081 			callout_setfunc(&sc->sc_txfifo_ch,
   1082 					wm_82547_txfifo_stall, sc);
   1083 			aprint_verbose("%s: using 82547 Tx FIFO stall "
   1084 				       "work-around\n", sc->sc_dev.dv_xname);
   1085 		}
   1086 	} else if (sc->sc_type >= WM_T_82571) {
   1087 		sc->sc_flags |= WM_F_PCIE;
   1088 		if ((sc->sc_type != WM_T_ICH8) || (sc->sc_type != WM_T_ICH9))
   1089 			sc->sc_flags |= WM_F_EEPROM_SEMAPHORE;
   1090 		aprint_verbose("%s: PCI-Express bus\n", sc->sc_dev.dv_xname);
   1091 	} else {
   1092 		reg = CSR_READ(sc, WMREG_STATUS);
   1093 		if (reg & STATUS_BUS64)
   1094 			sc->sc_flags |= WM_F_BUS64;
   1095 		if (sc->sc_type >= WM_T_82544 &&
   1096 		    (reg & STATUS_PCIX_MODE) != 0) {
   1097 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
   1098 
   1099 			sc->sc_flags |= WM_F_PCIX;
   1100 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
   1101 					       PCI_CAP_PCIX,
   1102 					       &sc->sc_pcix_offset, NULL) == 0)
   1103 				aprint_error("%s: unable to find PCIX "
   1104 				    "capability\n", sc->sc_dev.dv_xname);
   1105 			else if (sc->sc_type != WM_T_82545_3 &&
   1106 				 sc->sc_type != WM_T_82546_3) {
   1107 				/*
   1108 				 * Work around a problem caused by the BIOS
   1109 				 * setting the max memory read byte count
   1110 				 * incorrectly.
   1111 				 */
   1112 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1113 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
   1114 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1115 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
   1116 
   1117 				bytecnt =
   1118 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
   1119 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
   1120 				maxb =
   1121 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
   1122 				    PCI_PCIX_STATUS_MAXB_SHIFT;
   1123 				if (bytecnt > maxb) {
   1124 					aprint_verbose("%s: resetting PCI-X "
   1125 					    "MMRBC: %d -> %d\n",
   1126 					    sc->sc_dev.dv_xname,
   1127 					    512 << bytecnt, 512 << maxb);
   1128 					pcix_cmd = (pcix_cmd &
   1129 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
   1130 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
   1131 					pci_conf_write(pa->pa_pc, pa->pa_tag,
   1132 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
   1133 					    pcix_cmd);
   1134 				}
   1135 			}
   1136 		}
   1137 		/*
   1138 		 * The quad port adapter is special; it has a PCIX-PCIX
   1139 		 * bridge on the board, and can run the secondary bus at
   1140 		 * a higher speed.
   1141 		 */
   1142 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
   1143 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
   1144 								      : 66;
   1145 		} else if (sc->sc_flags & WM_F_PCIX) {
   1146 			switch (reg & STATUS_PCIXSPD_MASK) {
   1147 			case STATUS_PCIXSPD_50_66:
   1148 				sc->sc_bus_speed = 66;
   1149 				break;
   1150 			case STATUS_PCIXSPD_66_100:
   1151 				sc->sc_bus_speed = 100;
   1152 				break;
   1153 			case STATUS_PCIXSPD_100_133:
   1154 				sc->sc_bus_speed = 133;
   1155 				break;
   1156 			default:
   1157 				aprint_error(
   1158 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
   1159 				    sc->sc_dev.dv_xname,
   1160 				    reg & STATUS_PCIXSPD_MASK);
   1161 				sc->sc_bus_speed = 66;
   1162 			}
   1163 		} else
   1164 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
   1165 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
   1166 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
   1167 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
   1168 	}
   1169 
   1170 	/*
   1171 	 * Allocate the control data structures, and create and load the
   1172 	 * DMA map for it.
   1173 	 *
   1174 	 * NOTE: All Tx descriptors must be in the same 4G segment of
   1175 	 * memory.  So must Rx descriptors.  We simplify by allocating
   1176 	 * both sets within the same 4G segment.
   1177 	 */
   1178 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
   1179 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
   1180 	cdata_size = sc->sc_type < WM_T_82544 ?
   1181 	    sizeof(struct wm_control_data_82542) :
   1182 	    sizeof(struct wm_control_data_82544);
   1183 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
   1184 				      (bus_size_t) 0x100000000ULL,
   1185 				      &seg, 1, &rseg, 0)) != 0) {
   1186 		aprint_error(
   1187 		    "%s: unable to allocate control data, error = %d\n",
   1188 		    sc->sc_dev.dv_xname, error);
   1189 		goto fail_0;
   1190 	}
   1191 
   1192 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
   1193 				    (void **)&sc->sc_control_data, 0)) != 0) {
   1194 		aprint_error("%s: unable to map control data, error = %d\n",
   1195 		    sc->sc_dev.dv_xname, error);
   1196 		goto fail_1;
   1197 	}
   1198 
   1199 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
   1200 				       0, 0, &sc->sc_cddmamap)) != 0) {
   1201 		aprint_error("%s: unable to create control data DMA map, "
   1202 		    "error = %d\n", sc->sc_dev.dv_xname, error);
   1203 		goto fail_2;
   1204 	}
   1205 
   1206 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
   1207 				     sc->sc_control_data, cdata_size, NULL,
   1208 				     0)) != 0) {
   1209 		aprint_error(
   1210 		    "%s: unable to load control data DMA map, error = %d\n",
   1211 		    sc->sc_dev.dv_xname, error);
   1212 		goto fail_3;
   1213 	}
   1214 
   1215 
   1216 	/*
   1217 	 * Create the transmit buffer DMA maps.
   1218 	 */
   1219 	WM_TXQUEUELEN(sc) =
   1220 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
   1221 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
   1222 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1223 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
   1224 					       WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
   1225 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1226 			aprint_error("%s: unable to create Tx DMA map %d, "
   1227 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1228 			goto fail_4;
   1229 		}
   1230 	}
   1231 
   1232 	/*
   1233 	 * Create the receive buffer DMA maps.
   1234 	 */
   1235 	for (i = 0; i < WM_NRXDESC; i++) {
   1236 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1237 					       MCLBYTES, 0, 0,
   1238 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1239 			aprint_error("%s: unable to create Rx DMA map %d, "
   1240 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1241 			goto fail_5;
   1242 		}
   1243 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1244 	}
   1245 
   1246 	/* clear interesting stat counters */
   1247 	CSR_READ(sc, WMREG_COLC);
   1248 	CSR_READ(sc, WMREG_RXERRC);
   1249 
   1250 	/*
   1251 	 * Reset the chip to a known state.
   1252 	 */
   1253 	wm_reset(sc);
   1254 
   1255 	/*
   1256 	 * Get some information about the EEPROM.
   1257 	 */
   1258 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)) {
   1259 		uint32_t flash_size;
   1260 		sc->sc_flags |= WM_F_SWFWHW_SYNC | WM_F_EEPROM_FLASH;
   1261 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_ICH8_FLASH);
   1262 		if (pci_mapreg_map(pa, WM_ICH8_FLASH, memtype, 0,
   1263 		    &sc->sc_flasht, &sc->sc_flashh, NULL, NULL)) {
   1264 			printf("%s: can't map FLASH registers\n",
   1265 			    sc->sc_dev.dv_xname);
   1266 			return;
   1267 		}
   1268 		flash_size = ICH8_FLASH_READ32(sc, ICH_FLASH_GFPREG);
   1269 		sc->sc_ich8_flash_base = (flash_size & ICH_GFPREG_BASE_MASK) *
   1270 						ICH_FLASH_SECTOR_SIZE;
   1271 		sc->sc_ich8_flash_bank_size =
   1272 			((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1;
   1273 		sc->sc_ich8_flash_bank_size -=
   1274 			(flash_size & ICH_GFPREG_BASE_MASK);
   1275 		sc->sc_ich8_flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
   1276 		sc->sc_ich8_flash_bank_size /= 2 * sizeof(uint16_t);
   1277 	} else if (sc->sc_type == WM_T_80003)
   1278 		sc->sc_flags |= WM_F_EEPROM_EERDEEWR |  WM_F_SWFW_SYNC;
   1279 	else if (sc->sc_type == WM_T_82573)
   1280 		sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
   1281 	else if (sc->sc_type > WM_T_82544)
   1282 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
   1283 
   1284 	if (sc->sc_type <= WM_T_82544)
   1285 		sc->sc_ee_addrbits = 6;
   1286 	else if (sc->sc_type <= WM_T_82546_3) {
   1287 		reg = CSR_READ(sc, WMREG_EECD);
   1288 		if (reg & EECD_EE_SIZE)
   1289 			sc->sc_ee_addrbits = 8;
   1290 		else
   1291 			sc->sc_ee_addrbits = 6;
   1292 	} else if (sc->sc_type <= WM_T_82547_2) {
   1293 		reg = CSR_READ(sc, WMREG_EECD);
   1294 		if (reg & EECD_EE_TYPE) {
   1295 			sc->sc_flags |= WM_F_EEPROM_SPI;
   1296 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1297 		} else
   1298 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
   1299 	} else if ((sc->sc_type == WM_T_82573) &&
   1300 	    (wm_is_onboard_nvm_eeprom(sc) == 0)) {
   1301 		sc->sc_flags |= WM_F_EEPROM_FLASH;
   1302 	} else {
   1303 		/* Assume everything else is SPI. */
   1304 		reg = CSR_READ(sc, WMREG_EECD);
   1305 		sc->sc_flags |= WM_F_EEPROM_SPI;
   1306 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1307 	}
   1308 
   1309 	/*
   1310 	 * Defer printing the EEPROM type until after verifying the checksum
   1311 	 * This allows the EEPROM type to be printed correctly in the case
   1312 	 * that no EEPROM is attached.
   1313 	 */
   1314 
   1315 
   1316 	/*
   1317 	 * Validate the EEPROM checksum. If the checksum fails, flag this for
   1318 	 * later, so we can fail future reads from the EEPROM.
   1319 	 */
   1320 	if (wm_validate_eeprom_checksum(sc))
   1321 		sc->sc_flags |= WM_F_EEPROM_INVALID;
   1322 
   1323 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
   1324 		aprint_verbose("%s: No EEPROM\n", sc->sc_dev.dv_xname);
   1325 	else if (sc->sc_flags & WM_F_EEPROM_FLASH) {
   1326 		aprint_verbose("%s: FLASH\n", sc->sc_dev.dv_xname);
   1327 	} else {
   1328 		if (sc->sc_flags & WM_F_EEPROM_SPI)
   1329 			eetype = "SPI";
   1330 		else
   1331 			eetype = "MicroWire";
   1332 		aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
   1333 		    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
   1334 		    sc->sc_ee_addrbits, eetype);
   1335 	}
   1336 
   1337 	/*
   1338 	 * Read the Ethernet address from the EEPROM, if not first found
   1339 	 * in device properties.
   1340 	 */
   1341 	ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
   1342 	if (ea != NULL) {
   1343 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   1344 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   1345 		memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   1346 	} else {
   1347 		if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
   1348 		    sizeof(myea) / sizeof(myea[0]), myea)) {
   1349 			aprint_error("%s: unable to read Ethernet address\n",
   1350 			    sc->sc_dev.dv_xname);
   1351 			return;
   1352 		}
   1353 		enaddr[0] = myea[0] & 0xff;
   1354 		enaddr[1] = myea[0] >> 8;
   1355 		enaddr[2] = myea[1] & 0xff;
   1356 		enaddr[3] = myea[1] >> 8;
   1357 		enaddr[4] = myea[2] & 0xff;
   1358 		enaddr[5] = myea[2] >> 8;
   1359 	}
   1360 
   1361 	/*
   1362 	 * Toggle the LSB of the MAC address on the second port
   1363 	 * of the dual port controller.
   1364 	 */
   1365 	if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3
   1366 	    || sc->sc_type ==  WM_T_82571 || sc->sc_type == WM_T_80003) {
   1367 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
   1368 			enaddr[5] ^= 1;
   1369 	}
   1370 
   1371 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
   1372 	    ether_sprintf(enaddr));
   1373 
   1374 	/*
   1375 	 * Read the config info from the EEPROM, and set up various
   1376 	 * bits in the control registers based on their contents.
   1377 	 */
   1378 	pn = prop_dictionary_get(device_properties(&sc->sc_dev),
   1379 				 "i82543-cfg1");
   1380 	if (pn != NULL) {
   1381 		KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1382 		cfg1 = (uint16_t) prop_number_integer_value(pn);
   1383 	} else {
   1384 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
   1385 			aprint_error("%s: unable to read CFG1\n",
   1386 			    sc->sc_dev.dv_xname);
   1387 			return;
   1388 		}
   1389 	}
   1390 
   1391 	pn = prop_dictionary_get(device_properties(&sc->sc_dev),
   1392 				 "i82543-cfg2");
   1393 	if (pn != NULL) {
   1394 		KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1395 		cfg2 = (uint16_t) prop_number_integer_value(pn);
   1396 	} else {
   1397 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
   1398 			aprint_error("%s: unable to read CFG2\n",
   1399 			    sc->sc_dev.dv_xname);
   1400 			return;
   1401 		}
   1402 	}
   1403 
   1404 	if (sc->sc_type >= WM_T_82544) {
   1405 		pn = prop_dictionary_get(device_properties(&sc->sc_dev),
   1406 					 "i82543-swdpin");
   1407 		if (pn != NULL) {
   1408 			KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1409 			swdpin = (uint16_t) prop_number_integer_value(pn);
   1410 		} else {
   1411 			if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
   1412 				aprint_error("%s: unable to read SWDPIN\n",
   1413 				    sc->sc_dev.dv_xname);
   1414 				return;
   1415 			}
   1416 		}
   1417 	}
   1418 
   1419 	if (cfg1 & EEPROM_CFG1_ILOS)
   1420 		sc->sc_ctrl |= CTRL_ILOS;
   1421 	if (sc->sc_type >= WM_T_82544) {
   1422 		sc->sc_ctrl |=
   1423 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
   1424 		    CTRL_SWDPIO_SHIFT;
   1425 		sc->sc_ctrl |=
   1426 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
   1427 		    CTRL_SWDPINS_SHIFT;
   1428 	} else {
   1429 		sc->sc_ctrl |=
   1430 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
   1431 		    CTRL_SWDPIO_SHIFT;
   1432 	}
   1433 
   1434 #if 0
   1435 	if (sc->sc_type >= WM_T_82544) {
   1436 		if (cfg1 & EEPROM_CFG1_IPS0)
   1437 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
   1438 		if (cfg1 & EEPROM_CFG1_IPS1)
   1439 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
   1440 		sc->sc_ctrl_ext |=
   1441 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
   1442 		    CTRL_EXT_SWDPIO_SHIFT;
   1443 		sc->sc_ctrl_ext |=
   1444 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
   1445 		    CTRL_EXT_SWDPINS_SHIFT;
   1446 	} else {
   1447 		sc->sc_ctrl_ext |=
   1448 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
   1449 		    CTRL_EXT_SWDPIO_SHIFT;
   1450 	}
   1451 #endif
   1452 
   1453 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   1454 #if 0
   1455 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   1456 #endif
   1457 
   1458 	/*
   1459 	 * Set up some register offsets that are different between
   1460 	 * the i82542 and the i82543 and later chips.
   1461 	 */
   1462 	if (sc->sc_type < WM_T_82543) {
   1463 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
   1464 		sc->sc_tdt_reg = WMREG_OLD_TDT;
   1465 	} else {
   1466 		sc->sc_rdt_reg = WMREG_RDT;
   1467 		sc->sc_tdt_reg = WMREG_TDT;
   1468 	}
   1469 
   1470 	/*
   1471 	 * Determine if we're TBI or GMII mode, and initialize the
   1472 	 * media structures accordingly.
   1473 	 */
   1474 	if (sc->sc_type == WM_T_ICH8 || sc->sc_type == WM_T_ICH9
   1475 	    || sc->sc_type == WM_T_82573) {
   1476 		/* STATUS_TBIMODE reserved/reused, can't rely on it */
   1477 		wm_gmii_mediainit(sc);
   1478 	} else if (sc->sc_type < WM_T_82543 ||
   1479 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
   1480 		if (wmp->wmp_flags & WMP_F_1000T)
   1481 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
   1482 			    "product!\n", sc->sc_dev.dv_xname);
   1483 		wm_tbi_mediainit(sc);
   1484 	} else {
   1485 		if (wmp->wmp_flags & WMP_F_1000X)
   1486 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
   1487 			    "product!\n", sc->sc_dev.dv_xname);
   1488 		wm_gmii_mediainit(sc);
   1489 	}
   1490 
   1491 	ifp = &sc->sc_ethercom.ec_if;
   1492 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
   1493 	ifp->if_softc = sc;
   1494 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1495 	ifp->if_ioctl = wm_ioctl;
   1496 	ifp->if_start = wm_start;
   1497 	ifp->if_watchdog = wm_watchdog;
   1498 	ifp->if_init = wm_init;
   1499 	ifp->if_stop = wm_stop;
   1500 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
   1501 	IFQ_SET_READY(&ifp->if_snd);
   1502 
   1503 	if (sc->sc_type != WM_T_82573 && sc->sc_type != WM_T_ICH8)
   1504 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1505 
   1506 	/*
   1507 	 * If we're a i82543 or greater, we can support VLANs.
   1508 	 */
   1509 	if (sc->sc_type >= WM_T_82543)
   1510 		sc->sc_ethercom.ec_capabilities |=
   1511 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
   1512 
   1513 	/*
   1514 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
   1515 	 * on i82543 and later.
   1516 	 */
   1517 	if (sc->sc_type >= WM_T_82543) {
   1518 		ifp->if_capabilities |=
   1519 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1520 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1521 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
   1522 		    IFCAP_CSUM_TCPv6_Tx |
   1523 		    IFCAP_CSUM_UDPv6_Tx;
   1524 	}
   1525 
   1526 	/*
   1527 	 * XXXyamt: i'm not sure which chips support RXCSUM_IPV6OFL.
   1528 	 *
   1529 	 *	82541GI (8086:1076) ... no
   1530 	 *	82572EI (8086:10b9) ... yes
   1531 	 */
   1532 	if (sc->sc_type >= WM_T_82571) {
   1533 		ifp->if_capabilities |=
   1534 		    IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
   1535 	}
   1536 
   1537 	/*
   1538 	 * If we're a i82544 or greater (except i82547), we can do
   1539 	 * TCP segmentation offload.
   1540 	 */
   1541 	if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547) {
   1542 		ifp->if_capabilities |= IFCAP_TSOv4;
   1543 	}
   1544 
   1545 	if (sc->sc_type >= WM_T_82571) {
   1546 		ifp->if_capabilities |= IFCAP_TSOv6;
   1547 	}
   1548 
   1549 	/*
   1550 	 * Attach the interface.
   1551 	 */
   1552 	if_attach(ifp);
   1553 	ether_ifattach(ifp, enaddr);
   1554 #if NRND > 0
   1555 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1556 	    RND_TYPE_NET, 0);
   1557 #endif
   1558 
   1559 #ifdef WM_EVENT_COUNTERS
   1560 	/* Attach event counters. */
   1561 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1562 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1563 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1564 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1565 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
   1566 	    NULL, sc->sc_dev.dv_xname, "txfifo_stall");
   1567 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
   1568 	    NULL, sc->sc_dev.dv_xname, "txdw");
   1569 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
   1570 	    NULL, sc->sc_dev.dv_xname, "txqe");
   1571 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1572 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1573 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
   1574 	    NULL, sc->sc_dev.dv_xname, "linkintr");
   1575 
   1576 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1577 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1578 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
   1579 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
   1580 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1581 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1582 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
   1583 	    NULL, sc->sc_dev.dv_xname, "txtusum");
   1584 	evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
   1585 	    NULL, sc->sc_dev.dv_xname, "txtusum6");
   1586 
   1587 	evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
   1588 	    NULL, sc->sc_dev.dv_xname, "txtso");
   1589 	evcnt_attach_dynamic(&sc->sc_ev_txtso6, EVCNT_TYPE_MISC,
   1590 	    NULL, sc->sc_dev.dv_xname, "txtso6");
   1591 	evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
   1592 	    NULL, sc->sc_dev.dv_xname, "txtsopain");
   1593 
   1594 	for (i = 0; i < WM_NTXSEGS; i++) {
   1595 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
   1596 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
   1597 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
   1598 	}
   1599 
   1600 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
   1601 	    NULL, sc->sc_dev.dv_xname, "txdrop");
   1602 
   1603 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
   1604 	    NULL, sc->sc_dev.dv_xname, "tu");
   1605 
   1606 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
   1607 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
   1608 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
   1609 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
   1610 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
   1611 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
   1612 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
   1613 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
   1614 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
   1615 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
   1616 #endif /* WM_EVENT_COUNTERS */
   1617 
   1618 	if (!pmf_device_register(self, NULL, NULL))
   1619 		aprint_error_dev(self, "couldn't establish power handler\n");
   1620 	else
   1621 		pmf_class_network_register(self, ifp);
   1622 
   1623 	return;
   1624 
   1625 	/*
   1626 	 * Free any resources we've allocated during the failed attach
   1627 	 * attempt.  Do this in reverse order and fall through.
   1628 	 */
   1629  fail_5:
   1630 	for (i = 0; i < WM_NRXDESC; i++) {
   1631 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1632 			bus_dmamap_destroy(sc->sc_dmat,
   1633 			    sc->sc_rxsoft[i].rxs_dmamap);
   1634 	}
   1635  fail_4:
   1636 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1637 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1638 			bus_dmamap_destroy(sc->sc_dmat,
   1639 			    sc->sc_txsoft[i].txs_dmamap);
   1640 	}
   1641 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1642  fail_3:
   1643 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1644  fail_2:
   1645 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
   1646 	    cdata_size);
   1647  fail_1:
   1648 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1649  fail_0:
   1650 	return;
   1651 }
   1652 
   1653 /*
   1654  * wm_tx_offload:
   1655  *
   1656  *	Set up TCP/IP checksumming parameters for the
   1657  *	specified packet.
   1658  */
   1659 static int
   1660 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
   1661     uint8_t *fieldsp)
   1662 {
   1663 	struct mbuf *m0 = txs->txs_mbuf;
   1664 	struct livengood_tcpip_ctxdesc *t;
   1665 	uint32_t ipcs, tucs, cmd, cmdlen, seg;
   1666 	uint32_t ipcse;
   1667 	struct ether_header *eh;
   1668 	int offset, iphl;
   1669 	uint8_t fields;
   1670 
   1671 	/*
   1672 	 * XXX It would be nice if the mbuf pkthdr had offset
   1673 	 * fields for the protocol headers.
   1674 	 */
   1675 
   1676 	eh = mtod(m0, struct ether_header *);
   1677 	switch (htons(eh->ether_type)) {
   1678 	case ETHERTYPE_IP:
   1679 	case ETHERTYPE_IPV6:
   1680 		offset = ETHER_HDR_LEN;
   1681 		break;
   1682 
   1683 	case ETHERTYPE_VLAN:
   1684 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1685 		break;
   1686 
   1687 	default:
   1688 		/*
   1689 		 * Don't support this protocol or encapsulation.
   1690 		 */
   1691 		*fieldsp = 0;
   1692 		*cmdp = 0;
   1693 		return (0);
   1694 	}
   1695 
   1696 	if ((m0->m_pkthdr.csum_flags &
   1697 	    (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
   1698 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1699 	} else {
   1700 		iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
   1701 	}
   1702 	ipcse = offset + iphl - 1;
   1703 
   1704 	cmd = WTX_CMD_DEXT | WTX_DTYP_D;
   1705 	cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
   1706 	seg = 0;
   1707 	fields = 0;
   1708 
   1709 	if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
   1710 		int hlen = offset + iphl;
   1711 		bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   1712 
   1713 		if (__predict_false(m0->m_len <
   1714 				    (hlen + sizeof(struct tcphdr)))) {
   1715 			/*
   1716 			 * TCP/IP headers are not in the first mbuf; we need
   1717 			 * to do this the slow and painful way.  Let's just
   1718 			 * hope this doesn't happen very often.
   1719 			 */
   1720 			struct tcphdr th;
   1721 
   1722 			WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
   1723 
   1724 			m_copydata(m0, hlen, sizeof(th), &th);
   1725 			if (v4) {
   1726 				struct ip ip;
   1727 
   1728 				m_copydata(m0, offset, sizeof(ip), &ip);
   1729 				ip.ip_len = 0;
   1730 				m_copyback(m0,
   1731 				    offset + offsetof(struct ip, ip_len),
   1732 				    sizeof(ip.ip_len), &ip.ip_len);
   1733 				th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   1734 				    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   1735 			} else {
   1736 				struct ip6_hdr ip6;
   1737 
   1738 				m_copydata(m0, offset, sizeof(ip6), &ip6);
   1739 				ip6.ip6_plen = 0;
   1740 				m_copyback(m0,
   1741 				    offset + offsetof(struct ip6_hdr, ip6_plen),
   1742 				    sizeof(ip6.ip6_plen), &ip6.ip6_plen);
   1743 				th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
   1744 				    &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
   1745 			}
   1746 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   1747 			    sizeof(th.th_sum), &th.th_sum);
   1748 
   1749 			hlen += th.th_off << 2;
   1750 		} else {
   1751 			/*
   1752 			 * TCP/IP headers are in the first mbuf; we can do
   1753 			 * this the easy way.
   1754 			 */
   1755 			struct tcphdr *th;
   1756 
   1757 			if (v4) {
   1758 				struct ip *ip =
   1759 				    (void *)(mtod(m0, char *) + offset);
   1760 				th = (void *)(mtod(m0, char *) + hlen);
   1761 
   1762 				ip->ip_len = 0;
   1763 				th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   1764 				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   1765 			} else {
   1766 				struct ip6_hdr *ip6 =
   1767 				    (void *)(mtod(m0, char *) + offset);
   1768 				th = (void *)(mtod(m0, char *) + hlen);
   1769 
   1770 				ip6->ip6_plen = 0;
   1771 				th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
   1772 				    &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
   1773 			}
   1774 			hlen += th->th_off << 2;
   1775 		}
   1776 
   1777 		if (v4) {
   1778 			WM_EVCNT_INCR(&sc->sc_ev_txtso);
   1779 			cmdlen |= WTX_TCPIP_CMD_IP;
   1780 		} else {
   1781 			WM_EVCNT_INCR(&sc->sc_ev_txtso6);
   1782 			ipcse = 0;
   1783 		}
   1784 		cmd |= WTX_TCPIP_CMD_TSE;
   1785 		cmdlen |= WTX_TCPIP_CMD_TSE |
   1786 		    WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
   1787 		seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
   1788 		    WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
   1789 	}
   1790 
   1791 	/*
   1792 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1793 	 * offload feature, if we load the context descriptor, we
   1794 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1795 	 */
   1796 
   1797 	ipcs = WTX_TCPIP_IPCSS(offset) |
   1798 	    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1799 	    WTX_TCPIP_IPCSE(ipcse);
   1800 	if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
   1801 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
   1802 		fields |= WTX_IXSM;
   1803 	}
   1804 
   1805 	offset += iphl;
   1806 
   1807 	if (m0->m_pkthdr.csum_flags &
   1808 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
   1809 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
   1810 		fields |= WTX_TXSM;
   1811 		tucs = WTX_TCPIP_TUCSS(offset) |
   1812 		    WTX_TCPIP_TUCSO(offset +
   1813 		    M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
   1814 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1815 	} else if ((m0->m_pkthdr.csum_flags &
   1816 	    (M_CSUM_TCPv6|M_CSUM_UDPv6|M_CSUM_TSOv6)) != 0) {
   1817 		WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
   1818 		fields |= WTX_TXSM;
   1819 		tucs = WTX_TCPIP_TUCSS(offset) |
   1820 		    WTX_TCPIP_TUCSO(offset +
   1821 		    M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
   1822 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1823 	} else {
   1824 		/* Just initialize it to a valid TCP context. */
   1825 		tucs = WTX_TCPIP_TUCSS(offset) |
   1826 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1827 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1828 	}
   1829 
   1830 	/* Fill in the context descriptor. */
   1831 	t = (struct livengood_tcpip_ctxdesc *)
   1832 	    &sc->sc_txdescs[sc->sc_txnext];
   1833 	t->tcpip_ipcs = htole32(ipcs);
   1834 	t->tcpip_tucs = htole32(tucs);
   1835 	t->tcpip_cmdlen = htole32(cmdlen);
   1836 	t->tcpip_seg = htole32(seg);
   1837 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1838 
   1839 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
   1840 	txs->txs_ndesc++;
   1841 
   1842 	*cmdp = cmd;
   1843 	*fieldsp = fields;
   1844 
   1845 	return (0);
   1846 }
   1847 
   1848 static void
   1849 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
   1850 {
   1851 	struct mbuf *m;
   1852 	int i;
   1853 
   1854 	log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
   1855 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
   1856 		log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
   1857 		    "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
   1858 		    m->m_data, m->m_len, m->m_flags);
   1859 	log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
   1860 	    i, i == 1 ? "" : "s");
   1861 }
   1862 
   1863 /*
   1864  * wm_82547_txfifo_stall:
   1865  *
   1866  *	Callout used to wait for the 82547 Tx FIFO to drain,
   1867  *	reset the FIFO pointers, and restart packet transmission.
   1868  */
   1869 static void
   1870 wm_82547_txfifo_stall(void *arg)
   1871 {
   1872 	struct wm_softc *sc = arg;
   1873 	int s;
   1874 
   1875 	s = splnet();
   1876 
   1877 	if (sc->sc_txfifo_stall) {
   1878 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
   1879 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
   1880 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
   1881 			/*
   1882 			 * Packets have drained.  Stop transmitter, reset
   1883 			 * FIFO pointers, restart transmitter, and kick
   1884 			 * the packet queue.
   1885 			 */
   1886 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
   1887 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
   1888 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
   1889 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
   1890 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
   1891 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
   1892 			CSR_WRITE(sc, WMREG_TCTL, tctl);
   1893 			CSR_WRITE_FLUSH(sc);
   1894 
   1895 			sc->sc_txfifo_head = 0;
   1896 			sc->sc_txfifo_stall = 0;
   1897 			wm_start(&sc->sc_ethercom.ec_if);
   1898 		} else {
   1899 			/*
   1900 			 * Still waiting for packets to drain; try again in
   1901 			 * another tick.
   1902 			 */
   1903 			callout_schedule(&sc->sc_txfifo_ch, 1);
   1904 		}
   1905 	}
   1906 
   1907 	splx(s);
   1908 }
   1909 
   1910 /*
   1911  * wm_82547_txfifo_bugchk:
   1912  *
   1913  *	Check for bug condition in the 82547 Tx FIFO.  We need to
   1914  *	prevent enqueueing a packet that would wrap around the end
   1915  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
   1916  *
   1917  *	We do this by checking the amount of space before the end
   1918  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
   1919  *	the Tx FIFO, wait for all remaining packets to drain, reset
   1920  *	the internal FIFO pointers to the beginning, and restart
   1921  *	transmission on the interface.
   1922  */
   1923 #define	WM_FIFO_HDR		0x10
   1924 #define	WM_82547_PAD_LEN	0x3e0
   1925 static int
   1926 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
   1927 {
   1928 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
   1929 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
   1930 
   1931 	/* Just return if already stalled. */
   1932 	if (sc->sc_txfifo_stall)
   1933 		return (1);
   1934 
   1935 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1936 		/* Stall only occurs in half-duplex mode. */
   1937 		goto send_packet;
   1938 	}
   1939 
   1940 	if (len >= WM_82547_PAD_LEN + space) {
   1941 		sc->sc_txfifo_stall = 1;
   1942 		callout_schedule(&sc->sc_txfifo_ch, 1);
   1943 		return (1);
   1944 	}
   1945 
   1946  send_packet:
   1947 	sc->sc_txfifo_head += len;
   1948 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
   1949 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
   1950 
   1951 	return (0);
   1952 }
   1953 
   1954 /*
   1955  * wm_start:		[ifnet interface function]
   1956  *
   1957  *	Start packet transmission on the interface.
   1958  */
   1959 static void
   1960 wm_start(struct ifnet *ifp)
   1961 {
   1962 	struct wm_softc *sc = ifp->if_softc;
   1963 	struct mbuf *m0;
   1964 #if 0 /* XXXJRT */
   1965 	struct m_tag *mtag;
   1966 #endif
   1967 	struct wm_txsoft *txs;
   1968 	bus_dmamap_t dmamap;
   1969 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
   1970 	bus_addr_t curaddr;
   1971 	bus_size_t seglen, curlen;
   1972 	uint32_t cksumcmd;
   1973 	uint8_t cksumfields;
   1974 
   1975 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1976 		return;
   1977 
   1978 	/*
   1979 	 * Remember the previous number of free descriptors.
   1980 	 */
   1981 	ofree = sc->sc_txfree;
   1982 
   1983 	/*
   1984 	 * Loop through the send queue, setting up transmit descriptors
   1985 	 * until we drain the queue, or use up all available transmit
   1986 	 * descriptors.
   1987 	 */
   1988 	for (;;) {
   1989 		/* Grab a packet off the queue. */
   1990 		IFQ_POLL(&ifp->if_snd, m0);
   1991 		if (m0 == NULL)
   1992 			break;
   1993 
   1994 		DPRINTF(WM_DEBUG_TX,
   1995 		    ("%s: TX: have packet to transmit: %p\n",
   1996 		    sc->sc_dev.dv_xname, m0));
   1997 
   1998 		/* Get a work queue entry. */
   1999 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
   2000 			wm_txintr(sc);
   2001 			if (sc->sc_txsfree == 0) {
   2002 				DPRINTF(WM_DEBUG_TX,
   2003 				    ("%s: TX: no free job descriptors\n",
   2004 					sc->sc_dev.dv_xname));
   2005 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   2006 				break;
   2007 			}
   2008 		}
   2009 
   2010 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   2011 		dmamap = txs->txs_dmamap;
   2012 
   2013 		use_tso = (m0->m_pkthdr.csum_flags &
   2014 		    (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0;
   2015 
   2016 		/*
   2017 		 * So says the Linux driver:
   2018 		 * The controller does a simple calculation to make sure
   2019 		 * there is enough room in the FIFO before initiating the
   2020 		 * DMA for each buffer.  The calc is:
   2021 		 *	4 = ceil(buffer len / MSS)
   2022 		 * To make sure we don't overrun the FIFO, adjust the max
   2023 		 * buffer len if the MSS drops.
   2024 		 */
   2025 		dmamap->dm_maxsegsz =
   2026 		    (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
   2027 		    ? m0->m_pkthdr.segsz << 2
   2028 		    : WTX_MAX_LEN;
   2029 
   2030 		/*
   2031 		 * Load the DMA map.  If this fails, the packet either
   2032 		 * didn't fit in the allotted number of segments, or we
   2033 		 * were short on resources.  For the too-many-segments
   2034 		 * case, we simply report an error and drop the packet,
   2035 		 * since we can't sanely copy a jumbo packet to a single
   2036 		 * buffer.
   2037 		 */
   2038 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   2039 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   2040 		if (error) {
   2041 			if (error == EFBIG) {
   2042 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   2043 				log(LOG_ERR, "%s: Tx packet consumes too many "
   2044 				    "DMA segments, dropping...\n",
   2045 				    sc->sc_dev.dv_xname);
   2046 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   2047 				wm_dump_mbuf_chain(sc, m0);
   2048 				m_freem(m0);
   2049 				continue;
   2050 			}
   2051 			/*
   2052 			 * Short on resources, just stop for now.
   2053 			 */
   2054 			DPRINTF(WM_DEBUG_TX,
   2055 			    ("%s: TX: dmamap load failed: %d\n",
   2056 			    sc->sc_dev.dv_xname, error));
   2057 			break;
   2058 		}
   2059 
   2060 		segs_needed = dmamap->dm_nsegs;
   2061 		if (use_tso) {
   2062 			/* For sentinel descriptor; see below. */
   2063 			segs_needed++;
   2064 		}
   2065 
   2066 		/*
   2067 		 * Ensure we have enough descriptors free to describe
   2068 		 * the packet.  Note, we always reserve one descriptor
   2069 		 * at the end of the ring due to the semantics of the
   2070 		 * TDT register, plus one more in the event we need
   2071 		 * to load offload context.
   2072 		 */
   2073 		if (segs_needed > sc->sc_txfree - 2) {
   2074 			/*
   2075 			 * Not enough free descriptors to transmit this
   2076 			 * packet.  We haven't committed anything yet,
   2077 			 * so just unload the DMA map, put the packet
   2078 			 * pack on the queue, and punt.  Notify the upper
   2079 			 * layer that there are no more slots left.
   2080 			 */
   2081 			DPRINTF(WM_DEBUG_TX,
   2082 			    ("%s: TX: need %d (%d) descriptors, have %d\n",
   2083 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
   2084 			    sc->sc_txfree - 1));
   2085 			ifp->if_flags |= IFF_OACTIVE;
   2086 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   2087 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   2088 			break;
   2089 		}
   2090 
   2091 		/*
   2092 		 * Check for 82547 Tx FIFO bug.  We need to do this
   2093 		 * once we know we can transmit the packet, since we
   2094 		 * do some internal FIFO space accounting here.
   2095 		 */
   2096 		if (sc->sc_type == WM_T_82547 &&
   2097 		    wm_82547_txfifo_bugchk(sc, m0)) {
   2098 			DPRINTF(WM_DEBUG_TX,
   2099 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
   2100 			    sc->sc_dev.dv_xname));
   2101 			ifp->if_flags |= IFF_OACTIVE;
   2102 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   2103 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
   2104 			break;
   2105 		}
   2106 
   2107 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   2108 
   2109 		/*
   2110 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   2111 		 */
   2112 
   2113 		DPRINTF(WM_DEBUG_TX,
   2114 		    ("%s: TX: packet has %d (%d) DMA segments\n",
   2115 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
   2116 
   2117 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   2118 
   2119 		/*
   2120 		 * Store a pointer to the packet so that we can free it
   2121 		 * later.
   2122 		 *
   2123 		 * Initially, we consider the number of descriptors the
   2124 		 * packet uses the number of DMA segments.  This may be
   2125 		 * incremented by 1 if we do checksum offload (a descriptor
   2126 		 * is used to set the checksum context).
   2127 		 */
   2128 		txs->txs_mbuf = m0;
   2129 		txs->txs_firstdesc = sc->sc_txnext;
   2130 		txs->txs_ndesc = segs_needed;
   2131 
   2132 		/* Set up offload parameters for this packet. */
   2133 		if (m0->m_pkthdr.csum_flags &
   2134 		    (M_CSUM_TSOv4|M_CSUM_TSOv6|
   2135 		    M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
   2136 		    M_CSUM_TCPv6|M_CSUM_UDPv6)) {
   2137 			if (wm_tx_offload(sc, txs, &cksumcmd,
   2138 					  &cksumfields) != 0) {
   2139 				/* Error message already displayed. */
   2140 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   2141 				continue;
   2142 			}
   2143 		} else {
   2144 			cksumcmd = 0;
   2145 			cksumfields = 0;
   2146 		}
   2147 
   2148 		cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
   2149 
   2150 		/* Sync the DMA map. */
   2151 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   2152 		    BUS_DMASYNC_PREWRITE);
   2153 
   2154 		/*
   2155 		 * Initialize the transmit descriptor.
   2156 		 */
   2157 		for (nexttx = sc->sc_txnext, seg = 0;
   2158 		     seg < dmamap->dm_nsegs; seg++) {
   2159 			for (seglen = dmamap->dm_segs[seg].ds_len,
   2160 			     curaddr = dmamap->dm_segs[seg].ds_addr;
   2161 			     seglen != 0;
   2162 			     curaddr += curlen, seglen -= curlen,
   2163 			     nexttx = WM_NEXTTX(sc, nexttx)) {
   2164 				curlen = seglen;
   2165 
   2166 				/*
   2167 				 * So says the Linux driver:
   2168 				 * Work around for premature descriptor
   2169 				 * write-backs in TSO mode.  Append a
   2170 				 * 4-byte sentinel descriptor.
   2171 				 */
   2172 				if (use_tso &&
   2173 				    seg == dmamap->dm_nsegs - 1 &&
   2174 				    curlen > 8)
   2175 					curlen -= 4;
   2176 
   2177 				wm_set_dma_addr(
   2178 				    &sc->sc_txdescs[nexttx].wtx_addr,
   2179 				    curaddr);
   2180 				sc->sc_txdescs[nexttx].wtx_cmdlen =
   2181 				    htole32(cksumcmd | curlen);
   2182 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
   2183 				    0;
   2184 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
   2185 				    cksumfields;
   2186 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
   2187 				lasttx = nexttx;
   2188 
   2189 				DPRINTF(WM_DEBUG_TX,
   2190 				    ("%s: TX: desc %d: low 0x%08lx, "
   2191 				     "len 0x%04x\n",
   2192 				    sc->sc_dev.dv_xname, nexttx,
   2193 				    curaddr & 0xffffffffUL, (unsigned)curlen));
   2194 			}
   2195 		}
   2196 
   2197 		KASSERT(lasttx != -1);
   2198 
   2199 		/*
   2200 		 * Set up the command byte on the last descriptor of
   2201 		 * the packet.  If we're in the interrupt delay window,
   2202 		 * delay the interrupt.
   2203 		 */
   2204 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   2205 		    htole32(WTX_CMD_EOP | WTX_CMD_RS);
   2206 
   2207 #if 0 /* XXXJRT */
   2208 		/*
   2209 		 * If VLANs are enabled and the packet has a VLAN tag, set
   2210 		 * up the descriptor to encapsulate the packet for us.
   2211 		 *
   2212 		 * This is only valid on the last descriptor of the packet.
   2213 		 */
   2214 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   2215 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   2216 			    htole32(WTX_CMD_VLE);
   2217 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
   2218 			    = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
   2219 		}
   2220 #endif /* XXXJRT */
   2221 
   2222 		txs->txs_lastdesc = lasttx;
   2223 
   2224 		DPRINTF(WM_DEBUG_TX,
   2225 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   2226 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
   2227 
   2228 		/* Sync the descriptors we're using. */
   2229 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
   2230 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2231 
   2232 		/* Give the packet to the chip. */
   2233 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   2234 
   2235 		DPRINTF(WM_DEBUG_TX,
   2236 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   2237 
   2238 		DPRINTF(WM_DEBUG_TX,
   2239 		    ("%s: TX: finished transmitting packet, job %d\n",
   2240 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   2241 
   2242 		/* Advance the tx pointer. */
   2243 		sc->sc_txfree -= txs->txs_ndesc;
   2244 		sc->sc_txnext = nexttx;
   2245 
   2246 		sc->sc_txsfree--;
   2247 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
   2248 
   2249 #if NBPFILTER > 0
   2250 		/* Pass the packet to any BPF listeners. */
   2251 		if (ifp->if_bpf)
   2252 			bpf_mtap(ifp->if_bpf, m0);
   2253 #endif /* NBPFILTER > 0 */
   2254 	}
   2255 
   2256 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   2257 		/* No more slots; notify upper layer. */
   2258 		ifp->if_flags |= IFF_OACTIVE;
   2259 	}
   2260 
   2261 	if (sc->sc_txfree != ofree) {
   2262 		/* Set a watchdog timer in case the chip flakes out. */
   2263 		ifp->if_timer = 5;
   2264 	}
   2265 }
   2266 
   2267 /*
   2268  * wm_watchdog:		[ifnet interface function]
   2269  *
   2270  *	Watchdog timer handler.
   2271  */
   2272 static void
   2273 wm_watchdog(struct ifnet *ifp)
   2274 {
   2275 	struct wm_softc *sc = ifp->if_softc;
   2276 
   2277 	/*
   2278 	 * Since we're using delayed interrupts, sweep up
   2279 	 * before we report an error.
   2280 	 */
   2281 	wm_txintr(sc);
   2282 
   2283 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
   2284 		log(LOG_ERR,
   2285 		    "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   2286 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   2287 		    sc->sc_txnext);
   2288 		ifp->if_oerrors++;
   2289 
   2290 		/* Reset the interface. */
   2291 		(void) wm_init(ifp);
   2292 	}
   2293 
   2294 	/* Try to get more packets going. */
   2295 	wm_start(ifp);
   2296 }
   2297 
   2298 /*
   2299  * wm_ioctl:		[ifnet interface function]
   2300  *
   2301  *	Handle control requests from the operator.
   2302  */
   2303 static int
   2304 wm_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2305 {
   2306 	struct wm_softc *sc = ifp->if_softc;
   2307 	struct ifreq *ifr = (struct ifreq *) data;
   2308 	int s, error;
   2309 
   2310 	s = splnet();
   2311 
   2312 	switch (cmd) {
   2313 	case SIOCSIFMEDIA:
   2314 	case SIOCGIFMEDIA:
   2315 		/* Flow control requires full-duplex mode. */
   2316 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   2317 		    (ifr->ifr_media & IFM_FDX) == 0)
   2318 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   2319 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   2320 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   2321 				/* We can do both TXPAUSE and RXPAUSE. */
   2322 				ifr->ifr_media |=
   2323 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   2324 			}
   2325 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   2326 		}
   2327 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   2328 		break;
   2329 	default:
   2330 		error = ether_ioctl(ifp, cmd, data);
   2331 		if (error == ENETRESET) {
   2332 			/*
   2333 			 * Multicast list has changed; set the hardware filter
   2334 			 * accordingly.
   2335 			 */
   2336 			if (ifp->if_flags & IFF_RUNNING)
   2337 				wm_set_filter(sc);
   2338 			error = 0;
   2339 		}
   2340 		break;
   2341 	}
   2342 
   2343 	/* Try to get more packets going. */
   2344 	wm_start(ifp);
   2345 
   2346 	splx(s);
   2347 	return (error);
   2348 }
   2349 
   2350 /*
   2351  * wm_intr:
   2352  *
   2353  *	Interrupt service routine.
   2354  */
   2355 static int
   2356 wm_intr(void *arg)
   2357 {
   2358 	struct wm_softc *sc = arg;
   2359 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2360 	uint32_t icr;
   2361 	int handled = 0;
   2362 
   2363 	while (1 /* CONSTCOND */) {
   2364 		icr = CSR_READ(sc, WMREG_ICR);
   2365 		if ((icr & sc->sc_icr) == 0)
   2366 			break;
   2367 #if 0 /*NRND > 0*/
   2368 		if (RND_ENABLED(&sc->rnd_source))
   2369 			rnd_add_uint32(&sc->rnd_source, icr);
   2370 #endif
   2371 
   2372 		handled = 1;
   2373 
   2374 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   2375 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   2376 			DPRINTF(WM_DEBUG_RX,
   2377 			    ("%s: RX: got Rx intr 0x%08x\n",
   2378 			    sc->sc_dev.dv_xname,
   2379 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   2380 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
   2381 		}
   2382 #endif
   2383 		wm_rxintr(sc);
   2384 
   2385 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   2386 		if (icr & ICR_TXDW) {
   2387 			DPRINTF(WM_DEBUG_TX,
   2388 			    ("%s: TX: got TXDW interrupt\n",
   2389 			    sc->sc_dev.dv_xname));
   2390 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
   2391 		}
   2392 #endif
   2393 		wm_txintr(sc);
   2394 
   2395 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
   2396 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
   2397 			wm_linkintr(sc, icr);
   2398 		}
   2399 
   2400 		if (icr & ICR_RXO) {
   2401 			ifp->if_ierrors++;
   2402 #if defined(WM_DEBUG)
   2403 			log(LOG_WARNING, "%s: Receive overrun\n",
   2404 			    sc->sc_dev.dv_xname);
   2405 #endif /* defined(WM_DEBUG) */
   2406 		}
   2407 	}
   2408 
   2409 	if (handled) {
   2410 		/* Try to get more packets going. */
   2411 		wm_start(ifp);
   2412 	}
   2413 
   2414 	return (handled);
   2415 }
   2416 
   2417 /*
   2418  * wm_txintr:
   2419  *
   2420  *	Helper; handle transmit interrupts.
   2421  */
   2422 static void
   2423 wm_txintr(struct wm_softc *sc)
   2424 {
   2425 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2426 	struct wm_txsoft *txs;
   2427 	uint8_t status;
   2428 	int i;
   2429 
   2430 	ifp->if_flags &= ~IFF_OACTIVE;
   2431 
   2432 	/*
   2433 	 * Go through the Tx list and free mbufs for those
   2434 	 * frames which have been transmitted.
   2435 	 */
   2436 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
   2437 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
   2438 		txs = &sc->sc_txsoft[i];
   2439 
   2440 		DPRINTF(WM_DEBUG_TX,
   2441 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   2442 
   2443 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   2444 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2445 
   2446 		status =
   2447 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
   2448 		if ((status & WTX_ST_DD) == 0) {
   2449 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   2450 			    BUS_DMASYNC_PREREAD);
   2451 			break;
   2452 		}
   2453 
   2454 		DPRINTF(WM_DEBUG_TX,
   2455 		    ("%s: TX: job %d done: descs %d..%d\n",
   2456 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   2457 		    txs->txs_lastdesc));
   2458 
   2459 		/*
   2460 		 * XXX We should probably be using the statistics
   2461 		 * XXX registers, but I don't know if they exist
   2462 		 * XXX on chips before the i82544.
   2463 		 */
   2464 
   2465 #ifdef WM_EVENT_COUNTERS
   2466 		if (status & WTX_ST_TU)
   2467 			WM_EVCNT_INCR(&sc->sc_ev_tu);
   2468 #endif /* WM_EVENT_COUNTERS */
   2469 
   2470 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
   2471 			ifp->if_oerrors++;
   2472 			if (status & WTX_ST_LC)
   2473 				log(LOG_WARNING, "%s: late collision\n",
   2474 				    sc->sc_dev.dv_xname);
   2475 			else if (status & WTX_ST_EC) {
   2476 				ifp->if_collisions += 16;
   2477 				log(LOG_WARNING, "%s: excessive collisions\n",
   2478 				    sc->sc_dev.dv_xname);
   2479 			}
   2480 		} else
   2481 			ifp->if_opackets++;
   2482 
   2483 		sc->sc_txfree += txs->txs_ndesc;
   2484 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   2485 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2486 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2487 		m_freem(txs->txs_mbuf);
   2488 		txs->txs_mbuf = NULL;
   2489 	}
   2490 
   2491 	/* Update the dirty transmit buffer pointer. */
   2492 	sc->sc_txsdirty = i;
   2493 	DPRINTF(WM_DEBUG_TX,
   2494 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   2495 
   2496 	/*
   2497 	 * If there are no more pending transmissions, cancel the watchdog
   2498 	 * timer.
   2499 	 */
   2500 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
   2501 		ifp->if_timer = 0;
   2502 }
   2503 
   2504 /*
   2505  * wm_rxintr:
   2506  *
   2507  *	Helper; handle receive interrupts.
   2508  */
   2509 static void
   2510 wm_rxintr(struct wm_softc *sc)
   2511 {
   2512 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2513 	struct wm_rxsoft *rxs;
   2514 	struct mbuf *m;
   2515 	int i, len;
   2516 	uint8_t status, errors;
   2517 
   2518 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
   2519 		rxs = &sc->sc_rxsoft[i];
   2520 
   2521 		DPRINTF(WM_DEBUG_RX,
   2522 		    ("%s: RX: checking descriptor %d\n",
   2523 		    sc->sc_dev.dv_xname, i));
   2524 
   2525 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2526 
   2527 		status = sc->sc_rxdescs[i].wrx_status;
   2528 		errors = sc->sc_rxdescs[i].wrx_errors;
   2529 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
   2530 
   2531 		if ((status & WRX_ST_DD) == 0) {
   2532 			/*
   2533 			 * We have processed all of the receive descriptors.
   2534 			 */
   2535 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   2536 			break;
   2537 		}
   2538 
   2539 		if (__predict_false(sc->sc_rxdiscard)) {
   2540 			DPRINTF(WM_DEBUG_RX,
   2541 			    ("%s: RX: discarding contents of descriptor %d\n",
   2542 			    sc->sc_dev.dv_xname, i));
   2543 			WM_INIT_RXDESC(sc, i);
   2544 			if (status & WRX_ST_EOP) {
   2545 				/* Reset our state. */
   2546 				DPRINTF(WM_DEBUG_RX,
   2547 				    ("%s: RX: resetting rxdiscard -> 0\n",
   2548 				    sc->sc_dev.dv_xname));
   2549 				sc->sc_rxdiscard = 0;
   2550 			}
   2551 			continue;
   2552 		}
   2553 
   2554 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2555 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2556 
   2557 		m = rxs->rxs_mbuf;
   2558 
   2559 		/*
   2560 		 * Add a new receive buffer to the ring, unless of
   2561 		 * course the length is zero. Treat the latter as a
   2562 		 * failed mapping.
   2563 		 */
   2564 		if ((len == 0) || (wm_add_rxbuf(sc, i) != 0)) {
   2565 			/*
   2566 			 * Failed, throw away what we've done so
   2567 			 * far, and discard the rest of the packet.
   2568 			 */
   2569 			ifp->if_ierrors++;
   2570 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2571 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2572 			WM_INIT_RXDESC(sc, i);
   2573 			if ((status & WRX_ST_EOP) == 0)
   2574 				sc->sc_rxdiscard = 1;
   2575 			if (sc->sc_rxhead != NULL)
   2576 				m_freem(sc->sc_rxhead);
   2577 			WM_RXCHAIN_RESET(sc);
   2578 			DPRINTF(WM_DEBUG_RX,
   2579 			    ("%s: RX: Rx buffer allocation failed, "
   2580 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   2581 			    sc->sc_rxdiscard ? " (discard)" : ""));
   2582 			continue;
   2583 		}
   2584 
   2585 		WM_RXCHAIN_LINK(sc, m);
   2586 
   2587 		m->m_len = len;
   2588 
   2589 		DPRINTF(WM_DEBUG_RX,
   2590 		    ("%s: RX: buffer at %p len %d\n",
   2591 		    sc->sc_dev.dv_xname, m->m_data, len));
   2592 
   2593 		/*
   2594 		 * If this is not the end of the packet, keep
   2595 		 * looking.
   2596 		 */
   2597 		if ((status & WRX_ST_EOP) == 0) {
   2598 			sc->sc_rxlen += len;
   2599 			DPRINTF(WM_DEBUG_RX,
   2600 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   2601 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   2602 			continue;
   2603 		}
   2604 
   2605 		/*
   2606 		 * Okay, we have the entire packet now.  The chip is
   2607 		 * configured to include the FCS (not all chips can
   2608 		 * be configured to strip it), so we need to trim it.
   2609 		 */
   2610 		m->m_len -= ETHER_CRC_LEN;
   2611 
   2612 		*sc->sc_rxtailp = NULL;
   2613 		len = m->m_len + sc->sc_rxlen;
   2614 		m = sc->sc_rxhead;
   2615 
   2616 		WM_RXCHAIN_RESET(sc);
   2617 
   2618 		DPRINTF(WM_DEBUG_RX,
   2619 		    ("%s: RX: have entire packet, len -> %d\n",
   2620 		    sc->sc_dev.dv_xname, len));
   2621 
   2622 		/*
   2623 		 * If an error occurred, update stats and drop the packet.
   2624 		 */
   2625 		if (errors &
   2626 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
   2627 			ifp->if_ierrors++;
   2628 			if (errors & WRX_ER_SE)
   2629 				log(LOG_WARNING, "%s: symbol error\n",
   2630 				    sc->sc_dev.dv_xname);
   2631 			else if (errors & WRX_ER_SEQ)
   2632 				log(LOG_WARNING, "%s: receive sequence error\n",
   2633 				    sc->sc_dev.dv_xname);
   2634 			else if (errors & WRX_ER_CE)
   2635 				log(LOG_WARNING, "%s: CRC error\n",
   2636 				    sc->sc_dev.dv_xname);
   2637 			m_freem(m);
   2638 			continue;
   2639 		}
   2640 
   2641 		/*
   2642 		 * No errors.  Receive the packet.
   2643 		 */
   2644 		m->m_pkthdr.rcvif = ifp;
   2645 		m->m_pkthdr.len = len;
   2646 
   2647 #if 0 /* XXXJRT */
   2648 		/*
   2649 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2650 		 * for us.  Associate the tag with the packet.
   2651 		 */
   2652 		if ((status & WRX_ST_VP) != 0) {
   2653 			VLAN_INPUT_TAG(ifp, m,
   2654 			    le16toh(sc->sc_rxdescs[i].wrx_special,
   2655 			    continue);
   2656 		}
   2657 #endif /* XXXJRT */
   2658 
   2659 		/*
   2660 		 * Set up checksum info for this packet.
   2661 		 */
   2662 		if ((status & WRX_ST_IXSM) == 0) {
   2663 			if (status & WRX_ST_IPCS) {
   2664 				WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2665 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2666 				if (errors & WRX_ER_IPE)
   2667 					m->m_pkthdr.csum_flags |=
   2668 					    M_CSUM_IPv4_BAD;
   2669 			}
   2670 			if (status & WRX_ST_TCPCS) {
   2671 				/*
   2672 				 * Note: we don't know if this was TCP or UDP,
   2673 				 * so we just set both bits, and expect the
   2674 				 * upper layers to deal.
   2675 				 */
   2676 				WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
   2677 				m->m_pkthdr.csum_flags |=
   2678 				    M_CSUM_TCPv4 | M_CSUM_UDPv4 |
   2679 				    M_CSUM_TCPv6 | M_CSUM_UDPv6;
   2680 				if (errors & WRX_ER_TCPE)
   2681 					m->m_pkthdr.csum_flags |=
   2682 					    M_CSUM_TCP_UDP_BAD;
   2683 			}
   2684 		}
   2685 
   2686 		ifp->if_ipackets++;
   2687 
   2688 #if NBPFILTER > 0
   2689 		/* Pass this up to any BPF listeners. */
   2690 		if (ifp->if_bpf)
   2691 			bpf_mtap(ifp->if_bpf, m);
   2692 #endif /* NBPFILTER > 0 */
   2693 
   2694 		/* Pass it on. */
   2695 		(*ifp->if_input)(ifp, m);
   2696 	}
   2697 
   2698 	/* Update the receive pointer. */
   2699 	sc->sc_rxptr = i;
   2700 
   2701 	DPRINTF(WM_DEBUG_RX,
   2702 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   2703 }
   2704 
   2705 /*
   2706  * wm_linkintr:
   2707  *
   2708  *	Helper; handle link interrupts.
   2709  */
   2710 static void
   2711 wm_linkintr(struct wm_softc *sc, uint32_t icr)
   2712 {
   2713 	uint32_t status;
   2714 
   2715 	/*
   2716 	 * If we get a link status interrupt on a 1000BASE-T
   2717 	 * device, just fall into the normal MII tick path.
   2718 	 */
   2719 	if (sc->sc_flags & WM_F_HAS_MII) {
   2720 		if (icr & ICR_LSC) {
   2721 			DPRINTF(WM_DEBUG_LINK,
   2722 			    ("%s: LINK: LSC -> mii_tick\n",
   2723 			    sc->sc_dev.dv_xname));
   2724 			mii_tick(&sc->sc_mii);
   2725 		} else if (icr & ICR_RXSEQ) {
   2726 			DPRINTF(WM_DEBUG_LINK,
   2727 			    ("%s: LINK Receive sequence error\n",
   2728 			    sc->sc_dev.dv_xname));
   2729 		}
   2730 		return;
   2731 	}
   2732 
   2733 	/*
   2734 	 * If we are now receiving /C/, check for link again in
   2735 	 * a couple of link clock ticks.
   2736 	 */
   2737 	if (icr & ICR_RXCFG) {
   2738 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
   2739 		    sc->sc_dev.dv_xname));
   2740 		sc->sc_tbi_anstate = 2;
   2741 	}
   2742 
   2743 	if (icr & ICR_LSC) {
   2744 		status = CSR_READ(sc, WMREG_STATUS);
   2745 		if (status & STATUS_LU) {
   2746 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
   2747 			    sc->sc_dev.dv_xname,
   2748 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   2749 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2750 			sc->sc_fcrtl &= ~FCRTL_XONE;
   2751 			if (status & STATUS_FD)
   2752 				sc->sc_tctl |=
   2753 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2754 			else
   2755 				sc->sc_tctl |=
   2756 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2757 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   2758 				sc->sc_fcrtl |= FCRTL_XONE;
   2759 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2760 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   2761 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   2762 				      sc->sc_fcrtl);
   2763 			sc->sc_tbi_linkup = 1;
   2764 		} else {
   2765 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   2766 			    sc->sc_dev.dv_xname));
   2767 			sc->sc_tbi_linkup = 0;
   2768 		}
   2769 		sc->sc_tbi_anstate = 2;
   2770 		wm_tbi_set_linkled(sc);
   2771 	} else if (icr & ICR_RXSEQ) {
   2772 		DPRINTF(WM_DEBUG_LINK,
   2773 		    ("%s: LINK: Receive sequence error\n",
   2774 		    sc->sc_dev.dv_xname));
   2775 	}
   2776 }
   2777 
   2778 /*
   2779  * wm_tick:
   2780  *
   2781  *	One second timer, used to check link status, sweep up
   2782  *	completed transmit jobs, etc.
   2783  */
   2784 static void
   2785 wm_tick(void *arg)
   2786 {
   2787 	struct wm_softc *sc = arg;
   2788 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2789 	int s;
   2790 
   2791 	s = splnet();
   2792 
   2793 	if (sc->sc_type >= WM_T_82542_2_1) {
   2794 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
   2795 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
   2796 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
   2797 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
   2798 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
   2799 	}
   2800 
   2801 	ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
   2802 	ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
   2803 
   2804 
   2805 	if (sc->sc_flags & WM_F_HAS_MII)
   2806 		mii_tick(&sc->sc_mii);
   2807 	else
   2808 		wm_tbi_check_link(sc);
   2809 
   2810 	splx(s);
   2811 
   2812 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2813 }
   2814 
   2815 /*
   2816  * wm_reset:
   2817  *
   2818  *	Reset the i82542 chip.
   2819  */
   2820 static void
   2821 wm_reset(struct wm_softc *sc)
   2822 {
   2823 	uint32_t reg;
   2824 
   2825 	/*
   2826 	 * Allocate on-chip memory according to the MTU size.
   2827 	 * The Packet Buffer Allocation register must be written
   2828 	 * before the chip is reset.
   2829 	 */
   2830 	switch (sc->sc_type) {
   2831 	case WM_T_82547:
   2832 	case WM_T_82547_2:
   2833 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2834 		    PBA_22K : PBA_30K;
   2835 		sc->sc_txfifo_head = 0;
   2836 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
   2837 		sc->sc_txfifo_size =
   2838 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
   2839 		sc->sc_txfifo_stall = 0;
   2840 		break;
   2841 	case WM_T_82571:
   2842 	case WM_T_82572:
   2843 	case WM_T_80003:
   2844 		sc->sc_pba = PBA_32K;
   2845 		break;
   2846 	case WM_T_82573:
   2847 		sc->sc_pba = PBA_12K;
   2848 		break;
   2849 	case WM_T_ICH8:
   2850 		sc->sc_pba = PBA_8K;
   2851 		CSR_WRITE(sc, WMREG_PBS, PBA_16K);
   2852 		break;
   2853 	case WM_T_ICH9:
   2854 		sc->sc_pba = PBA_10K;
   2855 		break;
   2856 	default:
   2857 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2858 		    PBA_40K : PBA_48K;
   2859 		break;
   2860 	}
   2861 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
   2862 
   2863 	if (sc->sc_flags & WM_F_PCIE) {
   2864 		int timeout = 800;
   2865 
   2866 		sc->sc_ctrl |= CTRL_GIO_M_DIS;
   2867 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2868 
   2869 		while (timeout) {
   2870 			if ((CSR_READ(sc, WMREG_STATUS) & STATUS_GIO_M_ENA) == 0)
   2871 				break;
   2872 			delay(100);
   2873 		}
   2874 	}
   2875 
   2876 	/* clear interrupt */
   2877 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   2878 
   2879 	/*
   2880 	 * 82541 Errata 29? & 82547 Errata 28?
   2881 	 * See also the description about PHY_RST bit in CTRL register
   2882 	 * in 8254x_GBe_SDM.pdf.
   2883 	 */
   2884 	if ((sc->sc_type == WM_T_82541) || (sc->sc_type == WM_T_82547)) {
   2885 		CSR_WRITE(sc, WMREG_CTRL,
   2886 		    CSR_READ(sc, WMREG_CTRL) | CTRL_PHY_RESET);
   2887 		delay(5000);
   2888 	}
   2889 
   2890 	switch (sc->sc_type) {
   2891 	case WM_T_82544:
   2892 	case WM_T_82540:
   2893 	case WM_T_82545:
   2894 	case WM_T_82546:
   2895 	case WM_T_82541:
   2896 	case WM_T_82541_2:
   2897 		/*
   2898 		 * On some chipsets, a reset through a memory-mapped write
   2899 		 * cycle can cause the chip to reset before completing the
   2900 		 * write cycle.  This causes major headache that can be
   2901 		 * avoided by issuing the reset via indirect register writes
   2902 		 * through I/O space.
   2903 		 *
   2904 		 * So, if we successfully mapped the I/O BAR at attach time,
   2905 		 * use that.  Otherwise, try our luck with a memory-mapped
   2906 		 * reset.
   2907 		 */
   2908 		if (sc->sc_flags & WM_F_IOH_VALID)
   2909 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
   2910 		else
   2911 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2912 		break;
   2913 
   2914 	case WM_T_82545_3:
   2915 	case WM_T_82546_3:
   2916 		/* Use the shadow control register on these chips. */
   2917 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
   2918 		break;
   2919 
   2920 	case WM_T_ICH8:
   2921 	case WM_T_ICH9:
   2922 		wm_get_swfwhw_semaphore(sc);
   2923 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST | CTRL_PHY_RESET);
   2924 		delay(10000);
   2925 
   2926 	default:
   2927 		/* Everything else can safely use the documented method. */
   2928 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2929 		break;
   2930 	}
   2931 	delay(10000);
   2932 
   2933 	/* reload EEPROM */
   2934 	switch(sc->sc_type) {
   2935 	case WM_T_82542_2_0:
   2936 	case WM_T_82542_2_1:
   2937 	case WM_T_82543:
   2938 	case WM_T_82544:
   2939 		delay(10);
   2940 		reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
   2941 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   2942 		delay(2000);
   2943 		break;
   2944 	case WM_T_82541:
   2945 	case WM_T_82541_2:
   2946 	case WM_T_82547:
   2947 	case WM_T_82547_2:
   2948 		delay(20000);
   2949 		break;
   2950 	case WM_T_82573:
   2951 		if (sc->sc_flags & WM_F_EEPROM_FLASH) {
   2952 			delay(10);
   2953 			reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
   2954 			CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   2955 		}
   2956 		/* FALLTHROUGH */
   2957 	default:
   2958 		/* check EECD_EE_AUTORD */
   2959 		wm_get_auto_rd_done(sc);
   2960 	}
   2961 
   2962 #if 0
   2963 	for (i = 0; i < 1000; i++) {
   2964 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0) {
   2965 			return;
   2966 		}
   2967 		delay(20);
   2968 	}
   2969 
   2970 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
   2971 		log(LOG_ERR, "%s: reset failed to complete\n",
   2972 		    sc->sc_dev.dv_xname);
   2973 #endif
   2974 }
   2975 
   2976 /*
   2977  * wm_init:		[ifnet interface function]
   2978  *
   2979  *	Initialize the interface.  Must be called at splnet().
   2980  */
   2981 static int
   2982 wm_init(struct ifnet *ifp)
   2983 {
   2984 	struct wm_softc *sc = ifp->if_softc;
   2985 	struct wm_rxsoft *rxs;
   2986 	int i, error = 0;
   2987 	uint32_t reg;
   2988 
   2989 	/*
   2990 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   2991 	 * There is a small but measurable benefit to avoiding the adjusment
   2992 	 * of the descriptor so that the headers are aligned, for normal mtu,
   2993 	 * on such platforms.  One possibility is that the DMA itself is
   2994 	 * slightly more efficient if the front of the entire packet (instead
   2995 	 * of the front of the headers) is aligned.
   2996 	 *
   2997 	 * Note we must always set align_tweak to 0 if we are using
   2998 	 * jumbo frames.
   2999 	 */
   3000 #ifdef __NO_STRICT_ALIGNMENT
   3001 	sc->sc_align_tweak = 0;
   3002 #else
   3003 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   3004 		sc->sc_align_tweak = 0;
   3005 	else
   3006 		sc->sc_align_tweak = 2;
   3007 #endif /* __NO_STRICT_ALIGNMENT */
   3008 
   3009 	/* Cancel any pending I/O. */
   3010 	wm_stop(ifp, 0);
   3011 
   3012 	/* update statistics before reset */
   3013 	ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
   3014 	ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
   3015 
   3016 	/* Reset the chip to a known state. */
   3017 	wm_reset(sc);
   3018 
   3019 	/* Initialize the transmit descriptor ring. */
   3020 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
   3021 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
   3022 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3023 	sc->sc_txfree = WM_NTXDESC(sc);
   3024 	sc->sc_txnext = 0;
   3025 
   3026 	if (sc->sc_type < WM_T_82543) {
   3027 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
   3028 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
   3029 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
   3030 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
   3031 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
   3032 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
   3033 	} else {
   3034 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
   3035 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
   3036 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
   3037 		CSR_WRITE(sc, WMREG_TDH, 0);
   3038 		CSR_WRITE(sc, WMREG_TDT, 0);
   3039 		CSR_WRITE(sc, WMREG_TIDV, 375);		/* ITR / 4 */
   3040 		CSR_WRITE(sc, WMREG_TADV, 375);		/* should be same */
   3041 
   3042 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
   3043 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   3044 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
   3045 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
   3046 	}
   3047 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
   3048 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
   3049 
   3050 	/* Initialize the transmit job descriptors. */
   3051 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
   3052 		sc->sc_txsoft[i].txs_mbuf = NULL;
   3053 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
   3054 	sc->sc_txsnext = 0;
   3055 	sc->sc_txsdirty = 0;
   3056 
   3057 	/*
   3058 	 * Initialize the receive descriptor and receive job
   3059 	 * descriptor rings.
   3060 	 */
   3061 	if (sc->sc_type < WM_T_82543) {
   3062 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
   3063 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
   3064 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
   3065 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
   3066 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
   3067 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
   3068 
   3069 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
   3070 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
   3071 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
   3072 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
   3073 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
   3074 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
   3075 	} else {
   3076 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
   3077 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
   3078 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
   3079 		CSR_WRITE(sc, WMREG_RDH, 0);
   3080 		CSR_WRITE(sc, WMREG_RDT, 0);
   3081 		CSR_WRITE(sc, WMREG_RDTR, 375 | RDTR_FPD);	/* ITR/4 */
   3082 		CSR_WRITE(sc, WMREG_RADV, 375);		/* MUST be same */
   3083 	}
   3084 	for (i = 0; i < WM_NRXDESC; i++) {
   3085 		rxs = &sc->sc_rxsoft[i];
   3086 		if (rxs->rxs_mbuf == NULL) {
   3087 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
   3088 				log(LOG_ERR, "%s: unable to allocate or map rx "
   3089 				    "buffer %d, error = %d\n",
   3090 				    sc->sc_dev.dv_xname, i, error);
   3091 				/*
   3092 				 * XXX Should attempt to run with fewer receive
   3093 				 * XXX buffers instead of just failing.
   3094 				 */
   3095 				wm_rxdrain(sc);
   3096 				goto out;
   3097 			}
   3098 		} else
   3099 			WM_INIT_RXDESC(sc, i);
   3100 	}
   3101 	sc->sc_rxptr = 0;
   3102 	sc->sc_rxdiscard = 0;
   3103 	WM_RXCHAIN_RESET(sc);
   3104 
   3105 	/*
   3106 	 * Clear out the VLAN table -- we don't use it (yet).
   3107 	 */
   3108 	CSR_WRITE(sc, WMREG_VET, 0);
   3109 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
   3110 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
   3111 
   3112 	/*
   3113 	 * Set up flow-control parameters.
   3114 	 *
   3115 	 * XXX Values could probably stand some tuning.
   3116 	 */
   3117 	if (sc->sc_type != WM_T_ICH8) {
   3118 		CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
   3119 		CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
   3120 		CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
   3121 	}
   3122 
   3123 	sc->sc_fcrtl = FCRTL_DFLT;
   3124 	if (sc->sc_type < WM_T_82543) {
   3125 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
   3126 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
   3127 	} else {
   3128 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
   3129 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
   3130 	}
   3131 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
   3132 
   3133 #if 0 /* XXXJRT */
   3134 	/* Deal with VLAN enables. */
   3135 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   3136 		sc->sc_ctrl |= CTRL_VME;
   3137 	else
   3138 #endif /* XXXJRT */
   3139 		sc->sc_ctrl &= ~CTRL_VME;
   3140 
   3141 	/* Write the control registers. */
   3142 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3143 	if (sc->sc_type >= WM_T_80003 && (sc->sc_flags & WM_F_HAS_MII)) {
   3144 		int val;
   3145 		val = CSR_READ(sc, WMREG_CTRL_EXT);
   3146 		val &= ~CTRL_EXT_LINK_MODE_MASK;
   3147 		CSR_WRITE(sc, WMREG_CTRL_EXT, val);
   3148 
   3149 		/* Bypass RX and TX FIFO's */
   3150 		wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL,
   3151 		    KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
   3152 		    KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
   3153 
   3154 		wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL,
   3155 		    KUMCTRLSTA_INB_CTRL_DIS_PADDING |
   3156 		    KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT);
   3157 		/*
   3158 		 * Set the mac to wait the maximum time between each
   3159 		 * iteration and increase the max iterations when
   3160 		 * polling the phy; this fixes erroneous timeouts at 10Mbps.
   3161 		 */
   3162 		wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS, 0xFFFF);
   3163 		val = wm_kmrn_i80003_readreg(sc, KUMCTRLSTA_OFFSET_INB_PARAM);
   3164 		val |= 0x3F;
   3165 		wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_INB_PARAM, val);
   3166 	}
   3167 #if 0
   3168 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   3169 #endif
   3170 
   3171 	/*
   3172 	 * Set up checksum offload parameters.
   3173 	 */
   3174 	reg = CSR_READ(sc, WMREG_RXCSUM);
   3175 	reg &= ~(RXCSUM_IPOFL | RXCSUM_IPV6OFL | RXCSUM_TUOFL);
   3176 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   3177 		reg |= RXCSUM_IPOFL;
   3178 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   3179 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   3180 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
   3181 		reg |= RXCSUM_IPV6OFL | RXCSUM_TUOFL;
   3182 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
   3183 
   3184 	/*
   3185 	 * Set up the interrupt registers.
   3186 	 */
   3187 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   3188 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   3189 	    ICR_RXO | ICR_RXT0;
   3190 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
   3191 		sc->sc_icr |= ICR_RXCFG;
   3192 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
   3193 
   3194 	/* Set up the inter-packet gap. */
   3195 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   3196 
   3197 	if (sc->sc_type >= WM_T_82543) {
   3198 		/*
   3199 		 * Set up the interrupt throttling register (units of 256ns)
   3200 		 * Note that a footnote in Intel's documentation says this
   3201 		 * ticker runs at 1/4 the rate when the chip is in 100Mbit
   3202 		 * or 10Mbit mode.  Empirically, it appears to be the case
   3203 		 * that that is also true for the 1024ns units of the other
   3204 		 * interrupt-related timer registers -- so, really, we ought
   3205 		 * to divide this value by 4 when the link speed is low.
   3206 		 *
   3207 		 * XXX implement this division at link speed change!
   3208 		 */
   3209 		sc->sc_itr = 1000000000 / (1500 * 256);	/* 2604 ints/sec */
   3210 		CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
   3211 	}
   3212 
   3213 #if 0 /* XXXJRT */
   3214 	/* Set the VLAN ethernetype. */
   3215 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
   3216 #endif
   3217 
   3218 	/*
   3219 	 * Set up the transmit control register; we start out with
   3220 	 * a collision distance suitable for FDX, but update it whe
   3221 	 * we resolve the media type.
   3222 	 */
   3223 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
   3224 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3225 	if (sc->sc_type >= WM_T_82571)
   3226 		sc->sc_tctl |= TCTL_MULR;
   3227 	if (sc->sc_type >= WM_T_80003)
   3228 		sc->sc_tctl |= TCTL_RTLC;
   3229 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3230 
   3231 	/* Set the media. */
   3232 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
   3233 
   3234 	/*
   3235 	 * Set up the receive control register; we actually program
   3236 	 * the register when we set the receive filter.  Use multicast
   3237 	 * address offset type 0.
   3238 	 *
   3239 	 * Only the i82544 has the ability to strip the incoming
   3240 	 * CRC, so we don't enable that feature.
   3241 	 */
   3242 	sc->sc_mchash_type = 0;
   3243 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
   3244 	    | RCTL_MO(sc->sc_mchash_type);
   3245 
   3246 	/* 82573 doesn't support jumbo frame */
   3247 	if (sc->sc_type != WM_T_82573 && sc->sc_type != WM_T_ICH8)
   3248 		sc->sc_rctl |= RCTL_LPE;
   3249 
   3250 	if (MCLBYTES == 2048) {
   3251 		sc->sc_rctl |= RCTL_2k;
   3252 	} else {
   3253 		if (sc->sc_type >= WM_T_82543) {
   3254 			switch(MCLBYTES) {
   3255 			case 4096:
   3256 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
   3257 				break;
   3258 			case 8192:
   3259 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
   3260 				break;
   3261 			case 16384:
   3262 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
   3263 				break;
   3264 			default:
   3265 				panic("wm_init: MCLBYTES %d unsupported",
   3266 				    MCLBYTES);
   3267 				break;
   3268 			}
   3269 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
   3270 	}
   3271 
   3272 	/* Set the receive filter. */
   3273 	wm_set_filter(sc);
   3274 
   3275 	/* Start the one second link check clock. */
   3276 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   3277 
   3278 	/* ...all done! */
   3279 	ifp->if_flags |= IFF_RUNNING;
   3280 	ifp->if_flags &= ~IFF_OACTIVE;
   3281 
   3282  out:
   3283 	if (error)
   3284 		log(LOG_ERR, "%s: interface not running\n",
   3285 		    sc->sc_dev.dv_xname);
   3286 	return (error);
   3287 }
   3288 
   3289 /*
   3290  * wm_rxdrain:
   3291  *
   3292  *	Drain the receive queue.
   3293  */
   3294 static void
   3295 wm_rxdrain(struct wm_softc *sc)
   3296 {
   3297 	struct wm_rxsoft *rxs;
   3298 	int i;
   3299 
   3300 	for (i = 0; i < WM_NRXDESC; i++) {
   3301 		rxs = &sc->sc_rxsoft[i];
   3302 		if (rxs->rxs_mbuf != NULL) {
   3303 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3304 			m_freem(rxs->rxs_mbuf);
   3305 			rxs->rxs_mbuf = NULL;
   3306 		}
   3307 	}
   3308 }
   3309 
   3310 /*
   3311  * wm_stop:		[ifnet interface function]
   3312  *
   3313  *	Stop transmission on the interface.
   3314  */
   3315 static void
   3316 wm_stop(struct ifnet *ifp, int disable)
   3317 {
   3318 	struct wm_softc *sc = ifp->if_softc;
   3319 	struct wm_txsoft *txs;
   3320 	int i;
   3321 
   3322 	/* Stop the one second clock. */
   3323 	callout_stop(&sc->sc_tick_ch);
   3324 
   3325 	/* Stop the 82547 Tx FIFO stall check timer. */
   3326 	if (sc->sc_type == WM_T_82547)
   3327 		callout_stop(&sc->sc_txfifo_ch);
   3328 
   3329 	if (sc->sc_flags & WM_F_HAS_MII) {
   3330 		/* Down the MII. */
   3331 		mii_down(&sc->sc_mii);
   3332 	}
   3333 
   3334 	/* Stop the transmit and receive processes. */
   3335 	CSR_WRITE(sc, WMREG_TCTL, 0);
   3336 	CSR_WRITE(sc, WMREG_RCTL, 0);
   3337 
   3338 	/*
   3339 	 * Clear the interrupt mask to ensure the device cannot assert its
   3340 	 * interrupt line.
   3341 	 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
   3342 	 * any currently pending or shared interrupt.
   3343 	 */
   3344 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   3345 	sc->sc_icr = 0;
   3346 
   3347 	/* Release any queued transmit buffers. */
   3348 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   3349 		txs = &sc->sc_txsoft[i];
   3350 		if (txs->txs_mbuf != NULL) {
   3351 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   3352 			m_freem(txs->txs_mbuf);
   3353 			txs->txs_mbuf = NULL;
   3354 		}
   3355 	}
   3356 
   3357 	if (disable)
   3358 		wm_rxdrain(sc);
   3359 
   3360 	/* Mark the interface as down and cancel the watchdog timer. */
   3361 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3362 	ifp->if_timer = 0;
   3363 }
   3364 
   3365 void
   3366 wm_get_auto_rd_done(struct wm_softc *sc)
   3367 {
   3368 	int i;
   3369 
   3370 	/* wait for eeprom to reload */
   3371 	switch (sc->sc_type) {
   3372 	case WM_T_82571:
   3373 	case WM_T_82572:
   3374 	case WM_T_82573:
   3375 	case WM_T_80003:
   3376 	case WM_T_ICH8:
   3377 	case WM_T_ICH9:
   3378 		for (i = 10; i > 0; i--) {
   3379 			if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD)
   3380 				break;
   3381 			delay(1000);
   3382 		}
   3383 		if (i == 0) {
   3384 			log(LOG_ERR, "%s: auto read from eeprom failed to "
   3385 			    "complete\n", sc->sc_dev.dv_xname);
   3386 		}
   3387 		break;
   3388 	default:
   3389 		delay(5000);
   3390 		break;
   3391 	}
   3392 
   3393 	/* Phy configuration starts after EECD_AUTO_RD is set */
   3394 	if (sc->sc_type == WM_T_82573)
   3395 		delay(25000);
   3396 }
   3397 
   3398 /*
   3399  * wm_acquire_eeprom:
   3400  *
   3401  *	Perform the EEPROM handshake required on some chips.
   3402  */
   3403 static int
   3404 wm_acquire_eeprom(struct wm_softc *sc)
   3405 {
   3406 	uint32_t reg;
   3407 	int x;
   3408 	int ret = 0;
   3409 
   3410 	/* always success */
   3411 	if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
   3412 		return 0;
   3413 
   3414 	if (sc->sc_flags & WM_F_SWFWHW_SYNC) {
   3415 		ret = wm_get_swfwhw_semaphore(sc);
   3416 	} else if (sc->sc_flags & WM_F_SWFW_SYNC) {
   3417 		/* this will also do wm_get_swsm_semaphore() if needed */
   3418 		ret = wm_get_swfw_semaphore(sc, SWFW_EEP_SM);
   3419 	} else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
   3420 		ret = wm_get_swsm_semaphore(sc);
   3421 	}
   3422 
   3423 	if (ret)
   3424 		return 1;
   3425 
   3426 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
   3427 		reg = CSR_READ(sc, WMREG_EECD);
   3428 
   3429 		/* Request EEPROM access. */
   3430 		reg |= EECD_EE_REQ;
   3431 		CSR_WRITE(sc, WMREG_EECD, reg);
   3432 
   3433 		/* ..and wait for it to be granted. */
   3434 		for (x = 0; x < 1000; x++) {
   3435 			reg = CSR_READ(sc, WMREG_EECD);
   3436 			if (reg & EECD_EE_GNT)
   3437 				break;
   3438 			delay(5);
   3439 		}
   3440 		if ((reg & EECD_EE_GNT) == 0) {
   3441 			aprint_error("%s: could not acquire EEPROM GNT\n",
   3442 			    sc->sc_dev.dv_xname);
   3443 			reg &= ~EECD_EE_REQ;
   3444 			CSR_WRITE(sc, WMREG_EECD, reg);
   3445 			if (sc->sc_flags & WM_F_SWFWHW_SYNC)
   3446 				wm_put_swfwhw_semaphore(sc);
   3447 			if (sc->sc_flags & WM_F_SWFW_SYNC)
   3448 				wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
   3449 			else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   3450 				wm_put_swsm_semaphore(sc);
   3451 			return (1);
   3452 		}
   3453 	}
   3454 
   3455 	return (0);
   3456 }
   3457 
   3458 /*
   3459  * wm_release_eeprom:
   3460  *
   3461  *	Release the EEPROM mutex.
   3462  */
   3463 static void
   3464 wm_release_eeprom(struct wm_softc *sc)
   3465 {
   3466 	uint32_t reg;
   3467 
   3468 	/* always success */
   3469 	if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
   3470 		return;
   3471 
   3472 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
   3473 		reg = CSR_READ(sc, WMREG_EECD);
   3474 		reg &= ~EECD_EE_REQ;
   3475 		CSR_WRITE(sc, WMREG_EECD, reg);
   3476 	}
   3477 
   3478 	if (sc->sc_flags & WM_F_SWFWHW_SYNC)
   3479 		wm_put_swfwhw_semaphore(sc);
   3480 	if (sc->sc_flags & WM_F_SWFW_SYNC)
   3481 		wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
   3482 	else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   3483 		wm_put_swsm_semaphore(sc);
   3484 }
   3485 
   3486 /*
   3487  * wm_eeprom_sendbits:
   3488  *
   3489  *	Send a series of bits to the EEPROM.
   3490  */
   3491 static void
   3492 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
   3493 {
   3494 	uint32_t reg;
   3495 	int x;
   3496 
   3497 	reg = CSR_READ(sc, WMREG_EECD);
   3498 
   3499 	for (x = nbits; x > 0; x--) {
   3500 		if (bits & (1U << (x - 1)))
   3501 			reg |= EECD_DI;
   3502 		else
   3503 			reg &= ~EECD_DI;
   3504 		CSR_WRITE(sc, WMREG_EECD, reg);
   3505 		delay(2);
   3506 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   3507 		delay(2);
   3508 		CSR_WRITE(sc, WMREG_EECD, reg);
   3509 		delay(2);
   3510 	}
   3511 }
   3512 
   3513 /*
   3514  * wm_eeprom_recvbits:
   3515  *
   3516  *	Receive a series of bits from the EEPROM.
   3517  */
   3518 static void
   3519 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
   3520 {
   3521 	uint32_t reg, val;
   3522 	int x;
   3523 
   3524 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
   3525 
   3526 	val = 0;
   3527 	for (x = nbits; x > 0; x--) {
   3528 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   3529 		delay(2);
   3530 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
   3531 			val |= (1U << (x - 1));
   3532 		CSR_WRITE(sc, WMREG_EECD, reg);
   3533 		delay(2);
   3534 	}
   3535 	*valp = val;
   3536 }
   3537 
   3538 /*
   3539  * wm_read_eeprom_uwire:
   3540  *
   3541  *	Read a word from the EEPROM using the MicroWire protocol.
   3542  */
   3543 static int
   3544 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3545 {
   3546 	uint32_t reg, val;
   3547 	int i;
   3548 
   3549 	for (i = 0; i < wordcnt; i++) {
   3550 		/* Clear SK and DI. */
   3551 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
   3552 		CSR_WRITE(sc, WMREG_EECD, reg);
   3553 
   3554 		/* Set CHIP SELECT. */
   3555 		reg |= EECD_CS;
   3556 		CSR_WRITE(sc, WMREG_EECD, reg);
   3557 		delay(2);
   3558 
   3559 		/* Shift in the READ command. */
   3560 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
   3561 
   3562 		/* Shift in address. */
   3563 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
   3564 
   3565 		/* Shift out the data. */
   3566 		wm_eeprom_recvbits(sc, &val, 16);
   3567 		data[i] = val & 0xffff;
   3568 
   3569 		/* Clear CHIP SELECT. */
   3570 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
   3571 		CSR_WRITE(sc, WMREG_EECD, reg);
   3572 		delay(2);
   3573 	}
   3574 
   3575 	return (0);
   3576 }
   3577 
   3578 /*
   3579  * wm_spi_eeprom_ready:
   3580  *
   3581  *	Wait for a SPI EEPROM to be ready for commands.
   3582  */
   3583 static int
   3584 wm_spi_eeprom_ready(struct wm_softc *sc)
   3585 {
   3586 	uint32_t val;
   3587 	int usec;
   3588 
   3589 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
   3590 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
   3591 		wm_eeprom_recvbits(sc, &val, 8);
   3592 		if ((val & SPI_SR_RDY) == 0)
   3593 			break;
   3594 	}
   3595 	if (usec >= SPI_MAX_RETRIES) {
   3596 		aprint_error("%s: EEPROM failed to become ready\n",
   3597 		    sc->sc_dev.dv_xname);
   3598 		return (1);
   3599 	}
   3600 	return (0);
   3601 }
   3602 
   3603 /*
   3604  * wm_read_eeprom_spi:
   3605  *
   3606  *	Read a work from the EEPROM using the SPI protocol.
   3607  */
   3608 static int
   3609 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3610 {
   3611 	uint32_t reg, val;
   3612 	int i;
   3613 	uint8_t opc;
   3614 
   3615 	/* Clear SK and CS. */
   3616 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
   3617 	CSR_WRITE(sc, WMREG_EECD, reg);
   3618 	delay(2);
   3619 
   3620 	if (wm_spi_eeprom_ready(sc))
   3621 		return (1);
   3622 
   3623 	/* Toggle CS to flush commands. */
   3624 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
   3625 	delay(2);
   3626 	CSR_WRITE(sc, WMREG_EECD, reg);
   3627 	delay(2);
   3628 
   3629 	opc = SPI_OPC_READ;
   3630 	if (sc->sc_ee_addrbits == 8 && word >= 128)
   3631 		opc |= SPI_OPC_A8;
   3632 
   3633 	wm_eeprom_sendbits(sc, opc, 8);
   3634 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
   3635 
   3636 	for (i = 0; i < wordcnt; i++) {
   3637 		wm_eeprom_recvbits(sc, &val, 16);
   3638 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
   3639 	}
   3640 
   3641 	/* Raise CS and clear SK. */
   3642 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
   3643 	CSR_WRITE(sc, WMREG_EECD, reg);
   3644 	delay(2);
   3645 
   3646 	return (0);
   3647 }
   3648 
   3649 #define EEPROM_CHECKSUM		0xBABA
   3650 #define EEPROM_SIZE		0x0040
   3651 
   3652 /*
   3653  * wm_validate_eeprom_checksum
   3654  *
   3655  * The checksum is defined as the sum of the first 64 (16 bit) words.
   3656  */
   3657 static int
   3658 wm_validate_eeprom_checksum(struct wm_softc *sc)
   3659 {
   3660 	uint16_t checksum;
   3661 	uint16_t eeprom_data;
   3662 	int i;
   3663 
   3664 	checksum = 0;
   3665 
   3666 	for (i = 0; i < EEPROM_SIZE; i++) {
   3667 		if (wm_read_eeprom(sc, i, 1, &eeprom_data))
   3668 			return 1;
   3669 		checksum += eeprom_data;
   3670 	}
   3671 
   3672 	if (checksum != (uint16_t) EEPROM_CHECKSUM)
   3673 		return 1;
   3674 
   3675 	return 0;
   3676 }
   3677 
   3678 /*
   3679  * wm_read_eeprom:
   3680  *
   3681  *	Read data from the serial EEPROM.
   3682  */
   3683 static int
   3684 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3685 {
   3686 	int rv;
   3687 
   3688 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
   3689 		return 1;
   3690 
   3691 	if (wm_acquire_eeprom(sc))
   3692 		return 1;
   3693 
   3694 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9))
   3695 		rv = wm_read_eeprom_ich8(sc, word, wordcnt, data);
   3696 	else if (sc->sc_flags & WM_F_EEPROM_EERDEEWR)
   3697 		rv = wm_read_eeprom_eerd(sc, word, wordcnt, data);
   3698 	else if (sc->sc_flags & WM_F_EEPROM_SPI)
   3699 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
   3700 	else
   3701 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
   3702 
   3703 	wm_release_eeprom(sc);
   3704 	return rv;
   3705 }
   3706 
   3707 static int
   3708 wm_read_eeprom_eerd(struct wm_softc *sc, int offset, int wordcnt,
   3709     uint16_t *data)
   3710 {
   3711 	int i, eerd = 0;
   3712 	int error = 0;
   3713 
   3714 	for (i = 0; i < wordcnt; i++) {
   3715 		eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
   3716 
   3717 		CSR_WRITE(sc, WMREG_EERD, eerd);
   3718 		error = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
   3719 		if (error != 0)
   3720 			break;
   3721 
   3722 		data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
   3723 	}
   3724 
   3725 	return error;
   3726 }
   3727 
   3728 static int
   3729 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
   3730 {
   3731 	uint32_t attempts = 100000;
   3732 	uint32_t i, reg = 0;
   3733 	int32_t done = -1;
   3734 
   3735 	for (i = 0; i < attempts; i++) {
   3736 		reg = CSR_READ(sc, rw);
   3737 
   3738 		if (reg & EERD_DONE) {
   3739 			done = 0;
   3740 			break;
   3741 		}
   3742 		delay(5);
   3743 	}
   3744 
   3745 	return done;
   3746 }
   3747 
   3748 /*
   3749  * wm_add_rxbuf:
   3750  *
   3751  *	Add a receive buffer to the indiciated descriptor.
   3752  */
   3753 static int
   3754 wm_add_rxbuf(struct wm_softc *sc, int idx)
   3755 {
   3756 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
   3757 	struct mbuf *m;
   3758 	int error;
   3759 
   3760 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3761 	if (m == NULL)
   3762 		return (ENOBUFS);
   3763 
   3764 	MCLGET(m, M_DONTWAIT);
   3765 	if ((m->m_flags & M_EXT) == 0) {
   3766 		m_freem(m);
   3767 		return (ENOBUFS);
   3768 	}
   3769 
   3770 	if (rxs->rxs_mbuf != NULL)
   3771 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3772 
   3773 	rxs->rxs_mbuf = m;
   3774 
   3775 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   3776 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   3777 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   3778 	if (error) {
   3779 		/* XXX XXX XXX */
   3780 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   3781 		    sc->sc_dev.dv_xname, idx, error);
   3782 		panic("wm_add_rxbuf");
   3783 	}
   3784 
   3785 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3786 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3787 
   3788 	WM_INIT_RXDESC(sc, idx);
   3789 
   3790 	return (0);
   3791 }
   3792 
   3793 /*
   3794  * wm_set_ral:
   3795  *
   3796  *	Set an entery in the receive address list.
   3797  */
   3798 static void
   3799 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
   3800 {
   3801 	uint32_t ral_lo, ral_hi;
   3802 
   3803 	if (enaddr != NULL) {
   3804 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   3805 		    (enaddr[3] << 24);
   3806 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   3807 		ral_hi |= RAL_AV;
   3808 	} else {
   3809 		ral_lo = 0;
   3810 		ral_hi = 0;
   3811 	}
   3812 
   3813 	if (sc->sc_type >= WM_T_82544) {
   3814 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
   3815 		    ral_lo);
   3816 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
   3817 		    ral_hi);
   3818 	} else {
   3819 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
   3820 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
   3821 	}
   3822 }
   3823 
   3824 /*
   3825  * wm_mchash:
   3826  *
   3827  *	Compute the hash of the multicast address for the 4096-bit
   3828  *	multicast filter.
   3829  */
   3830 static uint32_t
   3831 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
   3832 {
   3833 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   3834 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   3835 	static const int ich8_lo_shift[4] = { 6, 5, 4, 2 };
   3836 	static const int ich8_hi_shift[4] = { 2, 3, 4, 6 };
   3837 	uint32_t hash;
   3838 
   3839 	if (sc->sc_type == WM_T_ICH8) {
   3840 		hash = (enaddr[4] >> ich8_lo_shift[sc->sc_mchash_type]) |
   3841 		    (((uint16_t) enaddr[5]) << ich8_hi_shift[sc->sc_mchash_type]);
   3842 		return (hash & 0x3ff);
   3843 	}
   3844 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   3845 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   3846 
   3847 	return (hash & 0xfff);
   3848 }
   3849 
   3850 /*
   3851  * wm_set_filter:
   3852  *
   3853  *	Set up the receive filter.
   3854  */
   3855 static void
   3856 wm_set_filter(struct wm_softc *sc)
   3857 {
   3858 	struct ethercom *ec = &sc->sc_ethercom;
   3859 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3860 	struct ether_multi *enm;
   3861 	struct ether_multistep step;
   3862 	bus_addr_t mta_reg;
   3863 	uint32_t hash, reg, bit;
   3864 	int i, size;
   3865 
   3866 	if (sc->sc_type >= WM_T_82544)
   3867 		mta_reg = WMREG_CORDOVA_MTA;
   3868 	else
   3869 		mta_reg = WMREG_MTA;
   3870 
   3871 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   3872 
   3873 	if (ifp->if_flags & IFF_BROADCAST)
   3874 		sc->sc_rctl |= RCTL_BAM;
   3875 	if (ifp->if_flags & IFF_PROMISC) {
   3876 		sc->sc_rctl |= RCTL_UPE;
   3877 		goto allmulti;
   3878 	}
   3879 
   3880 	/*
   3881 	 * Set the station address in the first RAL slot, and
   3882 	 * clear the remaining slots.
   3883 	 */
   3884 	if (sc->sc_type == WM_T_ICH8)
   3885 		size = WM_ICH8_RAL_TABSIZE;
   3886 	else
   3887 		size = WM_RAL_TABSIZE;
   3888 	wm_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
   3889 	for (i = 1; i < size; i++)
   3890 		wm_set_ral(sc, NULL, i);
   3891 
   3892 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9))
   3893 		size = WM_ICH8_MC_TABSIZE;
   3894 	else
   3895 		size = WM_MC_TABSIZE;
   3896 	/* Clear out the multicast table. */
   3897 	for (i = 0; i < size; i++)
   3898 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
   3899 
   3900 	ETHER_FIRST_MULTI(step, ec, enm);
   3901 	while (enm != NULL) {
   3902 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3903 			/*
   3904 			 * We must listen to a range of multicast addresses.
   3905 			 * For now, just accept all multicasts, rather than
   3906 			 * trying to set only those filter bits needed to match
   3907 			 * the range.  (At this time, the only use of address
   3908 			 * ranges is for IP multicast routing, for which the
   3909 			 * range is big enough to require all bits set.)
   3910 			 */
   3911 			goto allmulti;
   3912 		}
   3913 
   3914 		hash = wm_mchash(sc, enm->enm_addrlo);
   3915 
   3916 		reg = (hash >> 5);
   3917 		if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9))
   3918 			reg &= 0x1f;
   3919 		else
   3920 			reg &= 0x7f;
   3921 		bit = hash & 0x1f;
   3922 
   3923 		hash = CSR_READ(sc, mta_reg + (reg << 2));
   3924 		hash |= 1U << bit;
   3925 
   3926 		/* XXX Hardware bug?? */
   3927 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
   3928 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
   3929 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3930 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
   3931 		} else
   3932 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3933 
   3934 		ETHER_NEXT_MULTI(step, enm);
   3935 	}
   3936 
   3937 	ifp->if_flags &= ~IFF_ALLMULTI;
   3938 	goto setit;
   3939 
   3940  allmulti:
   3941 	ifp->if_flags |= IFF_ALLMULTI;
   3942 	sc->sc_rctl |= RCTL_MPE;
   3943 
   3944  setit:
   3945 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
   3946 }
   3947 
   3948 /*
   3949  * wm_tbi_mediainit:
   3950  *
   3951  *	Initialize media for use on 1000BASE-X devices.
   3952  */
   3953 static void
   3954 wm_tbi_mediainit(struct wm_softc *sc)
   3955 {
   3956 	const char *sep = "";
   3957 
   3958 	if (sc->sc_type < WM_T_82543)
   3959 		sc->sc_tipg = TIPG_WM_DFLT;
   3960 	else
   3961 		sc->sc_tipg = TIPG_LG_DFLT;
   3962 
   3963 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
   3964 	    wm_tbi_mediastatus);
   3965 
   3966 	/*
   3967 	 * SWD Pins:
   3968 	 *
   3969 	 *	0 = Link LED (output)
   3970 	 *	1 = Loss Of Signal (input)
   3971 	 */
   3972 	sc->sc_ctrl |= CTRL_SWDPIO(0);
   3973 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
   3974 
   3975 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3976 
   3977 #define	ADD(ss, mm, dd)							\
   3978 do {									\
   3979 	aprint_normal("%s%s", sep, ss);					\
   3980 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
   3981 	sep = ", ";							\
   3982 } while (/*CONSTCOND*/0)
   3983 
   3984 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
   3985 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
   3986 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
   3987 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
   3988 	aprint_normal("\n");
   3989 
   3990 #undef ADD
   3991 
   3992 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   3993 }
   3994 
   3995 /*
   3996  * wm_tbi_mediastatus:	[ifmedia interface function]
   3997  *
   3998  *	Get the current interface media status on a 1000BASE-X device.
   3999  */
   4000 static void
   4001 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   4002 {
   4003 	struct wm_softc *sc = ifp->if_softc;
   4004 	uint32_t ctrl;
   4005 
   4006 	ifmr->ifm_status = IFM_AVALID;
   4007 	ifmr->ifm_active = IFM_ETHER;
   4008 
   4009 	if (sc->sc_tbi_linkup == 0) {
   4010 		ifmr->ifm_active |= IFM_NONE;
   4011 		return;
   4012 	}
   4013 
   4014 	ifmr->ifm_status |= IFM_ACTIVE;
   4015 	ifmr->ifm_active |= IFM_1000_SX;
   4016 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
   4017 		ifmr->ifm_active |= IFM_FDX;
   4018 	ctrl = CSR_READ(sc, WMREG_CTRL);
   4019 	if (ctrl & CTRL_RFCE)
   4020 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   4021 	if (ctrl & CTRL_TFCE)
   4022 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   4023 }
   4024 
   4025 /*
   4026  * wm_tbi_mediachange:	[ifmedia interface function]
   4027  *
   4028  *	Set hardware to newly-selected media on a 1000BASE-X device.
   4029  */
   4030 static int
   4031 wm_tbi_mediachange(struct ifnet *ifp)
   4032 {
   4033 	struct wm_softc *sc = ifp->if_softc;
   4034 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   4035 	uint32_t status;
   4036 	int i;
   4037 
   4038 	sc->sc_txcw = ife->ifm_data;
   4039 	DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x on entry\n",
   4040 		    sc->sc_dev.dv_xname,sc->sc_txcw));
   4041 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
   4042 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
   4043 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
   4044 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
   4045 		sc->sc_txcw |= TXCW_ANE;
   4046 	} else {
   4047 		/*If autonegotiation is turned off, force link up and turn on full duplex*/
   4048 		sc->sc_txcw &= ~TXCW_ANE;
   4049 		sc->sc_ctrl |= CTRL_SLU | CTRL_FD;
   4050 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4051 		delay(1000);
   4052 	}
   4053 
   4054 	DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x after autoneg check\n",
   4055 		    sc->sc_dev.dv_xname,sc->sc_txcw));
   4056 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   4057 	delay(10000);
   4058 
   4059 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
   4060 
   4061 	sc->sc_tbi_anstate = 0;
   4062 
   4063 	i = CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1);
   4064 	DPRINTF(WM_DEBUG_LINK,("%s: i = 0x%x\n", sc->sc_dev.dv_xname,i));
   4065 
   4066 	/*
   4067 	 * On 82544 chips and later, the CTRL_SWDPIN(1) bit will be set if the
   4068 	 * optics detect a signal, 0 if they don't.
   4069 	 */
   4070 	if (((i != 0) && (sc->sc_type >= WM_T_82544)) || (i == 0)) {
   4071 		/* Have signal; wait for the link to come up. */
   4072 
   4073 		if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
   4074 			/*
   4075 			 * Reset the link, and let autonegotiation do its thing
   4076 			 */
   4077 			sc->sc_ctrl |= CTRL_LRST;
   4078 			CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4079 			delay(1000);
   4080 			sc->sc_ctrl &= ~CTRL_LRST;
   4081 			CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4082 			delay(1000);
   4083 		}
   4084 
   4085 		for (i = 0; i < 50; i++) {
   4086 			delay(10000);
   4087 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
   4088 				break;
   4089 		}
   4090 
   4091 		DPRINTF(WM_DEBUG_LINK,("%s: i = %d after waiting for link\n",
   4092 			    sc->sc_dev.dv_xname,i));
   4093 
   4094 		status = CSR_READ(sc, WMREG_STATUS);
   4095 		DPRINTF(WM_DEBUG_LINK,
   4096 		    ("%s: status after final read = 0x%x, STATUS_LU = 0x%x\n",
   4097 			sc->sc_dev.dv_xname,status, STATUS_LU));
   4098 		if (status & STATUS_LU) {
   4099 			/* Link is up. */
   4100 			DPRINTF(WM_DEBUG_LINK,
   4101 			    ("%s: LINK: set media -> link up %s\n",
   4102 			    sc->sc_dev.dv_xname,
   4103 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   4104 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   4105 			sc->sc_fcrtl &= ~FCRTL_XONE;
   4106 			if (status & STATUS_FD)
   4107 				sc->sc_tctl |=
   4108 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   4109 			else
   4110 				sc->sc_tctl |=
   4111 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   4112 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   4113 				sc->sc_fcrtl |= FCRTL_XONE;
   4114 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   4115 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   4116 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   4117 				      sc->sc_fcrtl);
   4118 			sc->sc_tbi_linkup = 1;
   4119 		} else {
   4120 			/* Link is down. */
   4121 			DPRINTF(WM_DEBUG_LINK,
   4122 			    ("%s: LINK: set media -> link down\n",
   4123 			    sc->sc_dev.dv_xname));
   4124 			sc->sc_tbi_linkup = 0;
   4125 		}
   4126 	} else {
   4127 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
   4128 		    sc->sc_dev.dv_xname));
   4129 		sc->sc_tbi_linkup = 0;
   4130 	}
   4131 
   4132 	wm_tbi_set_linkled(sc);
   4133 
   4134 	return (0);
   4135 }
   4136 
   4137 /*
   4138  * wm_tbi_set_linkled:
   4139  *
   4140  *	Update the link LED on 1000BASE-X devices.
   4141  */
   4142 static void
   4143 wm_tbi_set_linkled(struct wm_softc *sc)
   4144 {
   4145 
   4146 	if (sc->sc_tbi_linkup)
   4147 		sc->sc_ctrl |= CTRL_SWDPIN(0);
   4148 	else
   4149 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
   4150 
   4151 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4152 }
   4153 
   4154 /*
   4155  * wm_tbi_check_link:
   4156  *
   4157  *	Check the link on 1000BASE-X devices.
   4158  */
   4159 static void
   4160 wm_tbi_check_link(struct wm_softc *sc)
   4161 {
   4162 	uint32_t rxcw, ctrl, status;
   4163 
   4164 	if (sc->sc_tbi_anstate == 0)
   4165 		return;
   4166 	else if (sc->sc_tbi_anstate > 1) {
   4167 		DPRINTF(WM_DEBUG_LINK,
   4168 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
   4169 		    sc->sc_tbi_anstate));
   4170 		sc->sc_tbi_anstate--;
   4171 		return;
   4172 	}
   4173 
   4174 	sc->sc_tbi_anstate = 0;
   4175 
   4176 	rxcw = CSR_READ(sc, WMREG_RXCW);
   4177 	ctrl = CSR_READ(sc, WMREG_CTRL);
   4178 	status = CSR_READ(sc, WMREG_STATUS);
   4179 
   4180 	if ((status & STATUS_LU) == 0) {
   4181 		DPRINTF(WM_DEBUG_LINK,
   4182 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
   4183 		sc->sc_tbi_linkup = 0;
   4184 	} else {
   4185 		DPRINTF(WM_DEBUG_LINK,
   4186 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
   4187 		    (status & STATUS_FD) ? "FDX" : "HDX"));
   4188 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   4189 		sc->sc_fcrtl &= ~FCRTL_XONE;
   4190 		if (status & STATUS_FD)
   4191 			sc->sc_tctl |=
   4192 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   4193 		else
   4194 			sc->sc_tctl |=
   4195 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   4196 		if (ctrl & CTRL_TFCE)
   4197 			sc->sc_fcrtl |= FCRTL_XONE;
   4198 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   4199 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   4200 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
   4201 			      sc->sc_fcrtl);
   4202 		sc->sc_tbi_linkup = 1;
   4203 	}
   4204 
   4205 	wm_tbi_set_linkled(sc);
   4206 }
   4207 
   4208 /*
   4209  * wm_gmii_reset:
   4210  *
   4211  *	Reset the PHY.
   4212  */
   4213 static void
   4214 wm_gmii_reset(struct wm_softc *sc)
   4215 {
   4216 	uint32_t reg;
   4217 	int func = 0; /* XXX gcc */
   4218 
   4219 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)) {
   4220 		if (wm_get_swfwhw_semaphore(sc))
   4221 			return;
   4222 	}
   4223 	if (sc->sc_type == WM_T_80003) {
   4224 		func = (CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1;
   4225 		if (wm_get_swfw_semaphore(sc,
   4226 		    func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
   4227 			return;
   4228 	}
   4229 	if (sc->sc_type >= WM_T_82544) {
   4230 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   4231 		delay(20000);
   4232 
   4233 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4234 		delay(20000);
   4235 	} else {
   4236 		/*
   4237 		 * With 82543, we need to force speed and duplex on the MAC
   4238 		 * equal to what the PHY speed and duplex configuration is.
   4239 		 * In addition, we need to perform a hardware reset on the PHY
   4240 		 * to take it out of reset.
   4241 		 */
   4242 		sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
   4243 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4244 
   4245 		/* The PHY reset pin is active-low. */
   4246 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   4247 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
   4248 		    CTRL_EXT_SWDPIN(4));
   4249 		reg |= CTRL_EXT_SWDPIO(4);
   4250 
   4251 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   4252 		delay(10);
   4253 
   4254 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   4255 		delay(10000);
   4256 
   4257 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   4258 		delay(10);
   4259 #if 0
   4260 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
   4261 #endif
   4262 	}
   4263 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9))
   4264 		wm_put_swfwhw_semaphore(sc);
   4265 	if (sc->sc_type == WM_T_80003)
   4266 		wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
   4267 }
   4268 
   4269 /*
   4270  * wm_gmii_mediainit:
   4271  *
   4272  *	Initialize media for use on 1000BASE-T devices.
   4273  */
   4274 static void
   4275 wm_gmii_mediainit(struct wm_softc *sc)
   4276 {
   4277 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   4278 
   4279 	/* We have MII. */
   4280 	sc->sc_flags |= WM_F_HAS_MII;
   4281 
   4282 	if (sc->sc_type >= WM_T_80003)
   4283 		sc->sc_tipg =  TIPG_1000T_80003_DFLT;
   4284 	else
   4285 		sc->sc_tipg = TIPG_1000T_DFLT;
   4286 
   4287 	/*
   4288 	 * Let the chip set speed/duplex on its own based on
   4289 	 * signals from the PHY.
   4290 	 * XXXbouyer - I'm not sure this is right for the 80003,
   4291 	 * the em driver only sets CTRL_SLU here - but it seems to work.
   4292 	 */
   4293 	sc->sc_ctrl |= CTRL_SLU;
   4294 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4295 
   4296 	/* Initialize our media structures and probe the GMII. */
   4297 	sc->sc_mii.mii_ifp = ifp;
   4298 
   4299 	if (sc->sc_type >= WM_T_80003) {
   4300 		sc->sc_mii.mii_readreg = wm_gmii_i80003_readreg;
   4301 		sc->sc_mii.mii_writereg = wm_gmii_i80003_writereg;
   4302 	} else if (sc->sc_type >= WM_T_82544) {
   4303 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
   4304 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
   4305 	} else {
   4306 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
   4307 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
   4308 	}
   4309 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
   4310 
   4311 	wm_gmii_reset(sc);
   4312 
   4313 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
   4314 	    wm_gmii_mediastatus);
   4315 
   4316 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   4317 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
   4318 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   4319 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   4320 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   4321 	} else
   4322 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   4323 }
   4324 
   4325 /*
   4326  * wm_gmii_mediastatus:	[ifmedia interface function]
   4327  *
   4328  *	Get the current interface media status on a 1000BASE-T device.
   4329  */
   4330 static void
   4331 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   4332 {
   4333 	struct wm_softc *sc = ifp->if_softc;
   4334 
   4335 	mii_pollstat(&sc->sc_mii);
   4336 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   4337 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
   4338 			   sc->sc_flowflags;
   4339 }
   4340 
   4341 /*
   4342  * wm_gmii_mediachange:	[ifmedia interface function]
   4343  *
   4344  *	Set hardware to newly-selected media on a 1000BASE-T device.
   4345  */
   4346 static int
   4347 wm_gmii_mediachange(struct ifnet *ifp)
   4348 {
   4349 	struct wm_softc *sc = ifp->if_softc;
   4350 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   4351 
   4352 	if (ifp->if_flags & IFF_UP) {
   4353 		sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
   4354 		sc->sc_ctrl |= CTRL_SLU;
   4355 		if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
   4356 		    || (sc->sc_type > WM_T_82543)) {
   4357 			sc->sc_ctrl &= ~(CTRL_FRCSPD | CTRL_FRCFDX);
   4358 		} else {
   4359 			sc->sc_ctrl &= ~CTRL_ASDE;
   4360 			sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
   4361 			if (ife->ifm_media & IFM_FDX)
   4362 				sc->sc_ctrl |= CTRL_FD;
   4363 			switch(IFM_SUBTYPE(ife->ifm_media)) {
   4364 			case IFM_10_T:
   4365 				sc->sc_ctrl |= CTRL_SPEED_10;
   4366 				break;
   4367 			case IFM_100_TX:
   4368 				sc->sc_ctrl |= CTRL_SPEED_100;
   4369 				break;
   4370 			case IFM_1000_T:
   4371 				sc->sc_ctrl |= CTRL_SPEED_1000;
   4372 				break;
   4373 			default:
   4374 				panic("wm_gmii_mediachange: bad media 0x%x",
   4375 				    ife->ifm_media);
   4376 			}
   4377 		}
   4378 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4379 		if (sc->sc_type <= WM_T_82543)
   4380 			wm_gmii_reset(sc);
   4381 		mii_mediachg(&sc->sc_mii);
   4382 	}
   4383 	return (0);
   4384 }
   4385 
   4386 #define	MDI_IO		CTRL_SWDPIN(2)
   4387 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
   4388 #define	MDI_CLK		CTRL_SWDPIN(3)
   4389 
   4390 static void
   4391 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
   4392 {
   4393 	uint32_t i, v;
   4394 
   4395 	v = CSR_READ(sc, WMREG_CTRL);
   4396 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   4397 	v |= MDI_DIR | CTRL_SWDPIO(3);
   4398 
   4399 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
   4400 		if (data & i)
   4401 			v |= MDI_IO;
   4402 		else
   4403 			v &= ~MDI_IO;
   4404 		CSR_WRITE(sc, WMREG_CTRL, v);
   4405 		delay(10);
   4406 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   4407 		delay(10);
   4408 		CSR_WRITE(sc, WMREG_CTRL, v);
   4409 		delay(10);
   4410 	}
   4411 }
   4412 
   4413 static uint32_t
   4414 i82543_mii_recvbits(struct wm_softc *sc)
   4415 {
   4416 	uint32_t v, i, data = 0;
   4417 
   4418 	v = CSR_READ(sc, WMREG_CTRL);
   4419 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   4420 	v |= CTRL_SWDPIO(3);
   4421 
   4422 	CSR_WRITE(sc, WMREG_CTRL, v);
   4423 	delay(10);
   4424 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   4425 	delay(10);
   4426 	CSR_WRITE(sc, WMREG_CTRL, v);
   4427 	delay(10);
   4428 
   4429 	for (i = 0; i < 16; i++) {
   4430 		data <<= 1;
   4431 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   4432 		delay(10);
   4433 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
   4434 			data |= 1;
   4435 		CSR_WRITE(sc, WMREG_CTRL, v);
   4436 		delay(10);
   4437 	}
   4438 
   4439 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   4440 	delay(10);
   4441 	CSR_WRITE(sc, WMREG_CTRL, v);
   4442 	delay(10);
   4443 
   4444 	return (data);
   4445 }
   4446 
   4447 #undef MDI_IO
   4448 #undef MDI_DIR
   4449 #undef MDI_CLK
   4450 
   4451 /*
   4452  * wm_gmii_i82543_readreg:	[mii interface function]
   4453  *
   4454  *	Read a PHY register on the GMII (i82543 version).
   4455  */
   4456 static int
   4457 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
   4458 {
   4459 	struct wm_softc *sc = (void *) self;
   4460 	int rv;
   4461 
   4462 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   4463 	i82543_mii_sendbits(sc, reg | (phy << 5) |
   4464 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
   4465 	rv = i82543_mii_recvbits(sc) & 0xffff;
   4466 
   4467 	DPRINTF(WM_DEBUG_GMII,
   4468 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
   4469 	    sc->sc_dev.dv_xname, phy, reg, rv));
   4470 
   4471 	return (rv);
   4472 }
   4473 
   4474 /*
   4475  * wm_gmii_i82543_writereg:	[mii interface function]
   4476  *
   4477  *	Write a PHY register on the GMII (i82543 version).
   4478  */
   4479 static void
   4480 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
   4481 {
   4482 	struct wm_softc *sc = (void *) self;
   4483 
   4484 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   4485 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
   4486 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
   4487 	    (MII_COMMAND_START << 30), 32);
   4488 }
   4489 
   4490 /*
   4491  * wm_gmii_i82544_readreg:	[mii interface function]
   4492  *
   4493  *	Read a PHY register on the GMII.
   4494  */
   4495 static int
   4496 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
   4497 {
   4498 	struct wm_softc *sc = (void *) self;
   4499 	uint32_t mdic = 0;
   4500 	int i, rv;
   4501 
   4502 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
   4503 	    MDIC_REGADD(reg));
   4504 
   4505 	for (i = 0; i < 320; i++) {
   4506 		mdic = CSR_READ(sc, WMREG_MDIC);
   4507 		if (mdic & MDIC_READY)
   4508 			break;
   4509 		delay(10);
   4510 	}
   4511 
   4512 	if ((mdic & MDIC_READY) == 0) {
   4513 		log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
   4514 		    sc->sc_dev.dv_xname, phy, reg);
   4515 		rv = 0;
   4516 	} else if (mdic & MDIC_E) {
   4517 #if 0 /* This is normal if no PHY is present. */
   4518 		log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
   4519 		    sc->sc_dev.dv_xname, phy, reg);
   4520 #endif
   4521 		rv = 0;
   4522 	} else {
   4523 		rv = MDIC_DATA(mdic);
   4524 		if (rv == 0xffff)
   4525 			rv = 0;
   4526 	}
   4527 
   4528 	return (rv);
   4529 }
   4530 
   4531 /*
   4532  * wm_gmii_i82544_writereg:	[mii interface function]
   4533  *
   4534  *	Write a PHY register on the GMII.
   4535  */
   4536 static void
   4537 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
   4538 {
   4539 	struct wm_softc *sc = (void *) self;
   4540 	uint32_t mdic = 0;
   4541 	int i;
   4542 
   4543 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
   4544 	    MDIC_REGADD(reg) | MDIC_DATA(val));
   4545 
   4546 	for (i = 0; i < 320; i++) {
   4547 		mdic = CSR_READ(sc, WMREG_MDIC);
   4548 		if (mdic & MDIC_READY)
   4549 			break;
   4550 		delay(10);
   4551 	}
   4552 
   4553 	if ((mdic & MDIC_READY) == 0)
   4554 		log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
   4555 		    sc->sc_dev.dv_xname, phy, reg);
   4556 	else if (mdic & MDIC_E)
   4557 		log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
   4558 		    sc->sc_dev.dv_xname, phy, reg);
   4559 }
   4560 
   4561 /*
   4562  * wm_gmii_i80003_readreg:	[mii interface function]
   4563  *
   4564  *	Read a PHY register on the kumeran
   4565  * This could be handled by the PHY layer if we didn't have to lock the
   4566  * ressource ...
   4567  */
   4568 static int
   4569 wm_gmii_i80003_readreg(struct device *self, int phy, int reg)
   4570 {
   4571 	struct wm_softc *sc = (void *) self;
   4572 	int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
   4573 	int rv;
   4574 
   4575 	if (phy != 1) /* only one PHY on kumeran bus */
   4576 		return 0;
   4577 
   4578 	if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
   4579 		return 0;
   4580 
   4581 	if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
   4582 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
   4583 		    reg >> GG82563_PAGE_SHIFT);
   4584 	} else {
   4585 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
   4586 		    reg >> GG82563_PAGE_SHIFT);
   4587 	}
   4588 
   4589 	rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
   4590 	wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
   4591 	return (rv);
   4592 }
   4593 
   4594 /*
   4595  * wm_gmii_i80003_writereg:	[mii interface function]
   4596  *
   4597  *	Write a PHY register on the kumeran.
   4598  * This could be handled by the PHY layer if we didn't have to lock the
   4599  * ressource ...
   4600  */
   4601 static void
   4602 wm_gmii_i80003_writereg(struct device *self, int phy, int reg, int val)
   4603 {
   4604 	struct wm_softc *sc = (void *) self;
   4605 	int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
   4606 
   4607 	if (phy != 1) /* only one PHY on kumeran bus */
   4608 		return;
   4609 
   4610 	if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
   4611 		return;
   4612 
   4613 	if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
   4614 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
   4615 		    reg >> GG82563_PAGE_SHIFT);
   4616 	} else {
   4617 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
   4618 		    reg >> GG82563_PAGE_SHIFT);
   4619 	}
   4620 
   4621 	wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
   4622 	wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
   4623 }
   4624 
   4625 /*
   4626  * wm_gmii_statchg:	[mii interface function]
   4627  *
   4628  *	Callback from MII layer when media changes.
   4629  */
   4630 static void
   4631 wm_gmii_statchg(struct device *self)
   4632 {
   4633 	struct wm_softc *sc = (void *) self;
   4634 	struct mii_data *mii = &sc->sc_mii;
   4635 
   4636 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
   4637 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   4638 	sc->sc_fcrtl &= ~FCRTL_XONE;
   4639 
   4640 	/*
   4641 	 * Get flow control negotiation result.
   4642 	 */
   4643 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   4644 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   4645 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   4646 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   4647 	}
   4648 
   4649 	if (sc->sc_flowflags & IFM_FLOW) {
   4650 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
   4651 			sc->sc_ctrl |= CTRL_TFCE;
   4652 			sc->sc_fcrtl |= FCRTL_XONE;
   4653 		}
   4654 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   4655 			sc->sc_ctrl |= CTRL_RFCE;
   4656 	}
   4657 
   4658 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   4659 		DPRINTF(WM_DEBUG_LINK,
   4660 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
   4661 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   4662 	} else  {
   4663 		DPRINTF(WM_DEBUG_LINK,
   4664 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
   4665 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   4666 	}
   4667 
   4668 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4669 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   4670 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
   4671 						 : WMREG_FCRTL, sc->sc_fcrtl);
   4672 	if (sc->sc_type >= WM_T_80003) {
   4673 		switch(IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
   4674 		case IFM_1000_T:
   4675 			wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
   4676 			    KUMCTRLSTA_HD_CTRL_1000_DEFAULT);
   4677 			sc->sc_tipg =  TIPG_1000T_80003_DFLT;
   4678 			break;
   4679 		default:
   4680 			wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
   4681 			    KUMCTRLSTA_HD_CTRL_10_100_DEFAULT);
   4682 			sc->sc_tipg =  TIPG_10_100_80003_DFLT;
   4683 			break;
   4684 		}
   4685 		CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   4686 	}
   4687 }
   4688 
   4689 /*
   4690  * wm_kmrn_i80003_readreg:
   4691  *
   4692  *	Read a kumeran register
   4693  */
   4694 static int
   4695 wm_kmrn_i80003_readreg(struct wm_softc *sc, int reg)
   4696 {
   4697 	int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
   4698 	int rv;
   4699 
   4700 	if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
   4701 		return 0;
   4702 
   4703 	CSR_WRITE(sc, WMREG_KUMCTRLSTA,
   4704 	    ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
   4705 	    KUMCTRLSTA_REN);
   4706 	delay(2);
   4707 
   4708 	rv = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK;
   4709 	wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
   4710 	return (rv);
   4711 }
   4712 
   4713 /*
   4714  * wm_kmrn_i80003_writereg:
   4715  *
   4716  *	Write a kumeran register
   4717  */
   4718 static void
   4719 wm_kmrn_i80003_writereg(struct wm_softc *sc, int reg, int val)
   4720 {
   4721 	int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
   4722 
   4723 	if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
   4724 		return;
   4725 
   4726 	CSR_WRITE(sc, WMREG_KUMCTRLSTA,
   4727 	    ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
   4728 	    (val & KUMCTRLSTA_MASK));
   4729 	wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
   4730 }
   4731 
   4732 static int
   4733 wm_is_onboard_nvm_eeprom(struct wm_softc *sc)
   4734 {
   4735 	uint32_t eecd = 0;
   4736 
   4737 	if (sc->sc_type == WM_T_82573) {
   4738 		eecd = CSR_READ(sc, WMREG_EECD);
   4739 
   4740 		/* Isolate bits 15 & 16 */
   4741 		eecd = ((eecd >> 15) & 0x03);
   4742 
   4743 		/* If both bits are set, device is Flash type */
   4744 		if (eecd == 0x03) {
   4745 			return 0;
   4746 		}
   4747 	}
   4748 	return 1;
   4749 }
   4750 
   4751 static int
   4752 wm_get_swsm_semaphore(struct wm_softc *sc)
   4753 {
   4754 	int32_t timeout;
   4755 	uint32_t swsm;
   4756 
   4757 	/* Get the FW semaphore. */
   4758 	timeout = 1000 + 1; /* XXX */
   4759 	while (timeout) {
   4760 		swsm = CSR_READ(sc, WMREG_SWSM);
   4761 		swsm |= SWSM_SWESMBI;
   4762 		CSR_WRITE(sc, WMREG_SWSM, swsm);
   4763 		/* if we managed to set the bit we got the semaphore. */
   4764 		swsm = CSR_READ(sc, WMREG_SWSM);
   4765 		if (swsm & SWSM_SWESMBI)
   4766 			break;
   4767 
   4768 		delay(50);
   4769 		timeout--;
   4770 	}
   4771 
   4772 	if (timeout == 0) {
   4773 		aprint_error("%s: could not acquire EEPROM GNT\n",
   4774 		    sc->sc_dev.dv_xname);
   4775 		/* Release semaphores */
   4776 		wm_put_swsm_semaphore(sc);
   4777 		return 1;
   4778 	}
   4779 	return 0;
   4780 }
   4781 
   4782 static void
   4783 wm_put_swsm_semaphore(struct wm_softc *sc)
   4784 {
   4785 	uint32_t swsm;
   4786 
   4787 	swsm = CSR_READ(sc, WMREG_SWSM);
   4788 	swsm &= ~(SWSM_SWESMBI);
   4789 	CSR_WRITE(sc, WMREG_SWSM, swsm);
   4790 }
   4791 
   4792 static int
   4793 wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
   4794 {
   4795 	uint32_t swfw_sync;
   4796 	uint32_t swmask = mask << SWFW_SOFT_SHIFT;
   4797 	uint32_t fwmask = mask << SWFW_FIRM_SHIFT;
   4798 	int timeout = 200;
   4799 
   4800 	for(timeout = 0; timeout < 200; timeout++) {
   4801 		if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
   4802 			if (wm_get_swsm_semaphore(sc))
   4803 				return 1;
   4804 		}
   4805 		swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
   4806 		if ((swfw_sync & (swmask | fwmask)) == 0) {
   4807 			swfw_sync |= swmask;
   4808 			CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
   4809 			if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   4810 				wm_put_swsm_semaphore(sc);
   4811 			return 0;
   4812 		}
   4813 		if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   4814 			wm_put_swsm_semaphore(sc);
   4815 		delay(5000);
   4816 	}
   4817 	printf("%s: failed to get swfw semaphore mask 0x%x swfw 0x%x\n",
   4818 	    sc->sc_dev.dv_xname, mask, swfw_sync);
   4819 	return 1;
   4820 }
   4821 
   4822 static void
   4823 wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
   4824 {
   4825 	uint32_t swfw_sync;
   4826 
   4827 	if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
   4828 		while (wm_get_swsm_semaphore(sc) != 0)
   4829 			continue;
   4830 	}
   4831 	swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
   4832 	swfw_sync &= ~(mask << SWFW_SOFT_SHIFT);
   4833 	CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
   4834 	if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   4835 		wm_put_swsm_semaphore(sc);
   4836 }
   4837 
   4838 static int
   4839 wm_get_swfwhw_semaphore(struct wm_softc *sc)
   4840 {
   4841 	uint32_t ext_ctrl;
   4842 	int timeout = 200;
   4843 
   4844 	for(timeout = 0; timeout < 200; timeout++) {
   4845 		ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
   4846 		ext_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
   4847 		CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
   4848 
   4849 		ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
   4850 		if (ext_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
   4851 			return 0;
   4852 		delay(5000);
   4853 	}
   4854 	printf("%s: failed to get swfwgw semaphore ext_ctrl 0x%x\n",
   4855 	    sc->sc_dev.dv_xname, ext_ctrl);
   4856 	return 1;
   4857 }
   4858 
   4859 static void
   4860 wm_put_swfwhw_semaphore(struct wm_softc *sc)
   4861 {
   4862 	uint32_t ext_ctrl;
   4863 	ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
   4864 	ext_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
   4865 	CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
   4866 }
   4867 
   4868 /******************************************************************************
   4869  * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
   4870  * register.
   4871  *
   4872  * sc - Struct containing variables accessed by shared code
   4873  * offset - offset of word in the EEPROM to read
   4874  * data - word read from the EEPROM
   4875  * words - number of words to read
   4876  *****************************************************************************/
   4877 static int
   4878 wm_read_eeprom_ich8(struct wm_softc *sc, int offset, int words, uint16_t *data)
   4879 {
   4880     int32_t  error = 0;
   4881     uint32_t flash_bank = 0;
   4882     uint32_t act_offset = 0;
   4883     uint32_t bank_offset = 0;
   4884     uint16_t word = 0;
   4885     uint16_t i = 0;
   4886 
   4887     /* We need to know which is the valid flash bank.  In the event
   4888      * that we didn't allocate eeprom_shadow_ram, we may not be
   4889      * managing flash_bank.  So it cannot be trusted and needs
   4890      * to be updated with each read.
   4891      */
   4892     /* Value of bit 22 corresponds to the flash bank we're on. */
   4893     flash_bank = (CSR_READ(sc, WMREG_EECD) & EECD_SEC1VAL) ? 1 : 0;
   4894 
   4895     /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
   4896     bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
   4897 
   4898     error = wm_get_swfwhw_semaphore(sc);
   4899     if (error)
   4900         return error;
   4901 
   4902     for (i = 0; i < words; i++) {
   4903             /* The NVM part needs a byte offset, hence * 2 */
   4904             act_offset = bank_offset + ((offset + i) * 2);
   4905             error = wm_read_ich8_word(sc, act_offset, &word);
   4906             if (error)
   4907                 break;
   4908             data[i] = word;
   4909     }
   4910 
   4911     wm_put_swfwhw_semaphore(sc);
   4912     return error;
   4913 }
   4914 
   4915 /******************************************************************************
   4916  * This function does initial flash setup so that a new read/write/erase cycle
   4917  * can be started.
   4918  *
   4919  * sc - The pointer to the hw structure
   4920  ****************************************************************************/
   4921 static int32_t
   4922 wm_ich8_cycle_init(struct wm_softc *sc)
   4923 {
   4924     uint16_t hsfsts;
   4925     int32_t error = 1;
   4926     int32_t i     = 0;
   4927 
   4928     hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
   4929 
   4930     /* May be check the Flash Des Valid bit in Hw status */
   4931     if ((hsfsts & HSFSTS_FLDVAL) == 0) {
   4932         return error;
   4933     }
   4934 
   4935     /* Clear FCERR in Hw status by writing 1 */
   4936     /* Clear DAEL in Hw status by writing a 1 */
   4937     hsfsts |= HSFSTS_ERR | HSFSTS_DAEL;
   4938 
   4939     ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
   4940 
   4941     /* Either we should have a hardware SPI cycle in progress bit to check
   4942      * against, in order to start a new cycle or FDONE bit should be changed
   4943      * in the hardware so that it is 1 after harware reset, which can then be
   4944      * used as an indication whether a cycle is in progress or has been
   4945      * completed .. we should also have some software semaphore mechanism to
   4946      * guard FDONE or the cycle in progress bit so that two threads access to
   4947      * those bits can be sequentiallized or a way so that 2 threads dont
   4948      * start the cycle at the same time */
   4949 
   4950     if ((hsfsts & HSFSTS_FLINPRO) == 0) {
   4951         /* There is no cycle running at present, so we can start a cycle */
   4952         /* Begin by setting Flash Cycle Done. */
   4953         hsfsts |= HSFSTS_DONE;
   4954         ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
   4955         error = 0;
   4956     } else {
   4957         /* otherwise poll for sometime so the current cycle has a chance
   4958          * to end before giving up. */
   4959         for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
   4960             hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
   4961             if ((hsfsts & HSFSTS_FLINPRO) == 0) {
   4962                 error = 0;
   4963                 break;
   4964             }
   4965             delay(1);
   4966         }
   4967         if (error == 0) {
   4968             /* Successful in waiting for previous cycle to timeout,
   4969              * now set the Flash Cycle Done. */
   4970             hsfsts |= HSFSTS_DONE;
   4971             ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
   4972         }
   4973     }
   4974     return error;
   4975 }
   4976 
   4977 /******************************************************************************
   4978  * This function starts a flash cycle and waits for its completion
   4979  *
   4980  * sc - The pointer to the hw structure
   4981  ****************************************************************************/
   4982 static int32_t
   4983 wm_ich8_flash_cycle(struct wm_softc *sc, uint32_t timeout)
   4984 {
   4985     uint16_t hsflctl;
   4986     uint16_t hsfsts;
   4987     int32_t error = 1;
   4988     uint32_t i = 0;
   4989 
   4990     /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
   4991     hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
   4992     hsflctl |= HSFCTL_GO;
   4993     ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
   4994 
   4995     /* wait till FDONE bit is set to 1 */
   4996     do {
   4997         hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
   4998         if (hsfsts & HSFSTS_DONE)
   4999             break;
   5000         delay(1);
   5001         i++;
   5002     } while (i < timeout);
   5003     if ((hsfsts & HSFSTS_DONE) == 1 && (hsfsts & HSFSTS_ERR) == 0) {
   5004         error = 0;
   5005     }
   5006     return error;
   5007 }
   5008 
   5009 /******************************************************************************
   5010  * Reads a byte or word from the NVM using the ICH8 flash access registers.
   5011  *
   5012  * sc - The pointer to the hw structure
   5013  * index - The index of the byte or word to read.
   5014  * size - Size of data to read, 1=byte 2=word
   5015  * data - Pointer to the word to store the value read.
   5016  *****************************************************************************/
   5017 static int32_t
   5018 wm_read_ich8_data(struct wm_softc *sc, uint32_t index,
   5019                      uint32_t size, uint16_t* data)
   5020 {
   5021     uint16_t hsfsts;
   5022     uint16_t hsflctl;
   5023     uint32_t flash_linear_address;
   5024     uint32_t flash_data = 0;
   5025     int32_t error = 1;
   5026     int32_t count = 0;
   5027 
   5028     if (size < 1  || size > 2 || data == 0x0 ||
   5029         index > ICH_FLASH_LINEAR_ADDR_MASK)
   5030         return error;
   5031 
   5032     flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
   5033                            sc->sc_ich8_flash_base;
   5034 
   5035     do {
   5036         delay(1);
   5037         /* Steps */
   5038         error = wm_ich8_cycle_init(sc);
   5039         if (error)
   5040             break;
   5041 
   5042         hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
   5043         /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
   5044         hsflctl |=  ((size - 1) << HSFCTL_BCOUNT_SHIFT) & HSFCTL_BCOUNT_MASK;
   5045         hsflctl |= ICH_CYCLE_READ << HSFCTL_CYCLE_SHIFT;
   5046         ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
   5047 
   5048         /* Write the last 24 bits of index into Flash Linear address field in
   5049          * Flash Address */
   5050         /* TODO: TBD maybe check the index against the size of flash */
   5051 
   5052         ICH8_FLASH_WRITE32(sc, ICH_FLASH_FADDR, flash_linear_address);
   5053 
   5054         error = wm_ich8_flash_cycle(sc, ICH_FLASH_COMMAND_TIMEOUT);
   5055 
   5056         /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
   5057          * sequence a few more times, else read in (shift in) the Flash Data0,
   5058          * the order is least significant byte first msb to lsb */
   5059         if (error == 0) {
   5060             flash_data = ICH8_FLASH_READ32(sc, ICH_FLASH_FDATA0);
   5061             if (size == 1) {
   5062                 *data = (uint8_t)(flash_data & 0x000000FF);
   5063             } else if (size == 2) {
   5064                 *data = (uint16_t)(flash_data & 0x0000FFFF);
   5065             }
   5066             break;
   5067         } else {
   5068             /* If we've gotten here, then things are probably completely hosed,
   5069              * but if the error condition is detected, it won't hurt to give
   5070              * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
   5071              */
   5072             hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
   5073             if (hsfsts & HSFSTS_ERR) {
   5074                 /* Repeat for some time before giving up. */
   5075                 continue;
   5076             } else if ((hsfsts & HSFSTS_DONE) == 0) {
   5077                 break;
   5078             }
   5079         }
   5080     } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
   5081 
   5082     return error;
   5083 }
   5084 
   5085 #if 0
   5086 /******************************************************************************
   5087  * Reads a single byte from the NVM using the ICH8 flash access registers.
   5088  *
   5089  * sc - pointer to wm_hw structure
   5090  * index - The index of the byte to read.
   5091  * data - Pointer to a byte to store the value read.
   5092  *****************************************************************************/
   5093 static int32_t
   5094 wm_read_ich8_byte(struct wm_softc *sc, uint32_t index, uint8_t* data)
   5095 {
   5096     int32_t status;
   5097     uint16_t word = 0;
   5098 
   5099     status = wm_read_ich8_data(sc, index, 1, &word);
   5100     if (status == 0) {
   5101         *data = (uint8_t)word;
   5102     }
   5103 
   5104     return status;
   5105 }
   5106 #endif
   5107 
   5108 /******************************************************************************
   5109  * Reads a word from the NVM using the ICH8 flash access registers.
   5110  *
   5111  * sc - pointer to wm_hw structure
   5112  * index - The starting byte index of the word to read.
   5113  * data - Pointer to a word to store the value read.
   5114  *****************************************************************************/
   5115 static int32_t
   5116 wm_read_ich8_word(struct wm_softc *sc, uint32_t index, uint16_t *data)
   5117 {
   5118     int32_t status;
   5119 
   5120     status = wm_read_ich8_data(sc, index, 2, data);
   5121     return status;
   5122 }
   5123