if_wm.c revision 1.414 1 /* $NetBSD: if_wm.c,v 1.414 2016/06/14 17:09:20 knakahara Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*******************************************************************************
39
40 Copyright (c) 2001-2005, Intel Corporation
41 All rights reserved.
42
43 Redistribution and use in source and binary forms, with or without
44 modification, are permitted provided that the following conditions are met:
45
46 1. Redistributions of source code must retain the above copyright notice,
47 this list of conditions and the following disclaimer.
48
49 2. Redistributions in binary form must reproduce the above copyright
50 notice, this list of conditions and the following disclaimer in the
51 documentation and/or other materials provided with the distribution.
52
53 3. Neither the name of the Intel Corporation nor the names of its
54 contributors may be used to endorse or promote products derived from
55 this software without specific prior written permission.
56
57 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
58 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
61 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67 POSSIBILITY OF SUCH DAMAGE.
68
69 *******************************************************************************/
70 /*
71 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
72 *
73 * TODO (in order of importance):
74 *
75 * - Check XXX'ed comments
76 * - Disable D0 LPLU on 8257[12356], 82580 and I350.
77 * - TX Multi queue improvement (refine queue selection logic)
78 * - Advanced Receive Descriptor
79 * - EEE (Energy Efficiency Ethernet)
80 * - Virtual Function
81 * - Set LED correctly (based on contents in EEPROM)
82 * - Rework how parameters are loaded from the EEPROM.
83 * - Image Unique ID
84 * - restructure evcnt
85 */
86
87 #include <sys/cdefs.h>
88 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.414 2016/06/14 17:09:20 knakahara Exp $");
89
90 #ifdef _KERNEL_OPT
91 #include "opt_net_mpsafe.h"
92 #endif
93
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/callout.h>
97 #include <sys/mbuf.h>
98 #include <sys/malloc.h>
99 #include <sys/kmem.h>
100 #include <sys/kernel.h>
101 #include <sys/socket.h>
102 #include <sys/ioctl.h>
103 #include <sys/errno.h>
104 #include <sys/device.h>
105 #include <sys/queue.h>
106 #include <sys/syslog.h>
107 #include <sys/interrupt.h>
108 #include <sys/cpu.h>
109 #include <sys/pcq.h>
110
111 #include <sys/rndsource.h>
112
113 #include <net/if.h>
114 #include <net/if_dl.h>
115 #include <net/if_media.h>
116 #include <net/if_ether.h>
117
118 #include <net/bpf.h>
119
120 #include <netinet/in.h> /* XXX for struct ip */
121 #include <netinet/in_systm.h> /* XXX for struct ip */
122 #include <netinet/ip.h> /* XXX for struct ip */
123 #include <netinet/ip6.h> /* XXX for struct ip6_hdr */
124 #include <netinet/tcp.h> /* XXX for struct tcphdr */
125
126 #include <sys/bus.h>
127 #include <sys/intr.h>
128 #include <machine/endian.h>
129
130 #include <dev/mii/mii.h>
131 #include <dev/mii/miivar.h>
132 #include <dev/mii/miidevs.h>
133 #include <dev/mii/mii_bitbang.h>
134 #include <dev/mii/ikphyreg.h>
135 #include <dev/mii/igphyreg.h>
136 #include <dev/mii/igphyvar.h>
137 #include <dev/mii/inbmphyreg.h>
138
139 #include <dev/pci/pcireg.h>
140 #include <dev/pci/pcivar.h>
141 #include <dev/pci/pcidevs.h>
142
143 #include <dev/pci/if_wmreg.h>
144 #include <dev/pci/if_wmvar.h>
145
146 #ifdef WM_DEBUG
147 #define WM_DEBUG_LINK 0x01
148 #define WM_DEBUG_TX 0x02
149 #define WM_DEBUG_RX 0x04
150 #define WM_DEBUG_GMII 0x08
151 #define WM_DEBUG_MANAGE 0x10
152 #define WM_DEBUG_NVM 0x20
153 #define WM_DEBUG_INIT 0x40
154 int wm_debug = WM_DEBUG_TX | WM_DEBUG_RX | WM_DEBUG_LINK | WM_DEBUG_GMII
155 | WM_DEBUG_MANAGE | WM_DEBUG_NVM | WM_DEBUG_INIT;
156
157 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
158 #else
159 #define DPRINTF(x, y) /* nothing */
160 #endif /* WM_DEBUG */
161
162 #ifdef NET_MPSAFE
163 #define WM_MPSAFE 1
164 #endif
165
166 /*
167 * This device driver's max interrupt numbers.
168 */
169 #define WM_MAX_NQUEUEINTR 16
170 #define WM_MAX_NINTR (WM_MAX_NQUEUEINTR + 1)
171
172 /*
173 * Transmit descriptor list size. Due to errata, we can only have
174 * 256 hardware descriptors in the ring on < 82544, but we use 4096
175 * on >= 82544. We tell the upper layers that they can queue a lot
176 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
177 * of them at a time.
178 *
179 * We allow up to 256 (!) DMA segments per packet. Pathological packet
180 * chains containing many small mbufs have been observed in zero-copy
181 * situations with jumbo frames.
182 */
183 #define WM_NTXSEGS 256
184 #define WM_IFQUEUELEN 256
185 #define WM_TXQUEUELEN_MAX 64
186 #define WM_TXQUEUELEN_MAX_82547 16
187 #define WM_TXQUEUELEN(txq) ((txq)->txq_num)
188 #define WM_TXQUEUELEN_MASK(txq) (WM_TXQUEUELEN(txq) - 1)
189 #define WM_TXQUEUE_GC(txq) (WM_TXQUEUELEN(txq) / 8)
190 #define WM_NTXDESC_82542 256
191 #define WM_NTXDESC_82544 4096
192 #define WM_NTXDESC(txq) ((txq)->txq_ndesc)
193 #define WM_NTXDESC_MASK(txq) (WM_NTXDESC(txq) - 1)
194 #define WM_TXDESCS_SIZE(txq) (WM_NTXDESC(txq) * (txq)->txq_descsize)
195 #define WM_NEXTTX(txq, x) (((x) + 1) & WM_NTXDESC_MASK(txq))
196 #define WM_NEXTTXS(txq, x) (((x) + 1) & WM_TXQUEUELEN_MASK(txq))
197
198 #define WM_MAXTXDMA (2 * round_page(IP_MAXPACKET)) /* for TSO */
199
200 #define WM_TXINTERQSIZE 256
201
202 /*
203 * Receive descriptor list size. We have one Rx buffer for normal
204 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
205 * packet. We allocate 256 receive descriptors, each with a 2k
206 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
207 */
208 #define WM_NRXDESC 256
209 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
210 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
211 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
212
213 typedef union txdescs {
214 wiseman_txdesc_t sctxu_txdescs[WM_NTXDESC_82544];
215 nq_txdesc_t sctxu_nq_txdescs[WM_NTXDESC_82544];
216 } txdescs_t;
217
218 #define WM_CDTXOFF(txq, x) ((txq)->txq_descsize * (x))
219 #define WM_CDRXOFF(x) (sizeof(wiseman_rxdesc_t) * x)
220
221 /*
222 * Software state for transmit jobs.
223 */
224 struct wm_txsoft {
225 struct mbuf *txs_mbuf; /* head of our mbuf chain */
226 bus_dmamap_t txs_dmamap; /* our DMA map */
227 int txs_firstdesc; /* first descriptor in packet */
228 int txs_lastdesc; /* last descriptor in packet */
229 int txs_ndesc; /* # of descriptors used */
230 };
231
232 /*
233 * Software state for receive buffers. Each descriptor gets a
234 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
235 * more than one buffer, we chain them together.
236 */
237 struct wm_rxsoft {
238 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
239 bus_dmamap_t rxs_dmamap; /* our DMA map */
240 };
241
242 #define WM_LINKUP_TIMEOUT 50
243
244 static uint16_t swfwphysem[] = {
245 SWFW_PHY0_SM,
246 SWFW_PHY1_SM,
247 SWFW_PHY2_SM,
248 SWFW_PHY3_SM
249 };
250
251 static const uint32_t wm_82580_rxpbs_table[] = {
252 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140
253 };
254
255 struct wm_softc;
256
257 struct wm_txqueue {
258 kmutex_t *txq_lock; /* lock for tx operations */
259
260 struct wm_softc *txq_sc; /* shortcut (skip struct wm_queue) */
261
262 /* Software state for the transmit descriptors. */
263 int txq_num; /* must be a power of two */
264 struct wm_txsoft txq_soft[WM_TXQUEUELEN_MAX];
265
266 /* TX control data structures. */
267 int txq_ndesc; /* must be a power of two */
268 size_t txq_descsize; /* a tx descriptor size */
269 txdescs_t *txq_descs_u;
270 bus_dmamap_t txq_desc_dmamap; /* control data DMA map */
271 bus_dma_segment_t txq_desc_seg; /* control data segment */
272 int txq_desc_rseg; /* real number of control segment */
273 #define txq_desc_dma txq_desc_dmamap->dm_segs[0].ds_addr
274 #define txq_descs txq_descs_u->sctxu_txdescs
275 #define txq_nq_descs txq_descs_u->sctxu_nq_txdescs
276
277 bus_addr_t txq_tdt_reg; /* offset of TDT register */
278
279 int txq_free; /* number of free Tx descriptors */
280 int txq_next; /* next ready Tx descriptor */
281
282 int txq_sfree; /* number of free Tx jobs */
283 int txq_snext; /* next free Tx job */
284 int txq_sdirty; /* dirty Tx jobs */
285
286 /* These 4 variables are used only on the 82547. */
287 int txq_fifo_size; /* Tx FIFO size */
288 int txq_fifo_head; /* current head of FIFO */
289 uint32_t txq_fifo_addr; /* internal address of start of FIFO */
290 int txq_fifo_stall; /* Tx FIFO is stalled */
291
292 /*
293 * When ncpu > number of Tx queues, a Tx queue is shared by multiple
294 * CPUs. This queue intermediate them without block.
295 */
296 pcq_t *txq_interq;
297
298 /*
299 * NEWQUEUE devices must use not ifp->if_flags but txq->txq_flags
300 * to manage Tx H/W queue's busy flag.
301 */
302 int txq_flags; /* flags for H/W queue, see below */
303 #define WM_TXQ_NO_SPACE 0x1
304
305 /* XXX which event counter is required? */
306 };
307
308 struct wm_rxqueue {
309 kmutex_t *rxq_lock; /* lock for rx operations */
310
311 struct wm_softc *rxq_sc; /* shortcut (skip struct wm_queue) */
312
313 /* Software state for the receive descriptors. */
314 wiseman_rxdesc_t *rxq_descs;
315
316 /* RX control data structures. */
317 struct wm_rxsoft rxq_soft[WM_NRXDESC];
318 bus_dmamap_t rxq_desc_dmamap; /* control data DMA map */
319 bus_dma_segment_t rxq_desc_seg; /* control data segment */
320 int rxq_desc_rseg; /* real number of control segment */
321 size_t rxq_desc_size; /* control data size */
322 #define rxq_desc_dma rxq_desc_dmamap->dm_segs[0].ds_addr
323
324 bus_addr_t rxq_rdt_reg; /* offset of RDT register */
325
326 int rxq_ptr; /* next ready Rx desc/queue ent */
327 int rxq_discard;
328 int rxq_len;
329 struct mbuf *rxq_head;
330 struct mbuf *rxq_tail;
331 struct mbuf **rxq_tailp;
332
333 /* XXX which event counter is required? */
334 };
335
336 struct wm_queue {
337 int wmq_id; /* index of transmit and receive queues */
338 int wmq_intr_idx; /* index of MSI-X tables */
339
340 struct wm_txqueue wmq_txq;
341 struct wm_rxqueue wmq_rxq;
342 };
343
344 /*
345 * Software state per device.
346 */
347 struct wm_softc {
348 device_t sc_dev; /* generic device information */
349 bus_space_tag_t sc_st; /* bus space tag */
350 bus_space_handle_t sc_sh; /* bus space handle */
351 bus_size_t sc_ss; /* bus space size */
352 bus_space_tag_t sc_iot; /* I/O space tag */
353 bus_space_handle_t sc_ioh; /* I/O space handle */
354 bus_size_t sc_ios; /* I/O space size */
355 bus_space_tag_t sc_flasht; /* flash registers space tag */
356 bus_space_handle_t sc_flashh; /* flash registers space handle */
357 bus_size_t sc_flashs; /* flash registers space size */
358 off_t sc_flashreg_offset; /*
359 * offset to flash registers from
360 * start of BAR
361 */
362 bus_dma_tag_t sc_dmat; /* bus DMA tag */
363
364 struct ethercom sc_ethercom; /* ethernet common data */
365 struct mii_data sc_mii; /* MII/media information */
366
367 pci_chipset_tag_t sc_pc;
368 pcitag_t sc_pcitag;
369 int sc_bus_speed; /* PCI/PCIX bus speed */
370 int sc_pcixe_capoff; /* PCI[Xe] capability reg offset */
371
372 uint16_t sc_pcidevid; /* PCI device ID */
373 wm_chip_type sc_type; /* MAC type */
374 int sc_rev; /* MAC revision */
375 wm_phy_type sc_phytype; /* PHY type */
376 uint32_t sc_mediatype; /* Media type (Copper, Fiber, SERDES)*/
377 #define WM_MEDIATYPE_UNKNOWN 0x00
378 #define WM_MEDIATYPE_FIBER 0x01
379 #define WM_MEDIATYPE_COPPER 0x02
380 #define WM_MEDIATYPE_SERDES 0x03 /* Internal SERDES */
381 int sc_funcid; /* unit number of the chip (0 to 3) */
382 int sc_flags; /* flags; see below */
383 int sc_if_flags; /* last if_flags */
384 int sc_flowflags; /* 802.3x flow control flags */
385 int sc_align_tweak;
386
387 void *sc_ihs[WM_MAX_NINTR]; /*
388 * interrupt cookie.
389 * legacy and msi use sc_ihs[0].
390 */
391 pci_intr_handle_t *sc_intrs; /* legacy and msi use sc_intrs[0] */
392 int sc_nintrs; /* number of interrupts */
393
394 int sc_link_intr_idx; /* index of MSI-X tables */
395
396 callout_t sc_tick_ch; /* tick callout */
397 bool sc_stopping;
398
399 int sc_nvm_ver_major;
400 int sc_nvm_ver_minor;
401 int sc_nvm_ver_build;
402 int sc_nvm_addrbits; /* NVM address bits */
403 unsigned int sc_nvm_wordsize; /* NVM word size */
404 int sc_ich8_flash_base;
405 int sc_ich8_flash_bank_size;
406 int sc_nvm_k1_enabled;
407
408 int sc_nqueues;
409 struct wm_queue *sc_queue;
410
411 int sc_affinity_offset;
412
413 #ifdef WM_EVENT_COUNTERS
414 /* Event counters. */
415 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
416 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
417 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
418 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
419 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
420 struct evcnt sc_ev_rxintr; /* Rx interrupts */
421 struct evcnt sc_ev_linkintr; /* Link interrupts */
422
423 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
424 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
425 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
426 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
427 struct evcnt sc_ev_txtusum6; /* TCP/UDP v6 cksums comp. out-bound */
428 struct evcnt sc_ev_txtso; /* TCP seg offload out-bound (IPv4) */
429 struct evcnt sc_ev_txtso6; /* TCP seg offload out-bound (IPv6) */
430 struct evcnt sc_ev_txtsopain; /* painful header manip. for TSO */
431
432 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
433 struct evcnt sc_ev_txdrop; /* Tx packets dropped(too many segs) */
434
435 struct evcnt sc_ev_tu; /* Tx underrun */
436
437 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
438 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
439 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
440 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
441 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
442 #endif /* WM_EVENT_COUNTERS */
443
444 /* This variable are used only on the 82547. */
445 callout_t sc_txfifo_ch; /* Tx FIFO stall work-around timer */
446
447 uint32_t sc_ctrl; /* prototype CTRL register */
448 #if 0
449 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
450 #endif
451 uint32_t sc_icr; /* prototype interrupt bits */
452 uint32_t sc_itr; /* prototype intr throttling reg */
453 uint32_t sc_tctl; /* prototype TCTL register */
454 uint32_t sc_rctl; /* prototype RCTL register */
455 uint32_t sc_txcw; /* prototype TXCW register */
456 uint32_t sc_tipg; /* prototype TIPG register */
457 uint32_t sc_fcrtl; /* prototype FCRTL register */
458 uint32_t sc_pba; /* prototype PBA register */
459
460 int sc_tbi_linkup; /* TBI link status */
461 int sc_tbi_serdes_anegticks; /* autonegotiation ticks */
462 int sc_tbi_serdes_ticks; /* tbi ticks */
463
464 int sc_mchash_type; /* multicast filter offset */
465
466 krndsource_t rnd_source; /* random source */
467
468 kmutex_t *sc_core_lock; /* lock for softc operations */
469
470 struct if_percpuq *sc_ipq; /* softint-based input queues */
471 };
472
473 #define WM_CORE_LOCK(_sc) if ((_sc)->sc_core_lock) mutex_enter((_sc)->sc_core_lock)
474 #define WM_CORE_UNLOCK(_sc) if ((_sc)->sc_core_lock) mutex_exit((_sc)->sc_core_lock)
475 #define WM_CORE_LOCKED(_sc) (!(_sc)->sc_core_lock || mutex_owned((_sc)->sc_core_lock))
476
477 #ifdef WM_MPSAFE
478 #define CALLOUT_FLAGS CALLOUT_MPSAFE
479 #else
480 #define CALLOUT_FLAGS 0
481 #endif
482
483 #define WM_RXCHAIN_RESET(rxq) \
484 do { \
485 (rxq)->rxq_tailp = &(rxq)->rxq_head; \
486 *(rxq)->rxq_tailp = NULL; \
487 (rxq)->rxq_len = 0; \
488 } while (/*CONSTCOND*/0)
489
490 #define WM_RXCHAIN_LINK(rxq, m) \
491 do { \
492 *(rxq)->rxq_tailp = (rxq)->rxq_tail = (m); \
493 (rxq)->rxq_tailp = &(m)->m_next; \
494 } while (/*CONSTCOND*/0)
495
496 #ifdef WM_EVENT_COUNTERS
497 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
498 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
499 #else
500 #define WM_EVCNT_INCR(ev) /* nothing */
501 #define WM_EVCNT_ADD(ev, val) /* nothing */
502 #endif
503
504 #define CSR_READ(sc, reg) \
505 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
506 #define CSR_WRITE(sc, reg, val) \
507 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
508 #define CSR_WRITE_FLUSH(sc) \
509 (void) CSR_READ((sc), WMREG_STATUS)
510
511 #define ICH8_FLASH_READ32(sc, reg) \
512 bus_space_read_4((sc)->sc_flasht, (sc)->sc_flashh, \
513 (reg) + sc->sc_flashreg_offset)
514 #define ICH8_FLASH_WRITE32(sc, reg, data) \
515 bus_space_write_4((sc)->sc_flasht, (sc)->sc_flashh, \
516 (reg) + sc->sc_flashreg_offset, (data))
517
518 #define ICH8_FLASH_READ16(sc, reg) \
519 bus_space_read_2((sc)->sc_flasht, (sc)->sc_flashh, \
520 (reg) + sc->sc_flashreg_offset)
521 #define ICH8_FLASH_WRITE16(sc, reg, data) \
522 bus_space_write_2((sc)->sc_flasht, (sc)->sc_flashh, \
523 (reg) + sc->sc_flashreg_offset, (data))
524
525 #define WM_CDTXADDR(txq, x) ((txq)->txq_desc_dma + WM_CDTXOFF((txq), (x)))
526 #define WM_CDRXADDR(rxq, x) ((rxq)->rxq_desc_dma + WM_CDRXOFF((x)))
527
528 #define WM_CDTXADDR_LO(txq, x) (WM_CDTXADDR((txq), (x)) & 0xffffffffU)
529 #define WM_CDTXADDR_HI(txq, x) \
530 (sizeof(bus_addr_t) == 8 ? \
531 (uint64_t)WM_CDTXADDR((txq), (x)) >> 32 : 0)
532
533 #define WM_CDRXADDR_LO(rxq, x) (WM_CDRXADDR((rxq), (x)) & 0xffffffffU)
534 #define WM_CDRXADDR_HI(rxq, x) \
535 (sizeof(bus_addr_t) == 8 ? \
536 (uint64_t)WM_CDRXADDR((rxq), (x)) >> 32 : 0)
537
538 /*
539 * Register read/write functions.
540 * Other than CSR_{READ|WRITE}().
541 */
542 #if 0
543 static inline uint32_t wm_io_read(struct wm_softc *, int);
544 #endif
545 static inline void wm_io_write(struct wm_softc *, int, uint32_t);
546 static inline void wm_82575_write_8bit_ctlr_reg(struct wm_softc *, uint32_t,
547 uint32_t, uint32_t);
548 static inline void wm_set_dma_addr(volatile wiseman_addr_t *, bus_addr_t);
549
550 /*
551 * Descriptor sync/init functions.
552 */
553 static inline void wm_cdtxsync(struct wm_txqueue *, int, int, int);
554 static inline void wm_cdrxsync(struct wm_rxqueue *, int, int);
555 static inline void wm_init_rxdesc(struct wm_rxqueue *, int);
556
557 /*
558 * Device driver interface functions and commonly used functions.
559 * match, attach, detach, init, start, stop, ioctl, watchdog and so on.
560 */
561 static const struct wm_product *wm_lookup(const struct pci_attach_args *);
562 static int wm_match(device_t, cfdata_t, void *);
563 static void wm_attach(device_t, device_t, void *);
564 static int wm_detach(device_t, int);
565 static bool wm_suspend(device_t, const pmf_qual_t *);
566 static bool wm_resume(device_t, const pmf_qual_t *);
567 static void wm_watchdog(struct ifnet *);
568 static void wm_watchdog_txq(struct ifnet *, struct wm_txqueue *);
569 static void wm_tick(void *);
570 static int wm_ifflags_cb(struct ethercom *);
571 static int wm_ioctl(struct ifnet *, u_long, void *);
572 /* MAC address related */
573 static uint16_t wm_check_alt_mac_addr(struct wm_softc *);
574 static int wm_read_mac_addr(struct wm_softc *, uint8_t *);
575 static void wm_set_ral(struct wm_softc *, const uint8_t *, int);
576 static uint32_t wm_mchash(struct wm_softc *, const uint8_t *);
577 static void wm_set_filter(struct wm_softc *);
578 /* Reset and init related */
579 static void wm_set_vlan(struct wm_softc *);
580 static void wm_set_pcie_completion_timeout(struct wm_softc *);
581 static void wm_get_auto_rd_done(struct wm_softc *);
582 static void wm_lan_init_done(struct wm_softc *);
583 static void wm_get_cfg_done(struct wm_softc *);
584 static void wm_initialize_hardware_bits(struct wm_softc *);
585 static uint32_t wm_rxpbs_adjust_82580(uint32_t);
586 static void wm_reset(struct wm_softc *);
587 static int wm_add_rxbuf(struct wm_rxqueue *, int);
588 static void wm_rxdrain(struct wm_rxqueue *);
589 static void wm_rss_getkey(uint8_t *);
590 static void wm_init_rss(struct wm_softc *);
591 static void wm_adjust_qnum(struct wm_softc *, int);
592 static int wm_setup_legacy(struct wm_softc *);
593 static int wm_setup_msix(struct wm_softc *);
594 static int wm_init(struct ifnet *);
595 static int wm_init_locked(struct ifnet *);
596 static void wm_stop(struct ifnet *, int);
597 static void wm_stop_locked(struct ifnet *, int);
598 static void wm_dump_mbuf_chain(struct wm_softc *, struct mbuf *);
599 static void wm_82547_txfifo_stall(void *);
600 static int wm_82547_txfifo_bugchk(struct wm_softc *, struct mbuf *);
601 /* DMA related */
602 static int wm_alloc_tx_descs(struct wm_softc *, struct wm_txqueue *);
603 static void wm_free_tx_descs(struct wm_softc *, struct wm_txqueue *);
604 static void wm_init_tx_descs(struct wm_softc *, struct wm_txqueue *);
605 static void wm_init_tx_regs(struct wm_softc *, struct wm_queue *,
606 struct wm_txqueue *);
607 static int wm_alloc_rx_descs(struct wm_softc *, struct wm_rxqueue *);
608 static void wm_free_rx_descs(struct wm_softc *, struct wm_rxqueue *);
609 static void wm_init_rx_regs(struct wm_softc *, struct wm_queue *,
610 struct wm_rxqueue *);
611 static int wm_alloc_tx_buffer(struct wm_softc *, struct wm_txqueue *);
612 static void wm_free_tx_buffer(struct wm_softc *, struct wm_txqueue *);
613 static void wm_init_tx_buffer(struct wm_softc *, struct wm_txqueue *);
614 static int wm_alloc_rx_buffer(struct wm_softc *, struct wm_rxqueue *);
615 static void wm_free_rx_buffer(struct wm_softc *, struct wm_rxqueue *);
616 static int wm_init_rx_buffer(struct wm_softc *, struct wm_rxqueue *);
617 static void wm_init_tx_queue(struct wm_softc *, struct wm_queue *,
618 struct wm_txqueue *);
619 static int wm_init_rx_queue(struct wm_softc *, struct wm_queue *,
620 struct wm_rxqueue *);
621 static int wm_alloc_txrx_queues(struct wm_softc *);
622 static void wm_free_txrx_queues(struct wm_softc *);
623 static int wm_init_txrx_queues(struct wm_softc *);
624 /* Start */
625 static int wm_tx_offload(struct wm_softc *, struct wm_txsoft *,
626 uint32_t *, uint8_t *);
627 static void wm_start(struct ifnet *);
628 static void wm_start_locked(struct ifnet *);
629 static int wm_nq_tx_offload(struct wm_softc *, struct wm_txqueue *,
630 struct wm_txsoft *, uint32_t *, uint32_t *, bool *);
631 static void wm_nq_start(struct ifnet *);
632 static void wm_nq_start_locked(struct ifnet *);
633 static int wm_nq_transmit(struct ifnet *, struct mbuf *);
634 static inline int wm_nq_select_txqueue(struct ifnet *, struct mbuf *);
635 static void wm_nq_transmit_locked(struct ifnet *, struct wm_txqueue *);
636 static void wm_nq_send_common_locked(struct ifnet *, struct wm_txqueue *, bool);
637 /* Interrupt */
638 static int wm_txeof(struct wm_softc *, struct wm_txqueue *);
639 static void wm_rxeof(struct wm_rxqueue *);
640 static void wm_linkintr_gmii(struct wm_softc *, uint32_t);
641 static void wm_linkintr_tbi(struct wm_softc *, uint32_t);
642 static void wm_linkintr_serdes(struct wm_softc *, uint32_t);
643 static void wm_linkintr(struct wm_softc *, uint32_t);
644 static int wm_intr_legacy(void *);
645 static int wm_txrxintr_msix(void *);
646 static int wm_linkintr_msix(void *);
647
648 /*
649 * Media related.
650 * GMII, SGMII, TBI, SERDES and SFP.
651 */
652 /* Common */
653 static void wm_tbi_serdes_set_linkled(struct wm_softc *);
654 /* GMII related */
655 static void wm_gmii_reset(struct wm_softc *);
656 static int wm_get_phy_id_82575(struct wm_softc *);
657 static void wm_gmii_mediainit(struct wm_softc *, pci_product_id_t);
658 static int wm_gmii_mediachange(struct ifnet *);
659 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
660 static void wm_i82543_mii_sendbits(struct wm_softc *, uint32_t, int);
661 static uint32_t wm_i82543_mii_recvbits(struct wm_softc *);
662 static int wm_gmii_i82543_readreg(device_t, int, int);
663 static void wm_gmii_i82543_writereg(device_t, int, int, int);
664 static int wm_gmii_i82544_readreg(device_t, int, int);
665 static void wm_gmii_i82544_writereg(device_t, int, int, int);
666 static int wm_gmii_i80003_readreg(device_t, int, int);
667 static void wm_gmii_i80003_writereg(device_t, int, int, int);
668 static int wm_gmii_bm_readreg(device_t, int, int);
669 static void wm_gmii_bm_writereg(device_t, int, int, int);
670 static void wm_access_phy_wakeup_reg_bm(device_t, int, int16_t *, int);
671 static int wm_gmii_hv_readreg(device_t, int, int);
672 static void wm_gmii_hv_writereg(device_t, int, int, int);
673 static int wm_gmii_82580_readreg(device_t, int, int);
674 static void wm_gmii_82580_writereg(device_t, int, int, int);
675 static int wm_gmii_gs40g_readreg(device_t, int, int);
676 static void wm_gmii_gs40g_writereg(device_t, int, int, int);
677 static void wm_gmii_statchg(struct ifnet *);
678 static int wm_kmrn_readreg(struct wm_softc *, int);
679 static void wm_kmrn_writereg(struct wm_softc *, int, int);
680 /* SGMII */
681 static bool wm_sgmii_uses_mdio(struct wm_softc *);
682 static int wm_sgmii_readreg(device_t, int, int);
683 static void wm_sgmii_writereg(device_t, int, int, int);
684 /* TBI related */
685 static void wm_tbi_mediainit(struct wm_softc *);
686 static int wm_tbi_mediachange(struct ifnet *);
687 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
688 static int wm_check_for_link(struct wm_softc *);
689 static void wm_tbi_tick(struct wm_softc *);
690 /* SERDES related */
691 static void wm_serdes_power_up_link_82575(struct wm_softc *);
692 static int wm_serdes_mediachange(struct ifnet *);
693 static void wm_serdes_mediastatus(struct ifnet *, struct ifmediareq *);
694 static void wm_serdes_tick(struct wm_softc *);
695 /* SFP related */
696 static int wm_sfp_read_data_byte(struct wm_softc *, uint16_t, uint8_t *);
697 static uint32_t wm_sfp_get_media_type(struct wm_softc *);
698
699 /*
700 * NVM related.
701 * Microwire, SPI (w/wo EERD) and Flash.
702 */
703 /* Misc functions */
704 static void wm_eeprom_sendbits(struct wm_softc *, uint32_t, int);
705 static void wm_eeprom_recvbits(struct wm_softc *, uint32_t *, int);
706 static int wm_nvm_set_addrbits_size_eecd(struct wm_softc *);
707 /* Microwire */
708 static int wm_nvm_read_uwire(struct wm_softc *, int, int, uint16_t *);
709 /* SPI */
710 static int wm_nvm_ready_spi(struct wm_softc *);
711 static int wm_nvm_read_spi(struct wm_softc *, int, int, uint16_t *);
712 /* Using with EERD */
713 static int wm_poll_eerd_eewr_done(struct wm_softc *, int);
714 static int wm_nvm_read_eerd(struct wm_softc *, int, int, uint16_t *);
715 /* Flash */
716 static int wm_nvm_valid_bank_detect_ich8lan(struct wm_softc *,
717 unsigned int *);
718 static int32_t wm_ich8_cycle_init(struct wm_softc *);
719 static int32_t wm_ich8_flash_cycle(struct wm_softc *, uint32_t);
720 static int32_t wm_read_ich8_data(struct wm_softc *, uint32_t, uint32_t,
721 uint32_t *);
722 static int32_t wm_read_ich8_byte(struct wm_softc *, uint32_t, uint8_t *);
723 static int32_t wm_read_ich8_word(struct wm_softc *, uint32_t, uint16_t *);
724 static int32_t wm_read_ich8_dword(struct wm_softc *, uint32_t, uint32_t *);
725 static int wm_nvm_read_ich8(struct wm_softc *, int, int, uint16_t *);
726 static int wm_nvm_read_spt(struct wm_softc *, int, int, uint16_t *);
727 /* iNVM */
728 static int wm_nvm_read_word_invm(struct wm_softc *, uint16_t, uint16_t *);
729 static int wm_nvm_read_invm(struct wm_softc *, int, int, uint16_t *);
730 /* Lock, detecting NVM type, validate checksum and read */
731 static int wm_nvm_acquire(struct wm_softc *);
732 static void wm_nvm_release(struct wm_softc *);
733 static int wm_nvm_is_onboard_eeprom(struct wm_softc *);
734 static int wm_nvm_get_flash_presence_i210(struct wm_softc *);
735 static int wm_nvm_validate_checksum(struct wm_softc *);
736 static void wm_nvm_version_invm(struct wm_softc *);
737 static void wm_nvm_version(struct wm_softc *);
738 static int wm_nvm_read(struct wm_softc *, int, int, uint16_t *);
739
740 /*
741 * Hardware semaphores.
742 * Very complexed...
743 */
744 static int wm_get_swsm_semaphore(struct wm_softc *);
745 static void wm_put_swsm_semaphore(struct wm_softc *);
746 static int wm_get_swfw_semaphore(struct wm_softc *, uint16_t);
747 static void wm_put_swfw_semaphore(struct wm_softc *, uint16_t);
748 static int wm_get_swfwhw_semaphore(struct wm_softc *);
749 static void wm_put_swfwhw_semaphore(struct wm_softc *);
750 static int wm_get_hw_semaphore_82573(struct wm_softc *);
751 static void wm_put_hw_semaphore_82573(struct wm_softc *);
752
753 /*
754 * Management mode and power management related subroutines.
755 * BMC, AMT, suspend/resume and EEE.
756 */
757 #ifdef WM_WOL
758 static int wm_check_mng_mode(struct wm_softc *);
759 static int wm_check_mng_mode_ich8lan(struct wm_softc *);
760 static int wm_check_mng_mode_82574(struct wm_softc *);
761 static int wm_check_mng_mode_generic(struct wm_softc *);
762 #endif
763 static int wm_enable_mng_pass_thru(struct wm_softc *);
764 static bool wm_phy_resetisblocked(struct wm_softc *);
765 static void wm_get_hw_control(struct wm_softc *);
766 static void wm_release_hw_control(struct wm_softc *);
767 static void wm_gate_hw_phy_config_ich8lan(struct wm_softc *, bool);
768 static void wm_smbustopci(struct wm_softc *);
769 static void wm_init_manageability(struct wm_softc *);
770 static void wm_release_manageability(struct wm_softc *);
771 static void wm_get_wakeup(struct wm_softc *);
772 #ifdef WM_WOL
773 static void wm_enable_phy_wakeup(struct wm_softc *);
774 static void wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *);
775 static void wm_enable_wakeup(struct wm_softc *);
776 #endif
777 /* LPLU (Low Power Link Up) */
778 static void wm_lplu_d0_disable(struct wm_softc *);
779 static void wm_lplu_d0_disable_pch(struct wm_softc *);
780 /* EEE */
781 static void wm_set_eee_i350(struct wm_softc *);
782
783 /*
784 * Workarounds (mainly PHY related).
785 * Basically, PHY's workarounds are in the PHY drivers.
786 */
787 static void wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *);
788 static void wm_gig_downshift_workaround_ich8lan(struct wm_softc *);
789 static void wm_hv_phy_workaround_ich8lan(struct wm_softc *);
790 static void wm_lv_phy_workaround_ich8lan(struct wm_softc *);
791 static void wm_k1_gig_workaround_hv(struct wm_softc *, int);
792 static void wm_set_mdio_slow_mode_hv(struct wm_softc *);
793 static void wm_configure_k1_ich8lan(struct wm_softc *, int);
794 static void wm_reset_init_script_82575(struct wm_softc *);
795 static void wm_reset_mdicnfg_82580(struct wm_softc *);
796 static void wm_pll_workaround_i210(struct wm_softc *);
797
798 CFATTACH_DECL3_NEW(wm, sizeof(struct wm_softc),
799 wm_match, wm_attach, wm_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
800
801 /*
802 * Devices supported by this driver.
803 */
804 static const struct wm_product {
805 pci_vendor_id_t wmp_vendor;
806 pci_product_id_t wmp_product;
807 const char *wmp_name;
808 wm_chip_type wmp_type;
809 uint32_t wmp_flags;
810 #define WMP_F_UNKNOWN WM_MEDIATYPE_UNKNOWN
811 #define WMP_F_FIBER WM_MEDIATYPE_FIBER
812 #define WMP_F_COPPER WM_MEDIATYPE_COPPER
813 #define WMP_F_SERDES WM_MEDIATYPE_SERDES
814 #define WMP_MEDIATYPE(x) ((x) & 0x03)
815 } wm_products[] = {
816 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
817 "Intel i82542 1000BASE-X Ethernet",
818 WM_T_82542_2_1, WMP_F_FIBER },
819
820 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
821 "Intel i82543GC 1000BASE-X Ethernet",
822 WM_T_82543, WMP_F_FIBER },
823
824 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
825 "Intel i82543GC 1000BASE-T Ethernet",
826 WM_T_82543, WMP_F_COPPER },
827
828 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
829 "Intel i82544EI 1000BASE-T Ethernet",
830 WM_T_82544, WMP_F_COPPER },
831
832 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
833 "Intel i82544EI 1000BASE-X Ethernet",
834 WM_T_82544, WMP_F_FIBER },
835
836 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
837 "Intel i82544GC 1000BASE-T Ethernet",
838 WM_T_82544, WMP_F_COPPER },
839
840 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
841 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
842 WM_T_82544, WMP_F_COPPER },
843
844 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
845 "Intel i82540EM 1000BASE-T Ethernet",
846 WM_T_82540, WMP_F_COPPER },
847
848 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
849 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
850 WM_T_82540, WMP_F_COPPER },
851
852 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
853 "Intel i82540EP 1000BASE-T Ethernet",
854 WM_T_82540, WMP_F_COPPER },
855
856 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
857 "Intel i82540EP 1000BASE-T Ethernet",
858 WM_T_82540, WMP_F_COPPER },
859
860 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
861 "Intel i82540EP 1000BASE-T Ethernet",
862 WM_T_82540, WMP_F_COPPER },
863
864 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
865 "Intel i82545EM 1000BASE-T Ethernet",
866 WM_T_82545, WMP_F_COPPER },
867
868 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
869 "Intel i82545GM 1000BASE-T Ethernet",
870 WM_T_82545_3, WMP_F_COPPER },
871
872 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
873 "Intel i82545GM 1000BASE-X Ethernet",
874 WM_T_82545_3, WMP_F_FIBER },
875
876 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
877 "Intel i82545GM Gigabit Ethernet (SERDES)",
878 WM_T_82545_3, WMP_F_SERDES },
879
880 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
881 "Intel i82546EB 1000BASE-T Ethernet",
882 WM_T_82546, WMP_F_COPPER },
883
884 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
885 "Intel i82546EB 1000BASE-T Ethernet",
886 WM_T_82546, WMP_F_COPPER },
887
888 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
889 "Intel i82545EM 1000BASE-X Ethernet",
890 WM_T_82545, WMP_F_FIBER },
891
892 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
893 "Intel i82546EB 1000BASE-X Ethernet",
894 WM_T_82546, WMP_F_FIBER },
895
896 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
897 "Intel i82546GB 1000BASE-T Ethernet",
898 WM_T_82546_3, WMP_F_COPPER },
899
900 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
901 "Intel i82546GB 1000BASE-X Ethernet",
902 WM_T_82546_3, WMP_F_FIBER },
903
904 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
905 "Intel i82546GB Gigabit Ethernet (SERDES)",
906 WM_T_82546_3, WMP_F_SERDES },
907
908 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER,
909 "i82546GB quad-port Gigabit Ethernet",
910 WM_T_82546_3, WMP_F_COPPER },
911
912 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3,
913 "i82546GB quad-port Gigabit Ethernet (KSP3)",
914 WM_T_82546_3, WMP_F_COPPER },
915
916 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_PCIE,
917 "Intel PRO/1000MT (82546GB)",
918 WM_T_82546_3, WMP_F_COPPER },
919
920 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
921 "Intel i82541EI 1000BASE-T Ethernet",
922 WM_T_82541, WMP_F_COPPER },
923
924 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER_LOM,
925 "Intel i82541ER (LOM) 1000BASE-T Ethernet",
926 WM_T_82541, WMP_F_COPPER },
927
928 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
929 "Intel i82541EI Mobile 1000BASE-T Ethernet",
930 WM_T_82541, WMP_F_COPPER },
931
932 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
933 "Intel i82541ER 1000BASE-T Ethernet",
934 WM_T_82541_2, WMP_F_COPPER },
935
936 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
937 "Intel i82541GI 1000BASE-T Ethernet",
938 WM_T_82541_2, WMP_F_COPPER },
939
940 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
941 "Intel i82541GI Mobile 1000BASE-T Ethernet",
942 WM_T_82541_2, WMP_F_COPPER },
943
944 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI,
945 "Intel i82541PI 1000BASE-T Ethernet",
946 WM_T_82541_2, WMP_F_COPPER },
947
948 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
949 "Intel i82547EI 1000BASE-T Ethernet",
950 WM_T_82547, WMP_F_COPPER },
951
952 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI_MOBILE,
953 "Intel i82547EI Mobile 1000BASE-T Ethernet",
954 WM_T_82547, WMP_F_COPPER },
955
956 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
957 "Intel i82547GI 1000BASE-T Ethernet",
958 WM_T_82547_2, WMP_F_COPPER },
959
960 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_COPPER,
961 "Intel PRO/1000 PT (82571EB)",
962 WM_T_82571, WMP_F_COPPER },
963
964 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_FIBER,
965 "Intel PRO/1000 PF (82571EB)",
966 WM_T_82571, WMP_F_FIBER },
967
968 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_SERDES,
969 "Intel PRO/1000 PB (82571EB)",
970 WM_T_82571, WMP_F_SERDES },
971
972 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER,
973 "Intel PRO/1000 QT (82571EB)",
974 WM_T_82571, WMP_F_COPPER },
975
976 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER,
977 "Intel PRO/1000 PT Quad Port Server Adapter",
978 WM_T_82571, WMP_F_COPPER, },
979
980 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571PT_QUAD_COPPER,
981 "Intel Gigabit PT Quad Port Server ExpressModule",
982 WM_T_82571, WMP_F_COPPER, },
983
984 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_DUAL_SERDES,
985 "Intel 82571EB Dual Gigabit Ethernet (SERDES)",
986 WM_T_82571, WMP_F_SERDES, },
987
988 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_SERDES,
989 "Intel 82571EB Quad Gigabit Ethernet (SERDES)",
990 WM_T_82571, WMP_F_SERDES, },
991
992 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_FIBER,
993 "Intel 82571EB Quad 1000baseX Ethernet",
994 WM_T_82571, WMP_F_FIBER, },
995
996 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_COPPER,
997 "Intel i82572EI 1000baseT Ethernet",
998 WM_T_82572, WMP_F_COPPER },
999
1000 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_FIBER,
1001 "Intel i82572EI 1000baseX Ethernet",
1002 WM_T_82572, WMP_F_FIBER },
1003
1004 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_SERDES,
1005 "Intel i82572EI Gigabit Ethernet (SERDES)",
1006 WM_T_82572, WMP_F_SERDES },
1007
1008 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI,
1009 "Intel i82572EI 1000baseT Ethernet",
1010 WM_T_82572, WMP_F_COPPER },
1011
1012 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E,
1013 "Intel i82573E",
1014 WM_T_82573, WMP_F_COPPER },
1015
1016 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E_IAMT,
1017 "Intel i82573E IAMT",
1018 WM_T_82573, WMP_F_COPPER },
1019
1020 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L,
1021 "Intel i82573L Gigabit Ethernet",
1022 WM_T_82573, WMP_F_COPPER },
1023
1024 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82574L,
1025 "Intel i82574L",
1026 WM_T_82574, WMP_F_COPPER },
1027
1028 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82574LA,
1029 "Intel i82574L",
1030 WM_T_82574, WMP_F_COPPER },
1031
1032 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82583V,
1033 "Intel i82583V",
1034 WM_T_82583, WMP_F_COPPER },
1035
1036 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT,
1037 "i80003 dual 1000baseT Ethernet",
1038 WM_T_80003, WMP_F_COPPER },
1039
1040 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT,
1041 "i80003 dual 1000baseX Ethernet",
1042 WM_T_80003, WMP_F_COPPER },
1043
1044 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT,
1045 "Intel i80003ES2 dual Gigabit Ethernet (SERDES)",
1046 WM_T_80003, WMP_F_SERDES },
1047
1048 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT,
1049 "Intel i80003 1000baseT Ethernet",
1050 WM_T_80003, WMP_F_COPPER },
1051
1052 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT,
1053 "Intel i80003 Gigabit Ethernet (SERDES)",
1054 WM_T_80003, WMP_F_SERDES },
1055
1056 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_AMT,
1057 "Intel i82801H (M_AMT) LAN Controller",
1058 WM_T_ICH8, WMP_F_COPPER },
1059 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_AMT,
1060 "Intel i82801H (AMT) LAN Controller",
1061 WM_T_ICH8, WMP_F_COPPER },
1062 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_LAN,
1063 "Intel i82801H LAN Controller",
1064 WM_T_ICH8, WMP_F_COPPER },
1065 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_LAN,
1066 "Intel i82801H (IFE) LAN Controller",
1067 WM_T_ICH8, WMP_F_COPPER },
1068 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_LAN,
1069 "Intel i82801H (M) LAN Controller",
1070 WM_T_ICH8, WMP_F_COPPER },
1071 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_GT,
1072 "Intel i82801H IFE (GT) LAN Controller",
1073 WM_T_ICH8, WMP_F_COPPER },
1074 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_G,
1075 "Intel i82801H IFE (G) LAN Controller",
1076 WM_T_ICH8, WMP_F_COPPER },
1077 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_AMT,
1078 "82801I (AMT) LAN Controller",
1079 WM_T_ICH9, WMP_F_COPPER },
1080 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE,
1081 "82801I LAN Controller",
1082 WM_T_ICH9, WMP_F_COPPER },
1083 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_G,
1084 "82801I (G) LAN Controller",
1085 WM_T_ICH9, WMP_F_COPPER },
1086 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_GT,
1087 "82801I (GT) LAN Controller",
1088 WM_T_ICH9, WMP_F_COPPER },
1089 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_C,
1090 "82801I (C) LAN Controller",
1091 WM_T_ICH9, WMP_F_COPPER },
1092 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M,
1093 "82801I mobile LAN Controller",
1094 WM_T_ICH9, WMP_F_COPPER },
1095 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IGP_M_V,
1096 "82801I mobile (V) LAN Controller",
1097 WM_T_ICH9, WMP_F_COPPER },
1098 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M_AMT,
1099 "82801I mobile (AMT) LAN Controller",
1100 WM_T_ICH9, WMP_F_COPPER },
1101 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_BM,
1102 "82567LM-4 LAN Controller",
1103 WM_T_ICH9, WMP_F_COPPER },
1104 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_82567V_3,
1105 "82567V-3 LAN Controller",
1106 WM_T_ICH9, WMP_F_COPPER },
1107 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_LM,
1108 "82567LM-2 LAN Controller",
1109 WM_T_ICH10, WMP_F_COPPER },
1110 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_LF,
1111 "82567LF-2 LAN Controller",
1112 WM_T_ICH10, WMP_F_COPPER },
1113 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_LM,
1114 "82567LM-3 LAN Controller",
1115 WM_T_ICH10, WMP_F_COPPER },
1116 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_LF,
1117 "82567LF-3 LAN Controller",
1118 WM_T_ICH10, WMP_F_COPPER },
1119 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_V,
1120 "82567V-2 LAN Controller",
1121 WM_T_ICH10, WMP_F_COPPER },
1122 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_V,
1123 "82567V-3? LAN Controller",
1124 WM_T_ICH10, WMP_F_COPPER },
1125 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_HANKSVILLE,
1126 "HANKSVILLE LAN Controller",
1127 WM_T_ICH10, WMP_F_COPPER },
1128 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_M_LM,
1129 "PCH LAN (82577LM) Controller",
1130 WM_T_PCH, WMP_F_COPPER },
1131 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_M_LC,
1132 "PCH LAN (82577LC) Controller",
1133 WM_T_PCH, WMP_F_COPPER },
1134 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_D_DM,
1135 "PCH LAN (82578DM) Controller",
1136 WM_T_PCH, WMP_F_COPPER },
1137 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_D_DC,
1138 "PCH LAN (82578DC) Controller",
1139 WM_T_PCH, WMP_F_COPPER },
1140 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH2_LV_LM,
1141 "PCH2 LAN (82579LM) Controller",
1142 WM_T_PCH2, WMP_F_COPPER },
1143 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH2_LV_V,
1144 "PCH2 LAN (82579V) Controller",
1145 WM_T_PCH2, WMP_F_COPPER },
1146 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575EB_COPPER,
1147 "82575EB dual-1000baseT Ethernet",
1148 WM_T_82575, WMP_F_COPPER },
1149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575EB_FIBER_SERDES,
1150 "82575EB dual-1000baseX Ethernet (SERDES)",
1151 WM_T_82575, WMP_F_SERDES },
1152 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER,
1153 "82575GB quad-1000baseT Ethernet",
1154 WM_T_82575, WMP_F_COPPER },
1155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER_PM,
1156 "82575GB quad-1000baseT Ethernet (PM)",
1157 WM_T_82575, WMP_F_COPPER },
1158 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_COPPER,
1159 "82576 1000BaseT Ethernet",
1160 WM_T_82576, WMP_F_COPPER },
1161 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_FIBER,
1162 "82576 1000BaseX Ethernet",
1163 WM_T_82576, WMP_F_FIBER },
1164
1165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_SERDES,
1166 "82576 gigabit Ethernet (SERDES)",
1167 WM_T_82576, WMP_F_SERDES },
1168
1169 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_QUAD_COPPER,
1170 "82576 quad-1000BaseT Ethernet",
1171 WM_T_82576, WMP_F_COPPER },
1172
1173 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_QUAD_COPPER_ET2,
1174 "82576 Gigabit ET2 Quad Port Server Adapter",
1175 WM_T_82576, WMP_F_COPPER },
1176
1177 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_NS,
1178 "82576 gigabit Ethernet",
1179 WM_T_82576, WMP_F_COPPER },
1180
1181 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_NS_SERDES,
1182 "82576 gigabit Ethernet (SERDES)",
1183 WM_T_82576, WMP_F_SERDES },
1184 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_SERDES_QUAD,
1185 "82576 quad-gigabit Ethernet (SERDES)",
1186 WM_T_82576, WMP_F_SERDES },
1187
1188 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_COPPER,
1189 "82580 1000BaseT Ethernet",
1190 WM_T_82580, WMP_F_COPPER },
1191 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_FIBER,
1192 "82580 1000BaseX Ethernet",
1193 WM_T_82580, WMP_F_FIBER },
1194
1195 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_SERDES,
1196 "82580 1000BaseT Ethernet (SERDES)",
1197 WM_T_82580, WMP_F_SERDES },
1198
1199 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_SGMII,
1200 "82580 gigabit Ethernet (SGMII)",
1201 WM_T_82580, WMP_F_COPPER },
1202 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_COPPER_DUAL,
1203 "82580 dual-1000BaseT Ethernet",
1204 WM_T_82580, WMP_F_COPPER },
1205
1206 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_QUAD_FIBER,
1207 "82580 quad-1000BaseX Ethernet",
1208 WM_T_82580, WMP_F_FIBER },
1209
1210 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SGMII,
1211 "DH89XXCC Gigabit Ethernet (SGMII)",
1212 WM_T_82580, WMP_F_COPPER },
1213
1214 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SERDES,
1215 "DH89XXCC Gigabit Ethernet (SERDES)",
1216 WM_T_82580, WMP_F_SERDES },
1217
1218 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_BPLANE,
1219 "DH89XXCC 1000BASE-KX Ethernet",
1220 WM_T_82580, WMP_F_SERDES },
1221
1222 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SFP,
1223 "DH89XXCC Gigabit Ethernet (SFP)",
1224 WM_T_82580, WMP_F_SERDES },
1225
1226 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_COPPER,
1227 "I350 Gigabit Network Connection",
1228 WM_T_I350, WMP_F_COPPER },
1229
1230 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_FIBER,
1231 "I350 Gigabit Fiber Network Connection",
1232 WM_T_I350, WMP_F_FIBER },
1233
1234 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_SERDES,
1235 "I350 Gigabit Backplane Connection",
1236 WM_T_I350, WMP_F_SERDES },
1237
1238 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_DA4,
1239 "I350 Quad Port Gigabit Ethernet",
1240 WM_T_I350, WMP_F_SERDES },
1241
1242 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_SGMII,
1243 "I350 Gigabit Connection",
1244 WM_T_I350, WMP_F_COPPER },
1245
1246 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_1000KX,
1247 "I354 Gigabit Ethernet (KX)",
1248 WM_T_I354, WMP_F_SERDES },
1249
1250 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_SGMII,
1251 "I354 Gigabit Ethernet (SGMII)",
1252 WM_T_I354, WMP_F_COPPER },
1253
1254 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_25GBE,
1255 "I354 Gigabit Ethernet (2.5G)",
1256 WM_T_I354, WMP_F_COPPER },
1257
1258 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_T1,
1259 "I210-T1 Ethernet Server Adapter",
1260 WM_T_I210, WMP_F_COPPER },
1261
1262 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_OEM1,
1263 "I210 Ethernet (Copper OEM)",
1264 WM_T_I210, WMP_F_COPPER },
1265
1266 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_IT,
1267 "I210 Ethernet (Copper IT)",
1268 WM_T_I210, WMP_F_COPPER },
1269
1270 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_WOF,
1271 "I210 Ethernet (FLASH less)",
1272 WM_T_I210, WMP_F_COPPER },
1273
1274 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_FIBER,
1275 "I210 Gigabit Ethernet (Fiber)",
1276 WM_T_I210, WMP_F_FIBER },
1277
1278 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SERDES,
1279 "I210 Gigabit Ethernet (SERDES)",
1280 WM_T_I210, WMP_F_SERDES },
1281
1282 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SERDES_WOF,
1283 "I210 Gigabit Ethernet (FLASH less)",
1284 WM_T_I210, WMP_F_SERDES },
1285
1286 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SGMII,
1287 "I210 Gigabit Ethernet (SGMII)",
1288 WM_T_I210, WMP_F_COPPER },
1289
1290 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I211_COPPER,
1291 "I211 Ethernet (COPPER)",
1292 WM_T_I211, WMP_F_COPPER },
1293 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I217_V,
1294 "I217 V Ethernet Connection",
1295 WM_T_PCH_LPT, WMP_F_COPPER },
1296 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I217_LM,
1297 "I217 LM Ethernet Connection",
1298 WM_T_PCH_LPT, WMP_F_COPPER },
1299 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V,
1300 "I218 V Ethernet Connection",
1301 WM_T_PCH_LPT, WMP_F_COPPER },
1302 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V2,
1303 "I218 V Ethernet Connection",
1304 WM_T_PCH_LPT, WMP_F_COPPER },
1305 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V3,
1306 "I218 V Ethernet Connection",
1307 WM_T_PCH_LPT, WMP_F_COPPER },
1308 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM,
1309 "I218 LM Ethernet Connection",
1310 WM_T_PCH_LPT, WMP_F_COPPER },
1311 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM2,
1312 "I218 LM Ethernet Connection",
1313 WM_T_PCH_LPT, WMP_F_COPPER },
1314 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM3,
1315 "I218 LM Ethernet Connection",
1316 WM_T_PCH_LPT, WMP_F_COPPER },
1317 #if 0
1318 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V,
1319 "I219 V Ethernet Connection",
1320 WM_T_PCH_SPT, WMP_F_COPPER },
1321 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V2,
1322 "I219 V Ethernet Connection",
1323 WM_T_PCH_SPT, WMP_F_COPPER },
1324 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM,
1325 "I219 LM Ethernet Connection",
1326 WM_T_PCH_SPT, WMP_F_COPPER },
1327 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM2,
1328 "I219 LM Ethernet Connection",
1329 WM_T_PCH_SPT, WMP_F_COPPER },
1330 #endif
1331 { 0, 0,
1332 NULL,
1333 0, 0 },
1334 };
1335
1336 #ifdef WM_EVENT_COUNTERS
1337 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
1338 #endif /* WM_EVENT_COUNTERS */
1339
1340
1341 /*
1342 * Register read/write functions.
1343 * Other than CSR_{READ|WRITE}().
1344 */
1345
1346 #if 0 /* Not currently used */
1347 static inline uint32_t
1348 wm_io_read(struct wm_softc *sc, int reg)
1349 {
1350
1351 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
1352 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
1353 }
1354 #endif
1355
1356 static inline void
1357 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
1358 {
1359
1360 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
1361 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
1362 }
1363
1364 static inline void
1365 wm_82575_write_8bit_ctlr_reg(struct wm_softc *sc, uint32_t reg, uint32_t off,
1366 uint32_t data)
1367 {
1368 uint32_t regval;
1369 int i;
1370
1371 regval = (data & SCTL_CTL_DATA_MASK) | (off << SCTL_CTL_ADDR_SHIFT);
1372
1373 CSR_WRITE(sc, reg, regval);
1374
1375 for (i = 0; i < SCTL_CTL_POLL_TIMEOUT; i++) {
1376 delay(5);
1377 if (CSR_READ(sc, reg) & SCTL_CTL_READY)
1378 break;
1379 }
1380 if (i == SCTL_CTL_POLL_TIMEOUT) {
1381 aprint_error("%s: WARNING:"
1382 " i82575 reg 0x%08x setup did not indicate ready\n",
1383 device_xname(sc->sc_dev), reg);
1384 }
1385 }
1386
1387 static inline void
1388 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
1389 {
1390 wa->wa_low = htole32(v & 0xffffffffU);
1391 if (sizeof(bus_addr_t) == 8)
1392 wa->wa_high = htole32((uint64_t) v >> 32);
1393 else
1394 wa->wa_high = 0;
1395 }
1396
1397 /*
1398 * Descriptor sync/init functions.
1399 */
1400 static inline void
1401 wm_cdtxsync(struct wm_txqueue *txq, int start, int num, int ops)
1402 {
1403 struct wm_softc *sc = txq->txq_sc;
1404
1405 /* If it will wrap around, sync to the end of the ring. */
1406 if ((start + num) > WM_NTXDESC(txq)) {
1407 bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_dmamap,
1408 WM_CDTXOFF(txq, start), txq->txq_descsize *
1409 (WM_NTXDESC(txq) - start), ops);
1410 num -= (WM_NTXDESC(txq) - start);
1411 start = 0;
1412 }
1413
1414 /* Now sync whatever is left. */
1415 bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_dmamap,
1416 WM_CDTXOFF(txq, start), txq->txq_descsize * num, ops);
1417 }
1418
1419 static inline void
1420 wm_cdrxsync(struct wm_rxqueue *rxq, int start, int ops)
1421 {
1422 struct wm_softc *sc = rxq->rxq_sc;
1423
1424 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_dmamap,
1425 WM_CDRXOFF(start), sizeof(wiseman_rxdesc_t), ops);
1426 }
1427
1428 static inline void
1429 wm_init_rxdesc(struct wm_rxqueue *rxq, int start)
1430 {
1431 struct wm_softc *sc = rxq->rxq_sc;
1432 struct wm_rxsoft *rxs = &rxq->rxq_soft[start];
1433 wiseman_rxdesc_t *rxd = &rxq->rxq_descs[start];
1434 struct mbuf *m = rxs->rxs_mbuf;
1435
1436 /*
1437 * Note: We scoot the packet forward 2 bytes in the buffer
1438 * so that the payload after the Ethernet header is aligned
1439 * to a 4-byte boundary.
1440
1441 * XXX BRAINDAMAGE ALERT!
1442 * The stupid chip uses the same size for every buffer, which
1443 * is set in the Receive Control register. We are using the 2K
1444 * size option, but what we REALLY want is (2K - 2)! For this
1445 * reason, we can't "scoot" packets longer than the standard
1446 * Ethernet MTU. On strict-alignment platforms, if the total
1447 * size exceeds (2K - 2) we set align_tweak to 0 and let
1448 * the upper layer copy the headers.
1449 */
1450 m->m_data = m->m_ext.ext_buf + sc->sc_align_tweak;
1451
1452 wm_set_dma_addr(&rxd->wrx_addr,
1453 rxs->rxs_dmamap->dm_segs[0].ds_addr + sc->sc_align_tweak);
1454 rxd->wrx_len = 0;
1455 rxd->wrx_cksum = 0;
1456 rxd->wrx_status = 0;
1457 rxd->wrx_errors = 0;
1458 rxd->wrx_special = 0;
1459 wm_cdrxsync(rxq, start, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1460
1461 CSR_WRITE(sc, rxq->rxq_rdt_reg, start);
1462 }
1463
1464 /*
1465 * Device driver interface functions and commonly used functions.
1466 * match, attach, detach, init, start, stop, ioctl, watchdog and so on.
1467 */
1468
1469 /* Lookup supported device table */
1470 static const struct wm_product *
1471 wm_lookup(const struct pci_attach_args *pa)
1472 {
1473 const struct wm_product *wmp;
1474
1475 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
1476 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
1477 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
1478 return wmp;
1479 }
1480 return NULL;
1481 }
1482
1483 /* The match function (ca_match) */
1484 static int
1485 wm_match(device_t parent, cfdata_t cf, void *aux)
1486 {
1487 struct pci_attach_args *pa = aux;
1488
1489 if (wm_lookup(pa) != NULL)
1490 return 1;
1491
1492 return 0;
1493 }
1494
1495 /* The attach function (ca_attach) */
1496 static void
1497 wm_attach(device_t parent, device_t self, void *aux)
1498 {
1499 struct wm_softc *sc = device_private(self);
1500 struct pci_attach_args *pa = aux;
1501 prop_dictionary_t dict;
1502 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1503 pci_chipset_tag_t pc = pa->pa_pc;
1504 int counts[PCI_INTR_TYPE_SIZE];
1505 pci_intr_type_t max_type;
1506 const char *eetype, *xname;
1507 bus_space_tag_t memt;
1508 bus_space_handle_t memh;
1509 bus_size_t memsize;
1510 int memh_valid;
1511 int i, error;
1512 const struct wm_product *wmp;
1513 prop_data_t ea;
1514 prop_number_t pn;
1515 uint8_t enaddr[ETHER_ADDR_LEN];
1516 uint16_t cfg1, cfg2, swdpin, nvmword;
1517 pcireg_t preg, memtype;
1518 uint16_t eeprom_data, apme_mask;
1519 bool force_clear_smbi;
1520 uint32_t link_mode;
1521 uint32_t reg;
1522
1523 sc->sc_dev = self;
1524 callout_init(&sc->sc_tick_ch, CALLOUT_FLAGS);
1525 sc->sc_stopping = false;
1526
1527 wmp = wm_lookup(pa);
1528 #ifdef DIAGNOSTIC
1529 if (wmp == NULL) {
1530 printf("\n");
1531 panic("wm_attach: impossible");
1532 }
1533 #endif
1534 sc->sc_mediatype = WMP_MEDIATYPE(wmp->wmp_flags);
1535
1536 sc->sc_pc = pa->pa_pc;
1537 sc->sc_pcitag = pa->pa_tag;
1538
1539 if (pci_dma64_available(pa))
1540 sc->sc_dmat = pa->pa_dmat64;
1541 else
1542 sc->sc_dmat = pa->pa_dmat;
1543
1544 sc->sc_pcidevid = PCI_PRODUCT(pa->pa_id);
1545 sc->sc_rev = PCI_REVISION(pci_conf_read(pc, pa->pa_tag,PCI_CLASS_REG));
1546 pci_aprint_devinfo_fancy(pa, "Ethernet controller", wmp->wmp_name, 1);
1547
1548 sc->sc_type = wmp->wmp_type;
1549 if (sc->sc_type < WM_T_82543) {
1550 if (sc->sc_rev < 2) {
1551 aprint_error_dev(sc->sc_dev,
1552 "i82542 must be at least rev. 2\n");
1553 return;
1554 }
1555 if (sc->sc_rev < 3)
1556 sc->sc_type = WM_T_82542_2_0;
1557 }
1558
1559 /*
1560 * Disable MSI for Errata:
1561 * "Message Signaled Interrupt Feature May Corrupt Write Transactions"
1562 *
1563 * 82544: Errata 25
1564 * 82540: Errata 6 (easy to reproduce device timeout)
1565 * 82545: Errata 4 (easy to reproduce device timeout)
1566 * 82546: Errata 26 (easy to reproduce device timeout)
1567 * 82541: Errata 7 (easy to reproduce device timeout)
1568 *
1569 * "Byte Enables 2 and 3 are not set on MSI writes"
1570 *
1571 * 82571 & 82572: Errata 63
1572 */
1573 if ((sc->sc_type <= WM_T_82541_2) || (sc->sc_type == WM_T_82571)
1574 || (sc->sc_type == WM_T_82572))
1575 pa->pa_flags &= ~PCI_FLAGS_MSI_OKAY;
1576
1577 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
1578 || (sc->sc_type == WM_T_82580)
1579 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
1580 || (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211))
1581 sc->sc_flags |= WM_F_NEWQUEUE;
1582
1583 /* Set device properties (mactype) */
1584 dict = device_properties(sc->sc_dev);
1585 prop_dictionary_set_uint32(dict, "mactype", sc->sc_type);
1586
1587 /*
1588 * Map the device. All devices support memory-mapped acccess,
1589 * and it is really required for normal operation.
1590 */
1591 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
1592 switch (memtype) {
1593 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1594 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1595 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
1596 memtype, 0, &memt, &memh, NULL, &memsize) == 0);
1597 break;
1598 default:
1599 memh_valid = 0;
1600 break;
1601 }
1602
1603 if (memh_valid) {
1604 sc->sc_st = memt;
1605 sc->sc_sh = memh;
1606 sc->sc_ss = memsize;
1607 } else {
1608 aprint_error_dev(sc->sc_dev,
1609 "unable to map device registers\n");
1610 return;
1611 }
1612
1613 /*
1614 * In addition, i82544 and later support I/O mapped indirect
1615 * register access. It is not desirable (nor supported in
1616 * this driver) to use it for normal operation, though it is
1617 * required to work around bugs in some chip versions.
1618 */
1619 if (sc->sc_type >= WM_T_82544) {
1620 /* First we have to find the I/O BAR. */
1621 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
1622 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, i);
1623 if (memtype == PCI_MAPREG_TYPE_IO)
1624 break;
1625 if (PCI_MAPREG_MEM_TYPE(memtype) ==
1626 PCI_MAPREG_MEM_TYPE_64BIT)
1627 i += 4; /* skip high bits, too */
1628 }
1629 if (i < PCI_MAPREG_END) {
1630 /*
1631 * We found PCI_MAPREG_TYPE_IO. Note that 82580
1632 * (and newer?) chip has no PCI_MAPREG_TYPE_IO.
1633 * It's no problem because newer chips has no this
1634 * bug.
1635 *
1636 * The i8254x doesn't apparently respond when the
1637 * I/O BAR is 0, which looks somewhat like it's not
1638 * been configured.
1639 */
1640 preg = pci_conf_read(pc, pa->pa_tag, i);
1641 if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
1642 aprint_error_dev(sc->sc_dev,
1643 "WARNING: I/O BAR at zero.\n");
1644 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
1645 0, &sc->sc_iot, &sc->sc_ioh,
1646 NULL, &sc->sc_ios) == 0) {
1647 sc->sc_flags |= WM_F_IOH_VALID;
1648 } else {
1649 aprint_error_dev(sc->sc_dev,
1650 "WARNING: unable to map I/O space\n");
1651 }
1652 }
1653
1654 }
1655
1656 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
1657 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1658 preg |= PCI_COMMAND_MASTER_ENABLE;
1659 if (sc->sc_type < WM_T_82542_2_1)
1660 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
1661 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
1662
1663 /* power up chip */
1664 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1665 NULL)) && error != EOPNOTSUPP) {
1666 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1667 return;
1668 }
1669
1670 wm_adjust_qnum(sc, pci_msix_count(pa->pa_pc, pa->pa_tag));
1671
1672 /* Allocation settings */
1673 max_type = PCI_INTR_TYPE_MSIX;
1674 counts[PCI_INTR_TYPE_MSIX] = sc->sc_nqueues + 1;
1675 counts[PCI_INTR_TYPE_MSI] = 1;
1676 counts[PCI_INTR_TYPE_INTX] = 1;
1677
1678 alloc_retry:
1679 if (pci_intr_alloc(pa, &sc->sc_intrs, counts, max_type) != 0) {
1680 aprint_error_dev(sc->sc_dev, "failed to allocate interrupt\n");
1681 return;
1682 }
1683
1684 if (pci_intr_type(sc->sc_intrs[0]) == PCI_INTR_TYPE_MSIX) {
1685 error = wm_setup_msix(sc);
1686 if (error) {
1687 pci_intr_release(pc, sc->sc_intrs,
1688 counts[PCI_INTR_TYPE_MSIX]);
1689
1690 /* Setup for MSI: Disable MSI-X */
1691 max_type = PCI_INTR_TYPE_MSI;
1692 counts[PCI_INTR_TYPE_MSI] = 1;
1693 counts[PCI_INTR_TYPE_INTX] = 1;
1694 goto alloc_retry;
1695 }
1696 } else if (pci_intr_type(sc->sc_intrs[0]) == PCI_INTR_TYPE_MSI) {
1697 wm_adjust_qnum(sc, 0); /* must not use multiqueue */
1698 error = wm_setup_legacy(sc);
1699 if (error) {
1700 pci_intr_release(sc->sc_pc, sc->sc_intrs,
1701 counts[PCI_INTR_TYPE_MSI]);
1702
1703 /* The next try is for INTx: Disable MSI */
1704 max_type = PCI_INTR_TYPE_INTX;
1705 counts[PCI_INTR_TYPE_INTX] = 1;
1706 goto alloc_retry;
1707 }
1708 } else {
1709 wm_adjust_qnum(sc, 0); /* must not use multiqueue */
1710 error = wm_setup_legacy(sc);
1711 if (error) {
1712 pci_intr_release(sc->sc_pc, sc->sc_intrs,
1713 counts[PCI_INTR_TYPE_INTX]);
1714 return;
1715 }
1716 }
1717
1718 /*
1719 * Check the function ID (unit number of the chip).
1720 */
1721 if ((sc->sc_type == WM_T_82546) || (sc->sc_type == WM_T_82546_3)
1722 || (sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_80003)
1723 || (sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
1724 || (sc->sc_type == WM_T_82580)
1725 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354))
1726 sc->sc_funcid = (CSR_READ(sc, WMREG_STATUS)
1727 >> STATUS_FUNCID_SHIFT) & STATUS_FUNCID_MASK;
1728 else
1729 sc->sc_funcid = 0;
1730
1731 /*
1732 * Determine a few things about the bus we're connected to.
1733 */
1734 if (sc->sc_type < WM_T_82543) {
1735 /* We don't really know the bus characteristics here. */
1736 sc->sc_bus_speed = 33;
1737 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
1738 /*
1739 * CSA (Communication Streaming Architecture) is about as fast
1740 * a 32-bit 66MHz PCI Bus.
1741 */
1742 sc->sc_flags |= WM_F_CSA;
1743 sc->sc_bus_speed = 66;
1744 aprint_verbose_dev(sc->sc_dev,
1745 "Communication Streaming Architecture\n");
1746 if (sc->sc_type == WM_T_82547) {
1747 callout_init(&sc->sc_txfifo_ch, CALLOUT_FLAGS);
1748 callout_setfunc(&sc->sc_txfifo_ch,
1749 wm_82547_txfifo_stall, sc);
1750 aprint_verbose_dev(sc->sc_dev,
1751 "using 82547 Tx FIFO stall work-around\n");
1752 }
1753 } else if (sc->sc_type >= WM_T_82571) {
1754 sc->sc_flags |= WM_F_PCIE;
1755 if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9)
1756 && (sc->sc_type != WM_T_ICH10)
1757 && (sc->sc_type != WM_T_PCH)
1758 && (sc->sc_type != WM_T_PCH2)
1759 && (sc->sc_type != WM_T_PCH_LPT)
1760 && (sc->sc_type != WM_T_PCH_SPT)) {
1761 /* ICH* and PCH* have no PCIe capability registers */
1762 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
1763 PCI_CAP_PCIEXPRESS, &sc->sc_pcixe_capoff,
1764 NULL) == 0)
1765 aprint_error_dev(sc->sc_dev,
1766 "unable to find PCIe capability\n");
1767 }
1768 aprint_verbose_dev(sc->sc_dev, "PCI-Express bus\n");
1769 } else {
1770 reg = CSR_READ(sc, WMREG_STATUS);
1771 if (reg & STATUS_BUS64)
1772 sc->sc_flags |= WM_F_BUS64;
1773 if ((reg & STATUS_PCIX_MODE) != 0) {
1774 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
1775
1776 sc->sc_flags |= WM_F_PCIX;
1777 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
1778 PCI_CAP_PCIX, &sc->sc_pcixe_capoff, NULL) == 0)
1779 aprint_error_dev(sc->sc_dev,
1780 "unable to find PCIX capability\n");
1781 else if (sc->sc_type != WM_T_82545_3 &&
1782 sc->sc_type != WM_T_82546_3) {
1783 /*
1784 * Work around a problem caused by the BIOS
1785 * setting the max memory read byte count
1786 * incorrectly.
1787 */
1788 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
1789 sc->sc_pcixe_capoff + PCIX_CMD);
1790 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
1791 sc->sc_pcixe_capoff + PCIX_STATUS);
1792
1793 bytecnt = (pcix_cmd & PCIX_CMD_BYTECNT_MASK) >>
1794 PCIX_CMD_BYTECNT_SHIFT;
1795 maxb = (pcix_sts & PCIX_STATUS_MAXB_MASK) >>
1796 PCIX_STATUS_MAXB_SHIFT;
1797 if (bytecnt > maxb) {
1798 aprint_verbose_dev(sc->sc_dev,
1799 "resetting PCI-X MMRBC: %d -> %d\n",
1800 512 << bytecnt, 512 << maxb);
1801 pcix_cmd = (pcix_cmd &
1802 ~PCIX_CMD_BYTECNT_MASK) |
1803 (maxb << PCIX_CMD_BYTECNT_SHIFT);
1804 pci_conf_write(pa->pa_pc, pa->pa_tag,
1805 sc->sc_pcixe_capoff + PCIX_CMD,
1806 pcix_cmd);
1807 }
1808 }
1809 }
1810 /*
1811 * The quad port adapter is special; it has a PCIX-PCIX
1812 * bridge on the board, and can run the secondary bus at
1813 * a higher speed.
1814 */
1815 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
1816 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
1817 : 66;
1818 } else if (sc->sc_flags & WM_F_PCIX) {
1819 switch (reg & STATUS_PCIXSPD_MASK) {
1820 case STATUS_PCIXSPD_50_66:
1821 sc->sc_bus_speed = 66;
1822 break;
1823 case STATUS_PCIXSPD_66_100:
1824 sc->sc_bus_speed = 100;
1825 break;
1826 case STATUS_PCIXSPD_100_133:
1827 sc->sc_bus_speed = 133;
1828 break;
1829 default:
1830 aprint_error_dev(sc->sc_dev,
1831 "unknown PCIXSPD %d; assuming 66MHz\n",
1832 reg & STATUS_PCIXSPD_MASK);
1833 sc->sc_bus_speed = 66;
1834 break;
1835 }
1836 } else
1837 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
1838 aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
1839 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
1840 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
1841 }
1842
1843 /* clear interesting stat counters */
1844 CSR_READ(sc, WMREG_COLC);
1845 CSR_READ(sc, WMREG_RXERRC);
1846
1847 /* get PHY control from SMBus to PCIe */
1848 if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)
1849 || (sc->sc_type == WM_T_PCH_LPT) || (sc->sc_type == WM_T_PCH_SPT))
1850 wm_smbustopci(sc);
1851
1852 /* Reset the chip to a known state. */
1853 wm_reset(sc);
1854
1855 /* Get some information about the EEPROM. */
1856 switch (sc->sc_type) {
1857 case WM_T_82542_2_0:
1858 case WM_T_82542_2_1:
1859 case WM_T_82543:
1860 case WM_T_82544:
1861 /* Microwire */
1862 sc->sc_nvm_wordsize = 64;
1863 sc->sc_nvm_addrbits = 6;
1864 break;
1865 case WM_T_82540:
1866 case WM_T_82545:
1867 case WM_T_82545_3:
1868 case WM_T_82546:
1869 case WM_T_82546_3:
1870 /* Microwire */
1871 reg = CSR_READ(sc, WMREG_EECD);
1872 if (reg & EECD_EE_SIZE) {
1873 sc->sc_nvm_wordsize = 256;
1874 sc->sc_nvm_addrbits = 8;
1875 } else {
1876 sc->sc_nvm_wordsize = 64;
1877 sc->sc_nvm_addrbits = 6;
1878 }
1879 sc->sc_flags |= WM_F_LOCK_EECD;
1880 break;
1881 case WM_T_82541:
1882 case WM_T_82541_2:
1883 case WM_T_82547:
1884 case WM_T_82547_2:
1885 sc->sc_flags |= WM_F_LOCK_EECD;
1886 reg = CSR_READ(sc, WMREG_EECD);
1887 if (reg & EECD_EE_TYPE) {
1888 /* SPI */
1889 sc->sc_flags |= WM_F_EEPROM_SPI;
1890 wm_nvm_set_addrbits_size_eecd(sc);
1891 } else {
1892 /* Microwire */
1893 if ((reg & EECD_EE_ABITS) != 0) {
1894 sc->sc_nvm_wordsize = 256;
1895 sc->sc_nvm_addrbits = 8;
1896 } else {
1897 sc->sc_nvm_wordsize = 64;
1898 sc->sc_nvm_addrbits = 6;
1899 }
1900 }
1901 break;
1902 case WM_T_82571:
1903 case WM_T_82572:
1904 /* SPI */
1905 sc->sc_flags |= WM_F_EEPROM_SPI;
1906 wm_nvm_set_addrbits_size_eecd(sc);
1907 sc->sc_flags |= WM_F_LOCK_EECD | WM_F_LOCK_SWSM;
1908 break;
1909 case WM_T_82573:
1910 sc->sc_flags |= WM_F_LOCK_SWSM;
1911 /* FALLTHROUGH */
1912 case WM_T_82574:
1913 case WM_T_82583:
1914 if (wm_nvm_is_onboard_eeprom(sc) == 0) {
1915 sc->sc_flags |= WM_F_EEPROM_FLASH;
1916 sc->sc_nvm_wordsize = 2048;
1917 } else {
1918 /* SPI */
1919 sc->sc_flags |= WM_F_EEPROM_SPI;
1920 wm_nvm_set_addrbits_size_eecd(sc);
1921 }
1922 sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
1923 break;
1924 case WM_T_82575:
1925 case WM_T_82576:
1926 case WM_T_82580:
1927 case WM_T_I350:
1928 case WM_T_I354:
1929 case WM_T_80003:
1930 /* SPI */
1931 sc->sc_flags |= WM_F_EEPROM_SPI;
1932 wm_nvm_set_addrbits_size_eecd(sc);
1933 sc->sc_flags |= WM_F_EEPROM_EERDEEWR | WM_F_LOCK_SWFW
1934 | WM_F_LOCK_SWSM;
1935 break;
1936 case WM_T_ICH8:
1937 case WM_T_ICH9:
1938 case WM_T_ICH10:
1939 case WM_T_PCH:
1940 case WM_T_PCH2:
1941 case WM_T_PCH_LPT:
1942 /* FLASH */
1943 sc->sc_flags |= WM_F_EEPROM_FLASH | WM_F_LOCK_EXTCNF;
1944 sc->sc_nvm_wordsize = 2048;
1945 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag,WM_ICH8_FLASH);
1946 if (pci_mapreg_map(pa, WM_ICH8_FLASH, memtype, 0,
1947 &sc->sc_flasht, &sc->sc_flashh, NULL, &sc->sc_flashs)) {
1948 aprint_error_dev(sc->sc_dev,
1949 "can't map FLASH registers\n");
1950 goto out;
1951 }
1952 reg = ICH8_FLASH_READ32(sc, ICH_FLASH_GFPREG);
1953 sc->sc_ich8_flash_base = (reg & ICH_GFPREG_BASE_MASK) *
1954 ICH_FLASH_SECTOR_SIZE;
1955 sc->sc_ich8_flash_bank_size =
1956 ((reg >> 16) & ICH_GFPREG_BASE_MASK) + 1;
1957 sc->sc_ich8_flash_bank_size -= (reg & ICH_GFPREG_BASE_MASK);
1958 sc->sc_ich8_flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
1959 sc->sc_ich8_flash_bank_size /= 2 * sizeof(uint16_t);
1960 sc->sc_flashreg_offset = 0;
1961 break;
1962 case WM_T_PCH_SPT:
1963 /* SPT has no GFPREG; flash registers mapped through BAR0 */
1964 sc->sc_flags |= WM_F_EEPROM_FLASH | WM_F_LOCK_EXTCNF;
1965 sc->sc_flasht = sc->sc_st;
1966 sc->sc_flashh = sc->sc_sh;
1967 sc->sc_ich8_flash_base = 0;
1968 sc->sc_nvm_wordsize =
1969 (((CSR_READ(sc, WMREG_STRAP) >> 1) & 0x1F) + 1)
1970 * NVM_SIZE_MULTIPLIER;
1971 /* It is size in bytes, we want words */
1972 sc->sc_nvm_wordsize /= 2;
1973 /* assume 2 banks */
1974 sc->sc_ich8_flash_bank_size = sc->sc_nvm_wordsize / 2;
1975 sc->sc_flashreg_offset = WM_PCH_SPT_FLASHOFFSET;
1976 break;
1977 case WM_T_I210:
1978 case WM_T_I211:
1979 if (wm_nvm_get_flash_presence_i210(sc)) {
1980 wm_nvm_set_addrbits_size_eecd(sc);
1981 sc->sc_flags |= WM_F_EEPROM_FLASH_HW;
1982 sc->sc_flags |= WM_F_EEPROM_EERDEEWR | WM_F_LOCK_SWFW;
1983 } else {
1984 sc->sc_nvm_wordsize = INVM_SIZE;
1985 sc->sc_flags |= WM_F_EEPROM_INVM;
1986 sc->sc_flags |= WM_F_LOCK_SWFW;
1987 }
1988 break;
1989 default:
1990 break;
1991 }
1992
1993 /* Ensure the SMBI bit is clear before first NVM or PHY access */
1994 switch (sc->sc_type) {
1995 case WM_T_82571:
1996 case WM_T_82572:
1997 reg = CSR_READ(sc, WMREG_SWSM2);
1998 if ((reg & SWSM2_LOCK) == 0) {
1999 CSR_WRITE(sc, WMREG_SWSM2, reg | SWSM2_LOCK);
2000 force_clear_smbi = true;
2001 } else
2002 force_clear_smbi = false;
2003 break;
2004 case WM_T_82573:
2005 case WM_T_82574:
2006 case WM_T_82583:
2007 force_clear_smbi = true;
2008 break;
2009 default:
2010 force_clear_smbi = false;
2011 break;
2012 }
2013 if (force_clear_smbi) {
2014 reg = CSR_READ(sc, WMREG_SWSM);
2015 if ((reg & SWSM_SMBI) != 0)
2016 aprint_error_dev(sc->sc_dev,
2017 "Please update the Bootagent\n");
2018 CSR_WRITE(sc, WMREG_SWSM, reg & ~SWSM_SMBI);
2019 }
2020
2021 /*
2022 * Defer printing the EEPROM type until after verifying the checksum
2023 * This allows the EEPROM type to be printed correctly in the case
2024 * that no EEPROM is attached.
2025 */
2026 /*
2027 * Validate the EEPROM checksum. If the checksum fails, flag
2028 * this for later, so we can fail future reads from the EEPROM.
2029 */
2030 if (wm_nvm_validate_checksum(sc)) {
2031 /*
2032 * Read twice again because some PCI-e parts fail the
2033 * first check due to the link being in sleep state.
2034 */
2035 if (wm_nvm_validate_checksum(sc))
2036 sc->sc_flags |= WM_F_EEPROM_INVALID;
2037 }
2038
2039 /* Set device properties (macflags) */
2040 prop_dictionary_set_uint32(dict, "macflags", sc->sc_flags);
2041
2042 if (sc->sc_flags & WM_F_EEPROM_INVALID)
2043 aprint_verbose_dev(sc->sc_dev, "No EEPROM");
2044 else {
2045 aprint_verbose_dev(sc->sc_dev, "%u words ",
2046 sc->sc_nvm_wordsize);
2047 if (sc->sc_flags & WM_F_EEPROM_INVM)
2048 aprint_verbose("iNVM");
2049 else if (sc->sc_flags & WM_F_EEPROM_FLASH_HW)
2050 aprint_verbose("FLASH(HW)");
2051 else if (sc->sc_flags & WM_F_EEPROM_FLASH)
2052 aprint_verbose("FLASH");
2053 else {
2054 if (sc->sc_flags & WM_F_EEPROM_SPI)
2055 eetype = "SPI";
2056 else
2057 eetype = "MicroWire";
2058 aprint_verbose("(%d address bits) %s EEPROM",
2059 sc->sc_nvm_addrbits, eetype);
2060 }
2061 }
2062 wm_nvm_version(sc);
2063 aprint_verbose("\n");
2064
2065 /* Check for I21[01] PLL workaround */
2066 if (sc->sc_type == WM_T_I210)
2067 sc->sc_flags |= WM_F_PLL_WA_I210;
2068 if ((sc->sc_type == WM_T_I210) && wm_nvm_get_flash_presence_i210(sc)) {
2069 /* NVM image release 3.25 has a workaround */
2070 if ((sc->sc_nvm_ver_major < 3)
2071 || ((sc->sc_nvm_ver_major == 3)
2072 && (sc->sc_nvm_ver_minor < 25))) {
2073 aprint_verbose_dev(sc->sc_dev,
2074 "ROM image version %d.%d is older than 3.25\n",
2075 sc->sc_nvm_ver_major, sc->sc_nvm_ver_minor);
2076 sc->sc_flags |= WM_F_PLL_WA_I210;
2077 }
2078 }
2079 if ((sc->sc_flags & WM_F_PLL_WA_I210) != 0)
2080 wm_pll_workaround_i210(sc);
2081
2082 wm_get_wakeup(sc);
2083 switch (sc->sc_type) {
2084 case WM_T_82571:
2085 case WM_T_82572:
2086 case WM_T_82573:
2087 case WM_T_82574:
2088 case WM_T_82583:
2089 case WM_T_80003:
2090 case WM_T_ICH8:
2091 case WM_T_ICH9:
2092 case WM_T_ICH10:
2093 case WM_T_PCH:
2094 case WM_T_PCH2:
2095 case WM_T_PCH_LPT:
2096 case WM_T_PCH_SPT:
2097 /* Non-AMT based hardware can now take control from firmware */
2098 if ((sc->sc_flags & WM_F_HAS_AMT) == 0)
2099 wm_get_hw_control(sc);
2100 break;
2101 default:
2102 break;
2103 }
2104
2105 /*
2106 * Read the Ethernet address from the EEPROM, if not first found
2107 * in device properties.
2108 */
2109 ea = prop_dictionary_get(dict, "mac-address");
2110 if (ea != NULL) {
2111 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
2112 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
2113 memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
2114 } else {
2115 if (wm_read_mac_addr(sc, enaddr) != 0) {
2116 aprint_error_dev(sc->sc_dev,
2117 "unable to read Ethernet address\n");
2118 goto out;
2119 }
2120 }
2121
2122 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
2123 ether_sprintf(enaddr));
2124
2125 /*
2126 * Read the config info from the EEPROM, and set up various
2127 * bits in the control registers based on their contents.
2128 */
2129 pn = prop_dictionary_get(dict, "i82543-cfg1");
2130 if (pn != NULL) {
2131 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
2132 cfg1 = (uint16_t) prop_number_integer_value(pn);
2133 } else {
2134 if (wm_nvm_read(sc, NVM_OFF_CFG1, 1, &cfg1)) {
2135 aprint_error_dev(sc->sc_dev, "unable to read CFG1\n");
2136 goto out;
2137 }
2138 }
2139
2140 pn = prop_dictionary_get(dict, "i82543-cfg2");
2141 if (pn != NULL) {
2142 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
2143 cfg2 = (uint16_t) prop_number_integer_value(pn);
2144 } else {
2145 if (wm_nvm_read(sc, NVM_OFF_CFG2, 1, &cfg2)) {
2146 aprint_error_dev(sc->sc_dev, "unable to read CFG2\n");
2147 goto out;
2148 }
2149 }
2150
2151 /* check for WM_F_WOL */
2152 switch (sc->sc_type) {
2153 case WM_T_82542_2_0:
2154 case WM_T_82542_2_1:
2155 case WM_T_82543:
2156 /* dummy? */
2157 eeprom_data = 0;
2158 apme_mask = NVM_CFG3_APME;
2159 break;
2160 case WM_T_82544:
2161 apme_mask = NVM_CFG2_82544_APM_EN;
2162 eeprom_data = cfg2;
2163 break;
2164 case WM_T_82546:
2165 case WM_T_82546_3:
2166 case WM_T_82571:
2167 case WM_T_82572:
2168 case WM_T_82573:
2169 case WM_T_82574:
2170 case WM_T_82583:
2171 case WM_T_80003:
2172 default:
2173 apme_mask = NVM_CFG3_APME;
2174 wm_nvm_read(sc, (sc->sc_funcid == 1) ? NVM_OFF_CFG3_PORTB
2175 : NVM_OFF_CFG3_PORTA, 1, &eeprom_data);
2176 break;
2177 case WM_T_82575:
2178 case WM_T_82576:
2179 case WM_T_82580:
2180 case WM_T_I350:
2181 case WM_T_I354: /* XXX ok? */
2182 case WM_T_ICH8:
2183 case WM_T_ICH9:
2184 case WM_T_ICH10:
2185 case WM_T_PCH:
2186 case WM_T_PCH2:
2187 case WM_T_PCH_LPT:
2188 case WM_T_PCH_SPT:
2189 /* XXX The funcid should be checked on some devices */
2190 apme_mask = WUC_APME;
2191 eeprom_data = CSR_READ(sc, WMREG_WUC);
2192 break;
2193 }
2194
2195 /* Check for WM_F_WOL flag after the setting of the EEPROM stuff */
2196 if ((eeprom_data & apme_mask) != 0)
2197 sc->sc_flags |= WM_F_WOL;
2198 #ifdef WM_DEBUG
2199 if ((sc->sc_flags & WM_F_WOL) != 0)
2200 printf("WOL\n");
2201 #endif
2202
2203 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)) {
2204 /* Check NVM for autonegotiation */
2205 if (wm_nvm_read(sc, NVM_OFF_COMPAT, 1, &nvmword) == 0) {
2206 if ((nvmword & NVM_COMPAT_SERDES_FORCE_MODE) != 0)
2207 sc->sc_flags |= WM_F_PCS_DIS_AUTONEGO;
2208 }
2209 }
2210
2211 /*
2212 * XXX need special handling for some multiple port cards
2213 * to disable a paticular port.
2214 */
2215
2216 if (sc->sc_type >= WM_T_82544) {
2217 pn = prop_dictionary_get(dict, "i82543-swdpin");
2218 if (pn != NULL) {
2219 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
2220 swdpin = (uint16_t) prop_number_integer_value(pn);
2221 } else {
2222 if (wm_nvm_read(sc, NVM_OFF_SWDPIN, 1, &swdpin)) {
2223 aprint_error_dev(sc->sc_dev,
2224 "unable to read SWDPIN\n");
2225 goto out;
2226 }
2227 }
2228 }
2229
2230 if (cfg1 & NVM_CFG1_ILOS)
2231 sc->sc_ctrl |= CTRL_ILOS;
2232
2233 /*
2234 * XXX
2235 * This code isn't correct because pin 2 and 3 are located
2236 * in different position on newer chips. Check all datasheet.
2237 *
2238 * Until resolve this problem, check if a chip < 82580
2239 */
2240 if (sc->sc_type <= WM_T_82580) {
2241 if (sc->sc_type >= WM_T_82544) {
2242 sc->sc_ctrl |=
2243 ((swdpin >> NVM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
2244 CTRL_SWDPIO_SHIFT;
2245 sc->sc_ctrl |=
2246 ((swdpin >> NVM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
2247 CTRL_SWDPINS_SHIFT;
2248 } else {
2249 sc->sc_ctrl |=
2250 ((cfg1 >> NVM_CFG1_SWDPIO_SHIFT) & 0xf) <<
2251 CTRL_SWDPIO_SHIFT;
2252 }
2253 }
2254
2255 /* XXX For other than 82580? */
2256 if (sc->sc_type == WM_T_82580) {
2257 wm_nvm_read(sc, NVM_OFF_CFG3_PORTA, 1, &nvmword);
2258 if (nvmword & __BIT(13))
2259 sc->sc_ctrl |= CTRL_ILOS;
2260 }
2261
2262 #if 0
2263 if (sc->sc_type >= WM_T_82544) {
2264 if (cfg1 & NVM_CFG1_IPS0)
2265 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
2266 if (cfg1 & NVM_CFG1_IPS1)
2267 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
2268 sc->sc_ctrl_ext |=
2269 ((swdpin >> (NVM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
2270 CTRL_EXT_SWDPIO_SHIFT;
2271 sc->sc_ctrl_ext |=
2272 ((swdpin >> (NVM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
2273 CTRL_EXT_SWDPINS_SHIFT;
2274 } else {
2275 sc->sc_ctrl_ext |=
2276 ((cfg2 >> NVM_CFG2_SWDPIO_SHIFT) & 0xf) <<
2277 CTRL_EXT_SWDPIO_SHIFT;
2278 }
2279 #endif
2280
2281 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2282 #if 0
2283 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2284 #endif
2285
2286 if (sc->sc_type == WM_T_PCH) {
2287 uint16_t val;
2288
2289 /* Save the NVM K1 bit setting */
2290 wm_nvm_read(sc, NVM_OFF_K1_CONFIG, 1, &val);
2291
2292 if ((val & NVM_K1_CONFIG_ENABLE) != 0)
2293 sc->sc_nvm_k1_enabled = 1;
2294 else
2295 sc->sc_nvm_k1_enabled = 0;
2296 }
2297
2298 /*
2299 * Determine if we're TBI,GMII or SGMII mode, and initialize the
2300 * media structures accordingly.
2301 */
2302 if (sc->sc_type == WM_T_ICH8 || sc->sc_type == WM_T_ICH9
2303 || sc->sc_type == WM_T_ICH10 || sc->sc_type == WM_T_PCH
2304 || sc->sc_type == WM_T_PCH2 || sc->sc_type == WM_T_PCH_LPT
2305 || sc->sc_type == WM_T_PCH_SPT || sc->sc_type == WM_T_82573
2306 || sc->sc_type == WM_T_82574 || sc->sc_type == WM_T_82583) {
2307 /* STATUS_TBIMODE reserved/reused, can't rely on it */
2308 wm_gmii_mediainit(sc, wmp->wmp_product);
2309 } else if (sc->sc_type < WM_T_82543 ||
2310 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
2311 if (sc->sc_mediatype == WM_MEDIATYPE_COPPER) {
2312 aprint_error_dev(sc->sc_dev,
2313 "WARNING: TBIMODE set on 1000BASE-T product!\n");
2314 sc->sc_mediatype = WM_MEDIATYPE_FIBER;
2315 }
2316 wm_tbi_mediainit(sc);
2317 } else {
2318 switch (sc->sc_type) {
2319 case WM_T_82575:
2320 case WM_T_82576:
2321 case WM_T_82580:
2322 case WM_T_I350:
2323 case WM_T_I354:
2324 case WM_T_I210:
2325 case WM_T_I211:
2326 reg = CSR_READ(sc, WMREG_CTRL_EXT);
2327 link_mode = reg & CTRL_EXT_LINK_MODE_MASK;
2328 switch (link_mode) {
2329 case CTRL_EXT_LINK_MODE_1000KX:
2330 aprint_verbose_dev(sc->sc_dev, "1000KX\n");
2331 sc->sc_mediatype = WM_MEDIATYPE_SERDES;
2332 break;
2333 case CTRL_EXT_LINK_MODE_SGMII:
2334 if (wm_sgmii_uses_mdio(sc)) {
2335 aprint_verbose_dev(sc->sc_dev,
2336 "SGMII(MDIO)\n");
2337 sc->sc_flags |= WM_F_SGMII;
2338 sc->sc_mediatype = WM_MEDIATYPE_COPPER;
2339 break;
2340 }
2341 aprint_verbose_dev(sc->sc_dev, "SGMII(I2C)\n");
2342 /*FALLTHROUGH*/
2343 case CTRL_EXT_LINK_MODE_PCIE_SERDES:
2344 sc->sc_mediatype = wm_sfp_get_media_type(sc);
2345 if (sc->sc_mediatype == WM_MEDIATYPE_UNKNOWN) {
2346 if (link_mode
2347 == CTRL_EXT_LINK_MODE_SGMII) {
2348 sc->sc_mediatype
2349 = WM_MEDIATYPE_COPPER;
2350 sc->sc_flags |= WM_F_SGMII;
2351 } else {
2352 sc->sc_mediatype
2353 = WM_MEDIATYPE_SERDES;
2354 aprint_verbose_dev(sc->sc_dev,
2355 "SERDES\n");
2356 }
2357 break;
2358 }
2359 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES)
2360 aprint_verbose_dev(sc->sc_dev,
2361 "SERDES\n");
2362
2363 /* Change current link mode setting */
2364 reg &= ~CTRL_EXT_LINK_MODE_MASK;
2365 switch (sc->sc_mediatype) {
2366 case WM_MEDIATYPE_COPPER:
2367 reg |= CTRL_EXT_LINK_MODE_SGMII;
2368 break;
2369 case WM_MEDIATYPE_SERDES:
2370 reg |= CTRL_EXT_LINK_MODE_PCIE_SERDES;
2371 break;
2372 default:
2373 break;
2374 }
2375 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
2376 break;
2377 case CTRL_EXT_LINK_MODE_GMII:
2378 default:
2379 aprint_verbose_dev(sc->sc_dev, "Copper\n");
2380 sc->sc_mediatype = WM_MEDIATYPE_COPPER;
2381 break;
2382 }
2383
2384 reg &= ~CTRL_EXT_I2C_ENA;
2385 if ((sc->sc_flags & WM_F_SGMII) != 0)
2386 reg |= CTRL_EXT_I2C_ENA;
2387 else
2388 reg &= ~CTRL_EXT_I2C_ENA;
2389 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
2390
2391 if (sc->sc_mediatype == WM_MEDIATYPE_COPPER)
2392 wm_gmii_mediainit(sc, wmp->wmp_product);
2393 else
2394 wm_tbi_mediainit(sc);
2395 break;
2396 default:
2397 if (sc->sc_mediatype == WM_MEDIATYPE_FIBER)
2398 aprint_error_dev(sc->sc_dev,
2399 "WARNING: TBIMODE clear on 1000BASE-X product!\n");
2400 sc->sc_mediatype = WM_MEDIATYPE_COPPER;
2401 wm_gmii_mediainit(sc, wmp->wmp_product);
2402 }
2403 }
2404
2405 ifp = &sc->sc_ethercom.ec_if;
2406 xname = device_xname(sc->sc_dev);
2407 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
2408 ifp->if_softc = sc;
2409 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2410 ifp->if_ioctl = wm_ioctl;
2411 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
2412 ifp->if_start = wm_nq_start;
2413 if (sc->sc_nqueues > 1)
2414 ifp->if_transmit = wm_nq_transmit;
2415 } else
2416 ifp->if_start = wm_start;
2417 ifp->if_watchdog = wm_watchdog;
2418 ifp->if_init = wm_init;
2419 ifp->if_stop = wm_stop;
2420 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
2421 IFQ_SET_READY(&ifp->if_snd);
2422
2423 /* Check for jumbo frame */
2424 switch (sc->sc_type) {
2425 case WM_T_82573:
2426 /* XXX limited to 9234 if ASPM is disabled */
2427 wm_nvm_read(sc, NVM_OFF_INIT_3GIO_3, 1, &nvmword);
2428 if ((nvmword & NVM_3GIO_3_ASPM_MASK) != 0)
2429 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2430 break;
2431 case WM_T_82571:
2432 case WM_T_82572:
2433 case WM_T_82574:
2434 case WM_T_82575:
2435 case WM_T_82576:
2436 case WM_T_82580:
2437 case WM_T_I350:
2438 case WM_T_I354: /* XXXX ok? */
2439 case WM_T_I210:
2440 case WM_T_I211:
2441 case WM_T_80003:
2442 case WM_T_ICH9:
2443 case WM_T_ICH10:
2444 case WM_T_PCH2: /* PCH2 supports 9K frame size */
2445 case WM_T_PCH_LPT:
2446 case WM_T_PCH_SPT:
2447 /* XXX limited to 9234 */
2448 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2449 break;
2450 case WM_T_PCH:
2451 /* XXX limited to 4096 */
2452 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2453 break;
2454 case WM_T_82542_2_0:
2455 case WM_T_82542_2_1:
2456 case WM_T_82583:
2457 case WM_T_ICH8:
2458 /* No support for jumbo frame */
2459 break;
2460 default:
2461 /* ETHER_MAX_LEN_JUMBO */
2462 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2463 break;
2464 }
2465
2466 /* If we're a i82543 or greater, we can support VLANs. */
2467 if (sc->sc_type >= WM_T_82543)
2468 sc->sc_ethercom.ec_capabilities |=
2469 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
2470
2471 /*
2472 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
2473 * on i82543 and later.
2474 */
2475 if (sc->sc_type >= WM_T_82543) {
2476 ifp->if_capabilities |=
2477 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2478 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2479 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
2480 IFCAP_CSUM_TCPv6_Tx |
2481 IFCAP_CSUM_UDPv6_Tx;
2482 }
2483
2484 /*
2485 * XXXyamt: i'm not sure which chips support RXCSUM_IPV6OFL.
2486 *
2487 * 82541GI (8086:1076) ... no
2488 * 82572EI (8086:10b9) ... yes
2489 */
2490 if (sc->sc_type >= WM_T_82571) {
2491 ifp->if_capabilities |=
2492 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
2493 }
2494
2495 /*
2496 * If we're a i82544 or greater (except i82547), we can do
2497 * TCP segmentation offload.
2498 */
2499 if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547) {
2500 ifp->if_capabilities |= IFCAP_TSOv4;
2501 }
2502
2503 if (sc->sc_type >= WM_T_82571) {
2504 ifp->if_capabilities |= IFCAP_TSOv6;
2505 }
2506
2507 #ifdef WM_MPSAFE
2508 sc->sc_core_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
2509 #else
2510 sc->sc_core_lock = NULL;
2511 #endif
2512
2513 /* Attach the interface. */
2514 if_initialize(ifp);
2515 sc->sc_ipq = if_percpuq_create(&sc->sc_ethercom.ec_if);
2516 ether_ifattach(ifp, enaddr);
2517 if_register(ifp);
2518 ether_set_ifflags_cb(&sc->sc_ethercom, wm_ifflags_cb);
2519 rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET,
2520 RND_FLAG_DEFAULT);
2521
2522 #ifdef WM_EVENT_COUNTERS
2523 /* Attach event counters. */
2524 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
2525 NULL, xname, "txsstall");
2526 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
2527 NULL, xname, "txdstall");
2528 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
2529 NULL, xname, "txfifo_stall");
2530 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
2531 NULL, xname, "txdw");
2532 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
2533 NULL, xname, "txqe");
2534 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
2535 NULL, xname, "rxintr");
2536 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
2537 NULL, xname, "linkintr");
2538
2539 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
2540 NULL, xname, "rxipsum");
2541 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
2542 NULL, xname, "rxtusum");
2543 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
2544 NULL, xname, "txipsum");
2545 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
2546 NULL, xname, "txtusum");
2547 evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
2548 NULL, xname, "txtusum6");
2549
2550 evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
2551 NULL, xname, "txtso");
2552 evcnt_attach_dynamic(&sc->sc_ev_txtso6, EVCNT_TYPE_MISC,
2553 NULL, xname, "txtso6");
2554 evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
2555 NULL, xname, "txtsopain");
2556
2557 for (i = 0; i < WM_NTXSEGS; i++) {
2558 snprintf(wm_txseg_evcnt_names[i],
2559 sizeof(wm_txseg_evcnt_names[i]), "txseg%d", i);
2560 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
2561 NULL, xname, wm_txseg_evcnt_names[i]);
2562 }
2563
2564 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
2565 NULL, xname, "txdrop");
2566
2567 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
2568 NULL, xname, "tu");
2569
2570 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
2571 NULL, xname, "tx_xoff");
2572 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
2573 NULL, xname, "tx_xon");
2574 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
2575 NULL, xname, "rx_xoff");
2576 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
2577 NULL, xname, "rx_xon");
2578 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
2579 NULL, xname, "rx_macctl");
2580 #endif /* WM_EVENT_COUNTERS */
2581
2582 if (pmf_device_register(self, wm_suspend, wm_resume))
2583 pmf_class_network_register(self, ifp);
2584 else
2585 aprint_error_dev(self, "couldn't establish power handler\n");
2586
2587 sc->sc_flags |= WM_F_ATTACHED;
2588 out:
2589 return;
2590 }
2591
2592 /* The detach function (ca_detach) */
2593 static int
2594 wm_detach(device_t self, int flags __unused)
2595 {
2596 struct wm_softc *sc = device_private(self);
2597 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2598 int i;
2599
2600 if ((sc->sc_flags & WM_F_ATTACHED) == 0)
2601 return 0;
2602
2603 /* Stop the interface. Callouts are stopped in it. */
2604 wm_stop(ifp, 1);
2605
2606 pmf_device_deregister(self);
2607
2608 /* Tell the firmware about the release */
2609 WM_CORE_LOCK(sc);
2610 wm_release_manageability(sc);
2611 wm_release_hw_control(sc);
2612 WM_CORE_UNLOCK(sc);
2613
2614 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2615
2616 /* Delete all remaining media. */
2617 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2618
2619 ether_ifdetach(ifp);
2620 if_detach(ifp);
2621 if_percpuq_destroy(sc->sc_ipq);
2622
2623 /* Unload RX dmamaps and free mbufs */
2624 for (i = 0; i < sc->sc_nqueues; i++) {
2625 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
2626 mutex_enter(rxq->rxq_lock);
2627 wm_rxdrain(rxq);
2628 mutex_exit(rxq->rxq_lock);
2629 }
2630 /* Must unlock here */
2631
2632 /* Disestablish the interrupt handler */
2633 for (i = 0; i < sc->sc_nintrs; i++) {
2634 if (sc->sc_ihs[i] != NULL) {
2635 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
2636 sc->sc_ihs[i] = NULL;
2637 }
2638 }
2639 pci_intr_release(sc->sc_pc, sc->sc_intrs, sc->sc_nintrs);
2640
2641 wm_free_txrx_queues(sc);
2642
2643 /* Unmap the registers */
2644 if (sc->sc_ss) {
2645 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_ss);
2646 sc->sc_ss = 0;
2647 }
2648 if (sc->sc_ios) {
2649 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
2650 sc->sc_ios = 0;
2651 }
2652 if (sc->sc_flashs) {
2653 bus_space_unmap(sc->sc_flasht, sc->sc_flashh, sc->sc_flashs);
2654 sc->sc_flashs = 0;
2655 }
2656
2657 if (sc->sc_core_lock)
2658 mutex_obj_free(sc->sc_core_lock);
2659
2660 return 0;
2661 }
2662
2663 static bool
2664 wm_suspend(device_t self, const pmf_qual_t *qual)
2665 {
2666 struct wm_softc *sc = device_private(self);
2667
2668 wm_release_manageability(sc);
2669 wm_release_hw_control(sc);
2670 #ifdef WM_WOL
2671 wm_enable_wakeup(sc);
2672 #endif
2673
2674 return true;
2675 }
2676
2677 static bool
2678 wm_resume(device_t self, const pmf_qual_t *qual)
2679 {
2680 struct wm_softc *sc = device_private(self);
2681
2682 wm_init_manageability(sc);
2683
2684 return true;
2685 }
2686
2687 /*
2688 * wm_watchdog: [ifnet interface function]
2689 *
2690 * Watchdog timer handler.
2691 */
2692 static void
2693 wm_watchdog(struct ifnet *ifp)
2694 {
2695 int qid;
2696 struct wm_softc *sc = ifp->if_softc;
2697
2698 for (qid = 0; qid < sc->sc_nqueues; qid++) {
2699 struct wm_txqueue *txq = &sc->sc_queue[qid].wmq_txq;
2700
2701 wm_watchdog_txq(ifp, txq);
2702 }
2703
2704 /* Reset the interface. */
2705 (void) wm_init(ifp);
2706
2707 /*
2708 * There are still some upper layer processing which call
2709 * ifp->if_start(). e.g. ALTQ
2710 */
2711 /* Try to get more packets going. */
2712 ifp->if_start(ifp);
2713 }
2714
2715 static void
2716 wm_watchdog_txq(struct ifnet *ifp, struct wm_txqueue *txq)
2717 {
2718 struct wm_softc *sc = ifp->if_softc;
2719
2720 /*
2721 * Since we're using delayed interrupts, sweep up
2722 * before we report an error.
2723 */
2724 mutex_enter(txq->txq_lock);
2725 wm_txeof(sc, txq);
2726 mutex_exit(txq->txq_lock);
2727
2728 if (txq->txq_free != WM_NTXDESC(txq)) {
2729 #ifdef WM_DEBUG
2730 int i, j;
2731 struct wm_txsoft *txs;
2732 #endif
2733 log(LOG_ERR,
2734 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
2735 device_xname(sc->sc_dev), txq->txq_free, txq->txq_sfree,
2736 txq->txq_next);
2737 ifp->if_oerrors++;
2738 #ifdef WM_DEBUG
2739 for (i = txq->txq_sdirty; i != txq->txq_snext ;
2740 i = WM_NEXTTXS(txq, i)) {
2741 txs = &txq->txq_soft[i];
2742 printf("txs %d tx %d -> %d\n",
2743 i, txs->txs_firstdesc, txs->txs_lastdesc);
2744 for (j = txs->txs_firstdesc; ;
2745 j = WM_NEXTTX(txq, j)) {
2746 printf("\tdesc %d: 0x%" PRIx64 "\n", j,
2747 txq->txq_nq_descs[j].nqtx_data.nqtxd_addr);
2748 printf("\t %#08x%08x\n",
2749 txq->txq_nq_descs[j].nqtx_data.nqtxd_fields,
2750 txq->txq_nq_descs[j].nqtx_data.nqtxd_cmdlen);
2751 if (j == txs->txs_lastdesc)
2752 break;
2753 }
2754 }
2755 #endif
2756 }
2757 }
2758
2759 /*
2760 * wm_tick:
2761 *
2762 * One second timer, used to check link status, sweep up
2763 * completed transmit jobs, etc.
2764 */
2765 static void
2766 wm_tick(void *arg)
2767 {
2768 struct wm_softc *sc = arg;
2769 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2770 #ifndef WM_MPSAFE
2771 int s = splnet();
2772 #endif
2773
2774 WM_CORE_LOCK(sc);
2775
2776 if (sc->sc_stopping)
2777 goto out;
2778
2779 if (sc->sc_type >= WM_T_82542_2_1) {
2780 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2781 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2782 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2783 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2784 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2785 }
2786
2787 ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
2788 ifp->if_ierrors += 0ULL + /* ensure quad_t */
2789 + CSR_READ(sc, WMREG_CRCERRS)
2790 + CSR_READ(sc, WMREG_ALGNERRC)
2791 + CSR_READ(sc, WMREG_SYMERRC)
2792 + CSR_READ(sc, WMREG_RXERRC)
2793 + CSR_READ(sc, WMREG_SEC)
2794 + CSR_READ(sc, WMREG_CEXTERR)
2795 + CSR_READ(sc, WMREG_RLEC);
2796 ifp->if_iqdrops += CSR_READ(sc, WMREG_MPC) + CSR_READ(sc, WMREG_RNBC);
2797
2798 if (sc->sc_flags & WM_F_HAS_MII)
2799 mii_tick(&sc->sc_mii);
2800 else if ((sc->sc_type >= WM_T_82575)
2801 && (sc->sc_mediatype == WM_MEDIATYPE_SERDES))
2802 wm_serdes_tick(sc);
2803 else
2804 wm_tbi_tick(sc);
2805
2806 out:
2807 WM_CORE_UNLOCK(sc);
2808 #ifndef WM_MPSAFE
2809 splx(s);
2810 #endif
2811
2812 if (!sc->sc_stopping)
2813 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2814 }
2815
2816 static int
2817 wm_ifflags_cb(struct ethercom *ec)
2818 {
2819 struct ifnet *ifp = &ec->ec_if;
2820 struct wm_softc *sc = ifp->if_softc;
2821 int change = ifp->if_flags ^ sc->sc_if_flags;
2822 int rc = 0;
2823
2824 WM_CORE_LOCK(sc);
2825
2826 if (change != 0)
2827 sc->sc_if_flags = ifp->if_flags;
2828
2829 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
2830 rc = ENETRESET;
2831 goto out;
2832 }
2833
2834 if ((change & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2835 wm_set_filter(sc);
2836
2837 wm_set_vlan(sc);
2838
2839 out:
2840 WM_CORE_UNLOCK(sc);
2841
2842 return rc;
2843 }
2844
2845 /*
2846 * wm_ioctl: [ifnet interface function]
2847 *
2848 * Handle control requests from the operator.
2849 */
2850 static int
2851 wm_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2852 {
2853 struct wm_softc *sc = ifp->if_softc;
2854 struct ifreq *ifr = (struct ifreq *) data;
2855 struct ifaddr *ifa = (struct ifaddr *)data;
2856 struct sockaddr_dl *sdl;
2857 int s, error;
2858
2859 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
2860 device_xname(sc->sc_dev), __func__));
2861 #ifndef WM_MPSAFE
2862 s = splnet();
2863 #endif
2864 switch (cmd) {
2865 case SIOCSIFMEDIA:
2866 case SIOCGIFMEDIA:
2867 WM_CORE_LOCK(sc);
2868 /* Flow control requires full-duplex mode. */
2869 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
2870 (ifr->ifr_media & IFM_FDX) == 0)
2871 ifr->ifr_media &= ~IFM_ETH_FMASK;
2872 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
2873 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
2874 /* We can do both TXPAUSE and RXPAUSE. */
2875 ifr->ifr_media |=
2876 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
2877 }
2878 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
2879 }
2880 WM_CORE_UNLOCK(sc);
2881 #ifdef WM_MPSAFE
2882 s = splnet();
2883 #endif
2884 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2885 #ifdef WM_MPSAFE
2886 splx(s);
2887 #endif
2888 break;
2889 case SIOCINITIFADDR:
2890 WM_CORE_LOCK(sc);
2891 if (ifa->ifa_addr->sa_family == AF_LINK) {
2892 sdl = satosdl(ifp->if_dl->ifa_addr);
2893 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len,
2894 LLADDR(satosdl(ifa->ifa_addr)), ifp->if_addrlen);
2895 /* unicast address is first multicast entry */
2896 wm_set_filter(sc);
2897 error = 0;
2898 WM_CORE_UNLOCK(sc);
2899 break;
2900 }
2901 WM_CORE_UNLOCK(sc);
2902 /*FALLTHROUGH*/
2903 default:
2904 #ifdef WM_MPSAFE
2905 s = splnet();
2906 #endif
2907 /* It may call wm_start, so unlock here */
2908 error = ether_ioctl(ifp, cmd, data);
2909 #ifdef WM_MPSAFE
2910 splx(s);
2911 #endif
2912 if (error != ENETRESET)
2913 break;
2914
2915 error = 0;
2916
2917 if (cmd == SIOCSIFCAP) {
2918 error = (*ifp->if_init)(ifp);
2919 } else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2920 ;
2921 else if (ifp->if_flags & IFF_RUNNING) {
2922 /*
2923 * Multicast list has changed; set the hardware filter
2924 * accordingly.
2925 */
2926 WM_CORE_LOCK(sc);
2927 wm_set_filter(sc);
2928 WM_CORE_UNLOCK(sc);
2929 }
2930 break;
2931 }
2932
2933 #ifndef WM_MPSAFE
2934 splx(s);
2935 #endif
2936 return error;
2937 }
2938
2939 /* MAC address related */
2940
2941 /*
2942 * Get the offset of MAC address and return it.
2943 * If error occured, use offset 0.
2944 */
2945 static uint16_t
2946 wm_check_alt_mac_addr(struct wm_softc *sc)
2947 {
2948 uint16_t myea[ETHER_ADDR_LEN / 2];
2949 uint16_t offset = NVM_OFF_MACADDR;
2950
2951 /* Try to read alternative MAC address pointer */
2952 if (wm_nvm_read(sc, NVM_OFF_ALT_MAC_ADDR_PTR, 1, &offset) != 0)
2953 return 0;
2954
2955 /* Check pointer if it's valid or not. */
2956 if ((offset == 0x0000) || (offset == 0xffff))
2957 return 0;
2958
2959 offset += NVM_OFF_MACADDR_82571(sc->sc_funcid);
2960 /*
2961 * Check whether alternative MAC address is valid or not.
2962 * Some cards have non 0xffff pointer but those don't use
2963 * alternative MAC address in reality.
2964 *
2965 * Check whether the broadcast bit is set or not.
2966 */
2967 if (wm_nvm_read(sc, offset, 1, myea) == 0)
2968 if (((myea[0] & 0xff) & 0x01) == 0)
2969 return offset; /* Found */
2970
2971 /* Not found */
2972 return 0;
2973 }
2974
2975 static int
2976 wm_read_mac_addr(struct wm_softc *sc, uint8_t *enaddr)
2977 {
2978 uint16_t myea[ETHER_ADDR_LEN / 2];
2979 uint16_t offset = NVM_OFF_MACADDR;
2980 int do_invert = 0;
2981
2982 switch (sc->sc_type) {
2983 case WM_T_82580:
2984 case WM_T_I350:
2985 case WM_T_I354:
2986 /* EEPROM Top Level Partitioning */
2987 offset = NVM_OFF_LAN_FUNC_82580(sc->sc_funcid) + 0;
2988 break;
2989 case WM_T_82571:
2990 case WM_T_82575:
2991 case WM_T_82576:
2992 case WM_T_80003:
2993 case WM_T_I210:
2994 case WM_T_I211:
2995 offset = wm_check_alt_mac_addr(sc);
2996 if (offset == 0)
2997 if ((sc->sc_funcid & 0x01) == 1)
2998 do_invert = 1;
2999 break;
3000 default:
3001 if ((sc->sc_funcid & 0x01) == 1)
3002 do_invert = 1;
3003 break;
3004 }
3005
3006 if (wm_nvm_read(sc, offset, sizeof(myea) / sizeof(myea[0]),
3007 myea) != 0)
3008 goto bad;
3009
3010 enaddr[0] = myea[0] & 0xff;
3011 enaddr[1] = myea[0] >> 8;
3012 enaddr[2] = myea[1] & 0xff;
3013 enaddr[3] = myea[1] >> 8;
3014 enaddr[4] = myea[2] & 0xff;
3015 enaddr[5] = myea[2] >> 8;
3016
3017 /*
3018 * Toggle the LSB of the MAC address on the second port
3019 * of some dual port cards.
3020 */
3021 if (do_invert != 0)
3022 enaddr[5] ^= 1;
3023
3024 return 0;
3025
3026 bad:
3027 return -1;
3028 }
3029
3030 /*
3031 * wm_set_ral:
3032 *
3033 * Set an entery in the receive address list.
3034 */
3035 static void
3036 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3037 {
3038 uint32_t ral_lo, ral_hi;
3039
3040 if (enaddr != NULL) {
3041 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3042 (enaddr[3] << 24);
3043 ral_hi = enaddr[4] | (enaddr[5] << 8);
3044 ral_hi |= RAL_AV;
3045 } else {
3046 ral_lo = 0;
3047 ral_hi = 0;
3048 }
3049
3050 if (sc->sc_type >= WM_T_82544) {
3051 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3052 ral_lo);
3053 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3054 ral_hi);
3055 } else {
3056 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3057 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3058 }
3059 }
3060
3061 /*
3062 * wm_mchash:
3063 *
3064 * Compute the hash of the multicast address for the 4096-bit
3065 * multicast filter.
3066 */
3067 static uint32_t
3068 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3069 {
3070 static const int lo_shift[4] = { 4, 3, 2, 0 };
3071 static const int hi_shift[4] = { 4, 5, 6, 8 };
3072 static const int ich8_lo_shift[4] = { 6, 5, 4, 2 };
3073 static const int ich8_hi_shift[4] = { 2, 3, 4, 6 };
3074 uint32_t hash;
3075
3076 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
3077 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
3078 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)
3079 || (sc->sc_type == WM_T_PCH_SPT)) {
3080 hash = (enaddr[4] >> ich8_lo_shift[sc->sc_mchash_type]) |
3081 (((uint16_t) enaddr[5]) << ich8_hi_shift[sc->sc_mchash_type]);
3082 return (hash & 0x3ff);
3083 }
3084 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3085 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3086
3087 return (hash & 0xfff);
3088 }
3089
3090 /*
3091 * wm_set_filter:
3092 *
3093 * Set up the receive filter.
3094 */
3095 static void
3096 wm_set_filter(struct wm_softc *sc)
3097 {
3098 struct ethercom *ec = &sc->sc_ethercom;
3099 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3100 struct ether_multi *enm;
3101 struct ether_multistep step;
3102 bus_addr_t mta_reg;
3103 uint32_t hash, reg, bit;
3104 int i, size, ralmax;
3105
3106 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
3107 device_xname(sc->sc_dev), __func__));
3108 if (sc->sc_type >= WM_T_82544)
3109 mta_reg = WMREG_CORDOVA_MTA;
3110 else
3111 mta_reg = WMREG_MTA;
3112
3113 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3114
3115 if (ifp->if_flags & IFF_BROADCAST)
3116 sc->sc_rctl |= RCTL_BAM;
3117 if (ifp->if_flags & IFF_PROMISC) {
3118 sc->sc_rctl |= RCTL_UPE;
3119 goto allmulti;
3120 }
3121
3122 /*
3123 * Set the station address in the first RAL slot, and
3124 * clear the remaining slots.
3125 */
3126 if (sc->sc_type == WM_T_ICH8)
3127 size = WM_RAL_TABSIZE_ICH8 -1;
3128 else if ((sc->sc_type == WM_T_ICH9) || (sc->sc_type == WM_T_ICH10)
3129 || (sc->sc_type == WM_T_PCH))
3130 size = WM_RAL_TABSIZE_ICH8;
3131 else if (sc->sc_type == WM_T_PCH2)
3132 size = WM_RAL_TABSIZE_PCH2;
3133 else if ((sc->sc_type == WM_T_PCH_LPT) ||(sc->sc_type == WM_T_PCH_SPT))
3134 size = WM_RAL_TABSIZE_PCH_LPT;
3135 else if (sc->sc_type == WM_T_82575)
3136 size = WM_RAL_TABSIZE_82575;
3137 else if ((sc->sc_type == WM_T_82576) || (sc->sc_type == WM_T_82580))
3138 size = WM_RAL_TABSIZE_82576;
3139 else if ((sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354))
3140 size = WM_RAL_TABSIZE_I350;
3141 else
3142 size = WM_RAL_TABSIZE;
3143 wm_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
3144
3145 if ((sc->sc_type == WM_T_PCH_LPT) || (sc->sc_type == WM_T_PCH_SPT)) {
3146 i = __SHIFTOUT(CSR_READ(sc, WMREG_FWSM), FWSM_WLOCK_MAC);
3147 switch (i) {
3148 case 0:
3149 /* We can use all entries */
3150 ralmax = size;
3151 break;
3152 case 1:
3153 /* Only RAR[0] */
3154 ralmax = 1;
3155 break;
3156 default:
3157 /* available SHRA + RAR[0] */
3158 ralmax = i + 1;
3159 }
3160 } else
3161 ralmax = size;
3162 for (i = 1; i < size; i++) {
3163 if (i < ralmax)
3164 wm_set_ral(sc, NULL, i);
3165 }
3166
3167 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
3168 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
3169 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)
3170 || (sc->sc_type == WM_T_PCH_SPT))
3171 size = WM_ICH8_MC_TABSIZE;
3172 else
3173 size = WM_MC_TABSIZE;
3174 /* Clear out the multicast table. */
3175 for (i = 0; i < size; i++)
3176 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3177
3178 ETHER_FIRST_MULTI(step, ec, enm);
3179 while (enm != NULL) {
3180 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3181 /*
3182 * We must listen to a range of multicast addresses.
3183 * For now, just accept all multicasts, rather than
3184 * trying to set only those filter bits needed to match
3185 * the range. (At this time, the only use of address
3186 * ranges is for IP multicast routing, for which the
3187 * range is big enough to require all bits set.)
3188 */
3189 goto allmulti;
3190 }
3191
3192 hash = wm_mchash(sc, enm->enm_addrlo);
3193
3194 reg = (hash >> 5);
3195 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
3196 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
3197 || (sc->sc_type == WM_T_PCH2)
3198 || (sc->sc_type == WM_T_PCH_LPT)
3199 || (sc->sc_type == WM_T_PCH_SPT))
3200 reg &= 0x1f;
3201 else
3202 reg &= 0x7f;
3203 bit = hash & 0x1f;
3204
3205 hash = CSR_READ(sc, mta_reg + (reg << 2));
3206 hash |= 1U << bit;
3207
3208 if (sc->sc_type == WM_T_82544 && (reg & 1) != 0) {
3209 /*
3210 * 82544 Errata 9: Certain register cannot be written
3211 * with particular alignments in PCI-X bus operation
3212 * (FCAH, MTA and VFTA).
3213 */
3214 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3215 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3216 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3217 } else
3218 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3219
3220 ETHER_NEXT_MULTI(step, enm);
3221 }
3222
3223 ifp->if_flags &= ~IFF_ALLMULTI;
3224 goto setit;
3225
3226 allmulti:
3227 ifp->if_flags |= IFF_ALLMULTI;
3228 sc->sc_rctl |= RCTL_MPE;
3229
3230 setit:
3231 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3232 }
3233
3234 /* Reset and init related */
3235
3236 static void
3237 wm_set_vlan(struct wm_softc *sc)
3238 {
3239
3240 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
3241 device_xname(sc->sc_dev), __func__));
3242 /* Deal with VLAN enables. */
3243 if (VLAN_ATTACHED(&sc->sc_ethercom))
3244 sc->sc_ctrl |= CTRL_VME;
3245 else
3246 sc->sc_ctrl &= ~CTRL_VME;
3247
3248 /* Write the control registers. */
3249 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3250 }
3251
3252 static void
3253 wm_set_pcie_completion_timeout(struct wm_softc *sc)
3254 {
3255 uint32_t gcr;
3256 pcireg_t ctrl2;
3257
3258 gcr = CSR_READ(sc, WMREG_GCR);
3259
3260 /* Only take action if timeout value is defaulted to 0 */
3261 if ((gcr & GCR_CMPL_TMOUT_MASK) != 0)
3262 goto out;
3263
3264 if ((gcr & GCR_CAP_VER2) == 0) {
3265 gcr |= GCR_CMPL_TMOUT_10MS;
3266 goto out;
3267 }
3268
3269 ctrl2 = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3270 sc->sc_pcixe_capoff + PCIE_DCSR2);
3271 ctrl2 |= WM_PCIE_DCSR2_16MS;
3272 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3273 sc->sc_pcixe_capoff + PCIE_DCSR2, ctrl2);
3274
3275 out:
3276 /* Disable completion timeout resend */
3277 gcr &= ~GCR_CMPL_TMOUT_RESEND;
3278
3279 CSR_WRITE(sc, WMREG_GCR, gcr);
3280 }
3281
3282 void
3283 wm_get_auto_rd_done(struct wm_softc *sc)
3284 {
3285 int i;
3286
3287 /* wait for eeprom to reload */
3288 switch (sc->sc_type) {
3289 case WM_T_82571:
3290 case WM_T_82572:
3291 case WM_T_82573:
3292 case WM_T_82574:
3293 case WM_T_82583:
3294 case WM_T_82575:
3295 case WM_T_82576:
3296 case WM_T_82580:
3297 case WM_T_I350:
3298 case WM_T_I354:
3299 case WM_T_I210:
3300 case WM_T_I211:
3301 case WM_T_80003:
3302 case WM_T_ICH8:
3303 case WM_T_ICH9:
3304 for (i = 0; i < 10; i++) {
3305 if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD)
3306 break;
3307 delay(1000);
3308 }
3309 if (i == 10) {
3310 log(LOG_ERR, "%s: auto read from eeprom failed to "
3311 "complete\n", device_xname(sc->sc_dev));
3312 }
3313 break;
3314 default:
3315 break;
3316 }
3317 }
3318
3319 void
3320 wm_lan_init_done(struct wm_softc *sc)
3321 {
3322 uint32_t reg = 0;
3323 int i;
3324
3325 /* wait for eeprom to reload */
3326 switch (sc->sc_type) {
3327 case WM_T_ICH10:
3328 case WM_T_PCH:
3329 case WM_T_PCH2:
3330 case WM_T_PCH_LPT:
3331 case WM_T_PCH_SPT:
3332 for (i = 0; i < WM_ICH8_LAN_INIT_TIMEOUT; i++) {
3333 reg = CSR_READ(sc, WMREG_STATUS);
3334 if ((reg & STATUS_LAN_INIT_DONE) != 0)
3335 break;
3336 delay(100);
3337 }
3338 if (i >= WM_ICH8_LAN_INIT_TIMEOUT) {
3339 log(LOG_ERR, "%s: %s: lan_init_done failed to "
3340 "complete\n", device_xname(sc->sc_dev), __func__);
3341 }
3342 break;
3343 default:
3344 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
3345 __func__);
3346 break;
3347 }
3348
3349 reg &= ~STATUS_LAN_INIT_DONE;
3350 CSR_WRITE(sc, WMREG_STATUS, reg);
3351 }
3352
3353 void
3354 wm_get_cfg_done(struct wm_softc *sc)
3355 {
3356 int mask;
3357 uint32_t reg;
3358 int i;
3359
3360 /* wait for eeprom to reload */
3361 switch (sc->sc_type) {
3362 case WM_T_82542_2_0:
3363 case WM_T_82542_2_1:
3364 /* null */
3365 break;
3366 case WM_T_82543:
3367 case WM_T_82544:
3368 case WM_T_82540:
3369 case WM_T_82545:
3370 case WM_T_82545_3:
3371 case WM_T_82546:
3372 case WM_T_82546_3:
3373 case WM_T_82541:
3374 case WM_T_82541_2:
3375 case WM_T_82547:
3376 case WM_T_82547_2:
3377 case WM_T_82573:
3378 case WM_T_82574:
3379 case WM_T_82583:
3380 /* generic */
3381 delay(10*1000);
3382 break;
3383 case WM_T_80003:
3384 case WM_T_82571:
3385 case WM_T_82572:
3386 case WM_T_82575:
3387 case WM_T_82576:
3388 case WM_T_82580:
3389 case WM_T_I350:
3390 case WM_T_I354:
3391 case WM_T_I210:
3392 case WM_T_I211:
3393 if (sc->sc_type == WM_T_82571) {
3394 /* Only 82571 shares port 0 */
3395 mask = EEMNGCTL_CFGDONE_0;
3396 } else
3397 mask = EEMNGCTL_CFGDONE_0 << sc->sc_funcid;
3398 for (i = 0; i < WM_PHY_CFG_TIMEOUT; i++) {
3399 if (CSR_READ(sc, WMREG_EEMNGCTL) & mask)
3400 break;
3401 delay(1000);
3402 }
3403 if (i >= WM_PHY_CFG_TIMEOUT) {
3404 DPRINTF(WM_DEBUG_GMII, ("%s: %s failed\n",
3405 device_xname(sc->sc_dev), __func__));
3406 }
3407 break;
3408 case WM_T_ICH8:
3409 case WM_T_ICH9:
3410 case WM_T_ICH10:
3411 case WM_T_PCH:
3412 case WM_T_PCH2:
3413 case WM_T_PCH_LPT:
3414 case WM_T_PCH_SPT:
3415 delay(10*1000);
3416 if (sc->sc_type >= WM_T_ICH10)
3417 wm_lan_init_done(sc);
3418 else
3419 wm_get_auto_rd_done(sc);
3420
3421 reg = CSR_READ(sc, WMREG_STATUS);
3422 if ((reg & STATUS_PHYRA) != 0)
3423 CSR_WRITE(sc, WMREG_STATUS, reg & ~STATUS_PHYRA);
3424 break;
3425 default:
3426 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
3427 __func__);
3428 break;
3429 }
3430 }
3431
3432 /* Init hardware bits */
3433 void
3434 wm_initialize_hardware_bits(struct wm_softc *sc)
3435 {
3436 uint32_t tarc0, tarc1, reg;
3437
3438 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
3439 device_xname(sc->sc_dev), __func__));
3440 /* For 82571 variant, 80003 and ICHs */
3441 if (((sc->sc_type >= WM_T_82571) && (sc->sc_type <= WM_T_82583))
3442 || (sc->sc_type >= WM_T_80003)) {
3443
3444 /* Transmit Descriptor Control 0 */
3445 reg = CSR_READ(sc, WMREG_TXDCTL(0));
3446 reg |= TXDCTL_COUNT_DESC;
3447 CSR_WRITE(sc, WMREG_TXDCTL(0), reg);
3448
3449 /* Transmit Descriptor Control 1 */
3450 reg = CSR_READ(sc, WMREG_TXDCTL(1));
3451 reg |= TXDCTL_COUNT_DESC;
3452 CSR_WRITE(sc, WMREG_TXDCTL(1), reg);
3453
3454 /* TARC0 */
3455 tarc0 = CSR_READ(sc, WMREG_TARC0);
3456 switch (sc->sc_type) {
3457 case WM_T_82571:
3458 case WM_T_82572:
3459 case WM_T_82573:
3460 case WM_T_82574:
3461 case WM_T_82583:
3462 case WM_T_80003:
3463 /* Clear bits 30..27 */
3464 tarc0 &= ~__BITS(30, 27);
3465 break;
3466 default:
3467 break;
3468 }
3469
3470 switch (sc->sc_type) {
3471 case WM_T_82571:
3472 case WM_T_82572:
3473 tarc0 |= __BITS(26, 23); /* TARC0 bits 23-26 */
3474
3475 tarc1 = CSR_READ(sc, WMREG_TARC1);
3476 tarc1 &= ~__BITS(30, 29); /* Clear bits 30 and 29 */
3477 tarc1 |= __BITS(26, 24); /* TARC1 bits 26-24 */
3478 /* 8257[12] Errata No.7 */
3479 tarc1 |= __BIT(22); /* TARC1 bits 22 */
3480
3481 /* TARC1 bit 28 */
3482 if ((CSR_READ(sc, WMREG_TCTL) & TCTL_MULR) != 0)
3483 tarc1 &= ~__BIT(28);
3484 else
3485 tarc1 |= __BIT(28);
3486 CSR_WRITE(sc, WMREG_TARC1, tarc1);
3487
3488 /*
3489 * 8257[12] Errata No.13
3490 * Disable Dyamic Clock Gating.
3491 */
3492 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3493 reg &= ~CTRL_EXT_DMA_DYN_CLK;
3494 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3495 break;
3496 case WM_T_82573:
3497 case WM_T_82574:
3498 case WM_T_82583:
3499 if ((sc->sc_type == WM_T_82574)
3500 || (sc->sc_type == WM_T_82583))
3501 tarc0 |= __BIT(26); /* TARC0 bit 26 */
3502
3503 /* Extended Device Control */
3504 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3505 reg &= ~__BIT(23); /* Clear bit 23 */
3506 reg |= __BIT(22); /* Set bit 22 */
3507 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3508
3509 /* Device Control */
3510 sc->sc_ctrl &= ~__BIT(29); /* Clear bit 29 */
3511 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3512
3513 /* PCIe Control Register */
3514 /*
3515 * 82573 Errata (unknown).
3516 *
3517 * 82574 Errata 25 and 82583 Errata 12
3518 * "Dropped Rx Packets":
3519 * NVM Image Version 2.1.4 and newer has no this bug.
3520 */
3521 reg = CSR_READ(sc, WMREG_GCR);
3522 reg |= GCR_L1_ACT_WITHOUT_L0S_RX;
3523 CSR_WRITE(sc, WMREG_GCR, reg);
3524
3525 if ((sc->sc_type == WM_T_82574)
3526 || (sc->sc_type == WM_T_82583)) {
3527 /*
3528 * Document says this bit must be set for
3529 * proper operation.
3530 */
3531 reg = CSR_READ(sc, WMREG_GCR);
3532 reg |= __BIT(22);
3533 CSR_WRITE(sc, WMREG_GCR, reg);
3534
3535 /*
3536 * Apply workaround for hardware errata
3537 * documented in errata docs Fixes issue where
3538 * some error prone or unreliable PCIe
3539 * completions are occurring, particularly
3540 * with ASPM enabled. Without fix, issue can
3541 * cause Tx timeouts.
3542 */
3543 reg = CSR_READ(sc, WMREG_GCR2);
3544 reg |= __BIT(0);
3545 CSR_WRITE(sc, WMREG_GCR2, reg);
3546 }
3547 break;
3548 case WM_T_80003:
3549 /* TARC0 */
3550 if ((sc->sc_mediatype == WM_MEDIATYPE_FIBER)
3551 || (sc->sc_mediatype == WM_MEDIATYPE_SERDES))
3552 tarc0 &= ~__BIT(20); /* Clear bits 20 */
3553
3554 /* TARC1 bit 28 */
3555 tarc1 = CSR_READ(sc, WMREG_TARC1);
3556 if ((CSR_READ(sc, WMREG_TCTL) & TCTL_MULR) != 0)
3557 tarc1 &= ~__BIT(28);
3558 else
3559 tarc1 |= __BIT(28);
3560 CSR_WRITE(sc, WMREG_TARC1, tarc1);
3561 break;
3562 case WM_T_ICH8:
3563 case WM_T_ICH9:
3564 case WM_T_ICH10:
3565 case WM_T_PCH:
3566 case WM_T_PCH2:
3567 case WM_T_PCH_LPT:
3568 case WM_T_PCH_SPT:
3569 /* TARC0 */
3570 if ((sc->sc_type == WM_T_ICH8)
3571 || (sc->sc_type == WM_T_PCH_SPT)) {
3572 /* Set TARC0 bits 29 and 28 */
3573 tarc0 |= __BITS(29, 28);
3574 }
3575 /* Set TARC0 bits 23,24,26,27 */
3576 tarc0 |= __BITS(27, 26) | __BITS(24, 23);
3577
3578 /* CTRL_EXT */
3579 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3580 reg |= __BIT(22); /* Set bit 22 */
3581 /*
3582 * Enable PHY low-power state when MAC is at D3
3583 * w/o WoL
3584 */
3585 if (sc->sc_type >= WM_T_PCH)
3586 reg |= CTRL_EXT_PHYPDEN;
3587 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3588
3589 /* TARC1 */
3590 tarc1 = CSR_READ(sc, WMREG_TARC1);
3591 /* bit 28 */
3592 if ((CSR_READ(sc, WMREG_TCTL) & TCTL_MULR) != 0)
3593 tarc1 &= ~__BIT(28);
3594 else
3595 tarc1 |= __BIT(28);
3596 tarc1 |= __BIT(24) | __BIT(26) | __BIT(30);
3597 CSR_WRITE(sc, WMREG_TARC1, tarc1);
3598
3599 /* Device Status */
3600 if (sc->sc_type == WM_T_ICH8) {
3601 reg = CSR_READ(sc, WMREG_STATUS);
3602 reg &= ~__BIT(31);
3603 CSR_WRITE(sc, WMREG_STATUS, reg);
3604
3605 }
3606
3607 /* IOSFPC */
3608 if (sc->sc_type == WM_T_PCH_SPT) {
3609 reg = CSR_READ(sc, WMREG_IOSFPC);
3610 reg |= RCTL_RDMTS_HEX; /* XXX RTCL bit? */
3611 CSR_WRITE(sc, WMREG_IOSFPC, reg);
3612 }
3613 /*
3614 * Work-around descriptor data corruption issue during
3615 * NFS v2 UDP traffic, just disable the NFS filtering
3616 * capability.
3617 */
3618 reg = CSR_READ(sc, WMREG_RFCTL);
3619 reg |= WMREG_RFCTL_NFSWDIS | WMREG_RFCTL_NFSRDIS;
3620 CSR_WRITE(sc, WMREG_RFCTL, reg);
3621 break;
3622 default:
3623 break;
3624 }
3625 CSR_WRITE(sc, WMREG_TARC0, tarc0);
3626
3627 /*
3628 * 8257[12] Errata No.52 and some others.
3629 * Avoid RSS Hash Value bug.
3630 */
3631 switch (sc->sc_type) {
3632 case WM_T_82571:
3633 case WM_T_82572:
3634 case WM_T_82573:
3635 case WM_T_80003:
3636 case WM_T_ICH8:
3637 reg = CSR_READ(sc, WMREG_RFCTL);
3638 reg |= WMREG_RFCTL_NEWIPV6EXDIS |WMREG_RFCTL_IPV6EXDIS;
3639 CSR_WRITE(sc, WMREG_RFCTL, reg);
3640 break;
3641 default:
3642 break;
3643 }
3644 }
3645 }
3646
3647 static uint32_t
3648 wm_rxpbs_adjust_82580(uint32_t val)
3649 {
3650 uint32_t rv = 0;
3651
3652 if (val < __arraycount(wm_82580_rxpbs_table))
3653 rv = wm_82580_rxpbs_table[val];
3654
3655 return rv;
3656 }
3657
3658 /*
3659 * wm_reset:
3660 *
3661 * Reset the i82542 chip.
3662 */
3663 static void
3664 wm_reset(struct wm_softc *sc)
3665 {
3666 int phy_reset = 0;
3667 int i, error = 0;
3668 uint32_t reg, mask;
3669
3670 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
3671 device_xname(sc->sc_dev), __func__));
3672 /*
3673 * Allocate on-chip memory according to the MTU size.
3674 * The Packet Buffer Allocation register must be written
3675 * before the chip is reset.
3676 */
3677 switch (sc->sc_type) {
3678 case WM_T_82547:
3679 case WM_T_82547_2:
3680 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
3681 PBA_22K : PBA_30K;
3682 for (i = 0; i < sc->sc_nqueues; i++) {
3683 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
3684 txq->txq_fifo_head = 0;
3685 txq->txq_fifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
3686 txq->txq_fifo_size =
3687 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
3688 txq->txq_fifo_stall = 0;
3689 }
3690 break;
3691 case WM_T_82571:
3692 case WM_T_82572:
3693 case WM_T_82575: /* XXX need special handing for jumbo frames */
3694 case WM_T_80003:
3695 sc->sc_pba = PBA_32K;
3696 break;
3697 case WM_T_82573:
3698 sc->sc_pba = PBA_12K;
3699 break;
3700 case WM_T_82574:
3701 case WM_T_82583:
3702 sc->sc_pba = PBA_20K;
3703 break;
3704 case WM_T_82576:
3705 sc->sc_pba = CSR_READ(sc, WMREG_RXPBS);
3706 sc->sc_pba &= RXPBS_SIZE_MASK_82576;
3707 break;
3708 case WM_T_82580:
3709 case WM_T_I350:
3710 case WM_T_I354:
3711 sc->sc_pba = wm_rxpbs_adjust_82580(CSR_READ(sc, WMREG_RXPBS));
3712 break;
3713 case WM_T_I210:
3714 case WM_T_I211:
3715 sc->sc_pba = PBA_34K;
3716 break;
3717 case WM_T_ICH8:
3718 /* Workaround for a bit corruption issue in FIFO memory */
3719 sc->sc_pba = PBA_8K;
3720 CSR_WRITE(sc, WMREG_PBS, PBA_16K);
3721 break;
3722 case WM_T_ICH9:
3723 case WM_T_ICH10:
3724 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 4096 ?
3725 PBA_14K : PBA_10K;
3726 break;
3727 case WM_T_PCH:
3728 case WM_T_PCH2:
3729 case WM_T_PCH_LPT:
3730 case WM_T_PCH_SPT:
3731 sc->sc_pba = PBA_26K;
3732 break;
3733 default:
3734 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
3735 PBA_40K : PBA_48K;
3736 break;
3737 }
3738 /*
3739 * Only old or non-multiqueue devices have the PBA register
3740 * XXX Need special handling for 82575.
3741 */
3742 if (((sc->sc_flags & WM_F_NEWQUEUE) == 0)
3743 || (sc->sc_type == WM_T_82575))
3744 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
3745
3746 /* Prevent the PCI-E bus from sticking */
3747 if (sc->sc_flags & WM_F_PCIE) {
3748 int timeout = 800;
3749
3750 sc->sc_ctrl |= CTRL_GIO_M_DIS;
3751 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3752
3753 while (timeout--) {
3754 if ((CSR_READ(sc, WMREG_STATUS) & STATUS_GIO_M_ENA)
3755 == 0)
3756 break;
3757 delay(100);
3758 }
3759 }
3760
3761 /* Set the completion timeout for interface */
3762 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
3763 || (sc->sc_type == WM_T_82580)
3764 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
3765 || (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211))
3766 wm_set_pcie_completion_timeout(sc);
3767
3768 /* Clear interrupt */
3769 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
3770 if (sc->sc_nintrs > 1) {
3771 if (sc->sc_type != WM_T_82574) {
3772 CSR_WRITE(sc, WMREG_EIMC, 0xffffffffU);
3773 CSR_WRITE(sc, WMREG_EIAC, 0);
3774 } else {
3775 CSR_WRITE(sc, WMREG_EIAC_82574, 0);
3776 }
3777 }
3778
3779 /* Stop the transmit and receive processes. */
3780 CSR_WRITE(sc, WMREG_RCTL, 0);
3781 sc->sc_rctl &= ~RCTL_EN;
3782 CSR_WRITE(sc, WMREG_TCTL, TCTL_PSP);
3783 CSR_WRITE_FLUSH(sc);
3784
3785 /* XXX set_tbi_sbp_82543() */
3786
3787 delay(10*1000);
3788
3789 /* Must acquire the MDIO ownership before MAC reset */
3790 switch (sc->sc_type) {
3791 case WM_T_82573:
3792 case WM_T_82574:
3793 case WM_T_82583:
3794 error = wm_get_hw_semaphore_82573(sc);
3795 break;
3796 default:
3797 break;
3798 }
3799
3800 /*
3801 * 82541 Errata 29? & 82547 Errata 28?
3802 * See also the description about PHY_RST bit in CTRL register
3803 * in 8254x_GBe_SDM.pdf.
3804 */
3805 if ((sc->sc_type == WM_T_82541) || (sc->sc_type == WM_T_82547)) {
3806 CSR_WRITE(sc, WMREG_CTRL,
3807 CSR_READ(sc, WMREG_CTRL) | CTRL_PHY_RESET);
3808 CSR_WRITE_FLUSH(sc);
3809 delay(5000);
3810 }
3811
3812 switch (sc->sc_type) {
3813 case WM_T_82544: /* XXX check whether WM_F_IOH_VALID is set */
3814 case WM_T_82541:
3815 case WM_T_82541_2:
3816 case WM_T_82547:
3817 case WM_T_82547_2:
3818 /*
3819 * On some chipsets, a reset through a memory-mapped write
3820 * cycle can cause the chip to reset before completing the
3821 * write cycle. This causes major headache that can be
3822 * avoided by issuing the reset via indirect register writes
3823 * through I/O space.
3824 *
3825 * So, if we successfully mapped the I/O BAR at attach time,
3826 * use that. Otherwise, try our luck with a memory-mapped
3827 * reset.
3828 */
3829 if (sc->sc_flags & WM_F_IOH_VALID)
3830 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
3831 else
3832 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
3833 break;
3834 case WM_T_82545_3:
3835 case WM_T_82546_3:
3836 /* Use the shadow control register on these chips. */
3837 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
3838 break;
3839 case WM_T_80003:
3840 mask = swfwphysem[sc->sc_funcid];
3841 reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST;
3842 wm_get_swfw_semaphore(sc, mask);
3843 CSR_WRITE(sc, WMREG_CTRL, reg);
3844 wm_put_swfw_semaphore(sc, mask);
3845 break;
3846 case WM_T_ICH8:
3847 case WM_T_ICH9:
3848 case WM_T_ICH10:
3849 case WM_T_PCH:
3850 case WM_T_PCH2:
3851 case WM_T_PCH_LPT:
3852 case WM_T_PCH_SPT:
3853 reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST;
3854 if (wm_phy_resetisblocked(sc) == false) {
3855 /*
3856 * Gate automatic PHY configuration by hardware on
3857 * non-managed 82579
3858 */
3859 if ((sc->sc_type == WM_T_PCH2)
3860 && ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID)
3861 == 0))
3862 wm_gate_hw_phy_config_ich8lan(sc, true);
3863
3864 reg |= CTRL_PHY_RESET;
3865 phy_reset = 1;
3866 } else
3867 printf("XXX reset is blocked!!!\n");
3868 wm_get_swfwhw_semaphore(sc);
3869 CSR_WRITE(sc, WMREG_CTRL, reg);
3870 /* Don't insert a completion barrier when reset */
3871 delay(20*1000);
3872 wm_put_swfwhw_semaphore(sc);
3873 break;
3874 case WM_T_82580:
3875 case WM_T_I350:
3876 case WM_T_I354:
3877 case WM_T_I210:
3878 case WM_T_I211:
3879 CSR_WRITE(sc, WMREG_CTRL, CSR_READ(sc, WMREG_CTRL) | CTRL_RST);
3880 if (sc->sc_pcidevid != PCI_PRODUCT_INTEL_DH89XXCC_SGMII)
3881 CSR_WRITE_FLUSH(sc);
3882 delay(5000);
3883 break;
3884 case WM_T_82542_2_0:
3885 case WM_T_82542_2_1:
3886 case WM_T_82543:
3887 case WM_T_82540:
3888 case WM_T_82545:
3889 case WM_T_82546:
3890 case WM_T_82571:
3891 case WM_T_82572:
3892 case WM_T_82573:
3893 case WM_T_82574:
3894 case WM_T_82575:
3895 case WM_T_82576:
3896 case WM_T_82583:
3897 default:
3898 /* Everything else can safely use the documented method. */
3899 CSR_WRITE(sc, WMREG_CTRL, CSR_READ(sc, WMREG_CTRL) | CTRL_RST);
3900 break;
3901 }
3902
3903 /* Must release the MDIO ownership after MAC reset */
3904 switch (sc->sc_type) {
3905 case WM_T_82573:
3906 case WM_T_82574:
3907 case WM_T_82583:
3908 if (error == 0)
3909 wm_put_hw_semaphore_82573(sc);
3910 break;
3911 default:
3912 break;
3913 }
3914
3915 if (phy_reset != 0)
3916 wm_get_cfg_done(sc);
3917
3918 /* reload EEPROM */
3919 switch (sc->sc_type) {
3920 case WM_T_82542_2_0:
3921 case WM_T_82542_2_1:
3922 case WM_T_82543:
3923 case WM_T_82544:
3924 delay(10);
3925 reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
3926 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3927 CSR_WRITE_FLUSH(sc);
3928 delay(2000);
3929 break;
3930 case WM_T_82540:
3931 case WM_T_82545:
3932 case WM_T_82545_3:
3933 case WM_T_82546:
3934 case WM_T_82546_3:
3935 delay(5*1000);
3936 /* XXX Disable HW ARPs on ASF enabled adapters */
3937 break;
3938 case WM_T_82541:
3939 case WM_T_82541_2:
3940 case WM_T_82547:
3941 case WM_T_82547_2:
3942 delay(20000);
3943 /* XXX Disable HW ARPs on ASF enabled adapters */
3944 break;
3945 case WM_T_82571:
3946 case WM_T_82572:
3947 case WM_T_82573:
3948 case WM_T_82574:
3949 case WM_T_82583:
3950 if (sc->sc_flags & WM_F_EEPROM_FLASH) {
3951 delay(10);
3952 reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
3953 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3954 CSR_WRITE_FLUSH(sc);
3955 }
3956 /* check EECD_EE_AUTORD */
3957 wm_get_auto_rd_done(sc);
3958 /*
3959 * Phy configuration from NVM just starts after EECD_AUTO_RD
3960 * is set.
3961 */
3962 if ((sc->sc_type == WM_T_82573) || (sc->sc_type == WM_T_82574)
3963 || (sc->sc_type == WM_T_82583))
3964 delay(25*1000);
3965 break;
3966 case WM_T_82575:
3967 case WM_T_82576:
3968 case WM_T_82580:
3969 case WM_T_I350:
3970 case WM_T_I354:
3971 case WM_T_I210:
3972 case WM_T_I211:
3973 case WM_T_80003:
3974 /* check EECD_EE_AUTORD */
3975 wm_get_auto_rd_done(sc);
3976 break;
3977 case WM_T_ICH8:
3978 case WM_T_ICH9:
3979 case WM_T_ICH10:
3980 case WM_T_PCH:
3981 case WM_T_PCH2:
3982 case WM_T_PCH_LPT:
3983 case WM_T_PCH_SPT:
3984 break;
3985 default:
3986 panic("%s: unknown type\n", __func__);
3987 }
3988
3989 /* Check whether EEPROM is present or not */
3990 switch (sc->sc_type) {
3991 case WM_T_82575:
3992 case WM_T_82576:
3993 case WM_T_82580:
3994 case WM_T_I350:
3995 case WM_T_I354:
3996 case WM_T_ICH8:
3997 case WM_T_ICH9:
3998 if ((CSR_READ(sc, WMREG_EECD) & EECD_EE_PRES) == 0) {
3999 /* Not found */
4000 sc->sc_flags |= WM_F_EEPROM_INVALID;
4001 if (sc->sc_type == WM_T_82575)
4002 wm_reset_init_script_82575(sc);
4003 }
4004 break;
4005 default:
4006 break;
4007 }
4008
4009 if ((sc->sc_type == WM_T_82580)
4010 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)) {
4011 /* clear global device reset status bit */
4012 CSR_WRITE(sc, WMREG_STATUS, STATUS_DEV_RST_SET);
4013 }
4014
4015 /* Clear any pending interrupt events. */
4016 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
4017 reg = CSR_READ(sc, WMREG_ICR);
4018 if (sc->sc_nintrs > 1) {
4019 if (sc->sc_type != WM_T_82574) {
4020 CSR_WRITE(sc, WMREG_EIMC, 0xffffffffU);
4021 CSR_WRITE(sc, WMREG_EIAC, 0);
4022 } else
4023 CSR_WRITE(sc, WMREG_EIAC_82574, 0);
4024 }
4025
4026 /* reload sc_ctrl */
4027 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
4028
4029 if ((sc->sc_type >= WM_T_I350) && (sc->sc_type <= WM_T_I211))
4030 wm_set_eee_i350(sc);
4031
4032 /* dummy read from WUC */
4033 if (sc->sc_type == WM_T_PCH)
4034 reg = wm_gmii_hv_readreg(sc->sc_dev, 1, BM_WUC);
4035 /*
4036 * For PCH, this write will make sure that any noise will be detected
4037 * as a CRC error and be dropped rather than show up as a bad packet
4038 * to the DMA engine
4039 */
4040 if (sc->sc_type == WM_T_PCH)
4041 CSR_WRITE(sc, WMREG_CRC_OFFSET, 0x65656565);
4042
4043 if (sc->sc_type >= WM_T_82544)
4044 CSR_WRITE(sc, WMREG_WUC, 0);
4045
4046 wm_reset_mdicnfg_82580(sc);
4047
4048 if ((sc->sc_flags & WM_F_PLL_WA_I210) != 0)
4049 wm_pll_workaround_i210(sc);
4050 }
4051
4052 /*
4053 * wm_add_rxbuf:
4054 *
4055 * Add a receive buffer to the indiciated descriptor.
4056 */
4057 static int
4058 wm_add_rxbuf(struct wm_rxqueue *rxq, int idx)
4059 {
4060 struct wm_softc *sc = rxq->rxq_sc;
4061 struct wm_rxsoft *rxs = &rxq->rxq_soft[idx];
4062 struct mbuf *m;
4063 int error;
4064
4065 KASSERT(mutex_owned(rxq->rxq_lock));
4066
4067 MGETHDR(m, M_DONTWAIT, MT_DATA);
4068 if (m == NULL)
4069 return ENOBUFS;
4070
4071 MCLGET(m, M_DONTWAIT);
4072 if ((m->m_flags & M_EXT) == 0) {
4073 m_freem(m);
4074 return ENOBUFS;
4075 }
4076
4077 if (rxs->rxs_mbuf != NULL)
4078 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
4079
4080 rxs->rxs_mbuf = m;
4081
4082 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
4083 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
4084 BUS_DMA_READ | BUS_DMA_NOWAIT);
4085 if (error) {
4086 /* XXX XXX XXX */
4087 aprint_error_dev(sc->sc_dev,
4088 "unable to load rx DMA map %d, error = %d\n",
4089 idx, error);
4090 panic("wm_add_rxbuf");
4091 }
4092
4093 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
4094 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
4095
4096 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
4097 if ((sc->sc_rctl & RCTL_EN) != 0)
4098 wm_init_rxdesc(rxq, idx);
4099 } else
4100 wm_init_rxdesc(rxq, idx);
4101
4102 return 0;
4103 }
4104
4105 /*
4106 * wm_rxdrain:
4107 *
4108 * Drain the receive queue.
4109 */
4110 static void
4111 wm_rxdrain(struct wm_rxqueue *rxq)
4112 {
4113 struct wm_softc *sc = rxq->rxq_sc;
4114 struct wm_rxsoft *rxs;
4115 int i;
4116
4117 KASSERT(mutex_owned(rxq->rxq_lock));
4118
4119 for (i = 0; i < WM_NRXDESC; i++) {
4120 rxs = &rxq->rxq_soft[i];
4121 if (rxs->rxs_mbuf != NULL) {
4122 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
4123 m_freem(rxs->rxs_mbuf);
4124 rxs->rxs_mbuf = NULL;
4125 }
4126 }
4127 }
4128
4129
4130 /*
4131 * XXX copy from FreeBSD's sys/net/rss_config.c
4132 */
4133 /*
4134 * RSS secret key, intended to prevent attacks on load-balancing. Its
4135 * effectiveness may be limited by algorithm choice and available entropy
4136 * during the boot.
4137 *
4138 * XXXRW: And that we don't randomize it yet!
4139 *
4140 * This is the default Microsoft RSS specification key which is also
4141 * the Chelsio T5 firmware default key.
4142 */
4143 #define RSS_KEYSIZE 40
4144 static uint8_t wm_rss_key[RSS_KEYSIZE] = {
4145 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
4146 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
4147 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
4148 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
4149 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa,
4150 };
4151
4152 /*
4153 * Caller must pass an array of size sizeof(rss_key).
4154 *
4155 * XXX
4156 * As if_ixgbe may use this function, this function should not be
4157 * if_wm specific function.
4158 */
4159 static void
4160 wm_rss_getkey(uint8_t *key)
4161 {
4162
4163 memcpy(key, wm_rss_key, sizeof(wm_rss_key));
4164 }
4165
4166 /*
4167 * Setup registers for RSS.
4168 *
4169 * XXX not yet VMDq support
4170 */
4171 static void
4172 wm_init_rss(struct wm_softc *sc)
4173 {
4174 uint32_t mrqc, reta_reg, rss_key[RSSRK_NUM_REGS];
4175 int i;
4176
4177 CTASSERT(sizeof(rss_key) == sizeof(wm_rss_key));
4178
4179 for (i = 0; i < RETA_NUM_ENTRIES; i++) {
4180 int qid, reta_ent;
4181
4182 qid = i % sc->sc_nqueues;
4183 switch(sc->sc_type) {
4184 case WM_T_82574:
4185 reta_ent = __SHIFTIN(qid,
4186 RETA_ENT_QINDEX_MASK_82574);
4187 break;
4188 case WM_T_82575:
4189 reta_ent = __SHIFTIN(qid,
4190 RETA_ENT_QINDEX1_MASK_82575);
4191 break;
4192 default:
4193 reta_ent = __SHIFTIN(qid, RETA_ENT_QINDEX_MASK);
4194 break;
4195 }
4196
4197 reta_reg = CSR_READ(sc, WMREG_RETA_Q(i));
4198 reta_reg &= ~RETA_ENTRY_MASK_Q(i);
4199 reta_reg |= __SHIFTIN(reta_ent, RETA_ENTRY_MASK_Q(i));
4200 CSR_WRITE(sc, WMREG_RETA_Q(i), reta_reg);
4201 }
4202
4203 wm_rss_getkey((uint8_t *)rss_key);
4204 for (i = 0; i < RSSRK_NUM_REGS; i++)
4205 CSR_WRITE(sc, WMREG_RSSRK(i), rss_key[i]);
4206
4207 if (sc->sc_type == WM_T_82574)
4208 mrqc = MRQC_ENABLE_RSS_MQ_82574;
4209 else
4210 mrqc = MRQC_ENABLE_RSS_MQ;
4211
4212 /* XXXX
4213 * The same as FreeBSD igb.
4214 * Why doesn't use MRQC_RSS_FIELD_IPV6_EX?
4215 */
4216 mrqc |= (MRQC_RSS_FIELD_IPV4 | MRQC_RSS_FIELD_IPV4_TCP);
4217 mrqc |= (MRQC_RSS_FIELD_IPV6 | MRQC_RSS_FIELD_IPV6_TCP);
4218 mrqc |= (MRQC_RSS_FIELD_IPV4_UDP | MRQC_RSS_FIELD_IPV6_UDP);
4219 mrqc |= (MRQC_RSS_FIELD_IPV6_UDP_EX | MRQC_RSS_FIELD_IPV6_TCP_EX);
4220
4221 CSR_WRITE(sc, WMREG_MRQC, mrqc);
4222 }
4223
4224 /*
4225 * Adjust TX and RX queue numbers which the system actulally uses.
4226 *
4227 * The numbers are affected by below parameters.
4228 * - The nubmer of hardware queues
4229 * - The number of MSI-X vectors (= "nvectors" argument)
4230 * - ncpu
4231 */
4232 static void
4233 wm_adjust_qnum(struct wm_softc *sc, int nvectors)
4234 {
4235 int hw_ntxqueues, hw_nrxqueues, hw_nqueues;
4236
4237 if (nvectors < 2) {
4238 sc->sc_nqueues = 1;
4239 return;
4240 }
4241
4242 switch(sc->sc_type) {
4243 case WM_T_82572:
4244 hw_ntxqueues = 2;
4245 hw_nrxqueues = 2;
4246 break;
4247 case WM_T_82574:
4248 hw_ntxqueues = 2;
4249 hw_nrxqueues = 2;
4250 break;
4251 case WM_T_82575:
4252 hw_ntxqueues = 4;
4253 hw_nrxqueues = 4;
4254 break;
4255 case WM_T_82576:
4256 hw_ntxqueues = 16;
4257 hw_nrxqueues = 16;
4258 break;
4259 case WM_T_82580:
4260 case WM_T_I350:
4261 case WM_T_I354:
4262 hw_ntxqueues = 8;
4263 hw_nrxqueues = 8;
4264 break;
4265 case WM_T_I210:
4266 hw_ntxqueues = 4;
4267 hw_nrxqueues = 4;
4268 break;
4269 case WM_T_I211:
4270 hw_ntxqueues = 2;
4271 hw_nrxqueues = 2;
4272 break;
4273 /*
4274 * As below ethernet controllers does not support MSI-X,
4275 * this driver let them not use multiqueue.
4276 * - WM_T_80003
4277 * - WM_T_ICH8
4278 * - WM_T_ICH9
4279 * - WM_T_ICH10
4280 * - WM_T_PCH
4281 * - WM_T_PCH2
4282 * - WM_T_PCH_LPT
4283 */
4284 default:
4285 hw_ntxqueues = 1;
4286 hw_nrxqueues = 1;
4287 break;
4288 }
4289
4290 hw_nqueues = min(hw_ntxqueues, hw_nrxqueues);
4291
4292 /*
4293 * As queues more than MSI-X vectors cannot improve scaling, we limit
4294 * the number of queues used actually.
4295 */
4296 if (nvectors < hw_nqueues + 1) {
4297 sc->sc_nqueues = nvectors - 1;
4298 } else {
4299 sc->sc_nqueues = hw_nqueues;
4300 }
4301
4302 /*
4303 * As queues more then cpus cannot improve scaling, we limit
4304 * the number of queues used actually.
4305 */
4306 if (ncpu < sc->sc_nqueues)
4307 sc->sc_nqueues = ncpu;
4308 }
4309
4310 /*
4311 * Both single interrupt MSI and INTx can use this function.
4312 */
4313 static int
4314 wm_setup_legacy(struct wm_softc *sc)
4315 {
4316 pci_chipset_tag_t pc = sc->sc_pc;
4317 const char *intrstr = NULL;
4318 char intrbuf[PCI_INTRSTR_LEN];
4319 int error;
4320
4321 error = wm_alloc_txrx_queues(sc);
4322 if (error) {
4323 aprint_error_dev(sc->sc_dev, "cannot allocate queues %d\n",
4324 error);
4325 return ENOMEM;
4326 }
4327 intrstr = pci_intr_string(pc, sc->sc_intrs[0], intrbuf,
4328 sizeof(intrbuf));
4329 #ifdef WM_MPSAFE
4330 pci_intr_setattr(pc, &sc->sc_intrs[0], PCI_INTR_MPSAFE, true);
4331 #endif
4332 sc->sc_ihs[0] = pci_intr_establish_xname(pc, sc->sc_intrs[0],
4333 IPL_NET, wm_intr_legacy, sc, device_xname(sc->sc_dev));
4334 if (sc->sc_ihs[0] == NULL) {
4335 aprint_error_dev(sc->sc_dev,"unable to establish %s\n",
4336 (pci_intr_type(sc->sc_intrs[0])
4337 == PCI_INTR_TYPE_MSI) ? "MSI" : "INTx");
4338 return ENOMEM;
4339 }
4340
4341 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
4342 sc->sc_nintrs = 1;
4343 return 0;
4344 }
4345
4346 static int
4347 wm_setup_msix(struct wm_softc *sc)
4348 {
4349 void *vih;
4350 kcpuset_t *affinity;
4351 int qidx, error, intr_idx, txrx_established;
4352 pci_chipset_tag_t pc = sc->sc_pc;
4353 const char *intrstr = NULL;
4354 char intrbuf[PCI_INTRSTR_LEN];
4355 char intr_xname[INTRDEVNAMEBUF];
4356
4357 if (sc->sc_nqueues < ncpu) {
4358 /*
4359 * To avoid other devices' interrupts, the affinity of Tx/Rx
4360 * interrupts start from CPU#1.
4361 */
4362 sc->sc_affinity_offset = 1;
4363 } else {
4364 /*
4365 * In this case, this device use all CPUs. So, we unify
4366 * affinitied cpu_index to msix vector number for readability.
4367 */
4368 sc->sc_affinity_offset = 0;
4369 }
4370
4371 error = wm_alloc_txrx_queues(sc);
4372 if (error) {
4373 aprint_error_dev(sc->sc_dev, "cannot allocate queues %d\n",
4374 error);
4375 return ENOMEM;
4376 }
4377
4378 kcpuset_create(&affinity, false);
4379 intr_idx = 0;
4380
4381 /*
4382 * TX and RX
4383 */
4384 txrx_established = 0;
4385 for (qidx = 0; qidx < sc->sc_nqueues; qidx++) {
4386 struct wm_queue *wmq = &sc->sc_queue[qidx];
4387 int affinity_to = (sc->sc_affinity_offset + intr_idx) % ncpu;
4388
4389 intrstr = pci_intr_string(pc, sc->sc_intrs[intr_idx], intrbuf,
4390 sizeof(intrbuf));
4391 #ifdef WM_MPSAFE
4392 pci_intr_setattr(pc, &sc->sc_intrs[intr_idx],
4393 PCI_INTR_MPSAFE, true);
4394 #endif
4395 memset(intr_xname, 0, sizeof(intr_xname));
4396 snprintf(intr_xname, sizeof(intr_xname), "%sTXRX%d",
4397 device_xname(sc->sc_dev), qidx);
4398 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intr_idx],
4399 IPL_NET, wm_txrxintr_msix, wmq, intr_xname);
4400 if (vih == NULL) {
4401 aprint_error_dev(sc->sc_dev,
4402 "unable to establish MSI-X(for TX and RX)%s%s\n",
4403 intrstr ? " at " : "",
4404 intrstr ? intrstr : "");
4405
4406 goto fail;
4407 }
4408 kcpuset_zero(affinity);
4409 /* Round-robin affinity */
4410 kcpuset_set(affinity, affinity_to);
4411 error = interrupt_distribute(vih, affinity, NULL);
4412 if (error == 0) {
4413 aprint_normal_dev(sc->sc_dev,
4414 "for TX and RX interrupting at %s affinity to %u\n",
4415 intrstr, affinity_to);
4416 } else {
4417 aprint_normal_dev(sc->sc_dev,
4418 "for TX and RX interrupting at %s\n", intrstr);
4419 }
4420 sc->sc_ihs[intr_idx] = vih;
4421 wmq->wmq_id= qidx;
4422 wmq->wmq_intr_idx = intr_idx;
4423
4424 txrx_established++;
4425 intr_idx++;
4426 }
4427
4428 /*
4429 * LINK
4430 */
4431 intrstr = pci_intr_string(pc, sc->sc_intrs[intr_idx], intrbuf,
4432 sizeof(intrbuf));
4433 #ifdef WM_MPSAFE
4434 pci_intr_setattr(pc, &sc->sc_intrs[intr_idx], PCI_INTR_MPSAFE, true);
4435 #endif
4436 memset(intr_xname, 0, sizeof(intr_xname));
4437 snprintf(intr_xname, sizeof(intr_xname), "%sLINK",
4438 device_xname(sc->sc_dev));
4439 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intr_idx],
4440 IPL_NET, wm_linkintr_msix, sc, intr_xname);
4441 if (vih == NULL) {
4442 aprint_error_dev(sc->sc_dev,
4443 "unable to establish MSI-X(for LINK)%s%s\n",
4444 intrstr ? " at " : "",
4445 intrstr ? intrstr : "");
4446
4447 goto fail;
4448 }
4449 /* keep default affinity to LINK interrupt */
4450 aprint_normal_dev(sc->sc_dev,
4451 "for LINK interrupting at %s\n", intrstr);
4452 sc->sc_ihs[intr_idx] = vih;
4453 sc->sc_link_intr_idx = intr_idx;
4454
4455 sc->sc_nintrs = sc->sc_nqueues + 1;
4456 kcpuset_destroy(affinity);
4457 return 0;
4458
4459 fail:
4460 for (qidx = 0; qidx < txrx_established; qidx++) {
4461 struct wm_queue *wmq = &sc->sc_queue[qidx];
4462 pci_intr_disestablish(sc->sc_pc,sc->sc_ihs[wmq->wmq_intr_idx]);
4463 sc->sc_ihs[wmq->wmq_intr_idx] = NULL;
4464 }
4465
4466 kcpuset_destroy(affinity);
4467 return ENOMEM;
4468 }
4469
4470 /*
4471 * wm_init: [ifnet interface function]
4472 *
4473 * Initialize the interface.
4474 */
4475 static int
4476 wm_init(struct ifnet *ifp)
4477 {
4478 struct wm_softc *sc = ifp->if_softc;
4479 int ret;
4480
4481 WM_CORE_LOCK(sc);
4482 ret = wm_init_locked(ifp);
4483 WM_CORE_UNLOCK(sc);
4484
4485 return ret;
4486 }
4487
4488 static int
4489 wm_init_locked(struct ifnet *ifp)
4490 {
4491 struct wm_softc *sc = ifp->if_softc;
4492 int i, j, trynum, error = 0;
4493 uint32_t reg;
4494
4495 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
4496 device_xname(sc->sc_dev), __func__));
4497 KASSERT(WM_CORE_LOCKED(sc));
4498 /*
4499 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
4500 * There is a small but measurable benefit to avoiding the adjusment
4501 * of the descriptor so that the headers are aligned, for normal mtu,
4502 * on such platforms. One possibility is that the DMA itself is
4503 * slightly more efficient if the front of the entire packet (instead
4504 * of the front of the headers) is aligned.
4505 *
4506 * Note we must always set align_tweak to 0 if we are using
4507 * jumbo frames.
4508 */
4509 #ifdef __NO_STRICT_ALIGNMENT
4510 sc->sc_align_tweak = 0;
4511 #else
4512 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
4513 sc->sc_align_tweak = 0;
4514 else
4515 sc->sc_align_tweak = 2;
4516 #endif /* __NO_STRICT_ALIGNMENT */
4517
4518 /* Cancel any pending I/O. */
4519 wm_stop_locked(ifp, 0);
4520
4521 /* update statistics before reset */
4522 ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
4523 ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
4524
4525 /* Reset the chip to a known state. */
4526 wm_reset(sc);
4527
4528 switch (sc->sc_type) {
4529 case WM_T_82571:
4530 case WM_T_82572:
4531 case WM_T_82573:
4532 case WM_T_82574:
4533 case WM_T_82583:
4534 case WM_T_80003:
4535 case WM_T_ICH8:
4536 case WM_T_ICH9:
4537 case WM_T_ICH10:
4538 case WM_T_PCH:
4539 case WM_T_PCH2:
4540 case WM_T_PCH_LPT:
4541 case WM_T_PCH_SPT:
4542 /* AMT based hardware can now take control from firmware */
4543 if ((sc->sc_flags & WM_F_HAS_AMT) != 0)
4544 wm_get_hw_control(sc);
4545 break;
4546 default:
4547 break;
4548 }
4549
4550 /* Init hardware bits */
4551 wm_initialize_hardware_bits(sc);
4552
4553 /* Reset the PHY. */
4554 if (sc->sc_flags & WM_F_HAS_MII)
4555 wm_gmii_reset(sc);
4556
4557 /* Calculate (E)ITR value */
4558 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
4559 sc->sc_itr = 450; /* For EITR */
4560 } else if (sc->sc_type >= WM_T_82543) {
4561 /*
4562 * Set up the interrupt throttling register (units of 256ns)
4563 * Note that a footnote in Intel's documentation says this
4564 * ticker runs at 1/4 the rate when the chip is in 100Mbit
4565 * or 10Mbit mode. Empirically, it appears to be the case
4566 * that that is also true for the 1024ns units of the other
4567 * interrupt-related timer registers -- so, really, we ought
4568 * to divide this value by 4 when the link speed is low.
4569 *
4570 * XXX implement this division at link speed change!
4571 */
4572
4573 /*
4574 * For N interrupts/sec, set this value to:
4575 * 1000000000 / (N * 256). Note that we set the
4576 * absolute and packet timer values to this value
4577 * divided by 4 to get "simple timer" behavior.
4578 */
4579
4580 sc->sc_itr = 1500; /* 2604 ints/sec */
4581 }
4582
4583 error = wm_init_txrx_queues(sc);
4584 if (error)
4585 goto out;
4586
4587 /*
4588 * Clear out the VLAN table -- we don't use it (yet).
4589 */
4590 CSR_WRITE(sc, WMREG_VET, 0);
4591 if ((sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354))
4592 trynum = 10; /* Due to hw errata */
4593 else
4594 trynum = 1;
4595 for (i = 0; i < WM_VLAN_TABSIZE; i++)
4596 for (j = 0; j < trynum; j++)
4597 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
4598
4599 /*
4600 * Set up flow-control parameters.
4601 *
4602 * XXX Values could probably stand some tuning.
4603 */
4604 if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9)
4605 && (sc->sc_type != WM_T_ICH10) && (sc->sc_type != WM_T_PCH)
4606 && (sc->sc_type != WM_T_PCH2) && (sc->sc_type != WM_T_PCH_LPT)
4607 && (sc->sc_type != WM_T_PCH_SPT)) {
4608 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
4609 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
4610 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
4611 }
4612
4613 sc->sc_fcrtl = FCRTL_DFLT;
4614 if (sc->sc_type < WM_T_82543) {
4615 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
4616 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
4617 } else {
4618 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
4619 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
4620 }
4621
4622 if (sc->sc_type == WM_T_80003)
4623 CSR_WRITE(sc, WMREG_FCTTV, 0xffff);
4624 else
4625 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
4626
4627 /* Writes the control register. */
4628 wm_set_vlan(sc);
4629
4630 if (sc->sc_flags & WM_F_HAS_MII) {
4631 int val;
4632
4633 switch (sc->sc_type) {
4634 case WM_T_80003:
4635 case WM_T_ICH8:
4636 case WM_T_ICH9:
4637 case WM_T_ICH10:
4638 case WM_T_PCH:
4639 case WM_T_PCH2:
4640 case WM_T_PCH_LPT:
4641 case WM_T_PCH_SPT:
4642 /*
4643 * Set the mac to wait the maximum time between each
4644 * iteration and increase the max iterations when
4645 * polling the phy; this fixes erroneous timeouts at
4646 * 10Mbps.
4647 */
4648 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS,
4649 0xFFFF);
4650 val = wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_INB_PARAM);
4651 val |= 0x3F;
4652 wm_kmrn_writereg(sc,
4653 KUMCTRLSTA_OFFSET_INB_PARAM, val);
4654 break;
4655 default:
4656 break;
4657 }
4658
4659 if (sc->sc_type == WM_T_80003) {
4660 val = CSR_READ(sc, WMREG_CTRL_EXT);
4661 val &= ~CTRL_EXT_LINK_MODE_MASK;
4662 CSR_WRITE(sc, WMREG_CTRL_EXT, val);
4663
4664 /* Bypass RX and TX FIFO's */
4665 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL,
4666 KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
4667 | KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
4668 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL,
4669 KUMCTRLSTA_INB_CTRL_DIS_PADDING |
4670 KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT);
4671 }
4672 }
4673 #if 0
4674 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
4675 #endif
4676
4677 /* Set up checksum offload parameters. */
4678 reg = CSR_READ(sc, WMREG_RXCSUM);
4679 reg &= ~(RXCSUM_IPOFL | RXCSUM_IPV6OFL | RXCSUM_TUOFL);
4680 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
4681 reg |= RXCSUM_IPOFL;
4682 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
4683 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
4684 if (ifp->if_capenable & (IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
4685 reg |= RXCSUM_IPV6OFL | RXCSUM_TUOFL;
4686 CSR_WRITE(sc, WMREG_RXCSUM, reg);
4687
4688 /* Set up MSI-X */
4689 if (sc->sc_nintrs > 1) {
4690 uint32_t ivar;
4691 struct wm_queue *wmq;
4692 int qid, qintr_idx;
4693
4694 if (sc->sc_type == WM_T_82575) {
4695 /* Interrupt control */
4696 reg = CSR_READ(sc, WMREG_CTRL_EXT);
4697 reg |= CTRL_EXT_PBA | CTRL_EXT_EIAME | CTRL_EXT_NSICR;
4698 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
4699
4700 /* TX and RX */
4701 for (i = 0; i < sc->sc_nqueues; i++) {
4702 wmq = &sc->sc_queue[i];
4703 CSR_WRITE(sc, WMREG_MSIXBM(wmq->wmq_intr_idx),
4704 EITR_TX_QUEUE(wmq->wmq_id)
4705 | EITR_RX_QUEUE(wmq->wmq_id));
4706 }
4707 /* Link status */
4708 CSR_WRITE(sc, WMREG_MSIXBM(sc->sc_link_intr_idx),
4709 EITR_OTHER);
4710 } else if (sc->sc_type == WM_T_82574) {
4711 /* Interrupt control */
4712 reg = CSR_READ(sc, WMREG_CTRL_EXT);
4713 reg |= CTRL_EXT_PBA | CTRL_EXT_EIAME;
4714 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
4715
4716 ivar = 0;
4717 /* TX and RX */
4718 for (i = 0; i < sc->sc_nqueues; i++) {
4719 wmq = &sc->sc_queue[i];
4720 qid = wmq->wmq_id;
4721 qintr_idx = wmq->wmq_intr_idx;
4722
4723 ivar |= __SHIFTIN((IVAR_VALID_82574|qintr_idx),
4724 IVAR_TX_MASK_Q_82574(qid));
4725 ivar |= __SHIFTIN((IVAR_VALID_82574|qintr_idx),
4726 IVAR_RX_MASK_Q_82574(qid));
4727 }
4728 /* Link status */
4729 ivar |= __SHIFTIN((IVAR_VALID_82574
4730 | sc->sc_link_intr_idx), IVAR_OTHER_MASK);
4731 CSR_WRITE(sc, WMREG_IVAR, ivar | IVAR_INT_ON_ALL_WB);
4732 } else {
4733 /* Interrupt control */
4734 CSR_WRITE(sc, WMREG_GPIE, GPIE_NSICR | GPIE_MULTI_MSIX
4735 | GPIE_EIAME | GPIE_PBA);
4736
4737 switch (sc->sc_type) {
4738 case WM_T_82580:
4739 case WM_T_I350:
4740 case WM_T_I354:
4741 case WM_T_I210:
4742 case WM_T_I211:
4743 /* TX and RX */
4744 for (i = 0; i < sc->sc_nqueues; i++) {
4745 wmq = &sc->sc_queue[i];
4746 qid = wmq->wmq_id;
4747 qintr_idx = wmq->wmq_intr_idx;
4748
4749 ivar = CSR_READ(sc, WMREG_IVAR_Q(qid));
4750 ivar &= ~IVAR_TX_MASK_Q(qid);
4751 ivar |= __SHIFTIN((qintr_idx
4752 | IVAR_VALID),
4753 IVAR_TX_MASK_Q(qid));
4754 ivar &= ~IVAR_RX_MASK_Q(qid);
4755 ivar |= __SHIFTIN((qintr_idx
4756 | IVAR_VALID),
4757 IVAR_RX_MASK_Q(qid));
4758 CSR_WRITE(sc, WMREG_IVAR_Q(qid), ivar);
4759 }
4760 break;
4761 case WM_T_82576:
4762 /* TX and RX */
4763 for (i = 0; i < sc->sc_nqueues; i++) {
4764 wmq = &sc->sc_queue[i];
4765 qid = wmq->wmq_id;
4766 qintr_idx = wmq->wmq_intr_idx;
4767
4768 ivar = CSR_READ(sc,
4769 WMREG_IVAR_Q_82576(qid));
4770 ivar &= ~IVAR_TX_MASK_Q_82576(qid);
4771 ivar |= __SHIFTIN((qintr_idx
4772 | IVAR_VALID),
4773 IVAR_TX_MASK_Q_82576(qid));
4774 ivar &= ~IVAR_RX_MASK_Q_82576(qid);
4775 ivar |= __SHIFTIN((qintr_idx
4776 | IVAR_VALID),
4777 IVAR_RX_MASK_Q_82576(qid));
4778 CSR_WRITE(sc, WMREG_IVAR_Q_82576(qid),
4779 ivar);
4780 }
4781 break;
4782 default:
4783 break;
4784 }
4785
4786 /* Link status */
4787 ivar = __SHIFTIN((sc->sc_link_intr_idx | IVAR_VALID),
4788 IVAR_MISC_OTHER);
4789 CSR_WRITE(sc, WMREG_IVAR_MISC, ivar);
4790 }
4791
4792 if (sc->sc_nqueues > 1) {
4793 wm_init_rss(sc);
4794
4795 /*
4796 ** NOTE: Receive Full-Packet Checksum Offload
4797 ** is mutually exclusive with Multiqueue. However
4798 ** this is not the same as TCP/IP checksums which
4799 ** still work.
4800 */
4801 reg = CSR_READ(sc, WMREG_RXCSUM);
4802 reg |= RXCSUM_PCSD;
4803 CSR_WRITE(sc, WMREG_RXCSUM, reg);
4804 }
4805 }
4806
4807 /* Set up the interrupt registers. */
4808 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
4809 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
4810 ICR_RXO | ICR_RXT0;
4811 if (sc->sc_nintrs > 1) {
4812 uint32_t mask;
4813 struct wm_queue *wmq;
4814
4815 switch (sc->sc_type) {
4816 case WM_T_82574:
4817 CSR_WRITE(sc, WMREG_EIAC_82574,
4818 WMREG_EIAC_82574_MSIX_MASK);
4819 sc->sc_icr |= WMREG_EIAC_82574_MSIX_MASK;
4820 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
4821 break;
4822 default:
4823 if (sc->sc_type == WM_T_82575) {
4824 mask = 0;
4825 for (i = 0; i < sc->sc_nqueues; i++) {
4826 wmq = &sc->sc_queue[i];
4827 mask |= EITR_TX_QUEUE(wmq->wmq_id);
4828 mask |= EITR_RX_QUEUE(wmq->wmq_id);
4829 }
4830 mask |= EITR_OTHER;
4831 } else {
4832 mask = 0;
4833 for (i = 0; i < sc->sc_nqueues; i++) {
4834 wmq = &sc->sc_queue[i];
4835 mask |= 1 << wmq->wmq_intr_idx;
4836 }
4837 mask |= 1 << sc->sc_link_intr_idx;
4838 }
4839 CSR_WRITE(sc, WMREG_EIAC, mask);
4840 CSR_WRITE(sc, WMREG_EIAM, mask);
4841 CSR_WRITE(sc, WMREG_EIMS, mask);
4842 CSR_WRITE(sc, WMREG_IMS, ICR_LSC);
4843 break;
4844 }
4845 } else
4846 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
4847
4848 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
4849 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
4850 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)
4851 || (sc->sc_type == WM_T_PCH_SPT)) {
4852 reg = CSR_READ(sc, WMREG_KABGTXD);
4853 reg |= KABGTXD_BGSQLBIAS;
4854 CSR_WRITE(sc, WMREG_KABGTXD, reg);
4855 }
4856
4857 /* Set up the inter-packet gap. */
4858 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
4859
4860 if (sc->sc_type >= WM_T_82543) {
4861 /*
4862 * XXX 82574 has both ITR and EITR. SET EITR when we use
4863 * the multi queue function with MSI-X.
4864 */
4865 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
4866 int qidx;
4867 for (qidx = 0; qidx < sc->sc_nqueues; qidx++) {
4868 struct wm_queue *wmq = &sc->sc_queue[qidx];
4869 CSR_WRITE(sc, WMREG_EITR(wmq->wmq_intr_idx),
4870 sc->sc_itr);
4871 }
4872 /*
4873 * Link interrupts occur much less than TX
4874 * interrupts and RX interrupts. So, we don't
4875 * tune EINTR(WM_MSIX_LINKINTR_IDX) value like
4876 * FreeBSD's if_igb.
4877 */
4878 } else
4879 CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
4880 }
4881
4882 /* Set the VLAN ethernetype. */
4883 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
4884
4885 /*
4886 * Set up the transmit control register; we start out with
4887 * a collision distance suitable for FDX, but update it whe
4888 * we resolve the media type.
4889 */
4890 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_RTLC
4891 | TCTL_CT(TX_COLLISION_THRESHOLD)
4892 | TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
4893 if (sc->sc_type >= WM_T_82571)
4894 sc->sc_tctl |= TCTL_MULR;
4895 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
4896
4897 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
4898 /* Write TDT after TCTL.EN is set. See the document. */
4899 CSR_WRITE(sc, WMREG_TDT(0), 0);
4900 }
4901
4902 if (sc->sc_type == WM_T_80003) {
4903 reg = CSR_READ(sc, WMREG_TCTL_EXT);
4904 reg &= ~TCTL_EXT_GCEX_MASK;
4905 reg |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
4906 CSR_WRITE(sc, WMREG_TCTL_EXT, reg);
4907 }
4908
4909 /* Set the media. */
4910 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
4911 goto out;
4912
4913 /* Configure for OS presence */
4914 wm_init_manageability(sc);
4915
4916 /*
4917 * Set up the receive control register; we actually program
4918 * the register when we set the receive filter. Use multicast
4919 * address offset type 0.
4920 *
4921 * Only the i82544 has the ability to strip the incoming
4922 * CRC, so we don't enable that feature.
4923 */
4924 sc->sc_mchash_type = 0;
4925 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
4926 | RCTL_MO(sc->sc_mchash_type);
4927
4928 /*
4929 * The I350 has a bug where it always strips the CRC whether
4930 * asked to or not. So ask for stripped CRC here and cope in rxeof
4931 */
4932 if ((sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
4933 || (sc->sc_type == WM_T_I210))
4934 sc->sc_rctl |= RCTL_SECRC;
4935
4936 if (((sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) != 0)
4937 && (ifp->if_mtu > ETHERMTU)) {
4938 sc->sc_rctl |= RCTL_LPE;
4939 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
4940 CSR_WRITE(sc, WMREG_RLPML, ETHER_MAX_LEN_JUMBO);
4941 }
4942
4943 if (MCLBYTES == 2048) {
4944 sc->sc_rctl |= RCTL_2k;
4945 } else {
4946 if (sc->sc_type >= WM_T_82543) {
4947 switch (MCLBYTES) {
4948 case 4096:
4949 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
4950 break;
4951 case 8192:
4952 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
4953 break;
4954 case 16384:
4955 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
4956 break;
4957 default:
4958 panic("wm_init: MCLBYTES %d unsupported",
4959 MCLBYTES);
4960 break;
4961 }
4962 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
4963 }
4964
4965 /* Set the receive filter. */
4966 wm_set_filter(sc);
4967
4968 /* Enable ECC */
4969 switch (sc->sc_type) {
4970 case WM_T_82571:
4971 reg = CSR_READ(sc, WMREG_PBA_ECC);
4972 reg |= PBA_ECC_CORR_EN;
4973 CSR_WRITE(sc, WMREG_PBA_ECC, reg);
4974 break;
4975 case WM_T_PCH_LPT:
4976 case WM_T_PCH_SPT:
4977 reg = CSR_READ(sc, WMREG_PBECCSTS);
4978 reg |= PBECCSTS_UNCORR_ECC_ENABLE;
4979 CSR_WRITE(sc, WMREG_PBECCSTS, reg);
4980
4981 reg = CSR_READ(sc, WMREG_CTRL);
4982 reg |= CTRL_MEHE;
4983 CSR_WRITE(sc, WMREG_CTRL, reg);
4984 break;
4985 default:
4986 break;
4987 }
4988
4989 /* On 575 and later set RDT only if RX enabled */
4990 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
4991 int qidx;
4992 for (qidx = 0; qidx < sc->sc_nqueues; qidx++) {
4993 struct wm_rxqueue *rxq = &sc->sc_queue[qidx].wmq_rxq;
4994 for (i = 0; i < WM_NRXDESC; i++) {
4995 mutex_enter(rxq->rxq_lock);
4996 wm_init_rxdesc(rxq, i);
4997 mutex_exit(rxq->rxq_lock);
4998
4999 }
5000 }
5001 }
5002
5003 sc->sc_stopping = false;
5004
5005 /* Start the one second link check clock. */
5006 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
5007
5008 /* ...all done! */
5009 ifp->if_flags |= IFF_RUNNING;
5010 ifp->if_flags &= ~IFF_OACTIVE;
5011
5012 out:
5013 sc->sc_if_flags = ifp->if_flags;
5014 if (error)
5015 log(LOG_ERR, "%s: interface not running\n",
5016 device_xname(sc->sc_dev));
5017 return error;
5018 }
5019
5020 /*
5021 * wm_stop: [ifnet interface function]
5022 *
5023 * Stop transmission on the interface.
5024 */
5025 static void
5026 wm_stop(struct ifnet *ifp, int disable)
5027 {
5028 struct wm_softc *sc = ifp->if_softc;
5029
5030 WM_CORE_LOCK(sc);
5031 wm_stop_locked(ifp, disable);
5032 WM_CORE_UNLOCK(sc);
5033 }
5034
5035 static void
5036 wm_stop_locked(struct ifnet *ifp, int disable)
5037 {
5038 struct wm_softc *sc = ifp->if_softc;
5039 struct wm_txsoft *txs;
5040 int i, qidx;
5041
5042 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
5043 device_xname(sc->sc_dev), __func__));
5044 KASSERT(WM_CORE_LOCKED(sc));
5045
5046 sc->sc_stopping = true;
5047
5048 /* Stop the one second clock. */
5049 callout_stop(&sc->sc_tick_ch);
5050
5051 /* Stop the 82547 Tx FIFO stall check timer. */
5052 if (sc->sc_type == WM_T_82547)
5053 callout_stop(&sc->sc_txfifo_ch);
5054
5055 if (sc->sc_flags & WM_F_HAS_MII) {
5056 /* Down the MII. */
5057 mii_down(&sc->sc_mii);
5058 } else {
5059 #if 0
5060 /* Should we clear PHY's status properly? */
5061 wm_reset(sc);
5062 #endif
5063 }
5064
5065 /* Stop the transmit and receive processes. */
5066 CSR_WRITE(sc, WMREG_TCTL, 0);
5067 CSR_WRITE(sc, WMREG_RCTL, 0);
5068 sc->sc_rctl &= ~RCTL_EN;
5069
5070 /*
5071 * Clear the interrupt mask to ensure the device cannot assert its
5072 * interrupt line.
5073 * Clear sc->sc_icr to ensure wm_intr_legacy() makes no attempt to
5074 * service any currently pending or shared interrupt.
5075 */
5076 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
5077 sc->sc_icr = 0;
5078 if (sc->sc_nintrs > 1) {
5079 if (sc->sc_type != WM_T_82574) {
5080 CSR_WRITE(sc, WMREG_EIMC, 0xffffffffU);
5081 CSR_WRITE(sc, WMREG_EIAC, 0);
5082 } else
5083 CSR_WRITE(sc, WMREG_EIAC_82574, 0);
5084 }
5085
5086 /* Release any queued transmit buffers. */
5087 for (qidx = 0; qidx < sc->sc_nqueues; qidx++) {
5088 struct wm_queue *wmq = &sc->sc_queue[qidx];
5089 struct wm_txqueue *txq = &wmq->wmq_txq;
5090 mutex_enter(txq->txq_lock);
5091 for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
5092 txs = &txq->txq_soft[i];
5093 if (txs->txs_mbuf != NULL) {
5094 bus_dmamap_unload(sc->sc_dmat,txs->txs_dmamap);
5095 m_freem(txs->txs_mbuf);
5096 txs->txs_mbuf = NULL;
5097 }
5098 }
5099 if (sc->sc_type == WM_T_PCH_SPT) {
5100 pcireg_t preg;
5101 uint32_t reg;
5102 int nexttx;
5103
5104 /* First, disable MULR fix in FEXTNVM11 */
5105 reg = CSR_READ(sc, WMREG_FEXTNVM11);
5106 reg |= FEXTNVM11_DIS_MULRFIX;
5107 CSR_WRITE(sc, WMREG_FEXTNVM11, reg);
5108
5109 preg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
5110 WM_PCI_DESCRING_STATUS);
5111 reg = CSR_READ(sc, WMREG_TDLEN(0));
5112 printf("XXX RST: FLUSH = %08x, len = %u\n",
5113 (uint32_t)(preg & DESCRING_STATUS_FLUSH_REQ), reg);
5114 if (((preg & DESCRING_STATUS_FLUSH_REQ) != 0)
5115 && (reg != 0)) {
5116 /* TX */
5117 printf("XXX need TX flush (reg = %08x)\n",
5118 preg);
5119 wm_init_tx_descs(sc, txq);
5120 wm_init_tx_regs(sc, wmq, txq);
5121 nexttx = txq->txq_next;
5122 wm_set_dma_addr(
5123 &txq->txq_descs[nexttx].wtx_addr,
5124 WM_CDTXADDR(txq, nexttx));
5125 txq->txq_descs[nexttx].wtx_cmdlen
5126 = htole32(WTX_CMD_IFCS | 512);
5127 wm_cdtxsync(txq, nexttx, 1,
5128 BUS_DMASYNC_PREREAD |BUS_DMASYNC_PREWRITE);
5129 CSR_WRITE(sc, WMREG_TCTL, TCTL_EN);
5130 CSR_WRITE(sc, WMREG_TDT(0), nexttx);
5131 CSR_WRITE_FLUSH(sc);
5132 delay(250);
5133 CSR_WRITE(sc, WMREG_TCTL, 0);
5134 }
5135 preg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
5136 WM_PCI_DESCRING_STATUS);
5137 if (preg & DESCRING_STATUS_FLUSH_REQ) {
5138 /* RX */
5139 printf("XXX need RX flush\n");
5140 }
5141 }
5142 mutex_exit(txq->txq_lock);
5143 }
5144
5145 /* Mark the interface as down and cancel the watchdog timer. */
5146 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5147 ifp->if_timer = 0;
5148
5149 if (disable) {
5150 for (i = 0; i < sc->sc_nqueues; i++) {
5151 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
5152 mutex_enter(rxq->rxq_lock);
5153 wm_rxdrain(rxq);
5154 mutex_exit(rxq->rxq_lock);
5155 }
5156 }
5157
5158 #if 0 /* notyet */
5159 if (sc->sc_type >= WM_T_82544)
5160 CSR_WRITE(sc, WMREG_WUC, 0);
5161 #endif
5162 }
5163
5164 static void
5165 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
5166 {
5167 struct mbuf *m;
5168 int i;
5169
5170 log(LOG_DEBUG, "%s: mbuf chain:\n", device_xname(sc->sc_dev));
5171 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
5172 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
5173 "m_flags = 0x%08x\n", device_xname(sc->sc_dev),
5174 m->m_data, m->m_len, m->m_flags);
5175 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", device_xname(sc->sc_dev),
5176 i, i == 1 ? "" : "s");
5177 }
5178
5179 /*
5180 * wm_82547_txfifo_stall:
5181 *
5182 * Callout used to wait for the 82547 Tx FIFO to drain,
5183 * reset the FIFO pointers, and restart packet transmission.
5184 */
5185 static void
5186 wm_82547_txfifo_stall(void *arg)
5187 {
5188 struct wm_softc *sc = arg;
5189 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
5190
5191 mutex_enter(txq->txq_lock);
5192
5193 if (sc->sc_stopping)
5194 goto out;
5195
5196 if (txq->txq_fifo_stall) {
5197 if (CSR_READ(sc, WMREG_TDT(0)) == CSR_READ(sc, WMREG_TDH(0)) &&
5198 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
5199 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
5200 /*
5201 * Packets have drained. Stop transmitter, reset
5202 * FIFO pointers, restart transmitter, and kick
5203 * the packet queue.
5204 */
5205 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
5206 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
5207 CSR_WRITE(sc, WMREG_TDFT, txq->txq_fifo_addr);
5208 CSR_WRITE(sc, WMREG_TDFH, txq->txq_fifo_addr);
5209 CSR_WRITE(sc, WMREG_TDFTS, txq->txq_fifo_addr);
5210 CSR_WRITE(sc, WMREG_TDFHS, txq->txq_fifo_addr);
5211 CSR_WRITE(sc, WMREG_TCTL, tctl);
5212 CSR_WRITE_FLUSH(sc);
5213
5214 txq->txq_fifo_head = 0;
5215 txq->txq_fifo_stall = 0;
5216 wm_start_locked(&sc->sc_ethercom.ec_if);
5217 } else {
5218 /*
5219 * Still waiting for packets to drain; try again in
5220 * another tick.
5221 */
5222 callout_schedule(&sc->sc_txfifo_ch, 1);
5223 }
5224 }
5225
5226 out:
5227 mutex_exit(txq->txq_lock);
5228 }
5229
5230 /*
5231 * wm_82547_txfifo_bugchk:
5232 *
5233 * Check for bug condition in the 82547 Tx FIFO. We need to
5234 * prevent enqueueing a packet that would wrap around the end
5235 * if the Tx FIFO ring buffer, otherwise the chip will croak.
5236 *
5237 * We do this by checking the amount of space before the end
5238 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
5239 * the Tx FIFO, wait for all remaining packets to drain, reset
5240 * the internal FIFO pointers to the beginning, and restart
5241 * transmission on the interface.
5242 */
5243 #define WM_FIFO_HDR 0x10
5244 #define WM_82547_PAD_LEN 0x3e0
5245 static int
5246 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
5247 {
5248 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
5249 int space = txq->txq_fifo_size - txq->txq_fifo_head;
5250 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
5251
5252 /* Just return if already stalled. */
5253 if (txq->txq_fifo_stall)
5254 return 1;
5255
5256 if (sc->sc_mii.mii_media_active & IFM_FDX) {
5257 /* Stall only occurs in half-duplex mode. */
5258 goto send_packet;
5259 }
5260
5261 if (len >= WM_82547_PAD_LEN + space) {
5262 txq->txq_fifo_stall = 1;
5263 callout_schedule(&sc->sc_txfifo_ch, 1);
5264 return 1;
5265 }
5266
5267 send_packet:
5268 txq->txq_fifo_head += len;
5269 if (txq->txq_fifo_head >= txq->txq_fifo_size)
5270 txq->txq_fifo_head -= txq->txq_fifo_size;
5271
5272 return 0;
5273 }
5274
5275 static int
5276 wm_alloc_tx_descs(struct wm_softc *sc, struct wm_txqueue *txq)
5277 {
5278 int error;
5279
5280 /*
5281 * Allocate the control data structures, and create and load the
5282 * DMA map for it.
5283 *
5284 * NOTE: All Tx descriptors must be in the same 4G segment of
5285 * memory. So must Rx descriptors. We simplify by allocating
5286 * both sets within the same 4G segment.
5287 */
5288 if (sc->sc_type < WM_T_82544)
5289 WM_NTXDESC(txq) = WM_NTXDESC_82542;
5290 else
5291 WM_NTXDESC(txq) = WM_NTXDESC_82544;
5292 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
5293 txq->txq_descsize = sizeof(nq_txdesc_t);
5294 else
5295 txq->txq_descsize = sizeof(wiseman_txdesc_t);
5296
5297 if ((error = bus_dmamem_alloc(sc->sc_dmat, WM_TXDESCS_SIZE(txq),
5298 PAGE_SIZE, (bus_size_t) 0x100000000ULL, &txq->txq_desc_seg,
5299 1, &txq->txq_desc_rseg, 0)) != 0) {
5300 aprint_error_dev(sc->sc_dev,
5301 "unable to allocate TX control data, error = %d\n",
5302 error);
5303 goto fail_0;
5304 }
5305
5306 if ((error = bus_dmamem_map(sc->sc_dmat, &txq->txq_desc_seg,
5307 txq->txq_desc_rseg, WM_TXDESCS_SIZE(txq),
5308 (void **)&txq->txq_descs_u, BUS_DMA_COHERENT)) != 0) {
5309 aprint_error_dev(sc->sc_dev,
5310 "unable to map TX control data, error = %d\n", error);
5311 goto fail_1;
5312 }
5313
5314 if ((error = bus_dmamap_create(sc->sc_dmat, WM_TXDESCS_SIZE(txq), 1,
5315 WM_TXDESCS_SIZE(txq), 0, 0, &txq->txq_desc_dmamap)) != 0) {
5316 aprint_error_dev(sc->sc_dev,
5317 "unable to create TX control data DMA map, error = %d\n",
5318 error);
5319 goto fail_2;
5320 }
5321
5322 if ((error = bus_dmamap_load(sc->sc_dmat, txq->txq_desc_dmamap,
5323 txq->txq_descs_u, WM_TXDESCS_SIZE(txq), NULL, 0)) != 0) {
5324 aprint_error_dev(sc->sc_dev,
5325 "unable to load TX control data DMA map, error = %d\n",
5326 error);
5327 goto fail_3;
5328 }
5329
5330 return 0;
5331
5332 fail_3:
5333 bus_dmamap_destroy(sc->sc_dmat, txq->txq_desc_dmamap);
5334 fail_2:
5335 bus_dmamem_unmap(sc->sc_dmat, (void *)txq->txq_descs_u,
5336 WM_TXDESCS_SIZE(txq));
5337 fail_1:
5338 bus_dmamem_free(sc->sc_dmat, &txq->txq_desc_seg, txq->txq_desc_rseg);
5339 fail_0:
5340 return error;
5341 }
5342
5343 static void
5344 wm_free_tx_descs(struct wm_softc *sc, struct wm_txqueue *txq)
5345 {
5346
5347 bus_dmamap_unload(sc->sc_dmat, txq->txq_desc_dmamap);
5348 bus_dmamap_destroy(sc->sc_dmat, txq->txq_desc_dmamap);
5349 bus_dmamem_unmap(sc->sc_dmat, (void *)txq->txq_descs_u,
5350 WM_TXDESCS_SIZE(txq));
5351 bus_dmamem_free(sc->sc_dmat, &txq->txq_desc_seg, txq->txq_desc_rseg);
5352 }
5353
5354 static int
5355 wm_alloc_rx_descs(struct wm_softc *sc, struct wm_rxqueue *rxq)
5356 {
5357 int error;
5358
5359 /*
5360 * Allocate the control data structures, and create and load the
5361 * DMA map for it.
5362 *
5363 * NOTE: All Tx descriptors must be in the same 4G segment of
5364 * memory. So must Rx descriptors. We simplify by allocating
5365 * both sets within the same 4G segment.
5366 */
5367 rxq->rxq_desc_size = sizeof(wiseman_rxdesc_t) * WM_NRXDESC;
5368 if ((error = bus_dmamem_alloc(sc->sc_dmat, rxq->rxq_desc_size,
5369 PAGE_SIZE, (bus_size_t) 0x100000000ULL, &rxq->rxq_desc_seg,
5370 1, &rxq->rxq_desc_rseg, 0)) != 0) {
5371 aprint_error_dev(sc->sc_dev,
5372 "unable to allocate RX control data, error = %d\n",
5373 error);
5374 goto fail_0;
5375 }
5376
5377 if ((error = bus_dmamem_map(sc->sc_dmat, &rxq->rxq_desc_seg,
5378 rxq->rxq_desc_rseg, rxq->rxq_desc_size,
5379 (void **)&rxq->rxq_descs, BUS_DMA_COHERENT)) != 0) {
5380 aprint_error_dev(sc->sc_dev,
5381 "unable to map RX control data, error = %d\n", error);
5382 goto fail_1;
5383 }
5384
5385 if ((error = bus_dmamap_create(sc->sc_dmat, rxq->rxq_desc_size, 1,
5386 rxq->rxq_desc_size, 0, 0, &rxq->rxq_desc_dmamap)) != 0) {
5387 aprint_error_dev(sc->sc_dev,
5388 "unable to create RX control data DMA map, error = %d\n",
5389 error);
5390 goto fail_2;
5391 }
5392
5393 if ((error = bus_dmamap_load(sc->sc_dmat, rxq->rxq_desc_dmamap,
5394 rxq->rxq_descs, rxq->rxq_desc_size, NULL, 0)) != 0) {
5395 aprint_error_dev(sc->sc_dev,
5396 "unable to load RX control data DMA map, error = %d\n",
5397 error);
5398 goto fail_3;
5399 }
5400
5401 return 0;
5402
5403 fail_3:
5404 bus_dmamap_destroy(sc->sc_dmat, rxq->rxq_desc_dmamap);
5405 fail_2:
5406 bus_dmamem_unmap(sc->sc_dmat, (void *)rxq->rxq_descs,
5407 rxq->rxq_desc_size);
5408 fail_1:
5409 bus_dmamem_free(sc->sc_dmat, &rxq->rxq_desc_seg, rxq->rxq_desc_rseg);
5410 fail_0:
5411 return error;
5412 }
5413
5414 static void
5415 wm_free_rx_descs(struct wm_softc *sc, struct wm_rxqueue *rxq)
5416 {
5417
5418 bus_dmamap_unload(sc->sc_dmat, rxq->rxq_desc_dmamap);
5419 bus_dmamap_destroy(sc->sc_dmat, rxq->rxq_desc_dmamap);
5420 bus_dmamem_unmap(sc->sc_dmat, (void *)rxq->rxq_descs,
5421 rxq->rxq_desc_size);
5422 bus_dmamem_free(sc->sc_dmat, &rxq->rxq_desc_seg, rxq->rxq_desc_rseg);
5423 }
5424
5425
5426 static int
5427 wm_alloc_tx_buffer(struct wm_softc *sc, struct wm_txqueue *txq)
5428 {
5429 int i, error;
5430
5431 /* Create the transmit buffer DMA maps. */
5432 WM_TXQUEUELEN(txq) =
5433 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
5434 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
5435 for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
5436 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
5437 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
5438 &txq->txq_soft[i].txs_dmamap)) != 0) {
5439 aprint_error_dev(sc->sc_dev,
5440 "unable to create Tx DMA map %d, error = %d\n",
5441 i, error);
5442 goto fail;
5443 }
5444 }
5445
5446 return 0;
5447
5448 fail:
5449 for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
5450 if (txq->txq_soft[i].txs_dmamap != NULL)
5451 bus_dmamap_destroy(sc->sc_dmat,
5452 txq->txq_soft[i].txs_dmamap);
5453 }
5454 return error;
5455 }
5456
5457 static void
5458 wm_free_tx_buffer(struct wm_softc *sc, struct wm_txqueue *txq)
5459 {
5460 int i;
5461
5462 for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
5463 if (txq->txq_soft[i].txs_dmamap != NULL)
5464 bus_dmamap_destroy(sc->sc_dmat,
5465 txq->txq_soft[i].txs_dmamap);
5466 }
5467 }
5468
5469 static int
5470 wm_alloc_rx_buffer(struct wm_softc *sc, struct wm_rxqueue *rxq)
5471 {
5472 int i, error;
5473
5474 /* Create the receive buffer DMA maps. */
5475 for (i = 0; i < WM_NRXDESC; i++) {
5476 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
5477 MCLBYTES, 0, 0,
5478 &rxq->rxq_soft[i].rxs_dmamap)) != 0) {
5479 aprint_error_dev(sc->sc_dev,
5480 "unable to create Rx DMA map %d error = %d\n",
5481 i, error);
5482 goto fail;
5483 }
5484 rxq->rxq_soft[i].rxs_mbuf = NULL;
5485 }
5486
5487 return 0;
5488
5489 fail:
5490 for (i = 0; i < WM_NRXDESC; i++) {
5491 if (rxq->rxq_soft[i].rxs_dmamap != NULL)
5492 bus_dmamap_destroy(sc->sc_dmat,
5493 rxq->rxq_soft[i].rxs_dmamap);
5494 }
5495 return error;
5496 }
5497
5498 static void
5499 wm_free_rx_buffer(struct wm_softc *sc, struct wm_rxqueue *rxq)
5500 {
5501 int i;
5502
5503 for (i = 0; i < WM_NRXDESC; i++) {
5504 if (rxq->rxq_soft[i].rxs_dmamap != NULL)
5505 bus_dmamap_destroy(sc->sc_dmat,
5506 rxq->rxq_soft[i].rxs_dmamap);
5507 }
5508 }
5509
5510 /*
5511 * wm_alloc_quques:
5512 * Allocate {tx,rx}descs and {tx,rx} buffers
5513 */
5514 static int
5515 wm_alloc_txrx_queues(struct wm_softc *sc)
5516 {
5517 int i, error, tx_done, rx_done;
5518
5519 sc->sc_queue = kmem_zalloc(sizeof(struct wm_queue) * sc->sc_nqueues,
5520 KM_SLEEP);
5521 if (sc->sc_queue == NULL) {
5522 aprint_error_dev(sc->sc_dev,"unable to allocate wm_queue\n");
5523 error = ENOMEM;
5524 goto fail_0;
5525 }
5526
5527 /*
5528 * For transmission
5529 */
5530 error = 0;
5531 tx_done = 0;
5532 for (i = 0; i < sc->sc_nqueues; i++) {
5533 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
5534 txq->txq_sc = sc;
5535 txq->txq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
5536
5537 error = wm_alloc_tx_descs(sc, txq);
5538 if (error)
5539 break;
5540 error = wm_alloc_tx_buffer(sc, txq);
5541 if (error) {
5542 wm_free_tx_descs(sc, txq);
5543 break;
5544 }
5545 txq->txq_interq = pcq_create(WM_TXINTERQSIZE, KM_SLEEP);
5546 if (txq->txq_interq == NULL) {
5547 wm_free_tx_descs(sc, txq);
5548 wm_free_tx_buffer(sc, txq);
5549 error = ENOMEM;
5550 break;
5551 }
5552 tx_done++;
5553 }
5554 if (error)
5555 goto fail_1;
5556
5557 /*
5558 * For recieve
5559 */
5560 error = 0;
5561 rx_done = 0;
5562 for (i = 0; i < sc->sc_nqueues; i++) {
5563 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
5564 rxq->rxq_sc = sc;
5565 rxq->rxq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
5566
5567 error = wm_alloc_rx_descs(sc, rxq);
5568 if (error)
5569 break;
5570
5571 error = wm_alloc_rx_buffer(sc, rxq);
5572 if (error) {
5573 wm_free_rx_descs(sc, rxq);
5574 break;
5575 }
5576
5577 rx_done++;
5578 }
5579 if (error)
5580 goto fail_2;
5581
5582 return 0;
5583
5584 fail_2:
5585 for (i = 0; i < rx_done; i++) {
5586 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
5587 wm_free_rx_buffer(sc, rxq);
5588 wm_free_rx_descs(sc, rxq);
5589 if (rxq->rxq_lock)
5590 mutex_obj_free(rxq->rxq_lock);
5591 }
5592 fail_1:
5593 for (i = 0; i < tx_done; i++) {
5594 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
5595 pcq_destroy(txq->txq_interq);
5596 wm_free_tx_buffer(sc, txq);
5597 wm_free_tx_descs(sc, txq);
5598 if (txq->txq_lock)
5599 mutex_obj_free(txq->txq_lock);
5600 }
5601
5602 kmem_free(sc->sc_queue,
5603 sizeof(struct wm_queue) * sc->sc_nqueues);
5604 fail_0:
5605 return error;
5606 }
5607
5608 /*
5609 * wm_free_quques:
5610 * Free {tx,rx}descs and {tx,rx} buffers
5611 */
5612 static void
5613 wm_free_txrx_queues(struct wm_softc *sc)
5614 {
5615 int i;
5616
5617 for (i = 0; i < sc->sc_nqueues; i++) {
5618 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
5619 wm_free_rx_buffer(sc, rxq);
5620 wm_free_rx_descs(sc, rxq);
5621 if (rxq->rxq_lock)
5622 mutex_obj_free(rxq->rxq_lock);
5623 }
5624
5625 for (i = 0; i < sc->sc_nqueues; i++) {
5626 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
5627 wm_free_tx_buffer(sc, txq);
5628 wm_free_tx_descs(sc, txq);
5629 if (txq->txq_lock)
5630 mutex_obj_free(txq->txq_lock);
5631 }
5632
5633 kmem_free(sc->sc_queue, sizeof(struct wm_queue) * sc->sc_nqueues);
5634 }
5635
5636 static void
5637 wm_init_tx_descs(struct wm_softc *sc __unused, struct wm_txqueue *txq)
5638 {
5639
5640 KASSERT(mutex_owned(txq->txq_lock));
5641
5642 /* Initialize the transmit descriptor ring. */
5643 memset(txq->txq_descs, 0, WM_TXDESCS_SIZE(txq));
5644 wm_cdtxsync(txq, 0, WM_NTXDESC(txq),
5645 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5646 txq->txq_free = WM_NTXDESC(txq);
5647 txq->txq_next = 0;
5648 }
5649
5650 static void
5651 wm_init_tx_regs(struct wm_softc *sc, struct wm_queue *wmq,
5652 struct wm_txqueue *txq)
5653 {
5654
5655 KASSERT(mutex_owned(txq->txq_lock));
5656
5657 if (sc->sc_type < WM_T_82543) {
5658 CSR_WRITE(sc, WMREG_OLD_TDBAH, WM_CDTXADDR_HI(txq, 0));
5659 CSR_WRITE(sc, WMREG_OLD_TDBAL, WM_CDTXADDR_LO(txq, 0));
5660 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCS_SIZE(txq));
5661 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
5662 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
5663 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
5664 } else {
5665 int qid = wmq->wmq_id;
5666
5667 CSR_WRITE(sc, WMREG_TDBAH(qid), WM_CDTXADDR_HI(txq, 0));
5668 CSR_WRITE(sc, WMREG_TDBAL(qid), WM_CDTXADDR_LO(txq, 0));
5669 CSR_WRITE(sc, WMREG_TDLEN(qid), WM_TXDESCS_SIZE(txq));
5670 CSR_WRITE(sc, WMREG_TDH(qid), 0);
5671
5672 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
5673 /*
5674 * Don't write TDT before TCTL.EN is set.
5675 * See the document.
5676 */
5677 CSR_WRITE(sc, WMREG_TXDCTL(qid), TXDCTL_QUEUE_ENABLE
5678 | TXDCTL_PTHRESH(0) | TXDCTL_HTHRESH(0)
5679 | TXDCTL_WTHRESH(0));
5680 else {
5681 /* ITR / 4 */
5682 CSR_WRITE(sc, WMREG_TIDV, sc->sc_itr / 4);
5683 if (sc->sc_type >= WM_T_82540) {
5684 /* should be same */
5685 CSR_WRITE(sc, WMREG_TADV, sc->sc_itr / 4);
5686 }
5687
5688 CSR_WRITE(sc, WMREG_TDT(qid), 0);
5689 CSR_WRITE(sc, WMREG_TXDCTL(qid), TXDCTL_PTHRESH(0) |
5690 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
5691 }
5692 }
5693 }
5694
5695 static void
5696 wm_init_tx_buffer(struct wm_softc *sc __unused, struct wm_txqueue *txq)
5697 {
5698 int i;
5699
5700 KASSERT(mutex_owned(txq->txq_lock));
5701
5702 /* Initialize the transmit job descriptors. */
5703 for (i = 0; i < WM_TXQUEUELEN(txq); i++)
5704 txq->txq_soft[i].txs_mbuf = NULL;
5705 txq->txq_sfree = WM_TXQUEUELEN(txq);
5706 txq->txq_snext = 0;
5707 txq->txq_sdirty = 0;
5708 }
5709
5710 static void
5711 wm_init_tx_queue(struct wm_softc *sc, struct wm_queue *wmq,
5712 struct wm_txqueue *txq)
5713 {
5714
5715 KASSERT(mutex_owned(txq->txq_lock));
5716
5717 /*
5718 * Set up some register offsets that are different between
5719 * the i82542 and the i82543 and later chips.
5720 */
5721 if (sc->sc_type < WM_T_82543)
5722 txq->txq_tdt_reg = WMREG_OLD_TDT;
5723 else
5724 txq->txq_tdt_reg = WMREG_TDT(wmq->wmq_id);
5725
5726 wm_init_tx_descs(sc, txq);
5727 wm_init_tx_regs(sc, wmq, txq);
5728 wm_init_tx_buffer(sc, txq);
5729 }
5730
5731 static void
5732 wm_init_rx_regs(struct wm_softc *sc, struct wm_queue *wmq,
5733 struct wm_rxqueue *rxq)
5734 {
5735
5736 KASSERT(mutex_owned(rxq->rxq_lock));
5737
5738 /*
5739 * Initialize the receive descriptor and receive job
5740 * descriptor rings.
5741 */
5742 if (sc->sc_type < WM_T_82543) {
5743 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(rxq, 0));
5744 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(rxq, 0));
5745 CSR_WRITE(sc, WMREG_OLD_RDLEN0,
5746 sizeof(wiseman_rxdesc_t) * WM_NRXDESC);
5747 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
5748 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
5749 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
5750
5751 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
5752 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
5753 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
5754 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
5755 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
5756 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
5757 } else {
5758 int qid = wmq->wmq_id;
5759
5760 CSR_WRITE(sc, WMREG_RDBAH(qid), WM_CDRXADDR_HI(rxq, 0));
5761 CSR_WRITE(sc, WMREG_RDBAL(qid), WM_CDRXADDR_LO(rxq, 0));
5762 CSR_WRITE(sc, WMREG_RDLEN(qid), rxq->rxq_desc_size);
5763
5764 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
5765 if (MCLBYTES & ((1 << SRRCTL_BSIZEPKT_SHIFT) - 1))
5766 panic("%s: MCLBYTES %d unsupported for i2575 or higher\n", __func__, MCLBYTES);
5767 CSR_WRITE(sc, WMREG_SRRCTL(qid), SRRCTL_DESCTYPE_LEGACY
5768 | (MCLBYTES >> SRRCTL_BSIZEPKT_SHIFT));
5769 CSR_WRITE(sc, WMREG_RXDCTL(qid), RXDCTL_QUEUE_ENABLE
5770 | RXDCTL_PTHRESH(16) | RXDCTL_HTHRESH(8)
5771 | RXDCTL_WTHRESH(1));
5772 CSR_WRITE(sc, WMREG_RDH(qid), 0);
5773 CSR_WRITE(sc, WMREG_RDT(qid), 0);
5774 } else {
5775 CSR_WRITE(sc, WMREG_RDH(qid), 0);
5776 CSR_WRITE(sc, WMREG_RDT(qid), 0);
5777 /* ITR / 4 */
5778 CSR_WRITE(sc, WMREG_RDTR, (sc->sc_itr / 4) | RDTR_FPD);
5779 /* MUST be same */
5780 CSR_WRITE(sc, WMREG_RADV, sc->sc_itr / 4);
5781 CSR_WRITE(sc, WMREG_RXDCTL(qid), RXDCTL_PTHRESH(0) |
5782 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
5783 }
5784 }
5785 }
5786
5787 static int
5788 wm_init_rx_buffer(struct wm_softc *sc, struct wm_rxqueue *rxq)
5789 {
5790 struct wm_rxsoft *rxs;
5791 int error, i;
5792
5793 KASSERT(mutex_owned(rxq->rxq_lock));
5794
5795 for (i = 0; i < WM_NRXDESC; i++) {
5796 rxs = &rxq->rxq_soft[i];
5797 if (rxs->rxs_mbuf == NULL) {
5798 if ((error = wm_add_rxbuf(rxq, i)) != 0) {
5799 log(LOG_ERR, "%s: unable to allocate or map "
5800 "rx buffer %d, error = %d\n",
5801 device_xname(sc->sc_dev), i, error);
5802 /*
5803 * XXX Should attempt to run with fewer receive
5804 * XXX buffers instead of just failing.
5805 */
5806 wm_rxdrain(rxq);
5807 return ENOMEM;
5808 }
5809 } else {
5810 if ((sc->sc_flags & WM_F_NEWQUEUE) == 0)
5811 wm_init_rxdesc(rxq, i);
5812 /*
5813 * For 82575 and newer device, the RX descriptors
5814 * must be initialized after the setting of RCTL.EN in
5815 * wm_set_filter()
5816 */
5817 }
5818 }
5819 rxq->rxq_ptr = 0;
5820 rxq->rxq_discard = 0;
5821 WM_RXCHAIN_RESET(rxq);
5822
5823 return 0;
5824 }
5825
5826 static int
5827 wm_init_rx_queue(struct wm_softc *sc, struct wm_queue *wmq,
5828 struct wm_rxqueue *rxq)
5829 {
5830
5831 KASSERT(mutex_owned(rxq->rxq_lock));
5832
5833 /*
5834 * Set up some register offsets that are different between
5835 * the i82542 and the i82543 and later chips.
5836 */
5837 if (sc->sc_type < WM_T_82543)
5838 rxq->rxq_rdt_reg = WMREG_OLD_RDT0;
5839 else
5840 rxq->rxq_rdt_reg = WMREG_RDT(wmq->wmq_id);
5841
5842 wm_init_rx_regs(sc, wmq, rxq);
5843 return wm_init_rx_buffer(sc, rxq);
5844 }
5845
5846 /*
5847 * wm_init_quques:
5848 * Initialize {tx,rx}descs and {tx,rx} buffers
5849 */
5850 static int
5851 wm_init_txrx_queues(struct wm_softc *sc)
5852 {
5853 int i, error = 0;
5854
5855 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
5856 device_xname(sc->sc_dev), __func__));
5857 for (i = 0; i < sc->sc_nqueues; i++) {
5858 struct wm_queue *wmq = &sc->sc_queue[i];
5859 struct wm_txqueue *txq = &wmq->wmq_txq;
5860 struct wm_rxqueue *rxq = &wmq->wmq_rxq;
5861
5862 mutex_enter(txq->txq_lock);
5863 wm_init_tx_queue(sc, wmq, txq);
5864 mutex_exit(txq->txq_lock);
5865
5866 mutex_enter(rxq->rxq_lock);
5867 error = wm_init_rx_queue(sc, wmq, rxq);
5868 mutex_exit(rxq->rxq_lock);
5869 if (error)
5870 break;
5871 }
5872
5873 return error;
5874 }
5875
5876 /*
5877 * wm_tx_offload:
5878 *
5879 * Set up TCP/IP checksumming parameters for the
5880 * specified packet.
5881 */
5882 static int
5883 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
5884 uint8_t *fieldsp)
5885 {
5886 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
5887 struct mbuf *m0 = txs->txs_mbuf;
5888 struct livengood_tcpip_ctxdesc *t;
5889 uint32_t ipcs, tucs, cmd, cmdlen, seg;
5890 uint32_t ipcse;
5891 struct ether_header *eh;
5892 int offset, iphl;
5893 uint8_t fields;
5894
5895 /*
5896 * XXX It would be nice if the mbuf pkthdr had offset
5897 * fields for the protocol headers.
5898 */
5899
5900 eh = mtod(m0, struct ether_header *);
5901 switch (htons(eh->ether_type)) {
5902 case ETHERTYPE_IP:
5903 case ETHERTYPE_IPV6:
5904 offset = ETHER_HDR_LEN;
5905 break;
5906
5907 case ETHERTYPE_VLAN:
5908 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5909 break;
5910
5911 default:
5912 /*
5913 * Don't support this protocol or encapsulation.
5914 */
5915 *fieldsp = 0;
5916 *cmdp = 0;
5917 return 0;
5918 }
5919
5920 if ((m0->m_pkthdr.csum_flags &
5921 (M_CSUM_TSOv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4)) != 0) {
5922 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5923 } else {
5924 iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
5925 }
5926 ipcse = offset + iphl - 1;
5927
5928 cmd = WTX_CMD_DEXT | WTX_DTYP_D;
5929 cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
5930 seg = 0;
5931 fields = 0;
5932
5933 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
5934 int hlen = offset + iphl;
5935 bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5936
5937 if (__predict_false(m0->m_len <
5938 (hlen + sizeof(struct tcphdr)))) {
5939 /*
5940 * TCP/IP headers are not in the first mbuf; we need
5941 * to do this the slow and painful way. Let's just
5942 * hope this doesn't happen very often.
5943 */
5944 struct tcphdr th;
5945
5946 WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
5947
5948 m_copydata(m0, hlen, sizeof(th), &th);
5949 if (v4) {
5950 struct ip ip;
5951
5952 m_copydata(m0, offset, sizeof(ip), &ip);
5953 ip.ip_len = 0;
5954 m_copyback(m0,
5955 offset + offsetof(struct ip, ip_len),
5956 sizeof(ip.ip_len), &ip.ip_len);
5957 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5958 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5959 } else {
5960 struct ip6_hdr ip6;
5961
5962 m_copydata(m0, offset, sizeof(ip6), &ip6);
5963 ip6.ip6_plen = 0;
5964 m_copyback(m0,
5965 offset + offsetof(struct ip6_hdr, ip6_plen),
5966 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
5967 th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
5968 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
5969 }
5970 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5971 sizeof(th.th_sum), &th.th_sum);
5972
5973 hlen += th.th_off << 2;
5974 } else {
5975 /*
5976 * TCP/IP headers are in the first mbuf; we can do
5977 * this the easy way.
5978 */
5979 struct tcphdr *th;
5980
5981 if (v4) {
5982 struct ip *ip =
5983 (void *)(mtod(m0, char *) + offset);
5984 th = (void *)(mtod(m0, char *) + hlen);
5985
5986 ip->ip_len = 0;
5987 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5988 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5989 } else {
5990 struct ip6_hdr *ip6 =
5991 (void *)(mtod(m0, char *) + offset);
5992 th = (void *)(mtod(m0, char *) + hlen);
5993
5994 ip6->ip6_plen = 0;
5995 th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
5996 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
5997 }
5998 hlen += th->th_off << 2;
5999 }
6000
6001 if (v4) {
6002 WM_EVCNT_INCR(&sc->sc_ev_txtso);
6003 cmdlen |= WTX_TCPIP_CMD_IP;
6004 } else {
6005 WM_EVCNT_INCR(&sc->sc_ev_txtso6);
6006 ipcse = 0;
6007 }
6008 cmd |= WTX_TCPIP_CMD_TSE;
6009 cmdlen |= WTX_TCPIP_CMD_TSE |
6010 WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
6011 seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
6012 WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
6013 }
6014
6015 /*
6016 * NOTE: Even if we're not using the IP or TCP/UDP checksum
6017 * offload feature, if we load the context descriptor, we
6018 * MUST provide valid values for IPCSS and TUCSS fields.
6019 */
6020
6021 ipcs = WTX_TCPIP_IPCSS(offset) |
6022 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
6023 WTX_TCPIP_IPCSE(ipcse);
6024 if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4 | M_CSUM_TSOv4)) {
6025 WM_EVCNT_INCR(&sc->sc_ev_txipsum);
6026 fields |= WTX_IXSM;
6027 }
6028
6029 offset += iphl;
6030
6031 if (m0->m_pkthdr.csum_flags &
6032 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TSOv4)) {
6033 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
6034 fields |= WTX_TXSM;
6035 tucs = WTX_TCPIP_TUCSS(offset) |
6036 WTX_TCPIP_TUCSO(offset +
6037 M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
6038 WTX_TCPIP_TUCSE(0) /* rest of packet */;
6039 } else if ((m0->m_pkthdr.csum_flags &
6040 (M_CSUM_TCPv6 | M_CSUM_UDPv6 | M_CSUM_TSOv6)) != 0) {
6041 WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
6042 fields |= WTX_TXSM;
6043 tucs = WTX_TCPIP_TUCSS(offset) |
6044 WTX_TCPIP_TUCSO(offset +
6045 M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
6046 WTX_TCPIP_TUCSE(0) /* rest of packet */;
6047 } else {
6048 /* Just initialize it to a valid TCP context. */
6049 tucs = WTX_TCPIP_TUCSS(offset) |
6050 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
6051 WTX_TCPIP_TUCSE(0) /* rest of packet */;
6052 }
6053
6054 /* Fill in the context descriptor. */
6055 t = (struct livengood_tcpip_ctxdesc *)
6056 &txq->txq_descs[txq->txq_next];
6057 t->tcpip_ipcs = htole32(ipcs);
6058 t->tcpip_tucs = htole32(tucs);
6059 t->tcpip_cmdlen = htole32(cmdlen);
6060 t->tcpip_seg = htole32(seg);
6061 wm_cdtxsync(txq, txq->txq_next, 1, BUS_DMASYNC_PREWRITE);
6062
6063 txq->txq_next = WM_NEXTTX(txq, txq->txq_next);
6064 txs->txs_ndesc++;
6065
6066 *cmdp = cmd;
6067 *fieldsp = fields;
6068
6069 return 0;
6070 }
6071
6072 /*
6073 * wm_start: [ifnet interface function]
6074 *
6075 * Start packet transmission on the interface.
6076 */
6077 static void
6078 wm_start(struct ifnet *ifp)
6079 {
6080 struct wm_softc *sc = ifp->if_softc;
6081 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
6082
6083 mutex_enter(txq->txq_lock);
6084 if (!sc->sc_stopping)
6085 wm_start_locked(ifp);
6086 mutex_exit(txq->txq_lock);
6087 }
6088
6089 static void
6090 wm_start_locked(struct ifnet *ifp)
6091 {
6092 struct wm_softc *sc = ifp->if_softc;
6093 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
6094 struct mbuf *m0;
6095 struct m_tag *mtag;
6096 struct wm_txsoft *txs;
6097 bus_dmamap_t dmamap;
6098 int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
6099 bus_addr_t curaddr;
6100 bus_size_t seglen, curlen;
6101 uint32_t cksumcmd;
6102 uint8_t cksumfields;
6103
6104 KASSERT(mutex_owned(txq->txq_lock));
6105
6106 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
6107 return;
6108
6109 /* Remember the previous number of free descriptors. */
6110 ofree = txq->txq_free;
6111
6112 /*
6113 * Loop through the send queue, setting up transmit descriptors
6114 * until we drain the queue, or use up all available transmit
6115 * descriptors.
6116 */
6117 for (;;) {
6118 m0 = NULL;
6119
6120 /* Get a work queue entry. */
6121 if (txq->txq_sfree < WM_TXQUEUE_GC(txq)) {
6122 wm_txeof(sc, txq);
6123 if (txq->txq_sfree == 0) {
6124 DPRINTF(WM_DEBUG_TX,
6125 ("%s: TX: no free job descriptors\n",
6126 device_xname(sc->sc_dev)));
6127 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
6128 break;
6129 }
6130 }
6131
6132 /* Grab a packet off the queue. */
6133 IFQ_DEQUEUE(&ifp->if_snd, m0);
6134 if (m0 == NULL)
6135 break;
6136
6137 DPRINTF(WM_DEBUG_TX,
6138 ("%s: TX: have packet to transmit: %p\n",
6139 device_xname(sc->sc_dev), m0));
6140
6141 txs = &txq->txq_soft[txq->txq_snext];
6142 dmamap = txs->txs_dmamap;
6143
6144 use_tso = (m0->m_pkthdr.csum_flags &
6145 (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0;
6146
6147 /*
6148 * So says the Linux driver:
6149 * The controller does a simple calculation to make sure
6150 * there is enough room in the FIFO before initiating the
6151 * DMA for each buffer. The calc is:
6152 * 4 = ceil(buffer len / MSS)
6153 * To make sure we don't overrun the FIFO, adjust the max
6154 * buffer len if the MSS drops.
6155 */
6156 dmamap->dm_maxsegsz =
6157 (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
6158 ? m0->m_pkthdr.segsz << 2
6159 : WTX_MAX_LEN;
6160
6161 /*
6162 * Load the DMA map. If this fails, the packet either
6163 * didn't fit in the allotted number of segments, or we
6164 * were short on resources. For the too-many-segments
6165 * case, we simply report an error and drop the packet,
6166 * since we can't sanely copy a jumbo packet to a single
6167 * buffer.
6168 */
6169 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
6170 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
6171 if (error) {
6172 if (error == EFBIG) {
6173 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
6174 log(LOG_ERR, "%s: Tx packet consumes too many "
6175 "DMA segments, dropping...\n",
6176 device_xname(sc->sc_dev));
6177 wm_dump_mbuf_chain(sc, m0);
6178 m_freem(m0);
6179 continue;
6180 }
6181 /* Short on resources, just stop for now. */
6182 DPRINTF(WM_DEBUG_TX,
6183 ("%s: TX: dmamap load failed: %d\n",
6184 device_xname(sc->sc_dev), error));
6185 break;
6186 }
6187
6188 segs_needed = dmamap->dm_nsegs;
6189 if (use_tso) {
6190 /* For sentinel descriptor; see below. */
6191 segs_needed++;
6192 }
6193
6194 /*
6195 * Ensure we have enough descriptors free to describe
6196 * the packet. Note, we always reserve one descriptor
6197 * at the end of the ring due to the semantics of the
6198 * TDT register, plus one more in the event we need
6199 * to load offload context.
6200 */
6201 if (segs_needed > txq->txq_free - 2) {
6202 /*
6203 * Not enough free descriptors to transmit this
6204 * packet. We haven't committed anything yet,
6205 * so just unload the DMA map, put the packet
6206 * pack on the queue, and punt. Notify the upper
6207 * layer that there are no more slots left.
6208 */
6209 DPRINTF(WM_DEBUG_TX,
6210 ("%s: TX: need %d (%d) descriptors, have %d\n",
6211 device_xname(sc->sc_dev), dmamap->dm_nsegs,
6212 segs_needed, txq->txq_free - 1));
6213 ifp->if_flags |= IFF_OACTIVE;
6214 bus_dmamap_unload(sc->sc_dmat, dmamap);
6215 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
6216 break;
6217 }
6218
6219 /*
6220 * Check for 82547 Tx FIFO bug. We need to do this
6221 * once we know we can transmit the packet, since we
6222 * do some internal FIFO space accounting here.
6223 */
6224 if (sc->sc_type == WM_T_82547 &&
6225 wm_82547_txfifo_bugchk(sc, m0)) {
6226 DPRINTF(WM_DEBUG_TX,
6227 ("%s: TX: 82547 Tx FIFO bug detected\n",
6228 device_xname(sc->sc_dev)));
6229 ifp->if_flags |= IFF_OACTIVE;
6230 bus_dmamap_unload(sc->sc_dmat, dmamap);
6231 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
6232 break;
6233 }
6234
6235 /* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */
6236
6237 DPRINTF(WM_DEBUG_TX,
6238 ("%s: TX: packet has %d (%d) DMA segments\n",
6239 device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed));
6240
6241 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
6242
6243 /*
6244 * Store a pointer to the packet so that we can free it
6245 * later.
6246 *
6247 * Initially, we consider the number of descriptors the
6248 * packet uses the number of DMA segments. This may be
6249 * incremented by 1 if we do checksum offload (a descriptor
6250 * is used to set the checksum context).
6251 */
6252 txs->txs_mbuf = m0;
6253 txs->txs_firstdesc = txq->txq_next;
6254 txs->txs_ndesc = segs_needed;
6255
6256 /* Set up offload parameters for this packet. */
6257 if (m0->m_pkthdr.csum_flags &
6258 (M_CSUM_TSOv4 | M_CSUM_TSOv6 |
6259 M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4 |
6260 M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
6261 if (wm_tx_offload(sc, txs, &cksumcmd,
6262 &cksumfields) != 0) {
6263 /* Error message already displayed. */
6264 bus_dmamap_unload(sc->sc_dmat, dmamap);
6265 continue;
6266 }
6267 } else {
6268 cksumcmd = 0;
6269 cksumfields = 0;
6270 }
6271
6272 cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
6273
6274 /* Sync the DMA map. */
6275 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
6276 BUS_DMASYNC_PREWRITE);
6277
6278 /* Initialize the transmit descriptor. */
6279 for (nexttx = txq->txq_next, seg = 0;
6280 seg < dmamap->dm_nsegs; seg++) {
6281 for (seglen = dmamap->dm_segs[seg].ds_len,
6282 curaddr = dmamap->dm_segs[seg].ds_addr;
6283 seglen != 0;
6284 curaddr += curlen, seglen -= curlen,
6285 nexttx = WM_NEXTTX(txq, nexttx)) {
6286 curlen = seglen;
6287
6288 /*
6289 * So says the Linux driver:
6290 * Work around for premature descriptor
6291 * write-backs in TSO mode. Append a
6292 * 4-byte sentinel descriptor.
6293 */
6294 if (use_tso && seg == dmamap->dm_nsegs - 1 &&
6295 curlen > 8)
6296 curlen -= 4;
6297
6298 wm_set_dma_addr(
6299 &txq->txq_descs[nexttx].wtx_addr, curaddr);
6300 txq->txq_descs[nexttx].wtx_cmdlen
6301 = htole32(cksumcmd | curlen);
6302 txq->txq_descs[nexttx].wtx_fields.wtxu_status
6303 = 0;
6304 txq->txq_descs[nexttx].wtx_fields.wtxu_options
6305 = cksumfields;
6306 txq->txq_descs[nexttx].wtx_fields.wtxu_vlan =0;
6307 lasttx = nexttx;
6308
6309 DPRINTF(WM_DEBUG_TX,
6310 ("%s: TX: desc %d: low %#" PRIx64 ", "
6311 "len %#04zx\n",
6312 device_xname(sc->sc_dev), nexttx,
6313 (uint64_t)curaddr, curlen));
6314 }
6315 }
6316
6317 KASSERT(lasttx != -1);
6318
6319 /*
6320 * Set up the command byte on the last descriptor of
6321 * the packet. If we're in the interrupt delay window,
6322 * delay the interrupt.
6323 */
6324 txq->txq_descs[lasttx].wtx_cmdlen |=
6325 htole32(WTX_CMD_EOP | WTX_CMD_RS);
6326
6327 /*
6328 * If VLANs are enabled and the packet has a VLAN tag, set
6329 * up the descriptor to encapsulate the packet for us.
6330 *
6331 * This is only valid on the last descriptor of the packet.
6332 */
6333 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
6334 txq->txq_descs[lasttx].wtx_cmdlen |=
6335 htole32(WTX_CMD_VLE);
6336 txq->txq_descs[lasttx].wtx_fields.wtxu_vlan
6337 = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
6338 }
6339
6340 txs->txs_lastdesc = lasttx;
6341
6342 DPRINTF(WM_DEBUG_TX,
6343 ("%s: TX: desc %d: cmdlen 0x%08x\n",
6344 device_xname(sc->sc_dev),
6345 lasttx, le32toh(txq->txq_descs[lasttx].wtx_cmdlen)));
6346
6347 /* Sync the descriptors we're using. */
6348 wm_cdtxsync(txq, txq->txq_next, txs->txs_ndesc,
6349 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6350
6351 /* Give the packet to the chip. */
6352 CSR_WRITE(sc, txq->txq_tdt_reg, nexttx);
6353
6354 DPRINTF(WM_DEBUG_TX,
6355 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
6356
6357 DPRINTF(WM_DEBUG_TX,
6358 ("%s: TX: finished transmitting packet, job %d\n",
6359 device_xname(sc->sc_dev), txq->txq_snext));
6360
6361 /* Advance the tx pointer. */
6362 txq->txq_free -= txs->txs_ndesc;
6363 txq->txq_next = nexttx;
6364
6365 txq->txq_sfree--;
6366 txq->txq_snext = WM_NEXTTXS(txq, txq->txq_snext);
6367
6368 /* Pass the packet to any BPF listeners. */
6369 bpf_mtap(ifp, m0);
6370 }
6371
6372 if (m0 != NULL) {
6373 ifp->if_flags |= IFF_OACTIVE;
6374 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
6375 DPRINTF(WM_DEBUG_TX, ("%s: TX: error after IFQ_DEQUEUE\n",
6376 __func__));
6377 m_freem(m0);
6378 }
6379
6380 if (txq->txq_sfree == 0 || txq->txq_free <= 2) {
6381 /* No more slots; notify upper layer. */
6382 ifp->if_flags |= IFF_OACTIVE;
6383 }
6384
6385 if (txq->txq_free != ofree) {
6386 /* Set a watchdog timer in case the chip flakes out. */
6387 ifp->if_timer = 5;
6388 }
6389 }
6390
6391 /*
6392 * wm_nq_tx_offload:
6393 *
6394 * Set up TCP/IP checksumming parameters for the
6395 * specified packet, for NEWQUEUE devices
6396 */
6397 static int
6398 wm_nq_tx_offload(struct wm_softc *sc, struct wm_txqueue *txq,
6399 struct wm_txsoft *txs, uint32_t *cmdlenp, uint32_t *fieldsp, bool *do_csum)
6400 {
6401 struct mbuf *m0 = txs->txs_mbuf;
6402 struct m_tag *mtag;
6403 uint32_t vl_len, mssidx, cmdc;
6404 struct ether_header *eh;
6405 int offset, iphl;
6406
6407 /*
6408 * XXX It would be nice if the mbuf pkthdr had offset
6409 * fields for the protocol headers.
6410 */
6411 *cmdlenp = 0;
6412 *fieldsp = 0;
6413
6414 eh = mtod(m0, struct ether_header *);
6415 switch (htons(eh->ether_type)) {
6416 case ETHERTYPE_IP:
6417 case ETHERTYPE_IPV6:
6418 offset = ETHER_HDR_LEN;
6419 break;
6420
6421 case ETHERTYPE_VLAN:
6422 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
6423 break;
6424
6425 default:
6426 /* Don't support this protocol or encapsulation. */
6427 *do_csum = false;
6428 return 0;
6429 }
6430 *do_csum = true;
6431 *cmdlenp = NQTX_DTYP_D | NQTX_CMD_DEXT | NQTX_CMD_IFCS;
6432 cmdc = NQTX_DTYP_C | NQTX_CMD_DEXT;
6433
6434 vl_len = (offset << NQTXC_VLLEN_MACLEN_SHIFT);
6435 KASSERT((offset & ~NQTXC_VLLEN_MACLEN_MASK) == 0);
6436
6437 if ((m0->m_pkthdr.csum_flags &
6438 (M_CSUM_TSOv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_IPv4)) != 0) {
6439 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
6440 } else {
6441 iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
6442 }
6443 vl_len |= (iphl << NQTXC_VLLEN_IPLEN_SHIFT);
6444 KASSERT((iphl & ~NQTXC_VLLEN_IPLEN_MASK) == 0);
6445
6446 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
6447 vl_len |= ((VLAN_TAG_VALUE(mtag) & NQTXC_VLLEN_VLAN_MASK)
6448 << NQTXC_VLLEN_VLAN_SHIFT);
6449 *cmdlenp |= NQTX_CMD_VLE;
6450 }
6451
6452 mssidx = 0;
6453
6454 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
6455 int hlen = offset + iphl;
6456 int tcp_hlen;
6457 bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
6458
6459 if (__predict_false(m0->m_len <
6460 (hlen + sizeof(struct tcphdr)))) {
6461 /*
6462 * TCP/IP headers are not in the first mbuf; we need
6463 * to do this the slow and painful way. Let's just
6464 * hope this doesn't happen very often.
6465 */
6466 struct tcphdr th;
6467
6468 WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
6469
6470 m_copydata(m0, hlen, sizeof(th), &th);
6471 if (v4) {
6472 struct ip ip;
6473
6474 m_copydata(m0, offset, sizeof(ip), &ip);
6475 ip.ip_len = 0;
6476 m_copyback(m0,
6477 offset + offsetof(struct ip, ip_len),
6478 sizeof(ip.ip_len), &ip.ip_len);
6479 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
6480 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
6481 } else {
6482 struct ip6_hdr ip6;
6483
6484 m_copydata(m0, offset, sizeof(ip6), &ip6);
6485 ip6.ip6_plen = 0;
6486 m_copyback(m0,
6487 offset + offsetof(struct ip6_hdr, ip6_plen),
6488 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
6489 th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
6490 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
6491 }
6492 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
6493 sizeof(th.th_sum), &th.th_sum);
6494
6495 tcp_hlen = th.th_off << 2;
6496 } else {
6497 /*
6498 * TCP/IP headers are in the first mbuf; we can do
6499 * this the easy way.
6500 */
6501 struct tcphdr *th;
6502
6503 if (v4) {
6504 struct ip *ip =
6505 (void *)(mtod(m0, char *) + offset);
6506 th = (void *)(mtod(m0, char *) + hlen);
6507
6508 ip->ip_len = 0;
6509 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
6510 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
6511 } else {
6512 struct ip6_hdr *ip6 =
6513 (void *)(mtod(m0, char *) + offset);
6514 th = (void *)(mtod(m0, char *) + hlen);
6515
6516 ip6->ip6_plen = 0;
6517 th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
6518 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
6519 }
6520 tcp_hlen = th->th_off << 2;
6521 }
6522 hlen += tcp_hlen;
6523 *cmdlenp |= NQTX_CMD_TSE;
6524
6525 if (v4) {
6526 WM_EVCNT_INCR(&sc->sc_ev_txtso);
6527 *fieldsp |= NQTXD_FIELDS_IXSM | NQTXD_FIELDS_TUXSM;
6528 } else {
6529 WM_EVCNT_INCR(&sc->sc_ev_txtso6);
6530 *fieldsp |= NQTXD_FIELDS_TUXSM;
6531 }
6532 *fieldsp |= ((m0->m_pkthdr.len - hlen) << NQTXD_FIELDS_PAYLEN_SHIFT);
6533 KASSERT(((m0->m_pkthdr.len - hlen) & ~NQTXD_FIELDS_PAYLEN_MASK) == 0);
6534 mssidx |= (m0->m_pkthdr.segsz << NQTXC_MSSIDX_MSS_SHIFT);
6535 KASSERT((m0->m_pkthdr.segsz & ~NQTXC_MSSIDX_MSS_MASK) == 0);
6536 mssidx |= (tcp_hlen << NQTXC_MSSIDX_L4LEN_SHIFT);
6537 KASSERT((tcp_hlen & ~NQTXC_MSSIDX_L4LEN_MASK) == 0);
6538 } else {
6539 *fieldsp |= (m0->m_pkthdr.len << NQTXD_FIELDS_PAYLEN_SHIFT);
6540 KASSERT((m0->m_pkthdr.len & ~NQTXD_FIELDS_PAYLEN_MASK) == 0);
6541 }
6542
6543 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
6544 *fieldsp |= NQTXD_FIELDS_IXSM;
6545 cmdc |= NQTXC_CMD_IP4;
6546 }
6547
6548 if (m0->m_pkthdr.csum_flags &
6549 (M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_TSOv4)) {
6550 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
6551 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_TSOv4)) {
6552 cmdc |= NQTXC_CMD_TCP;
6553 } else {
6554 cmdc |= NQTXC_CMD_UDP;
6555 }
6556 cmdc |= NQTXC_CMD_IP4;
6557 *fieldsp |= NQTXD_FIELDS_TUXSM;
6558 }
6559 if (m0->m_pkthdr.csum_flags &
6560 (M_CSUM_UDPv6 | M_CSUM_TCPv6 | M_CSUM_TSOv6)) {
6561 WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
6562 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv6 | M_CSUM_TSOv6)) {
6563 cmdc |= NQTXC_CMD_TCP;
6564 } else {
6565 cmdc |= NQTXC_CMD_UDP;
6566 }
6567 cmdc |= NQTXC_CMD_IP6;
6568 *fieldsp |= NQTXD_FIELDS_TUXSM;
6569 }
6570
6571 /* Fill in the context descriptor. */
6572 txq->txq_nq_descs[txq->txq_next].nqrx_ctx.nqtxc_vl_len =
6573 htole32(vl_len);
6574 txq->txq_nq_descs[txq->txq_next].nqrx_ctx.nqtxc_sn = 0;
6575 txq->txq_nq_descs[txq->txq_next].nqrx_ctx.nqtxc_cmd =
6576 htole32(cmdc);
6577 txq->txq_nq_descs[txq->txq_next].nqrx_ctx.nqtxc_mssidx =
6578 htole32(mssidx);
6579 wm_cdtxsync(txq, txq->txq_next, 1, BUS_DMASYNC_PREWRITE);
6580 DPRINTF(WM_DEBUG_TX,
6581 ("%s: TX: context desc %d 0x%08x%08x\n", device_xname(sc->sc_dev),
6582 txq->txq_next, 0, vl_len));
6583 DPRINTF(WM_DEBUG_TX, ("\t0x%08x%08x\n", mssidx, cmdc));
6584 txq->txq_next = WM_NEXTTX(txq, txq->txq_next);
6585 txs->txs_ndesc++;
6586 return 0;
6587 }
6588
6589 /*
6590 * wm_nq_start: [ifnet interface function]
6591 *
6592 * Start packet transmission on the interface for NEWQUEUE devices
6593 */
6594 static void
6595 wm_nq_start(struct ifnet *ifp)
6596 {
6597 struct wm_softc *sc = ifp->if_softc;
6598 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
6599
6600 mutex_enter(txq->txq_lock);
6601 if (!sc->sc_stopping)
6602 wm_nq_start_locked(ifp);
6603 mutex_exit(txq->txq_lock);
6604 }
6605
6606 static void
6607 wm_nq_start_locked(struct ifnet *ifp)
6608 {
6609 struct wm_softc *sc = ifp->if_softc;
6610 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
6611
6612 wm_nq_send_common_locked(ifp, txq, false);
6613 }
6614
6615 static inline int
6616 wm_nq_select_txqueue(struct ifnet *ifp, struct mbuf *m)
6617 {
6618 struct wm_softc *sc = ifp->if_softc;
6619 u_int cpuid = cpu_index(curcpu());
6620
6621 /*
6622 * Currently, simple distribute strategy.
6623 * TODO:
6624 * destribute by flowid(RSS has value).
6625 */
6626 return (cpuid + sc->sc_affinity_offset) % sc->sc_nqueues;
6627 }
6628
6629 static int
6630 wm_nq_transmit(struct ifnet *ifp, struct mbuf *m)
6631 {
6632 int qid;
6633 struct wm_softc *sc = ifp->if_softc;
6634 struct wm_txqueue *txq;
6635
6636 qid = wm_nq_select_txqueue(ifp, m);
6637 txq = &sc->sc_queue[qid].wmq_txq;
6638
6639 if (__predict_false(!pcq_put(txq->txq_interq, m))) {
6640 m_freem(m);
6641 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
6642 return ENOBUFS;
6643 }
6644
6645 if (mutex_tryenter(txq->txq_lock)) {
6646 /* XXXX should be per TX queue */
6647 ifp->if_obytes += m->m_pkthdr.len;
6648 if (m->m_flags & M_MCAST)
6649 ifp->if_omcasts++;
6650
6651 if (!sc->sc_stopping)
6652 wm_nq_transmit_locked(ifp, txq);
6653 mutex_exit(txq->txq_lock);
6654 }
6655
6656 return 0;
6657 }
6658
6659 static void
6660 wm_nq_transmit_locked(struct ifnet *ifp, struct wm_txqueue *txq)
6661 {
6662
6663 wm_nq_send_common_locked(ifp, txq, true);
6664 }
6665
6666 static void
6667 wm_nq_send_common_locked(struct ifnet *ifp, struct wm_txqueue *txq,
6668 bool is_transmit)
6669 {
6670 struct wm_softc *sc = ifp->if_softc;
6671 struct mbuf *m0;
6672 struct m_tag *mtag;
6673 struct wm_txsoft *txs;
6674 bus_dmamap_t dmamap;
6675 int error, nexttx, lasttx = -1, seg, segs_needed;
6676 bool do_csum, sent;
6677
6678 KASSERT(mutex_owned(txq->txq_lock));
6679
6680 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
6681 return;
6682 if ((txq->txq_flags & WM_TXQ_NO_SPACE) != 0)
6683 return;
6684
6685 sent = false;
6686
6687 /*
6688 * Loop through the send queue, setting up transmit descriptors
6689 * until we drain the queue, or use up all available transmit
6690 * descriptors.
6691 */
6692 for (;;) {
6693 m0 = NULL;
6694
6695 /* Get a work queue entry. */
6696 if (txq->txq_sfree < WM_TXQUEUE_GC(txq)) {
6697 wm_txeof(sc, txq);
6698 if (txq->txq_sfree == 0) {
6699 DPRINTF(WM_DEBUG_TX,
6700 ("%s: TX: no free job descriptors\n",
6701 device_xname(sc->sc_dev)));
6702 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
6703 break;
6704 }
6705 }
6706
6707 /* Grab a packet off the queue. */
6708 if (is_transmit)
6709 m0 = pcq_get(txq->txq_interq);
6710 else
6711 IFQ_DEQUEUE(&ifp->if_snd, m0);
6712 if (m0 == NULL)
6713 break;
6714
6715 DPRINTF(WM_DEBUG_TX,
6716 ("%s: TX: have packet to transmit: %p\n",
6717 device_xname(sc->sc_dev), m0));
6718
6719 txs = &txq->txq_soft[txq->txq_snext];
6720 dmamap = txs->txs_dmamap;
6721
6722 /*
6723 * Load the DMA map. If this fails, the packet either
6724 * didn't fit in the allotted number of segments, or we
6725 * were short on resources. For the too-many-segments
6726 * case, we simply report an error and drop the packet,
6727 * since we can't sanely copy a jumbo packet to a single
6728 * buffer.
6729 */
6730 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
6731 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
6732 if (error) {
6733 if (error == EFBIG) {
6734 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
6735 log(LOG_ERR, "%s: Tx packet consumes too many "
6736 "DMA segments, dropping...\n",
6737 device_xname(sc->sc_dev));
6738 wm_dump_mbuf_chain(sc, m0);
6739 m_freem(m0);
6740 continue;
6741 }
6742 /* Short on resources, just stop for now. */
6743 DPRINTF(WM_DEBUG_TX,
6744 ("%s: TX: dmamap load failed: %d\n",
6745 device_xname(sc->sc_dev), error));
6746 break;
6747 }
6748
6749 segs_needed = dmamap->dm_nsegs;
6750
6751 /*
6752 * Ensure we have enough descriptors free to describe
6753 * the packet. Note, we always reserve one descriptor
6754 * at the end of the ring due to the semantics of the
6755 * TDT register, plus one more in the event we need
6756 * to load offload context.
6757 */
6758 if (segs_needed > txq->txq_free - 2) {
6759 /*
6760 * Not enough free descriptors to transmit this
6761 * packet. We haven't committed anything yet,
6762 * so just unload the DMA map, put the packet
6763 * pack on the queue, and punt. Notify the upper
6764 * layer that there are no more slots left.
6765 */
6766 DPRINTF(WM_DEBUG_TX,
6767 ("%s: TX: need %d (%d) descriptors, have %d\n",
6768 device_xname(sc->sc_dev), dmamap->dm_nsegs,
6769 segs_needed, txq->txq_free - 1));
6770 txq->txq_flags |= WM_TXQ_NO_SPACE;
6771 bus_dmamap_unload(sc->sc_dmat, dmamap);
6772 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
6773 break;
6774 }
6775
6776 /* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */
6777
6778 DPRINTF(WM_DEBUG_TX,
6779 ("%s: TX: packet has %d (%d) DMA segments\n",
6780 device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed));
6781
6782 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
6783
6784 /*
6785 * Store a pointer to the packet so that we can free it
6786 * later.
6787 *
6788 * Initially, we consider the number of descriptors the
6789 * packet uses the number of DMA segments. This may be
6790 * incremented by 1 if we do checksum offload (a descriptor
6791 * is used to set the checksum context).
6792 */
6793 txs->txs_mbuf = m0;
6794 txs->txs_firstdesc = txq->txq_next;
6795 txs->txs_ndesc = segs_needed;
6796
6797 /* Set up offload parameters for this packet. */
6798 uint32_t cmdlen, fields, dcmdlen;
6799 if (m0->m_pkthdr.csum_flags &
6800 (M_CSUM_TSOv4 | M_CSUM_TSOv6 |
6801 M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4 |
6802 M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
6803 if (wm_nq_tx_offload(sc, txq, txs, &cmdlen, &fields,
6804 &do_csum) != 0) {
6805 /* Error message already displayed. */
6806 bus_dmamap_unload(sc->sc_dmat, dmamap);
6807 continue;
6808 }
6809 } else {
6810 do_csum = false;
6811 cmdlen = 0;
6812 fields = 0;
6813 }
6814
6815 /* Sync the DMA map. */
6816 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
6817 BUS_DMASYNC_PREWRITE);
6818
6819 /* Initialize the first transmit descriptor. */
6820 nexttx = txq->txq_next;
6821 if (!do_csum) {
6822 /* setup a legacy descriptor */
6823 wm_set_dma_addr(&txq->txq_descs[nexttx].wtx_addr,
6824 dmamap->dm_segs[0].ds_addr);
6825 txq->txq_descs[nexttx].wtx_cmdlen =
6826 htole32(WTX_CMD_IFCS | dmamap->dm_segs[0].ds_len);
6827 txq->txq_descs[nexttx].wtx_fields.wtxu_status = 0;
6828 txq->txq_descs[nexttx].wtx_fields.wtxu_options = 0;
6829 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) !=
6830 NULL) {
6831 txq->txq_descs[nexttx].wtx_cmdlen |=
6832 htole32(WTX_CMD_VLE);
6833 txq->txq_descs[nexttx].wtx_fields.wtxu_vlan =
6834 htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
6835 } else {
6836 txq->txq_descs[nexttx].wtx_fields.wtxu_vlan =0;
6837 }
6838 dcmdlen = 0;
6839 } else {
6840 /* setup an advanced data descriptor */
6841 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_addr =
6842 htole64(dmamap->dm_segs[0].ds_addr);
6843 KASSERT((dmamap->dm_segs[0].ds_len & cmdlen) == 0);
6844 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_cmdlen =
6845 htole32(dmamap->dm_segs[0].ds_len | cmdlen );
6846 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_fields =
6847 htole32(fields);
6848 DPRINTF(WM_DEBUG_TX,
6849 ("%s: TX: adv data desc %d 0x%" PRIx64 "\n",
6850 device_xname(sc->sc_dev), nexttx,
6851 (uint64_t)dmamap->dm_segs[0].ds_addr));
6852 DPRINTF(WM_DEBUG_TX,
6853 ("\t 0x%08x%08x\n", fields,
6854 (uint32_t)dmamap->dm_segs[0].ds_len | cmdlen));
6855 dcmdlen = NQTX_DTYP_D | NQTX_CMD_DEXT;
6856 }
6857
6858 lasttx = nexttx;
6859 nexttx = WM_NEXTTX(txq, nexttx);
6860 /*
6861 * fill in the next descriptors. legacy or adcanced format
6862 * is the same here
6863 */
6864 for (seg = 1; seg < dmamap->dm_nsegs;
6865 seg++, nexttx = WM_NEXTTX(txq, nexttx)) {
6866 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_addr =
6867 htole64(dmamap->dm_segs[seg].ds_addr);
6868 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_cmdlen =
6869 htole32(dcmdlen | dmamap->dm_segs[seg].ds_len);
6870 KASSERT((dcmdlen & dmamap->dm_segs[seg].ds_len) == 0);
6871 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_fields = 0;
6872 lasttx = nexttx;
6873
6874 DPRINTF(WM_DEBUG_TX,
6875 ("%s: TX: desc %d: %#" PRIx64 ", "
6876 "len %#04zx\n",
6877 device_xname(sc->sc_dev), nexttx,
6878 (uint64_t)dmamap->dm_segs[seg].ds_addr,
6879 dmamap->dm_segs[seg].ds_len));
6880 }
6881
6882 KASSERT(lasttx != -1);
6883
6884 /*
6885 * Set up the command byte on the last descriptor of
6886 * the packet. If we're in the interrupt delay window,
6887 * delay the interrupt.
6888 */
6889 KASSERT((WTX_CMD_EOP | WTX_CMD_RS) ==
6890 (NQTX_CMD_EOP | NQTX_CMD_RS));
6891 txq->txq_descs[lasttx].wtx_cmdlen |=
6892 htole32(WTX_CMD_EOP | WTX_CMD_RS);
6893
6894 txs->txs_lastdesc = lasttx;
6895
6896 DPRINTF(WM_DEBUG_TX, ("%s: TX: desc %d: cmdlen 0x%08x\n",
6897 device_xname(sc->sc_dev),
6898 lasttx, le32toh(txq->txq_descs[lasttx].wtx_cmdlen)));
6899
6900 /* Sync the descriptors we're using. */
6901 wm_cdtxsync(txq, txq->txq_next, txs->txs_ndesc,
6902 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6903
6904 /* Give the packet to the chip. */
6905 CSR_WRITE(sc, txq->txq_tdt_reg, nexttx);
6906 sent = true;
6907
6908 DPRINTF(WM_DEBUG_TX,
6909 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
6910
6911 DPRINTF(WM_DEBUG_TX,
6912 ("%s: TX: finished transmitting packet, job %d\n",
6913 device_xname(sc->sc_dev), txq->txq_snext));
6914
6915 /* Advance the tx pointer. */
6916 txq->txq_free -= txs->txs_ndesc;
6917 txq->txq_next = nexttx;
6918
6919 txq->txq_sfree--;
6920 txq->txq_snext = WM_NEXTTXS(txq, txq->txq_snext);
6921
6922 /* Pass the packet to any BPF listeners. */
6923 bpf_mtap(ifp, m0);
6924 }
6925
6926 if (m0 != NULL) {
6927 txq->txq_flags |= WM_TXQ_NO_SPACE;
6928 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
6929 DPRINTF(WM_DEBUG_TX, ("%s: TX: error after IFQ_DEQUEUE\n",
6930 __func__));
6931 m_freem(m0);
6932 }
6933
6934 if (txq->txq_sfree == 0 || txq->txq_free <= 2) {
6935 /* No more slots; notify upper layer. */
6936 txq->txq_flags |= WM_TXQ_NO_SPACE;
6937 }
6938
6939 if (sent) {
6940 /* Set a watchdog timer in case the chip flakes out. */
6941 ifp->if_timer = 5;
6942 }
6943 }
6944
6945 /* Interrupt */
6946
6947 /*
6948 * wm_txeof:
6949 *
6950 * Helper; handle transmit interrupts.
6951 */
6952 static int
6953 wm_txeof(struct wm_softc *sc, struct wm_txqueue *txq)
6954 {
6955 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
6956 struct wm_txsoft *txs;
6957 bool processed = false;
6958 int count = 0;
6959 int i;
6960 uint8_t status;
6961
6962 KASSERT(mutex_owned(txq->txq_lock));
6963
6964 if (sc->sc_stopping)
6965 return 0;
6966
6967 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
6968 txq->txq_flags &= ~WM_TXQ_NO_SPACE;
6969 else
6970 ifp->if_flags &= ~IFF_OACTIVE;
6971
6972 /*
6973 * Go through the Tx list and free mbufs for those
6974 * frames which have been transmitted.
6975 */
6976 for (i = txq->txq_sdirty; txq->txq_sfree != WM_TXQUEUELEN(txq);
6977 i = WM_NEXTTXS(txq, i), txq->txq_sfree++) {
6978 txs = &txq->txq_soft[i];
6979
6980 DPRINTF(WM_DEBUG_TX, ("%s: TX: checking job %d\n",
6981 device_xname(sc->sc_dev), i));
6982
6983 wm_cdtxsync(txq, txs->txs_firstdesc, txs->txs_ndesc,
6984 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6985
6986 status =
6987 txq->txq_descs[txs->txs_lastdesc].wtx_fields.wtxu_status;
6988 if ((status & WTX_ST_DD) == 0) {
6989 wm_cdtxsync(txq, txs->txs_lastdesc, 1,
6990 BUS_DMASYNC_PREREAD);
6991 break;
6992 }
6993
6994 processed = true;
6995 count++;
6996 DPRINTF(WM_DEBUG_TX,
6997 ("%s: TX: job %d done: descs %d..%d\n",
6998 device_xname(sc->sc_dev), i, txs->txs_firstdesc,
6999 txs->txs_lastdesc));
7000
7001 /*
7002 * XXX We should probably be using the statistics
7003 * XXX registers, but I don't know if they exist
7004 * XXX on chips before the i82544.
7005 */
7006
7007 #ifdef WM_EVENT_COUNTERS
7008 if (status & WTX_ST_TU)
7009 WM_EVCNT_INCR(&sc->sc_ev_tu);
7010 #endif /* WM_EVENT_COUNTERS */
7011
7012 if (status & (WTX_ST_EC | WTX_ST_LC)) {
7013 ifp->if_oerrors++;
7014 if (status & WTX_ST_LC)
7015 log(LOG_WARNING, "%s: late collision\n",
7016 device_xname(sc->sc_dev));
7017 else if (status & WTX_ST_EC) {
7018 ifp->if_collisions += 16;
7019 log(LOG_WARNING, "%s: excessive collisions\n",
7020 device_xname(sc->sc_dev));
7021 }
7022 } else
7023 ifp->if_opackets++;
7024
7025 txq->txq_free += txs->txs_ndesc;
7026 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
7027 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
7028 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
7029 m_freem(txs->txs_mbuf);
7030 txs->txs_mbuf = NULL;
7031 }
7032
7033 /* Update the dirty transmit buffer pointer. */
7034 txq->txq_sdirty = i;
7035 DPRINTF(WM_DEBUG_TX,
7036 ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
7037
7038 if (count != 0)
7039 rnd_add_uint32(&sc->rnd_source, count);
7040
7041 /*
7042 * If there are no more pending transmissions, cancel the watchdog
7043 * timer.
7044 */
7045 if (txq->txq_sfree == WM_TXQUEUELEN(txq))
7046 ifp->if_timer = 0;
7047
7048 return processed;
7049 }
7050
7051 /*
7052 * wm_rxeof:
7053 *
7054 * Helper; handle receive interrupts.
7055 */
7056 static void
7057 wm_rxeof(struct wm_rxqueue *rxq)
7058 {
7059 struct wm_softc *sc = rxq->rxq_sc;
7060 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
7061 struct wm_rxsoft *rxs;
7062 struct mbuf *m;
7063 int i, len;
7064 int count = 0;
7065 uint8_t status, errors;
7066 uint16_t vlantag;
7067
7068 KASSERT(mutex_owned(rxq->rxq_lock));
7069
7070 for (i = rxq->rxq_ptr;; i = WM_NEXTRX(i)) {
7071 rxs = &rxq->rxq_soft[i];
7072
7073 DPRINTF(WM_DEBUG_RX,
7074 ("%s: RX: checking descriptor %d\n",
7075 device_xname(sc->sc_dev), i));
7076
7077 wm_cdrxsync(rxq, i,BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
7078
7079 status = rxq->rxq_descs[i].wrx_status;
7080 errors = rxq->rxq_descs[i].wrx_errors;
7081 len = le16toh(rxq->rxq_descs[i].wrx_len);
7082 vlantag = rxq->rxq_descs[i].wrx_special;
7083
7084 if ((status & WRX_ST_DD) == 0) {
7085 /* We have processed all of the receive descriptors. */
7086 wm_cdrxsync(rxq, i, BUS_DMASYNC_PREREAD);
7087 break;
7088 }
7089
7090 count++;
7091 if (__predict_false(rxq->rxq_discard)) {
7092 DPRINTF(WM_DEBUG_RX,
7093 ("%s: RX: discarding contents of descriptor %d\n",
7094 device_xname(sc->sc_dev), i));
7095 wm_init_rxdesc(rxq, i);
7096 if (status & WRX_ST_EOP) {
7097 /* Reset our state. */
7098 DPRINTF(WM_DEBUG_RX,
7099 ("%s: RX: resetting rxdiscard -> 0\n",
7100 device_xname(sc->sc_dev)));
7101 rxq->rxq_discard = 0;
7102 }
7103 continue;
7104 }
7105
7106 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
7107 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
7108
7109 m = rxs->rxs_mbuf;
7110
7111 /*
7112 * Add a new receive buffer to the ring, unless of
7113 * course the length is zero. Treat the latter as a
7114 * failed mapping.
7115 */
7116 if ((len == 0) || (wm_add_rxbuf(rxq, i) != 0)) {
7117 /*
7118 * Failed, throw away what we've done so
7119 * far, and discard the rest of the packet.
7120 */
7121 ifp->if_ierrors++;
7122 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
7123 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
7124 wm_init_rxdesc(rxq, i);
7125 if ((status & WRX_ST_EOP) == 0)
7126 rxq->rxq_discard = 1;
7127 if (rxq->rxq_head != NULL)
7128 m_freem(rxq->rxq_head);
7129 WM_RXCHAIN_RESET(rxq);
7130 DPRINTF(WM_DEBUG_RX,
7131 ("%s: RX: Rx buffer allocation failed, "
7132 "dropping packet%s\n", device_xname(sc->sc_dev),
7133 rxq->rxq_discard ? " (discard)" : ""));
7134 continue;
7135 }
7136
7137 m->m_len = len;
7138 rxq->rxq_len += len;
7139 DPRINTF(WM_DEBUG_RX,
7140 ("%s: RX: buffer at %p len %d\n",
7141 device_xname(sc->sc_dev), m->m_data, len));
7142
7143 /* If this is not the end of the packet, keep looking. */
7144 if ((status & WRX_ST_EOP) == 0) {
7145 WM_RXCHAIN_LINK(rxq, m);
7146 DPRINTF(WM_DEBUG_RX,
7147 ("%s: RX: not yet EOP, rxlen -> %d\n",
7148 device_xname(sc->sc_dev), rxq->rxq_len));
7149 continue;
7150 }
7151
7152 /*
7153 * Okay, we have the entire packet now. The chip is
7154 * configured to include the FCS except I350 and I21[01]
7155 * (not all chips can be configured to strip it),
7156 * so we need to trim it.
7157 * May need to adjust length of previous mbuf in the
7158 * chain if the current mbuf is too short.
7159 * For an eratta, the RCTL_SECRC bit in RCTL register
7160 * is always set in I350, so we don't trim it.
7161 */
7162 if ((sc->sc_type != WM_T_I350) && (sc->sc_type != WM_T_I354)
7163 && (sc->sc_type != WM_T_I210)
7164 && (sc->sc_type != WM_T_I211)) {
7165 if (m->m_len < ETHER_CRC_LEN) {
7166 rxq->rxq_tail->m_len
7167 -= (ETHER_CRC_LEN - m->m_len);
7168 m->m_len = 0;
7169 } else
7170 m->m_len -= ETHER_CRC_LEN;
7171 len = rxq->rxq_len - ETHER_CRC_LEN;
7172 } else
7173 len = rxq->rxq_len;
7174
7175 WM_RXCHAIN_LINK(rxq, m);
7176
7177 *rxq->rxq_tailp = NULL;
7178 m = rxq->rxq_head;
7179
7180 WM_RXCHAIN_RESET(rxq);
7181
7182 DPRINTF(WM_DEBUG_RX,
7183 ("%s: RX: have entire packet, len -> %d\n",
7184 device_xname(sc->sc_dev), len));
7185
7186 /* If an error occurred, update stats and drop the packet. */
7187 if (errors &
7188 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
7189 if (errors & WRX_ER_SE)
7190 log(LOG_WARNING, "%s: symbol error\n",
7191 device_xname(sc->sc_dev));
7192 else if (errors & WRX_ER_SEQ)
7193 log(LOG_WARNING, "%s: receive sequence error\n",
7194 device_xname(sc->sc_dev));
7195 else if (errors & WRX_ER_CE)
7196 log(LOG_WARNING, "%s: CRC error\n",
7197 device_xname(sc->sc_dev));
7198 m_freem(m);
7199 continue;
7200 }
7201
7202 /* No errors. Receive the packet. */
7203 m_set_rcvif(m, ifp);
7204 m->m_pkthdr.len = len;
7205
7206 /*
7207 * If VLANs are enabled, VLAN packets have been unwrapped
7208 * for us. Associate the tag with the packet.
7209 */
7210 /* XXXX should check for i350 and i354 */
7211 if ((status & WRX_ST_VP) != 0) {
7212 VLAN_INPUT_TAG(ifp, m, le16toh(vlantag), continue);
7213 }
7214
7215 /* Set up checksum info for this packet. */
7216 if ((status & WRX_ST_IXSM) == 0) {
7217 if (status & WRX_ST_IPCS) {
7218 WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
7219 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
7220 if (errors & WRX_ER_IPE)
7221 m->m_pkthdr.csum_flags |=
7222 M_CSUM_IPv4_BAD;
7223 }
7224 if (status & WRX_ST_TCPCS) {
7225 /*
7226 * Note: we don't know if this was TCP or UDP,
7227 * so we just set both bits, and expect the
7228 * upper layers to deal.
7229 */
7230 WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
7231 m->m_pkthdr.csum_flags |=
7232 M_CSUM_TCPv4 | M_CSUM_UDPv4 |
7233 M_CSUM_TCPv6 | M_CSUM_UDPv6;
7234 if (errors & WRX_ER_TCPE)
7235 m->m_pkthdr.csum_flags |=
7236 M_CSUM_TCP_UDP_BAD;
7237 }
7238 }
7239
7240 ifp->if_ipackets++;
7241
7242 mutex_exit(rxq->rxq_lock);
7243
7244 /* Pass this up to any BPF listeners. */
7245 bpf_mtap(ifp, m);
7246
7247 /* Pass it on. */
7248 if_percpuq_enqueue(sc->sc_ipq, m);
7249
7250 mutex_enter(rxq->rxq_lock);
7251
7252 if (sc->sc_stopping)
7253 break;
7254 }
7255
7256 /* Update the receive pointer. */
7257 rxq->rxq_ptr = i;
7258 if (count != 0)
7259 rnd_add_uint32(&sc->rnd_source, count);
7260
7261 DPRINTF(WM_DEBUG_RX,
7262 ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
7263 }
7264
7265 /*
7266 * wm_linkintr_gmii:
7267 *
7268 * Helper; handle link interrupts for GMII.
7269 */
7270 static void
7271 wm_linkintr_gmii(struct wm_softc *sc, uint32_t icr)
7272 {
7273
7274 KASSERT(WM_CORE_LOCKED(sc));
7275
7276 DPRINTF(WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
7277 __func__));
7278
7279 if (icr & ICR_LSC) {
7280 uint32_t status = CSR_READ(sc, WMREG_STATUS);
7281
7282 if ((sc->sc_type == WM_T_ICH8) && ((status & STATUS_LU) == 0))
7283 wm_gig_downshift_workaround_ich8lan(sc);
7284
7285 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> mii_pollstat\n",
7286 device_xname(sc->sc_dev)));
7287 mii_pollstat(&sc->sc_mii);
7288 if (sc->sc_type == WM_T_82543) {
7289 int miistatus, active;
7290
7291 /*
7292 * With 82543, we need to force speed and
7293 * duplex on the MAC equal to what the PHY
7294 * speed and duplex configuration is.
7295 */
7296 miistatus = sc->sc_mii.mii_media_status;
7297
7298 if (miistatus & IFM_ACTIVE) {
7299 active = sc->sc_mii.mii_media_active;
7300 sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
7301 switch (IFM_SUBTYPE(active)) {
7302 case IFM_10_T:
7303 sc->sc_ctrl |= CTRL_SPEED_10;
7304 break;
7305 case IFM_100_TX:
7306 sc->sc_ctrl |= CTRL_SPEED_100;
7307 break;
7308 case IFM_1000_T:
7309 sc->sc_ctrl |= CTRL_SPEED_1000;
7310 break;
7311 default:
7312 /*
7313 * fiber?
7314 * Shoud not enter here.
7315 */
7316 printf("unknown media (%x)\n", active);
7317 break;
7318 }
7319 if (active & IFM_FDX)
7320 sc->sc_ctrl |= CTRL_FD;
7321 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
7322 }
7323 } else if ((sc->sc_type == WM_T_ICH8)
7324 && (sc->sc_phytype == WMPHY_IGP_3)) {
7325 wm_kmrn_lock_loss_workaround_ich8lan(sc);
7326 } else if (sc->sc_type == WM_T_PCH) {
7327 wm_k1_gig_workaround_hv(sc,
7328 ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0));
7329 }
7330
7331 if ((sc->sc_phytype == WMPHY_82578)
7332 && (IFM_SUBTYPE(sc->sc_mii.mii_media_active)
7333 == IFM_1000_T)) {
7334
7335 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0) {
7336 delay(200*1000); /* XXX too big */
7337
7338 /* Link stall fix for link up */
7339 wm_gmii_hv_writereg(sc->sc_dev, 1,
7340 HV_MUX_DATA_CTRL,
7341 HV_MUX_DATA_CTRL_GEN_TO_MAC
7342 | HV_MUX_DATA_CTRL_FORCE_SPEED);
7343 wm_gmii_hv_writereg(sc->sc_dev, 1,
7344 HV_MUX_DATA_CTRL,
7345 HV_MUX_DATA_CTRL_GEN_TO_MAC);
7346 }
7347 }
7348 } else if (icr & ICR_RXSEQ) {
7349 DPRINTF(WM_DEBUG_LINK, ("%s: LINK Receive sequence error\n",
7350 device_xname(sc->sc_dev)));
7351 }
7352 }
7353
7354 /*
7355 * wm_linkintr_tbi:
7356 *
7357 * Helper; handle link interrupts for TBI mode.
7358 */
7359 static void
7360 wm_linkintr_tbi(struct wm_softc *sc, uint32_t icr)
7361 {
7362 uint32_t status;
7363
7364 DPRINTF(WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
7365 __func__));
7366
7367 status = CSR_READ(sc, WMREG_STATUS);
7368 if (icr & ICR_LSC) {
7369 if (status & STATUS_LU) {
7370 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
7371 device_xname(sc->sc_dev),
7372 (status & STATUS_FD) ? "FDX" : "HDX"));
7373 /*
7374 * NOTE: CTRL will update TFCE and RFCE automatically,
7375 * so we should update sc->sc_ctrl
7376 */
7377
7378 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
7379 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
7380 sc->sc_fcrtl &= ~FCRTL_XONE;
7381 if (status & STATUS_FD)
7382 sc->sc_tctl |=
7383 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
7384 else
7385 sc->sc_tctl |=
7386 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
7387 if (sc->sc_ctrl & CTRL_TFCE)
7388 sc->sc_fcrtl |= FCRTL_XONE;
7389 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
7390 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
7391 WMREG_OLD_FCRTL : WMREG_FCRTL,
7392 sc->sc_fcrtl);
7393 sc->sc_tbi_linkup = 1;
7394 } else {
7395 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
7396 device_xname(sc->sc_dev)));
7397 sc->sc_tbi_linkup = 0;
7398 }
7399 /* Update LED */
7400 wm_tbi_serdes_set_linkled(sc);
7401 } else if (icr & ICR_RXSEQ) {
7402 DPRINTF(WM_DEBUG_LINK,
7403 ("%s: LINK: Receive sequence error\n",
7404 device_xname(sc->sc_dev)));
7405 }
7406 }
7407
7408 /*
7409 * wm_linkintr_serdes:
7410 *
7411 * Helper; handle link interrupts for TBI mode.
7412 */
7413 static void
7414 wm_linkintr_serdes(struct wm_softc *sc, uint32_t icr)
7415 {
7416 struct mii_data *mii = &sc->sc_mii;
7417 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
7418 uint32_t pcs_adv, pcs_lpab, reg;
7419
7420 DPRINTF(WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
7421 __func__));
7422
7423 if (icr & ICR_LSC) {
7424 /* Check PCS */
7425 reg = CSR_READ(sc, WMREG_PCS_LSTS);
7426 if ((reg & PCS_LSTS_LINKOK) != 0) {
7427 mii->mii_media_status |= IFM_ACTIVE;
7428 sc->sc_tbi_linkup = 1;
7429 } else {
7430 mii->mii_media_status |= IFM_NONE;
7431 sc->sc_tbi_linkup = 0;
7432 wm_tbi_serdes_set_linkled(sc);
7433 return;
7434 }
7435 mii->mii_media_active |= IFM_1000_SX;
7436 if ((reg & PCS_LSTS_FDX) != 0)
7437 mii->mii_media_active |= IFM_FDX;
7438 else
7439 mii->mii_media_active |= IFM_HDX;
7440 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
7441 /* Check flow */
7442 reg = CSR_READ(sc, WMREG_PCS_LSTS);
7443 if ((reg & PCS_LSTS_AN_COMP) == 0) {
7444 DPRINTF(WM_DEBUG_LINK,
7445 ("XXX LINKOK but not ACOMP\n"));
7446 return;
7447 }
7448 pcs_adv = CSR_READ(sc, WMREG_PCS_ANADV);
7449 pcs_lpab = CSR_READ(sc, WMREG_PCS_LPAB);
7450 DPRINTF(WM_DEBUG_LINK,
7451 ("XXX AN result %08x, %08x\n", pcs_adv, pcs_lpab));
7452 if ((pcs_adv & TXCW_SYM_PAUSE)
7453 && (pcs_lpab & TXCW_SYM_PAUSE)) {
7454 mii->mii_media_active |= IFM_FLOW
7455 | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
7456 } else if (((pcs_adv & TXCW_SYM_PAUSE) == 0)
7457 && (pcs_adv & TXCW_ASYM_PAUSE)
7458 && (pcs_lpab & TXCW_SYM_PAUSE)
7459 && (pcs_lpab & TXCW_ASYM_PAUSE))
7460 mii->mii_media_active |= IFM_FLOW
7461 | IFM_ETH_TXPAUSE;
7462 else if ((pcs_adv & TXCW_SYM_PAUSE)
7463 && (pcs_adv & TXCW_ASYM_PAUSE)
7464 && ((pcs_lpab & TXCW_SYM_PAUSE) == 0)
7465 && (pcs_lpab & TXCW_ASYM_PAUSE))
7466 mii->mii_media_active |= IFM_FLOW
7467 | IFM_ETH_RXPAUSE;
7468 }
7469 /* Update LED */
7470 wm_tbi_serdes_set_linkled(sc);
7471 } else {
7472 DPRINTF(WM_DEBUG_LINK,
7473 ("%s: LINK: Receive sequence error\n",
7474 device_xname(sc->sc_dev)));
7475 }
7476 }
7477
7478 /*
7479 * wm_linkintr:
7480 *
7481 * Helper; handle link interrupts.
7482 */
7483 static void
7484 wm_linkintr(struct wm_softc *sc, uint32_t icr)
7485 {
7486
7487 KASSERT(WM_CORE_LOCKED(sc));
7488
7489 if (sc->sc_flags & WM_F_HAS_MII)
7490 wm_linkintr_gmii(sc, icr);
7491 else if ((sc->sc_mediatype == WM_MEDIATYPE_SERDES)
7492 && (sc->sc_type >= WM_T_82575))
7493 wm_linkintr_serdes(sc, icr);
7494 else
7495 wm_linkintr_tbi(sc, icr);
7496 }
7497
7498 /*
7499 * wm_intr_legacy:
7500 *
7501 * Interrupt service routine for INTx and MSI.
7502 */
7503 static int
7504 wm_intr_legacy(void *arg)
7505 {
7506 struct wm_softc *sc = arg;
7507 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
7508 struct wm_rxqueue *rxq = &sc->sc_queue[0].wmq_rxq;
7509 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
7510 uint32_t icr, rndval = 0;
7511 int handled = 0;
7512
7513 DPRINTF(WM_DEBUG_TX,
7514 ("%s: INTx: got intr\n", device_xname(sc->sc_dev)));
7515 while (1 /* CONSTCOND */) {
7516 icr = CSR_READ(sc, WMREG_ICR);
7517 if ((icr & sc->sc_icr) == 0)
7518 break;
7519 if (rndval == 0)
7520 rndval = icr;
7521
7522 mutex_enter(rxq->rxq_lock);
7523
7524 if (sc->sc_stopping) {
7525 mutex_exit(rxq->rxq_lock);
7526 break;
7527 }
7528
7529 handled = 1;
7530
7531 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
7532 if (icr & (ICR_RXDMT0 | ICR_RXT0)) {
7533 DPRINTF(WM_DEBUG_RX,
7534 ("%s: RX: got Rx intr 0x%08x\n",
7535 device_xname(sc->sc_dev),
7536 icr & (ICR_RXDMT0 | ICR_RXT0)));
7537 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
7538 }
7539 #endif
7540 wm_rxeof(rxq);
7541
7542 mutex_exit(rxq->rxq_lock);
7543 mutex_enter(txq->txq_lock);
7544
7545 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
7546 if (icr & ICR_TXDW) {
7547 DPRINTF(WM_DEBUG_TX,
7548 ("%s: TX: got TXDW interrupt\n",
7549 device_xname(sc->sc_dev)));
7550 WM_EVCNT_INCR(&sc->sc_ev_txdw);
7551 }
7552 #endif
7553 wm_txeof(sc, txq);
7554
7555 mutex_exit(txq->txq_lock);
7556 WM_CORE_LOCK(sc);
7557
7558 if (icr & (ICR_LSC | ICR_RXSEQ)) {
7559 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
7560 wm_linkintr(sc, icr);
7561 }
7562
7563 WM_CORE_UNLOCK(sc);
7564
7565 if (icr & ICR_RXO) {
7566 #if defined(WM_DEBUG)
7567 log(LOG_WARNING, "%s: Receive overrun\n",
7568 device_xname(sc->sc_dev));
7569 #endif /* defined(WM_DEBUG) */
7570 }
7571 }
7572
7573 rnd_add_uint32(&sc->rnd_source, rndval);
7574
7575 if (handled) {
7576 /* Try to get more packets going. */
7577 ifp->if_start(ifp);
7578 }
7579
7580 return handled;
7581 }
7582
7583 static int
7584 wm_txrxintr_msix(void *arg)
7585 {
7586 struct wm_queue *wmq = arg;
7587 struct wm_txqueue *txq = &wmq->wmq_txq;
7588 struct wm_rxqueue *rxq = &wmq->wmq_rxq;
7589 struct wm_softc *sc = txq->txq_sc;
7590 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
7591
7592 KASSERT(wmq->wmq_intr_idx == wmq->wmq_id);
7593
7594 DPRINTF(WM_DEBUG_TX,
7595 ("%s: TX: got Tx intr\n", device_xname(sc->sc_dev)));
7596
7597 if (sc->sc_type == WM_T_82574)
7598 CSR_WRITE(sc, WMREG_IMC, ICR_TXQ(wmq->wmq_id) | ICR_RXQ(wmq->wmq_id));
7599 else if (sc->sc_type == WM_T_82575)
7600 CSR_WRITE(sc, WMREG_EIMC, EITR_TX_QUEUE(wmq->wmq_id) | EITR_RX_QUEUE(wmq->wmq_id));
7601 else
7602 CSR_WRITE(sc, WMREG_EIMC, 1 << wmq->wmq_intr_idx);
7603
7604 if (!sc->sc_stopping) {
7605 mutex_enter(txq->txq_lock);
7606
7607 WM_EVCNT_INCR(&sc->sc_ev_txdw);
7608 wm_txeof(sc, txq);
7609
7610 /* Try to get more packets going. */
7611 if (pcq_peek(txq->txq_interq) != NULL)
7612 wm_nq_transmit_locked(ifp, txq);
7613 /*
7614 * There are still some upper layer processing which call
7615 * ifp->if_start(). e.g. ALTQ
7616 */
7617 if (wmq->wmq_id == 0) {
7618 if (!IFQ_IS_EMPTY(&ifp->if_snd))
7619 wm_nq_start_locked(ifp);
7620 }
7621 mutex_exit(txq->txq_lock);
7622 }
7623
7624 DPRINTF(WM_DEBUG_RX,
7625 ("%s: RX: got Rx intr\n", device_xname(sc->sc_dev)));
7626
7627 if (!sc->sc_stopping) {
7628 mutex_enter(rxq->rxq_lock);
7629 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
7630 wm_rxeof(rxq);
7631 mutex_exit(rxq->rxq_lock);
7632 }
7633
7634 if (sc->sc_type == WM_T_82574)
7635 CSR_WRITE(sc, WMREG_IMS, ICR_TXQ(wmq->wmq_id) | ICR_RXQ(wmq->wmq_id));
7636 else if (sc->sc_type == WM_T_82575)
7637 CSR_WRITE(sc, WMREG_EIMS, EITR_TX_QUEUE(wmq->wmq_id) | EITR_RX_QUEUE(wmq->wmq_id));
7638 else
7639 CSR_WRITE(sc, WMREG_EIMS, 1 << wmq->wmq_intr_idx);
7640
7641 return 1;
7642 }
7643
7644 /*
7645 * wm_linkintr_msix:
7646 *
7647 * Interrupt service routine for link status change for MSI-X.
7648 */
7649 static int
7650 wm_linkintr_msix(void *arg)
7651 {
7652 struct wm_softc *sc = arg;
7653 uint32_t reg;
7654
7655 DPRINTF(WM_DEBUG_LINK,
7656 ("%s: LINK: got link intr\n", device_xname(sc->sc_dev)));
7657
7658 reg = CSR_READ(sc, WMREG_ICR);
7659 WM_CORE_LOCK(sc);
7660 if ((sc->sc_stopping) || ((reg & ICR_LSC) == 0))
7661 goto out;
7662
7663 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
7664 wm_linkintr(sc, ICR_LSC);
7665
7666 out:
7667 WM_CORE_UNLOCK(sc);
7668
7669 if (sc->sc_type == WM_T_82574)
7670 CSR_WRITE(sc, WMREG_IMS, ICR_OTHER | ICR_LSC);
7671 else if (sc->sc_type == WM_T_82575)
7672 CSR_WRITE(sc, WMREG_EIMS, EITR_OTHER);
7673 else
7674 CSR_WRITE(sc, WMREG_EIMS, 1 << sc->sc_link_intr_idx);
7675
7676 return 1;
7677 }
7678
7679 /*
7680 * Media related.
7681 * GMII, SGMII, TBI (and SERDES)
7682 */
7683
7684 /* Common */
7685
7686 /*
7687 * wm_tbi_serdes_set_linkled:
7688 *
7689 * Update the link LED on TBI and SERDES devices.
7690 */
7691 static void
7692 wm_tbi_serdes_set_linkled(struct wm_softc *sc)
7693 {
7694
7695 if (sc->sc_tbi_linkup)
7696 sc->sc_ctrl |= CTRL_SWDPIN(0);
7697 else
7698 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
7699
7700 /* 82540 or newer devices are active low */
7701 sc->sc_ctrl ^= (sc->sc_type >= WM_T_82540) ? CTRL_SWDPIN(0) : 0;
7702
7703 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
7704 }
7705
7706 /* GMII related */
7707
7708 /*
7709 * wm_gmii_reset:
7710 *
7711 * Reset the PHY.
7712 */
7713 static void
7714 wm_gmii_reset(struct wm_softc *sc)
7715 {
7716 uint32_t reg;
7717 int rv;
7718
7719 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
7720 device_xname(sc->sc_dev), __func__));
7721 /* get phy semaphore */
7722 switch (sc->sc_type) {
7723 case WM_T_82571:
7724 case WM_T_82572:
7725 case WM_T_82573:
7726 case WM_T_82574:
7727 case WM_T_82583:
7728 /* XXX should get sw semaphore, too */
7729 rv = wm_get_swsm_semaphore(sc);
7730 break;
7731 case WM_T_82575:
7732 case WM_T_82576:
7733 case WM_T_82580:
7734 case WM_T_I350:
7735 case WM_T_I354:
7736 case WM_T_I210:
7737 case WM_T_I211:
7738 case WM_T_80003:
7739 rv = wm_get_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
7740 break;
7741 case WM_T_ICH8:
7742 case WM_T_ICH9:
7743 case WM_T_ICH10:
7744 case WM_T_PCH:
7745 case WM_T_PCH2:
7746 case WM_T_PCH_LPT:
7747 case WM_T_PCH_SPT:
7748 rv = wm_get_swfwhw_semaphore(sc);
7749 break;
7750 default:
7751 /* nothing to do*/
7752 rv = 0;
7753 break;
7754 }
7755 if (rv != 0) {
7756 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
7757 __func__);
7758 return;
7759 }
7760
7761 switch (sc->sc_type) {
7762 case WM_T_82542_2_0:
7763 case WM_T_82542_2_1:
7764 /* null */
7765 break;
7766 case WM_T_82543:
7767 /*
7768 * With 82543, we need to force speed and duplex on the MAC
7769 * equal to what the PHY speed and duplex configuration is.
7770 * In addition, we need to perform a hardware reset on the PHY
7771 * to take it out of reset.
7772 */
7773 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
7774 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
7775
7776 /* The PHY reset pin is active-low. */
7777 reg = CSR_READ(sc, WMREG_CTRL_EXT);
7778 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
7779 CTRL_EXT_SWDPIN(4));
7780 reg |= CTRL_EXT_SWDPIO(4);
7781
7782 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
7783 CSR_WRITE_FLUSH(sc);
7784 delay(10*1000);
7785
7786 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
7787 CSR_WRITE_FLUSH(sc);
7788 delay(150);
7789 #if 0
7790 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
7791 #endif
7792 delay(20*1000); /* XXX extra delay to get PHY ID? */
7793 break;
7794 case WM_T_82544: /* reset 10000us */
7795 case WM_T_82540:
7796 case WM_T_82545:
7797 case WM_T_82545_3:
7798 case WM_T_82546:
7799 case WM_T_82546_3:
7800 case WM_T_82541:
7801 case WM_T_82541_2:
7802 case WM_T_82547:
7803 case WM_T_82547_2:
7804 case WM_T_82571: /* reset 100us */
7805 case WM_T_82572:
7806 case WM_T_82573:
7807 case WM_T_82574:
7808 case WM_T_82575:
7809 case WM_T_82576:
7810 case WM_T_82580:
7811 case WM_T_I350:
7812 case WM_T_I354:
7813 case WM_T_I210:
7814 case WM_T_I211:
7815 case WM_T_82583:
7816 case WM_T_80003:
7817 /* generic reset */
7818 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
7819 CSR_WRITE_FLUSH(sc);
7820 delay(20000);
7821 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
7822 CSR_WRITE_FLUSH(sc);
7823 delay(20000);
7824
7825 if ((sc->sc_type == WM_T_82541)
7826 || (sc->sc_type == WM_T_82541_2)
7827 || (sc->sc_type == WM_T_82547)
7828 || (sc->sc_type == WM_T_82547_2)) {
7829 /* workaround for igp are done in igp_reset() */
7830 /* XXX add code to set LED after phy reset */
7831 }
7832 break;
7833 case WM_T_ICH8:
7834 case WM_T_ICH9:
7835 case WM_T_ICH10:
7836 case WM_T_PCH:
7837 case WM_T_PCH2:
7838 case WM_T_PCH_LPT:
7839 case WM_T_PCH_SPT:
7840 /* generic reset */
7841 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
7842 CSR_WRITE_FLUSH(sc);
7843 delay(100);
7844 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
7845 CSR_WRITE_FLUSH(sc);
7846 delay(150);
7847 break;
7848 default:
7849 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
7850 __func__);
7851 break;
7852 }
7853
7854 /* release PHY semaphore */
7855 switch (sc->sc_type) {
7856 case WM_T_82571:
7857 case WM_T_82572:
7858 case WM_T_82573:
7859 case WM_T_82574:
7860 case WM_T_82583:
7861 /* XXX should put sw semaphore, too */
7862 wm_put_swsm_semaphore(sc);
7863 break;
7864 case WM_T_82575:
7865 case WM_T_82576:
7866 case WM_T_82580:
7867 case WM_T_I350:
7868 case WM_T_I354:
7869 case WM_T_I210:
7870 case WM_T_I211:
7871 case WM_T_80003:
7872 wm_put_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
7873 break;
7874 case WM_T_ICH8:
7875 case WM_T_ICH9:
7876 case WM_T_ICH10:
7877 case WM_T_PCH:
7878 case WM_T_PCH2:
7879 case WM_T_PCH_LPT:
7880 case WM_T_PCH_SPT:
7881 wm_put_swfwhw_semaphore(sc);
7882 break;
7883 default:
7884 /* nothing to do */
7885 rv = 0;
7886 break;
7887 }
7888
7889 /* get_cfg_done */
7890 wm_get_cfg_done(sc);
7891
7892 /* extra setup */
7893 switch (sc->sc_type) {
7894 case WM_T_82542_2_0:
7895 case WM_T_82542_2_1:
7896 case WM_T_82543:
7897 case WM_T_82544:
7898 case WM_T_82540:
7899 case WM_T_82545:
7900 case WM_T_82545_3:
7901 case WM_T_82546:
7902 case WM_T_82546_3:
7903 case WM_T_82541_2:
7904 case WM_T_82547_2:
7905 case WM_T_82571:
7906 case WM_T_82572:
7907 case WM_T_82573:
7908 case WM_T_82575:
7909 case WM_T_82576:
7910 case WM_T_82580:
7911 case WM_T_I350:
7912 case WM_T_I354:
7913 case WM_T_I210:
7914 case WM_T_I211:
7915 case WM_T_80003:
7916 /* null */
7917 break;
7918 case WM_T_82574:
7919 case WM_T_82583:
7920 wm_lplu_d0_disable(sc);
7921 break;
7922 case WM_T_82541:
7923 case WM_T_82547:
7924 /* XXX Configure actively LED after PHY reset */
7925 break;
7926 case WM_T_ICH8:
7927 case WM_T_ICH9:
7928 case WM_T_ICH10:
7929 case WM_T_PCH:
7930 case WM_T_PCH2:
7931 case WM_T_PCH_LPT:
7932 case WM_T_PCH_SPT:
7933 /* Allow time for h/w to get to a quiescent state afer reset */
7934 delay(10*1000);
7935
7936 if (sc->sc_type == WM_T_PCH)
7937 wm_hv_phy_workaround_ich8lan(sc);
7938
7939 if (sc->sc_type == WM_T_PCH2)
7940 wm_lv_phy_workaround_ich8lan(sc);
7941
7942 if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)) {
7943 /*
7944 * dummy read to clear the phy wakeup bit after lcd
7945 * reset
7946 */
7947 reg = wm_gmii_hv_readreg(sc->sc_dev, 1, BM_WUC);
7948 }
7949
7950 /*
7951 * XXX Configure the LCD with th extended configuration region
7952 * in NVM
7953 */
7954
7955 /* Disable D0 LPLU. */
7956 if (sc->sc_type >= WM_T_PCH) /* PCH* */
7957 wm_lplu_d0_disable_pch(sc);
7958 else
7959 wm_lplu_d0_disable(sc); /* ICH* */
7960 break;
7961 default:
7962 panic("%s: unknown type\n", __func__);
7963 break;
7964 }
7965 }
7966
7967 /*
7968 * wm_get_phy_id_82575:
7969 *
7970 * Return PHY ID. Return -1 if it failed.
7971 */
7972 static int
7973 wm_get_phy_id_82575(struct wm_softc *sc)
7974 {
7975 uint32_t reg;
7976 int phyid = -1;
7977
7978 /* XXX */
7979 if ((sc->sc_flags & WM_F_SGMII) == 0)
7980 return -1;
7981
7982 if (wm_sgmii_uses_mdio(sc)) {
7983 switch (sc->sc_type) {
7984 case WM_T_82575:
7985 case WM_T_82576:
7986 reg = CSR_READ(sc, WMREG_MDIC);
7987 phyid = (reg & MDIC_PHY_MASK) >> MDIC_PHY_SHIFT;
7988 break;
7989 case WM_T_82580:
7990 case WM_T_I350:
7991 case WM_T_I354:
7992 case WM_T_I210:
7993 case WM_T_I211:
7994 reg = CSR_READ(sc, WMREG_MDICNFG);
7995 phyid = (reg & MDICNFG_PHY_MASK) >> MDICNFG_PHY_SHIFT;
7996 break;
7997 default:
7998 return -1;
7999 }
8000 }
8001
8002 return phyid;
8003 }
8004
8005
8006 /*
8007 * wm_gmii_mediainit:
8008 *
8009 * Initialize media for use on 1000BASE-T devices.
8010 */
8011 static void
8012 wm_gmii_mediainit(struct wm_softc *sc, pci_product_id_t prodid)
8013 {
8014 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
8015 struct mii_data *mii = &sc->sc_mii;
8016 uint32_t reg;
8017
8018 /* We have GMII. */
8019 sc->sc_flags |= WM_F_HAS_MII;
8020
8021 if (sc->sc_type == WM_T_80003)
8022 sc->sc_tipg = TIPG_1000T_80003_DFLT;
8023 else
8024 sc->sc_tipg = TIPG_1000T_DFLT;
8025
8026 /* XXX Not for I354? FreeBSD's e1000_82575.c doesn't include it */
8027 if ((sc->sc_type == WM_T_82580)
8028 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I210)
8029 || (sc->sc_type == WM_T_I211)) {
8030 reg = CSR_READ(sc, WMREG_PHPM);
8031 reg &= ~PHPM_GO_LINK_D;
8032 CSR_WRITE(sc, WMREG_PHPM, reg);
8033 }
8034
8035 /*
8036 * Let the chip set speed/duplex on its own based on
8037 * signals from the PHY.
8038 * XXXbouyer - I'm not sure this is right for the 80003,
8039 * the em driver only sets CTRL_SLU here - but it seems to work.
8040 */
8041 sc->sc_ctrl |= CTRL_SLU;
8042 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
8043
8044 /* Initialize our media structures and probe the GMII. */
8045 mii->mii_ifp = ifp;
8046
8047 /*
8048 * Determine the PHY access method.
8049 *
8050 * For SGMII, use SGMII specific method.
8051 *
8052 * For some devices, we can determine the PHY access method
8053 * from sc_type.
8054 *
8055 * For ICH and PCH variants, it's difficult to determine the PHY
8056 * access method by sc_type, so use the PCI product ID for some
8057 * devices.
8058 * For other ICH8 variants, try to use igp's method. If the PHY
8059 * can't detect, then use bm's method.
8060 */
8061 switch (prodid) {
8062 case PCI_PRODUCT_INTEL_PCH_M_LM:
8063 case PCI_PRODUCT_INTEL_PCH_M_LC:
8064 /* 82577 */
8065 sc->sc_phytype = WMPHY_82577;
8066 break;
8067 case PCI_PRODUCT_INTEL_PCH_D_DM:
8068 case PCI_PRODUCT_INTEL_PCH_D_DC:
8069 /* 82578 */
8070 sc->sc_phytype = WMPHY_82578;
8071 break;
8072 case PCI_PRODUCT_INTEL_PCH2_LV_LM:
8073 case PCI_PRODUCT_INTEL_PCH2_LV_V:
8074 /* 82579 */
8075 sc->sc_phytype = WMPHY_82579;
8076 break;
8077 case PCI_PRODUCT_INTEL_82801I_BM:
8078 case PCI_PRODUCT_INTEL_82801J_R_BM_LM:
8079 case PCI_PRODUCT_INTEL_82801J_R_BM_LF:
8080 case PCI_PRODUCT_INTEL_82801J_D_BM_LM:
8081 case PCI_PRODUCT_INTEL_82801J_D_BM_LF:
8082 case PCI_PRODUCT_INTEL_82801J_R_BM_V:
8083 /* 82567 */
8084 sc->sc_phytype = WMPHY_BM;
8085 mii->mii_readreg = wm_gmii_bm_readreg;
8086 mii->mii_writereg = wm_gmii_bm_writereg;
8087 break;
8088 default:
8089 if (((sc->sc_flags & WM_F_SGMII) != 0)
8090 && !wm_sgmii_uses_mdio(sc)){
8091 /* SGMII */
8092 mii->mii_readreg = wm_sgmii_readreg;
8093 mii->mii_writereg = wm_sgmii_writereg;
8094 } else if (sc->sc_type >= WM_T_80003) {
8095 /* 80003 */
8096 mii->mii_readreg = wm_gmii_i80003_readreg;
8097 mii->mii_writereg = wm_gmii_i80003_writereg;
8098 } else if (sc->sc_type >= WM_T_I210) {
8099 /* I210 and I211 */
8100 mii->mii_readreg = wm_gmii_gs40g_readreg;
8101 mii->mii_writereg = wm_gmii_gs40g_writereg;
8102 } else if (sc->sc_type >= WM_T_82580) {
8103 /* 82580, I350 and I354 */
8104 sc->sc_phytype = WMPHY_82580;
8105 mii->mii_readreg = wm_gmii_82580_readreg;
8106 mii->mii_writereg = wm_gmii_82580_writereg;
8107 } else if (sc->sc_type >= WM_T_82544) {
8108 /* 82544, 0, [56], [17], 8257[1234] and 82583 */
8109 mii->mii_readreg = wm_gmii_i82544_readreg;
8110 mii->mii_writereg = wm_gmii_i82544_writereg;
8111 } else {
8112 mii->mii_readreg = wm_gmii_i82543_readreg;
8113 mii->mii_writereg = wm_gmii_i82543_writereg;
8114 }
8115 break;
8116 }
8117 if ((sc->sc_type >= WM_T_PCH) && (sc->sc_type <= WM_T_PCH_SPT)) {
8118 /* All PCH* use _hv_ */
8119 mii->mii_readreg = wm_gmii_hv_readreg;
8120 mii->mii_writereg = wm_gmii_hv_writereg;
8121 }
8122 mii->mii_statchg = wm_gmii_statchg;
8123
8124 wm_gmii_reset(sc);
8125
8126 sc->sc_ethercom.ec_mii = &sc->sc_mii;
8127 ifmedia_init(&mii->mii_media, IFM_IMASK, wm_gmii_mediachange,
8128 wm_gmii_mediastatus);
8129
8130 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
8131 || (sc->sc_type == WM_T_82580)
8132 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
8133 || (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211)) {
8134 if ((sc->sc_flags & WM_F_SGMII) == 0) {
8135 /* Attach only one port */
8136 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, 1,
8137 MII_OFFSET_ANY, MIIF_DOPAUSE);
8138 } else {
8139 int i, id;
8140 uint32_t ctrl_ext;
8141
8142 id = wm_get_phy_id_82575(sc);
8143 if (id != -1) {
8144 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff,
8145 id, MII_OFFSET_ANY, MIIF_DOPAUSE);
8146 }
8147 if ((id == -1)
8148 || (LIST_FIRST(&mii->mii_phys) == NULL)) {
8149 /* Power on sgmii phy if it is disabled */
8150 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
8151 CSR_WRITE(sc, WMREG_CTRL_EXT,
8152 ctrl_ext &~ CTRL_EXT_SWDPIN(3));
8153 CSR_WRITE_FLUSH(sc);
8154 delay(300*1000); /* XXX too long */
8155
8156 /* from 1 to 8 */
8157 for (i = 1; i < 8; i++)
8158 mii_attach(sc->sc_dev, &sc->sc_mii,
8159 0xffffffff, i, MII_OFFSET_ANY,
8160 MIIF_DOPAUSE);
8161
8162 /* restore previous sfp cage power state */
8163 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
8164 }
8165 }
8166 } else {
8167 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
8168 MII_OFFSET_ANY, MIIF_DOPAUSE);
8169 }
8170
8171 /*
8172 * If the MAC is PCH2 or PCH_LPT and failed to detect MII PHY, call
8173 * wm_set_mdio_slow_mode_hv() for a workaround and retry.
8174 */
8175 if (((sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) &&
8176 (LIST_FIRST(&mii->mii_phys) == NULL)) {
8177 wm_set_mdio_slow_mode_hv(sc);
8178 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
8179 MII_OFFSET_ANY, MIIF_DOPAUSE);
8180 }
8181
8182 /*
8183 * (For ICH8 variants)
8184 * If PHY detection failed, use BM's r/w function and retry.
8185 */
8186 if (LIST_FIRST(&mii->mii_phys) == NULL) {
8187 /* if failed, retry with *_bm_* */
8188 mii->mii_readreg = wm_gmii_bm_readreg;
8189 mii->mii_writereg = wm_gmii_bm_writereg;
8190
8191 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
8192 MII_OFFSET_ANY, MIIF_DOPAUSE);
8193 }
8194
8195 if (LIST_FIRST(&mii->mii_phys) == NULL) {
8196 /* Any PHY wasn't find */
8197 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
8198 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
8199 sc->sc_phytype = WMPHY_NONE;
8200 } else {
8201 /*
8202 * PHY Found!
8203 * Check PHY type.
8204 */
8205 uint32_t model;
8206 struct mii_softc *child;
8207
8208 child = LIST_FIRST(&mii->mii_phys);
8209 model = child->mii_mpd_model;
8210 if (model == MII_MODEL_yyINTEL_I82566)
8211 sc->sc_phytype = WMPHY_IGP_3;
8212
8213 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
8214 }
8215 }
8216
8217 /*
8218 * wm_gmii_mediachange: [ifmedia interface function]
8219 *
8220 * Set hardware to newly-selected media on a 1000BASE-T device.
8221 */
8222 static int
8223 wm_gmii_mediachange(struct ifnet *ifp)
8224 {
8225 struct wm_softc *sc = ifp->if_softc;
8226 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
8227 int rc;
8228
8229 if ((ifp->if_flags & IFF_UP) == 0)
8230 return 0;
8231
8232 sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
8233 sc->sc_ctrl |= CTRL_SLU;
8234 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
8235 || (sc->sc_type > WM_T_82543)) {
8236 sc->sc_ctrl &= ~(CTRL_FRCSPD | CTRL_FRCFDX);
8237 } else {
8238 sc->sc_ctrl &= ~CTRL_ASDE;
8239 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
8240 if (ife->ifm_media & IFM_FDX)
8241 sc->sc_ctrl |= CTRL_FD;
8242 switch (IFM_SUBTYPE(ife->ifm_media)) {
8243 case IFM_10_T:
8244 sc->sc_ctrl |= CTRL_SPEED_10;
8245 break;
8246 case IFM_100_TX:
8247 sc->sc_ctrl |= CTRL_SPEED_100;
8248 break;
8249 case IFM_1000_T:
8250 sc->sc_ctrl |= CTRL_SPEED_1000;
8251 break;
8252 default:
8253 panic("wm_gmii_mediachange: bad media 0x%x",
8254 ife->ifm_media);
8255 }
8256 }
8257 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
8258 if (sc->sc_type <= WM_T_82543)
8259 wm_gmii_reset(sc);
8260
8261 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
8262 return 0;
8263 return rc;
8264 }
8265
8266 /*
8267 * wm_gmii_mediastatus: [ifmedia interface function]
8268 *
8269 * Get the current interface media status on a 1000BASE-T device.
8270 */
8271 static void
8272 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
8273 {
8274 struct wm_softc *sc = ifp->if_softc;
8275
8276 ether_mediastatus(ifp, ifmr);
8277 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
8278 | sc->sc_flowflags;
8279 }
8280
8281 #define MDI_IO CTRL_SWDPIN(2)
8282 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
8283 #define MDI_CLK CTRL_SWDPIN(3)
8284
8285 static void
8286 wm_i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
8287 {
8288 uint32_t i, v;
8289
8290 v = CSR_READ(sc, WMREG_CTRL);
8291 v &= ~(MDI_IO | MDI_CLK | (CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
8292 v |= MDI_DIR | CTRL_SWDPIO(3);
8293
8294 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
8295 if (data & i)
8296 v |= MDI_IO;
8297 else
8298 v &= ~MDI_IO;
8299 CSR_WRITE(sc, WMREG_CTRL, v);
8300 CSR_WRITE_FLUSH(sc);
8301 delay(10);
8302 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
8303 CSR_WRITE_FLUSH(sc);
8304 delay(10);
8305 CSR_WRITE(sc, WMREG_CTRL, v);
8306 CSR_WRITE_FLUSH(sc);
8307 delay(10);
8308 }
8309 }
8310
8311 static uint32_t
8312 wm_i82543_mii_recvbits(struct wm_softc *sc)
8313 {
8314 uint32_t v, i, data = 0;
8315
8316 v = CSR_READ(sc, WMREG_CTRL);
8317 v &= ~(MDI_IO | MDI_CLK | (CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
8318 v |= CTRL_SWDPIO(3);
8319
8320 CSR_WRITE(sc, WMREG_CTRL, v);
8321 CSR_WRITE_FLUSH(sc);
8322 delay(10);
8323 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
8324 CSR_WRITE_FLUSH(sc);
8325 delay(10);
8326 CSR_WRITE(sc, WMREG_CTRL, v);
8327 CSR_WRITE_FLUSH(sc);
8328 delay(10);
8329
8330 for (i = 0; i < 16; i++) {
8331 data <<= 1;
8332 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
8333 CSR_WRITE_FLUSH(sc);
8334 delay(10);
8335 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
8336 data |= 1;
8337 CSR_WRITE(sc, WMREG_CTRL, v);
8338 CSR_WRITE_FLUSH(sc);
8339 delay(10);
8340 }
8341
8342 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
8343 CSR_WRITE_FLUSH(sc);
8344 delay(10);
8345 CSR_WRITE(sc, WMREG_CTRL, v);
8346 CSR_WRITE_FLUSH(sc);
8347 delay(10);
8348
8349 return data;
8350 }
8351
8352 #undef MDI_IO
8353 #undef MDI_DIR
8354 #undef MDI_CLK
8355
8356 /*
8357 * wm_gmii_i82543_readreg: [mii interface function]
8358 *
8359 * Read a PHY register on the GMII (i82543 version).
8360 */
8361 static int
8362 wm_gmii_i82543_readreg(device_t self, int phy, int reg)
8363 {
8364 struct wm_softc *sc = device_private(self);
8365 int rv;
8366
8367 wm_i82543_mii_sendbits(sc, 0xffffffffU, 32);
8368 wm_i82543_mii_sendbits(sc, reg | (phy << 5) |
8369 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
8370 rv = wm_i82543_mii_recvbits(sc) & 0xffff;
8371
8372 DPRINTF(WM_DEBUG_GMII, ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
8373 device_xname(sc->sc_dev), phy, reg, rv));
8374
8375 return rv;
8376 }
8377
8378 /*
8379 * wm_gmii_i82543_writereg: [mii interface function]
8380 *
8381 * Write a PHY register on the GMII (i82543 version).
8382 */
8383 static void
8384 wm_gmii_i82543_writereg(device_t self, int phy, int reg, int val)
8385 {
8386 struct wm_softc *sc = device_private(self);
8387
8388 wm_i82543_mii_sendbits(sc, 0xffffffffU, 32);
8389 wm_i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
8390 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
8391 (MII_COMMAND_START << 30), 32);
8392 }
8393
8394 /*
8395 * wm_gmii_i82544_readreg: [mii interface function]
8396 *
8397 * Read a PHY register on the GMII.
8398 */
8399 static int
8400 wm_gmii_i82544_readreg(device_t self, int phy, int reg)
8401 {
8402 struct wm_softc *sc = device_private(self);
8403 uint32_t mdic = 0;
8404 int i, rv;
8405
8406 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
8407 MDIC_REGADD(reg));
8408
8409 for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) {
8410 mdic = CSR_READ(sc, WMREG_MDIC);
8411 if (mdic & MDIC_READY)
8412 break;
8413 delay(50);
8414 }
8415
8416 if ((mdic & MDIC_READY) == 0) {
8417 log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
8418 device_xname(sc->sc_dev), phy, reg);
8419 rv = 0;
8420 } else if (mdic & MDIC_E) {
8421 #if 0 /* This is normal if no PHY is present. */
8422 log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
8423 device_xname(sc->sc_dev), phy, reg);
8424 #endif
8425 rv = 0;
8426 } else {
8427 rv = MDIC_DATA(mdic);
8428 if (rv == 0xffff)
8429 rv = 0;
8430 }
8431
8432 return rv;
8433 }
8434
8435 /*
8436 * wm_gmii_i82544_writereg: [mii interface function]
8437 *
8438 * Write a PHY register on the GMII.
8439 */
8440 static void
8441 wm_gmii_i82544_writereg(device_t self, int phy, int reg, int val)
8442 {
8443 struct wm_softc *sc = device_private(self);
8444 uint32_t mdic = 0;
8445 int i;
8446
8447 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
8448 MDIC_REGADD(reg) | MDIC_DATA(val));
8449
8450 for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) {
8451 mdic = CSR_READ(sc, WMREG_MDIC);
8452 if (mdic & MDIC_READY)
8453 break;
8454 delay(50);
8455 }
8456
8457 if ((mdic & MDIC_READY) == 0)
8458 log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
8459 device_xname(sc->sc_dev), phy, reg);
8460 else if (mdic & MDIC_E)
8461 log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
8462 device_xname(sc->sc_dev), phy, reg);
8463 }
8464
8465 /*
8466 * wm_gmii_i80003_readreg: [mii interface function]
8467 *
8468 * Read a PHY register on the kumeran
8469 * This could be handled by the PHY layer if we didn't have to lock the
8470 * ressource ...
8471 */
8472 static int
8473 wm_gmii_i80003_readreg(device_t self, int phy, int reg)
8474 {
8475 struct wm_softc *sc = device_private(self);
8476 int sem;
8477 int rv;
8478
8479 if (phy != 1) /* only one PHY on kumeran bus */
8480 return 0;
8481
8482 sem = swfwphysem[sc->sc_funcid];
8483 if (wm_get_swfw_semaphore(sc, sem)) {
8484 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8485 __func__);
8486 return 0;
8487 }
8488
8489 if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
8490 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
8491 reg >> GG82563_PAGE_SHIFT);
8492 } else {
8493 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
8494 reg >> GG82563_PAGE_SHIFT);
8495 }
8496 /* Wait more 200us for a bug of the ready bit in the MDIC register */
8497 delay(200);
8498 rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
8499 delay(200);
8500
8501 wm_put_swfw_semaphore(sc, sem);
8502 return rv;
8503 }
8504
8505 /*
8506 * wm_gmii_i80003_writereg: [mii interface function]
8507 *
8508 * Write a PHY register on the kumeran.
8509 * This could be handled by the PHY layer if we didn't have to lock the
8510 * ressource ...
8511 */
8512 static void
8513 wm_gmii_i80003_writereg(device_t self, int phy, int reg, int val)
8514 {
8515 struct wm_softc *sc = device_private(self);
8516 int sem;
8517
8518 if (phy != 1) /* only one PHY on kumeran bus */
8519 return;
8520
8521 sem = swfwphysem[sc->sc_funcid];
8522 if (wm_get_swfw_semaphore(sc, sem)) {
8523 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8524 __func__);
8525 return;
8526 }
8527
8528 if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
8529 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
8530 reg >> GG82563_PAGE_SHIFT);
8531 } else {
8532 wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
8533 reg >> GG82563_PAGE_SHIFT);
8534 }
8535 /* Wait more 200us for a bug of the ready bit in the MDIC register */
8536 delay(200);
8537 wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
8538 delay(200);
8539
8540 wm_put_swfw_semaphore(sc, sem);
8541 }
8542
8543 /*
8544 * wm_gmii_bm_readreg: [mii interface function]
8545 *
8546 * Read a PHY register on the kumeran
8547 * This could be handled by the PHY layer if we didn't have to lock the
8548 * ressource ...
8549 */
8550 static int
8551 wm_gmii_bm_readreg(device_t self, int phy, int reg)
8552 {
8553 struct wm_softc *sc = device_private(self);
8554 int sem;
8555 int rv;
8556
8557 sem = swfwphysem[sc->sc_funcid];
8558 if (wm_get_swfw_semaphore(sc, sem)) {
8559 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8560 __func__);
8561 return 0;
8562 }
8563
8564 if (reg > BME1000_MAX_MULTI_PAGE_REG) {
8565 if (phy == 1)
8566 wm_gmii_i82544_writereg(self, phy,
8567 MII_IGPHY_PAGE_SELECT, reg);
8568 else
8569 wm_gmii_i82544_writereg(self, phy,
8570 GG82563_PHY_PAGE_SELECT,
8571 reg >> GG82563_PAGE_SHIFT);
8572 }
8573
8574 rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
8575 wm_put_swfw_semaphore(sc, sem);
8576 return rv;
8577 }
8578
8579 /*
8580 * wm_gmii_bm_writereg: [mii interface function]
8581 *
8582 * Write a PHY register on the kumeran.
8583 * This could be handled by the PHY layer if we didn't have to lock the
8584 * ressource ...
8585 */
8586 static void
8587 wm_gmii_bm_writereg(device_t self, int phy, int reg, int val)
8588 {
8589 struct wm_softc *sc = device_private(self);
8590 int sem;
8591
8592 sem = swfwphysem[sc->sc_funcid];
8593 if (wm_get_swfw_semaphore(sc, sem)) {
8594 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8595 __func__);
8596 return;
8597 }
8598
8599 if (reg > BME1000_MAX_MULTI_PAGE_REG) {
8600 if (phy == 1)
8601 wm_gmii_i82544_writereg(self, phy,
8602 MII_IGPHY_PAGE_SELECT, reg);
8603 else
8604 wm_gmii_i82544_writereg(self, phy,
8605 GG82563_PHY_PAGE_SELECT,
8606 reg >> GG82563_PAGE_SHIFT);
8607 }
8608
8609 wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
8610 wm_put_swfw_semaphore(sc, sem);
8611 }
8612
8613 static void
8614 wm_access_phy_wakeup_reg_bm(device_t self, int offset, int16_t *val, int rd)
8615 {
8616 struct wm_softc *sc = device_private(self);
8617 uint16_t regnum = BM_PHY_REG_NUM(offset);
8618 uint16_t wuce;
8619
8620 /* XXX Gig must be disabled for MDIO accesses to page 800 */
8621 if (sc->sc_type == WM_T_PCH) {
8622 /* XXX e1000 driver do nothing... why? */
8623 }
8624
8625 /* Set page 769 */
8626 wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
8627 BM_WUC_ENABLE_PAGE << BME1000_PAGE_SHIFT);
8628
8629 wuce = wm_gmii_i82544_readreg(self, 1, BM_WUC_ENABLE_REG);
8630
8631 wuce &= ~BM_WUC_HOST_WU_BIT;
8632 wm_gmii_i82544_writereg(self, 1, BM_WUC_ENABLE_REG,
8633 wuce | BM_WUC_ENABLE_BIT);
8634
8635 /* Select page 800 */
8636 wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
8637 BM_WUC_PAGE << BME1000_PAGE_SHIFT);
8638
8639 /* Write page 800 */
8640 wm_gmii_i82544_writereg(self, 1, BM_WUC_ADDRESS_OPCODE, regnum);
8641
8642 if (rd)
8643 *val = wm_gmii_i82544_readreg(self, 1, BM_WUC_DATA_OPCODE);
8644 else
8645 wm_gmii_i82544_writereg(self, 1, BM_WUC_DATA_OPCODE, *val);
8646
8647 /* Set page 769 */
8648 wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
8649 BM_WUC_ENABLE_PAGE << BME1000_PAGE_SHIFT);
8650
8651 wm_gmii_i82544_writereg(self, 1, BM_WUC_ENABLE_REG, wuce);
8652 }
8653
8654 /*
8655 * wm_gmii_hv_readreg: [mii interface function]
8656 *
8657 * Read a PHY register on the kumeran
8658 * This could be handled by the PHY layer if we didn't have to lock the
8659 * ressource ...
8660 */
8661 static int
8662 wm_gmii_hv_readreg(device_t self, int phy, int reg)
8663 {
8664 struct wm_softc *sc = device_private(self);
8665 uint16_t page = BM_PHY_REG_PAGE(reg);
8666 uint16_t regnum = BM_PHY_REG_NUM(reg);
8667 uint16_t val;
8668 int rv;
8669
8670 if (wm_get_swfwhw_semaphore(sc)) {
8671 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8672 __func__);
8673 return 0;
8674 }
8675
8676 /* XXX Workaround failure in MDIO access while cable is disconnected */
8677 if (sc->sc_phytype == WMPHY_82577) {
8678 /* XXX must write */
8679 }
8680
8681 /* Page 800 works differently than the rest so it has its own func */
8682 if (page == BM_WUC_PAGE) {
8683 wm_access_phy_wakeup_reg_bm(self, reg, &val, 1);
8684 return val;
8685 }
8686
8687 /*
8688 * Lower than page 768 works differently than the rest so it has its
8689 * own func
8690 */
8691 if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) {
8692 printf("gmii_hv_readreg!!!\n");
8693 return 0;
8694 }
8695
8696 if (regnum > BME1000_MAX_MULTI_PAGE_REG) {
8697 wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
8698 page << BME1000_PAGE_SHIFT);
8699 }
8700
8701 rv = wm_gmii_i82544_readreg(self, phy, regnum & IGPHY_MAXREGADDR);
8702 wm_put_swfwhw_semaphore(sc);
8703 return rv;
8704 }
8705
8706 /*
8707 * wm_gmii_hv_writereg: [mii interface function]
8708 *
8709 * Write a PHY register on the kumeran.
8710 * This could be handled by the PHY layer if we didn't have to lock the
8711 * ressource ...
8712 */
8713 static void
8714 wm_gmii_hv_writereg(device_t self, int phy, int reg, int val)
8715 {
8716 struct wm_softc *sc = device_private(self);
8717 uint16_t page = BM_PHY_REG_PAGE(reg);
8718 uint16_t regnum = BM_PHY_REG_NUM(reg);
8719
8720 if (wm_get_swfwhw_semaphore(sc)) {
8721 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8722 __func__);
8723 return;
8724 }
8725
8726 /* XXX Workaround failure in MDIO access while cable is disconnected */
8727
8728 /* Page 800 works differently than the rest so it has its own func */
8729 if (page == BM_WUC_PAGE) {
8730 uint16_t tmp;
8731
8732 tmp = val;
8733 wm_access_phy_wakeup_reg_bm(self, reg, &tmp, 0);
8734 return;
8735 }
8736
8737 /*
8738 * Lower than page 768 works differently than the rest so it has its
8739 * own func
8740 */
8741 if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) {
8742 printf("gmii_hv_writereg!!!\n");
8743 return;
8744 }
8745
8746 /*
8747 * XXX Workaround MDIO accesses being disabled after entering IEEE
8748 * Power Down (whenever bit 11 of the PHY control register is set)
8749 */
8750
8751 if (regnum > BME1000_MAX_MULTI_PAGE_REG) {
8752 wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
8753 page << BME1000_PAGE_SHIFT);
8754 }
8755
8756 wm_gmii_i82544_writereg(self, phy, regnum & IGPHY_MAXREGADDR, val);
8757 wm_put_swfwhw_semaphore(sc);
8758 }
8759
8760 /*
8761 * wm_gmii_82580_readreg: [mii interface function]
8762 *
8763 * Read a PHY register on the 82580 and I350.
8764 * This could be handled by the PHY layer if we didn't have to lock the
8765 * ressource ...
8766 */
8767 static int
8768 wm_gmii_82580_readreg(device_t self, int phy, int reg)
8769 {
8770 struct wm_softc *sc = device_private(self);
8771 int sem;
8772 int rv;
8773
8774 sem = swfwphysem[sc->sc_funcid];
8775 if (wm_get_swfw_semaphore(sc, sem)) {
8776 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8777 __func__);
8778 return 0;
8779 }
8780
8781 rv = wm_gmii_i82544_readreg(self, phy, reg);
8782
8783 wm_put_swfw_semaphore(sc, sem);
8784 return rv;
8785 }
8786
8787 /*
8788 * wm_gmii_82580_writereg: [mii interface function]
8789 *
8790 * Write a PHY register on the 82580 and I350.
8791 * This could be handled by the PHY layer if we didn't have to lock the
8792 * ressource ...
8793 */
8794 static void
8795 wm_gmii_82580_writereg(device_t self, int phy, int reg, int val)
8796 {
8797 struct wm_softc *sc = device_private(self);
8798 int sem;
8799
8800 sem = swfwphysem[sc->sc_funcid];
8801 if (wm_get_swfw_semaphore(sc, sem)) {
8802 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8803 __func__);
8804 return;
8805 }
8806
8807 wm_gmii_i82544_writereg(self, phy, reg, val);
8808
8809 wm_put_swfw_semaphore(sc, sem);
8810 }
8811
8812 /*
8813 * wm_gmii_gs40g_readreg: [mii interface function]
8814 *
8815 * Read a PHY register on the I2100 and I211.
8816 * This could be handled by the PHY layer if we didn't have to lock the
8817 * ressource ...
8818 */
8819 static int
8820 wm_gmii_gs40g_readreg(device_t self, int phy, int reg)
8821 {
8822 struct wm_softc *sc = device_private(self);
8823 int sem;
8824 int page, offset;
8825 int rv;
8826
8827 /* Acquire semaphore */
8828 sem = swfwphysem[sc->sc_funcid];
8829 if (wm_get_swfw_semaphore(sc, sem)) {
8830 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8831 __func__);
8832 return 0;
8833 }
8834
8835 /* Page select */
8836 page = reg >> GS40G_PAGE_SHIFT;
8837 wm_gmii_i82544_writereg(self, phy, GS40G_PAGE_SELECT, page);
8838
8839 /* Read reg */
8840 offset = reg & GS40G_OFFSET_MASK;
8841 rv = wm_gmii_i82544_readreg(self, phy, offset);
8842
8843 wm_put_swfw_semaphore(sc, sem);
8844 return rv;
8845 }
8846
8847 /*
8848 * wm_gmii_gs40g_writereg: [mii interface function]
8849 *
8850 * Write a PHY register on the I210 and I211.
8851 * This could be handled by the PHY layer if we didn't have to lock the
8852 * ressource ...
8853 */
8854 static void
8855 wm_gmii_gs40g_writereg(device_t self, int phy, int reg, int val)
8856 {
8857 struct wm_softc *sc = device_private(self);
8858 int sem;
8859 int page, offset;
8860
8861 /* Acquire semaphore */
8862 sem = swfwphysem[sc->sc_funcid];
8863 if (wm_get_swfw_semaphore(sc, sem)) {
8864 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8865 __func__);
8866 return;
8867 }
8868
8869 /* Page select */
8870 page = reg >> GS40G_PAGE_SHIFT;
8871 wm_gmii_i82544_writereg(self, phy, GS40G_PAGE_SELECT, page);
8872
8873 /* Write reg */
8874 offset = reg & GS40G_OFFSET_MASK;
8875 wm_gmii_i82544_writereg(self, phy, offset, val);
8876
8877 /* Release semaphore */
8878 wm_put_swfw_semaphore(sc, sem);
8879 }
8880
8881 /*
8882 * wm_gmii_statchg: [mii interface function]
8883 *
8884 * Callback from MII layer when media changes.
8885 */
8886 static void
8887 wm_gmii_statchg(struct ifnet *ifp)
8888 {
8889 struct wm_softc *sc = ifp->if_softc;
8890 struct mii_data *mii = &sc->sc_mii;
8891
8892 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
8893 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
8894 sc->sc_fcrtl &= ~FCRTL_XONE;
8895
8896 /*
8897 * Get flow control negotiation result.
8898 */
8899 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
8900 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
8901 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
8902 mii->mii_media_active &= ~IFM_ETH_FMASK;
8903 }
8904
8905 if (sc->sc_flowflags & IFM_FLOW) {
8906 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
8907 sc->sc_ctrl |= CTRL_TFCE;
8908 sc->sc_fcrtl |= FCRTL_XONE;
8909 }
8910 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
8911 sc->sc_ctrl |= CTRL_RFCE;
8912 }
8913
8914 if (sc->sc_mii.mii_media_active & IFM_FDX) {
8915 DPRINTF(WM_DEBUG_LINK,
8916 ("%s: LINK: statchg: FDX\n", ifp->if_xname));
8917 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
8918 } else {
8919 DPRINTF(WM_DEBUG_LINK,
8920 ("%s: LINK: statchg: HDX\n", ifp->if_xname));
8921 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
8922 }
8923
8924 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
8925 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
8926 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
8927 : WMREG_FCRTL, sc->sc_fcrtl);
8928 if (sc->sc_type == WM_T_80003) {
8929 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
8930 case IFM_1000_T:
8931 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
8932 KUMCTRLSTA_HD_CTRL_1000_DEFAULT);
8933 sc->sc_tipg = TIPG_1000T_80003_DFLT;
8934 break;
8935 default:
8936 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
8937 KUMCTRLSTA_HD_CTRL_10_100_DEFAULT);
8938 sc->sc_tipg = TIPG_10_100_80003_DFLT;
8939 break;
8940 }
8941 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
8942 }
8943 }
8944
8945 /*
8946 * wm_kmrn_readreg:
8947 *
8948 * Read a kumeran register
8949 */
8950 static int
8951 wm_kmrn_readreg(struct wm_softc *sc, int reg)
8952 {
8953 int rv;
8954
8955 if (sc->sc_flags & WM_F_LOCK_SWFW) {
8956 if (wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM)) {
8957 aprint_error_dev(sc->sc_dev,
8958 "%s: failed to get semaphore\n", __func__);
8959 return 0;
8960 }
8961 } else if (sc->sc_flags & WM_F_LOCK_EXTCNF) {
8962 if (wm_get_swfwhw_semaphore(sc)) {
8963 aprint_error_dev(sc->sc_dev,
8964 "%s: failed to get semaphore\n", __func__);
8965 return 0;
8966 }
8967 }
8968
8969 CSR_WRITE(sc, WMREG_KUMCTRLSTA,
8970 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
8971 KUMCTRLSTA_REN);
8972 CSR_WRITE_FLUSH(sc);
8973 delay(2);
8974
8975 rv = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK;
8976
8977 if (sc->sc_flags & WM_F_LOCK_SWFW)
8978 wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
8979 else if (sc->sc_flags & WM_F_LOCK_EXTCNF)
8980 wm_put_swfwhw_semaphore(sc);
8981
8982 return rv;
8983 }
8984
8985 /*
8986 * wm_kmrn_writereg:
8987 *
8988 * Write a kumeran register
8989 */
8990 static void
8991 wm_kmrn_writereg(struct wm_softc *sc, int reg, int val)
8992 {
8993
8994 if (sc->sc_flags & WM_F_LOCK_SWFW) {
8995 if (wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM)) {
8996 aprint_error_dev(sc->sc_dev,
8997 "%s: failed to get semaphore\n", __func__);
8998 return;
8999 }
9000 } else if (sc->sc_flags & WM_F_LOCK_EXTCNF) {
9001 if (wm_get_swfwhw_semaphore(sc)) {
9002 aprint_error_dev(sc->sc_dev,
9003 "%s: failed to get semaphore\n", __func__);
9004 return;
9005 }
9006 }
9007
9008 CSR_WRITE(sc, WMREG_KUMCTRLSTA,
9009 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
9010 (val & KUMCTRLSTA_MASK));
9011
9012 if (sc->sc_flags & WM_F_LOCK_SWFW)
9013 wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
9014 else if (sc->sc_flags & WM_F_LOCK_EXTCNF)
9015 wm_put_swfwhw_semaphore(sc);
9016 }
9017
9018 /* SGMII related */
9019
9020 /*
9021 * wm_sgmii_uses_mdio
9022 *
9023 * Check whether the transaction is to the internal PHY or the external
9024 * MDIO interface. Return true if it's MDIO.
9025 */
9026 static bool
9027 wm_sgmii_uses_mdio(struct wm_softc *sc)
9028 {
9029 uint32_t reg;
9030 bool ismdio = false;
9031
9032 switch (sc->sc_type) {
9033 case WM_T_82575:
9034 case WM_T_82576:
9035 reg = CSR_READ(sc, WMREG_MDIC);
9036 ismdio = ((reg & MDIC_DEST) != 0);
9037 break;
9038 case WM_T_82580:
9039 case WM_T_I350:
9040 case WM_T_I354:
9041 case WM_T_I210:
9042 case WM_T_I211:
9043 reg = CSR_READ(sc, WMREG_MDICNFG);
9044 ismdio = ((reg & MDICNFG_DEST) != 0);
9045 break;
9046 default:
9047 break;
9048 }
9049
9050 return ismdio;
9051 }
9052
9053 /*
9054 * wm_sgmii_readreg: [mii interface function]
9055 *
9056 * Read a PHY register on the SGMII
9057 * This could be handled by the PHY layer if we didn't have to lock the
9058 * ressource ...
9059 */
9060 static int
9061 wm_sgmii_readreg(device_t self, int phy, int reg)
9062 {
9063 struct wm_softc *sc = device_private(self);
9064 uint32_t i2ccmd;
9065 int i, rv;
9066
9067 if (wm_get_swfw_semaphore(sc, swfwphysem[sc->sc_funcid])) {
9068 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
9069 __func__);
9070 return 0;
9071 }
9072
9073 i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT)
9074 | (phy << I2CCMD_PHY_ADDR_SHIFT)
9075 | I2CCMD_OPCODE_READ;
9076 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
9077
9078 /* Poll the ready bit */
9079 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
9080 delay(50);
9081 i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
9082 if (i2ccmd & I2CCMD_READY)
9083 break;
9084 }
9085 if ((i2ccmd & I2CCMD_READY) == 0)
9086 aprint_error_dev(sc->sc_dev, "I2CCMD Read did not complete\n");
9087 if ((i2ccmd & I2CCMD_ERROR) != 0)
9088 aprint_error_dev(sc->sc_dev, "I2CCMD Error bit set\n");
9089
9090 rv = ((i2ccmd >> 8) & 0x00ff) | ((i2ccmd << 8) & 0xff00);
9091
9092 wm_put_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
9093 return rv;
9094 }
9095
9096 /*
9097 * wm_sgmii_writereg: [mii interface function]
9098 *
9099 * Write a PHY register on the SGMII.
9100 * This could be handled by the PHY layer if we didn't have to lock the
9101 * ressource ...
9102 */
9103 static void
9104 wm_sgmii_writereg(device_t self, int phy, int reg, int val)
9105 {
9106 struct wm_softc *sc = device_private(self);
9107 uint32_t i2ccmd;
9108 int i;
9109 int val_swapped;
9110
9111 if (wm_get_swfw_semaphore(sc, swfwphysem[sc->sc_funcid])) {
9112 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
9113 __func__);
9114 return;
9115 }
9116 /* Swap the data bytes for the I2C interface */
9117 val_swapped = ((val >> 8) & 0x00FF) | ((val << 8) & 0xFF00);
9118 i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT)
9119 | (phy << I2CCMD_PHY_ADDR_SHIFT)
9120 | I2CCMD_OPCODE_WRITE | val_swapped;
9121 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
9122
9123 /* Poll the ready bit */
9124 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
9125 delay(50);
9126 i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
9127 if (i2ccmd & I2CCMD_READY)
9128 break;
9129 }
9130 if ((i2ccmd & I2CCMD_READY) == 0)
9131 aprint_error_dev(sc->sc_dev, "I2CCMD Write did not complete\n");
9132 if ((i2ccmd & I2CCMD_ERROR) != 0)
9133 aprint_error_dev(sc->sc_dev, "I2CCMD Error bit set\n");
9134
9135 wm_put_swfw_semaphore(sc, SWFW_PHY0_SM);
9136 }
9137
9138 /* TBI related */
9139
9140 /*
9141 * wm_tbi_mediainit:
9142 *
9143 * Initialize media for use on 1000BASE-X devices.
9144 */
9145 static void
9146 wm_tbi_mediainit(struct wm_softc *sc)
9147 {
9148 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
9149 const char *sep = "";
9150
9151 if (sc->sc_type < WM_T_82543)
9152 sc->sc_tipg = TIPG_WM_DFLT;
9153 else
9154 sc->sc_tipg = TIPG_LG_DFLT;
9155
9156 sc->sc_tbi_serdes_anegticks = 5;
9157
9158 /* Initialize our media structures */
9159 sc->sc_mii.mii_ifp = ifp;
9160 sc->sc_ethercom.ec_mii = &sc->sc_mii;
9161
9162 if ((sc->sc_type >= WM_T_82575)
9163 && (sc->sc_mediatype == WM_MEDIATYPE_SERDES))
9164 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK,
9165 wm_serdes_mediachange, wm_serdes_mediastatus);
9166 else
9167 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK,
9168 wm_tbi_mediachange, wm_tbi_mediastatus);
9169
9170 /*
9171 * SWD Pins:
9172 *
9173 * 0 = Link LED (output)
9174 * 1 = Loss Of Signal (input)
9175 */
9176 sc->sc_ctrl |= CTRL_SWDPIO(0);
9177
9178 /* XXX Perhaps this is only for TBI */
9179 if (sc->sc_mediatype != WM_MEDIATYPE_SERDES)
9180 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
9181
9182 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES)
9183 sc->sc_ctrl &= ~CTRL_LRST;
9184
9185 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
9186
9187 #define ADD(ss, mm, dd) \
9188 do { \
9189 aprint_normal("%s%s", sep, ss); \
9190 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | (mm), (dd), NULL); \
9191 sep = ", "; \
9192 } while (/*CONSTCOND*/0)
9193
9194 aprint_normal_dev(sc->sc_dev, "");
9195
9196 /* Only 82545 is LX */
9197 if (sc->sc_type == WM_T_82545) {
9198 ADD("1000baseLX", IFM_1000_LX, ANAR_X_HD);
9199 ADD("1000baseLX-FDX", IFM_1000_LX | IFM_FDX, ANAR_X_FD);
9200 } else {
9201 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
9202 ADD("1000baseSX-FDX", IFM_1000_SX | IFM_FDX, ANAR_X_FD);
9203 }
9204 ADD("auto", IFM_AUTO, ANAR_X_FD | ANAR_X_HD);
9205 aprint_normal("\n");
9206
9207 #undef ADD
9208
9209 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
9210 }
9211
9212 /*
9213 * wm_tbi_mediachange: [ifmedia interface function]
9214 *
9215 * Set hardware to newly-selected media on a 1000BASE-X device.
9216 */
9217 static int
9218 wm_tbi_mediachange(struct ifnet *ifp)
9219 {
9220 struct wm_softc *sc = ifp->if_softc;
9221 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
9222 uint32_t status;
9223 int i;
9224
9225 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES) {
9226 /* XXX need some work for >= 82571 and < 82575 */
9227 if (sc->sc_type < WM_T_82575)
9228 return 0;
9229 }
9230
9231 if ((sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_82572)
9232 || (sc->sc_type >= WM_T_82575))
9233 CSR_WRITE(sc, WMREG_SCTL, SCTL_DISABLE_SERDES_LOOPBACK);
9234
9235 sc->sc_ctrl &= ~CTRL_LRST;
9236 sc->sc_txcw = TXCW_ANE;
9237 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
9238 sc->sc_txcw |= TXCW_FD | TXCW_HD;
9239 else if (ife->ifm_media & IFM_FDX)
9240 sc->sc_txcw |= TXCW_FD;
9241 else
9242 sc->sc_txcw |= TXCW_HD;
9243
9244 if ((sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
9245 sc->sc_txcw |= TXCW_SYM_PAUSE | TXCW_ASYM_PAUSE;
9246
9247 DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x after autoneg check\n",
9248 device_xname(sc->sc_dev), sc->sc_txcw));
9249 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
9250 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
9251 CSR_WRITE_FLUSH(sc);
9252 delay(1000);
9253
9254 i = CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1);
9255 DPRINTF(WM_DEBUG_LINK,("%s: i = 0x%x\n", device_xname(sc->sc_dev),i));
9256
9257 /*
9258 * On 82544 chips and later, the CTRL_SWDPIN(1) bit will be set if the
9259 * optics detect a signal, 0 if they don't.
9260 */
9261 if (((i != 0) && (sc->sc_type > WM_T_82544)) || (i == 0)) {
9262 /* Have signal; wait for the link to come up. */
9263 for (i = 0; i < WM_LINKUP_TIMEOUT; i++) {
9264 delay(10000);
9265 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
9266 break;
9267 }
9268
9269 DPRINTF(WM_DEBUG_LINK,("%s: i = %d after waiting for link\n",
9270 device_xname(sc->sc_dev),i));
9271
9272 status = CSR_READ(sc, WMREG_STATUS);
9273 DPRINTF(WM_DEBUG_LINK,
9274 ("%s: status after final read = 0x%x, STATUS_LU = 0x%x\n",
9275 device_xname(sc->sc_dev),status, STATUS_LU));
9276 if (status & STATUS_LU) {
9277 /* Link is up. */
9278 DPRINTF(WM_DEBUG_LINK,
9279 ("%s: LINK: set media -> link up %s\n",
9280 device_xname(sc->sc_dev),
9281 (status & STATUS_FD) ? "FDX" : "HDX"));
9282
9283 /*
9284 * NOTE: CTRL will update TFCE and RFCE automatically,
9285 * so we should update sc->sc_ctrl
9286 */
9287 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
9288 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
9289 sc->sc_fcrtl &= ~FCRTL_XONE;
9290 if (status & STATUS_FD)
9291 sc->sc_tctl |=
9292 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
9293 else
9294 sc->sc_tctl |=
9295 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
9296 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
9297 sc->sc_fcrtl |= FCRTL_XONE;
9298 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
9299 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
9300 WMREG_OLD_FCRTL : WMREG_FCRTL,
9301 sc->sc_fcrtl);
9302 sc->sc_tbi_linkup = 1;
9303 } else {
9304 if (i == WM_LINKUP_TIMEOUT)
9305 wm_check_for_link(sc);
9306 /* Link is down. */
9307 DPRINTF(WM_DEBUG_LINK,
9308 ("%s: LINK: set media -> link down\n",
9309 device_xname(sc->sc_dev)));
9310 sc->sc_tbi_linkup = 0;
9311 }
9312 } else {
9313 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
9314 device_xname(sc->sc_dev)));
9315 sc->sc_tbi_linkup = 0;
9316 }
9317
9318 wm_tbi_serdes_set_linkled(sc);
9319
9320 return 0;
9321 }
9322
9323 /*
9324 * wm_tbi_mediastatus: [ifmedia interface function]
9325 *
9326 * Get the current interface media status on a 1000BASE-X device.
9327 */
9328 static void
9329 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
9330 {
9331 struct wm_softc *sc = ifp->if_softc;
9332 uint32_t ctrl, status;
9333
9334 ifmr->ifm_status = IFM_AVALID;
9335 ifmr->ifm_active = IFM_ETHER;
9336
9337 status = CSR_READ(sc, WMREG_STATUS);
9338 if ((status & STATUS_LU) == 0) {
9339 ifmr->ifm_active |= IFM_NONE;
9340 return;
9341 }
9342
9343 ifmr->ifm_status |= IFM_ACTIVE;
9344 /* Only 82545 is LX */
9345 if (sc->sc_type == WM_T_82545)
9346 ifmr->ifm_active |= IFM_1000_LX;
9347 else
9348 ifmr->ifm_active |= IFM_1000_SX;
9349 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
9350 ifmr->ifm_active |= IFM_FDX;
9351 else
9352 ifmr->ifm_active |= IFM_HDX;
9353 ctrl = CSR_READ(sc, WMREG_CTRL);
9354 if (ctrl & CTRL_RFCE)
9355 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
9356 if (ctrl & CTRL_TFCE)
9357 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
9358 }
9359
9360 /* XXX TBI only */
9361 static int
9362 wm_check_for_link(struct wm_softc *sc)
9363 {
9364 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
9365 uint32_t rxcw;
9366 uint32_t ctrl;
9367 uint32_t status;
9368 uint32_t sig;
9369
9370 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES) {
9371 /* XXX need some work for >= 82571 */
9372 if (sc->sc_type >= WM_T_82571) {
9373 sc->sc_tbi_linkup = 1;
9374 return 0;
9375 }
9376 }
9377
9378 rxcw = CSR_READ(sc, WMREG_RXCW);
9379 ctrl = CSR_READ(sc, WMREG_CTRL);
9380 status = CSR_READ(sc, WMREG_STATUS);
9381
9382 sig = (sc->sc_type > WM_T_82544) ? CTRL_SWDPIN(1) : 0;
9383
9384 DPRINTF(WM_DEBUG_LINK,
9385 ("%s: %s: sig = %d, status_lu = %d, rxcw_c = %d\n",
9386 device_xname(sc->sc_dev), __func__,
9387 ((ctrl & CTRL_SWDPIN(1)) == sig),
9388 ((status & STATUS_LU) != 0), ((rxcw & RXCW_C) != 0)));
9389
9390 /*
9391 * SWDPIN LU RXCW
9392 * 0 0 0
9393 * 0 0 1 (should not happen)
9394 * 0 1 0 (should not happen)
9395 * 0 1 1 (should not happen)
9396 * 1 0 0 Disable autonego and force linkup
9397 * 1 0 1 got /C/ but not linkup yet
9398 * 1 1 0 (linkup)
9399 * 1 1 1 If IFM_AUTO, back to autonego
9400 *
9401 */
9402 if (((ctrl & CTRL_SWDPIN(1)) == sig)
9403 && ((status & STATUS_LU) == 0)
9404 && ((rxcw & RXCW_C) == 0)) {
9405 DPRINTF(WM_DEBUG_LINK, ("%s: force linkup and fullduplex\n",
9406 __func__));
9407 sc->sc_tbi_linkup = 0;
9408 /* Disable auto-negotiation in the TXCW register */
9409 CSR_WRITE(sc, WMREG_TXCW, (sc->sc_txcw & ~TXCW_ANE));
9410
9411 /*
9412 * Force link-up and also force full-duplex.
9413 *
9414 * NOTE: CTRL was updated TFCE and RFCE automatically,
9415 * so we should update sc->sc_ctrl
9416 */
9417 sc->sc_ctrl = ctrl | CTRL_SLU | CTRL_FD;
9418 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
9419 } else if (((status & STATUS_LU) != 0)
9420 && ((rxcw & RXCW_C) != 0)
9421 && (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)) {
9422 sc->sc_tbi_linkup = 1;
9423 DPRINTF(WM_DEBUG_LINK, ("%s: go back to autonego\n",
9424 __func__));
9425 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
9426 CSR_WRITE(sc, WMREG_CTRL, (ctrl & ~CTRL_SLU));
9427 } else if (((ctrl & CTRL_SWDPIN(1)) == sig)
9428 && ((rxcw & RXCW_C) != 0)) {
9429 DPRINTF(WM_DEBUG_LINK, ("/C/"));
9430 } else {
9431 DPRINTF(WM_DEBUG_LINK, ("%s: %x,%x,%x\n", __func__, rxcw, ctrl,
9432 status));
9433 }
9434
9435 return 0;
9436 }
9437
9438 /*
9439 * wm_tbi_tick:
9440 *
9441 * Check the link on TBI devices.
9442 * This function acts as mii_tick().
9443 */
9444 static void
9445 wm_tbi_tick(struct wm_softc *sc)
9446 {
9447 struct mii_data *mii = &sc->sc_mii;
9448 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
9449 uint32_t status;
9450
9451 KASSERT(WM_CORE_LOCKED(sc));
9452
9453 status = CSR_READ(sc, WMREG_STATUS);
9454
9455 /* XXX is this needed? */
9456 (void)CSR_READ(sc, WMREG_RXCW);
9457 (void)CSR_READ(sc, WMREG_CTRL);
9458
9459 /* set link status */
9460 if ((status & STATUS_LU) == 0) {
9461 DPRINTF(WM_DEBUG_LINK,
9462 ("%s: LINK: checklink -> down\n",
9463 device_xname(sc->sc_dev)));
9464 sc->sc_tbi_linkup = 0;
9465 } else if (sc->sc_tbi_linkup == 0) {
9466 DPRINTF(WM_DEBUG_LINK,
9467 ("%s: LINK: checklink -> up %s\n",
9468 device_xname(sc->sc_dev),
9469 (status & STATUS_FD) ? "FDX" : "HDX"));
9470 sc->sc_tbi_linkup = 1;
9471 sc->sc_tbi_serdes_ticks = 0;
9472 }
9473
9474 if ((sc->sc_ethercom.ec_if.if_flags & IFF_UP) == 0)
9475 goto setled;
9476
9477 if ((status & STATUS_LU) == 0) {
9478 sc->sc_tbi_linkup = 0;
9479 /* If the timer expired, retry autonegotiation */
9480 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
9481 && (++sc->sc_tbi_serdes_ticks
9482 >= sc->sc_tbi_serdes_anegticks)) {
9483 DPRINTF(WM_DEBUG_LINK, ("EXPIRE\n"));
9484 sc->sc_tbi_serdes_ticks = 0;
9485 /*
9486 * Reset the link, and let autonegotiation do
9487 * its thing
9488 */
9489 sc->sc_ctrl |= CTRL_LRST;
9490 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
9491 CSR_WRITE_FLUSH(sc);
9492 delay(1000);
9493 sc->sc_ctrl &= ~CTRL_LRST;
9494 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
9495 CSR_WRITE_FLUSH(sc);
9496 delay(1000);
9497 CSR_WRITE(sc, WMREG_TXCW,
9498 sc->sc_txcw & ~TXCW_ANE);
9499 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
9500 }
9501 }
9502
9503 setled:
9504 wm_tbi_serdes_set_linkled(sc);
9505 }
9506
9507 /* SERDES related */
9508 static void
9509 wm_serdes_power_up_link_82575(struct wm_softc *sc)
9510 {
9511 uint32_t reg;
9512
9513 if ((sc->sc_mediatype != WM_MEDIATYPE_SERDES)
9514 && ((sc->sc_flags & WM_F_SGMII) == 0))
9515 return;
9516
9517 reg = CSR_READ(sc, WMREG_PCS_CFG);
9518 reg |= PCS_CFG_PCS_EN;
9519 CSR_WRITE(sc, WMREG_PCS_CFG, reg);
9520
9521 reg = CSR_READ(sc, WMREG_CTRL_EXT);
9522 reg &= ~CTRL_EXT_SWDPIN(3);
9523 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
9524 CSR_WRITE_FLUSH(sc);
9525 }
9526
9527 static int
9528 wm_serdes_mediachange(struct ifnet *ifp)
9529 {
9530 struct wm_softc *sc = ifp->if_softc;
9531 bool pcs_autoneg = true; /* XXX */
9532 uint32_t ctrl_ext, pcs_lctl, reg;
9533
9534 /* XXX Currently, this function is not called on 8257[12] */
9535 if ((sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_82572)
9536 || (sc->sc_type >= WM_T_82575))
9537 CSR_WRITE(sc, WMREG_SCTL, SCTL_DISABLE_SERDES_LOOPBACK);
9538
9539 wm_serdes_power_up_link_82575(sc);
9540
9541 sc->sc_ctrl |= CTRL_SLU;
9542
9543 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576))
9544 sc->sc_ctrl |= CTRL_SWDPIN(0) | CTRL_SWDPIN(1);
9545
9546 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
9547 pcs_lctl = CSR_READ(sc, WMREG_PCS_LCTL);
9548 switch (ctrl_ext & CTRL_EXT_LINK_MODE_MASK) {
9549 case CTRL_EXT_LINK_MODE_SGMII:
9550 pcs_autoneg = true;
9551 pcs_lctl &= ~PCS_LCTL_AN_TIMEOUT;
9552 break;
9553 case CTRL_EXT_LINK_MODE_1000KX:
9554 pcs_autoneg = false;
9555 /* FALLTHROUGH */
9556 default:
9557 if ((sc->sc_type == WM_T_82575)
9558 || (sc->sc_type == WM_T_82576)) {
9559 if ((sc->sc_flags & WM_F_PCS_DIS_AUTONEGO) != 0)
9560 pcs_autoneg = false;
9561 }
9562 sc->sc_ctrl |= CTRL_SPEED_1000 | CTRL_FRCSPD | CTRL_FD
9563 | CTRL_FRCFDX;
9564 pcs_lctl |= PCS_LCTL_FSV_1000 | PCS_LCTL_FDV_FULL;
9565 }
9566 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
9567
9568 if (pcs_autoneg) {
9569 pcs_lctl |= PCS_LCTL_AN_ENABLE | PCS_LCTL_AN_RESTART;
9570 pcs_lctl &= ~PCS_LCTL_FORCE_FC;
9571
9572 reg = CSR_READ(sc, WMREG_PCS_ANADV);
9573 reg &= ~(TXCW_ASYM_PAUSE | TXCW_SYM_PAUSE);
9574 reg |= TXCW_ASYM_PAUSE | TXCW_SYM_PAUSE;
9575 CSR_WRITE(sc, WMREG_PCS_ANADV, reg);
9576 } else
9577 pcs_lctl |= PCS_LCTL_FSD | PCS_LCTL_FORCE_FC;
9578
9579 CSR_WRITE(sc, WMREG_PCS_LCTL, pcs_lctl);
9580
9581
9582 return 0;
9583 }
9584
9585 static void
9586 wm_serdes_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
9587 {
9588 struct wm_softc *sc = ifp->if_softc;
9589 struct mii_data *mii = &sc->sc_mii;
9590 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
9591 uint32_t pcs_adv, pcs_lpab, reg;
9592
9593 ifmr->ifm_status = IFM_AVALID;
9594 ifmr->ifm_active = IFM_ETHER;
9595
9596 /* Check PCS */
9597 reg = CSR_READ(sc, WMREG_PCS_LSTS);
9598 if ((reg & PCS_LSTS_LINKOK) == 0) {
9599 ifmr->ifm_active |= IFM_NONE;
9600 sc->sc_tbi_linkup = 0;
9601 goto setled;
9602 }
9603
9604 sc->sc_tbi_linkup = 1;
9605 ifmr->ifm_status |= IFM_ACTIVE;
9606 ifmr->ifm_active |= IFM_1000_SX; /* XXX */
9607 if ((reg & PCS_LSTS_FDX) != 0)
9608 ifmr->ifm_active |= IFM_FDX;
9609 else
9610 ifmr->ifm_active |= IFM_HDX;
9611 mii->mii_media_active &= ~IFM_ETH_FMASK;
9612 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
9613 /* Check flow */
9614 reg = CSR_READ(sc, WMREG_PCS_LSTS);
9615 if ((reg & PCS_LSTS_AN_COMP) == 0) {
9616 DPRINTF(WM_DEBUG_LINK, ("XXX LINKOK but not ACOMP\n"));
9617 goto setled;
9618 }
9619 pcs_adv = CSR_READ(sc, WMREG_PCS_ANADV);
9620 pcs_lpab = CSR_READ(sc, WMREG_PCS_LPAB);
9621 DPRINTF(WM_DEBUG_LINK,
9622 ("XXX AN result(2) %08x, %08x\n", pcs_adv, pcs_lpab));
9623 if ((pcs_adv & TXCW_SYM_PAUSE)
9624 && (pcs_lpab & TXCW_SYM_PAUSE)) {
9625 mii->mii_media_active |= IFM_FLOW
9626 | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
9627 } else if (((pcs_adv & TXCW_SYM_PAUSE) == 0)
9628 && (pcs_adv & TXCW_ASYM_PAUSE)
9629 && (pcs_lpab & TXCW_SYM_PAUSE)
9630 && (pcs_lpab & TXCW_ASYM_PAUSE)) {
9631 mii->mii_media_active |= IFM_FLOW
9632 | IFM_ETH_TXPAUSE;
9633 } else if ((pcs_adv & TXCW_SYM_PAUSE)
9634 && (pcs_adv & TXCW_ASYM_PAUSE)
9635 && ((pcs_lpab & TXCW_SYM_PAUSE) == 0)
9636 && (pcs_lpab & TXCW_ASYM_PAUSE)) {
9637 mii->mii_media_active |= IFM_FLOW
9638 | IFM_ETH_RXPAUSE;
9639 } else {
9640 }
9641 }
9642 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
9643 | (mii->mii_media_active & IFM_ETH_FMASK);
9644 setled:
9645 wm_tbi_serdes_set_linkled(sc);
9646 }
9647
9648 /*
9649 * wm_serdes_tick:
9650 *
9651 * Check the link on serdes devices.
9652 */
9653 static void
9654 wm_serdes_tick(struct wm_softc *sc)
9655 {
9656 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
9657 struct mii_data *mii = &sc->sc_mii;
9658 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
9659 uint32_t reg;
9660
9661 KASSERT(WM_CORE_LOCKED(sc));
9662
9663 mii->mii_media_status = IFM_AVALID;
9664 mii->mii_media_active = IFM_ETHER;
9665
9666 /* Check PCS */
9667 reg = CSR_READ(sc, WMREG_PCS_LSTS);
9668 if ((reg & PCS_LSTS_LINKOK) != 0) {
9669 mii->mii_media_status |= IFM_ACTIVE;
9670 sc->sc_tbi_linkup = 1;
9671 sc->sc_tbi_serdes_ticks = 0;
9672 mii->mii_media_active |= IFM_1000_SX; /* XXX */
9673 if ((reg & PCS_LSTS_FDX) != 0)
9674 mii->mii_media_active |= IFM_FDX;
9675 else
9676 mii->mii_media_active |= IFM_HDX;
9677 } else {
9678 mii->mii_media_status |= IFM_NONE;
9679 sc->sc_tbi_linkup = 0;
9680 /* If the timer expired, retry autonegotiation */
9681 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
9682 && (++sc->sc_tbi_serdes_ticks
9683 >= sc->sc_tbi_serdes_anegticks)) {
9684 DPRINTF(WM_DEBUG_LINK, ("EXPIRE\n"));
9685 sc->sc_tbi_serdes_ticks = 0;
9686 /* XXX */
9687 wm_serdes_mediachange(ifp);
9688 }
9689 }
9690
9691 wm_tbi_serdes_set_linkled(sc);
9692 }
9693
9694 /* SFP related */
9695
9696 static int
9697 wm_sfp_read_data_byte(struct wm_softc *sc, uint16_t offset, uint8_t *data)
9698 {
9699 uint32_t i2ccmd;
9700 int i;
9701
9702 i2ccmd = (offset << I2CCMD_REG_ADDR_SHIFT) | I2CCMD_OPCODE_READ;
9703 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
9704
9705 /* Poll the ready bit */
9706 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
9707 delay(50);
9708 i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
9709 if (i2ccmd & I2CCMD_READY)
9710 break;
9711 }
9712 if ((i2ccmd & I2CCMD_READY) == 0)
9713 return -1;
9714 if ((i2ccmd & I2CCMD_ERROR) != 0)
9715 return -1;
9716
9717 *data = i2ccmd & 0x00ff;
9718
9719 return 0;
9720 }
9721
9722 static uint32_t
9723 wm_sfp_get_media_type(struct wm_softc *sc)
9724 {
9725 uint32_t ctrl_ext;
9726 uint8_t val = 0;
9727 int timeout = 3;
9728 uint32_t mediatype = WM_MEDIATYPE_UNKNOWN;
9729 int rv = -1;
9730
9731 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
9732 ctrl_ext &= ~CTRL_EXT_SWDPIN(3);
9733 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext | CTRL_EXT_I2C_ENA);
9734 CSR_WRITE_FLUSH(sc);
9735
9736 /* Read SFP module data */
9737 while (timeout) {
9738 rv = wm_sfp_read_data_byte(sc, SFF_SFP_ID_OFF, &val);
9739 if (rv == 0)
9740 break;
9741 delay(100*1000); /* XXX too big */
9742 timeout--;
9743 }
9744 if (rv != 0)
9745 goto out;
9746 switch (val) {
9747 case SFF_SFP_ID_SFF:
9748 aprint_normal_dev(sc->sc_dev,
9749 "Module/Connector soldered to board\n");
9750 break;
9751 case SFF_SFP_ID_SFP:
9752 aprint_normal_dev(sc->sc_dev, "SFP\n");
9753 break;
9754 case SFF_SFP_ID_UNKNOWN:
9755 goto out;
9756 default:
9757 break;
9758 }
9759
9760 rv = wm_sfp_read_data_byte(sc, SFF_SFP_ETH_FLAGS_OFF, &val);
9761 if (rv != 0) {
9762 goto out;
9763 }
9764
9765 if ((val & (SFF_SFP_ETH_FLAGS_1000SX | SFF_SFP_ETH_FLAGS_1000LX)) != 0)
9766 mediatype = WM_MEDIATYPE_SERDES;
9767 else if ((val & SFF_SFP_ETH_FLAGS_1000T) != 0){
9768 sc->sc_flags |= WM_F_SGMII;
9769 mediatype = WM_MEDIATYPE_COPPER;
9770 } else if ((val & SFF_SFP_ETH_FLAGS_100FX) != 0){
9771 sc->sc_flags |= WM_F_SGMII;
9772 mediatype = WM_MEDIATYPE_SERDES;
9773 }
9774
9775 out:
9776 /* Restore I2C interface setting */
9777 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
9778
9779 return mediatype;
9780 }
9781 /*
9782 * NVM related.
9783 * Microwire, SPI (w/wo EERD) and Flash.
9784 */
9785
9786 /* Both spi and uwire */
9787
9788 /*
9789 * wm_eeprom_sendbits:
9790 *
9791 * Send a series of bits to the EEPROM.
9792 */
9793 static void
9794 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
9795 {
9796 uint32_t reg;
9797 int x;
9798
9799 reg = CSR_READ(sc, WMREG_EECD);
9800
9801 for (x = nbits; x > 0; x--) {
9802 if (bits & (1U << (x - 1)))
9803 reg |= EECD_DI;
9804 else
9805 reg &= ~EECD_DI;
9806 CSR_WRITE(sc, WMREG_EECD, reg);
9807 CSR_WRITE_FLUSH(sc);
9808 delay(2);
9809 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
9810 CSR_WRITE_FLUSH(sc);
9811 delay(2);
9812 CSR_WRITE(sc, WMREG_EECD, reg);
9813 CSR_WRITE_FLUSH(sc);
9814 delay(2);
9815 }
9816 }
9817
9818 /*
9819 * wm_eeprom_recvbits:
9820 *
9821 * Receive a series of bits from the EEPROM.
9822 */
9823 static void
9824 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
9825 {
9826 uint32_t reg, val;
9827 int x;
9828
9829 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
9830
9831 val = 0;
9832 for (x = nbits; x > 0; x--) {
9833 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
9834 CSR_WRITE_FLUSH(sc);
9835 delay(2);
9836 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
9837 val |= (1U << (x - 1));
9838 CSR_WRITE(sc, WMREG_EECD, reg);
9839 CSR_WRITE_FLUSH(sc);
9840 delay(2);
9841 }
9842 *valp = val;
9843 }
9844
9845 /* Microwire */
9846
9847 /*
9848 * wm_nvm_read_uwire:
9849 *
9850 * Read a word from the EEPROM using the MicroWire protocol.
9851 */
9852 static int
9853 wm_nvm_read_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
9854 {
9855 uint32_t reg, val;
9856 int i;
9857
9858 for (i = 0; i < wordcnt; i++) {
9859 /* Clear SK and DI. */
9860 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
9861 CSR_WRITE(sc, WMREG_EECD, reg);
9862
9863 /*
9864 * XXX: workaround for a bug in qemu-0.12.x and prior
9865 * and Xen.
9866 *
9867 * We use this workaround only for 82540 because qemu's
9868 * e1000 act as 82540.
9869 */
9870 if (sc->sc_type == WM_T_82540) {
9871 reg |= EECD_SK;
9872 CSR_WRITE(sc, WMREG_EECD, reg);
9873 reg &= ~EECD_SK;
9874 CSR_WRITE(sc, WMREG_EECD, reg);
9875 CSR_WRITE_FLUSH(sc);
9876 delay(2);
9877 }
9878 /* XXX: end of workaround */
9879
9880 /* Set CHIP SELECT. */
9881 reg |= EECD_CS;
9882 CSR_WRITE(sc, WMREG_EECD, reg);
9883 CSR_WRITE_FLUSH(sc);
9884 delay(2);
9885
9886 /* Shift in the READ command. */
9887 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
9888
9889 /* Shift in address. */
9890 wm_eeprom_sendbits(sc, word + i, sc->sc_nvm_addrbits);
9891
9892 /* Shift out the data. */
9893 wm_eeprom_recvbits(sc, &val, 16);
9894 data[i] = val & 0xffff;
9895
9896 /* Clear CHIP SELECT. */
9897 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
9898 CSR_WRITE(sc, WMREG_EECD, reg);
9899 CSR_WRITE_FLUSH(sc);
9900 delay(2);
9901 }
9902
9903 return 0;
9904 }
9905
9906 /* SPI */
9907
9908 /*
9909 * Set SPI and FLASH related information from the EECD register.
9910 * For 82541 and 82547, the word size is taken from EEPROM.
9911 */
9912 static int
9913 wm_nvm_set_addrbits_size_eecd(struct wm_softc *sc)
9914 {
9915 int size;
9916 uint32_t reg;
9917 uint16_t data;
9918
9919 reg = CSR_READ(sc, WMREG_EECD);
9920 sc->sc_nvm_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
9921
9922 /* Read the size of NVM from EECD by default */
9923 size = __SHIFTOUT(reg, EECD_EE_SIZE_EX_MASK);
9924 switch (sc->sc_type) {
9925 case WM_T_82541:
9926 case WM_T_82541_2:
9927 case WM_T_82547:
9928 case WM_T_82547_2:
9929 /* Set dummy value to access EEPROM */
9930 sc->sc_nvm_wordsize = 64;
9931 wm_nvm_read(sc, NVM_OFF_EEPROM_SIZE, 1, &data);
9932 reg = data;
9933 size = __SHIFTOUT(reg, EECD_EE_SIZE_EX_MASK);
9934 if (size == 0)
9935 size = 6; /* 64 word size */
9936 else
9937 size += NVM_WORD_SIZE_BASE_SHIFT + 1;
9938 break;
9939 case WM_T_80003:
9940 case WM_T_82571:
9941 case WM_T_82572:
9942 case WM_T_82573: /* SPI case */
9943 case WM_T_82574: /* SPI case */
9944 case WM_T_82583: /* SPI case */
9945 size += NVM_WORD_SIZE_BASE_SHIFT;
9946 if (size > 14)
9947 size = 14;
9948 break;
9949 case WM_T_82575:
9950 case WM_T_82576:
9951 case WM_T_82580:
9952 case WM_T_I350:
9953 case WM_T_I354:
9954 case WM_T_I210:
9955 case WM_T_I211:
9956 size += NVM_WORD_SIZE_BASE_SHIFT;
9957 if (size > 15)
9958 size = 15;
9959 break;
9960 default:
9961 aprint_error_dev(sc->sc_dev,
9962 "%s: unknown device(%d)?\n", __func__, sc->sc_type);
9963 return -1;
9964 break;
9965 }
9966
9967 sc->sc_nvm_wordsize = 1 << size;
9968
9969 return 0;
9970 }
9971
9972 /*
9973 * wm_nvm_ready_spi:
9974 *
9975 * Wait for a SPI EEPROM to be ready for commands.
9976 */
9977 static int
9978 wm_nvm_ready_spi(struct wm_softc *sc)
9979 {
9980 uint32_t val;
9981 int usec;
9982
9983 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
9984 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
9985 wm_eeprom_recvbits(sc, &val, 8);
9986 if ((val & SPI_SR_RDY) == 0)
9987 break;
9988 }
9989 if (usec >= SPI_MAX_RETRIES) {
9990 aprint_error_dev(sc->sc_dev,"EEPROM failed to become ready\n");
9991 return 1;
9992 }
9993 return 0;
9994 }
9995
9996 /*
9997 * wm_nvm_read_spi:
9998 *
9999 * Read a work from the EEPROM using the SPI protocol.
10000 */
10001 static int
10002 wm_nvm_read_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
10003 {
10004 uint32_t reg, val;
10005 int i;
10006 uint8_t opc;
10007
10008 /* Clear SK and CS. */
10009 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
10010 CSR_WRITE(sc, WMREG_EECD, reg);
10011 CSR_WRITE_FLUSH(sc);
10012 delay(2);
10013
10014 if (wm_nvm_ready_spi(sc))
10015 return 1;
10016
10017 /* Toggle CS to flush commands. */
10018 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
10019 CSR_WRITE_FLUSH(sc);
10020 delay(2);
10021 CSR_WRITE(sc, WMREG_EECD, reg);
10022 CSR_WRITE_FLUSH(sc);
10023 delay(2);
10024
10025 opc = SPI_OPC_READ;
10026 if (sc->sc_nvm_addrbits == 8 && word >= 128)
10027 opc |= SPI_OPC_A8;
10028
10029 wm_eeprom_sendbits(sc, opc, 8);
10030 wm_eeprom_sendbits(sc, word << 1, sc->sc_nvm_addrbits);
10031
10032 for (i = 0; i < wordcnt; i++) {
10033 wm_eeprom_recvbits(sc, &val, 16);
10034 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
10035 }
10036
10037 /* Raise CS and clear SK. */
10038 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
10039 CSR_WRITE(sc, WMREG_EECD, reg);
10040 CSR_WRITE_FLUSH(sc);
10041 delay(2);
10042
10043 return 0;
10044 }
10045
10046 /* Using with EERD */
10047
10048 static int
10049 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
10050 {
10051 uint32_t attempts = 100000;
10052 uint32_t i, reg = 0;
10053 int32_t done = -1;
10054
10055 for (i = 0; i < attempts; i++) {
10056 reg = CSR_READ(sc, rw);
10057
10058 if (reg & EERD_DONE) {
10059 done = 0;
10060 break;
10061 }
10062 delay(5);
10063 }
10064
10065 return done;
10066 }
10067
10068 static int
10069 wm_nvm_read_eerd(struct wm_softc *sc, int offset, int wordcnt,
10070 uint16_t *data)
10071 {
10072 int i, eerd = 0;
10073 int error = 0;
10074
10075 for (i = 0; i < wordcnt; i++) {
10076 eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
10077
10078 CSR_WRITE(sc, WMREG_EERD, eerd);
10079 error = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
10080 if (error != 0)
10081 break;
10082
10083 data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
10084 }
10085
10086 return error;
10087 }
10088
10089 /* Flash */
10090
10091 static int
10092 wm_nvm_valid_bank_detect_ich8lan(struct wm_softc *sc, unsigned int *bank)
10093 {
10094 uint32_t eecd;
10095 uint32_t act_offset = ICH_NVM_SIG_WORD * 2 + 1;
10096 uint32_t bank1_offset = sc->sc_ich8_flash_bank_size * sizeof(uint16_t);
10097 uint8_t sig_byte = 0;
10098
10099 switch (sc->sc_type) {
10100 case WM_T_PCH_SPT:
10101 /*
10102 * In SPT, read from the CTRL_EXT reg instead of accessing the
10103 * sector valid bits from the NVM.
10104 */
10105 *bank = CSR_READ(sc, WMREG_CTRL_EXT) & CTRL_EXT_NVMVS;
10106 if ((*bank == 0) || (*bank == 1)) {
10107 aprint_error_dev(sc->sc_dev,
10108 "%s: no valid NVM bank present\n",
10109 __func__);
10110 return -1;
10111 } else {
10112 *bank = *bank - 2;
10113 return 0;
10114 }
10115 case WM_T_ICH8:
10116 case WM_T_ICH9:
10117 eecd = CSR_READ(sc, WMREG_EECD);
10118 if ((eecd & EECD_SEC1VAL_VALMASK) == EECD_SEC1VAL_VALMASK) {
10119 *bank = ((eecd & EECD_SEC1VAL) != 0) ? 1 : 0;
10120 return 0;
10121 }
10122 /* FALLTHROUGH */
10123 default:
10124 /* Default to 0 */
10125 *bank = 0;
10126
10127 /* Check bank 0 */
10128 wm_read_ich8_byte(sc, act_offset, &sig_byte);
10129 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
10130 *bank = 0;
10131 return 0;
10132 }
10133
10134 /* Check bank 1 */
10135 wm_read_ich8_byte(sc, act_offset + bank1_offset,
10136 &sig_byte);
10137 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
10138 *bank = 1;
10139 return 0;
10140 }
10141 }
10142
10143 DPRINTF(WM_DEBUG_NVM, ("%s: No valid NVM bank present\n",
10144 device_xname(sc->sc_dev)));
10145 return -1;
10146 }
10147
10148 /******************************************************************************
10149 * This function does initial flash setup so that a new read/write/erase cycle
10150 * can be started.
10151 *
10152 * sc - The pointer to the hw structure
10153 ****************************************************************************/
10154 static int32_t
10155 wm_ich8_cycle_init(struct wm_softc *sc)
10156 {
10157 uint16_t hsfsts;
10158 int32_t error = 1;
10159 int32_t i = 0;
10160
10161 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
10162
10163 /* May be check the Flash Des Valid bit in Hw status */
10164 if ((hsfsts & HSFSTS_FLDVAL) == 0) {
10165 return error;
10166 }
10167
10168 /* Clear FCERR in Hw status by writing 1 */
10169 /* Clear DAEL in Hw status by writing a 1 */
10170 hsfsts |= HSFSTS_ERR | HSFSTS_DAEL;
10171
10172 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
10173
10174 /*
10175 * Either we should have a hardware SPI cycle in progress bit to check
10176 * against, in order to start a new cycle or FDONE bit should be
10177 * changed in the hardware so that it is 1 after harware reset, which
10178 * can then be used as an indication whether a cycle is in progress or
10179 * has been completed .. we should also have some software semaphore
10180 * mechanism to guard FDONE or the cycle in progress bit so that two
10181 * threads access to those bits can be sequentiallized or a way so that
10182 * 2 threads dont start the cycle at the same time
10183 */
10184
10185 if ((hsfsts & HSFSTS_FLINPRO) == 0) {
10186 /*
10187 * There is no cycle running at present, so we can start a
10188 * cycle
10189 */
10190
10191 /* Begin by setting Flash Cycle Done. */
10192 hsfsts |= HSFSTS_DONE;
10193 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
10194 error = 0;
10195 } else {
10196 /*
10197 * otherwise poll for sometime so the current cycle has a
10198 * chance to end before giving up.
10199 */
10200 for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
10201 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
10202 if ((hsfsts & HSFSTS_FLINPRO) == 0) {
10203 error = 0;
10204 break;
10205 }
10206 delay(1);
10207 }
10208 if (error == 0) {
10209 /*
10210 * Successful in waiting for previous cycle to timeout,
10211 * now set the Flash Cycle Done.
10212 */
10213 hsfsts |= HSFSTS_DONE;
10214 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
10215 }
10216 }
10217 return error;
10218 }
10219
10220 /******************************************************************************
10221 * This function starts a flash cycle and waits for its completion
10222 *
10223 * sc - The pointer to the hw structure
10224 ****************************************************************************/
10225 static int32_t
10226 wm_ich8_flash_cycle(struct wm_softc *sc, uint32_t timeout)
10227 {
10228 uint16_t hsflctl;
10229 uint16_t hsfsts;
10230 int32_t error = 1;
10231 uint32_t i = 0;
10232
10233 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
10234 hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
10235 hsflctl |= HSFCTL_GO;
10236 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
10237
10238 /* Wait till FDONE bit is set to 1 */
10239 do {
10240 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
10241 if (hsfsts & HSFSTS_DONE)
10242 break;
10243 delay(1);
10244 i++;
10245 } while (i < timeout);
10246 if ((hsfsts & HSFSTS_DONE) == 1 && (hsfsts & HSFSTS_ERR) == 0)
10247 error = 0;
10248
10249 return error;
10250 }
10251
10252 /******************************************************************************
10253 * Reads a byte or (d)word from the NVM using the ICH8 flash access registers.
10254 *
10255 * sc - The pointer to the hw structure
10256 * index - The index of the byte or word to read.
10257 * size - Size of data to read, 1=byte 2=word, 4=dword
10258 * data - Pointer to the word to store the value read.
10259 *****************************************************************************/
10260 static int32_t
10261 wm_read_ich8_data(struct wm_softc *sc, uint32_t index,
10262 uint32_t size, uint32_t *data)
10263 {
10264 uint16_t hsfsts;
10265 uint16_t hsflctl;
10266 uint32_t flash_linear_address;
10267 uint32_t flash_data = 0;
10268 int32_t error = 1;
10269 int32_t count = 0;
10270
10271 if (size < 1 || size > 4 || data == 0x0 ||
10272 index > ICH_FLASH_LINEAR_ADDR_MASK)
10273 return error;
10274
10275 flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
10276 sc->sc_ich8_flash_base;
10277
10278 do {
10279 delay(1);
10280 /* Steps */
10281 error = wm_ich8_cycle_init(sc);
10282 if (error)
10283 break;
10284
10285 hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
10286 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
10287 hsflctl |= ((size - 1) << HSFCTL_BCOUNT_SHIFT)
10288 & HSFCTL_BCOUNT_MASK;
10289 hsflctl |= ICH_CYCLE_READ << HSFCTL_CYCLE_SHIFT;
10290 if (sc->sc_type == WM_T_PCH_SPT) {
10291 /*
10292 * In SPT, This register is in Lan memory space, not
10293 * flash. Therefore, only 32 bit access is supported.
10294 */
10295 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFCTL,
10296 (uint32_t)hsflctl);
10297 } else
10298 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
10299
10300 /*
10301 * Write the last 24 bits of index into Flash Linear address
10302 * field in Flash Address
10303 */
10304 /* TODO: TBD maybe check the index against the size of flash */
10305
10306 ICH8_FLASH_WRITE32(sc, ICH_FLASH_FADDR, flash_linear_address);
10307
10308 error = wm_ich8_flash_cycle(sc, ICH_FLASH_COMMAND_TIMEOUT);
10309
10310 /*
10311 * Check if FCERR is set to 1, if set to 1, clear it and try
10312 * the whole sequence a few more times, else read in (shift in)
10313 * the Flash Data0, the order is least significant byte first
10314 * msb to lsb
10315 */
10316 if (error == 0) {
10317 flash_data = ICH8_FLASH_READ32(sc, ICH_FLASH_FDATA0);
10318 if (size == 1)
10319 *data = (uint8_t)(flash_data & 0x000000FF);
10320 else if (size == 2)
10321 *data = (uint16_t)(flash_data & 0x0000FFFF);
10322 else if (size == 4)
10323 *data = (uint32_t)flash_data;
10324 break;
10325 } else {
10326 /*
10327 * If we've gotten here, then things are probably
10328 * completely hosed, but if the error condition is
10329 * detected, it won't hurt to give it another try...
10330 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
10331 */
10332 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
10333 if (hsfsts & HSFSTS_ERR) {
10334 /* Repeat for some time before giving up. */
10335 continue;
10336 } else if ((hsfsts & HSFSTS_DONE) == 0)
10337 break;
10338 }
10339 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
10340
10341 return error;
10342 }
10343
10344 /******************************************************************************
10345 * Reads a single byte from the NVM using the ICH8 flash access registers.
10346 *
10347 * sc - pointer to wm_hw structure
10348 * index - The index of the byte to read.
10349 * data - Pointer to a byte to store the value read.
10350 *****************************************************************************/
10351 static int32_t
10352 wm_read_ich8_byte(struct wm_softc *sc, uint32_t index, uint8_t* data)
10353 {
10354 int32_t status;
10355 uint32_t word = 0;
10356
10357 status = wm_read_ich8_data(sc, index, 1, &word);
10358 if (status == 0)
10359 *data = (uint8_t)word;
10360 else
10361 *data = 0;
10362
10363 return status;
10364 }
10365
10366 /******************************************************************************
10367 * Reads a word from the NVM using the ICH8 flash access registers.
10368 *
10369 * sc - pointer to wm_hw structure
10370 * index - The starting byte index of the word to read.
10371 * data - Pointer to a word to store the value read.
10372 *****************************************************************************/
10373 static int32_t
10374 wm_read_ich8_word(struct wm_softc *sc, uint32_t index, uint16_t *data)
10375 {
10376 int32_t status;
10377 uint32_t word = 0;
10378
10379 status = wm_read_ich8_data(sc, index, 2, &word);
10380 if (status == 0)
10381 *data = (uint16_t)word;
10382 else
10383 *data = 0;
10384
10385 return status;
10386 }
10387
10388 /******************************************************************************
10389 * Reads a dword from the NVM using the ICH8 flash access registers.
10390 *
10391 * sc - pointer to wm_hw structure
10392 * index - The starting byte index of the word to read.
10393 * data - Pointer to a word to store the value read.
10394 *****************************************************************************/
10395 static int32_t
10396 wm_read_ich8_dword(struct wm_softc *sc, uint32_t index, uint32_t *data)
10397 {
10398 int32_t status;
10399
10400 status = wm_read_ich8_data(sc, index, 4, data);
10401 return status;
10402 }
10403
10404 /******************************************************************************
10405 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
10406 * register.
10407 *
10408 * sc - Struct containing variables accessed by shared code
10409 * offset - offset of word in the EEPROM to read
10410 * data - word read from the EEPROM
10411 * words - number of words to read
10412 *****************************************************************************/
10413 static int
10414 wm_nvm_read_ich8(struct wm_softc *sc, int offset, int words, uint16_t *data)
10415 {
10416 int32_t error = 0;
10417 uint32_t flash_bank = 0;
10418 uint32_t act_offset = 0;
10419 uint32_t bank_offset = 0;
10420 uint16_t word = 0;
10421 uint16_t i = 0;
10422
10423 /*
10424 * We need to know which is the valid flash bank. In the event
10425 * that we didn't allocate eeprom_shadow_ram, we may not be
10426 * managing flash_bank. So it cannot be trusted and needs
10427 * to be updated with each read.
10428 */
10429 error = wm_nvm_valid_bank_detect_ich8lan(sc, &flash_bank);
10430 if (error) {
10431 DPRINTF(WM_DEBUG_NVM, ("%s: failed to detect NVM bank\n",
10432 device_xname(sc->sc_dev)));
10433 flash_bank = 0;
10434 }
10435
10436 /*
10437 * Adjust offset appropriately if we're on bank 1 - adjust for word
10438 * size
10439 */
10440 bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
10441
10442 error = wm_get_swfwhw_semaphore(sc);
10443 if (error) {
10444 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
10445 __func__);
10446 return error;
10447 }
10448
10449 for (i = 0; i < words; i++) {
10450 /* The NVM part needs a byte offset, hence * 2 */
10451 act_offset = bank_offset + ((offset + i) * 2);
10452 error = wm_read_ich8_word(sc, act_offset, &word);
10453 if (error) {
10454 aprint_error_dev(sc->sc_dev,
10455 "%s: failed to read NVM\n", __func__);
10456 break;
10457 }
10458 data[i] = word;
10459 }
10460
10461 wm_put_swfwhw_semaphore(sc);
10462 return error;
10463 }
10464
10465 /******************************************************************************
10466 * Reads a 16 bit word or words from the EEPROM using the SPT's flash access
10467 * register.
10468 *
10469 * sc - Struct containing variables accessed by shared code
10470 * offset - offset of word in the EEPROM to read
10471 * data - word read from the EEPROM
10472 * words - number of words to read
10473 *****************************************************************************/
10474 static int
10475 wm_nvm_read_spt(struct wm_softc *sc, int offset, int words, uint16_t *data)
10476 {
10477 int32_t error = 0;
10478 uint32_t flash_bank = 0;
10479 uint32_t act_offset = 0;
10480 uint32_t bank_offset = 0;
10481 uint32_t dword = 0;
10482 uint16_t i = 0;
10483
10484 /*
10485 * We need to know which is the valid flash bank. In the event
10486 * that we didn't allocate eeprom_shadow_ram, we may not be
10487 * managing flash_bank. So it cannot be trusted and needs
10488 * to be updated with each read.
10489 */
10490 error = wm_nvm_valid_bank_detect_ich8lan(sc, &flash_bank);
10491 if (error) {
10492 DPRINTF(WM_DEBUG_NVM, ("%s: failed to detect NVM bank\n",
10493 device_xname(sc->sc_dev)));
10494 flash_bank = 0;
10495 }
10496
10497 /*
10498 * Adjust offset appropriately if we're on bank 1 - adjust for word
10499 * size
10500 */
10501 bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
10502
10503 error = wm_get_swfwhw_semaphore(sc);
10504 if (error) {
10505 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
10506 __func__);
10507 return error;
10508 }
10509
10510 for (i = 0; i < words; i++) {
10511 /* The NVM part needs a byte offset, hence * 2 */
10512 act_offset = bank_offset + ((offset + i) * 2);
10513 /* but we must read dword aligned, so mask ... */
10514 error = wm_read_ich8_dword(sc, act_offset & ~0x3, &dword);
10515 if (error) {
10516 aprint_error_dev(sc->sc_dev,
10517 "%s: failed to read NVM\n", __func__);
10518 break;
10519 }
10520 /* ... and pick out low or high word */
10521 if ((act_offset & 0x2) == 0)
10522 data[i] = (uint16_t)(dword & 0xFFFF);
10523 else
10524 data[i] = (uint16_t)((dword >> 16) & 0xFFFF);
10525 }
10526
10527 wm_put_swfwhw_semaphore(sc);
10528 return error;
10529 }
10530
10531 /* iNVM */
10532
10533 static int
10534 wm_nvm_read_word_invm(struct wm_softc *sc, uint16_t address, uint16_t *data)
10535 {
10536 int32_t rv = 0;
10537 uint32_t invm_dword;
10538 uint16_t i;
10539 uint8_t record_type, word_address;
10540
10541 for (i = 0; i < INVM_SIZE; i++) {
10542 invm_dword = CSR_READ(sc, WM_INVM_DATA_REG(i));
10543 /* Get record type */
10544 record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
10545 if (record_type == INVM_UNINITIALIZED_STRUCTURE)
10546 break;
10547 if (record_type == INVM_CSR_AUTOLOAD_STRUCTURE)
10548 i += INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
10549 if (record_type == INVM_RSA_KEY_SHA256_STRUCTURE)
10550 i += INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
10551 if (record_type == INVM_WORD_AUTOLOAD_STRUCTURE) {
10552 word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
10553 if (word_address == address) {
10554 *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
10555 rv = 0;
10556 break;
10557 }
10558 }
10559 }
10560
10561 return rv;
10562 }
10563
10564 static int
10565 wm_nvm_read_invm(struct wm_softc *sc, int offset, int words, uint16_t *data)
10566 {
10567 int rv = 0;
10568 int i;
10569
10570 for (i = 0; i < words; i++) {
10571 switch (offset + i) {
10572 case NVM_OFF_MACADDR:
10573 case NVM_OFF_MACADDR1:
10574 case NVM_OFF_MACADDR2:
10575 rv = wm_nvm_read_word_invm(sc, offset + i, &data[i]);
10576 if (rv != 0) {
10577 data[i] = 0xffff;
10578 rv = -1;
10579 }
10580 break;
10581 case NVM_OFF_CFG2:
10582 rv = wm_nvm_read_word_invm(sc, offset, data);
10583 if (rv != 0) {
10584 *data = NVM_INIT_CTRL_2_DEFAULT_I211;
10585 rv = 0;
10586 }
10587 break;
10588 case NVM_OFF_CFG4:
10589 rv = wm_nvm_read_word_invm(sc, offset, data);
10590 if (rv != 0) {
10591 *data = NVM_INIT_CTRL_4_DEFAULT_I211;
10592 rv = 0;
10593 }
10594 break;
10595 case NVM_OFF_LED_1_CFG:
10596 rv = wm_nvm_read_word_invm(sc, offset, data);
10597 if (rv != 0) {
10598 *data = NVM_LED_1_CFG_DEFAULT_I211;
10599 rv = 0;
10600 }
10601 break;
10602 case NVM_OFF_LED_0_2_CFG:
10603 rv = wm_nvm_read_word_invm(sc, offset, data);
10604 if (rv != 0) {
10605 *data = NVM_LED_0_2_CFG_DEFAULT_I211;
10606 rv = 0;
10607 }
10608 break;
10609 case NVM_OFF_ID_LED_SETTINGS:
10610 rv = wm_nvm_read_word_invm(sc, offset, data);
10611 if (rv != 0) {
10612 *data = ID_LED_RESERVED_FFFF;
10613 rv = 0;
10614 }
10615 break;
10616 default:
10617 DPRINTF(WM_DEBUG_NVM,
10618 ("NVM word 0x%02x is not mapped.\n", offset));
10619 *data = NVM_RESERVED_WORD;
10620 break;
10621 }
10622 }
10623
10624 return rv;
10625 }
10626
10627 /* Lock, detecting NVM type, validate checksum, version and read */
10628
10629 /*
10630 * wm_nvm_acquire:
10631 *
10632 * Perform the EEPROM handshake required on some chips.
10633 */
10634 static int
10635 wm_nvm_acquire(struct wm_softc *sc)
10636 {
10637 uint32_t reg;
10638 int x;
10639 int ret = 0;
10640
10641 /* always success */
10642 if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
10643 return 0;
10644
10645 if (sc->sc_flags & WM_F_LOCK_EXTCNF) {
10646 ret = wm_get_swfwhw_semaphore(sc);
10647 } else if (sc->sc_flags & WM_F_LOCK_SWFW) {
10648 /* This will also do wm_get_swsm_semaphore() if needed */
10649 ret = wm_get_swfw_semaphore(sc, SWFW_EEP_SM);
10650 } else if (sc->sc_flags & WM_F_LOCK_SWSM) {
10651 ret = wm_get_swsm_semaphore(sc);
10652 }
10653
10654 if (ret) {
10655 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
10656 __func__);
10657 return 1;
10658 }
10659
10660 if (sc->sc_flags & WM_F_LOCK_EECD) {
10661 reg = CSR_READ(sc, WMREG_EECD);
10662
10663 /* Request EEPROM access. */
10664 reg |= EECD_EE_REQ;
10665 CSR_WRITE(sc, WMREG_EECD, reg);
10666
10667 /* ..and wait for it to be granted. */
10668 for (x = 0; x < 1000; x++) {
10669 reg = CSR_READ(sc, WMREG_EECD);
10670 if (reg & EECD_EE_GNT)
10671 break;
10672 delay(5);
10673 }
10674 if ((reg & EECD_EE_GNT) == 0) {
10675 aprint_error_dev(sc->sc_dev,
10676 "could not acquire EEPROM GNT\n");
10677 reg &= ~EECD_EE_REQ;
10678 CSR_WRITE(sc, WMREG_EECD, reg);
10679 if (sc->sc_flags & WM_F_LOCK_EXTCNF)
10680 wm_put_swfwhw_semaphore(sc);
10681 if (sc->sc_flags & WM_F_LOCK_SWFW)
10682 wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
10683 else if (sc->sc_flags & WM_F_LOCK_SWSM)
10684 wm_put_swsm_semaphore(sc);
10685 return 1;
10686 }
10687 }
10688
10689 return 0;
10690 }
10691
10692 /*
10693 * wm_nvm_release:
10694 *
10695 * Release the EEPROM mutex.
10696 */
10697 static void
10698 wm_nvm_release(struct wm_softc *sc)
10699 {
10700 uint32_t reg;
10701
10702 /* always success */
10703 if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
10704 return;
10705
10706 if (sc->sc_flags & WM_F_LOCK_EECD) {
10707 reg = CSR_READ(sc, WMREG_EECD);
10708 reg &= ~EECD_EE_REQ;
10709 CSR_WRITE(sc, WMREG_EECD, reg);
10710 }
10711
10712 if (sc->sc_flags & WM_F_LOCK_EXTCNF)
10713 wm_put_swfwhw_semaphore(sc);
10714 if (sc->sc_flags & WM_F_LOCK_SWFW)
10715 wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
10716 else if (sc->sc_flags & WM_F_LOCK_SWSM)
10717 wm_put_swsm_semaphore(sc);
10718 }
10719
10720 static int
10721 wm_nvm_is_onboard_eeprom(struct wm_softc *sc)
10722 {
10723 uint32_t eecd = 0;
10724
10725 if (sc->sc_type == WM_T_82573 || sc->sc_type == WM_T_82574
10726 || sc->sc_type == WM_T_82583) {
10727 eecd = CSR_READ(sc, WMREG_EECD);
10728
10729 /* Isolate bits 15 & 16 */
10730 eecd = ((eecd >> 15) & 0x03);
10731
10732 /* If both bits are set, device is Flash type */
10733 if (eecd == 0x03)
10734 return 0;
10735 }
10736 return 1;
10737 }
10738
10739 static int
10740 wm_nvm_get_flash_presence_i210(struct wm_softc *sc)
10741 {
10742 uint32_t eec;
10743
10744 eec = CSR_READ(sc, WMREG_EEC);
10745 if ((eec & EEC_FLASH_DETECTED) != 0)
10746 return 1;
10747
10748 return 0;
10749 }
10750
10751 /*
10752 * wm_nvm_validate_checksum
10753 *
10754 * The checksum is defined as the sum of the first 64 (16 bit) words.
10755 */
10756 static int
10757 wm_nvm_validate_checksum(struct wm_softc *sc)
10758 {
10759 uint16_t checksum;
10760 uint16_t eeprom_data;
10761 #ifdef WM_DEBUG
10762 uint16_t csum_wordaddr, valid_checksum;
10763 #endif
10764 int i;
10765
10766 checksum = 0;
10767
10768 /* Don't check for I211 */
10769 if (sc->sc_type == WM_T_I211)
10770 return 0;
10771
10772 #ifdef WM_DEBUG
10773 if (sc->sc_type == WM_T_PCH_LPT) {
10774 csum_wordaddr = NVM_OFF_COMPAT;
10775 valid_checksum = NVM_COMPAT_VALID_CHECKSUM;
10776 } else {
10777 csum_wordaddr = NVM_OFF_FUTURE_INIT_WORD1;
10778 valid_checksum = NVM_FUTURE_INIT_WORD1_VALID_CHECKSUM;
10779 }
10780
10781 /* Dump EEPROM image for debug */
10782 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
10783 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
10784 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) {
10785 /* XXX PCH_SPT? */
10786 wm_nvm_read(sc, csum_wordaddr, 1, &eeprom_data);
10787 if ((eeprom_data & valid_checksum) == 0) {
10788 DPRINTF(WM_DEBUG_NVM,
10789 ("%s: NVM need to be updated (%04x != %04x)\n",
10790 device_xname(sc->sc_dev), eeprom_data,
10791 valid_checksum));
10792 }
10793 }
10794
10795 if ((wm_debug & WM_DEBUG_NVM) != 0) {
10796 printf("%s: NVM dump:\n", device_xname(sc->sc_dev));
10797 for (i = 0; i < NVM_SIZE; i++) {
10798 if (wm_nvm_read(sc, i, 1, &eeprom_data))
10799 printf("XXXX ");
10800 else
10801 printf("%04hx ", eeprom_data);
10802 if (i % 8 == 7)
10803 printf("\n");
10804 }
10805 }
10806
10807 #endif /* WM_DEBUG */
10808
10809 for (i = 0; i < NVM_SIZE; i++) {
10810 if (wm_nvm_read(sc, i, 1, &eeprom_data))
10811 return 1;
10812 checksum += eeprom_data;
10813 }
10814
10815 if (checksum != (uint16_t) NVM_CHECKSUM) {
10816 #ifdef WM_DEBUG
10817 printf("%s: NVM checksum mismatch (%04x != %04x)\n",
10818 device_xname(sc->sc_dev), checksum, NVM_CHECKSUM);
10819 #endif
10820 }
10821
10822 return 0;
10823 }
10824
10825 static void
10826 wm_nvm_version_invm(struct wm_softc *sc)
10827 {
10828 uint32_t dword;
10829
10830 /*
10831 * Linux's code to decode version is very strange, so we don't
10832 * obey that algorithm and just use word 61 as the document.
10833 * Perhaps it's not perfect though...
10834 *
10835 * Example:
10836 *
10837 * Word61: 00800030 -> Version 0.6 (I211 spec update notes about 0.6)
10838 */
10839 dword = CSR_READ(sc, WM_INVM_DATA_REG(61));
10840 dword = __SHIFTOUT(dword, INVM_VER_1);
10841 sc->sc_nvm_ver_major = __SHIFTOUT(dword, INVM_MAJOR);
10842 sc->sc_nvm_ver_minor = __SHIFTOUT(dword, INVM_MINOR);
10843 }
10844
10845 static void
10846 wm_nvm_version(struct wm_softc *sc)
10847 {
10848 uint16_t major, minor, build, patch;
10849 uint16_t uid0, uid1;
10850 uint16_t nvm_data;
10851 uint16_t off;
10852 bool check_version = false;
10853 bool check_optionrom = false;
10854 bool have_build = false;
10855
10856 /*
10857 * Version format:
10858 *
10859 * XYYZ
10860 * X0YZ
10861 * X0YY
10862 *
10863 * Example:
10864 *
10865 * 82571 0x50a2 5.10.2? (the spec update notes about 5.6-5.10)
10866 * 82571 0x50a6 5.10.6?
10867 * 82572 0x506a 5.6.10?
10868 * 82572EI 0x5069 5.6.9?
10869 * 82574L 0x1080 1.8.0? (the spec update notes about 2.1.4)
10870 * 0x2013 2.1.3?
10871 * 82583 0x10a0 1.10.0? (document says it's default vaule)
10872 */
10873 wm_nvm_read(sc, NVM_OFF_IMAGE_UID1, 1, &uid1);
10874 switch (sc->sc_type) {
10875 case WM_T_82571:
10876 case WM_T_82572:
10877 case WM_T_82574:
10878 case WM_T_82583:
10879 check_version = true;
10880 check_optionrom = true;
10881 have_build = true;
10882 break;
10883 case WM_T_82575:
10884 case WM_T_82576:
10885 case WM_T_82580:
10886 if ((uid1 & NVM_MAJOR_MASK) != NVM_UID_VALID)
10887 check_version = true;
10888 break;
10889 case WM_T_I211:
10890 wm_nvm_version_invm(sc);
10891 goto printver;
10892 case WM_T_I210:
10893 if (!wm_nvm_get_flash_presence_i210(sc)) {
10894 wm_nvm_version_invm(sc);
10895 goto printver;
10896 }
10897 /* FALLTHROUGH */
10898 case WM_T_I350:
10899 case WM_T_I354:
10900 check_version = true;
10901 check_optionrom = true;
10902 break;
10903 default:
10904 return;
10905 }
10906 if (check_version) {
10907 wm_nvm_read(sc, NVM_OFF_VERSION, 1, &nvm_data);
10908 major = (nvm_data & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT;
10909 if (have_build || ((nvm_data & 0x0f00) != 0x0000)) {
10910 minor = (nvm_data & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT;
10911 build = nvm_data & NVM_BUILD_MASK;
10912 have_build = true;
10913 } else
10914 minor = nvm_data & 0x00ff;
10915
10916 /* Decimal */
10917 minor = (minor / 16) * 10 + (minor % 16);
10918 sc->sc_nvm_ver_major = major;
10919 sc->sc_nvm_ver_minor = minor;
10920
10921 printver:
10922 aprint_verbose(", version %d.%d", sc->sc_nvm_ver_major,
10923 sc->sc_nvm_ver_minor);
10924 if (have_build) {
10925 sc->sc_nvm_ver_build = build;
10926 aprint_verbose(".%d", build);
10927 }
10928 }
10929 if (check_optionrom) {
10930 wm_nvm_read(sc, NVM_OFF_COMB_VER_PTR, 1, &off);
10931 /* Option ROM Version */
10932 if ((off != 0x0000) && (off != 0xffff)) {
10933 off += NVM_COMBO_VER_OFF;
10934 wm_nvm_read(sc, off + 1, 1, &uid1);
10935 wm_nvm_read(sc, off, 1, &uid0);
10936 if ((uid0 != 0) && (uid0 != 0xffff)
10937 && (uid1 != 0) && (uid1 != 0xffff)) {
10938 /* 16bits */
10939 major = uid0 >> 8;
10940 build = (uid0 << 8) | (uid1 >> 8);
10941 patch = uid1 & 0x00ff;
10942 aprint_verbose(", option ROM Version %d.%d.%d",
10943 major, build, patch);
10944 }
10945 }
10946 }
10947
10948 wm_nvm_read(sc, NVM_OFF_IMAGE_UID0, 1, &uid0);
10949 aprint_verbose(", Image Unique ID %08x", (uid1 << 16) | uid0);
10950 }
10951
10952 /*
10953 * wm_nvm_read:
10954 *
10955 * Read data from the serial EEPROM.
10956 */
10957 static int
10958 wm_nvm_read(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
10959 {
10960 int rv;
10961
10962 if (sc->sc_flags & WM_F_EEPROM_INVALID)
10963 return 1;
10964
10965 if (wm_nvm_acquire(sc))
10966 return 1;
10967
10968 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
10969 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
10970 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT))
10971 rv = wm_nvm_read_ich8(sc, word, wordcnt, data);
10972 else if (sc->sc_type == WM_T_PCH_SPT)
10973 rv = wm_nvm_read_spt(sc, word, wordcnt, data);
10974 else if (sc->sc_flags & WM_F_EEPROM_INVM)
10975 rv = wm_nvm_read_invm(sc, word, wordcnt, data);
10976 else if (sc->sc_flags & WM_F_EEPROM_EERDEEWR)
10977 rv = wm_nvm_read_eerd(sc, word, wordcnt, data);
10978 else if (sc->sc_flags & WM_F_EEPROM_SPI)
10979 rv = wm_nvm_read_spi(sc, word, wordcnt, data);
10980 else
10981 rv = wm_nvm_read_uwire(sc, word, wordcnt, data);
10982
10983 wm_nvm_release(sc);
10984 return rv;
10985 }
10986
10987 /*
10988 * Hardware semaphores.
10989 * Very complexed...
10990 */
10991
10992 static int
10993 wm_get_swsm_semaphore(struct wm_softc *sc)
10994 {
10995 int32_t timeout;
10996 uint32_t swsm;
10997
10998 if (sc->sc_flags & WM_F_LOCK_SWSM) {
10999 /* Get the SW semaphore. */
11000 timeout = sc->sc_nvm_wordsize + 1;
11001 while (timeout) {
11002 swsm = CSR_READ(sc, WMREG_SWSM);
11003
11004 if ((swsm & SWSM_SMBI) == 0)
11005 break;
11006
11007 delay(50);
11008 timeout--;
11009 }
11010
11011 if (timeout == 0) {
11012 aprint_error_dev(sc->sc_dev,
11013 "could not acquire SWSM SMBI\n");
11014 return 1;
11015 }
11016 }
11017
11018 /* Get the FW semaphore. */
11019 timeout = sc->sc_nvm_wordsize + 1;
11020 while (timeout) {
11021 swsm = CSR_READ(sc, WMREG_SWSM);
11022 swsm |= SWSM_SWESMBI;
11023 CSR_WRITE(sc, WMREG_SWSM, swsm);
11024 /* If we managed to set the bit we got the semaphore. */
11025 swsm = CSR_READ(sc, WMREG_SWSM);
11026 if (swsm & SWSM_SWESMBI)
11027 break;
11028
11029 delay(50);
11030 timeout--;
11031 }
11032
11033 if (timeout == 0) {
11034 aprint_error_dev(sc->sc_dev,
11035 "could not acquire SWSM SWESMBI\n");
11036 /* Release semaphores */
11037 wm_put_swsm_semaphore(sc);
11038 return 1;
11039 }
11040 return 0;
11041 }
11042
11043 static void
11044 wm_put_swsm_semaphore(struct wm_softc *sc)
11045 {
11046 uint32_t swsm;
11047
11048 swsm = CSR_READ(sc, WMREG_SWSM);
11049 swsm &= ~(SWSM_SMBI | SWSM_SWESMBI);
11050 CSR_WRITE(sc, WMREG_SWSM, swsm);
11051 }
11052
11053 static int
11054 wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
11055 {
11056 uint32_t swfw_sync;
11057 uint32_t swmask = mask << SWFW_SOFT_SHIFT;
11058 uint32_t fwmask = mask << SWFW_FIRM_SHIFT;
11059 int timeout = 200;
11060
11061 for (timeout = 0; timeout < 200; timeout++) {
11062 if (sc->sc_flags & WM_F_LOCK_SWSM) {
11063 if (wm_get_swsm_semaphore(sc)) {
11064 aprint_error_dev(sc->sc_dev,
11065 "%s: failed to get semaphore\n",
11066 __func__);
11067 return 1;
11068 }
11069 }
11070 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
11071 if ((swfw_sync & (swmask | fwmask)) == 0) {
11072 swfw_sync |= swmask;
11073 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
11074 if (sc->sc_flags & WM_F_LOCK_SWSM)
11075 wm_put_swsm_semaphore(sc);
11076 return 0;
11077 }
11078 if (sc->sc_flags & WM_F_LOCK_SWSM)
11079 wm_put_swsm_semaphore(sc);
11080 delay(5000);
11081 }
11082 printf("%s: failed to get swfw semaphore mask 0x%x swfw 0x%x\n",
11083 device_xname(sc->sc_dev), mask, swfw_sync);
11084 return 1;
11085 }
11086
11087 static void
11088 wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
11089 {
11090 uint32_t swfw_sync;
11091
11092 if (sc->sc_flags & WM_F_LOCK_SWSM) {
11093 while (wm_get_swsm_semaphore(sc) != 0)
11094 continue;
11095 }
11096 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
11097 swfw_sync &= ~(mask << SWFW_SOFT_SHIFT);
11098 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
11099 if (sc->sc_flags & WM_F_LOCK_SWSM)
11100 wm_put_swsm_semaphore(sc);
11101 }
11102
11103 static int
11104 wm_get_swfwhw_semaphore(struct wm_softc *sc)
11105 {
11106 uint32_t ext_ctrl;
11107 int timeout = 200;
11108
11109 for (timeout = 0; timeout < 200; timeout++) {
11110 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
11111 ext_ctrl |= EXTCNFCTR_MDIO_SW_OWNERSHIP;
11112 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
11113
11114 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
11115 if (ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP)
11116 return 0;
11117 delay(5000);
11118 }
11119 printf("%s: failed to get swfwhw semaphore ext_ctrl 0x%x\n",
11120 device_xname(sc->sc_dev), ext_ctrl);
11121 return 1;
11122 }
11123
11124 static void
11125 wm_put_swfwhw_semaphore(struct wm_softc *sc)
11126 {
11127 uint32_t ext_ctrl;
11128
11129 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
11130 ext_ctrl &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
11131 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
11132 }
11133
11134 static int
11135 wm_get_hw_semaphore_82573(struct wm_softc *sc)
11136 {
11137 int i = 0;
11138 uint32_t reg;
11139
11140 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
11141 do {
11142 CSR_WRITE(sc, WMREG_EXTCNFCTR,
11143 reg | EXTCNFCTR_MDIO_SW_OWNERSHIP);
11144 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
11145 if ((reg & EXTCNFCTR_MDIO_SW_OWNERSHIP) != 0)
11146 break;
11147 delay(2*1000);
11148 i++;
11149 } while (i < WM_MDIO_OWNERSHIP_TIMEOUT);
11150
11151 if (i == WM_MDIO_OWNERSHIP_TIMEOUT) {
11152 wm_put_hw_semaphore_82573(sc);
11153 log(LOG_ERR, "%s: Driver can't access the PHY\n",
11154 device_xname(sc->sc_dev));
11155 return -1;
11156 }
11157
11158 return 0;
11159 }
11160
11161 static void
11162 wm_put_hw_semaphore_82573(struct wm_softc *sc)
11163 {
11164 uint32_t reg;
11165
11166 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
11167 reg &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
11168 CSR_WRITE(sc, WMREG_EXTCNFCTR, reg);
11169 }
11170
11171 /*
11172 * Management mode and power management related subroutines.
11173 * BMC, AMT, suspend/resume and EEE.
11174 */
11175
11176 #ifdef WM_WOL
11177 static int
11178 wm_check_mng_mode(struct wm_softc *sc)
11179 {
11180 int rv;
11181
11182 switch (sc->sc_type) {
11183 case WM_T_ICH8:
11184 case WM_T_ICH9:
11185 case WM_T_ICH10:
11186 case WM_T_PCH:
11187 case WM_T_PCH2:
11188 case WM_T_PCH_LPT:
11189 case WM_T_PCH_SPT:
11190 rv = wm_check_mng_mode_ich8lan(sc);
11191 break;
11192 case WM_T_82574:
11193 case WM_T_82583:
11194 rv = wm_check_mng_mode_82574(sc);
11195 break;
11196 case WM_T_82571:
11197 case WM_T_82572:
11198 case WM_T_82573:
11199 case WM_T_80003:
11200 rv = wm_check_mng_mode_generic(sc);
11201 break;
11202 default:
11203 /* noting to do */
11204 rv = 0;
11205 break;
11206 }
11207
11208 return rv;
11209 }
11210
11211 static int
11212 wm_check_mng_mode_ich8lan(struct wm_softc *sc)
11213 {
11214 uint32_t fwsm;
11215
11216 fwsm = CSR_READ(sc, WMREG_FWSM);
11217
11218 if (((fwsm & FWSM_FW_VALID) != 0)
11219 && (__SHIFTOUT(fwsm, FWSM_MODE) == MNG_ICH_IAMT_MODE))
11220 return 1;
11221
11222 return 0;
11223 }
11224
11225 static int
11226 wm_check_mng_mode_82574(struct wm_softc *sc)
11227 {
11228 uint16_t data;
11229
11230 wm_nvm_read(sc, NVM_OFF_CFG2, 1, &data);
11231
11232 if ((data & NVM_CFG2_MNGM_MASK) != 0)
11233 return 1;
11234
11235 return 0;
11236 }
11237
11238 static int
11239 wm_check_mng_mode_generic(struct wm_softc *sc)
11240 {
11241 uint32_t fwsm;
11242
11243 fwsm = CSR_READ(sc, WMREG_FWSM);
11244
11245 if (__SHIFTOUT(fwsm, FWSM_MODE) == MNG_IAMT_MODE)
11246 return 1;
11247
11248 return 0;
11249 }
11250 #endif /* WM_WOL */
11251
11252 static int
11253 wm_enable_mng_pass_thru(struct wm_softc *sc)
11254 {
11255 uint32_t manc, fwsm, factps;
11256
11257 if ((sc->sc_flags & WM_F_ASF_FIRMWARE_PRES) == 0)
11258 return 0;
11259
11260 manc = CSR_READ(sc, WMREG_MANC);
11261
11262 DPRINTF(WM_DEBUG_MANAGE, ("%s: MANC (%08x)\n",
11263 device_xname(sc->sc_dev), manc));
11264 if ((manc & MANC_RECV_TCO_EN) == 0)
11265 return 0;
11266
11267 if ((sc->sc_flags & WM_F_ARC_SUBSYS_VALID) != 0) {
11268 fwsm = CSR_READ(sc, WMREG_FWSM);
11269 factps = CSR_READ(sc, WMREG_FACTPS);
11270 if (((factps & FACTPS_MNGCG) == 0)
11271 && (__SHIFTOUT(fwsm, FWSM_MODE) == MNG_ICH_IAMT_MODE))
11272 return 1;
11273 } else if ((sc->sc_type == WM_T_82574) || (sc->sc_type == WM_T_82583)){
11274 uint16_t data;
11275
11276 factps = CSR_READ(sc, WMREG_FACTPS);
11277 wm_nvm_read(sc, NVM_OFF_CFG2, 1, &data);
11278 DPRINTF(WM_DEBUG_MANAGE, ("%s: FACTPS = %08x, CFG2=%04x\n",
11279 device_xname(sc->sc_dev), factps, data));
11280 if (((factps & FACTPS_MNGCG) == 0)
11281 && ((data & NVM_CFG2_MNGM_MASK)
11282 == (NVM_CFG2_MNGM_PT << NVM_CFG2_MNGM_SHIFT)))
11283 return 1;
11284 } else if (((manc & MANC_SMBUS_EN) != 0)
11285 && ((manc & MANC_ASF_EN) == 0))
11286 return 1;
11287
11288 return 0;
11289 }
11290
11291 static bool
11292 wm_phy_resetisblocked(struct wm_softc *sc)
11293 {
11294 bool blocked = false;
11295 uint32_t reg;
11296 int i = 0;
11297
11298 switch (sc->sc_type) {
11299 case WM_T_ICH8:
11300 case WM_T_ICH9:
11301 case WM_T_ICH10:
11302 case WM_T_PCH:
11303 case WM_T_PCH2:
11304 case WM_T_PCH_LPT:
11305 case WM_T_PCH_SPT:
11306 do {
11307 reg = CSR_READ(sc, WMREG_FWSM);
11308 if ((reg & FWSM_RSPCIPHY) == 0) {
11309 blocked = true;
11310 delay(10*1000);
11311 continue;
11312 }
11313 blocked = false;
11314 } while (blocked && (i++ < 10));
11315 return blocked;
11316 break;
11317 case WM_T_82571:
11318 case WM_T_82572:
11319 case WM_T_82573:
11320 case WM_T_82574:
11321 case WM_T_82583:
11322 case WM_T_80003:
11323 reg = CSR_READ(sc, WMREG_MANC);
11324 if ((reg & MANC_BLK_PHY_RST_ON_IDE) != 0)
11325 return true;
11326 else
11327 return false;
11328 break;
11329 default:
11330 /* no problem */
11331 break;
11332 }
11333
11334 return false;
11335 }
11336
11337 static void
11338 wm_get_hw_control(struct wm_softc *sc)
11339 {
11340 uint32_t reg;
11341
11342 switch (sc->sc_type) {
11343 case WM_T_82573:
11344 reg = CSR_READ(sc, WMREG_SWSM);
11345 CSR_WRITE(sc, WMREG_SWSM, reg | SWSM_DRV_LOAD);
11346 break;
11347 case WM_T_82571:
11348 case WM_T_82572:
11349 case WM_T_82574:
11350 case WM_T_82583:
11351 case WM_T_80003:
11352 case WM_T_ICH8:
11353 case WM_T_ICH9:
11354 case WM_T_ICH10:
11355 case WM_T_PCH:
11356 case WM_T_PCH2:
11357 case WM_T_PCH_LPT:
11358 case WM_T_PCH_SPT:
11359 reg = CSR_READ(sc, WMREG_CTRL_EXT);
11360 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_DRV_LOAD);
11361 break;
11362 default:
11363 break;
11364 }
11365 }
11366
11367 static void
11368 wm_release_hw_control(struct wm_softc *sc)
11369 {
11370 uint32_t reg;
11371
11372 if ((sc->sc_flags & WM_F_HAS_MANAGE) == 0)
11373 return;
11374
11375 if (sc->sc_type == WM_T_82573) {
11376 reg = CSR_READ(sc, WMREG_SWSM);
11377 reg &= ~SWSM_DRV_LOAD;
11378 CSR_WRITE(sc, WMREG_SWSM, reg & ~SWSM_DRV_LOAD);
11379 } else {
11380 reg = CSR_READ(sc, WMREG_CTRL_EXT);
11381 CSR_WRITE(sc, WMREG_CTRL_EXT, reg & ~CTRL_EXT_DRV_LOAD);
11382 }
11383 }
11384
11385 static void
11386 wm_gate_hw_phy_config_ich8lan(struct wm_softc *sc, bool gate)
11387 {
11388 uint32_t reg;
11389
11390 if (sc->sc_type < WM_T_PCH2)
11391 return;
11392
11393 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
11394
11395 if (gate)
11396 reg |= EXTCNFCTR_GATE_PHY_CFG;
11397 else
11398 reg &= ~EXTCNFCTR_GATE_PHY_CFG;
11399
11400 CSR_WRITE(sc, WMREG_EXTCNFCTR, reg);
11401 }
11402
11403 static void
11404 wm_smbustopci(struct wm_softc *sc)
11405 {
11406 uint32_t fwsm, reg;
11407
11408 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
11409 wm_gate_hw_phy_config_ich8lan(sc, true);
11410
11411 /* Acquire semaphore */
11412 wm_get_swfwhw_semaphore(sc);
11413
11414 fwsm = CSR_READ(sc, WMREG_FWSM);
11415 if (((fwsm & FWSM_FW_VALID) == 0)
11416 && ((wm_phy_resetisblocked(sc) == false))) {
11417 if (sc->sc_type >= WM_T_PCH_LPT) {
11418 reg = CSR_READ(sc, WMREG_CTRL_EXT);
11419 reg |= CTRL_EXT_FORCE_SMBUS;
11420 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
11421 CSR_WRITE_FLUSH(sc);
11422 delay(50*1000);
11423 }
11424
11425 /* Toggle LANPHYPC */
11426 sc->sc_ctrl |= CTRL_LANPHYPC_OVERRIDE;
11427 sc->sc_ctrl &= ~CTRL_LANPHYPC_VALUE;
11428 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
11429 CSR_WRITE_FLUSH(sc);
11430 delay(10);
11431 sc->sc_ctrl &= ~CTRL_LANPHYPC_OVERRIDE;
11432 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
11433 CSR_WRITE_FLUSH(sc);
11434 delay(50*1000);
11435
11436 if (sc->sc_type >= WM_T_PCH_LPT) {
11437 reg = CSR_READ(sc, WMREG_CTRL_EXT);
11438 reg &= ~CTRL_EXT_FORCE_SMBUS;
11439 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
11440 }
11441 }
11442
11443 /* Release semaphore */
11444 wm_put_swfwhw_semaphore(sc);
11445
11446 /*
11447 * Ungate automatic PHY configuration by hardware on non-managed 82579
11448 */
11449 if ((sc->sc_type == WM_T_PCH2) && ((fwsm & FWSM_FW_VALID) == 0))
11450 wm_gate_hw_phy_config_ich8lan(sc, false);
11451 }
11452
11453 static void
11454 wm_init_manageability(struct wm_softc *sc)
11455 {
11456
11457 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
11458 device_xname(sc->sc_dev), __func__));
11459 if (sc->sc_flags & WM_F_HAS_MANAGE) {
11460 uint32_t manc2h = CSR_READ(sc, WMREG_MANC2H);
11461 uint32_t manc = CSR_READ(sc, WMREG_MANC);
11462
11463 /* Disable hardware interception of ARP */
11464 manc &= ~MANC_ARP_EN;
11465
11466 /* Enable receiving management packets to the host */
11467 if (sc->sc_type >= WM_T_82571) {
11468 manc |= MANC_EN_MNG2HOST;
11469 manc2h |= MANC2H_PORT_623| MANC2H_PORT_624;
11470 CSR_WRITE(sc, WMREG_MANC2H, manc2h);
11471 }
11472
11473 CSR_WRITE(sc, WMREG_MANC, manc);
11474 }
11475 }
11476
11477 static void
11478 wm_release_manageability(struct wm_softc *sc)
11479 {
11480
11481 if (sc->sc_flags & WM_F_HAS_MANAGE) {
11482 uint32_t manc = CSR_READ(sc, WMREG_MANC);
11483
11484 manc |= MANC_ARP_EN;
11485 if (sc->sc_type >= WM_T_82571)
11486 manc &= ~MANC_EN_MNG2HOST;
11487
11488 CSR_WRITE(sc, WMREG_MANC, manc);
11489 }
11490 }
11491
11492 static void
11493 wm_get_wakeup(struct wm_softc *sc)
11494 {
11495
11496 /* 0: HAS_AMT, ARC_SUBSYS_VALID, ASF_FIRMWARE_PRES */
11497 switch (sc->sc_type) {
11498 case WM_T_82573:
11499 case WM_T_82583:
11500 sc->sc_flags |= WM_F_HAS_AMT;
11501 /* FALLTHROUGH */
11502 case WM_T_80003:
11503 case WM_T_82541:
11504 case WM_T_82547:
11505 case WM_T_82571:
11506 case WM_T_82572:
11507 case WM_T_82574:
11508 case WM_T_82575:
11509 case WM_T_82576:
11510 case WM_T_82580:
11511 case WM_T_I350:
11512 case WM_T_I354:
11513 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_MODE) != 0)
11514 sc->sc_flags |= WM_F_ARC_SUBSYS_VALID;
11515 sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES;
11516 break;
11517 case WM_T_ICH8:
11518 case WM_T_ICH9:
11519 case WM_T_ICH10:
11520 case WM_T_PCH:
11521 case WM_T_PCH2:
11522 case WM_T_PCH_LPT:
11523 case WM_T_PCH_SPT: /* XXX only Q170 chipset? */
11524 sc->sc_flags |= WM_F_HAS_AMT;
11525 sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES;
11526 break;
11527 default:
11528 break;
11529 }
11530
11531 /* 1: HAS_MANAGE */
11532 if (wm_enable_mng_pass_thru(sc) != 0)
11533 sc->sc_flags |= WM_F_HAS_MANAGE;
11534
11535 #ifdef WM_DEBUG
11536 printf("\n");
11537 if ((sc->sc_flags & WM_F_HAS_AMT) != 0)
11538 printf("HAS_AMT,");
11539 if ((sc->sc_flags & WM_F_ARC_SUBSYS_VALID) != 0)
11540 printf("ARC_SUBSYS_VALID,");
11541 if ((sc->sc_flags & WM_F_ASF_FIRMWARE_PRES) != 0)
11542 printf("ASF_FIRMWARE_PRES,");
11543 if ((sc->sc_flags & WM_F_HAS_MANAGE) != 0)
11544 printf("HAS_MANAGE,");
11545 printf("\n");
11546 #endif
11547 /*
11548 * Note that the WOL flags is set after the resetting of the eeprom
11549 * stuff
11550 */
11551 }
11552
11553 #ifdef WM_WOL
11554 /* WOL in the newer chipset interfaces (pchlan) */
11555 static void
11556 wm_enable_phy_wakeup(struct wm_softc *sc)
11557 {
11558 #if 0
11559 uint16_t preg;
11560
11561 /* Copy MAC RARs to PHY RARs */
11562
11563 /* Copy MAC MTA to PHY MTA */
11564
11565 /* Configure PHY Rx Control register */
11566
11567 /* Enable PHY wakeup in MAC register */
11568
11569 /* Configure and enable PHY wakeup in PHY registers */
11570
11571 /* Activate PHY wakeup */
11572
11573 /* XXX */
11574 #endif
11575 }
11576
11577 /* Power down workaround on D3 */
11578 static void
11579 wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *sc)
11580 {
11581 uint32_t reg;
11582 int i;
11583
11584 for (i = 0; i < 2; i++) {
11585 /* Disable link */
11586 reg = CSR_READ(sc, WMREG_PHY_CTRL);
11587 reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS;
11588 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
11589
11590 /*
11591 * Call gig speed drop workaround on Gig disable before
11592 * accessing any PHY registers
11593 */
11594 if (sc->sc_type == WM_T_ICH8)
11595 wm_gig_downshift_workaround_ich8lan(sc);
11596
11597 /* Write VR power-down enable */
11598 reg = sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL);
11599 reg &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
11600 reg |= IGP3_VR_CTRL_MODE_SHUTDOWN;
11601 sc->sc_mii.mii_writereg(sc->sc_dev, 1, IGP3_VR_CTRL, reg);
11602
11603 /* Read it back and test */
11604 reg = sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL);
11605 reg &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
11606 if ((reg == IGP3_VR_CTRL_MODE_SHUTDOWN) || (i != 0))
11607 break;
11608
11609 /* Issue PHY reset and repeat at most one more time */
11610 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
11611 }
11612 }
11613
11614 static void
11615 wm_enable_wakeup(struct wm_softc *sc)
11616 {
11617 uint32_t reg, pmreg;
11618 pcireg_t pmode;
11619
11620 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PWRMGMT,
11621 &pmreg, NULL) == 0)
11622 return;
11623
11624 /* Advertise the wakeup capability */
11625 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_SWDPIN(2)
11626 | CTRL_SWDPIN(3));
11627 CSR_WRITE(sc, WMREG_WUC, WUC_APME);
11628
11629 /* ICH workaround */
11630 switch (sc->sc_type) {
11631 case WM_T_ICH8:
11632 case WM_T_ICH9:
11633 case WM_T_ICH10:
11634 case WM_T_PCH:
11635 case WM_T_PCH2:
11636 case WM_T_PCH_LPT:
11637 case WM_T_PCH_SPT:
11638 /* Disable gig during WOL */
11639 reg = CSR_READ(sc, WMREG_PHY_CTRL);
11640 reg |= PHY_CTRL_D0A_LPLU | PHY_CTRL_GBE_DIS;
11641 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
11642 if (sc->sc_type == WM_T_PCH)
11643 wm_gmii_reset(sc);
11644
11645 /* Power down workaround */
11646 if (sc->sc_phytype == WMPHY_82577) {
11647 struct mii_softc *child;
11648
11649 /* Assume that the PHY is copper */
11650 child = LIST_FIRST(&sc->sc_mii.mii_phys);
11651 if (child->mii_mpd_rev <= 2)
11652 sc->sc_mii.mii_writereg(sc->sc_dev, 1,
11653 (768 << 5) | 25, 0x0444); /* magic num */
11654 }
11655 break;
11656 default:
11657 break;
11658 }
11659
11660 /* Keep the laser running on fiber adapters */
11661 if ((sc->sc_mediatype == WM_MEDIATYPE_FIBER)
11662 || (sc->sc_mediatype == WM_MEDIATYPE_SERDES)) {
11663 reg = CSR_READ(sc, WMREG_CTRL_EXT);
11664 reg |= CTRL_EXT_SWDPIN(3);
11665 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
11666 }
11667
11668 reg = CSR_READ(sc, WMREG_WUFC) | WUFC_MAG;
11669 #if 0 /* for the multicast packet */
11670 reg |= WUFC_MC;
11671 CSR_WRITE(sc, WMREG_RCTL, CSR_READ(sc, WMREG_RCTL) | RCTL_MPE);
11672 #endif
11673
11674 if (sc->sc_type == WM_T_PCH) {
11675 wm_enable_phy_wakeup(sc);
11676 } else {
11677 CSR_WRITE(sc, WMREG_WUC, WUC_PME_EN);
11678 CSR_WRITE(sc, WMREG_WUFC, reg);
11679 }
11680
11681 if (((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
11682 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
11683 || (sc->sc_type == WM_T_PCH2))
11684 && (sc->sc_phytype == WMPHY_IGP_3))
11685 wm_igp3_phy_powerdown_workaround_ich8lan(sc);
11686
11687 /* Request PME */
11688 pmode = pci_conf_read(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR);
11689 #if 0
11690 /* Disable WOL */
11691 pmode &= ~(PCI_PMCSR_PME_STS | PCI_PMCSR_PME_EN);
11692 #else
11693 /* For WOL */
11694 pmode |= PCI_PMCSR_PME_STS | PCI_PMCSR_PME_EN;
11695 #endif
11696 pci_conf_write(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR, pmode);
11697 }
11698 #endif /* WM_WOL */
11699
11700 /* LPLU */
11701
11702 static void
11703 wm_lplu_d0_disable(struct wm_softc *sc)
11704 {
11705 uint32_t reg;
11706
11707 reg = CSR_READ(sc, WMREG_PHY_CTRL);
11708 reg &= ~(PHY_CTRL_GBE_DIS | PHY_CTRL_D0A_LPLU);
11709 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
11710 }
11711
11712 static void
11713 wm_lplu_d0_disable_pch(struct wm_softc *sc)
11714 {
11715 uint32_t reg;
11716
11717 reg = wm_gmii_hv_readreg(sc->sc_dev, 1, HV_OEM_BITS);
11718 reg &= ~(HV_OEM_BITS_A1KDIS | HV_OEM_BITS_LPLU);
11719 reg |= HV_OEM_BITS_ANEGNOW;
11720 wm_gmii_hv_writereg(sc->sc_dev, 1, HV_OEM_BITS, reg);
11721 }
11722
11723 /* EEE */
11724
11725 static void
11726 wm_set_eee_i350(struct wm_softc *sc)
11727 {
11728 uint32_t ipcnfg, eeer;
11729
11730 ipcnfg = CSR_READ(sc, WMREG_IPCNFG);
11731 eeer = CSR_READ(sc, WMREG_EEER);
11732
11733 if ((sc->sc_flags & WM_F_EEE) != 0) {
11734 ipcnfg |= (IPCNFG_EEE_1G_AN | IPCNFG_EEE_100M_AN);
11735 eeer |= (EEER_TX_LPI_EN | EEER_RX_LPI_EN
11736 | EEER_LPI_FC);
11737 } else {
11738 ipcnfg &= ~(IPCNFG_EEE_1G_AN | IPCNFG_EEE_100M_AN);
11739 ipcnfg &= ~IPCNFG_10BASE_TE;
11740 eeer &= ~(EEER_TX_LPI_EN | EEER_RX_LPI_EN
11741 | EEER_LPI_FC);
11742 }
11743
11744 CSR_WRITE(sc, WMREG_IPCNFG, ipcnfg);
11745 CSR_WRITE(sc, WMREG_EEER, eeer);
11746 CSR_READ(sc, WMREG_IPCNFG); /* XXX flush? */
11747 CSR_READ(sc, WMREG_EEER); /* XXX flush? */
11748 }
11749
11750 /*
11751 * Workarounds (mainly PHY related).
11752 * Basically, PHY's workarounds are in the PHY drivers.
11753 */
11754
11755 /* Work-around for 82566 Kumeran PCS lock loss */
11756 static void
11757 wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *sc)
11758 {
11759 #if 0
11760 int miistatus, active, i;
11761 int reg;
11762
11763 miistatus = sc->sc_mii.mii_media_status;
11764
11765 /* If the link is not up, do nothing */
11766 if ((miistatus & IFM_ACTIVE) == 0)
11767 return;
11768
11769 active = sc->sc_mii.mii_media_active;
11770
11771 /* Nothing to do if the link is other than 1Gbps */
11772 if (IFM_SUBTYPE(active) != IFM_1000_T)
11773 return;
11774
11775 for (i = 0; i < 10; i++) {
11776 /* read twice */
11777 reg = wm_gmii_i80003_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG);
11778 reg = wm_gmii_i80003_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG);
11779 if ((reg & IGP3_KMRN_DIAG_PCS_LOCK_LOSS) == 0)
11780 goto out; /* GOOD! */
11781
11782 /* Reset the PHY */
11783 wm_gmii_reset(sc);
11784 delay(5*1000);
11785 }
11786
11787 /* Disable GigE link negotiation */
11788 reg = CSR_READ(sc, WMREG_PHY_CTRL);
11789 reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS;
11790 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
11791
11792 /*
11793 * Call gig speed drop workaround on Gig disable before accessing
11794 * any PHY registers.
11795 */
11796 wm_gig_downshift_workaround_ich8lan(sc);
11797
11798 out:
11799 return;
11800 #endif
11801 }
11802
11803 /* WOL from S5 stops working */
11804 static void
11805 wm_gig_downshift_workaround_ich8lan(struct wm_softc *sc)
11806 {
11807 uint16_t kmrn_reg;
11808
11809 /* Only for igp3 */
11810 if (sc->sc_phytype == WMPHY_IGP_3) {
11811 kmrn_reg = wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_DIAG);
11812 kmrn_reg |= KUMCTRLSTA_DIAG_NELPBK;
11813 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmrn_reg);
11814 kmrn_reg &= ~KUMCTRLSTA_DIAG_NELPBK;
11815 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmrn_reg);
11816 }
11817 }
11818
11819 /*
11820 * Workaround for pch's PHYs
11821 * XXX should be moved to new PHY driver?
11822 */
11823 static void
11824 wm_hv_phy_workaround_ich8lan(struct wm_softc *sc)
11825 {
11826 if (sc->sc_phytype == WMPHY_82577)
11827 wm_set_mdio_slow_mode_hv(sc);
11828
11829 /* (PCH rev.2) && (82577 && (phy rev 2 or 3)) */
11830
11831 /* (82577 && (phy rev 1 or 2)) || (82578 & phy rev 1)*/
11832
11833 /* 82578 */
11834 if (sc->sc_phytype == WMPHY_82578) {
11835 /* PCH rev. < 3 */
11836 if (sc->sc_rev < 3) {
11837 /* XXX 6 bit shift? Why? Is it page2? */
11838 wm_gmii_hv_writereg(sc->sc_dev, 1, ((1 << 6) | 0x29),
11839 0x66c0);
11840 wm_gmii_hv_writereg(sc->sc_dev, 1, ((1 << 6) | 0x1e),
11841 0xffff);
11842 }
11843
11844 /* XXX phy rev. < 2 */
11845 }
11846
11847 /* Select page 0 */
11848
11849 /* XXX acquire semaphore */
11850 wm_gmii_i82544_writereg(sc->sc_dev, 1, MII_IGPHY_PAGE_SELECT, 0);
11851 /* XXX release semaphore */
11852
11853 /*
11854 * Configure the K1 Si workaround during phy reset assuming there is
11855 * link so that it disables K1 if link is in 1Gbps.
11856 */
11857 wm_k1_gig_workaround_hv(sc, 1);
11858 }
11859
11860 static void
11861 wm_lv_phy_workaround_ich8lan(struct wm_softc *sc)
11862 {
11863
11864 wm_set_mdio_slow_mode_hv(sc);
11865 }
11866
11867 static void
11868 wm_k1_gig_workaround_hv(struct wm_softc *sc, int link)
11869 {
11870 int k1_enable = sc->sc_nvm_k1_enabled;
11871
11872 /* XXX acquire semaphore */
11873
11874 if (link) {
11875 k1_enable = 0;
11876
11877 /* Link stall fix for link up */
11878 wm_gmii_hv_writereg(sc->sc_dev, 1, IGP3_KMRN_DIAG, 0x0100);
11879 } else {
11880 /* Link stall fix for link down */
11881 wm_gmii_hv_writereg(sc->sc_dev, 1, IGP3_KMRN_DIAG, 0x4100);
11882 }
11883
11884 wm_configure_k1_ich8lan(sc, k1_enable);
11885
11886 /* XXX release semaphore */
11887 }
11888
11889 static void
11890 wm_set_mdio_slow_mode_hv(struct wm_softc *sc)
11891 {
11892 uint32_t reg;
11893
11894 reg = wm_gmii_hv_readreg(sc->sc_dev, 1, HV_KMRN_MODE_CTRL);
11895 wm_gmii_hv_writereg(sc->sc_dev, 1, HV_KMRN_MODE_CTRL,
11896 reg | HV_KMRN_MDIO_SLOW);
11897 }
11898
11899 static void
11900 wm_configure_k1_ich8lan(struct wm_softc *sc, int k1_enable)
11901 {
11902 uint32_t ctrl, ctrl_ext, tmp;
11903 uint16_t kmrn_reg;
11904
11905 kmrn_reg = wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_K1_CONFIG);
11906
11907 if (k1_enable)
11908 kmrn_reg |= KUMCTRLSTA_K1_ENABLE;
11909 else
11910 kmrn_reg &= ~KUMCTRLSTA_K1_ENABLE;
11911
11912 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_K1_CONFIG, kmrn_reg);
11913
11914 delay(20);
11915
11916 ctrl = CSR_READ(sc, WMREG_CTRL);
11917 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
11918
11919 tmp = ctrl & ~(CTRL_SPEED_1000 | CTRL_SPEED_100);
11920 tmp |= CTRL_FRCSPD;
11921
11922 CSR_WRITE(sc, WMREG_CTRL, tmp);
11923 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext | CTRL_EXT_SPD_BYPS);
11924 CSR_WRITE_FLUSH(sc);
11925 delay(20);
11926
11927 CSR_WRITE(sc, WMREG_CTRL, ctrl);
11928 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
11929 CSR_WRITE_FLUSH(sc);
11930 delay(20);
11931 }
11932
11933 /* special case - for 82575 - need to do manual init ... */
11934 static void
11935 wm_reset_init_script_82575(struct wm_softc *sc)
11936 {
11937 /*
11938 * remark: this is untested code - we have no board without EEPROM
11939 * same setup as mentioned int the FreeBSD driver for the i82575
11940 */
11941
11942 /* SerDes configuration via SERDESCTRL */
11943 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x00, 0x0c);
11944 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x01, 0x78);
11945 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x1b, 0x23);
11946 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x23, 0x15);
11947
11948 /* CCM configuration via CCMCTL register */
11949 wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x14, 0x00);
11950 wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x10, 0x00);
11951
11952 /* PCIe lanes configuration */
11953 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x00, 0xec);
11954 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x61, 0xdf);
11955 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x34, 0x05);
11956 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x2f, 0x81);
11957
11958 /* PCIe PLL Configuration */
11959 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x02, 0x47);
11960 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x14, 0x00);
11961 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x10, 0x00);
11962 }
11963
11964 static void
11965 wm_reset_mdicnfg_82580(struct wm_softc *sc)
11966 {
11967 uint32_t reg;
11968 uint16_t nvmword;
11969 int rv;
11970
11971 if ((sc->sc_flags & WM_F_SGMII) == 0)
11972 return;
11973
11974 rv = wm_nvm_read(sc, NVM_OFF_LAN_FUNC_82580(sc->sc_funcid)
11975 + NVM_OFF_CFG3_PORTA, 1, &nvmword);
11976 if (rv != 0) {
11977 aprint_error_dev(sc->sc_dev, "%s: failed to read NVM\n",
11978 __func__);
11979 return;
11980 }
11981
11982 reg = CSR_READ(sc, WMREG_MDICNFG);
11983 if (nvmword & NVM_CFG3_PORTA_EXT_MDIO)
11984 reg |= MDICNFG_DEST;
11985 if (nvmword & NVM_CFG3_PORTA_COM_MDIO)
11986 reg |= MDICNFG_COM_MDIO;
11987 CSR_WRITE(sc, WMREG_MDICNFG, reg);
11988 }
11989
11990 /*
11991 * I210 Errata 25 and I211 Errata 10
11992 * Slow System Clock.
11993 */
11994 static void
11995 wm_pll_workaround_i210(struct wm_softc *sc)
11996 {
11997 uint32_t mdicnfg, wuc;
11998 uint32_t reg;
11999 pcireg_t pcireg;
12000 uint32_t pmreg;
12001 uint16_t nvmword, tmp_nvmword;
12002 int phyval;
12003 bool wa_done = false;
12004 int i;
12005
12006 /* Save WUC and MDICNFG registers */
12007 wuc = CSR_READ(sc, WMREG_WUC);
12008 mdicnfg = CSR_READ(sc, WMREG_MDICNFG);
12009
12010 reg = mdicnfg & ~MDICNFG_DEST;
12011 CSR_WRITE(sc, WMREG_MDICNFG, reg);
12012
12013 if (wm_nvm_read(sc, INVM_AUTOLOAD, 1, &nvmword) != 0)
12014 nvmword = INVM_DEFAULT_AL;
12015 tmp_nvmword = nvmword | INVM_PLL_WO_VAL;
12016
12017 /* Get Power Management cap offset */
12018 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PWRMGMT,
12019 &pmreg, NULL) == 0)
12020 return;
12021 for (i = 0; i < WM_MAX_PLL_TRIES; i++) {
12022 phyval = wm_gmii_gs40g_readreg(sc->sc_dev, 1,
12023 GS40G_PHY_PLL_FREQ_PAGE | GS40G_PHY_PLL_FREQ_REG);
12024
12025 if ((phyval & GS40G_PHY_PLL_UNCONF) != GS40G_PHY_PLL_UNCONF) {
12026 break; /* OK */
12027 }
12028
12029 wa_done = true;
12030 /* Directly reset the internal PHY */
12031 reg = CSR_READ(sc, WMREG_CTRL);
12032 CSR_WRITE(sc, WMREG_CTRL, reg | CTRL_PHY_RESET);
12033
12034 reg = CSR_READ(sc, WMREG_CTRL_EXT);
12035 reg |= CTRL_EXT_PHYPDEN | CTRL_EXT_SDLPE;
12036 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
12037
12038 CSR_WRITE(sc, WMREG_WUC, 0);
12039 reg = (INVM_AUTOLOAD << 4) | (tmp_nvmword << 16);
12040 CSR_WRITE(sc, WMREG_EEARBC_I210, reg);
12041
12042 pcireg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
12043 pmreg + PCI_PMCSR);
12044 pcireg |= PCI_PMCSR_STATE_D3;
12045 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
12046 pmreg + PCI_PMCSR, pcireg);
12047 delay(1000);
12048 pcireg &= ~PCI_PMCSR_STATE_D3;
12049 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
12050 pmreg + PCI_PMCSR, pcireg);
12051
12052 reg = (INVM_AUTOLOAD << 4) | (nvmword << 16);
12053 CSR_WRITE(sc, WMREG_EEARBC_I210, reg);
12054
12055 /* Restore WUC register */
12056 CSR_WRITE(sc, WMREG_WUC, wuc);
12057 }
12058
12059 /* Restore MDICNFG setting */
12060 CSR_WRITE(sc, WMREG_MDICNFG, mdicnfg);
12061 if (wa_done)
12062 aprint_verbose_dev(sc->sc_dev, "I210 workaround done\n");
12063 }
12064