if_wm.c revision 1.260 1 /* $NetBSD: if_wm.c,v 1.260 2013/06/25 17:38:38 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*******************************************************************************
39
40 Copyright (c) 2001-2005, Intel Corporation
41 All rights reserved.
42
43 Redistribution and use in source and binary forms, with or without
44 modification, are permitted provided that the following conditions are met:
45
46 1. Redistributions of source code must retain the above copyright notice,
47 this list of conditions and the following disclaimer.
48
49 2. Redistributions in binary form must reproduce the above copyright
50 notice, this list of conditions and the following disclaimer in the
51 documentation and/or other materials provided with the distribution.
52
53 3. Neither the name of the Intel Corporation nor the names of its
54 contributors may be used to endorse or promote products derived from
55 this software without specific prior written permission.
56
57 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
58 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
61 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67 POSSIBILITY OF SUCH DAMAGE.
68
69 *******************************************************************************/
70 /*
71 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
72 *
73 * TODO (in order of importance):
74 *
75 * - Rework how parameters are loaded from the EEPROM.
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.260 2013/06/25 17:38:38 msaitoh Exp $");
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91 #include <sys/queue.h>
92 #include <sys/syslog.h>
93
94 #include <sys/rnd.h>
95
96 #include <net/if.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_ether.h>
100
101 #include <net/bpf.h>
102
103 #include <netinet/in.h> /* XXX for struct ip */
104 #include <netinet/in_systm.h> /* XXX for struct ip */
105 #include <netinet/ip.h> /* XXX for struct ip */
106 #include <netinet/ip6.h> /* XXX for struct ip6_hdr */
107 #include <netinet/tcp.h> /* XXX for struct tcphdr */
108
109 #include <sys/bus.h>
110 #include <sys/intr.h>
111 #include <machine/endian.h>
112
113 #include <dev/mii/mii.h>
114 #include <dev/mii/miivar.h>
115 #include <dev/mii/miidevs.h>
116 #include <dev/mii/mii_bitbang.h>
117 #include <dev/mii/ikphyreg.h>
118 #include <dev/mii/igphyreg.h>
119 #include <dev/mii/igphyvar.h>
120 #include <dev/mii/inbmphyreg.h>
121
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125
126 #include <dev/pci/if_wmreg.h>
127 #include <dev/pci/if_wmvar.h>
128
129 #ifdef WM_DEBUG
130 #define WM_DEBUG_LINK 0x01
131 #define WM_DEBUG_TX 0x02
132 #define WM_DEBUG_RX 0x04
133 #define WM_DEBUG_GMII 0x08
134 #define WM_DEBUG_MANAGE 0x10
135 #define WM_DEBUG_NVM 0x20
136 int wm_debug = WM_DEBUG_TX | WM_DEBUG_RX | WM_DEBUG_LINK | WM_DEBUG_GMII
137 | WM_DEBUG_MANAGE | WM_DEBUG_NVM;
138
139 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
140 #else
141 #define DPRINTF(x, y) /* nothing */
142 #endif /* WM_DEBUG */
143
144 /*
145 * Transmit descriptor list size. Due to errata, we can only have
146 * 256 hardware descriptors in the ring on < 82544, but we use 4096
147 * on >= 82544. We tell the upper layers that they can queue a lot
148 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
149 * of them at a time.
150 *
151 * We allow up to 256 (!) DMA segments per packet. Pathological packet
152 * chains containing many small mbufs have been observed in zero-copy
153 * situations with jumbo frames.
154 */
155 #define WM_NTXSEGS 256
156 #define WM_IFQUEUELEN 256
157 #define WM_TXQUEUELEN_MAX 64
158 #define WM_TXQUEUELEN_MAX_82547 16
159 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
160 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
161 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
162 #define WM_NTXDESC_82542 256
163 #define WM_NTXDESC_82544 4096
164 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
165 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
166 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
167 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
168 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
169
170 #define WM_MAXTXDMA round_page(IP_MAXPACKET) /* for TSO */
171
172 /*
173 * Receive descriptor list size. We have one Rx buffer for normal
174 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
175 * packet. We allocate 256 receive descriptors, each with a 2k
176 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
177 */
178 #define WM_NRXDESC 256
179 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
180 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
181 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
182
183 /*
184 * Control structures are DMA'd to the i82542 chip. We allocate them in
185 * a single clump that maps to a single DMA segment to make several things
186 * easier.
187 */
188 struct wm_control_data_82544 {
189 /*
190 * The receive descriptors.
191 */
192 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
193
194 /*
195 * The transmit descriptors. Put these at the end, because
196 * we might use a smaller number of them.
197 */
198 union {
199 wiseman_txdesc_t wcdu_txdescs[WM_NTXDESC_82544];
200 nq_txdesc_t wcdu_nq_txdescs[WM_NTXDESC_82544];
201 } wdc_u;
202 };
203
204 struct wm_control_data_82542 {
205 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
206 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
207 };
208
209 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
210 #define WM_CDTXOFF(x) WM_CDOFF(wdc_u.wcdu_txdescs[(x)])
211 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
212
213 /*
214 * Software state for transmit jobs.
215 */
216 struct wm_txsoft {
217 struct mbuf *txs_mbuf; /* head of our mbuf chain */
218 bus_dmamap_t txs_dmamap; /* our DMA map */
219 int txs_firstdesc; /* first descriptor in packet */
220 int txs_lastdesc; /* last descriptor in packet */
221 int txs_ndesc; /* # of descriptors used */
222 };
223
224 /*
225 * Software state for receive buffers. Each descriptor gets a
226 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
227 * more than one buffer, we chain them together.
228 */
229 struct wm_rxsoft {
230 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
231 bus_dmamap_t rxs_dmamap; /* our DMA map */
232 };
233
234 #define WM_LINKUP_TIMEOUT 50
235
236 static uint16_t swfwphysem[] = {
237 SWFW_PHY0_SM,
238 SWFW_PHY1_SM,
239 SWFW_PHY2_SM,
240 SWFW_PHY3_SM
241 };
242
243 /*
244 * Software state per device.
245 */
246 struct wm_softc {
247 device_t sc_dev; /* generic device information */
248 bus_space_tag_t sc_st; /* bus space tag */
249 bus_space_handle_t sc_sh; /* bus space handle */
250 bus_size_t sc_ss; /* bus space size */
251 bus_space_tag_t sc_iot; /* I/O space tag */
252 bus_space_handle_t sc_ioh; /* I/O space handle */
253 bus_size_t sc_ios; /* I/O space size */
254 bus_space_tag_t sc_flasht; /* flash registers space tag */
255 bus_space_handle_t sc_flashh; /* flash registers space handle */
256 bus_dma_tag_t sc_dmat; /* bus DMA tag */
257
258 struct ethercom sc_ethercom; /* ethernet common data */
259 struct mii_data sc_mii; /* MII/media information */
260
261 pci_chipset_tag_t sc_pc;
262 pcitag_t sc_pcitag;
263 int sc_bus_speed; /* PCI/PCIX bus speed */
264 int sc_pcixe_capoff; /* PCI[Xe] capability register offset */
265
266 const struct wm_product *sc_wmp; /* Pointer to the wm_product entry */
267 wm_chip_type sc_type; /* MAC type */
268 int sc_rev; /* MAC revision */
269 wm_phy_type sc_phytype; /* PHY type */
270 int sc_funcid; /* unit number of the chip (0 to 3) */
271 int sc_flags; /* flags; see below */
272 int sc_if_flags; /* last if_flags */
273 int sc_flowflags; /* 802.3x flow control flags */
274 int sc_align_tweak;
275
276 void *sc_ih; /* interrupt cookie */
277 callout_t sc_tick_ch; /* tick callout */
278
279 int sc_ee_addrbits; /* EEPROM address bits */
280 int sc_ich8_flash_base;
281 int sc_ich8_flash_bank_size;
282 int sc_nvm_k1_enabled;
283
284 /*
285 * Software state for the transmit and receive descriptors.
286 */
287 int sc_txnum; /* must be a power of two */
288 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
289 struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
290
291 /*
292 * Control data structures.
293 */
294 int sc_ntxdesc; /* must be a power of two */
295 struct wm_control_data_82544 *sc_control_data;
296 bus_dmamap_t sc_cddmamap; /* control data DMA map */
297 bus_dma_segment_t sc_cd_seg; /* control data segment */
298 int sc_cd_rseg; /* real number of control segment */
299 size_t sc_cd_size; /* control data size */
300 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
301 #define sc_txdescs sc_control_data->wdc_u.wcdu_txdescs
302 #define sc_nq_txdescs sc_control_data->wdc_u.wcdu_nq_txdescs
303 #define sc_rxdescs sc_control_data->wcd_rxdescs
304
305 #ifdef WM_EVENT_COUNTERS
306 /* Event counters. */
307 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
308 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
309 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
310 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
311 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
312 struct evcnt sc_ev_rxintr; /* Rx interrupts */
313 struct evcnt sc_ev_linkintr; /* Link interrupts */
314
315 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
316 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
317 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
318 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
319 struct evcnt sc_ev_txtusum6; /* TCP/UDP v6 cksums comp. out-bound */
320 struct evcnt sc_ev_txtso; /* TCP seg offload out-bound (IPv4) */
321 struct evcnt sc_ev_txtso6; /* TCP seg offload out-bound (IPv6) */
322 struct evcnt sc_ev_txtsopain; /* painful header manip. for TSO */
323
324 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
325 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
326
327 struct evcnt sc_ev_tu; /* Tx underrun */
328
329 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
330 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
331 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
332 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
333 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
334 #endif /* WM_EVENT_COUNTERS */
335
336 bus_addr_t sc_tdt_reg; /* offset of TDT register */
337
338 int sc_txfree; /* number of free Tx descriptors */
339 int sc_txnext; /* next ready Tx descriptor */
340
341 int sc_txsfree; /* number of free Tx jobs */
342 int sc_txsnext; /* next free Tx job */
343 int sc_txsdirty; /* dirty Tx jobs */
344
345 /* These 5 variables are used only on the 82547. */
346 int sc_txfifo_size; /* Tx FIFO size */
347 int sc_txfifo_head; /* current head of FIFO */
348 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
349 int sc_txfifo_stall; /* Tx FIFO is stalled */
350 callout_t sc_txfifo_ch; /* Tx FIFO stall work-around timer */
351
352 bus_addr_t sc_rdt_reg; /* offset of RDT register */
353
354 int sc_rxptr; /* next ready Rx descriptor/queue ent */
355 int sc_rxdiscard;
356 int sc_rxlen;
357 struct mbuf *sc_rxhead;
358 struct mbuf *sc_rxtail;
359 struct mbuf **sc_rxtailp;
360
361 uint32_t sc_ctrl; /* prototype CTRL register */
362 #if 0
363 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
364 #endif
365 uint32_t sc_icr; /* prototype interrupt bits */
366 uint32_t sc_itr; /* prototype intr throttling reg */
367 uint32_t sc_tctl; /* prototype TCTL register */
368 uint32_t sc_rctl; /* prototype RCTL register */
369 uint32_t sc_txcw; /* prototype TXCW register */
370 uint32_t sc_tipg; /* prototype TIPG register */
371 uint32_t sc_fcrtl; /* prototype FCRTL register */
372 uint32_t sc_pba; /* prototype PBA register */
373
374 int sc_tbi_linkup; /* TBI link status */
375 int sc_tbi_anegticks; /* autonegotiation ticks */
376 int sc_tbi_ticks; /* tbi ticks */
377 int sc_tbi_nrxcfg; /* count of ICR_RXCFG */
378 int sc_tbi_lastnrxcfg; /* count of ICR_RXCFG (on last tick) */
379
380 int sc_mchash_type; /* multicast filter offset */
381
382 krndsource_t rnd_source; /* random source */
383 };
384
385 #define WM_RXCHAIN_RESET(sc) \
386 do { \
387 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
388 *(sc)->sc_rxtailp = NULL; \
389 (sc)->sc_rxlen = 0; \
390 } while (/*CONSTCOND*/0)
391
392 #define WM_RXCHAIN_LINK(sc, m) \
393 do { \
394 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
395 (sc)->sc_rxtailp = &(m)->m_next; \
396 } while (/*CONSTCOND*/0)
397
398 #ifdef WM_EVENT_COUNTERS
399 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
400 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
401 #else
402 #define WM_EVCNT_INCR(ev) /* nothing */
403 #define WM_EVCNT_ADD(ev, val) /* nothing */
404 #endif
405
406 #define CSR_READ(sc, reg) \
407 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
408 #define CSR_WRITE(sc, reg, val) \
409 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
410 #define CSR_WRITE_FLUSH(sc) \
411 (void) CSR_READ((sc), WMREG_STATUS)
412
413 #define ICH8_FLASH_READ32(sc, reg) \
414 bus_space_read_4((sc)->sc_flasht, (sc)->sc_flashh, (reg))
415 #define ICH8_FLASH_WRITE32(sc, reg, data) \
416 bus_space_write_4((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data))
417
418 #define ICH8_FLASH_READ16(sc, reg) \
419 bus_space_read_2((sc)->sc_flasht, (sc)->sc_flashh, (reg))
420 #define ICH8_FLASH_WRITE16(sc, reg, data) \
421 bus_space_write_2((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data))
422
423 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
424 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
425
426 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
427 #define WM_CDTXADDR_HI(sc, x) \
428 (sizeof(bus_addr_t) == 8 ? \
429 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
430
431 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
432 #define WM_CDRXADDR_HI(sc, x) \
433 (sizeof(bus_addr_t) == 8 ? \
434 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
435
436 #define WM_CDTXSYNC(sc, x, n, ops) \
437 do { \
438 int __x, __n; \
439 \
440 __x = (x); \
441 __n = (n); \
442 \
443 /* If it will wrap around, sync to the end of the ring. */ \
444 if ((__x + __n) > WM_NTXDESC(sc)) { \
445 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
446 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
447 (WM_NTXDESC(sc) - __x), (ops)); \
448 __n -= (WM_NTXDESC(sc) - __x); \
449 __x = 0; \
450 } \
451 \
452 /* Now sync whatever is left. */ \
453 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
454 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
455 } while (/*CONSTCOND*/0)
456
457 #define WM_CDRXSYNC(sc, x, ops) \
458 do { \
459 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
460 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
461 } while (/*CONSTCOND*/0)
462
463 #define WM_INIT_RXDESC(sc, x) \
464 do { \
465 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
466 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
467 struct mbuf *__m = __rxs->rxs_mbuf; \
468 \
469 /* \
470 * Note: We scoot the packet forward 2 bytes in the buffer \
471 * so that the payload after the Ethernet header is aligned \
472 * to a 4-byte boundary. \
473 * \
474 * XXX BRAINDAMAGE ALERT! \
475 * The stupid chip uses the same size for every buffer, which \
476 * is set in the Receive Control register. We are using the 2K \
477 * size option, but what we REALLY want is (2K - 2)! For this \
478 * reason, we can't "scoot" packets longer than the standard \
479 * Ethernet MTU. On strict-alignment platforms, if the total \
480 * size exceeds (2K - 2) we set align_tweak to 0 and let \
481 * the upper layer copy the headers. \
482 */ \
483 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
484 \
485 wm_set_dma_addr(&__rxd->wrx_addr, \
486 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
487 __rxd->wrx_len = 0; \
488 __rxd->wrx_cksum = 0; \
489 __rxd->wrx_status = 0; \
490 __rxd->wrx_errors = 0; \
491 __rxd->wrx_special = 0; \
492 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
493 \
494 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
495 } while (/*CONSTCOND*/0)
496
497 static void wm_start(struct ifnet *);
498 static void wm_nq_start(struct ifnet *);
499 static void wm_watchdog(struct ifnet *);
500 static int wm_ifflags_cb(struct ethercom *);
501 static int wm_ioctl(struct ifnet *, u_long, void *);
502 static int wm_init(struct ifnet *);
503 static void wm_stop(struct ifnet *, int);
504 static bool wm_suspend(device_t, const pmf_qual_t *);
505 static bool wm_resume(device_t, const pmf_qual_t *);
506
507 static void wm_reset(struct wm_softc *);
508 static void wm_rxdrain(struct wm_softc *);
509 static int wm_add_rxbuf(struct wm_softc *, int);
510 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
511 static int wm_read_eeprom_eerd(struct wm_softc *, int, int, u_int16_t *);
512 static int wm_validate_eeprom_checksum(struct wm_softc *);
513 static int wm_check_alt_mac_addr(struct wm_softc *);
514 static int wm_read_mac_addr(struct wm_softc *, uint8_t *);
515 static void wm_tick(void *);
516
517 static void wm_set_filter(struct wm_softc *);
518 static void wm_set_vlan(struct wm_softc *);
519
520 static int wm_intr(void *);
521 static void wm_txintr(struct wm_softc *);
522 static void wm_rxintr(struct wm_softc *);
523 static void wm_linkintr(struct wm_softc *, uint32_t);
524
525 static void wm_tbi_mediainit(struct wm_softc *);
526 static int wm_tbi_mediachange(struct ifnet *);
527 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
528
529 static void wm_tbi_set_linkled(struct wm_softc *);
530 static void wm_tbi_check_link(struct wm_softc *);
531
532 static void wm_gmii_reset(struct wm_softc *);
533
534 static int wm_gmii_i82543_readreg(device_t, int, int);
535 static void wm_gmii_i82543_writereg(device_t, int, int, int);
536 static int wm_gmii_i82544_readreg(device_t, int, int);
537 static void wm_gmii_i82544_writereg(device_t, int, int, int);
538 static int wm_gmii_i80003_readreg(device_t, int, int);
539 static void wm_gmii_i80003_writereg(device_t, int, int, int);
540 static int wm_gmii_bm_readreg(device_t, int, int);
541 static void wm_gmii_bm_writereg(device_t, int, int, int);
542 static int wm_gmii_hv_readreg(device_t, int, int);
543 static void wm_gmii_hv_writereg(device_t, int, int, int);
544 static int wm_gmii_82580_readreg(device_t, int, int);
545 static void wm_gmii_82580_writereg(device_t, int, int, int);
546 static int wm_sgmii_readreg(device_t, int, int);
547 static void wm_sgmii_writereg(device_t, int, int, int);
548
549 static void wm_gmii_statchg(struct ifnet *);
550
551 static void wm_gmii_mediainit(struct wm_softc *, pci_product_id_t);
552 static int wm_gmii_mediachange(struct ifnet *);
553 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
554
555 static int wm_kmrn_readreg(struct wm_softc *, int);
556 static void wm_kmrn_writereg(struct wm_softc *, int, int);
557
558 static void wm_set_spiaddrbits(struct wm_softc *);
559 static int wm_match(device_t, cfdata_t, void *);
560 static void wm_attach(device_t, device_t, void *);
561 static int wm_detach(device_t, int);
562 static int wm_is_onboard_nvm_eeprom(struct wm_softc *);
563 static void wm_get_auto_rd_done(struct wm_softc *);
564 static void wm_lan_init_done(struct wm_softc *);
565 static void wm_get_cfg_done(struct wm_softc *);
566 static int wm_get_swsm_semaphore(struct wm_softc *);
567 static void wm_put_swsm_semaphore(struct wm_softc *);
568 static int wm_poll_eerd_eewr_done(struct wm_softc *, int);
569 static int wm_get_swfw_semaphore(struct wm_softc *, uint16_t);
570 static void wm_put_swfw_semaphore(struct wm_softc *, uint16_t);
571 static int wm_get_swfwhw_semaphore(struct wm_softc *);
572 static void wm_put_swfwhw_semaphore(struct wm_softc *);
573 static int wm_get_hw_semaphore_82573(struct wm_softc *);
574 static void wm_put_hw_semaphore_82573(struct wm_softc *);
575
576 static int wm_read_eeprom_ich8(struct wm_softc *, int, int, uint16_t *);
577 static int32_t wm_ich8_cycle_init(struct wm_softc *);
578 static int32_t wm_ich8_flash_cycle(struct wm_softc *, uint32_t);
579 static int32_t wm_read_ich8_data(struct wm_softc *, uint32_t,
580 uint32_t, uint16_t *);
581 static int32_t wm_read_ich8_byte(struct wm_softc *, uint32_t, uint8_t *);
582 static int32_t wm_read_ich8_word(struct wm_softc *, uint32_t, uint16_t *);
583 static void wm_82547_txfifo_stall(void *);
584 static void wm_gate_hw_phy_config_ich8lan(struct wm_softc *, int);
585 static int wm_check_mng_mode(struct wm_softc *);
586 static int wm_check_mng_mode_ich8lan(struct wm_softc *);
587 static int wm_check_mng_mode_82574(struct wm_softc *);
588 static int wm_check_mng_mode_generic(struct wm_softc *);
589 static int wm_enable_mng_pass_thru(struct wm_softc *);
590 static int wm_check_reset_block(struct wm_softc *);
591 static void wm_get_hw_control(struct wm_softc *);
592 static int wm_check_for_link(struct wm_softc *);
593 static void wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *);
594 static void wm_gig_downshift_workaround_ich8lan(struct wm_softc *);
595 #ifdef WM_WOL
596 static void wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *);
597 #endif
598 static void wm_hv_phy_workaround_ich8lan(struct wm_softc *);
599 static void wm_lv_phy_workaround_ich8lan(struct wm_softc *);
600 static void wm_k1_gig_workaround_hv(struct wm_softc *, int);
601 static void wm_set_mdio_slow_mode_hv(struct wm_softc *);
602 static void wm_configure_k1_ich8lan(struct wm_softc *, int);
603 static void wm_smbustopci(struct wm_softc *);
604 static void wm_set_pcie_completion_timeout(struct wm_softc *);
605 static void wm_reset_init_script_82575(struct wm_softc *);
606 static void wm_release_manageability(struct wm_softc *);
607 static void wm_release_hw_control(struct wm_softc *);
608 static void wm_get_wakeup(struct wm_softc *);
609 #ifdef WM_WOL
610 static void wm_enable_phy_wakeup(struct wm_softc *);
611 static void wm_enable_wakeup(struct wm_softc *);
612 #endif
613 static void wm_init_manageability(struct wm_softc *);
614 static void wm_set_eee_i350(struct wm_softc *);
615
616 CFATTACH_DECL3_NEW(wm, sizeof(struct wm_softc),
617 wm_match, wm_attach, wm_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
618
619 /*
620 * Devices supported by this driver.
621 */
622 static const struct wm_product {
623 pci_vendor_id_t wmp_vendor;
624 pci_product_id_t wmp_product;
625 const char *wmp_name;
626 wm_chip_type wmp_type;
627 int wmp_flags;
628 #define WMP_F_1000X 0x01
629 #define WMP_F_1000T 0x02
630 #define WMP_F_SERDES 0x04
631 } wm_products[] = {
632 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
633 "Intel i82542 1000BASE-X Ethernet",
634 WM_T_82542_2_1, WMP_F_1000X },
635
636 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
637 "Intel i82543GC 1000BASE-X Ethernet",
638 WM_T_82543, WMP_F_1000X },
639
640 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
641 "Intel i82543GC 1000BASE-T Ethernet",
642 WM_T_82543, WMP_F_1000T },
643
644 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
645 "Intel i82544EI 1000BASE-T Ethernet",
646 WM_T_82544, WMP_F_1000T },
647
648 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
649 "Intel i82544EI 1000BASE-X Ethernet",
650 WM_T_82544, WMP_F_1000X },
651
652 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
653 "Intel i82544GC 1000BASE-T Ethernet",
654 WM_T_82544, WMP_F_1000T },
655
656 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
657 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
658 WM_T_82544, WMP_F_1000T },
659
660 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
661 "Intel i82540EM 1000BASE-T Ethernet",
662 WM_T_82540, WMP_F_1000T },
663
664 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
665 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
666 WM_T_82540, WMP_F_1000T },
667
668 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
669 "Intel i82540EP 1000BASE-T Ethernet",
670 WM_T_82540, WMP_F_1000T },
671
672 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
673 "Intel i82540EP 1000BASE-T Ethernet",
674 WM_T_82540, WMP_F_1000T },
675
676 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
677 "Intel i82540EP 1000BASE-T Ethernet",
678 WM_T_82540, WMP_F_1000T },
679
680 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
681 "Intel i82545EM 1000BASE-T Ethernet",
682 WM_T_82545, WMP_F_1000T },
683
684 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
685 "Intel i82545GM 1000BASE-T Ethernet",
686 WM_T_82545_3, WMP_F_1000T },
687
688 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
689 "Intel i82545GM 1000BASE-X Ethernet",
690 WM_T_82545_3, WMP_F_1000X },
691 #if 0
692 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
693 "Intel i82545GM Gigabit Ethernet (SERDES)",
694 WM_T_82545_3, WMP_F_SERDES },
695 #endif
696 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
697 "Intel i82546EB 1000BASE-T Ethernet",
698 WM_T_82546, WMP_F_1000T },
699
700 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
701 "Intel i82546EB 1000BASE-T Ethernet",
702 WM_T_82546, WMP_F_1000T },
703
704 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
705 "Intel i82545EM 1000BASE-X Ethernet",
706 WM_T_82545, WMP_F_1000X },
707
708 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
709 "Intel i82546EB 1000BASE-X Ethernet",
710 WM_T_82546, WMP_F_1000X },
711
712 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
713 "Intel i82546GB 1000BASE-T Ethernet",
714 WM_T_82546_3, WMP_F_1000T },
715
716 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
717 "Intel i82546GB 1000BASE-X Ethernet",
718 WM_T_82546_3, WMP_F_1000X },
719 #if 0
720 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
721 "Intel i82546GB Gigabit Ethernet (SERDES)",
722 WM_T_82546_3, WMP_F_SERDES },
723 #endif
724 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER,
725 "i82546GB quad-port Gigabit Ethernet",
726 WM_T_82546_3, WMP_F_1000T },
727
728 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3,
729 "i82546GB quad-port Gigabit Ethernet (KSP3)",
730 WM_T_82546_3, WMP_F_1000T },
731
732 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_PCIE,
733 "Intel PRO/1000MT (82546GB)",
734 WM_T_82546_3, WMP_F_1000T },
735
736 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
737 "Intel i82541EI 1000BASE-T Ethernet",
738 WM_T_82541, WMP_F_1000T },
739
740 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER_LOM,
741 "Intel i82541ER (LOM) 1000BASE-T Ethernet",
742 WM_T_82541, WMP_F_1000T },
743
744 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
745 "Intel i82541EI Mobile 1000BASE-T Ethernet",
746 WM_T_82541, WMP_F_1000T },
747
748 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
749 "Intel i82541ER 1000BASE-T Ethernet",
750 WM_T_82541_2, WMP_F_1000T },
751
752 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
753 "Intel i82541GI 1000BASE-T Ethernet",
754 WM_T_82541_2, WMP_F_1000T },
755
756 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
757 "Intel i82541GI Mobile 1000BASE-T Ethernet",
758 WM_T_82541_2, WMP_F_1000T },
759
760 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI,
761 "Intel i82541PI 1000BASE-T Ethernet",
762 WM_T_82541_2, WMP_F_1000T },
763
764 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
765 "Intel i82547EI 1000BASE-T Ethernet",
766 WM_T_82547, WMP_F_1000T },
767
768 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI_MOBILE,
769 "Intel i82547EI Mobile 1000BASE-T Ethernet",
770 WM_T_82547, WMP_F_1000T },
771
772 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
773 "Intel i82547GI 1000BASE-T Ethernet",
774 WM_T_82547_2, WMP_F_1000T },
775
776 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_COPPER,
777 "Intel PRO/1000 PT (82571EB)",
778 WM_T_82571, WMP_F_1000T },
779
780 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_FIBER,
781 "Intel PRO/1000 PF (82571EB)",
782 WM_T_82571, WMP_F_1000X },
783 #if 0
784 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_SERDES,
785 "Intel PRO/1000 PB (82571EB)",
786 WM_T_82571, WMP_F_SERDES },
787 #endif
788 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER,
789 "Intel PRO/1000 QT (82571EB)",
790 WM_T_82571, WMP_F_1000T },
791
792 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_COPPER,
793 "Intel i82572EI 1000baseT Ethernet",
794 WM_T_82572, WMP_F_1000T },
795
796 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER,
797 "Intel PRO/1000 PT Quad Port Server Adapter",
798 WM_T_82571, WMP_F_1000T, },
799
800 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_FIBER,
801 "Intel i82572EI 1000baseX Ethernet",
802 WM_T_82572, WMP_F_1000X },
803 #if 0
804 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_SERDES,
805 "Intel i82572EI Gigabit Ethernet (SERDES)",
806 WM_T_82572, WMP_F_SERDES },
807 #endif
808
809 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI,
810 "Intel i82572EI 1000baseT Ethernet",
811 WM_T_82572, WMP_F_1000T },
812
813 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E,
814 "Intel i82573E",
815 WM_T_82573, WMP_F_1000T },
816
817 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E_IAMT,
818 "Intel i82573E IAMT",
819 WM_T_82573, WMP_F_1000T },
820
821 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L,
822 "Intel i82573L Gigabit Ethernet",
823 WM_T_82573, WMP_F_1000T },
824
825 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82574L,
826 "Intel i82574L",
827 WM_T_82574, WMP_F_1000T },
828
829 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82583V,
830 "Intel i82583V",
831 WM_T_82583, WMP_F_1000T },
832
833 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT,
834 "i80003 dual 1000baseT Ethernet",
835 WM_T_80003, WMP_F_1000T },
836
837 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT,
838 "i80003 dual 1000baseX Ethernet",
839 WM_T_80003, WMP_F_1000T },
840 #if 0
841 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT,
842 "Intel i80003ES2 dual Gigabit Ethernet (SERDES)",
843 WM_T_80003, WMP_F_SERDES },
844 #endif
845
846 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT,
847 "Intel i80003 1000baseT Ethernet",
848 WM_T_80003, WMP_F_1000T },
849 #if 0
850 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT,
851 "Intel i80003 Gigabit Ethernet (SERDES)",
852 WM_T_80003, WMP_F_SERDES },
853 #endif
854 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_AMT,
855 "Intel i82801H (M_AMT) LAN Controller",
856 WM_T_ICH8, WMP_F_1000T },
857 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_AMT,
858 "Intel i82801H (AMT) LAN Controller",
859 WM_T_ICH8, WMP_F_1000T },
860 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_LAN,
861 "Intel i82801H LAN Controller",
862 WM_T_ICH8, WMP_F_1000T },
863 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_LAN,
864 "Intel i82801H (IFE) LAN Controller",
865 WM_T_ICH8, WMP_F_1000T },
866 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_LAN,
867 "Intel i82801H (M) LAN Controller",
868 WM_T_ICH8, WMP_F_1000T },
869 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_GT,
870 "Intel i82801H IFE (GT) LAN Controller",
871 WM_T_ICH8, WMP_F_1000T },
872 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_G,
873 "Intel i82801H IFE (G) LAN Controller",
874 WM_T_ICH8, WMP_F_1000T },
875 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_AMT,
876 "82801I (AMT) LAN Controller",
877 WM_T_ICH9, WMP_F_1000T },
878 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE,
879 "82801I LAN Controller",
880 WM_T_ICH9, WMP_F_1000T },
881 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_G,
882 "82801I (G) LAN Controller",
883 WM_T_ICH9, WMP_F_1000T },
884 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_GT,
885 "82801I (GT) LAN Controller",
886 WM_T_ICH9, WMP_F_1000T },
887 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_C,
888 "82801I (C) LAN Controller",
889 WM_T_ICH9, WMP_F_1000T },
890 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M,
891 "82801I mobile LAN Controller",
892 WM_T_ICH9, WMP_F_1000T },
893 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IGP_M_V,
894 "82801I mobile (V) LAN Controller",
895 WM_T_ICH9, WMP_F_1000T },
896 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M_AMT,
897 "82801I mobile (AMT) LAN Controller",
898 WM_T_ICH9, WMP_F_1000T },
899 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_BM,
900 "82567LM-4 LAN Controller",
901 WM_T_ICH9, WMP_F_1000T },
902 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_82567V_3,
903 "82567V-3 LAN Controller",
904 WM_T_ICH9, WMP_F_1000T },
905 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_LM,
906 "82567LM-2 LAN Controller",
907 WM_T_ICH10, WMP_F_1000T },
908 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_LF,
909 "82567LF-2 LAN Controller",
910 WM_T_ICH10, WMP_F_1000T },
911 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_LM,
912 "82567LM-3 LAN Controller",
913 WM_T_ICH10, WMP_F_1000T },
914 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_LF,
915 "82567LF-3 LAN Controller",
916 WM_T_ICH10, WMP_F_1000T },
917 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_V,
918 "82567V-2 LAN Controller",
919 WM_T_ICH10, WMP_F_1000T },
920 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_V,
921 "82567V-3? LAN Controller",
922 WM_T_ICH10, WMP_F_1000T },
923 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_HANKSVILLE,
924 "HANKSVILLE LAN Controller",
925 WM_T_ICH10, WMP_F_1000T },
926 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_M_LM,
927 "PCH LAN (82577LM) Controller",
928 WM_T_PCH, WMP_F_1000T },
929 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_M_LC,
930 "PCH LAN (82577LC) Controller",
931 WM_T_PCH, WMP_F_1000T },
932 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_D_DM,
933 "PCH LAN (82578DM) Controller",
934 WM_T_PCH, WMP_F_1000T },
935 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_D_DC,
936 "PCH LAN (82578DC) Controller",
937 WM_T_PCH, WMP_F_1000T },
938 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH2_LV_LM,
939 "PCH2 LAN (82579LM) Controller",
940 WM_T_PCH2, WMP_F_1000T },
941 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH2_LV_V,
942 "PCH2 LAN (82579V) Controller",
943 WM_T_PCH2, WMP_F_1000T },
944 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575EB_COPPER,
945 "82575EB dual-1000baseT Ethernet",
946 WM_T_82575, WMP_F_1000T },
947 #if 0
948 /*
949 * not sure if WMP_F_1000X or WMP_F_SERDES - we do not have it - so
950 * disabled for now ...
951 */
952 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575EB_FIBER_SERDES,
953 "82575EB dual-1000baseX Ethernet (SERDES)",
954 WM_T_82575, WMP_F_SERDES },
955 #endif
956 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER,
957 "82575GB quad-1000baseT Ethernet",
958 WM_T_82575, WMP_F_1000T },
959 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER_PM,
960 "82575GB quad-1000baseT Ethernet (PM)",
961 WM_T_82575, WMP_F_1000T },
962 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_COPPER,
963 "82576 1000BaseT Ethernet",
964 WM_T_82576, WMP_F_1000T },
965 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_FIBER,
966 "82576 1000BaseX Ethernet",
967 WM_T_82576, WMP_F_1000X },
968 #if 0
969 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_SERDES,
970 "82576 gigabit Ethernet (SERDES)",
971 WM_T_82576, WMP_F_SERDES },
972 #endif
973 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_QUAD_COPPER,
974 "82576 quad-1000BaseT Ethernet",
975 WM_T_82576, WMP_F_1000T },
976 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_NS,
977 "82576 gigabit Ethernet",
978 WM_T_82576, WMP_F_1000T },
979 #if 0
980 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_NS_SERDES,
981 "82576 gigabit Ethernet (SERDES)",
982 WM_T_82576, WMP_F_SERDES },
983 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_SERDES_QUAD,
984 "82576 quad-gigabit Ethernet (SERDES)",
985 WM_T_82576, WMP_F_SERDES },
986 #endif
987 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_COPPER,
988 "82580 1000BaseT Ethernet",
989 WM_T_82580, WMP_F_1000T },
990 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_FIBER,
991 "82580 1000BaseX Ethernet",
992 WM_T_82580, WMP_F_1000X },
993 #if 0
994 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_SERDES,
995 "82580 1000BaseT Ethernet (SERDES)",
996 WM_T_82580, WMP_F_SERDES },
997 #endif
998 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_SGMII,
999 "82580 gigabit Ethernet (SGMII)",
1000 WM_T_82580, WMP_F_1000T },
1001 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_COPPER_DUAL,
1002 "82580 dual-1000BaseT Ethernet",
1003 WM_T_82580, WMP_F_1000T },
1004 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_ER,
1005 "82580 1000BaseT Ethernet",
1006 WM_T_82580ER, WMP_F_1000T },
1007 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_ER_DUAL,
1008 "82580 dual-1000BaseT Ethernet",
1009 WM_T_82580ER, WMP_F_1000T },
1010 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_QUAD_FIBER,
1011 "82580 quad-1000BaseX Ethernet",
1012 WM_T_82580, WMP_F_1000X },
1013 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_COPPER,
1014 "I350 Gigabit Network Connection",
1015 WM_T_I350, WMP_F_1000T },
1016 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_FIBER,
1017 "I350 Gigabit Fiber Network Connection",
1018 WM_T_I350, WMP_F_1000X },
1019 #if 0
1020 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_SERDES,
1021 "I350 Gigabit Backplane Connection",
1022 WM_T_I350, WMP_F_SERDES },
1023 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_SGMII,
1024 "I350 Gigabit Connection",
1025 WM_T_I350, WMP_F_1000T },
1026 #endif
1027 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_T1,
1028 "I210-T1 Ethernet Server Adapter",
1029 WM_T_I210, WMP_F_1000T },
1030 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_OEM1,
1031 "I210 Ethernet (Copper OEM)",
1032 WM_T_I210, WMP_F_1000T },
1033 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_IT,
1034 "I210 Ethernet (Copper IT)",
1035 WM_T_I210, WMP_F_1000T },
1036 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_FIBER,
1037 "I210 Gigabit Ethernet (Fiber)",
1038 WM_T_I210, WMP_F_1000X },
1039 #if 0
1040 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SERDES,
1041 "I210 Gigabit Ethernet (SERDES)",
1042 WM_T_I210, WMP_F_SERDES },
1043 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SGMII,
1044 "I210 Gigabit Ethernet (SGMII)",
1045 WM_T_I210, WMP_F_SERDES },
1046 #endif
1047 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I211_COPPER,
1048 "I211 Ethernet (COPPER)",
1049 WM_T_I211, WMP_F_1000T },
1050 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I217_V,
1051 "I217 V Ethernet Connection",
1052 WM_T_PCH_LPT, WMP_F_1000T },
1053 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I217_LM,
1054 "I217 LM Ethernet Connection",
1055 WM_T_PCH_LPT, WMP_F_1000T },
1056 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V,
1057 "I218 V Ethernet Connection",
1058 WM_T_PCH_LPT, WMP_F_1000T },
1059 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM,
1060 "I218 LM Ethernet Connection",
1061 WM_T_PCH_LPT, WMP_F_1000T },
1062 { 0, 0,
1063 NULL,
1064 0, 0 },
1065 };
1066
1067 #ifdef WM_EVENT_COUNTERS
1068 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
1069 #endif /* WM_EVENT_COUNTERS */
1070
1071 #if 0 /* Not currently used */
1072 static inline uint32_t
1073 wm_io_read(struct wm_softc *sc, int reg)
1074 {
1075
1076 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
1077 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
1078 }
1079 #endif
1080
1081 static inline void
1082 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
1083 {
1084
1085 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
1086 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
1087 }
1088
1089 static inline void
1090 wm_82575_write_8bit_ctlr_reg(struct wm_softc *sc, uint32_t reg, uint32_t off,
1091 uint32_t data)
1092 {
1093 uint32_t regval;
1094 int i;
1095
1096 regval = (data & SCTL_CTL_DATA_MASK) | (off << SCTL_CTL_ADDR_SHIFT);
1097
1098 CSR_WRITE(sc, reg, regval);
1099
1100 for (i = 0; i < SCTL_CTL_POLL_TIMEOUT; i++) {
1101 delay(5);
1102 if (CSR_READ(sc, reg) & SCTL_CTL_READY)
1103 break;
1104 }
1105 if (i == SCTL_CTL_POLL_TIMEOUT) {
1106 aprint_error("%s: WARNING: i82575 reg 0x%08x setup did not indicate ready\n",
1107 device_xname(sc->sc_dev), reg);
1108 }
1109 }
1110
1111 static inline void
1112 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
1113 {
1114 wa->wa_low = htole32(v & 0xffffffffU);
1115 if (sizeof(bus_addr_t) == 8)
1116 wa->wa_high = htole32((uint64_t) v >> 32);
1117 else
1118 wa->wa_high = 0;
1119 }
1120
1121 static void
1122 wm_set_spiaddrbits(struct wm_softc *sc)
1123 {
1124 uint32_t reg;
1125
1126 sc->sc_flags |= WM_F_EEPROM_SPI;
1127 reg = CSR_READ(sc, WMREG_EECD);
1128 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1129 }
1130
1131 static const struct wm_product *
1132 wm_lookup(const struct pci_attach_args *pa)
1133 {
1134 const struct wm_product *wmp;
1135
1136 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
1137 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
1138 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
1139 return wmp;
1140 }
1141 return NULL;
1142 }
1143
1144 static int
1145 wm_match(device_t parent, cfdata_t cf, void *aux)
1146 {
1147 struct pci_attach_args *pa = aux;
1148
1149 if (wm_lookup(pa) != NULL)
1150 return 1;
1151
1152 return 0;
1153 }
1154
1155 static void
1156 wm_attach(device_t parent, device_t self, void *aux)
1157 {
1158 struct wm_softc *sc = device_private(self);
1159 struct pci_attach_args *pa = aux;
1160 prop_dictionary_t dict;
1161 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1162 pci_chipset_tag_t pc = pa->pa_pc;
1163 pci_intr_handle_t ih;
1164 const char *intrstr = NULL;
1165 const char *eetype, *xname;
1166 bus_space_tag_t memt;
1167 bus_space_handle_t memh;
1168 bus_size_t memsize;
1169 int memh_valid;
1170 int i, error;
1171 const struct wm_product *wmp;
1172 prop_data_t ea;
1173 prop_number_t pn;
1174 uint8_t enaddr[ETHER_ADDR_LEN];
1175 uint16_t cfg1, cfg2, swdpin, io3;
1176 pcireg_t preg, memtype;
1177 uint16_t eeprom_data, apme_mask;
1178 uint32_t reg;
1179
1180 sc->sc_dev = self;
1181 callout_init(&sc->sc_tick_ch, 0);
1182
1183 sc->sc_wmp = wmp = wm_lookup(pa);
1184 if (wmp == NULL) {
1185 printf("\n");
1186 panic("wm_attach: impossible");
1187 }
1188
1189 sc->sc_pc = pa->pa_pc;
1190 sc->sc_pcitag = pa->pa_tag;
1191
1192 if (pci_dma64_available(pa))
1193 sc->sc_dmat = pa->pa_dmat64;
1194 else
1195 sc->sc_dmat = pa->pa_dmat;
1196
1197 sc->sc_rev = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
1198 pci_aprint_devinfo_fancy(pa, "Ethernet controller", wmp->wmp_name, 1);
1199
1200 sc->sc_type = wmp->wmp_type;
1201 if (sc->sc_type < WM_T_82543) {
1202 if (sc->sc_rev < 2) {
1203 aprint_error_dev(sc->sc_dev,
1204 "i82542 must be at least rev. 2\n");
1205 return;
1206 }
1207 if (sc->sc_rev < 3)
1208 sc->sc_type = WM_T_82542_2_0;
1209 }
1210
1211 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
1212 || (sc->sc_type == WM_T_82580) || (sc->sc_type == WM_T_82580ER)
1213 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I210)
1214 || (sc->sc_type == WM_T_I211))
1215 sc->sc_flags |= WM_F_NEWQUEUE;
1216
1217 /* Set device properties (mactype) */
1218 dict = device_properties(sc->sc_dev);
1219 prop_dictionary_set_uint32(dict, "mactype", sc->sc_type);
1220
1221 /*
1222 * Map the device. All devices support memory-mapped acccess,
1223 * and it is really required for normal operation.
1224 */
1225 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
1226 switch (memtype) {
1227 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1228 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1229 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
1230 memtype, 0, &memt, &memh, NULL, &memsize) == 0);
1231 break;
1232 default:
1233 memh_valid = 0;
1234 break;
1235 }
1236
1237 if (memh_valid) {
1238 sc->sc_st = memt;
1239 sc->sc_sh = memh;
1240 sc->sc_ss = memsize;
1241 } else {
1242 aprint_error_dev(sc->sc_dev,
1243 "unable to map device registers\n");
1244 return;
1245 }
1246
1247 wm_get_wakeup(sc);
1248
1249 /*
1250 * In addition, i82544 and later support I/O mapped indirect
1251 * register access. It is not desirable (nor supported in
1252 * this driver) to use it for normal operation, though it is
1253 * required to work around bugs in some chip versions.
1254 */
1255 if (sc->sc_type >= WM_T_82544) {
1256 /* First we have to find the I/O BAR. */
1257 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
1258 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, i);
1259 if (memtype == PCI_MAPREG_TYPE_IO)
1260 break;
1261 if (PCI_MAPREG_MEM_TYPE(memtype) ==
1262 PCI_MAPREG_MEM_TYPE_64BIT)
1263 i += 4; /* skip high bits, too */
1264 }
1265 if (i < PCI_MAPREG_END) {
1266 /*
1267 * We found PCI_MAPREG_TYPE_IO. Note that 82580
1268 * (and newer?) chip has no PCI_MAPREG_TYPE_IO.
1269 * It's no problem because newer chips has no this
1270 * bug.
1271 *
1272 * The i8254x doesn't apparently respond when the
1273 * I/O BAR is 0, which looks somewhat like it's not
1274 * been configured.
1275 */
1276 preg = pci_conf_read(pc, pa->pa_tag, i);
1277 if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
1278 aprint_error_dev(sc->sc_dev,
1279 "WARNING: I/O BAR at zero.\n");
1280 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
1281 0, &sc->sc_iot, &sc->sc_ioh,
1282 NULL, &sc->sc_ios) == 0) {
1283 sc->sc_flags |= WM_F_IOH_VALID;
1284 } else {
1285 aprint_error_dev(sc->sc_dev,
1286 "WARNING: unable to map I/O space\n");
1287 }
1288 }
1289
1290 }
1291
1292 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
1293 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1294 preg |= PCI_COMMAND_MASTER_ENABLE;
1295 if (sc->sc_type < WM_T_82542_2_1)
1296 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
1297 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
1298
1299 /* power up chip */
1300 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1301 NULL)) && error != EOPNOTSUPP) {
1302 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1303 return;
1304 }
1305
1306 /*
1307 * Map and establish our interrupt.
1308 */
1309 if (pci_intr_map(pa, &ih)) {
1310 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1311 return;
1312 }
1313 intrstr = pci_intr_string(pc, ih);
1314 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
1315 if (sc->sc_ih == NULL) {
1316 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1317 if (intrstr != NULL)
1318 aprint_error(" at %s", intrstr);
1319 aprint_error("\n");
1320 return;
1321 }
1322 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1323
1324 /*
1325 * Check the function ID (unit number of the chip).
1326 */
1327 if ((sc->sc_type == WM_T_82546) || (sc->sc_type == WM_T_82546_3)
1328 || (sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_80003)
1329 || (sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
1330 || (sc->sc_type == WM_T_82580) || (sc->sc_type == WM_T_82580ER)
1331 || (sc->sc_type == WM_T_I350))
1332 sc->sc_funcid = (CSR_READ(sc, WMREG_STATUS)
1333 >> STATUS_FUNCID_SHIFT) & STATUS_FUNCID_MASK;
1334 else
1335 sc->sc_funcid = 0;
1336
1337 /*
1338 * Determine a few things about the bus we're connected to.
1339 */
1340 if (sc->sc_type < WM_T_82543) {
1341 /* We don't really know the bus characteristics here. */
1342 sc->sc_bus_speed = 33;
1343 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
1344 /*
1345 * CSA (Communication Streaming Architecture) is about as fast
1346 * a 32-bit 66MHz PCI Bus.
1347 */
1348 sc->sc_flags |= WM_F_CSA;
1349 sc->sc_bus_speed = 66;
1350 aprint_verbose_dev(sc->sc_dev,
1351 "Communication Streaming Architecture\n");
1352 if (sc->sc_type == WM_T_82547) {
1353 callout_init(&sc->sc_txfifo_ch, 0);
1354 callout_setfunc(&sc->sc_txfifo_ch,
1355 wm_82547_txfifo_stall, sc);
1356 aprint_verbose_dev(sc->sc_dev,
1357 "using 82547 Tx FIFO stall work-around\n");
1358 }
1359 } else if (sc->sc_type >= WM_T_82571) {
1360 sc->sc_flags |= WM_F_PCIE;
1361 if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9)
1362 && (sc->sc_type != WM_T_ICH10)
1363 && (sc->sc_type != WM_T_PCH)
1364 && (sc->sc_type != WM_T_PCH2)
1365 && (sc->sc_type != WM_T_PCH_LPT)) {
1366 sc->sc_flags |= WM_F_EEPROM_SEMAPHORE;
1367 /* ICH* and PCH* have no PCIe capability registers */
1368 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
1369 PCI_CAP_PCIEXPRESS, &sc->sc_pcixe_capoff,
1370 NULL) == 0)
1371 aprint_error_dev(sc->sc_dev,
1372 "unable to find PCIe capability\n");
1373 }
1374 aprint_verbose_dev(sc->sc_dev, "PCI-Express bus\n");
1375 } else {
1376 reg = CSR_READ(sc, WMREG_STATUS);
1377 if (reg & STATUS_BUS64)
1378 sc->sc_flags |= WM_F_BUS64;
1379 if ((reg & STATUS_PCIX_MODE) != 0) {
1380 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
1381
1382 sc->sc_flags |= WM_F_PCIX;
1383 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
1384 PCI_CAP_PCIX, &sc->sc_pcixe_capoff, NULL) == 0)
1385 aprint_error_dev(sc->sc_dev,
1386 "unable to find PCIX capability\n");
1387 else if (sc->sc_type != WM_T_82545_3 &&
1388 sc->sc_type != WM_T_82546_3) {
1389 /*
1390 * Work around a problem caused by the BIOS
1391 * setting the max memory read byte count
1392 * incorrectly.
1393 */
1394 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
1395 sc->sc_pcixe_capoff + PCIX_CMD);
1396 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
1397 sc->sc_pcixe_capoff + PCIX_STATUS);
1398
1399 bytecnt =
1400 (pcix_cmd & PCIX_CMD_BYTECNT_MASK) >>
1401 PCIX_CMD_BYTECNT_SHIFT;
1402 maxb =
1403 (pcix_sts & PCIX_STATUS_MAXB_MASK) >>
1404 PCIX_STATUS_MAXB_SHIFT;
1405 if (bytecnt > maxb) {
1406 aprint_verbose_dev(sc->sc_dev,
1407 "resetting PCI-X MMRBC: %d -> %d\n",
1408 512 << bytecnt, 512 << maxb);
1409 pcix_cmd = (pcix_cmd &
1410 ~PCIX_CMD_BYTECNT_MASK) |
1411 (maxb << PCIX_CMD_BYTECNT_SHIFT);
1412 pci_conf_write(pa->pa_pc, pa->pa_tag,
1413 sc->sc_pcixe_capoff + PCIX_CMD,
1414 pcix_cmd);
1415 }
1416 }
1417 }
1418 /*
1419 * The quad port adapter is special; it has a PCIX-PCIX
1420 * bridge on the board, and can run the secondary bus at
1421 * a higher speed.
1422 */
1423 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
1424 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
1425 : 66;
1426 } else if (sc->sc_flags & WM_F_PCIX) {
1427 switch (reg & STATUS_PCIXSPD_MASK) {
1428 case STATUS_PCIXSPD_50_66:
1429 sc->sc_bus_speed = 66;
1430 break;
1431 case STATUS_PCIXSPD_66_100:
1432 sc->sc_bus_speed = 100;
1433 break;
1434 case STATUS_PCIXSPD_100_133:
1435 sc->sc_bus_speed = 133;
1436 break;
1437 default:
1438 aprint_error_dev(sc->sc_dev,
1439 "unknown PCIXSPD %d; assuming 66MHz\n",
1440 reg & STATUS_PCIXSPD_MASK);
1441 sc->sc_bus_speed = 66;
1442 break;
1443 }
1444 } else
1445 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
1446 aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
1447 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
1448 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
1449 }
1450
1451 /*
1452 * Allocate the control data structures, and create and load the
1453 * DMA map for it.
1454 *
1455 * NOTE: All Tx descriptors must be in the same 4G segment of
1456 * memory. So must Rx descriptors. We simplify by allocating
1457 * both sets within the same 4G segment.
1458 */
1459 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
1460 WM_NTXDESC_82542 : WM_NTXDESC_82544;
1461 sc->sc_cd_size = sc->sc_type < WM_T_82544 ?
1462 sizeof(struct wm_control_data_82542) :
1463 sizeof(struct wm_control_data_82544);
1464 if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_cd_size, PAGE_SIZE,
1465 (bus_size_t) 0x100000000ULL, &sc->sc_cd_seg, 1,
1466 &sc->sc_cd_rseg, 0)) != 0) {
1467 aprint_error_dev(sc->sc_dev,
1468 "unable to allocate control data, error = %d\n",
1469 error);
1470 goto fail_0;
1471 }
1472
1473 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cd_seg,
1474 sc->sc_cd_rseg, sc->sc_cd_size,
1475 (void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) {
1476 aprint_error_dev(sc->sc_dev,
1477 "unable to map control data, error = %d\n", error);
1478 goto fail_1;
1479 }
1480
1481 if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_cd_size, 1,
1482 sc->sc_cd_size, 0, 0, &sc->sc_cddmamap)) != 0) {
1483 aprint_error_dev(sc->sc_dev,
1484 "unable to create control data DMA map, error = %d\n",
1485 error);
1486 goto fail_2;
1487 }
1488
1489 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1490 sc->sc_control_data, sc->sc_cd_size, NULL, 0)) != 0) {
1491 aprint_error_dev(sc->sc_dev,
1492 "unable to load control data DMA map, error = %d\n",
1493 error);
1494 goto fail_3;
1495 }
1496
1497 /*
1498 * Create the transmit buffer DMA maps.
1499 */
1500 WM_TXQUEUELEN(sc) =
1501 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1502 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1503 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1504 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1505 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1506 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1507 aprint_error_dev(sc->sc_dev,
1508 "unable to create Tx DMA map %d, error = %d\n",
1509 i, error);
1510 goto fail_4;
1511 }
1512 }
1513
1514 /*
1515 * Create the receive buffer DMA maps.
1516 */
1517 for (i = 0; i < WM_NRXDESC; i++) {
1518 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1519 MCLBYTES, 0, 0,
1520 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1521 aprint_error_dev(sc->sc_dev,
1522 "unable to create Rx DMA map %d error = %d\n",
1523 i, error);
1524 goto fail_5;
1525 }
1526 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1527 }
1528
1529 /* clear interesting stat counters */
1530 CSR_READ(sc, WMREG_COLC);
1531 CSR_READ(sc, WMREG_RXERRC);
1532
1533 /* get PHY control from SMBus to PCIe */
1534 if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)
1535 || (sc->sc_type == WM_T_PCH_LPT))
1536 wm_smbustopci(sc);
1537
1538 /*
1539 * Reset the chip to a known state.
1540 */
1541 wm_reset(sc);
1542
1543 switch (sc->sc_type) {
1544 case WM_T_82571:
1545 case WM_T_82572:
1546 case WM_T_82573:
1547 case WM_T_82574:
1548 case WM_T_82583:
1549 case WM_T_80003:
1550 case WM_T_ICH8:
1551 case WM_T_ICH9:
1552 case WM_T_ICH10:
1553 case WM_T_PCH:
1554 case WM_T_PCH2:
1555 case WM_T_PCH_LPT:
1556 if (wm_check_mng_mode(sc) != 0)
1557 wm_get_hw_control(sc);
1558 break;
1559 default:
1560 break;
1561 }
1562
1563 /*
1564 * Get some information about the EEPROM.
1565 */
1566 switch (sc->sc_type) {
1567 case WM_T_82542_2_0:
1568 case WM_T_82542_2_1:
1569 case WM_T_82543:
1570 case WM_T_82544:
1571 /* Microwire */
1572 sc->sc_ee_addrbits = 6;
1573 break;
1574 case WM_T_82540:
1575 case WM_T_82545:
1576 case WM_T_82545_3:
1577 case WM_T_82546:
1578 case WM_T_82546_3:
1579 /* Microwire */
1580 reg = CSR_READ(sc, WMREG_EECD);
1581 if (reg & EECD_EE_SIZE)
1582 sc->sc_ee_addrbits = 8;
1583 else
1584 sc->sc_ee_addrbits = 6;
1585 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1586 break;
1587 case WM_T_82541:
1588 case WM_T_82541_2:
1589 case WM_T_82547:
1590 case WM_T_82547_2:
1591 reg = CSR_READ(sc, WMREG_EECD);
1592 if (reg & EECD_EE_TYPE) {
1593 /* SPI */
1594 wm_set_spiaddrbits(sc);
1595 } else
1596 /* Microwire */
1597 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1598 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1599 break;
1600 case WM_T_82571:
1601 case WM_T_82572:
1602 /* SPI */
1603 wm_set_spiaddrbits(sc);
1604 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1605 break;
1606 case WM_T_82573:
1607 case WM_T_82574:
1608 case WM_T_82583:
1609 if (wm_is_onboard_nvm_eeprom(sc) == 0)
1610 sc->sc_flags |= WM_F_EEPROM_FLASH;
1611 else {
1612 /* SPI */
1613 wm_set_spiaddrbits(sc);
1614 }
1615 sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
1616 break;
1617 case WM_T_82575:
1618 case WM_T_82576:
1619 case WM_T_82580:
1620 case WM_T_82580ER:
1621 case WM_T_I350:
1622 case WM_T_80003:
1623 /* SPI */
1624 wm_set_spiaddrbits(sc);
1625 sc->sc_flags |= WM_F_EEPROM_EERDEEWR | WM_F_SWFW_SYNC;
1626 break;
1627 case WM_T_ICH8:
1628 case WM_T_ICH9:
1629 case WM_T_ICH10:
1630 case WM_T_PCH:
1631 case WM_T_PCH2:
1632 case WM_T_PCH_LPT:
1633 /* FLASH */
1634 sc->sc_flags |= WM_F_EEPROM_FLASH | WM_F_SWFWHW_SYNC;
1635 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_ICH8_FLASH);
1636 if (pci_mapreg_map(pa, WM_ICH8_FLASH, memtype, 0,
1637 &sc->sc_flasht, &sc->sc_flashh, NULL, NULL)) {
1638 aprint_error_dev(sc->sc_dev,
1639 "can't map FLASH registers\n");
1640 return;
1641 }
1642 reg = ICH8_FLASH_READ32(sc, ICH_FLASH_GFPREG);
1643 sc->sc_ich8_flash_base = (reg & ICH_GFPREG_BASE_MASK) *
1644 ICH_FLASH_SECTOR_SIZE;
1645 sc->sc_ich8_flash_bank_size =
1646 ((reg >> 16) & ICH_GFPREG_BASE_MASK) + 1;
1647 sc->sc_ich8_flash_bank_size -=
1648 (reg & ICH_GFPREG_BASE_MASK);
1649 sc->sc_ich8_flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
1650 sc->sc_ich8_flash_bank_size /= 2 * sizeof(uint16_t);
1651 break;
1652 case WM_T_I210:
1653 case WM_T_I211:
1654 sc->sc_flags |= WM_F_EEPROM_FLASH_HW;
1655 sc->sc_flags |= WM_F_EEPROM_EERDEEWR | WM_F_SWFW_SYNC;
1656 break;
1657 default:
1658 break;
1659 }
1660
1661 /*
1662 * Defer printing the EEPROM type until after verifying the checksum
1663 * This allows the EEPROM type to be printed correctly in the case
1664 * that no EEPROM is attached.
1665 */
1666 /*
1667 * Validate the EEPROM checksum. If the checksum fails, flag
1668 * this for later, so we can fail future reads from the EEPROM.
1669 */
1670 if (wm_validate_eeprom_checksum(sc)) {
1671 /*
1672 * Read twice again because some PCI-e parts fail the
1673 * first check due to the link being in sleep state.
1674 */
1675 if (wm_validate_eeprom_checksum(sc))
1676 sc->sc_flags |= WM_F_EEPROM_INVALID;
1677 }
1678
1679 /* Set device properties (macflags) */
1680 prop_dictionary_set_uint32(dict, "macflags", sc->sc_flags);
1681
1682 if (sc->sc_flags & WM_F_EEPROM_INVALID)
1683 aprint_verbose_dev(sc->sc_dev, "No EEPROM\n");
1684 else if (sc->sc_flags & WM_F_EEPROM_FLASH_HW) {
1685 aprint_verbose_dev(sc->sc_dev, "FLASH(HW)\n");
1686 } else if (sc->sc_flags & WM_F_EEPROM_FLASH) {
1687 aprint_verbose_dev(sc->sc_dev, "FLASH\n");
1688 } else {
1689 if (sc->sc_flags & WM_F_EEPROM_SPI)
1690 eetype = "SPI";
1691 else
1692 eetype = "MicroWire";
1693 aprint_verbose_dev(sc->sc_dev,
1694 "%u word (%d address bits) %s EEPROM\n",
1695 1U << sc->sc_ee_addrbits,
1696 sc->sc_ee_addrbits, eetype);
1697 }
1698
1699 /*
1700 * Read the Ethernet address from the EEPROM, if not first found
1701 * in device properties.
1702 */
1703 ea = prop_dictionary_get(dict, "mac-address");
1704 if (ea != NULL) {
1705 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
1706 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
1707 memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
1708 } else {
1709 if (wm_read_mac_addr(sc, enaddr) != 0) {
1710 aprint_error_dev(sc->sc_dev,
1711 "unable to read Ethernet address\n");
1712 return;
1713 }
1714 }
1715
1716 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
1717 ether_sprintf(enaddr));
1718
1719 /*
1720 * Read the config info from the EEPROM, and set up various
1721 * bits in the control registers based on their contents.
1722 */
1723 pn = prop_dictionary_get(dict, "i82543-cfg1");
1724 if (pn != NULL) {
1725 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1726 cfg1 = (uint16_t) prop_number_integer_value(pn);
1727 } else {
1728 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1729 aprint_error_dev(sc->sc_dev, "unable to read CFG1\n");
1730 return;
1731 }
1732 }
1733
1734 pn = prop_dictionary_get(dict, "i82543-cfg2");
1735 if (pn != NULL) {
1736 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1737 cfg2 = (uint16_t) prop_number_integer_value(pn);
1738 } else {
1739 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1740 aprint_error_dev(sc->sc_dev, "unable to read CFG2\n");
1741 return;
1742 }
1743 }
1744
1745 /* check for WM_F_WOL */
1746 switch (sc->sc_type) {
1747 case WM_T_82542_2_0:
1748 case WM_T_82542_2_1:
1749 case WM_T_82543:
1750 /* dummy? */
1751 eeprom_data = 0;
1752 apme_mask = EEPROM_CFG3_APME;
1753 break;
1754 case WM_T_82544:
1755 apme_mask = EEPROM_CFG2_82544_APM_EN;
1756 eeprom_data = cfg2;
1757 break;
1758 case WM_T_82546:
1759 case WM_T_82546_3:
1760 case WM_T_82571:
1761 case WM_T_82572:
1762 case WM_T_82573:
1763 case WM_T_82574:
1764 case WM_T_82583:
1765 case WM_T_80003:
1766 default:
1767 apme_mask = EEPROM_CFG3_APME;
1768 wm_read_eeprom(sc, (sc->sc_funcid == 1) ? EEPROM_OFF_CFG3_PORTB
1769 : EEPROM_OFF_CFG3_PORTA, 1, &eeprom_data);
1770 break;
1771 case WM_T_82575:
1772 case WM_T_82576:
1773 case WM_T_82580:
1774 case WM_T_82580ER:
1775 case WM_T_I350:
1776 case WM_T_ICH8:
1777 case WM_T_ICH9:
1778 case WM_T_ICH10:
1779 case WM_T_PCH:
1780 case WM_T_PCH2:
1781 case WM_T_PCH_LPT:
1782 /* XXX The funcid should be checked on some devices */
1783 apme_mask = WUC_APME;
1784 eeprom_data = CSR_READ(sc, WMREG_WUC);
1785 break;
1786 }
1787
1788 /* Check for WM_F_WOL flag after the setting of the EEPROM stuff */
1789 if ((eeprom_data & apme_mask) != 0)
1790 sc->sc_flags |= WM_F_WOL;
1791 #ifdef WM_DEBUG
1792 if ((sc->sc_flags & WM_F_WOL) != 0)
1793 printf("WOL\n");
1794 #endif
1795
1796 /*
1797 * XXX need special handling for some multiple port cards
1798 * to disable a paticular port.
1799 */
1800
1801 if (sc->sc_type >= WM_T_82544) {
1802 pn = prop_dictionary_get(dict, "i82543-swdpin");
1803 if (pn != NULL) {
1804 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1805 swdpin = (uint16_t) prop_number_integer_value(pn);
1806 } else {
1807 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1808 aprint_error_dev(sc->sc_dev,
1809 "unable to read SWDPIN\n");
1810 return;
1811 }
1812 }
1813 }
1814
1815 if (cfg1 & EEPROM_CFG1_ILOS)
1816 sc->sc_ctrl |= CTRL_ILOS;
1817 if (sc->sc_type >= WM_T_82544) {
1818 sc->sc_ctrl |=
1819 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1820 CTRL_SWDPIO_SHIFT;
1821 sc->sc_ctrl |=
1822 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1823 CTRL_SWDPINS_SHIFT;
1824 } else {
1825 sc->sc_ctrl |=
1826 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1827 CTRL_SWDPIO_SHIFT;
1828 }
1829
1830 #if 0
1831 if (sc->sc_type >= WM_T_82544) {
1832 if (cfg1 & EEPROM_CFG1_IPS0)
1833 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1834 if (cfg1 & EEPROM_CFG1_IPS1)
1835 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1836 sc->sc_ctrl_ext |=
1837 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1838 CTRL_EXT_SWDPIO_SHIFT;
1839 sc->sc_ctrl_ext |=
1840 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1841 CTRL_EXT_SWDPINS_SHIFT;
1842 } else {
1843 sc->sc_ctrl_ext |=
1844 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1845 CTRL_EXT_SWDPIO_SHIFT;
1846 }
1847 #endif
1848
1849 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1850 #if 0
1851 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1852 #endif
1853
1854 /*
1855 * Set up some register offsets that are different between
1856 * the i82542 and the i82543 and later chips.
1857 */
1858 if (sc->sc_type < WM_T_82543) {
1859 sc->sc_rdt_reg = WMREG_OLD_RDT0;
1860 sc->sc_tdt_reg = WMREG_OLD_TDT;
1861 } else {
1862 sc->sc_rdt_reg = WMREG_RDT;
1863 sc->sc_tdt_reg = WMREG_TDT;
1864 }
1865
1866 if (sc->sc_type == WM_T_PCH) {
1867 uint16_t val;
1868
1869 /* Save the NVM K1 bit setting */
1870 wm_read_eeprom(sc, EEPROM_OFF_K1_CONFIG, 1, &val);
1871
1872 if ((val & EEPROM_K1_CONFIG_ENABLE) != 0)
1873 sc->sc_nvm_k1_enabled = 1;
1874 else
1875 sc->sc_nvm_k1_enabled = 0;
1876 }
1877
1878 /*
1879 * Determine if we're TBI,GMII or SGMII mode, and initialize the
1880 * media structures accordingly.
1881 */
1882 if (sc->sc_type == WM_T_ICH8 || sc->sc_type == WM_T_ICH9
1883 || sc->sc_type == WM_T_ICH10 || sc->sc_type == WM_T_PCH
1884 || sc->sc_type == WM_T_PCH2 || sc->sc_type == WM_T_PCH_LPT
1885 || sc->sc_type == WM_T_82573
1886 || sc->sc_type == WM_T_82574 || sc->sc_type == WM_T_82583) {
1887 /* STATUS_TBIMODE reserved/reused, can't rely on it */
1888 wm_gmii_mediainit(sc, wmp->wmp_product);
1889 } else if (sc->sc_type < WM_T_82543 ||
1890 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1891 if (wmp->wmp_flags & WMP_F_1000T)
1892 aprint_error_dev(sc->sc_dev,
1893 "WARNING: TBIMODE set on 1000BASE-T product!\n");
1894 wm_tbi_mediainit(sc);
1895 } else {
1896 switch (sc->sc_type) {
1897 case WM_T_82575:
1898 case WM_T_82576:
1899 case WM_T_82580:
1900 case WM_T_82580ER:
1901 case WM_T_I350:
1902 case WM_T_I210:
1903 case WM_T_I211:
1904 reg = CSR_READ(sc, WMREG_CTRL_EXT);
1905 switch (reg & CTRL_EXT_LINK_MODE_MASK) {
1906 case CTRL_EXT_LINK_MODE_SGMII:
1907 aprint_verbose_dev(sc->sc_dev, "SGMII\n");
1908 sc->sc_flags |= WM_F_SGMII;
1909 CSR_WRITE(sc, WMREG_CTRL_EXT,
1910 reg | CTRL_EXT_I2C_ENA);
1911 wm_gmii_mediainit(sc, wmp->wmp_product);
1912 break;
1913 case CTRL_EXT_LINK_MODE_1000KX:
1914 case CTRL_EXT_LINK_MODE_PCIE_SERDES:
1915 aprint_verbose_dev(sc->sc_dev, "1000KX or SERDES\n");
1916 CSR_WRITE(sc, WMREG_CTRL_EXT,
1917 reg | CTRL_EXT_I2C_ENA);
1918 panic("not supported yet\n");
1919 break;
1920 case CTRL_EXT_LINK_MODE_GMII:
1921 default:
1922 CSR_WRITE(sc, WMREG_CTRL_EXT,
1923 reg & ~CTRL_EXT_I2C_ENA);
1924 wm_gmii_mediainit(sc, wmp->wmp_product);
1925 break;
1926 }
1927 break;
1928 default:
1929 if (wmp->wmp_flags & WMP_F_1000X)
1930 aprint_error_dev(sc->sc_dev,
1931 "WARNING: TBIMODE clear on 1000BASE-X product!\n");
1932 wm_gmii_mediainit(sc, wmp->wmp_product);
1933 }
1934 }
1935
1936 ifp = &sc->sc_ethercom.ec_if;
1937 xname = device_xname(sc->sc_dev);
1938 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
1939 ifp->if_softc = sc;
1940 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1941 ifp->if_ioctl = wm_ioctl;
1942 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
1943 ifp->if_start = wm_nq_start;
1944 else
1945 ifp->if_start = wm_start;
1946 ifp->if_watchdog = wm_watchdog;
1947 ifp->if_init = wm_init;
1948 ifp->if_stop = wm_stop;
1949 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1950 IFQ_SET_READY(&ifp->if_snd);
1951
1952 /* Check for jumbo frame */
1953 switch (sc->sc_type) {
1954 case WM_T_82573:
1955 /* XXX limited to 9234 if ASPM is disabled */
1956 wm_read_eeprom(sc, EEPROM_INIT_3GIO_3, 1, &io3);
1957 if ((io3 & EEPROM_3GIO_3_ASPM_MASK) != 0)
1958 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1959 break;
1960 case WM_T_82571:
1961 case WM_T_82572:
1962 case WM_T_82574:
1963 case WM_T_82575:
1964 case WM_T_82576:
1965 case WM_T_82580:
1966 case WM_T_82580ER:
1967 case WM_T_I350:
1968 case WM_T_I210:
1969 case WM_T_I211:
1970 case WM_T_80003:
1971 case WM_T_ICH9:
1972 case WM_T_ICH10:
1973 case WM_T_PCH2: /* PCH2 supports 9K frame size */
1974 case WM_T_PCH_LPT:
1975 /* XXX limited to 9234 */
1976 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1977 break;
1978 case WM_T_PCH:
1979 /* XXX limited to 4096 */
1980 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1981 break;
1982 case WM_T_82542_2_0:
1983 case WM_T_82542_2_1:
1984 case WM_T_82583:
1985 case WM_T_ICH8:
1986 /* No support for jumbo frame */
1987 break;
1988 default:
1989 /* ETHER_MAX_LEN_JUMBO */
1990 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1991 break;
1992 }
1993
1994 /*
1995 * If we're a i82543 or greater, we can support VLANs.
1996 */
1997 if (sc->sc_type >= WM_T_82543)
1998 sc->sc_ethercom.ec_capabilities |=
1999 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
2000
2001 /*
2002 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
2003 * on i82543 and later.
2004 */
2005 if (sc->sc_type >= WM_T_82543) {
2006 ifp->if_capabilities |=
2007 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2008 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2009 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
2010 IFCAP_CSUM_TCPv6_Tx |
2011 IFCAP_CSUM_UDPv6_Tx;
2012 }
2013
2014 /*
2015 * XXXyamt: i'm not sure which chips support RXCSUM_IPV6OFL.
2016 *
2017 * 82541GI (8086:1076) ... no
2018 * 82572EI (8086:10b9) ... yes
2019 */
2020 if (sc->sc_type >= WM_T_82571) {
2021 ifp->if_capabilities |=
2022 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
2023 }
2024
2025 /*
2026 * If we're a i82544 or greater (except i82547), we can do
2027 * TCP segmentation offload.
2028 */
2029 if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547) {
2030 ifp->if_capabilities |= IFCAP_TSOv4;
2031 }
2032
2033 if (sc->sc_type >= WM_T_82571) {
2034 ifp->if_capabilities |= IFCAP_TSOv6;
2035 }
2036
2037 /*
2038 * Attach the interface.
2039 */
2040 if_attach(ifp);
2041 ether_ifattach(ifp, enaddr);
2042 ether_set_ifflags_cb(&sc->sc_ethercom, wm_ifflags_cb);
2043 rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET, 0);
2044
2045 #ifdef WM_EVENT_COUNTERS
2046 /* Attach event counters. */
2047 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
2048 NULL, xname, "txsstall");
2049 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
2050 NULL, xname, "txdstall");
2051 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
2052 NULL, xname, "txfifo_stall");
2053 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
2054 NULL, xname, "txdw");
2055 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
2056 NULL, xname, "txqe");
2057 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
2058 NULL, xname, "rxintr");
2059 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
2060 NULL, xname, "linkintr");
2061
2062 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
2063 NULL, xname, "rxipsum");
2064 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
2065 NULL, xname, "rxtusum");
2066 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
2067 NULL, xname, "txipsum");
2068 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
2069 NULL, xname, "txtusum");
2070 evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
2071 NULL, xname, "txtusum6");
2072
2073 evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
2074 NULL, xname, "txtso");
2075 evcnt_attach_dynamic(&sc->sc_ev_txtso6, EVCNT_TYPE_MISC,
2076 NULL, xname, "txtso6");
2077 evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
2078 NULL, xname, "txtsopain");
2079
2080 for (i = 0; i < WM_NTXSEGS; i++) {
2081 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
2082 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
2083 NULL, xname, wm_txseg_evcnt_names[i]);
2084 }
2085
2086 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
2087 NULL, xname, "txdrop");
2088
2089 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
2090 NULL, xname, "tu");
2091
2092 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
2093 NULL, xname, "tx_xoff");
2094 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
2095 NULL, xname, "tx_xon");
2096 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
2097 NULL, xname, "rx_xoff");
2098 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
2099 NULL, xname, "rx_xon");
2100 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
2101 NULL, xname, "rx_macctl");
2102 #endif /* WM_EVENT_COUNTERS */
2103
2104 if (pmf_device_register(self, wm_suspend, wm_resume))
2105 pmf_class_network_register(self, ifp);
2106 else
2107 aprint_error_dev(self, "couldn't establish power handler\n");
2108
2109 return;
2110
2111 /*
2112 * Free any resources we've allocated during the failed attach
2113 * attempt. Do this in reverse order and fall through.
2114 */
2115 fail_5:
2116 for (i = 0; i < WM_NRXDESC; i++) {
2117 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
2118 bus_dmamap_destroy(sc->sc_dmat,
2119 sc->sc_rxsoft[i].rxs_dmamap);
2120 }
2121 fail_4:
2122 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2123 if (sc->sc_txsoft[i].txs_dmamap != NULL)
2124 bus_dmamap_destroy(sc->sc_dmat,
2125 sc->sc_txsoft[i].txs_dmamap);
2126 }
2127 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2128 fail_3:
2129 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2130 fail_2:
2131 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2132 sc->sc_cd_size);
2133 fail_1:
2134 bus_dmamem_free(sc->sc_dmat, &sc->sc_cd_seg, sc->sc_cd_rseg);
2135 fail_0:
2136 return;
2137 }
2138
2139 static int
2140 wm_detach(device_t self, int flags __unused)
2141 {
2142 struct wm_softc *sc = device_private(self);
2143 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2144 int i, s;
2145
2146 s = splnet();
2147 /* Stop the interface. Callouts are stopped in it. */
2148 wm_stop(ifp, 1);
2149 splx(s);
2150
2151 pmf_device_deregister(self);
2152
2153 /* Tell the firmware about the release */
2154 wm_release_manageability(sc);
2155 wm_release_hw_control(sc);
2156
2157 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2158
2159 /* Delete all remaining media. */
2160 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2161
2162 ether_ifdetach(ifp);
2163 if_detach(ifp);
2164
2165
2166 /* Unload RX dmamaps and free mbufs */
2167 wm_rxdrain(sc);
2168
2169 /* Free dmamap. It's the same as the end of the wm_attach() function */
2170 for (i = 0; i < WM_NRXDESC; i++) {
2171 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
2172 bus_dmamap_destroy(sc->sc_dmat,
2173 sc->sc_rxsoft[i].rxs_dmamap);
2174 }
2175 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2176 if (sc->sc_txsoft[i].txs_dmamap != NULL)
2177 bus_dmamap_destroy(sc->sc_dmat,
2178 sc->sc_txsoft[i].txs_dmamap);
2179 }
2180 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2181 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2182 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2183 sc->sc_cd_size);
2184 bus_dmamem_free(sc->sc_dmat, &sc->sc_cd_seg, sc->sc_cd_rseg);
2185
2186 /* Disestablish the interrupt handler */
2187 if (sc->sc_ih != NULL) {
2188 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
2189 sc->sc_ih = NULL;
2190 }
2191
2192 /* Unmap the registers */
2193 if (sc->sc_ss) {
2194 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_ss);
2195 sc->sc_ss = 0;
2196 }
2197
2198 if (sc->sc_ios) {
2199 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
2200 sc->sc_ios = 0;
2201 }
2202
2203 return 0;
2204 }
2205
2206 /*
2207 * wm_tx_offload:
2208 *
2209 * Set up TCP/IP checksumming parameters for the
2210 * specified packet.
2211 */
2212 static int
2213 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
2214 uint8_t *fieldsp)
2215 {
2216 struct mbuf *m0 = txs->txs_mbuf;
2217 struct livengood_tcpip_ctxdesc *t;
2218 uint32_t ipcs, tucs, cmd, cmdlen, seg;
2219 uint32_t ipcse;
2220 struct ether_header *eh;
2221 int offset, iphl;
2222 uint8_t fields;
2223
2224 /*
2225 * XXX It would be nice if the mbuf pkthdr had offset
2226 * fields for the protocol headers.
2227 */
2228
2229 eh = mtod(m0, struct ether_header *);
2230 switch (htons(eh->ether_type)) {
2231 case ETHERTYPE_IP:
2232 case ETHERTYPE_IPV6:
2233 offset = ETHER_HDR_LEN;
2234 break;
2235
2236 case ETHERTYPE_VLAN:
2237 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2238 break;
2239
2240 default:
2241 /*
2242 * Don't support this protocol or encapsulation.
2243 */
2244 *fieldsp = 0;
2245 *cmdp = 0;
2246 return 0;
2247 }
2248
2249 if ((m0->m_pkthdr.csum_flags &
2250 (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
2251 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
2252 } else {
2253 iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
2254 }
2255 ipcse = offset + iphl - 1;
2256
2257 cmd = WTX_CMD_DEXT | WTX_DTYP_D;
2258 cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
2259 seg = 0;
2260 fields = 0;
2261
2262 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
2263 int hlen = offset + iphl;
2264 bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
2265
2266 if (__predict_false(m0->m_len <
2267 (hlen + sizeof(struct tcphdr)))) {
2268 /*
2269 * TCP/IP headers are not in the first mbuf; we need
2270 * to do this the slow and painful way. Let's just
2271 * hope this doesn't happen very often.
2272 */
2273 struct tcphdr th;
2274
2275 WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
2276
2277 m_copydata(m0, hlen, sizeof(th), &th);
2278 if (v4) {
2279 struct ip ip;
2280
2281 m_copydata(m0, offset, sizeof(ip), &ip);
2282 ip.ip_len = 0;
2283 m_copyback(m0,
2284 offset + offsetof(struct ip, ip_len),
2285 sizeof(ip.ip_len), &ip.ip_len);
2286 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
2287 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
2288 } else {
2289 struct ip6_hdr ip6;
2290
2291 m_copydata(m0, offset, sizeof(ip6), &ip6);
2292 ip6.ip6_plen = 0;
2293 m_copyback(m0,
2294 offset + offsetof(struct ip6_hdr, ip6_plen),
2295 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
2296 th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
2297 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
2298 }
2299 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
2300 sizeof(th.th_sum), &th.th_sum);
2301
2302 hlen += th.th_off << 2;
2303 } else {
2304 /*
2305 * TCP/IP headers are in the first mbuf; we can do
2306 * this the easy way.
2307 */
2308 struct tcphdr *th;
2309
2310 if (v4) {
2311 struct ip *ip =
2312 (void *)(mtod(m0, char *) + offset);
2313 th = (void *)(mtod(m0, char *) + hlen);
2314
2315 ip->ip_len = 0;
2316 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
2317 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
2318 } else {
2319 struct ip6_hdr *ip6 =
2320 (void *)(mtod(m0, char *) + offset);
2321 th = (void *)(mtod(m0, char *) + hlen);
2322
2323 ip6->ip6_plen = 0;
2324 th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
2325 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
2326 }
2327 hlen += th->th_off << 2;
2328 }
2329
2330 if (v4) {
2331 WM_EVCNT_INCR(&sc->sc_ev_txtso);
2332 cmdlen |= WTX_TCPIP_CMD_IP;
2333 } else {
2334 WM_EVCNT_INCR(&sc->sc_ev_txtso6);
2335 ipcse = 0;
2336 }
2337 cmd |= WTX_TCPIP_CMD_TSE;
2338 cmdlen |= WTX_TCPIP_CMD_TSE |
2339 WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
2340 seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
2341 WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
2342 }
2343
2344 /*
2345 * NOTE: Even if we're not using the IP or TCP/UDP checksum
2346 * offload feature, if we load the context descriptor, we
2347 * MUST provide valid values for IPCSS and TUCSS fields.
2348 */
2349
2350 ipcs = WTX_TCPIP_IPCSS(offset) |
2351 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
2352 WTX_TCPIP_IPCSE(ipcse);
2353 if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
2354 WM_EVCNT_INCR(&sc->sc_ev_txipsum);
2355 fields |= WTX_IXSM;
2356 }
2357
2358 offset += iphl;
2359
2360 if (m0->m_pkthdr.csum_flags &
2361 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
2362 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
2363 fields |= WTX_TXSM;
2364 tucs = WTX_TCPIP_TUCSS(offset) |
2365 WTX_TCPIP_TUCSO(offset +
2366 M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
2367 WTX_TCPIP_TUCSE(0) /* rest of packet */;
2368 } else if ((m0->m_pkthdr.csum_flags &
2369 (M_CSUM_TCPv6|M_CSUM_UDPv6|M_CSUM_TSOv6)) != 0) {
2370 WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
2371 fields |= WTX_TXSM;
2372 tucs = WTX_TCPIP_TUCSS(offset) |
2373 WTX_TCPIP_TUCSO(offset +
2374 M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
2375 WTX_TCPIP_TUCSE(0) /* rest of packet */;
2376 } else {
2377 /* Just initialize it to a valid TCP context. */
2378 tucs = WTX_TCPIP_TUCSS(offset) |
2379 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
2380 WTX_TCPIP_TUCSE(0) /* rest of packet */;
2381 }
2382
2383 /* Fill in the context descriptor. */
2384 t = (struct livengood_tcpip_ctxdesc *)
2385 &sc->sc_txdescs[sc->sc_txnext];
2386 t->tcpip_ipcs = htole32(ipcs);
2387 t->tcpip_tucs = htole32(tucs);
2388 t->tcpip_cmdlen = htole32(cmdlen);
2389 t->tcpip_seg = htole32(seg);
2390 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
2391
2392 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
2393 txs->txs_ndesc++;
2394
2395 *cmdp = cmd;
2396 *fieldsp = fields;
2397
2398 return 0;
2399 }
2400
2401 static void
2402 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
2403 {
2404 struct mbuf *m;
2405 int i;
2406
2407 log(LOG_DEBUG, "%s: mbuf chain:\n", device_xname(sc->sc_dev));
2408 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
2409 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
2410 "m_flags = 0x%08x\n", device_xname(sc->sc_dev),
2411 m->m_data, m->m_len, m->m_flags);
2412 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", device_xname(sc->sc_dev),
2413 i, i == 1 ? "" : "s");
2414 }
2415
2416 /*
2417 * wm_82547_txfifo_stall:
2418 *
2419 * Callout used to wait for the 82547 Tx FIFO to drain,
2420 * reset the FIFO pointers, and restart packet transmission.
2421 */
2422 static void
2423 wm_82547_txfifo_stall(void *arg)
2424 {
2425 struct wm_softc *sc = arg;
2426 int s;
2427
2428 s = splnet();
2429
2430 if (sc->sc_txfifo_stall) {
2431 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
2432 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
2433 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
2434 /*
2435 * Packets have drained. Stop transmitter, reset
2436 * FIFO pointers, restart transmitter, and kick
2437 * the packet queue.
2438 */
2439 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
2440 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
2441 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
2442 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
2443 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
2444 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
2445 CSR_WRITE(sc, WMREG_TCTL, tctl);
2446 CSR_WRITE_FLUSH(sc);
2447
2448 sc->sc_txfifo_head = 0;
2449 sc->sc_txfifo_stall = 0;
2450 wm_start(&sc->sc_ethercom.ec_if);
2451 } else {
2452 /*
2453 * Still waiting for packets to drain; try again in
2454 * another tick.
2455 */
2456 callout_schedule(&sc->sc_txfifo_ch, 1);
2457 }
2458 }
2459
2460 splx(s);
2461 }
2462
2463 static void
2464 wm_gate_hw_phy_config_ich8lan(struct wm_softc *sc, int on)
2465 {
2466 uint32_t reg;
2467
2468 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
2469
2470 if (on != 0)
2471 reg |= EXTCNFCTR_GATE_PHY_CFG;
2472 else
2473 reg &= ~EXTCNFCTR_GATE_PHY_CFG;
2474
2475 CSR_WRITE(sc, WMREG_EXTCNFCTR, reg);
2476 }
2477
2478 /*
2479 * wm_82547_txfifo_bugchk:
2480 *
2481 * Check for bug condition in the 82547 Tx FIFO. We need to
2482 * prevent enqueueing a packet that would wrap around the end
2483 * if the Tx FIFO ring buffer, otherwise the chip will croak.
2484 *
2485 * We do this by checking the amount of space before the end
2486 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
2487 * the Tx FIFO, wait for all remaining packets to drain, reset
2488 * the internal FIFO pointers to the beginning, and restart
2489 * transmission on the interface.
2490 */
2491 #define WM_FIFO_HDR 0x10
2492 #define WM_82547_PAD_LEN 0x3e0
2493 static int
2494 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
2495 {
2496 int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
2497 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
2498
2499 /* Just return if already stalled. */
2500 if (sc->sc_txfifo_stall)
2501 return 1;
2502
2503 if (sc->sc_mii.mii_media_active & IFM_FDX) {
2504 /* Stall only occurs in half-duplex mode. */
2505 goto send_packet;
2506 }
2507
2508 if (len >= WM_82547_PAD_LEN + space) {
2509 sc->sc_txfifo_stall = 1;
2510 callout_schedule(&sc->sc_txfifo_ch, 1);
2511 return 1;
2512 }
2513
2514 send_packet:
2515 sc->sc_txfifo_head += len;
2516 if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
2517 sc->sc_txfifo_head -= sc->sc_txfifo_size;
2518
2519 return 0;
2520 }
2521
2522 /*
2523 * wm_start: [ifnet interface function]
2524 *
2525 * Start packet transmission on the interface.
2526 */
2527 static void
2528 wm_start(struct ifnet *ifp)
2529 {
2530 struct wm_softc *sc = ifp->if_softc;
2531 struct mbuf *m0;
2532 struct m_tag *mtag;
2533 struct wm_txsoft *txs;
2534 bus_dmamap_t dmamap;
2535 int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
2536 bus_addr_t curaddr;
2537 bus_size_t seglen, curlen;
2538 uint32_t cksumcmd;
2539 uint8_t cksumfields;
2540
2541 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
2542 return;
2543
2544 /*
2545 * Remember the previous number of free descriptors.
2546 */
2547 ofree = sc->sc_txfree;
2548
2549 /*
2550 * Loop through the send queue, setting up transmit descriptors
2551 * until we drain the queue, or use up all available transmit
2552 * descriptors.
2553 */
2554 for (;;) {
2555 /* Grab a packet off the queue. */
2556 IFQ_POLL(&ifp->if_snd, m0);
2557 if (m0 == NULL)
2558 break;
2559
2560 DPRINTF(WM_DEBUG_TX,
2561 ("%s: TX: have packet to transmit: %p\n",
2562 device_xname(sc->sc_dev), m0));
2563
2564 /* Get a work queue entry. */
2565 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
2566 wm_txintr(sc);
2567 if (sc->sc_txsfree == 0) {
2568 DPRINTF(WM_DEBUG_TX,
2569 ("%s: TX: no free job descriptors\n",
2570 device_xname(sc->sc_dev)));
2571 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
2572 break;
2573 }
2574 }
2575
2576 txs = &sc->sc_txsoft[sc->sc_txsnext];
2577 dmamap = txs->txs_dmamap;
2578
2579 use_tso = (m0->m_pkthdr.csum_flags &
2580 (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0;
2581
2582 /*
2583 * So says the Linux driver:
2584 * The controller does a simple calculation to make sure
2585 * there is enough room in the FIFO before initiating the
2586 * DMA for each buffer. The calc is:
2587 * 4 = ceil(buffer len / MSS)
2588 * To make sure we don't overrun the FIFO, adjust the max
2589 * buffer len if the MSS drops.
2590 */
2591 dmamap->dm_maxsegsz =
2592 (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
2593 ? m0->m_pkthdr.segsz << 2
2594 : WTX_MAX_LEN;
2595
2596 /*
2597 * Load the DMA map. If this fails, the packet either
2598 * didn't fit in the allotted number of segments, or we
2599 * were short on resources. For the too-many-segments
2600 * case, we simply report an error and drop the packet,
2601 * since we can't sanely copy a jumbo packet to a single
2602 * buffer.
2603 */
2604 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
2605 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
2606 if (error) {
2607 if (error == EFBIG) {
2608 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
2609 log(LOG_ERR, "%s: Tx packet consumes too many "
2610 "DMA segments, dropping...\n",
2611 device_xname(sc->sc_dev));
2612 IFQ_DEQUEUE(&ifp->if_snd, m0);
2613 wm_dump_mbuf_chain(sc, m0);
2614 m_freem(m0);
2615 continue;
2616 }
2617 /*
2618 * Short on resources, just stop for now.
2619 */
2620 DPRINTF(WM_DEBUG_TX,
2621 ("%s: TX: dmamap load failed: %d\n",
2622 device_xname(sc->sc_dev), error));
2623 break;
2624 }
2625
2626 segs_needed = dmamap->dm_nsegs;
2627 if (use_tso) {
2628 /* For sentinel descriptor; see below. */
2629 segs_needed++;
2630 }
2631
2632 /*
2633 * Ensure we have enough descriptors free to describe
2634 * the packet. Note, we always reserve one descriptor
2635 * at the end of the ring due to the semantics of the
2636 * TDT register, plus one more in the event we need
2637 * to load offload context.
2638 */
2639 if (segs_needed > sc->sc_txfree - 2) {
2640 /*
2641 * Not enough free descriptors to transmit this
2642 * packet. We haven't committed anything yet,
2643 * so just unload the DMA map, put the packet
2644 * pack on the queue, and punt. Notify the upper
2645 * layer that there are no more slots left.
2646 */
2647 DPRINTF(WM_DEBUG_TX,
2648 ("%s: TX: need %d (%d) descriptors, have %d\n",
2649 device_xname(sc->sc_dev), dmamap->dm_nsegs,
2650 segs_needed, sc->sc_txfree - 1));
2651 ifp->if_flags |= IFF_OACTIVE;
2652 bus_dmamap_unload(sc->sc_dmat, dmamap);
2653 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
2654 break;
2655 }
2656
2657 /*
2658 * Check for 82547 Tx FIFO bug. We need to do this
2659 * once we know we can transmit the packet, since we
2660 * do some internal FIFO space accounting here.
2661 */
2662 if (sc->sc_type == WM_T_82547 &&
2663 wm_82547_txfifo_bugchk(sc, m0)) {
2664 DPRINTF(WM_DEBUG_TX,
2665 ("%s: TX: 82547 Tx FIFO bug detected\n",
2666 device_xname(sc->sc_dev)));
2667 ifp->if_flags |= IFF_OACTIVE;
2668 bus_dmamap_unload(sc->sc_dmat, dmamap);
2669 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
2670 break;
2671 }
2672
2673 IFQ_DEQUEUE(&ifp->if_snd, m0);
2674
2675 /*
2676 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
2677 */
2678
2679 DPRINTF(WM_DEBUG_TX,
2680 ("%s: TX: packet has %d (%d) DMA segments\n",
2681 device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed));
2682
2683 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
2684
2685 /*
2686 * Store a pointer to the packet so that we can free it
2687 * later.
2688 *
2689 * Initially, we consider the number of descriptors the
2690 * packet uses the number of DMA segments. This may be
2691 * incremented by 1 if we do checksum offload (a descriptor
2692 * is used to set the checksum context).
2693 */
2694 txs->txs_mbuf = m0;
2695 txs->txs_firstdesc = sc->sc_txnext;
2696 txs->txs_ndesc = segs_needed;
2697
2698 /* Set up offload parameters for this packet. */
2699 if (m0->m_pkthdr.csum_flags &
2700 (M_CSUM_TSOv4|M_CSUM_TSOv6|
2701 M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
2702 M_CSUM_TCPv6|M_CSUM_UDPv6)) {
2703 if (wm_tx_offload(sc, txs, &cksumcmd,
2704 &cksumfields) != 0) {
2705 /* Error message already displayed. */
2706 bus_dmamap_unload(sc->sc_dmat, dmamap);
2707 continue;
2708 }
2709 } else {
2710 cksumcmd = 0;
2711 cksumfields = 0;
2712 }
2713
2714 cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
2715
2716 /* Sync the DMA map. */
2717 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2718 BUS_DMASYNC_PREWRITE);
2719
2720 /*
2721 * Initialize the transmit descriptor.
2722 */
2723 for (nexttx = sc->sc_txnext, seg = 0;
2724 seg < dmamap->dm_nsegs; seg++) {
2725 for (seglen = dmamap->dm_segs[seg].ds_len,
2726 curaddr = dmamap->dm_segs[seg].ds_addr;
2727 seglen != 0;
2728 curaddr += curlen, seglen -= curlen,
2729 nexttx = WM_NEXTTX(sc, nexttx)) {
2730 curlen = seglen;
2731
2732 /*
2733 * So says the Linux driver:
2734 * Work around for premature descriptor
2735 * write-backs in TSO mode. Append a
2736 * 4-byte sentinel descriptor.
2737 */
2738 if (use_tso &&
2739 seg == dmamap->dm_nsegs - 1 &&
2740 curlen > 8)
2741 curlen -= 4;
2742
2743 wm_set_dma_addr(
2744 &sc->sc_txdescs[nexttx].wtx_addr,
2745 curaddr);
2746 sc->sc_txdescs[nexttx].wtx_cmdlen =
2747 htole32(cksumcmd | curlen);
2748 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
2749 0;
2750 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
2751 cksumfields;
2752 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
2753 lasttx = nexttx;
2754
2755 DPRINTF(WM_DEBUG_TX,
2756 ("%s: TX: desc %d: low %#" PRIx64 ", "
2757 "len %#04zx\n",
2758 device_xname(sc->sc_dev), nexttx,
2759 (uint64_t)curaddr, curlen));
2760 }
2761 }
2762
2763 KASSERT(lasttx != -1);
2764
2765 /*
2766 * Set up the command byte on the last descriptor of
2767 * the packet. If we're in the interrupt delay window,
2768 * delay the interrupt.
2769 */
2770 sc->sc_txdescs[lasttx].wtx_cmdlen |=
2771 htole32(WTX_CMD_EOP | WTX_CMD_RS);
2772
2773 /*
2774 * If VLANs are enabled and the packet has a VLAN tag, set
2775 * up the descriptor to encapsulate the packet for us.
2776 *
2777 * This is only valid on the last descriptor of the packet.
2778 */
2779 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
2780 sc->sc_txdescs[lasttx].wtx_cmdlen |=
2781 htole32(WTX_CMD_VLE);
2782 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
2783 = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
2784 }
2785
2786 txs->txs_lastdesc = lasttx;
2787
2788 DPRINTF(WM_DEBUG_TX,
2789 ("%s: TX: desc %d: cmdlen 0x%08x\n",
2790 device_xname(sc->sc_dev),
2791 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
2792
2793 /* Sync the descriptors we're using. */
2794 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
2795 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2796
2797 /* Give the packet to the chip. */
2798 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
2799
2800 DPRINTF(WM_DEBUG_TX,
2801 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
2802
2803 DPRINTF(WM_DEBUG_TX,
2804 ("%s: TX: finished transmitting packet, job %d\n",
2805 device_xname(sc->sc_dev), sc->sc_txsnext));
2806
2807 /* Advance the tx pointer. */
2808 sc->sc_txfree -= txs->txs_ndesc;
2809 sc->sc_txnext = nexttx;
2810
2811 sc->sc_txsfree--;
2812 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
2813
2814 /* Pass the packet to any BPF listeners. */
2815 bpf_mtap(ifp, m0);
2816 }
2817
2818 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
2819 /* No more slots; notify upper layer. */
2820 ifp->if_flags |= IFF_OACTIVE;
2821 }
2822
2823 if (sc->sc_txfree != ofree) {
2824 /* Set a watchdog timer in case the chip flakes out. */
2825 ifp->if_timer = 5;
2826 }
2827 }
2828
2829 /*
2830 * wm_nq_tx_offload:
2831 *
2832 * Set up TCP/IP checksumming parameters for the
2833 * specified packet, for NEWQUEUE devices
2834 */
2835 static int
2836 wm_nq_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs,
2837 uint32_t *cmdlenp, uint32_t *fieldsp, bool *do_csum)
2838 {
2839 struct mbuf *m0 = txs->txs_mbuf;
2840 struct m_tag *mtag;
2841 uint32_t vl_len, mssidx, cmdc;
2842 struct ether_header *eh;
2843 int offset, iphl;
2844
2845 /*
2846 * XXX It would be nice if the mbuf pkthdr had offset
2847 * fields for the protocol headers.
2848 */
2849 *cmdlenp = 0;
2850 *fieldsp = 0;
2851
2852 eh = mtod(m0, struct ether_header *);
2853 switch (htons(eh->ether_type)) {
2854 case ETHERTYPE_IP:
2855 case ETHERTYPE_IPV6:
2856 offset = ETHER_HDR_LEN;
2857 break;
2858
2859 case ETHERTYPE_VLAN:
2860 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2861 break;
2862
2863 default:
2864 /*
2865 * Don't support this protocol or encapsulation.
2866 */
2867 *do_csum = false;
2868 return 0;
2869 }
2870 *do_csum = true;
2871 *cmdlenp = NQTX_DTYP_D | NQTX_CMD_DEXT | NQTX_CMD_IFCS;
2872 cmdc = NQTX_DTYP_C | NQTX_CMD_DEXT;
2873
2874 vl_len = (offset << NQTXC_VLLEN_MACLEN_SHIFT);
2875 KASSERT((offset & ~NQTXC_VLLEN_MACLEN_MASK) == 0);
2876
2877 if ((m0->m_pkthdr.csum_flags &
2878 (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_IPv4)) != 0) {
2879 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
2880 } else {
2881 iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
2882 }
2883 vl_len |= (iphl << NQTXC_VLLEN_IPLEN_SHIFT);
2884 KASSERT((iphl & ~NQTXC_VLLEN_IPLEN_MASK) == 0);
2885
2886 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
2887 vl_len |= ((VLAN_TAG_VALUE(mtag) & NQTXC_VLLEN_VLAN_MASK)
2888 << NQTXC_VLLEN_VLAN_SHIFT);
2889 *cmdlenp |= NQTX_CMD_VLE;
2890 }
2891
2892 mssidx = 0;
2893
2894 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
2895 int hlen = offset + iphl;
2896 int tcp_hlen;
2897 bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
2898
2899 if (__predict_false(m0->m_len <
2900 (hlen + sizeof(struct tcphdr)))) {
2901 /*
2902 * TCP/IP headers are not in the first mbuf; we need
2903 * to do this the slow and painful way. Let's just
2904 * hope this doesn't happen very often.
2905 */
2906 struct tcphdr th;
2907
2908 WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
2909
2910 m_copydata(m0, hlen, sizeof(th), &th);
2911 if (v4) {
2912 struct ip ip;
2913
2914 m_copydata(m0, offset, sizeof(ip), &ip);
2915 ip.ip_len = 0;
2916 m_copyback(m0,
2917 offset + offsetof(struct ip, ip_len),
2918 sizeof(ip.ip_len), &ip.ip_len);
2919 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
2920 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
2921 } else {
2922 struct ip6_hdr ip6;
2923
2924 m_copydata(m0, offset, sizeof(ip6), &ip6);
2925 ip6.ip6_plen = 0;
2926 m_copyback(m0,
2927 offset + offsetof(struct ip6_hdr, ip6_plen),
2928 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
2929 th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
2930 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
2931 }
2932 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
2933 sizeof(th.th_sum), &th.th_sum);
2934
2935 tcp_hlen = th.th_off << 2;
2936 } else {
2937 /*
2938 * TCP/IP headers are in the first mbuf; we can do
2939 * this the easy way.
2940 */
2941 struct tcphdr *th;
2942
2943 if (v4) {
2944 struct ip *ip =
2945 (void *)(mtod(m0, char *) + offset);
2946 th = (void *)(mtod(m0, char *) + hlen);
2947
2948 ip->ip_len = 0;
2949 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
2950 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
2951 } else {
2952 struct ip6_hdr *ip6 =
2953 (void *)(mtod(m0, char *) + offset);
2954 th = (void *)(mtod(m0, char *) + hlen);
2955
2956 ip6->ip6_plen = 0;
2957 th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
2958 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
2959 }
2960 tcp_hlen = th->th_off << 2;
2961 }
2962 hlen += tcp_hlen;
2963 *cmdlenp |= NQTX_CMD_TSE;
2964
2965 if (v4) {
2966 WM_EVCNT_INCR(&sc->sc_ev_txtso);
2967 *fieldsp |= NQTXD_FIELDS_IXSM | NQTXD_FIELDS_TUXSM;
2968 } else {
2969 WM_EVCNT_INCR(&sc->sc_ev_txtso6);
2970 *fieldsp |= NQTXD_FIELDS_TUXSM;
2971 }
2972 *fieldsp |= ((m0->m_pkthdr.len - hlen) << NQTXD_FIELDS_PAYLEN_SHIFT);
2973 KASSERT(((m0->m_pkthdr.len - hlen) & ~NQTXD_FIELDS_PAYLEN_MASK) == 0);
2974 mssidx |= (m0->m_pkthdr.segsz << NQTXC_MSSIDX_MSS_SHIFT);
2975 KASSERT((m0->m_pkthdr.segsz & ~NQTXC_MSSIDX_MSS_MASK) == 0);
2976 mssidx |= (tcp_hlen << NQTXC_MSSIDX_L4LEN_SHIFT);
2977 KASSERT((tcp_hlen & ~NQTXC_MSSIDX_L4LEN_MASK) == 0);
2978 } else {
2979 *fieldsp |= (m0->m_pkthdr.len << NQTXD_FIELDS_PAYLEN_SHIFT);
2980 KASSERT((m0->m_pkthdr.len & ~NQTXD_FIELDS_PAYLEN_MASK) == 0);
2981 }
2982
2983 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2984 *fieldsp |= NQTXD_FIELDS_IXSM;
2985 cmdc |= NQTXC_CMD_IP4;
2986 }
2987
2988 if (m0->m_pkthdr.csum_flags &
2989 (M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_TSOv4)) {
2990 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
2991 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_TSOv4)) {
2992 cmdc |= NQTXC_CMD_TCP;
2993 } else {
2994 cmdc |= NQTXC_CMD_UDP;
2995 }
2996 cmdc |= NQTXC_CMD_IP4;
2997 *fieldsp |= NQTXD_FIELDS_TUXSM;
2998 }
2999 if (m0->m_pkthdr.csum_flags &
3000 (M_CSUM_UDPv6 | M_CSUM_TCPv6 | M_CSUM_TSOv6)) {
3001 WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
3002 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv6 | M_CSUM_TSOv6)) {
3003 cmdc |= NQTXC_CMD_TCP;
3004 } else {
3005 cmdc |= NQTXC_CMD_UDP;
3006 }
3007 cmdc |= NQTXC_CMD_IP6;
3008 *fieldsp |= NQTXD_FIELDS_TUXSM;
3009 }
3010
3011 /* Fill in the context descriptor. */
3012 sc->sc_nq_txdescs[sc->sc_txnext].nqrx_ctx.nqtxc_vl_len =
3013 htole32(vl_len);
3014 sc->sc_nq_txdescs[sc->sc_txnext].nqrx_ctx.nqtxc_sn = 0;
3015 sc->sc_nq_txdescs[sc->sc_txnext].nqrx_ctx.nqtxc_cmd =
3016 htole32(cmdc);
3017 sc->sc_nq_txdescs[sc->sc_txnext].nqrx_ctx.nqtxc_mssidx =
3018 htole32(mssidx);
3019 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
3020 DPRINTF(WM_DEBUG_TX,
3021 ("%s: TX: context desc %d 0x%08x%08x\n", device_xname(sc->sc_dev),
3022 sc->sc_txnext, 0, vl_len));
3023 DPRINTF(WM_DEBUG_TX, ("\t0x%08x%08x\n", mssidx, cmdc));
3024 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
3025 txs->txs_ndesc++;
3026 return 0;
3027 }
3028
3029 /*
3030 * wm_nq_start: [ifnet interface function]
3031 *
3032 * Start packet transmission on the interface for NEWQUEUE devices
3033 */
3034 static void
3035 wm_nq_start(struct ifnet *ifp)
3036 {
3037 struct wm_softc *sc = ifp->if_softc;
3038 struct mbuf *m0;
3039 struct m_tag *mtag;
3040 struct wm_txsoft *txs;
3041 bus_dmamap_t dmamap;
3042 int error, nexttx, lasttx = -1, seg, segs_needed;
3043 bool do_csum, sent;
3044
3045 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3046 return;
3047
3048 sent = false;
3049
3050 /*
3051 * Loop through the send queue, setting up transmit descriptors
3052 * until we drain the queue, or use up all available transmit
3053 * descriptors.
3054 */
3055 for (;;) {
3056 /* Grab a packet off the queue. */
3057 IFQ_POLL(&ifp->if_snd, m0);
3058 if (m0 == NULL)
3059 break;
3060
3061 DPRINTF(WM_DEBUG_TX,
3062 ("%s: TX: have packet to transmit: %p\n",
3063 device_xname(sc->sc_dev), m0));
3064
3065 /* Get a work queue entry. */
3066 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
3067 wm_txintr(sc);
3068 if (sc->sc_txsfree == 0) {
3069 DPRINTF(WM_DEBUG_TX,
3070 ("%s: TX: no free job descriptors\n",
3071 device_xname(sc->sc_dev)));
3072 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
3073 break;
3074 }
3075 }
3076
3077 txs = &sc->sc_txsoft[sc->sc_txsnext];
3078 dmamap = txs->txs_dmamap;
3079
3080 /*
3081 * Load the DMA map. If this fails, the packet either
3082 * didn't fit in the allotted number of segments, or we
3083 * were short on resources. For the too-many-segments
3084 * case, we simply report an error and drop the packet,
3085 * since we can't sanely copy a jumbo packet to a single
3086 * buffer.
3087 */
3088 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3089 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
3090 if (error) {
3091 if (error == EFBIG) {
3092 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
3093 log(LOG_ERR, "%s: Tx packet consumes too many "
3094 "DMA segments, dropping...\n",
3095 device_xname(sc->sc_dev));
3096 IFQ_DEQUEUE(&ifp->if_snd, m0);
3097 wm_dump_mbuf_chain(sc, m0);
3098 m_freem(m0);
3099 continue;
3100 }
3101 /*
3102 * Short on resources, just stop for now.
3103 */
3104 DPRINTF(WM_DEBUG_TX,
3105 ("%s: TX: dmamap load failed: %d\n",
3106 device_xname(sc->sc_dev), error));
3107 break;
3108 }
3109
3110 segs_needed = dmamap->dm_nsegs;
3111
3112 /*
3113 * Ensure we have enough descriptors free to describe
3114 * the packet. Note, we always reserve one descriptor
3115 * at the end of the ring due to the semantics of the
3116 * TDT register, plus one more in the event we need
3117 * to load offload context.
3118 */
3119 if (segs_needed > sc->sc_txfree - 2) {
3120 /*
3121 * Not enough free descriptors to transmit this
3122 * packet. We haven't committed anything yet,
3123 * so just unload the DMA map, put the packet
3124 * pack on the queue, and punt. Notify the upper
3125 * layer that there are no more slots left.
3126 */
3127 DPRINTF(WM_DEBUG_TX,
3128 ("%s: TX: need %d (%d) descriptors, have %d\n",
3129 device_xname(sc->sc_dev), dmamap->dm_nsegs,
3130 segs_needed, sc->sc_txfree - 1));
3131 ifp->if_flags |= IFF_OACTIVE;
3132 bus_dmamap_unload(sc->sc_dmat, dmamap);
3133 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
3134 break;
3135 }
3136
3137 IFQ_DEQUEUE(&ifp->if_snd, m0);
3138
3139 /*
3140 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3141 */
3142
3143 DPRINTF(WM_DEBUG_TX,
3144 ("%s: TX: packet has %d (%d) DMA segments\n",
3145 device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed));
3146
3147 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
3148
3149 /*
3150 * Store a pointer to the packet so that we can free it
3151 * later.
3152 *
3153 * Initially, we consider the number of descriptors the
3154 * packet uses the number of DMA segments. This may be
3155 * incremented by 1 if we do checksum offload (a descriptor
3156 * is used to set the checksum context).
3157 */
3158 txs->txs_mbuf = m0;
3159 txs->txs_firstdesc = sc->sc_txnext;
3160 txs->txs_ndesc = segs_needed;
3161
3162 /* Set up offload parameters for this packet. */
3163 uint32_t cmdlen, fields, dcmdlen;
3164 if (m0->m_pkthdr.csum_flags &
3165 (M_CSUM_TSOv4|M_CSUM_TSOv6|
3166 M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
3167 M_CSUM_TCPv6|M_CSUM_UDPv6)) {
3168 if (wm_nq_tx_offload(sc, txs, &cmdlen, &fields,
3169 &do_csum) != 0) {
3170 /* Error message already displayed. */
3171 bus_dmamap_unload(sc->sc_dmat, dmamap);
3172 continue;
3173 }
3174 } else {
3175 do_csum = false;
3176 cmdlen = 0;
3177 fields = 0;
3178 }
3179
3180 /* Sync the DMA map. */
3181 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3182 BUS_DMASYNC_PREWRITE);
3183
3184 /*
3185 * Initialize the first transmit descriptor.
3186 */
3187 nexttx = sc->sc_txnext;
3188 if (!do_csum) {
3189 /* setup a legacy descriptor */
3190 wm_set_dma_addr(
3191 &sc->sc_txdescs[nexttx].wtx_addr,
3192 dmamap->dm_segs[0].ds_addr);
3193 sc->sc_txdescs[nexttx].wtx_cmdlen =
3194 htole32(WTX_CMD_IFCS | dmamap->dm_segs[0].ds_len);
3195 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status = 0;
3196 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options = 0;
3197 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) !=
3198 NULL) {
3199 sc->sc_txdescs[nexttx].wtx_cmdlen |=
3200 htole32(WTX_CMD_VLE);
3201 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan =
3202 htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
3203 } else {
3204 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
3205 }
3206 dcmdlen = 0;
3207 } else {
3208 /* setup an advanced data descriptor */
3209 sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_addr =
3210 htole64(dmamap->dm_segs[0].ds_addr);
3211 KASSERT((dmamap->dm_segs[0].ds_len & cmdlen) == 0);
3212 sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_cmdlen =
3213 htole32(dmamap->dm_segs[0].ds_len | cmdlen );
3214 sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_fields =
3215 htole32(fields);
3216 DPRINTF(WM_DEBUG_TX,
3217 ("%s: TX: adv data desc %d 0x%" PRIx64 "\n",
3218 device_xname(sc->sc_dev), nexttx,
3219 (uint64_t)dmamap->dm_segs[0].ds_addr));
3220 DPRINTF(WM_DEBUG_TX,
3221 ("\t 0x%08x%08x\n", fields,
3222 (uint32_t)dmamap->dm_segs[0].ds_len | cmdlen));
3223 dcmdlen = NQTX_DTYP_D | NQTX_CMD_DEXT;
3224 }
3225
3226 lasttx = nexttx;
3227 nexttx = WM_NEXTTX(sc, nexttx);
3228 /*
3229 * fill in the next descriptors. legacy or adcanced format
3230 * is the same here
3231 */
3232 for (seg = 1; seg < dmamap->dm_nsegs;
3233 seg++, nexttx = WM_NEXTTX(sc, nexttx)) {
3234 sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_addr =
3235 htole64(dmamap->dm_segs[seg].ds_addr);
3236 sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_cmdlen =
3237 htole32(dcmdlen | dmamap->dm_segs[seg].ds_len);
3238 KASSERT((dcmdlen & dmamap->dm_segs[seg].ds_len) == 0);
3239 sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_fields = 0;
3240 lasttx = nexttx;
3241
3242 DPRINTF(WM_DEBUG_TX,
3243 ("%s: TX: desc %d: %#" PRIx64 ", "
3244 "len %#04zx\n",
3245 device_xname(sc->sc_dev), nexttx,
3246 (uint64_t)dmamap->dm_segs[seg].ds_addr,
3247 dmamap->dm_segs[seg].ds_len));
3248 }
3249
3250 KASSERT(lasttx != -1);
3251
3252 /*
3253 * Set up the command byte on the last descriptor of
3254 * the packet. If we're in the interrupt delay window,
3255 * delay the interrupt.
3256 */
3257 KASSERT((WTX_CMD_EOP | WTX_CMD_RS) ==
3258 (NQTX_CMD_EOP | NQTX_CMD_RS));
3259 sc->sc_txdescs[lasttx].wtx_cmdlen |=
3260 htole32(WTX_CMD_EOP | WTX_CMD_RS);
3261
3262 txs->txs_lastdesc = lasttx;
3263
3264 DPRINTF(WM_DEBUG_TX,
3265 ("%s: TX: desc %d: cmdlen 0x%08x\n",
3266 device_xname(sc->sc_dev),
3267 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
3268
3269 /* Sync the descriptors we're using. */
3270 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
3271 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3272
3273 /* Give the packet to the chip. */
3274 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
3275 sent = true;
3276
3277 DPRINTF(WM_DEBUG_TX,
3278 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
3279
3280 DPRINTF(WM_DEBUG_TX,
3281 ("%s: TX: finished transmitting packet, job %d\n",
3282 device_xname(sc->sc_dev), sc->sc_txsnext));
3283
3284 /* Advance the tx pointer. */
3285 sc->sc_txfree -= txs->txs_ndesc;
3286 sc->sc_txnext = nexttx;
3287
3288 sc->sc_txsfree--;
3289 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
3290
3291 /* Pass the packet to any BPF listeners. */
3292 bpf_mtap(ifp, m0);
3293 }
3294
3295 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
3296 /* No more slots; notify upper layer. */
3297 ifp->if_flags |= IFF_OACTIVE;
3298 }
3299
3300 if (sent) {
3301 /* Set a watchdog timer in case the chip flakes out. */
3302 ifp->if_timer = 5;
3303 }
3304 }
3305
3306 /*
3307 * wm_watchdog: [ifnet interface function]
3308 *
3309 * Watchdog timer handler.
3310 */
3311 static void
3312 wm_watchdog(struct ifnet *ifp)
3313 {
3314 struct wm_softc *sc = ifp->if_softc;
3315
3316 /*
3317 * Since we're using delayed interrupts, sweep up
3318 * before we report an error.
3319 */
3320 wm_txintr(sc);
3321
3322 if (sc->sc_txfree != WM_NTXDESC(sc)) {
3323 #ifdef WM_DEBUG
3324 int i, j;
3325 struct wm_txsoft *txs;
3326 #endif
3327 log(LOG_ERR,
3328 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
3329 device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
3330 sc->sc_txnext);
3331 ifp->if_oerrors++;
3332 #ifdef WM_DEBUG
3333 for (i = sc->sc_txsdirty; i != sc->sc_txsnext ;
3334 i = WM_NEXTTXS(sc, i)) {
3335 txs = &sc->sc_txsoft[i];
3336 printf("txs %d tx %d -> %d\n",
3337 i, txs->txs_firstdesc, txs->txs_lastdesc);
3338 for (j = txs->txs_firstdesc; ;
3339 j = WM_NEXTTX(sc, j)) {
3340 printf("\tdesc %d: 0x%" PRIx64 "\n", j,
3341 sc->sc_nq_txdescs[j].nqtx_data.nqtxd_addr);
3342 printf("\t %#08x%08x\n",
3343 sc->sc_nq_txdescs[j].nqtx_data.nqtxd_fields,
3344 sc->sc_nq_txdescs[j].nqtx_data.nqtxd_cmdlen);
3345 if (j == txs->txs_lastdesc)
3346 break;
3347 }
3348 }
3349 #endif
3350 /* Reset the interface. */
3351 (void) wm_init(ifp);
3352 }
3353
3354 /* Try to get more packets going. */
3355 ifp->if_start(ifp);
3356 }
3357
3358 static int
3359 wm_ifflags_cb(struct ethercom *ec)
3360 {
3361 struct ifnet *ifp = &ec->ec_if;
3362 struct wm_softc *sc = ifp->if_softc;
3363 int change = ifp->if_flags ^ sc->sc_if_flags;
3364
3365 if (change != 0)
3366 sc->sc_if_flags = ifp->if_flags;
3367
3368 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
3369 return ENETRESET;
3370
3371 if ((change & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
3372 wm_set_filter(sc);
3373
3374 wm_set_vlan(sc);
3375
3376 return 0;
3377 }
3378
3379 /*
3380 * wm_ioctl: [ifnet interface function]
3381 *
3382 * Handle control requests from the operator.
3383 */
3384 static int
3385 wm_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3386 {
3387 struct wm_softc *sc = ifp->if_softc;
3388 struct ifreq *ifr = (struct ifreq *) data;
3389 struct ifaddr *ifa = (struct ifaddr *)data;
3390 struct sockaddr_dl *sdl;
3391 int s, error;
3392
3393 s = splnet();
3394
3395 switch (cmd) {
3396 case SIOCSIFMEDIA:
3397 case SIOCGIFMEDIA:
3398 /* Flow control requires full-duplex mode. */
3399 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
3400 (ifr->ifr_media & IFM_FDX) == 0)
3401 ifr->ifr_media &= ~IFM_ETH_FMASK;
3402 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
3403 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
3404 /* We can do both TXPAUSE and RXPAUSE. */
3405 ifr->ifr_media |=
3406 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
3407 }
3408 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
3409 }
3410 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
3411 break;
3412 case SIOCINITIFADDR:
3413 if (ifa->ifa_addr->sa_family == AF_LINK) {
3414 sdl = satosdl(ifp->if_dl->ifa_addr);
3415 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len,
3416 LLADDR(satosdl(ifa->ifa_addr)), ifp->if_addrlen);
3417 /* unicast address is first multicast entry */
3418 wm_set_filter(sc);
3419 error = 0;
3420 break;
3421 }
3422 /*FALLTHROUGH*/
3423 default:
3424 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
3425 break;
3426
3427 error = 0;
3428
3429 if (cmd == SIOCSIFCAP)
3430 error = (*ifp->if_init)(ifp);
3431 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
3432 ;
3433 else if (ifp->if_flags & IFF_RUNNING) {
3434 /*
3435 * Multicast list has changed; set the hardware filter
3436 * accordingly.
3437 */
3438 wm_set_filter(sc);
3439 }
3440 break;
3441 }
3442
3443 /* Try to get more packets going. */
3444 ifp->if_start(ifp);
3445
3446 splx(s);
3447 return error;
3448 }
3449
3450 /*
3451 * wm_intr:
3452 *
3453 * Interrupt service routine.
3454 */
3455 static int
3456 wm_intr(void *arg)
3457 {
3458 struct wm_softc *sc = arg;
3459 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3460 uint32_t icr;
3461 int handled = 0;
3462
3463 while (1 /* CONSTCOND */) {
3464 icr = CSR_READ(sc, WMREG_ICR);
3465 if ((icr & sc->sc_icr) == 0)
3466 break;
3467 rnd_add_uint32(&sc->rnd_source, icr);
3468
3469 handled = 1;
3470
3471 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
3472 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
3473 DPRINTF(WM_DEBUG_RX,
3474 ("%s: RX: got Rx intr 0x%08x\n",
3475 device_xname(sc->sc_dev),
3476 icr & (ICR_RXDMT0|ICR_RXT0)));
3477 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
3478 }
3479 #endif
3480 wm_rxintr(sc);
3481
3482 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
3483 if (icr & ICR_TXDW) {
3484 DPRINTF(WM_DEBUG_TX,
3485 ("%s: TX: got TXDW interrupt\n",
3486 device_xname(sc->sc_dev)));
3487 WM_EVCNT_INCR(&sc->sc_ev_txdw);
3488 }
3489 #endif
3490 wm_txintr(sc);
3491
3492 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
3493 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
3494 wm_linkintr(sc, icr);
3495 }
3496
3497 if (icr & ICR_RXO) {
3498 #if defined(WM_DEBUG)
3499 log(LOG_WARNING, "%s: Receive overrun\n",
3500 device_xname(sc->sc_dev));
3501 #endif /* defined(WM_DEBUG) */
3502 }
3503 }
3504
3505 if (handled) {
3506 /* Try to get more packets going. */
3507 ifp->if_start(ifp);
3508 }
3509
3510 return handled;
3511 }
3512
3513 /*
3514 * wm_txintr:
3515 *
3516 * Helper; handle transmit interrupts.
3517 */
3518 static void
3519 wm_txintr(struct wm_softc *sc)
3520 {
3521 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3522 struct wm_txsoft *txs;
3523 uint8_t status;
3524 int i;
3525
3526 ifp->if_flags &= ~IFF_OACTIVE;
3527
3528 /*
3529 * Go through the Tx list and free mbufs for those
3530 * frames which have been transmitted.
3531 */
3532 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
3533 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
3534 txs = &sc->sc_txsoft[i];
3535
3536 DPRINTF(WM_DEBUG_TX,
3537 ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i));
3538
3539 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
3540 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3541
3542 status =
3543 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
3544 if ((status & WTX_ST_DD) == 0) {
3545 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3546 BUS_DMASYNC_PREREAD);
3547 break;
3548 }
3549
3550 DPRINTF(WM_DEBUG_TX,
3551 ("%s: TX: job %d done: descs %d..%d\n",
3552 device_xname(sc->sc_dev), i, txs->txs_firstdesc,
3553 txs->txs_lastdesc));
3554
3555 /*
3556 * XXX We should probably be using the statistics
3557 * XXX registers, but I don't know if they exist
3558 * XXX on chips before the i82544.
3559 */
3560
3561 #ifdef WM_EVENT_COUNTERS
3562 if (status & WTX_ST_TU)
3563 WM_EVCNT_INCR(&sc->sc_ev_tu);
3564 #endif /* WM_EVENT_COUNTERS */
3565
3566 if (status & (WTX_ST_EC|WTX_ST_LC)) {
3567 ifp->if_oerrors++;
3568 if (status & WTX_ST_LC)
3569 log(LOG_WARNING, "%s: late collision\n",
3570 device_xname(sc->sc_dev));
3571 else if (status & WTX_ST_EC) {
3572 ifp->if_collisions += 16;
3573 log(LOG_WARNING, "%s: excessive collisions\n",
3574 device_xname(sc->sc_dev));
3575 }
3576 } else
3577 ifp->if_opackets++;
3578
3579 sc->sc_txfree += txs->txs_ndesc;
3580 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3581 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3582 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3583 m_freem(txs->txs_mbuf);
3584 txs->txs_mbuf = NULL;
3585 }
3586
3587 /* Update the dirty transmit buffer pointer. */
3588 sc->sc_txsdirty = i;
3589 DPRINTF(WM_DEBUG_TX,
3590 ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
3591
3592 /*
3593 * If there are no more pending transmissions, cancel the watchdog
3594 * timer.
3595 */
3596 if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
3597 ifp->if_timer = 0;
3598 }
3599
3600 /*
3601 * wm_rxintr:
3602 *
3603 * Helper; handle receive interrupts.
3604 */
3605 static void
3606 wm_rxintr(struct wm_softc *sc)
3607 {
3608 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3609 struct wm_rxsoft *rxs;
3610 struct mbuf *m;
3611 int i, len;
3612 uint8_t status, errors;
3613 uint16_t vlantag;
3614
3615 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
3616 rxs = &sc->sc_rxsoft[i];
3617
3618 DPRINTF(WM_DEBUG_RX,
3619 ("%s: RX: checking descriptor %d\n",
3620 device_xname(sc->sc_dev), i));
3621
3622 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3623
3624 status = sc->sc_rxdescs[i].wrx_status;
3625 errors = sc->sc_rxdescs[i].wrx_errors;
3626 len = le16toh(sc->sc_rxdescs[i].wrx_len);
3627 vlantag = sc->sc_rxdescs[i].wrx_special;
3628
3629 if ((status & WRX_ST_DD) == 0) {
3630 /*
3631 * We have processed all of the receive descriptors.
3632 */
3633 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
3634 break;
3635 }
3636
3637 if (__predict_false(sc->sc_rxdiscard)) {
3638 DPRINTF(WM_DEBUG_RX,
3639 ("%s: RX: discarding contents of descriptor %d\n",
3640 device_xname(sc->sc_dev), i));
3641 WM_INIT_RXDESC(sc, i);
3642 if (status & WRX_ST_EOP) {
3643 /* Reset our state. */
3644 DPRINTF(WM_DEBUG_RX,
3645 ("%s: RX: resetting rxdiscard -> 0\n",
3646 device_xname(sc->sc_dev)));
3647 sc->sc_rxdiscard = 0;
3648 }
3649 continue;
3650 }
3651
3652 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3653 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3654
3655 m = rxs->rxs_mbuf;
3656
3657 /*
3658 * Add a new receive buffer to the ring, unless of
3659 * course the length is zero. Treat the latter as a
3660 * failed mapping.
3661 */
3662 if ((len == 0) || (wm_add_rxbuf(sc, i) != 0)) {
3663 /*
3664 * Failed, throw away what we've done so
3665 * far, and discard the rest of the packet.
3666 */
3667 ifp->if_ierrors++;
3668 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3669 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3670 WM_INIT_RXDESC(sc, i);
3671 if ((status & WRX_ST_EOP) == 0)
3672 sc->sc_rxdiscard = 1;
3673 if (sc->sc_rxhead != NULL)
3674 m_freem(sc->sc_rxhead);
3675 WM_RXCHAIN_RESET(sc);
3676 DPRINTF(WM_DEBUG_RX,
3677 ("%s: RX: Rx buffer allocation failed, "
3678 "dropping packet%s\n", device_xname(sc->sc_dev),
3679 sc->sc_rxdiscard ? " (discard)" : ""));
3680 continue;
3681 }
3682
3683 m->m_len = len;
3684 sc->sc_rxlen += len;
3685 DPRINTF(WM_DEBUG_RX,
3686 ("%s: RX: buffer at %p len %d\n",
3687 device_xname(sc->sc_dev), m->m_data, len));
3688
3689 /*
3690 * If this is not the end of the packet, keep
3691 * looking.
3692 */
3693 if ((status & WRX_ST_EOP) == 0) {
3694 WM_RXCHAIN_LINK(sc, m);
3695 DPRINTF(WM_DEBUG_RX,
3696 ("%s: RX: not yet EOP, rxlen -> %d\n",
3697 device_xname(sc->sc_dev), sc->sc_rxlen));
3698 continue;
3699 }
3700
3701 /*
3702 * Okay, we have the entire packet now. The chip is
3703 * configured to include the FCS except I350 and I21[01]
3704 * (not all chips can be configured to strip it),
3705 * so we need to trim it.
3706 * May need to adjust length of previous mbuf in the
3707 * chain if the current mbuf is too short.
3708 * For an eratta, the RCTL_SECRC bit in RCTL register
3709 * is always set in I350, so we don't trim it.
3710 */
3711 if ((sc->sc_type != WM_T_I350) && (sc->sc_type != WM_T_I210)
3712 && (sc->sc_type != WM_T_I211)) {
3713 if (m->m_len < ETHER_CRC_LEN) {
3714 sc->sc_rxtail->m_len
3715 -= (ETHER_CRC_LEN - m->m_len);
3716 m->m_len = 0;
3717 } else
3718 m->m_len -= ETHER_CRC_LEN;
3719 len = sc->sc_rxlen - ETHER_CRC_LEN;
3720 } else
3721 len = sc->sc_rxlen;
3722
3723 WM_RXCHAIN_LINK(sc, m);
3724
3725 *sc->sc_rxtailp = NULL;
3726 m = sc->sc_rxhead;
3727
3728 WM_RXCHAIN_RESET(sc);
3729
3730 DPRINTF(WM_DEBUG_RX,
3731 ("%s: RX: have entire packet, len -> %d\n",
3732 device_xname(sc->sc_dev), len));
3733
3734 /*
3735 * If an error occurred, update stats and drop the packet.
3736 */
3737 if (errors &
3738 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
3739 if (errors & WRX_ER_SE)
3740 log(LOG_WARNING, "%s: symbol error\n",
3741 device_xname(sc->sc_dev));
3742 else if (errors & WRX_ER_SEQ)
3743 log(LOG_WARNING, "%s: receive sequence error\n",
3744 device_xname(sc->sc_dev));
3745 else if (errors & WRX_ER_CE)
3746 log(LOG_WARNING, "%s: CRC error\n",
3747 device_xname(sc->sc_dev));
3748 m_freem(m);
3749 continue;
3750 }
3751
3752 /*
3753 * No errors. Receive the packet.
3754 */
3755 m->m_pkthdr.rcvif = ifp;
3756 m->m_pkthdr.len = len;
3757
3758 /*
3759 * If VLANs are enabled, VLAN packets have been unwrapped
3760 * for us. Associate the tag with the packet.
3761 */
3762 if ((status & WRX_ST_VP) != 0) {
3763 VLAN_INPUT_TAG(ifp, m,
3764 le16toh(vlantag),
3765 continue);
3766 }
3767
3768 /*
3769 * Set up checksum info for this packet.
3770 */
3771 if ((status & WRX_ST_IXSM) == 0) {
3772 if (status & WRX_ST_IPCS) {
3773 WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
3774 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
3775 if (errors & WRX_ER_IPE)
3776 m->m_pkthdr.csum_flags |=
3777 M_CSUM_IPv4_BAD;
3778 }
3779 if (status & WRX_ST_TCPCS) {
3780 /*
3781 * Note: we don't know if this was TCP or UDP,
3782 * so we just set both bits, and expect the
3783 * upper layers to deal.
3784 */
3785 WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
3786 m->m_pkthdr.csum_flags |=
3787 M_CSUM_TCPv4 | M_CSUM_UDPv4 |
3788 M_CSUM_TCPv6 | M_CSUM_UDPv6;
3789 if (errors & WRX_ER_TCPE)
3790 m->m_pkthdr.csum_flags |=
3791 M_CSUM_TCP_UDP_BAD;
3792 }
3793 }
3794
3795 ifp->if_ipackets++;
3796
3797 /* Pass this up to any BPF listeners. */
3798 bpf_mtap(ifp, m);
3799
3800 /* Pass it on. */
3801 (*ifp->if_input)(ifp, m);
3802 }
3803
3804 /* Update the receive pointer. */
3805 sc->sc_rxptr = i;
3806
3807 DPRINTF(WM_DEBUG_RX,
3808 ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
3809 }
3810
3811 /*
3812 * wm_linkintr_gmii:
3813 *
3814 * Helper; handle link interrupts for GMII.
3815 */
3816 static void
3817 wm_linkintr_gmii(struct wm_softc *sc, uint32_t icr)
3818 {
3819
3820 DPRINTF(WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
3821 __func__));
3822
3823 if (icr & ICR_LSC) {
3824 DPRINTF(WM_DEBUG_LINK,
3825 ("%s: LINK: LSC -> mii_pollstat\n",
3826 device_xname(sc->sc_dev)));
3827 mii_pollstat(&sc->sc_mii);
3828 if (sc->sc_type == WM_T_82543) {
3829 int miistatus, active;
3830
3831 /*
3832 * With 82543, we need to force speed and
3833 * duplex on the MAC equal to what the PHY
3834 * speed and duplex configuration is.
3835 */
3836 miistatus = sc->sc_mii.mii_media_status;
3837
3838 if (miistatus & IFM_ACTIVE) {
3839 active = sc->sc_mii.mii_media_active;
3840 sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
3841 switch (IFM_SUBTYPE(active)) {
3842 case IFM_10_T:
3843 sc->sc_ctrl |= CTRL_SPEED_10;
3844 break;
3845 case IFM_100_TX:
3846 sc->sc_ctrl |= CTRL_SPEED_100;
3847 break;
3848 case IFM_1000_T:
3849 sc->sc_ctrl |= CTRL_SPEED_1000;
3850 break;
3851 default:
3852 /*
3853 * fiber?
3854 * Shoud not enter here.
3855 */
3856 printf("unknown media (%x)\n",
3857 active);
3858 break;
3859 }
3860 if (active & IFM_FDX)
3861 sc->sc_ctrl |= CTRL_FD;
3862 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3863 }
3864 } else if ((sc->sc_type == WM_T_ICH8)
3865 && (sc->sc_phytype == WMPHY_IGP_3)) {
3866 wm_kmrn_lock_loss_workaround_ich8lan(sc);
3867 } else if (sc->sc_type == WM_T_PCH) {
3868 wm_k1_gig_workaround_hv(sc,
3869 ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0));
3870 }
3871
3872 if ((sc->sc_phytype == WMPHY_82578)
3873 && (IFM_SUBTYPE(sc->sc_mii.mii_media_active)
3874 == IFM_1000_T)) {
3875
3876 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0) {
3877 delay(200*1000); /* XXX too big */
3878
3879 /* Link stall fix for link up */
3880 wm_gmii_hv_writereg(sc->sc_dev, 1,
3881 HV_MUX_DATA_CTRL,
3882 HV_MUX_DATA_CTRL_GEN_TO_MAC
3883 | HV_MUX_DATA_CTRL_FORCE_SPEED);
3884 wm_gmii_hv_writereg(sc->sc_dev, 1,
3885 HV_MUX_DATA_CTRL,
3886 HV_MUX_DATA_CTRL_GEN_TO_MAC);
3887 }
3888 }
3889 } else if (icr & ICR_RXSEQ) {
3890 DPRINTF(WM_DEBUG_LINK,
3891 ("%s: LINK Receive sequence error\n",
3892 device_xname(sc->sc_dev)));
3893 }
3894 }
3895
3896 /*
3897 * wm_linkintr_tbi:
3898 *
3899 * Helper; handle link interrupts for TBI mode.
3900 */
3901 static void
3902 wm_linkintr_tbi(struct wm_softc *sc, uint32_t icr)
3903 {
3904 uint32_t status;
3905
3906 DPRINTF(WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
3907 __func__));
3908
3909 status = CSR_READ(sc, WMREG_STATUS);
3910 if (icr & ICR_LSC) {
3911 if (status & STATUS_LU) {
3912 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
3913 device_xname(sc->sc_dev),
3914 (status & STATUS_FD) ? "FDX" : "HDX"));
3915 /*
3916 * NOTE: CTRL will update TFCE and RFCE automatically,
3917 * so we should update sc->sc_ctrl
3918 */
3919
3920 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
3921 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3922 sc->sc_fcrtl &= ~FCRTL_XONE;
3923 if (status & STATUS_FD)
3924 sc->sc_tctl |=
3925 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3926 else
3927 sc->sc_tctl |=
3928 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3929 if (sc->sc_ctrl & CTRL_TFCE)
3930 sc->sc_fcrtl |= FCRTL_XONE;
3931 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3932 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3933 WMREG_OLD_FCRTL : WMREG_FCRTL,
3934 sc->sc_fcrtl);
3935 sc->sc_tbi_linkup = 1;
3936 } else {
3937 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
3938 device_xname(sc->sc_dev)));
3939 sc->sc_tbi_linkup = 0;
3940 }
3941 wm_tbi_set_linkled(sc);
3942 } else if (icr & ICR_RXCFG) {
3943 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
3944 device_xname(sc->sc_dev)));
3945 sc->sc_tbi_nrxcfg++;
3946 wm_check_for_link(sc);
3947 } else if (icr & ICR_RXSEQ) {
3948 DPRINTF(WM_DEBUG_LINK,
3949 ("%s: LINK: Receive sequence error\n",
3950 device_xname(sc->sc_dev)));
3951 }
3952 }
3953
3954 /*
3955 * wm_linkintr:
3956 *
3957 * Helper; handle link interrupts.
3958 */
3959 static void
3960 wm_linkintr(struct wm_softc *sc, uint32_t icr)
3961 {
3962
3963 if (sc->sc_flags & WM_F_HAS_MII)
3964 wm_linkintr_gmii(sc, icr);
3965 else
3966 wm_linkintr_tbi(sc, icr);
3967 }
3968
3969 /*
3970 * wm_tick:
3971 *
3972 * One second timer, used to check link status, sweep up
3973 * completed transmit jobs, etc.
3974 */
3975 static void
3976 wm_tick(void *arg)
3977 {
3978 struct wm_softc *sc = arg;
3979 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3980 int s;
3981
3982 s = splnet();
3983
3984 if (sc->sc_type >= WM_T_82542_2_1) {
3985 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
3986 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
3987 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
3988 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
3989 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
3990 }
3991
3992 ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
3993 ifp->if_ierrors += 0ULL + /* ensure quad_t */
3994 + CSR_READ(sc, WMREG_CRCERRS)
3995 + CSR_READ(sc, WMREG_ALGNERRC)
3996 + CSR_READ(sc, WMREG_SYMERRC)
3997 + CSR_READ(sc, WMREG_RXERRC)
3998 + CSR_READ(sc, WMREG_SEC)
3999 + CSR_READ(sc, WMREG_CEXTERR)
4000 + CSR_READ(sc, WMREG_RLEC);
4001 ifp->if_iqdrops += CSR_READ(sc, WMREG_MPC) + CSR_READ(sc, WMREG_RNBC);
4002
4003 if (sc->sc_flags & WM_F_HAS_MII)
4004 mii_tick(&sc->sc_mii);
4005 else
4006 wm_tbi_check_link(sc);
4007
4008 splx(s);
4009
4010 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
4011 }
4012
4013 /*
4014 * wm_reset:
4015 *
4016 * Reset the i82542 chip.
4017 */
4018 static void
4019 wm_reset(struct wm_softc *sc)
4020 {
4021 int phy_reset = 0;
4022 uint32_t reg, mask;
4023
4024 /*
4025 * Allocate on-chip memory according to the MTU size.
4026 * The Packet Buffer Allocation register must be written
4027 * before the chip is reset.
4028 */
4029 switch (sc->sc_type) {
4030 case WM_T_82547:
4031 case WM_T_82547_2:
4032 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
4033 PBA_22K : PBA_30K;
4034 sc->sc_txfifo_head = 0;
4035 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
4036 sc->sc_txfifo_size =
4037 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
4038 sc->sc_txfifo_stall = 0;
4039 break;
4040 case WM_T_82571:
4041 case WM_T_82572:
4042 case WM_T_82575: /* XXX need special handing for jumbo frames */
4043 case WM_T_I350:
4044 case WM_T_80003:
4045 sc->sc_pba = PBA_32K;
4046 break;
4047 case WM_T_82580:
4048 case WM_T_82580ER:
4049 sc->sc_pba = PBA_35K;
4050 break;
4051 case WM_T_I210:
4052 case WM_T_I211:
4053 sc->sc_pba = PBA_34K;
4054 break;
4055 case WM_T_82576:
4056 sc->sc_pba = PBA_64K;
4057 break;
4058 case WM_T_82573:
4059 sc->sc_pba = PBA_12K;
4060 break;
4061 case WM_T_82574:
4062 case WM_T_82583:
4063 sc->sc_pba = PBA_20K;
4064 break;
4065 case WM_T_ICH8:
4066 sc->sc_pba = PBA_8K;
4067 CSR_WRITE(sc, WMREG_PBS, PBA_16K);
4068 break;
4069 case WM_T_ICH9:
4070 case WM_T_ICH10:
4071 sc->sc_pba = PBA_10K;
4072 break;
4073 case WM_T_PCH:
4074 case WM_T_PCH2:
4075 case WM_T_PCH_LPT:
4076 sc->sc_pba = PBA_26K;
4077 break;
4078 default:
4079 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
4080 PBA_40K : PBA_48K;
4081 break;
4082 }
4083 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
4084
4085 /* Prevent the PCI-E bus from sticking */
4086 if (sc->sc_flags & WM_F_PCIE) {
4087 int timeout = 800;
4088
4089 sc->sc_ctrl |= CTRL_GIO_M_DIS;
4090 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4091
4092 while (timeout--) {
4093 if ((CSR_READ(sc, WMREG_STATUS) & STATUS_GIO_M_ENA)
4094 == 0)
4095 break;
4096 delay(100);
4097 }
4098 }
4099
4100 /* Set the completion timeout for interface */
4101 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
4102 || (sc->sc_type == WM_T_I350))
4103 wm_set_pcie_completion_timeout(sc);
4104
4105 /* Clear interrupt */
4106 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
4107
4108 /* Stop the transmit and receive processes. */
4109 CSR_WRITE(sc, WMREG_RCTL, 0);
4110 CSR_WRITE(sc, WMREG_TCTL, TCTL_PSP);
4111 sc->sc_rctl &= ~RCTL_EN;
4112
4113 /* XXX set_tbi_sbp_82543() */
4114
4115 delay(10*1000);
4116
4117 /* Must acquire the MDIO ownership before MAC reset */
4118 switch (sc->sc_type) {
4119 case WM_T_82573:
4120 case WM_T_82574:
4121 case WM_T_82583:
4122 wm_get_hw_semaphore_82573(sc);
4123 break;
4124 default:
4125 break;
4126 }
4127
4128 /*
4129 * 82541 Errata 29? & 82547 Errata 28?
4130 * See also the description about PHY_RST bit in CTRL register
4131 * in 8254x_GBe_SDM.pdf.
4132 */
4133 if ((sc->sc_type == WM_T_82541) || (sc->sc_type == WM_T_82547)) {
4134 CSR_WRITE(sc, WMREG_CTRL,
4135 CSR_READ(sc, WMREG_CTRL) | CTRL_PHY_RESET);
4136 delay(5000);
4137 }
4138
4139 switch (sc->sc_type) {
4140 case WM_T_82544: /* XXX check whether WM_F_IOH_VALID is set */
4141 case WM_T_82541:
4142 case WM_T_82541_2:
4143 case WM_T_82547:
4144 case WM_T_82547_2:
4145 /*
4146 * On some chipsets, a reset through a memory-mapped write
4147 * cycle can cause the chip to reset before completing the
4148 * write cycle. This causes major headache that can be
4149 * avoided by issuing the reset via indirect register writes
4150 * through I/O space.
4151 *
4152 * So, if we successfully mapped the I/O BAR at attach time,
4153 * use that. Otherwise, try our luck with a memory-mapped
4154 * reset.
4155 */
4156 if (sc->sc_flags & WM_F_IOH_VALID)
4157 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
4158 else
4159 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
4160 break;
4161 case WM_T_82545_3:
4162 case WM_T_82546_3:
4163 /* Use the shadow control register on these chips. */
4164 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
4165 break;
4166 case WM_T_80003:
4167 mask = swfwphysem[sc->sc_funcid];
4168 reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST;
4169 wm_get_swfw_semaphore(sc, mask);
4170 CSR_WRITE(sc, WMREG_CTRL, reg);
4171 wm_put_swfw_semaphore(sc, mask);
4172 break;
4173 case WM_T_ICH8:
4174 case WM_T_ICH9:
4175 case WM_T_ICH10:
4176 case WM_T_PCH:
4177 case WM_T_PCH2:
4178 case WM_T_PCH_LPT:
4179 reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST;
4180 if (wm_check_reset_block(sc) == 0) {
4181 /*
4182 * Gate automatic PHY configuration by hardware on
4183 * non-managed 82579
4184 */
4185 if ((sc->sc_type == WM_T_PCH2)
4186 && ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID)
4187 != 0))
4188 wm_gate_hw_phy_config_ich8lan(sc, 1);
4189
4190
4191 reg |= CTRL_PHY_RESET;
4192 phy_reset = 1;
4193 }
4194 wm_get_swfwhw_semaphore(sc);
4195 CSR_WRITE(sc, WMREG_CTRL, reg);
4196 delay(20*1000);
4197 wm_put_swfwhw_semaphore(sc);
4198 break;
4199 case WM_T_82542_2_0:
4200 case WM_T_82542_2_1:
4201 case WM_T_82543:
4202 case WM_T_82540:
4203 case WM_T_82545:
4204 case WM_T_82546:
4205 case WM_T_82571:
4206 case WM_T_82572:
4207 case WM_T_82573:
4208 case WM_T_82574:
4209 case WM_T_82575:
4210 case WM_T_82576:
4211 case WM_T_82580:
4212 case WM_T_82580ER:
4213 case WM_T_82583:
4214 case WM_T_I350:
4215 case WM_T_I210:
4216 case WM_T_I211:
4217 default:
4218 /* Everything else can safely use the documented method. */
4219 CSR_WRITE(sc, WMREG_CTRL, CSR_READ(sc, WMREG_CTRL) | CTRL_RST);
4220 break;
4221 }
4222
4223 /* Must release the MDIO ownership after MAC reset */
4224 switch (sc->sc_type) {
4225 case WM_T_82574:
4226 case WM_T_82583:
4227 wm_put_hw_semaphore_82573(sc);
4228 break;
4229 default:
4230 break;
4231 }
4232
4233 if (phy_reset != 0)
4234 wm_get_cfg_done(sc);
4235
4236 /* reload EEPROM */
4237 switch (sc->sc_type) {
4238 case WM_T_82542_2_0:
4239 case WM_T_82542_2_1:
4240 case WM_T_82543:
4241 case WM_T_82544:
4242 delay(10);
4243 reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
4244 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
4245 delay(2000);
4246 break;
4247 case WM_T_82540:
4248 case WM_T_82545:
4249 case WM_T_82545_3:
4250 case WM_T_82546:
4251 case WM_T_82546_3:
4252 delay(5*1000);
4253 /* XXX Disable HW ARPs on ASF enabled adapters */
4254 break;
4255 case WM_T_82541:
4256 case WM_T_82541_2:
4257 case WM_T_82547:
4258 case WM_T_82547_2:
4259 delay(20000);
4260 /* XXX Disable HW ARPs on ASF enabled adapters */
4261 break;
4262 case WM_T_82571:
4263 case WM_T_82572:
4264 case WM_T_82573:
4265 case WM_T_82574:
4266 case WM_T_82583:
4267 if (sc->sc_flags & WM_F_EEPROM_FLASH) {
4268 delay(10);
4269 reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
4270 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
4271 }
4272 /* check EECD_EE_AUTORD */
4273 wm_get_auto_rd_done(sc);
4274 /*
4275 * Phy configuration from NVM just starts after EECD_AUTO_RD
4276 * is set.
4277 */
4278 if ((sc->sc_type == WM_T_82573) || (sc->sc_type == WM_T_82574)
4279 || (sc->sc_type == WM_T_82583))
4280 delay(25*1000);
4281 break;
4282 case WM_T_82575:
4283 case WM_T_82576:
4284 case WM_T_82580:
4285 case WM_T_82580ER:
4286 case WM_T_I350:
4287 case WM_T_I210:
4288 case WM_T_I211:
4289 case WM_T_80003:
4290 /* check EECD_EE_AUTORD */
4291 wm_get_auto_rd_done(sc);
4292 break;
4293 case WM_T_ICH8:
4294 case WM_T_ICH9:
4295 case WM_T_ICH10:
4296 case WM_T_PCH:
4297 case WM_T_PCH2:
4298 case WM_T_PCH_LPT:
4299 break;
4300 default:
4301 panic("%s: unknown type\n", __func__);
4302 }
4303
4304 /* Check whether EEPROM is present or not */
4305 switch (sc->sc_type) {
4306 case WM_T_82575:
4307 case WM_T_82576:
4308 #if 0 /* XXX */
4309 case WM_T_82580:
4310 case WM_T_82580ER:
4311 #endif
4312 case WM_T_I350:
4313 case WM_T_ICH8:
4314 case WM_T_ICH9:
4315 if ((CSR_READ(sc, WMREG_EECD) & EECD_EE_PRES) == 0) {
4316 /* Not found */
4317 sc->sc_flags |= WM_F_EEPROM_INVALID;
4318 if ((sc->sc_type == WM_T_82575)
4319 || (sc->sc_type == WM_T_82576)
4320 || (sc->sc_type == WM_T_82580)
4321 || (sc->sc_type == WM_T_82580ER)
4322 || (sc->sc_type == WM_T_I350))
4323 wm_reset_init_script_82575(sc);
4324 }
4325 break;
4326 default:
4327 break;
4328 }
4329
4330 if ((sc->sc_type == WM_T_82580) || (sc->sc_type == WM_T_82580ER)
4331 || (sc->sc_type == WM_T_I350)) {
4332 /* clear global device reset status bit */
4333 CSR_WRITE(sc, WMREG_STATUS, STATUS_DEV_RST_SET);
4334 }
4335
4336 /* Clear any pending interrupt events. */
4337 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
4338 reg = CSR_READ(sc, WMREG_ICR);
4339
4340 /* reload sc_ctrl */
4341 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
4342
4343 if (sc->sc_type == WM_T_I350)
4344 wm_set_eee_i350(sc);
4345
4346 /* dummy read from WUC */
4347 if (sc->sc_type == WM_T_PCH)
4348 reg = wm_gmii_hv_readreg(sc->sc_dev, 1, BM_WUC);
4349 /*
4350 * For PCH, this write will make sure that any noise will be detected
4351 * as a CRC error and be dropped rather than show up as a bad packet
4352 * to the DMA engine
4353 */
4354 if (sc->sc_type == WM_T_PCH)
4355 CSR_WRITE(sc, WMREG_CRC_OFFSET, 0x65656565);
4356
4357 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
4358 CSR_WRITE(sc, WMREG_WUC, 0);
4359
4360 /* XXX need special handling for 82580 */
4361 }
4362
4363 static void
4364 wm_set_vlan(struct wm_softc *sc)
4365 {
4366 /* Deal with VLAN enables. */
4367 if (VLAN_ATTACHED(&sc->sc_ethercom))
4368 sc->sc_ctrl |= CTRL_VME;
4369 else
4370 sc->sc_ctrl &= ~CTRL_VME;
4371
4372 /* Write the control registers. */
4373 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4374 }
4375
4376 /*
4377 * wm_init: [ifnet interface function]
4378 *
4379 * Initialize the interface. Must be called at splnet().
4380 */
4381 static int
4382 wm_init(struct ifnet *ifp)
4383 {
4384 struct wm_softc *sc = ifp->if_softc;
4385 struct wm_rxsoft *rxs;
4386 int i, j, trynum, error = 0;
4387 uint32_t reg;
4388
4389 /*
4390 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
4391 * There is a small but measurable benefit to avoiding the adjusment
4392 * of the descriptor so that the headers are aligned, for normal mtu,
4393 * on such platforms. One possibility is that the DMA itself is
4394 * slightly more efficient if the front of the entire packet (instead
4395 * of the front of the headers) is aligned.
4396 *
4397 * Note we must always set align_tweak to 0 if we are using
4398 * jumbo frames.
4399 */
4400 #ifdef __NO_STRICT_ALIGNMENT
4401 sc->sc_align_tweak = 0;
4402 #else
4403 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
4404 sc->sc_align_tweak = 0;
4405 else
4406 sc->sc_align_tweak = 2;
4407 #endif /* __NO_STRICT_ALIGNMENT */
4408
4409 /* Cancel any pending I/O. */
4410 wm_stop(ifp, 0);
4411
4412 /* update statistics before reset */
4413 ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
4414 ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
4415
4416 /* Reset the chip to a known state. */
4417 wm_reset(sc);
4418
4419 switch (sc->sc_type) {
4420 case WM_T_82571:
4421 case WM_T_82572:
4422 case WM_T_82573:
4423 case WM_T_82574:
4424 case WM_T_82583:
4425 case WM_T_80003:
4426 case WM_T_ICH8:
4427 case WM_T_ICH9:
4428 case WM_T_ICH10:
4429 case WM_T_PCH:
4430 case WM_T_PCH2:
4431 case WM_T_PCH_LPT:
4432 if (wm_check_mng_mode(sc) != 0)
4433 wm_get_hw_control(sc);
4434 break;
4435 default:
4436 break;
4437 }
4438
4439 /* Reset the PHY. */
4440 if (sc->sc_flags & WM_F_HAS_MII)
4441 wm_gmii_reset(sc);
4442
4443 reg = CSR_READ(sc, WMREG_CTRL_EXT);
4444 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4445 if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)
4446 || (sc->sc_type == WM_T_PCH_LPT))
4447 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_PHYPDEN);
4448
4449 /* Initialize the transmit descriptor ring. */
4450 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
4451 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
4452 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
4453 sc->sc_txfree = WM_NTXDESC(sc);
4454 sc->sc_txnext = 0;
4455
4456 if (sc->sc_type < WM_T_82543) {
4457 CSR_WRITE(sc, WMREG_OLD_TDBAH, WM_CDTXADDR_HI(sc, 0));
4458 CSR_WRITE(sc, WMREG_OLD_TDBAL, WM_CDTXADDR_LO(sc, 0));
4459 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
4460 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
4461 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
4462 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
4463 } else {
4464 CSR_WRITE(sc, WMREG_TDBAH, WM_CDTXADDR_HI(sc, 0));
4465 CSR_WRITE(sc, WMREG_TDBAL, WM_CDTXADDR_LO(sc, 0));
4466 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
4467 CSR_WRITE(sc, WMREG_TDH, 0);
4468 CSR_WRITE(sc, WMREG_TIDV, 375); /* ITR / 4 */
4469 CSR_WRITE(sc, WMREG_TADV, 375); /* should be same */
4470
4471 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
4472 /*
4473 * Don't write TDT before TCTL.EN is set.
4474 * See the document.
4475 */
4476 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_QUEUE_ENABLE
4477 | TXDCTL_PTHRESH(0) | TXDCTL_HTHRESH(0)
4478 | TXDCTL_WTHRESH(0));
4479 else {
4480 CSR_WRITE(sc, WMREG_TDT, 0);
4481 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
4482 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
4483 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
4484 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
4485 }
4486 }
4487 CSR_WRITE(sc, WMREG_TQSA_LO, 0);
4488 CSR_WRITE(sc, WMREG_TQSA_HI, 0);
4489
4490 /* Initialize the transmit job descriptors. */
4491 for (i = 0; i < WM_TXQUEUELEN(sc); i++)
4492 sc->sc_txsoft[i].txs_mbuf = NULL;
4493 sc->sc_txsfree = WM_TXQUEUELEN(sc);
4494 sc->sc_txsnext = 0;
4495 sc->sc_txsdirty = 0;
4496
4497 /*
4498 * Initialize the receive descriptor and receive job
4499 * descriptor rings.
4500 */
4501 if (sc->sc_type < WM_T_82543) {
4502 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
4503 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
4504 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
4505 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
4506 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
4507 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
4508
4509 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
4510 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
4511 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
4512 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
4513 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
4514 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
4515 } else {
4516 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
4517 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
4518 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
4519 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
4520 CSR_WRITE(sc, WMREG_EITR(0), 450);
4521 if (MCLBYTES & ((1 << SRRCTL_BSIZEPKT_SHIFT) - 1))
4522 panic("%s: MCLBYTES %d unsupported for i2575 or higher\n", __func__, MCLBYTES);
4523 CSR_WRITE(sc, WMREG_SRRCTL, SRRCTL_DESCTYPE_LEGACY
4524 | (MCLBYTES >> SRRCTL_BSIZEPKT_SHIFT));
4525 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_QUEUE_ENABLE
4526 | RXDCTL_PTHRESH(16) | RXDCTL_HTHRESH(8)
4527 | RXDCTL_WTHRESH(1));
4528 } else {
4529 CSR_WRITE(sc, WMREG_RDH, 0);
4530 CSR_WRITE(sc, WMREG_RDT, 0);
4531 CSR_WRITE(sc, WMREG_RDTR, 375 | RDTR_FPD); /* ITR/4 */
4532 CSR_WRITE(sc, WMREG_RADV, 375); /* MUST be same */
4533 }
4534 }
4535 for (i = 0; i < WM_NRXDESC; i++) {
4536 rxs = &sc->sc_rxsoft[i];
4537 if (rxs->rxs_mbuf == NULL) {
4538 if ((error = wm_add_rxbuf(sc, i)) != 0) {
4539 log(LOG_ERR, "%s: unable to allocate or map "
4540 "rx buffer %d, error = %d\n",
4541 device_xname(sc->sc_dev), i, error);
4542 /*
4543 * XXX Should attempt to run with fewer receive
4544 * XXX buffers instead of just failing.
4545 */
4546 wm_rxdrain(sc);
4547 goto out;
4548 }
4549 } else {
4550 if ((sc->sc_flags & WM_F_NEWQUEUE) == 0)
4551 WM_INIT_RXDESC(sc, i);
4552 /*
4553 * For 82575 and newer device, the RX descriptors
4554 * must be initialized after the setting of RCTL.EN in
4555 * wm_set_filter()
4556 */
4557 }
4558 }
4559 sc->sc_rxptr = 0;
4560 sc->sc_rxdiscard = 0;
4561 WM_RXCHAIN_RESET(sc);
4562
4563 /*
4564 * Clear out the VLAN table -- we don't use it (yet).
4565 */
4566 CSR_WRITE(sc, WMREG_VET, 0);
4567 if (sc->sc_type == WM_T_I350)
4568 trynum = 10; /* Due to hw errata */
4569 else
4570 trynum = 1;
4571 for (i = 0; i < WM_VLAN_TABSIZE; i++)
4572 for (j = 0; j < trynum; j++)
4573 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
4574
4575 /*
4576 * Set up flow-control parameters.
4577 *
4578 * XXX Values could probably stand some tuning.
4579 */
4580 if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9)
4581 && (sc->sc_type != WM_T_ICH10) && (sc->sc_type != WM_T_PCH)
4582 && (sc->sc_type != WM_T_PCH2) && (sc->sc_type != WM_T_PCH_LPT)) {
4583 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
4584 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
4585 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
4586 }
4587
4588 sc->sc_fcrtl = FCRTL_DFLT;
4589 if (sc->sc_type < WM_T_82543) {
4590 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
4591 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
4592 } else {
4593 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
4594 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
4595 }
4596
4597 if (sc->sc_type == WM_T_80003)
4598 CSR_WRITE(sc, WMREG_FCTTV, 0xffff);
4599 else
4600 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
4601
4602 /* Writes the control register. */
4603 wm_set_vlan(sc);
4604
4605 if (sc->sc_flags & WM_F_HAS_MII) {
4606 int val;
4607
4608 switch (sc->sc_type) {
4609 case WM_T_80003:
4610 case WM_T_ICH8:
4611 case WM_T_ICH9:
4612 case WM_T_ICH10:
4613 case WM_T_PCH:
4614 case WM_T_PCH2:
4615 case WM_T_PCH_LPT:
4616 /*
4617 * Set the mac to wait the maximum time between each
4618 * iteration and increase the max iterations when
4619 * polling the phy; this fixes erroneous timeouts at
4620 * 10Mbps.
4621 */
4622 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS,
4623 0xFFFF);
4624 val = wm_kmrn_readreg(sc,
4625 KUMCTRLSTA_OFFSET_INB_PARAM);
4626 val |= 0x3F;
4627 wm_kmrn_writereg(sc,
4628 KUMCTRLSTA_OFFSET_INB_PARAM, val);
4629 break;
4630 default:
4631 break;
4632 }
4633
4634 if (sc->sc_type == WM_T_80003) {
4635 val = CSR_READ(sc, WMREG_CTRL_EXT);
4636 val &= ~CTRL_EXT_LINK_MODE_MASK;
4637 CSR_WRITE(sc, WMREG_CTRL_EXT, val);
4638
4639 /* Bypass RX and TX FIFO's */
4640 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL,
4641 KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
4642 | KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
4643 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL,
4644 KUMCTRLSTA_INB_CTRL_DIS_PADDING |
4645 KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT);
4646 }
4647 }
4648 #if 0
4649 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
4650 #endif
4651
4652 /*
4653 * Set up checksum offload parameters.
4654 */
4655 reg = CSR_READ(sc, WMREG_RXCSUM);
4656 reg &= ~(RXCSUM_IPOFL | RXCSUM_IPV6OFL | RXCSUM_TUOFL);
4657 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
4658 reg |= RXCSUM_IPOFL;
4659 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
4660 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
4661 if (ifp->if_capenable & (IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
4662 reg |= RXCSUM_IPV6OFL | RXCSUM_TUOFL;
4663 CSR_WRITE(sc, WMREG_RXCSUM, reg);
4664
4665 /* Reset TBI's RXCFG count */
4666 sc->sc_tbi_nrxcfg = sc->sc_tbi_lastnrxcfg = 0;
4667
4668 /*
4669 * Set up the interrupt registers.
4670 */
4671 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
4672 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
4673 ICR_RXO | ICR_RXT0;
4674 if ((sc->sc_flags & WM_F_HAS_MII) == 0)
4675 sc->sc_icr |= ICR_RXCFG;
4676 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
4677
4678 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
4679 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
4680 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) {
4681 reg = CSR_READ(sc, WMREG_KABGTXD);
4682 reg |= KABGTXD_BGSQLBIAS;
4683 CSR_WRITE(sc, WMREG_KABGTXD, reg);
4684 }
4685
4686 /* Set up the inter-packet gap. */
4687 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
4688
4689 if (sc->sc_type >= WM_T_82543) {
4690 /*
4691 * Set up the interrupt throttling register (units of 256ns)
4692 * Note that a footnote in Intel's documentation says this
4693 * ticker runs at 1/4 the rate when the chip is in 100Mbit
4694 * or 10Mbit mode. Empirically, it appears to be the case
4695 * that that is also true for the 1024ns units of the other
4696 * interrupt-related timer registers -- so, really, we ought
4697 * to divide this value by 4 when the link speed is low.
4698 *
4699 * XXX implement this division at link speed change!
4700 */
4701
4702 /*
4703 * For N interrupts/sec, set this value to:
4704 * 1000000000 / (N * 256). Note that we set the
4705 * absolute and packet timer values to this value
4706 * divided by 4 to get "simple timer" behavior.
4707 */
4708
4709 sc->sc_itr = 1500; /* 2604 ints/sec */
4710 CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
4711 }
4712
4713 /* Set the VLAN ethernetype. */
4714 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
4715
4716 /*
4717 * Set up the transmit control register; we start out with
4718 * a collision distance suitable for FDX, but update it whe
4719 * we resolve the media type.
4720 */
4721 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_RTLC
4722 | TCTL_CT(TX_COLLISION_THRESHOLD)
4723 | TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
4724 if (sc->sc_type >= WM_T_82571)
4725 sc->sc_tctl |= TCTL_MULR;
4726 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
4727
4728 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
4729 /*
4730 * Write TDT after TCTL.EN is set.
4731 * See the document.
4732 */
4733 CSR_WRITE(sc, WMREG_TDT, 0);
4734 }
4735
4736 if (sc->sc_type == WM_T_80003) {
4737 reg = CSR_READ(sc, WMREG_TCTL_EXT);
4738 reg &= ~TCTL_EXT_GCEX_MASK;
4739 reg |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
4740 CSR_WRITE(sc, WMREG_TCTL_EXT, reg);
4741 }
4742
4743 /* Set the media. */
4744 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
4745 goto out;
4746
4747 /* Configure for OS presence */
4748 wm_init_manageability(sc);
4749
4750 /*
4751 * Set up the receive control register; we actually program
4752 * the register when we set the receive filter. Use multicast
4753 * address offset type 0.
4754 *
4755 * Only the i82544 has the ability to strip the incoming
4756 * CRC, so we don't enable that feature.
4757 */
4758 sc->sc_mchash_type = 0;
4759 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
4760 | RCTL_MO(sc->sc_mchash_type);
4761
4762 /*
4763 * The I350 has a bug where it always strips the CRC whether
4764 * asked to or not. So ask for stripped CRC here and cope in rxeof
4765 */
4766 if ((sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I210))
4767 sc->sc_rctl |= RCTL_SECRC;
4768
4769 if (((sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) != 0)
4770 && (ifp->if_mtu > ETHERMTU)) {
4771 sc->sc_rctl |= RCTL_LPE;
4772 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
4773 CSR_WRITE(sc, WMREG_RLPML, ETHER_MAX_LEN_JUMBO);
4774 }
4775
4776 if (MCLBYTES == 2048) {
4777 sc->sc_rctl |= RCTL_2k;
4778 } else {
4779 if (sc->sc_type >= WM_T_82543) {
4780 switch (MCLBYTES) {
4781 case 4096:
4782 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
4783 break;
4784 case 8192:
4785 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
4786 break;
4787 case 16384:
4788 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
4789 break;
4790 default:
4791 panic("wm_init: MCLBYTES %d unsupported",
4792 MCLBYTES);
4793 break;
4794 }
4795 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
4796 }
4797
4798 /* Set the receive filter. */
4799 wm_set_filter(sc);
4800
4801 /* Enable ECC */
4802 switch (sc->sc_type) {
4803 case WM_T_82571:
4804 reg = CSR_READ(sc, WMREG_PBA_ECC);
4805 reg |= PBA_ECC_CORR_EN;
4806 CSR_WRITE(sc, WMREG_PBA_ECC, reg);
4807 break;
4808 case WM_T_PCH_LPT:
4809 reg = CSR_READ(sc, WMREG_PBECCSTS);
4810 reg |= PBECCSTS_UNCORR_ECC_ENABLE;
4811 CSR_WRITE(sc, WMREG_PBECCSTS, reg);
4812
4813 reg = CSR_READ(sc, WMREG_CTRL);
4814 reg |= CTRL_MEHE;
4815 CSR_WRITE(sc, WMREG_CTRL, reg);
4816 break;
4817 default:
4818 break;
4819 }
4820
4821 /* On 575 and later set RDT only if RX enabled */
4822 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
4823 for (i = 0; i < WM_NRXDESC; i++)
4824 WM_INIT_RXDESC(sc, i);
4825
4826 /* Start the one second link check clock. */
4827 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
4828
4829 /* ...all done! */
4830 ifp->if_flags |= IFF_RUNNING;
4831 ifp->if_flags &= ~IFF_OACTIVE;
4832
4833 out:
4834 sc->sc_if_flags = ifp->if_flags;
4835 if (error)
4836 log(LOG_ERR, "%s: interface not running\n",
4837 device_xname(sc->sc_dev));
4838 return error;
4839 }
4840
4841 /*
4842 * wm_rxdrain:
4843 *
4844 * Drain the receive queue.
4845 */
4846 static void
4847 wm_rxdrain(struct wm_softc *sc)
4848 {
4849 struct wm_rxsoft *rxs;
4850 int i;
4851
4852 for (i = 0; i < WM_NRXDESC; i++) {
4853 rxs = &sc->sc_rxsoft[i];
4854 if (rxs->rxs_mbuf != NULL) {
4855 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
4856 m_freem(rxs->rxs_mbuf);
4857 rxs->rxs_mbuf = NULL;
4858 }
4859 }
4860 }
4861
4862 /*
4863 * wm_stop: [ifnet interface function]
4864 *
4865 * Stop transmission on the interface.
4866 */
4867 static void
4868 wm_stop(struct ifnet *ifp, int disable)
4869 {
4870 struct wm_softc *sc = ifp->if_softc;
4871 struct wm_txsoft *txs;
4872 int i;
4873
4874 /* Stop the one second clock. */
4875 callout_stop(&sc->sc_tick_ch);
4876
4877 /* Stop the 82547 Tx FIFO stall check timer. */
4878 if (sc->sc_type == WM_T_82547)
4879 callout_stop(&sc->sc_txfifo_ch);
4880
4881 if (sc->sc_flags & WM_F_HAS_MII) {
4882 /* Down the MII. */
4883 mii_down(&sc->sc_mii);
4884 } else {
4885 #if 0
4886 /* Should we clear PHY's status properly? */
4887 wm_reset(sc);
4888 #endif
4889 }
4890
4891 /* Stop the transmit and receive processes. */
4892 CSR_WRITE(sc, WMREG_TCTL, 0);
4893 CSR_WRITE(sc, WMREG_RCTL, 0);
4894 sc->sc_rctl &= ~RCTL_EN;
4895
4896 /*
4897 * Clear the interrupt mask to ensure the device cannot assert its
4898 * interrupt line.
4899 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
4900 * any currently pending or shared interrupt.
4901 */
4902 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
4903 sc->sc_icr = 0;
4904
4905 /* Release any queued transmit buffers. */
4906 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
4907 txs = &sc->sc_txsoft[i];
4908 if (txs->txs_mbuf != NULL) {
4909 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
4910 m_freem(txs->txs_mbuf);
4911 txs->txs_mbuf = NULL;
4912 }
4913 }
4914
4915 /* Mark the interface as down and cancel the watchdog timer. */
4916 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4917 ifp->if_timer = 0;
4918
4919 if (disable)
4920 wm_rxdrain(sc);
4921
4922 #if 0 /* notyet */
4923 if (sc->sc_type >= WM_T_82544)
4924 CSR_WRITE(sc, WMREG_WUC, 0);
4925 #endif
4926 }
4927
4928 void
4929 wm_get_auto_rd_done(struct wm_softc *sc)
4930 {
4931 int i;
4932
4933 /* wait for eeprom to reload */
4934 switch (sc->sc_type) {
4935 case WM_T_82571:
4936 case WM_T_82572:
4937 case WM_T_82573:
4938 case WM_T_82574:
4939 case WM_T_82583:
4940 case WM_T_82575:
4941 case WM_T_82576:
4942 case WM_T_82580:
4943 case WM_T_82580ER:
4944 case WM_T_I350:
4945 case WM_T_I210:
4946 case WM_T_I211:
4947 case WM_T_80003:
4948 case WM_T_ICH8:
4949 case WM_T_ICH9:
4950 for (i = 0; i < 10; i++) {
4951 if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD)
4952 break;
4953 delay(1000);
4954 }
4955 if (i == 10) {
4956 log(LOG_ERR, "%s: auto read from eeprom failed to "
4957 "complete\n", device_xname(sc->sc_dev));
4958 }
4959 break;
4960 default:
4961 break;
4962 }
4963 }
4964
4965 void
4966 wm_lan_init_done(struct wm_softc *sc)
4967 {
4968 uint32_t reg = 0;
4969 int i;
4970
4971 /* wait for eeprom to reload */
4972 switch (sc->sc_type) {
4973 case WM_T_ICH10:
4974 case WM_T_PCH:
4975 case WM_T_PCH2:
4976 case WM_T_PCH_LPT:
4977 for (i = 0; i < WM_ICH8_LAN_INIT_TIMEOUT; i++) {
4978 reg = CSR_READ(sc, WMREG_STATUS);
4979 if ((reg & STATUS_LAN_INIT_DONE) != 0)
4980 break;
4981 delay(100);
4982 }
4983 if (i >= WM_ICH8_LAN_INIT_TIMEOUT) {
4984 log(LOG_ERR, "%s: %s: lan_init_done failed to "
4985 "complete\n", device_xname(sc->sc_dev), __func__);
4986 }
4987 break;
4988 default:
4989 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
4990 __func__);
4991 break;
4992 }
4993
4994 reg &= ~STATUS_LAN_INIT_DONE;
4995 CSR_WRITE(sc, WMREG_STATUS, reg);
4996 }
4997
4998 void
4999 wm_get_cfg_done(struct wm_softc *sc)
5000 {
5001 int mask;
5002 uint32_t reg;
5003 int i;
5004
5005 /* wait for eeprom to reload */
5006 switch (sc->sc_type) {
5007 case WM_T_82542_2_0:
5008 case WM_T_82542_2_1:
5009 /* null */
5010 break;
5011 case WM_T_82543:
5012 case WM_T_82544:
5013 case WM_T_82540:
5014 case WM_T_82545:
5015 case WM_T_82545_3:
5016 case WM_T_82546:
5017 case WM_T_82546_3:
5018 case WM_T_82541:
5019 case WM_T_82541_2:
5020 case WM_T_82547:
5021 case WM_T_82547_2:
5022 case WM_T_82573:
5023 case WM_T_82574:
5024 case WM_T_82583:
5025 /* generic */
5026 delay(10*1000);
5027 break;
5028 case WM_T_80003:
5029 case WM_T_82571:
5030 case WM_T_82572:
5031 case WM_T_82575:
5032 case WM_T_82576:
5033 case WM_T_82580:
5034 case WM_T_82580ER:
5035 case WM_T_I350:
5036 case WM_T_I210:
5037 case WM_T_I211:
5038 if (sc->sc_type == WM_T_82571) {
5039 /* Only 82571 shares port 0 */
5040 mask = EEMNGCTL_CFGDONE_0;
5041 } else
5042 mask = EEMNGCTL_CFGDONE_0 << sc->sc_funcid;
5043 for (i = 0; i < WM_PHY_CFG_TIMEOUT; i++) {
5044 if (CSR_READ(sc, WMREG_EEMNGCTL) & mask)
5045 break;
5046 delay(1000);
5047 }
5048 if (i >= WM_PHY_CFG_TIMEOUT) {
5049 DPRINTF(WM_DEBUG_GMII, ("%s: %s failed\n",
5050 device_xname(sc->sc_dev), __func__));
5051 }
5052 break;
5053 case WM_T_ICH8:
5054 case WM_T_ICH9:
5055 case WM_T_ICH10:
5056 case WM_T_PCH:
5057 case WM_T_PCH2:
5058 case WM_T_PCH_LPT:
5059 delay(10*1000);
5060 if (sc->sc_type >= WM_T_ICH10)
5061 wm_lan_init_done(sc);
5062 else
5063 wm_get_auto_rd_done(sc);
5064
5065 reg = CSR_READ(sc, WMREG_STATUS);
5066 if ((reg & STATUS_PHYRA) != 0)
5067 CSR_WRITE(sc, WMREG_STATUS, reg & ~STATUS_PHYRA);
5068 break;
5069 default:
5070 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
5071 __func__);
5072 break;
5073 }
5074 }
5075
5076 /*
5077 * wm_acquire_eeprom:
5078 *
5079 * Perform the EEPROM handshake required on some chips.
5080 */
5081 static int
5082 wm_acquire_eeprom(struct wm_softc *sc)
5083 {
5084 uint32_t reg;
5085 int x;
5086 int ret = 0;
5087
5088 /* always success */
5089 if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
5090 return 0;
5091
5092 if (sc->sc_flags & WM_F_SWFWHW_SYNC) {
5093 ret = wm_get_swfwhw_semaphore(sc);
5094 } else if (sc->sc_flags & WM_F_SWFW_SYNC) {
5095 /* this will also do wm_get_swsm_semaphore() if needed */
5096 ret = wm_get_swfw_semaphore(sc, SWFW_EEP_SM);
5097 } else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
5098 ret = wm_get_swsm_semaphore(sc);
5099 }
5100
5101 if (ret) {
5102 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
5103 __func__);
5104 return 1;
5105 }
5106
5107 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
5108 reg = CSR_READ(sc, WMREG_EECD);
5109
5110 /* Request EEPROM access. */
5111 reg |= EECD_EE_REQ;
5112 CSR_WRITE(sc, WMREG_EECD, reg);
5113
5114 /* ..and wait for it to be granted. */
5115 for (x = 0; x < 1000; x++) {
5116 reg = CSR_READ(sc, WMREG_EECD);
5117 if (reg & EECD_EE_GNT)
5118 break;
5119 delay(5);
5120 }
5121 if ((reg & EECD_EE_GNT) == 0) {
5122 aprint_error_dev(sc->sc_dev,
5123 "could not acquire EEPROM GNT\n");
5124 reg &= ~EECD_EE_REQ;
5125 CSR_WRITE(sc, WMREG_EECD, reg);
5126 if (sc->sc_flags & WM_F_SWFWHW_SYNC)
5127 wm_put_swfwhw_semaphore(sc);
5128 if (sc->sc_flags & WM_F_SWFW_SYNC)
5129 wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
5130 else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
5131 wm_put_swsm_semaphore(sc);
5132 return 1;
5133 }
5134 }
5135
5136 return 0;
5137 }
5138
5139 /*
5140 * wm_release_eeprom:
5141 *
5142 * Release the EEPROM mutex.
5143 */
5144 static void
5145 wm_release_eeprom(struct wm_softc *sc)
5146 {
5147 uint32_t reg;
5148
5149 /* always success */
5150 if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
5151 return;
5152
5153 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
5154 reg = CSR_READ(sc, WMREG_EECD);
5155 reg &= ~EECD_EE_REQ;
5156 CSR_WRITE(sc, WMREG_EECD, reg);
5157 }
5158
5159 if (sc->sc_flags & WM_F_SWFWHW_SYNC)
5160 wm_put_swfwhw_semaphore(sc);
5161 if (sc->sc_flags & WM_F_SWFW_SYNC)
5162 wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
5163 else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
5164 wm_put_swsm_semaphore(sc);
5165 }
5166
5167 /*
5168 * wm_eeprom_sendbits:
5169 *
5170 * Send a series of bits to the EEPROM.
5171 */
5172 static void
5173 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
5174 {
5175 uint32_t reg;
5176 int x;
5177
5178 reg = CSR_READ(sc, WMREG_EECD);
5179
5180 for (x = nbits; x > 0; x--) {
5181 if (bits & (1U << (x - 1)))
5182 reg |= EECD_DI;
5183 else
5184 reg &= ~EECD_DI;
5185 CSR_WRITE(sc, WMREG_EECD, reg);
5186 delay(2);
5187 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
5188 delay(2);
5189 CSR_WRITE(sc, WMREG_EECD, reg);
5190 delay(2);
5191 }
5192 }
5193
5194 /*
5195 * wm_eeprom_recvbits:
5196 *
5197 * Receive a series of bits from the EEPROM.
5198 */
5199 static void
5200 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
5201 {
5202 uint32_t reg, val;
5203 int x;
5204
5205 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
5206
5207 val = 0;
5208 for (x = nbits; x > 0; x--) {
5209 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
5210 delay(2);
5211 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
5212 val |= (1U << (x - 1));
5213 CSR_WRITE(sc, WMREG_EECD, reg);
5214 delay(2);
5215 }
5216 *valp = val;
5217 }
5218
5219 /*
5220 * wm_read_eeprom_uwire:
5221 *
5222 * Read a word from the EEPROM using the MicroWire protocol.
5223 */
5224 static int
5225 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
5226 {
5227 uint32_t reg, val;
5228 int i;
5229
5230 for (i = 0; i < wordcnt; i++) {
5231 /* Clear SK and DI. */
5232 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
5233 CSR_WRITE(sc, WMREG_EECD, reg);
5234
5235 /*
5236 * XXX: workaround for a bug in qemu-0.12.x and prior
5237 * and Xen.
5238 *
5239 * We use this workaround only for 82540 because qemu's
5240 * e1000 act as 82540.
5241 */
5242 if (sc->sc_type == WM_T_82540) {
5243 reg |= EECD_SK;
5244 CSR_WRITE(sc, WMREG_EECD, reg);
5245 reg &= ~EECD_SK;
5246 CSR_WRITE(sc, WMREG_EECD, reg);
5247 delay(2);
5248 }
5249 /* XXX: end of workaround */
5250
5251 /* Set CHIP SELECT. */
5252 reg |= EECD_CS;
5253 CSR_WRITE(sc, WMREG_EECD, reg);
5254 delay(2);
5255
5256 /* Shift in the READ command. */
5257 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
5258
5259 /* Shift in address. */
5260 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
5261
5262 /* Shift out the data. */
5263 wm_eeprom_recvbits(sc, &val, 16);
5264 data[i] = val & 0xffff;
5265
5266 /* Clear CHIP SELECT. */
5267 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
5268 CSR_WRITE(sc, WMREG_EECD, reg);
5269 delay(2);
5270 }
5271
5272 return 0;
5273 }
5274
5275 /*
5276 * wm_spi_eeprom_ready:
5277 *
5278 * Wait for a SPI EEPROM to be ready for commands.
5279 */
5280 static int
5281 wm_spi_eeprom_ready(struct wm_softc *sc)
5282 {
5283 uint32_t val;
5284 int usec;
5285
5286 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
5287 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
5288 wm_eeprom_recvbits(sc, &val, 8);
5289 if ((val & SPI_SR_RDY) == 0)
5290 break;
5291 }
5292 if (usec >= SPI_MAX_RETRIES) {
5293 aprint_error_dev(sc->sc_dev, "EEPROM failed to become ready\n");
5294 return 1;
5295 }
5296 return 0;
5297 }
5298
5299 /*
5300 * wm_read_eeprom_spi:
5301 *
5302 * Read a work from the EEPROM using the SPI protocol.
5303 */
5304 static int
5305 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
5306 {
5307 uint32_t reg, val;
5308 int i;
5309 uint8_t opc;
5310
5311 /* Clear SK and CS. */
5312 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
5313 CSR_WRITE(sc, WMREG_EECD, reg);
5314 delay(2);
5315
5316 if (wm_spi_eeprom_ready(sc))
5317 return 1;
5318
5319 /* Toggle CS to flush commands. */
5320 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
5321 delay(2);
5322 CSR_WRITE(sc, WMREG_EECD, reg);
5323 delay(2);
5324
5325 opc = SPI_OPC_READ;
5326 if (sc->sc_ee_addrbits == 8 && word >= 128)
5327 opc |= SPI_OPC_A8;
5328
5329 wm_eeprom_sendbits(sc, opc, 8);
5330 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
5331
5332 for (i = 0; i < wordcnt; i++) {
5333 wm_eeprom_recvbits(sc, &val, 16);
5334 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
5335 }
5336
5337 /* Raise CS and clear SK. */
5338 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
5339 CSR_WRITE(sc, WMREG_EECD, reg);
5340 delay(2);
5341
5342 return 0;
5343 }
5344
5345 #define NVM_CHECKSUM 0xBABA
5346 #define EEPROM_SIZE 0x0040
5347 #define NVM_COMPAT 0x0003
5348 #define NVM_COMPAT_VALID_CHECKSUM 0x0001
5349 #define NVM_FUTURE_INIT_WORD1 0x0019
5350 #define NVM_FUTURE_INIT_WORD1_VALID_CHECKSUM 0x0040
5351
5352 /*
5353 * wm_validate_eeprom_checksum
5354 *
5355 * The checksum is defined as the sum of the first 64 (16 bit) words.
5356 */
5357 static int
5358 wm_validate_eeprom_checksum(struct wm_softc *sc)
5359 {
5360 uint16_t checksum, valid_checksum;
5361 uint16_t eeprom_data;
5362 uint16_t csum_wordaddr;
5363 int i;
5364
5365 checksum = 0;
5366
5367 /* Don't check for I211 */
5368 if (sc->sc_type == WM_T_I211)
5369 return 0;
5370
5371 if (sc->sc_type == WM_T_PCH_LPT) {
5372 csum_wordaddr = NVM_COMPAT;
5373 valid_checksum = NVM_COMPAT_VALID_CHECKSUM;
5374 } else {
5375 csum_wordaddr = NVM_FUTURE_INIT_WORD1;
5376 valid_checksum = NVM_FUTURE_INIT_WORD1_VALID_CHECKSUM;
5377 }
5378
5379 #ifdef WM_DEBUG
5380 /* Dump EEPROM image for debug */
5381 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
5382 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
5383 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) {
5384 wm_read_eeprom(sc, csum_wordaddr, 1, &eeprom_data);
5385 if ((eeprom_data & valid_checksum) == 0) {
5386 DPRINTF(WM_DEBUG_NVM,
5387 ("%s: NVM need to be updated (%04x != %04x)\n",
5388 device_xname(sc->sc_dev), eeprom_data,
5389 valid_checksum));
5390 }
5391 }
5392
5393 if ((wm_debug & WM_DEBUG_NVM) != 0) {
5394 printf("%s: NVM dump:\n", device_xname(sc->sc_dev));
5395 for (i = 0; i < EEPROM_SIZE; i++) {
5396 if (wm_read_eeprom(sc, i, 1, &eeprom_data))
5397 printf("XX ");
5398 else
5399 printf("%04x ", eeprom_data);
5400 if (i % 8 == 7)
5401 printf("\n");
5402 }
5403 }
5404
5405 #endif /* WM_DEBUG */
5406
5407 for (i = 0; i < EEPROM_SIZE; i++) {
5408 if (wm_read_eeprom(sc, i, 1, &eeprom_data))
5409 return 1;
5410 checksum += eeprom_data;
5411 }
5412
5413 if (checksum != (uint16_t) NVM_CHECKSUM) {
5414 #ifdef WM_DEBUG
5415 printf("%s: NVM checksum mismatch (%04x != %04x)\n",
5416 device_xname(sc->sc_dev), checksum, NVM_CHECKSUM);
5417 #endif
5418 }
5419
5420 return 0;
5421 }
5422
5423 /*
5424 * wm_read_eeprom:
5425 *
5426 * Read data from the serial EEPROM.
5427 */
5428 static int
5429 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
5430 {
5431 int rv;
5432
5433 if (sc->sc_flags & WM_F_EEPROM_INVALID)
5434 return 1;
5435
5436 if (wm_acquire_eeprom(sc))
5437 return 1;
5438
5439 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
5440 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
5441 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT))
5442 rv = wm_read_eeprom_ich8(sc, word, wordcnt, data);
5443 else if (sc->sc_flags & WM_F_EEPROM_EERDEEWR)
5444 rv = wm_read_eeprom_eerd(sc, word, wordcnt, data);
5445 else if (sc->sc_flags & WM_F_EEPROM_SPI)
5446 rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
5447 else
5448 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
5449
5450 wm_release_eeprom(sc);
5451 return rv;
5452 }
5453
5454 static int
5455 wm_read_eeprom_eerd(struct wm_softc *sc, int offset, int wordcnt,
5456 uint16_t *data)
5457 {
5458 int i, eerd = 0;
5459 int error = 0;
5460
5461 for (i = 0; i < wordcnt; i++) {
5462 eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
5463
5464 CSR_WRITE(sc, WMREG_EERD, eerd);
5465 error = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
5466 if (error != 0)
5467 break;
5468
5469 data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
5470 }
5471
5472 return error;
5473 }
5474
5475 static int
5476 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
5477 {
5478 uint32_t attempts = 100000;
5479 uint32_t i, reg = 0;
5480 int32_t done = -1;
5481
5482 for (i = 0; i < attempts; i++) {
5483 reg = CSR_READ(sc, rw);
5484
5485 if (reg & EERD_DONE) {
5486 done = 0;
5487 break;
5488 }
5489 delay(5);
5490 }
5491
5492 return done;
5493 }
5494
5495 static int
5496 wm_check_alt_mac_addr(struct wm_softc *sc)
5497 {
5498 uint16_t myea[ETHER_ADDR_LEN / 2];
5499 uint16_t offset = EEPROM_OFF_MACADDR;
5500
5501 /* Try to read alternative MAC address pointer */
5502 if (wm_read_eeprom(sc, EEPROM_ALT_MAC_ADDR_PTR, 1, &offset) != 0)
5503 return -1;
5504
5505 /* Check pointer */
5506 if (offset == 0xffff)
5507 return -1;
5508
5509 /*
5510 * Check whether alternative MAC address is valid or not.
5511 * Some cards have non 0xffff pointer but those don't use
5512 * alternative MAC address in reality.
5513 *
5514 * Check whether the broadcast bit is set or not.
5515 */
5516 if (wm_read_eeprom(sc, offset, 1, myea) == 0)
5517 if (((myea[0] & 0xff) & 0x01) == 0)
5518 return 0; /* found! */
5519
5520 /* not found */
5521 return -1;
5522 }
5523
5524 static int
5525 wm_read_mac_addr(struct wm_softc *sc, uint8_t *enaddr)
5526 {
5527 uint16_t myea[ETHER_ADDR_LEN / 2];
5528 uint16_t offset = EEPROM_OFF_MACADDR;
5529 int do_invert = 0;
5530
5531 switch (sc->sc_type) {
5532 case WM_T_82580:
5533 case WM_T_82580ER:
5534 case WM_T_I350:
5535 switch (sc->sc_funcid) {
5536 case 0:
5537 /* default value (== EEPROM_OFF_MACADDR) */
5538 break;
5539 case 1:
5540 offset = EEPROM_OFF_LAN1;
5541 break;
5542 case 2:
5543 offset = EEPROM_OFF_LAN2;
5544 break;
5545 case 3:
5546 offset = EEPROM_OFF_LAN3;
5547 break;
5548 default:
5549 goto bad;
5550 /* NOTREACHED */
5551 break;
5552 }
5553 break;
5554 case WM_T_82571:
5555 case WM_T_82575:
5556 case WM_T_82576:
5557 case WM_T_80003:
5558 case WM_T_I210:
5559 case WM_T_I211:
5560 if (wm_check_alt_mac_addr(sc) != 0) {
5561 /* reset the offset to LAN0 */
5562 offset = EEPROM_OFF_MACADDR;
5563 if ((sc->sc_funcid & 0x01) == 1)
5564 do_invert = 1;
5565 goto do_read;
5566 }
5567 switch (sc->sc_funcid) {
5568 case 0:
5569 /*
5570 * The offset is the value in EEPROM_ALT_MAC_ADDR_PTR
5571 * itself.
5572 */
5573 break;
5574 case 1:
5575 offset += EEPROM_OFF_MACADDR_LAN1;
5576 break;
5577 case 2:
5578 offset += EEPROM_OFF_MACADDR_LAN2;
5579 break;
5580 case 3:
5581 offset += EEPROM_OFF_MACADDR_LAN3;
5582 break;
5583 default:
5584 goto bad;
5585 /* NOTREACHED */
5586 break;
5587 }
5588 break;
5589 default:
5590 if ((sc->sc_funcid & 0x01) == 1)
5591 do_invert = 1;
5592 break;
5593 }
5594
5595 do_read:
5596 if (wm_read_eeprom(sc, offset, sizeof(myea) / sizeof(myea[0]),
5597 myea) != 0) {
5598 goto bad;
5599 }
5600
5601 enaddr[0] = myea[0] & 0xff;
5602 enaddr[1] = myea[0] >> 8;
5603 enaddr[2] = myea[1] & 0xff;
5604 enaddr[3] = myea[1] >> 8;
5605 enaddr[4] = myea[2] & 0xff;
5606 enaddr[5] = myea[2] >> 8;
5607
5608 /*
5609 * Toggle the LSB of the MAC address on the second port
5610 * of some dual port cards.
5611 */
5612 if (do_invert != 0)
5613 enaddr[5] ^= 1;
5614
5615 return 0;
5616
5617 bad:
5618 aprint_error_dev(sc->sc_dev, "unable to read Ethernet address\n");
5619
5620 return -1;
5621 }
5622
5623 /*
5624 * wm_add_rxbuf:
5625 *
5626 * Add a receive buffer to the indiciated descriptor.
5627 */
5628 static int
5629 wm_add_rxbuf(struct wm_softc *sc, int idx)
5630 {
5631 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
5632 struct mbuf *m;
5633 int error;
5634
5635 MGETHDR(m, M_DONTWAIT, MT_DATA);
5636 if (m == NULL)
5637 return ENOBUFS;
5638
5639 MCLGET(m, M_DONTWAIT);
5640 if ((m->m_flags & M_EXT) == 0) {
5641 m_freem(m);
5642 return ENOBUFS;
5643 }
5644
5645 if (rxs->rxs_mbuf != NULL)
5646 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
5647
5648 rxs->rxs_mbuf = m;
5649
5650 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
5651 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
5652 BUS_DMA_READ|BUS_DMA_NOWAIT);
5653 if (error) {
5654 /* XXX XXX XXX */
5655 aprint_error_dev(sc->sc_dev,
5656 "unable to load rx DMA map %d, error = %d\n",
5657 idx, error);
5658 panic("wm_add_rxbuf");
5659 }
5660
5661 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
5662 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
5663
5664 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
5665 if ((sc->sc_rctl & RCTL_EN) != 0)
5666 WM_INIT_RXDESC(sc, idx);
5667 } else
5668 WM_INIT_RXDESC(sc, idx);
5669
5670 return 0;
5671 }
5672
5673 /*
5674 * wm_set_ral:
5675 *
5676 * Set an entery in the receive address list.
5677 */
5678 static void
5679 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
5680 {
5681 uint32_t ral_lo, ral_hi;
5682
5683 if (enaddr != NULL) {
5684 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
5685 (enaddr[3] << 24);
5686 ral_hi = enaddr[4] | (enaddr[5] << 8);
5687 ral_hi |= RAL_AV;
5688 } else {
5689 ral_lo = 0;
5690 ral_hi = 0;
5691 }
5692
5693 if (sc->sc_type >= WM_T_82544) {
5694 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
5695 ral_lo);
5696 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
5697 ral_hi);
5698 } else {
5699 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
5700 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
5701 }
5702 }
5703
5704 /*
5705 * wm_mchash:
5706 *
5707 * Compute the hash of the multicast address for the 4096-bit
5708 * multicast filter.
5709 */
5710 static uint32_t
5711 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
5712 {
5713 static const int lo_shift[4] = { 4, 3, 2, 0 };
5714 static const int hi_shift[4] = { 4, 5, 6, 8 };
5715 static const int ich8_lo_shift[4] = { 6, 5, 4, 2 };
5716 static const int ich8_hi_shift[4] = { 2, 3, 4, 6 };
5717 uint32_t hash;
5718
5719 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
5720 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
5721 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) {
5722 hash = (enaddr[4] >> ich8_lo_shift[sc->sc_mchash_type]) |
5723 (((uint16_t) enaddr[5]) << ich8_hi_shift[sc->sc_mchash_type]);
5724 return (hash & 0x3ff);
5725 }
5726 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
5727 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
5728
5729 return (hash & 0xfff);
5730 }
5731
5732 /*
5733 * wm_set_filter:
5734 *
5735 * Set up the receive filter.
5736 */
5737 static void
5738 wm_set_filter(struct wm_softc *sc)
5739 {
5740 struct ethercom *ec = &sc->sc_ethercom;
5741 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
5742 struct ether_multi *enm;
5743 struct ether_multistep step;
5744 bus_addr_t mta_reg;
5745 uint32_t hash, reg, bit;
5746 int i, size;
5747
5748 if (sc->sc_type >= WM_T_82544)
5749 mta_reg = WMREG_CORDOVA_MTA;
5750 else
5751 mta_reg = WMREG_MTA;
5752
5753 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
5754
5755 if (ifp->if_flags & IFF_BROADCAST)
5756 sc->sc_rctl |= RCTL_BAM;
5757 if (ifp->if_flags & IFF_PROMISC) {
5758 sc->sc_rctl |= RCTL_UPE;
5759 goto allmulti;
5760 }
5761
5762 /*
5763 * Set the station address in the first RAL slot, and
5764 * clear the remaining slots.
5765 */
5766 if (sc->sc_type == WM_T_ICH8)
5767 size = WM_RAL_TABSIZE_ICH8 -1;
5768 else if ((sc->sc_type == WM_T_ICH9) || (sc->sc_type == WM_T_ICH10)
5769 || (sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)
5770 || (sc->sc_type == WM_T_PCH_LPT))
5771 size = WM_RAL_TABSIZE_ICH8;
5772 else if (sc->sc_type == WM_T_82575)
5773 size = WM_RAL_TABSIZE_82575;
5774 else if ((sc->sc_type == WM_T_82576) || (sc->sc_type == WM_T_82580))
5775 size = WM_RAL_TABSIZE_82576;
5776 else if (sc->sc_type == WM_T_I350)
5777 size = WM_RAL_TABSIZE_I350;
5778 else
5779 size = WM_RAL_TABSIZE;
5780 wm_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
5781 for (i = 1; i < size; i++)
5782 wm_set_ral(sc, NULL, i);
5783
5784 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
5785 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
5786 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT))
5787 size = WM_ICH8_MC_TABSIZE;
5788 else
5789 size = WM_MC_TABSIZE;
5790 /* Clear out the multicast table. */
5791 for (i = 0; i < size; i++)
5792 CSR_WRITE(sc, mta_reg + (i << 2), 0);
5793
5794 ETHER_FIRST_MULTI(step, ec, enm);
5795 while (enm != NULL) {
5796 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
5797 /*
5798 * We must listen to a range of multicast addresses.
5799 * For now, just accept all multicasts, rather than
5800 * trying to set only those filter bits needed to match
5801 * the range. (At this time, the only use of address
5802 * ranges is for IP multicast routing, for which the
5803 * range is big enough to require all bits set.)
5804 */
5805 goto allmulti;
5806 }
5807
5808 hash = wm_mchash(sc, enm->enm_addrlo);
5809
5810 reg = (hash >> 5);
5811 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
5812 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
5813 || (sc->sc_type == WM_T_PCH2)
5814 || (sc->sc_type == WM_T_PCH_LPT))
5815 reg &= 0x1f;
5816 else
5817 reg &= 0x7f;
5818 bit = hash & 0x1f;
5819
5820 hash = CSR_READ(sc, mta_reg + (reg << 2));
5821 hash |= 1U << bit;
5822
5823 /* XXX Hardware bug?? */
5824 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
5825 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
5826 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
5827 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
5828 } else
5829 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
5830
5831 ETHER_NEXT_MULTI(step, enm);
5832 }
5833
5834 ifp->if_flags &= ~IFF_ALLMULTI;
5835 goto setit;
5836
5837 allmulti:
5838 ifp->if_flags |= IFF_ALLMULTI;
5839 sc->sc_rctl |= RCTL_MPE;
5840
5841 setit:
5842 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
5843 }
5844
5845 /*
5846 * wm_tbi_mediainit:
5847 *
5848 * Initialize media for use on 1000BASE-X devices.
5849 */
5850 static void
5851 wm_tbi_mediainit(struct wm_softc *sc)
5852 {
5853 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
5854 const char *sep = "";
5855
5856 if (sc->sc_type < WM_T_82543)
5857 sc->sc_tipg = TIPG_WM_DFLT;
5858 else
5859 sc->sc_tipg = TIPG_LG_DFLT;
5860
5861 sc->sc_tbi_anegticks = 5;
5862
5863 /* Initialize our media structures */
5864 sc->sc_mii.mii_ifp = ifp;
5865
5866 sc->sc_ethercom.ec_mii = &sc->sc_mii;
5867 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
5868 wm_tbi_mediastatus);
5869
5870 /*
5871 * SWD Pins:
5872 *
5873 * 0 = Link LED (output)
5874 * 1 = Loss Of Signal (input)
5875 */
5876 sc->sc_ctrl |= CTRL_SWDPIO(0);
5877 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
5878
5879 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
5880
5881 #define ADD(ss, mm, dd) \
5882 do { \
5883 aprint_normal("%s%s", sep, ss); \
5884 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
5885 sep = ", "; \
5886 } while (/*CONSTCOND*/0)
5887
5888 aprint_normal_dev(sc->sc_dev, "");
5889 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
5890 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
5891 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
5892 aprint_normal("\n");
5893
5894 #undef ADD
5895
5896 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
5897 }
5898
5899 /*
5900 * wm_tbi_mediastatus: [ifmedia interface function]
5901 *
5902 * Get the current interface media status on a 1000BASE-X device.
5903 */
5904 static void
5905 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
5906 {
5907 struct wm_softc *sc = ifp->if_softc;
5908 uint32_t ctrl, status;
5909
5910 ifmr->ifm_status = IFM_AVALID;
5911 ifmr->ifm_active = IFM_ETHER;
5912
5913 status = CSR_READ(sc, WMREG_STATUS);
5914 if ((status & STATUS_LU) == 0) {
5915 ifmr->ifm_active |= IFM_NONE;
5916 return;
5917 }
5918
5919 ifmr->ifm_status |= IFM_ACTIVE;
5920 ifmr->ifm_active |= IFM_1000_SX;
5921 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
5922 ifmr->ifm_active |= IFM_FDX;
5923 ctrl = CSR_READ(sc, WMREG_CTRL);
5924 if (ctrl & CTRL_RFCE)
5925 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
5926 if (ctrl & CTRL_TFCE)
5927 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
5928 }
5929
5930 /*
5931 * wm_tbi_mediachange: [ifmedia interface function]
5932 *
5933 * Set hardware to newly-selected media on a 1000BASE-X device.
5934 */
5935 static int
5936 wm_tbi_mediachange(struct ifnet *ifp)
5937 {
5938 struct wm_softc *sc = ifp->if_softc;
5939 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
5940 uint32_t status;
5941 int i;
5942
5943 sc->sc_txcw = 0;
5944 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
5945 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
5946 sc->sc_txcw |= TXCW_SYM_PAUSE | TXCW_ASYM_PAUSE;
5947 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
5948 sc->sc_txcw |= TXCW_ANE;
5949 } else {
5950 /*
5951 * If autonegotiation is turned off, force link up and turn on
5952 * full duplex
5953 */
5954 sc->sc_txcw &= ~TXCW_ANE;
5955 sc->sc_ctrl |= CTRL_SLU | CTRL_FD;
5956 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
5957 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
5958 delay(1000);
5959 }
5960
5961 DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x after autoneg check\n",
5962 device_xname(sc->sc_dev),sc->sc_txcw));
5963 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
5964 delay(10000);
5965
5966 i = CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1);
5967 DPRINTF(WM_DEBUG_LINK,("%s: i = 0x%x\n", device_xname(sc->sc_dev),i));
5968
5969 /*
5970 * On 82544 chips and later, the CTRL_SWDPIN(1) bit will be set if the
5971 * optics detect a signal, 0 if they don't.
5972 */
5973 if (((i != 0) && (sc->sc_type > WM_T_82544)) || (i == 0)) {
5974 /* Have signal; wait for the link to come up. */
5975
5976 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
5977 /*
5978 * Reset the link, and let autonegotiation do its thing
5979 */
5980 sc->sc_ctrl |= CTRL_LRST;
5981 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
5982 delay(1000);
5983 sc->sc_ctrl &= ~CTRL_LRST;
5984 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
5985 delay(1000);
5986 }
5987
5988 for (i = 0; i < WM_LINKUP_TIMEOUT; i++) {
5989 delay(10000);
5990 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
5991 break;
5992 }
5993
5994 DPRINTF(WM_DEBUG_LINK,("%s: i = %d after waiting for link\n",
5995 device_xname(sc->sc_dev),i));
5996
5997 status = CSR_READ(sc, WMREG_STATUS);
5998 DPRINTF(WM_DEBUG_LINK,
5999 ("%s: status after final read = 0x%x, STATUS_LU = 0x%x\n",
6000 device_xname(sc->sc_dev),status, STATUS_LU));
6001 if (status & STATUS_LU) {
6002 /* Link is up. */
6003 DPRINTF(WM_DEBUG_LINK,
6004 ("%s: LINK: set media -> link up %s\n",
6005 device_xname(sc->sc_dev),
6006 (status & STATUS_FD) ? "FDX" : "HDX"));
6007
6008 /*
6009 * NOTE: CTRL will update TFCE and RFCE automatically,
6010 * so we should update sc->sc_ctrl
6011 */
6012 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
6013 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
6014 sc->sc_fcrtl &= ~FCRTL_XONE;
6015 if (status & STATUS_FD)
6016 sc->sc_tctl |=
6017 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
6018 else
6019 sc->sc_tctl |=
6020 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
6021 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
6022 sc->sc_fcrtl |= FCRTL_XONE;
6023 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
6024 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
6025 WMREG_OLD_FCRTL : WMREG_FCRTL,
6026 sc->sc_fcrtl);
6027 sc->sc_tbi_linkup = 1;
6028 } else {
6029 if (i == WM_LINKUP_TIMEOUT)
6030 wm_check_for_link(sc);
6031 /* Link is down. */
6032 DPRINTF(WM_DEBUG_LINK,
6033 ("%s: LINK: set media -> link down\n",
6034 device_xname(sc->sc_dev)));
6035 sc->sc_tbi_linkup = 0;
6036 }
6037 } else {
6038 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
6039 device_xname(sc->sc_dev)));
6040 sc->sc_tbi_linkup = 0;
6041 }
6042
6043 wm_tbi_set_linkled(sc);
6044
6045 return 0;
6046 }
6047
6048 /*
6049 * wm_tbi_set_linkled:
6050 *
6051 * Update the link LED on 1000BASE-X devices.
6052 */
6053 static void
6054 wm_tbi_set_linkled(struct wm_softc *sc)
6055 {
6056
6057 if (sc->sc_tbi_linkup)
6058 sc->sc_ctrl |= CTRL_SWDPIN(0);
6059 else
6060 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
6061
6062 /* 82540 or newer devices are active low */
6063 sc->sc_ctrl ^= (sc->sc_type >= WM_T_82540) ? CTRL_SWDPIN(0) : 0;
6064
6065 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
6066 }
6067
6068 /*
6069 * wm_tbi_check_link:
6070 *
6071 * Check the link on 1000BASE-X devices.
6072 */
6073 static void
6074 wm_tbi_check_link(struct wm_softc *sc)
6075 {
6076 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
6077 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
6078 uint32_t rxcw, ctrl, status;
6079
6080 status = CSR_READ(sc, WMREG_STATUS);
6081
6082 rxcw = CSR_READ(sc, WMREG_RXCW);
6083 ctrl = CSR_READ(sc, WMREG_CTRL);
6084
6085 /* set link status */
6086 if ((status & STATUS_LU) == 0) {
6087 DPRINTF(WM_DEBUG_LINK,
6088 ("%s: LINK: checklink -> down\n", device_xname(sc->sc_dev)));
6089 sc->sc_tbi_linkup = 0;
6090 } else if (sc->sc_tbi_linkup == 0) {
6091 DPRINTF(WM_DEBUG_LINK,
6092 ("%s: LINK: checklink -> up %s\n", device_xname(sc->sc_dev),
6093 (status & STATUS_FD) ? "FDX" : "HDX"));
6094 sc->sc_tbi_linkup = 1;
6095 }
6096
6097 if ((sc->sc_ethercom.ec_if.if_flags & IFF_UP)
6098 && ((status & STATUS_LU) == 0)) {
6099 sc->sc_tbi_linkup = 0;
6100 if (sc->sc_tbi_nrxcfg - sc->sc_tbi_lastnrxcfg > 100) {
6101 /* RXCFG storm! */
6102 DPRINTF(WM_DEBUG_LINK, ("RXCFG storm! (%d)\n",
6103 sc->sc_tbi_nrxcfg - sc->sc_tbi_lastnrxcfg));
6104 wm_init(ifp);
6105 ifp->if_start(ifp);
6106 } else if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
6107 /* If the timer expired, retry autonegotiation */
6108 if (++sc->sc_tbi_ticks >= sc->sc_tbi_anegticks) {
6109 DPRINTF(WM_DEBUG_LINK, ("EXPIRE\n"));
6110 sc->sc_tbi_ticks = 0;
6111 /*
6112 * Reset the link, and let autonegotiation do
6113 * its thing
6114 */
6115 sc->sc_ctrl |= CTRL_LRST;
6116 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
6117 delay(1000);
6118 sc->sc_ctrl &= ~CTRL_LRST;
6119 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
6120 delay(1000);
6121 CSR_WRITE(sc, WMREG_TXCW,
6122 sc->sc_txcw & ~TXCW_ANE);
6123 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
6124 }
6125 }
6126 }
6127
6128 wm_tbi_set_linkled(sc);
6129 }
6130
6131 /*
6132 * wm_gmii_reset:
6133 *
6134 * Reset the PHY.
6135 */
6136 static void
6137 wm_gmii_reset(struct wm_softc *sc)
6138 {
6139 uint32_t reg;
6140 int rv;
6141
6142 /* get phy semaphore */
6143 switch (sc->sc_type) {
6144 case WM_T_82571:
6145 case WM_T_82572:
6146 case WM_T_82573:
6147 case WM_T_82574:
6148 case WM_T_82583:
6149 /* XXX should get sw semaphore, too */
6150 rv = wm_get_swsm_semaphore(sc);
6151 break;
6152 case WM_T_82575:
6153 case WM_T_82576:
6154 case WM_T_82580:
6155 case WM_T_82580ER:
6156 case WM_T_I350:
6157 case WM_T_I210:
6158 case WM_T_I211:
6159 case WM_T_80003:
6160 rv = wm_get_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
6161 break;
6162 case WM_T_ICH8:
6163 case WM_T_ICH9:
6164 case WM_T_ICH10:
6165 case WM_T_PCH:
6166 case WM_T_PCH2:
6167 case WM_T_PCH_LPT:
6168 rv = wm_get_swfwhw_semaphore(sc);
6169 break;
6170 default:
6171 /* nothing to do*/
6172 rv = 0;
6173 break;
6174 }
6175 if (rv != 0) {
6176 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
6177 __func__);
6178 return;
6179 }
6180
6181 switch (sc->sc_type) {
6182 case WM_T_82542_2_0:
6183 case WM_T_82542_2_1:
6184 /* null */
6185 break;
6186 case WM_T_82543:
6187 /*
6188 * With 82543, we need to force speed and duplex on the MAC
6189 * equal to what the PHY speed and duplex configuration is.
6190 * In addition, we need to perform a hardware reset on the PHY
6191 * to take it out of reset.
6192 */
6193 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
6194 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
6195
6196 /* The PHY reset pin is active-low. */
6197 reg = CSR_READ(sc, WMREG_CTRL_EXT);
6198 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
6199 CTRL_EXT_SWDPIN(4));
6200 reg |= CTRL_EXT_SWDPIO(4);
6201
6202 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
6203 delay(10*1000);
6204
6205 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
6206 delay(150);
6207 #if 0
6208 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
6209 #endif
6210 delay(20*1000); /* XXX extra delay to get PHY ID? */
6211 break;
6212 case WM_T_82544: /* reset 10000us */
6213 case WM_T_82540:
6214 case WM_T_82545:
6215 case WM_T_82545_3:
6216 case WM_T_82546:
6217 case WM_T_82546_3:
6218 case WM_T_82541:
6219 case WM_T_82541_2:
6220 case WM_T_82547:
6221 case WM_T_82547_2:
6222 case WM_T_82571: /* reset 100us */
6223 case WM_T_82572:
6224 case WM_T_82573:
6225 case WM_T_82574:
6226 case WM_T_82575:
6227 case WM_T_82576:
6228 case WM_T_82580:
6229 case WM_T_82580ER:
6230 case WM_T_I350:
6231 case WM_T_I210:
6232 case WM_T_I211:
6233 case WM_T_82583:
6234 case WM_T_80003:
6235 /* generic reset */
6236 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
6237 delay(20000);
6238 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
6239 delay(20000);
6240
6241 if ((sc->sc_type == WM_T_82541)
6242 || (sc->sc_type == WM_T_82541_2)
6243 || (sc->sc_type == WM_T_82547)
6244 || (sc->sc_type == WM_T_82547_2)) {
6245 /* workaround for igp are done in igp_reset() */
6246 /* XXX add code to set LED after phy reset */
6247 }
6248 break;
6249 case WM_T_ICH8:
6250 case WM_T_ICH9:
6251 case WM_T_ICH10:
6252 case WM_T_PCH:
6253 case WM_T_PCH2:
6254 case WM_T_PCH_LPT:
6255 /* generic reset */
6256 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
6257 delay(100);
6258 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
6259 delay(150);
6260 break;
6261 default:
6262 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
6263 __func__);
6264 break;
6265 }
6266
6267 /* release PHY semaphore */
6268 switch (sc->sc_type) {
6269 case WM_T_82571:
6270 case WM_T_82572:
6271 case WM_T_82573:
6272 case WM_T_82574:
6273 case WM_T_82583:
6274 /* XXX should put sw semaphore, too */
6275 wm_put_swsm_semaphore(sc);
6276 break;
6277 case WM_T_82575:
6278 case WM_T_82576:
6279 case WM_T_82580:
6280 case WM_T_82580ER:
6281 case WM_T_I350:
6282 case WM_T_I210:
6283 case WM_T_I211:
6284 case WM_T_80003:
6285 wm_put_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
6286 break;
6287 case WM_T_ICH8:
6288 case WM_T_ICH9:
6289 case WM_T_ICH10:
6290 case WM_T_PCH:
6291 case WM_T_PCH2:
6292 case WM_T_PCH_LPT:
6293 wm_put_swfwhw_semaphore(sc);
6294 break;
6295 default:
6296 /* nothing to do*/
6297 rv = 0;
6298 break;
6299 }
6300
6301 /* get_cfg_done */
6302 wm_get_cfg_done(sc);
6303
6304 /* extra setup */
6305 switch (sc->sc_type) {
6306 case WM_T_82542_2_0:
6307 case WM_T_82542_2_1:
6308 case WM_T_82543:
6309 case WM_T_82544:
6310 case WM_T_82540:
6311 case WM_T_82545:
6312 case WM_T_82545_3:
6313 case WM_T_82546:
6314 case WM_T_82546_3:
6315 case WM_T_82541_2:
6316 case WM_T_82547_2:
6317 case WM_T_82571:
6318 case WM_T_82572:
6319 case WM_T_82573:
6320 case WM_T_82574:
6321 case WM_T_82575:
6322 case WM_T_82576:
6323 case WM_T_82580:
6324 case WM_T_82580ER:
6325 case WM_T_I350:
6326 case WM_T_I210:
6327 case WM_T_I211:
6328 case WM_T_82583:
6329 case WM_T_80003:
6330 /* null */
6331 break;
6332 case WM_T_82541:
6333 case WM_T_82547:
6334 /* XXX Configure actively LED after PHY reset */
6335 break;
6336 case WM_T_ICH8:
6337 case WM_T_ICH9:
6338 case WM_T_ICH10:
6339 case WM_T_PCH:
6340 case WM_T_PCH2:
6341 case WM_T_PCH_LPT:
6342 /* Allow time for h/w to get to a quiescent state afer reset */
6343 delay(10*1000);
6344
6345 if (sc->sc_type == WM_T_PCH)
6346 wm_hv_phy_workaround_ich8lan(sc);
6347
6348 if (sc->sc_type == WM_T_PCH2)
6349 wm_lv_phy_workaround_ich8lan(sc);
6350
6351 if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)) {
6352 /*
6353 * dummy read to clear the phy wakeup bit after lcd
6354 * reset
6355 */
6356 reg = wm_gmii_hv_readreg(sc->sc_dev, 1, BM_WUC);
6357 }
6358
6359 /*
6360 * XXX Configure the LCD with th extended configuration region
6361 * in NVM
6362 */
6363
6364 /* Configure the LCD with the OEM bits in NVM */
6365 if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)
6366 || (sc->sc_type == WM_T_PCH_LPT)) {
6367 /*
6368 * Disable LPLU.
6369 * XXX It seems that 82567 has LPLU, too.
6370 */
6371 reg = wm_gmii_hv_readreg(sc->sc_dev, 1, HV_OEM_BITS);
6372 reg &= ~(HV_OEM_BITS_A1KDIS| HV_OEM_BITS_LPLU);
6373 reg |= HV_OEM_BITS_ANEGNOW;
6374 wm_gmii_hv_writereg(sc->sc_dev, 1, HV_OEM_BITS, reg);
6375 }
6376 break;
6377 default:
6378 panic("%s: unknown type\n", __func__);
6379 break;
6380 }
6381 }
6382
6383 /*
6384 * wm_gmii_mediainit:
6385 *
6386 * Initialize media for use on 1000BASE-T devices.
6387 */
6388 static void
6389 wm_gmii_mediainit(struct wm_softc *sc, pci_product_id_t prodid)
6390 {
6391 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
6392 struct mii_data *mii = &sc->sc_mii;
6393
6394 /* We have MII. */
6395 sc->sc_flags |= WM_F_HAS_MII;
6396
6397 if (sc->sc_type == WM_T_80003)
6398 sc->sc_tipg = TIPG_1000T_80003_DFLT;
6399 else
6400 sc->sc_tipg = TIPG_1000T_DFLT;
6401
6402 /*
6403 * Let the chip set speed/duplex on its own based on
6404 * signals from the PHY.
6405 * XXXbouyer - I'm not sure this is right for the 80003,
6406 * the em driver only sets CTRL_SLU here - but it seems to work.
6407 */
6408 sc->sc_ctrl |= CTRL_SLU;
6409 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
6410
6411 /* Initialize our media structures and probe the GMII. */
6412 mii->mii_ifp = ifp;
6413
6414 /*
6415 * Determine the PHY access method.
6416 *
6417 * For SGMII, use SGMII specific method.
6418 *
6419 * For some devices, we can determine the PHY access method
6420 * from sc_type.
6421 *
6422 * For ICH8 variants, it's difficult to detemine the PHY access
6423 * method by sc_type, so use the PCI product ID for some devices.
6424 * For other ICH8 variants, try to use igp's method. If the PHY
6425 * can't detect, then use bm's method.
6426 */
6427 switch (prodid) {
6428 case PCI_PRODUCT_INTEL_PCH_M_LM:
6429 case PCI_PRODUCT_INTEL_PCH_M_LC:
6430 /* 82577 */
6431 sc->sc_phytype = WMPHY_82577;
6432 mii->mii_readreg = wm_gmii_hv_readreg;
6433 mii->mii_writereg = wm_gmii_hv_writereg;
6434 break;
6435 case PCI_PRODUCT_INTEL_PCH_D_DM:
6436 case PCI_PRODUCT_INTEL_PCH_D_DC:
6437 /* 82578 */
6438 sc->sc_phytype = WMPHY_82578;
6439 mii->mii_readreg = wm_gmii_hv_readreg;
6440 mii->mii_writereg = wm_gmii_hv_writereg;
6441 break;
6442 case PCI_PRODUCT_INTEL_PCH2_LV_LM:
6443 case PCI_PRODUCT_INTEL_PCH2_LV_V:
6444 /* 82579 */
6445 sc->sc_phytype = WMPHY_82579;
6446 mii->mii_readreg = wm_gmii_hv_readreg;
6447 mii->mii_writereg = wm_gmii_hv_writereg;
6448 break;
6449 case PCI_PRODUCT_INTEL_I217_LM:
6450 case PCI_PRODUCT_INTEL_I217_V:
6451 case PCI_PRODUCT_INTEL_I218_LM:
6452 case PCI_PRODUCT_INTEL_I218_V:
6453 /* I21[78] */
6454 mii->mii_readreg = wm_gmii_hv_readreg;
6455 mii->mii_writereg = wm_gmii_hv_writereg;
6456 break;
6457 case PCI_PRODUCT_INTEL_82801I_BM:
6458 case PCI_PRODUCT_INTEL_82801J_R_BM_LM:
6459 case PCI_PRODUCT_INTEL_82801J_R_BM_LF:
6460 case PCI_PRODUCT_INTEL_82801J_D_BM_LM:
6461 case PCI_PRODUCT_INTEL_82801J_D_BM_LF:
6462 case PCI_PRODUCT_INTEL_82801J_R_BM_V:
6463 /* 82567 */
6464 sc->sc_phytype = WMPHY_BM;
6465 mii->mii_readreg = wm_gmii_bm_readreg;
6466 mii->mii_writereg = wm_gmii_bm_writereg;
6467 break;
6468 default:
6469 if ((sc->sc_flags & WM_F_SGMII) != 0) {
6470 mii->mii_readreg = wm_sgmii_readreg;
6471 mii->mii_writereg = wm_sgmii_writereg;
6472 } else if (sc->sc_type >= WM_T_80003) {
6473 mii->mii_readreg = wm_gmii_i80003_readreg;
6474 mii->mii_writereg = wm_gmii_i80003_writereg;
6475 } else if (sc->sc_type >= WM_T_I210) {
6476 mii->mii_readreg = wm_gmii_i82544_readreg;
6477 mii->mii_writereg = wm_gmii_i82544_writereg;
6478 } else if (sc->sc_type >= WM_T_82580) {
6479 sc->sc_phytype = WMPHY_82580;
6480 mii->mii_readreg = wm_gmii_82580_readreg;
6481 mii->mii_writereg = wm_gmii_82580_writereg;
6482 } else if (sc->sc_type >= WM_T_82544) {
6483 mii->mii_readreg = wm_gmii_i82544_readreg;
6484 mii->mii_writereg = wm_gmii_i82544_writereg;
6485 } else {
6486 mii->mii_readreg = wm_gmii_i82543_readreg;
6487 mii->mii_writereg = wm_gmii_i82543_writereg;
6488 }
6489 break;
6490 }
6491 mii->mii_statchg = wm_gmii_statchg;
6492
6493 wm_gmii_reset(sc);
6494
6495 sc->sc_ethercom.ec_mii = &sc->sc_mii;
6496 ifmedia_init(&mii->mii_media, IFM_IMASK, wm_gmii_mediachange,
6497 wm_gmii_mediastatus);
6498
6499 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
6500 || (sc->sc_type == WM_T_82580) || (sc->sc_type == WM_T_82580ER)
6501 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I210)
6502 || (sc->sc_type == WM_T_I211)) {
6503 if ((sc->sc_flags & WM_F_SGMII) == 0) {
6504 /* Attach only one port */
6505 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, 1,
6506 MII_OFFSET_ANY, MIIF_DOPAUSE);
6507 } else {
6508 int i;
6509 uint32_t ctrl_ext;
6510
6511 /* Power on sgmii phy if it is disabled */
6512 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
6513 CSR_WRITE(sc, WMREG_CTRL_EXT,
6514 ctrl_ext &~ CTRL_EXT_SWDPIN(3));
6515 CSR_WRITE_FLUSH(sc);
6516 delay(300*1000); /* XXX too long */
6517
6518 /* from 1 to 8 */
6519 for (i = 1; i < 8; i++)
6520 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff,
6521 i, MII_OFFSET_ANY, MIIF_DOPAUSE);
6522
6523 /* restore previous sfp cage power state */
6524 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
6525 }
6526 } else {
6527 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
6528 MII_OFFSET_ANY, MIIF_DOPAUSE);
6529 }
6530
6531 /*
6532 * If the MAC is PCH2 or PCH_LPT and failed to detect MII PHY, call
6533 * wm_set_mdio_slow_mode_hv() for a workaround and retry.
6534 */
6535 if (((sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) &&
6536 (LIST_FIRST(&mii->mii_phys) == NULL)) {
6537 wm_set_mdio_slow_mode_hv(sc);
6538 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
6539 MII_OFFSET_ANY, MIIF_DOPAUSE);
6540 }
6541
6542 /*
6543 * (For ICH8 variants)
6544 * If PHY detection failed, use BM's r/w function and retry.
6545 */
6546 if (LIST_FIRST(&mii->mii_phys) == NULL) {
6547 /* if failed, retry with *_bm_* */
6548 mii->mii_readreg = wm_gmii_bm_readreg;
6549 mii->mii_writereg = wm_gmii_bm_writereg;
6550
6551 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
6552 MII_OFFSET_ANY, MIIF_DOPAUSE);
6553 }
6554
6555 if (LIST_FIRST(&mii->mii_phys) == NULL) {
6556 /* Any PHY wasn't find */
6557 ifmedia_add(&mii->mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
6558 ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_NONE);
6559 sc->sc_phytype = WMPHY_NONE;
6560 } else {
6561 /*
6562 * PHY Found!
6563 * Check PHY type.
6564 */
6565 uint32_t model;
6566 struct mii_softc *child;
6567
6568 child = LIST_FIRST(&mii->mii_phys);
6569 if (device_is_a(child->mii_dev, "igphy")) {
6570 struct igphy_softc *isc = (struct igphy_softc *)child;
6571
6572 model = isc->sc_mii.mii_mpd_model;
6573 if (model == MII_MODEL_yyINTEL_I82566)
6574 sc->sc_phytype = WMPHY_IGP_3;
6575 }
6576
6577 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
6578 }
6579 }
6580
6581 /*
6582 * wm_gmii_mediastatus: [ifmedia interface function]
6583 *
6584 * Get the current interface media status on a 1000BASE-T device.
6585 */
6586 static void
6587 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
6588 {
6589 struct wm_softc *sc = ifp->if_softc;
6590
6591 ether_mediastatus(ifp, ifmr);
6592 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
6593 | sc->sc_flowflags;
6594 }
6595
6596 /*
6597 * wm_gmii_mediachange: [ifmedia interface function]
6598 *
6599 * Set hardware to newly-selected media on a 1000BASE-T device.
6600 */
6601 static int
6602 wm_gmii_mediachange(struct ifnet *ifp)
6603 {
6604 struct wm_softc *sc = ifp->if_softc;
6605 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
6606 int rc;
6607
6608 if ((ifp->if_flags & IFF_UP) == 0)
6609 return 0;
6610
6611 sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
6612 sc->sc_ctrl |= CTRL_SLU;
6613 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
6614 || (sc->sc_type > WM_T_82543)) {
6615 sc->sc_ctrl &= ~(CTRL_FRCSPD | CTRL_FRCFDX);
6616 } else {
6617 sc->sc_ctrl &= ~CTRL_ASDE;
6618 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
6619 if (ife->ifm_media & IFM_FDX)
6620 sc->sc_ctrl |= CTRL_FD;
6621 switch (IFM_SUBTYPE(ife->ifm_media)) {
6622 case IFM_10_T:
6623 sc->sc_ctrl |= CTRL_SPEED_10;
6624 break;
6625 case IFM_100_TX:
6626 sc->sc_ctrl |= CTRL_SPEED_100;
6627 break;
6628 case IFM_1000_T:
6629 sc->sc_ctrl |= CTRL_SPEED_1000;
6630 break;
6631 default:
6632 panic("wm_gmii_mediachange: bad media 0x%x",
6633 ife->ifm_media);
6634 }
6635 }
6636 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
6637 if (sc->sc_type <= WM_T_82543)
6638 wm_gmii_reset(sc);
6639
6640 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
6641 return 0;
6642 return rc;
6643 }
6644
6645 #define MDI_IO CTRL_SWDPIN(2)
6646 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
6647 #define MDI_CLK CTRL_SWDPIN(3)
6648
6649 static void
6650 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
6651 {
6652 uint32_t i, v;
6653
6654 v = CSR_READ(sc, WMREG_CTRL);
6655 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
6656 v |= MDI_DIR | CTRL_SWDPIO(3);
6657
6658 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
6659 if (data & i)
6660 v |= MDI_IO;
6661 else
6662 v &= ~MDI_IO;
6663 CSR_WRITE(sc, WMREG_CTRL, v);
6664 delay(10);
6665 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
6666 delay(10);
6667 CSR_WRITE(sc, WMREG_CTRL, v);
6668 delay(10);
6669 }
6670 }
6671
6672 static uint32_t
6673 i82543_mii_recvbits(struct wm_softc *sc)
6674 {
6675 uint32_t v, i, data = 0;
6676
6677 v = CSR_READ(sc, WMREG_CTRL);
6678 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
6679 v |= CTRL_SWDPIO(3);
6680
6681 CSR_WRITE(sc, WMREG_CTRL, v);
6682 delay(10);
6683 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
6684 delay(10);
6685 CSR_WRITE(sc, WMREG_CTRL, v);
6686 delay(10);
6687
6688 for (i = 0; i < 16; i++) {
6689 data <<= 1;
6690 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
6691 delay(10);
6692 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
6693 data |= 1;
6694 CSR_WRITE(sc, WMREG_CTRL, v);
6695 delay(10);
6696 }
6697
6698 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
6699 delay(10);
6700 CSR_WRITE(sc, WMREG_CTRL, v);
6701 delay(10);
6702
6703 return data;
6704 }
6705
6706 #undef MDI_IO
6707 #undef MDI_DIR
6708 #undef MDI_CLK
6709
6710 /*
6711 * wm_gmii_i82543_readreg: [mii interface function]
6712 *
6713 * Read a PHY register on the GMII (i82543 version).
6714 */
6715 static int
6716 wm_gmii_i82543_readreg(device_t self, int phy, int reg)
6717 {
6718 struct wm_softc *sc = device_private(self);
6719 int rv;
6720
6721 i82543_mii_sendbits(sc, 0xffffffffU, 32);
6722 i82543_mii_sendbits(sc, reg | (phy << 5) |
6723 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
6724 rv = i82543_mii_recvbits(sc) & 0xffff;
6725
6726 DPRINTF(WM_DEBUG_GMII,
6727 ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
6728 device_xname(sc->sc_dev), phy, reg, rv));
6729
6730 return rv;
6731 }
6732
6733 /*
6734 * wm_gmii_i82543_writereg: [mii interface function]
6735 *
6736 * Write a PHY register on the GMII (i82543 version).
6737 */
6738 static void
6739 wm_gmii_i82543_writereg(device_t self, int phy, int reg, int val)
6740 {
6741 struct wm_softc *sc = device_private(self);
6742
6743 i82543_mii_sendbits(sc, 0xffffffffU, 32);
6744 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
6745 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
6746 (MII_COMMAND_START << 30), 32);
6747 }
6748
6749 /*
6750 * wm_gmii_i82544_readreg: [mii interface function]
6751 *
6752 * Read a PHY register on the GMII.
6753 */
6754 static int
6755 wm_gmii_i82544_readreg(device_t self, int phy, int reg)
6756 {
6757 struct wm_softc *sc = device_private(self);
6758 uint32_t mdic = 0;
6759 int i, rv;
6760
6761 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
6762 MDIC_REGADD(reg));
6763
6764 for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) {
6765 mdic = CSR_READ(sc, WMREG_MDIC);
6766 if (mdic & MDIC_READY)
6767 break;
6768 delay(50);
6769 }
6770
6771 if ((mdic & MDIC_READY) == 0) {
6772 log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
6773 device_xname(sc->sc_dev), phy, reg);
6774 rv = 0;
6775 } else if (mdic & MDIC_E) {
6776 #if 0 /* This is normal if no PHY is present. */
6777 log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
6778 device_xname(sc->sc_dev), phy, reg);
6779 #endif
6780 rv = 0;
6781 } else {
6782 rv = MDIC_DATA(mdic);
6783 if (rv == 0xffff)
6784 rv = 0;
6785 }
6786
6787 return rv;
6788 }
6789
6790 /*
6791 * wm_gmii_i82544_writereg: [mii interface function]
6792 *
6793 * Write a PHY register on the GMII.
6794 */
6795 static void
6796 wm_gmii_i82544_writereg(device_t self, int phy, int reg, int val)
6797 {
6798 struct wm_softc *sc = device_private(self);
6799 uint32_t mdic = 0;
6800 int i;
6801
6802 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
6803 MDIC_REGADD(reg) | MDIC_DATA(val));
6804
6805 for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) {
6806 mdic = CSR_READ(sc, WMREG_MDIC);
6807 if (mdic & MDIC_READY)
6808 break;
6809 delay(50);
6810 }
6811
6812 if ((mdic & MDIC_READY) == 0)
6813 log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
6814 device_xname(sc->sc_dev), phy, reg);
6815 else if (mdic & MDIC_E)
6816 log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
6817 device_xname(sc->sc_dev), phy, reg);
6818 }
6819
6820 /*
6821 * wm_gmii_i80003_readreg: [mii interface function]
6822 *
6823 * Read a PHY register on the kumeran
6824 * This could be handled by the PHY layer if we didn't have to lock the
6825 * ressource ...
6826 */
6827 static int
6828 wm_gmii_i80003_readreg(device_t self, int phy, int reg)
6829 {
6830 struct wm_softc *sc = device_private(self);
6831 int sem;
6832 int rv;
6833
6834 if (phy != 1) /* only one PHY on kumeran bus */
6835 return 0;
6836
6837 sem = swfwphysem[sc->sc_funcid];
6838 if (wm_get_swfw_semaphore(sc, sem)) {
6839 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
6840 __func__);
6841 return 0;
6842 }
6843
6844 if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
6845 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
6846 reg >> GG82563_PAGE_SHIFT);
6847 } else {
6848 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
6849 reg >> GG82563_PAGE_SHIFT);
6850 }
6851 /* Wait more 200us for a bug of the ready bit in the MDIC register */
6852 delay(200);
6853 rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
6854 delay(200);
6855
6856 wm_put_swfw_semaphore(sc, sem);
6857 return rv;
6858 }
6859
6860 /*
6861 * wm_gmii_i80003_writereg: [mii interface function]
6862 *
6863 * Write a PHY register on the kumeran.
6864 * This could be handled by the PHY layer if we didn't have to lock the
6865 * ressource ...
6866 */
6867 static void
6868 wm_gmii_i80003_writereg(device_t self, int phy, int reg, int val)
6869 {
6870 struct wm_softc *sc = device_private(self);
6871 int sem;
6872
6873 if (phy != 1) /* only one PHY on kumeran bus */
6874 return;
6875
6876 sem = swfwphysem[sc->sc_funcid];
6877 if (wm_get_swfw_semaphore(sc, sem)) {
6878 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
6879 __func__);
6880 return;
6881 }
6882
6883 if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
6884 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
6885 reg >> GG82563_PAGE_SHIFT);
6886 } else {
6887 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
6888 reg >> GG82563_PAGE_SHIFT);
6889 }
6890 /* Wait more 200us for a bug of the ready bit in the MDIC register */
6891 delay(200);
6892 wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
6893 delay(200);
6894
6895 wm_put_swfw_semaphore(sc, sem);
6896 }
6897
6898 /*
6899 * wm_gmii_bm_readreg: [mii interface function]
6900 *
6901 * Read a PHY register on the kumeran
6902 * This could be handled by the PHY layer if we didn't have to lock the
6903 * ressource ...
6904 */
6905 static int
6906 wm_gmii_bm_readreg(device_t self, int phy, int reg)
6907 {
6908 struct wm_softc *sc = device_private(self);
6909 int sem;
6910 int rv;
6911
6912 sem = swfwphysem[sc->sc_funcid];
6913 if (wm_get_swfw_semaphore(sc, sem)) {
6914 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
6915 __func__);
6916 return 0;
6917 }
6918
6919 if (reg > BME1000_MAX_MULTI_PAGE_REG) {
6920 if (phy == 1)
6921 wm_gmii_i82544_writereg(self, phy, MII_IGPHY_PAGE_SELECT,
6922 reg);
6923 else
6924 wm_gmii_i82544_writereg(self, phy,
6925 GG82563_PHY_PAGE_SELECT,
6926 reg >> GG82563_PAGE_SHIFT);
6927 }
6928
6929 rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
6930 wm_put_swfw_semaphore(sc, sem);
6931 return rv;
6932 }
6933
6934 /*
6935 * wm_gmii_bm_writereg: [mii interface function]
6936 *
6937 * Write a PHY register on the kumeran.
6938 * This could be handled by the PHY layer if we didn't have to lock the
6939 * ressource ...
6940 */
6941 static void
6942 wm_gmii_bm_writereg(device_t self, int phy, int reg, int val)
6943 {
6944 struct wm_softc *sc = device_private(self);
6945 int sem;
6946
6947 sem = swfwphysem[sc->sc_funcid];
6948 if (wm_get_swfw_semaphore(sc, sem)) {
6949 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
6950 __func__);
6951 return;
6952 }
6953
6954 if (reg > BME1000_MAX_MULTI_PAGE_REG) {
6955 if (phy == 1)
6956 wm_gmii_i82544_writereg(self, phy, MII_IGPHY_PAGE_SELECT,
6957 reg);
6958 else
6959 wm_gmii_i82544_writereg(self, phy,
6960 GG82563_PHY_PAGE_SELECT,
6961 reg >> GG82563_PAGE_SHIFT);
6962 }
6963
6964 wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
6965 wm_put_swfw_semaphore(sc, sem);
6966 }
6967
6968 static void
6969 wm_access_phy_wakeup_reg_bm(device_t self, int offset, int16_t *val, int rd)
6970 {
6971 struct wm_softc *sc = device_private(self);
6972 uint16_t regnum = BM_PHY_REG_NUM(offset);
6973 uint16_t wuce;
6974
6975 /* XXX Gig must be disabled for MDIO accesses to page 800 */
6976 if (sc->sc_type == WM_T_PCH) {
6977 /* XXX e1000 driver do nothing... why? */
6978 }
6979
6980 /* Set page 769 */
6981 wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
6982 BM_WUC_ENABLE_PAGE << BME1000_PAGE_SHIFT);
6983
6984 wuce = wm_gmii_i82544_readreg(self, 1, BM_WUC_ENABLE_REG);
6985
6986 wuce &= ~BM_WUC_HOST_WU_BIT;
6987 wm_gmii_i82544_writereg(self, 1, BM_WUC_ENABLE_REG,
6988 wuce | BM_WUC_ENABLE_BIT);
6989
6990 /* Select page 800 */
6991 wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
6992 BM_WUC_PAGE << BME1000_PAGE_SHIFT);
6993
6994 /* Write page 800 */
6995 wm_gmii_i82544_writereg(self, 1, BM_WUC_ADDRESS_OPCODE, regnum);
6996
6997 if (rd)
6998 *val = wm_gmii_i82544_readreg(self, 1, BM_WUC_DATA_OPCODE);
6999 else
7000 wm_gmii_i82544_writereg(self, 1, BM_WUC_DATA_OPCODE, *val);
7001
7002 /* Set page 769 */
7003 wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
7004 BM_WUC_ENABLE_PAGE << BME1000_PAGE_SHIFT);
7005
7006 wm_gmii_i82544_writereg(self, 1, BM_WUC_ENABLE_REG, wuce);
7007 }
7008
7009 /*
7010 * wm_gmii_hv_readreg: [mii interface function]
7011 *
7012 * Read a PHY register on the kumeran
7013 * This could be handled by the PHY layer if we didn't have to lock the
7014 * ressource ...
7015 */
7016 static int
7017 wm_gmii_hv_readreg(device_t self, int phy, int reg)
7018 {
7019 struct wm_softc *sc = device_private(self);
7020 uint16_t page = BM_PHY_REG_PAGE(reg);
7021 uint16_t regnum = BM_PHY_REG_NUM(reg);
7022 uint16_t val;
7023 int rv;
7024
7025 if (wm_get_swfwhw_semaphore(sc)) {
7026 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
7027 __func__);
7028 return 0;
7029 }
7030
7031 /* XXX Workaround failure in MDIO access while cable is disconnected */
7032 if (sc->sc_phytype == WMPHY_82577) {
7033 /* XXX must write */
7034 }
7035
7036 /* Page 800 works differently than the rest so it has its own func */
7037 if (page == BM_WUC_PAGE) {
7038 wm_access_phy_wakeup_reg_bm(self, reg, &val, 1);
7039 return val;
7040 }
7041
7042 /*
7043 * Lower than page 768 works differently than the rest so it has its
7044 * own func
7045 */
7046 if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) {
7047 printf("gmii_hv_readreg!!!\n");
7048 return 0;
7049 }
7050
7051 if (regnum > BME1000_MAX_MULTI_PAGE_REG) {
7052 wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
7053 page << BME1000_PAGE_SHIFT);
7054 }
7055
7056 rv = wm_gmii_i82544_readreg(self, phy, regnum & IGPHY_MAXREGADDR);
7057 wm_put_swfwhw_semaphore(sc);
7058 return rv;
7059 }
7060
7061 /*
7062 * wm_gmii_hv_writereg: [mii interface function]
7063 *
7064 * Write a PHY register on the kumeran.
7065 * This could be handled by the PHY layer if we didn't have to lock the
7066 * ressource ...
7067 */
7068 static void
7069 wm_gmii_hv_writereg(device_t self, int phy, int reg, int val)
7070 {
7071 struct wm_softc *sc = device_private(self);
7072 uint16_t page = BM_PHY_REG_PAGE(reg);
7073 uint16_t regnum = BM_PHY_REG_NUM(reg);
7074
7075 if (wm_get_swfwhw_semaphore(sc)) {
7076 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
7077 __func__);
7078 return;
7079 }
7080
7081 /* XXX Workaround failure in MDIO access while cable is disconnected */
7082
7083 /* Page 800 works differently than the rest so it has its own func */
7084 if (page == BM_WUC_PAGE) {
7085 uint16_t tmp;
7086
7087 tmp = val;
7088 wm_access_phy_wakeup_reg_bm(self, reg, &tmp, 0);
7089 return;
7090 }
7091
7092 /*
7093 * Lower than page 768 works differently than the rest so it has its
7094 * own func
7095 */
7096 if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) {
7097 printf("gmii_hv_writereg!!!\n");
7098 return;
7099 }
7100
7101 /*
7102 * XXX Workaround MDIO accesses being disabled after entering IEEE
7103 * Power Down (whenever bit 11 of the PHY control register is set)
7104 */
7105
7106 if (regnum > BME1000_MAX_MULTI_PAGE_REG) {
7107 wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
7108 page << BME1000_PAGE_SHIFT);
7109 }
7110
7111 wm_gmii_i82544_writereg(self, phy, regnum & IGPHY_MAXREGADDR, val);
7112 wm_put_swfwhw_semaphore(sc);
7113 }
7114
7115 /*
7116 * wm_sgmii_readreg: [mii interface function]
7117 *
7118 * Read a PHY register on the SGMII
7119 * This could be handled by the PHY layer if we didn't have to lock the
7120 * ressource ...
7121 */
7122 static int
7123 wm_sgmii_readreg(device_t self, int phy, int reg)
7124 {
7125 struct wm_softc *sc = device_private(self);
7126 uint32_t i2ccmd;
7127 int i, rv;
7128
7129 if (wm_get_swfw_semaphore(sc, swfwphysem[sc->sc_funcid])) {
7130 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
7131 __func__);
7132 return 0;
7133 }
7134
7135 i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT)
7136 | (phy << I2CCMD_PHY_ADDR_SHIFT)
7137 | I2CCMD_OPCODE_READ;
7138 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
7139
7140 /* Poll the ready bit */
7141 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
7142 delay(50);
7143 i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
7144 if (i2ccmd & I2CCMD_READY)
7145 break;
7146 }
7147 if ((i2ccmd & I2CCMD_READY) == 0)
7148 aprint_error_dev(sc->sc_dev, "I2CCMD Read did not complete\n");
7149 if ((i2ccmd & I2CCMD_ERROR) != 0)
7150 aprint_error_dev(sc->sc_dev, "I2CCMD Error bit set\n");
7151
7152 rv = ((i2ccmd >> 8) & 0x00ff) | ((i2ccmd << 8) & 0xff00);
7153
7154 wm_put_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
7155 return rv;
7156 }
7157
7158 /*
7159 * wm_sgmii_writereg: [mii interface function]
7160 *
7161 * Write a PHY register on the SGMII.
7162 * This could be handled by the PHY layer if we didn't have to lock the
7163 * ressource ...
7164 */
7165 static void
7166 wm_sgmii_writereg(device_t self, int phy, int reg, int val)
7167 {
7168 struct wm_softc *sc = device_private(self);
7169 uint32_t i2ccmd;
7170 int i;
7171
7172 if (wm_get_swfw_semaphore(sc, swfwphysem[sc->sc_funcid])) {
7173 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
7174 __func__);
7175 return;
7176 }
7177
7178 i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT)
7179 | (phy << I2CCMD_PHY_ADDR_SHIFT)
7180 | I2CCMD_OPCODE_WRITE;
7181 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
7182
7183 /* Poll the ready bit */
7184 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
7185 delay(50);
7186 i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
7187 if (i2ccmd & I2CCMD_READY)
7188 break;
7189 }
7190 if ((i2ccmd & I2CCMD_READY) == 0)
7191 aprint_error_dev(sc->sc_dev, "I2CCMD Write did not complete\n");
7192 if ((i2ccmd & I2CCMD_ERROR) != 0)
7193 aprint_error_dev(sc->sc_dev, "I2CCMD Error bit set\n");
7194
7195 wm_put_swfw_semaphore(sc, SWFW_PHY0_SM);
7196 }
7197
7198 /*
7199 * wm_gmii_82580_readreg: [mii interface function]
7200 *
7201 * Read a PHY register on the 82580 and I350.
7202 * This could be handled by the PHY layer if we didn't have to lock the
7203 * ressource ...
7204 */
7205 static int
7206 wm_gmii_82580_readreg(device_t self, int phy, int reg)
7207 {
7208 struct wm_softc *sc = device_private(self);
7209 int sem;
7210 int rv;
7211
7212 sem = swfwphysem[sc->sc_funcid];
7213 if (wm_get_swfw_semaphore(sc, sem)) {
7214 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
7215 __func__);
7216 return 0;
7217 }
7218
7219 rv = wm_gmii_i82544_readreg(self, phy, reg);
7220
7221 wm_put_swfw_semaphore(sc, sem);
7222 return rv;
7223 }
7224
7225 /*
7226 * wm_gmii_82580_writereg: [mii interface function]
7227 *
7228 * Write a PHY register on the 82580 and I350.
7229 * This could be handled by the PHY layer if we didn't have to lock the
7230 * ressource ...
7231 */
7232 static void
7233 wm_gmii_82580_writereg(device_t self, int phy, int reg, int val)
7234 {
7235 struct wm_softc *sc = device_private(self);
7236 int sem;
7237
7238 sem = swfwphysem[sc->sc_funcid];
7239 if (wm_get_swfw_semaphore(sc, sem)) {
7240 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
7241 __func__);
7242 return;
7243 }
7244
7245 wm_gmii_i82544_writereg(self, phy, reg, val);
7246
7247 wm_put_swfw_semaphore(sc, sem);
7248 }
7249
7250 /*
7251 * wm_gmii_statchg: [mii interface function]
7252 *
7253 * Callback from MII layer when media changes.
7254 */
7255 static void
7256 wm_gmii_statchg(struct ifnet *ifp)
7257 {
7258 struct wm_softc *sc = ifp->if_softc;
7259 struct mii_data *mii = &sc->sc_mii;
7260
7261 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
7262 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
7263 sc->sc_fcrtl &= ~FCRTL_XONE;
7264
7265 /*
7266 * Get flow control negotiation result.
7267 */
7268 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
7269 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
7270 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
7271 mii->mii_media_active &= ~IFM_ETH_FMASK;
7272 }
7273
7274 if (sc->sc_flowflags & IFM_FLOW) {
7275 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
7276 sc->sc_ctrl |= CTRL_TFCE;
7277 sc->sc_fcrtl |= FCRTL_XONE;
7278 }
7279 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
7280 sc->sc_ctrl |= CTRL_RFCE;
7281 }
7282
7283 if (sc->sc_mii.mii_media_active & IFM_FDX) {
7284 DPRINTF(WM_DEBUG_LINK,
7285 ("%s: LINK: statchg: FDX\n", ifp->if_xname));
7286 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
7287 } else {
7288 DPRINTF(WM_DEBUG_LINK,
7289 ("%s: LINK: statchg: HDX\n", ifp->if_xname));
7290 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
7291 }
7292
7293 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
7294 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
7295 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
7296 : WMREG_FCRTL, sc->sc_fcrtl);
7297 if (sc->sc_type == WM_T_80003) {
7298 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
7299 case IFM_1000_T:
7300 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
7301 KUMCTRLSTA_HD_CTRL_1000_DEFAULT);
7302 sc->sc_tipg = TIPG_1000T_80003_DFLT;
7303 break;
7304 default:
7305 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
7306 KUMCTRLSTA_HD_CTRL_10_100_DEFAULT);
7307 sc->sc_tipg = TIPG_10_100_80003_DFLT;
7308 break;
7309 }
7310 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
7311 }
7312 }
7313
7314 /*
7315 * wm_kmrn_readreg:
7316 *
7317 * Read a kumeran register
7318 */
7319 static int
7320 wm_kmrn_readreg(struct wm_softc *sc, int reg)
7321 {
7322 int rv;
7323
7324 if (sc->sc_flags == WM_F_SWFW_SYNC) {
7325 if (wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM)) {
7326 aprint_error_dev(sc->sc_dev,
7327 "%s: failed to get semaphore\n", __func__);
7328 return 0;
7329 }
7330 } else if (sc->sc_flags == WM_F_SWFWHW_SYNC) {
7331 if (wm_get_swfwhw_semaphore(sc)) {
7332 aprint_error_dev(sc->sc_dev,
7333 "%s: failed to get semaphore\n", __func__);
7334 return 0;
7335 }
7336 }
7337
7338 CSR_WRITE(sc, WMREG_KUMCTRLSTA,
7339 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
7340 KUMCTRLSTA_REN);
7341 delay(2);
7342
7343 rv = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK;
7344
7345 if (sc->sc_flags == WM_F_SWFW_SYNC)
7346 wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
7347 else if (sc->sc_flags == WM_F_SWFWHW_SYNC)
7348 wm_put_swfwhw_semaphore(sc);
7349
7350 return rv;
7351 }
7352
7353 /*
7354 * wm_kmrn_writereg:
7355 *
7356 * Write a kumeran register
7357 */
7358 static void
7359 wm_kmrn_writereg(struct wm_softc *sc, int reg, int val)
7360 {
7361
7362 if (sc->sc_flags == WM_F_SWFW_SYNC) {
7363 if (wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM)) {
7364 aprint_error_dev(sc->sc_dev,
7365 "%s: failed to get semaphore\n", __func__);
7366 return;
7367 }
7368 } else if (sc->sc_flags == WM_F_SWFWHW_SYNC) {
7369 if (wm_get_swfwhw_semaphore(sc)) {
7370 aprint_error_dev(sc->sc_dev,
7371 "%s: failed to get semaphore\n", __func__);
7372 return;
7373 }
7374 }
7375
7376 CSR_WRITE(sc, WMREG_KUMCTRLSTA,
7377 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
7378 (val & KUMCTRLSTA_MASK));
7379
7380 if (sc->sc_flags == WM_F_SWFW_SYNC)
7381 wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
7382 else if (sc->sc_flags == WM_F_SWFWHW_SYNC)
7383 wm_put_swfwhw_semaphore(sc);
7384 }
7385
7386 static int
7387 wm_is_onboard_nvm_eeprom(struct wm_softc *sc)
7388 {
7389 uint32_t eecd = 0;
7390
7391 if (sc->sc_type == WM_T_82573 || sc->sc_type == WM_T_82574
7392 || sc->sc_type == WM_T_82583) {
7393 eecd = CSR_READ(sc, WMREG_EECD);
7394
7395 /* Isolate bits 15 & 16 */
7396 eecd = ((eecd >> 15) & 0x03);
7397
7398 /* If both bits are set, device is Flash type */
7399 if (eecd == 0x03)
7400 return 0;
7401 }
7402 return 1;
7403 }
7404
7405 static int
7406 wm_get_swsm_semaphore(struct wm_softc *sc)
7407 {
7408 int32_t timeout;
7409 uint32_t swsm;
7410
7411 /* Get the FW semaphore. */
7412 timeout = 1000 + 1; /* XXX */
7413 while (timeout) {
7414 swsm = CSR_READ(sc, WMREG_SWSM);
7415 swsm |= SWSM_SWESMBI;
7416 CSR_WRITE(sc, WMREG_SWSM, swsm);
7417 /* if we managed to set the bit we got the semaphore. */
7418 swsm = CSR_READ(sc, WMREG_SWSM);
7419 if (swsm & SWSM_SWESMBI)
7420 break;
7421
7422 delay(50);
7423 timeout--;
7424 }
7425
7426 if (timeout == 0) {
7427 aprint_error_dev(sc->sc_dev, "could not acquire EEPROM GNT\n");
7428 /* Release semaphores */
7429 wm_put_swsm_semaphore(sc);
7430 return 1;
7431 }
7432 return 0;
7433 }
7434
7435 static void
7436 wm_put_swsm_semaphore(struct wm_softc *sc)
7437 {
7438 uint32_t swsm;
7439
7440 swsm = CSR_READ(sc, WMREG_SWSM);
7441 swsm &= ~(SWSM_SWESMBI);
7442 CSR_WRITE(sc, WMREG_SWSM, swsm);
7443 }
7444
7445 static int
7446 wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
7447 {
7448 uint32_t swfw_sync;
7449 uint32_t swmask = mask << SWFW_SOFT_SHIFT;
7450 uint32_t fwmask = mask << SWFW_FIRM_SHIFT;
7451 int timeout = 200;
7452
7453 for (timeout = 0; timeout < 200; timeout++) {
7454 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
7455 if (wm_get_swsm_semaphore(sc)) {
7456 aprint_error_dev(sc->sc_dev,
7457 "%s: failed to get semaphore\n",
7458 __func__);
7459 return 1;
7460 }
7461 }
7462 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
7463 if ((swfw_sync & (swmask | fwmask)) == 0) {
7464 swfw_sync |= swmask;
7465 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
7466 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
7467 wm_put_swsm_semaphore(sc);
7468 return 0;
7469 }
7470 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
7471 wm_put_swsm_semaphore(sc);
7472 delay(5000);
7473 }
7474 printf("%s: failed to get swfw semaphore mask 0x%x swfw 0x%x\n",
7475 device_xname(sc->sc_dev), mask, swfw_sync);
7476 return 1;
7477 }
7478
7479 static void
7480 wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
7481 {
7482 uint32_t swfw_sync;
7483
7484 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
7485 while (wm_get_swsm_semaphore(sc) != 0)
7486 continue;
7487 }
7488 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
7489 swfw_sync &= ~(mask << SWFW_SOFT_SHIFT);
7490 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
7491 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
7492 wm_put_swsm_semaphore(sc);
7493 }
7494
7495 static int
7496 wm_get_swfwhw_semaphore(struct wm_softc *sc)
7497 {
7498 uint32_t ext_ctrl;
7499 int timeout = 200;
7500
7501 for (timeout = 0; timeout < 200; timeout++) {
7502 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
7503 ext_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
7504 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
7505
7506 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
7507 if (ext_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
7508 return 0;
7509 delay(5000);
7510 }
7511 printf("%s: failed to get swfwhw semaphore ext_ctrl 0x%x\n",
7512 device_xname(sc->sc_dev), ext_ctrl);
7513 return 1;
7514 }
7515
7516 static void
7517 wm_put_swfwhw_semaphore(struct wm_softc *sc)
7518 {
7519 uint32_t ext_ctrl;
7520 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
7521 ext_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
7522 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
7523 }
7524
7525 static int
7526 wm_get_hw_semaphore_82573(struct wm_softc *sc)
7527 {
7528 int i = 0;
7529 uint32_t reg;
7530
7531 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
7532 do {
7533 CSR_WRITE(sc, WMREG_EXTCNFCTR,
7534 reg | EXTCNFCTR_MDIO_SW_OWNERSHIP);
7535 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
7536 if ((reg & EXTCNFCTR_MDIO_SW_OWNERSHIP) != 0)
7537 break;
7538 delay(2*1000);
7539 i++;
7540 } while (i < WM_MDIO_OWNERSHIP_TIMEOUT);
7541
7542 if (i == WM_MDIO_OWNERSHIP_TIMEOUT) {
7543 wm_put_hw_semaphore_82573(sc);
7544 log(LOG_ERR, "%s: Driver can't access the PHY\n",
7545 device_xname(sc->sc_dev));
7546 return -1;
7547 }
7548
7549 return 0;
7550 }
7551
7552 static void
7553 wm_put_hw_semaphore_82573(struct wm_softc *sc)
7554 {
7555 uint32_t reg;
7556
7557 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
7558 reg &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
7559 CSR_WRITE(sc, WMREG_EXTCNFCTR, reg);
7560 }
7561
7562 static int
7563 wm_valid_nvm_bank_detect_ich8lan(struct wm_softc *sc, unsigned int *bank)
7564 {
7565 uint32_t eecd;
7566 uint32_t act_offset = ICH_NVM_SIG_WORD * 2 + 1;
7567 uint32_t bank1_offset = sc->sc_ich8_flash_bank_size * sizeof(uint16_t);
7568 uint8_t sig_byte = 0;
7569
7570 switch (sc->sc_type) {
7571 case WM_T_ICH8:
7572 case WM_T_ICH9:
7573 eecd = CSR_READ(sc, WMREG_EECD);
7574 if ((eecd & EECD_SEC1VAL_VALMASK) == EECD_SEC1VAL_VALMASK) {
7575 *bank = ((eecd & EECD_SEC1VAL) != 0) ? 1 : 0;
7576 return 0;
7577 }
7578 /* FALLTHROUGH */
7579 default:
7580 /* Default to 0 */
7581 *bank = 0;
7582
7583 /* Check bank 0 */
7584 wm_read_ich8_byte(sc, act_offset, &sig_byte);
7585 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
7586 *bank = 0;
7587 return 0;
7588 }
7589
7590 /* Check bank 1 */
7591 wm_read_ich8_byte(sc, act_offset + bank1_offset,
7592 &sig_byte);
7593 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
7594 *bank = 1;
7595 return 0;
7596 }
7597 }
7598
7599 aprint_error_dev(sc->sc_dev, "EEPROM not present\n");
7600 return -1;
7601 }
7602
7603 /******************************************************************************
7604 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
7605 * register.
7606 *
7607 * sc - Struct containing variables accessed by shared code
7608 * offset - offset of word in the EEPROM to read
7609 * data - word read from the EEPROM
7610 * words - number of words to read
7611 *****************************************************************************/
7612 static int
7613 wm_read_eeprom_ich8(struct wm_softc *sc, int offset, int words, uint16_t *data)
7614 {
7615 int32_t error = 0;
7616 uint32_t flash_bank = 0;
7617 uint32_t act_offset = 0;
7618 uint32_t bank_offset = 0;
7619 uint16_t word = 0;
7620 uint16_t i = 0;
7621
7622 /* We need to know which is the valid flash bank. In the event
7623 * that we didn't allocate eeprom_shadow_ram, we may not be
7624 * managing flash_bank. So it cannot be trusted and needs
7625 * to be updated with each read.
7626 */
7627 error = wm_valid_nvm_bank_detect_ich8lan(sc, &flash_bank);
7628 if (error) {
7629 aprint_error_dev(sc->sc_dev, "%s: failed to detect NVM bank\n",
7630 __func__);
7631 return error;
7632 }
7633
7634 /*
7635 * Adjust offset appropriately if we're on bank 1 - adjust for word
7636 * size
7637 */
7638 bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
7639
7640 error = wm_get_swfwhw_semaphore(sc);
7641 if (error) {
7642 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
7643 __func__);
7644 return error;
7645 }
7646
7647 for (i = 0; i < words; i++) {
7648 /* The NVM part needs a byte offset, hence * 2 */
7649 act_offset = bank_offset + ((offset + i) * 2);
7650 error = wm_read_ich8_word(sc, act_offset, &word);
7651 if (error) {
7652 aprint_error_dev(sc->sc_dev,
7653 "%s: failed to read NVM\n", __func__);
7654 break;
7655 }
7656 data[i] = word;
7657 }
7658
7659 wm_put_swfwhw_semaphore(sc);
7660 return error;
7661 }
7662
7663 /******************************************************************************
7664 * This function does initial flash setup so that a new read/write/erase cycle
7665 * can be started.
7666 *
7667 * sc - The pointer to the hw structure
7668 ****************************************************************************/
7669 static int32_t
7670 wm_ich8_cycle_init(struct wm_softc *sc)
7671 {
7672 uint16_t hsfsts;
7673 int32_t error = 1;
7674 int32_t i = 0;
7675
7676 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
7677
7678 /* May be check the Flash Des Valid bit in Hw status */
7679 if ((hsfsts & HSFSTS_FLDVAL) == 0) {
7680 return error;
7681 }
7682
7683 /* Clear FCERR in Hw status by writing 1 */
7684 /* Clear DAEL in Hw status by writing a 1 */
7685 hsfsts |= HSFSTS_ERR | HSFSTS_DAEL;
7686
7687 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
7688
7689 /*
7690 * Either we should have a hardware SPI cycle in progress bit to check
7691 * against, in order to start a new cycle or FDONE bit should be
7692 * changed in the hardware so that it is 1 after harware reset, which
7693 * can then be used as an indication whether a cycle is in progress or
7694 * has been completed .. we should also have some software semaphore
7695 * mechanism to guard FDONE or the cycle in progress bit so that two
7696 * threads access to those bits can be sequentiallized or a way so that
7697 * 2 threads dont start the cycle at the same time
7698 */
7699
7700 if ((hsfsts & HSFSTS_FLINPRO) == 0) {
7701 /*
7702 * There is no cycle running at present, so we can start a
7703 * cycle
7704 */
7705
7706 /* Begin by setting Flash Cycle Done. */
7707 hsfsts |= HSFSTS_DONE;
7708 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
7709 error = 0;
7710 } else {
7711 /*
7712 * otherwise poll for sometime so the current cycle has a
7713 * chance to end before giving up.
7714 */
7715 for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
7716 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
7717 if ((hsfsts & HSFSTS_FLINPRO) == 0) {
7718 error = 0;
7719 break;
7720 }
7721 delay(1);
7722 }
7723 if (error == 0) {
7724 /*
7725 * Successful in waiting for previous cycle to timeout,
7726 * now set the Flash Cycle Done.
7727 */
7728 hsfsts |= HSFSTS_DONE;
7729 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
7730 }
7731 }
7732 return error;
7733 }
7734
7735 /******************************************************************************
7736 * This function starts a flash cycle and waits for its completion
7737 *
7738 * sc - The pointer to the hw structure
7739 ****************************************************************************/
7740 static int32_t
7741 wm_ich8_flash_cycle(struct wm_softc *sc, uint32_t timeout)
7742 {
7743 uint16_t hsflctl;
7744 uint16_t hsfsts;
7745 int32_t error = 1;
7746 uint32_t i = 0;
7747
7748 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
7749 hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
7750 hsflctl |= HSFCTL_GO;
7751 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
7752
7753 /* wait till FDONE bit is set to 1 */
7754 do {
7755 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
7756 if (hsfsts & HSFSTS_DONE)
7757 break;
7758 delay(1);
7759 i++;
7760 } while (i < timeout);
7761 if ((hsfsts & HSFSTS_DONE) == 1 && (hsfsts & HSFSTS_ERR) == 0)
7762 error = 0;
7763
7764 return error;
7765 }
7766
7767 /******************************************************************************
7768 * Reads a byte or word from the NVM using the ICH8 flash access registers.
7769 *
7770 * sc - The pointer to the hw structure
7771 * index - The index of the byte or word to read.
7772 * size - Size of data to read, 1=byte 2=word
7773 * data - Pointer to the word to store the value read.
7774 *****************************************************************************/
7775 static int32_t
7776 wm_read_ich8_data(struct wm_softc *sc, uint32_t index,
7777 uint32_t size, uint16_t* data)
7778 {
7779 uint16_t hsfsts;
7780 uint16_t hsflctl;
7781 uint32_t flash_linear_address;
7782 uint32_t flash_data = 0;
7783 int32_t error = 1;
7784 int32_t count = 0;
7785
7786 if (size < 1 || size > 2 || data == 0x0 ||
7787 index > ICH_FLASH_LINEAR_ADDR_MASK)
7788 return error;
7789
7790 flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
7791 sc->sc_ich8_flash_base;
7792
7793 do {
7794 delay(1);
7795 /* Steps */
7796 error = wm_ich8_cycle_init(sc);
7797 if (error)
7798 break;
7799
7800 hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
7801 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
7802 hsflctl |= ((size - 1) << HSFCTL_BCOUNT_SHIFT)
7803 & HSFCTL_BCOUNT_MASK;
7804 hsflctl |= ICH_CYCLE_READ << HSFCTL_CYCLE_SHIFT;
7805 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
7806
7807 /*
7808 * Write the last 24 bits of index into Flash Linear address
7809 * field in Flash Address
7810 */
7811 /* TODO: TBD maybe check the index against the size of flash */
7812
7813 ICH8_FLASH_WRITE32(sc, ICH_FLASH_FADDR, flash_linear_address);
7814
7815 error = wm_ich8_flash_cycle(sc, ICH_FLASH_COMMAND_TIMEOUT);
7816
7817 /*
7818 * Check if FCERR is set to 1, if set to 1, clear it and try
7819 * the whole sequence a few more times, else read in (shift in)
7820 * the Flash Data0, the order is least significant byte first
7821 * msb to lsb
7822 */
7823 if (error == 0) {
7824 flash_data = ICH8_FLASH_READ32(sc, ICH_FLASH_FDATA0);
7825 if (size == 1)
7826 *data = (uint8_t)(flash_data & 0x000000FF);
7827 else if (size == 2)
7828 *data = (uint16_t)(flash_data & 0x0000FFFF);
7829 break;
7830 } else {
7831 /*
7832 * If we've gotten here, then things are probably
7833 * completely hosed, but if the error condition is
7834 * detected, it won't hurt to give it another try...
7835 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
7836 */
7837 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
7838 if (hsfsts & HSFSTS_ERR) {
7839 /* Repeat for some time before giving up. */
7840 continue;
7841 } else if ((hsfsts & HSFSTS_DONE) == 0)
7842 break;
7843 }
7844 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
7845
7846 return error;
7847 }
7848
7849 /******************************************************************************
7850 * Reads a single byte from the NVM using the ICH8 flash access registers.
7851 *
7852 * sc - pointer to wm_hw structure
7853 * index - The index of the byte to read.
7854 * data - Pointer to a byte to store the value read.
7855 *****************************************************************************/
7856 static int32_t
7857 wm_read_ich8_byte(struct wm_softc *sc, uint32_t index, uint8_t* data)
7858 {
7859 int32_t status;
7860 uint16_t word = 0;
7861
7862 status = wm_read_ich8_data(sc, index, 1, &word);
7863 if (status == 0)
7864 *data = (uint8_t)word;
7865 else
7866 *data = 0;
7867
7868 return status;
7869 }
7870
7871 /******************************************************************************
7872 * Reads a word from the NVM using the ICH8 flash access registers.
7873 *
7874 * sc - pointer to wm_hw structure
7875 * index - The starting byte index of the word to read.
7876 * data - Pointer to a word to store the value read.
7877 *****************************************************************************/
7878 static int32_t
7879 wm_read_ich8_word(struct wm_softc *sc, uint32_t index, uint16_t *data)
7880 {
7881 int32_t status;
7882
7883 status = wm_read_ich8_data(sc, index, 2, data);
7884 return status;
7885 }
7886
7887 static int
7888 wm_check_mng_mode(struct wm_softc *sc)
7889 {
7890 int rv;
7891
7892 switch (sc->sc_type) {
7893 case WM_T_ICH8:
7894 case WM_T_ICH9:
7895 case WM_T_ICH10:
7896 case WM_T_PCH:
7897 case WM_T_PCH2:
7898 case WM_T_PCH_LPT:
7899 rv = wm_check_mng_mode_ich8lan(sc);
7900 break;
7901 case WM_T_82574:
7902 case WM_T_82583:
7903 rv = wm_check_mng_mode_82574(sc);
7904 break;
7905 case WM_T_82571:
7906 case WM_T_82572:
7907 case WM_T_82573:
7908 case WM_T_80003:
7909 rv = wm_check_mng_mode_generic(sc);
7910 break;
7911 default:
7912 /* noting to do */
7913 rv = 0;
7914 break;
7915 }
7916
7917 return rv;
7918 }
7919
7920 static int
7921 wm_check_mng_mode_ich8lan(struct wm_softc *sc)
7922 {
7923 uint32_t fwsm;
7924
7925 fwsm = CSR_READ(sc, WMREG_FWSM);
7926
7927 if ((fwsm & FWSM_MODE_MASK) == (MNG_ICH_IAMT_MODE << FWSM_MODE_SHIFT))
7928 return 1;
7929
7930 return 0;
7931 }
7932
7933 static int
7934 wm_check_mng_mode_82574(struct wm_softc *sc)
7935 {
7936 uint16_t data;
7937
7938 wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &data);
7939
7940 if ((data & EEPROM_CFG2_MNGM_MASK) != 0)
7941 return 1;
7942
7943 return 0;
7944 }
7945
7946 static int
7947 wm_check_mng_mode_generic(struct wm_softc *sc)
7948 {
7949 uint32_t fwsm;
7950
7951 fwsm = CSR_READ(sc, WMREG_FWSM);
7952
7953 if ((fwsm & FWSM_MODE_MASK) == (MNG_IAMT_MODE << FWSM_MODE_SHIFT))
7954 return 1;
7955
7956 return 0;
7957 }
7958
7959 static int
7960 wm_enable_mng_pass_thru(struct wm_softc *sc)
7961 {
7962 uint32_t manc, fwsm, factps;
7963
7964 if ((sc->sc_flags & WM_F_ASF_FIRMWARE_PRES) == 0)
7965 return 0;
7966
7967 manc = CSR_READ(sc, WMREG_MANC);
7968
7969 DPRINTF(WM_DEBUG_MANAGE, ("%s: MANC (%08x)\n",
7970 device_xname(sc->sc_dev), manc));
7971 if ((manc & MANC_RECV_TCO_EN) == 0)
7972 return 0;
7973
7974 if ((sc->sc_flags & WM_F_ARC_SUBSYS_VALID) != 0) {
7975 fwsm = CSR_READ(sc, WMREG_FWSM);
7976 factps = CSR_READ(sc, WMREG_FACTPS);
7977 if (((factps & FACTPS_MNGCG) == 0)
7978 && ((fwsm & FWSM_MODE_MASK)
7979 == (MNG_ICH_IAMT_MODE << FWSM_MODE_SHIFT)))
7980 return 1;
7981 } else if ((sc->sc_type == WM_T_82574) || (sc->sc_type == WM_T_82583)){
7982 uint16_t data;
7983
7984 factps = CSR_READ(sc, WMREG_FACTPS);
7985 wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &data);
7986 DPRINTF(WM_DEBUG_MANAGE, ("%s: CFG2 (%04x)\n",
7987 device_xname(sc->sc_dev), data));
7988 if (((factps & FACTPS_MNGCG) == 0)
7989 && ((data & EEPROM_CFG2_MNGM_MASK)
7990 == (EEPROM_CFG2_MNGM_PT << EEPROM_CFG2_MNGM_SHIFT)))
7991 return 1;
7992 } else if (((manc & MANC_SMBUS_EN) != 0)
7993 && ((manc & MANC_ASF_EN) == 0))
7994 return 1;
7995
7996 return 0;
7997 }
7998
7999 static int
8000 wm_check_reset_block(struct wm_softc *sc)
8001 {
8002 uint32_t reg;
8003
8004 switch (sc->sc_type) {
8005 case WM_T_ICH8:
8006 case WM_T_ICH9:
8007 case WM_T_ICH10:
8008 case WM_T_PCH:
8009 case WM_T_PCH2:
8010 case WM_T_PCH_LPT:
8011 reg = CSR_READ(sc, WMREG_FWSM);
8012 if ((reg & FWSM_RSPCIPHY) != 0)
8013 return 0;
8014 else
8015 return -1;
8016 break;
8017 case WM_T_82571:
8018 case WM_T_82572:
8019 case WM_T_82573:
8020 case WM_T_82574:
8021 case WM_T_82583:
8022 case WM_T_80003:
8023 reg = CSR_READ(sc, WMREG_MANC);
8024 if ((reg & MANC_BLK_PHY_RST_ON_IDE) != 0)
8025 return -1;
8026 else
8027 return 0;
8028 break;
8029 default:
8030 /* no problem */
8031 break;
8032 }
8033
8034 return 0;
8035 }
8036
8037 static void
8038 wm_get_hw_control(struct wm_softc *sc)
8039 {
8040 uint32_t reg;
8041
8042 switch (sc->sc_type) {
8043 case WM_T_82573:
8044 reg = CSR_READ(sc, WMREG_SWSM);
8045 CSR_WRITE(sc, WMREG_SWSM, reg | SWSM_DRV_LOAD);
8046 break;
8047 case WM_T_82571:
8048 case WM_T_82572:
8049 case WM_T_82574:
8050 case WM_T_82583:
8051 case WM_T_80003:
8052 case WM_T_ICH8:
8053 case WM_T_ICH9:
8054 case WM_T_ICH10:
8055 case WM_T_PCH:
8056 case WM_T_PCH2:
8057 case WM_T_PCH_LPT:
8058 reg = CSR_READ(sc, WMREG_CTRL_EXT);
8059 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_DRV_LOAD);
8060 break;
8061 default:
8062 break;
8063 }
8064 }
8065
8066 static void
8067 wm_release_hw_control(struct wm_softc *sc)
8068 {
8069 uint32_t reg;
8070
8071 if ((sc->sc_flags & WM_F_HAS_MANAGE) == 0)
8072 return;
8073
8074 if (sc->sc_type == WM_T_82573) {
8075 reg = CSR_READ(sc, WMREG_SWSM);
8076 reg &= ~SWSM_DRV_LOAD;
8077 CSR_WRITE(sc, WMREG_SWSM, reg & ~SWSM_DRV_LOAD);
8078 } else {
8079 reg = CSR_READ(sc, WMREG_CTRL_EXT);
8080 CSR_WRITE(sc, WMREG_CTRL_EXT, reg & ~CTRL_EXT_DRV_LOAD);
8081 }
8082 }
8083
8084 /* XXX Currently TBI only */
8085 static int
8086 wm_check_for_link(struct wm_softc *sc)
8087 {
8088 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
8089 uint32_t rxcw;
8090 uint32_t ctrl;
8091 uint32_t status;
8092 uint32_t sig;
8093
8094 rxcw = CSR_READ(sc, WMREG_RXCW);
8095 ctrl = CSR_READ(sc, WMREG_CTRL);
8096 status = CSR_READ(sc, WMREG_STATUS);
8097
8098 sig = (sc->sc_type > WM_T_82544) ? CTRL_SWDPIN(1) : 0;
8099
8100 DPRINTF(WM_DEBUG_LINK, ("%s: %s: sig = %d, status_lu = %d, rxcw_c = %d\n",
8101 device_xname(sc->sc_dev), __func__,
8102 ((ctrl & CTRL_SWDPIN(1)) == sig),
8103 ((status & STATUS_LU) != 0),
8104 ((rxcw & RXCW_C) != 0)
8105 ));
8106
8107 /*
8108 * SWDPIN LU RXCW
8109 * 0 0 0
8110 * 0 0 1 (should not happen)
8111 * 0 1 0 (should not happen)
8112 * 0 1 1 (should not happen)
8113 * 1 0 0 Disable autonego and force linkup
8114 * 1 0 1 got /C/ but not linkup yet
8115 * 1 1 0 (linkup)
8116 * 1 1 1 If IFM_AUTO, back to autonego
8117 *
8118 */
8119 if (((ctrl & CTRL_SWDPIN(1)) == sig)
8120 && ((status & STATUS_LU) == 0)
8121 && ((rxcw & RXCW_C) == 0)) {
8122 DPRINTF(WM_DEBUG_LINK, ("%s: force linkup and fullduplex\n",
8123 __func__));
8124 sc->sc_tbi_linkup = 0;
8125 /* Disable auto-negotiation in the TXCW register */
8126 CSR_WRITE(sc, WMREG_TXCW, (sc->sc_txcw & ~TXCW_ANE));
8127
8128 /*
8129 * Force link-up and also force full-duplex.
8130 *
8131 * NOTE: CTRL was updated TFCE and RFCE automatically,
8132 * so we should update sc->sc_ctrl
8133 */
8134 sc->sc_ctrl = ctrl | CTRL_SLU | CTRL_FD;
8135 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
8136 } else if (((status & STATUS_LU) != 0)
8137 && ((rxcw & RXCW_C) != 0)
8138 && (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)) {
8139 sc->sc_tbi_linkup = 1;
8140 DPRINTF(WM_DEBUG_LINK, ("%s: go back to autonego\n",
8141 __func__));
8142 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
8143 CSR_WRITE(sc, WMREG_CTRL, (ctrl & ~CTRL_SLU));
8144 } else if (((ctrl & CTRL_SWDPIN(1)) == sig)
8145 && ((rxcw & RXCW_C) != 0)) {
8146 DPRINTF(WM_DEBUG_LINK, ("/C/"));
8147 } else {
8148 DPRINTF(WM_DEBUG_LINK, ("%s: %x,%x,%x\n", __func__, rxcw, ctrl,
8149 status));
8150 }
8151
8152 return 0;
8153 }
8154
8155 /* Work-around for 82566 Kumeran PCS lock loss */
8156 static void
8157 wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *sc)
8158 {
8159 int miistatus, active, i;
8160 int reg;
8161
8162 miistatus = sc->sc_mii.mii_media_status;
8163
8164 /* If the link is not up, do nothing */
8165 if ((miistatus & IFM_ACTIVE) != 0)
8166 return;
8167
8168 active = sc->sc_mii.mii_media_active;
8169
8170 /* Nothing to do if the link is other than 1Gbps */
8171 if (IFM_SUBTYPE(active) != IFM_1000_T)
8172 return;
8173
8174 for (i = 0; i < 10; i++) {
8175 /* read twice */
8176 reg = wm_gmii_i80003_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG);
8177 reg = wm_gmii_i80003_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG);
8178 if ((reg & IGP3_KMRN_DIAG_PCS_LOCK_LOSS) != 0)
8179 goto out; /* GOOD! */
8180
8181 /* Reset the PHY */
8182 wm_gmii_reset(sc);
8183 delay(5*1000);
8184 }
8185
8186 /* Disable GigE link negotiation */
8187 reg = CSR_READ(sc, WMREG_PHY_CTRL);
8188 reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS;
8189 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
8190
8191 /*
8192 * Call gig speed drop workaround on Gig disable before accessing
8193 * any PHY registers.
8194 */
8195 wm_gig_downshift_workaround_ich8lan(sc);
8196
8197 out:
8198 return;
8199 }
8200
8201 /* WOL from S5 stops working */
8202 static void
8203 wm_gig_downshift_workaround_ich8lan(struct wm_softc *sc)
8204 {
8205 uint16_t kmrn_reg;
8206
8207 /* Only for igp3 */
8208 if (sc->sc_phytype == WMPHY_IGP_3) {
8209 kmrn_reg = wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_DIAG);
8210 kmrn_reg |= KUMCTRLSTA_DIAG_NELPBK;
8211 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmrn_reg);
8212 kmrn_reg &= ~KUMCTRLSTA_DIAG_NELPBK;
8213 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmrn_reg);
8214 }
8215 }
8216
8217 #ifdef WM_WOL
8218 /* Power down workaround on D3 */
8219 static void
8220 wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *sc)
8221 {
8222 uint32_t reg;
8223 int i;
8224
8225 for (i = 0; i < 2; i++) {
8226 /* Disable link */
8227 reg = CSR_READ(sc, WMREG_PHY_CTRL);
8228 reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS;
8229 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
8230
8231 /*
8232 * Call gig speed drop workaround on Gig disable before
8233 * accessing any PHY registers
8234 */
8235 if (sc->sc_type == WM_T_ICH8)
8236 wm_gig_downshift_workaround_ich8lan(sc);
8237
8238 /* Write VR power-down enable */
8239 reg = sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL);
8240 reg &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
8241 reg |= IGP3_VR_CTRL_MODE_SHUTDOWN;
8242 sc->sc_mii.mii_writereg(sc->sc_dev, 1, IGP3_VR_CTRL, reg);
8243
8244 /* Read it back and test */
8245 reg = sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL);
8246 reg &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
8247 if ((reg == IGP3_VR_CTRL_MODE_SHUTDOWN) || (i != 0))
8248 break;
8249
8250 /* Issue PHY reset and repeat at most one more time */
8251 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
8252 }
8253 }
8254 #endif /* WM_WOL */
8255
8256 /*
8257 * Workaround for pch's PHYs
8258 * XXX should be moved to new PHY driver?
8259 */
8260 static void
8261 wm_hv_phy_workaround_ich8lan(struct wm_softc *sc)
8262 {
8263 if (sc->sc_phytype == WMPHY_82577)
8264 wm_set_mdio_slow_mode_hv(sc);
8265
8266 /* (PCH rev.2) && (82577 && (phy rev 2 or 3)) */
8267
8268 /* (82577 && (phy rev 1 or 2)) || (82578 & phy rev 1)*/
8269
8270 /* 82578 */
8271 if (sc->sc_phytype == WMPHY_82578) {
8272 /* PCH rev. < 3 */
8273 if (sc->sc_rev < 3) {
8274 /* XXX 6 bit shift? Why? Is it page2? */
8275 wm_gmii_hv_writereg(sc->sc_dev, 1, ((1 << 6) | 0x29),
8276 0x66c0);
8277 wm_gmii_hv_writereg(sc->sc_dev, 1, ((1 << 6) | 0x1e),
8278 0xffff);
8279 }
8280
8281 /* XXX phy rev. < 2 */
8282 }
8283
8284 /* Select page 0 */
8285
8286 /* XXX acquire semaphore */
8287 wm_gmii_i82544_writereg(sc->sc_dev, 1, MII_IGPHY_PAGE_SELECT, 0);
8288 /* XXX release semaphore */
8289
8290 /*
8291 * Configure the K1 Si workaround during phy reset assuming there is
8292 * link so that it disables K1 if link is in 1Gbps.
8293 */
8294 wm_k1_gig_workaround_hv(sc, 1);
8295 }
8296
8297 static void
8298 wm_lv_phy_workaround_ich8lan(struct wm_softc *sc)
8299 {
8300
8301 wm_set_mdio_slow_mode_hv(sc);
8302 }
8303
8304 static void
8305 wm_k1_gig_workaround_hv(struct wm_softc *sc, int link)
8306 {
8307 int k1_enable = sc->sc_nvm_k1_enabled;
8308
8309 /* XXX acquire semaphore */
8310
8311 if (link) {
8312 k1_enable = 0;
8313
8314 /* Link stall fix for link up */
8315 wm_gmii_hv_writereg(sc->sc_dev, 1, IGP3_KMRN_DIAG, 0x0100);
8316 } else {
8317 /* Link stall fix for link down */
8318 wm_gmii_hv_writereg(sc->sc_dev, 1, IGP3_KMRN_DIAG, 0x4100);
8319 }
8320
8321 wm_configure_k1_ich8lan(sc, k1_enable);
8322
8323 /* XXX release semaphore */
8324 }
8325
8326 static void
8327 wm_set_mdio_slow_mode_hv(struct wm_softc *sc)
8328 {
8329 uint32_t reg;
8330
8331 reg = wm_gmii_hv_readreg(sc->sc_dev, 1, HV_KMRN_MODE_CTRL);
8332 wm_gmii_hv_writereg(sc->sc_dev, 1, HV_KMRN_MODE_CTRL,
8333 reg | HV_KMRN_MDIO_SLOW);
8334 }
8335
8336 static void
8337 wm_configure_k1_ich8lan(struct wm_softc *sc, int k1_enable)
8338 {
8339 uint32_t ctrl, ctrl_ext, tmp;
8340 uint16_t kmrn_reg;
8341
8342 kmrn_reg = wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_K1_CONFIG);
8343
8344 if (k1_enable)
8345 kmrn_reg |= KUMCTRLSTA_K1_ENABLE;
8346 else
8347 kmrn_reg &= ~KUMCTRLSTA_K1_ENABLE;
8348
8349 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_K1_CONFIG, kmrn_reg);
8350
8351 delay(20);
8352
8353 ctrl = CSR_READ(sc, WMREG_CTRL);
8354 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
8355
8356 tmp = ctrl & ~(CTRL_SPEED_1000 | CTRL_SPEED_100);
8357 tmp |= CTRL_FRCSPD;
8358
8359 CSR_WRITE(sc, WMREG_CTRL, tmp);
8360 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext | CTRL_EXT_SPD_BYPS);
8361 delay(20);
8362
8363 CSR_WRITE(sc, WMREG_CTRL, ctrl);
8364 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
8365 delay(20);
8366 }
8367
8368 static void
8369 wm_smbustopci(struct wm_softc *sc)
8370 {
8371 uint32_t fwsm;
8372
8373 fwsm = CSR_READ(sc, WMREG_FWSM);
8374 if (((fwsm & FWSM_FW_VALID) == 0)
8375 && ((wm_check_reset_block(sc) == 0))) {
8376 sc->sc_ctrl |= CTRL_LANPHYPC_OVERRIDE;
8377 sc->sc_ctrl &= ~CTRL_LANPHYPC_VALUE;
8378 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
8379 delay(10);
8380 sc->sc_ctrl &= ~CTRL_LANPHYPC_OVERRIDE;
8381 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
8382 delay(50*1000);
8383
8384 /*
8385 * Gate automatic PHY configuration by hardware on non-managed
8386 * 82579
8387 */
8388 if (sc->sc_type == WM_T_PCH2)
8389 wm_gate_hw_phy_config_ich8lan(sc, 1);
8390 }
8391 }
8392
8393 static void
8394 wm_set_pcie_completion_timeout(struct wm_softc *sc)
8395 {
8396 uint32_t gcr;
8397 pcireg_t ctrl2;
8398
8399 gcr = CSR_READ(sc, WMREG_GCR);
8400
8401 /* Only take action if timeout value is defaulted to 0 */
8402 if ((gcr & GCR_CMPL_TMOUT_MASK) != 0)
8403 goto out;
8404
8405 if ((gcr & GCR_CAP_VER2) == 0) {
8406 gcr |= GCR_CMPL_TMOUT_10MS;
8407 goto out;
8408 }
8409
8410 ctrl2 = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
8411 sc->sc_pcixe_capoff + PCIE_DCSR2);
8412 ctrl2 |= WM_PCIE_DCSR2_16MS;
8413 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
8414 sc->sc_pcixe_capoff + PCIE_DCSR2, ctrl2);
8415
8416 out:
8417 /* Disable completion timeout resend */
8418 gcr &= ~GCR_CMPL_TMOUT_RESEND;
8419
8420 CSR_WRITE(sc, WMREG_GCR, gcr);
8421 }
8422
8423 /* special case - for 82575 - need to do manual init ... */
8424 static void
8425 wm_reset_init_script_82575(struct wm_softc *sc)
8426 {
8427 /*
8428 * remark: this is untested code - we have no board without EEPROM
8429 * same setup as mentioned int the freeBSD driver for the i82575
8430 */
8431
8432 /* SerDes configuration via SERDESCTRL */
8433 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x00, 0x0c);
8434 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x01, 0x78);
8435 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x1b, 0x23);
8436 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x23, 0x15);
8437
8438 /* CCM configuration via CCMCTL register */
8439 wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x14, 0x00);
8440 wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x10, 0x00);
8441
8442 /* PCIe lanes configuration */
8443 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x00, 0xec);
8444 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x61, 0xdf);
8445 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x34, 0x05);
8446 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x2f, 0x81);
8447
8448 /* PCIe PLL Configuration */
8449 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x02, 0x47);
8450 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x14, 0x00);
8451 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x10, 0x00);
8452 }
8453
8454 static void
8455 wm_init_manageability(struct wm_softc *sc)
8456 {
8457
8458 if (sc->sc_flags & WM_F_HAS_MANAGE) {
8459 uint32_t manc2h = CSR_READ(sc, WMREG_MANC2H);
8460 uint32_t manc = CSR_READ(sc, WMREG_MANC);
8461
8462 /* disabl hardware interception of ARP */
8463 manc &= ~MANC_ARP_EN;
8464
8465 /* enable receiving management packets to the host */
8466 if (sc->sc_type >= WM_T_82571) {
8467 manc |= MANC_EN_MNG2HOST;
8468 manc2h |= MANC2H_PORT_623| MANC2H_PORT_624;
8469 CSR_WRITE(sc, WMREG_MANC2H, manc2h);
8470
8471 }
8472
8473 CSR_WRITE(sc, WMREG_MANC, manc);
8474 }
8475 }
8476
8477 static void
8478 wm_release_manageability(struct wm_softc *sc)
8479 {
8480
8481 if (sc->sc_flags & WM_F_HAS_MANAGE) {
8482 uint32_t manc = CSR_READ(sc, WMREG_MANC);
8483
8484 manc |= MANC_ARP_EN;
8485 if (sc->sc_type >= WM_T_82571)
8486 manc &= ~MANC_EN_MNG2HOST;
8487
8488 CSR_WRITE(sc, WMREG_MANC, manc);
8489 }
8490 }
8491
8492 static void
8493 wm_get_wakeup(struct wm_softc *sc)
8494 {
8495
8496 /* 0: HAS_AMT, ARC_SUBSYS_VALID, ASF_FIRMWARE_PRES */
8497 switch (sc->sc_type) {
8498 case WM_T_82573:
8499 case WM_T_82583:
8500 sc->sc_flags |= WM_F_HAS_AMT;
8501 /* FALLTHROUGH */
8502 case WM_T_80003:
8503 case WM_T_82541:
8504 case WM_T_82547:
8505 case WM_T_82571:
8506 case WM_T_82572:
8507 case WM_T_82574:
8508 case WM_T_82575:
8509 case WM_T_82576:
8510 case WM_T_82580:
8511 case WM_T_82580ER:
8512 case WM_T_I350:
8513 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_MODE_MASK) != 0)
8514 sc->sc_flags |= WM_F_ARC_SUBSYS_VALID;
8515 sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES;
8516 break;
8517 case WM_T_ICH8:
8518 case WM_T_ICH9:
8519 case WM_T_ICH10:
8520 case WM_T_PCH:
8521 case WM_T_PCH2:
8522 case WM_T_PCH_LPT:
8523 sc->sc_flags |= WM_F_HAS_AMT;
8524 sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES;
8525 break;
8526 default:
8527 break;
8528 }
8529
8530 /* 1: HAS_MANAGE */
8531 if (wm_enable_mng_pass_thru(sc) != 0)
8532 sc->sc_flags |= WM_F_HAS_MANAGE;
8533
8534 #ifdef WM_DEBUG
8535 printf("\n");
8536 if ((sc->sc_flags & WM_F_HAS_AMT) != 0)
8537 printf("HAS_AMT,");
8538 if ((sc->sc_flags & WM_F_ARC_SUBSYS_VALID) != 0)
8539 printf("ARC_SUBSYS_VALID,");
8540 if ((sc->sc_flags & WM_F_ASF_FIRMWARE_PRES) != 0)
8541 printf("ASF_FIRMWARE_PRES,");
8542 if ((sc->sc_flags & WM_F_HAS_MANAGE) != 0)
8543 printf("HAS_MANAGE,");
8544 printf("\n");
8545 #endif
8546 /*
8547 * Note that the WOL flags is set after the resetting of the eeprom
8548 * stuff
8549 */
8550 }
8551
8552 #ifdef WM_WOL
8553 /* WOL in the newer chipset interfaces (pchlan) */
8554 static void
8555 wm_enable_phy_wakeup(struct wm_softc *sc)
8556 {
8557 #if 0
8558 uint16_t preg;
8559
8560 /* Copy MAC RARs to PHY RARs */
8561
8562 /* Copy MAC MTA to PHY MTA */
8563
8564 /* Configure PHY Rx Control register */
8565
8566 /* Enable PHY wakeup in MAC register */
8567
8568 /* Configure and enable PHY wakeup in PHY registers */
8569
8570 /* Activate PHY wakeup */
8571
8572 /* XXX */
8573 #endif
8574 }
8575
8576 static void
8577 wm_enable_wakeup(struct wm_softc *sc)
8578 {
8579 uint32_t reg, pmreg;
8580 pcireg_t pmode;
8581
8582 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PWRMGMT,
8583 &pmreg, NULL) == 0)
8584 return;
8585
8586 /* Advertise the wakeup capability */
8587 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_SWDPIN(2)
8588 | CTRL_SWDPIN(3));
8589 CSR_WRITE(sc, WMREG_WUC, WUC_APME);
8590
8591 /* ICH workaround */
8592 switch (sc->sc_type) {
8593 case WM_T_ICH8:
8594 case WM_T_ICH9:
8595 case WM_T_ICH10:
8596 case WM_T_PCH:
8597 case WM_T_PCH2:
8598 case WM_T_PCH_LPT:
8599 /* Disable gig during WOL */
8600 reg = CSR_READ(sc, WMREG_PHY_CTRL);
8601 reg |= PHY_CTRL_D0A_LPLU | PHY_CTRL_GBE_DIS;
8602 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
8603 if (sc->sc_type == WM_T_PCH)
8604 wm_gmii_reset(sc);
8605
8606 /* Power down workaround */
8607 if (sc->sc_phytype == WMPHY_82577) {
8608 struct mii_softc *child;
8609
8610 /* Assume that the PHY is copper */
8611 child = LIST_FIRST(&sc->sc_mii.mii_phys);
8612 if (child->mii_mpd_rev <= 2)
8613 sc->sc_mii.mii_writereg(sc->sc_dev, 1,
8614 (768 << 5) | 25, 0x0444); /* magic num */
8615 }
8616 break;
8617 default:
8618 break;
8619 }
8620
8621 /* Keep the laser running on fiber adapters */
8622 if (((sc->sc_wmp->wmp_flags & WMP_F_1000X) != 0)
8623 || (sc->sc_wmp->wmp_flags & WMP_F_SERDES) != 0) {
8624 reg = CSR_READ(sc, WMREG_CTRL_EXT);
8625 reg |= CTRL_EXT_SWDPIN(3);
8626 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
8627 }
8628
8629 reg = CSR_READ(sc, WMREG_WUFC) | WUFC_MAG;
8630 #if 0 /* for the multicast packet */
8631 reg |= WUFC_MC;
8632 CSR_WRITE(sc, WMREG_RCTL, CSR_READ(sc, WMREG_RCTL) | RCTL_MPE);
8633 #endif
8634
8635 if (sc->sc_type == WM_T_PCH) {
8636 wm_enable_phy_wakeup(sc);
8637 } else {
8638 CSR_WRITE(sc, WMREG_WUC, WUC_PME_EN);
8639 CSR_WRITE(sc, WMREG_WUFC, reg);
8640 }
8641
8642 if (((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
8643 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
8644 || (sc->sc_type == WM_T_PCH2))
8645 && (sc->sc_phytype == WMPHY_IGP_3))
8646 wm_igp3_phy_powerdown_workaround_ich8lan(sc);
8647
8648 /* Request PME */
8649 pmode = pci_conf_read(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR);
8650 #if 0
8651 /* Disable WOL */
8652 pmode &= ~(PCI_PMCSR_PME_STS | PCI_PMCSR_PME_EN);
8653 #else
8654 /* For WOL */
8655 pmode |= PCI_PMCSR_PME_STS | PCI_PMCSR_PME_EN;
8656 #endif
8657 pci_conf_write(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR, pmode);
8658 }
8659 #endif /* WM_WOL */
8660
8661 static bool
8662 wm_suspend(device_t self, const pmf_qual_t *qual)
8663 {
8664 struct wm_softc *sc = device_private(self);
8665
8666 wm_release_manageability(sc);
8667 wm_release_hw_control(sc);
8668 #ifdef WM_WOL
8669 wm_enable_wakeup(sc);
8670 #endif
8671
8672 return true;
8673 }
8674
8675 static bool
8676 wm_resume(device_t self, const pmf_qual_t *qual)
8677 {
8678 struct wm_softc *sc = device_private(self);
8679
8680 wm_init_manageability(sc);
8681
8682 return true;
8683 }
8684
8685 static void
8686 wm_set_eee_i350(struct wm_softc * sc)
8687 {
8688 uint32_t ipcnfg, eeer;
8689
8690 ipcnfg = CSR_READ(sc, WMREG_IPCNFG);
8691 eeer = CSR_READ(sc, WMREG_EEER);
8692
8693 if ((sc->sc_flags & WM_F_EEE) != 0) {
8694 ipcnfg |= (IPCNFG_EEE_1G_AN | IPCNFG_EEE_100M_AN);
8695 eeer |= (EEER_TX_LPI_EN | EEER_RX_LPI_EN
8696 | EEER_LPI_FC);
8697 } else {
8698 ipcnfg &= ~(IPCNFG_EEE_1G_AN | IPCNFG_EEE_100M_AN);
8699 eeer &= ~(EEER_TX_LPI_EN | EEER_RX_LPI_EN
8700 | EEER_LPI_FC);
8701 }
8702
8703 CSR_WRITE(sc, WMREG_IPCNFG, ipcnfg);
8704 CSR_WRITE(sc, WMREG_EEER, eeer);
8705 CSR_READ(sc, WMREG_IPCNFG); /* XXX flush? */
8706 CSR_READ(sc, WMREG_EEER); /* XXX flush? */
8707 }
8708