Home | History | Annotate | Line # | Download | only in pci
if_wm.c revision 1.258
      1 /*	$NetBSD: if_wm.c,v 1.258 2013/06/19 10:53:24 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*******************************************************************************
     39 
     40   Copyright (c) 2001-2005, Intel Corporation
     41   All rights reserved.
     42 
     43   Redistribution and use in source and binary forms, with or without
     44   modification, are permitted provided that the following conditions are met:
     45 
     46    1. Redistributions of source code must retain the above copyright notice,
     47       this list of conditions and the following disclaimer.
     48 
     49    2. Redistributions in binary form must reproduce the above copyright
     50       notice, this list of conditions and the following disclaimer in the
     51       documentation and/or other materials provided with the distribution.
     52 
     53    3. Neither the name of the Intel Corporation nor the names of its
     54       contributors may be used to endorse or promote products derived from
     55       this software without specific prior written permission.
     56 
     57   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     58   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     61   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     67   POSSIBILITY OF SUCH DAMAGE.
     68 
     69 *******************************************************************************/
     70 /*
     71  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
     72  *
     73  * TODO (in order of importance):
     74  *
     75  *	- Rework how parameters are loaded from the EEPROM.
     76  */
     77 
     78 #include <sys/cdefs.h>
     79 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.258 2013/06/19 10:53:24 msaitoh Exp $");
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/callout.h>
     84 #include <sys/mbuf.h>
     85 #include <sys/malloc.h>
     86 #include <sys/kernel.h>
     87 #include <sys/socket.h>
     88 #include <sys/ioctl.h>
     89 #include <sys/errno.h>
     90 #include <sys/device.h>
     91 #include <sys/queue.h>
     92 #include <sys/syslog.h>
     93 
     94 #include <sys/rnd.h>
     95 
     96 #include <net/if.h>
     97 #include <net/if_dl.h>
     98 #include <net/if_media.h>
     99 #include <net/if_ether.h>
    100 
    101 #include <net/bpf.h>
    102 
    103 #include <netinet/in.h>			/* XXX for struct ip */
    104 #include <netinet/in_systm.h>		/* XXX for struct ip */
    105 #include <netinet/ip.h>			/* XXX for struct ip */
    106 #include <netinet/ip6.h>		/* XXX for struct ip6_hdr */
    107 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
    108 
    109 #include <sys/bus.h>
    110 #include <sys/intr.h>
    111 #include <machine/endian.h>
    112 
    113 #include <dev/mii/mii.h>
    114 #include <dev/mii/miivar.h>
    115 #include <dev/mii/miidevs.h>
    116 #include <dev/mii/mii_bitbang.h>
    117 #include <dev/mii/ikphyreg.h>
    118 #include <dev/mii/igphyreg.h>
    119 #include <dev/mii/igphyvar.h>
    120 #include <dev/mii/inbmphyreg.h>
    121 
    122 #include <dev/pci/pcireg.h>
    123 #include <dev/pci/pcivar.h>
    124 #include <dev/pci/pcidevs.h>
    125 
    126 #include <dev/pci/if_wmreg.h>
    127 #include <dev/pci/if_wmvar.h>
    128 
    129 #ifdef WM_DEBUG
    130 #define	WM_DEBUG_LINK		0x01
    131 #define	WM_DEBUG_TX		0x02
    132 #define	WM_DEBUG_RX		0x04
    133 #define	WM_DEBUG_GMII		0x08
    134 #define	WM_DEBUG_MANAGE		0x10
    135 #define	WM_DEBUG_NVM		0x20
    136 int	wm_debug = WM_DEBUG_TX | WM_DEBUG_RX | WM_DEBUG_LINK | WM_DEBUG_GMII
    137     | WM_DEBUG_MANAGE | WM_DEBUG_NVM;
    138 
    139 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
    140 #else
    141 #define	DPRINTF(x, y)	/* nothing */
    142 #endif /* WM_DEBUG */
    143 
    144 /*
    145  * Transmit descriptor list size.  Due to errata, we can only have
    146  * 256 hardware descriptors in the ring on < 82544, but we use 4096
    147  * on >= 82544.  We tell the upper layers that they can queue a lot
    148  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
    149  * of them at a time.
    150  *
    151  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
    152  * chains containing many small mbufs have been observed in zero-copy
    153  * situations with jumbo frames.
    154  */
    155 #define	WM_NTXSEGS		256
    156 #define	WM_IFQUEUELEN		256
    157 #define	WM_TXQUEUELEN_MAX	64
    158 #define	WM_TXQUEUELEN_MAX_82547	16
    159 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
    160 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
    161 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
    162 #define	WM_NTXDESC_82542	256
    163 #define	WM_NTXDESC_82544	4096
    164 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
    165 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
    166 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
    167 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
    168 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
    169 
    170 #define	WM_MAXTXDMA		round_page(IP_MAXPACKET) /* for TSO */
    171 
    172 /*
    173  * Receive descriptor list size.  We have one Rx buffer for normal
    174  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
    175  * packet.  We allocate 256 receive descriptors, each with a 2k
    176  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
    177  */
    178 #define	WM_NRXDESC		256
    179 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
    180 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
    181 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
    182 
    183 /*
    184  * Control structures are DMA'd to the i82542 chip.  We allocate them in
    185  * a single clump that maps to a single DMA segment to make several things
    186  * easier.
    187  */
    188 struct wm_control_data_82544 {
    189 	/*
    190 	 * The receive descriptors.
    191 	 */
    192 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    193 
    194 	/*
    195 	 * The transmit descriptors.  Put these at the end, because
    196 	 * we might use a smaller number of them.
    197 	 */
    198 	union {
    199 		wiseman_txdesc_t wcdu_txdescs[WM_NTXDESC_82544];
    200 		nq_txdesc_t      wcdu_nq_txdescs[WM_NTXDESC_82544];
    201 	} wdc_u;
    202 };
    203 
    204 struct wm_control_data_82542 {
    205 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    206 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
    207 };
    208 
    209 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
    210 #define	WM_CDTXOFF(x)	WM_CDOFF(wdc_u.wcdu_txdescs[(x)])
    211 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
    212 
    213 /*
    214  * Software state for transmit jobs.
    215  */
    216 struct wm_txsoft {
    217 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    218 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    219 	int txs_firstdesc;		/* first descriptor in packet */
    220 	int txs_lastdesc;		/* last descriptor in packet */
    221 	int txs_ndesc;			/* # of descriptors used */
    222 };
    223 
    224 /*
    225  * Software state for receive buffers.  Each descriptor gets a
    226  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    227  * more than one buffer, we chain them together.
    228  */
    229 struct wm_rxsoft {
    230 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    231 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    232 };
    233 
    234 #define WM_LINKUP_TIMEOUT	50
    235 
    236 static uint16_t swfwphysem[] = {
    237 	SWFW_PHY0_SM,
    238 	SWFW_PHY1_SM,
    239 	SWFW_PHY2_SM,
    240 	SWFW_PHY3_SM
    241 };
    242 
    243 /*
    244  * Software state per device.
    245  */
    246 struct wm_softc {
    247 	device_t sc_dev;		/* generic device information */
    248 	bus_space_tag_t sc_st;		/* bus space tag */
    249 	bus_space_handle_t sc_sh;	/* bus space handle */
    250 	bus_size_t sc_ss;		/* bus space size */
    251 	bus_space_tag_t sc_iot;		/* I/O space tag */
    252 	bus_space_handle_t sc_ioh;	/* I/O space handle */
    253 	bus_size_t sc_ios;		/* I/O space size */
    254 	bus_space_tag_t sc_flasht;	/* flash registers space tag */
    255 	bus_space_handle_t sc_flashh;	/* flash registers space handle */
    256 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    257 
    258 	struct ethercom sc_ethercom;	/* ethernet common data */
    259 	struct mii_data sc_mii;		/* MII/media information */
    260 
    261 	pci_chipset_tag_t sc_pc;
    262 	pcitag_t sc_pcitag;
    263 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    264 	int sc_pcixe_capoff;		/* PCI[Xe] capability register offset */
    265 
    266 	const struct wm_product *sc_wmp; /* Pointer to the wm_product entry */
    267 	wm_chip_type sc_type;		/* MAC type */
    268 	int sc_rev;			/* MAC revision */
    269 	wm_phy_type sc_phytype;		/* PHY type */
    270 	int sc_funcid;			/* unit number of the chip (0 to 3) */
    271 	int sc_flags;			/* flags; see below */
    272 	int sc_if_flags;		/* last if_flags */
    273 	int sc_flowflags;		/* 802.3x flow control flags */
    274 	int sc_align_tweak;
    275 
    276 	void *sc_ih;			/* interrupt cookie */
    277 	callout_t sc_tick_ch;		/* tick callout */
    278 
    279 	int sc_ee_addrbits;		/* EEPROM address bits */
    280 	int sc_ich8_flash_base;
    281 	int sc_ich8_flash_bank_size;
    282 	int sc_nvm_k1_enabled;
    283 
    284 	/*
    285 	 * Software state for the transmit and receive descriptors.
    286 	 */
    287 	int sc_txnum;			/* must be a power of two */
    288 	struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
    289 	struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
    290 
    291 	/*
    292 	 * Control data structures.
    293 	 */
    294 	int sc_ntxdesc;			/* must be a power of two */
    295 	struct wm_control_data_82544 *sc_control_data;
    296 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    297 	bus_dma_segment_t sc_cd_seg;	/* control data segment */
    298 	int sc_cd_rseg;			/* real number of control segment */
    299 	size_t sc_cd_size;		/* control data size */
    300 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    301 #define	sc_txdescs	sc_control_data->wdc_u.wcdu_txdescs
    302 #define	sc_nq_txdescs	sc_control_data->wdc_u.wcdu_nq_txdescs
    303 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    304 
    305 #ifdef WM_EVENT_COUNTERS
    306 	/* Event counters. */
    307 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    308 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    309 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
    310 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    311 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    312 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    313 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    314 
    315 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    316 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    317 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    318 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    319 	struct evcnt sc_ev_txtusum6;	/* TCP/UDP v6 cksums comp. out-bound */
    320 	struct evcnt sc_ev_txtso;	/* TCP seg offload out-bound (IPv4) */
    321 	struct evcnt sc_ev_txtso6;	/* TCP seg offload out-bound (IPv6) */
    322 	struct evcnt sc_ev_txtsopain;	/* painful header manip. for TSO */
    323 
    324 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
    325 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    326 
    327 	struct evcnt sc_ev_tu;		/* Tx underrun */
    328 
    329 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
    330 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
    331 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
    332 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
    333 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
    334 #endif /* WM_EVENT_COUNTERS */
    335 
    336 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
    337 
    338 	int	sc_txfree;		/* number of free Tx descriptors */
    339 	int	sc_txnext;		/* next ready Tx descriptor */
    340 
    341 	int	sc_txsfree;		/* number of free Tx jobs */
    342 	int	sc_txsnext;		/* next free Tx job */
    343 	int	sc_txsdirty;		/* dirty Tx jobs */
    344 
    345 	/* These 5 variables are used only on the 82547. */
    346 	int	sc_txfifo_size;		/* Tx FIFO size */
    347 	int	sc_txfifo_head;		/* current head of FIFO */
    348 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
    349 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
    350 	callout_t sc_txfifo_ch;		/* Tx FIFO stall work-around timer */
    351 
    352 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
    353 
    354 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    355 	int	sc_rxdiscard;
    356 	int	sc_rxlen;
    357 	struct mbuf *sc_rxhead;
    358 	struct mbuf *sc_rxtail;
    359 	struct mbuf **sc_rxtailp;
    360 
    361 	uint32_t sc_ctrl;		/* prototype CTRL register */
    362 #if 0
    363 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
    364 #endif
    365 	uint32_t sc_icr;		/* prototype interrupt bits */
    366 	uint32_t sc_itr;		/* prototype intr throttling reg */
    367 	uint32_t sc_tctl;		/* prototype TCTL register */
    368 	uint32_t sc_rctl;		/* prototype RCTL register */
    369 	uint32_t sc_txcw;		/* prototype TXCW register */
    370 	uint32_t sc_tipg;		/* prototype TIPG register */
    371 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
    372 	uint32_t sc_pba;		/* prototype PBA register */
    373 
    374 	int sc_tbi_linkup;		/* TBI link status */
    375 	int sc_tbi_anegticks;		/* autonegotiation ticks */
    376 	int sc_tbi_ticks;		/* tbi ticks */
    377 	int sc_tbi_nrxcfg;		/* count of ICR_RXCFG */
    378 	int sc_tbi_lastnrxcfg;		/* count of ICR_RXCFG (on last tick) */
    379 
    380 	int sc_mchash_type;		/* multicast filter offset */
    381 
    382 	krndsource_t rnd_source;	/* random source */
    383 };
    384 
    385 #define	WM_RXCHAIN_RESET(sc)						\
    386 do {									\
    387 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    388 	*(sc)->sc_rxtailp = NULL;					\
    389 	(sc)->sc_rxlen = 0;						\
    390 } while (/*CONSTCOND*/0)
    391 
    392 #define	WM_RXCHAIN_LINK(sc, m)						\
    393 do {									\
    394 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    395 	(sc)->sc_rxtailp = &(m)->m_next;				\
    396 } while (/*CONSTCOND*/0)
    397 
    398 #ifdef WM_EVENT_COUNTERS
    399 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
    400 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
    401 #else
    402 #define	WM_EVCNT_INCR(ev)	/* nothing */
    403 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
    404 #endif
    405 
    406 #define	CSR_READ(sc, reg)						\
    407 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    408 #define	CSR_WRITE(sc, reg, val)						\
    409 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    410 #define	CSR_WRITE_FLUSH(sc)						\
    411 	(void) CSR_READ((sc), WMREG_STATUS)
    412 
    413 #define ICH8_FLASH_READ32(sc, reg) \
    414 	bus_space_read_4((sc)->sc_flasht, (sc)->sc_flashh, (reg))
    415 #define ICH8_FLASH_WRITE32(sc, reg, data) \
    416 	bus_space_write_4((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data))
    417 
    418 #define ICH8_FLASH_READ16(sc, reg) \
    419 	bus_space_read_2((sc)->sc_flasht, (sc)->sc_flashh, (reg))
    420 #define ICH8_FLASH_WRITE16(sc, reg, data) \
    421 	bus_space_write_2((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data))
    422 
    423 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
    424 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
    425 
    426 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
    427 #define	WM_CDTXADDR_HI(sc, x)						\
    428 	(sizeof(bus_addr_t) == 8 ?					\
    429 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
    430 
    431 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
    432 #define	WM_CDRXADDR_HI(sc, x)						\
    433 	(sizeof(bus_addr_t) == 8 ?					\
    434 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
    435 
    436 #define	WM_CDTXSYNC(sc, x, n, ops)					\
    437 do {									\
    438 	int __x, __n;							\
    439 									\
    440 	__x = (x);							\
    441 	__n = (n);							\
    442 									\
    443 	/* If it will wrap around, sync to the end of the ring. */	\
    444 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
    445 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    446 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
    447 		    (WM_NTXDESC(sc) - __x), (ops));			\
    448 		__n -= (WM_NTXDESC(sc) - __x);				\
    449 		__x = 0;						\
    450 	}								\
    451 									\
    452 	/* Now sync whatever is left. */				\
    453 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    454 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
    455 } while (/*CONSTCOND*/0)
    456 
    457 #define	WM_CDRXSYNC(sc, x, ops)						\
    458 do {									\
    459 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    460 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
    461 } while (/*CONSTCOND*/0)
    462 
    463 #define	WM_INIT_RXDESC(sc, x)						\
    464 do {									\
    465 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    466 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
    467 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    468 									\
    469 	/*								\
    470 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    471 	 * so that the payload after the Ethernet header is aligned	\
    472 	 * to a 4-byte boundary.					\
    473 	 *								\
    474 	 * XXX BRAINDAMAGE ALERT!					\
    475 	 * The stupid chip uses the same size for every buffer, which	\
    476 	 * is set in the Receive Control register.  We are using the 2K	\
    477 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    478 	 * reason, we can't "scoot" packets longer than the standard	\
    479 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    480 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    481 	 * the upper layer copy the headers.				\
    482 	 */								\
    483 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    484 									\
    485 	wm_set_dma_addr(&__rxd->wrx_addr,				\
    486 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
    487 	__rxd->wrx_len = 0;						\
    488 	__rxd->wrx_cksum = 0;						\
    489 	__rxd->wrx_status = 0;						\
    490 	__rxd->wrx_errors = 0;						\
    491 	__rxd->wrx_special = 0;						\
    492 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    493 									\
    494 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
    495 } while (/*CONSTCOND*/0)
    496 
    497 static void	wm_start(struct ifnet *);
    498 static void	wm_nq_start(struct ifnet *);
    499 static void	wm_watchdog(struct ifnet *);
    500 static int	wm_ifflags_cb(struct ethercom *);
    501 static int	wm_ioctl(struct ifnet *, u_long, void *);
    502 static int	wm_init(struct ifnet *);
    503 static void	wm_stop(struct ifnet *, int);
    504 static bool	wm_suspend(device_t, const pmf_qual_t *);
    505 static bool	wm_resume(device_t, const pmf_qual_t *);
    506 
    507 static void	wm_reset(struct wm_softc *);
    508 static void	wm_rxdrain(struct wm_softc *);
    509 static int	wm_add_rxbuf(struct wm_softc *, int);
    510 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
    511 static int	wm_read_eeprom_eerd(struct wm_softc *, int, int, u_int16_t *);
    512 static int	wm_validate_eeprom_checksum(struct wm_softc *);
    513 static int	wm_check_alt_mac_addr(struct wm_softc *);
    514 static int	wm_read_mac_addr(struct wm_softc *, uint8_t *);
    515 static void	wm_tick(void *);
    516 
    517 static void	wm_set_filter(struct wm_softc *);
    518 static void	wm_set_vlan(struct wm_softc *);
    519 
    520 static int	wm_intr(void *);
    521 static void	wm_txintr(struct wm_softc *);
    522 static void	wm_rxintr(struct wm_softc *);
    523 static void	wm_linkintr(struct wm_softc *, uint32_t);
    524 
    525 static void	wm_tbi_mediainit(struct wm_softc *);
    526 static int	wm_tbi_mediachange(struct ifnet *);
    527 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
    528 
    529 static void	wm_tbi_set_linkled(struct wm_softc *);
    530 static void	wm_tbi_check_link(struct wm_softc *);
    531 
    532 static void	wm_gmii_reset(struct wm_softc *);
    533 
    534 static int	wm_gmii_i82543_readreg(device_t, int, int);
    535 static void	wm_gmii_i82543_writereg(device_t, int, int, int);
    536 static int	wm_gmii_i82544_readreg(device_t, int, int);
    537 static void	wm_gmii_i82544_writereg(device_t, int, int, int);
    538 static int	wm_gmii_i80003_readreg(device_t, int, int);
    539 static void	wm_gmii_i80003_writereg(device_t, int, int, int);
    540 static int	wm_gmii_bm_readreg(device_t, int, int);
    541 static void	wm_gmii_bm_writereg(device_t, int, int, int);
    542 static int	wm_gmii_hv_readreg(device_t, int, int);
    543 static void	wm_gmii_hv_writereg(device_t, int, int, int);
    544 static int	wm_gmii_82580_readreg(device_t, int, int);
    545 static void	wm_gmii_82580_writereg(device_t, int, int, int);
    546 static int	wm_sgmii_readreg(device_t, int, int);
    547 static void	wm_sgmii_writereg(device_t, int, int, int);
    548 
    549 static void	wm_gmii_statchg(struct ifnet *);
    550 
    551 static void	wm_gmii_mediainit(struct wm_softc *, pci_product_id_t);
    552 static int	wm_gmii_mediachange(struct ifnet *);
    553 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
    554 
    555 static int	wm_kmrn_readreg(struct wm_softc *, int);
    556 static void	wm_kmrn_writereg(struct wm_softc *, int, int);
    557 
    558 static void	wm_set_spiaddrbits(struct wm_softc *);
    559 static int	wm_match(device_t, cfdata_t, void *);
    560 static void	wm_attach(device_t, device_t, void *);
    561 static int	wm_detach(device_t, int);
    562 static int	wm_is_onboard_nvm_eeprom(struct wm_softc *);
    563 static void	wm_get_auto_rd_done(struct wm_softc *);
    564 static void	wm_lan_init_done(struct wm_softc *);
    565 static void	wm_get_cfg_done(struct wm_softc *);
    566 static int	wm_get_swsm_semaphore(struct wm_softc *);
    567 static void	wm_put_swsm_semaphore(struct wm_softc *);
    568 static int	wm_poll_eerd_eewr_done(struct wm_softc *, int);
    569 static int	wm_get_swfw_semaphore(struct wm_softc *, uint16_t);
    570 static void	wm_put_swfw_semaphore(struct wm_softc *, uint16_t);
    571 static int	wm_get_swfwhw_semaphore(struct wm_softc *);
    572 static void	wm_put_swfwhw_semaphore(struct wm_softc *);
    573 
    574 static int	wm_read_eeprom_ich8(struct wm_softc *, int, int, uint16_t *);
    575 static int32_t	wm_ich8_cycle_init(struct wm_softc *);
    576 static int32_t	wm_ich8_flash_cycle(struct wm_softc *, uint32_t);
    577 static int32_t	wm_read_ich8_data(struct wm_softc *, uint32_t,
    578 		     uint32_t, uint16_t *);
    579 static int32_t	wm_read_ich8_byte(struct wm_softc *, uint32_t, uint8_t *);
    580 static int32_t	wm_read_ich8_word(struct wm_softc *, uint32_t, uint16_t *);
    581 static void	wm_82547_txfifo_stall(void *);
    582 static void	wm_gate_hw_phy_config_ich8lan(struct wm_softc *, int);
    583 static int	wm_check_mng_mode(struct wm_softc *);
    584 static int	wm_check_mng_mode_ich8lan(struct wm_softc *);
    585 static int	wm_check_mng_mode_82574(struct wm_softc *);
    586 static int	wm_check_mng_mode_generic(struct wm_softc *);
    587 static int	wm_enable_mng_pass_thru(struct wm_softc *);
    588 static int	wm_check_reset_block(struct wm_softc *);
    589 static void	wm_get_hw_control(struct wm_softc *);
    590 static int	wm_check_for_link(struct wm_softc *);
    591 static void	wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *);
    592 static void	wm_gig_downshift_workaround_ich8lan(struct wm_softc *);
    593 #ifdef WM_WOL
    594 static void	wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *);
    595 #endif
    596 static void	wm_hv_phy_workaround_ich8lan(struct wm_softc *);
    597 static void	wm_lv_phy_workaround_ich8lan(struct wm_softc *);
    598 static void	wm_k1_gig_workaround_hv(struct wm_softc *, int);
    599 static void	wm_set_mdio_slow_mode_hv(struct wm_softc *);
    600 static void	wm_configure_k1_ich8lan(struct wm_softc *, int);
    601 static void	wm_smbustopci(struct wm_softc *);
    602 static void	wm_set_pcie_completion_timeout(struct wm_softc *);
    603 static void	wm_reset_init_script_82575(struct wm_softc *);
    604 static void	wm_release_manageability(struct wm_softc *);
    605 static void	wm_release_hw_control(struct wm_softc *);
    606 static void	wm_get_wakeup(struct wm_softc *);
    607 #ifdef WM_WOL
    608 static void	wm_enable_phy_wakeup(struct wm_softc *);
    609 static void	wm_enable_wakeup(struct wm_softc *);
    610 #endif
    611 static void	wm_init_manageability(struct wm_softc *);
    612 static void	wm_set_eee_i350(struct wm_softc *);
    613 
    614 CFATTACH_DECL3_NEW(wm, sizeof(struct wm_softc),
    615     wm_match, wm_attach, wm_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    616 
    617 /*
    618  * Devices supported by this driver.
    619  */
    620 static const struct wm_product {
    621 	pci_vendor_id_t		wmp_vendor;
    622 	pci_product_id_t	wmp_product;
    623 	const char		*wmp_name;
    624 	wm_chip_type		wmp_type;
    625 	int			wmp_flags;
    626 #define	WMP_F_1000X		0x01
    627 #define	WMP_F_1000T		0x02
    628 #define	WMP_F_SERDES		0x04
    629 } wm_products[] = {
    630 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
    631 	  "Intel i82542 1000BASE-X Ethernet",
    632 	  WM_T_82542_2_1,	WMP_F_1000X },
    633 
    634 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
    635 	  "Intel i82543GC 1000BASE-X Ethernet",
    636 	  WM_T_82543,		WMP_F_1000X },
    637 
    638 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
    639 	  "Intel i82543GC 1000BASE-T Ethernet",
    640 	  WM_T_82543,		WMP_F_1000T },
    641 
    642 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
    643 	  "Intel i82544EI 1000BASE-T Ethernet",
    644 	  WM_T_82544,		WMP_F_1000T },
    645 
    646 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
    647 	  "Intel i82544EI 1000BASE-X Ethernet",
    648 	  WM_T_82544,		WMP_F_1000X },
    649 
    650 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
    651 	  "Intel i82544GC 1000BASE-T Ethernet",
    652 	  WM_T_82544,		WMP_F_1000T },
    653 
    654 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
    655 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
    656 	  WM_T_82544,		WMP_F_1000T },
    657 
    658 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
    659 	  "Intel i82540EM 1000BASE-T Ethernet",
    660 	  WM_T_82540,		WMP_F_1000T },
    661 
    662 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
    663 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
    664 	  WM_T_82540,		WMP_F_1000T },
    665 
    666 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
    667 	  "Intel i82540EP 1000BASE-T Ethernet",
    668 	  WM_T_82540,		WMP_F_1000T },
    669 
    670 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
    671 	  "Intel i82540EP 1000BASE-T Ethernet",
    672 	  WM_T_82540,		WMP_F_1000T },
    673 
    674 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
    675 	  "Intel i82540EP 1000BASE-T Ethernet",
    676 	  WM_T_82540,		WMP_F_1000T },
    677 
    678 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
    679 	  "Intel i82545EM 1000BASE-T Ethernet",
    680 	  WM_T_82545,		WMP_F_1000T },
    681 
    682 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
    683 	  "Intel i82545GM 1000BASE-T Ethernet",
    684 	  WM_T_82545_3,		WMP_F_1000T },
    685 
    686 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
    687 	  "Intel i82545GM 1000BASE-X Ethernet",
    688 	  WM_T_82545_3,		WMP_F_1000X },
    689 #if 0
    690 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
    691 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
    692 	  WM_T_82545_3,		WMP_F_SERDES },
    693 #endif
    694 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
    695 	  "Intel i82546EB 1000BASE-T Ethernet",
    696 	  WM_T_82546,		WMP_F_1000T },
    697 
    698 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_QUAD,
    699 	  "Intel i82546EB 1000BASE-T Ethernet",
    700 	  WM_T_82546,		WMP_F_1000T },
    701 
    702 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
    703 	  "Intel i82545EM 1000BASE-X Ethernet",
    704 	  WM_T_82545,		WMP_F_1000X },
    705 
    706 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
    707 	  "Intel i82546EB 1000BASE-X Ethernet",
    708 	  WM_T_82546,		WMP_F_1000X },
    709 
    710 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
    711 	  "Intel i82546GB 1000BASE-T Ethernet",
    712 	  WM_T_82546_3,		WMP_F_1000T },
    713 
    714 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
    715 	  "Intel i82546GB 1000BASE-X Ethernet",
    716 	  WM_T_82546_3,		WMP_F_1000X },
    717 #if 0
    718 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
    719 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
    720 	  WM_T_82546_3,		WMP_F_SERDES },
    721 #endif
    722 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER,
    723 	  "i82546GB quad-port Gigabit Ethernet",
    724 	  WM_T_82546_3,		WMP_F_1000T },
    725 
    726 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3,
    727 	  "i82546GB quad-port Gigabit Ethernet (KSP3)",
    728 	  WM_T_82546_3,		WMP_F_1000T },
    729 
    730 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_PCIE,
    731 	  "Intel PRO/1000MT (82546GB)",
    732 	  WM_T_82546_3,		WMP_F_1000T },
    733 
    734 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
    735 	  "Intel i82541EI 1000BASE-T Ethernet",
    736 	  WM_T_82541,		WMP_F_1000T },
    737 
    738 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER_LOM,
    739 	  "Intel i82541ER (LOM) 1000BASE-T Ethernet",
    740 	  WM_T_82541,		WMP_F_1000T },
    741 
    742 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
    743 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
    744 	  WM_T_82541,		WMP_F_1000T },
    745 
    746 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
    747 	  "Intel i82541ER 1000BASE-T Ethernet",
    748 	  WM_T_82541_2,		WMP_F_1000T },
    749 
    750 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
    751 	  "Intel i82541GI 1000BASE-T Ethernet",
    752 	  WM_T_82541_2,		WMP_F_1000T },
    753 
    754 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
    755 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
    756 	  WM_T_82541_2,		WMP_F_1000T },
    757 
    758 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541PI,
    759 	  "Intel i82541PI 1000BASE-T Ethernet",
    760 	  WM_T_82541_2,		WMP_F_1000T },
    761 
    762 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
    763 	  "Intel i82547EI 1000BASE-T Ethernet",
    764 	  WM_T_82547,		WMP_F_1000T },
    765 
    766 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI_MOBILE,
    767 	  "Intel i82547EI Mobile 1000BASE-T Ethernet",
    768 	  WM_T_82547,		WMP_F_1000T },
    769 
    770 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
    771 	  "Intel i82547GI 1000BASE-T Ethernet",
    772 	  WM_T_82547_2,		WMP_F_1000T },
    773 
    774 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_COPPER,
    775 	  "Intel PRO/1000 PT (82571EB)",
    776 	  WM_T_82571,		WMP_F_1000T },
    777 
    778 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_FIBER,
    779 	  "Intel PRO/1000 PF (82571EB)",
    780 	  WM_T_82571,		WMP_F_1000X },
    781 #if 0
    782 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_SERDES,
    783 	  "Intel PRO/1000 PB (82571EB)",
    784 	  WM_T_82571,		WMP_F_SERDES },
    785 #endif
    786 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER,
    787 	  "Intel PRO/1000 QT (82571EB)",
    788 	  WM_T_82571,		WMP_F_1000T },
    789 
    790 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_COPPER,
    791 	  "Intel i82572EI 1000baseT Ethernet",
    792 	  WM_T_82572,		WMP_F_1000T },
    793 
    794 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER,
    795 	  "Intel PRO/1000 PT Quad Port Server Adapter",
    796 	  WM_T_82571,		WMP_F_1000T, },
    797 
    798 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_FIBER,
    799 	  "Intel i82572EI 1000baseX Ethernet",
    800 	  WM_T_82572,		WMP_F_1000X },
    801 #if 0
    802 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI_SERDES,
    803 	  "Intel i82572EI Gigabit Ethernet (SERDES)",
    804 	  WM_T_82572,		WMP_F_SERDES },
    805 #endif
    806 
    807 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82572EI,
    808 	  "Intel i82572EI 1000baseT Ethernet",
    809 	  WM_T_82572,		WMP_F_1000T },
    810 
    811 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573E,
    812 	  "Intel i82573E",
    813 	  WM_T_82573,		WMP_F_1000T },
    814 
    815 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573E_IAMT,
    816 	  "Intel i82573E IAMT",
    817 	  WM_T_82573,		WMP_F_1000T },
    818 
    819 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82573L,
    820 	  "Intel i82573L Gigabit Ethernet",
    821 	  WM_T_82573,		WMP_F_1000T },
    822 
    823 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82574L,
    824 	  "Intel i82574L",
    825 	  WM_T_82574,		WMP_F_1000T },
    826 
    827 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82583V,
    828 	  "Intel i82583V",
    829 	  WM_T_82583,		WMP_F_1000T },
    830 
    831 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT,
    832 	  "i80003 dual 1000baseT Ethernet",
    833 	  WM_T_80003,		WMP_F_1000T },
    834 
    835 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT,
    836 	  "i80003 dual 1000baseX Ethernet",
    837 	  WM_T_80003,		WMP_F_1000T },
    838 #if 0
    839 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT,
    840 	  "Intel i80003ES2 dual Gigabit Ethernet (SERDES)",
    841 	  WM_T_80003,		WMP_F_SERDES },
    842 #endif
    843 
    844 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT,
    845 	  "Intel i80003 1000baseT Ethernet",
    846 	  WM_T_80003,		WMP_F_1000T },
    847 #if 0
    848 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT,
    849 	  "Intel i80003 Gigabit Ethernet (SERDES)",
    850 	  WM_T_80003,		WMP_F_SERDES },
    851 #endif
    852 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_M_AMT,
    853 	  "Intel i82801H (M_AMT) LAN Controller",
    854 	  WM_T_ICH8,		WMP_F_1000T },
    855 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_AMT,
    856 	  "Intel i82801H (AMT) LAN Controller",
    857 	  WM_T_ICH8,		WMP_F_1000T },
    858 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_LAN,
    859 	  "Intel i82801H LAN Controller",
    860 	  WM_T_ICH8,		WMP_F_1000T },
    861 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_IFE_LAN,
    862 	  "Intel i82801H (IFE) LAN Controller",
    863 	  WM_T_ICH8,		WMP_F_1000T },
    864 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_M_LAN,
    865 	  "Intel i82801H (M) LAN Controller",
    866 	  WM_T_ICH8,		WMP_F_1000T },
    867 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_IFE_GT,
    868 	  "Intel i82801H IFE (GT) LAN Controller",
    869 	  WM_T_ICH8,		WMP_F_1000T },
    870 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_IFE_G,
    871 	  "Intel i82801H IFE (G) LAN Controller",
    872 	  WM_T_ICH8,		WMP_F_1000T },
    873 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IGP_AMT,
    874 	  "82801I (AMT) LAN Controller",
    875 	  WM_T_ICH9,		WMP_F_1000T },
    876 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IFE,
    877 	  "82801I LAN Controller",
    878 	  WM_T_ICH9,		WMP_F_1000T },
    879 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IFE_G,
    880 	  "82801I (G) LAN Controller",
    881 	  WM_T_ICH9,		WMP_F_1000T },
    882 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IFE_GT,
    883 	  "82801I (GT) LAN Controller",
    884 	  WM_T_ICH9,		WMP_F_1000T },
    885 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IGP_C,
    886 	  "82801I (C) LAN Controller",
    887 	  WM_T_ICH9,		WMP_F_1000T },
    888 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IGP_M,
    889 	  "82801I mobile LAN Controller",
    890 	  WM_T_ICH9,		WMP_F_1000T },
    891 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801H_IGP_M_V,
    892 	  "82801I mobile (V) LAN Controller",
    893 	  WM_T_ICH9,		WMP_F_1000T },
    894 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_IGP_M_AMT,
    895 	  "82801I mobile (AMT) LAN Controller",
    896 	  WM_T_ICH9,		WMP_F_1000T },
    897 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_BM,
    898 	  "82567LM-4 LAN Controller",
    899 	  WM_T_ICH9,		WMP_F_1000T },
    900 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801I_82567V_3,
    901 	  "82567V-3 LAN Controller",
    902 	  WM_T_ICH9,		WMP_F_1000T },
    903 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801J_R_BM_LM,
    904 	  "82567LM-2 LAN Controller",
    905 	  WM_T_ICH10,		WMP_F_1000T },
    906 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801J_R_BM_LF,
    907 	  "82567LF-2 LAN Controller",
    908 	  WM_T_ICH10,		WMP_F_1000T },
    909 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801J_D_BM_LM,
    910 	  "82567LM-3 LAN Controller",
    911 	  WM_T_ICH10,		WMP_F_1000T },
    912 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801J_D_BM_LF,
    913 	  "82567LF-3 LAN Controller",
    914 	  WM_T_ICH10,		WMP_F_1000T },
    915 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801J_R_BM_V,
    916 	  "82567V-2 LAN Controller",
    917 	  WM_T_ICH10,		WMP_F_1000T },
    918 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82801J_D_BM_V,
    919 	  "82567V-3? LAN Controller",
    920 	  WM_T_ICH10,		WMP_F_1000T },
    921 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_HANKSVILLE,
    922 	  "HANKSVILLE LAN Controller",
    923 	  WM_T_ICH10,		WMP_F_1000T },
    924 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PCH_M_LM,
    925 	  "PCH LAN (82577LM) Controller",
    926 	  WM_T_PCH,		WMP_F_1000T },
    927 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PCH_M_LC,
    928 	  "PCH LAN (82577LC) Controller",
    929 	  WM_T_PCH,		WMP_F_1000T },
    930 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PCH_D_DM,
    931 	  "PCH LAN (82578DM) Controller",
    932 	  WM_T_PCH,		WMP_F_1000T },
    933 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PCH_D_DC,
    934 	  "PCH LAN (82578DC) Controller",
    935 	  WM_T_PCH,		WMP_F_1000T },
    936 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PCH2_LV_LM,
    937 	  "PCH2 LAN (82579LM) Controller",
    938 	  WM_T_PCH2,		WMP_F_1000T },
    939 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PCH2_LV_V,
    940 	  "PCH2 LAN (82579V) Controller",
    941 	  WM_T_PCH2,		WMP_F_1000T },
    942 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82575EB_COPPER,
    943 	  "82575EB dual-1000baseT Ethernet",
    944 	  WM_T_82575,		WMP_F_1000T },
    945 #if 0
    946 	/*
    947 	 * not sure if WMP_F_1000X or WMP_F_SERDES - we do not have it - so
    948 	 * disabled for now ...
    949 	 */
    950 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82575EB_FIBER_SERDES,
    951 	  "82575EB dual-1000baseX Ethernet (SERDES)",
    952 	  WM_T_82575,		WMP_F_SERDES },
    953 #endif
    954 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER,
    955 	  "82575GB quad-1000baseT Ethernet",
    956 	  WM_T_82575,		WMP_F_1000T },
    957 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER_PM,
    958 	  "82575GB quad-1000baseT Ethernet (PM)",
    959 	  WM_T_82575,		WMP_F_1000T },
    960 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82576_COPPER,
    961 	  "82576 1000BaseT Ethernet",
    962 	  WM_T_82576,		WMP_F_1000T },
    963 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82576_FIBER,
    964 	  "82576 1000BaseX Ethernet",
    965 	  WM_T_82576,		WMP_F_1000X },
    966 #if 0
    967 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82576_SERDES,
    968 	  "82576 gigabit Ethernet (SERDES)",
    969 	  WM_T_82576,		WMP_F_SERDES },
    970 #endif
    971 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82576_QUAD_COPPER,
    972 	  "82576 quad-1000BaseT Ethernet",
    973 	  WM_T_82576,		WMP_F_1000T },
    974 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82576_NS,
    975 	  "82576 gigabit Ethernet",
    976 	  WM_T_82576,		WMP_F_1000T },
    977 #if 0
    978 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82576_NS_SERDES,
    979 	  "82576 gigabit Ethernet (SERDES)",
    980 	  WM_T_82576,		WMP_F_SERDES },
    981 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82576_SERDES_QUAD,
    982 	  "82576 quad-gigabit Ethernet (SERDES)",
    983 	  WM_T_82576,		WMP_F_SERDES },
    984 #endif
    985 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82580_COPPER,
    986 	  "82580 1000BaseT Ethernet",
    987 	  WM_T_82580,		WMP_F_1000T },
    988 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82580_FIBER,
    989 	  "82580 1000BaseX Ethernet",
    990 	  WM_T_82580,		WMP_F_1000X },
    991 #if 0
    992 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82580_SERDES,
    993 	  "82580 1000BaseT Ethernet (SERDES)",
    994 	  WM_T_82580,		WMP_F_SERDES },
    995 #endif
    996 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82580_SGMII,
    997 	  "82580 gigabit Ethernet (SGMII)",
    998 	  WM_T_82580,		WMP_F_1000T },
    999 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82580_COPPER_DUAL,
   1000 	  "82580 dual-1000BaseT Ethernet",
   1001 	  WM_T_82580,		WMP_F_1000T },
   1002 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82580_ER,
   1003 	  "82580 1000BaseT Ethernet",
   1004 	  WM_T_82580ER,		WMP_F_1000T },
   1005 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82580_ER_DUAL,
   1006 	  "82580 dual-1000BaseT Ethernet",
   1007 	  WM_T_82580ER,		WMP_F_1000T },
   1008 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82580_QUAD_FIBER,
   1009 	  "82580 quad-1000BaseX Ethernet",
   1010 	  WM_T_82580,		WMP_F_1000X },
   1011 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I350_COPPER,
   1012 	  "I350 Gigabit Network Connection",
   1013 	  WM_T_I350,		WMP_F_1000T },
   1014 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I350_FIBER,
   1015 	  "I350 Gigabit Fiber Network Connection",
   1016 	  WM_T_I350,		WMP_F_1000X },
   1017 #if 0
   1018 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I350_SERDES,
   1019 	  "I350 Gigabit Backplane Connection",
   1020 	  WM_T_I350,		WMP_F_SERDES },
   1021 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I350_SGMII,
   1022 	  "I350 Gigabit Connection",
   1023 	  WM_T_I350,		WMP_F_1000T },
   1024 #endif
   1025 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I210_T1,
   1026 	  "I210-T1 Ethernet Server Adapter",
   1027 	  WM_T_I210,		WMP_F_1000T },
   1028 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I210_COPPER_OEM1,
   1029 	  "I210 Ethernet (Copper OEM)",
   1030 	  WM_T_I210,		WMP_F_1000T },
   1031 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I210_COPPER_IT,
   1032 	  "I210 Ethernet (Copper IT)",
   1033 	  WM_T_I210,		WMP_F_1000T },
   1034 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I210_FIBER,
   1035 	  "I210 Gigabit Ethernet (Fiber)",
   1036 	  WM_T_I210,		WMP_F_1000X },
   1037 #if 0
   1038 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I210_SERDES,
   1039 	  "I210 Gigabit Ethernet (SERDES)",
   1040 	  WM_T_I210,		WMP_F_SERDES },
   1041 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I210_SGMII,
   1042 	  "I210 Gigabit Ethernet (SGMII)",
   1043 	  WM_T_I210,		WMP_F_SERDES },
   1044 #endif
   1045 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I211_COPPER,
   1046 	  "I211 Ethernet (COPPER)",
   1047 	  WM_T_I211,		WMP_F_1000T },
   1048 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I217_V,
   1049 	  "I217 V Ethernet Connection",
   1050 	  WM_T_PCH_LPT,		WMP_F_1000T },
   1051 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I217_LM,
   1052 	  "I217 LM Ethernet Connection",
   1053 	  WM_T_PCH_LPT,		WMP_F_1000T },
   1054 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I218_V,
   1055 	  "I218 V Ethernet Connection",
   1056 	  WM_T_PCH_LPT,		WMP_F_1000T },
   1057 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_I218_LM,
   1058 	  "I218 LM Ethernet Connection",
   1059 	  WM_T_PCH_LPT,		WMP_F_1000T },
   1060 	{ 0,			0,
   1061 	  NULL,
   1062 	  0,			0 },
   1063 };
   1064 
   1065 #ifdef WM_EVENT_COUNTERS
   1066 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
   1067 #endif /* WM_EVENT_COUNTERS */
   1068 
   1069 #if 0 /* Not currently used */
   1070 static inline uint32_t
   1071 wm_io_read(struct wm_softc *sc, int reg)
   1072 {
   1073 
   1074 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
   1075 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
   1076 }
   1077 #endif
   1078 
   1079 static inline void
   1080 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
   1081 {
   1082 
   1083 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
   1084 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
   1085 }
   1086 
   1087 static inline void
   1088 wm_82575_write_8bit_ctlr_reg(struct wm_softc *sc, uint32_t reg, uint32_t off,
   1089     uint32_t data)
   1090 {
   1091 	uint32_t regval;
   1092 	int i;
   1093 
   1094 	regval = (data & SCTL_CTL_DATA_MASK) | (off << SCTL_CTL_ADDR_SHIFT);
   1095 
   1096 	CSR_WRITE(sc, reg, regval);
   1097 
   1098 	for (i = 0; i < SCTL_CTL_POLL_TIMEOUT; i++) {
   1099 		delay(5);
   1100 		if (CSR_READ(sc, reg) & SCTL_CTL_READY)
   1101 			break;
   1102 	}
   1103 	if (i == SCTL_CTL_POLL_TIMEOUT) {
   1104 		aprint_error("%s: WARNING: i82575 reg 0x%08x setup did not indicate ready\n",
   1105 		    device_xname(sc->sc_dev), reg);
   1106 	}
   1107 }
   1108 
   1109 static inline void
   1110 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
   1111 {
   1112 	wa->wa_low = htole32(v & 0xffffffffU);
   1113 	if (sizeof(bus_addr_t) == 8)
   1114 		wa->wa_high = htole32((uint64_t) v >> 32);
   1115 	else
   1116 		wa->wa_high = 0;
   1117 }
   1118 
   1119 static void
   1120 wm_set_spiaddrbits(struct wm_softc *sc)
   1121 {
   1122 	uint32_t reg;
   1123 
   1124 	sc->sc_flags |= WM_F_EEPROM_SPI;
   1125 	reg = CSR_READ(sc, WMREG_EECD);
   1126 	sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1127 }
   1128 
   1129 static const struct wm_product *
   1130 wm_lookup(const struct pci_attach_args *pa)
   1131 {
   1132 	const struct wm_product *wmp;
   1133 
   1134 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
   1135 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
   1136 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
   1137 			return wmp;
   1138 	}
   1139 	return NULL;
   1140 }
   1141 
   1142 static int
   1143 wm_match(device_t parent, cfdata_t cf, void *aux)
   1144 {
   1145 	struct pci_attach_args *pa = aux;
   1146 
   1147 	if (wm_lookup(pa) != NULL)
   1148 		return 1;
   1149 
   1150 	return 0;
   1151 }
   1152 
   1153 static void
   1154 wm_attach(device_t parent, device_t self, void *aux)
   1155 {
   1156 	struct wm_softc *sc = device_private(self);
   1157 	struct pci_attach_args *pa = aux;
   1158 	prop_dictionary_t dict;
   1159 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1160 	pci_chipset_tag_t pc = pa->pa_pc;
   1161 	pci_intr_handle_t ih;
   1162 	const char *intrstr = NULL;
   1163 	const char *eetype, *xname;
   1164 	bus_space_tag_t memt;
   1165 	bus_space_handle_t memh;
   1166 	bus_size_t memsize;
   1167 	int memh_valid;
   1168 	int i, error;
   1169 	const struct wm_product *wmp;
   1170 	prop_data_t ea;
   1171 	prop_number_t pn;
   1172 	uint8_t enaddr[ETHER_ADDR_LEN];
   1173 	uint16_t cfg1, cfg2, swdpin, io3;
   1174 	pcireg_t preg, memtype;
   1175 	uint16_t eeprom_data, apme_mask;
   1176 	uint32_t reg;
   1177 
   1178 	sc->sc_dev = self;
   1179 	callout_init(&sc->sc_tick_ch, 0);
   1180 
   1181 	sc->sc_wmp = wmp = wm_lookup(pa);
   1182 	if (wmp == NULL) {
   1183 		printf("\n");
   1184 		panic("wm_attach: impossible");
   1185 	}
   1186 
   1187 	sc->sc_pc = pa->pa_pc;
   1188 	sc->sc_pcitag = pa->pa_tag;
   1189 
   1190 	if (pci_dma64_available(pa))
   1191 		sc->sc_dmat = pa->pa_dmat64;
   1192 	else
   1193 		sc->sc_dmat = pa->pa_dmat;
   1194 
   1195 	sc->sc_rev = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
   1196 	pci_aprint_devinfo_fancy(pa, "Ethernet controller", wmp->wmp_name, 1);
   1197 
   1198 	sc->sc_type = wmp->wmp_type;
   1199 	if (sc->sc_type < WM_T_82543) {
   1200 		if (sc->sc_rev < 2) {
   1201 			aprint_error_dev(sc->sc_dev,
   1202 			    "i82542 must be at least rev. 2\n");
   1203 			return;
   1204 		}
   1205 		if (sc->sc_rev < 3)
   1206 			sc->sc_type = WM_T_82542_2_0;
   1207 	}
   1208 
   1209 	if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
   1210 	    || (sc->sc_type == WM_T_82580) || (sc->sc_type == WM_T_82580ER)
   1211 	    || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I210)
   1212 	    || (sc->sc_type == WM_T_I211))
   1213 		sc->sc_flags |= WM_F_NEWQUEUE;
   1214 
   1215 	/* Set device properties (mactype) */
   1216 	dict = device_properties(sc->sc_dev);
   1217 	prop_dictionary_set_uint32(dict, "mactype", sc->sc_type);
   1218 
   1219 	/*
   1220 	 * Map the device.  All devices support memory-mapped acccess,
   1221 	 * and it is really required for normal operation.
   1222 	 */
   1223 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
   1224 	switch (memtype) {
   1225 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1226 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1227 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
   1228 		    memtype, 0, &memt, &memh, NULL, &memsize) == 0);
   1229 		break;
   1230 	default:
   1231 		memh_valid = 0;
   1232 		break;
   1233 	}
   1234 
   1235 	if (memh_valid) {
   1236 		sc->sc_st = memt;
   1237 		sc->sc_sh = memh;
   1238 		sc->sc_ss = memsize;
   1239 	} else {
   1240 		aprint_error_dev(sc->sc_dev,
   1241 		    "unable to map device registers\n");
   1242 		return;
   1243 	}
   1244 
   1245 	wm_get_wakeup(sc);
   1246 
   1247 	/*
   1248 	 * In addition, i82544 and later support I/O mapped indirect
   1249 	 * register access.  It is not desirable (nor supported in
   1250 	 * this driver) to use it for normal operation, though it is
   1251 	 * required to work around bugs in some chip versions.
   1252 	 */
   1253 	if (sc->sc_type >= WM_T_82544) {
   1254 		/* First we have to find the I/O BAR. */
   1255 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
   1256 			memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, i);
   1257 			if (memtype == PCI_MAPREG_TYPE_IO)
   1258 				break;
   1259 			if (PCI_MAPREG_MEM_TYPE(memtype) ==
   1260 			    PCI_MAPREG_MEM_TYPE_64BIT)
   1261 				i += 4;	/* skip high bits, too */
   1262 		}
   1263 		if (i < PCI_MAPREG_END) {
   1264 			/*
   1265 			 * We found PCI_MAPREG_TYPE_IO. Note that 82580
   1266 			 * (and newer?) chip has no PCI_MAPREG_TYPE_IO.
   1267 			 * It's no problem because newer chips has no this
   1268 			 * bug.
   1269 			 *
   1270 			 * The i8254x doesn't apparently respond when the
   1271 			 * I/O BAR is 0, which looks somewhat like it's not
   1272 			 * been configured.
   1273 			 */
   1274 			preg = pci_conf_read(pc, pa->pa_tag, i);
   1275 			if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
   1276 				aprint_error_dev(sc->sc_dev,
   1277 				    "WARNING: I/O BAR at zero.\n");
   1278 			} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
   1279 					0, &sc->sc_iot, &sc->sc_ioh,
   1280 					NULL, &sc->sc_ios) == 0) {
   1281 				sc->sc_flags |= WM_F_IOH_VALID;
   1282 			} else {
   1283 				aprint_error_dev(sc->sc_dev,
   1284 				    "WARNING: unable to map I/O space\n");
   1285 			}
   1286 		}
   1287 
   1288 	}
   1289 
   1290 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
   1291 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1292 	preg |= PCI_COMMAND_MASTER_ENABLE;
   1293 	if (sc->sc_type < WM_T_82542_2_1)
   1294 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
   1295 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
   1296 
   1297 	/* power up chip */
   1298 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
   1299 	    NULL)) && error != EOPNOTSUPP) {
   1300 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
   1301 		return;
   1302 	}
   1303 
   1304 	/*
   1305 	 * Map and establish our interrupt.
   1306 	 */
   1307 	if (pci_intr_map(pa, &ih)) {
   1308 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
   1309 		return;
   1310 	}
   1311 	intrstr = pci_intr_string(pc, ih);
   1312 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
   1313 	if (sc->sc_ih == NULL) {
   1314 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
   1315 		if (intrstr != NULL)
   1316 			aprint_error(" at %s", intrstr);
   1317 		aprint_error("\n");
   1318 		return;
   1319 	}
   1320 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
   1321 
   1322 	/*
   1323 	 * Check the function ID (unit number of the chip).
   1324 	 */
   1325 	if ((sc->sc_type == WM_T_82546) || (sc->sc_type == WM_T_82546_3)
   1326 	    || (sc->sc_type ==  WM_T_82571) || (sc->sc_type == WM_T_80003)
   1327 	    || (sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
   1328 	    || (sc->sc_type == WM_T_82580) || (sc->sc_type == WM_T_82580ER)
   1329 	    || (sc->sc_type == WM_T_I350))
   1330 		sc->sc_funcid = (CSR_READ(sc, WMREG_STATUS)
   1331 		    >> STATUS_FUNCID_SHIFT) & STATUS_FUNCID_MASK;
   1332 	else
   1333 		sc->sc_funcid = 0;
   1334 
   1335 	/*
   1336 	 * Determine a few things about the bus we're connected to.
   1337 	 */
   1338 	if (sc->sc_type < WM_T_82543) {
   1339 		/* We don't really know the bus characteristics here. */
   1340 		sc->sc_bus_speed = 33;
   1341 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
   1342 		/*
   1343 		 * CSA (Communication Streaming Architecture) is about as fast
   1344 		 * a 32-bit 66MHz PCI Bus.
   1345 		 */
   1346 		sc->sc_flags |= WM_F_CSA;
   1347 		sc->sc_bus_speed = 66;
   1348 		aprint_verbose_dev(sc->sc_dev,
   1349 		    "Communication Streaming Architecture\n");
   1350 		if (sc->sc_type == WM_T_82547) {
   1351 			callout_init(&sc->sc_txfifo_ch, 0);
   1352 			callout_setfunc(&sc->sc_txfifo_ch,
   1353 					wm_82547_txfifo_stall, sc);
   1354 			aprint_verbose_dev(sc->sc_dev,
   1355 			    "using 82547 Tx FIFO stall work-around\n");
   1356 		}
   1357 	} else if (sc->sc_type >= WM_T_82571) {
   1358 		sc->sc_flags |= WM_F_PCIE;
   1359 		if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9)
   1360 		    && (sc->sc_type != WM_T_ICH10)
   1361 		    && (sc->sc_type != WM_T_PCH)
   1362 		    && (sc->sc_type != WM_T_PCH2)
   1363 		    && (sc->sc_type != WM_T_PCH_LPT)) {
   1364 			sc->sc_flags |= WM_F_EEPROM_SEMAPHORE;
   1365 			/* ICH* and PCH* have no PCIe capability registers */
   1366 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
   1367 				PCI_CAP_PCIEXPRESS, &sc->sc_pcixe_capoff,
   1368 				NULL) == 0)
   1369 				aprint_error_dev(sc->sc_dev,
   1370 				    "unable to find PCIe capability\n");
   1371 		}
   1372 		aprint_verbose_dev(sc->sc_dev, "PCI-Express bus\n");
   1373 	} else {
   1374 		reg = CSR_READ(sc, WMREG_STATUS);
   1375 		if (reg & STATUS_BUS64)
   1376 			sc->sc_flags |= WM_F_BUS64;
   1377 		if ((reg & STATUS_PCIX_MODE) != 0) {
   1378 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
   1379 
   1380 			sc->sc_flags |= WM_F_PCIX;
   1381 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
   1382 				PCI_CAP_PCIX, &sc->sc_pcixe_capoff, NULL) == 0)
   1383 				aprint_error_dev(sc->sc_dev,
   1384 				    "unable to find PCIX capability\n");
   1385 			else if (sc->sc_type != WM_T_82545_3 &&
   1386 				 sc->sc_type != WM_T_82546_3) {
   1387 				/*
   1388 				 * Work around a problem caused by the BIOS
   1389 				 * setting the max memory read byte count
   1390 				 * incorrectly.
   1391 				 */
   1392 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1393 				    sc->sc_pcixe_capoff + PCIX_CMD);
   1394 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1395 				    sc->sc_pcixe_capoff + PCIX_STATUS);
   1396 
   1397 				bytecnt =
   1398 				    (pcix_cmd & PCIX_CMD_BYTECNT_MASK) >>
   1399 				    PCIX_CMD_BYTECNT_SHIFT;
   1400 				maxb =
   1401 				    (pcix_sts & PCIX_STATUS_MAXB_MASK) >>
   1402 				    PCIX_STATUS_MAXB_SHIFT;
   1403 				if (bytecnt > maxb) {
   1404 					aprint_verbose_dev(sc->sc_dev,
   1405 					    "resetting PCI-X MMRBC: %d -> %d\n",
   1406 					    512 << bytecnt, 512 << maxb);
   1407 					pcix_cmd = (pcix_cmd &
   1408 					    ~PCIX_CMD_BYTECNT_MASK) |
   1409 					   (maxb << PCIX_CMD_BYTECNT_SHIFT);
   1410 					pci_conf_write(pa->pa_pc, pa->pa_tag,
   1411 					    sc->sc_pcixe_capoff + PCIX_CMD,
   1412 					    pcix_cmd);
   1413 				}
   1414 			}
   1415 		}
   1416 		/*
   1417 		 * The quad port adapter is special; it has a PCIX-PCIX
   1418 		 * bridge on the board, and can run the secondary bus at
   1419 		 * a higher speed.
   1420 		 */
   1421 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
   1422 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
   1423 								      : 66;
   1424 		} else if (sc->sc_flags & WM_F_PCIX) {
   1425 			switch (reg & STATUS_PCIXSPD_MASK) {
   1426 			case STATUS_PCIXSPD_50_66:
   1427 				sc->sc_bus_speed = 66;
   1428 				break;
   1429 			case STATUS_PCIXSPD_66_100:
   1430 				sc->sc_bus_speed = 100;
   1431 				break;
   1432 			case STATUS_PCIXSPD_100_133:
   1433 				sc->sc_bus_speed = 133;
   1434 				break;
   1435 			default:
   1436 				aprint_error_dev(sc->sc_dev,
   1437 				    "unknown PCIXSPD %d; assuming 66MHz\n",
   1438 				    reg & STATUS_PCIXSPD_MASK);
   1439 				sc->sc_bus_speed = 66;
   1440 				break;
   1441 			}
   1442 		} else
   1443 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
   1444 		aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
   1445 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
   1446 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
   1447 	}
   1448 
   1449 	/*
   1450 	 * Allocate the control data structures, and create and load the
   1451 	 * DMA map for it.
   1452 	 *
   1453 	 * NOTE: All Tx descriptors must be in the same 4G segment of
   1454 	 * memory.  So must Rx descriptors.  We simplify by allocating
   1455 	 * both sets within the same 4G segment.
   1456 	 */
   1457 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
   1458 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
   1459 	sc->sc_cd_size = sc->sc_type < WM_T_82544 ?
   1460 	    sizeof(struct wm_control_data_82542) :
   1461 	    sizeof(struct wm_control_data_82544);
   1462 	if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_cd_size, PAGE_SIZE,
   1463 		    (bus_size_t) 0x100000000ULL, &sc->sc_cd_seg, 1,
   1464 		    &sc->sc_cd_rseg, 0)) != 0) {
   1465 		aprint_error_dev(sc->sc_dev,
   1466 		    "unable to allocate control data, error = %d\n",
   1467 		    error);
   1468 		goto fail_0;
   1469 	}
   1470 
   1471 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cd_seg,
   1472 		    sc->sc_cd_rseg, sc->sc_cd_size,
   1473 		    (void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) {
   1474 		aprint_error_dev(sc->sc_dev,
   1475 		    "unable to map control data, error = %d\n", error);
   1476 		goto fail_1;
   1477 	}
   1478 
   1479 	if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_cd_size, 1,
   1480 		    sc->sc_cd_size, 0, 0, &sc->sc_cddmamap)) != 0) {
   1481 		aprint_error_dev(sc->sc_dev,
   1482 		    "unable to create control data DMA map, error = %d\n",
   1483 		    error);
   1484 		goto fail_2;
   1485 	}
   1486 
   1487 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
   1488 		    sc->sc_control_data, sc->sc_cd_size, NULL, 0)) != 0) {
   1489 		aprint_error_dev(sc->sc_dev,
   1490 		    "unable to load control data DMA map, error = %d\n",
   1491 		    error);
   1492 		goto fail_3;
   1493 	}
   1494 
   1495 	/*
   1496 	 * Create the transmit buffer DMA maps.
   1497 	 */
   1498 	WM_TXQUEUELEN(sc) =
   1499 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
   1500 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
   1501 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1502 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
   1503 			    WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
   1504 			    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1505 			aprint_error_dev(sc->sc_dev,
   1506 			    "unable to create Tx DMA map %d, error = %d\n",
   1507 			    i, error);
   1508 			goto fail_4;
   1509 		}
   1510 	}
   1511 
   1512 	/*
   1513 	 * Create the receive buffer DMA maps.
   1514 	 */
   1515 	for (i = 0; i < WM_NRXDESC; i++) {
   1516 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1517 			    MCLBYTES, 0, 0,
   1518 			    &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1519 			aprint_error_dev(sc->sc_dev,
   1520 			    "unable to create Rx DMA map %d error = %d\n",
   1521 			    i, error);
   1522 			goto fail_5;
   1523 		}
   1524 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1525 	}
   1526 
   1527 	/* clear interesting stat counters */
   1528 	CSR_READ(sc, WMREG_COLC);
   1529 	CSR_READ(sc, WMREG_RXERRC);
   1530 
   1531 	/* get PHY control from SMBus to PCIe */
   1532 	if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)
   1533 	    || (sc->sc_type == WM_T_PCH_LPT))
   1534 		wm_smbustopci(sc);
   1535 
   1536 	/*
   1537 	 * Reset the chip to a known state.
   1538 	 */
   1539 	wm_reset(sc);
   1540 
   1541 	switch (sc->sc_type) {
   1542 	case WM_T_82571:
   1543 	case WM_T_82572:
   1544 	case WM_T_82573:
   1545 	case WM_T_82574:
   1546 	case WM_T_82583:
   1547 	case WM_T_80003:
   1548 	case WM_T_ICH8:
   1549 	case WM_T_ICH9:
   1550 	case WM_T_ICH10:
   1551 	case WM_T_PCH:
   1552 	case WM_T_PCH2:
   1553 	case WM_T_PCH_LPT:
   1554 		if (wm_check_mng_mode(sc) != 0)
   1555 			wm_get_hw_control(sc);
   1556 		break;
   1557 	default:
   1558 		break;
   1559 	}
   1560 
   1561 	/*
   1562 	 * Get some information about the EEPROM.
   1563 	 */
   1564 	switch (sc->sc_type) {
   1565 	case WM_T_82542_2_0:
   1566 	case WM_T_82542_2_1:
   1567 	case WM_T_82543:
   1568 	case WM_T_82544:
   1569 		/* Microwire */
   1570 		sc->sc_ee_addrbits = 6;
   1571 		break;
   1572 	case WM_T_82540:
   1573 	case WM_T_82545:
   1574 	case WM_T_82545_3:
   1575 	case WM_T_82546:
   1576 	case WM_T_82546_3:
   1577 		/* Microwire */
   1578 		reg = CSR_READ(sc, WMREG_EECD);
   1579 		if (reg & EECD_EE_SIZE)
   1580 			sc->sc_ee_addrbits = 8;
   1581 		else
   1582 			sc->sc_ee_addrbits = 6;
   1583 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
   1584 		break;
   1585 	case WM_T_82541:
   1586 	case WM_T_82541_2:
   1587 	case WM_T_82547:
   1588 	case WM_T_82547_2:
   1589 		reg = CSR_READ(sc, WMREG_EECD);
   1590 		if (reg & EECD_EE_TYPE) {
   1591 			/* SPI */
   1592 			wm_set_spiaddrbits(sc);
   1593 		} else
   1594 			/* Microwire */
   1595 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
   1596 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
   1597 		break;
   1598 	case WM_T_82571:
   1599 	case WM_T_82572:
   1600 		/* SPI */
   1601 		wm_set_spiaddrbits(sc);
   1602 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
   1603 		break;
   1604 	case WM_T_82573:
   1605 	case WM_T_82574:
   1606 	case WM_T_82583:
   1607 		if (wm_is_onboard_nvm_eeprom(sc) == 0)
   1608 			sc->sc_flags |= WM_F_EEPROM_FLASH;
   1609 		else {
   1610 			/* SPI */
   1611 			wm_set_spiaddrbits(sc);
   1612 		}
   1613 		sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
   1614 		break;
   1615 	case WM_T_82575:
   1616 	case WM_T_82576:
   1617 	case WM_T_82580:
   1618 	case WM_T_82580ER:
   1619 	case WM_T_I350:
   1620 	case WM_T_80003:
   1621 		/* SPI */
   1622 		wm_set_spiaddrbits(sc);
   1623 		sc->sc_flags |= WM_F_EEPROM_EERDEEWR | WM_F_SWFW_SYNC;
   1624 		break;
   1625 	case WM_T_ICH8:
   1626 	case WM_T_ICH9:
   1627 	case WM_T_ICH10:
   1628 	case WM_T_PCH:
   1629 	case WM_T_PCH2:
   1630 	case WM_T_PCH_LPT:
   1631 		/* FLASH */
   1632 		sc->sc_flags |= WM_F_EEPROM_FLASH | WM_F_SWFWHW_SYNC;
   1633 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_ICH8_FLASH);
   1634 		if (pci_mapreg_map(pa, WM_ICH8_FLASH, memtype, 0,
   1635 		    &sc->sc_flasht, &sc->sc_flashh, NULL, NULL)) {
   1636 			aprint_error_dev(sc->sc_dev,
   1637 			    "can't map FLASH registers\n");
   1638 			return;
   1639 		}
   1640 		reg = ICH8_FLASH_READ32(sc, ICH_FLASH_GFPREG);
   1641 		sc->sc_ich8_flash_base = (reg & ICH_GFPREG_BASE_MASK) *
   1642 						ICH_FLASH_SECTOR_SIZE;
   1643 		sc->sc_ich8_flash_bank_size =
   1644 		    ((reg >> 16) & ICH_GFPREG_BASE_MASK) + 1;
   1645 		sc->sc_ich8_flash_bank_size -=
   1646 		    (reg & ICH_GFPREG_BASE_MASK);
   1647 		sc->sc_ich8_flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
   1648 		sc->sc_ich8_flash_bank_size /= 2 * sizeof(uint16_t);
   1649 		break;
   1650 	case WM_T_I210:
   1651 	case WM_T_I211:
   1652 		sc->sc_flags |= WM_F_EEPROM_FLASH_HW;
   1653 		sc->sc_flags |= WM_F_EEPROM_EERDEEWR | WM_F_SWFW_SYNC;
   1654 		break;
   1655 	default:
   1656 		break;
   1657 	}
   1658 
   1659 	/*
   1660 	 * Defer printing the EEPROM type until after verifying the checksum
   1661 	 * This allows the EEPROM type to be printed correctly in the case
   1662 	 * that no EEPROM is attached.
   1663 	 */
   1664 	/*
   1665 	 * Validate the EEPROM checksum. If the checksum fails, flag
   1666 	 * this for later, so we can fail future reads from the EEPROM.
   1667 	 */
   1668 	if (wm_validate_eeprom_checksum(sc)) {
   1669 		/*
   1670 		 * Read twice again because some PCI-e parts fail the
   1671 		 * first check due to the link being in sleep state.
   1672 		 */
   1673 		if (wm_validate_eeprom_checksum(sc))
   1674 			sc->sc_flags |= WM_F_EEPROM_INVALID;
   1675 	}
   1676 
   1677 	/* Set device properties (macflags) */
   1678 	prop_dictionary_set_uint32(dict, "macflags", sc->sc_flags);
   1679 
   1680 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
   1681 		aprint_verbose_dev(sc->sc_dev, "No EEPROM\n");
   1682 	else if (sc->sc_flags & WM_F_EEPROM_FLASH_HW) {
   1683 		aprint_verbose_dev(sc->sc_dev, "FLASH(HW)\n");
   1684 	} else if (sc->sc_flags & WM_F_EEPROM_FLASH) {
   1685 		aprint_verbose_dev(sc->sc_dev, "FLASH\n");
   1686 	} else {
   1687 		if (sc->sc_flags & WM_F_EEPROM_SPI)
   1688 			eetype = "SPI";
   1689 		else
   1690 			eetype = "MicroWire";
   1691 		aprint_verbose_dev(sc->sc_dev,
   1692 		    "%u word (%d address bits) %s EEPROM\n",
   1693 		    1U << sc->sc_ee_addrbits,
   1694 		    sc->sc_ee_addrbits, eetype);
   1695 	}
   1696 
   1697 	/*
   1698 	 * Read the Ethernet address from the EEPROM, if not first found
   1699 	 * in device properties.
   1700 	 */
   1701 	ea = prop_dictionary_get(dict, "mac-address");
   1702 	if (ea != NULL) {
   1703 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   1704 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   1705 		memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   1706 	} else {
   1707 		if (wm_read_mac_addr(sc, enaddr) != 0) {
   1708 			aprint_error_dev(sc->sc_dev,
   1709 			    "unable to read Ethernet address\n");
   1710 			return;
   1711 		}
   1712 	}
   1713 
   1714 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
   1715 	    ether_sprintf(enaddr));
   1716 
   1717 	/*
   1718 	 * Read the config info from the EEPROM, and set up various
   1719 	 * bits in the control registers based on their contents.
   1720 	 */
   1721 	pn = prop_dictionary_get(dict, "i82543-cfg1");
   1722 	if (pn != NULL) {
   1723 		KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1724 		cfg1 = (uint16_t) prop_number_integer_value(pn);
   1725 	} else {
   1726 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
   1727 			aprint_error_dev(sc->sc_dev, "unable to read CFG1\n");
   1728 			return;
   1729 		}
   1730 	}
   1731 
   1732 	pn = prop_dictionary_get(dict, "i82543-cfg2");
   1733 	if (pn != NULL) {
   1734 		KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1735 		cfg2 = (uint16_t) prop_number_integer_value(pn);
   1736 	} else {
   1737 		if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
   1738 			aprint_error_dev(sc->sc_dev, "unable to read CFG2\n");
   1739 			return;
   1740 		}
   1741 	}
   1742 
   1743 	/* check for WM_F_WOL */
   1744 	switch (sc->sc_type) {
   1745 	case WM_T_82542_2_0:
   1746 	case WM_T_82542_2_1:
   1747 	case WM_T_82543:
   1748 		/* dummy? */
   1749 		eeprom_data = 0;
   1750 		apme_mask = EEPROM_CFG3_APME;
   1751 		break;
   1752 	case WM_T_82544:
   1753 		apme_mask = EEPROM_CFG2_82544_APM_EN;
   1754 		eeprom_data = cfg2;
   1755 		break;
   1756 	case WM_T_82546:
   1757 	case WM_T_82546_3:
   1758 	case WM_T_82571:
   1759 	case WM_T_82572:
   1760 	case WM_T_82573:
   1761 	case WM_T_82574:
   1762 	case WM_T_82583:
   1763 	case WM_T_80003:
   1764 	default:
   1765 		apme_mask = EEPROM_CFG3_APME;
   1766 		wm_read_eeprom(sc, (sc->sc_funcid == 1) ? EEPROM_OFF_CFG3_PORTB
   1767 		    : EEPROM_OFF_CFG3_PORTA, 1, &eeprom_data);
   1768 		break;
   1769 	case WM_T_82575:
   1770 	case WM_T_82576:
   1771 	case WM_T_82580:
   1772 	case WM_T_82580ER:
   1773 	case WM_T_I350:
   1774 	case WM_T_ICH8:
   1775 	case WM_T_ICH9:
   1776 	case WM_T_ICH10:
   1777 	case WM_T_PCH:
   1778 	case WM_T_PCH2:
   1779 	case WM_T_PCH_LPT:
   1780 		/* XXX The funcid should be checked on some devices */
   1781 		apme_mask = WUC_APME;
   1782 		eeprom_data = CSR_READ(sc, WMREG_WUC);
   1783 		break;
   1784 	}
   1785 
   1786 	/* Check for WM_F_WOL flag after the setting of the EEPROM stuff */
   1787 	if ((eeprom_data & apme_mask) != 0)
   1788 		sc->sc_flags |= WM_F_WOL;
   1789 #ifdef WM_DEBUG
   1790 	if ((sc->sc_flags & WM_F_WOL) != 0)
   1791 		printf("WOL\n");
   1792 #endif
   1793 
   1794 	/*
   1795 	 * XXX need special handling for some multiple port cards
   1796 	 * to disable a paticular port.
   1797 	 */
   1798 
   1799 	if (sc->sc_type >= WM_T_82544) {
   1800 		pn = prop_dictionary_get(dict, "i82543-swdpin");
   1801 		if (pn != NULL) {
   1802 			KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
   1803 			swdpin = (uint16_t) prop_number_integer_value(pn);
   1804 		} else {
   1805 			if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
   1806 				aprint_error_dev(sc->sc_dev,
   1807 				    "unable to read SWDPIN\n");
   1808 				return;
   1809 			}
   1810 		}
   1811 	}
   1812 
   1813 	if (cfg1 & EEPROM_CFG1_ILOS)
   1814 		sc->sc_ctrl |= CTRL_ILOS;
   1815 	if (sc->sc_type >= WM_T_82544) {
   1816 		sc->sc_ctrl |=
   1817 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
   1818 		    CTRL_SWDPIO_SHIFT;
   1819 		sc->sc_ctrl |=
   1820 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
   1821 		    CTRL_SWDPINS_SHIFT;
   1822 	} else {
   1823 		sc->sc_ctrl |=
   1824 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
   1825 		    CTRL_SWDPIO_SHIFT;
   1826 	}
   1827 
   1828 #if 0
   1829 	if (sc->sc_type >= WM_T_82544) {
   1830 		if (cfg1 & EEPROM_CFG1_IPS0)
   1831 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
   1832 		if (cfg1 & EEPROM_CFG1_IPS1)
   1833 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
   1834 		sc->sc_ctrl_ext |=
   1835 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
   1836 		    CTRL_EXT_SWDPIO_SHIFT;
   1837 		sc->sc_ctrl_ext |=
   1838 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
   1839 		    CTRL_EXT_SWDPINS_SHIFT;
   1840 	} else {
   1841 		sc->sc_ctrl_ext |=
   1842 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
   1843 		    CTRL_EXT_SWDPIO_SHIFT;
   1844 	}
   1845 #endif
   1846 
   1847 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   1848 #if 0
   1849 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   1850 #endif
   1851 
   1852 	/*
   1853 	 * Set up some register offsets that are different between
   1854 	 * the i82542 and the i82543 and later chips.
   1855 	 */
   1856 	if (sc->sc_type < WM_T_82543) {
   1857 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
   1858 		sc->sc_tdt_reg = WMREG_OLD_TDT;
   1859 	} else {
   1860 		sc->sc_rdt_reg = WMREG_RDT;
   1861 		sc->sc_tdt_reg = WMREG_TDT;
   1862 	}
   1863 
   1864 	if (sc->sc_type == WM_T_PCH) {
   1865 		uint16_t val;
   1866 
   1867 		/* Save the NVM K1 bit setting */
   1868 		wm_read_eeprom(sc, EEPROM_OFF_K1_CONFIG, 1, &val);
   1869 
   1870 		if ((val & EEPROM_K1_CONFIG_ENABLE) != 0)
   1871 			sc->sc_nvm_k1_enabled = 1;
   1872 		else
   1873 			sc->sc_nvm_k1_enabled = 0;
   1874 	}
   1875 
   1876 	/*
   1877 	 * Determine if we're TBI,GMII or SGMII mode, and initialize the
   1878 	 * media structures accordingly.
   1879 	 */
   1880 	if (sc->sc_type == WM_T_ICH8 || sc->sc_type == WM_T_ICH9
   1881 	    || sc->sc_type == WM_T_ICH10 || sc->sc_type == WM_T_PCH
   1882 	    || sc->sc_type == WM_T_PCH2 || sc->sc_type == WM_T_PCH_LPT
   1883 	    || sc->sc_type == WM_T_82573
   1884 	    || sc->sc_type == WM_T_82574 || sc->sc_type == WM_T_82583) {
   1885 		/* STATUS_TBIMODE reserved/reused, can't rely on it */
   1886 		wm_gmii_mediainit(sc, wmp->wmp_product);
   1887 	} else if (sc->sc_type < WM_T_82543 ||
   1888 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
   1889 		if (wmp->wmp_flags & WMP_F_1000T)
   1890 			aprint_error_dev(sc->sc_dev,
   1891 			    "WARNING: TBIMODE set on 1000BASE-T product!\n");
   1892 		wm_tbi_mediainit(sc);
   1893 	} else {
   1894 		switch (sc->sc_type) {
   1895 		case WM_T_82575:
   1896 		case WM_T_82576:
   1897 		case WM_T_82580:
   1898 		case WM_T_82580ER:
   1899 		case WM_T_I350:
   1900 		case WM_T_I210:
   1901 		case WM_T_I211:
   1902 			reg = CSR_READ(sc, WMREG_CTRL_EXT);
   1903 			switch (reg & CTRL_EXT_LINK_MODE_MASK) {
   1904 			case CTRL_EXT_LINK_MODE_SGMII:
   1905 				aprint_verbose_dev(sc->sc_dev, "SGMII\n");
   1906 				sc->sc_flags |= WM_F_SGMII;
   1907 				CSR_WRITE(sc, WMREG_CTRL_EXT,
   1908 				    reg | CTRL_EXT_I2C_ENA);
   1909 				wm_gmii_mediainit(sc, wmp->wmp_product);
   1910 				break;
   1911 			case CTRL_EXT_LINK_MODE_1000KX:
   1912 			case CTRL_EXT_LINK_MODE_PCIE_SERDES:
   1913 				aprint_verbose_dev(sc->sc_dev, "1000KX or SERDES\n");
   1914 				CSR_WRITE(sc, WMREG_CTRL_EXT,
   1915 				    reg | CTRL_EXT_I2C_ENA);
   1916 				panic("not supported yet\n");
   1917 				break;
   1918 			case CTRL_EXT_LINK_MODE_GMII:
   1919 			default:
   1920 				CSR_WRITE(sc, WMREG_CTRL_EXT,
   1921 				    reg & ~CTRL_EXT_I2C_ENA);
   1922 				wm_gmii_mediainit(sc, wmp->wmp_product);
   1923 				break;
   1924 			}
   1925 			break;
   1926 		default:
   1927 			if (wmp->wmp_flags & WMP_F_1000X)
   1928 				aprint_error_dev(sc->sc_dev,
   1929 				    "WARNING: TBIMODE clear on 1000BASE-X product!\n");
   1930 			wm_gmii_mediainit(sc, wmp->wmp_product);
   1931 		}
   1932 	}
   1933 
   1934 	ifp = &sc->sc_ethercom.ec_if;
   1935 	xname = device_xname(sc->sc_dev);
   1936 	strlcpy(ifp->if_xname, xname, IFNAMSIZ);
   1937 	ifp->if_softc = sc;
   1938 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1939 	ifp->if_ioctl = wm_ioctl;
   1940 	if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
   1941 		ifp->if_start = wm_nq_start;
   1942 	else
   1943 		ifp->if_start = wm_start;
   1944 	ifp->if_watchdog = wm_watchdog;
   1945 	ifp->if_init = wm_init;
   1946 	ifp->if_stop = wm_stop;
   1947 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
   1948 	IFQ_SET_READY(&ifp->if_snd);
   1949 
   1950 	/* Check for jumbo frame */
   1951 	switch (sc->sc_type) {
   1952 	case WM_T_82573:
   1953 		/* XXX limited to 9234 if ASPM is disabled */
   1954 		wm_read_eeprom(sc, EEPROM_INIT_3GIO_3, 1, &io3);
   1955 		if ((io3 & EEPROM_3GIO_3_ASPM_MASK) != 0)
   1956 			sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1957 		break;
   1958 	case WM_T_82571:
   1959 	case WM_T_82572:
   1960 	case WM_T_82574:
   1961 	case WM_T_82575:
   1962 	case WM_T_82576:
   1963 	case WM_T_82580:
   1964 	case WM_T_82580ER:
   1965 	case WM_T_I350:
   1966 	case WM_T_I210:
   1967 	case WM_T_I211:
   1968 	case WM_T_80003:
   1969 	case WM_T_ICH9:
   1970 	case WM_T_ICH10:
   1971 	case WM_T_PCH2:	/* PCH2 supports 9K frame size */
   1972 	case WM_T_PCH_LPT:
   1973 		/* XXX limited to 9234 */
   1974 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1975 		break;
   1976 	case WM_T_PCH:
   1977 		/* XXX limited to 4096 */
   1978 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1979 		break;
   1980 	case WM_T_82542_2_0:
   1981 	case WM_T_82542_2_1:
   1982 	case WM_T_82583:
   1983 	case WM_T_ICH8:
   1984 		/* No support for jumbo frame */
   1985 		break;
   1986 	default:
   1987 		/* ETHER_MAX_LEN_JUMBO */
   1988 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1989 		break;
   1990 	}
   1991 
   1992 	/*
   1993 	 * If we're a i82543 or greater, we can support VLANs.
   1994 	 */
   1995 	if (sc->sc_type >= WM_T_82543)
   1996 		sc->sc_ethercom.ec_capabilities |=
   1997 		    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
   1998 
   1999 	/*
   2000 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
   2001 	 * on i82543 and later.
   2002 	 */
   2003 	if (sc->sc_type >= WM_T_82543) {
   2004 		ifp->if_capabilities |=
   2005 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2006 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2007 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
   2008 		    IFCAP_CSUM_TCPv6_Tx |
   2009 		    IFCAP_CSUM_UDPv6_Tx;
   2010 	}
   2011 
   2012 	/*
   2013 	 * XXXyamt: i'm not sure which chips support RXCSUM_IPV6OFL.
   2014 	 *
   2015 	 *	82541GI (8086:1076) ... no
   2016 	 *	82572EI (8086:10b9) ... yes
   2017 	 */
   2018 	if (sc->sc_type >= WM_T_82571) {
   2019 		ifp->if_capabilities |=
   2020 		    IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
   2021 	}
   2022 
   2023 	/*
   2024 	 * If we're a i82544 or greater (except i82547), we can do
   2025 	 * TCP segmentation offload.
   2026 	 */
   2027 	if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547) {
   2028 		ifp->if_capabilities |= IFCAP_TSOv4;
   2029 	}
   2030 
   2031 	if (sc->sc_type >= WM_T_82571) {
   2032 		ifp->if_capabilities |= IFCAP_TSOv6;
   2033 	}
   2034 
   2035 	/*
   2036 	 * Attach the interface.
   2037 	 */
   2038 	if_attach(ifp);
   2039 	ether_ifattach(ifp, enaddr);
   2040 	ether_set_ifflags_cb(&sc->sc_ethercom, wm_ifflags_cb);
   2041 	rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET, 0);
   2042 
   2043 #ifdef WM_EVENT_COUNTERS
   2044 	/* Attach event counters. */
   2045 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   2046 	    NULL, xname, "txsstall");
   2047 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   2048 	    NULL, xname, "txdstall");
   2049 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
   2050 	    NULL, xname, "txfifo_stall");
   2051 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
   2052 	    NULL, xname, "txdw");
   2053 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
   2054 	    NULL, xname, "txqe");
   2055 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   2056 	    NULL, xname, "rxintr");
   2057 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
   2058 	    NULL, xname, "linkintr");
   2059 
   2060 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   2061 	    NULL, xname, "rxipsum");
   2062 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
   2063 	    NULL, xname, "rxtusum");
   2064 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   2065 	    NULL, xname, "txipsum");
   2066 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
   2067 	    NULL, xname, "txtusum");
   2068 	evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
   2069 	    NULL, xname, "txtusum6");
   2070 
   2071 	evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
   2072 	    NULL, xname, "txtso");
   2073 	evcnt_attach_dynamic(&sc->sc_ev_txtso6, EVCNT_TYPE_MISC,
   2074 	    NULL, xname, "txtso6");
   2075 	evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
   2076 	    NULL, xname, "txtsopain");
   2077 
   2078 	for (i = 0; i < WM_NTXSEGS; i++) {
   2079 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
   2080 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
   2081 		    NULL, xname, wm_txseg_evcnt_names[i]);
   2082 	}
   2083 
   2084 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
   2085 	    NULL, xname, "txdrop");
   2086 
   2087 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
   2088 	    NULL, xname, "tu");
   2089 
   2090 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
   2091 	    NULL, xname, "tx_xoff");
   2092 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
   2093 	    NULL, xname, "tx_xon");
   2094 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
   2095 	    NULL, xname, "rx_xoff");
   2096 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
   2097 	    NULL, xname, "rx_xon");
   2098 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
   2099 	    NULL, xname, "rx_macctl");
   2100 #endif /* WM_EVENT_COUNTERS */
   2101 
   2102 	if (pmf_device_register(self, wm_suspend, wm_resume))
   2103 		pmf_class_network_register(self, ifp);
   2104 	else
   2105 		aprint_error_dev(self, "couldn't establish power handler\n");
   2106 
   2107 	return;
   2108 
   2109 	/*
   2110 	 * Free any resources we've allocated during the failed attach
   2111 	 * attempt.  Do this in reverse order and fall through.
   2112 	 */
   2113  fail_5:
   2114 	for (i = 0; i < WM_NRXDESC; i++) {
   2115 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   2116 			bus_dmamap_destroy(sc->sc_dmat,
   2117 			    sc->sc_rxsoft[i].rxs_dmamap);
   2118 	}
   2119  fail_4:
   2120 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   2121 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   2122 			bus_dmamap_destroy(sc->sc_dmat,
   2123 			    sc->sc_txsoft[i].txs_dmamap);
   2124 	}
   2125 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   2126  fail_3:
   2127 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   2128  fail_2:
   2129 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
   2130 	    sc->sc_cd_size);
   2131  fail_1:
   2132 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cd_seg, sc->sc_cd_rseg);
   2133  fail_0:
   2134 	return;
   2135 }
   2136 
   2137 static int
   2138 wm_detach(device_t self, int flags __unused)
   2139 {
   2140 	struct wm_softc *sc = device_private(self);
   2141 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2142 	int i, s;
   2143 
   2144 	s = splnet();
   2145 	/* Stop the interface. Callouts are stopped in it. */
   2146 	wm_stop(ifp, 1);
   2147 	splx(s);
   2148 
   2149 	pmf_device_deregister(self);
   2150 
   2151 	/* Tell the firmware about the release */
   2152 	wm_release_manageability(sc);
   2153 	wm_release_hw_control(sc);
   2154 
   2155 	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   2156 
   2157 	/* Delete all remaining media. */
   2158 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
   2159 
   2160 	ether_ifdetach(ifp);
   2161 	if_detach(ifp);
   2162 
   2163 
   2164 	/* Unload RX dmamaps and free mbufs */
   2165 	wm_rxdrain(sc);
   2166 
   2167 	/* Free dmamap. It's the same as the end of the wm_attach() function */
   2168 	for (i = 0; i < WM_NRXDESC; i++) {
   2169 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   2170 			bus_dmamap_destroy(sc->sc_dmat,
   2171 			    sc->sc_rxsoft[i].rxs_dmamap);
   2172 	}
   2173 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   2174 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   2175 			bus_dmamap_destroy(sc->sc_dmat,
   2176 			    sc->sc_txsoft[i].txs_dmamap);
   2177 	}
   2178 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   2179 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   2180 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
   2181 	    sc->sc_cd_size);
   2182 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cd_seg, sc->sc_cd_rseg);
   2183 
   2184 	/* Disestablish the interrupt handler */
   2185 	if (sc->sc_ih != NULL) {
   2186 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
   2187 		sc->sc_ih = NULL;
   2188 	}
   2189 
   2190 	/* Unmap the registers */
   2191 	if (sc->sc_ss) {
   2192 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_ss);
   2193 		sc->sc_ss = 0;
   2194 	}
   2195 
   2196 	if (sc->sc_ios) {
   2197 		bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
   2198 		sc->sc_ios = 0;
   2199 	}
   2200 
   2201 	return 0;
   2202 }
   2203 
   2204 /*
   2205  * wm_tx_offload:
   2206  *
   2207  *	Set up TCP/IP checksumming parameters for the
   2208  *	specified packet.
   2209  */
   2210 static int
   2211 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
   2212     uint8_t *fieldsp)
   2213 {
   2214 	struct mbuf *m0 = txs->txs_mbuf;
   2215 	struct livengood_tcpip_ctxdesc *t;
   2216 	uint32_t ipcs, tucs, cmd, cmdlen, seg;
   2217 	uint32_t ipcse;
   2218 	struct ether_header *eh;
   2219 	int offset, iphl;
   2220 	uint8_t fields;
   2221 
   2222 	/*
   2223 	 * XXX It would be nice if the mbuf pkthdr had offset
   2224 	 * fields for the protocol headers.
   2225 	 */
   2226 
   2227 	eh = mtod(m0, struct ether_header *);
   2228 	switch (htons(eh->ether_type)) {
   2229 	case ETHERTYPE_IP:
   2230 	case ETHERTYPE_IPV6:
   2231 		offset = ETHER_HDR_LEN;
   2232 		break;
   2233 
   2234 	case ETHERTYPE_VLAN:
   2235 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   2236 		break;
   2237 
   2238 	default:
   2239 		/*
   2240 		 * Don't support this protocol or encapsulation.
   2241 		 */
   2242 		*fieldsp = 0;
   2243 		*cmdp = 0;
   2244 		return 0;
   2245 	}
   2246 
   2247 	if ((m0->m_pkthdr.csum_flags &
   2248 	    (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
   2249 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   2250 	} else {
   2251 		iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
   2252 	}
   2253 	ipcse = offset + iphl - 1;
   2254 
   2255 	cmd = WTX_CMD_DEXT | WTX_DTYP_D;
   2256 	cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
   2257 	seg = 0;
   2258 	fields = 0;
   2259 
   2260 	if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
   2261 		int hlen = offset + iphl;
   2262 		bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   2263 
   2264 		if (__predict_false(m0->m_len <
   2265 				    (hlen + sizeof(struct tcphdr)))) {
   2266 			/*
   2267 			 * TCP/IP headers are not in the first mbuf; we need
   2268 			 * to do this the slow and painful way.  Let's just
   2269 			 * hope this doesn't happen very often.
   2270 			 */
   2271 			struct tcphdr th;
   2272 
   2273 			WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
   2274 
   2275 			m_copydata(m0, hlen, sizeof(th), &th);
   2276 			if (v4) {
   2277 				struct ip ip;
   2278 
   2279 				m_copydata(m0, offset, sizeof(ip), &ip);
   2280 				ip.ip_len = 0;
   2281 				m_copyback(m0,
   2282 				    offset + offsetof(struct ip, ip_len),
   2283 				    sizeof(ip.ip_len), &ip.ip_len);
   2284 				th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   2285 				    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   2286 			} else {
   2287 				struct ip6_hdr ip6;
   2288 
   2289 				m_copydata(m0, offset, sizeof(ip6), &ip6);
   2290 				ip6.ip6_plen = 0;
   2291 				m_copyback(m0,
   2292 				    offset + offsetof(struct ip6_hdr, ip6_plen),
   2293 				    sizeof(ip6.ip6_plen), &ip6.ip6_plen);
   2294 				th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
   2295 				    &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
   2296 			}
   2297 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   2298 			    sizeof(th.th_sum), &th.th_sum);
   2299 
   2300 			hlen += th.th_off << 2;
   2301 		} else {
   2302 			/*
   2303 			 * TCP/IP headers are in the first mbuf; we can do
   2304 			 * this the easy way.
   2305 			 */
   2306 			struct tcphdr *th;
   2307 
   2308 			if (v4) {
   2309 				struct ip *ip =
   2310 				    (void *)(mtod(m0, char *) + offset);
   2311 				th = (void *)(mtod(m0, char *) + hlen);
   2312 
   2313 				ip->ip_len = 0;
   2314 				th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   2315 				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   2316 			} else {
   2317 				struct ip6_hdr *ip6 =
   2318 				    (void *)(mtod(m0, char *) + offset);
   2319 				th = (void *)(mtod(m0, char *) + hlen);
   2320 
   2321 				ip6->ip6_plen = 0;
   2322 				th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
   2323 				    &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
   2324 			}
   2325 			hlen += th->th_off << 2;
   2326 		}
   2327 
   2328 		if (v4) {
   2329 			WM_EVCNT_INCR(&sc->sc_ev_txtso);
   2330 			cmdlen |= WTX_TCPIP_CMD_IP;
   2331 		} else {
   2332 			WM_EVCNT_INCR(&sc->sc_ev_txtso6);
   2333 			ipcse = 0;
   2334 		}
   2335 		cmd |= WTX_TCPIP_CMD_TSE;
   2336 		cmdlen |= WTX_TCPIP_CMD_TSE |
   2337 		    WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
   2338 		seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
   2339 		    WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
   2340 	}
   2341 
   2342 	/*
   2343 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   2344 	 * offload feature, if we load the context descriptor, we
   2345 	 * MUST provide valid values for IPCSS and TUCSS fields.
   2346 	 */
   2347 
   2348 	ipcs = WTX_TCPIP_IPCSS(offset) |
   2349 	    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   2350 	    WTX_TCPIP_IPCSE(ipcse);
   2351 	if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
   2352 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
   2353 		fields |= WTX_IXSM;
   2354 	}
   2355 
   2356 	offset += iphl;
   2357 
   2358 	if (m0->m_pkthdr.csum_flags &
   2359 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
   2360 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
   2361 		fields |= WTX_TXSM;
   2362 		tucs = WTX_TCPIP_TUCSS(offset) |
   2363 		    WTX_TCPIP_TUCSO(offset +
   2364 		    M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
   2365 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   2366 	} else if ((m0->m_pkthdr.csum_flags &
   2367 	    (M_CSUM_TCPv6|M_CSUM_UDPv6|M_CSUM_TSOv6)) != 0) {
   2368 		WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
   2369 		fields |= WTX_TXSM;
   2370 		tucs = WTX_TCPIP_TUCSS(offset) |
   2371 		    WTX_TCPIP_TUCSO(offset +
   2372 		    M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
   2373 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   2374 	} else {
   2375 		/* Just initialize it to a valid TCP context. */
   2376 		tucs = WTX_TCPIP_TUCSS(offset) |
   2377 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   2378 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   2379 	}
   2380 
   2381 	/* Fill in the context descriptor. */
   2382 	t = (struct livengood_tcpip_ctxdesc *)
   2383 	    &sc->sc_txdescs[sc->sc_txnext];
   2384 	t->tcpip_ipcs = htole32(ipcs);
   2385 	t->tcpip_tucs = htole32(tucs);
   2386 	t->tcpip_cmdlen = htole32(cmdlen);
   2387 	t->tcpip_seg = htole32(seg);
   2388 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   2389 
   2390 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
   2391 	txs->txs_ndesc++;
   2392 
   2393 	*cmdp = cmd;
   2394 	*fieldsp = fields;
   2395 
   2396 	return 0;
   2397 }
   2398 
   2399 static void
   2400 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
   2401 {
   2402 	struct mbuf *m;
   2403 	int i;
   2404 
   2405 	log(LOG_DEBUG, "%s: mbuf chain:\n", device_xname(sc->sc_dev));
   2406 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
   2407 		log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
   2408 		    "m_flags = 0x%08x\n", device_xname(sc->sc_dev),
   2409 		    m->m_data, m->m_len, m->m_flags);
   2410 	log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", device_xname(sc->sc_dev),
   2411 	    i, i == 1 ? "" : "s");
   2412 }
   2413 
   2414 /*
   2415  * wm_82547_txfifo_stall:
   2416  *
   2417  *	Callout used to wait for the 82547 Tx FIFO to drain,
   2418  *	reset the FIFO pointers, and restart packet transmission.
   2419  */
   2420 static void
   2421 wm_82547_txfifo_stall(void *arg)
   2422 {
   2423 	struct wm_softc *sc = arg;
   2424 	int s;
   2425 
   2426 	s = splnet();
   2427 
   2428 	if (sc->sc_txfifo_stall) {
   2429 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
   2430 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
   2431 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
   2432 			/*
   2433 			 * Packets have drained.  Stop transmitter, reset
   2434 			 * FIFO pointers, restart transmitter, and kick
   2435 			 * the packet queue.
   2436 			 */
   2437 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
   2438 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
   2439 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
   2440 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
   2441 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
   2442 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
   2443 			CSR_WRITE(sc, WMREG_TCTL, tctl);
   2444 			CSR_WRITE_FLUSH(sc);
   2445 
   2446 			sc->sc_txfifo_head = 0;
   2447 			sc->sc_txfifo_stall = 0;
   2448 			wm_start(&sc->sc_ethercom.ec_if);
   2449 		} else {
   2450 			/*
   2451 			 * Still waiting for packets to drain; try again in
   2452 			 * another tick.
   2453 			 */
   2454 			callout_schedule(&sc->sc_txfifo_ch, 1);
   2455 		}
   2456 	}
   2457 
   2458 	splx(s);
   2459 }
   2460 
   2461 static void
   2462 wm_gate_hw_phy_config_ich8lan(struct wm_softc *sc, int on)
   2463 {
   2464 	uint32_t reg;
   2465 
   2466 	reg = CSR_READ(sc, WMREG_EXTCNFCTR);
   2467 
   2468 	if (on != 0)
   2469 		reg |= EXTCNFCTR_GATE_PHY_CFG;
   2470 	else
   2471 		reg &= ~EXTCNFCTR_GATE_PHY_CFG;
   2472 
   2473 	CSR_WRITE(sc, WMREG_EXTCNFCTR, reg);
   2474 }
   2475 
   2476 /*
   2477  * wm_82547_txfifo_bugchk:
   2478  *
   2479  *	Check for bug condition in the 82547 Tx FIFO.  We need to
   2480  *	prevent enqueueing a packet that would wrap around the end
   2481  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
   2482  *
   2483  *	We do this by checking the amount of space before the end
   2484  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
   2485  *	the Tx FIFO, wait for all remaining packets to drain, reset
   2486  *	the internal FIFO pointers to the beginning, and restart
   2487  *	transmission on the interface.
   2488  */
   2489 #define	WM_FIFO_HDR		0x10
   2490 #define	WM_82547_PAD_LEN	0x3e0
   2491 static int
   2492 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
   2493 {
   2494 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
   2495 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
   2496 
   2497 	/* Just return if already stalled. */
   2498 	if (sc->sc_txfifo_stall)
   2499 		return 1;
   2500 
   2501 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   2502 		/* Stall only occurs in half-duplex mode. */
   2503 		goto send_packet;
   2504 	}
   2505 
   2506 	if (len >= WM_82547_PAD_LEN + space) {
   2507 		sc->sc_txfifo_stall = 1;
   2508 		callout_schedule(&sc->sc_txfifo_ch, 1);
   2509 		return 1;
   2510 	}
   2511 
   2512  send_packet:
   2513 	sc->sc_txfifo_head += len;
   2514 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
   2515 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
   2516 
   2517 	return 0;
   2518 }
   2519 
   2520 /*
   2521  * wm_start:		[ifnet interface function]
   2522  *
   2523  *	Start packet transmission on the interface.
   2524  */
   2525 static void
   2526 wm_start(struct ifnet *ifp)
   2527 {
   2528 	struct wm_softc *sc = ifp->if_softc;
   2529 	struct mbuf *m0;
   2530 	struct m_tag *mtag;
   2531 	struct wm_txsoft *txs;
   2532 	bus_dmamap_t dmamap;
   2533 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
   2534 	bus_addr_t curaddr;
   2535 	bus_size_t seglen, curlen;
   2536 	uint32_t cksumcmd;
   2537 	uint8_t cksumfields;
   2538 
   2539 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   2540 		return;
   2541 
   2542 	/*
   2543 	 * Remember the previous number of free descriptors.
   2544 	 */
   2545 	ofree = sc->sc_txfree;
   2546 
   2547 	/*
   2548 	 * Loop through the send queue, setting up transmit descriptors
   2549 	 * until we drain the queue, or use up all available transmit
   2550 	 * descriptors.
   2551 	 */
   2552 	for (;;) {
   2553 		/* Grab a packet off the queue. */
   2554 		IFQ_POLL(&ifp->if_snd, m0);
   2555 		if (m0 == NULL)
   2556 			break;
   2557 
   2558 		DPRINTF(WM_DEBUG_TX,
   2559 		    ("%s: TX: have packet to transmit: %p\n",
   2560 		    device_xname(sc->sc_dev), m0));
   2561 
   2562 		/* Get a work queue entry. */
   2563 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
   2564 			wm_txintr(sc);
   2565 			if (sc->sc_txsfree == 0) {
   2566 				DPRINTF(WM_DEBUG_TX,
   2567 				    ("%s: TX: no free job descriptors\n",
   2568 					device_xname(sc->sc_dev)));
   2569 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   2570 				break;
   2571 			}
   2572 		}
   2573 
   2574 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   2575 		dmamap = txs->txs_dmamap;
   2576 
   2577 		use_tso = (m0->m_pkthdr.csum_flags &
   2578 		    (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0;
   2579 
   2580 		/*
   2581 		 * So says the Linux driver:
   2582 		 * The controller does a simple calculation to make sure
   2583 		 * there is enough room in the FIFO before initiating the
   2584 		 * DMA for each buffer.  The calc is:
   2585 		 *	4 = ceil(buffer len / MSS)
   2586 		 * To make sure we don't overrun the FIFO, adjust the max
   2587 		 * buffer len if the MSS drops.
   2588 		 */
   2589 		dmamap->dm_maxsegsz =
   2590 		    (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
   2591 		    ? m0->m_pkthdr.segsz << 2
   2592 		    : WTX_MAX_LEN;
   2593 
   2594 		/*
   2595 		 * Load the DMA map.  If this fails, the packet either
   2596 		 * didn't fit in the allotted number of segments, or we
   2597 		 * were short on resources.  For the too-many-segments
   2598 		 * case, we simply report an error and drop the packet,
   2599 		 * since we can't sanely copy a jumbo packet to a single
   2600 		 * buffer.
   2601 		 */
   2602 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   2603 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   2604 		if (error) {
   2605 			if (error == EFBIG) {
   2606 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   2607 				log(LOG_ERR, "%s: Tx packet consumes too many "
   2608 				    "DMA segments, dropping...\n",
   2609 				    device_xname(sc->sc_dev));
   2610 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   2611 				wm_dump_mbuf_chain(sc, m0);
   2612 				m_freem(m0);
   2613 				continue;
   2614 			}
   2615 			/*
   2616 			 * Short on resources, just stop for now.
   2617 			 */
   2618 			DPRINTF(WM_DEBUG_TX,
   2619 			    ("%s: TX: dmamap load failed: %d\n",
   2620 			    device_xname(sc->sc_dev), error));
   2621 			break;
   2622 		}
   2623 
   2624 		segs_needed = dmamap->dm_nsegs;
   2625 		if (use_tso) {
   2626 			/* For sentinel descriptor; see below. */
   2627 			segs_needed++;
   2628 		}
   2629 
   2630 		/*
   2631 		 * Ensure we have enough descriptors free to describe
   2632 		 * the packet.  Note, we always reserve one descriptor
   2633 		 * at the end of the ring due to the semantics of the
   2634 		 * TDT register, plus one more in the event we need
   2635 		 * to load offload context.
   2636 		 */
   2637 		if (segs_needed > sc->sc_txfree - 2) {
   2638 			/*
   2639 			 * Not enough free descriptors to transmit this
   2640 			 * packet.  We haven't committed anything yet,
   2641 			 * so just unload the DMA map, put the packet
   2642 			 * pack on the queue, and punt.  Notify the upper
   2643 			 * layer that there are no more slots left.
   2644 			 */
   2645 			DPRINTF(WM_DEBUG_TX,
   2646 			    ("%s: TX: need %d (%d) descriptors, have %d\n",
   2647 			    device_xname(sc->sc_dev), dmamap->dm_nsegs,
   2648 			    segs_needed, sc->sc_txfree - 1));
   2649 			ifp->if_flags |= IFF_OACTIVE;
   2650 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   2651 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   2652 			break;
   2653 		}
   2654 
   2655 		/*
   2656 		 * Check for 82547 Tx FIFO bug.  We need to do this
   2657 		 * once we know we can transmit the packet, since we
   2658 		 * do some internal FIFO space accounting here.
   2659 		 */
   2660 		if (sc->sc_type == WM_T_82547 &&
   2661 		    wm_82547_txfifo_bugchk(sc, m0)) {
   2662 			DPRINTF(WM_DEBUG_TX,
   2663 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
   2664 			    device_xname(sc->sc_dev)));
   2665 			ifp->if_flags |= IFF_OACTIVE;
   2666 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   2667 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
   2668 			break;
   2669 		}
   2670 
   2671 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   2672 
   2673 		/*
   2674 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   2675 		 */
   2676 
   2677 		DPRINTF(WM_DEBUG_TX,
   2678 		    ("%s: TX: packet has %d (%d) DMA segments\n",
   2679 		    device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed));
   2680 
   2681 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   2682 
   2683 		/*
   2684 		 * Store a pointer to the packet so that we can free it
   2685 		 * later.
   2686 		 *
   2687 		 * Initially, we consider the number of descriptors the
   2688 		 * packet uses the number of DMA segments.  This may be
   2689 		 * incremented by 1 if we do checksum offload (a descriptor
   2690 		 * is used to set the checksum context).
   2691 		 */
   2692 		txs->txs_mbuf = m0;
   2693 		txs->txs_firstdesc = sc->sc_txnext;
   2694 		txs->txs_ndesc = segs_needed;
   2695 
   2696 		/* Set up offload parameters for this packet. */
   2697 		if (m0->m_pkthdr.csum_flags &
   2698 		    (M_CSUM_TSOv4|M_CSUM_TSOv6|
   2699 		    M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
   2700 		    M_CSUM_TCPv6|M_CSUM_UDPv6)) {
   2701 			if (wm_tx_offload(sc, txs, &cksumcmd,
   2702 					  &cksumfields) != 0) {
   2703 				/* Error message already displayed. */
   2704 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   2705 				continue;
   2706 			}
   2707 		} else {
   2708 			cksumcmd = 0;
   2709 			cksumfields = 0;
   2710 		}
   2711 
   2712 		cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
   2713 
   2714 		/* Sync the DMA map. */
   2715 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   2716 		    BUS_DMASYNC_PREWRITE);
   2717 
   2718 		/*
   2719 		 * Initialize the transmit descriptor.
   2720 		 */
   2721 		for (nexttx = sc->sc_txnext, seg = 0;
   2722 		     seg < dmamap->dm_nsegs; seg++) {
   2723 			for (seglen = dmamap->dm_segs[seg].ds_len,
   2724 			     curaddr = dmamap->dm_segs[seg].ds_addr;
   2725 			     seglen != 0;
   2726 			     curaddr += curlen, seglen -= curlen,
   2727 			     nexttx = WM_NEXTTX(sc, nexttx)) {
   2728 				curlen = seglen;
   2729 
   2730 				/*
   2731 				 * So says the Linux driver:
   2732 				 * Work around for premature descriptor
   2733 				 * write-backs in TSO mode.  Append a
   2734 				 * 4-byte sentinel descriptor.
   2735 				 */
   2736 				if (use_tso &&
   2737 				    seg == dmamap->dm_nsegs - 1 &&
   2738 				    curlen > 8)
   2739 					curlen -= 4;
   2740 
   2741 				wm_set_dma_addr(
   2742 				    &sc->sc_txdescs[nexttx].wtx_addr,
   2743 				    curaddr);
   2744 				sc->sc_txdescs[nexttx].wtx_cmdlen =
   2745 				    htole32(cksumcmd | curlen);
   2746 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
   2747 				    0;
   2748 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
   2749 				    cksumfields;
   2750 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
   2751 				lasttx = nexttx;
   2752 
   2753 				DPRINTF(WM_DEBUG_TX,
   2754 				    ("%s: TX: desc %d: low %#" PRIx64 ", "
   2755 				     "len %#04zx\n",
   2756 				    device_xname(sc->sc_dev), nexttx,
   2757 				    (uint64_t)curaddr, curlen));
   2758 			}
   2759 		}
   2760 
   2761 		KASSERT(lasttx != -1);
   2762 
   2763 		/*
   2764 		 * Set up the command byte on the last descriptor of
   2765 		 * the packet.  If we're in the interrupt delay window,
   2766 		 * delay the interrupt.
   2767 		 */
   2768 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   2769 		    htole32(WTX_CMD_EOP | WTX_CMD_RS);
   2770 
   2771 		/*
   2772 		 * If VLANs are enabled and the packet has a VLAN tag, set
   2773 		 * up the descriptor to encapsulate the packet for us.
   2774 		 *
   2775 		 * This is only valid on the last descriptor of the packet.
   2776 		 */
   2777 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   2778 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   2779 			    htole32(WTX_CMD_VLE);
   2780 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
   2781 			    = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
   2782 		}
   2783 
   2784 		txs->txs_lastdesc = lasttx;
   2785 
   2786 		DPRINTF(WM_DEBUG_TX,
   2787 		    ("%s: TX: desc %d: cmdlen 0x%08x\n",
   2788 		    device_xname(sc->sc_dev),
   2789 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
   2790 
   2791 		/* Sync the descriptors we're using. */
   2792 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
   2793 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2794 
   2795 		/* Give the packet to the chip. */
   2796 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   2797 
   2798 		DPRINTF(WM_DEBUG_TX,
   2799 		    ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
   2800 
   2801 		DPRINTF(WM_DEBUG_TX,
   2802 		    ("%s: TX: finished transmitting packet, job %d\n",
   2803 		    device_xname(sc->sc_dev), sc->sc_txsnext));
   2804 
   2805 		/* Advance the tx pointer. */
   2806 		sc->sc_txfree -= txs->txs_ndesc;
   2807 		sc->sc_txnext = nexttx;
   2808 
   2809 		sc->sc_txsfree--;
   2810 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
   2811 
   2812 		/* Pass the packet to any BPF listeners. */
   2813 		bpf_mtap(ifp, m0);
   2814 	}
   2815 
   2816 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   2817 		/* No more slots; notify upper layer. */
   2818 		ifp->if_flags |= IFF_OACTIVE;
   2819 	}
   2820 
   2821 	if (sc->sc_txfree != ofree) {
   2822 		/* Set a watchdog timer in case the chip flakes out. */
   2823 		ifp->if_timer = 5;
   2824 	}
   2825 }
   2826 
   2827 /*
   2828  * wm_nq_tx_offload:
   2829  *
   2830  *	Set up TCP/IP checksumming parameters for the
   2831  *	specified packet, for NEWQUEUE devices
   2832  */
   2833 static int
   2834 wm_nq_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs,
   2835     uint32_t *cmdlenp, uint32_t *fieldsp, bool *do_csum)
   2836 {
   2837 	struct mbuf *m0 = txs->txs_mbuf;
   2838 	struct m_tag *mtag;
   2839 	uint32_t vl_len, mssidx, cmdc;
   2840 	struct ether_header *eh;
   2841 	int offset, iphl;
   2842 
   2843 	/*
   2844 	 * XXX It would be nice if the mbuf pkthdr had offset
   2845 	 * fields for the protocol headers.
   2846 	 */
   2847 	*cmdlenp = 0;
   2848 	*fieldsp = 0;
   2849 
   2850 	eh = mtod(m0, struct ether_header *);
   2851 	switch (htons(eh->ether_type)) {
   2852 	case ETHERTYPE_IP:
   2853 	case ETHERTYPE_IPV6:
   2854 		offset = ETHER_HDR_LEN;
   2855 		break;
   2856 
   2857 	case ETHERTYPE_VLAN:
   2858 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   2859 		break;
   2860 
   2861 	default:
   2862 		/*
   2863 		 * Don't support this protocol or encapsulation.
   2864 		 */
   2865 		*do_csum = false;
   2866 		return 0;
   2867 	}
   2868 	*do_csum = true;
   2869 	*cmdlenp = NQTX_DTYP_D | NQTX_CMD_DEXT | NQTX_CMD_IFCS;
   2870 	cmdc = NQTX_DTYP_C | NQTX_CMD_DEXT;
   2871 
   2872 	vl_len = (offset << NQTXC_VLLEN_MACLEN_SHIFT);
   2873 	KASSERT((offset & ~NQTXC_VLLEN_MACLEN_MASK) == 0);
   2874 
   2875 	if ((m0->m_pkthdr.csum_flags &
   2876 	    (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_IPv4)) != 0) {
   2877 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   2878 	} else {
   2879 		iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
   2880 	}
   2881 	vl_len |= (iphl << NQTXC_VLLEN_IPLEN_SHIFT);
   2882 	KASSERT((iphl & ~NQTXC_VLLEN_IPLEN_MASK) == 0);
   2883 
   2884 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   2885 		vl_len |= ((VLAN_TAG_VALUE(mtag) & NQTXC_VLLEN_VLAN_MASK)
   2886 		     << NQTXC_VLLEN_VLAN_SHIFT);
   2887 		*cmdlenp |= NQTX_CMD_VLE;
   2888 	}
   2889 
   2890 	mssidx = 0;
   2891 
   2892 	if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
   2893 		int hlen = offset + iphl;
   2894 		int tcp_hlen;
   2895 		bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   2896 
   2897 		if (__predict_false(m0->m_len <
   2898 				    (hlen + sizeof(struct tcphdr)))) {
   2899 			/*
   2900 			 * TCP/IP headers are not in the first mbuf; we need
   2901 			 * to do this the slow and painful way.  Let's just
   2902 			 * hope this doesn't happen very often.
   2903 			 */
   2904 			struct tcphdr th;
   2905 
   2906 			WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
   2907 
   2908 			m_copydata(m0, hlen, sizeof(th), &th);
   2909 			if (v4) {
   2910 				struct ip ip;
   2911 
   2912 				m_copydata(m0, offset, sizeof(ip), &ip);
   2913 				ip.ip_len = 0;
   2914 				m_copyback(m0,
   2915 				    offset + offsetof(struct ip, ip_len),
   2916 				    sizeof(ip.ip_len), &ip.ip_len);
   2917 				th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   2918 				    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   2919 			} else {
   2920 				struct ip6_hdr ip6;
   2921 
   2922 				m_copydata(m0, offset, sizeof(ip6), &ip6);
   2923 				ip6.ip6_plen = 0;
   2924 				m_copyback(m0,
   2925 				    offset + offsetof(struct ip6_hdr, ip6_plen),
   2926 				    sizeof(ip6.ip6_plen), &ip6.ip6_plen);
   2927 				th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
   2928 				    &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
   2929 			}
   2930 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   2931 			    sizeof(th.th_sum), &th.th_sum);
   2932 
   2933 			tcp_hlen = th.th_off << 2;
   2934 		} else {
   2935 			/*
   2936 			 * TCP/IP headers are in the first mbuf; we can do
   2937 			 * this the easy way.
   2938 			 */
   2939 			struct tcphdr *th;
   2940 
   2941 			if (v4) {
   2942 				struct ip *ip =
   2943 				    (void *)(mtod(m0, char *) + offset);
   2944 				th = (void *)(mtod(m0, char *) + hlen);
   2945 
   2946 				ip->ip_len = 0;
   2947 				th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   2948 				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   2949 			} else {
   2950 				struct ip6_hdr *ip6 =
   2951 				    (void *)(mtod(m0, char *) + offset);
   2952 				th = (void *)(mtod(m0, char *) + hlen);
   2953 
   2954 				ip6->ip6_plen = 0;
   2955 				th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
   2956 				    &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
   2957 			}
   2958 			tcp_hlen = th->th_off << 2;
   2959 		}
   2960 		hlen += tcp_hlen;
   2961 		*cmdlenp |= NQTX_CMD_TSE;
   2962 
   2963 		if (v4) {
   2964 			WM_EVCNT_INCR(&sc->sc_ev_txtso);
   2965 			*fieldsp |= NQTXD_FIELDS_IXSM | NQTXD_FIELDS_TUXSM;
   2966 		} else {
   2967 			WM_EVCNT_INCR(&sc->sc_ev_txtso6);
   2968 			*fieldsp |= NQTXD_FIELDS_TUXSM;
   2969 		}
   2970 		*fieldsp |= ((m0->m_pkthdr.len - hlen) << NQTXD_FIELDS_PAYLEN_SHIFT);
   2971 		KASSERT(((m0->m_pkthdr.len - hlen) & ~NQTXD_FIELDS_PAYLEN_MASK) == 0);
   2972 		mssidx |= (m0->m_pkthdr.segsz << NQTXC_MSSIDX_MSS_SHIFT);
   2973 		KASSERT((m0->m_pkthdr.segsz & ~NQTXC_MSSIDX_MSS_MASK) == 0);
   2974 		mssidx |= (tcp_hlen << NQTXC_MSSIDX_L4LEN_SHIFT);
   2975 		KASSERT((tcp_hlen & ~NQTXC_MSSIDX_L4LEN_MASK) == 0);
   2976 	} else {
   2977 		*fieldsp |= (m0->m_pkthdr.len << NQTXD_FIELDS_PAYLEN_SHIFT);
   2978 		KASSERT((m0->m_pkthdr.len & ~NQTXD_FIELDS_PAYLEN_MASK) == 0);
   2979 	}
   2980 
   2981 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   2982 		*fieldsp |= NQTXD_FIELDS_IXSM;
   2983 		cmdc |= NQTXC_CMD_IP4;
   2984 	}
   2985 
   2986 	if (m0->m_pkthdr.csum_flags &
   2987 	    (M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_TSOv4)) {
   2988 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
   2989 		if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_TSOv4)) {
   2990 			cmdc |= NQTXC_CMD_TCP;
   2991 		} else {
   2992 			cmdc |= NQTXC_CMD_UDP;
   2993 		}
   2994 		cmdc |= NQTXC_CMD_IP4;
   2995 		*fieldsp |= NQTXD_FIELDS_TUXSM;
   2996 	}
   2997 	if (m0->m_pkthdr.csum_flags &
   2998 	    (M_CSUM_UDPv6 | M_CSUM_TCPv6 | M_CSUM_TSOv6)) {
   2999 		WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
   3000 		if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv6 | M_CSUM_TSOv6)) {
   3001 			cmdc |= NQTXC_CMD_TCP;
   3002 		} else {
   3003 			cmdc |= NQTXC_CMD_UDP;
   3004 		}
   3005 		cmdc |= NQTXC_CMD_IP6;
   3006 		*fieldsp |= NQTXD_FIELDS_TUXSM;
   3007 	}
   3008 
   3009 	/* Fill in the context descriptor. */
   3010 	sc->sc_nq_txdescs[sc->sc_txnext].nqrx_ctx.nqtxc_vl_len =
   3011 	    htole32(vl_len);
   3012 	sc->sc_nq_txdescs[sc->sc_txnext].nqrx_ctx.nqtxc_sn = 0;
   3013 	sc->sc_nq_txdescs[sc->sc_txnext].nqrx_ctx.nqtxc_cmd =
   3014 	    htole32(cmdc);
   3015 	sc->sc_nq_txdescs[sc->sc_txnext].nqrx_ctx.nqtxc_mssidx =
   3016 	    htole32(mssidx);
   3017 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   3018 	DPRINTF(WM_DEBUG_TX,
   3019 	    ("%s: TX: context desc %d 0x%08x%08x\n", device_xname(sc->sc_dev),
   3020 	    sc->sc_txnext, 0, vl_len));
   3021 	DPRINTF(WM_DEBUG_TX, ("\t0x%08x%08x\n", mssidx, cmdc));
   3022 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
   3023 	txs->txs_ndesc++;
   3024 	return 0;
   3025 }
   3026 
   3027 /*
   3028  * wm_nq_start:		[ifnet interface function]
   3029  *
   3030  *	Start packet transmission on the interface for NEWQUEUE devices
   3031  */
   3032 static void
   3033 wm_nq_start(struct ifnet *ifp)
   3034 {
   3035 	struct wm_softc *sc = ifp->if_softc;
   3036 	struct mbuf *m0;
   3037 	struct m_tag *mtag;
   3038 	struct wm_txsoft *txs;
   3039 	bus_dmamap_t dmamap;
   3040 	int error, nexttx, lasttx = -1, seg, segs_needed;
   3041 	bool do_csum, sent;
   3042 
   3043 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   3044 		return;
   3045 
   3046 	sent = false;
   3047 
   3048 	/*
   3049 	 * Loop through the send queue, setting up transmit descriptors
   3050 	 * until we drain the queue, or use up all available transmit
   3051 	 * descriptors.
   3052 	 */
   3053 	for (;;) {
   3054 		/* Grab a packet off the queue. */
   3055 		IFQ_POLL(&ifp->if_snd, m0);
   3056 		if (m0 == NULL)
   3057 			break;
   3058 
   3059 		DPRINTF(WM_DEBUG_TX,
   3060 		    ("%s: TX: have packet to transmit: %p\n",
   3061 		    device_xname(sc->sc_dev), m0));
   3062 
   3063 		/* Get a work queue entry. */
   3064 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
   3065 			wm_txintr(sc);
   3066 			if (sc->sc_txsfree == 0) {
   3067 				DPRINTF(WM_DEBUG_TX,
   3068 				    ("%s: TX: no free job descriptors\n",
   3069 					device_xname(sc->sc_dev)));
   3070 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   3071 				break;
   3072 			}
   3073 		}
   3074 
   3075 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   3076 		dmamap = txs->txs_dmamap;
   3077 
   3078 		/*
   3079 		 * Load the DMA map.  If this fails, the packet either
   3080 		 * didn't fit in the allotted number of segments, or we
   3081 		 * were short on resources.  For the too-many-segments
   3082 		 * case, we simply report an error and drop the packet,
   3083 		 * since we can't sanely copy a jumbo packet to a single
   3084 		 * buffer.
   3085 		 */
   3086 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   3087 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   3088 		if (error) {
   3089 			if (error == EFBIG) {
   3090 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   3091 				log(LOG_ERR, "%s: Tx packet consumes too many "
   3092 				    "DMA segments, dropping...\n",
   3093 				    device_xname(sc->sc_dev));
   3094 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   3095 				wm_dump_mbuf_chain(sc, m0);
   3096 				m_freem(m0);
   3097 				continue;
   3098 			}
   3099 			/*
   3100 			 * Short on resources, just stop for now.
   3101 			 */
   3102 			DPRINTF(WM_DEBUG_TX,
   3103 			    ("%s: TX: dmamap load failed: %d\n",
   3104 			    device_xname(sc->sc_dev), error));
   3105 			break;
   3106 		}
   3107 
   3108 		segs_needed = dmamap->dm_nsegs;
   3109 
   3110 		/*
   3111 		 * Ensure we have enough descriptors free to describe
   3112 		 * the packet.  Note, we always reserve one descriptor
   3113 		 * at the end of the ring due to the semantics of the
   3114 		 * TDT register, plus one more in the event we need
   3115 		 * to load offload context.
   3116 		 */
   3117 		if (segs_needed > sc->sc_txfree - 2) {
   3118 			/*
   3119 			 * Not enough free descriptors to transmit this
   3120 			 * packet.  We haven't committed anything yet,
   3121 			 * so just unload the DMA map, put the packet
   3122 			 * pack on the queue, and punt.  Notify the upper
   3123 			 * layer that there are no more slots left.
   3124 			 */
   3125 			DPRINTF(WM_DEBUG_TX,
   3126 			    ("%s: TX: need %d (%d) descriptors, have %d\n",
   3127 			    device_xname(sc->sc_dev), dmamap->dm_nsegs,
   3128 			    segs_needed, sc->sc_txfree - 1));
   3129 			ifp->if_flags |= IFF_OACTIVE;
   3130 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   3131 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   3132 			break;
   3133 		}
   3134 
   3135 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   3136 
   3137 		/*
   3138 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   3139 		 */
   3140 
   3141 		DPRINTF(WM_DEBUG_TX,
   3142 		    ("%s: TX: packet has %d (%d) DMA segments\n",
   3143 		    device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed));
   3144 
   3145 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   3146 
   3147 		/*
   3148 		 * Store a pointer to the packet so that we can free it
   3149 		 * later.
   3150 		 *
   3151 		 * Initially, we consider the number of descriptors the
   3152 		 * packet uses the number of DMA segments.  This may be
   3153 		 * incremented by 1 if we do checksum offload (a descriptor
   3154 		 * is used to set the checksum context).
   3155 		 */
   3156 		txs->txs_mbuf = m0;
   3157 		txs->txs_firstdesc = sc->sc_txnext;
   3158 		txs->txs_ndesc = segs_needed;
   3159 
   3160 		/* Set up offload parameters for this packet. */
   3161 		uint32_t cmdlen, fields, dcmdlen;
   3162 		if (m0->m_pkthdr.csum_flags &
   3163 		    (M_CSUM_TSOv4|M_CSUM_TSOv6|
   3164 		    M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
   3165 		    M_CSUM_TCPv6|M_CSUM_UDPv6)) {
   3166 			if (wm_nq_tx_offload(sc, txs, &cmdlen, &fields,
   3167 			    &do_csum) != 0) {
   3168 				/* Error message already displayed. */
   3169 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   3170 				continue;
   3171 			}
   3172 		} else {
   3173 			do_csum = false;
   3174 			cmdlen = 0;
   3175 			fields = 0;
   3176 		}
   3177 
   3178 		/* Sync the DMA map. */
   3179 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   3180 		    BUS_DMASYNC_PREWRITE);
   3181 
   3182 		/*
   3183 		 * Initialize the first transmit descriptor.
   3184 		 */
   3185 		nexttx = sc->sc_txnext;
   3186 		if (!do_csum) {
   3187 			/* setup a legacy descriptor */
   3188 			wm_set_dma_addr(
   3189 			    &sc->sc_txdescs[nexttx].wtx_addr,
   3190 			    dmamap->dm_segs[0].ds_addr);
   3191 			sc->sc_txdescs[nexttx].wtx_cmdlen =
   3192 			    htole32(WTX_CMD_IFCS | dmamap->dm_segs[0].ds_len);
   3193 			sc->sc_txdescs[nexttx].wtx_fields.wtxu_status = 0;
   3194 			sc->sc_txdescs[nexttx].wtx_fields.wtxu_options = 0;
   3195 			if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) !=
   3196 			    NULL) {
   3197 				sc->sc_txdescs[nexttx].wtx_cmdlen |=
   3198 				    htole32(WTX_CMD_VLE);
   3199 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan =
   3200 				    htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
   3201 			} else {
   3202 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
   3203 			}
   3204 			dcmdlen = 0;
   3205 		} else {
   3206 			/* setup an advanced data descriptor */
   3207 			sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_addr =
   3208 			    htole64(dmamap->dm_segs[0].ds_addr);
   3209 			KASSERT((dmamap->dm_segs[0].ds_len & cmdlen) == 0);
   3210 			sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_cmdlen =
   3211 			    htole32(dmamap->dm_segs[0].ds_len | cmdlen );
   3212 			sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_fields =
   3213 			    htole32(fields);
   3214 			DPRINTF(WM_DEBUG_TX,
   3215 			    ("%s: TX: adv data desc %d 0x%" PRIx64 "\n",
   3216 			    device_xname(sc->sc_dev), nexttx,
   3217 			    (uint64_t)dmamap->dm_segs[0].ds_addr));
   3218 			DPRINTF(WM_DEBUG_TX,
   3219 			    ("\t 0x%08x%08x\n", fields,
   3220 			    (uint32_t)dmamap->dm_segs[0].ds_len | cmdlen));
   3221 			dcmdlen = NQTX_DTYP_D | NQTX_CMD_DEXT;
   3222 		}
   3223 
   3224 		lasttx = nexttx;
   3225 		nexttx = WM_NEXTTX(sc, nexttx);
   3226 		/*
   3227 		 * fill in the next descriptors. legacy or adcanced format
   3228 		 * is the same here
   3229 		 */
   3230 		for (seg = 1; seg < dmamap->dm_nsegs;
   3231 		    seg++, nexttx = WM_NEXTTX(sc, nexttx)) {
   3232 			sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_addr =
   3233 			    htole64(dmamap->dm_segs[seg].ds_addr);
   3234 			sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_cmdlen =
   3235 			    htole32(dcmdlen | dmamap->dm_segs[seg].ds_len);
   3236 			KASSERT((dcmdlen & dmamap->dm_segs[seg].ds_len) == 0);
   3237 			sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_fields = 0;
   3238 			lasttx = nexttx;
   3239 
   3240 			DPRINTF(WM_DEBUG_TX,
   3241 			    ("%s: TX: desc %d: %#" PRIx64 ", "
   3242 			     "len %#04zx\n",
   3243 			    device_xname(sc->sc_dev), nexttx,
   3244 			    (uint64_t)dmamap->dm_segs[seg].ds_addr,
   3245 			    dmamap->dm_segs[seg].ds_len));
   3246 		}
   3247 
   3248 		KASSERT(lasttx != -1);
   3249 
   3250 		/*
   3251 		 * Set up the command byte on the last descriptor of
   3252 		 * the packet.  If we're in the interrupt delay window,
   3253 		 * delay the interrupt.
   3254 		 */
   3255 		KASSERT((WTX_CMD_EOP | WTX_CMD_RS) ==
   3256 		    (NQTX_CMD_EOP | NQTX_CMD_RS));
   3257 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   3258 		    htole32(WTX_CMD_EOP | WTX_CMD_RS);
   3259 
   3260 		txs->txs_lastdesc = lasttx;
   3261 
   3262 		DPRINTF(WM_DEBUG_TX,
   3263 		    ("%s: TX: desc %d: cmdlen 0x%08x\n",
   3264 		    device_xname(sc->sc_dev),
   3265 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
   3266 
   3267 		/* Sync the descriptors we're using. */
   3268 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
   3269 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3270 
   3271 		/* Give the packet to the chip. */
   3272 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   3273 		sent = true;
   3274 
   3275 		DPRINTF(WM_DEBUG_TX,
   3276 		    ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
   3277 
   3278 		DPRINTF(WM_DEBUG_TX,
   3279 		    ("%s: TX: finished transmitting packet, job %d\n",
   3280 		    device_xname(sc->sc_dev), sc->sc_txsnext));
   3281 
   3282 		/* Advance the tx pointer. */
   3283 		sc->sc_txfree -= txs->txs_ndesc;
   3284 		sc->sc_txnext = nexttx;
   3285 
   3286 		sc->sc_txsfree--;
   3287 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
   3288 
   3289 		/* Pass the packet to any BPF listeners. */
   3290 		bpf_mtap(ifp, m0);
   3291 	}
   3292 
   3293 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   3294 		/* No more slots; notify upper layer. */
   3295 		ifp->if_flags |= IFF_OACTIVE;
   3296 	}
   3297 
   3298 	if (sent) {
   3299 		/* Set a watchdog timer in case the chip flakes out. */
   3300 		ifp->if_timer = 5;
   3301 	}
   3302 }
   3303 
   3304 /*
   3305  * wm_watchdog:		[ifnet interface function]
   3306  *
   3307  *	Watchdog timer handler.
   3308  */
   3309 static void
   3310 wm_watchdog(struct ifnet *ifp)
   3311 {
   3312 	struct wm_softc *sc = ifp->if_softc;
   3313 
   3314 	/*
   3315 	 * Since we're using delayed interrupts, sweep up
   3316 	 * before we report an error.
   3317 	 */
   3318 	wm_txintr(sc);
   3319 
   3320 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
   3321 #ifdef WM_DEBUG
   3322 		int i, j;
   3323 		struct wm_txsoft *txs;
   3324 #endif
   3325 		log(LOG_ERR,
   3326 		    "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   3327 		    device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
   3328 		    sc->sc_txnext);
   3329 		ifp->if_oerrors++;
   3330 #ifdef WM_DEBUG
   3331 		for (i = sc->sc_txsdirty; i != sc->sc_txsnext ;
   3332 		    i = WM_NEXTTXS(sc, i)) {
   3333 		    txs = &sc->sc_txsoft[i];
   3334 		    printf("txs %d tx %d -> %d\n",
   3335 			i, txs->txs_firstdesc, txs->txs_lastdesc);
   3336 		    for (j = txs->txs_firstdesc; ;
   3337 			j = WM_NEXTTX(sc, j)) {
   3338 			printf("\tdesc %d: 0x%" PRIx64 "\n", j,
   3339 			    sc->sc_nq_txdescs[j].nqtx_data.nqtxd_addr);
   3340 			printf("\t %#08x%08x\n",
   3341 			    sc->sc_nq_txdescs[j].nqtx_data.nqtxd_fields,
   3342 			    sc->sc_nq_txdescs[j].nqtx_data.nqtxd_cmdlen);
   3343 			if (j == txs->txs_lastdesc)
   3344 				break;
   3345 			}
   3346 		}
   3347 #endif
   3348 		/* Reset the interface. */
   3349 		(void) wm_init(ifp);
   3350 	}
   3351 
   3352 	/* Try to get more packets going. */
   3353 	ifp->if_start(ifp);
   3354 }
   3355 
   3356 static int
   3357 wm_ifflags_cb(struct ethercom *ec)
   3358 {
   3359 	struct ifnet *ifp = &ec->ec_if;
   3360 	struct wm_softc *sc = ifp->if_softc;
   3361 	int change = ifp->if_flags ^ sc->sc_if_flags;
   3362 
   3363 	if (change != 0)
   3364 		sc->sc_if_flags = ifp->if_flags;
   3365 
   3366 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   3367 		return ENETRESET;
   3368 
   3369 	if ((change & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
   3370 		wm_set_filter(sc);
   3371 
   3372 	wm_set_vlan(sc);
   3373 
   3374 	return 0;
   3375 }
   3376 
   3377 /*
   3378  * wm_ioctl:		[ifnet interface function]
   3379  *
   3380  *	Handle control requests from the operator.
   3381  */
   3382 static int
   3383 wm_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   3384 {
   3385 	struct wm_softc *sc = ifp->if_softc;
   3386 	struct ifreq *ifr = (struct ifreq *) data;
   3387 	struct ifaddr *ifa = (struct ifaddr *)data;
   3388 	struct sockaddr_dl *sdl;
   3389 	int s, error;
   3390 
   3391 	s = splnet();
   3392 
   3393 	switch (cmd) {
   3394 	case SIOCSIFMEDIA:
   3395 	case SIOCGIFMEDIA:
   3396 		/* Flow control requires full-duplex mode. */
   3397 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   3398 		    (ifr->ifr_media & IFM_FDX) == 0)
   3399 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   3400 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   3401 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   3402 				/* We can do both TXPAUSE and RXPAUSE. */
   3403 				ifr->ifr_media |=
   3404 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   3405 			}
   3406 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   3407 		}
   3408 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   3409 		break;
   3410 	case SIOCINITIFADDR:
   3411 		if (ifa->ifa_addr->sa_family == AF_LINK) {
   3412 			sdl = satosdl(ifp->if_dl->ifa_addr);
   3413 			(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len,
   3414 			    LLADDR(satosdl(ifa->ifa_addr)), ifp->if_addrlen);
   3415 			/* unicast address is first multicast entry */
   3416 			wm_set_filter(sc);
   3417 			error = 0;
   3418 			break;
   3419 		}
   3420 		/*FALLTHROUGH*/
   3421 	default:
   3422 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   3423 			break;
   3424 
   3425 		error = 0;
   3426 
   3427 		if (cmd == SIOCSIFCAP)
   3428 			error = (*ifp->if_init)(ifp);
   3429 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   3430 			;
   3431 		else if (ifp->if_flags & IFF_RUNNING) {
   3432 			/*
   3433 			 * Multicast list has changed; set the hardware filter
   3434 			 * accordingly.
   3435 			 */
   3436 			wm_set_filter(sc);
   3437 		}
   3438 		break;
   3439 	}
   3440 
   3441 	/* Try to get more packets going. */
   3442 	ifp->if_start(ifp);
   3443 
   3444 	splx(s);
   3445 	return error;
   3446 }
   3447 
   3448 /*
   3449  * wm_intr:
   3450  *
   3451  *	Interrupt service routine.
   3452  */
   3453 static int
   3454 wm_intr(void *arg)
   3455 {
   3456 	struct wm_softc *sc = arg;
   3457 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3458 	uint32_t icr;
   3459 	int handled = 0;
   3460 
   3461 	while (1 /* CONSTCOND */) {
   3462 		icr = CSR_READ(sc, WMREG_ICR);
   3463 		if ((icr & sc->sc_icr) == 0)
   3464 			break;
   3465 		rnd_add_uint32(&sc->rnd_source, icr);
   3466 
   3467 		handled = 1;
   3468 
   3469 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   3470 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   3471 			DPRINTF(WM_DEBUG_RX,
   3472 			    ("%s: RX: got Rx intr 0x%08x\n",
   3473 			    device_xname(sc->sc_dev),
   3474 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   3475 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
   3476 		}
   3477 #endif
   3478 		wm_rxintr(sc);
   3479 
   3480 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   3481 		if (icr & ICR_TXDW) {
   3482 			DPRINTF(WM_DEBUG_TX,
   3483 			    ("%s: TX: got TXDW interrupt\n",
   3484 			    device_xname(sc->sc_dev)));
   3485 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
   3486 		}
   3487 #endif
   3488 		wm_txintr(sc);
   3489 
   3490 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
   3491 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
   3492 			wm_linkintr(sc, icr);
   3493 		}
   3494 
   3495 		if (icr & ICR_RXO) {
   3496 #if defined(WM_DEBUG)
   3497 			log(LOG_WARNING, "%s: Receive overrun\n",
   3498 			    device_xname(sc->sc_dev));
   3499 #endif /* defined(WM_DEBUG) */
   3500 		}
   3501 	}
   3502 
   3503 	if (handled) {
   3504 		/* Try to get more packets going. */
   3505 		ifp->if_start(ifp);
   3506 	}
   3507 
   3508 	return handled;
   3509 }
   3510 
   3511 /*
   3512  * wm_txintr:
   3513  *
   3514  *	Helper; handle transmit interrupts.
   3515  */
   3516 static void
   3517 wm_txintr(struct wm_softc *sc)
   3518 {
   3519 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3520 	struct wm_txsoft *txs;
   3521 	uint8_t status;
   3522 	int i;
   3523 
   3524 	ifp->if_flags &= ~IFF_OACTIVE;
   3525 
   3526 	/*
   3527 	 * Go through the Tx list and free mbufs for those
   3528 	 * frames which have been transmitted.
   3529 	 */
   3530 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
   3531 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
   3532 		txs = &sc->sc_txsoft[i];
   3533 
   3534 		DPRINTF(WM_DEBUG_TX,
   3535 		    ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i));
   3536 
   3537 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   3538 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3539 
   3540 		status =
   3541 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
   3542 		if ((status & WTX_ST_DD) == 0) {
   3543 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   3544 			    BUS_DMASYNC_PREREAD);
   3545 			break;
   3546 		}
   3547 
   3548 		DPRINTF(WM_DEBUG_TX,
   3549 		    ("%s: TX: job %d done: descs %d..%d\n",
   3550 		    device_xname(sc->sc_dev), i, txs->txs_firstdesc,
   3551 		    txs->txs_lastdesc));
   3552 
   3553 		/*
   3554 		 * XXX We should probably be using the statistics
   3555 		 * XXX registers, but I don't know if they exist
   3556 		 * XXX on chips before the i82544.
   3557 		 */
   3558 
   3559 #ifdef WM_EVENT_COUNTERS
   3560 		if (status & WTX_ST_TU)
   3561 			WM_EVCNT_INCR(&sc->sc_ev_tu);
   3562 #endif /* WM_EVENT_COUNTERS */
   3563 
   3564 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
   3565 			ifp->if_oerrors++;
   3566 			if (status & WTX_ST_LC)
   3567 				log(LOG_WARNING, "%s: late collision\n",
   3568 				    device_xname(sc->sc_dev));
   3569 			else if (status & WTX_ST_EC) {
   3570 				ifp->if_collisions += 16;
   3571 				log(LOG_WARNING, "%s: excessive collisions\n",
   3572 				    device_xname(sc->sc_dev));
   3573 			}
   3574 		} else
   3575 			ifp->if_opackets++;
   3576 
   3577 		sc->sc_txfree += txs->txs_ndesc;
   3578 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   3579 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3580 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   3581 		m_freem(txs->txs_mbuf);
   3582 		txs->txs_mbuf = NULL;
   3583 	}
   3584 
   3585 	/* Update the dirty transmit buffer pointer. */
   3586 	sc->sc_txsdirty = i;
   3587 	DPRINTF(WM_DEBUG_TX,
   3588 	    ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
   3589 
   3590 	/*
   3591 	 * If there are no more pending transmissions, cancel the watchdog
   3592 	 * timer.
   3593 	 */
   3594 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
   3595 		ifp->if_timer = 0;
   3596 }
   3597 
   3598 /*
   3599  * wm_rxintr:
   3600  *
   3601  *	Helper; handle receive interrupts.
   3602  */
   3603 static void
   3604 wm_rxintr(struct wm_softc *sc)
   3605 {
   3606 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3607 	struct wm_rxsoft *rxs;
   3608 	struct mbuf *m;
   3609 	int i, len;
   3610 	uint8_t status, errors;
   3611 	uint16_t vlantag;
   3612 
   3613 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
   3614 		rxs = &sc->sc_rxsoft[i];
   3615 
   3616 		DPRINTF(WM_DEBUG_RX,
   3617 		    ("%s: RX: checking descriptor %d\n",
   3618 		    device_xname(sc->sc_dev), i));
   3619 
   3620 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3621 
   3622 		status = sc->sc_rxdescs[i].wrx_status;
   3623 		errors = sc->sc_rxdescs[i].wrx_errors;
   3624 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
   3625 		vlantag = sc->sc_rxdescs[i].wrx_special;
   3626 
   3627 		if ((status & WRX_ST_DD) == 0) {
   3628 			/*
   3629 			 * We have processed all of the receive descriptors.
   3630 			 */
   3631 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   3632 			break;
   3633 		}
   3634 
   3635 		if (__predict_false(sc->sc_rxdiscard)) {
   3636 			DPRINTF(WM_DEBUG_RX,
   3637 			    ("%s: RX: discarding contents of descriptor %d\n",
   3638 			    device_xname(sc->sc_dev), i));
   3639 			WM_INIT_RXDESC(sc, i);
   3640 			if (status & WRX_ST_EOP) {
   3641 				/* Reset our state. */
   3642 				DPRINTF(WM_DEBUG_RX,
   3643 				    ("%s: RX: resetting rxdiscard -> 0\n",
   3644 				    device_xname(sc->sc_dev)));
   3645 				sc->sc_rxdiscard = 0;
   3646 			}
   3647 			continue;
   3648 		}
   3649 
   3650 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3651 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3652 
   3653 		m = rxs->rxs_mbuf;
   3654 
   3655 		/*
   3656 		 * Add a new receive buffer to the ring, unless of
   3657 		 * course the length is zero. Treat the latter as a
   3658 		 * failed mapping.
   3659 		 */
   3660 		if ((len == 0) || (wm_add_rxbuf(sc, i) != 0)) {
   3661 			/*
   3662 			 * Failed, throw away what we've done so
   3663 			 * far, and discard the rest of the packet.
   3664 			 */
   3665 			ifp->if_ierrors++;
   3666 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3667 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3668 			WM_INIT_RXDESC(sc, i);
   3669 			if ((status & WRX_ST_EOP) == 0)
   3670 				sc->sc_rxdiscard = 1;
   3671 			if (sc->sc_rxhead != NULL)
   3672 				m_freem(sc->sc_rxhead);
   3673 			WM_RXCHAIN_RESET(sc);
   3674 			DPRINTF(WM_DEBUG_RX,
   3675 			    ("%s: RX: Rx buffer allocation failed, "
   3676 			    "dropping packet%s\n", device_xname(sc->sc_dev),
   3677 			    sc->sc_rxdiscard ? " (discard)" : ""));
   3678 			continue;
   3679 		}
   3680 
   3681 		m->m_len = len;
   3682 		sc->sc_rxlen += len;
   3683 		DPRINTF(WM_DEBUG_RX,
   3684 		    ("%s: RX: buffer at %p len %d\n",
   3685 		    device_xname(sc->sc_dev), m->m_data, len));
   3686 
   3687 		/*
   3688 		 * If this is not the end of the packet, keep
   3689 		 * looking.
   3690 		 */
   3691 		if ((status & WRX_ST_EOP) == 0) {
   3692 			WM_RXCHAIN_LINK(sc, m);
   3693 			DPRINTF(WM_DEBUG_RX,
   3694 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   3695 			    device_xname(sc->sc_dev), sc->sc_rxlen));
   3696 			continue;
   3697 		}
   3698 
   3699 		/*
   3700 		 * Okay, we have the entire packet now.  The chip is
   3701 		 * configured to include the FCS except I350 and I21[01]
   3702 		 * (not all chips can be configured to strip it),
   3703 		 * so we need to trim it.
   3704 		 * May need to adjust length of previous mbuf in the
   3705 		 * chain if the current mbuf is too short.
   3706 		 * For an eratta, the RCTL_SECRC bit in RCTL register
   3707 		 * is always set in I350, so we don't trim it.
   3708 		 */
   3709 		if ((sc->sc_type != WM_T_I350) && (sc->sc_type != WM_T_I210)
   3710 		    && (sc->sc_type != WM_T_I211)) {
   3711 			if (m->m_len < ETHER_CRC_LEN) {
   3712 				sc->sc_rxtail->m_len
   3713 				    -= (ETHER_CRC_LEN - m->m_len);
   3714 				m->m_len = 0;
   3715 			} else
   3716 				m->m_len -= ETHER_CRC_LEN;
   3717 			len = sc->sc_rxlen - ETHER_CRC_LEN;
   3718 		} else
   3719 			len = sc->sc_rxlen;
   3720 
   3721 		WM_RXCHAIN_LINK(sc, m);
   3722 
   3723 		*sc->sc_rxtailp = NULL;
   3724 		m = sc->sc_rxhead;
   3725 
   3726 		WM_RXCHAIN_RESET(sc);
   3727 
   3728 		DPRINTF(WM_DEBUG_RX,
   3729 		    ("%s: RX: have entire packet, len -> %d\n",
   3730 		    device_xname(sc->sc_dev), len));
   3731 
   3732 		/*
   3733 		 * If an error occurred, update stats and drop the packet.
   3734 		 */
   3735 		if (errors &
   3736 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
   3737 			if (errors & WRX_ER_SE)
   3738 				log(LOG_WARNING, "%s: symbol error\n",
   3739 				    device_xname(sc->sc_dev));
   3740 			else if (errors & WRX_ER_SEQ)
   3741 				log(LOG_WARNING, "%s: receive sequence error\n",
   3742 				    device_xname(sc->sc_dev));
   3743 			else if (errors & WRX_ER_CE)
   3744 				log(LOG_WARNING, "%s: CRC error\n",
   3745 				    device_xname(sc->sc_dev));
   3746 			m_freem(m);
   3747 			continue;
   3748 		}
   3749 
   3750 		/*
   3751 		 * No errors.  Receive the packet.
   3752 		 */
   3753 		m->m_pkthdr.rcvif = ifp;
   3754 		m->m_pkthdr.len = len;
   3755 
   3756 		/*
   3757 		 * If VLANs are enabled, VLAN packets have been unwrapped
   3758 		 * for us.  Associate the tag with the packet.
   3759 		 */
   3760 		if ((status & WRX_ST_VP) != 0) {
   3761 			VLAN_INPUT_TAG(ifp, m,
   3762 			    le16toh(vlantag),
   3763 			    continue);
   3764 		}
   3765 
   3766 		/*
   3767 		 * Set up checksum info for this packet.
   3768 		 */
   3769 		if ((status & WRX_ST_IXSM) == 0) {
   3770 			if (status & WRX_ST_IPCS) {
   3771 				WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
   3772 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   3773 				if (errors & WRX_ER_IPE)
   3774 					m->m_pkthdr.csum_flags |=
   3775 					    M_CSUM_IPv4_BAD;
   3776 			}
   3777 			if (status & WRX_ST_TCPCS) {
   3778 				/*
   3779 				 * Note: we don't know if this was TCP or UDP,
   3780 				 * so we just set both bits, and expect the
   3781 				 * upper layers to deal.
   3782 				 */
   3783 				WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
   3784 				m->m_pkthdr.csum_flags |=
   3785 				    M_CSUM_TCPv4 | M_CSUM_UDPv4 |
   3786 				    M_CSUM_TCPv6 | M_CSUM_UDPv6;
   3787 				if (errors & WRX_ER_TCPE)
   3788 					m->m_pkthdr.csum_flags |=
   3789 					    M_CSUM_TCP_UDP_BAD;
   3790 			}
   3791 		}
   3792 
   3793 		ifp->if_ipackets++;
   3794 
   3795 		/* Pass this up to any BPF listeners. */
   3796 		bpf_mtap(ifp, m);
   3797 
   3798 		/* Pass it on. */
   3799 		(*ifp->if_input)(ifp, m);
   3800 	}
   3801 
   3802 	/* Update the receive pointer. */
   3803 	sc->sc_rxptr = i;
   3804 
   3805 	DPRINTF(WM_DEBUG_RX,
   3806 	    ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
   3807 }
   3808 
   3809 /*
   3810  * wm_linkintr_gmii:
   3811  *
   3812  *	Helper; handle link interrupts for GMII.
   3813  */
   3814 static void
   3815 wm_linkintr_gmii(struct wm_softc *sc, uint32_t icr)
   3816 {
   3817 
   3818 	DPRINTF(WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
   3819 		__func__));
   3820 
   3821 	if (icr & ICR_LSC) {
   3822 		DPRINTF(WM_DEBUG_LINK,
   3823 		    ("%s: LINK: LSC -> mii_pollstat\n",
   3824 			device_xname(sc->sc_dev)));
   3825 		mii_pollstat(&sc->sc_mii);
   3826 		if (sc->sc_type == WM_T_82543) {
   3827 			int miistatus, active;
   3828 
   3829 			/*
   3830 			 * With 82543, we need to force speed and
   3831 			 * duplex on the MAC equal to what the PHY
   3832 			 * speed and duplex configuration is.
   3833 			 */
   3834 			miistatus = sc->sc_mii.mii_media_status;
   3835 
   3836 			if (miistatus & IFM_ACTIVE) {
   3837 				active = sc->sc_mii.mii_media_active;
   3838 				sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
   3839 				switch (IFM_SUBTYPE(active)) {
   3840 				case IFM_10_T:
   3841 					sc->sc_ctrl |= CTRL_SPEED_10;
   3842 					break;
   3843 				case IFM_100_TX:
   3844 					sc->sc_ctrl |= CTRL_SPEED_100;
   3845 					break;
   3846 				case IFM_1000_T:
   3847 					sc->sc_ctrl |= CTRL_SPEED_1000;
   3848 					break;
   3849 				default:
   3850 					/*
   3851 					 * fiber?
   3852 					 * Shoud not enter here.
   3853 					 */
   3854 					printf("unknown media (%x)\n",
   3855 					    active);
   3856 					break;
   3857 				}
   3858 				if (active & IFM_FDX)
   3859 					sc->sc_ctrl |= CTRL_FD;
   3860 				CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3861 			}
   3862 		} else if ((sc->sc_type == WM_T_ICH8)
   3863 		    && (sc->sc_phytype == WMPHY_IGP_3)) {
   3864 			wm_kmrn_lock_loss_workaround_ich8lan(sc);
   3865 		} else if (sc->sc_type == WM_T_PCH) {
   3866 			wm_k1_gig_workaround_hv(sc,
   3867 			    ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0));
   3868 		}
   3869 
   3870 		if ((sc->sc_phytype == WMPHY_82578)
   3871 		    && (IFM_SUBTYPE(sc->sc_mii.mii_media_active)
   3872 			== IFM_1000_T)) {
   3873 
   3874 			if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0) {
   3875 				delay(200*1000); /* XXX too big */
   3876 
   3877 				/* Link stall fix for link up */
   3878 				wm_gmii_hv_writereg(sc->sc_dev, 1,
   3879 				    HV_MUX_DATA_CTRL,
   3880 				    HV_MUX_DATA_CTRL_GEN_TO_MAC
   3881 				    | HV_MUX_DATA_CTRL_FORCE_SPEED);
   3882 				wm_gmii_hv_writereg(sc->sc_dev, 1,
   3883 				    HV_MUX_DATA_CTRL,
   3884 				    HV_MUX_DATA_CTRL_GEN_TO_MAC);
   3885 			}
   3886 		}
   3887 	} else if (icr & ICR_RXSEQ) {
   3888 		DPRINTF(WM_DEBUG_LINK,
   3889 		    ("%s: LINK Receive sequence error\n",
   3890 			device_xname(sc->sc_dev)));
   3891 	}
   3892 }
   3893 
   3894 /*
   3895  * wm_linkintr_tbi:
   3896  *
   3897  *	Helper; handle link interrupts for TBI mode.
   3898  */
   3899 static void
   3900 wm_linkintr_tbi(struct wm_softc *sc, uint32_t icr)
   3901 {
   3902 	uint32_t status;
   3903 
   3904 	DPRINTF(WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
   3905 		__func__));
   3906 
   3907 	status = CSR_READ(sc, WMREG_STATUS);
   3908 	if (icr & ICR_LSC) {
   3909 		if (status & STATUS_LU) {
   3910 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
   3911 			    device_xname(sc->sc_dev),
   3912 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   3913 			/*
   3914 			 * NOTE: CTRL will update TFCE and RFCE automatically,
   3915 			 * so we should update sc->sc_ctrl
   3916 			 */
   3917 
   3918 			sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
   3919 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3920 			sc->sc_fcrtl &= ~FCRTL_XONE;
   3921 			if (status & STATUS_FD)
   3922 				sc->sc_tctl |=
   3923 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3924 			else
   3925 				sc->sc_tctl |=
   3926 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3927 			if (sc->sc_ctrl & CTRL_TFCE)
   3928 				sc->sc_fcrtl |= FCRTL_XONE;
   3929 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3930 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   3931 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   3932 				      sc->sc_fcrtl);
   3933 			sc->sc_tbi_linkup = 1;
   3934 		} else {
   3935 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   3936 			    device_xname(sc->sc_dev)));
   3937 			sc->sc_tbi_linkup = 0;
   3938 		}
   3939 		wm_tbi_set_linkled(sc);
   3940 	} else if (icr & ICR_RXCFG) {
   3941 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
   3942 		    device_xname(sc->sc_dev)));
   3943 		sc->sc_tbi_nrxcfg++;
   3944 		wm_check_for_link(sc);
   3945 	} else if (icr & ICR_RXSEQ) {
   3946 		DPRINTF(WM_DEBUG_LINK,
   3947 		    ("%s: LINK: Receive sequence error\n",
   3948 		    device_xname(sc->sc_dev)));
   3949 	}
   3950 }
   3951 
   3952 /*
   3953  * wm_linkintr:
   3954  *
   3955  *	Helper; handle link interrupts.
   3956  */
   3957 static void
   3958 wm_linkintr(struct wm_softc *sc, uint32_t icr)
   3959 {
   3960 
   3961 	if (sc->sc_flags & WM_F_HAS_MII)
   3962 		wm_linkintr_gmii(sc, icr);
   3963 	else
   3964 		wm_linkintr_tbi(sc, icr);
   3965 }
   3966 
   3967 /*
   3968  * wm_tick:
   3969  *
   3970  *	One second timer, used to check link status, sweep up
   3971  *	completed transmit jobs, etc.
   3972  */
   3973 static void
   3974 wm_tick(void *arg)
   3975 {
   3976 	struct wm_softc *sc = arg;
   3977 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3978 	int s;
   3979 
   3980 	s = splnet();
   3981 
   3982 	if (sc->sc_type >= WM_T_82542_2_1) {
   3983 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
   3984 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
   3985 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
   3986 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
   3987 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
   3988 	}
   3989 
   3990 	ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
   3991 	ifp->if_ierrors += 0ULL + /* ensure quad_t */
   3992 	    + CSR_READ(sc, WMREG_CRCERRS)
   3993 	    + CSR_READ(sc, WMREG_ALGNERRC)
   3994 	    + CSR_READ(sc, WMREG_SYMERRC)
   3995 	    + CSR_READ(sc, WMREG_RXERRC)
   3996 	    + CSR_READ(sc, WMREG_SEC)
   3997 	    + CSR_READ(sc, WMREG_CEXTERR)
   3998 	    + CSR_READ(sc, WMREG_RLEC);
   3999 	ifp->if_iqdrops += CSR_READ(sc, WMREG_MPC) + CSR_READ(sc, WMREG_RNBC);
   4000 
   4001 	if (sc->sc_flags & WM_F_HAS_MII)
   4002 		mii_tick(&sc->sc_mii);
   4003 	else
   4004 		wm_tbi_check_link(sc);
   4005 
   4006 	splx(s);
   4007 
   4008 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   4009 }
   4010 
   4011 /*
   4012  * wm_reset:
   4013  *
   4014  *	Reset the i82542 chip.
   4015  */
   4016 static void
   4017 wm_reset(struct wm_softc *sc)
   4018 {
   4019 	int phy_reset = 0;
   4020 	uint32_t reg, mask;
   4021 	int i;
   4022 
   4023 	/*
   4024 	 * Allocate on-chip memory according to the MTU size.
   4025 	 * The Packet Buffer Allocation register must be written
   4026 	 * before the chip is reset.
   4027 	 */
   4028 	switch (sc->sc_type) {
   4029 	case WM_T_82547:
   4030 	case WM_T_82547_2:
   4031 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   4032 		    PBA_22K : PBA_30K;
   4033 		sc->sc_txfifo_head = 0;
   4034 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
   4035 		sc->sc_txfifo_size =
   4036 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
   4037 		sc->sc_txfifo_stall = 0;
   4038 		break;
   4039 	case WM_T_82571:
   4040 	case WM_T_82572:
   4041 	case WM_T_82575:	/* XXX need special handing for jumbo frames */
   4042 	case WM_T_I350:
   4043 	case WM_T_80003:
   4044 		sc->sc_pba = PBA_32K;
   4045 		break;
   4046 	case WM_T_82580:
   4047 	case WM_T_82580ER:
   4048 		sc->sc_pba = PBA_35K;
   4049 		break;
   4050 	case WM_T_I210:
   4051 	case WM_T_I211:
   4052 		sc->sc_pba = PBA_34K;
   4053 		break;
   4054 	case WM_T_82576:
   4055 		sc->sc_pba = PBA_64K;
   4056 		break;
   4057 	case WM_T_82573:
   4058 		sc->sc_pba = PBA_12K;
   4059 		break;
   4060 	case WM_T_82574:
   4061 	case WM_T_82583:
   4062 		sc->sc_pba = PBA_20K;
   4063 		break;
   4064 	case WM_T_ICH8:
   4065 		sc->sc_pba = PBA_8K;
   4066 		CSR_WRITE(sc, WMREG_PBS, PBA_16K);
   4067 		break;
   4068 	case WM_T_ICH9:
   4069 	case WM_T_ICH10:
   4070 		sc->sc_pba = PBA_10K;
   4071 		break;
   4072 	case WM_T_PCH:
   4073 	case WM_T_PCH2:
   4074 	case WM_T_PCH_LPT:
   4075 		sc->sc_pba = PBA_26K;
   4076 		break;
   4077 	default:
   4078 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   4079 		    PBA_40K : PBA_48K;
   4080 		break;
   4081 	}
   4082 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
   4083 
   4084 	/* Prevent the PCI-E bus from sticking */
   4085 	if (sc->sc_flags & WM_F_PCIE) {
   4086 		int timeout = 800;
   4087 
   4088 		sc->sc_ctrl |= CTRL_GIO_M_DIS;
   4089 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4090 
   4091 		while (timeout--) {
   4092 			if ((CSR_READ(sc, WMREG_STATUS) & STATUS_GIO_M_ENA)
   4093 			    == 0)
   4094 				break;
   4095 			delay(100);
   4096 		}
   4097 	}
   4098 
   4099 	/* Set the completion timeout for interface */
   4100 	if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
   4101 	    || (sc->sc_type == WM_T_I350))
   4102 		wm_set_pcie_completion_timeout(sc);
   4103 
   4104 	/* Clear interrupt */
   4105 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   4106 
   4107 	/* Stop the transmit and receive processes. */
   4108 	CSR_WRITE(sc, WMREG_RCTL, 0);
   4109 	CSR_WRITE(sc, WMREG_TCTL, TCTL_PSP);
   4110 	sc->sc_rctl &= ~RCTL_EN;
   4111 
   4112 	/* XXX set_tbi_sbp_82543() */
   4113 
   4114 	delay(10*1000);
   4115 
   4116 	/* Must acquire the MDIO ownership before MAC reset */
   4117 	switch (sc->sc_type) {
   4118 	case WM_T_82573:
   4119 	case WM_T_82574:
   4120 	case WM_T_82583:
   4121 		i = 0;
   4122 		reg = CSR_READ(sc, WMREG_EXTCNFCTR)
   4123 		    | EXTCNFCTR_MDIO_SW_OWNERSHIP;
   4124 		do {
   4125 			CSR_WRITE(sc, WMREG_EXTCNFCTR,
   4126 			    reg | EXTCNFCTR_MDIO_SW_OWNERSHIP);
   4127 			reg = CSR_READ(sc, WMREG_EXTCNFCTR);
   4128 			if ((reg & EXTCNFCTR_MDIO_SW_OWNERSHIP) != 0)
   4129 				break;
   4130 			reg |= EXTCNFCTR_MDIO_SW_OWNERSHIP;
   4131 			delay(2*1000);
   4132 			i++;
   4133 		} while (i < WM_MDIO_OWNERSHIP_TIMEOUT);
   4134 		break;
   4135 	default:
   4136 		break;
   4137 	}
   4138 
   4139 	/*
   4140 	 * 82541 Errata 29? & 82547 Errata 28?
   4141 	 * See also the description about PHY_RST bit in CTRL register
   4142 	 * in 8254x_GBe_SDM.pdf.
   4143 	 */
   4144 	if ((sc->sc_type == WM_T_82541) || (sc->sc_type == WM_T_82547)) {
   4145 		CSR_WRITE(sc, WMREG_CTRL,
   4146 		    CSR_READ(sc, WMREG_CTRL) | CTRL_PHY_RESET);
   4147 		delay(5000);
   4148 	}
   4149 
   4150 	switch (sc->sc_type) {
   4151 	case WM_T_82544: /* XXX check whether WM_F_IOH_VALID is set */
   4152 	case WM_T_82541:
   4153 	case WM_T_82541_2:
   4154 	case WM_T_82547:
   4155 	case WM_T_82547_2:
   4156 		/*
   4157 		 * On some chipsets, a reset through a memory-mapped write
   4158 		 * cycle can cause the chip to reset before completing the
   4159 		 * write cycle.  This causes major headache that can be
   4160 		 * avoided by issuing the reset via indirect register writes
   4161 		 * through I/O space.
   4162 		 *
   4163 		 * So, if we successfully mapped the I/O BAR at attach time,
   4164 		 * use that.  Otherwise, try our luck with a memory-mapped
   4165 		 * reset.
   4166 		 */
   4167 		if (sc->sc_flags & WM_F_IOH_VALID)
   4168 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
   4169 		else
   4170 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   4171 		break;
   4172 	case WM_T_82545_3:
   4173 	case WM_T_82546_3:
   4174 		/* Use the shadow control register on these chips. */
   4175 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
   4176 		break;
   4177 	case WM_T_80003:
   4178 		mask = swfwphysem[sc->sc_funcid];
   4179 		reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST;
   4180 		wm_get_swfw_semaphore(sc, mask);
   4181 		CSR_WRITE(sc, WMREG_CTRL, reg);
   4182 		wm_put_swfw_semaphore(sc, mask);
   4183 		break;
   4184 	case WM_T_ICH8:
   4185 	case WM_T_ICH9:
   4186 	case WM_T_ICH10:
   4187 	case WM_T_PCH:
   4188 	case WM_T_PCH2:
   4189 	case WM_T_PCH_LPT:
   4190 		reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST;
   4191 		if (wm_check_reset_block(sc) == 0) {
   4192 			/*
   4193 			 * Gate automatic PHY configuration by hardware on
   4194 			 * non-managed 82579
   4195 			 */
   4196 			if ((sc->sc_type == WM_T_PCH2)
   4197 			    && ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID)
   4198 				!= 0))
   4199 				wm_gate_hw_phy_config_ich8lan(sc, 1);
   4200 
   4201 
   4202 			reg |= CTRL_PHY_RESET;
   4203 			phy_reset = 1;
   4204 		}
   4205 		wm_get_swfwhw_semaphore(sc);
   4206 		CSR_WRITE(sc, WMREG_CTRL, reg);
   4207 		delay(20*1000);
   4208 		wm_put_swfwhw_semaphore(sc);
   4209 		break;
   4210 	case WM_T_82542_2_0:
   4211 	case WM_T_82542_2_1:
   4212 	case WM_T_82543:
   4213 	case WM_T_82540:
   4214 	case WM_T_82545:
   4215 	case WM_T_82546:
   4216 	case WM_T_82571:
   4217 	case WM_T_82572:
   4218 	case WM_T_82573:
   4219 	case WM_T_82574:
   4220 	case WM_T_82575:
   4221 	case WM_T_82576:
   4222 	case WM_T_82580:
   4223 	case WM_T_82580ER:
   4224 	case WM_T_82583:
   4225 	case WM_T_I350:
   4226 	case WM_T_I210:
   4227 	case WM_T_I211:
   4228 	default:
   4229 		/* Everything else can safely use the documented method. */
   4230 		CSR_WRITE(sc, WMREG_CTRL, CSR_READ(sc, WMREG_CTRL) | CTRL_RST);
   4231 		break;
   4232 	}
   4233 
   4234 	if (phy_reset != 0)
   4235 		wm_get_cfg_done(sc);
   4236 
   4237 	/* reload EEPROM */
   4238 	switch (sc->sc_type) {
   4239 	case WM_T_82542_2_0:
   4240 	case WM_T_82542_2_1:
   4241 	case WM_T_82543:
   4242 	case WM_T_82544:
   4243 		delay(10);
   4244 		reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
   4245 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   4246 		delay(2000);
   4247 		break;
   4248 	case WM_T_82540:
   4249 	case WM_T_82545:
   4250 	case WM_T_82545_3:
   4251 	case WM_T_82546:
   4252 	case WM_T_82546_3:
   4253 		delay(5*1000);
   4254 		/* XXX Disable HW ARPs on ASF enabled adapters */
   4255 		break;
   4256 	case WM_T_82541:
   4257 	case WM_T_82541_2:
   4258 	case WM_T_82547:
   4259 	case WM_T_82547_2:
   4260 		delay(20000);
   4261 		/* XXX Disable HW ARPs on ASF enabled adapters */
   4262 		break;
   4263 	case WM_T_82571:
   4264 	case WM_T_82572:
   4265 	case WM_T_82573:
   4266 	case WM_T_82574:
   4267 	case WM_T_82583:
   4268 		if (sc->sc_flags & WM_F_EEPROM_FLASH) {
   4269 			delay(10);
   4270 			reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
   4271 			CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   4272 		}
   4273 		/* check EECD_EE_AUTORD */
   4274 		wm_get_auto_rd_done(sc);
   4275 		/*
   4276 		 * Phy configuration from NVM just starts after EECD_AUTO_RD
   4277 		 * is set.
   4278 		 */
   4279 		if ((sc->sc_type == WM_T_82573) || (sc->sc_type == WM_T_82574)
   4280 		    || (sc->sc_type == WM_T_82583))
   4281 			delay(25*1000);
   4282 		break;
   4283 	case WM_T_82575:
   4284 	case WM_T_82576:
   4285 	case WM_T_82580:
   4286 	case WM_T_82580ER:
   4287 	case WM_T_I350:
   4288 	case WM_T_I210:
   4289 	case WM_T_I211:
   4290 	case WM_T_80003:
   4291 		/* check EECD_EE_AUTORD */
   4292 		wm_get_auto_rd_done(sc);
   4293 		break;
   4294 	case WM_T_ICH8:
   4295 	case WM_T_ICH9:
   4296 	case WM_T_ICH10:
   4297 	case WM_T_PCH:
   4298 	case WM_T_PCH2:
   4299 	case WM_T_PCH_LPT:
   4300 		break;
   4301 	default:
   4302 		panic("%s: unknown type\n", __func__);
   4303 	}
   4304 
   4305 	/* Check whether EEPROM is present or not */
   4306 	switch (sc->sc_type) {
   4307 	case WM_T_82575:
   4308 	case WM_T_82576:
   4309 #if 0 /* XXX */
   4310 	case WM_T_82580:
   4311 	case WM_T_82580ER:
   4312 #endif
   4313 	case WM_T_I350:
   4314 	case WM_T_ICH8:
   4315 	case WM_T_ICH9:
   4316 		if ((CSR_READ(sc, WMREG_EECD) & EECD_EE_PRES) == 0) {
   4317 			/* Not found */
   4318 			sc->sc_flags |= WM_F_EEPROM_INVALID;
   4319 			if ((sc->sc_type == WM_T_82575)
   4320 			    || (sc->sc_type == WM_T_82576)
   4321 			    || (sc->sc_type == WM_T_82580)
   4322 			    || (sc->sc_type == WM_T_82580ER)
   4323 			    || (sc->sc_type == WM_T_I350))
   4324 				wm_reset_init_script_82575(sc);
   4325 		}
   4326 		break;
   4327 	default:
   4328 		break;
   4329 	}
   4330 
   4331 	if ((sc->sc_type == WM_T_82580) || (sc->sc_type == WM_T_82580ER)
   4332 	    || (sc->sc_type == WM_T_I350)) {
   4333 		/* clear global device reset status bit */
   4334 		CSR_WRITE(sc, WMREG_STATUS, STATUS_DEV_RST_SET);
   4335 	}
   4336 
   4337 	/* Clear any pending interrupt events. */
   4338 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   4339 	reg = CSR_READ(sc, WMREG_ICR);
   4340 
   4341 	/* reload sc_ctrl */
   4342 	sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
   4343 
   4344 	if (sc->sc_type == WM_T_I350)
   4345 		wm_set_eee_i350(sc);
   4346 
   4347 	/* dummy read from WUC */
   4348 	if (sc->sc_type == WM_T_PCH)
   4349 		reg = wm_gmii_hv_readreg(sc->sc_dev, 1, BM_WUC);
   4350 	/*
   4351 	 * For PCH, this write will make sure that any noise will be detected
   4352 	 * as a CRC error and be dropped rather than show up as a bad packet
   4353 	 * to the DMA engine
   4354 	 */
   4355 	if (sc->sc_type == WM_T_PCH)
   4356 		CSR_WRITE(sc, WMREG_CRC_OFFSET, 0x65656565);
   4357 
   4358 	if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
   4359 		CSR_WRITE(sc, WMREG_WUC, 0);
   4360 
   4361 	/* XXX need special handling for 82580 */
   4362 }
   4363 
   4364 static void
   4365 wm_set_vlan(struct wm_softc *sc)
   4366 {
   4367 	/* Deal with VLAN enables. */
   4368 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   4369 		sc->sc_ctrl |= CTRL_VME;
   4370 	else
   4371 		sc->sc_ctrl &= ~CTRL_VME;
   4372 
   4373 	/* Write the control registers. */
   4374 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   4375 }
   4376 
   4377 /*
   4378  * wm_init:		[ifnet interface function]
   4379  *
   4380  *	Initialize the interface.  Must be called at splnet().
   4381  */
   4382 static int
   4383 wm_init(struct ifnet *ifp)
   4384 {
   4385 	struct wm_softc *sc = ifp->if_softc;
   4386 	struct wm_rxsoft *rxs;
   4387 	int i, j, trynum, error = 0;
   4388 	uint32_t reg;
   4389 
   4390 	/*
   4391 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   4392 	 * There is a small but measurable benefit to avoiding the adjusment
   4393 	 * of the descriptor so that the headers are aligned, for normal mtu,
   4394 	 * on such platforms.  One possibility is that the DMA itself is
   4395 	 * slightly more efficient if the front of the entire packet (instead
   4396 	 * of the front of the headers) is aligned.
   4397 	 *
   4398 	 * Note we must always set align_tweak to 0 if we are using
   4399 	 * jumbo frames.
   4400 	 */
   4401 #ifdef __NO_STRICT_ALIGNMENT
   4402 	sc->sc_align_tweak = 0;
   4403 #else
   4404 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   4405 		sc->sc_align_tweak = 0;
   4406 	else
   4407 		sc->sc_align_tweak = 2;
   4408 #endif /* __NO_STRICT_ALIGNMENT */
   4409 
   4410 	/* Cancel any pending I/O. */
   4411 	wm_stop(ifp, 0);
   4412 
   4413 	/* update statistics before reset */
   4414 	ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
   4415 	ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
   4416 
   4417 	/* Reset the chip to a known state. */
   4418 	wm_reset(sc);
   4419 
   4420 	switch (sc->sc_type) {
   4421 	case WM_T_82571:
   4422 	case WM_T_82572:
   4423 	case WM_T_82573:
   4424 	case WM_T_82574:
   4425 	case WM_T_82583:
   4426 	case WM_T_80003:
   4427 	case WM_T_ICH8:
   4428 	case WM_T_ICH9:
   4429 	case WM_T_ICH10:
   4430 	case WM_T_PCH:
   4431 	case WM_T_PCH2:
   4432 	case WM_T_PCH_LPT:
   4433 		if (wm_check_mng_mode(sc) != 0)
   4434 			wm_get_hw_control(sc);
   4435 		break;
   4436 	default:
   4437 		break;
   4438 	}
   4439 
   4440 	/* Reset the PHY. */
   4441 	if (sc->sc_flags & WM_F_HAS_MII)
   4442 		wm_gmii_reset(sc);
   4443 
   4444 	reg = CSR_READ(sc, WMREG_CTRL_EXT);
   4445 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
   4446 	if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)
   4447 	    || (sc->sc_type == WM_T_PCH_LPT))
   4448 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_PHYPDEN);
   4449 
   4450 	/* Initialize the transmit descriptor ring. */
   4451 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
   4452 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
   4453 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   4454 	sc->sc_txfree = WM_NTXDESC(sc);
   4455 	sc->sc_txnext = 0;
   4456 
   4457 	if (sc->sc_type < WM_T_82543) {
   4458 		CSR_WRITE(sc, WMREG_OLD_TDBAH, WM_CDTXADDR_HI(sc, 0));
   4459 		CSR_WRITE(sc, WMREG_OLD_TDBAL, WM_CDTXADDR_LO(sc, 0));
   4460 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
   4461 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
   4462 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
   4463 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
   4464 	} else {
   4465 		CSR_WRITE(sc, WMREG_TDBAH, WM_CDTXADDR_HI(sc, 0));
   4466 		CSR_WRITE(sc, WMREG_TDBAL, WM_CDTXADDR_LO(sc, 0));
   4467 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
   4468 		CSR_WRITE(sc, WMREG_TDH, 0);
   4469 		CSR_WRITE(sc, WMREG_TIDV, 375);		/* ITR / 4 */
   4470 		CSR_WRITE(sc, WMREG_TADV, 375);		/* should be same */
   4471 
   4472 		if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
   4473 			/*
   4474 			 * Don't write TDT before TCTL.EN is set.
   4475 			 * See the document.
   4476 			 */
   4477 			CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_QUEUE_ENABLE
   4478 			    | TXDCTL_PTHRESH(0) | TXDCTL_HTHRESH(0)
   4479 			    | TXDCTL_WTHRESH(0));
   4480 		else {
   4481 			CSR_WRITE(sc, WMREG_TDT, 0);
   4482 			CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
   4483 			    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   4484 			CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
   4485 			    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
   4486 		}
   4487 	}
   4488 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
   4489 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
   4490 
   4491 	/* Initialize the transmit job descriptors. */
   4492 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
   4493 		sc->sc_txsoft[i].txs_mbuf = NULL;
   4494 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
   4495 	sc->sc_txsnext = 0;
   4496 	sc->sc_txsdirty = 0;
   4497 
   4498 	/*
   4499 	 * Initialize the receive descriptor and receive job
   4500 	 * descriptor rings.
   4501 	 */
   4502 	if (sc->sc_type < WM_T_82543) {
   4503 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
   4504 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
   4505 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
   4506 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
   4507 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
   4508 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
   4509 
   4510 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
   4511 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
   4512 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
   4513 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
   4514 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
   4515 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
   4516 	} else {
   4517 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
   4518 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
   4519 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
   4520 		if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
   4521 			CSR_WRITE(sc, WMREG_EITR(0), 450);
   4522 			if (MCLBYTES & ((1 << SRRCTL_BSIZEPKT_SHIFT) - 1))
   4523 				panic("%s: MCLBYTES %d unsupported for i2575 or higher\n", __func__, MCLBYTES);
   4524 			CSR_WRITE(sc, WMREG_SRRCTL, SRRCTL_DESCTYPE_LEGACY
   4525 			    | (MCLBYTES >> SRRCTL_BSIZEPKT_SHIFT));
   4526 			CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_QUEUE_ENABLE
   4527 			    | RXDCTL_PTHRESH(16) | RXDCTL_HTHRESH(8)
   4528 			    | RXDCTL_WTHRESH(1));
   4529 		} else {
   4530 			CSR_WRITE(sc, WMREG_RDH, 0);
   4531 			CSR_WRITE(sc, WMREG_RDT, 0);
   4532 			CSR_WRITE(sc, WMREG_RDTR, 375 | RDTR_FPD); /* ITR/4 */
   4533 			CSR_WRITE(sc, WMREG_RADV, 375);	/* MUST be same */
   4534 		}
   4535 	}
   4536 	for (i = 0; i < WM_NRXDESC; i++) {
   4537 		rxs = &sc->sc_rxsoft[i];
   4538 		if (rxs->rxs_mbuf == NULL) {
   4539 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
   4540 				log(LOG_ERR, "%s: unable to allocate or map "
   4541 				    "rx buffer %d, error = %d\n",
   4542 				    device_xname(sc->sc_dev), i, error);
   4543 				/*
   4544 				 * XXX Should attempt to run with fewer receive
   4545 				 * XXX buffers instead of just failing.
   4546 				 */
   4547 				wm_rxdrain(sc);
   4548 				goto out;
   4549 			}
   4550 		} else {
   4551 			if ((sc->sc_flags & WM_F_NEWQUEUE) == 0)
   4552 				WM_INIT_RXDESC(sc, i);
   4553 			/*
   4554 			 * For 82575 and newer device, the RX descriptors
   4555 			 * must be initialized after the setting of RCTL.EN in
   4556 			 * wm_set_filter()
   4557 			 */
   4558 		}
   4559 	}
   4560 	sc->sc_rxptr = 0;
   4561 	sc->sc_rxdiscard = 0;
   4562 	WM_RXCHAIN_RESET(sc);
   4563 
   4564 	/*
   4565 	 * Clear out the VLAN table -- we don't use it (yet).
   4566 	 */
   4567 	CSR_WRITE(sc, WMREG_VET, 0);
   4568 	if (sc->sc_type == WM_T_I350)
   4569 		trynum = 10; /* Due to hw errata */
   4570 	else
   4571 		trynum = 1;
   4572 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
   4573 		for (j = 0; j < trynum; j++)
   4574 			CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
   4575 
   4576 	/*
   4577 	 * Set up flow-control parameters.
   4578 	 *
   4579 	 * XXX Values could probably stand some tuning.
   4580 	 */
   4581 	if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9)
   4582 	    && (sc->sc_type != WM_T_ICH10) && (sc->sc_type != WM_T_PCH)
   4583 	    && (sc->sc_type != WM_T_PCH2) && (sc->sc_type != WM_T_PCH_LPT)) {
   4584 		CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
   4585 		CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
   4586 		CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
   4587 	}
   4588 
   4589 	sc->sc_fcrtl = FCRTL_DFLT;
   4590 	if (sc->sc_type < WM_T_82543) {
   4591 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
   4592 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
   4593 	} else {
   4594 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
   4595 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
   4596 	}
   4597 
   4598 	if (sc->sc_type == WM_T_80003)
   4599 		CSR_WRITE(sc, WMREG_FCTTV, 0xffff);
   4600 	else
   4601 		CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
   4602 
   4603 	/* Writes the control register. */
   4604 	wm_set_vlan(sc);
   4605 
   4606 	if (sc->sc_flags & WM_F_HAS_MII) {
   4607 		int val;
   4608 
   4609 		switch (sc->sc_type) {
   4610 		case WM_T_80003:
   4611 		case WM_T_ICH8:
   4612 		case WM_T_ICH9:
   4613 		case WM_T_ICH10:
   4614 		case WM_T_PCH:
   4615 		case WM_T_PCH2:
   4616 		case WM_T_PCH_LPT:
   4617 			/*
   4618 			 * Set the mac to wait the maximum time between each
   4619 			 * iteration and increase the max iterations when
   4620 			 * polling the phy; this fixes erroneous timeouts at
   4621 			 * 10Mbps.
   4622 			 */
   4623 			wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS,
   4624 			    0xFFFF);
   4625 			val = wm_kmrn_readreg(sc,
   4626 			    KUMCTRLSTA_OFFSET_INB_PARAM);
   4627 			val |= 0x3F;
   4628 			wm_kmrn_writereg(sc,
   4629 			    KUMCTRLSTA_OFFSET_INB_PARAM, val);
   4630 			break;
   4631 		default:
   4632 			break;
   4633 		}
   4634 
   4635 		if (sc->sc_type == WM_T_80003) {
   4636 			val = CSR_READ(sc, WMREG_CTRL_EXT);
   4637 			val &= ~CTRL_EXT_LINK_MODE_MASK;
   4638 			CSR_WRITE(sc, WMREG_CTRL_EXT, val);
   4639 
   4640 			/* Bypass RX and TX FIFO's */
   4641 			wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL,
   4642 			    KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
   4643 			    | KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
   4644 			wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL,
   4645 			    KUMCTRLSTA_INB_CTRL_DIS_PADDING |
   4646 			    KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT);
   4647 		}
   4648 	}
   4649 #if 0
   4650 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   4651 #endif
   4652 
   4653 	/*
   4654 	 * Set up checksum offload parameters.
   4655 	 */
   4656 	reg = CSR_READ(sc, WMREG_RXCSUM);
   4657 	reg &= ~(RXCSUM_IPOFL | RXCSUM_IPV6OFL | RXCSUM_TUOFL);
   4658 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   4659 		reg |= RXCSUM_IPOFL;
   4660 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   4661 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   4662 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
   4663 		reg |= RXCSUM_IPV6OFL | RXCSUM_TUOFL;
   4664 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
   4665 
   4666 	/* Reset TBI's RXCFG count */
   4667 	sc->sc_tbi_nrxcfg = sc->sc_tbi_lastnrxcfg = 0;
   4668 
   4669 	/*
   4670 	 * Set up the interrupt registers.
   4671 	 */
   4672 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   4673 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   4674 	    ICR_RXO | ICR_RXT0;
   4675 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
   4676 		sc->sc_icr |= ICR_RXCFG;
   4677 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
   4678 
   4679 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
   4680 	    || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
   4681 	    || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) {
   4682 		reg = CSR_READ(sc, WMREG_KABGTXD);
   4683 		reg |= KABGTXD_BGSQLBIAS;
   4684 		CSR_WRITE(sc, WMREG_KABGTXD, reg);
   4685 	}
   4686 
   4687 	/* Set up the inter-packet gap. */
   4688 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   4689 
   4690 	if (sc->sc_type >= WM_T_82543) {
   4691 		/*
   4692 		 * Set up the interrupt throttling register (units of 256ns)
   4693 		 * Note that a footnote in Intel's documentation says this
   4694 		 * ticker runs at 1/4 the rate when the chip is in 100Mbit
   4695 		 * or 10Mbit mode.  Empirically, it appears to be the case
   4696 		 * that that is also true for the 1024ns units of the other
   4697 		 * interrupt-related timer registers -- so, really, we ought
   4698 		 * to divide this value by 4 when the link speed is low.
   4699 		 *
   4700 		 * XXX implement this division at link speed change!
   4701 		 */
   4702 
   4703 		 /*
   4704 		  * For N interrupts/sec, set this value to:
   4705 		  * 1000000000 / (N * 256).  Note that we set the
   4706 		  * absolute and packet timer values to this value
   4707 		  * divided by 4 to get "simple timer" behavior.
   4708 		  */
   4709 
   4710 		sc->sc_itr = 1500;		/* 2604 ints/sec */
   4711 		CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
   4712 	}
   4713 
   4714 	/* Set the VLAN ethernetype. */
   4715 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
   4716 
   4717 	/*
   4718 	 * Set up the transmit control register; we start out with
   4719 	 * a collision distance suitable for FDX, but update it whe
   4720 	 * we resolve the media type.
   4721 	 */
   4722 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_RTLC
   4723 	    | TCTL_CT(TX_COLLISION_THRESHOLD)
   4724 	    | TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   4725 	if (sc->sc_type >= WM_T_82571)
   4726 		sc->sc_tctl |= TCTL_MULR;
   4727 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   4728 
   4729 	if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
   4730 		/*
   4731 		 * Write TDT after TCTL.EN is set.
   4732 		 * See the document.
   4733 		 */
   4734 		CSR_WRITE(sc, WMREG_TDT, 0);
   4735 	}
   4736 
   4737 	if (sc->sc_type == WM_T_80003) {
   4738 		reg = CSR_READ(sc, WMREG_TCTL_EXT);
   4739 		reg &= ~TCTL_EXT_GCEX_MASK;
   4740 		reg |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
   4741 		CSR_WRITE(sc, WMREG_TCTL_EXT, reg);
   4742 	}
   4743 
   4744 	/* Set the media. */
   4745 	if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
   4746 		goto out;
   4747 
   4748 	/* Configure for OS presence */
   4749 	wm_init_manageability(sc);
   4750 
   4751 	/*
   4752 	 * Set up the receive control register; we actually program
   4753 	 * the register when we set the receive filter.  Use multicast
   4754 	 * address offset type 0.
   4755 	 *
   4756 	 * Only the i82544 has the ability to strip the incoming
   4757 	 * CRC, so we don't enable that feature.
   4758 	 */
   4759 	sc->sc_mchash_type = 0;
   4760 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
   4761 	    | RCTL_MO(sc->sc_mchash_type);
   4762 
   4763 	/*
   4764 	 * The I350 has a bug where it always strips the CRC whether
   4765 	 * asked to or not. So ask for stripped CRC here and cope in rxeof
   4766 	 */
   4767 	if ((sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I210))
   4768 		sc->sc_rctl |= RCTL_SECRC;
   4769 
   4770 	if (((sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) != 0)
   4771 	    && (ifp->if_mtu > ETHERMTU)) {
   4772 		sc->sc_rctl |= RCTL_LPE;
   4773 		if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
   4774 			CSR_WRITE(sc, WMREG_RLPML, ETHER_MAX_LEN_JUMBO);
   4775 	}
   4776 
   4777 	if (MCLBYTES == 2048) {
   4778 		sc->sc_rctl |= RCTL_2k;
   4779 	} else {
   4780 		if (sc->sc_type >= WM_T_82543) {
   4781 			switch (MCLBYTES) {
   4782 			case 4096:
   4783 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
   4784 				break;
   4785 			case 8192:
   4786 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
   4787 				break;
   4788 			case 16384:
   4789 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
   4790 				break;
   4791 			default:
   4792 				panic("wm_init: MCLBYTES %d unsupported",
   4793 				    MCLBYTES);
   4794 				break;
   4795 			}
   4796 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
   4797 	}
   4798 
   4799 	/* Set the receive filter. */
   4800 	wm_set_filter(sc);
   4801 
   4802 	/* Enable ECC */
   4803 	switch (sc->sc_type) {
   4804 	case WM_T_82571:
   4805 		reg = CSR_READ(sc, WMREG_PBA_ECC);
   4806 		reg |= PBA_ECC_CORR_EN;
   4807 		CSR_WRITE(sc, WMREG_PBA_ECC, reg);
   4808 		break;
   4809 	case WM_T_PCH_LPT:
   4810 		reg = CSR_READ(sc, WMREG_PBECCSTS);
   4811 		reg |= PBECCSTS_UNCORR_ECC_ENABLE;
   4812 		CSR_WRITE(sc, WMREG_PBECCSTS, reg);
   4813 
   4814 		reg = CSR_READ(sc, WMREG_CTRL);
   4815 		reg |= CTRL_MEHE;
   4816 		CSR_WRITE(sc, WMREG_CTRL, reg);
   4817 		break;
   4818 	default:
   4819 		break;
   4820 	}
   4821 
   4822 	/* On 575 and later set RDT only if RX enabled */
   4823 	if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
   4824 		for (i = 0; i < WM_NRXDESC; i++)
   4825 			WM_INIT_RXDESC(sc, i);
   4826 
   4827 	/* Start the one second link check clock. */
   4828 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   4829 
   4830 	/* ...all done! */
   4831 	ifp->if_flags |= IFF_RUNNING;
   4832 	ifp->if_flags &= ~IFF_OACTIVE;
   4833 
   4834  out:
   4835 	sc->sc_if_flags = ifp->if_flags;
   4836 	if (error)
   4837 		log(LOG_ERR, "%s: interface not running\n",
   4838 		    device_xname(sc->sc_dev));
   4839 	return error;
   4840 }
   4841 
   4842 /*
   4843  * wm_rxdrain:
   4844  *
   4845  *	Drain the receive queue.
   4846  */
   4847 static void
   4848 wm_rxdrain(struct wm_softc *sc)
   4849 {
   4850 	struct wm_rxsoft *rxs;
   4851 	int i;
   4852 
   4853 	for (i = 0; i < WM_NRXDESC; i++) {
   4854 		rxs = &sc->sc_rxsoft[i];
   4855 		if (rxs->rxs_mbuf != NULL) {
   4856 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   4857 			m_freem(rxs->rxs_mbuf);
   4858 			rxs->rxs_mbuf = NULL;
   4859 		}
   4860 	}
   4861 }
   4862 
   4863 /*
   4864  * wm_stop:		[ifnet interface function]
   4865  *
   4866  *	Stop transmission on the interface.
   4867  */
   4868 static void
   4869 wm_stop(struct ifnet *ifp, int disable)
   4870 {
   4871 	struct wm_softc *sc = ifp->if_softc;
   4872 	struct wm_txsoft *txs;
   4873 	int i;
   4874 
   4875 	/* Stop the one second clock. */
   4876 	callout_stop(&sc->sc_tick_ch);
   4877 
   4878 	/* Stop the 82547 Tx FIFO stall check timer. */
   4879 	if (sc->sc_type == WM_T_82547)
   4880 		callout_stop(&sc->sc_txfifo_ch);
   4881 
   4882 	if (sc->sc_flags & WM_F_HAS_MII) {
   4883 		/* Down the MII. */
   4884 		mii_down(&sc->sc_mii);
   4885 	} else {
   4886 #if 0
   4887 		/* Should we clear PHY's status properly? */
   4888 		wm_reset(sc);
   4889 #endif
   4890 	}
   4891 
   4892 	/* Stop the transmit and receive processes. */
   4893 	CSR_WRITE(sc, WMREG_TCTL, 0);
   4894 	CSR_WRITE(sc, WMREG_RCTL, 0);
   4895 	sc->sc_rctl &= ~RCTL_EN;
   4896 
   4897 	/*
   4898 	 * Clear the interrupt mask to ensure the device cannot assert its
   4899 	 * interrupt line.
   4900 	 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
   4901 	 * any currently pending or shared interrupt.
   4902 	 */
   4903 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   4904 	sc->sc_icr = 0;
   4905 
   4906 	/* Release any queued transmit buffers. */
   4907 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   4908 		txs = &sc->sc_txsoft[i];
   4909 		if (txs->txs_mbuf != NULL) {
   4910 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   4911 			m_freem(txs->txs_mbuf);
   4912 			txs->txs_mbuf = NULL;
   4913 		}
   4914 	}
   4915 
   4916 	/* Mark the interface as down and cancel the watchdog timer. */
   4917 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4918 	ifp->if_timer = 0;
   4919 
   4920 	if (disable)
   4921 		wm_rxdrain(sc);
   4922 
   4923 #if 0 /* notyet */
   4924 	if (sc->sc_type >= WM_T_82544)
   4925 		CSR_WRITE(sc, WMREG_WUC, 0);
   4926 #endif
   4927 }
   4928 
   4929 void
   4930 wm_get_auto_rd_done(struct wm_softc *sc)
   4931 {
   4932 	int i;
   4933 
   4934 	/* wait for eeprom to reload */
   4935 	switch (sc->sc_type) {
   4936 	case WM_T_82571:
   4937 	case WM_T_82572:
   4938 	case WM_T_82573:
   4939 	case WM_T_82574:
   4940 	case WM_T_82583:
   4941 	case WM_T_82575:
   4942 	case WM_T_82576:
   4943 	case WM_T_82580:
   4944 	case WM_T_82580ER:
   4945 	case WM_T_I350:
   4946 	case WM_T_I210:
   4947 	case WM_T_I211:
   4948 	case WM_T_80003:
   4949 	case WM_T_ICH8:
   4950 	case WM_T_ICH9:
   4951 		for (i = 0; i < 10; i++) {
   4952 			if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD)
   4953 				break;
   4954 			delay(1000);
   4955 		}
   4956 		if (i == 10) {
   4957 			log(LOG_ERR, "%s: auto read from eeprom failed to "
   4958 			    "complete\n", device_xname(sc->sc_dev));
   4959 		}
   4960 		break;
   4961 	default:
   4962 		break;
   4963 	}
   4964 }
   4965 
   4966 void
   4967 wm_lan_init_done(struct wm_softc *sc)
   4968 {
   4969 	uint32_t reg = 0;
   4970 	int i;
   4971 
   4972 	/* wait for eeprom to reload */
   4973 	switch (sc->sc_type) {
   4974 	case WM_T_ICH10:
   4975 	case WM_T_PCH:
   4976 	case WM_T_PCH2:
   4977 	case WM_T_PCH_LPT:
   4978 		for (i = 0; i < WM_ICH8_LAN_INIT_TIMEOUT; i++) {
   4979 			reg = CSR_READ(sc, WMREG_STATUS);
   4980 			if ((reg & STATUS_LAN_INIT_DONE) != 0)
   4981 				break;
   4982 			delay(100);
   4983 		}
   4984 		if (i >= WM_ICH8_LAN_INIT_TIMEOUT) {
   4985 			log(LOG_ERR, "%s: %s: lan_init_done failed to "
   4986 			    "complete\n", device_xname(sc->sc_dev), __func__);
   4987 		}
   4988 		break;
   4989 	default:
   4990 		panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
   4991 		    __func__);
   4992 		break;
   4993 	}
   4994 
   4995 	reg &= ~STATUS_LAN_INIT_DONE;
   4996 	CSR_WRITE(sc, WMREG_STATUS, reg);
   4997 }
   4998 
   4999 void
   5000 wm_get_cfg_done(struct wm_softc *sc)
   5001 {
   5002 	int mask;
   5003 	uint32_t reg;
   5004 	int i;
   5005 
   5006 	/* wait for eeprom to reload */
   5007 	switch (sc->sc_type) {
   5008 	case WM_T_82542_2_0:
   5009 	case WM_T_82542_2_1:
   5010 		/* null */
   5011 		break;
   5012 	case WM_T_82543:
   5013 	case WM_T_82544:
   5014 	case WM_T_82540:
   5015 	case WM_T_82545:
   5016 	case WM_T_82545_3:
   5017 	case WM_T_82546:
   5018 	case WM_T_82546_3:
   5019 	case WM_T_82541:
   5020 	case WM_T_82541_2:
   5021 	case WM_T_82547:
   5022 	case WM_T_82547_2:
   5023 	case WM_T_82573:
   5024 	case WM_T_82574:
   5025 	case WM_T_82583:
   5026 		/* generic */
   5027 		delay(10*1000);
   5028 		break;
   5029 	case WM_T_80003:
   5030 	case WM_T_82571:
   5031 	case WM_T_82572:
   5032 	case WM_T_82575:
   5033 	case WM_T_82576:
   5034 	case WM_T_82580:
   5035 	case WM_T_82580ER:
   5036 	case WM_T_I350:
   5037 	case WM_T_I210:
   5038 	case WM_T_I211:
   5039 		if (sc->sc_type == WM_T_82571) {
   5040 			/* Only 82571 shares port 0 */
   5041 			mask = EEMNGCTL_CFGDONE_0;
   5042 		} else
   5043 			mask = EEMNGCTL_CFGDONE_0 << sc->sc_funcid;
   5044 		for (i = 0; i < WM_PHY_CFG_TIMEOUT; i++) {
   5045 			if (CSR_READ(sc, WMREG_EEMNGCTL) & mask)
   5046 				break;
   5047 			delay(1000);
   5048 		}
   5049 		if (i >= WM_PHY_CFG_TIMEOUT) {
   5050 			DPRINTF(WM_DEBUG_GMII, ("%s: %s failed\n",
   5051 				device_xname(sc->sc_dev), __func__));
   5052 		}
   5053 		break;
   5054 	case WM_T_ICH8:
   5055 	case WM_T_ICH9:
   5056 	case WM_T_ICH10:
   5057 	case WM_T_PCH:
   5058 	case WM_T_PCH2:
   5059 	case WM_T_PCH_LPT:
   5060 		delay(10*1000);
   5061 		if (sc->sc_type >= WM_T_ICH10)
   5062 			wm_lan_init_done(sc);
   5063 		else
   5064 			wm_get_auto_rd_done(sc);
   5065 
   5066 		reg = CSR_READ(sc, WMREG_STATUS);
   5067 		if ((reg & STATUS_PHYRA) != 0)
   5068 			CSR_WRITE(sc, WMREG_STATUS, reg & ~STATUS_PHYRA);
   5069 		break;
   5070 	default:
   5071 		panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
   5072 		    __func__);
   5073 		break;
   5074 	}
   5075 }
   5076 
   5077 /*
   5078  * wm_acquire_eeprom:
   5079  *
   5080  *	Perform the EEPROM handshake required on some chips.
   5081  */
   5082 static int
   5083 wm_acquire_eeprom(struct wm_softc *sc)
   5084 {
   5085 	uint32_t reg;
   5086 	int x;
   5087 	int ret = 0;
   5088 
   5089 	/* always success */
   5090 	if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
   5091 		return 0;
   5092 
   5093 	if (sc->sc_flags & WM_F_SWFWHW_SYNC) {
   5094 		ret = wm_get_swfwhw_semaphore(sc);
   5095 	} else if (sc->sc_flags & WM_F_SWFW_SYNC) {
   5096 		/* this will also do wm_get_swsm_semaphore() if needed */
   5097 		ret = wm_get_swfw_semaphore(sc, SWFW_EEP_SM);
   5098 	} else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
   5099 		ret = wm_get_swsm_semaphore(sc);
   5100 	}
   5101 
   5102 	if (ret) {
   5103 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   5104 			__func__);
   5105 		return 1;
   5106 	}
   5107 
   5108 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
   5109 		reg = CSR_READ(sc, WMREG_EECD);
   5110 
   5111 		/* Request EEPROM access. */
   5112 		reg |= EECD_EE_REQ;
   5113 		CSR_WRITE(sc, WMREG_EECD, reg);
   5114 
   5115 		/* ..and wait for it to be granted. */
   5116 		for (x = 0; x < 1000; x++) {
   5117 			reg = CSR_READ(sc, WMREG_EECD);
   5118 			if (reg & EECD_EE_GNT)
   5119 				break;
   5120 			delay(5);
   5121 		}
   5122 		if ((reg & EECD_EE_GNT) == 0) {
   5123 			aprint_error_dev(sc->sc_dev,
   5124 			    "could not acquire EEPROM GNT\n");
   5125 			reg &= ~EECD_EE_REQ;
   5126 			CSR_WRITE(sc, WMREG_EECD, reg);
   5127 			if (sc->sc_flags & WM_F_SWFWHW_SYNC)
   5128 				wm_put_swfwhw_semaphore(sc);
   5129 			if (sc->sc_flags & WM_F_SWFW_SYNC)
   5130 				wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
   5131 			else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   5132 				wm_put_swsm_semaphore(sc);
   5133 			return 1;
   5134 		}
   5135 	}
   5136 
   5137 	return 0;
   5138 }
   5139 
   5140 /*
   5141  * wm_release_eeprom:
   5142  *
   5143  *	Release the EEPROM mutex.
   5144  */
   5145 static void
   5146 wm_release_eeprom(struct wm_softc *sc)
   5147 {
   5148 	uint32_t reg;
   5149 
   5150 	/* always success */
   5151 	if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
   5152 		return;
   5153 
   5154 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
   5155 		reg = CSR_READ(sc, WMREG_EECD);
   5156 		reg &= ~EECD_EE_REQ;
   5157 		CSR_WRITE(sc, WMREG_EECD, reg);
   5158 	}
   5159 
   5160 	if (sc->sc_flags & WM_F_SWFWHW_SYNC)
   5161 		wm_put_swfwhw_semaphore(sc);
   5162 	if (sc->sc_flags & WM_F_SWFW_SYNC)
   5163 		wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
   5164 	else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   5165 		wm_put_swsm_semaphore(sc);
   5166 }
   5167 
   5168 /*
   5169  * wm_eeprom_sendbits:
   5170  *
   5171  *	Send a series of bits to the EEPROM.
   5172  */
   5173 static void
   5174 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
   5175 {
   5176 	uint32_t reg;
   5177 	int x;
   5178 
   5179 	reg = CSR_READ(sc, WMREG_EECD);
   5180 
   5181 	for (x = nbits; x > 0; x--) {
   5182 		if (bits & (1U << (x - 1)))
   5183 			reg |= EECD_DI;
   5184 		else
   5185 			reg &= ~EECD_DI;
   5186 		CSR_WRITE(sc, WMREG_EECD, reg);
   5187 		delay(2);
   5188 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   5189 		delay(2);
   5190 		CSR_WRITE(sc, WMREG_EECD, reg);
   5191 		delay(2);
   5192 	}
   5193 }
   5194 
   5195 /*
   5196  * wm_eeprom_recvbits:
   5197  *
   5198  *	Receive a series of bits from the EEPROM.
   5199  */
   5200 static void
   5201 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
   5202 {
   5203 	uint32_t reg, val;
   5204 	int x;
   5205 
   5206 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
   5207 
   5208 	val = 0;
   5209 	for (x = nbits; x > 0; x--) {
   5210 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   5211 		delay(2);
   5212 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
   5213 			val |= (1U << (x - 1));
   5214 		CSR_WRITE(sc, WMREG_EECD, reg);
   5215 		delay(2);
   5216 	}
   5217 	*valp = val;
   5218 }
   5219 
   5220 /*
   5221  * wm_read_eeprom_uwire:
   5222  *
   5223  *	Read a word from the EEPROM using the MicroWire protocol.
   5224  */
   5225 static int
   5226 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   5227 {
   5228 	uint32_t reg, val;
   5229 	int i;
   5230 
   5231 	for (i = 0; i < wordcnt; i++) {
   5232 		/* Clear SK and DI. */
   5233 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
   5234 		CSR_WRITE(sc, WMREG_EECD, reg);
   5235 
   5236 		/*
   5237 		 * XXX: workaround for a bug in qemu-0.12.x and prior
   5238 		 * and Xen.
   5239 		 *
   5240 		 * We use this workaround only for 82540 because qemu's
   5241 		 * e1000 act as 82540.
   5242 		 */
   5243 		if (sc->sc_type == WM_T_82540) {
   5244 			reg |= EECD_SK;
   5245 			CSR_WRITE(sc, WMREG_EECD, reg);
   5246 			reg &= ~EECD_SK;
   5247 			CSR_WRITE(sc, WMREG_EECD, reg);
   5248 			delay(2);
   5249 		}
   5250 		/* XXX: end of workaround */
   5251 
   5252 		/* Set CHIP SELECT. */
   5253 		reg |= EECD_CS;
   5254 		CSR_WRITE(sc, WMREG_EECD, reg);
   5255 		delay(2);
   5256 
   5257 		/* Shift in the READ command. */
   5258 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
   5259 
   5260 		/* Shift in address. */
   5261 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
   5262 
   5263 		/* Shift out the data. */
   5264 		wm_eeprom_recvbits(sc, &val, 16);
   5265 		data[i] = val & 0xffff;
   5266 
   5267 		/* Clear CHIP SELECT. */
   5268 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
   5269 		CSR_WRITE(sc, WMREG_EECD, reg);
   5270 		delay(2);
   5271 	}
   5272 
   5273 	return 0;
   5274 }
   5275 
   5276 /*
   5277  * wm_spi_eeprom_ready:
   5278  *
   5279  *	Wait for a SPI EEPROM to be ready for commands.
   5280  */
   5281 static int
   5282 wm_spi_eeprom_ready(struct wm_softc *sc)
   5283 {
   5284 	uint32_t val;
   5285 	int usec;
   5286 
   5287 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
   5288 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
   5289 		wm_eeprom_recvbits(sc, &val, 8);
   5290 		if ((val & SPI_SR_RDY) == 0)
   5291 			break;
   5292 	}
   5293 	if (usec >= SPI_MAX_RETRIES) {
   5294 		aprint_error_dev(sc->sc_dev, "EEPROM failed to become ready\n");
   5295 		return 1;
   5296 	}
   5297 	return 0;
   5298 }
   5299 
   5300 /*
   5301  * wm_read_eeprom_spi:
   5302  *
   5303  *	Read a work from the EEPROM using the SPI protocol.
   5304  */
   5305 static int
   5306 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   5307 {
   5308 	uint32_t reg, val;
   5309 	int i;
   5310 	uint8_t opc;
   5311 
   5312 	/* Clear SK and CS. */
   5313 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
   5314 	CSR_WRITE(sc, WMREG_EECD, reg);
   5315 	delay(2);
   5316 
   5317 	if (wm_spi_eeprom_ready(sc))
   5318 		return 1;
   5319 
   5320 	/* Toggle CS to flush commands. */
   5321 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
   5322 	delay(2);
   5323 	CSR_WRITE(sc, WMREG_EECD, reg);
   5324 	delay(2);
   5325 
   5326 	opc = SPI_OPC_READ;
   5327 	if (sc->sc_ee_addrbits == 8 && word >= 128)
   5328 		opc |= SPI_OPC_A8;
   5329 
   5330 	wm_eeprom_sendbits(sc, opc, 8);
   5331 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
   5332 
   5333 	for (i = 0; i < wordcnt; i++) {
   5334 		wm_eeprom_recvbits(sc, &val, 16);
   5335 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
   5336 	}
   5337 
   5338 	/* Raise CS and clear SK. */
   5339 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
   5340 	CSR_WRITE(sc, WMREG_EECD, reg);
   5341 	delay(2);
   5342 
   5343 	return 0;
   5344 }
   5345 
   5346 #define NVM_CHECKSUM			0xBABA
   5347 #define EEPROM_SIZE			0x0040
   5348 #define NVM_COMPAT			0x0003
   5349 #define NVM_COMPAT_VALID_CHECKSUM	0x0001
   5350 #define NVM_FUTURE_INIT_WORD1			0x0019
   5351 #define NVM_FUTURE_INIT_WORD1_VALID_CHECKSUM	0x0040
   5352 
   5353 /*
   5354  * wm_validate_eeprom_checksum
   5355  *
   5356  * The checksum is defined as the sum of the first 64 (16 bit) words.
   5357  */
   5358 static int
   5359 wm_validate_eeprom_checksum(struct wm_softc *sc)
   5360 {
   5361 	uint16_t checksum, valid_checksum;
   5362 	uint16_t eeprom_data;
   5363 	uint16_t csum_wordaddr;
   5364 	int i;
   5365 
   5366 	checksum = 0;
   5367 
   5368 	/* Don't check for I211 */
   5369 	if (sc->sc_type == WM_T_I211)
   5370 		return 0;
   5371 
   5372 	if (sc->sc_type == WM_T_PCH_LPT) {
   5373 		csum_wordaddr = NVM_COMPAT;
   5374 		valid_checksum = NVM_COMPAT_VALID_CHECKSUM;
   5375 	} else {
   5376 		csum_wordaddr = NVM_FUTURE_INIT_WORD1;
   5377 		valid_checksum = NVM_FUTURE_INIT_WORD1_VALID_CHECKSUM;
   5378 	}
   5379 
   5380 #ifdef WM_DEBUG
   5381 	/* Dump EEPROM image for debug */
   5382 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
   5383 	    || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
   5384 	    || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) {
   5385 		wm_read_eeprom(sc, csum_wordaddr, 1, &eeprom_data);
   5386 		if ((eeprom_data & valid_checksum) == 0) {
   5387 			DPRINTF(WM_DEBUG_NVM,
   5388 			    ("%s: NVM need to be updated (%04x != %04x)\n",
   5389 				device_xname(sc->sc_dev), eeprom_data,
   5390 				    valid_checksum));
   5391 		}
   5392 	}
   5393 
   5394 	if ((wm_debug & WM_DEBUG_NVM) != 0) {
   5395 		printf("%s: NVM dump:\n", device_xname(sc->sc_dev));
   5396 		for (i = 0; i < EEPROM_SIZE; i++) {
   5397 			if (wm_read_eeprom(sc, i, 1, &eeprom_data))
   5398 				printf("XX ");
   5399 			else
   5400 				printf("%04x ", eeprom_data);
   5401 			if (i % 8 == 7)
   5402 				printf("\n");
   5403 		}
   5404 	}
   5405 
   5406 #endif /* WM_DEBUG */
   5407 
   5408 	for (i = 0; i < EEPROM_SIZE; i++) {
   5409 		if (wm_read_eeprom(sc, i, 1, &eeprom_data))
   5410 			return 1;
   5411 		checksum += eeprom_data;
   5412 	}
   5413 
   5414 	if (checksum != (uint16_t) NVM_CHECKSUM) {
   5415 #ifdef WM_DEBUG
   5416 		printf("%s: NVM checksum mismatch (%04x != %04x)\n",
   5417 		    device_xname(sc->sc_dev), checksum, NVM_CHECKSUM);
   5418 #endif
   5419 	}
   5420 
   5421 	return 0;
   5422 }
   5423 
   5424 /*
   5425  * wm_read_eeprom:
   5426  *
   5427  *	Read data from the serial EEPROM.
   5428  */
   5429 static int
   5430 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   5431 {
   5432 	int rv;
   5433 
   5434 	if (sc->sc_flags & WM_F_EEPROM_INVALID)
   5435 		return 1;
   5436 
   5437 	if (wm_acquire_eeprom(sc))
   5438 		return 1;
   5439 
   5440 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
   5441 	    || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
   5442 	    || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT))
   5443 		rv = wm_read_eeprom_ich8(sc, word, wordcnt, data);
   5444 	else if (sc->sc_flags & WM_F_EEPROM_EERDEEWR)
   5445 		rv = wm_read_eeprom_eerd(sc, word, wordcnt, data);
   5446 	else if (sc->sc_flags & WM_F_EEPROM_SPI)
   5447 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
   5448 	else
   5449 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
   5450 
   5451 	wm_release_eeprom(sc);
   5452 	return rv;
   5453 }
   5454 
   5455 static int
   5456 wm_read_eeprom_eerd(struct wm_softc *sc, int offset, int wordcnt,
   5457     uint16_t *data)
   5458 {
   5459 	int i, eerd = 0;
   5460 	int error = 0;
   5461 
   5462 	for (i = 0; i < wordcnt; i++) {
   5463 		eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
   5464 
   5465 		CSR_WRITE(sc, WMREG_EERD, eerd);
   5466 		error = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
   5467 		if (error != 0)
   5468 			break;
   5469 
   5470 		data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
   5471 	}
   5472 
   5473 	return error;
   5474 }
   5475 
   5476 static int
   5477 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
   5478 {
   5479 	uint32_t attempts = 100000;
   5480 	uint32_t i, reg = 0;
   5481 	int32_t done = -1;
   5482 
   5483 	for (i = 0; i < attempts; i++) {
   5484 		reg = CSR_READ(sc, rw);
   5485 
   5486 		if (reg & EERD_DONE) {
   5487 			done = 0;
   5488 			break;
   5489 		}
   5490 		delay(5);
   5491 	}
   5492 
   5493 	return done;
   5494 }
   5495 
   5496 static int
   5497 wm_check_alt_mac_addr(struct wm_softc *sc)
   5498 {
   5499 	uint16_t myea[ETHER_ADDR_LEN / 2];
   5500 	uint16_t offset = EEPROM_OFF_MACADDR;
   5501 
   5502 	/* Try to read alternative MAC address pointer */
   5503 	if (wm_read_eeprom(sc, EEPROM_ALT_MAC_ADDR_PTR, 1, &offset) != 0)
   5504 		return -1;
   5505 
   5506 	/* Check pointer */
   5507 	if (offset == 0xffff)
   5508 		return -1;
   5509 
   5510 	/*
   5511 	 * Check whether alternative MAC address is valid or not.
   5512 	 * Some cards have non 0xffff pointer but those don't use
   5513 	 * alternative MAC address in reality.
   5514 	 *
   5515 	 * Check whether the broadcast bit is set or not.
   5516 	 */
   5517 	if (wm_read_eeprom(sc, offset, 1, myea) == 0)
   5518 		if (((myea[0] & 0xff) & 0x01) == 0)
   5519 			return 0; /* found! */
   5520 
   5521 	/* not found */
   5522 	return -1;
   5523 }
   5524 
   5525 static int
   5526 wm_read_mac_addr(struct wm_softc *sc, uint8_t *enaddr)
   5527 {
   5528 	uint16_t myea[ETHER_ADDR_LEN / 2];
   5529 	uint16_t offset = EEPROM_OFF_MACADDR;
   5530 	int do_invert = 0;
   5531 
   5532 	switch (sc->sc_type) {
   5533 	case WM_T_82580:
   5534 	case WM_T_82580ER:
   5535 	case WM_T_I350:
   5536 		switch (sc->sc_funcid) {
   5537 		case 0:
   5538 			/* default value (== EEPROM_OFF_MACADDR) */
   5539 			break;
   5540 		case 1:
   5541 			offset = EEPROM_OFF_LAN1;
   5542 			break;
   5543 		case 2:
   5544 			offset = EEPROM_OFF_LAN2;
   5545 			break;
   5546 		case 3:
   5547 			offset = EEPROM_OFF_LAN3;
   5548 			break;
   5549 		default:
   5550 			goto bad;
   5551 			/* NOTREACHED */
   5552 			break;
   5553 		}
   5554 		break;
   5555 	case WM_T_82571:
   5556 	case WM_T_82575:
   5557 	case WM_T_82576:
   5558 	case WM_T_80003:
   5559 	case WM_T_I210:
   5560 	case WM_T_I211:
   5561 		if (wm_check_alt_mac_addr(sc) != 0) {
   5562 			/* reset the offset to LAN0 */
   5563 			offset = EEPROM_OFF_MACADDR;
   5564 			if ((sc->sc_funcid & 0x01) == 1)
   5565 				do_invert = 1;
   5566 			goto do_read;
   5567 		}
   5568 		switch (sc->sc_funcid) {
   5569 		case 0:
   5570 			/*
   5571 			 * The offset is the value in EEPROM_ALT_MAC_ADDR_PTR
   5572 			 * itself.
   5573 			 */
   5574 			break;
   5575 		case 1:
   5576 			offset += EEPROM_OFF_MACADDR_LAN1;
   5577 			break;
   5578 		case 2:
   5579 			offset += EEPROM_OFF_MACADDR_LAN2;
   5580 			break;
   5581 		case 3:
   5582 			offset += EEPROM_OFF_MACADDR_LAN3;
   5583 			break;
   5584 		default:
   5585 			goto bad;
   5586 			/* NOTREACHED */
   5587 			break;
   5588 		}
   5589 		break;
   5590 	default:
   5591 		if ((sc->sc_funcid & 0x01) == 1)
   5592 			do_invert = 1;
   5593 		break;
   5594 	}
   5595 
   5596  do_read:
   5597 	if (wm_read_eeprom(sc, offset, sizeof(myea) / sizeof(myea[0]),
   5598 		myea) != 0) {
   5599 		goto bad;
   5600 	}
   5601 
   5602 	enaddr[0] = myea[0] & 0xff;
   5603 	enaddr[1] = myea[0] >> 8;
   5604 	enaddr[2] = myea[1] & 0xff;
   5605 	enaddr[3] = myea[1] >> 8;
   5606 	enaddr[4] = myea[2] & 0xff;
   5607 	enaddr[5] = myea[2] >> 8;
   5608 
   5609 	/*
   5610 	 * Toggle the LSB of the MAC address on the second port
   5611 	 * of some dual port cards.
   5612 	 */
   5613 	if (do_invert != 0)
   5614 		enaddr[5] ^= 1;
   5615 
   5616 	return 0;
   5617 
   5618  bad:
   5619 	aprint_error_dev(sc->sc_dev, "unable to read Ethernet address\n");
   5620 
   5621 	return -1;
   5622 }
   5623 
   5624 /*
   5625  * wm_add_rxbuf:
   5626  *
   5627  *	Add a receive buffer to the indiciated descriptor.
   5628  */
   5629 static int
   5630 wm_add_rxbuf(struct wm_softc *sc, int idx)
   5631 {
   5632 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
   5633 	struct mbuf *m;
   5634 	int error;
   5635 
   5636 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   5637 	if (m == NULL)
   5638 		return ENOBUFS;
   5639 
   5640 	MCLGET(m, M_DONTWAIT);
   5641 	if ((m->m_flags & M_EXT) == 0) {
   5642 		m_freem(m);
   5643 		return ENOBUFS;
   5644 	}
   5645 
   5646 	if (rxs->rxs_mbuf != NULL)
   5647 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   5648 
   5649 	rxs->rxs_mbuf = m;
   5650 
   5651 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   5652 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   5653 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   5654 	if (error) {
   5655 		/* XXX XXX XXX */
   5656 		aprint_error_dev(sc->sc_dev,
   5657 		    "unable to load rx DMA map %d, error = %d\n",
   5658 		    idx, error);
   5659 		panic("wm_add_rxbuf");
   5660 	}
   5661 
   5662 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   5663 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   5664 
   5665 	if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
   5666 		if ((sc->sc_rctl & RCTL_EN) != 0)
   5667 			WM_INIT_RXDESC(sc, idx);
   5668 	} else
   5669 		WM_INIT_RXDESC(sc, idx);
   5670 
   5671 	return 0;
   5672 }
   5673 
   5674 /*
   5675  * wm_set_ral:
   5676  *
   5677  *	Set an entery in the receive address list.
   5678  */
   5679 static void
   5680 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
   5681 {
   5682 	uint32_t ral_lo, ral_hi;
   5683 
   5684 	if (enaddr != NULL) {
   5685 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   5686 		    (enaddr[3] << 24);
   5687 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   5688 		ral_hi |= RAL_AV;
   5689 	} else {
   5690 		ral_lo = 0;
   5691 		ral_hi = 0;
   5692 	}
   5693 
   5694 	if (sc->sc_type >= WM_T_82544) {
   5695 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
   5696 		    ral_lo);
   5697 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
   5698 		    ral_hi);
   5699 	} else {
   5700 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
   5701 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
   5702 	}
   5703 }
   5704 
   5705 /*
   5706  * wm_mchash:
   5707  *
   5708  *	Compute the hash of the multicast address for the 4096-bit
   5709  *	multicast filter.
   5710  */
   5711 static uint32_t
   5712 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
   5713 {
   5714 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   5715 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   5716 	static const int ich8_lo_shift[4] = { 6, 5, 4, 2 };
   5717 	static const int ich8_hi_shift[4] = { 2, 3, 4, 6 };
   5718 	uint32_t hash;
   5719 
   5720 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
   5721 	    || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
   5722 	    || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) {
   5723 		hash = (enaddr[4] >> ich8_lo_shift[sc->sc_mchash_type]) |
   5724 		    (((uint16_t) enaddr[5]) << ich8_hi_shift[sc->sc_mchash_type]);
   5725 		return (hash & 0x3ff);
   5726 	}
   5727 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   5728 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   5729 
   5730 	return (hash & 0xfff);
   5731 }
   5732 
   5733 /*
   5734  * wm_set_filter:
   5735  *
   5736  *	Set up the receive filter.
   5737  */
   5738 static void
   5739 wm_set_filter(struct wm_softc *sc)
   5740 {
   5741 	struct ethercom *ec = &sc->sc_ethercom;
   5742 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   5743 	struct ether_multi *enm;
   5744 	struct ether_multistep step;
   5745 	bus_addr_t mta_reg;
   5746 	uint32_t hash, reg, bit;
   5747 	int i, size;
   5748 
   5749 	if (sc->sc_type >= WM_T_82544)
   5750 		mta_reg = WMREG_CORDOVA_MTA;
   5751 	else
   5752 		mta_reg = WMREG_MTA;
   5753 
   5754 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   5755 
   5756 	if (ifp->if_flags & IFF_BROADCAST)
   5757 		sc->sc_rctl |= RCTL_BAM;
   5758 	if (ifp->if_flags & IFF_PROMISC) {
   5759 		sc->sc_rctl |= RCTL_UPE;
   5760 		goto allmulti;
   5761 	}
   5762 
   5763 	/*
   5764 	 * Set the station address in the first RAL slot, and
   5765 	 * clear the remaining slots.
   5766 	 */
   5767 	if (sc->sc_type == WM_T_ICH8)
   5768 		size = WM_RAL_TABSIZE_ICH8 -1;
   5769 	else if ((sc->sc_type == WM_T_ICH9) || (sc->sc_type == WM_T_ICH10)
   5770 	    || (sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)
   5771 	    || (sc->sc_type == WM_T_PCH_LPT))
   5772 		size = WM_RAL_TABSIZE_ICH8;
   5773 	else if (sc->sc_type == WM_T_82575)
   5774 		size = WM_RAL_TABSIZE_82575;
   5775 	else if ((sc->sc_type == WM_T_82576) || (sc->sc_type == WM_T_82580))
   5776 		size = WM_RAL_TABSIZE_82576;
   5777 	else if (sc->sc_type == WM_T_I350)
   5778 		size = WM_RAL_TABSIZE_I350;
   5779 	else
   5780 		size = WM_RAL_TABSIZE;
   5781 	wm_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
   5782 	for (i = 1; i < size; i++)
   5783 		wm_set_ral(sc, NULL, i);
   5784 
   5785 	if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
   5786 	    || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
   5787 	    || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT))
   5788 		size = WM_ICH8_MC_TABSIZE;
   5789 	else
   5790 		size = WM_MC_TABSIZE;
   5791 	/* Clear out the multicast table. */
   5792 	for (i = 0; i < size; i++)
   5793 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
   5794 
   5795 	ETHER_FIRST_MULTI(step, ec, enm);
   5796 	while (enm != NULL) {
   5797 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   5798 			/*
   5799 			 * We must listen to a range of multicast addresses.
   5800 			 * For now, just accept all multicasts, rather than
   5801 			 * trying to set only those filter bits needed to match
   5802 			 * the range.  (At this time, the only use of address
   5803 			 * ranges is for IP multicast routing, for which the
   5804 			 * range is big enough to require all bits set.)
   5805 			 */
   5806 			goto allmulti;
   5807 		}
   5808 
   5809 		hash = wm_mchash(sc, enm->enm_addrlo);
   5810 
   5811 		reg = (hash >> 5);
   5812 		if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
   5813 		    || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
   5814 		    || (sc->sc_type == WM_T_PCH2)
   5815 		    || (sc->sc_type == WM_T_PCH_LPT))
   5816 			reg &= 0x1f;
   5817 		else
   5818 			reg &= 0x7f;
   5819 		bit = hash & 0x1f;
   5820 
   5821 		hash = CSR_READ(sc, mta_reg + (reg << 2));
   5822 		hash |= 1U << bit;
   5823 
   5824 		/* XXX Hardware bug?? */
   5825 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
   5826 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
   5827 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   5828 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
   5829 		} else
   5830 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   5831 
   5832 		ETHER_NEXT_MULTI(step, enm);
   5833 	}
   5834 
   5835 	ifp->if_flags &= ~IFF_ALLMULTI;
   5836 	goto setit;
   5837 
   5838  allmulti:
   5839 	ifp->if_flags |= IFF_ALLMULTI;
   5840 	sc->sc_rctl |= RCTL_MPE;
   5841 
   5842  setit:
   5843 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
   5844 }
   5845 
   5846 /*
   5847  * wm_tbi_mediainit:
   5848  *
   5849  *	Initialize media for use on 1000BASE-X devices.
   5850  */
   5851 static void
   5852 wm_tbi_mediainit(struct wm_softc *sc)
   5853 {
   5854 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   5855 	const char *sep = "";
   5856 
   5857 	if (sc->sc_type < WM_T_82543)
   5858 		sc->sc_tipg = TIPG_WM_DFLT;
   5859 	else
   5860 		sc->sc_tipg = TIPG_LG_DFLT;
   5861 
   5862 	sc->sc_tbi_anegticks = 5;
   5863 
   5864 	/* Initialize our media structures */
   5865 	sc->sc_mii.mii_ifp = ifp;
   5866 
   5867 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
   5868 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
   5869 	    wm_tbi_mediastatus);
   5870 
   5871 	/*
   5872 	 * SWD Pins:
   5873 	 *
   5874 	 *	0 = Link LED (output)
   5875 	 *	1 = Loss Of Signal (input)
   5876 	 */
   5877 	sc->sc_ctrl |= CTRL_SWDPIO(0);
   5878 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
   5879 
   5880 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   5881 
   5882 #define	ADD(ss, mm, dd)							\
   5883 do {									\
   5884 	aprint_normal("%s%s", sep, ss);					\
   5885 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
   5886 	sep = ", ";							\
   5887 } while (/*CONSTCOND*/0)
   5888 
   5889 	aprint_normal_dev(sc->sc_dev, "");
   5890 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
   5891 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
   5892 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
   5893 	aprint_normal("\n");
   5894 
   5895 #undef ADD
   5896 
   5897 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
   5898 }
   5899 
   5900 /*
   5901  * wm_tbi_mediastatus:	[ifmedia interface function]
   5902  *
   5903  *	Get the current interface media status on a 1000BASE-X device.
   5904  */
   5905 static void
   5906 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   5907 {
   5908 	struct wm_softc *sc = ifp->if_softc;
   5909 	uint32_t ctrl, status;
   5910 
   5911 	ifmr->ifm_status = IFM_AVALID;
   5912 	ifmr->ifm_active = IFM_ETHER;
   5913 
   5914 	status = CSR_READ(sc, WMREG_STATUS);
   5915 	if ((status & STATUS_LU) == 0) {
   5916 		ifmr->ifm_active |= IFM_NONE;
   5917 		return;
   5918 	}
   5919 
   5920 	ifmr->ifm_status |= IFM_ACTIVE;
   5921 	ifmr->ifm_active |= IFM_1000_SX;
   5922 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
   5923 		ifmr->ifm_active |= IFM_FDX;
   5924 	ctrl = CSR_READ(sc, WMREG_CTRL);
   5925 	if (ctrl & CTRL_RFCE)
   5926 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   5927 	if (ctrl & CTRL_TFCE)
   5928 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   5929 }
   5930 
   5931 /*
   5932  * wm_tbi_mediachange:	[ifmedia interface function]
   5933  *
   5934  *	Set hardware to newly-selected media on a 1000BASE-X device.
   5935  */
   5936 static int
   5937 wm_tbi_mediachange(struct ifnet *ifp)
   5938 {
   5939 	struct wm_softc *sc = ifp->if_softc;
   5940 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   5941 	uint32_t status;
   5942 	int i;
   5943 
   5944 	sc->sc_txcw = 0;
   5945 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
   5946 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
   5947 		sc->sc_txcw |= TXCW_SYM_PAUSE | TXCW_ASYM_PAUSE;
   5948 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
   5949 		sc->sc_txcw |= TXCW_ANE;
   5950 	} else {
   5951 		/*
   5952 		 * If autonegotiation is turned off, force link up and turn on
   5953 		 * full duplex
   5954 		 */
   5955 		sc->sc_txcw &= ~TXCW_ANE;
   5956 		sc->sc_ctrl |= CTRL_SLU | CTRL_FD;
   5957 		sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
   5958 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   5959 		delay(1000);
   5960 	}
   5961 
   5962 	DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x after autoneg check\n",
   5963 		    device_xname(sc->sc_dev),sc->sc_txcw));
   5964 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   5965 	delay(10000);
   5966 
   5967 	i = CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1);
   5968 	DPRINTF(WM_DEBUG_LINK,("%s: i = 0x%x\n", device_xname(sc->sc_dev),i));
   5969 
   5970 	/*
   5971 	 * On 82544 chips and later, the CTRL_SWDPIN(1) bit will be set if the
   5972 	 * optics detect a signal, 0 if they don't.
   5973 	 */
   5974 	if (((i != 0) && (sc->sc_type > WM_T_82544)) || (i == 0)) {
   5975 		/* Have signal; wait for the link to come up. */
   5976 
   5977 		if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
   5978 			/*
   5979 			 * Reset the link, and let autonegotiation do its thing
   5980 			 */
   5981 			sc->sc_ctrl |= CTRL_LRST;
   5982 			CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   5983 			delay(1000);
   5984 			sc->sc_ctrl &= ~CTRL_LRST;
   5985 			CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   5986 			delay(1000);
   5987 		}
   5988 
   5989 		for (i = 0; i < WM_LINKUP_TIMEOUT; i++) {
   5990 			delay(10000);
   5991 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
   5992 				break;
   5993 		}
   5994 
   5995 		DPRINTF(WM_DEBUG_LINK,("%s: i = %d after waiting for link\n",
   5996 			    device_xname(sc->sc_dev),i));
   5997 
   5998 		status = CSR_READ(sc, WMREG_STATUS);
   5999 		DPRINTF(WM_DEBUG_LINK,
   6000 		    ("%s: status after final read = 0x%x, STATUS_LU = 0x%x\n",
   6001 			device_xname(sc->sc_dev),status, STATUS_LU));
   6002 		if (status & STATUS_LU) {
   6003 			/* Link is up. */
   6004 			DPRINTF(WM_DEBUG_LINK,
   6005 			    ("%s: LINK: set media -> link up %s\n",
   6006 			    device_xname(sc->sc_dev),
   6007 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   6008 
   6009 			/*
   6010 			 * NOTE: CTRL will update TFCE and RFCE automatically,
   6011 			 * so we should update sc->sc_ctrl
   6012 			 */
   6013 			sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
   6014 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   6015 			sc->sc_fcrtl &= ~FCRTL_XONE;
   6016 			if (status & STATUS_FD)
   6017 				sc->sc_tctl |=
   6018 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   6019 			else
   6020 				sc->sc_tctl |=
   6021 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   6022 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   6023 				sc->sc_fcrtl |= FCRTL_XONE;
   6024 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   6025 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   6026 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   6027 				      sc->sc_fcrtl);
   6028 			sc->sc_tbi_linkup = 1;
   6029 		} else {
   6030 			if (i == WM_LINKUP_TIMEOUT)
   6031 				wm_check_for_link(sc);
   6032 			/* Link is down. */
   6033 			DPRINTF(WM_DEBUG_LINK,
   6034 			    ("%s: LINK: set media -> link down\n",
   6035 			    device_xname(sc->sc_dev)));
   6036 			sc->sc_tbi_linkup = 0;
   6037 		}
   6038 	} else {
   6039 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
   6040 		    device_xname(sc->sc_dev)));
   6041 		sc->sc_tbi_linkup = 0;
   6042 	}
   6043 
   6044 	wm_tbi_set_linkled(sc);
   6045 
   6046 	return 0;
   6047 }
   6048 
   6049 /*
   6050  * wm_tbi_set_linkled:
   6051  *
   6052  *	Update the link LED on 1000BASE-X devices.
   6053  */
   6054 static void
   6055 wm_tbi_set_linkled(struct wm_softc *sc)
   6056 {
   6057 
   6058 	if (sc->sc_tbi_linkup)
   6059 		sc->sc_ctrl |= CTRL_SWDPIN(0);
   6060 	else
   6061 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
   6062 
   6063 	/* 82540 or newer devices are active low */
   6064 	sc->sc_ctrl ^= (sc->sc_type >= WM_T_82540) ? CTRL_SWDPIN(0) : 0;
   6065 
   6066 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   6067 }
   6068 
   6069 /*
   6070  * wm_tbi_check_link:
   6071  *
   6072  *	Check the link on 1000BASE-X devices.
   6073  */
   6074 static void
   6075 wm_tbi_check_link(struct wm_softc *sc)
   6076 {
   6077 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   6078 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   6079 	uint32_t rxcw, ctrl, status;
   6080 
   6081 	status = CSR_READ(sc, WMREG_STATUS);
   6082 
   6083 	rxcw = CSR_READ(sc, WMREG_RXCW);
   6084 	ctrl = CSR_READ(sc, WMREG_CTRL);
   6085 
   6086 	/* set link status */
   6087 	if ((status & STATUS_LU) == 0) {
   6088 		DPRINTF(WM_DEBUG_LINK,
   6089 		    ("%s: LINK: checklink -> down\n", device_xname(sc->sc_dev)));
   6090 		sc->sc_tbi_linkup = 0;
   6091 	} else if (sc->sc_tbi_linkup == 0) {
   6092 		DPRINTF(WM_DEBUG_LINK,
   6093 		    ("%s: LINK: checklink -> up %s\n", device_xname(sc->sc_dev),
   6094 		    (status & STATUS_FD) ? "FDX" : "HDX"));
   6095 		sc->sc_tbi_linkup = 1;
   6096 	}
   6097 
   6098 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_UP)
   6099 	    && ((status & STATUS_LU) == 0)) {
   6100 		sc->sc_tbi_linkup = 0;
   6101 		if (sc->sc_tbi_nrxcfg - sc->sc_tbi_lastnrxcfg > 100) {
   6102 			/* RXCFG storm! */
   6103 			DPRINTF(WM_DEBUG_LINK, ("RXCFG storm! (%d)\n",
   6104 				sc->sc_tbi_nrxcfg - sc->sc_tbi_lastnrxcfg));
   6105 			wm_init(ifp);
   6106 			ifp->if_start(ifp);
   6107 		} else if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
   6108 			/* If the timer expired, retry autonegotiation */
   6109 			if (++sc->sc_tbi_ticks >= sc->sc_tbi_anegticks) {
   6110 				DPRINTF(WM_DEBUG_LINK, ("EXPIRE\n"));
   6111 				sc->sc_tbi_ticks = 0;
   6112 				/*
   6113 				 * Reset the link, and let autonegotiation do
   6114 				 * its thing
   6115 				 */
   6116 				sc->sc_ctrl |= CTRL_LRST;
   6117 				CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   6118 				delay(1000);
   6119 				sc->sc_ctrl &= ~CTRL_LRST;
   6120 				CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   6121 				delay(1000);
   6122 				CSR_WRITE(sc, WMREG_TXCW,
   6123 				    sc->sc_txcw & ~TXCW_ANE);
   6124 				CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   6125 			}
   6126 		}
   6127 	}
   6128 
   6129 	wm_tbi_set_linkled(sc);
   6130 }
   6131 
   6132 /*
   6133  * wm_gmii_reset:
   6134  *
   6135  *	Reset the PHY.
   6136  */
   6137 static void
   6138 wm_gmii_reset(struct wm_softc *sc)
   6139 {
   6140 	uint32_t reg;
   6141 	int rv;
   6142 
   6143 	/* get phy semaphore */
   6144 	switch (sc->sc_type) {
   6145 	case WM_T_82571:
   6146 	case WM_T_82572:
   6147 	case WM_T_82573:
   6148 	case WM_T_82574:
   6149 	case WM_T_82583:
   6150 		 /* XXX should get sw semaphore, too */
   6151 		rv = wm_get_swsm_semaphore(sc);
   6152 		break;
   6153 	case WM_T_82575:
   6154 	case WM_T_82576:
   6155 	case WM_T_82580:
   6156 	case WM_T_82580ER:
   6157 	case WM_T_I350:
   6158 	case WM_T_I210:
   6159 	case WM_T_I211:
   6160 	case WM_T_80003:
   6161 		rv = wm_get_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
   6162 		break;
   6163 	case WM_T_ICH8:
   6164 	case WM_T_ICH9:
   6165 	case WM_T_ICH10:
   6166 	case WM_T_PCH:
   6167 	case WM_T_PCH2:
   6168 	case WM_T_PCH_LPT:
   6169 		rv = wm_get_swfwhw_semaphore(sc);
   6170 		break;
   6171 	default:
   6172 		/* nothing to do*/
   6173 		rv = 0;
   6174 		break;
   6175 	}
   6176 	if (rv != 0) {
   6177 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   6178 		    __func__);
   6179 		return;
   6180 	}
   6181 
   6182 	switch (sc->sc_type) {
   6183 	case WM_T_82542_2_0:
   6184 	case WM_T_82542_2_1:
   6185 		/* null */
   6186 		break;
   6187 	case WM_T_82543:
   6188 		/*
   6189 		 * With 82543, we need to force speed and duplex on the MAC
   6190 		 * equal to what the PHY speed and duplex configuration is.
   6191 		 * In addition, we need to perform a hardware reset on the PHY
   6192 		 * to take it out of reset.
   6193 		 */
   6194 		sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
   6195 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   6196 
   6197 		/* The PHY reset pin is active-low. */
   6198 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   6199 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
   6200 		    CTRL_EXT_SWDPIN(4));
   6201 		reg |= CTRL_EXT_SWDPIO(4);
   6202 
   6203 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   6204 		delay(10*1000);
   6205 
   6206 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   6207 		delay(150);
   6208 #if 0
   6209 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
   6210 #endif
   6211 		delay(20*1000);	/* XXX extra delay to get PHY ID? */
   6212 		break;
   6213 	case WM_T_82544:	/* reset 10000us */
   6214 	case WM_T_82540:
   6215 	case WM_T_82545:
   6216 	case WM_T_82545_3:
   6217 	case WM_T_82546:
   6218 	case WM_T_82546_3:
   6219 	case WM_T_82541:
   6220 	case WM_T_82541_2:
   6221 	case WM_T_82547:
   6222 	case WM_T_82547_2:
   6223 	case WM_T_82571:	/* reset 100us */
   6224 	case WM_T_82572:
   6225 	case WM_T_82573:
   6226 	case WM_T_82574:
   6227 	case WM_T_82575:
   6228 	case WM_T_82576:
   6229 	case WM_T_82580:
   6230 	case WM_T_82580ER:
   6231 	case WM_T_I350:
   6232 	case WM_T_I210:
   6233 	case WM_T_I211:
   6234 	case WM_T_82583:
   6235 	case WM_T_80003:
   6236 		/* generic reset */
   6237 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   6238 		delay(20000);
   6239 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   6240 		delay(20000);
   6241 
   6242 		if ((sc->sc_type == WM_T_82541)
   6243 		    || (sc->sc_type == WM_T_82541_2)
   6244 		    || (sc->sc_type == WM_T_82547)
   6245 		    || (sc->sc_type == WM_T_82547_2)) {
   6246 			/* workaround for igp are done in igp_reset() */
   6247 			/* XXX add code to set LED after phy reset */
   6248 		}
   6249 		break;
   6250 	case WM_T_ICH8:
   6251 	case WM_T_ICH9:
   6252 	case WM_T_ICH10:
   6253 	case WM_T_PCH:
   6254 	case WM_T_PCH2:
   6255 	case WM_T_PCH_LPT:
   6256 		/* generic reset */
   6257 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   6258 		delay(100);
   6259 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   6260 		delay(150);
   6261 		break;
   6262 	default:
   6263 		panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
   6264 		    __func__);
   6265 		break;
   6266 	}
   6267 
   6268 	/* release PHY semaphore */
   6269 	switch (sc->sc_type) {
   6270 	case WM_T_82571:
   6271 	case WM_T_82572:
   6272 	case WM_T_82573:
   6273 	case WM_T_82574:
   6274 	case WM_T_82583:
   6275 		 /* XXX should put sw semaphore, too */
   6276 		wm_put_swsm_semaphore(sc);
   6277 		break;
   6278 	case WM_T_82575:
   6279 	case WM_T_82576:
   6280 	case WM_T_82580:
   6281 	case WM_T_82580ER:
   6282 	case WM_T_I350:
   6283 	case WM_T_I210:
   6284 	case WM_T_I211:
   6285 	case WM_T_80003:
   6286 		wm_put_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
   6287 		break;
   6288 	case WM_T_ICH8:
   6289 	case WM_T_ICH9:
   6290 	case WM_T_ICH10:
   6291 	case WM_T_PCH:
   6292 	case WM_T_PCH2:
   6293 	case WM_T_PCH_LPT:
   6294 		wm_put_swfwhw_semaphore(sc);
   6295 		break;
   6296 	default:
   6297 		/* nothing to do*/
   6298 		rv = 0;
   6299 		break;
   6300 	}
   6301 
   6302 	/* get_cfg_done */
   6303 	wm_get_cfg_done(sc);
   6304 
   6305 	/* extra setup */
   6306 	switch (sc->sc_type) {
   6307 	case WM_T_82542_2_0:
   6308 	case WM_T_82542_2_1:
   6309 	case WM_T_82543:
   6310 	case WM_T_82544:
   6311 	case WM_T_82540:
   6312 	case WM_T_82545:
   6313 	case WM_T_82545_3:
   6314 	case WM_T_82546:
   6315 	case WM_T_82546_3:
   6316 	case WM_T_82541_2:
   6317 	case WM_T_82547_2:
   6318 	case WM_T_82571:
   6319 	case WM_T_82572:
   6320 	case WM_T_82573:
   6321 	case WM_T_82574:
   6322 	case WM_T_82575:
   6323 	case WM_T_82576:
   6324 	case WM_T_82580:
   6325 	case WM_T_82580ER:
   6326 	case WM_T_I350:
   6327 	case WM_T_I210:
   6328 	case WM_T_I211:
   6329 	case WM_T_82583:
   6330 	case WM_T_80003:
   6331 		/* null */
   6332 		break;
   6333 	case WM_T_82541:
   6334 	case WM_T_82547:
   6335 		/* XXX Configure actively LED after PHY reset */
   6336 		break;
   6337 	case WM_T_ICH8:
   6338 	case WM_T_ICH9:
   6339 	case WM_T_ICH10:
   6340 	case WM_T_PCH:
   6341 	case WM_T_PCH2:
   6342 	case WM_T_PCH_LPT:
   6343 		/* Allow time for h/w to get to a quiescent state afer reset */
   6344 		delay(10*1000);
   6345 
   6346 		if (sc->sc_type == WM_T_PCH)
   6347 			wm_hv_phy_workaround_ich8lan(sc);
   6348 
   6349 		if (sc->sc_type == WM_T_PCH2)
   6350 			wm_lv_phy_workaround_ich8lan(sc);
   6351 
   6352 		if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)) {
   6353 			/*
   6354 			 * dummy read to clear the phy wakeup bit after lcd
   6355 			 * reset
   6356 			 */
   6357 			reg = wm_gmii_hv_readreg(sc->sc_dev, 1, BM_WUC);
   6358 		}
   6359 
   6360 		/*
   6361 		 * XXX Configure the LCD with th extended configuration region
   6362 		 * in NVM
   6363 		 */
   6364 
   6365 		/* Configure the LCD with the OEM bits in NVM */
   6366 		if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)
   6367 		    || (sc->sc_type == WM_T_PCH_LPT)) {
   6368 			/*
   6369 			 * Disable LPLU.
   6370 			 * XXX It seems that 82567 has LPLU, too.
   6371 			 */
   6372 			reg = wm_gmii_hv_readreg(sc->sc_dev, 1, HV_OEM_BITS);
   6373 			reg &= ~(HV_OEM_BITS_A1KDIS| HV_OEM_BITS_LPLU);
   6374 			reg |= HV_OEM_BITS_ANEGNOW;
   6375 			wm_gmii_hv_writereg(sc->sc_dev, 1, HV_OEM_BITS, reg);
   6376 		}
   6377 		break;
   6378 	default:
   6379 		panic("%s: unknown type\n", __func__);
   6380 		break;
   6381 	}
   6382 }
   6383 
   6384 /*
   6385  * wm_gmii_mediainit:
   6386  *
   6387  *	Initialize media for use on 1000BASE-T devices.
   6388  */
   6389 static void
   6390 wm_gmii_mediainit(struct wm_softc *sc, pci_product_id_t prodid)
   6391 {
   6392 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   6393 	struct mii_data *mii = &sc->sc_mii;
   6394 
   6395 	/* We have MII. */
   6396 	sc->sc_flags |= WM_F_HAS_MII;
   6397 
   6398 	if (sc->sc_type == WM_T_80003)
   6399 		sc->sc_tipg =  TIPG_1000T_80003_DFLT;
   6400 	else
   6401 		sc->sc_tipg = TIPG_1000T_DFLT;
   6402 
   6403 	/*
   6404 	 * Let the chip set speed/duplex on its own based on
   6405 	 * signals from the PHY.
   6406 	 * XXXbouyer - I'm not sure this is right for the 80003,
   6407 	 * the em driver only sets CTRL_SLU here - but it seems to work.
   6408 	 */
   6409 	sc->sc_ctrl |= CTRL_SLU;
   6410 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   6411 
   6412 	/* Initialize our media structures and probe the GMII. */
   6413 	mii->mii_ifp = ifp;
   6414 
   6415 	/*
   6416 	 * Determine the PHY access method.
   6417 	 *
   6418 	 *  For SGMII, use SGMII specific method.
   6419 	 *
   6420 	 *  For some devices, we can determine the PHY access method
   6421 	 * from sc_type.
   6422 	 *
   6423 	 *  For ICH8 variants, it's difficult to detemine the PHY access
   6424 	 * method by sc_type, so use the PCI product ID for some devices.
   6425 	 * For other ICH8 variants, try to use igp's method. If the PHY
   6426 	 * can't detect, then use bm's method.
   6427 	 */
   6428 	switch (prodid) {
   6429 	case PCI_PRODUCT_INTEL_PCH_M_LM:
   6430 	case PCI_PRODUCT_INTEL_PCH_M_LC:
   6431 		/* 82577 */
   6432 		sc->sc_phytype = WMPHY_82577;
   6433 		mii->mii_readreg = wm_gmii_hv_readreg;
   6434 		mii->mii_writereg = wm_gmii_hv_writereg;
   6435 		break;
   6436 	case PCI_PRODUCT_INTEL_PCH_D_DM:
   6437 	case PCI_PRODUCT_INTEL_PCH_D_DC:
   6438 		/* 82578 */
   6439 		sc->sc_phytype = WMPHY_82578;
   6440 		mii->mii_readreg = wm_gmii_hv_readreg;
   6441 		mii->mii_writereg = wm_gmii_hv_writereg;
   6442 		break;
   6443 	case PCI_PRODUCT_INTEL_PCH2_LV_LM:
   6444 	case PCI_PRODUCT_INTEL_PCH2_LV_V:
   6445 		/* 82579 */
   6446 		sc->sc_phytype = WMPHY_82579;
   6447 		mii->mii_readreg = wm_gmii_hv_readreg;
   6448 		mii->mii_writereg = wm_gmii_hv_writereg;
   6449 		break;
   6450 	case PCI_PRODUCT_INTEL_I217_LM:
   6451 	case PCI_PRODUCT_INTEL_I217_V:
   6452 	case PCI_PRODUCT_INTEL_I218_LM:
   6453 	case PCI_PRODUCT_INTEL_I218_V:
   6454 		/* I21[78] */
   6455 		mii->mii_readreg = wm_gmii_hv_readreg;
   6456 		mii->mii_writereg = wm_gmii_hv_writereg;
   6457 		break;
   6458 	case PCI_PRODUCT_INTEL_82801I_BM:
   6459 	case PCI_PRODUCT_INTEL_82801J_R_BM_LM:
   6460 	case PCI_PRODUCT_INTEL_82801J_R_BM_LF:
   6461 	case PCI_PRODUCT_INTEL_82801J_D_BM_LM:
   6462 	case PCI_PRODUCT_INTEL_82801J_D_BM_LF:
   6463 	case PCI_PRODUCT_INTEL_82801J_R_BM_V:
   6464 		/* 82567 */
   6465 		sc->sc_phytype = WMPHY_BM;
   6466 		mii->mii_readreg = wm_gmii_bm_readreg;
   6467 		mii->mii_writereg = wm_gmii_bm_writereg;
   6468 		break;
   6469 	default:
   6470 		if ((sc->sc_flags & WM_F_SGMII) != 0) {
   6471 			mii->mii_readreg = wm_sgmii_readreg;
   6472 			mii->mii_writereg = wm_sgmii_writereg;
   6473 		} else if (sc->sc_type >= WM_T_80003) {
   6474 			mii->mii_readreg = wm_gmii_i80003_readreg;
   6475 			mii->mii_writereg = wm_gmii_i80003_writereg;
   6476 		} else if (sc->sc_type >= WM_T_I210) {
   6477 			mii->mii_readreg = wm_gmii_i82544_readreg;
   6478 			mii->mii_writereg = wm_gmii_i82544_writereg;
   6479 		} else if (sc->sc_type >= WM_T_82580) {
   6480 			sc->sc_phytype = WMPHY_82580;
   6481 			mii->mii_readreg = wm_gmii_82580_readreg;
   6482 			mii->mii_writereg = wm_gmii_82580_writereg;
   6483 		} else if (sc->sc_type >= WM_T_82544) {
   6484 			mii->mii_readreg = wm_gmii_i82544_readreg;
   6485 			mii->mii_writereg = wm_gmii_i82544_writereg;
   6486 		} else {
   6487 			mii->mii_readreg = wm_gmii_i82543_readreg;
   6488 			mii->mii_writereg = wm_gmii_i82543_writereg;
   6489 		}
   6490 		break;
   6491 	}
   6492 	mii->mii_statchg = wm_gmii_statchg;
   6493 
   6494 	wm_gmii_reset(sc);
   6495 
   6496 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
   6497 	ifmedia_init(&mii->mii_media, IFM_IMASK, wm_gmii_mediachange,
   6498 	    wm_gmii_mediastatus);
   6499 
   6500 	if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
   6501 	    || (sc->sc_type == WM_T_82580) || (sc->sc_type == WM_T_82580ER)
   6502 	    || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I210)
   6503 	    || (sc->sc_type == WM_T_I211)) {
   6504 		if ((sc->sc_flags & WM_F_SGMII) == 0) {
   6505 			/* Attach only one port */
   6506 			mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, 1,
   6507 			    MII_OFFSET_ANY, MIIF_DOPAUSE);
   6508 		} else {
   6509 			int i;
   6510 			uint32_t ctrl_ext;
   6511 
   6512 			/* Power on sgmii phy if it is disabled */
   6513 			ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
   6514 			CSR_WRITE(sc, WMREG_CTRL_EXT,
   6515 			    ctrl_ext &~ CTRL_EXT_SWDPIN(3));
   6516 			CSR_WRITE_FLUSH(sc);
   6517 			delay(300*1000); /* XXX too long */
   6518 
   6519 			/* from 1 to 8 */
   6520 			for (i = 1; i < 8; i++)
   6521 				mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff,
   6522 				    i, MII_OFFSET_ANY, MIIF_DOPAUSE);
   6523 
   6524 			/* restore previous sfp cage power state */
   6525 			CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
   6526 		}
   6527 	} else {
   6528 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   6529 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
   6530 	}
   6531 
   6532 	/*
   6533 	 * If the MAC is PCH2 or PCH_LPT and failed to detect MII PHY, call
   6534 	 * wm_set_mdio_slow_mode_hv() for a workaround and retry.
   6535 	 */
   6536 	if (((sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) &&
   6537 	    (LIST_FIRST(&mii->mii_phys) == NULL)) {
   6538 		wm_set_mdio_slow_mode_hv(sc);
   6539 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   6540 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
   6541 	}
   6542 
   6543 	/*
   6544 	 * (For ICH8 variants)
   6545 	 * If PHY detection failed, use BM's r/w function and retry.
   6546 	 */
   6547 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
   6548 		/* if failed, retry with *_bm_* */
   6549 		mii->mii_readreg = wm_gmii_bm_readreg;
   6550 		mii->mii_writereg = wm_gmii_bm_writereg;
   6551 
   6552 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   6553 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
   6554 	}
   6555 
   6556 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
   6557 		/* Any PHY wasn't find */
   6558 		ifmedia_add(&mii->mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   6559 		ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_NONE);
   6560 		sc->sc_phytype = WMPHY_NONE;
   6561 	} else {
   6562 		/*
   6563 		 * PHY Found!
   6564 		 * Check PHY type.
   6565 		 */
   6566 		uint32_t model;
   6567 		struct mii_softc *child;
   6568 
   6569 		child = LIST_FIRST(&mii->mii_phys);
   6570 		if (device_is_a(child->mii_dev, "igphy")) {
   6571 			struct igphy_softc *isc = (struct igphy_softc *)child;
   6572 
   6573 			model = isc->sc_mii.mii_mpd_model;
   6574 			if (model == MII_MODEL_yyINTEL_I82566)
   6575 				sc->sc_phytype = WMPHY_IGP_3;
   6576 		}
   6577 
   6578 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   6579 	}
   6580 }
   6581 
   6582 /*
   6583  * wm_gmii_mediastatus:	[ifmedia interface function]
   6584  *
   6585  *	Get the current interface media status on a 1000BASE-T device.
   6586  */
   6587 static void
   6588 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   6589 {
   6590 	struct wm_softc *sc = ifp->if_softc;
   6591 
   6592 	ether_mediastatus(ifp, ifmr);
   6593 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
   6594 	    | sc->sc_flowflags;
   6595 }
   6596 
   6597 /*
   6598  * wm_gmii_mediachange:	[ifmedia interface function]
   6599  *
   6600  *	Set hardware to newly-selected media on a 1000BASE-T device.
   6601  */
   6602 static int
   6603 wm_gmii_mediachange(struct ifnet *ifp)
   6604 {
   6605 	struct wm_softc *sc = ifp->if_softc;
   6606 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   6607 	int rc;
   6608 
   6609 	if ((ifp->if_flags & IFF_UP) == 0)
   6610 		return 0;
   6611 
   6612 	sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
   6613 	sc->sc_ctrl |= CTRL_SLU;
   6614 	if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
   6615 	    || (sc->sc_type > WM_T_82543)) {
   6616 		sc->sc_ctrl &= ~(CTRL_FRCSPD | CTRL_FRCFDX);
   6617 	} else {
   6618 		sc->sc_ctrl &= ~CTRL_ASDE;
   6619 		sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
   6620 		if (ife->ifm_media & IFM_FDX)
   6621 			sc->sc_ctrl |= CTRL_FD;
   6622 		switch (IFM_SUBTYPE(ife->ifm_media)) {
   6623 		case IFM_10_T:
   6624 			sc->sc_ctrl |= CTRL_SPEED_10;
   6625 			break;
   6626 		case IFM_100_TX:
   6627 			sc->sc_ctrl |= CTRL_SPEED_100;
   6628 			break;
   6629 		case IFM_1000_T:
   6630 			sc->sc_ctrl |= CTRL_SPEED_1000;
   6631 			break;
   6632 		default:
   6633 			panic("wm_gmii_mediachange: bad media 0x%x",
   6634 			    ife->ifm_media);
   6635 		}
   6636 	}
   6637 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   6638 	if (sc->sc_type <= WM_T_82543)
   6639 		wm_gmii_reset(sc);
   6640 
   6641 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
   6642 		return 0;
   6643 	return rc;
   6644 }
   6645 
   6646 #define	MDI_IO		CTRL_SWDPIN(2)
   6647 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
   6648 #define	MDI_CLK		CTRL_SWDPIN(3)
   6649 
   6650 static void
   6651 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
   6652 {
   6653 	uint32_t i, v;
   6654 
   6655 	v = CSR_READ(sc, WMREG_CTRL);
   6656 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   6657 	v |= MDI_DIR | CTRL_SWDPIO(3);
   6658 
   6659 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
   6660 		if (data & i)
   6661 			v |= MDI_IO;
   6662 		else
   6663 			v &= ~MDI_IO;
   6664 		CSR_WRITE(sc, WMREG_CTRL, v);
   6665 		delay(10);
   6666 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   6667 		delay(10);
   6668 		CSR_WRITE(sc, WMREG_CTRL, v);
   6669 		delay(10);
   6670 	}
   6671 }
   6672 
   6673 static uint32_t
   6674 i82543_mii_recvbits(struct wm_softc *sc)
   6675 {
   6676 	uint32_t v, i, data = 0;
   6677 
   6678 	v = CSR_READ(sc, WMREG_CTRL);
   6679 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   6680 	v |= CTRL_SWDPIO(3);
   6681 
   6682 	CSR_WRITE(sc, WMREG_CTRL, v);
   6683 	delay(10);
   6684 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   6685 	delay(10);
   6686 	CSR_WRITE(sc, WMREG_CTRL, v);
   6687 	delay(10);
   6688 
   6689 	for (i = 0; i < 16; i++) {
   6690 		data <<= 1;
   6691 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   6692 		delay(10);
   6693 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
   6694 			data |= 1;
   6695 		CSR_WRITE(sc, WMREG_CTRL, v);
   6696 		delay(10);
   6697 	}
   6698 
   6699 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   6700 	delay(10);
   6701 	CSR_WRITE(sc, WMREG_CTRL, v);
   6702 	delay(10);
   6703 
   6704 	return data;
   6705 }
   6706 
   6707 #undef MDI_IO
   6708 #undef MDI_DIR
   6709 #undef MDI_CLK
   6710 
   6711 /*
   6712  * wm_gmii_i82543_readreg:	[mii interface function]
   6713  *
   6714  *	Read a PHY register on the GMII (i82543 version).
   6715  */
   6716 static int
   6717 wm_gmii_i82543_readreg(device_t self, int phy, int reg)
   6718 {
   6719 	struct wm_softc *sc = device_private(self);
   6720 	int rv;
   6721 
   6722 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   6723 	i82543_mii_sendbits(sc, reg | (phy << 5) |
   6724 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
   6725 	rv = i82543_mii_recvbits(sc) & 0xffff;
   6726 
   6727 	DPRINTF(WM_DEBUG_GMII,
   6728 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
   6729 	    device_xname(sc->sc_dev), phy, reg, rv));
   6730 
   6731 	return rv;
   6732 }
   6733 
   6734 /*
   6735  * wm_gmii_i82543_writereg:	[mii interface function]
   6736  *
   6737  *	Write a PHY register on the GMII (i82543 version).
   6738  */
   6739 static void
   6740 wm_gmii_i82543_writereg(device_t self, int phy, int reg, int val)
   6741 {
   6742 	struct wm_softc *sc = device_private(self);
   6743 
   6744 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   6745 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
   6746 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
   6747 	    (MII_COMMAND_START << 30), 32);
   6748 }
   6749 
   6750 /*
   6751  * wm_gmii_i82544_readreg:	[mii interface function]
   6752  *
   6753  *	Read a PHY register on the GMII.
   6754  */
   6755 static int
   6756 wm_gmii_i82544_readreg(device_t self, int phy, int reg)
   6757 {
   6758 	struct wm_softc *sc = device_private(self);
   6759 	uint32_t mdic = 0;
   6760 	int i, rv;
   6761 
   6762 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
   6763 	    MDIC_REGADD(reg));
   6764 
   6765 	for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) {
   6766 		mdic = CSR_READ(sc, WMREG_MDIC);
   6767 		if (mdic & MDIC_READY)
   6768 			break;
   6769 		delay(50);
   6770 	}
   6771 
   6772 	if ((mdic & MDIC_READY) == 0) {
   6773 		log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
   6774 		    device_xname(sc->sc_dev), phy, reg);
   6775 		rv = 0;
   6776 	} else if (mdic & MDIC_E) {
   6777 #if 0 /* This is normal if no PHY is present. */
   6778 		log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
   6779 		    device_xname(sc->sc_dev), phy, reg);
   6780 #endif
   6781 		rv = 0;
   6782 	} else {
   6783 		rv = MDIC_DATA(mdic);
   6784 		if (rv == 0xffff)
   6785 			rv = 0;
   6786 	}
   6787 
   6788 	return rv;
   6789 }
   6790 
   6791 /*
   6792  * wm_gmii_i82544_writereg:	[mii interface function]
   6793  *
   6794  *	Write a PHY register on the GMII.
   6795  */
   6796 static void
   6797 wm_gmii_i82544_writereg(device_t self, int phy, int reg, int val)
   6798 {
   6799 	struct wm_softc *sc = device_private(self);
   6800 	uint32_t mdic = 0;
   6801 	int i;
   6802 
   6803 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
   6804 	    MDIC_REGADD(reg) | MDIC_DATA(val));
   6805 
   6806 	for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) {
   6807 		mdic = CSR_READ(sc, WMREG_MDIC);
   6808 		if (mdic & MDIC_READY)
   6809 			break;
   6810 		delay(50);
   6811 	}
   6812 
   6813 	if ((mdic & MDIC_READY) == 0)
   6814 		log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
   6815 		    device_xname(sc->sc_dev), phy, reg);
   6816 	else if (mdic & MDIC_E)
   6817 		log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
   6818 		    device_xname(sc->sc_dev), phy, reg);
   6819 }
   6820 
   6821 /*
   6822  * wm_gmii_i80003_readreg:	[mii interface function]
   6823  *
   6824  *	Read a PHY register on the kumeran
   6825  * This could be handled by the PHY layer if we didn't have to lock the
   6826  * ressource ...
   6827  */
   6828 static int
   6829 wm_gmii_i80003_readreg(device_t self, int phy, int reg)
   6830 {
   6831 	struct wm_softc *sc = device_private(self);
   6832 	int sem;
   6833 	int rv;
   6834 
   6835 	if (phy != 1) /* only one PHY on kumeran bus */
   6836 		return 0;
   6837 
   6838 	sem = swfwphysem[sc->sc_funcid];
   6839 	if (wm_get_swfw_semaphore(sc, sem)) {
   6840 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   6841 		    __func__);
   6842 		return 0;
   6843 	}
   6844 
   6845 	if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
   6846 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
   6847 		    reg >> GG82563_PAGE_SHIFT);
   6848 	} else {
   6849 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
   6850 		    reg >> GG82563_PAGE_SHIFT);
   6851 	}
   6852 	/* Wait more 200us for a bug of the ready bit in the MDIC register */
   6853 	delay(200);
   6854 	rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
   6855 	delay(200);
   6856 
   6857 	wm_put_swfw_semaphore(sc, sem);
   6858 	return rv;
   6859 }
   6860 
   6861 /*
   6862  * wm_gmii_i80003_writereg:	[mii interface function]
   6863  *
   6864  *	Write a PHY register on the kumeran.
   6865  * This could be handled by the PHY layer if we didn't have to lock the
   6866  * ressource ...
   6867  */
   6868 static void
   6869 wm_gmii_i80003_writereg(device_t self, int phy, int reg, int val)
   6870 {
   6871 	struct wm_softc *sc = device_private(self);
   6872 	int sem;
   6873 
   6874 	if (phy != 1) /* only one PHY on kumeran bus */
   6875 		return;
   6876 
   6877 	sem = swfwphysem[sc->sc_funcid];
   6878 	if (wm_get_swfw_semaphore(sc, sem)) {
   6879 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   6880 		    __func__);
   6881 		return;
   6882 	}
   6883 
   6884 	if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
   6885 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
   6886 		    reg >> GG82563_PAGE_SHIFT);
   6887 	} else {
   6888 		wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
   6889 		    reg >> GG82563_PAGE_SHIFT);
   6890 	}
   6891 	/* Wait more 200us for a bug of the ready bit in the MDIC register */
   6892 	delay(200);
   6893 	wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
   6894 	delay(200);
   6895 
   6896 	wm_put_swfw_semaphore(sc, sem);
   6897 }
   6898 
   6899 /*
   6900  * wm_gmii_bm_readreg:	[mii interface function]
   6901  *
   6902  *	Read a PHY register on the kumeran
   6903  * This could be handled by the PHY layer if we didn't have to lock the
   6904  * ressource ...
   6905  */
   6906 static int
   6907 wm_gmii_bm_readreg(device_t self, int phy, int reg)
   6908 {
   6909 	struct wm_softc *sc = device_private(self);
   6910 	int sem;
   6911 	int rv;
   6912 
   6913 	sem = swfwphysem[sc->sc_funcid];
   6914 	if (wm_get_swfw_semaphore(sc, sem)) {
   6915 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   6916 		    __func__);
   6917 		return 0;
   6918 	}
   6919 
   6920 	if (reg > BME1000_MAX_MULTI_PAGE_REG) {
   6921 		if (phy == 1)
   6922 			wm_gmii_i82544_writereg(self, phy, MII_IGPHY_PAGE_SELECT,
   6923 			    reg);
   6924 		else
   6925 			wm_gmii_i82544_writereg(self, phy,
   6926 			    GG82563_PHY_PAGE_SELECT,
   6927 			    reg >> GG82563_PAGE_SHIFT);
   6928 	}
   6929 
   6930 	rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
   6931 	wm_put_swfw_semaphore(sc, sem);
   6932 	return rv;
   6933 }
   6934 
   6935 /*
   6936  * wm_gmii_bm_writereg:	[mii interface function]
   6937  *
   6938  *	Write a PHY register on the kumeran.
   6939  * This could be handled by the PHY layer if we didn't have to lock the
   6940  * ressource ...
   6941  */
   6942 static void
   6943 wm_gmii_bm_writereg(device_t self, int phy, int reg, int val)
   6944 {
   6945 	struct wm_softc *sc = device_private(self);
   6946 	int sem;
   6947 
   6948 	sem = swfwphysem[sc->sc_funcid];
   6949 	if (wm_get_swfw_semaphore(sc, sem)) {
   6950 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   6951 		    __func__);
   6952 		return;
   6953 	}
   6954 
   6955 	if (reg > BME1000_MAX_MULTI_PAGE_REG) {
   6956 		if (phy == 1)
   6957 			wm_gmii_i82544_writereg(self, phy, MII_IGPHY_PAGE_SELECT,
   6958 			    reg);
   6959 		else
   6960 			wm_gmii_i82544_writereg(self, phy,
   6961 			    GG82563_PHY_PAGE_SELECT,
   6962 			    reg >> GG82563_PAGE_SHIFT);
   6963 	}
   6964 
   6965 	wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
   6966 	wm_put_swfw_semaphore(sc, sem);
   6967 }
   6968 
   6969 static void
   6970 wm_access_phy_wakeup_reg_bm(device_t self, int offset, int16_t *val, int rd)
   6971 {
   6972 	struct wm_softc *sc = device_private(self);
   6973 	uint16_t regnum = BM_PHY_REG_NUM(offset);
   6974 	uint16_t wuce;
   6975 
   6976 	/* XXX Gig must be disabled for MDIO accesses to page 800 */
   6977 	if (sc->sc_type == WM_T_PCH) {
   6978 		/* XXX e1000 driver do nothing... why? */
   6979 	}
   6980 
   6981 	/* Set page 769 */
   6982 	wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
   6983 	    BM_WUC_ENABLE_PAGE << BME1000_PAGE_SHIFT);
   6984 
   6985 	wuce = wm_gmii_i82544_readreg(self, 1, BM_WUC_ENABLE_REG);
   6986 
   6987 	wuce &= ~BM_WUC_HOST_WU_BIT;
   6988 	wm_gmii_i82544_writereg(self, 1, BM_WUC_ENABLE_REG,
   6989 	    wuce | BM_WUC_ENABLE_BIT);
   6990 
   6991 	/* Select page 800 */
   6992 	wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
   6993 	    BM_WUC_PAGE << BME1000_PAGE_SHIFT);
   6994 
   6995 	/* Write page 800 */
   6996 	wm_gmii_i82544_writereg(self, 1, BM_WUC_ADDRESS_OPCODE, regnum);
   6997 
   6998 	if (rd)
   6999 		*val = wm_gmii_i82544_readreg(self, 1, BM_WUC_DATA_OPCODE);
   7000 	else
   7001 		wm_gmii_i82544_writereg(self, 1, BM_WUC_DATA_OPCODE, *val);
   7002 
   7003 	/* Set page 769 */
   7004 	wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
   7005 	    BM_WUC_ENABLE_PAGE << BME1000_PAGE_SHIFT);
   7006 
   7007 	wm_gmii_i82544_writereg(self, 1, BM_WUC_ENABLE_REG, wuce);
   7008 }
   7009 
   7010 /*
   7011  * wm_gmii_hv_readreg:	[mii interface function]
   7012  *
   7013  *	Read a PHY register on the kumeran
   7014  * This could be handled by the PHY layer if we didn't have to lock the
   7015  * ressource ...
   7016  */
   7017 static int
   7018 wm_gmii_hv_readreg(device_t self, int phy, int reg)
   7019 {
   7020 	struct wm_softc *sc = device_private(self);
   7021 	uint16_t page = BM_PHY_REG_PAGE(reg);
   7022 	uint16_t regnum = BM_PHY_REG_NUM(reg);
   7023 	uint16_t val;
   7024 	int rv;
   7025 
   7026 	if (wm_get_swfwhw_semaphore(sc)) {
   7027 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   7028 		    __func__);
   7029 		return 0;
   7030 	}
   7031 
   7032 	/* XXX Workaround failure in MDIO access while cable is disconnected */
   7033 	if (sc->sc_phytype == WMPHY_82577) {
   7034 		/* XXX must write */
   7035 	}
   7036 
   7037 	/* Page 800 works differently than the rest so it has its own func */
   7038 	if (page == BM_WUC_PAGE) {
   7039 		wm_access_phy_wakeup_reg_bm(self, reg, &val, 1);
   7040 		return val;
   7041 	}
   7042 
   7043 	/*
   7044 	 * Lower than page 768 works differently than the rest so it has its
   7045 	 * own func
   7046 	 */
   7047 	if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) {
   7048 		printf("gmii_hv_readreg!!!\n");
   7049 		return 0;
   7050 	}
   7051 
   7052 	if (regnum > BME1000_MAX_MULTI_PAGE_REG) {
   7053 		wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
   7054 		    page << BME1000_PAGE_SHIFT);
   7055 	}
   7056 
   7057 	rv = wm_gmii_i82544_readreg(self, phy, regnum & IGPHY_MAXREGADDR);
   7058 	wm_put_swfwhw_semaphore(sc);
   7059 	return rv;
   7060 }
   7061 
   7062 /*
   7063  * wm_gmii_hv_writereg:	[mii interface function]
   7064  *
   7065  *	Write a PHY register on the kumeran.
   7066  * This could be handled by the PHY layer if we didn't have to lock the
   7067  * ressource ...
   7068  */
   7069 static void
   7070 wm_gmii_hv_writereg(device_t self, int phy, int reg, int val)
   7071 {
   7072 	struct wm_softc *sc = device_private(self);
   7073 	uint16_t page = BM_PHY_REG_PAGE(reg);
   7074 	uint16_t regnum = BM_PHY_REG_NUM(reg);
   7075 
   7076 	if (wm_get_swfwhw_semaphore(sc)) {
   7077 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   7078 		    __func__);
   7079 		return;
   7080 	}
   7081 
   7082 	/* XXX Workaround failure in MDIO access while cable is disconnected */
   7083 
   7084 	/* Page 800 works differently than the rest so it has its own func */
   7085 	if (page == BM_WUC_PAGE) {
   7086 		uint16_t tmp;
   7087 
   7088 		tmp = val;
   7089 		wm_access_phy_wakeup_reg_bm(self, reg, &tmp, 0);
   7090 		return;
   7091 	}
   7092 
   7093 	/*
   7094 	 * Lower than page 768 works differently than the rest so it has its
   7095 	 * own func
   7096 	 */
   7097 	if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) {
   7098 		printf("gmii_hv_writereg!!!\n");
   7099 		return;
   7100 	}
   7101 
   7102 	/*
   7103 	 * XXX Workaround MDIO accesses being disabled after entering IEEE
   7104 	 * Power Down (whenever bit 11 of the PHY control register is set)
   7105 	 */
   7106 
   7107 	if (regnum > BME1000_MAX_MULTI_PAGE_REG) {
   7108 		wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
   7109 		    page << BME1000_PAGE_SHIFT);
   7110 	}
   7111 
   7112 	wm_gmii_i82544_writereg(self, phy, regnum & IGPHY_MAXREGADDR, val);
   7113 	wm_put_swfwhw_semaphore(sc);
   7114 }
   7115 
   7116 /*
   7117  * wm_sgmii_readreg:	[mii interface function]
   7118  *
   7119  *	Read a PHY register on the SGMII
   7120  * This could be handled by the PHY layer if we didn't have to lock the
   7121  * ressource ...
   7122  */
   7123 static int
   7124 wm_sgmii_readreg(device_t self, int phy, int reg)
   7125 {
   7126 	struct wm_softc *sc = device_private(self);
   7127 	uint32_t i2ccmd;
   7128 	int i, rv;
   7129 
   7130 	if (wm_get_swfw_semaphore(sc, swfwphysem[sc->sc_funcid])) {
   7131 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   7132 		    __func__);
   7133 		return 0;
   7134 	}
   7135 
   7136 	i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT)
   7137 	    | (phy << I2CCMD_PHY_ADDR_SHIFT)
   7138 	    | I2CCMD_OPCODE_READ;
   7139 	CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
   7140 
   7141 	/* Poll the ready bit */
   7142 	for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
   7143 		delay(50);
   7144 		i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
   7145 		if (i2ccmd & I2CCMD_READY)
   7146 			break;
   7147 	}
   7148 	if ((i2ccmd & I2CCMD_READY) == 0)
   7149 		aprint_error_dev(sc->sc_dev, "I2CCMD Read did not complete\n");
   7150 	if ((i2ccmd & I2CCMD_ERROR) != 0)
   7151 		aprint_error_dev(sc->sc_dev, "I2CCMD Error bit set\n");
   7152 
   7153 	rv = ((i2ccmd >> 8) & 0x00ff) | ((i2ccmd << 8) & 0xff00);
   7154 
   7155 	wm_put_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
   7156 	return rv;
   7157 }
   7158 
   7159 /*
   7160  * wm_sgmii_writereg:	[mii interface function]
   7161  *
   7162  *	Write a PHY register on the SGMII.
   7163  * This could be handled by the PHY layer if we didn't have to lock the
   7164  * ressource ...
   7165  */
   7166 static void
   7167 wm_sgmii_writereg(device_t self, int phy, int reg, int val)
   7168 {
   7169 	struct wm_softc *sc = device_private(self);
   7170 	uint32_t i2ccmd;
   7171 	int i;
   7172 
   7173 	if (wm_get_swfw_semaphore(sc, swfwphysem[sc->sc_funcid])) {
   7174 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   7175 		    __func__);
   7176 		return;
   7177 	}
   7178 
   7179 	i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT)
   7180 	    | (phy << I2CCMD_PHY_ADDR_SHIFT)
   7181 	    | I2CCMD_OPCODE_WRITE;
   7182 	CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
   7183 
   7184 	/* Poll the ready bit */
   7185 	for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
   7186 		delay(50);
   7187 		i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
   7188 		if (i2ccmd & I2CCMD_READY)
   7189 			break;
   7190 	}
   7191 	if ((i2ccmd & I2CCMD_READY) == 0)
   7192 		aprint_error_dev(sc->sc_dev, "I2CCMD Write did not complete\n");
   7193 	if ((i2ccmd & I2CCMD_ERROR) != 0)
   7194 		aprint_error_dev(sc->sc_dev, "I2CCMD Error bit set\n");
   7195 
   7196 	wm_put_swfw_semaphore(sc, SWFW_PHY0_SM);
   7197 }
   7198 
   7199 /*
   7200  * wm_gmii_82580_readreg:	[mii interface function]
   7201  *
   7202  *	Read a PHY register on the 82580 and I350.
   7203  * This could be handled by the PHY layer if we didn't have to lock the
   7204  * ressource ...
   7205  */
   7206 static int
   7207 wm_gmii_82580_readreg(device_t self, int phy, int reg)
   7208 {
   7209 	struct wm_softc *sc = device_private(self);
   7210 	int sem;
   7211 	int rv;
   7212 
   7213 	sem = swfwphysem[sc->sc_funcid];
   7214 	if (wm_get_swfw_semaphore(sc, sem)) {
   7215 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   7216 		    __func__);
   7217 		return 0;
   7218 	}
   7219 
   7220 	rv = wm_gmii_i82544_readreg(self, phy, reg);
   7221 
   7222 	wm_put_swfw_semaphore(sc, sem);
   7223 	return rv;
   7224 }
   7225 
   7226 /*
   7227  * wm_gmii_82580_writereg:	[mii interface function]
   7228  *
   7229  *	Write a PHY register on the 82580 and I350.
   7230  * This could be handled by the PHY layer if we didn't have to lock the
   7231  * ressource ...
   7232  */
   7233 static void
   7234 wm_gmii_82580_writereg(device_t self, int phy, int reg, int val)
   7235 {
   7236 	struct wm_softc *sc = device_private(self);
   7237 	int sem;
   7238 
   7239 	sem = swfwphysem[sc->sc_funcid];
   7240 	if (wm_get_swfw_semaphore(sc, sem)) {
   7241 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   7242 		    __func__);
   7243 		return;
   7244 	}
   7245 
   7246 	wm_gmii_i82544_writereg(self, phy, reg, val);
   7247 
   7248 	wm_put_swfw_semaphore(sc, sem);
   7249 }
   7250 
   7251 /*
   7252  * wm_gmii_statchg:	[mii interface function]
   7253  *
   7254  *	Callback from MII layer when media changes.
   7255  */
   7256 static void
   7257 wm_gmii_statchg(struct ifnet *ifp)
   7258 {
   7259 	struct wm_softc *sc = ifp->if_softc;
   7260 	struct mii_data *mii = &sc->sc_mii;
   7261 
   7262 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
   7263 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   7264 	sc->sc_fcrtl &= ~FCRTL_XONE;
   7265 
   7266 	/*
   7267 	 * Get flow control negotiation result.
   7268 	 */
   7269 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   7270 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   7271 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   7272 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   7273 	}
   7274 
   7275 	if (sc->sc_flowflags & IFM_FLOW) {
   7276 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
   7277 			sc->sc_ctrl |= CTRL_TFCE;
   7278 			sc->sc_fcrtl |= FCRTL_XONE;
   7279 		}
   7280 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   7281 			sc->sc_ctrl |= CTRL_RFCE;
   7282 	}
   7283 
   7284 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   7285 		DPRINTF(WM_DEBUG_LINK,
   7286 		    ("%s: LINK: statchg: FDX\n", ifp->if_xname));
   7287 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   7288 	} else {
   7289 		DPRINTF(WM_DEBUG_LINK,
   7290 		    ("%s: LINK: statchg: HDX\n", ifp->if_xname));
   7291 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   7292 	}
   7293 
   7294 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   7295 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   7296 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
   7297 						 : WMREG_FCRTL, sc->sc_fcrtl);
   7298 	if (sc->sc_type == WM_T_80003) {
   7299 		switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
   7300 		case IFM_1000_T:
   7301 			wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
   7302 			    KUMCTRLSTA_HD_CTRL_1000_DEFAULT);
   7303 			sc->sc_tipg =  TIPG_1000T_80003_DFLT;
   7304 			break;
   7305 		default:
   7306 			wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
   7307 			    KUMCTRLSTA_HD_CTRL_10_100_DEFAULT);
   7308 			sc->sc_tipg =  TIPG_10_100_80003_DFLT;
   7309 			break;
   7310 		}
   7311 		CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   7312 	}
   7313 }
   7314 
   7315 /*
   7316  * wm_kmrn_readreg:
   7317  *
   7318  *	Read a kumeran register
   7319  */
   7320 static int
   7321 wm_kmrn_readreg(struct wm_softc *sc, int reg)
   7322 {
   7323 	int rv;
   7324 
   7325 	if (sc->sc_flags == WM_F_SWFW_SYNC) {
   7326 		if (wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM)) {
   7327 			aprint_error_dev(sc->sc_dev,
   7328 			    "%s: failed to get semaphore\n", __func__);
   7329 			return 0;
   7330 		}
   7331 	} else if (sc->sc_flags == WM_F_SWFWHW_SYNC) {
   7332 		if (wm_get_swfwhw_semaphore(sc)) {
   7333 			aprint_error_dev(sc->sc_dev,
   7334 			    "%s: failed to get semaphore\n", __func__);
   7335 			return 0;
   7336 		}
   7337 	}
   7338 
   7339 	CSR_WRITE(sc, WMREG_KUMCTRLSTA,
   7340 	    ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
   7341 	    KUMCTRLSTA_REN);
   7342 	delay(2);
   7343 
   7344 	rv = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK;
   7345 
   7346 	if (sc->sc_flags == WM_F_SWFW_SYNC)
   7347 		wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
   7348 	else if (sc->sc_flags == WM_F_SWFWHW_SYNC)
   7349 		wm_put_swfwhw_semaphore(sc);
   7350 
   7351 	return rv;
   7352 }
   7353 
   7354 /*
   7355  * wm_kmrn_writereg:
   7356  *
   7357  *	Write a kumeran register
   7358  */
   7359 static void
   7360 wm_kmrn_writereg(struct wm_softc *sc, int reg, int val)
   7361 {
   7362 
   7363 	if (sc->sc_flags == WM_F_SWFW_SYNC) {
   7364 		if (wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM)) {
   7365 			aprint_error_dev(sc->sc_dev,
   7366 			    "%s: failed to get semaphore\n", __func__);
   7367 			return;
   7368 		}
   7369 	} else if (sc->sc_flags == WM_F_SWFWHW_SYNC) {
   7370 		if (wm_get_swfwhw_semaphore(sc)) {
   7371 			aprint_error_dev(sc->sc_dev,
   7372 			    "%s: failed to get semaphore\n", __func__);
   7373 			return;
   7374 		}
   7375 	}
   7376 
   7377 	CSR_WRITE(sc, WMREG_KUMCTRLSTA,
   7378 	    ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
   7379 	    (val & KUMCTRLSTA_MASK));
   7380 
   7381 	if (sc->sc_flags == WM_F_SWFW_SYNC)
   7382 		wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
   7383 	else if (sc->sc_flags == WM_F_SWFWHW_SYNC)
   7384 		wm_put_swfwhw_semaphore(sc);
   7385 }
   7386 
   7387 static int
   7388 wm_is_onboard_nvm_eeprom(struct wm_softc *sc)
   7389 {
   7390 	uint32_t eecd = 0;
   7391 
   7392 	if (sc->sc_type == WM_T_82573 || sc->sc_type == WM_T_82574
   7393 	    || sc->sc_type == WM_T_82583) {
   7394 		eecd = CSR_READ(sc, WMREG_EECD);
   7395 
   7396 		/* Isolate bits 15 & 16 */
   7397 		eecd = ((eecd >> 15) & 0x03);
   7398 
   7399 		/* If both bits are set, device is Flash type */
   7400 		if (eecd == 0x03)
   7401 			return 0;
   7402 	}
   7403 	return 1;
   7404 }
   7405 
   7406 static int
   7407 wm_get_swsm_semaphore(struct wm_softc *sc)
   7408 {
   7409 	int32_t timeout;
   7410 	uint32_t swsm;
   7411 
   7412 	/* Get the FW semaphore. */
   7413 	timeout = 1000 + 1; /* XXX */
   7414 	while (timeout) {
   7415 		swsm = CSR_READ(sc, WMREG_SWSM);
   7416 		swsm |= SWSM_SWESMBI;
   7417 		CSR_WRITE(sc, WMREG_SWSM, swsm);
   7418 		/* if we managed to set the bit we got the semaphore. */
   7419 		swsm = CSR_READ(sc, WMREG_SWSM);
   7420 		if (swsm & SWSM_SWESMBI)
   7421 			break;
   7422 
   7423 		delay(50);
   7424 		timeout--;
   7425 	}
   7426 
   7427 	if (timeout == 0) {
   7428 		aprint_error_dev(sc->sc_dev, "could not acquire EEPROM GNT\n");
   7429 		/* Release semaphores */
   7430 		wm_put_swsm_semaphore(sc);
   7431 		return 1;
   7432 	}
   7433 	return 0;
   7434 }
   7435 
   7436 static void
   7437 wm_put_swsm_semaphore(struct wm_softc *sc)
   7438 {
   7439 	uint32_t swsm;
   7440 
   7441 	swsm = CSR_READ(sc, WMREG_SWSM);
   7442 	swsm &= ~(SWSM_SWESMBI);
   7443 	CSR_WRITE(sc, WMREG_SWSM, swsm);
   7444 }
   7445 
   7446 static int
   7447 wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
   7448 {
   7449 	uint32_t swfw_sync;
   7450 	uint32_t swmask = mask << SWFW_SOFT_SHIFT;
   7451 	uint32_t fwmask = mask << SWFW_FIRM_SHIFT;
   7452 	int timeout = 200;
   7453 
   7454 	for (timeout = 0; timeout < 200; timeout++) {
   7455 		if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
   7456 			if (wm_get_swsm_semaphore(sc)) {
   7457 				aprint_error_dev(sc->sc_dev,
   7458 				    "%s: failed to get semaphore\n",
   7459 				    __func__);
   7460 				return 1;
   7461 			}
   7462 		}
   7463 		swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
   7464 		if ((swfw_sync & (swmask | fwmask)) == 0) {
   7465 			swfw_sync |= swmask;
   7466 			CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
   7467 			if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   7468 				wm_put_swsm_semaphore(sc);
   7469 			return 0;
   7470 		}
   7471 		if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   7472 			wm_put_swsm_semaphore(sc);
   7473 		delay(5000);
   7474 	}
   7475 	printf("%s: failed to get swfw semaphore mask 0x%x swfw 0x%x\n",
   7476 	    device_xname(sc->sc_dev), mask, swfw_sync);
   7477 	return 1;
   7478 }
   7479 
   7480 static void
   7481 wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
   7482 {
   7483 	uint32_t swfw_sync;
   7484 
   7485 	if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
   7486 		while (wm_get_swsm_semaphore(sc) != 0)
   7487 			continue;
   7488 	}
   7489 	swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
   7490 	swfw_sync &= ~(mask << SWFW_SOFT_SHIFT);
   7491 	CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
   7492 	if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
   7493 		wm_put_swsm_semaphore(sc);
   7494 }
   7495 
   7496 static int
   7497 wm_get_swfwhw_semaphore(struct wm_softc *sc)
   7498 {
   7499 	uint32_t ext_ctrl;
   7500 	int timeout = 200;
   7501 
   7502 	for (timeout = 0; timeout < 200; timeout++) {
   7503 		ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
   7504 		ext_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
   7505 		CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
   7506 
   7507 		ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
   7508 		if (ext_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
   7509 			return 0;
   7510 		delay(5000);
   7511 	}
   7512 	printf("%s: failed to get swfwhw semaphore ext_ctrl 0x%x\n",
   7513 	    device_xname(sc->sc_dev), ext_ctrl);
   7514 	return 1;
   7515 }
   7516 
   7517 static void
   7518 wm_put_swfwhw_semaphore(struct wm_softc *sc)
   7519 {
   7520 	uint32_t ext_ctrl;
   7521 	ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
   7522 	ext_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
   7523 	CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
   7524 }
   7525 
   7526 static int
   7527 wm_valid_nvm_bank_detect_ich8lan(struct wm_softc *sc, unsigned int *bank)
   7528 {
   7529 	uint32_t eecd;
   7530 	uint32_t act_offset = ICH_NVM_SIG_WORD * 2 + 1;
   7531 	uint32_t bank1_offset = sc->sc_ich8_flash_bank_size * sizeof(uint16_t);
   7532 	uint8_t sig_byte = 0;
   7533 
   7534 	switch (sc->sc_type) {
   7535 	case WM_T_ICH8:
   7536 	case WM_T_ICH9:
   7537 		eecd = CSR_READ(sc, WMREG_EECD);
   7538 		if ((eecd & EECD_SEC1VAL_VALMASK) == EECD_SEC1VAL_VALMASK) {
   7539 			*bank = ((eecd & EECD_SEC1VAL) != 0) ? 1 : 0;
   7540 			return 0;
   7541 		}
   7542 		/* FALLTHROUGH */
   7543 	default:
   7544 		/* Default to 0 */
   7545 		*bank = 0;
   7546 
   7547 		/* Check bank 0 */
   7548 		wm_read_ich8_byte(sc, act_offset, &sig_byte);
   7549 		if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
   7550 			*bank = 0;
   7551 			return 0;
   7552 		}
   7553 
   7554 		/* Check bank 1 */
   7555 		wm_read_ich8_byte(sc, act_offset + bank1_offset,
   7556 		    &sig_byte);
   7557 		if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
   7558 			*bank = 1;
   7559 			return 0;
   7560 		}
   7561 	}
   7562 
   7563 	aprint_error_dev(sc->sc_dev, "EEPROM not present\n");
   7564 	return -1;
   7565 }
   7566 
   7567 /******************************************************************************
   7568  * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
   7569  * register.
   7570  *
   7571  * sc - Struct containing variables accessed by shared code
   7572  * offset - offset of word in the EEPROM to read
   7573  * data - word read from the EEPROM
   7574  * words - number of words to read
   7575  *****************************************************************************/
   7576 static int
   7577 wm_read_eeprom_ich8(struct wm_softc *sc, int offset, int words, uint16_t *data)
   7578 {
   7579 	int32_t  error = 0;
   7580 	uint32_t flash_bank = 0;
   7581 	uint32_t act_offset = 0;
   7582 	uint32_t bank_offset = 0;
   7583 	uint16_t word = 0;
   7584 	uint16_t i = 0;
   7585 
   7586 	/* We need to know which is the valid flash bank.  In the event
   7587 	 * that we didn't allocate eeprom_shadow_ram, we may not be
   7588 	 * managing flash_bank.  So it cannot be trusted and needs
   7589 	 * to be updated with each read.
   7590 	 */
   7591 	error = wm_valid_nvm_bank_detect_ich8lan(sc, &flash_bank);
   7592 	if (error) {
   7593 		aprint_error_dev(sc->sc_dev, "%s: failed to detect NVM bank\n",
   7594 		    __func__);
   7595 		return error;
   7596 	}
   7597 
   7598 	/*
   7599 	 * Adjust offset appropriately if we're on bank 1 - adjust for word
   7600 	 * size
   7601 	 */
   7602 	bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
   7603 
   7604 	error = wm_get_swfwhw_semaphore(sc);
   7605 	if (error) {
   7606 		aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
   7607 		    __func__);
   7608 		return error;
   7609 	}
   7610 
   7611 	for (i = 0; i < words; i++) {
   7612 		/* The NVM part needs a byte offset, hence * 2 */
   7613 		act_offset = bank_offset + ((offset + i) * 2);
   7614 		error = wm_read_ich8_word(sc, act_offset, &word);
   7615 		if (error) {
   7616 			aprint_error_dev(sc->sc_dev,
   7617 			    "%s: failed to read NVM\n", __func__);
   7618 			break;
   7619 		}
   7620 		data[i] = word;
   7621 	}
   7622 
   7623 	wm_put_swfwhw_semaphore(sc);
   7624 	return error;
   7625 }
   7626 
   7627 /******************************************************************************
   7628  * This function does initial flash setup so that a new read/write/erase cycle
   7629  * can be started.
   7630  *
   7631  * sc - The pointer to the hw structure
   7632  ****************************************************************************/
   7633 static int32_t
   7634 wm_ich8_cycle_init(struct wm_softc *sc)
   7635 {
   7636 	uint16_t hsfsts;
   7637 	int32_t error = 1;
   7638 	int32_t i     = 0;
   7639 
   7640 	hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
   7641 
   7642 	/* May be check the Flash Des Valid bit in Hw status */
   7643 	if ((hsfsts & HSFSTS_FLDVAL) == 0) {
   7644 		return error;
   7645 	}
   7646 
   7647 	/* Clear FCERR in Hw status by writing 1 */
   7648 	/* Clear DAEL in Hw status by writing a 1 */
   7649 	hsfsts |= HSFSTS_ERR | HSFSTS_DAEL;
   7650 
   7651 	ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
   7652 
   7653 	/*
   7654 	 * Either we should have a hardware SPI cycle in progress bit to check
   7655 	 * against, in order to start a new cycle or FDONE bit should be
   7656 	 * changed in the hardware so that it is 1 after harware reset, which
   7657 	 * can then be used as an indication whether a cycle is in progress or
   7658 	 * has been completed .. we should also have some software semaphore
   7659 	 * mechanism to guard FDONE or the cycle in progress bit so that two
   7660 	 * threads access to those bits can be sequentiallized or a way so that
   7661 	 * 2 threads dont start the cycle at the same time
   7662 	 */
   7663 
   7664 	if ((hsfsts & HSFSTS_FLINPRO) == 0) {
   7665 		/*
   7666 		 * There is no cycle running at present, so we can start a
   7667 		 * cycle
   7668 		 */
   7669 
   7670 		/* Begin by setting Flash Cycle Done. */
   7671 		hsfsts |= HSFSTS_DONE;
   7672 		ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
   7673 		error = 0;
   7674 	} else {
   7675 		/*
   7676 		 * otherwise poll for sometime so the current cycle has a
   7677 		 * chance to end before giving up.
   7678 		 */
   7679 		for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
   7680 			hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
   7681 			if ((hsfsts & HSFSTS_FLINPRO) == 0) {
   7682 				error = 0;
   7683 				break;
   7684 			}
   7685 			delay(1);
   7686 		}
   7687 		if (error == 0) {
   7688 			/*
   7689 			 * Successful in waiting for previous cycle to timeout,
   7690 			 * now set the Flash Cycle Done.
   7691 			 */
   7692 			hsfsts |= HSFSTS_DONE;
   7693 			ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
   7694 		}
   7695 	}
   7696 	return error;
   7697 }
   7698 
   7699 /******************************************************************************
   7700  * This function starts a flash cycle and waits for its completion
   7701  *
   7702  * sc - The pointer to the hw structure
   7703  ****************************************************************************/
   7704 static int32_t
   7705 wm_ich8_flash_cycle(struct wm_softc *sc, uint32_t timeout)
   7706 {
   7707 	uint16_t hsflctl;
   7708 	uint16_t hsfsts;
   7709 	int32_t error = 1;
   7710 	uint32_t i = 0;
   7711 
   7712 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
   7713 	hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
   7714 	hsflctl |= HSFCTL_GO;
   7715 	ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
   7716 
   7717 	/* wait till FDONE bit is set to 1 */
   7718 	do {
   7719 		hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
   7720 		if (hsfsts & HSFSTS_DONE)
   7721 			break;
   7722 		delay(1);
   7723 		i++;
   7724 	} while (i < timeout);
   7725 	if ((hsfsts & HSFSTS_DONE) == 1 && (hsfsts & HSFSTS_ERR) == 0)
   7726 		error = 0;
   7727 
   7728 	return error;
   7729 }
   7730 
   7731 /******************************************************************************
   7732  * Reads a byte or word from the NVM using the ICH8 flash access registers.
   7733  *
   7734  * sc - The pointer to the hw structure
   7735  * index - The index of the byte or word to read.
   7736  * size - Size of data to read, 1=byte 2=word
   7737  * data - Pointer to the word to store the value read.
   7738  *****************************************************************************/
   7739 static int32_t
   7740 wm_read_ich8_data(struct wm_softc *sc, uint32_t index,
   7741     uint32_t size, uint16_t* data)
   7742 {
   7743 	uint16_t hsfsts;
   7744 	uint16_t hsflctl;
   7745 	uint32_t flash_linear_address;
   7746 	uint32_t flash_data = 0;
   7747 	int32_t error = 1;
   7748 	int32_t count = 0;
   7749 
   7750 	if (size < 1  || size > 2 || data == 0x0 ||
   7751 	    index > ICH_FLASH_LINEAR_ADDR_MASK)
   7752 		return error;
   7753 
   7754 	flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
   7755 	    sc->sc_ich8_flash_base;
   7756 
   7757 	do {
   7758 		delay(1);
   7759 		/* Steps */
   7760 		error = wm_ich8_cycle_init(sc);
   7761 		if (error)
   7762 			break;
   7763 
   7764 		hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
   7765 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
   7766 		hsflctl |=  ((size - 1) << HSFCTL_BCOUNT_SHIFT)
   7767 		    & HSFCTL_BCOUNT_MASK;
   7768 		hsflctl |= ICH_CYCLE_READ << HSFCTL_CYCLE_SHIFT;
   7769 		ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
   7770 
   7771 		/*
   7772 		 * Write the last 24 bits of index into Flash Linear address
   7773 		 * field in Flash Address
   7774 		 */
   7775 		/* TODO: TBD maybe check the index against the size of flash */
   7776 
   7777 		ICH8_FLASH_WRITE32(sc, ICH_FLASH_FADDR, flash_linear_address);
   7778 
   7779 		error = wm_ich8_flash_cycle(sc, ICH_FLASH_COMMAND_TIMEOUT);
   7780 
   7781 		/*
   7782 		 * Check if FCERR is set to 1, if set to 1, clear it and try
   7783 		 * the whole sequence a few more times, else read in (shift in)
   7784 		 * the Flash Data0, the order is least significant byte first
   7785 		 * msb to lsb
   7786 		 */
   7787 		if (error == 0) {
   7788 			flash_data = ICH8_FLASH_READ32(sc, ICH_FLASH_FDATA0);
   7789 			if (size == 1)
   7790 				*data = (uint8_t)(flash_data & 0x000000FF);
   7791 			else if (size == 2)
   7792 				*data = (uint16_t)(flash_data & 0x0000FFFF);
   7793 			break;
   7794 		} else {
   7795 			/*
   7796 			 * If we've gotten here, then things are probably
   7797 			 * completely hosed, but if the error condition is
   7798 			 * detected, it won't hurt to give it another try...
   7799 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
   7800 			 */
   7801 			hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
   7802 			if (hsfsts & HSFSTS_ERR) {
   7803 				/* Repeat for some time before giving up. */
   7804 				continue;
   7805 			} else if ((hsfsts & HSFSTS_DONE) == 0)
   7806 				break;
   7807 		}
   7808 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
   7809 
   7810 	return error;
   7811 }
   7812 
   7813 /******************************************************************************
   7814  * Reads a single byte from the NVM using the ICH8 flash access registers.
   7815  *
   7816  * sc - pointer to wm_hw structure
   7817  * index - The index of the byte to read.
   7818  * data - Pointer to a byte to store the value read.
   7819  *****************************************************************************/
   7820 static int32_t
   7821 wm_read_ich8_byte(struct wm_softc *sc, uint32_t index, uint8_t* data)
   7822 {
   7823 	int32_t status;
   7824 	uint16_t word = 0;
   7825 
   7826 	status = wm_read_ich8_data(sc, index, 1, &word);
   7827 	if (status == 0)
   7828 		*data = (uint8_t)word;
   7829 	else
   7830 		*data = 0;
   7831 
   7832 	return status;
   7833 }
   7834 
   7835 /******************************************************************************
   7836  * Reads a word from the NVM using the ICH8 flash access registers.
   7837  *
   7838  * sc - pointer to wm_hw structure
   7839  * index - The starting byte index of the word to read.
   7840  * data - Pointer to a word to store the value read.
   7841  *****************************************************************************/
   7842 static int32_t
   7843 wm_read_ich8_word(struct wm_softc *sc, uint32_t index, uint16_t *data)
   7844 {
   7845 	int32_t status;
   7846 
   7847 	status = wm_read_ich8_data(sc, index, 2, data);
   7848 	return status;
   7849 }
   7850 
   7851 static int
   7852 wm_check_mng_mode(struct wm_softc *sc)
   7853 {
   7854 	int rv;
   7855 
   7856 	switch (sc->sc_type) {
   7857 	case WM_T_ICH8:
   7858 	case WM_T_ICH9:
   7859 	case WM_T_ICH10:
   7860 	case WM_T_PCH:
   7861 	case WM_T_PCH2:
   7862 	case WM_T_PCH_LPT:
   7863 		rv = wm_check_mng_mode_ich8lan(sc);
   7864 		break;
   7865 	case WM_T_82574:
   7866 	case WM_T_82583:
   7867 		rv = wm_check_mng_mode_82574(sc);
   7868 		break;
   7869 	case WM_T_82571:
   7870 	case WM_T_82572:
   7871 	case WM_T_82573:
   7872 	case WM_T_80003:
   7873 		rv = wm_check_mng_mode_generic(sc);
   7874 		break;
   7875 	default:
   7876 		/* noting to do */
   7877 		rv = 0;
   7878 		break;
   7879 	}
   7880 
   7881 	return rv;
   7882 }
   7883 
   7884 static int
   7885 wm_check_mng_mode_ich8lan(struct wm_softc *sc)
   7886 {
   7887 	uint32_t fwsm;
   7888 
   7889 	fwsm = CSR_READ(sc, WMREG_FWSM);
   7890 
   7891 	if ((fwsm & FWSM_MODE_MASK) == (MNG_ICH_IAMT_MODE << FWSM_MODE_SHIFT))
   7892 		return 1;
   7893 
   7894 	return 0;
   7895 }
   7896 
   7897 static int
   7898 wm_check_mng_mode_82574(struct wm_softc *sc)
   7899 {
   7900 	uint16_t data;
   7901 
   7902 	wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &data);
   7903 
   7904 	if ((data & EEPROM_CFG2_MNGM_MASK) != 0)
   7905 		return 1;
   7906 
   7907 	return 0;
   7908 }
   7909 
   7910 static int
   7911 wm_check_mng_mode_generic(struct wm_softc *sc)
   7912 {
   7913 	uint32_t fwsm;
   7914 
   7915 	fwsm = CSR_READ(sc, WMREG_FWSM);
   7916 
   7917 	if ((fwsm & FWSM_MODE_MASK) == (MNG_IAMT_MODE << FWSM_MODE_SHIFT))
   7918 		return 1;
   7919 
   7920 	return 0;
   7921 }
   7922 
   7923 static int
   7924 wm_enable_mng_pass_thru(struct wm_softc *sc)
   7925 {
   7926 	uint32_t manc, fwsm, factps;
   7927 
   7928 	if ((sc->sc_flags & WM_F_ASF_FIRMWARE_PRES) == 0)
   7929 		return 0;
   7930 
   7931 	manc = CSR_READ(sc, WMREG_MANC);
   7932 
   7933 	DPRINTF(WM_DEBUG_MANAGE, ("%s: MANC (%08x)\n",
   7934 		device_xname(sc->sc_dev), manc));
   7935 	if (((manc & MANC_RECV_TCO_EN) == 0)
   7936 	    || ((manc & MANC_EN_MAC_ADDR_FILTER) == 0))
   7937 		return 0;
   7938 
   7939 	if ((sc->sc_flags & WM_F_ARC_SUBSYS_VALID) != 0) {
   7940 		fwsm = CSR_READ(sc, WMREG_FWSM);
   7941 		factps = CSR_READ(sc, WMREG_FACTPS);
   7942 		if (((factps & FACTPS_MNGCG) == 0)
   7943 		    && ((fwsm & FWSM_MODE_MASK)
   7944 			== (MNG_ICH_IAMT_MODE << FWSM_MODE_SHIFT)))
   7945 			return 1;
   7946 	} else if (((manc & MANC_SMBUS_EN) != 0)
   7947 	    && ((manc & MANC_ASF_EN) == 0))
   7948 		return 1;
   7949 
   7950 	return 0;
   7951 }
   7952 
   7953 static int
   7954 wm_check_reset_block(struct wm_softc *sc)
   7955 {
   7956 	uint32_t reg;
   7957 
   7958 	switch (sc->sc_type) {
   7959 	case WM_T_ICH8:
   7960 	case WM_T_ICH9:
   7961 	case WM_T_ICH10:
   7962 	case WM_T_PCH:
   7963 	case WM_T_PCH2:
   7964 	case WM_T_PCH_LPT:
   7965 		reg = CSR_READ(sc, WMREG_FWSM);
   7966 		if ((reg & FWSM_RSPCIPHY) != 0)
   7967 			return 0;
   7968 		else
   7969 			return -1;
   7970 		break;
   7971 	case WM_T_82571:
   7972 	case WM_T_82572:
   7973 	case WM_T_82573:
   7974 	case WM_T_82574:
   7975 	case WM_T_82583:
   7976 	case WM_T_80003:
   7977 		reg = CSR_READ(sc, WMREG_MANC);
   7978 		if ((reg & MANC_BLK_PHY_RST_ON_IDE) != 0)
   7979 			return -1;
   7980 		else
   7981 			return 0;
   7982 		break;
   7983 	default:
   7984 		/* no problem */
   7985 		break;
   7986 	}
   7987 
   7988 	return 0;
   7989 }
   7990 
   7991 static void
   7992 wm_get_hw_control(struct wm_softc *sc)
   7993 {
   7994 	uint32_t reg;
   7995 
   7996 	switch (sc->sc_type) {
   7997 	case WM_T_82573:
   7998 		reg = CSR_READ(sc, WMREG_SWSM);
   7999 		CSR_WRITE(sc, WMREG_SWSM, reg | SWSM_DRV_LOAD);
   8000 		break;
   8001 	case WM_T_82571:
   8002 	case WM_T_82572:
   8003 	case WM_T_82574:
   8004 	case WM_T_82583:
   8005 	case WM_T_80003:
   8006 	case WM_T_ICH8:
   8007 	case WM_T_ICH9:
   8008 	case WM_T_ICH10:
   8009 	case WM_T_PCH:
   8010 	case WM_T_PCH2:
   8011 	case WM_T_PCH_LPT:
   8012 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   8013 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_DRV_LOAD);
   8014 		break;
   8015 	default:
   8016 		break;
   8017 	}
   8018 }
   8019 
   8020 static void
   8021 wm_release_hw_control(struct wm_softc *sc)
   8022 {
   8023 	uint32_t reg;
   8024 
   8025 	if ((sc->sc_flags & WM_F_HAS_MANAGE) == 0)
   8026 		return;
   8027 
   8028 	if (sc->sc_type == WM_T_82573) {
   8029 		reg = CSR_READ(sc, WMREG_SWSM);
   8030 		reg &= ~SWSM_DRV_LOAD;
   8031 		CSR_WRITE(sc, WMREG_SWSM, reg & ~SWSM_DRV_LOAD);
   8032 	} else {
   8033 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   8034 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg & ~CTRL_EXT_DRV_LOAD);
   8035 	}
   8036 }
   8037 
   8038 /* XXX Currently TBI only */
   8039 static int
   8040 wm_check_for_link(struct wm_softc *sc)
   8041 {
   8042 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   8043 	uint32_t rxcw;
   8044 	uint32_t ctrl;
   8045 	uint32_t status;
   8046 	uint32_t sig;
   8047 
   8048 	rxcw = CSR_READ(sc, WMREG_RXCW);
   8049 	ctrl = CSR_READ(sc, WMREG_CTRL);
   8050 	status = CSR_READ(sc, WMREG_STATUS);
   8051 
   8052 	sig = (sc->sc_type > WM_T_82544) ? CTRL_SWDPIN(1) : 0;
   8053 
   8054 	DPRINTF(WM_DEBUG_LINK, ("%s: %s: sig = %d, status_lu = %d, rxcw_c = %d\n",
   8055 		device_xname(sc->sc_dev), __func__,
   8056 		((ctrl & CTRL_SWDPIN(1)) == sig),
   8057 		((status & STATUS_LU) != 0),
   8058 		((rxcw & RXCW_C) != 0)
   8059 		    ));
   8060 
   8061 	/*
   8062 	 * SWDPIN   LU RXCW
   8063 	 *      0    0    0
   8064 	 *      0    0    1	(should not happen)
   8065 	 *      0    1    0	(should not happen)
   8066 	 *      0    1    1	(should not happen)
   8067 	 *      1    0    0	Disable autonego and force linkup
   8068 	 *      1    0    1	got /C/ but not linkup yet
   8069 	 *      1    1    0	(linkup)
   8070 	 *      1    1    1	If IFM_AUTO, back to autonego
   8071 	 *
   8072 	 */
   8073 	if (((ctrl & CTRL_SWDPIN(1)) == sig)
   8074 	    && ((status & STATUS_LU) == 0)
   8075 	    && ((rxcw & RXCW_C) == 0)) {
   8076 		DPRINTF(WM_DEBUG_LINK, ("%s: force linkup and fullduplex\n",
   8077 			__func__));
   8078 		sc->sc_tbi_linkup = 0;
   8079 		/* Disable auto-negotiation in the TXCW register */
   8080 		CSR_WRITE(sc, WMREG_TXCW, (sc->sc_txcw & ~TXCW_ANE));
   8081 
   8082 		/*
   8083 		 * Force link-up and also force full-duplex.
   8084 		 *
   8085 		 * NOTE: CTRL was updated TFCE and RFCE automatically,
   8086 		 * so we should update sc->sc_ctrl
   8087 		 */
   8088 		sc->sc_ctrl = ctrl | CTRL_SLU | CTRL_FD;
   8089 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   8090 	} else if (((status & STATUS_LU) != 0)
   8091 	    && ((rxcw & RXCW_C) != 0)
   8092 	    && (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)) {
   8093 		sc->sc_tbi_linkup = 1;
   8094 		DPRINTF(WM_DEBUG_LINK, ("%s: go back to autonego\n",
   8095 			__func__));
   8096 		CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   8097 		CSR_WRITE(sc, WMREG_CTRL, (ctrl & ~CTRL_SLU));
   8098 	} else if (((ctrl & CTRL_SWDPIN(1)) == sig)
   8099 	    && ((rxcw & RXCW_C) != 0)) {
   8100 		DPRINTF(WM_DEBUG_LINK, ("/C/"));
   8101 	} else {
   8102 		DPRINTF(WM_DEBUG_LINK, ("%s: %x,%x,%x\n", __func__, rxcw, ctrl,
   8103 			status));
   8104 	}
   8105 
   8106 	return 0;
   8107 }
   8108 
   8109 /* Work-around for 82566 Kumeran PCS lock loss */
   8110 static void
   8111 wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *sc)
   8112 {
   8113 	int miistatus, active, i;
   8114 	int reg;
   8115 
   8116 	miistatus = sc->sc_mii.mii_media_status;
   8117 
   8118 	/* If the link is not up, do nothing */
   8119 	if ((miistatus & IFM_ACTIVE) != 0)
   8120 		return;
   8121 
   8122 	active = sc->sc_mii.mii_media_active;
   8123 
   8124 	/* Nothing to do if the link is other than 1Gbps */
   8125 	if (IFM_SUBTYPE(active) != IFM_1000_T)
   8126 		return;
   8127 
   8128 	for (i = 0; i < 10; i++) {
   8129 		/* read twice */
   8130 		reg = wm_gmii_i80003_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG);
   8131 		reg = wm_gmii_i80003_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG);
   8132 		if ((reg & IGP3_KMRN_DIAG_PCS_LOCK_LOSS) != 0)
   8133 			goto out;	/* GOOD! */
   8134 
   8135 		/* Reset the PHY */
   8136 		wm_gmii_reset(sc);
   8137 		delay(5*1000);
   8138 	}
   8139 
   8140 	/* Disable GigE link negotiation */
   8141 	reg = CSR_READ(sc, WMREG_PHY_CTRL);
   8142 	reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS;
   8143 	CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
   8144 
   8145 	/*
   8146 	 * Call gig speed drop workaround on Gig disable before accessing
   8147 	 * any PHY registers.
   8148 	 */
   8149 	wm_gig_downshift_workaround_ich8lan(sc);
   8150 
   8151 out:
   8152 	return;
   8153 }
   8154 
   8155 /* WOL from S5 stops working */
   8156 static void
   8157 wm_gig_downshift_workaround_ich8lan(struct wm_softc *sc)
   8158 {
   8159 	uint16_t kmrn_reg;
   8160 
   8161 	/* Only for igp3 */
   8162 	if (sc->sc_phytype == WMPHY_IGP_3) {
   8163 		kmrn_reg = wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_DIAG);
   8164 		kmrn_reg |= KUMCTRLSTA_DIAG_NELPBK;
   8165 		wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmrn_reg);
   8166 		kmrn_reg &= ~KUMCTRLSTA_DIAG_NELPBK;
   8167 		wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmrn_reg);
   8168 	}
   8169 }
   8170 
   8171 #ifdef WM_WOL
   8172 /* Power down workaround on D3 */
   8173 static void
   8174 wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *sc)
   8175 {
   8176 	uint32_t reg;
   8177 	int i;
   8178 
   8179 	for (i = 0; i < 2; i++) {
   8180 		/* Disable link */
   8181 		reg = CSR_READ(sc, WMREG_PHY_CTRL);
   8182 		reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS;
   8183 		CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
   8184 
   8185 		/*
   8186 		 * Call gig speed drop workaround on Gig disable before
   8187 		 * accessing any PHY registers
   8188 		 */
   8189 		if (sc->sc_type == WM_T_ICH8)
   8190 			wm_gig_downshift_workaround_ich8lan(sc);
   8191 
   8192 		/* Write VR power-down enable */
   8193 		reg = sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL);
   8194 		reg &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
   8195 		reg |= IGP3_VR_CTRL_MODE_SHUTDOWN;
   8196 		sc->sc_mii.mii_writereg(sc->sc_dev, 1, IGP3_VR_CTRL, reg);
   8197 
   8198 		/* Read it back and test */
   8199 		reg = sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL);
   8200 		reg &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
   8201 		if ((reg == IGP3_VR_CTRL_MODE_SHUTDOWN) || (i != 0))
   8202 			break;
   8203 
   8204 		/* Issue PHY reset and repeat at most one more time */
   8205 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   8206 	}
   8207 }
   8208 #endif /* WM_WOL */
   8209 
   8210 /*
   8211  * Workaround for pch's PHYs
   8212  * XXX should be moved to new PHY driver?
   8213  */
   8214 static void
   8215 wm_hv_phy_workaround_ich8lan(struct wm_softc *sc)
   8216 {
   8217 	if (sc->sc_phytype == WMPHY_82577)
   8218 		wm_set_mdio_slow_mode_hv(sc);
   8219 
   8220 	/* (PCH rev.2) && (82577 && (phy rev 2 or 3)) */
   8221 
   8222 	/* (82577 && (phy rev 1 or 2)) || (82578 & phy rev 1)*/
   8223 
   8224 	/* 82578 */
   8225 	if (sc->sc_phytype == WMPHY_82578) {
   8226 		/* PCH rev. < 3 */
   8227 		if (sc->sc_rev < 3) {
   8228 			/* XXX 6 bit shift? Why? Is it page2? */
   8229 			wm_gmii_hv_writereg(sc->sc_dev, 1, ((1 << 6) | 0x29),
   8230 			    0x66c0);
   8231 			wm_gmii_hv_writereg(sc->sc_dev, 1, ((1 << 6) | 0x1e),
   8232 			    0xffff);
   8233 		}
   8234 
   8235 		/* XXX phy rev. < 2 */
   8236 	}
   8237 
   8238 	/* Select page 0 */
   8239 
   8240 	/* XXX acquire semaphore */
   8241 	wm_gmii_i82544_writereg(sc->sc_dev, 1, MII_IGPHY_PAGE_SELECT, 0);
   8242 	/* XXX release semaphore */
   8243 
   8244 	/*
   8245 	 * Configure the K1 Si workaround during phy reset assuming there is
   8246 	 * link so that it disables K1 if link is in 1Gbps.
   8247 	 */
   8248 	wm_k1_gig_workaround_hv(sc, 1);
   8249 }
   8250 
   8251 static void
   8252 wm_lv_phy_workaround_ich8lan(struct wm_softc *sc)
   8253 {
   8254 
   8255 	wm_set_mdio_slow_mode_hv(sc);
   8256 }
   8257 
   8258 static void
   8259 wm_k1_gig_workaround_hv(struct wm_softc *sc, int link)
   8260 {
   8261 	int k1_enable = sc->sc_nvm_k1_enabled;
   8262 
   8263 	/* XXX acquire semaphore */
   8264 
   8265 	if (link) {
   8266 		k1_enable = 0;
   8267 
   8268 		/* Link stall fix for link up */
   8269 		wm_gmii_hv_writereg(sc->sc_dev, 1, IGP3_KMRN_DIAG, 0x0100);
   8270 	} else {
   8271 		/* Link stall fix for link down */
   8272 		wm_gmii_hv_writereg(sc->sc_dev, 1, IGP3_KMRN_DIAG, 0x4100);
   8273 	}
   8274 
   8275 	wm_configure_k1_ich8lan(sc, k1_enable);
   8276 
   8277 	/* XXX release semaphore */
   8278 }
   8279 
   8280 static void
   8281 wm_set_mdio_slow_mode_hv(struct wm_softc *sc)
   8282 {
   8283 	uint32_t reg;
   8284 
   8285 	reg = wm_gmii_hv_readreg(sc->sc_dev, 1, HV_KMRN_MODE_CTRL);
   8286 	wm_gmii_hv_writereg(sc->sc_dev, 1, HV_KMRN_MODE_CTRL,
   8287 	    reg | HV_KMRN_MDIO_SLOW);
   8288 }
   8289 
   8290 static void
   8291 wm_configure_k1_ich8lan(struct wm_softc *sc, int k1_enable)
   8292 {
   8293 	uint32_t ctrl, ctrl_ext, tmp;
   8294 	uint16_t kmrn_reg;
   8295 
   8296 	kmrn_reg = wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_K1_CONFIG);
   8297 
   8298 	if (k1_enable)
   8299 		kmrn_reg |= KUMCTRLSTA_K1_ENABLE;
   8300 	else
   8301 		kmrn_reg &= ~KUMCTRLSTA_K1_ENABLE;
   8302 
   8303 	wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_K1_CONFIG, kmrn_reg);
   8304 
   8305 	delay(20);
   8306 
   8307 	ctrl = CSR_READ(sc, WMREG_CTRL);
   8308 	ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
   8309 
   8310 	tmp = ctrl & ~(CTRL_SPEED_1000 | CTRL_SPEED_100);
   8311 	tmp |= CTRL_FRCSPD;
   8312 
   8313 	CSR_WRITE(sc, WMREG_CTRL, tmp);
   8314 	CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext | CTRL_EXT_SPD_BYPS);
   8315 	delay(20);
   8316 
   8317 	CSR_WRITE(sc, WMREG_CTRL, ctrl);
   8318 	CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
   8319 	delay(20);
   8320 }
   8321 
   8322 static void
   8323 wm_smbustopci(struct wm_softc *sc)
   8324 {
   8325 	uint32_t fwsm;
   8326 
   8327 	fwsm = CSR_READ(sc, WMREG_FWSM);
   8328 	if (((fwsm & FWSM_FW_VALID) == 0)
   8329 	    && ((wm_check_reset_block(sc) == 0))) {
   8330 		sc->sc_ctrl |= CTRL_LANPHYPC_OVERRIDE;
   8331 		sc->sc_ctrl &= ~CTRL_LANPHYPC_VALUE;
   8332 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   8333 		delay(10);
   8334 		sc->sc_ctrl &= ~CTRL_LANPHYPC_OVERRIDE;
   8335 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   8336 		delay(50*1000);
   8337 
   8338 		/*
   8339 		 * Gate automatic PHY configuration by hardware on non-managed
   8340 		 * 82579
   8341 		 */
   8342 		if (sc->sc_type == WM_T_PCH2)
   8343 			wm_gate_hw_phy_config_ich8lan(sc, 1);
   8344 	}
   8345 }
   8346 
   8347 static void
   8348 wm_set_pcie_completion_timeout(struct wm_softc *sc)
   8349 {
   8350 	uint32_t gcr;
   8351 	pcireg_t ctrl2;
   8352 
   8353 	gcr = CSR_READ(sc, WMREG_GCR);
   8354 
   8355 	/* Only take action if timeout value is defaulted to 0 */
   8356 	if ((gcr & GCR_CMPL_TMOUT_MASK) != 0)
   8357 		goto out;
   8358 
   8359 	if ((gcr & GCR_CAP_VER2) == 0) {
   8360 		gcr |= GCR_CMPL_TMOUT_10MS;
   8361 		goto out;
   8362 	}
   8363 
   8364 	ctrl2 = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   8365 	    sc->sc_pcixe_capoff + PCIE_DCSR2);
   8366 	ctrl2 |= WM_PCIE_DCSR2_16MS;
   8367 	pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   8368 	    sc->sc_pcixe_capoff + PCIE_DCSR2, ctrl2);
   8369 
   8370 out:
   8371 	/* Disable completion timeout resend */
   8372 	gcr &= ~GCR_CMPL_TMOUT_RESEND;
   8373 
   8374 	CSR_WRITE(sc, WMREG_GCR, gcr);
   8375 }
   8376 
   8377 /* special case - for 82575 - need to do manual init ... */
   8378 static void
   8379 wm_reset_init_script_82575(struct wm_softc *sc)
   8380 {
   8381 	/*
   8382 	 * remark: this is untested code - we have no board without EEPROM
   8383 	 *  same setup as mentioned int the freeBSD driver for the i82575
   8384 	 */
   8385 
   8386 	/* SerDes configuration via SERDESCTRL */
   8387 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x00, 0x0c);
   8388 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x01, 0x78);
   8389 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x1b, 0x23);
   8390 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x23, 0x15);
   8391 
   8392 	/* CCM configuration via CCMCTL register */
   8393 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x14, 0x00);
   8394 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x10, 0x00);
   8395 
   8396 	/* PCIe lanes configuration */
   8397 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x00, 0xec);
   8398 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x61, 0xdf);
   8399 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x34, 0x05);
   8400 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x2f, 0x81);
   8401 
   8402 	/* PCIe PLL Configuration */
   8403 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x02, 0x47);
   8404 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x14, 0x00);
   8405 	wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x10, 0x00);
   8406 }
   8407 
   8408 static void
   8409 wm_init_manageability(struct wm_softc *sc)
   8410 {
   8411 
   8412 	if (sc->sc_flags & WM_F_HAS_MANAGE) {
   8413 		uint32_t manc2h = CSR_READ(sc, WMREG_MANC2H);
   8414 		uint32_t manc = CSR_READ(sc, WMREG_MANC);
   8415 
   8416 		/* disabl hardware interception of ARP */
   8417 		manc &= ~MANC_ARP_EN;
   8418 
   8419 		/* enable receiving management packets to the host */
   8420 		if (sc->sc_type >= WM_T_82571) {
   8421 			manc |= MANC_EN_MNG2HOST;
   8422 			manc2h |= MANC2H_PORT_623| MANC2H_PORT_624;
   8423 			CSR_WRITE(sc, WMREG_MANC2H, manc2h);
   8424 
   8425 		}
   8426 
   8427 		CSR_WRITE(sc, WMREG_MANC, manc);
   8428 	}
   8429 }
   8430 
   8431 static void
   8432 wm_release_manageability(struct wm_softc *sc)
   8433 {
   8434 
   8435 	if (sc->sc_flags & WM_F_HAS_MANAGE) {
   8436 		uint32_t manc = CSR_READ(sc, WMREG_MANC);
   8437 
   8438 		if (sc->sc_type >= WM_T_82571)
   8439 			manc &= ~MANC_EN_MNG2HOST;
   8440 
   8441 		CSR_WRITE(sc, WMREG_MANC, manc);
   8442 	}
   8443 }
   8444 
   8445 static void
   8446 wm_get_wakeup(struct wm_softc *sc)
   8447 {
   8448 
   8449 	/* 0: HAS_AMT, ARC_SUBSYS_VALID, ASF_FIRMWARE_PRES */
   8450 	switch (sc->sc_type) {
   8451 	case WM_T_82573:
   8452 	case WM_T_82583:
   8453 		sc->sc_flags |= WM_F_HAS_AMT;
   8454 		/* FALLTHROUGH */
   8455 	case WM_T_80003:
   8456 	case WM_T_82541:
   8457 	case WM_T_82547:
   8458 	case WM_T_82571:
   8459 	case WM_T_82572:
   8460 	case WM_T_82574:
   8461 	case WM_T_82575:
   8462 	case WM_T_82576:
   8463 #if 0 /* XXX */
   8464 	case WM_T_82580:
   8465 	case WM_T_82580ER:
   8466 	case WM_T_I350:
   8467 #endif
   8468 		if ((CSR_READ(sc, WMREG_FWSM) & FWSM_MODE_MASK) != 0)
   8469 			sc->sc_flags |= WM_F_ARC_SUBSYS_VALID;
   8470 		sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES;
   8471 		break;
   8472 	case WM_T_ICH8:
   8473 	case WM_T_ICH9:
   8474 	case WM_T_ICH10:
   8475 	case WM_T_PCH:
   8476 	case WM_T_PCH2:
   8477 	case WM_T_PCH_LPT:
   8478 		sc->sc_flags |= WM_F_HAS_AMT;
   8479 		sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES;
   8480 		break;
   8481 	default:
   8482 		break;
   8483 	}
   8484 
   8485 	/* 1: HAS_MANAGE */
   8486 	if (wm_enable_mng_pass_thru(sc) != 0)
   8487 		sc->sc_flags |= WM_F_HAS_MANAGE;
   8488 
   8489 #ifdef WM_DEBUG
   8490 	printf("\n");
   8491 	if ((sc->sc_flags & WM_F_HAS_AMT) != 0)
   8492 		printf("HAS_AMT,");
   8493 	if ((sc->sc_flags & WM_F_ARC_SUBSYS_VALID) != 0)
   8494 		printf("ARC_SUBSYS_VALID,");
   8495 	if ((sc->sc_flags & WM_F_ASF_FIRMWARE_PRES) != 0)
   8496 		printf("ASF_FIRMWARE_PRES,");
   8497 	if ((sc->sc_flags & WM_F_HAS_MANAGE) != 0)
   8498 		printf("HAS_MANAGE,");
   8499 	printf("\n");
   8500 #endif
   8501 	/*
   8502 	 * Note that the WOL flags is set after the resetting of the eeprom
   8503 	 * stuff
   8504 	 */
   8505 }
   8506 
   8507 #ifdef WM_WOL
   8508 /* WOL in the newer chipset interfaces (pchlan) */
   8509 static void
   8510 wm_enable_phy_wakeup(struct wm_softc *sc)
   8511 {
   8512 #if 0
   8513 	uint16_t preg;
   8514 
   8515 	/* Copy MAC RARs to PHY RARs */
   8516 
   8517 	/* Copy MAC MTA to PHY MTA */
   8518 
   8519 	/* Configure PHY Rx Control register */
   8520 
   8521 	/* Enable PHY wakeup in MAC register */
   8522 
   8523 	/* Configure and enable PHY wakeup in PHY registers */
   8524 
   8525 	/* Activate PHY wakeup */
   8526 
   8527 	/* XXX */
   8528 #endif
   8529 }
   8530 
   8531 static void
   8532 wm_enable_wakeup(struct wm_softc *sc)
   8533 {
   8534 	uint32_t reg, pmreg;
   8535 	pcireg_t pmode;
   8536 
   8537 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PWRMGMT,
   8538 		&pmreg, NULL) == 0)
   8539 		return;
   8540 
   8541 	/* Advertise the wakeup capability */
   8542 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_SWDPIN(2)
   8543 	    | CTRL_SWDPIN(3));
   8544 	CSR_WRITE(sc, WMREG_WUC, WUC_APME);
   8545 
   8546 	/* ICH workaround */
   8547 	switch (sc->sc_type) {
   8548 	case WM_T_ICH8:
   8549 	case WM_T_ICH9:
   8550 	case WM_T_ICH10:
   8551 	case WM_T_PCH:
   8552 	case WM_T_PCH2:
   8553 	case WM_T_PCH_LPT:
   8554 		/* Disable gig during WOL */
   8555 		reg = CSR_READ(sc, WMREG_PHY_CTRL);
   8556 		reg |= PHY_CTRL_D0A_LPLU | PHY_CTRL_GBE_DIS;
   8557 		CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
   8558 		if (sc->sc_type == WM_T_PCH)
   8559 			wm_gmii_reset(sc);
   8560 
   8561 		/* Power down workaround */
   8562 		if (sc->sc_phytype == WMPHY_82577) {
   8563 			struct mii_softc *child;
   8564 
   8565 			/* Assume that the PHY is copper */
   8566 			child = LIST_FIRST(&sc->sc_mii.mii_phys);
   8567 			if (child->mii_mpd_rev <= 2)
   8568 				sc->sc_mii.mii_writereg(sc->sc_dev, 1,
   8569 				    (768 << 5) | 25, 0x0444); /* magic num */
   8570 		}
   8571 		break;
   8572 	default:
   8573 		break;
   8574 	}
   8575 
   8576 	/* Keep the laser running on fiber adapters */
   8577 	if (((sc->sc_wmp->wmp_flags & WMP_F_1000X) != 0)
   8578 	    || (sc->sc_wmp->wmp_flags & WMP_F_SERDES) != 0) {
   8579 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   8580 		reg |= CTRL_EXT_SWDPIN(3);
   8581 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   8582 	}
   8583 
   8584 	reg = CSR_READ(sc, WMREG_WUFC) | WUFC_MAG;
   8585 #if 0	/* for the multicast packet */
   8586 	reg |= WUFC_MC;
   8587 	CSR_WRITE(sc, WMREG_RCTL, CSR_READ(sc, WMREG_RCTL) | RCTL_MPE);
   8588 #endif
   8589 
   8590 	if (sc->sc_type == WM_T_PCH) {
   8591 		wm_enable_phy_wakeup(sc);
   8592 	} else {
   8593 		CSR_WRITE(sc, WMREG_WUC, WUC_PME_EN);
   8594 		CSR_WRITE(sc, WMREG_WUFC, reg);
   8595 	}
   8596 
   8597 	if (((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
   8598 		|| (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
   8599 		|| (sc->sc_type == WM_T_PCH2))
   8600 		    && (sc->sc_phytype == WMPHY_IGP_3))
   8601 			wm_igp3_phy_powerdown_workaround_ich8lan(sc);
   8602 
   8603 	/* Request PME */
   8604 	pmode = pci_conf_read(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR);
   8605 #if 0
   8606 	/* Disable WOL */
   8607 	pmode &= ~(PCI_PMCSR_PME_STS | PCI_PMCSR_PME_EN);
   8608 #else
   8609 	/* For WOL */
   8610 	pmode |= PCI_PMCSR_PME_STS | PCI_PMCSR_PME_EN;
   8611 #endif
   8612 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR, pmode);
   8613 }
   8614 #endif /* WM_WOL */
   8615 
   8616 static bool
   8617 wm_suspend(device_t self, const pmf_qual_t *qual)
   8618 {
   8619 	struct wm_softc *sc = device_private(self);
   8620 
   8621 	wm_release_manageability(sc);
   8622 	wm_release_hw_control(sc);
   8623 #ifdef WM_WOL
   8624 	wm_enable_wakeup(sc);
   8625 #endif
   8626 
   8627 	return true;
   8628 }
   8629 
   8630 static bool
   8631 wm_resume(device_t self, const pmf_qual_t *qual)
   8632 {
   8633 	struct wm_softc *sc = device_private(self);
   8634 
   8635 	wm_init_manageability(sc);
   8636 
   8637 	return true;
   8638 }
   8639 
   8640 static void
   8641 wm_set_eee_i350(struct wm_softc * sc)
   8642 {
   8643 	uint32_t ipcnfg, eeer;
   8644 
   8645 	ipcnfg = CSR_READ(sc, WMREG_IPCNFG);
   8646 	eeer = CSR_READ(sc, WMREG_EEER);
   8647 
   8648 	if ((sc->sc_flags & WM_F_EEE) != 0) {
   8649 		ipcnfg |= (IPCNFG_EEE_1G_AN | IPCNFG_EEE_100M_AN);
   8650 		eeer |= (EEER_TX_LPI_EN | EEER_RX_LPI_EN
   8651 		    | EEER_LPI_FC);
   8652 	} else {
   8653 		ipcnfg &= ~(IPCNFG_EEE_1G_AN | IPCNFG_EEE_100M_AN);
   8654 		eeer &= ~(EEER_TX_LPI_EN | EEER_RX_LPI_EN
   8655 		    | EEER_LPI_FC);
   8656 	}
   8657 
   8658 	CSR_WRITE(sc, WMREG_IPCNFG, ipcnfg);
   8659 	CSR_WRITE(sc, WMREG_EEER, eeer);
   8660 	CSR_READ(sc, WMREG_IPCNFG); /* XXX flush? */
   8661 	CSR_READ(sc, WMREG_EEER); /* XXX flush? */
   8662 }
   8663