Home | History | Annotate | Line # | Download | only in pci
if_wm.c revision 1.249
      1 /*	$NetBSD: if_wm.c,v 1.249 2013/06/02 09:36:22 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*******************************************************************************
     39 
     40   Copyright (c) 2001-2005, Intel Corporation
     41   All rights reserved.
     42 
     43   Redistribution and use in source and binary forms, with or without
     44   modification, are permitted provided that the following conditions are met:
     45 
     46    1. Redistributions of source code must retain the above copyright notice,
     47       this list of conditions and the following disclaimer.
     48 
     49    2. Redistributions in binary form must reproduce the above copyright
     50       notice, this list of conditions and the following disclaimer in the
     51       documentation and/or other materials provided with the distribution.
     52 
     53    3. Neither the name of the Intel Corporation nor the names of its
     54       contributors may be used to endorse or promote products derived from
     55       this software without specific prior written permission.
     56 
     57   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     58   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     61   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     67   POSSIBILITY OF SUCH DAMAGE.
     68 
     69 *******************************************************************************/
     70 /*
     71  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
     72  *
     73  * TODO (in order of importance):
     74  *
     75  *	- Rework how parameters are loaded from the EEPROM.
     76  */
     77 
     78 #include <sys/cdefs.h>
     79 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.249 2013/06/02 09:36:22 msaitoh Exp $");
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/callout.h>
     84 #include <sys/mbuf.h>
     85 #include <sys/malloc.h>
     86 #include <sys/kernel.h>
     87 #include <sys/socket.h>
     88 #include <sys/ioctl.h>
     89 #include <sys/errno.h>
     90 #include <sys/device.h>
     91 #include <sys/queue.h>
     92 #include <sys/syslog.h>
     93 
     94 #include <sys/rnd.h>
     95 
     96 #include <net/if.h>
     97 #include <net/if_dl.h>
     98 #include <net/if_media.h>
     99 #include <net/if_ether.h>
    100 
    101 #include <net/bpf.h>
    102 
    103 #include <netinet/in.h>			/* XXX for struct ip */
    104 #include <netinet/in_systm.h>		/* XXX for struct ip */
    105 #include <netinet/ip.h>			/* XXX for struct ip */
    106 #include <netinet/ip6.h>		/* XXX for struct ip6_hdr */
    107 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
    108 
    109 #include <sys/bus.h>
    110 #include <sys/intr.h>
    111 #include <machine/endian.h>
    112 
    113 #include <dev/mii/mii.h>
    114 #include <dev/mii/miivar.h>
    115 #include <dev/mii/miidevs.h>
    116 #include <dev/mii/mii_bitbang.h>
    117 #include <dev/mii/ikphyreg.h>
    118 #include <dev/mii/igphyreg.h>
    119 #include <dev/mii/igphyvar.h>
    120 #include <dev/mii/inbmphyreg.h>
    121 
    122 #include <dev/pci/pcireg.h>
    123 #include <dev/pci/pcivar.h>
    124 #include <dev/pci/pcidevs.h>
    125 
    126 #include <dev/pci/if_wmreg.h>
    127 #include <dev/pci/if_wmvar.h>
    128 
    129 #ifdef WM_DEBUG
    130 #define	WM_DEBUG_LINK		0x01
    131 #define	WM_DEBUG_TX		0x02
    132 #define	WM_DEBUG_RX		0x04
    133 #define	WM_DEBUG_GMII		0x08
    134 #define	WM_DEBUG_MANAGE		0x10
    135 #define	WM_DEBUG_NVM		0x20
    136 int	wm_debug = WM_DEBUG_TX | WM_DEBUG_RX | WM_DEBUG_LINK | WM_DEBUG_GMII
    137     | WM_DEBUG_MANAGE | WM_DEBUG_NVM;
    138 
    139 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
    140 #else
    141 #define	DPRINTF(x, y)	/* nothing */
    142 #endif /* WM_DEBUG */
    143 
    144 /*
    145  * Transmit descriptor list size.  Due to errata, we can only have
    146  * 256 hardware descriptors in the ring on < 82544, but we use 4096
    147  * on >= 82544.  We tell the upper layers that they can queue a lot
    148  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
    149  * of them at a time.
    150  *
    151  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
    152  * chains containing many small mbufs have been observed in zero-copy
    153  * situations with jumbo frames.
    154  */
    155 #define	WM_NTXSEGS		256
    156 #define	WM_IFQUEUELEN		256
    157 #define	WM_TXQUEUELEN_MAX	64
    158 #define	WM_TXQUEUELEN_MAX_82547	16
    159 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
    160 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
    161 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
    162 #define	WM_NTXDESC_82542	256
    163 #define	WM_NTXDESC_82544	4096
    164 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
    165 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
    166 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
    167 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
    168 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
    169 
    170 #define	WM_MAXTXDMA		round_page(IP_MAXPACKET) /* for TSO */
    171 
    172 /*
    173  * Receive descriptor list size.  We have one Rx buffer for normal
    174  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
    175  * packet.  We allocate 256 receive descriptors, each with a 2k
    176  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
    177  */
    178 #define	WM_NRXDESC		256
    179 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
    180 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
    181 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
    182 
    183 /*
    184  * Control structures are DMA'd to the i82542 chip.  We allocate them in
    185  * a single clump that maps to a single DMA segment to make several things
    186  * easier.
    187  */
    188 struct wm_control_data_82544 {
    189 	/*
    190 	 * The receive descriptors.
    191 	 */
    192 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    193 
    194 	/*
    195 	 * The transmit descriptors.  Put these at the end, because
    196 	 * we might use a smaller number of them.
    197 	 */
    198 	union {
    199 		wiseman_txdesc_t wcdu_txdescs[WM_NTXDESC_82544];
    200 		nq_txdesc_t      wcdu_nq_txdescs[WM_NTXDESC_82544];
    201 	} wdc_u;
    202 };
    203 
    204 struct wm_control_data_82542 {
    205 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    206 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
    207 };
    208 
    209 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
    210 #define	WM_CDTXOFF(x)	WM_CDOFF(wdc_u.wcdu_txdescs[(x)])
    211 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
    212 
    213 /*
    214  * Software state for transmit jobs.
    215  */
    216 struct wm_txsoft {
    217 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    218 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    219 	int txs_firstdesc;		/* first descriptor in packet */
    220 	int txs_lastdesc;		/* last descriptor in packet */
    221 	int txs_ndesc;			/* # of descriptors used */
    222 };
    223 
    224 /*
    225  * Software state for receive buffers.  Each descriptor gets a
    226  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    227  * more than one buffer, we chain them together.
    228  */
    229 struct wm_rxsoft {
    230 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    231 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    232 };
    233 
    234 #define WM_LINKUP_TIMEOUT	50
    235 
    236 static uint16_t swfwphysem[] = {
    237 	SWFW_PHY0_SM,
    238 	SWFW_PHY1_SM,
    239 	SWFW_PHY2_SM,
    240 	SWFW_PHY3_SM
    241 };
    242 
    243 /*
    244  * Software state per device.
    245  */
    246 struct wm_softc {
    247 	device_t sc_dev;		/* generic device information */
    248 	bus_space_tag_t sc_st;		/* bus space tag */
    249 	bus_space_handle_t sc_sh;	/* bus space handle */
    250 	bus_size_t sc_ss;		/* bus space size */
    251 	bus_space_tag_t sc_iot;		/* I/O space tag */
    252 	bus_space_handle_t sc_ioh;	/* I/O space handle */
    253 	bus_size_t sc_ios;		/* I/O space size */
    254 	bus_space_tag_t sc_flasht;	/* flash registers space tag */
    255 	bus_space_handle_t sc_flashh;	/* flash registers space handle */
    256 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    257 
    258 	struct ethercom sc_ethercom;	/* ethernet common data */
    259 	struct mii_data sc_mii;		/* MII/media information */
    260 
    261 	pci_chipset_tag_t sc_pc;
    262 	pcitag_t sc_pcitag;
    263 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    264 	int sc_pcixe_capoff;		/* PCI[Xe] capability register offset */
    265 
    266 	const struct wm_product *sc_wmp; /* Pointer to the wm_product entry */
    267 	wm_chip_type sc_type;		/* MAC type */
    268 	int sc_rev;			/* MAC revision */
    269 	wm_phy_type sc_phytype;		/* PHY type */
    270 	int sc_funcid;			/* unit number of the chip (0 to 3) */
    271 	int sc_flags;			/* flags; see below */
    272 	int sc_if_flags;		/* last if_flags */
    273 	int sc_flowflags;		/* 802.3x flow control flags */
    274 	int sc_align_tweak;
    275 
    276 	void *sc_ih;			/* interrupt cookie */
    277 	callout_t sc_tick_ch;		/* tick callout */
    278 
    279 	int sc_ee_addrbits;		/* EEPROM address bits */
    280 	int sc_ich8_flash_base;
    281 	int sc_ich8_flash_bank_size;
    282 	int sc_nvm_k1_enabled;
    283 
    284 	/*
    285 	 * Software state for the transmit and receive descriptors.
    286 	 */
    287 	int sc_txnum;			/* must be a power of two */
    288 	struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
    289 	struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
    290 
    291 	/*
    292 	 * Control data structures.
    293 	 */
    294 	int sc_ntxdesc;			/* must be a power of two */
    295 	struct wm_control_data_82544 *sc_control_data;
    296 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    297 	bus_dma_segment_t sc_cd_seg;	/* control data segment */
    298 	int sc_cd_rseg;			/* real number of control segment */
    299 	size_t sc_cd_size;		/* control data size */
    300 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    301 #define	sc_txdescs	sc_control_data->wdc_u.wcdu_txdescs
    302 #define	sc_nq_txdescs	sc_control_data->wdc_u.wcdu_nq_txdescs
    303 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    304 
    305 #ifdef WM_EVENT_COUNTERS
    306 	/* Event counters. */
    307 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    308 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    309 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
    310 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    311 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    312 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    313 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    314 
    315 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    316 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    317 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    318 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    319 	struct evcnt sc_ev_txtusum6;	/* TCP/UDP v6 cksums comp. out-bound */
    320 	struct evcnt sc_ev_txtso;	/* TCP seg offload out-bound (IPv4) */
    321 	struct evcnt sc_ev_txtso6;	/* TCP seg offload out-bound (IPv6) */
    322 	struct evcnt sc_ev_txtsopain;	/* painful header manip. for TSO */
    323 
    324 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
    325 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    326 
    327 	struct evcnt sc_ev_tu;		/* Tx underrun */
    328 
    329 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
    330 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
    331 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
    332 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
    333 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
    334 #endif /* WM_EVENT_COUNTERS */
    335 
    336 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
    337 
    338 	int	sc_txfree;		/* number of free Tx descriptors */
    339 	int	sc_txnext;		/* next ready Tx descriptor */
    340 
    341 	int	sc_txsfree;		/* number of free Tx jobs */
    342 	int	sc_txsnext;		/* next free Tx job */
    343 	int	sc_txsdirty;		/* dirty Tx jobs */
    344 
    345 	/* These 5 variables are used only on the 82547. */
    346 	int	sc_txfifo_size;		/* Tx FIFO size */
    347 	int	sc_txfifo_head;		/* current head of FIFO */
    348 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
    349 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
    350 	callout_t sc_txfifo_ch;		/* Tx FIFO stall work-around timer */
    351 
    352 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
    353 
    354 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    355 	int	sc_rxdiscard;
    356 	int	sc_rxlen;
    357 	struct mbuf *sc_rxhead;
    358 	struct mbuf *sc_rxtail;
    359 	struct mbuf **sc_rxtailp;
    360 
    361 	uint32_t sc_ctrl;		/* prototype CTRL register */
    362 #if 0
    363 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
    364 #endif
    365 	uint32_t sc_icr;		/* prototype interrupt bits */
    366 	uint32_t sc_itr;		/* prototype intr throttling reg */
    367 	uint32_t sc_tctl;		/* prototype TCTL register */
    368 	uint32_t sc_rctl;		/* prototype RCTL register */
    369 	uint32_t sc_txcw;		/* prototype TXCW register */
    370 	uint32_t sc_tipg;		/* prototype TIPG register */
    371 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
    372 	uint32_t sc_pba;		/* prototype PBA register */
    373 
    374 	int sc_tbi_linkup;		/* TBI link status */
    375 	int sc_tbi_anegticks;		/* autonegotiation ticks */
    376 	int sc_tbi_ticks;		/* tbi ticks */
    377 	int sc_tbi_nrxcfg;		/* count of ICR_RXCFG */
    378 	int sc_tbi_lastnrxcfg;		/* count of ICR_RXCFG (on last tick) */
    379 
    380 	int sc_mchash_type;		/* multicast filter offset */
    381 
    382 	krndsource_t rnd_source;	/* random source */
    383 };
    384 
    385 #define	WM_RXCHAIN_RESET(sc)						\
    386 do {									\
    387 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    388 	*(sc)->sc_rxtailp = NULL;					\
    389 	(sc)->sc_rxlen = 0;						\
    390 } while (/*CONSTCOND*/0)
    391 
    392 #define	WM_RXCHAIN_LINK(sc, m)						\
    393 do {									\
    394 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    395 	(sc)->sc_rxtailp = &(m)->m_next;				\
    396 } while (/*CONSTCOND*/0)
    397 
    398 #ifdef WM_EVENT_COUNTERS
    399 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
    400 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
    401 #else
    402 #define	WM_EVCNT_INCR(ev)	/* nothing */
    403 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
    404 #endif
    405 
    406 #define	CSR_READ(sc, reg)						\
    407 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    408 #define	CSR_WRITE(sc, reg, val)						\
    409 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    410 #define	CSR_WRITE_FLUSH(sc)						\
    411 	(void) CSR_READ((sc), WMREG_STATUS)
    412 
    413 #define ICH8_FLASH_READ32(sc, reg) \
    414 	bus_space_read_4((sc)->sc_flasht, (sc)->sc_flashh, (reg))
    415 #define ICH8_FLASH_WRITE32(sc, reg, data) \
    416 	bus_space_write_4((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data))
    417 
    418 #define ICH8_FLASH_READ16(sc, reg) \
    419 	bus_space_read_2((sc)->sc_flasht, (sc)->sc_flashh, (reg))
    420 #define ICH8_FLASH_WRITE16(sc, reg, data) \
    421 	bus_space_write_2((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data))
    422 
    423 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
    424 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
    425 
    426 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
    427 #define	WM_CDTXADDR_HI(sc, x)						\
    428 	(sizeof(bus_addr_t) == 8 ?					\
    429 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
    430 
    431 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
    432 #define	WM_CDRXADDR_HI(sc, x)						\
    433 	(sizeof(bus_addr_t) == 8 ?					\
    434 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
    435 
    436 #define	WM_CDTXSYNC(sc, x, n, ops)					\
    437 do {									\
    438 	int __x, __n;							\
    439 									\
    440 	__x = (x);							\
    441 	__n = (n);							\
    442 									\
    443 	/* If it will wrap around, sync to the end of the ring. */	\
    444 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
    445 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    446 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
    447 		    (WM_NTXDESC(sc) - __x), (ops));			\
    448 		__n -= (WM_NTXDESC(sc) - __x);				\
    449 		__x = 0;						\
    450 	}								\
    451 									\
    452 	/* Now sync whatever is left. */				\
    453 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    454 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
    455 } while (/*CONSTCOND*/0)
    456 
    457 #define	WM_CDRXSYNC(sc, x, ops)						\
    458 do {									\
    459 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    460 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
    461 } while (/*CONSTCOND*/0)
    462 
    463 #define	WM_INIT_RXDESC(sc, x)						\
    464 do {									\
    465 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    466 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
    467 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    468 									\
    469 	/*								\
    470 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    471 	 * so that the payload after the Ethernet header is aligned	\
    472 	 * to a 4-byte boundary.					\
    473 	 *								\
    474 	 * XXX BRAINDAMAGE ALERT!					\
    475 	 * The stupid chip uses the same size for every buffer, which	\
    476 	 * is set in the Receive Control register.  We are using the 2K	\
    477 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    478 	 * reason, we can't "scoot" packets longer than the standard	\
    479 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    480 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    481 	 * the upper layer copy the headers.				\
    482 	 */								\
    483 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    484 									\
    485 	wm_set_dma_addr(&__rxd->wrx_addr,				\
    486 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
    487 	__rxd->wrx_len = 0;						\
    488 	__rxd->wrx_cksum = 0;						\
    489 	__rxd->wrx_status = 0;						\
    490 	__rxd->wrx_errors = 0;						\
    491 	__rxd->wrx_special = 0;						\
    492 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    493 									\
    494 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
    495 } while (/*CONSTCOND*/0)
    496 
    497 static void	wm_start(struct ifnet *);
    498 static void	wm_nq_start(struct ifnet *);
    499 static void	wm_watchdog(struct ifnet *);
    500 static int	wm_ifflags_cb(struct ethercom *);
    501 static int	wm_ioctl(struct ifnet *, u_long, void *);
    502 static int	wm_init(struct ifnet *);
    503 static void	wm_stop(struct ifnet *, int);
    504 static bool	wm_suspend(device_t, const pmf_qual_t *);
    505 static bool	wm_resume(device_t, const pmf_qual_t *);
    506 
    507 static void	wm_reset(struct wm_softc *);
    508 static void	wm_rxdrain(struct wm_softc *);
    509 static int	wm_add_rxbuf(struct wm_softc *, int);
    510 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
    511 static int	wm_read_eeprom_eerd(struct wm_softc *, int, int, u_int16_t *);
    512 static int	wm_validate_eeprom_checksum(struct wm_softc *);
    513 static int	wm_check_alt_mac_addr(struct wm_softc *);
    514 static int	wm_read_mac_addr(struct wm_softc *, uint8_t *);
    515 static void	wm_tick(void *);
    516 
    517 static void	wm_set_filter(struct wm_softc *);
    518 static void	wm_set_vlan(struct wm_softc *);
    519 
    520 static int	wm_intr(void *);
    521 static void	wm_txintr(struct wm_softc *);
    522 static void	wm_rxintr(struct wm_softc *);
    523 static void	wm_linkintr(struct wm_softc *, uint32_t);
    524 
    525 static void	wm_tbi_mediainit(struct wm_softc *);
    526 static int	wm_tbi_mediachange(struct ifnet *);
    527 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
    528 
    529 static void	wm_tbi_set_linkled(struct wm_softc *);
    530 static void	wm_tbi_check_link(struct wm_softc *);
    531 
    532 static void	wm_gmii_reset(struct wm_softc *);
    533 
    534 static int	wm_gmii_i82543_readreg(device_t, int, int);
    535 static void	wm_gmii_i82543_writereg(device_t, int, int, int);
    536 static int	wm_gmii_i82544_readreg(device_t, int, int);
    537 static void	wm_gmii_i82544_writereg(device_t, int, int, int);
    538 static int	wm_gmii_i80003_readreg(device_t, int, int);
    539 static void	wm_gmii_i80003_writereg(device_t, int, int, int);
    540 static int	wm_gmii_bm_readreg(device_t, int, int);
    541 static void	wm_gmii_bm_writereg(device_t, int, int, int);
    542 static int	wm_gmii_hv_readreg(device_t, int, int);
    543 static void	wm_gmii_hv_writereg(device_t, int, int, int);
    544 static int	wm_gmii_82580_readreg(device_t, int, int);
    545 static void	wm_gmii_82580_writereg(device_t, int, int, int);
    546 static int	wm_sgmii_readreg(device_t, int, int);
    547 static void	wm_sgmii_writereg(device_t, int, int, int);
    548 
    549 static void	wm_gmii_statchg(struct ifnet *);
    550 
    551 static void	wm_gmii_mediainit(struct wm_softc *, pci_product_id_t);
    552 static int	wm_gmii_mediachange(struct ifnet *);
    553 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
    554 
    555 static int	wm_kmrn_readreg(struct wm_softc *, int);
    556 static void	wm_kmrn_writereg(struct wm_softc *, int, int);
    557 
    558 static void	wm_set_spiaddrbits(struct wm_softc *);
    559 static int	wm_match(device_t, cfdata_t, void *);
    560 static void	wm_attach(device_t, device_t, void *);
    561 static int	wm_detach(device_t, int);
    562 static int	wm_is_onboard_nvm_eeprom(struct wm_softc *);
    563 static void	wm_get_auto_rd_done(struct wm_softc *);
    564 static void	wm_lan_init_done(struct wm_softc *);
    565 static void	wm_get_cfg_done(struct wm_softc *);
    566 static int	wm_get_swsm_semaphore(struct wm_softc *);
    567 static void	wm_put_swsm_semaphore(struct wm_softc *);
    568 static int	wm_poll_eerd_eewr_done(struct wm_softc *, int);
    569 static int	wm_get_swfw_semaphore(struct wm_softc *, uint16_t);
    570 static void	wm_put_swfw_semaphore(struct wm_softc *, uint16_t);
    571 static int	wm_get_swfwhw_semaphore(struct wm_softc *);
    572 static void	wm_put_swfwhw_semaphore(struct wm_softc *);
    573 
    574 static int	wm_read_eeprom_ich8(struct wm_softc *, int, int, uint16_t *);
    575 static int32_t	wm_ich8_cycle_init(struct wm_softc *);
    576 static int32_t	wm_ich8_flash_cycle(struct wm_softc *, uint32_t);
    577 static int32_t	wm_read_ich8_data(struct wm_softc *, uint32_t,
    578 		     uint32_t, uint16_t *);
    579 static int32_t	wm_read_ich8_byte(struct wm_softc *, uint32_t, uint8_t *);
    580 static int32_t	wm_read_ich8_word(struct wm_softc *, uint32_t, uint16_t *);
    581 static void	wm_82547_txfifo_stall(void *);
    582 static void	wm_gate_hw_phy_config_ich8lan(struct wm_softc *, int);
    583 static int	wm_check_mng_mode(struct wm_softc *);
    584 static int	wm_check_mng_mode_ich8lan(struct wm_softc *);
    585 static int	wm_check_mng_mode_82574(struct wm_softc *);
    586 static int	wm_check_mng_mode_generic(struct wm_softc *);
    587 static int	wm_enable_mng_pass_thru(struct wm_softc *);
    588 static int	wm_check_reset_block(struct wm_softc *);
    589 static void	wm_get_hw_control(struct wm_softc *);
    590 static int	wm_check_for_link(struct wm_softc *);
    591 static void	wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *);
    592 static void	wm_gig_downshift_workaround_ich8lan(struct wm_softc *);
    593 #ifdef WM_WOL
    594 static void	wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *);
    595 #endif
    596 static void	wm_hv_phy_workaround_ich8lan(struct wm_softc *);
    597 static void	wm_lv_phy_workaround_ich8lan(struct wm_softc *);
    598 static void	wm_k1_gig_workaround_hv(struct wm_softc *, int);
    599 static void	wm_set_mdio_slow_mode_hv(struct wm_softc *);
    600 static void	wm_configure_k1_ich8lan(struct wm_softc *, int);
    601 static void	wm_smbustopci(struct wm_softc *);
    602 static void	wm_set_pcie_completion_timeout(struct wm_softc *);
    603 static void	wm_reset_init_script_82575(struct wm_softc *);
    604 static void	wm_release_manageability(struct wm_softc *);
    605 static void	wm_release_hw_control(struct wm_softc *);
    606 static void	wm_get_wakeup(struct wm_softc *);
    607 #ifdef WM_WOL
    608 static void	wm_enable_phy_wakeup(struct wm_softc *);
    609 static void	wm_enable_wakeup(struct wm_softc *);
    610 #endif
    611 static void	wm_init_manageability(struct wm_softc *);
    612 static void	wm_set_eee_i350(struct wm_softc *);
    613 
    614 CFATTACH_DECL3_NEW(wm, sizeof(struct wm_softc),
    615     wm_match, wm_attach, wm_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    616 
    617 /*
    618  * Devices supported by this driver.
    619  */
    620 static const struct wm_product {
    621 	pci_vendor_id_t		wmp_vendor;
    622 	pci_product_id_t	wmp_product;
    623 	const char		*wmp_name;
    624 	wm_chip_type		wmp_type;
    625 	int			wmp_flags;
    626 #define	WMP_F_1000X		0x01
    627 #define	WMP_F_1000T		0x02
    628 #define	WMP_F_SERDES		0x04
    629 } wm_products[] = {
    630 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
    631 	  "Intel i82542 1000BASE-X Ethernet",
    632 	  WM_T_82542_2_1,	WMP_F_1000X },
    633 
    634 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
    635 	  "Intel i82543GC 1000BASE-X Ethernet",
    636 	  WM_T_82543,		WMP_F_1000X },
    637 
    638 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
    639 	  "Intel i82543GC 1000BASE-T Ethernet",
    640 	  WM_T_82543,		WMP_F_1000T },
    641 
    642 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
    643 	  "Intel i82544EI 1000BASE-T Ethernet",
    644 	  WM_T_82544,		WMP_F_1000T },
    645 
    646 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
    647 	  "Intel i82544EI 1000BASE-X Ethernet",
    648 	  WM_T_82544,		WMP_F_1000X },
    649 
    650 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
    651 	  "Intel i82544GC 1000BASE-T Ethernet",
    652 	  WM_T_82544,		WMP_F_1000T },
    653 
    654 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
    655 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
    656 	  WM_T_82544,		WMP_F_1000T },
    657 
    658 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
    659 	  "Intel i82540EM 1000BASE-T Ethernet",
    660 	  WM_T_82540,		WMP_F_1000T },
    661 
    662 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
    663 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
    664 	  WM_T_82540,		WMP_F_1000T },
    665 
    666 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
    667 	  "Intel i82540EP 1000BASE-T Ethernet",
    668 	  WM_T_82540,		WMP_F_1000T },
    669 
    670 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
    671 	  "Intel i82540EP 1000BASE-T Ethernet",
    672 	  WM_T_82540,		WMP_F_1000T },
    673 
    674 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
    675 	  "Intel i82540EP 1000BASE-T Ethernet",
    676 	  WM_T_82540,		WMP_F_1000T },
    677 
    678 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
    679 	  "Intel i82545EM 1000BASE-T Ethernet",
    680 	  WM_T_82545,		WMP_F_1000T },
    681 
    682 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
    683 	  "Intel i82545GM 1000BASE-T Ethernet",
    684 	  WM_T_82545_3,		WMP_F_1000T },
    685 
    686 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
    687 	  "Intel i82545GM 1000BASE-X Ethernet",
    688 	  WM_T_82545_3,		WMP_F_1000X },
    689 #if 0
    690 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
    691 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
    692 	  WM_T_82545_3,		WMP_F_SERDES },
    693 #endif
    694 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
    695 	  "Intel i82546EB 1000BASE-T Ethernet",
    696 	  WM_T_82546,		WMP_F_1000T },
    697 
    698 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_QUAD,
    699 	  "Intel i82546EB 1000BASE-T Ethernet",
    700 	  WM_T_82546,		WMP_F_1000T },
    701 
    702 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
    703 	  "Intel i82545EM 1000BASE-X Ethernet",
    704 	  WM_T_82545,		WMP_F_1000X },
    705 
    706 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
    707 	  "Intel i82546EB 1000BASE-X Ethernet",
    708 	  WM_T_82546,		WMP_F_1000X },
    709 
    710 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
    711 	  "Intel i82546GB 1000BASE-T Ethernet",
    712 	  WM_T_82546_3,		WMP_F_1000T },
    713 
    714 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
    715 	  "Intel i82546GB 1000BASE-X Ethernet",
    716 	  WM_T_82546_3,		WMP_F_1000X },
    717 #if 0
    718 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
    719 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
    720 	  WM_T_82546_3,		WMP_F_SERDES },
    721 #endif
    722 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER,
    723 	  "i82546GB quad-port Gigabit Ethernet",
    724 	  WM_T_82546_3,		WMP_F_1000T },
    725 
    726 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3,
    727 	  "i82546GB quad-port Gigabit Ethernet (KSP3)",
    728 	  WM_T_82546_3,		WMP_F_1000T },
    729 
    730 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_PCIE,
    731 	  "Intel PRO/1000MT (82546GB)",
    732 	  WM_T_82546_3,		WMP_F_1000T },
    733 
    734 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
    735 	  "Intel i82541EI 1000BASE-T Ethernet",
    736 	  WM_T_82541,		WMP_F_1000T },
    737 
    738 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER_LOM,
    739 	  "Intel i82541ER (LOM) 1000BASE-T Ethernet",
    740 	  WM_T_82541,		WMP_F_1000T },
    741 
    742 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
    743 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
    744 	  WM_T_82541,		WMP_F_1000T },
    745 
    746 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
    747 	  "Intel i82541ER 1000BASE-T Ethernet",
    748 	  WM_T_82541_2,		WMP_F_1000T },
    749 
    750 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
    751 	  "Intel i82541GI 1000BASE-T Ethernet",
    752 	  WM_T_82541_2,		WMP_F_1000T },
    753 
    754 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
    755 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
    756 	  WM_T_82541_2,		WMP_F_1000T },
    757 
    758 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541PI,
    759 	  "Intel i82541PI 1000BASE-T Ethernet",
    760 	  WM_T_82541_2,		WMP_F_1000T },
    761 
    762 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
    763 	  "Intel i82547EI 1000BASE-T Ethernet",
    764 	  WM_T_82547,		WMP_F_1000T },
    765 
    766 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI_MOBILE,
    767 	  "Intel i82547EI Mobile 1000BASE-T Ethernet",
    768 	  WM_T_82547,		WMP_F_1000T },
    769 
    770 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
    771 	  "Intel i82547GI 1000BASE-T Ethernet",
    772 	  WM_T_82547_2,		WMP_F_1000T },
    773 
    774 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_COPPER,
    775 	  "Intel PRO/1000 PT (82571EB)",
    776 	  WM_T_82571,		WMP_F_1000T },
    777 
    778 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_FIBER,
    779 	  "Intel PRO/1000 PF (82571EB)",
    780 	  WM_T_82571,		WMP_F_1000X },
    781 #if 0
    782 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_SERDES,
    783 	  "Intel PRO/1000 PB (82571EB)",
    784 	  WM_T_82571,		WMP_F_SERDES },
    785 #endif
    786 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER,
    787 	  "Intel PRO/1000 QT (82571EB)",
    788 	  WM_T_82571,		WMP_F_1000T },
    789 
    790 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_COPPER,
    791 	  "Intel i82572EI 1000baseT Ethernet",
    792 	  WM_T_82572,		WMP_F_1000T },
    793 
    794 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER,
    795 	  "Intel PRO/1000 PT Quad Port Server Adapter",
    796 	  WM_T_82571,		WMP_F_1000T, },
    797 
    798 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_FIBER,
    799 	  "Intel i82572EI 1000baseX Ethernet",
    800 	  WM_T_82572,		WMP_F_1000X },
    801 #if 0
    802 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_SERDES,
    803 	  "Intel i82572EI Gigabit Ethernet (SERDES)",
    804 	  WM_T_82572,		WMP_F_SERDES },
    805 #endif
    806 
    807 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI,
    808 	  "Intel i82572EI 1000baseT Ethernet",
    809 	  WM_T_82572,		WMP_F_1000T },
    810 
    811 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573E,
    812 	  "Intel i82573E",
    813 	  WM_T_82573,		WMP_F_1000T },
    814 
    815 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573E_IAMT,
    816 	  "Intel i82573E IAMT",
    817 	  WM_T_82573,		WMP_F_1000T },
    818 
    819 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573L,
    820 	  "Intel i82573L Gigabit Ethernet",
    821 	  WM_T_82573,		WMP_F_1000T },
    822 
    823 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82574L,
    824 	  "Intel i82574L",
    825 	  WM_T_82574,		WMP_F_1000T },
    826 
    827 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82583V,
    828 	  "Intel i82583V",
    829 	  WM_T_82583,		WMP_F_1000T },
    830 
    831 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT,
    832 	  "i80003 dual 1000baseT Ethernet",
    833 	  WM_T_80003,		WMP_F_1000T },
    834 
    835 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT,
    836 	  "i80003 dual 1000baseX Ethernet",
    837 	  WM_T_80003,		WMP_F_1000T },
    838 #if 0
    839 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT,
    840 	  "Intel i80003ES2 dual Gigabit Ethernet (SERDES)",
    841 	  WM_T_80003,		WMP_F_SERDES },
    842 #endif
    843 
    844 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT,
    845 	  "Intel i80003 1000baseT Ethernet",
    846 	  WM_T_80003,		WMP_F_1000T },
    847 #if 0
    848 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT,
    849 	  "Intel i80003 Gigabit Ethernet (SERDES)",
    850 	  WM_T_80003,		WMP_F_SERDES },
    851 #endif
    852 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_M_AMT,
    853 	  "Intel i82801H (M_AMT) LAN Controller",
    854 	  WM_T_ICH8,		WMP_F_1000T },
    855 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_AMT,
    856 	  "Intel i82801H (AMT) LAN Controller",
    857 	  WM_T_ICH8,		WMP_F_1000T },
    858 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_LAN,
    859 	  "Intel i82801H LAN Controller",
    860 	  WM_T_ICH8,		WMP_F_1000T },
    861 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_IFE_LAN,
    862 	  "Intel i82801H (IFE) LAN Controller",
    863 	  WM_T_ICH8,		WMP_F_1000T },
    864 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_M_LAN,
    865 	  "Intel i82801H (M) LAN Controller",
    866 	  WM_T_ICH8,		WMP_F_1000T },
    867 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_IFE_GT,
    868 	  "Intel i82801H IFE (GT) LAN Controller",
    869 	  WM_T_ICH8,		WMP_F_1000T },
    870 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_IFE_G,
    871 	  "Intel i82801H IFE (G) LAN Controller",
    872 	  WM_T_ICH8,		WMP_F_1000T },
    873 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IGP_AMT,
    874 	  "82801I (AMT) LAN Controller",
    875 	  WM_T_ICH9,		WMP_F_1000T },
    876 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IFE,
    877 	  "82801I LAN Controller",
    878 	  WM_T_ICH9,		WMP_F_1000T },
    879 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IFE_G,
    880 	  "82801I (G) LAN Controller",
    881 	  WM_T_ICH9,		WMP_F_1000T },
    882 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IFE_GT,
    883 	  "82801I (GT) LAN Controller",
    884 	  WM_T_ICH9,		WMP_F_1000T },
    885 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IGP_C,
    886 	  "82801I (C) LAN Controller",
    887 	  WM_T_ICH9,		WMP_F_1000T },
    888 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IGP_M,
    889 	  "82801I mobile LAN Controller",
    890 	  WM_T_ICH9,		WMP_F_1000T },
    891 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_IGP_M_V,
    892 	  "82801I mobile (V) LAN Controller",
    893 	  WM_T_ICH9,		WMP_F_1000T },
    894 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IGP_M_AMT,
    895 	  "82801I mobile (AMT) LAN Controller",
    896 	  WM_T_ICH9,		WMP_F_1000T },
    897 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_BM,
    898 	  "82567LM-4 LAN Controller",
    899 	  WM_T_ICH9,		WMP_F_1000T },
    900 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_82567V_3,
    901 	  "82567V-3 LAN Controller",
    902 	  WM_T_ICH9,		WMP_F_1000T },
    903 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801J_R_BM_LM,
    904 	  "82567LM-2 LAN Controller",
    905 	  WM_T_ICH10,		WMP_F_1000T },
    906 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801J_R_BM_LF,
    907 	  "82567LF-2 LAN Controller",
    908 	  WM_T_ICH10,		WMP_F_1000T },
    909 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801J_D_BM_LM,
    910 	  "82567LM-3 LAN Controller",
    911 	  WM_T_ICH10,		WMP_F_1000T },
    912 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801J_D_BM_LF,
    913 	  "82567LF-3 LAN Controller",
    914 	  WM_T_ICH10,		WMP_F_1000T },
    915 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801J_R_BM_V,
    916 	  "82567V-2 LAN Controller",
    917 	  WM_T_ICH10,		WMP_F_1000T },
    918 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801J_D_BM_V,
    919 	  "82567V-3? LAN Controller",
    920 	  WM_T_ICH10,		WMP_F_1000T },
    921 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_HANKSVILLE,
    922 	  "HANKSVILLE LAN Controller",
    923 	  WM_T_ICH10,		WMP_F_1000T },
    924 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PCH_M_LM,
    925 	  "PCH LAN (82577LM) Controller",
    926 	  WM_T_PCH,		WMP_F_1000T },
    927 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PCH_M_LC,
    928 	  "PCH LAN (82577LC) Controller",
    929 	  WM_T_PCH,		WMP_F_1000T },
    930 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PCH_D_DM,
    931 	  "PCH LAN (82578DM) Controller",
    932 	  WM_T_PCH,		WMP_F_1000T },
    933 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PCH_D_DC,
    934 	  "PCH LAN (82578DC) Controller",
    935 	  WM_T_PCH,		WMP_F_1000T },
    936 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PCH2_LV_LM,
    937 	  "PCH2 LAN (82579LM) Controller",
    938 	  WM_T_PCH2,		WMP_F_1000T },
    939 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PCH2_LV_V,
    940 	  "PCH2 LAN (82579V) Controller",
    941 	  WM_T_PCH2,		WMP_F_1000T },
    942 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82575EB_COPPER,
    943 	  "82575EB dual-1000baseT Ethernet",
    944 	  WM_T_82575,		WMP_F_1000T },
    945 #if 0
    946 	/*
    947 	 * not sure if WMP_F_1000X or WMP_F_SERDES - we do not have it - so
    948 	 * disabled for now ...
    949 	 */
    950 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82575EB_FIBER_SERDES,
    951 	  "82575EB dual-1000baseX Ethernet (SERDES)",
    952 	  WM_T_82575,		WMP_F_SERDES },
    953 #endif
    954 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER,
    955 	  "82575GB quad-1000baseT Ethernet",
    956 	  WM_T_82575,		WMP_F_1000T },
    957 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER_PM,
    958 	  "82575GB quad-1000baseT Ethernet (PM)",
    959 	  WM_T_82575,		WMP_F_1000T },
    960 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82576_COPPER,
    961 	  "82576 1000BaseT Ethernet",
    962 	  WM_T_82576,		WMP_F_1000T },
    963 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82576_FIBER,
    964 	  "82576 1000BaseX Ethernet",
    965 	  WM_T_82576,		WMP_F_1000X },
    966 #if 0
    967 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82576_SERDES,
    968 	  "82576 gigabit Ethernet (SERDES)",
    969 	  WM_T_82576,		WMP_F_SERDES },
    970 #endif
    971 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82576_QUAD_COPPER,
    972 	  "82576 quad-1000BaseT Ethernet",
    973 	  WM_T_82576,		WMP_F_1000T },
    974 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82576_NS,
    975 	  "82576 gigabit Ethernet",
    976 	  WM_T_82576,		WMP_F_1000T },
    977 #if 0
    978 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82576_NS_SERDES,
    979 	  "82576 gigabit Ethernet (SERDES)",
    980 	  WM_T_82576,		WMP_F_SERDES },
    981 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82576_SERDES_QUAD,
    982 	  "82576 quad-gigabit Ethernet (SERDES)",
    983 	  WM_T_82576,		WMP_F_SERDES },
    984 #endif
    985 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82580_COPPER,
    986 	  "82580 1000BaseT Ethernet",
    987 	  WM_T_82580,		WMP_F_1000T },
    988 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82580_FIBER,
    989 	  "82580 1000BaseX Ethernet",
    990 	  WM_T_82580,		WMP_F_1000X },
    991 #if 0
    992 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82580_SERDES,
    993 	  "82580 1000BaseT Ethernet (SERDES)",
    994 	  WM_T_82580,		WMP_F_SERDES },
    995 #endif
    996 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82580_SGMII,
    997 	  "82580 gigabit Ethernet (SGMII)",
    998 	  WM_T_82580,		WMP_F_1000T },
    999 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82580_COPPER_DUAL,
   1000 	  "82580 dual-1000BaseT Ethernet",
   1001 	  WM_T_82580,		WMP_F_1000T },
   1002 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82580_ER,
   1003 	  "82580 1000BaseT Ethernet",
   1004 	  WM_T_82580ER,		WMP_F_1000T },
   1005 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82580_ER_DUAL,
   1006 	  "82580 dual-1000BaseT Ethernet",
   1007 	  WM_T_82580ER,		WMP_F_1000T },
   1008 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82580_QUAD_FIBER,
   1009 	  "82580 quad-1000BaseX Ethernet",
   1010 	  WM_T_82580,		WMP_F_1000X },
   1011 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I350_COPPER,
   1012 	  "I350 Gigabit Network Connection",
   1013 	  WM_T_I350,		WMP_F_1000T },
   1014 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I350_FIBER,
   1015 	  "I350 Gigabit Fiber Network Connection",
   1016 	  WM_T_I350,		WMP_F_1000X },
   1017 #if 0
   1018 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I350_SERDES,
   1019 	  "I350 Gigabit Backplane Connection",
   1020 	  WM_T_I350,		WMP_F_SERDES },
   1021 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I350_SGMII,
   1022 	  "I350 Gigabit Connection",
   1023 	  WM_T_I350,		WMP_F_1000T },
   1024 #endif
   1025 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I210_T1,
   1026 	  "I210-T1 Ethernet Server Adapter",
   1027 	  WM_T_I210,		WMP_F_1000T },
   1028 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I210_COPPER_OEM1,
   1029 	  "I210 Ethernet (Copper OEM)",
   1030 	  WM_T_I210,		WMP_F_1000T },
   1031 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I210_COPPER_IT,
   1032 	  "I210 Ethernet (Copper IT)",
   1033 	  WM_T_I210,		WMP_F_1000T },
   1034 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I210_FIBER,
   1035 	  "I210 Gigabit Ethernet (Fiber)",
   1036 	  WM_T_I210,		WMP_F_1000X },
   1037 #if 0
   1038 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I210_SERDES,
   1039 	  "I210 Gigabit Ethernet (SERDES)",
   1040 	  WM_T_I210,		WMP_F_SERDES },
   1041 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I210_SGMII,
   1042 	  "I210 Gigabit Ethernet (SGMII)",
   1043 	  WM_T_I210,		WMP_F_SERDES },
   1044 #endif
   1045 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I211_COPPER,
   1046 	  "I211 Ethernet (COPPER)",
   1047 	  WM_T_I211,		WMP_F_1000T },
   1048 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I217_V,
   1049 	  "I217 V Ethernet Connection",
   1050 	  WM_T_PCH_LPT,		WMP_F_1000T },
   1051 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I217_LM,
   1052 	  "I217 LM Ethernet Connection",
   1053 	  WM_T_PCH_LPT,		WMP_F_1000T },
   1054 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I218_V,
   1055 	  "I218 V Ethernet Connection",
   1056 	  WM_T_PCH_LPT,		WMP_F_1000T },
   1057 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I218_LM,
   1058 	  "I218 LM Ethernet Connection",
   1059 	  WM_T_PCH_LPT,		WMP_F_1000T },
   1060 	{ 0,			0,
   1061 	  NULL,
   1062 	  0,			0 },
   1063 };
   1064 
   1065 #ifdef WM_EVENT_COUNTERS
   1066 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
   1067 #endif /* WM_EVENT_COUNTERS */
   1068 
   1069 #if 0 /* Not currently used */
   1070 static inline uint32_t
   1071 wm_io_read(struct wm_softc *sc, int reg)
   1072 {
   1073 
   1074 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
   1075 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
   1076 }
   1077 #endif
   1078 
   1079 static inline void
   1080 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
   1081 {
   1082 
   1083 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
   1084 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
   1085 }
   1086 
   1087 static inline void
   1088 wm_82575_write_8bit_ctlr_reg(struct wm_softc *sc, uint32_t reg, uint32_t off,
   1089     uint32_t data)
   1090 {
   1091 	uint32_t regval;
   1092 	int i;
   1093 
   1094 	regval = (data & SCTL_CTL_DATA_MASK) | (off << SCTL_CTL_ADDR_SHIFT);
   1095 
   1096 	CSR_WRITE(sc, reg, regval);
   1097 
   1098 	for (i = 0; i < SCTL_CTL_POLL_TIMEOUT; i++) {
   1099 		delay(5);
   1100 		if (CSR_READ(sc, reg) & SCTL_CTL_READY)
   1101 			break;
   1102 	}
   1103 	if (i == SCTL_CTL_POLL_TIMEOUT) {
   1104 		aprint_error("%s: WARNING: i82575 reg 0x%08x setup did not indicate ready\n",
   1105 		    device_xname(sc->sc_dev), reg);
   1106 	}
   1107 }
   1108 
   1109 static inline void
   1110 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
   1111 {
   1112 	wa->wa_low = htole32(v & 0xffffffffU);
   1113 	if (sizeof(bus_addr_t) == 8)
   1114 		wa->wa_high = htole32((uint64_t) v >> 32);
   1115 	else
   1116 		wa->wa_high = 0;
   1117 }
   1118 
   1119 static void
   1120 wm_set_spiaddrbits(struct wm_softc *sc)
   1121 {
   1122 	uint32_t reg;
   1123 
   1124 	sc->sc_flags |= WM_F_EEPROM_SPI;
   1125 	reg = CSR_READ(sc, WMREG_EECD);
   1126 	sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1127 }
   1128 
   1129 static const struct wm_product *
   1130 wm_lookup(const struct pci_attach_args *pa)
   1131 {
   1132 	const struct wm_product *wmp;
   1133 
   1134 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
   1135 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
   1136 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
   1137 			return wmp;
   1138 	}
   1139 	return NULL;
   1140 }
   1141 
   1142 static int
   1143 wm_match(device_t parent, cfdata_t cf, void *aux)
   1144 {
   1145 	struct pci_attach_args *pa = aux;
   1146 
   1147 	if (wm_lookup(pa) != NULL)
   1148 		return 1;
   1149 
   1150 	return 0;
   1151 }
   1152 
   1153 static void
   1154 wm_attach(device_t parent, device_t self, void *aux)
   1155 {
   1156 	struct wm_softc *sc = device_private(self);
   1157 	struct pci_attach_args *pa = aux;
   1158 	prop_dictionary_t dict;
   1159 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1160 	pci_chipset_tag_t pc = pa->pa_pc;
   1161 	pci_intr_handle_t ih;
   1162 	const char *intrstr = NULL;
   1163 	const char *eetype, *xname;
   1164 	bus_space_tag_t memt;
   1165 	bus_space_handle_t memh;
   1166 	bus_size_t memsize;
   1167 	int memh_valid;
   1168 	int i, error;
   1169 	const struct wm_product *wmp;
   1170 	prop_data_t ea;
   1171 	prop_number_t pn;
   1172 	uint8_t enaddr[ETHER_ADDR_LEN];
   1173 	uint16_t cfg1, cfg2, swdpin, io3;
   1174 	pcireg_t preg, memtype;
   1175 	uint16_t eeprom_data, apme_mask;
   1176 	uint32_t reg;
   1177 
   1178 	sc->sc_dev = self;
   1179 	callout_init(&sc->sc_tick_ch, 0);
   1180 
   1181 	sc->sc_wmp = wmp = wm_lookup(pa);
   1182 	if (wmp == NULL) {
   1183 		printf("\n");
   1184 		panic("wm_attach: impossible");
   1185 	}
   1186 
   1187 	sc->sc_pc = pa->pa_pc;
   1188 	sc->sc_pcitag = pa->pa_tag;
   1189 
   1190 	if (pci_dma64_available(pa))
   1191 		sc->sc_dmat = pa->pa_dmat64;
   1192 	else
   1193 		sc->sc_dmat = pa->pa_dmat;
   1194 
   1195 	sc->sc_rev = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
   1196 	pci_aprint_devinfo_fancy(pa, "Ethernet controller", wmp->wmp_name, 1);
   1197 
   1198 	sc->sc_type = wmp->wmp_type;
   1199 	if (sc->sc_type < WM_T_82543) {
   1200 		if (sc->sc_rev < 2) {
   1201 			aprint_error_dev(sc->sc_dev,
   1202 			    "i82542 must be at least rev. 2\n");
   1203 			return;
   1204 		}
   1205 		if (sc->sc_rev < 3)
   1206 			sc->sc_type = WM_T_82542_2_0;
   1207 	}
   1208 
   1209 	if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
   1210 	    || (sc->sc_type == WM_T_82580) || (sc->sc_type == WM_T_82580ER)
   1211 	    || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I210)
   1212 	    || (sc->sc_type == WM_T_I211))
   1213 		sc->sc_flags |= WM_F_NEWQUEUE;
   1214 
   1215 	/* Set device properties (mactype) */
   1216 	dict = device_properties(sc->sc_dev);
   1217 	prop_dictionary_set_uint32(dict, "mactype", sc->sc_type);
   1218 
   1219 	/*
   1220 	 * Map the device.  All devices support memory-mapped acccess,
   1221 	 * and it is really required for normal operation.
   1222 	 */
   1223 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
   1224 	switch (memtype) {
   1225 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1226 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1227 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
   1228 		    memtype, 0, &memt, &memh, NULL, &memsize) == 0);
   1229 		break;
   1230 	default:
   1231 		memh_valid = 0;
   1232 		break;
   1233 	}
   1234 
   1235 	if (memh_valid) {
   1236 		sc->sc_st = memt;
   1237 		sc->sc_sh = memh;
   1238 		sc->sc_ss = memsize;
   1239 	} else {
   1240 		aprint_error_dev(sc->sc_dev,
   1241 		    "unable to map device registers\n");
   1242 		return;
   1243 	}
   1244 
   1245 	wm_get_wakeup(sc);
   1246 
   1247 	/*
   1248 	 * In addition, i82544 and later support I/O mapped indirect
   1249 	 * register access.  It is not desirable (nor supported in
   1250 	 * this driver) to use it for normal operation, though it is
   1251 	 * required to work around bugs in some chip versions.
   1252 	 */
   1253 	if (sc->sc_type >= WM_T_82544) {
   1254 		/* First we have to find the I/O BAR. */
   1255 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
   1256 			memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, i);
   1257 			if (memtype == PCI_MAPREG_TYPE_IO)
   1258 				break;
   1259 			if (PCI_MAPREG_MEM_TYPE(memtype) ==
   1260 			    PCI_MAPREG_MEM_TYPE_64BIT)
   1261 				i += 4;	/* skip high bits, too */
   1262 		}
   1263 		if (i < PCI_MAPREG_END) {
   1264 			/*
   1265 			 * We found PCI_MAPREG_TYPE_IO. Note that 82580
   1266 			 * (and newer?) chip has no PCI_MAPREG_TYPE_IO.
   1267 			 * It's no problem because newer chips has no this
   1268 			 * bug.
   1269 			 *
   1270 			 * The i8254x doesn't apparently respond when the
   1271 			 * I/O BAR is 0, which looks somewhat like it's not
   1272 			 * been configured.
   1273 			 */
   1274 			preg = pci_conf_read(pc, pa->pa_tag, i);
   1275 			if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
   1276 				aprint_error_dev(sc->sc_dev,
   1277 				    "WARNING: I/O BAR at zero.\n");
   1278 			} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
   1279 					0, &sc->sc_iot, &sc->sc_ioh,
   1280 					NULL, &sc->sc_ios) == 0) {
   1281 				sc->sc_flags |= WM_F_IOH_VALID;
   1282 			} else {
   1283 				aprint_error_dev(sc->sc_dev,
   1284 				    "WARNING: unable to map I/O space\n");
   1285 			}
   1286 		}
   1287 
   1288 	}
   1289 
   1290 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
   1291 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1292 	preg |= PCI_COMMAND_MASTER_ENABLE;
   1293 	if (sc->sc_type < WM_T_82542_2_1)
   1294 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
   1295 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
   1296 
   1297 	/* power up chip */
   1298 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
   1299 	    NULL)) && error != EOPNOTSUPP) {
   1300 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
   1301 		return;
   1302 	}
   1303 
   1304 	/*
   1305 	 * Map and establish our interrupt.
   1306 	 */
   1307 	if (pci_intr_map(pa, &ih)) {
   1308 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
   1309 		return;
   1310 	}
   1311 	intrstr = pci_intr_string(pc, ih);
   1312 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
   1313 	if (sc->sc_ih == NULL) {
   1314 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
   1315 		if (intrstr != NULL)
   1316 			aprint_error(" at %s", intrstr);
   1317 		aprint_error("\n");
   1318 		return;
   1319 	}
   1320 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
   1321 
   1322 	/*
   1323 	 * Check the function ID (unit number of the chip).
   1324 	 */
   1325 	if ((sc->sc_type == WM_T_82546) || (sc->sc_type == WM_T_82546_3)
   1326 	    || (sc->sc_type ==  WM_T_82571) || (sc->sc_type == WM_T_80003)
   1327 	    || (sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
   1328 	    || (sc->sc_type == WM_T_82580) || (sc->sc_type == WM_T_82580ER)
   1329 	    || (sc->sc_type == WM_T_I350))
   1330 		sc->sc_funcid = (CSR_READ(sc, WMREG_STATUS)
   1331 		    >> STATUS_FUNCID_SHIFT) & STATUS_FUNCID_MASK;
   1332 	else
   1333 		sc->sc_funcid = 0;
   1334 
   1335 	/*
   1336 	 * Determine a few things about the bus we're connected to.
   1337 	 */
   1338 	if (sc->sc_type < WM_T_82543) {
   1339 		/* We don't really know the bus characteristics here. */
   1340 		sc->sc_bus_speed = 33;
   1341 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
   1342 		/*
   1343 		 * CSA (Communication Streaming Architecture) is about as fast
   1344 		 * a 32-bit 66MHz PCI Bus.
   1345 		 */
   1346 		sc->sc_flags |= WM_F_CSA;
   1347 		sc->sc_bus_speed = 66;
   1348 		aprint_verbose_dev(sc->sc_dev,
   1349 		    "Communication Streaming Architecture\n");
   1350 		if (sc->sc_type == WM_T_82547) {
   1351 			callout_init(&sc->sc_txfifo_ch, 0);
   1352 			callout_setfunc(&sc->sc_txfifo_ch,
   1353 					wm_82547_txfifo_stall, sc);
   1354 			aprint_verbose_dev(sc->sc_dev,
   1355 			    "using 82547 Tx FIFO stall work-around\n");
   1356 		}
   1357 	} else if (sc->sc_type >= WM_T_82571) {
   1358 		sc->sc_flags |= WM_F_PCIE;
   1359 		if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9)
   1360 		    && (sc->sc_type != WM_T_ICH10)
   1361 		    && (sc->sc_type != WM_T_PCH)
   1362 		    && (sc->sc_type != WM_T_PCH2)
   1363 		    && (sc->sc_type != WM_T_PCH_LPT)) {
   1364 			sc->sc_flags |= WM_F_EEPROM_SEMAPHORE;
   1365 			/* ICH* and PCH* have no PCIe capability registers */
   1366 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
   1367 				PCI_CAP_PCIEXPRESS, &sc->sc_pcixe_capoff,
   1368 				NULL) == 0)
   1369 				aprint_error_dev(sc->sc_dev,
   1370 				    "unable to find PCIe capability\n");
   1371 		}
   1372 		aprint_verbose_dev(sc->sc_dev, "PCI-Express bus\n");
   1373 	} else {
   1374 		reg = CSR_READ(sc, WMREG_STATUS);
   1375 		if (reg & STATUS_BUS64)
   1376 			sc->sc_flags |= WM_F_BUS64;
   1377 		if ((reg & STATUS_PCIX_MODE) != 0) {
   1378 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
   1379 
   1380 			sc->sc_flags |= WM_F_PCIX;
   1381 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
   1382 				PCI_CAP_PCIX, &sc->sc_pcixe_capoff, NULL) == 0)
   1383 				aprint_error_dev(sc->sc_dev,
   1384 				    "unable to find PCIX capability\n");
   1385 			else if (sc->sc_type != WM_T_82545_3 &&
   1386 				 sc->sc_type != WM_T_82546_3) {
   1387 				/*
   1388 				 * Work around a problem caused by the BIOS
   1389 				 * setting the max memory read byte count
   1390 				 * incorrectly.
   1391 				 */
   1392 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1393 				    sc->sc_pcixe_capoff + PCIX_CMD);
   1394 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1395 				    sc->sc_pcixe_capoff + PCIX_STATUS);
   1396 
   1397 				bytecnt =
   1398 				    (pcix_cmd & PCIX_CMD_BYTECNT_MASK) >>
   1399 				    PCIX_CMD_BYTECNT_SHIFT;
   1400 				maxb =
   1401 				    (pcix_sts & PCIX_STATUS_MAXB_MASK) >>
   1402 				    PCIX_STATUS_MAXB_SHIFT;
   1403 				if (bytecnt > maxb) {
   1404 					aprint_verbose_dev(sc->sc_dev,
   1405 					    "resetting PCI-X MMRBC: %d -> %d\n",
   1406 					    512 << bytecnt, 512 << maxb);
   1407 					pcix_cmd = (pcix_cmd &
   1408 					    ~PCIX_CMD_BYTECNT_MASK) |
   1409 					   (maxb << PCIX_CMD_BYTECNT_SHIFT);
   1410 					pci_conf_write(pa->pa_pc, pa->pa_tag,
   1411 					    sc->sc_pcixe_capoff + PCIX_CMD,
   1412 					    pcix_cmd);
   1413 				}
   1414 			}
   1415 		}
   1416 		/*
   1417 		 * The quad port adapter is special; it has a PCIX-PCIX
   1418 		 * bridge on the board, and can run the secondary bus at
   1419 		 * a higher speed.
   1420 		 */
   1421 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
   1422 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
   1423 								      : 66;
   1424 		} else if (sc->sc_flags & WM_F_PCIX) {
   1425 			switch (reg & STATUS_PCIXSPD_MASK) {
   1426 			case STATUS_PCIXSPD_50_66:
   1427 				sc->sc_bus_speed = 66;
   1428 				break;
   1429 			case STATUS_PCIXSPD_66_100:
   1430 				sc->sc_bus_speed = 100;
   1431 				break;
   1432 			case STATUS_PCIXSPD_100_133:
   1433 				sc->sc_bus_speed = 133;
   1434 				break;
   1435 			default:
   1436 				aprint_error_dev(sc->sc_dev,
   1437 				    "unknown PCIXSPD %d; assuming 66MHz\n",
   1438 				    reg & STATUS_PCIXSPD_MASK);
   1439 				sc->sc_bus_speed = 66;
   1440 				break;
   1441 			}
   1442 		} else
   1443 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
   1444 		aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
   1445 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
   1446 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
   1447 	}
   1448 
   1449 	/*
   1450 	 * Allocate the control data structures, and create and load the
   1451 	 * DMA map for it.
   1452 	 *
   1453 	 * NOTE: All Tx descriptors must be in the same 4G segment of
   1454 	 * memory.  So must Rx descriptors.  We simplify by allocating
   1455 	 * both sets within the same 4G segment.
   1456 	 */
   1457 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
   1458 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
   1459 	sc->sc_cd_size = sc->sc_type < WM_T_82544 ?
   1460 	    sizeof(struct wm_control_data_82542) :
   1461 	    sizeof(struct wm_control_data_82544);
   1462 	if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_cd_size, PAGE_SIZE,
   1463 		    (bus_size_t) 0x100000000ULL, &sc->sc_cd_seg, 1,
   1464 		    &sc->sc_cd_rseg, 0)) != 0) {
   1465 		aprint_error_dev(sc->sc_dev,
   1466 		    "unable to allocate control data, error = %d\n",
   1467 		    error);
   1468 		goto fail_0;
   1469 	}
   1470 
   1471 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cd_seg,
   1472 		    sc->sc_cd_rseg, sc->sc_cd_size,
   1473 		    (void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) {
   1474 		aprint_error_dev(sc->sc_dev,
   1475 		    "unable to map control data, error = %d\n", error);
   1476 		goto fail_1;
   1477 	}
   1478 
   1479 	if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_cd_size, 1,
   1480 		    sc->sc_cd_size, 0, 0, &sc->sc_cddmamap)) != 0) {
   1481 		aprint_error_dev(sc->sc_dev,
   1482 		    "unable to create control data DMA map, error = %d\n",
   1483 		    error);
   1484 		goto fail_2;
   1485 	}
   1486 
   1487 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
   1488 		    sc->sc_control_data, sc->sc_cd_size, NULL, 0)) != 0) {
   1489 		aprint_error_dev(sc->sc_dev,
   1490 		    "unable to load control data DMA map, error = %d\n",
   1491 		    error);
   1492 		goto fail_3;
   1493 	}
   1494 
   1495 	/*
   1496 	 * Create the transmit buffer DMA maps.
   1497 	 */
   1498 	WM_TXQUEUELEN(sc) =
   1499 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
   1500 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
   1501 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1502 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
   1503 			    WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
   1504 			    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1505 			aprint_error_dev(sc->sc_dev,
   1506 			    "unable to create Tx DMA map %d, error = %d\n",
   1507 			    i, error);
   1508 			goto fail_4;
   1509 		}
   1510 	}
   1511 
   1512 	/*
   1513 	 * Create the receive buffer DMA maps.
   1514 	 */
   1515 	for (i = 0; i < WM_NRXDESC; i++) {
   1516 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1517 			    MCLBYTES, 0, 0,
   1518 			    &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1519 			aprint_error_dev(sc->sc_dev,
   1520 			    "unable to create Rx DMA map %d error = %d\n",
   1521 			    i, error);
   1522 			goto fail_5;
   1523 		}
   1524 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1525 	}
   1526 
   1527 	/* clear interesting stat counters */
   1528 	CSR_READ(sc, WMREG_COLC);
   1529 	CSR_READ(sc, WMREG_RXERRC);
   1530 
   1531 	/* get PHY control from SMBus to PCIe */
   1532 	if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)
   1533 	    || (sc->sc_type == WM_T_PCH_LPT))
   1534 		wm_smbustopci(sc);
   1535 
   1536 	/*
   1537 	 * Reset the chip to a known state.
   1538 	 */
   1539 	wm_reset(sc);
   1540 
   1541 	switch (sc->sc_type) {
   1542 	case WM_T_82571:
   1543 	case WM_T_82572:
   1544 	case WM_T_82573:
   1545 	case WM_T_82574:
   1546 	case WM_T_82583:
   1547 	case WM_T_80003:
   1548 	case WM_T_ICH8:
   1549 	case WM_T_ICH9:
   1550 	case WM_T_ICH10:
   1551 	case WM_T_PCH:
   1552 	case WM_T_PCH2:
   1553 	case WM_T_PCH_LPT:
   1554 		if (wm_check_mng_mode(sc) != 0)
   1555 			wm_get_hw_control(sc);
   1556 		break;
   1557 	default:
   1558 		break;
   1559 	}
   1560 
   1561 	/*
   1562 	 * Get some information about the EEPROM.
   1563 	 */
   1564 	switch (sc->sc_type) {
   1565 	case WM_T_82542_2_0:
   1566 	case WM_T_82542_2_1:
   1567 	case WM_T_82543:
   1568 	case WM_T_82544:
   1569 		/* Microwire */
   1570 		sc->sc_ee_addrbits = 6;
   1571 		break;
   1572 	case WM_T_82540:
   1573 	case WM_T_82545:
   1574 	case WM_T_82545_3:
   1575 	case WM_T_82546:
   1576 	case WM_T_82546_3:
   1577 		/* Microwire */
   1578 		reg = CSR_READ(sc, WMREG_EECD);
   1579 		if (reg & EECD_EE_SIZE)
   1580 			sc->sc_ee_addrbits = 8;
   1581 		else
   1582 			sc->sc_ee_addrbits = 6;
   1583 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
   1584 		break;
   1585 	case WM_T_82541:
   1586 	case WM_T_82541_2:
   1587 	case WM_T_82547:
   1588 	case WM_T_82547_2:
   1589 		reg = CSR_READ(sc, WMREG_EECD);
   1590 		if (reg & EECD_EE_TYPE) {
   1591 			/* SPI */
   1592 			wm_set_spiaddrbits(sc);
   1593 		} else
   1594 			/* Microwire */
   1595 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
   1596 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
   1597 		break;
   1598 	case WM_T_82571:
   1599 	case WM_T_82572:
   1600 		/* SPI */
   1601 		wm_set_spiaddrbits(sc);
   1602 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
   1603 		break;
   1604 	case WM_T_82573:
   1605 	case WM_T_82574:
   1606 	case WM_T_82583:
   1607 		if (wm_is_onboard_nvm_eeprom(sc) == 0)
   1608 			sc->sc_flags |= WM_F_EEPROM_FLASH;
   1609 		else {
   1610 			/* SPI */
   1611 			wm_set_spiaddrbits(sc);
   1612 		}
   1613 		sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
   1614 		break;
   1615 	case WM_T_82575:
   1616 	case WM_T_82576:
   1617 	case WM_T_82580:
   1618 	case WM_T_82580ER:
   1619 	case WM_T_I350:
   1620 	case WM_T_80003:
   1621 		/* SPI */
   1622 		wm_set_spiaddrbits(sc);
   1623 		sc->sc_flags |= WM_F_EEPROM_EERDEEWR | WM_F_SWFW_SYNC;
   1624 		break;
   1625 	case WM_T_ICH8:
   1626 	case WM_T_ICH9:
   1627 	case WM_T_ICH10:
   1628 	case WM_T_PCH:
   1629 	case WM_T_PCH2:
   1630 	case WM_T_PCH_LPT:
   1631 		/* FLASH */
   1632 		sc->sc_flags |= WM_F_EEPROM_FLASH | WM_F_SWFWHW_SYNC;
   1633 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_ICH8_FLASH);
   1634 		if (pci_mapreg_map(pa, WM_ICH8_FLASH, memtype, 0,
   1635 		    &sc->sc_flasht, &sc->sc_flashh, NULL, NULL)) {
   1636 			aprint_error_dev(sc->sc_dev,
   1637 			    "can't map FLASH registers\n");
   1638 			return;
   1639 		}
   1640 		reg = ICH8_FLASH_READ32(sc, ICH_FLASH_GFPREG);
   1641 		sc->sc_ich8_flash_base = (reg & ICH_GFPREG_BASE_MASK) *
   1642 						ICH_FLASH_SECTOR_SIZE;
   1643 		sc->sc_ich8_flash_bank_size =
   1644 		    ((reg >> 16) & ICH_GFPREG_BASE_MASK) + 1;
   1645 		sc->sc_ich8_flash_bank_size -=
   1646 		    (reg & ICH_GFPREG_BASE_MASK);
   1647 		sc->sc_ich8_flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
   1648 		sc->sc_ich8_flash_bank_size /= 2 * sizeof(uint16_t);
   1649 		break;
   1650 	case WM_T_I210:
   1651 	case WM_T_I211:
   1652 #if 1
   1653 		sc->sc_flags |= WM_F_EEPROM_FLASH_HW;
   1654 		sc->sc_flags |= WM_F_EEPROM_EERDEEWR | WM_F_SWFW_SYNC;
   1655 #endif
   1656 		break;
   1657 	default:
   1658 		break;
   1659 	}
   1660 
   1661 	/*
   1662 	 * Defer printing the EEPROM type until after verifying the checksum
   1663 	 * This allows the EEPROM type to be printed correctly in the case
   1664 	 * that no EEPROM is attached.
   1665 	 */
   1666 	/*
   1667 	 * Validate the EEPROM checksum. If the checksum fails, flag
   1668 	 * this for later, so we can fail future reads from the EEPROM.
   1669 	 */
   1670 	if (wm_validate_eeprom_checksum(sc)) {
   1671 		/*
   1672 		 * Read twice again because some PCI-e parts fail the
   1673 		 * first check due to the link being in sleep state.
   1674 		 */
   1675 		if (wm_validate_eeprom_checksum(sc))
   1676 			sc->sc_flags |= WM_F_EEPROM_INVALID;
   1677 	}
   1678 
   1679 	/* Set device properties (macflags) */
   1680 	prop_dictionary_set_uint32(dict, "macflags", sc->sc_flags);
   1681 
   1682 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
   1683 		aprint_verbose_dev(sc->sc_dev, "No EEPROM\n");
   1684 	else if (sc->sc_flags & WM_F_EEPROM_FLASH_HW) {
   1685 		aprint_verbose_dev(sc->sc_dev, "FLASH(HW)\n");
   1686 	} else if (sc->sc_flags & WM_F_EEPROM_FLASH) {
   1687 		aprint_verbose_dev(sc->sc_dev, "FLASH\n");
   1688 	} else {
   1689 		if (sc->sc_flags & WM_F_EEPROM_SPI)
   1690 			eetype = "SPI";
   1691 		else
   1692 			eetype = "MicroWire";
   1693 		aprint_verbose_dev(sc->sc_dev,
   1694 		    "%u word (%d address bits) %s EEPROM\n",
   1695 		    1U << sc->sc_ee_addrbits,
   1696 		    sc->sc_ee_addrbits, eetype);
   1697 	}
   1698 
   1699 	/*
   1700 	 * Read the Ethernet address from the EEPROM, if not first found
   1701 	 * in device properties.
   1702 	 */
   1703 	ea = prop_dictionary_get(dict, "mac-address");
   1704 	if (ea != NULL) {
   1705 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   1706 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   1707 		memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   1708 	} else {
   1709 		if (wm_read_mac_addr(sc, enaddr) != 0) {
   1710 			aprint_error_dev(sc->sc_dev,
   1711 			    "unable to read Ethernet address\n");
   1712 			return;
   1713 		}
   1714 	}
   1715 
   1716 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
   1717 	    ether_sprintf(enaddr));
   1718 
   1719 	/*
   1720 	 * Read the config info from the EEPROM, and set up various
   1721 	 * bits in the control registers based on their contents.
   1722 	 */
   1723 	pn = prop_dictionary_get(dict, "i82543-cfg1");
   1724 	if (pn != NULL) {
   1725 		KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1726 		cfg1 = (uint16_t) prop_number_integer_value(pn);
   1727 	} else {
   1728 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
   1729 			aprint_error_dev(sc->sc_dev, "unable to read CFG1\n");
   1730 			return;
   1731 		}
   1732 	}
   1733 
   1734 	pn = prop_dictionary_get(dict, "i82543-cfg2");
   1735 	if (pn != NULL) {
   1736 		KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1737 		cfg2 = (uint16_t) prop_number_integer_value(pn);
   1738 	} else {
   1739 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
   1740 			aprint_error_dev(sc->sc_dev, "unable to read CFG2\n");
   1741 			return;
   1742 		}
   1743 	}
   1744 
   1745 	/* check for WM_F_WOL */
   1746 	switch (sc->sc_type) {
   1747 	case WM_T_82542_2_0:
   1748 	case WM_T_82542_2_1:
   1749 	case WM_T_82543:
   1750 		/* dummy? */
   1751 		eeprom_data = 0;
   1752 		apme_mask = EEPROM_CFG3_APME;
   1753 		break;
   1754 	case WM_T_82544:
   1755 		apme_mask = EEPROM_CFG2_82544_APM_EN;
   1756 		eeprom_data = cfg2;
   1757 		break;
   1758 	case WM_T_82546:
   1759 	case WM_T_82546_3:
   1760 	case WM_T_82571:
   1761 	case WM_T_82572:
   1762 	case WM_T_82573:
   1763 	case WM_T_82574:
   1764 	case WM_T_82583:
   1765 	case WM_T_80003:
   1766 	default:
   1767 		apme_mask = EEPROM_CFG3_APME;
   1768 		wm_read_eeprom(sc, (sc->sc_funcid == 1) ? EEPROM_OFF_CFG3_PORTB
   1769 		    : EEPROM_OFF_CFG3_PORTA, 1, &eeprom_data);
   1770 		break;
   1771 	case WM_T_82575:
   1772 	case WM_T_82576:
   1773 	case WM_T_82580:
   1774 	case WM_T_82580ER:
   1775 	case WM_T_I350:
   1776 	case WM_T_ICH8:
   1777 	case WM_T_ICH9:
   1778 	case WM_T_ICH10:
   1779 	case WM_T_PCH:
   1780 	case WM_T_PCH2:
   1781 	case WM_T_PCH_LPT:
   1782 		/* XXX The funcid should be checked on some devices */
   1783 		apme_mask = WUC_APME;
   1784 		eeprom_data = CSR_READ(sc, WMREG_WUC);
   1785 		break;
   1786 	}
   1787 
   1788 	/* Check for WM_F_WOL flag after the setting of the EEPROM stuff */
   1789 	if ((eeprom_data & apme_mask) != 0)
   1790 		sc->sc_flags |= WM_F_WOL;
   1791 #ifdef WM_DEBUG
   1792 	if ((sc->sc_flags & WM_F_WOL) != 0)
   1793 		printf("WOL\n");
   1794 #endif
   1795 
   1796 	/*
   1797 	 * XXX need special handling for some multiple port cards
   1798 	 * to disable a paticular port.
   1799 	 */
   1800 
   1801 	if (sc->sc_type >= WM_T_82544) {
   1802 		pn = prop_dictionary_get(dict, "i82543-swdpin");
   1803 		if (pn != NULL) {
   1804 			KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1805 			swdpin = (uint16_t) prop_number_integer_value(pn);
   1806 		} else {
   1807 			if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
   1808 				aprint_error_dev(sc->sc_dev,
   1809 				    "unable to read SWDPIN\n");
   1810 				return;
   1811 			}
   1812 		}
   1813 	}
   1814 
   1815 	if (cfg1 & EEPROM_CFG1_ILOS)
   1816 		sc->sc_ctrl |= CTRL_ILOS;
   1817 	if (sc->sc_type >= WM_T_82544) {
   1818 		sc->sc_ctrl |=
   1819 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
   1820 		    CTRL_SWDPIO_SHIFT;
   1821 		sc->sc_ctrl |=
   1822 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
   1823 		    CTRL_SWDPINS_SHIFT;
   1824 	} else {
   1825 		sc->sc_ctrl |=
   1826 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
   1827 		    CTRL_SWDPIO_SHIFT;
   1828 	}
   1829 
   1830 #if 0
   1831 	if (sc->sc_type >= WM_T_82544) {
   1832 		if (cfg1 & EEPROM_CFG1_IPS0)
   1833 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
   1834 		if (cfg1 & EEPROM_CFG1_IPS1)
   1835 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
   1836 		sc->sc_ctrl_ext |=
   1837 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
   1838 		    CTRL_EXT_SWDPIO_SHIFT;
   1839 		sc->sc_ctrl_ext |=
   1840 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
   1841 		    CTRL_EXT_SWDPINS_SHIFT;
   1842 	} else {
   1843 		sc->sc_ctrl_ext |=
   1844 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
   1845 		    CTRL_EXT_SWDPIO_SHIFT;
   1846 	}
   1847 #endif
   1848 
   1849 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   1850 #if 0
   1851 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   1852 #endif
   1853 
   1854 	/*
   1855 	 * Set up some register offsets that are different between
   1856 	 * the i82542 and the i82543 and later chips.
   1857 	 */
   1858 	if (sc->sc_type < WM_T_82543) {
   1859 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
   1860 		sc->sc_tdt_reg = WMREG_OLD_TDT;
   1861 	} else {
   1862 		sc->sc_rdt_reg = WMREG_RDT;
   1863 		sc->sc_tdt_reg = WMREG_TDT;
   1864 	}
   1865 
   1866 	if (sc->sc_type == WM_T_PCH) {
   1867 		uint16_t val;
   1868 
   1869 		/* Save the NVM K1 bit setting */
   1870 		wm_read_eeprom(sc, EEPROM_OFF_K1_CONFIG, 1, &val);
   1871 
   1872 		if ((val & EEPROM_K1_CONFIG_ENABLE) != 0)
   1873 			sc->sc_nvm_k1_enabled = 1;
   1874 		else
   1875 			sc->sc_nvm_k1_enabled = 0;
   1876 	}
   1877 
   1878 	/*
   1879 	 * Determine if we're TBI,GMII or SGMII mode, and initialize the
   1880 	 * media structures accordingly.
   1881 	 */
   1882 	if (sc->sc_type == WM_T_ICH8 || sc->sc_type == WM_T_ICH9
   1883 	    || sc->sc_type == WM_T_ICH10 || sc->sc_type == WM_T_PCH
   1884 	    || sc->sc_type == WM_T_PCH2 || sc->sc_type == WM_T_PCH_LPT
   1885 	    || sc->sc_type == WM_T_82573
   1886 	    || sc->sc_type == WM_T_82574 || sc->sc_type == WM_T_82583) {
   1887 		/* STATUS_TBIMODE reserved/reused, can't rely on it */
   1888 		wm_gmii_mediainit(sc, wmp->wmp_product);
   1889 	} else if (sc->sc_type < WM_T_82543 ||
   1890 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
   1891 		if (wmp->wmp_flags & WMP_F_1000T)
   1892 			aprint_error_dev(sc->sc_dev,
   1893 			    "WARNING: TBIMODE set on 1000BASE-T product!\n");
   1894 		wm_tbi_mediainit(sc);
   1895 	} else {
   1896 		switch (sc->sc_type) {
   1897 		case WM_T_82575:
   1898 		case WM_T_82576:
   1899 		case WM_T_82580:
   1900 		case WM_T_82580ER:
   1901 		case WM_T_I350:
   1902 		case WM_T_I210:
   1903 		case WM_T_I211:
   1904 			reg = CSR_READ(sc, WMREG_CTRL_EXT);
   1905 			switch (reg & CTRL_EXT_LINK_MODE_MASK) {
   1906 			case CTRL_EXT_LINK_MODE_SGMII:
   1907 				aprint_verbose_dev(sc->sc_dev, "SGMII\n");
   1908 				sc->sc_flags |= WM_F_SGMII;
   1909 				CSR_WRITE(sc, WMREG_CTRL_EXT,
   1910 				    reg | CTRL_EXT_I2C_ENA);
   1911 				wm_gmii_mediainit(sc, wmp->wmp_product);
   1912 				break;
   1913 			case CTRL_EXT_LINK_MODE_1000KX:
   1914 			case CTRL_EXT_LINK_MODE_PCIE_SERDES:
   1915 				aprint_verbose_dev(sc->sc_dev, "1000KX or SERDES\n");
   1916 				CSR_WRITE(sc, WMREG_CTRL_EXT,
   1917 				    reg | CTRL_EXT_I2C_ENA);
   1918 				panic("not supported yet\n");
   1919 				break;
   1920 			case CTRL_EXT_LINK_MODE_GMII:
   1921 			default:
   1922 				CSR_WRITE(sc, WMREG_CTRL_EXT,
   1923 				    reg & ~CTRL_EXT_I2C_ENA);
   1924 				wm_gmii_mediainit(sc, wmp->wmp_product);
   1925 				break;
   1926 			}
   1927 			break;
   1928 		default:
   1929 			if (wmp->wmp_flags & WMP_F_1000X)
   1930 				aprint_error_dev(sc->sc_dev,
   1931 				    "WARNING: TBIMODE clear on 1000BASE-X product!\n");
   1932 			wm_gmii_mediainit(sc, wmp->wmp_product);
   1933 		}
   1934 	}
   1935 
   1936 	ifp = &sc->sc_ethercom.ec_if;
   1937 	xname = device_xname(sc->sc_dev);
   1938 	strlcpy(ifp->if_xname, xname, IFNAMSIZ);
   1939 	ifp->if_softc = sc;
   1940 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1941 	ifp->if_ioctl = wm_ioctl;
   1942 	if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
   1943 		ifp->if_start = wm_nq_start;
   1944 	else
   1945 		ifp->if_start = wm_start;
   1946 	ifp->if_watchdog = wm_watchdog;
   1947 	ifp->if_init = wm_init;
   1948 	ifp->if_stop = wm_stop;
   1949 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
   1950 	IFQ_SET_READY(&ifp->if_snd);
   1951 
   1952 	/* Check for jumbo frame */
   1953 	switch (sc->sc_type) {
   1954 	case WM_T_82573:
   1955 		/* XXX limited to 9234 if ASPM is disabled */
   1956 		wm_read_eeprom(sc, EEPROM_INIT_3GIO_3, 1, &io3);
   1957 		if ((io3 & EEPROM_3GIO_3_ASPM_MASK) != 0)
   1958 			sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1959 		break;
   1960 	case WM_T_82571:
   1961 	case WM_T_82572:
   1962 	case WM_T_82574:
   1963 	case WM_T_82575:
   1964 	case WM_T_82576:
   1965 	case WM_T_82580:
   1966 	case WM_T_82580ER:
   1967 	case WM_T_I350:
   1968 	case WM_T_I210:
   1969 	case WM_T_I211:
   1970 	case WM_T_80003:
   1971 	case WM_T_ICH9:
   1972 	case WM_T_ICH10:
   1973 	case WM_T_PCH2:	/* PCH2 supports 9K frame size */
   1974 	case WM_T_PCH_LPT:
   1975 		/* XXX limited to 9234 */
   1976 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1977 		break;
   1978 	case WM_T_PCH:
   1979 		/* XXX limited to 4096 */
   1980 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1981 		break;
   1982 	case WM_T_82542_2_0:
   1983 	case WM_T_82542_2_1:
   1984 	case WM_T_82583:
   1985 	case WM_T_ICH8:
   1986 		/* No support for jumbo frame */
   1987 		break;
   1988 	default:
   1989 		/* ETHER_MAX_LEN_JUMBO */
   1990 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1991 		break;
   1992 	}
   1993 
   1994 	/*
   1995 	 * If we're a i82543 or greater, we can support VLANs.
   1996 	 */
   1997 	if (sc->sc_type >= WM_T_82543)
   1998 		sc->sc_ethercom.ec_capabilities |=
   1999 		    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
   2000 
   2001 	/*
   2002 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
   2003 	 * on i82543 and later.
   2004 	 */
   2005 	if (sc->sc_type >= WM_T_82543) {
   2006 		ifp->if_capabilities |=
   2007 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2008 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2009 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
   2010 		    IFCAP_CSUM_TCPv6_Tx |
   2011 		    IFCAP_CSUM_UDPv6_Tx;
   2012 	}
   2013 
   2014 	/*
   2015 	 * XXXyamt: i'm not sure which chips support RXCSUM_IPV6OFL.
   2016 	 *
   2017 	 *	82541GI (8086:1076) ... no
   2018 	 *	82572EI (8086:10b9) ... yes
   2019 	 */
   2020 	if (sc->sc_type >= WM_T_82571) {
   2021 		ifp->if_capabilities |=
   2022 		    IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
   2023 	}
   2024 
   2025 	/*
   2026 	 * If we're a i82544 or greater (except i82547), we can do
   2027 	 * TCP segmentation offload.
   2028 	 */
   2029 	if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547) {
   2030 		ifp->if_capabilities |= IFCAP_TSOv4;
   2031 	}
   2032 
   2033 	if (sc->sc_type >= WM_T_82571) {
   2034 		ifp->if_capabilities |= IFCAP_TSOv6;
   2035 	}
   2036 
   2037 	/*
   2038 	 * Attach the interface.
   2039 	 */
   2040 	if_attach(ifp);
   2041 	ether_ifattach(ifp, enaddr);
   2042 	ether_set_ifflags_cb(&sc->sc_ethercom, wm_ifflags_cb);
   2043 	rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET, 0);
   2044 
   2045 #ifdef WM_EVENT_COUNTERS
   2046 	/* Attach event counters. */
   2047 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   2048 	    NULL, xname, "txsstall");
   2049 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   2050 	    NULL, xname, "txdstall");
   2051 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
   2052 	    NULL, xname, "txfifo_stall");
   2053 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
   2054 	    NULL, xname, "txdw");
   2055 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
   2056 	    NULL, xname, "txqe");
   2057 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   2058 	    NULL, xname, "rxintr");
   2059 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
   2060 	    NULL, xname, "linkintr");
   2061 
   2062 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   2063 	    NULL, xname, "rxipsum");
   2064 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
   2065 	    NULL, xname, "rxtusum");
   2066 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   2067 	    NULL, xname, "txipsum");
   2068 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
   2069 	    NULL, xname, "txtusum");
   2070 	evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
   2071 	    NULL, xname, "txtusum6");
   2072 
   2073 	evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
   2074 	    NULL, xname, "txtso");
   2075 	evcnt_attach_dynamic(&sc->sc_ev_txtso6, EVCNT_TYPE_MISC,
   2076 	    NULL, xname, "txtso6");
   2077 	evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
   2078 	    NULL, xname, "txtsopain");
   2079 
   2080 	for (i = 0; i < WM_NTXSEGS; i++) {
   2081 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
   2082 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
   2083 		    NULL, xname, wm_txseg_evcnt_names[i]);
   2084 	}
   2085 
   2086 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
   2087 	    NULL, xname, "txdrop");
   2088 
   2089 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
   2090 	    NULL, xname, "tu");
   2091 
   2092 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
   2093 	    NULL, xname, "tx_xoff");
   2094 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
   2095 	    NULL, xname, "tx_xon");
   2096 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
   2097 	    NULL, xname, "rx_xoff");
   2098 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
   2099 	    NULL, xname, "rx_xon");
   2100 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
   2101 	    NULL, xname, "rx_macctl");
   2102 #endif /* WM_EVENT_COUNTERS */
   2103 
   2104 	if (pmf_device_register(self, wm_suspend, wm_resume))
   2105 		pmf_class_network_register(self, ifp);
   2106 	else
   2107 		aprint_error_dev(self, "couldn't establish power handler\n");
   2108 
   2109 	return;
   2110 
   2111 	/*
   2112 	 * Free any resources we've allocated during the failed attach
   2113 	 * attempt.  Do this in reverse order and fall through.
   2114 	 */
   2115  fail_5:
   2116 	for (i = 0; i < WM_NRXDESC; i++) {
   2117 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   2118 			bus_dmamap_destroy(sc->sc_dmat,
   2119 			    sc->sc_rxsoft[i].rxs_dmamap);
   2120 	}
   2121  fail_4:
   2122 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   2123 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   2124 			bus_dmamap_destroy(sc->sc_dmat,
   2125 			    sc->sc_txsoft[i].txs_dmamap);
   2126 	}
   2127 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   2128  fail_3:
   2129 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   2130  fail_2:
   2131 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
   2132 	    sc->sc_cd_size);
   2133  fail_1:
   2134 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cd_seg, sc->sc_cd_rseg);
   2135  fail_0:
   2136 	return;
   2137 }
   2138 
   2139 static int
   2140 wm_detach(device_t self, int flags __unused)
   2141 {
   2142 	struct wm_softc *sc = device_private(self);
   2143 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2144 	int i, s;
   2145 
   2146 	s = splnet();
   2147 	/* Stop the interface. Callouts are stopped in it. */
   2148 	wm_stop(ifp, 1);
   2149 	splx(s);
   2150 
   2151 	pmf_device_deregister(self);
   2152 
   2153 	/* Tell the firmware about the release */
   2154 	wm_release_manageability(sc);
   2155 	wm_release_hw_control(sc);
   2156 
   2157 	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   2158 
   2159 	/* Delete all remaining media. */
   2160 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
   2161 
   2162 	ether_ifdetach(ifp);
   2163 	if_detach(ifp);
   2164 
   2165 
   2166 	/* Unload RX dmamaps and free mbufs */
   2167 	wm_rxdrain(sc);
   2168 
   2169 	/* Free dmamap. It's the same as the end of the wm_attach() function */
   2170 	for (i = 0; i < WM_NRXDESC; i++) {
   2171 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   2172 			bus_dmamap_destroy(sc->sc_dmat,
   2173 			    sc->sc_rxsoft[i].rxs_dmamap);
   2174 	}
   2175 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   2176 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   2177 			bus_dmamap_destroy(sc->sc_dmat,
   2178 			    sc->sc_txsoft[i].txs_dmamap);
   2179 	}
   2180 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   2181 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   2182 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
   2183 	    sc->sc_cd_size);
   2184 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cd_seg, sc->sc_cd_rseg);
   2185 
   2186 	/* Disestablish the interrupt handler */
   2187 	if (sc->sc_ih != NULL) {
   2188 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
   2189 		sc->sc_ih = NULL;
   2190 	}
   2191 
   2192 	/* Unmap the registers */
   2193 	if (sc->sc_ss) {
   2194 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_ss);
   2195 		sc->sc_ss = 0;
   2196 	}
   2197 
   2198 	if (sc->sc_ios) {
   2199 		bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
   2200 		sc->sc_ios = 0;
   2201 	}
   2202 
   2203 	return 0;
   2204 }
   2205 
   2206 /*
   2207  * wm_tx_offload:
   2208  *
   2209  *	Set up TCP/IP checksumming parameters for the
   2210  *	specified packet.
   2211  */
   2212 static int
   2213 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
   2214     uint8_t *fieldsp)
   2215 {
   2216 	struct mbuf *m0 = txs->txs_mbuf;
   2217 	struct livengood_tcpip_ctxdesc *t;
   2218 	uint32_t ipcs, tucs, cmd, cmdlen, seg;
   2219 	uint32_t ipcse;
   2220 	struct ether_header *eh;
   2221 	int offset, iphl;
   2222 	uint8_t fields;
   2223 
   2224 	/*
   2225 	 * XXX It would be nice if the mbuf pkthdr had offset
   2226 	 * fields for the protocol headers.
   2227 	 */
   2228 
   2229 	eh = mtod(m0, struct ether_header *);
   2230 	switch (htons(eh->ether_type)) {
   2231 	case ETHERTYPE_IP:
   2232 	case ETHERTYPE_IPV6:
   2233 		offset = ETHER_HDR_LEN;
   2234 		break;
   2235 
   2236 	case ETHERTYPE_VLAN:
   2237 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   2238 		break;
   2239 
   2240 	default:
   2241 		/*
   2242 		 * Don't support this protocol or encapsulation.
   2243 		 */
   2244 		*fieldsp = 0;
   2245 		*cmdp = 0;
   2246 		return 0;
   2247 	}
   2248 
   2249 	if ((m0->m_pkthdr.csum_flags &
   2250 	    (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
   2251 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   2252 	} else {
   2253 		iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
   2254 	}
   2255 	ipcse = offset + iphl - 1;
   2256 
   2257 	cmd = WTX_CMD_DEXT | WTX_DTYP_D;
   2258 	cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
   2259 	seg = 0;
   2260 	fields = 0;
   2261 
   2262 	if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
   2263 		int hlen = offset + iphl;
   2264 		bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   2265 
   2266 		if (__predict_false(m0->m_len <
   2267 				    (hlen + sizeof(struct tcphdr)))) {
   2268 			/*
   2269 			 * TCP/IP headers are not in the first mbuf; we need
   2270 			 * to do this the slow and painful way.  Let's just
   2271 			 * hope this doesn't happen very often.
   2272 			 */
   2273 			struct tcphdr th;
   2274 
   2275 			WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
   2276 
   2277 			m_copydata(m0, hlen, sizeof(th), &th);
   2278 			if (v4) {
   2279 				struct ip ip;
   2280 
   2281 				m_copydata(m0, offset, sizeof(ip), &ip);
   2282 				ip.ip_len = 0;
   2283 				m_copyback(m0,
   2284 				    offset + offsetof(struct ip, ip_len),
   2285 				    sizeof(ip.ip_len), &ip.ip_len);
   2286 				th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   2287 				    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   2288 			} else {
   2289 				struct ip6_hdr ip6;
   2290 
   2291 				m_copydata(m0, offset, sizeof(ip6), &ip6);
   2292 				ip6.ip6_plen = 0;
   2293 				m_copyback(m0,
   2294 				    offset + offsetof(struct ip6_hdr, ip6_plen),
   2295 				    sizeof(ip6.ip6_plen), &ip6.ip6_plen);
   2296 				th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
   2297 				    &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
   2298 			}
   2299 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   2300 			    sizeof(th.th_sum), &th.th_sum);
   2301 
   2302 			hlen += th.th_off << 2;
   2303 		} else {
   2304 			/*
   2305 			 * TCP/IP headers are in the first mbuf; we can do
   2306 			 * this the easy way.
   2307 			 */
   2308 			struct tcphdr *th;
   2309 
   2310 			if (v4) {
   2311 				struct ip *ip =
   2312 				    (void *)(mtod(m0, char *) + offset);
   2313 				th = (void *)(mtod(m0, char *) + hlen);
   2314 
   2315 				ip->ip_len = 0;
   2316 				th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   2317 				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   2318 			} else {
   2319 				struct ip6_hdr *ip6 =
   2320 				    (void *)(mtod(m0, char *) + offset);
   2321 				th = (void *)(mtod(m0, char *) + hlen);
   2322 
   2323 				ip6->ip6_plen = 0;
   2324 				th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
   2325 				    &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
   2326 			}
   2327 			hlen += th->th_off << 2;
   2328 		}
   2329 
   2330 		if (v4) {
   2331 			WM_EVCNT_INCR(&sc->sc_ev_txtso);
   2332 			cmdlen |= WTX_TCPIP_CMD_IP;
   2333 		} else {
   2334 			WM_EVCNT_INCR(&sc->sc_ev_txtso6);
   2335 			ipcse = 0;
   2336 		}
   2337 		cmd |= WTX_TCPIP_CMD_TSE;
   2338 		cmdlen |= WTX_TCPIP_CMD_TSE |
   2339 		    WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
   2340 		seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
   2341 		    WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
   2342 	}
   2343 
   2344 	/*
   2345 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   2346 	 * offload feature, if we load the context descriptor, we
   2347 	 * MUST provide valid values for IPCSS and TUCSS fields.
   2348 	 */
   2349 
   2350 	ipcs = WTX_TCPIP_IPCSS(offset) |
   2351 	    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   2352 	    WTX_TCPIP_IPCSE(ipcse);
   2353 	if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
   2354 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
   2355 		fields |= WTX_IXSM;
   2356 	}
   2357 
   2358 	offset += iphl;
   2359 
   2360 	if (m0->m_pkthdr.csum_flags &
   2361 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
   2362 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
   2363 		fields |= WTX_TXSM;
   2364 		tucs = WTX_TCPIP_TUCSS(offset) |
   2365 		    WTX_TCPIP_TUCSO(offset +
   2366 		    M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
   2367 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   2368 	} else if ((m0->m_pkthdr.csum_flags &
   2369 	    (M_CSUM_TCPv6|M_CSUM_UDPv6|M_CSUM_TSOv6)) != 0) {
   2370 		WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
   2371 		fields |= WTX_TXSM;
   2372 		tucs = WTX_TCPIP_TUCSS(offset) |
   2373 		    WTX_TCPIP_TUCSO(offset +
   2374 		    M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
   2375 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   2376 	} else {
   2377 		/* Just initialize it to a valid TCP context. */
   2378 		tucs = WTX_TCPIP_TUCSS(offset) |
   2379 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   2380 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   2381 	}
   2382 
   2383 	/* Fill in the context descriptor. */
   2384 	t = (struct livengood_tcpip_ctxdesc *)
   2385 	    &sc->sc_txdescs[sc->sc_txnext];
   2386 	t->tcpip_ipcs = htole32(ipcs);
   2387 	t->tcpip_tucs = htole32(tucs);
   2388 	t->tcpip_cmdlen = htole32(cmdlen);
   2389 	t->tcpip_seg = htole32(seg);
   2390 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   2391 
   2392 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
   2393 	txs->txs_ndesc++;
   2394 
   2395 	*cmdp = cmd;
   2396 	*fieldsp = fields;
   2397 
   2398 	return 0;
   2399 }
   2400 
   2401 static void
   2402 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
   2403 {
   2404 	struct mbuf *m;
   2405 	int i;
   2406 
   2407 	log(LOG_DEBUG, "%s: mbuf chain:\n", device_xname(sc->sc_dev));
   2408 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
   2409 		log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
   2410 		    "m_flags = 0x%08x\n", device_xname(sc->sc_dev),
   2411 		    m->m_data, m->m_len, m->m_flags);
   2412 	log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", device_xname(sc->sc_dev),
   2413 	    i, i == 1 ? "" : "s");
   2414 }
   2415 
   2416 /*
   2417  * wm_82547_txfifo_stall:
   2418  *
   2419  *	Callout used to wait for the 82547 Tx FIFO to drain,
   2420  *	reset the FIFO pointers, and restart packet transmission.
   2421  */
   2422 static void
   2423 wm_82547_txfifo_stall(void *arg)
   2424 {
   2425 	struct wm_softc *sc = arg;
   2426 	int s;
   2427 
   2428 	s = splnet();
   2429 
   2430 	if (sc->sc_txfifo_stall) {
   2431 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
   2432 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
   2433 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
   2434 			/*
   2435 			 * Packets have drained.  Stop transmitter, reset
   2436 			 * FIFO pointers, restart transmitter, and kick
   2437 			 * the packet queue.
   2438 			 */
   2439 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
   2440 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
   2441 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
   2442 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
   2443 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
   2444 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
   2445 			CSR_WRITE(sc, WMREG_TCTL, tctl);
   2446 			CSR_WRITE_FLUSH(sc);
   2447 
   2448 			sc->sc_txfifo_head = 0;
   2449 			sc->sc_txfifo_stall = 0;
   2450 			wm_start(&sc->sc_ethercom.ec_if);
   2451 		} else {
   2452 			/*
   2453 			 * Still waiting for packets to drain; try again in
   2454 			 * another tick.
   2455 			 */
   2456 			callout_schedule(&sc->sc_txfifo_ch, 1);
   2457 		}
   2458 	}
   2459 
   2460 	splx(s);
   2461 }
   2462 
   2463 static void
   2464 wm_gate_hw_phy_config_ich8lan(struct wm_softc *sc, int on)
   2465 {
   2466 	uint32_t reg;
   2467 
   2468 	reg = CSR_READ(sc, WMREG_EXTCNFCTR);
   2469 
   2470 	if (on != 0)
   2471 		reg |= EXTCNFCTR_GATE_PHY_CFG;
   2472 	else
   2473 		reg &= ~EXTCNFCTR_GATE_PHY_CFG;
   2474 
   2475 	CSR_WRITE(sc, WMREG_EXTCNFCTR, reg);
   2476 }
   2477 
   2478 /*
   2479  * wm_82547_txfifo_bugchk:
   2480  *
   2481  *	Check for bug condition in the 82547 Tx FIFO.  We need to
   2482  *	prevent enqueueing a packet that would wrap around the end
   2483  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
   2484  *
   2485  *	We do this by checking the amount of space before the end
   2486  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
   2487  *	the Tx FIFO, wait for all remaining packets to drain, reset
   2488  *	the internal FIFO pointers to the beginning, and restart
   2489  *	transmission on the interface.
   2490  */
   2491 #define	WM_FIFO_HDR		0x10
   2492 #define	WM_82547_PAD_LEN	0x3e0
   2493 static int
   2494 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
   2495 {
   2496 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
   2497 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
   2498 
   2499 	/* Just return if already stalled. */
   2500 	if (sc->sc_txfifo_stall)
   2501 		return 1;
   2502 
   2503 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   2504 		/* Stall only occurs in half-duplex mode. */
   2505 		goto send_packet;
   2506 	}
   2507 
   2508 	if (len >= WM_82547_PAD_LEN + space) {
   2509 		sc->sc_txfifo_stall = 1;
   2510 		callout_schedule(&sc->sc_txfifo_ch, 1);
   2511 		return 1;
   2512 	}
   2513 
   2514  send_packet:
   2515 	sc->sc_txfifo_head += len;
   2516 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
   2517 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
   2518 
   2519 	return 0;
   2520 }
   2521 
   2522 /*
   2523  * wm_start:		[ifnet interface function]
   2524  *
   2525  *	Start packet transmission on the interface.
   2526  */
   2527 static void
   2528 wm_start(struct ifnet *ifp)
   2529 {
   2530 	struct wm_softc *sc = ifp->if_softc;
   2531 	struct mbuf *m0;
   2532 	struct m_tag *mtag;
   2533 	struct wm_txsoft *txs;
   2534 	bus_dmamap_t dmamap;
   2535 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
   2536 	bus_addr_t curaddr;
   2537 	bus_size_t seglen, curlen;
   2538 	uint32_t cksumcmd;
   2539 	uint8_t cksumfields;
   2540 
   2541 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   2542 		return;
   2543 
   2544 	/*
   2545 	 * Remember the previous number of free descriptors.
   2546 	 */
   2547 	ofree = sc->sc_txfree;
   2548 
   2549 	/*
   2550 	 * Loop through the send queue, setting up transmit descriptors
   2551 	 * until we drain the queue, or use up all available transmit
   2552 	 * descriptors.
   2553 	 */
   2554 	for (;;) {
   2555 		/* Grab a packet off the queue. */
   2556 		IFQ_POLL(&ifp->if_snd, m0);
   2557 		if (m0 == NULL)
   2558 			break;
   2559 
   2560 		DPRINTF(WM_DEBUG_TX,
   2561 		    ("%s: TX: have packet to transmit: %p\n",
   2562 		    device_xname(sc->sc_dev), m0));
   2563 
   2564 		/* Get a work queue entry. */
   2565 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
   2566 			wm_txintr(sc);
   2567 			if (sc->sc_txsfree == 0) {
   2568 				DPRINTF(WM_DEBUG_TX,
   2569 				    ("%s: TX: no free job descriptors\n",
   2570 					device_xname(sc->sc_dev)));
   2571 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   2572 				break;
   2573 			}
   2574 		}
   2575 
   2576 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   2577 		dmamap = txs->txs_dmamap;
   2578 
   2579 		use_tso = (m0->m_pkthdr.csum_flags &
   2580 		    (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0;
   2581 
   2582 		/*
   2583 		 * So says the Linux driver:
   2584 		 * The controller does a simple calculation to make sure
   2585 		 * there is enough room in the FIFO before initiating the
   2586 		 * DMA for each buffer.  The calc is:
   2587 		 *	4 = ceil(buffer len / MSS)
   2588 		 * To make sure we don't overrun the FIFO, adjust the max
   2589 		 * buffer len if the MSS drops.
   2590 		 */
   2591 		dmamap->dm_maxsegsz =
   2592 		    (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
   2593 		    ? m0->m_pkthdr.segsz << 2
   2594 		    : WTX_MAX_LEN;
   2595 
   2596 		/*
   2597 		 * Load the DMA map.  If this fails, the packet either
   2598 		 * didn't fit in the allotted number of segments, or we
   2599 		 * were short on resources.  For the too-many-segments
   2600 		 * case, we simply report an error and drop the packet,
   2601 		 * since we can't sanely copy a jumbo packet to a single
   2602 		 * buffer.
   2603 		 */
   2604 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   2605 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   2606 		if (error) {
   2607 			if (error == EFBIG) {
   2608 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   2609 				log(LOG_ERR, "%s: Tx packet consumes too many "
   2610 				    "DMA segments, dropping...\n",
   2611 				    device_xname(sc->sc_dev));
   2612 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   2613 				wm_dump_mbuf_chain(sc, m0);
   2614 				m_freem(m0);
   2615 				continue;
   2616 			}
   2617 			/*
   2618 			 * Short on resources, just stop for now.
   2619 			 */
   2620 			DPRINTF(WM_DEBUG_TX,
   2621 			    ("%s: TX: dmamap load failed: %d\n",
   2622 			    device_xname(sc->sc_dev), error));
   2623 			break;
   2624 		}
   2625 
   2626 		segs_needed = dmamap->dm_nsegs;
   2627 		if (use_tso) {
   2628 			/* For sentinel descriptor; see below. */
   2629 			segs_needed++;
   2630 		}
   2631 
   2632 		/*
   2633 		 * Ensure we have enough descriptors free to describe
   2634 		 * the packet.  Note, we always reserve one descriptor
   2635 		 * at the end of the ring due to the semantics of the
   2636 		 * TDT register, plus one more in the event we need
   2637 		 * to load offload context.
   2638 		 */
   2639 		if (segs_needed > sc->sc_txfree - 2) {
   2640 			/*
   2641 			 * Not enough free descriptors to transmit this
   2642 			 * packet.  We haven't committed anything yet,
   2643 			 * so just unload the DMA map, put the packet
   2644 			 * pack on the queue, and punt.  Notify the upper
   2645 			 * layer that there are no more slots left.
   2646 			 */
   2647 			DPRINTF(WM_DEBUG_TX,
   2648 			    ("%s: TX: need %d (%d) descriptors, have %d\n",
   2649 			    device_xname(sc->sc_dev), dmamap->dm_nsegs,
   2650 			    segs_needed, sc->sc_txfree - 1));
   2651 			ifp->if_flags |= IFF_OACTIVE;
   2652 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   2653 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   2654 			break;
   2655 		}
   2656 
   2657 		/*
   2658 		 * Check for 82547 Tx FIFO bug.  We need to do this
   2659 		 * once we know we can transmit the packet, since we
   2660 		 * do some internal FIFO space accounting here.
   2661 		 */
   2662 		if (sc->sc_type == WM_T_82547 &&
   2663 		    wm_82547_txfifo_bugchk(sc, m0)) {
   2664 			DPRINTF(WM_DEBUG_TX,
   2665 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
   2666 			    device_xname(sc->sc_dev)));
   2667 			ifp->if_flags |= IFF_OACTIVE;
   2668 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   2669 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
   2670 			break;
   2671 		}
   2672 
   2673 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   2674 
   2675 		/*
   2676 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   2677 		 */
   2678 
   2679 		DPRINTF(WM_DEBUG_TX,
   2680 		    ("%s: TX: packet has %d (%d) DMA segments\n",
   2681 		    device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed));
   2682 
   2683 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   2684 
   2685 		/*
   2686 		 * Store a pointer to the packet so that we can free it
   2687 		 * later.
   2688 		 *
   2689 		 * Initially, we consider the number of descriptors the
   2690 		 * packet uses the number of DMA segments.  This may be
   2691 		 * incremented by 1 if we do checksum offload (a descriptor
   2692 		 * is used to set the checksum context).
   2693 		 */
   2694 		txs->txs_mbuf = m0;
   2695 		txs->txs_firstdesc = sc->sc_txnext;
   2696 		txs->txs_ndesc = segs_needed;
   2697 
   2698 		/* Set up offload parameters for this packet. */
   2699 		if (m0->m_pkthdr.csum_flags &
   2700 		    (M_CSUM_TSOv4|M_CSUM_TSOv6|
   2701 		    M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
   2702 		    M_CSUM_TCPv6|M_CSUM_UDPv6)) {
   2703 			if (wm_tx_offload(sc, txs, &cksumcmd,
   2704 					  &cksumfields) != 0) {
   2705 				/* Error message already displayed. */
   2706 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   2707 				continue;
   2708 			}
   2709 		} else {
   2710 			cksumcmd = 0;
   2711 			cksumfields = 0;
   2712 		}
   2713 
   2714 		cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
   2715 
   2716 		/* Sync the DMA map. */
   2717 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   2718 		    BUS_DMASYNC_PREWRITE);
   2719 
   2720 		/*
   2721 		 * Initialize the transmit descriptor.
   2722 		 */
   2723 		for (nexttx = sc->sc_txnext, seg = 0;
   2724 		     seg < dmamap->dm_nsegs; seg++) {
   2725 			for (seglen = dmamap->dm_segs[seg].ds_len,
   2726 			     curaddr = dmamap->dm_segs[seg].ds_addr;
   2727 			     seglen != 0;
   2728 			     curaddr += curlen, seglen -= curlen,
   2729 			     nexttx = WM_NEXTTX(sc, nexttx)) {
   2730 				curlen = seglen;
   2731 
   2732 				/*
   2733 				 * So says the Linux driver:
   2734 				 * Work around for premature descriptor
   2735 				 * write-backs in TSO mode.  Append a
   2736 				 * 4-byte sentinel descriptor.
   2737 				 */
   2738 				if (use_tso &&
   2739 				    seg == dmamap->dm_nsegs - 1 &&
   2740 				    curlen > 8)
   2741 					curlen -= 4;
   2742 
   2743 				wm_set_dma_addr(
   2744 				    &sc->sc_txdescs[nexttx].wtx_addr,
   2745 				    curaddr);
   2746 				sc->sc_txdescs[nexttx].wtx_cmdlen =
   2747 				    htole32(cksumcmd | curlen);
   2748 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
   2749 				    0;
   2750 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
   2751 				    cksumfields;
   2752 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
   2753 				lasttx = nexttx;
   2754 
   2755 				DPRINTF(WM_DEBUG_TX,
   2756 				    ("%s: TX: desc %d: low %#" PRIx64 ", "
   2757 				     "len %#04zx\n",
   2758 				    device_xname(sc->sc_dev), nexttx,
   2759 				    (uint64_t)curaddr, curlen));
   2760 			}
   2761 		}
   2762 
   2763 		KASSERT(lasttx != -1);
   2764 
   2765 		/*
   2766 		 * Set up the command byte on the last descriptor of
   2767 		 * the packet.  If we're in the interrupt delay window,
   2768 		 * delay the interrupt.
   2769 		 */
   2770 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   2771 		    htole32(WTX_CMD_EOP | WTX_CMD_RS);
   2772 
   2773 		/*
   2774 		 * If VLANs are enabled and the packet has a VLAN tag, set
   2775 		 * up the descriptor to encapsulate the packet for us.
   2776 		 *
   2777 		 * This is only valid on the last descriptor of the packet.
   2778 		 */
   2779 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   2780 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   2781 			    htole32(WTX_CMD_VLE);
   2782 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
   2783 			    = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
   2784 		}
   2785 
   2786 		txs->txs_lastdesc = lasttx;
   2787 
   2788 		DPRINTF(WM_DEBUG_TX,
   2789 		    ("%s: TX: desc %d: cmdlen 0x%08x\n",
   2790 		    device_xname(sc->sc_dev),
   2791 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
   2792 
   2793 		/* Sync the descriptors we're using. */
   2794 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
   2795 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2796 
   2797 		/* Give the packet to the chip. */
   2798 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   2799 
   2800 		DPRINTF(WM_DEBUG_TX,
   2801 		    ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
   2802 
   2803 		DPRINTF(WM_DEBUG_TX,
   2804 		    ("%s: TX: finished transmitting packet, job %d\n",
   2805 		    device_xname(sc->sc_dev), sc->sc_txsnext));
   2806 
   2807 		/* Advance the tx pointer. */
   2808 		sc->sc_txfree -= txs->txs_ndesc;
   2809 		sc->sc_txnext = nexttx;
   2810 
   2811 		sc->sc_txsfree--;
   2812 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
   2813 
   2814 		/* Pass the packet to any BPF listeners. */
   2815 		bpf_mtap(ifp, m0);
   2816 	}
   2817 
   2818 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   2819 		/* No more slots; notify upper layer. */
   2820 		ifp->if_flags |= IFF_OACTIVE;
   2821 	}
   2822 
   2823 	if (sc->sc_txfree != ofree) {
   2824 		/* Set a watchdog timer in case the chip flakes out. */
   2825 		ifp->if_timer = 5;
   2826 	}
   2827 }
   2828 
   2829 /*
   2830  * wm_nq_tx_offload:
   2831  *
   2832  *	Set up TCP/IP checksumming parameters for the
   2833  *	specified packet, for NEWQUEUE devices
   2834  */
   2835 static int
   2836 wm_nq_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs,
   2837     uint32_t *cmdlenp, uint32_t *fieldsp, bool *do_csum)
   2838 {
   2839 	struct mbuf *m0 = txs->txs_mbuf;
   2840 	struct m_tag *mtag;
   2841 	uint32_t vl_len, mssidx, cmdc;
   2842 	struct ether_header *eh;
   2843 	int offset, iphl;
   2844 
   2845 	/*
   2846 	 * XXX It would be nice if the mbuf pkthdr had offset
   2847 	 * fields for the protocol headers.
   2848 	 */
   2849 	*cmdlenp = 0;
   2850 	*fieldsp = 0;
   2851 
   2852 	eh = mtod(m0, struct ether_header *);
   2853 	switch (htons(eh->ether_type)) {
   2854 	case ETHERTYPE_IP:
   2855 	case ETHERTYPE_IPV6:
   2856 		offset = ETHER_HDR_LEN;
   2857 		break;
   2858 
   2859 	case ETHERTYPE_VLAN:
   2860 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   2861 		break;
   2862 
   2863 	default:
   2864 		/*
   2865 		 * Don't support this protocol or encapsulation.
   2866 		 */
   2867 		*do_csum = false;
   2868 		return 0;
   2869 	}
   2870 	*do_csum = true;
   2871 	*cmdlenp = NQTX_DTYP_D | NQTX_CMD_DEXT | NQTX_CMD_IFCS;
   2872 	cmdc = NQTX_DTYP_C | NQTX_CMD_DEXT;
   2873 
   2874 	vl_len = (offset << NQTXC_VLLEN_MACLEN_SHIFT);
   2875 	KASSERT((offset & ~NQTXC_VLLEN_MACLEN_MASK) == 0);
   2876 
   2877 	if ((m0->m_pkthdr.csum_flags &
   2878 	    (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_IPv4)) != 0) {
   2879 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   2880 	} else {
   2881 		iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
   2882 	}
   2883 	vl_len |= (iphl << NQTXC_VLLEN_IPLEN_SHIFT);
   2884 	KASSERT((iphl & ~NQTXC_VLLEN_IPLEN_MASK) == 0);
   2885 
   2886 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   2887 		vl_len |= ((VLAN_TAG_VALUE(mtag) & NQTXC_VLLEN_VLAN_MASK)
   2888 		     << NQTXC_VLLEN_VLAN_SHIFT);
   2889 		*cmdlenp |= NQTX_CMD_VLE;
   2890 	}
   2891 
   2892 	mssidx = 0;
   2893 
   2894 	if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
   2895 		int hlen = offset + iphl;
   2896 		int tcp_hlen;
   2897 		bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   2898 
   2899 		if (__predict_false(m0->m_len <
   2900 				    (hlen + sizeof(struct tcphdr)))) {
   2901 			/*
   2902 			 * TCP/IP headers are not in the first mbuf; we need
   2903 			 * to do this the slow and painful way.  Let's just
   2904 			 * hope this doesn't happen very often.
   2905 			 */
   2906 			struct tcphdr th;
   2907 
   2908 			WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
   2909 
   2910 			m_copydata(m0, hlen, sizeof(th), &th);
   2911 			if (v4) {
   2912 				struct ip ip;
   2913 
   2914 				m_copydata(m0, offset, sizeof(ip), &ip);
   2915 				ip.ip_len = 0;
   2916 				m_copyback(m0,
   2917 				    offset + offsetof(struct ip, ip_len),
   2918 				    sizeof(ip.ip_len), &ip.ip_len);
   2919 				th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   2920 				    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   2921 			} else {
   2922 				struct ip6_hdr ip6;
   2923 
   2924 				m_copydata(m0, offset, sizeof(ip6), &ip6);
   2925 				ip6.ip6_plen = 0;
   2926 				m_copyback(m0,
   2927 				    offset + offsetof(struct ip6_hdr, ip6_plen),
   2928 				    sizeof(ip6.ip6_plen), &ip6.ip6_plen);
   2929 				th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
   2930 				    &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
   2931 			}
   2932 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   2933 			    sizeof(th.th_sum), &th.th_sum);
   2934 
   2935 			tcp_hlen = th.th_off << 2;
   2936 		} else {
   2937 			/*
   2938 			 * TCP/IP headers are in the first mbuf; we can do
   2939 			 * this the easy way.
   2940 			 */
   2941 			struct tcphdr *th;
   2942 
   2943 			if (v4) {
   2944 				struct ip *ip =
   2945 				    (void *)(mtod(m0, char *) + offset);
   2946 				th = (void *)(mtod(m0, char *) + hlen);
   2947 
   2948 				ip->ip_len = 0;
   2949 				th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   2950 				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   2951 			} else {
   2952 				struct ip6_hdr *ip6 =
   2953 				    (void *)(mtod(m0, char *) + offset);
   2954 				th = (void *)(mtod(m0, char *) + hlen);
   2955 
   2956 				ip6->ip6_plen = 0;
   2957 				th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
   2958 				    &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
   2959 			}
   2960 			tcp_hlen = th->th_off << 2;
   2961 		}
   2962 		hlen += tcp_hlen;
   2963 		*cmdlenp |= NQTX_CMD_TSE;
   2964 
   2965 		if (v4) {
   2966 			WM_EVCNT_INCR(&sc->sc_ev_txtso);
   2967 			*fieldsp |= NQTXD_FIELDS_IXSM | NQTXD_FIELDS_TUXSM;
   2968 		} else {
   2969 			WM_EVCNT_INCR(&sc->sc_ev_txtso6);
   2970 			*fieldsp |= NQTXD_FIELDS_TUXSM;
   2971 		}
   2972 		*fieldsp |= ((m0->m_pkthdr.len - hlen) << NQTXD_FIELDS_PAYLEN_SHIFT);
   2973 		KASSERT(((m0->m_pkthdr.len - hlen) & ~NQTXD_FIELDS_PAYLEN_MASK) == 0);
   2974 		mssidx |= (m0->m_pkthdr.segsz << NQTXC_MSSIDX_MSS_SHIFT);
   2975 		KASSERT((m0->m_pkthdr.segsz & ~NQTXC_MSSIDX_MSS_MASK) == 0);
   2976 		mssidx |= (tcp_hlen << NQTXC_MSSIDX_L4LEN_SHIFT);
   2977 		KASSERT((tcp_hlen & ~NQTXC_MSSIDX_L4LEN_MASK) == 0);
   2978 	} else {
   2979 		*fieldsp |= (m0->m_pkthdr.len << NQTXD_FIELDS_PAYLEN_SHIFT);
   2980 		KASSERT((m0->m_pkthdr.len & ~NQTXD_FIELDS_PAYLEN_MASK) == 0);
   2981 	}
   2982 
   2983 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   2984 		*fieldsp |= NQTXD_FIELDS_IXSM;
   2985 		cmdc |= NQTXC_CMD_IP4;
   2986 	}
   2987 
   2988 	if (m0->m_pkthdr.csum_flags &
   2989 	    (M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_TSOv4)) {
   2990 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
   2991 		if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_TSOv4)) {
   2992 			cmdc |= NQTXC_CMD_TCP;
   2993 		} else {
   2994 			cmdc |= NQTXC_CMD_UDP;
   2995 		}
   2996 		cmdc |= NQTXC_CMD_IP4;
   2997 		*fieldsp |= NQTXD_FIELDS_TUXSM;
   2998 	}
   2999 	if (m0->m_pkthdr.csum_flags &
   3000 	    (M_CSUM_UDPv6 | M_CSUM_TCPv6 | M_CSUM_TSOv6)) {
   3001 		WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
   3002 		if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv6 | M_CSUM_TSOv6)) {
   3003 			cmdc |= NQTXC_CMD_TCP;
   3004 		} else {
   3005 			cmdc |= NQTXC_CMD_UDP;
   3006 		}
   3007 		cmdc |= NQTXC_CMD_IP6;
   3008 		*fieldsp |= NQTXD_FIELDS_TUXSM;
   3009 	}
   3010 
   3011 	/* Fill in the context descriptor. */
   3012 	sc->sc_nq_txdescs[sc->sc_txnext].nqrx_ctx.nqtxc_vl_len =
   3013 	    htole32(vl_len);
   3014 	sc->sc_nq_txdescs[sc->sc_txnext].nqrx_ctx.nqtxc_sn = 0;
   3015 	sc->sc_nq_txdescs[sc->sc_txnext].nqrx_ctx.nqtxc_cmd =
   3016 	    htole32(cmdc);
   3017 	sc->sc_nq_txdescs[sc->sc_txnext].nqrx_ctx.nqtxc_mssidx =
   3018 	    htole32(mssidx);
   3019 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   3020 	DPRINTF(WM_DEBUG_TX,
   3021 	    ("%s: TX: context desc %d 0x%08x%08x\n", device_xname(sc->sc_dev),
   3022 	    sc->sc_txnext, 0, vl_len));
   3023 	DPRINTF(WM_DEBUG_TX, ("\t0x%08x%08x\n", mssidx, cmdc));
   3024 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
   3025 	txs->txs_ndesc++;
   3026 	return 0;
   3027 }
   3028 
   3029 /*
   3030  * wm_nq_start:		[ifnet interface function]
   3031  *
   3032  *	Start packet transmission on the interface for NEWQUEUE devices
   3033  */
   3034 static void
   3035 wm_nq_start(struct ifnet *ifp)
   3036 {
   3037 	struct wm_softc *sc = ifp->if_softc;
   3038 	struct mbuf *m0;
   3039 	struct m_tag *mtag;
   3040 	struct wm_txsoft *txs;
   3041 	bus_dmamap_t dmamap;
   3042 	int error, nexttx, lasttx = -1, seg, segs_needed;
   3043 	bool do_csum, sent;
   3044 
   3045 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   3046 		return;
   3047 
   3048 	sent = false;
   3049 
   3050 	/*
   3051 	 * Loop through the send queue, setting up transmit descriptors
   3052 	 * until we drain the queue, or use up all available transmit
   3053 	 * descriptors.
   3054 	 */
   3055 	for (;;) {
   3056 		/* Grab a packet off the queue. */
   3057 		IFQ_POLL(&ifp->if_snd, m0);
   3058 		if (m0 == NULL)
   3059 			break;
   3060 
   3061 		DPRINTF(WM_DEBUG_TX,
   3062 		    ("%s: TX: have packet to transmit: %p\n",
   3063 		    device_xname(sc->sc_dev), m0));
   3064 
   3065 		/* Get a work queue entry. */
   3066 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
   3067 			wm_txintr(sc);
   3068 			if (sc->sc_txsfree == 0) {
   3069 				DPRINTF(WM_DEBUG_TX,
   3070 				    ("%s: TX: no free job descriptors\n",
   3071 					device_xname(sc->sc_dev)));
   3072 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   3073 				break;
   3074 			}
   3075 		}
   3076 
   3077 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   3078 		dmamap = txs->txs_dmamap;
   3079 
   3080 		/*
   3081 		 * Load the DMA map.  If this fails, the packet either
   3082 		 * didn't fit in the allotted number of segments, or we
   3083 		 * were short on resources.  For the too-many-segments
   3084 		 * case, we simply report an error and drop the packet,
   3085 		 * since we can't sanely copy a jumbo packet to a single
   3086 		 * buffer.
   3087 		 */
   3088 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   3089 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   3090 		if (error) {
   3091 			if (error == EFBIG) {
   3092 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   3093 				log(LOG_ERR, "%s: Tx packet consumes too many "
   3094 				    "DMA segments, dropping...\n",
   3095 				    device_xname(sc->sc_dev));
   3096 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   3097 				wm_dump_mbuf_chain(sc, m0);
   3098 				m_freem(m0);
   3099 				continue;
   3100 			}
   3101 			/*
   3102 			 * Short on resources, just stop for now.
   3103 			 */
   3104 			DPRINTF(WM_DEBUG_TX,
   3105 			    ("%s: TX: dmamap load failed: %d\n",
   3106 			    device_xname(sc->sc_dev), error));
   3107 			break;
   3108 		}
   3109 
   3110 		segs_needed = dmamap->dm_nsegs;
   3111 
   3112 		/*
   3113 		 * Ensure we have enough descriptors free to describe
   3114 		 * the packet.  Note, we always reserve one descriptor
   3115 		 * at the end of the ring due to the semantics of the
   3116 		 * TDT register, plus one more in the event we need
   3117 		 * to load offload context.
   3118 		 */
   3119 		if (segs_needed > sc->sc_txfree - 2) {
   3120 			/*
   3121 			 * Not enough free descriptors to transmit this
   3122 			 * packet.  We haven't committed anything yet,
   3123 			 * so just unload the DMA map, put the packet
   3124 			 * pack on the queue, and punt.  Notify the upper
   3125 			 * layer that there are no more slots left.
   3126 			 */
   3127 			DPRINTF(WM_DEBUG_TX,
   3128 			    ("%s: TX: need %d (%d) descriptors, have %d\n",
   3129 			    device_xname(sc->sc_dev), dmamap->dm_nsegs,
   3130 			    segs_needed, sc->sc_txfree - 1));
   3131 			ifp->if_flags |= IFF_OACTIVE;
   3132 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   3133 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   3134 			break;
   3135 		}
   3136 
   3137 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   3138 
   3139 		/*
   3140 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   3141 		 */
   3142 
   3143 		DPRINTF(WM_DEBUG_TX,
   3144 		    ("%s: TX: packet has %d (%d) DMA segments\n",
   3145 		    device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed));
   3146 
   3147 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   3148 
   3149 		/*
   3150 		 * Store a pointer to the packet so that we can free it
   3151 		 * later.
   3152 		 *
   3153 		 * Initially, we consider the number of descriptors the
   3154 		 * packet uses the number of DMA segments.  This may be
   3155 		 * incremented by 1 if we do checksum offload (a descriptor
   3156 		 * is used to set the checksum context).
   3157 		 */
   3158 		txs->txs_mbuf = m0;
   3159 		txs->txs_firstdesc = sc->sc_txnext;
   3160 		txs->txs_ndesc = segs_needed;
   3161 
   3162 		/* Set up offload parameters for this packet. */
   3163 		uint32_t cmdlen, fields, dcmdlen;
   3164 		if (m0->m_pkthdr.csum_flags &
   3165 		    (M_CSUM_TSOv4|M_CSUM_TSOv6|
   3166 		    M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
   3167 		    M_CSUM_TCPv6|M_CSUM_UDPv6)) {
   3168 			if (wm_nq_tx_offload(sc, txs, &cmdlen, &fields,
   3169 			    &do_csum) != 0) {
   3170 				/* Error message already displayed. */
   3171 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   3172 				continue;
   3173 			}
   3174 		} else {
   3175 			do_csum = false;
   3176 			cmdlen = 0;
   3177 			fields = 0;
   3178 		}
   3179 
   3180 		/* Sync the DMA map. */
   3181 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   3182 		    BUS_DMASYNC_PREWRITE);
   3183 
   3184 		/*
   3185 		 * Initialize the first transmit descriptor.
   3186 		 */
   3187 		nexttx = sc->sc_txnext;
   3188 		if (!do_csum) {
   3189 			/* setup a legacy descriptor */
   3190 			wm_set_dma_addr(
   3191 			    &sc->sc_txdescs[nexttx].wtx_addr,
   3192 			    dmamap->dm_segs[0].ds_addr);
   3193 			sc->sc_txdescs[nexttx].wtx_cmdlen =
   3194 			    htole32(WTX_CMD_IFCS | dmamap->dm_segs[0].ds_len);
   3195 			sc->sc_txdescs[nexttx].wtx_fields.wtxu_status = 0;
   3196 			sc->sc_txdescs[nexttx].wtx_fields.wtxu_options = 0;
   3197 			if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) !=
   3198 			    NULL) {
   3199 				sc->sc_txdescs[nexttx].wtx_cmdlen |=
   3200 				    htole32(WTX_CMD_VLE);
   3201 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan =
   3202 				    htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
   3203 			} else {
   3204 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
   3205 			}
   3206 			dcmdlen = 0;
   3207 		} else {
   3208 			/* setup an advanced data descriptor */
   3209 			sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_addr =
   3210 			    htole64(dmamap->dm_segs[0].ds_addr);
   3211 			KASSERT((dmamap->dm_segs[0].ds_len & cmdlen) == 0);
   3212 			sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_cmdlen =
   3213 			    htole32(dmamap->dm_segs[0].ds_len | cmdlen );
   3214 			sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_fields =
   3215 			    htole32(fields);
   3216 			DPRINTF(WM_DEBUG_TX,
   3217 			    ("%s: TX: adv data desc %d 0x%" PRIx64 "\n",
   3218 			    device_xname(sc->sc_dev), nexttx,
   3219 			    (uint64_t)dmamap->dm_segs[0].ds_addr));
   3220 			DPRINTF(WM_DEBUG_TX,
   3221 			    ("\t 0x%08x%08x\n", fields,
   3222 			    (uint32_t)dmamap->dm_segs[0].ds_len | cmdlen));
   3223 			dcmdlen = NQTX_DTYP_D | NQTX_CMD_DEXT;
   3224 		}
   3225 
   3226 		lasttx = nexttx;
   3227 		nexttx = WM_NEXTTX(sc, nexttx);
   3228 		/*
   3229 		 * fill in the next descriptors. legacy or adcanced format
   3230 		 * is the same here
   3231 		 */
   3232 		for (seg = 1; seg < dmamap->dm_nsegs;
   3233 		    seg++, nexttx = WM_NEXTTX(sc, nexttx)) {
   3234 			sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_addr =
   3235 			    htole64(dmamap->dm_segs[seg].ds_addr);
   3236 			sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_cmdlen =
   3237 			    htole32(dcmdlen | dmamap->dm_segs[seg].ds_len);
   3238 			KASSERT((dcmdlen & dmamap->dm_segs[seg].ds_len) == 0);
   3239 			sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_fields = 0;
   3240 			lasttx = nexttx;
   3241 
   3242 			DPRINTF(WM_DEBUG_TX,
   3243 			    ("%s: TX: desc %d: %#" PRIx64 ", "
   3244 			     "len %#04zx\n",
   3245 			    device_xname(sc->sc_dev), nexttx,
   3246 			    (uint64_t)dmamap->dm_segs[seg].ds_addr,
   3247 			    dmamap->dm_segs[seg].ds_len));
   3248 		}
   3249 
   3250 		KASSERT(lasttx != -1);
   3251 
   3252 		/*
   3253 		 * Set up the command byte on the last descriptor of
   3254 		 * the packet.  If we're in the interrupt delay window,
   3255 		 * delay the interrupt.
   3256 		 */
   3257 		KASSERT((WTX_CMD_EOP | WTX_CMD_RS) ==
   3258 		    (NQTX_CMD_EOP | NQTX_CMD_RS));
   3259 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   3260 		    htole32(WTX_CMD_EOP | WTX_CMD_RS);
   3261 
   3262 		txs->txs_lastdesc = lasttx;
   3263 
   3264 		DPRINTF(WM_DEBUG_TX,
   3265 		    ("%s: TX: desc %d: cmdlen 0x%08x\n",
   3266 		    device_xname(sc->sc_dev),
   3267 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
   3268 
   3269 		/* Sync the descriptors we're using. */
   3270 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
   3271 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3272 
   3273 		/* Give the packet to the chip. */
   3274 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   3275 		sent = true;
   3276 
   3277 		DPRINTF(WM_DEBUG_TX,
   3278 		    ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
   3279 
   3280 		DPRINTF(WM_DEBUG_TX,
   3281 		    ("%s: TX: finished transmitting packet, job %d\n",
   3282 		    device_xname(sc->sc_dev), sc->sc_txsnext));
   3283 
   3284 		/* Advance the tx pointer. */
   3285 		sc->sc_txfree -= txs->txs_ndesc;
   3286 		sc->sc_txnext = nexttx;
   3287 
   3288 		sc->sc_txsfree--;
   3289 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
   3290 
   3291 		/* Pass the packet to any BPF listeners. */
   3292 		bpf_mtap(ifp, m0);
   3293 	}
   3294 
   3295 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   3296 		/* No more slots; notify upper layer. */
   3297 		ifp->if_flags |= IFF_OACTIVE;
   3298 	}
   3299 
   3300 	if (sent) {
   3301 		/* Set a watchdog timer in case the chip flakes out. */
   3302 		ifp->if_timer = 5;
   3303 	}
   3304 }
   3305 
   3306 /*
   3307  * wm_watchdog:		[ifnet interface function]
   3308  *
   3309  *	Watchdog timer handler.
   3310  */
   3311 static void
   3312 wm_watchdog(struct ifnet *ifp)
   3313 {
   3314 	struct wm_softc *sc = ifp->if_softc;
   3315 
   3316 	/*
   3317 	 * Since we're using delayed interrupts, sweep up
   3318 	 * before we report an error.
   3319 	 */
   3320 	wm_txintr(sc);
   3321 
   3322 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
   3323 #ifdef WM_DEBUG
   3324 		int i, j;
   3325 		struct wm_txsoft *txs;
   3326 #endif
   3327 		log(LOG_ERR,
   3328 		    "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   3329 		    device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
   3330 		    sc->sc_txnext);
   3331 		ifp->if_oerrors++;
   3332 #ifdef WM_DEBUG
   3333 		for (i = sc->sc_txsdirty; i != sc->sc_txsnext ;
   3334 		    i = WM_NEXTTXS(sc, i)) {
   3335 		    txs = &sc->sc_txsoft[i];
   3336 		    printf("txs %d tx %d -> %d\n",
   3337 			i, txs->txs_firstdesc, txs->txs_lastdesc);
   3338 		    for (j = txs->txs_firstdesc; ;
   3339 			j = WM_NEXTTX(sc, j)) {
   3340 			printf("\tdesc %d: 0x%" PRIx64 "\n", j,
   3341 			    sc->sc_nq_txdescs[j].nqtx_data.nqtxd_addr);
   3342 			printf("\t %#08x%08x\n",
   3343 			    sc->sc_nq_txdescs[j].nqtx_data.nqtxd_fields,
   3344 			    sc->sc_nq_txdescs[j].nqtx_data.nqtxd_cmdlen);
   3345 			if (j == txs->txs_lastdesc)
   3346 				break;
   3347 			}
   3348 		}
   3349 #endif
   3350 		/* Reset the interface. */
   3351 		(void) wm_init(ifp);
   3352 	}
   3353 
   3354 	/* Try to get more packets going. */
   3355 	ifp->if_start(ifp);
   3356 }
   3357 
   3358 static int
   3359 wm_ifflags_cb(struct ethercom *ec)
   3360 {
   3361 	struct ifnet *ifp = &ec->ec_if;
   3362 	struct wm_softc *sc = ifp->if_softc;
   3363 	int change = ifp->if_flags ^ sc->sc_if_flags;
   3364 
   3365 	if (change != 0)
   3366 		sc->sc_if_flags = ifp->if_flags;
   3367 
   3368 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   3369 		return ENETRESET;
   3370 
   3371 	if ((change & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
   3372 		wm_set_filter(sc);
   3373 
   3374 	wm_set_vlan(sc);
   3375 
   3376 	return 0;
   3377 }
   3378 
   3379 /*
   3380  * wm_ioctl:		[ifnet interface function]
   3381  *
   3382  *	Handle control requests from the operator.
   3383  */
   3384 static int
   3385 wm_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   3386 {
   3387 	struct wm_softc *sc = ifp->if_softc;
   3388 	struct ifreq *ifr = (struct ifreq *) data;
   3389 	struct ifaddr *ifa = (struct ifaddr *)data;
   3390 	struct sockaddr_dl *sdl;
   3391 	int s, error;
   3392 
   3393 	s = splnet();
   3394 
   3395 	switch (cmd) {
   3396 	case SIOCSIFMEDIA:
   3397 	case SIOCGIFMEDIA:
   3398 		/* Flow control requires full-duplex mode. */
   3399 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   3400 		    (ifr->ifr_media & IFM_FDX) == 0)
   3401 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   3402 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   3403 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   3404 				/* We can do both TXPAUSE and RXPAUSE. */
   3405 				ifr->ifr_media |=
   3406 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   3407 			}
   3408 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   3409 		}
   3410 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   3411 		break;
   3412 	case SIOCINITIFADDR:
   3413 		if (ifa->ifa_addr->sa_family == AF_LINK) {
   3414 			sdl = satosdl(ifp->if_dl->ifa_addr);
   3415 			(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len,
   3416 			    LLADDR(satosdl(ifa->ifa_addr)), ifp->if_addrlen);
   3417 			/* unicast address is first multicast entry */
   3418 			wm_set_filter(sc);
   3419 			error = 0;
   3420 			break;
   3421 		}
   3422 		/*FALLTHROUGH*/
   3423 	default:
   3424 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   3425 			break;
   3426 
   3427 		error = 0;
   3428 
   3429 		if (cmd == SIOCSIFCAP)
   3430 			error = (*ifp->if_init)(ifp);
   3431 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   3432 			;
   3433 		else if (ifp->if_flags & IFF_RUNNING) {
   3434 			/*
   3435 			 * Multicast list has changed; set the hardware filter
   3436 			 * accordingly.
   3437 			 */
   3438 			wm_set_filter(sc);
   3439 		}
   3440 		break;
   3441 	}
   3442 
   3443 	/* Try to get more packets going. */
   3444 	ifp->if_start(ifp);
   3445 
   3446 	splx(s);
   3447 	return error;
   3448 }
   3449 
   3450 /*
   3451  * wm_intr:
   3452  *
   3453  *	Interrupt service routine.
   3454  */
   3455 static int
   3456 wm_intr(void *arg)
   3457 {
   3458 	struct wm_softc *sc = arg;
   3459 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3460 	uint32_t icr;
   3461 	int handled = 0;
   3462 
   3463 	while (1 /* CONSTCOND */) {
   3464 		icr = CSR_READ(sc, WMREG_ICR);
   3465 		if ((icr & sc->sc_icr) == 0)
   3466 			break;
   3467 		rnd_add_uint32(&sc->rnd_source, icr);
   3468 
   3469 		handled = 1;
   3470 
   3471 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   3472 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   3473 			DPRINTF(WM_DEBUG_RX,
   3474 			    ("%s: RX: got Rx intr 0x%08x\n",
   3475 			    device_xname(sc->sc_dev),
   3476 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   3477 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
   3478 		}
   3479 #endif
   3480 		wm_rxintr(sc);
   3481 
   3482 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   3483 		if (icr & ICR_TXDW) {
   3484 			DPRINTF(WM_DEBUG_TX,
   3485 			    ("%s: TX: got TXDW interrupt\n",
   3486 			    device_xname(sc->sc_dev)));
   3487 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
   3488 		}
   3489 #endif
   3490 		wm_txintr(sc);
   3491 
   3492 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
   3493 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
   3494 			wm_linkintr(sc, icr);
   3495 		}
   3496 
   3497 		if (icr & ICR_RXO) {
   3498 #if defined(WM_DEBUG)
   3499 			log(LOG_WARNING, "%s: Receive overrun\n",
   3500 			    device_xname(sc->sc_dev));
   3501 #endif /* defined(WM_DEBUG) */
   3502 		}
   3503 	}
   3504 
   3505 	if (handled) {
   3506 		/* Try to get more packets going. */
   3507 		ifp->if_start(ifp);
   3508 	}
   3509 
   3510 	return handled;
   3511 }
   3512 
   3513 /*
   3514  * wm_txintr:
   3515  *
   3516  *	Helper; handle transmit interrupts.
   3517  */
   3518 static void
   3519 wm_txintr(struct wm_softc *sc)
   3520 {
   3521 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3522 	struct wm_txsoft *txs;
   3523 	uint8_t status;
   3524 	int i;
   3525 
   3526 	ifp->if_flags &= ~IFF_OACTIVE;
   3527 
   3528 	/*
   3529 	 * Go through the Tx list and free mbufs for those
   3530 	 * frames which have been transmitted.
   3531 	 */
   3532 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
   3533 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
   3534 		txs = &sc->sc_txsoft[i];
   3535 
   3536 		DPRINTF(WM_DEBUG_TX,
   3537 		    ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i));
   3538 
   3539 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   3540 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3541 
   3542 		status =
   3543 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
   3544 		if ((status & WTX_ST_DD) == 0) {
   3545 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   3546 			    BUS_DMASYNC_PREREAD);
   3547 			break;
   3548 		}
   3549 
   3550 		DPRINTF(WM_DEBUG_TX,
   3551 		    ("%s: TX: job %d done: descs %d..%d\n",
   3552 		    device_xname(sc->sc_dev), i, txs->txs_firstdesc,
   3553 		    txs->txs_lastdesc));
   3554 
   3555 		/*
   3556 		 * XXX We should probably be using the statistics
   3557 		 * XXX registers, but I don't know if they exist
   3558 		 * XXX on chips before the i82544.
   3559 		 */
   3560 
   3561 #ifdef WM_EVENT_COUNTERS
   3562 		if (status & WTX_ST_TU)
   3563 			WM_EVCNT_INCR(&sc->sc_ev_tu);
   3564 #endif /* WM_EVENT_COUNTERS */
   3565 
   3566 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
   3567 			ifp->if_oerrors++;
   3568 			if (status & WTX_ST_LC)
   3569 				log(LOG_WARNING, "%s: late collision\n",
   3570 				    device_xname(sc->sc_dev));
   3571 			else if (status & WTX_ST_EC) {
   3572 				ifp->if_collisions += 16;
   3573 				log(LOG_WARNING, "%s: excessive collisions\n",
   3574 				    device_xname(sc->sc_dev));
   3575 			}
   3576 		} else
   3577 			ifp->if_opackets++;
   3578 
   3579 		sc->sc_txfree += txs->txs_ndesc;
   3580 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   3581 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3582 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   3583 		m_freem(txs->txs_mbuf);
   3584 		txs->txs_mbuf = NULL;
   3585 	}
   3586 
   3587 	/* Update the dirty transmit buffer pointer. */
   3588 	sc->sc_txsdirty = i;
   3589 	DPRINTF(WM_DEBUG_TX,
   3590 	    ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
   3591 
   3592 	/*
   3593 	 * If there are no more pending transmissions, cancel the watchdog
   3594 	 * timer.
   3595 	 */
   3596 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
   3597 		ifp->if_timer = 0;
   3598 }
   3599 
   3600 /*
   3601  * wm_rxintr:
   3602  *
   3603  *	Helper; handle receive interrupts.
   3604  */
   3605 static void
   3606 wm_rxintr(struct wm_softc *sc)
   3607 {
   3608 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3609 	struct wm_rxsoft *rxs;
   3610 	struct mbuf *m;
   3611 	int i, len;
   3612 	uint8_t status, errors;
   3613 	uint16_t vlantag;
   3614 
   3615 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
   3616 		rxs = &sc->sc_rxsoft[i];
   3617 
   3618 		DPRINTF(WM_DEBUG_RX,
   3619 		    ("%s: RX: checking descriptor %d\n",
   3620 		    device_xname(sc->sc_dev), i));
   3621 
   3622 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3623 
   3624 		status = sc->sc_rxdescs[i].wrx_status;
   3625 		errors = sc->sc_rxdescs[i].wrx_errors;
   3626 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
   3627 		vlantag = sc->sc_rxdescs[i].wrx_special;
   3628 
   3629 		if ((status & WRX_ST_DD) == 0) {
   3630 			/*
   3631 			 * We have processed all of the receive descriptors.
   3632 			 */
   3633 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   3634 			break;
   3635 		}
   3636 
   3637 		if (__predict_false(sc->sc_rxdiscard)) {
   3638 			DPRINTF(WM_DEBUG_RX,
   3639 			    ("%s: RX: discarding contents of descriptor %d\n",
   3640 			    device_xname(sc->sc_dev), i));
   3641 			WM_INIT_RXDESC(sc, i);
   3642 			if (status & WRX_ST_EOP) {
   3643 				/* Reset our state. */
   3644 				DPRINTF(WM_DEBUG_RX,
   3645 				    ("%s: RX: resetting rxdiscard -> 0\n",
   3646 				    device_xname(sc->sc_dev)));
   3647 				sc->sc_rxdiscard = 0;
   3648 			}
   3649 			continue;
   3650 		}
   3651 
   3652 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3653 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3654 
   3655 		m = rxs->rxs_mbuf;
   3656 
   3657 		/*
   3658 		 * Add a new receive buffer to the ring, unless of
   3659 		 * course the length is zero. Treat the latter as a
   3660 		 * failed mapping.
   3661 		 */
   3662 		if ((len == 0) || (wm_add_rxbuf(sc, i) != 0)) {
   3663 			/*
   3664 			 * Failed, throw away what we've done so
   3665 			 * far, and discard the rest of the packet.
   3666 			 */
   3667 			ifp->if_ierrors++;
   3668 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3669 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3670 			WM_INIT_RXDESC(sc, i);
   3671 			if ((status & WRX_ST_EOP) == 0)
   3672 				sc->sc_rxdiscard = 1;
   3673 			if (sc->sc_rxhead != NULL)
   3674 				m_freem(sc->sc_rxhead);
   3675 			WM_RXCHAIN_RESET(sc);
   3676 			DPRINTF(WM_DEBUG_RX,
   3677 			    ("%s: RX: Rx buffer allocation failed, "
   3678 			    "dropping packet%s\n", device_xname(sc->sc_dev),
   3679 			    sc->sc_rxdiscard ? " (discard)" : ""));
   3680 			continue;
   3681 		}
   3682 
   3683 		m->m_len = len;
   3684 		sc->sc_rxlen += len;
   3685 		DPRINTF(WM_DEBUG_RX,
   3686 		    ("%s: RX: buffer at %p len %d\n",
   3687 		    device_xname(sc->sc_dev), m->m_data, len));
   3688 
   3689 		/*
   3690 		 * If this is not the end of the packet, keep
   3691 		 * looking.
   3692 		 */
   3693 		if ((status & WRX_ST_EOP) == 0) {
   3694 			WM_RXCHAIN_LINK(sc, m);
   3695 			DPRINTF(WM_DEBUG_RX,
   3696 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   3697 			    device_xname(sc->sc_dev), sc->sc_rxlen));
   3698 			continue;
   3699 		}
   3700 
   3701 		/*
   3702 		 * Okay, we have the entire packet now.  The chip is
   3703 		 * configured to include the FCS except I350 and I21[01]
   3704 		 * (not all chips can be configured to strip it),
   3705 		 * so we need to trim it.
   3706 		 * May need to adjust length of previous mbuf in the
   3707 		 * chain if the current mbuf is too short.
   3708 		 * For an eratta, the RCTL_SECRC bit in RCTL register
   3709 		 * is always set in I350, so we don't trim it.
   3710 		 */
   3711 		if ((sc->sc_type != WM_T_I350) && (sc->sc_type != WM_T_I210)
   3712 		    && (sc->sc_type != WM_T_I211)) {
   3713 			if (m->m_len < ETHER_CRC_LEN) {
   3714 				sc->sc_rxtail->m_len
   3715 				    -= (ETHER_CRC_LEN - m->m_len);
   3716 				m->m_len = 0;
   3717 			} else
   3718 				m->m_len -= ETHER_CRC_LEN;
   3719 			len = sc->sc_rxlen - ETHER_CRC_LEN;
   3720 		} else
   3721 			len = sc->sc_rxlen;
   3722 
   3723 		WM_RXCHAIN_LINK(sc, m);
   3724 
   3725 		*sc->sc_rxtailp = NULL;
   3726 		m = sc->sc_rxhead;
   3727 
   3728 		WM_RXCHAIN_RESET(sc);
   3729 
   3730 		DPRINTF(WM_DEBUG_RX,
   3731 		    ("%s: RX: have entire packet, len -> %d\n",
   3732 		    device_xname(sc->sc_dev), len));
   3733 
   3734 		/*
   3735 		 * If an error occurred, update stats and drop the packet.
   3736 		 */
   3737 		if (errors &
   3738 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
   3739 			if (errors & WRX_ER_SE)
   3740 				log(LOG_WARNING, "%s: symbol error\n",
   3741 				    device_xname(sc->sc_dev));
   3742 			else if (errors & WRX_ER_SEQ)
   3743 				log(LOG_WARNING, "%s: receive sequence error\n",
   3744 				    device_xname(sc->sc_dev));
   3745 			else if (errors & WRX_ER_CE)
   3746 				log(LOG_WARNING, "%s: CRC error\n",
   3747 				    device_xname(sc->sc_dev));
   3748 			m_freem(m);
   3749 			continue;
   3750 		}
   3751 
   3752 		/*
   3753 		 * No errors.  Receive the packet.
   3754 		 */
   3755 		m->m_pkthdr.rcvif = ifp;
   3756 		m->m_pkthdr.len = len;
   3757 
   3758 		/*
   3759 		 * If VLANs are enabled, VLAN packets have been unwrapped
   3760 		 * for us.  Associate the tag with the packet.
   3761 		 */
   3762 		if ((status & WRX_ST_VP) != 0) {
   3763 			VLAN_INPUT_TAG(ifp, m,
   3764 			    le16toh(vlantag),
   3765 			    continue);
   3766 		}
   3767 
   3768 		/*
   3769 		 * Set up checksum info for this packet.
   3770 		 */
   3771 		if ((status & WRX_ST_IXSM) == 0) {
   3772 			if (status & WRX_ST_IPCS) {
   3773 				WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
   3774 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   3775 				if (errors & WRX_ER_IPE)
   3776 					m->m_pkthdr.csum_flags |=
   3777 					    M_CSUM_IPv4_BAD;
   3778 			}
   3779 			if (status & WRX_ST_TCPCS) {
   3780 				/*
   3781 				 * Note: we don't know if this was TCP or UDP,
   3782 				 * so we just set both bits, and expect the
   3783 				 * upper layers to deal.
   3784 				 */
   3785 				WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
   3786 				m->m_pkthdr.csum_flags |=
   3787 				    M_CSUM_TCPv4 | M_CSUM_UDPv4 |
   3788 				    M_CSUM_TCPv6 | M_CSUM_UDPv6;
   3789 				if (errors & WRX_ER_TCPE)
   3790 					m->m_pkthdr.csum_flags |=
   3791 					    M_CSUM_TCP_UDP_BAD;
   3792 			}
   3793 		}
   3794 
   3795 		ifp->if_ipackets++;
   3796 
   3797 		/* Pass this up to any BPF listeners. */
   3798 		bpf_mtap(ifp, m);
   3799 
   3800 		/* Pass it on. */
   3801 		(*ifp->if_input)(ifp, m);
   3802 	}
   3803 
   3804 	/* Update the receive pointer. */
   3805 	sc->sc_rxptr = i;
   3806 
   3807 	DPRINTF(WM_DEBUG_RX,
   3808 	    ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
   3809 }
   3810 
   3811 /*
   3812  * wm_linkintr_gmii:
   3813  *
   3814  *	Helper; handle link interrupts for GMII.
   3815  */
   3816 static void
   3817 wm_linkintr_gmii(struct wm_softc *sc, uint32_t icr)
   3818 {
   3819 
   3820 	DPRINTF(WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
   3821 		__func__));
   3822 
   3823 	if (icr & ICR_LSC) {
   3824 		DPRINTF(WM_DEBUG_LINK,
   3825 		    ("%s: LINK: LSC -> mii_tick\n",
   3826 			device_xname(sc->sc_dev)));
   3827 		mii_tick(&sc->sc_mii);
   3828 		if (sc->sc_type == WM_T_82543) {
   3829 			int miistatus, active;
   3830 
   3831 			/*
   3832 			 * With 82543, we need to force speed and
   3833 			 * duplex on the MAC equal to what the PHY
   3834 			 * speed and duplex configuration is.
   3835 			 */
   3836 			miistatus = sc->sc_mii.mii_media_status;
   3837 
   3838 			if (miistatus & IFM_ACTIVE) {
   3839 				active = sc->sc_mii.mii_media_active;
   3840 				sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
   3841 				switch (IFM_SUBTYPE(active)) {
   3842 				case IFM_10_T:
   3843 					sc->sc_ctrl |= CTRL_SPEED_10;
   3844 					break;
   3845 				case IFM_100_TX:
   3846 					sc->sc_ctrl |= CTRL_SPEED_100;
   3847 					break;
   3848 				case IFM_1000_T:
   3849 					sc->sc_ctrl |= CTRL_SPEED_1000;
   3850 					break;
   3851 				default:
   3852 					/*
   3853 					 * fiber?
   3854 					 * Shoud not enter here.
   3855 					 */
   3856 					printf("unknown media (%x)\n",
   3857 					    active);
   3858 					break;
   3859 				}
   3860 				if (active & IFM_FDX)
   3861 					sc->sc_ctrl |= CTRL_FD;
   3862 				CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3863 			}
   3864 		} else if ((sc->sc_type == WM_T_ICH8)
   3865 		    && (sc->sc_phytype == WMPHY_IGP_3)) {
   3866 			wm_kmrn_lock_loss_workaround_ich8lan(sc);
   3867 		} else if (sc->sc_type == WM_T_PCH) {
   3868 			wm_k1_gig_workaround_hv(sc,
   3869 			    ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0));
   3870 		}
   3871 
   3872 		if ((sc->sc_phytype == WMPHY_82578)
   3873 		    && (IFM_SUBTYPE(sc->sc_mii.mii_media_active)
   3874 			== IFM_1000_T)) {
   3875 
   3876 			if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0) {
   3877 				delay(200*1000); /* XXX too big */
   3878 
   3879 				/* Link stall fix for link up */
   3880 				wm_gmii_hv_writereg(sc->sc_dev, 1,
   3881 				    HV_MUX_DATA_CTRL,
   3882 				    HV_MUX_DATA_CTRL_GEN_TO_MAC
   3883 				    | HV_MUX_DATA_CTRL_FORCE_SPEED);
   3884 				wm_gmii_hv_writereg(sc->sc_dev, 1,
   3885 				    HV_MUX_DATA_CTRL,
   3886 				    HV_MUX_DATA_CTRL_GEN_TO_MAC);
   3887 			}
   3888 		}
   3889 	} else if (icr & ICR_RXSEQ) {
   3890 		DPRINTF(WM_DEBUG_LINK,
   3891 		    ("%s: LINK Receive sequence error\n",
   3892 			device_xname(sc->sc_dev)));
   3893 	}
   3894 }
   3895 
   3896 /*
   3897  * wm_linkintr_tbi:
   3898  *
   3899  *	Helper; handle link interrupts for TBI mode.
   3900  */
   3901 static void
   3902 wm_linkintr_tbi(struct wm_softc *sc, uint32_t icr)
   3903 {
   3904 	uint32_t status;
   3905 
   3906 	DPRINTF(WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
   3907 		__func__));
   3908 
   3909 	status = CSR_READ(sc, WMREG_STATUS);
   3910 	if (icr & ICR_LSC) {
   3911 		if (status & STATUS_LU) {
   3912 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
   3913 			    device_xname(sc->sc_dev),
   3914 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   3915 			/*
   3916 			 * NOTE: CTRL will update TFCE and RFCE automatically,
   3917 			 * so we should update sc->sc_ctrl
   3918 			 */
   3919 
   3920 			sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
   3921 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3922 			sc->sc_fcrtl &= ~FCRTL_XONE;
   3923 			if (status & STATUS_FD)
   3924 				sc->sc_tctl |=
   3925 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3926 			else
   3927 				sc->sc_tctl |=
   3928 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3929 			if (sc->sc_ctrl & CTRL_TFCE)
   3930 				sc->sc_fcrtl |= FCRTL_XONE;
   3931 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3932 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   3933 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   3934 				      sc->sc_fcrtl);
   3935 			sc->sc_tbi_linkup = 1;
   3936 		} else {
   3937 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   3938 			    device_xname(sc->sc_dev)));
   3939 			sc->sc_tbi_linkup = 0;
   3940 		}
   3941 		wm_tbi_set_linkled(sc);
   3942 	} else if (icr & ICR_RXCFG) {
   3943 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
   3944 		    device_xname(sc->sc_dev)));
   3945 		sc->sc_tbi_nrxcfg++;
   3946 		wm_check_for_link(sc);
   3947 	} else if (icr & ICR_RXSEQ) {
   3948 		DPRINTF(WM_DEBUG_LINK,
   3949 		    ("%s: LINK: Receive sequence error\n",
   3950 		    device_xname(sc->sc_dev)));
   3951 	}
   3952 }
   3953 
   3954 /*
   3955  * wm_linkintr:
   3956  *
   3957  *	Helper; handle link interrupts.
   3958  */
   3959 static void
   3960 wm_linkintr(struct wm_softc *sc, uint32_t icr)
   3961 {
   3962 
   3963 	if (sc->sc_flags & WM_F_HAS_MII)
   3964 		wm_linkintr_gmii(sc, icr);
   3965 	else
   3966 		wm_linkintr_tbi(sc, icr);
   3967 }
   3968 
   3969 /*
   3970  * wm_tick:
   3971  *
   3972  *	One second timer, used to check link status, sweep up
   3973  *	completed transmit jobs, etc.
   3974  */
   3975 static void
   3976 wm_tick(void *arg)
   3977 {
   3978 	struct wm_softc *sc = arg;
   3979 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3980 	int s;
   3981 
   3982 	s = splnet();
   3983 
   3984 	if (sc->sc_type >= WM_T_82542_2_1) {
   3985 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
   3986 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
   3987 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
   3988 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
   3989 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
   3990 	}
   3991 
   3992 	ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
   3993 	ifp->if_ierrors += 0ULL + /* ensure quad_t */
   3994 	    + CSR_READ(sc, WMREG_CRCERRS)
   3995 	    + CSR_READ(sc, WMREG_ALGNERRC)
   3996 	    + CSR_READ(sc, WMREG_SYMERRC)
   3997 	    + CSR_READ(sc, WMREG_RXERRC)
   3998 	    + CSR_READ(sc, WMREG_SEC)
   3999 	    + CSR_READ(sc, WMREG_CEXTERR)
   4000 	    + CSR_READ(sc, WMREG_RLEC);
   4001 	ifp->if_iqdrops += CSR_READ(sc, WMREG_MPC) + CSR_READ(sc, WMREG_RNBC);
   4002 
   4003 	if (sc->sc_flags & WM_F_HAS_MII)
   4004 		mii_tick(&sc->sc_mii);
   4005 	else
   4006 		wm_tbi_check_link(sc);
   4007 
   4008 	splx(s);
   4009 
   4010 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   4011 }
   4012 
   4013 /*
   4014  * wm_reset:
   4015  *
   4016  *	Reset the i82542 chip.
   4017  */
   4018 static void
   4019 wm_reset(struct wm_softc *sc)
   4020 {
   4021 	int phy_reset = 0;
   4022 	uint32_t reg, mask;
   4023 	int i;
   4024 
   4025 	/*
   4026 	 * Allocate on-chip memory according to the MTU size.
   4027 	 * The Packet Buffer Allocation register must be written
   4028 	 * before the chip is reset.
   4029 	 */
   4030 	switch (sc->sc_type) {
   4031 	case WM_T_82547:
   4032 	case WM_T_82547_2:
   4033 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   4034 		    PBA_22K : PBA_30K;
   4035 		sc->sc_txfifo_head = 0;
   4036 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
   4037 		sc->sc_txfifo_size =
   4038 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
   4039 		sc->sc_txfifo_stall = 0;
   4040 		break;
   4041 	case WM_T_82571:
   4042 	case WM_T_82572:
   4043 	case WM_T_82575:	/* XXX need special handing for jumbo frames */
   4044 	case WM_T_I350:
   4045 	case WM_T_80003:
   4046 		sc->sc_pba = PBA_32K;
   4047 		break;
   4048 	case WM_T_82580:
   4049 	case WM_T_82580ER:
   4050 		sc->sc_pba = PBA_35K;
   4051 		break;
   4052 	case WM_T_I210:
   4053 	case WM_T_I211:
   4054 		sc->sc_pba = PBA_34K;
   4055 		break;
   4056 	case WM_T_82576:
   4057 		sc->sc_pba = PBA_64K;
   4058 		break;
   4059 	case WM_T_82573:
   4060 		sc->sc_pba = PBA_12K;
   4061 		break;
   4062 	case WM_T_82574:
   4063 	case WM_T_82583:
   4064 		sc->sc_pba = PBA_20K;
   4065 		break;
   4066 	case WM_T_ICH8:
   4067 		sc->sc_pba = PBA_8K;
   4068 		CSR_WRITE(sc, WMREG_PBS, PBA_16K);
   4069 		break;
   4070 	case WM_T_ICH9:
   4071 	case WM_T_ICH10:
   4072 		sc->sc_pba = PBA_10K;
   4073 		break;
   4074 	case WM_T_PCH:
   4075 	case WM_T_PCH2:
   4076 	case WM_T_PCH_LPT:
   4077 		sc->sc_pba = PBA_26K;
   4078 		break;
   4079 	default:
   4080 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   4081 		    PBA_40K : PBA_48K;
   4082 		break;
   4083 	}
   4084 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
   4085 
   4086 	/* Prevent the PCI-E bus from sticking */
   4087 	if (sc->sc_flags & WM_F_PCIE) {
   4088 		int timeout = 800;
   4089 
   4090 		sc->sc_ctrl |= CTRL_GIO_M_DIS;
   4091 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4092 
   4093 		while (timeout--) {
   4094 			if ((CSR_READ(sc, WMREG_STATUS) & STATUS_GIO_M_ENA)
   4095 			    == 0)
   4096 				break;
   4097 			delay(100);
   4098 		}
   4099 	}
   4100 
   4101 	/* Set the completion timeout for interface */
   4102 	if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
   4103 	    || (sc->sc_type == WM_T_I350))
   4104 		wm_set_pcie_completion_timeout(sc);
   4105 
   4106 	/* Clear interrupt */
   4107 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   4108 
   4109 	/* Stop the transmit and receive processes. */
   4110 	CSR_WRITE(sc, WMREG_RCTL, 0);
   4111 	CSR_WRITE(sc, WMREG_TCTL, TCTL_PSP);
   4112 	sc->sc_rctl &= ~RCTL_EN;
   4113 
   4114 	/* XXX set_tbi_sbp_82543() */
   4115 
   4116 	delay(10*1000);
   4117 
   4118 	/* Must acquire the MDIO ownership before MAC reset */
   4119 	switch (sc->sc_type) {
   4120 	case WM_T_82573:
   4121 	case WM_T_82574:
   4122 	case WM_T_82583:
   4123 		i = 0;
   4124 		reg = CSR_READ(sc, WMREG_EXTCNFCTR)
   4125 		    | EXTCNFCTR_MDIO_SW_OWNERSHIP;
   4126 		do {
   4127 			CSR_WRITE(sc, WMREG_EXTCNFCTR,
   4128 			    reg | EXTCNFCTR_MDIO_SW_OWNERSHIP);
   4129 			reg = CSR_READ(sc, WMREG_EXTCNFCTR);
   4130 			if ((reg & EXTCNFCTR_MDIO_SW_OWNERSHIP) != 0)
   4131 				break;
   4132 			reg |= EXTCNFCTR_MDIO_SW_OWNERSHIP;
   4133 			delay(2*1000);
   4134 			i++;
   4135 		} while (i < WM_MDIO_OWNERSHIP_TIMEOUT);
   4136 		break;
   4137 	default:
   4138 		break;
   4139 	}
   4140 
   4141 	/*
   4142 	 * 82541 Errata 29? & 82547 Errata 28?
   4143 	 * See also the description about PHY_RST bit in CTRL register
   4144 	 * in 8254x_GBe_SDM.pdf.
   4145 	 */
   4146 	if ((sc->sc_type == WM_T_82541) || (sc->sc_type == WM_T_82547)) {
   4147 		CSR_WRITE(sc, WMREG_CTRL,
   4148 		    CSR_READ(sc, WMREG_CTRL) | CTRL_PHY_RESET);
   4149 		delay(5000);
   4150 	}
   4151 
   4152 	switch (sc->sc_type) {
   4153 	case WM_T_82544: /* XXX check whether WM_F_IOH_VALID is set */
   4154 	case WM_T_82541:
   4155 	case WM_T_82541_2:
   4156 	case WM_T_82547:
   4157 	case WM_T_82547_2:
   4158 		/*
   4159 		 * On some chipsets, a reset through a memory-mapped write
   4160 		 * cycle can cause the chip to reset before completing the
   4161 		 * write cycle.  This causes major headache that can be
   4162 		 * avoided by issuing the reset via indirect register writes
   4163 		 * through I/O space.
   4164 		 *
   4165 		 * So, if we successfully mapped the I/O BAR at attach time,
   4166 		 * use that.  Otherwise, try our luck with a memory-mapped
   4167 		 * reset.
   4168 		 */
   4169 		if (sc->sc_flags & WM_F_IOH_VALID)
   4170 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
   4171 		else
   4172 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   4173 		break;
   4174 	case WM_T_82545_3:
   4175 	case WM_T_82546_3:
   4176 		/* Use the shadow control register on these chips. */
   4177 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
   4178 		break;
   4179 	case WM_T_80003:
   4180 		mask = swfwphysem[sc->sc_funcid];
   4181 		reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST;
   4182 		wm_get_swfw_semaphore(sc, mask);
   4183 		CSR_WRITE(sc, WMREG_CTRL, reg);
   4184 		wm_put_swfw_semaphore(sc, mask);
   4185 		break;
   4186 	case WM_T_ICH8:
   4187 	case WM_T_ICH9:
   4188 	case WM_T_ICH10:
   4189 	case WM_T_PCH:
   4190 	case WM_T_PCH2:
   4191 	case WM_T_PCH_LPT:
   4192 		reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST;
   4193 		if (wm_check_reset_block(sc) == 0) {
   4194 			/*
   4195 			 * Gate automatic PHY configuration by hardware on
   4196 			 * non-managed 82579
   4197 			 */
   4198 			if ((sc->sc_type == WM_T_PCH2)
   4199 			    && ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID)
   4200 				!= 0))
   4201 				wm_gate_hw_phy_config_ich8lan(sc, 1);
   4202 
   4203 
   4204 			reg |= CTRL_PHY_RESET;
   4205 			phy_reset = 1;
   4206 		}
   4207 		wm_get_swfwhw_semaphore(sc);
   4208 		CSR_WRITE(sc, WMREG_CTRL, reg);
   4209 		delay(20*1000);
   4210 		wm_put_swfwhw_semaphore(sc);
   4211 		break;
   4212 	case WM_T_82542_2_0:
   4213 	case WM_T_82542_2_1:
   4214 	case WM_T_82543:
   4215 	case WM_T_82540:
   4216 	case WM_T_82545:
   4217 	case WM_T_82546:
   4218 	case WM_T_82571:
   4219 	case WM_T_82572:
   4220 	case WM_T_82573:
   4221 	case WM_T_82574:
   4222 	case WM_T_82575:
   4223 	case WM_T_82576:
   4224 	case WM_T_82580:
   4225 	case WM_T_82580ER:
   4226 	case WM_T_82583:
   4227 	case WM_T_I350:
   4228 	case WM_T_I210:
   4229 	case WM_T_I211:
   4230 	default:
   4231 		/* Everything else can safely use the documented method. */
   4232 		CSR_WRITE(sc, WMREG_CTRL, CSR_READ(sc, WMREG_CTRL) | CTRL_RST);
   4233 		break;
   4234 	}
   4235 
   4236 	if (phy_reset != 0)
   4237 		wm_get_cfg_done(sc);
   4238 
   4239 	/* reload EEPROM */
   4240 	switch (sc->sc_type) {
   4241 	case WM_T_82542_2_0:
   4242 	case WM_T_82542_2_1:
   4243 	case WM_T_82543:
   4244 	case WM_T_82544:
   4245 		delay(10);
   4246 		reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
   4247 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   4248 		delay(2000);
   4249 		break;
   4250 	case WM_T_82540:
   4251 	case WM_T_82545:
   4252 	case WM_T_82545_3:
   4253 	case WM_T_82546:
   4254 	case WM_T_82546_3:
   4255 		delay(5*1000);
   4256 		/* XXX Disable HW ARPs on ASF enabled adapters */
   4257 		break;
   4258 	case WM_T_82541:
   4259 	case WM_T_82541_2:
   4260 	case WM_T_82547:
   4261 	case WM_T_82547_2:
   4262 		delay(20000);
   4263 		/* XXX Disable HW ARPs on ASF enabled adapters */
   4264 		break;
   4265 	case WM_T_82571:
   4266 	case WM_T_82572:
   4267 	case WM_T_82573:
   4268 	case WM_T_82574:
   4269 	case WM_T_82583:
   4270 		if (sc->sc_flags & WM_F_EEPROM_FLASH) {
   4271 			delay(10);
   4272 			reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
   4273 			CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   4274 		}
   4275 		/* check EECD_EE_AUTORD */
   4276 		wm_get_auto_rd_done(sc);
   4277 		/*
   4278 		 * Phy configuration from NVM just starts after EECD_AUTO_RD
   4279 		 * is set.
   4280 		 */
   4281 		if ((sc->sc_type == WM_T_82573) || (sc->sc_type == WM_T_82574)
   4282 		    || (sc->sc_type == WM_T_82583))
   4283 			delay(25*1000);
   4284 		break;
   4285 	case WM_T_82575:
   4286 	case WM_T_82576:
   4287 	case WM_T_82580:
   4288 	case WM_T_82580ER:
   4289 	case WM_T_I350:
   4290 	case WM_T_I210:
   4291 	case WM_T_I211:
   4292 	case WM_T_80003:
   4293 	case WM_T_ICH8:
   4294 	case WM_T_ICH9:
   4295 		/* check EECD_EE_AUTORD */
   4296 		wm_get_auto_rd_done(sc);
   4297 		break;
   4298 	case WM_T_ICH10:
   4299 	case WM_T_PCH:
   4300 	case WM_T_PCH2:
   4301 	case WM_T_PCH_LPT:
   4302 		wm_lan_init_done(sc);
   4303 		break;
   4304 	default:
   4305 		panic("%s: unknown type\n", __func__);
   4306 	}
   4307 
   4308 	/* Check whether EEPROM is present or not */
   4309 	switch (sc->sc_type) {
   4310 	case WM_T_82575:
   4311 	case WM_T_82576:
   4312 #if 0 /* XXX */
   4313 	case WM_T_82580:
   4314 	case WM_T_82580ER:
   4315 #endif
   4316 	case WM_T_I350:
   4317 	case WM_T_ICH8:
   4318 	case WM_T_ICH9:
   4319 		if ((CSR_READ(sc, WMREG_EECD) & EECD_EE_PRES) == 0) {
   4320 			/* Not found */
   4321 			sc->sc_flags |= WM_F_EEPROM_INVALID;
   4322 			if ((sc->sc_type == WM_T_82575)
   4323 			    || (sc->sc_type == WM_T_82576)
   4324 			    || (sc->sc_type == WM_T_82580)
   4325 			    || (sc->sc_type == WM_T_82580ER)
   4326 			    || (sc->sc_type == WM_T_I350))
   4327 				wm_reset_init_script_82575(sc);
   4328 		}
   4329 		break;
   4330 	default:
   4331 		break;
   4332 	}
   4333 
   4334 	if ((sc->sc_type == WM_T_82580) || (sc->sc_type == WM_T_82580ER)
   4335 	    || (sc->sc_type == WM_T_I350)) {
   4336 		/* clear global device reset status bit */
   4337 		CSR_WRITE(sc, WMREG_STATUS, STATUS_DEV_RST_SET);
   4338 	}
   4339 
   4340 	/* Clear any pending interrupt events. */
   4341 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   4342 	reg = CSR_READ(sc, WMREG_ICR);
   4343 
   4344 	/* reload sc_ctrl */
   4345 	sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
   4346 
   4347 	if (sc->sc_type == WM_T_I350)
   4348 		wm_set_eee_i350(sc);
   4349 
   4350 	/* dummy read from WUC */
   4351 	if (sc->sc_type == WM_T_PCH)
   4352 		reg = wm_gmii_hv_readreg(sc->sc_dev, 1, BM_WUC);
   4353 	/*
   4354 	 * For PCH, this write will make sure that any noise will be detected
   4355 	 * as a CRC error and be dropped rather than show up as a bad packet
   4356 	 * to the DMA engine
   4357 	 */
   4358 	if (sc->sc_type == WM_T_PCH)
   4359 		CSR_WRITE(sc, WMREG_CRC_OFFSET, 0x65656565);
   4360 
   4361 	if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
   4362 		CSR_WRITE(sc, WMREG_WUC, 0);
   4363 
   4364 	/* XXX need special handling for 82580 */
   4365 }
   4366 
   4367 static void
   4368 wm_set_vlan(struct wm_softc *sc)
   4369 {
   4370 	/* Deal with VLAN enables. */
   4371 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   4372 		sc->sc_ctrl |= CTRL_VME;
   4373 	else
   4374 		sc->sc_ctrl &= ~CTRL_VME;
   4375 
   4376 	/* Write the control registers. */
   4377 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4378 }
   4379 
   4380 /*
   4381  * wm_init:		[ifnet interface function]
   4382  *
   4383  *	Initialize the interface.  Must be called at splnet().
   4384  */
   4385 static int
   4386 wm_init(struct ifnet *ifp)
   4387 {
   4388 	struct wm_softc *sc = ifp->if_softc;
   4389 	struct wm_rxsoft *rxs;
   4390 	int i, j, trynum, error = 0;
   4391 	uint32_t reg;
   4392 
   4393 	/*
   4394 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   4395 	 * There is a small but measurable benefit to avoiding the adjusment
   4396 	 * of the descriptor so that the headers are aligned, for normal mtu,
   4397 	 * on such platforms.  One possibility is that the DMA itself is
   4398 	 * slightly more efficient if the front of the entire packet (instead
   4399 	 * of the front of the headers) is aligned.
   4400 	 *
   4401 	 * Note we must always set align_tweak to 0 if we are using
   4402 	 * jumbo frames.
   4403 	 */
   4404 #ifdef __NO_STRICT_ALIGNMENT
   4405 	sc->sc_align_tweak = 0;
   4406 #else
   4407 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   4408 		sc->sc_align_tweak = 0;
   4409 	else
   4410 		sc->sc_align_tweak = 2;
   4411 #endif /* __NO_STRICT_ALIGNMENT */
   4412 
   4413 	/* Cancel any pending I/O. */
   4414 	wm_stop(ifp, 0);
   4415 
   4416 	/* update statistics before reset */
   4417 	ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
   4418 	ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
   4419 
   4420 	/* Reset the chip to a known state. */
   4421 	wm_reset(sc);
   4422 
   4423 	switch (sc->sc_type) {
   4424 	case WM_T_82571:
   4425 	case WM_T_82572:
   4426 	case WM_T_82573:
   4427 	case WM_T_82574:
   4428 	case WM_T_82583:
   4429 	case WM_T_80003:
   4430 	case WM_T_ICH8:
   4431 	case WM_T_ICH9:
   4432 	case WM_T_ICH10:
   4433 	case WM_T_PCH:
   4434 	case WM_T_PCH2:
   4435 	case WM_T_PCH_LPT:
   4436 		if (wm_check_mng_mode(sc) != 0)
   4437 			wm_get_hw_control(sc);
   4438 		break;
   4439 	default:
   4440 		break;
   4441 	}
   4442 
   4443 	/* Reset the PHY. */
   4444 	if (sc->sc_flags & WM_F_HAS_MII)
   4445 		wm_gmii_reset(sc);
   4446 
   4447 	reg = CSR_READ(sc, WMREG_CTRL_EXT);
   4448 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
   4449 	if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2))
   4450 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_PHYPDEN);
   4451 
   4452 	/* Initialize the transmit descriptor ring. */
   4453 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
   4454 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
   4455 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   4456 	sc->sc_txfree = WM_NTXDESC(sc);
   4457 	sc->sc_txnext = 0;
   4458 
   4459 	if (sc->sc_type < WM_T_82543) {
   4460 		CSR_WRITE(sc, WMREG_OLD_TDBAH, WM_CDTXADDR_HI(sc, 0));
   4461 		CSR_WRITE(sc, WMREG_OLD_TDBAL, WM_CDTXADDR_LO(sc, 0));
   4462 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
   4463 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
   4464 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
   4465 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
   4466 	} else {
   4467 		CSR_WRITE(sc, WMREG_TDBAH, WM_CDTXADDR_HI(sc, 0));
   4468 		CSR_WRITE(sc, WMREG_TDBAL, WM_CDTXADDR_LO(sc, 0));
   4469 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
   4470 		CSR_WRITE(sc, WMREG_TDH, 0);
   4471 		CSR_WRITE(sc, WMREG_TIDV, 375);		/* ITR / 4 */
   4472 		CSR_WRITE(sc, WMREG_TADV, 375);		/* should be same */
   4473 
   4474 		if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
   4475 			/*
   4476 			 * Don't write TDT before TCTL.EN is set.
   4477 			 * See the document.
   4478 			 */
   4479 			CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_QUEUE_ENABLE
   4480 			    | TXDCTL_PTHRESH(0) | TXDCTL_HTHRESH(0)
   4481 			    | TXDCTL_WTHRESH(0));
   4482 		else {
   4483 			CSR_WRITE(sc, WMREG_TDT, 0);
   4484 			CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
   4485 			    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   4486 			CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
   4487 			    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
   4488 		}
   4489 	}
   4490 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
   4491 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
   4492 
   4493 	/* Initialize the transmit job descriptors. */
   4494 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
   4495 		sc->sc_txsoft[i].txs_mbuf = NULL;
   4496 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
   4497 	sc->sc_txsnext = 0;
   4498 	sc->sc_txsdirty = 0;
   4499 
   4500 	/*
   4501 	 * Initialize the receive descriptor and receive job
   4502 	 * descriptor rings.
   4503 	 */
   4504 	if (sc->sc_type < WM_T_82543) {
   4505 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
   4506 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
   4507 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
   4508 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
   4509 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
   4510 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
   4511 
   4512 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
   4513 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
   4514 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
   4515 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
   4516 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
   4517 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
   4518 	} else {
   4519 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
   4520 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
   4521 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
   4522 		if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
   4523 			CSR_WRITE(sc, WMREG_EITR(0), 450);
   4524 			if (MCLBYTES & ((1 << SRRCTL_BSIZEPKT_SHIFT) - 1))
   4525 				panic("%s: MCLBYTES %d unsupported for i2575 or higher\n", __func__, MCLBYTES);
   4526 			CSR_WRITE(sc, WMREG_SRRCTL, SRRCTL_DESCTYPE_LEGACY
   4527 			    | (MCLBYTES >> SRRCTL_BSIZEPKT_SHIFT));
   4528 			CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_QUEUE_ENABLE
   4529 			    | RXDCTL_PTHRESH(16) | RXDCTL_HTHRESH(8)
   4530 			    | RXDCTL_WTHRESH(1));
   4531 		} else {
   4532 			CSR_WRITE(sc, WMREG_RDH, 0);
   4533 			CSR_WRITE(sc, WMREG_RDT, 0);
   4534 			CSR_WRITE(sc, WMREG_RDTR, 375 | RDTR_FPD); /* ITR/4 */
   4535 			CSR_WRITE(sc, WMREG_RADV, 375);	/* MUST be same */
   4536 		}
   4537 	}
   4538 	for (i = 0; i < WM_NRXDESC; i++) {
   4539 		rxs = &sc->sc_rxsoft[i];
   4540 		if (rxs->rxs_mbuf == NULL) {
   4541 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
   4542 				log(LOG_ERR, "%s: unable to allocate or map "
   4543 				    "rx buffer %d, error = %d\n",
   4544 				    device_xname(sc->sc_dev), i, error);
   4545 				/*
   4546 				 * XXX Should attempt to run with fewer receive
   4547 				 * XXX buffers instead of just failing.
   4548 				 */
   4549 				wm_rxdrain(sc);
   4550 				goto out;
   4551 			}
   4552 		} else {
   4553 			if ((sc->sc_flags & WM_F_NEWQUEUE) == 0)
   4554 				WM_INIT_RXDESC(sc, i);
   4555 			/*
   4556 			 * For 82575 and newer device, the RX descriptors
   4557 			 * must be initialized after the setting of RCTL.EN in
   4558 			 * wm_set_filter()
   4559 			 */
   4560 		}
   4561 	}
   4562 	sc->sc_rxptr = 0;
   4563 	sc->sc_rxdiscard = 0;
   4564 	WM_RXCHAIN_RESET(sc);
   4565 
   4566 	/*
   4567 	 * Clear out the VLAN table -- we don't use it (yet).
   4568 	 */
   4569 	CSR_WRITE(sc, WMREG_VET, 0);
   4570 	if (sc->sc_type == WM_T_I350)
   4571 		trynum = 10; /* Due to hw errata */
   4572 	else
   4573 		trynum = 1;
   4574 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
   4575 		for (j = 0; j < trynum; j++)
   4576 			CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
   4577 
   4578 	/*
   4579 	 * Set up flow-control parameters.
   4580 	 *
   4581 	 * XXX Values could probably stand some tuning.
   4582 	 */
   4583 	if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9)
   4584 	    && (sc->sc_type != WM_T_ICH10) && (sc->sc_type != WM_T_PCH)
   4585 	    && (sc->sc_type != WM_T_PCH2)) {
   4586 		CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
   4587 		CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
   4588 		CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
   4589 	}
   4590 
   4591 	sc->sc_fcrtl = FCRTL_DFLT;
   4592 	if (sc->sc_type < WM_T_82543) {
   4593 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
   4594 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
   4595 	} else {
   4596 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
   4597 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
   4598 	}
   4599 
   4600 	if (sc->sc_type == WM_T_80003)
   4601 		CSR_WRITE(sc, WMREG_FCTTV, 0xffff);
   4602 	else
   4603 		CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
   4604 
   4605 	/* Writes the control register. */
   4606 	wm_set_vlan(sc);
   4607 
   4608 	if (sc->sc_flags & WM_F_HAS_MII) {
   4609 		int val;
   4610 
   4611 		switch (sc->sc_type) {
   4612 		case WM_T_80003:
   4613 		case WM_T_ICH8:
   4614 		case WM_T_ICH9:
   4615 		case WM_T_ICH10:
   4616 		case WM_T_PCH:
   4617 		case WM_T_PCH2:
   4618 		case WM_T_PCH_LPT:
   4619 			/*
   4620 			 * Set the mac to wait the maximum time between each
   4621 			 * iteration and increase the max iterations when
   4622 			 * polling the phy; this fixes erroneous timeouts at
   4623 			 * 10Mbps.
   4624 			 */
   4625 			wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS,
   4626 			    0xFFFF);
   4627 			val = wm_kmrn_readreg(sc,
   4628 			    KUMCTRLSTA_OFFSET_INB_PARAM);
   4629 			val |= 0x3F;
   4630 			wm_kmrn_writereg(sc,
   4631 			    KUMCTRLSTA_OFFSET_INB_PARAM, val);
   4632 			break;
   4633 		default:
   4634 			break;
   4635 		}
   4636 
   4637 		if (sc->sc_type == WM_T_80003) {
   4638 			val = CSR_READ(sc, WMREG_CTRL_EXT);
   4639 			val &= ~CTRL_EXT_LINK_MODE_MASK;
   4640 			CSR_WRITE(sc, WMREG_CTRL_EXT, val);
   4641 
   4642 			/* Bypass RX and TX FIFO's */
   4643 			wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL,
   4644 			    KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
   4645 			    | KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
   4646 			wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL,
   4647 			    KUMCTRLSTA_INB_CTRL_DIS_PADDING |
   4648 			    KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT);
   4649 		}
   4650 	}
   4651 #if 0
   4652 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   4653 #endif
   4654 
   4655 	/*
   4656 	 * Set up checksum offload parameters.
   4657 	 */
   4658 	reg = CSR_READ(sc, WMREG_RXCSUM);
   4659 	reg &= ~(RXCSUM_IPOFL | RXCSUM_IPV6OFL | RXCSUM_TUOFL);
   4660 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   4661 		reg |= RXCSUM_IPOFL;
   4662 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   4663 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   4664 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
   4665 		reg |= RXCSUM_IPV6OFL | RXCSUM_TUOFL;
   4666 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
   4667 
   4668 	/* Reset TBI's RXCFG count */
   4669 	sc->sc_tbi_nrxcfg = sc->sc_tbi_lastnrxcfg = 0;
   4670 
   4671 	/*
   4672 	 * Set up the interrupt registers.
   4673 	 */
   4674 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   4675 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   4676 	    ICR_RXO | ICR_RXT0;
   4677 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
   4678 		sc->sc_icr |= ICR_RXCFG;
   4679 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
   4680 
   4681 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
   4682 	    || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
   4683 		 || (sc->sc_type == WM_T_PCH2)) {
   4684 		reg = CSR_READ(sc, WMREG_KABGTXD);
   4685 		reg |= KABGTXD_BGSQLBIAS;
   4686 		CSR_WRITE(sc, WMREG_KABGTXD, reg);
   4687 	}
   4688 
   4689 	/* Set up the inter-packet gap. */
   4690 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   4691 
   4692 	if (sc->sc_type >= WM_T_82543) {
   4693 		/*
   4694 		 * Set up the interrupt throttling register (units of 256ns)
   4695 		 * Note that a footnote in Intel's documentation says this
   4696 		 * ticker runs at 1/4 the rate when the chip is in 100Mbit
   4697 		 * or 10Mbit mode.  Empirically, it appears to be the case
   4698 		 * that that is also true for the 1024ns units of the other
   4699 		 * interrupt-related timer registers -- so, really, we ought
   4700 		 * to divide this value by 4 when the link speed is low.
   4701 		 *
   4702 		 * XXX implement this division at link speed change!
   4703 		 */
   4704 
   4705 		 /*
   4706 		  * For N interrupts/sec, set this value to:
   4707 		  * 1000000000 / (N * 256).  Note that we set the
   4708 		  * absolute and packet timer values to this value
   4709 		  * divided by 4 to get "simple timer" behavior.
   4710 		  */
   4711 
   4712 		sc->sc_itr = 1500;		/* 2604 ints/sec */
   4713 		CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
   4714 	}
   4715 
   4716 	/* Set the VLAN ethernetype. */
   4717 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
   4718 
   4719 	/*
   4720 	 * Set up the transmit control register; we start out with
   4721 	 * a collision distance suitable for FDX, but update it whe
   4722 	 * we resolve the media type.
   4723 	 */
   4724 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_RTLC
   4725 	    | TCTL_CT(TX_COLLISION_THRESHOLD)
   4726 	    | TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   4727 	if (sc->sc_type >= WM_T_82571)
   4728 		sc->sc_tctl |= TCTL_MULR;
   4729 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   4730 
   4731 	if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
   4732 		/*
   4733 		 * Write TDT after TCTL.EN is set.
   4734 		 * See the document.
   4735 		 */
   4736 		CSR_WRITE(sc, WMREG_TDT, 0);
   4737 	}
   4738 
   4739 	if (sc->sc_type == WM_T_80003) {
   4740 		reg = CSR_READ(sc, WMREG_TCTL_EXT);
   4741 		reg &= ~TCTL_EXT_GCEX_MASK;
   4742 		reg |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
   4743 		CSR_WRITE(sc, WMREG_TCTL_EXT, reg);
   4744 	}
   4745 
   4746 	/* Set the media. */
   4747 	if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
   4748 		goto out;
   4749 
   4750 	/* Configure for OS presence */
   4751 	wm_init_manageability(sc);
   4752 
   4753 	/*
   4754 	 * Set up the receive control register; we actually program
   4755 	 * the register when we set the receive filter.  Use multicast
   4756 	 * address offset type 0.
   4757 	 *
   4758 	 * Only the i82544 has the ability to strip the incoming
   4759 	 * CRC, so we don't enable that feature.
   4760 	 */
   4761 	sc->sc_mchash_type = 0;
   4762 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
   4763 	    | RCTL_MO(sc->sc_mchash_type);
   4764 
   4765 	/*
   4766 	 * The I350 has a bug where it always strips the CRC whether
   4767 	 * asked to or not. So ask for stripped CRC here and cope in rxeof
   4768 	 */
   4769 	if ((sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I210))
   4770 		sc->sc_rctl |= RCTL_SECRC;
   4771 
   4772 	if (((sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) != 0)
   4773 	    && (ifp->if_mtu > ETHERMTU)) {
   4774 		sc->sc_rctl |= RCTL_LPE;
   4775 		if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
   4776 			CSR_WRITE(sc, WMREG_RLPML, ETHER_MAX_LEN_JUMBO);
   4777 	}
   4778 
   4779 	if (MCLBYTES == 2048) {
   4780 		sc->sc_rctl |= RCTL_2k;
   4781 	} else {
   4782 		if (sc->sc_type >= WM_T_82543) {
   4783 			switch (MCLBYTES) {
   4784 			case 4096:
   4785 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
   4786 				break;
   4787 			case 8192:
   4788 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
   4789 				break;
   4790 			case 16384:
   4791 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
   4792 				break;
   4793 			default:
   4794 				panic("wm_init: MCLBYTES %d unsupported",
   4795 				    MCLBYTES);
   4796 				break;
   4797 			}
   4798 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
   4799 	}
   4800 
   4801 	/* Set the receive filter. */
   4802 	wm_set_filter(sc);
   4803 
   4804 	/* On 575 and later set RDT only if RX enabled */
   4805 	if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
   4806 		for (i = 0; i < WM_NRXDESC; i++)
   4807 			WM_INIT_RXDESC(sc, i);
   4808 
   4809 	/* Start the one second link check clock. */
   4810 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   4811 
   4812 	/* ...all done! */
   4813 	ifp->if_flags |= IFF_RUNNING;
   4814 	ifp->if_flags &= ~IFF_OACTIVE;
   4815 
   4816  out:
   4817 	sc->sc_if_flags = ifp->if_flags;
   4818 	if (error)
   4819 		log(LOG_ERR, "%s: interface not running\n",
   4820 		    device_xname(sc->sc_dev));
   4821 	return error;
   4822 }
   4823 
   4824 /*
   4825  * wm_rxdrain:
   4826  *
   4827  *	Drain the receive queue.
   4828  */
   4829 static void
   4830 wm_rxdrain(struct wm_softc *sc)
   4831 {
   4832 	struct wm_rxsoft *rxs;
   4833 	int i;
   4834 
   4835 	for (i = 0; i < WM_NRXDESC; i++) {
   4836 		rxs = &sc->sc_rxsoft[i];
   4837 		if (rxs->rxs_mbuf != NULL) {
   4838 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   4839 			m_freem(rxs->rxs_mbuf);
   4840 			rxs->rxs_mbuf = NULL;
   4841 		}
   4842 	}
   4843 }
   4844 
   4845 /*
   4846  * wm_stop:		[ifnet interface function]
   4847  *
   4848  *	Stop transmission on the interface.
   4849  */
   4850 static void
   4851 wm_stop(struct ifnet *ifp, int disable)
   4852 {
   4853 	struct wm_softc *sc = ifp->if_softc;
   4854 	struct wm_txsoft *txs;
   4855 	int i;
   4856 
   4857 	/* Stop the one second clock. */
   4858 	callout_stop(&sc->sc_tick_ch);
   4859 
   4860 	/* Stop the 82547 Tx FIFO stall check timer. */
   4861 	if (sc->sc_type == WM_T_82547)
   4862 		callout_stop(&sc->sc_txfifo_ch);
   4863 
   4864 	if (sc->sc_flags & WM_F_HAS_MII) {
   4865 		/* Down the MII. */
   4866 		mii_down(&sc->sc_mii);
   4867 	} else {
   4868 #if 0
   4869 		/* Should we clear PHY's status properly? */
   4870 		wm_reset(sc);
   4871 #endif
   4872 	}
   4873 
   4874 	/* Stop the transmit and receive processes. */
   4875 	CSR_WRITE(sc, WMREG_TCTL, 0);
   4876 	CSR_WRITE(sc, WMREG_RCTL, 0);
   4877 	sc->sc_rctl &= ~RCTL_EN;
   4878 
   4879 	/*
   4880 	 * Clear the interrupt mask to ensure the device cannot assert its
   4881 	 * interrupt line.
   4882 	 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
   4883 	 * any currently pending or shared interrupt.
   4884 	 */
   4885 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   4886 	sc->sc_icr = 0;
   4887 
   4888 	/* Release any queued transmit buffers. */
   4889 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   4890 		txs = &sc->sc_txsoft[i];
   4891 		if (txs->txs_mbuf != NULL) {
   4892 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   4893 			m_freem(txs->txs_mbuf);
   4894 			txs->txs_mbuf = NULL;
   4895 		}
   4896 	}
   4897 
   4898 	/* Mark the interface as down and cancel the watchdog timer. */
   4899 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4900 	ifp->if_timer = 0;
   4901 
   4902 	if (disable)
   4903 		wm_rxdrain(sc);
   4904 
   4905 #if 0 /* notyet */
   4906 	if (sc->sc_type >= WM_T_82544)
   4907 		CSR_WRITE(sc, WMREG_WUC, 0);
   4908 #endif
   4909 }
   4910 
   4911 void
   4912 wm_get_auto_rd_done(struct wm_softc *sc)
   4913 {
   4914 	int i;
   4915 
   4916 	/* wait for eeprom to reload */
   4917 	switch (sc->sc_type) {
   4918 	case WM_T_82571:
   4919 	case WM_T_82572:
   4920 	case WM_T_82573:
   4921 	case WM_T_82574:
   4922 	case WM_T_82583:
   4923 	case WM_T_82575:
   4924 	case WM_T_82576:
   4925 	case WM_T_82580:
   4926 	case WM_T_82580ER:
   4927 	case WM_T_I350:
   4928 	case WM_T_I210:
   4929 	case WM_T_I211:
   4930 	case WM_T_80003:
   4931 	case WM_T_ICH8:
   4932 	case WM_T_ICH9:
   4933 		for (i = 0; i < 10; i++) {
   4934 			if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD)
   4935 				break;
   4936 			delay(1000);
   4937 		}
   4938 		if (i == 10) {
   4939 			log(LOG_ERR, "%s: auto read from eeprom failed to "
   4940 			    "complete\n", device_xname(sc->sc_dev));
   4941 		}
   4942 		break;
   4943 	default:
   4944 		break;
   4945 	}
   4946 }
   4947 
   4948 void
   4949 wm_lan_init_done(struct wm_softc *sc)
   4950 {
   4951 	uint32_t reg = 0;
   4952 	int i;
   4953 
   4954 	/* wait for eeprom to reload */
   4955 	switch (sc->sc_type) {
   4956 	case WM_T_ICH10:
   4957 	case WM_T_PCH:
   4958 	case WM_T_PCH2:
   4959 	case WM_T_PCH_LPT:
   4960 		for (i = 0; i < WM_ICH8_LAN_INIT_TIMEOUT; i++) {
   4961 			reg = CSR_READ(sc, WMREG_STATUS);
   4962 			if ((reg & STATUS_LAN_INIT_DONE) != 0)
   4963 				break;
   4964 			delay(100);
   4965 		}
   4966 		if (i >= WM_ICH8_LAN_INIT_TIMEOUT) {
   4967 			log(LOG_ERR, "%s: %s: lan_init_done failed to "
   4968 			    "complete\n", device_xname(sc->sc_dev), __func__);
   4969 		}
   4970 		break;
   4971 	default:
   4972 		panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
   4973 		    __func__);
   4974 		break;
   4975 	}
   4976 
   4977 	reg &= ~STATUS_LAN_INIT_DONE;
   4978 	CSR_WRITE(sc, WMREG_STATUS, reg);
   4979 }
   4980 
   4981 void
   4982 wm_get_cfg_done(struct wm_softc *sc)
   4983 {
   4984 	int mask;
   4985 	uint32_t reg;
   4986 	int i;
   4987 
   4988 	/* wait for eeprom to reload */
   4989 	switch (sc->sc_type) {
   4990 	case WM_T_82542_2_0:
   4991 	case WM_T_82542_2_1:
   4992 		/* null */
   4993 		break;
   4994 	case WM_T_82543:
   4995 	case WM_T_82544:
   4996 	case WM_T_82540:
   4997 	case WM_T_82545:
   4998 	case WM_T_82545_3:
   4999 	case WM_T_82546:
   5000 	case WM_T_82546_3:
   5001 	case WM_T_82541:
   5002 	case WM_T_82541_2:
   5003 	case WM_T_82547:
   5004 	case WM_T_82547_2:
   5005 	case WM_T_82573:
   5006 	case WM_T_82574:
   5007 	case WM_T_82583:
   5008 		/* generic */
   5009 		delay(10*1000);
   5010 		break;
   5011 	case WM_T_80003:
   5012 	case WM_T_82571:
   5013 	case WM_T_82572:
   5014 	case WM_T_82575:
   5015 	case WM_T_82576:
   5016 	case WM_T_82580:
   5017 	case WM_T_82580ER:
   5018 	case WM_T_I350:
   5019 	case WM_T_I210:
   5020 	case WM_T_I211:
   5021 		if (sc->sc_type == WM_T_82571) {
   5022 			/* Only 82571 shares port 0 */
   5023 			mask = EEMNGCTL_CFGDONE_0;
   5024 		} else
   5025 			mask = EEMNGCTL_CFGDONE_0 << sc->sc_funcid;
   5026 		for (i = 0; i < WM_PHY_CFG_TIMEOUT; i++) {
   5027 			if (CSR_READ(sc, WMREG_EEMNGCTL) & mask)
   5028 				break;
   5029 			delay(1000);
   5030 		}
   5031 		if (i >= WM_PHY_CFG_TIMEOUT) {
   5032 			DPRINTF(WM_DEBUG_GMII, ("%s: %s failed\n",
   5033 				device_xname(sc->sc_dev), __func__));
   5034 		}
   5035 		break;
   5036 	case WM_T_ICH8:
   5037 	case WM_T_ICH9:
   5038 	case WM_T_ICH10:
   5039 	case WM_T_PCH:
   5040 	case WM_T_PCH2:
   5041 	case WM_T_PCH_LPT:
   5042 		if (sc->sc_type >= WM_T_PCH) {
   5043 			reg = CSR_READ(sc, WMREG_STATUS);
   5044 			if ((reg & STATUS_PHYRA) != 0)
   5045 				CSR_WRITE(sc, WMREG_STATUS,
   5046 				    reg & ~STATUS_PHYRA);
   5047 		}
   5048 		delay(10*1000);
   5049 		break;
   5050 	default:
   5051 		panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
   5052 		    __func__);
   5053 		break;
   5054 	}
   5055 }
   5056 
   5057 /*
   5058  * wm_acquire_eeprom:
   5059  *
   5060  *	Perform the EEPROM handshake required on some chips.
   5061  */
   5062 static int
   5063 wm_acquire_eeprom(struct wm_softc *sc)
   5064 {
   5065 	uint32_t reg;
   5066 	int x;
   5067 	int ret = 0;
   5068 
   5069 	/* always success */
   5070 	if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
   5071 		return 0;
   5072 
   5073 	if (sc->sc_flags & WM_F_SWFWHW_SYNC) {
   5074 		ret = wm_get_swfwhw_semaphore(sc);
   5075 	} else if (sc->sc_flags & WM_F_SWFW_SYNC) {
   5076 		/* this will also do wm_get_swsm_semaphore() if needed */
   5077 		ret = wm_get_swfw_semaphore(sc, SWFW_EEP_SM);
   5078 	} else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
   5079 		ret = wm_get_swsm_semaphore(sc);
   5080 	}
   5081 
   5082 	if (ret) {
   5083 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   5084 			__func__);
   5085 		return 1;
   5086 	}
   5087 
   5088 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
   5089 		reg = CSR_READ(sc, WMREG_EECD);
   5090 
   5091 		/* Request EEPROM access. */
   5092 		reg |= EECD_EE_REQ;
   5093 		CSR_WRITE(sc, WMREG_EECD, reg);
   5094 
   5095 		/* ..and wait for it to be granted. */
   5096 		for (x = 0; x < 1000; x++) {
   5097 			reg = CSR_READ(sc, WMREG_EECD);
   5098 			if (reg & EECD_EE_GNT)
   5099 				break;
   5100 			delay(5);
   5101 		}
   5102 		if ((reg & EECD_EE_GNT) == 0) {
   5103 			aprint_error_dev(sc->sc_dev,
   5104 			    "could not acquire EEPROM GNT\n");
   5105 			reg &= ~EECD_EE_REQ;
   5106 			CSR_WRITE(sc, WMREG_EECD, reg);
   5107 			if (sc->sc_flags & WM_F_SWFWHW_SYNC)
   5108 				wm_put_swfwhw_semaphore(sc);
   5109 			if (sc->sc_flags & WM_F_SWFW_SYNC)
   5110 				wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
   5111 			else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   5112 				wm_put_swsm_semaphore(sc);
   5113 			return 1;
   5114 		}
   5115 	}
   5116 
   5117 	return 0;
   5118 }
   5119 
   5120 /*
   5121  * wm_release_eeprom:
   5122  *
   5123  *	Release the EEPROM mutex.
   5124  */
   5125 static void
   5126 wm_release_eeprom(struct wm_softc *sc)
   5127 {
   5128 	uint32_t reg;
   5129 
   5130 	/* always success */
   5131 	if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
   5132 		return;
   5133 
   5134 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
   5135 		reg = CSR_READ(sc, WMREG_EECD);
   5136 		reg &= ~EECD_EE_REQ;
   5137 		CSR_WRITE(sc, WMREG_EECD, reg);
   5138 	}
   5139 
   5140 	if (sc->sc_flags & WM_F_SWFWHW_SYNC)
   5141 		wm_put_swfwhw_semaphore(sc);
   5142 	if (sc->sc_flags & WM_F_SWFW_SYNC)
   5143 		wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
   5144 	else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   5145 		wm_put_swsm_semaphore(sc);
   5146 }
   5147 
   5148 /*
   5149  * wm_eeprom_sendbits:
   5150  *
   5151  *	Send a series of bits to the EEPROM.
   5152  */
   5153 static void
   5154 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
   5155 {
   5156 	uint32_t reg;
   5157 	int x;
   5158 
   5159 	reg = CSR_READ(sc, WMREG_EECD);
   5160 
   5161 	for (x = nbits; x > 0; x--) {
   5162 		if (bits & (1U << (x - 1)))
   5163 			reg |= EECD_DI;
   5164 		else
   5165 			reg &= ~EECD_DI;
   5166 		CSR_WRITE(sc, WMREG_EECD, reg);
   5167 		delay(2);
   5168 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   5169 		delay(2);
   5170 		CSR_WRITE(sc, WMREG_EECD, reg);
   5171 		delay(2);
   5172 	}
   5173 }
   5174 
   5175 /*
   5176  * wm_eeprom_recvbits:
   5177  *
   5178  *	Receive a series of bits from the EEPROM.
   5179  */
   5180 static void
   5181 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
   5182 {
   5183 	uint32_t reg, val;
   5184 	int x;
   5185 
   5186 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
   5187 
   5188 	val = 0;
   5189 	for (x = nbits; x > 0; x--) {
   5190 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   5191 		delay(2);
   5192 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
   5193 			val |= (1U << (x - 1));
   5194 		CSR_WRITE(sc, WMREG_EECD, reg);
   5195 		delay(2);
   5196 	}
   5197 	*valp = val;
   5198 }
   5199 
   5200 /*
   5201  * wm_read_eeprom_uwire:
   5202  *
   5203  *	Read a word from the EEPROM using the MicroWire protocol.
   5204  */
   5205 static int
   5206 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   5207 {
   5208 	uint32_t reg, val;
   5209 	int i;
   5210 
   5211 	for (i = 0; i < wordcnt; i++) {
   5212 		/* Clear SK and DI. */
   5213 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
   5214 		CSR_WRITE(sc, WMREG_EECD, reg);
   5215 
   5216 		/*
   5217 		 * XXX: workaround for a bug in qemu-0.12.x and prior
   5218 		 * and Xen.
   5219 		 *
   5220 		 * We use this workaround only for 82540 because qemu's
   5221 		 * e1000 act as 82540.
   5222 		 */
   5223 		if (sc->sc_type == WM_T_82540) {
   5224 			reg |= EECD_SK;
   5225 			CSR_WRITE(sc, WMREG_EECD, reg);
   5226 			reg &= ~EECD_SK;
   5227 			CSR_WRITE(sc, WMREG_EECD, reg);
   5228 			delay(2);
   5229 		}
   5230 		/* XXX: end of workaround */
   5231 
   5232 		/* Set CHIP SELECT. */
   5233 		reg |= EECD_CS;
   5234 		CSR_WRITE(sc, WMREG_EECD, reg);
   5235 		delay(2);
   5236 
   5237 		/* Shift in the READ command. */
   5238 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
   5239 
   5240 		/* Shift in address. */
   5241 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
   5242 
   5243 		/* Shift out the data. */
   5244 		wm_eeprom_recvbits(sc, &val, 16);
   5245 		data[i] = val & 0xffff;
   5246 
   5247 		/* Clear CHIP SELECT. */
   5248 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
   5249 		CSR_WRITE(sc, WMREG_EECD, reg);
   5250 		delay(2);
   5251 	}
   5252 
   5253 	return 0;
   5254 }
   5255 
   5256 /*
   5257  * wm_spi_eeprom_ready:
   5258  *
   5259  *	Wait for a SPI EEPROM to be ready for commands.
   5260  */
   5261 static int
   5262 wm_spi_eeprom_ready(struct wm_softc *sc)
   5263 {
   5264 	uint32_t val;
   5265 	int usec;
   5266 
   5267 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
   5268 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
   5269 		wm_eeprom_recvbits(sc, &val, 8);
   5270 		if ((val & SPI_SR_RDY) == 0)
   5271 			break;
   5272 	}
   5273 	if (usec >= SPI_MAX_RETRIES) {
   5274 		aprint_error_dev(sc->sc_dev, "EEPROM failed to become ready\n");
   5275 		return 1;
   5276 	}
   5277 	return 0;
   5278 }
   5279 
   5280 /*
   5281  * wm_read_eeprom_spi:
   5282  *
   5283  *	Read a work from the EEPROM using the SPI protocol.
   5284  */
   5285 static int
   5286 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   5287 {
   5288 	uint32_t reg, val;
   5289 	int i;
   5290 	uint8_t opc;
   5291 
   5292 	/* Clear SK and CS. */
   5293 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
   5294 	CSR_WRITE(sc, WMREG_EECD, reg);
   5295 	delay(2);
   5296 
   5297 	if (wm_spi_eeprom_ready(sc))
   5298 		return 1;
   5299 
   5300 	/* Toggle CS to flush commands. */
   5301 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
   5302 	delay(2);
   5303 	CSR_WRITE(sc, WMREG_EECD, reg);
   5304 	delay(2);
   5305 
   5306 	opc = SPI_OPC_READ;
   5307 	if (sc->sc_ee_addrbits == 8 && word >= 128)
   5308 		opc |= SPI_OPC_A8;
   5309 
   5310 	wm_eeprom_sendbits(sc, opc, 8);
   5311 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
   5312 
   5313 	for (i = 0; i < wordcnt; i++) {
   5314 		wm_eeprom_recvbits(sc, &val, 16);
   5315 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
   5316 	}
   5317 
   5318 	/* Raise CS and clear SK. */
   5319 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
   5320 	CSR_WRITE(sc, WMREG_EECD, reg);
   5321 	delay(2);
   5322 
   5323 	return 0;
   5324 }
   5325 
   5326 #define NVM_CHECKSUM			0xBABA
   5327 #define EEPROM_SIZE			0x0040
   5328 #define NVM_COMPAT			0x0003
   5329 #define NVM_COMPAT_VALID_CHECKSUM	0x0001
   5330 #define NVM_FUTURE_INIT_WORD1			0x0019
   5331 #define NVM_FUTURE_INIT_WORD1_VALID_CHECKSUM	0x0040
   5332 
   5333 /*
   5334  * wm_validate_eeprom_checksum
   5335  *
   5336  * The checksum is defined as the sum of the first 64 (16 bit) words.
   5337  */
   5338 static int
   5339 wm_validate_eeprom_checksum(struct wm_softc *sc)
   5340 {
   5341 	uint16_t checksum, valid_checksum;
   5342 	uint16_t eeprom_data;
   5343 	uint16_t csum_wordaddr;
   5344 	int i;
   5345 
   5346 	checksum = 0;
   5347 
   5348 	/* Don't check for I211 */
   5349 	if (sc->sc_type == WM_T_I211)
   5350 		return 0;
   5351 
   5352 	if (sc->sc_type == WM_T_PCH_LPT) {
   5353 		printf("[PCH_LPT]");
   5354 		csum_wordaddr = NVM_COMPAT;
   5355 		valid_checksum = NVM_COMPAT_VALID_CHECKSUM;
   5356 	} else {
   5357 		csum_wordaddr = NVM_FUTURE_INIT_WORD1;
   5358 		valid_checksum = NVM_FUTURE_INIT_WORD1_VALID_CHECKSUM;
   5359 	}
   5360 
   5361 #ifdef WM_DEBUG
   5362 	/* Dump EEPROM image for debug */
   5363 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
   5364 	    || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
   5365 	    || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) {
   5366 		wm_read_eeprom(sc, csum_wordaddr, 1, &eeprom_data);
   5367 		if ((eeprom_data & valid_checksum) == 0) {
   5368 			DPRINTF(WM_DEBUG_NVM,
   5369 			    ("%s: NVM need to be updated (%04x != %04x)\n",
   5370 				device_xname(sc->sc_dev), eeprom_data,
   5371 				    valid_checksum));
   5372 		}
   5373 	}
   5374 
   5375 	if ((wm_debug & WM_DEBUG_NVM) != 0) {
   5376 		printf("%s: NVM dump:\n", device_xname(sc->sc_dev));
   5377 		for (i = 0; i < EEPROM_SIZE; i++) {
   5378 			if (wm_read_eeprom(sc, i, 1, &eeprom_data))
   5379 				printf("XX ");
   5380 			else
   5381 				printf("%04x ", eeprom_data);
   5382 			if (i % 8 == 7)
   5383 				printf("\n");
   5384 		}
   5385 	}
   5386 
   5387 #endif /* WM_DEBUG */
   5388 
   5389 	for (i = 0; i < EEPROM_SIZE; i++) {
   5390 		if (wm_read_eeprom(sc, i, 1, &eeprom_data))
   5391 			return 1;
   5392 		checksum += eeprom_data;
   5393 	}
   5394 
   5395 	if (checksum != (uint16_t) NVM_CHECKSUM) {
   5396 #ifdef WM_DEBUG
   5397 		printf("%s: NVM checksum mismatch (%04x != %04x)\n",
   5398 		    device_xname(sc->sc_dev), checksum, NVM_CHECKSUM);
   5399 #endif
   5400 		/*
   5401 		 * XXX quick hack for non-updated NVM.
   5402 		 * Check only last 12bit until wm_write_eeprom() will be
   5403 		 * implemented.
   5404 		 */
   5405 		if ((checksum & 0x0fff) != ((uint16_t)NVM_CHECKSUM & 0x0fff))
   5406 			return 1;
   5407 	}
   5408 
   5409 	return 0;
   5410 }
   5411 
   5412 /*
   5413  * wm_read_eeprom:
   5414  *
   5415  *	Read data from the serial EEPROM.
   5416  */
   5417 static int
   5418 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   5419 {
   5420 	int rv;
   5421 
   5422 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
   5423 		return 1;
   5424 
   5425 	if (wm_acquire_eeprom(sc))
   5426 		return 1;
   5427 
   5428 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
   5429 	    || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
   5430 	    || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT))
   5431 		rv = wm_read_eeprom_ich8(sc, word, wordcnt, data);
   5432 	else if (sc->sc_flags & WM_F_EEPROM_EERDEEWR)
   5433 		rv = wm_read_eeprom_eerd(sc, word, wordcnt, data);
   5434 	else if (sc->sc_flags & WM_F_EEPROM_SPI)
   5435 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
   5436 	else
   5437 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
   5438 
   5439 	wm_release_eeprom(sc);
   5440 	return rv;
   5441 }
   5442 
   5443 static int
   5444 wm_read_eeprom_eerd(struct wm_softc *sc, int offset, int wordcnt,
   5445     uint16_t *data)
   5446 {
   5447 	int i, eerd = 0;
   5448 	int error = 0;
   5449 
   5450 	for (i = 0; i < wordcnt; i++) {
   5451 		eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
   5452 
   5453 		CSR_WRITE(sc, WMREG_EERD, eerd);
   5454 		error = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
   5455 		if (error != 0)
   5456 			break;
   5457 
   5458 		data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
   5459 	}
   5460 
   5461 	return error;
   5462 }
   5463 
   5464 static int
   5465 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
   5466 {
   5467 	uint32_t attempts = 100000;
   5468 	uint32_t i, reg = 0;
   5469 	int32_t done = -1;
   5470 
   5471 	for (i = 0; i < attempts; i++) {
   5472 		reg = CSR_READ(sc, rw);
   5473 
   5474 		if (reg & EERD_DONE) {
   5475 			done = 0;
   5476 			break;
   5477 		}
   5478 		delay(5);
   5479 	}
   5480 
   5481 	return done;
   5482 }
   5483 
   5484 static int
   5485 wm_check_alt_mac_addr(struct wm_softc *sc)
   5486 {
   5487 	uint16_t myea[ETHER_ADDR_LEN / 2];
   5488 	uint16_t offset = EEPROM_OFF_MACADDR;
   5489 
   5490 	/* Try to read alternative MAC address pointer */
   5491 	if (wm_read_eeprom(sc, EEPROM_ALT_MAC_ADDR_PTR, 1, &offset) != 0)
   5492 		return -1;
   5493 
   5494 	/* Check pointer */
   5495 	if (offset == 0xffff)
   5496 		return -1;
   5497 
   5498 	/*
   5499 	 * Check whether alternative MAC address is valid or not.
   5500 	 * Some cards have non 0xffff pointer but those don't use
   5501 	 * alternative MAC address in reality.
   5502 	 *
   5503 	 * Check whether the broadcast bit is set or not.
   5504 	 */
   5505 	if (wm_read_eeprom(sc, offset, 1, myea) == 0)
   5506 		if (((myea[0] & 0xff) & 0x01) == 0)
   5507 			return 0; /* found! */
   5508 
   5509 	/* not found */
   5510 	return -1;
   5511 }
   5512 
   5513 static int
   5514 wm_read_mac_addr(struct wm_softc *sc, uint8_t *enaddr)
   5515 {
   5516 	uint16_t myea[ETHER_ADDR_LEN / 2];
   5517 	uint16_t offset = EEPROM_OFF_MACADDR;
   5518 	int do_invert = 0;
   5519 
   5520 	switch (sc->sc_type) {
   5521 	case WM_T_82580:
   5522 	case WM_T_82580ER:
   5523 	case WM_T_I350:
   5524 		switch (sc->sc_funcid) {
   5525 		case 0:
   5526 			/* default value (== EEPROM_OFF_MACADDR) */
   5527 			break;
   5528 		case 1:
   5529 			offset = EEPROM_OFF_LAN1;
   5530 			break;
   5531 		case 2:
   5532 			offset = EEPROM_OFF_LAN2;
   5533 			break;
   5534 		case 3:
   5535 			offset = EEPROM_OFF_LAN3;
   5536 			break;
   5537 		default:
   5538 			goto bad;
   5539 			/* NOTREACHED */
   5540 			break;
   5541 		}
   5542 		break;
   5543 	case WM_T_82571:
   5544 	case WM_T_82575:
   5545 	case WM_T_82576:
   5546 	case WM_T_80003:
   5547 	case WM_T_I210:
   5548 	case WM_T_I211:
   5549 		if (wm_check_alt_mac_addr(sc) != 0) {
   5550 			/* reset the offset to LAN0 */
   5551 			offset = EEPROM_OFF_MACADDR;
   5552 			if ((sc->sc_funcid & 0x01) == 1)
   5553 				do_invert = 1;
   5554 			goto do_read;
   5555 		}
   5556 		switch (sc->sc_funcid) {
   5557 		case 0:
   5558 			/*
   5559 			 * The offset is the value in EEPROM_ALT_MAC_ADDR_PTR
   5560 			 * itself.
   5561 			 */
   5562 			break;
   5563 		case 1:
   5564 			offset += EEPROM_OFF_MACADDR_LAN1;
   5565 			break;
   5566 		case 2:
   5567 			offset += EEPROM_OFF_MACADDR_LAN2;
   5568 			break;
   5569 		case 3:
   5570 			offset += EEPROM_OFF_MACADDR_LAN3;
   5571 			break;
   5572 		default:
   5573 			goto bad;
   5574 			/* NOTREACHED */
   5575 			break;
   5576 		}
   5577 		break;
   5578 	default:
   5579 		if ((sc->sc_funcid & 0x01) == 1)
   5580 			do_invert = 1;
   5581 		break;
   5582 	}
   5583 
   5584  do_read:
   5585 	if (wm_read_eeprom(sc, offset, sizeof(myea) / sizeof(myea[0]),
   5586 		myea) != 0) {
   5587 		goto bad;
   5588 	}
   5589 
   5590 	enaddr[0] = myea[0] & 0xff;
   5591 	enaddr[1] = myea[0] >> 8;
   5592 	enaddr[2] = myea[1] & 0xff;
   5593 	enaddr[3] = myea[1] >> 8;
   5594 	enaddr[4] = myea[2] & 0xff;
   5595 	enaddr[5] = myea[2] >> 8;
   5596 
   5597 	/*
   5598 	 * Toggle the LSB of the MAC address on the second port
   5599 	 * of some dual port cards.
   5600 	 */
   5601 	if (do_invert != 0)
   5602 		enaddr[5] ^= 1;
   5603 
   5604 	return 0;
   5605 
   5606  bad:
   5607 	aprint_error_dev(sc->sc_dev, "unable to read Ethernet address\n");
   5608 
   5609 	return -1;
   5610 }
   5611 
   5612 /*
   5613  * wm_add_rxbuf:
   5614  *
   5615  *	Add a receive buffer to the indiciated descriptor.
   5616  */
   5617 static int
   5618 wm_add_rxbuf(struct wm_softc *sc, int idx)
   5619 {
   5620 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
   5621 	struct mbuf *m;
   5622 	int error;
   5623 
   5624 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   5625 	if (m == NULL)
   5626 		return ENOBUFS;
   5627 
   5628 	MCLGET(m, M_DONTWAIT);
   5629 	if ((m->m_flags & M_EXT) == 0) {
   5630 		m_freem(m);
   5631 		return ENOBUFS;
   5632 	}
   5633 
   5634 	if (rxs->rxs_mbuf != NULL)
   5635 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   5636 
   5637 	rxs->rxs_mbuf = m;
   5638 
   5639 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   5640 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   5641 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   5642 	if (error) {
   5643 		/* XXX XXX XXX */
   5644 		aprint_error_dev(sc->sc_dev,
   5645 		    "unable to load rx DMA map %d, error = %d\n",
   5646 		    idx, error);
   5647 		panic("wm_add_rxbuf");
   5648 	}
   5649 
   5650 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   5651 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   5652 
   5653 	if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
   5654 		if ((sc->sc_rctl & RCTL_EN) != 0)
   5655 			WM_INIT_RXDESC(sc, idx);
   5656 	} else
   5657 		WM_INIT_RXDESC(sc, idx);
   5658 
   5659 	return 0;
   5660 }
   5661 
   5662 /*
   5663  * wm_set_ral:
   5664  *
   5665  *	Set an entery in the receive address list.
   5666  */
   5667 static void
   5668 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
   5669 {
   5670 	uint32_t ral_lo, ral_hi;
   5671 
   5672 	if (enaddr != NULL) {
   5673 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   5674 		    (enaddr[3] << 24);
   5675 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   5676 		ral_hi |= RAL_AV;
   5677 	} else {
   5678 		ral_lo = 0;
   5679 		ral_hi = 0;
   5680 	}
   5681 
   5682 	if (sc->sc_type >= WM_T_82544) {
   5683 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
   5684 		    ral_lo);
   5685 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
   5686 		    ral_hi);
   5687 	} else {
   5688 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
   5689 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
   5690 	}
   5691 }
   5692 
   5693 /*
   5694  * wm_mchash:
   5695  *
   5696  *	Compute the hash of the multicast address for the 4096-bit
   5697  *	multicast filter.
   5698  */
   5699 static uint32_t
   5700 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
   5701 {
   5702 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   5703 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   5704 	static const int ich8_lo_shift[4] = { 6, 5, 4, 2 };
   5705 	static const int ich8_hi_shift[4] = { 2, 3, 4, 6 };
   5706 	uint32_t hash;
   5707 
   5708 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
   5709 	    || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
   5710 	    || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) {
   5711 		hash = (enaddr[4] >> ich8_lo_shift[sc->sc_mchash_type]) |
   5712 		    (((uint16_t) enaddr[5]) << ich8_hi_shift[sc->sc_mchash_type]);
   5713 		return (hash & 0x3ff);
   5714 	}
   5715 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   5716 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   5717 
   5718 	return (hash & 0xfff);
   5719 }
   5720 
   5721 /*
   5722  * wm_set_filter:
   5723  *
   5724  *	Set up the receive filter.
   5725  */
   5726 static void
   5727 wm_set_filter(struct wm_softc *sc)
   5728 {
   5729 	struct ethercom *ec = &sc->sc_ethercom;
   5730 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   5731 	struct ether_multi *enm;
   5732 	struct ether_multistep step;
   5733 	bus_addr_t mta_reg;
   5734 	uint32_t hash, reg, bit;
   5735 	int i, size;
   5736 
   5737 	if (sc->sc_type >= WM_T_82544)
   5738 		mta_reg = WMREG_CORDOVA_MTA;
   5739 	else
   5740 		mta_reg = WMREG_MTA;
   5741 
   5742 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   5743 
   5744 	if (ifp->if_flags & IFF_BROADCAST)
   5745 		sc->sc_rctl |= RCTL_BAM;
   5746 	if (ifp->if_flags & IFF_PROMISC) {
   5747 		sc->sc_rctl |= RCTL_UPE;
   5748 		goto allmulti;
   5749 	}
   5750 
   5751 	/*
   5752 	 * Set the station address in the first RAL slot, and
   5753 	 * clear the remaining slots.
   5754 	 */
   5755 	if (sc->sc_type == WM_T_ICH8)
   5756 		size = WM_RAL_TABSIZE_ICH8 -1;
   5757 	else if ((sc->sc_type == WM_T_ICH9) || (sc->sc_type == WM_T_ICH10)
   5758 	    || (sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)
   5759 	    || (sc->sc_type == WM_T_PCH_LPT))
   5760 		size = WM_RAL_TABSIZE_ICH8;
   5761 	else if (sc->sc_type == WM_T_82575)
   5762 		size = WM_RAL_TABSIZE_82575;
   5763 	else if ((sc->sc_type == WM_T_82576) || (sc->sc_type == WM_T_82580))
   5764 		size = WM_RAL_TABSIZE_82576;
   5765 	else if (sc->sc_type == WM_T_I350)
   5766 		size = WM_RAL_TABSIZE_I350;
   5767 	else
   5768 		size = WM_RAL_TABSIZE;
   5769 	wm_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
   5770 	for (i = 1; i < size; i++)
   5771 		wm_set_ral(sc, NULL, i);
   5772 
   5773 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
   5774 	    || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
   5775 	    || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT))
   5776 		size = WM_ICH8_MC_TABSIZE;
   5777 	else
   5778 		size = WM_MC_TABSIZE;
   5779 	/* Clear out the multicast table. */
   5780 	for (i = 0; i < size; i++)
   5781 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
   5782 
   5783 	ETHER_FIRST_MULTI(step, ec, enm);
   5784 	while (enm != NULL) {
   5785 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   5786 			/*
   5787 			 * We must listen to a range of multicast addresses.
   5788 			 * For now, just accept all multicasts, rather than
   5789 			 * trying to set only those filter bits needed to match
   5790 			 * the range.  (At this time, the only use of address
   5791 			 * ranges is for IP multicast routing, for which the
   5792 			 * range is big enough to require all bits set.)
   5793 			 */
   5794 			goto allmulti;
   5795 		}
   5796 
   5797 		hash = wm_mchash(sc, enm->enm_addrlo);
   5798 
   5799 		reg = (hash >> 5);
   5800 		if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
   5801 		    || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
   5802 		    || (sc->sc_type == WM_T_PCH2)
   5803 		    || (sc->sc_type == WM_T_PCH_LPT))
   5804 			reg &= 0x1f;
   5805 		else
   5806 			reg &= 0x7f;
   5807 		bit = hash & 0x1f;
   5808 
   5809 		hash = CSR_READ(sc, mta_reg + (reg << 2));
   5810 		hash |= 1U << bit;
   5811 
   5812 		/* XXX Hardware bug?? */
   5813 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
   5814 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
   5815 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   5816 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
   5817 		} else
   5818 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   5819 
   5820 		ETHER_NEXT_MULTI(step, enm);
   5821 	}
   5822 
   5823 	ifp->if_flags &= ~IFF_ALLMULTI;
   5824 	goto setit;
   5825 
   5826  allmulti:
   5827 	ifp->if_flags |= IFF_ALLMULTI;
   5828 	sc->sc_rctl |= RCTL_MPE;
   5829 
   5830  setit:
   5831 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
   5832 }
   5833 
   5834 /*
   5835  * wm_tbi_mediainit:
   5836  *
   5837  *	Initialize media for use on 1000BASE-X devices.
   5838  */
   5839 static void
   5840 wm_tbi_mediainit(struct wm_softc *sc)
   5841 {
   5842 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   5843 	const char *sep = "";
   5844 
   5845 	if (sc->sc_type < WM_T_82543)
   5846 		sc->sc_tipg = TIPG_WM_DFLT;
   5847 	else
   5848 		sc->sc_tipg = TIPG_LG_DFLT;
   5849 
   5850 	sc->sc_tbi_anegticks = 5;
   5851 
   5852 	/* Initialize our media structures */
   5853 	sc->sc_mii.mii_ifp = ifp;
   5854 
   5855 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
   5856 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
   5857 	    wm_tbi_mediastatus);
   5858 
   5859 	/*
   5860 	 * SWD Pins:
   5861 	 *
   5862 	 *	0 = Link LED (output)
   5863 	 *	1 = Loss Of Signal (input)
   5864 	 */
   5865 	sc->sc_ctrl |= CTRL_SWDPIO(0);
   5866 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
   5867 
   5868 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   5869 
   5870 #define	ADD(ss, mm, dd)							\
   5871 do {									\
   5872 	aprint_normal("%s%s", sep, ss);					\
   5873 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
   5874 	sep = ", ";							\
   5875 } while (/*CONSTCOND*/0)
   5876 
   5877 	aprint_normal_dev(sc->sc_dev, "");
   5878 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
   5879 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
   5880 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
   5881 	aprint_normal("\n");
   5882 
   5883 #undef ADD
   5884 
   5885 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
   5886 }
   5887 
   5888 /*
   5889  * wm_tbi_mediastatus:	[ifmedia interface function]
   5890  *
   5891  *	Get the current interface media status on a 1000BASE-X device.
   5892  */
   5893 static void
   5894 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   5895 {
   5896 	struct wm_softc *sc = ifp->if_softc;
   5897 	uint32_t ctrl, status;
   5898 
   5899 	ifmr->ifm_status = IFM_AVALID;
   5900 	ifmr->ifm_active = IFM_ETHER;
   5901 
   5902 	status = CSR_READ(sc, WMREG_STATUS);
   5903 	if ((status & STATUS_LU) == 0) {
   5904 		ifmr->ifm_active |= IFM_NONE;
   5905 		return;
   5906 	}
   5907 
   5908 	ifmr->ifm_status |= IFM_ACTIVE;
   5909 	ifmr->ifm_active |= IFM_1000_SX;
   5910 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
   5911 		ifmr->ifm_active |= IFM_FDX;
   5912 	ctrl = CSR_READ(sc, WMREG_CTRL);
   5913 	if (ctrl & CTRL_RFCE)
   5914 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   5915 	if (ctrl & CTRL_TFCE)
   5916 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   5917 }
   5918 
   5919 /*
   5920  * wm_tbi_mediachange:	[ifmedia interface function]
   5921  *
   5922  *	Set hardware to newly-selected media on a 1000BASE-X device.
   5923  */
   5924 static int
   5925 wm_tbi_mediachange(struct ifnet *ifp)
   5926 {
   5927 	struct wm_softc *sc = ifp->if_softc;
   5928 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   5929 	uint32_t status;
   5930 	int i;
   5931 
   5932 	sc->sc_txcw = 0;
   5933 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
   5934 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
   5935 		sc->sc_txcw |= TXCW_SYM_PAUSE | TXCW_ASYM_PAUSE;
   5936 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
   5937 		sc->sc_txcw |= TXCW_ANE;
   5938 	} else {
   5939 		/*
   5940 		 * If autonegotiation is turned off, force link up and turn on
   5941 		 * full duplex
   5942 		 */
   5943 		sc->sc_txcw &= ~TXCW_ANE;
   5944 		sc->sc_ctrl |= CTRL_SLU | CTRL_FD;
   5945 		sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
   5946 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   5947 		delay(1000);
   5948 	}
   5949 
   5950 	DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x after autoneg check\n",
   5951 		    device_xname(sc->sc_dev),sc->sc_txcw));
   5952 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   5953 	delay(10000);
   5954 
   5955 	i = CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1);
   5956 	DPRINTF(WM_DEBUG_LINK,("%s: i = 0x%x\n", device_xname(sc->sc_dev),i));
   5957 
   5958 	/*
   5959 	 * On 82544 chips and later, the CTRL_SWDPIN(1) bit will be set if the
   5960 	 * optics detect a signal, 0 if they don't.
   5961 	 */
   5962 	if (((i != 0) && (sc->sc_type > WM_T_82544)) || (i == 0)) {
   5963 		/* Have signal; wait for the link to come up. */
   5964 
   5965 		if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
   5966 			/*
   5967 			 * Reset the link, and let autonegotiation do its thing
   5968 			 */
   5969 			sc->sc_ctrl |= CTRL_LRST;
   5970 			CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   5971 			delay(1000);
   5972 			sc->sc_ctrl &= ~CTRL_LRST;
   5973 			CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   5974 			delay(1000);
   5975 		}
   5976 
   5977 		for (i = 0; i < WM_LINKUP_TIMEOUT; i++) {
   5978 			delay(10000);
   5979 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
   5980 				break;
   5981 		}
   5982 
   5983 		DPRINTF(WM_DEBUG_LINK,("%s: i = %d after waiting for link\n",
   5984 			    device_xname(sc->sc_dev),i));
   5985 
   5986 		status = CSR_READ(sc, WMREG_STATUS);
   5987 		DPRINTF(WM_DEBUG_LINK,
   5988 		    ("%s: status after final read = 0x%x, STATUS_LU = 0x%x\n",
   5989 			device_xname(sc->sc_dev),status, STATUS_LU));
   5990 		if (status & STATUS_LU) {
   5991 			/* Link is up. */
   5992 			DPRINTF(WM_DEBUG_LINK,
   5993 			    ("%s: LINK: set media -> link up %s\n",
   5994 			    device_xname(sc->sc_dev),
   5995 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   5996 
   5997 			/*
   5998 			 * NOTE: CTRL will update TFCE and RFCE automatically,
   5999 			 * so we should update sc->sc_ctrl
   6000 			 */
   6001 			sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
   6002 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   6003 			sc->sc_fcrtl &= ~FCRTL_XONE;
   6004 			if (status & STATUS_FD)
   6005 				sc->sc_tctl |=
   6006 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   6007 			else
   6008 				sc->sc_tctl |=
   6009 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   6010 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   6011 				sc->sc_fcrtl |= FCRTL_XONE;
   6012 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   6013 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   6014 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   6015 				      sc->sc_fcrtl);
   6016 			sc->sc_tbi_linkup = 1;
   6017 		} else {
   6018 			if (i == WM_LINKUP_TIMEOUT)
   6019 				wm_check_for_link(sc);
   6020 			/* Link is down. */
   6021 			DPRINTF(WM_DEBUG_LINK,
   6022 			    ("%s: LINK: set media -> link down\n",
   6023 			    device_xname(sc->sc_dev)));
   6024 			sc->sc_tbi_linkup = 0;
   6025 		}
   6026 	} else {
   6027 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
   6028 		    device_xname(sc->sc_dev)));
   6029 		sc->sc_tbi_linkup = 0;
   6030 	}
   6031 
   6032 	wm_tbi_set_linkled(sc);
   6033 
   6034 	return 0;
   6035 }
   6036 
   6037 /*
   6038  * wm_tbi_set_linkled:
   6039  *
   6040  *	Update the link LED on 1000BASE-X devices.
   6041  */
   6042 static void
   6043 wm_tbi_set_linkled(struct wm_softc *sc)
   6044 {
   6045 
   6046 	if (sc->sc_tbi_linkup)
   6047 		sc->sc_ctrl |= CTRL_SWDPIN(0);
   6048 	else
   6049 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
   6050 
   6051 	/* 82540 or newer devices are active low */
   6052 	sc->sc_ctrl ^= (sc->sc_type >= WM_T_82540) ? CTRL_SWDPIN(0) : 0;
   6053 
   6054 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   6055 }
   6056 
   6057 /*
   6058  * wm_tbi_check_link:
   6059  *
   6060  *	Check the link on 1000BASE-X devices.
   6061  */
   6062 static void
   6063 wm_tbi_check_link(struct wm_softc *sc)
   6064 {
   6065 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   6066 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   6067 	uint32_t rxcw, ctrl, status;
   6068 
   6069 	status = CSR_READ(sc, WMREG_STATUS);
   6070 
   6071 	rxcw = CSR_READ(sc, WMREG_RXCW);
   6072 	ctrl = CSR_READ(sc, WMREG_CTRL);
   6073 
   6074 	/* set link status */
   6075 	if ((status & STATUS_LU) == 0) {
   6076 		DPRINTF(WM_DEBUG_LINK,
   6077 		    ("%s: LINK: checklink -> down\n", device_xname(sc->sc_dev)));
   6078 		sc->sc_tbi_linkup = 0;
   6079 	} else if (sc->sc_tbi_linkup == 0) {
   6080 		DPRINTF(WM_DEBUG_LINK,
   6081 		    ("%s: LINK: checklink -> up %s\n", device_xname(sc->sc_dev),
   6082 		    (status & STATUS_FD) ? "FDX" : "HDX"));
   6083 		sc->sc_tbi_linkup = 1;
   6084 	}
   6085 
   6086 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_UP)
   6087 	    && ((status & STATUS_LU) == 0)) {
   6088 		sc->sc_tbi_linkup = 0;
   6089 		if (sc->sc_tbi_nrxcfg - sc->sc_tbi_lastnrxcfg > 100) {
   6090 			/* RXCFG storm! */
   6091 			DPRINTF(WM_DEBUG_LINK, ("RXCFG storm! (%d)\n",
   6092 				sc->sc_tbi_nrxcfg - sc->sc_tbi_lastnrxcfg));
   6093 			wm_init(ifp);
   6094 			ifp->if_start(ifp);
   6095 		} else if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
   6096 			/* If the timer expired, retry autonegotiation */
   6097 			if (++sc->sc_tbi_ticks >= sc->sc_tbi_anegticks) {
   6098 				DPRINTF(WM_DEBUG_LINK, ("EXPIRE\n"));
   6099 				sc->sc_tbi_ticks = 0;
   6100 				/*
   6101 				 * Reset the link, and let autonegotiation do
   6102 				 * its thing
   6103 				 */
   6104 				sc->sc_ctrl |= CTRL_LRST;
   6105 				CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   6106 				delay(1000);
   6107 				sc->sc_ctrl &= ~CTRL_LRST;
   6108 				CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   6109 				delay(1000);
   6110 				CSR_WRITE(sc, WMREG_TXCW,
   6111 				    sc->sc_txcw & ~TXCW_ANE);
   6112 				CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   6113 			}
   6114 		}
   6115 	}
   6116 
   6117 	wm_tbi_set_linkled(sc);
   6118 }
   6119 
   6120 /*
   6121  * wm_gmii_reset:
   6122  *
   6123  *	Reset the PHY.
   6124  */
   6125 static void
   6126 wm_gmii_reset(struct wm_softc *sc)
   6127 {
   6128 	uint32_t reg;
   6129 	int rv;
   6130 
   6131 	/* get phy semaphore */
   6132 	switch (sc->sc_type) {
   6133 	case WM_T_82571:
   6134 	case WM_T_82572:
   6135 	case WM_T_82573:
   6136 	case WM_T_82574:
   6137 	case WM_T_82583:
   6138 		 /* XXX should get sw semaphore, too */
   6139 		rv = wm_get_swsm_semaphore(sc);
   6140 		break;
   6141 	case WM_T_82575:
   6142 	case WM_T_82576:
   6143 	case WM_T_82580:
   6144 	case WM_T_82580ER:
   6145 	case WM_T_I350:
   6146 	case WM_T_I210:
   6147 	case WM_T_I211:
   6148 	case WM_T_80003:
   6149 		rv = wm_get_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
   6150 		break;
   6151 	case WM_T_ICH8:
   6152 	case WM_T_ICH9:
   6153 	case WM_T_ICH10:
   6154 	case WM_T_PCH:
   6155 	case WM_T_PCH2:
   6156 	case WM_T_PCH_LPT:
   6157 		rv = wm_get_swfwhw_semaphore(sc);
   6158 		break;
   6159 	default:
   6160 		/* nothing to do*/
   6161 		rv = 0;
   6162 		break;
   6163 	}
   6164 	if (rv != 0) {
   6165 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   6166 		    __func__);
   6167 		return;
   6168 	}
   6169 
   6170 	switch (sc->sc_type) {
   6171 	case WM_T_82542_2_0:
   6172 	case WM_T_82542_2_1:
   6173 		/* null */
   6174 		break;
   6175 	case WM_T_82543:
   6176 		/*
   6177 		 * With 82543, we need to force speed and duplex on the MAC
   6178 		 * equal to what the PHY speed and duplex configuration is.
   6179 		 * In addition, we need to perform a hardware reset on the PHY
   6180 		 * to take it out of reset.
   6181 		 */
   6182 		sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
   6183 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   6184 
   6185 		/* The PHY reset pin is active-low. */
   6186 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   6187 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
   6188 		    CTRL_EXT_SWDPIN(4));
   6189 		reg |= CTRL_EXT_SWDPIO(4);
   6190 
   6191 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   6192 		delay(10*1000);
   6193 
   6194 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   6195 		delay(150);
   6196 #if 0
   6197 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
   6198 #endif
   6199 		delay(20*1000);	/* XXX extra delay to get PHY ID? */
   6200 		break;
   6201 	case WM_T_82544:	/* reset 10000us */
   6202 	case WM_T_82540:
   6203 	case WM_T_82545:
   6204 	case WM_T_82545_3:
   6205 	case WM_T_82546:
   6206 	case WM_T_82546_3:
   6207 	case WM_T_82541:
   6208 	case WM_T_82541_2:
   6209 	case WM_T_82547:
   6210 	case WM_T_82547_2:
   6211 	case WM_T_82571:	/* reset 100us */
   6212 	case WM_T_82572:
   6213 	case WM_T_82573:
   6214 	case WM_T_82574:
   6215 	case WM_T_82575:
   6216 	case WM_T_82576:
   6217 	case WM_T_82580:
   6218 	case WM_T_82580ER:
   6219 	case WM_T_I350:
   6220 	case WM_T_I210:
   6221 	case WM_T_I211:
   6222 	case WM_T_82583:
   6223 	case WM_T_80003:
   6224 		/* generic reset */
   6225 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   6226 		delay(20000);
   6227 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   6228 		delay(20000);
   6229 
   6230 		if ((sc->sc_type == WM_T_82541)
   6231 		    || (sc->sc_type == WM_T_82541_2)
   6232 		    || (sc->sc_type == WM_T_82547)
   6233 		    || (sc->sc_type == WM_T_82547_2)) {
   6234 			/* workaround for igp are done in igp_reset() */
   6235 			/* XXX add code to set LED after phy reset */
   6236 		}
   6237 		break;
   6238 	case WM_T_ICH8:
   6239 	case WM_T_ICH9:
   6240 	case WM_T_ICH10:
   6241 	case WM_T_PCH:
   6242 	case WM_T_PCH2:
   6243 	case WM_T_PCH_LPT:
   6244 		/* generic reset */
   6245 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   6246 		delay(100);
   6247 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   6248 		delay(150);
   6249 		break;
   6250 	default:
   6251 		panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
   6252 		    __func__);
   6253 		break;
   6254 	}
   6255 
   6256 	/* release PHY semaphore */
   6257 	switch (sc->sc_type) {
   6258 	case WM_T_82571:
   6259 	case WM_T_82572:
   6260 	case WM_T_82573:
   6261 	case WM_T_82574:
   6262 	case WM_T_82583:
   6263 		 /* XXX should put sw semaphore, too */
   6264 		wm_put_swsm_semaphore(sc);
   6265 		break;
   6266 	case WM_T_82575:
   6267 	case WM_T_82576:
   6268 	case WM_T_82580:
   6269 	case WM_T_82580ER:
   6270 	case WM_T_I350:
   6271 	case WM_T_I210:
   6272 	case WM_T_I211:
   6273 	case WM_T_80003:
   6274 		wm_put_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
   6275 		break;
   6276 	case WM_T_ICH8:
   6277 	case WM_T_ICH9:
   6278 	case WM_T_ICH10:
   6279 	case WM_T_PCH:
   6280 	case WM_T_PCH2:
   6281 	case WM_T_PCH_LPT:
   6282 		wm_put_swfwhw_semaphore(sc);
   6283 		break;
   6284 	default:
   6285 		/* nothing to do*/
   6286 		rv = 0;
   6287 		break;
   6288 	}
   6289 
   6290 	/* get_cfg_done */
   6291 	wm_get_cfg_done(sc);
   6292 
   6293 	/* extra setup */
   6294 	switch (sc->sc_type) {
   6295 	case WM_T_82542_2_0:
   6296 	case WM_T_82542_2_1:
   6297 	case WM_T_82543:
   6298 	case WM_T_82544:
   6299 	case WM_T_82540:
   6300 	case WM_T_82545:
   6301 	case WM_T_82545_3:
   6302 	case WM_T_82546:
   6303 	case WM_T_82546_3:
   6304 	case WM_T_82541_2:
   6305 	case WM_T_82547_2:
   6306 	case WM_T_82571:
   6307 	case WM_T_82572:
   6308 	case WM_T_82573:
   6309 	case WM_T_82574:
   6310 	case WM_T_82575:
   6311 	case WM_T_82576:
   6312 	case WM_T_82580:
   6313 	case WM_T_82580ER:
   6314 	case WM_T_I350:
   6315 	case WM_T_I210:
   6316 	case WM_T_I211:
   6317 	case WM_T_82583:
   6318 	case WM_T_80003:
   6319 		/* null */
   6320 		break;
   6321 	case WM_T_82541:
   6322 	case WM_T_82547:
   6323 		/* XXX Configure actively LED after PHY reset */
   6324 		break;
   6325 	case WM_T_ICH8:
   6326 	case WM_T_ICH9:
   6327 	case WM_T_ICH10:
   6328 	case WM_T_PCH:
   6329 	case WM_T_PCH2:
   6330 	case WM_T_PCH_LPT:
   6331 		/* Allow time for h/w to get to a quiescent state afer reset */
   6332 		delay(10*1000);
   6333 
   6334 		if (sc->sc_type == WM_T_PCH)
   6335 			wm_hv_phy_workaround_ich8lan(sc);
   6336 
   6337 		if (sc->sc_type == WM_T_PCH2)
   6338 			wm_lv_phy_workaround_ich8lan(sc);
   6339 
   6340 		if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)) {
   6341 			/*
   6342 			 * dummy read to clear the phy wakeup bit after lcd
   6343 			 * reset
   6344 			 */
   6345 			reg = wm_gmii_hv_readreg(sc->sc_dev, 1, BM_WUC);
   6346 		}
   6347 
   6348 		/*
   6349 		 * XXX Configure the LCD with th extended configuration region
   6350 		 * in NVM
   6351 		 */
   6352 
   6353 		/* Configure the LCD with the OEM bits in NVM */
   6354 		if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)) {
   6355 			/*
   6356 			 * Disable LPLU.
   6357 			 * XXX It seems that 82567 has LPLU, too.
   6358 			 */
   6359 			reg = wm_gmii_hv_readreg(sc->sc_dev, 1, HV_OEM_BITS);
   6360 			reg &= ~(HV_OEM_BITS_A1KDIS| HV_OEM_BITS_LPLU);
   6361 			reg |= HV_OEM_BITS_ANEGNOW;
   6362 			wm_gmii_hv_writereg(sc->sc_dev, 1, HV_OEM_BITS, reg);
   6363 		}
   6364 		break;
   6365 	default:
   6366 		panic("%s: unknown type\n", __func__);
   6367 		break;
   6368 	}
   6369 }
   6370 
   6371 /*
   6372  * wm_gmii_mediainit:
   6373  *
   6374  *	Initialize media for use on 1000BASE-T devices.
   6375  */
   6376 static void
   6377 wm_gmii_mediainit(struct wm_softc *sc, pci_product_id_t prodid)
   6378 {
   6379 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   6380 	struct mii_data *mii = &sc->sc_mii;
   6381 
   6382 	/* We have MII. */
   6383 	sc->sc_flags |= WM_F_HAS_MII;
   6384 
   6385 	if (sc->sc_type == WM_T_80003)
   6386 		sc->sc_tipg =  TIPG_1000T_80003_DFLT;
   6387 	else
   6388 		sc->sc_tipg = TIPG_1000T_DFLT;
   6389 
   6390 	/*
   6391 	 * Let the chip set speed/duplex on its own based on
   6392 	 * signals from the PHY.
   6393 	 * XXXbouyer - I'm not sure this is right for the 80003,
   6394 	 * the em driver only sets CTRL_SLU here - but it seems to work.
   6395 	 */
   6396 	sc->sc_ctrl |= CTRL_SLU;
   6397 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   6398 
   6399 	/* Initialize our media structures and probe the GMII. */
   6400 	mii->mii_ifp = ifp;
   6401 
   6402 	/*
   6403 	 * Determine the PHY access method.
   6404 	 *
   6405 	 *  For SGMII, use SGMII specific method.
   6406 	 *
   6407 	 *  For some devices, we can determine the PHY access method
   6408 	 * from sc_type.
   6409 	 *
   6410 	 *  For ICH8 variants, it's difficult to detemine the PHY access
   6411 	 * method by sc_type, so use the PCI product ID for some devices.
   6412 	 * For other ICH8 variants, try to use igp's method. If the PHY
   6413 	 * can't detect, then use bm's method.
   6414 	 */
   6415 	switch (prodid) {
   6416 	case PCI_PRODUCT_INTEL_PCH_M_LM:
   6417 	case PCI_PRODUCT_INTEL_PCH_M_LC:
   6418 		/* 82577 */
   6419 		sc->sc_phytype = WMPHY_82577;
   6420 		mii->mii_readreg = wm_gmii_hv_readreg;
   6421 		mii->mii_writereg = wm_gmii_hv_writereg;
   6422 		break;
   6423 	case PCI_PRODUCT_INTEL_PCH_D_DM:
   6424 	case PCI_PRODUCT_INTEL_PCH_D_DC:
   6425 		/* 82578 */
   6426 		sc->sc_phytype = WMPHY_82578;
   6427 		mii->mii_readreg = wm_gmii_hv_readreg;
   6428 		mii->mii_writereg = wm_gmii_hv_writereg;
   6429 		break;
   6430 	case PCI_PRODUCT_INTEL_PCH2_LV_LM:
   6431 	case PCI_PRODUCT_INTEL_PCH2_LV_V:
   6432 		/* 82579 */
   6433 		sc->sc_phytype = WMPHY_82579;
   6434 		mii->mii_readreg = wm_gmii_hv_readreg;
   6435 		mii->mii_writereg = wm_gmii_hv_writereg;
   6436 		break;
   6437 	case PCI_PRODUCT_INTEL_82801I_BM:
   6438 	case PCI_PRODUCT_INTEL_82801J_R_BM_LM:
   6439 	case PCI_PRODUCT_INTEL_82801J_R_BM_LF:
   6440 	case PCI_PRODUCT_INTEL_82801J_D_BM_LM:
   6441 	case PCI_PRODUCT_INTEL_82801J_D_BM_LF:
   6442 	case PCI_PRODUCT_INTEL_82801J_R_BM_V:
   6443 		/* 82567 */
   6444 		sc->sc_phytype = WMPHY_BM;
   6445 		mii->mii_readreg = wm_gmii_bm_readreg;
   6446 		mii->mii_writereg = wm_gmii_bm_writereg;
   6447 		break;
   6448 	default:
   6449 		if ((sc->sc_flags & WM_F_SGMII) != 0) {
   6450 			mii->mii_readreg = wm_sgmii_readreg;
   6451 			mii->mii_writereg = wm_sgmii_writereg;
   6452 		} else if (sc->sc_type >= WM_T_80003) {
   6453 			mii->mii_readreg = wm_gmii_i80003_readreg;
   6454 			mii->mii_writereg = wm_gmii_i80003_writereg;
   6455 		} else if (sc->sc_type >= WM_T_I210) {
   6456 			mii->mii_readreg = wm_gmii_i82544_readreg;
   6457 			mii->mii_writereg = wm_gmii_i82544_writereg;
   6458 		} else if (sc->sc_type >= WM_T_82580) {
   6459 			sc->sc_phytype = WMPHY_82580;
   6460 			mii->mii_readreg = wm_gmii_82580_readreg;
   6461 			mii->mii_writereg = wm_gmii_82580_writereg;
   6462 		} else if (sc->sc_type >= WM_T_82544) {
   6463 			mii->mii_readreg = wm_gmii_i82544_readreg;
   6464 			mii->mii_writereg = wm_gmii_i82544_writereg;
   6465 		} else {
   6466 			mii->mii_readreg = wm_gmii_i82543_readreg;
   6467 			mii->mii_writereg = wm_gmii_i82543_writereg;
   6468 		}
   6469 		break;
   6470 	}
   6471 	mii->mii_statchg = wm_gmii_statchg;
   6472 
   6473 	wm_gmii_reset(sc);
   6474 
   6475 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
   6476 	ifmedia_init(&mii->mii_media, IFM_IMASK, wm_gmii_mediachange,
   6477 	    wm_gmii_mediastatus);
   6478 
   6479 	if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
   6480 	    || (sc->sc_type == WM_T_82580) || (sc->sc_type == WM_T_82580ER)
   6481 	    || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I210)
   6482 	    || (sc->sc_type == WM_T_I211)) {
   6483 		if ((sc->sc_flags & WM_F_SGMII) == 0) {
   6484 			/* Attach only one port */
   6485 			mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, 1,
   6486 			    MII_OFFSET_ANY, MIIF_DOPAUSE);
   6487 		} else {
   6488 			int i;
   6489 			uint32_t ctrl_ext;
   6490 
   6491 			/* Power on sgmii phy if it is disabled */
   6492 			ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
   6493 			CSR_WRITE(sc, WMREG_CTRL_EXT,
   6494 			    ctrl_ext &~ CTRL_EXT_SWDPIN(3));
   6495 			CSR_WRITE_FLUSH(sc);
   6496 			delay(300*1000); /* XXX too long */
   6497 
   6498 			/* from 1 to 8 */
   6499 			for (i = 1; i < 8; i++)
   6500 				mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff,
   6501 				    i, MII_OFFSET_ANY, MIIF_DOPAUSE);
   6502 
   6503 			/* restore previous sfp cage power state */
   6504 			CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
   6505 		}
   6506 	} else {
   6507 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   6508 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
   6509 	}
   6510 
   6511 	/*
   6512 	 * If the MAC is PCH2 or PCH_LPT and failed to detect MII PHY, call
   6513 	 * wm_set_mdio_slow_mode_hv() for a workaround and retry.
   6514 	 */
   6515 	if (((sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) &&
   6516 	    (LIST_FIRST(&mii->mii_phys) == NULL)) {
   6517 		wm_set_mdio_slow_mode_hv(sc);
   6518 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   6519 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
   6520 	}
   6521 
   6522 	/*
   6523 	 * (For ICH8 variants)
   6524 	 * If PHY detection failed, use BM's r/w function and retry.
   6525 	 */
   6526 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
   6527 		/* if failed, retry with *_bm_* */
   6528 		mii->mii_readreg = wm_gmii_bm_readreg;
   6529 		mii->mii_writereg = wm_gmii_bm_writereg;
   6530 
   6531 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   6532 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
   6533 	}
   6534 
   6535 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
   6536 		/* Any PHY wasn't find */
   6537 		ifmedia_add(&mii->mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   6538 		ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_NONE);
   6539 		sc->sc_phytype = WMPHY_NONE;
   6540 	} else {
   6541 		/*
   6542 		 * PHY Found!
   6543 		 * Check PHY type.
   6544 		 */
   6545 		uint32_t model;
   6546 		struct mii_softc *child;
   6547 
   6548 		child = LIST_FIRST(&mii->mii_phys);
   6549 		if (device_is_a(child->mii_dev, "igphy")) {
   6550 			struct igphy_softc *isc = (struct igphy_softc *)child;
   6551 
   6552 			model = isc->sc_mii.mii_mpd_model;
   6553 			if (model == MII_MODEL_yyINTEL_I82566)
   6554 				sc->sc_phytype = WMPHY_IGP_3;
   6555 		}
   6556 
   6557 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   6558 	}
   6559 }
   6560 
   6561 /*
   6562  * wm_gmii_mediastatus:	[ifmedia interface function]
   6563  *
   6564  *	Get the current interface media status on a 1000BASE-T device.
   6565  */
   6566 static void
   6567 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   6568 {
   6569 	struct wm_softc *sc = ifp->if_softc;
   6570 
   6571 	ether_mediastatus(ifp, ifmr);
   6572 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
   6573 	    | sc->sc_flowflags;
   6574 }
   6575 
   6576 /*
   6577  * wm_gmii_mediachange:	[ifmedia interface function]
   6578  *
   6579  *	Set hardware to newly-selected media on a 1000BASE-T device.
   6580  */
   6581 static int
   6582 wm_gmii_mediachange(struct ifnet *ifp)
   6583 {
   6584 	struct wm_softc *sc = ifp->if_softc;
   6585 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   6586 	int rc;
   6587 
   6588 	if ((ifp->if_flags & IFF_UP) == 0)
   6589 		return 0;
   6590 
   6591 	sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
   6592 	sc->sc_ctrl |= CTRL_SLU;
   6593 	if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
   6594 	    || (sc->sc_type > WM_T_82543)) {
   6595 		sc->sc_ctrl &= ~(CTRL_FRCSPD | CTRL_FRCFDX);
   6596 	} else {
   6597 		sc->sc_ctrl &= ~CTRL_ASDE;
   6598 		sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
   6599 		if (ife->ifm_media & IFM_FDX)
   6600 			sc->sc_ctrl |= CTRL_FD;
   6601 		switch (IFM_SUBTYPE(ife->ifm_media)) {
   6602 		case IFM_10_T:
   6603 			sc->sc_ctrl |= CTRL_SPEED_10;
   6604 			break;
   6605 		case IFM_100_TX:
   6606 			sc->sc_ctrl |= CTRL_SPEED_100;
   6607 			break;
   6608 		case IFM_1000_T:
   6609 			sc->sc_ctrl |= CTRL_SPEED_1000;
   6610 			break;
   6611 		default:
   6612 			panic("wm_gmii_mediachange: bad media 0x%x",
   6613 			    ife->ifm_media);
   6614 		}
   6615 	}
   6616 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   6617 	if (sc->sc_type <= WM_T_82543)
   6618 		wm_gmii_reset(sc);
   6619 
   6620 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
   6621 		return 0;
   6622 	return rc;
   6623 }
   6624 
   6625 #define	MDI_IO		CTRL_SWDPIN(2)
   6626 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
   6627 #define	MDI_CLK		CTRL_SWDPIN(3)
   6628 
   6629 static void
   6630 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
   6631 {
   6632 	uint32_t i, v;
   6633 
   6634 	v = CSR_READ(sc, WMREG_CTRL);
   6635 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   6636 	v |= MDI_DIR | CTRL_SWDPIO(3);
   6637 
   6638 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
   6639 		if (data & i)
   6640 			v |= MDI_IO;
   6641 		else
   6642 			v &= ~MDI_IO;
   6643 		CSR_WRITE(sc, WMREG_CTRL, v);
   6644 		delay(10);
   6645 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   6646 		delay(10);
   6647 		CSR_WRITE(sc, WMREG_CTRL, v);
   6648 		delay(10);
   6649 	}
   6650 }
   6651 
   6652 static uint32_t
   6653 i82543_mii_recvbits(struct wm_softc *sc)
   6654 {
   6655 	uint32_t v, i, data = 0;
   6656 
   6657 	v = CSR_READ(sc, WMREG_CTRL);
   6658 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   6659 	v |= CTRL_SWDPIO(3);
   6660 
   6661 	CSR_WRITE(sc, WMREG_CTRL, v);
   6662 	delay(10);
   6663 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   6664 	delay(10);
   6665 	CSR_WRITE(sc, WMREG_CTRL, v);
   6666 	delay(10);
   6667 
   6668 	for (i = 0; i < 16; i++) {
   6669 		data <<= 1;
   6670 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   6671 		delay(10);
   6672 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
   6673 			data |= 1;
   6674 		CSR_WRITE(sc, WMREG_CTRL, v);
   6675 		delay(10);
   6676 	}
   6677 
   6678 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   6679 	delay(10);
   6680 	CSR_WRITE(sc, WMREG_CTRL, v);
   6681 	delay(10);
   6682 
   6683 	return data;
   6684 }
   6685 
   6686 #undef MDI_IO
   6687 #undef MDI_DIR
   6688 #undef MDI_CLK
   6689 
   6690 /*
   6691  * wm_gmii_i82543_readreg:	[mii interface function]
   6692  *
   6693  *	Read a PHY register on the GMII (i82543 version).
   6694  */
   6695 static int
   6696 wm_gmii_i82543_readreg(device_t self, int phy, int reg)
   6697 {
   6698 	struct wm_softc *sc = device_private(self);
   6699 	int rv;
   6700 
   6701 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   6702 	i82543_mii_sendbits(sc, reg | (phy << 5) |
   6703 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
   6704 	rv = i82543_mii_recvbits(sc) & 0xffff;
   6705 
   6706 	DPRINTF(WM_DEBUG_GMII,
   6707 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
   6708 	    device_xname(sc->sc_dev), phy, reg, rv));
   6709 
   6710 	return rv;
   6711 }
   6712 
   6713 /*
   6714  * wm_gmii_i82543_writereg:	[mii interface function]
   6715  *
   6716  *	Write a PHY register on the GMII (i82543 version).
   6717  */
   6718 static void
   6719 wm_gmii_i82543_writereg(device_t self, int phy, int reg, int val)
   6720 {
   6721 	struct wm_softc *sc = device_private(self);
   6722 
   6723 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   6724 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
   6725 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
   6726 	    (MII_COMMAND_START << 30), 32);
   6727 }
   6728 
   6729 /*
   6730  * wm_gmii_i82544_readreg:	[mii interface function]
   6731  *
   6732  *	Read a PHY register on the GMII.
   6733  */
   6734 static int
   6735 wm_gmii_i82544_readreg(device_t self, int phy, int reg)
   6736 {
   6737 	struct wm_softc *sc = device_private(self);
   6738 	uint32_t mdic = 0;
   6739 	int i, rv;
   6740 
   6741 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
   6742 	    MDIC_REGADD(reg));
   6743 
   6744 	for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) {
   6745 		mdic = CSR_READ(sc, WMREG_MDIC);
   6746 		if (mdic & MDIC_READY)
   6747 			break;
   6748 		delay(50);
   6749 	}
   6750 
   6751 	if ((mdic & MDIC_READY) == 0) {
   6752 		log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
   6753 		    device_xname(sc->sc_dev), phy, reg);
   6754 		rv = 0;
   6755 	} else if (mdic & MDIC_E) {
   6756 #if 0 /* This is normal if no PHY is present. */
   6757 		log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
   6758 		    device_xname(sc->sc_dev), phy, reg);
   6759 #endif
   6760 		rv = 0;
   6761 	} else {
   6762 		rv = MDIC_DATA(mdic);
   6763 		if (rv == 0xffff)
   6764 			rv = 0;
   6765 	}
   6766 
   6767 	return rv;
   6768 }
   6769 
   6770 /*
   6771  * wm_gmii_i82544_writereg:	[mii interface function]
   6772  *
   6773  *	Write a PHY register on the GMII.
   6774  */
   6775 static void
   6776 wm_gmii_i82544_writereg(device_t self, int phy, int reg, int val)
   6777 {
   6778 	struct wm_softc *sc = device_private(self);
   6779 	uint32_t mdic = 0;
   6780 	int i;
   6781 
   6782 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
   6783 	    MDIC_REGADD(reg) | MDIC_DATA(val));
   6784 
   6785 	for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) {
   6786 		mdic = CSR_READ(sc, WMREG_MDIC);
   6787 		if (mdic & MDIC_READY)
   6788 			break;
   6789 		delay(50);
   6790 	}
   6791 
   6792 	if ((mdic & MDIC_READY) == 0)
   6793 		log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
   6794 		    device_xname(sc->sc_dev), phy, reg);
   6795 	else if (mdic & MDIC_E)
   6796 		log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
   6797 		    device_xname(sc->sc_dev), phy, reg);
   6798 }
   6799 
   6800 /*
   6801  * wm_gmii_i80003_readreg:	[mii interface function]
   6802  *
   6803  *	Read a PHY register on the kumeran
   6804  * This could be handled by the PHY layer if we didn't have to lock the
   6805  * ressource ...
   6806  */
   6807 static int
   6808 wm_gmii_i80003_readreg(device_t self, int phy, int reg)
   6809 {
   6810 	struct wm_softc *sc = device_private(self);
   6811 	int sem;
   6812 	int rv;
   6813 
   6814 	if (phy != 1) /* only one PHY on kumeran bus */
   6815 		return 0;
   6816 
   6817 	sem = swfwphysem[sc->sc_funcid];
   6818 	if (wm_get_swfw_semaphore(sc, sem)) {
   6819 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   6820 		    __func__);
   6821 		return 0;
   6822 	}
   6823 
   6824 	if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
   6825 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
   6826 		    reg >> GG82563_PAGE_SHIFT);
   6827 	} else {
   6828 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
   6829 		    reg >> GG82563_PAGE_SHIFT);
   6830 	}
   6831 	/* Wait more 200us for a bug of the ready bit in the MDIC register */
   6832 	delay(200);
   6833 	rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
   6834 	delay(200);
   6835 
   6836 	wm_put_swfw_semaphore(sc, sem);
   6837 	return rv;
   6838 }
   6839 
   6840 /*
   6841  * wm_gmii_i80003_writereg:	[mii interface function]
   6842  *
   6843  *	Write a PHY register on the kumeran.
   6844  * This could be handled by the PHY layer if we didn't have to lock the
   6845  * ressource ...
   6846  */
   6847 static void
   6848 wm_gmii_i80003_writereg(device_t self, int phy, int reg, int val)
   6849 {
   6850 	struct wm_softc *sc = device_private(self);
   6851 	int sem;
   6852 
   6853 	if (phy != 1) /* only one PHY on kumeran bus */
   6854 		return;
   6855 
   6856 	sem = swfwphysem[sc->sc_funcid];
   6857 	if (wm_get_swfw_semaphore(sc, sem)) {
   6858 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   6859 		    __func__);
   6860 		return;
   6861 	}
   6862 
   6863 	if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
   6864 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
   6865 		    reg >> GG82563_PAGE_SHIFT);
   6866 	} else {
   6867 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
   6868 		    reg >> GG82563_PAGE_SHIFT);
   6869 	}
   6870 	/* Wait more 200us for a bug of the ready bit in the MDIC register */
   6871 	delay(200);
   6872 	wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
   6873 	delay(200);
   6874 
   6875 	wm_put_swfw_semaphore(sc, sem);
   6876 }
   6877 
   6878 /*
   6879  * wm_gmii_bm_readreg:	[mii interface function]
   6880  *
   6881  *	Read a PHY register on the kumeran
   6882  * This could be handled by the PHY layer if we didn't have to lock the
   6883  * ressource ...
   6884  */
   6885 static int
   6886 wm_gmii_bm_readreg(device_t self, int phy, int reg)
   6887 {
   6888 	struct wm_softc *sc = device_private(self);
   6889 	int sem;
   6890 	int rv;
   6891 
   6892 	sem = swfwphysem[sc->sc_funcid];
   6893 	if (wm_get_swfw_semaphore(sc, sem)) {
   6894 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   6895 		    __func__);
   6896 		return 0;
   6897 	}
   6898 
   6899 	if (reg > BME1000_MAX_MULTI_PAGE_REG) {
   6900 		if (phy == 1)
   6901 			wm_gmii_i82544_writereg(self, phy, MII_IGPHY_PAGE_SELECT,
   6902 			    reg);
   6903 		else
   6904 			wm_gmii_i82544_writereg(self, phy,
   6905 			    GG82563_PHY_PAGE_SELECT,
   6906 			    reg >> GG82563_PAGE_SHIFT);
   6907 	}
   6908 
   6909 	rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
   6910 	wm_put_swfw_semaphore(sc, sem);
   6911 	return rv;
   6912 }
   6913 
   6914 /*
   6915  * wm_gmii_bm_writereg:	[mii interface function]
   6916  *
   6917  *	Write a PHY register on the kumeran.
   6918  * This could be handled by the PHY layer if we didn't have to lock the
   6919  * ressource ...
   6920  */
   6921 static void
   6922 wm_gmii_bm_writereg(device_t self, int phy, int reg, int val)
   6923 {
   6924 	struct wm_softc *sc = device_private(self);
   6925 	int sem;
   6926 
   6927 	sem = swfwphysem[sc->sc_funcid];
   6928 	if (wm_get_swfw_semaphore(sc, sem)) {
   6929 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   6930 		    __func__);
   6931 		return;
   6932 	}
   6933 
   6934 	if (reg > BME1000_MAX_MULTI_PAGE_REG) {
   6935 		if (phy == 1)
   6936 			wm_gmii_i82544_writereg(self, phy, MII_IGPHY_PAGE_SELECT,
   6937 			    reg);
   6938 		else
   6939 			wm_gmii_i82544_writereg(self, phy,
   6940 			    GG82563_PHY_PAGE_SELECT,
   6941 			    reg >> GG82563_PAGE_SHIFT);
   6942 	}
   6943 
   6944 	wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
   6945 	wm_put_swfw_semaphore(sc, sem);
   6946 }
   6947 
   6948 static void
   6949 wm_access_phy_wakeup_reg_bm(device_t self, int offset, int16_t *val, int rd)
   6950 {
   6951 	struct wm_softc *sc = device_private(self);
   6952 	uint16_t regnum = BM_PHY_REG_NUM(offset);
   6953 	uint16_t wuce;
   6954 
   6955 	/* XXX Gig must be disabled for MDIO accesses to page 800 */
   6956 	if (sc->sc_type == WM_T_PCH) {
   6957 		/* XXX e1000 driver do nothing... why? */
   6958 	}
   6959 
   6960 	/* Set page 769 */
   6961 	wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
   6962 	    BM_WUC_ENABLE_PAGE << BME1000_PAGE_SHIFT);
   6963 
   6964 	wuce = wm_gmii_i82544_readreg(self, 1, BM_WUC_ENABLE_REG);
   6965 
   6966 	wuce &= ~BM_WUC_HOST_WU_BIT;
   6967 	wm_gmii_i82544_writereg(self, 1, BM_WUC_ENABLE_REG,
   6968 	    wuce | BM_WUC_ENABLE_BIT);
   6969 
   6970 	/* Select page 800 */
   6971 	wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
   6972 	    BM_WUC_PAGE << BME1000_PAGE_SHIFT);
   6973 
   6974 	/* Write page 800 */
   6975 	wm_gmii_i82544_writereg(self, 1, BM_WUC_ADDRESS_OPCODE, regnum);
   6976 
   6977 	if (rd)
   6978 		*val = wm_gmii_i82544_readreg(self, 1, BM_WUC_DATA_OPCODE);
   6979 	else
   6980 		wm_gmii_i82544_writereg(self, 1, BM_WUC_DATA_OPCODE, *val);
   6981 
   6982 	/* Set page 769 */
   6983 	wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
   6984 	    BM_WUC_ENABLE_PAGE << BME1000_PAGE_SHIFT);
   6985 
   6986 	wm_gmii_i82544_writereg(self, 1, BM_WUC_ENABLE_REG, wuce);
   6987 }
   6988 
   6989 /*
   6990  * wm_gmii_hv_readreg:	[mii interface function]
   6991  *
   6992  *	Read a PHY register on the kumeran
   6993  * This could be handled by the PHY layer if we didn't have to lock the
   6994  * ressource ...
   6995  */
   6996 static int
   6997 wm_gmii_hv_readreg(device_t self, int phy, int reg)
   6998 {
   6999 	struct wm_softc *sc = device_private(self);
   7000 	uint16_t page = BM_PHY_REG_PAGE(reg);
   7001 	uint16_t regnum = BM_PHY_REG_NUM(reg);
   7002 	uint16_t val;
   7003 	int rv;
   7004 
   7005 	if (wm_get_swfw_semaphore(sc, SWFW_PHY0_SM)) {
   7006 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   7007 		    __func__);
   7008 		return 0;
   7009 	}
   7010 
   7011 	/* XXX Workaround failure in MDIO access while cable is disconnected */
   7012 	if (sc->sc_phytype == WMPHY_82577) {
   7013 		/* XXX must write */
   7014 	}
   7015 
   7016 	/* Page 800 works differently than the rest so it has its own func */
   7017 	if (page == BM_WUC_PAGE) {
   7018 		wm_access_phy_wakeup_reg_bm(self, reg, &val, 1);
   7019 		return val;
   7020 	}
   7021 
   7022 	/*
   7023 	 * Lower than page 768 works differently than the rest so it has its
   7024 	 * own func
   7025 	 */
   7026 	if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) {
   7027 		printf("gmii_hv_readreg!!!\n");
   7028 		return 0;
   7029 	}
   7030 
   7031 	if (regnum > BME1000_MAX_MULTI_PAGE_REG) {
   7032 		wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
   7033 		    page << BME1000_PAGE_SHIFT);
   7034 	}
   7035 
   7036 	rv = wm_gmii_i82544_readreg(self, phy, regnum & IGPHY_MAXREGADDR);
   7037 	wm_put_swfw_semaphore(sc, SWFW_PHY0_SM);
   7038 	return rv;
   7039 }
   7040 
   7041 /*
   7042  * wm_gmii_hv_writereg:	[mii interface function]
   7043  *
   7044  *	Write a PHY register on the kumeran.
   7045  * This could be handled by the PHY layer if we didn't have to lock the
   7046  * ressource ...
   7047  */
   7048 static void
   7049 wm_gmii_hv_writereg(device_t self, int phy, int reg, int val)
   7050 {
   7051 	struct wm_softc *sc = device_private(self);
   7052 	uint16_t page = BM_PHY_REG_PAGE(reg);
   7053 	uint16_t regnum = BM_PHY_REG_NUM(reg);
   7054 
   7055 	if (wm_get_swfw_semaphore(sc, SWFW_PHY0_SM)) {
   7056 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   7057 		    __func__);
   7058 		return;
   7059 	}
   7060 
   7061 	/* XXX Workaround failure in MDIO access while cable is disconnected */
   7062 
   7063 	/* Page 800 works differently than the rest so it has its own func */
   7064 	if (page == BM_WUC_PAGE) {
   7065 		uint16_t tmp;
   7066 
   7067 		tmp = val;
   7068 		wm_access_phy_wakeup_reg_bm(self, reg, &tmp, 0);
   7069 		return;
   7070 	}
   7071 
   7072 	/*
   7073 	 * Lower than page 768 works differently than the rest so it has its
   7074 	 * own func
   7075 	 */
   7076 	if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) {
   7077 		printf("gmii_hv_writereg!!!\n");
   7078 		return;
   7079 	}
   7080 
   7081 	/*
   7082 	 * XXX Workaround MDIO accesses being disabled after entering IEEE
   7083 	 * Power Down (whenever bit 11 of the PHY control register is set)
   7084 	 */
   7085 
   7086 	if (regnum > BME1000_MAX_MULTI_PAGE_REG) {
   7087 		wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
   7088 		    page << BME1000_PAGE_SHIFT);
   7089 	}
   7090 
   7091 	wm_gmii_i82544_writereg(self, phy, regnum & IGPHY_MAXREGADDR, val);
   7092 	wm_put_swfw_semaphore(sc, SWFW_PHY0_SM);
   7093 }
   7094 
   7095 /*
   7096  * wm_sgmii_readreg:	[mii interface function]
   7097  *
   7098  *	Read a PHY register on the SGMII
   7099  * This could be handled by the PHY layer if we didn't have to lock the
   7100  * ressource ...
   7101  */
   7102 static int
   7103 wm_sgmii_readreg(device_t self, int phy, int reg)
   7104 {
   7105 	struct wm_softc *sc = device_private(self);
   7106 	uint32_t i2ccmd;
   7107 	int i, rv;
   7108 
   7109 	if (wm_get_swfw_semaphore(sc, swfwphysem[sc->sc_funcid])) {
   7110 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   7111 		    __func__);
   7112 		return 0;
   7113 	}
   7114 
   7115 	i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT)
   7116 	    | (phy << I2CCMD_PHY_ADDR_SHIFT)
   7117 	    | I2CCMD_OPCODE_READ;
   7118 	CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
   7119 
   7120 	/* Poll the ready bit */
   7121 	for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
   7122 		delay(50);
   7123 		i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
   7124 		if (i2ccmd & I2CCMD_READY)
   7125 			break;
   7126 	}
   7127 	if ((i2ccmd & I2CCMD_READY) == 0)
   7128 		aprint_error_dev(sc->sc_dev, "I2CCMD Read did not complete\n");
   7129 	if ((i2ccmd & I2CCMD_ERROR) != 0)
   7130 		aprint_error_dev(sc->sc_dev, "I2CCMD Error bit set\n");
   7131 
   7132 	rv = ((i2ccmd >> 8) & 0x00ff) | ((i2ccmd << 8) & 0xff00);
   7133 
   7134 	wm_put_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
   7135 	return rv;
   7136 }
   7137 
   7138 /*
   7139  * wm_sgmii_writereg:	[mii interface function]
   7140  *
   7141  *	Write a PHY register on the SGMII.
   7142  * This could be handled by the PHY layer if we didn't have to lock the
   7143  * ressource ...
   7144  */
   7145 static void
   7146 wm_sgmii_writereg(device_t self, int phy, int reg, int val)
   7147 {
   7148 	struct wm_softc *sc = device_private(self);
   7149 	uint32_t i2ccmd;
   7150 	int i;
   7151 
   7152 	if (wm_get_swfw_semaphore(sc, swfwphysem[sc->sc_funcid])) {
   7153 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   7154 		    __func__);
   7155 		return;
   7156 	}
   7157 
   7158 	i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT)
   7159 	    | (phy << I2CCMD_PHY_ADDR_SHIFT)
   7160 	    | I2CCMD_OPCODE_WRITE;
   7161 	CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
   7162 
   7163 	/* Poll the ready bit */
   7164 	for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
   7165 		delay(50);
   7166 		i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
   7167 		if (i2ccmd & I2CCMD_READY)
   7168 			break;
   7169 	}
   7170 	if ((i2ccmd & I2CCMD_READY) == 0)
   7171 		aprint_error_dev(sc->sc_dev, "I2CCMD Write did not complete\n");
   7172 	if ((i2ccmd & I2CCMD_ERROR) != 0)
   7173 		aprint_error_dev(sc->sc_dev, "I2CCMD Error bit set\n");
   7174 
   7175 	wm_put_swfw_semaphore(sc, SWFW_PHY0_SM);
   7176 }
   7177 
   7178 /*
   7179  * wm_gmii_82580_readreg:	[mii interface function]
   7180  *
   7181  *	Read a PHY register on the 82580 and I350.
   7182  * This could be handled by the PHY layer if we didn't have to lock the
   7183  * ressource ...
   7184  */
   7185 static int
   7186 wm_gmii_82580_readreg(device_t self, int phy, int reg)
   7187 {
   7188 	struct wm_softc *sc = device_private(self);
   7189 	int sem;
   7190 	int rv;
   7191 
   7192 	sem = swfwphysem[sc->sc_funcid];
   7193 	if (wm_get_swfw_semaphore(sc, sem)) {
   7194 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   7195 		    __func__);
   7196 		return 0;
   7197 	}
   7198 
   7199 	rv = wm_gmii_i82544_readreg(self, phy, reg);
   7200 
   7201 	wm_put_swfw_semaphore(sc, sem);
   7202 	return rv;
   7203 }
   7204 
   7205 /*
   7206  * wm_gmii_82580_writereg:	[mii interface function]
   7207  *
   7208  *	Write a PHY register on the 82580 and I350.
   7209  * This could be handled by the PHY layer if we didn't have to lock the
   7210  * ressource ...
   7211  */
   7212 static void
   7213 wm_gmii_82580_writereg(device_t self, int phy, int reg, int val)
   7214 {
   7215 	struct wm_softc *sc = device_private(self);
   7216 	int sem;
   7217 
   7218 	sem = swfwphysem[sc->sc_funcid];
   7219 	if (wm_get_swfw_semaphore(sc, sem)) {
   7220 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   7221 		    __func__);
   7222 		return;
   7223 	}
   7224 
   7225 	wm_gmii_i82544_writereg(self, phy, reg, val);
   7226 
   7227 	wm_put_swfw_semaphore(sc, sem);
   7228 }
   7229 
   7230 /*
   7231  * wm_gmii_statchg:	[mii interface function]
   7232  *
   7233  *	Callback from MII layer when media changes.
   7234  */
   7235 static void
   7236 wm_gmii_statchg(struct ifnet *ifp)
   7237 {
   7238 	struct wm_softc *sc = ifp->if_softc;
   7239 	struct mii_data *mii = &sc->sc_mii;
   7240 
   7241 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
   7242 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   7243 	sc->sc_fcrtl &= ~FCRTL_XONE;
   7244 
   7245 	/*
   7246 	 * Get flow control negotiation result.
   7247 	 */
   7248 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   7249 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   7250 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   7251 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   7252 	}
   7253 
   7254 	if (sc->sc_flowflags & IFM_FLOW) {
   7255 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
   7256 			sc->sc_ctrl |= CTRL_TFCE;
   7257 			sc->sc_fcrtl |= FCRTL_XONE;
   7258 		}
   7259 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   7260 			sc->sc_ctrl |= CTRL_RFCE;
   7261 	}
   7262 
   7263 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   7264 		DPRINTF(WM_DEBUG_LINK,
   7265 		    ("%s: LINK: statchg: FDX\n", ifp->if_xname));
   7266 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   7267 	} else {
   7268 		DPRINTF(WM_DEBUG_LINK,
   7269 		    ("%s: LINK: statchg: HDX\n", ifp->if_xname));
   7270 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   7271 	}
   7272 
   7273 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   7274 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   7275 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
   7276 						 : WMREG_FCRTL, sc->sc_fcrtl);
   7277 	if (sc->sc_type == WM_T_80003) {
   7278 		switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
   7279 		case IFM_1000_T:
   7280 			wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
   7281 			    KUMCTRLSTA_HD_CTRL_1000_DEFAULT);
   7282 			sc->sc_tipg =  TIPG_1000T_80003_DFLT;
   7283 			break;
   7284 		default:
   7285 			wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
   7286 			    KUMCTRLSTA_HD_CTRL_10_100_DEFAULT);
   7287 			sc->sc_tipg =  TIPG_10_100_80003_DFLT;
   7288 			break;
   7289 		}
   7290 		CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   7291 	}
   7292 }
   7293 
   7294 /*
   7295  * wm_kmrn_readreg:
   7296  *
   7297  *	Read a kumeran register
   7298  */
   7299 static int
   7300 wm_kmrn_readreg(struct wm_softc *sc, int reg)
   7301 {
   7302 	int rv;
   7303 
   7304 	if (sc->sc_flags == WM_F_SWFW_SYNC) {
   7305 		if (wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM)) {
   7306 			aprint_error_dev(sc->sc_dev,
   7307 			    "%s: failed to get semaphore\n", __func__);
   7308 			return 0;
   7309 		}
   7310 	} else if (sc->sc_flags == WM_F_SWFWHW_SYNC) {
   7311 		if (wm_get_swfwhw_semaphore(sc)) {
   7312 			aprint_error_dev(sc->sc_dev,
   7313 			    "%s: failed to get semaphore\n", __func__);
   7314 			return 0;
   7315 		}
   7316 	}
   7317 
   7318 	CSR_WRITE(sc, WMREG_KUMCTRLSTA,
   7319 	    ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
   7320 	    KUMCTRLSTA_REN);
   7321 	delay(2);
   7322 
   7323 	rv = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK;
   7324 
   7325 	if (sc->sc_flags == WM_F_SWFW_SYNC)
   7326 		wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
   7327 	else if (sc->sc_flags == WM_F_SWFWHW_SYNC)
   7328 		wm_put_swfwhw_semaphore(sc);
   7329 
   7330 	return rv;
   7331 }
   7332 
   7333 /*
   7334  * wm_kmrn_writereg:
   7335  *
   7336  *	Write a kumeran register
   7337  */
   7338 static void
   7339 wm_kmrn_writereg(struct wm_softc *sc, int reg, int val)
   7340 {
   7341 
   7342 	if (sc->sc_flags == WM_F_SWFW_SYNC) {
   7343 		if (wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM)) {
   7344 			aprint_error_dev(sc->sc_dev,
   7345 			    "%s: failed to get semaphore\n", __func__);
   7346 			return;
   7347 		}
   7348 	} else if (sc->sc_flags == WM_F_SWFWHW_SYNC) {
   7349 		if (wm_get_swfwhw_semaphore(sc)) {
   7350 			aprint_error_dev(sc->sc_dev,
   7351 			    "%s: failed to get semaphore\n", __func__);
   7352 			return;
   7353 		}
   7354 	}
   7355 
   7356 	CSR_WRITE(sc, WMREG_KUMCTRLSTA,
   7357 	    ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
   7358 	    (val & KUMCTRLSTA_MASK));
   7359 
   7360 	if (sc->sc_flags == WM_F_SWFW_SYNC)
   7361 		wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
   7362 	else if (sc->sc_flags == WM_F_SWFWHW_SYNC)
   7363 		wm_put_swfwhw_semaphore(sc);
   7364 }
   7365 
   7366 static int
   7367 wm_is_onboard_nvm_eeprom(struct wm_softc *sc)
   7368 {
   7369 	uint32_t eecd = 0;
   7370 
   7371 	if (sc->sc_type == WM_T_82573 || sc->sc_type == WM_T_82574
   7372 	    || sc->sc_type == WM_T_82583) {
   7373 		eecd = CSR_READ(sc, WMREG_EECD);
   7374 
   7375 		/* Isolate bits 15 & 16 */
   7376 		eecd = ((eecd >> 15) & 0x03);
   7377 
   7378 		/* If both bits are set, device is Flash type */
   7379 		if (eecd == 0x03)
   7380 			return 0;
   7381 	}
   7382 	return 1;
   7383 }
   7384 
   7385 static int
   7386 wm_get_swsm_semaphore(struct wm_softc *sc)
   7387 {
   7388 	int32_t timeout;
   7389 	uint32_t swsm;
   7390 
   7391 	/* Get the FW semaphore. */
   7392 	timeout = 1000 + 1; /* XXX */
   7393 	while (timeout) {
   7394 		swsm = CSR_READ(sc, WMREG_SWSM);
   7395 		swsm |= SWSM_SWESMBI;
   7396 		CSR_WRITE(sc, WMREG_SWSM, swsm);
   7397 		/* if we managed to set the bit we got the semaphore. */
   7398 		swsm = CSR_READ(sc, WMREG_SWSM);
   7399 		if (swsm & SWSM_SWESMBI)
   7400 			break;
   7401 
   7402 		delay(50);
   7403 		timeout--;
   7404 	}
   7405 
   7406 	if (timeout == 0) {
   7407 		aprint_error_dev(sc->sc_dev, "could not acquire EEPROM GNT\n");
   7408 		/* Release semaphores */
   7409 		wm_put_swsm_semaphore(sc);
   7410 		return 1;
   7411 	}
   7412 	return 0;
   7413 }
   7414 
   7415 static void
   7416 wm_put_swsm_semaphore(struct wm_softc *sc)
   7417 {
   7418 	uint32_t swsm;
   7419 
   7420 	swsm = CSR_READ(sc, WMREG_SWSM);
   7421 	swsm &= ~(SWSM_SWESMBI);
   7422 	CSR_WRITE(sc, WMREG_SWSM, swsm);
   7423 }
   7424 
   7425 static int
   7426 wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
   7427 {
   7428 	uint32_t swfw_sync;
   7429 	uint32_t swmask = mask << SWFW_SOFT_SHIFT;
   7430 	uint32_t fwmask = mask << SWFW_FIRM_SHIFT;
   7431 	int timeout = 200;
   7432 
   7433 	for (timeout = 0; timeout < 200; timeout++) {
   7434 		if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
   7435 			if (wm_get_swsm_semaphore(sc)) {
   7436 				aprint_error_dev(sc->sc_dev,
   7437 				    "%s: failed to get semaphore\n",
   7438 				    __func__);
   7439 				return 1;
   7440 			}
   7441 		}
   7442 		swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
   7443 		if ((swfw_sync & (swmask | fwmask)) == 0) {
   7444 			swfw_sync |= swmask;
   7445 			CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
   7446 			if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   7447 				wm_put_swsm_semaphore(sc);
   7448 			return 0;
   7449 		}
   7450 		if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   7451 			wm_put_swsm_semaphore(sc);
   7452 		delay(5000);
   7453 	}
   7454 	printf("%s: failed to get swfw semaphore mask 0x%x swfw 0x%x\n",
   7455 	    device_xname(sc->sc_dev), mask, swfw_sync);
   7456 	return 1;
   7457 }
   7458 
   7459 static void
   7460 wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
   7461 {
   7462 	uint32_t swfw_sync;
   7463 
   7464 	if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
   7465 		while (wm_get_swsm_semaphore(sc) != 0)
   7466 			continue;
   7467 	}
   7468 	swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
   7469 	swfw_sync &= ~(mask << SWFW_SOFT_SHIFT);
   7470 	CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
   7471 	if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   7472 		wm_put_swsm_semaphore(sc);
   7473 }
   7474 
   7475 static int
   7476 wm_get_swfwhw_semaphore(struct wm_softc *sc)
   7477 {
   7478 	uint32_t ext_ctrl;
   7479 	int timeout = 200;
   7480 
   7481 	for (timeout = 0; timeout < 200; timeout++) {
   7482 		ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
   7483 		ext_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
   7484 		CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
   7485 
   7486 		ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
   7487 		if (ext_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
   7488 			return 0;
   7489 		delay(5000);
   7490 	}
   7491 	printf("%s: failed to get swfwhw semaphore ext_ctrl 0x%x\n",
   7492 	    device_xname(sc->sc_dev), ext_ctrl);
   7493 	return 1;
   7494 }
   7495 
   7496 static void
   7497 wm_put_swfwhw_semaphore(struct wm_softc *sc)
   7498 {
   7499 	uint32_t ext_ctrl;
   7500 	ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
   7501 	ext_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
   7502 	CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
   7503 }
   7504 
   7505 static int
   7506 wm_valid_nvm_bank_detect_ich8lan(struct wm_softc *sc, unsigned int *bank)
   7507 {
   7508 	uint32_t act_offset = ICH_NVM_SIG_WORD * 2 + 1;
   7509 	uint32_t bank1_offset = sc->sc_ich8_flash_bank_size * sizeof(uint16_t);
   7510 
   7511 	if ((sc->sc_type != WM_T_ICH10) && (sc->sc_type != WM_T_PCH)) {
   7512 		/* Value of bit 22 corresponds to the flash bank we're on. */
   7513 		*bank = (CSR_READ(sc, WMREG_EECD) & EECD_SEC1VAL) ? 1 : 0;
   7514 	} else {
   7515 		uint8_t sig_byte;
   7516 		wm_read_ich8_byte(sc, act_offset, &sig_byte);
   7517 		if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE)
   7518 			*bank = 0;
   7519 		else {
   7520 			wm_read_ich8_byte(sc, act_offset + bank1_offset,
   7521 			    &sig_byte);
   7522 			if ((sig_byte & ICH_NVM_VALID_SIG_MASK)
   7523 			    == ICH_NVM_SIG_VALUE)
   7524 				*bank = 1;
   7525 			else {
   7526 				aprint_error_dev(sc->sc_dev,
   7527 				    "EEPROM not present\n");
   7528 				return -1;
   7529 			}
   7530 		}
   7531 	}
   7532 
   7533 	return 0;
   7534 }
   7535 
   7536 /******************************************************************************
   7537  * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
   7538  * register.
   7539  *
   7540  * sc - Struct containing variables accessed by shared code
   7541  * offset - offset of word in the EEPROM to read
   7542  * data - word read from the EEPROM
   7543  * words - number of words to read
   7544  *****************************************************************************/
   7545 static int
   7546 wm_read_eeprom_ich8(struct wm_softc *sc, int offset, int words, uint16_t *data)
   7547 {
   7548 	int32_t  error = 0;
   7549 	uint32_t flash_bank = 0;
   7550 	uint32_t act_offset = 0;
   7551 	uint32_t bank_offset = 0;
   7552 	uint16_t word = 0;
   7553 	uint16_t i = 0;
   7554 
   7555 	/* We need to know which is the valid flash bank.  In the event
   7556 	 * that we didn't allocate eeprom_shadow_ram, we may not be
   7557 	 * managing flash_bank.  So it cannot be trusted and needs
   7558 	 * to be updated with each read.
   7559 	 */
   7560 	error = wm_valid_nvm_bank_detect_ich8lan(sc, &flash_bank);
   7561 	if (error) {
   7562 		aprint_error_dev(sc->sc_dev, "%s: failed to detect NVM bank\n",
   7563 		    __func__);
   7564 		return error;
   7565 	}
   7566 
   7567 	/*
   7568 	 * Adjust offset appropriately if we're on bank 1 - adjust for word
   7569 	 * size
   7570 	 */
   7571 	bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
   7572 
   7573 	error = wm_get_swfwhw_semaphore(sc);
   7574 	if (error) {
   7575 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   7576 		    __func__);
   7577 		return error;
   7578 	}
   7579 
   7580 	for (i = 0; i < words; i++) {
   7581 		/* The NVM part needs a byte offset, hence * 2 */
   7582 		act_offset = bank_offset + ((offset + i) * 2);
   7583 		error = wm_read_ich8_word(sc, act_offset, &word);
   7584 		if (error) {
   7585 			aprint_error_dev(sc->sc_dev,
   7586 			    "%s: failed to read NVM\n", __func__);
   7587 			break;
   7588 		}
   7589 		data[i] = word;
   7590 	}
   7591 
   7592 	wm_put_swfwhw_semaphore(sc);
   7593 	return error;
   7594 }
   7595 
   7596 /******************************************************************************
   7597  * This function does initial flash setup so that a new read/write/erase cycle
   7598  * can be started.
   7599  *
   7600  * sc - The pointer to the hw structure
   7601  ****************************************************************************/
   7602 static int32_t
   7603 wm_ich8_cycle_init(struct wm_softc *sc)
   7604 {
   7605 	uint16_t hsfsts;
   7606 	int32_t error = 1;
   7607 	int32_t i     = 0;
   7608 
   7609 	hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
   7610 
   7611 	/* May be check the Flash Des Valid bit in Hw status */
   7612 	if ((hsfsts & HSFSTS_FLDVAL) == 0) {
   7613 		return error;
   7614 	}
   7615 
   7616 	/* Clear FCERR in Hw status by writing 1 */
   7617 	/* Clear DAEL in Hw status by writing a 1 */
   7618 	hsfsts |= HSFSTS_ERR | HSFSTS_DAEL;
   7619 
   7620 	ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
   7621 
   7622 	/*
   7623 	 * Either we should have a hardware SPI cycle in progress bit to check
   7624 	 * against, in order to start a new cycle or FDONE bit should be
   7625 	 * changed in the hardware so that it is 1 after harware reset, which
   7626 	 * can then be used as an indication whether a cycle is in progress or
   7627 	 * has been completed .. we should also have some software semaphore
   7628 	 * mechanism to guard FDONE or the cycle in progress bit so that two
   7629 	 * threads access to those bits can be sequentiallized or a way so that
   7630 	 * 2 threads dont start the cycle at the same time
   7631 	 */
   7632 
   7633 	if ((hsfsts & HSFSTS_FLINPRO) == 0) {
   7634 		/*
   7635 		 * There is no cycle running at present, so we can start a
   7636 		 * cycle
   7637 		 */
   7638 
   7639 		/* Begin by setting Flash Cycle Done. */
   7640 		hsfsts |= HSFSTS_DONE;
   7641 		ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
   7642 		error = 0;
   7643 	} else {
   7644 		/*
   7645 		 * otherwise poll for sometime so the current cycle has a
   7646 		 * chance to end before giving up.
   7647 		 */
   7648 		for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
   7649 			hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
   7650 			if ((hsfsts & HSFSTS_FLINPRO) == 0) {
   7651 				error = 0;
   7652 				break;
   7653 			}
   7654 			delay(1);
   7655 		}
   7656 		if (error == 0) {
   7657 			/*
   7658 			 * Successful in waiting for previous cycle to timeout,
   7659 			 * now set the Flash Cycle Done.
   7660 			 */
   7661 			hsfsts |= HSFSTS_DONE;
   7662 			ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
   7663 		}
   7664 	}
   7665 	return error;
   7666 }
   7667 
   7668 /******************************************************************************
   7669  * This function starts a flash cycle and waits for its completion
   7670  *
   7671  * sc - The pointer to the hw structure
   7672  ****************************************************************************/
   7673 static int32_t
   7674 wm_ich8_flash_cycle(struct wm_softc *sc, uint32_t timeout)
   7675 {
   7676 	uint16_t hsflctl;
   7677 	uint16_t hsfsts;
   7678 	int32_t error = 1;
   7679 	uint32_t i = 0;
   7680 
   7681 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
   7682 	hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
   7683 	hsflctl |= HSFCTL_GO;
   7684 	ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
   7685 
   7686 	/* wait till FDONE bit is set to 1 */
   7687 	do {
   7688 		hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
   7689 		if (hsfsts & HSFSTS_DONE)
   7690 			break;
   7691 		delay(1);
   7692 		i++;
   7693 	} while (i < timeout);
   7694 	if ((hsfsts & HSFSTS_DONE) == 1 && (hsfsts & HSFSTS_ERR) == 0)
   7695 		error = 0;
   7696 
   7697 	return error;
   7698 }
   7699 
   7700 /******************************************************************************
   7701  * Reads a byte or word from the NVM using the ICH8 flash access registers.
   7702  *
   7703  * sc - The pointer to the hw structure
   7704  * index - The index of the byte or word to read.
   7705  * size - Size of data to read, 1=byte 2=word
   7706  * data - Pointer to the word to store the value read.
   7707  *****************************************************************************/
   7708 static int32_t
   7709 wm_read_ich8_data(struct wm_softc *sc, uint32_t index,
   7710     uint32_t size, uint16_t* data)
   7711 {
   7712 	uint16_t hsfsts;
   7713 	uint16_t hsflctl;
   7714 	uint32_t flash_linear_address;
   7715 	uint32_t flash_data = 0;
   7716 	int32_t error = 1;
   7717 	int32_t count = 0;
   7718 
   7719 	if (size < 1  || size > 2 || data == 0x0 ||
   7720 	    index > ICH_FLASH_LINEAR_ADDR_MASK)
   7721 		return error;
   7722 
   7723 	flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
   7724 	    sc->sc_ich8_flash_base;
   7725 
   7726 	do {
   7727 		delay(1);
   7728 		/* Steps */
   7729 		error = wm_ich8_cycle_init(sc);
   7730 		if (error)
   7731 			break;
   7732 
   7733 		hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
   7734 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
   7735 		hsflctl |=  ((size - 1) << HSFCTL_BCOUNT_SHIFT)
   7736 		    & HSFCTL_BCOUNT_MASK;
   7737 		hsflctl |= ICH_CYCLE_READ << HSFCTL_CYCLE_SHIFT;
   7738 		ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
   7739 
   7740 		/*
   7741 		 * Write the last 24 bits of index into Flash Linear address
   7742 		 * field in Flash Address
   7743 		 */
   7744 		/* TODO: TBD maybe check the index against the size of flash */
   7745 
   7746 		ICH8_FLASH_WRITE32(sc, ICH_FLASH_FADDR, flash_linear_address);
   7747 
   7748 		error = wm_ich8_flash_cycle(sc, ICH_FLASH_COMMAND_TIMEOUT);
   7749 
   7750 		/*
   7751 		 * Check if FCERR is set to 1, if set to 1, clear it and try
   7752 		 * the whole sequence a few more times, else read in (shift in)
   7753 		 * the Flash Data0, the order is least significant byte first
   7754 		 * msb to lsb
   7755 		 */
   7756 		if (error == 0) {
   7757 			flash_data = ICH8_FLASH_READ32(sc, ICH_FLASH_FDATA0);
   7758 			if (size == 1)
   7759 				*data = (uint8_t)(flash_data & 0x000000FF);
   7760 			else if (size == 2)
   7761 				*data = (uint16_t)(flash_data & 0x0000FFFF);
   7762 			break;
   7763 		} else {
   7764 			/*
   7765 			 * If we've gotten here, then things are probably
   7766 			 * completely hosed, but if the error condition is
   7767 			 * detected, it won't hurt to give it another try...
   7768 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
   7769 			 */
   7770 			hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
   7771 			if (hsfsts & HSFSTS_ERR) {
   7772 				/* Repeat for some time before giving up. */
   7773 				continue;
   7774 			} else if ((hsfsts & HSFSTS_DONE) == 0)
   7775 				break;
   7776 		}
   7777 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
   7778 
   7779 	return error;
   7780 }
   7781 
   7782 /******************************************************************************
   7783  * Reads a single byte from the NVM using the ICH8 flash access registers.
   7784  *
   7785  * sc - pointer to wm_hw structure
   7786  * index - The index of the byte to read.
   7787  * data - Pointer to a byte to store the value read.
   7788  *****************************************************************************/
   7789 static int32_t
   7790 wm_read_ich8_byte(struct wm_softc *sc, uint32_t index, uint8_t* data)
   7791 {
   7792 	int32_t status;
   7793 	uint16_t word = 0;
   7794 
   7795 	status = wm_read_ich8_data(sc, index, 1, &word);
   7796 	if (status == 0)
   7797 		*data = (uint8_t)word;
   7798 	else
   7799 		*data = 0;
   7800 
   7801 	return status;
   7802 }
   7803 
   7804 /******************************************************************************
   7805  * Reads a word from the NVM using the ICH8 flash access registers.
   7806  *
   7807  * sc - pointer to wm_hw structure
   7808  * index - The starting byte index of the word to read.
   7809  * data - Pointer to a word to store the value read.
   7810  *****************************************************************************/
   7811 static int32_t
   7812 wm_read_ich8_word(struct wm_softc *sc, uint32_t index, uint16_t *data)
   7813 {
   7814 	int32_t status;
   7815 
   7816 	status = wm_read_ich8_data(sc, index, 2, data);
   7817 	return status;
   7818 }
   7819 
   7820 static int
   7821 wm_check_mng_mode(struct wm_softc *sc)
   7822 {
   7823 	int rv;
   7824 
   7825 	switch (sc->sc_type) {
   7826 	case WM_T_ICH8:
   7827 	case WM_T_ICH9:
   7828 	case WM_T_ICH10:
   7829 	case WM_T_PCH:
   7830 	case WM_T_PCH2:
   7831 	case WM_T_PCH_LPT:
   7832 		rv = wm_check_mng_mode_ich8lan(sc);
   7833 		break;
   7834 	case WM_T_82574:
   7835 	case WM_T_82583:
   7836 		rv = wm_check_mng_mode_82574(sc);
   7837 		break;
   7838 	case WM_T_82571:
   7839 	case WM_T_82572:
   7840 	case WM_T_82573:
   7841 	case WM_T_80003:
   7842 		rv = wm_check_mng_mode_generic(sc);
   7843 		break;
   7844 	default:
   7845 		/* noting to do */
   7846 		rv = 0;
   7847 		break;
   7848 	}
   7849 
   7850 	return rv;
   7851 }
   7852 
   7853 static int
   7854 wm_check_mng_mode_ich8lan(struct wm_softc *sc)
   7855 {
   7856 	uint32_t fwsm;
   7857 
   7858 	fwsm = CSR_READ(sc, WMREG_FWSM);
   7859 
   7860 	if ((fwsm & FWSM_MODE_MASK) == (MNG_ICH_IAMT_MODE << FWSM_MODE_SHIFT))
   7861 		return 1;
   7862 
   7863 	return 0;
   7864 }
   7865 
   7866 static int
   7867 wm_check_mng_mode_82574(struct wm_softc *sc)
   7868 {
   7869 	uint16_t data;
   7870 
   7871 	wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &data);
   7872 
   7873 	if ((data & EEPROM_CFG2_MNGM_MASK) != 0)
   7874 		return 1;
   7875 
   7876 	return 0;
   7877 }
   7878 
   7879 static int
   7880 wm_check_mng_mode_generic(struct wm_softc *sc)
   7881 {
   7882 	uint32_t fwsm;
   7883 
   7884 	fwsm = CSR_READ(sc, WMREG_FWSM);
   7885 
   7886 	if ((fwsm & FWSM_MODE_MASK) == (MNG_IAMT_MODE << FWSM_MODE_SHIFT))
   7887 		return 1;
   7888 
   7889 	return 0;
   7890 }
   7891 
   7892 static int
   7893 wm_enable_mng_pass_thru(struct wm_softc *sc)
   7894 {
   7895 	uint32_t manc, fwsm, factps;
   7896 
   7897 	if ((sc->sc_flags & WM_F_ASF_FIRMWARE_PRES) == 0)
   7898 		return 0;
   7899 
   7900 	manc = CSR_READ(sc, WMREG_MANC);
   7901 
   7902 	DPRINTF(WM_DEBUG_MANAGE, ("%s: MANC (%08x)\n",
   7903 		device_xname(sc->sc_dev), manc));
   7904 	if (((manc & MANC_RECV_TCO_EN) == 0)
   7905 	    || ((manc & MANC_EN_MAC_ADDR_FILTER) == 0))
   7906 		return 0;
   7907 
   7908 	if ((sc->sc_flags & WM_F_ARC_SUBSYS_VALID) != 0) {
   7909 		fwsm = CSR_READ(sc, WMREG_FWSM);
   7910 		factps = CSR_READ(sc, WMREG_FACTPS);
   7911 		if (((factps & FACTPS_MNGCG) == 0)
   7912 		    && ((fwsm & FWSM_MODE_MASK)
   7913 			== (MNG_ICH_IAMT_MODE << FWSM_MODE_SHIFT)))
   7914 			return 1;
   7915 	} else if (((manc & MANC_SMBUS_EN) != 0)
   7916 	    && ((manc & MANC_ASF_EN) == 0))
   7917 		return 1;
   7918 
   7919 	return 0;
   7920 }
   7921 
   7922 static int
   7923 wm_check_reset_block(struct wm_softc *sc)
   7924 {
   7925 	uint32_t reg;
   7926 
   7927 	switch (sc->sc_type) {
   7928 	case WM_T_ICH8:
   7929 	case WM_T_ICH9:
   7930 	case WM_T_ICH10:
   7931 	case WM_T_PCH:
   7932 	case WM_T_PCH2:
   7933 	case WM_T_PCH_LPT:
   7934 		reg = CSR_READ(sc, WMREG_FWSM);
   7935 		if ((reg & FWSM_RSPCIPHY) != 0)
   7936 			return 0;
   7937 		else
   7938 			return -1;
   7939 		break;
   7940 	case WM_T_82571:
   7941 	case WM_T_82572:
   7942 	case WM_T_82573:
   7943 	case WM_T_82574:
   7944 	case WM_T_82583:
   7945 	case WM_T_80003:
   7946 		reg = CSR_READ(sc, WMREG_MANC);
   7947 		if ((reg & MANC_BLK_PHY_RST_ON_IDE) != 0)
   7948 			return -1;
   7949 		else
   7950 			return 0;
   7951 		break;
   7952 	default:
   7953 		/* no problem */
   7954 		break;
   7955 	}
   7956 
   7957 	return 0;
   7958 }
   7959 
   7960 static void
   7961 wm_get_hw_control(struct wm_softc *sc)
   7962 {
   7963 	uint32_t reg;
   7964 
   7965 	switch (sc->sc_type) {
   7966 	case WM_T_82573:
   7967 		reg = CSR_READ(sc, WMREG_SWSM);
   7968 		CSR_WRITE(sc, WMREG_SWSM, reg | SWSM_DRV_LOAD);
   7969 		break;
   7970 	case WM_T_82571:
   7971 	case WM_T_82572:
   7972 	case WM_T_82574:
   7973 	case WM_T_82583:
   7974 	case WM_T_80003:
   7975 	case WM_T_ICH8:
   7976 	case WM_T_ICH9:
   7977 	case WM_T_ICH10:
   7978 	case WM_T_PCH:
   7979 	case WM_T_PCH2:
   7980 	case WM_T_PCH_LPT:
   7981 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   7982 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_DRV_LOAD);
   7983 		break;
   7984 	default:
   7985 		break;
   7986 	}
   7987 }
   7988 
   7989 static void
   7990 wm_release_hw_control(struct wm_softc *sc)
   7991 {
   7992 	uint32_t reg;
   7993 
   7994 	if ((sc->sc_flags & WM_F_HAS_MANAGE) == 0)
   7995 		return;
   7996 
   7997 	if (sc->sc_type == WM_T_82573) {
   7998 		reg = CSR_READ(sc, WMREG_SWSM);
   7999 		reg &= ~SWSM_DRV_LOAD;
   8000 		CSR_WRITE(sc, WMREG_SWSM, reg & ~SWSM_DRV_LOAD);
   8001 	} else {
   8002 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   8003 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg & ~CTRL_EXT_DRV_LOAD);
   8004 	}
   8005 }
   8006 
   8007 /* XXX Currently TBI only */
   8008 static int
   8009 wm_check_for_link(struct wm_softc *sc)
   8010 {
   8011 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   8012 	uint32_t rxcw;
   8013 	uint32_t ctrl;
   8014 	uint32_t status;
   8015 	uint32_t sig;
   8016 
   8017 	rxcw = CSR_READ(sc, WMREG_RXCW);
   8018 	ctrl = CSR_READ(sc, WMREG_CTRL);
   8019 	status = CSR_READ(sc, WMREG_STATUS);
   8020 
   8021 	sig = (sc->sc_type > WM_T_82544) ? CTRL_SWDPIN(1) : 0;
   8022 
   8023 	DPRINTF(WM_DEBUG_LINK, ("%s: %s: sig = %d, status_lu = %d, rxcw_c = %d\n",
   8024 		device_xname(sc->sc_dev), __func__,
   8025 		((ctrl & CTRL_SWDPIN(1)) == sig),
   8026 		((status & STATUS_LU) != 0),
   8027 		((rxcw & RXCW_C) != 0)
   8028 		    ));
   8029 
   8030 	/*
   8031 	 * SWDPIN   LU RXCW
   8032 	 *      0    0    0
   8033 	 *      0    0    1	(should not happen)
   8034 	 *      0    1    0	(should not happen)
   8035 	 *      0    1    1	(should not happen)
   8036 	 *      1    0    0	Disable autonego and force linkup
   8037 	 *      1    0    1	got /C/ but not linkup yet
   8038 	 *      1    1    0	(linkup)
   8039 	 *      1    1    1	If IFM_AUTO, back to autonego
   8040 	 *
   8041 	 */
   8042 	if (((ctrl & CTRL_SWDPIN(1)) == sig)
   8043 	    && ((status & STATUS_LU) == 0)
   8044 	    && ((rxcw & RXCW_C) == 0)) {
   8045 		DPRINTF(WM_DEBUG_LINK, ("%s: force linkup and fullduplex\n",
   8046 			__func__));
   8047 		sc->sc_tbi_linkup = 0;
   8048 		/* Disable auto-negotiation in the TXCW register */
   8049 		CSR_WRITE(sc, WMREG_TXCW, (sc->sc_txcw & ~TXCW_ANE));
   8050 
   8051 		/*
   8052 		 * Force link-up and also force full-duplex.
   8053 		 *
   8054 		 * NOTE: CTRL was updated TFCE and RFCE automatically,
   8055 		 * so we should update sc->sc_ctrl
   8056 		 */
   8057 		sc->sc_ctrl = ctrl | CTRL_SLU | CTRL_FD;
   8058 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   8059 	} else if (((status & STATUS_LU) != 0)
   8060 	    && ((rxcw & RXCW_C) != 0)
   8061 	    && (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)) {
   8062 		sc->sc_tbi_linkup = 1;
   8063 		DPRINTF(WM_DEBUG_LINK, ("%s: go back to autonego\n",
   8064 			__func__));
   8065 		CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   8066 		CSR_WRITE(sc, WMREG_CTRL, (ctrl & ~CTRL_SLU));
   8067 	} else if (((ctrl & CTRL_SWDPIN(1)) == sig)
   8068 	    && ((rxcw & RXCW_C) != 0)) {
   8069 		DPRINTF(WM_DEBUG_LINK, ("/C/"));
   8070 	} else {
   8071 		DPRINTF(WM_DEBUG_LINK, ("%s: %x,%x,%x\n", __func__, rxcw, ctrl,
   8072 			status));
   8073 	}
   8074 
   8075 	return 0;
   8076 }
   8077 
   8078 /* Work-around for 82566 Kumeran PCS lock loss */
   8079 static void
   8080 wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *sc)
   8081 {
   8082 	int miistatus, active, i;
   8083 	int reg;
   8084 
   8085 	miistatus = sc->sc_mii.mii_media_status;
   8086 
   8087 	/* If the link is not up, do nothing */
   8088 	if ((miistatus & IFM_ACTIVE) != 0)
   8089 		return;
   8090 
   8091 	active = sc->sc_mii.mii_media_active;
   8092 
   8093 	/* Nothing to do if the link is other than 1Gbps */
   8094 	if (IFM_SUBTYPE(active) != IFM_1000_T)
   8095 		return;
   8096 
   8097 	for (i = 0; i < 10; i++) {
   8098 		/* read twice */
   8099 		reg = wm_gmii_i80003_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG);
   8100 		reg = wm_gmii_i80003_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG);
   8101 		if ((reg & IGP3_KMRN_DIAG_PCS_LOCK_LOSS) != 0)
   8102 			goto out;	/* GOOD! */
   8103 
   8104 		/* Reset the PHY */
   8105 		wm_gmii_reset(sc);
   8106 		delay(5*1000);
   8107 	}
   8108 
   8109 	/* Disable GigE link negotiation */
   8110 	reg = CSR_READ(sc, WMREG_PHY_CTRL);
   8111 	reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS;
   8112 	CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
   8113 
   8114 	/*
   8115 	 * Call gig speed drop workaround on Gig disable before accessing
   8116 	 * any PHY registers.
   8117 	 */
   8118 	wm_gig_downshift_workaround_ich8lan(sc);
   8119 
   8120 out:
   8121 	return;
   8122 }
   8123 
   8124 /* WOL from S5 stops working */
   8125 static void
   8126 wm_gig_downshift_workaround_ich8lan(struct wm_softc *sc)
   8127 {
   8128 	uint16_t kmrn_reg;
   8129 
   8130 	/* Only for igp3 */
   8131 	if (sc->sc_phytype == WMPHY_IGP_3) {
   8132 		kmrn_reg = wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_DIAG);
   8133 		kmrn_reg |= KUMCTRLSTA_DIAG_NELPBK;
   8134 		wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmrn_reg);
   8135 		kmrn_reg &= ~KUMCTRLSTA_DIAG_NELPBK;
   8136 		wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmrn_reg);
   8137 	}
   8138 }
   8139 
   8140 #ifdef WM_WOL
   8141 /* Power down workaround on D3 */
   8142 static void
   8143 wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *sc)
   8144 {
   8145 	uint32_t reg;
   8146 	int i;
   8147 
   8148 	for (i = 0; i < 2; i++) {
   8149 		/* Disable link */
   8150 		reg = CSR_READ(sc, WMREG_PHY_CTRL);
   8151 		reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS;
   8152 		CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
   8153 
   8154 		/*
   8155 		 * Call gig speed drop workaround on Gig disable before
   8156 		 * accessing any PHY registers
   8157 		 */
   8158 		if (sc->sc_type == WM_T_ICH8)
   8159 			wm_gig_downshift_workaround_ich8lan(sc);
   8160 
   8161 		/* Write VR power-down enable */
   8162 		reg = sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL);
   8163 		reg &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
   8164 		reg |= IGP3_VR_CTRL_MODE_SHUTDOWN;
   8165 		sc->sc_mii.mii_writereg(sc->sc_dev, 1, IGP3_VR_CTRL, reg);
   8166 
   8167 		/* Read it back and test */
   8168 		reg = sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL);
   8169 		reg &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
   8170 		if ((reg == IGP3_VR_CTRL_MODE_SHUTDOWN) || (i != 0))
   8171 			break;
   8172 
   8173 		/* Issue PHY reset and repeat at most one more time */
   8174 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   8175 	}
   8176 }
   8177 #endif /* WM_WOL */
   8178 
   8179 /*
   8180  * Workaround for pch's PHYs
   8181  * XXX should be moved to new PHY driver?
   8182  */
   8183 static void
   8184 wm_hv_phy_workaround_ich8lan(struct wm_softc *sc)
   8185 {
   8186 	if (sc->sc_phytype == WMPHY_82577)
   8187 		wm_set_mdio_slow_mode_hv(sc);
   8188 
   8189 	/* (PCH rev.2) && (82577 && (phy rev 2 or 3)) */
   8190 
   8191 	/* (82577 && (phy rev 1 or 2)) || (82578 & phy rev 1)*/
   8192 
   8193 	/* 82578 */
   8194 	if (sc->sc_phytype == WMPHY_82578) {
   8195 		/* PCH rev. < 3 */
   8196 		if (sc->sc_rev < 3) {
   8197 			/* XXX 6 bit shift? Why? Is it page2? */
   8198 			wm_gmii_hv_writereg(sc->sc_dev, 1, ((1 << 6) | 0x29),
   8199 			    0x66c0);
   8200 			wm_gmii_hv_writereg(sc->sc_dev, 1, ((1 << 6) | 0x1e),
   8201 			    0xffff);
   8202 		}
   8203 
   8204 		/* XXX phy rev. < 2 */
   8205 	}
   8206 
   8207 	/* Select page 0 */
   8208 
   8209 	/* XXX acquire semaphore */
   8210 	wm_gmii_i82544_writereg(sc->sc_dev, 1, MII_IGPHY_PAGE_SELECT, 0);
   8211 	/* XXX release semaphore */
   8212 
   8213 	/*
   8214 	 * Configure the K1 Si workaround during phy reset assuming there is
   8215 	 * link so that it disables K1 if link is in 1Gbps.
   8216 	 */
   8217 	wm_k1_gig_workaround_hv(sc, 1);
   8218 }
   8219 
   8220 static void
   8221 wm_lv_phy_workaround_ich8lan(struct wm_softc *sc)
   8222 {
   8223 
   8224 	wm_set_mdio_slow_mode_hv(sc);
   8225 }
   8226 
   8227 static void
   8228 wm_k1_gig_workaround_hv(struct wm_softc *sc, int link)
   8229 {
   8230 	int k1_enable = sc->sc_nvm_k1_enabled;
   8231 
   8232 	/* XXX acquire semaphore */
   8233 
   8234 	if (link) {
   8235 		k1_enable = 0;
   8236 
   8237 		/* Link stall fix for link up */
   8238 		wm_gmii_hv_writereg(sc->sc_dev, 1, IGP3_KMRN_DIAG, 0x0100);
   8239 	} else {
   8240 		/* Link stall fix for link down */
   8241 		wm_gmii_hv_writereg(sc->sc_dev, 1, IGP3_KMRN_DIAG, 0x4100);
   8242 	}
   8243 
   8244 	wm_configure_k1_ich8lan(sc, k1_enable);
   8245 
   8246 	/* XXX release semaphore */
   8247 }
   8248 
   8249 static void
   8250 wm_set_mdio_slow_mode_hv(struct wm_softc *sc)
   8251 {
   8252 	uint32_t reg;
   8253 
   8254 	reg = wm_gmii_hv_readreg(sc->sc_dev, 1, HV_KMRN_MODE_CTRL);
   8255 	wm_gmii_hv_writereg(sc->sc_dev, 1, HV_KMRN_MODE_CTRL,
   8256 	    reg | HV_KMRN_MDIO_SLOW);
   8257 }
   8258 
   8259 static void
   8260 wm_configure_k1_ich8lan(struct wm_softc *sc, int k1_enable)
   8261 {
   8262 	uint32_t ctrl, ctrl_ext, tmp;
   8263 	uint16_t kmrn_reg;
   8264 
   8265 	kmrn_reg = wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_K1_CONFIG);
   8266 
   8267 	if (k1_enable)
   8268 		kmrn_reg |= KUMCTRLSTA_K1_ENABLE;
   8269 	else
   8270 		kmrn_reg &= ~KUMCTRLSTA_K1_ENABLE;
   8271 
   8272 	wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_K1_CONFIG, kmrn_reg);
   8273 
   8274 	delay(20);
   8275 
   8276 	ctrl = CSR_READ(sc, WMREG_CTRL);
   8277 	ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
   8278 
   8279 	tmp = ctrl & ~(CTRL_SPEED_1000 | CTRL_SPEED_100);
   8280 	tmp |= CTRL_FRCSPD;
   8281 
   8282 	CSR_WRITE(sc, WMREG_CTRL, tmp);
   8283 	CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext | CTRL_EXT_SPD_BYPS);
   8284 	delay(20);
   8285 
   8286 	CSR_WRITE(sc, WMREG_CTRL, ctrl);
   8287 	CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
   8288 	delay(20);
   8289 }
   8290 
   8291 static void
   8292 wm_smbustopci(struct wm_softc *sc)
   8293 {
   8294 	uint32_t fwsm;
   8295 
   8296 	fwsm = CSR_READ(sc, WMREG_FWSM);
   8297 	if (((fwsm & FWSM_FW_VALID) == 0)
   8298 	    && ((wm_check_reset_block(sc) == 0))) {
   8299 		sc->sc_ctrl |= CTRL_LANPHYPC_OVERRIDE;
   8300 		sc->sc_ctrl &= ~CTRL_LANPHYPC_VALUE;
   8301 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   8302 		delay(10);
   8303 		sc->sc_ctrl &= ~CTRL_LANPHYPC_OVERRIDE;
   8304 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   8305 		delay(50*1000);
   8306 
   8307 		/*
   8308 		 * Gate automatic PHY configuration by hardware on non-managed
   8309 		 * 82579
   8310 		 */
   8311 		if (sc->sc_type == WM_T_PCH2)
   8312 			wm_gate_hw_phy_config_ich8lan(sc, 1);
   8313 	}
   8314 }
   8315 
   8316 static void
   8317 wm_set_pcie_completion_timeout(struct wm_softc *sc)
   8318 {
   8319 	uint32_t gcr;
   8320 	pcireg_t ctrl2;
   8321 
   8322 	gcr = CSR_READ(sc, WMREG_GCR);
   8323 
   8324 	/* Only take action if timeout value is defaulted to 0 */
   8325 	if ((gcr & GCR_CMPL_TMOUT_MASK) != 0)
   8326 		goto out;
   8327 
   8328 	if ((gcr & GCR_CAP_VER2) == 0) {
   8329 		gcr |= GCR_CMPL_TMOUT_10MS;
   8330 		goto out;
   8331 	}
   8332 
   8333 	ctrl2 = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   8334 	    sc->sc_pcixe_capoff + PCIE_DCSR2);
   8335 	ctrl2 |= WM_PCIE_DCSR2_16MS;
   8336 	pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   8337 	    sc->sc_pcixe_capoff + PCIE_DCSR2, ctrl2);
   8338 
   8339 out:
   8340 	/* Disable completion timeout resend */
   8341 	gcr &= ~GCR_CMPL_TMOUT_RESEND;
   8342 
   8343 	CSR_WRITE(sc, WMREG_GCR, gcr);
   8344 }
   8345 
   8346 /* special case - for 82575 - need to do manual init ... */
   8347 static void
   8348 wm_reset_init_script_82575(struct wm_softc *sc)
   8349 {
   8350 	/*
   8351 	 * remark: this is untested code - we have no board without EEPROM
   8352 	 *  same setup as mentioned int the freeBSD driver for the i82575
   8353 	 */
   8354 
   8355 	/* SerDes configuration via SERDESCTRL */
   8356 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x00, 0x0c);
   8357 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x01, 0x78);
   8358 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x1b, 0x23);
   8359 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x23, 0x15);
   8360 
   8361 	/* CCM configuration via CCMCTL register */
   8362 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x14, 0x00);
   8363 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x10, 0x00);
   8364 
   8365 	/* PCIe lanes configuration */
   8366 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x00, 0xec);
   8367 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x61, 0xdf);
   8368 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x34, 0x05);
   8369 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x2f, 0x81);
   8370 
   8371 	/* PCIe PLL Configuration */
   8372 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x02, 0x47);
   8373 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x14, 0x00);
   8374 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x10, 0x00);
   8375 }
   8376 
   8377 static void
   8378 wm_init_manageability(struct wm_softc *sc)
   8379 {
   8380 
   8381 	if (sc->sc_flags & WM_F_HAS_MANAGE) {
   8382 		uint32_t manc2h = CSR_READ(sc, WMREG_MANC2H);
   8383 		uint32_t manc = CSR_READ(sc, WMREG_MANC);
   8384 
   8385 		/* disabl hardware interception of ARP */
   8386 		manc &= ~MANC_ARP_EN;
   8387 
   8388 		/* enable receiving management packets to the host */
   8389 		if (sc->sc_type >= WM_T_82571) {
   8390 			manc |= MANC_EN_MNG2HOST;
   8391 			manc2h |= MANC2H_PORT_623| MANC2H_PORT_624;
   8392 			CSR_WRITE(sc, WMREG_MANC2H, manc2h);
   8393 
   8394 		}
   8395 
   8396 		CSR_WRITE(sc, WMREG_MANC, manc);
   8397 	}
   8398 }
   8399 
   8400 static void
   8401 wm_release_manageability(struct wm_softc *sc)
   8402 {
   8403 
   8404 	if (sc->sc_flags & WM_F_HAS_MANAGE) {
   8405 		uint32_t manc = CSR_READ(sc, WMREG_MANC);
   8406 
   8407 		if (sc->sc_type >= WM_T_82571)
   8408 			manc &= ~MANC_EN_MNG2HOST;
   8409 
   8410 		CSR_WRITE(sc, WMREG_MANC, manc);
   8411 	}
   8412 }
   8413 
   8414 static void
   8415 wm_get_wakeup(struct wm_softc *sc)
   8416 {
   8417 
   8418 	/* 0: HAS_AMT, ARC_SUBSYS_VALID, ASF_FIRMWARE_PRES */
   8419 	switch (sc->sc_type) {
   8420 	case WM_T_82573:
   8421 	case WM_T_82583:
   8422 		sc->sc_flags |= WM_F_HAS_AMT;
   8423 		/* FALLTHROUGH */
   8424 	case WM_T_80003:
   8425 	case WM_T_82541:
   8426 	case WM_T_82547:
   8427 	case WM_T_82571:
   8428 	case WM_T_82572:
   8429 	case WM_T_82574:
   8430 	case WM_T_82575:
   8431 	case WM_T_82576:
   8432 #if 0 /* XXX */
   8433 	case WM_T_82580:
   8434 	case WM_T_82580ER:
   8435 	case WM_T_I350:
   8436 #endif
   8437 		if ((CSR_READ(sc, WMREG_FWSM) & FWSM_MODE_MASK) != 0)
   8438 			sc->sc_flags |= WM_F_ARC_SUBSYS_VALID;
   8439 		sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES;
   8440 		break;
   8441 	case WM_T_ICH8:
   8442 	case WM_T_ICH9:
   8443 	case WM_T_ICH10:
   8444 	case WM_T_PCH:
   8445 	case WM_T_PCH2:
   8446 	case WM_T_PCH_LPT:
   8447 		sc->sc_flags |= WM_F_HAS_AMT;
   8448 		sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES;
   8449 		break;
   8450 	default:
   8451 		break;
   8452 	}
   8453 
   8454 	/* 1: HAS_MANAGE */
   8455 	if (wm_enable_mng_pass_thru(sc) != 0)
   8456 		sc->sc_flags |= WM_F_HAS_MANAGE;
   8457 
   8458 #ifdef WM_DEBUG
   8459 	printf("\n");
   8460 	if ((sc->sc_flags & WM_F_HAS_AMT) != 0)
   8461 		printf("HAS_AMT,");
   8462 	if ((sc->sc_flags & WM_F_ARC_SUBSYS_VALID) != 0)
   8463 		printf("ARC_SUBSYS_VALID,");
   8464 	if ((sc->sc_flags & WM_F_ASF_FIRMWARE_PRES) != 0)
   8465 		printf("ASF_FIRMWARE_PRES,");
   8466 	if ((sc->sc_flags & WM_F_HAS_MANAGE) != 0)
   8467 		printf("HAS_MANAGE,");
   8468 	printf("\n");
   8469 #endif
   8470 	/*
   8471 	 * Note that the WOL flags is set after the resetting of the eeprom
   8472 	 * stuff
   8473 	 */
   8474 }
   8475 
   8476 #ifdef WM_WOL
   8477 /* WOL in the newer chipset interfaces (pchlan) */
   8478 static void
   8479 wm_enable_phy_wakeup(struct wm_softc *sc)
   8480 {
   8481 #if 0
   8482 	uint16_t preg;
   8483 
   8484 	/* Copy MAC RARs to PHY RARs */
   8485 
   8486 	/* Copy MAC MTA to PHY MTA */
   8487 
   8488 	/* Configure PHY Rx Control register */
   8489 
   8490 	/* Enable PHY wakeup in MAC register */
   8491 
   8492 	/* Configure and enable PHY wakeup in PHY registers */
   8493 
   8494 	/* Activate PHY wakeup */
   8495 
   8496 	/* XXX */
   8497 #endif
   8498 }
   8499 
   8500 static void
   8501 wm_enable_wakeup(struct wm_softc *sc)
   8502 {
   8503 	uint32_t reg, pmreg;
   8504 	pcireg_t pmode;
   8505 
   8506 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PWRMGMT,
   8507 		&pmreg, NULL) == 0)
   8508 		return;
   8509 
   8510 	/* Advertise the wakeup capability */
   8511 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_SWDPIN(2)
   8512 	    | CTRL_SWDPIN(3));
   8513 	CSR_WRITE(sc, WMREG_WUC, WUC_APME);
   8514 
   8515 	/* ICH workaround */
   8516 	switch (sc->sc_type) {
   8517 	case WM_T_ICH8:
   8518 	case WM_T_ICH9:
   8519 	case WM_T_ICH10:
   8520 	case WM_T_PCH:
   8521 	case WM_T_PCH2:
   8522 	case WM_T_PCH_LPT:
   8523 		/* Disable gig during WOL */
   8524 		reg = CSR_READ(sc, WMREG_PHY_CTRL);
   8525 		reg |= PHY_CTRL_D0A_LPLU | PHY_CTRL_GBE_DIS;
   8526 		CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
   8527 		if (sc->sc_type == WM_T_PCH)
   8528 			wm_gmii_reset(sc);
   8529 
   8530 		/* Power down workaround */
   8531 		if (sc->sc_phytype == WMPHY_82577) {
   8532 			struct mii_softc *child;
   8533 
   8534 			/* Assume that the PHY is copper */
   8535 			child = LIST_FIRST(&sc->sc_mii.mii_phys);
   8536 			if (child->mii_mpd_rev <= 2)
   8537 				sc->sc_mii.mii_writereg(sc->sc_dev, 1,
   8538 				    (768 << 5) | 25, 0x0444); /* magic num */
   8539 		}
   8540 		break;
   8541 	default:
   8542 		break;
   8543 	}
   8544 
   8545 	/* Keep the laser running on fiber adapters */
   8546 	if (((sc->sc_wmp->wmp_flags & WMP_F_1000X) != 0)
   8547 	    || (sc->sc_wmp->wmp_flags & WMP_F_SERDES) != 0) {
   8548 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   8549 		reg |= CTRL_EXT_SWDPIN(3);
   8550 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   8551 	}
   8552 
   8553 	reg = CSR_READ(sc, WMREG_WUFC) | WUFC_MAG;
   8554 #if 0	/* for the multicast packet */
   8555 	reg |= WUFC_MC;
   8556 	CSR_WRITE(sc, WMREG_RCTL, CSR_READ(sc, WMREG_RCTL) | RCTL_MPE);
   8557 #endif
   8558 
   8559 	if (sc->sc_type == WM_T_PCH) {
   8560 		wm_enable_phy_wakeup(sc);
   8561 	} else {
   8562 		CSR_WRITE(sc, WMREG_WUC, WUC_PME_EN);
   8563 		CSR_WRITE(sc, WMREG_WUFC, reg);
   8564 	}
   8565 
   8566 	if (((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
   8567 		|| (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
   8568 		|| (sc->sc_type == WM_T_PCH2))
   8569 		    && (sc->sc_phytype == WMPHY_IGP_3))
   8570 			wm_igp3_phy_powerdown_workaround_ich8lan(sc);
   8571 
   8572 	/* Request PME */
   8573 	pmode = pci_conf_read(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR);
   8574 #if 0
   8575 	/* Disable WOL */
   8576 	pmode &= ~(PCI_PMCSR_PME_STS | PCI_PMCSR_PME_EN);
   8577 #else
   8578 	/* For WOL */
   8579 	pmode |= PCI_PMCSR_PME_STS | PCI_PMCSR_PME_EN;
   8580 #endif
   8581 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR, pmode);
   8582 }
   8583 #endif /* WM_WOL */
   8584 
   8585 static bool
   8586 wm_suspend(device_t self, const pmf_qual_t *qual)
   8587 {
   8588 	struct wm_softc *sc = device_private(self);
   8589 
   8590 	wm_release_manageability(sc);
   8591 	wm_release_hw_control(sc);
   8592 #ifdef WM_WOL
   8593 	wm_enable_wakeup(sc);
   8594 #endif
   8595 
   8596 	return true;
   8597 }
   8598 
   8599 static bool
   8600 wm_resume(device_t self, const pmf_qual_t *qual)
   8601 {
   8602 	struct wm_softc *sc = device_private(self);
   8603 
   8604 	wm_init_manageability(sc);
   8605 
   8606 	return true;
   8607 }
   8608 
   8609 static void
   8610 wm_set_eee_i350(struct wm_softc * sc)
   8611 {
   8612 	uint32_t ipcnfg, eeer;
   8613 
   8614 	ipcnfg = CSR_READ(sc, WMREG_IPCNFG);
   8615 	eeer = CSR_READ(sc, WMREG_EEER);
   8616 
   8617 	if ((sc->sc_flags & WM_F_EEE) != 0) {
   8618 		ipcnfg |= (IPCNFG_EEE_1G_AN | IPCNFG_EEE_100M_AN);
   8619 		eeer |= (EEER_TX_LPI_EN | EEER_RX_LPI_EN
   8620 		    | EEER_LPI_FC);
   8621 	} else {
   8622 		ipcnfg &= ~(IPCNFG_EEE_1G_AN | IPCNFG_EEE_100M_AN);
   8623 		eeer &= ~(EEER_TX_LPI_EN | EEER_RX_LPI_EN
   8624 		    | EEER_LPI_FC);
   8625 	}
   8626 
   8627 	CSR_WRITE(sc, WMREG_IPCNFG, ipcnfg);
   8628 	CSR_WRITE(sc, WMREG_EEER, eeer);
   8629 	CSR_READ(sc, WMREG_IPCNFG); /* XXX flush? */
   8630 	CSR_READ(sc, WMREG_EEER); /* XXX flush? */
   8631 }
   8632