Home | History | Annotate | Line # | Download | only in pci
if_wm.c revision 1.4
      1 /*	$NetBSD: if_wm.c,v 1.4 2002/05/08 17:53:28 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Device driver for the Intel i82542 (``Wiseman''), i82543 (``Livengood''),
     40  * and i82544 (``Cordova'') Gigabit Ethernet chips.
     41  *
     42  * TODO (in order of importance):
     43  *
     44  *	- Fix hw VLAN assist.
     45  *
     46  *	- Make GMII work on the Livengood.
     47  *
     48  *	- Fix out-bound IP header checksums.
     49  *
     50  *	- Fix UDP checksums.
     51  *
     52  *	- Jumbo frames -- requires changes to network stack due to
     53  *	  lame buffer length handling on chip.
     54  *
     55  * ...and, of course, performance tuning.
     56  */
     57 
     58 #include "bpfilter.h"
     59 
     60 #include <sys/param.h>
     61 #include <sys/systm.h>
     62 #include <sys/callout.h>
     63 #include <sys/mbuf.h>
     64 #include <sys/malloc.h>
     65 #include <sys/kernel.h>
     66 #include <sys/socket.h>
     67 #include <sys/ioctl.h>
     68 #include <sys/errno.h>
     69 #include <sys/device.h>
     70 #include <sys/queue.h>
     71 
     72 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     73 
     74 #include <net/if.h>
     75 #include <net/if_dl.h>
     76 #include <net/if_media.h>
     77 #include <net/if_ether.h>
     78 
     79 #if NBPFILTER > 0
     80 #include <net/bpf.h>
     81 #endif
     82 
     83 #include <netinet/in.h>			/* XXX for struct ip */
     84 #include <netinet/in_systm.h>		/* XXX for struct ip */
     85 #include <netinet/ip.h>			/* XXX for struct ip */
     86 
     87 #include <machine/bus.h>
     88 #include <machine/intr.h>
     89 #include <machine/endian.h>
     90 
     91 #include <dev/mii/mii.h>
     92 #include <dev/mii/miivar.h>
     93 #include <dev/mii/mii_bitbang.h>
     94 
     95 #include <dev/pci/pcireg.h>
     96 #include <dev/pci/pcivar.h>
     97 #include <dev/pci/pcidevs.h>
     98 
     99 #include <dev/pci/if_wmreg.h>
    100 
    101 #ifdef WM_DEBUG
    102 #define	WM_DEBUG_LINK		0x01
    103 #define	WM_DEBUG_TX		0x02
    104 #define	WM_DEBUG_RX		0x04
    105 #define	WM_DEBUG_GMII		0x08
    106 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
    107 
    108 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
    109 #else
    110 #define	DPRINTF(x, y)	/* nothing */
    111 #endif /* WM_DEBUG */
    112 
    113 /*
    114  * Transmit descriptor list size.  Due to errata, we can only have
    115  * 256 hardware descriptors in the ring.  We tell the upper layers
    116  * that they can queue a lot of packets, and we go ahead and mange
    117  * up to 32 of them at a time.  We allow up to 16 DMA segments per
    118  * packet.
    119  */
    120 #define	WM_NTXSEGS		16
    121 #define	WM_IFQUEUELEN		256
    122 #define	WM_TXQUEUELEN		32
    123 #define	WM_TXQUEUELEN_MASK	(WM_TXQUEUELEN - 1)
    124 #define	WM_NTXDESC		256
    125 #define	WM_NTXDESC_MASK		(WM_NTXDESC - 1)
    126 #define	WM_NEXTTX(x)		(((x) + 1) & WM_NTXDESC_MASK)
    127 #define	WM_NEXTTXS(x)		(((x) + 1) & WM_TXQUEUELEN_MASK)
    128 
    129 /*
    130  * The interrupt mitigation feature of the Wiseman is pretty cool -- as
    131  * long as you're transmitting, you don't have to take an interrupt at
    132  * all.  However, we force an interrupt to happen every N + 1 packets
    133  * in order to kick us in a reasonable amount of time when we run out
    134  * of descriptors.
    135  */
    136 #define	WM_TXINTR_MASK		7
    137 
    138 /*
    139  * Receive descriptor list size.  We have one Rx buffer for normal
    140  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
    141  * packet.  We allocate 128 receive descriptors, each with a 2k
    142  * buffer (MCLBYTES), which gives us room for 25 jumbo packets.
    143  */
    144 #define	WM_NRXDESC		128
    145 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
    146 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
    147 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
    148 
    149 /*
    150  * Control structures are DMA'd to the i82542 chip.  We allocate them in
    151  * a single clump that maps to a single DMA segment to make serveral things
    152  * easier.
    153  */
    154 struct wm_control_data {
    155 	/*
    156 	 * The transmit descriptors.
    157 	 */
    158 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC];
    159 
    160 	/*
    161 	 * The receive descriptors.
    162 	 */
    163 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    164 };
    165 
    166 #define	WM_CDOFF(x)	offsetof(struct wm_control_data, x)
    167 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
    168 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
    169 
    170 /*
    171  * Software state for transmit jobs.
    172  */
    173 struct wm_txsoft {
    174 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    175 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    176 	int txs_firstdesc;		/* first descriptor in packet */
    177 	int txs_lastdesc;		/* last descriptor in packet */
    178 	int txs_ndesc;			/* # of descriptors used */
    179 };
    180 
    181 /*
    182  * Software state for receive buffers.  Each descriptor gets a
    183  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    184  * more than one buffer, we chain them together.
    185  */
    186 struct wm_rxsoft {
    187 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    188 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    189 };
    190 
    191 /*
    192  * Software state per device.
    193  */
    194 struct wm_softc {
    195 	struct device sc_dev;		/* generic device information */
    196 	bus_space_tag_t sc_st;		/* bus space tag */
    197 	bus_space_handle_t sc_sh;	/* bus space handle */
    198 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    199 	struct ethercom sc_ethercom;	/* ethernet common data */
    200 	void *sc_sdhook;		/* shutdown hook */
    201 
    202 	int sc_type;			/* chip type; see below */
    203 	int sc_flags;			/* flags; see below */
    204 
    205 	void *sc_ih;			/* interrupt cookie */
    206 
    207 	struct mii_data sc_mii;		/* MII/media information */
    208 
    209 	struct callout sc_tick_ch;	/* tick callout */
    210 
    211 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    212 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    213 
    214 	/*
    215 	 * Software state for the transmit and receive descriptors.
    216 	 */
    217 	struct wm_txsoft sc_txsoft[WM_TXQUEUELEN];
    218 	struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
    219 
    220 	/*
    221 	 * Control data structures.
    222 	 */
    223 	struct wm_control_data *sc_control_data;
    224 #define	sc_txdescs	sc_control_data->wcd_txdescs
    225 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    226 
    227 #ifdef WM_EVENT_COUNTERS
    228 	/* Event counters. */
    229 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    230 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    231 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    232 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    233 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    234 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    235 
    236 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    237 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    238 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    239 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    240 
    241 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
    242 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    243 
    244 	struct evcnt sc_ev_tu;		/* Tx underrun */
    245 #endif /* WM_EVENT_COUNTERS */
    246 
    247 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
    248 
    249 	int	sc_txfree;		/* number of free Tx descriptors */
    250 	int	sc_txnext;		/* next ready Tx descriptor */
    251 	int	sc_txwin;		/* Tx descriptors since last Tx int */
    252 
    253 	int	sc_txsfree;		/* number of free Tx jobs */
    254 	int	sc_txsnext;		/* next free Tx job */
    255 	int	sc_txsdirty;		/* dirty Tx jobs */
    256 
    257 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
    258 
    259 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    260 	int	sc_rxdiscard;
    261 	int	sc_rxlen;
    262 	struct mbuf *sc_rxhead;
    263 	struct mbuf *sc_rxtail;
    264 	struct mbuf **sc_rxtailp;
    265 
    266 	uint32_t sc_ctrl;		/* prototype CTRL register */
    267 #if 0
    268 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
    269 #endif
    270 	uint32_t sc_icr;		/* prototype interrupt bits */
    271 	uint32_t sc_tctl;		/* prototype TCTL register */
    272 	uint32_t sc_rctl;		/* prototype RCTL register */
    273 	uint32_t sc_txcw;		/* prototype TXCW register */
    274 	uint32_t sc_tipg;		/* prototype TIPG register */
    275 
    276 	int sc_tbi_linkup;		/* TBI link status */
    277 	int sc_tbi_anstate;		/* autonegotiation state */
    278 
    279 	int sc_mchash_type;		/* multicast filter offset */
    280 };
    281 
    282 #define	WM_RXCHAIN_RESET(sc)						\
    283 do {									\
    284 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    285 	*(sc)->sc_rxtailp = NULL;					\
    286 	(sc)->sc_rxlen = 0;						\
    287 } while (/*CONSTCOND*/0)
    288 
    289 #define	WM_RXCHAIN_LINK(sc, m)						\
    290 do {									\
    291 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    292 	(sc)->sc_rxtailp = &(m)->m_next;				\
    293 } while (/*CONSTCOND*/0)
    294 
    295 /* sc_type */
    296 #define	WM_T_WISEMAN_2_0	0	/* Wiseman (i82542) 2.0 (really old) */
    297 #define	WM_T_WISEMAN_2_1	1	/* Wiseman (i82542) 2.1+ (old) */
    298 #define	WM_T_LIVENGOOD		2	/* Livengood (i82543) */
    299 #define	WM_T_CORDOVA		3	/* Cordova (i82544) */
    300 
    301 /* sc_flags */
    302 #define	WM_F_HAS_MII		0x01	/* has MII */
    303 
    304 #ifdef WM_EVENT_COUNTERS
    305 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
    306 #else
    307 #define	WM_EVCNT_INCR(ev)	/* nothing */
    308 #endif
    309 
    310 #define	CSR_READ(sc, reg)						\
    311 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    312 #define	CSR_WRITE(sc, reg, val)						\
    313 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    314 
    315 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
    316 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
    317 
    318 #define	WM_CDTXSYNC(sc, x, n, ops)					\
    319 do {									\
    320 	int __x, __n;							\
    321 									\
    322 	__x = (x);							\
    323 	__n = (n);							\
    324 									\
    325 	/* If it will wrap around, sync to the end of the ring. */	\
    326 	if ((__x + __n) > WM_NTXDESC) {					\
    327 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    328 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
    329 		    (WM_NTXDESC - __x), (ops));				\
    330 		__n -= (WM_NTXDESC - __x);				\
    331 		__x = 0;						\
    332 	}								\
    333 									\
    334 	/* Now sync whatever is left. */				\
    335 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    336 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
    337 } while (/*CONSTCOND*/0)
    338 
    339 #define	WM_CDRXSYNC(sc, x, ops)						\
    340 do {									\
    341 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    342 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
    343 } while (/*CONSTCOND*/0)
    344 
    345 #define	WM_INIT_RXDESC(sc, x)						\
    346 do {									\
    347 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    348 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
    349 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    350 									\
    351 	/*								\
    352 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    353 	 * so that the payload after the Ethernet header is aligned	\
    354 	 * to a 4-byte boundary.					\
    355 	 *								\
    356 	 * XXX BRAINDAMAGE ALERT!					\
    357 	 * The stupid chip uses the same size for every buffer, which	\
    358 	 * is set in the Receive Control register.  We are using the 2K	\
    359 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    360 	 * reason, we can't accept packets longer than the standard	\
    361 	 * Ethernet MTU, without incurring a big penalty to copy every	\
    362 	 * incoming packet to a new, suitably aligned buffer.		\
    363 	 *								\
    364 	 * We'll need to make some changes to the layer 3/4 parts of	\
    365 	 * the stack (to copy the headers to a new buffer if not	\
    366 	 * aligned) in order to support large MTU on this chip.  Lame.	\
    367 	 */								\
    368 	__m->m_data = __m->m_ext.ext_buf + 2;				\
    369 									\
    370 	__rxd->wrx_addr.wa_low =					\
    371 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);		\
    372 	__rxd->wrx_addr.wa_high = 0;					\
    373 	__rxd->wrx_len = 0;						\
    374 	__rxd->wrx_cksum = 0;						\
    375 	__rxd->wrx_status = 0;						\
    376 	__rxd->wrx_errors = 0;						\
    377 	__rxd->wrx_special = 0;						\
    378 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    379 									\
    380 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
    381 } while (/*CONSTCOND*/0)
    382 
    383 void	wm_start(struct ifnet *);
    384 void	wm_watchdog(struct ifnet *);
    385 int	wm_ioctl(struct ifnet *, u_long, caddr_t);
    386 int	wm_init(struct ifnet *);
    387 void	wm_stop(struct ifnet *, int);
    388 
    389 void	wm_shutdown(void *);
    390 
    391 void	wm_reset(struct wm_softc *);
    392 void	wm_rxdrain(struct wm_softc *);
    393 int	wm_add_rxbuf(struct wm_softc *, int);
    394 void	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
    395 void	wm_tick(void *);
    396 
    397 void	wm_set_filter(struct wm_softc *);
    398 
    399 int	wm_intr(void *);
    400 void	wm_txintr(struct wm_softc *);
    401 void	wm_rxintr(struct wm_softc *);
    402 void	wm_linkintr(struct wm_softc *, uint32_t);
    403 
    404 void	wm_tbi_mediainit(struct wm_softc *);
    405 int	wm_tbi_mediachange(struct ifnet *);
    406 void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
    407 
    408 void	wm_tbi_set_linkled(struct wm_softc *);
    409 void	wm_tbi_check_link(struct wm_softc *);
    410 
    411 void	wm_gmii_reset(struct wm_softc *);
    412 
    413 int	wm_gmii_livengood_readreg(struct device *, int, int);
    414 void	wm_gmii_livengood_writereg(struct device *, int, int, int);
    415 
    416 int	wm_gmii_cordova_readreg(struct device *, int, int);
    417 void	wm_gmii_cordova_writereg(struct device *, int, int, int);
    418 
    419 void	wm_gmii_statchg(struct device *);
    420 
    421 void	wm_gmii_mediainit(struct wm_softc *);
    422 int	wm_gmii_mediachange(struct ifnet *);
    423 void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
    424 
    425 int	wm_match(struct device *, struct cfdata *, void *);
    426 void	wm_attach(struct device *, struct device *, void *);
    427 
    428 int	wm_copy_small = 0;
    429 
    430 struct cfattach wm_ca = {
    431 	sizeof(struct wm_softc), wm_match, wm_attach,
    432 };
    433 
    434 /*
    435  * Devices supported by this driver.
    436  */
    437 const struct wm_product {
    438 	pci_vendor_id_t		wmp_vendor;
    439 	pci_product_id_t	wmp_product;
    440 	const char		*wmp_name;
    441 	int			wmp_type;
    442 	int			wmp_flags;
    443 #define	WMP_F_1000X		0x01
    444 #define	WMP_F_1000T		0x02
    445 } wm_products[] = {
    446 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
    447 	  "Intel i82542 1000BASE-X Ethernet",
    448 	  WM_T_WISEMAN_2_1,	WMP_F_1000X },
    449 
    450 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543_FIBER,
    451 	  "Intel i82543 1000BASE-X Ethernet",
    452 	  WM_T_LIVENGOOD,	WMP_F_1000X },
    453 
    454 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543_SC,
    455 	  "Intel i82543-SC 1000BASE-X Ethernet",
    456 	  WM_T_LIVENGOOD,	WMP_F_1000X },
    457 
    458 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543_COPPER,
    459 	  "Intel i82543 1000BASE-T Ethernet",
    460 	  WM_T_LIVENGOOD,	WMP_F_1000T },
    461 
    462 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544_XT,
    463 	  "Intel i82544 1000BASE-T Ethernet",
    464 	  WM_T_CORDOVA,		WMP_F_1000T },
    465 
    466 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544_XF,
    467 	  "Intel i82544 1000BASE-X Ethernet",
    468 	  WM_T_CORDOVA,		WMP_F_1000X },
    469 
    470 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC,
    471 	  "Intel i82544GC 1000BASE-T Ethernet",
    472 	  WM_T_CORDOVA,		WMP_F_1000T },
    473 
    474 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_64,
    475 	  "Intel i82544GC 1000BASE-T Ethernet",
    476 	  WM_T_CORDOVA,		WMP_F_1000T },
    477 
    478 	{ 0,			0,
    479 	  NULL,
    480 	  0,			0 },
    481 };
    482 
    483 #ifdef WM_EVENT_COUNTERS
    484 #if WM_NTXSEGS != 16
    485 #error Update wm_txseg_evcnt_names
    486 #endif
    487 static const char *wm_txseg_evcnt_names[WM_NTXSEGS] = {
    488 	"txseg1",
    489 	"txseg2",
    490 	"txseg3",
    491 	"txseg4",
    492 	"txseg5",
    493 	"txseg6",
    494 	"txseg7",
    495 	"txseg8",
    496 	"txseg9",
    497 	"txseg10",
    498 	"txseg11",
    499 	"txseg12",
    500 	"txseg13",
    501 	"txseg14",
    502 	"txseg15",
    503 	"txseg16",
    504 };
    505 #endif /* WM_EVENT_COUNTERS */
    506 
    507 static const struct wm_product *
    508 wm_lookup(const struct pci_attach_args *pa)
    509 {
    510 	const struct wm_product *wmp;
    511 
    512 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
    513 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
    514 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
    515 			return (wmp);
    516 	}
    517 	return (NULL);
    518 }
    519 
    520 int
    521 wm_match(struct device *parent, struct cfdata *cf, void *aux)
    522 {
    523 	struct pci_attach_args *pa = aux;
    524 
    525 	if (wm_lookup(pa) != NULL)
    526 		return (1);
    527 
    528 	return (0);
    529 }
    530 
    531 void
    532 wm_attach(struct device *parent, struct device *self, void *aux)
    533 {
    534 	struct wm_softc *sc = (void *) self;
    535 	struct pci_attach_args *pa = aux;
    536 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    537 	pci_chipset_tag_t pc = pa->pa_pc;
    538 	pci_intr_handle_t ih;
    539 	const char *intrstr = NULL;
    540 	bus_space_tag_t memt;
    541 	bus_space_handle_t memh;
    542 	bus_dma_segment_t seg;
    543 	int memh_valid;
    544 	int i, rseg, error;
    545 	const struct wm_product *wmp;
    546 	uint8_t enaddr[ETHER_ADDR_LEN];
    547 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
    548 	pcireg_t preg, memtype;
    549 	int pmreg;
    550 
    551 	callout_init(&sc->sc_tick_ch);
    552 
    553 	wmp = wm_lookup(pa);
    554 	if (wmp == NULL) {
    555 		printf("\n");
    556 		panic("wm_attach: impossible");
    557 	}
    558 
    559 	sc->sc_dmat = pa->pa_dmat;
    560 
    561 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    562 	printf(": %s, rev. %d\n", wmp->wmp_name, preg);
    563 
    564 	sc->sc_type = wmp->wmp_type;
    565 	if (sc->sc_type < WM_T_LIVENGOOD) {
    566 		if (preg < 2) {
    567 			printf("%s: Wiseman must be at least rev. 2\n",
    568 			    sc->sc_dev.dv_xname);
    569 			return;
    570 		}
    571 		if (preg < 3)
    572 			sc->sc_type = WM_T_WISEMAN_2_0;
    573 	}
    574 
    575 	/*
    576 	 * Map the device.
    577 	 */
    578 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
    579 	switch (memtype) {
    580 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    581 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    582 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
    583 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    584 		break;
    585 	default:
    586 		memh_valid = 0;
    587 	}
    588 
    589 	if (memh_valid) {
    590 		sc->sc_st = memt;
    591 		sc->sc_sh = memh;
    592 	} else {
    593 		printf("%s: unable to map device registers\n",
    594 		    sc->sc_dev.dv_xname);
    595 		return;
    596 	}
    597 
    598 	/* Enable bus mastering.  Disable MWI on the Wiseman 2.0. */
    599 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    600 	preg |= PCI_COMMAND_MASTER_ENABLE;
    601 	if (sc->sc_type < WM_T_WISEMAN_2_1)
    602 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
    603 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    604 
    605 	/* Get it out of power save mode, if needed. */
    606 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    607 		preg = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
    608 		if (preg == 3) {
    609 			/*
    610 			 * The card has lost all configuration data in
    611 			 * this state, so punt.
    612 			 */
    613 			printf("%s: unable to wake from power state D3\n",
    614 			    sc->sc_dev.dv_xname);
    615 			return;
    616 		}
    617 		if (preg != 0) {
    618 			printf("%s: waking up from power state D%d\n",
    619 			    sc->sc_dev.dv_xname, preg);
    620 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
    621 		}
    622 	}
    623 
    624 	/*
    625 	 * Map and establish our interrupt.
    626 	 */
    627 	if (pci_intr_map(pa, &ih)) {
    628 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    629 		return;
    630 	}
    631 	intrstr = pci_intr_string(pc, ih);
    632 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
    633 	if (sc->sc_ih == NULL) {
    634 		printf("%s: unable to establish interrupt",
    635 		    sc->sc_dev.dv_xname);
    636 		if (intrstr != NULL)
    637 			printf(" at %s", intrstr);
    638 		printf("\n");
    639 		return;
    640 	}
    641 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    642 
    643 	/*
    644 	 * Allocate the control data structures, and create and load the
    645 	 * DMA map for it.
    646 	 */
    647 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    648 	    sizeof(struct wm_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    649 	    0)) != 0) {
    650 		printf("%s: unable to allocate control data, error = %d\n",
    651 		    sc->sc_dev.dv_xname, error);
    652 		goto fail_0;
    653 	}
    654 
    655 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    656 	    sizeof(struct wm_control_data), (caddr_t *)&sc->sc_control_data,
    657 	    BUS_DMA_COHERENT)) != 0) {
    658 		printf("%s: unable to map control data, error = %d\n",
    659 		    sc->sc_dev.dv_xname, error);
    660 		goto fail_1;
    661 	}
    662 
    663 	if ((error = bus_dmamap_create(sc->sc_dmat,
    664 	    sizeof(struct wm_control_data), 1,
    665 	    sizeof(struct wm_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    666 		printf("%s: unable to create control data DMA map, "
    667 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    668 		goto fail_2;
    669 	}
    670 
    671 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    672 	    sc->sc_control_data, sizeof(struct wm_control_data), NULL,
    673 	    0)) != 0) {
    674 		printf("%s: unable to load control data DMA map, error = %d\n",
    675 		    sc->sc_dev.dv_xname, error);
    676 		goto fail_3;
    677 	}
    678 
    679 	/*
    680 	 * Create the transmit buffer DMA maps.
    681 	 */
    682 	for (i = 0; i < WM_TXQUEUELEN; i++) {
    683 		if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
    684 		    WM_NTXSEGS, MCLBYTES, 0, 0,
    685 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    686 			printf("%s: unable to create Tx DMA map %d, "
    687 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    688 			goto fail_4;
    689 		}
    690 	}
    691 
    692 	/*
    693 	 * Create the receive buffer DMA maps.
    694 	 */
    695 	for (i = 0; i < WM_NRXDESC; i++) {
    696 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    697 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    698 			printf("%s: unable to create Rx DMA map %d, "
    699 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    700 			goto fail_5;
    701 		}
    702 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    703 	}
    704 
    705 	/*
    706 	 * Reset the chip to a known state.
    707 	 */
    708 	wm_reset(sc);
    709 
    710 	/*
    711 	 * Read the Ethernet address from the EEPROM.
    712 	 */
    713 	wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
    714 	    sizeof(myea) / sizeof(myea[0]), myea);
    715 	enaddr[0] = myea[0] & 0xff;
    716 	enaddr[1] = myea[0] >> 8;
    717 	enaddr[2] = myea[1] & 0xff;
    718 	enaddr[3] = myea[1] >> 8;
    719 	enaddr[4] = myea[2] & 0xff;
    720 	enaddr[5] = myea[2] >> 8;
    721 
    722 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    723 	    ether_sprintf(enaddr));
    724 
    725 	/*
    726 	 * Read the config info from the EEPROM, and set up various
    727 	 * bits in the control registers based on their contents.
    728 	 */
    729 	wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1);
    730 	wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2);
    731 	if (sc->sc_type >= WM_T_CORDOVA)
    732 		wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin);
    733 
    734 	if (cfg1 & EEPROM_CFG1_ILOS)
    735 		sc->sc_ctrl |= CTRL_ILOS;
    736 	if (sc->sc_type >= WM_T_CORDOVA) {
    737 		sc->sc_ctrl |=
    738 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
    739 		    CTRL_SWDPIO_SHIFT;
    740 		sc->sc_ctrl |=
    741 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
    742 		    CTRL_SWDPINS_SHIFT;
    743 	} else {
    744 		sc->sc_ctrl |=
    745 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
    746 		    CTRL_SWDPIO_SHIFT;
    747 	}
    748 
    749 #if 0
    750 	if (sc->sc_type >= WM_T_CORDOVA) {
    751 		if (cfg1 & EEPROM_CFG1_IPS0)
    752 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
    753 		if (cfg1 & EEPROM_CFG1_IPS1)
    754 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
    755 		sc->sc_ctrl_ext |=
    756 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
    757 		    CTRL_EXT_SWDPIO_SHIFT;
    758 		sc->sc_ctrl_ext |=
    759 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
    760 		    CTRL_EXT_SWDPINS_SHIFT;
    761 	} else {
    762 		sc->sc_ctrl_ext |=
    763 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
    764 		    CTRL_EXT_SWDPIO_SHIFT;
    765 	}
    766 #endif
    767 
    768 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
    769 #if 0
    770 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
    771 #endif
    772 
    773 	/*
    774 	 * Set up some register offsets that are different between
    775 	 * the Wiseman and the Livengood and later chips.
    776 	 */
    777 	if (sc->sc_type < WM_T_LIVENGOOD) {
    778 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
    779 		sc->sc_tdt_reg = WMREG_OLD_TDT;
    780 	} else {
    781 		sc->sc_rdt_reg = WMREG_RDT;
    782 		sc->sc_tdt_reg = WMREG_TDT;
    783 	}
    784 
    785 	/*
    786 	 * Determine if we should use flow control.  We should
    787 	 * always use it, unless we're on a Wiseman < 2.1.
    788 	 */
    789 	if (sc->sc_type >= WM_T_WISEMAN_2_1)
    790 		sc->sc_ctrl |= CTRL_TFCE | CTRL_RFCE;
    791 
    792 	/*
    793 	 * Determine if we're TBI or GMII mode, and initialize the
    794 	 * media structures accordingly.
    795 	 */
    796 	if (sc->sc_type < WM_T_LIVENGOOD ||
    797 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
    798 		if (wmp->wmp_flags & WMP_F_1000T)
    799 			printf("%s: WARNING: TBIMODE set on 1000BASE-T "
    800 			    "product!\n", sc->sc_dev.dv_xname);
    801 		wm_tbi_mediainit(sc);
    802 	} else {
    803 		if (wmp->wmp_flags & WMP_F_1000X)
    804 			printf("%s: WARNING: TBIMODE clear on 1000BASE-X "
    805 			    "product!\n", sc->sc_dev.dv_xname);
    806 		wm_gmii_mediainit(sc);
    807 	}
    808 
    809 	ifp = &sc->sc_ethercom.ec_if;
    810 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    811 	ifp->if_softc = sc;
    812 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    813 	ifp->if_ioctl = wm_ioctl;
    814 	ifp->if_start = wm_start;
    815 	ifp->if_watchdog = wm_watchdog;
    816 	ifp->if_init = wm_init;
    817 	ifp->if_stop = wm_stop;
    818 	IFQ_SET_MAXLEN(&ifp->if_snd, WM_IFQUEUELEN);
    819 	IFQ_SET_READY(&ifp->if_snd);
    820 
    821 	/*
    822 	 * If we're a Livengood or greater, we can support VLANs.
    823 	 */
    824 	if (sc->sc_type >= WM_T_LIVENGOOD)
    825 		sc->sc_ethercom.ec_capabilities |=
    826 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
    827 
    828 	/*
    829 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
    830 	 * on Livengood and later.
    831 	 */
    832 	if (sc->sc_type >= WM_T_LIVENGOOD)
    833 		ifp->if_capabilities |=
    834 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    835 
    836 	/*
    837 	 * Attach the interface.
    838 	 */
    839 	if_attach(ifp);
    840 	ether_ifattach(ifp, enaddr);
    841 
    842 #ifdef WM_EVENT_COUNTERS
    843 	/* Attach event counters. */
    844 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    845 	    NULL, sc->sc_dev.dv_xname, "txsstall");
    846 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    847 	    NULL, sc->sc_dev.dv_xname, "txdstall");
    848 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
    849 	    NULL, sc->sc_dev.dv_xname, "txdw");
    850 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
    851 	    NULL, sc->sc_dev.dv_xname, "txqe");
    852 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    853 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    854 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
    855 	    NULL, sc->sc_dev.dv_xname, "linkintr");
    856 
    857 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    858 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    859 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
    860 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
    861 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    862 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    863 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
    864 	    NULL, sc->sc_dev.dv_xname, "txtusum");
    865 
    866 	for (i = 0; i < WM_NTXSEGS; i++)
    867 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
    868 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
    869 
    870 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    871 	    NULL, sc->sc_dev.dv_xname, "txdrop");
    872 
    873 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
    874 	    NULL, sc->sc_dev.dv_xname, "tu");
    875 #endif /* WM_EVENT_COUNTERS */
    876 
    877 	/*
    878 	 * Make sure the interface is shutdown during reboot.
    879 	 */
    880 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
    881 	if (sc->sc_sdhook == NULL)
    882 		printf("%s: WARNING: unable to establish shutdown hook\n",
    883 		    sc->sc_dev.dv_xname);
    884 	return;
    885 
    886 	/*
    887 	 * Free any resources we've allocated during the failed attach
    888 	 * attempt.  Do this in reverse order and fall through.
    889 	 */
    890  fail_5:
    891 	for (i = 0; i < WM_NRXDESC; i++) {
    892 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    893 			bus_dmamap_destroy(sc->sc_dmat,
    894 			    sc->sc_rxsoft[i].rxs_dmamap);
    895 	}
    896  fail_4:
    897 	for (i = 0; i < WM_TXQUEUELEN; i++) {
    898 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    899 			bus_dmamap_destroy(sc->sc_dmat,
    900 			    sc->sc_txsoft[i].txs_dmamap);
    901 	}
    902 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    903  fail_3:
    904 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    905  fail_2:
    906 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    907 	    sizeof(struct wm_control_data));
    908  fail_1:
    909 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    910  fail_0:
    911 	return;
    912 }
    913 
    914 /*
    915  * wm_shutdown:
    916  *
    917  *	Make sure the interface is stopped at reboot time.
    918  */
    919 void
    920 wm_shutdown(void *arg)
    921 {
    922 	struct wm_softc *sc = arg;
    923 
    924 	wm_stop(&sc->sc_ethercom.ec_if, 1);
    925 }
    926 
    927 /*
    928  * wm_tx_cksum:
    929  *
    930  *	Set up TCP/IP checksumming parameters for the
    931  *	specified packet.
    932  */
    933 static int
    934 wm_tx_cksum(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
    935     uint32_t *fieldsp)
    936 {
    937 	struct mbuf *m0 = txs->txs_mbuf;
    938 	struct livengood_tcpip_ctxdesc *t;
    939 	uint32_t fields = 0, tcmd = 0, ipcs, tucs;
    940 	struct ip *ip;
    941 	int offset, iphl;
    942 
    943 	/*
    944 	 * XXX It would be nice if the mbuf pkthdr had offset
    945 	 * fields for the protocol headers.
    946 	 */
    947 
    948 	/* XXX Assumes normal Ethernet encap. */
    949 	offset = ETHER_HDR_LEN;
    950 
    951 	/* XXX */
    952 	if (m0->m_len < (offset + sizeof(struct ip))) {
    953 		printf("%s: wm_tx_cksum: need to m_pullup, "
    954 		    "packet dropped\n", sc->sc_dev.dv_xname);
    955 		return (EINVAL);
    956 	}
    957 
    958 	ip = (struct ip *) (mtod(m0, caddr_t) + offset);
    959 	iphl = ip->ip_hl << 2;
    960 
    961 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    962 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
    963 		tcmd |= htole32(WTX_TCPIP_CMD_IP);
    964 		fields |= htole32(WTX_IXSM);
    965 		ipcs = htole32(WTX_TCPIP_IPCSS(offset) |
    966 		    WTX_TCPIP_IPCSO(offsetof(struct ip, ip_sum)) |
    967 		    WTX_TCPIP_IPCSE(offset + iphl - 1));
    968 	} else
    969 		ipcs = 0;
    970 
    971 	offset += iphl;
    972 
    973 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    974 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
    975 		tcmd |= htole32(WTX_TCPIP_CMD_TCP);
    976 		fields |= htole32(WTX_TXSM);
    977 		tucs = htole32(WTX_TCPIP_TUCSS(offset) |
    978 		    WTX_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
    979 		    WTX_TCPIP_TUCSE(0) /* rest of packet */);
    980 	} else
    981 		tucs = 0;
    982 
    983 	/* Fill in the context descriptor. */
    984 	t = (struct livengood_tcpip_ctxdesc *) &sc->sc_txdescs[sc->sc_txnext];
    985 	t->tcpip_ipcs = ipcs;
    986 	t->tcpip_tucs = tucs;
    987 	t->tcpip_cmdlen =
    988 	    htole32(WTX_CMD_DEXT | WTX_CMD_IDE | WTX_DTYP_C) | tcmd;
    989 	t->tcpip_seg = 0;
    990 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
    991 
    992 	sc->sc_txnext = WM_NEXTTX(sc->sc_txnext);
    993 	txs->txs_ndesc++;
    994 
    995 	*cmdp = WTX_CMD_DEXT | WTC_DTYP_D;
    996 	*fieldsp = fields;
    997 
    998 	return (0);
    999 }
   1000 
   1001 /*
   1002  * wm_start:		[ifnet interface function]
   1003  *
   1004  *	Start packet transmission on the interface.
   1005  */
   1006 void
   1007 wm_start(struct ifnet *ifp)
   1008 {
   1009 	struct wm_softc *sc = ifp->if_softc;
   1010 	struct mbuf *m0/*, *m*/;
   1011 	struct wm_txsoft *txs;
   1012 	bus_dmamap_t dmamap;
   1013 	int error, nexttx, lasttx, ofree, seg;
   1014 	uint32_t cksumcmd, cksumfields;
   1015 
   1016 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1017 		return;
   1018 
   1019 	/*
   1020 	 * Remember the previous number of free descriptors.
   1021 	 */
   1022 	ofree = sc->sc_txfree;
   1023 
   1024 	/*
   1025 	 * Loop through the send queue, setting up transmit descriptors
   1026 	 * until we drain the queue, or use up all available transmit
   1027 	 * descriptors.
   1028 	 */
   1029 	for (;;) {
   1030 		/* Grab a packet off the queue. */
   1031 		IFQ_POLL(&ifp->if_snd, m0);
   1032 		if (m0 == NULL)
   1033 			break;
   1034 
   1035 		DPRINTF(WM_DEBUG_TX,
   1036 		    ("%s: TX: have packet to transmit: %p\n",
   1037 		    sc->sc_dev.dv_xname, m0));
   1038 
   1039 		/* Get a work queue entry. */
   1040 		if (sc->sc_txsfree == 0) {
   1041 			DPRINTF(WM_DEBUG_TX,
   1042 			    ("%s: TX: no free job descriptors\n",
   1043 				sc->sc_dev.dv_xname));
   1044 			WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   1045 			break;
   1046 		}
   1047 
   1048 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1049 		dmamap = txs->txs_dmamap;
   1050 
   1051 		/*
   1052 		 * Load the DMA map.  If this fails, the packet either
   1053 		 * didn't fit in the allotted number of segments, or we
   1054 		 * were short on resources.  For the too-many-segments
   1055 		 * case, we simply report an error and drop the packet,
   1056 		 * since we can't sanely copy a jumbo packet to a single
   1057 		 * buffer.
   1058 		 */
   1059 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1060 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1061 		if (error) {
   1062 			if (error == EFBIG) {
   1063 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   1064 				printf("%s: Tx packet consumes too many "
   1065 				    "DMA segments, dropping...\n",
   1066 				    sc->sc_dev.dv_xname);
   1067 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1068 				m_freem(m0);
   1069 				continue;
   1070 			}
   1071 			/*
   1072 			 * Short on resources, just stop for now.
   1073 			 */
   1074 			DPRINTF(WM_DEBUG_TX,
   1075 			    ("%s: TX: dmamap load failed: %d\n",
   1076 			    sc->sc_dev.dv_xname, error));
   1077 			break;
   1078 		}
   1079 
   1080 		/*
   1081 		 * Ensure we have enough descriptors free to describe
   1082 		 * the packet.  Note, we always reserve one descriptor
   1083 		 * at the end of the ring due to the semantics of the
   1084 		 * TDT register, plus one more in the event we need
   1085 		 * to re-load checksum offload context.
   1086 		 */
   1087 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
   1088 			/*
   1089 			 * Not enough free descriptors to transmit this
   1090 			 * packet.  We haven't committed anything yet,
   1091 			 * so just unload the DMA map, put the packet
   1092 			 * pack on the queue, and punt.  Notify the upper
   1093 			 * layer that there are no more slots left.
   1094 			 */
   1095 			DPRINTF(WM_DEBUG_TX,
   1096 			    ("%s: TX: need %d descriptors, have %d\n",
   1097 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs,
   1098 			    sc->sc_txfree - 1));
   1099 			ifp->if_flags |= IFF_OACTIVE;
   1100 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1101 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   1102 			break;
   1103 		}
   1104 
   1105 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1106 
   1107 		/*
   1108 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1109 		 */
   1110 
   1111 		/* Sync the DMA map. */
   1112 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1113 		    BUS_DMASYNC_PREWRITE);
   1114 
   1115 		DPRINTF(WM_DEBUG_TX,
   1116 		    ("%s: TX: packet has %d DMA segments\n",
   1117 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs));
   1118 
   1119 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1120 
   1121 		/*
   1122 		 * Store a pointer to the packet so that we can free it
   1123 		 * later.
   1124 		 *
   1125 		 * Initially, we consider the number of descriptors the
   1126 		 * packet uses the number of DMA segments.  This may be
   1127 		 * incremented by 1 if we do checksum offload (a descriptor
   1128 		 * is used to set the checksum context).
   1129 		 */
   1130 		txs->txs_mbuf = m0;
   1131 		txs->txs_ndesc = dmamap->dm_nsegs;
   1132 
   1133 		/*
   1134 		 * Set up checksum offload parameters for
   1135 		 * this packet.
   1136 		 */
   1137 		if (m0->m_pkthdr.csum_flags &
   1138 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1139 			if (wm_tx_cksum(sc, txs, &cksumcmd,
   1140 					&cksumfields) != 0) {
   1141 				/* Error message already displayed. */
   1142 				m_freem(m0);
   1143 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1144 				txs->txs_mbuf = NULL;
   1145 				continue;
   1146 			}
   1147 		} else {
   1148 			cksumcmd = 0;
   1149 			cksumfields = 0;
   1150 		}
   1151 
   1152 		/*
   1153 		 * Initialize the transmit descriptor.
   1154 		 */
   1155 		for (nexttx = sc->sc_txnext, seg = 0;
   1156 		     seg < dmamap->dm_nsegs;
   1157 		     seg++, nexttx = WM_NEXTTX(nexttx)) {
   1158 			/*
   1159 			 * Note: we currently only use 32-bit DMA
   1160 			 * addresses.
   1161 			 */
   1162 			sc->sc_txdescs[nexttx].wtx_addr.wa_low =
   1163 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1164 			sc->sc_txdescs[nexttx].wtx_cmdlen = cksumcmd |
   1165 			    htole32(dmamap->dm_segs[seg].ds_len);
   1166 			sc->sc_txdescs[nexttx].wtx_fields.wtxu_bits =
   1167 			    cksumfields;
   1168 			lasttx = nexttx;
   1169 
   1170 			sc->sc_txwin++;
   1171 
   1172 			DPRINTF(WM_DEBUG_TX,
   1173 			    ("%s: TX: desc %d: low 0x%08x, len 0x%04x\n",
   1174 			    sc->sc_dev.dv_xname, nexttx,
   1175 			    (uint32_t) dmamap->dm_segs[seg].ds_addr,
   1176 			    (uint32_t) dmamap->dm_segs[seg].ds_len));
   1177 		}
   1178 
   1179 		/*
   1180 		 * Set up the command byte on the last descriptor of
   1181 		 * the packet.  If we're in the interrupt delay window,
   1182 		 * delay the interrupt.
   1183 		 */
   1184 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1185 		    htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RPS);
   1186 		if (sc->sc_txwin < (WM_NTXDESC * 2 / 3))
   1187 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1188 			    htole32(WTX_CMD_IDE);
   1189 		else
   1190 			sc->sc_txwin = 0;
   1191 
   1192 #if 0 /* XXXJRT */
   1193 		/*
   1194 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1195 		 * up the descriptor to encapsulate the packet for us.
   1196 		 *
   1197 		 * This is only valid on the last descriptor of the packet.
   1198 		 */
   1199 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1200 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
   1201 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1202 			    htole32(WTX_CMD_VLE);
   1203 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_fields.wtxu_vlan
   1204 			    = htole16(*mtod(m, int *) & 0xffff);
   1205 		}
   1206 #endif /* XXXJRT */
   1207 
   1208 		DPRINTF(WM_DEBUG_TX,
   1209 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   1210 		    lasttx, sc->sc_txdescs[lasttx].wtx_cmdlen));
   1211 
   1212 		/* Sync the descriptors we're using. */
   1213 		WM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1214 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1215 
   1216 		/* Give the packet to the chip. */
   1217 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   1218 
   1219 		DPRINTF(WM_DEBUG_TX,
   1220 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   1221 
   1222 		/*
   1223 		 * Remember that txdirty will be once the packet is
   1224 		 * done.
   1225 		 *
   1226 		 * Note: If we're doing checksum offload, we are actually
   1227 		 * using one descriptor before firstdesc, but it doesn't
   1228 		 * really matter.
   1229 		 */
   1230 		txs->txs_firstdesc = sc->sc_txnext;
   1231 		txs->txs_lastdesc = lasttx;
   1232 
   1233 		DPRINTF(WM_DEBUG_TX,
   1234 		    ("%s: TX: finished transmitting packet, job %d\n",
   1235 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   1236 
   1237 		/* Advance the tx pointer. */
   1238 		sc->sc_txfree -= txs->txs_ndesc;
   1239 		sc->sc_txnext = nexttx;
   1240 
   1241 		sc->sc_txsfree--;
   1242 		sc->sc_txsnext = WM_NEXTTXS(sc->sc_txsnext);
   1243 
   1244 #if NBPFILTER > 0
   1245 		/* Pass the packet to any BPF listeners. */
   1246 		if (ifp->if_bpf)
   1247 			bpf_mtap(ifp->if_bpf, m0);
   1248 #endif /* NBPFILTER > 0 */
   1249 	}
   1250 
   1251 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
   1252 		/* No more slots; notify upper layer. */
   1253 		ifp->if_flags |= IFF_OACTIVE;
   1254 	}
   1255 
   1256 	if (sc->sc_txfree != ofree) {
   1257 		/* Set a watchdog timer in case the chip flakes out. */
   1258 		ifp->if_timer = 5;
   1259 	}
   1260 }
   1261 
   1262 /*
   1263  * wm_watchdog:		[ifnet interface function]
   1264  *
   1265  *	Watchdog timer handler.
   1266  */
   1267 void
   1268 wm_watchdog(struct ifnet *ifp)
   1269 {
   1270 	struct wm_softc *sc = ifp->if_softc;
   1271 
   1272 	/*
   1273 	 * Since we're using delayed interrupts, sweep up
   1274 	 * before we report an error.
   1275 	 */
   1276 	wm_txintr(sc);
   1277 
   1278 	if (sc->sc_txfree != WM_NTXDESC) {
   1279 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1280 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   1281 		    sc->sc_txnext);
   1282 		ifp->if_oerrors++;
   1283 
   1284 		/* Reset the interface. */
   1285 		(void) wm_init(ifp);
   1286 	}
   1287 
   1288 	/* Try to get more packets going. */
   1289 	wm_start(ifp);
   1290 }
   1291 
   1292 /*
   1293  * wm_ioctl:		[ifnet interface function]
   1294  *
   1295  *	Handle control requests from the operator.
   1296  */
   1297 int
   1298 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1299 {
   1300 	struct wm_softc *sc = ifp->if_softc;
   1301 	struct ifreq *ifr = (struct ifreq *) data;
   1302 	int s, error;
   1303 
   1304 	s = splnet();
   1305 
   1306 	switch (cmd) {
   1307 	case SIOCSIFMEDIA:
   1308 	case SIOCGIFMEDIA:
   1309 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1310 		break;
   1311 
   1312 	default:
   1313 		error = ether_ioctl(ifp, cmd, data);
   1314 		if (error == ENETRESET) {
   1315 			/*
   1316 			 * Multicast list has changed; set the hardware filter
   1317 			 * accordingly.
   1318 			 */
   1319 			wm_set_filter(sc);
   1320 			error = 0;
   1321 		}
   1322 		break;
   1323 	}
   1324 
   1325 	/* Try to get more packets going. */
   1326 	wm_start(ifp);
   1327 
   1328 	splx(s);
   1329 	return (error);
   1330 }
   1331 
   1332 /*
   1333  * wm_intr:
   1334  *
   1335  *	Interrupt service routine.
   1336  */
   1337 int
   1338 wm_intr(void *arg)
   1339 {
   1340 	struct wm_softc *sc = arg;
   1341 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1342 	uint32_t icr;
   1343 	int wantinit, handled = 0;
   1344 
   1345 	for (wantinit = 0; wantinit == 0;) {
   1346 		icr = CSR_READ(sc, WMREG_ICR);
   1347 		if ((icr & sc->sc_icr) == 0)
   1348 			break;
   1349 
   1350 		handled = 1;
   1351 
   1352 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1353 			DPRINTF(WM_DEBUG_RX,
   1354 			    ("%s: RX: got Rx intr 0x%08x\n",
   1355 			    sc->sc_dev.dv_xname,
   1356 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1357 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
   1358 			wm_rxintr(sc);
   1359 		}
   1360 
   1361 		if (icr & (ICR_TXDW|ICR_TXQE)) {
   1362 			DPRINTF(WM_DEBUG_TX,
   1363 			    ("%s: TX: got TDXW|TXQE interrupt\n",
   1364 			    sc->sc_dev.dv_xname));
   1365 #ifdef WM_EVENT_COUNTERS
   1366 			if (icr & ICR_TXDW)
   1367 				WM_EVCNT_INCR(&sc->sc_ev_txdw);
   1368 			else if (icr & ICR_TXQE)
   1369 				WM_EVCNT_INCR(&sc->sc_ev_txqe);
   1370 #endif
   1371 			wm_txintr(sc);
   1372 		}
   1373 
   1374 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
   1375 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
   1376 			wm_linkintr(sc, icr);
   1377 		}
   1378 
   1379 		if (icr & ICR_RXO) {
   1380 			printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
   1381 			wantinit = 1;
   1382 		}
   1383 	}
   1384 
   1385 	if (handled) {
   1386 		if (wantinit)
   1387 			wm_init(ifp);
   1388 
   1389 		/* Try to get more packets going. */
   1390 		wm_start(ifp);
   1391 	}
   1392 
   1393 	return (handled);
   1394 }
   1395 
   1396 /*
   1397  * wm_txintr:
   1398  *
   1399  *	Helper; handle transmit interrupts.
   1400  */
   1401 void
   1402 wm_txintr(struct wm_softc *sc)
   1403 {
   1404 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1405 	struct wm_txsoft *txs;
   1406 	uint8_t status;
   1407 	int i;
   1408 
   1409 	ifp->if_flags &= ~IFF_OACTIVE;
   1410 
   1411 	/*
   1412 	 * Go through the Tx list and free mbufs for those
   1413 	 * frams which have been transmitted.
   1414 	 */
   1415 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN;
   1416 	     i = WM_NEXTTXS(i), sc->sc_txsfree++) {
   1417 		txs = &sc->sc_txsoft[i];
   1418 
   1419 		DPRINTF(WM_DEBUG_TX,
   1420 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   1421 
   1422 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1423 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1424 
   1425 		status = le32toh(sc->sc_txdescs[
   1426 		    txs->txs_lastdesc].wtx_fields.wtxu_bits);
   1427 		if ((status & WTX_ST_DD) == 0)
   1428 			break;
   1429 
   1430 		DPRINTF(WM_DEBUG_TX,
   1431 		    ("%s: TX: job %d done: descs %d..%d\n",
   1432 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   1433 		    txs->txs_lastdesc));
   1434 
   1435 		/*
   1436 		 * XXX We should probably be using the statistics
   1437 		 * XXX registers, but I don't know if they exist
   1438 		 * XXX on chips before the Cordova.
   1439 		 */
   1440 
   1441 #ifdef WM_EVENT_COUNTERS
   1442 		if (status & WTX_ST_TU)
   1443 			WM_EVCNT_INCR(&sc->sc_ev_tu);
   1444 #endif /* WM_EVENT_COUNTERS */
   1445 
   1446 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
   1447 			ifp->if_oerrors++;
   1448 			if (status & WTX_ST_LC)
   1449 				printf("%s: late collision\n",
   1450 				    sc->sc_dev.dv_xname);
   1451 			else if (status & WTX_ST_EC) {
   1452 				ifp->if_collisions += 16;
   1453 				printf("%s: excessive collisions\n",
   1454 				    sc->sc_dev.dv_xname);
   1455 			}
   1456 		} else
   1457 			ifp->if_opackets++;
   1458 
   1459 		sc->sc_txfree += txs->txs_ndesc;
   1460 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1461 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1462 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1463 		m_freem(txs->txs_mbuf);
   1464 		txs->txs_mbuf = NULL;
   1465 	}
   1466 
   1467 	/* Update the dirty transmit buffer pointer. */
   1468 	sc->sc_txsdirty = i;
   1469 	DPRINTF(WM_DEBUG_TX,
   1470 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   1471 
   1472 	/*
   1473 	 * If there are no more pending transmissions, cancel the watchdog
   1474 	 * timer.
   1475 	 */
   1476 	if (sc->sc_txsfree == WM_TXQUEUELEN)
   1477 		ifp->if_timer = 0;
   1478 	if (sc->sc_txfree == WM_NTXDESC)
   1479 		sc->sc_txwin = 0;
   1480 }
   1481 
   1482 /*
   1483  * wm_rxintr:
   1484  *
   1485  *	Helper; handle receive interrupts.
   1486  */
   1487 void
   1488 wm_rxintr(struct wm_softc *sc)
   1489 {
   1490 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1491 	struct wm_rxsoft *rxs;
   1492 	struct mbuf *m;
   1493 	int i, len;
   1494 	uint8_t status, errors;
   1495 
   1496 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
   1497 		rxs = &sc->sc_rxsoft[i];
   1498 
   1499 		DPRINTF(WM_DEBUG_RX,
   1500 		    ("%s: RX: checking descriptor %d\n",
   1501 		    sc->sc_dev.dv_xname, i));
   1502 
   1503 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1504 
   1505 		status = sc->sc_rxdescs[i].wrx_status;
   1506 		errors = sc->sc_rxdescs[i].wrx_errors;
   1507 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
   1508 
   1509 		if ((status & WRX_ST_DD) == 0) {
   1510 			/*
   1511 			 * We have processed all of the receive descriptors.
   1512 			 */
   1513 			break;
   1514 		}
   1515 
   1516 		if (__predict_false(sc->sc_rxdiscard)) {
   1517 			DPRINTF(WM_DEBUG_RX,
   1518 			    ("%s: RX: discarding contents of descriptor %d\n",
   1519 			    sc->sc_dev.dv_xname, i));
   1520 			WM_INIT_RXDESC(sc, i);
   1521 			if (status & WRX_ST_EOP) {
   1522 				/* Reset our state. */
   1523 				DPRINTF(WM_DEBUG_RX,
   1524 				    ("%s: RX: resetting rxdiscard -> 0\n",
   1525 				    sc->sc_dev.dv_xname));
   1526 				sc->sc_rxdiscard = 0;
   1527 			}
   1528 			continue;
   1529 		}
   1530 
   1531 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1532 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1533 
   1534 		m = rxs->rxs_mbuf;
   1535 
   1536 		/*
   1537 		 * Add a new receive buffer to the ring.
   1538 		 */
   1539 		if (wm_add_rxbuf(sc, i) != 0) {
   1540 			/*
   1541 			 * Failed, throw away what we've done so
   1542 			 * far, and discard the rest of the packet.
   1543 			 */
   1544 			ifp->if_ierrors++;
   1545 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1546 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1547 			WM_INIT_RXDESC(sc, i);
   1548 			if ((status & WRX_ST_EOP) == 0)
   1549 				sc->sc_rxdiscard = 1;
   1550 			if (sc->sc_rxhead != NULL)
   1551 				m_freem(sc->sc_rxhead);
   1552 			WM_RXCHAIN_RESET(sc);
   1553 			DPRINTF(WM_DEBUG_RX,
   1554 			    ("%s: RX: Rx buffer allocation failed, "
   1555 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   1556 			    sc->sc_rxdiscard ? " (discard)" : ""));
   1557 			continue;
   1558 		}
   1559 
   1560 		WM_RXCHAIN_LINK(sc, m);
   1561 
   1562 		m->m_len = len;
   1563 
   1564 		DPRINTF(WM_DEBUG_RX,
   1565 		    ("%s: RX: buffer at %p len %d\n",
   1566 		    sc->sc_dev.dv_xname, m->m_data, len));
   1567 
   1568 		/*
   1569 		 * If this is not the end of the packet, keep
   1570 		 * looking.
   1571 		 */
   1572 		if ((status & WRX_ST_EOP) == 0) {
   1573 			sc->sc_rxlen += len;
   1574 			DPRINTF(WM_DEBUG_RX,
   1575 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   1576 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   1577 			continue;
   1578 		}
   1579 
   1580 		/*
   1581 		 * Okay, we have the entire packet now...
   1582 		 */
   1583 		*sc->sc_rxtailp = NULL;
   1584 		m = sc->sc_rxhead;
   1585 		len += sc->sc_rxlen;
   1586 
   1587 		WM_RXCHAIN_RESET(sc);
   1588 
   1589 		DPRINTF(WM_DEBUG_RX,
   1590 		    ("%s: RX: have entire packet, len -> %d\n",
   1591 		    sc->sc_dev.dv_xname, len));
   1592 
   1593 		/*
   1594 		 * If an error occurred, update stats and drop the packet.
   1595 		 */
   1596 		if (errors &
   1597 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
   1598 			ifp->if_ierrors++;
   1599 			if (errors & WRX_ER_SE)
   1600 				printf("%s: symbol error\n",
   1601 				    sc->sc_dev.dv_xname);
   1602 			else if (errors & WRX_ER_SEQ)
   1603 				printf("%s: receive sequence error\n",
   1604 				    sc->sc_dev.dv_xname);
   1605 			else if (errors & WRX_ER_CE)
   1606 				printf("%s: CRC error\n",
   1607 				    sc->sc_dev.dv_xname);
   1608 			m_freem(m);
   1609 			continue;
   1610 		}
   1611 
   1612 		/*
   1613 		 * No errors.  Receive the packet.
   1614 		 *
   1615 		 * Note, we have configured the chip to include the
   1616 		 * CRC with every packet.
   1617 		 */
   1618 		m->m_flags |= M_HASFCS;
   1619 		m->m_pkthdr.rcvif = ifp;
   1620 		m->m_pkthdr.len = len;
   1621 
   1622 #if 0 /* XXXJRT */
   1623 		/*
   1624 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1625 		 * for us.  Associate the tag with the packet.
   1626 		 */
   1627 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1628 		    (status & WRX_ST_VP) != 0) {
   1629 			struct mbuf *vtag;
   1630 
   1631 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
   1632 			if (vtag == NULL) {
   1633 				ifp->if_ierrors++;
   1634 				printf("%s: unable to allocate VLAN tag\n",
   1635 				    sc->sc_dev.dv_xname);
   1636 				m_freem(m);
   1637 				continue;
   1638 			}
   1639 
   1640 			*mtod(m, int *) =
   1641 			    le16toh(sc->sc_rxdescs[i].wrx_special);
   1642 			vtag->m_len = sizeof(int);
   1643 		}
   1644 #endif /* XXXJRT */
   1645 
   1646 		/*
   1647 		 * Set up checksum info for this packet.
   1648 		 */
   1649 		if (status & WRX_ST_IPCS) {
   1650 			WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1651 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1652 			if (errors & WRX_ER_IPE)
   1653 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1654 		}
   1655 		if (status & WRX_ST_TCPCS) {
   1656 			/*
   1657 			 * Note: we don't know if this was TCP or UDP,
   1658 			 * so we just set both bits, and expect the
   1659 			 * upper layers to deal.
   1660 			 */
   1661 			WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
   1662 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   1663 			if (errors & WRX_ER_TCPE)
   1664 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1665 		}
   1666 
   1667 		ifp->if_ipackets++;
   1668 
   1669 #if NBPFILTER > 0
   1670 		/* Pass this up to any BPF listeners. */
   1671 		if (ifp->if_bpf)
   1672 			bpf_mtap(ifp->if_bpf, m);
   1673 #endif /* NBPFILTER > 0 */
   1674 
   1675 		/* Pass it on. */
   1676 		(*ifp->if_input)(ifp, m);
   1677 	}
   1678 
   1679 	/* Update the receive pointer. */
   1680 	sc->sc_rxptr = i;
   1681 
   1682 	DPRINTF(WM_DEBUG_RX,
   1683 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   1684 }
   1685 
   1686 /*
   1687  * wm_linkintr:
   1688  *
   1689  *	Helper; handle link interrupts.
   1690  */
   1691 void
   1692 wm_linkintr(struct wm_softc *sc, uint32_t icr)
   1693 {
   1694 	uint32_t status;
   1695 
   1696 	/*
   1697 	 * If we get a link status interrupt on a 1000BASE-T
   1698 	 * device, just fall into the normal MII tick path.
   1699 	 */
   1700 	if (sc->sc_flags & WM_F_HAS_MII) {
   1701 		if (icr & ICR_LSC) {
   1702 			DPRINTF(WM_DEBUG_LINK,
   1703 			    ("%s: LINK: LSC -> mii_tick\n",
   1704 			    sc->sc_dev.dv_xname));
   1705 			mii_tick(&sc->sc_mii);
   1706 		} else if (icr & ICR_RXSEQ) {
   1707 			DPRINTF(WM_DEBUG_LINK,
   1708 			    ("%s: LINK Receive sequence error\n",
   1709 			    sc->sc_dev.dv_xname));
   1710 		}
   1711 		return;
   1712 	}
   1713 
   1714 	/*
   1715 	 * If we are now receiving /C/, check for link again in
   1716 	 * a couple of link clock ticks.
   1717 	 */
   1718 	if (icr & ICR_RXCFG) {
   1719 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
   1720 		    sc->sc_dev.dv_xname));
   1721 		sc->sc_tbi_anstate = 2;
   1722 	}
   1723 
   1724 	if (icr & ICR_LSC) {
   1725 		status = CSR_READ(sc, WMREG_STATUS);
   1726 		if (status & STATUS_LU) {
   1727 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
   1728 			    sc->sc_dev.dv_xname,
   1729 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   1730 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   1731 			if (status & STATUS_FD)
   1732 				sc->sc_tctl |=
   1733 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   1734 			else
   1735 				sc->sc_tctl |=
   1736 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   1737 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   1738 			sc->sc_tbi_linkup = 1;
   1739 		} else {
   1740 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   1741 			    sc->sc_dev.dv_xname));
   1742 			sc->sc_tbi_linkup = 0;
   1743 		}
   1744 		sc->sc_tbi_anstate = 2;
   1745 		wm_tbi_set_linkled(sc);
   1746 	} else if (icr & ICR_RXSEQ) {
   1747 		DPRINTF(WM_DEBUG_LINK,
   1748 		    ("%s: LINK: Receive sequence error\n",
   1749 		    sc->sc_dev.dv_xname));
   1750 	}
   1751 }
   1752 
   1753 /*
   1754  * wm_tick:
   1755  *
   1756  *	One second timer, used to check link status, sweep up
   1757  *	completed transmit jobs, etc.
   1758  */
   1759 void
   1760 wm_tick(void *arg)
   1761 {
   1762 	struct wm_softc *sc = arg;
   1763 	int s;
   1764 
   1765 	s = splnet();
   1766 
   1767 	if (sc->sc_flags & WM_F_HAS_MII)
   1768 		mii_tick(&sc->sc_mii);
   1769 	else
   1770 		wm_tbi_check_link(sc);
   1771 
   1772 	splx(s);
   1773 
   1774 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   1775 }
   1776 
   1777 /*
   1778  * wm_reset:
   1779  *
   1780  *	Reset the i82542 chip.
   1781  */
   1782 void
   1783 wm_reset(struct wm_softc *sc)
   1784 {
   1785 	int i;
   1786 
   1787 	CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   1788 	delay(10000);
   1789 
   1790 	for (i = 0; i < 1000; i++) {
   1791 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
   1792 			return;
   1793 		delay(20);
   1794 	}
   1795 
   1796 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
   1797 		printf("%s: WARNING: reset failed to complete\n",
   1798 		    sc->sc_dev.dv_xname);
   1799 }
   1800 
   1801 /*
   1802  * wm_init:		[ifnet interface function]
   1803  *
   1804  *	Initialize the interface.  Must be called at splnet().
   1805  */
   1806 int
   1807 wm_init(struct ifnet *ifp)
   1808 {
   1809 	struct wm_softc *sc = ifp->if_softc;
   1810 	struct wm_rxsoft *rxs;
   1811 	int i, error = 0;
   1812 	uint32_t reg;
   1813 
   1814 	/* Cancel any pending I/O. */
   1815 	wm_stop(ifp, 0);
   1816 
   1817 	/* Reset the chip to a known state. */
   1818 	wm_reset(sc);
   1819 
   1820 	/* Initialize the transmit descriptor ring. */
   1821 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1822 	WM_CDTXSYNC(sc, 0, WM_NTXDESC,
   1823 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1824 	sc->sc_txfree = WM_NTXDESC;
   1825 	sc->sc_txnext = 0;
   1826 	sc->sc_txwin = 0;
   1827 
   1828 	if (sc->sc_type < WM_T_LIVENGOOD) {
   1829 		CSR_WRITE(sc, WMREG_OLD_TBDAH, 0);
   1830 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR(sc, 0));
   1831 		CSR_WRITE(sc, WMREG_OLD_TDLEN, sizeof(sc->sc_txdescs));
   1832 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
   1833 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
   1834 		CSR_WRITE(sc, WMREG_OLD_TIDV, 64);
   1835 	} else {
   1836 		CSR_WRITE(sc, WMREG_TBDAH, 0);
   1837 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR(sc, 0));
   1838 		CSR_WRITE(sc, WMREG_TDLEN, sizeof(sc->sc_txdescs));
   1839 		CSR_WRITE(sc, WMREG_TDH, 0);
   1840 		CSR_WRITE(sc, WMREG_TDT, 0);
   1841 		CSR_WRITE(sc, WMREG_TIDV, 64);
   1842 
   1843 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
   1844 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   1845 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
   1846 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
   1847 	}
   1848 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
   1849 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
   1850 
   1851 	/* Initialize the transmit job descriptors. */
   1852 	for (i = 0; i < WM_TXQUEUELEN; i++)
   1853 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1854 	sc->sc_txsfree = WM_TXQUEUELEN;
   1855 	sc->sc_txsnext = 0;
   1856 	sc->sc_txsdirty = 0;
   1857 
   1858 	/*
   1859 	 * Initialize the receive descriptor and receive job
   1860 	 * descriptor rings.
   1861 	 */
   1862 	if (sc->sc_type < WM_T_LIVENGOOD) {
   1863 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, 0);
   1864 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR(sc, 0));
   1865 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
   1866 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
   1867 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
   1868 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 64 | RDTR_FPD);
   1869 
   1870 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
   1871 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
   1872 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
   1873 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
   1874 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
   1875 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
   1876 	} else {
   1877 		CSR_WRITE(sc, WMREG_RDBAH, 0);
   1878 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR(sc, 0));
   1879 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
   1880 		CSR_WRITE(sc, WMREG_RDH, 0);
   1881 		CSR_WRITE(sc, WMREG_RDT, 0);
   1882 		CSR_WRITE(sc, WMREG_RDTR, 64 | RDTR_FPD);
   1883 	}
   1884 	for (i = 0; i < WM_NRXDESC; i++) {
   1885 		rxs = &sc->sc_rxsoft[i];
   1886 		if (rxs->rxs_mbuf == NULL) {
   1887 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
   1888 				printf("%s: unable to allocate or map rx "
   1889 				    "buffer %d, error = %d\n",
   1890 				    sc->sc_dev.dv_xname, i, error);
   1891 				/*
   1892 				 * XXX Should attempt to run with fewer receive
   1893 				 * XXX buffers instead of just failing.
   1894 				 */
   1895 				wm_rxdrain(sc);
   1896 				goto out;
   1897 			}
   1898 		} else
   1899 			WM_INIT_RXDESC(sc, i);
   1900 	}
   1901 	sc->sc_rxptr = 0;
   1902 	sc->sc_rxdiscard = 0;
   1903 	WM_RXCHAIN_RESET(sc);
   1904 
   1905 	/*
   1906 	 * Clear out the VLAN table -- we don't use it (yet).
   1907 	 */
   1908 	CSR_WRITE(sc, WMREG_VET, 0);
   1909 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
   1910 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
   1911 
   1912 	/*
   1913 	 * Set up flow-control parameters.
   1914 	 *
   1915 	 * XXX Values could probably stand some tuning.
   1916 	 */
   1917 	if (sc->sc_ctrl & (CTRL_RFCE|CTRL_TFCE)) {
   1918 		CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
   1919 		CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
   1920 		CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
   1921 
   1922 		if (sc->sc_type < WM_T_LIVENGOOD) {
   1923 			CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
   1924 			CSR_WRITE(sc, WMREG_OLD_FCRTL, FCRTL_DFLT);
   1925 		} else {
   1926 			CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
   1927 			CSR_WRITE(sc, WMREG_FCRTL, FCRTL_DFLT);
   1928 		}
   1929 		CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
   1930 	}
   1931 
   1932 #if 0 /* XXXJRT */
   1933 	/* Deal with VLAN enables. */
   1934 	if (sc->sc_ethercom.ec_nvlans != 0)
   1935 		sc->sc_ctrl |= CTRL_VME;
   1936 	else
   1937 #endif /* XXXJRT */
   1938 		sc->sc_ctrl &= ~CTRL_VME;
   1939 
   1940 	/* Write the control registers. */
   1941 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   1942 #if 0
   1943 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   1944 #endif
   1945 
   1946 	/*
   1947 	 * Set up checksum offload parameters.
   1948 	 */
   1949 	reg = CSR_READ(sc, WMREG_RXCSUM);
   1950 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
   1951 		reg |= RXCSUM_IPOFL;
   1952 	else
   1953 		reg &= ~RXCSUM_IPOFL;
   1954 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
   1955 		reg |= RXCSUM_TUOFL;
   1956 	else
   1957 		reg &= ~RXCSUM_TUOFL;
   1958 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
   1959 
   1960 	/*
   1961 	 * Set up the interrupt registers.
   1962 	 */
   1963 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   1964 	sc->sc_icr = ICR_TXDW | ICR_TXQE | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   1965 	    ICR_RXO | ICR_RXT0;
   1966 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
   1967 		sc->sc_icr |= ICR_RXCFG;
   1968 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
   1969 
   1970 	/* Set up the inter-packet gap. */
   1971 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   1972 
   1973 #if 0 /* XXXJRT */
   1974 	/* Set the VLAN ethernetype. */
   1975 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
   1976 #endif
   1977 
   1978 	/*
   1979 	 * Set up the transmit control register; we start out with
   1980 	 * a collision distance suitable for FDX, but update it whe
   1981 	 * we resolve the media type.
   1982 	 */
   1983 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
   1984 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   1985 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   1986 
   1987 	/* Set the media. */
   1988 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
   1989 
   1990 	/*
   1991 	 * Set up the receive control register; we actually program
   1992 	 * the register when we set the receive filter.  Use multicast
   1993 	 * address offset type 0.
   1994 	 *
   1995 	 * Only the Cordova has the ability to strip the incoming
   1996 	 * CRC, so we don't enable that feature.
   1997 	 */
   1998 	sc->sc_mchash_type = 0;
   1999 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_2k |
   2000 	    RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
   2001 
   2002 	/* Set the receive filter. */
   2003 	wm_set_filter(sc);
   2004 
   2005 	/* Start the one second link check clock. */
   2006 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2007 
   2008 	/* ...all done! */
   2009 	ifp->if_flags |= IFF_RUNNING;
   2010 	ifp->if_flags &= ~IFF_OACTIVE;
   2011 
   2012  out:
   2013 	if (error)
   2014 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2015 	return (error);
   2016 }
   2017 
   2018 /*
   2019  * wm_rxdrain:
   2020  *
   2021  *	Drain the receive queue.
   2022  */
   2023 void
   2024 wm_rxdrain(struct wm_softc *sc)
   2025 {
   2026 	struct wm_rxsoft *rxs;
   2027 	int i;
   2028 
   2029 	for (i = 0; i < WM_NRXDESC; i++) {
   2030 		rxs = &sc->sc_rxsoft[i];
   2031 		if (rxs->rxs_mbuf != NULL) {
   2032 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2033 			m_freem(rxs->rxs_mbuf);
   2034 			rxs->rxs_mbuf = NULL;
   2035 		}
   2036 	}
   2037 }
   2038 
   2039 /*
   2040  * wm_stop:		[ifnet interface function]
   2041  *
   2042  *	Stop transmission on the interface.
   2043  */
   2044 void
   2045 wm_stop(struct ifnet *ifp, int disable)
   2046 {
   2047 	struct wm_softc *sc = ifp->if_softc;
   2048 	struct wm_txsoft *txs;
   2049 	int i;
   2050 
   2051 	/* Stop the one second clock. */
   2052 	callout_stop(&sc->sc_tick_ch);
   2053 
   2054 	if (sc->sc_flags & WM_F_HAS_MII) {
   2055 		/* Down the MII. */
   2056 		mii_down(&sc->sc_mii);
   2057 	}
   2058 
   2059 	/* Stop the transmit and receive processes. */
   2060 	CSR_WRITE(sc, WMREG_TCTL, 0);
   2061 	CSR_WRITE(sc, WMREG_RCTL, 0);
   2062 
   2063 	/* Release any queued transmit buffers. */
   2064 	for (i = 0; i < WM_TXQUEUELEN; i++) {
   2065 		txs = &sc->sc_txsoft[i];
   2066 		if (txs->txs_mbuf != NULL) {
   2067 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2068 			m_freem(txs->txs_mbuf);
   2069 			txs->txs_mbuf = NULL;
   2070 		}
   2071 	}
   2072 
   2073 	if (disable)
   2074 		wm_rxdrain(sc);
   2075 
   2076 	/* Mark the interface as down and cancel the watchdog timer. */
   2077 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2078 	ifp->if_timer = 0;
   2079 }
   2080 
   2081 /*
   2082  * wm_read_eeprom:
   2083  *
   2084  *	Read data from the serial EEPROM.
   2085  */
   2086 void
   2087 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   2088 {
   2089 	uint32_t reg;
   2090 	int i, x;
   2091 
   2092 	for (i = 0; i < wordcnt; i++) {
   2093 		/* Send CHIP SELECT for one clock tick. */
   2094 		CSR_WRITE(sc, WMREG_EECD, EECD_CS);
   2095 		delay(2);
   2096 
   2097 		/* Shift in the READ command. */
   2098 		for (x = 3; x > 0; x--) {
   2099 			reg = EECD_CS;
   2100 			if (UWIRE_OPC_READ & (1 << (x - 1)))
   2101 				reg |= EECD_DI;
   2102 			CSR_WRITE(sc, WMREG_EECD, reg);
   2103 			delay(2);
   2104 			CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2105 			delay(2);
   2106 			CSR_WRITE(sc, WMREG_EECD, reg);
   2107 			delay(2);
   2108 		}
   2109 
   2110 		/* Shift in address. */
   2111 		for (x = 6; x > 0; x--) {
   2112 			reg = EECD_CS;
   2113 			if ((word + i) & (1 << (x - 1)))
   2114 				reg |= EECD_DI;
   2115 			CSR_WRITE(sc, WMREG_EECD, reg);
   2116 			delay(2);
   2117 			CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2118 			delay(2);
   2119 			CSR_WRITE(sc, WMREG_EECD, reg);
   2120 			delay(2);
   2121 		}
   2122 
   2123 		/* Shift out the data. */
   2124 		reg = EECD_CS;
   2125 		data[i] = 0;
   2126 		for (x = 16; x > 0; x--) {
   2127 			CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2128 			delay(2);
   2129 			if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
   2130 				data[i] |= (1 << (x - 1));
   2131 			CSR_WRITE(sc, WMREG_EECD, reg);
   2132 			delay(2);
   2133 		}
   2134 
   2135 		/* Clear CHIP SELECT. */
   2136 		CSR_WRITE(sc, WMREG_EECD, 0);
   2137 	}
   2138 }
   2139 
   2140 /*
   2141  * wm_add_rxbuf:
   2142  *
   2143  *	Add a receive buffer to the indiciated descriptor.
   2144  */
   2145 int
   2146 wm_add_rxbuf(struct wm_softc *sc, int idx)
   2147 {
   2148 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2149 	struct mbuf *m;
   2150 	int error;
   2151 
   2152 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2153 	if (m == NULL)
   2154 		return (ENOBUFS);
   2155 
   2156 	MCLGET(m, M_DONTWAIT);
   2157 	if ((m->m_flags & M_EXT) == 0) {
   2158 		m_freem(m);
   2159 		return (ENOBUFS);
   2160 	}
   2161 
   2162 	if (rxs->rxs_mbuf != NULL)
   2163 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2164 
   2165 	rxs->rxs_mbuf = m;
   2166 
   2167 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2168 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2169 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2170 	if (error) {
   2171 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   2172 		    sc->sc_dev.dv_xname, idx, error);
   2173 		panic("wm_add_rxbuf");	/* XXX XXX XXX */
   2174 	}
   2175 
   2176 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2177 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2178 
   2179 	WM_INIT_RXDESC(sc, idx);
   2180 
   2181 	return (0);
   2182 }
   2183 
   2184 /*
   2185  * wm_set_ral:
   2186  *
   2187  *	Set an entery in the receive address list.
   2188  */
   2189 static void
   2190 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
   2191 {
   2192 	uint32_t ral_lo, ral_hi;
   2193 
   2194 	if (enaddr != NULL) {
   2195 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   2196 		    (enaddr[3] << 24);
   2197 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   2198 		ral_hi |= RAL_AV;
   2199 	} else {
   2200 		ral_lo = 0;
   2201 		ral_hi = 0;
   2202 	}
   2203 
   2204 	if (sc->sc_type >= WM_T_CORDOVA) {
   2205 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
   2206 		    ral_lo);
   2207 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
   2208 		    ral_hi);
   2209 	} else {
   2210 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
   2211 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
   2212 	}
   2213 }
   2214 
   2215 /*
   2216  * wm_mchash:
   2217  *
   2218  *	Compute the hash of the multicast address for the 4096-bit
   2219  *	multicast filter.
   2220  */
   2221 static uint32_t
   2222 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
   2223 {
   2224 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   2225 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   2226 	uint32_t hash;
   2227 
   2228 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   2229 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   2230 
   2231 	return (hash & 0xfff);
   2232 }
   2233 
   2234 /*
   2235  * wm_set_filter:
   2236  *
   2237  *	Set up the receive filter.
   2238  */
   2239 void
   2240 wm_set_filter(struct wm_softc *sc)
   2241 {
   2242 	struct ethercom *ec = &sc->sc_ethercom;
   2243 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2244 	struct ether_multi *enm;
   2245 	struct ether_multistep step;
   2246 	bus_addr_t mta_reg;
   2247 	uint32_t hash, reg, bit;
   2248 	int i;
   2249 
   2250 	if (sc->sc_type >= WM_T_CORDOVA)
   2251 		mta_reg = WMREG_CORDOVA_MTA;
   2252 	else
   2253 		mta_reg = WMREG_MTA;
   2254 
   2255 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   2256 
   2257 	if (ifp->if_flags & IFF_BROADCAST)
   2258 		sc->sc_rctl |= RCTL_BAM;
   2259 	if (ifp->if_flags & IFF_PROMISC) {
   2260 		sc->sc_rctl |= RCTL_UPE;
   2261 		goto allmulti;
   2262 	}
   2263 
   2264 	/*
   2265 	 * Set the station address in the first RAL slot, and
   2266 	 * clear the remaining slots.
   2267 	 */
   2268 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
   2269 	for (i = 1; i < WM_RAL_TABSIZE; i++)
   2270 		wm_set_ral(sc, NULL, i);
   2271 
   2272 	/* Clear out the multicast table. */
   2273 	for (i = 0; i < WM_MC_TABSIZE; i++)
   2274 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
   2275 
   2276 	ETHER_FIRST_MULTI(step, ec, enm);
   2277 	while (enm != NULL) {
   2278 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2279 			/*
   2280 			 * We must listen to a range of multicast addresses.
   2281 			 * For now, just accept all multicasts, rather than
   2282 			 * trying to set only those filter bits needed to match
   2283 			 * the range.  (At this time, the only use of address
   2284 			 * ranges is for IP multicast routing, for which the
   2285 			 * range is big enough to require all bits set.)
   2286 			 */
   2287 			goto allmulti;
   2288 		}
   2289 
   2290 		hash = wm_mchash(sc, enm->enm_addrlo);
   2291 
   2292 		reg = (hash >> 5) & 0x7f;
   2293 		bit = hash & 0x1f;
   2294 
   2295 		hash = CSR_READ(sc, mta_reg + (reg << 2));
   2296 		hash |= 1U << bit;
   2297 
   2298 		/* XXX Hardware bug?? */
   2299 		if (sc->sc_type == WM_T_CORDOVA && (reg & 0xe) == 1) {
   2300 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
   2301 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   2302 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
   2303 		} else
   2304 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   2305 
   2306 		ETHER_NEXT_MULTI(step, enm);
   2307 	}
   2308 
   2309 	ifp->if_flags &= ~IFF_ALLMULTI;
   2310 	goto setit;
   2311 
   2312  allmulti:
   2313 	ifp->if_flags |= IFF_ALLMULTI;
   2314 	sc->sc_rctl |= RCTL_MPE;
   2315 
   2316  setit:
   2317 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
   2318 }
   2319 
   2320 /*
   2321  * wm_tbi_mediainit:
   2322  *
   2323  *	Initialize media for use on 1000BASE-X devices.
   2324  */
   2325 void
   2326 wm_tbi_mediainit(struct wm_softc *sc)
   2327 {
   2328 	const char *sep = "";
   2329 
   2330 	if (sc->sc_type < WM_T_LIVENGOOD)
   2331 		sc->sc_tipg = TIPG_WM_DFLT;
   2332 	else
   2333 		sc->sc_tipg = TIPG_LG_DFLT;
   2334 
   2335 	ifmedia_init(&sc->sc_mii.mii_media, 0, wm_tbi_mediachange,
   2336 	    wm_tbi_mediastatus);
   2337 
   2338 	/*
   2339 	 * SWD Pins:
   2340 	 *
   2341 	 *	0 = Link LED (output)
   2342 	 *	1 = Loss Of Signal (input)
   2343 	 */
   2344 	sc->sc_ctrl |= CTRL_SWDPIO(0);
   2345 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
   2346 
   2347 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2348 
   2349 #define	ADD(s, m, d)							\
   2350 do {									\
   2351 	printf("%s%s", sep, s);						\
   2352 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL);	\
   2353 	sep = ", ";							\
   2354 } while (/*CONSTCOND*/0)
   2355 
   2356 	printf("%s: ", sc->sc_dev.dv_xname);
   2357 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
   2358 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
   2359 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
   2360 	printf("\n");
   2361 
   2362 #undef ADD
   2363 
   2364 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   2365 }
   2366 
   2367 /*
   2368  * wm_tbi_mediastatus:	[ifmedia interface function]
   2369  *
   2370  *	Get the current interface media status on a 1000BASE-X device.
   2371  */
   2372 void
   2373 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2374 {
   2375 	struct wm_softc *sc = ifp->if_softc;
   2376 
   2377 	ifmr->ifm_status = IFM_AVALID;
   2378 	ifmr->ifm_active = IFM_ETHER;
   2379 
   2380 	if (sc->sc_tbi_linkup == 0) {
   2381 		ifmr->ifm_active |= IFM_NONE;
   2382 		return;
   2383 	}
   2384 
   2385 	ifmr->ifm_status |= IFM_ACTIVE;
   2386 	ifmr->ifm_active |= IFM_1000_SX;
   2387 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
   2388 		ifmr->ifm_active |= IFM_FDX;
   2389 }
   2390 
   2391 /*
   2392  * wm_tbi_mediachange:	[ifmedia interface function]
   2393  *
   2394  *	Set hardware to newly-selected media on a 1000BASE-X device.
   2395  */
   2396 int
   2397 wm_tbi_mediachange(struct ifnet *ifp)
   2398 {
   2399 	struct wm_softc *sc = ifp->if_softc;
   2400 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   2401 	uint32_t status;
   2402 	int i;
   2403 
   2404 	sc->sc_txcw = ife->ifm_data;
   2405 	if (sc->sc_ctrl & CTRL_RFCE)
   2406 		sc->sc_txcw |= ANAR_X_PAUSE_TOWARDS;
   2407 	if (sc->sc_ctrl & CTRL_TFCE)
   2408 		sc->sc_txcw |= ANAR_X_PAUSE_ASYM;
   2409 	sc->sc_txcw |= TXCW_ANE;
   2410 
   2411 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   2412 	delay(10000);
   2413 
   2414 	sc->sc_tbi_anstate = 0;
   2415 
   2416 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
   2417 		/* Have signal; wait for the link to come up. */
   2418 		for (i = 0; i < 50; i++) {
   2419 			delay(10000);
   2420 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
   2421 				break;
   2422 		}
   2423 
   2424 		status = CSR_READ(sc, WMREG_STATUS);
   2425 		if (status & STATUS_LU) {
   2426 			/* Link is up. */
   2427 			DPRINTF(WM_DEBUG_LINK,
   2428 			    ("%s: LINK: set media -> link up %s\n",
   2429 			    sc->sc_dev.dv_xname,
   2430 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   2431 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2432 			if (status & STATUS_FD)
   2433 				sc->sc_tctl |=
   2434 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2435 			else
   2436 				sc->sc_tctl |=
   2437 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2438 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2439 			sc->sc_tbi_linkup = 1;
   2440 		} else {
   2441 			/* Link is down. */
   2442 			DPRINTF(WM_DEBUG_LINK,
   2443 			    ("%s: LINK: set media -> link down\n",
   2444 			    sc->sc_dev.dv_xname));
   2445 			sc->sc_tbi_linkup = 0;
   2446 		}
   2447 	} else {
   2448 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
   2449 		    sc->sc_dev.dv_xname));
   2450 		sc->sc_tbi_linkup = 0;
   2451 	}
   2452 
   2453 	wm_tbi_set_linkled(sc);
   2454 
   2455 	return (0);
   2456 }
   2457 
   2458 /*
   2459  * wm_tbi_set_linkled:
   2460  *
   2461  *	Update the link LED on 1000BASE-X devices.
   2462  */
   2463 void
   2464 wm_tbi_set_linkled(struct wm_softc *sc)
   2465 {
   2466 
   2467 	if (sc->sc_tbi_linkup)
   2468 		sc->sc_ctrl |= CTRL_SWDPIN(0);
   2469 	else
   2470 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
   2471 
   2472 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2473 }
   2474 
   2475 /*
   2476  * wm_tbi_check_link:
   2477  *
   2478  *	Check the link on 1000BASE-X devices.
   2479  */
   2480 void
   2481 wm_tbi_check_link(struct wm_softc *sc)
   2482 {
   2483 	uint32_t rxcw, ctrl, status;
   2484 
   2485 	if (sc->sc_tbi_anstate == 0)
   2486 		return;
   2487 	else if (sc->sc_tbi_anstate > 1) {
   2488 		DPRINTF(WM_DEBUG_LINK,
   2489 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
   2490 		    sc->sc_tbi_anstate));
   2491 		sc->sc_tbi_anstate--;
   2492 		return;
   2493 	}
   2494 
   2495 	sc->sc_tbi_anstate = 0;
   2496 
   2497 	rxcw = CSR_READ(sc, WMREG_RXCW);
   2498 	ctrl = CSR_READ(sc, WMREG_CTRL);
   2499 	status = CSR_READ(sc, WMREG_STATUS);
   2500 
   2501 	if ((status & STATUS_LU) == 0) {
   2502 		DPRINTF(WM_DEBUG_LINK,
   2503 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
   2504 		sc->sc_tbi_linkup = 0;
   2505 	} else {
   2506 		DPRINTF(WM_DEBUG_LINK,
   2507 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
   2508 		    (status & STATUS_FD) ? "FDX" : "HDX"));
   2509 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2510 		if (status & STATUS_FD)
   2511 			sc->sc_tctl |=
   2512 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2513 		else
   2514 			sc->sc_tctl |=
   2515 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2516 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2517 		sc->sc_tbi_linkup = 1;
   2518 	}
   2519 
   2520 	wm_tbi_set_linkled(sc);
   2521 }
   2522 
   2523 /*
   2524  * wm_gmii_reset:
   2525  *
   2526  *	Reset the PHY.
   2527  */
   2528 void
   2529 wm_gmii_reset(struct wm_softc *sc)
   2530 {
   2531 	uint32_t reg;
   2532 
   2533 	if (sc->sc_type >= WM_T_CORDOVA) {
   2534 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   2535 		delay(20000);
   2536 
   2537 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2538 		delay(20000);
   2539 	} else {
   2540 		/* The PHY reset pin is active-low. */
   2541 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   2542 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
   2543 		    CTRL_EXT_SWDPIN(4));
   2544 		reg |= CTRL_EXT_SWDPIO(4);
   2545 
   2546 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   2547 		delay(10);
   2548 
   2549 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   2550 		delay(10);
   2551 
   2552 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   2553 		delay(10);
   2554 #if 0
   2555 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
   2556 #endif
   2557 	}
   2558 }
   2559 
   2560 /*
   2561  * wm_gmii_mediainit:
   2562  *
   2563  *	Initialize media for use on 1000BASE-T devices.
   2564  */
   2565 void
   2566 wm_gmii_mediainit(struct wm_softc *sc)
   2567 {
   2568 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2569 
   2570 	/* We have MII. */
   2571 	sc->sc_flags |= WM_F_HAS_MII;
   2572 
   2573 	sc->sc_tipg = TIPG_1000T_DFLT;
   2574 
   2575 	/*
   2576 	 * Let the chip set speed/duplex on its own based on
   2577 	 * signals from the PHY.
   2578 	 */
   2579 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
   2580 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2581 
   2582 	/* Initialize our media structures and probe the GMII. */
   2583 	sc->sc_mii.mii_ifp = ifp;
   2584 
   2585 	if (sc->sc_type >= WM_T_CORDOVA) {
   2586 		sc->sc_mii.mii_readreg = wm_gmii_cordova_readreg;
   2587 		sc->sc_mii.mii_writereg = wm_gmii_cordova_writereg;
   2588 	} else {
   2589 		sc->sc_mii.mii_readreg = wm_gmii_livengood_readreg;
   2590 		sc->sc_mii.mii_writereg = wm_gmii_livengood_writereg;
   2591 	}
   2592 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
   2593 
   2594 	wm_gmii_reset(sc);
   2595 
   2596 	ifmedia_init(&sc->sc_mii.mii_media, 0, wm_gmii_mediachange,
   2597 	    wm_gmii_mediastatus);
   2598 
   2599 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   2600 	    MII_OFFSET_ANY, 0);
   2601 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   2602 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   2603 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   2604 	} else
   2605 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   2606 }
   2607 
   2608 /*
   2609  * wm_gmii_mediastatus:	[ifmedia interface function]
   2610  *
   2611  *	Get the current interface media status on a 1000BASE-T device.
   2612  */
   2613 void
   2614 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2615 {
   2616 	struct wm_softc *sc = ifp->if_softc;
   2617 
   2618 	mii_pollstat(&sc->sc_mii);
   2619 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2620 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2621 }
   2622 
   2623 /*
   2624  * wm_gmii_mediachange:	[ifmedia interface function]
   2625  *
   2626  *	Set hardware to newly-selected media on a 1000BASE-T device.
   2627  */
   2628 int
   2629 wm_gmii_mediachange(struct ifnet *ifp)
   2630 {
   2631 	struct wm_softc *sc = ifp->if_softc;
   2632 
   2633 	if (ifp->if_flags & IFF_UP)
   2634 		mii_mediachg(&sc->sc_mii);
   2635 	return (0);
   2636 }
   2637 
   2638 #define	MDI_IO		CTRL_SWDPIN(2)
   2639 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
   2640 #define	MDI_CLK		CTRL_SWDPIN(3)
   2641 
   2642 static void
   2643 livengood_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
   2644 {
   2645 	uint32_t i, v;
   2646 
   2647 	v = CSR_READ(sc, WMREG_CTRL);
   2648 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   2649 	v |= MDI_DIR | CTRL_SWDPIO(3);
   2650 
   2651 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
   2652 		if (data & i)
   2653 			v |= MDI_IO;
   2654 		else
   2655 			v &= ~MDI_IO;
   2656 		CSR_WRITE(sc, WMREG_CTRL, v);
   2657 		delay(10);
   2658 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   2659 		delay(10);
   2660 		CSR_WRITE(sc, WMREG_CTRL, v);
   2661 		delay(10);
   2662 	}
   2663 }
   2664 
   2665 static uint32_t
   2666 livengood_mii_recvbits(struct wm_softc *sc)
   2667 {
   2668 	uint32_t v, i, data = 0;
   2669 
   2670 	v = CSR_READ(sc, WMREG_CTRL);
   2671 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   2672 	v |= CTRL_SWDPIO(3);
   2673 
   2674 	CSR_WRITE(sc, WMREG_CTRL, v);
   2675 	delay(10);
   2676 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   2677 	delay(10);
   2678 	CSR_WRITE(sc, WMREG_CTRL, v);
   2679 	delay(10);
   2680 
   2681 	for (i = 0; i < 16; i++) {
   2682 		data <<= 1;
   2683 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   2684 		delay(10);
   2685 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
   2686 			data |= 1;
   2687 		CSR_WRITE(sc, WMREG_CTRL, v);
   2688 		delay(10);
   2689 	}
   2690 
   2691 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   2692 	delay(10);
   2693 	CSR_WRITE(sc, WMREG_CTRL, v);
   2694 	delay(10);
   2695 
   2696 	return (data);
   2697 }
   2698 
   2699 #undef MDI_IO
   2700 #undef MDI_DIR
   2701 #undef MDI_CLK
   2702 
   2703 /*
   2704  * wm_gmii_livengood_readreg:	[mii interface function]
   2705  *
   2706  *	Read a PHY register on the GMII (Livengood version).
   2707  */
   2708 int
   2709 wm_gmii_livengood_readreg(struct device *self, int phy, int reg)
   2710 {
   2711 	struct wm_softc *sc = (void *) self;
   2712 	int rv;
   2713 
   2714 	livengood_mii_sendbits(sc, 0xffffffffU, 32);
   2715 	livengood_mii_sendbits(sc, reg | (phy << 5) |
   2716 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
   2717 	rv = livengood_mii_recvbits(sc) & 0xffff;
   2718 
   2719 	DPRINTF(WM_DEBUG_GMII,
   2720 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
   2721 	    sc->sc_dev.dv_xname, phy, reg, rv));
   2722 
   2723 	return (rv);
   2724 }
   2725 
   2726 /*
   2727  * wm_gmii_livengood_writereg:	[mii interface function]
   2728  *
   2729  *	Write a PHY register on the GMII (Livengood version).
   2730  */
   2731 void
   2732 wm_gmii_livengood_writereg(struct device *self, int phy, int reg, int val)
   2733 {
   2734 	struct wm_softc *sc = (void *) self;
   2735 
   2736 	livengood_mii_sendbits(sc, 0xffffffffU, 32);
   2737 	livengood_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
   2738 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
   2739 	    (MII_COMMAND_START << 30), 32);
   2740 }
   2741 
   2742 /*
   2743  * wm_gmii_cordova_readreg:	[mii interface function]
   2744  *
   2745  *	Read a PHY register on the GMII.
   2746  */
   2747 int
   2748 wm_gmii_cordova_readreg(struct device *self, int phy, int reg)
   2749 {
   2750 	struct wm_softc *sc = (void *) self;
   2751 	uint32_t mdic;
   2752 	int i, rv;
   2753 
   2754 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
   2755 	    MDIC_REGADD(reg));
   2756 
   2757 	for (i = 0; i < 100; i++) {
   2758 		mdic = CSR_READ(sc, WMREG_MDIC);
   2759 		if (mdic & MDIC_READY)
   2760 			break;
   2761 		delay(10);
   2762 	}
   2763 
   2764 	if ((mdic & MDIC_READY) == 0) {
   2765 		printf("%s: MDIC read timed out: phy %d reg %d\n",
   2766 		    sc->sc_dev.dv_xname, phy, reg);
   2767 		rv = 0;
   2768 	} else if (mdic & MDIC_E) {
   2769 #if 0 /* This is normal if no PHY is present. */
   2770 		printf("%s: MDIC read error: phy %d reg %d\n",
   2771 		    sc->sc_dev.dv_xname, phy, reg);
   2772 #endif
   2773 		rv = 0;
   2774 	} else {
   2775 		rv = MDIC_DATA(mdic);
   2776 		if (rv == 0xffff)
   2777 			rv = 0;
   2778 	}
   2779 
   2780 	return (rv);
   2781 }
   2782 
   2783 /*
   2784  * wm_gmii_cordova_writereg:	[mii interface function]
   2785  *
   2786  *	Write a PHY register on the GMII.
   2787  */
   2788 void
   2789 wm_gmii_cordova_writereg(struct device *self, int phy, int reg, int val)
   2790 {
   2791 	struct wm_softc *sc = (void *) self;
   2792 	uint32_t mdic;
   2793 	int i;
   2794 
   2795 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
   2796 	    MDIC_REGADD(reg) | MDIC_DATA(val));
   2797 
   2798 	for (i = 0; i < 100; i++) {
   2799 		mdic = CSR_READ(sc, WMREG_MDIC);
   2800 		if (mdic & MDIC_READY)
   2801 			break;
   2802 		delay(10);
   2803 	}
   2804 
   2805 	if ((mdic & MDIC_READY) == 0)
   2806 		printf("%s: MDIC write timed out: phy %d reg %d\n",
   2807 		    sc->sc_dev.dv_xname, phy, reg);
   2808 	else if (mdic & MDIC_E)
   2809 		printf("%s: MDIC write error: phy %d reg %d\n",
   2810 		    sc->sc_dev.dv_xname, phy, reg);
   2811 }
   2812 
   2813 /*
   2814  * wm_gmii_statchg:	[mii interface function]
   2815  *
   2816  *	Callback from MII layer when media changes.
   2817  */
   2818 void
   2819 wm_gmii_statchg(struct device *self)
   2820 {
   2821 	struct wm_softc *sc = (void *) self;
   2822 
   2823 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2824 
   2825 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   2826 		DPRINTF(WM_DEBUG_LINK,
   2827 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
   2828 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2829 	} else  {
   2830 		DPRINTF(WM_DEBUG_LINK,
   2831 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
   2832 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2833 	}
   2834 
   2835 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2836 }
   2837