Home | History | Annotate | Line # | Download | only in pci
if_wm.c revision 1.154
      1 /*	$NetBSD: if_wm.c,v 1.154 2008/02/07 01:21:58 dyoung Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*******************************************************************************
     39 
     40   Copyright (c) 2001-2005, Intel Corporation
     41   All rights reserved.
     42 
     43   Redistribution and use in source and binary forms, with or without
     44   modification, are permitted provided that the following conditions are met:
     45 
     46    1. Redistributions of source code must retain the above copyright notice,
     47       this list of conditions and the following disclaimer.
     48 
     49    2. Redistributions in binary form must reproduce the above copyright
     50       notice, this list of conditions and the following disclaimer in the
     51       documentation and/or other materials provided with the distribution.
     52 
     53    3. Neither the name of the Intel Corporation nor the names of its
     54       contributors may be used to endorse or promote products derived from
     55       this software without specific prior written permission.
     56 
     57   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     58   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     61   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     67   POSSIBILITY OF SUCH DAMAGE.
     68 
     69 *******************************************************************************/
     70 /*
     71  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
     72  *
     73  * TODO (in order of importance):
     74  *
     75  *	- Rework how parameters are loaded from the EEPROM.
     76  *	- Figure out what to do with the i82545GM and i82546GB
     77  *	  SERDES controllers.
     78  *	- Fix hw VLAN assist.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.154 2008/02/07 01:21:58 dyoung Exp $");
     83 
     84 #include "bpfilter.h"
     85 #include "rnd.h"
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/malloc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/socket.h>
     94 #include <sys/ioctl.h>
     95 #include <sys/errno.h>
     96 #include <sys/device.h>
     97 #include <sys/queue.h>
     98 #include <sys/syslog.h>
     99 
    100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101 
    102 #if NRND > 0
    103 #include <sys/rnd.h>
    104 #endif
    105 
    106 #include <net/if.h>
    107 #include <net/if_dl.h>
    108 #include <net/if_media.h>
    109 #include <net/if_ether.h>
    110 
    111 #if NBPFILTER > 0
    112 #include <net/bpf.h>
    113 #endif
    114 
    115 #include <netinet/in.h>			/* XXX for struct ip */
    116 #include <netinet/in_systm.h>		/* XXX for struct ip */
    117 #include <netinet/ip.h>			/* XXX for struct ip */
    118 #include <netinet/ip6.h>		/* XXX for struct ip6_hdr */
    119 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
    120 
    121 #include <sys/bus.h>
    122 #include <sys/intr.h>
    123 #include <machine/endian.h>
    124 
    125 #include <dev/mii/mii.h>
    126 #include <dev/mii/miivar.h>
    127 #include <dev/mii/mii_bitbang.h>
    128 #include <dev/mii/ikphyreg.h>
    129 
    130 #include <dev/pci/pcireg.h>
    131 #include <dev/pci/pcivar.h>
    132 #include <dev/pci/pcidevs.h>
    133 
    134 #include <dev/pci/if_wmreg.h>
    135 
    136 #ifdef WM_DEBUG
    137 #define	WM_DEBUG_LINK		0x01
    138 #define	WM_DEBUG_TX		0x02
    139 #define	WM_DEBUG_RX		0x04
    140 #define	WM_DEBUG_GMII		0x08
    141 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK|WM_DEBUG_GMII;
    142 
    143 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
    144 #else
    145 #define	DPRINTF(x, y)	/* nothing */
    146 #endif /* WM_DEBUG */
    147 
    148 /*
    149  * Transmit descriptor list size.  Due to errata, we can only have
    150  * 256 hardware descriptors in the ring on < 82544, but we use 4096
    151  * on >= 82544.  We tell the upper layers that they can queue a lot
    152  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
    153  * of them at a time.
    154  *
    155  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
    156  * chains containing many small mbufs have been observed in zero-copy
    157  * situations with jumbo frames.
    158  */
    159 #define	WM_NTXSEGS		256
    160 #define	WM_IFQUEUELEN		256
    161 #define	WM_TXQUEUELEN_MAX	64
    162 #define	WM_TXQUEUELEN_MAX_82547	16
    163 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
    164 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
    165 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
    166 #define	WM_NTXDESC_82542	256
    167 #define	WM_NTXDESC_82544	4096
    168 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
    169 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
    170 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
    171 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
    172 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
    173 
    174 #define	WM_MAXTXDMA		round_page(IP_MAXPACKET) /* for TSO */
    175 
    176 /*
    177  * Receive descriptor list size.  We have one Rx buffer for normal
    178  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
    179  * packet.  We allocate 256 receive descriptors, each with a 2k
    180  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
    181  */
    182 #define	WM_NRXDESC		256
    183 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
    184 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
    185 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
    186 
    187 /*
    188  * Control structures are DMA'd to the i82542 chip.  We allocate them in
    189  * a single clump that maps to a single DMA segment to make several things
    190  * easier.
    191  */
    192 struct wm_control_data_82544 {
    193 	/*
    194 	 * The receive descriptors.
    195 	 */
    196 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    197 
    198 	/*
    199 	 * The transmit descriptors.  Put these at the end, because
    200 	 * we might use a smaller number of them.
    201 	 */
    202 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
    203 };
    204 
    205 struct wm_control_data_82542 {
    206 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    207 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
    208 };
    209 
    210 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
    211 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
    212 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
    213 
    214 /*
    215  * Software state for transmit jobs.
    216  */
    217 struct wm_txsoft {
    218 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    219 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    220 	int txs_firstdesc;		/* first descriptor in packet */
    221 	int txs_lastdesc;		/* last descriptor in packet */
    222 	int txs_ndesc;			/* # of descriptors used */
    223 };
    224 
    225 /*
    226  * Software state for receive buffers.  Each descriptor gets a
    227  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    228  * more than one buffer, we chain them together.
    229  */
    230 struct wm_rxsoft {
    231 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    232 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    233 };
    234 
    235 typedef enum {
    236 	WM_T_unknown		= 0,
    237 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
    238 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
    239 	WM_T_82543,			/* i82543 */
    240 	WM_T_82544,			/* i82544 */
    241 	WM_T_82540,			/* i82540 */
    242 	WM_T_82545,			/* i82545 */
    243 	WM_T_82545_3,			/* i82545 3.0+ */
    244 	WM_T_82546,			/* i82546 */
    245 	WM_T_82546_3,			/* i82546 3.0+ */
    246 	WM_T_82541,			/* i82541 */
    247 	WM_T_82541_2,			/* i82541 2.0+ */
    248 	WM_T_82547,			/* i82547 */
    249 	WM_T_82547_2,			/* i82547 2.0+ */
    250 	WM_T_82571,			/* i82571 */
    251 	WM_T_82572,			/* i82572 */
    252 	WM_T_82573,			/* i82573 */
    253 	WM_T_80003,			/* i80003 */
    254 	WM_T_ICH8,			/* ICH8 LAN */
    255 	WM_T_ICH9,			/* ICH9 LAN */
    256 } wm_chip_type;
    257 
    258 /*
    259  * Software state per device.
    260  */
    261 struct wm_softc {
    262 	struct device sc_dev;		/* generic device information */
    263 	bus_space_tag_t sc_st;		/* bus space tag */
    264 	bus_space_handle_t sc_sh;	/* bus space handle */
    265 	bus_space_tag_t sc_iot;		/* I/O space tag */
    266 	bus_space_handle_t sc_ioh;	/* I/O space handle */
    267 	bus_space_tag_t sc_flasht;	/* flash registers space tag */
    268 	bus_space_handle_t sc_flashh;	/* flash registers space handle */
    269 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    270 	struct ethercom sc_ethercom;	/* ethernet common data */
    271 	pci_chipset_tag_t sc_pc;
    272 	pcitag_t sc_pcitag;
    273 
    274 	wm_chip_type sc_type;		/* chip type */
    275 	int sc_flags;			/* flags; see below */
    276 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    277 	int sc_pcix_offset;		/* PCIX capability register offset */
    278 	int sc_flowflags;		/* 802.3x flow control flags */
    279 
    280 	void *sc_ih;			/* interrupt cookie */
    281 
    282 	int sc_ee_addrbits;		/* EEPROM address bits */
    283 
    284 	struct mii_data sc_mii;		/* MII/media information */
    285 
    286 	callout_t sc_tick_ch;		/* tick callout */
    287 
    288 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    289 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    290 
    291 	int		sc_align_tweak;
    292 
    293 	/*
    294 	 * Software state for the transmit and receive descriptors.
    295 	 */
    296 	int			sc_txnum;	/* must be a power of two */
    297 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
    298 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
    299 
    300 	/*
    301 	 * Control data structures.
    302 	 */
    303 	int			sc_ntxdesc;	/* must be a power of two */
    304 	struct wm_control_data_82544 *sc_control_data;
    305 #define	sc_txdescs	sc_control_data->wcd_txdescs
    306 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    307 
    308 #ifdef WM_EVENT_COUNTERS
    309 	/* Event counters. */
    310 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    311 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    312 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
    313 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    314 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    315 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    316 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    317 
    318 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    319 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    320 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    321 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    322 	struct evcnt sc_ev_txtusum6;	/* TCP/UDP v6 cksums comp. out-bound */
    323 	struct evcnt sc_ev_txtso;	/* TCP seg offload out-bound (IPv4) */
    324 	struct evcnt sc_ev_txtso6;	/* TCP seg offload out-bound (IPv6) */
    325 	struct evcnt sc_ev_txtsopain;	/* painful header manip. for TSO */
    326 
    327 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
    328 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    329 
    330 	struct evcnt sc_ev_tu;		/* Tx underrun */
    331 
    332 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
    333 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
    334 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
    335 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
    336 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
    337 #endif /* WM_EVENT_COUNTERS */
    338 
    339 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
    340 
    341 	int	sc_txfree;		/* number of free Tx descriptors */
    342 	int	sc_txnext;		/* next ready Tx descriptor */
    343 
    344 	int	sc_txsfree;		/* number of free Tx jobs */
    345 	int	sc_txsnext;		/* next free Tx job */
    346 	int	sc_txsdirty;		/* dirty Tx jobs */
    347 
    348 	/* These 5 variables are used only on the 82547. */
    349 	int	sc_txfifo_size;		/* Tx FIFO size */
    350 	int	sc_txfifo_head;		/* current head of FIFO */
    351 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
    352 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
    353 	callout_t sc_txfifo_ch;		/* Tx FIFO stall work-around timer */
    354 
    355 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
    356 
    357 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    358 	int	sc_rxdiscard;
    359 	int	sc_rxlen;
    360 	struct mbuf *sc_rxhead;
    361 	struct mbuf *sc_rxtail;
    362 	struct mbuf **sc_rxtailp;
    363 
    364 	uint32_t sc_ctrl;		/* prototype CTRL register */
    365 #if 0
    366 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
    367 #endif
    368 	uint32_t sc_icr;		/* prototype interrupt bits */
    369 	uint32_t sc_itr;		/* prototype intr throttling reg */
    370 	uint32_t sc_tctl;		/* prototype TCTL register */
    371 	uint32_t sc_rctl;		/* prototype RCTL register */
    372 	uint32_t sc_txcw;		/* prototype TXCW register */
    373 	uint32_t sc_tipg;		/* prototype TIPG register */
    374 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
    375 	uint32_t sc_pba;		/* prototype PBA register */
    376 
    377 	int sc_tbi_linkup;		/* TBI link status */
    378 	int sc_tbi_anstate;		/* autonegotiation state */
    379 
    380 	int sc_mchash_type;		/* multicast filter offset */
    381 
    382 #if NRND > 0
    383 	rndsource_element_t rnd_source;	/* random source */
    384 #endif
    385 	int sc_ich8_flash_base;
    386 	int sc_ich8_flash_bank_size;
    387 };
    388 
    389 #define	WM_RXCHAIN_RESET(sc)						\
    390 do {									\
    391 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    392 	*(sc)->sc_rxtailp = NULL;					\
    393 	(sc)->sc_rxlen = 0;						\
    394 } while (/*CONSTCOND*/0)
    395 
    396 #define	WM_RXCHAIN_LINK(sc, m)						\
    397 do {									\
    398 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    399 	(sc)->sc_rxtailp = &(m)->m_next;				\
    400 } while (/*CONSTCOND*/0)
    401 
    402 /* sc_flags */
    403 #define	WM_F_HAS_MII		0x0001	/* has MII */
    404 #define	WM_F_EEPROM_HANDSHAKE	0x0002	/* requires EEPROM handshake */
    405 #define	WM_F_EEPROM_SEMAPHORE	0x0004	/* EEPROM with semaphore */
    406 #define	WM_F_EEPROM_EERDEEWR	0x0008	/* EEPROM access via EERD/EEWR */
    407 #define	WM_F_EEPROM_SPI		0x0010	/* EEPROM is SPI */
    408 #define	WM_F_EEPROM_FLASH	0x0020	/* EEPROM is FLASH */
    409 #define	WM_F_EEPROM_INVALID	0x0040	/* EEPROM not present (bad checksum) */
    410 #define	WM_F_IOH_VALID		0x0080	/* I/O handle is valid */
    411 #define	WM_F_BUS64		0x0100	/* bus is 64-bit */
    412 #define	WM_F_PCIX		0x0200	/* bus is PCI-X */
    413 #define	WM_F_CSA		0x0400	/* bus is CSA */
    414 #define	WM_F_PCIE		0x0800	/* bus is PCI-Express */
    415 #define WM_F_SWFW_SYNC		0x1000  /* Software-Firmware synchronisation */
    416 #define WM_F_SWFWHW_SYNC	0x2000  /* Software-Firmware synchronisation */
    417 
    418 #ifdef WM_EVENT_COUNTERS
    419 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
    420 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
    421 #else
    422 #define	WM_EVCNT_INCR(ev)	/* nothing */
    423 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
    424 #endif
    425 
    426 #define	CSR_READ(sc, reg)						\
    427 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    428 #define	CSR_WRITE(sc, reg, val)						\
    429 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    430 #define	CSR_WRITE_FLUSH(sc)						\
    431 	(void) CSR_READ((sc), WMREG_STATUS)
    432 
    433 #define ICH8_FLASH_READ32(sc, reg) \
    434 	bus_space_read_4((sc)->sc_flasht, (sc)->sc_flashh, (reg))
    435 #define ICH8_FLASH_WRITE32(sc, reg, data) \
    436 	bus_space_write_4((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data))
    437 
    438 #define ICH8_FLASH_READ16(sc, reg) \
    439 	bus_space_read_2((sc)->sc_flasht, (sc)->sc_flashh, (reg))
    440 #define ICH8_FLASH_WRITE16(sc, reg, data) \
    441 	bus_space_write_2((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data))
    442 
    443 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
    444 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
    445 
    446 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
    447 #define	WM_CDTXADDR_HI(sc, x)						\
    448 	(sizeof(bus_addr_t) == 8 ?					\
    449 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
    450 
    451 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
    452 #define	WM_CDRXADDR_HI(sc, x)						\
    453 	(sizeof(bus_addr_t) == 8 ?					\
    454 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
    455 
    456 #define	WM_CDTXSYNC(sc, x, n, ops)					\
    457 do {									\
    458 	int __x, __n;							\
    459 									\
    460 	__x = (x);							\
    461 	__n = (n);							\
    462 									\
    463 	/* If it will wrap around, sync to the end of the ring. */	\
    464 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
    465 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    466 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
    467 		    (WM_NTXDESC(sc) - __x), (ops));			\
    468 		__n -= (WM_NTXDESC(sc) - __x);				\
    469 		__x = 0;						\
    470 	}								\
    471 									\
    472 	/* Now sync whatever is left. */				\
    473 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    474 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
    475 } while (/*CONSTCOND*/0)
    476 
    477 #define	WM_CDRXSYNC(sc, x, ops)						\
    478 do {									\
    479 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    480 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
    481 } while (/*CONSTCOND*/0)
    482 
    483 #define	WM_INIT_RXDESC(sc, x)						\
    484 do {									\
    485 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    486 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
    487 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    488 									\
    489 	/*								\
    490 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    491 	 * so that the payload after the Ethernet header is aligned	\
    492 	 * to a 4-byte boundary.					\
    493 	 *								\
    494 	 * XXX BRAINDAMAGE ALERT!					\
    495 	 * The stupid chip uses the same size for every buffer, which	\
    496 	 * is set in the Receive Control register.  We are using the 2K	\
    497 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    498 	 * reason, we can't "scoot" packets longer than the standard	\
    499 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    500 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    501 	 * the upper layer copy the headers.				\
    502 	 */								\
    503 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    504 									\
    505 	wm_set_dma_addr(&__rxd->wrx_addr,				\
    506 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
    507 	__rxd->wrx_len = 0;						\
    508 	__rxd->wrx_cksum = 0;						\
    509 	__rxd->wrx_status = 0;						\
    510 	__rxd->wrx_errors = 0;						\
    511 	__rxd->wrx_special = 0;						\
    512 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    513 									\
    514 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
    515 } while (/*CONSTCOND*/0)
    516 
    517 static void	wm_start(struct ifnet *);
    518 static void	wm_watchdog(struct ifnet *);
    519 static int	wm_ioctl(struct ifnet *, u_long, void *);
    520 static int	wm_init(struct ifnet *);
    521 static void	wm_stop(struct ifnet *, int);
    522 
    523 static void	wm_reset(struct wm_softc *);
    524 static void	wm_rxdrain(struct wm_softc *);
    525 static int	wm_add_rxbuf(struct wm_softc *, int);
    526 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
    527 static int	wm_read_eeprom_eerd(struct wm_softc *, int, int, u_int16_t *);
    528 static int	wm_validate_eeprom_checksum(struct wm_softc *);
    529 static void	wm_tick(void *);
    530 
    531 static void	wm_set_filter(struct wm_softc *);
    532 
    533 static int	wm_intr(void *);
    534 static void	wm_txintr(struct wm_softc *);
    535 static void	wm_rxintr(struct wm_softc *);
    536 static void	wm_linkintr(struct wm_softc *, uint32_t);
    537 
    538 static void	wm_tbi_mediainit(struct wm_softc *);
    539 static int	wm_tbi_mediachange(struct ifnet *);
    540 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
    541 
    542 static void	wm_tbi_set_linkled(struct wm_softc *);
    543 static void	wm_tbi_check_link(struct wm_softc *);
    544 
    545 static void	wm_gmii_reset(struct wm_softc *);
    546 
    547 static int	wm_gmii_i82543_readreg(struct device *, int, int);
    548 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
    549 
    550 static int	wm_gmii_i82544_readreg(struct device *, int, int);
    551 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
    552 
    553 static int	wm_gmii_i80003_readreg(struct device *, int, int);
    554 static void	wm_gmii_i80003_writereg(struct device *, int, int, int);
    555 
    556 static void	wm_gmii_statchg(struct device *);
    557 
    558 static void	wm_gmii_mediainit(struct wm_softc *);
    559 static int	wm_gmii_mediachange(struct ifnet *);
    560 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
    561 
    562 static int	wm_kmrn_i80003_readreg(struct wm_softc *, int);
    563 static void	wm_kmrn_i80003_writereg(struct wm_softc *, int, int);
    564 
    565 static int	wm_match(struct device *, struct cfdata *, void *);
    566 static void	wm_attach(struct device *, struct device *, void *);
    567 static int	wm_is_onboard_nvm_eeprom(struct wm_softc *);
    568 static void	wm_get_auto_rd_done(struct wm_softc *);
    569 static int	wm_get_swsm_semaphore(struct wm_softc *);
    570 static void	wm_put_swsm_semaphore(struct wm_softc *);
    571 static int	wm_poll_eerd_eewr_done(struct wm_softc *, int);
    572 static int	wm_get_swfw_semaphore(struct wm_softc *, uint16_t);
    573 static void	wm_put_swfw_semaphore(struct wm_softc *, uint16_t);
    574 static int	wm_get_swfwhw_semaphore(struct wm_softc *);
    575 static void	wm_put_swfwhw_semaphore(struct wm_softc *);
    576 
    577 static int	wm_read_eeprom_ich8(struct wm_softc *, int, int, uint16_t *);
    578 static int32_t	wm_ich8_cycle_init(struct wm_softc *);
    579 static int32_t	wm_ich8_flash_cycle(struct wm_softc *, uint32_t);
    580 static int32_t	wm_read_ich8_data(struct wm_softc *, uint32_t,
    581 		     uint32_t, uint16_t *);
    582 static int32_t	wm_read_ich8_word(struct wm_softc *sc, uint32_t, uint16_t *);
    583 
    584 CFATTACH_DECL(wm, sizeof(struct wm_softc),
    585     wm_match, wm_attach, NULL, NULL);
    586 
    587 static void	wm_82547_txfifo_stall(void *);
    588 
    589 /*
    590  * Devices supported by this driver.
    591  */
    592 static const struct wm_product {
    593 	pci_vendor_id_t		wmp_vendor;
    594 	pci_product_id_t	wmp_product;
    595 	const char		*wmp_name;
    596 	wm_chip_type		wmp_type;
    597 	int			wmp_flags;
    598 #define	WMP_F_1000X		0x01
    599 #define	WMP_F_1000T		0x02
    600 } wm_products[] = {
    601 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
    602 	  "Intel i82542 1000BASE-X Ethernet",
    603 	  WM_T_82542_2_1,	WMP_F_1000X },
    604 
    605 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
    606 	  "Intel i82543GC 1000BASE-X Ethernet",
    607 	  WM_T_82543,		WMP_F_1000X },
    608 
    609 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
    610 	  "Intel i82543GC 1000BASE-T Ethernet",
    611 	  WM_T_82543,		WMP_F_1000T },
    612 
    613 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
    614 	  "Intel i82544EI 1000BASE-T Ethernet",
    615 	  WM_T_82544,		WMP_F_1000T },
    616 
    617 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
    618 	  "Intel i82544EI 1000BASE-X Ethernet",
    619 	  WM_T_82544,		WMP_F_1000X },
    620 
    621 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
    622 	  "Intel i82544GC 1000BASE-T Ethernet",
    623 	  WM_T_82544,		WMP_F_1000T },
    624 
    625 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
    626 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
    627 	  WM_T_82544,		WMP_F_1000T },
    628 
    629 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
    630 	  "Intel i82540EM 1000BASE-T Ethernet",
    631 	  WM_T_82540,		WMP_F_1000T },
    632 
    633 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
    634 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
    635 	  WM_T_82540,		WMP_F_1000T },
    636 
    637 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
    638 	  "Intel i82540EP 1000BASE-T Ethernet",
    639 	  WM_T_82540,		WMP_F_1000T },
    640 
    641 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
    642 	  "Intel i82540EP 1000BASE-T Ethernet",
    643 	  WM_T_82540,		WMP_F_1000T },
    644 
    645 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
    646 	  "Intel i82540EP 1000BASE-T Ethernet",
    647 	  WM_T_82540,		WMP_F_1000T },
    648 
    649 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
    650 	  "Intel i82545EM 1000BASE-T Ethernet",
    651 	  WM_T_82545,		WMP_F_1000T },
    652 
    653 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
    654 	  "Intel i82545GM 1000BASE-T Ethernet",
    655 	  WM_T_82545_3,		WMP_F_1000T },
    656 
    657 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
    658 	  "Intel i82545GM 1000BASE-X Ethernet",
    659 	  WM_T_82545_3,		WMP_F_1000X },
    660 #if 0
    661 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
    662 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
    663 	  WM_T_82545_3,		WMP_F_SERDES },
    664 #endif
    665 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
    666 	  "Intel i82546EB 1000BASE-T Ethernet",
    667 	  WM_T_82546,		WMP_F_1000T },
    668 
    669 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
    670 	  "Intel i82546EB 1000BASE-T Ethernet",
    671 	  WM_T_82546,		WMP_F_1000T },
    672 
    673 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
    674 	  "Intel i82545EM 1000BASE-X Ethernet",
    675 	  WM_T_82545,		WMP_F_1000X },
    676 
    677 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
    678 	  "Intel i82546EB 1000BASE-X Ethernet",
    679 	  WM_T_82546,		WMP_F_1000X },
    680 
    681 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
    682 	  "Intel i82546GB 1000BASE-T Ethernet",
    683 	  WM_T_82546_3,		WMP_F_1000T },
    684 
    685 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
    686 	  "Intel i82546GB 1000BASE-X Ethernet",
    687 	  WM_T_82546_3,		WMP_F_1000X },
    688 #if 0
    689 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
    690 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
    691 	  WM_T_82546_3,		WMP_F_SERDES },
    692 #endif
    693 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER,
    694 	  "i82546GB quad-port Gigabit Ethernet",
    695 	  WM_T_82546_3,		WMP_F_1000T },
    696 
    697 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3,
    698 	  "i82546GB quad-port Gigabit Ethernet (KSP3)",
    699 	  WM_T_82546_3,		WMP_F_1000T },
    700 
    701 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_PCIE,
    702 	  "Intel PRO/1000MT (82546GB)",
    703 	  WM_T_82546_3,		WMP_F_1000T },
    704 
    705 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
    706 	  "Intel i82541EI 1000BASE-T Ethernet",
    707 	  WM_T_82541,		WMP_F_1000T },
    708 
    709 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER_LOM,
    710 	  "Intel i82541ER (LOM) 1000BASE-T Ethernet",
    711 	  WM_T_82541,		WMP_F_1000T },
    712 
    713 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
    714 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
    715 	  WM_T_82541,		WMP_F_1000T },
    716 
    717 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
    718 	  "Intel i82541ER 1000BASE-T Ethernet",
    719 	  WM_T_82541_2,		WMP_F_1000T },
    720 
    721 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
    722 	  "Intel i82541GI 1000BASE-T Ethernet",
    723 	  WM_T_82541_2,		WMP_F_1000T },
    724 
    725 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
    726 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
    727 	  WM_T_82541_2,		WMP_F_1000T },
    728 
    729 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541PI,
    730 	  "Intel i82541PI 1000BASE-T Ethernet",
    731 	  WM_T_82541_2,		WMP_F_1000T },
    732 
    733 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
    734 	  "Intel i82547EI 1000BASE-T Ethernet",
    735 	  WM_T_82547,		WMP_F_1000T },
    736 
    737 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI_MOBILE,
    738 	  "Intel i82547EI Mobile 1000BASE-T Ethernet",
    739 	  WM_T_82547,		WMP_F_1000T },
    740 
    741 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
    742 	  "Intel i82547GI 1000BASE-T Ethernet",
    743 	  WM_T_82547_2,		WMP_F_1000T },
    744 
    745 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_COPPER,
    746 	  "Intel PRO/1000 PT (82571EB)",
    747 	  WM_T_82571,		WMP_F_1000T },
    748 
    749 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_FIBER,
    750 	  "Intel PRO/1000 PF (82571EB)",
    751 	  WM_T_82571,		WMP_F_1000X },
    752 #if 0
    753 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_SERDES,
    754 	  "Intel PRO/1000 PB (82571EB)",
    755 	  WM_T_82571,		WMP_F_SERDES },
    756 #endif
    757 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER,
    758 	  "Intel PRO/1000 QT (82571EB)",
    759 	  WM_T_82571,		WMP_F_1000T },
    760 
    761 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_COPPER,
    762 	  "Intel i82572EI 1000baseT Ethernet",
    763 	  WM_T_82572,		WMP_F_1000T },
    764 
    765 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER,
    766 	  "Intel PRO/1000 PT Quad Port Server Adapter",
    767 	  WM_T_82571,		WMP_F_1000T, },
    768 
    769 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_FIBER,
    770 	  "Intel i82572EI 1000baseX Ethernet",
    771 	  WM_T_82572,		WMP_F_1000X },
    772 #if 0
    773 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_SERDES,
    774 	  "Intel i82572EI Gigabit Ethernet (SERDES)",
    775 	  WM_T_82572,		WMP_F_SERDES },
    776 #endif
    777 
    778 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI,
    779 	  "Intel i82572EI 1000baseT Ethernet",
    780 	  WM_T_82572,		WMP_F_1000T },
    781 
    782 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573E,
    783 	  "Intel i82573E",
    784 	  WM_T_82573,		WMP_F_1000T },
    785 
    786 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573E_IAMT,
    787 	  "Intel i82573E IAMT",
    788 	  WM_T_82573,		WMP_F_1000T },
    789 
    790 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573L,
    791 	  "Intel i82573L Gigabit Ethernet",
    792 	  WM_T_82573,		WMP_F_1000T },
    793 
    794 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT,
    795 	  "i80003 dual 1000baseT Ethernet",
    796 	  WM_T_80003,		WMP_F_1000T },
    797 
    798 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT,
    799 	  "i80003 dual 1000baseX Ethernet",
    800 	  WM_T_80003,		WMP_F_1000T },
    801 #if 0
    802 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT,
    803 	  "Intel i80003ES2 dual Gigabit Ethernet (SERDES)",
    804 	  WM_T_80003,		WMP_F_SERDES },
    805 #endif
    806 
    807 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT,
    808 	  "Intel i80003 1000baseT Ethernet",
    809 	  WM_T_80003,		WMP_F_1000T },
    810 #if 0
    811 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT,
    812 	  "Intel i80003 Gigabit Ethernet (SERDES)",
    813 	  WM_T_80003,		WMP_F_SERDES },
    814 #endif
    815 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_M_AMT,
    816 	  "Intel i82801H (M_AMT) LAN Controller",
    817 	  WM_T_ICH8,		WMP_F_1000T },
    818 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_AMT,
    819 	  "Intel i82801H (AMT) LAN Controller",
    820 	  WM_T_ICH8,		WMP_F_1000T },
    821 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_LAN,
    822 	  "Intel i82801H LAN Controller",
    823 	  WM_T_ICH8,		WMP_F_1000T },
    824 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_IFE_LAN,
    825 	  "Intel i82801H (IFE) LAN Controller",
    826 	  WM_T_ICH8,		WMP_F_1000T },
    827 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_M_LAN,
    828 	  "Intel i82801H (M) LAN Controller",
    829 	  WM_T_ICH8,		WMP_F_1000T },
    830 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_IFE_GT,
    831 	  "Intel i82801H IFE (GT) LAN Controller",
    832 	  WM_T_ICH8,		WMP_F_1000T },
    833 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_IFE_G,
    834 	  "Intel i82801H IFE (G) LAN Controller",
    835 	  WM_T_ICH8,		WMP_F_1000T },
    836 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IGP_AMT,
    837 	  "82801I (AMT) LAN Controller",
    838 	  WM_T_ICH9,		WMP_F_1000T },
    839 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IFE,
    840 	  "82801I LAN Controller",
    841 	  WM_T_ICH9,		WMP_F_1000T },
    842 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IFE_G,
    843 	  "82801I (G) LAN Controller",
    844 	  WM_T_ICH9,		WMP_F_1000T },
    845 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IFE_GT,
    846 	  "82801I (GT) LAN Controller",
    847 	  WM_T_ICH9,		WMP_F_1000T },
    848 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IGP_C,
    849 	  "82801I (C) LAN Controller",
    850 	  WM_T_ICH9,		WMP_F_1000T },
    851 	{ 0,			0,
    852 	  NULL,
    853 	  0,			0 },
    854 };
    855 
    856 #ifdef WM_EVENT_COUNTERS
    857 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
    858 #endif /* WM_EVENT_COUNTERS */
    859 
    860 #if 0 /* Not currently used */
    861 static inline uint32_t
    862 wm_io_read(struct wm_softc *sc, int reg)
    863 {
    864 
    865 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    866 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
    867 }
    868 #endif
    869 
    870 static inline void
    871 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
    872 {
    873 
    874 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    875 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
    876 }
    877 
    878 static inline void
    879 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
    880 {
    881 	wa->wa_low = htole32(v & 0xffffffffU);
    882 	if (sizeof(bus_addr_t) == 8)
    883 		wa->wa_high = htole32((uint64_t) v >> 32);
    884 	else
    885 		wa->wa_high = 0;
    886 }
    887 
    888 static const struct wm_product *
    889 wm_lookup(const struct pci_attach_args *pa)
    890 {
    891 	const struct wm_product *wmp;
    892 
    893 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
    894 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
    895 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
    896 			return (wmp);
    897 	}
    898 	return (NULL);
    899 }
    900 
    901 static int
    902 wm_match(struct device *parent, struct cfdata *cf, void *aux)
    903 {
    904 	struct pci_attach_args *pa = aux;
    905 
    906 	if (wm_lookup(pa) != NULL)
    907 		return (1);
    908 
    909 	return (0);
    910 }
    911 
    912 static void
    913 wm_attach(struct device *parent, struct device *self, void *aux)
    914 {
    915 	struct wm_softc *sc = (void *) self;
    916 	struct pci_attach_args *pa = aux;
    917 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    918 	pci_chipset_tag_t pc = pa->pa_pc;
    919 	pci_intr_handle_t ih;
    920 	size_t cdata_size;
    921 	const char *intrstr = NULL;
    922 	const char *eetype;
    923 	bus_space_tag_t memt;
    924 	bus_space_handle_t memh;
    925 	bus_dma_segment_t seg;
    926 	int memh_valid;
    927 	int i, rseg, error;
    928 	const struct wm_product *wmp;
    929 	prop_data_t ea;
    930 	prop_number_t pn;
    931 	uint8_t enaddr[ETHER_ADDR_LEN];
    932 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
    933 	pcireg_t preg, memtype;
    934 	uint32_t reg;
    935 
    936 	callout_init(&sc->sc_tick_ch, 0);
    937 
    938 	wmp = wm_lookup(pa);
    939 	if (wmp == NULL) {
    940 		printf("\n");
    941 		panic("wm_attach: impossible");
    942 	}
    943 
    944 	sc->sc_pc = pa->pa_pc;
    945 	sc->sc_pcitag = pa->pa_tag;
    946 
    947 	if (pci_dma64_available(pa))
    948 		sc->sc_dmat = pa->pa_dmat64;
    949 	else
    950 		sc->sc_dmat = pa->pa_dmat;
    951 
    952 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    953 	aprint_naive(": Ethernet controller\n");
    954 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
    955 
    956 	sc->sc_type = wmp->wmp_type;
    957 	if (sc->sc_type < WM_T_82543) {
    958 		if (preg < 2) {
    959 			aprint_error("%s: i82542 must be at least rev. 2\n",
    960 			    sc->sc_dev.dv_xname);
    961 			return;
    962 		}
    963 		if (preg < 3)
    964 			sc->sc_type = WM_T_82542_2_0;
    965 	}
    966 
    967 	/*
    968 	 * Map the device.  All devices support memory-mapped acccess,
    969 	 * and it is really required for normal operation.
    970 	 */
    971 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
    972 	switch (memtype) {
    973 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    974 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    975 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
    976 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    977 		break;
    978 	default:
    979 		memh_valid = 0;
    980 	}
    981 
    982 	if (memh_valid) {
    983 		sc->sc_st = memt;
    984 		sc->sc_sh = memh;
    985 	} else {
    986 		aprint_error("%s: unable to map device registers\n",
    987 		    sc->sc_dev.dv_xname);
    988 		return;
    989 	}
    990 
    991 	/*
    992 	 * In addition, i82544 and later support I/O mapped indirect
    993 	 * register access.  It is not desirable (nor supported in
    994 	 * this driver) to use it for normal operation, though it is
    995 	 * required to work around bugs in some chip versions.
    996 	 */
    997 	if (sc->sc_type >= WM_T_82544) {
    998 		/* First we have to find the I/O BAR. */
    999 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
   1000 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
   1001 			    PCI_MAPREG_TYPE_IO)
   1002 				break;
   1003 		}
   1004 		if (i == PCI_MAPREG_END)
   1005 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
   1006 			    sc->sc_dev.dv_xname);
   1007 		else {
   1008 			/*
   1009 			 * The i8254x doesn't apparently respond when the
   1010 			 * I/O BAR is 0, which looks somewhat like it's not
   1011 			 * been configured.
   1012 			 */
   1013 			preg = pci_conf_read(pc, pa->pa_tag, i);
   1014 			if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
   1015 				aprint_error("%s: WARNING: I/O BAR at zero.\n",
   1016 				    sc->sc_dev.dv_xname);
   1017 			} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
   1018 					0, &sc->sc_iot, &sc->sc_ioh,
   1019 					NULL, NULL) == 0) {
   1020 				sc->sc_flags |= WM_F_IOH_VALID;
   1021 			} else {
   1022 				aprint_error("%s: WARNING: unable to map "
   1023 				    "I/O space\n", sc->sc_dev.dv_xname);
   1024 			}
   1025 		}
   1026 
   1027 	}
   1028 
   1029 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
   1030 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1031 	preg |= PCI_COMMAND_MASTER_ENABLE;
   1032 	if (sc->sc_type < WM_T_82542_2_1)
   1033 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
   1034 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
   1035 
   1036 	/* power up chip */
   1037 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
   1038 	    NULL)) && error != EOPNOTSUPP) {
   1039 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
   1040 		    error);
   1041 		return;
   1042 	}
   1043 
   1044 	/*
   1045 	 * Map and establish our interrupt.
   1046 	 */
   1047 	if (pci_intr_map(pa, &ih)) {
   1048 		aprint_error("%s: unable to map interrupt\n",
   1049 		    sc->sc_dev.dv_xname);
   1050 		return;
   1051 	}
   1052 	intrstr = pci_intr_string(pc, ih);
   1053 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
   1054 	if (sc->sc_ih == NULL) {
   1055 		aprint_error("%s: unable to establish interrupt",
   1056 		    sc->sc_dev.dv_xname);
   1057 		if (intrstr != NULL)
   1058 			aprint_normal(" at %s", intrstr);
   1059 		aprint_normal("\n");
   1060 		return;
   1061 	}
   1062 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
   1063 
   1064 	/*
   1065 	 * Determine a few things about the bus we're connected to.
   1066 	 */
   1067 	if (sc->sc_type < WM_T_82543) {
   1068 		/* We don't really know the bus characteristics here. */
   1069 		sc->sc_bus_speed = 33;
   1070 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
   1071 		/*
   1072 		 * CSA (Communication Streaming Architecture) is about as fast
   1073 		 * a 32-bit 66MHz PCI Bus.
   1074 		 */
   1075 		sc->sc_flags |= WM_F_CSA;
   1076 		sc->sc_bus_speed = 66;
   1077 		aprint_verbose("%s: Communication Streaming Architecture\n",
   1078 		    sc->sc_dev.dv_xname);
   1079 		if (sc->sc_type == WM_T_82547) {
   1080 			callout_init(&sc->sc_txfifo_ch, 0);
   1081 			callout_setfunc(&sc->sc_txfifo_ch,
   1082 					wm_82547_txfifo_stall, sc);
   1083 			aprint_verbose("%s: using 82547 Tx FIFO stall "
   1084 				       "work-around\n", sc->sc_dev.dv_xname);
   1085 		}
   1086 	} else if (sc->sc_type >= WM_T_82571) {
   1087 		sc->sc_flags |= WM_F_PCIE;
   1088 		if ((sc->sc_type != WM_T_ICH8) || (sc->sc_type != WM_T_ICH9))
   1089 			sc->sc_flags |= WM_F_EEPROM_SEMAPHORE;
   1090 		aprint_verbose("%s: PCI-Express bus\n", sc->sc_dev.dv_xname);
   1091 	} else {
   1092 		reg = CSR_READ(sc, WMREG_STATUS);
   1093 		if (reg & STATUS_BUS64)
   1094 			sc->sc_flags |= WM_F_BUS64;
   1095 		if (sc->sc_type >= WM_T_82544 &&
   1096 		    (reg & STATUS_PCIX_MODE) != 0) {
   1097 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
   1098 
   1099 			sc->sc_flags |= WM_F_PCIX;
   1100 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
   1101 					       PCI_CAP_PCIX,
   1102 					       &sc->sc_pcix_offset, NULL) == 0)
   1103 				aprint_error("%s: unable to find PCIX "
   1104 				    "capability\n", sc->sc_dev.dv_xname);
   1105 			else if (sc->sc_type != WM_T_82545_3 &&
   1106 				 sc->sc_type != WM_T_82546_3) {
   1107 				/*
   1108 				 * Work around a problem caused by the BIOS
   1109 				 * setting the max memory read byte count
   1110 				 * incorrectly.
   1111 				 */
   1112 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1113 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
   1114 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1115 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
   1116 
   1117 				bytecnt =
   1118 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
   1119 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
   1120 				maxb =
   1121 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
   1122 				    PCI_PCIX_STATUS_MAXB_SHIFT;
   1123 				if (bytecnt > maxb) {
   1124 					aprint_verbose("%s: resetting PCI-X "
   1125 					    "MMRBC: %d -> %d\n",
   1126 					    sc->sc_dev.dv_xname,
   1127 					    512 << bytecnt, 512 << maxb);
   1128 					pcix_cmd = (pcix_cmd &
   1129 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
   1130 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
   1131 					pci_conf_write(pa->pa_pc, pa->pa_tag,
   1132 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
   1133 					    pcix_cmd);
   1134 				}
   1135 			}
   1136 		}
   1137 		/*
   1138 		 * The quad port adapter is special; it has a PCIX-PCIX
   1139 		 * bridge on the board, and can run the secondary bus at
   1140 		 * a higher speed.
   1141 		 */
   1142 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
   1143 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
   1144 								      : 66;
   1145 		} else if (sc->sc_flags & WM_F_PCIX) {
   1146 			switch (reg & STATUS_PCIXSPD_MASK) {
   1147 			case STATUS_PCIXSPD_50_66:
   1148 				sc->sc_bus_speed = 66;
   1149 				break;
   1150 			case STATUS_PCIXSPD_66_100:
   1151 				sc->sc_bus_speed = 100;
   1152 				break;
   1153 			case STATUS_PCIXSPD_100_133:
   1154 				sc->sc_bus_speed = 133;
   1155 				break;
   1156 			default:
   1157 				aprint_error(
   1158 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
   1159 				    sc->sc_dev.dv_xname,
   1160 				    reg & STATUS_PCIXSPD_MASK);
   1161 				sc->sc_bus_speed = 66;
   1162 			}
   1163 		} else
   1164 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
   1165 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
   1166 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
   1167 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
   1168 	}
   1169 
   1170 	/*
   1171 	 * Allocate the control data structures, and create and load the
   1172 	 * DMA map for it.
   1173 	 *
   1174 	 * NOTE: All Tx descriptors must be in the same 4G segment of
   1175 	 * memory.  So must Rx descriptors.  We simplify by allocating
   1176 	 * both sets within the same 4G segment.
   1177 	 */
   1178 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
   1179 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
   1180 	cdata_size = sc->sc_type < WM_T_82544 ?
   1181 	    sizeof(struct wm_control_data_82542) :
   1182 	    sizeof(struct wm_control_data_82544);
   1183 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
   1184 				      (bus_size_t) 0x100000000ULL,
   1185 				      &seg, 1, &rseg, 0)) != 0) {
   1186 		aprint_error(
   1187 		    "%s: unable to allocate control data, error = %d\n",
   1188 		    sc->sc_dev.dv_xname, error);
   1189 		goto fail_0;
   1190 	}
   1191 
   1192 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
   1193 				    (void **)&sc->sc_control_data, 0)) != 0) {
   1194 		aprint_error("%s: unable to map control data, error = %d\n",
   1195 		    sc->sc_dev.dv_xname, error);
   1196 		goto fail_1;
   1197 	}
   1198 
   1199 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
   1200 				       0, 0, &sc->sc_cddmamap)) != 0) {
   1201 		aprint_error("%s: unable to create control data DMA map, "
   1202 		    "error = %d\n", sc->sc_dev.dv_xname, error);
   1203 		goto fail_2;
   1204 	}
   1205 
   1206 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
   1207 				     sc->sc_control_data, cdata_size, NULL,
   1208 				     0)) != 0) {
   1209 		aprint_error(
   1210 		    "%s: unable to load control data DMA map, error = %d\n",
   1211 		    sc->sc_dev.dv_xname, error);
   1212 		goto fail_3;
   1213 	}
   1214 
   1215 
   1216 	/*
   1217 	 * Create the transmit buffer DMA maps.
   1218 	 */
   1219 	WM_TXQUEUELEN(sc) =
   1220 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
   1221 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
   1222 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1223 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
   1224 					       WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
   1225 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1226 			aprint_error("%s: unable to create Tx DMA map %d, "
   1227 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1228 			goto fail_4;
   1229 		}
   1230 	}
   1231 
   1232 	/*
   1233 	 * Create the receive buffer DMA maps.
   1234 	 */
   1235 	for (i = 0; i < WM_NRXDESC; i++) {
   1236 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1237 					       MCLBYTES, 0, 0,
   1238 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1239 			aprint_error("%s: unable to create Rx DMA map %d, "
   1240 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1241 			goto fail_5;
   1242 		}
   1243 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1244 	}
   1245 
   1246 	/* clear interesting stat counters */
   1247 	CSR_READ(sc, WMREG_COLC);
   1248 	CSR_READ(sc, WMREG_RXERRC);
   1249 
   1250 	/*
   1251 	 * Reset the chip to a known state.
   1252 	 */
   1253 	wm_reset(sc);
   1254 
   1255 	/*
   1256 	 * Get some information about the EEPROM.
   1257 	 */
   1258 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)) {
   1259 		uint32_t flash_size;
   1260 		sc->sc_flags |= WM_F_SWFWHW_SYNC | WM_F_EEPROM_FLASH;
   1261 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_ICH8_FLASH);
   1262 		if (pci_mapreg_map(pa, WM_ICH8_FLASH, memtype, 0,
   1263 		    &sc->sc_flasht, &sc->sc_flashh, NULL, NULL)) {
   1264 			printf("%s: can't map FLASH registers\n",
   1265 			    sc->sc_dev.dv_xname);
   1266 			return;
   1267 		}
   1268 		flash_size = ICH8_FLASH_READ32(sc, ICH_FLASH_GFPREG);
   1269 		sc->sc_ich8_flash_base = (flash_size & ICH_GFPREG_BASE_MASK) *
   1270 						ICH_FLASH_SECTOR_SIZE;
   1271 		sc->sc_ich8_flash_bank_size =
   1272 			((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1;
   1273 		sc->sc_ich8_flash_bank_size -=
   1274 			(flash_size & ICH_GFPREG_BASE_MASK);
   1275 		sc->sc_ich8_flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
   1276 		sc->sc_ich8_flash_bank_size /= 2 * sizeof(uint16_t);
   1277 	} else if (sc->sc_type == WM_T_80003)
   1278 		sc->sc_flags |= WM_F_EEPROM_EERDEEWR |  WM_F_SWFW_SYNC;
   1279 	else if (sc->sc_type == WM_T_82573)
   1280 		sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
   1281 	else if (sc->sc_type > WM_T_82544)
   1282 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
   1283 
   1284 	if (sc->sc_type <= WM_T_82544)
   1285 		sc->sc_ee_addrbits = 6;
   1286 	else if (sc->sc_type <= WM_T_82546_3) {
   1287 		reg = CSR_READ(sc, WMREG_EECD);
   1288 		if (reg & EECD_EE_SIZE)
   1289 			sc->sc_ee_addrbits = 8;
   1290 		else
   1291 			sc->sc_ee_addrbits = 6;
   1292 	} else if (sc->sc_type <= WM_T_82547_2) {
   1293 		reg = CSR_READ(sc, WMREG_EECD);
   1294 		if (reg & EECD_EE_TYPE) {
   1295 			sc->sc_flags |= WM_F_EEPROM_SPI;
   1296 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1297 		} else
   1298 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
   1299 	} else if ((sc->sc_type == WM_T_82573) &&
   1300 	    (wm_is_onboard_nvm_eeprom(sc) == 0)) {
   1301 		sc->sc_flags |= WM_F_EEPROM_FLASH;
   1302 	} else {
   1303 		/* Assume everything else is SPI. */
   1304 		reg = CSR_READ(sc, WMREG_EECD);
   1305 		sc->sc_flags |= WM_F_EEPROM_SPI;
   1306 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1307 	}
   1308 
   1309 	/*
   1310 	 * Defer printing the EEPROM type until after verifying the checksum
   1311 	 * This allows the EEPROM type to be printed correctly in the case
   1312 	 * that no EEPROM is attached.
   1313 	 */
   1314 
   1315 
   1316 	/*
   1317 	 * Validate the EEPROM checksum. If the checksum fails, flag this for
   1318 	 * later, so we can fail future reads from the EEPROM.
   1319 	 */
   1320 	if (wm_validate_eeprom_checksum(sc))
   1321 		sc->sc_flags |= WM_F_EEPROM_INVALID;
   1322 
   1323 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
   1324 		aprint_verbose("%s: No EEPROM\n", sc->sc_dev.dv_xname);
   1325 	else if (sc->sc_flags & WM_F_EEPROM_FLASH) {
   1326 		aprint_verbose("%s: FLASH\n", sc->sc_dev.dv_xname);
   1327 	} else {
   1328 		if (sc->sc_flags & WM_F_EEPROM_SPI)
   1329 			eetype = "SPI";
   1330 		else
   1331 			eetype = "MicroWire";
   1332 		aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
   1333 		    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
   1334 		    sc->sc_ee_addrbits, eetype);
   1335 	}
   1336 
   1337 	/*
   1338 	 * Read the Ethernet address from the EEPROM, if not first found
   1339 	 * in device properties.
   1340 	 */
   1341 	ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
   1342 	if (ea != NULL) {
   1343 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   1344 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   1345 		memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   1346 	} else {
   1347 		if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
   1348 		    sizeof(myea) / sizeof(myea[0]), myea)) {
   1349 			aprint_error("%s: unable to read Ethernet address\n",
   1350 			    sc->sc_dev.dv_xname);
   1351 			return;
   1352 		}
   1353 		enaddr[0] = myea[0] & 0xff;
   1354 		enaddr[1] = myea[0] >> 8;
   1355 		enaddr[2] = myea[1] & 0xff;
   1356 		enaddr[3] = myea[1] >> 8;
   1357 		enaddr[4] = myea[2] & 0xff;
   1358 		enaddr[5] = myea[2] >> 8;
   1359 	}
   1360 
   1361 	/*
   1362 	 * Toggle the LSB of the MAC address on the second port
   1363 	 * of the dual port controller.
   1364 	 */
   1365 	if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3
   1366 	    || sc->sc_type ==  WM_T_82571 || sc->sc_type == WM_T_80003) {
   1367 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
   1368 			enaddr[5] ^= 1;
   1369 	}
   1370 
   1371 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
   1372 	    ether_sprintf(enaddr));
   1373 
   1374 	/*
   1375 	 * Read the config info from the EEPROM, and set up various
   1376 	 * bits in the control registers based on their contents.
   1377 	 */
   1378 	pn = prop_dictionary_get(device_properties(&sc->sc_dev),
   1379 				 "i82543-cfg1");
   1380 	if (pn != NULL) {
   1381 		KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1382 		cfg1 = (uint16_t) prop_number_integer_value(pn);
   1383 	} else {
   1384 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
   1385 			aprint_error("%s: unable to read CFG1\n",
   1386 			    sc->sc_dev.dv_xname);
   1387 			return;
   1388 		}
   1389 	}
   1390 
   1391 	pn = prop_dictionary_get(device_properties(&sc->sc_dev),
   1392 				 "i82543-cfg2");
   1393 	if (pn != NULL) {
   1394 		KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1395 		cfg2 = (uint16_t) prop_number_integer_value(pn);
   1396 	} else {
   1397 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
   1398 			aprint_error("%s: unable to read CFG2\n",
   1399 			    sc->sc_dev.dv_xname);
   1400 			return;
   1401 		}
   1402 	}
   1403 
   1404 	if (sc->sc_type >= WM_T_82544) {
   1405 		pn = prop_dictionary_get(device_properties(&sc->sc_dev),
   1406 					 "i82543-swdpin");
   1407 		if (pn != NULL) {
   1408 			KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1409 			swdpin = (uint16_t) prop_number_integer_value(pn);
   1410 		} else {
   1411 			if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
   1412 				aprint_error("%s: unable to read SWDPIN\n",
   1413 				    sc->sc_dev.dv_xname);
   1414 				return;
   1415 			}
   1416 		}
   1417 	}
   1418 
   1419 	if (cfg1 & EEPROM_CFG1_ILOS)
   1420 		sc->sc_ctrl |= CTRL_ILOS;
   1421 	if (sc->sc_type >= WM_T_82544) {
   1422 		sc->sc_ctrl |=
   1423 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
   1424 		    CTRL_SWDPIO_SHIFT;
   1425 		sc->sc_ctrl |=
   1426 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
   1427 		    CTRL_SWDPINS_SHIFT;
   1428 	} else {
   1429 		sc->sc_ctrl |=
   1430 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
   1431 		    CTRL_SWDPIO_SHIFT;
   1432 	}
   1433 
   1434 #if 0
   1435 	if (sc->sc_type >= WM_T_82544) {
   1436 		if (cfg1 & EEPROM_CFG1_IPS0)
   1437 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
   1438 		if (cfg1 & EEPROM_CFG1_IPS1)
   1439 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
   1440 		sc->sc_ctrl_ext |=
   1441 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
   1442 		    CTRL_EXT_SWDPIO_SHIFT;
   1443 		sc->sc_ctrl_ext |=
   1444 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
   1445 		    CTRL_EXT_SWDPINS_SHIFT;
   1446 	} else {
   1447 		sc->sc_ctrl_ext |=
   1448 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
   1449 		    CTRL_EXT_SWDPIO_SHIFT;
   1450 	}
   1451 #endif
   1452 
   1453 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   1454 #if 0
   1455 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   1456 #endif
   1457 
   1458 	/*
   1459 	 * Set up some register offsets that are different between
   1460 	 * the i82542 and the i82543 and later chips.
   1461 	 */
   1462 	if (sc->sc_type < WM_T_82543) {
   1463 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
   1464 		sc->sc_tdt_reg = WMREG_OLD_TDT;
   1465 	} else {
   1466 		sc->sc_rdt_reg = WMREG_RDT;
   1467 		sc->sc_tdt_reg = WMREG_TDT;
   1468 	}
   1469 
   1470 	/*
   1471 	 * Determine if we're TBI or GMII mode, and initialize the
   1472 	 * media structures accordingly.
   1473 	 */
   1474 	if (sc->sc_type == WM_T_ICH8 || sc->sc_type == WM_T_ICH9
   1475 	    || sc->sc_type == WM_T_82573) {
   1476 		/* STATUS_TBIMODE reserved/reused, can't rely on it */
   1477 		wm_gmii_mediainit(sc);
   1478 	} else if (sc->sc_type < WM_T_82543 ||
   1479 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
   1480 		if (wmp->wmp_flags & WMP_F_1000T)
   1481 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
   1482 			    "product!\n", sc->sc_dev.dv_xname);
   1483 		wm_tbi_mediainit(sc);
   1484 	} else {
   1485 		if (wmp->wmp_flags & WMP_F_1000X)
   1486 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
   1487 			    "product!\n", sc->sc_dev.dv_xname);
   1488 		wm_gmii_mediainit(sc);
   1489 	}
   1490 
   1491 	ifp = &sc->sc_ethercom.ec_if;
   1492 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
   1493 	ifp->if_softc = sc;
   1494 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1495 	ifp->if_ioctl = wm_ioctl;
   1496 	ifp->if_start = wm_start;
   1497 	ifp->if_watchdog = wm_watchdog;
   1498 	ifp->if_init = wm_init;
   1499 	ifp->if_stop = wm_stop;
   1500 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
   1501 	IFQ_SET_READY(&ifp->if_snd);
   1502 
   1503 	if (sc->sc_type != WM_T_82573 && sc->sc_type != WM_T_ICH8)
   1504 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1505 
   1506 	/*
   1507 	 * If we're a i82543 or greater, we can support VLANs.
   1508 	 */
   1509 	if (sc->sc_type >= WM_T_82543)
   1510 		sc->sc_ethercom.ec_capabilities |=
   1511 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
   1512 
   1513 	/*
   1514 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
   1515 	 * on i82543 and later.
   1516 	 */
   1517 	if (sc->sc_type >= WM_T_82543) {
   1518 		ifp->if_capabilities |=
   1519 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1520 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1521 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
   1522 		    IFCAP_CSUM_TCPv6_Tx |
   1523 		    IFCAP_CSUM_UDPv6_Tx;
   1524 	}
   1525 
   1526 	/*
   1527 	 * XXXyamt: i'm not sure which chips support RXCSUM_IPV6OFL.
   1528 	 *
   1529 	 *	82541GI (8086:1076) ... no
   1530 	 *	82572EI (8086:10b9) ... yes
   1531 	 */
   1532 	if (sc->sc_type >= WM_T_82571) {
   1533 		ifp->if_capabilities |=
   1534 		    IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
   1535 	}
   1536 
   1537 	/*
   1538 	 * If we're a i82544 or greater (except i82547), we can do
   1539 	 * TCP segmentation offload.
   1540 	 */
   1541 	if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547) {
   1542 		ifp->if_capabilities |= IFCAP_TSOv4;
   1543 	}
   1544 
   1545 	if (sc->sc_type >= WM_T_82571) {
   1546 		ifp->if_capabilities |= IFCAP_TSOv6;
   1547 	}
   1548 
   1549 	/*
   1550 	 * Attach the interface.
   1551 	 */
   1552 	if_attach(ifp);
   1553 	ether_ifattach(ifp, enaddr);
   1554 #if NRND > 0
   1555 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1556 	    RND_TYPE_NET, 0);
   1557 #endif
   1558 
   1559 #ifdef WM_EVENT_COUNTERS
   1560 	/* Attach event counters. */
   1561 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1562 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1563 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1564 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1565 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
   1566 	    NULL, sc->sc_dev.dv_xname, "txfifo_stall");
   1567 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
   1568 	    NULL, sc->sc_dev.dv_xname, "txdw");
   1569 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
   1570 	    NULL, sc->sc_dev.dv_xname, "txqe");
   1571 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1572 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1573 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
   1574 	    NULL, sc->sc_dev.dv_xname, "linkintr");
   1575 
   1576 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1577 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1578 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
   1579 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
   1580 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1581 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1582 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
   1583 	    NULL, sc->sc_dev.dv_xname, "txtusum");
   1584 	evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
   1585 	    NULL, sc->sc_dev.dv_xname, "txtusum6");
   1586 
   1587 	evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
   1588 	    NULL, sc->sc_dev.dv_xname, "txtso");
   1589 	evcnt_attach_dynamic(&sc->sc_ev_txtso6, EVCNT_TYPE_MISC,
   1590 	    NULL, sc->sc_dev.dv_xname, "txtso6");
   1591 	evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
   1592 	    NULL, sc->sc_dev.dv_xname, "txtsopain");
   1593 
   1594 	for (i = 0; i < WM_NTXSEGS; i++) {
   1595 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
   1596 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
   1597 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
   1598 	}
   1599 
   1600 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
   1601 	    NULL, sc->sc_dev.dv_xname, "txdrop");
   1602 
   1603 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
   1604 	    NULL, sc->sc_dev.dv_xname, "tu");
   1605 
   1606 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
   1607 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
   1608 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
   1609 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
   1610 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
   1611 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
   1612 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
   1613 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
   1614 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
   1615 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
   1616 #endif /* WM_EVENT_COUNTERS */
   1617 
   1618 	if (!pmf_device_register(self, NULL, NULL))
   1619 		aprint_error_dev(self, "couldn't establish power handler\n");
   1620 	else
   1621 		pmf_class_network_register(self, ifp);
   1622 
   1623 	return;
   1624 
   1625 	/*
   1626 	 * Free any resources we've allocated during the failed attach
   1627 	 * attempt.  Do this in reverse order and fall through.
   1628 	 */
   1629  fail_5:
   1630 	for (i = 0; i < WM_NRXDESC; i++) {
   1631 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1632 			bus_dmamap_destroy(sc->sc_dmat,
   1633 			    sc->sc_rxsoft[i].rxs_dmamap);
   1634 	}
   1635  fail_4:
   1636 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1637 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1638 			bus_dmamap_destroy(sc->sc_dmat,
   1639 			    sc->sc_txsoft[i].txs_dmamap);
   1640 	}
   1641 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1642  fail_3:
   1643 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1644  fail_2:
   1645 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
   1646 	    cdata_size);
   1647  fail_1:
   1648 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1649  fail_0:
   1650 	return;
   1651 }
   1652 
   1653 /*
   1654  * wm_tx_offload:
   1655  *
   1656  *	Set up TCP/IP checksumming parameters for the
   1657  *	specified packet.
   1658  */
   1659 static int
   1660 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
   1661     uint8_t *fieldsp)
   1662 {
   1663 	struct mbuf *m0 = txs->txs_mbuf;
   1664 	struct livengood_tcpip_ctxdesc *t;
   1665 	uint32_t ipcs, tucs, cmd, cmdlen, seg;
   1666 	uint32_t ipcse;
   1667 	struct ether_header *eh;
   1668 	int offset, iphl;
   1669 	uint8_t fields;
   1670 
   1671 	/*
   1672 	 * XXX It would be nice if the mbuf pkthdr had offset
   1673 	 * fields for the protocol headers.
   1674 	 */
   1675 
   1676 	eh = mtod(m0, struct ether_header *);
   1677 	switch (htons(eh->ether_type)) {
   1678 	case ETHERTYPE_IP:
   1679 	case ETHERTYPE_IPV6:
   1680 		offset = ETHER_HDR_LEN;
   1681 		break;
   1682 
   1683 	case ETHERTYPE_VLAN:
   1684 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1685 		break;
   1686 
   1687 	default:
   1688 		/*
   1689 		 * Don't support this protocol or encapsulation.
   1690 		 */
   1691 		*fieldsp = 0;
   1692 		*cmdp = 0;
   1693 		return (0);
   1694 	}
   1695 
   1696 	if ((m0->m_pkthdr.csum_flags &
   1697 	    (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
   1698 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1699 	} else {
   1700 		iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
   1701 	}
   1702 	ipcse = offset + iphl - 1;
   1703 
   1704 	cmd = WTX_CMD_DEXT | WTX_DTYP_D;
   1705 	cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
   1706 	seg = 0;
   1707 	fields = 0;
   1708 
   1709 	if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
   1710 		int hlen = offset + iphl;
   1711 		bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   1712 
   1713 		if (__predict_false(m0->m_len <
   1714 				    (hlen + sizeof(struct tcphdr)))) {
   1715 			/*
   1716 			 * TCP/IP headers are not in the first mbuf; we need
   1717 			 * to do this the slow and painful way.  Let's just
   1718 			 * hope this doesn't happen very often.
   1719 			 */
   1720 			struct tcphdr th;
   1721 
   1722 			WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
   1723 
   1724 			m_copydata(m0, hlen, sizeof(th), &th);
   1725 			if (v4) {
   1726 				struct ip ip;
   1727 
   1728 				m_copydata(m0, offset, sizeof(ip), &ip);
   1729 				ip.ip_len = 0;
   1730 				m_copyback(m0,
   1731 				    offset + offsetof(struct ip, ip_len),
   1732 				    sizeof(ip.ip_len), &ip.ip_len);
   1733 				th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   1734 				    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   1735 			} else {
   1736 				struct ip6_hdr ip6;
   1737 
   1738 				m_copydata(m0, offset, sizeof(ip6), &ip6);
   1739 				ip6.ip6_plen = 0;
   1740 				m_copyback(m0,
   1741 				    offset + offsetof(struct ip6_hdr, ip6_plen),
   1742 				    sizeof(ip6.ip6_plen), &ip6.ip6_plen);
   1743 				th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
   1744 				    &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
   1745 			}
   1746 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   1747 			    sizeof(th.th_sum), &th.th_sum);
   1748 
   1749 			hlen += th.th_off << 2;
   1750 		} else {
   1751 			/*
   1752 			 * TCP/IP headers are in the first mbuf; we can do
   1753 			 * this the easy way.
   1754 			 */
   1755 			struct tcphdr *th;
   1756 
   1757 			if (v4) {
   1758 				struct ip *ip =
   1759 				    (void *)(mtod(m0, char *) + offset);
   1760 				th = (void *)(mtod(m0, char *) + hlen);
   1761 
   1762 				ip->ip_len = 0;
   1763 				th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   1764 				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   1765 			} else {
   1766 				struct ip6_hdr *ip6 =
   1767 				    (void *)(mtod(m0, char *) + offset);
   1768 				th = (void *)(mtod(m0, char *) + hlen);
   1769 
   1770 				ip6->ip6_plen = 0;
   1771 				th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
   1772 				    &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
   1773 			}
   1774 			hlen += th->th_off << 2;
   1775 		}
   1776 
   1777 		if (v4) {
   1778 			WM_EVCNT_INCR(&sc->sc_ev_txtso);
   1779 			cmdlen |= WTX_TCPIP_CMD_IP;
   1780 		} else {
   1781 			WM_EVCNT_INCR(&sc->sc_ev_txtso6);
   1782 			ipcse = 0;
   1783 		}
   1784 		cmd |= WTX_TCPIP_CMD_TSE;
   1785 		cmdlen |= WTX_TCPIP_CMD_TSE |
   1786 		    WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
   1787 		seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
   1788 		    WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
   1789 	}
   1790 
   1791 	/*
   1792 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1793 	 * offload feature, if we load the context descriptor, we
   1794 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1795 	 */
   1796 
   1797 	ipcs = WTX_TCPIP_IPCSS(offset) |
   1798 	    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1799 	    WTX_TCPIP_IPCSE(ipcse);
   1800 	if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
   1801 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
   1802 		fields |= WTX_IXSM;
   1803 	}
   1804 
   1805 	offset += iphl;
   1806 
   1807 	if (m0->m_pkthdr.csum_flags &
   1808 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
   1809 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
   1810 		fields |= WTX_TXSM;
   1811 		tucs = WTX_TCPIP_TUCSS(offset) |
   1812 		    WTX_TCPIP_TUCSO(offset +
   1813 		    M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
   1814 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1815 	} else if ((m0->m_pkthdr.csum_flags &
   1816 	    (M_CSUM_TCPv6|M_CSUM_UDPv6|M_CSUM_TSOv6)) != 0) {
   1817 		WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
   1818 		fields |= WTX_TXSM;
   1819 		tucs = WTX_TCPIP_TUCSS(offset) |
   1820 		    WTX_TCPIP_TUCSO(offset +
   1821 		    M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
   1822 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1823 	} else {
   1824 		/* Just initialize it to a valid TCP context. */
   1825 		tucs = WTX_TCPIP_TUCSS(offset) |
   1826 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1827 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1828 	}
   1829 
   1830 	/* Fill in the context descriptor. */
   1831 	t = (struct livengood_tcpip_ctxdesc *)
   1832 	    &sc->sc_txdescs[sc->sc_txnext];
   1833 	t->tcpip_ipcs = htole32(ipcs);
   1834 	t->tcpip_tucs = htole32(tucs);
   1835 	t->tcpip_cmdlen = htole32(cmdlen);
   1836 	t->tcpip_seg = htole32(seg);
   1837 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1838 
   1839 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
   1840 	txs->txs_ndesc++;
   1841 
   1842 	*cmdp = cmd;
   1843 	*fieldsp = fields;
   1844 
   1845 	return (0);
   1846 }
   1847 
   1848 static void
   1849 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
   1850 {
   1851 	struct mbuf *m;
   1852 	int i;
   1853 
   1854 	log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
   1855 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
   1856 		log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
   1857 		    "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
   1858 		    m->m_data, m->m_len, m->m_flags);
   1859 	log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
   1860 	    i, i == 1 ? "" : "s");
   1861 }
   1862 
   1863 /*
   1864  * wm_82547_txfifo_stall:
   1865  *
   1866  *	Callout used to wait for the 82547 Tx FIFO to drain,
   1867  *	reset the FIFO pointers, and restart packet transmission.
   1868  */
   1869 static void
   1870 wm_82547_txfifo_stall(void *arg)
   1871 {
   1872 	struct wm_softc *sc = arg;
   1873 	int s;
   1874 
   1875 	s = splnet();
   1876 
   1877 	if (sc->sc_txfifo_stall) {
   1878 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
   1879 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
   1880 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
   1881 			/*
   1882 			 * Packets have drained.  Stop transmitter, reset
   1883 			 * FIFO pointers, restart transmitter, and kick
   1884 			 * the packet queue.
   1885 			 */
   1886 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
   1887 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
   1888 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
   1889 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
   1890 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
   1891 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
   1892 			CSR_WRITE(sc, WMREG_TCTL, tctl);
   1893 			CSR_WRITE_FLUSH(sc);
   1894 
   1895 			sc->sc_txfifo_head = 0;
   1896 			sc->sc_txfifo_stall = 0;
   1897 			wm_start(&sc->sc_ethercom.ec_if);
   1898 		} else {
   1899 			/*
   1900 			 * Still waiting for packets to drain; try again in
   1901 			 * another tick.
   1902 			 */
   1903 			callout_schedule(&sc->sc_txfifo_ch, 1);
   1904 		}
   1905 	}
   1906 
   1907 	splx(s);
   1908 }
   1909 
   1910 /*
   1911  * wm_82547_txfifo_bugchk:
   1912  *
   1913  *	Check for bug condition in the 82547 Tx FIFO.  We need to
   1914  *	prevent enqueueing a packet that would wrap around the end
   1915  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
   1916  *
   1917  *	We do this by checking the amount of space before the end
   1918  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
   1919  *	the Tx FIFO, wait for all remaining packets to drain, reset
   1920  *	the internal FIFO pointers to the beginning, and restart
   1921  *	transmission on the interface.
   1922  */
   1923 #define	WM_FIFO_HDR		0x10
   1924 #define	WM_82547_PAD_LEN	0x3e0
   1925 static int
   1926 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
   1927 {
   1928 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
   1929 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
   1930 
   1931 	/* Just return if already stalled. */
   1932 	if (sc->sc_txfifo_stall)
   1933 		return (1);
   1934 
   1935 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1936 		/* Stall only occurs in half-duplex mode. */
   1937 		goto send_packet;
   1938 	}
   1939 
   1940 	if (len >= WM_82547_PAD_LEN + space) {
   1941 		sc->sc_txfifo_stall = 1;
   1942 		callout_schedule(&sc->sc_txfifo_ch, 1);
   1943 		return (1);
   1944 	}
   1945 
   1946  send_packet:
   1947 	sc->sc_txfifo_head += len;
   1948 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
   1949 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
   1950 
   1951 	return (0);
   1952 }
   1953 
   1954 /*
   1955  * wm_start:		[ifnet interface function]
   1956  *
   1957  *	Start packet transmission on the interface.
   1958  */
   1959 static void
   1960 wm_start(struct ifnet *ifp)
   1961 {
   1962 	struct wm_softc *sc = ifp->if_softc;
   1963 	struct mbuf *m0;
   1964 #if 0 /* XXXJRT */
   1965 	struct m_tag *mtag;
   1966 #endif
   1967 	struct wm_txsoft *txs;
   1968 	bus_dmamap_t dmamap;
   1969 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
   1970 	bus_addr_t curaddr;
   1971 	bus_size_t seglen, curlen;
   1972 	uint32_t cksumcmd;
   1973 	uint8_t cksumfields;
   1974 
   1975 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1976 		return;
   1977 
   1978 	/*
   1979 	 * Remember the previous number of free descriptors.
   1980 	 */
   1981 	ofree = sc->sc_txfree;
   1982 
   1983 	/*
   1984 	 * Loop through the send queue, setting up transmit descriptors
   1985 	 * until we drain the queue, or use up all available transmit
   1986 	 * descriptors.
   1987 	 */
   1988 	for (;;) {
   1989 		/* Grab a packet off the queue. */
   1990 		IFQ_POLL(&ifp->if_snd, m0);
   1991 		if (m0 == NULL)
   1992 			break;
   1993 
   1994 		DPRINTF(WM_DEBUG_TX,
   1995 		    ("%s: TX: have packet to transmit: %p\n",
   1996 		    sc->sc_dev.dv_xname, m0));
   1997 
   1998 		/* Get a work queue entry. */
   1999 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
   2000 			wm_txintr(sc);
   2001 			if (sc->sc_txsfree == 0) {
   2002 				DPRINTF(WM_DEBUG_TX,
   2003 				    ("%s: TX: no free job descriptors\n",
   2004 					sc->sc_dev.dv_xname));
   2005 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   2006 				break;
   2007 			}
   2008 		}
   2009 
   2010 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   2011 		dmamap = txs->txs_dmamap;
   2012 
   2013 		use_tso = (m0->m_pkthdr.csum_flags &
   2014 		    (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0;
   2015 
   2016 		/*
   2017 		 * So says the Linux driver:
   2018 		 * The controller does a simple calculation to make sure
   2019 		 * there is enough room in the FIFO before initiating the
   2020 		 * DMA for each buffer.  The calc is:
   2021 		 *	4 = ceil(buffer len / MSS)
   2022 		 * To make sure we don't overrun the FIFO, adjust the max
   2023 		 * buffer len if the MSS drops.
   2024 		 */
   2025 		dmamap->dm_maxsegsz =
   2026 		    (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
   2027 		    ? m0->m_pkthdr.segsz << 2
   2028 		    : WTX_MAX_LEN;
   2029 
   2030 		/*
   2031 		 * Load the DMA map.  If this fails, the packet either
   2032 		 * didn't fit in the allotted number of segments, or we
   2033 		 * were short on resources.  For the too-many-segments
   2034 		 * case, we simply report an error and drop the packet,
   2035 		 * since we can't sanely copy a jumbo packet to a single
   2036 		 * buffer.
   2037 		 */
   2038 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   2039 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   2040 		if (error) {
   2041 			if (error == EFBIG) {
   2042 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   2043 				log(LOG_ERR, "%s: Tx packet consumes too many "
   2044 				    "DMA segments, dropping...\n",
   2045 				    sc->sc_dev.dv_xname);
   2046 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   2047 				wm_dump_mbuf_chain(sc, m0);
   2048 				m_freem(m0);
   2049 				continue;
   2050 			}
   2051 			/*
   2052 			 * Short on resources, just stop for now.
   2053 			 */
   2054 			DPRINTF(WM_DEBUG_TX,
   2055 			    ("%s: TX: dmamap load failed: %d\n",
   2056 			    sc->sc_dev.dv_xname, error));
   2057 			break;
   2058 		}
   2059 
   2060 		segs_needed = dmamap->dm_nsegs;
   2061 		if (use_tso) {
   2062 			/* For sentinel descriptor; see below. */
   2063 			segs_needed++;
   2064 		}
   2065 
   2066 		/*
   2067 		 * Ensure we have enough descriptors free to describe
   2068 		 * the packet.  Note, we always reserve one descriptor
   2069 		 * at the end of the ring due to the semantics of the
   2070 		 * TDT register, plus one more in the event we need
   2071 		 * to load offload context.
   2072 		 */
   2073 		if (segs_needed > sc->sc_txfree - 2) {
   2074 			/*
   2075 			 * Not enough free descriptors to transmit this
   2076 			 * packet.  We haven't committed anything yet,
   2077 			 * so just unload the DMA map, put the packet
   2078 			 * pack on the queue, and punt.  Notify the upper
   2079 			 * layer that there are no more slots left.
   2080 			 */
   2081 			DPRINTF(WM_DEBUG_TX,
   2082 			    ("%s: TX: need %d (%d) descriptors, have %d\n",
   2083 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
   2084 			    sc->sc_txfree - 1));
   2085 			ifp->if_flags |= IFF_OACTIVE;
   2086 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   2087 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   2088 			break;
   2089 		}
   2090 
   2091 		/*
   2092 		 * Check for 82547 Tx FIFO bug.  We need to do this
   2093 		 * once we know we can transmit the packet, since we
   2094 		 * do some internal FIFO space accounting here.
   2095 		 */
   2096 		if (sc->sc_type == WM_T_82547 &&
   2097 		    wm_82547_txfifo_bugchk(sc, m0)) {
   2098 			DPRINTF(WM_DEBUG_TX,
   2099 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
   2100 			    sc->sc_dev.dv_xname));
   2101 			ifp->if_flags |= IFF_OACTIVE;
   2102 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   2103 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
   2104 			break;
   2105 		}
   2106 
   2107 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   2108 
   2109 		/*
   2110 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   2111 		 */
   2112 
   2113 		DPRINTF(WM_DEBUG_TX,
   2114 		    ("%s: TX: packet has %d (%d) DMA segments\n",
   2115 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
   2116 
   2117 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   2118 
   2119 		/*
   2120 		 * Store a pointer to the packet so that we can free it
   2121 		 * later.
   2122 		 *
   2123 		 * Initially, we consider the number of descriptors the
   2124 		 * packet uses the number of DMA segments.  This may be
   2125 		 * incremented by 1 if we do checksum offload (a descriptor
   2126 		 * is used to set the checksum context).
   2127 		 */
   2128 		txs->txs_mbuf = m0;
   2129 		txs->txs_firstdesc = sc->sc_txnext;
   2130 		txs->txs_ndesc = segs_needed;
   2131 
   2132 		/* Set up offload parameters for this packet. */
   2133 		if (m0->m_pkthdr.csum_flags &
   2134 		    (M_CSUM_TSOv4|M_CSUM_TSOv6|
   2135 		    M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
   2136 		    M_CSUM_TCPv6|M_CSUM_UDPv6)) {
   2137 			if (wm_tx_offload(sc, txs, &cksumcmd,
   2138 					  &cksumfields) != 0) {
   2139 				/* Error message already displayed. */
   2140 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   2141 				continue;
   2142 			}
   2143 		} else {
   2144 			cksumcmd = 0;
   2145 			cksumfields = 0;
   2146 		}
   2147 
   2148 		cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
   2149 
   2150 		/* Sync the DMA map. */
   2151 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   2152 		    BUS_DMASYNC_PREWRITE);
   2153 
   2154 		/*
   2155 		 * Initialize the transmit descriptor.
   2156 		 */
   2157 		for (nexttx = sc->sc_txnext, seg = 0;
   2158 		     seg < dmamap->dm_nsegs; seg++) {
   2159 			for (seglen = dmamap->dm_segs[seg].ds_len,
   2160 			     curaddr = dmamap->dm_segs[seg].ds_addr;
   2161 			     seglen != 0;
   2162 			     curaddr += curlen, seglen -= curlen,
   2163 			     nexttx = WM_NEXTTX(sc, nexttx)) {
   2164 				curlen = seglen;
   2165 
   2166 				/*
   2167 				 * So says the Linux driver:
   2168 				 * Work around for premature descriptor
   2169 				 * write-backs in TSO mode.  Append a
   2170 				 * 4-byte sentinel descriptor.
   2171 				 */
   2172 				if (use_tso &&
   2173 				    seg == dmamap->dm_nsegs - 1 &&
   2174 				    curlen > 8)
   2175 					curlen -= 4;
   2176 
   2177 				wm_set_dma_addr(
   2178 				    &sc->sc_txdescs[nexttx].wtx_addr,
   2179 				    curaddr);
   2180 				sc->sc_txdescs[nexttx].wtx_cmdlen =
   2181 				    htole32(cksumcmd | curlen);
   2182 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
   2183 				    0;
   2184 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
   2185 				    cksumfields;
   2186 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
   2187 				lasttx = nexttx;
   2188 
   2189 				DPRINTF(WM_DEBUG_TX,
   2190 				    ("%s: TX: desc %d: low 0x%08lx, "
   2191 				     "len 0x%04x\n",
   2192 				    sc->sc_dev.dv_xname, nexttx,
   2193 				    curaddr & 0xffffffffUL, (unsigned)curlen));
   2194 			}
   2195 		}
   2196 
   2197 		KASSERT(lasttx != -1);
   2198 
   2199 		/*
   2200 		 * Set up the command byte on the last descriptor of
   2201 		 * the packet.  If we're in the interrupt delay window,
   2202 		 * delay the interrupt.
   2203 		 */
   2204 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   2205 		    htole32(WTX_CMD_EOP | WTX_CMD_RS);
   2206 
   2207 #if 0 /* XXXJRT */
   2208 		/*
   2209 		 * If VLANs are enabled and the packet has a VLAN tag, set
   2210 		 * up the descriptor to encapsulate the packet for us.
   2211 		 *
   2212 		 * This is only valid on the last descriptor of the packet.
   2213 		 */
   2214 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   2215 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   2216 			    htole32(WTX_CMD_VLE);
   2217 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
   2218 			    = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
   2219 		}
   2220 #endif /* XXXJRT */
   2221 
   2222 		txs->txs_lastdesc = lasttx;
   2223 
   2224 		DPRINTF(WM_DEBUG_TX,
   2225 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   2226 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
   2227 
   2228 		/* Sync the descriptors we're using. */
   2229 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
   2230 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2231 
   2232 		/* Give the packet to the chip. */
   2233 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   2234 
   2235 		DPRINTF(WM_DEBUG_TX,
   2236 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   2237 
   2238 		DPRINTF(WM_DEBUG_TX,
   2239 		    ("%s: TX: finished transmitting packet, job %d\n",
   2240 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   2241 
   2242 		/* Advance the tx pointer. */
   2243 		sc->sc_txfree -= txs->txs_ndesc;
   2244 		sc->sc_txnext = nexttx;
   2245 
   2246 		sc->sc_txsfree--;
   2247 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
   2248 
   2249 #if NBPFILTER > 0
   2250 		/* Pass the packet to any BPF listeners. */
   2251 		if (ifp->if_bpf)
   2252 			bpf_mtap(ifp->if_bpf, m0);
   2253 #endif /* NBPFILTER > 0 */
   2254 	}
   2255 
   2256 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   2257 		/* No more slots; notify upper layer. */
   2258 		ifp->if_flags |= IFF_OACTIVE;
   2259 	}
   2260 
   2261 	if (sc->sc_txfree != ofree) {
   2262 		/* Set a watchdog timer in case the chip flakes out. */
   2263 		ifp->if_timer = 5;
   2264 	}
   2265 }
   2266 
   2267 /*
   2268  * wm_watchdog:		[ifnet interface function]
   2269  *
   2270  *	Watchdog timer handler.
   2271  */
   2272 static void
   2273 wm_watchdog(struct ifnet *ifp)
   2274 {
   2275 	struct wm_softc *sc = ifp->if_softc;
   2276 
   2277 	/*
   2278 	 * Since we're using delayed interrupts, sweep up
   2279 	 * before we report an error.
   2280 	 */
   2281 	wm_txintr(sc);
   2282 
   2283 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
   2284 		log(LOG_ERR,
   2285 		    "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   2286 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   2287 		    sc->sc_txnext);
   2288 		ifp->if_oerrors++;
   2289 
   2290 		/* Reset the interface. */
   2291 		(void) wm_init(ifp);
   2292 	}
   2293 
   2294 	/* Try to get more packets going. */
   2295 	wm_start(ifp);
   2296 }
   2297 
   2298 /*
   2299  * wm_ioctl:		[ifnet interface function]
   2300  *
   2301  *	Handle control requests from the operator.
   2302  */
   2303 static int
   2304 wm_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2305 {
   2306 	struct wm_softc *sc = ifp->if_softc;
   2307 	struct ifreq *ifr = (struct ifreq *) data;
   2308 	int s, error;
   2309 
   2310 	s = splnet();
   2311 
   2312 	switch (cmd) {
   2313 	case SIOCSIFMEDIA:
   2314 	case SIOCGIFMEDIA:
   2315 		/* Flow control requires full-duplex mode. */
   2316 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   2317 		    (ifr->ifr_media & IFM_FDX) == 0)
   2318 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   2319 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   2320 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   2321 				/* We can do both TXPAUSE and RXPAUSE. */
   2322 				ifr->ifr_media |=
   2323 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   2324 			}
   2325 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   2326 		}
   2327 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   2328 		break;
   2329 	default:
   2330 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   2331 			break;
   2332 
   2333 		error = 0;
   2334 
   2335 		if (cmd == SIOCSIFCAP)
   2336 			error = (*ifp->if_init)(ifp);
   2337 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   2338 			;
   2339 		else if (ifp->if_flags & IFF_RUNNING) {
   2340 			/*
   2341 			 * Multicast list has changed; set the hardware filter
   2342 			 * accordingly.
   2343 			 */
   2344 			wm_set_filter(sc);
   2345 		}
   2346 		break;
   2347 	}
   2348 
   2349 	/* Try to get more packets going. */
   2350 	wm_start(ifp);
   2351 
   2352 	splx(s);
   2353 	return (error);
   2354 }
   2355 
   2356 /*
   2357  * wm_intr:
   2358  *
   2359  *	Interrupt service routine.
   2360  */
   2361 static int
   2362 wm_intr(void *arg)
   2363 {
   2364 	struct wm_softc *sc = arg;
   2365 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2366 	uint32_t icr;
   2367 	int handled = 0;
   2368 
   2369 	while (1 /* CONSTCOND */) {
   2370 		icr = CSR_READ(sc, WMREG_ICR);
   2371 		if ((icr & sc->sc_icr) == 0)
   2372 			break;
   2373 #if 0 /*NRND > 0*/
   2374 		if (RND_ENABLED(&sc->rnd_source))
   2375 			rnd_add_uint32(&sc->rnd_source, icr);
   2376 #endif
   2377 
   2378 		handled = 1;
   2379 
   2380 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   2381 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   2382 			DPRINTF(WM_DEBUG_RX,
   2383 			    ("%s: RX: got Rx intr 0x%08x\n",
   2384 			    sc->sc_dev.dv_xname,
   2385 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   2386 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
   2387 		}
   2388 #endif
   2389 		wm_rxintr(sc);
   2390 
   2391 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   2392 		if (icr & ICR_TXDW) {
   2393 			DPRINTF(WM_DEBUG_TX,
   2394 			    ("%s: TX: got TXDW interrupt\n",
   2395 			    sc->sc_dev.dv_xname));
   2396 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
   2397 		}
   2398 #endif
   2399 		wm_txintr(sc);
   2400 
   2401 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
   2402 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
   2403 			wm_linkintr(sc, icr);
   2404 		}
   2405 
   2406 		if (icr & ICR_RXO) {
   2407 			ifp->if_ierrors++;
   2408 #if defined(WM_DEBUG)
   2409 			log(LOG_WARNING, "%s: Receive overrun\n",
   2410 			    sc->sc_dev.dv_xname);
   2411 #endif /* defined(WM_DEBUG) */
   2412 		}
   2413 	}
   2414 
   2415 	if (handled) {
   2416 		/* Try to get more packets going. */
   2417 		wm_start(ifp);
   2418 	}
   2419 
   2420 	return (handled);
   2421 }
   2422 
   2423 /*
   2424  * wm_txintr:
   2425  *
   2426  *	Helper; handle transmit interrupts.
   2427  */
   2428 static void
   2429 wm_txintr(struct wm_softc *sc)
   2430 {
   2431 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2432 	struct wm_txsoft *txs;
   2433 	uint8_t status;
   2434 	int i;
   2435 
   2436 	ifp->if_flags &= ~IFF_OACTIVE;
   2437 
   2438 	/*
   2439 	 * Go through the Tx list and free mbufs for those
   2440 	 * frames which have been transmitted.
   2441 	 */
   2442 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
   2443 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
   2444 		txs = &sc->sc_txsoft[i];
   2445 
   2446 		DPRINTF(WM_DEBUG_TX,
   2447 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   2448 
   2449 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   2450 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2451 
   2452 		status =
   2453 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
   2454 		if ((status & WTX_ST_DD) == 0) {
   2455 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   2456 			    BUS_DMASYNC_PREREAD);
   2457 			break;
   2458 		}
   2459 
   2460 		DPRINTF(WM_DEBUG_TX,
   2461 		    ("%s: TX: job %d done: descs %d..%d\n",
   2462 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   2463 		    txs->txs_lastdesc));
   2464 
   2465 		/*
   2466 		 * XXX We should probably be using the statistics
   2467 		 * XXX registers, but I don't know if they exist
   2468 		 * XXX on chips before the i82544.
   2469 		 */
   2470 
   2471 #ifdef WM_EVENT_COUNTERS
   2472 		if (status & WTX_ST_TU)
   2473 			WM_EVCNT_INCR(&sc->sc_ev_tu);
   2474 #endif /* WM_EVENT_COUNTERS */
   2475 
   2476 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
   2477 			ifp->if_oerrors++;
   2478 			if (status & WTX_ST_LC)
   2479 				log(LOG_WARNING, "%s: late collision\n",
   2480 				    sc->sc_dev.dv_xname);
   2481 			else if (status & WTX_ST_EC) {
   2482 				ifp->if_collisions += 16;
   2483 				log(LOG_WARNING, "%s: excessive collisions\n",
   2484 				    sc->sc_dev.dv_xname);
   2485 			}
   2486 		} else
   2487 			ifp->if_opackets++;
   2488 
   2489 		sc->sc_txfree += txs->txs_ndesc;
   2490 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   2491 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2492 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2493 		m_freem(txs->txs_mbuf);
   2494 		txs->txs_mbuf = NULL;
   2495 	}
   2496 
   2497 	/* Update the dirty transmit buffer pointer. */
   2498 	sc->sc_txsdirty = i;
   2499 	DPRINTF(WM_DEBUG_TX,
   2500 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   2501 
   2502 	/*
   2503 	 * If there are no more pending transmissions, cancel the watchdog
   2504 	 * timer.
   2505 	 */
   2506 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
   2507 		ifp->if_timer = 0;
   2508 }
   2509 
   2510 /*
   2511  * wm_rxintr:
   2512  *
   2513  *	Helper; handle receive interrupts.
   2514  */
   2515 static void
   2516 wm_rxintr(struct wm_softc *sc)
   2517 {
   2518 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2519 	struct wm_rxsoft *rxs;
   2520 	struct mbuf *m;
   2521 	int i, len;
   2522 	uint8_t status, errors;
   2523 
   2524 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
   2525 		rxs = &sc->sc_rxsoft[i];
   2526 
   2527 		DPRINTF(WM_DEBUG_RX,
   2528 		    ("%s: RX: checking descriptor %d\n",
   2529 		    sc->sc_dev.dv_xname, i));
   2530 
   2531 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2532 
   2533 		status = sc->sc_rxdescs[i].wrx_status;
   2534 		errors = sc->sc_rxdescs[i].wrx_errors;
   2535 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
   2536 
   2537 		if ((status & WRX_ST_DD) == 0) {
   2538 			/*
   2539 			 * We have processed all of the receive descriptors.
   2540 			 */
   2541 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   2542 			break;
   2543 		}
   2544 
   2545 		if (__predict_false(sc->sc_rxdiscard)) {
   2546 			DPRINTF(WM_DEBUG_RX,
   2547 			    ("%s: RX: discarding contents of descriptor %d\n",
   2548 			    sc->sc_dev.dv_xname, i));
   2549 			WM_INIT_RXDESC(sc, i);
   2550 			if (status & WRX_ST_EOP) {
   2551 				/* Reset our state. */
   2552 				DPRINTF(WM_DEBUG_RX,
   2553 				    ("%s: RX: resetting rxdiscard -> 0\n",
   2554 				    sc->sc_dev.dv_xname));
   2555 				sc->sc_rxdiscard = 0;
   2556 			}
   2557 			continue;
   2558 		}
   2559 
   2560 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2561 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2562 
   2563 		m = rxs->rxs_mbuf;
   2564 
   2565 		/*
   2566 		 * Add a new receive buffer to the ring, unless of
   2567 		 * course the length is zero. Treat the latter as a
   2568 		 * failed mapping.
   2569 		 */
   2570 		if ((len == 0) || (wm_add_rxbuf(sc, i) != 0)) {
   2571 			/*
   2572 			 * Failed, throw away what we've done so
   2573 			 * far, and discard the rest of the packet.
   2574 			 */
   2575 			ifp->if_ierrors++;
   2576 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2577 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2578 			WM_INIT_RXDESC(sc, i);
   2579 			if ((status & WRX_ST_EOP) == 0)
   2580 				sc->sc_rxdiscard = 1;
   2581 			if (sc->sc_rxhead != NULL)
   2582 				m_freem(sc->sc_rxhead);
   2583 			WM_RXCHAIN_RESET(sc);
   2584 			DPRINTF(WM_DEBUG_RX,
   2585 			    ("%s: RX: Rx buffer allocation failed, "
   2586 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   2587 			    sc->sc_rxdiscard ? " (discard)" : ""));
   2588 			continue;
   2589 		}
   2590 
   2591 		WM_RXCHAIN_LINK(sc, m);
   2592 
   2593 		m->m_len = len;
   2594 
   2595 		DPRINTF(WM_DEBUG_RX,
   2596 		    ("%s: RX: buffer at %p len %d\n",
   2597 		    sc->sc_dev.dv_xname, m->m_data, len));
   2598 
   2599 		/*
   2600 		 * If this is not the end of the packet, keep
   2601 		 * looking.
   2602 		 */
   2603 		if ((status & WRX_ST_EOP) == 0) {
   2604 			sc->sc_rxlen += len;
   2605 			DPRINTF(WM_DEBUG_RX,
   2606 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   2607 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   2608 			continue;
   2609 		}
   2610 
   2611 		/*
   2612 		 * Okay, we have the entire packet now.  The chip is
   2613 		 * configured to include the FCS (not all chips can
   2614 		 * be configured to strip it), so we need to trim it.
   2615 		 */
   2616 		m->m_len -= ETHER_CRC_LEN;
   2617 
   2618 		*sc->sc_rxtailp = NULL;
   2619 		len = m->m_len + sc->sc_rxlen;
   2620 		m = sc->sc_rxhead;
   2621 
   2622 		WM_RXCHAIN_RESET(sc);
   2623 
   2624 		DPRINTF(WM_DEBUG_RX,
   2625 		    ("%s: RX: have entire packet, len -> %d\n",
   2626 		    sc->sc_dev.dv_xname, len));
   2627 
   2628 		/*
   2629 		 * If an error occurred, update stats and drop the packet.
   2630 		 */
   2631 		if (errors &
   2632 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
   2633 			ifp->if_ierrors++;
   2634 			if (errors & WRX_ER_SE)
   2635 				log(LOG_WARNING, "%s: symbol error\n",
   2636 				    sc->sc_dev.dv_xname);
   2637 			else if (errors & WRX_ER_SEQ)
   2638 				log(LOG_WARNING, "%s: receive sequence error\n",
   2639 				    sc->sc_dev.dv_xname);
   2640 			else if (errors & WRX_ER_CE)
   2641 				log(LOG_WARNING, "%s: CRC error\n",
   2642 				    sc->sc_dev.dv_xname);
   2643 			m_freem(m);
   2644 			continue;
   2645 		}
   2646 
   2647 		/*
   2648 		 * No errors.  Receive the packet.
   2649 		 */
   2650 		m->m_pkthdr.rcvif = ifp;
   2651 		m->m_pkthdr.len = len;
   2652 
   2653 #if 0 /* XXXJRT */
   2654 		/*
   2655 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2656 		 * for us.  Associate the tag with the packet.
   2657 		 */
   2658 		if ((status & WRX_ST_VP) != 0) {
   2659 			VLAN_INPUT_TAG(ifp, m,
   2660 			    le16toh(sc->sc_rxdescs[i].wrx_special,
   2661 			    continue);
   2662 		}
   2663 #endif /* XXXJRT */
   2664 
   2665 		/*
   2666 		 * Set up checksum info for this packet.
   2667 		 */
   2668 		if ((status & WRX_ST_IXSM) == 0) {
   2669 			if (status & WRX_ST_IPCS) {
   2670 				WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2671 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2672 				if (errors & WRX_ER_IPE)
   2673 					m->m_pkthdr.csum_flags |=
   2674 					    M_CSUM_IPv4_BAD;
   2675 			}
   2676 			if (status & WRX_ST_TCPCS) {
   2677 				/*
   2678 				 * Note: we don't know if this was TCP or UDP,
   2679 				 * so we just set both bits, and expect the
   2680 				 * upper layers to deal.
   2681 				 */
   2682 				WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
   2683 				m->m_pkthdr.csum_flags |=
   2684 				    M_CSUM_TCPv4 | M_CSUM_UDPv4 |
   2685 				    M_CSUM_TCPv6 | M_CSUM_UDPv6;
   2686 				if (errors & WRX_ER_TCPE)
   2687 					m->m_pkthdr.csum_flags |=
   2688 					    M_CSUM_TCP_UDP_BAD;
   2689 			}
   2690 		}
   2691 
   2692 		ifp->if_ipackets++;
   2693 
   2694 #if NBPFILTER > 0
   2695 		/* Pass this up to any BPF listeners. */
   2696 		if (ifp->if_bpf)
   2697 			bpf_mtap(ifp->if_bpf, m);
   2698 #endif /* NBPFILTER > 0 */
   2699 
   2700 		/* Pass it on. */
   2701 		(*ifp->if_input)(ifp, m);
   2702 	}
   2703 
   2704 	/* Update the receive pointer. */
   2705 	sc->sc_rxptr = i;
   2706 
   2707 	DPRINTF(WM_DEBUG_RX,
   2708 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   2709 }
   2710 
   2711 /*
   2712  * wm_linkintr:
   2713  *
   2714  *	Helper; handle link interrupts.
   2715  */
   2716 static void
   2717 wm_linkintr(struct wm_softc *sc, uint32_t icr)
   2718 {
   2719 	uint32_t status;
   2720 
   2721 	/*
   2722 	 * If we get a link status interrupt on a 1000BASE-T
   2723 	 * device, just fall into the normal MII tick path.
   2724 	 */
   2725 	if (sc->sc_flags & WM_F_HAS_MII) {
   2726 		if (icr & ICR_LSC) {
   2727 			DPRINTF(WM_DEBUG_LINK,
   2728 			    ("%s: LINK: LSC -> mii_tick\n",
   2729 			    sc->sc_dev.dv_xname));
   2730 			mii_tick(&sc->sc_mii);
   2731 		} else if (icr & ICR_RXSEQ) {
   2732 			DPRINTF(WM_DEBUG_LINK,
   2733 			    ("%s: LINK Receive sequence error\n",
   2734 			    sc->sc_dev.dv_xname));
   2735 		}
   2736 		return;
   2737 	}
   2738 
   2739 	/*
   2740 	 * If we are now receiving /C/, check for link again in
   2741 	 * a couple of link clock ticks.
   2742 	 */
   2743 	if (icr & ICR_RXCFG) {
   2744 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
   2745 		    sc->sc_dev.dv_xname));
   2746 		sc->sc_tbi_anstate = 2;
   2747 	}
   2748 
   2749 	if (icr & ICR_LSC) {
   2750 		status = CSR_READ(sc, WMREG_STATUS);
   2751 		if (status & STATUS_LU) {
   2752 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
   2753 			    sc->sc_dev.dv_xname,
   2754 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   2755 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2756 			sc->sc_fcrtl &= ~FCRTL_XONE;
   2757 			if (status & STATUS_FD)
   2758 				sc->sc_tctl |=
   2759 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2760 			else
   2761 				sc->sc_tctl |=
   2762 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2763 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   2764 				sc->sc_fcrtl |= FCRTL_XONE;
   2765 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2766 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   2767 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   2768 				      sc->sc_fcrtl);
   2769 			sc->sc_tbi_linkup = 1;
   2770 		} else {
   2771 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   2772 			    sc->sc_dev.dv_xname));
   2773 			sc->sc_tbi_linkup = 0;
   2774 		}
   2775 		sc->sc_tbi_anstate = 2;
   2776 		wm_tbi_set_linkled(sc);
   2777 	} else if (icr & ICR_RXSEQ) {
   2778 		DPRINTF(WM_DEBUG_LINK,
   2779 		    ("%s: LINK: Receive sequence error\n",
   2780 		    sc->sc_dev.dv_xname));
   2781 	}
   2782 }
   2783 
   2784 /*
   2785  * wm_tick:
   2786  *
   2787  *	One second timer, used to check link status, sweep up
   2788  *	completed transmit jobs, etc.
   2789  */
   2790 static void
   2791 wm_tick(void *arg)
   2792 {
   2793 	struct wm_softc *sc = arg;
   2794 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2795 	int s;
   2796 
   2797 	s = splnet();
   2798 
   2799 	if (sc->sc_type >= WM_T_82542_2_1) {
   2800 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
   2801 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
   2802 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
   2803 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
   2804 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
   2805 	}
   2806 
   2807 	ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
   2808 	ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
   2809 
   2810 
   2811 	if (sc->sc_flags & WM_F_HAS_MII)
   2812 		mii_tick(&sc->sc_mii);
   2813 	else
   2814 		wm_tbi_check_link(sc);
   2815 
   2816 	splx(s);
   2817 
   2818 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2819 }
   2820 
   2821 /*
   2822  * wm_reset:
   2823  *
   2824  *	Reset the i82542 chip.
   2825  */
   2826 static void
   2827 wm_reset(struct wm_softc *sc)
   2828 {
   2829 	uint32_t reg;
   2830 
   2831 	/*
   2832 	 * Allocate on-chip memory according to the MTU size.
   2833 	 * The Packet Buffer Allocation register must be written
   2834 	 * before the chip is reset.
   2835 	 */
   2836 	switch (sc->sc_type) {
   2837 	case WM_T_82547:
   2838 	case WM_T_82547_2:
   2839 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2840 		    PBA_22K : PBA_30K;
   2841 		sc->sc_txfifo_head = 0;
   2842 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
   2843 		sc->sc_txfifo_size =
   2844 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
   2845 		sc->sc_txfifo_stall = 0;
   2846 		break;
   2847 	case WM_T_82571:
   2848 	case WM_T_82572:
   2849 	case WM_T_80003:
   2850 		sc->sc_pba = PBA_32K;
   2851 		break;
   2852 	case WM_T_82573:
   2853 		sc->sc_pba = PBA_12K;
   2854 		break;
   2855 	case WM_T_ICH8:
   2856 		sc->sc_pba = PBA_8K;
   2857 		CSR_WRITE(sc, WMREG_PBS, PBA_16K);
   2858 		break;
   2859 	case WM_T_ICH9:
   2860 		sc->sc_pba = PBA_10K;
   2861 		break;
   2862 	default:
   2863 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2864 		    PBA_40K : PBA_48K;
   2865 		break;
   2866 	}
   2867 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
   2868 
   2869 	if (sc->sc_flags & WM_F_PCIE) {
   2870 		int timeout = 800;
   2871 
   2872 		sc->sc_ctrl |= CTRL_GIO_M_DIS;
   2873 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2874 
   2875 		while (timeout) {
   2876 			if ((CSR_READ(sc, WMREG_STATUS) & STATUS_GIO_M_ENA) == 0)
   2877 				break;
   2878 			delay(100);
   2879 		}
   2880 	}
   2881 
   2882 	/* clear interrupt */
   2883 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   2884 
   2885 	/*
   2886 	 * 82541 Errata 29? & 82547 Errata 28?
   2887 	 * See also the description about PHY_RST bit in CTRL register
   2888 	 * in 8254x_GBe_SDM.pdf.
   2889 	 */
   2890 	if ((sc->sc_type == WM_T_82541) || (sc->sc_type == WM_T_82547)) {
   2891 		CSR_WRITE(sc, WMREG_CTRL,
   2892 		    CSR_READ(sc, WMREG_CTRL) | CTRL_PHY_RESET);
   2893 		delay(5000);
   2894 	}
   2895 
   2896 	switch (sc->sc_type) {
   2897 	case WM_T_82544:
   2898 	case WM_T_82540:
   2899 	case WM_T_82545:
   2900 	case WM_T_82546:
   2901 	case WM_T_82541:
   2902 	case WM_T_82541_2:
   2903 		/*
   2904 		 * On some chipsets, a reset through a memory-mapped write
   2905 		 * cycle can cause the chip to reset before completing the
   2906 		 * write cycle.  This causes major headache that can be
   2907 		 * avoided by issuing the reset via indirect register writes
   2908 		 * through I/O space.
   2909 		 *
   2910 		 * So, if we successfully mapped the I/O BAR at attach time,
   2911 		 * use that.  Otherwise, try our luck with a memory-mapped
   2912 		 * reset.
   2913 		 */
   2914 		if (sc->sc_flags & WM_F_IOH_VALID)
   2915 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
   2916 		else
   2917 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2918 		break;
   2919 
   2920 	case WM_T_82545_3:
   2921 	case WM_T_82546_3:
   2922 		/* Use the shadow control register on these chips. */
   2923 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
   2924 		break;
   2925 
   2926 	case WM_T_ICH8:
   2927 	case WM_T_ICH9:
   2928 		wm_get_swfwhw_semaphore(sc);
   2929 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST | CTRL_PHY_RESET);
   2930 		delay(10000);
   2931 
   2932 	default:
   2933 		/* Everything else can safely use the documented method. */
   2934 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2935 		break;
   2936 	}
   2937 	delay(10000);
   2938 
   2939 	/* reload EEPROM */
   2940 	switch(sc->sc_type) {
   2941 	case WM_T_82542_2_0:
   2942 	case WM_T_82542_2_1:
   2943 	case WM_T_82543:
   2944 	case WM_T_82544:
   2945 		delay(10);
   2946 		reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
   2947 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   2948 		delay(2000);
   2949 		break;
   2950 	case WM_T_82541:
   2951 	case WM_T_82541_2:
   2952 	case WM_T_82547:
   2953 	case WM_T_82547_2:
   2954 		delay(20000);
   2955 		break;
   2956 	case WM_T_82573:
   2957 		if (sc->sc_flags & WM_F_EEPROM_FLASH) {
   2958 			delay(10);
   2959 			reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
   2960 			CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   2961 		}
   2962 		/* FALLTHROUGH */
   2963 	default:
   2964 		/* check EECD_EE_AUTORD */
   2965 		wm_get_auto_rd_done(sc);
   2966 	}
   2967 
   2968 #if 0
   2969 	for (i = 0; i < 1000; i++) {
   2970 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0) {
   2971 			return;
   2972 		}
   2973 		delay(20);
   2974 	}
   2975 
   2976 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
   2977 		log(LOG_ERR, "%s: reset failed to complete\n",
   2978 		    sc->sc_dev.dv_xname);
   2979 #endif
   2980 }
   2981 
   2982 /*
   2983  * wm_init:		[ifnet interface function]
   2984  *
   2985  *	Initialize the interface.  Must be called at splnet().
   2986  */
   2987 static int
   2988 wm_init(struct ifnet *ifp)
   2989 {
   2990 	struct wm_softc *sc = ifp->if_softc;
   2991 	struct wm_rxsoft *rxs;
   2992 	int i, error = 0;
   2993 	uint32_t reg;
   2994 
   2995 	/*
   2996 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   2997 	 * There is a small but measurable benefit to avoiding the adjusment
   2998 	 * of the descriptor so that the headers are aligned, for normal mtu,
   2999 	 * on such platforms.  One possibility is that the DMA itself is
   3000 	 * slightly more efficient if the front of the entire packet (instead
   3001 	 * of the front of the headers) is aligned.
   3002 	 *
   3003 	 * Note we must always set align_tweak to 0 if we are using
   3004 	 * jumbo frames.
   3005 	 */
   3006 #ifdef __NO_STRICT_ALIGNMENT
   3007 	sc->sc_align_tweak = 0;
   3008 #else
   3009 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   3010 		sc->sc_align_tweak = 0;
   3011 	else
   3012 		sc->sc_align_tweak = 2;
   3013 #endif /* __NO_STRICT_ALIGNMENT */
   3014 
   3015 	/* Cancel any pending I/O. */
   3016 	wm_stop(ifp, 0);
   3017 
   3018 	/* update statistics before reset */
   3019 	ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
   3020 	ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
   3021 
   3022 	/* Reset the chip to a known state. */
   3023 	wm_reset(sc);
   3024 
   3025 	/* Initialize the transmit descriptor ring. */
   3026 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
   3027 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
   3028 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3029 	sc->sc_txfree = WM_NTXDESC(sc);
   3030 	sc->sc_txnext = 0;
   3031 
   3032 	if (sc->sc_type < WM_T_82543) {
   3033 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
   3034 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
   3035 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
   3036 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
   3037 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
   3038 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
   3039 	} else {
   3040 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
   3041 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
   3042 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
   3043 		CSR_WRITE(sc, WMREG_TDH, 0);
   3044 		CSR_WRITE(sc, WMREG_TDT, 0);
   3045 		CSR_WRITE(sc, WMREG_TIDV, 375);		/* ITR / 4 */
   3046 		CSR_WRITE(sc, WMREG_TADV, 375);		/* should be same */
   3047 
   3048 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
   3049 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   3050 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
   3051 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
   3052 	}
   3053 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
   3054 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
   3055 
   3056 	/* Initialize the transmit job descriptors. */
   3057 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
   3058 		sc->sc_txsoft[i].txs_mbuf = NULL;
   3059 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
   3060 	sc->sc_txsnext = 0;
   3061 	sc->sc_txsdirty = 0;
   3062 
   3063 	/*
   3064 	 * Initialize the receive descriptor and receive job
   3065 	 * descriptor rings.
   3066 	 */
   3067 	if (sc->sc_type < WM_T_82543) {
   3068 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
   3069 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
   3070 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
   3071 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
   3072 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
   3073 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
   3074 
   3075 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
   3076 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
   3077 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
   3078 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
   3079 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
   3080 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
   3081 	} else {
   3082 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
   3083 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
   3084 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
   3085 		CSR_WRITE(sc, WMREG_RDH, 0);
   3086 		CSR_WRITE(sc, WMREG_RDT, 0);
   3087 		CSR_WRITE(sc, WMREG_RDTR, 375 | RDTR_FPD);	/* ITR/4 */
   3088 		CSR_WRITE(sc, WMREG_RADV, 375);		/* MUST be same */
   3089 	}
   3090 	for (i = 0; i < WM_NRXDESC; i++) {
   3091 		rxs = &sc->sc_rxsoft[i];
   3092 		if (rxs->rxs_mbuf == NULL) {
   3093 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
   3094 				log(LOG_ERR, "%s: unable to allocate or map rx "
   3095 				    "buffer %d, error = %d\n",
   3096 				    sc->sc_dev.dv_xname, i, error);
   3097 				/*
   3098 				 * XXX Should attempt to run with fewer receive
   3099 				 * XXX buffers instead of just failing.
   3100 				 */
   3101 				wm_rxdrain(sc);
   3102 				goto out;
   3103 			}
   3104 		} else
   3105 			WM_INIT_RXDESC(sc, i);
   3106 	}
   3107 	sc->sc_rxptr = 0;
   3108 	sc->sc_rxdiscard = 0;
   3109 	WM_RXCHAIN_RESET(sc);
   3110 
   3111 	/*
   3112 	 * Clear out the VLAN table -- we don't use it (yet).
   3113 	 */
   3114 	CSR_WRITE(sc, WMREG_VET, 0);
   3115 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
   3116 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
   3117 
   3118 	/*
   3119 	 * Set up flow-control parameters.
   3120 	 *
   3121 	 * XXX Values could probably stand some tuning.
   3122 	 */
   3123 	if (sc->sc_type != WM_T_ICH8) {
   3124 		CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
   3125 		CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
   3126 		CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
   3127 	}
   3128 
   3129 	sc->sc_fcrtl = FCRTL_DFLT;
   3130 	if (sc->sc_type < WM_T_82543) {
   3131 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
   3132 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
   3133 	} else {
   3134 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
   3135 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
   3136 	}
   3137 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
   3138 
   3139 #if 0 /* XXXJRT */
   3140 	/* Deal with VLAN enables. */
   3141 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   3142 		sc->sc_ctrl |= CTRL_VME;
   3143 	else
   3144 #endif /* XXXJRT */
   3145 		sc->sc_ctrl &= ~CTRL_VME;
   3146 
   3147 	/* Write the control registers. */
   3148 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3149 	if (sc->sc_type >= WM_T_80003 && (sc->sc_flags & WM_F_HAS_MII)) {
   3150 		int val;
   3151 		val = CSR_READ(sc, WMREG_CTRL_EXT);
   3152 		val &= ~CTRL_EXT_LINK_MODE_MASK;
   3153 		CSR_WRITE(sc, WMREG_CTRL_EXT, val);
   3154 
   3155 		/* Bypass RX and TX FIFO's */
   3156 		wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL,
   3157 		    KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
   3158 		    KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
   3159 
   3160 		wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL,
   3161 		    KUMCTRLSTA_INB_CTRL_DIS_PADDING |
   3162 		    KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT);
   3163 		/*
   3164 		 * Set the mac to wait the maximum time between each
   3165 		 * iteration and increase the max iterations when
   3166 		 * polling the phy; this fixes erroneous timeouts at 10Mbps.
   3167 		 */
   3168 		wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS, 0xFFFF);
   3169 		val = wm_kmrn_i80003_readreg(sc, KUMCTRLSTA_OFFSET_INB_PARAM);
   3170 		val |= 0x3F;
   3171 		wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_INB_PARAM, val);
   3172 	}
   3173 #if 0
   3174 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   3175 #endif
   3176 
   3177 	/*
   3178 	 * Set up checksum offload parameters.
   3179 	 */
   3180 	reg = CSR_READ(sc, WMREG_RXCSUM);
   3181 	reg &= ~(RXCSUM_IPOFL | RXCSUM_IPV6OFL | RXCSUM_TUOFL);
   3182 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   3183 		reg |= RXCSUM_IPOFL;
   3184 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   3185 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   3186 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
   3187 		reg |= RXCSUM_IPV6OFL | RXCSUM_TUOFL;
   3188 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
   3189 
   3190 	/*
   3191 	 * Set up the interrupt registers.
   3192 	 */
   3193 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   3194 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   3195 	    ICR_RXO | ICR_RXT0;
   3196 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
   3197 		sc->sc_icr |= ICR_RXCFG;
   3198 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
   3199 
   3200 	/* Set up the inter-packet gap. */
   3201 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   3202 
   3203 	if (sc->sc_type >= WM_T_82543) {
   3204 		/*
   3205 		 * Set up the interrupt throttling register (units of 256ns)
   3206 		 * Note that a footnote in Intel's documentation says this
   3207 		 * ticker runs at 1/4 the rate when the chip is in 100Mbit
   3208 		 * or 10Mbit mode.  Empirically, it appears to be the case
   3209 		 * that that is also true for the 1024ns units of the other
   3210 		 * interrupt-related timer registers -- so, really, we ought
   3211 		 * to divide this value by 4 when the link speed is low.
   3212 		 *
   3213 		 * XXX implement this division at link speed change!
   3214 		 */
   3215 
   3216 		 /*
   3217 		  * For N interrupts/sec, set this value to:
   3218 		  * 1000000000 / (N * 256).  Note that we set the
   3219 		  * absolute and packet timer values to this value
   3220 		  * divided by 4 to get "simple timer" behavior.
   3221 		  */
   3222 
   3223 		sc->sc_itr = 1500;		/* 2604 ints/sec */
   3224 		CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
   3225 	}
   3226 
   3227 #if 0 /* XXXJRT */
   3228 	/* Set the VLAN ethernetype. */
   3229 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
   3230 #endif
   3231 
   3232 	/*
   3233 	 * Set up the transmit control register; we start out with
   3234 	 * a collision distance suitable for FDX, but update it whe
   3235 	 * we resolve the media type.
   3236 	 */
   3237 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
   3238 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3239 	if (sc->sc_type >= WM_T_82571)
   3240 		sc->sc_tctl |= TCTL_MULR;
   3241 	if (sc->sc_type >= WM_T_80003)
   3242 		sc->sc_tctl |= TCTL_RTLC;
   3243 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3244 
   3245 	/* Set the media. */
   3246 	if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
   3247 		goto out;
   3248 
   3249 	/*
   3250 	 * Set up the receive control register; we actually program
   3251 	 * the register when we set the receive filter.  Use multicast
   3252 	 * address offset type 0.
   3253 	 *
   3254 	 * Only the i82544 has the ability to strip the incoming
   3255 	 * CRC, so we don't enable that feature.
   3256 	 */
   3257 	sc->sc_mchash_type = 0;
   3258 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
   3259 	    | RCTL_MO(sc->sc_mchash_type);
   3260 
   3261 	/* 82573 doesn't support jumbo frame */
   3262 	if (sc->sc_type != WM_T_82573 && sc->sc_type != WM_T_ICH8)
   3263 		sc->sc_rctl |= RCTL_LPE;
   3264 
   3265 	if (MCLBYTES == 2048) {
   3266 		sc->sc_rctl |= RCTL_2k;
   3267 	} else {
   3268 		if (sc->sc_type >= WM_T_82543) {
   3269 			switch(MCLBYTES) {
   3270 			case 4096:
   3271 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
   3272 				break;
   3273 			case 8192:
   3274 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
   3275 				break;
   3276 			case 16384:
   3277 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
   3278 				break;
   3279 			default:
   3280 				panic("wm_init: MCLBYTES %d unsupported",
   3281 				    MCLBYTES);
   3282 				break;
   3283 			}
   3284 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
   3285 	}
   3286 
   3287 	/* Set the receive filter. */
   3288 	wm_set_filter(sc);
   3289 
   3290 	/* Start the one second link check clock. */
   3291 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   3292 
   3293 	/* ...all done! */
   3294 	ifp->if_flags |= IFF_RUNNING;
   3295 	ifp->if_flags &= ~IFF_OACTIVE;
   3296 
   3297  out:
   3298 	if (error)
   3299 		log(LOG_ERR, "%s: interface not running\n",
   3300 		    sc->sc_dev.dv_xname);
   3301 	return (error);
   3302 }
   3303 
   3304 /*
   3305  * wm_rxdrain:
   3306  *
   3307  *	Drain the receive queue.
   3308  */
   3309 static void
   3310 wm_rxdrain(struct wm_softc *sc)
   3311 {
   3312 	struct wm_rxsoft *rxs;
   3313 	int i;
   3314 
   3315 	for (i = 0; i < WM_NRXDESC; i++) {
   3316 		rxs = &sc->sc_rxsoft[i];
   3317 		if (rxs->rxs_mbuf != NULL) {
   3318 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3319 			m_freem(rxs->rxs_mbuf);
   3320 			rxs->rxs_mbuf = NULL;
   3321 		}
   3322 	}
   3323 }
   3324 
   3325 /*
   3326  * wm_stop:		[ifnet interface function]
   3327  *
   3328  *	Stop transmission on the interface.
   3329  */
   3330 static void
   3331 wm_stop(struct ifnet *ifp, int disable)
   3332 {
   3333 	struct wm_softc *sc = ifp->if_softc;
   3334 	struct wm_txsoft *txs;
   3335 	int i;
   3336 
   3337 	/* Stop the one second clock. */
   3338 	callout_stop(&sc->sc_tick_ch);
   3339 
   3340 	/* Stop the 82547 Tx FIFO stall check timer. */
   3341 	if (sc->sc_type == WM_T_82547)
   3342 		callout_stop(&sc->sc_txfifo_ch);
   3343 
   3344 	if (sc->sc_flags & WM_F_HAS_MII) {
   3345 		/* Down the MII. */
   3346 		mii_down(&sc->sc_mii);
   3347 	}
   3348 
   3349 	/* Stop the transmit and receive processes. */
   3350 	CSR_WRITE(sc, WMREG_TCTL, 0);
   3351 	CSR_WRITE(sc, WMREG_RCTL, 0);
   3352 
   3353 	/*
   3354 	 * Clear the interrupt mask to ensure the device cannot assert its
   3355 	 * interrupt line.
   3356 	 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
   3357 	 * any currently pending or shared interrupt.
   3358 	 */
   3359 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   3360 	sc->sc_icr = 0;
   3361 
   3362 	/* Release any queued transmit buffers. */
   3363 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   3364 		txs = &sc->sc_txsoft[i];
   3365 		if (txs->txs_mbuf != NULL) {
   3366 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   3367 			m_freem(txs->txs_mbuf);
   3368 			txs->txs_mbuf = NULL;
   3369 		}
   3370 	}
   3371 
   3372 	if (disable)
   3373 		wm_rxdrain(sc);
   3374 
   3375 	/* Mark the interface as down and cancel the watchdog timer. */
   3376 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3377 	ifp->if_timer = 0;
   3378 }
   3379 
   3380 void
   3381 wm_get_auto_rd_done(struct wm_softc *sc)
   3382 {
   3383 	int i;
   3384 
   3385 	/* wait for eeprom to reload */
   3386 	switch (sc->sc_type) {
   3387 	case WM_T_82571:
   3388 	case WM_T_82572:
   3389 	case WM_T_82573:
   3390 	case WM_T_80003:
   3391 	case WM_T_ICH8:
   3392 	case WM_T_ICH9:
   3393 		for (i = 10; i > 0; i--) {
   3394 			if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD)
   3395 				break;
   3396 			delay(1000);
   3397 		}
   3398 		if (i == 0) {
   3399 			log(LOG_ERR, "%s: auto read from eeprom failed to "
   3400 			    "complete\n", sc->sc_dev.dv_xname);
   3401 		}
   3402 		break;
   3403 	default:
   3404 		delay(5000);
   3405 		break;
   3406 	}
   3407 
   3408 	/* Phy configuration starts after EECD_AUTO_RD is set */
   3409 	if (sc->sc_type == WM_T_82573)
   3410 		delay(25000);
   3411 }
   3412 
   3413 /*
   3414  * wm_acquire_eeprom:
   3415  *
   3416  *	Perform the EEPROM handshake required on some chips.
   3417  */
   3418 static int
   3419 wm_acquire_eeprom(struct wm_softc *sc)
   3420 {
   3421 	uint32_t reg;
   3422 	int x;
   3423 	int ret = 0;
   3424 
   3425 	/* always success */
   3426 	if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
   3427 		return 0;
   3428 
   3429 	if (sc->sc_flags & WM_F_SWFWHW_SYNC) {
   3430 		ret = wm_get_swfwhw_semaphore(sc);
   3431 	} else if (sc->sc_flags & WM_F_SWFW_SYNC) {
   3432 		/* this will also do wm_get_swsm_semaphore() if needed */
   3433 		ret = wm_get_swfw_semaphore(sc, SWFW_EEP_SM);
   3434 	} else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
   3435 		ret = wm_get_swsm_semaphore(sc);
   3436 	}
   3437 
   3438 	if (ret)
   3439 		return 1;
   3440 
   3441 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
   3442 		reg = CSR_READ(sc, WMREG_EECD);
   3443 
   3444 		/* Request EEPROM access. */
   3445 		reg |= EECD_EE_REQ;
   3446 		CSR_WRITE(sc, WMREG_EECD, reg);
   3447 
   3448 		/* ..and wait for it to be granted. */
   3449 		for (x = 0; x < 1000; x++) {
   3450 			reg = CSR_READ(sc, WMREG_EECD);
   3451 			if (reg & EECD_EE_GNT)
   3452 				break;
   3453 			delay(5);
   3454 		}
   3455 		if ((reg & EECD_EE_GNT) == 0) {
   3456 			aprint_error("%s: could not acquire EEPROM GNT\n",
   3457 			    sc->sc_dev.dv_xname);
   3458 			reg &= ~EECD_EE_REQ;
   3459 			CSR_WRITE(sc, WMREG_EECD, reg);
   3460 			if (sc->sc_flags & WM_F_SWFWHW_SYNC)
   3461 				wm_put_swfwhw_semaphore(sc);
   3462 			if (sc->sc_flags & WM_F_SWFW_SYNC)
   3463 				wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
   3464 			else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   3465 				wm_put_swsm_semaphore(sc);
   3466 			return (1);
   3467 		}
   3468 	}
   3469 
   3470 	return (0);
   3471 }
   3472 
   3473 /*
   3474  * wm_release_eeprom:
   3475  *
   3476  *	Release the EEPROM mutex.
   3477  */
   3478 static void
   3479 wm_release_eeprom(struct wm_softc *sc)
   3480 {
   3481 	uint32_t reg;
   3482 
   3483 	/* always success */
   3484 	if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
   3485 		return;
   3486 
   3487 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
   3488 		reg = CSR_READ(sc, WMREG_EECD);
   3489 		reg &= ~EECD_EE_REQ;
   3490 		CSR_WRITE(sc, WMREG_EECD, reg);
   3491 	}
   3492 
   3493 	if (sc->sc_flags & WM_F_SWFWHW_SYNC)
   3494 		wm_put_swfwhw_semaphore(sc);
   3495 	if (sc->sc_flags & WM_F_SWFW_SYNC)
   3496 		wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
   3497 	else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   3498 		wm_put_swsm_semaphore(sc);
   3499 }
   3500 
   3501 /*
   3502  * wm_eeprom_sendbits:
   3503  *
   3504  *	Send a series of bits to the EEPROM.
   3505  */
   3506 static void
   3507 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
   3508 {
   3509 	uint32_t reg;
   3510 	int x;
   3511 
   3512 	reg = CSR_READ(sc, WMREG_EECD);
   3513 
   3514 	for (x = nbits; x > 0; x--) {
   3515 		if (bits & (1U << (x - 1)))
   3516 			reg |= EECD_DI;
   3517 		else
   3518 			reg &= ~EECD_DI;
   3519 		CSR_WRITE(sc, WMREG_EECD, reg);
   3520 		delay(2);
   3521 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   3522 		delay(2);
   3523 		CSR_WRITE(sc, WMREG_EECD, reg);
   3524 		delay(2);
   3525 	}
   3526 }
   3527 
   3528 /*
   3529  * wm_eeprom_recvbits:
   3530  *
   3531  *	Receive a series of bits from the EEPROM.
   3532  */
   3533 static void
   3534 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
   3535 {
   3536 	uint32_t reg, val;
   3537 	int x;
   3538 
   3539 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
   3540 
   3541 	val = 0;
   3542 	for (x = nbits; x > 0; x--) {
   3543 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   3544 		delay(2);
   3545 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
   3546 			val |= (1U << (x - 1));
   3547 		CSR_WRITE(sc, WMREG_EECD, reg);
   3548 		delay(2);
   3549 	}
   3550 	*valp = val;
   3551 }
   3552 
   3553 /*
   3554  * wm_read_eeprom_uwire:
   3555  *
   3556  *	Read a word from the EEPROM using the MicroWire protocol.
   3557  */
   3558 static int
   3559 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3560 {
   3561 	uint32_t reg, val;
   3562 	int i;
   3563 
   3564 	for (i = 0; i < wordcnt; i++) {
   3565 		/* Clear SK and DI. */
   3566 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
   3567 		CSR_WRITE(sc, WMREG_EECD, reg);
   3568 
   3569 		/* Set CHIP SELECT. */
   3570 		reg |= EECD_CS;
   3571 		CSR_WRITE(sc, WMREG_EECD, reg);
   3572 		delay(2);
   3573 
   3574 		/* Shift in the READ command. */
   3575 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
   3576 
   3577 		/* Shift in address. */
   3578 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
   3579 
   3580 		/* Shift out the data. */
   3581 		wm_eeprom_recvbits(sc, &val, 16);
   3582 		data[i] = val & 0xffff;
   3583 
   3584 		/* Clear CHIP SELECT. */
   3585 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
   3586 		CSR_WRITE(sc, WMREG_EECD, reg);
   3587 		delay(2);
   3588 	}
   3589 
   3590 	return (0);
   3591 }
   3592 
   3593 /*
   3594  * wm_spi_eeprom_ready:
   3595  *
   3596  *	Wait for a SPI EEPROM to be ready for commands.
   3597  */
   3598 static int
   3599 wm_spi_eeprom_ready(struct wm_softc *sc)
   3600 {
   3601 	uint32_t val;
   3602 	int usec;
   3603 
   3604 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
   3605 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
   3606 		wm_eeprom_recvbits(sc, &val, 8);
   3607 		if ((val & SPI_SR_RDY) == 0)
   3608 			break;
   3609 	}
   3610 	if (usec >= SPI_MAX_RETRIES) {
   3611 		aprint_error("%s: EEPROM failed to become ready\n",
   3612 		    sc->sc_dev.dv_xname);
   3613 		return (1);
   3614 	}
   3615 	return (0);
   3616 }
   3617 
   3618 /*
   3619  * wm_read_eeprom_spi:
   3620  *
   3621  *	Read a work from the EEPROM using the SPI protocol.
   3622  */
   3623 static int
   3624 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3625 {
   3626 	uint32_t reg, val;
   3627 	int i;
   3628 	uint8_t opc;
   3629 
   3630 	/* Clear SK and CS. */
   3631 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
   3632 	CSR_WRITE(sc, WMREG_EECD, reg);
   3633 	delay(2);
   3634 
   3635 	if (wm_spi_eeprom_ready(sc))
   3636 		return (1);
   3637 
   3638 	/* Toggle CS to flush commands. */
   3639 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
   3640 	delay(2);
   3641 	CSR_WRITE(sc, WMREG_EECD, reg);
   3642 	delay(2);
   3643 
   3644 	opc = SPI_OPC_READ;
   3645 	if (sc->sc_ee_addrbits == 8 && word >= 128)
   3646 		opc |= SPI_OPC_A8;
   3647 
   3648 	wm_eeprom_sendbits(sc, opc, 8);
   3649 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
   3650 
   3651 	for (i = 0; i < wordcnt; i++) {
   3652 		wm_eeprom_recvbits(sc, &val, 16);
   3653 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
   3654 	}
   3655 
   3656 	/* Raise CS and clear SK. */
   3657 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
   3658 	CSR_WRITE(sc, WMREG_EECD, reg);
   3659 	delay(2);
   3660 
   3661 	return (0);
   3662 }
   3663 
   3664 #define EEPROM_CHECKSUM		0xBABA
   3665 #define EEPROM_SIZE		0x0040
   3666 
   3667 /*
   3668  * wm_validate_eeprom_checksum
   3669  *
   3670  * The checksum is defined as the sum of the first 64 (16 bit) words.
   3671  */
   3672 static int
   3673 wm_validate_eeprom_checksum(struct wm_softc *sc)
   3674 {
   3675 	uint16_t checksum;
   3676 	uint16_t eeprom_data;
   3677 	int i;
   3678 
   3679 	checksum = 0;
   3680 
   3681 	for (i = 0; i < EEPROM_SIZE; i++) {
   3682 		if (wm_read_eeprom(sc, i, 1, &eeprom_data))
   3683 			return 1;
   3684 		checksum += eeprom_data;
   3685 	}
   3686 
   3687 	if (checksum != (uint16_t) EEPROM_CHECKSUM)
   3688 		return 1;
   3689 
   3690 	return 0;
   3691 }
   3692 
   3693 /*
   3694  * wm_read_eeprom:
   3695  *
   3696  *	Read data from the serial EEPROM.
   3697  */
   3698 static int
   3699 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3700 {
   3701 	int rv;
   3702 
   3703 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
   3704 		return 1;
   3705 
   3706 	if (wm_acquire_eeprom(sc))
   3707 		return 1;
   3708 
   3709 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9))
   3710 		rv = wm_read_eeprom_ich8(sc, word, wordcnt, data);
   3711 	else if (sc->sc_flags & WM_F_EEPROM_EERDEEWR)
   3712 		rv = wm_read_eeprom_eerd(sc, word, wordcnt, data);
   3713 	else if (sc->sc_flags & WM_F_EEPROM_SPI)
   3714 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
   3715 	else
   3716 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
   3717 
   3718 	wm_release_eeprom(sc);
   3719 	return rv;
   3720 }
   3721 
   3722 static int
   3723 wm_read_eeprom_eerd(struct wm_softc *sc, int offset, int wordcnt,
   3724     uint16_t *data)
   3725 {
   3726 	int i, eerd = 0;
   3727 	int error = 0;
   3728 
   3729 	for (i = 0; i < wordcnt; i++) {
   3730 		eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
   3731 
   3732 		CSR_WRITE(sc, WMREG_EERD, eerd);
   3733 		error = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
   3734 		if (error != 0)
   3735 			break;
   3736 
   3737 		data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
   3738 	}
   3739 
   3740 	return error;
   3741 }
   3742 
   3743 static int
   3744 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
   3745 {
   3746 	uint32_t attempts = 100000;
   3747 	uint32_t i, reg = 0;
   3748 	int32_t done = -1;
   3749 
   3750 	for (i = 0; i < attempts; i++) {
   3751 		reg = CSR_READ(sc, rw);
   3752 
   3753 		if (reg & EERD_DONE) {
   3754 			done = 0;
   3755 			break;
   3756 		}
   3757 		delay(5);
   3758 	}
   3759 
   3760 	return done;
   3761 }
   3762 
   3763 /*
   3764  * wm_add_rxbuf:
   3765  *
   3766  *	Add a receive buffer to the indiciated descriptor.
   3767  */
   3768 static int
   3769 wm_add_rxbuf(struct wm_softc *sc, int idx)
   3770 {
   3771 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
   3772 	struct mbuf *m;
   3773 	int error;
   3774 
   3775 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3776 	if (m == NULL)
   3777 		return (ENOBUFS);
   3778 
   3779 	MCLGET(m, M_DONTWAIT);
   3780 	if ((m->m_flags & M_EXT) == 0) {
   3781 		m_freem(m);
   3782 		return (ENOBUFS);
   3783 	}
   3784 
   3785 	if (rxs->rxs_mbuf != NULL)
   3786 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3787 
   3788 	rxs->rxs_mbuf = m;
   3789 
   3790 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   3791 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   3792 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   3793 	if (error) {
   3794 		/* XXX XXX XXX */
   3795 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   3796 		    sc->sc_dev.dv_xname, idx, error);
   3797 		panic("wm_add_rxbuf");
   3798 	}
   3799 
   3800 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3801 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3802 
   3803 	WM_INIT_RXDESC(sc, idx);
   3804 
   3805 	return (0);
   3806 }
   3807 
   3808 /*
   3809  * wm_set_ral:
   3810  *
   3811  *	Set an entery in the receive address list.
   3812  */
   3813 static void
   3814 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
   3815 {
   3816 	uint32_t ral_lo, ral_hi;
   3817 
   3818 	if (enaddr != NULL) {
   3819 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   3820 		    (enaddr[3] << 24);
   3821 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   3822 		ral_hi |= RAL_AV;
   3823 	} else {
   3824 		ral_lo = 0;
   3825 		ral_hi = 0;
   3826 	}
   3827 
   3828 	if (sc->sc_type >= WM_T_82544) {
   3829 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
   3830 		    ral_lo);
   3831 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
   3832 		    ral_hi);
   3833 	} else {
   3834 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
   3835 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
   3836 	}
   3837 }
   3838 
   3839 /*
   3840  * wm_mchash:
   3841  *
   3842  *	Compute the hash of the multicast address for the 4096-bit
   3843  *	multicast filter.
   3844  */
   3845 static uint32_t
   3846 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
   3847 {
   3848 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   3849 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   3850 	static const int ich8_lo_shift[4] = { 6, 5, 4, 2 };
   3851 	static const int ich8_hi_shift[4] = { 2, 3, 4, 6 };
   3852 	uint32_t hash;
   3853 
   3854 	if (sc->sc_type == WM_T_ICH8) {
   3855 		hash = (enaddr[4] >> ich8_lo_shift[sc->sc_mchash_type]) |
   3856 		    (((uint16_t) enaddr[5]) << ich8_hi_shift[sc->sc_mchash_type]);
   3857 		return (hash & 0x3ff);
   3858 	}
   3859 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   3860 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   3861 
   3862 	return (hash & 0xfff);
   3863 }
   3864 
   3865 /*
   3866  * wm_set_filter:
   3867  *
   3868  *	Set up the receive filter.
   3869  */
   3870 static void
   3871 wm_set_filter(struct wm_softc *sc)
   3872 {
   3873 	struct ethercom *ec = &sc->sc_ethercom;
   3874 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3875 	struct ether_multi *enm;
   3876 	struct ether_multistep step;
   3877 	bus_addr_t mta_reg;
   3878 	uint32_t hash, reg, bit;
   3879 	int i, size;
   3880 
   3881 	if (sc->sc_type >= WM_T_82544)
   3882 		mta_reg = WMREG_CORDOVA_MTA;
   3883 	else
   3884 		mta_reg = WMREG_MTA;
   3885 
   3886 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   3887 
   3888 	if (ifp->if_flags & IFF_BROADCAST)
   3889 		sc->sc_rctl |= RCTL_BAM;
   3890 	if (ifp->if_flags & IFF_PROMISC) {
   3891 		sc->sc_rctl |= RCTL_UPE;
   3892 		goto allmulti;
   3893 	}
   3894 
   3895 	/*
   3896 	 * Set the station address in the first RAL slot, and
   3897 	 * clear the remaining slots.
   3898 	 */
   3899 	if (sc->sc_type == WM_T_ICH8)
   3900 		size = WM_ICH8_RAL_TABSIZE;
   3901 	else
   3902 		size = WM_RAL_TABSIZE;
   3903 	wm_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
   3904 	for (i = 1; i < size; i++)
   3905 		wm_set_ral(sc, NULL, i);
   3906 
   3907 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9))
   3908 		size = WM_ICH8_MC_TABSIZE;
   3909 	else
   3910 		size = WM_MC_TABSIZE;
   3911 	/* Clear out the multicast table. */
   3912 	for (i = 0; i < size; i++)
   3913 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
   3914 
   3915 	ETHER_FIRST_MULTI(step, ec, enm);
   3916 	while (enm != NULL) {
   3917 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3918 			/*
   3919 			 * We must listen to a range of multicast addresses.
   3920 			 * For now, just accept all multicasts, rather than
   3921 			 * trying to set only those filter bits needed to match
   3922 			 * the range.  (At this time, the only use of address
   3923 			 * ranges is for IP multicast routing, for which the
   3924 			 * range is big enough to require all bits set.)
   3925 			 */
   3926 			goto allmulti;
   3927 		}
   3928 
   3929 		hash = wm_mchash(sc, enm->enm_addrlo);
   3930 
   3931 		reg = (hash >> 5);
   3932 		if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9))
   3933 			reg &= 0x1f;
   3934 		else
   3935 			reg &= 0x7f;
   3936 		bit = hash & 0x1f;
   3937 
   3938 		hash = CSR_READ(sc, mta_reg + (reg << 2));
   3939 		hash |= 1U << bit;
   3940 
   3941 		/* XXX Hardware bug?? */
   3942 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
   3943 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
   3944 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3945 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
   3946 		} else
   3947 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3948 
   3949 		ETHER_NEXT_MULTI(step, enm);
   3950 	}
   3951 
   3952 	ifp->if_flags &= ~IFF_ALLMULTI;
   3953 	goto setit;
   3954 
   3955  allmulti:
   3956 	ifp->if_flags |= IFF_ALLMULTI;
   3957 	sc->sc_rctl |= RCTL_MPE;
   3958 
   3959  setit:
   3960 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
   3961 }
   3962 
   3963 /*
   3964  * wm_tbi_mediainit:
   3965  *
   3966  *	Initialize media for use on 1000BASE-X devices.
   3967  */
   3968 static void
   3969 wm_tbi_mediainit(struct wm_softc *sc)
   3970 {
   3971 	const char *sep = "";
   3972 
   3973 	if (sc->sc_type < WM_T_82543)
   3974 		sc->sc_tipg = TIPG_WM_DFLT;
   3975 	else
   3976 		sc->sc_tipg = TIPG_LG_DFLT;
   3977 
   3978 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
   3979 	    wm_tbi_mediastatus);
   3980 
   3981 	/*
   3982 	 * SWD Pins:
   3983 	 *
   3984 	 *	0 = Link LED (output)
   3985 	 *	1 = Loss Of Signal (input)
   3986 	 */
   3987 	sc->sc_ctrl |= CTRL_SWDPIO(0);
   3988 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
   3989 
   3990 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3991 
   3992 #define	ADD(ss, mm, dd)							\
   3993 do {									\
   3994 	aprint_normal("%s%s", sep, ss);					\
   3995 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
   3996 	sep = ", ";							\
   3997 } while (/*CONSTCOND*/0)
   3998 
   3999 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
   4000 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
   4001 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
   4002 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
   4003 	aprint_normal("\n");
   4004 
   4005 #undef ADD
   4006 
   4007 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   4008 }
   4009 
   4010 /*
   4011  * wm_tbi_mediastatus:	[ifmedia interface function]
   4012  *
   4013  *	Get the current interface media status on a 1000BASE-X device.
   4014  */
   4015 static void
   4016 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   4017 {
   4018 	struct wm_softc *sc = ifp->if_softc;
   4019 	uint32_t ctrl;
   4020 
   4021 	ifmr->ifm_status = IFM_AVALID;
   4022 	ifmr->ifm_active = IFM_ETHER;
   4023 
   4024 	if (sc->sc_tbi_linkup == 0) {
   4025 		ifmr->ifm_active |= IFM_NONE;
   4026 		return;
   4027 	}
   4028 
   4029 	ifmr->ifm_status |= IFM_ACTIVE;
   4030 	ifmr->ifm_active |= IFM_1000_SX;
   4031 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
   4032 		ifmr->ifm_active |= IFM_FDX;
   4033 	ctrl = CSR_READ(sc, WMREG_CTRL);
   4034 	if (ctrl & CTRL_RFCE)
   4035 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   4036 	if (ctrl & CTRL_TFCE)
   4037 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   4038 }
   4039 
   4040 /*
   4041  * wm_tbi_mediachange:	[ifmedia interface function]
   4042  *
   4043  *	Set hardware to newly-selected media on a 1000BASE-X device.
   4044  */
   4045 static int
   4046 wm_tbi_mediachange(struct ifnet *ifp)
   4047 {
   4048 	struct wm_softc *sc = ifp->if_softc;
   4049 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   4050 	uint32_t status;
   4051 	int i;
   4052 
   4053 	sc->sc_txcw = ife->ifm_data;
   4054 	DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x on entry\n",
   4055 		    sc->sc_dev.dv_xname,sc->sc_txcw));
   4056 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
   4057 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
   4058 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
   4059 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
   4060 		sc->sc_txcw |= TXCW_ANE;
   4061 	} else {
   4062 		/*If autonegotiation is turned off, force link up and turn on full duplex*/
   4063 		sc->sc_txcw &= ~TXCW_ANE;
   4064 		sc->sc_ctrl |= CTRL_SLU | CTRL_FD;
   4065 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4066 		delay(1000);
   4067 	}
   4068 
   4069 	DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x after autoneg check\n",
   4070 		    sc->sc_dev.dv_xname,sc->sc_txcw));
   4071 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   4072 	delay(10000);
   4073 
   4074 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
   4075 
   4076 	sc->sc_tbi_anstate = 0;
   4077 
   4078 	i = CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1);
   4079 	DPRINTF(WM_DEBUG_LINK,("%s: i = 0x%x\n", sc->sc_dev.dv_xname,i));
   4080 
   4081 	/*
   4082 	 * On 82544 chips and later, the CTRL_SWDPIN(1) bit will be set if the
   4083 	 * optics detect a signal, 0 if they don't.
   4084 	 */
   4085 	if (((i != 0) && (sc->sc_type >= WM_T_82544)) || (i == 0)) {
   4086 		/* Have signal; wait for the link to come up. */
   4087 
   4088 		if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
   4089 			/*
   4090 			 * Reset the link, and let autonegotiation do its thing
   4091 			 */
   4092 			sc->sc_ctrl |= CTRL_LRST;
   4093 			CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4094 			delay(1000);
   4095 			sc->sc_ctrl &= ~CTRL_LRST;
   4096 			CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4097 			delay(1000);
   4098 		}
   4099 
   4100 		for (i = 0; i < 50; i++) {
   4101 			delay(10000);
   4102 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
   4103 				break;
   4104 		}
   4105 
   4106 		DPRINTF(WM_DEBUG_LINK,("%s: i = %d after waiting for link\n",
   4107 			    sc->sc_dev.dv_xname,i));
   4108 
   4109 		status = CSR_READ(sc, WMREG_STATUS);
   4110 		DPRINTF(WM_DEBUG_LINK,
   4111 		    ("%s: status after final read = 0x%x, STATUS_LU = 0x%x\n",
   4112 			sc->sc_dev.dv_xname,status, STATUS_LU));
   4113 		if (status & STATUS_LU) {
   4114 			/* Link is up. */
   4115 			DPRINTF(WM_DEBUG_LINK,
   4116 			    ("%s: LINK: set media -> link up %s\n",
   4117 			    sc->sc_dev.dv_xname,
   4118 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   4119 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   4120 			sc->sc_fcrtl &= ~FCRTL_XONE;
   4121 			if (status & STATUS_FD)
   4122 				sc->sc_tctl |=
   4123 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   4124 			else
   4125 				sc->sc_tctl |=
   4126 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   4127 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   4128 				sc->sc_fcrtl |= FCRTL_XONE;
   4129 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   4130 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   4131 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   4132 				      sc->sc_fcrtl);
   4133 			sc->sc_tbi_linkup = 1;
   4134 		} else {
   4135 			/* Link is down. */
   4136 			DPRINTF(WM_DEBUG_LINK,
   4137 			    ("%s: LINK: set media -> link down\n",
   4138 			    sc->sc_dev.dv_xname));
   4139 			sc->sc_tbi_linkup = 0;
   4140 		}
   4141 	} else {
   4142 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
   4143 		    sc->sc_dev.dv_xname));
   4144 		sc->sc_tbi_linkup = 0;
   4145 	}
   4146 
   4147 	wm_tbi_set_linkled(sc);
   4148 
   4149 	return (0);
   4150 }
   4151 
   4152 /*
   4153  * wm_tbi_set_linkled:
   4154  *
   4155  *	Update the link LED on 1000BASE-X devices.
   4156  */
   4157 static void
   4158 wm_tbi_set_linkled(struct wm_softc *sc)
   4159 {
   4160 
   4161 	if (sc->sc_tbi_linkup)
   4162 		sc->sc_ctrl |= CTRL_SWDPIN(0);
   4163 	else
   4164 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
   4165 
   4166 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4167 }
   4168 
   4169 /*
   4170  * wm_tbi_check_link:
   4171  *
   4172  *	Check the link on 1000BASE-X devices.
   4173  */
   4174 static void
   4175 wm_tbi_check_link(struct wm_softc *sc)
   4176 {
   4177 	uint32_t rxcw, ctrl, status;
   4178 
   4179 	if (sc->sc_tbi_anstate == 0)
   4180 		return;
   4181 	else if (sc->sc_tbi_anstate > 1) {
   4182 		DPRINTF(WM_DEBUG_LINK,
   4183 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
   4184 		    sc->sc_tbi_anstate));
   4185 		sc->sc_tbi_anstate--;
   4186 		return;
   4187 	}
   4188 
   4189 	sc->sc_tbi_anstate = 0;
   4190 
   4191 	rxcw = CSR_READ(sc, WMREG_RXCW);
   4192 	ctrl = CSR_READ(sc, WMREG_CTRL);
   4193 	status = CSR_READ(sc, WMREG_STATUS);
   4194 
   4195 	if ((status & STATUS_LU) == 0) {
   4196 		DPRINTF(WM_DEBUG_LINK,
   4197 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
   4198 		sc->sc_tbi_linkup = 0;
   4199 	} else {
   4200 		DPRINTF(WM_DEBUG_LINK,
   4201 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
   4202 		    (status & STATUS_FD) ? "FDX" : "HDX"));
   4203 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   4204 		sc->sc_fcrtl &= ~FCRTL_XONE;
   4205 		if (status & STATUS_FD)
   4206 			sc->sc_tctl |=
   4207 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   4208 		else
   4209 			sc->sc_tctl |=
   4210 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   4211 		if (ctrl & CTRL_TFCE)
   4212 			sc->sc_fcrtl |= FCRTL_XONE;
   4213 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   4214 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   4215 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
   4216 			      sc->sc_fcrtl);
   4217 		sc->sc_tbi_linkup = 1;
   4218 	}
   4219 
   4220 	wm_tbi_set_linkled(sc);
   4221 }
   4222 
   4223 /*
   4224  * wm_gmii_reset:
   4225  *
   4226  *	Reset the PHY.
   4227  */
   4228 static void
   4229 wm_gmii_reset(struct wm_softc *sc)
   4230 {
   4231 	uint32_t reg;
   4232 	int func = 0; /* XXX gcc */
   4233 
   4234 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)) {
   4235 		if (wm_get_swfwhw_semaphore(sc))
   4236 			return;
   4237 	}
   4238 	if (sc->sc_type == WM_T_80003) {
   4239 		func = (CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1;
   4240 		if (wm_get_swfw_semaphore(sc,
   4241 		    func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
   4242 			return;
   4243 	}
   4244 	if (sc->sc_type >= WM_T_82544) {
   4245 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   4246 		delay(20000);
   4247 
   4248 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4249 		delay(20000);
   4250 	} else {
   4251 		/*
   4252 		 * With 82543, we need to force speed and duplex on the MAC
   4253 		 * equal to what the PHY speed and duplex configuration is.
   4254 		 * In addition, we need to perform a hardware reset on the PHY
   4255 		 * to take it out of reset.
   4256 		 */
   4257 		sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
   4258 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4259 
   4260 		/* The PHY reset pin is active-low. */
   4261 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   4262 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
   4263 		    CTRL_EXT_SWDPIN(4));
   4264 		reg |= CTRL_EXT_SWDPIO(4);
   4265 
   4266 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   4267 		delay(10);
   4268 
   4269 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   4270 		delay(10000);
   4271 
   4272 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   4273 		delay(10);
   4274 #if 0
   4275 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
   4276 #endif
   4277 	}
   4278 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9))
   4279 		wm_put_swfwhw_semaphore(sc);
   4280 	if (sc->sc_type == WM_T_80003)
   4281 		wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
   4282 }
   4283 
   4284 /*
   4285  * wm_gmii_mediainit:
   4286  *
   4287  *	Initialize media for use on 1000BASE-T devices.
   4288  */
   4289 static void
   4290 wm_gmii_mediainit(struct wm_softc *sc)
   4291 {
   4292 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   4293 
   4294 	/* We have MII. */
   4295 	sc->sc_flags |= WM_F_HAS_MII;
   4296 
   4297 	if (sc->sc_type >= WM_T_80003)
   4298 		sc->sc_tipg =  TIPG_1000T_80003_DFLT;
   4299 	else
   4300 		sc->sc_tipg = TIPG_1000T_DFLT;
   4301 
   4302 	/*
   4303 	 * Let the chip set speed/duplex on its own based on
   4304 	 * signals from the PHY.
   4305 	 * XXXbouyer - I'm not sure this is right for the 80003,
   4306 	 * the em driver only sets CTRL_SLU here - but it seems to work.
   4307 	 */
   4308 	sc->sc_ctrl |= CTRL_SLU;
   4309 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4310 
   4311 	/* Initialize our media structures and probe the GMII. */
   4312 	sc->sc_mii.mii_ifp = ifp;
   4313 
   4314 	if (sc->sc_type >= WM_T_80003) {
   4315 		sc->sc_mii.mii_readreg = wm_gmii_i80003_readreg;
   4316 		sc->sc_mii.mii_writereg = wm_gmii_i80003_writereg;
   4317 	} else if (sc->sc_type >= WM_T_82544) {
   4318 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
   4319 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
   4320 	} else {
   4321 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
   4322 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
   4323 	}
   4324 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
   4325 
   4326 	wm_gmii_reset(sc);
   4327 
   4328 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
   4329 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
   4330 	    wm_gmii_mediastatus);
   4331 
   4332 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   4333 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
   4334 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   4335 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   4336 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   4337 	} else
   4338 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   4339 }
   4340 
   4341 /*
   4342  * wm_gmii_mediastatus:	[ifmedia interface function]
   4343  *
   4344  *	Get the current interface media status on a 1000BASE-T device.
   4345  */
   4346 static void
   4347 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   4348 {
   4349 	struct wm_softc *sc = ifp->if_softc;
   4350 
   4351 	ether_mediastatus(ifp, ifmr);
   4352 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
   4353 			   sc->sc_flowflags;
   4354 }
   4355 
   4356 /*
   4357  * wm_gmii_mediachange:	[ifmedia interface function]
   4358  *
   4359  *	Set hardware to newly-selected media on a 1000BASE-T device.
   4360  */
   4361 static int
   4362 wm_gmii_mediachange(struct ifnet *ifp)
   4363 {
   4364 	struct wm_softc *sc = ifp->if_softc;
   4365 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   4366 	int rc;
   4367 
   4368 	if ((ifp->if_flags & IFF_UP) == 0)
   4369 		return 0;
   4370 
   4371 	sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
   4372 	sc->sc_ctrl |= CTRL_SLU;
   4373 	if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
   4374 	    || (sc->sc_type > WM_T_82543)) {
   4375 		sc->sc_ctrl &= ~(CTRL_FRCSPD | CTRL_FRCFDX);
   4376 	} else {
   4377 		sc->sc_ctrl &= ~CTRL_ASDE;
   4378 		sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
   4379 		if (ife->ifm_media & IFM_FDX)
   4380 			sc->sc_ctrl |= CTRL_FD;
   4381 		switch(IFM_SUBTYPE(ife->ifm_media)) {
   4382 		case IFM_10_T:
   4383 			sc->sc_ctrl |= CTRL_SPEED_10;
   4384 			break;
   4385 		case IFM_100_TX:
   4386 			sc->sc_ctrl |= CTRL_SPEED_100;
   4387 			break;
   4388 		case IFM_1000_T:
   4389 			sc->sc_ctrl |= CTRL_SPEED_1000;
   4390 			break;
   4391 		default:
   4392 			panic("wm_gmii_mediachange: bad media 0x%x",
   4393 			    ife->ifm_media);
   4394 		}
   4395 	}
   4396 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4397 	if (sc->sc_type <= WM_T_82543)
   4398 		wm_gmii_reset(sc);
   4399 
   4400 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
   4401 		return 0;
   4402 	return rc;
   4403 }
   4404 
   4405 #define	MDI_IO		CTRL_SWDPIN(2)
   4406 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
   4407 #define	MDI_CLK		CTRL_SWDPIN(3)
   4408 
   4409 static void
   4410 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
   4411 {
   4412 	uint32_t i, v;
   4413 
   4414 	v = CSR_READ(sc, WMREG_CTRL);
   4415 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   4416 	v |= MDI_DIR | CTRL_SWDPIO(3);
   4417 
   4418 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
   4419 		if (data & i)
   4420 			v |= MDI_IO;
   4421 		else
   4422 			v &= ~MDI_IO;
   4423 		CSR_WRITE(sc, WMREG_CTRL, v);
   4424 		delay(10);
   4425 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   4426 		delay(10);
   4427 		CSR_WRITE(sc, WMREG_CTRL, v);
   4428 		delay(10);
   4429 	}
   4430 }
   4431 
   4432 static uint32_t
   4433 i82543_mii_recvbits(struct wm_softc *sc)
   4434 {
   4435 	uint32_t v, i, data = 0;
   4436 
   4437 	v = CSR_READ(sc, WMREG_CTRL);
   4438 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   4439 	v |= CTRL_SWDPIO(3);
   4440 
   4441 	CSR_WRITE(sc, WMREG_CTRL, v);
   4442 	delay(10);
   4443 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   4444 	delay(10);
   4445 	CSR_WRITE(sc, WMREG_CTRL, v);
   4446 	delay(10);
   4447 
   4448 	for (i = 0; i < 16; i++) {
   4449 		data <<= 1;
   4450 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   4451 		delay(10);
   4452 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
   4453 			data |= 1;
   4454 		CSR_WRITE(sc, WMREG_CTRL, v);
   4455 		delay(10);
   4456 	}
   4457 
   4458 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   4459 	delay(10);
   4460 	CSR_WRITE(sc, WMREG_CTRL, v);
   4461 	delay(10);
   4462 
   4463 	return (data);
   4464 }
   4465 
   4466 #undef MDI_IO
   4467 #undef MDI_DIR
   4468 #undef MDI_CLK
   4469 
   4470 /*
   4471  * wm_gmii_i82543_readreg:	[mii interface function]
   4472  *
   4473  *	Read a PHY register on the GMII (i82543 version).
   4474  */
   4475 static int
   4476 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
   4477 {
   4478 	struct wm_softc *sc = (void *) self;
   4479 	int rv;
   4480 
   4481 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   4482 	i82543_mii_sendbits(sc, reg | (phy << 5) |
   4483 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
   4484 	rv = i82543_mii_recvbits(sc) & 0xffff;
   4485 
   4486 	DPRINTF(WM_DEBUG_GMII,
   4487 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
   4488 	    sc->sc_dev.dv_xname, phy, reg, rv));
   4489 
   4490 	return (rv);
   4491 }
   4492 
   4493 /*
   4494  * wm_gmii_i82543_writereg:	[mii interface function]
   4495  *
   4496  *	Write a PHY register on the GMII (i82543 version).
   4497  */
   4498 static void
   4499 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
   4500 {
   4501 	struct wm_softc *sc = (void *) self;
   4502 
   4503 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   4504 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
   4505 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
   4506 	    (MII_COMMAND_START << 30), 32);
   4507 }
   4508 
   4509 /*
   4510  * wm_gmii_i82544_readreg:	[mii interface function]
   4511  *
   4512  *	Read a PHY register on the GMII.
   4513  */
   4514 static int
   4515 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
   4516 {
   4517 	struct wm_softc *sc = (void *) self;
   4518 	uint32_t mdic = 0;
   4519 	int i, rv;
   4520 
   4521 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
   4522 	    MDIC_REGADD(reg));
   4523 
   4524 	for (i = 0; i < 320; i++) {
   4525 		mdic = CSR_READ(sc, WMREG_MDIC);
   4526 		if (mdic & MDIC_READY)
   4527 			break;
   4528 		delay(10);
   4529 	}
   4530 
   4531 	if ((mdic & MDIC_READY) == 0) {
   4532 		log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
   4533 		    sc->sc_dev.dv_xname, phy, reg);
   4534 		rv = 0;
   4535 	} else if (mdic & MDIC_E) {
   4536 #if 0 /* This is normal if no PHY is present. */
   4537 		log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
   4538 		    sc->sc_dev.dv_xname, phy, reg);
   4539 #endif
   4540 		rv = 0;
   4541 	} else {
   4542 		rv = MDIC_DATA(mdic);
   4543 		if (rv == 0xffff)
   4544 			rv = 0;
   4545 	}
   4546 
   4547 	return (rv);
   4548 }
   4549 
   4550 /*
   4551  * wm_gmii_i82544_writereg:	[mii interface function]
   4552  *
   4553  *	Write a PHY register on the GMII.
   4554  */
   4555 static void
   4556 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
   4557 {
   4558 	struct wm_softc *sc = (void *) self;
   4559 	uint32_t mdic = 0;
   4560 	int i;
   4561 
   4562 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
   4563 	    MDIC_REGADD(reg) | MDIC_DATA(val));
   4564 
   4565 	for (i = 0; i < 320; i++) {
   4566 		mdic = CSR_READ(sc, WMREG_MDIC);
   4567 		if (mdic & MDIC_READY)
   4568 			break;
   4569 		delay(10);
   4570 	}
   4571 
   4572 	if ((mdic & MDIC_READY) == 0)
   4573 		log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
   4574 		    sc->sc_dev.dv_xname, phy, reg);
   4575 	else if (mdic & MDIC_E)
   4576 		log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
   4577 		    sc->sc_dev.dv_xname, phy, reg);
   4578 }
   4579 
   4580 /*
   4581  * wm_gmii_i80003_readreg:	[mii interface function]
   4582  *
   4583  *	Read a PHY register on the kumeran
   4584  * This could be handled by the PHY layer if we didn't have to lock the
   4585  * ressource ...
   4586  */
   4587 static int
   4588 wm_gmii_i80003_readreg(struct device *self, int phy, int reg)
   4589 {
   4590 	struct wm_softc *sc = (void *) self;
   4591 	int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
   4592 	int rv;
   4593 
   4594 	if (phy != 1) /* only one PHY on kumeran bus */
   4595 		return 0;
   4596 
   4597 	if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
   4598 		return 0;
   4599 
   4600 	if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
   4601 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
   4602 		    reg >> GG82563_PAGE_SHIFT);
   4603 	} else {
   4604 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
   4605 		    reg >> GG82563_PAGE_SHIFT);
   4606 	}
   4607 
   4608 	rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
   4609 	wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
   4610 	return (rv);
   4611 }
   4612 
   4613 /*
   4614  * wm_gmii_i80003_writereg:	[mii interface function]
   4615  *
   4616  *	Write a PHY register on the kumeran.
   4617  * This could be handled by the PHY layer if we didn't have to lock the
   4618  * ressource ...
   4619  */
   4620 static void
   4621 wm_gmii_i80003_writereg(struct device *self, int phy, int reg, int val)
   4622 {
   4623 	struct wm_softc *sc = (void *) self;
   4624 	int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
   4625 
   4626 	if (phy != 1) /* only one PHY on kumeran bus */
   4627 		return;
   4628 
   4629 	if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
   4630 		return;
   4631 
   4632 	if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
   4633 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
   4634 		    reg >> GG82563_PAGE_SHIFT);
   4635 	} else {
   4636 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
   4637 		    reg >> GG82563_PAGE_SHIFT);
   4638 	}
   4639 
   4640 	wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
   4641 	wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
   4642 }
   4643 
   4644 /*
   4645  * wm_gmii_statchg:	[mii interface function]
   4646  *
   4647  *	Callback from MII layer when media changes.
   4648  */
   4649 static void
   4650 wm_gmii_statchg(struct device *self)
   4651 {
   4652 	struct wm_softc *sc = (void *) self;
   4653 	struct mii_data *mii = &sc->sc_mii;
   4654 
   4655 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
   4656 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   4657 	sc->sc_fcrtl &= ~FCRTL_XONE;
   4658 
   4659 	/*
   4660 	 * Get flow control negotiation result.
   4661 	 */
   4662 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   4663 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   4664 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   4665 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   4666 	}
   4667 
   4668 	if (sc->sc_flowflags & IFM_FLOW) {
   4669 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
   4670 			sc->sc_ctrl |= CTRL_TFCE;
   4671 			sc->sc_fcrtl |= FCRTL_XONE;
   4672 		}
   4673 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   4674 			sc->sc_ctrl |= CTRL_RFCE;
   4675 	}
   4676 
   4677 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   4678 		DPRINTF(WM_DEBUG_LINK,
   4679 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
   4680 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   4681 	} else  {
   4682 		DPRINTF(WM_DEBUG_LINK,
   4683 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
   4684 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   4685 	}
   4686 
   4687 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4688 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   4689 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
   4690 						 : WMREG_FCRTL, sc->sc_fcrtl);
   4691 	if (sc->sc_type >= WM_T_80003) {
   4692 		switch(IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
   4693 		case IFM_1000_T:
   4694 			wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
   4695 			    KUMCTRLSTA_HD_CTRL_1000_DEFAULT);
   4696 			sc->sc_tipg =  TIPG_1000T_80003_DFLT;
   4697 			break;
   4698 		default:
   4699 			wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
   4700 			    KUMCTRLSTA_HD_CTRL_10_100_DEFAULT);
   4701 			sc->sc_tipg =  TIPG_10_100_80003_DFLT;
   4702 			break;
   4703 		}
   4704 		CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   4705 	}
   4706 }
   4707 
   4708 /*
   4709  * wm_kmrn_i80003_readreg:
   4710  *
   4711  *	Read a kumeran register
   4712  */
   4713 static int
   4714 wm_kmrn_i80003_readreg(struct wm_softc *sc, int reg)
   4715 {
   4716 	int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
   4717 	int rv;
   4718 
   4719 	if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
   4720 		return 0;
   4721 
   4722 	CSR_WRITE(sc, WMREG_KUMCTRLSTA,
   4723 	    ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
   4724 	    KUMCTRLSTA_REN);
   4725 	delay(2);
   4726 
   4727 	rv = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK;
   4728 	wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
   4729 	return (rv);
   4730 }
   4731 
   4732 /*
   4733  * wm_kmrn_i80003_writereg:
   4734  *
   4735  *	Write a kumeran register
   4736  */
   4737 static void
   4738 wm_kmrn_i80003_writereg(struct wm_softc *sc, int reg, int val)
   4739 {
   4740 	int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
   4741 
   4742 	if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
   4743 		return;
   4744 
   4745 	CSR_WRITE(sc, WMREG_KUMCTRLSTA,
   4746 	    ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
   4747 	    (val & KUMCTRLSTA_MASK));
   4748 	wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
   4749 }
   4750 
   4751 static int
   4752 wm_is_onboard_nvm_eeprom(struct wm_softc *sc)
   4753 {
   4754 	uint32_t eecd = 0;
   4755 
   4756 	if (sc->sc_type == WM_T_82573) {
   4757 		eecd = CSR_READ(sc, WMREG_EECD);
   4758 
   4759 		/* Isolate bits 15 & 16 */
   4760 		eecd = ((eecd >> 15) & 0x03);
   4761 
   4762 		/* If both bits are set, device is Flash type */
   4763 		if (eecd == 0x03) {
   4764 			return 0;
   4765 		}
   4766 	}
   4767 	return 1;
   4768 }
   4769 
   4770 static int
   4771 wm_get_swsm_semaphore(struct wm_softc *sc)
   4772 {
   4773 	int32_t timeout;
   4774 	uint32_t swsm;
   4775 
   4776 	/* Get the FW semaphore. */
   4777 	timeout = 1000 + 1; /* XXX */
   4778 	while (timeout) {
   4779 		swsm = CSR_READ(sc, WMREG_SWSM);
   4780 		swsm |= SWSM_SWESMBI;
   4781 		CSR_WRITE(sc, WMREG_SWSM, swsm);
   4782 		/* if we managed to set the bit we got the semaphore. */
   4783 		swsm = CSR_READ(sc, WMREG_SWSM);
   4784 		if (swsm & SWSM_SWESMBI)
   4785 			break;
   4786 
   4787 		delay(50);
   4788 		timeout--;
   4789 	}
   4790 
   4791 	if (timeout == 0) {
   4792 		aprint_error("%s: could not acquire EEPROM GNT\n",
   4793 		    sc->sc_dev.dv_xname);
   4794 		/* Release semaphores */
   4795 		wm_put_swsm_semaphore(sc);
   4796 		return 1;
   4797 	}
   4798 	return 0;
   4799 }
   4800 
   4801 static void
   4802 wm_put_swsm_semaphore(struct wm_softc *sc)
   4803 {
   4804 	uint32_t swsm;
   4805 
   4806 	swsm = CSR_READ(sc, WMREG_SWSM);
   4807 	swsm &= ~(SWSM_SWESMBI);
   4808 	CSR_WRITE(sc, WMREG_SWSM, swsm);
   4809 }
   4810 
   4811 static int
   4812 wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
   4813 {
   4814 	uint32_t swfw_sync;
   4815 	uint32_t swmask = mask << SWFW_SOFT_SHIFT;
   4816 	uint32_t fwmask = mask << SWFW_FIRM_SHIFT;
   4817 	int timeout = 200;
   4818 
   4819 	for(timeout = 0; timeout < 200; timeout++) {
   4820 		if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
   4821 			if (wm_get_swsm_semaphore(sc))
   4822 				return 1;
   4823 		}
   4824 		swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
   4825 		if ((swfw_sync & (swmask | fwmask)) == 0) {
   4826 			swfw_sync |= swmask;
   4827 			CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
   4828 			if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   4829 				wm_put_swsm_semaphore(sc);
   4830 			return 0;
   4831 		}
   4832 		if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   4833 			wm_put_swsm_semaphore(sc);
   4834 		delay(5000);
   4835 	}
   4836 	printf("%s: failed to get swfw semaphore mask 0x%x swfw 0x%x\n",
   4837 	    sc->sc_dev.dv_xname, mask, swfw_sync);
   4838 	return 1;
   4839 }
   4840 
   4841 static void
   4842 wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
   4843 {
   4844 	uint32_t swfw_sync;
   4845 
   4846 	if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
   4847 		while (wm_get_swsm_semaphore(sc) != 0)
   4848 			continue;
   4849 	}
   4850 	swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
   4851 	swfw_sync &= ~(mask << SWFW_SOFT_SHIFT);
   4852 	CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
   4853 	if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   4854 		wm_put_swsm_semaphore(sc);
   4855 }
   4856 
   4857 static int
   4858 wm_get_swfwhw_semaphore(struct wm_softc *sc)
   4859 {
   4860 	uint32_t ext_ctrl;
   4861 	int timeout = 200;
   4862 
   4863 	for(timeout = 0; timeout < 200; timeout++) {
   4864 		ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
   4865 		ext_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
   4866 		CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
   4867 
   4868 		ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
   4869 		if (ext_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
   4870 			return 0;
   4871 		delay(5000);
   4872 	}
   4873 	printf("%s: failed to get swfwgw semaphore ext_ctrl 0x%x\n",
   4874 	    sc->sc_dev.dv_xname, ext_ctrl);
   4875 	return 1;
   4876 }
   4877 
   4878 static void
   4879 wm_put_swfwhw_semaphore(struct wm_softc *sc)
   4880 {
   4881 	uint32_t ext_ctrl;
   4882 	ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
   4883 	ext_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
   4884 	CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
   4885 }
   4886 
   4887 /******************************************************************************
   4888  * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
   4889  * register.
   4890  *
   4891  * sc - Struct containing variables accessed by shared code
   4892  * offset - offset of word in the EEPROM to read
   4893  * data - word read from the EEPROM
   4894  * words - number of words to read
   4895  *****************************************************************************/
   4896 static int
   4897 wm_read_eeprom_ich8(struct wm_softc *sc, int offset, int words, uint16_t *data)
   4898 {
   4899     int32_t  error = 0;
   4900     uint32_t flash_bank = 0;
   4901     uint32_t act_offset = 0;
   4902     uint32_t bank_offset = 0;
   4903     uint16_t word = 0;
   4904     uint16_t i = 0;
   4905 
   4906     /* We need to know which is the valid flash bank.  In the event
   4907      * that we didn't allocate eeprom_shadow_ram, we may not be
   4908      * managing flash_bank.  So it cannot be trusted and needs
   4909      * to be updated with each read.
   4910      */
   4911     /* Value of bit 22 corresponds to the flash bank we're on. */
   4912     flash_bank = (CSR_READ(sc, WMREG_EECD) & EECD_SEC1VAL) ? 1 : 0;
   4913 
   4914     /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
   4915     bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
   4916 
   4917     error = wm_get_swfwhw_semaphore(sc);
   4918     if (error)
   4919         return error;
   4920 
   4921     for (i = 0; i < words; i++) {
   4922             /* The NVM part needs a byte offset, hence * 2 */
   4923             act_offset = bank_offset + ((offset + i) * 2);
   4924             error = wm_read_ich8_word(sc, act_offset, &word);
   4925             if (error)
   4926                 break;
   4927             data[i] = word;
   4928     }
   4929 
   4930     wm_put_swfwhw_semaphore(sc);
   4931     return error;
   4932 }
   4933 
   4934 /******************************************************************************
   4935  * This function does initial flash setup so that a new read/write/erase cycle
   4936  * can be started.
   4937  *
   4938  * sc - The pointer to the hw structure
   4939  ****************************************************************************/
   4940 static int32_t
   4941 wm_ich8_cycle_init(struct wm_softc *sc)
   4942 {
   4943     uint16_t hsfsts;
   4944     int32_t error = 1;
   4945     int32_t i     = 0;
   4946 
   4947     hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
   4948 
   4949     /* May be check the Flash Des Valid bit in Hw status */
   4950     if ((hsfsts & HSFSTS_FLDVAL) == 0) {
   4951         return error;
   4952     }
   4953 
   4954     /* Clear FCERR in Hw status by writing 1 */
   4955     /* Clear DAEL in Hw status by writing a 1 */
   4956     hsfsts |= HSFSTS_ERR | HSFSTS_DAEL;
   4957 
   4958     ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
   4959 
   4960     /* Either we should have a hardware SPI cycle in progress bit to check
   4961      * against, in order to start a new cycle or FDONE bit should be changed
   4962      * in the hardware so that it is 1 after harware reset, which can then be
   4963      * used as an indication whether a cycle is in progress or has been
   4964      * completed .. we should also have some software semaphore mechanism to
   4965      * guard FDONE or the cycle in progress bit so that two threads access to
   4966      * those bits can be sequentiallized or a way so that 2 threads dont
   4967      * start the cycle at the same time */
   4968 
   4969     if ((hsfsts & HSFSTS_FLINPRO) == 0) {
   4970         /* There is no cycle running at present, so we can start a cycle */
   4971         /* Begin by setting Flash Cycle Done. */
   4972         hsfsts |= HSFSTS_DONE;
   4973         ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
   4974         error = 0;
   4975     } else {
   4976         /* otherwise poll for sometime so the current cycle has a chance
   4977          * to end before giving up. */
   4978         for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
   4979             hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
   4980             if ((hsfsts & HSFSTS_FLINPRO) == 0) {
   4981                 error = 0;
   4982                 break;
   4983             }
   4984             delay(1);
   4985         }
   4986         if (error == 0) {
   4987             /* Successful in waiting for previous cycle to timeout,
   4988              * now set the Flash Cycle Done. */
   4989             hsfsts |= HSFSTS_DONE;
   4990             ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
   4991         }
   4992     }
   4993     return error;
   4994 }
   4995 
   4996 /******************************************************************************
   4997  * This function starts a flash cycle and waits for its completion
   4998  *
   4999  * sc - The pointer to the hw structure
   5000  ****************************************************************************/
   5001 static int32_t
   5002 wm_ich8_flash_cycle(struct wm_softc *sc, uint32_t timeout)
   5003 {
   5004     uint16_t hsflctl;
   5005     uint16_t hsfsts;
   5006     int32_t error = 1;
   5007     uint32_t i = 0;
   5008 
   5009     /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
   5010     hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
   5011     hsflctl |= HSFCTL_GO;
   5012     ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
   5013 
   5014     /* wait till FDONE bit is set to 1 */
   5015     do {
   5016         hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
   5017         if (hsfsts & HSFSTS_DONE)
   5018             break;
   5019         delay(1);
   5020         i++;
   5021     } while (i < timeout);
   5022     if ((hsfsts & HSFSTS_DONE) == 1 && (hsfsts & HSFSTS_ERR) == 0) {
   5023         error = 0;
   5024     }
   5025     return error;
   5026 }
   5027 
   5028 /******************************************************************************
   5029  * Reads a byte or word from the NVM using the ICH8 flash access registers.
   5030  *
   5031  * sc - The pointer to the hw structure
   5032  * index - The index of the byte or word to read.
   5033  * size - Size of data to read, 1=byte 2=word
   5034  * data - Pointer to the word to store the value read.
   5035  *****************************************************************************/
   5036 static int32_t
   5037 wm_read_ich8_data(struct wm_softc *sc, uint32_t index,
   5038                      uint32_t size, uint16_t* data)
   5039 {
   5040     uint16_t hsfsts;
   5041     uint16_t hsflctl;
   5042     uint32_t flash_linear_address;
   5043     uint32_t flash_data = 0;
   5044     int32_t error = 1;
   5045     int32_t count = 0;
   5046 
   5047     if (size < 1  || size > 2 || data == 0x0 ||
   5048         index > ICH_FLASH_LINEAR_ADDR_MASK)
   5049         return error;
   5050 
   5051     flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
   5052                            sc->sc_ich8_flash_base;
   5053 
   5054     do {
   5055         delay(1);
   5056         /* Steps */
   5057         error = wm_ich8_cycle_init(sc);
   5058         if (error)
   5059             break;
   5060 
   5061         hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
   5062         /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
   5063         hsflctl |=  ((size - 1) << HSFCTL_BCOUNT_SHIFT) & HSFCTL_BCOUNT_MASK;
   5064         hsflctl |= ICH_CYCLE_READ << HSFCTL_CYCLE_SHIFT;
   5065         ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
   5066 
   5067         /* Write the last 24 bits of index into Flash Linear address field in
   5068          * Flash Address */
   5069         /* TODO: TBD maybe check the index against the size of flash */
   5070 
   5071         ICH8_FLASH_WRITE32(sc, ICH_FLASH_FADDR, flash_linear_address);
   5072 
   5073         error = wm_ich8_flash_cycle(sc, ICH_FLASH_COMMAND_TIMEOUT);
   5074 
   5075         /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
   5076          * sequence a few more times, else read in (shift in) the Flash Data0,
   5077          * the order is least significant byte first msb to lsb */
   5078         if (error == 0) {
   5079             flash_data = ICH8_FLASH_READ32(sc, ICH_FLASH_FDATA0);
   5080             if (size == 1) {
   5081                 *data = (uint8_t)(flash_data & 0x000000FF);
   5082             } else if (size == 2) {
   5083                 *data = (uint16_t)(flash_data & 0x0000FFFF);
   5084             }
   5085             break;
   5086         } else {
   5087             /* If we've gotten here, then things are probably completely hosed,
   5088              * but if the error condition is detected, it won't hurt to give
   5089              * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
   5090              */
   5091             hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
   5092             if (hsfsts & HSFSTS_ERR) {
   5093                 /* Repeat for some time before giving up. */
   5094                 continue;
   5095             } else if ((hsfsts & HSFSTS_DONE) == 0) {
   5096                 break;
   5097             }
   5098         }
   5099     } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
   5100 
   5101     return error;
   5102 }
   5103 
   5104 #if 0
   5105 /******************************************************************************
   5106  * Reads a single byte from the NVM using the ICH8 flash access registers.
   5107  *
   5108  * sc - pointer to wm_hw structure
   5109  * index - The index of the byte to read.
   5110  * data - Pointer to a byte to store the value read.
   5111  *****************************************************************************/
   5112 static int32_t
   5113 wm_read_ich8_byte(struct wm_softc *sc, uint32_t index, uint8_t* data)
   5114 {
   5115     int32_t status;
   5116     uint16_t word = 0;
   5117 
   5118     status = wm_read_ich8_data(sc, index, 1, &word);
   5119     if (status == 0) {
   5120         *data = (uint8_t)word;
   5121     }
   5122 
   5123     return status;
   5124 }
   5125 #endif
   5126 
   5127 /******************************************************************************
   5128  * Reads a word from the NVM using the ICH8 flash access registers.
   5129  *
   5130  * sc - pointer to wm_hw structure
   5131  * index - The starting byte index of the word to read.
   5132  * data - Pointer to a word to store the value read.
   5133  *****************************************************************************/
   5134 static int32_t
   5135 wm_read_ich8_word(struct wm_softc *sc, uint32_t index, uint16_t *data)
   5136 {
   5137     int32_t status;
   5138 
   5139     status = wm_read_ich8_data(sc, index, 2, data);
   5140     return status;
   5141 }
   5142