if_wm.c revision 1.263 1 /* $NetBSD: if_wm.c,v 1.263 2013/09/08 03:17:02 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*******************************************************************************
39
40 Copyright (c) 2001-2005, Intel Corporation
41 All rights reserved.
42
43 Redistribution and use in source and binary forms, with or without
44 modification, are permitted provided that the following conditions are met:
45
46 1. Redistributions of source code must retain the above copyright notice,
47 this list of conditions and the following disclaimer.
48
49 2. Redistributions in binary form must reproduce the above copyright
50 notice, this list of conditions and the following disclaimer in the
51 documentation and/or other materials provided with the distribution.
52
53 3. Neither the name of the Intel Corporation nor the names of its
54 contributors may be used to endorse or promote products derived from
55 this software without specific prior written permission.
56
57 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
58 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
61 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67 POSSIBILITY OF SUCH DAMAGE.
68
69 *******************************************************************************/
70 /*
71 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
72 *
73 * TODO (in order of importance):
74 *
75 * - Rework how parameters are loaded from the EEPROM.
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.263 2013/09/08 03:17:02 msaitoh Exp $");
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91 #include <sys/queue.h>
92 #include <sys/syslog.h>
93
94 #include <sys/rnd.h>
95
96 #include <net/if.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_ether.h>
100
101 #include <net/bpf.h>
102
103 #include <netinet/in.h> /* XXX for struct ip */
104 #include <netinet/in_systm.h> /* XXX for struct ip */
105 #include <netinet/ip.h> /* XXX for struct ip */
106 #include <netinet/ip6.h> /* XXX for struct ip6_hdr */
107 #include <netinet/tcp.h> /* XXX for struct tcphdr */
108
109 #include <sys/bus.h>
110 #include <sys/intr.h>
111 #include <machine/endian.h>
112
113 #include <dev/mii/mii.h>
114 #include <dev/mii/miivar.h>
115 #include <dev/mii/miidevs.h>
116 #include <dev/mii/mii_bitbang.h>
117 #include <dev/mii/ikphyreg.h>
118 #include <dev/mii/igphyreg.h>
119 #include <dev/mii/igphyvar.h>
120 #include <dev/mii/inbmphyreg.h>
121
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125
126 #include <dev/pci/if_wmreg.h>
127 #include <dev/pci/if_wmvar.h>
128
129 #ifdef WM_DEBUG
130 #define WM_DEBUG_LINK 0x01
131 #define WM_DEBUG_TX 0x02
132 #define WM_DEBUG_RX 0x04
133 #define WM_DEBUG_GMII 0x08
134 #define WM_DEBUG_MANAGE 0x10
135 #define WM_DEBUG_NVM 0x20
136 int wm_debug = WM_DEBUG_TX | WM_DEBUG_RX | WM_DEBUG_LINK | WM_DEBUG_GMII
137 | WM_DEBUG_MANAGE | WM_DEBUG_NVM;
138
139 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
140 #else
141 #define DPRINTF(x, y) /* nothing */
142 #endif /* WM_DEBUG */
143
144 /*
145 * Transmit descriptor list size. Due to errata, we can only have
146 * 256 hardware descriptors in the ring on < 82544, but we use 4096
147 * on >= 82544. We tell the upper layers that they can queue a lot
148 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
149 * of them at a time.
150 *
151 * We allow up to 256 (!) DMA segments per packet. Pathological packet
152 * chains containing many small mbufs have been observed in zero-copy
153 * situations with jumbo frames.
154 */
155 #define WM_NTXSEGS 256
156 #define WM_IFQUEUELEN 256
157 #define WM_TXQUEUELEN_MAX 64
158 #define WM_TXQUEUELEN_MAX_82547 16
159 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
160 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
161 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
162 #define WM_NTXDESC_82542 256
163 #define WM_NTXDESC_82544 4096
164 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
165 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
166 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
167 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
168 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
169
170 #define WM_MAXTXDMA round_page(IP_MAXPACKET) /* for TSO */
171
172 /*
173 * Receive descriptor list size. We have one Rx buffer for normal
174 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
175 * packet. We allocate 256 receive descriptors, each with a 2k
176 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
177 */
178 #define WM_NRXDESC 256
179 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
180 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
181 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
182
183 /*
184 * Control structures are DMA'd to the i82542 chip. We allocate them in
185 * a single clump that maps to a single DMA segment to make several things
186 * easier.
187 */
188 struct wm_control_data_82544 {
189 /*
190 * The receive descriptors.
191 */
192 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
193
194 /*
195 * The transmit descriptors. Put these at the end, because
196 * we might use a smaller number of them.
197 */
198 union {
199 wiseman_txdesc_t wcdu_txdescs[WM_NTXDESC_82544];
200 nq_txdesc_t wcdu_nq_txdescs[WM_NTXDESC_82544];
201 } wdc_u;
202 };
203
204 struct wm_control_data_82542 {
205 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
206 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
207 };
208
209 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
210 #define WM_CDTXOFF(x) WM_CDOFF(wdc_u.wcdu_txdescs[(x)])
211 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
212
213 /*
214 * Software state for transmit jobs.
215 */
216 struct wm_txsoft {
217 struct mbuf *txs_mbuf; /* head of our mbuf chain */
218 bus_dmamap_t txs_dmamap; /* our DMA map */
219 int txs_firstdesc; /* first descriptor in packet */
220 int txs_lastdesc; /* last descriptor in packet */
221 int txs_ndesc; /* # of descriptors used */
222 };
223
224 /*
225 * Software state for receive buffers. Each descriptor gets a
226 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
227 * more than one buffer, we chain them together.
228 */
229 struct wm_rxsoft {
230 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
231 bus_dmamap_t rxs_dmamap; /* our DMA map */
232 };
233
234 #define WM_LINKUP_TIMEOUT 50
235
236 static uint16_t swfwphysem[] = {
237 SWFW_PHY0_SM,
238 SWFW_PHY1_SM,
239 SWFW_PHY2_SM,
240 SWFW_PHY3_SM
241 };
242
243 /*
244 * Software state per device.
245 */
246 struct wm_softc {
247 device_t sc_dev; /* generic device information */
248 bus_space_tag_t sc_st; /* bus space tag */
249 bus_space_handle_t sc_sh; /* bus space handle */
250 bus_size_t sc_ss; /* bus space size */
251 bus_space_tag_t sc_iot; /* I/O space tag */
252 bus_space_handle_t sc_ioh; /* I/O space handle */
253 bus_size_t sc_ios; /* I/O space size */
254 bus_space_tag_t sc_flasht; /* flash registers space tag */
255 bus_space_handle_t sc_flashh; /* flash registers space handle */
256 bus_dma_tag_t sc_dmat; /* bus DMA tag */
257
258 struct ethercom sc_ethercom; /* ethernet common data */
259 struct mii_data sc_mii; /* MII/media information */
260
261 pci_chipset_tag_t sc_pc;
262 pcitag_t sc_pcitag;
263 int sc_bus_speed; /* PCI/PCIX bus speed */
264 int sc_pcixe_capoff; /* PCI[Xe] capability register offset */
265
266 const struct wm_product *sc_wmp; /* Pointer to the wm_product entry */
267 wm_chip_type sc_type; /* MAC type */
268 int sc_rev; /* MAC revision */
269 wm_phy_type sc_phytype; /* PHY type */
270 int sc_funcid; /* unit number of the chip (0 to 3) */
271 int sc_flags; /* flags; see below */
272 int sc_if_flags; /* last if_flags */
273 int sc_flowflags; /* 802.3x flow control flags */
274 int sc_align_tweak;
275
276 void *sc_ih; /* interrupt cookie */
277 callout_t sc_tick_ch; /* tick callout */
278
279 int sc_ee_addrbits; /* EEPROM address bits */
280 int sc_ich8_flash_base;
281 int sc_ich8_flash_bank_size;
282 int sc_nvm_k1_enabled;
283
284 /*
285 * Software state for the transmit and receive descriptors.
286 */
287 int sc_txnum; /* must be a power of two */
288 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
289 struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
290
291 /*
292 * Control data structures.
293 */
294 int sc_ntxdesc; /* must be a power of two */
295 struct wm_control_data_82544 *sc_control_data;
296 bus_dmamap_t sc_cddmamap; /* control data DMA map */
297 bus_dma_segment_t sc_cd_seg; /* control data segment */
298 int sc_cd_rseg; /* real number of control segment */
299 size_t sc_cd_size; /* control data size */
300 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
301 #define sc_txdescs sc_control_data->wdc_u.wcdu_txdescs
302 #define sc_nq_txdescs sc_control_data->wdc_u.wcdu_nq_txdescs
303 #define sc_rxdescs sc_control_data->wcd_rxdescs
304
305 #ifdef WM_EVENT_COUNTERS
306 /* Event counters. */
307 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
308 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
309 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
310 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
311 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
312 struct evcnt sc_ev_rxintr; /* Rx interrupts */
313 struct evcnt sc_ev_linkintr; /* Link interrupts */
314
315 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
316 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
317 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
318 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
319 struct evcnt sc_ev_txtusum6; /* TCP/UDP v6 cksums comp. out-bound */
320 struct evcnt sc_ev_txtso; /* TCP seg offload out-bound (IPv4) */
321 struct evcnt sc_ev_txtso6; /* TCP seg offload out-bound (IPv6) */
322 struct evcnt sc_ev_txtsopain; /* painful header manip. for TSO */
323
324 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
325 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
326
327 struct evcnt sc_ev_tu; /* Tx underrun */
328
329 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
330 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
331 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
332 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
333 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
334 #endif /* WM_EVENT_COUNTERS */
335
336 bus_addr_t sc_tdt_reg; /* offset of TDT register */
337
338 int sc_txfree; /* number of free Tx descriptors */
339 int sc_txnext; /* next ready Tx descriptor */
340
341 int sc_txsfree; /* number of free Tx jobs */
342 int sc_txsnext; /* next free Tx job */
343 int sc_txsdirty; /* dirty Tx jobs */
344
345 /* These 5 variables are used only on the 82547. */
346 int sc_txfifo_size; /* Tx FIFO size */
347 int sc_txfifo_head; /* current head of FIFO */
348 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
349 int sc_txfifo_stall; /* Tx FIFO is stalled */
350 callout_t sc_txfifo_ch; /* Tx FIFO stall work-around timer */
351
352 bus_addr_t sc_rdt_reg; /* offset of RDT register */
353
354 int sc_rxptr; /* next ready Rx descriptor/queue ent */
355 int sc_rxdiscard;
356 int sc_rxlen;
357 struct mbuf *sc_rxhead;
358 struct mbuf *sc_rxtail;
359 struct mbuf **sc_rxtailp;
360
361 uint32_t sc_ctrl; /* prototype CTRL register */
362 #if 0
363 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
364 #endif
365 uint32_t sc_icr; /* prototype interrupt bits */
366 uint32_t sc_itr; /* prototype intr throttling reg */
367 uint32_t sc_tctl; /* prototype TCTL register */
368 uint32_t sc_rctl; /* prototype RCTL register */
369 uint32_t sc_txcw; /* prototype TXCW register */
370 uint32_t sc_tipg; /* prototype TIPG register */
371 uint32_t sc_fcrtl; /* prototype FCRTL register */
372 uint32_t sc_pba; /* prototype PBA register */
373
374 int sc_tbi_linkup; /* TBI link status */
375 int sc_tbi_anegticks; /* autonegotiation ticks */
376 int sc_tbi_ticks; /* tbi ticks */
377 int sc_tbi_nrxcfg; /* count of ICR_RXCFG */
378 int sc_tbi_lastnrxcfg; /* count of ICR_RXCFG (on last tick) */
379
380 int sc_mchash_type; /* multicast filter offset */
381
382 krndsource_t rnd_source; /* random source */
383 };
384
385 #define WM_RXCHAIN_RESET(sc) \
386 do { \
387 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
388 *(sc)->sc_rxtailp = NULL; \
389 (sc)->sc_rxlen = 0; \
390 } while (/*CONSTCOND*/0)
391
392 #define WM_RXCHAIN_LINK(sc, m) \
393 do { \
394 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
395 (sc)->sc_rxtailp = &(m)->m_next; \
396 } while (/*CONSTCOND*/0)
397
398 #ifdef WM_EVENT_COUNTERS
399 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
400 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
401 #else
402 #define WM_EVCNT_INCR(ev) /* nothing */
403 #define WM_EVCNT_ADD(ev, val) /* nothing */
404 #endif
405
406 #define CSR_READ(sc, reg) \
407 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
408 #define CSR_WRITE(sc, reg, val) \
409 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
410 #define CSR_WRITE_FLUSH(sc) \
411 (void) CSR_READ((sc), WMREG_STATUS)
412
413 #define ICH8_FLASH_READ32(sc, reg) \
414 bus_space_read_4((sc)->sc_flasht, (sc)->sc_flashh, (reg))
415 #define ICH8_FLASH_WRITE32(sc, reg, data) \
416 bus_space_write_4((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data))
417
418 #define ICH8_FLASH_READ16(sc, reg) \
419 bus_space_read_2((sc)->sc_flasht, (sc)->sc_flashh, (reg))
420 #define ICH8_FLASH_WRITE16(sc, reg, data) \
421 bus_space_write_2((sc)->sc_flasht, (sc)->sc_flashh, (reg), (data))
422
423 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
424 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
425
426 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
427 #define WM_CDTXADDR_HI(sc, x) \
428 (sizeof(bus_addr_t) == 8 ? \
429 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
430
431 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
432 #define WM_CDRXADDR_HI(sc, x) \
433 (sizeof(bus_addr_t) == 8 ? \
434 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
435
436 #define WM_CDTXSYNC(sc, x, n, ops) \
437 do { \
438 int __x, __n; \
439 \
440 __x = (x); \
441 __n = (n); \
442 \
443 /* If it will wrap around, sync to the end of the ring. */ \
444 if ((__x + __n) > WM_NTXDESC(sc)) { \
445 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
446 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
447 (WM_NTXDESC(sc) - __x), (ops)); \
448 __n -= (WM_NTXDESC(sc) - __x); \
449 __x = 0; \
450 } \
451 \
452 /* Now sync whatever is left. */ \
453 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
454 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
455 } while (/*CONSTCOND*/0)
456
457 #define WM_CDRXSYNC(sc, x, ops) \
458 do { \
459 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
460 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
461 } while (/*CONSTCOND*/0)
462
463 #define WM_INIT_RXDESC(sc, x) \
464 do { \
465 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
466 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
467 struct mbuf *__m = __rxs->rxs_mbuf; \
468 \
469 /* \
470 * Note: We scoot the packet forward 2 bytes in the buffer \
471 * so that the payload after the Ethernet header is aligned \
472 * to a 4-byte boundary. \
473 * \
474 * XXX BRAINDAMAGE ALERT! \
475 * The stupid chip uses the same size for every buffer, which \
476 * is set in the Receive Control register. We are using the 2K \
477 * size option, but what we REALLY want is (2K - 2)! For this \
478 * reason, we can't "scoot" packets longer than the standard \
479 * Ethernet MTU. On strict-alignment platforms, if the total \
480 * size exceeds (2K - 2) we set align_tweak to 0 and let \
481 * the upper layer copy the headers. \
482 */ \
483 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
484 \
485 wm_set_dma_addr(&__rxd->wrx_addr, \
486 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
487 __rxd->wrx_len = 0; \
488 __rxd->wrx_cksum = 0; \
489 __rxd->wrx_status = 0; \
490 __rxd->wrx_errors = 0; \
491 __rxd->wrx_special = 0; \
492 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
493 \
494 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
495 } while (/*CONSTCOND*/0)
496
497 static void wm_start(struct ifnet *);
498 static void wm_nq_start(struct ifnet *);
499 static void wm_watchdog(struct ifnet *);
500 static int wm_ifflags_cb(struct ethercom *);
501 static int wm_ioctl(struct ifnet *, u_long, void *);
502 static int wm_init(struct ifnet *);
503 static void wm_stop(struct ifnet *, int);
504 static bool wm_suspend(device_t, const pmf_qual_t *);
505 static bool wm_resume(device_t, const pmf_qual_t *);
506
507 static void wm_reset(struct wm_softc *);
508 static void wm_rxdrain(struct wm_softc *);
509 static int wm_add_rxbuf(struct wm_softc *, int);
510 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
511 static int wm_read_eeprom_eerd(struct wm_softc *, int, int, u_int16_t *);
512 static int wm_validate_eeprom_checksum(struct wm_softc *);
513 static int wm_check_alt_mac_addr(struct wm_softc *);
514 static int wm_read_mac_addr(struct wm_softc *, uint8_t *);
515 static void wm_tick(void *);
516
517 static void wm_set_filter(struct wm_softc *);
518 static void wm_set_vlan(struct wm_softc *);
519
520 static int wm_intr(void *);
521 static void wm_txintr(struct wm_softc *);
522 static void wm_rxintr(struct wm_softc *);
523 static void wm_linkintr(struct wm_softc *, uint32_t);
524
525 static void wm_tbi_mediainit(struct wm_softc *);
526 static int wm_tbi_mediachange(struct ifnet *);
527 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
528
529 static void wm_tbi_set_linkled(struct wm_softc *);
530 static void wm_tbi_check_link(struct wm_softc *);
531
532 static void wm_gmii_reset(struct wm_softc *);
533
534 static int wm_gmii_i82543_readreg(device_t, int, int);
535 static void wm_gmii_i82543_writereg(device_t, int, int, int);
536 static int wm_gmii_i82544_readreg(device_t, int, int);
537 static void wm_gmii_i82544_writereg(device_t, int, int, int);
538 static int wm_gmii_i80003_readreg(device_t, int, int);
539 static void wm_gmii_i80003_writereg(device_t, int, int, int);
540 static int wm_gmii_bm_readreg(device_t, int, int);
541 static void wm_gmii_bm_writereg(device_t, int, int, int);
542 static int wm_gmii_hv_readreg(device_t, int, int);
543 static void wm_gmii_hv_writereg(device_t, int, int, int);
544 static int wm_gmii_82580_readreg(device_t, int, int);
545 static void wm_gmii_82580_writereg(device_t, int, int, int);
546 static int wm_sgmii_readreg(device_t, int, int);
547 static void wm_sgmii_writereg(device_t, int, int, int);
548
549 static void wm_gmii_statchg(struct ifnet *);
550
551 static void wm_gmii_mediainit(struct wm_softc *, pci_product_id_t);
552 static int wm_gmii_mediachange(struct ifnet *);
553 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
554
555 static int wm_kmrn_readreg(struct wm_softc *, int);
556 static void wm_kmrn_writereg(struct wm_softc *, int, int);
557
558 static void wm_set_spiaddrbits(struct wm_softc *);
559 static int wm_match(device_t, cfdata_t, void *);
560 static void wm_attach(device_t, device_t, void *);
561 static int wm_detach(device_t, int);
562 static int wm_is_onboard_nvm_eeprom(struct wm_softc *);
563 static void wm_get_auto_rd_done(struct wm_softc *);
564 static void wm_lan_init_done(struct wm_softc *);
565 static void wm_get_cfg_done(struct wm_softc *);
566 static int wm_get_swsm_semaphore(struct wm_softc *);
567 static void wm_put_swsm_semaphore(struct wm_softc *);
568 static int wm_poll_eerd_eewr_done(struct wm_softc *, int);
569 static int wm_get_swfw_semaphore(struct wm_softc *, uint16_t);
570 static void wm_put_swfw_semaphore(struct wm_softc *, uint16_t);
571 static int wm_get_swfwhw_semaphore(struct wm_softc *);
572 static void wm_put_swfwhw_semaphore(struct wm_softc *);
573 static int wm_get_hw_semaphore_82573(struct wm_softc *);
574 static void wm_put_hw_semaphore_82573(struct wm_softc *);
575
576 static int wm_read_eeprom_ich8(struct wm_softc *, int, int, uint16_t *);
577 static int32_t wm_ich8_cycle_init(struct wm_softc *);
578 static int32_t wm_ich8_flash_cycle(struct wm_softc *, uint32_t);
579 static int32_t wm_read_ich8_data(struct wm_softc *, uint32_t,
580 uint32_t, uint16_t *);
581 static int32_t wm_read_ich8_byte(struct wm_softc *, uint32_t, uint8_t *);
582 static int32_t wm_read_ich8_word(struct wm_softc *, uint32_t, uint16_t *);
583 static void wm_82547_txfifo_stall(void *);
584 static void wm_gate_hw_phy_config_ich8lan(struct wm_softc *, int);
585 static int wm_check_mng_mode(struct wm_softc *);
586 static int wm_check_mng_mode_ich8lan(struct wm_softc *);
587 static int wm_check_mng_mode_82574(struct wm_softc *);
588 static int wm_check_mng_mode_generic(struct wm_softc *);
589 static int wm_enable_mng_pass_thru(struct wm_softc *);
590 static int wm_check_reset_block(struct wm_softc *);
591 static void wm_get_hw_control(struct wm_softc *);
592 static int wm_check_for_link(struct wm_softc *);
593 static void wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *);
594 static void wm_gig_downshift_workaround_ich8lan(struct wm_softc *);
595 #ifdef WM_WOL
596 static void wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *);
597 #endif
598 static void wm_hv_phy_workaround_ich8lan(struct wm_softc *);
599 static void wm_lv_phy_workaround_ich8lan(struct wm_softc *);
600 static void wm_k1_gig_workaround_hv(struct wm_softc *, int);
601 static void wm_set_mdio_slow_mode_hv(struct wm_softc *);
602 static void wm_configure_k1_ich8lan(struct wm_softc *, int);
603 static void wm_smbustopci(struct wm_softc *);
604 static void wm_set_pcie_completion_timeout(struct wm_softc *);
605 static void wm_reset_init_script_82575(struct wm_softc *);
606 static void wm_release_manageability(struct wm_softc *);
607 static void wm_release_hw_control(struct wm_softc *);
608 static void wm_get_wakeup(struct wm_softc *);
609 #ifdef WM_WOL
610 static void wm_enable_phy_wakeup(struct wm_softc *);
611 static void wm_enable_wakeup(struct wm_softc *);
612 #endif
613 static void wm_init_manageability(struct wm_softc *);
614 static void wm_set_eee_i350(struct wm_softc *);
615
616 CFATTACH_DECL3_NEW(wm, sizeof(struct wm_softc),
617 wm_match, wm_attach, wm_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
618
619 /*
620 * Devices supported by this driver.
621 */
622 static const struct wm_product {
623 pci_vendor_id_t wmp_vendor;
624 pci_product_id_t wmp_product;
625 const char *wmp_name;
626 wm_chip_type wmp_type;
627 int wmp_flags;
628 #define WMP_F_1000X 0x01
629 #define WMP_F_1000T 0x02
630 #define WMP_F_SERDES 0x04
631 } wm_products[] = {
632 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
633 "Intel i82542 1000BASE-X Ethernet",
634 WM_T_82542_2_1, WMP_F_1000X },
635
636 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
637 "Intel i82543GC 1000BASE-X Ethernet",
638 WM_T_82543, WMP_F_1000X },
639
640 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
641 "Intel i82543GC 1000BASE-T Ethernet",
642 WM_T_82543, WMP_F_1000T },
643
644 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
645 "Intel i82544EI 1000BASE-T Ethernet",
646 WM_T_82544, WMP_F_1000T },
647
648 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
649 "Intel i82544EI 1000BASE-X Ethernet",
650 WM_T_82544, WMP_F_1000X },
651
652 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
653 "Intel i82544GC 1000BASE-T Ethernet",
654 WM_T_82544, WMP_F_1000T },
655
656 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
657 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
658 WM_T_82544, WMP_F_1000T },
659
660 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
661 "Intel i82540EM 1000BASE-T Ethernet",
662 WM_T_82540, WMP_F_1000T },
663
664 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
665 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
666 WM_T_82540, WMP_F_1000T },
667
668 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
669 "Intel i82540EP 1000BASE-T Ethernet",
670 WM_T_82540, WMP_F_1000T },
671
672 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
673 "Intel i82540EP 1000BASE-T Ethernet",
674 WM_T_82540, WMP_F_1000T },
675
676 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
677 "Intel i82540EP 1000BASE-T Ethernet",
678 WM_T_82540, WMP_F_1000T },
679
680 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
681 "Intel i82545EM 1000BASE-T Ethernet",
682 WM_T_82545, WMP_F_1000T },
683
684 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
685 "Intel i82545GM 1000BASE-T Ethernet",
686 WM_T_82545_3, WMP_F_1000T },
687
688 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
689 "Intel i82545GM 1000BASE-X Ethernet",
690 WM_T_82545_3, WMP_F_1000X },
691 #if 0
692 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
693 "Intel i82545GM Gigabit Ethernet (SERDES)",
694 WM_T_82545_3, WMP_F_SERDES },
695 #endif
696 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
697 "Intel i82546EB 1000BASE-T Ethernet",
698 WM_T_82546, WMP_F_1000T },
699
700 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
701 "Intel i82546EB 1000BASE-T Ethernet",
702 WM_T_82546, WMP_F_1000T },
703
704 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
705 "Intel i82545EM 1000BASE-X Ethernet",
706 WM_T_82545, WMP_F_1000X },
707
708 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
709 "Intel i82546EB 1000BASE-X Ethernet",
710 WM_T_82546, WMP_F_1000X },
711
712 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
713 "Intel i82546GB 1000BASE-T Ethernet",
714 WM_T_82546_3, WMP_F_1000T },
715
716 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
717 "Intel i82546GB 1000BASE-X Ethernet",
718 WM_T_82546_3, WMP_F_1000X },
719 #if 0
720 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
721 "Intel i82546GB Gigabit Ethernet (SERDES)",
722 WM_T_82546_3, WMP_F_SERDES },
723 #endif
724 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER,
725 "i82546GB quad-port Gigabit Ethernet",
726 WM_T_82546_3, WMP_F_1000T },
727
728 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3,
729 "i82546GB quad-port Gigabit Ethernet (KSP3)",
730 WM_T_82546_3, WMP_F_1000T },
731
732 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_PCIE,
733 "Intel PRO/1000MT (82546GB)",
734 WM_T_82546_3, WMP_F_1000T },
735
736 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
737 "Intel i82541EI 1000BASE-T Ethernet",
738 WM_T_82541, WMP_F_1000T },
739
740 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER_LOM,
741 "Intel i82541ER (LOM) 1000BASE-T Ethernet",
742 WM_T_82541, WMP_F_1000T },
743
744 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
745 "Intel i82541EI Mobile 1000BASE-T Ethernet",
746 WM_T_82541, WMP_F_1000T },
747
748 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
749 "Intel i82541ER 1000BASE-T Ethernet",
750 WM_T_82541_2, WMP_F_1000T },
751
752 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
753 "Intel i82541GI 1000BASE-T Ethernet",
754 WM_T_82541_2, WMP_F_1000T },
755
756 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
757 "Intel i82541GI Mobile 1000BASE-T Ethernet",
758 WM_T_82541_2, WMP_F_1000T },
759
760 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI,
761 "Intel i82541PI 1000BASE-T Ethernet",
762 WM_T_82541_2, WMP_F_1000T },
763
764 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
765 "Intel i82547EI 1000BASE-T Ethernet",
766 WM_T_82547, WMP_F_1000T },
767
768 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI_MOBILE,
769 "Intel i82547EI Mobile 1000BASE-T Ethernet",
770 WM_T_82547, WMP_F_1000T },
771
772 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
773 "Intel i82547GI 1000BASE-T Ethernet",
774 WM_T_82547_2, WMP_F_1000T },
775
776 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_COPPER,
777 "Intel PRO/1000 PT (82571EB)",
778 WM_T_82571, WMP_F_1000T },
779
780 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_FIBER,
781 "Intel PRO/1000 PF (82571EB)",
782 WM_T_82571, WMP_F_1000X },
783 #if 0
784 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_SERDES,
785 "Intel PRO/1000 PB (82571EB)",
786 WM_T_82571, WMP_F_SERDES },
787 #endif
788 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER,
789 "Intel PRO/1000 QT (82571EB)",
790 WM_T_82571, WMP_F_1000T },
791
792 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_COPPER,
793 "Intel i82572EI 1000baseT Ethernet",
794 WM_T_82572, WMP_F_1000T },
795
796 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER,
797 "Intel PRO/1000 PT Quad Port Server Adapter",
798 WM_T_82571, WMP_F_1000T, },
799
800 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_FIBER,
801 "Intel i82572EI 1000baseX Ethernet",
802 WM_T_82572, WMP_F_1000X },
803 #if 0
804 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_SERDES,
805 "Intel i82572EI Gigabit Ethernet (SERDES)",
806 WM_T_82572, WMP_F_SERDES },
807 #endif
808
809 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI,
810 "Intel i82572EI 1000baseT Ethernet",
811 WM_T_82572, WMP_F_1000T },
812
813 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E,
814 "Intel i82573E",
815 WM_T_82573, WMP_F_1000T },
816
817 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E_IAMT,
818 "Intel i82573E IAMT",
819 WM_T_82573, WMP_F_1000T },
820
821 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L,
822 "Intel i82573L Gigabit Ethernet",
823 WM_T_82573, WMP_F_1000T },
824
825 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82574L,
826 "Intel i82574L",
827 WM_T_82574, WMP_F_1000T },
828
829 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82583V,
830 "Intel i82583V",
831 WM_T_82583, WMP_F_1000T },
832
833 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT,
834 "i80003 dual 1000baseT Ethernet",
835 WM_T_80003, WMP_F_1000T },
836
837 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT,
838 "i80003 dual 1000baseX Ethernet",
839 WM_T_80003, WMP_F_1000T },
840 #if 0
841 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT,
842 "Intel i80003ES2 dual Gigabit Ethernet (SERDES)",
843 WM_T_80003, WMP_F_SERDES },
844 #endif
845
846 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT,
847 "Intel i80003 1000baseT Ethernet",
848 WM_T_80003, WMP_F_1000T },
849 #if 0
850 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT,
851 "Intel i80003 Gigabit Ethernet (SERDES)",
852 WM_T_80003, WMP_F_SERDES },
853 #endif
854 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_AMT,
855 "Intel i82801H (M_AMT) LAN Controller",
856 WM_T_ICH8, WMP_F_1000T },
857 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_AMT,
858 "Intel i82801H (AMT) LAN Controller",
859 WM_T_ICH8, WMP_F_1000T },
860 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_LAN,
861 "Intel i82801H LAN Controller",
862 WM_T_ICH8, WMP_F_1000T },
863 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_LAN,
864 "Intel i82801H (IFE) LAN Controller",
865 WM_T_ICH8, WMP_F_1000T },
866 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_LAN,
867 "Intel i82801H (M) LAN Controller",
868 WM_T_ICH8, WMP_F_1000T },
869 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_GT,
870 "Intel i82801H IFE (GT) LAN Controller",
871 WM_T_ICH8, WMP_F_1000T },
872 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_G,
873 "Intel i82801H IFE (G) LAN Controller",
874 WM_T_ICH8, WMP_F_1000T },
875 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_AMT,
876 "82801I (AMT) LAN Controller",
877 WM_T_ICH9, WMP_F_1000T },
878 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE,
879 "82801I LAN Controller",
880 WM_T_ICH9, WMP_F_1000T },
881 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_G,
882 "82801I (G) LAN Controller",
883 WM_T_ICH9, WMP_F_1000T },
884 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_GT,
885 "82801I (GT) LAN Controller",
886 WM_T_ICH9, WMP_F_1000T },
887 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_C,
888 "82801I (C) LAN Controller",
889 WM_T_ICH9, WMP_F_1000T },
890 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M,
891 "82801I mobile LAN Controller",
892 WM_T_ICH9, WMP_F_1000T },
893 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IGP_M_V,
894 "82801I mobile (V) LAN Controller",
895 WM_T_ICH9, WMP_F_1000T },
896 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M_AMT,
897 "82801I mobile (AMT) LAN Controller",
898 WM_T_ICH9, WMP_F_1000T },
899 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_BM,
900 "82567LM-4 LAN Controller",
901 WM_T_ICH9, WMP_F_1000T },
902 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_82567V_3,
903 "82567V-3 LAN Controller",
904 WM_T_ICH9, WMP_F_1000T },
905 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_LM,
906 "82567LM-2 LAN Controller",
907 WM_T_ICH10, WMP_F_1000T },
908 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_LF,
909 "82567LF-2 LAN Controller",
910 WM_T_ICH10, WMP_F_1000T },
911 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_LM,
912 "82567LM-3 LAN Controller",
913 WM_T_ICH10, WMP_F_1000T },
914 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_LF,
915 "82567LF-3 LAN Controller",
916 WM_T_ICH10, WMP_F_1000T },
917 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_V,
918 "82567V-2 LAN Controller",
919 WM_T_ICH10, WMP_F_1000T },
920 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_V,
921 "82567V-3? LAN Controller",
922 WM_T_ICH10, WMP_F_1000T },
923 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_HANKSVILLE,
924 "HANKSVILLE LAN Controller",
925 WM_T_ICH10, WMP_F_1000T },
926 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_M_LM,
927 "PCH LAN (82577LM) Controller",
928 WM_T_PCH, WMP_F_1000T },
929 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_M_LC,
930 "PCH LAN (82577LC) Controller",
931 WM_T_PCH, WMP_F_1000T },
932 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_D_DM,
933 "PCH LAN (82578DM) Controller",
934 WM_T_PCH, WMP_F_1000T },
935 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_D_DC,
936 "PCH LAN (82578DC) Controller",
937 WM_T_PCH, WMP_F_1000T },
938 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH2_LV_LM,
939 "PCH2 LAN (82579LM) Controller",
940 WM_T_PCH2, WMP_F_1000T },
941 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH2_LV_V,
942 "PCH2 LAN (82579V) Controller",
943 WM_T_PCH2, WMP_F_1000T },
944 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575EB_COPPER,
945 "82575EB dual-1000baseT Ethernet",
946 WM_T_82575, WMP_F_1000T },
947 #if 0
948 /*
949 * not sure if WMP_F_1000X or WMP_F_SERDES - we do not have it - so
950 * disabled for now ...
951 */
952 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575EB_FIBER_SERDES,
953 "82575EB dual-1000baseX Ethernet (SERDES)",
954 WM_T_82575, WMP_F_SERDES },
955 #endif
956 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER,
957 "82575GB quad-1000baseT Ethernet",
958 WM_T_82575, WMP_F_1000T },
959 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER_PM,
960 "82575GB quad-1000baseT Ethernet (PM)",
961 WM_T_82575, WMP_F_1000T },
962 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_COPPER,
963 "82576 1000BaseT Ethernet",
964 WM_T_82576, WMP_F_1000T },
965 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_FIBER,
966 "82576 1000BaseX Ethernet",
967 WM_T_82576, WMP_F_1000X },
968 #if 0
969 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_SERDES,
970 "82576 gigabit Ethernet (SERDES)",
971 WM_T_82576, WMP_F_SERDES },
972 #endif
973 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_QUAD_COPPER,
974 "82576 quad-1000BaseT Ethernet",
975 WM_T_82576, WMP_F_1000T },
976 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_NS,
977 "82576 gigabit Ethernet",
978 WM_T_82576, WMP_F_1000T },
979 #if 0
980 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_NS_SERDES,
981 "82576 gigabit Ethernet (SERDES)",
982 WM_T_82576, WMP_F_SERDES },
983 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_SERDES_QUAD,
984 "82576 quad-gigabit Ethernet (SERDES)",
985 WM_T_82576, WMP_F_SERDES },
986 #endif
987 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_COPPER,
988 "82580 1000BaseT Ethernet",
989 WM_T_82580, WMP_F_1000T },
990 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_FIBER,
991 "82580 1000BaseX Ethernet",
992 WM_T_82580, WMP_F_1000X },
993 #if 0
994 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_SERDES,
995 "82580 1000BaseT Ethernet (SERDES)",
996 WM_T_82580, WMP_F_SERDES },
997 #endif
998 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_SGMII,
999 "82580 gigabit Ethernet (SGMII)",
1000 WM_T_82580, WMP_F_1000T },
1001 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_COPPER_DUAL,
1002 "82580 dual-1000BaseT Ethernet",
1003 WM_T_82580, WMP_F_1000T },
1004 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_ER,
1005 "82580 1000BaseT Ethernet",
1006 WM_T_82580ER, WMP_F_1000T },
1007 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_ER_DUAL,
1008 "82580 dual-1000BaseT Ethernet",
1009 WM_T_82580ER, WMP_F_1000T },
1010 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_QUAD_FIBER,
1011 "82580 quad-1000BaseX Ethernet",
1012 WM_T_82580, WMP_F_1000X },
1013 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_COPPER,
1014 "I350 Gigabit Network Connection",
1015 WM_T_I350, WMP_F_1000T },
1016 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_FIBER,
1017 "I350 Gigabit Fiber Network Connection",
1018 WM_T_I350, WMP_F_1000X },
1019 #if 0
1020 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_SERDES,
1021 "I350 Gigabit Backplane Connection",
1022 WM_T_I350, WMP_F_SERDES },
1023 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_SGMII,
1024 "I350 Gigabit Connection",
1025 WM_T_I350, WMP_F_1000T },
1026 #endif
1027 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_T1,
1028 "I210-T1 Ethernet Server Adapter",
1029 WM_T_I210, WMP_F_1000T },
1030 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_OEM1,
1031 "I210 Ethernet (Copper OEM)",
1032 WM_T_I210, WMP_F_1000T },
1033 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_IT,
1034 "I210 Ethernet (Copper IT)",
1035 WM_T_I210, WMP_F_1000T },
1036 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_FIBER,
1037 "I210 Gigabit Ethernet (Fiber)",
1038 WM_T_I210, WMP_F_1000X },
1039 #if 0
1040 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SERDES,
1041 "I210 Gigabit Ethernet (SERDES)",
1042 WM_T_I210, WMP_F_SERDES },
1043 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SGMII,
1044 "I210 Gigabit Ethernet (SGMII)",
1045 WM_T_I210, WMP_F_SERDES },
1046 #endif
1047 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I211_COPPER,
1048 "I211 Ethernet (COPPER)",
1049 WM_T_I211, WMP_F_1000T },
1050 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I217_V,
1051 "I217 V Ethernet Connection",
1052 WM_T_PCH_LPT, WMP_F_1000T },
1053 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I217_LM,
1054 "I217 LM Ethernet Connection",
1055 WM_T_PCH_LPT, WMP_F_1000T },
1056 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V,
1057 "I218 V Ethernet Connection",
1058 WM_T_PCH_LPT, WMP_F_1000T },
1059 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM,
1060 "I218 LM Ethernet Connection",
1061 WM_T_PCH_LPT, WMP_F_1000T },
1062 { 0, 0,
1063 NULL,
1064 0, 0 },
1065 };
1066
1067 #ifdef WM_EVENT_COUNTERS
1068 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
1069 #endif /* WM_EVENT_COUNTERS */
1070
1071 #if 0 /* Not currently used */
1072 static inline uint32_t
1073 wm_io_read(struct wm_softc *sc, int reg)
1074 {
1075
1076 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
1077 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
1078 }
1079 #endif
1080
1081 static inline void
1082 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
1083 {
1084
1085 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
1086 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
1087 }
1088
1089 static inline void
1090 wm_82575_write_8bit_ctlr_reg(struct wm_softc *sc, uint32_t reg, uint32_t off,
1091 uint32_t data)
1092 {
1093 uint32_t regval;
1094 int i;
1095
1096 regval = (data & SCTL_CTL_DATA_MASK) | (off << SCTL_CTL_ADDR_SHIFT);
1097
1098 CSR_WRITE(sc, reg, regval);
1099
1100 for (i = 0; i < SCTL_CTL_POLL_TIMEOUT; i++) {
1101 delay(5);
1102 if (CSR_READ(sc, reg) & SCTL_CTL_READY)
1103 break;
1104 }
1105 if (i == SCTL_CTL_POLL_TIMEOUT) {
1106 aprint_error("%s: WARNING: i82575 reg 0x%08x setup did not indicate ready\n",
1107 device_xname(sc->sc_dev), reg);
1108 }
1109 }
1110
1111 static inline void
1112 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
1113 {
1114 wa->wa_low = htole32(v & 0xffffffffU);
1115 if (sizeof(bus_addr_t) == 8)
1116 wa->wa_high = htole32((uint64_t) v >> 32);
1117 else
1118 wa->wa_high = 0;
1119 }
1120
1121 static void
1122 wm_set_spiaddrbits(struct wm_softc *sc)
1123 {
1124 uint32_t reg;
1125
1126 sc->sc_flags |= WM_F_EEPROM_SPI;
1127 reg = CSR_READ(sc, WMREG_EECD);
1128 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1129 }
1130
1131 static const struct wm_product *
1132 wm_lookup(const struct pci_attach_args *pa)
1133 {
1134 const struct wm_product *wmp;
1135
1136 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
1137 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
1138 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
1139 return wmp;
1140 }
1141 return NULL;
1142 }
1143
1144 static int
1145 wm_match(device_t parent, cfdata_t cf, void *aux)
1146 {
1147 struct pci_attach_args *pa = aux;
1148
1149 if (wm_lookup(pa) != NULL)
1150 return 1;
1151
1152 return 0;
1153 }
1154
1155 static void
1156 wm_attach(device_t parent, device_t self, void *aux)
1157 {
1158 struct wm_softc *sc = device_private(self);
1159 struct pci_attach_args *pa = aux;
1160 prop_dictionary_t dict;
1161 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1162 pci_chipset_tag_t pc = pa->pa_pc;
1163 pci_intr_handle_t ih;
1164 const char *intrstr = NULL;
1165 const char *eetype, *xname;
1166 bus_space_tag_t memt;
1167 bus_space_handle_t memh;
1168 bus_size_t memsize;
1169 int memh_valid;
1170 int i, error;
1171 const struct wm_product *wmp;
1172 prop_data_t ea;
1173 prop_number_t pn;
1174 uint8_t enaddr[ETHER_ADDR_LEN];
1175 uint16_t cfg1, cfg2, swdpin, io3;
1176 pcireg_t preg, memtype;
1177 uint16_t eeprom_data, apme_mask;
1178 uint32_t reg;
1179
1180 sc->sc_dev = self;
1181 callout_init(&sc->sc_tick_ch, 0);
1182
1183 sc->sc_wmp = wmp = wm_lookup(pa);
1184 if (wmp == NULL) {
1185 printf("\n");
1186 panic("wm_attach: impossible");
1187 }
1188
1189 sc->sc_pc = pa->pa_pc;
1190 sc->sc_pcitag = pa->pa_tag;
1191
1192 if (pci_dma64_available(pa))
1193 sc->sc_dmat = pa->pa_dmat64;
1194 else
1195 sc->sc_dmat = pa->pa_dmat;
1196
1197 sc->sc_rev = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
1198 pci_aprint_devinfo_fancy(pa, "Ethernet controller", wmp->wmp_name, 1);
1199
1200 sc->sc_type = wmp->wmp_type;
1201 if (sc->sc_type < WM_T_82543) {
1202 if (sc->sc_rev < 2) {
1203 aprint_error_dev(sc->sc_dev,
1204 "i82542 must be at least rev. 2\n");
1205 return;
1206 }
1207 if (sc->sc_rev < 3)
1208 sc->sc_type = WM_T_82542_2_0;
1209 }
1210
1211 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
1212 || (sc->sc_type == WM_T_82580) || (sc->sc_type == WM_T_82580ER)
1213 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I210)
1214 || (sc->sc_type == WM_T_I211))
1215 sc->sc_flags |= WM_F_NEWQUEUE;
1216
1217 /* Set device properties (mactype) */
1218 dict = device_properties(sc->sc_dev);
1219 prop_dictionary_set_uint32(dict, "mactype", sc->sc_type);
1220
1221 /*
1222 * Map the device. All devices support memory-mapped acccess,
1223 * and it is really required for normal operation.
1224 */
1225 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
1226 switch (memtype) {
1227 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1228 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1229 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
1230 memtype, 0, &memt, &memh, NULL, &memsize) == 0);
1231 break;
1232 default:
1233 memh_valid = 0;
1234 break;
1235 }
1236
1237 if (memh_valid) {
1238 sc->sc_st = memt;
1239 sc->sc_sh = memh;
1240 sc->sc_ss = memsize;
1241 } else {
1242 aprint_error_dev(sc->sc_dev,
1243 "unable to map device registers\n");
1244 return;
1245 }
1246
1247 /*
1248 * In addition, i82544 and later support I/O mapped indirect
1249 * register access. It is not desirable (nor supported in
1250 * this driver) to use it for normal operation, though it is
1251 * required to work around bugs in some chip versions.
1252 */
1253 if (sc->sc_type >= WM_T_82544) {
1254 /* First we have to find the I/O BAR. */
1255 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
1256 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, i);
1257 if (memtype == PCI_MAPREG_TYPE_IO)
1258 break;
1259 if (PCI_MAPREG_MEM_TYPE(memtype) ==
1260 PCI_MAPREG_MEM_TYPE_64BIT)
1261 i += 4; /* skip high bits, too */
1262 }
1263 if (i < PCI_MAPREG_END) {
1264 /*
1265 * We found PCI_MAPREG_TYPE_IO. Note that 82580
1266 * (and newer?) chip has no PCI_MAPREG_TYPE_IO.
1267 * It's no problem because newer chips has no this
1268 * bug.
1269 *
1270 * The i8254x doesn't apparently respond when the
1271 * I/O BAR is 0, which looks somewhat like it's not
1272 * been configured.
1273 */
1274 preg = pci_conf_read(pc, pa->pa_tag, i);
1275 if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
1276 aprint_error_dev(sc->sc_dev,
1277 "WARNING: I/O BAR at zero.\n");
1278 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
1279 0, &sc->sc_iot, &sc->sc_ioh,
1280 NULL, &sc->sc_ios) == 0) {
1281 sc->sc_flags |= WM_F_IOH_VALID;
1282 } else {
1283 aprint_error_dev(sc->sc_dev,
1284 "WARNING: unable to map I/O space\n");
1285 }
1286 }
1287
1288 }
1289
1290 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
1291 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1292 preg |= PCI_COMMAND_MASTER_ENABLE;
1293 if (sc->sc_type < WM_T_82542_2_1)
1294 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
1295 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
1296
1297 /* power up chip */
1298 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1299 NULL)) && error != EOPNOTSUPP) {
1300 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1301 return;
1302 }
1303
1304 /*
1305 * Map and establish our interrupt.
1306 */
1307 if (pci_intr_map(pa, &ih)) {
1308 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1309 return;
1310 }
1311 intrstr = pci_intr_string(pc, ih);
1312 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
1313 if (sc->sc_ih == NULL) {
1314 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1315 if (intrstr != NULL)
1316 aprint_error(" at %s", intrstr);
1317 aprint_error("\n");
1318 return;
1319 }
1320 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1321
1322 /*
1323 * Check the function ID (unit number of the chip).
1324 */
1325 if ((sc->sc_type == WM_T_82546) || (sc->sc_type == WM_T_82546_3)
1326 || (sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_80003)
1327 || (sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
1328 || (sc->sc_type == WM_T_82580) || (sc->sc_type == WM_T_82580ER)
1329 || (sc->sc_type == WM_T_I350))
1330 sc->sc_funcid = (CSR_READ(sc, WMREG_STATUS)
1331 >> STATUS_FUNCID_SHIFT) & STATUS_FUNCID_MASK;
1332 else
1333 sc->sc_funcid = 0;
1334
1335 /*
1336 * Determine a few things about the bus we're connected to.
1337 */
1338 if (sc->sc_type < WM_T_82543) {
1339 /* We don't really know the bus characteristics here. */
1340 sc->sc_bus_speed = 33;
1341 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
1342 /*
1343 * CSA (Communication Streaming Architecture) is about as fast
1344 * a 32-bit 66MHz PCI Bus.
1345 */
1346 sc->sc_flags |= WM_F_CSA;
1347 sc->sc_bus_speed = 66;
1348 aprint_verbose_dev(sc->sc_dev,
1349 "Communication Streaming Architecture\n");
1350 if (sc->sc_type == WM_T_82547) {
1351 callout_init(&sc->sc_txfifo_ch, 0);
1352 callout_setfunc(&sc->sc_txfifo_ch,
1353 wm_82547_txfifo_stall, sc);
1354 aprint_verbose_dev(sc->sc_dev,
1355 "using 82547 Tx FIFO stall work-around\n");
1356 }
1357 } else if (sc->sc_type >= WM_T_82571) {
1358 sc->sc_flags |= WM_F_PCIE;
1359 if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9)
1360 && (sc->sc_type != WM_T_ICH10)
1361 && (sc->sc_type != WM_T_PCH)
1362 && (sc->sc_type != WM_T_PCH2)
1363 && (sc->sc_type != WM_T_PCH_LPT)) {
1364 sc->sc_flags |= WM_F_EEPROM_SEMAPHORE;
1365 /* ICH* and PCH* have no PCIe capability registers */
1366 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
1367 PCI_CAP_PCIEXPRESS, &sc->sc_pcixe_capoff,
1368 NULL) == 0)
1369 aprint_error_dev(sc->sc_dev,
1370 "unable to find PCIe capability\n");
1371 }
1372 aprint_verbose_dev(sc->sc_dev, "PCI-Express bus\n");
1373 } else {
1374 reg = CSR_READ(sc, WMREG_STATUS);
1375 if (reg & STATUS_BUS64)
1376 sc->sc_flags |= WM_F_BUS64;
1377 if ((reg & STATUS_PCIX_MODE) != 0) {
1378 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
1379
1380 sc->sc_flags |= WM_F_PCIX;
1381 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
1382 PCI_CAP_PCIX, &sc->sc_pcixe_capoff, NULL) == 0)
1383 aprint_error_dev(sc->sc_dev,
1384 "unable to find PCIX capability\n");
1385 else if (sc->sc_type != WM_T_82545_3 &&
1386 sc->sc_type != WM_T_82546_3) {
1387 /*
1388 * Work around a problem caused by the BIOS
1389 * setting the max memory read byte count
1390 * incorrectly.
1391 */
1392 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
1393 sc->sc_pcixe_capoff + PCIX_CMD);
1394 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
1395 sc->sc_pcixe_capoff + PCIX_STATUS);
1396
1397 bytecnt =
1398 (pcix_cmd & PCIX_CMD_BYTECNT_MASK) >>
1399 PCIX_CMD_BYTECNT_SHIFT;
1400 maxb =
1401 (pcix_sts & PCIX_STATUS_MAXB_MASK) >>
1402 PCIX_STATUS_MAXB_SHIFT;
1403 if (bytecnt > maxb) {
1404 aprint_verbose_dev(sc->sc_dev,
1405 "resetting PCI-X MMRBC: %d -> %d\n",
1406 512 << bytecnt, 512 << maxb);
1407 pcix_cmd = (pcix_cmd &
1408 ~PCIX_CMD_BYTECNT_MASK) |
1409 (maxb << PCIX_CMD_BYTECNT_SHIFT);
1410 pci_conf_write(pa->pa_pc, pa->pa_tag,
1411 sc->sc_pcixe_capoff + PCIX_CMD,
1412 pcix_cmd);
1413 }
1414 }
1415 }
1416 /*
1417 * The quad port adapter is special; it has a PCIX-PCIX
1418 * bridge on the board, and can run the secondary bus at
1419 * a higher speed.
1420 */
1421 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
1422 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
1423 : 66;
1424 } else if (sc->sc_flags & WM_F_PCIX) {
1425 switch (reg & STATUS_PCIXSPD_MASK) {
1426 case STATUS_PCIXSPD_50_66:
1427 sc->sc_bus_speed = 66;
1428 break;
1429 case STATUS_PCIXSPD_66_100:
1430 sc->sc_bus_speed = 100;
1431 break;
1432 case STATUS_PCIXSPD_100_133:
1433 sc->sc_bus_speed = 133;
1434 break;
1435 default:
1436 aprint_error_dev(sc->sc_dev,
1437 "unknown PCIXSPD %d; assuming 66MHz\n",
1438 reg & STATUS_PCIXSPD_MASK);
1439 sc->sc_bus_speed = 66;
1440 break;
1441 }
1442 } else
1443 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
1444 aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
1445 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
1446 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
1447 }
1448
1449 /*
1450 * Allocate the control data structures, and create and load the
1451 * DMA map for it.
1452 *
1453 * NOTE: All Tx descriptors must be in the same 4G segment of
1454 * memory. So must Rx descriptors. We simplify by allocating
1455 * both sets within the same 4G segment.
1456 */
1457 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
1458 WM_NTXDESC_82542 : WM_NTXDESC_82544;
1459 sc->sc_cd_size = sc->sc_type < WM_T_82544 ?
1460 sizeof(struct wm_control_data_82542) :
1461 sizeof(struct wm_control_data_82544);
1462 if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_cd_size, PAGE_SIZE,
1463 (bus_size_t) 0x100000000ULL, &sc->sc_cd_seg, 1,
1464 &sc->sc_cd_rseg, 0)) != 0) {
1465 aprint_error_dev(sc->sc_dev,
1466 "unable to allocate control data, error = %d\n",
1467 error);
1468 goto fail_0;
1469 }
1470
1471 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cd_seg,
1472 sc->sc_cd_rseg, sc->sc_cd_size,
1473 (void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) {
1474 aprint_error_dev(sc->sc_dev,
1475 "unable to map control data, error = %d\n", error);
1476 goto fail_1;
1477 }
1478
1479 if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_cd_size, 1,
1480 sc->sc_cd_size, 0, 0, &sc->sc_cddmamap)) != 0) {
1481 aprint_error_dev(sc->sc_dev,
1482 "unable to create control data DMA map, error = %d\n",
1483 error);
1484 goto fail_2;
1485 }
1486
1487 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1488 sc->sc_control_data, sc->sc_cd_size, NULL, 0)) != 0) {
1489 aprint_error_dev(sc->sc_dev,
1490 "unable to load control data DMA map, error = %d\n",
1491 error);
1492 goto fail_3;
1493 }
1494
1495 /*
1496 * Create the transmit buffer DMA maps.
1497 */
1498 WM_TXQUEUELEN(sc) =
1499 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1500 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1501 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1502 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1503 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1504 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1505 aprint_error_dev(sc->sc_dev,
1506 "unable to create Tx DMA map %d, error = %d\n",
1507 i, error);
1508 goto fail_4;
1509 }
1510 }
1511
1512 /*
1513 * Create the receive buffer DMA maps.
1514 */
1515 for (i = 0; i < WM_NRXDESC; i++) {
1516 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1517 MCLBYTES, 0, 0,
1518 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1519 aprint_error_dev(sc->sc_dev,
1520 "unable to create Rx DMA map %d error = %d\n",
1521 i, error);
1522 goto fail_5;
1523 }
1524 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1525 }
1526
1527 /* clear interesting stat counters */
1528 CSR_READ(sc, WMREG_COLC);
1529 CSR_READ(sc, WMREG_RXERRC);
1530
1531 /* get PHY control from SMBus to PCIe */
1532 if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)
1533 || (sc->sc_type == WM_T_PCH_LPT))
1534 wm_smbustopci(sc);
1535
1536 /*
1537 * Reset the chip to a known state.
1538 */
1539 wm_reset(sc);
1540
1541 /*
1542 * Get some information about the EEPROM.
1543 */
1544 switch (sc->sc_type) {
1545 case WM_T_82542_2_0:
1546 case WM_T_82542_2_1:
1547 case WM_T_82543:
1548 case WM_T_82544:
1549 /* Microwire */
1550 sc->sc_ee_addrbits = 6;
1551 break;
1552 case WM_T_82540:
1553 case WM_T_82545:
1554 case WM_T_82545_3:
1555 case WM_T_82546:
1556 case WM_T_82546_3:
1557 /* Microwire */
1558 reg = CSR_READ(sc, WMREG_EECD);
1559 if (reg & EECD_EE_SIZE)
1560 sc->sc_ee_addrbits = 8;
1561 else
1562 sc->sc_ee_addrbits = 6;
1563 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1564 break;
1565 case WM_T_82541:
1566 case WM_T_82541_2:
1567 case WM_T_82547:
1568 case WM_T_82547_2:
1569 reg = CSR_READ(sc, WMREG_EECD);
1570 if (reg & EECD_EE_TYPE) {
1571 /* SPI */
1572 wm_set_spiaddrbits(sc);
1573 } else
1574 /* Microwire */
1575 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1576 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1577 break;
1578 case WM_T_82571:
1579 case WM_T_82572:
1580 /* SPI */
1581 wm_set_spiaddrbits(sc);
1582 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1583 break;
1584 case WM_T_82573:
1585 case WM_T_82574:
1586 case WM_T_82583:
1587 if (wm_is_onboard_nvm_eeprom(sc) == 0)
1588 sc->sc_flags |= WM_F_EEPROM_FLASH;
1589 else {
1590 /* SPI */
1591 wm_set_spiaddrbits(sc);
1592 }
1593 sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
1594 break;
1595 case WM_T_82575:
1596 case WM_T_82576:
1597 case WM_T_82580:
1598 case WM_T_82580ER:
1599 case WM_T_I350:
1600 case WM_T_80003:
1601 /* SPI */
1602 wm_set_spiaddrbits(sc);
1603 sc->sc_flags |= WM_F_EEPROM_EERDEEWR | WM_F_SWFW_SYNC;
1604 break;
1605 case WM_T_ICH8:
1606 case WM_T_ICH9:
1607 case WM_T_ICH10:
1608 case WM_T_PCH:
1609 case WM_T_PCH2:
1610 case WM_T_PCH_LPT:
1611 /* FLASH */
1612 sc->sc_flags |= WM_F_EEPROM_FLASH | WM_F_SWFWHW_SYNC;
1613 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_ICH8_FLASH);
1614 if (pci_mapreg_map(pa, WM_ICH8_FLASH, memtype, 0,
1615 &sc->sc_flasht, &sc->sc_flashh, NULL, NULL)) {
1616 aprint_error_dev(sc->sc_dev,
1617 "can't map FLASH registers\n");
1618 return;
1619 }
1620 reg = ICH8_FLASH_READ32(sc, ICH_FLASH_GFPREG);
1621 sc->sc_ich8_flash_base = (reg & ICH_GFPREG_BASE_MASK) *
1622 ICH_FLASH_SECTOR_SIZE;
1623 sc->sc_ich8_flash_bank_size =
1624 ((reg >> 16) & ICH_GFPREG_BASE_MASK) + 1;
1625 sc->sc_ich8_flash_bank_size -=
1626 (reg & ICH_GFPREG_BASE_MASK);
1627 sc->sc_ich8_flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
1628 sc->sc_ich8_flash_bank_size /= 2 * sizeof(uint16_t);
1629 break;
1630 case WM_T_I210:
1631 case WM_T_I211:
1632 sc->sc_flags |= WM_F_EEPROM_FLASH_HW;
1633 sc->sc_flags |= WM_F_EEPROM_EERDEEWR | WM_F_SWFW_SYNC;
1634 break;
1635 default:
1636 break;
1637 }
1638
1639 /*
1640 * Defer printing the EEPROM type until after verifying the checksum
1641 * This allows the EEPROM type to be printed correctly in the case
1642 * that no EEPROM is attached.
1643 */
1644 /*
1645 * Validate the EEPROM checksum. If the checksum fails, flag
1646 * this for later, so we can fail future reads from the EEPROM.
1647 */
1648 if (wm_validate_eeprom_checksum(sc)) {
1649 /*
1650 * Read twice again because some PCI-e parts fail the
1651 * first check due to the link being in sleep state.
1652 */
1653 if (wm_validate_eeprom_checksum(sc))
1654 sc->sc_flags |= WM_F_EEPROM_INVALID;
1655 }
1656
1657 /* Set device properties (macflags) */
1658 prop_dictionary_set_uint32(dict, "macflags", sc->sc_flags);
1659
1660 if (sc->sc_flags & WM_F_EEPROM_INVALID)
1661 aprint_verbose_dev(sc->sc_dev, "No EEPROM\n");
1662 else if (sc->sc_flags & WM_F_EEPROM_FLASH_HW) {
1663 aprint_verbose_dev(sc->sc_dev, "FLASH(HW)\n");
1664 } else if (sc->sc_flags & WM_F_EEPROM_FLASH) {
1665 aprint_verbose_dev(sc->sc_dev, "FLASH\n");
1666 } else {
1667 if (sc->sc_flags & WM_F_EEPROM_SPI)
1668 eetype = "SPI";
1669 else
1670 eetype = "MicroWire";
1671 aprint_verbose_dev(sc->sc_dev,
1672 "%u word (%d address bits) %s EEPROM\n",
1673 1U << sc->sc_ee_addrbits,
1674 sc->sc_ee_addrbits, eetype);
1675 }
1676
1677 switch (sc->sc_type) {
1678 case WM_T_82571:
1679 case WM_T_82572:
1680 case WM_T_82573:
1681 case WM_T_82574:
1682 case WM_T_82583:
1683 case WM_T_80003:
1684 case WM_T_ICH8:
1685 case WM_T_ICH9:
1686 case WM_T_ICH10:
1687 case WM_T_PCH:
1688 case WM_T_PCH2:
1689 case WM_T_PCH_LPT:
1690 if (wm_check_mng_mode(sc) != 0)
1691 wm_get_hw_control(sc);
1692 break;
1693 default:
1694 break;
1695 }
1696 wm_get_wakeup(sc);
1697 /*
1698 * Read the Ethernet address from the EEPROM, if not first found
1699 * in device properties.
1700 */
1701 ea = prop_dictionary_get(dict, "mac-address");
1702 if (ea != NULL) {
1703 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
1704 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
1705 memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
1706 } else {
1707 if (wm_read_mac_addr(sc, enaddr) != 0) {
1708 aprint_error_dev(sc->sc_dev,
1709 "unable to read Ethernet address\n");
1710 return;
1711 }
1712 }
1713
1714 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
1715 ether_sprintf(enaddr));
1716
1717 /*
1718 * Read the config info from the EEPROM, and set up various
1719 * bits in the control registers based on their contents.
1720 */
1721 pn = prop_dictionary_get(dict, "i82543-cfg1");
1722 if (pn != NULL) {
1723 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1724 cfg1 = (uint16_t) prop_number_integer_value(pn);
1725 } else {
1726 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1727 aprint_error_dev(sc->sc_dev, "unable to read CFG1\n");
1728 return;
1729 }
1730 }
1731
1732 pn = prop_dictionary_get(dict, "i82543-cfg2");
1733 if (pn != NULL) {
1734 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1735 cfg2 = (uint16_t) prop_number_integer_value(pn);
1736 } else {
1737 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1738 aprint_error_dev(sc->sc_dev, "unable to read CFG2\n");
1739 return;
1740 }
1741 }
1742
1743 /* check for WM_F_WOL */
1744 switch (sc->sc_type) {
1745 case WM_T_82542_2_0:
1746 case WM_T_82542_2_1:
1747 case WM_T_82543:
1748 /* dummy? */
1749 eeprom_data = 0;
1750 apme_mask = EEPROM_CFG3_APME;
1751 break;
1752 case WM_T_82544:
1753 apme_mask = EEPROM_CFG2_82544_APM_EN;
1754 eeprom_data = cfg2;
1755 break;
1756 case WM_T_82546:
1757 case WM_T_82546_3:
1758 case WM_T_82571:
1759 case WM_T_82572:
1760 case WM_T_82573:
1761 case WM_T_82574:
1762 case WM_T_82583:
1763 case WM_T_80003:
1764 default:
1765 apme_mask = EEPROM_CFG3_APME;
1766 wm_read_eeprom(sc, (sc->sc_funcid == 1) ? EEPROM_OFF_CFG3_PORTB
1767 : EEPROM_OFF_CFG3_PORTA, 1, &eeprom_data);
1768 break;
1769 case WM_T_82575:
1770 case WM_T_82576:
1771 case WM_T_82580:
1772 case WM_T_82580ER:
1773 case WM_T_I350:
1774 case WM_T_ICH8:
1775 case WM_T_ICH9:
1776 case WM_T_ICH10:
1777 case WM_T_PCH:
1778 case WM_T_PCH2:
1779 case WM_T_PCH_LPT:
1780 /* XXX The funcid should be checked on some devices */
1781 apme_mask = WUC_APME;
1782 eeprom_data = CSR_READ(sc, WMREG_WUC);
1783 break;
1784 }
1785
1786 /* Check for WM_F_WOL flag after the setting of the EEPROM stuff */
1787 if ((eeprom_data & apme_mask) != 0)
1788 sc->sc_flags |= WM_F_WOL;
1789 #ifdef WM_DEBUG
1790 if ((sc->sc_flags & WM_F_WOL) != 0)
1791 printf("WOL\n");
1792 #endif
1793
1794 /*
1795 * XXX need special handling for some multiple port cards
1796 * to disable a paticular port.
1797 */
1798
1799 if (sc->sc_type >= WM_T_82544) {
1800 pn = prop_dictionary_get(dict, "i82543-swdpin");
1801 if (pn != NULL) {
1802 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
1803 swdpin = (uint16_t) prop_number_integer_value(pn);
1804 } else {
1805 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1806 aprint_error_dev(sc->sc_dev,
1807 "unable to read SWDPIN\n");
1808 return;
1809 }
1810 }
1811 }
1812
1813 if (cfg1 & EEPROM_CFG1_ILOS)
1814 sc->sc_ctrl |= CTRL_ILOS;
1815 if (sc->sc_type >= WM_T_82544) {
1816 sc->sc_ctrl |=
1817 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1818 CTRL_SWDPIO_SHIFT;
1819 sc->sc_ctrl |=
1820 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1821 CTRL_SWDPINS_SHIFT;
1822 } else {
1823 sc->sc_ctrl |=
1824 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1825 CTRL_SWDPIO_SHIFT;
1826 }
1827
1828 #if 0
1829 if (sc->sc_type >= WM_T_82544) {
1830 if (cfg1 & EEPROM_CFG1_IPS0)
1831 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1832 if (cfg1 & EEPROM_CFG1_IPS1)
1833 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1834 sc->sc_ctrl_ext |=
1835 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1836 CTRL_EXT_SWDPIO_SHIFT;
1837 sc->sc_ctrl_ext |=
1838 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1839 CTRL_EXT_SWDPINS_SHIFT;
1840 } else {
1841 sc->sc_ctrl_ext |=
1842 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1843 CTRL_EXT_SWDPIO_SHIFT;
1844 }
1845 #endif
1846
1847 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1848 #if 0
1849 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1850 #endif
1851
1852 /*
1853 * Set up some register offsets that are different between
1854 * the i82542 and the i82543 and later chips.
1855 */
1856 if (sc->sc_type < WM_T_82543) {
1857 sc->sc_rdt_reg = WMREG_OLD_RDT0;
1858 sc->sc_tdt_reg = WMREG_OLD_TDT;
1859 } else {
1860 sc->sc_rdt_reg = WMREG_RDT;
1861 sc->sc_tdt_reg = WMREG_TDT;
1862 }
1863
1864 if (sc->sc_type == WM_T_PCH) {
1865 uint16_t val;
1866
1867 /* Save the NVM K1 bit setting */
1868 wm_read_eeprom(sc, EEPROM_OFF_K1_CONFIG, 1, &val);
1869
1870 if ((val & EEPROM_K1_CONFIG_ENABLE) != 0)
1871 sc->sc_nvm_k1_enabled = 1;
1872 else
1873 sc->sc_nvm_k1_enabled = 0;
1874 }
1875
1876 /*
1877 * Determine if we're TBI,GMII or SGMII mode, and initialize the
1878 * media structures accordingly.
1879 */
1880 if (sc->sc_type == WM_T_ICH8 || sc->sc_type == WM_T_ICH9
1881 || sc->sc_type == WM_T_ICH10 || sc->sc_type == WM_T_PCH
1882 || sc->sc_type == WM_T_PCH2 || sc->sc_type == WM_T_PCH_LPT
1883 || sc->sc_type == WM_T_82573
1884 || sc->sc_type == WM_T_82574 || sc->sc_type == WM_T_82583) {
1885 /* STATUS_TBIMODE reserved/reused, can't rely on it */
1886 wm_gmii_mediainit(sc, wmp->wmp_product);
1887 } else if (sc->sc_type < WM_T_82543 ||
1888 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1889 if (wmp->wmp_flags & WMP_F_1000T)
1890 aprint_error_dev(sc->sc_dev,
1891 "WARNING: TBIMODE set on 1000BASE-T product!\n");
1892 wm_tbi_mediainit(sc);
1893 } else {
1894 switch (sc->sc_type) {
1895 case WM_T_82575:
1896 case WM_T_82576:
1897 case WM_T_82580:
1898 case WM_T_82580ER:
1899 case WM_T_I350:
1900 case WM_T_I210:
1901 case WM_T_I211:
1902 reg = CSR_READ(sc, WMREG_CTRL_EXT);
1903 switch (reg & CTRL_EXT_LINK_MODE_MASK) {
1904 case CTRL_EXT_LINK_MODE_SGMII:
1905 aprint_verbose_dev(sc->sc_dev, "SGMII\n");
1906 sc->sc_flags |= WM_F_SGMII;
1907 CSR_WRITE(sc, WMREG_CTRL_EXT,
1908 reg | CTRL_EXT_I2C_ENA);
1909 wm_gmii_mediainit(sc, wmp->wmp_product);
1910 break;
1911 case CTRL_EXT_LINK_MODE_1000KX:
1912 case CTRL_EXT_LINK_MODE_PCIE_SERDES:
1913 aprint_verbose_dev(sc->sc_dev, "1000KX or SERDES\n");
1914 CSR_WRITE(sc, WMREG_CTRL_EXT,
1915 reg | CTRL_EXT_I2C_ENA);
1916 panic("not supported yet\n");
1917 break;
1918 case CTRL_EXT_LINK_MODE_GMII:
1919 default:
1920 CSR_WRITE(sc, WMREG_CTRL_EXT,
1921 reg & ~CTRL_EXT_I2C_ENA);
1922 wm_gmii_mediainit(sc, wmp->wmp_product);
1923 break;
1924 }
1925 break;
1926 default:
1927 if (wmp->wmp_flags & WMP_F_1000X)
1928 aprint_error_dev(sc->sc_dev,
1929 "WARNING: TBIMODE clear on 1000BASE-X product!\n");
1930 wm_gmii_mediainit(sc, wmp->wmp_product);
1931 }
1932 }
1933
1934 ifp = &sc->sc_ethercom.ec_if;
1935 xname = device_xname(sc->sc_dev);
1936 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
1937 ifp->if_softc = sc;
1938 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1939 ifp->if_ioctl = wm_ioctl;
1940 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
1941 ifp->if_start = wm_nq_start;
1942 else
1943 ifp->if_start = wm_start;
1944 ifp->if_watchdog = wm_watchdog;
1945 ifp->if_init = wm_init;
1946 ifp->if_stop = wm_stop;
1947 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1948 IFQ_SET_READY(&ifp->if_snd);
1949
1950 /* Check for jumbo frame */
1951 switch (sc->sc_type) {
1952 case WM_T_82573:
1953 /* XXX limited to 9234 if ASPM is disabled */
1954 wm_read_eeprom(sc, EEPROM_INIT_3GIO_3, 1, &io3);
1955 if ((io3 & EEPROM_3GIO_3_ASPM_MASK) != 0)
1956 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1957 break;
1958 case WM_T_82571:
1959 case WM_T_82572:
1960 case WM_T_82574:
1961 case WM_T_82575:
1962 case WM_T_82576:
1963 case WM_T_82580:
1964 case WM_T_82580ER:
1965 case WM_T_I350:
1966 case WM_T_I210:
1967 case WM_T_I211:
1968 case WM_T_80003:
1969 case WM_T_ICH9:
1970 case WM_T_ICH10:
1971 case WM_T_PCH2: /* PCH2 supports 9K frame size */
1972 case WM_T_PCH_LPT:
1973 /* XXX limited to 9234 */
1974 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1975 break;
1976 case WM_T_PCH:
1977 /* XXX limited to 4096 */
1978 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1979 break;
1980 case WM_T_82542_2_0:
1981 case WM_T_82542_2_1:
1982 case WM_T_82583:
1983 case WM_T_ICH8:
1984 /* No support for jumbo frame */
1985 break;
1986 default:
1987 /* ETHER_MAX_LEN_JUMBO */
1988 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1989 break;
1990 }
1991
1992 /*
1993 * If we're a i82543 or greater, we can support VLANs.
1994 */
1995 if (sc->sc_type >= WM_T_82543)
1996 sc->sc_ethercom.ec_capabilities |=
1997 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1998
1999 /*
2000 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
2001 * on i82543 and later.
2002 */
2003 if (sc->sc_type >= WM_T_82543) {
2004 ifp->if_capabilities |=
2005 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2006 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2007 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
2008 IFCAP_CSUM_TCPv6_Tx |
2009 IFCAP_CSUM_UDPv6_Tx;
2010 }
2011
2012 /*
2013 * XXXyamt: i'm not sure which chips support RXCSUM_IPV6OFL.
2014 *
2015 * 82541GI (8086:1076) ... no
2016 * 82572EI (8086:10b9) ... yes
2017 */
2018 if (sc->sc_type >= WM_T_82571) {
2019 ifp->if_capabilities |=
2020 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
2021 }
2022
2023 /*
2024 * If we're a i82544 or greater (except i82547), we can do
2025 * TCP segmentation offload.
2026 */
2027 if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547) {
2028 ifp->if_capabilities |= IFCAP_TSOv4;
2029 }
2030
2031 if (sc->sc_type >= WM_T_82571) {
2032 ifp->if_capabilities |= IFCAP_TSOv6;
2033 }
2034
2035 /*
2036 * Attach the interface.
2037 */
2038 if_attach(ifp);
2039 ether_ifattach(ifp, enaddr);
2040 ether_set_ifflags_cb(&sc->sc_ethercom, wm_ifflags_cb);
2041 rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET, 0);
2042
2043 #ifdef WM_EVENT_COUNTERS
2044 /* Attach event counters. */
2045 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
2046 NULL, xname, "txsstall");
2047 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
2048 NULL, xname, "txdstall");
2049 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
2050 NULL, xname, "txfifo_stall");
2051 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
2052 NULL, xname, "txdw");
2053 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
2054 NULL, xname, "txqe");
2055 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
2056 NULL, xname, "rxintr");
2057 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
2058 NULL, xname, "linkintr");
2059
2060 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
2061 NULL, xname, "rxipsum");
2062 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
2063 NULL, xname, "rxtusum");
2064 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
2065 NULL, xname, "txipsum");
2066 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
2067 NULL, xname, "txtusum");
2068 evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
2069 NULL, xname, "txtusum6");
2070
2071 evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
2072 NULL, xname, "txtso");
2073 evcnt_attach_dynamic(&sc->sc_ev_txtso6, EVCNT_TYPE_MISC,
2074 NULL, xname, "txtso6");
2075 evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
2076 NULL, xname, "txtsopain");
2077
2078 for (i = 0; i < WM_NTXSEGS; i++) {
2079 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
2080 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
2081 NULL, xname, wm_txseg_evcnt_names[i]);
2082 }
2083
2084 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
2085 NULL, xname, "txdrop");
2086
2087 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
2088 NULL, xname, "tu");
2089
2090 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
2091 NULL, xname, "tx_xoff");
2092 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
2093 NULL, xname, "tx_xon");
2094 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
2095 NULL, xname, "rx_xoff");
2096 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
2097 NULL, xname, "rx_xon");
2098 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
2099 NULL, xname, "rx_macctl");
2100 #endif /* WM_EVENT_COUNTERS */
2101
2102 if (pmf_device_register(self, wm_suspend, wm_resume))
2103 pmf_class_network_register(self, ifp);
2104 else
2105 aprint_error_dev(self, "couldn't establish power handler\n");
2106
2107 return;
2108
2109 /*
2110 * Free any resources we've allocated during the failed attach
2111 * attempt. Do this in reverse order and fall through.
2112 */
2113 fail_5:
2114 for (i = 0; i < WM_NRXDESC; i++) {
2115 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
2116 bus_dmamap_destroy(sc->sc_dmat,
2117 sc->sc_rxsoft[i].rxs_dmamap);
2118 }
2119 fail_4:
2120 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2121 if (sc->sc_txsoft[i].txs_dmamap != NULL)
2122 bus_dmamap_destroy(sc->sc_dmat,
2123 sc->sc_txsoft[i].txs_dmamap);
2124 }
2125 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2126 fail_3:
2127 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2128 fail_2:
2129 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2130 sc->sc_cd_size);
2131 fail_1:
2132 bus_dmamem_free(sc->sc_dmat, &sc->sc_cd_seg, sc->sc_cd_rseg);
2133 fail_0:
2134 return;
2135 }
2136
2137 static int
2138 wm_detach(device_t self, int flags __unused)
2139 {
2140 struct wm_softc *sc = device_private(self);
2141 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2142 int i, s;
2143
2144 s = splnet();
2145 /* Stop the interface. Callouts are stopped in it. */
2146 wm_stop(ifp, 1);
2147 splx(s);
2148
2149 pmf_device_deregister(self);
2150
2151 /* Tell the firmware about the release */
2152 wm_release_manageability(sc);
2153 wm_release_hw_control(sc);
2154
2155 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2156
2157 /* Delete all remaining media. */
2158 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2159
2160 ether_ifdetach(ifp);
2161 if_detach(ifp);
2162
2163
2164 /* Unload RX dmamaps and free mbufs */
2165 wm_rxdrain(sc);
2166
2167 /* Free dmamap. It's the same as the end of the wm_attach() function */
2168 for (i = 0; i < WM_NRXDESC; i++) {
2169 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
2170 bus_dmamap_destroy(sc->sc_dmat,
2171 sc->sc_rxsoft[i].rxs_dmamap);
2172 }
2173 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2174 if (sc->sc_txsoft[i].txs_dmamap != NULL)
2175 bus_dmamap_destroy(sc->sc_dmat,
2176 sc->sc_txsoft[i].txs_dmamap);
2177 }
2178 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2179 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2180 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2181 sc->sc_cd_size);
2182 bus_dmamem_free(sc->sc_dmat, &sc->sc_cd_seg, sc->sc_cd_rseg);
2183
2184 /* Disestablish the interrupt handler */
2185 if (sc->sc_ih != NULL) {
2186 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
2187 sc->sc_ih = NULL;
2188 }
2189
2190 /* Unmap the registers */
2191 if (sc->sc_ss) {
2192 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_ss);
2193 sc->sc_ss = 0;
2194 }
2195
2196 if (sc->sc_ios) {
2197 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
2198 sc->sc_ios = 0;
2199 }
2200
2201 return 0;
2202 }
2203
2204 /*
2205 * wm_tx_offload:
2206 *
2207 * Set up TCP/IP checksumming parameters for the
2208 * specified packet.
2209 */
2210 static int
2211 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
2212 uint8_t *fieldsp)
2213 {
2214 struct mbuf *m0 = txs->txs_mbuf;
2215 struct livengood_tcpip_ctxdesc *t;
2216 uint32_t ipcs, tucs, cmd, cmdlen, seg;
2217 uint32_t ipcse;
2218 struct ether_header *eh;
2219 int offset, iphl;
2220 uint8_t fields;
2221
2222 /*
2223 * XXX It would be nice if the mbuf pkthdr had offset
2224 * fields for the protocol headers.
2225 */
2226
2227 eh = mtod(m0, struct ether_header *);
2228 switch (htons(eh->ether_type)) {
2229 case ETHERTYPE_IP:
2230 case ETHERTYPE_IPV6:
2231 offset = ETHER_HDR_LEN;
2232 break;
2233
2234 case ETHERTYPE_VLAN:
2235 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2236 break;
2237
2238 default:
2239 /*
2240 * Don't support this protocol or encapsulation.
2241 */
2242 *fieldsp = 0;
2243 *cmdp = 0;
2244 return 0;
2245 }
2246
2247 if ((m0->m_pkthdr.csum_flags &
2248 (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
2249 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
2250 } else {
2251 iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
2252 }
2253 ipcse = offset + iphl - 1;
2254
2255 cmd = WTX_CMD_DEXT | WTX_DTYP_D;
2256 cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
2257 seg = 0;
2258 fields = 0;
2259
2260 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
2261 int hlen = offset + iphl;
2262 bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
2263
2264 if (__predict_false(m0->m_len <
2265 (hlen + sizeof(struct tcphdr)))) {
2266 /*
2267 * TCP/IP headers are not in the first mbuf; we need
2268 * to do this the slow and painful way. Let's just
2269 * hope this doesn't happen very often.
2270 */
2271 struct tcphdr th;
2272
2273 WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
2274
2275 m_copydata(m0, hlen, sizeof(th), &th);
2276 if (v4) {
2277 struct ip ip;
2278
2279 m_copydata(m0, offset, sizeof(ip), &ip);
2280 ip.ip_len = 0;
2281 m_copyback(m0,
2282 offset + offsetof(struct ip, ip_len),
2283 sizeof(ip.ip_len), &ip.ip_len);
2284 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
2285 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
2286 } else {
2287 struct ip6_hdr ip6;
2288
2289 m_copydata(m0, offset, sizeof(ip6), &ip6);
2290 ip6.ip6_plen = 0;
2291 m_copyback(m0,
2292 offset + offsetof(struct ip6_hdr, ip6_plen),
2293 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
2294 th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
2295 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
2296 }
2297 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
2298 sizeof(th.th_sum), &th.th_sum);
2299
2300 hlen += th.th_off << 2;
2301 } else {
2302 /*
2303 * TCP/IP headers are in the first mbuf; we can do
2304 * this the easy way.
2305 */
2306 struct tcphdr *th;
2307
2308 if (v4) {
2309 struct ip *ip =
2310 (void *)(mtod(m0, char *) + offset);
2311 th = (void *)(mtod(m0, char *) + hlen);
2312
2313 ip->ip_len = 0;
2314 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
2315 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
2316 } else {
2317 struct ip6_hdr *ip6 =
2318 (void *)(mtod(m0, char *) + offset);
2319 th = (void *)(mtod(m0, char *) + hlen);
2320
2321 ip6->ip6_plen = 0;
2322 th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
2323 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
2324 }
2325 hlen += th->th_off << 2;
2326 }
2327
2328 if (v4) {
2329 WM_EVCNT_INCR(&sc->sc_ev_txtso);
2330 cmdlen |= WTX_TCPIP_CMD_IP;
2331 } else {
2332 WM_EVCNT_INCR(&sc->sc_ev_txtso6);
2333 ipcse = 0;
2334 }
2335 cmd |= WTX_TCPIP_CMD_TSE;
2336 cmdlen |= WTX_TCPIP_CMD_TSE |
2337 WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
2338 seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
2339 WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
2340 }
2341
2342 /*
2343 * NOTE: Even if we're not using the IP or TCP/UDP checksum
2344 * offload feature, if we load the context descriptor, we
2345 * MUST provide valid values for IPCSS and TUCSS fields.
2346 */
2347
2348 ipcs = WTX_TCPIP_IPCSS(offset) |
2349 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
2350 WTX_TCPIP_IPCSE(ipcse);
2351 if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
2352 WM_EVCNT_INCR(&sc->sc_ev_txipsum);
2353 fields |= WTX_IXSM;
2354 }
2355
2356 offset += iphl;
2357
2358 if (m0->m_pkthdr.csum_flags &
2359 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
2360 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
2361 fields |= WTX_TXSM;
2362 tucs = WTX_TCPIP_TUCSS(offset) |
2363 WTX_TCPIP_TUCSO(offset +
2364 M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
2365 WTX_TCPIP_TUCSE(0) /* rest of packet */;
2366 } else if ((m0->m_pkthdr.csum_flags &
2367 (M_CSUM_TCPv6|M_CSUM_UDPv6|M_CSUM_TSOv6)) != 0) {
2368 WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
2369 fields |= WTX_TXSM;
2370 tucs = WTX_TCPIP_TUCSS(offset) |
2371 WTX_TCPIP_TUCSO(offset +
2372 M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
2373 WTX_TCPIP_TUCSE(0) /* rest of packet */;
2374 } else {
2375 /* Just initialize it to a valid TCP context. */
2376 tucs = WTX_TCPIP_TUCSS(offset) |
2377 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
2378 WTX_TCPIP_TUCSE(0) /* rest of packet */;
2379 }
2380
2381 /* Fill in the context descriptor. */
2382 t = (struct livengood_tcpip_ctxdesc *)
2383 &sc->sc_txdescs[sc->sc_txnext];
2384 t->tcpip_ipcs = htole32(ipcs);
2385 t->tcpip_tucs = htole32(tucs);
2386 t->tcpip_cmdlen = htole32(cmdlen);
2387 t->tcpip_seg = htole32(seg);
2388 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
2389
2390 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
2391 txs->txs_ndesc++;
2392
2393 *cmdp = cmd;
2394 *fieldsp = fields;
2395
2396 return 0;
2397 }
2398
2399 static void
2400 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
2401 {
2402 struct mbuf *m;
2403 int i;
2404
2405 log(LOG_DEBUG, "%s: mbuf chain:\n", device_xname(sc->sc_dev));
2406 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
2407 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
2408 "m_flags = 0x%08x\n", device_xname(sc->sc_dev),
2409 m->m_data, m->m_len, m->m_flags);
2410 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", device_xname(sc->sc_dev),
2411 i, i == 1 ? "" : "s");
2412 }
2413
2414 /*
2415 * wm_82547_txfifo_stall:
2416 *
2417 * Callout used to wait for the 82547 Tx FIFO to drain,
2418 * reset the FIFO pointers, and restart packet transmission.
2419 */
2420 static void
2421 wm_82547_txfifo_stall(void *arg)
2422 {
2423 struct wm_softc *sc = arg;
2424 int s;
2425
2426 s = splnet();
2427
2428 if (sc->sc_txfifo_stall) {
2429 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
2430 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
2431 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
2432 /*
2433 * Packets have drained. Stop transmitter, reset
2434 * FIFO pointers, restart transmitter, and kick
2435 * the packet queue.
2436 */
2437 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
2438 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
2439 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
2440 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
2441 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
2442 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
2443 CSR_WRITE(sc, WMREG_TCTL, tctl);
2444 CSR_WRITE_FLUSH(sc);
2445
2446 sc->sc_txfifo_head = 0;
2447 sc->sc_txfifo_stall = 0;
2448 wm_start(&sc->sc_ethercom.ec_if);
2449 } else {
2450 /*
2451 * Still waiting for packets to drain; try again in
2452 * another tick.
2453 */
2454 callout_schedule(&sc->sc_txfifo_ch, 1);
2455 }
2456 }
2457
2458 splx(s);
2459 }
2460
2461 static void
2462 wm_gate_hw_phy_config_ich8lan(struct wm_softc *sc, int on)
2463 {
2464 uint32_t reg;
2465
2466 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
2467
2468 if (on != 0)
2469 reg |= EXTCNFCTR_GATE_PHY_CFG;
2470 else
2471 reg &= ~EXTCNFCTR_GATE_PHY_CFG;
2472
2473 CSR_WRITE(sc, WMREG_EXTCNFCTR, reg);
2474 }
2475
2476 /*
2477 * wm_82547_txfifo_bugchk:
2478 *
2479 * Check for bug condition in the 82547 Tx FIFO. We need to
2480 * prevent enqueueing a packet that would wrap around the end
2481 * if the Tx FIFO ring buffer, otherwise the chip will croak.
2482 *
2483 * We do this by checking the amount of space before the end
2484 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
2485 * the Tx FIFO, wait for all remaining packets to drain, reset
2486 * the internal FIFO pointers to the beginning, and restart
2487 * transmission on the interface.
2488 */
2489 #define WM_FIFO_HDR 0x10
2490 #define WM_82547_PAD_LEN 0x3e0
2491 static int
2492 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
2493 {
2494 int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
2495 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
2496
2497 /* Just return if already stalled. */
2498 if (sc->sc_txfifo_stall)
2499 return 1;
2500
2501 if (sc->sc_mii.mii_media_active & IFM_FDX) {
2502 /* Stall only occurs in half-duplex mode. */
2503 goto send_packet;
2504 }
2505
2506 if (len >= WM_82547_PAD_LEN + space) {
2507 sc->sc_txfifo_stall = 1;
2508 callout_schedule(&sc->sc_txfifo_ch, 1);
2509 return 1;
2510 }
2511
2512 send_packet:
2513 sc->sc_txfifo_head += len;
2514 if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
2515 sc->sc_txfifo_head -= sc->sc_txfifo_size;
2516
2517 return 0;
2518 }
2519
2520 /*
2521 * wm_start: [ifnet interface function]
2522 *
2523 * Start packet transmission on the interface.
2524 */
2525 static void
2526 wm_start(struct ifnet *ifp)
2527 {
2528 struct wm_softc *sc = ifp->if_softc;
2529 struct mbuf *m0;
2530 struct m_tag *mtag;
2531 struct wm_txsoft *txs;
2532 bus_dmamap_t dmamap;
2533 int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
2534 bus_addr_t curaddr;
2535 bus_size_t seglen, curlen;
2536 uint32_t cksumcmd;
2537 uint8_t cksumfields;
2538
2539 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
2540 return;
2541
2542 /*
2543 * Remember the previous number of free descriptors.
2544 */
2545 ofree = sc->sc_txfree;
2546
2547 /*
2548 * Loop through the send queue, setting up transmit descriptors
2549 * until we drain the queue, or use up all available transmit
2550 * descriptors.
2551 */
2552 for (;;) {
2553 /* Grab a packet off the queue. */
2554 IFQ_POLL(&ifp->if_snd, m0);
2555 if (m0 == NULL)
2556 break;
2557
2558 DPRINTF(WM_DEBUG_TX,
2559 ("%s: TX: have packet to transmit: %p\n",
2560 device_xname(sc->sc_dev), m0));
2561
2562 /* Get a work queue entry. */
2563 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
2564 wm_txintr(sc);
2565 if (sc->sc_txsfree == 0) {
2566 DPRINTF(WM_DEBUG_TX,
2567 ("%s: TX: no free job descriptors\n",
2568 device_xname(sc->sc_dev)));
2569 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
2570 break;
2571 }
2572 }
2573
2574 txs = &sc->sc_txsoft[sc->sc_txsnext];
2575 dmamap = txs->txs_dmamap;
2576
2577 use_tso = (m0->m_pkthdr.csum_flags &
2578 (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0;
2579
2580 /*
2581 * So says the Linux driver:
2582 * The controller does a simple calculation to make sure
2583 * there is enough room in the FIFO before initiating the
2584 * DMA for each buffer. The calc is:
2585 * 4 = ceil(buffer len / MSS)
2586 * To make sure we don't overrun the FIFO, adjust the max
2587 * buffer len if the MSS drops.
2588 */
2589 dmamap->dm_maxsegsz =
2590 (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
2591 ? m0->m_pkthdr.segsz << 2
2592 : WTX_MAX_LEN;
2593
2594 /*
2595 * Load the DMA map. If this fails, the packet either
2596 * didn't fit in the allotted number of segments, or we
2597 * were short on resources. For the too-many-segments
2598 * case, we simply report an error and drop the packet,
2599 * since we can't sanely copy a jumbo packet to a single
2600 * buffer.
2601 */
2602 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
2603 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
2604 if (error) {
2605 if (error == EFBIG) {
2606 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
2607 log(LOG_ERR, "%s: Tx packet consumes too many "
2608 "DMA segments, dropping...\n",
2609 device_xname(sc->sc_dev));
2610 IFQ_DEQUEUE(&ifp->if_snd, m0);
2611 wm_dump_mbuf_chain(sc, m0);
2612 m_freem(m0);
2613 continue;
2614 }
2615 /*
2616 * Short on resources, just stop for now.
2617 */
2618 DPRINTF(WM_DEBUG_TX,
2619 ("%s: TX: dmamap load failed: %d\n",
2620 device_xname(sc->sc_dev), error));
2621 break;
2622 }
2623
2624 segs_needed = dmamap->dm_nsegs;
2625 if (use_tso) {
2626 /* For sentinel descriptor; see below. */
2627 segs_needed++;
2628 }
2629
2630 /*
2631 * Ensure we have enough descriptors free to describe
2632 * the packet. Note, we always reserve one descriptor
2633 * at the end of the ring due to the semantics of the
2634 * TDT register, plus one more in the event we need
2635 * to load offload context.
2636 */
2637 if (segs_needed > sc->sc_txfree - 2) {
2638 /*
2639 * Not enough free descriptors to transmit this
2640 * packet. We haven't committed anything yet,
2641 * so just unload the DMA map, put the packet
2642 * pack on the queue, and punt. Notify the upper
2643 * layer that there are no more slots left.
2644 */
2645 DPRINTF(WM_DEBUG_TX,
2646 ("%s: TX: need %d (%d) descriptors, have %d\n",
2647 device_xname(sc->sc_dev), dmamap->dm_nsegs,
2648 segs_needed, sc->sc_txfree - 1));
2649 ifp->if_flags |= IFF_OACTIVE;
2650 bus_dmamap_unload(sc->sc_dmat, dmamap);
2651 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
2652 break;
2653 }
2654
2655 /*
2656 * Check for 82547 Tx FIFO bug. We need to do this
2657 * once we know we can transmit the packet, since we
2658 * do some internal FIFO space accounting here.
2659 */
2660 if (sc->sc_type == WM_T_82547 &&
2661 wm_82547_txfifo_bugchk(sc, m0)) {
2662 DPRINTF(WM_DEBUG_TX,
2663 ("%s: TX: 82547 Tx FIFO bug detected\n",
2664 device_xname(sc->sc_dev)));
2665 ifp->if_flags |= IFF_OACTIVE;
2666 bus_dmamap_unload(sc->sc_dmat, dmamap);
2667 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
2668 break;
2669 }
2670
2671 IFQ_DEQUEUE(&ifp->if_snd, m0);
2672
2673 /*
2674 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
2675 */
2676
2677 DPRINTF(WM_DEBUG_TX,
2678 ("%s: TX: packet has %d (%d) DMA segments\n",
2679 device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed));
2680
2681 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
2682
2683 /*
2684 * Store a pointer to the packet so that we can free it
2685 * later.
2686 *
2687 * Initially, we consider the number of descriptors the
2688 * packet uses the number of DMA segments. This may be
2689 * incremented by 1 if we do checksum offload (a descriptor
2690 * is used to set the checksum context).
2691 */
2692 txs->txs_mbuf = m0;
2693 txs->txs_firstdesc = sc->sc_txnext;
2694 txs->txs_ndesc = segs_needed;
2695
2696 /* Set up offload parameters for this packet. */
2697 if (m0->m_pkthdr.csum_flags &
2698 (M_CSUM_TSOv4|M_CSUM_TSOv6|
2699 M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
2700 M_CSUM_TCPv6|M_CSUM_UDPv6)) {
2701 if (wm_tx_offload(sc, txs, &cksumcmd,
2702 &cksumfields) != 0) {
2703 /* Error message already displayed. */
2704 bus_dmamap_unload(sc->sc_dmat, dmamap);
2705 continue;
2706 }
2707 } else {
2708 cksumcmd = 0;
2709 cksumfields = 0;
2710 }
2711
2712 cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
2713
2714 /* Sync the DMA map. */
2715 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2716 BUS_DMASYNC_PREWRITE);
2717
2718 /*
2719 * Initialize the transmit descriptor.
2720 */
2721 for (nexttx = sc->sc_txnext, seg = 0;
2722 seg < dmamap->dm_nsegs; seg++) {
2723 for (seglen = dmamap->dm_segs[seg].ds_len,
2724 curaddr = dmamap->dm_segs[seg].ds_addr;
2725 seglen != 0;
2726 curaddr += curlen, seglen -= curlen,
2727 nexttx = WM_NEXTTX(sc, nexttx)) {
2728 curlen = seglen;
2729
2730 /*
2731 * So says the Linux driver:
2732 * Work around for premature descriptor
2733 * write-backs in TSO mode. Append a
2734 * 4-byte sentinel descriptor.
2735 */
2736 if (use_tso &&
2737 seg == dmamap->dm_nsegs - 1 &&
2738 curlen > 8)
2739 curlen -= 4;
2740
2741 wm_set_dma_addr(
2742 &sc->sc_txdescs[nexttx].wtx_addr,
2743 curaddr);
2744 sc->sc_txdescs[nexttx].wtx_cmdlen =
2745 htole32(cksumcmd | curlen);
2746 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
2747 0;
2748 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
2749 cksumfields;
2750 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
2751 lasttx = nexttx;
2752
2753 DPRINTF(WM_DEBUG_TX,
2754 ("%s: TX: desc %d: low %#" PRIx64 ", "
2755 "len %#04zx\n",
2756 device_xname(sc->sc_dev), nexttx,
2757 (uint64_t)curaddr, curlen));
2758 }
2759 }
2760
2761 KASSERT(lasttx != -1);
2762
2763 /*
2764 * Set up the command byte on the last descriptor of
2765 * the packet. If we're in the interrupt delay window,
2766 * delay the interrupt.
2767 */
2768 sc->sc_txdescs[lasttx].wtx_cmdlen |=
2769 htole32(WTX_CMD_EOP | WTX_CMD_RS);
2770
2771 /*
2772 * If VLANs are enabled and the packet has a VLAN tag, set
2773 * up the descriptor to encapsulate the packet for us.
2774 *
2775 * This is only valid on the last descriptor of the packet.
2776 */
2777 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
2778 sc->sc_txdescs[lasttx].wtx_cmdlen |=
2779 htole32(WTX_CMD_VLE);
2780 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
2781 = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
2782 }
2783
2784 txs->txs_lastdesc = lasttx;
2785
2786 DPRINTF(WM_DEBUG_TX,
2787 ("%s: TX: desc %d: cmdlen 0x%08x\n",
2788 device_xname(sc->sc_dev),
2789 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
2790
2791 /* Sync the descriptors we're using. */
2792 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
2793 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2794
2795 /* Give the packet to the chip. */
2796 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
2797
2798 DPRINTF(WM_DEBUG_TX,
2799 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
2800
2801 DPRINTF(WM_DEBUG_TX,
2802 ("%s: TX: finished transmitting packet, job %d\n",
2803 device_xname(sc->sc_dev), sc->sc_txsnext));
2804
2805 /* Advance the tx pointer. */
2806 sc->sc_txfree -= txs->txs_ndesc;
2807 sc->sc_txnext = nexttx;
2808
2809 sc->sc_txsfree--;
2810 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
2811
2812 /* Pass the packet to any BPF listeners. */
2813 bpf_mtap(ifp, m0);
2814 }
2815
2816 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
2817 /* No more slots; notify upper layer. */
2818 ifp->if_flags |= IFF_OACTIVE;
2819 }
2820
2821 if (sc->sc_txfree != ofree) {
2822 /* Set a watchdog timer in case the chip flakes out. */
2823 ifp->if_timer = 5;
2824 }
2825 }
2826
2827 /*
2828 * wm_nq_tx_offload:
2829 *
2830 * Set up TCP/IP checksumming parameters for the
2831 * specified packet, for NEWQUEUE devices
2832 */
2833 static int
2834 wm_nq_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs,
2835 uint32_t *cmdlenp, uint32_t *fieldsp, bool *do_csum)
2836 {
2837 struct mbuf *m0 = txs->txs_mbuf;
2838 struct m_tag *mtag;
2839 uint32_t vl_len, mssidx, cmdc;
2840 struct ether_header *eh;
2841 int offset, iphl;
2842
2843 /*
2844 * XXX It would be nice if the mbuf pkthdr had offset
2845 * fields for the protocol headers.
2846 */
2847 *cmdlenp = 0;
2848 *fieldsp = 0;
2849
2850 eh = mtod(m0, struct ether_header *);
2851 switch (htons(eh->ether_type)) {
2852 case ETHERTYPE_IP:
2853 case ETHERTYPE_IPV6:
2854 offset = ETHER_HDR_LEN;
2855 break;
2856
2857 case ETHERTYPE_VLAN:
2858 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2859 break;
2860
2861 default:
2862 /*
2863 * Don't support this protocol or encapsulation.
2864 */
2865 *do_csum = false;
2866 return 0;
2867 }
2868 *do_csum = true;
2869 *cmdlenp = NQTX_DTYP_D | NQTX_CMD_DEXT | NQTX_CMD_IFCS;
2870 cmdc = NQTX_DTYP_C | NQTX_CMD_DEXT;
2871
2872 vl_len = (offset << NQTXC_VLLEN_MACLEN_SHIFT);
2873 KASSERT((offset & ~NQTXC_VLLEN_MACLEN_MASK) == 0);
2874
2875 if ((m0->m_pkthdr.csum_flags &
2876 (M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_IPv4)) != 0) {
2877 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
2878 } else {
2879 iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
2880 }
2881 vl_len |= (iphl << NQTXC_VLLEN_IPLEN_SHIFT);
2882 KASSERT((iphl & ~NQTXC_VLLEN_IPLEN_MASK) == 0);
2883
2884 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
2885 vl_len |= ((VLAN_TAG_VALUE(mtag) & NQTXC_VLLEN_VLAN_MASK)
2886 << NQTXC_VLLEN_VLAN_SHIFT);
2887 *cmdlenp |= NQTX_CMD_VLE;
2888 }
2889
2890 mssidx = 0;
2891
2892 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
2893 int hlen = offset + iphl;
2894 int tcp_hlen;
2895 bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
2896
2897 if (__predict_false(m0->m_len <
2898 (hlen + sizeof(struct tcphdr)))) {
2899 /*
2900 * TCP/IP headers are not in the first mbuf; we need
2901 * to do this the slow and painful way. Let's just
2902 * hope this doesn't happen very often.
2903 */
2904 struct tcphdr th;
2905
2906 WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
2907
2908 m_copydata(m0, hlen, sizeof(th), &th);
2909 if (v4) {
2910 struct ip ip;
2911
2912 m_copydata(m0, offset, sizeof(ip), &ip);
2913 ip.ip_len = 0;
2914 m_copyback(m0,
2915 offset + offsetof(struct ip, ip_len),
2916 sizeof(ip.ip_len), &ip.ip_len);
2917 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
2918 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
2919 } else {
2920 struct ip6_hdr ip6;
2921
2922 m_copydata(m0, offset, sizeof(ip6), &ip6);
2923 ip6.ip6_plen = 0;
2924 m_copyback(m0,
2925 offset + offsetof(struct ip6_hdr, ip6_plen),
2926 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
2927 th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
2928 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
2929 }
2930 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
2931 sizeof(th.th_sum), &th.th_sum);
2932
2933 tcp_hlen = th.th_off << 2;
2934 } else {
2935 /*
2936 * TCP/IP headers are in the first mbuf; we can do
2937 * this the easy way.
2938 */
2939 struct tcphdr *th;
2940
2941 if (v4) {
2942 struct ip *ip =
2943 (void *)(mtod(m0, char *) + offset);
2944 th = (void *)(mtod(m0, char *) + hlen);
2945
2946 ip->ip_len = 0;
2947 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
2948 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
2949 } else {
2950 struct ip6_hdr *ip6 =
2951 (void *)(mtod(m0, char *) + offset);
2952 th = (void *)(mtod(m0, char *) + hlen);
2953
2954 ip6->ip6_plen = 0;
2955 th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
2956 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
2957 }
2958 tcp_hlen = th->th_off << 2;
2959 }
2960 hlen += tcp_hlen;
2961 *cmdlenp |= NQTX_CMD_TSE;
2962
2963 if (v4) {
2964 WM_EVCNT_INCR(&sc->sc_ev_txtso);
2965 *fieldsp |= NQTXD_FIELDS_IXSM | NQTXD_FIELDS_TUXSM;
2966 } else {
2967 WM_EVCNT_INCR(&sc->sc_ev_txtso6);
2968 *fieldsp |= NQTXD_FIELDS_TUXSM;
2969 }
2970 *fieldsp |= ((m0->m_pkthdr.len - hlen) << NQTXD_FIELDS_PAYLEN_SHIFT);
2971 KASSERT(((m0->m_pkthdr.len - hlen) & ~NQTXD_FIELDS_PAYLEN_MASK) == 0);
2972 mssidx |= (m0->m_pkthdr.segsz << NQTXC_MSSIDX_MSS_SHIFT);
2973 KASSERT((m0->m_pkthdr.segsz & ~NQTXC_MSSIDX_MSS_MASK) == 0);
2974 mssidx |= (tcp_hlen << NQTXC_MSSIDX_L4LEN_SHIFT);
2975 KASSERT((tcp_hlen & ~NQTXC_MSSIDX_L4LEN_MASK) == 0);
2976 } else {
2977 *fieldsp |= (m0->m_pkthdr.len << NQTXD_FIELDS_PAYLEN_SHIFT);
2978 KASSERT((m0->m_pkthdr.len & ~NQTXD_FIELDS_PAYLEN_MASK) == 0);
2979 }
2980
2981 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2982 *fieldsp |= NQTXD_FIELDS_IXSM;
2983 cmdc |= NQTXC_CMD_IP4;
2984 }
2985
2986 if (m0->m_pkthdr.csum_flags &
2987 (M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_TSOv4)) {
2988 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
2989 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_TSOv4)) {
2990 cmdc |= NQTXC_CMD_TCP;
2991 } else {
2992 cmdc |= NQTXC_CMD_UDP;
2993 }
2994 cmdc |= NQTXC_CMD_IP4;
2995 *fieldsp |= NQTXD_FIELDS_TUXSM;
2996 }
2997 if (m0->m_pkthdr.csum_flags &
2998 (M_CSUM_UDPv6 | M_CSUM_TCPv6 | M_CSUM_TSOv6)) {
2999 WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
3000 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv6 | M_CSUM_TSOv6)) {
3001 cmdc |= NQTXC_CMD_TCP;
3002 } else {
3003 cmdc |= NQTXC_CMD_UDP;
3004 }
3005 cmdc |= NQTXC_CMD_IP6;
3006 *fieldsp |= NQTXD_FIELDS_TUXSM;
3007 }
3008
3009 /* Fill in the context descriptor. */
3010 sc->sc_nq_txdescs[sc->sc_txnext].nqrx_ctx.nqtxc_vl_len =
3011 htole32(vl_len);
3012 sc->sc_nq_txdescs[sc->sc_txnext].nqrx_ctx.nqtxc_sn = 0;
3013 sc->sc_nq_txdescs[sc->sc_txnext].nqrx_ctx.nqtxc_cmd =
3014 htole32(cmdc);
3015 sc->sc_nq_txdescs[sc->sc_txnext].nqrx_ctx.nqtxc_mssidx =
3016 htole32(mssidx);
3017 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
3018 DPRINTF(WM_DEBUG_TX,
3019 ("%s: TX: context desc %d 0x%08x%08x\n", device_xname(sc->sc_dev),
3020 sc->sc_txnext, 0, vl_len));
3021 DPRINTF(WM_DEBUG_TX, ("\t0x%08x%08x\n", mssidx, cmdc));
3022 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
3023 txs->txs_ndesc++;
3024 return 0;
3025 }
3026
3027 /*
3028 * wm_nq_start: [ifnet interface function]
3029 *
3030 * Start packet transmission on the interface for NEWQUEUE devices
3031 */
3032 static void
3033 wm_nq_start(struct ifnet *ifp)
3034 {
3035 struct wm_softc *sc = ifp->if_softc;
3036 struct mbuf *m0;
3037 struct m_tag *mtag;
3038 struct wm_txsoft *txs;
3039 bus_dmamap_t dmamap;
3040 int error, nexttx, lasttx = -1, seg, segs_needed;
3041 bool do_csum, sent;
3042
3043 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3044 return;
3045
3046 sent = false;
3047
3048 /*
3049 * Loop through the send queue, setting up transmit descriptors
3050 * until we drain the queue, or use up all available transmit
3051 * descriptors.
3052 */
3053 for (;;) {
3054 /* Grab a packet off the queue. */
3055 IFQ_POLL(&ifp->if_snd, m0);
3056 if (m0 == NULL)
3057 break;
3058
3059 DPRINTF(WM_DEBUG_TX,
3060 ("%s: TX: have packet to transmit: %p\n",
3061 device_xname(sc->sc_dev), m0));
3062
3063 /* Get a work queue entry. */
3064 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
3065 wm_txintr(sc);
3066 if (sc->sc_txsfree == 0) {
3067 DPRINTF(WM_DEBUG_TX,
3068 ("%s: TX: no free job descriptors\n",
3069 device_xname(sc->sc_dev)));
3070 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
3071 break;
3072 }
3073 }
3074
3075 txs = &sc->sc_txsoft[sc->sc_txsnext];
3076 dmamap = txs->txs_dmamap;
3077
3078 /*
3079 * Load the DMA map. If this fails, the packet either
3080 * didn't fit in the allotted number of segments, or we
3081 * were short on resources. For the too-many-segments
3082 * case, we simply report an error and drop the packet,
3083 * since we can't sanely copy a jumbo packet to a single
3084 * buffer.
3085 */
3086 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3087 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
3088 if (error) {
3089 if (error == EFBIG) {
3090 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
3091 log(LOG_ERR, "%s: Tx packet consumes too many "
3092 "DMA segments, dropping...\n",
3093 device_xname(sc->sc_dev));
3094 IFQ_DEQUEUE(&ifp->if_snd, m0);
3095 wm_dump_mbuf_chain(sc, m0);
3096 m_freem(m0);
3097 continue;
3098 }
3099 /*
3100 * Short on resources, just stop for now.
3101 */
3102 DPRINTF(WM_DEBUG_TX,
3103 ("%s: TX: dmamap load failed: %d\n",
3104 device_xname(sc->sc_dev), error));
3105 break;
3106 }
3107
3108 segs_needed = dmamap->dm_nsegs;
3109
3110 /*
3111 * Ensure we have enough descriptors free to describe
3112 * the packet. Note, we always reserve one descriptor
3113 * at the end of the ring due to the semantics of the
3114 * TDT register, plus one more in the event we need
3115 * to load offload context.
3116 */
3117 if (segs_needed > sc->sc_txfree - 2) {
3118 /*
3119 * Not enough free descriptors to transmit this
3120 * packet. We haven't committed anything yet,
3121 * so just unload the DMA map, put the packet
3122 * pack on the queue, and punt. Notify the upper
3123 * layer that there are no more slots left.
3124 */
3125 DPRINTF(WM_DEBUG_TX,
3126 ("%s: TX: need %d (%d) descriptors, have %d\n",
3127 device_xname(sc->sc_dev), dmamap->dm_nsegs,
3128 segs_needed, sc->sc_txfree - 1));
3129 ifp->if_flags |= IFF_OACTIVE;
3130 bus_dmamap_unload(sc->sc_dmat, dmamap);
3131 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
3132 break;
3133 }
3134
3135 IFQ_DEQUEUE(&ifp->if_snd, m0);
3136
3137 /*
3138 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3139 */
3140
3141 DPRINTF(WM_DEBUG_TX,
3142 ("%s: TX: packet has %d (%d) DMA segments\n",
3143 device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed));
3144
3145 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
3146
3147 /*
3148 * Store a pointer to the packet so that we can free it
3149 * later.
3150 *
3151 * Initially, we consider the number of descriptors the
3152 * packet uses the number of DMA segments. This may be
3153 * incremented by 1 if we do checksum offload (a descriptor
3154 * is used to set the checksum context).
3155 */
3156 txs->txs_mbuf = m0;
3157 txs->txs_firstdesc = sc->sc_txnext;
3158 txs->txs_ndesc = segs_needed;
3159
3160 /* Set up offload parameters for this packet. */
3161 uint32_t cmdlen, fields, dcmdlen;
3162 if (m0->m_pkthdr.csum_flags &
3163 (M_CSUM_TSOv4|M_CSUM_TSOv6|
3164 M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
3165 M_CSUM_TCPv6|M_CSUM_UDPv6)) {
3166 if (wm_nq_tx_offload(sc, txs, &cmdlen, &fields,
3167 &do_csum) != 0) {
3168 /* Error message already displayed. */
3169 bus_dmamap_unload(sc->sc_dmat, dmamap);
3170 continue;
3171 }
3172 } else {
3173 do_csum = false;
3174 cmdlen = 0;
3175 fields = 0;
3176 }
3177
3178 /* Sync the DMA map. */
3179 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3180 BUS_DMASYNC_PREWRITE);
3181
3182 /*
3183 * Initialize the first transmit descriptor.
3184 */
3185 nexttx = sc->sc_txnext;
3186 if (!do_csum) {
3187 /* setup a legacy descriptor */
3188 wm_set_dma_addr(
3189 &sc->sc_txdescs[nexttx].wtx_addr,
3190 dmamap->dm_segs[0].ds_addr);
3191 sc->sc_txdescs[nexttx].wtx_cmdlen =
3192 htole32(WTX_CMD_IFCS | dmamap->dm_segs[0].ds_len);
3193 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status = 0;
3194 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options = 0;
3195 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) !=
3196 NULL) {
3197 sc->sc_txdescs[nexttx].wtx_cmdlen |=
3198 htole32(WTX_CMD_VLE);
3199 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan =
3200 htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
3201 } else {
3202 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
3203 }
3204 dcmdlen = 0;
3205 } else {
3206 /* setup an advanced data descriptor */
3207 sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_addr =
3208 htole64(dmamap->dm_segs[0].ds_addr);
3209 KASSERT((dmamap->dm_segs[0].ds_len & cmdlen) == 0);
3210 sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_cmdlen =
3211 htole32(dmamap->dm_segs[0].ds_len | cmdlen );
3212 sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_fields =
3213 htole32(fields);
3214 DPRINTF(WM_DEBUG_TX,
3215 ("%s: TX: adv data desc %d 0x%" PRIx64 "\n",
3216 device_xname(sc->sc_dev), nexttx,
3217 (uint64_t)dmamap->dm_segs[0].ds_addr));
3218 DPRINTF(WM_DEBUG_TX,
3219 ("\t 0x%08x%08x\n", fields,
3220 (uint32_t)dmamap->dm_segs[0].ds_len | cmdlen));
3221 dcmdlen = NQTX_DTYP_D | NQTX_CMD_DEXT;
3222 }
3223
3224 lasttx = nexttx;
3225 nexttx = WM_NEXTTX(sc, nexttx);
3226 /*
3227 * fill in the next descriptors. legacy or adcanced format
3228 * is the same here
3229 */
3230 for (seg = 1; seg < dmamap->dm_nsegs;
3231 seg++, nexttx = WM_NEXTTX(sc, nexttx)) {
3232 sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_addr =
3233 htole64(dmamap->dm_segs[seg].ds_addr);
3234 sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_cmdlen =
3235 htole32(dcmdlen | dmamap->dm_segs[seg].ds_len);
3236 KASSERT((dcmdlen & dmamap->dm_segs[seg].ds_len) == 0);
3237 sc->sc_nq_txdescs[nexttx].nqtx_data.nqtxd_fields = 0;
3238 lasttx = nexttx;
3239
3240 DPRINTF(WM_DEBUG_TX,
3241 ("%s: TX: desc %d: %#" PRIx64 ", "
3242 "len %#04zx\n",
3243 device_xname(sc->sc_dev), nexttx,
3244 (uint64_t)dmamap->dm_segs[seg].ds_addr,
3245 dmamap->dm_segs[seg].ds_len));
3246 }
3247
3248 KASSERT(lasttx != -1);
3249
3250 /*
3251 * Set up the command byte on the last descriptor of
3252 * the packet. If we're in the interrupt delay window,
3253 * delay the interrupt.
3254 */
3255 KASSERT((WTX_CMD_EOP | WTX_CMD_RS) ==
3256 (NQTX_CMD_EOP | NQTX_CMD_RS));
3257 sc->sc_txdescs[lasttx].wtx_cmdlen |=
3258 htole32(WTX_CMD_EOP | WTX_CMD_RS);
3259
3260 txs->txs_lastdesc = lasttx;
3261
3262 DPRINTF(WM_DEBUG_TX,
3263 ("%s: TX: desc %d: cmdlen 0x%08x\n",
3264 device_xname(sc->sc_dev),
3265 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
3266
3267 /* Sync the descriptors we're using. */
3268 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
3269 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3270
3271 /* Give the packet to the chip. */
3272 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
3273 sent = true;
3274
3275 DPRINTF(WM_DEBUG_TX,
3276 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
3277
3278 DPRINTF(WM_DEBUG_TX,
3279 ("%s: TX: finished transmitting packet, job %d\n",
3280 device_xname(sc->sc_dev), sc->sc_txsnext));
3281
3282 /* Advance the tx pointer. */
3283 sc->sc_txfree -= txs->txs_ndesc;
3284 sc->sc_txnext = nexttx;
3285
3286 sc->sc_txsfree--;
3287 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
3288
3289 /* Pass the packet to any BPF listeners. */
3290 bpf_mtap(ifp, m0);
3291 }
3292
3293 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
3294 /* No more slots; notify upper layer. */
3295 ifp->if_flags |= IFF_OACTIVE;
3296 }
3297
3298 if (sent) {
3299 /* Set a watchdog timer in case the chip flakes out. */
3300 ifp->if_timer = 5;
3301 }
3302 }
3303
3304 /*
3305 * wm_watchdog: [ifnet interface function]
3306 *
3307 * Watchdog timer handler.
3308 */
3309 static void
3310 wm_watchdog(struct ifnet *ifp)
3311 {
3312 struct wm_softc *sc = ifp->if_softc;
3313
3314 /*
3315 * Since we're using delayed interrupts, sweep up
3316 * before we report an error.
3317 */
3318 wm_txintr(sc);
3319
3320 if (sc->sc_txfree != WM_NTXDESC(sc)) {
3321 #ifdef WM_DEBUG
3322 int i, j;
3323 struct wm_txsoft *txs;
3324 #endif
3325 log(LOG_ERR,
3326 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
3327 device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
3328 sc->sc_txnext);
3329 ifp->if_oerrors++;
3330 #ifdef WM_DEBUG
3331 for (i = sc->sc_txsdirty; i != sc->sc_txsnext ;
3332 i = WM_NEXTTXS(sc, i)) {
3333 txs = &sc->sc_txsoft[i];
3334 printf("txs %d tx %d -> %d\n",
3335 i, txs->txs_firstdesc, txs->txs_lastdesc);
3336 for (j = txs->txs_firstdesc; ;
3337 j = WM_NEXTTX(sc, j)) {
3338 printf("\tdesc %d: 0x%" PRIx64 "\n", j,
3339 sc->sc_nq_txdescs[j].nqtx_data.nqtxd_addr);
3340 printf("\t %#08x%08x\n",
3341 sc->sc_nq_txdescs[j].nqtx_data.nqtxd_fields,
3342 sc->sc_nq_txdescs[j].nqtx_data.nqtxd_cmdlen);
3343 if (j == txs->txs_lastdesc)
3344 break;
3345 }
3346 }
3347 #endif
3348 /* Reset the interface. */
3349 (void) wm_init(ifp);
3350 }
3351
3352 /* Try to get more packets going. */
3353 ifp->if_start(ifp);
3354 }
3355
3356 static int
3357 wm_ifflags_cb(struct ethercom *ec)
3358 {
3359 struct ifnet *ifp = &ec->ec_if;
3360 struct wm_softc *sc = ifp->if_softc;
3361 int change = ifp->if_flags ^ sc->sc_if_flags;
3362
3363 if (change != 0)
3364 sc->sc_if_flags = ifp->if_flags;
3365
3366 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
3367 return ENETRESET;
3368
3369 if ((change & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
3370 wm_set_filter(sc);
3371
3372 wm_set_vlan(sc);
3373
3374 return 0;
3375 }
3376
3377 /*
3378 * wm_ioctl: [ifnet interface function]
3379 *
3380 * Handle control requests from the operator.
3381 */
3382 static int
3383 wm_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3384 {
3385 struct wm_softc *sc = ifp->if_softc;
3386 struct ifreq *ifr = (struct ifreq *) data;
3387 struct ifaddr *ifa = (struct ifaddr *)data;
3388 struct sockaddr_dl *sdl;
3389 int s, error;
3390
3391 s = splnet();
3392
3393 switch (cmd) {
3394 case SIOCSIFMEDIA:
3395 case SIOCGIFMEDIA:
3396 /* Flow control requires full-duplex mode. */
3397 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
3398 (ifr->ifr_media & IFM_FDX) == 0)
3399 ifr->ifr_media &= ~IFM_ETH_FMASK;
3400 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
3401 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
3402 /* We can do both TXPAUSE and RXPAUSE. */
3403 ifr->ifr_media |=
3404 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
3405 }
3406 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
3407 }
3408 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
3409 break;
3410 case SIOCINITIFADDR:
3411 if (ifa->ifa_addr->sa_family == AF_LINK) {
3412 sdl = satosdl(ifp->if_dl->ifa_addr);
3413 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len,
3414 LLADDR(satosdl(ifa->ifa_addr)), ifp->if_addrlen);
3415 /* unicast address is first multicast entry */
3416 wm_set_filter(sc);
3417 error = 0;
3418 break;
3419 }
3420 /*FALLTHROUGH*/
3421 default:
3422 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
3423 break;
3424
3425 error = 0;
3426
3427 if (cmd == SIOCSIFCAP)
3428 error = (*ifp->if_init)(ifp);
3429 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
3430 ;
3431 else if (ifp->if_flags & IFF_RUNNING) {
3432 /*
3433 * Multicast list has changed; set the hardware filter
3434 * accordingly.
3435 */
3436 wm_set_filter(sc);
3437 }
3438 break;
3439 }
3440
3441 /* Try to get more packets going. */
3442 ifp->if_start(ifp);
3443
3444 splx(s);
3445 return error;
3446 }
3447
3448 /*
3449 * wm_intr:
3450 *
3451 * Interrupt service routine.
3452 */
3453 static int
3454 wm_intr(void *arg)
3455 {
3456 struct wm_softc *sc = arg;
3457 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3458 uint32_t icr;
3459 int handled = 0;
3460
3461 while (1 /* CONSTCOND */) {
3462 icr = CSR_READ(sc, WMREG_ICR);
3463 if ((icr & sc->sc_icr) == 0)
3464 break;
3465 rnd_add_uint32(&sc->rnd_source, icr);
3466
3467 handled = 1;
3468
3469 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
3470 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
3471 DPRINTF(WM_DEBUG_RX,
3472 ("%s: RX: got Rx intr 0x%08x\n",
3473 device_xname(sc->sc_dev),
3474 icr & (ICR_RXDMT0|ICR_RXT0)));
3475 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
3476 }
3477 #endif
3478 wm_rxintr(sc);
3479
3480 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
3481 if (icr & ICR_TXDW) {
3482 DPRINTF(WM_DEBUG_TX,
3483 ("%s: TX: got TXDW interrupt\n",
3484 device_xname(sc->sc_dev)));
3485 WM_EVCNT_INCR(&sc->sc_ev_txdw);
3486 }
3487 #endif
3488 wm_txintr(sc);
3489
3490 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
3491 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
3492 wm_linkintr(sc, icr);
3493 }
3494
3495 if (icr & ICR_RXO) {
3496 #if defined(WM_DEBUG)
3497 log(LOG_WARNING, "%s: Receive overrun\n",
3498 device_xname(sc->sc_dev));
3499 #endif /* defined(WM_DEBUG) */
3500 }
3501 }
3502
3503 if (handled) {
3504 /* Try to get more packets going. */
3505 ifp->if_start(ifp);
3506 }
3507
3508 return handled;
3509 }
3510
3511 /*
3512 * wm_txintr:
3513 *
3514 * Helper; handle transmit interrupts.
3515 */
3516 static void
3517 wm_txintr(struct wm_softc *sc)
3518 {
3519 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3520 struct wm_txsoft *txs;
3521 uint8_t status;
3522 int i;
3523
3524 ifp->if_flags &= ~IFF_OACTIVE;
3525
3526 /*
3527 * Go through the Tx list and free mbufs for those
3528 * frames which have been transmitted.
3529 */
3530 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
3531 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
3532 txs = &sc->sc_txsoft[i];
3533
3534 DPRINTF(WM_DEBUG_TX,
3535 ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i));
3536
3537 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
3538 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3539
3540 status =
3541 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
3542 if ((status & WTX_ST_DD) == 0) {
3543 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3544 BUS_DMASYNC_PREREAD);
3545 break;
3546 }
3547
3548 DPRINTF(WM_DEBUG_TX,
3549 ("%s: TX: job %d done: descs %d..%d\n",
3550 device_xname(sc->sc_dev), i, txs->txs_firstdesc,
3551 txs->txs_lastdesc));
3552
3553 /*
3554 * XXX We should probably be using the statistics
3555 * XXX registers, but I don't know if they exist
3556 * XXX on chips before the i82544.
3557 */
3558
3559 #ifdef WM_EVENT_COUNTERS
3560 if (status & WTX_ST_TU)
3561 WM_EVCNT_INCR(&sc->sc_ev_tu);
3562 #endif /* WM_EVENT_COUNTERS */
3563
3564 if (status & (WTX_ST_EC|WTX_ST_LC)) {
3565 ifp->if_oerrors++;
3566 if (status & WTX_ST_LC)
3567 log(LOG_WARNING, "%s: late collision\n",
3568 device_xname(sc->sc_dev));
3569 else if (status & WTX_ST_EC) {
3570 ifp->if_collisions += 16;
3571 log(LOG_WARNING, "%s: excessive collisions\n",
3572 device_xname(sc->sc_dev));
3573 }
3574 } else
3575 ifp->if_opackets++;
3576
3577 sc->sc_txfree += txs->txs_ndesc;
3578 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3579 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3580 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3581 m_freem(txs->txs_mbuf);
3582 txs->txs_mbuf = NULL;
3583 }
3584
3585 /* Update the dirty transmit buffer pointer. */
3586 sc->sc_txsdirty = i;
3587 DPRINTF(WM_DEBUG_TX,
3588 ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
3589
3590 /*
3591 * If there are no more pending transmissions, cancel the watchdog
3592 * timer.
3593 */
3594 if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
3595 ifp->if_timer = 0;
3596 }
3597
3598 /*
3599 * wm_rxintr:
3600 *
3601 * Helper; handle receive interrupts.
3602 */
3603 static void
3604 wm_rxintr(struct wm_softc *sc)
3605 {
3606 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3607 struct wm_rxsoft *rxs;
3608 struct mbuf *m;
3609 int i, len;
3610 uint8_t status, errors;
3611 uint16_t vlantag;
3612
3613 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
3614 rxs = &sc->sc_rxsoft[i];
3615
3616 DPRINTF(WM_DEBUG_RX,
3617 ("%s: RX: checking descriptor %d\n",
3618 device_xname(sc->sc_dev), i));
3619
3620 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3621
3622 status = sc->sc_rxdescs[i].wrx_status;
3623 errors = sc->sc_rxdescs[i].wrx_errors;
3624 len = le16toh(sc->sc_rxdescs[i].wrx_len);
3625 vlantag = sc->sc_rxdescs[i].wrx_special;
3626
3627 if ((status & WRX_ST_DD) == 0) {
3628 /*
3629 * We have processed all of the receive descriptors.
3630 */
3631 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
3632 break;
3633 }
3634
3635 if (__predict_false(sc->sc_rxdiscard)) {
3636 DPRINTF(WM_DEBUG_RX,
3637 ("%s: RX: discarding contents of descriptor %d\n",
3638 device_xname(sc->sc_dev), i));
3639 WM_INIT_RXDESC(sc, i);
3640 if (status & WRX_ST_EOP) {
3641 /* Reset our state. */
3642 DPRINTF(WM_DEBUG_RX,
3643 ("%s: RX: resetting rxdiscard -> 0\n",
3644 device_xname(sc->sc_dev)));
3645 sc->sc_rxdiscard = 0;
3646 }
3647 continue;
3648 }
3649
3650 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3651 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3652
3653 m = rxs->rxs_mbuf;
3654
3655 /*
3656 * Add a new receive buffer to the ring, unless of
3657 * course the length is zero. Treat the latter as a
3658 * failed mapping.
3659 */
3660 if ((len == 0) || (wm_add_rxbuf(sc, i) != 0)) {
3661 /*
3662 * Failed, throw away what we've done so
3663 * far, and discard the rest of the packet.
3664 */
3665 ifp->if_ierrors++;
3666 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3667 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3668 WM_INIT_RXDESC(sc, i);
3669 if ((status & WRX_ST_EOP) == 0)
3670 sc->sc_rxdiscard = 1;
3671 if (sc->sc_rxhead != NULL)
3672 m_freem(sc->sc_rxhead);
3673 WM_RXCHAIN_RESET(sc);
3674 DPRINTF(WM_DEBUG_RX,
3675 ("%s: RX: Rx buffer allocation failed, "
3676 "dropping packet%s\n", device_xname(sc->sc_dev),
3677 sc->sc_rxdiscard ? " (discard)" : ""));
3678 continue;
3679 }
3680
3681 m->m_len = len;
3682 sc->sc_rxlen += len;
3683 DPRINTF(WM_DEBUG_RX,
3684 ("%s: RX: buffer at %p len %d\n",
3685 device_xname(sc->sc_dev), m->m_data, len));
3686
3687 /*
3688 * If this is not the end of the packet, keep
3689 * looking.
3690 */
3691 if ((status & WRX_ST_EOP) == 0) {
3692 WM_RXCHAIN_LINK(sc, m);
3693 DPRINTF(WM_DEBUG_RX,
3694 ("%s: RX: not yet EOP, rxlen -> %d\n",
3695 device_xname(sc->sc_dev), sc->sc_rxlen));
3696 continue;
3697 }
3698
3699 /*
3700 * Okay, we have the entire packet now. The chip is
3701 * configured to include the FCS except I350 and I21[01]
3702 * (not all chips can be configured to strip it),
3703 * so we need to trim it.
3704 * May need to adjust length of previous mbuf in the
3705 * chain if the current mbuf is too short.
3706 * For an eratta, the RCTL_SECRC bit in RCTL register
3707 * is always set in I350, so we don't trim it.
3708 */
3709 if ((sc->sc_type != WM_T_I350) && (sc->sc_type != WM_T_I210)
3710 && (sc->sc_type != WM_T_I211)) {
3711 if (m->m_len < ETHER_CRC_LEN) {
3712 sc->sc_rxtail->m_len
3713 -= (ETHER_CRC_LEN - m->m_len);
3714 m->m_len = 0;
3715 } else
3716 m->m_len -= ETHER_CRC_LEN;
3717 len = sc->sc_rxlen - ETHER_CRC_LEN;
3718 } else
3719 len = sc->sc_rxlen;
3720
3721 WM_RXCHAIN_LINK(sc, m);
3722
3723 *sc->sc_rxtailp = NULL;
3724 m = sc->sc_rxhead;
3725
3726 WM_RXCHAIN_RESET(sc);
3727
3728 DPRINTF(WM_DEBUG_RX,
3729 ("%s: RX: have entire packet, len -> %d\n",
3730 device_xname(sc->sc_dev), len));
3731
3732 /*
3733 * If an error occurred, update stats and drop the packet.
3734 */
3735 if (errors &
3736 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
3737 if (errors & WRX_ER_SE)
3738 log(LOG_WARNING, "%s: symbol error\n",
3739 device_xname(sc->sc_dev));
3740 else if (errors & WRX_ER_SEQ)
3741 log(LOG_WARNING, "%s: receive sequence error\n",
3742 device_xname(sc->sc_dev));
3743 else if (errors & WRX_ER_CE)
3744 log(LOG_WARNING, "%s: CRC error\n",
3745 device_xname(sc->sc_dev));
3746 m_freem(m);
3747 continue;
3748 }
3749
3750 /*
3751 * No errors. Receive the packet.
3752 */
3753 m->m_pkthdr.rcvif = ifp;
3754 m->m_pkthdr.len = len;
3755
3756 /*
3757 * If VLANs are enabled, VLAN packets have been unwrapped
3758 * for us. Associate the tag with the packet.
3759 */
3760 if ((status & WRX_ST_VP) != 0) {
3761 VLAN_INPUT_TAG(ifp, m,
3762 le16toh(vlantag),
3763 continue);
3764 }
3765
3766 /*
3767 * Set up checksum info for this packet.
3768 */
3769 if ((status & WRX_ST_IXSM) == 0) {
3770 if (status & WRX_ST_IPCS) {
3771 WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
3772 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
3773 if (errors & WRX_ER_IPE)
3774 m->m_pkthdr.csum_flags |=
3775 M_CSUM_IPv4_BAD;
3776 }
3777 if (status & WRX_ST_TCPCS) {
3778 /*
3779 * Note: we don't know if this was TCP or UDP,
3780 * so we just set both bits, and expect the
3781 * upper layers to deal.
3782 */
3783 WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
3784 m->m_pkthdr.csum_flags |=
3785 M_CSUM_TCPv4 | M_CSUM_UDPv4 |
3786 M_CSUM_TCPv6 | M_CSUM_UDPv6;
3787 if (errors & WRX_ER_TCPE)
3788 m->m_pkthdr.csum_flags |=
3789 M_CSUM_TCP_UDP_BAD;
3790 }
3791 }
3792
3793 ifp->if_ipackets++;
3794
3795 /* Pass this up to any BPF listeners. */
3796 bpf_mtap(ifp, m);
3797
3798 /* Pass it on. */
3799 (*ifp->if_input)(ifp, m);
3800 }
3801
3802 /* Update the receive pointer. */
3803 sc->sc_rxptr = i;
3804
3805 DPRINTF(WM_DEBUG_RX,
3806 ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
3807 }
3808
3809 /*
3810 * wm_linkintr_gmii:
3811 *
3812 * Helper; handle link interrupts for GMII.
3813 */
3814 static void
3815 wm_linkintr_gmii(struct wm_softc *sc, uint32_t icr)
3816 {
3817
3818 DPRINTF(WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
3819 __func__));
3820
3821 if (icr & ICR_LSC) {
3822 DPRINTF(WM_DEBUG_LINK,
3823 ("%s: LINK: LSC -> mii_pollstat\n",
3824 device_xname(sc->sc_dev)));
3825 mii_pollstat(&sc->sc_mii);
3826 if (sc->sc_type == WM_T_82543) {
3827 int miistatus, active;
3828
3829 /*
3830 * With 82543, we need to force speed and
3831 * duplex on the MAC equal to what the PHY
3832 * speed and duplex configuration is.
3833 */
3834 miistatus = sc->sc_mii.mii_media_status;
3835
3836 if (miistatus & IFM_ACTIVE) {
3837 active = sc->sc_mii.mii_media_active;
3838 sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
3839 switch (IFM_SUBTYPE(active)) {
3840 case IFM_10_T:
3841 sc->sc_ctrl |= CTRL_SPEED_10;
3842 break;
3843 case IFM_100_TX:
3844 sc->sc_ctrl |= CTRL_SPEED_100;
3845 break;
3846 case IFM_1000_T:
3847 sc->sc_ctrl |= CTRL_SPEED_1000;
3848 break;
3849 default:
3850 /*
3851 * fiber?
3852 * Shoud not enter here.
3853 */
3854 printf("unknown media (%x)\n",
3855 active);
3856 break;
3857 }
3858 if (active & IFM_FDX)
3859 sc->sc_ctrl |= CTRL_FD;
3860 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3861 }
3862 } else if ((sc->sc_type == WM_T_ICH8)
3863 && (sc->sc_phytype == WMPHY_IGP_3)) {
3864 wm_kmrn_lock_loss_workaround_ich8lan(sc);
3865 } else if (sc->sc_type == WM_T_PCH) {
3866 wm_k1_gig_workaround_hv(sc,
3867 ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0));
3868 }
3869
3870 if ((sc->sc_phytype == WMPHY_82578)
3871 && (IFM_SUBTYPE(sc->sc_mii.mii_media_active)
3872 == IFM_1000_T)) {
3873
3874 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0) {
3875 delay(200*1000); /* XXX too big */
3876
3877 /* Link stall fix for link up */
3878 wm_gmii_hv_writereg(sc->sc_dev, 1,
3879 HV_MUX_DATA_CTRL,
3880 HV_MUX_DATA_CTRL_GEN_TO_MAC
3881 | HV_MUX_DATA_CTRL_FORCE_SPEED);
3882 wm_gmii_hv_writereg(sc->sc_dev, 1,
3883 HV_MUX_DATA_CTRL,
3884 HV_MUX_DATA_CTRL_GEN_TO_MAC);
3885 }
3886 }
3887 } else if (icr & ICR_RXSEQ) {
3888 DPRINTF(WM_DEBUG_LINK,
3889 ("%s: LINK Receive sequence error\n",
3890 device_xname(sc->sc_dev)));
3891 }
3892 }
3893
3894 /*
3895 * wm_linkintr_tbi:
3896 *
3897 * Helper; handle link interrupts for TBI mode.
3898 */
3899 static void
3900 wm_linkintr_tbi(struct wm_softc *sc, uint32_t icr)
3901 {
3902 uint32_t status;
3903
3904 DPRINTF(WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
3905 __func__));
3906
3907 status = CSR_READ(sc, WMREG_STATUS);
3908 if (icr & ICR_LSC) {
3909 if (status & STATUS_LU) {
3910 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
3911 device_xname(sc->sc_dev),
3912 (status & STATUS_FD) ? "FDX" : "HDX"));
3913 /*
3914 * NOTE: CTRL will update TFCE and RFCE automatically,
3915 * so we should update sc->sc_ctrl
3916 */
3917
3918 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
3919 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3920 sc->sc_fcrtl &= ~FCRTL_XONE;
3921 if (status & STATUS_FD)
3922 sc->sc_tctl |=
3923 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3924 else
3925 sc->sc_tctl |=
3926 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3927 if (sc->sc_ctrl & CTRL_TFCE)
3928 sc->sc_fcrtl |= FCRTL_XONE;
3929 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3930 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3931 WMREG_OLD_FCRTL : WMREG_FCRTL,
3932 sc->sc_fcrtl);
3933 sc->sc_tbi_linkup = 1;
3934 } else {
3935 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
3936 device_xname(sc->sc_dev)));
3937 sc->sc_tbi_linkup = 0;
3938 }
3939 wm_tbi_set_linkled(sc);
3940 } else if (icr & ICR_RXCFG) {
3941 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
3942 device_xname(sc->sc_dev)));
3943 sc->sc_tbi_nrxcfg++;
3944 wm_check_for_link(sc);
3945 } else if (icr & ICR_RXSEQ) {
3946 DPRINTF(WM_DEBUG_LINK,
3947 ("%s: LINK: Receive sequence error\n",
3948 device_xname(sc->sc_dev)));
3949 }
3950 }
3951
3952 /*
3953 * wm_linkintr:
3954 *
3955 * Helper; handle link interrupts.
3956 */
3957 static void
3958 wm_linkintr(struct wm_softc *sc, uint32_t icr)
3959 {
3960
3961 if (sc->sc_flags & WM_F_HAS_MII)
3962 wm_linkintr_gmii(sc, icr);
3963 else
3964 wm_linkintr_tbi(sc, icr);
3965 }
3966
3967 /*
3968 * wm_tick:
3969 *
3970 * One second timer, used to check link status, sweep up
3971 * completed transmit jobs, etc.
3972 */
3973 static void
3974 wm_tick(void *arg)
3975 {
3976 struct wm_softc *sc = arg;
3977 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3978 int s;
3979
3980 s = splnet();
3981
3982 if (sc->sc_type >= WM_T_82542_2_1) {
3983 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
3984 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
3985 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
3986 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
3987 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
3988 }
3989
3990 ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
3991 ifp->if_ierrors += 0ULL + /* ensure quad_t */
3992 + CSR_READ(sc, WMREG_CRCERRS)
3993 + CSR_READ(sc, WMREG_ALGNERRC)
3994 + CSR_READ(sc, WMREG_SYMERRC)
3995 + CSR_READ(sc, WMREG_RXERRC)
3996 + CSR_READ(sc, WMREG_SEC)
3997 + CSR_READ(sc, WMREG_CEXTERR)
3998 + CSR_READ(sc, WMREG_RLEC);
3999 ifp->if_iqdrops += CSR_READ(sc, WMREG_MPC) + CSR_READ(sc, WMREG_RNBC);
4000
4001 if (sc->sc_flags & WM_F_HAS_MII)
4002 mii_tick(&sc->sc_mii);
4003 else
4004 wm_tbi_check_link(sc);
4005
4006 splx(s);
4007
4008 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
4009 }
4010
4011 /*
4012 * wm_reset:
4013 *
4014 * Reset the i82542 chip.
4015 */
4016 static void
4017 wm_reset(struct wm_softc *sc)
4018 {
4019 int phy_reset = 0;
4020 uint32_t reg, mask;
4021
4022 /*
4023 * Allocate on-chip memory according to the MTU size.
4024 * The Packet Buffer Allocation register must be written
4025 * before the chip is reset.
4026 */
4027 switch (sc->sc_type) {
4028 case WM_T_82547:
4029 case WM_T_82547_2:
4030 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
4031 PBA_22K : PBA_30K;
4032 sc->sc_txfifo_head = 0;
4033 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
4034 sc->sc_txfifo_size =
4035 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
4036 sc->sc_txfifo_stall = 0;
4037 break;
4038 case WM_T_82571:
4039 case WM_T_82572:
4040 case WM_T_82575: /* XXX need special handing for jumbo frames */
4041 case WM_T_I350:
4042 case WM_T_80003:
4043 sc->sc_pba = PBA_32K;
4044 break;
4045 case WM_T_82580:
4046 case WM_T_82580ER:
4047 sc->sc_pba = PBA_35K;
4048 break;
4049 case WM_T_I210:
4050 case WM_T_I211:
4051 sc->sc_pba = PBA_34K;
4052 break;
4053 case WM_T_82576:
4054 sc->sc_pba = PBA_64K;
4055 break;
4056 case WM_T_82573:
4057 sc->sc_pba = PBA_12K;
4058 break;
4059 case WM_T_82574:
4060 case WM_T_82583:
4061 sc->sc_pba = PBA_20K;
4062 break;
4063 case WM_T_ICH8:
4064 sc->sc_pba = PBA_8K;
4065 CSR_WRITE(sc, WMREG_PBS, PBA_16K);
4066 break;
4067 case WM_T_ICH9:
4068 case WM_T_ICH10:
4069 sc->sc_pba = PBA_10K;
4070 break;
4071 case WM_T_PCH:
4072 case WM_T_PCH2:
4073 case WM_T_PCH_LPT:
4074 sc->sc_pba = PBA_26K;
4075 break;
4076 default:
4077 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
4078 PBA_40K : PBA_48K;
4079 break;
4080 }
4081 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
4082
4083 /* Prevent the PCI-E bus from sticking */
4084 if (sc->sc_flags & WM_F_PCIE) {
4085 int timeout = 800;
4086
4087 sc->sc_ctrl |= CTRL_GIO_M_DIS;
4088 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4089
4090 while (timeout--) {
4091 if ((CSR_READ(sc, WMREG_STATUS) & STATUS_GIO_M_ENA)
4092 == 0)
4093 break;
4094 delay(100);
4095 }
4096 }
4097
4098 /* Set the completion timeout for interface */
4099 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
4100 || (sc->sc_type == WM_T_I350))
4101 wm_set_pcie_completion_timeout(sc);
4102
4103 /* Clear interrupt */
4104 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
4105
4106 /* Stop the transmit and receive processes. */
4107 CSR_WRITE(sc, WMREG_RCTL, 0);
4108 CSR_WRITE(sc, WMREG_TCTL, TCTL_PSP);
4109 sc->sc_rctl &= ~RCTL_EN;
4110
4111 /* XXX set_tbi_sbp_82543() */
4112
4113 delay(10*1000);
4114
4115 /* Must acquire the MDIO ownership before MAC reset */
4116 switch (sc->sc_type) {
4117 case WM_T_82573:
4118 case WM_T_82574:
4119 case WM_T_82583:
4120 wm_get_hw_semaphore_82573(sc);
4121 break;
4122 default:
4123 break;
4124 }
4125
4126 /*
4127 * 82541 Errata 29? & 82547 Errata 28?
4128 * See also the description about PHY_RST bit in CTRL register
4129 * in 8254x_GBe_SDM.pdf.
4130 */
4131 if ((sc->sc_type == WM_T_82541) || (sc->sc_type == WM_T_82547)) {
4132 CSR_WRITE(sc, WMREG_CTRL,
4133 CSR_READ(sc, WMREG_CTRL) | CTRL_PHY_RESET);
4134 delay(5000);
4135 }
4136
4137 switch (sc->sc_type) {
4138 case WM_T_82544: /* XXX check whether WM_F_IOH_VALID is set */
4139 case WM_T_82541:
4140 case WM_T_82541_2:
4141 case WM_T_82547:
4142 case WM_T_82547_2:
4143 /*
4144 * On some chipsets, a reset through a memory-mapped write
4145 * cycle can cause the chip to reset before completing the
4146 * write cycle. This causes major headache that can be
4147 * avoided by issuing the reset via indirect register writes
4148 * through I/O space.
4149 *
4150 * So, if we successfully mapped the I/O BAR at attach time,
4151 * use that. Otherwise, try our luck with a memory-mapped
4152 * reset.
4153 */
4154 if (sc->sc_flags & WM_F_IOH_VALID)
4155 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
4156 else
4157 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
4158 break;
4159 case WM_T_82545_3:
4160 case WM_T_82546_3:
4161 /* Use the shadow control register on these chips. */
4162 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
4163 break;
4164 case WM_T_80003:
4165 mask = swfwphysem[sc->sc_funcid];
4166 reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST;
4167 wm_get_swfw_semaphore(sc, mask);
4168 CSR_WRITE(sc, WMREG_CTRL, reg);
4169 wm_put_swfw_semaphore(sc, mask);
4170 break;
4171 case WM_T_ICH8:
4172 case WM_T_ICH9:
4173 case WM_T_ICH10:
4174 case WM_T_PCH:
4175 case WM_T_PCH2:
4176 case WM_T_PCH_LPT:
4177 reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST;
4178 if (wm_check_reset_block(sc) == 0) {
4179 /*
4180 * Gate automatic PHY configuration by hardware on
4181 * non-managed 82579
4182 */
4183 if ((sc->sc_type == WM_T_PCH2)
4184 && ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID)
4185 != 0))
4186 wm_gate_hw_phy_config_ich8lan(sc, 1);
4187
4188
4189 reg |= CTRL_PHY_RESET;
4190 phy_reset = 1;
4191 }
4192 wm_get_swfwhw_semaphore(sc);
4193 CSR_WRITE(sc, WMREG_CTRL, reg);
4194 delay(20*1000);
4195 wm_put_swfwhw_semaphore(sc);
4196 break;
4197 case WM_T_82542_2_0:
4198 case WM_T_82542_2_1:
4199 case WM_T_82543:
4200 case WM_T_82540:
4201 case WM_T_82545:
4202 case WM_T_82546:
4203 case WM_T_82571:
4204 case WM_T_82572:
4205 case WM_T_82573:
4206 case WM_T_82574:
4207 case WM_T_82575:
4208 case WM_T_82576:
4209 case WM_T_82580:
4210 case WM_T_82580ER:
4211 case WM_T_82583:
4212 case WM_T_I350:
4213 case WM_T_I210:
4214 case WM_T_I211:
4215 default:
4216 /* Everything else can safely use the documented method. */
4217 CSR_WRITE(sc, WMREG_CTRL, CSR_READ(sc, WMREG_CTRL) | CTRL_RST);
4218 break;
4219 }
4220
4221 /* Must release the MDIO ownership after MAC reset */
4222 switch (sc->sc_type) {
4223 case WM_T_82574:
4224 case WM_T_82583:
4225 wm_put_hw_semaphore_82573(sc);
4226 break;
4227 default:
4228 break;
4229 }
4230
4231 if (phy_reset != 0)
4232 wm_get_cfg_done(sc);
4233
4234 /* reload EEPROM */
4235 switch (sc->sc_type) {
4236 case WM_T_82542_2_0:
4237 case WM_T_82542_2_1:
4238 case WM_T_82543:
4239 case WM_T_82544:
4240 delay(10);
4241 reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
4242 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
4243 delay(2000);
4244 break;
4245 case WM_T_82540:
4246 case WM_T_82545:
4247 case WM_T_82545_3:
4248 case WM_T_82546:
4249 case WM_T_82546_3:
4250 delay(5*1000);
4251 /* XXX Disable HW ARPs on ASF enabled adapters */
4252 break;
4253 case WM_T_82541:
4254 case WM_T_82541_2:
4255 case WM_T_82547:
4256 case WM_T_82547_2:
4257 delay(20000);
4258 /* XXX Disable HW ARPs on ASF enabled adapters */
4259 break;
4260 case WM_T_82571:
4261 case WM_T_82572:
4262 case WM_T_82573:
4263 case WM_T_82574:
4264 case WM_T_82583:
4265 if (sc->sc_flags & WM_F_EEPROM_FLASH) {
4266 delay(10);
4267 reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
4268 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
4269 }
4270 /* check EECD_EE_AUTORD */
4271 wm_get_auto_rd_done(sc);
4272 /*
4273 * Phy configuration from NVM just starts after EECD_AUTO_RD
4274 * is set.
4275 */
4276 if ((sc->sc_type == WM_T_82573) || (sc->sc_type == WM_T_82574)
4277 || (sc->sc_type == WM_T_82583))
4278 delay(25*1000);
4279 break;
4280 case WM_T_82575:
4281 case WM_T_82576:
4282 case WM_T_82580:
4283 case WM_T_82580ER:
4284 case WM_T_I350:
4285 case WM_T_I210:
4286 case WM_T_I211:
4287 case WM_T_80003:
4288 /* check EECD_EE_AUTORD */
4289 wm_get_auto_rd_done(sc);
4290 break;
4291 case WM_T_ICH8:
4292 case WM_T_ICH9:
4293 case WM_T_ICH10:
4294 case WM_T_PCH:
4295 case WM_T_PCH2:
4296 case WM_T_PCH_LPT:
4297 break;
4298 default:
4299 panic("%s: unknown type\n", __func__);
4300 }
4301
4302 /* Check whether EEPROM is present or not */
4303 switch (sc->sc_type) {
4304 case WM_T_82575:
4305 case WM_T_82576:
4306 #if 0 /* XXX */
4307 case WM_T_82580:
4308 case WM_T_82580ER:
4309 #endif
4310 case WM_T_I350:
4311 case WM_T_ICH8:
4312 case WM_T_ICH9:
4313 if ((CSR_READ(sc, WMREG_EECD) & EECD_EE_PRES) == 0) {
4314 /* Not found */
4315 sc->sc_flags |= WM_F_EEPROM_INVALID;
4316 if ((sc->sc_type == WM_T_82575)
4317 || (sc->sc_type == WM_T_82576)
4318 || (sc->sc_type == WM_T_82580)
4319 || (sc->sc_type == WM_T_82580ER)
4320 || (sc->sc_type == WM_T_I350))
4321 wm_reset_init_script_82575(sc);
4322 }
4323 break;
4324 default:
4325 break;
4326 }
4327
4328 if ((sc->sc_type == WM_T_82580) || (sc->sc_type == WM_T_82580ER)
4329 || (sc->sc_type == WM_T_I350)) {
4330 /* clear global device reset status bit */
4331 CSR_WRITE(sc, WMREG_STATUS, STATUS_DEV_RST_SET);
4332 }
4333
4334 /* Clear any pending interrupt events. */
4335 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
4336 reg = CSR_READ(sc, WMREG_ICR);
4337
4338 /* reload sc_ctrl */
4339 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
4340
4341 if (sc->sc_type == WM_T_I350)
4342 wm_set_eee_i350(sc);
4343
4344 /* dummy read from WUC */
4345 if (sc->sc_type == WM_T_PCH)
4346 reg = wm_gmii_hv_readreg(sc->sc_dev, 1, BM_WUC);
4347 /*
4348 * For PCH, this write will make sure that any noise will be detected
4349 * as a CRC error and be dropped rather than show up as a bad packet
4350 * to the DMA engine
4351 */
4352 if (sc->sc_type == WM_T_PCH)
4353 CSR_WRITE(sc, WMREG_CRC_OFFSET, 0x65656565);
4354
4355 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
4356 CSR_WRITE(sc, WMREG_WUC, 0);
4357
4358 /* XXX need special handling for 82580 */
4359 }
4360
4361 static void
4362 wm_set_vlan(struct wm_softc *sc)
4363 {
4364 /* Deal with VLAN enables. */
4365 if (VLAN_ATTACHED(&sc->sc_ethercom))
4366 sc->sc_ctrl |= CTRL_VME;
4367 else
4368 sc->sc_ctrl &= ~CTRL_VME;
4369
4370 /* Write the control registers. */
4371 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4372 }
4373
4374 /*
4375 * wm_init: [ifnet interface function]
4376 *
4377 * Initialize the interface. Must be called at splnet().
4378 */
4379 static int
4380 wm_init(struct ifnet *ifp)
4381 {
4382 struct wm_softc *sc = ifp->if_softc;
4383 struct wm_rxsoft *rxs;
4384 int i, j, trynum, error = 0;
4385 uint32_t reg;
4386
4387 /*
4388 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
4389 * There is a small but measurable benefit to avoiding the adjusment
4390 * of the descriptor so that the headers are aligned, for normal mtu,
4391 * on such platforms. One possibility is that the DMA itself is
4392 * slightly more efficient if the front of the entire packet (instead
4393 * of the front of the headers) is aligned.
4394 *
4395 * Note we must always set align_tweak to 0 if we are using
4396 * jumbo frames.
4397 */
4398 #ifdef __NO_STRICT_ALIGNMENT
4399 sc->sc_align_tweak = 0;
4400 #else
4401 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
4402 sc->sc_align_tweak = 0;
4403 else
4404 sc->sc_align_tweak = 2;
4405 #endif /* __NO_STRICT_ALIGNMENT */
4406
4407 /* Cancel any pending I/O. */
4408 wm_stop(ifp, 0);
4409
4410 /* update statistics before reset */
4411 ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
4412 ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
4413
4414 /* Reset the chip to a known state. */
4415 wm_reset(sc);
4416
4417 switch (sc->sc_type) {
4418 case WM_T_82571:
4419 case WM_T_82572:
4420 case WM_T_82573:
4421 case WM_T_82574:
4422 case WM_T_82583:
4423 case WM_T_80003:
4424 case WM_T_ICH8:
4425 case WM_T_ICH9:
4426 case WM_T_ICH10:
4427 case WM_T_PCH:
4428 case WM_T_PCH2:
4429 case WM_T_PCH_LPT:
4430 if (wm_check_mng_mode(sc) != 0)
4431 wm_get_hw_control(sc);
4432 break;
4433 default:
4434 break;
4435 }
4436
4437 /* Reset the PHY. */
4438 if (sc->sc_flags & WM_F_HAS_MII)
4439 wm_gmii_reset(sc);
4440
4441 reg = CSR_READ(sc, WMREG_CTRL_EXT);
4442 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4443 if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)
4444 || (sc->sc_type == WM_T_PCH_LPT))
4445 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_PHYPDEN);
4446
4447 /* Initialize the transmit descriptor ring. */
4448 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
4449 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
4450 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
4451 sc->sc_txfree = WM_NTXDESC(sc);
4452 sc->sc_txnext = 0;
4453
4454 if (sc->sc_type < WM_T_82543) {
4455 CSR_WRITE(sc, WMREG_OLD_TDBAH, WM_CDTXADDR_HI(sc, 0));
4456 CSR_WRITE(sc, WMREG_OLD_TDBAL, WM_CDTXADDR_LO(sc, 0));
4457 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
4458 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
4459 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
4460 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
4461 } else {
4462 CSR_WRITE(sc, WMREG_TDBAH, WM_CDTXADDR_HI(sc, 0));
4463 CSR_WRITE(sc, WMREG_TDBAL, WM_CDTXADDR_LO(sc, 0));
4464 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
4465 CSR_WRITE(sc, WMREG_TDH, 0);
4466 CSR_WRITE(sc, WMREG_TIDV, 375); /* ITR / 4 */
4467 CSR_WRITE(sc, WMREG_TADV, 375); /* should be same */
4468
4469 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
4470 /*
4471 * Don't write TDT before TCTL.EN is set.
4472 * See the document.
4473 */
4474 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_QUEUE_ENABLE
4475 | TXDCTL_PTHRESH(0) | TXDCTL_HTHRESH(0)
4476 | TXDCTL_WTHRESH(0));
4477 else {
4478 CSR_WRITE(sc, WMREG_TDT, 0);
4479 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
4480 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
4481 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
4482 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
4483 }
4484 }
4485 CSR_WRITE(sc, WMREG_TQSA_LO, 0);
4486 CSR_WRITE(sc, WMREG_TQSA_HI, 0);
4487
4488 /* Initialize the transmit job descriptors. */
4489 for (i = 0; i < WM_TXQUEUELEN(sc); i++)
4490 sc->sc_txsoft[i].txs_mbuf = NULL;
4491 sc->sc_txsfree = WM_TXQUEUELEN(sc);
4492 sc->sc_txsnext = 0;
4493 sc->sc_txsdirty = 0;
4494
4495 /*
4496 * Initialize the receive descriptor and receive job
4497 * descriptor rings.
4498 */
4499 if (sc->sc_type < WM_T_82543) {
4500 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
4501 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
4502 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
4503 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
4504 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
4505 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
4506
4507 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
4508 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
4509 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
4510 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
4511 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
4512 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
4513 } else {
4514 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
4515 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
4516 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
4517 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
4518 CSR_WRITE(sc, WMREG_EITR(0), 450);
4519 if (MCLBYTES & ((1 << SRRCTL_BSIZEPKT_SHIFT) - 1))
4520 panic("%s: MCLBYTES %d unsupported for i2575 or higher\n", __func__, MCLBYTES);
4521 CSR_WRITE(sc, WMREG_SRRCTL, SRRCTL_DESCTYPE_LEGACY
4522 | (MCLBYTES >> SRRCTL_BSIZEPKT_SHIFT));
4523 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_QUEUE_ENABLE
4524 | RXDCTL_PTHRESH(16) | RXDCTL_HTHRESH(8)
4525 | RXDCTL_WTHRESH(1));
4526 } else {
4527 CSR_WRITE(sc, WMREG_RDH, 0);
4528 CSR_WRITE(sc, WMREG_RDT, 0);
4529 CSR_WRITE(sc, WMREG_RDTR, 375 | RDTR_FPD); /* ITR/4 */
4530 CSR_WRITE(sc, WMREG_RADV, 375); /* MUST be same */
4531 }
4532 }
4533 for (i = 0; i < WM_NRXDESC; i++) {
4534 rxs = &sc->sc_rxsoft[i];
4535 if (rxs->rxs_mbuf == NULL) {
4536 if ((error = wm_add_rxbuf(sc, i)) != 0) {
4537 log(LOG_ERR, "%s: unable to allocate or map "
4538 "rx buffer %d, error = %d\n",
4539 device_xname(sc->sc_dev), i, error);
4540 /*
4541 * XXX Should attempt to run with fewer receive
4542 * XXX buffers instead of just failing.
4543 */
4544 wm_rxdrain(sc);
4545 goto out;
4546 }
4547 } else {
4548 if ((sc->sc_flags & WM_F_NEWQUEUE) == 0)
4549 WM_INIT_RXDESC(sc, i);
4550 /*
4551 * For 82575 and newer device, the RX descriptors
4552 * must be initialized after the setting of RCTL.EN in
4553 * wm_set_filter()
4554 */
4555 }
4556 }
4557 sc->sc_rxptr = 0;
4558 sc->sc_rxdiscard = 0;
4559 WM_RXCHAIN_RESET(sc);
4560
4561 /*
4562 * Clear out the VLAN table -- we don't use it (yet).
4563 */
4564 CSR_WRITE(sc, WMREG_VET, 0);
4565 if (sc->sc_type == WM_T_I350)
4566 trynum = 10; /* Due to hw errata */
4567 else
4568 trynum = 1;
4569 for (i = 0; i < WM_VLAN_TABSIZE; i++)
4570 for (j = 0; j < trynum; j++)
4571 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
4572
4573 /*
4574 * Set up flow-control parameters.
4575 *
4576 * XXX Values could probably stand some tuning.
4577 */
4578 if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9)
4579 && (sc->sc_type != WM_T_ICH10) && (sc->sc_type != WM_T_PCH)
4580 && (sc->sc_type != WM_T_PCH2) && (sc->sc_type != WM_T_PCH_LPT)) {
4581 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
4582 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
4583 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
4584 }
4585
4586 sc->sc_fcrtl = FCRTL_DFLT;
4587 if (sc->sc_type < WM_T_82543) {
4588 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
4589 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
4590 } else {
4591 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
4592 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
4593 }
4594
4595 if (sc->sc_type == WM_T_80003)
4596 CSR_WRITE(sc, WMREG_FCTTV, 0xffff);
4597 else
4598 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
4599
4600 /* Writes the control register. */
4601 wm_set_vlan(sc);
4602
4603 if (sc->sc_flags & WM_F_HAS_MII) {
4604 int val;
4605
4606 switch (sc->sc_type) {
4607 case WM_T_80003:
4608 case WM_T_ICH8:
4609 case WM_T_ICH9:
4610 case WM_T_ICH10:
4611 case WM_T_PCH:
4612 case WM_T_PCH2:
4613 case WM_T_PCH_LPT:
4614 /*
4615 * Set the mac to wait the maximum time between each
4616 * iteration and increase the max iterations when
4617 * polling the phy; this fixes erroneous timeouts at
4618 * 10Mbps.
4619 */
4620 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS,
4621 0xFFFF);
4622 val = wm_kmrn_readreg(sc,
4623 KUMCTRLSTA_OFFSET_INB_PARAM);
4624 val |= 0x3F;
4625 wm_kmrn_writereg(sc,
4626 KUMCTRLSTA_OFFSET_INB_PARAM, val);
4627 break;
4628 default:
4629 break;
4630 }
4631
4632 if (sc->sc_type == WM_T_80003) {
4633 val = CSR_READ(sc, WMREG_CTRL_EXT);
4634 val &= ~CTRL_EXT_LINK_MODE_MASK;
4635 CSR_WRITE(sc, WMREG_CTRL_EXT, val);
4636
4637 /* Bypass RX and TX FIFO's */
4638 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL,
4639 KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
4640 | KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
4641 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL,
4642 KUMCTRLSTA_INB_CTRL_DIS_PADDING |
4643 KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT);
4644 }
4645 }
4646 #if 0
4647 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
4648 #endif
4649
4650 /*
4651 * Set up checksum offload parameters.
4652 */
4653 reg = CSR_READ(sc, WMREG_RXCSUM);
4654 reg &= ~(RXCSUM_IPOFL | RXCSUM_IPV6OFL | RXCSUM_TUOFL);
4655 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
4656 reg |= RXCSUM_IPOFL;
4657 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
4658 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
4659 if (ifp->if_capenable & (IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
4660 reg |= RXCSUM_IPV6OFL | RXCSUM_TUOFL;
4661 CSR_WRITE(sc, WMREG_RXCSUM, reg);
4662
4663 /* Reset TBI's RXCFG count */
4664 sc->sc_tbi_nrxcfg = sc->sc_tbi_lastnrxcfg = 0;
4665
4666 /*
4667 * Set up the interrupt registers.
4668 */
4669 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
4670 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
4671 ICR_RXO | ICR_RXT0;
4672 if ((sc->sc_flags & WM_F_HAS_MII) == 0)
4673 sc->sc_icr |= ICR_RXCFG;
4674 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
4675
4676 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
4677 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
4678 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) {
4679 reg = CSR_READ(sc, WMREG_KABGTXD);
4680 reg |= KABGTXD_BGSQLBIAS;
4681 CSR_WRITE(sc, WMREG_KABGTXD, reg);
4682 }
4683
4684 /* Set up the inter-packet gap. */
4685 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
4686
4687 if (sc->sc_type >= WM_T_82543) {
4688 /*
4689 * Set up the interrupt throttling register (units of 256ns)
4690 * Note that a footnote in Intel's documentation says this
4691 * ticker runs at 1/4 the rate when the chip is in 100Mbit
4692 * or 10Mbit mode. Empirically, it appears to be the case
4693 * that that is also true for the 1024ns units of the other
4694 * interrupt-related timer registers -- so, really, we ought
4695 * to divide this value by 4 when the link speed is low.
4696 *
4697 * XXX implement this division at link speed change!
4698 */
4699
4700 /*
4701 * For N interrupts/sec, set this value to:
4702 * 1000000000 / (N * 256). Note that we set the
4703 * absolute and packet timer values to this value
4704 * divided by 4 to get "simple timer" behavior.
4705 */
4706
4707 sc->sc_itr = 1500; /* 2604 ints/sec */
4708 CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
4709 }
4710
4711 /* Set the VLAN ethernetype. */
4712 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
4713
4714 /*
4715 * Set up the transmit control register; we start out with
4716 * a collision distance suitable for FDX, but update it whe
4717 * we resolve the media type.
4718 */
4719 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_RTLC
4720 | TCTL_CT(TX_COLLISION_THRESHOLD)
4721 | TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
4722 if (sc->sc_type >= WM_T_82571)
4723 sc->sc_tctl |= TCTL_MULR;
4724 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
4725
4726 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
4727 /*
4728 * Write TDT after TCTL.EN is set.
4729 * See the document.
4730 */
4731 CSR_WRITE(sc, WMREG_TDT, 0);
4732 }
4733
4734 if (sc->sc_type == WM_T_80003) {
4735 reg = CSR_READ(sc, WMREG_TCTL_EXT);
4736 reg &= ~TCTL_EXT_GCEX_MASK;
4737 reg |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
4738 CSR_WRITE(sc, WMREG_TCTL_EXT, reg);
4739 }
4740
4741 /* Set the media. */
4742 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
4743 goto out;
4744
4745 /* Configure for OS presence */
4746 wm_init_manageability(sc);
4747
4748 /*
4749 * Set up the receive control register; we actually program
4750 * the register when we set the receive filter. Use multicast
4751 * address offset type 0.
4752 *
4753 * Only the i82544 has the ability to strip the incoming
4754 * CRC, so we don't enable that feature.
4755 */
4756 sc->sc_mchash_type = 0;
4757 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
4758 | RCTL_MO(sc->sc_mchash_type);
4759
4760 /*
4761 * The I350 has a bug where it always strips the CRC whether
4762 * asked to or not. So ask for stripped CRC here and cope in rxeof
4763 */
4764 if ((sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I210))
4765 sc->sc_rctl |= RCTL_SECRC;
4766
4767 if (((sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) != 0)
4768 && (ifp->if_mtu > ETHERMTU)) {
4769 sc->sc_rctl |= RCTL_LPE;
4770 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
4771 CSR_WRITE(sc, WMREG_RLPML, ETHER_MAX_LEN_JUMBO);
4772 }
4773
4774 if (MCLBYTES == 2048) {
4775 sc->sc_rctl |= RCTL_2k;
4776 } else {
4777 if (sc->sc_type >= WM_T_82543) {
4778 switch (MCLBYTES) {
4779 case 4096:
4780 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
4781 break;
4782 case 8192:
4783 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
4784 break;
4785 case 16384:
4786 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
4787 break;
4788 default:
4789 panic("wm_init: MCLBYTES %d unsupported",
4790 MCLBYTES);
4791 break;
4792 }
4793 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
4794 }
4795
4796 /* Set the receive filter. */
4797 wm_set_filter(sc);
4798
4799 /* Enable ECC */
4800 switch (sc->sc_type) {
4801 case WM_T_82571:
4802 reg = CSR_READ(sc, WMREG_PBA_ECC);
4803 reg |= PBA_ECC_CORR_EN;
4804 CSR_WRITE(sc, WMREG_PBA_ECC, reg);
4805 break;
4806 case WM_T_PCH_LPT:
4807 reg = CSR_READ(sc, WMREG_PBECCSTS);
4808 reg |= PBECCSTS_UNCORR_ECC_ENABLE;
4809 CSR_WRITE(sc, WMREG_PBECCSTS, reg);
4810
4811 reg = CSR_READ(sc, WMREG_CTRL);
4812 reg |= CTRL_MEHE;
4813 CSR_WRITE(sc, WMREG_CTRL, reg);
4814 break;
4815 default:
4816 break;
4817 }
4818
4819 /* On 575 and later set RDT only if RX enabled */
4820 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
4821 for (i = 0; i < WM_NRXDESC; i++)
4822 WM_INIT_RXDESC(sc, i);
4823
4824 /* Start the one second link check clock. */
4825 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
4826
4827 /* ...all done! */
4828 ifp->if_flags |= IFF_RUNNING;
4829 ifp->if_flags &= ~IFF_OACTIVE;
4830
4831 out:
4832 sc->sc_if_flags = ifp->if_flags;
4833 if (error)
4834 log(LOG_ERR, "%s: interface not running\n",
4835 device_xname(sc->sc_dev));
4836 return error;
4837 }
4838
4839 /*
4840 * wm_rxdrain:
4841 *
4842 * Drain the receive queue.
4843 */
4844 static void
4845 wm_rxdrain(struct wm_softc *sc)
4846 {
4847 struct wm_rxsoft *rxs;
4848 int i;
4849
4850 for (i = 0; i < WM_NRXDESC; i++) {
4851 rxs = &sc->sc_rxsoft[i];
4852 if (rxs->rxs_mbuf != NULL) {
4853 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
4854 m_freem(rxs->rxs_mbuf);
4855 rxs->rxs_mbuf = NULL;
4856 }
4857 }
4858 }
4859
4860 /*
4861 * wm_stop: [ifnet interface function]
4862 *
4863 * Stop transmission on the interface.
4864 */
4865 static void
4866 wm_stop(struct ifnet *ifp, int disable)
4867 {
4868 struct wm_softc *sc = ifp->if_softc;
4869 struct wm_txsoft *txs;
4870 int i;
4871
4872 /* Stop the one second clock. */
4873 callout_stop(&sc->sc_tick_ch);
4874
4875 /* Stop the 82547 Tx FIFO stall check timer. */
4876 if (sc->sc_type == WM_T_82547)
4877 callout_stop(&sc->sc_txfifo_ch);
4878
4879 if (sc->sc_flags & WM_F_HAS_MII) {
4880 /* Down the MII. */
4881 mii_down(&sc->sc_mii);
4882 } else {
4883 #if 0
4884 /* Should we clear PHY's status properly? */
4885 wm_reset(sc);
4886 #endif
4887 }
4888
4889 /* Stop the transmit and receive processes. */
4890 CSR_WRITE(sc, WMREG_TCTL, 0);
4891 CSR_WRITE(sc, WMREG_RCTL, 0);
4892 sc->sc_rctl &= ~RCTL_EN;
4893
4894 /*
4895 * Clear the interrupt mask to ensure the device cannot assert its
4896 * interrupt line.
4897 * Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
4898 * any currently pending or shared interrupt.
4899 */
4900 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
4901 sc->sc_icr = 0;
4902
4903 /* Release any queued transmit buffers. */
4904 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
4905 txs = &sc->sc_txsoft[i];
4906 if (txs->txs_mbuf != NULL) {
4907 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
4908 m_freem(txs->txs_mbuf);
4909 txs->txs_mbuf = NULL;
4910 }
4911 }
4912
4913 /* Mark the interface as down and cancel the watchdog timer. */
4914 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4915 ifp->if_timer = 0;
4916
4917 if (disable)
4918 wm_rxdrain(sc);
4919
4920 #if 0 /* notyet */
4921 if (sc->sc_type >= WM_T_82544)
4922 CSR_WRITE(sc, WMREG_WUC, 0);
4923 #endif
4924 }
4925
4926 void
4927 wm_get_auto_rd_done(struct wm_softc *sc)
4928 {
4929 int i;
4930
4931 /* wait for eeprom to reload */
4932 switch (sc->sc_type) {
4933 case WM_T_82571:
4934 case WM_T_82572:
4935 case WM_T_82573:
4936 case WM_T_82574:
4937 case WM_T_82583:
4938 case WM_T_82575:
4939 case WM_T_82576:
4940 case WM_T_82580:
4941 case WM_T_82580ER:
4942 case WM_T_I350:
4943 case WM_T_I210:
4944 case WM_T_I211:
4945 case WM_T_80003:
4946 case WM_T_ICH8:
4947 case WM_T_ICH9:
4948 for (i = 0; i < 10; i++) {
4949 if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD)
4950 break;
4951 delay(1000);
4952 }
4953 if (i == 10) {
4954 log(LOG_ERR, "%s: auto read from eeprom failed to "
4955 "complete\n", device_xname(sc->sc_dev));
4956 }
4957 break;
4958 default:
4959 break;
4960 }
4961 }
4962
4963 void
4964 wm_lan_init_done(struct wm_softc *sc)
4965 {
4966 uint32_t reg = 0;
4967 int i;
4968
4969 /* wait for eeprom to reload */
4970 switch (sc->sc_type) {
4971 case WM_T_ICH10:
4972 case WM_T_PCH:
4973 case WM_T_PCH2:
4974 case WM_T_PCH_LPT:
4975 for (i = 0; i < WM_ICH8_LAN_INIT_TIMEOUT; i++) {
4976 reg = CSR_READ(sc, WMREG_STATUS);
4977 if ((reg & STATUS_LAN_INIT_DONE) != 0)
4978 break;
4979 delay(100);
4980 }
4981 if (i >= WM_ICH8_LAN_INIT_TIMEOUT) {
4982 log(LOG_ERR, "%s: %s: lan_init_done failed to "
4983 "complete\n", device_xname(sc->sc_dev), __func__);
4984 }
4985 break;
4986 default:
4987 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
4988 __func__);
4989 break;
4990 }
4991
4992 reg &= ~STATUS_LAN_INIT_DONE;
4993 CSR_WRITE(sc, WMREG_STATUS, reg);
4994 }
4995
4996 void
4997 wm_get_cfg_done(struct wm_softc *sc)
4998 {
4999 int mask;
5000 uint32_t reg;
5001 int i;
5002
5003 /* wait for eeprom to reload */
5004 switch (sc->sc_type) {
5005 case WM_T_82542_2_0:
5006 case WM_T_82542_2_1:
5007 /* null */
5008 break;
5009 case WM_T_82543:
5010 case WM_T_82544:
5011 case WM_T_82540:
5012 case WM_T_82545:
5013 case WM_T_82545_3:
5014 case WM_T_82546:
5015 case WM_T_82546_3:
5016 case WM_T_82541:
5017 case WM_T_82541_2:
5018 case WM_T_82547:
5019 case WM_T_82547_2:
5020 case WM_T_82573:
5021 case WM_T_82574:
5022 case WM_T_82583:
5023 /* generic */
5024 delay(10*1000);
5025 break;
5026 case WM_T_80003:
5027 case WM_T_82571:
5028 case WM_T_82572:
5029 case WM_T_82575:
5030 case WM_T_82576:
5031 case WM_T_82580:
5032 case WM_T_82580ER:
5033 case WM_T_I350:
5034 case WM_T_I210:
5035 case WM_T_I211:
5036 if (sc->sc_type == WM_T_82571) {
5037 /* Only 82571 shares port 0 */
5038 mask = EEMNGCTL_CFGDONE_0;
5039 } else
5040 mask = EEMNGCTL_CFGDONE_0 << sc->sc_funcid;
5041 for (i = 0; i < WM_PHY_CFG_TIMEOUT; i++) {
5042 if (CSR_READ(sc, WMREG_EEMNGCTL) & mask)
5043 break;
5044 delay(1000);
5045 }
5046 if (i >= WM_PHY_CFG_TIMEOUT) {
5047 DPRINTF(WM_DEBUG_GMII, ("%s: %s failed\n",
5048 device_xname(sc->sc_dev), __func__));
5049 }
5050 break;
5051 case WM_T_ICH8:
5052 case WM_T_ICH9:
5053 case WM_T_ICH10:
5054 case WM_T_PCH:
5055 case WM_T_PCH2:
5056 case WM_T_PCH_LPT:
5057 delay(10*1000);
5058 if (sc->sc_type >= WM_T_ICH10)
5059 wm_lan_init_done(sc);
5060 else
5061 wm_get_auto_rd_done(sc);
5062
5063 reg = CSR_READ(sc, WMREG_STATUS);
5064 if ((reg & STATUS_PHYRA) != 0)
5065 CSR_WRITE(sc, WMREG_STATUS, reg & ~STATUS_PHYRA);
5066 break;
5067 default:
5068 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
5069 __func__);
5070 break;
5071 }
5072 }
5073
5074 /*
5075 * wm_acquire_eeprom:
5076 *
5077 * Perform the EEPROM handshake required on some chips.
5078 */
5079 static int
5080 wm_acquire_eeprom(struct wm_softc *sc)
5081 {
5082 uint32_t reg;
5083 int x;
5084 int ret = 0;
5085
5086 /* always success */
5087 if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
5088 return 0;
5089
5090 if (sc->sc_flags & WM_F_SWFWHW_SYNC) {
5091 ret = wm_get_swfwhw_semaphore(sc);
5092 } else if (sc->sc_flags & WM_F_SWFW_SYNC) {
5093 /* this will also do wm_get_swsm_semaphore() if needed */
5094 ret = wm_get_swfw_semaphore(sc, SWFW_EEP_SM);
5095 } else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
5096 ret = wm_get_swsm_semaphore(sc);
5097 }
5098
5099 if (ret) {
5100 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
5101 __func__);
5102 return 1;
5103 }
5104
5105 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
5106 reg = CSR_READ(sc, WMREG_EECD);
5107
5108 /* Request EEPROM access. */
5109 reg |= EECD_EE_REQ;
5110 CSR_WRITE(sc, WMREG_EECD, reg);
5111
5112 /* ..and wait for it to be granted. */
5113 for (x = 0; x < 1000; x++) {
5114 reg = CSR_READ(sc, WMREG_EECD);
5115 if (reg & EECD_EE_GNT)
5116 break;
5117 delay(5);
5118 }
5119 if ((reg & EECD_EE_GNT) == 0) {
5120 aprint_error_dev(sc->sc_dev,
5121 "could not acquire EEPROM GNT\n");
5122 reg &= ~EECD_EE_REQ;
5123 CSR_WRITE(sc, WMREG_EECD, reg);
5124 if (sc->sc_flags & WM_F_SWFWHW_SYNC)
5125 wm_put_swfwhw_semaphore(sc);
5126 if (sc->sc_flags & WM_F_SWFW_SYNC)
5127 wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
5128 else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
5129 wm_put_swsm_semaphore(sc);
5130 return 1;
5131 }
5132 }
5133
5134 return 0;
5135 }
5136
5137 /*
5138 * wm_release_eeprom:
5139 *
5140 * Release the EEPROM mutex.
5141 */
5142 static void
5143 wm_release_eeprom(struct wm_softc *sc)
5144 {
5145 uint32_t reg;
5146
5147 /* always success */
5148 if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
5149 return;
5150
5151 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
5152 reg = CSR_READ(sc, WMREG_EECD);
5153 reg &= ~EECD_EE_REQ;
5154 CSR_WRITE(sc, WMREG_EECD, reg);
5155 }
5156
5157 if (sc->sc_flags & WM_F_SWFWHW_SYNC)
5158 wm_put_swfwhw_semaphore(sc);
5159 if (sc->sc_flags & WM_F_SWFW_SYNC)
5160 wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
5161 else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
5162 wm_put_swsm_semaphore(sc);
5163 }
5164
5165 /*
5166 * wm_eeprom_sendbits:
5167 *
5168 * Send a series of bits to the EEPROM.
5169 */
5170 static void
5171 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
5172 {
5173 uint32_t reg;
5174 int x;
5175
5176 reg = CSR_READ(sc, WMREG_EECD);
5177
5178 for (x = nbits; x > 0; x--) {
5179 if (bits & (1U << (x - 1)))
5180 reg |= EECD_DI;
5181 else
5182 reg &= ~EECD_DI;
5183 CSR_WRITE(sc, WMREG_EECD, reg);
5184 delay(2);
5185 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
5186 delay(2);
5187 CSR_WRITE(sc, WMREG_EECD, reg);
5188 delay(2);
5189 }
5190 }
5191
5192 /*
5193 * wm_eeprom_recvbits:
5194 *
5195 * Receive a series of bits from the EEPROM.
5196 */
5197 static void
5198 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
5199 {
5200 uint32_t reg, val;
5201 int x;
5202
5203 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
5204
5205 val = 0;
5206 for (x = nbits; x > 0; x--) {
5207 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
5208 delay(2);
5209 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
5210 val |= (1U << (x - 1));
5211 CSR_WRITE(sc, WMREG_EECD, reg);
5212 delay(2);
5213 }
5214 *valp = val;
5215 }
5216
5217 /*
5218 * wm_read_eeprom_uwire:
5219 *
5220 * Read a word from the EEPROM using the MicroWire protocol.
5221 */
5222 static int
5223 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
5224 {
5225 uint32_t reg, val;
5226 int i;
5227
5228 for (i = 0; i < wordcnt; i++) {
5229 /* Clear SK and DI. */
5230 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
5231 CSR_WRITE(sc, WMREG_EECD, reg);
5232
5233 /*
5234 * XXX: workaround for a bug in qemu-0.12.x and prior
5235 * and Xen.
5236 *
5237 * We use this workaround only for 82540 because qemu's
5238 * e1000 act as 82540.
5239 */
5240 if (sc->sc_type == WM_T_82540) {
5241 reg |= EECD_SK;
5242 CSR_WRITE(sc, WMREG_EECD, reg);
5243 reg &= ~EECD_SK;
5244 CSR_WRITE(sc, WMREG_EECD, reg);
5245 delay(2);
5246 }
5247 /* XXX: end of workaround */
5248
5249 /* Set CHIP SELECT. */
5250 reg |= EECD_CS;
5251 CSR_WRITE(sc, WMREG_EECD, reg);
5252 delay(2);
5253
5254 /* Shift in the READ command. */
5255 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
5256
5257 /* Shift in address. */
5258 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
5259
5260 /* Shift out the data. */
5261 wm_eeprom_recvbits(sc, &val, 16);
5262 data[i] = val & 0xffff;
5263
5264 /* Clear CHIP SELECT. */
5265 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
5266 CSR_WRITE(sc, WMREG_EECD, reg);
5267 delay(2);
5268 }
5269
5270 return 0;
5271 }
5272
5273 /*
5274 * wm_spi_eeprom_ready:
5275 *
5276 * Wait for a SPI EEPROM to be ready for commands.
5277 */
5278 static int
5279 wm_spi_eeprom_ready(struct wm_softc *sc)
5280 {
5281 uint32_t val;
5282 int usec;
5283
5284 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
5285 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
5286 wm_eeprom_recvbits(sc, &val, 8);
5287 if ((val & SPI_SR_RDY) == 0)
5288 break;
5289 }
5290 if (usec >= SPI_MAX_RETRIES) {
5291 aprint_error_dev(sc->sc_dev, "EEPROM failed to become ready\n");
5292 return 1;
5293 }
5294 return 0;
5295 }
5296
5297 /*
5298 * wm_read_eeprom_spi:
5299 *
5300 * Read a work from the EEPROM using the SPI protocol.
5301 */
5302 static int
5303 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
5304 {
5305 uint32_t reg, val;
5306 int i;
5307 uint8_t opc;
5308
5309 /* Clear SK and CS. */
5310 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
5311 CSR_WRITE(sc, WMREG_EECD, reg);
5312 delay(2);
5313
5314 if (wm_spi_eeprom_ready(sc))
5315 return 1;
5316
5317 /* Toggle CS to flush commands. */
5318 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
5319 delay(2);
5320 CSR_WRITE(sc, WMREG_EECD, reg);
5321 delay(2);
5322
5323 opc = SPI_OPC_READ;
5324 if (sc->sc_ee_addrbits == 8 && word >= 128)
5325 opc |= SPI_OPC_A8;
5326
5327 wm_eeprom_sendbits(sc, opc, 8);
5328 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
5329
5330 for (i = 0; i < wordcnt; i++) {
5331 wm_eeprom_recvbits(sc, &val, 16);
5332 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
5333 }
5334
5335 /* Raise CS and clear SK. */
5336 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
5337 CSR_WRITE(sc, WMREG_EECD, reg);
5338 delay(2);
5339
5340 return 0;
5341 }
5342
5343 #define NVM_CHECKSUM 0xBABA
5344 #define EEPROM_SIZE 0x0040
5345 #define NVM_COMPAT 0x0003
5346 #define NVM_COMPAT_VALID_CHECKSUM 0x0001
5347 #define NVM_FUTURE_INIT_WORD1 0x0019
5348 #define NVM_FUTURE_INIT_WORD1_VALID_CHECKSUM 0x0040
5349
5350 /*
5351 * wm_validate_eeprom_checksum
5352 *
5353 * The checksum is defined as the sum of the first 64 (16 bit) words.
5354 */
5355 static int
5356 wm_validate_eeprom_checksum(struct wm_softc *sc)
5357 {
5358 uint16_t checksum, valid_checksum;
5359 uint16_t eeprom_data;
5360 uint16_t csum_wordaddr;
5361 int i;
5362
5363 checksum = 0;
5364
5365 /* Don't check for I211 */
5366 if (sc->sc_type == WM_T_I211)
5367 return 0;
5368
5369 if (sc->sc_type == WM_T_PCH_LPT) {
5370 csum_wordaddr = NVM_COMPAT;
5371 valid_checksum = NVM_COMPAT_VALID_CHECKSUM;
5372 } else {
5373 csum_wordaddr = NVM_FUTURE_INIT_WORD1;
5374 valid_checksum = NVM_FUTURE_INIT_WORD1_VALID_CHECKSUM;
5375 }
5376
5377 #ifdef WM_DEBUG
5378 /* Dump EEPROM image for debug */
5379 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
5380 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
5381 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) {
5382 wm_read_eeprom(sc, csum_wordaddr, 1, &eeprom_data);
5383 if ((eeprom_data & valid_checksum) == 0) {
5384 DPRINTF(WM_DEBUG_NVM,
5385 ("%s: NVM need to be updated (%04x != %04x)\n",
5386 device_xname(sc->sc_dev), eeprom_data,
5387 valid_checksum));
5388 }
5389 }
5390
5391 if ((wm_debug & WM_DEBUG_NVM) != 0) {
5392 printf("%s: NVM dump:\n", device_xname(sc->sc_dev));
5393 for (i = 0; i < EEPROM_SIZE; i++) {
5394 if (wm_read_eeprom(sc, i, 1, &eeprom_data))
5395 printf("XX ");
5396 else
5397 printf("%04x ", eeprom_data);
5398 if (i % 8 == 7)
5399 printf("\n");
5400 }
5401 }
5402
5403 #endif /* WM_DEBUG */
5404
5405 for (i = 0; i < EEPROM_SIZE; i++) {
5406 if (wm_read_eeprom(sc, i, 1, &eeprom_data))
5407 return 1;
5408 checksum += eeprom_data;
5409 }
5410
5411 if (checksum != (uint16_t) NVM_CHECKSUM) {
5412 #ifdef WM_DEBUG
5413 printf("%s: NVM checksum mismatch (%04x != %04x)\n",
5414 device_xname(sc->sc_dev), checksum, NVM_CHECKSUM);
5415 #endif
5416 }
5417
5418 return 0;
5419 }
5420
5421 /*
5422 * wm_read_eeprom:
5423 *
5424 * Read data from the serial EEPROM.
5425 */
5426 static int
5427 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
5428 {
5429 int rv;
5430
5431 if (sc->sc_flags & WM_F_EEPROM_INVALID)
5432 return 1;
5433
5434 if (wm_acquire_eeprom(sc))
5435 return 1;
5436
5437 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
5438 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
5439 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT))
5440 rv = wm_read_eeprom_ich8(sc, word, wordcnt, data);
5441 else if (sc->sc_flags & WM_F_EEPROM_EERDEEWR)
5442 rv = wm_read_eeprom_eerd(sc, word, wordcnt, data);
5443 else if (sc->sc_flags & WM_F_EEPROM_SPI)
5444 rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
5445 else
5446 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
5447
5448 wm_release_eeprom(sc);
5449 return rv;
5450 }
5451
5452 static int
5453 wm_read_eeprom_eerd(struct wm_softc *sc, int offset, int wordcnt,
5454 uint16_t *data)
5455 {
5456 int i, eerd = 0;
5457 int error = 0;
5458
5459 for (i = 0; i < wordcnt; i++) {
5460 eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
5461
5462 CSR_WRITE(sc, WMREG_EERD, eerd);
5463 error = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
5464 if (error != 0)
5465 break;
5466
5467 data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
5468 }
5469
5470 return error;
5471 }
5472
5473 static int
5474 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
5475 {
5476 uint32_t attempts = 100000;
5477 uint32_t i, reg = 0;
5478 int32_t done = -1;
5479
5480 for (i = 0; i < attempts; i++) {
5481 reg = CSR_READ(sc, rw);
5482
5483 if (reg & EERD_DONE) {
5484 done = 0;
5485 break;
5486 }
5487 delay(5);
5488 }
5489
5490 return done;
5491 }
5492
5493 static int
5494 wm_check_alt_mac_addr(struct wm_softc *sc)
5495 {
5496 uint16_t myea[ETHER_ADDR_LEN / 2];
5497 uint16_t offset = EEPROM_OFF_MACADDR;
5498
5499 /* Try to read alternative MAC address pointer */
5500 if (wm_read_eeprom(sc, EEPROM_ALT_MAC_ADDR_PTR, 1, &offset) != 0)
5501 return -1;
5502
5503 /* Check pointer */
5504 if (offset == 0xffff)
5505 return -1;
5506
5507 /*
5508 * Check whether alternative MAC address is valid or not.
5509 * Some cards have non 0xffff pointer but those don't use
5510 * alternative MAC address in reality.
5511 *
5512 * Check whether the broadcast bit is set or not.
5513 */
5514 if (wm_read_eeprom(sc, offset, 1, myea) == 0)
5515 if (((myea[0] & 0xff) & 0x01) == 0)
5516 return 0; /* found! */
5517
5518 /* not found */
5519 return -1;
5520 }
5521
5522 static int
5523 wm_read_mac_addr(struct wm_softc *sc, uint8_t *enaddr)
5524 {
5525 uint16_t myea[ETHER_ADDR_LEN / 2];
5526 uint16_t offset = EEPROM_OFF_MACADDR;
5527 int do_invert = 0;
5528
5529 switch (sc->sc_type) {
5530 case WM_T_82580:
5531 case WM_T_82580ER:
5532 case WM_T_I350:
5533 switch (sc->sc_funcid) {
5534 case 0:
5535 /* default value (== EEPROM_OFF_MACADDR) */
5536 break;
5537 case 1:
5538 offset = EEPROM_OFF_LAN1;
5539 break;
5540 case 2:
5541 offset = EEPROM_OFF_LAN2;
5542 break;
5543 case 3:
5544 offset = EEPROM_OFF_LAN3;
5545 break;
5546 default:
5547 goto bad;
5548 /* NOTREACHED */
5549 break;
5550 }
5551 break;
5552 case WM_T_82571:
5553 case WM_T_82575:
5554 case WM_T_82576:
5555 case WM_T_80003:
5556 case WM_T_I210:
5557 case WM_T_I211:
5558 if (wm_check_alt_mac_addr(sc) != 0) {
5559 /* reset the offset to LAN0 */
5560 offset = EEPROM_OFF_MACADDR;
5561 if ((sc->sc_funcid & 0x01) == 1)
5562 do_invert = 1;
5563 goto do_read;
5564 }
5565 switch (sc->sc_funcid) {
5566 case 0:
5567 /*
5568 * The offset is the value in EEPROM_ALT_MAC_ADDR_PTR
5569 * itself.
5570 */
5571 break;
5572 case 1:
5573 offset += EEPROM_OFF_MACADDR_LAN1;
5574 break;
5575 case 2:
5576 offset += EEPROM_OFF_MACADDR_LAN2;
5577 break;
5578 case 3:
5579 offset += EEPROM_OFF_MACADDR_LAN3;
5580 break;
5581 default:
5582 goto bad;
5583 /* NOTREACHED */
5584 break;
5585 }
5586 break;
5587 default:
5588 if ((sc->sc_funcid & 0x01) == 1)
5589 do_invert = 1;
5590 break;
5591 }
5592
5593 do_read:
5594 if (wm_read_eeprom(sc, offset, sizeof(myea) / sizeof(myea[0]),
5595 myea) != 0) {
5596 goto bad;
5597 }
5598
5599 enaddr[0] = myea[0] & 0xff;
5600 enaddr[1] = myea[0] >> 8;
5601 enaddr[2] = myea[1] & 0xff;
5602 enaddr[3] = myea[1] >> 8;
5603 enaddr[4] = myea[2] & 0xff;
5604 enaddr[5] = myea[2] >> 8;
5605
5606 /*
5607 * Toggle the LSB of the MAC address on the second port
5608 * of some dual port cards.
5609 */
5610 if (do_invert != 0)
5611 enaddr[5] ^= 1;
5612
5613 return 0;
5614
5615 bad:
5616 aprint_error_dev(sc->sc_dev, "unable to read Ethernet address\n");
5617
5618 return -1;
5619 }
5620
5621 /*
5622 * wm_add_rxbuf:
5623 *
5624 * Add a receive buffer to the indiciated descriptor.
5625 */
5626 static int
5627 wm_add_rxbuf(struct wm_softc *sc, int idx)
5628 {
5629 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
5630 struct mbuf *m;
5631 int error;
5632
5633 MGETHDR(m, M_DONTWAIT, MT_DATA);
5634 if (m == NULL)
5635 return ENOBUFS;
5636
5637 MCLGET(m, M_DONTWAIT);
5638 if ((m->m_flags & M_EXT) == 0) {
5639 m_freem(m);
5640 return ENOBUFS;
5641 }
5642
5643 if (rxs->rxs_mbuf != NULL)
5644 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
5645
5646 rxs->rxs_mbuf = m;
5647
5648 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
5649 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
5650 BUS_DMA_READ|BUS_DMA_NOWAIT);
5651 if (error) {
5652 /* XXX XXX XXX */
5653 aprint_error_dev(sc->sc_dev,
5654 "unable to load rx DMA map %d, error = %d\n",
5655 idx, error);
5656 panic("wm_add_rxbuf");
5657 }
5658
5659 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
5660 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
5661
5662 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
5663 if ((sc->sc_rctl & RCTL_EN) != 0)
5664 WM_INIT_RXDESC(sc, idx);
5665 } else
5666 WM_INIT_RXDESC(sc, idx);
5667
5668 return 0;
5669 }
5670
5671 /*
5672 * wm_set_ral:
5673 *
5674 * Set an entery in the receive address list.
5675 */
5676 static void
5677 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
5678 {
5679 uint32_t ral_lo, ral_hi;
5680
5681 if (enaddr != NULL) {
5682 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
5683 (enaddr[3] << 24);
5684 ral_hi = enaddr[4] | (enaddr[5] << 8);
5685 ral_hi |= RAL_AV;
5686 } else {
5687 ral_lo = 0;
5688 ral_hi = 0;
5689 }
5690
5691 if (sc->sc_type >= WM_T_82544) {
5692 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
5693 ral_lo);
5694 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
5695 ral_hi);
5696 } else {
5697 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
5698 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
5699 }
5700 }
5701
5702 /*
5703 * wm_mchash:
5704 *
5705 * Compute the hash of the multicast address for the 4096-bit
5706 * multicast filter.
5707 */
5708 static uint32_t
5709 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
5710 {
5711 static const int lo_shift[4] = { 4, 3, 2, 0 };
5712 static const int hi_shift[4] = { 4, 5, 6, 8 };
5713 static const int ich8_lo_shift[4] = { 6, 5, 4, 2 };
5714 static const int ich8_hi_shift[4] = { 2, 3, 4, 6 };
5715 uint32_t hash;
5716
5717 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
5718 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
5719 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) {
5720 hash = (enaddr[4] >> ich8_lo_shift[sc->sc_mchash_type]) |
5721 (((uint16_t) enaddr[5]) << ich8_hi_shift[sc->sc_mchash_type]);
5722 return (hash & 0x3ff);
5723 }
5724 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
5725 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
5726
5727 return (hash & 0xfff);
5728 }
5729
5730 /*
5731 * wm_set_filter:
5732 *
5733 * Set up the receive filter.
5734 */
5735 static void
5736 wm_set_filter(struct wm_softc *sc)
5737 {
5738 struct ethercom *ec = &sc->sc_ethercom;
5739 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
5740 struct ether_multi *enm;
5741 struct ether_multistep step;
5742 bus_addr_t mta_reg;
5743 uint32_t hash, reg, bit;
5744 int i, size;
5745
5746 if (sc->sc_type >= WM_T_82544)
5747 mta_reg = WMREG_CORDOVA_MTA;
5748 else
5749 mta_reg = WMREG_MTA;
5750
5751 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
5752
5753 if (ifp->if_flags & IFF_BROADCAST)
5754 sc->sc_rctl |= RCTL_BAM;
5755 if (ifp->if_flags & IFF_PROMISC) {
5756 sc->sc_rctl |= RCTL_UPE;
5757 goto allmulti;
5758 }
5759
5760 /*
5761 * Set the station address in the first RAL slot, and
5762 * clear the remaining slots.
5763 */
5764 if (sc->sc_type == WM_T_ICH8)
5765 size = WM_RAL_TABSIZE_ICH8 -1;
5766 else if ((sc->sc_type == WM_T_ICH9) || (sc->sc_type == WM_T_ICH10)
5767 || (sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)
5768 || (sc->sc_type == WM_T_PCH_LPT))
5769 size = WM_RAL_TABSIZE_ICH8;
5770 else if (sc->sc_type == WM_T_82575)
5771 size = WM_RAL_TABSIZE_82575;
5772 else if ((sc->sc_type == WM_T_82576) || (sc->sc_type == WM_T_82580))
5773 size = WM_RAL_TABSIZE_82576;
5774 else if (sc->sc_type == WM_T_I350)
5775 size = WM_RAL_TABSIZE_I350;
5776 else
5777 size = WM_RAL_TABSIZE;
5778 wm_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
5779 for (i = 1; i < size; i++)
5780 wm_set_ral(sc, NULL, i);
5781
5782 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
5783 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
5784 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT))
5785 size = WM_ICH8_MC_TABSIZE;
5786 else
5787 size = WM_MC_TABSIZE;
5788 /* Clear out the multicast table. */
5789 for (i = 0; i < size; i++)
5790 CSR_WRITE(sc, mta_reg + (i << 2), 0);
5791
5792 ETHER_FIRST_MULTI(step, ec, enm);
5793 while (enm != NULL) {
5794 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
5795 /*
5796 * We must listen to a range of multicast addresses.
5797 * For now, just accept all multicasts, rather than
5798 * trying to set only those filter bits needed to match
5799 * the range. (At this time, the only use of address
5800 * ranges is for IP multicast routing, for which the
5801 * range is big enough to require all bits set.)
5802 */
5803 goto allmulti;
5804 }
5805
5806 hash = wm_mchash(sc, enm->enm_addrlo);
5807
5808 reg = (hash >> 5);
5809 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
5810 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
5811 || (sc->sc_type == WM_T_PCH2)
5812 || (sc->sc_type == WM_T_PCH_LPT))
5813 reg &= 0x1f;
5814 else
5815 reg &= 0x7f;
5816 bit = hash & 0x1f;
5817
5818 hash = CSR_READ(sc, mta_reg + (reg << 2));
5819 hash |= 1U << bit;
5820
5821 /* XXX Hardware bug?? */
5822 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
5823 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
5824 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
5825 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
5826 } else
5827 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
5828
5829 ETHER_NEXT_MULTI(step, enm);
5830 }
5831
5832 ifp->if_flags &= ~IFF_ALLMULTI;
5833 goto setit;
5834
5835 allmulti:
5836 ifp->if_flags |= IFF_ALLMULTI;
5837 sc->sc_rctl |= RCTL_MPE;
5838
5839 setit:
5840 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
5841 }
5842
5843 /*
5844 * wm_tbi_mediainit:
5845 *
5846 * Initialize media for use on 1000BASE-X devices.
5847 */
5848 static void
5849 wm_tbi_mediainit(struct wm_softc *sc)
5850 {
5851 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
5852 const char *sep = "";
5853
5854 if (sc->sc_type < WM_T_82543)
5855 sc->sc_tipg = TIPG_WM_DFLT;
5856 else
5857 sc->sc_tipg = TIPG_LG_DFLT;
5858
5859 sc->sc_tbi_anegticks = 5;
5860
5861 /* Initialize our media structures */
5862 sc->sc_mii.mii_ifp = ifp;
5863
5864 sc->sc_ethercom.ec_mii = &sc->sc_mii;
5865 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
5866 wm_tbi_mediastatus);
5867
5868 /*
5869 * SWD Pins:
5870 *
5871 * 0 = Link LED (output)
5872 * 1 = Loss Of Signal (input)
5873 */
5874 sc->sc_ctrl |= CTRL_SWDPIO(0);
5875 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
5876
5877 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
5878
5879 #define ADD(ss, mm, dd) \
5880 do { \
5881 aprint_normal("%s%s", sep, ss); \
5882 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
5883 sep = ", "; \
5884 } while (/*CONSTCOND*/0)
5885
5886 aprint_normal_dev(sc->sc_dev, "");
5887 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
5888 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
5889 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
5890 aprint_normal("\n");
5891
5892 #undef ADD
5893
5894 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
5895 }
5896
5897 /*
5898 * wm_tbi_mediastatus: [ifmedia interface function]
5899 *
5900 * Get the current interface media status on a 1000BASE-X device.
5901 */
5902 static void
5903 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
5904 {
5905 struct wm_softc *sc = ifp->if_softc;
5906 uint32_t ctrl, status;
5907
5908 ifmr->ifm_status = IFM_AVALID;
5909 ifmr->ifm_active = IFM_ETHER;
5910
5911 status = CSR_READ(sc, WMREG_STATUS);
5912 if ((status & STATUS_LU) == 0) {
5913 ifmr->ifm_active |= IFM_NONE;
5914 return;
5915 }
5916
5917 ifmr->ifm_status |= IFM_ACTIVE;
5918 ifmr->ifm_active |= IFM_1000_SX;
5919 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
5920 ifmr->ifm_active |= IFM_FDX;
5921 ctrl = CSR_READ(sc, WMREG_CTRL);
5922 if (ctrl & CTRL_RFCE)
5923 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
5924 if (ctrl & CTRL_TFCE)
5925 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
5926 }
5927
5928 /*
5929 * wm_tbi_mediachange: [ifmedia interface function]
5930 *
5931 * Set hardware to newly-selected media on a 1000BASE-X device.
5932 */
5933 static int
5934 wm_tbi_mediachange(struct ifnet *ifp)
5935 {
5936 struct wm_softc *sc = ifp->if_softc;
5937 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
5938 uint32_t status;
5939 int i;
5940
5941 sc->sc_txcw = 0;
5942 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
5943 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
5944 sc->sc_txcw |= TXCW_SYM_PAUSE | TXCW_ASYM_PAUSE;
5945 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
5946 sc->sc_txcw |= TXCW_ANE;
5947 } else {
5948 /*
5949 * If autonegotiation is turned off, force link up and turn on
5950 * full duplex
5951 */
5952 sc->sc_txcw &= ~TXCW_ANE;
5953 sc->sc_ctrl |= CTRL_SLU | CTRL_FD;
5954 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
5955 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
5956 delay(1000);
5957 }
5958
5959 DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x after autoneg check\n",
5960 device_xname(sc->sc_dev),sc->sc_txcw));
5961 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
5962 delay(10000);
5963
5964 i = CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1);
5965 DPRINTF(WM_DEBUG_LINK,("%s: i = 0x%x\n", device_xname(sc->sc_dev),i));
5966
5967 /*
5968 * On 82544 chips and later, the CTRL_SWDPIN(1) bit will be set if the
5969 * optics detect a signal, 0 if they don't.
5970 */
5971 if (((i != 0) && (sc->sc_type > WM_T_82544)) || (i == 0)) {
5972 /* Have signal; wait for the link to come up. */
5973
5974 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
5975 /*
5976 * Reset the link, and let autonegotiation do its thing
5977 */
5978 sc->sc_ctrl |= CTRL_LRST;
5979 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
5980 delay(1000);
5981 sc->sc_ctrl &= ~CTRL_LRST;
5982 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
5983 delay(1000);
5984 }
5985
5986 for (i = 0; i < WM_LINKUP_TIMEOUT; i++) {
5987 delay(10000);
5988 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
5989 break;
5990 }
5991
5992 DPRINTF(WM_DEBUG_LINK,("%s: i = %d after waiting for link\n",
5993 device_xname(sc->sc_dev),i));
5994
5995 status = CSR_READ(sc, WMREG_STATUS);
5996 DPRINTF(WM_DEBUG_LINK,
5997 ("%s: status after final read = 0x%x, STATUS_LU = 0x%x\n",
5998 device_xname(sc->sc_dev),status, STATUS_LU));
5999 if (status & STATUS_LU) {
6000 /* Link is up. */
6001 DPRINTF(WM_DEBUG_LINK,
6002 ("%s: LINK: set media -> link up %s\n",
6003 device_xname(sc->sc_dev),
6004 (status & STATUS_FD) ? "FDX" : "HDX"));
6005
6006 /*
6007 * NOTE: CTRL will update TFCE and RFCE automatically,
6008 * so we should update sc->sc_ctrl
6009 */
6010 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
6011 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
6012 sc->sc_fcrtl &= ~FCRTL_XONE;
6013 if (status & STATUS_FD)
6014 sc->sc_tctl |=
6015 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
6016 else
6017 sc->sc_tctl |=
6018 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
6019 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
6020 sc->sc_fcrtl |= FCRTL_XONE;
6021 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
6022 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
6023 WMREG_OLD_FCRTL : WMREG_FCRTL,
6024 sc->sc_fcrtl);
6025 sc->sc_tbi_linkup = 1;
6026 } else {
6027 if (i == WM_LINKUP_TIMEOUT)
6028 wm_check_for_link(sc);
6029 /* Link is down. */
6030 DPRINTF(WM_DEBUG_LINK,
6031 ("%s: LINK: set media -> link down\n",
6032 device_xname(sc->sc_dev)));
6033 sc->sc_tbi_linkup = 0;
6034 }
6035 } else {
6036 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
6037 device_xname(sc->sc_dev)));
6038 sc->sc_tbi_linkup = 0;
6039 }
6040
6041 wm_tbi_set_linkled(sc);
6042
6043 return 0;
6044 }
6045
6046 /*
6047 * wm_tbi_set_linkled:
6048 *
6049 * Update the link LED on 1000BASE-X devices.
6050 */
6051 static void
6052 wm_tbi_set_linkled(struct wm_softc *sc)
6053 {
6054
6055 if (sc->sc_tbi_linkup)
6056 sc->sc_ctrl |= CTRL_SWDPIN(0);
6057 else
6058 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
6059
6060 /* 82540 or newer devices are active low */
6061 sc->sc_ctrl ^= (sc->sc_type >= WM_T_82540) ? CTRL_SWDPIN(0) : 0;
6062
6063 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
6064 }
6065
6066 /*
6067 * wm_tbi_check_link:
6068 *
6069 * Check the link on 1000BASE-X devices.
6070 */
6071 static void
6072 wm_tbi_check_link(struct wm_softc *sc)
6073 {
6074 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
6075 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
6076 uint32_t rxcw, ctrl, status;
6077
6078 status = CSR_READ(sc, WMREG_STATUS);
6079
6080 rxcw = CSR_READ(sc, WMREG_RXCW);
6081 ctrl = CSR_READ(sc, WMREG_CTRL);
6082
6083 /* set link status */
6084 if ((status & STATUS_LU) == 0) {
6085 DPRINTF(WM_DEBUG_LINK,
6086 ("%s: LINK: checklink -> down\n", device_xname(sc->sc_dev)));
6087 sc->sc_tbi_linkup = 0;
6088 } else if (sc->sc_tbi_linkup == 0) {
6089 DPRINTF(WM_DEBUG_LINK,
6090 ("%s: LINK: checklink -> up %s\n", device_xname(sc->sc_dev),
6091 (status & STATUS_FD) ? "FDX" : "HDX"));
6092 sc->sc_tbi_linkup = 1;
6093 }
6094
6095 if ((sc->sc_ethercom.ec_if.if_flags & IFF_UP)
6096 && ((status & STATUS_LU) == 0)) {
6097 sc->sc_tbi_linkup = 0;
6098 if (sc->sc_tbi_nrxcfg - sc->sc_tbi_lastnrxcfg > 100) {
6099 /* RXCFG storm! */
6100 DPRINTF(WM_DEBUG_LINK, ("RXCFG storm! (%d)\n",
6101 sc->sc_tbi_nrxcfg - sc->sc_tbi_lastnrxcfg));
6102 wm_init(ifp);
6103 ifp->if_start(ifp);
6104 } else if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
6105 /* If the timer expired, retry autonegotiation */
6106 if (++sc->sc_tbi_ticks >= sc->sc_tbi_anegticks) {
6107 DPRINTF(WM_DEBUG_LINK, ("EXPIRE\n"));
6108 sc->sc_tbi_ticks = 0;
6109 /*
6110 * Reset the link, and let autonegotiation do
6111 * its thing
6112 */
6113 sc->sc_ctrl |= CTRL_LRST;
6114 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
6115 delay(1000);
6116 sc->sc_ctrl &= ~CTRL_LRST;
6117 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
6118 delay(1000);
6119 CSR_WRITE(sc, WMREG_TXCW,
6120 sc->sc_txcw & ~TXCW_ANE);
6121 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
6122 }
6123 }
6124 }
6125
6126 wm_tbi_set_linkled(sc);
6127 }
6128
6129 /*
6130 * wm_gmii_reset:
6131 *
6132 * Reset the PHY.
6133 */
6134 static void
6135 wm_gmii_reset(struct wm_softc *sc)
6136 {
6137 uint32_t reg;
6138 int rv;
6139
6140 /* get phy semaphore */
6141 switch (sc->sc_type) {
6142 case WM_T_82571:
6143 case WM_T_82572:
6144 case WM_T_82573:
6145 case WM_T_82574:
6146 case WM_T_82583:
6147 /* XXX should get sw semaphore, too */
6148 rv = wm_get_swsm_semaphore(sc);
6149 break;
6150 case WM_T_82575:
6151 case WM_T_82576:
6152 case WM_T_82580:
6153 case WM_T_82580ER:
6154 case WM_T_I350:
6155 case WM_T_I210:
6156 case WM_T_I211:
6157 case WM_T_80003:
6158 rv = wm_get_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
6159 break;
6160 case WM_T_ICH8:
6161 case WM_T_ICH9:
6162 case WM_T_ICH10:
6163 case WM_T_PCH:
6164 case WM_T_PCH2:
6165 case WM_T_PCH_LPT:
6166 rv = wm_get_swfwhw_semaphore(sc);
6167 break;
6168 default:
6169 /* nothing to do*/
6170 rv = 0;
6171 break;
6172 }
6173 if (rv != 0) {
6174 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
6175 __func__);
6176 return;
6177 }
6178
6179 switch (sc->sc_type) {
6180 case WM_T_82542_2_0:
6181 case WM_T_82542_2_1:
6182 /* null */
6183 break;
6184 case WM_T_82543:
6185 /*
6186 * With 82543, we need to force speed and duplex on the MAC
6187 * equal to what the PHY speed and duplex configuration is.
6188 * In addition, we need to perform a hardware reset on the PHY
6189 * to take it out of reset.
6190 */
6191 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
6192 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
6193
6194 /* The PHY reset pin is active-low. */
6195 reg = CSR_READ(sc, WMREG_CTRL_EXT);
6196 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
6197 CTRL_EXT_SWDPIN(4));
6198 reg |= CTRL_EXT_SWDPIO(4);
6199
6200 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
6201 delay(10*1000);
6202
6203 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
6204 delay(150);
6205 #if 0
6206 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
6207 #endif
6208 delay(20*1000); /* XXX extra delay to get PHY ID? */
6209 break;
6210 case WM_T_82544: /* reset 10000us */
6211 case WM_T_82540:
6212 case WM_T_82545:
6213 case WM_T_82545_3:
6214 case WM_T_82546:
6215 case WM_T_82546_3:
6216 case WM_T_82541:
6217 case WM_T_82541_2:
6218 case WM_T_82547:
6219 case WM_T_82547_2:
6220 case WM_T_82571: /* reset 100us */
6221 case WM_T_82572:
6222 case WM_T_82573:
6223 case WM_T_82574:
6224 case WM_T_82575:
6225 case WM_T_82576:
6226 case WM_T_82580:
6227 case WM_T_82580ER:
6228 case WM_T_I350:
6229 case WM_T_I210:
6230 case WM_T_I211:
6231 case WM_T_82583:
6232 case WM_T_80003:
6233 /* generic reset */
6234 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
6235 delay(20000);
6236 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
6237 delay(20000);
6238
6239 if ((sc->sc_type == WM_T_82541)
6240 || (sc->sc_type == WM_T_82541_2)
6241 || (sc->sc_type == WM_T_82547)
6242 || (sc->sc_type == WM_T_82547_2)) {
6243 /* workaround for igp are done in igp_reset() */
6244 /* XXX add code to set LED after phy reset */
6245 }
6246 break;
6247 case WM_T_ICH8:
6248 case WM_T_ICH9:
6249 case WM_T_ICH10:
6250 case WM_T_PCH:
6251 case WM_T_PCH2:
6252 case WM_T_PCH_LPT:
6253 /* generic reset */
6254 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
6255 delay(100);
6256 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
6257 delay(150);
6258 break;
6259 default:
6260 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
6261 __func__);
6262 break;
6263 }
6264
6265 /* release PHY semaphore */
6266 switch (sc->sc_type) {
6267 case WM_T_82571:
6268 case WM_T_82572:
6269 case WM_T_82573:
6270 case WM_T_82574:
6271 case WM_T_82583:
6272 /* XXX should put sw semaphore, too */
6273 wm_put_swsm_semaphore(sc);
6274 break;
6275 case WM_T_82575:
6276 case WM_T_82576:
6277 case WM_T_82580:
6278 case WM_T_82580ER:
6279 case WM_T_I350:
6280 case WM_T_I210:
6281 case WM_T_I211:
6282 case WM_T_80003:
6283 wm_put_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
6284 break;
6285 case WM_T_ICH8:
6286 case WM_T_ICH9:
6287 case WM_T_ICH10:
6288 case WM_T_PCH:
6289 case WM_T_PCH2:
6290 case WM_T_PCH_LPT:
6291 wm_put_swfwhw_semaphore(sc);
6292 break;
6293 default:
6294 /* nothing to do*/
6295 rv = 0;
6296 break;
6297 }
6298
6299 /* get_cfg_done */
6300 wm_get_cfg_done(sc);
6301
6302 /* extra setup */
6303 switch (sc->sc_type) {
6304 case WM_T_82542_2_0:
6305 case WM_T_82542_2_1:
6306 case WM_T_82543:
6307 case WM_T_82544:
6308 case WM_T_82540:
6309 case WM_T_82545:
6310 case WM_T_82545_3:
6311 case WM_T_82546:
6312 case WM_T_82546_3:
6313 case WM_T_82541_2:
6314 case WM_T_82547_2:
6315 case WM_T_82571:
6316 case WM_T_82572:
6317 case WM_T_82573:
6318 case WM_T_82574:
6319 case WM_T_82575:
6320 case WM_T_82576:
6321 case WM_T_82580:
6322 case WM_T_82580ER:
6323 case WM_T_I350:
6324 case WM_T_I210:
6325 case WM_T_I211:
6326 case WM_T_82583:
6327 case WM_T_80003:
6328 /* null */
6329 break;
6330 case WM_T_82541:
6331 case WM_T_82547:
6332 /* XXX Configure actively LED after PHY reset */
6333 break;
6334 case WM_T_ICH8:
6335 case WM_T_ICH9:
6336 case WM_T_ICH10:
6337 case WM_T_PCH:
6338 case WM_T_PCH2:
6339 case WM_T_PCH_LPT:
6340 /* Allow time for h/w to get to a quiescent state afer reset */
6341 delay(10*1000);
6342
6343 if (sc->sc_type == WM_T_PCH)
6344 wm_hv_phy_workaround_ich8lan(sc);
6345
6346 if (sc->sc_type == WM_T_PCH2)
6347 wm_lv_phy_workaround_ich8lan(sc);
6348
6349 if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)) {
6350 /*
6351 * dummy read to clear the phy wakeup bit after lcd
6352 * reset
6353 */
6354 reg = wm_gmii_hv_readreg(sc->sc_dev, 1, BM_WUC);
6355 }
6356
6357 /*
6358 * XXX Configure the LCD with th extended configuration region
6359 * in NVM
6360 */
6361
6362 /* Configure the LCD with the OEM bits in NVM */
6363 if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)
6364 || (sc->sc_type == WM_T_PCH_LPT)) {
6365 /*
6366 * Disable LPLU.
6367 * XXX It seems that 82567 has LPLU, too.
6368 */
6369 reg = wm_gmii_hv_readreg(sc->sc_dev, 1, HV_OEM_BITS);
6370 reg &= ~(HV_OEM_BITS_A1KDIS| HV_OEM_BITS_LPLU);
6371 reg |= HV_OEM_BITS_ANEGNOW;
6372 wm_gmii_hv_writereg(sc->sc_dev, 1, HV_OEM_BITS, reg);
6373 }
6374 break;
6375 default:
6376 panic("%s: unknown type\n", __func__);
6377 break;
6378 }
6379 }
6380
6381 /*
6382 * wm_gmii_mediainit:
6383 *
6384 * Initialize media for use on 1000BASE-T devices.
6385 */
6386 static void
6387 wm_gmii_mediainit(struct wm_softc *sc, pci_product_id_t prodid)
6388 {
6389 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
6390 struct mii_data *mii = &sc->sc_mii;
6391
6392 /* We have MII. */
6393 sc->sc_flags |= WM_F_HAS_MII;
6394
6395 if (sc->sc_type == WM_T_80003)
6396 sc->sc_tipg = TIPG_1000T_80003_DFLT;
6397 else
6398 sc->sc_tipg = TIPG_1000T_DFLT;
6399
6400 /*
6401 * Let the chip set speed/duplex on its own based on
6402 * signals from the PHY.
6403 * XXXbouyer - I'm not sure this is right for the 80003,
6404 * the em driver only sets CTRL_SLU here - but it seems to work.
6405 */
6406 sc->sc_ctrl |= CTRL_SLU;
6407 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
6408
6409 /* Initialize our media structures and probe the GMII. */
6410 mii->mii_ifp = ifp;
6411
6412 /*
6413 * Determine the PHY access method.
6414 *
6415 * For SGMII, use SGMII specific method.
6416 *
6417 * For some devices, we can determine the PHY access method
6418 * from sc_type.
6419 *
6420 * For ICH8 variants, it's difficult to detemine the PHY access
6421 * method by sc_type, so use the PCI product ID for some devices.
6422 * For other ICH8 variants, try to use igp's method. If the PHY
6423 * can't detect, then use bm's method.
6424 */
6425 switch (prodid) {
6426 case PCI_PRODUCT_INTEL_PCH_M_LM:
6427 case PCI_PRODUCT_INTEL_PCH_M_LC:
6428 /* 82577 */
6429 sc->sc_phytype = WMPHY_82577;
6430 mii->mii_readreg = wm_gmii_hv_readreg;
6431 mii->mii_writereg = wm_gmii_hv_writereg;
6432 break;
6433 case PCI_PRODUCT_INTEL_PCH_D_DM:
6434 case PCI_PRODUCT_INTEL_PCH_D_DC:
6435 /* 82578 */
6436 sc->sc_phytype = WMPHY_82578;
6437 mii->mii_readreg = wm_gmii_hv_readreg;
6438 mii->mii_writereg = wm_gmii_hv_writereg;
6439 break;
6440 case PCI_PRODUCT_INTEL_PCH2_LV_LM:
6441 case PCI_PRODUCT_INTEL_PCH2_LV_V:
6442 /* 82579 */
6443 sc->sc_phytype = WMPHY_82579;
6444 mii->mii_readreg = wm_gmii_hv_readreg;
6445 mii->mii_writereg = wm_gmii_hv_writereg;
6446 break;
6447 case PCI_PRODUCT_INTEL_I217_LM:
6448 case PCI_PRODUCT_INTEL_I217_V:
6449 case PCI_PRODUCT_INTEL_I218_LM:
6450 case PCI_PRODUCT_INTEL_I218_V:
6451 /* I21[78] */
6452 mii->mii_readreg = wm_gmii_hv_readreg;
6453 mii->mii_writereg = wm_gmii_hv_writereg;
6454 break;
6455 case PCI_PRODUCT_INTEL_82801I_BM:
6456 case PCI_PRODUCT_INTEL_82801J_R_BM_LM:
6457 case PCI_PRODUCT_INTEL_82801J_R_BM_LF:
6458 case PCI_PRODUCT_INTEL_82801J_D_BM_LM:
6459 case PCI_PRODUCT_INTEL_82801J_D_BM_LF:
6460 case PCI_PRODUCT_INTEL_82801J_R_BM_V:
6461 /* 82567 */
6462 sc->sc_phytype = WMPHY_BM;
6463 mii->mii_readreg = wm_gmii_bm_readreg;
6464 mii->mii_writereg = wm_gmii_bm_writereg;
6465 break;
6466 default:
6467 if ((sc->sc_flags & WM_F_SGMII) != 0) {
6468 mii->mii_readreg = wm_sgmii_readreg;
6469 mii->mii_writereg = wm_sgmii_writereg;
6470 } else if (sc->sc_type >= WM_T_80003) {
6471 mii->mii_readreg = wm_gmii_i80003_readreg;
6472 mii->mii_writereg = wm_gmii_i80003_writereg;
6473 } else if (sc->sc_type >= WM_T_I210) {
6474 mii->mii_readreg = wm_gmii_i82544_readreg;
6475 mii->mii_writereg = wm_gmii_i82544_writereg;
6476 } else if (sc->sc_type >= WM_T_82580) {
6477 sc->sc_phytype = WMPHY_82580;
6478 mii->mii_readreg = wm_gmii_82580_readreg;
6479 mii->mii_writereg = wm_gmii_82580_writereg;
6480 } else if (sc->sc_type >= WM_T_82544) {
6481 mii->mii_readreg = wm_gmii_i82544_readreg;
6482 mii->mii_writereg = wm_gmii_i82544_writereg;
6483 } else {
6484 mii->mii_readreg = wm_gmii_i82543_readreg;
6485 mii->mii_writereg = wm_gmii_i82543_writereg;
6486 }
6487 break;
6488 }
6489 mii->mii_statchg = wm_gmii_statchg;
6490
6491 wm_gmii_reset(sc);
6492
6493 sc->sc_ethercom.ec_mii = &sc->sc_mii;
6494 ifmedia_init(&mii->mii_media, IFM_IMASK, wm_gmii_mediachange,
6495 wm_gmii_mediastatus);
6496
6497 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
6498 || (sc->sc_type == WM_T_82580) || (sc->sc_type == WM_T_82580ER)
6499 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I210)
6500 || (sc->sc_type == WM_T_I211)) {
6501 if ((sc->sc_flags & WM_F_SGMII) == 0) {
6502 /* Attach only one port */
6503 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, 1,
6504 MII_OFFSET_ANY, MIIF_DOPAUSE);
6505 } else {
6506 int i;
6507 uint32_t ctrl_ext;
6508
6509 /* Power on sgmii phy if it is disabled */
6510 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
6511 CSR_WRITE(sc, WMREG_CTRL_EXT,
6512 ctrl_ext &~ CTRL_EXT_SWDPIN(3));
6513 CSR_WRITE_FLUSH(sc);
6514 delay(300*1000); /* XXX too long */
6515
6516 /* from 1 to 8 */
6517 for (i = 1; i < 8; i++)
6518 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff,
6519 i, MII_OFFSET_ANY, MIIF_DOPAUSE);
6520
6521 /* restore previous sfp cage power state */
6522 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
6523 }
6524 } else {
6525 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
6526 MII_OFFSET_ANY, MIIF_DOPAUSE);
6527 }
6528
6529 /*
6530 * If the MAC is PCH2 or PCH_LPT and failed to detect MII PHY, call
6531 * wm_set_mdio_slow_mode_hv() for a workaround and retry.
6532 */
6533 if (((sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) &&
6534 (LIST_FIRST(&mii->mii_phys) == NULL)) {
6535 wm_set_mdio_slow_mode_hv(sc);
6536 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
6537 MII_OFFSET_ANY, MIIF_DOPAUSE);
6538 }
6539
6540 /*
6541 * (For ICH8 variants)
6542 * If PHY detection failed, use BM's r/w function and retry.
6543 */
6544 if (LIST_FIRST(&mii->mii_phys) == NULL) {
6545 /* if failed, retry with *_bm_* */
6546 mii->mii_readreg = wm_gmii_bm_readreg;
6547 mii->mii_writereg = wm_gmii_bm_writereg;
6548
6549 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
6550 MII_OFFSET_ANY, MIIF_DOPAUSE);
6551 }
6552
6553 if (LIST_FIRST(&mii->mii_phys) == NULL) {
6554 /* Any PHY wasn't find */
6555 ifmedia_add(&mii->mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
6556 ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_NONE);
6557 sc->sc_phytype = WMPHY_NONE;
6558 } else {
6559 /*
6560 * PHY Found!
6561 * Check PHY type.
6562 */
6563 uint32_t model;
6564 struct mii_softc *child;
6565
6566 child = LIST_FIRST(&mii->mii_phys);
6567 if (device_is_a(child->mii_dev, "igphy")) {
6568 struct igphy_softc *isc = (struct igphy_softc *)child;
6569
6570 model = isc->sc_mii.mii_mpd_model;
6571 if (model == MII_MODEL_yyINTEL_I82566)
6572 sc->sc_phytype = WMPHY_IGP_3;
6573 }
6574
6575 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
6576 }
6577 }
6578
6579 /*
6580 * wm_gmii_mediastatus: [ifmedia interface function]
6581 *
6582 * Get the current interface media status on a 1000BASE-T device.
6583 */
6584 static void
6585 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
6586 {
6587 struct wm_softc *sc = ifp->if_softc;
6588
6589 ether_mediastatus(ifp, ifmr);
6590 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
6591 | sc->sc_flowflags;
6592 }
6593
6594 /*
6595 * wm_gmii_mediachange: [ifmedia interface function]
6596 *
6597 * Set hardware to newly-selected media on a 1000BASE-T device.
6598 */
6599 static int
6600 wm_gmii_mediachange(struct ifnet *ifp)
6601 {
6602 struct wm_softc *sc = ifp->if_softc;
6603 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
6604 int rc;
6605
6606 if ((ifp->if_flags & IFF_UP) == 0)
6607 return 0;
6608
6609 sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
6610 sc->sc_ctrl |= CTRL_SLU;
6611 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
6612 || (sc->sc_type > WM_T_82543)) {
6613 sc->sc_ctrl &= ~(CTRL_FRCSPD | CTRL_FRCFDX);
6614 } else {
6615 sc->sc_ctrl &= ~CTRL_ASDE;
6616 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
6617 if (ife->ifm_media & IFM_FDX)
6618 sc->sc_ctrl |= CTRL_FD;
6619 switch (IFM_SUBTYPE(ife->ifm_media)) {
6620 case IFM_10_T:
6621 sc->sc_ctrl |= CTRL_SPEED_10;
6622 break;
6623 case IFM_100_TX:
6624 sc->sc_ctrl |= CTRL_SPEED_100;
6625 break;
6626 case IFM_1000_T:
6627 sc->sc_ctrl |= CTRL_SPEED_1000;
6628 break;
6629 default:
6630 panic("wm_gmii_mediachange: bad media 0x%x",
6631 ife->ifm_media);
6632 }
6633 }
6634 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
6635 if (sc->sc_type <= WM_T_82543)
6636 wm_gmii_reset(sc);
6637
6638 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
6639 return 0;
6640 return rc;
6641 }
6642
6643 #define MDI_IO CTRL_SWDPIN(2)
6644 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
6645 #define MDI_CLK CTRL_SWDPIN(3)
6646
6647 static void
6648 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
6649 {
6650 uint32_t i, v;
6651
6652 v = CSR_READ(sc, WMREG_CTRL);
6653 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
6654 v |= MDI_DIR | CTRL_SWDPIO(3);
6655
6656 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
6657 if (data & i)
6658 v |= MDI_IO;
6659 else
6660 v &= ~MDI_IO;
6661 CSR_WRITE(sc, WMREG_CTRL, v);
6662 delay(10);
6663 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
6664 delay(10);
6665 CSR_WRITE(sc, WMREG_CTRL, v);
6666 delay(10);
6667 }
6668 }
6669
6670 static uint32_t
6671 i82543_mii_recvbits(struct wm_softc *sc)
6672 {
6673 uint32_t v, i, data = 0;
6674
6675 v = CSR_READ(sc, WMREG_CTRL);
6676 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
6677 v |= CTRL_SWDPIO(3);
6678
6679 CSR_WRITE(sc, WMREG_CTRL, v);
6680 delay(10);
6681 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
6682 delay(10);
6683 CSR_WRITE(sc, WMREG_CTRL, v);
6684 delay(10);
6685
6686 for (i = 0; i < 16; i++) {
6687 data <<= 1;
6688 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
6689 delay(10);
6690 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
6691 data |= 1;
6692 CSR_WRITE(sc, WMREG_CTRL, v);
6693 delay(10);
6694 }
6695
6696 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
6697 delay(10);
6698 CSR_WRITE(sc, WMREG_CTRL, v);
6699 delay(10);
6700
6701 return data;
6702 }
6703
6704 #undef MDI_IO
6705 #undef MDI_DIR
6706 #undef MDI_CLK
6707
6708 /*
6709 * wm_gmii_i82543_readreg: [mii interface function]
6710 *
6711 * Read a PHY register on the GMII (i82543 version).
6712 */
6713 static int
6714 wm_gmii_i82543_readreg(device_t self, int phy, int reg)
6715 {
6716 struct wm_softc *sc = device_private(self);
6717 int rv;
6718
6719 i82543_mii_sendbits(sc, 0xffffffffU, 32);
6720 i82543_mii_sendbits(sc, reg | (phy << 5) |
6721 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
6722 rv = i82543_mii_recvbits(sc) & 0xffff;
6723
6724 DPRINTF(WM_DEBUG_GMII,
6725 ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
6726 device_xname(sc->sc_dev), phy, reg, rv));
6727
6728 return rv;
6729 }
6730
6731 /*
6732 * wm_gmii_i82543_writereg: [mii interface function]
6733 *
6734 * Write a PHY register on the GMII (i82543 version).
6735 */
6736 static void
6737 wm_gmii_i82543_writereg(device_t self, int phy, int reg, int val)
6738 {
6739 struct wm_softc *sc = device_private(self);
6740
6741 i82543_mii_sendbits(sc, 0xffffffffU, 32);
6742 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
6743 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
6744 (MII_COMMAND_START << 30), 32);
6745 }
6746
6747 /*
6748 * wm_gmii_i82544_readreg: [mii interface function]
6749 *
6750 * Read a PHY register on the GMII.
6751 */
6752 static int
6753 wm_gmii_i82544_readreg(device_t self, int phy, int reg)
6754 {
6755 struct wm_softc *sc = device_private(self);
6756 uint32_t mdic = 0;
6757 int i, rv;
6758
6759 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
6760 MDIC_REGADD(reg));
6761
6762 for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) {
6763 mdic = CSR_READ(sc, WMREG_MDIC);
6764 if (mdic & MDIC_READY)
6765 break;
6766 delay(50);
6767 }
6768
6769 if ((mdic & MDIC_READY) == 0) {
6770 log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
6771 device_xname(sc->sc_dev), phy, reg);
6772 rv = 0;
6773 } else if (mdic & MDIC_E) {
6774 #if 0 /* This is normal if no PHY is present. */
6775 log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
6776 device_xname(sc->sc_dev), phy, reg);
6777 #endif
6778 rv = 0;
6779 } else {
6780 rv = MDIC_DATA(mdic);
6781 if (rv == 0xffff)
6782 rv = 0;
6783 }
6784
6785 return rv;
6786 }
6787
6788 /*
6789 * wm_gmii_i82544_writereg: [mii interface function]
6790 *
6791 * Write a PHY register on the GMII.
6792 */
6793 static void
6794 wm_gmii_i82544_writereg(device_t self, int phy, int reg, int val)
6795 {
6796 struct wm_softc *sc = device_private(self);
6797 uint32_t mdic = 0;
6798 int i;
6799
6800 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
6801 MDIC_REGADD(reg) | MDIC_DATA(val));
6802
6803 for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) {
6804 mdic = CSR_READ(sc, WMREG_MDIC);
6805 if (mdic & MDIC_READY)
6806 break;
6807 delay(50);
6808 }
6809
6810 if ((mdic & MDIC_READY) == 0)
6811 log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
6812 device_xname(sc->sc_dev), phy, reg);
6813 else if (mdic & MDIC_E)
6814 log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
6815 device_xname(sc->sc_dev), phy, reg);
6816 }
6817
6818 /*
6819 * wm_gmii_i80003_readreg: [mii interface function]
6820 *
6821 * Read a PHY register on the kumeran
6822 * This could be handled by the PHY layer if we didn't have to lock the
6823 * ressource ...
6824 */
6825 static int
6826 wm_gmii_i80003_readreg(device_t self, int phy, int reg)
6827 {
6828 struct wm_softc *sc = device_private(self);
6829 int sem;
6830 int rv;
6831
6832 if (phy != 1) /* only one PHY on kumeran bus */
6833 return 0;
6834
6835 sem = swfwphysem[sc->sc_funcid];
6836 if (wm_get_swfw_semaphore(sc, sem)) {
6837 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
6838 __func__);
6839 return 0;
6840 }
6841
6842 if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
6843 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
6844 reg >> GG82563_PAGE_SHIFT);
6845 } else {
6846 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
6847 reg >> GG82563_PAGE_SHIFT);
6848 }
6849 /* Wait more 200us for a bug of the ready bit in the MDIC register */
6850 delay(200);
6851 rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
6852 delay(200);
6853
6854 wm_put_swfw_semaphore(sc, sem);
6855 return rv;
6856 }
6857
6858 /*
6859 * wm_gmii_i80003_writereg: [mii interface function]
6860 *
6861 * Write a PHY register on the kumeran.
6862 * This could be handled by the PHY layer if we didn't have to lock the
6863 * ressource ...
6864 */
6865 static void
6866 wm_gmii_i80003_writereg(device_t self, int phy, int reg, int val)
6867 {
6868 struct wm_softc *sc = device_private(self);
6869 int sem;
6870
6871 if (phy != 1) /* only one PHY on kumeran bus */
6872 return;
6873
6874 sem = swfwphysem[sc->sc_funcid];
6875 if (wm_get_swfw_semaphore(sc, sem)) {
6876 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
6877 __func__);
6878 return;
6879 }
6880
6881 if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
6882 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
6883 reg >> GG82563_PAGE_SHIFT);
6884 } else {
6885 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
6886 reg >> GG82563_PAGE_SHIFT);
6887 }
6888 /* Wait more 200us for a bug of the ready bit in the MDIC register */
6889 delay(200);
6890 wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
6891 delay(200);
6892
6893 wm_put_swfw_semaphore(sc, sem);
6894 }
6895
6896 /*
6897 * wm_gmii_bm_readreg: [mii interface function]
6898 *
6899 * Read a PHY register on the kumeran
6900 * This could be handled by the PHY layer if we didn't have to lock the
6901 * ressource ...
6902 */
6903 static int
6904 wm_gmii_bm_readreg(device_t self, int phy, int reg)
6905 {
6906 struct wm_softc *sc = device_private(self);
6907 int sem;
6908 int rv;
6909
6910 sem = swfwphysem[sc->sc_funcid];
6911 if (wm_get_swfw_semaphore(sc, sem)) {
6912 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
6913 __func__);
6914 return 0;
6915 }
6916
6917 if (reg > BME1000_MAX_MULTI_PAGE_REG) {
6918 if (phy == 1)
6919 wm_gmii_i82544_writereg(self, phy, MII_IGPHY_PAGE_SELECT,
6920 reg);
6921 else
6922 wm_gmii_i82544_writereg(self, phy,
6923 GG82563_PHY_PAGE_SELECT,
6924 reg >> GG82563_PAGE_SHIFT);
6925 }
6926
6927 rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
6928 wm_put_swfw_semaphore(sc, sem);
6929 return rv;
6930 }
6931
6932 /*
6933 * wm_gmii_bm_writereg: [mii interface function]
6934 *
6935 * Write a PHY register on the kumeran.
6936 * This could be handled by the PHY layer if we didn't have to lock the
6937 * ressource ...
6938 */
6939 static void
6940 wm_gmii_bm_writereg(device_t self, int phy, int reg, int val)
6941 {
6942 struct wm_softc *sc = device_private(self);
6943 int sem;
6944
6945 sem = swfwphysem[sc->sc_funcid];
6946 if (wm_get_swfw_semaphore(sc, sem)) {
6947 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
6948 __func__);
6949 return;
6950 }
6951
6952 if (reg > BME1000_MAX_MULTI_PAGE_REG) {
6953 if (phy == 1)
6954 wm_gmii_i82544_writereg(self, phy, MII_IGPHY_PAGE_SELECT,
6955 reg);
6956 else
6957 wm_gmii_i82544_writereg(self, phy,
6958 GG82563_PHY_PAGE_SELECT,
6959 reg >> GG82563_PAGE_SHIFT);
6960 }
6961
6962 wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
6963 wm_put_swfw_semaphore(sc, sem);
6964 }
6965
6966 static void
6967 wm_access_phy_wakeup_reg_bm(device_t self, int offset, int16_t *val, int rd)
6968 {
6969 struct wm_softc *sc = device_private(self);
6970 uint16_t regnum = BM_PHY_REG_NUM(offset);
6971 uint16_t wuce;
6972
6973 /* XXX Gig must be disabled for MDIO accesses to page 800 */
6974 if (sc->sc_type == WM_T_PCH) {
6975 /* XXX e1000 driver do nothing... why? */
6976 }
6977
6978 /* Set page 769 */
6979 wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
6980 BM_WUC_ENABLE_PAGE << BME1000_PAGE_SHIFT);
6981
6982 wuce = wm_gmii_i82544_readreg(self, 1, BM_WUC_ENABLE_REG);
6983
6984 wuce &= ~BM_WUC_HOST_WU_BIT;
6985 wm_gmii_i82544_writereg(self, 1, BM_WUC_ENABLE_REG,
6986 wuce | BM_WUC_ENABLE_BIT);
6987
6988 /* Select page 800 */
6989 wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
6990 BM_WUC_PAGE << BME1000_PAGE_SHIFT);
6991
6992 /* Write page 800 */
6993 wm_gmii_i82544_writereg(self, 1, BM_WUC_ADDRESS_OPCODE, regnum);
6994
6995 if (rd)
6996 *val = wm_gmii_i82544_readreg(self, 1, BM_WUC_DATA_OPCODE);
6997 else
6998 wm_gmii_i82544_writereg(self, 1, BM_WUC_DATA_OPCODE, *val);
6999
7000 /* Set page 769 */
7001 wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
7002 BM_WUC_ENABLE_PAGE << BME1000_PAGE_SHIFT);
7003
7004 wm_gmii_i82544_writereg(self, 1, BM_WUC_ENABLE_REG, wuce);
7005 }
7006
7007 /*
7008 * wm_gmii_hv_readreg: [mii interface function]
7009 *
7010 * Read a PHY register on the kumeran
7011 * This could be handled by the PHY layer if we didn't have to lock the
7012 * ressource ...
7013 */
7014 static int
7015 wm_gmii_hv_readreg(device_t self, int phy, int reg)
7016 {
7017 struct wm_softc *sc = device_private(self);
7018 uint16_t page = BM_PHY_REG_PAGE(reg);
7019 uint16_t regnum = BM_PHY_REG_NUM(reg);
7020 uint16_t val;
7021 int rv;
7022
7023 if (wm_get_swfwhw_semaphore(sc)) {
7024 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
7025 __func__);
7026 return 0;
7027 }
7028
7029 /* XXX Workaround failure in MDIO access while cable is disconnected */
7030 if (sc->sc_phytype == WMPHY_82577) {
7031 /* XXX must write */
7032 }
7033
7034 /* Page 800 works differently than the rest so it has its own func */
7035 if (page == BM_WUC_PAGE) {
7036 wm_access_phy_wakeup_reg_bm(self, reg, &val, 1);
7037 return val;
7038 }
7039
7040 /*
7041 * Lower than page 768 works differently than the rest so it has its
7042 * own func
7043 */
7044 if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) {
7045 printf("gmii_hv_readreg!!!\n");
7046 return 0;
7047 }
7048
7049 if (regnum > BME1000_MAX_MULTI_PAGE_REG) {
7050 wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
7051 page << BME1000_PAGE_SHIFT);
7052 }
7053
7054 rv = wm_gmii_i82544_readreg(self, phy, regnum & IGPHY_MAXREGADDR);
7055 wm_put_swfwhw_semaphore(sc);
7056 return rv;
7057 }
7058
7059 /*
7060 * wm_gmii_hv_writereg: [mii interface function]
7061 *
7062 * Write a PHY register on the kumeran.
7063 * This could be handled by the PHY layer if we didn't have to lock the
7064 * ressource ...
7065 */
7066 static void
7067 wm_gmii_hv_writereg(device_t self, int phy, int reg, int val)
7068 {
7069 struct wm_softc *sc = device_private(self);
7070 uint16_t page = BM_PHY_REG_PAGE(reg);
7071 uint16_t regnum = BM_PHY_REG_NUM(reg);
7072
7073 if (wm_get_swfwhw_semaphore(sc)) {
7074 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
7075 __func__);
7076 return;
7077 }
7078
7079 /* XXX Workaround failure in MDIO access while cable is disconnected */
7080
7081 /* Page 800 works differently than the rest so it has its own func */
7082 if (page == BM_WUC_PAGE) {
7083 uint16_t tmp;
7084
7085 tmp = val;
7086 wm_access_phy_wakeup_reg_bm(self, reg, &tmp, 0);
7087 return;
7088 }
7089
7090 /*
7091 * Lower than page 768 works differently than the rest so it has its
7092 * own func
7093 */
7094 if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) {
7095 printf("gmii_hv_writereg!!!\n");
7096 return;
7097 }
7098
7099 /*
7100 * XXX Workaround MDIO accesses being disabled after entering IEEE
7101 * Power Down (whenever bit 11 of the PHY control register is set)
7102 */
7103
7104 if (regnum > BME1000_MAX_MULTI_PAGE_REG) {
7105 wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
7106 page << BME1000_PAGE_SHIFT);
7107 }
7108
7109 wm_gmii_i82544_writereg(self, phy, regnum & IGPHY_MAXREGADDR, val);
7110 wm_put_swfwhw_semaphore(sc);
7111 }
7112
7113 /*
7114 * wm_sgmii_readreg: [mii interface function]
7115 *
7116 * Read a PHY register on the SGMII
7117 * This could be handled by the PHY layer if we didn't have to lock the
7118 * ressource ...
7119 */
7120 static int
7121 wm_sgmii_readreg(device_t self, int phy, int reg)
7122 {
7123 struct wm_softc *sc = device_private(self);
7124 uint32_t i2ccmd;
7125 int i, rv;
7126
7127 if (wm_get_swfw_semaphore(sc, swfwphysem[sc->sc_funcid])) {
7128 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
7129 __func__);
7130 return 0;
7131 }
7132
7133 i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT)
7134 | (phy << I2CCMD_PHY_ADDR_SHIFT)
7135 | I2CCMD_OPCODE_READ;
7136 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
7137
7138 /* Poll the ready bit */
7139 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
7140 delay(50);
7141 i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
7142 if (i2ccmd & I2CCMD_READY)
7143 break;
7144 }
7145 if ((i2ccmd & I2CCMD_READY) == 0)
7146 aprint_error_dev(sc->sc_dev, "I2CCMD Read did not complete\n");
7147 if ((i2ccmd & I2CCMD_ERROR) != 0)
7148 aprint_error_dev(sc->sc_dev, "I2CCMD Error bit set\n");
7149
7150 rv = ((i2ccmd >> 8) & 0x00ff) | ((i2ccmd << 8) & 0xff00);
7151
7152 wm_put_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
7153 return rv;
7154 }
7155
7156 /*
7157 * wm_sgmii_writereg: [mii interface function]
7158 *
7159 * Write a PHY register on the SGMII.
7160 * This could be handled by the PHY layer if we didn't have to lock the
7161 * ressource ...
7162 */
7163 static void
7164 wm_sgmii_writereg(device_t self, int phy, int reg, int val)
7165 {
7166 struct wm_softc *sc = device_private(self);
7167 uint32_t i2ccmd;
7168 int i;
7169
7170 if (wm_get_swfw_semaphore(sc, swfwphysem[sc->sc_funcid])) {
7171 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
7172 __func__);
7173 return;
7174 }
7175
7176 i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT)
7177 | (phy << I2CCMD_PHY_ADDR_SHIFT)
7178 | I2CCMD_OPCODE_WRITE;
7179 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
7180
7181 /* Poll the ready bit */
7182 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
7183 delay(50);
7184 i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
7185 if (i2ccmd & I2CCMD_READY)
7186 break;
7187 }
7188 if ((i2ccmd & I2CCMD_READY) == 0)
7189 aprint_error_dev(sc->sc_dev, "I2CCMD Write did not complete\n");
7190 if ((i2ccmd & I2CCMD_ERROR) != 0)
7191 aprint_error_dev(sc->sc_dev, "I2CCMD Error bit set\n");
7192
7193 wm_put_swfw_semaphore(sc, SWFW_PHY0_SM);
7194 }
7195
7196 /*
7197 * wm_gmii_82580_readreg: [mii interface function]
7198 *
7199 * Read a PHY register on the 82580 and I350.
7200 * This could be handled by the PHY layer if we didn't have to lock the
7201 * ressource ...
7202 */
7203 static int
7204 wm_gmii_82580_readreg(device_t self, int phy, int reg)
7205 {
7206 struct wm_softc *sc = device_private(self);
7207 int sem;
7208 int rv;
7209
7210 sem = swfwphysem[sc->sc_funcid];
7211 if (wm_get_swfw_semaphore(sc, sem)) {
7212 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
7213 __func__);
7214 return 0;
7215 }
7216
7217 rv = wm_gmii_i82544_readreg(self, phy, reg);
7218
7219 wm_put_swfw_semaphore(sc, sem);
7220 return rv;
7221 }
7222
7223 /*
7224 * wm_gmii_82580_writereg: [mii interface function]
7225 *
7226 * Write a PHY register on the 82580 and I350.
7227 * This could be handled by the PHY layer if we didn't have to lock the
7228 * ressource ...
7229 */
7230 static void
7231 wm_gmii_82580_writereg(device_t self, int phy, int reg, int val)
7232 {
7233 struct wm_softc *sc = device_private(self);
7234 int sem;
7235
7236 sem = swfwphysem[sc->sc_funcid];
7237 if (wm_get_swfw_semaphore(sc, sem)) {
7238 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
7239 __func__);
7240 return;
7241 }
7242
7243 wm_gmii_i82544_writereg(self, phy, reg, val);
7244
7245 wm_put_swfw_semaphore(sc, sem);
7246 }
7247
7248 /*
7249 * wm_gmii_statchg: [mii interface function]
7250 *
7251 * Callback from MII layer when media changes.
7252 */
7253 static void
7254 wm_gmii_statchg(struct ifnet *ifp)
7255 {
7256 struct wm_softc *sc = ifp->if_softc;
7257 struct mii_data *mii = &sc->sc_mii;
7258
7259 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
7260 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
7261 sc->sc_fcrtl &= ~FCRTL_XONE;
7262
7263 /*
7264 * Get flow control negotiation result.
7265 */
7266 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
7267 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
7268 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
7269 mii->mii_media_active &= ~IFM_ETH_FMASK;
7270 }
7271
7272 if (sc->sc_flowflags & IFM_FLOW) {
7273 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
7274 sc->sc_ctrl |= CTRL_TFCE;
7275 sc->sc_fcrtl |= FCRTL_XONE;
7276 }
7277 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
7278 sc->sc_ctrl |= CTRL_RFCE;
7279 }
7280
7281 if (sc->sc_mii.mii_media_active & IFM_FDX) {
7282 DPRINTF(WM_DEBUG_LINK,
7283 ("%s: LINK: statchg: FDX\n", ifp->if_xname));
7284 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
7285 } else {
7286 DPRINTF(WM_DEBUG_LINK,
7287 ("%s: LINK: statchg: HDX\n", ifp->if_xname));
7288 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
7289 }
7290
7291 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
7292 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
7293 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
7294 : WMREG_FCRTL, sc->sc_fcrtl);
7295 if (sc->sc_type == WM_T_80003) {
7296 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
7297 case IFM_1000_T:
7298 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
7299 KUMCTRLSTA_HD_CTRL_1000_DEFAULT);
7300 sc->sc_tipg = TIPG_1000T_80003_DFLT;
7301 break;
7302 default:
7303 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
7304 KUMCTRLSTA_HD_CTRL_10_100_DEFAULT);
7305 sc->sc_tipg = TIPG_10_100_80003_DFLT;
7306 break;
7307 }
7308 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
7309 }
7310 }
7311
7312 /*
7313 * wm_kmrn_readreg:
7314 *
7315 * Read a kumeran register
7316 */
7317 static int
7318 wm_kmrn_readreg(struct wm_softc *sc, int reg)
7319 {
7320 int rv;
7321
7322 if (sc->sc_flags == WM_F_SWFW_SYNC) {
7323 if (wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM)) {
7324 aprint_error_dev(sc->sc_dev,
7325 "%s: failed to get semaphore\n", __func__);
7326 return 0;
7327 }
7328 } else if (sc->sc_flags == WM_F_SWFWHW_SYNC) {
7329 if (wm_get_swfwhw_semaphore(sc)) {
7330 aprint_error_dev(sc->sc_dev,
7331 "%s: failed to get semaphore\n", __func__);
7332 return 0;
7333 }
7334 }
7335
7336 CSR_WRITE(sc, WMREG_KUMCTRLSTA,
7337 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
7338 KUMCTRLSTA_REN);
7339 delay(2);
7340
7341 rv = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK;
7342
7343 if (sc->sc_flags == WM_F_SWFW_SYNC)
7344 wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
7345 else if (sc->sc_flags == WM_F_SWFWHW_SYNC)
7346 wm_put_swfwhw_semaphore(sc);
7347
7348 return rv;
7349 }
7350
7351 /*
7352 * wm_kmrn_writereg:
7353 *
7354 * Write a kumeran register
7355 */
7356 static void
7357 wm_kmrn_writereg(struct wm_softc *sc, int reg, int val)
7358 {
7359
7360 if (sc->sc_flags == WM_F_SWFW_SYNC) {
7361 if (wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM)) {
7362 aprint_error_dev(sc->sc_dev,
7363 "%s: failed to get semaphore\n", __func__);
7364 return;
7365 }
7366 } else if (sc->sc_flags == WM_F_SWFWHW_SYNC) {
7367 if (wm_get_swfwhw_semaphore(sc)) {
7368 aprint_error_dev(sc->sc_dev,
7369 "%s: failed to get semaphore\n", __func__);
7370 return;
7371 }
7372 }
7373
7374 CSR_WRITE(sc, WMREG_KUMCTRLSTA,
7375 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
7376 (val & KUMCTRLSTA_MASK));
7377
7378 if (sc->sc_flags == WM_F_SWFW_SYNC)
7379 wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
7380 else if (sc->sc_flags == WM_F_SWFWHW_SYNC)
7381 wm_put_swfwhw_semaphore(sc);
7382 }
7383
7384 static int
7385 wm_is_onboard_nvm_eeprom(struct wm_softc *sc)
7386 {
7387 uint32_t eecd = 0;
7388
7389 if (sc->sc_type == WM_T_82573 || sc->sc_type == WM_T_82574
7390 || sc->sc_type == WM_T_82583) {
7391 eecd = CSR_READ(sc, WMREG_EECD);
7392
7393 /* Isolate bits 15 & 16 */
7394 eecd = ((eecd >> 15) & 0x03);
7395
7396 /* If both bits are set, device is Flash type */
7397 if (eecd == 0x03)
7398 return 0;
7399 }
7400 return 1;
7401 }
7402
7403 static int
7404 wm_get_swsm_semaphore(struct wm_softc *sc)
7405 {
7406 int32_t timeout;
7407 uint32_t swsm;
7408
7409 /* Get the FW semaphore. */
7410 timeout = 1000 + 1; /* XXX */
7411 while (timeout) {
7412 swsm = CSR_READ(sc, WMREG_SWSM);
7413 swsm |= SWSM_SWESMBI;
7414 CSR_WRITE(sc, WMREG_SWSM, swsm);
7415 /* if we managed to set the bit we got the semaphore. */
7416 swsm = CSR_READ(sc, WMREG_SWSM);
7417 if (swsm & SWSM_SWESMBI)
7418 break;
7419
7420 delay(50);
7421 timeout--;
7422 }
7423
7424 if (timeout == 0) {
7425 aprint_error_dev(sc->sc_dev, "could not acquire EEPROM GNT\n");
7426 /* Release semaphores */
7427 wm_put_swsm_semaphore(sc);
7428 return 1;
7429 }
7430 return 0;
7431 }
7432
7433 static void
7434 wm_put_swsm_semaphore(struct wm_softc *sc)
7435 {
7436 uint32_t swsm;
7437
7438 swsm = CSR_READ(sc, WMREG_SWSM);
7439 swsm &= ~(SWSM_SWESMBI);
7440 CSR_WRITE(sc, WMREG_SWSM, swsm);
7441 }
7442
7443 static int
7444 wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
7445 {
7446 uint32_t swfw_sync;
7447 uint32_t swmask = mask << SWFW_SOFT_SHIFT;
7448 uint32_t fwmask = mask << SWFW_FIRM_SHIFT;
7449 int timeout = 200;
7450
7451 for (timeout = 0; timeout < 200; timeout++) {
7452 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
7453 if (wm_get_swsm_semaphore(sc)) {
7454 aprint_error_dev(sc->sc_dev,
7455 "%s: failed to get semaphore\n",
7456 __func__);
7457 return 1;
7458 }
7459 }
7460 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
7461 if ((swfw_sync & (swmask | fwmask)) == 0) {
7462 swfw_sync |= swmask;
7463 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
7464 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
7465 wm_put_swsm_semaphore(sc);
7466 return 0;
7467 }
7468 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
7469 wm_put_swsm_semaphore(sc);
7470 delay(5000);
7471 }
7472 printf("%s: failed to get swfw semaphore mask 0x%x swfw 0x%x\n",
7473 device_xname(sc->sc_dev), mask, swfw_sync);
7474 return 1;
7475 }
7476
7477 static void
7478 wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
7479 {
7480 uint32_t swfw_sync;
7481
7482 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
7483 while (wm_get_swsm_semaphore(sc) != 0)
7484 continue;
7485 }
7486 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
7487 swfw_sync &= ~(mask << SWFW_SOFT_SHIFT);
7488 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
7489 if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
7490 wm_put_swsm_semaphore(sc);
7491 }
7492
7493 static int
7494 wm_get_swfwhw_semaphore(struct wm_softc *sc)
7495 {
7496 uint32_t ext_ctrl;
7497 int timeout = 200;
7498
7499 for (timeout = 0; timeout < 200; timeout++) {
7500 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
7501 ext_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
7502 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
7503
7504 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
7505 if (ext_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
7506 return 0;
7507 delay(5000);
7508 }
7509 printf("%s: failed to get swfwhw semaphore ext_ctrl 0x%x\n",
7510 device_xname(sc->sc_dev), ext_ctrl);
7511 return 1;
7512 }
7513
7514 static void
7515 wm_put_swfwhw_semaphore(struct wm_softc *sc)
7516 {
7517 uint32_t ext_ctrl;
7518 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
7519 ext_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
7520 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
7521 }
7522
7523 static int
7524 wm_get_hw_semaphore_82573(struct wm_softc *sc)
7525 {
7526 int i = 0;
7527 uint32_t reg;
7528
7529 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
7530 do {
7531 CSR_WRITE(sc, WMREG_EXTCNFCTR,
7532 reg | EXTCNFCTR_MDIO_SW_OWNERSHIP);
7533 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
7534 if ((reg & EXTCNFCTR_MDIO_SW_OWNERSHIP) != 0)
7535 break;
7536 delay(2*1000);
7537 i++;
7538 } while (i < WM_MDIO_OWNERSHIP_TIMEOUT);
7539
7540 if (i == WM_MDIO_OWNERSHIP_TIMEOUT) {
7541 wm_put_hw_semaphore_82573(sc);
7542 log(LOG_ERR, "%s: Driver can't access the PHY\n",
7543 device_xname(sc->sc_dev));
7544 return -1;
7545 }
7546
7547 return 0;
7548 }
7549
7550 static void
7551 wm_put_hw_semaphore_82573(struct wm_softc *sc)
7552 {
7553 uint32_t reg;
7554
7555 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
7556 reg &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
7557 CSR_WRITE(sc, WMREG_EXTCNFCTR, reg);
7558 }
7559
7560 static int
7561 wm_valid_nvm_bank_detect_ich8lan(struct wm_softc *sc, unsigned int *bank)
7562 {
7563 uint32_t eecd;
7564 uint32_t act_offset = ICH_NVM_SIG_WORD * 2 + 1;
7565 uint32_t bank1_offset = sc->sc_ich8_flash_bank_size * sizeof(uint16_t);
7566 uint8_t sig_byte = 0;
7567
7568 switch (sc->sc_type) {
7569 case WM_T_ICH8:
7570 case WM_T_ICH9:
7571 eecd = CSR_READ(sc, WMREG_EECD);
7572 if ((eecd & EECD_SEC1VAL_VALMASK) == EECD_SEC1VAL_VALMASK) {
7573 *bank = ((eecd & EECD_SEC1VAL) != 0) ? 1 : 0;
7574 return 0;
7575 }
7576 /* FALLTHROUGH */
7577 default:
7578 /* Default to 0 */
7579 *bank = 0;
7580
7581 /* Check bank 0 */
7582 wm_read_ich8_byte(sc, act_offset, &sig_byte);
7583 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
7584 *bank = 0;
7585 return 0;
7586 }
7587
7588 /* Check bank 1 */
7589 wm_read_ich8_byte(sc, act_offset + bank1_offset,
7590 &sig_byte);
7591 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
7592 *bank = 1;
7593 return 0;
7594 }
7595 }
7596
7597 DPRINTF(WM_DEBUG_NVM, ("%s: No valid NVM bank present\n",
7598 device_xname(sc->sc_dev)));
7599 return -1;
7600 }
7601
7602 /******************************************************************************
7603 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
7604 * register.
7605 *
7606 * sc - Struct containing variables accessed by shared code
7607 * offset - offset of word in the EEPROM to read
7608 * data - word read from the EEPROM
7609 * words - number of words to read
7610 *****************************************************************************/
7611 static int
7612 wm_read_eeprom_ich8(struct wm_softc *sc, int offset, int words, uint16_t *data)
7613 {
7614 int32_t error = 0;
7615 uint32_t flash_bank = 0;
7616 uint32_t act_offset = 0;
7617 uint32_t bank_offset = 0;
7618 uint16_t word = 0;
7619 uint16_t i = 0;
7620
7621 /* We need to know which is the valid flash bank. In the event
7622 * that we didn't allocate eeprom_shadow_ram, we may not be
7623 * managing flash_bank. So it cannot be trusted and needs
7624 * to be updated with each read.
7625 */
7626 error = wm_valid_nvm_bank_detect_ich8lan(sc, &flash_bank);
7627 if (error) {
7628 aprint_error_dev(sc->sc_dev, "%s: failed to detect NVM bank\n",
7629 __func__);
7630 flash_bank = 0;
7631 }
7632
7633 /*
7634 * Adjust offset appropriately if we're on bank 1 - adjust for word
7635 * size
7636 */
7637 bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
7638
7639 error = wm_get_swfwhw_semaphore(sc);
7640 if (error) {
7641 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
7642 __func__);
7643 return error;
7644 }
7645
7646 for (i = 0; i < words; i++) {
7647 /* The NVM part needs a byte offset, hence * 2 */
7648 act_offset = bank_offset + ((offset + i) * 2);
7649 error = wm_read_ich8_word(sc, act_offset, &word);
7650 if (error) {
7651 aprint_error_dev(sc->sc_dev,
7652 "%s: failed to read NVM\n", __func__);
7653 break;
7654 }
7655 data[i] = word;
7656 }
7657
7658 wm_put_swfwhw_semaphore(sc);
7659 return error;
7660 }
7661
7662 /******************************************************************************
7663 * This function does initial flash setup so that a new read/write/erase cycle
7664 * can be started.
7665 *
7666 * sc - The pointer to the hw structure
7667 ****************************************************************************/
7668 static int32_t
7669 wm_ich8_cycle_init(struct wm_softc *sc)
7670 {
7671 uint16_t hsfsts;
7672 int32_t error = 1;
7673 int32_t i = 0;
7674
7675 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
7676
7677 /* May be check the Flash Des Valid bit in Hw status */
7678 if ((hsfsts & HSFSTS_FLDVAL) == 0) {
7679 return error;
7680 }
7681
7682 /* Clear FCERR in Hw status by writing 1 */
7683 /* Clear DAEL in Hw status by writing a 1 */
7684 hsfsts |= HSFSTS_ERR | HSFSTS_DAEL;
7685
7686 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
7687
7688 /*
7689 * Either we should have a hardware SPI cycle in progress bit to check
7690 * against, in order to start a new cycle or FDONE bit should be
7691 * changed in the hardware so that it is 1 after harware reset, which
7692 * can then be used as an indication whether a cycle is in progress or
7693 * has been completed .. we should also have some software semaphore
7694 * mechanism to guard FDONE or the cycle in progress bit so that two
7695 * threads access to those bits can be sequentiallized or a way so that
7696 * 2 threads dont start the cycle at the same time
7697 */
7698
7699 if ((hsfsts & HSFSTS_FLINPRO) == 0) {
7700 /*
7701 * There is no cycle running at present, so we can start a
7702 * cycle
7703 */
7704
7705 /* Begin by setting Flash Cycle Done. */
7706 hsfsts |= HSFSTS_DONE;
7707 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
7708 error = 0;
7709 } else {
7710 /*
7711 * otherwise poll for sometime so the current cycle has a
7712 * chance to end before giving up.
7713 */
7714 for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
7715 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
7716 if ((hsfsts & HSFSTS_FLINPRO) == 0) {
7717 error = 0;
7718 break;
7719 }
7720 delay(1);
7721 }
7722 if (error == 0) {
7723 /*
7724 * Successful in waiting for previous cycle to timeout,
7725 * now set the Flash Cycle Done.
7726 */
7727 hsfsts |= HSFSTS_DONE;
7728 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
7729 }
7730 }
7731 return error;
7732 }
7733
7734 /******************************************************************************
7735 * This function starts a flash cycle and waits for its completion
7736 *
7737 * sc - The pointer to the hw structure
7738 ****************************************************************************/
7739 static int32_t
7740 wm_ich8_flash_cycle(struct wm_softc *sc, uint32_t timeout)
7741 {
7742 uint16_t hsflctl;
7743 uint16_t hsfsts;
7744 int32_t error = 1;
7745 uint32_t i = 0;
7746
7747 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
7748 hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
7749 hsflctl |= HSFCTL_GO;
7750 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
7751
7752 /* wait till FDONE bit is set to 1 */
7753 do {
7754 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
7755 if (hsfsts & HSFSTS_DONE)
7756 break;
7757 delay(1);
7758 i++;
7759 } while (i < timeout);
7760 if ((hsfsts & HSFSTS_DONE) == 1 && (hsfsts & HSFSTS_ERR) == 0)
7761 error = 0;
7762
7763 return error;
7764 }
7765
7766 /******************************************************************************
7767 * Reads a byte or word from the NVM using the ICH8 flash access registers.
7768 *
7769 * sc - The pointer to the hw structure
7770 * index - The index of the byte or word to read.
7771 * size - Size of data to read, 1=byte 2=word
7772 * data - Pointer to the word to store the value read.
7773 *****************************************************************************/
7774 static int32_t
7775 wm_read_ich8_data(struct wm_softc *sc, uint32_t index,
7776 uint32_t size, uint16_t* data)
7777 {
7778 uint16_t hsfsts;
7779 uint16_t hsflctl;
7780 uint32_t flash_linear_address;
7781 uint32_t flash_data = 0;
7782 int32_t error = 1;
7783 int32_t count = 0;
7784
7785 if (size < 1 || size > 2 || data == 0x0 ||
7786 index > ICH_FLASH_LINEAR_ADDR_MASK)
7787 return error;
7788
7789 flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
7790 sc->sc_ich8_flash_base;
7791
7792 do {
7793 delay(1);
7794 /* Steps */
7795 error = wm_ich8_cycle_init(sc);
7796 if (error)
7797 break;
7798
7799 hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
7800 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
7801 hsflctl |= ((size - 1) << HSFCTL_BCOUNT_SHIFT)
7802 & HSFCTL_BCOUNT_MASK;
7803 hsflctl |= ICH_CYCLE_READ << HSFCTL_CYCLE_SHIFT;
7804 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
7805
7806 /*
7807 * Write the last 24 bits of index into Flash Linear address
7808 * field in Flash Address
7809 */
7810 /* TODO: TBD maybe check the index against the size of flash */
7811
7812 ICH8_FLASH_WRITE32(sc, ICH_FLASH_FADDR, flash_linear_address);
7813
7814 error = wm_ich8_flash_cycle(sc, ICH_FLASH_COMMAND_TIMEOUT);
7815
7816 /*
7817 * Check if FCERR is set to 1, if set to 1, clear it and try
7818 * the whole sequence a few more times, else read in (shift in)
7819 * the Flash Data0, the order is least significant byte first
7820 * msb to lsb
7821 */
7822 if (error == 0) {
7823 flash_data = ICH8_FLASH_READ32(sc, ICH_FLASH_FDATA0);
7824 if (size == 1)
7825 *data = (uint8_t)(flash_data & 0x000000FF);
7826 else if (size == 2)
7827 *data = (uint16_t)(flash_data & 0x0000FFFF);
7828 break;
7829 } else {
7830 /*
7831 * If we've gotten here, then things are probably
7832 * completely hosed, but if the error condition is
7833 * detected, it won't hurt to give it another try...
7834 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
7835 */
7836 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
7837 if (hsfsts & HSFSTS_ERR) {
7838 /* Repeat for some time before giving up. */
7839 continue;
7840 } else if ((hsfsts & HSFSTS_DONE) == 0)
7841 break;
7842 }
7843 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
7844
7845 return error;
7846 }
7847
7848 /******************************************************************************
7849 * Reads a single byte from the NVM using the ICH8 flash access registers.
7850 *
7851 * sc - pointer to wm_hw structure
7852 * index - The index of the byte to read.
7853 * data - Pointer to a byte to store the value read.
7854 *****************************************************************************/
7855 static int32_t
7856 wm_read_ich8_byte(struct wm_softc *sc, uint32_t index, uint8_t* data)
7857 {
7858 int32_t status;
7859 uint16_t word = 0;
7860
7861 status = wm_read_ich8_data(sc, index, 1, &word);
7862 if (status == 0)
7863 *data = (uint8_t)word;
7864 else
7865 *data = 0;
7866
7867 return status;
7868 }
7869
7870 /******************************************************************************
7871 * Reads a word from the NVM using the ICH8 flash access registers.
7872 *
7873 * sc - pointer to wm_hw structure
7874 * index - The starting byte index of the word to read.
7875 * data - Pointer to a word to store the value read.
7876 *****************************************************************************/
7877 static int32_t
7878 wm_read_ich8_word(struct wm_softc *sc, uint32_t index, uint16_t *data)
7879 {
7880 int32_t status;
7881
7882 status = wm_read_ich8_data(sc, index, 2, data);
7883 return status;
7884 }
7885
7886 static int
7887 wm_check_mng_mode(struct wm_softc *sc)
7888 {
7889 int rv;
7890
7891 switch (sc->sc_type) {
7892 case WM_T_ICH8:
7893 case WM_T_ICH9:
7894 case WM_T_ICH10:
7895 case WM_T_PCH:
7896 case WM_T_PCH2:
7897 case WM_T_PCH_LPT:
7898 rv = wm_check_mng_mode_ich8lan(sc);
7899 break;
7900 case WM_T_82574:
7901 case WM_T_82583:
7902 rv = wm_check_mng_mode_82574(sc);
7903 break;
7904 case WM_T_82571:
7905 case WM_T_82572:
7906 case WM_T_82573:
7907 case WM_T_80003:
7908 rv = wm_check_mng_mode_generic(sc);
7909 break;
7910 default:
7911 /* noting to do */
7912 rv = 0;
7913 break;
7914 }
7915
7916 return rv;
7917 }
7918
7919 static int
7920 wm_check_mng_mode_ich8lan(struct wm_softc *sc)
7921 {
7922 uint32_t fwsm;
7923
7924 fwsm = CSR_READ(sc, WMREG_FWSM);
7925
7926 if ((fwsm & FWSM_MODE_MASK) == (MNG_ICH_IAMT_MODE << FWSM_MODE_SHIFT))
7927 return 1;
7928
7929 return 0;
7930 }
7931
7932 static int
7933 wm_check_mng_mode_82574(struct wm_softc *sc)
7934 {
7935 uint16_t data;
7936
7937 wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &data);
7938
7939 if ((data & EEPROM_CFG2_MNGM_MASK) != 0)
7940 return 1;
7941
7942 return 0;
7943 }
7944
7945 static int
7946 wm_check_mng_mode_generic(struct wm_softc *sc)
7947 {
7948 uint32_t fwsm;
7949
7950 fwsm = CSR_READ(sc, WMREG_FWSM);
7951
7952 if ((fwsm & FWSM_MODE_MASK) == (MNG_IAMT_MODE << FWSM_MODE_SHIFT))
7953 return 1;
7954
7955 return 0;
7956 }
7957
7958 static int
7959 wm_enable_mng_pass_thru(struct wm_softc *sc)
7960 {
7961 uint32_t manc, fwsm, factps;
7962
7963 if ((sc->sc_flags & WM_F_ASF_FIRMWARE_PRES) == 0)
7964 return 0;
7965
7966 manc = CSR_READ(sc, WMREG_MANC);
7967
7968 DPRINTF(WM_DEBUG_MANAGE, ("%s: MANC (%08x)\n",
7969 device_xname(sc->sc_dev), manc));
7970 if ((manc & MANC_RECV_TCO_EN) == 0)
7971 return 0;
7972
7973 if ((sc->sc_flags & WM_F_ARC_SUBSYS_VALID) != 0) {
7974 fwsm = CSR_READ(sc, WMREG_FWSM);
7975 factps = CSR_READ(sc, WMREG_FACTPS);
7976 if (((factps & FACTPS_MNGCG) == 0)
7977 && ((fwsm & FWSM_MODE_MASK)
7978 == (MNG_ICH_IAMT_MODE << FWSM_MODE_SHIFT)))
7979 return 1;
7980 } else if ((sc->sc_type == WM_T_82574) || (sc->sc_type == WM_T_82583)){
7981 uint16_t data;
7982
7983 factps = CSR_READ(sc, WMREG_FACTPS);
7984 wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &data);
7985 DPRINTF(WM_DEBUG_MANAGE, ("%s: FACTPS = %08x, CFG2=%04x\n",
7986 device_xname(sc->sc_dev), factps, data));
7987 if (((factps & FACTPS_MNGCG) == 0)
7988 && ((data & EEPROM_CFG2_MNGM_MASK)
7989 == (EEPROM_CFG2_MNGM_PT << EEPROM_CFG2_MNGM_SHIFT)))
7990 return 1;
7991 } else if (((manc & MANC_SMBUS_EN) != 0)
7992 && ((manc & MANC_ASF_EN) == 0))
7993 return 1;
7994
7995 return 0;
7996 }
7997
7998 static int
7999 wm_check_reset_block(struct wm_softc *sc)
8000 {
8001 uint32_t reg;
8002
8003 switch (sc->sc_type) {
8004 case WM_T_ICH8:
8005 case WM_T_ICH9:
8006 case WM_T_ICH10:
8007 case WM_T_PCH:
8008 case WM_T_PCH2:
8009 case WM_T_PCH_LPT:
8010 reg = CSR_READ(sc, WMREG_FWSM);
8011 if ((reg & FWSM_RSPCIPHY) != 0)
8012 return 0;
8013 else
8014 return -1;
8015 break;
8016 case WM_T_82571:
8017 case WM_T_82572:
8018 case WM_T_82573:
8019 case WM_T_82574:
8020 case WM_T_82583:
8021 case WM_T_80003:
8022 reg = CSR_READ(sc, WMREG_MANC);
8023 if ((reg & MANC_BLK_PHY_RST_ON_IDE) != 0)
8024 return -1;
8025 else
8026 return 0;
8027 break;
8028 default:
8029 /* no problem */
8030 break;
8031 }
8032
8033 return 0;
8034 }
8035
8036 static void
8037 wm_get_hw_control(struct wm_softc *sc)
8038 {
8039 uint32_t reg;
8040
8041 switch (sc->sc_type) {
8042 case WM_T_82573:
8043 reg = CSR_READ(sc, WMREG_SWSM);
8044 CSR_WRITE(sc, WMREG_SWSM, reg | SWSM_DRV_LOAD);
8045 break;
8046 case WM_T_82571:
8047 case WM_T_82572:
8048 case WM_T_82574:
8049 case WM_T_82583:
8050 case WM_T_80003:
8051 case WM_T_ICH8:
8052 case WM_T_ICH9:
8053 case WM_T_ICH10:
8054 case WM_T_PCH:
8055 case WM_T_PCH2:
8056 case WM_T_PCH_LPT:
8057 reg = CSR_READ(sc, WMREG_CTRL_EXT);
8058 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_DRV_LOAD);
8059 break;
8060 default:
8061 break;
8062 }
8063 }
8064
8065 static void
8066 wm_release_hw_control(struct wm_softc *sc)
8067 {
8068 uint32_t reg;
8069
8070 if ((sc->sc_flags & WM_F_HAS_MANAGE) == 0)
8071 return;
8072
8073 if (sc->sc_type == WM_T_82573) {
8074 reg = CSR_READ(sc, WMREG_SWSM);
8075 reg &= ~SWSM_DRV_LOAD;
8076 CSR_WRITE(sc, WMREG_SWSM, reg & ~SWSM_DRV_LOAD);
8077 } else {
8078 reg = CSR_READ(sc, WMREG_CTRL_EXT);
8079 CSR_WRITE(sc, WMREG_CTRL_EXT, reg & ~CTRL_EXT_DRV_LOAD);
8080 }
8081 }
8082
8083 /* XXX Currently TBI only */
8084 static int
8085 wm_check_for_link(struct wm_softc *sc)
8086 {
8087 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
8088 uint32_t rxcw;
8089 uint32_t ctrl;
8090 uint32_t status;
8091 uint32_t sig;
8092
8093 rxcw = CSR_READ(sc, WMREG_RXCW);
8094 ctrl = CSR_READ(sc, WMREG_CTRL);
8095 status = CSR_READ(sc, WMREG_STATUS);
8096
8097 sig = (sc->sc_type > WM_T_82544) ? CTRL_SWDPIN(1) : 0;
8098
8099 DPRINTF(WM_DEBUG_LINK, ("%s: %s: sig = %d, status_lu = %d, rxcw_c = %d\n",
8100 device_xname(sc->sc_dev), __func__,
8101 ((ctrl & CTRL_SWDPIN(1)) == sig),
8102 ((status & STATUS_LU) != 0),
8103 ((rxcw & RXCW_C) != 0)
8104 ));
8105
8106 /*
8107 * SWDPIN LU RXCW
8108 * 0 0 0
8109 * 0 0 1 (should not happen)
8110 * 0 1 0 (should not happen)
8111 * 0 1 1 (should not happen)
8112 * 1 0 0 Disable autonego and force linkup
8113 * 1 0 1 got /C/ but not linkup yet
8114 * 1 1 0 (linkup)
8115 * 1 1 1 If IFM_AUTO, back to autonego
8116 *
8117 */
8118 if (((ctrl & CTRL_SWDPIN(1)) == sig)
8119 && ((status & STATUS_LU) == 0)
8120 && ((rxcw & RXCW_C) == 0)) {
8121 DPRINTF(WM_DEBUG_LINK, ("%s: force linkup and fullduplex\n",
8122 __func__));
8123 sc->sc_tbi_linkup = 0;
8124 /* Disable auto-negotiation in the TXCW register */
8125 CSR_WRITE(sc, WMREG_TXCW, (sc->sc_txcw & ~TXCW_ANE));
8126
8127 /*
8128 * Force link-up and also force full-duplex.
8129 *
8130 * NOTE: CTRL was updated TFCE and RFCE automatically,
8131 * so we should update sc->sc_ctrl
8132 */
8133 sc->sc_ctrl = ctrl | CTRL_SLU | CTRL_FD;
8134 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
8135 } else if (((status & STATUS_LU) != 0)
8136 && ((rxcw & RXCW_C) != 0)
8137 && (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)) {
8138 sc->sc_tbi_linkup = 1;
8139 DPRINTF(WM_DEBUG_LINK, ("%s: go back to autonego\n",
8140 __func__));
8141 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
8142 CSR_WRITE(sc, WMREG_CTRL, (ctrl & ~CTRL_SLU));
8143 } else if (((ctrl & CTRL_SWDPIN(1)) == sig)
8144 && ((rxcw & RXCW_C) != 0)) {
8145 DPRINTF(WM_DEBUG_LINK, ("/C/"));
8146 } else {
8147 DPRINTF(WM_DEBUG_LINK, ("%s: %x,%x,%x\n", __func__, rxcw, ctrl,
8148 status));
8149 }
8150
8151 return 0;
8152 }
8153
8154 /* Work-around for 82566 Kumeran PCS lock loss */
8155 static void
8156 wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *sc)
8157 {
8158 int miistatus, active, i;
8159 int reg;
8160
8161 miistatus = sc->sc_mii.mii_media_status;
8162
8163 /* If the link is not up, do nothing */
8164 if ((miistatus & IFM_ACTIVE) != 0)
8165 return;
8166
8167 active = sc->sc_mii.mii_media_active;
8168
8169 /* Nothing to do if the link is other than 1Gbps */
8170 if (IFM_SUBTYPE(active) != IFM_1000_T)
8171 return;
8172
8173 for (i = 0; i < 10; i++) {
8174 /* read twice */
8175 reg = wm_gmii_i80003_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG);
8176 reg = wm_gmii_i80003_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG);
8177 if ((reg & IGP3_KMRN_DIAG_PCS_LOCK_LOSS) != 0)
8178 goto out; /* GOOD! */
8179
8180 /* Reset the PHY */
8181 wm_gmii_reset(sc);
8182 delay(5*1000);
8183 }
8184
8185 /* Disable GigE link negotiation */
8186 reg = CSR_READ(sc, WMREG_PHY_CTRL);
8187 reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS;
8188 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
8189
8190 /*
8191 * Call gig speed drop workaround on Gig disable before accessing
8192 * any PHY registers.
8193 */
8194 wm_gig_downshift_workaround_ich8lan(sc);
8195
8196 out:
8197 return;
8198 }
8199
8200 /* WOL from S5 stops working */
8201 static void
8202 wm_gig_downshift_workaround_ich8lan(struct wm_softc *sc)
8203 {
8204 uint16_t kmrn_reg;
8205
8206 /* Only for igp3 */
8207 if (sc->sc_phytype == WMPHY_IGP_3) {
8208 kmrn_reg = wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_DIAG);
8209 kmrn_reg |= KUMCTRLSTA_DIAG_NELPBK;
8210 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmrn_reg);
8211 kmrn_reg &= ~KUMCTRLSTA_DIAG_NELPBK;
8212 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmrn_reg);
8213 }
8214 }
8215
8216 #ifdef WM_WOL
8217 /* Power down workaround on D3 */
8218 static void
8219 wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *sc)
8220 {
8221 uint32_t reg;
8222 int i;
8223
8224 for (i = 0; i < 2; i++) {
8225 /* Disable link */
8226 reg = CSR_READ(sc, WMREG_PHY_CTRL);
8227 reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS;
8228 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
8229
8230 /*
8231 * Call gig speed drop workaround on Gig disable before
8232 * accessing any PHY registers
8233 */
8234 if (sc->sc_type == WM_T_ICH8)
8235 wm_gig_downshift_workaround_ich8lan(sc);
8236
8237 /* Write VR power-down enable */
8238 reg = sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL);
8239 reg &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
8240 reg |= IGP3_VR_CTRL_MODE_SHUTDOWN;
8241 sc->sc_mii.mii_writereg(sc->sc_dev, 1, IGP3_VR_CTRL, reg);
8242
8243 /* Read it back and test */
8244 reg = sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL);
8245 reg &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
8246 if ((reg == IGP3_VR_CTRL_MODE_SHUTDOWN) || (i != 0))
8247 break;
8248
8249 /* Issue PHY reset and repeat at most one more time */
8250 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
8251 }
8252 }
8253 #endif /* WM_WOL */
8254
8255 /*
8256 * Workaround for pch's PHYs
8257 * XXX should be moved to new PHY driver?
8258 */
8259 static void
8260 wm_hv_phy_workaround_ich8lan(struct wm_softc *sc)
8261 {
8262 if (sc->sc_phytype == WMPHY_82577)
8263 wm_set_mdio_slow_mode_hv(sc);
8264
8265 /* (PCH rev.2) && (82577 && (phy rev 2 or 3)) */
8266
8267 /* (82577 && (phy rev 1 or 2)) || (82578 & phy rev 1)*/
8268
8269 /* 82578 */
8270 if (sc->sc_phytype == WMPHY_82578) {
8271 /* PCH rev. < 3 */
8272 if (sc->sc_rev < 3) {
8273 /* XXX 6 bit shift? Why? Is it page2? */
8274 wm_gmii_hv_writereg(sc->sc_dev, 1, ((1 << 6) | 0x29),
8275 0x66c0);
8276 wm_gmii_hv_writereg(sc->sc_dev, 1, ((1 << 6) | 0x1e),
8277 0xffff);
8278 }
8279
8280 /* XXX phy rev. < 2 */
8281 }
8282
8283 /* Select page 0 */
8284
8285 /* XXX acquire semaphore */
8286 wm_gmii_i82544_writereg(sc->sc_dev, 1, MII_IGPHY_PAGE_SELECT, 0);
8287 /* XXX release semaphore */
8288
8289 /*
8290 * Configure the K1 Si workaround during phy reset assuming there is
8291 * link so that it disables K1 if link is in 1Gbps.
8292 */
8293 wm_k1_gig_workaround_hv(sc, 1);
8294 }
8295
8296 static void
8297 wm_lv_phy_workaround_ich8lan(struct wm_softc *sc)
8298 {
8299
8300 wm_set_mdio_slow_mode_hv(sc);
8301 }
8302
8303 static void
8304 wm_k1_gig_workaround_hv(struct wm_softc *sc, int link)
8305 {
8306 int k1_enable = sc->sc_nvm_k1_enabled;
8307
8308 /* XXX acquire semaphore */
8309
8310 if (link) {
8311 k1_enable = 0;
8312
8313 /* Link stall fix for link up */
8314 wm_gmii_hv_writereg(sc->sc_dev, 1, IGP3_KMRN_DIAG, 0x0100);
8315 } else {
8316 /* Link stall fix for link down */
8317 wm_gmii_hv_writereg(sc->sc_dev, 1, IGP3_KMRN_DIAG, 0x4100);
8318 }
8319
8320 wm_configure_k1_ich8lan(sc, k1_enable);
8321
8322 /* XXX release semaphore */
8323 }
8324
8325 static void
8326 wm_set_mdio_slow_mode_hv(struct wm_softc *sc)
8327 {
8328 uint32_t reg;
8329
8330 reg = wm_gmii_hv_readreg(sc->sc_dev, 1, HV_KMRN_MODE_CTRL);
8331 wm_gmii_hv_writereg(sc->sc_dev, 1, HV_KMRN_MODE_CTRL,
8332 reg | HV_KMRN_MDIO_SLOW);
8333 }
8334
8335 static void
8336 wm_configure_k1_ich8lan(struct wm_softc *sc, int k1_enable)
8337 {
8338 uint32_t ctrl, ctrl_ext, tmp;
8339 uint16_t kmrn_reg;
8340
8341 kmrn_reg = wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_K1_CONFIG);
8342
8343 if (k1_enable)
8344 kmrn_reg |= KUMCTRLSTA_K1_ENABLE;
8345 else
8346 kmrn_reg &= ~KUMCTRLSTA_K1_ENABLE;
8347
8348 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_K1_CONFIG, kmrn_reg);
8349
8350 delay(20);
8351
8352 ctrl = CSR_READ(sc, WMREG_CTRL);
8353 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
8354
8355 tmp = ctrl & ~(CTRL_SPEED_1000 | CTRL_SPEED_100);
8356 tmp |= CTRL_FRCSPD;
8357
8358 CSR_WRITE(sc, WMREG_CTRL, tmp);
8359 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext | CTRL_EXT_SPD_BYPS);
8360 delay(20);
8361
8362 CSR_WRITE(sc, WMREG_CTRL, ctrl);
8363 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
8364 delay(20);
8365 }
8366
8367 static void
8368 wm_smbustopci(struct wm_softc *sc)
8369 {
8370 uint32_t fwsm;
8371
8372 fwsm = CSR_READ(sc, WMREG_FWSM);
8373 if (((fwsm & FWSM_FW_VALID) == 0)
8374 && ((wm_check_reset_block(sc) == 0))) {
8375 sc->sc_ctrl |= CTRL_LANPHYPC_OVERRIDE;
8376 sc->sc_ctrl &= ~CTRL_LANPHYPC_VALUE;
8377 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
8378 delay(10);
8379 sc->sc_ctrl &= ~CTRL_LANPHYPC_OVERRIDE;
8380 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
8381 delay(50*1000);
8382
8383 /*
8384 * Gate automatic PHY configuration by hardware on non-managed
8385 * 82579
8386 */
8387 if (sc->sc_type == WM_T_PCH2)
8388 wm_gate_hw_phy_config_ich8lan(sc, 1);
8389 }
8390 }
8391
8392 static void
8393 wm_set_pcie_completion_timeout(struct wm_softc *sc)
8394 {
8395 uint32_t gcr;
8396 pcireg_t ctrl2;
8397
8398 gcr = CSR_READ(sc, WMREG_GCR);
8399
8400 /* Only take action if timeout value is defaulted to 0 */
8401 if ((gcr & GCR_CMPL_TMOUT_MASK) != 0)
8402 goto out;
8403
8404 if ((gcr & GCR_CAP_VER2) == 0) {
8405 gcr |= GCR_CMPL_TMOUT_10MS;
8406 goto out;
8407 }
8408
8409 ctrl2 = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
8410 sc->sc_pcixe_capoff + PCIE_DCSR2);
8411 ctrl2 |= WM_PCIE_DCSR2_16MS;
8412 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
8413 sc->sc_pcixe_capoff + PCIE_DCSR2, ctrl2);
8414
8415 out:
8416 /* Disable completion timeout resend */
8417 gcr &= ~GCR_CMPL_TMOUT_RESEND;
8418
8419 CSR_WRITE(sc, WMREG_GCR, gcr);
8420 }
8421
8422 /* special case - for 82575 - need to do manual init ... */
8423 static void
8424 wm_reset_init_script_82575(struct wm_softc *sc)
8425 {
8426 /*
8427 * remark: this is untested code - we have no board without EEPROM
8428 * same setup as mentioned int the freeBSD driver for the i82575
8429 */
8430
8431 /* SerDes configuration via SERDESCTRL */
8432 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x00, 0x0c);
8433 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x01, 0x78);
8434 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x1b, 0x23);
8435 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x23, 0x15);
8436
8437 /* CCM configuration via CCMCTL register */
8438 wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x14, 0x00);
8439 wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x10, 0x00);
8440
8441 /* PCIe lanes configuration */
8442 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x00, 0xec);
8443 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x61, 0xdf);
8444 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x34, 0x05);
8445 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x2f, 0x81);
8446
8447 /* PCIe PLL Configuration */
8448 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x02, 0x47);
8449 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x14, 0x00);
8450 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x10, 0x00);
8451 }
8452
8453 static void
8454 wm_init_manageability(struct wm_softc *sc)
8455 {
8456
8457 if (sc->sc_flags & WM_F_HAS_MANAGE) {
8458 uint32_t manc2h = CSR_READ(sc, WMREG_MANC2H);
8459 uint32_t manc = CSR_READ(sc, WMREG_MANC);
8460
8461 /* disabl hardware interception of ARP */
8462 manc &= ~MANC_ARP_EN;
8463
8464 /* enable receiving management packets to the host */
8465 if (sc->sc_type >= WM_T_82571) {
8466 manc |= MANC_EN_MNG2HOST;
8467 manc2h |= MANC2H_PORT_623| MANC2H_PORT_624;
8468 CSR_WRITE(sc, WMREG_MANC2H, manc2h);
8469
8470 }
8471
8472 CSR_WRITE(sc, WMREG_MANC, manc);
8473 }
8474 }
8475
8476 static void
8477 wm_release_manageability(struct wm_softc *sc)
8478 {
8479
8480 if (sc->sc_flags & WM_F_HAS_MANAGE) {
8481 uint32_t manc = CSR_READ(sc, WMREG_MANC);
8482
8483 manc |= MANC_ARP_EN;
8484 if (sc->sc_type >= WM_T_82571)
8485 manc &= ~MANC_EN_MNG2HOST;
8486
8487 CSR_WRITE(sc, WMREG_MANC, manc);
8488 }
8489 }
8490
8491 static void
8492 wm_get_wakeup(struct wm_softc *sc)
8493 {
8494
8495 /* 0: HAS_AMT, ARC_SUBSYS_VALID, ASF_FIRMWARE_PRES */
8496 switch (sc->sc_type) {
8497 case WM_T_82573:
8498 case WM_T_82583:
8499 sc->sc_flags |= WM_F_HAS_AMT;
8500 /* FALLTHROUGH */
8501 case WM_T_80003:
8502 case WM_T_82541:
8503 case WM_T_82547:
8504 case WM_T_82571:
8505 case WM_T_82572:
8506 case WM_T_82574:
8507 case WM_T_82575:
8508 case WM_T_82576:
8509 case WM_T_82580:
8510 case WM_T_82580ER:
8511 case WM_T_I350:
8512 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_MODE_MASK) != 0)
8513 sc->sc_flags |= WM_F_ARC_SUBSYS_VALID;
8514 sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES;
8515 break;
8516 case WM_T_ICH8:
8517 case WM_T_ICH9:
8518 case WM_T_ICH10:
8519 case WM_T_PCH:
8520 case WM_T_PCH2:
8521 case WM_T_PCH_LPT:
8522 sc->sc_flags |= WM_F_HAS_AMT;
8523 sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES;
8524 break;
8525 default:
8526 break;
8527 }
8528
8529 /* 1: HAS_MANAGE */
8530 if (wm_enable_mng_pass_thru(sc) != 0)
8531 sc->sc_flags |= WM_F_HAS_MANAGE;
8532
8533 #ifdef WM_DEBUG
8534 printf("\n");
8535 if ((sc->sc_flags & WM_F_HAS_AMT) != 0)
8536 printf("HAS_AMT,");
8537 if ((sc->sc_flags & WM_F_ARC_SUBSYS_VALID) != 0)
8538 printf("ARC_SUBSYS_VALID,");
8539 if ((sc->sc_flags & WM_F_ASF_FIRMWARE_PRES) != 0)
8540 printf("ASF_FIRMWARE_PRES,");
8541 if ((sc->sc_flags & WM_F_HAS_MANAGE) != 0)
8542 printf("HAS_MANAGE,");
8543 printf("\n");
8544 #endif
8545 /*
8546 * Note that the WOL flags is set after the resetting of the eeprom
8547 * stuff
8548 */
8549 }
8550
8551 #ifdef WM_WOL
8552 /* WOL in the newer chipset interfaces (pchlan) */
8553 static void
8554 wm_enable_phy_wakeup(struct wm_softc *sc)
8555 {
8556 #if 0
8557 uint16_t preg;
8558
8559 /* Copy MAC RARs to PHY RARs */
8560
8561 /* Copy MAC MTA to PHY MTA */
8562
8563 /* Configure PHY Rx Control register */
8564
8565 /* Enable PHY wakeup in MAC register */
8566
8567 /* Configure and enable PHY wakeup in PHY registers */
8568
8569 /* Activate PHY wakeup */
8570
8571 /* XXX */
8572 #endif
8573 }
8574
8575 static void
8576 wm_enable_wakeup(struct wm_softc *sc)
8577 {
8578 uint32_t reg, pmreg;
8579 pcireg_t pmode;
8580
8581 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PWRMGMT,
8582 &pmreg, NULL) == 0)
8583 return;
8584
8585 /* Advertise the wakeup capability */
8586 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_SWDPIN(2)
8587 | CTRL_SWDPIN(3));
8588 CSR_WRITE(sc, WMREG_WUC, WUC_APME);
8589
8590 /* ICH workaround */
8591 switch (sc->sc_type) {
8592 case WM_T_ICH8:
8593 case WM_T_ICH9:
8594 case WM_T_ICH10:
8595 case WM_T_PCH:
8596 case WM_T_PCH2:
8597 case WM_T_PCH_LPT:
8598 /* Disable gig during WOL */
8599 reg = CSR_READ(sc, WMREG_PHY_CTRL);
8600 reg |= PHY_CTRL_D0A_LPLU | PHY_CTRL_GBE_DIS;
8601 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
8602 if (sc->sc_type == WM_T_PCH)
8603 wm_gmii_reset(sc);
8604
8605 /* Power down workaround */
8606 if (sc->sc_phytype == WMPHY_82577) {
8607 struct mii_softc *child;
8608
8609 /* Assume that the PHY is copper */
8610 child = LIST_FIRST(&sc->sc_mii.mii_phys);
8611 if (child->mii_mpd_rev <= 2)
8612 sc->sc_mii.mii_writereg(sc->sc_dev, 1,
8613 (768 << 5) | 25, 0x0444); /* magic num */
8614 }
8615 break;
8616 default:
8617 break;
8618 }
8619
8620 /* Keep the laser running on fiber adapters */
8621 if (((sc->sc_wmp->wmp_flags & WMP_F_1000X) != 0)
8622 || (sc->sc_wmp->wmp_flags & WMP_F_SERDES) != 0) {
8623 reg = CSR_READ(sc, WMREG_CTRL_EXT);
8624 reg |= CTRL_EXT_SWDPIN(3);
8625 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
8626 }
8627
8628 reg = CSR_READ(sc, WMREG_WUFC) | WUFC_MAG;
8629 #if 0 /* for the multicast packet */
8630 reg |= WUFC_MC;
8631 CSR_WRITE(sc, WMREG_RCTL, CSR_READ(sc, WMREG_RCTL) | RCTL_MPE);
8632 #endif
8633
8634 if (sc->sc_type == WM_T_PCH) {
8635 wm_enable_phy_wakeup(sc);
8636 } else {
8637 CSR_WRITE(sc, WMREG_WUC, WUC_PME_EN);
8638 CSR_WRITE(sc, WMREG_WUFC, reg);
8639 }
8640
8641 if (((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
8642 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
8643 || (sc->sc_type == WM_T_PCH2))
8644 && (sc->sc_phytype == WMPHY_IGP_3))
8645 wm_igp3_phy_powerdown_workaround_ich8lan(sc);
8646
8647 /* Request PME */
8648 pmode = pci_conf_read(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR);
8649 #if 0
8650 /* Disable WOL */
8651 pmode &= ~(PCI_PMCSR_PME_STS | PCI_PMCSR_PME_EN);
8652 #else
8653 /* For WOL */
8654 pmode |= PCI_PMCSR_PME_STS | PCI_PMCSR_PME_EN;
8655 #endif
8656 pci_conf_write(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR, pmode);
8657 }
8658 #endif /* WM_WOL */
8659
8660 static bool
8661 wm_suspend(device_t self, const pmf_qual_t *qual)
8662 {
8663 struct wm_softc *sc = device_private(self);
8664
8665 wm_release_manageability(sc);
8666 wm_release_hw_control(sc);
8667 #ifdef WM_WOL
8668 wm_enable_wakeup(sc);
8669 #endif
8670
8671 return true;
8672 }
8673
8674 static bool
8675 wm_resume(device_t self, const pmf_qual_t *qual)
8676 {
8677 struct wm_softc *sc = device_private(self);
8678
8679 wm_init_manageability(sc);
8680
8681 return true;
8682 }
8683
8684 static void
8685 wm_set_eee_i350(struct wm_softc * sc)
8686 {
8687 uint32_t ipcnfg, eeer;
8688
8689 ipcnfg = CSR_READ(sc, WMREG_IPCNFG);
8690 eeer = CSR_READ(sc, WMREG_EEER);
8691
8692 if ((sc->sc_flags & WM_F_EEE) != 0) {
8693 ipcnfg |= (IPCNFG_EEE_1G_AN | IPCNFG_EEE_100M_AN);
8694 eeer |= (EEER_TX_LPI_EN | EEER_RX_LPI_EN
8695 | EEER_LPI_FC);
8696 } else {
8697 ipcnfg &= ~(IPCNFG_EEE_1G_AN | IPCNFG_EEE_100M_AN);
8698 eeer &= ~(EEER_TX_LPI_EN | EEER_RX_LPI_EN
8699 | EEER_LPI_FC);
8700 }
8701
8702 CSR_WRITE(sc, WMREG_IPCNFG, ipcnfg);
8703 CSR_WRITE(sc, WMREG_EEER, eeer);
8704 CSR_READ(sc, WMREG_IPCNFG); /* XXX flush? */
8705 CSR_READ(sc, WMREG_EEER); /* XXX flush? */
8706 }
8707