if_wm.c revision 1.158 1 /* $NetBSD: if_wm.c,v 1.158 2008/04/10 19:13:37 cegger Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*******************************************************************************
39
40 Copyright (c) 2001-2005, Intel Corporation
41 All rights reserved.
42
43 Redistribution and use in source and binary forms, with or without
44 modification, are permitted provided that the following conditions are met:
45
46 1. Redistributions of source code must retain the above copyright notice,
47 this list of conditions and the following disclaimer.
48
49 2. Redistributions in binary form must reproduce the above copyright
50 notice, this list of conditions and the following disclaimer in the
51 documentation and/or other materials provided with the distribution.
52
53 3. Neither the name of the Intel Corporation nor the names of its
54 contributors may be used to endorse or promote products derived from
55 this software without specific prior written permission.
56
57 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
58 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
61 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67 POSSIBILITY OF SUCH DAMAGE.
68
69 *******************************************************************************/
70 /*
71 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
72 *
73 * TODO (in order of importance):
74 *
75 * - Rework how parameters are loaded from the EEPROM.
76 * - Figure out what to do with the i82545GM and i82546GB
77 * SERDES controllers.
78 * - Fix hw VLAN assist.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.158 2008/04/10 19:13:37 cegger Exp $");
83
84 #include "bpfilter.h"
85 #include "rnd.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/ioctl.h>
95 #include <sys/errno.h>
96 #include <sys/device.h>
97 #include <sys/queue.h>
98 #include <sys/syslog.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <netinet/in.h> /* XXX for struct ip */
116 #include <netinet/in_systm.h> /* XXX for struct ip */
117 #include <netinet/ip.h> /* XXX for struct ip */
118 #include <netinet/ip6.h> /* XXX for struct ip6_hdr */
119 #include <netinet/tcp.h> /* XXX for struct tcphdr */
120
121 #include <sys/bus.h>
122 #include <sys/intr.h>
123 #include <machine/endian.h>
124
125 #include <dev/mii/mii.h>
126 #include <dev/mii/miivar.h>
127 #include <dev/mii/mii_bitbang.h>
128 #include <dev/mii/ikphyreg.h>
129
130 #include <dev/pci/pcireg.h>
131 #include <dev/pci/pcivar.h>
132 #include <dev/pci/pcidevs.h>
133
134 #include <dev/pci/if_wmreg.h>
135
136 #ifdef WM_DEBUG
137 #define WM_DEBUG_LINK 0x01
138 #define WM_DEBUG_TX 0x02
139 #define WM_DEBUG_RX 0x04
140 #define WM_DEBUG_GMII 0x08
141 int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK|WM_DEBUG_GMII;
142
143 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
144 #else
145 #define DPRINTF(x, y) /* nothing */
146 #endif /* WM_DEBUG */
147
148 /*
149 * Transmit descriptor list size. Due to errata, we can only have
150 * 256 hardware descriptors in the ring on < 82544, but we use 4096
151 * on >= 82544. We tell the upper layers that they can queue a lot
152 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
153 * of them at a time.
154 *
155 * We allow up to 256 (!) DMA segments per packet. Pathological packet
156 * chains containing many small mbufs have been observed in zero-copy
157 * situations with jumbo frames.
158 */
159 #define WM_NTXSEGS 256
160 #define WM_IFQUEUELEN 256
161 #define WM_TXQUEUELEN_MAX 64
162 #define WM_TXQUEUELEN_MAX_82547 16
163 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
164 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
165 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
166 #define WM_NTXDESC_82542 256
167 #define WM_NTXDESC_82544 4096
168 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
169 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
170 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
171 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
172 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
173
174 #define WM_MAXTXDMA round_page(IP_MAXPACKET) /* for TSO */
175
176 /*
177 * Receive descriptor list size. We have one Rx buffer for normal
178 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
179 * packet. We allocate 256 receive descriptors, each with a 2k
180 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
181 */
182 #define WM_NRXDESC 256
183 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
184 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
185 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
186
187 /*
188 * Control structures are DMA'd to the i82542 chip. We allocate them in
189 * a single clump that maps to a single DMA segment to make several things
190 * easier.
191 */
192 struct wm_control_data_82544 {
193 /*
194 * The receive descriptors.
195 */
196 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
197
198 /*
199 * The transmit descriptors. Put these at the end, because
200 * we might use a smaller number of them.
201 */
202 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
203 };
204
205 struct wm_control_data_82542 {
206 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
207 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
208 };
209
210 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
211 #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)])
212 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
213
214 /*
215 * Software state for transmit jobs.
216 */
217 struct wm_txsoft {
218 struct mbuf *txs_mbuf; /* head of our mbuf chain */
219 bus_dmamap_t txs_dmamap; /* our DMA map */
220 int txs_firstdesc; /* first descriptor in packet */
221 int txs_lastdesc; /* last descriptor in packet */
222 int txs_ndesc; /* # of descriptors used */
223 };
224
225 /*
226 * Software state for receive buffers. Each descriptor gets a
227 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
228 * more than one buffer, we chain them together.
229 */
230 struct wm_rxsoft {
231 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
232 bus_dmamap_t rxs_dmamap; /* our DMA map */
233 };
234
235 typedef enum {
236 WM_T_unknown = 0,
237 WM_T_82542_2_0, /* i82542 2.0 (really old) */
238 WM_T_82542_2_1, /* i82542 2.1+ (old) */
239 WM_T_82543, /* i82543 */
240 WM_T_82544, /* i82544 */
241 WM_T_82540, /* i82540 */
242 WM_T_82545, /* i82545 */
243 WM_T_82545_3, /* i82545 3.0+ */
244 WM_T_82546, /* i82546 */
245 WM_T_82546_3, /* i82546 3.0+ */
246 WM_T_82541, /* i82541 */
247 WM_T_82541_2, /* i82541 2.0+ */
248 WM_T_82547, /* i82547 */
249 WM_T_82547_2, /* i82547 2.0+ */
250 WM_T_82571, /* i82571 */
251 WM_T_82572, /* i82572 */
252 WM_T_82573, /* i82573 */
253 WM_T_80003, /* i80003 */
254 WM_T_ICH8, /* ICH8 LAN */
255 WM_T_ICH9, /* ICH9 LAN */
256 } wm_chip_type;
257
258 /*
259 * Software state per device.
260 */
261 struct wm_softc {
262 struct device sc_dev; /* generic device information */
263 bus_space_tag_t sc_st; /* bus space tag */
264 bus_space_handle_t sc_sh; /* bus space handle */
265 bus_space_tag_t sc_iot; /* I/O space tag */
266 bus_space_handle_t sc_ioh; /* I/O space handle */
267 bus_space_tag_t sc_flasht; /* flash registers space tag */
268 bus_space_handle_t sc_flashh; /* flash registers space handle */
269 bus_dma_tag_t sc_dmat; /* bus DMA tag */
270 struct ethercom sc_ethercom; /* ethernet common data */
271 pci_chipset_tag_t sc_pc;
272 pcitag_t sc_pcitag;
273
274 wm_chip_type sc_type; /* chip type */
275 int sc_flags; /* flags; see below */
276 int sc_bus_speed; /* PCI/PCIX bus speed */
277 int sc_pcix_offset; /* PCIX capability register offset */
278 int sc_flowflags; /* 802.3x flow control flags */
279
280 void *sc_ih; /* interrupt cookie */
281
282 int sc_ee_addrbits; /* EEPROM address bits */
283
284 struct mii_data sc_mii; /* MII/media information */
285
286 callout_t sc_tick_ch; /* tick callout */
287
288 bus_dmamap_t sc_cddmamap; /* control data DMA map */
289 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
290
291 int sc_align_tweak;
292
293 /*
294 * Software state for the transmit and receive descriptors.
295 */
296 int sc_txnum; /* must be a power of two */
297 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
298 struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
299
300 /*
301 * Control data structures.
302 */
303 int sc_ntxdesc; /* must be a power of two */
304 struct wm_control_data_82544 *sc_control_data;
305 #define sc_txdescs sc_control_data->wcd_txdescs
306 #define sc_rxdescs sc_control_data->wcd_rxdescs
307
308 #ifdef WM_EVENT_COUNTERS
309 /* Event counters. */
310 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
311 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
312 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
313 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
314 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
315 struct evcnt sc_ev_rxintr; /* Rx interrupts */
316 struct evcnt sc_ev_linkintr; /* Link interrupts */
317
318 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
319 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
320 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
321 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
322 struct evcnt sc_ev_txtusum6; /* TCP/UDP v6 cksums comp. out-bound */
323 struct evcnt sc_ev_txtso; /* TCP seg offload out-bound (IPv4) */
324 struct evcnt sc_ev_txtso6; /* TCP seg offload out-bound (IPv6) */
325 struct evcnt sc_ev_txtsopain; /* painful header manip. for TSO */
326
327 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
328 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
329
330 struct evcnt sc_ev_tu; /* Tx underrun */
331
332 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
333 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
334 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
335 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
336 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
337 #endif /* WM_EVENT_COUNTERS */
338
339 bus_addr_t sc_tdt_reg; /* offset of TDT register */
340
341 int sc_txfree; /* number of free Tx descriptors */
342 int sc_txnext; /* next ready Tx descriptor */
343
344 int sc_txsfree; /* number of free Tx jobs */
345 int sc_txsnext; /* next free Tx job */
346 int sc_txsdirty; /* dirty Tx jobs */
347
348 /* These 5 variables are used only on the 82547. */
349 int sc_txfifo_size; /* Tx FIFO size */
350 int sc_txfifo_head; /* current head of FIFO */
351 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
352 int sc_txfifo_stall; /* Tx FIFO is stalled */
353 callout_t sc_txfifo_ch; /* Tx FIFO stall work-around timer */
354
355 bus_addr_t sc_rdt_reg; /* offset of RDT register */
356
357 int sc_rxptr; /* next ready Rx descriptor/queue ent */
358 int sc_rxdiscard;
359 int sc_rxlen;
360 struct mbuf *sc_rxhead;
361 struct mbuf *sc_rxtail;
362 struct mbuf **sc_rxtailp;
363
364 uint32_t sc_ctrl; /* prototype CTRL register */
365 #if 0
366 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
367 #endif
368 uint32_t sc_icr; /* prototype interrupt bits */
369 uint32_t sc_itr; /* prototype intr throttling reg */
370 uint32_t sc_tctl; /* prototype TCTL register */
371 uint32_t sc_rctl; /* prototype RCTL register */
372 uint32_t sc_txcw; /* prototype TXCW register */
373 uint32_t sc_tipg; /* prototype TIPG register */
374 uint32_t sc_fcrtl; /* prototype FCRTL register */
375 uint32_t sc_pba; /* prototype PBA register */
376
377 int sc_tbi_linkup; /* TBI link status */
378 int sc_tbi_anstate; /* autonegotiation state */
379
380 int sc_mchash_type; /* multicast filter offset */
381
382 #if NRND > 0
383 rndsource_element_t rnd_source; /* random source */
384 #endif
385 int sc_ich8_flash_base;
386 int sc_ich8_flash_bank_size;
387 };
388
389 #define WM_RXCHAIN_RESET(sc) \
390 do { \
391 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
392 *(sc)->sc_rxtailp = NULL; \
393 (sc)->sc_rxlen = 0; \
394 } while (/*CONSTCOND*/0)
395
396 #define WM_RXCHAIN_LINK(sc, m) \
397 do { \
398 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
399 (sc)->sc_rxtailp = &(m)->m_next; \
400 } while (/*CONSTCOND*/0)
401
402 /* sc_flags */
403 #define WM_F_HAS_MII 0x0001 /* has MII */
404 #define WM_F_EEPROM_HANDSHAKE 0x0002 /* requires EEPROM handshake */
405 #define WM_F_EEPROM_SEMAPHORE 0x0004 /* EEPROM with semaphore */
406 #define WM_F_EEPROM_EERDEEWR 0x0008 /* EEPROM access via EERD/EEWR */
407 #define WM_F_EEPROM_SPI 0x0010 /* EEPROM is SPI */
408 #define WM_F_EEPROM_FLASH 0x0020 /* EEPROM is FLASH */
409 #define WM_F_EEPROM_INVALID 0x0040 /* EEPROM not present (bad checksum) */
410 #define WM_F_IOH_VALID 0x0080 /* I/O handle is valid */
411 #define WM_F_BUS64 0x0100 /* bus is 64-bit */
412 #define WM_F_PCIX 0x0200 /* bus is PCI-X */
413 #define WM_F_CSA 0x0400 /* bus is CSA */
414 #define WM_F_PCIE 0x0800 /* bus is PCI-Express */
415 #define WM_F_SWFW_SYNC 0x1000 /* Software-Firmware synchronisation */
416 #define WM_F_SWFWHW_SYNC 0x2000 /* Software-Firmware synchronisation */
417
418 #ifdef WM_EVENT_COUNTERS
419 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
420 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
421 #else
422 #define WM_EVCNT_INCR(ev) /* nothing */
423 #define WM_EVCNT_ADD(ev, val) /* nothing */
424 #endif
425
426 #define CSR_READ(sc, reg) \
427 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
428 #define CSR_WRITE(sc, reg, val) \
429 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
430 #define CSR_WRITE_FLUSH(sc) \
431 (void) CSR_READ((sc), WMREG_STATUS)
432
433 #define ICH8_FLASH_READ32(sc, reg) \
434 bus_space_read_4((sc)->sc_flasht, (sc)->sc_flashh, (reg))
435 #define ICH8_FLASH_WRITE32(sc, reg, data) \
436 bus_space_write_4((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data))
437
438 #define ICH8_FLASH_READ16(sc, reg) \
439 bus_space_read_2((sc)->sc_flasht, (sc)->sc_flashh, (reg))
440 #define ICH8_FLASH_WRITE16(sc, reg, data) \
441 bus_space_write_2((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data))
442
443 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
444 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
445
446 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
447 #define WM_CDTXADDR_HI(sc, x) \
448 (sizeof(bus_addr_t) == 8 ? \
449 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
450
451 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
452 #define WM_CDRXADDR_HI(sc, x) \
453 (sizeof(bus_addr_t) == 8 ? \
454 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
455
456 #define WM_CDTXSYNC(sc, x, n, ops) \
457 do { \
458 int __x, __n; \
459 \
460 __x = (x); \
461 __n = (n); \
462 \
463 /* If it will wrap around, sync to the end of the ring. */ \
464 if ((__x + __n) > WM_NTXDESC(sc)) { \
465 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
466 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
467 (WM_NTXDESC(sc) - __x), (ops)); \
468 __n -= (WM_NTXDESC(sc) - __x); \
469 __x = 0; \
470 } \
471 \
472 /* Now sync whatever is left. */ \
473 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
474 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
475 } while (/*CONSTCOND*/0)
476
477 #define WM_CDRXSYNC(sc, x, ops) \
478 do { \
479 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
480 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
481 } while (/*CONSTCOND*/0)
482
483 #define WM_INIT_RXDESC(sc, x) \
484 do { \
485 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
486 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
487 struct mbuf *__m = __rxs->rxs_mbuf; \
488 \
489 /* \
490 * Note: We scoot the packet forward 2 bytes in the buffer \
491 * so that the payload after the Ethernet header is aligned \
492 * to a 4-byte boundary. \
493 * \
494 * XXX BRAINDAMAGE ALERT! \
495 * The stupid chip uses the same size for every buffer, which \
496 * is set in the Receive Control register. We are using the 2K \
497 * size option, but what we REALLY want is (2K - 2)! For this \
498 * reason, we can't "scoot" packets longer than the standard \
499 * Ethernet MTU. On strict-alignment platforms, if the total \
500 * size exceeds (2K - 2) we set align_tweak to 0 and let \
501 * the upper layer copy the headers. \
502 */ \
503 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
504 \
505 wm_set_dma_addr(&__rxd->wrx_addr, \
506 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
507 __rxd->wrx_len = 0; \
508 __rxd->wrx_cksum = 0; \
509 __rxd->wrx_status = 0; \
510 __rxd->wrx_errors = 0; \
511 __rxd->wrx_special = 0; \
512 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
513 \
514 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
515 } while (/*CONSTCOND*/0)
516
517 static void wm_start(struct ifnet *);
518 static void wm_watchdog(struct ifnet *);
519 static int wm_ioctl(struct ifnet *, u_long, void *);
520 static int wm_init(struct ifnet *);
521 static void wm_stop(struct ifnet *, int);
522
523 static void wm_reset(struct wm_softc *);
524 static void wm_rxdrain(struct wm_softc *);
525 static int wm_add_rxbuf(struct wm_softc *, int);
526 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
527 static int wm_read_eeprom_eerd(struct wm_softc *, int, int, u_int16_t *);
528 static int wm_validate_eeprom_checksum(struct wm_softc *);
529 static void wm_tick(void *);
530
531 static void wm_set_filter(struct wm_softc *);
532
533 static int wm_intr(void *);
534 static void wm_txintr(struct wm_softc *);
535 static void wm_rxintr(struct wm_softc *);
536 static void wm_linkintr(struct wm_softc *, uint32_t);
537
538 static void wm_tbi_mediainit(struct wm_softc *);
539 static int wm_tbi_mediachange(struct ifnet *);
540 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
541
542 static void wm_tbi_set_linkled(struct wm_softc *);
543 static void wm_tbi_check_link(struct wm_softc *);
544
545 static void wm_gmii_reset(struct wm_softc *);
546
547 static int wm_gmii_i82543_readreg(device_t, int, int);
548 static void wm_gmii_i82543_writereg(device_t, int, int, int);
549
550 static int wm_gmii_i82544_readreg(device_t, int, int);
551 static void wm_gmii_i82544_writereg(device_t, int, int, int);
552
553 static int wm_gmii_i80003_readreg(device_t, int, int);
554 static void wm_gmii_i80003_writereg(device_t, int, int, int);
555
556 static void wm_gmii_statchg(device_t);
557
558 static void wm_gmii_mediainit(struct wm_softc *);
559 static int wm_gmii_mediachange(struct ifnet *);
560 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
561
562 static int wm_kmrn_i80003_readreg(struct wm_softc *, int);
563 static void wm_kmrn_i80003_writereg(struct wm_softc *, int, int);
564
565 static int wm_match(device_t, struct cfdata *, void *);
566 static void wm_attach(device_t, device_t, void *);
567 static int wm_is_onboard_nvm_eeprom(struct wm_softc *);
568 static void wm_get_auto_rd_done(struct wm_softc *);
569 static int wm_get_swsm_semaphore(struct wm_softc *);
570 static void wm_put_swsm_semaphore(struct wm_softc *);
571 static int wm_poll_eerd_eewr_done(struct wm_softc *, int);
572 static int wm_get_swfw_semaphore(struct wm_softc *, uint16_t);
573 static void wm_put_swfw_semaphore(struct wm_softc *, uint16_t);
574 static int wm_get_swfwhw_semaphore(struct wm_softc *);
575 static void wm_put_swfwhw_semaphore(struct wm_softc *);
576
577 static int wm_read_eeprom_ich8(struct wm_softc *, int, int, uint16_t *);
578 static int32_t wm_ich8_cycle_init(struct wm_softc *);
579 static int32_t wm_ich8_flash_cycle(struct wm_softc *, uint32_t);
580 static int32_t wm_read_ich8_data(struct wm_softc *, uint32_t,
581 uint32_t, uint16_t *);
582 static int32_t wm_read_ich8_word(struct wm_softc *sc, uint32_t, uint16_t *);
583
584 CFATTACH_DECL(wm, sizeof(struct wm_softc),
585 wm_match, wm_attach, NULL, NULL);
586
587 static void wm_82547_txfifo_stall(void *);
588
589 /*
590 * Devices supported by this driver.
591 */
592 static const struct wm_product {
593 pci_vendor_id_t wmp_vendor;
594 pci_product_id_t wmp_product;
595 const char *wmp_name;
596 wm_chip_type wmp_type;
597 int wmp_flags;
598 #define WMP_F_1000X 0x01
599 #define WMP_F_1000T 0x02
600 } wm_products[] = {
601 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
602 "Intel i82542 1000BASE-X Ethernet",
603 WM_T_82542_2_1, WMP_F_1000X },
604
605 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
606 "Intel i82543GC 1000BASE-X Ethernet",
607 WM_T_82543, WMP_F_1000X },
608
609 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
610 "Intel i82543GC 1000BASE-T Ethernet",
611 WM_T_82543, WMP_F_1000T },
612
613 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
614 "Intel i82544EI 1000BASE-T Ethernet",
615 WM_T_82544, WMP_F_1000T },
616
617 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
618 "Intel i82544EI 1000BASE-X Ethernet",
619 WM_T_82544, WMP_F_1000X },
620
621 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
622 "Intel i82544GC 1000BASE-T Ethernet",
623 WM_T_82544, WMP_F_1000T },
624
625 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
626 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
627 WM_T_82544, WMP_F_1000T },
628
629 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
630 "Intel i82540EM 1000BASE-T Ethernet",
631 WM_T_82540, WMP_F_1000T },
632
633 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
634 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
635 WM_T_82540, WMP_F_1000T },
636
637 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
638 "Intel i82540EP 1000BASE-T Ethernet",
639 WM_T_82540, WMP_F_1000T },
640
641 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
642 "Intel i82540EP 1000BASE-T Ethernet",
643 WM_T_82540, WMP_F_1000T },
644
645 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
646 "Intel i82540EP 1000BASE-T Ethernet",
647 WM_T_82540, WMP_F_1000T },
648
649 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
650 "Intel i82545EM 1000BASE-T Ethernet",
651 WM_T_82545, WMP_F_1000T },
652
653 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
654 "Intel i82545GM 1000BASE-T Ethernet",
655 WM_T_82545_3, WMP_F_1000T },
656
657 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
658 "Intel i82545GM 1000BASE-X Ethernet",
659 WM_T_82545_3, WMP_F_1000X },
660 #if 0
661 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
662 "Intel i82545GM Gigabit Ethernet (SERDES)",
663 WM_T_82545_3, WMP_F_SERDES },
664 #endif
665 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
666 "Intel i82546EB 1000BASE-T Ethernet",
667 WM_T_82546, WMP_F_1000T },
668
669 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
670 "Intel i82546EB 1000BASE-T Ethernet",
671 WM_T_82546, WMP_F_1000T },
672
673 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
674 "Intel i82545EM 1000BASE-X Ethernet",
675 WM_T_82545, WMP_F_1000X },
676
677 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
678 "Intel i82546EB 1000BASE-X Ethernet",
679 WM_T_82546, WMP_F_1000X },
680
681 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
682 "Intel i82546GB 1000BASE-T Ethernet",
683 WM_T_82546_3, WMP_F_1000T },
684
685 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
686 "Intel i82546GB 1000BASE-X Ethernet",
687 WM_T_82546_3, WMP_F_1000X },
688 #if 0
689 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
690 "Intel i82546GB Gigabit Ethernet (SERDES)",
691 WM_T_82546_3, WMP_F_SERDES },
692 #endif
693 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER,
694 "i82546GB quad-port Gigabit Ethernet",
695 WM_T_82546_3, WMP_F_1000T },
696
697 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3,
698 "i82546GB quad-port Gigabit Ethernet (KSP3)",
699 WM_T_82546_3, WMP_F_1000T },
700
701 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_PCIE,
702 "Intel PRO/1000MT (82546GB)",
703 WM_T_82546_3, WMP_F_1000T },
704
705 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
706 "Intel i82541EI 1000BASE-T Ethernet",
707 WM_T_82541, WMP_F_1000T },
708
709 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER_LOM,
710 "Intel i82541ER (LOM) 1000BASE-T Ethernet",
711 WM_T_82541, WMP_F_1000T },
712
713 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
714 "Intel i82541EI Mobile 1000BASE-T Ethernet",
715 WM_T_82541, WMP_F_1000T },
716
717 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
718 "Intel i82541ER 1000BASE-T Ethernet",
719 WM_T_82541_2, WMP_F_1000T },
720
721 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
722 "Intel i82541GI 1000BASE-T Ethernet",
723 WM_T_82541_2, WMP_F_1000T },
724
725 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
726 "Intel i82541GI Mobile 1000BASE-T Ethernet",
727 WM_T_82541_2, WMP_F_1000T },
728
729 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI,
730 "Intel i82541PI 1000BASE-T Ethernet",
731 WM_T_82541_2, WMP_F_1000T },
732
733 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
734 "Intel i82547EI 1000BASE-T Ethernet",
735 WM_T_82547, WMP_F_1000T },
736
737 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI_MOBILE,
738 "Intel i82547EI Mobile 1000BASE-T Ethernet",
739 WM_T_82547, WMP_F_1000T },
740
741 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
742 "Intel i82547GI 1000BASE-T Ethernet",
743 WM_T_82547_2, WMP_F_1000T },
744
745 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_COPPER,
746 "Intel PRO/1000 PT (82571EB)",
747 WM_T_82571, WMP_F_1000T },
748
749 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_FIBER,
750 "Intel PRO/1000 PF (82571EB)",
751 WM_T_82571, WMP_F_1000X },
752 #if 0
753 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_SERDES,
754 "Intel PRO/1000 PB (82571EB)",
755 WM_T_82571, WMP_F_SERDES },
756 #endif
757 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER,
758 "Intel PRO/1000 QT (82571EB)",
759 WM_T_82571, WMP_F_1000T },
760
761 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_COPPER,
762 "Intel i82572EI 1000baseT Ethernet",
763 WM_T_82572, WMP_F_1000T },
764
765 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER,
766 "Intel PRO/1000 PT Quad Port Server Adapter",
767 WM_T_82571, WMP_F_1000T, },
768
769 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_FIBER,
770 "Intel i82572EI 1000baseX Ethernet",
771 WM_T_82572, WMP_F_1000X },
772 #if 0
773 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_SERDES,
774 "Intel i82572EI Gigabit Ethernet (SERDES)",
775 WM_T_82572, WMP_F_SERDES },
776 #endif
777
778 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI,
779 "Intel i82572EI 1000baseT Ethernet",
780 WM_T_82572, WMP_F_1000T },
781
782 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E,
783 "Intel i82573E",
784 WM_T_82573, WMP_F_1000T },
785
786 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E_IAMT,
787 "Intel i82573E IAMT",
788 WM_T_82573, WMP_F_1000T },
789
790 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L,
791 "Intel i82573L Gigabit Ethernet",
792 WM_T_82573, WMP_F_1000T },
793
794 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT,
795 "i80003 dual 1000baseT Ethernet",
796 WM_T_80003, WMP_F_1000T },
797
798 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT,
799 "i80003 dual 1000baseX Ethernet",
800 WM_T_80003, WMP_F_1000T },
801 #if 0
802 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT,
803 "Intel i80003ES2 dual Gigabit Ethernet (SERDES)",
804 WM_T_80003, WMP_F_SERDES },
805 #endif
806
807 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT,
808 "Intel i80003 1000baseT Ethernet",
809 WM_T_80003, WMP_F_1000T },
810 #if 0
811 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT,
812 "Intel i80003 Gigabit Ethernet (SERDES)",
813 WM_T_80003, WMP_F_SERDES },
814 #endif
815 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_AMT,
816 "Intel i82801H (M_AMT) LAN Controller",
817 WM_T_ICH8, WMP_F_1000T },
818 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_AMT,
819 "Intel i82801H (AMT) LAN Controller",
820 WM_T_ICH8, WMP_F_1000T },
821 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_LAN,
822 "Intel i82801H LAN Controller",
823 WM_T_ICH8, WMP_F_1000T },
824 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_LAN,
825 "Intel i82801H (IFE) LAN Controller",
826 WM_T_ICH8, WMP_F_1000T },
827 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_LAN,
828 "Intel i82801H (M) LAN Controller",
829 WM_T_ICH8, WMP_F_1000T },
830 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_GT,
831 "Intel i82801H IFE (GT) LAN Controller",
832 WM_T_ICH8, WMP_F_1000T },
833 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_G,
834 "Intel i82801H IFE (G) LAN Controller",
835 WM_T_ICH8, WMP_F_1000T },
836 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_AMT,
837 "82801I (AMT) LAN Controller",
838 WM_T_ICH9, WMP_F_1000T },
839 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE,
840 "82801I LAN Controller",
841 WM_T_ICH9, WMP_F_1000T },
842 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_G,
843 "82801I (G) LAN Controller",
844 WM_T_ICH9, WMP_F_1000T },
845 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_GT,
846 "82801I (GT) LAN Controller",
847 WM_T_ICH9, WMP_F_1000T },
848 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_C,
849 "82801I (C) LAN Controller",
850 WM_T_ICH9, WMP_F_1000T },
851 { 0, 0,
852 NULL,
853 0, 0 },
854 };
855
856 #ifdef WM_EVENT_COUNTERS
857 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
858 #endif /* WM_EVENT_COUNTERS */
859
860 #if 0 /* Not currently used */
861 static inline uint32_t
862 wm_io_read(struct wm_softc *sc, int reg)
863 {
864
865 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
866 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
867 }
868 #endif
869
870 static inline void
871 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
872 {
873
874 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
875 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
876 }
877
878 static inline void
879 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
880 {
881 wa->wa_low = htole32(v & 0xffffffffU);
882 if (sizeof(bus_addr_t) == 8)
883 wa->wa_high = htole32((uint64_t) v >> 32);
884 else
885 wa->wa_high = 0;
886 }
887
888 static const struct wm_product *
889 wm_lookup(const struct pci_attach_args *pa)
890 {
891 const struct wm_product *wmp;
892
893 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
894 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
895 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
896 return (wmp);
897 }
898 return (NULL);
899 }
900
901 static int
902 wm_match(device_t parent, struct cfdata *cf, void *aux)
903 {
904 struct pci_attach_args *pa = aux;
905
906 if (wm_lookup(pa) != NULL)
907 return (1);
908
909 return (0);
910 }
911
912 static void
913 wm_attach(device_t parent, device_t self, void *aux)
914 {
915 struct wm_softc *sc = device_private(self);
916 struct pci_attach_args *pa = aux;
917 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
918 pci_chipset_tag_t pc = pa->pa_pc;
919 pci_intr_handle_t ih;
920 size_t cdata_size;
921 const char *intrstr = NULL;
922 const char *eetype;
923 bus_space_tag_t memt;
924 bus_space_handle_t memh;
925 bus_dma_segment_t seg;
926 int memh_valid;
927 int i, rseg, error;
928 const struct wm_product *wmp;
929 prop_data_t ea;
930 prop_number_t pn;
931 uint8_t enaddr[ETHER_ADDR_LEN];
932 uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
933 pcireg_t preg, memtype;
934 uint32_t reg;
935
936 callout_init(&sc->sc_tick_ch, 0);
937
938 wmp = wm_lookup(pa);
939 if (wmp == NULL) {
940 printf("\n");
941 panic("wm_attach: impossible");
942 }
943
944 sc->sc_pc = pa->pa_pc;
945 sc->sc_pcitag = pa->pa_tag;
946
947 if (pci_dma64_available(pa))
948 sc->sc_dmat = pa->pa_dmat64;
949 else
950 sc->sc_dmat = pa->pa_dmat;
951
952 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
953 aprint_naive(": Ethernet controller\n");
954 aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
955
956 sc->sc_type = wmp->wmp_type;
957 if (sc->sc_type < WM_T_82543) {
958 if (preg < 2) {
959 aprint_error_dev(&sc->sc_dev, "i82542 must be at least rev. 2\n");
960 return;
961 }
962 if (preg < 3)
963 sc->sc_type = WM_T_82542_2_0;
964 }
965
966 /*
967 * Map the device. All devices support memory-mapped acccess,
968 * and it is really required for normal operation.
969 */
970 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
971 switch (memtype) {
972 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
973 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
974 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
975 memtype, 0, &memt, &memh, NULL, NULL) == 0);
976 break;
977 default:
978 memh_valid = 0;
979 }
980
981 if (memh_valid) {
982 sc->sc_st = memt;
983 sc->sc_sh = memh;
984 } else {
985 aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
986 return;
987 }
988
989 /*
990 * In addition, i82544 and later support I/O mapped indirect
991 * register access. It is not desirable (nor supported in
992 * this driver) to use it for normal operation, though it is
993 * required to work around bugs in some chip versions.
994 */
995 if (sc->sc_type >= WM_T_82544) {
996 /* First we have to find the I/O BAR. */
997 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
998 if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
999 PCI_MAPREG_TYPE_IO)
1000 break;
1001 }
1002 if (i == PCI_MAPREG_END)
1003 aprint_error_dev(&sc->sc_dev, "WARNING: unable to find I/O BAR\n");
1004 else {
1005 /*
1006 * The i8254x doesn't apparently respond when the
1007 * I/O BAR is 0, which looks somewhat like it's not
1008 * been configured.
1009 */
1010 preg = pci_conf_read(pc, pa->pa_tag, i);
1011 if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
1012 aprint_error_dev(&sc->sc_dev, "WARNING: I/O BAR at zero.\n");
1013 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
1014 0, &sc->sc_iot, &sc->sc_ioh,
1015 NULL, NULL) == 0) {
1016 sc->sc_flags |= WM_F_IOH_VALID;
1017 } else {
1018 aprint_error_dev(&sc->sc_dev, "WARNING: unable to map "
1019 "I/O space\n");
1020 }
1021 }
1022
1023 }
1024
1025 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
1026 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1027 preg |= PCI_COMMAND_MASTER_ENABLE;
1028 if (sc->sc_type < WM_T_82542_2_1)
1029 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
1030 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
1031
1032 /* power up chip */
1033 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1034 NULL)) && error != EOPNOTSUPP) {
1035 aprint_error_dev(&sc->sc_dev, "cannot activate %d\n",
1036 error);
1037 return;
1038 }
1039
1040 /*
1041 * Map and establish our interrupt.
1042 */
1043 if (pci_intr_map(pa, &ih)) {
1044 aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
1045 return;
1046 }
1047 intrstr = pci_intr_string(pc, ih);
1048 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
1049 if (sc->sc_ih == NULL) {
1050 aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
1051 if (intrstr != NULL)
1052 aprint_normal(" at %s", intrstr);
1053 aprint_normal("\n");
1054 return;
1055 }
1056 aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
1057
1058 /*
1059 * Determine a few things about the bus we're connected to.
1060 */
1061 if (sc->sc_type < WM_T_82543) {
1062 /* We don't really know the bus characteristics here. */
1063 sc->sc_bus_speed = 33;
1064 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
1065 /*
1066 * CSA (Communication Streaming Architecture) is about as fast
1067 * a 32-bit 66MHz PCI Bus.
1068 */
1069 sc->sc_flags |= WM_F_CSA;
1070 sc->sc_bus_speed = 66;
1071 aprint_verbose_dev(&sc->sc_dev, "Communication Streaming Architecture\n");
1072 if (sc->sc_type == WM_T_82547) {
1073 callout_init(&sc->sc_txfifo_ch, 0);
1074 callout_setfunc(&sc->sc_txfifo_ch,
1075 wm_82547_txfifo_stall, sc);
1076 aprint_verbose_dev(&sc->sc_dev, "using 82547 Tx FIFO stall "
1077 "work-around\n");
1078 }
1079 } else if (sc->sc_type >= WM_T_82571) {
1080 sc->sc_flags |= WM_F_PCIE;
1081 if ((sc->sc_type != WM_T_ICH8) || (sc->sc_type != WM_T_ICH9))
1082 sc->sc_flags |= WM_F_EEPROM_SEMAPHORE;
1083 aprint_verbose_dev(&sc->sc_dev, "PCI-Express bus\n");
1084 } else {
1085 reg = CSR_READ(sc, WMREG_STATUS);
1086 if (reg & STATUS_BUS64)
1087 sc->sc_flags |= WM_F_BUS64;
1088 if (sc->sc_type >= WM_T_82544 &&
1089 (reg & STATUS_PCIX_MODE) != 0) {
1090 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
1091
1092 sc->sc_flags |= WM_F_PCIX;
1093 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
1094 PCI_CAP_PCIX,
1095 &sc->sc_pcix_offset, NULL) == 0)
1096 aprint_error_dev(&sc->sc_dev, "unable to find PCIX "
1097 "capability\n");
1098 else if (sc->sc_type != WM_T_82545_3 &&
1099 sc->sc_type != WM_T_82546_3) {
1100 /*
1101 * Work around a problem caused by the BIOS
1102 * setting the max memory read byte count
1103 * incorrectly.
1104 */
1105 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
1106 sc->sc_pcix_offset + PCI_PCIX_CMD);
1107 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
1108 sc->sc_pcix_offset + PCI_PCIX_STATUS);
1109
1110 bytecnt =
1111 (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
1112 PCI_PCIX_CMD_BYTECNT_SHIFT;
1113 maxb =
1114 (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
1115 PCI_PCIX_STATUS_MAXB_SHIFT;
1116 if (bytecnt > maxb) {
1117 aprint_verbose_dev(&sc->sc_dev, "resetting PCI-X "
1118 "MMRBC: %d -> %d\n",
1119 512 << bytecnt, 512 << maxb);
1120 pcix_cmd = (pcix_cmd &
1121 ~PCI_PCIX_CMD_BYTECNT_MASK) |
1122 (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
1123 pci_conf_write(pa->pa_pc, pa->pa_tag,
1124 sc->sc_pcix_offset + PCI_PCIX_CMD,
1125 pcix_cmd);
1126 }
1127 }
1128 }
1129 /*
1130 * The quad port adapter is special; it has a PCIX-PCIX
1131 * bridge on the board, and can run the secondary bus at
1132 * a higher speed.
1133 */
1134 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
1135 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
1136 : 66;
1137 } else if (sc->sc_flags & WM_F_PCIX) {
1138 switch (reg & STATUS_PCIXSPD_MASK) {
1139 case STATUS_PCIXSPD_50_66:
1140 sc->sc_bus_speed = 66;
1141 break;
1142 case STATUS_PCIXSPD_66_100:
1143 sc->sc_bus_speed = 100;
1144 break;
1145 case STATUS_PCIXSPD_100_133:
1146 sc->sc_bus_speed = 133;
1147 break;
1148 default:
1149 aprint_error_dev(&sc->sc_dev,
1150 "unknown PCIXSPD %d; assuming 66MHz\n",
1151 reg & STATUS_PCIXSPD_MASK);
1152 sc->sc_bus_speed = 66;
1153 }
1154 } else
1155 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
1156 aprint_verbose_dev(&sc->sc_dev, "%d-bit %dMHz %s bus\n",
1157 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
1158 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
1159 }
1160
1161 /*
1162 * Allocate the control data structures, and create and load the
1163 * DMA map for it.
1164 *
1165 * NOTE: All Tx descriptors must be in the same 4G segment of
1166 * memory. So must Rx descriptors. We simplify by allocating
1167 * both sets within the same 4G segment.
1168 */
1169 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
1170 WM_NTXDESC_82542 : WM_NTXDESC_82544;
1171 cdata_size = sc->sc_type < WM_T_82544 ?
1172 sizeof(struct wm_control_data_82542) :
1173 sizeof(struct wm_control_data_82544);
1174 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
1175 (bus_size_t) 0x100000000ULL,
1176 &seg, 1, &rseg, 0)) != 0) {
1177 aprint_error_dev(&sc->sc_dev,
1178 "unable to allocate control data, error = %d\n",
1179 error);
1180 goto fail_0;
1181 }
1182
1183 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
1184 (void **)&sc->sc_control_data,
1185 BUS_DMA_COHERENT)) != 0) {
1186 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
1187 error);
1188 goto fail_1;
1189 }
1190
1191 if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
1192 0, 0, &sc->sc_cddmamap)) != 0) {
1193 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
1194 "error = %d\n", error);
1195 goto fail_2;
1196 }
1197
1198 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1199 sc->sc_control_data, cdata_size, NULL,
1200 0)) != 0) {
1201 aprint_error_dev(&sc->sc_dev,
1202 "unable to load control data DMA map, error = %d\n",
1203 error);
1204 goto fail_3;
1205 }
1206
1207
1208 /*
1209 * Create the transmit buffer DMA maps.
1210 */
1211 WM_TXQUEUELEN(sc) =
1212 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1213 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1214 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1215 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1216 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1217 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1218 aprint_error_dev(&sc->sc_dev, "unable to create Tx DMA map %d, "
1219 "error = %d\n", i, error);
1220 goto fail_4;
1221 }
1222 }
1223
1224 /*
1225 * Create the receive buffer DMA maps.
1226 */
1227 for (i = 0; i < WM_NRXDESC; i++) {
1228 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1229 MCLBYTES, 0, 0,
1230 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1231 aprint_error_dev(&sc->sc_dev, "unable to create Rx DMA map %d, "
1232 "error = %d\n", i, error);
1233 goto fail_5;
1234 }
1235 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1236 }
1237
1238 /* clear interesting stat counters */
1239 CSR_READ(sc, WMREG_COLC);
1240 CSR_READ(sc, WMREG_RXERRC);
1241
1242 /*
1243 * Reset the chip to a known state.
1244 */
1245 wm_reset(sc);
1246
1247 /*
1248 * Get some information about the EEPROM.
1249 */
1250 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)) {
1251 uint32_t flash_size;
1252 sc->sc_flags |= WM_F_SWFWHW_SYNC | WM_F_EEPROM_FLASH;
1253 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_ICH8_FLASH);
1254 if (pci_mapreg_map(pa, WM_ICH8_FLASH, memtype, 0,
1255 &sc->sc_flasht, &sc->sc_flashh, NULL, NULL)) {
1256 aprint_error_dev(&sc->sc_dev, "can't map FLASH registers\n");
1257 return;
1258 }
1259 flash_size = ICH8_FLASH_READ32(sc, ICH_FLASH_GFPREG);
1260 sc->sc_ich8_flash_base = (flash_size & ICH_GFPREG_BASE_MASK) *
1261 ICH_FLASH_SECTOR_SIZE;
1262 sc->sc_ich8_flash_bank_size =
1263 ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1;
1264 sc->sc_ich8_flash_bank_size -=
1265 (flash_size & ICH_GFPREG_BASE_MASK);
1266 sc->sc_ich8_flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
1267 sc->sc_ich8_flash_bank_size /= 2 * sizeof(uint16_t);
1268 } else if (sc->sc_type == WM_T_80003)
1269 sc->sc_flags |= WM_F_EEPROM_EERDEEWR | WM_F_SWFW_SYNC;
1270 else if (sc->sc_type == WM_T_82573)
1271 sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
1272 else if (sc->sc_type > WM_T_82544)
1273 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1274
1275 if (sc->sc_type <= WM_T_82544)
1276 sc->sc_ee_addrbits = 6;
1277 else if (sc->sc_type <= WM_T_82546_3) {
1278 reg = CSR_READ(sc, WMREG_EECD);
1279 if (reg & EECD_EE_SIZE)
1280 sc->sc_ee_addrbits = 8;
1281 else
1282 sc->sc_ee_addrbits = 6;
1283 } else if (sc->sc_type <= WM_T_82547_2) {
1284 reg = CSR_READ(sc, WMREG_EECD);
1285 if (reg & EECD_EE_TYPE) {
1286 sc->sc_flags |= WM_F_EEPROM_SPI;
1287 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1288 } else
1289 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1290 } else if ((sc->sc_type == WM_T_82573) &&
1291 (wm_is_onboard_nvm_eeprom(sc) == 0)) {
1292 sc->sc_flags |= WM_F_EEPROM_FLASH;
1293 } else {
1294 /* Assume everything else is SPI. */
1295 reg = CSR_READ(sc, WMREG_EECD);
1296 sc->sc_flags |= WM_F_EEPROM_SPI;
1297 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1298 }
1299
1300 /*
1301 * Defer printing the EEPROM type until after verifying the checksum
1302 * This allows the EEPROM type to be printed correctly in the case
1303 * that no EEPROM is attached.
1304 */
1305
1306
1307 /*
1308 * Validate the EEPROM checksum. If the checksum fails, flag this for
1309 * later, so we can fail future reads from the EEPROM.
1310 */
1311 if (wm_validate_eeprom_checksum(sc))
1312 sc->sc_flags |= WM_F_EEPROM_INVALID;
1313
1314 if (sc->sc_flags & WM_F_EEPROM_INVALID)
1315 aprint_verbose_dev(&sc->sc_dev, "No EEPROM\n");
1316 else if (sc->sc_flags & WM_F_EEPROM_FLASH) {
1317 aprint_verbose_dev(&sc->sc_dev, "FLASH\n");
1318 } else {
1319 if (sc->sc_flags & WM_F_EEPROM_SPI)
1320 eetype = "SPI";
1321 else
1322 eetype = "MicroWire";
1323 aprint_verbose_dev(&sc->sc_dev, "%u word (%d address bits) %s EEPROM\n",
1324 1U << sc->sc_ee_addrbits,
1325 sc->sc_ee_addrbits, eetype);
1326 }
1327
1328 /*
1329 * Read the Ethernet address from the EEPROM, if not first found
1330 * in device properties.
1331 */
1332 ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
1333 if (ea != NULL) {
1334 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
1335 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
1336 memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
1337 } else {
1338 if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1339 sizeof(myea) / sizeof(myea[0]), myea)) {
1340 aprint_error_dev(&sc->sc_dev, "unable to read Ethernet address\n");
1341 return;
1342 }
1343 enaddr[0] = myea[0] & 0xff;
1344 enaddr[1] = myea[0] >> 8;
1345 enaddr[2] = myea[1] & 0xff;
1346 enaddr[3] = myea[1] >> 8;
1347 enaddr[4] = myea[2] & 0xff;
1348 enaddr[5] = myea[2] >> 8;
1349 }
1350
1351 /*
1352 * Toggle the LSB of the MAC address on the second port
1353 * of the dual port controller.
1354 */
1355 if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3
1356 || sc->sc_type == WM_T_82571 || sc->sc_type == WM_T_80003) {
1357 if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1358 enaddr[5] ^= 1;
1359 }
1360
1361 aprint_normal_dev(&sc->sc_dev, "Ethernet address %s\n",
1362 ether_sprintf(enaddr));
1363
1364 /*
1365 * Read the config info from the EEPROM, and set up various
1366 * bits in the control registers based on their contents.
1367 */
1368 pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1369 "i82543-cfg1");
1370 if (pn != NULL) {
1371 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1372 cfg1 = (uint16_t) prop_number_integer_value(pn);
1373 } else {
1374 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1375 aprint_error_dev(&sc->sc_dev, "unable to read CFG1\n");
1376 return;
1377 }
1378 }
1379
1380 pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1381 "i82543-cfg2");
1382 if (pn != NULL) {
1383 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1384 cfg2 = (uint16_t) prop_number_integer_value(pn);
1385 } else {
1386 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1387 aprint_error_dev(&sc->sc_dev, "unable to read CFG2\n");
1388 return;
1389 }
1390 }
1391
1392 if (sc->sc_type >= WM_T_82544) {
1393 pn = prop_dictionary_get(device_properties(&sc->sc_dev),
1394 "i82543-swdpin");
1395 if (pn != NULL) {
1396 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1397 swdpin = (uint16_t) prop_number_integer_value(pn);
1398 } else {
1399 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1400 aprint_error_dev(&sc->sc_dev, "unable to read SWDPIN\n");
1401 return;
1402 }
1403 }
1404 }
1405
1406 if (cfg1 & EEPROM_CFG1_ILOS)
1407 sc->sc_ctrl |= CTRL_ILOS;
1408 if (sc->sc_type >= WM_T_82544) {
1409 sc->sc_ctrl |=
1410 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1411 CTRL_SWDPIO_SHIFT;
1412 sc->sc_ctrl |=
1413 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1414 CTRL_SWDPINS_SHIFT;
1415 } else {
1416 sc->sc_ctrl |=
1417 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1418 CTRL_SWDPIO_SHIFT;
1419 }
1420
1421 #if 0
1422 if (sc->sc_type >= WM_T_82544) {
1423 if (cfg1 & EEPROM_CFG1_IPS0)
1424 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1425 if (cfg1 & EEPROM_CFG1_IPS1)
1426 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1427 sc->sc_ctrl_ext |=
1428 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1429 CTRL_EXT_SWDPIO_SHIFT;
1430 sc->sc_ctrl_ext |=
1431 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1432 CTRL_EXT_SWDPINS_SHIFT;
1433 } else {
1434 sc->sc_ctrl_ext |=
1435 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1436 CTRL_EXT_SWDPIO_SHIFT;
1437 }
1438 #endif
1439
1440 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1441 #if 0
1442 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1443 #endif
1444
1445 /*
1446 * Set up some register offsets that are different between
1447 * the i82542 and the i82543 and later chips.
1448 */
1449 if (sc->sc_type < WM_T_82543) {
1450 sc->sc_rdt_reg = WMREG_OLD_RDT0;
1451 sc->sc_tdt_reg = WMREG_OLD_TDT;
1452 } else {
1453 sc->sc_rdt_reg = WMREG_RDT;
1454 sc->sc_tdt_reg = WMREG_TDT;
1455 }
1456
1457 /*
1458 * Determine if we're TBI or GMII mode, and initialize the
1459 * media structures accordingly.
1460 */
1461 if (sc->sc_type == WM_T_ICH8 || sc->sc_type == WM_T_ICH9
1462 || sc->sc_type == WM_T_82573) {
1463 /* STATUS_TBIMODE reserved/reused, can't rely on it */
1464 wm_gmii_mediainit(sc);
1465 } else if (sc->sc_type < WM_T_82543 ||
1466 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1467 if (wmp->wmp_flags & WMP_F_1000T)
1468 aprint_error_dev(&sc->sc_dev, "WARNING: TBIMODE set on 1000BASE-T "
1469 "product!\n");
1470 wm_tbi_mediainit(sc);
1471 } else {
1472 if (wmp->wmp_flags & WMP_F_1000X)
1473 aprint_error_dev(&sc->sc_dev, "WARNING: TBIMODE clear on 1000BASE-X "
1474 "product!\n");
1475 wm_gmii_mediainit(sc);
1476 }
1477
1478 ifp = &sc->sc_ethercom.ec_if;
1479 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
1480 ifp->if_softc = sc;
1481 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1482 ifp->if_ioctl = wm_ioctl;
1483 ifp->if_start = wm_start;
1484 ifp->if_watchdog = wm_watchdog;
1485 ifp->if_init = wm_init;
1486 ifp->if_stop = wm_stop;
1487 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1488 IFQ_SET_READY(&ifp->if_snd);
1489
1490 if (sc->sc_type != WM_T_82573 && sc->sc_type != WM_T_ICH8)
1491 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1492
1493 /*
1494 * If we're a i82543 or greater, we can support VLANs.
1495 */
1496 if (sc->sc_type >= WM_T_82543)
1497 sc->sc_ethercom.ec_capabilities |=
1498 ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1499
1500 /*
1501 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
1502 * on i82543 and later.
1503 */
1504 if (sc->sc_type >= WM_T_82543) {
1505 ifp->if_capabilities |=
1506 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1507 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1508 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1509 IFCAP_CSUM_TCPv6_Tx |
1510 IFCAP_CSUM_UDPv6_Tx;
1511 }
1512
1513 /*
1514 * XXXyamt: i'm not sure which chips support RXCSUM_IPV6OFL.
1515 *
1516 * 82541GI (8086:1076) ... no
1517 * 82572EI (8086:10b9) ... yes
1518 */
1519 if (sc->sc_type >= WM_T_82571) {
1520 ifp->if_capabilities |=
1521 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
1522 }
1523
1524 /*
1525 * If we're a i82544 or greater (except i82547), we can do
1526 * TCP segmentation offload.
1527 */
1528 if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547) {
1529 ifp->if_capabilities |= IFCAP_TSOv4;
1530 }
1531
1532 if (sc->sc_type >= WM_T_82571) {
1533 ifp->if_capabilities |= IFCAP_TSOv6;
1534 }
1535
1536 /*
1537 * Attach the interface.
1538 */
1539 if_attach(ifp);
1540 ether_ifattach(ifp, enaddr);
1541 #if NRND > 0
1542 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
1543 RND_TYPE_NET, 0);
1544 #endif
1545
1546 #ifdef WM_EVENT_COUNTERS
1547 /* Attach event counters. */
1548 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1549 NULL, device_xname(&sc->sc_dev), "txsstall");
1550 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1551 NULL, device_xname(&sc->sc_dev), "txdstall");
1552 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1553 NULL, device_xname(&sc->sc_dev), "txfifo_stall");
1554 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1555 NULL, device_xname(&sc->sc_dev), "txdw");
1556 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1557 NULL, device_xname(&sc->sc_dev), "txqe");
1558 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1559 NULL, device_xname(&sc->sc_dev), "rxintr");
1560 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1561 NULL, device_xname(&sc->sc_dev), "linkintr");
1562
1563 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1564 NULL, device_xname(&sc->sc_dev), "rxipsum");
1565 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1566 NULL, device_xname(&sc->sc_dev), "rxtusum");
1567 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1568 NULL, device_xname(&sc->sc_dev), "txipsum");
1569 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1570 NULL, device_xname(&sc->sc_dev), "txtusum");
1571 evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
1572 NULL, device_xname(&sc->sc_dev), "txtusum6");
1573
1574 evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
1575 NULL, device_xname(&sc->sc_dev), "txtso");
1576 evcnt_attach_dynamic(&sc->sc_ev_txtso6, EVCNT_TYPE_MISC,
1577 NULL, device_xname(&sc->sc_dev), "txtso6");
1578 evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
1579 NULL, device_xname(&sc->sc_dev), "txtsopain");
1580
1581 for (i = 0; i < WM_NTXSEGS; i++) {
1582 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1583 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1584 NULL, device_xname(&sc->sc_dev), wm_txseg_evcnt_names[i]);
1585 }
1586
1587 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1588 NULL, device_xname(&sc->sc_dev), "txdrop");
1589
1590 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1591 NULL, device_xname(&sc->sc_dev), "tu");
1592
1593 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1594 NULL, device_xname(&sc->sc_dev), "tx_xoff");
1595 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1596 NULL, device_xname(&sc->sc_dev), "tx_xon");
1597 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1598 NULL, device_xname(&sc->sc_dev), "rx_xoff");
1599 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1600 NULL, device_xname(&sc->sc_dev), "rx_xon");
1601 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1602 NULL, device_xname(&sc->sc_dev), "rx_macctl");
1603 #endif /* WM_EVENT_COUNTERS */
1604
1605 if (!pmf_device_register(self, NULL, NULL))
1606 aprint_error_dev(self, "couldn't establish power handler\n");
1607 else
1608 pmf_class_network_register(self, ifp);
1609
1610 return;
1611
1612 /*
1613 * Free any resources we've allocated during the failed attach
1614 * attempt. Do this in reverse order and fall through.
1615 */
1616 fail_5:
1617 for (i = 0; i < WM_NRXDESC; i++) {
1618 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1619 bus_dmamap_destroy(sc->sc_dmat,
1620 sc->sc_rxsoft[i].rxs_dmamap);
1621 }
1622 fail_4:
1623 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1624 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1625 bus_dmamap_destroy(sc->sc_dmat,
1626 sc->sc_txsoft[i].txs_dmamap);
1627 }
1628 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1629 fail_3:
1630 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1631 fail_2:
1632 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1633 cdata_size);
1634 fail_1:
1635 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1636 fail_0:
1637 return;
1638 }
1639
1640 /*
1641 * wm_tx_offload:
1642 *
1643 * Set up TCP/IP checksumming parameters for the
1644 * specified packet.
1645 */
1646 static int
1647 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1648 uint8_t *fieldsp)
1649 {
1650 struct mbuf *m0 = txs->txs_mbuf;
1651 struct livengood_tcpip_ctxdesc *t;
1652 uint32_t ipcs, tucs, cmd, cmdlen, seg;
1653 uint32_t ipcse;
1654 struct ether_header *eh;
1655 int offset, iphl;
1656 uint8_t fields;
1657
1658 /*
1659 * XXX It would be nice if the mbuf pkthdr had offset
1660 * fields for the protocol headers.
1661 */
1662
1663 eh = mtod(m0, struct ether_header *);
1664 switch (htons(eh->ether_type)) {
1665 case ETHERTYPE_IP:
1666 case ETHERTYPE_IPV6:
1667 offset = ETHER_HDR_LEN;
1668 break;
1669
1670 case ETHERTYPE_VLAN:
1671 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1672 break;
1673
1674 default:
1675 /*
1676 * Don't support this protocol or encapsulation.
1677 */
1678 *fieldsp = 0;
1679 *cmdp = 0;
1680 return (0);
1681 }
1682
1683 if ((m0->m_pkthdr.csum_flags &
1684 (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
1685 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1686 } else {
1687 iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
1688 }
1689 ipcse = offset + iphl - 1;
1690
1691 cmd = WTX_CMD_DEXT | WTX_DTYP_D;
1692 cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
1693 seg = 0;
1694 fields = 0;
1695
1696 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
1697 int hlen = offset + iphl;
1698 bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1699
1700 if (__predict_false(m0->m_len <
1701 (hlen + sizeof(struct tcphdr)))) {
1702 /*
1703 * TCP/IP headers are not in the first mbuf; we need
1704 * to do this the slow and painful way. Let's just
1705 * hope this doesn't happen very often.
1706 */
1707 struct tcphdr th;
1708
1709 WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
1710
1711 m_copydata(m0, hlen, sizeof(th), &th);
1712 if (v4) {
1713 struct ip ip;
1714
1715 m_copydata(m0, offset, sizeof(ip), &ip);
1716 ip.ip_len = 0;
1717 m_copyback(m0,
1718 offset + offsetof(struct ip, ip_len),
1719 sizeof(ip.ip_len), &ip.ip_len);
1720 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1721 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1722 } else {
1723 struct ip6_hdr ip6;
1724
1725 m_copydata(m0, offset, sizeof(ip6), &ip6);
1726 ip6.ip6_plen = 0;
1727 m_copyback(m0,
1728 offset + offsetof(struct ip6_hdr, ip6_plen),
1729 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
1730 th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
1731 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
1732 }
1733 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
1734 sizeof(th.th_sum), &th.th_sum);
1735
1736 hlen += th.th_off << 2;
1737 } else {
1738 /*
1739 * TCP/IP headers are in the first mbuf; we can do
1740 * this the easy way.
1741 */
1742 struct tcphdr *th;
1743
1744 if (v4) {
1745 struct ip *ip =
1746 (void *)(mtod(m0, char *) + offset);
1747 th = (void *)(mtod(m0, char *) + hlen);
1748
1749 ip->ip_len = 0;
1750 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1751 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1752 } else {
1753 struct ip6_hdr *ip6 =
1754 (void *)(mtod(m0, char *) + offset);
1755 th = (void *)(mtod(m0, char *) + hlen);
1756
1757 ip6->ip6_plen = 0;
1758 th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
1759 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
1760 }
1761 hlen += th->th_off << 2;
1762 }
1763
1764 if (v4) {
1765 WM_EVCNT_INCR(&sc->sc_ev_txtso);
1766 cmdlen |= WTX_TCPIP_CMD_IP;
1767 } else {
1768 WM_EVCNT_INCR(&sc->sc_ev_txtso6);
1769 ipcse = 0;
1770 }
1771 cmd |= WTX_TCPIP_CMD_TSE;
1772 cmdlen |= WTX_TCPIP_CMD_TSE |
1773 WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
1774 seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
1775 WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
1776 }
1777
1778 /*
1779 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1780 * offload feature, if we load the context descriptor, we
1781 * MUST provide valid values for IPCSS and TUCSS fields.
1782 */
1783
1784 ipcs = WTX_TCPIP_IPCSS(offset) |
1785 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1786 WTX_TCPIP_IPCSE(ipcse);
1787 if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
1788 WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1789 fields |= WTX_IXSM;
1790 }
1791
1792 offset += iphl;
1793
1794 if (m0->m_pkthdr.csum_flags &
1795 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
1796 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1797 fields |= WTX_TXSM;
1798 tucs = WTX_TCPIP_TUCSS(offset) |
1799 WTX_TCPIP_TUCSO(offset +
1800 M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1801 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1802 } else if ((m0->m_pkthdr.csum_flags &
1803 (M_CSUM_TCPv6|M_CSUM_UDPv6|M_CSUM_TSOv6)) != 0) {
1804 WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
1805 fields |= WTX_TXSM;
1806 tucs = WTX_TCPIP_TUCSS(offset) |
1807 WTX_TCPIP_TUCSO(offset +
1808 M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
1809 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1810 } else {
1811 /* Just initialize it to a valid TCP context. */
1812 tucs = WTX_TCPIP_TUCSS(offset) |
1813 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1814 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1815 }
1816
1817 /* Fill in the context descriptor. */
1818 t = (struct livengood_tcpip_ctxdesc *)
1819 &sc->sc_txdescs[sc->sc_txnext];
1820 t->tcpip_ipcs = htole32(ipcs);
1821 t->tcpip_tucs = htole32(tucs);
1822 t->tcpip_cmdlen = htole32(cmdlen);
1823 t->tcpip_seg = htole32(seg);
1824 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1825
1826 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1827 txs->txs_ndesc++;
1828
1829 *cmdp = cmd;
1830 *fieldsp = fields;
1831
1832 return (0);
1833 }
1834
1835 static void
1836 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1837 {
1838 struct mbuf *m;
1839 int i;
1840
1841 log(LOG_DEBUG, "%s: mbuf chain:\n", device_xname(&sc->sc_dev));
1842 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1843 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1844 "m_flags = 0x%08x\n", device_xname(&sc->sc_dev),
1845 m->m_data, m->m_len, m->m_flags);
1846 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", device_xname(&sc->sc_dev),
1847 i, i == 1 ? "" : "s");
1848 }
1849
1850 /*
1851 * wm_82547_txfifo_stall:
1852 *
1853 * Callout used to wait for the 82547 Tx FIFO to drain,
1854 * reset the FIFO pointers, and restart packet transmission.
1855 */
1856 static void
1857 wm_82547_txfifo_stall(void *arg)
1858 {
1859 struct wm_softc *sc = arg;
1860 int s;
1861
1862 s = splnet();
1863
1864 if (sc->sc_txfifo_stall) {
1865 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1866 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1867 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1868 /*
1869 * Packets have drained. Stop transmitter, reset
1870 * FIFO pointers, restart transmitter, and kick
1871 * the packet queue.
1872 */
1873 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1874 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1875 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1876 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1877 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1878 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1879 CSR_WRITE(sc, WMREG_TCTL, tctl);
1880 CSR_WRITE_FLUSH(sc);
1881
1882 sc->sc_txfifo_head = 0;
1883 sc->sc_txfifo_stall = 0;
1884 wm_start(&sc->sc_ethercom.ec_if);
1885 } else {
1886 /*
1887 * Still waiting for packets to drain; try again in
1888 * another tick.
1889 */
1890 callout_schedule(&sc->sc_txfifo_ch, 1);
1891 }
1892 }
1893
1894 splx(s);
1895 }
1896
1897 /*
1898 * wm_82547_txfifo_bugchk:
1899 *
1900 * Check for bug condition in the 82547 Tx FIFO. We need to
1901 * prevent enqueueing a packet that would wrap around the end
1902 * if the Tx FIFO ring buffer, otherwise the chip will croak.
1903 *
1904 * We do this by checking the amount of space before the end
1905 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
1906 * the Tx FIFO, wait for all remaining packets to drain, reset
1907 * the internal FIFO pointers to the beginning, and restart
1908 * transmission on the interface.
1909 */
1910 #define WM_FIFO_HDR 0x10
1911 #define WM_82547_PAD_LEN 0x3e0
1912 static int
1913 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1914 {
1915 int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1916 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1917
1918 /* Just return if already stalled. */
1919 if (sc->sc_txfifo_stall)
1920 return (1);
1921
1922 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1923 /* Stall only occurs in half-duplex mode. */
1924 goto send_packet;
1925 }
1926
1927 if (len >= WM_82547_PAD_LEN + space) {
1928 sc->sc_txfifo_stall = 1;
1929 callout_schedule(&sc->sc_txfifo_ch, 1);
1930 return (1);
1931 }
1932
1933 send_packet:
1934 sc->sc_txfifo_head += len;
1935 if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1936 sc->sc_txfifo_head -= sc->sc_txfifo_size;
1937
1938 return (0);
1939 }
1940
1941 /*
1942 * wm_start: [ifnet interface function]
1943 *
1944 * Start packet transmission on the interface.
1945 */
1946 static void
1947 wm_start(struct ifnet *ifp)
1948 {
1949 struct wm_softc *sc = ifp->if_softc;
1950 struct mbuf *m0;
1951 #if 0 /* XXXJRT */
1952 struct m_tag *mtag;
1953 #endif
1954 struct wm_txsoft *txs;
1955 bus_dmamap_t dmamap;
1956 int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
1957 bus_addr_t curaddr;
1958 bus_size_t seglen, curlen;
1959 uint32_t cksumcmd;
1960 uint8_t cksumfields;
1961
1962 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1963 return;
1964
1965 /*
1966 * Remember the previous number of free descriptors.
1967 */
1968 ofree = sc->sc_txfree;
1969
1970 /*
1971 * Loop through the send queue, setting up transmit descriptors
1972 * until we drain the queue, or use up all available transmit
1973 * descriptors.
1974 */
1975 for (;;) {
1976 /* Grab a packet off the queue. */
1977 IFQ_POLL(&ifp->if_snd, m0);
1978 if (m0 == NULL)
1979 break;
1980
1981 DPRINTF(WM_DEBUG_TX,
1982 ("%s: TX: have packet to transmit: %p\n",
1983 device_xname(&sc->sc_dev), m0));
1984
1985 /* Get a work queue entry. */
1986 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1987 wm_txintr(sc);
1988 if (sc->sc_txsfree == 0) {
1989 DPRINTF(WM_DEBUG_TX,
1990 ("%s: TX: no free job descriptors\n",
1991 device_xname(&sc->sc_dev)));
1992 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1993 break;
1994 }
1995 }
1996
1997 txs = &sc->sc_txsoft[sc->sc_txsnext];
1998 dmamap = txs->txs_dmamap;
1999
2000 use_tso = (m0->m_pkthdr.csum_flags &
2001 (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0;
2002
2003 /*
2004 * So says the Linux driver:
2005 * The controller does a simple calculation to make sure
2006 * there is enough room in the FIFO before initiating the
2007 * DMA for each buffer. The calc is:
2008 * 4 = ceil(buffer len / MSS)
2009 * To make sure we don't overrun the FIFO, adjust the max
2010 * buffer len if the MSS drops.
2011 */
2012 dmamap->dm_maxsegsz =
2013 (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
2014 ? m0->m_pkthdr.segsz << 2
2015 : WTX_MAX_LEN;
2016
2017 /*
2018 * Load the DMA map. If this fails, the packet either
2019 * didn't fit in the allotted number of segments, or we
2020 * were short on resources. For the too-many-segments
2021 * case, we simply report an error and drop the packet,
2022 * since we can't sanely copy a jumbo packet to a single
2023 * buffer.
2024 */
2025 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
2026 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
2027 if (error) {
2028 if (error == EFBIG) {
2029 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
2030 log(LOG_ERR, "%s: Tx packet consumes too many "
2031 "DMA segments, dropping...\n",
2032 device_xname(&sc->sc_dev));
2033 IFQ_DEQUEUE(&ifp->if_snd, m0);
2034 wm_dump_mbuf_chain(sc, m0);
2035 m_freem(m0);
2036 continue;
2037 }
2038 /*
2039 * Short on resources, just stop for now.
2040 */
2041 DPRINTF(WM_DEBUG_TX,
2042 ("%s: TX: dmamap load failed: %d\n",
2043 device_xname(&sc->sc_dev), error));
2044 break;
2045 }
2046
2047 segs_needed = dmamap->dm_nsegs;
2048 if (use_tso) {
2049 /* For sentinel descriptor; see below. */
2050 segs_needed++;
2051 }
2052
2053 /*
2054 * Ensure we have enough descriptors free to describe
2055 * the packet. Note, we always reserve one descriptor
2056 * at the end of the ring due to the semantics of the
2057 * TDT register, plus one more in the event we need
2058 * to load offload context.
2059 */
2060 if (segs_needed > sc->sc_txfree - 2) {
2061 /*
2062 * Not enough free descriptors to transmit this
2063 * packet. We haven't committed anything yet,
2064 * so just unload the DMA map, put the packet
2065 * pack on the queue, and punt. Notify the upper
2066 * layer that there are no more slots left.
2067 */
2068 DPRINTF(WM_DEBUG_TX,
2069 ("%s: TX: need %d (%d) descriptors, have %d\n",
2070 device_xname(&sc->sc_dev), dmamap->dm_nsegs, segs_needed,
2071 sc->sc_txfree - 1));
2072 ifp->if_flags |= IFF_OACTIVE;
2073 bus_dmamap_unload(sc->sc_dmat, dmamap);
2074 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
2075 break;
2076 }
2077
2078 /*
2079 * Check for 82547 Tx FIFO bug. We need to do this
2080 * once we know we can transmit the packet, since we
2081 * do some internal FIFO space accounting here.
2082 */
2083 if (sc->sc_type == WM_T_82547 &&
2084 wm_82547_txfifo_bugchk(sc, m0)) {
2085 DPRINTF(WM_DEBUG_TX,
2086 ("%s: TX: 82547 Tx FIFO bug detected\n",
2087 device_xname(&sc->sc_dev)));
2088 ifp->if_flags |= IFF_OACTIVE;
2089 bus_dmamap_unload(sc->sc_dmat, dmamap);
2090 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
2091 break;
2092 }
2093
2094 IFQ_DEQUEUE(&ifp->if_snd, m0);
2095
2096 /*
2097 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
2098 */
2099
2100 DPRINTF(WM_DEBUG_TX,
2101 ("%s: TX: packet has %d (%d) DMA segments\n",
2102 device_xname(&sc->sc_dev), dmamap->dm_nsegs, segs_needed));
2103
2104 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
2105
2106 /*
2107 * Store a pointer to the packet so that we can free it
2108 * later.
2109 *
2110 * Initially, we consider the number of descriptors the
2111 * packet uses the number of DMA segments. This may be
2112 * incremented by 1 if we do checksum offload (a descriptor
2113 * is used to set the checksum context).
2114 */
2115 txs->txs_mbuf = m0;
2116 txs->txs_firstdesc = sc->sc_txnext;
2117 txs->txs_ndesc = segs_needed;
2118
2119 /* Set up offload parameters for this packet. */
2120 if (m0->m_pkthdr.csum_flags &
2121 (M_CSUM_TSOv4|M_CSUM_TSOv6|
2122 M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
2123 M_CSUM_TCPv6|M_CSUM_UDPv6)) {
2124 if (wm_tx_offload(sc, txs, &cksumcmd,
2125 &cksumfields) != 0) {
2126 /* Error message already displayed. */
2127 bus_dmamap_unload(sc->sc_dmat, dmamap);
2128 continue;
2129 }
2130 } else {
2131 cksumcmd = 0;
2132 cksumfields = 0;
2133 }
2134
2135 cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
2136
2137 /* Sync the DMA map. */
2138 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2139 BUS_DMASYNC_PREWRITE);
2140
2141 /*
2142 * Initialize the transmit descriptor.
2143 */
2144 for (nexttx = sc->sc_txnext, seg = 0;
2145 seg < dmamap->dm_nsegs; seg++) {
2146 for (seglen = dmamap->dm_segs[seg].ds_len,
2147 curaddr = dmamap->dm_segs[seg].ds_addr;
2148 seglen != 0;
2149 curaddr += curlen, seglen -= curlen,
2150 nexttx = WM_NEXTTX(sc, nexttx)) {
2151 curlen = seglen;
2152
2153 /*
2154 * So says the Linux driver:
2155 * Work around for premature descriptor
2156 * write-backs in TSO mode. Append a
2157 * 4-byte sentinel descriptor.
2158 */
2159 if (use_tso &&
2160 seg == dmamap->dm_nsegs - 1 &&
2161 curlen > 8)
2162 curlen -= 4;
2163
2164 wm_set_dma_addr(
2165 &sc->sc_txdescs[nexttx].wtx_addr,
2166 curaddr);
2167 sc->sc_txdescs[nexttx].wtx_cmdlen =
2168 htole32(cksumcmd | curlen);
2169 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
2170 0;
2171 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
2172 cksumfields;
2173 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
2174 lasttx = nexttx;
2175
2176 DPRINTF(WM_DEBUG_TX,
2177 ("%s: TX: desc %d: low 0x%08lx, "
2178 "len 0x%04x\n",
2179 device_xname(&sc->sc_dev), nexttx,
2180 curaddr & 0xffffffffUL, (unsigned)curlen));
2181 }
2182 }
2183
2184 KASSERT(lasttx != -1);
2185
2186 /*
2187 * Set up the command byte on the last descriptor of
2188 * the packet. If we're in the interrupt delay window,
2189 * delay the interrupt.
2190 */
2191 sc->sc_txdescs[lasttx].wtx_cmdlen |=
2192 htole32(WTX_CMD_EOP | WTX_CMD_RS);
2193
2194 #if 0 /* XXXJRT */
2195 /*
2196 * If VLANs are enabled and the packet has a VLAN tag, set
2197 * up the descriptor to encapsulate the packet for us.
2198 *
2199 * This is only valid on the last descriptor of the packet.
2200 */
2201 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
2202 sc->sc_txdescs[lasttx].wtx_cmdlen |=
2203 htole32(WTX_CMD_VLE);
2204 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
2205 = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
2206 }
2207 #endif /* XXXJRT */
2208
2209 txs->txs_lastdesc = lasttx;
2210
2211 DPRINTF(WM_DEBUG_TX,
2212 ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(&sc->sc_dev),
2213 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
2214
2215 /* Sync the descriptors we're using. */
2216 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
2217 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2218
2219 /* Give the packet to the chip. */
2220 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
2221
2222 DPRINTF(WM_DEBUG_TX,
2223 ("%s: TX: TDT -> %d\n", device_xname(&sc->sc_dev), nexttx));
2224
2225 DPRINTF(WM_DEBUG_TX,
2226 ("%s: TX: finished transmitting packet, job %d\n",
2227 device_xname(&sc->sc_dev), sc->sc_txsnext));
2228
2229 /* Advance the tx pointer. */
2230 sc->sc_txfree -= txs->txs_ndesc;
2231 sc->sc_txnext = nexttx;
2232
2233 sc->sc_txsfree--;
2234 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
2235
2236 #if NBPFILTER > 0
2237 /* Pass the packet to any BPF listeners. */
2238 if (ifp->if_bpf)
2239 bpf_mtap(ifp->if_bpf, m0);
2240 #endif /* NBPFILTER > 0 */
2241 }
2242
2243 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
2244 /* No more slots; notify upper layer. */
2245 ifp->if_flags |= IFF_OACTIVE;
2246 }
2247
2248 if (sc->sc_txfree != ofree) {
2249 /* Set a watchdog timer in case the chip flakes out. */
2250 ifp->if_timer = 5;
2251 }
2252 }
2253
2254 /*
2255 * wm_watchdog: [ifnet interface function]
2256 *
2257 * Watchdog timer handler.
2258 */
2259 static void
2260 wm_watchdog(struct ifnet *ifp)
2261 {
2262 struct wm_softc *sc = ifp->if_softc;
2263
2264 /*
2265 * Since we're using delayed interrupts, sweep up
2266 * before we report an error.
2267 */
2268 wm_txintr(sc);
2269
2270 if (sc->sc_txfree != WM_NTXDESC(sc)) {
2271 log(LOG_ERR,
2272 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
2273 device_xname(&sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
2274 sc->sc_txnext);
2275 ifp->if_oerrors++;
2276
2277 /* Reset the interface. */
2278 (void) wm_init(ifp);
2279 }
2280
2281 /* Try to get more packets going. */
2282 wm_start(ifp);
2283 }
2284
2285 /*
2286 * wm_ioctl: [ifnet interface function]
2287 *
2288 * Handle control requests from the operator.
2289 */
2290 static int
2291 wm_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2292 {
2293 struct wm_softc *sc = ifp->if_softc;
2294 struct ifreq *ifr = (struct ifreq *) data;
2295 int s, error;
2296
2297 s = splnet();
2298
2299 switch (cmd) {
2300 case SIOCSIFMEDIA:
2301 case SIOCGIFMEDIA:
2302 /* Flow control requires full-duplex mode. */
2303 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
2304 (ifr->ifr_media & IFM_FDX) == 0)
2305 ifr->ifr_media &= ~IFM_ETH_FMASK;
2306 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
2307 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
2308 /* We can do both TXPAUSE and RXPAUSE. */
2309 ifr->ifr_media |=
2310 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
2311 }
2312 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
2313 }
2314 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2315 break;
2316 default:
2317 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2318 break;
2319
2320 error = 0;
2321
2322 if (cmd == SIOCSIFCAP)
2323 error = (*ifp->if_init)(ifp);
2324 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2325 ;
2326 else if (ifp->if_flags & IFF_RUNNING) {
2327 /*
2328 * Multicast list has changed; set the hardware filter
2329 * accordingly.
2330 */
2331 wm_set_filter(sc);
2332 }
2333 break;
2334 }
2335
2336 /* Try to get more packets going. */
2337 wm_start(ifp);
2338
2339 splx(s);
2340 return (error);
2341 }
2342
2343 /*
2344 * wm_intr:
2345 *
2346 * Interrupt service routine.
2347 */
2348 static int
2349 wm_intr(void *arg)
2350 {
2351 struct wm_softc *sc = arg;
2352 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2353 uint32_t icr;
2354 int handled = 0;
2355
2356 while (1 /* CONSTCOND */) {
2357 icr = CSR_READ(sc, WMREG_ICR);
2358 if ((icr & sc->sc_icr) == 0)
2359 break;
2360 #if 0 /*NRND > 0*/
2361 if (RND_ENABLED(&sc->rnd_source))
2362 rnd_add_uint32(&sc->rnd_source, icr);
2363 #endif
2364
2365 handled = 1;
2366
2367 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2368 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
2369 DPRINTF(WM_DEBUG_RX,
2370 ("%s: RX: got Rx intr 0x%08x\n",
2371 device_xname(&sc->sc_dev),
2372 icr & (ICR_RXDMT0|ICR_RXT0)));
2373 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
2374 }
2375 #endif
2376 wm_rxintr(sc);
2377
2378 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
2379 if (icr & ICR_TXDW) {
2380 DPRINTF(WM_DEBUG_TX,
2381 ("%s: TX: got TXDW interrupt\n",
2382 device_xname(&sc->sc_dev)));
2383 WM_EVCNT_INCR(&sc->sc_ev_txdw);
2384 }
2385 #endif
2386 wm_txintr(sc);
2387
2388 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
2389 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
2390 wm_linkintr(sc, icr);
2391 }
2392
2393 if (icr & ICR_RXO) {
2394 ifp->if_ierrors++;
2395 #if defined(WM_DEBUG)
2396 log(LOG_WARNING, "%s: Receive overrun\n",
2397 device_xname(&sc->sc_dev));
2398 #endif /* defined(WM_DEBUG) */
2399 }
2400 }
2401
2402 if (handled) {
2403 /* Try to get more packets going. */
2404 wm_start(ifp);
2405 }
2406
2407 return (handled);
2408 }
2409
2410 /*
2411 * wm_txintr:
2412 *
2413 * Helper; handle transmit interrupts.
2414 */
2415 static void
2416 wm_txintr(struct wm_softc *sc)
2417 {
2418 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2419 struct wm_txsoft *txs;
2420 uint8_t status;
2421 int i;
2422
2423 ifp->if_flags &= ~IFF_OACTIVE;
2424
2425 /*
2426 * Go through the Tx list and free mbufs for those
2427 * frames which have been transmitted.
2428 */
2429 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2430 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2431 txs = &sc->sc_txsoft[i];
2432
2433 DPRINTF(WM_DEBUG_TX,
2434 ("%s: TX: checking job %d\n", device_xname(&sc->sc_dev), i));
2435
2436 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2437 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2438
2439 status =
2440 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2441 if ((status & WTX_ST_DD) == 0) {
2442 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2443 BUS_DMASYNC_PREREAD);
2444 break;
2445 }
2446
2447 DPRINTF(WM_DEBUG_TX,
2448 ("%s: TX: job %d done: descs %d..%d\n",
2449 device_xname(&sc->sc_dev), i, txs->txs_firstdesc,
2450 txs->txs_lastdesc));
2451
2452 /*
2453 * XXX We should probably be using the statistics
2454 * XXX registers, but I don't know if they exist
2455 * XXX on chips before the i82544.
2456 */
2457
2458 #ifdef WM_EVENT_COUNTERS
2459 if (status & WTX_ST_TU)
2460 WM_EVCNT_INCR(&sc->sc_ev_tu);
2461 #endif /* WM_EVENT_COUNTERS */
2462
2463 if (status & (WTX_ST_EC|WTX_ST_LC)) {
2464 ifp->if_oerrors++;
2465 if (status & WTX_ST_LC)
2466 log(LOG_WARNING, "%s: late collision\n",
2467 device_xname(&sc->sc_dev));
2468 else if (status & WTX_ST_EC) {
2469 ifp->if_collisions += 16;
2470 log(LOG_WARNING, "%s: excessive collisions\n",
2471 device_xname(&sc->sc_dev));
2472 }
2473 } else
2474 ifp->if_opackets++;
2475
2476 sc->sc_txfree += txs->txs_ndesc;
2477 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2478 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2479 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2480 m_freem(txs->txs_mbuf);
2481 txs->txs_mbuf = NULL;
2482 }
2483
2484 /* Update the dirty transmit buffer pointer. */
2485 sc->sc_txsdirty = i;
2486 DPRINTF(WM_DEBUG_TX,
2487 ("%s: TX: txsdirty -> %d\n", device_xname(&sc->sc_dev), i));
2488
2489 /*
2490 * If there are no more pending transmissions, cancel the watchdog
2491 * timer.
2492 */
2493 if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2494 ifp->if_timer = 0;
2495 }
2496
2497 /*
2498 * wm_rxintr:
2499 *
2500 * Helper; handle receive interrupts.
2501 */
2502 static void
2503 wm_rxintr(struct wm_softc *sc)
2504 {
2505 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2506 struct wm_rxsoft *rxs;
2507 struct mbuf *m;
2508 int i, len;
2509 uint8_t status, errors;
2510
2511 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2512 rxs = &sc->sc_rxsoft[i];
2513
2514 DPRINTF(WM_DEBUG_RX,
2515 ("%s: RX: checking descriptor %d\n",
2516 device_xname(&sc->sc_dev), i));
2517
2518 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2519
2520 status = sc->sc_rxdescs[i].wrx_status;
2521 errors = sc->sc_rxdescs[i].wrx_errors;
2522 len = le16toh(sc->sc_rxdescs[i].wrx_len);
2523
2524 if ((status & WRX_ST_DD) == 0) {
2525 /*
2526 * We have processed all of the receive descriptors.
2527 */
2528 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2529 break;
2530 }
2531
2532 if (__predict_false(sc->sc_rxdiscard)) {
2533 DPRINTF(WM_DEBUG_RX,
2534 ("%s: RX: discarding contents of descriptor %d\n",
2535 device_xname(&sc->sc_dev), i));
2536 WM_INIT_RXDESC(sc, i);
2537 if (status & WRX_ST_EOP) {
2538 /* Reset our state. */
2539 DPRINTF(WM_DEBUG_RX,
2540 ("%s: RX: resetting rxdiscard -> 0\n",
2541 device_xname(&sc->sc_dev)));
2542 sc->sc_rxdiscard = 0;
2543 }
2544 continue;
2545 }
2546
2547 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2548 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2549
2550 m = rxs->rxs_mbuf;
2551
2552 /*
2553 * Add a new receive buffer to the ring, unless of
2554 * course the length is zero. Treat the latter as a
2555 * failed mapping.
2556 */
2557 if ((len == 0) || (wm_add_rxbuf(sc, i) != 0)) {
2558 /*
2559 * Failed, throw away what we've done so
2560 * far, and discard the rest of the packet.
2561 */
2562 ifp->if_ierrors++;
2563 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2564 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2565 WM_INIT_RXDESC(sc, i);
2566 if ((status & WRX_ST_EOP) == 0)
2567 sc->sc_rxdiscard = 1;
2568 if (sc->sc_rxhead != NULL)
2569 m_freem(sc->sc_rxhead);
2570 WM_RXCHAIN_RESET(sc);
2571 DPRINTF(WM_DEBUG_RX,
2572 ("%s: RX: Rx buffer allocation failed, "
2573 "dropping packet%s\n", device_xname(&sc->sc_dev),
2574 sc->sc_rxdiscard ? " (discard)" : ""));
2575 continue;
2576 }
2577
2578 WM_RXCHAIN_LINK(sc, m);
2579
2580 m->m_len = len;
2581
2582 DPRINTF(WM_DEBUG_RX,
2583 ("%s: RX: buffer at %p len %d\n",
2584 device_xname(&sc->sc_dev), m->m_data, len));
2585
2586 /*
2587 * If this is not the end of the packet, keep
2588 * looking.
2589 */
2590 if ((status & WRX_ST_EOP) == 0) {
2591 sc->sc_rxlen += len;
2592 DPRINTF(WM_DEBUG_RX,
2593 ("%s: RX: not yet EOP, rxlen -> %d\n",
2594 device_xname(&sc->sc_dev), sc->sc_rxlen));
2595 continue;
2596 }
2597
2598 /*
2599 * Okay, we have the entire packet now. The chip is
2600 * configured to include the FCS (not all chips can
2601 * be configured to strip it), so we need to trim it.
2602 */
2603 m->m_len -= ETHER_CRC_LEN;
2604
2605 *sc->sc_rxtailp = NULL;
2606 len = m->m_len + sc->sc_rxlen;
2607 m = sc->sc_rxhead;
2608
2609 WM_RXCHAIN_RESET(sc);
2610
2611 DPRINTF(WM_DEBUG_RX,
2612 ("%s: RX: have entire packet, len -> %d\n",
2613 device_xname(&sc->sc_dev), len));
2614
2615 /*
2616 * If an error occurred, update stats and drop the packet.
2617 */
2618 if (errors &
2619 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2620 ifp->if_ierrors++;
2621 if (errors & WRX_ER_SE)
2622 log(LOG_WARNING, "%s: symbol error\n",
2623 device_xname(&sc->sc_dev));
2624 else if (errors & WRX_ER_SEQ)
2625 log(LOG_WARNING, "%s: receive sequence error\n",
2626 device_xname(&sc->sc_dev));
2627 else if (errors & WRX_ER_CE)
2628 log(LOG_WARNING, "%s: CRC error\n",
2629 device_xname(&sc->sc_dev));
2630 m_freem(m);
2631 continue;
2632 }
2633
2634 /*
2635 * No errors. Receive the packet.
2636 */
2637 m->m_pkthdr.rcvif = ifp;
2638 m->m_pkthdr.len = len;
2639
2640 #if 0 /* XXXJRT */
2641 /*
2642 * If VLANs are enabled, VLAN packets have been unwrapped
2643 * for us. Associate the tag with the packet.
2644 */
2645 if ((status & WRX_ST_VP) != 0) {
2646 VLAN_INPUT_TAG(ifp, m,
2647 le16toh(sc->sc_rxdescs[i].wrx_special,
2648 continue);
2649 }
2650 #endif /* XXXJRT */
2651
2652 /*
2653 * Set up checksum info for this packet.
2654 */
2655 if ((status & WRX_ST_IXSM) == 0) {
2656 if (status & WRX_ST_IPCS) {
2657 WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2658 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2659 if (errors & WRX_ER_IPE)
2660 m->m_pkthdr.csum_flags |=
2661 M_CSUM_IPv4_BAD;
2662 }
2663 if (status & WRX_ST_TCPCS) {
2664 /*
2665 * Note: we don't know if this was TCP or UDP,
2666 * so we just set both bits, and expect the
2667 * upper layers to deal.
2668 */
2669 WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2670 m->m_pkthdr.csum_flags |=
2671 M_CSUM_TCPv4 | M_CSUM_UDPv4 |
2672 M_CSUM_TCPv6 | M_CSUM_UDPv6;
2673 if (errors & WRX_ER_TCPE)
2674 m->m_pkthdr.csum_flags |=
2675 M_CSUM_TCP_UDP_BAD;
2676 }
2677 }
2678
2679 ifp->if_ipackets++;
2680
2681 #if NBPFILTER > 0
2682 /* Pass this up to any BPF listeners. */
2683 if (ifp->if_bpf)
2684 bpf_mtap(ifp->if_bpf, m);
2685 #endif /* NBPFILTER > 0 */
2686
2687 /* Pass it on. */
2688 (*ifp->if_input)(ifp, m);
2689 }
2690
2691 /* Update the receive pointer. */
2692 sc->sc_rxptr = i;
2693
2694 DPRINTF(WM_DEBUG_RX,
2695 ("%s: RX: rxptr -> %d\n", device_xname(&sc->sc_dev), i));
2696 }
2697
2698 /*
2699 * wm_linkintr:
2700 *
2701 * Helper; handle link interrupts.
2702 */
2703 static void
2704 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2705 {
2706 uint32_t status;
2707
2708 /*
2709 * If we get a link status interrupt on a 1000BASE-T
2710 * device, just fall into the normal MII tick path.
2711 */
2712 if (sc->sc_flags & WM_F_HAS_MII) {
2713 if (icr & ICR_LSC) {
2714 DPRINTF(WM_DEBUG_LINK,
2715 ("%s: LINK: LSC -> mii_tick\n",
2716 device_xname(&sc->sc_dev)));
2717 mii_tick(&sc->sc_mii);
2718 } else if (icr & ICR_RXSEQ) {
2719 DPRINTF(WM_DEBUG_LINK,
2720 ("%s: LINK Receive sequence error\n",
2721 device_xname(&sc->sc_dev)));
2722 }
2723 return;
2724 }
2725
2726 /*
2727 * If we are now receiving /C/, check for link again in
2728 * a couple of link clock ticks.
2729 */
2730 if (icr & ICR_RXCFG) {
2731 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2732 device_xname(&sc->sc_dev)));
2733 sc->sc_tbi_anstate = 2;
2734 }
2735
2736 if (icr & ICR_LSC) {
2737 status = CSR_READ(sc, WMREG_STATUS);
2738 if (status & STATUS_LU) {
2739 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2740 device_xname(&sc->sc_dev),
2741 (status & STATUS_FD) ? "FDX" : "HDX"));
2742 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2743 sc->sc_fcrtl &= ~FCRTL_XONE;
2744 if (status & STATUS_FD)
2745 sc->sc_tctl |=
2746 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2747 else
2748 sc->sc_tctl |=
2749 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2750 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2751 sc->sc_fcrtl |= FCRTL_XONE;
2752 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2753 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2754 WMREG_OLD_FCRTL : WMREG_FCRTL,
2755 sc->sc_fcrtl);
2756 sc->sc_tbi_linkup = 1;
2757 } else {
2758 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2759 device_xname(&sc->sc_dev)));
2760 sc->sc_tbi_linkup = 0;
2761 }
2762 sc->sc_tbi_anstate = 2;
2763 wm_tbi_set_linkled(sc);
2764 } else if (icr & ICR_RXSEQ) {
2765 DPRINTF(WM_DEBUG_LINK,
2766 ("%s: LINK: Receive sequence error\n",
2767 device_xname(&sc->sc_dev)));
2768 }
2769 }
2770
2771 /*
2772 * wm_tick:
2773 *
2774 * One second timer, used to check link status, sweep up
2775 * completed transmit jobs, etc.
2776 */
2777 static void
2778 wm_tick(void *arg)
2779 {
2780 struct wm_softc *sc = arg;
2781 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2782 int s;
2783
2784 s = splnet();
2785
2786 if (sc->sc_type >= WM_T_82542_2_1) {
2787 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2788 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2789 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2790 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2791 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2792 }
2793
2794 ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
2795 ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
2796
2797
2798 if (sc->sc_flags & WM_F_HAS_MII)
2799 mii_tick(&sc->sc_mii);
2800 else
2801 wm_tbi_check_link(sc);
2802
2803 splx(s);
2804
2805 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2806 }
2807
2808 /*
2809 * wm_reset:
2810 *
2811 * Reset the i82542 chip.
2812 */
2813 static void
2814 wm_reset(struct wm_softc *sc)
2815 {
2816 uint32_t reg;
2817
2818 /*
2819 * Allocate on-chip memory according to the MTU size.
2820 * The Packet Buffer Allocation register must be written
2821 * before the chip is reset.
2822 */
2823 switch (sc->sc_type) {
2824 case WM_T_82547:
2825 case WM_T_82547_2:
2826 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2827 PBA_22K : PBA_30K;
2828 sc->sc_txfifo_head = 0;
2829 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2830 sc->sc_txfifo_size =
2831 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2832 sc->sc_txfifo_stall = 0;
2833 break;
2834 case WM_T_82571:
2835 case WM_T_82572:
2836 case WM_T_80003:
2837 sc->sc_pba = PBA_32K;
2838 break;
2839 case WM_T_82573:
2840 sc->sc_pba = PBA_12K;
2841 break;
2842 case WM_T_ICH8:
2843 sc->sc_pba = PBA_8K;
2844 CSR_WRITE(sc, WMREG_PBS, PBA_16K);
2845 break;
2846 case WM_T_ICH9:
2847 sc->sc_pba = PBA_10K;
2848 break;
2849 default:
2850 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2851 PBA_40K : PBA_48K;
2852 break;
2853 }
2854 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2855
2856 if (sc->sc_flags & WM_F_PCIE) {
2857 int timeout = 800;
2858
2859 sc->sc_ctrl |= CTRL_GIO_M_DIS;
2860 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2861
2862 while (timeout) {
2863 if ((CSR_READ(sc, WMREG_STATUS) & STATUS_GIO_M_ENA) == 0)
2864 break;
2865 delay(100);
2866 }
2867 }
2868
2869 /* clear interrupt */
2870 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2871
2872 /*
2873 * 82541 Errata 29? & 82547 Errata 28?
2874 * See also the description about PHY_RST bit in CTRL register
2875 * in 8254x_GBe_SDM.pdf.
2876 */
2877 if ((sc->sc_type == WM_T_82541) || (sc->sc_type == WM_T_82547)) {
2878 CSR_WRITE(sc, WMREG_CTRL,
2879 CSR_READ(sc, WMREG_CTRL) | CTRL_PHY_RESET);
2880 delay(5000);
2881 }
2882
2883 switch (sc->sc_type) {
2884 case WM_T_82544:
2885 case WM_T_82540:
2886 case WM_T_82545:
2887 case WM_T_82546:
2888 case WM_T_82541:
2889 case WM_T_82541_2:
2890 /*
2891 * On some chipsets, a reset through a memory-mapped write
2892 * cycle can cause the chip to reset before completing the
2893 * write cycle. This causes major headache that can be
2894 * avoided by issuing the reset via indirect register writes
2895 * through I/O space.
2896 *
2897 * So, if we successfully mapped the I/O BAR at attach time,
2898 * use that. Otherwise, try our luck with a memory-mapped
2899 * reset.
2900 */
2901 if (sc->sc_flags & WM_F_IOH_VALID)
2902 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2903 else
2904 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2905 break;
2906
2907 case WM_T_82545_3:
2908 case WM_T_82546_3:
2909 /* Use the shadow control register on these chips. */
2910 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2911 break;
2912
2913 case WM_T_ICH8:
2914 case WM_T_ICH9:
2915 wm_get_swfwhw_semaphore(sc);
2916 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST | CTRL_PHY_RESET);
2917 delay(10000);
2918
2919 default:
2920 /* Everything else can safely use the documented method. */
2921 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2922 break;
2923 }
2924 delay(10000);
2925
2926 /* reload EEPROM */
2927 switch(sc->sc_type) {
2928 case WM_T_82542_2_0:
2929 case WM_T_82542_2_1:
2930 case WM_T_82543:
2931 case WM_T_82544:
2932 delay(10);
2933 reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
2934 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
2935 delay(2000);
2936 break;
2937 case WM_T_82541:
2938 case WM_T_82541_2:
2939 case WM_T_82547:
2940 case WM_T_82547_2:
2941 delay(20000);
2942 break;
2943 case WM_T_82573:
2944 if (sc->sc_flags & WM_F_EEPROM_FLASH) {
2945 delay(10);
2946 reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
2947 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
2948 }
2949 /* FALLTHROUGH */
2950 default:
2951 /* check EECD_EE_AUTORD */
2952 wm_get_auto_rd_done(sc);
2953 }
2954
2955 #if 0
2956 for (i = 0; i < 1000; i++) {
2957 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0) {
2958 return;
2959 }
2960 delay(20);
2961 }
2962
2963 if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2964 log(LOG_ERR, "%s: reset failed to complete\n",
2965 device_xname(&sc->sc_dev));
2966 #endif
2967 }
2968
2969 /*
2970 * wm_init: [ifnet interface function]
2971 *
2972 * Initialize the interface. Must be called at splnet().
2973 */
2974 static int
2975 wm_init(struct ifnet *ifp)
2976 {
2977 struct wm_softc *sc = ifp->if_softc;
2978 struct wm_rxsoft *rxs;
2979 int i, error = 0;
2980 uint32_t reg;
2981
2982 /*
2983 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2984 * There is a small but measurable benefit to avoiding the adjusment
2985 * of the descriptor so that the headers are aligned, for normal mtu,
2986 * on such platforms. One possibility is that the DMA itself is
2987 * slightly more efficient if the front of the entire packet (instead
2988 * of the front of the headers) is aligned.
2989 *
2990 * Note we must always set align_tweak to 0 if we are using
2991 * jumbo frames.
2992 */
2993 #ifdef __NO_STRICT_ALIGNMENT
2994 sc->sc_align_tweak = 0;
2995 #else
2996 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2997 sc->sc_align_tweak = 0;
2998 else
2999 sc->sc_align_tweak = 2;
3000 #endif /* __NO_STRICT_ALIGNMENT */
3001
3002 /* Cancel any pending I/O. */
3003 wm_stop(ifp, 0);
3004
3005 /* update statistics before reset */
3006 ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
3007 ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
3008
3009 /* Reset the chip to a known state. */
3010 wm_reset(sc);
3011
3012 /* Initialize the transmit descriptor ring. */
3013 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
3014 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
3015 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3016 sc->sc_txfree = WM_NTXDESC(sc);
3017 sc->sc_txnext = 0;
3018
3019 if (sc->sc_type < WM_T_82543) {
3020 CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
3021 CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
3022 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
3023 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
3024 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
3025 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
3026 } else {
3027 CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
3028 CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
3029 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
3030 CSR_WRITE(sc, WMREG_TDH, 0);
3031 CSR_WRITE(sc, WMREG_TDT, 0);
3032 CSR_WRITE(sc, WMREG_TIDV, 375); /* ITR / 4 */
3033 CSR_WRITE(sc, WMREG_TADV, 375); /* should be same */
3034
3035 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
3036 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
3037 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
3038 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
3039 }
3040 CSR_WRITE(sc, WMREG_TQSA_LO, 0);
3041 CSR_WRITE(sc, WMREG_TQSA_HI, 0);
3042
3043 /* Initialize the transmit job descriptors. */
3044 for (i = 0; i < WM_TXQUEUELEN(sc); i++)
3045 sc->sc_txsoft[i].txs_mbuf = NULL;
3046 sc->sc_txsfree = WM_TXQUEUELEN(sc);
3047 sc->sc_txsnext = 0;
3048 sc->sc_txsdirty = 0;
3049
3050 /*
3051 * Initialize the receive descriptor and receive job
3052 * descriptor rings.
3053 */
3054 if (sc->sc_type < WM_T_82543) {
3055 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
3056 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
3057 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
3058 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
3059 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
3060 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
3061
3062 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
3063 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
3064 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
3065 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
3066 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
3067 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
3068 } else {
3069 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
3070 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
3071 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
3072 CSR_WRITE(sc, WMREG_RDH, 0);
3073 CSR_WRITE(sc, WMREG_RDT, 0);
3074 CSR_WRITE(sc, WMREG_RDTR, 375 | RDTR_FPD); /* ITR/4 */
3075 CSR_WRITE(sc, WMREG_RADV, 375); /* MUST be same */
3076 }
3077 for (i = 0; i < WM_NRXDESC; i++) {
3078 rxs = &sc->sc_rxsoft[i];
3079 if (rxs->rxs_mbuf == NULL) {
3080 if ((error = wm_add_rxbuf(sc, i)) != 0) {
3081 log(LOG_ERR, "%s: unable to allocate or map rx "
3082 "buffer %d, error = %d\n",
3083 device_xname(&sc->sc_dev), i, error);
3084 /*
3085 * XXX Should attempt to run with fewer receive
3086 * XXX buffers instead of just failing.
3087 */
3088 wm_rxdrain(sc);
3089 goto out;
3090 }
3091 } else
3092 WM_INIT_RXDESC(sc, i);
3093 }
3094 sc->sc_rxptr = 0;
3095 sc->sc_rxdiscard = 0;
3096 WM_RXCHAIN_RESET(sc);
3097
3098 /*
3099 * Clear out the VLAN table -- we don't use it (yet).
3100 */
3101 CSR_WRITE(sc, WMREG_VET, 0);
3102 for (i = 0; i < WM_VLAN_TABSIZE; i++)
3103 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
3104
3105 /*
3106 * Set up flow-control parameters.
3107 *
3108 * XXX Values could probably stand some tuning.
3109 */
3110 if (sc->sc_type != WM_T_ICH8) {
3111 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
3112 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
3113 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
3114 }
3115
3116 sc->sc_fcrtl = FCRTL_DFLT;
3117 if (sc->sc_type < WM_T_82543) {
3118 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
3119 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
3120 } else {
3121 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
3122 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
3123 }
3124 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
3125
3126 #if 0 /* XXXJRT */
3127 /* Deal with VLAN enables. */
3128 if (VLAN_ATTACHED(&sc->sc_ethercom))
3129 sc->sc_ctrl |= CTRL_VME;
3130 else
3131 #endif /* XXXJRT */
3132 sc->sc_ctrl &= ~CTRL_VME;
3133
3134 /* Write the control registers. */
3135 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3136 if (sc->sc_type >= WM_T_80003 && (sc->sc_flags & WM_F_HAS_MII)) {
3137 int val;
3138 val = CSR_READ(sc, WMREG_CTRL_EXT);
3139 val &= ~CTRL_EXT_LINK_MODE_MASK;
3140 CSR_WRITE(sc, WMREG_CTRL_EXT, val);
3141
3142 /* Bypass RX and TX FIFO's */
3143 wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL,
3144 KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
3145 KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
3146
3147 wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL,
3148 KUMCTRLSTA_INB_CTRL_DIS_PADDING |
3149 KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT);
3150 /*
3151 * Set the mac to wait the maximum time between each
3152 * iteration and increase the max iterations when
3153 * polling the phy; this fixes erroneous timeouts at 10Mbps.
3154 */
3155 wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS, 0xFFFF);
3156 val = wm_kmrn_i80003_readreg(sc, KUMCTRLSTA_OFFSET_INB_PARAM);
3157 val |= 0x3F;
3158 wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_INB_PARAM, val);
3159 }
3160 #if 0
3161 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
3162 #endif
3163
3164 /*
3165 * Set up checksum offload parameters.
3166 */
3167 reg = CSR_READ(sc, WMREG_RXCSUM);
3168 reg &= ~(RXCSUM_IPOFL | RXCSUM_IPV6OFL | RXCSUM_TUOFL);
3169 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
3170 reg |= RXCSUM_IPOFL;
3171 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
3172 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
3173 if (ifp->if_capenable & (IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
3174 reg |= RXCSUM_IPV6OFL | RXCSUM_TUOFL;
3175 CSR_WRITE(sc, WMREG_RXCSUM, reg);
3176
3177 /*
3178 * Set up the interrupt registers.
3179 */
3180 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
3181 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
3182 ICR_RXO | ICR_RXT0;
3183 if ((sc->sc_flags & WM_F_HAS_MII) == 0)
3184 sc->sc_icr |= ICR_RXCFG;
3185 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
3186
3187 /* Set up the inter-packet gap. */
3188 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
3189
3190 if (sc->sc_type >= WM_T_82543) {
3191 /*
3192 * Set up the interrupt throttling register (units of 256ns)
3193 * Note that a footnote in Intel's documentation says this
3194 * ticker runs at 1/4 the rate when the chip is in 100Mbit
3195 * or 10Mbit mode. Empirically, it appears to be the case
3196 * that that is also true for the 1024ns units of the other
3197 * interrupt-related timer registers -- so, really, we ought
3198 * to divide this value by 4 when the link speed is low.
3199 *
3200 * XXX implement this division at link speed change!
3201 */
3202
3203 /*
3204 * For N interrupts/sec, set this value to:
3205 * 1000000000 / (N * 256). Note that we set the
3206 * absolute and packet timer values to this value
3207 * divided by 4 to get "simple timer" behavior.
3208 */
3209
3210 sc->sc_itr = 1500; /* 2604 ints/sec */
3211 CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
3212 }
3213
3214 #if 0 /* XXXJRT */
3215 /* Set the VLAN ethernetype. */
3216 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
3217 #endif
3218
3219 /*
3220 * Set up the transmit control register; we start out with
3221 * a collision distance suitable for FDX, but update it whe
3222 * we resolve the media type.
3223 */
3224 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
3225 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3226 if (sc->sc_type >= WM_T_82571)
3227 sc->sc_tctl |= TCTL_MULR;
3228 if (sc->sc_type >= WM_T_80003)
3229 sc->sc_tctl |= TCTL_RTLC;
3230 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3231
3232 /* Set the media. */
3233 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
3234 goto out;
3235
3236 /*
3237 * Set up the receive control register; we actually program
3238 * the register when we set the receive filter. Use multicast
3239 * address offset type 0.
3240 *
3241 * Only the i82544 has the ability to strip the incoming
3242 * CRC, so we don't enable that feature.
3243 */
3244 sc->sc_mchash_type = 0;
3245 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
3246 | RCTL_MO(sc->sc_mchash_type);
3247
3248 /* 82573 doesn't support jumbo frame */
3249 if (sc->sc_type != WM_T_82573 && sc->sc_type != WM_T_ICH8)
3250 sc->sc_rctl |= RCTL_LPE;
3251
3252 if (MCLBYTES == 2048) {
3253 sc->sc_rctl |= RCTL_2k;
3254 } else {
3255 if (sc->sc_type >= WM_T_82543) {
3256 switch(MCLBYTES) {
3257 case 4096:
3258 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
3259 break;
3260 case 8192:
3261 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
3262 break;
3263 case 16384:
3264 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
3265 break;
3266 default:
3267 panic("wm_init: MCLBYTES %d unsupported",
3268 MCLBYTES);
3269 break;
3270 }
3271 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
3272 }
3273
3274 /* Set the receive filter. */
3275 wm_set_filter(sc);
3276
3277 /* Start the one second link check clock. */
3278 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
3279
3280 /* ...all done! */
3281 ifp->if_flags |= IFF_RUNNING;
3282 ifp->if_flags &= ~IFF_OACTIVE;
3283
3284 out:
3285 if (error)
3286 log(LOG_ERR, "%s: interface not running\n",
3287 device_xname(&sc->sc_dev));
3288 return (error);
3289 }
3290
3291 /*
3292 * wm_rxdrain:
3293 *
3294 * Drain the receive queue.
3295 */
3296 static void
3297 wm_rxdrain(struct wm_softc *sc)
3298 {
3299 struct wm_rxsoft *rxs;
3300 int i;
3301
3302 for (i = 0; i < WM_NRXDESC; i++) {
3303 rxs = &sc->sc_rxsoft[i];
3304 if (rxs->rxs_mbuf != NULL) {
3305 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3306 m_freem(rxs->rxs_mbuf);
3307 rxs->rxs_mbuf = NULL;
3308 }
3309 }
3310 }
3311
3312 /*
3313 * wm_stop: [ifnet interface function]
3314 *
3315 * Stop transmission on the interface.
3316 */
3317 static void
3318 wm_stop(struct ifnet *ifp, int disable)
3319 {
3320 struct wm_softc *sc = ifp->if_softc;
3321 struct wm_txsoft *txs;
3322 int i;
3323
3324 /* Stop the one second clock. */
3325 callout_stop(&sc->sc_tick_ch);
3326
3327 /* Stop the 82547 Tx FIFO stall check timer. */
3328 if (sc->sc_type == WM_T_82547)
3329 callout_stop(&sc->sc_txfifo_ch);
3330
3331 if (sc->sc_flags & WM_F_HAS_MII) {
3332 /* Down the MII. */
3333 mii_down(&sc->sc_mii);
3334 }
3335
3336 /* Stop the transmit and receive processes. */
3337 CSR_WRITE(sc, WMREG_TCTL, 0);
3338 CSR_WRITE(sc, WMREG_RCTL, 0);
3339
3340 /*
3341 * Clear the interrupt mask to ensure the device cannot assert its
3342 * interrupt line.
3343 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
3344 * any currently pending or shared interrupt.
3345 */
3346 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
3347 sc->sc_icr = 0;
3348
3349 /* Release any queued transmit buffers. */
3350 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
3351 txs = &sc->sc_txsoft[i];
3352 if (txs->txs_mbuf != NULL) {
3353 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3354 m_freem(txs->txs_mbuf);
3355 txs->txs_mbuf = NULL;
3356 }
3357 }
3358
3359 /* Mark the interface as down and cancel the watchdog timer. */
3360 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3361 ifp->if_timer = 0;
3362
3363 if (disable)
3364 wm_rxdrain(sc);
3365 }
3366
3367 void
3368 wm_get_auto_rd_done(struct wm_softc *sc)
3369 {
3370 int i;
3371
3372 /* wait for eeprom to reload */
3373 switch (sc->sc_type) {
3374 case WM_T_82571:
3375 case WM_T_82572:
3376 case WM_T_82573:
3377 case WM_T_80003:
3378 case WM_T_ICH8:
3379 case WM_T_ICH9:
3380 for (i = 10; i > 0; i--) {
3381 if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD)
3382 break;
3383 delay(1000);
3384 }
3385 if (i == 0) {
3386 log(LOG_ERR, "%s: auto read from eeprom failed to "
3387 "complete\n", device_xname(&sc->sc_dev));
3388 }
3389 break;
3390 default:
3391 delay(5000);
3392 break;
3393 }
3394
3395 /* Phy configuration starts after EECD_AUTO_RD is set */
3396 if (sc->sc_type == WM_T_82573)
3397 delay(25000);
3398 }
3399
3400 /*
3401 * wm_acquire_eeprom:
3402 *
3403 * Perform the EEPROM handshake required on some chips.
3404 */
3405 static int
3406 wm_acquire_eeprom(struct wm_softc *sc)
3407 {
3408 uint32_t reg;
3409 int x;
3410 int ret = 0;
3411
3412 /* always success */
3413 if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
3414 return 0;
3415
3416 if (sc->sc_flags & WM_F_SWFWHW_SYNC) {
3417 ret = wm_get_swfwhw_semaphore(sc);
3418 } else if (sc->sc_flags & WM_F_SWFW_SYNC) {
3419 /* this will also do wm_get_swsm_semaphore() if needed */
3420 ret = wm_get_swfw_semaphore(sc, SWFW_EEP_SM);
3421 } else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
3422 ret = wm_get_swsm_semaphore(sc);
3423 }
3424
3425 if (ret)
3426 return 1;
3427
3428 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
3429 reg = CSR_READ(sc, WMREG_EECD);
3430
3431 /* Request EEPROM access. */
3432 reg |= EECD_EE_REQ;
3433 CSR_WRITE(sc, WMREG_EECD, reg);
3434
3435 /* ..and wait for it to be granted. */
3436 for (x = 0; x < 1000; x++) {
3437 reg = CSR_READ(sc, WMREG_EECD);
3438 if (reg & EECD_EE_GNT)
3439 break;
3440 delay(5);
3441 }
3442 if ((reg & EECD_EE_GNT) == 0) {
3443 aprint_error_dev(&sc->sc_dev, "could not acquire EEPROM GNT\n");
3444 reg &= ~EECD_EE_REQ;
3445 CSR_WRITE(sc, WMREG_EECD, reg);
3446 if (sc->sc_flags & WM_F_SWFWHW_SYNC)
3447 wm_put_swfwhw_semaphore(sc);
3448 if (sc->sc_flags & WM_F_SWFW_SYNC)
3449 wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
3450 else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
3451 wm_put_swsm_semaphore(sc);
3452 return (1);
3453 }
3454 }
3455
3456 return (0);
3457 }
3458
3459 /*
3460 * wm_release_eeprom:
3461 *
3462 * Release the EEPROM mutex.
3463 */
3464 static void
3465 wm_release_eeprom(struct wm_softc *sc)
3466 {
3467 uint32_t reg;
3468
3469 /* always success */
3470 if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
3471 return;
3472
3473 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
3474 reg = CSR_READ(sc, WMREG_EECD);
3475 reg &= ~EECD_EE_REQ;
3476 CSR_WRITE(sc, WMREG_EECD, reg);
3477 }
3478
3479 if (sc->sc_flags & WM_F_SWFWHW_SYNC)
3480 wm_put_swfwhw_semaphore(sc);
3481 if (sc->sc_flags & WM_F_SWFW_SYNC)
3482 wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
3483 else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
3484 wm_put_swsm_semaphore(sc);
3485 }
3486
3487 /*
3488 * wm_eeprom_sendbits:
3489 *
3490 * Send a series of bits to the EEPROM.
3491 */
3492 static void
3493 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
3494 {
3495 uint32_t reg;
3496 int x;
3497
3498 reg = CSR_READ(sc, WMREG_EECD);
3499
3500 for (x = nbits; x > 0; x--) {
3501 if (bits & (1U << (x - 1)))
3502 reg |= EECD_DI;
3503 else
3504 reg &= ~EECD_DI;
3505 CSR_WRITE(sc, WMREG_EECD, reg);
3506 delay(2);
3507 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3508 delay(2);
3509 CSR_WRITE(sc, WMREG_EECD, reg);
3510 delay(2);
3511 }
3512 }
3513
3514 /*
3515 * wm_eeprom_recvbits:
3516 *
3517 * Receive a series of bits from the EEPROM.
3518 */
3519 static void
3520 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
3521 {
3522 uint32_t reg, val;
3523 int x;
3524
3525 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
3526
3527 val = 0;
3528 for (x = nbits; x > 0; x--) {
3529 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
3530 delay(2);
3531 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
3532 val |= (1U << (x - 1));
3533 CSR_WRITE(sc, WMREG_EECD, reg);
3534 delay(2);
3535 }
3536 *valp = val;
3537 }
3538
3539 /*
3540 * wm_read_eeprom_uwire:
3541 *
3542 * Read a word from the EEPROM using the MicroWire protocol.
3543 */
3544 static int
3545 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3546 {
3547 uint32_t reg, val;
3548 int i;
3549
3550 for (i = 0; i < wordcnt; i++) {
3551 /* Clear SK and DI. */
3552 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
3553 CSR_WRITE(sc, WMREG_EECD, reg);
3554
3555 /* Set CHIP SELECT. */
3556 reg |= EECD_CS;
3557 CSR_WRITE(sc, WMREG_EECD, reg);
3558 delay(2);
3559
3560 /* Shift in the READ command. */
3561 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
3562
3563 /* Shift in address. */
3564 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
3565
3566 /* Shift out the data. */
3567 wm_eeprom_recvbits(sc, &val, 16);
3568 data[i] = val & 0xffff;
3569
3570 /* Clear CHIP SELECT. */
3571 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
3572 CSR_WRITE(sc, WMREG_EECD, reg);
3573 delay(2);
3574 }
3575
3576 return (0);
3577 }
3578
3579 /*
3580 * wm_spi_eeprom_ready:
3581 *
3582 * Wait for a SPI EEPROM to be ready for commands.
3583 */
3584 static int
3585 wm_spi_eeprom_ready(struct wm_softc *sc)
3586 {
3587 uint32_t val;
3588 int usec;
3589
3590 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
3591 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
3592 wm_eeprom_recvbits(sc, &val, 8);
3593 if ((val & SPI_SR_RDY) == 0)
3594 break;
3595 }
3596 if (usec >= SPI_MAX_RETRIES) {
3597 aprint_error_dev(&sc->sc_dev, "EEPROM failed to become ready\n");
3598 return (1);
3599 }
3600 return (0);
3601 }
3602
3603 /*
3604 * wm_read_eeprom_spi:
3605 *
3606 * Read a work from the EEPROM using the SPI protocol.
3607 */
3608 static int
3609 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3610 {
3611 uint32_t reg, val;
3612 int i;
3613 uint8_t opc;
3614
3615 /* Clear SK and CS. */
3616 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
3617 CSR_WRITE(sc, WMREG_EECD, reg);
3618 delay(2);
3619
3620 if (wm_spi_eeprom_ready(sc))
3621 return (1);
3622
3623 /* Toggle CS to flush commands. */
3624 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
3625 delay(2);
3626 CSR_WRITE(sc, WMREG_EECD, reg);
3627 delay(2);
3628
3629 opc = SPI_OPC_READ;
3630 if (sc->sc_ee_addrbits == 8 && word >= 128)
3631 opc |= SPI_OPC_A8;
3632
3633 wm_eeprom_sendbits(sc, opc, 8);
3634 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
3635
3636 for (i = 0; i < wordcnt; i++) {
3637 wm_eeprom_recvbits(sc, &val, 16);
3638 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
3639 }
3640
3641 /* Raise CS and clear SK. */
3642 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3643 CSR_WRITE(sc, WMREG_EECD, reg);
3644 delay(2);
3645
3646 return (0);
3647 }
3648
3649 #define EEPROM_CHECKSUM 0xBABA
3650 #define EEPROM_SIZE 0x0040
3651
3652 /*
3653 * wm_validate_eeprom_checksum
3654 *
3655 * The checksum is defined as the sum of the first 64 (16 bit) words.
3656 */
3657 static int
3658 wm_validate_eeprom_checksum(struct wm_softc *sc)
3659 {
3660 uint16_t checksum;
3661 uint16_t eeprom_data;
3662 int i;
3663
3664 checksum = 0;
3665
3666 for (i = 0; i < EEPROM_SIZE; i++) {
3667 if (wm_read_eeprom(sc, i, 1, &eeprom_data))
3668 return 1;
3669 checksum += eeprom_data;
3670 }
3671
3672 if (checksum != (uint16_t) EEPROM_CHECKSUM)
3673 return 1;
3674
3675 return 0;
3676 }
3677
3678 /*
3679 * wm_read_eeprom:
3680 *
3681 * Read data from the serial EEPROM.
3682 */
3683 static int
3684 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3685 {
3686 int rv;
3687
3688 if (sc->sc_flags & WM_F_EEPROM_INVALID)
3689 return 1;
3690
3691 if (wm_acquire_eeprom(sc))
3692 return 1;
3693
3694 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9))
3695 rv = wm_read_eeprom_ich8(sc, word, wordcnt, data);
3696 else if (sc->sc_flags & WM_F_EEPROM_EERDEEWR)
3697 rv = wm_read_eeprom_eerd(sc, word, wordcnt, data);
3698 else if (sc->sc_flags & WM_F_EEPROM_SPI)
3699 rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3700 else
3701 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3702
3703 wm_release_eeprom(sc);
3704 return rv;
3705 }
3706
3707 static int
3708 wm_read_eeprom_eerd(struct wm_softc *sc, int offset, int wordcnt,
3709 uint16_t *data)
3710 {
3711 int i, eerd = 0;
3712 int error = 0;
3713
3714 for (i = 0; i < wordcnt; i++) {
3715 eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
3716
3717 CSR_WRITE(sc, WMREG_EERD, eerd);
3718 error = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
3719 if (error != 0)
3720 break;
3721
3722 data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
3723 }
3724
3725 return error;
3726 }
3727
3728 static int
3729 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
3730 {
3731 uint32_t attempts = 100000;
3732 uint32_t i, reg = 0;
3733 int32_t done = -1;
3734
3735 for (i = 0; i < attempts; i++) {
3736 reg = CSR_READ(sc, rw);
3737
3738 if (reg & EERD_DONE) {
3739 done = 0;
3740 break;
3741 }
3742 delay(5);
3743 }
3744
3745 return done;
3746 }
3747
3748 /*
3749 * wm_add_rxbuf:
3750 *
3751 * Add a receive buffer to the indiciated descriptor.
3752 */
3753 static int
3754 wm_add_rxbuf(struct wm_softc *sc, int idx)
3755 {
3756 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3757 struct mbuf *m;
3758 int error;
3759
3760 MGETHDR(m, M_DONTWAIT, MT_DATA);
3761 if (m == NULL)
3762 return (ENOBUFS);
3763
3764 MCLGET(m, M_DONTWAIT);
3765 if ((m->m_flags & M_EXT) == 0) {
3766 m_freem(m);
3767 return (ENOBUFS);
3768 }
3769
3770 if (rxs->rxs_mbuf != NULL)
3771 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3772
3773 rxs->rxs_mbuf = m;
3774
3775 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3776 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3777 BUS_DMA_READ|BUS_DMA_NOWAIT);
3778 if (error) {
3779 /* XXX XXX XXX */
3780 aprint_error_dev(&sc->sc_dev, "unable to load rx DMA map %d, error = %d\n",
3781 idx, error);
3782 panic("wm_add_rxbuf");
3783 }
3784
3785 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3786 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3787
3788 WM_INIT_RXDESC(sc, idx);
3789
3790 return (0);
3791 }
3792
3793 /*
3794 * wm_set_ral:
3795 *
3796 * Set an entery in the receive address list.
3797 */
3798 static void
3799 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3800 {
3801 uint32_t ral_lo, ral_hi;
3802
3803 if (enaddr != NULL) {
3804 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3805 (enaddr[3] << 24);
3806 ral_hi = enaddr[4] | (enaddr[5] << 8);
3807 ral_hi |= RAL_AV;
3808 } else {
3809 ral_lo = 0;
3810 ral_hi = 0;
3811 }
3812
3813 if (sc->sc_type >= WM_T_82544) {
3814 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3815 ral_lo);
3816 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3817 ral_hi);
3818 } else {
3819 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3820 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3821 }
3822 }
3823
3824 /*
3825 * wm_mchash:
3826 *
3827 * Compute the hash of the multicast address for the 4096-bit
3828 * multicast filter.
3829 */
3830 static uint32_t
3831 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3832 {
3833 static const int lo_shift[4] = { 4, 3, 2, 0 };
3834 static const int hi_shift[4] = { 4, 5, 6, 8 };
3835 static const int ich8_lo_shift[4] = { 6, 5, 4, 2 };
3836 static const int ich8_hi_shift[4] = { 2, 3, 4, 6 };
3837 uint32_t hash;
3838
3839 if (sc->sc_type == WM_T_ICH8) {
3840 hash = (enaddr[4] >> ich8_lo_shift[sc->sc_mchash_type]) |
3841 (((uint16_t) enaddr[5]) << ich8_hi_shift[sc->sc_mchash_type]);
3842 return (hash & 0x3ff);
3843 }
3844 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3845 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3846
3847 return (hash & 0xfff);
3848 }
3849
3850 /*
3851 * wm_set_filter:
3852 *
3853 * Set up the receive filter.
3854 */
3855 static void
3856 wm_set_filter(struct wm_softc *sc)
3857 {
3858 struct ethercom *ec = &sc->sc_ethercom;
3859 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3860 struct ether_multi *enm;
3861 struct ether_multistep step;
3862 bus_addr_t mta_reg;
3863 uint32_t hash, reg, bit;
3864 int i, size;
3865
3866 if (sc->sc_type >= WM_T_82544)
3867 mta_reg = WMREG_CORDOVA_MTA;
3868 else
3869 mta_reg = WMREG_MTA;
3870
3871 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3872
3873 if (ifp->if_flags & IFF_BROADCAST)
3874 sc->sc_rctl |= RCTL_BAM;
3875 if (ifp->if_flags & IFF_PROMISC) {
3876 sc->sc_rctl |= RCTL_UPE;
3877 goto allmulti;
3878 }
3879
3880 /*
3881 * Set the station address in the first RAL slot, and
3882 * clear the remaining slots.
3883 */
3884 if (sc->sc_type == WM_T_ICH8)
3885 size = WM_ICH8_RAL_TABSIZE;
3886 else
3887 size = WM_RAL_TABSIZE;
3888 wm_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
3889 for (i = 1; i < size; i++)
3890 wm_set_ral(sc, NULL, i);
3891
3892 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9))
3893 size = WM_ICH8_MC_TABSIZE;
3894 else
3895 size = WM_MC_TABSIZE;
3896 /* Clear out the multicast table. */
3897 for (i = 0; i < size; i++)
3898 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3899
3900 ETHER_FIRST_MULTI(step, ec, enm);
3901 while (enm != NULL) {
3902 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3903 /*
3904 * We must listen to a range of multicast addresses.
3905 * For now, just accept all multicasts, rather than
3906 * trying to set only those filter bits needed to match
3907 * the range. (At this time, the only use of address
3908 * ranges is for IP multicast routing, for which the
3909 * range is big enough to require all bits set.)
3910 */
3911 goto allmulti;
3912 }
3913
3914 hash = wm_mchash(sc, enm->enm_addrlo);
3915
3916 reg = (hash >> 5);
3917 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9))
3918 reg &= 0x1f;
3919 else
3920 reg &= 0x7f;
3921 bit = hash & 0x1f;
3922
3923 hash = CSR_READ(sc, mta_reg + (reg << 2));
3924 hash |= 1U << bit;
3925
3926 /* XXX Hardware bug?? */
3927 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3928 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3929 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3930 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3931 } else
3932 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3933
3934 ETHER_NEXT_MULTI(step, enm);
3935 }
3936
3937 ifp->if_flags &= ~IFF_ALLMULTI;
3938 goto setit;
3939
3940 allmulti:
3941 ifp->if_flags |= IFF_ALLMULTI;
3942 sc->sc_rctl |= RCTL_MPE;
3943
3944 setit:
3945 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3946 }
3947
3948 /*
3949 * wm_tbi_mediainit:
3950 *
3951 * Initialize media for use on 1000BASE-X devices.
3952 */
3953 static void
3954 wm_tbi_mediainit(struct wm_softc *sc)
3955 {
3956 const char *sep = "";
3957
3958 if (sc->sc_type < WM_T_82543)
3959 sc->sc_tipg = TIPG_WM_DFLT;
3960 else
3961 sc->sc_tipg = TIPG_LG_DFLT;
3962
3963 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3964 wm_tbi_mediastatus);
3965
3966 /*
3967 * SWD Pins:
3968 *
3969 * 0 = Link LED (output)
3970 * 1 = Loss Of Signal (input)
3971 */
3972 sc->sc_ctrl |= CTRL_SWDPIO(0);
3973 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3974
3975 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3976
3977 #define ADD(ss, mm, dd) \
3978 do { \
3979 aprint_normal("%s%s", sep, ss); \
3980 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
3981 sep = ", "; \
3982 } while (/*CONSTCOND*/0)
3983
3984 aprint_normal_dev(&sc->sc_dev, "");
3985 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3986 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3987 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3988 aprint_normal("\n");
3989
3990 #undef ADD
3991
3992 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3993 }
3994
3995 /*
3996 * wm_tbi_mediastatus: [ifmedia interface function]
3997 *
3998 * Get the current interface media status on a 1000BASE-X device.
3999 */
4000 static void
4001 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
4002 {
4003 struct wm_softc *sc = ifp->if_softc;
4004 uint32_t ctrl;
4005
4006 ifmr->ifm_status = IFM_AVALID;
4007 ifmr->ifm_active = IFM_ETHER;
4008
4009 if (sc->sc_tbi_linkup == 0) {
4010 ifmr->ifm_active |= IFM_NONE;
4011 return;
4012 }
4013
4014 ifmr->ifm_status |= IFM_ACTIVE;
4015 ifmr->ifm_active |= IFM_1000_SX;
4016 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
4017 ifmr->ifm_active |= IFM_FDX;
4018 ctrl = CSR_READ(sc, WMREG_CTRL);
4019 if (ctrl & CTRL_RFCE)
4020 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
4021 if (ctrl & CTRL_TFCE)
4022 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
4023 }
4024
4025 /*
4026 * wm_tbi_mediachange: [ifmedia interface function]
4027 *
4028 * Set hardware to newly-selected media on a 1000BASE-X device.
4029 */
4030 static int
4031 wm_tbi_mediachange(struct ifnet *ifp)
4032 {
4033 struct wm_softc *sc = ifp->if_softc;
4034 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
4035 uint32_t status;
4036 int i;
4037
4038 sc->sc_txcw = ife->ifm_data;
4039 DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x on entry\n",
4040 device_xname(&sc->sc_dev),sc->sc_txcw));
4041 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
4042 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
4043 sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
4044 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
4045 sc->sc_txcw |= TXCW_ANE;
4046 } else {
4047 /*If autonegotiation is turned off, force link up and turn on full duplex*/
4048 sc->sc_txcw &= ~TXCW_ANE;
4049 sc->sc_ctrl |= CTRL_SLU | CTRL_FD;
4050 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4051 delay(1000);
4052 }
4053
4054 DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x after autoneg check\n",
4055 device_xname(&sc->sc_dev),sc->sc_txcw));
4056 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
4057 delay(10000);
4058
4059 /* NOTE: CTRL will update TFCE and RFCE automatically. */
4060
4061 sc->sc_tbi_anstate = 0;
4062
4063 i = CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1);
4064 DPRINTF(WM_DEBUG_LINK,("%s: i = 0x%x\n", device_xname(&sc->sc_dev),i));
4065
4066 /*
4067 * On 82544 chips and later, the CTRL_SWDPIN(1) bit will be set if the
4068 * optics detect a signal, 0 if they don't.
4069 */
4070 if (((i != 0) && (sc->sc_type >= WM_T_82544)) || (i == 0)) {
4071 /* Have signal; wait for the link to come up. */
4072
4073 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
4074 /*
4075 * Reset the link, and let autonegotiation do its thing
4076 */
4077 sc->sc_ctrl |= CTRL_LRST;
4078 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4079 delay(1000);
4080 sc->sc_ctrl &= ~CTRL_LRST;
4081 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4082 delay(1000);
4083 }
4084
4085 for (i = 0; i < 50; i++) {
4086 delay(10000);
4087 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
4088 break;
4089 }
4090
4091 DPRINTF(WM_DEBUG_LINK,("%s: i = %d after waiting for link\n",
4092 device_xname(&sc->sc_dev),i));
4093
4094 status = CSR_READ(sc, WMREG_STATUS);
4095 DPRINTF(WM_DEBUG_LINK,
4096 ("%s: status after final read = 0x%x, STATUS_LU = 0x%x\n",
4097 device_xname(&sc->sc_dev),status, STATUS_LU));
4098 if (status & STATUS_LU) {
4099 /* Link is up. */
4100 DPRINTF(WM_DEBUG_LINK,
4101 ("%s: LINK: set media -> link up %s\n",
4102 device_xname(&sc->sc_dev),
4103 (status & STATUS_FD) ? "FDX" : "HDX"));
4104 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
4105 sc->sc_fcrtl &= ~FCRTL_XONE;
4106 if (status & STATUS_FD)
4107 sc->sc_tctl |=
4108 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
4109 else
4110 sc->sc_tctl |=
4111 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
4112 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
4113 sc->sc_fcrtl |= FCRTL_XONE;
4114 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
4115 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
4116 WMREG_OLD_FCRTL : WMREG_FCRTL,
4117 sc->sc_fcrtl);
4118 sc->sc_tbi_linkup = 1;
4119 } else {
4120 /* Link is down. */
4121 DPRINTF(WM_DEBUG_LINK,
4122 ("%s: LINK: set media -> link down\n",
4123 device_xname(&sc->sc_dev)));
4124 sc->sc_tbi_linkup = 0;
4125 }
4126 } else {
4127 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
4128 device_xname(&sc->sc_dev)));
4129 sc->sc_tbi_linkup = 0;
4130 }
4131
4132 wm_tbi_set_linkled(sc);
4133
4134 return (0);
4135 }
4136
4137 /*
4138 * wm_tbi_set_linkled:
4139 *
4140 * Update the link LED on 1000BASE-X devices.
4141 */
4142 static void
4143 wm_tbi_set_linkled(struct wm_softc *sc)
4144 {
4145
4146 if (sc->sc_tbi_linkup)
4147 sc->sc_ctrl |= CTRL_SWDPIN(0);
4148 else
4149 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
4150
4151 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4152 }
4153
4154 /*
4155 * wm_tbi_check_link:
4156 *
4157 * Check the link on 1000BASE-X devices.
4158 */
4159 static void
4160 wm_tbi_check_link(struct wm_softc *sc)
4161 {
4162 uint32_t rxcw, ctrl, status;
4163
4164 if (sc->sc_tbi_anstate == 0)
4165 return;
4166 else if (sc->sc_tbi_anstate > 1) {
4167 DPRINTF(WM_DEBUG_LINK,
4168 ("%s: LINK: anstate %d\n", device_xname(&sc->sc_dev),
4169 sc->sc_tbi_anstate));
4170 sc->sc_tbi_anstate--;
4171 return;
4172 }
4173
4174 sc->sc_tbi_anstate = 0;
4175
4176 rxcw = CSR_READ(sc, WMREG_RXCW);
4177 ctrl = CSR_READ(sc, WMREG_CTRL);
4178 status = CSR_READ(sc, WMREG_STATUS);
4179
4180 if ((status & STATUS_LU) == 0) {
4181 DPRINTF(WM_DEBUG_LINK,
4182 ("%s: LINK: checklink -> down\n", device_xname(&sc->sc_dev)));
4183 sc->sc_tbi_linkup = 0;
4184 } else {
4185 DPRINTF(WM_DEBUG_LINK,
4186 ("%s: LINK: checklink -> up %s\n", device_xname(&sc->sc_dev),
4187 (status & STATUS_FD) ? "FDX" : "HDX"));
4188 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
4189 sc->sc_fcrtl &= ~FCRTL_XONE;
4190 if (status & STATUS_FD)
4191 sc->sc_tctl |=
4192 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
4193 else
4194 sc->sc_tctl |=
4195 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
4196 if (ctrl & CTRL_TFCE)
4197 sc->sc_fcrtl |= FCRTL_XONE;
4198 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
4199 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
4200 WMREG_OLD_FCRTL : WMREG_FCRTL,
4201 sc->sc_fcrtl);
4202 sc->sc_tbi_linkup = 1;
4203 }
4204
4205 wm_tbi_set_linkled(sc);
4206 }
4207
4208 /*
4209 * wm_gmii_reset:
4210 *
4211 * Reset the PHY.
4212 */
4213 static void
4214 wm_gmii_reset(struct wm_softc *sc)
4215 {
4216 uint32_t reg;
4217 int func = 0; /* XXX gcc */
4218
4219 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)) {
4220 if (wm_get_swfwhw_semaphore(sc))
4221 return;
4222 }
4223 if (sc->sc_type == WM_T_80003) {
4224 func = (CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1;
4225 if (wm_get_swfw_semaphore(sc,
4226 func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
4227 return;
4228 }
4229 if (sc->sc_type >= WM_T_82544) {
4230 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
4231 delay(20000);
4232
4233 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4234 delay(20000);
4235 } else {
4236 /*
4237 * With 82543, we need to force speed and duplex on the MAC
4238 * equal to what the PHY speed and duplex configuration is.
4239 * In addition, we need to perform a hardware reset on the PHY
4240 * to take it out of reset.
4241 */
4242 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
4243 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4244
4245 /* The PHY reset pin is active-low. */
4246 reg = CSR_READ(sc, WMREG_CTRL_EXT);
4247 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
4248 CTRL_EXT_SWDPIN(4));
4249 reg |= CTRL_EXT_SWDPIO(4);
4250
4251 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
4252 delay(10);
4253
4254 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
4255 delay(10000);
4256
4257 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
4258 delay(10);
4259 #if 0
4260 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
4261 #endif
4262 }
4263 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9))
4264 wm_put_swfwhw_semaphore(sc);
4265 if (sc->sc_type == WM_T_80003)
4266 wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4267 }
4268
4269 /*
4270 * wm_gmii_mediainit:
4271 *
4272 * Initialize media for use on 1000BASE-T devices.
4273 */
4274 static void
4275 wm_gmii_mediainit(struct wm_softc *sc)
4276 {
4277 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4278
4279 /* We have MII. */
4280 sc->sc_flags |= WM_F_HAS_MII;
4281
4282 if (sc->sc_type >= WM_T_80003)
4283 sc->sc_tipg = TIPG_1000T_80003_DFLT;
4284 else
4285 sc->sc_tipg = TIPG_1000T_DFLT;
4286
4287 /*
4288 * Let the chip set speed/duplex on its own based on
4289 * signals from the PHY.
4290 * XXXbouyer - I'm not sure this is right for the 80003,
4291 * the em driver only sets CTRL_SLU here - but it seems to work.
4292 */
4293 sc->sc_ctrl |= CTRL_SLU;
4294 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4295
4296 /* Initialize our media structures and probe the GMII. */
4297 sc->sc_mii.mii_ifp = ifp;
4298
4299 if (sc->sc_type >= WM_T_80003) {
4300 sc->sc_mii.mii_readreg = wm_gmii_i80003_readreg;
4301 sc->sc_mii.mii_writereg = wm_gmii_i80003_writereg;
4302 } else if (sc->sc_type >= WM_T_82544) {
4303 sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
4304 sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
4305 } else {
4306 sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
4307 sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
4308 }
4309 sc->sc_mii.mii_statchg = wm_gmii_statchg;
4310
4311 wm_gmii_reset(sc);
4312
4313 sc->sc_ethercom.ec_mii = &sc->sc_mii;
4314 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
4315 wm_gmii_mediastatus);
4316
4317 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
4318 MII_OFFSET_ANY, MIIF_DOPAUSE);
4319 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
4320 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
4321 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
4322 } else
4323 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
4324 }
4325
4326 /*
4327 * wm_gmii_mediastatus: [ifmedia interface function]
4328 *
4329 * Get the current interface media status on a 1000BASE-T device.
4330 */
4331 static void
4332 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
4333 {
4334 struct wm_softc *sc = ifp->if_softc;
4335
4336 ether_mediastatus(ifp, ifmr);
4337 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
4338 sc->sc_flowflags;
4339 }
4340
4341 /*
4342 * wm_gmii_mediachange: [ifmedia interface function]
4343 *
4344 * Set hardware to newly-selected media on a 1000BASE-T device.
4345 */
4346 static int
4347 wm_gmii_mediachange(struct ifnet *ifp)
4348 {
4349 struct wm_softc *sc = ifp->if_softc;
4350 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
4351 int rc;
4352
4353 if ((ifp->if_flags & IFF_UP) == 0)
4354 return 0;
4355
4356 sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
4357 sc->sc_ctrl |= CTRL_SLU;
4358 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
4359 || (sc->sc_type > WM_T_82543)) {
4360 sc->sc_ctrl &= ~(CTRL_FRCSPD | CTRL_FRCFDX);
4361 } else {
4362 sc->sc_ctrl &= ~CTRL_ASDE;
4363 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
4364 if (ife->ifm_media & IFM_FDX)
4365 sc->sc_ctrl |= CTRL_FD;
4366 switch(IFM_SUBTYPE(ife->ifm_media)) {
4367 case IFM_10_T:
4368 sc->sc_ctrl |= CTRL_SPEED_10;
4369 break;
4370 case IFM_100_TX:
4371 sc->sc_ctrl |= CTRL_SPEED_100;
4372 break;
4373 case IFM_1000_T:
4374 sc->sc_ctrl |= CTRL_SPEED_1000;
4375 break;
4376 default:
4377 panic("wm_gmii_mediachange: bad media 0x%x",
4378 ife->ifm_media);
4379 }
4380 }
4381 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4382 if (sc->sc_type <= WM_T_82543)
4383 wm_gmii_reset(sc);
4384
4385 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
4386 return 0;
4387 return rc;
4388 }
4389
4390 #define MDI_IO CTRL_SWDPIN(2)
4391 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
4392 #define MDI_CLK CTRL_SWDPIN(3)
4393
4394 static void
4395 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
4396 {
4397 uint32_t i, v;
4398
4399 v = CSR_READ(sc, WMREG_CTRL);
4400 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
4401 v |= MDI_DIR | CTRL_SWDPIO(3);
4402
4403 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
4404 if (data & i)
4405 v |= MDI_IO;
4406 else
4407 v &= ~MDI_IO;
4408 CSR_WRITE(sc, WMREG_CTRL, v);
4409 delay(10);
4410 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
4411 delay(10);
4412 CSR_WRITE(sc, WMREG_CTRL, v);
4413 delay(10);
4414 }
4415 }
4416
4417 static uint32_t
4418 i82543_mii_recvbits(struct wm_softc *sc)
4419 {
4420 uint32_t v, i, data = 0;
4421
4422 v = CSR_READ(sc, WMREG_CTRL);
4423 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
4424 v |= CTRL_SWDPIO(3);
4425
4426 CSR_WRITE(sc, WMREG_CTRL, v);
4427 delay(10);
4428 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
4429 delay(10);
4430 CSR_WRITE(sc, WMREG_CTRL, v);
4431 delay(10);
4432
4433 for (i = 0; i < 16; i++) {
4434 data <<= 1;
4435 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
4436 delay(10);
4437 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
4438 data |= 1;
4439 CSR_WRITE(sc, WMREG_CTRL, v);
4440 delay(10);
4441 }
4442
4443 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
4444 delay(10);
4445 CSR_WRITE(sc, WMREG_CTRL, v);
4446 delay(10);
4447
4448 return (data);
4449 }
4450
4451 #undef MDI_IO
4452 #undef MDI_DIR
4453 #undef MDI_CLK
4454
4455 /*
4456 * wm_gmii_i82543_readreg: [mii interface function]
4457 *
4458 * Read a PHY register on the GMII (i82543 version).
4459 */
4460 static int
4461 wm_gmii_i82543_readreg(device_t self, int phy, int reg)
4462 {
4463 struct wm_softc *sc = device_private(self);
4464 int rv;
4465
4466 i82543_mii_sendbits(sc, 0xffffffffU, 32);
4467 i82543_mii_sendbits(sc, reg | (phy << 5) |
4468 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
4469 rv = i82543_mii_recvbits(sc) & 0xffff;
4470
4471 DPRINTF(WM_DEBUG_GMII,
4472 ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
4473 device_xname(&sc->sc_dev), phy, reg, rv));
4474
4475 return (rv);
4476 }
4477
4478 /*
4479 * wm_gmii_i82543_writereg: [mii interface function]
4480 *
4481 * Write a PHY register on the GMII (i82543 version).
4482 */
4483 static void
4484 wm_gmii_i82543_writereg(device_t self, int phy, int reg, int val)
4485 {
4486 struct wm_softc *sc = device_private(self);
4487
4488 i82543_mii_sendbits(sc, 0xffffffffU, 32);
4489 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
4490 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
4491 (MII_COMMAND_START << 30), 32);
4492 }
4493
4494 /*
4495 * wm_gmii_i82544_readreg: [mii interface function]
4496 *
4497 * Read a PHY register on the GMII.
4498 */
4499 static int
4500 wm_gmii_i82544_readreg(device_t self, int phy, int reg)
4501 {
4502 struct wm_softc *sc = device_private(self);
4503 uint32_t mdic = 0;
4504 int i, rv;
4505
4506 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
4507 MDIC_REGADD(reg));
4508
4509 for (i = 0; i < 320; i++) {
4510 mdic = CSR_READ(sc, WMREG_MDIC);
4511 if (mdic & MDIC_READY)
4512 break;
4513 delay(10);
4514 }
4515
4516 if ((mdic & MDIC_READY) == 0) {
4517 log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
4518 device_xname(&sc->sc_dev), phy, reg);
4519 rv = 0;
4520 } else if (mdic & MDIC_E) {
4521 #if 0 /* This is normal if no PHY is present. */
4522 log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
4523 device_xname(&sc->sc_dev), phy, reg);
4524 #endif
4525 rv = 0;
4526 } else {
4527 rv = MDIC_DATA(mdic);
4528 if (rv == 0xffff)
4529 rv = 0;
4530 }
4531
4532 return (rv);
4533 }
4534
4535 /*
4536 * wm_gmii_i82544_writereg: [mii interface function]
4537 *
4538 * Write a PHY register on the GMII.
4539 */
4540 static void
4541 wm_gmii_i82544_writereg(device_t self, int phy, int reg, int val)
4542 {
4543 struct wm_softc *sc = device_private(self);
4544 uint32_t mdic = 0;
4545 int i;
4546
4547 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
4548 MDIC_REGADD(reg) | MDIC_DATA(val));
4549
4550 for (i = 0; i < 320; i++) {
4551 mdic = CSR_READ(sc, WMREG_MDIC);
4552 if (mdic & MDIC_READY)
4553 break;
4554 delay(10);
4555 }
4556
4557 if ((mdic & MDIC_READY) == 0)
4558 log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
4559 device_xname(&sc->sc_dev), phy, reg);
4560 else if (mdic & MDIC_E)
4561 log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
4562 device_xname(&sc->sc_dev), phy, reg);
4563 }
4564
4565 /*
4566 * wm_gmii_i80003_readreg: [mii interface function]
4567 *
4568 * Read a PHY register on the kumeran
4569 * This could be handled by the PHY layer if we didn't have to lock the
4570 * ressource ...
4571 */
4572 static int
4573 wm_gmii_i80003_readreg(device_t self, int phy, int reg)
4574 {
4575 struct wm_softc *sc = device_private(self);
4576 int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4577 int rv;
4578
4579 if (phy != 1) /* only one PHY on kumeran bus */
4580 return 0;
4581
4582 if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
4583 return 0;
4584
4585 if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
4586 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
4587 reg >> GG82563_PAGE_SHIFT);
4588 } else {
4589 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
4590 reg >> GG82563_PAGE_SHIFT);
4591 }
4592
4593 rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
4594 wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4595 return (rv);
4596 }
4597
4598 /*
4599 * wm_gmii_i80003_writereg: [mii interface function]
4600 *
4601 * Write a PHY register on the kumeran.
4602 * This could be handled by the PHY layer if we didn't have to lock the
4603 * ressource ...
4604 */
4605 static void
4606 wm_gmii_i80003_writereg(device_t self, int phy, int reg, int val)
4607 {
4608 struct wm_softc *sc = device_private(self);
4609 int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4610
4611 if (phy != 1) /* only one PHY on kumeran bus */
4612 return;
4613
4614 if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
4615 return;
4616
4617 if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
4618 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
4619 reg >> GG82563_PAGE_SHIFT);
4620 } else {
4621 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
4622 reg >> GG82563_PAGE_SHIFT);
4623 }
4624
4625 wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
4626 wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4627 }
4628
4629 /*
4630 * wm_gmii_statchg: [mii interface function]
4631 *
4632 * Callback from MII layer when media changes.
4633 */
4634 static void
4635 wm_gmii_statchg(device_t self)
4636 {
4637 struct wm_softc *sc = device_private(self);
4638 struct mii_data *mii = &sc->sc_mii;
4639
4640 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
4641 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
4642 sc->sc_fcrtl &= ~FCRTL_XONE;
4643
4644 /*
4645 * Get flow control negotiation result.
4646 */
4647 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
4648 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
4649 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
4650 mii->mii_media_active &= ~IFM_ETH_FMASK;
4651 }
4652
4653 if (sc->sc_flowflags & IFM_FLOW) {
4654 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
4655 sc->sc_ctrl |= CTRL_TFCE;
4656 sc->sc_fcrtl |= FCRTL_XONE;
4657 }
4658 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
4659 sc->sc_ctrl |= CTRL_RFCE;
4660 }
4661
4662 if (sc->sc_mii.mii_media_active & IFM_FDX) {
4663 DPRINTF(WM_DEBUG_LINK,
4664 ("%s: LINK: statchg: FDX\n", device_xname(&sc->sc_dev)));
4665 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
4666 } else {
4667 DPRINTF(WM_DEBUG_LINK,
4668 ("%s: LINK: statchg: HDX\n", device_xname(&sc->sc_dev)));
4669 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
4670 }
4671
4672 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4673 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
4674 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
4675 : WMREG_FCRTL, sc->sc_fcrtl);
4676 if (sc->sc_type >= WM_T_80003) {
4677 switch(IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
4678 case IFM_1000_T:
4679 wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
4680 KUMCTRLSTA_HD_CTRL_1000_DEFAULT);
4681 sc->sc_tipg = TIPG_1000T_80003_DFLT;
4682 break;
4683 default:
4684 wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
4685 KUMCTRLSTA_HD_CTRL_10_100_DEFAULT);
4686 sc->sc_tipg = TIPG_10_100_80003_DFLT;
4687 break;
4688 }
4689 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
4690 }
4691 }
4692
4693 /*
4694 * wm_kmrn_i80003_readreg:
4695 *
4696 * Read a kumeran register
4697 */
4698 static int
4699 wm_kmrn_i80003_readreg(struct wm_softc *sc, int reg)
4700 {
4701 int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4702 int rv;
4703
4704 if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
4705 return 0;
4706
4707 CSR_WRITE(sc, WMREG_KUMCTRLSTA,
4708 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
4709 KUMCTRLSTA_REN);
4710 delay(2);
4711
4712 rv = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK;
4713 wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4714 return (rv);
4715 }
4716
4717 /*
4718 * wm_kmrn_i80003_writereg:
4719 *
4720 * Write a kumeran register
4721 */
4722 static void
4723 wm_kmrn_i80003_writereg(struct wm_softc *sc, int reg, int val)
4724 {
4725 int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
4726
4727 if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
4728 return;
4729
4730 CSR_WRITE(sc, WMREG_KUMCTRLSTA,
4731 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
4732 (val & KUMCTRLSTA_MASK));
4733 wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
4734 }
4735
4736 static int
4737 wm_is_onboard_nvm_eeprom(struct wm_softc *sc)
4738 {
4739 uint32_t eecd = 0;
4740
4741 if (sc->sc_type == WM_T_82573) {
4742 eecd = CSR_READ(sc, WMREG_EECD);
4743
4744 /* Isolate bits 15 & 16 */
4745 eecd = ((eecd >> 15) & 0x03);
4746
4747 /* If both bits are set, device is Flash type */
4748 if (eecd == 0x03) {
4749 return 0;
4750 }
4751 }
4752 return 1;
4753 }
4754
4755 static int
4756 wm_get_swsm_semaphore(struct wm_softc *sc)
4757 {
4758 int32_t timeout;
4759 uint32_t swsm;
4760
4761 /* Get the FW semaphore. */
4762 timeout = 1000 + 1; /* XXX */
4763 while (timeout) {
4764 swsm = CSR_READ(sc, WMREG_SWSM);
4765 swsm |= SWSM_SWESMBI;
4766 CSR_WRITE(sc, WMREG_SWSM, swsm);
4767 /* if we managed to set the bit we got the semaphore. */
4768 swsm = CSR_READ(sc, WMREG_SWSM);
4769 if (swsm & SWSM_SWESMBI)
4770 break;
4771
4772 delay(50);
4773 timeout--;
4774 }
4775
4776 if (timeout == 0) {
4777 aprint_error_dev(&sc->sc_dev, "could not acquire EEPROM GNT\n");
4778 /* Release semaphores */
4779 wm_put_swsm_semaphore(sc);
4780 return 1;
4781 }
4782 return 0;
4783 }
4784
4785 static void
4786 wm_put_swsm_semaphore(struct wm_softc *sc)
4787 {
4788 uint32_t swsm;
4789
4790 swsm = CSR_READ(sc, WMREG_SWSM);
4791 swsm &= ~(SWSM_SWESMBI);
4792 CSR_WRITE(sc, WMREG_SWSM, swsm);
4793 }
4794
4795 static int
4796 wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
4797 {
4798 uint32_t swfw_sync;
4799 uint32_t swmask = mask << SWFW_SOFT_SHIFT;
4800 uint32_t fwmask = mask << SWFW_FIRM_SHIFT;
4801 int timeout = 200;
4802
4803 for(timeout = 0; timeout < 200; timeout++) {
4804 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
4805 if (wm_get_swsm_semaphore(sc))
4806 return 1;
4807 }
4808 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
4809 if ((swfw_sync & (swmask | fwmask)) == 0) {
4810 swfw_sync |= swmask;
4811 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
4812 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
4813 wm_put_swsm_semaphore(sc);
4814 return 0;
4815 }
4816 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
4817 wm_put_swsm_semaphore(sc);
4818 delay(5000);
4819 }
4820 printf("%s: failed to get swfw semaphore mask 0x%x swfw 0x%x\n",
4821 device_xname(&sc->sc_dev), mask, swfw_sync);
4822 return 1;
4823 }
4824
4825 static void
4826 wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
4827 {
4828 uint32_t swfw_sync;
4829
4830 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
4831 while (wm_get_swsm_semaphore(sc) != 0)
4832 continue;
4833 }
4834 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
4835 swfw_sync &= ~(mask << SWFW_SOFT_SHIFT);
4836 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
4837 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
4838 wm_put_swsm_semaphore(sc);
4839 }
4840
4841 static int
4842 wm_get_swfwhw_semaphore(struct wm_softc *sc)
4843 {
4844 uint32_t ext_ctrl;
4845 int timeout = 200;
4846
4847 for(timeout = 0; timeout < 200; timeout++) {
4848 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
4849 ext_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
4850 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
4851
4852 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
4853 if (ext_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
4854 return 0;
4855 delay(5000);
4856 }
4857 printf("%s: failed to get swfwgw semaphore ext_ctrl 0x%x\n",
4858 device_xname(&sc->sc_dev), ext_ctrl);
4859 return 1;
4860 }
4861
4862 static void
4863 wm_put_swfwhw_semaphore(struct wm_softc *sc)
4864 {
4865 uint32_t ext_ctrl;
4866 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
4867 ext_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
4868 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
4869 }
4870
4871 /******************************************************************************
4872 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
4873 * register.
4874 *
4875 * sc - Struct containing variables accessed by shared code
4876 * offset - offset of word in the EEPROM to read
4877 * data - word read from the EEPROM
4878 * words - number of words to read
4879 *****************************************************************************/
4880 static int
4881 wm_read_eeprom_ich8(struct wm_softc *sc, int offset, int words, uint16_t *data)
4882 {
4883 int32_t error = 0;
4884 uint32_t flash_bank = 0;
4885 uint32_t act_offset = 0;
4886 uint32_t bank_offset = 0;
4887 uint16_t word = 0;
4888 uint16_t i = 0;
4889
4890 /* We need to know which is the valid flash bank. In the event
4891 * that we didn't allocate eeprom_shadow_ram, we may not be
4892 * managing flash_bank. So it cannot be trusted and needs
4893 * to be updated with each read.
4894 */
4895 /* Value of bit 22 corresponds to the flash bank we're on. */
4896 flash_bank = (CSR_READ(sc, WMREG_EECD) & EECD_SEC1VAL) ? 1 : 0;
4897
4898 /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
4899 bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
4900
4901 error = wm_get_swfwhw_semaphore(sc);
4902 if (error)
4903 return error;
4904
4905 for (i = 0; i < words; i++) {
4906 /* The NVM part needs a byte offset, hence * 2 */
4907 act_offset = bank_offset + ((offset + i) * 2);
4908 error = wm_read_ich8_word(sc, act_offset, &word);
4909 if (error)
4910 break;
4911 data[i] = word;
4912 }
4913
4914 wm_put_swfwhw_semaphore(sc);
4915 return error;
4916 }
4917
4918 /******************************************************************************
4919 * This function does initial flash setup so that a new read/write/erase cycle
4920 * can be started.
4921 *
4922 * sc - The pointer to the hw structure
4923 ****************************************************************************/
4924 static int32_t
4925 wm_ich8_cycle_init(struct wm_softc *sc)
4926 {
4927 uint16_t hsfsts;
4928 int32_t error = 1;
4929 int32_t i = 0;
4930
4931 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
4932
4933 /* May be check the Flash Des Valid bit in Hw status */
4934 if ((hsfsts & HSFSTS_FLDVAL) == 0) {
4935 return error;
4936 }
4937
4938 /* Clear FCERR in Hw status by writing 1 */
4939 /* Clear DAEL in Hw status by writing a 1 */
4940 hsfsts |= HSFSTS_ERR | HSFSTS_DAEL;
4941
4942 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
4943
4944 /* Either we should have a hardware SPI cycle in progress bit to check
4945 * against, in order to start a new cycle or FDONE bit should be changed
4946 * in the hardware so that it is 1 after harware reset, which can then be
4947 * used as an indication whether a cycle is in progress or has been
4948 * completed .. we should also have some software semaphore mechanism to
4949 * guard FDONE or the cycle in progress bit so that two threads access to
4950 * those bits can be sequentiallized or a way so that 2 threads dont
4951 * start the cycle at the same time */
4952
4953 if ((hsfsts & HSFSTS_FLINPRO) == 0) {
4954 /* There is no cycle running at present, so we can start a cycle */
4955 /* Begin by setting Flash Cycle Done. */
4956 hsfsts |= HSFSTS_DONE;
4957 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
4958 error = 0;
4959 } else {
4960 /* otherwise poll for sometime so the current cycle has a chance
4961 * to end before giving up. */
4962 for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
4963 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
4964 if ((hsfsts & HSFSTS_FLINPRO) == 0) {
4965 error = 0;
4966 break;
4967 }
4968 delay(1);
4969 }
4970 if (error == 0) {
4971 /* Successful in waiting for previous cycle to timeout,
4972 * now set the Flash Cycle Done. */
4973 hsfsts |= HSFSTS_DONE;
4974 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
4975 }
4976 }
4977 return error;
4978 }
4979
4980 /******************************************************************************
4981 * This function starts a flash cycle and waits for its completion
4982 *
4983 * sc - The pointer to the hw structure
4984 ****************************************************************************/
4985 static int32_t
4986 wm_ich8_flash_cycle(struct wm_softc *sc, uint32_t timeout)
4987 {
4988 uint16_t hsflctl;
4989 uint16_t hsfsts;
4990 int32_t error = 1;
4991 uint32_t i = 0;
4992
4993 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
4994 hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
4995 hsflctl |= HSFCTL_GO;
4996 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
4997
4998 /* wait till FDONE bit is set to 1 */
4999 do {
5000 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
5001 if (hsfsts & HSFSTS_DONE)
5002 break;
5003 delay(1);
5004 i++;
5005 } while (i < timeout);
5006 if ((hsfsts & HSFSTS_DONE) == 1 && (hsfsts & HSFSTS_ERR) == 0) {
5007 error = 0;
5008 }
5009 return error;
5010 }
5011
5012 /******************************************************************************
5013 * Reads a byte or word from the NVM using the ICH8 flash access registers.
5014 *
5015 * sc - The pointer to the hw structure
5016 * index - The index of the byte or word to read.
5017 * size - Size of data to read, 1=byte 2=word
5018 * data - Pointer to the word to store the value read.
5019 *****************************************************************************/
5020 static int32_t
5021 wm_read_ich8_data(struct wm_softc *sc, uint32_t index,
5022 uint32_t size, uint16_t* data)
5023 {
5024 uint16_t hsfsts;
5025 uint16_t hsflctl;
5026 uint32_t flash_linear_address;
5027 uint32_t flash_data = 0;
5028 int32_t error = 1;
5029 int32_t count = 0;
5030
5031 if (size < 1 || size > 2 || data == 0x0 ||
5032 index > ICH_FLASH_LINEAR_ADDR_MASK)
5033 return error;
5034
5035 flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
5036 sc->sc_ich8_flash_base;
5037
5038 do {
5039 delay(1);
5040 /* Steps */
5041 error = wm_ich8_cycle_init(sc);
5042 if (error)
5043 break;
5044
5045 hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
5046 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
5047 hsflctl |= ((size - 1) << HSFCTL_BCOUNT_SHIFT) & HSFCTL_BCOUNT_MASK;
5048 hsflctl |= ICH_CYCLE_READ << HSFCTL_CYCLE_SHIFT;
5049 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
5050
5051 /* Write the last 24 bits of index into Flash Linear address field in
5052 * Flash Address */
5053 /* TODO: TBD maybe check the index against the size of flash */
5054
5055 ICH8_FLASH_WRITE32(sc, ICH_FLASH_FADDR, flash_linear_address);
5056
5057 error = wm_ich8_flash_cycle(sc, ICH_FLASH_COMMAND_TIMEOUT);
5058
5059 /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
5060 * sequence a few more times, else read in (shift in) the Flash Data0,
5061 * the order is least significant byte first msb to lsb */
5062 if (error == 0) {
5063 flash_data = ICH8_FLASH_READ32(sc, ICH_FLASH_FDATA0);
5064 if (size == 1) {
5065 *data = (uint8_t)(flash_data & 0x000000FF);
5066 } else if (size == 2) {
5067 *data = (uint16_t)(flash_data & 0x0000FFFF);
5068 }
5069 break;
5070 } else {
5071 /* If we've gotten here, then things are probably completely hosed,
5072 * but if the error condition is detected, it won't hurt to give
5073 * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
5074 */
5075 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
5076 if (hsfsts & HSFSTS_ERR) {
5077 /* Repeat for some time before giving up. */
5078 continue;
5079 } else if ((hsfsts & HSFSTS_DONE) == 0) {
5080 break;
5081 }
5082 }
5083 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
5084
5085 return error;
5086 }
5087
5088 #if 0
5089 /******************************************************************************
5090 * Reads a single byte from the NVM using the ICH8 flash access registers.
5091 *
5092 * sc - pointer to wm_hw structure
5093 * index - The index of the byte to read.
5094 * data - Pointer to a byte to store the value read.
5095 *****************************************************************************/
5096 static int32_t
5097 wm_read_ich8_byte(struct wm_softc *sc, uint32_t index, uint8_t* data)
5098 {
5099 int32_t status;
5100 uint16_t word = 0;
5101
5102 status = wm_read_ich8_data(sc, index, 1, &word);
5103 if (status == 0) {
5104 *data = (uint8_t)word;
5105 }
5106
5107 return status;
5108 }
5109 #endif
5110
5111 /******************************************************************************
5112 * Reads a word from the NVM using the ICH8 flash access registers.
5113 *
5114 * sc - pointer to wm_hw structure
5115 * index - The starting byte index of the word to read.
5116 * data - Pointer to a word to store the value read.
5117 *****************************************************************************/
5118 static int32_t
5119 wm_read_ich8_word(struct wm_softc *sc, uint32_t index, uint16_t *data)
5120 {
5121 int32_t status;
5122
5123 status = wm_read_ich8_data(sc, index, 2, data);
5124 return status;
5125 }
5126