if_wm.c revision 1.424 1 /* $NetBSD: if_wm.c,v 1.424 2016/10/21 04:41:09 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*******************************************************************************
39
40 Copyright (c) 2001-2005, Intel Corporation
41 All rights reserved.
42
43 Redistribution and use in source and binary forms, with or without
44 modification, are permitted provided that the following conditions are met:
45
46 1. Redistributions of source code must retain the above copyright notice,
47 this list of conditions and the following disclaimer.
48
49 2. Redistributions in binary form must reproduce the above copyright
50 notice, this list of conditions and the following disclaimer in the
51 documentation and/or other materials provided with the distribution.
52
53 3. Neither the name of the Intel Corporation nor the names of its
54 contributors may be used to endorse or promote products derived from
55 this software without specific prior written permission.
56
57 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
58 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
61 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67 POSSIBILITY OF SUCH DAMAGE.
68
69 *******************************************************************************/
70 /*
71 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
72 *
73 * TODO (in order of importance):
74 *
75 * - Check XXX'ed comments
76 * - Disable D0 LPLU on 8257[12356], 82580 and I350.
77 * - TX Multi queue improvement (refine queue selection logic)
78 * - Advanced Receive Descriptor
79 * - EEE (Energy Efficiency Ethernet)
80 * - Virtual Function
81 * - Set LED correctly (based on contents in EEPROM)
82 * - Rework how parameters are loaded from the EEPROM.
83 * - Image Unique ID
84 */
85
86 #include <sys/cdefs.h>
87 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.424 2016/10/21 04:41:09 msaitoh Exp $");
88
89 #ifdef _KERNEL_OPT
90 #include "opt_net_mpsafe.h"
91 #endif
92
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/callout.h>
96 #include <sys/mbuf.h>
97 #include <sys/malloc.h>
98 #include <sys/kmem.h>
99 #include <sys/kernel.h>
100 #include <sys/socket.h>
101 #include <sys/ioctl.h>
102 #include <sys/errno.h>
103 #include <sys/device.h>
104 #include <sys/queue.h>
105 #include <sys/syslog.h>
106 #include <sys/interrupt.h>
107 #include <sys/cpu.h>
108 #include <sys/pcq.h>
109
110 #include <sys/rndsource.h>
111
112 #include <net/if.h>
113 #include <net/if_dl.h>
114 #include <net/if_media.h>
115 #include <net/if_ether.h>
116
117 #include <net/bpf.h>
118
119 #include <netinet/in.h> /* XXX for struct ip */
120 #include <netinet/in_systm.h> /* XXX for struct ip */
121 #include <netinet/ip.h> /* XXX for struct ip */
122 #include <netinet/ip6.h> /* XXX for struct ip6_hdr */
123 #include <netinet/tcp.h> /* XXX for struct tcphdr */
124
125 #include <sys/bus.h>
126 #include <sys/intr.h>
127 #include <machine/endian.h>
128
129 #include <dev/mii/mii.h>
130 #include <dev/mii/miivar.h>
131 #include <dev/mii/miidevs.h>
132 #include <dev/mii/mii_bitbang.h>
133 #include <dev/mii/ikphyreg.h>
134 #include <dev/mii/igphyreg.h>
135 #include <dev/mii/igphyvar.h>
136 #include <dev/mii/inbmphyreg.h>
137
138 #include <dev/pci/pcireg.h>
139 #include <dev/pci/pcivar.h>
140 #include <dev/pci/pcidevs.h>
141
142 #include <dev/pci/if_wmreg.h>
143 #include <dev/pci/if_wmvar.h>
144
145 #ifdef WM_DEBUG
146 #define WM_DEBUG_LINK __BIT(0)
147 #define WM_DEBUG_TX __BIT(1)
148 #define WM_DEBUG_RX __BIT(2)
149 #define WM_DEBUG_GMII __BIT(3)
150 #define WM_DEBUG_MANAGE __BIT(4)
151 #define WM_DEBUG_NVM __BIT(5)
152 #define WM_DEBUG_INIT __BIT(6)
153 #define WM_DEBUG_LOCK __BIT(7)
154 int wm_debug = WM_DEBUG_TX | WM_DEBUG_RX | WM_DEBUG_LINK | WM_DEBUG_GMII
155 | WM_DEBUG_MANAGE | WM_DEBUG_NVM | WM_DEBUG_INIT | WM_DEBUG_LOCK;
156
157 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
158 #else
159 #define DPRINTF(x, y) /* nothing */
160 #endif /* WM_DEBUG */
161
162 #ifdef NET_MPSAFE
163 #define WM_MPSAFE 1
164 #endif
165
166 /*
167 * This device driver's max interrupt numbers.
168 */
169 #define WM_MAX_NQUEUEINTR 16
170 #define WM_MAX_NINTR (WM_MAX_NQUEUEINTR + 1)
171
172 /*
173 * Transmit descriptor list size. Due to errata, we can only have
174 * 256 hardware descriptors in the ring on < 82544, but we use 4096
175 * on >= 82544. We tell the upper layers that they can queue a lot
176 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
177 * of them at a time.
178 *
179 * We allow up to 256 (!) DMA segments per packet. Pathological packet
180 * chains containing many small mbufs have been observed in zero-copy
181 * situations with jumbo frames.
182 */
183 #define WM_NTXSEGS 256
184 #define WM_IFQUEUELEN 256
185 #define WM_TXQUEUELEN_MAX 64
186 #define WM_TXQUEUELEN_MAX_82547 16
187 #define WM_TXQUEUELEN(txq) ((txq)->txq_num)
188 #define WM_TXQUEUELEN_MASK(txq) (WM_TXQUEUELEN(txq) - 1)
189 #define WM_TXQUEUE_GC(txq) (WM_TXQUEUELEN(txq) / 8)
190 #define WM_NTXDESC_82542 256
191 #define WM_NTXDESC_82544 4096
192 #define WM_NTXDESC(txq) ((txq)->txq_ndesc)
193 #define WM_NTXDESC_MASK(txq) (WM_NTXDESC(txq) - 1)
194 #define WM_TXDESCS_SIZE(txq) (WM_NTXDESC(txq) * (txq)->txq_descsize)
195 #define WM_NEXTTX(txq, x) (((x) + 1) & WM_NTXDESC_MASK(txq))
196 #define WM_NEXTTXS(txq, x) (((x) + 1) & WM_TXQUEUELEN_MASK(txq))
197
198 #define WM_MAXTXDMA (2 * round_page(IP_MAXPACKET)) /* for TSO */
199
200 #define WM_TXINTERQSIZE 256
201
202 /*
203 * Receive descriptor list size. We have one Rx buffer for normal
204 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
205 * packet. We allocate 256 receive descriptors, each with a 2k
206 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
207 */
208 #define WM_NRXDESC 256
209 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
210 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
211 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
212
213 typedef union txdescs {
214 wiseman_txdesc_t sctxu_txdescs[WM_NTXDESC_82544];
215 nq_txdesc_t sctxu_nq_txdescs[WM_NTXDESC_82544];
216 } txdescs_t;
217
218 #define WM_CDTXOFF(txq, x) ((txq)->txq_descsize * (x))
219 #define WM_CDRXOFF(x) (sizeof(wiseman_rxdesc_t) * x)
220
221 /*
222 * Software state for transmit jobs.
223 */
224 struct wm_txsoft {
225 struct mbuf *txs_mbuf; /* head of our mbuf chain */
226 bus_dmamap_t txs_dmamap; /* our DMA map */
227 int txs_firstdesc; /* first descriptor in packet */
228 int txs_lastdesc; /* last descriptor in packet */
229 int txs_ndesc; /* # of descriptors used */
230 };
231
232 /*
233 * Software state for receive buffers. Each descriptor gets a
234 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
235 * more than one buffer, we chain them together.
236 */
237 struct wm_rxsoft {
238 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
239 bus_dmamap_t rxs_dmamap; /* our DMA map */
240 };
241
242 #define WM_LINKUP_TIMEOUT 50
243
244 static uint16_t swfwphysem[] = {
245 SWFW_PHY0_SM,
246 SWFW_PHY1_SM,
247 SWFW_PHY2_SM,
248 SWFW_PHY3_SM
249 };
250
251 static const uint32_t wm_82580_rxpbs_table[] = {
252 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140
253 };
254
255 struct wm_softc;
256
257 #ifdef WM_EVENT_COUNTERS
258 #define WM_Q_EVCNT_DEFINE(qname, evname) \
259 char qname##_##evname##_evcnt_name[sizeof("qname##XX##evname")]; \
260 struct evcnt qname##_ev_##evname;
261
262 #define WM_Q_EVCNT_ATTACH(qname, evname, q, qnum, xname, evtype) \
263 do{ \
264 snprintf((q)->qname##_##evname##_evcnt_name, \
265 sizeof((q)->qname##_##evname##_evcnt_name), \
266 "%s%02d%s", #qname, (qnum), #evname); \
267 evcnt_attach_dynamic(&(q)->qname##_ev_##evname, \
268 (evtype), NULL, (xname), \
269 (q)->qname##_##evname##_evcnt_name); \
270 }while(0)
271
272 #define WM_Q_MISC_EVCNT_ATTACH(qname, evname, q, qnum, xname) \
273 WM_Q_EVCNT_ATTACH(qname, evname, q, qnum, xname, EVCNT_TYPE_MISC)
274
275 #define WM_Q_INTR_EVCNT_ATTACH(qname, evname, q, qnum, xname) \
276 WM_Q_EVCNT_ATTACH(qname, evname, q, qnum, xname, EVCNT_TYPE_INTR)
277 #endif /* WM_EVENT_COUNTERS */
278
279 struct wm_txqueue {
280 kmutex_t *txq_lock; /* lock for tx operations */
281
282 struct wm_softc *txq_sc; /* shortcut (skip struct wm_queue) */
283
284 /* Software state for the transmit descriptors. */
285 int txq_num; /* must be a power of two */
286 struct wm_txsoft txq_soft[WM_TXQUEUELEN_MAX];
287
288 /* TX control data structures. */
289 int txq_ndesc; /* must be a power of two */
290 size_t txq_descsize; /* a tx descriptor size */
291 txdescs_t *txq_descs_u;
292 bus_dmamap_t txq_desc_dmamap; /* control data DMA map */
293 bus_dma_segment_t txq_desc_seg; /* control data segment */
294 int txq_desc_rseg; /* real number of control segment */
295 #define txq_desc_dma txq_desc_dmamap->dm_segs[0].ds_addr
296 #define txq_descs txq_descs_u->sctxu_txdescs
297 #define txq_nq_descs txq_descs_u->sctxu_nq_txdescs
298
299 bus_addr_t txq_tdt_reg; /* offset of TDT register */
300
301 int txq_free; /* number of free Tx descriptors */
302 int txq_next; /* next ready Tx descriptor */
303
304 int txq_sfree; /* number of free Tx jobs */
305 int txq_snext; /* next free Tx job */
306 int txq_sdirty; /* dirty Tx jobs */
307
308 /* These 4 variables are used only on the 82547. */
309 int txq_fifo_size; /* Tx FIFO size */
310 int txq_fifo_head; /* current head of FIFO */
311 uint32_t txq_fifo_addr; /* internal address of start of FIFO */
312 int txq_fifo_stall; /* Tx FIFO is stalled */
313
314 /*
315 * When ncpu > number of Tx queues, a Tx queue is shared by multiple
316 * CPUs. This queue intermediate them without block.
317 */
318 pcq_t *txq_interq;
319
320 /*
321 * NEWQUEUE devices must use not ifp->if_flags but txq->txq_flags
322 * to manage Tx H/W queue's busy flag.
323 */
324 int txq_flags; /* flags for H/W queue, see below */
325 #define WM_TXQ_NO_SPACE 0x1
326
327 #ifdef WM_EVENT_COUNTERS
328 WM_Q_EVCNT_DEFINE(txq, txsstall) /* Tx stalled due to no txs */
329 WM_Q_EVCNT_DEFINE(txq, txdstall) /* Tx stalled due to no txd */
330 WM_Q_EVCNT_DEFINE(txq, txfifo_stall) /* Tx FIFO stalls (82547) */
331 WM_Q_EVCNT_DEFINE(txq, txdw) /* Tx descriptor interrupts */
332 WM_Q_EVCNT_DEFINE(txq, txqe) /* Tx queue empty interrupts */
333 /* XXX not used? */
334
335 WM_Q_EVCNT_DEFINE(txq, txipsum) /* IP checksums comp. out-bound */
336 WM_Q_EVCNT_DEFINE(txq,txtusum) /* TCP/UDP cksums comp. out-bound */
337 WM_Q_EVCNT_DEFINE(txq, txtusum6) /* TCP/UDP v6 cksums comp. out-bound */
338 WM_Q_EVCNT_DEFINE(txq, txtso) /* TCP seg offload out-bound (IPv4) */
339 WM_Q_EVCNT_DEFINE(txq, txtso6) /* TCP seg offload out-bound (IPv6) */
340 WM_Q_EVCNT_DEFINE(txq, txtsopain) /* painful header manip. for TSO */
341
342 WM_Q_EVCNT_DEFINE(txq, txdrop) /* Tx packets dropped(too many segs) */
343
344 WM_Q_EVCNT_DEFINE(txq, tu) /* Tx underrun */
345
346 char txq_txseg_evcnt_names[WM_NTXSEGS][sizeof("txqXXtxsegXXX")];
347 struct evcnt txq_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
348 #endif /* WM_EVENT_COUNTERS */
349 };
350
351 struct wm_rxqueue {
352 kmutex_t *rxq_lock; /* lock for rx operations */
353
354 struct wm_softc *rxq_sc; /* shortcut (skip struct wm_queue) */
355
356 /* Software state for the receive descriptors. */
357 wiseman_rxdesc_t *rxq_descs;
358
359 /* RX control data structures. */
360 struct wm_rxsoft rxq_soft[WM_NRXDESC];
361 bus_dmamap_t rxq_desc_dmamap; /* control data DMA map */
362 bus_dma_segment_t rxq_desc_seg; /* control data segment */
363 int rxq_desc_rseg; /* real number of control segment */
364 size_t rxq_desc_size; /* control data size */
365 #define rxq_desc_dma rxq_desc_dmamap->dm_segs[0].ds_addr
366
367 bus_addr_t rxq_rdt_reg; /* offset of RDT register */
368
369 int rxq_ptr; /* next ready Rx desc/queue ent */
370 int rxq_discard;
371 int rxq_len;
372 struct mbuf *rxq_head;
373 struct mbuf *rxq_tail;
374 struct mbuf **rxq_tailp;
375
376 #ifdef WM_EVENT_COUNTERS
377 WM_Q_EVCNT_DEFINE(rxq, rxintr); /* Rx interrupts */
378
379 WM_Q_EVCNT_DEFINE(rxq, rxipsum); /* IP checksums checked in-bound */
380 WM_Q_EVCNT_DEFINE(rxq, rxtusum); /* TCP/UDP cksums checked in-bound */
381 #endif
382 };
383
384 struct wm_queue {
385 int wmq_id; /* index of transmit and receive queues */
386 int wmq_intr_idx; /* index of MSI-X tables */
387
388 struct wm_txqueue wmq_txq;
389 struct wm_rxqueue wmq_rxq;
390 };
391
392 struct wm_phyop {
393 int (*acquire)(struct wm_softc *);
394 void (*release)(struct wm_softc *);
395 };
396
397 /*
398 * Software state per device.
399 */
400 struct wm_softc {
401 device_t sc_dev; /* generic device information */
402 bus_space_tag_t sc_st; /* bus space tag */
403 bus_space_handle_t sc_sh; /* bus space handle */
404 bus_size_t sc_ss; /* bus space size */
405 bus_space_tag_t sc_iot; /* I/O space tag */
406 bus_space_handle_t sc_ioh; /* I/O space handle */
407 bus_size_t sc_ios; /* I/O space size */
408 bus_space_tag_t sc_flasht; /* flash registers space tag */
409 bus_space_handle_t sc_flashh; /* flash registers space handle */
410 bus_size_t sc_flashs; /* flash registers space size */
411 off_t sc_flashreg_offset; /*
412 * offset to flash registers from
413 * start of BAR
414 */
415 bus_dma_tag_t sc_dmat; /* bus DMA tag */
416
417 struct ethercom sc_ethercom; /* ethernet common data */
418 struct mii_data sc_mii; /* MII/media information */
419
420 pci_chipset_tag_t sc_pc;
421 pcitag_t sc_pcitag;
422 int sc_bus_speed; /* PCI/PCIX bus speed */
423 int sc_pcixe_capoff; /* PCI[Xe] capability reg offset */
424
425 uint16_t sc_pcidevid; /* PCI device ID */
426 wm_chip_type sc_type; /* MAC type */
427 int sc_rev; /* MAC revision */
428 wm_phy_type sc_phytype; /* PHY type */
429 uint32_t sc_mediatype; /* Media type (Copper, Fiber, SERDES)*/
430 #define WM_MEDIATYPE_UNKNOWN 0x00
431 #define WM_MEDIATYPE_FIBER 0x01
432 #define WM_MEDIATYPE_COPPER 0x02
433 #define WM_MEDIATYPE_SERDES 0x03 /* Internal SERDES */
434 int sc_funcid; /* unit number of the chip (0 to 3) */
435 int sc_flags; /* flags; see below */
436 int sc_if_flags; /* last if_flags */
437 int sc_flowflags; /* 802.3x flow control flags */
438 int sc_align_tweak;
439
440 void *sc_ihs[WM_MAX_NINTR]; /*
441 * interrupt cookie.
442 * legacy and msi use sc_ihs[0].
443 */
444 pci_intr_handle_t *sc_intrs; /* legacy and msi use sc_intrs[0] */
445 int sc_nintrs; /* number of interrupts */
446
447 int sc_link_intr_idx; /* index of MSI-X tables */
448
449 callout_t sc_tick_ch; /* tick callout */
450 bool sc_stopping;
451
452 int sc_nvm_ver_major;
453 int sc_nvm_ver_minor;
454 int sc_nvm_ver_build;
455 int sc_nvm_addrbits; /* NVM address bits */
456 unsigned int sc_nvm_wordsize; /* NVM word size */
457 int sc_ich8_flash_base;
458 int sc_ich8_flash_bank_size;
459 int sc_nvm_k1_enabled;
460
461 int sc_nqueues;
462 struct wm_queue *sc_queue;
463
464 int sc_affinity_offset;
465
466 #ifdef WM_EVENT_COUNTERS
467 /* Event counters. */
468 struct evcnt sc_ev_linkintr; /* Link interrupts */
469
470 /* WM_T_82542_2_1 only */
471 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
472 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
473 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
474 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
475 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
476 #endif /* WM_EVENT_COUNTERS */
477
478 /* This variable are used only on the 82547. */
479 callout_t sc_txfifo_ch; /* Tx FIFO stall work-around timer */
480
481 uint32_t sc_ctrl; /* prototype CTRL register */
482 #if 0
483 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
484 #endif
485 uint32_t sc_icr; /* prototype interrupt bits */
486 uint32_t sc_itr; /* prototype intr throttling reg */
487 uint32_t sc_tctl; /* prototype TCTL register */
488 uint32_t sc_rctl; /* prototype RCTL register */
489 uint32_t sc_txcw; /* prototype TXCW register */
490 uint32_t sc_tipg; /* prototype TIPG register */
491 uint32_t sc_fcrtl; /* prototype FCRTL register */
492 uint32_t sc_pba; /* prototype PBA register */
493
494 int sc_tbi_linkup; /* TBI link status */
495 int sc_tbi_serdes_anegticks; /* autonegotiation ticks */
496 int sc_tbi_serdes_ticks; /* tbi ticks */
497
498 int sc_mchash_type; /* multicast filter offset */
499
500 krndsource_t rnd_source; /* random source */
501
502 struct if_percpuq *sc_ipq; /* softint-based input queues */
503
504 kmutex_t *sc_core_lock; /* lock for softc operations */
505 kmutex_t *sc_ich_phymtx; /*
506 * 82574/82583/ICH/PCH specific PHY
507 * mutex. For 82574/82583, the mutex
508 * is used for both PHY and NVM.
509 */
510 kmutex_t *sc_ich_nvmmtx; /* ICH/PCH specific NVM mutex */
511
512 struct wm_phyop phy;
513 };
514
515 #define WM_CORE_LOCK(_sc) if ((_sc)->sc_core_lock) mutex_enter((_sc)->sc_core_lock)
516 #define WM_CORE_UNLOCK(_sc) if ((_sc)->sc_core_lock) mutex_exit((_sc)->sc_core_lock)
517 #define WM_CORE_LOCKED(_sc) (!(_sc)->sc_core_lock || mutex_owned((_sc)->sc_core_lock))
518
519 #ifdef WM_MPSAFE
520 #define CALLOUT_FLAGS CALLOUT_MPSAFE
521 #else
522 #define CALLOUT_FLAGS 0
523 #endif
524
525 #define WM_RXCHAIN_RESET(rxq) \
526 do { \
527 (rxq)->rxq_tailp = &(rxq)->rxq_head; \
528 *(rxq)->rxq_tailp = NULL; \
529 (rxq)->rxq_len = 0; \
530 } while (/*CONSTCOND*/0)
531
532 #define WM_RXCHAIN_LINK(rxq, m) \
533 do { \
534 *(rxq)->rxq_tailp = (rxq)->rxq_tail = (m); \
535 (rxq)->rxq_tailp = &(m)->m_next; \
536 } while (/*CONSTCOND*/0)
537
538 #ifdef WM_EVENT_COUNTERS
539 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
540 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
541
542 #define WM_Q_EVCNT_INCR(qname, evname) \
543 WM_EVCNT_INCR(&(qname)->qname##_ev_##evname)
544 #define WM_Q_EVCNT_ADD(qname, evname, val) \
545 WM_EVCNT_ADD(&(qname)->qname##_ev_##evname, (val))
546 #else /* !WM_EVENT_COUNTERS */
547 #define WM_EVCNT_INCR(ev) /* nothing */
548 #define WM_EVCNT_ADD(ev, val) /* nothing */
549
550 #define WM_Q_EVCNT_INCR(qname, evname) /* nothing */
551 #define WM_Q_EVCNT_ADD(qname, evname, val) /* nothing */
552 #endif /* !WM_EVENT_COUNTERS */
553
554 #define CSR_READ(sc, reg) \
555 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
556 #define CSR_WRITE(sc, reg, val) \
557 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
558 #define CSR_WRITE_FLUSH(sc) \
559 (void) CSR_READ((sc), WMREG_STATUS)
560
561 #define ICH8_FLASH_READ32(sc, reg) \
562 bus_space_read_4((sc)->sc_flasht, (sc)->sc_flashh, \
563 (reg) + sc->sc_flashreg_offset)
564 #define ICH8_FLASH_WRITE32(sc, reg, data) \
565 bus_space_write_4((sc)->sc_flasht, (sc)->sc_flashh, \
566 (reg) + sc->sc_flashreg_offset, (data))
567
568 #define ICH8_FLASH_READ16(sc, reg) \
569 bus_space_read_2((sc)->sc_flasht, (sc)->sc_flashh, \
570 (reg) + sc->sc_flashreg_offset)
571 #define ICH8_FLASH_WRITE16(sc, reg, data) \
572 bus_space_write_2((sc)->sc_flasht, (sc)->sc_flashh, \
573 (reg) + sc->sc_flashreg_offset, (data))
574
575 #define WM_CDTXADDR(txq, x) ((txq)->txq_desc_dma + WM_CDTXOFF((txq), (x)))
576 #define WM_CDRXADDR(rxq, x) ((rxq)->rxq_desc_dma + WM_CDRXOFF((x)))
577
578 #define WM_CDTXADDR_LO(txq, x) (WM_CDTXADDR((txq), (x)) & 0xffffffffU)
579 #define WM_CDTXADDR_HI(txq, x) \
580 (sizeof(bus_addr_t) == 8 ? \
581 (uint64_t)WM_CDTXADDR((txq), (x)) >> 32 : 0)
582
583 #define WM_CDRXADDR_LO(rxq, x) (WM_CDRXADDR((rxq), (x)) & 0xffffffffU)
584 #define WM_CDRXADDR_HI(rxq, x) \
585 (sizeof(bus_addr_t) == 8 ? \
586 (uint64_t)WM_CDRXADDR((rxq), (x)) >> 32 : 0)
587
588 /*
589 * Register read/write functions.
590 * Other than CSR_{READ|WRITE}().
591 */
592 #if 0
593 static inline uint32_t wm_io_read(struct wm_softc *, int);
594 #endif
595 static inline void wm_io_write(struct wm_softc *, int, uint32_t);
596 static inline void wm_82575_write_8bit_ctlr_reg(struct wm_softc *, uint32_t,
597 uint32_t, uint32_t);
598 static inline void wm_set_dma_addr(volatile wiseman_addr_t *, bus_addr_t);
599
600 /*
601 * Descriptor sync/init functions.
602 */
603 static inline void wm_cdtxsync(struct wm_txqueue *, int, int, int);
604 static inline void wm_cdrxsync(struct wm_rxqueue *, int, int);
605 static inline void wm_init_rxdesc(struct wm_rxqueue *, int);
606
607 /*
608 * Device driver interface functions and commonly used functions.
609 * match, attach, detach, init, start, stop, ioctl, watchdog and so on.
610 */
611 static const struct wm_product *wm_lookup(const struct pci_attach_args *);
612 static int wm_match(device_t, cfdata_t, void *);
613 static void wm_attach(device_t, device_t, void *);
614 static int wm_detach(device_t, int);
615 static bool wm_suspend(device_t, const pmf_qual_t *);
616 static bool wm_resume(device_t, const pmf_qual_t *);
617 static void wm_watchdog(struct ifnet *);
618 static void wm_watchdog_txq(struct ifnet *, struct wm_txqueue *);
619 static void wm_tick(void *);
620 static int wm_ifflags_cb(struct ethercom *);
621 static int wm_ioctl(struct ifnet *, u_long, void *);
622 /* MAC address related */
623 static uint16_t wm_check_alt_mac_addr(struct wm_softc *);
624 static int wm_read_mac_addr(struct wm_softc *, uint8_t *);
625 static void wm_set_ral(struct wm_softc *, const uint8_t *, int);
626 static uint32_t wm_mchash(struct wm_softc *, const uint8_t *);
627 static void wm_set_filter(struct wm_softc *);
628 /* Reset and init related */
629 static void wm_set_vlan(struct wm_softc *);
630 static void wm_set_pcie_completion_timeout(struct wm_softc *);
631 static void wm_get_auto_rd_done(struct wm_softc *);
632 static void wm_lan_init_done(struct wm_softc *);
633 static void wm_get_cfg_done(struct wm_softc *);
634 static void wm_initialize_hardware_bits(struct wm_softc *);
635 static uint32_t wm_rxpbs_adjust_82580(uint32_t);
636 static void wm_reset(struct wm_softc *);
637 static int wm_add_rxbuf(struct wm_rxqueue *, int);
638 static void wm_rxdrain(struct wm_rxqueue *);
639 static void wm_rss_getkey(uint8_t *);
640 static void wm_init_rss(struct wm_softc *);
641 static void wm_adjust_qnum(struct wm_softc *, int);
642 static int wm_setup_legacy(struct wm_softc *);
643 static int wm_setup_msix(struct wm_softc *);
644 static int wm_init(struct ifnet *);
645 static int wm_init_locked(struct ifnet *);
646 static void wm_stop(struct ifnet *, int);
647 static void wm_stop_locked(struct ifnet *, int);
648 static void wm_dump_mbuf_chain(struct wm_softc *, struct mbuf *);
649 static void wm_82547_txfifo_stall(void *);
650 static int wm_82547_txfifo_bugchk(struct wm_softc *, struct mbuf *);
651 /* DMA related */
652 static int wm_alloc_tx_descs(struct wm_softc *, struct wm_txqueue *);
653 static void wm_free_tx_descs(struct wm_softc *, struct wm_txqueue *);
654 static void wm_init_tx_descs(struct wm_softc *, struct wm_txqueue *);
655 static void wm_init_tx_regs(struct wm_softc *, struct wm_queue *,
656 struct wm_txqueue *);
657 static int wm_alloc_rx_descs(struct wm_softc *, struct wm_rxqueue *);
658 static void wm_free_rx_descs(struct wm_softc *, struct wm_rxqueue *);
659 static void wm_init_rx_regs(struct wm_softc *, struct wm_queue *,
660 struct wm_rxqueue *);
661 static int wm_alloc_tx_buffer(struct wm_softc *, struct wm_txqueue *);
662 static void wm_free_tx_buffer(struct wm_softc *, struct wm_txqueue *);
663 static void wm_init_tx_buffer(struct wm_softc *, struct wm_txqueue *);
664 static int wm_alloc_rx_buffer(struct wm_softc *, struct wm_rxqueue *);
665 static void wm_free_rx_buffer(struct wm_softc *, struct wm_rxqueue *);
666 static int wm_init_rx_buffer(struct wm_softc *, struct wm_rxqueue *);
667 static void wm_init_tx_queue(struct wm_softc *, struct wm_queue *,
668 struct wm_txqueue *);
669 static int wm_init_rx_queue(struct wm_softc *, struct wm_queue *,
670 struct wm_rxqueue *);
671 static int wm_alloc_txrx_queues(struct wm_softc *);
672 static void wm_free_txrx_queues(struct wm_softc *);
673 static int wm_init_txrx_queues(struct wm_softc *);
674 /* Start */
675 static int wm_tx_offload(struct wm_softc *, struct wm_txsoft *,
676 uint32_t *, uint8_t *);
677 static void wm_start(struct ifnet *);
678 static void wm_start_locked(struct ifnet *);
679 static int wm_nq_tx_offload(struct wm_softc *, struct wm_txqueue *,
680 struct wm_txsoft *, uint32_t *, uint32_t *, bool *);
681 static void wm_nq_start(struct ifnet *);
682 static void wm_nq_start_locked(struct ifnet *);
683 static int wm_nq_transmit(struct ifnet *, struct mbuf *);
684 static inline int wm_nq_select_txqueue(struct ifnet *, struct mbuf *);
685 static void wm_nq_transmit_locked(struct ifnet *, struct wm_txqueue *);
686 static void wm_nq_send_common_locked(struct ifnet *, struct wm_txqueue *, bool);
687 /* Interrupt */
688 static int wm_txeof(struct wm_softc *, struct wm_txqueue *);
689 static void wm_rxeof(struct wm_rxqueue *);
690 static void wm_linkintr_gmii(struct wm_softc *, uint32_t);
691 static void wm_linkintr_tbi(struct wm_softc *, uint32_t);
692 static void wm_linkintr_serdes(struct wm_softc *, uint32_t);
693 static void wm_linkintr(struct wm_softc *, uint32_t);
694 static int wm_intr_legacy(void *);
695 static int wm_txrxintr_msix(void *);
696 static int wm_linkintr_msix(void *);
697
698 /*
699 * Media related.
700 * GMII, SGMII, TBI, SERDES and SFP.
701 */
702 /* Common */
703 static void wm_tbi_serdes_set_linkled(struct wm_softc *);
704 /* GMII related */
705 static void wm_gmii_reset(struct wm_softc *);
706 static int wm_get_phy_id_82575(struct wm_softc *);
707 static void wm_gmii_mediainit(struct wm_softc *, pci_product_id_t);
708 static int wm_gmii_mediachange(struct ifnet *);
709 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
710 static void wm_i82543_mii_sendbits(struct wm_softc *, uint32_t, int);
711 static uint32_t wm_i82543_mii_recvbits(struct wm_softc *);
712 static int wm_gmii_i82543_readreg(device_t, int, int);
713 static void wm_gmii_i82543_writereg(device_t, int, int, int);
714 static int wm_gmii_mdic_readreg(device_t, int, int);
715 static void wm_gmii_mdic_writereg(device_t, int, int, int);
716 static int wm_gmii_i82544_readreg(device_t, int, int);
717 static void wm_gmii_i82544_writereg(device_t, int, int, int);
718 static int wm_gmii_i80003_readreg(device_t, int, int);
719 static void wm_gmii_i80003_writereg(device_t, int, int, int);
720 static int wm_gmii_bm_readreg(device_t, int, int);
721 static void wm_gmii_bm_writereg(device_t, int, int, int);
722 static void wm_access_phy_wakeup_reg_bm(device_t, int, int16_t *, int);
723 static int wm_gmii_hv_readreg(device_t, int, int);
724 static int wm_gmii_hv_readreg_locked(device_t, int, int);
725 static void wm_gmii_hv_writereg(device_t, int, int, int);
726 static void wm_gmii_hv_writereg_locked(device_t, int, int, int);
727 static int wm_gmii_82580_readreg(device_t, int, int);
728 static void wm_gmii_82580_writereg(device_t, int, int, int);
729 static int wm_gmii_gs40g_readreg(device_t, int, int);
730 static void wm_gmii_gs40g_writereg(device_t, int, int, int);
731 static void wm_gmii_statchg(struct ifnet *);
732 static int wm_kmrn_readreg(struct wm_softc *, int);
733 static int wm_kmrn_readreg_locked(struct wm_softc *, int);
734 static void wm_kmrn_writereg(struct wm_softc *, int, int);
735 static void wm_kmrn_writereg_locked(struct wm_softc *, int, int);
736 /* SGMII */
737 static bool wm_sgmii_uses_mdio(struct wm_softc *);
738 static int wm_sgmii_readreg(device_t, int, int);
739 static void wm_sgmii_writereg(device_t, int, int, int);
740 /* TBI related */
741 static void wm_tbi_mediainit(struct wm_softc *);
742 static int wm_tbi_mediachange(struct ifnet *);
743 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
744 static int wm_check_for_link(struct wm_softc *);
745 static void wm_tbi_tick(struct wm_softc *);
746 /* SERDES related */
747 static void wm_serdes_power_up_link_82575(struct wm_softc *);
748 static int wm_serdes_mediachange(struct ifnet *);
749 static void wm_serdes_mediastatus(struct ifnet *, struct ifmediareq *);
750 static void wm_serdes_tick(struct wm_softc *);
751 /* SFP related */
752 static int wm_sfp_read_data_byte(struct wm_softc *, uint16_t, uint8_t *);
753 static uint32_t wm_sfp_get_media_type(struct wm_softc *);
754
755 /*
756 * NVM related.
757 * Microwire, SPI (w/wo EERD) and Flash.
758 */
759 /* Misc functions */
760 static void wm_eeprom_sendbits(struct wm_softc *, uint32_t, int);
761 static void wm_eeprom_recvbits(struct wm_softc *, uint32_t *, int);
762 static int wm_nvm_set_addrbits_size_eecd(struct wm_softc *);
763 /* Microwire */
764 static int wm_nvm_read_uwire(struct wm_softc *, int, int, uint16_t *);
765 /* SPI */
766 static int wm_nvm_ready_spi(struct wm_softc *);
767 static int wm_nvm_read_spi(struct wm_softc *, int, int, uint16_t *);
768 /* Using with EERD */
769 static int wm_poll_eerd_eewr_done(struct wm_softc *, int);
770 static int wm_nvm_read_eerd(struct wm_softc *, int, int, uint16_t *);
771 /* Flash */
772 static int wm_nvm_valid_bank_detect_ich8lan(struct wm_softc *,
773 unsigned int *);
774 static int32_t wm_ich8_cycle_init(struct wm_softc *);
775 static int32_t wm_ich8_flash_cycle(struct wm_softc *, uint32_t);
776 static int32_t wm_read_ich8_data(struct wm_softc *, uint32_t, uint32_t,
777 uint32_t *);
778 static int32_t wm_read_ich8_byte(struct wm_softc *, uint32_t, uint8_t *);
779 static int32_t wm_read_ich8_word(struct wm_softc *, uint32_t, uint16_t *);
780 static int32_t wm_read_ich8_dword(struct wm_softc *, uint32_t, uint32_t *);
781 static int wm_nvm_read_ich8(struct wm_softc *, int, int, uint16_t *);
782 static int wm_nvm_read_spt(struct wm_softc *, int, int, uint16_t *);
783 /* iNVM */
784 static int wm_nvm_read_word_invm(struct wm_softc *, uint16_t, uint16_t *);
785 static int wm_nvm_read_invm(struct wm_softc *, int, int, uint16_t *);
786 /* Lock, detecting NVM type, validate checksum and read */
787 static int wm_nvm_acquire(struct wm_softc *);
788 static void wm_nvm_release(struct wm_softc *);
789 static int wm_nvm_is_onboard_eeprom(struct wm_softc *);
790 static int wm_nvm_get_flash_presence_i210(struct wm_softc *);
791 static int wm_nvm_validate_checksum(struct wm_softc *);
792 static void wm_nvm_version_invm(struct wm_softc *);
793 static void wm_nvm_version(struct wm_softc *);
794 static int wm_nvm_read(struct wm_softc *, int, int, uint16_t *);
795
796 /*
797 * Hardware semaphores.
798 * Very complexed...
799 */
800 static int wm_get_null(struct wm_softc *);
801 static void wm_put_null(struct wm_softc *);
802 static int wm_get_swsm_semaphore(struct wm_softc *); /* 8257[123] */
803 static void wm_put_swsm_semaphore(struct wm_softc *);
804 static int wm_get_swfw_semaphore(struct wm_softc *, uint16_t);
805 static void wm_put_swfw_semaphore(struct wm_softc *, uint16_t);
806 static int wm_get_phy_82575(struct wm_softc *);
807 static void wm_put_phy_82575(struct wm_softc *);
808 static int wm_get_swfwhw_semaphore(struct wm_softc *); /* For 574/583 */
809 static void wm_put_swfwhw_semaphore(struct wm_softc *);
810 static int wm_get_swflag_ich8lan(struct wm_softc *); /* For PHY */
811 static void wm_put_swflag_ich8lan(struct wm_softc *);
812 static int wm_get_nvm_ich8lan(struct wm_softc *); /* For NVM */
813 static void wm_put_nvm_ich8lan(struct wm_softc *);
814 static int wm_get_hw_semaphore_82573(struct wm_softc *);
815 static void wm_put_hw_semaphore_82573(struct wm_softc *);
816
817 /*
818 * Management mode and power management related subroutines.
819 * BMC, AMT, suspend/resume and EEE.
820 */
821 #ifdef WM_WOL
822 static int wm_check_mng_mode(struct wm_softc *);
823 static int wm_check_mng_mode_ich8lan(struct wm_softc *);
824 static int wm_check_mng_mode_82574(struct wm_softc *);
825 static int wm_check_mng_mode_generic(struct wm_softc *);
826 #endif
827 static int wm_enable_mng_pass_thru(struct wm_softc *);
828 static bool wm_phy_resetisblocked(struct wm_softc *);
829 static void wm_get_hw_control(struct wm_softc *);
830 static void wm_release_hw_control(struct wm_softc *);
831 static void wm_gate_hw_phy_config_ich8lan(struct wm_softc *, bool);
832 static void wm_smbustopci(struct wm_softc *);
833 static void wm_init_manageability(struct wm_softc *);
834 static void wm_release_manageability(struct wm_softc *);
835 static void wm_get_wakeup(struct wm_softc *);
836 #ifdef WM_WOL
837 static void wm_enable_phy_wakeup(struct wm_softc *);
838 static void wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *);
839 static void wm_enable_wakeup(struct wm_softc *);
840 #endif
841 /* LPLU (Low Power Link Up) */
842 static void wm_lplu_d0_disable(struct wm_softc *);
843 static void wm_lplu_d0_disable_pch(struct wm_softc *);
844 /* EEE */
845 static void wm_set_eee_i350(struct wm_softc *);
846
847 /*
848 * Workarounds (mainly PHY related).
849 * Basically, PHY's workarounds are in the PHY drivers.
850 */
851 static void wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *);
852 static void wm_gig_downshift_workaround_ich8lan(struct wm_softc *);
853 static void wm_hv_phy_workaround_ich8lan(struct wm_softc *);
854 static void wm_lv_phy_workaround_ich8lan(struct wm_softc *);
855 static int wm_k1_gig_workaround_hv(struct wm_softc *, int);
856 static void wm_set_mdio_slow_mode_hv(struct wm_softc *);
857 static void wm_configure_k1_ich8lan(struct wm_softc *, int);
858 static void wm_reset_init_script_82575(struct wm_softc *);
859 static void wm_reset_mdicnfg_82580(struct wm_softc *);
860 static void wm_pll_workaround_i210(struct wm_softc *);
861
862 CFATTACH_DECL3_NEW(wm, sizeof(struct wm_softc),
863 wm_match, wm_attach, wm_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
864
865 /*
866 * Devices supported by this driver.
867 */
868 static const struct wm_product {
869 pci_vendor_id_t wmp_vendor;
870 pci_product_id_t wmp_product;
871 const char *wmp_name;
872 wm_chip_type wmp_type;
873 uint32_t wmp_flags;
874 #define WMP_F_UNKNOWN WM_MEDIATYPE_UNKNOWN
875 #define WMP_F_FIBER WM_MEDIATYPE_FIBER
876 #define WMP_F_COPPER WM_MEDIATYPE_COPPER
877 #define WMP_F_SERDES WM_MEDIATYPE_SERDES
878 #define WMP_MEDIATYPE(x) ((x) & 0x03)
879 } wm_products[] = {
880 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
881 "Intel i82542 1000BASE-X Ethernet",
882 WM_T_82542_2_1, WMP_F_FIBER },
883
884 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
885 "Intel i82543GC 1000BASE-X Ethernet",
886 WM_T_82543, WMP_F_FIBER },
887
888 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
889 "Intel i82543GC 1000BASE-T Ethernet",
890 WM_T_82543, WMP_F_COPPER },
891
892 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
893 "Intel i82544EI 1000BASE-T Ethernet",
894 WM_T_82544, WMP_F_COPPER },
895
896 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
897 "Intel i82544EI 1000BASE-X Ethernet",
898 WM_T_82544, WMP_F_FIBER },
899
900 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
901 "Intel i82544GC 1000BASE-T Ethernet",
902 WM_T_82544, WMP_F_COPPER },
903
904 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
905 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
906 WM_T_82544, WMP_F_COPPER },
907
908 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
909 "Intel i82540EM 1000BASE-T Ethernet",
910 WM_T_82540, WMP_F_COPPER },
911
912 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
913 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
914 WM_T_82540, WMP_F_COPPER },
915
916 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
917 "Intel i82540EP 1000BASE-T Ethernet",
918 WM_T_82540, WMP_F_COPPER },
919
920 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
921 "Intel i82540EP 1000BASE-T Ethernet",
922 WM_T_82540, WMP_F_COPPER },
923
924 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
925 "Intel i82540EP 1000BASE-T Ethernet",
926 WM_T_82540, WMP_F_COPPER },
927
928 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
929 "Intel i82545EM 1000BASE-T Ethernet",
930 WM_T_82545, WMP_F_COPPER },
931
932 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
933 "Intel i82545GM 1000BASE-T Ethernet",
934 WM_T_82545_3, WMP_F_COPPER },
935
936 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
937 "Intel i82545GM 1000BASE-X Ethernet",
938 WM_T_82545_3, WMP_F_FIBER },
939
940 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
941 "Intel i82545GM Gigabit Ethernet (SERDES)",
942 WM_T_82545_3, WMP_F_SERDES },
943
944 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
945 "Intel i82546EB 1000BASE-T Ethernet",
946 WM_T_82546, WMP_F_COPPER },
947
948 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
949 "Intel i82546EB 1000BASE-T Ethernet",
950 WM_T_82546, WMP_F_COPPER },
951
952 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
953 "Intel i82545EM 1000BASE-X Ethernet",
954 WM_T_82545, WMP_F_FIBER },
955
956 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
957 "Intel i82546EB 1000BASE-X Ethernet",
958 WM_T_82546, WMP_F_FIBER },
959
960 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
961 "Intel i82546GB 1000BASE-T Ethernet",
962 WM_T_82546_3, WMP_F_COPPER },
963
964 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
965 "Intel i82546GB 1000BASE-X Ethernet",
966 WM_T_82546_3, WMP_F_FIBER },
967
968 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
969 "Intel i82546GB Gigabit Ethernet (SERDES)",
970 WM_T_82546_3, WMP_F_SERDES },
971
972 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER,
973 "i82546GB quad-port Gigabit Ethernet",
974 WM_T_82546_3, WMP_F_COPPER },
975
976 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3,
977 "i82546GB quad-port Gigabit Ethernet (KSP3)",
978 WM_T_82546_3, WMP_F_COPPER },
979
980 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_PCIE,
981 "Intel PRO/1000MT (82546GB)",
982 WM_T_82546_3, WMP_F_COPPER },
983
984 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
985 "Intel i82541EI 1000BASE-T Ethernet",
986 WM_T_82541, WMP_F_COPPER },
987
988 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER_LOM,
989 "Intel i82541ER (LOM) 1000BASE-T Ethernet",
990 WM_T_82541, WMP_F_COPPER },
991
992 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
993 "Intel i82541EI Mobile 1000BASE-T Ethernet",
994 WM_T_82541, WMP_F_COPPER },
995
996 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
997 "Intel i82541ER 1000BASE-T Ethernet",
998 WM_T_82541_2, WMP_F_COPPER },
999
1000 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
1001 "Intel i82541GI 1000BASE-T Ethernet",
1002 WM_T_82541_2, WMP_F_COPPER },
1003
1004 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
1005 "Intel i82541GI Mobile 1000BASE-T Ethernet",
1006 WM_T_82541_2, WMP_F_COPPER },
1007
1008 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI,
1009 "Intel i82541PI 1000BASE-T Ethernet",
1010 WM_T_82541_2, WMP_F_COPPER },
1011
1012 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
1013 "Intel i82547EI 1000BASE-T Ethernet",
1014 WM_T_82547, WMP_F_COPPER },
1015
1016 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI_MOBILE,
1017 "Intel i82547EI Mobile 1000BASE-T Ethernet",
1018 WM_T_82547, WMP_F_COPPER },
1019
1020 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
1021 "Intel i82547GI 1000BASE-T Ethernet",
1022 WM_T_82547_2, WMP_F_COPPER },
1023
1024 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_COPPER,
1025 "Intel PRO/1000 PT (82571EB)",
1026 WM_T_82571, WMP_F_COPPER },
1027
1028 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_FIBER,
1029 "Intel PRO/1000 PF (82571EB)",
1030 WM_T_82571, WMP_F_FIBER },
1031
1032 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_SERDES,
1033 "Intel PRO/1000 PB (82571EB)",
1034 WM_T_82571, WMP_F_SERDES },
1035
1036 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER,
1037 "Intel PRO/1000 QT (82571EB)",
1038 WM_T_82571, WMP_F_COPPER },
1039
1040 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER,
1041 "Intel PRO/1000 PT Quad Port Server Adapter",
1042 WM_T_82571, WMP_F_COPPER, },
1043
1044 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571PT_QUAD_COPPER,
1045 "Intel Gigabit PT Quad Port Server ExpressModule",
1046 WM_T_82571, WMP_F_COPPER, },
1047
1048 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_DUAL_SERDES,
1049 "Intel 82571EB Dual Gigabit Ethernet (SERDES)",
1050 WM_T_82571, WMP_F_SERDES, },
1051
1052 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_SERDES,
1053 "Intel 82571EB Quad Gigabit Ethernet (SERDES)",
1054 WM_T_82571, WMP_F_SERDES, },
1055
1056 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_FIBER,
1057 "Intel 82571EB Quad 1000baseX Ethernet",
1058 WM_T_82571, WMP_F_FIBER, },
1059
1060 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_COPPER,
1061 "Intel i82572EI 1000baseT Ethernet",
1062 WM_T_82572, WMP_F_COPPER },
1063
1064 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_FIBER,
1065 "Intel i82572EI 1000baseX Ethernet",
1066 WM_T_82572, WMP_F_FIBER },
1067
1068 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_SERDES,
1069 "Intel i82572EI Gigabit Ethernet (SERDES)",
1070 WM_T_82572, WMP_F_SERDES },
1071
1072 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI,
1073 "Intel i82572EI 1000baseT Ethernet",
1074 WM_T_82572, WMP_F_COPPER },
1075
1076 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E,
1077 "Intel i82573E",
1078 WM_T_82573, WMP_F_COPPER },
1079
1080 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E_IAMT,
1081 "Intel i82573E IAMT",
1082 WM_T_82573, WMP_F_COPPER },
1083
1084 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L,
1085 "Intel i82573L Gigabit Ethernet",
1086 WM_T_82573, WMP_F_COPPER },
1087
1088 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82574L,
1089 "Intel i82574L",
1090 WM_T_82574, WMP_F_COPPER },
1091
1092 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82574LA,
1093 "Intel i82574L",
1094 WM_T_82574, WMP_F_COPPER },
1095
1096 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82583V,
1097 "Intel i82583V",
1098 WM_T_82583, WMP_F_COPPER },
1099
1100 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT,
1101 "i80003 dual 1000baseT Ethernet",
1102 WM_T_80003, WMP_F_COPPER },
1103
1104 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT,
1105 "i80003 dual 1000baseX Ethernet",
1106 WM_T_80003, WMP_F_COPPER },
1107
1108 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT,
1109 "Intel i80003ES2 dual Gigabit Ethernet (SERDES)",
1110 WM_T_80003, WMP_F_SERDES },
1111
1112 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT,
1113 "Intel i80003 1000baseT Ethernet",
1114 WM_T_80003, WMP_F_COPPER },
1115
1116 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT,
1117 "Intel i80003 Gigabit Ethernet (SERDES)",
1118 WM_T_80003, WMP_F_SERDES },
1119
1120 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_AMT,
1121 "Intel i82801H (M_AMT) LAN Controller",
1122 WM_T_ICH8, WMP_F_COPPER },
1123 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_AMT,
1124 "Intel i82801H (AMT) LAN Controller",
1125 WM_T_ICH8, WMP_F_COPPER },
1126 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_LAN,
1127 "Intel i82801H LAN Controller",
1128 WM_T_ICH8, WMP_F_COPPER },
1129 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_LAN,
1130 "Intel i82801H (IFE) LAN Controller",
1131 WM_T_ICH8, WMP_F_COPPER },
1132 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_LAN,
1133 "Intel i82801H (M) LAN Controller",
1134 WM_T_ICH8, WMP_F_COPPER },
1135 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_GT,
1136 "Intel i82801H IFE (GT) LAN Controller",
1137 WM_T_ICH8, WMP_F_COPPER },
1138 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_G,
1139 "Intel i82801H IFE (G) LAN Controller",
1140 WM_T_ICH8, WMP_F_COPPER },
1141 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_AMT,
1142 "82801I (AMT) LAN Controller",
1143 WM_T_ICH9, WMP_F_COPPER },
1144 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE,
1145 "82801I LAN Controller",
1146 WM_T_ICH9, WMP_F_COPPER },
1147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_G,
1148 "82801I (G) LAN Controller",
1149 WM_T_ICH9, WMP_F_COPPER },
1150 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_GT,
1151 "82801I (GT) LAN Controller",
1152 WM_T_ICH9, WMP_F_COPPER },
1153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_C,
1154 "82801I (C) LAN Controller",
1155 WM_T_ICH9, WMP_F_COPPER },
1156 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M,
1157 "82801I mobile LAN Controller",
1158 WM_T_ICH9, WMP_F_COPPER },
1159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IGP_M_V,
1160 "82801I mobile (V) LAN Controller",
1161 WM_T_ICH9, WMP_F_COPPER },
1162 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M_AMT,
1163 "82801I mobile (AMT) LAN Controller",
1164 WM_T_ICH9, WMP_F_COPPER },
1165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_BM,
1166 "82567LM-4 LAN Controller",
1167 WM_T_ICH9, WMP_F_COPPER },
1168 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_82567V_3,
1169 "82567V-3 LAN Controller",
1170 WM_T_ICH9, WMP_F_COPPER },
1171 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_LM,
1172 "82567LM-2 LAN Controller",
1173 WM_T_ICH10, WMP_F_COPPER },
1174 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_LF,
1175 "82567LF-2 LAN Controller",
1176 WM_T_ICH10, WMP_F_COPPER },
1177 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_LM,
1178 "82567LM-3 LAN Controller",
1179 WM_T_ICH10, WMP_F_COPPER },
1180 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_LF,
1181 "82567LF-3 LAN Controller",
1182 WM_T_ICH10, WMP_F_COPPER },
1183 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_V,
1184 "82567V-2 LAN Controller",
1185 WM_T_ICH10, WMP_F_COPPER },
1186 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_V,
1187 "82567V-3? LAN Controller",
1188 WM_T_ICH10, WMP_F_COPPER },
1189 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_HANKSVILLE,
1190 "HANKSVILLE LAN Controller",
1191 WM_T_ICH10, WMP_F_COPPER },
1192 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_M_LM,
1193 "PCH LAN (82577LM) Controller",
1194 WM_T_PCH, WMP_F_COPPER },
1195 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_M_LC,
1196 "PCH LAN (82577LC) Controller",
1197 WM_T_PCH, WMP_F_COPPER },
1198 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_D_DM,
1199 "PCH LAN (82578DM) Controller",
1200 WM_T_PCH, WMP_F_COPPER },
1201 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_D_DC,
1202 "PCH LAN (82578DC) Controller",
1203 WM_T_PCH, WMP_F_COPPER },
1204 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH2_LV_LM,
1205 "PCH2 LAN (82579LM) Controller",
1206 WM_T_PCH2, WMP_F_COPPER },
1207 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH2_LV_V,
1208 "PCH2 LAN (82579V) Controller",
1209 WM_T_PCH2, WMP_F_COPPER },
1210 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575EB_COPPER,
1211 "82575EB dual-1000baseT Ethernet",
1212 WM_T_82575, WMP_F_COPPER },
1213 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575EB_FIBER_SERDES,
1214 "82575EB dual-1000baseX Ethernet (SERDES)",
1215 WM_T_82575, WMP_F_SERDES },
1216 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER,
1217 "82575GB quad-1000baseT Ethernet",
1218 WM_T_82575, WMP_F_COPPER },
1219 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER_PM,
1220 "82575GB quad-1000baseT Ethernet (PM)",
1221 WM_T_82575, WMP_F_COPPER },
1222 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_COPPER,
1223 "82576 1000BaseT Ethernet",
1224 WM_T_82576, WMP_F_COPPER },
1225 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_FIBER,
1226 "82576 1000BaseX Ethernet",
1227 WM_T_82576, WMP_F_FIBER },
1228
1229 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_SERDES,
1230 "82576 gigabit Ethernet (SERDES)",
1231 WM_T_82576, WMP_F_SERDES },
1232
1233 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_QUAD_COPPER,
1234 "82576 quad-1000BaseT Ethernet",
1235 WM_T_82576, WMP_F_COPPER },
1236
1237 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_QUAD_COPPER_ET2,
1238 "82576 Gigabit ET2 Quad Port Server Adapter",
1239 WM_T_82576, WMP_F_COPPER },
1240
1241 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_NS,
1242 "82576 gigabit Ethernet",
1243 WM_T_82576, WMP_F_COPPER },
1244
1245 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_NS_SERDES,
1246 "82576 gigabit Ethernet (SERDES)",
1247 WM_T_82576, WMP_F_SERDES },
1248 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_SERDES_QUAD,
1249 "82576 quad-gigabit Ethernet (SERDES)",
1250 WM_T_82576, WMP_F_SERDES },
1251
1252 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_COPPER,
1253 "82580 1000BaseT Ethernet",
1254 WM_T_82580, WMP_F_COPPER },
1255 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_FIBER,
1256 "82580 1000BaseX Ethernet",
1257 WM_T_82580, WMP_F_FIBER },
1258
1259 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_SERDES,
1260 "82580 1000BaseT Ethernet (SERDES)",
1261 WM_T_82580, WMP_F_SERDES },
1262
1263 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_SGMII,
1264 "82580 gigabit Ethernet (SGMII)",
1265 WM_T_82580, WMP_F_COPPER },
1266 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_COPPER_DUAL,
1267 "82580 dual-1000BaseT Ethernet",
1268 WM_T_82580, WMP_F_COPPER },
1269
1270 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_QUAD_FIBER,
1271 "82580 quad-1000BaseX Ethernet",
1272 WM_T_82580, WMP_F_FIBER },
1273
1274 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SGMII,
1275 "DH89XXCC Gigabit Ethernet (SGMII)",
1276 WM_T_82580, WMP_F_COPPER },
1277
1278 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SERDES,
1279 "DH89XXCC Gigabit Ethernet (SERDES)",
1280 WM_T_82580, WMP_F_SERDES },
1281
1282 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_BPLANE,
1283 "DH89XXCC 1000BASE-KX Ethernet",
1284 WM_T_82580, WMP_F_SERDES },
1285
1286 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SFP,
1287 "DH89XXCC Gigabit Ethernet (SFP)",
1288 WM_T_82580, WMP_F_SERDES },
1289
1290 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_COPPER,
1291 "I350 Gigabit Network Connection",
1292 WM_T_I350, WMP_F_COPPER },
1293
1294 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_FIBER,
1295 "I350 Gigabit Fiber Network Connection",
1296 WM_T_I350, WMP_F_FIBER },
1297
1298 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_SERDES,
1299 "I350 Gigabit Backplane Connection",
1300 WM_T_I350, WMP_F_SERDES },
1301
1302 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_DA4,
1303 "I350 Quad Port Gigabit Ethernet",
1304 WM_T_I350, WMP_F_SERDES },
1305
1306 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_SGMII,
1307 "I350 Gigabit Connection",
1308 WM_T_I350, WMP_F_COPPER },
1309
1310 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_1000KX,
1311 "I354 Gigabit Ethernet (KX)",
1312 WM_T_I354, WMP_F_SERDES },
1313
1314 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_SGMII,
1315 "I354 Gigabit Ethernet (SGMII)",
1316 WM_T_I354, WMP_F_COPPER },
1317
1318 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_25GBE,
1319 "I354 Gigabit Ethernet (2.5G)",
1320 WM_T_I354, WMP_F_COPPER },
1321
1322 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_T1,
1323 "I210-T1 Ethernet Server Adapter",
1324 WM_T_I210, WMP_F_COPPER },
1325
1326 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_OEM1,
1327 "I210 Ethernet (Copper OEM)",
1328 WM_T_I210, WMP_F_COPPER },
1329
1330 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_IT,
1331 "I210 Ethernet (Copper IT)",
1332 WM_T_I210, WMP_F_COPPER },
1333
1334 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_WOF,
1335 "I210 Ethernet (FLASH less)",
1336 WM_T_I210, WMP_F_COPPER },
1337
1338 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_FIBER,
1339 "I210 Gigabit Ethernet (Fiber)",
1340 WM_T_I210, WMP_F_FIBER },
1341
1342 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SERDES,
1343 "I210 Gigabit Ethernet (SERDES)",
1344 WM_T_I210, WMP_F_SERDES },
1345
1346 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SERDES_WOF,
1347 "I210 Gigabit Ethernet (FLASH less)",
1348 WM_T_I210, WMP_F_SERDES },
1349
1350 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SGMII,
1351 "I210 Gigabit Ethernet (SGMII)",
1352 WM_T_I210, WMP_F_COPPER },
1353
1354 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I211_COPPER,
1355 "I211 Ethernet (COPPER)",
1356 WM_T_I211, WMP_F_COPPER },
1357 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I217_V,
1358 "I217 V Ethernet Connection",
1359 WM_T_PCH_LPT, WMP_F_COPPER },
1360 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I217_LM,
1361 "I217 LM Ethernet Connection",
1362 WM_T_PCH_LPT, WMP_F_COPPER },
1363 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V,
1364 "I218 V Ethernet Connection",
1365 WM_T_PCH_LPT, WMP_F_COPPER },
1366 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V2,
1367 "I218 V Ethernet Connection",
1368 WM_T_PCH_LPT, WMP_F_COPPER },
1369 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V3,
1370 "I218 V Ethernet Connection",
1371 WM_T_PCH_LPT, WMP_F_COPPER },
1372 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM,
1373 "I218 LM Ethernet Connection",
1374 WM_T_PCH_LPT, WMP_F_COPPER },
1375 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM2,
1376 "I218 LM Ethernet Connection",
1377 WM_T_PCH_LPT, WMP_F_COPPER },
1378 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM3,
1379 "I218 LM Ethernet Connection",
1380 WM_T_PCH_LPT, WMP_F_COPPER },
1381 #if 0
1382 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V,
1383 "I219 V Ethernet Connection",
1384 WM_T_PCH_SPT, WMP_F_COPPER },
1385 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V2,
1386 "I219 V Ethernet Connection",
1387 WM_T_PCH_SPT, WMP_F_COPPER },
1388 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V4,
1389 "I219 V Ethernet Connection",
1390 WM_T_PCH_SPT, WMP_F_COPPER },
1391 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V5,
1392 "I219 V Ethernet Connection",
1393 WM_T_PCH_SPT, WMP_F_COPPER },
1394 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM,
1395 "I219 LM Ethernet Connection",
1396 WM_T_PCH_SPT, WMP_F_COPPER },
1397 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM2,
1398 "I219 LM Ethernet Connection",
1399 WM_T_PCH_SPT, WMP_F_COPPER },
1400 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM3,
1401 "I219 LM Ethernet Connection",
1402 WM_T_PCH_SPT, WMP_F_COPPER },
1403 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM4,
1404 "I219 LM Ethernet Connection",
1405 WM_T_PCH_SPT, WMP_F_COPPER },
1406 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM5,
1407 "I219 LM Ethernet Connection",
1408 WM_T_PCH_SPT, WMP_F_COPPER },
1409 #endif
1410 { 0, 0,
1411 NULL,
1412 0, 0 },
1413 };
1414
1415 /*
1416 * Register read/write functions.
1417 * Other than CSR_{READ|WRITE}().
1418 */
1419
1420 #if 0 /* Not currently used */
1421 static inline uint32_t
1422 wm_io_read(struct wm_softc *sc, int reg)
1423 {
1424
1425 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
1426 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
1427 }
1428 #endif
1429
1430 static inline void
1431 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
1432 {
1433
1434 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
1435 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
1436 }
1437
1438 static inline void
1439 wm_82575_write_8bit_ctlr_reg(struct wm_softc *sc, uint32_t reg, uint32_t off,
1440 uint32_t data)
1441 {
1442 uint32_t regval;
1443 int i;
1444
1445 regval = (data & SCTL_CTL_DATA_MASK) | (off << SCTL_CTL_ADDR_SHIFT);
1446
1447 CSR_WRITE(sc, reg, regval);
1448
1449 for (i = 0; i < SCTL_CTL_POLL_TIMEOUT; i++) {
1450 delay(5);
1451 if (CSR_READ(sc, reg) & SCTL_CTL_READY)
1452 break;
1453 }
1454 if (i == SCTL_CTL_POLL_TIMEOUT) {
1455 aprint_error("%s: WARNING:"
1456 " i82575 reg 0x%08x setup did not indicate ready\n",
1457 device_xname(sc->sc_dev), reg);
1458 }
1459 }
1460
1461 static inline void
1462 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
1463 {
1464 wa->wa_low = htole32(v & 0xffffffffU);
1465 if (sizeof(bus_addr_t) == 8)
1466 wa->wa_high = htole32((uint64_t) v >> 32);
1467 else
1468 wa->wa_high = 0;
1469 }
1470
1471 /*
1472 * Descriptor sync/init functions.
1473 */
1474 static inline void
1475 wm_cdtxsync(struct wm_txqueue *txq, int start, int num, int ops)
1476 {
1477 struct wm_softc *sc = txq->txq_sc;
1478
1479 /* If it will wrap around, sync to the end of the ring. */
1480 if ((start + num) > WM_NTXDESC(txq)) {
1481 bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_dmamap,
1482 WM_CDTXOFF(txq, start), txq->txq_descsize *
1483 (WM_NTXDESC(txq) - start), ops);
1484 num -= (WM_NTXDESC(txq) - start);
1485 start = 0;
1486 }
1487
1488 /* Now sync whatever is left. */
1489 bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_dmamap,
1490 WM_CDTXOFF(txq, start), txq->txq_descsize * num, ops);
1491 }
1492
1493 static inline void
1494 wm_cdrxsync(struct wm_rxqueue *rxq, int start, int ops)
1495 {
1496 struct wm_softc *sc = rxq->rxq_sc;
1497
1498 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_dmamap,
1499 WM_CDRXOFF(start), sizeof(wiseman_rxdesc_t), ops);
1500 }
1501
1502 static inline void
1503 wm_init_rxdesc(struct wm_rxqueue *rxq, int start)
1504 {
1505 struct wm_softc *sc = rxq->rxq_sc;
1506 struct wm_rxsoft *rxs = &rxq->rxq_soft[start];
1507 wiseman_rxdesc_t *rxd = &rxq->rxq_descs[start];
1508 struct mbuf *m = rxs->rxs_mbuf;
1509
1510 /*
1511 * Note: We scoot the packet forward 2 bytes in the buffer
1512 * so that the payload after the Ethernet header is aligned
1513 * to a 4-byte boundary.
1514
1515 * XXX BRAINDAMAGE ALERT!
1516 * The stupid chip uses the same size for every buffer, which
1517 * is set in the Receive Control register. We are using the 2K
1518 * size option, but what we REALLY want is (2K - 2)! For this
1519 * reason, we can't "scoot" packets longer than the standard
1520 * Ethernet MTU. On strict-alignment platforms, if the total
1521 * size exceeds (2K - 2) we set align_tweak to 0 and let
1522 * the upper layer copy the headers.
1523 */
1524 m->m_data = m->m_ext.ext_buf + sc->sc_align_tweak;
1525
1526 wm_set_dma_addr(&rxd->wrx_addr,
1527 rxs->rxs_dmamap->dm_segs[0].ds_addr + sc->sc_align_tweak);
1528 rxd->wrx_len = 0;
1529 rxd->wrx_cksum = 0;
1530 rxd->wrx_status = 0;
1531 rxd->wrx_errors = 0;
1532 rxd->wrx_special = 0;
1533 wm_cdrxsync(rxq, start, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1534
1535 CSR_WRITE(sc, rxq->rxq_rdt_reg, start);
1536 }
1537
1538 /*
1539 * Device driver interface functions and commonly used functions.
1540 * match, attach, detach, init, start, stop, ioctl, watchdog and so on.
1541 */
1542
1543 /* Lookup supported device table */
1544 static const struct wm_product *
1545 wm_lookup(const struct pci_attach_args *pa)
1546 {
1547 const struct wm_product *wmp;
1548
1549 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
1550 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
1551 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
1552 return wmp;
1553 }
1554 return NULL;
1555 }
1556
1557 /* The match function (ca_match) */
1558 static int
1559 wm_match(device_t parent, cfdata_t cf, void *aux)
1560 {
1561 struct pci_attach_args *pa = aux;
1562
1563 if (wm_lookup(pa) != NULL)
1564 return 1;
1565
1566 return 0;
1567 }
1568
1569 /* The attach function (ca_attach) */
1570 static void
1571 wm_attach(device_t parent, device_t self, void *aux)
1572 {
1573 struct wm_softc *sc = device_private(self);
1574 struct pci_attach_args *pa = aux;
1575 prop_dictionary_t dict;
1576 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1577 pci_chipset_tag_t pc = pa->pa_pc;
1578 int counts[PCI_INTR_TYPE_SIZE];
1579 pci_intr_type_t max_type;
1580 const char *eetype, *xname;
1581 bus_space_tag_t memt;
1582 bus_space_handle_t memh;
1583 bus_size_t memsize;
1584 int memh_valid;
1585 int i, error;
1586 const struct wm_product *wmp;
1587 prop_data_t ea;
1588 prop_number_t pn;
1589 uint8_t enaddr[ETHER_ADDR_LEN];
1590 uint16_t cfg1, cfg2, swdpin, nvmword;
1591 pcireg_t preg, memtype;
1592 uint16_t eeprom_data, apme_mask;
1593 bool force_clear_smbi;
1594 uint32_t link_mode;
1595 uint32_t reg;
1596
1597 sc->sc_dev = self;
1598 callout_init(&sc->sc_tick_ch, CALLOUT_FLAGS);
1599 sc->sc_stopping = false;
1600
1601 wmp = wm_lookup(pa);
1602 #ifdef DIAGNOSTIC
1603 if (wmp == NULL) {
1604 printf("\n");
1605 panic("wm_attach: impossible");
1606 }
1607 #endif
1608 sc->sc_mediatype = WMP_MEDIATYPE(wmp->wmp_flags);
1609
1610 sc->sc_pc = pa->pa_pc;
1611 sc->sc_pcitag = pa->pa_tag;
1612
1613 if (pci_dma64_available(pa))
1614 sc->sc_dmat = pa->pa_dmat64;
1615 else
1616 sc->sc_dmat = pa->pa_dmat;
1617
1618 sc->sc_pcidevid = PCI_PRODUCT(pa->pa_id);
1619 sc->sc_rev = PCI_REVISION(pci_conf_read(pc, pa->pa_tag,PCI_CLASS_REG));
1620 pci_aprint_devinfo_fancy(pa, "Ethernet controller", wmp->wmp_name, 1);
1621
1622 sc->sc_type = wmp->wmp_type;
1623
1624 /* Set default function pointers */
1625 sc->phy.acquire = wm_get_null;
1626 sc->phy.release = wm_put_null;
1627
1628 if (sc->sc_type < WM_T_82543) {
1629 if (sc->sc_rev < 2) {
1630 aprint_error_dev(sc->sc_dev,
1631 "i82542 must be at least rev. 2\n");
1632 return;
1633 }
1634 if (sc->sc_rev < 3)
1635 sc->sc_type = WM_T_82542_2_0;
1636 }
1637
1638 /*
1639 * Disable MSI for Errata:
1640 * "Message Signaled Interrupt Feature May Corrupt Write Transactions"
1641 *
1642 * 82544: Errata 25
1643 * 82540: Errata 6 (easy to reproduce device timeout)
1644 * 82545: Errata 4 (easy to reproduce device timeout)
1645 * 82546: Errata 26 (easy to reproduce device timeout)
1646 * 82541: Errata 7 (easy to reproduce device timeout)
1647 *
1648 * "Byte Enables 2 and 3 are not set on MSI writes"
1649 *
1650 * 82571 & 82572: Errata 63
1651 */
1652 if ((sc->sc_type <= WM_T_82541_2) || (sc->sc_type == WM_T_82571)
1653 || (sc->sc_type == WM_T_82572))
1654 pa->pa_flags &= ~PCI_FLAGS_MSI_OKAY;
1655
1656 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
1657 || (sc->sc_type == WM_T_82580)
1658 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
1659 || (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211))
1660 sc->sc_flags |= WM_F_NEWQUEUE;
1661
1662 /* Set device properties (mactype) */
1663 dict = device_properties(sc->sc_dev);
1664 prop_dictionary_set_uint32(dict, "mactype", sc->sc_type);
1665
1666 /*
1667 * Map the device. All devices support memory-mapped acccess,
1668 * and it is really required for normal operation.
1669 */
1670 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
1671 switch (memtype) {
1672 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1673 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1674 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
1675 memtype, 0, &memt, &memh, NULL, &memsize) == 0);
1676 break;
1677 default:
1678 memh_valid = 0;
1679 break;
1680 }
1681
1682 if (memh_valid) {
1683 sc->sc_st = memt;
1684 sc->sc_sh = memh;
1685 sc->sc_ss = memsize;
1686 } else {
1687 aprint_error_dev(sc->sc_dev,
1688 "unable to map device registers\n");
1689 return;
1690 }
1691
1692 /*
1693 * In addition, i82544 and later support I/O mapped indirect
1694 * register access. It is not desirable (nor supported in
1695 * this driver) to use it for normal operation, though it is
1696 * required to work around bugs in some chip versions.
1697 */
1698 if (sc->sc_type >= WM_T_82544) {
1699 /* First we have to find the I/O BAR. */
1700 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
1701 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, i);
1702 if (memtype == PCI_MAPREG_TYPE_IO)
1703 break;
1704 if (PCI_MAPREG_MEM_TYPE(memtype) ==
1705 PCI_MAPREG_MEM_TYPE_64BIT)
1706 i += 4; /* skip high bits, too */
1707 }
1708 if (i < PCI_MAPREG_END) {
1709 /*
1710 * We found PCI_MAPREG_TYPE_IO. Note that 82580
1711 * (and newer?) chip has no PCI_MAPREG_TYPE_IO.
1712 * It's no problem because newer chips has no this
1713 * bug.
1714 *
1715 * The i8254x doesn't apparently respond when the
1716 * I/O BAR is 0, which looks somewhat like it's not
1717 * been configured.
1718 */
1719 preg = pci_conf_read(pc, pa->pa_tag, i);
1720 if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
1721 aprint_error_dev(sc->sc_dev,
1722 "WARNING: I/O BAR at zero.\n");
1723 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
1724 0, &sc->sc_iot, &sc->sc_ioh,
1725 NULL, &sc->sc_ios) == 0) {
1726 sc->sc_flags |= WM_F_IOH_VALID;
1727 } else {
1728 aprint_error_dev(sc->sc_dev,
1729 "WARNING: unable to map I/O space\n");
1730 }
1731 }
1732
1733 }
1734
1735 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
1736 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1737 preg |= PCI_COMMAND_MASTER_ENABLE;
1738 if (sc->sc_type < WM_T_82542_2_1)
1739 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
1740 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
1741
1742 /* power up chip */
1743 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1744 NULL)) && error != EOPNOTSUPP) {
1745 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1746 return;
1747 }
1748
1749 wm_adjust_qnum(sc, pci_msix_count(pa->pa_pc, pa->pa_tag));
1750
1751 /* Allocation settings */
1752 max_type = PCI_INTR_TYPE_MSIX;
1753 counts[PCI_INTR_TYPE_MSIX] = sc->sc_nqueues + 1;
1754 counts[PCI_INTR_TYPE_MSI] = 1;
1755 counts[PCI_INTR_TYPE_INTX] = 1;
1756
1757 alloc_retry:
1758 if (pci_intr_alloc(pa, &sc->sc_intrs, counts, max_type) != 0) {
1759 aprint_error_dev(sc->sc_dev, "failed to allocate interrupt\n");
1760 return;
1761 }
1762
1763 if (pci_intr_type(pc, sc->sc_intrs[0]) == PCI_INTR_TYPE_MSIX) {
1764 error = wm_setup_msix(sc);
1765 if (error) {
1766 pci_intr_release(pc, sc->sc_intrs,
1767 counts[PCI_INTR_TYPE_MSIX]);
1768
1769 /* Setup for MSI: Disable MSI-X */
1770 max_type = PCI_INTR_TYPE_MSI;
1771 counts[PCI_INTR_TYPE_MSI] = 1;
1772 counts[PCI_INTR_TYPE_INTX] = 1;
1773 goto alloc_retry;
1774 }
1775 } else if (pci_intr_type(pc, sc->sc_intrs[0]) == PCI_INTR_TYPE_MSI) {
1776 wm_adjust_qnum(sc, 0); /* must not use multiqueue */
1777 error = wm_setup_legacy(sc);
1778 if (error) {
1779 pci_intr_release(sc->sc_pc, sc->sc_intrs,
1780 counts[PCI_INTR_TYPE_MSI]);
1781
1782 /* The next try is for INTx: Disable MSI */
1783 max_type = PCI_INTR_TYPE_INTX;
1784 counts[PCI_INTR_TYPE_INTX] = 1;
1785 goto alloc_retry;
1786 }
1787 } else {
1788 wm_adjust_qnum(sc, 0); /* must not use multiqueue */
1789 error = wm_setup_legacy(sc);
1790 if (error) {
1791 pci_intr_release(sc->sc_pc, sc->sc_intrs,
1792 counts[PCI_INTR_TYPE_INTX]);
1793 return;
1794 }
1795 }
1796
1797 /*
1798 * Check the function ID (unit number of the chip).
1799 */
1800 if ((sc->sc_type == WM_T_82546) || (sc->sc_type == WM_T_82546_3)
1801 || (sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_80003)
1802 || (sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
1803 || (sc->sc_type == WM_T_82580)
1804 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354))
1805 sc->sc_funcid = (CSR_READ(sc, WMREG_STATUS)
1806 >> STATUS_FUNCID_SHIFT) & STATUS_FUNCID_MASK;
1807 else
1808 sc->sc_funcid = 0;
1809
1810 /*
1811 * Determine a few things about the bus we're connected to.
1812 */
1813 if (sc->sc_type < WM_T_82543) {
1814 /* We don't really know the bus characteristics here. */
1815 sc->sc_bus_speed = 33;
1816 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
1817 /*
1818 * CSA (Communication Streaming Architecture) is about as fast
1819 * a 32-bit 66MHz PCI Bus.
1820 */
1821 sc->sc_flags |= WM_F_CSA;
1822 sc->sc_bus_speed = 66;
1823 aprint_verbose_dev(sc->sc_dev,
1824 "Communication Streaming Architecture\n");
1825 if (sc->sc_type == WM_T_82547) {
1826 callout_init(&sc->sc_txfifo_ch, CALLOUT_FLAGS);
1827 callout_setfunc(&sc->sc_txfifo_ch,
1828 wm_82547_txfifo_stall, sc);
1829 aprint_verbose_dev(sc->sc_dev,
1830 "using 82547 Tx FIFO stall work-around\n");
1831 }
1832 } else if (sc->sc_type >= WM_T_82571) {
1833 sc->sc_flags |= WM_F_PCIE;
1834 if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9)
1835 && (sc->sc_type != WM_T_ICH10)
1836 && (sc->sc_type != WM_T_PCH)
1837 && (sc->sc_type != WM_T_PCH2)
1838 && (sc->sc_type != WM_T_PCH_LPT)
1839 && (sc->sc_type != WM_T_PCH_SPT)) {
1840 /* ICH* and PCH* have no PCIe capability registers */
1841 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
1842 PCI_CAP_PCIEXPRESS, &sc->sc_pcixe_capoff,
1843 NULL) == 0)
1844 aprint_error_dev(sc->sc_dev,
1845 "unable to find PCIe capability\n");
1846 }
1847 aprint_verbose_dev(sc->sc_dev, "PCI-Express bus\n");
1848 } else {
1849 reg = CSR_READ(sc, WMREG_STATUS);
1850 if (reg & STATUS_BUS64)
1851 sc->sc_flags |= WM_F_BUS64;
1852 if ((reg & STATUS_PCIX_MODE) != 0) {
1853 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
1854
1855 sc->sc_flags |= WM_F_PCIX;
1856 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
1857 PCI_CAP_PCIX, &sc->sc_pcixe_capoff, NULL) == 0)
1858 aprint_error_dev(sc->sc_dev,
1859 "unable to find PCIX capability\n");
1860 else if (sc->sc_type != WM_T_82545_3 &&
1861 sc->sc_type != WM_T_82546_3) {
1862 /*
1863 * Work around a problem caused by the BIOS
1864 * setting the max memory read byte count
1865 * incorrectly.
1866 */
1867 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
1868 sc->sc_pcixe_capoff + PCIX_CMD);
1869 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
1870 sc->sc_pcixe_capoff + PCIX_STATUS);
1871
1872 bytecnt = (pcix_cmd & PCIX_CMD_BYTECNT_MASK) >>
1873 PCIX_CMD_BYTECNT_SHIFT;
1874 maxb = (pcix_sts & PCIX_STATUS_MAXB_MASK) >>
1875 PCIX_STATUS_MAXB_SHIFT;
1876 if (bytecnt > maxb) {
1877 aprint_verbose_dev(sc->sc_dev,
1878 "resetting PCI-X MMRBC: %d -> %d\n",
1879 512 << bytecnt, 512 << maxb);
1880 pcix_cmd = (pcix_cmd &
1881 ~PCIX_CMD_BYTECNT_MASK) |
1882 (maxb << PCIX_CMD_BYTECNT_SHIFT);
1883 pci_conf_write(pa->pa_pc, pa->pa_tag,
1884 sc->sc_pcixe_capoff + PCIX_CMD,
1885 pcix_cmd);
1886 }
1887 }
1888 }
1889 /*
1890 * The quad port adapter is special; it has a PCIX-PCIX
1891 * bridge on the board, and can run the secondary bus at
1892 * a higher speed.
1893 */
1894 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
1895 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
1896 : 66;
1897 } else if (sc->sc_flags & WM_F_PCIX) {
1898 switch (reg & STATUS_PCIXSPD_MASK) {
1899 case STATUS_PCIXSPD_50_66:
1900 sc->sc_bus_speed = 66;
1901 break;
1902 case STATUS_PCIXSPD_66_100:
1903 sc->sc_bus_speed = 100;
1904 break;
1905 case STATUS_PCIXSPD_100_133:
1906 sc->sc_bus_speed = 133;
1907 break;
1908 default:
1909 aprint_error_dev(sc->sc_dev,
1910 "unknown PCIXSPD %d; assuming 66MHz\n",
1911 reg & STATUS_PCIXSPD_MASK);
1912 sc->sc_bus_speed = 66;
1913 break;
1914 }
1915 } else
1916 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
1917 aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
1918 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
1919 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
1920 }
1921
1922 /* clear interesting stat counters */
1923 CSR_READ(sc, WMREG_COLC);
1924 CSR_READ(sc, WMREG_RXERRC);
1925
1926 /* get PHY control from SMBus to PCIe */
1927 if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)
1928 || (sc->sc_type == WM_T_PCH_LPT) || (sc->sc_type == WM_T_PCH_SPT))
1929 wm_smbustopci(sc);
1930
1931 if ((sc->sc_type == WM_T_82574) || (sc->sc_type == WM_T_82583)
1932 || (sc->sc_type >= WM_T_ICH8))
1933 sc->sc_ich_phymtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
1934 if (sc->sc_type >= WM_T_ICH8)
1935 sc->sc_ich_nvmmtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
1936
1937 /* Set PHY, NVM mutex related stuff */
1938 switch (sc->sc_type) {
1939 case WM_T_82542_2_0:
1940 case WM_T_82542_2_1:
1941 case WM_T_82543:
1942 case WM_T_82544:
1943 /* Microwire */
1944 sc->sc_nvm_wordsize = 64;
1945 sc->sc_nvm_addrbits = 6;
1946 break;
1947 case WM_T_82540:
1948 case WM_T_82545:
1949 case WM_T_82545_3:
1950 case WM_T_82546:
1951 case WM_T_82546_3:
1952 /* Microwire */
1953 reg = CSR_READ(sc, WMREG_EECD);
1954 if (reg & EECD_EE_SIZE) {
1955 sc->sc_nvm_wordsize = 256;
1956 sc->sc_nvm_addrbits = 8;
1957 } else {
1958 sc->sc_nvm_wordsize = 64;
1959 sc->sc_nvm_addrbits = 6;
1960 }
1961 sc->sc_flags |= WM_F_LOCK_EECD;
1962 break;
1963 case WM_T_82541:
1964 case WM_T_82541_2:
1965 case WM_T_82547:
1966 case WM_T_82547_2:
1967 sc->sc_flags |= WM_F_LOCK_EECD;
1968 reg = CSR_READ(sc, WMREG_EECD);
1969 if (reg & EECD_EE_TYPE) {
1970 /* SPI */
1971 sc->sc_flags |= WM_F_EEPROM_SPI;
1972 wm_nvm_set_addrbits_size_eecd(sc);
1973 } else {
1974 /* Microwire */
1975 if ((reg & EECD_EE_ABITS) != 0) {
1976 sc->sc_nvm_wordsize = 256;
1977 sc->sc_nvm_addrbits = 8;
1978 } else {
1979 sc->sc_nvm_wordsize = 64;
1980 sc->sc_nvm_addrbits = 6;
1981 }
1982 }
1983 break;
1984 case WM_T_82571:
1985 case WM_T_82572:
1986 /* SPI */
1987 sc->sc_flags |= WM_F_EEPROM_SPI;
1988 wm_nvm_set_addrbits_size_eecd(sc);
1989 sc->sc_flags |= WM_F_LOCK_EECD | WM_F_LOCK_SWSM;
1990 sc->phy.acquire = wm_get_swsm_semaphore;
1991 sc->phy.release = wm_put_swsm_semaphore;
1992 break;
1993 case WM_T_82573:
1994 case WM_T_82574:
1995 case WM_T_82583:
1996 if (sc->sc_type == WM_T_82573) {
1997 sc->sc_flags |= WM_F_LOCK_SWSM;
1998 sc->phy.acquire = wm_get_swsm_semaphore;
1999 sc->phy.release = wm_put_swsm_semaphore;
2000 } else {
2001 sc->sc_flags |= WM_F_LOCK_EXTCNF;
2002 /* Both PHY and NVM use the same semaphore. */
2003 sc->phy.acquire
2004 = wm_get_swfwhw_semaphore;
2005 sc->phy.release
2006 = wm_put_swfwhw_semaphore;
2007 }
2008 if (wm_nvm_is_onboard_eeprom(sc) == 0) {
2009 sc->sc_flags |= WM_F_EEPROM_FLASH;
2010 sc->sc_nvm_wordsize = 2048;
2011 } else {
2012 /* SPI */
2013 sc->sc_flags |= WM_F_EEPROM_SPI;
2014 wm_nvm_set_addrbits_size_eecd(sc);
2015 }
2016 sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
2017 break;
2018 case WM_T_82575:
2019 case WM_T_82576:
2020 case WM_T_82580:
2021 case WM_T_I350:
2022 case WM_T_I354:
2023 case WM_T_80003:
2024 /* SPI */
2025 sc->sc_flags |= WM_F_EEPROM_SPI;
2026 wm_nvm_set_addrbits_size_eecd(sc);
2027 sc->sc_flags |= WM_F_EEPROM_EERDEEWR | WM_F_LOCK_SWFW
2028 | WM_F_LOCK_SWSM;
2029 sc->phy.acquire = wm_get_phy_82575;
2030 sc->phy.release = wm_put_phy_82575;
2031 break;
2032 case WM_T_ICH8:
2033 case WM_T_ICH9:
2034 case WM_T_ICH10:
2035 case WM_T_PCH:
2036 case WM_T_PCH2:
2037 case WM_T_PCH_LPT:
2038 /* FLASH */
2039 sc->sc_flags |= WM_F_EEPROM_FLASH | WM_F_LOCK_EXTCNF;
2040 sc->sc_nvm_wordsize = 2048;
2041 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag,WM_ICH8_FLASH);
2042 if (pci_mapreg_map(pa, WM_ICH8_FLASH, memtype, 0,
2043 &sc->sc_flasht, &sc->sc_flashh, NULL, &sc->sc_flashs)) {
2044 aprint_error_dev(sc->sc_dev,
2045 "can't map FLASH registers\n");
2046 goto out;
2047 }
2048 reg = ICH8_FLASH_READ32(sc, ICH_FLASH_GFPREG);
2049 sc->sc_ich8_flash_base = (reg & ICH_GFPREG_BASE_MASK) *
2050 ICH_FLASH_SECTOR_SIZE;
2051 sc->sc_ich8_flash_bank_size =
2052 ((reg >> 16) & ICH_GFPREG_BASE_MASK) + 1;
2053 sc->sc_ich8_flash_bank_size -= (reg & ICH_GFPREG_BASE_MASK);
2054 sc->sc_ich8_flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
2055 sc->sc_ich8_flash_bank_size /= 2 * sizeof(uint16_t);
2056 sc->sc_flashreg_offset = 0;
2057 sc->phy.acquire = wm_get_swflag_ich8lan;
2058 sc->phy.release = wm_put_swflag_ich8lan;
2059 break;
2060 case WM_T_PCH_SPT:
2061 /* SPT has no GFPREG; flash registers mapped through BAR0 */
2062 sc->sc_flags |= WM_F_EEPROM_FLASH | WM_F_LOCK_EXTCNF;
2063 sc->sc_flasht = sc->sc_st;
2064 sc->sc_flashh = sc->sc_sh;
2065 sc->sc_ich8_flash_base = 0;
2066 sc->sc_nvm_wordsize =
2067 (((CSR_READ(sc, WMREG_STRAP) >> 1) & 0x1F) + 1)
2068 * NVM_SIZE_MULTIPLIER;
2069 /* It is size in bytes, we want words */
2070 sc->sc_nvm_wordsize /= 2;
2071 /* assume 2 banks */
2072 sc->sc_ich8_flash_bank_size = sc->sc_nvm_wordsize / 2;
2073 sc->sc_flashreg_offset = WM_PCH_SPT_FLASHOFFSET;
2074 sc->phy.acquire = wm_get_swflag_ich8lan;
2075 sc->phy.release = wm_put_swflag_ich8lan;
2076 break;
2077 case WM_T_I210:
2078 case WM_T_I211:
2079 if (wm_nvm_get_flash_presence_i210(sc)) {
2080 wm_nvm_set_addrbits_size_eecd(sc);
2081 sc->sc_flags |= WM_F_EEPROM_FLASH_HW;
2082 sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
2083 } else {
2084 sc->sc_nvm_wordsize = INVM_SIZE;
2085 sc->sc_flags |= WM_F_EEPROM_INVM;
2086 }
2087 sc->sc_flags |= WM_F_LOCK_SWFW | WM_F_LOCK_SWSM;
2088 sc->phy.acquire = wm_get_phy_82575;
2089 sc->phy.release = wm_put_phy_82575;
2090 break;
2091 default:
2092 break;
2093 }
2094
2095 /* Reset the chip to a known state. */
2096 wm_reset(sc);
2097
2098 /* Ensure the SMBI bit is clear before first NVM or PHY access */
2099 switch (sc->sc_type) {
2100 case WM_T_82571:
2101 case WM_T_82572:
2102 reg = CSR_READ(sc, WMREG_SWSM2);
2103 if ((reg & SWSM2_LOCK) == 0) {
2104 CSR_WRITE(sc, WMREG_SWSM2, reg | SWSM2_LOCK);
2105 force_clear_smbi = true;
2106 } else
2107 force_clear_smbi = false;
2108 break;
2109 case WM_T_82573:
2110 case WM_T_82574:
2111 case WM_T_82583:
2112 force_clear_smbi = true;
2113 break;
2114 default:
2115 force_clear_smbi = false;
2116 break;
2117 }
2118 if (force_clear_smbi) {
2119 reg = CSR_READ(sc, WMREG_SWSM);
2120 if ((reg & SWSM_SMBI) != 0)
2121 aprint_error_dev(sc->sc_dev,
2122 "Please update the Bootagent\n");
2123 CSR_WRITE(sc, WMREG_SWSM, reg & ~SWSM_SMBI);
2124 }
2125
2126 /*
2127 * Defer printing the EEPROM type until after verifying the checksum
2128 * This allows the EEPROM type to be printed correctly in the case
2129 * that no EEPROM is attached.
2130 */
2131 /*
2132 * Validate the EEPROM checksum. If the checksum fails, flag
2133 * this for later, so we can fail future reads from the EEPROM.
2134 */
2135 if (wm_nvm_validate_checksum(sc)) {
2136 /*
2137 * Read twice again because some PCI-e parts fail the
2138 * first check due to the link being in sleep state.
2139 */
2140 if (wm_nvm_validate_checksum(sc))
2141 sc->sc_flags |= WM_F_EEPROM_INVALID;
2142 }
2143
2144 /* Set device properties (macflags) */
2145 prop_dictionary_set_uint32(dict, "macflags", sc->sc_flags);
2146
2147 if (sc->sc_flags & WM_F_EEPROM_INVALID)
2148 aprint_verbose_dev(sc->sc_dev, "No EEPROM");
2149 else {
2150 aprint_verbose_dev(sc->sc_dev, "%u words ",
2151 sc->sc_nvm_wordsize);
2152 if (sc->sc_flags & WM_F_EEPROM_INVM)
2153 aprint_verbose("iNVM");
2154 else if (sc->sc_flags & WM_F_EEPROM_FLASH_HW)
2155 aprint_verbose("FLASH(HW)");
2156 else if (sc->sc_flags & WM_F_EEPROM_FLASH)
2157 aprint_verbose("FLASH");
2158 else {
2159 if (sc->sc_flags & WM_F_EEPROM_SPI)
2160 eetype = "SPI";
2161 else
2162 eetype = "MicroWire";
2163 aprint_verbose("(%d address bits) %s EEPROM",
2164 sc->sc_nvm_addrbits, eetype);
2165 }
2166 }
2167 wm_nvm_version(sc);
2168 aprint_verbose("\n");
2169
2170 /* Check for I21[01] PLL workaround */
2171 if (sc->sc_type == WM_T_I210)
2172 sc->sc_flags |= WM_F_PLL_WA_I210;
2173 if ((sc->sc_type == WM_T_I210) && wm_nvm_get_flash_presence_i210(sc)) {
2174 /* NVM image release 3.25 has a workaround */
2175 if ((sc->sc_nvm_ver_major < 3)
2176 || ((sc->sc_nvm_ver_major == 3)
2177 && (sc->sc_nvm_ver_minor < 25))) {
2178 aprint_verbose_dev(sc->sc_dev,
2179 "ROM image version %d.%d is older than 3.25\n",
2180 sc->sc_nvm_ver_major, sc->sc_nvm_ver_minor);
2181 sc->sc_flags |= WM_F_PLL_WA_I210;
2182 }
2183 }
2184 if ((sc->sc_flags & WM_F_PLL_WA_I210) != 0)
2185 wm_pll_workaround_i210(sc);
2186
2187 wm_get_wakeup(sc);
2188 switch (sc->sc_type) {
2189 case WM_T_82571:
2190 case WM_T_82572:
2191 case WM_T_82573:
2192 case WM_T_82574:
2193 case WM_T_82583:
2194 case WM_T_80003:
2195 case WM_T_ICH8:
2196 case WM_T_ICH9:
2197 case WM_T_ICH10:
2198 case WM_T_PCH:
2199 case WM_T_PCH2:
2200 case WM_T_PCH_LPT:
2201 case WM_T_PCH_SPT:
2202 /* Non-AMT based hardware can now take control from firmware */
2203 if ((sc->sc_flags & WM_F_HAS_AMT) == 0)
2204 wm_get_hw_control(sc);
2205 break;
2206 default:
2207 break;
2208 }
2209
2210 /*
2211 * Read the Ethernet address from the EEPROM, if not first found
2212 * in device properties.
2213 */
2214 ea = prop_dictionary_get(dict, "mac-address");
2215 if (ea != NULL) {
2216 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
2217 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
2218 memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
2219 } else {
2220 if (wm_read_mac_addr(sc, enaddr) != 0) {
2221 aprint_error_dev(sc->sc_dev,
2222 "unable to read Ethernet address\n");
2223 goto out;
2224 }
2225 }
2226
2227 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
2228 ether_sprintf(enaddr));
2229
2230 /*
2231 * Read the config info from the EEPROM, and set up various
2232 * bits in the control registers based on their contents.
2233 */
2234 pn = prop_dictionary_get(dict, "i82543-cfg1");
2235 if (pn != NULL) {
2236 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
2237 cfg1 = (uint16_t) prop_number_integer_value(pn);
2238 } else {
2239 if (wm_nvm_read(sc, NVM_OFF_CFG1, 1, &cfg1)) {
2240 aprint_error_dev(sc->sc_dev, "unable to read CFG1\n");
2241 goto out;
2242 }
2243 }
2244
2245 pn = prop_dictionary_get(dict, "i82543-cfg2");
2246 if (pn != NULL) {
2247 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
2248 cfg2 = (uint16_t) prop_number_integer_value(pn);
2249 } else {
2250 if (wm_nvm_read(sc, NVM_OFF_CFG2, 1, &cfg2)) {
2251 aprint_error_dev(sc->sc_dev, "unable to read CFG2\n");
2252 goto out;
2253 }
2254 }
2255
2256 /* check for WM_F_WOL */
2257 switch (sc->sc_type) {
2258 case WM_T_82542_2_0:
2259 case WM_T_82542_2_1:
2260 case WM_T_82543:
2261 /* dummy? */
2262 eeprom_data = 0;
2263 apme_mask = NVM_CFG3_APME;
2264 break;
2265 case WM_T_82544:
2266 apme_mask = NVM_CFG2_82544_APM_EN;
2267 eeprom_data = cfg2;
2268 break;
2269 case WM_T_82546:
2270 case WM_T_82546_3:
2271 case WM_T_82571:
2272 case WM_T_82572:
2273 case WM_T_82573:
2274 case WM_T_82574:
2275 case WM_T_82583:
2276 case WM_T_80003:
2277 default:
2278 apme_mask = NVM_CFG3_APME;
2279 wm_nvm_read(sc, (sc->sc_funcid == 1) ? NVM_OFF_CFG3_PORTB
2280 : NVM_OFF_CFG3_PORTA, 1, &eeprom_data);
2281 break;
2282 case WM_T_82575:
2283 case WM_T_82576:
2284 case WM_T_82580:
2285 case WM_T_I350:
2286 case WM_T_I354: /* XXX ok? */
2287 case WM_T_ICH8:
2288 case WM_T_ICH9:
2289 case WM_T_ICH10:
2290 case WM_T_PCH:
2291 case WM_T_PCH2:
2292 case WM_T_PCH_LPT:
2293 case WM_T_PCH_SPT:
2294 /* XXX The funcid should be checked on some devices */
2295 apme_mask = WUC_APME;
2296 eeprom_data = CSR_READ(sc, WMREG_WUC);
2297 break;
2298 }
2299
2300 /* Check for WM_F_WOL flag after the setting of the EEPROM stuff */
2301 if ((eeprom_data & apme_mask) != 0)
2302 sc->sc_flags |= WM_F_WOL;
2303 #ifdef WM_DEBUG
2304 if ((sc->sc_flags & WM_F_WOL) != 0)
2305 printf("WOL\n");
2306 #endif
2307
2308 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)) {
2309 /* Check NVM for autonegotiation */
2310 if (wm_nvm_read(sc, NVM_OFF_COMPAT, 1, &nvmword) == 0) {
2311 if ((nvmword & NVM_COMPAT_SERDES_FORCE_MODE) != 0)
2312 sc->sc_flags |= WM_F_PCS_DIS_AUTONEGO;
2313 }
2314 }
2315
2316 /*
2317 * XXX need special handling for some multiple port cards
2318 * to disable a paticular port.
2319 */
2320
2321 if (sc->sc_type >= WM_T_82544) {
2322 pn = prop_dictionary_get(dict, "i82543-swdpin");
2323 if (pn != NULL) {
2324 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
2325 swdpin = (uint16_t) prop_number_integer_value(pn);
2326 } else {
2327 if (wm_nvm_read(sc, NVM_OFF_SWDPIN, 1, &swdpin)) {
2328 aprint_error_dev(sc->sc_dev,
2329 "unable to read SWDPIN\n");
2330 goto out;
2331 }
2332 }
2333 }
2334
2335 if (cfg1 & NVM_CFG1_ILOS)
2336 sc->sc_ctrl |= CTRL_ILOS;
2337
2338 /*
2339 * XXX
2340 * This code isn't correct because pin 2 and 3 are located
2341 * in different position on newer chips. Check all datasheet.
2342 *
2343 * Until resolve this problem, check if a chip < 82580
2344 */
2345 if (sc->sc_type <= WM_T_82580) {
2346 if (sc->sc_type >= WM_T_82544) {
2347 sc->sc_ctrl |=
2348 ((swdpin >> NVM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
2349 CTRL_SWDPIO_SHIFT;
2350 sc->sc_ctrl |=
2351 ((swdpin >> NVM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
2352 CTRL_SWDPINS_SHIFT;
2353 } else {
2354 sc->sc_ctrl |=
2355 ((cfg1 >> NVM_CFG1_SWDPIO_SHIFT) & 0xf) <<
2356 CTRL_SWDPIO_SHIFT;
2357 }
2358 }
2359
2360 /* XXX For other than 82580? */
2361 if (sc->sc_type == WM_T_82580) {
2362 wm_nvm_read(sc, NVM_OFF_CFG3_PORTA, 1, &nvmword);
2363 if (nvmword & __BIT(13))
2364 sc->sc_ctrl |= CTRL_ILOS;
2365 }
2366
2367 #if 0
2368 if (sc->sc_type >= WM_T_82544) {
2369 if (cfg1 & NVM_CFG1_IPS0)
2370 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
2371 if (cfg1 & NVM_CFG1_IPS1)
2372 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
2373 sc->sc_ctrl_ext |=
2374 ((swdpin >> (NVM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
2375 CTRL_EXT_SWDPIO_SHIFT;
2376 sc->sc_ctrl_ext |=
2377 ((swdpin >> (NVM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
2378 CTRL_EXT_SWDPINS_SHIFT;
2379 } else {
2380 sc->sc_ctrl_ext |=
2381 ((cfg2 >> NVM_CFG2_SWDPIO_SHIFT) & 0xf) <<
2382 CTRL_EXT_SWDPIO_SHIFT;
2383 }
2384 #endif
2385
2386 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2387 #if 0
2388 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2389 #endif
2390
2391 if (sc->sc_type == WM_T_PCH) {
2392 uint16_t val;
2393
2394 /* Save the NVM K1 bit setting */
2395 wm_nvm_read(sc, NVM_OFF_K1_CONFIG, 1, &val);
2396
2397 if ((val & NVM_K1_CONFIG_ENABLE) != 0)
2398 sc->sc_nvm_k1_enabled = 1;
2399 else
2400 sc->sc_nvm_k1_enabled = 0;
2401 }
2402
2403 /*
2404 * Determine if we're TBI,GMII or SGMII mode, and initialize the
2405 * media structures accordingly.
2406 */
2407 if (sc->sc_type == WM_T_ICH8 || sc->sc_type == WM_T_ICH9
2408 || sc->sc_type == WM_T_ICH10 || sc->sc_type == WM_T_PCH
2409 || sc->sc_type == WM_T_PCH2 || sc->sc_type == WM_T_PCH_LPT
2410 || sc->sc_type == WM_T_PCH_SPT || sc->sc_type == WM_T_82573
2411 || sc->sc_type == WM_T_82574 || sc->sc_type == WM_T_82583) {
2412 /* STATUS_TBIMODE reserved/reused, can't rely on it */
2413 wm_gmii_mediainit(sc, wmp->wmp_product);
2414 } else if (sc->sc_type < WM_T_82543 ||
2415 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
2416 if (sc->sc_mediatype == WM_MEDIATYPE_COPPER) {
2417 aprint_error_dev(sc->sc_dev,
2418 "WARNING: TBIMODE set on 1000BASE-T product!\n");
2419 sc->sc_mediatype = WM_MEDIATYPE_FIBER;
2420 }
2421 wm_tbi_mediainit(sc);
2422 } else {
2423 switch (sc->sc_type) {
2424 case WM_T_82575:
2425 case WM_T_82576:
2426 case WM_T_82580:
2427 case WM_T_I350:
2428 case WM_T_I354:
2429 case WM_T_I210:
2430 case WM_T_I211:
2431 reg = CSR_READ(sc, WMREG_CTRL_EXT);
2432 link_mode = reg & CTRL_EXT_LINK_MODE_MASK;
2433 switch (link_mode) {
2434 case CTRL_EXT_LINK_MODE_1000KX:
2435 aprint_verbose_dev(sc->sc_dev, "1000KX\n");
2436 sc->sc_mediatype = WM_MEDIATYPE_SERDES;
2437 break;
2438 case CTRL_EXT_LINK_MODE_SGMII:
2439 if (wm_sgmii_uses_mdio(sc)) {
2440 aprint_verbose_dev(sc->sc_dev,
2441 "SGMII(MDIO)\n");
2442 sc->sc_flags |= WM_F_SGMII;
2443 sc->sc_mediatype = WM_MEDIATYPE_COPPER;
2444 break;
2445 }
2446 aprint_verbose_dev(sc->sc_dev, "SGMII(I2C)\n");
2447 /*FALLTHROUGH*/
2448 case CTRL_EXT_LINK_MODE_PCIE_SERDES:
2449 sc->sc_mediatype = wm_sfp_get_media_type(sc);
2450 if (sc->sc_mediatype == WM_MEDIATYPE_UNKNOWN) {
2451 if (link_mode
2452 == CTRL_EXT_LINK_MODE_SGMII) {
2453 sc->sc_mediatype
2454 = WM_MEDIATYPE_COPPER;
2455 sc->sc_flags |= WM_F_SGMII;
2456 } else {
2457 sc->sc_mediatype
2458 = WM_MEDIATYPE_SERDES;
2459 aprint_verbose_dev(sc->sc_dev,
2460 "SERDES\n");
2461 }
2462 break;
2463 }
2464 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES)
2465 aprint_verbose_dev(sc->sc_dev,
2466 "SERDES\n");
2467
2468 /* Change current link mode setting */
2469 reg &= ~CTRL_EXT_LINK_MODE_MASK;
2470 switch (sc->sc_mediatype) {
2471 case WM_MEDIATYPE_COPPER:
2472 reg |= CTRL_EXT_LINK_MODE_SGMII;
2473 break;
2474 case WM_MEDIATYPE_SERDES:
2475 reg |= CTRL_EXT_LINK_MODE_PCIE_SERDES;
2476 break;
2477 default:
2478 break;
2479 }
2480 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
2481 break;
2482 case CTRL_EXT_LINK_MODE_GMII:
2483 default:
2484 aprint_verbose_dev(sc->sc_dev, "Copper\n");
2485 sc->sc_mediatype = WM_MEDIATYPE_COPPER;
2486 break;
2487 }
2488
2489 reg &= ~CTRL_EXT_I2C_ENA;
2490 if ((sc->sc_flags & WM_F_SGMII) != 0)
2491 reg |= CTRL_EXT_I2C_ENA;
2492 else
2493 reg &= ~CTRL_EXT_I2C_ENA;
2494 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
2495
2496 if (sc->sc_mediatype == WM_MEDIATYPE_COPPER)
2497 wm_gmii_mediainit(sc, wmp->wmp_product);
2498 else
2499 wm_tbi_mediainit(sc);
2500 break;
2501 default:
2502 if (sc->sc_mediatype == WM_MEDIATYPE_FIBER)
2503 aprint_error_dev(sc->sc_dev,
2504 "WARNING: TBIMODE clear on 1000BASE-X product!\n");
2505 sc->sc_mediatype = WM_MEDIATYPE_COPPER;
2506 wm_gmii_mediainit(sc, wmp->wmp_product);
2507 }
2508 }
2509
2510 ifp = &sc->sc_ethercom.ec_if;
2511 xname = device_xname(sc->sc_dev);
2512 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
2513 ifp->if_softc = sc;
2514 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2515 ifp->if_extflags = IFEF_START_MPSAFE;
2516 ifp->if_ioctl = wm_ioctl;
2517 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
2518 ifp->if_start = wm_nq_start;
2519 if (sc->sc_nqueues > 1)
2520 ifp->if_transmit = wm_nq_transmit;
2521 } else
2522 ifp->if_start = wm_start;
2523 ifp->if_watchdog = wm_watchdog;
2524 ifp->if_init = wm_init;
2525 ifp->if_stop = wm_stop;
2526 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
2527 IFQ_SET_READY(&ifp->if_snd);
2528
2529 /* Check for jumbo frame */
2530 switch (sc->sc_type) {
2531 case WM_T_82573:
2532 /* XXX limited to 9234 if ASPM is disabled */
2533 wm_nvm_read(sc, NVM_OFF_INIT_3GIO_3, 1, &nvmword);
2534 if ((nvmword & NVM_3GIO_3_ASPM_MASK) != 0)
2535 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2536 break;
2537 case WM_T_82571:
2538 case WM_T_82572:
2539 case WM_T_82574:
2540 case WM_T_82575:
2541 case WM_T_82576:
2542 case WM_T_82580:
2543 case WM_T_I350:
2544 case WM_T_I354: /* XXXX ok? */
2545 case WM_T_I210:
2546 case WM_T_I211:
2547 case WM_T_80003:
2548 case WM_T_ICH9:
2549 case WM_T_ICH10:
2550 case WM_T_PCH2: /* PCH2 supports 9K frame size */
2551 case WM_T_PCH_LPT:
2552 case WM_T_PCH_SPT:
2553 /* XXX limited to 9234 */
2554 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2555 break;
2556 case WM_T_PCH:
2557 /* XXX limited to 4096 */
2558 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2559 break;
2560 case WM_T_82542_2_0:
2561 case WM_T_82542_2_1:
2562 case WM_T_82583:
2563 case WM_T_ICH8:
2564 /* No support for jumbo frame */
2565 break;
2566 default:
2567 /* ETHER_MAX_LEN_JUMBO */
2568 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2569 break;
2570 }
2571
2572 /* If we're a i82543 or greater, we can support VLANs. */
2573 if (sc->sc_type >= WM_T_82543)
2574 sc->sc_ethercom.ec_capabilities |=
2575 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
2576
2577 /*
2578 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
2579 * on i82543 and later.
2580 */
2581 if (sc->sc_type >= WM_T_82543) {
2582 ifp->if_capabilities |=
2583 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2584 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2585 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
2586 IFCAP_CSUM_TCPv6_Tx |
2587 IFCAP_CSUM_UDPv6_Tx;
2588 }
2589
2590 /*
2591 * XXXyamt: i'm not sure which chips support RXCSUM_IPV6OFL.
2592 *
2593 * 82541GI (8086:1076) ... no
2594 * 82572EI (8086:10b9) ... yes
2595 */
2596 if (sc->sc_type >= WM_T_82571) {
2597 ifp->if_capabilities |=
2598 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
2599 }
2600
2601 /*
2602 * If we're a i82544 or greater (except i82547), we can do
2603 * TCP segmentation offload.
2604 */
2605 if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547) {
2606 ifp->if_capabilities |= IFCAP_TSOv4;
2607 }
2608
2609 if (sc->sc_type >= WM_T_82571) {
2610 ifp->if_capabilities |= IFCAP_TSOv6;
2611 }
2612
2613 #ifdef WM_MPSAFE
2614 sc->sc_core_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
2615 #else
2616 sc->sc_core_lock = NULL;
2617 #endif
2618
2619 /* Attach the interface. */
2620 if_initialize(ifp);
2621 sc->sc_ipq = if_percpuq_create(&sc->sc_ethercom.ec_if);
2622 ether_ifattach(ifp, enaddr);
2623 if_register(ifp);
2624 ether_set_ifflags_cb(&sc->sc_ethercom, wm_ifflags_cb);
2625 rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET,
2626 RND_FLAG_DEFAULT);
2627
2628 #ifdef WM_EVENT_COUNTERS
2629 /* Attach event counters. */
2630 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
2631 NULL, xname, "linkintr");
2632
2633 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
2634 NULL, xname, "tx_xoff");
2635 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
2636 NULL, xname, "tx_xon");
2637 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
2638 NULL, xname, "rx_xoff");
2639 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
2640 NULL, xname, "rx_xon");
2641 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
2642 NULL, xname, "rx_macctl");
2643 #endif /* WM_EVENT_COUNTERS */
2644
2645 if (pmf_device_register(self, wm_suspend, wm_resume))
2646 pmf_class_network_register(self, ifp);
2647 else
2648 aprint_error_dev(self, "couldn't establish power handler\n");
2649
2650 sc->sc_flags |= WM_F_ATTACHED;
2651 out:
2652 return;
2653 }
2654
2655 /* The detach function (ca_detach) */
2656 static int
2657 wm_detach(device_t self, int flags __unused)
2658 {
2659 struct wm_softc *sc = device_private(self);
2660 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2661 int i;
2662
2663 if ((sc->sc_flags & WM_F_ATTACHED) == 0)
2664 return 0;
2665
2666 /* Stop the interface. Callouts are stopped in it. */
2667 wm_stop(ifp, 1);
2668
2669 pmf_device_deregister(self);
2670
2671 /* Tell the firmware about the release */
2672 WM_CORE_LOCK(sc);
2673 wm_release_manageability(sc);
2674 wm_release_hw_control(sc);
2675 WM_CORE_UNLOCK(sc);
2676
2677 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2678
2679 /* Delete all remaining media. */
2680 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2681
2682 ether_ifdetach(ifp);
2683 if_detach(ifp);
2684 if_percpuq_destroy(sc->sc_ipq);
2685
2686 /* Unload RX dmamaps and free mbufs */
2687 for (i = 0; i < sc->sc_nqueues; i++) {
2688 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
2689 mutex_enter(rxq->rxq_lock);
2690 wm_rxdrain(rxq);
2691 mutex_exit(rxq->rxq_lock);
2692 }
2693 /* Must unlock here */
2694
2695 /* Disestablish the interrupt handler */
2696 for (i = 0; i < sc->sc_nintrs; i++) {
2697 if (sc->sc_ihs[i] != NULL) {
2698 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
2699 sc->sc_ihs[i] = NULL;
2700 }
2701 }
2702 pci_intr_release(sc->sc_pc, sc->sc_intrs, sc->sc_nintrs);
2703
2704 wm_free_txrx_queues(sc);
2705
2706 /* Unmap the registers */
2707 if (sc->sc_ss) {
2708 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_ss);
2709 sc->sc_ss = 0;
2710 }
2711 if (sc->sc_ios) {
2712 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
2713 sc->sc_ios = 0;
2714 }
2715 if (sc->sc_flashs) {
2716 bus_space_unmap(sc->sc_flasht, sc->sc_flashh, sc->sc_flashs);
2717 sc->sc_flashs = 0;
2718 }
2719
2720 if (sc->sc_core_lock)
2721 mutex_obj_free(sc->sc_core_lock);
2722 if (sc->sc_ich_phymtx)
2723 mutex_obj_free(sc->sc_ich_phymtx);
2724 if (sc->sc_ich_nvmmtx)
2725 mutex_obj_free(sc->sc_ich_nvmmtx);
2726
2727 return 0;
2728 }
2729
2730 static bool
2731 wm_suspend(device_t self, const pmf_qual_t *qual)
2732 {
2733 struct wm_softc *sc = device_private(self);
2734
2735 wm_release_manageability(sc);
2736 wm_release_hw_control(sc);
2737 #ifdef WM_WOL
2738 wm_enable_wakeup(sc);
2739 #endif
2740
2741 return true;
2742 }
2743
2744 static bool
2745 wm_resume(device_t self, const pmf_qual_t *qual)
2746 {
2747 struct wm_softc *sc = device_private(self);
2748
2749 wm_init_manageability(sc);
2750
2751 return true;
2752 }
2753
2754 /*
2755 * wm_watchdog: [ifnet interface function]
2756 *
2757 * Watchdog timer handler.
2758 */
2759 static void
2760 wm_watchdog(struct ifnet *ifp)
2761 {
2762 int qid;
2763 struct wm_softc *sc = ifp->if_softc;
2764
2765 for (qid = 0; qid < sc->sc_nqueues; qid++) {
2766 struct wm_txqueue *txq = &sc->sc_queue[qid].wmq_txq;
2767
2768 wm_watchdog_txq(ifp, txq);
2769 }
2770
2771 /* Reset the interface. */
2772 (void) wm_init(ifp);
2773
2774 /*
2775 * There are still some upper layer processing which call
2776 * ifp->if_start(). e.g. ALTQ
2777 */
2778 /* Try to get more packets going. */
2779 ifp->if_start(ifp);
2780 }
2781
2782 static void
2783 wm_watchdog_txq(struct ifnet *ifp, struct wm_txqueue *txq)
2784 {
2785 struct wm_softc *sc = ifp->if_softc;
2786
2787 /*
2788 * Since we're using delayed interrupts, sweep up
2789 * before we report an error.
2790 */
2791 mutex_enter(txq->txq_lock);
2792 wm_txeof(sc, txq);
2793 mutex_exit(txq->txq_lock);
2794
2795 if (txq->txq_free != WM_NTXDESC(txq)) {
2796 #ifdef WM_DEBUG
2797 int i, j;
2798 struct wm_txsoft *txs;
2799 #endif
2800 log(LOG_ERR,
2801 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
2802 device_xname(sc->sc_dev), txq->txq_free, txq->txq_sfree,
2803 txq->txq_next);
2804 ifp->if_oerrors++;
2805 #ifdef WM_DEBUG
2806 for (i = txq->txq_sdirty; i != txq->txq_snext ;
2807 i = WM_NEXTTXS(txq, i)) {
2808 txs = &txq->txq_soft[i];
2809 printf("txs %d tx %d -> %d\n",
2810 i, txs->txs_firstdesc, txs->txs_lastdesc);
2811 for (j = txs->txs_firstdesc; ;
2812 j = WM_NEXTTX(txq, j)) {
2813 printf("\tdesc %d: 0x%" PRIx64 "\n", j,
2814 txq->txq_nq_descs[j].nqtx_data.nqtxd_addr);
2815 printf("\t %#08x%08x\n",
2816 txq->txq_nq_descs[j].nqtx_data.nqtxd_fields,
2817 txq->txq_nq_descs[j].nqtx_data.nqtxd_cmdlen);
2818 if (j == txs->txs_lastdesc)
2819 break;
2820 }
2821 }
2822 #endif
2823 }
2824 }
2825
2826 /*
2827 * wm_tick:
2828 *
2829 * One second timer, used to check link status, sweep up
2830 * completed transmit jobs, etc.
2831 */
2832 static void
2833 wm_tick(void *arg)
2834 {
2835 struct wm_softc *sc = arg;
2836 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2837 #ifndef WM_MPSAFE
2838 int s = splnet();
2839 #endif
2840
2841 WM_CORE_LOCK(sc);
2842
2843 if (sc->sc_stopping)
2844 goto out;
2845
2846 if (sc->sc_type >= WM_T_82542_2_1) {
2847 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2848 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2849 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2850 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2851 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2852 }
2853
2854 ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
2855 ifp->if_ierrors += 0ULL + /* ensure quad_t */
2856 + CSR_READ(sc, WMREG_CRCERRS)
2857 + CSR_READ(sc, WMREG_ALGNERRC)
2858 + CSR_READ(sc, WMREG_SYMERRC)
2859 + CSR_READ(sc, WMREG_RXERRC)
2860 + CSR_READ(sc, WMREG_SEC)
2861 + CSR_READ(sc, WMREG_CEXTERR)
2862 + CSR_READ(sc, WMREG_RLEC);
2863 ifp->if_iqdrops += CSR_READ(sc, WMREG_MPC) + CSR_READ(sc, WMREG_RNBC);
2864
2865 if (sc->sc_flags & WM_F_HAS_MII)
2866 mii_tick(&sc->sc_mii);
2867 else if ((sc->sc_type >= WM_T_82575)
2868 && (sc->sc_mediatype == WM_MEDIATYPE_SERDES))
2869 wm_serdes_tick(sc);
2870 else
2871 wm_tbi_tick(sc);
2872
2873 out:
2874 WM_CORE_UNLOCK(sc);
2875 #ifndef WM_MPSAFE
2876 splx(s);
2877 #endif
2878
2879 if (!sc->sc_stopping)
2880 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2881 }
2882
2883 static int
2884 wm_ifflags_cb(struct ethercom *ec)
2885 {
2886 struct ifnet *ifp = &ec->ec_if;
2887 struct wm_softc *sc = ifp->if_softc;
2888 int rc = 0;
2889
2890 WM_CORE_LOCK(sc);
2891
2892 int change = ifp->if_flags ^ sc->sc_if_flags;
2893 sc->sc_if_flags = ifp->if_flags;
2894
2895 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
2896 rc = ENETRESET;
2897 goto out;
2898 }
2899
2900 if ((change & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2901 wm_set_filter(sc);
2902
2903 wm_set_vlan(sc);
2904
2905 out:
2906 WM_CORE_UNLOCK(sc);
2907
2908 return rc;
2909 }
2910
2911 /*
2912 * wm_ioctl: [ifnet interface function]
2913 *
2914 * Handle control requests from the operator.
2915 */
2916 static int
2917 wm_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2918 {
2919 struct wm_softc *sc = ifp->if_softc;
2920 struct ifreq *ifr = (struct ifreq *) data;
2921 struct ifaddr *ifa = (struct ifaddr *)data;
2922 struct sockaddr_dl *sdl;
2923 int s, error;
2924
2925 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
2926 device_xname(sc->sc_dev), __func__));
2927
2928 #ifndef WM_MPSAFE
2929 s = splnet();
2930 #endif
2931 switch (cmd) {
2932 case SIOCSIFMEDIA:
2933 case SIOCGIFMEDIA:
2934 WM_CORE_LOCK(sc);
2935 /* Flow control requires full-duplex mode. */
2936 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
2937 (ifr->ifr_media & IFM_FDX) == 0)
2938 ifr->ifr_media &= ~IFM_ETH_FMASK;
2939 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
2940 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
2941 /* We can do both TXPAUSE and RXPAUSE. */
2942 ifr->ifr_media |=
2943 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
2944 }
2945 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
2946 }
2947 WM_CORE_UNLOCK(sc);
2948 #ifdef WM_MPSAFE
2949 s = splnet();
2950 #endif
2951 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2952 #ifdef WM_MPSAFE
2953 splx(s);
2954 #endif
2955 break;
2956 case SIOCINITIFADDR:
2957 WM_CORE_LOCK(sc);
2958 if (ifa->ifa_addr->sa_family == AF_LINK) {
2959 sdl = satosdl(ifp->if_dl->ifa_addr);
2960 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len,
2961 LLADDR(satosdl(ifa->ifa_addr)), ifp->if_addrlen);
2962 /* unicast address is first multicast entry */
2963 wm_set_filter(sc);
2964 error = 0;
2965 WM_CORE_UNLOCK(sc);
2966 break;
2967 }
2968 WM_CORE_UNLOCK(sc);
2969 /*FALLTHROUGH*/
2970 default:
2971 #ifdef WM_MPSAFE
2972 s = splnet();
2973 #endif
2974 /* It may call wm_start, so unlock here */
2975 error = ether_ioctl(ifp, cmd, data);
2976 #ifdef WM_MPSAFE
2977 splx(s);
2978 #endif
2979 if (error != ENETRESET)
2980 break;
2981
2982 error = 0;
2983
2984 if (cmd == SIOCSIFCAP) {
2985 error = (*ifp->if_init)(ifp);
2986 } else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2987 ;
2988 else if (ifp->if_flags & IFF_RUNNING) {
2989 /*
2990 * Multicast list has changed; set the hardware filter
2991 * accordingly.
2992 */
2993 WM_CORE_LOCK(sc);
2994 wm_set_filter(sc);
2995 WM_CORE_UNLOCK(sc);
2996 }
2997 break;
2998 }
2999
3000 #ifndef WM_MPSAFE
3001 splx(s);
3002 #endif
3003 return error;
3004 }
3005
3006 /* MAC address related */
3007
3008 /*
3009 * Get the offset of MAC address and return it.
3010 * If error occured, use offset 0.
3011 */
3012 static uint16_t
3013 wm_check_alt_mac_addr(struct wm_softc *sc)
3014 {
3015 uint16_t myea[ETHER_ADDR_LEN / 2];
3016 uint16_t offset = NVM_OFF_MACADDR;
3017
3018 /* Try to read alternative MAC address pointer */
3019 if (wm_nvm_read(sc, NVM_OFF_ALT_MAC_ADDR_PTR, 1, &offset) != 0)
3020 return 0;
3021
3022 /* Check pointer if it's valid or not. */
3023 if ((offset == 0x0000) || (offset == 0xffff))
3024 return 0;
3025
3026 offset += NVM_OFF_MACADDR_82571(sc->sc_funcid);
3027 /*
3028 * Check whether alternative MAC address is valid or not.
3029 * Some cards have non 0xffff pointer but those don't use
3030 * alternative MAC address in reality.
3031 *
3032 * Check whether the broadcast bit is set or not.
3033 */
3034 if (wm_nvm_read(sc, offset, 1, myea) == 0)
3035 if (((myea[0] & 0xff) & 0x01) == 0)
3036 return offset; /* Found */
3037
3038 /* Not found */
3039 return 0;
3040 }
3041
3042 static int
3043 wm_read_mac_addr(struct wm_softc *sc, uint8_t *enaddr)
3044 {
3045 uint16_t myea[ETHER_ADDR_LEN / 2];
3046 uint16_t offset = NVM_OFF_MACADDR;
3047 int do_invert = 0;
3048
3049 switch (sc->sc_type) {
3050 case WM_T_82580:
3051 case WM_T_I350:
3052 case WM_T_I354:
3053 /* EEPROM Top Level Partitioning */
3054 offset = NVM_OFF_LAN_FUNC_82580(sc->sc_funcid) + 0;
3055 break;
3056 case WM_T_82571:
3057 case WM_T_82575:
3058 case WM_T_82576:
3059 case WM_T_80003:
3060 case WM_T_I210:
3061 case WM_T_I211:
3062 offset = wm_check_alt_mac_addr(sc);
3063 if (offset == 0)
3064 if ((sc->sc_funcid & 0x01) == 1)
3065 do_invert = 1;
3066 break;
3067 default:
3068 if ((sc->sc_funcid & 0x01) == 1)
3069 do_invert = 1;
3070 break;
3071 }
3072
3073 if (wm_nvm_read(sc, offset, sizeof(myea) / sizeof(myea[0]), myea) != 0)
3074 goto bad;
3075
3076 enaddr[0] = myea[0] & 0xff;
3077 enaddr[1] = myea[0] >> 8;
3078 enaddr[2] = myea[1] & 0xff;
3079 enaddr[3] = myea[1] >> 8;
3080 enaddr[4] = myea[2] & 0xff;
3081 enaddr[5] = myea[2] >> 8;
3082
3083 /*
3084 * Toggle the LSB of the MAC address on the second port
3085 * of some dual port cards.
3086 */
3087 if (do_invert != 0)
3088 enaddr[5] ^= 1;
3089
3090 return 0;
3091
3092 bad:
3093 return -1;
3094 }
3095
3096 /*
3097 * wm_set_ral:
3098 *
3099 * Set an entery in the receive address list.
3100 */
3101 static void
3102 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3103 {
3104 uint32_t ral_lo, ral_hi;
3105
3106 if (enaddr != NULL) {
3107 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3108 (enaddr[3] << 24);
3109 ral_hi = enaddr[4] | (enaddr[5] << 8);
3110 ral_hi |= RAL_AV;
3111 } else {
3112 ral_lo = 0;
3113 ral_hi = 0;
3114 }
3115
3116 if (sc->sc_type >= WM_T_82544) {
3117 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3118 ral_lo);
3119 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3120 ral_hi);
3121 } else {
3122 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3123 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3124 }
3125 }
3126
3127 /*
3128 * wm_mchash:
3129 *
3130 * Compute the hash of the multicast address for the 4096-bit
3131 * multicast filter.
3132 */
3133 static uint32_t
3134 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3135 {
3136 static const int lo_shift[4] = { 4, 3, 2, 0 };
3137 static const int hi_shift[4] = { 4, 5, 6, 8 };
3138 static const int ich8_lo_shift[4] = { 6, 5, 4, 2 };
3139 static const int ich8_hi_shift[4] = { 2, 3, 4, 6 };
3140 uint32_t hash;
3141
3142 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
3143 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
3144 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)
3145 || (sc->sc_type == WM_T_PCH_SPT)) {
3146 hash = (enaddr[4] >> ich8_lo_shift[sc->sc_mchash_type]) |
3147 (((uint16_t) enaddr[5]) << ich8_hi_shift[sc->sc_mchash_type]);
3148 return (hash & 0x3ff);
3149 }
3150 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3151 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3152
3153 return (hash & 0xfff);
3154 }
3155
3156 /*
3157 * wm_set_filter:
3158 *
3159 * Set up the receive filter.
3160 */
3161 static void
3162 wm_set_filter(struct wm_softc *sc)
3163 {
3164 struct ethercom *ec = &sc->sc_ethercom;
3165 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3166 struct ether_multi *enm;
3167 struct ether_multistep step;
3168 bus_addr_t mta_reg;
3169 uint32_t hash, reg, bit;
3170 int i, size, ralmax;
3171
3172 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
3173 device_xname(sc->sc_dev), __func__));
3174
3175 if (sc->sc_type >= WM_T_82544)
3176 mta_reg = WMREG_CORDOVA_MTA;
3177 else
3178 mta_reg = WMREG_MTA;
3179
3180 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3181
3182 if (ifp->if_flags & IFF_BROADCAST)
3183 sc->sc_rctl |= RCTL_BAM;
3184 if (ifp->if_flags & IFF_PROMISC) {
3185 sc->sc_rctl |= RCTL_UPE;
3186 goto allmulti;
3187 }
3188
3189 /*
3190 * Set the station address in the first RAL slot, and
3191 * clear the remaining slots.
3192 */
3193 if (sc->sc_type == WM_T_ICH8)
3194 size = WM_RAL_TABSIZE_ICH8 -1;
3195 else if ((sc->sc_type == WM_T_ICH9) || (sc->sc_type == WM_T_ICH10)
3196 || (sc->sc_type == WM_T_PCH))
3197 size = WM_RAL_TABSIZE_ICH8;
3198 else if (sc->sc_type == WM_T_PCH2)
3199 size = WM_RAL_TABSIZE_PCH2;
3200 else if ((sc->sc_type == WM_T_PCH_LPT) ||(sc->sc_type == WM_T_PCH_SPT))
3201 size = WM_RAL_TABSIZE_PCH_LPT;
3202 else if (sc->sc_type == WM_T_82575)
3203 size = WM_RAL_TABSIZE_82575;
3204 else if ((sc->sc_type == WM_T_82576) || (sc->sc_type == WM_T_82580))
3205 size = WM_RAL_TABSIZE_82576;
3206 else if ((sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354))
3207 size = WM_RAL_TABSIZE_I350;
3208 else
3209 size = WM_RAL_TABSIZE;
3210 wm_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
3211
3212 if ((sc->sc_type == WM_T_PCH_LPT) || (sc->sc_type == WM_T_PCH_SPT)) {
3213 i = __SHIFTOUT(CSR_READ(sc, WMREG_FWSM), FWSM_WLOCK_MAC);
3214 switch (i) {
3215 case 0:
3216 /* We can use all entries */
3217 ralmax = size;
3218 break;
3219 case 1:
3220 /* Only RAR[0] */
3221 ralmax = 1;
3222 break;
3223 default:
3224 /* available SHRA + RAR[0] */
3225 ralmax = i + 1;
3226 }
3227 } else
3228 ralmax = size;
3229 for (i = 1; i < size; i++) {
3230 if (i < ralmax)
3231 wm_set_ral(sc, NULL, i);
3232 }
3233
3234 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
3235 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
3236 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)
3237 || (sc->sc_type == WM_T_PCH_SPT))
3238 size = WM_ICH8_MC_TABSIZE;
3239 else
3240 size = WM_MC_TABSIZE;
3241 /* Clear out the multicast table. */
3242 for (i = 0; i < size; i++)
3243 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3244
3245 ETHER_FIRST_MULTI(step, ec, enm);
3246 while (enm != NULL) {
3247 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3248 /*
3249 * We must listen to a range of multicast addresses.
3250 * For now, just accept all multicasts, rather than
3251 * trying to set only those filter bits needed to match
3252 * the range. (At this time, the only use of address
3253 * ranges is for IP multicast routing, for which the
3254 * range is big enough to require all bits set.)
3255 */
3256 goto allmulti;
3257 }
3258
3259 hash = wm_mchash(sc, enm->enm_addrlo);
3260
3261 reg = (hash >> 5);
3262 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
3263 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
3264 || (sc->sc_type == WM_T_PCH2)
3265 || (sc->sc_type == WM_T_PCH_LPT)
3266 || (sc->sc_type == WM_T_PCH_SPT))
3267 reg &= 0x1f;
3268 else
3269 reg &= 0x7f;
3270 bit = hash & 0x1f;
3271
3272 hash = CSR_READ(sc, mta_reg + (reg << 2));
3273 hash |= 1U << bit;
3274
3275 if (sc->sc_type == WM_T_82544 && (reg & 1) != 0) {
3276 /*
3277 * 82544 Errata 9: Certain register cannot be written
3278 * with particular alignments in PCI-X bus operation
3279 * (FCAH, MTA and VFTA).
3280 */
3281 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3282 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3283 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3284 } else
3285 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3286
3287 ETHER_NEXT_MULTI(step, enm);
3288 }
3289
3290 ifp->if_flags &= ~IFF_ALLMULTI;
3291 goto setit;
3292
3293 allmulti:
3294 ifp->if_flags |= IFF_ALLMULTI;
3295 sc->sc_rctl |= RCTL_MPE;
3296
3297 setit:
3298 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3299 }
3300
3301 /* Reset and init related */
3302
3303 static void
3304 wm_set_vlan(struct wm_softc *sc)
3305 {
3306
3307 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
3308 device_xname(sc->sc_dev), __func__));
3309
3310 /* Deal with VLAN enables. */
3311 if (VLAN_ATTACHED(&sc->sc_ethercom))
3312 sc->sc_ctrl |= CTRL_VME;
3313 else
3314 sc->sc_ctrl &= ~CTRL_VME;
3315
3316 /* Write the control registers. */
3317 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3318 }
3319
3320 static void
3321 wm_set_pcie_completion_timeout(struct wm_softc *sc)
3322 {
3323 uint32_t gcr;
3324 pcireg_t ctrl2;
3325
3326 gcr = CSR_READ(sc, WMREG_GCR);
3327
3328 /* Only take action if timeout value is defaulted to 0 */
3329 if ((gcr & GCR_CMPL_TMOUT_MASK) != 0)
3330 goto out;
3331
3332 if ((gcr & GCR_CAP_VER2) == 0) {
3333 gcr |= GCR_CMPL_TMOUT_10MS;
3334 goto out;
3335 }
3336
3337 ctrl2 = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3338 sc->sc_pcixe_capoff + PCIE_DCSR2);
3339 ctrl2 |= WM_PCIE_DCSR2_16MS;
3340 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3341 sc->sc_pcixe_capoff + PCIE_DCSR2, ctrl2);
3342
3343 out:
3344 /* Disable completion timeout resend */
3345 gcr &= ~GCR_CMPL_TMOUT_RESEND;
3346
3347 CSR_WRITE(sc, WMREG_GCR, gcr);
3348 }
3349
3350 void
3351 wm_get_auto_rd_done(struct wm_softc *sc)
3352 {
3353 int i;
3354
3355 /* wait for eeprom to reload */
3356 switch (sc->sc_type) {
3357 case WM_T_82571:
3358 case WM_T_82572:
3359 case WM_T_82573:
3360 case WM_T_82574:
3361 case WM_T_82583:
3362 case WM_T_82575:
3363 case WM_T_82576:
3364 case WM_T_82580:
3365 case WM_T_I350:
3366 case WM_T_I354:
3367 case WM_T_I210:
3368 case WM_T_I211:
3369 case WM_T_80003:
3370 case WM_T_ICH8:
3371 case WM_T_ICH9:
3372 for (i = 0; i < 10; i++) {
3373 if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD)
3374 break;
3375 delay(1000);
3376 }
3377 if (i == 10) {
3378 log(LOG_ERR, "%s: auto read from eeprom failed to "
3379 "complete\n", device_xname(sc->sc_dev));
3380 }
3381 break;
3382 default:
3383 break;
3384 }
3385 }
3386
3387 void
3388 wm_lan_init_done(struct wm_softc *sc)
3389 {
3390 uint32_t reg = 0;
3391 int i;
3392
3393 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
3394 device_xname(sc->sc_dev), __func__));
3395
3396 /* Wait for eeprom to reload */
3397 switch (sc->sc_type) {
3398 case WM_T_ICH10:
3399 case WM_T_PCH:
3400 case WM_T_PCH2:
3401 case WM_T_PCH_LPT:
3402 case WM_T_PCH_SPT:
3403 for (i = 0; i < WM_ICH8_LAN_INIT_TIMEOUT; i++) {
3404 reg = CSR_READ(sc, WMREG_STATUS);
3405 if ((reg & STATUS_LAN_INIT_DONE) != 0)
3406 break;
3407 delay(100);
3408 }
3409 if (i >= WM_ICH8_LAN_INIT_TIMEOUT) {
3410 log(LOG_ERR, "%s: %s: lan_init_done failed to "
3411 "complete\n", device_xname(sc->sc_dev), __func__);
3412 }
3413 break;
3414 default:
3415 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
3416 __func__);
3417 break;
3418 }
3419
3420 reg &= ~STATUS_LAN_INIT_DONE;
3421 CSR_WRITE(sc, WMREG_STATUS, reg);
3422 }
3423
3424 void
3425 wm_get_cfg_done(struct wm_softc *sc)
3426 {
3427 int mask;
3428 uint32_t reg;
3429 int i;
3430
3431 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
3432 device_xname(sc->sc_dev), __func__));
3433
3434 /* Wait for eeprom to reload */
3435 switch (sc->sc_type) {
3436 case WM_T_82542_2_0:
3437 case WM_T_82542_2_1:
3438 /* null */
3439 break;
3440 case WM_T_82543:
3441 case WM_T_82544:
3442 case WM_T_82540:
3443 case WM_T_82545:
3444 case WM_T_82545_3:
3445 case WM_T_82546:
3446 case WM_T_82546_3:
3447 case WM_T_82541:
3448 case WM_T_82541_2:
3449 case WM_T_82547:
3450 case WM_T_82547_2:
3451 case WM_T_82573:
3452 case WM_T_82574:
3453 case WM_T_82583:
3454 /* generic */
3455 delay(10*1000);
3456 break;
3457 case WM_T_80003:
3458 case WM_T_82571:
3459 case WM_T_82572:
3460 case WM_T_82575:
3461 case WM_T_82576:
3462 case WM_T_82580:
3463 case WM_T_I350:
3464 case WM_T_I354:
3465 case WM_T_I210:
3466 case WM_T_I211:
3467 if (sc->sc_type == WM_T_82571) {
3468 /* Only 82571 shares port 0 */
3469 mask = EEMNGCTL_CFGDONE_0;
3470 } else
3471 mask = EEMNGCTL_CFGDONE_0 << sc->sc_funcid;
3472 for (i = 0; i < WM_PHY_CFG_TIMEOUT; i++) {
3473 if (CSR_READ(sc, WMREG_EEMNGCTL) & mask)
3474 break;
3475 delay(1000);
3476 }
3477 if (i >= WM_PHY_CFG_TIMEOUT) {
3478 DPRINTF(WM_DEBUG_GMII, ("%s: %s failed\n",
3479 device_xname(sc->sc_dev), __func__));
3480 }
3481 break;
3482 case WM_T_ICH8:
3483 case WM_T_ICH9:
3484 case WM_T_ICH10:
3485 case WM_T_PCH:
3486 case WM_T_PCH2:
3487 case WM_T_PCH_LPT:
3488 case WM_T_PCH_SPT:
3489 delay(10*1000);
3490 if (sc->sc_type >= WM_T_ICH10)
3491 wm_lan_init_done(sc);
3492 else
3493 wm_get_auto_rd_done(sc);
3494
3495 reg = CSR_READ(sc, WMREG_STATUS);
3496 if ((reg & STATUS_PHYRA) != 0)
3497 CSR_WRITE(sc, WMREG_STATUS, reg & ~STATUS_PHYRA);
3498 break;
3499 default:
3500 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
3501 __func__);
3502 break;
3503 }
3504 }
3505
3506 /* Init hardware bits */
3507 void
3508 wm_initialize_hardware_bits(struct wm_softc *sc)
3509 {
3510 uint32_t tarc0, tarc1, reg;
3511
3512 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
3513 device_xname(sc->sc_dev), __func__));
3514
3515 /* For 82571 variant, 80003 and ICHs */
3516 if (((sc->sc_type >= WM_T_82571) && (sc->sc_type <= WM_T_82583))
3517 || (sc->sc_type >= WM_T_80003)) {
3518
3519 /* Transmit Descriptor Control 0 */
3520 reg = CSR_READ(sc, WMREG_TXDCTL(0));
3521 reg |= TXDCTL_COUNT_DESC;
3522 CSR_WRITE(sc, WMREG_TXDCTL(0), reg);
3523
3524 /* Transmit Descriptor Control 1 */
3525 reg = CSR_READ(sc, WMREG_TXDCTL(1));
3526 reg |= TXDCTL_COUNT_DESC;
3527 CSR_WRITE(sc, WMREG_TXDCTL(1), reg);
3528
3529 /* TARC0 */
3530 tarc0 = CSR_READ(sc, WMREG_TARC0);
3531 switch (sc->sc_type) {
3532 case WM_T_82571:
3533 case WM_T_82572:
3534 case WM_T_82573:
3535 case WM_T_82574:
3536 case WM_T_82583:
3537 case WM_T_80003:
3538 /* Clear bits 30..27 */
3539 tarc0 &= ~__BITS(30, 27);
3540 break;
3541 default:
3542 break;
3543 }
3544
3545 switch (sc->sc_type) {
3546 case WM_T_82571:
3547 case WM_T_82572:
3548 tarc0 |= __BITS(26, 23); /* TARC0 bits 23-26 */
3549
3550 tarc1 = CSR_READ(sc, WMREG_TARC1);
3551 tarc1 &= ~__BITS(30, 29); /* Clear bits 30 and 29 */
3552 tarc1 |= __BITS(26, 24); /* TARC1 bits 26-24 */
3553 /* 8257[12] Errata No.7 */
3554 tarc1 |= __BIT(22); /* TARC1 bits 22 */
3555
3556 /* TARC1 bit 28 */
3557 if ((CSR_READ(sc, WMREG_TCTL) & TCTL_MULR) != 0)
3558 tarc1 &= ~__BIT(28);
3559 else
3560 tarc1 |= __BIT(28);
3561 CSR_WRITE(sc, WMREG_TARC1, tarc1);
3562
3563 /*
3564 * 8257[12] Errata No.13
3565 * Disable Dyamic Clock Gating.
3566 */
3567 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3568 reg &= ~CTRL_EXT_DMA_DYN_CLK;
3569 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3570 break;
3571 case WM_T_82573:
3572 case WM_T_82574:
3573 case WM_T_82583:
3574 if ((sc->sc_type == WM_T_82574)
3575 || (sc->sc_type == WM_T_82583))
3576 tarc0 |= __BIT(26); /* TARC0 bit 26 */
3577
3578 /* Extended Device Control */
3579 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3580 reg &= ~__BIT(23); /* Clear bit 23 */
3581 reg |= __BIT(22); /* Set bit 22 */
3582 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3583
3584 /* Device Control */
3585 sc->sc_ctrl &= ~__BIT(29); /* Clear bit 29 */
3586 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3587
3588 /* PCIe Control Register */
3589 /*
3590 * 82573 Errata (unknown).
3591 *
3592 * 82574 Errata 25 and 82583 Errata 12
3593 * "Dropped Rx Packets":
3594 * NVM Image Version 2.1.4 and newer has no this bug.
3595 */
3596 reg = CSR_READ(sc, WMREG_GCR);
3597 reg |= GCR_L1_ACT_WITHOUT_L0S_RX;
3598 CSR_WRITE(sc, WMREG_GCR, reg);
3599
3600 if ((sc->sc_type == WM_T_82574)
3601 || (sc->sc_type == WM_T_82583)) {
3602 /*
3603 * Document says this bit must be set for
3604 * proper operation.
3605 */
3606 reg = CSR_READ(sc, WMREG_GCR);
3607 reg |= __BIT(22);
3608 CSR_WRITE(sc, WMREG_GCR, reg);
3609
3610 /*
3611 * Apply workaround for hardware errata
3612 * documented in errata docs Fixes issue where
3613 * some error prone or unreliable PCIe
3614 * completions are occurring, particularly
3615 * with ASPM enabled. Without fix, issue can
3616 * cause Tx timeouts.
3617 */
3618 reg = CSR_READ(sc, WMREG_GCR2);
3619 reg |= __BIT(0);
3620 CSR_WRITE(sc, WMREG_GCR2, reg);
3621 }
3622 break;
3623 case WM_T_80003:
3624 /* TARC0 */
3625 if ((sc->sc_mediatype == WM_MEDIATYPE_FIBER)
3626 || (sc->sc_mediatype == WM_MEDIATYPE_SERDES))
3627 tarc0 &= ~__BIT(20); /* Clear bits 20 */
3628
3629 /* TARC1 bit 28 */
3630 tarc1 = CSR_READ(sc, WMREG_TARC1);
3631 if ((CSR_READ(sc, WMREG_TCTL) & TCTL_MULR) != 0)
3632 tarc1 &= ~__BIT(28);
3633 else
3634 tarc1 |= __BIT(28);
3635 CSR_WRITE(sc, WMREG_TARC1, tarc1);
3636 break;
3637 case WM_T_ICH8:
3638 case WM_T_ICH9:
3639 case WM_T_ICH10:
3640 case WM_T_PCH:
3641 case WM_T_PCH2:
3642 case WM_T_PCH_LPT:
3643 case WM_T_PCH_SPT:
3644 /* TARC0 */
3645 if ((sc->sc_type == WM_T_ICH8)
3646 || (sc->sc_type == WM_T_PCH_SPT)) {
3647 /* Set TARC0 bits 29 and 28 */
3648 tarc0 |= __BITS(29, 28);
3649 }
3650 /* Set TARC0 bits 23,24,26,27 */
3651 tarc0 |= __BITS(27, 26) | __BITS(24, 23);
3652
3653 /* CTRL_EXT */
3654 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3655 reg |= __BIT(22); /* Set bit 22 */
3656 /*
3657 * Enable PHY low-power state when MAC is at D3
3658 * w/o WoL
3659 */
3660 if (sc->sc_type >= WM_T_PCH)
3661 reg |= CTRL_EXT_PHYPDEN;
3662 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3663
3664 /* TARC1 */
3665 tarc1 = CSR_READ(sc, WMREG_TARC1);
3666 /* bit 28 */
3667 if ((CSR_READ(sc, WMREG_TCTL) & TCTL_MULR) != 0)
3668 tarc1 &= ~__BIT(28);
3669 else
3670 tarc1 |= __BIT(28);
3671 tarc1 |= __BIT(24) | __BIT(26) | __BIT(30);
3672 CSR_WRITE(sc, WMREG_TARC1, tarc1);
3673
3674 /* Device Status */
3675 if (sc->sc_type == WM_T_ICH8) {
3676 reg = CSR_READ(sc, WMREG_STATUS);
3677 reg &= ~__BIT(31);
3678 CSR_WRITE(sc, WMREG_STATUS, reg);
3679
3680 }
3681
3682 /* IOSFPC */
3683 if (sc->sc_type == WM_T_PCH_SPT) {
3684 reg = CSR_READ(sc, WMREG_IOSFPC);
3685 reg |= RCTL_RDMTS_HEX; /* XXX RTCL bit? */
3686 CSR_WRITE(sc, WMREG_IOSFPC, reg);
3687 }
3688 /*
3689 * Work-around descriptor data corruption issue during
3690 * NFS v2 UDP traffic, just disable the NFS filtering
3691 * capability.
3692 */
3693 reg = CSR_READ(sc, WMREG_RFCTL);
3694 reg |= WMREG_RFCTL_NFSWDIS | WMREG_RFCTL_NFSRDIS;
3695 CSR_WRITE(sc, WMREG_RFCTL, reg);
3696 break;
3697 default:
3698 break;
3699 }
3700 CSR_WRITE(sc, WMREG_TARC0, tarc0);
3701
3702 /*
3703 * 8257[12] Errata No.52 and some others.
3704 * Avoid RSS Hash Value bug.
3705 */
3706 switch (sc->sc_type) {
3707 case WM_T_82571:
3708 case WM_T_82572:
3709 case WM_T_82573:
3710 case WM_T_80003:
3711 case WM_T_ICH8:
3712 reg = CSR_READ(sc, WMREG_RFCTL);
3713 reg |= WMREG_RFCTL_NEWIPV6EXDIS |WMREG_RFCTL_IPV6EXDIS;
3714 CSR_WRITE(sc, WMREG_RFCTL, reg);
3715 break;
3716 default:
3717 break;
3718 }
3719 }
3720 }
3721
3722 static uint32_t
3723 wm_rxpbs_adjust_82580(uint32_t val)
3724 {
3725 uint32_t rv = 0;
3726
3727 if (val < __arraycount(wm_82580_rxpbs_table))
3728 rv = wm_82580_rxpbs_table[val];
3729
3730 return rv;
3731 }
3732
3733 /*
3734 * wm_reset:
3735 *
3736 * Reset the i82542 chip.
3737 */
3738 static void
3739 wm_reset(struct wm_softc *sc)
3740 {
3741 int phy_reset = 0;
3742 int i, error = 0;
3743 uint32_t reg;
3744
3745 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
3746 device_xname(sc->sc_dev), __func__));
3747 KASSERT(sc->sc_type != 0);
3748
3749 /*
3750 * Allocate on-chip memory according to the MTU size.
3751 * The Packet Buffer Allocation register must be written
3752 * before the chip is reset.
3753 */
3754 switch (sc->sc_type) {
3755 case WM_T_82547:
3756 case WM_T_82547_2:
3757 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
3758 PBA_22K : PBA_30K;
3759 for (i = 0; i < sc->sc_nqueues; i++) {
3760 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
3761 txq->txq_fifo_head = 0;
3762 txq->txq_fifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
3763 txq->txq_fifo_size =
3764 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
3765 txq->txq_fifo_stall = 0;
3766 }
3767 break;
3768 case WM_T_82571:
3769 case WM_T_82572:
3770 case WM_T_82575: /* XXX need special handing for jumbo frames */
3771 case WM_T_80003:
3772 sc->sc_pba = PBA_32K;
3773 break;
3774 case WM_T_82573:
3775 sc->sc_pba = PBA_12K;
3776 break;
3777 case WM_T_82574:
3778 case WM_T_82583:
3779 sc->sc_pba = PBA_20K;
3780 break;
3781 case WM_T_82576:
3782 sc->sc_pba = CSR_READ(sc, WMREG_RXPBS);
3783 sc->sc_pba &= RXPBS_SIZE_MASK_82576;
3784 break;
3785 case WM_T_82580:
3786 case WM_T_I350:
3787 case WM_T_I354:
3788 sc->sc_pba = wm_rxpbs_adjust_82580(CSR_READ(sc, WMREG_RXPBS));
3789 break;
3790 case WM_T_I210:
3791 case WM_T_I211:
3792 sc->sc_pba = PBA_34K;
3793 break;
3794 case WM_T_ICH8:
3795 /* Workaround for a bit corruption issue in FIFO memory */
3796 sc->sc_pba = PBA_8K;
3797 CSR_WRITE(sc, WMREG_PBS, PBA_16K);
3798 break;
3799 case WM_T_ICH9:
3800 case WM_T_ICH10:
3801 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 4096 ?
3802 PBA_14K : PBA_10K;
3803 break;
3804 case WM_T_PCH:
3805 case WM_T_PCH2:
3806 case WM_T_PCH_LPT:
3807 case WM_T_PCH_SPT:
3808 sc->sc_pba = PBA_26K;
3809 break;
3810 default:
3811 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
3812 PBA_40K : PBA_48K;
3813 break;
3814 }
3815 /*
3816 * Only old or non-multiqueue devices have the PBA register
3817 * XXX Need special handling for 82575.
3818 */
3819 if (((sc->sc_flags & WM_F_NEWQUEUE) == 0)
3820 || (sc->sc_type == WM_T_82575))
3821 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
3822
3823 /* Prevent the PCI-E bus from sticking */
3824 if (sc->sc_flags & WM_F_PCIE) {
3825 int timeout = 800;
3826
3827 sc->sc_ctrl |= CTRL_GIO_M_DIS;
3828 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3829
3830 while (timeout--) {
3831 if ((CSR_READ(sc, WMREG_STATUS) & STATUS_GIO_M_ENA)
3832 == 0)
3833 break;
3834 delay(100);
3835 }
3836 }
3837
3838 /* Set the completion timeout for interface */
3839 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
3840 || (sc->sc_type == WM_T_82580)
3841 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
3842 || (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211))
3843 wm_set_pcie_completion_timeout(sc);
3844
3845 /* Clear interrupt */
3846 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
3847 if (sc->sc_nintrs > 1) {
3848 if (sc->sc_type != WM_T_82574) {
3849 CSR_WRITE(sc, WMREG_EIMC, 0xffffffffU);
3850 CSR_WRITE(sc, WMREG_EIAC, 0);
3851 } else {
3852 CSR_WRITE(sc, WMREG_EIAC_82574, 0);
3853 }
3854 }
3855
3856 /* Stop the transmit and receive processes. */
3857 CSR_WRITE(sc, WMREG_RCTL, 0);
3858 sc->sc_rctl &= ~RCTL_EN;
3859 CSR_WRITE(sc, WMREG_TCTL, TCTL_PSP);
3860 CSR_WRITE_FLUSH(sc);
3861
3862 /* XXX set_tbi_sbp_82543() */
3863
3864 delay(10*1000);
3865
3866 /* Must acquire the MDIO ownership before MAC reset */
3867 switch (sc->sc_type) {
3868 case WM_T_82573:
3869 case WM_T_82574:
3870 case WM_T_82583:
3871 error = wm_get_hw_semaphore_82573(sc);
3872 break;
3873 default:
3874 break;
3875 }
3876
3877 /*
3878 * 82541 Errata 29? & 82547 Errata 28?
3879 * See also the description about PHY_RST bit in CTRL register
3880 * in 8254x_GBe_SDM.pdf.
3881 */
3882 if ((sc->sc_type == WM_T_82541) || (sc->sc_type == WM_T_82547)) {
3883 CSR_WRITE(sc, WMREG_CTRL,
3884 CSR_READ(sc, WMREG_CTRL) | CTRL_PHY_RESET);
3885 CSR_WRITE_FLUSH(sc);
3886 delay(5000);
3887 }
3888
3889 switch (sc->sc_type) {
3890 case WM_T_82544: /* XXX check whether WM_F_IOH_VALID is set */
3891 case WM_T_82541:
3892 case WM_T_82541_2:
3893 case WM_T_82547:
3894 case WM_T_82547_2:
3895 /*
3896 * On some chipsets, a reset through a memory-mapped write
3897 * cycle can cause the chip to reset before completing the
3898 * write cycle. This causes major headache that can be
3899 * avoided by issuing the reset via indirect register writes
3900 * through I/O space.
3901 *
3902 * So, if we successfully mapped the I/O BAR at attach time,
3903 * use that. Otherwise, try our luck with a memory-mapped
3904 * reset.
3905 */
3906 if (sc->sc_flags & WM_F_IOH_VALID)
3907 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
3908 else
3909 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
3910 break;
3911 case WM_T_82545_3:
3912 case WM_T_82546_3:
3913 /* Use the shadow control register on these chips. */
3914 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
3915 break;
3916 case WM_T_80003:
3917 reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST;
3918 sc->phy.acquire(sc);
3919 CSR_WRITE(sc, WMREG_CTRL, reg);
3920 sc->phy.release(sc);
3921 break;
3922 case WM_T_ICH8:
3923 case WM_T_ICH9:
3924 case WM_T_ICH10:
3925 case WM_T_PCH:
3926 case WM_T_PCH2:
3927 case WM_T_PCH_LPT:
3928 case WM_T_PCH_SPT:
3929 reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST;
3930 if (wm_phy_resetisblocked(sc) == false) {
3931 /*
3932 * Gate automatic PHY configuration by hardware on
3933 * non-managed 82579
3934 */
3935 if ((sc->sc_type == WM_T_PCH2)
3936 && ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID)
3937 == 0))
3938 wm_gate_hw_phy_config_ich8lan(sc, true);
3939
3940 reg |= CTRL_PHY_RESET;
3941 phy_reset = 1;
3942 } else
3943 printf("XXX reset is blocked!!!\n");
3944 sc->phy.acquire(sc);
3945 CSR_WRITE(sc, WMREG_CTRL, reg);
3946 /* Don't insert a completion barrier when reset */
3947 delay(20*1000);
3948 mutex_exit(sc->sc_ich_phymtx);
3949 break;
3950 case WM_T_82580:
3951 case WM_T_I350:
3952 case WM_T_I354:
3953 case WM_T_I210:
3954 case WM_T_I211:
3955 CSR_WRITE(sc, WMREG_CTRL, CSR_READ(sc, WMREG_CTRL) | CTRL_RST);
3956 if (sc->sc_pcidevid != PCI_PRODUCT_INTEL_DH89XXCC_SGMII)
3957 CSR_WRITE_FLUSH(sc);
3958 delay(5000);
3959 break;
3960 case WM_T_82542_2_0:
3961 case WM_T_82542_2_1:
3962 case WM_T_82543:
3963 case WM_T_82540:
3964 case WM_T_82545:
3965 case WM_T_82546:
3966 case WM_T_82571:
3967 case WM_T_82572:
3968 case WM_T_82573:
3969 case WM_T_82574:
3970 case WM_T_82575:
3971 case WM_T_82576:
3972 case WM_T_82583:
3973 default:
3974 /* Everything else can safely use the documented method. */
3975 CSR_WRITE(sc, WMREG_CTRL, CSR_READ(sc, WMREG_CTRL) | CTRL_RST);
3976 break;
3977 }
3978
3979 /* Must release the MDIO ownership after MAC reset */
3980 switch (sc->sc_type) {
3981 case WM_T_82573:
3982 case WM_T_82574:
3983 case WM_T_82583:
3984 if (error == 0)
3985 wm_put_hw_semaphore_82573(sc);
3986 break;
3987 default:
3988 break;
3989 }
3990
3991 if (phy_reset != 0) {
3992 wm_get_cfg_done(sc);
3993 delay(10 * 1000);
3994 if (sc->sc_type >= WM_T_PCH) {
3995 reg = wm_gmii_hv_readreg(sc->sc_dev, 2,
3996 BM_PORT_GEN_CFG);
3997 reg &= ~BM_WUC_HOST_WU_BIT;
3998 wm_gmii_hv_writereg(sc->sc_dev, 2,
3999 BM_PORT_GEN_CFG, reg);
4000 }
4001 }
4002
4003 /* reload EEPROM */
4004 switch (sc->sc_type) {
4005 case WM_T_82542_2_0:
4006 case WM_T_82542_2_1:
4007 case WM_T_82543:
4008 case WM_T_82544:
4009 delay(10);
4010 reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
4011 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
4012 CSR_WRITE_FLUSH(sc);
4013 delay(2000);
4014 break;
4015 case WM_T_82540:
4016 case WM_T_82545:
4017 case WM_T_82545_3:
4018 case WM_T_82546:
4019 case WM_T_82546_3:
4020 delay(5*1000);
4021 /* XXX Disable HW ARPs on ASF enabled adapters */
4022 break;
4023 case WM_T_82541:
4024 case WM_T_82541_2:
4025 case WM_T_82547:
4026 case WM_T_82547_2:
4027 delay(20000);
4028 /* XXX Disable HW ARPs on ASF enabled adapters */
4029 break;
4030 case WM_T_82571:
4031 case WM_T_82572:
4032 case WM_T_82573:
4033 case WM_T_82574:
4034 case WM_T_82583:
4035 if (sc->sc_flags & WM_F_EEPROM_FLASH) {
4036 delay(10);
4037 reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
4038 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
4039 CSR_WRITE_FLUSH(sc);
4040 }
4041 /* check EECD_EE_AUTORD */
4042 wm_get_auto_rd_done(sc);
4043 /*
4044 * Phy configuration from NVM just starts after EECD_AUTO_RD
4045 * is set.
4046 */
4047 if ((sc->sc_type == WM_T_82573) || (sc->sc_type == WM_T_82574)
4048 || (sc->sc_type == WM_T_82583))
4049 delay(25*1000);
4050 break;
4051 case WM_T_82575:
4052 case WM_T_82576:
4053 case WM_T_82580:
4054 case WM_T_I350:
4055 case WM_T_I354:
4056 case WM_T_I210:
4057 case WM_T_I211:
4058 case WM_T_80003:
4059 /* check EECD_EE_AUTORD */
4060 wm_get_auto_rd_done(sc);
4061 break;
4062 case WM_T_ICH8:
4063 case WM_T_ICH9:
4064 case WM_T_ICH10:
4065 case WM_T_PCH:
4066 case WM_T_PCH2:
4067 case WM_T_PCH_LPT:
4068 case WM_T_PCH_SPT:
4069 break;
4070 default:
4071 panic("%s: unknown type\n", __func__);
4072 }
4073
4074 /* Check whether EEPROM is present or not */
4075 switch (sc->sc_type) {
4076 case WM_T_82575:
4077 case WM_T_82576:
4078 case WM_T_82580:
4079 case WM_T_I350:
4080 case WM_T_I354:
4081 case WM_T_ICH8:
4082 case WM_T_ICH9:
4083 if ((CSR_READ(sc, WMREG_EECD) & EECD_EE_PRES) == 0) {
4084 /* Not found */
4085 sc->sc_flags |= WM_F_EEPROM_INVALID;
4086 if (sc->sc_type == WM_T_82575)
4087 wm_reset_init_script_82575(sc);
4088 }
4089 break;
4090 default:
4091 break;
4092 }
4093
4094 if ((sc->sc_type == WM_T_82580)
4095 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)) {
4096 /* clear global device reset status bit */
4097 CSR_WRITE(sc, WMREG_STATUS, STATUS_DEV_RST_SET);
4098 }
4099
4100 /* Clear any pending interrupt events. */
4101 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
4102 reg = CSR_READ(sc, WMREG_ICR);
4103 if (sc->sc_nintrs > 1) {
4104 if (sc->sc_type != WM_T_82574) {
4105 CSR_WRITE(sc, WMREG_EIMC, 0xffffffffU);
4106 CSR_WRITE(sc, WMREG_EIAC, 0);
4107 } else
4108 CSR_WRITE(sc, WMREG_EIAC_82574, 0);
4109 }
4110
4111 /* reload sc_ctrl */
4112 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
4113
4114 if ((sc->sc_type >= WM_T_I350) && (sc->sc_type <= WM_T_I211))
4115 wm_set_eee_i350(sc);
4116
4117 /* dummy read from WUC */
4118 if (sc->sc_type == WM_T_PCH)
4119 reg = wm_gmii_hv_readreg(sc->sc_dev, 1, BM_WUC);
4120 /*
4121 * For PCH, this write will make sure that any noise will be detected
4122 * as a CRC error and be dropped rather than show up as a bad packet
4123 * to the DMA engine
4124 */
4125 if (sc->sc_type == WM_T_PCH)
4126 CSR_WRITE(sc, WMREG_CRC_OFFSET, 0x65656565);
4127
4128 if (sc->sc_type >= WM_T_82544)
4129 CSR_WRITE(sc, WMREG_WUC, 0);
4130
4131 wm_reset_mdicnfg_82580(sc);
4132
4133 if ((sc->sc_flags & WM_F_PLL_WA_I210) != 0)
4134 wm_pll_workaround_i210(sc);
4135 }
4136
4137 /*
4138 * wm_add_rxbuf:
4139 *
4140 * Add a receive buffer to the indiciated descriptor.
4141 */
4142 static int
4143 wm_add_rxbuf(struct wm_rxqueue *rxq, int idx)
4144 {
4145 struct wm_softc *sc = rxq->rxq_sc;
4146 struct wm_rxsoft *rxs = &rxq->rxq_soft[idx];
4147 struct mbuf *m;
4148 int error;
4149
4150 KASSERT(mutex_owned(rxq->rxq_lock));
4151
4152 MGETHDR(m, M_DONTWAIT, MT_DATA);
4153 if (m == NULL)
4154 return ENOBUFS;
4155
4156 MCLGET(m, M_DONTWAIT);
4157 if ((m->m_flags & M_EXT) == 0) {
4158 m_freem(m);
4159 return ENOBUFS;
4160 }
4161
4162 if (rxs->rxs_mbuf != NULL)
4163 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
4164
4165 rxs->rxs_mbuf = m;
4166
4167 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
4168 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
4169 BUS_DMA_READ | BUS_DMA_NOWAIT);
4170 if (error) {
4171 /* XXX XXX XXX */
4172 aprint_error_dev(sc->sc_dev,
4173 "unable to load rx DMA map %d, error = %d\n",
4174 idx, error);
4175 panic("wm_add_rxbuf");
4176 }
4177
4178 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
4179 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
4180
4181 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
4182 if ((sc->sc_rctl & RCTL_EN) != 0)
4183 wm_init_rxdesc(rxq, idx);
4184 } else
4185 wm_init_rxdesc(rxq, idx);
4186
4187 return 0;
4188 }
4189
4190 /*
4191 * wm_rxdrain:
4192 *
4193 * Drain the receive queue.
4194 */
4195 static void
4196 wm_rxdrain(struct wm_rxqueue *rxq)
4197 {
4198 struct wm_softc *sc = rxq->rxq_sc;
4199 struct wm_rxsoft *rxs;
4200 int i;
4201
4202 KASSERT(mutex_owned(rxq->rxq_lock));
4203
4204 for (i = 0; i < WM_NRXDESC; i++) {
4205 rxs = &rxq->rxq_soft[i];
4206 if (rxs->rxs_mbuf != NULL) {
4207 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
4208 m_freem(rxs->rxs_mbuf);
4209 rxs->rxs_mbuf = NULL;
4210 }
4211 }
4212 }
4213
4214
4215 /*
4216 * XXX copy from FreeBSD's sys/net/rss_config.c
4217 */
4218 /*
4219 * RSS secret key, intended to prevent attacks on load-balancing. Its
4220 * effectiveness may be limited by algorithm choice and available entropy
4221 * during the boot.
4222 *
4223 * XXXRW: And that we don't randomize it yet!
4224 *
4225 * This is the default Microsoft RSS specification key which is also
4226 * the Chelsio T5 firmware default key.
4227 */
4228 #define RSS_KEYSIZE 40
4229 static uint8_t wm_rss_key[RSS_KEYSIZE] = {
4230 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
4231 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
4232 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
4233 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
4234 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa,
4235 };
4236
4237 /*
4238 * Caller must pass an array of size sizeof(rss_key).
4239 *
4240 * XXX
4241 * As if_ixgbe may use this function, this function should not be
4242 * if_wm specific function.
4243 */
4244 static void
4245 wm_rss_getkey(uint8_t *key)
4246 {
4247
4248 memcpy(key, wm_rss_key, sizeof(wm_rss_key));
4249 }
4250
4251 /*
4252 * Setup registers for RSS.
4253 *
4254 * XXX not yet VMDq support
4255 */
4256 static void
4257 wm_init_rss(struct wm_softc *sc)
4258 {
4259 uint32_t mrqc, reta_reg, rss_key[RSSRK_NUM_REGS];
4260 int i;
4261
4262 CTASSERT(sizeof(rss_key) == sizeof(wm_rss_key));
4263
4264 for (i = 0; i < RETA_NUM_ENTRIES; i++) {
4265 int qid, reta_ent;
4266
4267 qid = i % sc->sc_nqueues;
4268 switch(sc->sc_type) {
4269 case WM_T_82574:
4270 reta_ent = __SHIFTIN(qid,
4271 RETA_ENT_QINDEX_MASK_82574);
4272 break;
4273 case WM_T_82575:
4274 reta_ent = __SHIFTIN(qid,
4275 RETA_ENT_QINDEX1_MASK_82575);
4276 break;
4277 default:
4278 reta_ent = __SHIFTIN(qid, RETA_ENT_QINDEX_MASK);
4279 break;
4280 }
4281
4282 reta_reg = CSR_READ(sc, WMREG_RETA_Q(i));
4283 reta_reg &= ~RETA_ENTRY_MASK_Q(i);
4284 reta_reg |= __SHIFTIN(reta_ent, RETA_ENTRY_MASK_Q(i));
4285 CSR_WRITE(sc, WMREG_RETA_Q(i), reta_reg);
4286 }
4287
4288 wm_rss_getkey((uint8_t *)rss_key);
4289 for (i = 0; i < RSSRK_NUM_REGS; i++)
4290 CSR_WRITE(sc, WMREG_RSSRK(i), rss_key[i]);
4291
4292 if (sc->sc_type == WM_T_82574)
4293 mrqc = MRQC_ENABLE_RSS_MQ_82574;
4294 else
4295 mrqc = MRQC_ENABLE_RSS_MQ;
4296
4297 /* XXXX
4298 * The same as FreeBSD igb.
4299 * Why doesn't use MRQC_RSS_FIELD_IPV6_EX?
4300 */
4301 mrqc |= (MRQC_RSS_FIELD_IPV4 | MRQC_RSS_FIELD_IPV4_TCP);
4302 mrqc |= (MRQC_RSS_FIELD_IPV6 | MRQC_RSS_FIELD_IPV6_TCP);
4303 mrqc |= (MRQC_RSS_FIELD_IPV4_UDP | MRQC_RSS_FIELD_IPV6_UDP);
4304 mrqc |= (MRQC_RSS_FIELD_IPV6_UDP_EX | MRQC_RSS_FIELD_IPV6_TCP_EX);
4305
4306 CSR_WRITE(sc, WMREG_MRQC, mrqc);
4307 }
4308
4309 /*
4310 * Adjust TX and RX queue numbers which the system actulally uses.
4311 *
4312 * The numbers are affected by below parameters.
4313 * - The nubmer of hardware queues
4314 * - The number of MSI-X vectors (= "nvectors" argument)
4315 * - ncpu
4316 */
4317 static void
4318 wm_adjust_qnum(struct wm_softc *sc, int nvectors)
4319 {
4320 int hw_ntxqueues, hw_nrxqueues, hw_nqueues;
4321
4322 if (nvectors < 2) {
4323 sc->sc_nqueues = 1;
4324 return;
4325 }
4326
4327 switch(sc->sc_type) {
4328 case WM_T_82572:
4329 hw_ntxqueues = 2;
4330 hw_nrxqueues = 2;
4331 break;
4332 case WM_T_82574:
4333 hw_ntxqueues = 2;
4334 hw_nrxqueues = 2;
4335 break;
4336 case WM_T_82575:
4337 hw_ntxqueues = 4;
4338 hw_nrxqueues = 4;
4339 break;
4340 case WM_T_82576:
4341 hw_ntxqueues = 16;
4342 hw_nrxqueues = 16;
4343 break;
4344 case WM_T_82580:
4345 case WM_T_I350:
4346 case WM_T_I354:
4347 hw_ntxqueues = 8;
4348 hw_nrxqueues = 8;
4349 break;
4350 case WM_T_I210:
4351 hw_ntxqueues = 4;
4352 hw_nrxqueues = 4;
4353 break;
4354 case WM_T_I211:
4355 hw_ntxqueues = 2;
4356 hw_nrxqueues = 2;
4357 break;
4358 /*
4359 * As below ethernet controllers does not support MSI-X,
4360 * this driver let them not use multiqueue.
4361 * - WM_T_80003
4362 * - WM_T_ICH8
4363 * - WM_T_ICH9
4364 * - WM_T_ICH10
4365 * - WM_T_PCH
4366 * - WM_T_PCH2
4367 * - WM_T_PCH_LPT
4368 */
4369 default:
4370 hw_ntxqueues = 1;
4371 hw_nrxqueues = 1;
4372 break;
4373 }
4374
4375 hw_nqueues = min(hw_ntxqueues, hw_nrxqueues);
4376
4377 /*
4378 * As queues more than MSI-X vectors cannot improve scaling, we limit
4379 * the number of queues used actually.
4380 */
4381 if (nvectors < hw_nqueues + 1) {
4382 sc->sc_nqueues = nvectors - 1;
4383 } else {
4384 sc->sc_nqueues = hw_nqueues;
4385 }
4386
4387 /*
4388 * As queues more then cpus cannot improve scaling, we limit
4389 * the number of queues used actually.
4390 */
4391 if (ncpu < sc->sc_nqueues)
4392 sc->sc_nqueues = ncpu;
4393 }
4394
4395 /*
4396 * Both single interrupt MSI and INTx can use this function.
4397 */
4398 static int
4399 wm_setup_legacy(struct wm_softc *sc)
4400 {
4401 pci_chipset_tag_t pc = sc->sc_pc;
4402 const char *intrstr = NULL;
4403 char intrbuf[PCI_INTRSTR_LEN];
4404 int error;
4405
4406 error = wm_alloc_txrx_queues(sc);
4407 if (error) {
4408 aprint_error_dev(sc->sc_dev, "cannot allocate queues %d\n",
4409 error);
4410 return ENOMEM;
4411 }
4412 intrstr = pci_intr_string(pc, sc->sc_intrs[0], intrbuf,
4413 sizeof(intrbuf));
4414 #ifdef WM_MPSAFE
4415 pci_intr_setattr(pc, &sc->sc_intrs[0], PCI_INTR_MPSAFE, true);
4416 #endif
4417 sc->sc_ihs[0] = pci_intr_establish_xname(pc, sc->sc_intrs[0],
4418 IPL_NET, wm_intr_legacy, sc, device_xname(sc->sc_dev));
4419 if (sc->sc_ihs[0] == NULL) {
4420 aprint_error_dev(sc->sc_dev,"unable to establish %s\n",
4421 (pci_intr_type(pc, sc->sc_intrs[0])
4422 == PCI_INTR_TYPE_MSI) ? "MSI" : "INTx");
4423 return ENOMEM;
4424 }
4425
4426 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
4427 sc->sc_nintrs = 1;
4428 return 0;
4429 }
4430
4431 static int
4432 wm_setup_msix(struct wm_softc *sc)
4433 {
4434 void *vih;
4435 kcpuset_t *affinity;
4436 int qidx, error, intr_idx, txrx_established;
4437 pci_chipset_tag_t pc = sc->sc_pc;
4438 const char *intrstr = NULL;
4439 char intrbuf[PCI_INTRSTR_LEN];
4440 char intr_xname[INTRDEVNAMEBUF];
4441
4442 if (sc->sc_nqueues < ncpu) {
4443 /*
4444 * To avoid other devices' interrupts, the affinity of Tx/Rx
4445 * interrupts start from CPU#1.
4446 */
4447 sc->sc_affinity_offset = 1;
4448 } else {
4449 /*
4450 * In this case, this device use all CPUs. So, we unify
4451 * affinitied cpu_index to msix vector number for readability.
4452 */
4453 sc->sc_affinity_offset = 0;
4454 }
4455
4456 error = wm_alloc_txrx_queues(sc);
4457 if (error) {
4458 aprint_error_dev(sc->sc_dev, "cannot allocate queues %d\n",
4459 error);
4460 return ENOMEM;
4461 }
4462
4463 kcpuset_create(&affinity, false);
4464 intr_idx = 0;
4465
4466 /*
4467 * TX and RX
4468 */
4469 txrx_established = 0;
4470 for (qidx = 0; qidx < sc->sc_nqueues; qidx++) {
4471 struct wm_queue *wmq = &sc->sc_queue[qidx];
4472 int affinity_to = (sc->sc_affinity_offset + intr_idx) % ncpu;
4473
4474 intrstr = pci_intr_string(pc, sc->sc_intrs[intr_idx], intrbuf,
4475 sizeof(intrbuf));
4476 #ifdef WM_MPSAFE
4477 pci_intr_setattr(pc, &sc->sc_intrs[intr_idx],
4478 PCI_INTR_MPSAFE, true);
4479 #endif
4480 memset(intr_xname, 0, sizeof(intr_xname));
4481 snprintf(intr_xname, sizeof(intr_xname), "%sTXRX%d",
4482 device_xname(sc->sc_dev), qidx);
4483 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intr_idx],
4484 IPL_NET, wm_txrxintr_msix, wmq, intr_xname);
4485 if (vih == NULL) {
4486 aprint_error_dev(sc->sc_dev,
4487 "unable to establish MSI-X(for TX and RX)%s%s\n",
4488 intrstr ? " at " : "",
4489 intrstr ? intrstr : "");
4490
4491 goto fail;
4492 }
4493 kcpuset_zero(affinity);
4494 /* Round-robin affinity */
4495 kcpuset_set(affinity, affinity_to);
4496 error = interrupt_distribute(vih, affinity, NULL);
4497 if (error == 0) {
4498 aprint_normal_dev(sc->sc_dev,
4499 "for TX and RX interrupting at %s affinity to %u\n",
4500 intrstr, affinity_to);
4501 } else {
4502 aprint_normal_dev(sc->sc_dev,
4503 "for TX and RX interrupting at %s\n", intrstr);
4504 }
4505 sc->sc_ihs[intr_idx] = vih;
4506 wmq->wmq_id= qidx;
4507 wmq->wmq_intr_idx = intr_idx;
4508
4509 txrx_established++;
4510 intr_idx++;
4511 }
4512
4513 /*
4514 * LINK
4515 */
4516 intrstr = pci_intr_string(pc, sc->sc_intrs[intr_idx], intrbuf,
4517 sizeof(intrbuf));
4518 #ifdef WM_MPSAFE
4519 pci_intr_setattr(pc, &sc->sc_intrs[intr_idx], PCI_INTR_MPSAFE, true);
4520 #endif
4521 memset(intr_xname, 0, sizeof(intr_xname));
4522 snprintf(intr_xname, sizeof(intr_xname), "%sLINK",
4523 device_xname(sc->sc_dev));
4524 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intr_idx],
4525 IPL_NET, wm_linkintr_msix, sc, intr_xname);
4526 if (vih == NULL) {
4527 aprint_error_dev(sc->sc_dev,
4528 "unable to establish MSI-X(for LINK)%s%s\n",
4529 intrstr ? " at " : "",
4530 intrstr ? intrstr : "");
4531
4532 goto fail;
4533 }
4534 /* keep default affinity to LINK interrupt */
4535 aprint_normal_dev(sc->sc_dev,
4536 "for LINK interrupting at %s\n", intrstr);
4537 sc->sc_ihs[intr_idx] = vih;
4538 sc->sc_link_intr_idx = intr_idx;
4539
4540 sc->sc_nintrs = sc->sc_nqueues + 1;
4541 kcpuset_destroy(affinity);
4542 return 0;
4543
4544 fail:
4545 for (qidx = 0; qidx < txrx_established; qidx++) {
4546 struct wm_queue *wmq = &sc->sc_queue[qidx];
4547 pci_intr_disestablish(sc->sc_pc,sc->sc_ihs[wmq->wmq_intr_idx]);
4548 sc->sc_ihs[wmq->wmq_intr_idx] = NULL;
4549 }
4550
4551 kcpuset_destroy(affinity);
4552 return ENOMEM;
4553 }
4554
4555 /*
4556 * wm_init: [ifnet interface function]
4557 *
4558 * Initialize the interface.
4559 */
4560 static int
4561 wm_init(struct ifnet *ifp)
4562 {
4563 struct wm_softc *sc = ifp->if_softc;
4564 int ret;
4565
4566 WM_CORE_LOCK(sc);
4567 ret = wm_init_locked(ifp);
4568 WM_CORE_UNLOCK(sc);
4569
4570 return ret;
4571 }
4572
4573 static int
4574 wm_init_locked(struct ifnet *ifp)
4575 {
4576 struct wm_softc *sc = ifp->if_softc;
4577 int i, j, trynum, error = 0;
4578 uint32_t reg;
4579
4580 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
4581 device_xname(sc->sc_dev), __func__));
4582 KASSERT(WM_CORE_LOCKED(sc));
4583
4584 /*
4585 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
4586 * There is a small but measurable benefit to avoiding the adjusment
4587 * of the descriptor so that the headers are aligned, for normal mtu,
4588 * on such platforms. One possibility is that the DMA itself is
4589 * slightly more efficient if the front of the entire packet (instead
4590 * of the front of the headers) is aligned.
4591 *
4592 * Note we must always set align_tweak to 0 if we are using
4593 * jumbo frames.
4594 */
4595 #ifdef __NO_STRICT_ALIGNMENT
4596 sc->sc_align_tweak = 0;
4597 #else
4598 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
4599 sc->sc_align_tweak = 0;
4600 else
4601 sc->sc_align_tweak = 2;
4602 #endif /* __NO_STRICT_ALIGNMENT */
4603
4604 /* Cancel any pending I/O. */
4605 wm_stop_locked(ifp, 0);
4606
4607 /* update statistics before reset */
4608 ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
4609 ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
4610
4611 /* Reset the chip to a known state. */
4612 wm_reset(sc);
4613
4614 switch (sc->sc_type) {
4615 case WM_T_82571:
4616 case WM_T_82572:
4617 case WM_T_82573:
4618 case WM_T_82574:
4619 case WM_T_82583:
4620 case WM_T_80003:
4621 case WM_T_ICH8:
4622 case WM_T_ICH9:
4623 case WM_T_ICH10:
4624 case WM_T_PCH:
4625 case WM_T_PCH2:
4626 case WM_T_PCH_LPT:
4627 case WM_T_PCH_SPT:
4628 /* AMT based hardware can now take control from firmware */
4629 if ((sc->sc_flags & WM_F_HAS_AMT) != 0)
4630 wm_get_hw_control(sc);
4631 break;
4632 default:
4633 break;
4634 }
4635
4636 /* Init hardware bits */
4637 wm_initialize_hardware_bits(sc);
4638
4639 /* Reset the PHY. */
4640 if (sc->sc_flags & WM_F_HAS_MII)
4641 wm_gmii_reset(sc);
4642
4643 /* Calculate (E)ITR value */
4644 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
4645 sc->sc_itr = 450; /* For EITR */
4646 } else if (sc->sc_type >= WM_T_82543) {
4647 /*
4648 * Set up the interrupt throttling register (units of 256ns)
4649 * Note that a footnote in Intel's documentation says this
4650 * ticker runs at 1/4 the rate when the chip is in 100Mbit
4651 * or 10Mbit mode. Empirically, it appears to be the case
4652 * that that is also true for the 1024ns units of the other
4653 * interrupt-related timer registers -- so, really, we ought
4654 * to divide this value by 4 when the link speed is low.
4655 *
4656 * XXX implement this division at link speed change!
4657 */
4658
4659 /*
4660 * For N interrupts/sec, set this value to:
4661 * 1000000000 / (N * 256). Note that we set the
4662 * absolute and packet timer values to this value
4663 * divided by 4 to get "simple timer" behavior.
4664 */
4665
4666 sc->sc_itr = 1500; /* 2604 ints/sec */
4667 }
4668
4669 error = wm_init_txrx_queues(sc);
4670 if (error)
4671 goto out;
4672
4673 /*
4674 * Clear out the VLAN table -- we don't use it (yet).
4675 */
4676 CSR_WRITE(sc, WMREG_VET, 0);
4677 if ((sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354))
4678 trynum = 10; /* Due to hw errata */
4679 else
4680 trynum = 1;
4681 for (i = 0; i < WM_VLAN_TABSIZE; i++)
4682 for (j = 0; j < trynum; j++)
4683 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
4684
4685 /*
4686 * Set up flow-control parameters.
4687 *
4688 * XXX Values could probably stand some tuning.
4689 */
4690 if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9)
4691 && (sc->sc_type != WM_T_ICH10) && (sc->sc_type != WM_T_PCH)
4692 && (sc->sc_type != WM_T_PCH2) && (sc->sc_type != WM_T_PCH_LPT)
4693 && (sc->sc_type != WM_T_PCH_SPT)) {
4694 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
4695 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
4696 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
4697 }
4698
4699 sc->sc_fcrtl = FCRTL_DFLT;
4700 if (sc->sc_type < WM_T_82543) {
4701 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
4702 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
4703 } else {
4704 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
4705 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
4706 }
4707
4708 if (sc->sc_type == WM_T_80003)
4709 CSR_WRITE(sc, WMREG_FCTTV, 0xffff);
4710 else
4711 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
4712
4713 /* Writes the control register. */
4714 wm_set_vlan(sc);
4715
4716 if (sc->sc_flags & WM_F_HAS_MII) {
4717 int val;
4718
4719 switch (sc->sc_type) {
4720 case WM_T_80003:
4721 case WM_T_ICH8:
4722 case WM_T_ICH9:
4723 case WM_T_ICH10:
4724 case WM_T_PCH:
4725 case WM_T_PCH2:
4726 case WM_T_PCH_LPT:
4727 case WM_T_PCH_SPT:
4728 /*
4729 * Set the mac to wait the maximum time between each
4730 * iteration and increase the max iterations when
4731 * polling the phy; this fixes erroneous timeouts at
4732 * 10Mbps.
4733 */
4734 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS,
4735 0xFFFF);
4736 val = wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_INB_PARAM);
4737 val |= 0x3F;
4738 wm_kmrn_writereg(sc,
4739 KUMCTRLSTA_OFFSET_INB_PARAM, val);
4740 break;
4741 default:
4742 break;
4743 }
4744
4745 if (sc->sc_type == WM_T_80003) {
4746 val = CSR_READ(sc, WMREG_CTRL_EXT);
4747 val &= ~CTRL_EXT_LINK_MODE_MASK;
4748 CSR_WRITE(sc, WMREG_CTRL_EXT, val);
4749
4750 /* Bypass RX and TX FIFO's */
4751 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL,
4752 KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
4753 | KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
4754 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL,
4755 KUMCTRLSTA_INB_CTRL_DIS_PADDING |
4756 KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT);
4757 }
4758 }
4759 #if 0
4760 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
4761 #endif
4762
4763 /* Set up checksum offload parameters. */
4764 reg = CSR_READ(sc, WMREG_RXCSUM);
4765 reg &= ~(RXCSUM_IPOFL | RXCSUM_IPV6OFL | RXCSUM_TUOFL);
4766 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
4767 reg |= RXCSUM_IPOFL;
4768 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
4769 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
4770 if (ifp->if_capenable & (IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
4771 reg |= RXCSUM_IPV6OFL | RXCSUM_TUOFL;
4772 CSR_WRITE(sc, WMREG_RXCSUM, reg);
4773
4774 /* Set up MSI-X */
4775 if (sc->sc_nintrs > 1) {
4776 uint32_t ivar;
4777 struct wm_queue *wmq;
4778 int qid, qintr_idx;
4779
4780 if (sc->sc_type == WM_T_82575) {
4781 /* Interrupt control */
4782 reg = CSR_READ(sc, WMREG_CTRL_EXT);
4783 reg |= CTRL_EXT_PBA | CTRL_EXT_EIAME | CTRL_EXT_NSICR;
4784 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
4785
4786 /* TX and RX */
4787 for (i = 0; i < sc->sc_nqueues; i++) {
4788 wmq = &sc->sc_queue[i];
4789 CSR_WRITE(sc, WMREG_MSIXBM(wmq->wmq_intr_idx),
4790 EITR_TX_QUEUE(wmq->wmq_id)
4791 | EITR_RX_QUEUE(wmq->wmq_id));
4792 }
4793 /* Link status */
4794 CSR_WRITE(sc, WMREG_MSIXBM(sc->sc_link_intr_idx),
4795 EITR_OTHER);
4796 } else if (sc->sc_type == WM_T_82574) {
4797 /* Interrupt control */
4798 reg = CSR_READ(sc, WMREG_CTRL_EXT);
4799 reg |= CTRL_EXT_PBA | CTRL_EXT_EIAME;
4800 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
4801
4802 ivar = 0;
4803 /* TX and RX */
4804 for (i = 0; i < sc->sc_nqueues; i++) {
4805 wmq = &sc->sc_queue[i];
4806 qid = wmq->wmq_id;
4807 qintr_idx = wmq->wmq_intr_idx;
4808
4809 ivar |= __SHIFTIN((IVAR_VALID_82574|qintr_idx),
4810 IVAR_TX_MASK_Q_82574(qid));
4811 ivar |= __SHIFTIN((IVAR_VALID_82574|qintr_idx),
4812 IVAR_RX_MASK_Q_82574(qid));
4813 }
4814 /* Link status */
4815 ivar |= __SHIFTIN((IVAR_VALID_82574
4816 | sc->sc_link_intr_idx), IVAR_OTHER_MASK);
4817 CSR_WRITE(sc, WMREG_IVAR, ivar | IVAR_INT_ON_ALL_WB);
4818 } else {
4819 /* Interrupt control */
4820 CSR_WRITE(sc, WMREG_GPIE, GPIE_NSICR | GPIE_MULTI_MSIX
4821 | GPIE_EIAME | GPIE_PBA);
4822
4823 switch (sc->sc_type) {
4824 case WM_T_82580:
4825 case WM_T_I350:
4826 case WM_T_I354:
4827 case WM_T_I210:
4828 case WM_T_I211:
4829 /* TX and RX */
4830 for (i = 0; i < sc->sc_nqueues; i++) {
4831 wmq = &sc->sc_queue[i];
4832 qid = wmq->wmq_id;
4833 qintr_idx = wmq->wmq_intr_idx;
4834
4835 ivar = CSR_READ(sc, WMREG_IVAR_Q(qid));
4836 ivar &= ~IVAR_TX_MASK_Q(qid);
4837 ivar |= __SHIFTIN((qintr_idx
4838 | IVAR_VALID),
4839 IVAR_TX_MASK_Q(qid));
4840 ivar &= ~IVAR_RX_MASK_Q(qid);
4841 ivar |= __SHIFTIN((qintr_idx
4842 | IVAR_VALID),
4843 IVAR_RX_MASK_Q(qid));
4844 CSR_WRITE(sc, WMREG_IVAR_Q(qid), ivar);
4845 }
4846 break;
4847 case WM_T_82576:
4848 /* TX and RX */
4849 for (i = 0; i < sc->sc_nqueues; i++) {
4850 wmq = &sc->sc_queue[i];
4851 qid = wmq->wmq_id;
4852 qintr_idx = wmq->wmq_intr_idx;
4853
4854 ivar = CSR_READ(sc,
4855 WMREG_IVAR_Q_82576(qid));
4856 ivar &= ~IVAR_TX_MASK_Q_82576(qid);
4857 ivar |= __SHIFTIN((qintr_idx
4858 | IVAR_VALID),
4859 IVAR_TX_MASK_Q_82576(qid));
4860 ivar &= ~IVAR_RX_MASK_Q_82576(qid);
4861 ivar |= __SHIFTIN((qintr_idx
4862 | IVAR_VALID),
4863 IVAR_RX_MASK_Q_82576(qid));
4864 CSR_WRITE(sc, WMREG_IVAR_Q_82576(qid),
4865 ivar);
4866 }
4867 break;
4868 default:
4869 break;
4870 }
4871
4872 /* Link status */
4873 ivar = __SHIFTIN((sc->sc_link_intr_idx | IVAR_VALID),
4874 IVAR_MISC_OTHER);
4875 CSR_WRITE(sc, WMREG_IVAR_MISC, ivar);
4876 }
4877
4878 if (sc->sc_nqueues > 1) {
4879 wm_init_rss(sc);
4880
4881 /*
4882 ** NOTE: Receive Full-Packet Checksum Offload
4883 ** is mutually exclusive with Multiqueue. However
4884 ** this is not the same as TCP/IP checksums which
4885 ** still work.
4886 */
4887 reg = CSR_READ(sc, WMREG_RXCSUM);
4888 reg |= RXCSUM_PCSD;
4889 CSR_WRITE(sc, WMREG_RXCSUM, reg);
4890 }
4891 }
4892
4893 /* Set up the interrupt registers. */
4894 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
4895 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
4896 ICR_RXO | ICR_RXT0;
4897 if (sc->sc_nintrs > 1) {
4898 uint32_t mask;
4899 struct wm_queue *wmq;
4900
4901 switch (sc->sc_type) {
4902 case WM_T_82574:
4903 CSR_WRITE(sc, WMREG_EIAC_82574,
4904 WMREG_EIAC_82574_MSIX_MASK);
4905 sc->sc_icr |= WMREG_EIAC_82574_MSIX_MASK;
4906 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
4907 break;
4908 default:
4909 if (sc->sc_type == WM_T_82575) {
4910 mask = 0;
4911 for (i = 0; i < sc->sc_nqueues; i++) {
4912 wmq = &sc->sc_queue[i];
4913 mask |= EITR_TX_QUEUE(wmq->wmq_id);
4914 mask |= EITR_RX_QUEUE(wmq->wmq_id);
4915 }
4916 mask |= EITR_OTHER;
4917 } else {
4918 mask = 0;
4919 for (i = 0; i < sc->sc_nqueues; i++) {
4920 wmq = &sc->sc_queue[i];
4921 mask |= 1 << wmq->wmq_intr_idx;
4922 }
4923 mask |= 1 << sc->sc_link_intr_idx;
4924 }
4925 CSR_WRITE(sc, WMREG_EIAC, mask);
4926 CSR_WRITE(sc, WMREG_EIAM, mask);
4927 CSR_WRITE(sc, WMREG_EIMS, mask);
4928 CSR_WRITE(sc, WMREG_IMS, ICR_LSC);
4929 break;
4930 }
4931 } else
4932 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
4933
4934 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
4935 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
4936 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)
4937 || (sc->sc_type == WM_T_PCH_SPT)) {
4938 reg = CSR_READ(sc, WMREG_KABGTXD);
4939 reg |= KABGTXD_BGSQLBIAS;
4940 CSR_WRITE(sc, WMREG_KABGTXD, reg);
4941 }
4942
4943 /* Set up the inter-packet gap. */
4944 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
4945
4946 if (sc->sc_type >= WM_T_82543) {
4947 /*
4948 * XXX 82574 has both ITR and EITR. SET EITR when we use
4949 * the multi queue function with MSI-X.
4950 */
4951 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
4952 int qidx;
4953 for (qidx = 0; qidx < sc->sc_nqueues; qidx++) {
4954 struct wm_queue *wmq = &sc->sc_queue[qidx];
4955 CSR_WRITE(sc, WMREG_EITR(wmq->wmq_intr_idx),
4956 sc->sc_itr);
4957 }
4958 /*
4959 * Link interrupts occur much less than TX
4960 * interrupts and RX interrupts. So, we don't
4961 * tune EINTR(WM_MSIX_LINKINTR_IDX) value like
4962 * FreeBSD's if_igb.
4963 */
4964 } else
4965 CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
4966 }
4967
4968 /* Set the VLAN ethernetype. */
4969 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
4970
4971 /*
4972 * Set up the transmit control register; we start out with
4973 * a collision distance suitable for FDX, but update it whe
4974 * we resolve the media type.
4975 */
4976 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_RTLC
4977 | TCTL_CT(TX_COLLISION_THRESHOLD)
4978 | TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
4979 if (sc->sc_type >= WM_T_82571)
4980 sc->sc_tctl |= TCTL_MULR;
4981 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
4982
4983 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
4984 /* Write TDT after TCTL.EN is set. See the document. */
4985 CSR_WRITE(sc, WMREG_TDT(0), 0);
4986 }
4987
4988 if (sc->sc_type == WM_T_80003) {
4989 reg = CSR_READ(sc, WMREG_TCTL_EXT);
4990 reg &= ~TCTL_EXT_GCEX_MASK;
4991 reg |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
4992 CSR_WRITE(sc, WMREG_TCTL_EXT, reg);
4993 }
4994
4995 /* Set the media. */
4996 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
4997 goto out;
4998
4999 /* Configure for OS presence */
5000 wm_init_manageability(sc);
5001
5002 /*
5003 * Set up the receive control register; we actually program
5004 * the register when we set the receive filter. Use multicast
5005 * address offset type 0.
5006 *
5007 * Only the i82544 has the ability to strip the incoming
5008 * CRC, so we don't enable that feature.
5009 */
5010 sc->sc_mchash_type = 0;
5011 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
5012 | RCTL_MO(sc->sc_mchash_type);
5013
5014 /*
5015 * The I350 has a bug where it always strips the CRC whether
5016 * asked to or not. So ask for stripped CRC here and cope in rxeof
5017 */
5018 if ((sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
5019 || (sc->sc_type == WM_T_I210))
5020 sc->sc_rctl |= RCTL_SECRC;
5021
5022 if (((sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) != 0)
5023 && (ifp->if_mtu > ETHERMTU)) {
5024 sc->sc_rctl |= RCTL_LPE;
5025 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
5026 CSR_WRITE(sc, WMREG_RLPML, ETHER_MAX_LEN_JUMBO);
5027 }
5028
5029 if (MCLBYTES == 2048) {
5030 sc->sc_rctl |= RCTL_2k;
5031 } else {
5032 if (sc->sc_type >= WM_T_82543) {
5033 switch (MCLBYTES) {
5034 case 4096:
5035 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
5036 break;
5037 case 8192:
5038 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
5039 break;
5040 case 16384:
5041 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
5042 break;
5043 default:
5044 panic("wm_init: MCLBYTES %d unsupported",
5045 MCLBYTES);
5046 break;
5047 }
5048 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
5049 }
5050
5051 /* Set the receive filter. */
5052 wm_set_filter(sc);
5053
5054 /* Enable ECC */
5055 switch (sc->sc_type) {
5056 case WM_T_82571:
5057 reg = CSR_READ(sc, WMREG_PBA_ECC);
5058 reg |= PBA_ECC_CORR_EN;
5059 CSR_WRITE(sc, WMREG_PBA_ECC, reg);
5060 break;
5061 case WM_T_PCH_LPT:
5062 case WM_T_PCH_SPT:
5063 reg = CSR_READ(sc, WMREG_PBECCSTS);
5064 reg |= PBECCSTS_UNCORR_ECC_ENABLE;
5065 CSR_WRITE(sc, WMREG_PBECCSTS, reg);
5066
5067 reg = CSR_READ(sc, WMREG_CTRL);
5068 reg |= CTRL_MEHE;
5069 CSR_WRITE(sc, WMREG_CTRL, reg);
5070 break;
5071 default:
5072 break;
5073 }
5074
5075 /* On 575 and later set RDT only if RX enabled */
5076 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
5077 int qidx;
5078 for (qidx = 0; qidx < sc->sc_nqueues; qidx++) {
5079 struct wm_rxqueue *rxq = &sc->sc_queue[qidx].wmq_rxq;
5080 for (i = 0; i < WM_NRXDESC; i++) {
5081 mutex_enter(rxq->rxq_lock);
5082 wm_init_rxdesc(rxq, i);
5083 mutex_exit(rxq->rxq_lock);
5084
5085 }
5086 }
5087 }
5088
5089 sc->sc_stopping = false;
5090
5091 /* Start the one second link check clock. */
5092 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
5093
5094 /* ...all done! */
5095 ifp->if_flags |= IFF_RUNNING;
5096 ifp->if_flags &= ~IFF_OACTIVE;
5097
5098 out:
5099 sc->sc_if_flags = ifp->if_flags;
5100 if (error)
5101 log(LOG_ERR, "%s: interface not running\n",
5102 device_xname(sc->sc_dev));
5103 return error;
5104 }
5105
5106 /*
5107 * wm_stop: [ifnet interface function]
5108 *
5109 * Stop transmission on the interface.
5110 */
5111 static void
5112 wm_stop(struct ifnet *ifp, int disable)
5113 {
5114 struct wm_softc *sc = ifp->if_softc;
5115
5116 WM_CORE_LOCK(sc);
5117 wm_stop_locked(ifp, disable);
5118 WM_CORE_UNLOCK(sc);
5119 }
5120
5121 static void
5122 wm_stop_locked(struct ifnet *ifp, int disable)
5123 {
5124 struct wm_softc *sc = ifp->if_softc;
5125 struct wm_txsoft *txs;
5126 int i, qidx;
5127
5128 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
5129 device_xname(sc->sc_dev), __func__));
5130 KASSERT(WM_CORE_LOCKED(sc));
5131
5132 sc->sc_stopping = true;
5133
5134 /* Stop the one second clock. */
5135 callout_stop(&sc->sc_tick_ch);
5136
5137 /* Stop the 82547 Tx FIFO stall check timer. */
5138 if (sc->sc_type == WM_T_82547)
5139 callout_stop(&sc->sc_txfifo_ch);
5140
5141 if (sc->sc_flags & WM_F_HAS_MII) {
5142 /* Down the MII. */
5143 mii_down(&sc->sc_mii);
5144 } else {
5145 #if 0
5146 /* Should we clear PHY's status properly? */
5147 wm_reset(sc);
5148 #endif
5149 }
5150
5151 /* Stop the transmit and receive processes. */
5152 CSR_WRITE(sc, WMREG_TCTL, 0);
5153 CSR_WRITE(sc, WMREG_RCTL, 0);
5154 sc->sc_rctl &= ~RCTL_EN;
5155
5156 /*
5157 * Clear the interrupt mask to ensure the device cannot assert its
5158 * interrupt line.
5159 * Clear sc->sc_icr to ensure wm_intr_legacy() makes no attempt to
5160 * service any currently pending or shared interrupt.
5161 */
5162 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
5163 sc->sc_icr = 0;
5164 if (sc->sc_nintrs > 1) {
5165 if (sc->sc_type != WM_T_82574) {
5166 CSR_WRITE(sc, WMREG_EIMC, 0xffffffffU);
5167 CSR_WRITE(sc, WMREG_EIAC, 0);
5168 } else
5169 CSR_WRITE(sc, WMREG_EIAC_82574, 0);
5170 }
5171
5172 /* Release any queued transmit buffers. */
5173 for (qidx = 0; qidx < sc->sc_nqueues; qidx++) {
5174 struct wm_queue *wmq = &sc->sc_queue[qidx];
5175 struct wm_txqueue *txq = &wmq->wmq_txq;
5176 mutex_enter(txq->txq_lock);
5177 for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
5178 txs = &txq->txq_soft[i];
5179 if (txs->txs_mbuf != NULL) {
5180 bus_dmamap_unload(sc->sc_dmat,txs->txs_dmamap);
5181 m_freem(txs->txs_mbuf);
5182 txs->txs_mbuf = NULL;
5183 }
5184 }
5185 if (sc->sc_type == WM_T_PCH_SPT) {
5186 pcireg_t preg;
5187 uint32_t reg;
5188 int nexttx;
5189
5190 /* First, disable MULR fix in FEXTNVM11 */
5191 reg = CSR_READ(sc, WMREG_FEXTNVM11);
5192 reg |= FEXTNVM11_DIS_MULRFIX;
5193 CSR_WRITE(sc, WMREG_FEXTNVM11, reg);
5194
5195 preg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
5196 WM_PCI_DESCRING_STATUS);
5197 reg = CSR_READ(sc, WMREG_TDLEN(0));
5198 printf("XXX RST: FLUSH = %08x, len = %u\n",
5199 (uint32_t)(preg & DESCRING_STATUS_FLUSH_REQ), reg);
5200 if (((preg & DESCRING_STATUS_FLUSH_REQ) != 0)
5201 && (reg != 0)) {
5202 /* TX */
5203 printf("XXX need TX flush (reg = %08x)\n",
5204 preg);
5205 wm_init_tx_descs(sc, txq);
5206 wm_init_tx_regs(sc, wmq, txq);
5207 nexttx = txq->txq_next;
5208 wm_set_dma_addr(
5209 &txq->txq_descs[nexttx].wtx_addr,
5210 WM_CDTXADDR(txq, nexttx));
5211 txq->txq_descs[nexttx].wtx_cmdlen
5212 = htole32(WTX_CMD_IFCS | 512);
5213 wm_cdtxsync(txq, nexttx, 1,
5214 BUS_DMASYNC_PREREAD |BUS_DMASYNC_PREWRITE);
5215 CSR_WRITE(sc, WMREG_TCTL, TCTL_EN);
5216 CSR_WRITE(sc, WMREG_TDT(0), nexttx);
5217 CSR_WRITE_FLUSH(sc);
5218 delay(250);
5219 CSR_WRITE(sc, WMREG_TCTL, 0);
5220 }
5221 preg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
5222 WM_PCI_DESCRING_STATUS);
5223 if (preg & DESCRING_STATUS_FLUSH_REQ) {
5224 /* RX */
5225 printf("XXX need RX flush\n");
5226 }
5227 }
5228 mutex_exit(txq->txq_lock);
5229 }
5230
5231 /* Mark the interface as down and cancel the watchdog timer. */
5232 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5233 ifp->if_timer = 0;
5234
5235 if (disable) {
5236 for (i = 0; i < sc->sc_nqueues; i++) {
5237 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
5238 mutex_enter(rxq->rxq_lock);
5239 wm_rxdrain(rxq);
5240 mutex_exit(rxq->rxq_lock);
5241 }
5242 }
5243
5244 #if 0 /* notyet */
5245 if (sc->sc_type >= WM_T_82544)
5246 CSR_WRITE(sc, WMREG_WUC, 0);
5247 #endif
5248 }
5249
5250 static void
5251 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
5252 {
5253 struct mbuf *m;
5254 int i;
5255
5256 log(LOG_DEBUG, "%s: mbuf chain:\n", device_xname(sc->sc_dev));
5257 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
5258 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
5259 "m_flags = 0x%08x\n", device_xname(sc->sc_dev),
5260 m->m_data, m->m_len, m->m_flags);
5261 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", device_xname(sc->sc_dev),
5262 i, i == 1 ? "" : "s");
5263 }
5264
5265 /*
5266 * wm_82547_txfifo_stall:
5267 *
5268 * Callout used to wait for the 82547 Tx FIFO to drain,
5269 * reset the FIFO pointers, and restart packet transmission.
5270 */
5271 static void
5272 wm_82547_txfifo_stall(void *arg)
5273 {
5274 struct wm_softc *sc = arg;
5275 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
5276
5277 mutex_enter(txq->txq_lock);
5278
5279 if (sc->sc_stopping)
5280 goto out;
5281
5282 if (txq->txq_fifo_stall) {
5283 if (CSR_READ(sc, WMREG_TDT(0)) == CSR_READ(sc, WMREG_TDH(0)) &&
5284 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
5285 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
5286 /*
5287 * Packets have drained. Stop transmitter, reset
5288 * FIFO pointers, restart transmitter, and kick
5289 * the packet queue.
5290 */
5291 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
5292 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
5293 CSR_WRITE(sc, WMREG_TDFT, txq->txq_fifo_addr);
5294 CSR_WRITE(sc, WMREG_TDFH, txq->txq_fifo_addr);
5295 CSR_WRITE(sc, WMREG_TDFTS, txq->txq_fifo_addr);
5296 CSR_WRITE(sc, WMREG_TDFHS, txq->txq_fifo_addr);
5297 CSR_WRITE(sc, WMREG_TCTL, tctl);
5298 CSR_WRITE_FLUSH(sc);
5299
5300 txq->txq_fifo_head = 0;
5301 txq->txq_fifo_stall = 0;
5302 wm_start_locked(&sc->sc_ethercom.ec_if);
5303 } else {
5304 /*
5305 * Still waiting for packets to drain; try again in
5306 * another tick.
5307 */
5308 callout_schedule(&sc->sc_txfifo_ch, 1);
5309 }
5310 }
5311
5312 out:
5313 mutex_exit(txq->txq_lock);
5314 }
5315
5316 /*
5317 * wm_82547_txfifo_bugchk:
5318 *
5319 * Check for bug condition in the 82547 Tx FIFO. We need to
5320 * prevent enqueueing a packet that would wrap around the end
5321 * if the Tx FIFO ring buffer, otherwise the chip will croak.
5322 *
5323 * We do this by checking the amount of space before the end
5324 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
5325 * the Tx FIFO, wait for all remaining packets to drain, reset
5326 * the internal FIFO pointers to the beginning, and restart
5327 * transmission on the interface.
5328 */
5329 #define WM_FIFO_HDR 0x10
5330 #define WM_82547_PAD_LEN 0x3e0
5331 static int
5332 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
5333 {
5334 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
5335 int space = txq->txq_fifo_size - txq->txq_fifo_head;
5336 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
5337
5338 /* Just return if already stalled. */
5339 if (txq->txq_fifo_stall)
5340 return 1;
5341
5342 if (sc->sc_mii.mii_media_active & IFM_FDX) {
5343 /* Stall only occurs in half-duplex mode. */
5344 goto send_packet;
5345 }
5346
5347 if (len >= WM_82547_PAD_LEN + space) {
5348 txq->txq_fifo_stall = 1;
5349 callout_schedule(&sc->sc_txfifo_ch, 1);
5350 return 1;
5351 }
5352
5353 send_packet:
5354 txq->txq_fifo_head += len;
5355 if (txq->txq_fifo_head >= txq->txq_fifo_size)
5356 txq->txq_fifo_head -= txq->txq_fifo_size;
5357
5358 return 0;
5359 }
5360
5361 static int
5362 wm_alloc_tx_descs(struct wm_softc *sc, struct wm_txqueue *txq)
5363 {
5364 int error;
5365
5366 /*
5367 * Allocate the control data structures, and create and load the
5368 * DMA map for it.
5369 *
5370 * NOTE: All Tx descriptors must be in the same 4G segment of
5371 * memory. So must Rx descriptors. We simplify by allocating
5372 * both sets within the same 4G segment.
5373 */
5374 if (sc->sc_type < WM_T_82544)
5375 WM_NTXDESC(txq) = WM_NTXDESC_82542;
5376 else
5377 WM_NTXDESC(txq) = WM_NTXDESC_82544;
5378 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
5379 txq->txq_descsize = sizeof(nq_txdesc_t);
5380 else
5381 txq->txq_descsize = sizeof(wiseman_txdesc_t);
5382
5383 if ((error = bus_dmamem_alloc(sc->sc_dmat, WM_TXDESCS_SIZE(txq),
5384 PAGE_SIZE, (bus_size_t) 0x100000000ULL, &txq->txq_desc_seg,
5385 1, &txq->txq_desc_rseg, 0)) != 0) {
5386 aprint_error_dev(sc->sc_dev,
5387 "unable to allocate TX control data, error = %d\n",
5388 error);
5389 goto fail_0;
5390 }
5391
5392 if ((error = bus_dmamem_map(sc->sc_dmat, &txq->txq_desc_seg,
5393 txq->txq_desc_rseg, WM_TXDESCS_SIZE(txq),
5394 (void **)&txq->txq_descs_u, BUS_DMA_COHERENT)) != 0) {
5395 aprint_error_dev(sc->sc_dev,
5396 "unable to map TX control data, error = %d\n", error);
5397 goto fail_1;
5398 }
5399
5400 if ((error = bus_dmamap_create(sc->sc_dmat, WM_TXDESCS_SIZE(txq), 1,
5401 WM_TXDESCS_SIZE(txq), 0, 0, &txq->txq_desc_dmamap)) != 0) {
5402 aprint_error_dev(sc->sc_dev,
5403 "unable to create TX control data DMA map, error = %d\n",
5404 error);
5405 goto fail_2;
5406 }
5407
5408 if ((error = bus_dmamap_load(sc->sc_dmat, txq->txq_desc_dmamap,
5409 txq->txq_descs_u, WM_TXDESCS_SIZE(txq), NULL, 0)) != 0) {
5410 aprint_error_dev(sc->sc_dev,
5411 "unable to load TX control data DMA map, error = %d\n",
5412 error);
5413 goto fail_3;
5414 }
5415
5416 return 0;
5417
5418 fail_3:
5419 bus_dmamap_destroy(sc->sc_dmat, txq->txq_desc_dmamap);
5420 fail_2:
5421 bus_dmamem_unmap(sc->sc_dmat, (void *)txq->txq_descs_u,
5422 WM_TXDESCS_SIZE(txq));
5423 fail_1:
5424 bus_dmamem_free(sc->sc_dmat, &txq->txq_desc_seg, txq->txq_desc_rseg);
5425 fail_0:
5426 return error;
5427 }
5428
5429 static void
5430 wm_free_tx_descs(struct wm_softc *sc, struct wm_txqueue *txq)
5431 {
5432
5433 bus_dmamap_unload(sc->sc_dmat, txq->txq_desc_dmamap);
5434 bus_dmamap_destroy(sc->sc_dmat, txq->txq_desc_dmamap);
5435 bus_dmamem_unmap(sc->sc_dmat, (void *)txq->txq_descs_u,
5436 WM_TXDESCS_SIZE(txq));
5437 bus_dmamem_free(sc->sc_dmat, &txq->txq_desc_seg, txq->txq_desc_rseg);
5438 }
5439
5440 static int
5441 wm_alloc_rx_descs(struct wm_softc *sc, struct wm_rxqueue *rxq)
5442 {
5443 int error;
5444
5445 /*
5446 * Allocate the control data structures, and create and load the
5447 * DMA map for it.
5448 *
5449 * NOTE: All Tx descriptors must be in the same 4G segment of
5450 * memory. So must Rx descriptors. We simplify by allocating
5451 * both sets within the same 4G segment.
5452 */
5453 rxq->rxq_desc_size = sizeof(wiseman_rxdesc_t) * WM_NRXDESC;
5454 if ((error = bus_dmamem_alloc(sc->sc_dmat, rxq->rxq_desc_size,
5455 PAGE_SIZE, (bus_size_t) 0x100000000ULL, &rxq->rxq_desc_seg,
5456 1, &rxq->rxq_desc_rseg, 0)) != 0) {
5457 aprint_error_dev(sc->sc_dev,
5458 "unable to allocate RX control data, error = %d\n",
5459 error);
5460 goto fail_0;
5461 }
5462
5463 if ((error = bus_dmamem_map(sc->sc_dmat, &rxq->rxq_desc_seg,
5464 rxq->rxq_desc_rseg, rxq->rxq_desc_size,
5465 (void **)&rxq->rxq_descs, BUS_DMA_COHERENT)) != 0) {
5466 aprint_error_dev(sc->sc_dev,
5467 "unable to map RX control data, error = %d\n", error);
5468 goto fail_1;
5469 }
5470
5471 if ((error = bus_dmamap_create(sc->sc_dmat, rxq->rxq_desc_size, 1,
5472 rxq->rxq_desc_size, 0, 0, &rxq->rxq_desc_dmamap)) != 0) {
5473 aprint_error_dev(sc->sc_dev,
5474 "unable to create RX control data DMA map, error = %d\n",
5475 error);
5476 goto fail_2;
5477 }
5478
5479 if ((error = bus_dmamap_load(sc->sc_dmat, rxq->rxq_desc_dmamap,
5480 rxq->rxq_descs, rxq->rxq_desc_size, NULL, 0)) != 0) {
5481 aprint_error_dev(sc->sc_dev,
5482 "unable to load RX control data DMA map, error = %d\n",
5483 error);
5484 goto fail_3;
5485 }
5486
5487 return 0;
5488
5489 fail_3:
5490 bus_dmamap_destroy(sc->sc_dmat, rxq->rxq_desc_dmamap);
5491 fail_2:
5492 bus_dmamem_unmap(sc->sc_dmat, (void *)rxq->rxq_descs,
5493 rxq->rxq_desc_size);
5494 fail_1:
5495 bus_dmamem_free(sc->sc_dmat, &rxq->rxq_desc_seg, rxq->rxq_desc_rseg);
5496 fail_0:
5497 return error;
5498 }
5499
5500 static void
5501 wm_free_rx_descs(struct wm_softc *sc, struct wm_rxqueue *rxq)
5502 {
5503
5504 bus_dmamap_unload(sc->sc_dmat, rxq->rxq_desc_dmamap);
5505 bus_dmamap_destroy(sc->sc_dmat, rxq->rxq_desc_dmamap);
5506 bus_dmamem_unmap(sc->sc_dmat, (void *)rxq->rxq_descs,
5507 rxq->rxq_desc_size);
5508 bus_dmamem_free(sc->sc_dmat, &rxq->rxq_desc_seg, rxq->rxq_desc_rseg);
5509 }
5510
5511
5512 static int
5513 wm_alloc_tx_buffer(struct wm_softc *sc, struct wm_txqueue *txq)
5514 {
5515 int i, error;
5516
5517 /* Create the transmit buffer DMA maps. */
5518 WM_TXQUEUELEN(txq) =
5519 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
5520 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
5521 for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
5522 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
5523 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
5524 &txq->txq_soft[i].txs_dmamap)) != 0) {
5525 aprint_error_dev(sc->sc_dev,
5526 "unable to create Tx DMA map %d, error = %d\n",
5527 i, error);
5528 goto fail;
5529 }
5530 }
5531
5532 return 0;
5533
5534 fail:
5535 for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
5536 if (txq->txq_soft[i].txs_dmamap != NULL)
5537 bus_dmamap_destroy(sc->sc_dmat,
5538 txq->txq_soft[i].txs_dmamap);
5539 }
5540 return error;
5541 }
5542
5543 static void
5544 wm_free_tx_buffer(struct wm_softc *sc, struct wm_txqueue *txq)
5545 {
5546 int i;
5547
5548 for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
5549 if (txq->txq_soft[i].txs_dmamap != NULL)
5550 bus_dmamap_destroy(sc->sc_dmat,
5551 txq->txq_soft[i].txs_dmamap);
5552 }
5553 }
5554
5555 static int
5556 wm_alloc_rx_buffer(struct wm_softc *sc, struct wm_rxqueue *rxq)
5557 {
5558 int i, error;
5559
5560 /* Create the receive buffer DMA maps. */
5561 for (i = 0; i < WM_NRXDESC; i++) {
5562 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
5563 MCLBYTES, 0, 0,
5564 &rxq->rxq_soft[i].rxs_dmamap)) != 0) {
5565 aprint_error_dev(sc->sc_dev,
5566 "unable to create Rx DMA map %d error = %d\n",
5567 i, error);
5568 goto fail;
5569 }
5570 rxq->rxq_soft[i].rxs_mbuf = NULL;
5571 }
5572
5573 return 0;
5574
5575 fail:
5576 for (i = 0; i < WM_NRXDESC; i++) {
5577 if (rxq->rxq_soft[i].rxs_dmamap != NULL)
5578 bus_dmamap_destroy(sc->sc_dmat,
5579 rxq->rxq_soft[i].rxs_dmamap);
5580 }
5581 return error;
5582 }
5583
5584 static void
5585 wm_free_rx_buffer(struct wm_softc *sc, struct wm_rxqueue *rxq)
5586 {
5587 int i;
5588
5589 for (i = 0; i < WM_NRXDESC; i++) {
5590 if (rxq->rxq_soft[i].rxs_dmamap != NULL)
5591 bus_dmamap_destroy(sc->sc_dmat,
5592 rxq->rxq_soft[i].rxs_dmamap);
5593 }
5594 }
5595
5596 /*
5597 * wm_alloc_quques:
5598 * Allocate {tx,rx}descs and {tx,rx} buffers
5599 */
5600 static int
5601 wm_alloc_txrx_queues(struct wm_softc *sc)
5602 {
5603 int i, error, tx_done, rx_done;
5604
5605 sc->sc_queue = kmem_zalloc(sizeof(struct wm_queue) * sc->sc_nqueues,
5606 KM_SLEEP);
5607 if (sc->sc_queue == NULL) {
5608 aprint_error_dev(sc->sc_dev,"unable to allocate wm_queue\n");
5609 error = ENOMEM;
5610 goto fail_0;
5611 }
5612
5613 /*
5614 * For transmission
5615 */
5616 error = 0;
5617 tx_done = 0;
5618 for (i = 0; i < sc->sc_nqueues; i++) {
5619 #ifdef WM_EVENT_COUNTERS
5620 int j;
5621 const char *xname;
5622 #endif
5623 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
5624 txq->txq_sc = sc;
5625 txq->txq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
5626
5627 error = wm_alloc_tx_descs(sc, txq);
5628 if (error)
5629 break;
5630 error = wm_alloc_tx_buffer(sc, txq);
5631 if (error) {
5632 wm_free_tx_descs(sc, txq);
5633 break;
5634 }
5635 txq->txq_interq = pcq_create(WM_TXINTERQSIZE, KM_SLEEP);
5636 if (txq->txq_interq == NULL) {
5637 wm_free_tx_descs(sc, txq);
5638 wm_free_tx_buffer(sc, txq);
5639 error = ENOMEM;
5640 break;
5641 }
5642
5643 #ifdef WM_EVENT_COUNTERS
5644 xname = device_xname(sc->sc_dev);
5645
5646 WM_Q_MISC_EVCNT_ATTACH(txq, txsstall, txq, i, xname);
5647 WM_Q_MISC_EVCNT_ATTACH(txq, txdstall, txq, i, xname);
5648 WM_Q_MISC_EVCNT_ATTACH(txq, txfifo_stall, txq, i, xname);
5649 WM_Q_INTR_EVCNT_ATTACH(txq, txdw, txq, i, xname);
5650 WM_Q_INTR_EVCNT_ATTACH(txq, txqe, txq, i, xname);
5651
5652 WM_Q_MISC_EVCNT_ATTACH(txq, txipsum, txq, i, xname);
5653 WM_Q_MISC_EVCNT_ATTACH(txq, txtusum, txq, i, xname);
5654 WM_Q_MISC_EVCNT_ATTACH(txq, txtusum6, txq, i, xname);
5655 WM_Q_MISC_EVCNT_ATTACH(txq, txtso, txq, i, xname);
5656 WM_Q_MISC_EVCNT_ATTACH(txq, txtso6, txq, i, xname);
5657 WM_Q_MISC_EVCNT_ATTACH(txq, txtsopain, txq, i, xname);
5658
5659 for (j = 0; j < WM_NTXSEGS; j++) {
5660 snprintf(txq->txq_txseg_evcnt_names[j],
5661 sizeof(txq->txq_txseg_evcnt_names[j]), "txq%02dtxseg%d", i, j);
5662 evcnt_attach_dynamic(&txq->txq_ev_txseg[j], EVCNT_TYPE_MISC,
5663 NULL, xname, txq->txq_txseg_evcnt_names[j]);
5664 }
5665
5666 WM_Q_MISC_EVCNT_ATTACH(txq, txdrop, txq, i, xname);
5667
5668 WM_Q_MISC_EVCNT_ATTACH(txq, tu, txq, i, xname);
5669 #endif /* WM_EVENT_COUNTERS */
5670
5671 tx_done++;
5672 }
5673 if (error)
5674 goto fail_1;
5675
5676 /*
5677 * For recieve
5678 */
5679 error = 0;
5680 rx_done = 0;
5681 for (i = 0; i < sc->sc_nqueues; i++) {
5682 #ifdef WM_EVENT_COUNTERS
5683 const char *xname;
5684 #endif
5685 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
5686 rxq->rxq_sc = sc;
5687 rxq->rxq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
5688
5689 error = wm_alloc_rx_descs(sc, rxq);
5690 if (error)
5691 break;
5692
5693 error = wm_alloc_rx_buffer(sc, rxq);
5694 if (error) {
5695 wm_free_rx_descs(sc, rxq);
5696 break;
5697 }
5698
5699 #ifdef WM_EVENT_COUNTERS
5700 xname = device_xname(sc->sc_dev);
5701
5702 WM_Q_INTR_EVCNT_ATTACH(rxq, rxintr, rxq, i, xname);
5703
5704 WM_Q_INTR_EVCNT_ATTACH(rxq, rxipsum, rxq, i, xname);
5705 WM_Q_INTR_EVCNT_ATTACH(rxq, rxtusum, rxq, i, xname);
5706 #endif /* WM_EVENT_COUNTERS */
5707
5708 rx_done++;
5709 }
5710 if (error)
5711 goto fail_2;
5712
5713 return 0;
5714
5715 fail_2:
5716 for (i = 0; i < rx_done; i++) {
5717 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
5718 wm_free_rx_buffer(sc, rxq);
5719 wm_free_rx_descs(sc, rxq);
5720 if (rxq->rxq_lock)
5721 mutex_obj_free(rxq->rxq_lock);
5722 }
5723 fail_1:
5724 for (i = 0; i < tx_done; i++) {
5725 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
5726 pcq_destroy(txq->txq_interq);
5727 wm_free_tx_buffer(sc, txq);
5728 wm_free_tx_descs(sc, txq);
5729 if (txq->txq_lock)
5730 mutex_obj_free(txq->txq_lock);
5731 }
5732
5733 kmem_free(sc->sc_queue,
5734 sizeof(struct wm_queue) * sc->sc_nqueues);
5735 fail_0:
5736 return error;
5737 }
5738
5739 /*
5740 * wm_free_quques:
5741 * Free {tx,rx}descs and {tx,rx} buffers
5742 */
5743 static void
5744 wm_free_txrx_queues(struct wm_softc *sc)
5745 {
5746 int i;
5747
5748 for (i = 0; i < sc->sc_nqueues; i++) {
5749 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
5750 wm_free_rx_buffer(sc, rxq);
5751 wm_free_rx_descs(sc, rxq);
5752 if (rxq->rxq_lock)
5753 mutex_obj_free(rxq->rxq_lock);
5754 }
5755
5756 for (i = 0; i < sc->sc_nqueues; i++) {
5757 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
5758 wm_free_tx_buffer(sc, txq);
5759 wm_free_tx_descs(sc, txq);
5760 if (txq->txq_lock)
5761 mutex_obj_free(txq->txq_lock);
5762 }
5763
5764 kmem_free(sc->sc_queue, sizeof(struct wm_queue) * sc->sc_nqueues);
5765 }
5766
5767 static void
5768 wm_init_tx_descs(struct wm_softc *sc __unused, struct wm_txqueue *txq)
5769 {
5770
5771 KASSERT(mutex_owned(txq->txq_lock));
5772
5773 /* Initialize the transmit descriptor ring. */
5774 memset(txq->txq_descs, 0, WM_TXDESCS_SIZE(txq));
5775 wm_cdtxsync(txq, 0, WM_NTXDESC(txq),
5776 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5777 txq->txq_free = WM_NTXDESC(txq);
5778 txq->txq_next = 0;
5779 }
5780
5781 static void
5782 wm_init_tx_regs(struct wm_softc *sc, struct wm_queue *wmq,
5783 struct wm_txqueue *txq)
5784 {
5785
5786 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
5787 device_xname(sc->sc_dev), __func__));
5788 KASSERT(mutex_owned(txq->txq_lock));
5789
5790 if (sc->sc_type < WM_T_82543) {
5791 CSR_WRITE(sc, WMREG_OLD_TDBAH, WM_CDTXADDR_HI(txq, 0));
5792 CSR_WRITE(sc, WMREG_OLD_TDBAL, WM_CDTXADDR_LO(txq, 0));
5793 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCS_SIZE(txq));
5794 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
5795 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
5796 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
5797 } else {
5798 int qid = wmq->wmq_id;
5799
5800 CSR_WRITE(sc, WMREG_TDBAH(qid), WM_CDTXADDR_HI(txq, 0));
5801 CSR_WRITE(sc, WMREG_TDBAL(qid), WM_CDTXADDR_LO(txq, 0));
5802 CSR_WRITE(sc, WMREG_TDLEN(qid), WM_TXDESCS_SIZE(txq));
5803 CSR_WRITE(sc, WMREG_TDH(qid), 0);
5804
5805 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
5806 /*
5807 * Don't write TDT before TCTL.EN is set.
5808 * See the document.
5809 */
5810 CSR_WRITE(sc, WMREG_TXDCTL(qid), TXDCTL_QUEUE_ENABLE
5811 | TXDCTL_PTHRESH(0) | TXDCTL_HTHRESH(0)
5812 | TXDCTL_WTHRESH(0));
5813 else {
5814 /* ITR / 4 */
5815 CSR_WRITE(sc, WMREG_TIDV, sc->sc_itr / 4);
5816 if (sc->sc_type >= WM_T_82540) {
5817 /* should be same */
5818 CSR_WRITE(sc, WMREG_TADV, sc->sc_itr / 4);
5819 }
5820
5821 CSR_WRITE(sc, WMREG_TDT(qid), 0);
5822 CSR_WRITE(sc, WMREG_TXDCTL(qid), TXDCTL_PTHRESH(0) |
5823 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
5824 }
5825 }
5826 }
5827
5828 static void
5829 wm_init_tx_buffer(struct wm_softc *sc __unused, struct wm_txqueue *txq)
5830 {
5831 int i;
5832
5833 KASSERT(mutex_owned(txq->txq_lock));
5834
5835 /* Initialize the transmit job descriptors. */
5836 for (i = 0; i < WM_TXQUEUELEN(txq); i++)
5837 txq->txq_soft[i].txs_mbuf = NULL;
5838 txq->txq_sfree = WM_TXQUEUELEN(txq);
5839 txq->txq_snext = 0;
5840 txq->txq_sdirty = 0;
5841 }
5842
5843 static void
5844 wm_init_tx_queue(struct wm_softc *sc, struct wm_queue *wmq,
5845 struct wm_txqueue *txq)
5846 {
5847
5848 KASSERT(mutex_owned(txq->txq_lock));
5849
5850 /*
5851 * Set up some register offsets that are different between
5852 * the i82542 and the i82543 and later chips.
5853 */
5854 if (sc->sc_type < WM_T_82543)
5855 txq->txq_tdt_reg = WMREG_OLD_TDT;
5856 else
5857 txq->txq_tdt_reg = WMREG_TDT(wmq->wmq_id);
5858
5859 wm_init_tx_descs(sc, txq);
5860 wm_init_tx_regs(sc, wmq, txq);
5861 wm_init_tx_buffer(sc, txq);
5862 }
5863
5864 static void
5865 wm_init_rx_regs(struct wm_softc *sc, struct wm_queue *wmq,
5866 struct wm_rxqueue *rxq)
5867 {
5868
5869 KASSERT(mutex_owned(rxq->rxq_lock));
5870
5871 /*
5872 * Initialize the receive descriptor and receive job
5873 * descriptor rings.
5874 */
5875 if (sc->sc_type < WM_T_82543) {
5876 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(rxq, 0));
5877 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(rxq, 0));
5878 CSR_WRITE(sc, WMREG_OLD_RDLEN0,
5879 sizeof(wiseman_rxdesc_t) * WM_NRXDESC);
5880 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
5881 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
5882 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
5883
5884 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
5885 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
5886 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
5887 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
5888 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
5889 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
5890 } else {
5891 int qid = wmq->wmq_id;
5892
5893 CSR_WRITE(sc, WMREG_RDBAH(qid), WM_CDRXADDR_HI(rxq, 0));
5894 CSR_WRITE(sc, WMREG_RDBAL(qid), WM_CDRXADDR_LO(rxq, 0));
5895 CSR_WRITE(sc, WMREG_RDLEN(qid), rxq->rxq_desc_size);
5896
5897 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
5898 if (MCLBYTES & ((1 << SRRCTL_BSIZEPKT_SHIFT) - 1))
5899 panic("%s: MCLBYTES %d unsupported for i2575 or higher\n", __func__, MCLBYTES);
5900 CSR_WRITE(sc, WMREG_SRRCTL(qid), SRRCTL_DESCTYPE_LEGACY
5901 | (MCLBYTES >> SRRCTL_BSIZEPKT_SHIFT));
5902 CSR_WRITE(sc, WMREG_RXDCTL(qid), RXDCTL_QUEUE_ENABLE
5903 | RXDCTL_PTHRESH(16) | RXDCTL_HTHRESH(8)
5904 | RXDCTL_WTHRESH(1));
5905 CSR_WRITE(sc, WMREG_RDH(qid), 0);
5906 CSR_WRITE(sc, WMREG_RDT(qid), 0);
5907 } else {
5908 CSR_WRITE(sc, WMREG_RDH(qid), 0);
5909 CSR_WRITE(sc, WMREG_RDT(qid), 0);
5910 /* ITR / 4 */
5911 CSR_WRITE(sc, WMREG_RDTR, (sc->sc_itr / 4) | RDTR_FPD);
5912 /* MUST be same */
5913 CSR_WRITE(sc, WMREG_RADV, sc->sc_itr / 4);
5914 CSR_WRITE(sc, WMREG_RXDCTL(qid), RXDCTL_PTHRESH(0) |
5915 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
5916 }
5917 }
5918 }
5919
5920 static int
5921 wm_init_rx_buffer(struct wm_softc *sc, struct wm_rxqueue *rxq)
5922 {
5923 struct wm_rxsoft *rxs;
5924 int error, i;
5925
5926 KASSERT(mutex_owned(rxq->rxq_lock));
5927
5928 for (i = 0; i < WM_NRXDESC; i++) {
5929 rxs = &rxq->rxq_soft[i];
5930 if (rxs->rxs_mbuf == NULL) {
5931 if ((error = wm_add_rxbuf(rxq, i)) != 0) {
5932 log(LOG_ERR, "%s: unable to allocate or map "
5933 "rx buffer %d, error = %d\n",
5934 device_xname(sc->sc_dev), i, error);
5935 /*
5936 * XXX Should attempt to run with fewer receive
5937 * XXX buffers instead of just failing.
5938 */
5939 wm_rxdrain(rxq);
5940 return ENOMEM;
5941 }
5942 } else {
5943 if ((sc->sc_flags & WM_F_NEWQUEUE) == 0)
5944 wm_init_rxdesc(rxq, i);
5945 /*
5946 * For 82575 and newer device, the RX descriptors
5947 * must be initialized after the setting of RCTL.EN in
5948 * wm_set_filter()
5949 */
5950 }
5951 }
5952 rxq->rxq_ptr = 0;
5953 rxq->rxq_discard = 0;
5954 WM_RXCHAIN_RESET(rxq);
5955
5956 return 0;
5957 }
5958
5959 static int
5960 wm_init_rx_queue(struct wm_softc *sc, struct wm_queue *wmq,
5961 struct wm_rxqueue *rxq)
5962 {
5963
5964 KASSERT(mutex_owned(rxq->rxq_lock));
5965
5966 /*
5967 * Set up some register offsets that are different between
5968 * the i82542 and the i82543 and later chips.
5969 */
5970 if (sc->sc_type < WM_T_82543)
5971 rxq->rxq_rdt_reg = WMREG_OLD_RDT0;
5972 else
5973 rxq->rxq_rdt_reg = WMREG_RDT(wmq->wmq_id);
5974
5975 wm_init_rx_regs(sc, wmq, rxq);
5976 return wm_init_rx_buffer(sc, rxq);
5977 }
5978
5979 /*
5980 * wm_init_quques:
5981 * Initialize {tx,rx}descs and {tx,rx} buffers
5982 */
5983 static int
5984 wm_init_txrx_queues(struct wm_softc *sc)
5985 {
5986 int i, error = 0;
5987
5988 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
5989 device_xname(sc->sc_dev), __func__));
5990
5991 for (i = 0; i < sc->sc_nqueues; i++) {
5992 struct wm_queue *wmq = &sc->sc_queue[i];
5993 struct wm_txqueue *txq = &wmq->wmq_txq;
5994 struct wm_rxqueue *rxq = &wmq->wmq_rxq;
5995
5996 mutex_enter(txq->txq_lock);
5997 wm_init_tx_queue(sc, wmq, txq);
5998 mutex_exit(txq->txq_lock);
5999
6000 mutex_enter(rxq->rxq_lock);
6001 error = wm_init_rx_queue(sc, wmq, rxq);
6002 mutex_exit(rxq->rxq_lock);
6003 if (error)
6004 break;
6005 }
6006
6007 return error;
6008 }
6009
6010 /*
6011 * wm_tx_offload:
6012 *
6013 * Set up TCP/IP checksumming parameters for the
6014 * specified packet.
6015 */
6016 static int
6017 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
6018 uint8_t *fieldsp)
6019 {
6020 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
6021 struct mbuf *m0 = txs->txs_mbuf;
6022 struct livengood_tcpip_ctxdesc *t;
6023 uint32_t ipcs, tucs, cmd, cmdlen, seg;
6024 uint32_t ipcse;
6025 struct ether_header *eh;
6026 int offset, iphl;
6027 uint8_t fields;
6028
6029 /*
6030 * XXX It would be nice if the mbuf pkthdr had offset
6031 * fields for the protocol headers.
6032 */
6033
6034 eh = mtod(m0, struct ether_header *);
6035 switch (htons(eh->ether_type)) {
6036 case ETHERTYPE_IP:
6037 case ETHERTYPE_IPV6:
6038 offset = ETHER_HDR_LEN;
6039 break;
6040
6041 case ETHERTYPE_VLAN:
6042 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
6043 break;
6044
6045 default:
6046 /*
6047 * Don't support this protocol or encapsulation.
6048 */
6049 *fieldsp = 0;
6050 *cmdp = 0;
6051 return 0;
6052 }
6053
6054 if ((m0->m_pkthdr.csum_flags &
6055 (M_CSUM_TSOv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4)) != 0) {
6056 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
6057 } else {
6058 iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
6059 }
6060 ipcse = offset + iphl - 1;
6061
6062 cmd = WTX_CMD_DEXT | WTX_DTYP_D;
6063 cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
6064 seg = 0;
6065 fields = 0;
6066
6067 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
6068 int hlen = offset + iphl;
6069 bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
6070
6071 if (__predict_false(m0->m_len <
6072 (hlen + sizeof(struct tcphdr)))) {
6073 /*
6074 * TCP/IP headers are not in the first mbuf; we need
6075 * to do this the slow and painful way. Let's just
6076 * hope this doesn't happen very often.
6077 */
6078 struct tcphdr th;
6079
6080 WM_Q_EVCNT_INCR(txq, txtsopain);
6081
6082 m_copydata(m0, hlen, sizeof(th), &th);
6083 if (v4) {
6084 struct ip ip;
6085
6086 m_copydata(m0, offset, sizeof(ip), &ip);
6087 ip.ip_len = 0;
6088 m_copyback(m0,
6089 offset + offsetof(struct ip, ip_len),
6090 sizeof(ip.ip_len), &ip.ip_len);
6091 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
6092 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
6093 } else {
6094 struct ip6_hdr ip6;
6095
6096 m_copydata(m0, offset, sizeof(ip6), &ip6);
6097 ip6.ip6_plen = 0;
6098 m_copyback(m0,
6099 offset + offsetof(struct ip6_hdr, ip6_plen),
6100 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
6101 th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
6102 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
6103 }
6104 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
6105 sizeof(th.th_sum), &th.th_sum);
6106
6107 hlen += th.th_off << 2;
6108 } else {
6109 /*
6110 * TCP/IP headers are in the first mbuf; we can do
6111 * this the easy way.
6112 */
6113 struct tcphdr *th;
6114
6115 if (v4) {
6116 struct ip *ip =
6117 (void *)(mtod(m0, char *) + offset);
6118 th = (void *)(mtod(m0, char *) + hlen);
6119
6120 ip->ip_len = 0;
6121 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
6122 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
6123 } else {
6124 struct ip6_hdr *ip6 =
6125 (void *)(mtod(m0, char *) + offset);
6126 th = (void *)(mtod(m0, char *) + hlen);
6127
6128 ip6->ip6_plen = 0;
6129 th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
6130 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
6131 }
6132 hlen += th->th_off << 2;
6133 }
6134
6135 if (v4) {
6136 WM_Q_EVCNT_INCR(txq, txtso);
6137 cmdlen |= WTX_TCPIP_CMD_IP;
6138 } else {
6139 WM_Q_EVCNT_INCR(txq, txtso6);
6140 ipcse = 0;
6141 }
6142 cmd |= WTX_TCPIP_CMD_TSE;
6143 cmdlen |= WTX_TCPIP_CMD_TSE |
6144 WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
6145 seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
6146 WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
6147 }
6148
6149 /*
6150 * NOTE: Even if we're not using the IP or TCP/UDP checksum
6151 * offload feature, if we load the context descriptor, we
6152 * MUST provide valid values for IPCSS and TUCSS fields.
6153 */
6154
6155 ipcs = WTX_TCPIP_IPCSS(offset) |
6156 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
6157 WTX_TCPIP_IPCSE(ipcse);
6158 if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4 | M_CSUM_TSOv4)) {
6159 WM_Q_EVCNT_INCR(txq, txipsum);
6160 fields |= WTX_IXSM;
6161 }
6162
6163 offset += iphl;
6164
6165 if (m0->m_pkthdr.csum_flags &
6166 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TSOv4)) {
6167 WM_Q_EVCNT_INCR(txq, txtusum);
6168 fields |= WTX_TXSM;
6169 tucs = WTX_TCPIP_TUCSS(offset) |
6170 WTX_TCPIP_TUCSO(offset +
6171 M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
6172 WTX_TCPIP_TUCSE(0) /* rest of packet */;
6173 } else if ((m0->m_pkthdr.csum_flags &
6174 (M_CSUM_TCPv6 | M_CSUM_UDPv6 | M_CSUM_TSOv6)) != 0) {
6175 WM_Q_EVCNT_INCR(txq, txtusum6);
6176 fields |= WTX_TXSM;
6177 tucs = WTX_TCPIP_TUCSS(offset) |
6178 WTX_TCPIP_TUCSO(offset +
6179 M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
6180 WTX_TCPIP_TUCSE(0) /* rest of packet */;
6181 } else {
6182 /* Just initialize it to a valid TCP context. */
6183 tucs = WTX_TCPIP_TUCSS(offset) |
6184 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
6185 WTX_TCPIP_TUCSE(0) /* rest of packet */;
6186 }
6187
6188 /* Fill in the context descriptor. */
6189 t = (struct livengood_tcpip_ctxdesc *)
6190 &txq->txq_descs[txq->txq_next];
6191 t->tcpip_ipcs = htole32(ipcs);
6192 t->tcpip_tucs = htole32(tucs);
6193 t->tcpip_cmdlen = htole32(cmdlen);
6194 t->tcpip_seg = htole32(seg);
6195 wm_cdtxsync(txq, txq->txq_next, 1, BUS_DMASYNC_PREWRITE);
6196
6197 txq->txq_next = WM_NEXTTX(txq, txq->txq_next);
6198 txs->txs_ndesc++;
6199
6200 *cmdp = cmd;
6201 *fieldsp = fields;
6202
6203 return 0;
6204 }
6205
6206 /*
6207 * wm_start: [ifnet interface function]
6208 *
6209 * Start packet transmission on the interface.
6210 */
6211 static void
6212 wm_start(struct ifnet *ifp)
6213 {
6214 struct wm_softc *sc = ifp->if_softc;
6215 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
6216
6217 KASSERT(ifp->if_extflags & IFEF_START_MPSAFE);
6218
6219 mutex_enter(txq->txq_lock);
6220 if (!sc->sc_stopping)
6221 wm_start_locked(ifp);
6222 mutex_exit(txq->txq_lock);
6223 }
6224
6225 static void
6226 wm_start_locked(struct ifnet *ifp)
6227 {
6228 struct wm_softc *sc = ifp->if_softc;
6229 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
6230 struct mbuf *m0;
6231 struct m_tag *mtag;
6232 struct wm_txsoft *txs;
6233 bus_dmamap_t dmamap;
6234 int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
6235 bus_addr_t curaddr;
6236 bus_size_t seglen, curlen;
6237 uint32_t cksumcmd;
6238 uint8_t cksumfields;
6239
6240 KASSERT(mutex_owned(txq->txq_lock));
6241
6242 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
6243 return;
6244
6245 /* Remember the previous number of free descriptors. */
6246 ofree = txq->txq_free;
6247
6248 /*
6249 * Loop through the send queue, setting up transmit descriptors
6250 * until we drain the queue, or use up all available transmit
6251 * descriptors.
6252 */
6253 for (;;) {
6254 m0 = NULL;
6255
6256 /* Get a work queue entry. */
6257 if (txq->txq_sfree < WM_TXQUEUE_GC(txq)) {
6258 wm_txeof(sc, txq);
6259 if (txq->txq_sfree == 0) {
6260 DPRINTF(WM_DEBUG_TX,
6261 ("%s: TX: no free job descriptors\n",
6262 device_xname(sc->sc_dev)));
6263 WM_Q_EVCNT_INCR(txq, txsstall);
6264 break;
6265 }
6266 }
6267
6268 /* Grab a packet off the queue. */
6269 IFQ_DEQUEUE(&ifp->if_snd, m0);
6270 if (m0 == NULL)
6271 break;
6272
6273 DPRINTF(WM_DEBUG_TX,
6274 ("%s: TX: have packet to transmit: %p\n",
6275 device_xname(sc->sc_dev), m0));
6276
6277 txs = &txq->txq_soft[txq->txq_snext];
6278 dmamap = txs->txs_dmamap;
6279
6280 use_tso = (m0->m_pkthdr.csum_flags &
6281 (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0;
6282
6283 /*
6284 * So says the Linux driver:
6285 * The controller does a simple calculation to make sure
6286 * there is enough room in the FIFO before initiating the
6287 * DMA for each buffer. The calc is:
6288 * 4 = ceil(buffer len / MSS)
6289 * To make sure we don't overrun the FIFO, adjust the max
6290 * buffer len if the MSS drops.
6291 */
6292 dmamap->dm_maxsegsz =
6293 (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
6294 ? m0->m_pkthdr.segsz << 2
6295 : WTX_MAX_LEN;
6296
6297 /*
6298 * Load the DMA map. If this fails, the packet either
6299 * didn't fit in the allotted number of segments, or we
6300 * were short on resources. For the too-many-segments
6301 * case, we simply report an error and drop the packet,
6302 * since we can't sanely copy a jumbo packet to a single
6303 * buffer.
6304 */
6305 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
6306 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
6307 if (error) {
6308 if (error == EFBIG) {
6309 WM_Q_EVCNT_INCR(txq, txdrop);
6310 log(LOG_ERR, "%s: Tx packet consumes too many "
6311 "DMA segments, dropping...\n",
6312 device_xname(sc->sc_dev));
6313 wm_dump_mbuf_chain(sc, m0);
6314 m_freem(m0);
6315 continue;
6316 }
6317 /* Short on resources, just stop for now. */
6318 DPRINTF(WM_DEBUG_TX,
6319 ("%s: TX: dmamap load failed: %d\n",
6320 device_xname(sc->sc_dev), error));
6321 break;
6322 }
6323
6324 segs_needed = dmamap->dm_nsegs;
6325 if (use_tso) {
6326 /* For sentinel descriptor; see below. */
6327 segs_needed++;
6328 }
6329
6330 /*
6331 * Ensure we have enough descriptors free to describe
6332 * the packet. Note, we always reserve one descriptor
6333 * at the end of the ring due to the semantics of the
6334 * TDT register, plus one more in the event we need
6335 * to load offload context.
6336 */
6337 if (segs_needed > txq->txq_free - 2) {
6338 /*
6339 * Not enough free descriptors to transmit this
6340 * packet. We haven't committed anything yet,
6341 * so just unload the DMA map, put the packet
6342 * pack on the queue, and punt. Notify the upper
6343 * layer that there are no more slots left.
6344 */
6345 DPRINTF(WM_DEBUG_TX,
6346 ("%s: TX: need %d (%d) descriptors, have %d\n",
6347 device_xname(sc->sc_dev), dmamap->dm_nsegs,
6348 segs_needed, txq->txq_free - 1));
6349 ifp->if_flags |= IFF_OACTIVE;
6350 bus_dmamap_unload(sc->sc_dmat, dmamap);
6351 WM_Q_EVCNT_INCR(txq, txdstall);
6352 break;
6353 }
6354
6355 /*
6356 * Check for 82547 Tx FIFO bug. We need to do this
6357 * once we know we can transmit the packet, since we
6358 * do some internal FIFO space accounting here.
6359 */
6360 if (sc->sc_type == WM_T_82547 &&
6361 wm_82547_txfifo_bugchk(sc, m0)) {
6362 DPRINTF(WM_DEBUG_TX,
6363 ("%s: TX: 82547 Tx FIFO bug detected\n",
6364 device_xname(sc->sc_dev)));
6365 ifp->if_flags |= IFF_OACTIVE;
6366 bus_dmamap_unload(sc->sc_dmat, dmamap);
6367 WM_Q_EVCNT_INCR(txq, txfifo_stall);
6368 break;
6369 }
6370
6371 /* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */
6372
6373 DPRINTF(WM_DEBUG_TX,
6374 ("%s: TX: packet has %d (%d) DMA segments\n",
6375 device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed));
6376
6377 WM_EVCNT_INCR(&txq->txq_ev_txseg[dmamap->dm_nsegs - 1]);
6378
6379 /*
6380 * Store a pointer to the packet so that we can free it
6381 * later.
6382 *
6383 * Initially, we consider the number of descriptors the
6384 * packet uses the number of DMA segments. This may be
6385 * incremented by 1 if we do checksum offload (a descriptor
6386 * is used to set the checksum context).
6387 */
6388 txs->txs_mbuf = m0;
6389 txs->txs_firstdesc = txq->txq_next;
6390 txs->txs_ndesc = segs_needed;
6391
6392 /* Set up offload parameters for this packet. */
6393 if (m0->m_pkthdr.csum_flags &
6394 (M_CSUM_TSOv4 | M_CSUM_TSOv6 |
6395 M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4 |
6396 M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
6397 if (wm_tx_offload(sc, txs, &cksumcmd,
6398 &cksumfields) != 0) {
6399 /* Error message already displayed. */
6400 bus_dmamap_unload(sc->sc_dmat, dmamap);
6401 continue;
6402 }
6403 } else {
6404 cksumcmd = 0;
6405 cksumfields = 0;
6406 }
6407
6408 cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
6409
6410 /* Sync the DMA map. */
6411 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
6412 BUS_DMASYNC_PREWRITE);
6413
6414 /* Initialize the transmit descriptor. */
6415 for (nexttx = txq->txq_next, seg = 0;
6416 seg < dmamap->dm_nsegs; seg++) {
6417 for (seglen = dmamap->dm_segs[seg].ds_len,
6418 curaddr = dmamap->dm_segs[seg].ds_addr;
6419 seglen != 0;
6420 curaddr += curlen, seglen -= curlen,
6421 nexttx = WM_NEXTTX(txq, nexttx)) {
6422 curlen = seglen;
6423
6424 /*
6425 * So says the Linux driver:
6426 * Work around for premature descriptor
6427 * write-backs in TSO mode. Append a
6428 * 4-byte sentinel descriptor.
6429 */
6430 if (use_tso && seg == dmamap->dm_nsegs - 1 &&
6431 curlen > 8)
6432 curlen -= 4;
6433
6434 wm_set_dma_addr(
6435 &txq->txq_descs[nexttx].wtx_addr, curaddr);
6436 txq->txq_descs[nexttx].wtx_cmdlen
6437 = htole32(cksumcmd | curlen);
6438 txq->txq_descs[nexttx].wtx_fields.wtxu_status
6439 = 0;
6440 txq->txq_descs[nexttx].wtx_fields.wtxu_options
6441 = cksumfields;
6442 txq->txq_descs[nexttx].wtx_fields.wtxu_vlan =0;
6443 lasttx = nexttx;
6444
6445 DPRINTF(WM_DEBUG_TX,
6446 ("%s: TX: desc %d: low %#" PRIx64 ", "
6447 "len %#04zx\n",
6448 device_xname(sc->sc_dev), nexttx,
6449 (uint64_t)curaddr, curlen));
6450 }
6451 }
6452
6453 KASSERT(lasttx != -1);
6454
6455 /*
6456 * Set up the command byte on the last descriptor of
6457 * the packet. If we're in the interrupt delay window,
6458 * delay the interrupt.
6459 */
6460 txq->txq_descs[lasttx].wtx_cmdlen |=
6461 htole32(WTX_CMD_EOP | WTX_CMD_RS);
6462
6463 /*
6464 * If VLANs are enabled and the packet has a VLAN tag, set
6465 * up the descriptor to encapsulate the packet for us.
6466 *
6467 * This is only valid on the last descriptor of the packet.
6468 */
6469 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
6470 txq->txq_descs[lasttx].wtx_cmdlen |=
6471 htole32(WTX_CMD_VLE);
6472 txq->txq_descs[lasttx].wtx_fields.wtxu_vlan
6473 = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
6474 }
6475
6476 txs->txs_lastdesc = lasttx;
6477
6478 DPRINTF(WM_DEBUG_TX,
6479 ("%s: TX: desc %d: cmdlen 0x%08x\n",
6480 device_xname(sc->sc_dev),
6481 lasttx, le32toh(txq->txq_descs[lasttx].wtx_cmdlen)));
6482
6483 /* Sync the descriptors we're using. */
6484 wm_cdtxsync(txq, txq->txq_next, txs->txs_ndesc,
6485 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6486
6487 /* Give the packet to the chip. */
6488 CSR_WRITE(sc, txq->txq_tdt_reg, nexttx);
6489
6490 DPRINTF(WM_DEBUG_TX,
6491 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
6492
6493 DPRINTF(WM_DEBUG_TX,
6494 ("%s: TX: finished transmitting packet, job %d\n",
6495 device_xname(sc->sc_dev), txq->txq_snext));
6496
6497 /* Advance the tx pointer. */
6498 txq->txq_free -= txs->txs_ndesc;
6499 txq->txq_next = nexttx;
6500
6501 txq->txq_sfree--;
6502 txq->txq_snext = WM_NEXTTXS(txq, txq->txq_snext);
6503
6504 /* Pass the packet to any BPF listeners. */
6505 bpf_mtap(ifp, m0);
6506 }
6507
6508 if (m0 != NULL) {
6509 ifp->if_flags |= IFF_OACTIVE;
6510 WM_Q_EVCNT_INCR(txq, txdrop);
6511 DPRINTF(WM_DEBUG_TX, ("%s: TX: error after IFQ_DEQUEUE\n",
6512 __func__));
6513 m_freem(m0);
6514 }
6515
6516 if (txq->txq_sfree == 0 || txq->txq_free <= 2) {
6517 /* No more slots; notify upper layer. */
6518 ifp->if_flags |= IFF_OACTIVE;
6519 }
6520
6521 if (txq->txq_free != ofree) {
6522 /* Set a watchdog timer in case the chip flakes out. */
6523 ifp->if_timer = 5;
6524 }
6525 }
6526
6527 /*
6528 * wm_nq_tx_offload:
6529 *
6530 * Set up TCP/IP checksumming parameters for the
6531 * specified packet, for NEWQUEUE devices
6532 */
6533 static int
6534 wm_nq_tx_offload(struct wm_softc *sc, struct wm_txqueue *txq,
6535 struct wm_txsoft *txs, uint32_t *cmdlenp, uint32_t *fieldsp, bool *do_csum)
6536 {
6537 struct mbuf *m0 = txs->txs_mbuf;
6538 struct m_tag *mtag;
6539 uint32_t vl_len, mssidx, cmdc;
6540 struct ether_header *eh;
6541 int offset, iphl;
6542
6543 /*
6544 * XXX It would be nice if the mbuf pkthdr had offset
6545 * fields for the protocol headers.
6546 */
6547 *cmdlenp = 0;
6548 *fieldsp = 0;
6549
6550 eh = mtod(m0, struct ether_header *);
6551 switch (htons(eh->ether_type)) {
6552 case ETHERTYPE_IP:
6553 case ETHERTYPE_IPV6:
6554 offset = ETHER_HDR_LEN;
6555 break;
6556
6557 case ETHERTYPE_VLAN:
6558 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
6559 break;
6560
6561 default:
6562 /* Don't support this protocol or encapsulation. */
6563 *do_csum = false;
6564 return 0;
6565 }
6566 *do_csum = true;
6567 *cmdlenp = NQTX_DTYP_D | NQTX_CMD_DEXT | NQTX_CMD_IFCS;
6568 cmdc = NQTX_DTYP_C | NQTX_CMD_DEXT;
6569
6570 vl_len = (offset << NQTXC_VLLEN_MACLEN_SHIFT);
6571 KASSERT((offset & ~NQTXC_VLLEN_MACLEN_MASK) == 0);
6572
6573 if ((m0->m_pkthdr.csum_flags &
6574 (M_CSUM_TSOv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_IPv4)) != 0) {
6575 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
6576 } else {
6577 iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
6578 }
6579 vl_len |= (iphl << NQTXC_VLLEN_IPLEN_SHIFT);
6580 KASSERT((iphl & ~NQTXC_VLLEN_IPLEN_MASK) == 0);
6581
6582 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
6583 vl_len |= ((VLAN_TAG_VALUE(mtag) & NQTXC_VLLEN_VLAN_MASK)
6584 << NQTXC_VLLEN_VLAN_SHIFT);
6585 *cmdlenp |= NQTX_CMD_VLE;
6586 }
6587
6588 mssidx = 0;
6589
6590 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
6591 int hlen = offset + iphl;
6592 int tcp_hlen;
6593 bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
6594
6595 if (__predict_false(m0->m_len <
6596 (hlen + sizeof(struct tcphdr)))) {
6597 /*
6598 * TCP/IP headers are not in the first mbuf; we need
6599 * to do this the slow and painful way. Let's just
6600 * hope this doesn't happen very often.
6601 */
6602 struct tcphdr th;
6603
6604 WM_Q_EVCNT_INCR(txq, txtsopain);
6605
6606 m_copydata(m0, hlen, sizeof(th), &th);
6607 if (v4) {
6608 struct ip ip;
6609
6610 m_copydata(m0, offset, sizeof(ip), &ip);
6611 ip.ip_len = 0;
6612 m_copyback(m0,
6613 offset + offsetof(struct ip, ip_len),
6614 sizeof(ip.ip_len), &ip.ip_len);
6615 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
6616 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
6617 } else {
6618 struct ip6_hdr ip6;
6619
6620 m_copydata(m0, offset, sizeof(ip6), &ip6);
6621 ip6.ip6_plen = 0;
6622 m_copyback(m0,
6623 offset + offsetof(struct ip6_hdr, ip6_plen),
6624 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
6625 th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
6626 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
6627 }
6628 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
6629 sizeof(th.th_sum), &th.th_sum);
6630
6631 tcp_hlen = th.th_off << 2;
6632 } else {
6633 /*
6634 * TCP/IP headers are in the first mbuf; we can do
6635 * this the easy way.
6636 */
6637 struct tcphdr *th;
6638
6639 if (v4) {
6640 struct ip *ip =
6641 (void *)(mtod(m0, char *) + offset);
6642 th = (void *)(mtod(m0, char *) + hlen);
6643
6644 ip->ip_len = 0;
6645 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
6646 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
6647 } else {
6648 struct ip6_hdr *ip6 =
6649 (void *)(mtod(m0, char *) + offset);
6650 th = (void *)(mtod(m0, char *) + hlen);
6651
6652 ip6->ip6_plen = 0;
6653 th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
6654 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
6655 }
6656 tcp_hlen = th->th_off << 2;
6657 }
6658 hlen += tcp_hlen;
6659 *cmdlenp |= NQTX_CMD_TSE;
6660
6661 if (v4) {
6662 WM_Q_EVCNT_INCR(txq, txtso);
6663 *fieldsp |= NQTXD_FIELDS_IXSM | NQTXD_FIELDS_TUXSM;
6664 } else {
6665 WM_Q_EVCNT_INCR(txq, txtso6);
6666 *fieldsp |= NQTXD_FIELDS_TUXSM;
6667 }
6668 *fieldsp |= ((m0->m_pkthdr.len - hlen) << NQTXD_FIELDS_PAYLEN_SHIFT);
6669 KASSERT(((m0->m_pkthdr.len - hlen) & ~NQTXD_FIELDS_PAYLEN_MASK) == 0);
6670 mssidx |= (m0->m_pkthdr.segsz << NQTXC_MSSIDX_MSS_SHIFT);
6671 KASSERT((m0->m_pkthdr.segsz & ~NQTXC_MSSIDX_MSS_MASK) == 0);
6672 mssidx |= (tcp_hlen << NQTXC_MSSIDX_L4LEN_SHIFT);
6673 KASSERT((tcp_hlen & ~NQTXC_MSSIDX_L4LEN_MASK) == 0);
6674 } else {
6675 *fieldsp |= (m0->m_pkthdr.len << NQTXD_FIELDS_PAYLEN_SHIFT);
6676 KASSERT((m0->m_pkthdr.len & ~NQTXD_FIELDS_PAYLEN_MASK) == 0);
6677 }
6678
6679 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
6680 *fieldsp |= NQTXD_FIELDS_IXSM;
6681 cmdc |= NQTXC_CMD_IP4;
6682 }
6683
6684 if (m0->m_pkthdr.csum_flags &
6685 (M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_TSOv4)) {
6686 WM_Q_EVCNT_INCR(txq, txtusum);
6687 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_TSOv4)) {
6688 cmdc |= NQTXC_CMD_TCP;
6689 } else {
6690 cmdc |= NQTXC_CMD_UDP;
6691 }
6692 cmdc |= NQTXC_CMD_IP4;
6693 *fieldsp |= NQTXD_FIELDS_TUXSM;
6694 }
6695 if (m0->m_pkthdr.csum_flags &
6696 (M_CSUM_UDPv6 | M_CSUM_TCPv6 | M_CSUM_TSOv6)) {
6697 WM_Q_EVCNT_INCR(txq, txtusum6);
6698 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv6 | M_CSUM_TSOv6)) {
6699 cmdc |= NQTXC_CMD_TCP;
6700 } else {
6701 cmdc |= NQTXC_CMD_UDP;
6702 }
6703 cmdc |= NQTXC_CMD_IP6;
6704 *fieldsp |= NQTXD_FIELDS_TUXSM;
6705 }
6706
6707 /* Fill in the context descriptor. */
6708 txq->txq_nq_descs[txq->txq_next].nqrx_ctx.nqtxc_vl_len =
6709 htole32(vl_len);
6710 txq->txq_nq_descs[txq->txq_next].nqrx_ctx.nqtxc_sn = 0;
6711 txq->txq_nq_descs[txq->txq_next].nqrx_ctx.nqtxc_cmd =
6712 htole32(cmdc);
6713 txq->txq_nq_descs[txq->txq_next].nqrx_ctx.nqtxc_mssidx =
6714 htole32(mssidx);
6715 wm_cdtxsync(txq, txq->txq_next, 1, BUS_DMASYNC_PREWRITE);
6716 DPRINTF(WM_DEBUG_TX,
6717 ("%s: TX: context desc %d 0x%08x%08x\n", device_xname(sc->sc_dev),
6718 txq->txq_next, 0, vl_len));
6719 DPRINTF(WM_DEBUG_TX, ("\t0x%08x%08x\n", mssidx, cmdc));
6720 txq->txq_next = WM_NEXTTX(txq, txq->txq_next);
6721 txs->txs_ndesc++;
6722 return 0;
6723 }
6724
6725 /*
6726 * wm_nq_start: [ifnet interface function]
6727 *
6728 * Start packet transmission on the interface for NEWQUEUE devices
6729 */
6730 static void
6731 wm_nq_start(struct ifnet *ifp)
6732 {
6733 struct wm_softc *sc = ifp->if_softc;
6734 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
6735
6736 KASSERT(ifp->if_extflags & IFEF_START_MPSAFE);
6737
6738 mutex_enter(txq->txq_lock);
6739 if (!sc->sc_stopping)
6740 wm_nq_start_locked(ifp);
6741 mutex_exit(txq->txq_lock);
6742 }
6743
6744 static void
6745 wm_nq_start_locked(struct ifnet *ifp)
6746 {
6747 struct wm_softc *sc = ifp->if_softc;
6748 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
6749
6750 wm_nq_send_common_locked(ifp, txq, false);
6751 }
6752
6753 static inline int
6754 wm_nq_select_txqueue(struct ifnet *ifp, struct mbuf *m)
6755 {
6756 struct wm_softc *sc = ifp->if_softc;
6757 u_int cpuid = cpu_index(curcpu());
6758
6759 /*
6760 * Currently, simple distribute strategy.
6761 * TODO:
6762 * destribute by flowid(RSS has value).
6763 */
6764 return (cpuid + sc->sc_affinity_offset) % sc->sc_nqueues;
6765 }
6766
6767 static int
6768 wm_nq_transmit(struct ifnet *ifp, struct mbuf *m)
6769 {
6770 int qid;
6771 struct wm_softc *sc = ifp->if_softc;
6772 struct wm_txqueue *txq;
6773
6774 qid = wm_nq_select_txqueue(ifp, m);
6775 txq = &sc->sc_queue[qid].wmq_txq;
6776
6777 if (__predict_false(!pcq_put(txq->txq_interq, m))) {
6778 m_freem(m);
6779 WM_Q_EVCNT_INCR(txq, txdrop);
6780 return ENOBUFS;
6781 }
6782
6783 if (mutex_tryenter(txq->txq_lock)) {
6784 /* XXXX should be per TX queue */
6785 ifp->if_obytes += m->m_pkthdr.len;
6786 if (m->m_flags & M_MCAST)
6787 ifp->if_omcasts++;
6788
6789 if (!sc->sc_stopping)
6790 wm_nq_transmit_locked(ifp, txq);
6791 mutex_exit(txq->txq_lock);
6792 }
6793
6794 return 0;
6795 }
6796
6797 static void
6798 wm_nq_transmit_locked(struct ifnet *ifp, struct wm_txqueue *txq)
6799 {
6800
6801 wm_nq_send_common_locked(ifp, txq, true);
6802 }
6803
6804 static void
6805 wm_nq_send_common_locked(struct ifnet *ifp, struct wm_txqueue *txq,
6806 bool is_transmit)
6807 {
6808 struct wm_softc *sc = ifp->if_softc;
6809 struct mbuf *m0;
6810 struct m_tag *mtag;
6811 struct wm_txsoft *txs;
6812 bus_dmamap_t dmamap;
6813 int error, nexttx, lasttx = -1, seg, segs_needed;
6814 bool do_csum, sent;
6815
6816 KASSERT(mutex_owned(txq->txq_lock));
6817
6818 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
6819 return;
6820 if ((txq->txq_flags & WM_TXQ_NO_SPACE) != 0)
6821 return;
6822
6823 sent = false;
6824
6825 /*
6826 * Loop through the send queue, setting up transmit descriptors
6827 * until we drain the queue, or use up all available transmit
6828 * descriptors.
6829 */
6830 for (;;) {
6831 m0 = NULL;
6832
6833 /* Get a work queue entry. */
6834 if (txq->txq_sfree < WM_TXQUEUE_GC(txq)) {
6835 wm_txeof(sc, txq);
6836 if (txq->txq_sfree == 0) {
6837 DPRINTF(WM_DEBUG_TX,
6838 ("%s: TX: no free job descriptors\n",
6839 device_xname(sc->sc_dev)));
6840 WM_Q_EVCNT_INCR(txq, txsstall);
6841 break;
6842 }
6843 }
6844
6845 /* Grab a packet off the queue. */
6846 if (is_transmit)
6847 m0 = pcq_get(txq->txq_interq);
6848 else
6849 IFQ_DEQUEUE(&ifp->if_snd, m0);
6850 if (m0 == NULL)
6851 break;
6852
6853 DPRINTF(WM_DEBUG_TX,
6854 ("%s: TX: have packet to transmit: %p\n",
6855 device_xname(sc->sc_dev), m0));
6856
6857 txs = &txq->txq_soft[txq->txq_snext];
6858 dmamap = txs->txs_dmamap;
6859
6860 /*
6861 * Load the DMA map. If this fails, the packet either
6862 * didn't fit in the allotted number of segments, or we
6863 * were short on resources. For the too-many-segments
6864 * case, we simply report an error and drop the packet,
6865 * since we can't sanely copy a jumbo packet to a single
6866 * buffer.
6867 */
6868 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
6869 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
6870 if (error) {
6871 if (error == EFBIG) {
6872 WM_Q_EVCNT_INCR(txq, txdrop);
6873 log(LOG_ERR, "%s: Tx packet consumes too many "
6874 "DMA segments, dropping...\n",
6875 device_xname(sc->sc_dev));
6876 wm_dump_mbuf_chain(sc, m0);
6877 m_freem(m0);
6878 continue;
6879 }
6880 /* Short on resources, just stop for now. */
6881 DPRINTF(WM_DEBUG_TX,
6882 ("%s: TX: dmamap load failed: %d\n",
6883 device_xname(sc->sc_dev), error));
6884 break;
6885 }
6886
6887 segs_needed = dmamap->dm_nsegs;
6888
6889 /*
6890 * Ensure we have enough descriptors free to describe
6891 * the packet. Note, we always reserve one descriptor
6892 * at the end of the ring due to the semantics of the
6893 * TDT register, plus one more in the event we need
6894 * to load offload context.
6895 */
6896 if (segs_needed > txq->txq_free - 2) {
6897 /*
6898 * Not enough free descriptors to transmit this
6899 * packet. We haven't committed anything yet,
6900 * so just unload the DMA map, put the packet
6901 * pack on the queue, and punt. Notify the upper
6902 * layer that there are no more slots left.
6903 */
6904 DPRINTF(WM_DEBUG_TX,
6905 ("%s: TX: need %d (%d) descriptors, have %d\n",
6906 device_xname(sc->sc_dev), dmamap->dm_nsegs,
6907 segs_needed, txq->txq_free - 1));
6908 txq->txq_flags |= WM_TXQ_NO_SPACE;
6909 bus_dmamap_unload(sc->sc_dmat, dmamap);
6910 WM_Q_EVCNT_INCR(txq, txdstall);
6911 break;
6912 }
6913
6914 /* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */
6915
6916 DPRINTF(WM_DEBUG_TX,
6917 ("%s: TX: packet has %d (%d) DMA segments\n",
6918 device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed));
6919
6920 WM_EVCNT_INCR(&txq->txq_ev_txseg[dmamap->dm_nsegs - 1]);
6921
6922 /*
6923 * Store a pointer to the packet so that we can free it
6924 * later.
6925 *
6926 * Initially, we consider the number of descriptors the
6927 * packet uses the number of DMA segments. This may be
6928 * incremented by 1 if we do checksum offload (a descriptor
6929 * is used to set the checksum context).
6930 */
6931 txs->txs_mbuf = m0;
6932 txs->txs_firstdesc = txq->txq_next;
6933 txs->txs_ndesc = segs_needed;
6934
6935 /* Set up offload parameters for this packet. */
6936 uint32_t cmdlen, fields, dcmdlen;
6937 if (m0->m_pkthdr.csum_flags &
6938 (M_CSUM_TSOv4 | M_CSUM_TSOv6 |
6939 M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4 |
6940 M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
6941 if (wm_nq_tx_offload(sc, txq, txs, &cmdlen, &fields,
6942 &do_csum) != 0) {
6943 /* Error message already displayed. */
6944 bus_dmamap_unload(sc->sc_dmat, dmamap);
6945 continue;
6946 }
6947 } else {
6948 do_csum = false;
6949 cmdlen = 0;
6950 fields = 0;
6951 }
6952
6953 /* Sync the DMA map. */
6954 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
6955 BUS_DMASYNC_PREWRITE);
6956
6957 /* Initialize the first transmit descriptor. */
6958 nexttx = txq->txq_next;
6959 if (!do_csum) {
6960 /* setup a legacy descriptor */
6961 wm_set_dma_addr(&txq->txq_descs[nexttx].wtx_addr,
6962 dmamap->dm_segs[0].ds_addr);
6963 txq->txq_descs[nexttx].wtx_cmdlen =
6964 htole32(WTX_CMD_IFCS | dmamap->dm_segs[0].ds_len);
6965 txq->txq_descs[nexttx].wtx_fields.wtxu_status = 0;
6966 txq->txq_descs[nexttx].wtx_fields.wtxu_options = 0;
6967 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) !=
6968 NULL) {
6969 txq->txq_descs[nexttx].wtx_cmdlen |=
6970 htole32(WTX_CMD_VLE);
6971 txq->txq_descs[nexttx].wtx_fields.wtxu_vlan =
6972 htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
6973 } else {
6974 txq->txq_descs[nexttx].wtx_fields.wtxu_vlan =0;
6975 }
6976 dcmdlen = 0;
6977 } else {
6978 /* setup an advanced data descriptor */
6979 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_addr =
6980 htole64(dmamap->dm_segs[0].ds_addr);
6981 KASSERT((dmamap->dm_segs[0].ds_len & cmdlen) == 0);
6982 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_cmdlen =
6983 htole32(dmamap->dm_segs[0].ds_len | cmdlen );
6984 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_fields =
6985 htole32(fields);
6986 DPRINTF(WM_DEBUG_TX,
6987 ("%s: TX: adv data desc %d 0x%" PRIx64 "\n",
6988 device_xname(sc->sc_dev), nexttx,
6989 (uint64_t)dmamap->dm_segs[0].ds_addr));
6990 DPRINTF(WM_DEBUG_TX,
6991 ("\t 0x%08x%08x\n", fields,
6992 (uint32_t)dmamap->dm_segs[0].ds_len | cmdlen));
6993 dcmdlen = NQTX_DTYP_D | NQTX_CMD_DEXT;
6994 }
6995
6996 lasttx = nexttx;
6997 nexttx = WM_NEXTTX(txq, nexttx);
6998 /*
6999 * fill in the next descriptors. legacy or adcanced format
7000 * is the same here
7001 */
7002 for (seg = 1; seg < dmamap->dm_nsegs;
7003 seg++, nexttx = WM_NEXTTX(txq, nexttx)) {
7004 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_addr =
7005 htole64(dmamap->dm_segs[seg].ds_addr);
7006 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_cmdlen =
7007 htole32(dcmdlen | dmamap->dm_segs[seg].ds_len);
7008 KASSERT((dcmdlen & dmamap->dm_segs[seg].ds_len) == 0);
7009 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_fields = 0;
7010 lasttx = nexttx;
7011
7012 DPRINTF(WM_DEBUG_TX,
7013 ("%s: TX: desc %d: %#" PRIx64 ", "
7014 "len %#04zx\n",
7015 device_xname(sc->sc_dev), nexttx,
7016 (uint64_t)dmamap->dm_segs[seg].ds_addr,
7017 dmamap->dm_segs[seg].ds_len));
7018 }
7019
7020 KASSERT(lasttx != -1);
7021
7022 /*
7023 * Set up the command byte on the last descriptor of
7024 * the packet. If we're in the interrupt delay window,
7025 * delay the interrupt.
7026 */
7027 KASSERT((WTX_CMD_EOP | WTX_CMD_RS) ==
7028 (NQTX_CMD_EOP | NQTX_CMD_RS));
7029 txq->txq_descs[lasttx].wtx_cmdlen |=
7030 htole32(WTX_CMD_EOP | WTX_CMD_RS);
7031
7032 txs->txs_lastdesc = lasttx;
7033
7034 DPRINTF(WM_DEBUG_TX, ("%s: TX: desc %d: cmdlen 0x%08x\n",
7035 device_xname(sc->sc_dev),
7036 lasttx, le32toh(txq->txq_descs[lasttx].wtx_cmdlen)));
7037
7038 /* Sync the descriptors we're using. */
7039 wm_cdtxsync(txq, txq->txq_next, txs->txs_ndesc,
7040 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
7041
7042 /* Give the packet to the chip. */
7043 CSR_WRITE(sc, txq->txq_tdt_reg, nexttx);
7044 sent = true;
7045
7046 DPRINTF(WM_DEBUG_TX,
7047 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
7048
7049 DPRINTF(WM_DEBUG_TX,
7050 ("%s: TX: finished transmitting packet, job %d\n",
7051 device_xname(sc->sc_dev), txq->txq_snext));
7052
7053 /* Advance the tx pointer. */
7054 txq->txq_free -= txs->txs_ndesc;
7055 txq->txq_next = nexttx;
7056
7057 txq->txq_sfree--;
7058 txq->txq_snext = WM_NEXTTXS(txq, txq->txq_snext);
7059
7060 /* Pass the packet to any BPF listeners. */
7061 bpf_mtap(ifp, m0);
7062 }
7063
7064 if (m0 != NULL) {
7065 txq->txq_flags |= WM_TXQ_NO_SPACE;
7066 WM_Q_EVCNT_INCR(txq, txdrop);
7067 DPRINTF(WM_DEBUG_TX, ("%s: TX: error after IFQ_DEQUEUE\n",
7068 __func__));
7069 m_freem(m0);
7070 }
7071
7072 if (txq->txq_sfree == 0 || txq->txq_free <= 2) {
7073 /* No more slots; notify upper layer. */
7074 txq->txq_flags |= WM_TXQ_NO_SPACE;
7075 }
7076
7077 if (sent) {
7078 /* Set a watchdog timer in case the chip flakes out. */
7079 ifp->if_timer = 5;
7080 }
7081 }
7082
7083 /* Interrupt */
7084
7085 /*
7086 * wm_txeof:
7087 *
7088 * Helper; handle transmit interrupts.
7089 */
7090 static int
7091 wm_txeof(struct wm_softc *sc, struct wm_txqueue *txq)
7092 {
7093 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
7094 struct wm_txsoft *txs;
7095 bool processed = false;
7096 int count = 0;
7097 int i;
7098 uint8_t status;
7099
7100 KASSERT(mutex_owned(txq->txq_lock));
7101
7102 if (sc->sc_stopping)
7103 return 0;
7104
7105 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
7106 txq->txq_flags &= ~WM_TXQ_NO_SPACE;
7107 else
7108 ifp->if_flags &= ~IFF_OACTIVE;
7109
7110 /*
7111 * Go through the Tx list and free mbufs for those
7112 * frames which have been transmitted.
7113 */
7114 for (i = txq->txq_sdirty; txq->txq_sfree != WM_TXQUEUELEN(txq);
7115 i = WM_NEXTTXS(txq, i), txq->txq_sfree++) {
7116 txs = &txq->txq_soft[i];
7117
7118 DPRINTF(WM_DEBUG_TX, ("%s: TX: checking job %d\n",
7119 device_xname(sc->sc_dev), i));
7120
7121 wm_cdtxsync(txq, txs->txs_firstdesc, txs->txs_ndesc,
7122 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
7123
7124 status =
7125 txq->txq_descs[txs->txs_lastdesc].wtx_fields.wtxu_status;
7126 if ((status & WTX_ST_DD) == 0) {
7127 wm_cdtxsync(txq, txs->txs_lastdesc, 1,
7128 BUS_DMASYNC_PREREAD);
7129 break;
7130 }
7131
7132 processed = true;
7133 count++;
7134 DPRINTF(WM_DEBUG_TX,
7135 ("%s: TX: job %d done: descs %d..%d\n",
7136 device_xname(sc->sc_dev), i, txs->txs_firstdesc,
7137 txs->txs_lastdesc));
7138
7139 /*
7140 * XXX We should probably be using the statistics
7141 * XXX registers, but I don't know if they exist
7142 * XXX on chips before the i82544.
7143 */
7144
7145 #ifdef WM_EVENT_COUNTERS
7146 if (status & WTX_ST_TU)
7147 WM_Q_EVCNT_INCR(txq, tu);
7148 #endif /* WM_EVENT_COUNTERS */
7149
7150 if (status & (WTX_ST_EC | WTX_ST_LC)) {
7151 ifp->if_oerrors++;
7152 if (status & WTX_ST_LC)
7153 log(LOG_WARNING, "%s: late collision\n",
7154 device_xname(sc->sc_dev));
7155 else if (status & WTX_ST_EC) {
7156 ifp->if_collisions += 16;
7157 log(LOG_WARNING, "%s: excessive collisions\n",
7158 device_xname(sc->sc_dev));
7159 }
7160 } else
7161 ifp->if_opackets++;
7162
7163 txq->txq_free += txs->txs_ndesc;
7164 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
7165 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
7166 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
7167 m_freem(txs->txs_mbuf);
7168 txs->txs_mbuf = NULL;
7169 }
7170
7171 /* Update the dirty transmit buffer pointer. */
7172 txq->txq_sdirty = i;
7173 DPRINTF(WM_DEBUG_TX,
7174 ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
7175
7176 if (count != 0)
7177 rnd_add_uint32(&sc->rnd_source, count);
7178
7179 /*
7180 * If there are no more pending transmissions, cancel the watchdog
7181 * timer.
7182 */
7183 if (txq->txq_sfree == WM_TXQUEUELEN(txq))
7184 ifp->if_timer = 0;
7185
7186 return processed;
7187 }
7188
7189 /*
7190 * wm_rxeof:
7191 *
7192 * Helper; handle receive interrupts.
7193 */
7194 static void
7195 wm_rxeof(struct wm_rxqueue *rxq)
7196 {
7197 struct wm_softc *sc = rxq->rxq_sc;
7198 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
7199 struct wm_rxsoft *rxs;
7200 struct mbuf *m;
7201 int i, len;
7202 int count = 0;
7203 uint8_t status, errors;
7204 uint16_t vlantag;
7205
7206 KASSERT(mutex_owned(rxq->rxq_lock));
7207
7208 for (i = rxq->rxq_ptr;; i = WM_NEXTRX(i)) {
7209 rxs = &rxq->rxq_soft[i];
7210
7211 DPRINTF(WM_DEBUG_RX,
7212 ("%s: RX: checking descriptor %d\n",
7213 device_xname(sc->sc_dev), i));
7214
7215 wm_cdrxsync(rxq, i,BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
7216
7217 status = rxq->rxq_descs[i].wrx_status;
7218 errors = rxq->rxq_descs[i].wrx_errors;
7219 len = le16toh(rxq->rxq_descs[i].wrx_len);
7220 vlantag = rxq->rxq_descs[i].wrx_special;
7221
7222 if ((status & WRX_ST_DD) == 0) {
7223 /* We have processed all of the receive descriptors. */
7224 wm_cdrxsync(rxq, i, BUS_DMASYNC_PREREAD);
7225 break;
7226 }
7227
7228 count++;
7229 if (__predict_false(rxq->rxq_discard)) {
7230 DPRINTF(WM_DEBUG_RX,
7231 ("%s: RX: discarding contents of descriptor %d\n",
7232 device_xname(sc->sc_dev), i));
7233 wm_init_rxdesc(rxq, i);
7234 if (status & WRX_ST_EOP) {
7235 /* Reset our state. */
7236 DPRINTF(WM_DEBUG_RX,
7237 ("%s: RX: resetting rxdiscard -> 0\n",
7238 device_xname(sc->sc_dev)));
7239 rxq->rxq_discard = 0;
7240 }
7241 continue;
7242 }
7243
7244 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
7245 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
7246
7247 m = rxs->rxs_mbuf;
7248
7249 /*
7250 * Add a new receive buffer to the ring, unless of
7251 * course the length is zero. Treat the latter as a
7252 * failed mapping.
7253 */
7254 if ((len == 0) || (wm_add_rxbuf(rxq, i) != 0)) {
7255 /*
7256 * Failed, throw away what we've done so
7257 * far, and discard the rest of the packet.
7258 */
7259 ifp->if_ierrors++;
7260 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
7261 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
7262 wm_init_rxdesc(rxq, i);
7263 if ((status & WRX_ST_EOP) == 0)
7264 rxq->rxq_discard = 1;
7265 if (rxq->rxq_head != NULL)
7266 m_freem(rxq->rxq_head);
7267 WM_RXCHAIN_RESET(rxq);
7268 DPRINTF(WM_DEBUG_RX,
7269 ("%s: RX: Rx buffer allocation failed, "
7270 "dropping packet%s\n", device_xname(sc->sc_dev),
7271 rxq->rxq_discard ? " (discard)" : ""));
7272 continue;
7273 }
7274
7275 m->m_len = len;
7276 rxq->rxq_len += len;
7277 DPRINTF(WM_DEBUG_RX,
7278 ("%s: RX: buffer at %p len %d\n",
7279 device_xname(sc->sc_dev), m->m_data, len));
7280
7281 /* If this is not the end of the packet, keep looking. */
7282 if ((status & WRX_ST_EOP) == 0) {
7283 WM_RXCHAIN_LINK(rxq, m);
7284 DPRINTF(WM_DEBUG_RX,
7285 ("%s: RX: not yet EOP, rxlen -> %d\n",
7286 device_xname(sc->sc_dev), rxq->rxq_len));
7287 continue;
7288 }
7289
7290 /*
7291 * Okay, we have the entire packet now. The chip is
7292 * configured to include the FCS except I350 and I21[01]
7293 * (not all chips can be configured to strip it),
7294 * so we need to trim it.
7295 * May need to adjust length of previous mbuf in the
7296 * chain if the current mbuf is too short.
7297 * For an eratta, the RCTL_SECRC bit in RCTL register
7298 * is always set in I350, so we don't trim it.
7299 */
7300 if ((sc->sc_type != WM_T_I350) && (sc->sc_type != WM_T_I354)
7301 && (sc->sc_type != WM_T_I210)
7302 && (sc->sc_type != WM_T_I211)) {
7303 if (m->m_len < ETHER_CRC_LEN) {
7304 rxq->rxq_tail->m_len
7305 -= (ETHER_CRC_LEN - m->m_len);
7306 m->m_len = 0;
7307 } else
7308 m->m_len -= ETHER_CRC_LEN;
7309 len = rxq->rxq_len - ETHER_CRC_LEN;
7310 } else
7311 len = rxq->rxq_len;
7312
7313 WM_RXCHAIN_LINK(rxq, m);
7314
7315 *rxq->rxq_tailp = NULL;
7316 m = rxq->rxq_head;
7317
7318 WM_RXCHAIN_RESET(rxq);
7319
7320 DPRINTF(WM_DEBUG_RX,
7321 ("%s: RX: have entire packet, len -> %d\n",
7322 device_xname(sc->sc_dev), len));
7323
7324 /* If an error occurred, update stats and drop the packet. */
7325 if (errors &
7326 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
7327 if (errors & WRX_ER_SE)
7328 log(LOG_WARNING, "%s: symbol error\n",
7329 device_xname(sc->sc_dev));
7330 else if (errors & WRX_ER_SEQ)
7331 log(LOG_WARNING, "%s: receive sequence error\n",
7332 device_xname(sc->sc_dev));
7333 else if (errors & WRX_ER_CE)
7334 log(LOG_WARNING, "%s: CRC error\n",
7335 device_xname(sc->sc_dev));
7336 m_freem(m);
7337 continue;
7338 }
7339
7340 /* No errors. Receive the packet. */
7341 m_set_rcvif(m, ifp);
7342 m->m_pkthdr.len = len;
7343
7344 /*
7345 * If VLANs are enabled, VLAN packets have been unwrapped
7346 * for us. Associate the tag with the packet.
7347 */
7348 /* XXXX should check for i350 and i354 */
7349 if ((status & WRX_ST_VP) != 0) {
7350 VLAN_INPUT_TAG(ifp, m, le16toh(vlantag), continue);
7351 }
7352
7353 /* Set up checksum info for this packet. */
7354 if ((status & WRX_ST_IXSM) == 0) {
7355 if (status & WRX_ST_IPCS) {
7356 WM_Q_EVCNT_INCR(rxq, rxipsum);
7357 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
7358 if (errors & WRX_ER_IPE)
7359 m->m_pkthdr.csum_flags |=
7360 M_CSUM_IPv4_BAD;
7361 }
7362 if (status & WRX_ST_TCPCS) {
7363 /*
7364 * Note: we don't know if this was TCP or UDP,
7365 * so we just set both bits, and expect the
7366 * upper layers to deal.
7367 */
7368 WM_Q_EVCNT_INCR(rxq, rxtusum);
7369 m->m_pkthdr.csum_flags |=
7370 M_CSUM_TCPv4 | M_CSUM_UDPv4 |
7371 M_CSUM_TCPv6 | M_CSUM_UDPv6;
7372 if (errors & WRX_ER_TCPE)
7373 m->m_pkthdr.csum_flags |=
7374 M_CSUM_TCP_UDP_BAD;
7375 }
7376 }
7377
7378 ifp->if_ipackets++;
7379
7380 mutex_exit(rxq->rxq_lock);
7381
7382 /* Pass this up to any BPF listeners. */
7383 bpf_mtap(ifp, m);
7384
7385 /* Pass it on. */
7386 if_percpuq_enqueue(sc->sc_ipq, m);
7387
7388 mutex_enter(rxq->rxq_lock);
7389
7390 if (sc->sc_stopping)
7391 break;
7392 }
7393
7394 /* Update the receive pointer. */
7395 rxq->rxq_ptr = i;
7396 if (count != 0)
7397 rnd_add_uint32(&sc->rnd_source, count);
7398
7399 DPRINTF(WM_DEBUG_RX,
7400 ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
7401 }
7402
7403 /*
7404 * wm_linkintr_gmii:
7405 *
7406 * Helper; handle link interrupts for GMII.
7407 */
7408 static void
7409 wm_linkintr_gmii(struct wm_softc *sc, uint32_t icr)
7410 {
7411
7412 KASSERT(WM_CORE_LOCKED(sc));
7413
7414 DPRINTF(WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
7415 __func__));
7416
7417 if (icr & ICR_LSC) {
7418 uint32_t status = CSR_READ(sc, WMREG_STATUS);
7419
7420 if ((sc->sc_type == WM_T_ICH8) && ((status & STATUS_LU) == 0))
7421 wm_gig_downshift_workaround_ich8lan(sc);
7422
7423 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> mii_pollstat\n",
7424 device_xname(sc->sc_dev)));
7425 mii_pollstat(&sc->sc_mii);
7426 if (sc->sc_type == WM_T_82543) {
7427 int miistatus, active;
7428
7429 /*
7430 * With 82543, we need to force speed and
7431 * duplex on the MAC equal to what the PHY
7432 * speed and duplex configuration is.
7433 */
7434 miistatus = sc->sc_mii.mii_media_status;
7435
7436 if (miistatus & IFM_ACTIVE) {
7437 active = sc->sc_mii.mii_media_active;
7438 sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
7439 switch (IFM_SUBTYPE(active)) {
7440 case IFM_10_T:
7441 sc->sc_ctrl |= CTRL_SPEED_10;
7442 break;
7443 case IFM_100_TX:
7444 sc->sc_ctrl |= CTRL_SPEED_100;
7445 break;
7446 case IFM_1000_T:
7447 sc->sc_ctrl |= CTRL_SPEED_1000;
7448 break;
7449 default:
7450 /*
7451 * fiber?
7452 * Shoud not enter here.
7453 */
7454 printf("unknown media (%x)\n", active);
7455 break;
7456 }
7457 if (active & IFM_FDX)
7458 sc->sc_ctrl |= CTRL_FD;
7459 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
7460 }
7461 } else if ((sc->sc_type == WM_T_ICH8)
7462 && (sc->sc_phytype == WMPHY_IGP_3)) {
7463 wm_kmrn_lock_loss_workaround_ich8lan(sc);
7464 } else if (sc->sc_type == WM_T_PCH) {
7465 wm_k1_gig_workaround_hv(sc,
7466 ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0));
7467 }
7468
7469 if ((sc->sc_phytype == WMPHY_82578)
7470 && (IFM_SUBTYPE(sc->sc_mii.mii_media_active)
7471 == IFM_1000_T)) {
7472
7473 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0) {
7474 delay(200*1000); /* XXX too big */
7475
7476 /* Link stall fix for link up */
7477 wm_gmii_hv_writereg(sc->sc_dev, 1,
7478 HV_MUX_DATA_CTRL,
7479 HV_MUX_DATA_CTRL_GEN_TO_MAC
7480 | HV_MUX_DATA_CTRL_FORCE_SPEED);
7481 wm_gmii_hv_writereg(sc->sc_dev, 1,
7482 HV_MUX_DATA_CTRL,
7483 HV_MUX_DATA_CTRL_GEN_TO_MAC);
7484 }
7485 }
7486 } else if (icr & ICR_RXSEQ) {
7487 DPRINTF(WM_DEBUG_LINK, ("%s: LINK Receive sequence error\n",
7488 device_xname(sc->sc_dev)));
7489 }
7490 }
7491
7492 /*
7493 * wm_linkintr_tbi:
7494 *
7495 * Helper; handle link interrupts for TBI mode.
7496 */
7497 static void
7498 wm_linkintr_tbi(struct wm_softc *sc, uint32_t icr)
7499 {
7500 uint32_t status;
7501
7502 DPRINTF(WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
7503 __func__));
7504
7505 status = CSR_READ(sc, WMREG_STATUS);
7506 if (icr & ICR_LSC) {
7507 if (status & STATUS_LU) {
7508 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
7509 device_xname(sc->sc_dev),
7510 (status & STATUS_FD) ? "FDX" : "HDX"));
7511 /*
7512 * NOTE: CTRL will update TFCE and RFCE automatically,
7513 * so we should update sc->sc_ctrl
7514 */
7515
7516 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
7517 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
7518 sc->sc_fcrtl &= ~FCRTL_XONE;
7519 if (status & STATUS_FD)
7520 sc->sc_tctl |=
7521 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
7522 else
7523 sc->sc_tctl |=
7524 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
7525 if (sc->sc_ctrl & CTRL_TFCE)
7526 sc->sc_fcrtl |= FCRTL_XONE;
7527 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
7528 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
7529 WMREG_OLD_FCRTL : WMREG_FCRTL,
7530 sc->sc_fcrtl);
7531 sc->sc_tbi_linkup = 1;
7532 } else {
7533 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
7534 device_xname(sc->sc_dev)));
7535 sc->sc_tbi_linkup = 0;
7536 }
7537 /* Update LED */
7538 wm_tbi_serdes_set_linkled(sc);
7539 } else if (icr & ICR_RXSEQ) {
7540 DPRINTF(WM_DEBUG_LINK,
7541 ("%s: LINK: Receive sequence error\n",
7542 device_xname(sc->sc_dev)));
7543 }
7544 }
7545
7546 /*
7547 * wm_linkintr_serdes:
7548 *
7549 * Helper; handle link interrupts for TBI mode.
7550 */
7551 static void
7552 wm_linkintr_serdes(struct wm_softc *sc, uint32_t icr)
7553 {
7554 struct mii_data *mii = &sc->sc_mii;
7555 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
7556 uint32_t pcs_adv, pcs_lpab, reg;
7557
7558 DPRINTF(WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
7559 __func__));
7560
7561 if (icr & ICR_LSC) {
7562 /* Check PCS */
7563 reg = CSR_READ(sc, WMREG_PCS_LSTS);
7564 if ((reg & PCS_LSTS_LINKOK) != 0) {
7565 mii->mii_media_status |= IFM_ACTIVE;
7566 sc->sc_tbi_linkup = 1;
7567 } else {
7568 mii->mii_media_status |= IFM_NONE;
7569 sc->sc_tbi_linkup = 0;
7570 wm_tbi_serdes_set_linkled(sc);
7571 return;
7572 }
7573 mii->mii_media_active |= IFM_1000_SX;
7574 if ((reg & PCS_LSTS_FDX) != 0)
7575 mii->mii_media_active |= IFM_FDX;
7576 else
7577 mii->mii_media_active |= IFM_HDX;
7578 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
7579 /* Check flow */
7580 reg = CSR_READ(sc, WMREG_PCS_LSTS);
7581 if ((reg & PCS_LSTS_AN_COMP) == 0) {
7582 DPRINTF(WM_DEBUG_LINK,
7583 ("XXX LINKOK but not ACOMP\n"));
7584 return;
7585 }
7586 pcs_adv = CSR_READ(sc, WMREG_PCS_ANADV);
7587 pcs_lpab = CSR_READ(sc, WMREG_PCS_LPAB);
7588 DPRINTF(WM_DEBUG_LINK,
7589 ("XXX AN result %08x, %08x\n", pcs_adv, pcs_lpab));
7590 if ((pcs_adv & TXCW_SYM_PAUSE)
7591 && (pcs_lpab & TXCW_SYM_PAUSE)) {
7592 mii->mii_media_active |= IFM_FLOW
7593 | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
7594 } else if (((pcs_adv & TXCW_SYM_PAUSE) == 0)
7595 && (pcs_adv & TXCW_ASYM_PAUSE)
7596 && (pcs_lpab & TXCW_SYM_PAUSE)
7597 && (pcs_lpab & TXCW_ASYM_PAUSE))
7598 mii->mii_media_active |= IFM_FLOW
7599 | IFM_ETH_TXPAUSE;
7600 else if ((pcs_adv & TXCW_SYM_PAUSE)
7601 && (pcs_adv & TXCW_ASYM_PAUSE)
7602 && ((pcs_lpab & TXCW_SYM_PAUSE) == 0)
7603 && (pcs_lpab & TXCW_ASYM_PAUSE))
7604 mii->mii_media_active |= IFM_FLOW
7605 | IFM_ETH_RXPAUSE;
7606 }
7607 /* Update LED */
7608 wm_tbi_serdes_set_linkled(sc);
7609 } else {
7610 DPRINTF(WM_DEBUG_LINK,
7611 ("%s: LINK: Receive sequence error\n",
7612 device_xname(sc->sc_dev)));
7613 }
7614 }
7615
7616 /*
7617 * wm_linkintr:
7618 *
7619 * Helper; handle link interrupts.
7620 */
7621 static void
7622 wm_linkintr(struct wm_softc *sc, uint32_t icr)
7623 {
7624
7625 KASSERT(WM_CORE_LOCKED(sc));
7626
7627 if (sc->sc_flags & WM_F_HAS_MII)
7628 wm_linkintr_gmii(sc, icr);
7629 else if ((sc->sc_mediatype == WM_MEDIATYPE_SERDES)
7630 && (sc->sc_type >= WM_T_82575))
7631 wm_linkintr_serdes(sc, icr);
7632 else
7633 wm_linkintr_tbi(sc, icr);
7634 }
7635
7636 /*
7637 * wm_intr_legacy:
7638 *
7639 * Interrupt service routine for INTx and MSI.
7640 */
7641 static int
7642 wm_intr_legacy(void *arg)
7643 {
7644 struct wm_softc *sc = arg;
7645 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
7646 struct wm_rxqueue *rxq = &sc->sc_queue[0].wmq_rxq;
7647 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
7648 uint32_t icr, rndval = 0;
7649 int handled = 0;
7650
7651 DPRINTF(WM_DEBUG_TX,
7652 ("%s: INTx: got intr\n", device_xname(sc->sc_dev)));
7653 while (1 /* CONSTCOND */) {
7654 icr = CSR_READ(sc, WMREG_ICR);
7655 if ((icr & sc->sc_icr) == 0)
7656 break;
7657 if (rndval == 0)
7658 rndval = icr;
7659
7660 mutex_enter(rxq->rxq_lock);
7661
7662 if (sc->sc_stopping) {
7663 mutex_exit(rxq->rxq_lock);
7664 break;
7665 }
7666
7667 handled = 1;
7668
7669 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
7670 if (icr & (ICR_RXDMT0 | ICR_RXT0)) {
7671 DPRINTF(WM_DEBUG_RX,
7672 ("%s: RX: got Rx intr 0x%08x\n",
7673 device_xname(sc->sc_dev),
7674 icr & (ICR_RXDMT0 | ICR_RXT0)));
7675 WM_Q_EVCNT_INCR(rxq, rxintr);
7676 }
7677 #endif
7678 wm_rxeof(rxq);
7679
7680 mutex_exit(rxq->rxq_lock);
7681 mutex_enter(txq->txq_lock);
7682
7683 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
7684 if (icr & ICR_TXDW) {
7685 DPRINTF(WM_DEBUG_TX,
7686 ("%s: TX: got TXDW interrupt\n",
7687 device_xname(sc->sc_dev)));
7688 WM_Q_EVCNT_INCR(txq, txdw);
7689 }
7690 #endif
7691 wm_txeof(sc, txq);
7692
7693 mutex_exit(txq->txq_lock);
7694 WM_CORE_LOCK(sc);
7695
7696 if (icr & (ICR_LSC | ICR_RXSEQ)) {
7697 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
7698 wm_linkintr(sc, icr);
7699 }
7700
7701 WM_CORE_UNLOCK(sc);
7702
7703 if (icr & ICR_RXO) {
7704 #if defined(WM_DEBUG)
7705 log(LOG_WARNING, "%s: Receive overrun\n",
7706 device_xname(sc->sc_dev));
7707 #endif /* defined(WM_DEBUG) */
7708 }
7709 }
7710
7711 rnd_add_uint32(&sc->rnd_source, rndval);
7712
7713 if (handled) {
7714 /* Try to get more packets going. */
7715 ifp->if_start(ifp);
7716 }
7717
7718 return handled;
7719 }
7720
7721 static int
7722 wm_txrxintr_msix(void *arg)
7723 {
7724 struct wm_queue *wmq = arg;
7725 struct wm_txqueue *txq = &wmq->wmq_txq;
7726 struct wm_rxqueue *rxq = &wmq->wmq_rxq;
7727 struct wm_softc *sc = txq->txq_sc;
7728 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
7729
7730 KASSERT(wmq->wmq_intr_idx == wmq->wmq_id);
7731
7732 DPRINTF(WM_DEBUG_TX,
7733 ("%s: TX: got Tx intr\n", device_xname(sc->sc_dev)));
7734
7735 if (sc->sc_type == WM_T_82574)
7736 CSR_WRITE(sc, WMREG_IMC, ICR_TXQ(wmq->wmq_id) | ICR_RXQ(wmq->wmq_id));
7737 else if (sc->sc_type == WM_T_82575)
7738 CSR_WRITE(sc, WMREG_EIMC, EITR_TX_QUEUE(wmq->wmq_id) | EITR_RX_QUEUE(wmq->wmq_id));
7739 else
7740 CSR_WRITE(sc, WMREG_EIMC, 1 << wmq->wmq_intr_idx);
7741
7742 if (!sc->sc_stopping) {
7743 mutex_enter(txq->txq_lock);
7744
7745 WM_Q_EVCNT_INCR(txq, txdw);
7746 wm_txeof(sc, txq);
7747
7748 /* Try to get more packets going. */
7749 if (pcq_peek(txq->txq_interq) != NULL)
7750 wm_nq_transmit_locked(ifp, txq);
7751 /*
7752 * There are still some upper layer processing which call
7753 * ifp->if_start(). e.g. ALTQ
7754 */
7755 if (wmq->wmq_id == 0) {
7756 if (!IFQ_IS_EMPTY(&ifp->if_snd))
7757 wm_nq_start_locked(ifp);
7758 }
7759 mutex_exit(txq->txq_lock);
7760 }
7761
7762 DPRINTF(WM_DEBUG_RX,
7763 ("%s: RX: got Rx intr\n", device_xname(sc->sc_dev)));
7764
7765 if (!sc->sc_stopping) {
7766 mutex_enter(rxq->rxq_lock);
7767 WM_Q_EVCNT_INCR(rxq, rxintr);
7768 wm_rxeof(rxq);
7769 mutex_exit(rxq->rxq_lock);
7770 }
7771
7772 if (sc->sc_type == WM_T_82574)
7773 CSR_WRITE(sc, WMREG_IMS, ICR_TXQ(wmq->wmq_id) | ICR_RXQ(wmq->wmq_id));
7774 else if (sc->sc_type == WM_T_82575)
7775 CSR_WRITE(sc, WMREG_EIMS, EITR_TX_QUEUE(wmq->wmq_id) | EITR_RX_QUEUE(wmq->wmq_id));
7776 else
7777 CSR_WRITE(sc, WMREG_EIMS, 1 << wmq->wmq_intr_idx);
7778
7779 return 1;
7780 }
7781
7782 /*
7783 * wm_linkintr_msix:
7784 *
7785 * Interrupt service routine for link status change for MSI-X.
7786 */
7787 static int
7788 wm_linkintr_msix(void *arg)
7789 {
7790 struct wm_softc *sc = arg;
7791 uint32_t reg;
7792
7793 DPRINTF(WM_DEBUG_LINK,
7794 ("%s: LINK: got link intr\n", device_xname(sc->sc_dev)));
7795
7796 reg = CSR_READ(sc, WMREG_ICR);
7797 WM_CORE_LOCK(sc);
7798 if ((sc->sc_stopping) || ((reg & ICR_LSC) == 0))
7799 goto out;
7800
7801 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
7802 wm_linkintr(sc, ICR_LSC);
7803
7804 out:
7805 WM_CORE_UNLOCK(sc);
7806
7807 if (sc->sc_type == WM_T_82574)
7808 CSR_WRITE(sc, WMREG_IMS, ICR_OTHER | ICR_LSC);
7809 else if (sc->sc_type == WM_T_82575)
7810 CSR_WRITE(sc, WMREG_EIMS, EITR_OTHER);
7811 else
7812 CSR_WRITE(sc, WMREG_EIMS, 1 << sc->sc_link_intr_idx);
7813
7814 return 1;
7815 }
7816
7817 /*
7818 * Media related.
7819 * GMII, SGMII, TBI (and SERDES)
7820 */
7821
7822 /* Common */
7823
7824 /*
7825 * wm_tbi_serdes_set_linkled:
7826 *
7827 * Update the link LED on TBI and SERDES devices.
7828 */
7829 static void
7830 wm_tbi_serdes_set_linkled(struct wm_softc *sc)
7831 {
7832
7833 if (sc->sc_tbi_linkup)
7834 sc->sc_ctrl |= CTRL_SWDPIN(0);
7835 else
7836 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
7837
7838 /* 82540 or newer devices are active low */
7839 sc->sc_ctrl ^= (sc->sc_type >= WM_T_82540) ? CTRL_SWDPIN(0) : 0;
7840
7841 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
7842 }
7843
7844 /* GMII related */
7845
7846 /*
7847 * wm_gmii_reset:
7848 *
7849 * Reset the PHY.
7850 */
7851 static void
7852 wm_gmii_reset(struct wm_softc *sc)
7853 {
7854 uint32_t reg;
7855 int rv;
7856
7857 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
7858 device_xname(sc->sc_dev), __func__));
7859
7860 rv = sc->phy.acquire(sc);
7861 if (rv != 0) {
7862 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
7863 __func__);
7864 return;
7865 }
7866
7867 switch (sc->sc_type) {
7868 case WM_T_82542_2_0:
7869 case WM_T_82542_2_1:
7870 /* null */
7871 break;
7872 case WM_T_82543:
7873 /*
7874 * With 82543, we need to force speed and duplex on the MAC
7875 * equal to what the PHY speed and duplex configuration is.
7876 * In addition, we need to perform a hardware reset on the PHY
7877 * to take it out of reset.
7878 */
7879 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
7880 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
7881
7882 /* The PHY reset pin is active-low. */
7883 reg = CSR_READ(sc, WMREG_CTRL_EXT);
7884 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
7885 CTRL_EXT_SWDPIN(4));
7886 reg |= CTRL_EXT_SWDPIO(4);
7887
7888 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
7889 CSR_WRITE_FLUSH(sc);
7890 delay(10*1000);
7891
7892 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
7893 CSR_WRITE_FLUSH(sc);
7894 delay(150);
7895 #if 0
7896 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
7897 #endif
7898 delay(20*1000); /* XXX extra delay to get PHY ID? */
7899 break;
7900 case WM_T_82544: /* reset 10000us */
7901 case WM_T_82540:
7902 case WM_T_82545:
7903 case WM_T_82545_3:
7904 case WM_T_82546:
7905 case WM_T_82546_3:
7906 case WM_T_82541:
7907 case WM_T_82541_2:
7908 case WM_T_82547:
7909 case WM_T_82547_2:
7910 case WM_T_82571: /* reset 100us */
7911 case WM_T_82572:
7912 case WM_T_82573:
7913 case WM_T_82574:
7914 case WM_T_82575:
7915 case WM_T_82576:
7916 case WM_T_82580:
7917 case WM_T_I350:
7918 case WM_T_I354:
7919 case WM_T_I210:
7920 case WM_T_I211:
7921 case WM_T_82583:
7922 case WM_T_80003:
7923 /* generic reset */
7924 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
7925 CSR_WRITE_FLUSH(sc);
7926 delay(20000);
7927 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
7928 CSR_WRITE_FLUSH(sc);
7929 delay(20000);
7930
7931 if ((sc->sc_type == WM_T_82541)
7932 || (sc->sc_type == WM_T_82541_2)
7933 || (sc->sc_type == WM_T_82547)
7934 || (sc->sc_type == WM_T_82547_2)) {
7935 /* workaround for igp are done in igp_reset() */
7936 /* XXX add code to set LED after phy reset */
7937 }
7938 break;
7939 case WM_T_ICH8:
7940 case WM_T_ICH9:
7941 case WM_T_ICH10:
7942 case WM_T_PCH:
7943 case WM_T_PCH2:
7944 case WM_T_PCH_LPT:
7945 case WM_T_PCH_SPT:
7946 /* generic reset */
7947 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
7948 CSR_WRITE_FLUSH(sc);
7949 delay(100);
7950 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
7951 CSR_WRITE_FLUSH(sc);
7952 delay(150);
7953 break;
7954 default:
7955 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
7956 __func__);
7957 break;
7958 }
7959
7960 sc->phy.release(sc);
7961
7962 /* get_cfg_done */
7963 wm_get_cfg_done(sc);
7964
7965 /* extra setup */
7966 switch (sc->sc_type) {
7967 case WM_T_82542_2_0:
7968 case WM_T_82542_2_1:
7969 case WM_T_82543:
7970 case WM_T_82544:
7971 case WM_T_82540:
7972 case WM_T_82545:
7973 case WM_T_82545_3:
7974 case WM_T_82546:
7975 case WM_T_82546_3:
7976 case WM_T_82541_2:
7977 case WM_T_82547_2:
7978 case WM_T_82571:
7979 case WM_T_82572:
7980 case WM_T_82573:
7981 case WM_T_82575:
7982 case WM_T_82576:
7983 case WM_T_82580:
7984 case WM_T_I350:
7985 case WM_T_I354:
7986 case WM_T_I210:
7987 case WM_T_I211:
7988 case WM_T_80003:
7989 /* null */
7990 break;
7991 case WM_T_82574:
7992 case WM_T_82583:
7993 wm_lplu_d0_disable(sc);
7994 break;
7995 case WM_T_82541:
7996 case WM_T_82547:
7997 /* XXX Configure actively LED after PHY reset */
7998 break;
7999 case WM_T_ICH8:
8000 case WM_T_ICH9:
8001 case WM_T_ICH10:
8002 case WM_T_PCH:
8003 case WM_T_PCH2:
8004 case WM_T_PCH_LPT:
8005 case WM_T_PCH_SPT:
8006 /* Allow time for h/w to get to a quiescent state afer reset */
8007 delay(10*1000);
8008
8009 if (sc->sc_type == WM_T_PCH)
8010 wm_hv_phy_workaround_ich8lan(sc);
8011
8012 if (sc->sc_type == WM_T_PCH2)
8013 wm_lv_phy_workaround_ich8lan(sc);
8014
8015 if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)) {
8016 /*
8017 * dummy read to clear the phy wakeup bit after lcd
8018 * reset
8019 */
8020 reg = wm_gmii_hv_readreg(sc->sc_dev, 1, BM_WUC);
8021 }
8022
8023 /*
8024 * XXX Configure the LCD with th extended configuration region
8025 * in NVM
8026 */
8027
8028 /* Disable D0 LPLU. */
8029 if (sc->sc_type >= WM_T_PCH) /* PCH* */
8030 wm_lplu_d0_disable_pch(sc);
8031 else
8032 wm_lplu_d0_disable(sc); /* ICH* */
8033 break;
8034 default:
8035 panic("%s: unknown type\n", __func__);
8036 break;
8037 }
8038 }
8039
8040 /*
8041 * wm_get_phy_id_82575:
8042 *
8043 * Return PHY ID. Return -1 if it failed.
8044 */
8045 static int
8046 wm_get_phy_id_82575(struct wm_softc *sc)
8047 {
8048 uint32_t reg;
8049 int phyid = -1;
8050
8051 /* XXX */
8052 if ((sc->sc_flags & WM_F_SGMII) == 0)
8053 return -1;
8054
8055 if (wm_sgmii_uses_mdio(sc)) {
8056 switch (sc->sc_type) {
8057 case WM_T_82575:
8058 case WM_T_82576:
8059 reg = CSR_READ(sc, WMREG_MDIC);
8060 phyid = (reg & MDIC_PHY_MASK) >> MDIC_PHY_SHIFT;
8061 break;
8062 case WM_T_82580:
8063 case WM_T_I350:
8064 case WM_T_I354:
8065 case WM_T_I210:
8066 case WM_T_I211:
8067 reg = CSR_READ(sc, WMREG_MDICNFG);
8068 phyid = (reg & MDICNFG_PHY_MASK) >> MDICNFG_PHY_SHIFT;
8069 break;
8070 default:
8071 return -1;
8072 }
8073 }
8074
8075 return phyid;
8076 }
8077
8078
8079 /*
8080 * wm_gmii_mediainit:
8081 *
8082 * Initialize media for use on 1000BASE-T devices.
8083 */
8084 static void
8085 wm_gmii_mediainit(struct wm_softc *sc, pci_product_id_t prodid)
8086 {
8087 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
8088 struct mii_data *mii = &sc->sc_mii;
8089 uint32_t reg;
8090
8091 /* We have GMII. */
8092 sc->sc_flags |= WM_F_HAS_MII;
8093
8094 if (sc->sc_type == WM_T_80003)
8095 sc->sc_tipg = TIPG_1000T_80003_DFLT;
8096 else
8097 sc->sc_tipg = TIPG_1000T_DFLT;
8098
8099 /* XXX Not for I354? FreeBSD's e1000_82575.c doesn't include it */
8100 if ((sc->sc_type == WM_T_82580)
8101 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I210)
8102 || (sc->sc_type == WM_T_I211)) {
8103 reg = CSR_READ(sc, WMREG_PHPM);
8104 reg &= ~PHPM_GO_LINK_D;
8105 CSR_WRITE(sc, WMREG_PHPM, reg);
8106 }
8107
8108 /*
8109 * Let the chip set speed/duplex on its own based on
8110 * signals from the PHY.
8111 * XXXbouyer - I'm not sure this is right for the 80003,
8112 * the em driver only sets CTRL_SLU here - but it seems to work.
8113 */
8114 sc->sc_ctrl |= CTRL_SLU;
8115 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
8116
8117 /* Initialize our media structures and probe the GMII. */
8118 mii->mii_ifp = ifp;
8119
8120 /*
8121 * Determine the PHY access method.
8122 *
8123 * For SGMII, use SGMII specific method.
8124 *
8125 * For some devices, we can determine the PHY access method
8126 * from sc_type.
8127 *
8128 * For ICH and PCH variants, it's difficult to determine the PHY
8129 * access method by sc_type, so use the PCI product ID for some
8130 * devices.
8131 * For other ICH8 variants, try to use igp's method. If the PHY
8132 * can't detect, then use bm's method.
8133 */
8134 switch (prodid) {
8135 case PCI_PRODUCT_INTEL_PCH_M_LM:
8136 case PCI_PRODUCT_INTEL_PCH_M_LC:
8137 /* 82577 */
8138 sc->sc_phytype = WMPHY_82577;
8139 break;
8140 case PCI_PRODUCT_INTEL_PCH_D_DM:
8141 case PCI_PRODUCT_INTEL_PCH_D_DC:
8142 /* 82578 */
8143 sc->sc_phytype = WMPHY_82578;
8144 break;
8145 case PCI_PRODUCT_INTEL_PCH2_LV_LM:
8146 case PCI_PRODUCT_INTEL_PCH2_LV_V:
8147 /* 82579 */
8148 sc->sc_phytype = WMPHY_82579;
8149 break;
8150 case PCI_PRODUCT_INTEL_82801I_BM:
8151 case PCI_PRODUCT_INTEL_82801J_R_BM_LM:
8152 case PCI_PRODUCT_INTEL_82801J_R_BM_LF:
8153 case PCI_PRODUCT_INTEL_82801J_D_BM_LM:
8154 case PCI_PRODUCT_INTEL_82801J_D_BM_LF:
8155 case PCI_PRODUCT_INTEL_82801J_R_BM_V:
8156 /* 82567 */
8157 sc->sc_phytype = WMPHY_BM;
8158 mii->mii_readreg = wm_gmii_bm_readreg;
8159 mii->mii_writereg = wm_gmii_bm_writereg;
8160 break;
8161 default:
8162 if (((sc->sc_flags & WM_F_SGMII) != 0)
8163 && !wm_sgmii_uses_mdio(sc)){
8164 /* SGMII */
8165 mii->mii_readreg = wm_sgmii_readreg;
8166 mii->mii_writereg = wm_sgmii_writereg;
8167 } else if (sc->sc_type >= WM_T_80003) {
8168 /* 80003 */
8169 mii->mii_readreg = wm_gmii_i80003_readreg;
8170 mii->mii_writereg = wm_gmii_i80003_writereg;
8171 } else if (sc->sc_type >= WM_T_I210) {
8172 /* I210 and I211 */
8173 mii->mii_readreg = wm_gmii_gs40g_readreg;
8174 mii->mii_writereg = wm_gmii_gs40g_writereg;
8175 } else if (sc->sc_type >= WM_T_82580) {
8176 /* 82580, I350 and I354 */
8177 sc->sc_phytype = WMPHY_82580;
8178 mii->mii_readreg = wm_gmii_82580_readreg;
8179 mii->mii_writereg = wm_gmii_82580_writereg;
8180 } else if (sc->sc_type >= WM_T_82544) {
8181 /* 82544, 0, [56], [17], 8257[1234] and 82583 */
8182 mii->mii_readreg = wm_gmii_i82544_readreg;
8183 mii->mii_writereg = wm_gmii_i82544_writereg;
8184 } else {
8185 mii->mii_readreg = wm_gmii_i82543_readreg;
8186 mii->mii_writereg = wm_gmii_i82543_writereg;
8187 }
8188 break;
8189 }
8190 if ((sc->sc_type >= WM_T_PCH) && (sc->sc_type <= WM_T_PCH_SPT)) {
8191 /* All PCH* use _hv_ */
8192 mii->mii_readreg = wm_gmii_hv_readreg;
8193 mii->mii_writereg = wm_gmii_hv_writereg;
8194 }
8195 mii->mii_statchg = wm_gmii_statchg;
8196
8197 wm_gmii_reset(sc);
8198
8199 sc->sc_ethercom.ec_mii = &sc->sc_mii;
8200 ifmedia_init(&mii->mii_media, IFM_IMASK, wm_gmii_mediachange,
8201 wm_gmii_mediastatus);
8202
8203 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
8204 || (sc->sc_type == WM_T_82580)
8205 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
8206 || (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211)) {
8207 if ((sc->sc_flags & WM_F_SGMII) == 0) {
8208 /* Attach only one port */
8209 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, 1,
8210 MII_OFFSET_ANY, MIIF_DOPAUSE);
8211 } else {
8212 int i, id;
8213 uint32_t ctrl_ext;
8214
8215 id = wm_get_phy_id_82575(sc);
8216 if (id != -1) {
8217 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff,
8218 id, MII_OFFSET_ANY, MIIF_DOPAUSE);
8219 }
8220 if ((id == -1)
8221 || (LIST_FIRST(&mii->mii_phys) == NULL)) {
8222 /* Power on sgmii phy if it is disabled */
8223 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
8224 CSR_WRITE(sc, WMREG_CTRL_EXT,
8225 ctrl_ext &~ CTRL_EXT_SWDPIN(3));
8226 CSR_WRITE_FLUSH(sc);
8227 delay(300*1000); /* XXX too long */
8228
8229 /* from 1 to 8 */
8230 for (i = 1; i < 8; i++)
8231 mii_attach(sc->sc_dev, &sc->sc_mii,
8232 0xffffffff, i, MII_OFFSET_ANY,
8233 MIIF_DOPAUSE);
8234
8235 /* restore previous sfp cage power state */
8236 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
8237 }
8238 }
8239 } else {
8240 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
8241 MII_OFFSET_ANY, MIIF_DOPAUSE);
8242 }
8243
8244 /*
8245 * If the MAC is PCH2 or PCH_LPT and failed to detect MII PHY, call
8246 * wm_set_mdio_slow_mode_hv() for a workaround and retry.
8247 */
8248 if (((sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) &&
8249 (LIST_FIRST(&mii->mii_phys) == NULL)) {
8250 wm_set_mdio_slow_mode_hv(sc);
8251 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
8252 MII_OFFSET_ANY, MIIF_DOPAUSE);
8253 }
8254
8255 /*
8256 * (For ICH8 variants)
8257 * If PHY detection failed, use BM's r/w function and retry.
8258 */
8259 if (LIST_FIRST(&mii->mii_phys) == NULL) {
8260 /* if failed, retry with *_bm_* */
8261 mii->mii_readreg = wm_gmii_bm_readreg;
8262 mii->mii_writereg = wm_gmii_bm_writereg;
8263
8264 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
8265 MII_OFFSET_ANY, MIIF_DOPAUSE);
8266 }
8267
8268 if (LIST_FIRST(&mii->mii_phys) == NULL) {
8269 /* Any PHY wasn't find */
8270 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
8271 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
8272 sc->sc_phytype = WMPHY_NONE;
8273 } else {
8274 /*
8275 * PHY Found!
8276 * Check PHY type.
8277 */
8278 uint32_t model;
8279 struct mii_softc *child;
8280
8281 child = LIST_FIRST(&mii->mii_phys);
8282 model = child->mii_mpd_model;
8283 if (model == MII_MODEL_yyINTEL_I82566)
8284 sc->sc_phytype = WMPHY_IGP_3;
8285
8286 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
8287 }
8288 }
8289
8290 /*
8291 * wm_gmii_mediachange: [ifmedia interface function]
8292 *
8293 * Set hardware to newly-selected media on a 1000BASE-T device.
8294 */
8295 static int
8296 wm_gmii_mediachange(struct ifnet *ifp)
8297 {
8298 struct wm_softc *sc = ifp->if_softc;
8299 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
8300 int rc;
8301
8302 if ((ifp->if_flags & IFF_UP) == 0)
8303 return 0;
8304
8305 sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
8306 sc->sc_ctrl |= CTRL_SLU;
8307 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
8308 || (sc->sc_type > WM_T_82543)) {
8309 sc->sc_ctrl &= ~(CTRL_FRCSPD | CTRL_FRCFDX);
8310 } else {
8311 sc->sc_ctrl &= ~CTRL_ASDE;
8312 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
8313 if (ife->ifm_media & IFM_FDX)
8314 sc->sc_ctrl |= CTRL_FD;
8315 switch (IFM_SUBTYPE(ife->ifm_media)) {
8316 case IFM_10_T:
8317 sc->sc_ctrl |= CTRL_SPEED_10;
8318 break;
8319 case IFM_100_TX:
8320 sc->sc_ctrl |= CTRL_SPEED_100;
8321 break;
8322 case IFM_1000_T:
8323 sc->sc_ctrl |= CTRL_SPEED_1000;
8324 break;
8325 default:
8326 panic("wm_gmii_mediachange: bad media 0x%x",
8327 ife->ifm_media);
8328 }
8329 }
8330 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
8331 if (sc->sc_type <= WM_T_82543)
8332 wm_gmii_reset(sc);
8333
8334 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
8335 return 0;
8336 return rc;
8337 }
8338
8339 /*
8340 * wm_gmii_mediastatus: [ifmedia interface function]
8341 *
8342 * Get the current interface media status on a 1000BASE-T device.
8343 */
8344 static void
8345 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
8346 {
8347 struct wm_softc *sc = ifp->if_softc;
8348
8349 ether_mediastatus(ifp, ifmr);
8350 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
8351 | sc->sc_flowflags;
8352 }
8353
8354 #define MDI_IO CTRL_SWDPIN(2)
8355 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
8356 #define MDI_CLK CTRL_SWDPIN(3)
8357
8358 static void
8359 wm_i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
8360 {
8361 uint32_t i, v;
8362
8363 v = CSR_READ(sc, WMREG_CTRL);
8364 v &= ~(MDI_IO | MDI_CLK | (CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
8365 v |= MDI_DIR | CTRL_SWDPIO(3);
8366
8367 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
8368 if (data & i)
8369 v |= MDI_IO;
8370 else
8371 v &= ~MDI_IO;
8372 CSR_WRITE(sc, WMREG_CTRL, v);
8373 CSR_WRITE_FLUSH(sc);
8374 delay(10);
8375 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
8376 CSR_WRITE_FLUSH(sc);
8377 delay(10);
8378 CSR_WRITE(sc, WMREG_CTRL, v);
8379 CSR_WRITE_FLUSH(sc);
8380 delay(10);
8381 }
8382 }
8383
8384 static uint32_t
8385 wm_i82543_mii_recvbits(struct wm_softc *sc)
8386 {
8387 uint32_t v, i, data = 0;
8388
8389 v = CSR_READ(sc, WMREG_CTRL);
8390 v &= ~(MDI_IO | MDI_CLK | (CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
8391 v |= CTRL_SWDPIO(3);
8392
8393 CSR_WRITE(sc, WMREG_CTRL, v);
8394 CSR_WRITE_FLUSH(sc);
8395 delay(10);
8396 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
8397 CSR_WRITE_FLUSH(sc);
8398 delay(10);
8399 CSR_WRITE(sc, WMREG_CTRL, v);
8400 CSR_WRITE_FLUSH(sc);
8401 delay(10);
8402
8403 for (i = 0; i < 16; i++) {
8404 data <<= 1;
8405 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
8406 CSR_WRITE_FLUSH(sc);
8407 delay(10);
8408 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
8409 data |= 1;
8410 CSR_WRITE(sc, WMREG_CTRL, v);
8411 CSR_WRITE_FLUSH(sc);
8412 delay(10);
8413 }
8414
8415 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
8416 CSR_WRITE_FLUSH(sc);
8417 delay(10);
8418 CSR_WRITE(sc, WMREG_CTRL, v);
8419 CSR_WRITE_FLUSH(sc);
8420 delay(10);
8421
8422 return data;
8423 }
8424
8425 #undef MDI_IO
8426 #undef MDI_DIR
8427 #undef MDI_CLK
8428
8429 /*
8430 * wm_gmii_i82543_readreg: [mii interface function]
8431 *
8432 * Read a PHY register on the GMII (i82543 version).
8433 */
8434 static int
8435 wm_gmii_i82543_readreg(device_t self, int phy, int reg)
8436 {
8437 struct wm_softc *sc = device_private(self);
8438 int rv;
8439
8440 wm_i82543_mii_sendbits(sc, 0xffffffffU, 32);
8441 wm_i82543_mii_sendbits(sc, reg | (phy << 5) |
8442 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
8443 rv = wm_i82543_mii_recvbits(sc) & 0xffff;
8444
8445 DPRINTF(WM_DEBUG_GMII, ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
8446 device_xname(sc->sc_dev), phy, reg, rv));
8447
8448 return rv;
8449 }
8450
8451 /*
8452 * wm_gmii_i82543_writereg: [mii interface function]
8453 *
8454 * Write a PHY register on the GMII (i82543 version).
8455 */
8456 static void
8457 wm_gmii_i82543_writereg(device_t self, int phy, int reg, int val)
8458 {
8459 struct wm_softc *sc = device_private(self);
8460
8461 wm_i82543_mii_sendbits(sc, 0xffffffffU, 32);
8462 wm_i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
8463 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
8464 (MII_COMMAND_START << 30), 32);
8465 }
8466
8467 /*
8468 * wm_gmii_mdic_readreg: [mii interface function]
8469 *
8470 * Read a PHY register on the GMII.
8471 */
8472 static int
8473 wm_gmii_mdic_readreg(device_t self, int phy, int reg)
8474 {
8475 struct wm_softc *sc = device_private(self);
8476 uint32_t mdic = 0;
8477 int i, rv;
8478
8479 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
8480 MDIC_REGADD(reg));
8481
8482 for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) {
8483 mdic = CSR_READ(sc, WMREG_MDIC);
8484 if (mdic & MDIC_READY)
8485 break;
8486 delay(50);
8487 }
8488
8489 if ((mdic & MDIC_READY) == 0) {
8490 log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
8491 device_xname(sc->sc_dev), phy, reg);
8492 rv = 0;
8493 } else if (mdic & MDIC_E) {
8494 #if 0 /* This is normal if no PHY is present. */
8495 log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
8496 device_xname(sc->sc_dev), phy, reg);
8497 #endif
8498 rv = 0;
8499 } else {
8500 rv = MDIC_DATA(mdic);
8501 if (rv == 0xffff)
8502 rv = 0;
8503 }
8504
8505 return rv;
8506 }
8507
8508 /*
8509 * wm_gmii_mdic_writereg: [mii interface function]
8510 *
8511 * Write a PHY register on the GMII.
8512 */
8513 static void
8514 wm_gmii_mdic_writereg(device_t self, int phy, int reg, int val)
8515 {
8516 struct wm_softc *sc = device_private(self);
8517 uint32_t mdic = 0;
8518 int i;
8519
8520 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
8521 MDIC_REGADD(reg) | MDIC_DATA(val));
8522
8523 for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) {
8524 mdic = CSR_READ(sc, WMREG_MDIC);
8525 if (mdic & MDIC_READY)
8526 break;
8527 delay(50);
8528 }
8529
8530 if ((mdic & MDIC_READY) == 0)
8531 log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
8532 device_xname(sc->sc_dev), phy, reg);
8533 else if (mdic & MDIC_E)
8534 log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
8535 device_xname(sc->sc_dev), phy, reg);
8536 }
8537
8538 /*
8539 * wm_gmii_i82544_readreg: [mii interface function]
8540 *
8541 * Read a PHY register on the GMII.
8542 */
8543 static int
8544 wm_gmii_i82544_readreg(device_t self, int phy, int reg)
8545 {
8546 struct wm_softc *sc = device_private(self);
8547 int rv;
8548
8549 if (sc->phy.acquire(sc)) {
8550 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8551 __func__);
8552 return 0;
8553 }
8554 rv = wm_gmii_mdic_readreg(self, phy, reg);
8555 sc->phy.release(sc);
8556
8557 return rv;
8558 }
8559
8560 /*
8561 * wm_gmii_i82544_writereg: [mii interface function]
8562 *
8563 * Write a PHY register on the GMII.
8564 */
8565 static void
8566 wm_gmii_i82544_writereg(device_t self, int phy, int reg, int val)
8567 {
8568 struct wm_softc *sc = device_private(self);
8569
8570 if (sc->phy.acquire(sc)) {
8571 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8572 __func__);
8573 }
8574 wm_gmii_mdic_writereg(self, phy, reg, val);
8575 sc->phy.release(sc);
8576 }
8577
8578 /*
8579 * wm_gmii_i80003_readreg: [mii interface function]
8580 *
8581 * Read a PHY register on the kumeran
8582 * This could be handled by the PHY layer if we didn't have to lock the
8583 * ressource ...
8584 */
8585 static int
8586 wm_gmii_i80003_readreg(device_t self, int phy, int reg)
8587 {
8588 struct wm_softc *sc = device_private(self);
8589 int rv;
8590
8591 if (phy != 1) /* only one PHY on kumeran bus */
8592 return 0;
8593
8594 if (sc->phy.acquire(sc)) {
8595 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8596 __func__);
8597 return 0;
8598 }
8599
8600 if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
8601 wm_gmii_mdic_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
8602 reg >> GG82563_PAGE_SHIFT);
8603 } else {
8604 wm_gmii_mdic_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
8605 reg >> GG82563_PAGE_SHIFT);
8606 }
8607 /* Wait more 200us for a bug of the ready bit in the MDIC register */
8608 delay(200);
8609 rv = wm_gmii_mdic_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
8610 delay(200);
8611 sc->phy.release(sc);
8612
8613 return rv;
8614 }
8615
8616 /*
8617 * wm_gmii_i80003_writereg: [mii interface function]
8618 *
8619 * Write a PHY register on the kumeran.
8620 * This could be handled by the PHY layer if we didn't have to lock the
8621 * ressource ...
8622 */
8623 static void
8624 wm_gmii_i80003_writereg(device_t self, int phy, int reg, int val)
8625 {
8626 struct wm_softc *sc = device_private(self);
8627
8628 if (phy != 1) /* only one PHY on kumeran bus */
8629 return;
8630
8631 if (sc->phy.acquire(sc)) {
8632 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8633 __func__);
8634 return;
8635 }
8636
8637 if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
8638 wm_gmii_mdic_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
8639 reg >> GG82563_PAGE_SHIFT);
8640 } else {
8641 wm_gmii_mdic_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
8642 reg >> GG82563_PAGE_SHIFT);
8643 }
8644 /* Wait more 200us for a bug of the ready bit in the MDIC register */
8645 delay(200);
8646 wm_gmii_mdic_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
8647 delay(200);
8648
8649 sc->phy.release(sc);
8650 }
8651
8652 /*
8653 * wm_gmii_bm_readreg: [mii interface function]
8654 *
8655 * Read a PHY register on the kumeran
8656 * This could be handled by the PHY layer if we didn't have to lock the
8657 * ressource ...
8658 */
8659 static int
8660 wm_gmii_bm_readreg(device_t self, int phy, int reg)
8661 {
8662 struct wm_softc *sc = device_private(self);
8663 int rv;
8664
8665 if (sc->phy.acquire(sc)) {
8666 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8667 __func__);
8668 return 0;
8669 }
8670
8671 if (reg > BME1000_MAX_MULTI_PAGE_REG) {
8672 if (phy == 1)
8673 wm_gmii_mdic_writereg(self, phy,
8674 MII_IGPHY_PAGE_SELECT, reg);
8675 else
8676 wm_gmii_mdic_writereg(self, phy,
8677 GG82563_PHY_PAGE_SELECT,
8678 reg >> GG82563_PAGE_SHIFT);
8679 }
8680
8681 rv = wm_gmii_mdic_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
8682 sc->phy.release(sc);
8683 return rv;
8684 }
8685
8686 /*
8687 * wm_gmii_bm_writereg: [mii interface function]
8688 *
8689 * Write a PHY register on the kumeran.
8690 * This could be handled by the PHY layer if we didn't have to lock the
8691 * ressource ...
8692 */
8693 static void
8694 wm_gmii_bm_writereg(device_t self, int phy, int reg, int val)
8695 {
8696 struct wm_softc *sc = device_private(self);
8697
8698 if (sc->phy.acquire(sc)) {
8699 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8700 __func__);
8701 return;
8702 }
8703
8704 if (reg > BME1000_MAX_MULTI_PAGE_REG) {
8705 if (phy == 1)
8706 wm_gmii_mdic_writereg(self, phy,
8707 MII_IGPHY_PAGE_SELECT, reg);
8708 else
8709 wm_gmii_mdic_writereg(self, phy,
8710 GG82563_PHY_PAGE_SELECT,
8711 reg >> GG82563_PAGE_SHIFT);
8712 }
8713
8714 wm_gmii_mdic_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
8715 sc->phy.release(sc);
8716 }
8717
8718 static void
8719 wm_access_phy_wakeup_reg_bm(device_t self, int offset, int16_t *val, int rd)
8720 {
8721 struct wm_softc *sc = device_private(self);
8722 uint16_t regnum = BM_PHY_REG_NUM(offset);
8723 uint16_t wuce;
8724
8725 /* XXX Gig must be disabled for MDIO accesses to page 800 */
8726 if (sc->sc_type == WM_T_PCH) {
8727 /* XXX e1000 driver do nothing... why? */
8728 }
8729
8730 /* Set page 769 */
8731 wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
8732 BM_WUC_ENABLE_PAGE << BME1000_PAGE_SHIFT);
8733
8734 wuce = wm_gmii_i82544_readreg(self, 1, BM_WUC_ENABLE_REG);
8735
8736 wuce &= ~BM_WUC_HOST_WU_BIT;
8737 wm_gmii_i82544_writereg(self, 1, BM_WUC_ENABLE_REG,
8738 wuce | BM_WUC_ENABLE_BIT);
8739
8740 /* Select page 800 */
8741 wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
8742 BM_WUC_PAGE << BME1000_PAGE_SHIFT);
8743
8744 /* Write page 800 */
8745 wm_gmii_i82544_writereg(self, 1, BM_WUC_ADDRESS_OPCODE, regnum);
8746
8747 if (rd)
8748 *val = wm_gmii_i82544_readreg(self, 1, BM_WUC_DATA_OPCODE);
8749 else
8750 wm_gmii_i82544_writereg(self, 1, BM_WUC_DATA_OPCODE, *val);
8751
8752 /* Set page 769 */
8753 wm_gmii_i82544_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
8754 BM_WUC_ENABLE_PAGE << BME1000_PAGE_SHIFT);
8755
8756 wm_gmii_i82544_writereg(self, 1, BM_WUC_ENABLE_REG, wuce);
8757 }
8758
8759 /*
8760 * wm_gmii_hv_readreg: [mii interface function]
8761 *
8762 * Read a PHY register on the kumeran
8763 * This could be handled by the PHY layer if we didn't have to lock the
8764 * ressource ...
8765 */
8766 static int
8767 wm_gmii_hv_readreg(device_t self, int phy, int reg)
8768 {
8769 struct wm_softc *sc = device_private(self);
8770 int rv;
8771
8772 if (sc->phy.acquire(sc)) {
8773 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8774 __func__);
8775 return 0;
8776 }
8777
8778 rv = wm_gmii_hv_readreg_locked(self, phy, reg);
8779 sc->phy.release(sc);
8780 return rv;
8781 }
8782
8783 static int
8784 wm_gmii_hv_readreg_locked(device_t self, int phy, int reg)
8785 {
8786 struct wm_softc *sc = device_private(self);
8787 uint16_t page = BM_PHY_REG_PAGE(reg);
8788 uint16_t regnum = BM_PHY_REG_NUM(reg);
8789 uint16_t val;
8790 int rv;
8791
8792 /* XXX Workaround failure in MDIO access while cable is disconnected */
8793 if (sc->sc_phytype == WMPHY_82577) {
8794 /* XXX must write */
8795 }
8796
8797 /* Page 800 works differently than the rest so it has its own func */
8798 if (page == BM_WUC_PAGE) {
8799 wm_access_phy_wakeup_reg_bm(self, reg, &val, 1);
8800 return val;
8801 }
8802
8803 /*
8804 * Lower than page 768 works differently than the rest so it has its
8805 * own func
8806 */
8807 if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) {
8808 printf("gmii_hv_readreg!!!\n");
8809 return 0;
8810 }
8811
8812 if (regnum > BME1000_MAX_MULTI_PAGE_REG) {
8813 wm_gmii_mdic_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
8814 page << BME1000_PAGE_SHIFT);
8815 }
8816
8817 rv = wm_gmii_mdic_readreg(self, phy, regnum & IGPHY_MAXREGADDR);
8818 return rv;
8819 }
8820
8821 /*
8822 * wm_gmii_hv_writereg: [mii interface function]
8823 *
8824 * Write a PHY register on the kumeran.
8825 * This could be handled by the PHY layer if we didn't have to lock the
8826 * ressource ...
8827 */
8828 static void
8829 wm_gmii_hv_writereg(device_t self, int phy, int reg, int val)
8830 {
8831 struct wm_softc *sc = device_private(self);
8832
8833 if (sc->phy.acquire(sc)) {
8834 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8835 __func__);
8836 return;
8837 }
8838
8839 wm_gmii_hv_writereg_locked(self, phy, reg, val);
8840 sc->phy.release(sc);
8841 }
8842
8843 static void
8844 wm_gmii_hv_writereg_locked(device_t self, int phy, int reg, int val)
8845 {
8846 uint16_t page = BM_PHY_REG_PAGE(reg);
8847 uint16_t regnum = BM_PHY_REG_NUM(reg);
8848
8849 /* XXX Workaround failure in MDIO access while cable is disconnected */
8850
8851 /* Page 800 works differently than the rest so it has its own func */
8852 if (page == BM_WUC_PAGE) {
8853 uint16_t tmp;
8854
8855 tmp = val;
8856 wm_access_phy_wakeup_reg_bm(self, reg, &tmp, 0);
8857 return;
8858 }
8859
8860 /*
8861 * Lower than page 768 works differently than the rest so it has its
8862 * own func
8863 */
8864 if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) {
8865 printf("gmii_hv_writereg!!!\n");
8866 return;
8867 }
8868
8869 /*
8870 * XXX Workaround MDIO accesses being disabled after entering IEEE
8871 * Power Down (whenever bit 11 of the PHY control register is set)
8872 */
8873
8874 if (regnum > BME1000_MAX_MULTI_PAGE_REG) {
8875 wm_gmii_mdic_writereg(self, 1, MII_IGPHY_PAGE_SELECT,
8876 page << BME1000_PAGE_SHIFT);
8877 }
8878
8879 wm_gmii_mdic_writereg(self, phy, regnum & IGPHY_MAXREGADDR, val);
8880 }
8881
8882 /*
8883 * wm_gmii_82580_readreg: [mii interface function]
8884 *
8885 * Read a PHY register on the 82580 and I350.
8886 * This could be handled by the PHY layer if we didn't have to lock the
8887 * ressource ...
8888 */
8889 static int
8890 wm_gmii_82580_readreg(device_t self, int phy, int reg)
8891 {
8892 struct wm_softc *sc = device_private(self);
8893 int rv;
8894
8895 if (sc->phy.acquire(sc) != 0) {
8896 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8897 __func__);
8898 return 0;
8899 }
8900
8901 rv = wm_gmii_mdic_readreg(self, phy, reg);
8902
8903 sc->phy.release(sc);
8904 return rv;
8905 }
8906
8907 /*
8908 * wm_gmii_82580_writereg: [mii interface function]
8909 *
8910 * Write a PHY register on the 82580 and I350.
8911 * This could be handled by the PHY layer if we didn't have to lock the
8912 * ressource ...
8913 */
8914 static void
8915 wm_gmii_82580_writereg(device_t self, int phy, int reg, int val)
8916 {
8917 struct wm_softc *sc = device_private(self);
8918
8919 if (sc->phy.acquire(sc) != 0) {
8920 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8921 __func__);
8922 return;
8923 }
8924
8925 wm_gmii_mdic_writereg(self, phy, reg, val);
8926
8927 sc->phy.release(sc);
8928 }
8929
8930 /*
8931 * wm_gmii_gs40g_readreg: [mii interface function]
8932 *
8933 * Read a PHY register on the I2100 and I211.
8934 * This could be handled by the PHY layer if we didn't have to lock the
8935 * ressource ...
8936 */
8937 static int
8938 wm_gmii_gs40g_readreg(device_t self, int phy, int reg)
8939 {
8940 struct wm_softc *sc = device_private(self);
8941 int page, offset;
8942 int rv;
8943
8944 /* Acquire semaphore */
8945 if (sc->phy.acquire(sc)) {
8946 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8947 __func__);
8948 return 0;
8949 }
8950
8951 /* Page select */
8952 page = reg >> GS40G_PAGE_SHIFT;
8953 wm_gmii_mdic_writereg(self, phy, GS40G_PAGE_SELECT, page);
8954
8955 /* Read reg */
8956 offset = reg & GS40G_OFFSET_MASK;
8957 rv = wm_gmii_mdic_readreg(self, phy, offset);
8958
8959 sc->phy.release(sc);
8960 return rv;
8961 }
8962
8963 /*
8964 * wm_gmii_gs40g_writereg: [mii interface function]
8965 *
8966 * Write a PHY register on the I210 and I211.
8967 * This could be handled by the PHY layer if we didn't have to lock the
8968 * ressource ...
8969 */
8970 static void
8971 wm_gmii_gs40g_writereg(device_t self, int phy, int reg, int val)
8972 {
8973 struct wm_softc *sc = device_private(self);
8974 int page, offset;
8975
8976 /* Acquire semaphore */
8977 if (sc->phy.acquire(sc)) {
8978 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
8979 __func__);
8980 return;
8981 }
8982
8983 /* Page select */
8984 page = reg >> GS40G_PAGE_SHIFT;
8985 wm_gmii_mdic_writereg(self, phy, GS40G_PAGE_SELECT, page);
8986
8987 /* Write reg */
8988 offset = reg & GS40G_OFFSET_MASK;
8989 wm_gmii_mdic_writereg(self, phy, offset, val);
8990
8991 /* Release semaphore */
8992 sc->phy.release(sc);
8993 }
8994
8995 /*
8996 * wm_gmii_statchg: [mii interface function]
8997 *
8998 * Callback from MII layer when media changes.
8999 */
9000 static void
9001 wm_gmii_statchg(struct ifnet *ifp)
9002 {
9003 struct wm_softc *sc = ifp->if_softc;
9004 struct mii_data *mii = &sc->sc_mii;
9005
9006 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
9007 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
9008 sc->sc_fcrtl &= ~FCRTL_XONE;
9009
9010 /*
9011 * Get flow control negotiation result.
9012 */
9013 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
9014 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
9015 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
9016 mii->mii_media_active &= ~IFM_ETH_FMASK;
9017 }
9018
9019 if (sc->sc_flowflags & IFM_FLOW) {
9020 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
9021 sc->sc_ctrl |= CTRL_TFCE;
9022 sc->sc_fcrtl |= FCRTL_XONE;
9023 }
9024 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
9025 sc->sc_ctrl |= CTRL_RFCE;
9026 }
9027
9028 if (sc->sc_mii.mii_media_active & IFM_FDX) {
9029 DPRINTF(WM_DEBUG_LINK,
9030 ("%s: LINK: statchg: FDX\n", ifp->if_xname));
9031 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
9032 } else {
9033 DPRINTF(WM_DEBUG_LINK,
9034 ("%s: LINK: statchg: HDX\n", ifp->if_xname));
9035 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
9036 }
9037
9038 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
9039 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
9040 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
9041 : WMREG_FCRTL, sc->sc_fcrtl);
9042 if (sc->sc_type == WM_T_80003) {
9043 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
9044 case IFM_1000_T:
9045 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
9046 KUMCTRLSTA_HD_CTRL_1000_DEFAULT);
9047 sc->sc_tipg = TIPG_1000T_80003_DFLT;
9048 break;
9049 default:
9050 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
9051 KUMCTRLSTA_HD_CTRL_10_100_DEFAULT);
9052 sc->sc_tipg = TIPG_10_100_80003_DFLT;
9053 break;
9054 }
9055 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
9056 }
9057 }
9058
9059 /*
9060 * wm_kmrn_readreg:
9061 *
9062 * Read a kumeran register
9063 */
9064 static int
9065 wm_kmrn_readreg(struct wm_softc *sc, int reg)
9066 {
9067 int rv;
9068
9069 if (sc->sc_type == WM_T_80003)
9070 rv = wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
9071 else
9072 rv = sc->phy.acquire(sc);
9073 if (rv != 0) {
9074 aprint_error_dev(sc->sc_dev,
9075 "%s: failed to get semaphore\n", __func__);
9076 return 0;
9077 }
9078
9079 wm_kmrn_readreg_locked(sc, reg);
9080
9081 if (sc->sc_type == WM_T_80003)
9082 wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
9083 else
9084 sc->phy.release(sc);
9085
9086 return rv;
9087 }
9088
9089 static int
9090 wm_kmrn_readreg_locked(struct wm_softc *sc, int reg)
9091 {
9092 int rv;
9093
9094 CSR_WRITE(sc, WMREG_KUMCTRLSTA,
9095 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
9096 KUMCTRLSTA_REN);
9097 CSR_WRITE_FLUSH(sc);
9098 delay(2);
9099
9100 rv = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK;
9101
9102 return rv;
9103 }
9104
9105 /*
9106 * wm_kmrn_writereg:
9107 *
9108 * Write a kumeran register
9109 */
9110 static void
9111 wm_kmrn_writereg(struct wm_softc *sc, int reg, int val)
9112 {
9113 int rv;
9114
9115 if (sc->sc_type == WM_T_80003)
9116 rv = wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
9117 else
9118 rv = sc->phy.acquire(sc);
9119 if (rv != 0) {
9120 aprint_error_dev(sc->sc_dev,
9121 "%s: failed to get semaphore\n", __func__);
9122 return;
9123 }
9124
9125 wm_kmrn_writereg_locked(sc, reg, val);
9126
9127 if (sc->sc_type == WM_T_80003)
9128 wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
9129 else
9130 sc->phy.release(sc);
9131 }
9132
9133 static void
9134 wm_kmrn_writereg_locked(struct wm_softc *sc, int reg, int val)
9135 {
9136
9137 CSR_WRITE(sc, WMREG_KUMCTRLSTA,
9138 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
9139 (val & KUMCTRLSTA_MASK));
9140 }
9141
9142 /* SGMII related */
9143
9144 /*
9145 * wm_sgmii_uses_mdio
9146 *
9147 * Check whether the transaction is to the internal PHY or the external
9148 * MDIO interface. Return true if it's MDIO.
9149 */
9150 static bool
9151 wm_sgmii_uses_mdio(struct wm_softc *sc)
9152 {
9153 uint32_t reg;
9154 bool ismdio = false;
9155
9156 switch (sc->sc_type) {
9157 case WM_T_82575:
9158 case WM_T_82576:
9159 reg = CSR_READ(sc, WMREG_MDIC);
9160 ismdio = ((reg & MDIC_DEST) != 0);
9161 break;
9162 case WM_T_82580:
9163 case WM_T_I350:
9164 case WM_T_I354:
9165 case WM_T_I210:
9166 case WM_T_I211:
9167 reg = CSR_READ(sc, WMREG_MDICNFG);
9168 ismdio = ((reg & MDICNFG_DEST) != 0);
9169 break;
9170 default:
9171 break;
9172 }
9173
9174 return ismdio;
9175 }
9176
9177 /*
9178 * wm_sgmii_readreg: [mii interface function]
9179 *
9180 * Read a PHY register on the SGMII
9181 * This could be handled by the PHY layer if we didn't have to lock the
9182 * ressource ...
9183 */
9184 static int
9185 wm_sgmii_readreg(device_t self, int phy, int reg)
9186 {
9187 struct wm_softc *sc = device_private(self);
9188 uint32_t i2ccmd;
9189 int i, rv;
9190
9191 if (sc->phy.acquire(sc)) {
9192 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
9193 __func__);
9194 return 0;
9195 }
9196
9197 i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT)
9198 | (phy << I2CCMD_PHY_ADDR_SHIFT)
9199 | I2CCMD_OPCODE_READ;
9200 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
9201
9202 /* Poll the ready bit */
9203 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
9204 delay(50);
9205 i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
9206 if (i2ccmd & I2CCMD_READY)
9207 break;
9208 }
9209 if ((i2ccmd & I2CCMD_READY) == 0)
9210 aprint_error_dev(sc->sc_dev, "I2CCMD Read did not complete\n");
9211 if ((i2ccmd & I2CCMD_ERROR) != 0)
9212 aprint_error_dev(sc->sc_dev, "I2CCMD Error bit set\n");
9213
9214 rv = ((i2ccmd >> 8) & 0x00ff) | ((i2ccmd << 8) & 0xff00);
9215
9216 sc->phy.release(sc);
9217 return rv;
9218 }
9219
9220 /*
9221 * wm_sgmii_writereg: [mii interface function]
9222 *
9223 * Write a PHY register on the SGMII.
9224 * This could be handled by the PHY layer if we didn't have to lock the
9225 * ressource ...
9226 */
9227 static void
9228 wm_sgmii_writereg(device_t self, int phy, int reg, int val)
9229 {
9230 struct wm_softc *sc = device_private(self);
9231 uint32_t i2ccmd;
9232 int i;
9233 int val_swapped;
9234
9235 if (sc->phy.acquire(sc) != 0) {
9236 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
9237 __func__);
9238 return;
9239 }
9240 /* Swap the data bytes for the I2C interface */
9241 val_swapped = ((val >> 8) & 0x00FF) | ((val << 8) & 0xFF00);
9242 i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT)
9243 | (phy << I2CCMD_PHY_ADDR_SHIFT)
9244 | I2CCMD_OPCODE_WRITE | val_swapped;
9245 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
9246
9247 /* Poll the ready bit */
9248 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
9249 delay(50);
9250 i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
9251 if (i2ccmd & I2CCMD_READY)
9252 break;
9253 }
9254 if ((i2ccmd & I2CCMD_READY) == 0)
9255 aprint_error_dev(sc->sc_dev, "I2CCMD Write did not complete\n");
9256 if ((i2ccmd & I2CCMD_ERROR) != 0)
9257 aprint_error_dev(sc->sc_dev, "I2CCMD Error bit set\n");
9258
9259 sc->phy.release(sc);
9260 }
9261
9262 /* TBI related */
9263
9264 /*
9265 * wm_tbi_mediainit:
9266 *
9267 * Initialize media for use on 1000BASE-X devices.
9268 */
9269 static void
9270 wm_tbi_mediainit(struct wm_softc *sc)
9271 {
9272 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
9273 const char *sep = "";
9274
9275 if (sc->sc_type < WM_T_82543)
9276 sc->sc_tipg = TIPG_WM_DFLT;
9277 else
9278 sc->sc_tipg = TIPG_LG_DFLT;
9279
9280 sc->sc_tbi_serdes_anegticks = 5;
9281
9282 /* Initialize our media structures */
9283 sc->sc_mii.mii_ifp = ifp;
9284 sc->sc_ethercom.ec_mii = &sc->sc_mii;
9285
9286 if ((sc->sc_type >= WM_T_82575)
9287 && (sc->sc_mediatype == WM_MEDIATYPE_SERDES))
9288 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK,
9289 wm_serdes_mediachange, wm_serdes_mediastatus);
9290 else
9291 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK,
9292 wm_tbi_mediachange, wm_tbi_mediastatus);
9293
9294 /*
9295 * SWD Pins:
9296 *
9297 * 0 = Link LED (output)
9298 * 1 = Loss Of Signal (input)
9299 */
9300 sc->sc_ctrl |= CTRL_SWDPIO(0);
9301
9302 /* XXX Perhaps this is only for TBI */
9303 if (sc->sc_mediatype != WM_MEDIATYPE_SERDES)
9304 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
9305
9306 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES)
9307 sc->sc_ctrl &= ~CTRL_LRST;
9308
9309 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
9310
9311 #define ADD(ss, mm, dd) \
9312 do { \
9313 aprint_normal("%s%s", sep, ss); \
9314 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | (mm), (dd), NULL); \
9315 sep = ", "; \
9316 } while (/*CONSTCOND*/0)
9317
9318 aprint_normal_dev(sc->sc_dev, "");
9319
9320 /* Only 82545 is LX */
9321 if (sc->sc_type == WM_T_82545) {
9322 ADD("1000baseLX", IFM_1000_LX, ANAR_X_HD);
9323 ADD("1000baseLX-FDX", IFM_1000_LX | IFM_FDX, ANAR_X_FD);
9324 } else {
9325 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
9326 ADD("1000baseSX-FDX", IFM_1000_SX | IFM_FDX, ANAR_X_FD);
9327 }
9328 ADD("auto", IFM_AUTO, ANAR_X_FD | ANAR_X_HD);
9329 aprint_normal("\n");
9330
9331 #undef ADD
9332
9333 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
9334 }
9335
9336 /*
9337 * wm_tbi_mediachange: [ifmedia interface function]
9338 *
9339 * Set hardware to newly-selected media on a 1000BASE-X device.
9340 */
9341 static int
9342 wm_tbi_mediachange(struct ifnet *ifp)
9343 {
9344 struct wm_softc *sc = ifp->if_softc;
9345 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
9346 uint32_t status;
9347 int i;
9348
9349 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES) {
9350 /* XXX need some work for >= 82571 and < 82575 */
9351 if (sc->sc_type < WM_T_82575)
9352 return 0;
9353 }
9354
9355 if ((sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_82572)
9356 || (sc->sc_type >= WM_T_82575))
9357 CSR_WRITE(sc, WMREG_SCTL, SCTL_DISABLE_SERDES_LOOPBACK);
9358
9359 sc->sc_ctrl &= ~CTRL_LRST;
9360 sc->sc_txcw = TXCW_ANE;
9361 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
9362 sc->sc_txcw |= TXCW_FD | TXCW_HD;
9363 else if (ife->ifm_media & IFM_FDX)
9364 sc->sc_txcw |= TXCW_FD;
9365 else
9366 sc->sc_txcw |= TXCW_HD;
9367
9368 if ((sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
9369 sc->sc_txcw |= TXCW_SYM_PAUSE | TXCW_ASYM_PAUSE;
9370
9371 DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x after autoneg check\n",
9372 device_xname(sc->sc_dev), sc->sc_txcw));
9373 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
9374 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
9375 CSR_WRITE_FLUSH(sc);
9376 delay(1000);
9377
9378 i = CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1);
9379 DPRINTF(WM_DEBUG_LINK,("%s: i = 0x%x\n", device_xname(sc->sc_dev),i));
9380
9381 /*
9382 * On 82544 chips and later, the CTRL_SWDPIN(1) bit will be set if the
9383 * optics detect a signal, 0 if they don't.
9384 */
9385 if (((i != 0) && (sc->sc_type > WM_T_82544)) || (i == 0)) {
9386 /* Have signal; wait for the link to come up. */
9387 for (i = 0; i < WM_LINKUP_TIMEOUT; i++) {
9388 delay(10000);
9389 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
9390 break;
9391 }
9392
9393 DPRINTF(WM_DEBUG_LINK,("%s: i = %d after waiting for link\n",
9394 device_xname(sc->sc_dev),i));
9395
9396 status = CSR_READ(sc, WMREG_STATUS);
9397 DPRINTF(WM_DEBUG_LINK,
9398 ("%s: status after final read = 0x%x, STATUS_LU = 0x%x\n",
9399 device_xname(sc->sc_dev),status, STATUS_LU));
9400 if (status & STATUS_LU) {
9401 /* Link is up. */
9402 DPRINTF(WM_DEBUG_LINK,
9403 ("%s: LINK: set media -> link up %s\n",
9404 device_xname(sc->sc_dev),
9405 (status & STATUS_FD) ? "FDX" : "HDX"));
9406
9407 /*
9408 * NOTE: CTRL will update TFCE and RFCE automatically,
9409 * so we should update sc->sc_ctrl
9410 */
9411 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
9412 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
9413 sc->sc_fcrtl &= ~FCRTL_XONE;
9414 if (status & STATUS_FD)
9415 sc->sc_tctl |=
9416 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
9417 else
9418 sc->sc_tctl |=
9419 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
9420 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
9421 sc->sc_fcrtl |= FCRTL_XONE;
9422 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
9423 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
9424 WMREG_OLD_FCRTL : WMREG_FCRTL,
9425 sc->sc_fcrtl);
9426 sc->sc_tbi_linkup = 1;
9427 } else {
9428 if (i == WM_LINKUP_TIMEOUT)
9429 wm_check_for_link(sc);
9430 /* Link is down. */
9431 DPRINTF(WM_DEBUG_LINK,
9432 ("%s: LINK: set media -> link down\n",
9433 device_xname(sc->sc_dev)));
9434 sc->sc_tbi_linkup = 0;
9435 }
9436 } else {
9437 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
9438 device_xname(sc->sc_dev)));
9439 sc->sc_tbi_linkup = 0;
9440 }
9441
9442 wm_tbi_serdes_set_linkled(sc);
9443
9444 return 0;
9445 }
9446
9447 /*
9448 * wm_tbi_mediastatus: [ifmedia interface function]
9449 *
9450 * Get the current interface media status on a 1000BASE-X device.
9451 */
9452 static void
9453 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
9454 {
9455 struct wm_softc *sc = ifp->if_softc;
9456 uint32_t ctrl, status;
9457
9458 ifmr->ifm_status = IFM_AVALID;
9459 ifmr->ifm_active = IFM_ETHER;
9460
9461 status = CSR_READ(sc, WMREG_STATUS);
9462 if ((status & STATUS_LU) == 0) {
9463 ifmr->ifm_active |= IFM_NONE;
9464 return;
9465 }
9466
9467 ifmr->ifm_status |= IFM_ACTIVE;
9468 /* Only 82545 is LX */
9469 if (sc->sc_type == WM_T_82545)
9470 ifmr->ifm_active |= IFM_1000_LX;
9471 else
9472 ifmr->ifm_active |= IFM_1000_SX;
9473 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
9474 ifmr->ifm_active |= IFM_FDX;
9475 else
9476 ifmr->ifm_active |= IFM_HDX;
9477 ctrl = CSR_READ(sc, WMREG_CTRL);
9478 if (ctrl & CTRL_RFCE)
9479 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
9480 if (ctrl & CTRL_TFCE)
9481 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
9482 }
9483
9484 /* XXX TBI only */
9485 static int
9486 wm_check_for_link(struct wm_softc *sc)
9487 {
9488 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
9489 uint32_t rxcw;
9490 uint32_t ctrl;
9491 uint32_t status;
9492 uint32_t sig;
9493
9494 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES) {
9495 /* XXX need some work for >= 82571 */
9496 if (sc->sc_type >= WM_T_82571) {
9497 sc->sc_tbi_linkup = 1;
9498 return 0;
9499 }
9500 }
9501
9502 rxcw = CSR_READ(sc, WMREG_RXCW);
9503 ctrl = CSR_READ(sc, WMREG_CTRL);
9504 status = CSR_READ(sc, WMREG_STATUS);
9505
9506 sig = (sc->sc_type > WM_T_82544) ? CTRL_SWDPIN(1) : 0;
9507
9508 DPRINTF(WM_DEBUG_LINK,
9509 ("%s: %s: sig = %d, status_lu = %d, rxcw_c = %d\n",
9510 device_xname(sc->sc_dev), __func__,
9511 ((ctrl & CTRL_SWDPIN(1)) == sig),
9512 ((status & STATUS_LU) != 0), ((rxcw & RXCW_C) != 0)));
9513
9514 /*
9515 * SWDPIN LU RXCW
9516 * 0 0 0
9517 * 0 0 1 (should not happen)
9518 * 0 1 0 (should not happen)
9519 * 0 1 1 (should not happen)
9520 * 1 0 0 Disable autonego and force linkup
9521 * 1 0 1 got /C/ but not linkup yet
9522 * 1 1 0 (linkup)
9523 * 1 1 1 If IFM_AUTO, back to autonego
9524 *
9525 */
9526 if (((ctrl & CTRL_SWDPIN(1)) == sig)
9527 && ((status & STATUS_LU) == 0)
9528 && ((rxcw & RXCW_C) == 0)) {
9529 DPRINTF(WM_DEBUG_LINK, ("%s: force linkup and fullduplex\n",
9530 __func__));
9531 sc->sc_tbi_linkup = 0;
9532 /* Disable auto-negotiation in the TXCW register */
9533 CSR_WRITE(sc, WMREG_TXCW, (sc->sc_txcw & ~TXCW_ANE));
9534
9535 /*
9536 * Force link-up and also force full-duplex.
9537 *
9538 * NOTE: CTRL was updated TFCE and RFCE automatically,
9539 * so we should update sc->sc_ctrl
9540 */
9541 sc->sc_ctrl = ctrl | CTRL_SLU | CTRL_FD;
9542 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
9543 } else if (((status & STATUS_LU) != 0)
9544 && ((rxcw & RXCW_C) != 0)
9545 && (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)) {
9546 sc->sc_tbi_linkup = 1;
9547 DPRINTF(WM_DEBUG_LINK, ("%s: go back to autonego\n",
9548 __func__));
9549 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
9550 CSR_WRITE(sc, WMREG_CTRL, (ctrl & ~CTRL_SLU));
9551 } else if (((ctrl & CTRL_SWDPIN(1)) == sig)
9552 && ((rxcw & RXCW_C) != 0)) {
9553 DPRINTF(WM_DEBUG_LINK, ("/C/"));
9554 } else {
9555 DPRINTF(WM_DEBUG_LINK, ("%s: %x,%x,%x\n", __func__, rxcw, ctrl,
9556 status));
9557 }
9558
9559 return 0;
9560 }
9561
9562 /*
9563 * wm_tbi_tick:
9564 *
9565 * Check the link on TBI devices.
9566 * This function acts as mii_tick().
9567 */
9568 static void
9569 wm_tbi_tick(struct wm_softc *sc)
9570 {
9571 struct mii_data *mii = &sc->sc_mii;
9572 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
9573 uint32_t status;
9574
9575 KASSERT(WM_CORE_LOCKED(sc));
9576
9577 status = CSR_READ(sc, WMREG_STATUS);
9578
9579 /* XXX is this needed? */
9580 (void)CSR_READ(sc, WMREG_RXCW);
9581 (void)CSR_READ(sc, WMREG_CTRL);
9582
9583 /* set link status */
9584 if ((status & STATUS_LU) == 0) {
9585 DPRINTF(WM_DEBUG_LINK,
9586 ("%s: LINK: checklink -> down\n",
9587 device_xname(sc->sc_dev)));
9588 sc->sc_tbi_linkup = 0;
9589 } else if (sc->sc_tbi_linkup == 0) {
9590 DPRINTF(WM_DEBUG_LINK,
9591 ("%s: LINK: checklink -> up %s\n",
9592 device_xname(sc->sc_dev),
9593 (status & STATUS_FD) ? "FDX" : "HDX"));
9594 sc->sc_tbi_linkup = 1;
9595 sc->sc_tbi_serdes_ticks = 0;
9596 }
9597
9598 if ((sc->sc_ethercom.ec_if.if_flags & IFF_UP) == 0)
9599 goto setled;
9600
9601 if ((status & STATUS_LU) == 0) {
9602 sc->sc_tbi_linkup = 0;
9603 /* If the timer expired, retry autonegotiation */
9604 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
9605 && (++sc->sc_tbi_serdes_ticks
9606 >= sc->sc_tbi_serdes_anegticks)) {
9607 DPRINTF(WM_DEBUG_LINK, ("EXPIRE\n"));
9608 sc->sc_tbi_serdes_ticks = 0;
9609 /*
9610 * Reset the link, and let autonegotiation do
9611 * its thing
9612 */
9613 sc->sc_ctrl |= CTRL_LRST;
9614 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
9615 CSR_WRITE_FLUSH(sc);
9616 delay(1000);
9617 sc->sc_ctrl &= ~CTRL_LRST;
9618 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
9619 CSR_WRITE_FLUSH(sc);
9620 delay(1000);
9621 CSR_WRITE(sc, WMREG_TXCW,
9622 sc->sc_txcw & ~TXCW_ANE);
9623 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
9624 }
9625 }
9626
9627 setled:
9628 wm_tbi_serdes_set_linkled(sc);
9629 }
9630
9631 /* SERDES related */
9632 static void
9633 wm_serdes_power_up_link_82575(struct wm_softc *sc)
9634 {
9635 uint32_t reg;
9636
9637 if ((sc->sc_mediatype != WM_MEDIATYPE_SERDES)
9638 && ((sc->sc_flags & WM_F_SGMII) == 0))
9639 return;
9640
9641 reg = CSR_READ(sc, WMREG_PCS_CFG);
9642 reg |= PCS_CFG_PCS_EN;
9643 CSR_WRITE(sc, WMREG_PCS_CFG, reg);
9644
9645 reg = CSR_READ(sc, WMREG_CTRL_EXT);
9646 reg &= ~CTRL_EXT_SWDPIN(3);
9647 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
9648 CSR_WRITE_FLUSH(sc);
9649 }
9650
9651 static int
9652 wm_serdes_mediachange(struct ifnet *ifp)
9653 {
9654 struct wm_softc *sc = ifp->if_softc;
9655 bool pcs_autoneg = true; /* XXX */
9656 uint32_t ctrl_ext, pcs_lctl, reg;
9657
9658 /* XXX Currently, this function is not called on 8257[12] */
9659 if ((sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_82572)
9660 || (sc->sc_type >= WM_T_82575))
9661 CSR_WRITE(sc, WMREG_SCTL, SCTL_DISABLE_SERDES_LOOPBACK);
9662
9663 wm_serdes_power_up_link_82575(sc);
9664
9665 sc->sc_ctrl |= CTRL_SLU;
9666
9667 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576))
9668 sc->sc_ctrl |= CTRL_SWDPIN(0) | CTRL_SWDPIN(1);
9669
9670 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
9671 pcs_lctl = CSR_READ(sc, WMREG_PCS_LCTL);
9672 switch (ctrl_ext & CTRL_EXT_LINK_MODE_MASK) {
9673 case CTRL_EXT_LINK_MODE_SGMII:
9674 pcs_autoneg = true;
9675 pcs_lctl &= ~PCS_LCTL_AN_TIMEOUT;
9676 break;
9677 case CTRL_EXT_LINK_MODE_1000KX:
9678 pcs_autoneg = false;
9679 /* FALLTHROUGH */
9680 default:
9681 if ((sc->sc_type == WM_T_82575)
9682 || (sc->sc_type == WM_T_82576)) {
9683 if ((sc->sc_flags & WM_F_PCS_DIS_AUTONEGO) != 0)
9684 pcs_autoneg = false;
9685 }
9686 sc->sc_ctrl |= CTRL_SPEED_1000 | CTRL_FRCSPD | CTRL_FD
9687 | CTRL_FRCFDX;
9688 pcs_lctl |= PCS_LCTL_FSV_1000 | PCS_LCTL_FDV_FULL;
9689 }
9690 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
9691
9692 if (pcs_autoneg) {
9693 pcs_lctl |= PCS_LCTL_AN_ENABLE | PCS_LCTL_AN_RESTART;
9694 pcs_lctl &= ~PCS_LCTL_FORCE_FC;
9695
9696 reg = CSR_READ(sc, WMREG_PCS_ANADV);
9697 reg &= ~(TXCW_ASYM_PAUSE | TXCW_SYM_PAUSE);
9698 reg |= TXCW_ASYM_PAUSE | TXCW_SYM_PAUSE;
9699 CSR_WRITE(sc, WMREG_PCS_ANADV, reg);
9700 } else
9701 pcs_lctl |= PCS_LCTL_FSD | PCS_LCTL_FORCE_FC;
9702
9703 CSR_WRITE(sc, WMREG_PCS_LCTL, pcs_lctl);
9704
9705
9706 return 0;
9707 }
9708
9709 static void
9710 wm_serdes_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
9711 {
9712 struct wm_softc *sc = ifp->if_softc;
9713 struct mii_data *mii = &sc->sc_mii;
9714 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
9715 uint32_t pcs_adv, pcs_lpab, reg;
9716
9717 ifmr->ifm_status = IFM_AVALID;
9718 ifmr->ifm_active = IFM_ETHER;
9719
9720 /* Check PCS */
9721 reg = CSR_READ(sc, WMREG_PCS_LSTS);
9722 if ((reg & PCS_LSTS_LINKOK) == 0) {
9723 ifmr->ifm_active |= IFM_NONE;
9724 sc->sc_tbi_linkup = 0;
9725 goto setled;
9726 }
9727
9728 sc->sc_tbi_linkup = 1;
9729 ifmr->ifm_status |= IFM_ACTIVE;
9730 ifmr->ifm_active |= IFM_1000_SX; /* XXX */
9731 if ((reg & PCS_LSTS_FDX) != 0)
9732 ifmr->ifm_active |= IFM_FDX;
9733 else
9734 ifmr->ifm_active |= IFM_HDX;
9735 mii->mii_media_active &= ~IFM_ETH_FMASK;
9736 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
9737 /* Check flow */
9738 reg = CSR_READ(sc, WMREG_PCS_LSTS);
9739 if ((reg & PCS_LSTS_AN_COMP) == 0) {
9740 DPRINTF(WM_DEBUG_LINK, ("XXX LINKOK but not ACOMP\n"));
9741 goto setled;
9742 }
9743 pcs_adv = CSR_READ(sc, WMREG_PCS_ANADV);
9744 pcs_lpab = CSR_READ(sc, WMREG_PCS_LPAB);
9745 DPRINTF(WM_DEBUG_LINK,
9746 ("XXX AN result(2) %08x, %08x\n", pcs_adv, pcs_lpab));
9747 if ((pcs_adv & TXCW_SYM_PAUSE)
9748 && (pcs_lpab & TXCW_SYM_PAUSE)) {
9749 mii->mii_media_active |= IFM_FLOW
9750 | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
9751 } else if (((pcs_adv & TXCW_SYM_PAUSE) == 0)
9752 && (pcs_adv & TXCW_ASYM_PAUSE)
9753 && (pcs_lpab & TXCW_SYM_PAUSE)
9754 && (pcs_lpab & TXCW_ASYM_PAUSE)) {
9755 mii->mii_media_active |= IFM_FLOW
9756 | IFM_ETH_TXPAUSE;
9757 } else if ((pcs_adv & TXCW_SYM_PAUSE)
9758 && (pcs_adv & TXCW_ASYM_PAUSE)
9759 && ((pcs_lpab & TXCW_SYM_PAUSE) == 0)
9760 && (pcs_lpab & TXCW_ASYM_PAUSE)) {
9761 mii->mii_media_active |= IFM_FLOW
9762 | IFM_ETH_RXPAUSE;
9763 } else {
9764 }
9765 }
9766 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
9767 | (mii->mii_media_active & IFM_ETH_FMASK);
9768 setled:
9769 wm_tbi_serdes_set_linkled(sc);
9770 }
9771
9772 /*
9773 * wm_serdes_tick:
9774 *
9775 * Check the link on serdes devices.
9776 */
9777 static void
9778 wm_serdes_tick(struct wm_softc *sc)
9779 {
9780 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
9781 struct mii_data *mii = &sc->sc_mii;
9782 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
9783 uint32_t reg;
9784
9785 KASSERT(WM_CORE_LOCKED(sc));
9786
9787 mii->mii_media_status = IFM_AVALID;
9788 mii->mii_media_active = IFM_ETHER;
9789
9790 /* Check PCS */
9791 reg = CSR_READ(sc, WMREG_PCS_LSTS);
9792 if ((reg & PCS_LSTS_LINKOK) != 0) {
9793 mii->mii_media_status |= IFM_ACTIVE;
9794 sc->sc_tbi_linkup = 1;
9795 sc->sc_tbi_serdes_ticks = 0;
9796 mii->mii_media_active |= IFM_1000_SX; /* XXX */
9797 if ((reg & PCS_LSTS_FDX) != 0)
9798 mii->mii_media_active |= IFM_FDX;
9799 else
9800 mii->mii_media_active |= IFM_HDX;
9801 } else {
9802 mii->mii_media_status |= IFM_NONE;
9803 sc->sc_tbi_linkup = 0;
9804 /* If the timer expired, retry autonegotiation */
9805 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
9806 && (++sc->sc_tbi_serdes_ticks
9807 >= sc->sc_tbi_serdes_anegticks)) {
9808 DPRINTF(WM_DEBUG_LINK, ("EXPIRE\n"));
9809 sc->sc_tbi_serdes_ticks = 0;
9810 /* XXX */
9811 wm_serdes_mediachange(ifp);
9812 }
9813 }
9814
9815 wm_tbi_serdes_set_linkled(sc);
9816 }
9817
9818 /* SFP related */
9819
9820 static int
9821 wm_sfp_read_data_byte(struct wm_softc *sc, uint16_t offset, uint8_t *data)
9822 {
9823 uint32_t i2ccmd;
9824 int i;
9825
9826 i2ccmd = (offset << I2CCMD_REG_ADDR_SHIFT) | I2CCMD_OPCODE_READ;
9827 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
9828
9829 /* Poll the ready bit */
9830 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
9831 delay(50);
9832 i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
9833 if (i2ccmd & I2CCMD_READY)
9834 break;
9835 }
9836 if ((i2ccmd & I2CCMD_READY) == 0)
9837 return -1;
9838 if ((i2ccmd & I2CCMD_ERROR) != 0)
9839 return -1;
9840
9841 *data = i2ccmd & 0x00ff;
9842
9843 return 0;
9844 }
9845
9846 static uint32_t
9847 wm_sfp_get_media_type(struct wm_softc *sc)
9848 {
9849 uint32_t ctrl_ext;
9850 uint8_t val = 0;
9851 int timeout = 3;
9852 uint32_t mediatype = WM_MEDIATYPE_UNKNOWN;
9853 int rv = -1;
9854
9855 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
9856 ctrl_ext &= ~CTRL_EXT_SWDPIN(3);
9857 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext | CTRL_EXT_I2C_ENA);
9858 CSR_WRITE_FLUSH(sc);
9859
9860 /* Read SFP module data */
9861 while (timeout) {
9862 rv = wm_sfp_read_data_byte(sc, SFF_SFP_ID_OFF, &val);
9863 if (rv == 0)
9864 break;
9865 delay(100*1000); /* XXX too big */
9866 timeout--;
9867 }
9868 if (rv != 0)
9869 goto out;
9870 switch (val) {
9871 case SFF_SFP_ID_SFF:
9872 aprint_normal_dev(sc->sc_dev,
9873 "Module/Connector soldered to board\n");
9874 break;
9875 case SFF_SFP_ID_SFP:
9876 aprint_normal_dev(sc->sc_dev, "SFP\n");
9877 break;
9878 case SFF_SFP_ID_UNKNOWN:
9879 goto out;
9880 default:
9881 break;
9882 }
9883
9884 rv = wm_sfp_read_data_byte(sc, SFF_SFP_ETH_FLAGS_OFF, &val);
9885 if (rv != 0) {
9886 goto out;
9887 }
9888
9889 if ((val & (SFF_SFP_ETH_FLAGS_1000SX | SFF_SFP_ETH_FLAGS_1000LX)) != 0)
9890 mediatype = WM_MEDIATYPE_SERDES;
9891 else if ((val & SFF_SFP_ETH_FLAGS_1000T) != 0){
9892 sc->sc_flags |= WM_F_SGMII;
9893 mediatype = WM_MEDIATYPE_COPPER;
9894 } else if ((val & SFF_SFP_ETH_FLAGS_100FX) != 0){
9895 sc->sc_flags |= WM_F_SGMII;
9896 mediatype = WM_MEDIATYPE_SERDES;
9897 }
9898
9899 out:
9900 /* Restore I2C interface setting */
9901 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
9902
9903 return mediatype;
9904 }
9905 /*
9906 * NVM related.
9907 * Microwire, SPI (w/wo EERD) and Flash.
9908 */
9909
9910 /* Both spi and uwire */
9911
9912 /*
9913 * wm_eeprom_sendbits:
9914 *
9915 * Send a series of bits to the EEPROM.
9916 */
9917 static void
9918 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
9919 {
9920 uint32_t reg;
9921 int x;
9922
9923 reg = CSR_READ(sc, WMREG_EECD);
9924
9925 for (x = nbits; x > 0; x--) {
9926 if (bits & (1U << (x - 1)))
9927 reg |= EECD_DI;
9928 else
9929 reg &= ~EECD_DI;
9930 CSR_WRITE(sc, WMREG_EECD, reg);
9931 CSR_WRITE_FLUSH(sc);
9932 delay(2);
9933 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
9934 CSR_WRITE_FLUSH(sc);
9935 delay(2);
9936 CSR_WRITE(sc, WMREG_EECD, reg);
9937 CSR_WRITE_FLUSH(sc);
9938 delay(2);
9939 }
9940 }
9941
9942 /*
9943 * wm_eeprom_recvbits:
9944 *
9945 * Receive a series of bits from the EEPROM.
9946 */
9947 static void
9948 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
9949 {
9950 uint32_t reg, val;
9951 int x;
9952
9953 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
9954
9955 val = 0;
9956 for (x = nbits; x > 0; x--) {
9957 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
9958 CSR_WRITE_FLUSH(sc);
9959 delay(2);
9960 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
9961 val |= (1U << (x - 1));
9962 CSR_WRITE(sc, WMREG_EECD, reg);
9963 CSR_WRITE_FLUSH(sc);
9964 delay(2);
9965 }
9966 *valp = val;
9967 }
9968
9969 /* Microwire */
9970
9971 /*
9972 * wm_nvm_read_uwire:
9973 *
9974 * Read a word from the EEPROM using the MicroWire protocol.
9975 */
9976 static int
9977 wm_nvm_read_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
9978 {
9979 uint32_t reg, val;
9980 int i;
9981
9982 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
9983 device_xname(sc->sc_dev), __func__));
9984
9985 for (i = 0; i < wordcnt; i++) {
9986 /* Clear SK and DI. */
9987 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
9988 CSR_WRITE(sc, WMREG_EECD, reg);
9989
9990 /*
9991 * XXX: workaround for a bug in qemu-0.12.x and prior
9992 * and Xen.
9993 *
9994 * We use this workaround only for 82540 because qemu's
9995 * e1000 act as 82540.
9996 */
9997 if (sc->sc_type == WM_T_82540) {
9998 reg |= EECD_SK;
9999 CSR_WRITE(sc, WMREG_EECD, reg);
10000 reg &= ~EECD_SK;
10001 CSR_WRITE(sc, WMREG_EECD, reg);
10002 CSR_WRITE_FLUSH(sc);
10003 delay(2);
10004 }
10005 /* XXX: end of workaround */
10006
10007 /* Set CHIP SELECT. */
10008 reg |= EECD_CS;
10009 CSR_WRITE(sc, WMREG_EECD, reg);
10010 CSR_WRITE_FLUSH(sc);
10011 delay(2);
10012
10013 /* Shift in the READ command. */
10014 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
10015
10016 /* Shift in address. */
10017 wm_eeprom_sendbits(sc, word + i, sc->sc_nvm_addrbits);
10018
10019 /* Shift out the data. */
10020 wm_eeprom_recvbits(sc, &val, 16);
10021 data[i] = val & 0xffff;
10022
10023 /* Clear CHIP SELECT. */
10024 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
10025 CSR_WRITE(sc, WMREG_EECD, reg);
10026 CSR_WRITE_FLUSH(sc);
10027 delay(2);
10028 }
10029
10030 return 0;
10031 }
10032
10033 /* SPI */
10034
10035 /*
10036 * Set SPI and FLASH related information from the EECD register.
10037 * For 82541 and 82547, the word size is taken from EEPROM.
10038 */
10039 static int
10040 wm_nvm_set_addrbits_size_eecd(struct wm_softc *sc)
10041 {
10042 int size;
10043 uint32_t reg;
10044 uint16_t data;
10045
10046 reg = CSR_READ(sc, WMREG_EECD);
10047 sc->sc_nvm_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
10048
10049 /* Read the size of NVM from EECD by default */
10050 size = __SHIFTOUT(reg, EECD_EE_SIZE_EX_MASK);
10051 switch (sc->sc_type) {
10052 case WM_T_82541:
10053 case WM_T_82541_2:
10054 case WM_T_82547:
10055 case WM_T_82547_2:
10056 /* Set dummy value to access EEPROM */
10057 sc->sc_nvm_wordsize = 64;
10058 wm_nvm_read(sc, NVM_OFF_EEPROM_SIZE, 1, &data);
10059 reg = data;
10060 size = __SHIFTOUT(reg, EECD_EE_SIZE_EX_MASK);
10061 if (size == 0)
10062 size = 6; /* 64 word size */
10063 else
10064 size += NVM_WORD_SIZE_BASE_SHIFT + 1;
10065 break;
10066 case WM_T_80003:
10067 case WM_T_82571:
10068 case WM_T_82572:
10069 case WM_T_82573: /* SPI case */
10070 case WM_T_82574: /* SPI case */
10071 case WM_T_82583: /* SPI case */
10072 size += NVM_WORD_SIZE_BASE_SHIFT;
10073 if (size > 14)
10074 size = 14;
10075 break;
10076 case WM_T_82575:
10077 case WM_T_82576:
10078 case WM_T_82580:
10079 case WM_T_I350:
10080 case WM_T_I354:
10081 case WM_T_I210:
10082 case WM_T_I211:
10083 size += NVM_WORD_SIZE_BASE_SHIFT;
10084 if (size > 15)
10085 size = 15;
10086 break;
10087 default:
10088 aprint_error_dev(sc->sc_dev,
10089 "%s: unknown device(%d)?\n", __func__, sc->sc_type);
10090 return -1;
10091 break;
10092 }
10093
10094 sc->sc_nvm_wordsize = 1 << size;
10095
10096 return 0;
10097 }
10098
10099 /*
10100 * wm_nvm_ready_spi:
10101 *
10102 * Wait for a SPI EEPROM to be ready for commands.
10103 */
10104 static int
10105 wm_nvm_ready_spi(struct wm_softc *sc)
10106 {
10107 uint32_t val;
10108 int usec;
10109
10110 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
10111 device_xname(sc->sc_dev), __func__));
10112
10113 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
10114 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
10115 wm_eeprom_recvbits(sc, &val, 8);
10116 if ((val & SPI_SR_RDY) == 0)
10117 break;
10118 }
10119 if (usec >= SPI_MAX_RETRIES) {
10120 aprint_error_dev(sc->sc_dev,"EEPROM failed to become ready\n");
10121 return 1;
10122 }
10123 return 0;
10124 }
10125
10126 /*
10127 * wm_nvm_read_spi:
10128 *
10129 * Read a work from the EEPROM using the SPI protocol.
10130 */
10131 static int
10132 wm_nvm_read_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
10133 {
10134 uint32_t reg, val;
10135 int i;
10136 uint8_t opc;
10137
10138 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
10139 device_xname(sc->sc_dev), __func__));
10140
10141 /* Clear SK and CS. */
10142 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
10143 CSR_WRITE(sc, WMREG_EECD, reg);
10144 CSR_WRITE_FLUSH(sc);
10145 delay(2);
10146
10147 if (wm_nvm_ready_spi(sc))
10148 return 1;
10149
10150 /* Toggle CS to flush commands. */
10151 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
10152 CSR_WRITE_FLUSH(sc);
10153 delay(2);
10154 CSR_WRITE(sc, WMREG_EECD, reg);
10155 CSR_WRITE_FLUSH(sc);
10156 delay(2);
10157
10158 opc = SPI_OPC_READ;
10159 if (sc->sc_nvm_addrbits == 8 && word >= 128)
10160 opc |= SPI_OPC_A8;
10161
10162 wm_eeprom_sendbits(sc, opc, 8);
10163 wm_eeprom_sendbits(sc, word << 1, sc->sc_nvm_addrbits);
10164
10165 for (i = 0; i < wordcnt; i++) {
10166 wm_eeprom_recvbits(sc, &val, 16);
10167 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
10168 }
10169
10170 /* Raise CS and clear SK. */
10171 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
10172 CSR_WRITE(sc, WMREG_EECD, reg);
10173 CSR_WRITE_FLUSH(sc);
10174 delay(2);
10175
10176 return 0;
10177 }
10178
10179 /* Using with EERD */
10180
10181 static int
10182 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
10183 {
10184 uint32_t attempts = 100000;
10185 uint32_t i, reg = 0;
10186 int32_t done = -1;
10187
10188 for (i = 0; i < attempts; i++) {
10189 reg = CSR_READ(sc, rw);
10190
10191 if (reg & EERD_DONE) {
10192 done = 0;
10193 break;
10194 }
10195 delay(5);
10196 }
10197
10198 return done;
10199 }
10200
10201 static int
10202 wm_nvm_read_eerd(struct wm_softc *sc, int offset, int wordcnt,
10203 uint16_t *data)
10204 {
10205 int i, eerd = 0;
10206 int error = 0;
10207
10208 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
10209 device_xname(sc->sc_dev), __func__));
10210
10211 for (i = 0; i < wordcnt; i++) {
10212 eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
10213
10214 CSR_WRITE(sc, WMREG_EERD, eerd);
10215 error = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
10216 if (error != 0)
10217 break;
10218
10219 data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
10220 }
10221
10222 return error;
10223 }
10224
10225 /* Flash */
10226
10227 static int
10228 wm_nvm_valid_bank_detect_ich8lan(struct wm_softc *sc, unsigned int *bank)
10229 {
10230 uint32_t eecd;
10231 uint32_t act_offset = ICH_NVM_SIG_WORD * 2 + 1;
10232 uint32_t bank1_offset = sc->sc_ich8_flash_bank_size * sizeof(uint16_t);
10233 uint8_t sig_byte = 0;
10234
10235 switch (sc->sc_type) {
10236 case WM_T_PCH_SPT:
10237 /*
10238 * In SPT, read from the CTRL_EXT reg instead of accessing the
10239 * sector valid bits from the NVM.
10240 */
10241 *bank = CSR_READ(sc, WMREG_CTRL_EXT) & CTRL_EXT_NVMVS;
10242 if ((*bank == 0) || (*bank == 1)) {
10243 aprint_error_dev(sc->sc_dev,
10244 "%s: no valid NVM bank present (%u)\n", __func__,
10245 *bank);
10246 return -1;
10247 } else {
10248 *bank = *bank - 2;
10249 return 0;
10250 }
10251 case WM_T_ICH8:
10252 case WM_T_ICH9:
10253 eecd = CSR_READ(sc, WMREG_EECD);
10254 if ((eecd & EECD_SEC1VAL_VALMASK) == EECD_SEC1VAL_VALMASK) {
10255 *bank = ((eecd & EECD_SEC1VAL) != 0) ? 1 : 0;
10256 return 0;
10257 }
10258 /* FALLTHROUGH */
10259 default:
10260 /* Default to 0 */
10261 *bank = 0;
10262
10263 /* Check bank 0 */
10264 wm_read_ich8_byte(sc, act_offset, &sig_byte);
10265 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
10266 *bank = 0;
10267 return 0;
10268 }
10269
10270 /* Check bank 1 */
10271 wm_read_ich8_byte(sc, act_offset + bank1_offset,
10272 &sig_byte);
10273 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
10274 *bank = 1;
10275 return 0;
10276 }
10277 }
10278
10279 DPRINTF(WM_DEBUG_NVM, ("%s: No valid NVM bank present\n",
10280 device_xname(sc->sc_dev)));
10281 return -1;
10282 }
10283
10284 /******************************************************************************
10285 * This function does initial flash setup so that a new read/write/erase cycle
10286 * can be started.
10287 *
10288 * sc - The pointer to the hw structure
10289 ****************************************************************************/
10290 static int32_t
10291 wm_ich8_cycle_init(struct wm_softc *sc)
10292 {
10293 uint16_t hsfsts;
10294 int32_t error = 1;
10295 int32_t i = 0;
10296
10297 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
10298
10299 /* May be check the Flash Des Valid bit in Hw status */
10300 if ((hsfsts & HSFSTS_FLDVAL) == 0) {
10301 return error;
10302 }
10303
10304 /* Clear FCERR in Hw status by writing 1 */
10305 /* Clear DAEL in Hw status by writing a 1 */
10306 hsfsts |= HSFSTS_ERR | HSFSTS_DAEL;
10307
10308 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
10309
10310 /*
10311 * Either we should have a hardware SPI cycle in progress bit to check
10312 * against, in order to start a new cycle or FDONE bit should be
10313 * changed in the hardware so that it is 1 after harware reset, which
10314 * can then be used as an indication whether a cycle is in progress or
10315 * has been completed .. we should also have some software semaphore
10316 * mechanism to guard FDONE or the cycle in progress bit so that two
10317 * threads access to those bits can be sequentiallized or a way so that
10318 * 2 threads dont start the cycle at the same time
10319 */
10320
10321 if ((hsfsts & HSFSTS_FLINPRO) == 0) {
10322 /*
10323 * There is no cycle running at present, so we can start a
10324 * cycle
10325 */
10326
10327 /* Begin by setting Flash Cycle Done. */
10328 hsfsts |= HSFSTS_DONE;
10329 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
10330 error = 0;
10331 } else {
10332 /*
10333 * otherwise poll for sometime so the current cycle has a
10334 * chance to end before giving up.
10335 */
10336 for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
10337 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
10338 if ((hsfsts & HSFSTS_FLINPRO) == 0) {
10339 error = 0;
10340 break;
10341 }
10342 delay(1);
10343 }
10344 if (error == 0) {
10345 /*
10346 * Successful in waiting for previous cycle to timeout,
10347 * now set the Flash Cycle Done.
10348 */
10349 hsfsts |= HSFSTS_DONE;
10350 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
10351 }
10352 }
10353 return error;
10354 }
10355
10356 /******************************************************************************
10357 * This function starts a flash cycle and waits for its completion
10358 *
10359 * sc - The pointer to the hw structure
10360 ****************************************************************************/
10361 static int32_t
10362 wm_ich8_flash_cycle(struct wm_softc *sc, uint32_t timeout)
10363 {
10364 uint16_t hsflctl;
10365 uint16_t hsfsts;
10366 int32_t error = 1;
10367 uint32_t i = 0;
10368
10369 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
10370 hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
10371 hsflctl |= HSFCTL_GO;
10372 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
10373
10374 /* Wait till FDONE bit is set to 1 */
10375 do {
10376 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
10377 if (hsfsts & HSFSTS_DONE)
10378 break;
10379 delay(1);
10380 i++;
10381 } while (i < timeout);
10382 if ((hsfsts & HSFSTS_DONE) == 1 && (hsfsts & HSFSTS_ERR) == 0)
10383 error = 0;
10384
10385 return error;
10386 }
10387
10388 /******************************************************************************
10389 * Reads a byte or (d)word from the NVM using the ICH8 flash access registers.
10390 *
10391 * sc - The pointer to the hw structure
10392 * index - The index of the byte or word to read.
10393 * size - Size of data to read, 1=byte 2=word, 4=dword
10394 * data - Pointer to the word to store the value read.
10395 *****************************************************************************/
10396 static int32_t
10397 wm_read_ich8_data(struct wm_softc *sc, uint32_t index,
10398 uint32_t size, uint32_t *data)
10399 {
10400 uint16_t hsfsts;
10401 uint16_t hsflctl;
10402 uint32_t flash_linear_address;
10403 uint32_t flash_data = 0;
10404 int32_t error = 1;
10405 int32_t count = 0;
10406
10407 if (size < 1 || size > 4 || data == 0x0 ||
10408 index > ICH_FLASH_LINEAR_ADDR_MASK)
10409 return error;
10410
10411 flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
10412 sc->sc_ich8_flash_base;
10413
10414 do {
10415 delay(1);
10416 /* Steps */
10417 error = wm_ich8_cycle_init(sc);
10418 if (error)
10419 break;
10420
10421 hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
10422 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
10423 hsflctl |= ((size - 1) << HSFCTL_BCOUNT_SHIFT)
10424 & HSFCTL_BCOUNT_MASK;
10425 hsflctl |= ICH_CYCLE_READ << HSFCTL_CYCLE_SHIFT;
10426 if (sc->sc_type == WM_T_PCH_SPT) {
10427 /*
10428 * In SPT, This register is in Lan memory space, not
10429 * flash. Therefore, only 32 bit access is supported.
10430 */
10431 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFCTL,
10432 (uint32_t)hsflctl);
10433 } else
10434 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
10435
10436 /*
10437 * Write the last 24 bits of index into Flash Linear address
10438 * field in Flash Address
10439 */
10440 /* TODO: TBD maybe check the index against the size of flash */
10441
10442 ICH8_FLASH_WRITE32(sc, ICH_FLASH_FADDR, flash_linear_address);
10443
10444 error = wm_ich8_flash_cycle(sc, ICH_FLASH_COMMAND_TIMEOUT);
10445
10446 /*
10447 * Check if FCERR is set to 1, if set to 1, clear it and try
10448 * the whole sequence a few more times, else read in (shift in)
10449 * the Flash Data0, the order is least significant byte first
10450 * msb to lsb
10451 */
10452 if (error == 0) {
10453 flash_data = ICH8_FLASH_READ32(sc, ICH_FLASH_FDATA0);
10454 if (size == 1)
10455 *data = (uint8_t)(flash_data & 0x000000FF);
10456 else if (size == 2)
10457 *data = (uint16_t)(flash_data & 0x0000FFFF);
10458 else if (size == 4)
10459 *data = (uint32_t)flash_data;
10460 break;
10461 } else {
10462 /*
10463 * If we've gotten here, then things are probably
10464 * completely hosed, but if the error condition is
10465 * detected, it won't hurt to give it another try...
10466 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
10467 */
10468 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
10469 if (hsfsts & HSFSTS_ERR) {
10470 /* Repeat for some time before giving up. */
10471 continue;
10472 } else if ((hsfsts & HSFSTS_DONE) == 0)
10473 break;
10474 }
10475 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
10476
10477 return error;
10478 }
10479
10480 /******************************************************************************
10481 * Reads a single byte from the NVM using the ICH8 flash access registers.
10482 *
10483 * sc - pointer to wm_hw structure
10484 * index - The index of the byte to read.
10485 * data - Pointer to a byte to store the value read.
10486 *****************************************************************************/
10487 static int32_t
10488 wm_read_ich8_byte(struct wm_softc *sc, uint32_t index, uint8_t* data)
10489 {
10490 int32_t status;
10491 uint32_t word = 0;
10492
10493 status = wm_read_ich8_data(sc, index, 1, &word);
10494 if (status == 0)
10495 *data = (uint8_t)word;
10496 else
10497 *data = 0;
10498
10499 return status;
10500 }
10501
10502 /******************************************************************************
10503 * Reads a word from the NVM using the ICH8 flash access registers.
10504 *
10505 * sc - pointer to wm_hw structure
10506 * index - The starting byte index of the word to read.
10507 * data - Pointer to a word to store the value read.
10508 *****************************************************************************/
10509 static int32_t
10510 wm_read_ich8_word(struct wm_softc *sc, uint32_t index, uint16_t *data)
10511 {
10512 int32_t status;
10513 uint32_t word = 0;
10514
10515 status = wm_read_ich8_data(sc, index, 2, &word);
10516 if (status == 0)
10517 *data = (uint16_t)word;
10518 else
10519 *data = 0;
10520
10521 return status;
10522 }
10523
10524 /******************************************************************************
10525 * Reads a dword from the NVM using the ICH8 flash access registers.
10526 *
10527 * sc - pointer to wm_hw structure
10528 * index - The starting byte index of the word to read.
10529 * data - Pointer to a word to store the value read.
10530 *****************************************************************************/
10531 static int32_t
10532 wm_read_ich8_dword(struct wm_softc *sc, uint32_t index, uint32_t *data)
10533 {
10534 int32_t status;
10535
10536 status = wm_read_ich8_data(sc, index, 4, data);
10537 return status;
10538 }
10539
10540 /******************************************************************************
10541 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
10542 * register.
10543 *
10544 * sc - Struct containing variables accessed by shared code
10545 * offset - offset of word in the EEPROM to read
10546 * data - word read from the EEPROM
10547 * words - number of words to read
10548 *****************************************************************************/
10549 static int
10550 wm_nvm_read_ich8(struct wm_softc *sc, int offset, int words, uint16_t *data)
10551 {
10552 int32_t error = 0;
10553 uint32_t flash_bank = 0;
10554 uint32_t act_offset = 0;
10555 uint32_t bank_offset = 0;
10556 uint16_t word = 0;
10557 uint16_t i = 0;
10558
10559 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
10560 device_xname(sc->sc_dev), __func__));
10561
10562 /*
10563 * We need to know which is the valid flash bank. In the event
10564 * that we didn't allocate eeprom_shadow_ram, we may not be
10565 * managing flash_bank. So it cannot be trusted and needs
10566 * to be updated with each read.
10567 */
10568 error = wm_nvm_valid_bank_detect_ich8lan(sc, &flash_bank);
10569 if (error) {
10570 DPRINTF(WM_DEBUG_NVM, ("%s: failed to detect NVM bank\n",
10571 device_xname(sc->sc_dev)));
10572 flash_bank = 0;
10573 }
10574
10575 /*
10576 * Adjust offset appropriately if we're on bank 1 - adjust for word
10577 * size
10578 */
10579 bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
10580
10581 error = wm_get_swfwhw_semaphore(sc);
10582 if (error) {
10583 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
10584 __func__);
10585 return error;
10586 }
10587
10588 for (i = 0; i < words; i++) {
10589 /* The NVM part needs a byte offset, hence * 2 */
10590 act_offset = bank_offset + ((offset + i) * 2);
10591 error = wm_read_ich8_word(sc, act_offset, &word);
10592 if (error) {
10593 aprint_error_dev(sc->sc_dev,
10594 "%s: failed to read NVM\n", __func__);
10595 break;
10596 }
10597 data[i] = word;
10598 }
10599
10600 wm_put_swfwhw_semaphore(sc);
10601 return error;
10602 }
10603
10604 /******************************************************************************
10605 * Reads a 16 bit word or words from the EEPROM using the SPT's flash access
10606 * register.
10607 *
10608 * sc - Struct containing variables accessed by shared code
10609 * offset - offset of word in the EEPROM to read
10610 * data - word read from the EEPROM
10611 * words - number of words to read
10612 *****************************************************************************/
10613 static int
10614 wm_nvm_read_spt(struct wm_softc *sc, int offset, int words, uint16_t *data)
10615 {
10616 int32_t error = 0;
10617 uint32_t flash_bank = 0;
10618 uint32_t act_offset = 0;
10619 uint32_t bank_offset = 0;
10620 uint32_t dword = 0;
10621 uint16_t i = 0;
10622
10623 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
10624 device_xname(sc->sc_dev), __func__));
10625
10626 /*
10627 * We need to know which is the valid flash bank. In the event
10628 * that we didn't allocate eeprom_shadow_ram, we may not be
10629 * managing flash_bank. So it cannot be trusted and needs
10630 * to be updated with each read.
10631 */
10632 error = wm_nvm_valid_bank_detect_ich8lan(sc, &flash_bank);
10633 if (error) {
10634 DPRINTF(WM_DEBUG_NVM, ("%s: failed to detect NVM bank\n",
10635 device_xname(sc->sc_dev)));
10636 flash_bank = 0;
10637 }
10638
10639 /*
10640 * Adjust offset appropriately if we're on bank 1 - adjust for word
10641 * size
10642 */
10643 bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
10644
10645 error = wm_get_swfwhw_semaphore(sc);
10646 if (error) {
10647 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
10648 __func__);
10649 return error;
10650 }
10651
10652 for (i = 0; i < words; i++) {
10653 /* The NVM part needs a byte offset, hence * 2 */
10654 act_offset = bank_offset + ((offset + i) * 2);
10655 /* but we must read dword aligned, so mask ... */
10656 error = wm_read_ich8_dword(sc, act_offset & ~0x3, &dword);
10657 if (error) {
10658 aprint_error_dev(sc->sc_dev,
10659 "%s: failed to read NVM\n", __func__);
10660 break;
10661 }
10662 /* ... and pick out low or high word */
10663 if ((act_offset & 0x2) == 0)
10664 data[i] = (uint16_t)(dword & 0xFFFF);
10665 else
10666 data[i] = (uint16_t)((dword >> 16) & 0xFFFF);
10667 }
10668
10669 wm_put_swfwhw_semaphore(sc);
10670 return error;
10671 }
10672
10673 /* iNVM */
10674
10675 static int
10676 wm_nvm_read_word_invm(struct wm_softc *sc, uint16_t address, uint16_t *data)
10677 {
10678 int32_t rv = 0;
10679 uint32_t invm_dword;
10680 uint16_t i;
10681 uint8_t record_type, word_address;
10682
10683 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
10684 device_xname(sc->sc_dev), __func__));
10685
10686 for (i = 0; i < INVM_SIZE; i++) {
10687 invm_dword = CSR_READ(sc, WM_INVM_DATA_REG(i));
10688 /* Get record type */
10689 record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
10690 if (record_type == INVM_UNINITIALIZED_STRUCTURE)
10691 break;
10692 if (record_type == INVM_CSR_AUTOLOAD_STRUCTURE)
10693 i += INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
10694 if (record_type == INVM_RSA_KEY_SHA256_STRUCTURE)
10695 i += INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
10696 if (record_type == INVM_WORD_AUTOLOAD_STRUCTURE) {
10697 word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
10698 if (word_address == address) {
10699 *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
10700 rv = 0;
10701 break;
10702 }
10703 }
10704 }
10705
10706 return rv;
10707 }
10708
10709 static int
10710 wm_nvm_read_invm(struct wm_softc *sc, int offset, int words, uint16_t *data)
10711 {
10712 int rv = 0;
10713 int i;
10714
10715 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
10716 device_xname(sc->sc_dev), __func__));
10717
10718 for (i = 0; i < words; i++) {
10719 switch (offset + i) {
10720 case NVM_OFF_MACADDR:
10721 case NVM_OFF_MACADDR1:
10722 case NVM_OFF_MACADDR2:
10723 rv = wm_nvm_read_word_invm(sc, offset + i, &data[i]);
10724 if (rv != 0) {
10725 data[i] = 0xffff;
10726 rv = -1;
10727 }
10728 break;
10729 case NVM_OFF_CFG2:
10730 rv = wm_nvm_read_word_invm(sc, offset, data);
10731 if (rv != 0) {
10732 *data = NVM_INIT_CTRL_2_DEFAULT_I211;
10733 rv = 0;
10734 }
10735 break;
10736 case NVM_OFF_CFG4:
10737 rv = wm_nvm_read_word_invm(sc, offset, data);
10738 if (rv != 0) {
10739 *data = NVM_INIT_CTRL_4_DEFAULT_I211;
10740 rv = 0;
10741 }
10742 break;
10743 case NVM_OFF_LED_1_CFG:
10744 rv = wm_nvm_read_word_invm(sc, offset, data);
10745 if (rv != 0) {
10746 *data = NVM_LED_1_CFG_DEFAULT_I211;
10747 rv = 0;
10748 }
10749 break;
10750 case NVM_OFF_LED_0_2_CFG:
10751 rv = wm_nvm_read_word_invm(sc, offset, data);
10752 if (rv != 0) {
10753 *data = NVM_LED_0_2_CFG_DEFAULT_I211;
10754 rv = 0;
10755 }
10756 break;
10757 case NVM_OFF_ID_LED_SETTINGS:
10758 rv = wm_nvm_read_word_invm(sc, offset, data);
10759 if (rv != 0) {
10760 *data = ID_LED_RESERVED_FFFF;
10761 rv = 0;
10762 }
10763 break;
10764 default:
10765 DPRINTF(WM_DEBUG_NVM,
10766 ("NVM word 0x%02x is not mapped.\n", offset));
10767 *data = NVM_RESERVED_WORD;
10768 break;
10769 }
10770 }
10771
10772 return rv;
10773 }
10774
10775 /* Lock, detecting NVM type, validate checksum, version and read */
10776
10777 /*
10778 * wm_nvm_acquire:
10779 *
10780 * Perform the EEPROM handshake required on some chips.
10781 */
10782 static int
10783 wm_nvm_acquire(struct wm_softc *sc)
10784 {
10785 uint32_t reg;
10786 int x;
10787 int ret = 0;
10788
10789 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
10790 device_xname(sc->sc_dev), __func__));
10791
10792 if (sc->sc_type >= WM_T_ICH8) {
10793 ret = wm_get_nvm_ich8lan(sc);
10794 } else if (sc->sc_flags & WM_F_LOCK_EXTCNF) {
10795 ret = wm_get_swfwhw_semaphore(sc);
10796 } else if (sc->sc_flags & WM_F_LOCK_SWFW) {
10797 /* This will also do wm_get_swsm_semaphore() if needed */
10798 ret = wm_get_swfw_semaphore(sc, SWFW_EEP_SM);
10799 } else if (sc->sc_flags & WM_F_LOCK_SWSM) {
10800 ret = wm_get_swsm_semaphore(sc);
10801 }
10802
10803 if (ret) {
10804 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
10805 __func__);
10806 return 1;
10807 }
10808
10809 if (sc->sc_flags & WM_F_LOCK_EECD) {
10810 reg = CSR_READ(sc, WMREG_EECD);
10811
10812 /* Request EEPROM access. */
10813 reg |= EECD_EE_REQ;
10814 CSR_WRITE(sc, WMREG_EECD, reg);
10815
10816 /* ..and wait for it to be granted. */
10817 for (x = 0; x < 1000; x++) {
10818 reg = CSR_READ(sc, WMREG_EECD);
10819 if (reg & EECD_EE_GNT)
10820 break;
10821 delay(5);
10822 }
10823 if ((reg & EECD_EE_GNT) == 0) {
10824 aprint_error_dev(sc->sc_dev,
10825 "could not acquire EEPROM GNT\n");
10826 reg &= ~EECD_EE_REQ;
10827 CSR_WRITE(sc, WMREG_EECD, reg);
10828 if (sc->sc_flags & WM_F_LOCK_EXTCNF)
10829 wm_put_swfwhw_semaphore(sc);
10830 if (sc->sc_flags & WM_F_LOCK_SWFW)
10831 wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
10832 else if (sc->sc_flags & WM_F_LOCK_SWSM)
10833 wm_put_swsm_semaphore(sc);
10834 return 1;
10835 }
10836 }
10837
10838 return 0;
10839 }
10840
10841 /*
10842 * wm_nvm_release:
10843 *
10844 * Release the EEPROM mutex.
10845 */
10846 static void
10847 wm_nvm_release(struct wm_softc *sc)
10848 {
10849 uint32_t reg;
10850
10851 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
10852 device_xname(sc->sc_dev), __func__));
10853
10854 if (sc->sc_flags & WM_F_LOCK_EECD) {
10855 reg = CSR_READ(sc, WMREG_EECD);
10856 reg &= ~EECD_EE_REQ;
10857 CSR_WRITE(sc, WMREG_EECD, reg);
10858 }
10859
10860 if (sc->sc_type >= WM_T_ICH8) {
10861 wm_put_nvm_ich8lan(sc);
10862 } else if (sc->sc_flags & WM_F_LOCK_EXTCNF)
10863 wm_put_swfwhw_semaphore(sc);
10864 if (sc->sc_flags & WM_F_LOCK_SWFW)
10865 wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
10866 else if (sc->sc_flags & WM_F_LOCK_SWSM)
10867 wm_put_swsm_semaphore(sc);
10868 }
10869
10870 static int
10871 wm_nvm_is_onboard_eeprom(struct wm_softc *sc)
10872 {
10873 uint32_t eecd = 0;
10874
10875 if (sc->sc_type == WM_T_82573 || sc->sc_type == WM_T_82574
10876 || sc->sc_type == WM_T_82583) {
10877 eecd = CSR_READ(sc, WMREG_EECD);
10878
10879 /* Isolate bits 15 & 16 */
10880 eecd = ((eecd >> 15) & 0x03);
10881
10882 /* If both bits are set, device is Flash type */
10883 if (eecd == 0x03)
10884 return 0;
10885 }
10886 return 1;
10887 }
10888
10889 static int
10890 wm_nvm_get_flash_presence_i210(struct wm_softc *sc)
10891 {
10892 uint32_t eec;
10893
10894 eec = CSR_READ(sc, WMREG_EEC);
10895 if ((eec & EEC_FLASH_DETECTED) != 0)
10896 return 1;
10897
10898 return 0;
10899 }
10900
10901 /*
10902 * wm_nvm_validate_checksum
10903 *
10904 * The checksum is defined as the sum of the first 64 (16 bit) words.
10905 */
10906 static int
10907 wm_nvm_validate_checksum(struct wm_softc *sc)
10908 {
10909 uint16_t checksum;
10910 uint16_t eeprom_data;
10911 #ifdef WM_DEBUG
10912 uint16_t csum_wordaddr, valid_checksum;
10913 #endif
10914 int i;
10915
10916 checksum = 0;
10917
10918 /* Don't check for I211 */
10919 if (sc->sc_type == WM_T_I211)
10920 return 0;
10921
10922 #ifdef WM_DEBUG
10923 if (sc->sc_type == WM_T_PCH_LPT) {
10924 csum_wordaddr = NVM_OFF_COMPAT;
10925 valid_checksum = NVM_COMPAT_VALID_CHECKSUM;
10926 } else {
10927 csum_wordaddr = NVM_OFF_FUTURE_INIT_WORD1;
10928 valid_checksum = NVM_FUTURE_INIT_WORD1_VALID_CHECKSUM;
10929 }
10930
10931 /* Dump EEPROM image for debug */
10932 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
10933 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
10934 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) {
10935 /* XXX PCH_SPT? */
10936 wm_nvm_read(sc, csum_wordaddr, 1, &eeprom_data);
10937 if ((eeprom_data & valid_checksum) == 0) {
10938 DPRINTF(WM_DEBUG_NVM,
10939 ("%s: NVM need to be updated (%04x != %04x)\n",
10940 device_xname(sc->sc_dev), eeprom_data,
10941 valid_checksum));
10942 }
10943 }
10944
10945 if ((wm_debug & WM_DEBUG_NVM) != 0) {
10946 printf("%s: NVM dump:\n", device_xname(sc->sc_dev));
10947 for (i = 0; i < NVM_SIZE; i++) {
10948 if (wm_nvm_read(sc, i, 1, &eeprom_data))
10949 printf("XXXX ");
10950 else
10951 printf("%04hx ", eeprom_data);
10952 if (i % 8 == 7)
10953 printf("\n");
10954 }
10955 }
10956
10957 #endif /* WM_DEBUG */
10958
10959 for (i = 0; i < NVM_SIZE; i++) {
10960 if (wm_nvm_read(sc, i, 1, &eeprom_data))
10961 return 1;
10962 checksum += eeprom_data;
10963 }
10964
10965 if (checksum != (uint16_t) NVM_CHECKSUM) {
10966 #ifdef WM_DEBUG
10967 printf("%s: NVM checksum mismatch (%04x != %04x)\n",
10968 device_xname(sc->sc_dev), checksum, NVM_CHECKSUM);
10969 #endif
10970 }
10971
10972 return 0;
10973 }
10974
10975 static void
10976 wm_nvm_version_invm(struct wm_softc *sc)
10977 {
10978 uint32_t dword;
10979
10980 /*
10981 * Linux's code to decode version is very strange, so we don't
10982 * obey that algorithm and just use word 61 as the document.
10983 * Perhaps it's not perfect though...
10984 *
10985 * Example:
10986 *
10987 * Word61: 00800030 -> Version 0.6 (I211 spec update notes about 0.6)
10988 */
10989 dword = CSR_READ(sc, WM_INVM_DATA_REG(61));
10990 dword = __SHIFTOUT(dword, INVM_VER_1);
10991 sc->sc_nvm_ver_major = __SHIFTOUT(dword, INVM_MAJOR);
10992 sc->sc_nvm_ver_minor = __SHIFTOUT(dword, INVM_MINOR);
10993 }
10994
10995 static void
10996 wm_nvm_version(struct wm_softc *sc)
10997 {
10998 uint16_t major, minor, build, patch;
10999 uint16_t uid0, uid1;
11000 uint16_t nvm_data;
11001 uint16_t off;
11002 bool check_version = false;
11003 bool check_optionrom = false;
11004 bool have_build = false;
11005
11006 /*
11007 * Version format:
11008 *
11009 * XYYZ
11010 * X0YZ
11011 * X0YY
11012 *
11013 * Example:
11014 *
11015 * 82571 0x50a2 5.10.2? (the spec update notes about 5.6-5.10)
11016 * 82571 0x50a6 5.10.6?
11017 * 82572 0x506a 5.6.10?
11018 * 82572EI 0x5069 5.6.9?
11019 * 82574L 0x1080 1.8.0? (the spec update notes about 2.1.4)
11020 * 0x2013 2.1.3?
11021 * 82583 0x10a0 1.10.0? (document says it's default vaule)
11022 */
11023 wm_nvm_read(sc, NVM_OFF_IMAGE_UID1, 1, &uid1);
11024 switch (sc->sc_type) {
11025 case WM_T_82571:
11026 case WM_T_82572:
11027 case WM_T_82574:
11028 case WM_T_82583:
11029 check_version = true;
11030 check_optionrom = true;
11031 have_build = true;
11032 break;
11033 case WM_T_82575:
11034 case WM_T_82576:
11035 case WM_T_82580:
11036 if ((uid1 & NVM_MAJOR_MASK) != NVM_UID_VALID)
11037 check_version = true;
11038 break;
11039 case WM_T_I211:
11040 wm_nvm_version_invm(sc);
11041 goto printver;
11042 case WM_T_I210:
11043 if (!wm_nvm_get_flash_presence_i210(sc)) {
11044 wm_nvm_version_invm(sc);
11045 goto printver;
11046 }
11047 /* FALLTHROUGH */
11048 case WM_T_I350:
11049 case WM_T_I354:
11050 check_version = true;
11051 check_optionrom = true;
11052 break;
11053 default:
11054 return;
11055 }
11056 if (check_version) {
11057 wm_nvm_read(sc, NVM_OFF_VERSION, 1, &nvm_data);
11058 major = (nvm_data & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT;
11059 if (have_build || ((nvm_data & 0x0f00) != 0x0000)) {
11060 minor = (nvm_data & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT;
11061 build = nvm_data & NVM_BUILD_MASK;
11062 have_build = true;
11063 } else
11064 minor = nvm_data & 0x00ff;
11065
11066 /* Decimal */
11067 minor = (minor / 16) * 10 + (minor % 16);
11068 sc->sc_nvm_ver_major = major;
11069 sc->sc_nvm_ver_minor = minor;
11070
11071 printver:
11072 aprint_verbose(", version %d.%d", sc->sc_nvm_ver_major,
11073 sc->sc_nvm_ver_minor);
11074 if (have_build) {
11075 sc->sc_nvm_ver_build = build;
11076 aprint_verbose(".%d", build);
11077 }
11078 }
11079 if (check_optionrom) {
11080 wm_nvm_read(sc, NVM_OFF_COMB_VER_PTR, 1, &off);
11081 /* Option ROM Version */
11082 if ((off != 0x0000) && (off != 0xffff)) {
11083 off += NVM_COMBO_VER_OFF;
11084 wm_nvm_read(sc, off + 1, 1, &uid1);
11085 wm_nvm_read(sc, off, 1, &uid0);
11086 if ((uid0 != 0) && (uid0 != 0xffff)
11087 && (uid1 != 0) && (uid1 != 0xffff)) {
11088 /* 16bits */
11089 major = uid0 >> 8;
11090 build = (uid0 << 8) | (uid1 >> 8);
11091 patch = uid1 & 0x00ff;
11092 aprint_verbose(", option ROM Version %d.%d.%d",
11093 major, build, patch);
11094 }
11095 }
11096 }
11097
11098 wm_nvm_read(sc, NVM_OFF_IMAGE_UID0, 1, &uid0);
11099 aprint_verbose(", Image Unique ID %08x", (uid1 << 16) | uid0);
11100 }
11101
11102 /*
11103 * wm_nvm_read:
11104 *
11105 * Read data from the serial EEPROM.
11106 */
11107 static int
11108 wm_nvm_read(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
11109 {
11110 int rv;
11111
11112 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
11113 device_xname(sc->sc_dev), __func__));
11114
11115 if (sc->sc_flags & WM_F_EEPROM_INVALID)
11116 return 1;
11117
11118 if (wm_nvm_acquire(sc))
11119 return 1;
11120
11121 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
11122 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
11123 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT))
11124 rv = wm_nvm_read_ich8(sc, word, wordcnt, data);
11125 else if (sc->sc_type == WM_T_PCH_SPT)
11126 rv = wm_nvm_read_spt(sc, word, wordcnt, data);
11127 else if (sc->sc_flags & WM_F_EEPROM_INVM)
11128 rv = wm_nvm_read_invm(sc, word, wordcnt, data);
11129 else if (sc->sc_flags & WM_F_EEPROM_EERDEEWR)
11130 rv = wm_nvm_read_eerd(sc, word, wordcnt, data);
11131 else if (sc->sc_flags & WM_F_EEPROM_SPI)
11132 rv = wm_nvm_read_spi(sc, word, wordcnt, data);
11133 else
11134 rv = wm_nvm_read_uwire(sc, word, wordcnt, data);
11135
11136 wm_nvm_release(sc);
11137 return rv;
11138 }
11139
11140 /*
11141 * Hardware semaphores.
11142 * Very complexed...
11143 */
11144
11145 static int
11146 wm_get_null(struct wm_softc *sc)
11147 {
11148
11149 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
11150 device_xname(sc->sc_dev), __func__));
11151 return 0;
11152 }
11153
11154 static void
11155 wm_put_null(struct wm_softc *sc)
11156 {
11157
11158 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
11159 device_xname(sc->sc_dev), __func__));
11160 return;
11161 }
11162
11163 /*
11164 * Get hardware semaphore.
11165 * Same as e1000_get_hw_semaphore_generic()
11166 */
11167 static int
11168 wm_get_swsm_semaphore(struct wm_softc *sc)
11169 {
11170 int32_t timeout;
11171 uint32_t swsm;
11172
11173 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
11174 device_xname(sc->sc_dev), __func__));
11175 KASSERT(sc->sc_nvm_wordsize > 0);
11176
11177 /* Get the SW semaphore. */
11178 timeout = sc->sc_nvm_wordsize + 1;
11179 while (timeout) {
11180 swsm = CSR_READ(sc, WMREG_SWSM);
11181
11182 if ((swsm & SWSM_SMBI) == 0)
11183 break;
11184
11185 delay(50);
11186 timeout--;
11187 }
11188
11189 if (timeout == 0) {
11190 aprint_error_dev(sc->sc_dev,
11191 "could not acquire SWSM SMBI\n");
11192 return 1;
11193 }
11194
11195 /* Get the FW semaphore. */
11196 timeout = sc->sc_nvm_wordsize + 1;
11197 while (timeout) {
11198 swsm = CSR_READ(sc, WMREG_SWSM);
11199 swsm |= SWSM_SWESMBI;
11200 CSR_WRITE(sc, WMREG_SWSM, swsm);
11201 /* If we managed to set the bit we got the semaphore. */
11202 swsm = CSR_READ(sc, WMREG_SWSM);
11203 if (swsm & SWSM_SWESMBI)
11204 break;
11205
11206 delay(50);
11207 timeout--;
11208 }
11209
11210 if (timeout == 0) {
11211 aprint_error_dev(sc->sc_dev,
11212 "could not acquire SWSM SWESMBI\n");
11213 /* Release semaphores */
11214 wm_put_swsm_semaphore(sc);
11215 return 1;
11216 }
11217 return 0;
11218 }
11219
11220 /*
11221 * Put hardware semaphore.
11222 * Same as e1000_put_hw_semaphore_generic()
11223 */
11224 static void
11225 wm_put_swsm_semaphore(struct wm_softc *sc)
11226 {
11227 uint32_t swsm;
11228
11229 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
11230 device_xname(sc->sc_dev), __func__));
11231
11232 swsm = CSR_READ(sc, WMREG_SWSM);
11233 swsm &= ~(SWSM_SMBI | SWSM_SWESMBI);
11234 CSR_WRITE(sc, WMREG_SWSM, swsm);
11235 }
11236
11237 /*
11238 * Get SW/FW semaphore.
11239 * Same as e1000_acquire_swfw_sync_82575().
11240 */
11241 static int
11242 wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
11243 {
11244 uint32_t swfw_sync;
11245 uint32_t swmask = mask << SWFW_SOFT_SHIFT;
11246 uint32_t fwmask = mask << SWFW_FIRM_SHIFT;
11247 int timeout = 200;
11248
11249 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
11250 device_xname(sc->sc_dev), __func__));
11251 KASSERT((sc->sc_flags & WM_F_LOCK_SWSM) != 0);
11252
11253 for (timeout = 0; timeout < 200; timeout++) {
11254 if (sc->sc_flags & WM_F_LOCK_SWSM) {
11255 if (wm_get_swsm_semaphore(sc)) {
11256 aprint_error_dev(sc->sc_dev,
11257 "%s: failed to get semaphore\n",
11258 __func__);
11259 return 1;
11260 }
11261 }
11262 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
11263 if ((swfw_sync & (swmask | fwmask)) == 0) {
11264 swfw_sync |= swmask;
11265 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
11266 if (sc->sc_flags & WM_F_LOCK_SWSM)
11267 wm_put_swsm_semaphore(sc);
11268 return 0;
11269 }
11270 if (sc->sc_flags & WM_F_LOCK_SWSM)
11271 wm_put_swsm_semaphore(sc);
11272 delay(5000);
11273 }
11274 printf("%s: failed to get swfw semaphore mask 0x%x swfw 0x%x\n",
11275 device_xname(sc->sc_dev), mask, swfw_sync);
11276 return 1;
11277 }
11278
11279 static void
11280 wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
11281 {
11282 uint32_t swfw_sync;
11283
11284 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
11285 device_xname(sc->sc_dev), __func__));
11286 KASSERT((sc->sc_flags & WM_F_LOCK_SWSM) != 0);
11287
11288 if (sc->sc_flags & WM_F_LOCK_SWSM) {
11289 while (wm_get_swsm_semaphore(sc) != 0)
11290 continue;
11291 }
11292 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
11293 swfw_sync &= ~(mask << SWFW_SOFT_SHIFT);
11294 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
11295 if (sc->sc_flags & WM_F_LOCK_SWSM)
11296 wm_put_swsm_semaphore(sc);
11297 }
11298
11299 static int
11300 wm_get_phy_82575(struct wm_softc *sc)
11301 {
11302
11303 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
11304 device_xname(sc->sc_dev), __func__));
11305 return wm_get_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
11306 }
11307
11308 static void
11309 wm_put_phy_82575(struct wm_softc *sc)
11310 {
11311
11312 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
11313 device_xname(sc->sc_dev), __func__));
11314 return wm_put_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
11315 }
11316
11317 static int
11318 wm_get_swfwhw_semaphore(struct wm_softc *sc)
11319 {
11320 uint32_t ext_ctrl;
11321 int timeout = 200;
11322
11323 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
11324 device_xname(sc->sc_dev), __func__));
11325
11326 mutex_enter(sc->sc_ich_phymtx); /* Use PHY mtx for both PHY and NVM */
11327 for (timeout = 0; timeout < 200; timeout++) {
11328 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
11329 ext_ctrl |= EXTCNFCTR_MDIO_SW_OWNERSHIP;
11330 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
11331
11332 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
11333 if (ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP)
11334 return 0;
11335 delay(5000);
11336 }
11337 printf("%s: failed to get swfwhw semaphore ext_ctrl 0x%x\n",
11338 device_xname(sc->sc_dev), ext_ctrl);
11339 mutex_exit(sc->sc_ich_phymtx); /* Use PHY mtx for both PHY and NVM */
11340 return 1;
11341 }
11342
11343 static void
11344 wm_put_swfwhw_semaphore(struct wm_softc *sc)
11345 {
11346 uint32_t ext_ctrl;
11347
11348 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
11349 device_xname(sc->sc_dev), __func__));
11350
11351 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
11352 ext_ctrl &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
11353 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
11354
11355 mutex_exit(sc->sc_ich_phymtx); /* Use PHY mtx for both PHY and NVM */
11356 }
11357
11358 static int
11359 wm_get_swflag_ich8lan(struct wm_softc *sc)
11360 {
11361 uint32_t ext_ctrl;
11362 int timeout;
11363
11364 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
11365 device_xname(sc->sc_dev), __func__));
11366 mutex_enter(sc->sc_ich_phymtx);
11367 for (timeout = 0; timeout < WM_PHY_CFG_TIMEOUT; timeout++) {
11368 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
11369 if ((ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP) == 0)
11370 break;
11371 delay(1000);
11372 }
11373 if (timeout >= WM_PHY_CFG_TIMEOUT) {
11374 printf("%s: SW has already locked the resource\n",
11375 device_xname(sc->sc_dev));
11376 goto out;
11377 }
11378
11379 ext_ctrl |= EXTCNFCTR_MDIO_SW_OWNERSHIP;
11380 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
11381 for (timeout = 0; timeout < 1000; timeout++) {
11382 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
11383 if (ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP)
11384 break;
11385 delay(1000);
11386 }
11387 if (timeout >= 1000) {
11388 printf("%s: failed to acquire semaphore\n",
11389 device_xname(sc->sc_dev));
11390 ext_ctrl &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
11391 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
11392 goto out;
11393 }
11394 return 0;
11395
11396 out:
11397 mutex_exit(sc->sc_ich_phymtx);
11398 return 1;
11399 }
11400
11401 static void
11402 wm_put_swflag_ich8lan(struct wm_softc *sc)
11403 {
11404 uint32_t ext_ctrl;
11405
11406 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
11407 device_xname(sc->sc_dev), __func__));
11408 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
11409 if (ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP) {
11410 ext_ctrl &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
11411 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
11412 } else {
11413 printf("%s: Semaphore unexpectedly released\n",
11414 device_xname(sc->sc_dev));
11415 }
11416
11417 mutex_exit(sc->sc_ich_phymtx);
11418 }
11419
11420 static int
11421 wm_get_nvm_ich8lan(struct wm_softc *sc)
11422 {
11423
11424 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
11425 device_xname(sc->sc_dev), __func__));
11426 mutex_enter(sc->sc_ich_nvmmtx);
11427
11428 return 0;
11429 }
11430
11431 static void
11432 wm_put_nvm_ich8lan(struct wm_softc *sc)
11433 {
11434
11435 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
11436 device_xname(sc->sc_dev), __func__));
11437 mutex_exit(sc->sc_ich_nvmmtx);
11438 }
11439
11440 static int
11441 wm_get_hw_semaphore_82573(struct wm_softc *sc)
11442 {
11443 int i = 0;
11444 uint32_t reg;
11445
11446 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
11447 device_xname(sc->sc_dev), __func__));
11448
11449 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
11450 do {
11451 CSR_WRITE(sc, WMREG_EXTCNFCTR,
11452 reg | EXTCNFCTR_MDIO_SW_OWNERSHIP);
11453 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
11454 if ((reg & EXTCNFCTR_MDIO_SW_OWNERSHIP) != 0)
11455 break;
11456 delay(2*1000);
11457 i++;
11458 } while (i < WM_MDIO_OWNERSHIP_TIMEOUT);
11459
11460 if (i == WM_MDIO_OWNERSHIP_TIMEOUT) {
11461 wm_put_hw_semaphore_82573(sc);
11462 log(LOG_ERR, "%s: Driver can't access the PHY\n",
11463 device_xname(sc->sc_dev));
11464 return -1;
11465 }
11466
11467 return 0;
11468 }
11469
11470 static void
11471 wm_put_hw_semaphore_82573(struct wm_softc *sc)
11472 {
11473 uint32_t reg;
11474
11475 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
11476 device_xname(sc->sc_dev), __func__));
11477
11478 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
11479 reg &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
11480 CSR_WRITE(sc, WMREG_EXTCNFCTR, reg);
11481 }
11482
11483 /*
11484 * Management mode and power management related subroutines.
11485 * BMC, AMT, suspend/resume and EEE.
11486 */
11487
11488 #ifdef WM_WOL
11489 static int
11490 wm_check_mng_mode(struct wm_softc *sc)
11491 {
11492 int rv;
11493
11494 switch (sc->sc_type) {
11495 case WM_T_ICH8:
11496 case WM_T_ICH9:
11497 case WM_T_ICH10:
11498 case WM_T_PCH:
11499 case WM_T_PCH2:
11500 case WM_T_PCH_LPT:
11501 case WM_T_PCH_SPT:
11502 rv = wm_check_mng_mode_ich8lan(sc);
11503 break;
11504 case WM_T_82574:
11505 case WM_T_82583:
11506 rv = wm_check_mng_mode_82574(sc);
11507 break;
11508 case WM_T_82571:
11509 case WM_T_82572:
11510 case WM_T_82573:
11511 case WM_T_80003:
11512 rv = wm_check_mng_mode_generic(sc);
11513 break;
11514 default:
11515 /* noting to do */
11516 rv = 0;
11517 break;
11518 }
11519
11520 return rv;
11521 }
11522
11523 static int
11524 wm_check_mng_mode_ich8lan(struct wm_softc *sc)
11525 {
11526 uint32_t fwsm;
11527
11528 fwsm = CSR_READ(sc, WMREG_FWSM);
11529
11530 if (((fwsm & FWSM_FW_VALID) != 0)
11531 && (__SHIFTOUT(fwsm, FWSM_MODE) == MNG_ICH_IAMT_MODE))
11532 return 1;
11533
11534 return 0;
11535 }
11536
11537 static int
11538 wm_check_mng_mode_82574(struct wm_softc *sc)
11539 {
11540 uint16_t data;
11541
11542 wm_nvm_read(sc, NVM_OFF_CFG2, 1, &data);
11543
11544 if ((data & NVM_CFG2_MNGM_MASK) != 0)
11545 return 1;
11546
11547 return 0;
11548 }
11549
11550 static int
11551 wm_check_mng_mode_generic(struct wm_softc *sc)
11552 {
11553 uint32_t fwsm;
11554
11555 fwsm = CSR_READ(sc, WMREG_FWSM);
11556
11557 if (__SHIFTOUT(fwsm, FWSM_MODE) == MNG_IAMT_MODE)
11558 return 1;
11559
11560 return 0;
11561 }
11562 #endif /* WM_WOL */
11563
11564 static int
11565 wm_enable_mng_pass_thru(struct wm_softc *sc)
11566 {
11567 uint32_t manc, fwsm, factps;
11568
11569 if ((sc->sc_flags & WM_F_ASF_FIRMWARE_PRES) == 0)
11570 return 0;
11571
11572 manc = CSR_READ(sc, WMREG_MANC);
11573
11574 DPRINTF(WM_DEBUG_MANAGE, ("%s: MANC (%08x)\n",
11575 device_xname(sc->sc_dev), manc));
11576 if ((manc & MANC_RECV_TCO_EN) == 0)
11577 return 0;
11578
11579 if ((sc->sc_flags & WM_F_ARC_SUBSYS_VALID) != 0) {
11580 fwsm = CSR_READ(sc, WMREG_FWSM);
11581 factps = CSR_READ(sc, WMREG_FACTPS);
11582 if (((factps & FACTPS_MNGCG) == 0)
11583 && (__SHIFTOUT(fwsm, FWSM_MODE) == MNG_ICH_IAMT_MODE))
11584 return 1;
11585 } else if ((sc->sc_type == WM_T_82574) || (sc->sc_type == WM_T_82583)){
11586 uint16_t data;
11587
11588 factps = CSR_READ(sc, WMREG_FACTPS);
11589 wm_nvm_read(sc, NVM_OFF_CFG2, 1, &data);
11590 DPRINTF(WM_DEBUG_MANAGE, ("%s: FACTPS = %08x, CFG2=%04x\n",
11591 device_xname(sc->sc_dev), factps, data));
11592 if (((factps & FACTPS_MNGCG) == 0)
11593 && ((data & NVM_CFG2_MNGM_MASK)
11594 == (NVM_CFG2_MNGM_PT << NVM_CFG2_MNGM_SHIFT)))
11595 return 1;
11596 } else if (((manc & MANC_SMBUS_EN) != 0)
11597 && ((manc & MANC_ASF_EN) == 0))
11598 return 1;
11599
11600 return 0;
11601 }
11602
11603 static bool
11604 wm_phy_resetisblocked(struct wm_softc *sc)
11605 {
11606 bool blocked = false;
11607 uint32_t reg;
11608 int i = 0;
11609
11610 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
11611 device_xname(sc->sc_dev), __func__));
11612
11613 switch (sc->sc_type) {
11614 case WM_T_ICH8:
11615 case WM_T_ICH9:
11616 case WM_T_ICH10:
11617 case WM_T_PCH:
11618 case WM_T_PCH2:
11619 case WM_T_PCH_LPT:
11620 case WM_T_PCH_SPT:
11621 do {
11622 reg = CSR_READ(sc, WMREG_FWSM);
11623 if ((reg & FWSM_RSPCIPHY) == 0) {
11624 blocked = true;
11625 delay(10*1000);
11626 continue;
11627 }
11628 blocked = false;
11629 } while (blocked && (i++ < 30));
11630 return blocked;
11631 break;
11632 case WM_T_82571:
11633 case WM_T_82572:
11634 case WM_T_82573:
11635 case WM_T_82574:
11636 case WM_T_82583:
11637 case WM_T_80003:
11638 reg = CSR_READ(sc, WMREG_MANC);
11639 if ((reg & MANC_BLK_PHY_RST_ON_IDE) != 0)
11640 return true;
11641 else
11642 return false;
11643 break;
11644 default:
11645 /* no problem */
11646 break;
11647 }
11648
11649 return false;
11650 }
11651
11652 static void
11653 wm_get_hw_control(struct wm_softc *sc)
11654 {
11655 uint32_t reg;
11656
11657 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
11658 device_xname(sc->sc_dev), __func__));
11659
11660 switch (sc->sc_type) {
11661 case WM_T_82573:
11662 reg = CSR_READ(sc, WMREG_SWSM);
11663 CSR_WRITE(sc, WMREG_SWSM, reg | SWSM_DRV_LOAD);
11664 break;
11665 case WM_T_82571:
11666 case WM_T_82572:
11667 case WM_T_82574:
11668 case WM_T_82583:
11669 case WM_T_80003:
11670 case WM_T_ICH8:
11671 case WM_T_ICH9:
11672 case WM_T_ICH10:
11673 case WM_T_PCH:
11674 case WM_T_PCH2:
11675 case WM_T_PCH_LPT:
11676 case WM_T_PCH_SPT:
11677 reg = CSR_READ(sc, WMREG_CTRL_EXT);
11678 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_DRV_LOAD);
11679 break;
11680 default:
11681 break;
11682 }
11683 }
11684
11685 static void
11686 wm_release_hw_control(struct wm_softc *sc)
11687 {
11688 uint32_t reg;
11689
11690 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
11691 device_xname(sc->sc_dev), __func__));
11692
11693 if ((sc->sc_flags & WM_F_HAS_MANAGE) == 0)
11694 return;
11695
11696 if (sc->sc_type == WM_T_82573) {
11697 reg = CSR_READ(sc, WMREG_SWSM);
11698 reg &= ~SWSM_DRV_LOAD;
11699 CSR_WRITE(sc, WMREG_SWSM, reg & ~SWSM_DRV_LOAD);
11700 } else {
11701 reg = CSR_READ(sc, WMREG_CTRL_EXT);
11702 CSR_WRITE(sc, WMREG_CTRL_EXT, reg & ~CTRL_EXT_DRV_LOAD);
11703 }
11704 }
11705
11706 static void
11707 wm_gate_hw_phy_config_ich8lan(struct wm_softc *sc, bool gate)
11708 {
11709 uint32_t reg;
11710
11711 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
11712 device_xname(sc->sc_dev), __func__));
11713
11714 if (sc->sc_type < WM_T_PCH2)
11715 return;
11716
11717 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
11718
11719 if (gate)
11720 reg |= EXTCNFCTR_GATE_PHY_CFG;
11721 else
11722 reg &= ~EXTCNFCTR_GATE_PHY_CFG;
11723
11724 CSR_WRITE(sc, WMREG_EXTCNFCTR, reg);
11725 }
11726
11727 static void
11728 wm_smbustopci(struct wm_softc *sc)
11729 {
11730 uint32_t fwsm, reg;
11731
11732 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
11733 device_xname(sc->sc_dev), __func__));
11734
11735 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
11736 wm_gate_hw_phy_config_ich8lan(sc, true);
11737
11738 /* Acquire PHY semaphore */
11739 sc->phy.acquire(sc);
11740
11741 fwsm = CSR_READ(sc, WMREG_FWSM);
11742 if (((fwsm & FWSM_FW_VALID) == 0)
11743 && ((wm_phy_resetisblocked(sc) == false))) {
11744 if (sc->sc_type >= WM_T_PCH_LPT) {
11745 reg = CSR_READ(sc, WMREG_CTRL_EXT);
11746 reg |= CTRL_EXT_FORCE_SMBUS;
11747 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
11748 CSR_WRITE_FLUSH(sc);
11749 delay(50*1000);
11750 }
11751
11752 /* Toggle LANPHYPC */
11753 sc->sc_ctrl |= CTRL_LANPHYPC_OVERRIDE;
11754 sc->sc_ctrl &= ~CTRL_LANPHYPC_VALUE;
11755 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
11756 CSR_WRITE_FLUSH(sc);
11757 delay(1000);
11758 sc->sc_ctrl &= ~CTRL_LANPHYPC_OVERRIDE;
11759 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
11760 CSR_WRITE_FLUSH(sc);
11761 delay(50*1000);
11762
11763 if (sc->sc_type >= WM_T_PCH_LPT) {
11764 reg = CSR_READ(sc, WMREG_CTRL_EXT);
11765 reg &= ~CTRL_EXT_FORCE_SMBUS;
11766 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
11767 }
11768 }
11769
11770 /* Release semaphore */
11771 sc->phy.release(sc);
11772
11773 /*
11774 * Ungate automatic PHY configuration by hardware on non-managed 82579
11775 */
11776 if ((sc->sc_type == WM_T_PCH2) && ((fwsm & FWSM_FW_VALID) == 0))
11777 wm_gate_hw_phy_config_ich8lan(sc, false);
11778 }
11779
11780 static void
11781 wm_init_manageability(struct wm_softc *sc)
11782 {
11783
11784 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
11785 device_xname(sc->sc_dev), __func__));
11786 if (sc->sc_flags & WM_F_HAS_MANAGE) {
11787 uint32_t manc2h = CSR_READ(sc, WMREG_MANC2H);
11788 uint32_t manc = CSR_READ(sc, WMREG_MANC);
11789
11790 /* Disable hardware interception of ARP */
11791 manc &= ~MANC_ARP_EN;
11792
11793 /* Enable receiving management packets to the host */
11794 if (sc->sc_type >= WM_T_82571) {
11795 manc |= MANC_EN_MNG2HOST;
11796 manc2h |= MANC2H_PORT_623| MANC2H_PORT_624;
11797 CSR_WRITE(sc, WMREG_MANC2H, manc2h);
11798 }
11799
11800 CSR_WRITE(sc, WMREG_MANC, manc);
11801 }
11802 }
11803
11804 static void
11805 wm_release_manageability(struct wm_softc *sc)
11806 {
11807
11808 if (sc->sc_flags & WM_F_HAS_MANAGE) {
11809 uint32_t manc = CSR_READ(sc, WMREG_MANC);
11810
11811 manc |= MANC_ARP_EN;
11812 if (sc->sc_type >= WM_T_82571)
11813 manc &= ~MANC_EN_MNG2HOST;
11814
11815 CSR_WRITE(sc, WMREG_MANC, manc);
11816 }
11817 }
11818
11819 static void
11820 wm_get_wakeup(struct wm_softc *sc)
11821 {
11822
11823 /* 0: HAS_AMT, ARC_SUBSYS_VALID, ASF_FIRMWARE_PRES */
11824 switch (sc->sc_type) {
11825 case WM_T_82573:
11826 case WM_T_82583:
11827 sc->sc_flags |= WM_F_HAS_AMT;
11828 /* FALLTHROUGH */
11829 case WM_T_80003:
11830 case WM_T_82541:
11831 case WM_T_82547:
11832 case WM_T_82571:
11833 case WM_T_82572:
11834 case WM_T_82574:
11835 case WM_T_82575:
11836 case WM_T_82576:
11837 case WM_T_82580:
11838 case WM_T_I350:
11839 case WM_T_I354:
11840 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_MODE) != 0)
11841 sc->sc_flags |= WM_F_ARC_SUBSYS_VALID;
11842 sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES;
11843 break;
11844 case WM_T_ICH8:
11845 case WM_T_ICH9:
11846 case WM_T_ICH10:
11847 case WM_T_PCH:
11848 case WM_T_PCH2:
11849 case WM_T_PCH_LPT:
11850 case WM_T_PCH_SPT: /* XXX only Q170 chipset? */
11851 sc->sc_flags |= WM_F_HAS_AMT;
11852 sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES;
11853 break;
11854 default:
11855 break;
11856 }
11857
11858 /* 1: HAS_MANAGE */
11859 if (wm_enable_mng_pass_thru(sc) != 0)
11860 sc->sc_flags |= WM_F_HAS_MANAGE;
11861
11862 #ifdef WM_DEBUG
11863 printf("\n");
11864 if ((sc->sc_flags & WM_F_HAS_AMT) != 0)
11865 printf("HAS_AMT,");
11866 if ((sc->sc_flags & WM_F_ARC_SUBSYS_VALID) != 0)
11867 printf("ARC_SUBSYS_VALID,");
11868 if ((sc->sc_flags & WM_F_ASF_FIRMWARE_PRES) != 0)
11869 printf("ASF_FIRMWARE_PRES,");
11870 if ((sc->sc_flags & WM_F_HAS_MANAGE) != 0)
11871 printf("HAS_MANAGE,");
11872 printf("\n");
11873 #endif
11874 /*
11875 * Note that the WOL flags is set after the resetting of the eeprom
11876 * stuff
11877 */
11878 }
11879
11880 #ifdef WM_WOL
11881 /* WOL in the newer chipset interfaces (pchlan) */
11882 static void
11883 wm_enable_phy_wakeup(struct wm_softc *sc)
11884 {
11885 #if 0
11886 uint16_t preg;
11887
11888 /* Copy MAC RARs to PHY RARs */
11889
11890 /* Copy MAC MTA to PHY MTA */
11891
11892 /* Configure PHY Rx Control register */
11893
11894 /* Enable PHY wakeup in MAC register */
11895
11896 /* Configure and enable PHY wakeup in PHY registers */
11897
11898 /* Activate PHY wakeup */
11899
11900 /* XXX */
11901 #endif
11902 }
11903
11904 /* Power down workaround on D3 */
11905 static void
11906 wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *sc)
11907 {
11908 uint32_t reg;
11909 int i;
11910
11911 for (i = 0; i < 2; i++) {
11912 /* Disable link */
11913 reg = CSR_READ(sc, WMREG_PHY_CTRL);
11914 reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS;
11915 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
11916
11917 /*
11918 * Call gig speed drop workaround on Gig disable before
11919 * accessing any PHY registers
11920 */
11921 if (sc->sc_type == WM_T_ICH8)
11922 wm_gig_downshift_workaround_ich8lan(sc);
11923
11924 /* Write VR power-down enable */
11925 reg = sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL);
11926 reg &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
11927 reg |= IGP3_VR_CTRL_MODE_SHUTDOWN;
11928 sc->sc_mii.mii_writereg(sc->sc_dev, 1, IGP3_VR_CTRL, reg);
11929
11930 /* Read it back and test */
11931 reg = sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL);
11932 reg &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
11933 if ((reg == IGP3_VR_CTRL_MODE_SHUTDOWN) || (i != 0))
11934 break;
11935
11936 /* Issue PHY reset and repeat at most one more time */
11937 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
11938 }
11939 }
11940
11941 static void
11942 wm_enable_wakeup(struct wm_softc *sc)
11943 {
11944 uint32_t reg, pmreg;
11945 pcireg_t pmode;
11946
11947 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PWRMGMT,
11948 &pmreg, NULL) == 0)
11949 return;
11950
11951 /* Advertise the wakeup capability */
11952 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_SWDPIN(2)
11953 | CTRL_SWDPIN(3));
11954 CSR_WRITE(sc, WMREG_WUC, WUC_APME);
11955
11956 /* ICH workaround */
11957 switch (sc->sc_type) {
11958 case WM_T_ICH8:
11959 case WM_T_ICH9:
11960 case WM_T_ICH10:
11961 case WM_T_PCH:
11962 case WM_T_PCH2:
11963 case WM_T_PCH_LPT:
11964 case WM_T_PCH_SPT:
11965 /* Disable gig during WOL */
11966 reg = CSR_READ(sc, WMREG_PHY_CTRL);
11967 reg |= PHY_CTRL_D0A_LPLU | PHY_CTRL_GBE_DIS;
11968 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
11969 if (sc->sc_type == WM_T_PCH)
11970 wm_gmii_reset(sc);
11971
11972 /* Power down workaround */
11973 if (sc->sc_phytype == WMPHY_82577) {
11974 struct mii_softc *child;
11975
11976 /* Assume that the PHY is copper */
11977 child = LIST_FIRST(&sc->sc_mii.mii_phys);
11978 if (child->mii_mpd_rev <= 2)
11979 sc->sc_mii.mii_writereg(sc->sc_dev, 1,
11980 (768 << 5) | 25, 0x0444); /* magic num */
11981 }
11982 break;
11983 default:
11984 break;
11985 }
11986
11987 /* Keep the laser running on fiber adapters */
11988 if ((sc->sc_mediatype == WM_MEDIATYPE_FIBER)
11989 || (sc->sc_mediatype == WM_MEDIATYPE_SERDES)) {
11990 reg = CSR_READ(sc, WMREG_CTRL_EXT);
11991 reg |= CTRL_EXT_SWDPIN(3);
11992 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
11993 }
11994
11995 reg = CSR_READ(sc, WMREG_WUFC) | WUFC_MAG;
11996 #if 0 /* for the multicast packet */
11997 reg |= WUFC_MC;
11998 CSR_WRITE(sc, WMREG_RCTL, CSR_READ(sc, WMREG_RCTL) | RCTL_MPE);
11999 #endif
12000
12001 if (sc->sc_type == WM_T_PCH) {
12002 wm_enable_phy_wakeup(sc);
12003 } else {
12004 CSR_WRITE(sc, WMREG_WUC, WUC_PME_EN);
12005 CSR_WRITE(sc, WMREG_WUFC, reg);
12006 }
12007
12008 if (((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
12009 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
12010 || (sc->sc_type == WM_T_PCH2))
12011 && (sc->sc_phytype == WMPHY_IGP_3))
12012 wm_igp3_phy_powerdown_workaround_ich8lan(sc);
12013
12014 /* Request PME */
12015 pmode = pci_conf_read(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR);
12016 #if 0
12017 /* Disable WOL */
12018 pmode &= ~(PCI_PMCSR_PME_STS | PCI_PMCSR_PME_EN);
12019 #else
12020 /* For WOL */
12021 pmode |= PCI_PMCSR_PME_STS | PCI_PMCSR_PME_EN;
12022 #endif
12023 pci_conf_write(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR, pmode);
12024 }
12025 #endif /* WM_WOL */
12026
12027 /* LPLU */
12028
12029 static void
12030 wm_lplu_d0_disable(struct wm_softc *sc)
12031 {
12032 uint32_t reg;
12033
12034 reg = CSR_READ(sc, WMREG_PHY_CTRL);
12035 reg &= ~(PHY_CTRL_GBE_DIS | PHY_CTRL_D0A_LPLU);
12036 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
12037 }
12038
12039 static void
12040 wm_lplu_d0_disable_pch(struct wm_softc *sc)
12041 {
12042 uint32_t reg;
12043
12044 reg = wm_gmii_hv_readreg(sc->sc_dev, 1, HV_OEM_BITS);
12045 reg &= ~(HV_OEM_BITS_A1KDIS | HV_OEM_BITS_LPLU);
12046 reg |= HV_OEM_BITS_ANEGNOW;
12047 wm_gmii_hv_writereg(sc->sc_dev, 1, HV_OEM_BITS, reg);
12048 }
12049
12050 /* EEE */
12051
12052 static void
12053 wm_set_eee_i350(struct wm_softc *sc)
12054 {
12055 uint32_t ipcnfg, eeer;
12056
12057 ipcnfg = CSR_READ(sc, WMREG_IPCNFG);
12058 eeer = CSR_READ(sc, WMREG_EEER);
12059
12060 if ((sc->sc_flags & WM_F_EEE) != 0) {
12061 ipcnfg |= (IPCNFG_EEE_1G_AN | IPCNFG_EEE_100M_AN);
12062 eeer |= (EEER_TX_LPI_EN | EEER_RX_LPI_EN
12063 | EEER_LPI_FC);
12064 } else {
12065 ipcnfg &= ~(IPCNFG_EEE_1G_AN | IPCNFG_EEE_100M_AN);
12066 ipcnfg &= ~IPCNFG_10BASE_TE;
12067 eeer &= ~(EEER_TX_LPI_EN | EEER_RX_LPI_EN
12068 | EEER_LPI_FC);
12069 }
12070
12071 CSR_WRITE(sc, WMREG_IPCNFG, ipcnfg);
12072 CSR_WRITE(sc, WMREG_EEER, eeer);
12073 CSR_READ(sc, WMREG_IPCNFG); /* XXX flush? */
12074 CSR_READ(sc, WMREG_EEER); /* XXX flush? */
12075 }
12076
12077 /*
12078 * Workarounds (mainly PHY related).
12079 * Basically, PHY's workarounds are in the PHY drivers.
12080 */
12081
12082 /* Work-around for 82566 Kumeran PCS lock loss */
12083 static void
12084 wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *sc)
12085 {
12086 #if 0
12087 int miistatus, active, i;
12088 int reg;
12089
12090 miistatus = sc->sc_mii.mii_media_status;
12091
12092 /* If the link is not up, do nothing */
12093 if ((miistatus & IFM_ACTIVE) == 0)
12094 return;
12095
12096 active = sc->sc_mii.mii_media_active;
12097
12098 /* Nothing to do if the link is other than 1Gbps */
12099 if (IFM_SUBTYPE(active) != IFM_1000_T)
12100 return;
12101
12102 for (i = 0; i < 10; i++) {
12103 /* read twice */
12104 reg = wm_gmii_i80003_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG);
12105 reg = wm_gmii_i80003_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG);
12106 if ((reg & IGP3_KMRN_DIAG_PCS_LOCK_LOSS) == 0)
12107 goto out; /* GOOD! */
12108
12109 /* Reset the PHY */
12110 wm_gmii_reset(sc);
12111 delay(5*1000);
12112 }
12113
12114 /* Disable GigE link negotiation */
12115 reg = CSR_READ(sc, WMREG_PHY_CTRL);
12116 reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS;
12117 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
12118
12119 /*
12120 * Call gig speed drop workaround on Gig disable before accessing
12121 * any PHY registers.
12122 */
12123 wm_gig_downshift_workaround_ich8lan(sc);
12124
12125 out:
12126 return;
12127 #endif
12128 }
12129
12130 /* WOL from S5 stops working */
12131 static void
12132 wm_gig_downshift_workaround_ich8lan(struct wm_softc *sc)
12133 {
12134 uint16_t kmrn_reg;
12135
12136 /* Only for igp3 */
12137 if (sc->sc_phytype == WMPHY_IGP_3) {
12138 kmrn_reg = wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_DIAG);
12139 kmrn_reg |= KUMCTRLSTA_DIAG_NELPBK;
12140 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmrn_reg);
12141 kmrn_reg &= ~KUMCTRLSTA_DIAG_NELPBK;
12142 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmrn_reg);
12143 }
12144 }
12145
12146 /*
12147 * Workaround for pch's PHYs
12148 * XXX should be moved to new PHY driver?
12149 */
12150 static void
12151 wm_hv_phy_workaround_ich8lan(struct wm_softc *sc)
12152 {
12153
12154 KASSERT(sc->sc_type == WM_T_PCH);
12155
12156 if (sc->sc_phytype == WMPHY_82577)
12157 wm_set_mdio_slow_mode_hv(sc);
12158
12159 /* (PCH rev.2) && (82577 && (phy rev 2 or 3)) */
12160
12161 /* (82577 && (phy rev 1 or 2)) || (82578 & phy rev 1)*/
12162
12163 /* 82578 */
12164 if (sc->sc_phytype == WMPHY_82578) {
12165 /* PCH rev. < 3 */
12166 if (sc->sc_rev < 3) {
12167 /* XXX 6 bit shift? Why? Is it page2? */
12168 wm_gmii_hv_writereg(sc->sc_dev, 1, ((1 << 6) | 0x29),
12169 0x66c0);
12170 wm_gmii_hv_writereg(sc->sc_dev, 1, ((1 << 6) | 0x1e),
12171 0xffff);
12172 }
12173
12174 /* XXX phy rev. < 2 */
12175 }
12176
12177 /* Select page 0 */
12178
12179 sc->phy.acquire(sc);
12180 wm_gmii_mdic_writereg(sc->sc_dev, 1, MII_IGPHY_PAGE_SELECT, 0);
12181 sc->phy.release(sc);
12182
12183 /*
12184 * Configure the K1 Si workaround during phy reset assuming there is
12185 * link so that it disables K1 if link is in 1Gbps.
12186 */
12187 wm_k1_gig_workaround_hv(sc, 1);
12188 }
12189
12190 static void
12191 wm_lv_phy_workaround_ich8lan(struct wm_softc *sc)
12192 {
12193
12194 KASSERT(sc->sc_type == WM_T_PCH2);
12195
12196 wm_set_mdio_slow_mode_hv(sc);
12197 }
12198
12199 static int
12200 wm_k1_gig_workaround_hv(struct wm_softc *sc, int link)
12201 {
12202 int k1_enable = sc->sc_nvm_k1_enabled;
12203
12204 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
12205 device_xname(sc->sc_dev), __func__));
12206
12207 if (sc->phy.acquire(sc) != 0)
12208 return -1;
12209
12210 if (link) {
12211 k1_enable = 0;
12212
12213 /* Link stall fix for link up */
12214 wm_gmii_hv_writereg_locked(sc->sc_dev, 1, IGP3_KMRN_DIAG, 0x0100);
12215 } else {
12216 /* Link stall fix for link down */
12217 wm_gmii_hv_writereg_locked(sc->sc_dev, 1, IGP3_KMRN_DIAG, 0x4100);
12218 }
12219
12220 wm_configure_k1_ich8lan(sc, k1_enable);
12221 sc->phy.release(sc);
12222
12223 return 0;
12224 }
12225
12226 static void
12227 wm_set_mdio_slow_mode_hv(struct wm_softc *sc)
12228 {
12229 uint32_t reg;
12230
12231 reg = wm_gmii_hv_readreg(sc->sc_dev, 1, HV_KMRN_MODE_CTRL);
12232 wm_gmii_hv_writereg(sc->sc_dev, 1, HV_KMRN_MODE_CTRL,
12233 reg | HV_KMRN_MDIO_SLOW);
12234 }
12235
12236 static void
12237 wm_configure_k1_ich8lan(struct wm_softc *sc, int k1_enable)
12238 {
12239 uint32_t ctrl, ctrl_ext, tmp;
12240 uint16_t kmrn_reg;
12241
12242 kmrn_reg = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG);
12243
12244 if (k1_enable)
12245 kmrn_reg |= KUMCTRLSTA_K1_ENABLE;
12246 else
12247 kmrn_reg &= ~KUMCTRLSTA_K1_ENABLE;
12248
12249 wm_kmrn_writereg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG, kmrn_reg);
12250
12251 delay(20);
12252
12253 ctrl = CSR_READ(sc, WMREG_CTRL);
12254 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
12255
12256 tmp = ctrl & ~(CTRL_SPEED_1000 | CTRL_SPEED_100);
12257 tmp |= CTRL_FRCSPD;
12258
12259 CSR_WRITE(sc, WMREG_CTRL, tmp);
12260 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext | CTRL_EXT_SPD_BYPS);
12261 CSR_WRITE_FLUSH(sc);
12262 delay(20);
12263
12264 CSR_WRITE(sc, WMREG_CTRL, ctrl);
12265 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
12266 CSR_WRITE_FLUSH(sc);
12267 delay(20);
12268 }
12269
12270 /* special case - for 82575 - need to do manual init ... */
12271 static void
12272 wm_reset_init_script_82575(struct wm_softc *sc)
12273 {
12274 /*
12275 * remark: this is untested code - we have no board without EEPROM
12276 * same setup as mentioned int the FreeBSD driver for the i82575
12277 */
12278
12279 /* SerDes configuration via SERDESCTRL */
12280 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x00, 0x0c);
12281 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x01, 0x78);
12282 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x1b, 0x23);
12283 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x23, 0x15);
12284
12285 /* CCM configuration via CCMCTL register */
12286 wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x14, 0x00);
12287 wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x10, 0x00);
12288
12289 /* PCIe lanes configuration */
12290 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x00, 0xec);
12291 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x61, 0xdf);
12292 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x34, 0x05);
12293 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x2f, 0x81);
12294
12295 /* PCIe PLL Configuration */
12296 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x02, 0x47);
12297 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x14, 0x00);
12298 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x10, 0x00);
12299 }
12300
12301 static void
12302 wm_reset_mdicnfg_82580(struct wm_softc *sc)
12303 {
12304 uint32_t reg;
12305 uint16_t nvmword;
12306 int rv;
12307
12308 if ((sc->sc_flags & WM_F_SGMII) == 0)
12309 return;
12310
12311 rv = wm_nvm_read(sc, NVM_OFF_LAN_FUNC_82580(sc->sc_funcid)
12312 + NVM_OFF_CFG3_PORTA, 1, &nvmword);
12313 if (rv != 0) {
12314 aprint_error_dev(sc->sc_dev, "%s: failed to read NVM\n",
12315 __func__);
12316 return;
12317 }
12318
12319 reg = CSR_READ(sc, WMREG_MDICNFG);
12320 if (nvmword & NVM_CFG3_PORTA_EXT_MDIO)
12321 reg |= MDICNFG_DEST;
12322 if (nvmword & NVM_CFG3_PORTA_COM_MDIO)
12323 reg |= MDICNFG_COM_MDIO;
12324 CSR_WRITE(sc, WMREG_MDICNFG, reg);
12325 }
12326
12327 /*
12328 * I210 Errata 25 and I211 Errata 10
12329 * Slow System Clock.
12330 */
12331 static void
12332 wm_pll_workaround_i210(struct wm_softc *sc)
12333 {
12334 uint32_t mdicnfg, wuc;
12335 uint32_t reg;
12336 pcireg_t pcireg;
12337 uint32_t pmreg;
12338 uint16_t nvmword, tmp_nvmword;
12339 int phyval;
12340 bool wa_done = false;
12341 int i;
12342
12343 /* Save WUC and MDICNFG registers */
12344 wuc = CSR_READ(sc, WMREG_WUC);
12345 mdicnfg = CSR_READ(sc, WMREG_MDICNFG);
12346
12347 reg = mdicnfg & ~MDICNFG_DEST;
12348 CSR_WRITE(sc, WMREG_MDICNFG, reg);
12349
12350 if (wm_nvm_read(sc, INVM_AUTOLOAD, 1, &nvmword) != 0)
12351 nvmword = INVM_DEFAULT_AL;
12352 tmp_nvmword = nvmword | INVM_PLL_WO_VAL;
12353
12354 /* Get Power Management cap offset */
12355 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PWRMGMT,
12356 &pmreg, NULL) == 0)
12357 return;
12358 for (i = 0; i < WM_MAX_PLL_TRIES; i++) {
12359 phyval = wm_gmii_gs40g_readreg(sc->sc_dev, 1,
12360 GS40G_PHY_PLL_FREQ_PAGE | GS40G_PHY_PLL_FREQ_REG);
12361
12362 if ((phyval & GS40G_PHY_PLL_UNCONF) != GS40G_PHY_PLL_UNCONF) {
12363 break; /* OK */
12364 }
12365
12366 wa_done = true;
12367 /* Directly reset the internal PHY */
12368 reg = CSR_READ(sc, WMREG_CTRL);
12369 CSR_WRITE(sc, WMREG_CTRL, reg | CTRL_PHY_RESET);
12370
12371 reg = CSR_READ(sc, WMREG_CTRL_EXT);
12372 reg |= CTRL_EXT_PHYPDEN | CTRL_EXT_SDLPE;
12373 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
12374
12375 CSR_WRITE(sc, WMREG_WUC, 0);
12376 reg = (INVM_AUTOLOAD << 4) | (tmp_nvmword << 16);
12377 CSR_WRITE(sc, WMREG_EEARBC_I210, reg);
12378
12379 pcireg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
12380 pmreg + PCI_PMCSR);
12381 pcireg |= PCI_PMCSR_STATE_D3;
12382 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
12383 pmreg + PCI_PMCSR, pcireg);
12384 delay(1000);
12385 pcireg &= ~PCI_PMCSR_STATE_D3;
12386 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
12387 pmreg + PCI_PMCSR, pcireg);
12388
12389 reg = (INVM_AUTOLOAD << 4) | (nvmword << 16);
12390 CSR_WRITE(sc, WMREG_EEARBC_I210, reg);
12391
12392 /* Restore WUC register */
12393 CSR_WRITE(sc, WMREG_WUC, wuc);
12394 }
12395
12396 /* Restore MDICNFG setting */
12397 CSR_WRITE(sc, WMREG_MDICNFG, mdicnfg);
12398 if (wa_done)
12399 aprint_verbose_dev(sc->sc_dev, "I210 workaround done\n");
12400 }
12401