Home | History | Annotate | Line # | Download | only in pci
if_wm.c revision 1.43
      1 /*	$NetBSD: if_wm.c,v 1.43 2003/10/17 20:57:32 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
     40  *
     41  * TODO (in order of importance):
     42  *
     43  *	- Fix hw VLAN assist.
     44  */
     45 
     46 #include <sys/cdefs.h>
     47 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.43 2003/10/17 20:57:32 thorpej Exp $");
     48 
     49 #include "bpfilter.h"
     50 #include "rnd.h"
     51 
     52 #include <sys/param.h>
     53 #include <sys/systm.h>
     54 #include <sys/callout.h>
     55 #include <sys/mbuf.h>
     56 #include <sys/malloc.h>
     57 #include <sys/kernel.h>
     58 #include <sys/socket.h>
     59 #include <sys/ioctl.h>
     60 #include <sys/errno.h>
     61 #include <sys/device.h>
     62 #include <sys/queue.h>
     63 
     64 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     65 
     66 #if NRND > 0
     67 #include <sys/rnd.h>
     68 #endif
     69 
     70 #include <net/if.h>
     71 #include <net/if_dl.h>
     72 #include <net/if_media.h>
     73 #include <net/if_ether.h>
     74 
     75 #if NBPFILTER > 0
     76 #include <net/bpf.h>
     77 #endif
     78 
     79 #include <netinet/in.h>			/* XXX for struct ip */
     80 #include <netinet/in_systm.h>		/* XXX for struct ip */
     81 #include <netinet/ip.h>			/* XXX for struct ip */
     82 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
     83 
     84 #include <machine/bus.h>
     85 #include <machine/intr.h>
     86 #include <machine/endian.h>
     87 
     88 #include <dev/mii/mii.h>
     89 #include <dev/mii/miivar.h>
     90 #include <dev/mii/mii_bitbang.h>
     91 
     92 #include <dev/pci/pcireg.h>
     93 #include <dev/pci/pcivar.h>
     94 #include <dev/pci/pcidevs.h>
     95 
     96 #include <dev/pci/if_wmreg.h>
     97 
     98 #ifdef WM_DEBUG
     99 #define	WM_DEBUG_LINK		0x01
    100 #define	WM_DEBUG_TX		0x02
    101 #define	WM_DEBUG_RX		0x04
    102 #define	WM_DEBUG_GMII		0x08
    103 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
    104 
    105 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
    106 #else
    107 #define	DPRINTF(x, y)	/* nothing */
    108 #endif /* WM_DEBUG */
    109 
    110 /*
    111  * Transmit descriptor list size.  Due to errata, we can only have
    112  * 256 hardware descriptors in the ring.  We tell the upper layers
    113  * that they can queue a lot of packets, and we go ahead and manage
    114  * up to 64 of them at a time.  We allow up to 16 DMA segments per
    115  * packet.
    116  */
    117 #define	WM_NTXSEGS		16
    118 #define	WM_IFQUEUELEN		256
    119 #define	WM_TXQUEUELEN		64
    120 #define	WM_TXQUEUELEN_MASK	(WM_TXQUEUELEN - 1)
    121 #define	WM_TXQUEUE_GC		(WM_TXQUEUELEN / 8)
    122 #define	WM_NTXDESC		256
    123 #define	WM_NTXDESC_MASK		(WM_NTXDESC - 1)
    124 #define	WM_NEXTTX(x)		(((x) + 1) & WM_NTXDESC_MASK)
    125 #define	WM_NEXTTXS(x)		(((x) + 1) & WM_TXQUEUELEN_MASK)
    126 
    127 /*
    128  * Receive descriptor list size.  We have one Rx buffer for normal
    129  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
    130  * packet.  We allocate 256 receive descriptors, each with a 2k
    131  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
    132  */
    133 #define	WM_NRXDESC		256
    134 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
    135 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
    136 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
    137 
    138 /*
    139  * Control structures are DMA'd to the i82542 chip.  We allocate them in
    140  * a single clump that maps to a single DMA segment to make serveral things
    141  * easier.
    142  */
    143 struct wm_control_data {
    144 	/*
    145 	 * The transmit descriptors.
    146 	 */
    147 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC];
    148 
    149 	/*
    150 	 * The receive descriptors.
    151 	 */
    152 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    153 };
    154 
    155 #define	WM_CDOFF(x)	offsetof(struct wm_control_data, x)
    156 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
    157 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
    158 
    159 /*
    160  * Software state for transmit jobs.
    161  */
    162 struct wm_txsoft {
    163 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    164 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    165 	int txs_firstdesc;		/* first descriptor in packet */
    166 	int txs_lastdesc;		/* last descriptor in packet */
    167 	int txs_ndesc;			/* # of descriptors used */
    168 };
    169 
    170 /*
    171  * Software state for receive buffers.  Each descriptor gets a
    172  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    173  * more than one buffer, we chain them together.
    174  */
    175 struct wm_rxsoft {
    176 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    177 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    178 };
    179 
    180 typedef enum {
    181 	WM_T_unknown		= 0,
    182 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
    183 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
    184 	WM_T_82543,			/* i82543 */
    185 	WM_T_82544,			/* i82544 */
    186 	WM_T_82540,			/* i82540 */
    187 	WM_T_82545,			/* i82545 */
    188 	WM_T_82545_3,			/* i82545 3.0+ */
    189 	WM_T_82546,			/* i82546 */
    190 	WM_T_82546_3,			/* i82546 3.0+ */
    191 	WM_T_82541,			/* i82541 */
    192 	WM_T_82541_2,			/* i82541 2.0+ */
    193 	WM_T_82547,			/* i82547 */
    194 	WM_T_82547_2,			/* i82547 2.0+ */
    195 } wm_chip_type;
    196 
    197 /*
    198  * Software state per device.
    199  */
    200 struct wm_softc {
    201 	struct device sc_dev;		/* generic device information */
    202 	bus_space_tag_t sc_st;		/* bus space tag */
    203 	bus_space_handle_t sc_sh;	/* bus space handle */
    204 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    205 	struct ethercom sc_ethercom;	/* ethernet common data */
    206 	void *sc_sdhook;		/* shutdown hook */
    207 
    208 	wm_chip_type sc_type;		/* chip type */
    209 	int sc_flags;			/* flags; see below */
    210 
    211 	void *sc_ih;			/* interrupt cookie */
    212 
    213 	struct mii_data sc_mii;		/* MII/media information */
    214 
    215 	struct callout sc_tick_ch;	/* tick callout */
    216 
    217 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    218 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    219 
    220 	int		sc_align_tweak;
    221 
    222 	/*
    223 	 * Software state for the transmit and receive descriptors.
    224 	 */
    225 	struct wm_txsoft sc_txsoft[WM_TXQUEUELEN];
    226 	struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
    227 
    228 	/*
    229 	 * Control data structures.
    230 	 */
    231 	struct wm_control_data *sc_control_data;
    232 #define	sc_txdescs	sc_control_data->wcd_txdescs
    233 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    234 
    235 #ifdef WM_EVENT_COUNTERS
    236 	/* Event counters. */
    237 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    238 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    239 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    240 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    241 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    242 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    243 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    244 
    245 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    246 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    247 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    248 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    249 
    250 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
    251 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
    252 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
    253 
    254 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
    255 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    256 
    257 	struct evcnt sc_ev_tu;		/* Tx underrun */
    258 #endif /* WM_EVENT_COUNTERS */
    259 
    260 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
    261 
    262 	int	sc_txfree;		/* number of free Tx descriptors */
    263 	int	sc_txnext;		/* next ready Tx descriptor */
    264 
    265 	int	sc_txsfree;		/* number of free Tx jobs */
    266 	int	sc_txsnext;		/* next free Tx job */
    267 	int	sc_txsdirty;		/* dirty Tx jobs */
    268 
    269 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
    270 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
    271 
    272 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
    273 
    274 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    275 	int	sc_rxdiscard;
    276 	int	sc_rxlen;
    277 	struct mbuf *sc_rxhead;
    278 	struct mbuf *sc_rxtail;
    279 	struct mbuf **sc_rxtailp;
    280 
    281 	uint32_t sc_ctrl;		/* prototype CTRL register */
    282 #if 0
    283 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
    284 #endif
    285 	uint32_t sc_icr;		/* prototype interrupt bits */
    286 	uint32_t sc_tctl;		/* prototype TCTL register */
    287 	uint32_t sc_rctl;		/* prototype RCTL register */
    288 	uint32_t sc_txcw;		/* prototype TXCW register */
    289 	uint32_t sc_tipg;		/* prototype TIPG register */
    290 
    291 	int sc_tbi_linkup;		/* TBI link status */
    292 	int sc_tbi_anstate;		/* autonegotiation state */
    293 
    294 	int sc_mchash_type;		/* multicast filter offset */
    295 
    296 #if NRND > 0
    297 	rndsource_element_t rnd_source;	/* random source */
    298 #endif
    299 };
    300 
    301 #define	WM_RXCHAIN_RESET(sc)						\
    302 do {									\
    303 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    304 	*(sc)->sc_rxtailp = NULL;					\
    305 	(sc)->sc_rxlen = 0;						\
    306 } while (/*CONSTCOND*/0)
    307 
    308 #define	WM_RXCHAIN_LINK(sc, m)						\
    309 do {									\
    310 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    311 	(sc)->sc_rxtailp = &(m)->m_next;				\
    312 } while (/*CONSTCOND*/0)
    313 
    314 /* sc_flags */
    315 #define	WM_F_HAS_MII		0x01	/* has MII */
    316 #define	WM_F_EEPROM_HANDSHAKE	0x02	/* requires EEPROM handshake */
    317 
    318 #ifdef WM_EVENT_COUNTERS
    319 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
    320 #else
    321 #define	WM_EVCNT_INCR(ev)	/* nothing */
    322 #endif
    323 
    324 #define	CSR_READ(sc, reg)						\
    325 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    326 #define	CSR_WRITE(sc, reg, val)						\
    327 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    328 
    329 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
    330 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
    331 
    332 #define	WM_CDTXSYNC(sc, x, n, ops)					\
    333 do {									\
    334 	int __x, __n;							\
    335 									\
    336 	__x = (x);							\
    337 	__n = (n);							\
    338 									\
    339 	/* If it will wrap around, sync to the end of the ring. */	\
    340 	if ((__x + __n) > WM_NTXDESC) {					\
    341 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    342 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
    343 		    (WM_NTXDESC - __x), (ops));				\
    344 		__n -= (WM_NTXDESC - __x);				\
    345 		__x = 0;						\
    346 	}								\
    347 									\
    348 	/* Now sync whatever is left. */				\
    349 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    350 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
    351 } while (/*CONSTCOND*/0)
    352 
    353 #define	WM_CDRXSYNC(sc, x, ops)						\
    354 do {									\
    355 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    356 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
    357 } while (/*CONSTCOND*/0)
    358 
    359 #define	WM_INIT_RXDESC(sc, x)						\
    360 do {									\
    361 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    362 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
    363 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    364 									\
    365 	/*								\
    366 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    367 	 * so that the payload after the Ethernet header is aligned	\
    368 	 * to a 4-byte boundary.					\
    369 	 *								\
    370 	 * XXX BRAINDAMAGE ALERT!					\
    371 	 * The stupid chip uses the same size for every buffer, which	\
    372 	 * is set in the Receive Control register.  We are using the 2K	\
    373 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    374 	 * reason, we can't "scoot" packets longer than the standard	\
    375 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    376 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    377 	 * the upper layer copy the headers.				\
    378 	 */								\
    379 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    380 									\
    381 	__rxd->wrx_addr.wa_low =					\
    382 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 		\
    383 		(sc)->sc_align_tweak);					\
    384 	__rxd->wrx_addr.wa_high = 0;					\
    385 	__rxd->wrx_len = 0;						\
    386 	__rxd->wrx_cksum = 0;						\
    387 	__rxd->wrx_status = 0;						\
    388 	__rxd->wrx_errors = 0;						\
    389 	__rxd->wrx_special = 0;						\
    390 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    391 									\
    392 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
    393 } while (/*CONSTCOND*/0)
    394 
    395 void	wm_start(struct ifnet *);
    396 void	wm_watchdog(struct ifnet *);
    397 int	wm_ioctl(struct ifnet *, u_long, caddr_t);
    398 int	wm_init(struct ifnet *);
    399 void	wm_stop(struct ifnet *, int);
    400 
    401 void	wm_shutdown(void *);
    402 
    403 void	wm_reset(struct wm_softc *);
    404 void	wm_rxdrain(struct wm_softc *);
    405 int	wm_add_rxbuf(struct wm_softc *, int);
    406 void	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
    407 void	wm_tick(void *);
    408 
    409 void	wm_set_filter(struct wm_softc *);
    410 
    411 int	wm_intr(void *);
    412 void	wm_txintr(struct wm_softc *);
    413 void	wm_rxintr(struct wm_softc *);
    414 void	wm_linkintr(struct wm_softc *, uint32_t);
    415 
    416 void	wm_tbi_mediainit(struct wm_softc *);
    417 int	wm_tbi_mediachange(struct ifnet *);
    418 void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
    419 
    420 void	wm_tbi_set_linkled(struct wm_softc *);
    421 void	wm_tbi_check_link(struct wm_softc *);
    422 
    423 void	wm_gmii_reset(struct wm_softc *);
    424 
    425 int	wm_gmii_i82543_readreg(struct device *, int, int);
    426 void	wm_gmii_i82543_writereg(struct device *, int, int, int);
    427 
    428 int	wm_gmii_i82544_readreg(struct device *, int, int);
    429 void	wm_gmii_i82544_writereg(struct device *, int, int, int);
    430 
    431 void	wm_gmii_statchg(struct device *);
    432 
    433 void	wm_gmii_mediainit(struct wm_softc *);
    434 int	wm_gmii_mediachange(struct ifnet *);
    435 void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
    436 
    437 int	wm_match(struct device *, struct cfdata *, void *);
    438 void	wm_attach(struct device *, struct device *, void *);
    439 
    440 CFATTACH_DECL(wm, sizeof(struct wm_softc),
    441     wm_match, wm_attach, NULL, NULL);
    442 
    443 /*
    444  * Devices supported by this driver.
    445  */
    446 const struct wm_product {
    447 	pci_vendor_id_t		wmp_vendor;
    448 	pci_product_id_t	wmp_product;
    449 	const char		*wmp_name;
    450 	wm_chip_type		wmp_type;
    451 	int			wmp_flags;
    452 #define	WMP_F_1000X		0x01
    453 #define	WMP_F_1000T		0x02
    454 } wm_products[] = {
    455 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
    456 	  "Intel i82542 1000BASE-X Ethernet",
    457 	  WM_T_82542_2_1,	WMP_F_1000X },
    458 
    459 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
    460 	  "Intel i82543GC 1000BASE-X Ethernet",
    461 	  WM_T_82543,		WMP_F_1000X },
    462 
    463 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
    464 	  "Intel i82543GC 1000BASE-T Ethernet",
    465 	  WM_T_82543,		WMP_F_1000T },
    466 
    467 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
    468 	  "Intel i82544EI 1000BASE-T Ethernet",
    469 	  WM_T_82544,		WMP_F_1000T },
    470 
    471 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
    472 	  "Intel i82544EI 1000BASE-X Ethernet",
    473 	  WM_T_82544,		WMP_F_1000X },
    474 
    475 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
    476 	  "Intel i82544GC 1000BASE-T Ethernet",
    477 	  WM_T_82544,		WMP_F_1000T },
    478 
    479 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
    480 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
    481 	  WM_T_82544,		WMP_F_1000T },
    482 
    483 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
    484 	  "Intel i82540EM 1000BASE-T Ethernet",
    485 	  WM_T_82540,		WMP_F_1000T },
    486 
    487 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
    488 	  "Intel i82540EP 1000BASE-T Ethernet",
    489 	  WM_T_82540,		WMP_F_1000T },
    490 
    491 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
    492 	  "Intel i82540EP 1000BASE-T Ethernet",
    493 	  WM_T_82540,		WMP_F_1000T },
    494 
    495 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
    496 	  "Intel i82540EP 1000BASE-T Ethernet",
    497 	  WM_T_82540,		WMP_F_1000T },
    498 
    499 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
    500 	  "Intel i82545EM 1000BASE-T Ethernet",
    501 	  WM_T_82545,		WMP_F_1000T },
    502 
    503 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
    504 	  "Intel i82546EB 1000BASE-T Ethernet",
    505 	  WM_T_82546,		WMP_F_1000T },
    506 
    507 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
    508 	  "Intel i82546EB 1000BASE-T Ethernet",
    509 	  WM_T_82546,		WMP_F_1000T },
    510 
    511 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
    512 	  "Intel i82545EM 1000BASE-X Ethernet",
    513 	  WM_T_82545,		WMP_F_1000X },
    514 
    515 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
    516 	  "Intel i82546EB 1000BASE-X Ethernet",
    517 	  WM_T_82546,		WMP_F_1000X },
    518 
    519 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
    520 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
    521 	  WM_T_82540,		WMP_F_1000T },
    522 
    523 	{ 0,			0,
    524 	  NULL,
    525 	  0,			0 },
    526 };
    527 
    528 #ifdef WM_EVENT_COUNTERS
    529 #if WM_NTXSEGS != 16
    530 #error Update wm_txseg_evcnt_names
    531 #endif
    532 static const char *wm_txseg_evcnt_names[WM_NTXSEGS] = {
    533 	"txseg1",
    534 	"txseg2",
    535 	"txseg3",
    536 	"txseg4",
    537 	"txseg5",
    538 	"txseg6",
    539 	"txseg7",
    540 	"txseg8",
    541 	"txseg9",
    542 	"txseg10",
    543 	"txseg11",
    544 	"txseg12",
    545 	"txseg13",
    546 	"txseg14",
    547 	"txseg15",
    548 	"txseg16",
    549 };
    550 #endif /* WM_EVENT_COUNTERS */
    551 
    552 static const struct wm_product *
    553 wm_lookup(const struct pci_attach_args *pa)
    554 {
    555 	const struct wm_product *wmp;
    556 
    557 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
    558 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
    559 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
    560 			return (wmp);
    561 	}
    562 	return (NULL);
    563 }
    564 
    565 int
    566 wm_match(struct device *parent, struct cfdata *cf, void *aux)
    567 {
    568 	struct pci_attach_args *pa = aux;
    569 
    570 	if (wm_lookup(pa) != NULL)
    571 		return (1);
    572 
    573 	return (0);
    574 }
    575 
    576 void
    577 wm_attach(struct device *parent, struct device *self, void *aux)
    578 {
    579 	struct wm_softc *sc = (void *) self;
    580 	struct pci_attach_args *pa = aux;
    581 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    582 	pci_chipset_tag_t pc = pa->pa_pc;
    583 	pci_intr_handle_t ih;
    584 	const char *intrstr = NULL;
    585 	bus_space_tag_t memt;
    586 	bus_space_handle_t memh;
    587 	bus_dma_segment_t seg;
    588 	int memh_valid;
    589 	int i, rseg, error;
    590 	const struct wm_product *wmp;
    591 	uint8_t enaddr[ETHER_ADDR_LEN];
    592 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
    593 	pcireg_t preg, memtype;
    594 	int pmreg;
    595 
    596 	callout_init(&sc->sc_tick_ch);
    597 
    598 	wmp = wm_lookup(pa);
    599 	if (wmp == NULL) {
    600 		printf("\n");
    601 		panic("wm_attach: impossible");
    602 	}
    603 
    604 	sc->sc_dmat = pa->pa_dmat;
    605 
    606 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    607 	aprint_naive(": Ethernet controller\n");
    608 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
    609 
    610 	sc->sc_type = wmp->wmp_type;
    611 	if (sc->sc_type < WM_T_82543) {
    612 		if (preg < 2) {
    613 			aprint_error("%s: i82542 must be at least rev. 2\n",
    614 			    sc->sc_dev.dv_xname);
    615 			return;
    616 		}
    617 		if (preg < 3)
    618 			sc->sc_type = WM_T_82542_2_0;
    619 	}
    620 
    621 	/*
    622 	 * Some chips require a handshake to access the EEPROM.
    623 	 */
    624 	if (sc->sc_type >= WM_T_82540)
    625 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
    626 
    627 	/*
    628 	 * Map the device.
    629 	 */
    630 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
    631 	switch (memtype) {
    632 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    633 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    634 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
    635 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    636 		break;
    637 	default:
    638 		memh_valid = 0;
    639 	}
    640 
    641 	if (memh_valid) {
    642 		sc->sc_st = memt;
    643 		sc->sc_sh = memh;
    644 	} else {
    645 		aprint_error("%s: unable to map device registers\n",
    646 		    sc->sc_dev.dv_xname);
    647 		return;
    648 	}
    649 
    650 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
    651 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    652 	preg |= PCI_COMMAND_MASTER_ENABLE;
    653 	if (sc->sc_type < WM_T_82542_2_1)
    654 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
    655 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    656 
    657 	/* Get it out of power save mode, if needed. */
    658 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    659 		preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    660 		    PCI_PMCSR_STATE_MASK;
    661 		if (preg == PCI_PMCSR_STATE_D3) {
    662 			/*
    663 			 * The card has lost all configuration data in
    664 			 * this state, so punt.
    665 			 */
    666 			aprint_error("%s: unable to wake from power state D3\n",
    667 			    sc->sc_dev.dv_xname);
    668 			return;
    669 		}
    670 		if (preg != PCI_PMCSR_STATE_D0) {
    671 			aprint_normal("%s: waking up from power state D%d\n",
    672 			    sc->sc_dev.dv_xname, preg);
    673 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    674 			    PCI_PMCSR_STATE_D0);
    675 		}
    676 	}
    677 
    678 	/*
    679 	 * Map and establish our interrupt.
    680 	 */
    681 	if (pci_intr_map(pa, &ih)) {
    682 		aprint_error("%s: unable to map interrupt\n",
    683 		    sc->sc_dev.dv_xname);
    684 		return;
    685 	}
    686 	intrstr = pci_intr_string(pc, ih);
    687 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
    688 	if (sc->sc_ih == NULL) {
    689 		aprint_error("%s: unable to establish interrupt",
    690 		    sc->sc_dev.dv_xname);
    691 		if (intrstr != NULL)
    692 			aprint_normal(" at %s", intrstr);
    693 		aprint_normal("\n");
    694 		return;
    695 	}
    696 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    697 
    698 	/*
    699 	 * Allocate the control data structures, and create and load the
    700 	 * DMA map for it.
    701 	 */
    702 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    703 	    sizeof(struct wm_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    704 	    0)) != 0) {
    705 		aprint_error(
    706 		    "%s: unable to allocate control data, error = %d\n",
    707 		    sc->sc_dev.dv_xname, error);
    708 		goto fail_0;
    709 	}
    710 
    711 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    712 	    sizeof(struct wm_control_data), (caddr_t *)&sc->sc_control_data,
    713 	    0)) != 0) {
    714 		aprint_error("%s: unable to map control data, error = %d\n",
    715 		    sc->sc_dev.dv_xname, error);
    716 		goto fail_1;
    717 	}
    718 
    719 	if ((error = bus_dmamap_create(sc->sc_dmat,
    720 	    sizeof(struct wm_control_data), 1,
    721 	    sizeof(struct wm_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    722 		aprint_error("%s: unable to create control data DMA map, "
    723 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    724 		goto fail_2;
    725 	}
    726 
    727 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    728 	    sc->sc_control_data, sizeof(struct wm_control_data), NULL,
    729 	    0)) != 0) {
    730 		aprint_error(
    731 		    "%s: unable to load control data DMA map, error = %d\n",
    732 		    sc->sc_dev.dv_xname, error);
    733 		goto fail_3;
    734 	}
    735 
    736 	/*
    737 	 * Create the transmit buffer DMA maps.
    738 	 */
    739 	for (i = 0; i < WM_TXQUEUELEN; i++) {
    740 		if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
    741 		    WM_NTXSEGS, MCLBYTES, 0, 0,
    742 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    743 			aprint_error("%s: unable to create Tx DMA map %d, "
    744 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    745 			goto fail_4;
    746 		}
    747 	}
    748 
    749 	/*
    750 	 * Create the receive buffer DMA maps.
    751 	 */
    752 	for (i = 0; i < WM_NRXDESC; i++) {
    753 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    754 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    755 			aprint_error("%s: unable to create Rx DMA map %d, "
    756 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    757 			goto fail_5;
    758 		}
    759 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    760 	}
    761 
    762 	/*
    763 	 * Reset the chip to a known state.
    764 	 */
    765 	wm_reset(sc);
    766 
    767 	/*
    768 	 * Read the Ethernet address from the EEPROM.
    769 	 */
    770 	wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
    771 	    sizeof(myea) / sizeof(myea[0]), myea);
    772 	enaddr[0] = myea[0] & 0xff;
    773 	enaddr[1] = myea[0] >> 8;
    774 	enaddr[2] = myea[1] & 0xff;
    775 	enaddr[3] = myea[1] >> 8;
    776 	enaddr[4] = myea[2] & 0xff;
    777 	enaddr[5] = myea[2] >> 8;
    778 
    779 	/*
    780 	 * Toggle the LSB of the MAC address on the second port
    781 	 * of the i82546.
    782 	 */
    783 	if (sc->sc_type == WM_T_82546) {
    784 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
    785 			enaddr[5] ^= 1;
    786 	}
    787 
    788 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    789 	    ether_sprintf(enaddr));
    790 
    791 	/*
    792 	 * Read the config info from the EEPROM, and set up various
    793 	 * bits in the control registers based on their contents.
    794 	 */
    795 	wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1);
    796 	wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2);
    797 	if (sc->sc_type >= WM_T_82544)
    798 		wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin);
    799 
    800 	if (cfg1 & EEPROM_CFG1_ILOS)
    801 		sc->sc_ctrl |= CTRL_ILOS;
    802 	if (sc->sc_type >= WM_T_82544) {
    803 		sc->sc_ctrl |=
    804 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
    805 		    CTRL_SWDPIO_SHIFT;
    806 		sc->sc_ctrl |=
    807 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
    808 		    CTRL_SWDPINS_SHIFT;
    809 	} else {
    810 		sc->sc_ctrl |=
    811 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
    812 		    CTRL_SWDPIO_SHIFT;
    813 	}
    814 
    815 #if 0
    816 	if (sc->sc_type >= WM_T_82544) {
    817 		if (cfg1 & EEPROM_CFG1_IPS0)
    818 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
    819 		if (cfg1 & EEPROM_CFG1_IPS1)
    820 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
    821 		sc->sc_ctrl_ext |=
    822 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
    823 		    CTRL_EXT_SWDPIO_SHIFT;
    824 		sc->sc_ctrl_ext |=
    825 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
    826 		    CTRL_EXT_SWDPINS_SHIFT;
    827 	} else {
    828 		sc->sc_ctrl_ext |=
    829 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
    830 		    CTRL_EXT_SWDPIO_SHIFT;
    831 	}
    832 #endif
    833 
    834 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
    835 #if 0
    836 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
    837 #endif
    838 
    839 	/*
    840 	 * Set up some register offsets that are different between
    841 	 * the i82542 and the i82543 and later chips.
    842 	 */
    843 	if (sc->sc_type < WM_T_82543) {
    844 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
    845 		sc->sc_tdt_reg = WMREG_OLD_TDT;
    846 	} else {
    847 		sc->sc_rdt_reg = WMREG_RDT;
    848 		sc->sc_tdt_reg = WMREG_TDT;
    849 	}
    850 
    851 	/*
    852 	 * Determine if we should use flow control.  We should
    853 	 * always use it, unless we're on a i82542 < 2.1.
    854 	 */
    855 	if (sc->sc_type >= WM_T_82542_2_1)
    856 		sc->sc_ctrl |= CTRL_TFCE | CTRL_RFCE;
    857 
    858 	/*
    859 	 * Determine if we're TBI or GMII mode, and initialize the
    860 	 * media structures accordingly.
    861 	 */
    862 	if (sc->sc_type < WM_T_82543 ||
    863 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
    864 		if (wmp->wmp_flags & WMP_F_1000T)
    865 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
    866 			    "product!\n", sc->sc_dev.dv_xname);
    867 		wm_tbi_mediainit(sc);
    868 	} else {
    869 		if (wmp->wmp_flags & WMP_F_1000X)
    870 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
    871 			    "product!\n", sc->sc_dev.dv_xname);
    872 		wm_gmii_mediainit(sc);
    873 	}
    874 
    875 	ifp = &sc->sc_ethercom.ec_if;
    876 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    877 	ifp->if_softc = sc;
    878 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    879 	ifp->if_ioctl = wm_ioctl;
    880 	ifp->if_start = wm_start;
    881 	ifp->if_watchdog = wm_watchdog;
    882 	ifp->if_init = wm_init;
    883 	ifp->if_stop = wm_stop;
    884 	IFQ_SET_MAXLEN(&ifp->if_snd, WM_IFQUEUELEN);
    885 	IFQ_SET_READY(&ifp->if_snd);
    886 
    887 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
    888 
    889 	/*
    890 	 * If we're a i82543 or greater, we can support VLANs.
    891 	 */
    892 	if (sc->sc_type >= WM_T_82543)
    893 		sc->sc_ethercom.ec_capabilities |=
    894 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
    895 
    896 	/*
    897 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
    898 	 * on i82543 and later.
    899 	 */
    900 	if (sc->sc_type >= WM_T_82543)
    901 		ifp->if_capabilities |=
    902 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    903 
    904 	/*
    905 	 * Attach the interface.
    906 	 */
    907 	if_attach(ifp);
    908 	ether_ifattach(ifp, enaddr);
    909 #if NRND > 0
    910 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    911 	    RND_TYPE_NET, 0);
    912 #endif
    913 
    914 #ifdef WM_EVENT_COUNTERS
    915 	/* Attach event counters. */
    916 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    917 	    NULL, sc->sc_dev.dv_xname, "txsstall");
    918 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    919 	    NULL, sc->sc_dev.dv_xname, "txdstall");
    920 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
    921 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
    922 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
    923 	    NULL, sc->sc_dev.dv_xname, "txdw");
    924 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
    925 	    NULL, sc->sc_dev.dv_xname, "txqe");
    926 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    927 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    928 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
    929 	    NULL, sc->sc_dev.dv_xname, "linkintr");
    930 
    931 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    932 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    933 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
    934 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
    935 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    936 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    937 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
    938 	    NULL, sc->sc_dev.dv_xname, "txtusum");
    939 
    940 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
    941 	    NULL, sc->sc_dev.dv_xname, "txctx init");
    942 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
    943 	    NULL, sc->sc_dev.dv_xname, "txctx hit");
    944 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
    945 	    NULL, sc->sc_dev.dv_xname, "txctx miss");
    946 
    947 	for (i = 0; i < WM_NTXSEGS; i++)
    948 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
    949 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
    950 
    951 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    952 	    NULL, sc->sc_dev.dv_xname, "txdrop");
    953 
    954 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
    955 	    NULL, sc->sc_dev.dv_xname, "tu");
    956 #endif /* WM_EVENT_COUNTERS */
    957 
    958 	/*
    959 	 * Make sure the interface is shutdown during reboot.
    960 	 */
    961 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
    962 	if (sc->sc_sdhook == NULL)
    963 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
    964 		    sc->sc_dev.dv_xname);
    965 	return;
    966 
    967 	/*
    968 	 * Free any resources we've allocated during the failed attach
    969 	 * attempt.  Do this in reverse order and fall through.
    970 	 */
    971  fail_5:
    972 	for (i = 0; i < WM_NRXDESC; i++) {
    973 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    974 			bus_dmamap_destroy(sc->sc_dmat,
    975 			    sc->sc_rxsoft[i].rxs_dmamap);
    976 	}
    977  fail_4:
    978 	for (i = 0; i < WM_TXQUEUELEN; i++) {
    979 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    980 			bus_dmamap_destroy(sc->sc_dmat,
    981 			    sc->sc_txsoft[i].txs_dmamap);
    982 	}
    983 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    984  fail_3:
    985 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    986  fail_2:
    987 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    988 	    sizeof(struct wm_control_data));
    989  fail_1:
    990 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    991  fail_0:
    992 	return;
    993 }
    994 
    995 /*
    996  * wm_shutdown:
    997  *
    998  *	Make sure the interface is stopped at reboot time.
    999  */
   1000 void
   1001 wm_shutdown(void *arg)
   1002 {
   1003 	struct wm_softc *sc = arg;
   1004 
   1005 	wm_stop(&sc->sc_ethercom.ec_if, 1);
   1006 }
   1007 
   1008 /*
   1009  * wm_tx_cksum:
   1010  *
   1011  *	Set up TCP/IP checksumming parameters for the
   1012  *	specified packet.
   1013  */
   1014 static int
   1015 wm_tx_cksum(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
   1016     uint32_t *fieldsp)
   1017 {
   1018 	struct mbuf *m0 = txs->txs_mbuf;
   1019 	struct livengood_tcpip_ctxdesc *t;
   1020 	uint32_t fields = 0, ipcs, tucs;
   1021 	struct ip *ip;
   1022 	struct ether_header *eh;
   1023 	int offset, iphl;
   1024 
   1025 	/*
   1026 	 * XXX It would be nice if the mbuf pkthdr had offset
   1027 	 * fields for the protocol headers.
   1028 	 */
   1029 
   1030 	eh = mtod(m0, struct ether_header *);
   1031 	switch (htons(eh->ether_type)) {
   1032 	case ETHERTYPE_IP:
   1033 		iphl = sizeof(struct ip);
   1034 		offset = ETHER_HDR_LEN;
   1035 		break;
   1036 
   1037 	case ETHERTYPE_VLAN:
   1038 		iphl = sizeof(struct ip);
   1039 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1040 		break;
   1041 
   1042 	default:
   1043 		/*
   1044 		 * Don't support this protocol or encapsulation.
   1045 		 */
   1046 		*fieldsp = 0;
   1047 		*cmdp = 0;
   1048 		return (0);
   1049 	}
   1050 
   1051 	if (m0->m_len < (offset + iphl)) {
   1052 		if ((txs->txs_mbuf = m_pullup(m0, offset + iphl)) == NULL) {
   1053 			printf("%s: wm_tx_cksum: mbuf allocation failed, "
   1054 			    "packet dropped\n", sc->sc_dev.dv_xname);
   1055 			return (ENOMEM);
   1056 		}
   1057 		m0 = txs->txs_mbuf;
   1058 	}
   1059 
   1060 	ip = (struct ip *) (mtod(m0, caddr_t) + offset);
   1061 	iphl = ip->ip_hl << 2;
   1062 
   1063 	/*
   1064 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1065 	 * offload feature, if we load the context descriptor, we
   1066 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1067 	 */
   1068 
   1069 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1070 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
   1071 		fields |= htole32(WTX_IXSM);
   1072 		ipcs = htole32(WTX_TCPIP_IPCSS(offset) |
   1073 		    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1074 		    WTX_TCPIP_IPCSE(offset + iphl - 1));
   1075 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
   1076 		/* Use the cached value. */
   1077 		ipcs = sc->sc_txctx_ipcs;
   1078 	} else {
   1079 		/* Just initialize it to the likely value anyway. */
   1080 		ipcs = htole32(WTX_TCPIP_IPCSS(offset) |
   1081 		    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1082 		    WTX_TCPIP_IPCSE(offset + iphl - 1));
   1083 	}
   1084 
   1085 	offset += iphl;
   1086 
   1087 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1088 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
   1089 		fields |= htole32(WTX_TXSM);
   1090 		tucs = htole32(WTX_TCPIP_TUCSS(offset) |
   1091 		    WTX_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
   1092 		    WTX_TCPIP_TUCSE(0) /* rest of packet */);
   1093 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
   1094 		/* Use the cached value. */
   1095 		tucs = sc->sc_txctx_tucs;
   1096 	} else {
   1097 		/* Just initialize it to a valid TCP context. */
   1098 		tucs = htole32(WTX_TCPIP_TUCSS(offset) |
   1099 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1100 		    WTX_TCPIP_TUCSE(0) /* rest of packet */);
   1101 	}
   1102 
   1103 	if (sc->sc_txctx_ipcs == ipcs &&
   1104 	    sc->sc_txctx_tucs == tucs) {
   1105 		/* Cached context is fine. */
   1106 		WM_EVCNT_INCR(&sc->sc_ev_txctx_hit);
   1107 	} else {
   1108 		/* Fill in the context descriptor. */
   1109 #ifdef WM_EVENT_COUNTERS
   1110 		if (sc->sc_txctx_ipcs == 0xffffffff &&
   1111 		    sc->sc_txctx_tucs == 0xffffffff)
   1112 			WM_EVCNT_INCR(&sc->sc_ev_txctx_init);
   1113 		else
   1114 			WM_EVCNT_INCR(&sc->sc_ev_txctx_miss);
   1115 #endif
   1116 		t = (struct livengood_tcpip_ctxdesc *)
   1117 		    &sc->sc_txdescs[sc->sc_txnext];
   1118 		t->tcpip_ipcs = ipcs;
   1119 		t->tcpip_tucs = tucs;
   1120 		t->tcpip_cmdlen =
   1121 		    htole32(WTX_CMD_DEXT | WTX_DTYP_C);
   1122 		t->tcpip_seg = 0;
   1123 		WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1124 
   1125 		sc->sc_txctx_ipcs = ipcs;
   1126 		sc->sc_txctx_tucs = tucs;
   1127 
   1128 		sc->sc_txnext = WM_NEXTTX(sc->sc_txnext);
   1129 		txs->txs_ndesc++;
   1130 	}
   1131 
   1132 	*cmdp = WTX_CMD_DEXT | WTC_DTYP_D;
   1133 	*fieldsp = fields;
   1134 
   1135 	return (0);
   1136 }
   1137 
   1138 /*
   1139  * wm_start:		[ifnet interface function]
   1140  *
   1141  *	Start packet transmission on the interface.
   1142  */
   1143 void
   1144 wm_start(struct ifnet *ifp)
   1145 {
   1146 	struct wm_softc *sc = ifp->if_softc;
   1147 	struct mbuf *m0;
   1148 #if 0 /* XXXJRT */
   1149 	struct m_tag *mtag;
   1150 #endif
   1151 	struct wm_txsoft *txs;
   1152 	bus_dmamap_t dmamap;
   1153 	int error, nexttx, lasttx, ofree, seg;
   1154 	uint32_t cksumcmd, cksumfields;
   1155 
   1156 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1157 		return;
   1158 
   1159 	/*
   1160 	 * Remember the previous number of free descriptors.
   1161 	 */
   1162 	ofree = sc->sc_txfree;
   1163 
   1164 	/*
   1165 	 * Loop through the send queue, setting up transmit descriptors
   1166 	 * until we drain the queue, or use up all available transmit
   1167 	 * descriptors.
   1168 	 */
   1169 	for (;;) {
   1170 		/* Grab a packet off the queue. */
   1171 		IFQ_POLL(&ifp->if_snd, m0);
   1172 		if (m0 == NULL)
   1173 			break;
   1174 
   1175 		DPRINTF(WM_DEBUG_TX,
   1176 		    ("%s: TX: have packet to transmit: %p\n",
   1177 		    sc->sc_dev.dv_xname, m0));
   1178 
   1179 		/* Get a work queue entry. */
   1180 		if (sc->sc_txsfree < WM_TXQUEUE_GC) {
   1181 			wm_txintr(sc);
   1182 			if (sc->sc_txsfree == 0) {
   1183 				DPRINTF(WM_DEBUG_TX,
   1184 				    ("%s: TX: no free job descriptors\n",
   1185 					sc->sc_dev.dv_xname));
   1186 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   1187 				break;
   1188 			}
   1189 		}
   1190 
   1191 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1192 		dmamap = txs->txs_dmamap;
   1193 
   1194 		/*
   1195 		 * Load the DMA map.  If this fails, the packet either
   1196 		 * didn't fit in the allotted number of segments, or we
   1197 		 * were short on resources.  For the too-many-segments
   1198 		 * case, we simply report an error and drop the packet,
   1199 		 * since we can't sanely copy a jumbo packet to a single
   1200 		 * buffer.
   1201 		 */
   1202 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1203 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1204 		if (error) {
   1205 			if (error == EFBIG) {
   1206 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   1207 				printf("%s: Tx packet consumes too many "
   1208 				    "DMA segments, dropping...\n",
   1209 				    sc->sc_dev.dv_xname);
   1210 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1211 				m_freem(m0);
   1212 				continue;
   1213 			}
   1214 			/*
   1215 			 * Short on resources, just stop for now.
   1216 			 */
   1217 			DPRINTF(WM_DEBUG_TX,
   1218 			    ("%s: TX: dmamap load failed: %d\n",
   1219 			    sc->sc_dev.dv_xname, error));
   1220 			break;
   1221 		}
   1222 
   1223 		/*
   1224 		 * Ensure we have enough descriptors free to describe
   1225 		 * the packet.  Note, we always reserve one descriptor
   1226 		 * at the end of the ring due to the semantics of the
   1227 		 * TDT register, plus one more in the event we need
   1228 		 * to re-load checksum offload context.
   1229 		 */
   1230 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
   1231 			/*
   1232 			 * Not enough free descriptors to transmit this
   1233 			 * packet.  We haven't committed anything yet,
   1234 			 * so just unload the DMA map, put the packet
   1235 			 * pack on the queue, and punt.  Notify the upper
   1236 			 * layer that there are no more slots left.
   1237 			 */
   1238 			DPRINTF(WM_DEBUG_TX,
   1239 			    ("%s: TX: need %d descriptors, have %d\n",
   1240 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs,
   1241 			    sc->sc_txfree - 1));
   1242 			ifp->if_flags |= IFF_OACTIVE;
   1243 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1244 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   1245 			break;
   1246 		}
   1247 
   1248 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1249 
   1250 		/*
   1251 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1252 		 */
   1253 
   1254 		/* Sync the DMA map. */
   1255 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1256 		    BUS_DMASYNC_PREWRITE);
   1257 
   1258 		DPRINTF(WM_DEBUG_TX,
   1259 		    ("%s: TX: packet has %d DMA segments\n",
   1260 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs));
   1261 
   1262 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1263 
   1264 		/*
   1265 		 * Store a pointer to the packet so that we can free it
   1266 		 * later.
   1267 		 *
   1268 		 * Initially, we consider the number of descriptors the
   1269 		 * packet uses the number of DMA segments.  This may be
   1270 		 * incremented by 1 if we do checksum offload (a descriptor
   1271 		 * is used to set the checksum context).
   1272 		 */
   1273 		txs->txs_mbuf = m0;
   1274 		txs->txs_firstdesc = sc->sc_txnext;
   1275 		txs->txs_ndesc = dmamap->dm_nsegs;
   1276 
   1277 		/*
   1278 		 * Set up checksum offload parameters for
   1279 		 * this packet.
   1280 		 */
   1281 		if (m0->m_pkthdr.csum_flags &
   1282 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1283 			if (wm_tx_cksum(sc, txs, &cksumcmd,
   1284 					&cksumfields) != 0) {
   1285 				/* Error message already displayed. */
   1286 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1287 				continue;
   1288 			}
   1289 		} else {
   1290 			cksumcmd = 0;
   1291 			cksumfields = 0;
   1292 		}
   1293 
   1294 		cksumcmd |= htole32(WTX_CMD_IDE);
   1295 
   1296 		/*
   1297 		 * Initialize the transmit descriptor.
   1298 		 */
   1299 		for (nexttx = sc->sc_txnext, seg = 0;
   1300 		     seg < dmamap->dm_nsegs;
   1301 		     seg++, nexttx = WM_NEXTTX(nexttx)) {
   1302 			/*
   1303 			 * Note: we currently only use 32-bit DMA
   1304 			 * addresses.
   1305 			 */
   1306 			sc->sc_txdescs[nexttx].wtx_addr.wa_high = 0;
   1307 			sc->sc_txdescs[nexttx].wtx_addr.wa_low =
   1308 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1309 			sc->sc_txdescs[nexttx].wtx_cmdlen = cksumcmd |
   1310 			    htole32(dmamap->dm_segs[seg].ds_len);
   1311 			sc->sc_txdescs[nexttx].wtx_fields.wtxu_bits =
   1312 			    cksumfields;
   1313 			lasttx = nexttx;
   1314 
   1315 			DPRINTF(WM_DEBUG_TX,
   1316 			    ("%s: TX: desc %d: low 0x%08x, len 0x%04x\n",
   1317 			    sc->sc_dev.dv_xname, nexttx,
   1318 			    (uint32_t) dmamap->dm_segs[seg].ds_addr,
   1319 			    (uint32_t) dmamap->dm_segs[seg].ds_len));
   1320 		}
   1321 
   1322 		/*
   1323 		 * Set up the command byte on the last descriptor of
   1324 		 * the packet.  If we're in the interrupt delay window,
   1325 		 * delay the interrupt.
   1326 		 */
   1327 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1328 		    htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS);
   1329 
   1330 #if 0 /* XXXJRT */
   1331 		/*
   1332 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1333 		 * up the descriptor to encapsulate the packet for us.
   1334 		 *
   1335 		 * This is only valid on the last descriptor of the packet.
   1336 		 */
   1337 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1338 		    (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
   1339 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1340 			    htole32(WTX_CMD_VLE);
   1341 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_fields.wtxu_vlan
   1342 			    = htole16(*(u_int *)(mtag + 1) & 0xffff);
   1343 		}
   1344 #endif /* XXXJRT */
   1345 
   1346 		txs->txs_lastdesc = lasttx;
   1347 
   1348 		DPRINTF(WM_DEBUG_TX,
   1349 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   1350 		    lasttx, sc->sc_txdescs[lasttx].wtx_cmdlen));
   1351 
   1352 		/* Sync the descriptors we're using. */
   1353 		WM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1354 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1355 
   1356 		/* Give the packet to the chip. */
   1357 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   1358 
   1359 		DPRINTF(WM_DEBUG_TX,
   1360 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   1361 
   1362 		DPRINTF(WM_DEBUG_TX,
   1363 		    ("%s: TX: finished transmitting packet, job %d\n",
   1364 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   1365 
   1366 		/* Advance the tx pointer. */
   1367 		sc->sc_txfree -= txs->txs_ndesc;
   1368 		sc->sc_txnext = nexttx;
   1369 
   1370 		sc->sc_txsfree--;
   1371 		sc->sc_txsnext = WM_NEXTTXS(sc->sc_txsnext);
   1372 
   1373 #if NBPFILTER > 0
   1374 		/* Pass the packet to any BPF listeners. */
   1375 		if (ifp->if_bpf)
   1376 			bpf_mtap(ifp->if_bpf, m0);
   1377 #endif /* NBPFILTER > 0 */
   1378 	}
   1379 
   1380 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1381 		/* No more slots; notify upper layer. */
   1382 		ifp->if_flags |= IFF_OACTIVE;
   1383 	}
   1384 
   1385 	if (sc->sc_txfree != ofree) {
   1386 		/* Set a watchdog timer in case the chip flakes out. */
   1387 		ifp->if_timer = 5;
   1388 	}
   1389 }
   1390 
   1391 /*
   1392  * wm_watchdog:		[ifnet interface function]
   1393  *
   1394  *	Watchdog timer handler.
   1395  */
   1396 void
   1397 wm_watchdog(struct ifnet *ifp)
   1398 {
   1399 	struct wm_softc *sc = ifp->if_softc;
   1400 
   1401 	/*
   1402 	 * Since we're using delayed interrupts, sweep up
   1403 	 * before we report an error.
   1404 	 */
   1405 	wm_txintr(sc);
   1406 
   1407 	if (sc->sc_txfree != WM_NTXDESC) {
   1408 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1409 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   1410 		    sc->sc_txnext);
   1411 		ifp->if_oerrors++;
   1412 
   1413 		/* Reset the interface. */
   1414 		(void) wm_init(ifp);
   1415 	}
   1416 
   1417 	/* Try to get more packets going. */
   1418 	wm_start(ifp);
   1419 }
   1420 
   1421 /*
   1422  * wm_ioctl:		[ifnet interface function]
   1423  *
   1424  *	Handle control requests from the operator.
   1425  */
   1426 int
   1427 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1428 {
   1429 	struct wm_softc *sc = ifp->if_softc;
   1430 	struct ifreq *ifr = (struct ifreq *) data;
   1431 	int s, error;
   1432 
   1433 	s = splnet();
   1434 
   1435 	switch (cmd) {
   1436 	case SIOCSIFMEDIA:
   1437 	case SIOCGIFMEDIA:
   1438 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1439 		break;
   1440 	default:
   1441 		error = ether_ioctl(ifp, cmd, data);
   1442 		if (error == ENETRESET) {
   1443 			/*
   1444 			 * Multicast list has changed; set the hardware filter
   1445 			 * accordingly.
   1446 			 */
   1447 			wm_set_filter(sc);
   1448 			error = 0;
   1449 		}
   1450 		break;
   1451 	}
   1452 
   1453 	/* Try to get more packets going. */
   1454 	wm_start(ifp);
   1455 
   1456 	splx(s);
   1457 	return (error);
   1458 }
   1459 
   1460 /*
   1461  * wm_intr:
   1462  *
   1463  *	Interrupt service routine.
   1464  */
   1465 int
   1466 wm_intr(void *arg)
   1467 {
   1468 	struct wm_softc *sc = arg;
   1469 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1470 	uint32_t icr;
   1471 	int wantinit, handled = 0;
   1472 
   1473 	for (wantinit = 0; wantinit == 0;) {
   1474 		icr = CSR_READ(sc, WMREG_ICR);
   1475 		if ((icr & sc->sc_icr) == 0)
   1476 			break;
   1477 
   1478 #if 0 /*NRND > 0*/
   1479 		if (RND_ENABLED(&sc->rnd_source))
   1480 			rnd_add_uint32(&sc->rnd_source, icr);
   1481 #endif
   1482 
   1483 		handled = 1;
   1484 
   1485 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   1486 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1487 			DPRINTF(WM_DEBUG_RX,
   1488 			    ("%s: RX: got Rx intr 0x%08x\n",
   1489 			    sc->sc_dev.dv_xname,
   1490 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1491 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
   1492 		}
   1493 #endif
   1494 		wm_rxintr(sc);
   1495 
   1496 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   1497 		if (icr & ICR_TXDW) {
   1498 			DPRINTF(WM_DEBUG_TX,
   1499 			    ("%s: TX: got TDXW interrupt\n",
   1500 			    sc->sc_dev.dv_xname));
   1501 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
   1502 		}
   1503 #endif
   1504 		wm_txintr(sc);
   1505 
   1506 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
   1507 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
   1508 			wm_linkintr(sc, icr);
   1509 		}
   1510 
   1511 		if (icr & ICR_RXO) {
   1512 			printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
   1513 			wantinit = 1;
   1514 		}
   1515 	}
   1516 
   1517 	if (handled) {
   1518 		if (wantinit)
   1519 			wm_init(ifp);
   1520 
   1521 		/* Try to get more packets going. */
   1522 		wm_start(ifp);
   1523 	}
   1524 
   1525 	return (handled);
   1526 }
   1527 
   1528 /*
   1529  * wm_txintr:
   1530  *
   1531  *	Helper; handle transmit interrupts.
   1532  */
   1533 void
   1534 wm_txintr(struct wm_softc *sc)
   1535 {
   1536 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1537 	struct wm_txsoft *txs;
   1538 	uint8_t status;
   1539 	int i;
   1540 
   1541 	ifp->if_flags &= ~IFF_OACTIVE;
   1542 
   1543 	/*
   1544 	 * Go through the Tx list and free mbufs for those
   1545 	 * frames which have been transmitted.
   1546 	 */
   1547 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN;
   1548 	     i = WM_NEXTTXS(i), sc->sc_txsfree++) {
   1549 		txs = &sc->sc_txsoft[i];
   1550 
   1551 		DPRINTF(WM_DEBUG_TX,
   1552 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   1553 
   1554 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1555 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1556 
   1557 		status = le32toh(sc->sc_txdescs[
   1558 		    txs->txs_lastdesc].wtx_fields.wtxu_bits);
   1559 		if ((status & WTX_ST_DD) == 0) {
   1560 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   1561 			    BUS_DMASYNC_PREREAD);
   1562 			break;
   1563 		}
   1564 
   1565 		DPRINTF(WM_DEBUG_TX,
   1566 		    ("%s: TX: job %d done: descs %d..%d\n",
   1567 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   1568 		    txs->txs_lastdesc));
   1569 
   1570 		/*
   1571 		 * XXX We should probably be using the statistics
   1572 		 * XXX registers, but I don't know if they exist
   1573 		 * XXX on chips before the i82544.
   1574 		 */
   1575 
   1576 #ifdef WM_EVENT_COUNTERS
   1577 		if (status & WTX_ST_TU)
   1578 			WM_EVCNT_INCR(&sc->sc_ev_tu);
   1579 #endif /* WM_EVENT_COUNTERS */
   1580 
   1581 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
   1582 			ifp->if_oerrors++;
   1583 			if (status & WTX_ST_LC)
   1584 				printf("%s: late collision\n",
   1585 				    sc->sc_dev.dv_xname);
   1586 			else if (status & WTX_ST_EC) {
   1587 				ifp->if_collisions += 16;
   1588 				printf("%s: excessive collisions\n",
   1589 				    sc->sc_dev.dv_xname);
   1590 			}
   1591 		} else
   1592 			ifp->if_opackets++;
   1593 
   1594 		sc->sc_txfree += txs->txs_ndesc;
   1595 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1596 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1597 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1598 		m_freem(txs->txs_mbuf);
   1599 		txs->txs_mbuf = NULL;
   1600 	}
   1601 
   1602 	/* Update the dirty transmit buffer pointer. */
   1603 	sc->sc_txsdirty = i;
   1604 	DPRINTF(WM_DEBUG_TX,
   1605 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   1606 
   1607 	/*
   1608 	 * If there are no more pending transmissions, cancel the watchdog
   1609 	 * timer.
   1610 	 */
   1611 	if (sc->sc_txsfree == WM_TXQUEUELEN)
   1612 		ifp->if_timer = 0;
   1613 }
   1614 
   1615 /*
   1616  * wm_rxintr:
   1617  *
   1618  *	Helper; handle receive interrupts.
   1619  */
   1620 void
   1621 wm_rxintr(struct wm_softc *sc)
   1622 {
   1623 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1624 	struct wm_rxsoft *rxs;
   1625 	struct mbuf *m;
   1626 	int i, len;
   1627 	uint8_t status, errors;
   1628 
   1629 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
   1630 		rxs = &sc->sc_rxsoft[i];
   1631 
   1632 		DPRINTF(WM_DEBUG_RX,
   1633 		    ("%s: RX: checking descriptor %d\n",
   1634 		    sc->sc_dev.dv_xname, i));
   1635 
   1636 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1637 
   1638 		status = sc->sc_rxdescs[i].wrx_status;
   1639 		errors = sc->sc_rxdescs[i].wrx_errors;
   1640 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
   1641 
   1642 		if ((status & WRX_ST_DD) == 0) {
   1643 			/*
   1644 			 * We have processed all of the receive descriptors.
   1645 			 */
   1646 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1647 			break;
   1648 		}
   1649 
   1650 		if (__predict_false(sc->sc_rxdiscard)) {
   1651 			DPRINTF(WM_DEBUG_RX,
   1652 			    ("%s: RX: discarding contents of descriptor %d\n",
   1653 			    sc->sc_dev.dv_xname, i));
   1654 			WM_INIT_RXDESC(sc, i);
   1655 			if (status & WRX_ST_EOP) {
   1656 				/* Reset our state. */
   1657 				DPRINTF(WM_DEBUG_RX,
   1658 				    ("%s: RX: resetting rxdiscard -> 0\n",
   1659 				    sc->sc_dev.dv_xname));
   1660 				sc->sc_rxdiscard = 0;
   1661 			}
   1662 			continue;
   1663 		}
   1664 
   1665 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1666 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1667 
   1668 		m = rxs->rxs_mbuf;
   1669 
   1670 		/*
   1671 		 * Add a new receive buffer to the ring.
   1672 		 */
   1673 		if (wm_add_rxbuf(sc, i) != 0) {
   1674 			/*
   1675 			 * Failed, throw away what we've done so
   1676 			 * far, and discard the rest of the packet.
   1677 			 */
   1678 			ifp->if_ierrors++;
   1679 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1680 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1681 			WM_INIT_RXDESC(sc, i);
   1682 			if ((status & WRX_ST_EOP) == 0)
   1683 				sc->sc_rxdiscard = 1;
   1684 			if (sc->sc_rxhead != NULL)
   1685 				m_freem(sc->sc_rxhead);
   1686 			WM_RXCHAIN_RESET(sc);
   1687 			DPRINTF(WM_DEBUG_RX,
   1688 			    ("%s: RX: Rx buffer allocation failed, "
   1689 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   1690 			    sc->sc_rxdiscard ? " (discard)" : ""));
   1691 			continue;
   1692 		}
   1693 
   1694 		WM_RXCHAIN_LINK(sc, m);
   1695 
   1696 		m->m_len = len;
   1697 
   1698 		DPRINTF(WM_DEBUG_RX,
   1699 		    ("%s: RX: buffer at %p len %d\n",
   1700 		    sc->sc_dev.dv_xname, m->m_data, len));
   1701 
   1702 		/*
   1703 		 * If this is not the end of the packet, keep
   1704 		 * looking.
   1705 		 */
   1706 		if ((status & WRX_ST_EOP) == 0) {
   1707 			sc->sc_rxlen += len;
   1708 			DPRINTF(WM_DEBUG_RX,
   1709 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   1710 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   1711 			continue;
   1712 		}
   1713 
   1714 		/*
   1715 		 * Okay, we have the entire packet now...
   1716 		 */
   1717 		*sc->sc_rxtailp = NULL;
   1718 		m = sc->sc_rxhead;
   1719 		len += sc->sc_rxlen;
   1720 
   1721 		WM_RXCHAIN_RESET(sc);
   1722 
   1723 		DPRINTF(WM_DEBUG_RX,
   1724 		    ("%s: RX: have entire packet, len -> %d\n",
   1725 		    sc->sc_dev.dv_xname, len));
   1726 
   1727 		/*
   1728 		 * If an error occurred, update stats and drop the packet.
   1729 		 */
   1730 		if (errors &
   1731 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
   1732 			ifp->if_ierrors++;
   1733 			if (errors & WRX_ER_SE)
   1734 				printf("%s: symbol error\n",
   1735 				    sc->sc_dev.dv_xname);
   1736 			else if (errors & WRX_ER_SEQ)
   1737 				printf("%s: receive sequence error\n",
   1738 				    sc->sc_dev.dv_xname);
   1739 			else if (errors & WRX_ER_CE)
   1740 				printf("%s: CRC error\n",
   1741 				    sc->sc_dev.dv_xname);
   1742 			m_freem(m);
   1743 			continue;
   1744 		}
   1745 
   1746 		/*
   1747 		 * No errors.  Receive the packet.
   1748 		 *
   1749 		 * Note, we have configured the chip to include the
   1750 		 * CRC with every packet.
   1751 		 */
   1752 		m->m_flags |= M_HASFCS;
   1753 		m->m_pkthdr.rcvif = ifp;
   1754 		m->m_pkthdr.len = len;
   1755 
   1756 #if 0 /* XXXJRT */
   1757 		/*
   1758 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1759 		 * for us.  Associate the tag with the packet.
   1760 		 */
   1761 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1762 		    (status & WRX_ST_VP) != 0) {
   1763 			struct m_tag *vtag;
   1764 
   1765 			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
   1766 			    M_NOWAIT);
   1767 			if (vtag == NULL) {
   1768 				ifp->if_ierrors++;
   1769 				printf("%s: unable to allocate VLAN tag\n",
   1770 				    sc->sc_dev.dv_xname);
   1771 				m_freem(m);
   1772 				continue;
   1773 			}
   1774 
   1775 			*(u_int *)(vtag + 1) =
   1776 			    le16toh(sc->sc_rxdescs[i].wrx_special);
   1777 		}
   1778 #endif /* XXXJRT */
   1779 
   1780 		/*
   1781 		 * Set up checksum info for this packet.
   1782 		 */
   1783 		if (status & WRX_ST_IPCS) {
   1784 			WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1785 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1786 			if (errors & WRX_ER_IPE)
   1787 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1788 		}
   1789 		if (status & WRX_ST_TCPCS) {
   1790 			/*
   1791 			 * Note: we don't know if this was TCP or UDP,
   1792 			 * so we just set both bits, and expect the
   1793 			 * upper layers to deal.
   1794 			 */
   1795 			WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
   1796 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   1797 			if (errors & WRX_ER_TCPE)
   1798 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1799 		}
   1800 
   1801 		ifp->if_ipackets++;
   1802 
   1803 #if NBPFILTER > 0
   1804 		/* Pass this up to any BPF listeners. */
   1805 		if (ifp->if_bpf)
   1806 			bpf_mtap(ifp->if_bpf, m);
   1807 #endif /* NBPFILTER > 0 */
   1808 
   1809 		/* Pass it on. */
   1810 		(*ifp->if_input)(ifp, m);
   1811 	}
   1812 
   1813 	/* Update the receive pointer. */
   1814 	sc->sc_rxptr = i;
   1815 
   1816 	DPRINTF(WM_DEBUG_RX,
   1817 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   1818 }
   1819 
   1820 /*
   1821  * wm_linkintr:
   1822  *
   1823  *	Helper; handle link interrupts.
   1824  */
   1825 void
   1826 wm_linkintr(struct wm_softc *sc, uint32_t icr)
   1827 {
   1828 	uint32_t status;
   1829 
   1830 	/*
   1831 	 * If we get a link status interrupt on a 1000BASE-T
   1832 	 * device, just fall into the normal MII tick path.
   1833 	 */
   1834 	if (sc->sc_flags & WM_F_HAS_MII) {
   1835 		if (icr & ICR_LSC) {
   1836 			DPRINTF(WM_DEBUG_LINK,
   1837 			    ("%s: LINK: LSC -> mii_tick\n",
   1838 			    sc->sc_dev.dv_xname));
   1839 			mii_tick(&sc->sc_mii);
   1840 		} else if (icr & ICR_RXSEQ) {
   1841 			DPRINTF(WM_DEBUG_LINK,
   1842 			    ("%s: LINK Receive sequence error\n",
   1843 			    sc->sc_dev.dv_xname));
   1844 		}
   1845 		return;
   1846 	}
   1847 
   1848 	/*
   1849 	 * If we are now receiving /C/, check for link again in
   1850 	 * a couple of link clock ticks.
   1851 	 */
   1852 	if (icr & ICR_RXCFG) {
   1853 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
   1854 		    sc->sc_dev.dv_xname));
   1855 		sc->sc_tbi_anstate = 2;
   1856 	}
   1857 
   1858 	if (icr & ICR_LSC) {
   1859 		status = CSR_READ(sc, WMREG_STATUS);
   1860 		if (status & STATUS_LU) {
   1861 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
   1862 			    sc->sc_dev.dv_xname,
   1863 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   1864 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   1865 			if (status & STATUS_FD)
   1866 				sc->sc_tctl |=
   1867 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   1868 			else
   1869 				sc->sc_tctl |=
   1870 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   1871 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   1872 			sc->sc_tbi_linkup = 1;
   1873 		} else {
   1874 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   1875 			    sc->sc_dev.dv_xname));
   1876 			sc->sc_tbi_linkup = 0;
   1877 		}
   1878 		sc->sc_tbi_anstate = 2;
   1879 		wm_tbi_set_linkled(sc);
   1880 	} else if (icr & ICR_RXSEQ) {
   1881 		DPRINTF(WM_DEBUG_LINK,
   1882 		    ("%s: LINK: Receive sequence error\n",
   1883 		    sc->sc_dev.dv_xname));
   1884 	}
   1885 }
   1886 
   1887 /*
   1888  * wm_tick:
   1889  *
   1890  *	One second timer, used to check link status, sweep up
   1891  *	completed transmit jobs, etc.
   1892  */
   1893 void
   1894 wm_tick(void *arg)
   1895 {
   1896 	struct wm_softc *sc = arg;
   1897 	int s;
   1898 
   1899 	s = splnet();
   1900 
   1901 	if (sc->sc_flags & WM_F_HAS_MII)
   1902 		mii_tick(&sc->sc_mii);
   1903 	else
   1904 		wm_tbi_check_link(sc);
   1905 
   1906 	splx(s);
   1907 
   1908 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   1909 }
   1910 
   1911 /*
   1912  * wm_reset:
   1913  *
   1914  *	Reset the i82542 chip.
   1915  */
   1916 void
   1917 wm_reset(struct wm_softc *sc)
   1918 {
   1919 	int i;
   1920 
   1921 	CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   1922 	delay(10000);
   1923 
   1924 	for (i = 0; i < 1000; i++) {
   1925 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
   1926 			return;
   1927 		delay(20);
   1928 	}
   1929 
   1930 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
   1931 		printf("%s: WARNING: reset failed to complete\n",
   1932 		    sc->sc_dev.dv_xname);
   1933 }
   1934 
   1935 /*
   1936  * wm_init:		[ifnet interface function]
   1937  *
   1938  *	Initialize the interface.  Must be called at splnet().
   1939  */
   1940 int
   1941 wm_init(struct ifnet *ifp)
   1942 {
   1943 	struct wm_softc *sc = ifp->if_softc;
   1944 	struct wm_rxsoft *rxs;
   1945 	int i, error = 0;
   1946 	uint32_t reg;
   1947 
   1948 	/*
   1949 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   1950 	 * There is a small but measurable benefit to avoiding the adjusment
   1951 	 * of the descriptor so that the headers are aligned, for normal mtu,
   1952 	 * on such platforms.  One possibility is that the DMA itself is
   1953 	 * slightly more efficient if the front of the entire packet (instead
   1954 	 * of the front of the headers) is aligned.
   1955 	 *
   1956 	 * Note we must always set align_tweak to 0 if we are using
   1957 	 * jumbo frames.
   1958 	 */
   1959 #ifdef __NO_STRICT_ALIGNMENT
   1960 	sc->sc_align_tweak = 0;
   1961 #else
   1962 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   1963 		sc->sc_align_tweak = 0;
   1964 	else
   1965 		sc->sc_align_tweak = 2;
   1966 #endif /* __NO_STRICT_ALIGNMENT */
   1967 
   1968 	/* Cancel any pending I/O. */
   1969 	wm_stop(ifp, 0);
   1970 
   1971 	/* Reset the chip to a known state. */
   1972 	wm_reset(sc);
   1973 
   1974 	/* Initialize the transmit descriptor ring. */
   1975 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1976 	WM_CDTXSYNC(sc, 0, WM_NTXDESC,
   1977 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1978 	sc->sc_txfree = WM_NTXDESC;
   1979 	sc->sc_txnext = 0;
   1980 
   1981 	sc->sc_txctx_ipcs = 0xffffffff;
   1982 	sc->sc_txctx_tucs = 0xffffffff;
   1983 
   1984 	if (sc->sc_type < WM_T_82543) {
   1985 		CSR_WRITE(sc, WMREG_OLD_TBDAH, 0);
   1986 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR(sc, 0));
   1987 		CSR_WRITE(sc, WMREG_OLD_TDLEN, sizeof(sc->sc_txdescs));
   1988 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
   1989 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
   1990 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
   1991 	} else {
   1992 		CSR_WRITE(sc, WMREG_TBDAH, 0);
   1993 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR(sc, 0));
   1994 		CSR_WRITE(sc, WMREG_TDLEN, sizeof(sc->sc_txdescs));
   1995 		CSR_WRITE(sc, WMREG_TDH, 0);
   1996 		CSR_WRITE(sc, WMREG_TDT, 0);
   1997 		CSR_WRITE(sc, WMREG_TIDV, 128);
   1998 
   1999 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
   2000 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   2001 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
   2002 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
   2003 	}
   2004 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
   2005 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
   2006 
   2007 	/* Initialize the transmit job descriptors. */
   2008 	for (i = 0; i < WM_TXQUEUELEN; i++)
   2009 		sc->sc_txsoft[i].txs_mbuf = NULL;
   2010 	sc->sc_txsfree = WM_TXQUEUELEN;
   2011 	sc->sc_txsnext = 0;
   2012 	sc->sc_txsdirty = 0;
   2013 
   2014 	/*
   2015 	 * Initialize the receive descriptor and receive job
   2016 	 * descriptor rings.
   2017 	 */
   2018 	if (sc->sc_type < WM_T_82543) {
   2019 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, 0);
   2020 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR(sc, 0));
   2021 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
   2022 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
   2023 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
   2024 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
   2025 
   2026 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
   2027 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
   2028 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
   2029 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
   2030 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
   2031 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
   2032 	} else {
   2033 		CSR_WRITE(sc, WMREG_RDBAH, 0);
   2034 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR(sc, 0));
   2035 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
   2036 		CSR_WRITE(sc, WMREG_RDH, 0);
   2037 		CSR_WRITE(sc, WMREG_RDT, 0);
   2038 		CSR_WRITE(sc, WMREG_RDTR, 28 | RDTR_FPD);
   2039 	}
   2040 	for (i = 0; i < WM_NRXDESC; i++) {
   2041 		rxs = &sc->sc_rxsoft[i];
   2042 		if (rxs->rxs_mbuf == NULL) {
   2043 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
   2044 				printf("%s: unable to allocate or map rx "
   2045 				    "buffer %d, error = %d\n",
   2046 				    sc->sc_dev.dv_xname, i, error);
   2047 				/*
   2048 				 * XXX Should attempt to run with fewer receive
   2049 				 * XXX buffers instead of just failing.
   2050 				 */
   2051 				wm_rxdrain(sc);
   2052 				goto out;
   2053 			}
   2054 		} else
   2055 			WM_INIT_RXDESC(sc, i);
   2056 	}
   2057 	sc->sc_rxptr = 0;
   2058 	sc->sc_rxdiscard = 0;
   2059 	WM_RXCHAIN_RESET(sc);
   2060 
   2061 	/*
   2062 	 * Clear out the VLAN table -- we don't use it (yet).
   2063 	 */
   2064 	CSR_WRITE(sc, WMREG_VET, 0);
   2065 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
   2066 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
   2067 
   2068 	/*
   2069 	 * Set up flow-control parameters.
   2070 	 *
   2071 	 * XXX Values could probably stand some tuning.
   2072 	 */
   2073 	if (sc->sc_ctrl & (CTRL_RFCE|CTRL_TFCE)) {
   2074 		CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
   2075 		CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
   2076 		CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
   2077 
   2078 		if (sc->sc_type < WM_T_82543) {
   2079 			CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
   2080 			CSR_WRITE(sc, WMREG_OLD_FCRTL, FCRTL_DFLT);
   2081 		} else {
   2082 			CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
   2083 			CSR_WRITE(sc, WMREG_FCRTL, FCRTL_DFLT);
   2084 		}
   2085 		CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
   2086 	}
   2087 
   2088 #if 0 /* XXXJRT */
   2089 	/* Deal with VLAN enables. */
   2090 	if (sc->sc_ethercom.ec_nvlans != 0)
   2091 		sc->sc_ctrl |= CTRL_VME;
   2092 	else
   2093 #endif /* XXXJRT */
   2094 		sc->sc_ctrl &= ~CTRL_VME;
   2095 
   2096 	/* Write the control registers. */
   2097 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2098 #if 0
   2099 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   2100 #endif
   2101 
   2102 	/*
   2103 	 * Set up checksum offload parameters.
   2104 	 */
   2105 	reg = CSR_READ(sc, WMREG_RXCSUM);
   2106 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
   2107 		reg |= RXCSUM_IPOFL;
   2108 	else
   2109 		reg &= ~RXCSUM_IPOFL;
   2110 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
   2111 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   2112 	else {
   2113 		reg &= ~RXCSUM_TUOFL;
   2114 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
   2115 			reg &= ~RXCSUM_IPOFL;
   2116 	}
   2117 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
   2118 
   2119 	/*
   2120 	 * Set up the interrupt registers.
   2121 	 */
   2122 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   2123 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   2124 	    ICR_RXO | ICR_RXT0;
   2125 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
   2126 		sc->sc_icr |= ICR_RXCFG;
   2127 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
   2128 
   2129 	/* Set up the inter-packet gap. */
   2130 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   2131 
   2132 #if 0 /* XXXJRT */
   2133 	/* Set the VLAN ethernetype. */
   2134 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
   2135 #endif
   2136 
   2137 	/*
   2138 	 * Set up the transmit control register; we start out with
   2139 	 * a collision distance suitable for FDX, but update it whe
   2140 	 * we resolve the media type.
   2141 	 */
   2142 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
   2143 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2144 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2145 
   2146 	/* Set the media. */
   2147 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
   2148 
   2149 	/*
   2150 	 * Set up the receive control register; we actually program
   2151 	 * the register when we set the receive filter.  Use multicast
   2152 	 * address offset type 0.
   2153 	 *
   2154 	 * Only the i82544 has the ability to strip the incoming
   2155 	 * CRC, so we don't enable that feature.
   2156 	 */
   2157 	sc->sc_mchash_type = 0;
   2158 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
   2159 	    RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
   2160 
   2161 	if(MCLBYTES == 2048) {
   2162 		sc->sc_rctl |= RCTL_2k;
   2163 	} else {
   2164 	/*
   2165 	 * XXX MCLBYTES > 2048 causes "Tx packet consumes too many DMA"
   2166 	 * XXX segments, dropping" -- why?
   2167 	 */
   2168 #if 0
   2169 		if(sc->sc_type >= WM_T_82543) {
   2170 			switch(MCLBYTES) {
   2171 			case 4096:
   2172 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
   2173 				break;
   2174 			case 8192:
   2175 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
   2176 				break;
   2177 			case 16384:
   2178 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
   2179 				break;
   2180 			default:
   2181 				panic("wm_init: MCLBYTES %d unsupported",
   2182 				    MCLBYTES);
   2183 				break;
   2184 			}
   2185 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
   2186 #else
   2187 		panic("wm_init: MCLBYTES > 2048 not supported.");
   2188 #endif
   2189 	}
   2190 
   2191 	/* Set the receive filter. */
   2192 	wm_set_filter(sc);
   2193 
   2194 	/* Start the one second link check clock. */
   2195 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2196 
   2197 	/* ...all done! */
   2198 	ifp->if_flags |= IFF_RUNNING;
   2199 	ifp->if_flags &= ~IFF_OACTIVE;
   2200 
   2201  out:
   2202 	if (error)
   2203 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2204 	return (error);
   2205 }
   2206 
   2207 /*
   2208  * wm_rxdrain:
   2209  *
   2210  *	Drain the receive queue.
   2211  */
   2212 void
   2213 wm_rxdrain(struct wm_softc *sc)
   2214 {
   2215 	struct wm_rxsoft *rxs;
   2216 	int i;
   2217 
   2218 	for (i = 0; i < WM_NRXDESC; i++) {
   2219 		rxs = &sc->sc_rxsoft[i];
   2220 		if (rxs->rxs_mbuf != NULL) {
   2221 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2222 			m_freem(rxs->rxs_mbuf);
   2223 			rxs->rxs_mbuf = NULL;
   2224 		}
   2225 	}
   2226 }
   2227 
   2228 /*
   2229  * wm_stop:		[ifnet interface function]
   2230  *
   2231  *	Stop transmission on the interface.
   2232  */
   2233 void
   2234 wm_stop(struct ifnet *ifp, int disable)
   2235 {
   2236 	struct wm_softc *sc = ifp->if_softc;
   2237 	struct wm_txsoft *txs;
   2238 	int i;
   2239 
   2240 	/* Stop the one second clock. */
   2241 	callout_stop(&sc->sc_tick_ch);
   2242 
   2243 	if (sc->sc_flags & WM_F_HAS_MII) {
   2244 		/* Down the MII. */
   2245 		mii_down(&sc->sc_mii);
   2246 	}
   2247 
   2248 	/* Stop the transmit and receive processes. */
   2249 	CSR_WRITE(sc, WMREG_TCTL, 0);
   2250 	CSR_WRITE(sc, WMREG_RCTL, 0);
   2251 
   2252 	/* Release any queued transmit buffers. */
   2253 	for (i = 0; i < WM_TXQUEUELEN; i++) {
   2254 		txs = &sc->sc_txsoft[i];
   2255 		if (txs->txs_mbuf != NULL) {
   2256 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2257 			m_freem(txs->txs_mbuf);
   2258 			txs->txs_mbuf = NULL;
   2259 		}
   2260 	}
   2261 
   2262 	if (disable)
   2263 		wm_rxdrain(sc);
   2264 
   2265 	/* Mark the interface as down and cancel the watchdog timer. */
   2266 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2267 	ifp->if_timer = 0;
   2268 }
   2269 
   2270 /*
   2271  * wm_read_eeprom:
   2272  *
   2273  *	Read data from the serial EEPROM.
   2274  */
   2275 void
   2276 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   2277 {
   2278 	uint32_t reg;
   2279 	int i, x, addrbits = 6;
   2280 
   2281 	for (i = 0; i < wordcnt; i++) {
   2282 		if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
   2283 			reg = CSR_READ(sc, WMREG_EECD);
   2284 
   2285 			/* Get number of address bits. */
   2286 			if (reg & EECD_EE_SIZE)
   2287 				addrbits = 8;
   2288 
   2289 			/* Request EEPROM access. */
   2290 			reg |= EECD_EE_REQ;
   2291 			CSR_WRITE(sc, WMREG_EECD, reg);
   2292 
   2293 			/* ..and wait for it to be granted. */
   2294 			for (x = 0; x < 100; x++) {
   2295 				reg = CSR_READ(sc, WMREG_EECD);
   2296 				if (reg & EECD_EE_GNT)
   2297 					break;
   2298 				delay(5);
   2299 			}
   2300 			if ((reg & EECD_EE_GNT) == 0) {
   2301 				printf("%s: could not acquire EEPROM GNT\n",
   2302 				    sc->sc_dev.dv_xname);
   2303 				*data = 0xffff;
   2304 				reg &= ~EECD_EE_REQ;
   2305 				CSR_WRITE(sc, WMREG_EECD, reg);
   2306 				continue;
   2307 			}
   2308 		} else
   2309 			reg = 0;
   2310 
   2311 		/* Clear SK and DI. */
   2312 		reg &= ~(EECD_SK | EECD_DI);
   2313 		CSR_WRITE(sc, WMREG_EECD, reg);
   2314 
   2315 		/* Set CHIP SELECT. */
   2316 		reg |= EECD_CS;
   2317 		CSR_WRITE(sc, WMREG_EECD, reg);
   2318 		delay(2);
   2319 
   2320 		/* Shift in the READ command. */
   2321 		for (x = 3; x > 0; x--) {
   2322 			if (UWIRE_OPC_READ & (1 << (x - 1)))
   2323 				reg |= EECD_DI;
   2324 			else
   2325 				reg &= ~EECD_DI;
   2326 			CSR_WRITE(sc, WMREG_EECD, reg);
   2327 			delay(2);
   2328 			CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2329 			delay(2);
   2330 			CSR_WRITE(sc, WMREG_EECD, reg);
   2331 			delay(2);
   2332 		}
   2333 
   2334 		/* Shift in address. */
   2335 		for (x = addrbits; x > 0; x--) {
   2336 			if ((word + i) & (1 << (x - 1)))
   2337 				reg |= EECD_DI;
   2338 			else
   2339 				reg &= ~EECD_DI;
   2340 			CSR_WRITE(sc, WMREG_EECD, reg);
   2341 			delay(2);
   2342 			CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2343 			delay(2);
   2344 			CSR_WRITE(sc, WMREG_EECD, reg);
   2345 			delay(2);
   2346 		}
   2347 
   2348 		/* Shift out the data. */
   2349 		reg &= ~EECD_DI;
   2350 		data[i] = 0;
   2351 		for (x = 16; x > 0; x--) {
   2352 			CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2353 			delay(2);
   2354 			if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
   2355 				data[i] |= (1 << (x - 1));
   2356 			CSR_WRITE(sc, WMREG_EECD, reg);
   2357 			delay(2);
   2358 		}
   2359 
   2360 		/* Clear CHIP SELECT. */
   2361 		reg &= ~EECD_CS;
   2362 		CSR_WRITE(sc, WMREG_EECD, reg);
   2363 		delay(2);
   2364 
   2365 		if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
   2366 			/* Release the EEPROM. */
   2367 			reg &= ~EECD_EE_REQ;
   2368 			CSR_WRITE(sc, WMREG_EECD, reg);
   2369 		}
   2370 	}
   2371 }
   2372 
   2373 /*
   2374  * wm_add_rxbuf:
   2375  *
   2376  *	Add a receive buffer to the indiciated descriptor.
   2377  */
   2378 int
   2379 wm_add_rxbuf(struct wm_softc *sc, int idx)
   2380 {
   2381 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2382 	struct mbuf *m;
   2383 	int error;
   2384 
   2385 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2386 	if (m == NULL)
   2387 		return (ENOBUFS);
   2388 
   2389 	MCLGET(m, M_DONTWAIT);
   2390 	if ((m->m_flags & M_EXT) == 0) {
   2391 		m_freem(m);
   2392 		return (ENOBUFS);
   2393 	}
   2394 
   2395 	if (rxs->rxs_mbuf != NULL)
   2396 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2397 
   2398 	rxs->rxs_mbuf = m;
   2399 
   2400 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   2401 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   2402 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2403 	if (error) {
   2404 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   2405 		    sc->sc_dev.dv_xname, idx, error);
   2406 		panic("wm_add_rxbuf");	/* XXX XXX XXX */
   2407 	}
   2408 
   2409 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2410 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2411 
   2412 	WM_INIT_RXDESC(sc, idx);
   2413 
   2414 	return (0);
   2415 }
   2416 
   2417 /*
   2418  * wm_set_ral:
   2419  *
   2420  *	Set an entery in the receive address list.
   2421  */
   2422 static void
   2423 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
   2424 {
   2425 	uint32_t ral_lo, ral_hi;
   2426 
   2427 	if (enaddr != NULL) {
   2428 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   2429 		    (enaddr[3] << 24);
   2430 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   2431 		ral_hi |= RAL_AV;
   2432 	} else {
   2433 		ral_lo = 0;
   2434 		ral_hi = 0;
   2435 	}
   2436 
   2437 	if (sc->sc_type >= WM_T_82544) {
   2438 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
   2439 		    ral_lo);
   2440 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
   2441 		    ral_hi);
   2442 	} else {
   2443 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
   2444 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
   2445 	}
   2446 }
   2447 
   2448 /*
   2449  * wm_mchash:
   2450  *
   2451  *	Compute the hash of the multicast address for the 4096-bit
   2452  *	multicast filter.
   2453  */
   2454 static uint32_t
   2455 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
   2456 {
   2457 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   2458 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   2459 	uint32_t hash;
   2460 
   2461 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   2462 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   2463 
   2464 	return (hash & 0xfff);
   2465 }
   2466 
   2467 /*
   2468  * wm_set_filter:
   2469  *
   2470  *	Set up the receive filter.
   2471  */
   2472 void
   2473 wm_set_filter(struct wm_softc *sc)
   2474 {
   2475 	struct ethercom *ec = &sc->sc_ethercom;
   2476 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2477 	struct ether_multi *enm;
   2478 	struct ether_multistep step;
   2479 	bus_addr_t mta_reg;
   2480 	uint32_t hash, reg, bit;
   2481 	int i;
   2482 
   2483 	if (sc->sc_type >= WM_T_82544)
   2484 		mta_reg = WMREG_CORDOVA_MTA;
   2485 	else
   2486 		mta_reg = WMREG_MTA;
   2487 
   2488 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   2489 
   2490 	if (ifp->if_flags & IFF_BROADCAST)
   2491 		sc->sc_rctl |= RCTL_BAM;
   2492 	if (ifp->if_flags & IFF_PROMISC) {
   2493 		sc->sc_rctl |= RCTL_UPE;
   2494 		goto allmulti;
   2495 	}
   2496 
   2497 	/*
   2498 	 * Set the station address in the first RAL slot, and
   2499 	 * clear the remaining slots.
   2500 	 */
   2501 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
   2502 	for (i = 1; i < WM_RAL_TABSIZE; i++)
   2503 		wm_set_ral(sc, NULL, i);
   2504 
   2505 	/* Clear out the multicast table. */
   2506 	for (i = 0; i < WM_MC_TABSIZE; i++)
   2507 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
   2508 
   2509 	ETHER_FIRST_MULTI(step, ec, enm);
   2510 	while (enm != NULL) {
   2511 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2512 			/*
   2513 			 * We must listen to a range of multicast addresses.
   2514 			 * For now, just accept all multicasts, rather than
   2515 			 * trying to set only those filter bits needed to match
   2516 			 * the range.  (At this time, the only use of address
   2517 			 * ranges is for IP multicast routing, for which the
   2518 			 * range is big enough to require all bits set.)
   2519 			 */
   2520 			goto allmulti;
   2521 		}
   2522 
   2523 		hash = wm_mchash(sc, enm->enm_addrlo);
   2524 
   2525 		reg = (hash >> 5) & 0x7f;
   2526 		bit = hash & 0x1f;
   2527 
   2528 		hash = CSR_READ(sc, mta_reg + (reg << 2));
   2529 		hash |= 1U << bit;
   2530 
   2531 		/* XXX Hardware bug?? */
   2532 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
   2533 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
   2534 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   2535 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
   2536 		} else
   2537 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   2538 
   2539 		ETHER_NEXT_MULTI(step, enm);
   2540 	}
   2541 
   2542 	ifp->if_flags &= ~IFF_ALLMULTI;
   2543 	goto setit;
   2544 
   2545  allmulti:
   2546 	ifp->if_flags |= IFF_ALLMULTI;
   2547 	sc->sc_rctl |= RCTL_MPE;
   2548 
   2549  setit:
   2550 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
   2551 }
   2552 
   2553 /*
   2554  * wm_tbi_mediainit:
   2555  *
   2556  *	Initialize media for use on 1000BASE-X devices.
   2557  */
   2558 void
   2559 wm_tbi_mediainit(struct wm_softc *sc)
   2560 {
   2561 	const char *sep = "";
   2562 
   2563 	if (sc->sc_type < WM_T_82543)
   2564 		sc->sc_tipg = TIPG_WM_DFLT;
   2565 	else
   2566 		sc->sc_tipg = TIPG_LG_DFLT;
   2567 
   2568 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
   2569 	    wm_tbi_mediastatus);
   2570 
   2571 	/*
   2572 	 * SWD Pins:
   2573 	 *
   2574 	 *	0 = Link LED (output)
   2575 	 *	1 = Loss Of Signal (input)
   2576 	 */
   2577 	sc->sc_ctrl |= CTRL_SWDPIO(0);
   2578 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
   2579 
   2580 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2581 
   2582 #define	ADD(ss, mm, dd)							\
   2583 do {									\
   2584 	printf("%s%s", sep, ss);					\
   2585 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
   2586 	sep = ", ";							\
   2587 } while (/*CONSTCOND*/0)
   2588 
   2589 	printf("%s: ", sc->sc_dev.dv_xname);
   2590 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
   2591 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
   2592 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
   2593 	printf("\n");
   2594 
   2595 #undef ADD
   2596 
   2597 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   2598 }
   2599 
   2600 /*
   2601  * wm_tbi_mediastatus:	[ifmedia interface function]
   2602  *
   2603  *	Get the current interface media status on a 1000BASE-X device.
   2604  */
   2605 void
   2606 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2607 {
   2608 	struct wm_softc *sc = ifp->if_softc;
   2609 
   2610 	ifmr->ifm_status = IFM_AVALID;
   2611 	ifmr->ifm_active = IFM_ETHER;
   2612 
   2613 	if (sc->sc_tbi_linkup == 0) {
   2614 		ifmr->ifm_active |= IFM_NONE;
   2615 		return;
   2616 	}
   2617 
   2618 	ifmr->ifm_status |= IFM_ACTIVE;
   2619 	ifmr->ifm_active |= IFM_1000_SX;
   2620 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
   2621 		ifmr->ifm_active |= IFM_FDX;
   2622 }
   2623 
   2624 /*
   2625  * wm_tbi_mediachange:	[ifmedia interface function]
   2626  *
   2627  *	Set hardware to newly-selected media on a 1000BASE-X device.
   2628  */
   2629 int
   2630 wm_tbi_mediachange(struct ifnet *ifp)
   2631 {
   2632 	struct wm_softc *sc = ifp->if_softc;
   2633 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   2634 	uint32_t status;
   2635 	int i;
   2636 
   2637 	sc->sc_txcw = ife->ifm_data;
   2638 	if (sc->sc_ctrl & CTRL_RFCE)
   2639 		sc->sc_txcw |= ANAR_X_PAUSE_TOWARDS;
   2640 	if (sc->sc_ctrl & CTRL_TFCE)
   2641 		sc->sc_txcw |= ANAR_X_PAUSE_ASYM;
   2642 	sc->sc_txcw |= TXCW_ANE;
   2643 
   2644 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   2645 	delay(10000);
   2646 
   2647 	sc->sc_tbi_anstate = 0;
   2648 
   2649 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
   2650 		/* Have signal; wait for the link to come up. */
   2651 		for (i = 0; i < 50; i++) {
   2652 			delay(10000);
   2653 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
   2654 				break;
   2655 		}
   2656 
   2657 		status = CSR_READ(sc, WMREG_STATUS);
   2658 		if (status & STATUS_LU) {
   2659 			/* Link is up. */
   2660 			DPRINTF(WM_DEBUG_LINK,
   2661 			    ("%s: LINK: set media -> link up %s\n",
   2662 			    sc->sc_dev.dv_xname,
   2663 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   2664 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2665 			if (status & STATUS_FD)
   2666 				sc->sc_tctl |=
   2667 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2668 			else
   2669 				sc->sc_tctl |=
   2670 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2671 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2672 			sc->sc_tbi_linkup = 1;
   2673 		} else {
   2674 			/* Link is down. */
   2675 			DPRINTF(WM_DEBUG_LINK,
   2676 			    ("%s: LINK: set media -> link down\n",
   2677 			    sc->sc_dev.dv_xname));
   2678 			sc->sc_tbi_linkup = 0;
   2679 		}
   2680 	} else {
   2681 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
   2682 		    sc->sc_dev.dv_xname));
   2683 		sc->sc_tbi_linkup = 0;
   2684 	}
   2685 
   2686 	wm_tbi_set_linkled(sc);
   2687 
   2688 	return (0);
   2689 }
   2690 
   2691 /*
   2692  * wm_tbi_set_linkled:
   2693  *
   2694  *	Update the link LED on 1000BASE-X devices.
   2695  */
   2696 void
   2697 wm_tbi_set_linkled(struct wm_softc *sc)
   2698 {
   2699 
   2700 	if (sc->sc_tbi_linkup)
   2701 		sc->sc_ctrl |= CTRL_SWDPIN(0);
   2702 	else
   2703 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
   2704 
   2705 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2706 }
   2707 
   2708 /*
   2709  * wm_tbi_check_link:
   2710  *
   2711  *	Check the link on 1000BASE-X devices.
   2712  */
   2713 void
   2714 wm_tbi_check_link(struct wm_softc *sc)
   2715 {
   2716 	uint32_t rxcw, ctrl, status;
   2717 
   2718 	if (sc->sc_tbi_anstate == 0)
   2719 		return;
   2720 	else if (sc->sc_tbi_anstate > 1) {
   2721 		DPRINTF(WM_DEBUG_LINK,
   2722 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
   2723 		    sc->sc_tbi_anstate));
   2724 		sc->sc_tbi_anstate--;
   2725 		return;
   2726 	}
   2727 
   2728 	sc->sc_tbi_anstate = 0;
   2729 
   2730 	rxcw = CSR_READ(sc, WMREG_RXCW);
   2731 	ctrl = CSR_READ(sc, WMREG_CTRL);
   2732 	status = CSR_READ(sc, WMREG_STATUS);
   2733 
   2734 	if ((status & STATUS_LU) == 0) {
   2735 		DPRINTF(WM_DEBUG_LINK,
   2736 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
   2737 		sc->sc_tbi_linkup = 0;
   2738 	} else {
   2739 		DPRINTF(WM_DEBUG_LINK,
   2740 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
   2741 		    (status & STATUS_FD) ? "FDX" : "HDX"));
   2742 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2743 		if (status & STATUS_FD)
   2744 			sc->sc_tctl |=
   2745 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2746 		else
   2747 			sc->sc_tctl |=
   2748 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2749 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2750 		sc->sc_tbi_linkup = 1;
   2751 	}
   2752 
   2753 	wm_tbi_set_linkled(sc);
   2754 }
   2755 
   2756 /*
   2757  * wm_gmii_reset:
   2758  *
   2759  *	Reset the PHY.
   2760  */
   2761 void
   2762 wm_gmii_reset(struct wm_softc *sc)
   2763 {
   2764 	uint32_t reg;
   2765 
   2766 	if (sc->sc_type >= WM_T_82544) {
   2767 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   2768 		delay(20000);
   2769 
   2770 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2771 		delay(20000);
   2772 	} else {
   2773 		/* The PHY reset pin is active-low. */
   2774 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   2775 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
   2776 		    CTRL_EXT_SWDPIN(4));
   2777 		reg |= CTRL_EXT_SWDPIO(4);
   2778 
   2779 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   2780 		delay(10);
   2781 
   2782 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   2783 		delay(10);
   2784 
   2785 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   2786 		delay(10);
   2787 #if 0
   2788 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
   2789 #endif
   2790 	}
   2791 }
   2792 
   2793 /*
   2794  * wm_gmii_mediainit:
   2795  *
   2796  *	Initialize media for use on 1000BASE-T devices.
   2797  */
   2798 void
   2799 wm_gmii_mediainit(struct wm_softc *sc)
   2800 {
   2801 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2802 
   2803 	/* We have MII. */
   2804 	sc->sc_flags |= WM_F_HAS_MII;
   2805 
   2806 	sc->sc_tipg = TIPG_1000T_DFLT;
   2807 
   2808 	/*
   2809 	 * Let the chip set speed/duplex on its own based on
   2810 	 * signals from the PHY.
   2811 	 */
   2812 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
   2813 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2814 
   2815 	/* Initialize our media structures and probe the GMII. */
   2816 	sc->sc_mii.mii_ifp = ifp;
   2817 
   2818 	if (sc->sc_type >= WM_T_82544) {
   2819 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
   2820 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
   2821 	} else {
   2822 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
   2823 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
   2824 	}
   2825 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
   2826 
   2827 	wm_gmii_reset(sc);
   2828 
   2829 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
   2830 	    wm_gmii_mediastatus);
   2831 
   2832 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   2833 	    MII_OFFSET_ANY, 0);
   2834 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   2835 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   2836 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   2837 	} else
   2838 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   2839 }
   2840 
   2841 /*
   2842  * wm_gmii_mediastatus:	[ifmedia interface function]
   2843  *
   2844  *	Get the current interface media status on a 1000BASE-T device.
   2845  */
   2846 void
   2847 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2848 {
   2849 	struct wm_softc *sc = ifp->if_softc;
   2850 
   2851 	mii_pollstat(&sc->sc_mii);
   2852 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2853 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2854 }
   2855 
   2856 /*
   2857  * wm_gmii_mediachange:	[ifmedia interface function]
   2858  *
   2859  *	Set hardware to newly-selected media on a 1000BASE-T device.
   2860  */
   2861 int
   2862 wm_gmii_mediachange(struct ifnet *ifp)
   2863 {
   2864 	struct wm_softc *sc = ifp->if_softc;
   2865 
   2866 	if (ifp->if_flags & IFF_UP)
   2867 		mii_mediachg(&sc->sc_mii);
   2868 	return (0);
   2869 }
   2870 
   2871 #define	MDI_IO		CTRL_SWDPIN(2)
   2872 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
   2873 #define	MDI_CLK		CTRL_SWDPIN(3)
   2874 
   2875 static void
   2876 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
   2877 {
   2878 	uint32_t i, v;
   2879 
   2880 	v = CSR_READ(sc, WMREG_CTRL);
   2881 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   2882 	v |= MDI_DIR | CTRL_SWDPIO(3);
   2883 
   2884 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
   2885 		if (data & i)
   2886 			v |= MDI_IO;
   2887 		else
   2888 			v &= ~MDI_IO;
   2889 		CSR_WRITE(sc, WMREG_CTRL, v);
   2890 		delay(10);
   2891 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   2892 		delay(10);
   2893 		CSR_WRITE(sc, WMREG_CTRL, v);
   2894 		delay(10);
   2895 	}
   2896 }
   2897 
   2898 static uint32_t
   2899 i82543_mii_recvbits(struct wm_softc *sc)
   2900 {
   2901 	uint32_t v, i, data = 0;
   2902 
   2903 	v = CSR_READ(sc, WMREG_CTRL);
   2904 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   2905 	v |= CTRL_SWDPIO(3);
   2906 
   2907 	CSR_WRITE(sc, WMREG_CTRL, v);
   2908 	delay(10);
   2909 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   2910 	delay(10);
   2911 	CSR_WRITE(sc, WMREG_CTRL, v);
   2912 	delay(10);
   2913 
   2914 	for (i = 0; i < 16; i++) {
   2915 		data <<= 1;
   2916 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   2917 		delay(10);
   2918 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
   2919 			data |= 1;
   2920 		CSR_WRITE(sc, WMREG_CTRL, v);
   2921 		delay(10);
   2922 	}
   2923 
   2924 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   2925 	delay(10);
   2926 	CSR_WRITE(sc, WMREG_CTRL, v);
   2927 	delay(10);
   2928 
   2929 	return (data);
   2930 }
   2931 
   2932 #undef MDI_IO
   2933 #undef MDI_DIR
   2934 #undef MDI_CLK
   2935 
   2936 /*
   2937  * wm_gmii_i82543_readreg:	[mii interface function]
   2938  *
   2939  *	Read a PHY register on the GMII (i82543 version).
   2940  */
   2941 int
   2942 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
   2943 {
   2944 	struct wm_softc *sc = (void *) self;
   2945 	int rv;
   2946 
   2947 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   2948 	i82543_mii_sendbits(sc, reg | (phy << 5) |
   2949 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
   2950 	rv = i82543_mii_recvbits(sc) & 0xffff;
   2951 
   2952 	DPRINTF(WM_DEBUG_GMII,
   2953 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
   2954 	    sc->sc_dev.dv_xname, phy, reg, rv));
   2955 
   2956 	return (rv);
   2957 }
   2958 
   2959 /*
   2960  * wm_gmii_i82543_writereg:	[mii interface function]
   2961  *
   2962  *	Write a PHY register on the GMII (i82543 version).
   2963  */
   2964 void
   2965 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
   2966 {
   2967 	struct wm_softc *sc = (void *) self;
   2968 
   2969 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   2970 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
   2971 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
   2972 	    (MII_COMMAND_START << 30), 32);
   2973 }
   2974 
   2975 /*
   2976  * wm_gmii_i82544_readreg:	[mii interface function]
   2977  *
   2978  *	Read a PHY register on the GMII.
   2979  */
   2980 int
   2981 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
   2982 {
   2983 	struct wm_softc *sc = (void *) self;
   2984 	uint32_t mdic;
   2985 	int i, rv;
   2986 
   2987 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
   2988 	    MDIC_REGADD(reg));
   2989 
   2990 	for (i = 0; i < 100; i++) {
   2991 		mdic = CSR_READ(sc, WMREG_MDIC);
   2992 		if (mdic & MDIC_READY)
   2993 			break;
   2994 		delay(10);
   2995 	}
   2996 
   2997 	if ((mdic & MDIC_READY) == 0) {
   2998 		printf("%s: MDIC read timed out: phy %d reg %d\n",
   2999 		    sc->sc_dev.dv_xname, phy, reg);
   3000 		rv = 0;
   3001 	} else if (mdic & MDIC_E) {
   3002 #if 0 /* This is normal if no PHY is present. */
   3003 		printf("%s: MDIC read error: phy %d reg %d\n",
   3004 		    sc->sc_dev.dv_xname, phy, reg);
   3005 #endif
   3006 		rv = 0;
   3007 	} else {
   3008 		rv = MDIC_DATA(mdic);
   3009 		if (rv == 0xffff)
   3010 			rv = 0;
   3011 	}
   3012 
   3013 	return (rv);
   3014 }
   3015 
   3016 /*
   3017  * wm_gmii_i82544_writereg:	[mii interface function]
   3018  *
   3019  *	Write a PHY register on the GMII.
   3020  */
   3021 void
   3022 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
   3023 {
   3024 	struct wm_softc *sc = (void *) self;
   3025 	uint32_t mdic;
   3026 	int i;
   3027 
   3028 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
   3029 	    MDIC_REGADD(reg) | MDIC_DATA(val));
   3030 
   3031 	for (i = 0; i < 100; i++) {
   3032 		mdic = CSR_READ(sc, WMREG_MDIC);
   3033 		if (mdic & MDIC_READY)
   3034 			break;
   3035 		delay(10);
   3036 	}
   3037 
   3038 	if ((mdic & MDIC_READY) == 0)
   3039 		printf("%s: MDIC write timed out: phy %d reg %d\n",
   3040 		    sc->sc_dev.dv_xname, phy, reg);
   3041 	else if (mdic & MDIC_E)
   3042 		printf("%s: MDIC write error: phy %d reg %d\n",
   3043 		    sc->sc_dev.dv_xname, phy, reg);
   3044 }
   3045 
   3046 /*
   3047  * wm_gmii_statchg:	[mii interface function]
   3048  *
   3049  *	Callback from MII layer when media changes.
   3050  */
   3051 void
   3052 wm_gmii_statchg(struct device *self)
   3053 {
   3054 	struct wm_softc *sc = (void *) self;
   3055 
   3056 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3057 
   3058 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   3059 		DPRINTF(WM_DEBUG_LINK,
   3060 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
   3061 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3062 	} else  {
   3063 		DPRINTF(WM_DEBUG_LINK,
   3064 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
   3065 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3066 	}
   3067 
   3068 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3069 }
   3070