if_wm.c revision 1.673 1 /* $NetBSD: if_wm.c,v 1.673 2020/04/08 21:57:24 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*******************************************************************************
39
40 Copyright (c) 2001-2005, Intel Corporation
41 All rights reserved.
42
43 Redistribution and use in source and binary forms, with or without
44 modification, are permitted provided that the following conditions are met:
45
46 1. Redistributions of source code must retain the above copyright notice,
47 this list of conditions and the following disclaimer.
48
49 2. Redistributions in binary form must reproduce the above copyright
50 notice, this list of conditions and the following disclaimer in the
51 documentation and/or other materials provided with the distribution.
52
53 3. Neither the name of the Intel Corporation nor the names of its
54 contributors may be used to endorse or promote products derived from
55 this software without specific prior written permission.
56
57 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
58 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
61 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67 POSSIBILITY OF SUCH DAMAGE.
68
69 *******************************************************************************/
70 /*
71 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
72 *
73 * TODO (in order of importance):
74 *
75 * - Check XXX'ed comments
76 * - TX Multi queue improvement (refine queue selection logic)
77 * - Split header buffer for newer descriptors
78 * - EEE (Energy Efficiency Ethernet) for I354
79 * - Virtual Function
80 * - Set LED correctly (based on contents in EEPROM)
81 * - Rework how parameters are loaded from the EEPROM.
82 */
83
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.673 2020/04/08 21:57:24 jdolecek Exp $");
86
87 #ifdef _KERNEL_OPT
88 #include "opt_net_mpsafe.h"
89 #include "opt_if_wm.h"
90 #endif
91
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/callout.h>
95 #include <sys/mbuf.h>
96 #include <sys/malloc.h>
97 #include <sys/kmem.h>
98 #include <sys/kernel.h>
99 #include <sys/socket.h>
100 #include <sys/ioctl.h>
101 #include <sys/errno.h>
102 #include <sys/device.h>
103 #include <sys/queue.h>
104 #include <sys/syslog.h>
105 #include <sys/interrupt.h>
106 #include <sys/cpu.h>
107 #include <sys/pcq.h>
108 #include <sys/sysctl.h>
109 #include <sys/workqueue.h>
110
111 #include <sys/rndsource.h>
112
113 #include <net/if.h>
114 #include <net/if_dl.h>
115 #include <net/if_media.h>
116 #include <net/if_ether.h>
117
118 #include <net/bpf.h>
119
120 #include <net/rss_config.h>
121
122 #include <netinet/in.h> /* XXX for struct ip */
123 #include <netinet/in_systm.h> /* XXX for struct ip */
124 #include <netinet/ip.h> /* XXX for struct ip */
125 #include <netinet/ip6.h> /* XXX for struct ip6_hdr */
126 #include <netinet/tcp.h> /* XXX for struct tcphdr */
127
128 #include <sys/bus.h>
129 #include <sys/intr.h>
130 #include <machine/endian.h>
131
132 #include <dev/mii/mii.h>
133 #include <dev/mii/mdio.h>
134 #include <dev/mii/miivar.h>
135 #include <dev/mii/miidevs.h>
136 #include <dev/mii/mii_bitbang.h>
137 #include <dev/mii/ikphyreg.h>
138 #include <dev/mii/igphyreg.h>
139 #include <dev/mii/igphyvar.h>
140 #include <dev/mii/inbmphyreg.h>
141 #include <dev/mii/ihphyreg.h>
142
143 #include <dev/pci/pcireg.h>
144 #include <dev/pci/pcivar.h>
145 #include <dev/pci/pcidevs.h>
146
147 #include <dev/pci/if_wmreg.h>
148 #include <dev/pci/if_wmvar.h>
149
150 #ifdef WM_DEBUG
151 #define WM_DEBUG_LINK __BIT(0)
152 #define WM_DEBUG_TX __BIT(1)
153 #define WM_DEBUG_RX __BIT(2)
154 #define WM_DEBUG_GMII __BIT(3)
155 #define WM_DEBUG_MANAGE __BIT(4)
156 #define WM_DEBUG_NVM __BIT(5)
157 #define WM_DEBUG_INIT __BIT(6)
158 #define WM_DEBUG_LOCK __BIT(7)
159 int wm_debug = WM_DEBUG_TX | WM_DEBUG_RX | WM_DEBUG_LINK | WM_DEBUG_GMII
160 | WM_DEBUG_MANAGE | WM_DEBUG_NVM | WM_DEBUG_INIT | WM_DEBUG_LOCK;
161 #define DPRINTF(x, y) do { if (wm_debug & (x)) printf y; } while (0)
162 #else
163 #define DPRINTF(x, y) __nothing
164 #endif /* WM_DEBUG */
165
166 #ifdef NET_MPSAFE
167 #define WM_MPSAFE 1
168 #define CALLOUT_FLAGS CALLOUT_MPSAFE
169 #define WM_WORKQUEUE_FLAGS WQ_PERCPU | WQ_MPSAFE
170 #else
171 #define CALLOUT_FLAGS 0
172 #define WM_WORKQUEUE_FLAGS WQ_PERCPU
173 #endif
174
175 #define WM_WORKQUEUE_PRI PRI_SOFTNET
176
177 /*
178 * This device driver's max interrupt numbers.
179 */
180 #define WM_MAX_NQUEUEINTR 16
181 #define WM_MAX_NINTR (WM_MAX_NQUEUEINTR + 1)
182
183 #ifndef WM_DISABLE_MSI
184 #define WM_DISABLE_MSI 0
185 #endif
186 #ifndef WM_DISABLE_MSIX
187 #define WM_DISABLE_MSIX 0
188 #endif
189
190 int wm_disable_msi = WM_DISABLE_MSI;
191 int wm_disable_msix = WM_DISABLE_MSIX;
192
193 #ifndef WM_WATCHDOG_TIMEOUT
194 #define WM_WATCHDOG_TIMEOUT 5
195 #endif
196 static int wm_watchdog_timeout = WM_WATCHDOG_TIMEOUT;
197
198 /*
199 * Transmit descriptor list size. Due to errata, we can only have
200 * 256 hardware descriptors in the ring on < 82544, but we use 4096
201 * on >= 82544. We tell the upper layers that they can queue a lot
202 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
203 * of them at a time.
204 *
205 * We allow up to 64 DMA segments per packet. Pathological packet
206 * chains containing many small mbufs have been observed in zero-copy
207 * situations with jumbo frames. If a mbuf chain has more than 64 DMA segments,
208 * m_defrag() is called to reduce it.
209 */
210 #define WM_NTXSEGS 64
211 #define WM_IFQUEUELEN 256
212 #define WM_TXQUEUELEN_MAX 64
213 #define WM_TXQUEUELEN_MAX_82547 16
214 #define WM_TXQUEUELEN(txq) ((txq)->txq_num)
215 #define WM_TXQUEUELEN_MASK(txq) (WM_TXQUEUELEN(txq) - 1)
216 #define WM_TXQUEUE_GC(txq) (WM_TXQUEUELEN(txq) / 8)
217 #define WM_NTXDESC_82542 256
218 #define WM_NTXDESC_82544 4096
219 #define WM_NTXDESC(txq) ((txq)->txq_ndesc)
220 #define WM_NTXDESC_MASK(txq) (WM_NTXDESC(txq) - 1)
221 #define WM_TXDESCS_SIZE(txq) (WM_NTXDESC(txq) * (txq)->txq_descsize)
222 #define WM_NEXTTX(txq, x) (((x) + 1) & WM_NTXDESC_MASK(txq))
223 #define WM_NEXTTXS(txq, x) (((x) + 1) & WM_TXQUEUELEN_MASK(txq))
224
225 #define WM_MAXTXDMA (2 * round_page(IP_MAXPACKET)) /* for TSO */
226
227 #define WM_TXINTERQSIZE 256
228
229 #ifndef WM_TX_PROCESS_LIMIT_DEFAULT
230 #define WM_TX_PROCESS_LIMIT_DEFAULT 100U
231 #endif
232 #ifndef WM_TX_INTR_PROCESS_LIMIT_DEFAULT
233 #define WM_TX_INTR_PROCESS_LIMIT_DEFAULT 0U
234 #endif
235
236 /*
237 * Receive descriptor list size. We have one Rx buffer for normal
238 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
239 * packet. We allocate 256 receive descriptors, each with a 2k
240 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
241 */
242 #define WM_NRXDESC 256U
243 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
244 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
245 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
246
247 #ifndef WM_RX_PROCESS_LIMIT_DEFAULT
248 #define WM_RX_PROCESS_LIMIT_DEFAULT 100U
249 #endif
250 #ifndef WM_RX_INTR_PROCESS_LIMIT_DEFAULT
251 #define WM_RX_INTR_PROCESS_LIMIT_DEFAULT 0U
252 #endif
253
254 typedef union txdescs {
255 wiseman_txdesc_t sctxu_txdescs[WM_NTXDESC_82544];
256 nq_txdesc_t sctxu_nq_txdescs[WM_NTXDESC_82544];
257 } txdescs_t;
258
259 typedef union rxdescs {
260 wiseman_rxdesc_t sctxu_rxdescs[WM_NRXDESC];
261 ext_rxdesc_t sctxu_ext_rxdescs[WM_NRXDESC]; /* 82574 only */
262 nq_rxdesc_t sctxu_nq_rxdescs[WM_NRXDESC]; /* 82575 and newer */
263 } rxdescs_t;
264
265 #define WM_CDTXOFF(txq, x) ((txq)->txq_descsize * (x))
266 #define WM_CDRXOFF(rxq, x) ((rxq)->rxq_descsize * (x))
267
268 /*
269 * Software state for transmit jobs.
270 */
271 struct wm_txsoft {
272 struct mbuf *txs_mbuf; /* head of our mbuf chain */
273 bus_dmamap_t txs_dmamap; /* our DMA map */
274 int txs_firstdesc; /* first descriptor in packet */
275 int txs_lastdesc; /* last descriptor in packet */
276 int txs_ndesc; /* # of descriptors used */
277 };
278
279 /*
280 * Software state for receive buffers. Each descriptor gets a 2k (MCLBYTES)
281 * buffer and a DMA map. For packets which fill more than one buffer, we chain
282 * them together.
283 */
284 struct wm_rxsoft {
285 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
286 bus_dmamap_t rxs_dmamap; /* our DMA map */
287 };
288
289 #define WM_LINKUP_TIMEOUT 50
290
291 static uint16_t swfwphysem[] = {
292 SWFW_PHY0_SM,
293 SWFW_PHY1_SM,
294 SWFW_PHY2_SM,
295 SWFW_PHY3_SM
296 };
297
298 static const uint32_t wm_82580_rxpbs_table[] = {
299 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140
300 };
301
302 struct wm_softc;
303
304 #ifdef WM_EVENT_COUNTERS
305 #define WM_Q_EVCNT_DEFINE(qname, evname) \
306 char qname##_##evname##_evcnt_name[sizeof("qname##XX##evname")]; \
307 struct evcnt qname##_ev_##evname;
308
309 #define WM_Q_EVCNT_ATTACH(qname, evname, q, qnum, xname, evtype) \
310 do { \
311 snprintf((q)->qname##_##evname##_evcnt_name, \
312 sizeof((q)->qname##_##evname##_evcnt_name), \
313 "%s%02d%s", #qname, (qnum), #evname); \
314 evcnt_attach_dynamic(&(q)->qname##_ev_##evname, \
315 (evtype), NULL, (xname), \
316 (q)->qname##_##evname##_evcnt_name); \
317 } while (0)
318
319 #define WM_Q_MISC_EVCNT_ATTACH(qname, evname, q, qnum, xname) \
320 WM_Q_EVCNT_ATTACH(qname, evname, q, qnum, xname, EVCNT_TYPE_MISC)
321
322 #define WM_Q_INTR_EVCNT_ATTACH(qname, evname, q, qnum, xname) \
323 WM_Q_EVCNT_ATTACH(qname, evname, q, qnum, xname, EVCNT_TYPE_INTR)
324
325 #define WM_Q_EVCNT_DETACH(qname, evname, q, qnum) \
326 evcnt_detach(&(q)->qname##_ev_##evname);
327 #endif /* WM_EVENT_COUNTERS */
328
329 struct wm_txqueue {
330 kmutex_t *txq_lock; /* lock for tx operations */
331
332 struct wm_softc *txq_sc; /* shortcut (skip struct wm_queue) */
333
334 /* Software state for the transmit descriptors. */
335 int txq_num; /* must be a power of two */
336 struct wm_txsoft txq_soft[WM_TXQUEUELEN_MAX];
337
338 /* TX control data structures. */
339 int txq_ndesc; /* must be a power of two */
340 size_t txq_descsize; /* a tx descriptor size */
341 txdescs_t *txq_descs_u;
342 bus_dmamap_t txq_desc_dmamap; /* control data DMA map */
343 bus_dma_segment_t txq_desc_seg; /* control data segment */
344 int txq_desc_rseg; /* real number of control segment */
345 #define txq_desc_dma txq_desc_dmamap->dm_segs[0].ds_addr
346 #define txq_descs txq_descs_u->sctxu_txdescs
347 #define txq_nq_descs txq_descs_u->sctxu_nq_txdescs
348
349 bus_addr_t txq_tdt_reg; /* offset of TDT register */
350
351 int txq_free; /* number of free Tx descriptors */
352 int txq_next; /* next ready Tx descriptor */
353
354 int txq_sfree; /* number of free Tx jobs */
355 int txq_snext; /* next free Tx job */
356 int txq_sdirty; /* dirty Tx jobs */
357
358 /* These 4 variables are used only on the 82547. */
359 int txq_fifo_size; /* Tx FIFO size */
360 int txq_fifo_head; /* current head of FIFO */
361 uint32_t txq_fifo_addr; /* internal address of start of FIFO */
362 int txq_fifo_stall; /* Tx FIFO is stalled */
363
364 /*
365 * When ncpu > number of Tx queues, a Tx queue is shared by multiple
366 * CPUs. This queue intermediate them without block.
367 */
368 pcq_t *txq_interq;
369
370 /*
371 * NEWQUEUE devices must use not ifp->if_flags but txq->txq_flags
372 * to manage Tx H/W queue's busy flag.
373 */
374 int txq_flags; /* flags for H/W queue, see below */
375 #define WM_TXQ_NO_SPACE 0x1
376
377 bool txq_stopping;
378
379 bool txq_sending;
380 time_t txq_lastsent;
381
382 /* Checksum flags used for previous packet */
383 uint32_t txq_last_hw_cmd;
384 uint8_t txq_last_hw_fields;
385 uint16_t txq_last_hw_ipcs;
386 uint16_t txq_last_hw_tucs;
387
388 uint32_t txq_packets; /* for AIM */
389 uint32_t txq_bytes; /* for AIM */
390 #ifdef WM_EVENT_COUNTERS
391 /* TX event counters */
392 WM_Q_EVCNT_DEFINE(txq, txsstall) /* Stalled due to no txs */
393 WM_Q_EVCNT_DEFINE(txq, txdstall) /* Stalled due to no txd */
394 WM_Q_EVCNT_DEFINE(txq, fifo_stall) /* FIFO stalls (82547) */
395 WM_Q_EVCNT_DEFINE(txq, txdw) /* Tx descriptor interrupts */
396 WM_Q_EVCNT_DEFINE(txq, txqe) /* Tx queue empty interrupts */
397 /* XXX not used? */
398
399 WM_Q_EVCNT_DEFINE(txq, ipsum) /* IP checksums comp. */
400 WM_Q_EVCNT_DEFINE(txq, tusum) /* TCP/UDP cksums comp. */
401 WM_Q_EVCNT_DEFINE(txq, tusum6) /* TCP/UDP v6 cksums comp. */
402 WM_Q_EVCNT_DEFINE(txq, tso) /* TCP seg offload (IPv4) */
403 WM_Q_EVCNT_DEFINE(txq, tso6) /* TCP seg offload (IPv6) */
404 WM_Q_EVCNT_DEFINE(txq, tsopain) /* Painful header manip. for TSO */
405 WM_Q_EVCNT_DEFINE(txq, pcqdrop) /* Pkt dropped in pcq */
406 WM_Q_EVCNT_DEFINE(txq, descdrop) /* Pkt dropped in MAC desc ring */
407 /* other than toomanyseg */
408
409 WM_Q_EVCNT_DEFINE(txq, toomanyseg) /* Pkt dropped(toomany DMA segs) */
410 WM_Q_EVCNT_DEFINE(txq, defrag) /* m_defrag() */
411 WM_Q_EVCNT_DEFINE(txq, underrun) /* Tx underrun */
412 WM_Q_EVCNT_DEFINE(txq, skipcontext) /* Tx skip wring cksum context */
413
414 char txq_txseg_evcnt_names[WM_NTXSEGS][sizeof("txqXXtxsegXXX")];
415 struct evcnt txq_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
416 #endif /* WM_EVENT_COUNTERS */
417 };
418
419 struct wm_rxqueue {
420 kmutex_t *rxq_lock; /* lock for rx operations */
421
422 struct wm_softc *rxq_sc; /* shortcut (skip struct wm_queue) */
423
424 /* Software state for the receive descriptors. */
425 struct wm_rxsoft rxq_soft[WM_NRXDESC];
426
427 /* RX control data structures. */
428 int rxq_ndesc; /* must be a power of two */
429 size_t rxq_descsize; /* a rx descriptor size */
430 rxdescs_t *rxq_descs_u;
431 bus_dmamap_t rxq_desc_dmamap; /* control data DMA map */
432 bus_dma_segment_t rxq_desc_seg; /* control data segment */
433 int rxq_desc_rseg; /* real number of control segment */
434 #define rxq_desc_dma rxq_desc_dmamap->dm_segs[0].ds_addr
435 #define rxq_descs rxq_descs_u->sctxu_rxdescs
436 #define rxq_ext_descs rxq_descs_u->sctxu_ext_rxdescs
437 #define rxq_nq_descs rxq_descs_u->sctxu_nq_rxdescs
438
439 bus_addr_t rxq_rdt_reg; /* offset of RDT register */
440
441 int rxq_ptr; /* next ready Rx desc/queue ent */
442 int rxq_discard;
443 int rxq_len;
444 struct mbuf *rxq_head;
445 struct mbuf *rxq_tail;
446 struct mbuf **rxq_tailp;
447
448 bool rxq_stopping;
449
450 uint32_t rxq_packets; /* for AIM */
451 uint32_t rxq_bytes; /* for AIM */
452 #ifdef WM_EVENT_COUNTERS
453 /* RX event counters */
454 WM_Q_EVCNT_DEFINE(rxq, intr); /* Interrupts */
455 WM_Q_EVCNT_DEFINE(rxq, defer); /* Rx deferred processing */
456
457 WM_Q_EVCNT_DEFINE(rxq, ipsum); /* IP checksums checked */
458 WM_Q_EVCNT_DEFINE(rxq, tusum); /* TCP/UDP cksums checked */
459 #endif
460 };
461
462 struct wm_queue {
463 int wmq_id; /* index of TX/RX queues */
464 int wmq_intr_idx; /* index of MSI-X tables */
465
466 uint32_t wmq_itr; /* interrupt interval per queue. */
467 bool wmq_set_itr;
468
469 struct wm_txqueue wmq_txq;
470 struct wm_rxqueue wmq_rxq;
471
472 bool wmq_txrx_use_workqueue;
473 struct work wmq_cookie;
474 void *wmq_si;
475 krndsource_t rnd_source; /* random source */
476 };
477
478 struct wm_phyop {
479 int (*acquire)(struct wm_softc *);
480 void (*release)(struct wm_softc *);
481 int (*readreg_locked)(device_t, int, int, uint16_t *);
482 int (*writereg_locked)(device_t, int, int, uint16_t);
483 int reset_delay_us;
484 bool no_errprint;
485 };
486
487 struct wm_nvmop {
488 int (*acquire)(struct wm_softc *);
489 void (*release)(struct wm_softc *);
490 int (*read)(struct wm_softc *, int, int, uint16_t *);
491 };
492
493 /*
494 * Software state per device.
495 */
496 struct wm_softc {
497 device_t sc_dev; /* generic device information */
498 bus_space_tag_t sc_st; /* bus space tag */
499 bus_space_handle_t sc_sh; /* bus space handle */
500 bus_size_t sc_ss; /* bus space size */
501 bus_space_tag_t sc_iot; /* I/O space tag */
502 bus_space_handle_t sc_ioh; /* I/O space handle */
503 bus_size_t sc_ios; /* I/O space size */
504 bus_space_tag_t sc_flasht; /* flash registers space tag */
505 bus_space_handle_t sc_flashh; /* flash registers space handle */
506 bus_size_t sc_flashs; /* flash registers space size */
507 off_t sc_flashreg_offset; /*
508 * offset to flash registers from
509 * start of BAR
510 */
511 bus_dma_tag_t sc_dmat; /* bus DMA tag */
512
513 struct ethercom sc_ethercom; /* ethernet common data */
514 struct mii_data sc_mii; /* MII/media information */
515
516 pci_chipset_tag_t sc_pc;
517 pcitag_t sc_pcitag;
518 int sc_bus_speed; /* PCI/PCIX bus speed */
519 int sc_pcixe_capoff; /* PCI[Xe] capability reg offset */
520
521 uint16_t sc_pcidevid; /* PCI device ID */
522 wm_chip_type sc_type; /* MAC type */
523 int sc_rev; /* MAC revision */
524 wm_phy_type sc_phytype; /* PHY type */
525 uint8_t sc_sfptype; /* SFP type */
526 uint32_t sc_mediatype; /* Media type (Copper, Fiber, SERDES)*/
527 #define WM_MEDIATYPE_UNKNOWN 0x00
528 #define WM_MEDIATYPE_FIBER 0x01
529 #define WM_MEDIATYPE_COPPER 0x02
530 #define WM_MEDIATYPE_SERDES 0x03 /* Internal SERDES */
531 int sc_funcid; /* unit number of the chip (0 to 3) */
532 int sc_flags; /* flags; see below */
533 u_short sc_if_flags; /* last if_flags */
534 int sc_ec_capenable; /* last ec_capenable */
535 int sc_flowflags; /* 802.3x flow control flags */
536 uint16_t eee_lp_ability; /* EEE link partner's ability */
537 int sc_align_tweak;
538
539 void *sc_ihs[WM_MAX_NINTR]; /*
540 * interrupt cookie.
541 * - legacy and msi use sc_ihs[0] only
542 * - msix use sc_ihs[0] to sc_ihs[nintrs-1]
543 */
544 pci_intr_handle_t *sc_intrs; /*
545 * legacy and msi use sc_intrs[0] only
546 * msix use sc_intrs[0] to sc_ihs[nintrs-1]
547 */
548 int sc_nintrs; /* number of interrupts */
549
550 int sc_link_intr_idx; /* index of MSI-X tables */
551
552 callout_t sc_tick_ch; /* tick callout */
553 bool sc_core_stopping;
554
555 int sc_nvm_ver_major;
556 int sc_nvm_ver_minor;
557 int sc_nvm_ver_build;
558 int sc_nvm_addrbits; /* NVM address bits */
559 unsigned int sc_nvm_wordsize; /* NVM word size */
560 int sc_ich8_flash_base;
561 int sc_ich8_flash_bank_size;
562 int sc_nvm_k1_enabled;
563
564 int sc_nqueues;
565 struct wm_queue *sc_queue;
566 u_int sc_tx_process_limit; /* Tx proc. repeat limit in softint */
567 u_int sc_tx_intr_process_limit; /* Tx proc. repeat limit in H/W intr */
568 u_int sc_rx_process_limit; /* Rx proc. repeat limit in softint */
569 u_int sc_rx_intr_process_limit; /* Rx proc. repeat limit in H/W intr */
570 struct workqueue *sc_queue_wq;
571 bool sc_txrx_use_workqueue;
572
573 int sc_affinity_offset;
574
575 #ifdef WM_EVENT_COUNTERS
576 /* Event counters. */
577 struct evcnt sc_ev_linkintr; /* Link interrupts */
578
579 /* WM_T_82542_2_1 only */
580 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
581 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
582 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
583 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
584 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
585 #endif /* WM_EVENT_COUNTERS */
586
587 struct sysctllog *sc_sysctllog;
588
589 /* This variable are used only on the 82547. */
590 callout_t sc_txfifo_ch; /* Tx FIFO stall work-around timer */
591
592 uint32_t sc_ctrl; /* prototype CTRL register */
593 #if 0
594 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
595 #endif
596 uint32_t sc_icr; /* prototype interrupt bits */
597 uint32_t sc_itr_init; /* prototype intr throttling reg */
598 uint32_t sc_tctl; /* prototype TCTL register */
599 uint32_t sc_rctl; /* prototype RCTL register */
600 uint32_t sc_txcw; /* prototype TXCW register */
601 uint32_t sc_tipg; /* prototype TIPG register */
602 uint32_t sc_fcrtl; /* prototype FCRTL register */
603 uint32_t sc_pba; /* prototype PBA register */
604
605 int sc_tbi_linkup; /* TBI link status */
606 int sc_tbi_serdes_anegticks; /* autonegotiation ticks */
607 int sc_tbi_serdes_ticks; /* tbi ticks */
608
609 int sc_mchash_type; /* multicast filter offset */
610
611 struct if_percpuq *sc_ipq; /* softint-based input queues */
612
613 kmutex_t *sc_core_lock; /* lock for softc operations */
614 kmutex_t *sc_ich_phymtx; /*
615 * 82574/82583/ICH/PCH specific PHY
616 * mutex. For 82574/82583, the mutex
617 * is used for both PHY and NVM.
618 */
619 kmutex_t *sc_ich_nvmmtx; /* ICH/PCH specific NVM mutex */
620
621 struct wm_phyop phy;
622 struct wm_nvmop nvm;
623 };
624
625 #define WM_CORE_LOCK(_sc) \
626 if ((_sc)->sc_core_lock) mutex_enter((_sc)->sc_core_lock)
627 #define WM_CORE_UNLOCK(_sc) \
628 if ((_sc)->sc_core_lock) mutex_exit((_sc)->sc_core_lock)
629 #define WM_CORE_LOCKED(_sc) \
630 (!(_sc)->sc_core_lock || mutex_owned((_sc)->sc_core_lock))
631
632 #define WM_RXCHAIN_RESET(rxq) \
633 do { \
634 (rxq)->rxq_tailp = &(rxq)->rxq_head; \
635 *(rxq)->rxq_tailp = NULL; \
636 (rxq)->rxq_len = 0; \
637 } while (/*CONSTCOND*/0)
638
639 #define WM_RXCHAIN_LINK(rxq, m) \
640 do { \
641 *(rxq)->rxq_tailp = (rxq)->rxq_tail = (m); \
642 (rxq)->rxq_tailp = &(m)->m_next; \
643 } while (/*CONSTCOND*/0)
644
645 #ifdef WM_EVENT_COUNTERS
646 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
647 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
648
649 #define WM_Q_EVCNT_INCR(qname, evname) \
650 WM_EVCNT_INCR(&(qname)->qname##_ev_##evname)
651 #define WM_Q_EVCNT_ADD(qname, evname, val) \
652 WM_EVCNT_ADD(&(qname)->qname##_ev_##evname, (val))
653 #else /* !WM_EVENT_COUNTERS */
654 #define WM_EVCNT_INCR(ev) /* nothing */
655 #define WM_EVCNT_ADD(ev, val) /* nothing */
656
657 #define WM_Q_EVCNT_INCR(qname, evname) /* nothing */
658 #define WM_Q_EVCNT_ADD(qname, evname, val) /* nothing */
659 #endif /* !WM_EVENT_COUNTERS */
660
661 #define CSR_READ(sc, reg) \
662 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
663 #define CSR_WRITE(sc, reg, val) \
664 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
665 #define CSR_WRITE_FLUSH(sc) \
666 (void)CSR_READ((sc), WMREG_STATUS)
667
668 #define ICH8_FLASH_READ32(sc, reg) \
669 bus_space_read_4((sc)->sc_flasht, (sc)->sc_flashh, \
670 (reg) + sc->sc_flashreg_offset)
671 #define ICH8_FLASH_WRITE32(sc, reg, data) \
672 bus_space_write_4((sc)->sc_flasht, (sc)->sc_flashh, \
673 (reg) + sc->sc_flashreg_offset, (data))
674
675 #define ICH8_FLASH_READ16(sc, reg) \
676 bus_space_read_2((sc)->sc_flasht, (sc)->sc_flashh, \
677 (reg) + sc->sc_flashreg_offset)
678 #define ICH8_FLASH_WRITE16(sc, reg, data) \
679 bus_space_write_2((sc)->sc_flasht, (sc)->sc_flashh, \
680 (reg) + sc->sc_flashreg_offset, (data))
681
682 #define WM_CDTXADDR(txq, x) ((txq)->txq_desc_dma + WM_CDTXOFF((txq), (x)))
683 #define WM_CDRXADDR(rxq, x) ((rxq)->rxq_desc_dma + WM_CDRXOFF((rxq), (x)))
684
685 #define WM_CDTXADDR_LO(txq, x) (WM_CDTXADDR((txq), (x)) & 0xffffffffU)
686 #define WM_CDTXADDR_HI(txq, x) \
687 (sizeof(bus_addr_t) == 8 ? \
688 (uint64_t)WM_CDTXADDR((txq), (x)) >> 32 : 0)
689
690 #define WM_CDRXADDR_LO(rxq, x) (WM_CDRXADDR((rxq), (x)) & 0xffffffffU)
691 #define WM_CDRXADDR_HI(rxq, x) \
692 (sizeof(bus_addr_t) == 8 ? \
693 (uint64_t)WM_CDRXADDR((rxq), (x)) >> 32 : 0)
694
695 /*
696 * Register read/write functions.
697 * Other than CSR_{READ|WRITE}().
698 */
699 #if 0
700 static inline uint32_t wm_io_read(struct wm_softc *, int);
701 #endif
702 static inline void wm_io_write(struct wm_softc *, int, uint32_t);
703 static inline void wm_82575_write_8bit_ctlr_reg(struct wm_softc *, uint32_t,
704 uint32_t, uint32_t);
705 static inline void wm_set_dma_addr(volatile wiseman_addr_t *, bus_addr_t);
706
707 /*
708 * Descriptor sync/init functions.
709 */
710 static inline void wm_cdtxsync(struct wm_txqueue *, int, int, int);
711 static inline void wm_cdrxsync(struct wm_rxqueue *, int, int);
712 static inline void wm_init_rxdesc(struct wm_rxqueue *, int);
713
714 /*
715 * Device driver interface functions and commonly used functions.
716 * match, attach, detach, init, start, stop, ioctl, watchdog and so on.
717 */
718 static const struct wm_product *wm_lookup(const struct pci_attach_args *);
719 static int wm_match(device_t, cfdata_t, void *);
720 static void wm_attach(device_t, device_t, void *);
721 static int wm_detach(device_t, int);
722 static bool wm_suspend(device_t, const pmf_qual_t *);
723 static bool wm_resume(device_t, const pmf_qual_t *);
724 static void wm_watchdog(struct ifnet *);
725 static void wm_watchdog_txq(struct ifnet *, struct wm_txqueue *,
726 uint16_t *);
727 static void wm_watchdog_txq_locked(struct ifnet *, struct wm_txqueue *,
728 uint16_t *);
729 static void wm_tick(void *);
730 static int wm_ifflags_cb(struct ethercom *);
731 static int wm_ioctl(struct ifnet *, u_long, void *);
732 /* MAC address related */
733 static uint16_t wm_check_alt_mac_addr(struct wm_softc *);
734 static int wm_read_mac_addr(struct wm_softc *, uint8_t *);
735 static void wm_set_ral(struct wm_softc *, const uint8_t *, int);
736 static uint32_t wm_mchash(struct wm_softc *, const uint8_t *);
737 static int wm_rar_count(struct wm_softc *);
738 static void wm_set_filter(struct wm_softc *);
739 /* Reset and init related */
740 static void wm_set_vlan(struct wm_softc *);
741 static void wm_set_pcie_completion_timeout(struct wm_softc *);
742 static void wm_get_auto_rd_done(struct wm_softc *);
743 static void wm_lan_init_done(struct wm_softc *);
744 static void wm_get_cfg_done(struct wm_softc *);
745 static int wm_phy_post_reset(struct wm_softc *);
746 static int wm_write_smbus_addr(struct wm_softc *);
747 static int wm_init_lcd_from_nvm(struct wm_softc *);
748 static int wm_oem_bits_config_ich8lan(struct wm_softc *, bool);
749 static void wm_initialize_hardware_bits(struct wm_softc *);
750 static uint32_t wm_rxpbs_adjust_82580(uint32_t);
751 static int wm_reset_phy(struct wm_softc *);
752 static void wm_flush_desc_rings(struct wm_softc *);
753 static void wm_reset(struct wm_softc *);
754 static int wm_add_rxbuf(struct wm_rxqueue *, int);
755 static void wm_rxdrain(struct wm_rxqueue *);
756 static void wm_init_rss(struct wm_softc *);
757 static void wm_adjust_qnum(struct wm_softc *, int);
758 static inline bool wm_is_using_msix(struct wm_softc *);
759 static inline bool wm_is_using_multiqueue(struct wm_softc *);
760 static int wm_softint_establish(struct wm_softc *, int, int);
761 static int wm_setup_legacy(struct wm_softc *);
762 static int wm_setup_msix(struct wm_softc *);
763 static int wm_init(struct ifnet *);
764 static int wm_init_locked(struct ifnet *);
765 static void wm_init_sysctls(struct wm_softc *);
766 static void wm_unset_stopping_flags(struct wm_softc *);
767 static void wm_set_stopping_flags(struct wm_softc *);
768 static void wm_stop(struct ifnet *, int);
769 static void wm_stop_locked(struct ifnet *, bool, bool);
770 static void wm_dump_mbuf_chain(struct wm_softc *, struct mbuf *);
771 static void wm_82547_txfifo_stall(void *);
772 static int wm_82547_txfifo_bugchk(struct wm_softc *, struct mbuf *);
773 static void wm_itrs_writereg(struct wm_softc *, struct wm_queue *);
774 /* DMA related */
775 static int wm_alloc_tx_descs(struct wm_softc *, struct wm_txqueue *);
776 static void wm_free_tx_descs(struct wm_softc *, struct wm_txqueue *);
777 static void wm_init_tx_descs(struct wm_softc *, struct wm_txqueue *);
778 static void wm_init_tx_regs(struct wm_softc *, struct wm_queue *,
779 struct wm_txqueue *);
780 static int wm_alloc_rx_descs(struct wm_softc *, struct wm_rxqueue *);
781 static void wm_free_rx_descs(struct wm_softc *, struct wm_rxqueue *);
782 static void wm_init_rx_regs(struct wm_softc *, struct wm_queue *,
783 struct wm_rxqueue *);
784 static int wm_alloc_tx_buffer(struct wm_softc *, struct wm_txqueue *);
785 static void wm_free_tx_buffer(struct wm_softc *, struct wm_txqueue *);
786 static void wm_init_tx_buffer(struct wm_softc *, struct wm_txqueue *);
787 static int wm_alloc_rx_buffer(struct wm_softc *, struct wm_rxqueue *);
788 static void wm_free_rx_buffer(struct wm_softc *, struct wm_rxqueue *);
789 static int wm_init_rx_buffer(struct wm_softc *, struct wm_rxqueue *);
790 static void wm_init_tx_queue(struct wm_softc *, struct wm_queue *,
791 struct wm_txqueue *);
792 static int wm_init_rx_queue(struct wm_softc *, struct wm_queue *,
793 struct wm_rxqueue *);
794 static int wm_alloc_txrx_queues(struct wm_softc *);
795 static void wm_free_txrx_queues(struct wm_softc *);
796 static int wm_init_txrx_queues(struct wm_softc *);
797 /* Start */
798 static void wm_tx_offload(struct wm_softc *, struct wm_txqueue *,
799 struct wm_txsoft *, uint32_t *, uint8_t *);
800 static inline int wm_select_txqueue(struct ifnet *, struct mbuf *);
801 static void wm_start(struct ifnet *);
802 static void wm_start_locked(struct ifnet *);
803 static int wm_transmit(struct ifnet *, struct mbuf *);
804 static void wm_transmit_locked(struct ifnet *, struct wm_txqueue *);
805 static void wm_send_common_locked(struct ifnet *, struct wm_txqueue *,
806 bool);
807 static void wm_nq_tx_offload(struct wm_softc *, struct wm_txqueue *,
808 struct wm_txsoft *, uint32_t *, uint32_t *, bool *);
809 static void wm_nq_start(struct ifnet *);
810 static void wm_nq_start_locked(struct ifnet *);
811 static int wm_nq_transmit(struct ifnet *, struct mbuf *);
812 static void wm_nq_transmit_locked(struct ifnet *, struct wm_txqueue *);
813 static void wm_nq_send_common_locked(struct ifnet *, struct wm_txqueue *,
814 bool);
815 static void wm_deferred_start_locked(struct wm_txqueue *);
816 static void wm_handle_queue(void *);
817 static void wm_handle_queue_work(struct work *, void *);
818 /* Interrupt */
819 static bool wm_txeof(struct wm_txqueue *, u_int);
820 static bool wm_rxeof(struct wm_rxqueue *, u_int);
821 static void wm_linkintr_gmii(struct wm_softc *, uint32_t);
822 static void wm_linkintr_tbi(struct wm_softc *, uint32_t);
823 static void wm_linkintr_serdes(struct wm_softc *, uint32_t);
824 static void wm_linkintr(struct wm_softc *, uint32_t);
825 static int wm_intr_legacy(void *);
826 static inline void wm_txrxintr_disable(struct wm_queue *);
827 static inline void wm_txrxintr_enable(struct wm_queue *);
828 static void wm_itrs_calculate(struct wm_softc *, struct wm_queue *);
829 static int wm_txrxintr_msix(void *);
830 static int wm_linkintr_msix(void *);
831
832 /*
833 * Media related.
834 * GMII, SGMII, TBI, SERDES and SFP.
835 */
836 /* Common */
837 static void wm_tbi_serdes_set_linkled(struct wm_softc *);
838 /* GMII related */
839 static void wm_gmii_reset(struct wm_softc *);
840 static void wm_gmii_setup_phytype(struct wm_softc *, uint32_t, uint16_t);
841 static int wm_get_phy_id_82575(struct wm_softc *);
842 static void wm_gmii_mediainit(struct wm_softc *, pci_product_id_t);
843 static int wm_gmii_mediachange(struct ifnet *);
844 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
845 static void wm_i82543_mii_sendbits(struct wm_softc *, uint32_t, int);
846 static uint16_t wm_i82543_mii_recvbits(struct wm_softc *);
847 static int wm_gmii_i82543_readreg(device_t, int, int, uint16_t *);
848 static int wm_gmii_i82543_writereg(device_t, int, int, uint16_t);
849 static int wm_gmii_mdic_readreg(device_t, int, int, uint16_t *);
850 static int wm_gmii_mdic_writereg(device_t, int, int, uint16_t);
851 static int wm_gmii_i82544_readreg(device_t, int, int, uint16_t *);
852 static int wm_gmii_i82544_readreg_locked(device_t, int, int, uint16_t *);
853 static int wm_gmii_i82544_writereg(device_t, int, int, uint16_t);
854 static int wm_gmii_i82544_writereg_locked(device_t, int, int, uint16_t);
855 static int wm_gmii_i80003_readreg(device_t, int, int, uint16_t *);
856 static int wm_gmii_i80003_writereg(device_t, int, int, uint16_t);
857 static int wm_gmii_bm_readreg(device_t, int, int, uint16_t *);
858 static int wm_gmii_bm_writereg(device_t, int, int, uint16_t);
859 static int wm_enable_phy_wakeup_reg_access_bm(device_t, uint16_t *);
860 static int wm_disable_phy_wakeup_reg_access_bm(device_t, uint16_t *);
861 static int wm_access_phy_wakeup_reg_bm(device_t, int, int16_t *, int,
862 bool);
863 static int wm_gmii_hv_readreg(device_t, int, int, uint16_t *);
864 static int wm_gmii_hv_readreg_locked(device_t, int, int, uint16_t *);
865 static int wm_gmii_hv_writereg(device_t, int, int, uint16_t);
866 static int wm_gmii_hv_writereg_locked(device_t, int, int, uint16_t);
867 static int wm_gmii_82580_readreg(device_t, int, int, uint16_t *);
868 static int wm_gmii_82580_writereg(device_t, int, int, uint16_t);
869 static int wm_gmii_gs40g_readreg(device_t, int, int, uint16_t *);
870 static int wm_gmii_gs40g_writereg(device_t, int, int, uint16_t);
871 static void wm_gmii_statchg(struct ifnet *);
872 /*
873 * kumeran related (80003, ICH* and PCH*).
874 * These functions are not for accessing MII registers but for accessing
875 * kumeran specific registers.
876 */
877 static int wm_kmrn_readreg(struct wm_softc *, int, uint16_t *);
878 static int wm_kmrn_readreg_locked(struct wm_softc *, int, uint16_t *);
879 static int wm_kmrn_writereg(struct wm_softc *, int, uint16_t);
880 static int wm_kmrn_writereg_locked(struct wm_softc *, int, uint16_t);
881 /* EMI register related */
882 static int wm_access_emi_reg_locked(device_t, int, uint16_t *, bool);
883 static int wm_read_emi_reg_locked(device_t, int, uint16_t *);
884 static int wm_write_emi_reg_locked(device_t, int, uint16_t);
885 /* SGMII */
886 static bool wm_sgmii_uses_mdio(struct wm_softc *);
887 static int wm_sgmii_readreg(device_t, int, int, uint16_t *);
888 static int wm_sgmii_readreg_locked(device_t, int, int, uint16_t *);
889 static int wm_sgmii_writereg(device_t, int, int, uint16_t);
890 static int wm_sgmii_writereg_locked(device_t, int, int, uint16_t);
891 /* TBI related */
892 static bool wm_tbi_havesignal(struct wm_softc *, uint32_t);
893 static void wm_tbi_mediainit(struct wm_softc *);
894 static int wm_tbi_mediachange(struct ifnet *);
895 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
896 static int wm_check_for_link(struct wm_softc *);
897 static void wm_tbi_tick(struct wm_softc *);
898 /* SERDES related */
899 static void wm_serdes_power_up_link_82575(struct wm_softc *);
900 static int wm_serdes_mediachange(struct ifnet *);
901 static void wm_serdes_mediastatus(struct ifnet *, struct ifmediareq *);
902 static void wm_serdes_tick(struct wm_softc *);
903 /* SFP related */
904 static int wm_sfp_read_data_byte(struct wm_softc *, uint16_t, uint8_t *);
905 static uint32_t wm_sfp_get_media_type(struct wm_softc *);
906
907 /*
908 * NVM related.
909 * Microwire, SPI (w/wo EERD) and Flash.
910 */
911 /* Misc functions */
912 static void wm_eeprom_sendbits(struct wm_softc *, uint32_t, int);
913 static void wm_eeprom_recvbits(struct wm_softc *, uint32_t *, int);
914 static int wm_nvm_set_addrbits_size_eecd(struct wm_softc *);
915 /* Microwire */
916 static int wm_nvm_read_uwire(struct wm_softc *, int, int, uint16_t *);
917 /* SPI */
918 static int wm_nvm_ready_spi(struct wm_softc *);
919 static int wm_nvm_read_spi(struct wm_softc *, int, int, uint16_t *);
920 /* Using with EERD */
921 static int wm_poll_eerd_eewr_done(struct wm_softc *, int);
922 static int wm_nvm_read_eerd(struct wm_softc *, int, int, uint16_t *);
923 /* Flash */
924 static int wm_nvm_valid_bank_detect_ich8lan(struct wm_softc *,
925 unsigned int *);
926 static int32_t wm_ich8_cycle_init(struct wm_softc *);
927 static int32_t wm_ich8_flash_cycle(struct wm_softc *, uint32_t);
928 static int32_t wm_read_ich8_data(struct wm_softc *, uint32_t, uint32_t,
929 uint32_t *);
930 static int32_t wm_read_ich8_byte(struct wm_softc *, uint32_t, uint8_t *);
931 static int32_t wm_read_ich8_word(struct wm_softc *, uint32_t, uint16_t *);
932 static int32_t wm_read_ich8_dword(struct wm_softc *, uint32_t, uint32_t *);
933 static int wm_nvm_read_ich8(struct wm_softc *, int, int, uint16_t *);
934 static int wm_nvm_read_spt(struct wm_softc *, int, int, uint16_t *);
935 /* iNVM */
936 static int wm_nvm_read_word_invm(struct wm_softc *, uint16_t, uint16_t *);
937 static int wm_nvm_read_invm(struct wm_softc *, int, int, uint16_t *);
938 /* Lock, detecting NVM type, validate checksum and read */
939 static int wm_nvm_is_onboard_eeprom(struct wm_softc *);
940 static int wm_nvm_flash_presence_i210(struct wm_softc *);
941 static int wm_nvm_validate_checksum(struct wm_softc *);
942 static void wm_nvm_version_invm(struct wm_softc *);
943 static void wm_nvm_version(struct wm_softc *);
944 static int wm_nvm_read(struct wm_softc *, int, int, uint16_t *);
945
946 /*
947 * Hardware semaphores.
948 * Very complexed...
949 */
950 static int wm_get_null(struct wm_softc *);
951 static void wm_put_null(struct wm_softc *);
952 static int wm_get_eecd(struct wm_softc *);
953 static void wm_put_eecd(struct wm_softc *);
954 static int wm_get_swsm_semaphore(struct wm_softc *); /* 8257[123] */
955 static void wm_put_swsm_semaphore(struct wm_softc *);
956 static int wm_get_swfw_semaphore(struct wm_softc *, uint16_t);
957 static void wm_put_swfw_semaphore(struct wm_softc *, uint16_t);
958 static int wm_get_nvm_80003(struct wm_softc *);
959 static void wm_put_nvm_80003(struct wm_softc *);
960 static int wm_get_nvm_82571(struct wm_softc *);
961 static void wm_put_nvm_82571(struct wm_softc *);
962 static int wm_get_phy_82575(struct wm_softc *);
963 static void wm_put_phy_82575(struct wm_softc *);
964 static int wm_get_swfwhw_semaphore(struct wm_softc *); /* For 574/583 */
965 static void wm_put_swfwhw_semaphore(struct wm_softc *);
966 static int wm_get_swflag_ich8lan(struct wm_softc *); /* For PHY */
967 static void wm_put_swflag_ich8lan(struct wm_softc *);
968 static int wm_get_nvm_ich8lan(struct wm_softc *);
969 static void wm_put_nvm_ich8lan(struct wm_softc *);
970 static int wm_get_hw_semaphore_82573(struct wm_softc *);
971 static void wm_put_hw_semaphore_82573(struct wm_softc *);
972
973 /*
974 * Management mode and power management related subroutines.
975 * BMC, AMT, suspend/resume and EEE.
976 */
977 #if 0
978 static int wm_check_mng_mode(struct wm_softc *);
979 static int wm_check_mng_mode_ich8lan(struct wm_softc *);
980 static int wm_check_mng_mode_82574(struct wm_softc *);
981 static int wm_check_mng_mode_generic(struct wm_softc *);
982 #endif
983 static int wm_enable_mng_pass_thru(struct wm_softc *);
984 static bool wm_phy_resetisblocked(struct wm_softc *);
985 static void wm_get_hw_control(struct wm_softc *);
986 static void wm_release_hw_control(struct wm_softc *);
987 static void wm_gate_hw_phy_config_ich8lan(struct wm_softc *, bool);
988 static int wm_init_phy_workarounds_pchlan(struct wm_softc *);
989 static void wm_init_manageability(struct wm_softc *);
990 static void wm_release_manageability(struct wm_softc *);
991 static void wm_get_wakeup(struct wm_softc *);
992 static int wm_ulp_disable(struct wm_softc *);
993 static int wm_enable_phy_wakeup(struct wm_softc *);
994 static void wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *);
995 static void wm_suspend_workarounds_ich8lan(struct wm_softc *);
996 static int wm_resume_workarounds_pchlan(struct wm_softc *);
997 static void wm_enable_wakeup(struct wm_softc *);
998 static void wm_disable_aspm(struct wm_softc *);
999 /* LPLU (Low Power Link Up) */
1000 static void wm_lplu_d0_disable(struct wm_softc *);
1001 /* EEE */
1002 static int wm_set_eee_i350(struct wm_softc *);
1003 static int wm_set_eee_pchlan(struct wm_softc *);
1004 static int wm_set_eee(struct wm_softc *);
1005
1006 /*
1007 * Workarounds (mainly PHY related).
1008 * Basically, PHY's workarounds are in the PHY drivers.
1009 */
1010 static int wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *);
1011 static void wm_gig_downshift_workaround_ich8lan(struct wm_softc *);
1012 static int wm_hv_phy_workarounds_ich8lan(struct wm_softc *);
1013 static void wm_copy_rx_addrs_to_phy_ich8lan(struct wm_softc *);
1014 static int wm_lv_phy_workarounds_ich8lan(struct wm_softc *);
1015 static int wm_k1_workaround_lpt_lp(struct wm_softc *, bool);
1016 static int wm_k1_gig_workaround_hv(struct wm_softc *, int);
1017 static int wm_k1_workaround_lv(struct wm_softc *);
1018 static int wm_link_stall_workaround_hv(struct wm_softc *);
1019 static int wm_set_mdio_slow_mode_hv(struct wm_softc *);
1020 static void wm_configure_k1_ich8lan(struct wm_softc *, int);
1021 static void wm_reset_init_script_82575(struct wm_softc *);
1022 static void wm_reset_mdicnfg_82580(struct wm_softc *);
1023 static bool wm_phy_is_accessible_pchlan(struct wm_softc *);
1024 static void wm_toggle_lanphypc_pch_lpt(struct wm_softc *);
1025 static int wm_platform_pm_pch_lpt(struct wm_softc *, bool);
1026 static int wm_pll_workaround_i210(struct wm_softc *);
1027 static void wm_legacy_irq_quirk_spt(struct wm_softc *);
1028
1029 CFATTACH_DECL3_NEW(wm, sizeof(struct wm_softc),
1030 wm_match, wm_attach, wm_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1031
1032 /*
1033 * Devices supported by this driver.
1034 */
1035 static const struct wm_product {
1036 pci_vendor_id_t wmp_vendor;
1037 pci_product_id_t wmp_product;
1038 const char *wmp_name;
1039 wm_chip_type wmp_type;
1040 uint32_t wmp_flags;
1041 #define WMP_F_UNKNOWN WM_MEDIATYPE_UNKNOWN
1042 #define WMP_F_FIBER WM_MEDIATYPE_FIBER
1043 #define WMP_F_COPPER WM_MEDIATYPE_COPPER
1044 #define WMP_F_SERDES WM_MEDIATYPE_SERDES
1045 #define WMP_MEDIATYPE(x) ((x) & 0x03)
1046 } wm_products[] = {
1047 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
1048 "Intel i82542 1000BASE-X Ethernet",
1049 WM_T_82542_2_1, WMP_F_FIBER },
1050
1051 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
1052 "Intel i82543GC 1000BASE-X Ethernet",
1053 WM_T_82543, WMP_F_FIBER },
1054
1055 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
1056 "Intel i82543GC 1000BASE-T Ethernet",
1057 WM_T_82543, WMP_F_COPPER },
1058
1059 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
1060 "Intel i82544EI 1000BASE-T Ethernet",
1061 WM_T_82544, WMP_F_COPPER },
1062
1063 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
1064 "Intel i82544EI 1000BASE-X Ethernet",
1065 WM_T_82544, WMP_F_FIBER },
1066
1067 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
1068 "Intel i82544GC 1000BASE-T Ethernet",
1069 WM_T_82544, WMP_F_COPPER },
1070
1071 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
1072 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
1073 WM_T_82544, WMP_F_COPPER },
1074
1075 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
1076 "Intel i82540EM 1000BASE-T Ethernet",
1077 WM_T_82540, WMP_F_COPPER },
1078
1079 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
1080 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
1081 WM_T_82540, WMP_F_COPPER },
1082
1083 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
1084 "Intel i82540EP 1000BASE-T Ethernet",
1085 WM_T_82540, WMP_F_COPPER },
1086
1087 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
1088 "Intel i82540EP 1000BASE-T Ethernet",
1089 WM_T_82540, WMP_F_COPPER },
1090
1091 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
1092 "Intel i82540EP 1000BASE-T Ethernet",
1093 WM_T_82540, WMP_F_COPPER },
1094
1095 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
1096 "Intel i82545EM 1000BASE-T Ethernet",
1097 WM_T_82545, WMP_F_COPPER },
1098
1099 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
1100 "Intel i82545GM 1000BASE-T Ethernet",
1101 WM_T_82545_3, WMP_F_COPPER },
1102
1103 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
1104 "Intel i82545GM 1000BASE-X Ethernet",
1105 WM_T_82545_3, WMP_F_FIBER },
1106
1107 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
1108 "Intel i82545GM Gigabit Ethernet (SERDES)",
1109 WM_T_82545_3, WMP_F_SERDES },
1110
1111 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
1112 "Intel i82546EB 1000BASE-T Ethernet",
1113 WM_T_82546, WMP_F_COPPER },
1114
1115 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
1116 "Intel i82546EB 1000BASE-T Ethernet",
1117 WM_T_82546, WMP_F_COPPER },
1118
1119 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
1120 "Intel i82545EM 1000BASE-X Ethernet",
1121 WM_T_82545, WMP_F_FIBER },
1122
1123 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
1124 "Intel i82546EB 1000BASE-X Ethernet",
1125 WM_T_82546, WMP_F_FIBER },
1126
1127 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
1128 "Intel i82546GB 1000BASE-T Ethernet",
1129 WM_T_82546_3, WMP_F_COPPER },
1130
1131 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
1132 "Intel i82546GB 1000BASE-X Ethernet",
1133 WM_T_82546_3, WMP_F_FIBER },
1134
1135 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
1136 "Intel i82546GB Gigabit Ethernet (SERDES)",
1137 WM_T_82546_3, WMP_F_SERDES },
1138
1139 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER,
1140 "i82546GB quad-port Gigabit Ethernet",
1141 WM_T_82546_3, WMP_F_COPPER },
1142
1143 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3,
1144 "i82546GB quad-port Gigabit Ethernet (KSP3)",
1145 WM_T_82546_3, WMP_F_COPPER },
1146
1147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_PCIE,
1148 "Intel PRO/1000MT (82546GB)",
1149 WM_T_82546_3, WMP_F_COPPER },
1150
1151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
1152 "Intel i82541EI 1000BASE-T Ethernet",
1153 WM_T_82541, WMP_F_COPPER },
1154
1155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER_LOM,
1156 "Intel i82541ER (LOM) 1000BASE-T Ethernet",
1157 WM_T_82541, WMP_F_COPPER },
1158
1159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
1160 "Intel i82541EI Mobile 1000BASE-T Ethernet",
1161 WM_T_82541, WMP_F_COPPER },
1162
1163 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
1164 "Intel i82541ER 1000BASE-T Ethernet",
1165 WM_T_82541_2, WMP_F_COPPER },
1166
1167 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
1168 "Intel i82541GI 1000BASE-T Ethernet",
1169 WM_T_82541_2, WMP_F_COPPER },
1170
1171 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
1172 "Intel i82541GI Mobile 1000BASE-T Ethernet",
1173 WM_T_82541_2, WMP_F_COPPER },
1174
1175 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI,
1176 "Intel i82541PI 1000BASE-T Ethernet",
1177 WM_T_82541_2, WMP_F_COPPER },
1178
1179 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
1180 "Intel i82547EI 1000BASE-T Ethernet",
1181 WM_T_82547, WMP_F_COPPER },
1182
1183 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI_MOBILE,
1184 "Intel i82547EI Mobile 1000BASE-T Ethernet",
1185 WM_T_82547, WMP_F_COPPER },
1186
1187 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
1188 "Intel i82547GI 1000BASE-T Ethernet",
1189 WM_T_82547_2, WMP_F_COPPER },
1190
1191 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_COPPER,
1192 "Intel PRO/1000 PT (82571EB)",
1193 WM_T_82571, WMP_F_COPPER },
1194
1195 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_FIBER,
1196 "Intel PRO/1000 PF (82571EB)",
1197 WM_T_82571, WMP_F_FIBER },
1198
1199 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_SERDES,
1200 "Intel PRO/1000 PB (82571EB)",
1201 WM_T_82571, WMP_F_SERDES },
1202
1203 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER,
1204 "Intel PRO/1000 QT (82571EB)",
1205 WM_T_82571, WMP_F_COPPER },
1206
1207 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER,
1208 "Intel PRO/1000 PT Quad Port Server Adapter",
1209 WM_T_82571, WMP_F_COPPER },
1210
1211 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571PT_QUAD_COPPER,
1212 "Intel Gigabit PT Quad Port Server ExpressModule",
1213 WM_T_82571, WMP_F_COPPER },
1214
1215 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_DUAL_SERDES,
1216 "Intel 82571EB Dual Gigabit Ethernet (SERDES)",
1217 WM_T_82571, WMP_F_SERDES },
1218
1219 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_SERDES,
1220 "Intel 82571EB Quad Gigabit Ethernet (SERDES)",
1221 WM_T_82571, WMP_F_SERDES },
1222
1223 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_FIBER,
1224 "Intel 82571EB Quad 1000baseX Ethernet",
1225 WM_T_82571, WMP_F_FIBER },
1226
1227 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_COPPER,
1228 "Intel i82572EI 1000baseT Ethernet",
1229 WM_T_82572, WMP_F_COPPER },
1230
1231 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_FIBER,
1232 "Intel i82572EI 1000baseX Ethernet",
1233 WM_T_82572, WMP_F_FIBER },
1234
1235 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_SERDES,
1236 "Intel i82572EI Gigabit Ethernet (SERDES)",
1237 WM_T_82572, WMP_F_SERDES },
1238
1239 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI,
1240 "Intel i82572EI 1000baseT Ethernet",
1241 WM_T_82572, WMP_F_COPPER },
1242
1243 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E,
1244 "Intel i82573E",
1245 WM_T_82573, WMP_F_COPPER },
1246
1247 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E_IAMT,
1248 "Intel i82573E IAMT",
1249 WM_T_82573, WMP_F_COPPER },
1250
1251 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L,
1252 "Intel i82573L Gigabit Ethernet",
1253 WM_T_82573, WMP_F_COPPER },
1254
1255 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82574L,
1256 "Intel i82574L",
1257 WM_T_82574, WMP_F_COPPER },
1258
1259 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82574LA,
1260 "Intel i82574L",
1261 WM_T_82574, WMP_F_COPPER },
1262
1263 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82583V,
1264 "Intel i82583V",
1265 WM_T_82583, WMP_F_COPPER },
1266
1267 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT,
1268 "i80003 dual 1000baseT Ethernet",
1269 WM_T_80003, WMP_F_COPPER },
1270
1271 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT,
1272 "i80003 dual 1000baseX Ethernet",
1273 WM_T_80003, WMP_F_COPPER },
1274
1275 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT,
1276 "Intel i80003ES2 dual Gigabit Ethernet (SERDES)",
1277 WM_T_80003, WMP_F_SERDES },
1278
1279 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT,
1280 "Intel i80003 1000baseT Ethernet",
1281 WM_T_80003, WMP_F_COPPER },
1282
1283 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT,
1284 "Intel i80003 Gigabit Ethernet (SERDES)",
1285 WM_T_80003, WMP_F_SERDES },
1286
1287 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_AMT,
1288 "Intel i82801H (M_AMT) LAN Controller",
1289 WM_T_ICH8, WMP_F_COPPER },
1290 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_AMT,
1291 "Intel i82801H (AMT) LAN Controller",
1292 WM_T_ICH8, WMP_F_COPPER },
1293 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_LAN,
1294 "Intel i82801H LAN Controller",
1295 WM_T_ICH8, WMP_F_COPPER },
1296 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_LAN,
1297 "Intel i82801H (IFE) 10/100 LAN Controller",
1298 WM_T_ICH8, WMP_F_COPPER },
1299 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_LAN,
1300 "Intel i82801H (M) LAN Controller",
1301 WM_T_ICH8, WMP_F_COPPER },
1302 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_GT,
1303 "Intel i82801H IFE (GT) 10/100 LAN Controller",
1304 WM_T_ICH8, WMP_F_COPPER },
1305 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_G,
1306 "Intel i82801H IFE (G) 10/100 LAN Controller",
1307 WM_T_ICH8, WMP_F_COPPER },
1308 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_82567V_3,
1309 "82567V-3 LAN Controller",
1310 WM_T_ICH8, WMP_F_COPPER },
1311 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_AMT,
1312 "82801I (AMT) LAN Controller",
1313 WM_T_ICH9, WMP_F_COPPER },
1314 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE,
1315 "82801I 10/100 LAN Controller",
1316 WM_T_ICH9, WMP_F_COPPER },
1317 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_G,
1318 "82801I (G) 10/100 LAN Controller",
1319 WM_T_ICH9, WMP_F_COPPER },
1320 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_GT,
1321 "82801I (GT) 10/100 LAN Controller",
1322 WM_T_ICH9, WMP_F_COPPER },
1323 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_C,
1324 "82801I (C) LAN Controller",
1325 WM_T_ICH9, WMP_F_COPPER },
1326 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M,
1327 "82801I mobile LAN Controller",
1328 WM_T_ICH9, WMP_F_COPPER },
1329 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M_V,
1330 "82801I mobile (V) LAN Controller",
1331 WM_T_ICH9, WMP_F_COPPER },
1332 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M_AMT,
1333 "82801I mobile (AMT) LAN Controller",
1334 WM_T_ICH9, WMP_F_COPPER },
1335 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_BM,
1336 "82567LM-4 LAN Controller",
1337 WM_T_ICH9, WMP_F_COPPER },
1338 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_LM,
1339 "82567LM-2 LAN Controller",
1340 WM_T_ICH10, WMP_F_COPPER },
1341 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_LF,
1342 "82567LF-2 LAN Controller",
1343 WM_T_ICH10, WMP_F_COPPER },
1344 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_LM,
1345 "82567LM-3 LAN Controller",
1346 WM_T_ICH10, WMP_F_COPPER },
1347 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_LF,
1348 "82567LF-3 LAN Controller",
1349 WM_T_ICH10, WMP_F_COPPER },
1350 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_V,
1351 "82567V-2 LAN Controller",
1352 WM_T_ICH10, WMP_F_COPPER },
1353 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_V,
1354 "82567V-3? LAN Controller",
1355 WM_T_ICH10, WMP_F_COPPER },
1356 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_HANKSVILLE,
1357 "HANKSVILLE LAN Controller",
1358 WM_T_ICH10, WMP_F_COPPER },
1359 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_M_LM,
1360 "PCH LAN (82577LM) Controller",
1361 WM_T_PCH, WMP_F_COPPER },
1362 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_M_LC,
1363 "PCH LAN (82577LC) Controller",
1364 WM_T_PCH, WMP_F_COPPER },
1365 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_D_DM,
1366 "PCH LAN (82578DM) Controller",
1367 WM_T_PCH, WMP_F_COPPER },
1368 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_D_DC,
1369 "PCH LAN (82578DC) Controller",
1370 WM_T_PCH, WMP_F_COPPER },
1371 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH2_LV_LM,
1372 "PCH2 LAN (82579LM) Controller",
1373 WM_T_PCH2, WMP_F_COPPER },
1374 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH2_LV_V,
1375 "PCH2 LAN (82579V) Controller",
1376 WM_T_PCH2, WMP_F_COPPER },
1377 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575EB_COPPER,
1378 "82575EB dual-1000baseT Ethernet",
1379 WM_T_82575, WMP_F_COPPER },
1380 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575EB_FIBER_SERDES,
1381 "82575EB dual-1000baseX Ethernet (SERDES)",
1382 WM_T_82575, WMP_F_SERDES },
1383 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER,
1384 "82575GB quad-1000baseT Ethernet",
1385 WM_T_82575, WMP_F_COPPER },
1386 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER_PM,
1387 "82575GB quad-1000baseT Ethernet (PM)",
1388 WM_T_82575, WMP_F_COPPER },
1389 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_COPPER,
1390 "82576 1000BaseT Ethernet",
1391 WM_T_82576, WMP_F_COPPER },
1392 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_FIBER,
1393 "82576 1000BaseX Ethernet",
1394 WM_T_82576, WMP_F_FIBER },
1395
1396 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_SERDES,
1397 "82576 gigabit Ethernet (SERDES)",
1398 WM_T_82576, WMP_F_SERDES },
1399
1400 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_QUAD_COPPER,
1401 "82576 quad-1000BaseT Ethernet",
1402 WM_T_82576, WMP_F_COPPER },
1403
1404 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_QUAD_COPPER_ET2,
1405 "82576 Gigabit ET2 Quad Port Server Adapter",
1406 WM_T_82576, WMP_F_COPPER },
1407
1408 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_NS,
1409 "82576 gigabit Ethernet",
1410 WM_T_82576, WMP_F_COPPER },
1411
1412 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_NS_SERDES,
1413 "82576 gigabit Ethernet (SERDES)",
1414 WM_T_82576, WMP_F_SERDES },
1415 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_SERDES_QUAD,
1416 "82576 quad-gigabit Ethernet (SERDES)",
1417 WM_T_82576, WMP_F_SERDES },
1418
1419 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_COPPER,
1420 "82580 1000BaseT Ethernet",
1421 WM_T_82580, WMP_F_COPPER },
1422 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_FIBER,
1423 "82580 1000BaseX Ethernet",
1424 WM_T_82580, WMP_F_FIBER },
1425
1426 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_SERDES,
1427 "82580 1000BaseT Ethernet (SERDES)",
1428 WM_T_82580, WMP_F_SERDES },
1429
1430 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_SGMII,
1431 "82580 gigabit Ethernet (SGMII)",
1432 WM_T_82580, WMP_F_COPPER },
1433 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_COPPER_DUAL,
1434 "82580 dual-1000BaseT Ethernet",
1435 WM_T_82580, WMP_F_COPPER },
1436
1437 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_QUAD_FIBER,
1438 "82580 quad-1000BaseX Ethernet",
1439 WM_T_82580, WMP_F_FIBER },
1440
1441 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SGMII,
1442 "DH89XXCC Gigabit Ethernet (SGMII)",
1443 WM_T_82580, WMP_F_COPPER },
1444
1445 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SERDES,
1446 "DH89XXCC Gigabit Ethernet (SERDES)",
1447 WM_T_82580, WMP_F_SERDES },
1448
1449 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_BPLANE,
1450 "DH89XXCC 1000BASE-KX Ethernet",
1451 WM_T_82580, WMP_F_SERDES },
1452
1453 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SFP,
1454 "DH89XXCC Gigabit Ethernet (SFP)",
1455 WM_T_82580, WMP_F_SERDES },
1456
1457 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_COPPER,
1458 "I350 Gigabit Network Connection",
1459 WM_T_I350, WMP_F_COPPER },
1460
1461 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_FIBER,
1462 "I350 Gigabit Fiber Network Connection",
1463 WM_T_I350, WMP_F_FIBER },
1464
1465 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_SERDES,
1466 "I350 Gigabit Backplane Connection",
1467 WM_T_I350, WMP_F_SERDES },
1468
1469 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_DA4,
1470 "I350 Quad Port Gigabit Ethernet",
1471 WM_T_I350, WMP_F_SERDES },
1472
1473 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_SGMII,
1474 "I350 Gigabit Connection",
1475 WM_T_I350, WMP_F_COPPER },
1476
1477 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_1000KX,
1478 "I354 Gigabit Ethernet (KX)",
1479 WM_T_I354, WMP_F_SERDES },
1480
1481 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_SGMII,
1482 "I354 Gigabit Ethernet (SGMII)",
1483 WM_T_I354, WMP_F_COPPER },
1484
1485 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_25GBE,
1486 "I354 Gigabit Ethernet (2.5G)",
1487 WM_T_I354, WMP_F_COPPER },
1488
1489 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_T1,
1490 "I210-T1 Ethernet Server Adapter",
1491 WM_T_I210, WMP_F_COPPER },
1492
1493 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_OEM1,
1494 "I210 Ethernet (Copper OEM)",
1495 WM_T_I210, WMP_F_COPPER },
1496
1497 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_IT,
1498 "I210 Ethernet (Copper IT)",
1499 WM_T_I210, WMP_F_COPPER },
1500
1501 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_WOF,
1502 "I210 Ethernet (Copper, FLASH less)",
1503 WM_T_I210, WMP_F_COPPER },
1504
1505 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_FIBER,
1506 "I210 Gigabit Ethernet (Fiber)",
1507 WM_T_I210, WMP_F_FIBER },
1508
1509 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SERDES,
1510 "I210 Gigabit Ethernet (SERDES)",
1511 WM_T_I210, WMP_F_SERDES },
1512
1513 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SERDES_WOF,
1514 "I210 Gigabit Ethernet (SERDES, FLASH less)",
1515 WM_T_I210, WMP_F_SERDES },
1516
1517 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SGMII,
1518 "I210 Gigabit Ethernet (SGMII)",
1519 WM_T_I210, WMP_F_COPPER },
1520
1521 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SGMII_WOF,
1522 "I210 Gigabit Ethernet (SGMII, FLASH less)",
1523 WM_T_I210, WMP_F_COPPER },
1524
1525 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I211_COPPER,
1526 "I211 Ethernet (COPPER)",
1527 WM_T_I211, WMP_F_COPPER },
1528 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I217_V,
1529 "I217 V Ethernet Connection",
1530 WM_T_PCH_LPT, WMP_F_COPPER },
1531 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I217_LM,
1532 "I217 LM Ethernet Connection",
1533 WM_T_PCH_LPT, WMP_F_COPPER },
1534 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V,
1535 "I218 V Ethernet Connection",
1536 WM_T_PCH_LPT, WMP_F_COPPER },
1537 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V2,
1538 "I218 V Ethernet Connection",
1539 WM_T_PCH_LPT, WMP_F_COPPER },
1540 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V3,
1541 "I218 V Ethernet Connection",
1542 WM_T_PCH_LPT, WMP_F_COPPER },
1543 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM,
1544 "I218 LM Ethernet Connection",
1545 WM_T_PCH_LPT, WMP_F_COPPER },
1546 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM2,
1547 "I218 LM Ethernet Connection",
1548 WM_T_PCH_LPT, WMP_F_COPPER },
1549 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM3,
1550 "I218 LM Ethernet Connection",
1551 WM_T_PCH_LPT, WMP_F_COPPER },
1552 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM,
1553 "I219 LM Ethernet Connection",
1554 WM_T_PCH_SPT, WMP_F_COPPER },
1555 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM2,
1556 "I219 LM Ethernet Connection",
1557 WM_T_PCH_SPT, WMP_F_COPPER },
1558 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM3,
1559 "I219 LM Ethernet Connection",
1560 WM_T_PCH_SPT, WMP_F_COPPER },
1561 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM4,
1562 "I219 LM Ethernet Connection",
1563 WM_T_PCH_SPT, WMP_F_COPPER },
1564 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM5,
1565 "I219 LM Ethernet Connection",
1566 WM_T_PCH_SPT, WMP_F_COPPER },
1567 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM6,
1568 "I219 LM Ethernet Connection",
1569 WM_T_PCH_CNP, WMP_F_COPPER },
1570 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM7,
1571 "I219 LM Ethernet Connection",
1572 WM_T_PCH_CNP, WMP_F_COPPER },
1573 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM8,
1574 "I219 LM Ethernet Connection",
1575 WM_T_PCH_CNP, WMP_F_COPPER },
1576 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM9,
1577 "I219 LM Ethernet Connection",
1578 WM_T_PCH_CNP, WMP_F_COPPER },
1579 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM10,
1580 "I219 LM Ethernet Connection",
1581 WM_T_PCH_CNP, WMP_F_COPPER },
1582 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM11,
1583 "I219 LM Ethernet Connection",
1584 WM_T_PCH_CNP, WMP_F_COPPER },
1585 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM12,
1586 "I219 LM Ethernet Connection",
1587 WM_T_PCH_SPT, WMP_F_COPPER },
1588 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM13,
1589 "I219 LM Ethernet Connection",
1590 WM_T_PCH_CNP, WMP_F_COPPER },
1591 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM14,
1592 "I219 LM Ethernet Connection",
1593 WM_T_PCH_CNP, WMP_F_COPPER },
1594 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM15,
1595 "I219 LM Ethernet Connection",
1596 WM_T_PCH_CNP, WMP_F_COPPER },
1597 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V,
1598 "I219 V Ethernet Connection",
1599 WM_T_PCH_SPT, WMP_F_COPPER },
1600 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V2,
1601 "I219 V Ethernet Connection",
1602 WM_T_PCH_SPT, WMP_F_COPPER },
1603 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V4,
1604 "I219 V Ethernet Connection",
1605 WM_T_PCH_SPT, WMP_F_COPPER },
1606 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V5,
1607 "I219 V Ethernet Connection",
1608 WM_T_PCH_SPT, WMP_F_COPPER },
1609 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V6,
1610 "I219 V Ethernet Connection",
1611 WM_T_PCH_CNP, WMP_F_COPPER },
1612 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V7,
1613 "I219 V Ethernet Connection",
1614 WM_T_PCH_CNP, WMP_F_COPPER },
1615 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V8,
1616 "I219 V Ethernet Connection",
1617 WM_T_PCH_CNP, WMP_F_COPPER },
1618 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V9,
1619 "I219 V Ethernet Connection",
1620 WM_T_PCH_CNP, WMP_F_COPPER },
1621 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V10,
1622 "I219 V Ethernet Connection",
1623 WM_T_PCH_CNP, WMP_F_COPPER },
1624 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V11,
1625 "I219 V Ethernet Connection",
1626 WM_T_PCH_CNP, WMP_F_COPPER },
1627 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V12,
1628 "I219 V Ethernet Connection",
1629 WM_T_PCH_SPT, WMP_F_COPPER },
1630 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V13,
1631 "I219 V Ethernet Connection",
1632 WM_T_PCH_CNP, WMP_F_COPPER },
1633 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V14,
1634 "I219 V Ethernet Connection",
1635 WM_T_PCH_CNP, WMP_F_COPPER },
1636 { 0, 0,
1637 NULL,
1638 0, 0 },
1639 };
1640
1641 /*
1642 * Register read/write functions.
1643 * Other than CSR_{READ|WRITE}().
1644 */
1645
1646 #if 0 /* Not currently used */
1647 static inline uint32_t
1648 wm_io_read(struct wm_softc *sc, int reg)
1649 {
1650
1651 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
1652 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
1653 }
1654 #endif
1655
1656 static inline void
1657 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
1658 {
1659
1660 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
1661 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
1662 }
1663
1664 static inline void
1665 wm_82575_write_8bit_ctlr_reg(struct wm_softc *sc, uint32_t reg, uint32_t off,
1666 uint32_t data)
1667 {
1668 uint32_t regval;
1669 int i;
1670
1671 regval = (data & SCTL_CTL_DATA_MASK) | (off << SCTL_CTL_ADDR_SHIFT);
1672
1673 CSR_WRITE(sc, reg, regval);
1674
1675 for (i = 0; i < SCTL_CTL_POLL_TIMEOUT; i++) {
1676 delay(5);
1677 if (CSR_READ(sc, reg) & SCTL_CTL_READY)
1678 break;
1679 }
1680 if (i == SCTL_CTL_POLL_TIMEOUT) {
1681 aprint_error("%s: WARNING:"
1682 " i82575 reg 0x%08x setup did not indicate ready\n",
1683 device_xname(sc->sc_dev), reg);
1684 }
1685 }
1686
1687 static inline void
1688 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
1689 {
1690 wa->wa_low = htole32(v & 0xffffffffU);
1691 if (sizeof(bus_addr_t) == 8)
1692 wa->wa_high = htole32((uint64_t) v >> 32);
1693 else
1694 wa->wa_high = 0;
1695 }
1696
1697 /*
1698 * Descriptor sync/init functions.
1699 */
1700 static inline void
1701 wm_cdtxsync(struct wm_txqueue *txq, int start, int num, int ops)
1702 {
1703 struct wm_softc *sc = txq->txq_sc;
1704
1705 /* If it will wrap around, sync to the end of the ring. */
1706 if ((start + num) > WM_NTXDESC(txq)) {
1707 bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_dmamap,
1708 WM_CDTXOFF(txq, start), txq->txq_descsize *
1709 (WM_NTXDESC(txq) - start), ops);
1710 num -= (WM_NTXDESC(txq) - start);
1711 start = 0;
1712 }
1713
1714 /* Now sync whatever is left. */
1715 bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_dmamap,
1716 WM_CDTXOFF(txq, start), txq->txq_descsize * num, ops);
1717 }
1718
1719 static inline void
1720 wm_cdrxsync(struct wm_rxqueue *rxq, int start, int ops)
1721 {
1722 struct wm_softc *sc = rxq->rxq_sc;
1723
1724 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_dmamap,
1725 WM_CDRXOFF(rxq, start), rxq->rxq_descsize, ops);
1726 }
1727
1728 static inline void
1729 wm_init_rxdesc(struct wm_rxqueue *rxq, int start)
1730 {
1731 struct wm_softc *sc = rxq->rxq_sc;
1732 struct wm_rxsoft *rxs = &rxq->rxq_soft[start];
1733 struct mbuf *m = rxs->rxs_mbuf;
1734
1735 /*
1736 * Note: We scoot the packet forward 2 bytes in the buffer
1737 * so that the payload after the Ethernet header is aligned
1738 * to a 4-byte boundary.
1739
1740 * XXX BRAINDAMAGE ALERT!
1741 * The stupid chip uses the same size for every buffer, which
1742 * is set in the Receive Control register. We are using the 2K
1743 * size option, but what we REALLY want is (2K - 2)! For this
1744 * reason, we can't "scoot" packets longer than the standard
1745 * Ethernet MTU. On strict-alignment platforms, if the total
1746 * size exceeds (2K - 2) we set align_tweak to 0 and let
1747 * the upper layer copy the headers.
1748 */
1749 m->m_data = m->m_ext.ext_buf + sc->sc_align_tweak;
1750
1751 if (sc->sc_type == WM_T_82574) {
1752 ext_rxdesc_t *rxd = &rxq->rxq_ext_descs[start];
1753 rxd->erx_data.erxd_addr =
1754 htole64(rxs->rxs_dmamap->dm_segs[0].ds_addr + sc->sc_align_tweak);
1755 rxd->erx_data.erxd_dd = 0;
1756 } else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
1757 nq_rxdesc_t *rxd = &rxq->rxq_nq_descs[start];
1758
1759 rxd->nqrx_data.nrxd_paddr =
1760 htole64(rxs->rxs_dmamap->dm_segs[0].ds_addr + sc->sc_align_tweak);
1761 /* Currently, split header is not supported. */
1762 rxd->nqrx_data.nrxd_haddr = 0;
1763 } else {
1764 wiseman_rxdesc_t *rxd = &rxq->rxq_descs[start];
1765
1766 wm_set_dma_addr(&rxd->wrx_addr,
1767 rxs->rxs_dmamap->dm_segs[0].ds_addr + sc->sc_align_tweak);
1768 rxd->wrx_len = 0;
1769 rxd->wrx_cksum = 0;
1770 rxd->wrx_status = 0;
1771 rxd->wrx_errors = 0;
1772 rxd->wrx_special = 0;
1773 }
1774 wm_cdrxsync(rxq, start, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1775
1776 CSR_WRITE(sc, rxq->rxq_rdt_reg, start);
1777 }
1778
1779 /*
1780 * Device driver interface functions and commonly used functions.
1781 * match, attach, detach, init, start, stop, ioctl, watchdog and so on.
1782 */
1783
1784 /* Lookup supported device table */
1785 static const struct wm_product *
1786 wm_lookup(const struct pci_attach_args *pa)
1787 {
1788 const struct wm_product *wmp;
1789
1790 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
1791 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
1792 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
1793 return wmp;
1794 }
1795 return NULL;
1796 }
1797
1798 /* The match function (ca_match) */
1799 static int
1800 wm_match(device_t parent, cfdata_t cf, void *aux)
1801 {
1802 struct pci_attach_args *pa = aux;
1803
1804 if (wm_lookup(pa) != NULL)
1805 return 1;
1806
1807 return 0;
1808 }
1809
1810 /* The attach function (ca_attach) */
1811 static void
1812 wm_attach(device_t parent, device_t self, void *aux)
1813 {
1814 struct wm_softc *sc = device_private(self);
1815 struct pci_attach_args *pa = aux;
1816 prop_dictionary_t dict;
1817 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1818 pci_chipset_tag_t pc = pa->pa_pc;
1819 int counts[PCI_INTR_TYPE_SIZE];
1820 pci_intr_type_t max_type;
1821 const char *eetype, *xname;
1822 bus_space_tag_t memt;
1823 bus_space_handle_t memh;
1824 bus_size_t memsize;
1825 int memh_valid;
1826 int i, error;
1827 const struct wm_product *wmp;
1828 prop_data_t ea;
1829 prop_number_t pn;
1830 uint8_t enaddr[ETHER_ADDR_LEN];
1831 char buf[256];
1832 char wqname[MAXCOMLEN];
1833 uint16_t cfg1, cfg2, swdpin, nvmword;
1834 pcireg_t preg, memtype;
1835 uint16_t eeprom_data, apme_mask;
1836 bool force_clear_smbi;
1837 uint32_t link_mode;
1838 uint32_t reg;
1839
1840 sc->sc_dev = self;
1841 callout_init(&sc->sc_tick_ch, CALLOUT_FLAGS);
1842 callout_setfunc(&sc->sc_tick_ch, wm_tick, sc);
1843 sc->sc_core_stopping = false;
1844
1845 wmp = wm_lookup(pa);
1846 #ifdef DIAGNOSTIC
1847 if (wmp == NULL) {
1848 printf("\n");
1849 panic("wm_attach: impossible");
1850 }
1851 #endif
1852 sc->sc_mediatype = WMP_MEDIATYPE(wmp->wmp_flags);
1853
1854 sc->sc_pc = pa->pa_pc;
1855 sc->sc_pcitag = pa->pa_tag;
1856
1857 if (pci_dma64_available(pa))
1858 sc->sc_dmat = pa->pa_dmat64;
1859 else
1860 sc->sc_dmat = pa->pa_dmat;
1861
1862 sc->sc_pcidevid = PCI_PRODUCT(pa->pa_id);
1863 sc->sc_rev = PCI_REVISION(pci_conf_read(pc, pa->pa_tag,PCI_CLASS_REG));
1864 pci_aprint_devinfo_fancy(pa, "Ethernet controller", wmp->wmp_name, 1);
1865
1866 sc->sc_type = wmp->wmp_type;
1867
1868 /* Set default function pointers */
1869 sc->phy.acquire = sc->nvm.acquire = wm_get_null;
1870 sc->phy.release = sc->nvm.release = wm_put_null;
1871 sc->phy.reset_delay_us = (sc->sc_type >= WM_T_82571) ? 100 : 10000;
1872
1873 if (sc->sc_type < WM_T_82543) {
1874 if (sc->sc_rev < 2) {
1875 aprint_error_dev(sc->sc_dev,
1876 "i82542 must be at least rev. 2\n");
1877 return;
1878 }
1879 if (sc->sc_rev < 3)
1880 sc->sc_type = WM_T_82542_2_0;
1881 }
1882
1883 /*
1884 * Disable MSI for Errata:
1885 * "Message Signaled Interrupt Feature May Corrupt Write Transactions"
1886 *
1887 * 82544: Errata 25
1888 * 82540: Errata 6 (easy to reproduce device timeout)
1889 * 82545: Errata 4 (easy to reproduce device timeout)
1890 * 82546: Errata 26 (easy to reproduce device timeout)
1891 * 82541: Errata 7 (easy to reproduce device timeout)
1892 *
1893 * "Byte Enables 2 and 3 are not set on MSI writes"
1894 *
1895 * 82571 & 82572: Errata 63
1896 */
1897 if ((sc->sc_type <= WM_T_82541_2) || (sc->sc_type == WM_T_82571)
1898 || (sc->sc_type == WM_T_82572))
1899 pa->pa_flags &= ~PCI_FLAGS_MSI_OKAY;
1900
1901 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
1902 || (sc->sc_type == WM_T_82580)
1903 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
1904 || (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211))
1905 sc->sc_flags |= WM_F_NEWQUEUE;
1906
1907 /* Set device properties (mactype) */
1908 dict = device_properties(sc->sc_dev);
1909 prop_dictionary_set_uint32(dict, "mactype", sc->sc_type);
1910
1911 /*
1912 * Map the device. All devices support memory-mapped acccess,
1913 * and it is really required for normal operation.
1914 */
1915 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
1916 switch (memtype) {
1917 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1918 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1919 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
1920 memtype, 0, &memt, &memh, NULL, &memsize) == 0);
1921 break;
1922 default:
1923 memh_valid = 0;
1924 break;
1925 }
1926
1927 if (memh_valid) {
1928 sc->sc_st = memt;
1929 sc->sc_sh = memh;
1930 sc->sc_ss = memsize;
1931 } else {
1932 aprint_error_dev(sc->sc_dev,
1933 "unable to map device registers\n");
1934 return;
1935 }
1936
1937 /*
1938 * In addition, i82544 and later support I/O mapped indirect
1939 * register access. It is not desirable (nor supported in
1940 * this driver) to use it for normal operation, though it is
1941 * required to work around bugs in some chip versions.
1942 */
1943 if (sc->sc_type >= WM_T_82544) {
1944 /* First we have to find the I/O BAR. */
1945 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
1946 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, i);
1947 if (memtype == PCI_MAPREG_TYPE_IO)
1948 break;
1949 if (PCI_MAPREG_MEM_TYPE(memtype) ==
1950 PCI_MAPREG_MEM_TYPE_64BIT)
1951 i += 4; /* skip high bits, too */
1952 }
1953 if (i < PCI_MAPREG_END) {
1954 /*
1955 * We found PCI_MAPREG_TYPE_IO. Note that 82580
1956 * (and newer?) chip has no PCI_MAPREG_TYPE_IO.
1957 * It's no problem because newer chips has no this
1958 * bug.
1959 *
1960 * The i8254x doesn't apparently respond when the
1961 * I/O BAR is 0, which looks somewhat like it's not
1962 * been configured.
1963 */
1964 preg = pci_conf_read(pc, pa->pa_tag, i);
1965 if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
1966 aprint_error_dev(sc->sc_dev,
1967 "WARNING: I/O BAR at zero.\n");
1968 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
1969 0, &sc->sc_iot, &sc->sc_ioh,
1970 NULL, &sc->sc_ios) == 0) {
1971 sc->sc_flags |= WM_F_IOH_VALID;
1972 } else
1973 aprint_error_dev(sc->sc_dev,
1974 "WARNING: unable to map I/O space\n");
1975 }
1976
1977 }
1978
1979 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
1980 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1981 preg |= PCI_COMMAND_MASTER_ENABLE;
1982 if (sc->sc_type < WM_T_82542_2_1)
1983 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
1984 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
1985
1986 /* Power up chip */
1987 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL))
1988 && error != EOPNOTSUPP) {
1989 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1990 return;
1991 }
1992
1993 wm_adjust_qnum(sc, pci_msix_count(pa->pa_pc, pa->pa_tag));
1994 /*
1995 * Don't use MSI-X if we can use only one queue to save interrupt
1996 * resource.
1997 */
1998 if (sc->sc_nqueues > 1) {
1999 max_type = PCI_INTR_TYPE_MSIX;
2000 /*
2001 * 82583 has a MSI-X capability in the PCI configuration space
2002 * but it doesn't support it. At least the document doesn't
2003 * say anything about MSI-X.
2004 */
2005 counts[PCI_INTR_TYPE_MSIX]
2006 = (sc->sc_type == WM_T_82583) ? 0 : sc->sc_nqueues + 1;
2007 } else {
2008 max_type = PCI_INTR_TYPE_MSI;
2009 counts[PCI_INTR_TYPE_MSIX] = 0;
2010 }
2011
2012 /* Allocation settings */
2013 counts[PCI_INTR_TYPE_MSI] = 1;
2014 counts[PCI_INTR_TYPE_INTX] = 1;
2015 /* overridden by disable flags */
2016 if (wm_disable_msi != 0) {
2017 counts[PCI_INTR_TYPE_MSI] = 0;
2018 if (wm_disable_msix != 0) {
2019 max_type = PCI_INTR_TYPE_INTX;
2020 counts[PCI_INTR_TYPE_MSIX] = 0;
2021 }
2022 } else if (wm_disable_msix != 0) {
2023 max_type = PCI_INTR_TYPE_MSI;
2024 counts[PCI_INTR_TYPE_MSIX] = 0;
2025 }
2026
2027 alloc_retry:
2028 if (pci_intr_alloc(pa, &sc->sc_intrs, counts, max_type) != 0) {
2029 aprint_error_dev(sc->sc_dev, "failed to allocate interrupt\n");
2030 return;
2031 }
2032
2033 if (pci_intr_type(pc, sc->sc_intrs[0]) == PCI_INTR_TYPE_MSIX) {
2034 error = wm_setup_msix(sc);
2035 if (error) {
2036 pci_intr_release(pc, sc->sc_intrs,
2037 counts[PCI_INTR_TYPE_MSIX]);
2038
2039 /* Setup for MSI: Disable MSI-X */
2040 max_type = PCI_INTR_TYPE_MSI;
2041 counts[PCI_INTR_TYPE_MSI] = 1;
2042 counts[PCI_INTR_TYPE_INTX] = 1;
2043 goto alloc_retry;
2044 }
2045 } else if (pci_intr_type(pc, sc->sc_intrs[0]) == PCI_INTR_TYPE_MSI) {
2046 wm_adjust_qnum(sc, 0); /* Must not use multiqueue */
2047 error = wm_setup_legacy(sc);
2048 if (error) {
2049 pci_intr_release(sc->sc_pc, sc->sc_intrs,
2050 counts[PCI_INTR_TYPE_MSI]);
2051
2052 /* The next try is for INTx: Disable MSI */
2053 max_type = PCI_INTR_TYPE_INTX;
2054 counts[PCI_INTR_TYPE_INTX] = 1;
2055 goto alloc_retry;
2056 }
2057 } else {
2058 wm_adjust_qnum(sc, 0); /* Must not use multiqueue */
2059 error = wm_setup_legacy(sc);
2060 if (error) {
2061 pci_intr_release(sc->sc_pc, sc->sc_intrs,
2062 counts[PCI_INTR_TYPE_INTX]);
2063 return;
2064 }
2065 }
2066
2067 snprintf(wqname, sizeof(wqname), "%sTxRx", device_xname(sc->sc_dev));
2068 error = workqueue_create(&sc->sc_queue_wq, wqname,
2069 wm_handle_queue_work, sc, WM_WORKQUEUE_PRI, IPL_NET,
2070 WM_WORKQUEUE_FLAGS);
2071 if (error) {
2072 aprint_error_dev(sc->sc_dev,
2073 "unable to create workqueue\n");
2074 goto out;
2075 }
2076
2077 /*
2078 * Check the function ID (unit number of the chip).
2079 */
2080 if ((sc->sc_type == WM_T_82546) || (sc->sc_type == WM_T_82546_3)
2081 || (sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_80003)
2082 || (sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
2083 || (sc->sc_type == WM_T_82580)
2084 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354))
2085 sc->sc_funcid = (CSR_READ(sc, WMREG_STATUS)
2086 >> STATUS_FUNCID_SHIFT) & STATUS_FUNCID_MASK;
2087 else
2088 sc->sc_funcid = 0;
2089
2090 /*
2091 * Determine a few things about the bus we're connected to.
2092 */
2093 if (sc->sc_type < WM_T_82543) {
2094 /* We don't really know the bus characteristics here. */
2095 sc->sc_bus_speed = 33;
2096 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
2097 /*
2098 * CSA (Communication Streaming Architecture) is about as fast
2099 * a 32-bit 66MHz PCI Bus.
2100 */
2101 sc->sc_flags |= WM_F_CSA;
2102 sc->sc_bus_speed = 66;
2103 aprint_verbose_dev(sc->sc_dev,
2104 "Communication Streaming Architecture\n");
2105 if (sc->sc_type == WM_T_82547) {
2106 callout_init(&sc->sc_txfifo_ch, CALLOUT_FLAGS);
2107 callout_setfunc(&sc->sc_txfifo_ch,
2108 wm_82547_txfifo_stall, sc);
2109 aprint_verbose_dev(sc->sc_dev,
2110 "using 82547 Tx FIFO stall work-around\n");
2111 }
2112 } else if (sc->sc_type >= WM_T_82571) {
2113 sc->sc_flags |= WM_F_PCIE;
2114 if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9)
2115 && (sc->sc_type != WM_T_ICH10)
2116 && (sc->sc_type != WM_T_PCH)
2117 && (sc->sc_type != WM_T_PCH2)
2118 && (sc->sc_type != WM_T_PCH_LPT)
2119 && (sc->sc_type != WM_T_PCH_SPT)
2120 && (sc->sc_type != WM_T_PCH_CNP)) {
2121 /* ICH* and PCH* have no PCIe capability registers */
2122 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
2123 PCI_CAP_PCIEXPRESS, &sc->sc_pcixe_capoff,
2124 NULL) == 0)
2125 aprint_error_dev(sc->sc_dev,
2126 "unable to find PCIe capability\n");
2127 }
2128 aprint_verbose_dev(sc->sc_dev, "PCI-Express bus\n");
2129 } else {
2130 reg = CSR_READ(sc, WMREG_STATUS);
2131 if (reg & STATUS_BUS64)
2132 sc->sc_flags |= WM_F_BUS64;
2133 if ((reg & STATUS_PCIX_MODE) != 0) {
2134 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
2135
2136 sc->sc_flags |= WM_F_PCIX;
2137 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
2138 PCI_CAP_PCIX, &sc->sc_pcixe_capoff, NULL) == 0)
2139 aprint_error_dev(sc->sc_dev,
2140 "unable to find PCIX capability\n");
2141 else if (sc->sc_type != WM_T_82545_3 &&
2142 sc->sc_type != WM_T_82546_3) {
2143 /*
2144 * Work around a problem caused by the BIOS
2145 * setting the max memory read byte count
2146 * incorrectly.
2147 */
2148 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
2149 sc->sc_pcixe_capoff + PCIX_CMD);
2150 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
2151 sc->sc_pcixe_capoff + PCIX_STATUS);
2152
2153 bytecnt = (pcix_cmd & PCIX_CMD_BYTECNT_MASK) >>
2154 PCIX_CMD_BYTECNT_SHIFT;
2155 maxb = (pcix_sts & PCIX_STATUS_MAXB_MASK) >>
2156 PCIX_STATUS_MAXB_SHIFT;
2157 if (bytecnt > maxb) {
2158 aprint_verbose_dev(sc->sc_dev,
2159 "resetting PCI-X MMRBC: %d -> %d\n",
2160 512 << bytecnt, 512 << maxb);
2161 pcix_cmd = (pcix_cmd &
2162 ~PCIX_CMD_BYTECNT_MASK) |
2163 (maxb << PCIX_CMD_BYTECNT_SHIFT);
2164 pci_conf_write(pa->pa_pc, pa->pa_tag,
2165 sc->sc_pcixe_capoff + PCIX_CMD,
2166 pcix_cmd);
2167 }
2168 }
2169 }
2170 /*
2171 * The quad port adapter is special; it has a PCIX-PCIX
2172 * bridge on the board, and can run the secondary bus at
2173 * a higher speed.
2174 */
2175 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
2176 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
2177 : 66;
2178 } else if (sc->sc_flags & WM_F_PCIX) {
2179 switch (reg & STATUS_PCIXSPD_MASK) {
2180 case STATUS_PCIXSPD_50_66:
2181 sc->sc_bus_speed = 66;
2182 break;
2183 case STATUS_PCIXSPD_66_100:
2184 sc->sc_bus_speed = 100;
2185 break;
2186 case STATUS_PCIXSPD_100_133:
2187 sc->sc_bus_speed = 133;
2188 break;
2189 default:
2190 aprint_error_dev(sc->sc_dev,
2191 "unknown PCIXSPD %d; assuming 66MHz\n",
2192 reg & STATUS_PCIXSPD_MASK);
2193 sc->sc_bus_speed = 66;
2194 break;
2195 }
2196 } else
2197 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
2198 aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
2199 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
2200 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
2201 }
2202
2203 /* clear interesting stat counters */
2204 CSR_READ(sc, WMREG_COLC);
2205 CSR_READ(sc, WMREG_RXERRC);
2206
2207 if ((sc->sc_type == WM_T_82574) || (sc->sc_type == WM_T_82583)
2208 || (sc->sc_type >= WM_T_ICH8))
2209 sc->sc_ich_phymtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
2210 if (sc->sc_type >= WM_T_ICH8)
2211 sc->sc_ich_nvmmtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
2212
2213 /* Set PHY, NVM mutex related stuff */
2214 switch (sc->sc_type) {
2215 case WM_T_82542_2_0:
2216 case WM_T_82542_2_1:
2217 case WM_T_82543:
2218 case WM_T_82544:
2219 /* Microwire */
2220 sc->nvm.read = wm_nvm_read_uwire;
2221 sc->sc_nvm_wordsize = 64;
2222 sc->sc_nvm_addrbits = 6;
2223 break;
2224 case WM_T_82540:
2225 case WM_T_82545:
2226 case WM_T_82545_3:
2227 case WM_T_82546:
2228 case WM_T_82546_3:
2229 /* Microwire */
2230 sc->nvm.read = wm_nvm_read_uwire;
2231 reg = CSR_READ(sc, WMREG_EECD);
2232 if (reg & EECD_EE_SIZE) {
2233 sc->sc_nvm_wordsize = 256;
2234 sc->sc_nvm_addrbits = 8;
2235 } else {
2236 sc->sc_nvm_wordsize = 64;
2237 sc->sc_nvm_addrbits = 6;
2238 }
2239 sc->sc_flags |= WM_F_LOCK_EECD;
2240 sc->nvm.acquire = wm_get_eecd;
2241 sc->nvm.release = wm_put_eecd;
2242 break;
2243 case WM_T_82541:
2244 case WM_T_82541_2:
2245 case WM_T_82547:
2246 case WM_T_82547_2:
2247 reg = CSR_READ(sc, WMREG_EECD);
2248 /*
2249 * wm_nvm_set_addrbits_size_eecd() accesses SPI in it only
2250 * on 8254[17], so set flags and functios before calling it.
2251 */
2252 sc->sc_flags |= WM_F_LOCK_EECD;
2253 sc->nvm.acquire = wm_get_eecd;
2254 sc->nvm.release = wm_put_eecd;
2255 if (reg & EECD_EE_TYPE) {
2256 /* SPI */
2257 sc->nvm.read = wm_nvm_read_spi;
2258 sc->sc_flags |= WM_F_EEPROM_SPI;
2259 wm_nvm_set_addrbits_size_eecd(sc);
2260 } else {
2261 /* Microwire */
2262 sc->nvm.read = wm_nvm_read_uwire;
2263 if ((reg & EECD_EE_ABITS) != 0) {
2264 sc->sc_nvm_wordsize = 256;
2265 sc->sc_nvm_addrbits = 8;
2266 } else {
2267 sc->sc_nvm_wordsize = 64;
2268 sc->sc_nvm_addrbits = 6;
2269 }
2270 }
2271 break;
2272 case WM_T_82571:
2273 case WM_T_82572:
2274 /* SPI */
2275 sc->nvm.read = wm_nvm_read_eerd;
2276 /* Not use WM_F_LOCK_EECD because we use EERD */
2277 sc->sc_flags |= WM_F_EEPROM_SPI;
2278 wm_nvm_set_addrbits_size_eecd(sc);
2279 sc->phy.acquire = wm_get_swsm_semaphore;
2280 sc->phy.release = wm_put_swsm_semaphore;
2281 sc->nvm.acquire = wm_get_nvm_82571;
2282 sc->nvm.release = wm_put_nvm_82571;
2283 break;
2284 case WM_T_82573:
2285 case WM_T_82574:
2286 case WM_T_82583:
2287 sc->nvm.read = wm_nvm_read_eerd;
2288 /* Not use WM_F_LOCK_EECD because we use EERD */
2289 if (sc->sc_type == WM_T_82573) {
2290 sc->phy.acquire = wm_get_swsm_semaphore;
2291 sc->phy.release = wm_put_swsm_semaphore;
2292 sc->nvm.acquire = wm_get_nvm_82571;
2293 sc->nvm.release = wm_put_nvm_82571;
2294 } else {
2295 /* Both PHY and NVM use the same semaphore. */
2296 sc->phy.acquire = sc->nvm.acquire
2297 = wm_get_swfwhw_semaphore;
2298 sc->phy.release = sc->nvm.release
2299 = wm_put_swfwhw_semaphore;
2300 }
2301 if (wm_nvm_is_onboard_eeprom(sc) == 0) {
2302 sc->sc_flags |= WM_F_EEPROM_FLASH;
2303 sc->sc_nvm_wordsize = 2048;
2304 } else {
2305 /* SPI */
2306 sc->sc_flags |= WM_F_EEPROM_SPI;
2307 wm_nvm_set_addrbits_size_eecd(sc);
2308 }
2309 break;
2310 case WM_T_82575:
2311 case WM_T_82576:
2312 case WM_T_82580:
2313 case WM_T_I350:
2314 case WM_T_I354:
2315 case WM_T_80003:
2316 /* SPI */
2317 sc->sc_flags |= WM_F_EEPROM_SPI;
2318 wm_nvm_set_addrbits_size_eecd(sc);
2319 if ((sc->sc_type == WM_T_80003)
2320 || (sc->sc_nvm_wordsize < (1 << 15))) {
2321 sc->nvm.read = wm_nvm_read_eerd;
2322 /* Don't use WM_F_LOCK_EECD because we use EERD */
2323 } else {
2324 sc->nvm.read = wm_nvm_read_spi;
2325 sc->sc_flags |= WM_F_LOCK_EECD;
2326 }
2327 sc->phy.acquire = wm_get_phy_82575;
2328 sc->phy.release = wm_put_phy_82575;
2329 sc->nvm.acquire = wm_get_nvm_80003;
2330 sc->nvm.release = wm_put_nvm_80003;
2331 break;
2332 case WM_T_ICH8:
2333 case WM_T_ICH9:
2334 case WM_T_ICH10:
2335 case WM_T_PCH:
2336 case WM_T_PCH2:
2337 case WM_T_PCH_LPT:
2338 sc->nvm.read = wm_nvm_read_ich8;
2339 /* FLASH */
2340 sc->sc_flags |= WM_F_EEPROM_FLASH;
2341 sc->sc_nvm_wordsize = 2048;
2342 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag,WM_ICH8_FLASH);
2343 if (pci_mapreg_map(pa, WM_ICH8_FLASH, memtype, 0,
2344 &sc->sc_flasht, &sc->sc_flashh, NULL, &sc->sc_flashs)) {
2345 aprint_error_dev(sc->sc_dev,
2346 "can't map FLASH registers\n");
2347 goto out;
2348 }
2349 reg = ICH8_FLASH_READ32(sc, ICH_FLASH_GFPREG);
2350 sc->sc_ich8_flash_base = (reg & ICH_GFPREG_BASE_MASK) *
2351 ICH_FLASH_SECTOR_SIZE;
2352 sc->sc_ich8_flash_bank_size =
2353 ((reg >> 16) & ICH_GFPREG_BASE_MASK) + 1;
2354 sc->sc_ich8_flash_bank_size -= (reg & ICH_GFPREG_BASE_MASK);
2355 sc->sc_ich8_flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
2356 sc->sc_ich8_flash_bank_size /= 2 * sizeof(uint16_t);
2357 sc->sc_flashreg_offset = 0;
2358 sc->phy.acquire = wm_get_swflag_ich8lan;
2359 sc->phy.release = wm_put_swflag_ich8lan;
2360 sc->nvm.acquire = wm_get_nvm_ich8lan;
2361 sc->nvm.release = wm_put_nvm_ich8lan;
2362 break;
2363 case WM_T_PCH_SPT:
2364 case WM_T_PCH_CNP:
2365 sc->nvm.read = wm_nvm_read_spt;
2366 /* SPT has no GFPREG; flash registers mapped through BAR0 */
2367 sc->sc_flags |= WM_F_EEPROM_FLASH;
2368 sc->sc_flasht = sc->sc_st;
2369 sc->sc_flashh = sc->sc_sh;
2370 sc->sc_ich8_flash_base = 0;
2371 sc->sc_nvm_wordsize =
2372 (((CSR_READ(sc, WMREG_STRAP) >> 1) & 0x1F) + 1)
2373 * NVM_SIZE_MULTIPLIER;
2374 /* It is size in bytes, we want words */
2375 sc->sc_nvm_wordsize /= 2;
2376 /* Assume 2 banks */
2377 sc->sc_ich8_flash_bank_size = sc->sc_nvm_wordsize / 2;
2378 sc->sc_flashreg_offset = WM_PCH_SPT_FLASHOFFSET;
2379 sc->phy.acquire = wm_get_swflag_ich8lan;
2380 sc->phy.release = wm_put_swflag_ich8lan;
2381 sc->nvm.acquire = wm_get_nvm_ich8lan;
2382 sc->nvm.release = wm_put_nvm_ich8lan;
2383 break;
2384 case WM_T_I210:
2385 case WM_T_I211:
2386 /* Allow a single clear of the SW semaphore on I210 and newer*/
2387 sc->sc_flags |= WM_F_WA_I210_CLSEM;
2388 if (wm_nvm_flash_presence_i210(sc)) {
2389 sc->nvm.read = wm_nvm_read_eerd;
2390 /* Don't use WM_F_LOCK_EECD because we use EERD */
2391 sc->sc_flags |= WM_F_EEPROM_FLASH_HW;
2392 wm_nvm_set_addrbits_size_eecd(sc);
2393 } else {
2394 sc->nvm.read = wm_nvm_read_invm;
2395 sc->sc_flags |= WM_F_EEPROM_INVM;
2396 sc->sc_nvm_wordsize = INVM_SIZE;
2397 }
2398 sc->phy.acquire = wm_get_phy_82575;
2399 sc->phy.release = wm_put_phy_82575;
2400 sc->nvm.acquire = wm_get_nvm_80003;
2401 sc->nvm.release = wm_put_nvm_80003;
2402 break;
2403 default:
2404 break;
2405 }
2406
2407 /* Ensure the SMBI bit is clear before first NVM or PHY access */
2408 switch (sc->sc_type) {
2409 case WM_T_82571:
2410 case WM_T_82572:
2411 reg = CSR_READ(sc, WMREG_SWSM2);
2412 if ((reg & SWSM2_LOCK) == 0) {
2413 CSR_WRITE(sc, WMREG_SWSM2, reg | SWSM2_LOCK);
2414 force_clear_smbi = true;
2415 } else
2416 force_clear_smbi = false;
2417 break;
2418 case WM_T_82573:
2419 case WM_T_82574:
2420 case WM_T_82583:
2421 force_clear_smbi = true;
2422 break;
2423 default:
2424 force_clear_smbi = false;
2425 break;
2426 }
2427 if (force_clear_smbi) {
2428 reg = CSR_READ(sc, WMREG_SWSM);
2429 if ((reg & SWSM_SMBI) != 0)
2430 aprint_error_dev(sc->sc_dev,
2431 "Please update the Bootagent\n");
2432 CSR_WRITE(sc, WMREG_SWSM, reg & ~SWSM_SMBI);
2433 }
2434
2435 /*
2436 * Defer printing the EEPROM type until after verifying the checksum
2437 * This allows the EEPROM type to be printed correctly in the case
2438 * that no EEPROM is attached.
2439 */
2440 /*
2441 * Validate the EEPROM checksum. If the checksum fails, flag
2442 * this for later, so we can fail future reads from the EEPROM.
2443 */
2444 if (wm_nvm_validate_checksum(sc)) {
2445 /*
2446 * Read twice again because some PCI-e parts fail the
2447 * first check due to the link being in sleep state.
2448 */
2449 if (wm_nvm_validate_checksum(sc))
2450 sc->sc_flags |= WM_F_EEPROM_INVALID;
2451 }
2452
2453 if (sc->sc_flags & WM_F_EEPROM_INVALID)
2454 aprint_verbose_dev(sc->sc_dev, "No EEPROM");
2455 else {
2456 aprint_verbose_dev(sc->sc_dev, "%u words ",
2457 sc->sc_nvm_wordsize);
2458 if (sc->sc_flags & WM_F_EEPROM_INVM)
2459 aprint_verbose("iNVM");
2460 else if (sc->sc_flags & WM_F_EEPROM_FLASH_HW)
2461 aprint_verbose("FLASH(HW)");
2462 else if (sc->sc_flags & WM_F_EEPROM_FLASH)
2463 aprint_verbose("FLASH");
2464 else {
2465 if (sc->sc_flags & WM_F_EEPROM_SPI)
2466 eetype = "SPI";
2467 else
2468 eetype = "MicroWire";
2469 aprint_verbose("(%d address bits) %s EEPROM",
2470 sc->sc_nvm_addrbits, eetype);
2471 }
2472 }
2473 wm_nvm_version(sc);
2474 aprint_verbose("\n");
2475
2476 /*
2477 * XXX The first call of wm_gmii_setup_phytype. The result might be
2478 * incorrect.
2479 */
2480 wm_gmii_setup_phytype(sc, 0, 0);
2481
2482 /* Check for WM_F_WOL on some chips before wm_reset() */
2483 switch (sc->sc_type) {
2484 case WM_T_ICH8:
2485 case WM_T_ICH9:
2486 case WM_T_ICH10:
2487 case WM_T_PCH:
2488 case WM_T_PCH2:
2489 case WM_T_PCH_LPT:
2490 case WM_T_PCH_SPT:
2491 case WM_T_PCH_CNP:
2492 apme_mask = WUC_APME;
2493 eeprom_data = CSR_READ(sc, WMREG_WUC);
2494 if ((eeprom_data & apme_mask) != 0)
2495 sc->sc_flags |= WM_F_WOL;
2496 break;
2497 default:
2498 break;
2499 }
2500
2501 /* Reset the chip to a known state. */
2502 wm_reset(sc);
2503
2504 /*
2505 * Check for I21[01] PLL workaround.
2506 *
2507 * Three cases:
2508 * a) Chip is I211.
2509 * b) Chip is I210 and it uses INVM (not FLASH).
2510 * c) Chip is I210 (and it uses FLASH) and the NVM image version < 3.25
2511 */
2512 if (sc->sc_type == WM_T_I211)
2513 sc->sc_flags |= WM_F_PLL_WA_I210;
2514 if (sc->sc_type == WM_T_I210) {
2515 if (!wm_nvm_flash_presence_i210(sc))
2516 sc->sc_flags |= WM_F_PLL_WA_I210;
2517 else if ((sc->sc_nvm_ver_major < 3)
2518 || ((sc->sc_nvm_ver_major == 3)
2519 && (sc->sc_nvm_ver_minor < 25))) {
2520 aprint_verbose_dev(sc->sc_dev,
2521 "ROM image version %d.%d is older than 3.25\n",
2522 sc->sc_nvm_ver_major, sc->sc_nvm_ver_minor);
2523 sc->sc_flags |= WM_F_PLL_WA_I210;
2524 }
2525 }
2526 if ((sc->sc_flags & WM_F_PLL_WA_I210) != 0)
2527 wm_pll_workaround_i210(sc);
2528
2529 wm_get_wakeup(sc);
2530
2531 /* Non-AMT based hardware can now take control from firmware */
2532 if ((sc->sc_flags & WM_F_HAS_AMT) == 0)
2533 wm_get_hw_control(sc);
2534
2535 /*
2536 * Read the Ethernet address from the EEPROM, if not first found
2537 * in device properties.
2538 */
2539 ea = prop_dictionary_get(dict, "mac-address");
2540 if (ea != NULL) {
2541 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
2542 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
2543 memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
2544 } else {
2545 if (wm_read_mac_addr(sc, enaddr) != 0) {
2546 aprint_error_dev(sc->sc_dev,
2547 "unable to read Ethernet address\n");
2548 goto out;
2549 }
2550 }
2551
2552 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
2553 ether_sprintf(enaddr));
2554
2555 /*
2556 * Read the config info from the EEPROM, and set up various
2557 * bits in the control registers based on their contents.
2558 */
2559 pn = prop_dictionary_get(dict, "i82543-cfg1");
2560 if (pn != NULL) {
2561 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
2562 cfg1 = (uint16_t) prop_number_integer_value(pn);
2563 } else {
2564 if (wm_nvm_read(sc, NVM_OFF_CFG1, 1, &cfg1)) {
2565 aprint_error_dev(sc->sc_dev, "unable to read CFG1\n");
2566 goto out;
2567 }
2568 }
2569
2570 pn = prop_dictionary_get(dict, "i82543-cfg2");
2571 if (pn != NULL) {
2572 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
2573 cfg2 = (uint16_t) prop_number_integer_value(pn);
2574 } else {
2575 if (wm_nvm_read(sc, NVM_OFF_CFG2, 1, &cfg2)) {
2576 aprint_error_dev(sc->sc_dev, "unable to read CFG2\n");
2577 goto out;
2578 }
2579 }
2580
2581 /* check for WM_F_WOL */
2582 switch (sc->sc_type) {
2583 case WM_T_82542_2_0:
2584 case WM_T_82542_2_1:
2585 case WM_T_82543:
2586 /* dummy? */
2587 eeprom_data = 0;
2588 apme_mask = NVM_CFG3_APME;
2589 break;
2590 case WM_T_82544:
2591 apme_mask = NVM_CFG2_82544_APM_EN;
2592 eeprom_data = cfg2;
2593 break;
2594 case WM_T_82546:
2595 case WM_T_82546_3:
2596 case WM_T_82571:
2597 case WM_T_82572:
2598 case WM_T_82573:
2599 case WM_T_82574:
2600 case WM_T_82583:
2601 case WM_T_80003:
2602 case WM_T_82575:
2603 case WM_T_82576:
2604 apme_mask = NVM_CFG3_APME;
2605 wm_nvm_read(sc, (sc->sc_funcid == 1) ? NVM_OFF_CFG3_PORTB
2606 : NVM_OFF_CFG3_PORTA, 1, &eeprom_data);
2607 break;
2608 case WM_T_82580:
2609 case WM_T_I350:
2610 case WM_T_I354:
2611 case WM_T_I210:
2612 case WM_T_I211:
2613 apme_mask = NVM_CFG3_APME;
2614 wm_nvm_read(sc,
2615 NVM_OFF_LAN_FUNC_82580(sc->sc_funcid) + NVM_OFF_CFG3_PORTA,
2616 1, &eeprom_data);
2617 break;
2618 case WM_T_ICH8:
2619 case WM_T_ICH9:
2620 case WM_T_ICH10:
2621 case WM_T_PCH:
2622 case WM_T_PCH2:
2623 case WM_T_PCH_LPT:
2624 case WM_T_PCH_SPT:
2625 case WM_T_PCH_CNP:
2626 /* Already checked before wm_reset () */
2627 apme_mask = eeprom_data = 0;
2628 break;
2629 default: /* XXX 82540 */
2630 apme_mask = NVM_CFG3_APME;
2631 wm_nvm_read(sc, NVM_OFF_CFG3_PORTA, 1, &eeprom_data);
2632 break;
2633 }
2634 /* Check for WM_F_WOL flag after the setting of the EEPROM stuff */
2635 if ((eeprom_data & apme_mask) != 0)
2636 sc->sc_flags |= WM_F_WOL;
2637
2638 /*
2639 * We have the eeprom settings, now apply the special cases
2640 * where the eeprom may be wrong or the board won't support
2641 * wake on lan on a particular port
2642 */
2643 switch (sc->sc_pcidevid) {
2644 case PCI_PRODUCT_INTEL_82546GB_PCIE:
2645 sc->sc_flags &= ~WM_F_WOL;
2646 break;
2647 case PCI_PRODUCT_INTEL_82546EB_FIBER:
2648 case PCI_PRODUCT_INTEL_82546GB_FIBER:
2649 /* Wake events only supported on port A for dual fiber
2650 * regardless of eeprom setting */
2651 if (sc->sc_funcid == 1)
2652 sc->sc_flags &= ~WM_F_WOL;
2653 break;
2654 case PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3:
2655 /* If quad port adapter, disable WoL on all but port A */
2656 if (sc->sc_funcid != 0)
2657 sc->sc_flags &= ~WM_F_WOL;
2658 break;
2659 case PCI_PRODUCT_INTEL_82571EB_FIBER:
2660 /* Wake events only supported on port A for dual fiber
2661 * regardless of eeprom setting */
2662 if (sc->sc_funcid == 1)
2663 sc->sc_flags &= ~WM_F_WOL;
2664 break;
2665 case PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER:
2666 case PCI_PRODUCT_INTEL_82571EB_QUAD_FIBER:
2667 case PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER:
2668 /* If quad port adapter, disable WoL on all but port A */
2669 if (sc->sc_funcid != 0)
2670 sc->sc_flags &= ~WM_F_WOL;
2671 break;
2672 }
2673
2674 if (sc->sc_type >= WM_T_82575) {
2675 if (wm_nvm_read(sc, NVM_OFF_COMPAT, 1, &nvmword) == 0) {
2676 aprint_debug_dev(sc->sc_dev, "COMPAT = %hx\n",
2677 nvmword);
2678 if ((sc->sc_type == WM_T_82575) ||
2679 (sc->sc_type == WM_T_82576)) {
2680 /* Check NVM for autonegotiation */
2681 if ((nvmword & NVM_COMPAT_SERDES_FORCE_MODE)
2682 != 0)
2683 sc->sc_flags |= WM_F_PCS_DIS_AUTONEGO;
2684 }
2685 if ((sc->sc_type == WM_T_82575) ||
2686 (sc->sc_type == WM_T_I350)) {
2687 if (nvmword & NVM_COMPAT_MAS_EN(sc->sc_funcid))
2688 sc->sc_flags |= WM_F_MAS;
2689 }
2690 }
2691 }
2692
2693 /*
2694 * XXX need special handling for some multiple port cards
2695 * to disable a paticular port.
2696 */
2697
2698 if (sc->sc_type >= WM_T_82544) {
2699 pn = prop_dictionary_get(dict, "i82543-swdpin");
2700 if (pn != NULL) {
2701 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
2702 swdpin = (uint16_t) prop_number_integer_value(pn);
2703 } else {
2704 if (wm_nvm_read(sc, NVM_OFF_SWDPIN, 1, &swdpin)) {
2705 aprint_error_dev(sc->sc_dev,
2706 "unable to read SWDPIN\n");
2707 goto out;
2708 }
2709 }
2710 }
2711
2712 if (cfg1 & NVM_CFG1_ILOS)
2713 sc->sc_ctrl |= CTRL_ILOS;
2714
2715 /*
2716 * XXX
2717 * This code isn't correct because pin 2 and 3 are located
2718 * in different position on newer chips. Check all datasheet.
2719 *
2720 * Until resolve this problem, check if a chip < 82580
2721 */
2722 if (sc->sc_type <= WM_T_82580) {
2723 if (sc->sc_type >= WM_T_82544) {
2724 sc->sc_ctrl |=
2725 ((swdpin >> NVM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
2726 CTRL_SWDPIO_SHIFT;
2727 sc->sc_ctrl |=
2728 ((swdpin >> NVM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
2729 CTRL_SWDPINS_SHIFT;
2730 } else {
2731 sc->sc_ctrl |=
2732 ((cfg1 >> NVM_CFG1_SWDPIO_SHIFT) & 0xf) <<
2733 CTRL_SWDPIO_SHIFT;
2734 }
2735 }
2736
2737 if ((sc->sc_type >= WM_T_82580) && (sc->sc_type <= WM_T_I211)) {
2738 wm_nvm_read(sc,
2739 NVM_OFF_LAN_FUNC_82580(sc->sc_funcid) + NVM_OFF_CFG3_PORTA,
2740 1, &nvmword);
2741 if (nvmword & NVM_CFG3_ILOS)
2742 sc->sc_ctrl |= CTRL_ILOS;
2743 }
2744
2745 #if 0
2746 if (sc->sc_type >= WM_T_82544) {
2747 if (cfg1 & NVM_CFG1_IPS0)
2748 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
2749 if (cfg1 & NVM_CFG1_IPS1)
2750 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
2751 sc->sc_ctrl_ext |=
2752 ((swdpin >> (NVM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
2753 CTRL_EXT_SWDPIO_SHIFT;
2754 sc->sc_ctrl_ext |=
2755 ((swdpin >> (NVM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
2756 CTRL_EXT_SWDPINS_SHIFT;
2757 } else {
2758 sc->sc_ctrl_ext |=
2759 ((cfg2 >> NVM_CFG2_SWDPIO_SHIFT) & 0xf) <<
2760 CTRL_EXT_SWDPIO_SHIFT;
2761 }
2762 #endif
2763
2764 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2765 #if 0
2766 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2767 #endif
2768
2769 if (sc->sc_type == WM_T_PCH) {
2770 uint16_t val;
2771
2772 /* Save the NVM K1 bit setting */
2773 wm_nvm_read(sc, NVM_OFF_K1_CONFIG, 1, &val);
2774
2775 if ((val & NVM_K1_CONFIG_ENABLE) != 0)
2776 sc->sc_nvm_k1_enabled = 1;
2777 else
2778 sc->sc_nvm_k1_enabled = 0;
2779 }
2780
2781 /* Determine if we're GMII, TBI, SERDES or SGMII mode */
2782 if (sc->sc_type == WM_T_ICH8 || sc->sc_type == WM_T_ICH9
2783 || sc->sc_type == WM_T_ICH10 || sc->sc_type == WM_T_PCH
2784 || sc->sc_type == WM_T_PCH2 || sc->sc_type == WM_T_PCH_LPT
2785 || sc->sc_type == WM_T_PCH_SPT || sc->sc_type == WM_T_PCH_CNP
2786 || sc->sc_type == WM_T_82573
2787 || sc->sc_type == WM_T_82574 || sc->sc_type == WM_T_82583) {
2788 /* Copper only */
2789 } else if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
2790 || (sc->sc_type ==WM_T_82580) || (sc->sc_type ==WM_T_I350)
2791 || (sc->sc_type ==WM_T_I354) || (sc->sc_type ==WM_T_I210)
2792 || (sc->sc_type ==WM_T_I211)) {
2793 reg = CSR_READ(sc, WMREG_CTRL_EXT);
2794 link_mode = reg & CTRL_EXT_LINK_MODE_MASK;
2795 switch (link_mode) {
2796 case CTRL_EXT_LINK_MODE_1000KX:
2797 aprint_normal_dev(sc->sc_dev, "1000KX\n");
2798 sc->sc_mediatype = WM_MEDIATYPE_SERDES;
2799 break;
2800 case CTRL_EXT_LINK_MODE_SGMII:
2801 if (wm_sgmii_uses_mdio(sc)) {
2802 aprint_normal_dev(sc->sc_dev,
2803 "SGMII(MDIO)\n");
2804 sc->sc_flags |= WM_F_SGMII;
2805 sc->sc_mediatype = WM_MEDIATYPE_COPPER;
2806 break;
2807 }
2808 aprint_verbose_dev(sc->sc_dev, "SGMII(I2C)\n");
2809 /*FALLTHROUGH*/
2810 case CTRL_EXT_LINK_MODE_PCIE_SERDES:
2811 sc->sc_mediatype = wm_sfp_get_media_type(sc);
2812 if (sc->sc_mediatype == WM_MEDIATYPE_UNKNOWN) {
2813 if (link_mode
2814 == CTRL_EXT_LINK_MODE_SGMII) {
2815 sc->sc_mediatype = WM_MEDIATYPE_COPPER;
2816 sc->sc_flags |= WM_F_SGMII;
2817 aprint_verbose_dev(sc->sc_dev,
2818 "SGMII\n");
2819 } else {
2820 sc->sc_mediatype = WM_MEDIATYPE_SERDES;
2821 aprint_verbose_dev(sc->sc_dev,
2822 "SERDES\n");
2823 }
2824 break;
2825 }
2826 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES)
2827 aprint_normal_dev(sc->sc_dev, "SERDES(SFP)\n");
2828 else if (sc->sc_mediatype == WM_MEDIATYPE_COPPER) {
2829 aprint_normal_dev(sc->sc_dev, "SGMII(SFP)\n");
2830 sc->sc_flags |= WM_F_SGMII;
2831 }
2832 /* Do not change link mode for 100BaseFX */
2833 if (sc->sc_sfptype == SFF_SFP_ETH_FLAGS_100FX)
2834 break;
2835
2836 /* Change current link mode setting */
2837 reg &= ~CTRL_EXT_LINK_MODE_MASK;
2838 if (sc->sc_mediatype == WM_MEDIATYPE_COPPER)
2839 reg |= CTRL_EXT_LINK_MODE_SGMII;
2840 else
2841 reg |= CTRL_EXT_LINK_MODE_PCIE_SERDES;
2842 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
2843 break;
2844 case CTRL_EXT_LINK_MODE_GMII:
2845 default:
2846 aprint_normal_dev(sc->sc_dev, "Copper\n");
2847 sc->sc_mediatype = WM_MEDIATYPE_COPPER;
2848 break;
2849 }
2850
2851 reg &= ~CTRL_EXT_I2C_ENA;
2852 if ((sc->sc_flags & WM_F_SGMII) != 0)
2853 reg |= CTRL_EXT_I2C_ENA;
2854 else
2855 reg &= ~CTRL_EXT_I2C_ENA;
2856 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
2857 if ((sc->sc_flags & WM_F_SGMII) != 0) {
2858 wm_gmii_setup_phytype(sc, 0, 0);
2859 wm_reset_mdicnfg_82580(sc);
2860 }
2861 } else if (sc->sc_type < WM_T_82543 ||
2862 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
2863 if (sc->sc_mediatype == WM_MEDIATYPE_COPPER) {
2864 aprint_error_dev(sc->sc_dev,
2865 "WARNING: TBIMODE set on 1000BASE-T product!\n");
2866 sc->sc_mediatype = WM_MEDIATYPE_FIBER;
2867 }
2868 } else {
2869 if (sc->sc_mediatype == WM_MEDIATYPE_FIBER) {
2870 aprint_error_dev(sc->sc_dev,
2871 "WARNING: TBIMODE clear on 1000BASE-X product!\n");
2872 sc->sc_mediatype = WM_MEDIATYPE_COPPER;
2873 }
2874 }
2875
2876 if (sc->sc_type >= WM_T_PCH2)
2877 sc->sc_flags |= WM_F_EEE;
2878 else if ((sc->sc_type >= WM_T_I350) && (sc->sc_type <= WM_T_I211)
2879 && (sc->sc_mediatype == WM_MEDIATYPE_COPPER)) {
2880 /* XXX: Need special handling for I354. (not yet) */
2881 if (sc->sc_type != WM_T_I354)
2882 sc->sc_flags |= WM_F_EEE;
2883 }
2884
2885 /* Set device properties (macflags) */
2886 prop_dictionary_set_uint32(dict, "macflags", sc->sc_flags);
2887
2888 snprintb(buf, sizeof(buf), WM_FLAGS, sc->sc_flags);
2889 aprint_verbose_dev(sc->sc_dev, "%s\n", buf);
2890
2891 #ifdef WM_MPSAFE
2892 sc->sc_core_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
2893 #else
2894 sc->sc_core_lock = NULL;
2895 #endif
2896
2897 /* Initialize the media structures accordingly. */
2898 if (sc->sc_mediatype == WM_MEDIATYPE_COPPER)
2899 wm_gmii_mediainit(sc, wmp->wmp_product);
2900 else
2901 wm_tbi_mediainit(sc); /* All others */
2902
2903 ifp = &sc->sc_ethercom.ec_if;
2904 xname = device_xname(sc->sc_dev);
2905 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
2906 ifp->if_softc = sc;
2907 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2908 #ifdef WM_MPSAFE
2909 ifp->if_extflags = IFEF_MPSAFE;
2910 #endif
2911 ifp->if_ioctl = wm_ioctl;
2912 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
2913 ifp->if_start = wm_nq_start;
2914 /*
2915 * When the number of CPUs is one and the controller can use
2916 * MSI-X, wm(4) use MSI-X but *does not* use multiqueue.
2917 * That is, wm(4) use two interrupts, one is used for Tx/Rx
2918 * and the other is used for link status changing.
2919 * In this situation, wm_nq_transmit() is disadvantageous
2920 * because of wm_select_txqueue() and pcq(9) overhead.
2921 */
2922 if (wm_is_using_multiqueue(sc))
2923 ifp->if_transmit = wm_nq_transmit;
2924 } else {
2925 ifp->if_start = wm_start;
2926 /*
2927 * wm_transmit() has the same disadvantage as wm_transmit().
2928 */
2929 if (wm_is_using_multiqueue(sc))
2930 ifp->if_transmit = wm_transmit;
2931 }
2932 /* wm(4) doest not use ifp->if_watchdog, use wm_tick as watchdog. */
2933 ifp->if_init = wm_init;
2934 ifp->if_stop = wm_stop;
2935 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(WM_IFQUEUELEN, IFQ_MAXLEN));
2936 IFQ_SET_READY(&ifp->if_snd);
2937
2938 /* Check for jumbo frame */
2939 switch (sc->sc_type) {
2940 case WM_T_82573:
2941 /* XXX limited to 9234 if ASPM is disabled */
2942 wm_nvm_read(sc, NVM_OFF_INIT_3GIO_3, 1, &nvmword);
2943 if ((nvmword & NVM_3GIO_3_ASPM_MASK) != 0)
2944 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2945 break;
2946 case WM_T_82571:
2947 case WM_T_82572:
2948 case WM_T_82574:
2949 case WM_T_82583:
2950 case WM_T_82575:
2951 case WM_T_82576:
2952 case WM_T_82580:
2953 case WM_T_I350:
2954 case WM_T_I354:
2955 case WM_T_I210:
2956 case WM_T_I211:
2957 case WM_T_80003:
2958 case WM_T_ICH9:
2959 case WM_T_ICH10:
2960 case WM_T_PCH2: /* PCH2 supports 9K frame size */
2961 case WM_T_PCH_LPT:
2962 case WM_T_PCH_SPT:
2963 case WM_T_PCH_CNP:
2964 /* XXX limited to 9234 */
2965 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2966 break;
2967 case WM_T_PCH:
2968 /* XXX limited to 4096 */
2969 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2970 break;
2971 case WM_T_82542_2_0:
2972 case WM_T_82542_2_1:
2973 case WM_T_ICH8:
2974 /* No support for jumbo frame */
2975 break;
2976 default:
2977 /* ETHER_MAX_LEN_JUMBO */
2978 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2979 break;
2980 }
2981
2982 /* If we're a i82543 or greater, we can support VLANs. */
2983 if (sc->sc_type >= WM_T_82543) {
2984 sc->sc_ethercom.ec_capabilities |=
2985 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
2986 sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
2987 }
2988
2989 if ((sc->sc_flags & WM_F_EEE) != 0)
2990 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
2991
2992 /*
2993 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
2994 * on i82543 and later.
2995 */
2996 if (sc->sc_type >= WM_T_82543) {
2997 ifp->if_capabilities |=
2998 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2999 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3000 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
3001 IFCAP_CSUM_TCPv6_Tx |
3002 IFCAP_CSUM_UDPv6_Tx;
3003 }
3004
3005 /*
3006 * XXXyamt: i'm not sure which chips support RXCSUM_IPV6OFL.
3007 *
3008 * 82541GI (8086:1076) ... no
3009 * 82572EI (8086:10b9) ... yes
3010 */
3011 if (sc->sc_type >= WM_T_82571) {
3012 ifp->if_capabilities |=
3013 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
3014 }
3015
3016 /*
3017 * If we're a i82544 or greater (except i82547), we can do
3018 * TCP segmentation offload.
3019 */
3020 if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547) {
3021 ifp->if_capabilities |= IFCAP_TSOv4;
3022 }
3023
3024 if (sc->sc_type >= WM_T_82571) {
3025 ifp->if_capabilities |= IFCAP_TSOv6;
3026 }
3027
3028 sc->sc_tx_process_limit = WM_TX_PROCESS_LIMIT_DEFAULT;
3029 sc->sc_tx_intr_process_limit = WM_TX_INTR_PROCESS_LIMIT_DEFAULT;
3030 sc->sc_rx_process_limit = WM_RX_PROCESS_LIMIT_DEFAULT;
3031 sc->sc_rx_intr_process_limit = WM_RX_INTR_PROCESS_LIMIT_DEFAULT;
3032
3033 /* Attach the interface. */
3034 error = if_initialize(ifp);
3035 if (error != 0) {
3036 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
3037 error);
3038 return; /* Error */
3039 }
3040 sc->sc_ipq = if_percpuq_create(&sc->sc_ethercom.ec_if);
3041 ether_ifattach(ifp, enaddr);
3042 ether_set_ifflags_cb(&sc->sc_ethercom, wm_ifflags_cb);
3043 if_register(ifp);
3044
3045 #ifdef WM_EVENT_COUNTERS
3046 /* Attach event counters. */
3047 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
3048 NULL, xname, "linkintr");
3049
3050 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
3051 NULL, xname, "tx_xoff");
3052 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
3053 NULL, xname, "tx_xon");
3054 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
3055 NULL, xname, "rx_xoff");
3056 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
3057 NULL, xname, "rx_xon");
3058 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
3059 NULL, xname, "rx_macctl");
3060 #endif /* WM_EVENT_COUNTERS */
3061
3062 sc->sc_txrx_use_workqueue = false;
3063
3064 wm_init_sysctls(sc);
3065
3066 if (pmf_device_register(self, wm_suspend, wm_resume))
3067 pmf_class_network_register(self, ifp);
3068 else
3069 aprint_error_dev(self, "couldn't establish power handler\n");
3070
3071 sc->sc_flags |= WM_F_ATTACHED;
3072 out:
3073 return;
3074 }
3075
3076 /* The detach function (ca_detach) */
3077 static int
3078 wm_detach(device_t self, int flags __unused)
3079 {
3080 struct wm_softc *sc = device_private(self);
3081 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3082 int i;
3083
3084 if ((sc->sc_flags & WM_F_ATTACHED) == 0)
3085 return 0;
3086
3087 /* Stop the interface. Callouts are stopped in it. */
3088 wm_stop(ifp, 1);
3089
3090 pmf_device_deregister(self);
3091
3092 sysctl_teardown(&sc->sc_sysctllog);
3093
3094 #ifdef WM_EVENT_COUNTERS
3095 evcnt_detach(&sc->sc_ev_linkintr);
3096
3097 evcnt_detach(&sc->sc_ev_tx_xoff);
3098 evcnt_detach(&sc->sc_ev_tx_xon);
3099 evcnt_detach(&sc->sc_ev_rx_xoff);
3100 evcnt_detach(&sc->sc_ev_rx_xon);
3101 evcnt_detach(&sc->sc_ev_rx_macctl);
3102 #endif /* WM_EVENT_COUNTERS */
3103
3104 /* Tell the firmware about the release */
3105 WM_CORE_LOCK(sc);
3106 wm_release_manageability(sc);
3107 wm_release_hw_control(sc);
3108 wm_enable_wakeup(sc);
3109 WM_CORE_UNLOCK(sc);
3110
3111 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
3112
3113 ether_ifdetach(ifp);
3114 if_detach(ifp);
3115 if_percpuq_destroy(sc->sc_ipq);
3116
3117 /* Delete all remaining media. */
3118 ifmedia_fini(&sc->sc_mii.mii_media);
3119
3120 /* Unload RX dmamaps and free mbufs */
3121 for (i = 0; i < sc->sc_nqueues; i++) {
3122 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
3123 mutex_enter(rxq->rxq_lock);
3124 wm_rxdrain(rxq);
3125 mutex_exit(rxq->rxq_lock);
3126 }
3127 /* Must unlock here */
3128
3129 /* Disestablish the interrupt handler */
3130 for (i = 0; i < sc->sc_nintrs; i++) {
3131 if (sc->sc_ihs[i] != NULL) {
3132 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
3133 sc->sc_ihs[i] = NULL;
3134 }
3135 }
3136 pci_intr_release(sc->sc_pc, sc->sc_intrs, sc->sc_nintrs);
3137
3138 /* wm_stop() ensure workqueue is stopped. */
3139 workqueue_destroy(sc->sc_queue_wq);
3140
3141 for (i = 0; i < sc->sc_nqueues; i++)
3142 softint_disestablish(sc->sc_queue[i].wmq_si);
3143
3144 wm_free_txrx_queues(sc);
3145
3146 /* Unmap the registers */
3147 if (sc->sc_ss) {
3148 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_ss);
3149 sc->sc_ss = 0;
3150 }
3151 if (sc->sc_ios) {
3152 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
3153 sc->sc_ios = 0;
3154 }
3155 if (sc->sc_flashs) {
3156 bus_space_unmap(sc->sc_flasht, sc->sc_flashh, sc->sc_flashs);
3157 sc->sc_flashs = 0;
3158 }
3159
3160 if (sc->sc_core_lock)
3161 mutex_obj_free(sc->sc_core_lock);
3162 if (sc->sc_ich_phymtx)
3163 mutex_obj_free(sc->sc_ich_phymtx);
3164 if (sc->sc_ich_nvmmtx)
3165 mutex_obj_free(sc->sc_ich_nvmmtx);
3166
3167 return 0;
3168 }
3169
3170 static bool
3171 wm_suspend(device_t self, const pmf_qual_t *qual)
3172 {
3173 struct wm_softc *sc = device_private(self);
3174
3175 wm_release_manageability(sc);
3176 wm_release_hw_control(sc);
3177 wm_enable_wakeup(sc);
3178
3179 return true;
3180 }
3181
3182 static bool
3183 wm_resume(device_t self, const pmf_qual_t *qual)
3184 {
3185 struct wm_softc *sc = device_private(self);
3186 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3187 pcireg_t reg;
3188 char buf[256];
3189
3190 reg = CSR_READ(sc, WMREG_WUS);
3191 if (reg != 0) {
3192 snprintb(buf, sizeof(buf), WUS_FLAGS, reg);
3193 device_printf(sc->sc_dev, "wakeup status %s\n", buf);
3194 CSR_WRITE(sc, WMREG_WUS, 0xffffffff); /* W1C */
3195 }
3196
3197 if (sc->sc_type >= WM_T_PCH2)
3198 wm_resume_workarounds_pchlan(sc);
3199 if ((ifp->if_flags & IFF_UP) == 0) {
3200 wm_reset(sc);
3201 /* Non-AMT based hardware can now take control from firmware */
3202 if ((sc->sc_flags & WM_F_HAS_AMT) == 0)
3203 wm_get_hw_control(sc);
3204 wm_init_manageability(sc);
3205 } else {
3206 /*
3207 * We called pmf_class_network_register(), so if_init() is
3208 * automatically called when IFF_UP. wm_reset(),
3209 * wm_get_hw_control() and wm_init_manageability() are called
3210 * via wm_init().
3211 */
3212 }
3213
3214 return true;
3215 }
3216
3217 /*
3218 * wm_watchdog: [ifnet interface function]
3219 *
3220 * Watchdog timer handler.
3221 */
3222 static void
3223 wm_watchdog(struct ifnet *ifp)
3224 {
3225 int qid;
3226 struct wm_softc *sc = ifp->if_softc;
3227 uint16_t hang_queue = 0; /* Max queue number of wm(4) is 82576's 16. */
3228
3229 for (qid = 0; qid < sc->sc_nqueues; qid++) {
3230 struct wm_txqueue *txq = &sc->sc_queue[qid].wmq_txq;
3231
3232 wm_watchdog_txq(ifp, txq, &hang_queue);
3233 }
3234
3235 /* IF any of queues hanged up, reset the interface. */
3236 if (hang_queue != 0) {
3237 (void)wm_init(ifp);
3238
3239 /*
3240 * There are still some upper layer processing which call
3241 * ifp->if_start(). e.g. ALTQ or one CPU system
3242 */
3243 /* Try to get more packets going. */
3244 ifp->if_start(ifp);
3245 }
3246 }
3247
3248
3249 static void
3250 wm_watchdog_txq(struct ifnet *ifp, struct wm_txqueue *txq, uint16_t *hang)
3251 {
3252
3253 mutex_enter(txq->txq_lock);
3254 if (txq->txq_sending &&
3255 time_uptime - txq->txq_lastsent > wm_watchdog_timeout)
3256 wm_watchdog_txq_locked(ifp, txq, hang);
3257
3258 mutex_exit(txq->txq_lock);
3259 }
3260
3261 static void
3262 wm_watchdog_txq_locked(struct ifnet *ifp, struct wm_txqueue *txq,
3263 uint16_t *hang)
3264 {
3265 struct wm_softc *sc = ifp->if_softc;
3266 struct wm_queue *wmq = container_of(txq, struct wm_queue, wmq_txq);
3267
3268 KASSERT(mutex_owned(txq->txq_lock));
3269
3270 /*
3271 * Since we're using delayed interrupts, sweep up
3272 * before we report an error.
3273 */
3274 wm_txeof(txq, UINT_MAX);
3275
3276 if (txq->txq_sending)
3277 *hang |= __BIT(wmq->wmq_id);
3278
3279 if (txq->txq_free == WM_NTXDESC(txq)) {
3280 log(LOG_ERR, "%s: device timeout (lost interrupt)\n",
3281 device_xname(sc->sc_dev));
3282 } else {
3283 #ifdef WM_DEBUG
3284 int i, j;
3285 struct wm_txsoft *txs;
3286 #endif
3287 log(LOG_ERR,
3288 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
3289 device_xname(sc->sc_dev), txq->txq_free, txq->txq_sfree,
3290 txq->txq_next);
3291 if_statinc(ifp, if_oerrors);
3292 #ifdef WM_DEBUG
3293 for (i = txq->txq_sdirty; i != txq->txq_snext;
3294 i = WM_NEXTTXS(txq, i)) {
3295 txs = &txq->txq_soft[i];
3296 printf("txs %d tx %d -> %d\n",
3297 i, txs->txs_firstdesc, txs->txs_lastdesc);
3298 for (j = txs->txs_firstdesc; ; j = WM_NEXTTX(txq, j)) {
3299 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
3300 printf("\tdesc %d: 0x%" PRIx64 "\n", j,
3301 txq->txq_nq_descs[j].nqtx_data.nqtxd_addr);
3302 printf("\t %#08x%08x\n",
3303 txq->txq_nq_descs[j].nqtx_data.nqtxd_fields,
3304 txq->txq_nq_descs[j].nqtx_data.nqtxd_cmdlen);
3305 } else {
3306 printf("\tdesc %d: 0x%" PRIx64 "\n", j,
3307 (uint64_t)txq->txq_descs[j].wtx_addr.wa_high << 32 |
3308 txq->txq_descs[j].wtx_addr.wa_low);
3309 printf("\t %#04x%02x%02x%08x\n",
3310 txq->txq_descs[j].wtx_fields.wtxu_vlan,
3311 txq->txq_descs[j].wtx_fields.wtxu_options,
3312 txq->txq_descs[j].wtx_fields.wtxu_status,
3313 txq->txq_descs[j].wtx_cmdlen);
3314 }
3315 if (j == txs->txs_lastdesc)
3316 break;
3317 }
3318 }
3319 #endif
3320 }
3321 }
3322
3323 /*
3324 * wm_tick:
3325 *
3326 * One second timer, used to check link status, sweep up
3327 * completed transmit jobs, etc.
3328 */
3329 static void
3330 wm_tick(void *arg)
3331 {
3332 struct wm_softc *sc = arg;
3333 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3334 #ifndef WM_MPSAFE
3335 int s = splnet();
3336 #endif
3337
3338 WM_CORE_LOCK(sc);
3339
3340 if (sc->sc_core_stopping) {
3341 WM_CORE_UNLOCK(sc);
3342 #ifndef WM_MPSAFE
3343 splx(s);
3344 #endif
3345 return;
3346 }
3347
3348 if (sc->sc_type >= WM_T_82542_2_1) {
3349 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
3350 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
3351 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
3352 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
3353 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
3354 }
3355
3356 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
3357 if_statadd_ref(nsr, if_collisions, CSR_READ(sc, WMREG_COLC));
3358 if_statadd_ref(nsr, if_ierrors, 0ULL /* ensure quad_t */
3359 + CSR_READ(sc, WMREG_CRCERRS)
3360 + CSR_READ(sc, WMREG_ALGNERRC)
3361 + CSR_READ(sc, WMREG_SYMERRC)
3362 + CSR_READ(sc, WMREG_RXERRC)
3363 + CSR_READ(sc, WMREG_SEC)
3364 + CSR_READ(sc, WMREG_CEXTERR)
3365 + CSR_READ(sc, WMREG_RLEC));
3366 /*
3367 * WMREG_RNBC is incremented when there is no available buffers in host
3368 * memory. It does not mean the number of dropped packet. Because
3369 * ethernet controller can receive packets in such case if there is
3370 * space in phy's FIFO.
3371 *
3372 * If you want to know the nubmer of WMREG_RMBC, you should use such as
3373 * own EVCNT instead of if_iqdrops.
3374 */
3375 if_statadd_ref(nsr, if_iqdrops, CSR_READ(sc, WMREG_MPC));
3376 IF_STAT_PUTREF(ifp);
3377
3378 if (sc->sc_flags & WM_F_HAS_MII)
3379 mii_tick(&sc->sc_mii);
3380 else if ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211)
3381 && (sc->sc_mediatype == WM_MEDIATYPE_SERDES))
3382 wm_serdes_tick(sc);
3383 else
3384 wm_tbi_tick(sc);
3385
3386 WM_CORE_UNLOCK(sc);
3387
3388 wm_watchdog(ifp);
3389
3390 callout_schedule(&sc->sc_tick_ch, hz);
3391 }
3392
3393 static int
3394 wm_ifflags_cb(struct ethercom *ec)
3395 {
3396 struct ifnet *ifp = &ec->ec_if;
3397 struct wm_softc *sc = ifp->if_softc;
3398 u_short iffchange;
3399 int ecchange;
3400 bool needreset = false;
3401 int rc = 0;
3402
3403 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
3404 device_xname(sc->sc_dev), __func__));
3405
3406 WM_CORE_LOCK(sc);
3407
3408 /*
3409 * Check for if_flags.
3410 * Main usage is to prevent linkdown when opening bpf.
3411 */
3412 iffchange = ifp->if_flags ^ sc->sc_if_flags;
3413 sc->sc_if_flags = ifp->if_flags;
3414 if ((iffchange & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
3415 needreset = true;
3416 goto ec;
3417 }
3418
3419 /* iff related updates */
3420 if ((iffchange & IFF_PROMISC) != 0)
3421 wm_set_filter(sc);
3422
3423 wm_set_vlan(sc);
3424
3425 ec:
3426 /* Check for ec_capenable. */
3427 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
3428 sc->sc_ec_capenable = ec->ec_capenable;
3429 if ((ecchange & ~ETHERCAP_EEE) != 0) {
3430 needreset = true;
3431 goto out;
3432 }
3433
3434 /* ec related updates */
3435 wm_set_eee(sc);
3436
3437 out:
3438 if (needreset)
3439 rc = ENETRESET;
3440 WM_CORE_UNLOCK(sc);
3441
3442 return rc;
3443 }
3444
3445 /*
3446 * wm_ioctl: [ifnet interface function]
3447 *
3448 * Handle control requests from the operator.
3449 */
3450 static int
3451 wm_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3452 {
3453 struct wm_softc *sc = ifp->if_softc;
3454 struct ifreq *ifr = (struct ifreq *)data;
3455 struct ifaddr *ifa = (struct ifaddr *)data;
3456 struct sockaddr_dl *sdl;
3457 int s, error;
3458
3459 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
3460 device_xname(sc->sc_dev), __func__));
3461
3462 #ifndef WM_MPSAFE
3463 s = splnet();
3464 #endif
3465 switch (cmd) {
3466 case SIOCSIFMEDIA:
3467 WM_CORE_LOCK(sc);
3468 /* Flow control requires full-duplex mode. */
3469 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
3470 (ifr->ifr_media & IFM_FDX) == 0)
3471 ifr->ifr_media &= ~IFM_ETH_FMASK;
3472 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
3473 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
3474 /* We can do both TXPAUSE and RXPAUSE. */
3475 ifr->ifr_media |=
3476 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
3477 }
3478 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
3479 }
3480 WM_CORE_UNLOCK(sc);
3481 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
3482 break;
3483 case SIOCINITIFADDR:
3484 WM_CORE_LOCK(sc);
3485 if (ifa->ifa_addr->sa_family == AF_LINK) {
3486 sdl = satosdl(ifp->if_dl->ifa_addr);
3487 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len,
3488 LLADDR(satosdl(ifa->ifa_addr)), ifp->if_addrlen);
3489 /* Unicast address is the first multicast entry */
3490 wm_set_filter(sc);
3491 error = 0;
3492 WM_CORE_UNLOCK(sc);
3493 break;
3494 }
3495 WM_CORE_UNLOCK(sc);
3496 /*FALLTHROUGH*/
3497 default:
3498 #ifdef WM_MPSAFE
3499 s = splnet();
3500 #endif
3501 /* It may call wm_start, so unlock here */
3502 error = ether_ioctl(ifp, cmd, data);
3503 #ifdef WM_MPSAFE
3504 splx(s);
3505 #endif
3506 if (error != ENETRESET)
3507 break;
3508
3509 error = 0;
3510
3511 if (cmd == SIOCSIFCAP)
3512 error = (*ifp->if_init)(ifp);
3513 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
3514 ;
3515 else if (ifp->if_flags & IFF_RUNNING) {
3516 /*
3517 * Multicast list has changed; set the hardware filter
3518 * accordingly.
3519 */
3520 WM_CORE_LOCK(sc);
3521 wm_set_filter(sc);
3522 WM_CORE_UNLOCK(sc);
3523 }
3524 break;
3525 }
3526
3527 #ifndef WM_MPSAFE
3528 splx(s);
3529 #endif
3530 return error;
3531 }
3532
3533 /* MAC address related */
3534
3535 /*
3536 * Get the offset of MAC address and return it.
3537 * If error occured, use offset 0.
3538 */
3539 static uint16_t
3540 wm_check_alt_mac_addr(struct wm_softc *sc)
3541 {
3542 uint16_t myea[ETHER_ADDR_LEN / 2];
3543 uint16_t offset = NVM_OFF_MACADDR;
3544
3545 /* Try to read alternative MAC address pointer */
3546 if (wm_nvm_read(sc, NVM_OFF_ALT_MAC_ADDR_PTR, 1, &offset) != 0)
3547 return 0;
3548
3549 /* Check pointer if it's valid or not. */
3550 if ((offset == 0x0000) || (offset == 0xffff))
3551 return 0;
3552
3553 offset += NVM_OFF_MACADDR_82571(sc->sc_funcid);
3554 /*
3555 * Check whether alternative MAC address is valid or not.
3556 * Some cards have non 0xffff pointer but those don't use
3557 * alternative MAC address in reality.
3558 *
3559 * Check whether the broadcast bit is set or not.
3560 */
3561 if (wm_nvm_read(sc, offset, 1, myea) == 0)
3562 if (((myea[0] & 0xff) & 0x01) == 0)
3563 return offset; /* Found */
3564
3565 /* Not found */
3566 return 0;
3567 }
3568
3569 static int
3570 wm_read_mac_addr(struct wm_softc *sc, uint8_t *enaddr)
3571 {
3572 uint16_t myea[ETHER_ADDR_LEN / 2];
3573 uint16_t offset = NVM_OFF_MACADDR;
3574 int do_invert = 0;
3575
3576 switch (sc->sc_type) {
3577 case WM_T_82580:
3578 case WM_T_I350:
3579 case WM_T_I354:
3580 /* EEPROM Top Level Partitioning */
3581 offset = NVM_OFF_LAN_FUNC_82580(sc->sc_funcid) + 0;
3582 break;
3583 case WM_T_82571:
3584 case WM_T_82575:
3585 case WM_T_82576:
3586 case WM_T_80003:
3587 case WM_T_I210:
3588 case WM_T_I211:
3589 offset = wm_check_alt_mac_addr(sc);
3590 if (offset == 0)
3591 if ((sc->sc_funcid & 0x01) == 1)
3592 do_invert = 1;
3593 break;
3594 default:
3595 if ((sc->sc_funcid & 0x01) == 1)
3596 do_invert = 1;
3597 break;
3598 }
3599
3600 if (wm_nvm_read(sc, offset, sizeof(myea) / sizeof(myea[0]), myea) != 0)
3601 goto bad;
3602
3603 enaddr[0] = myea[0] & 0xff;
3604 enaddr[1] = myea[0] >> 8;
3605 enaddr[2] = myea[1] & 0xff;
3606 enaddr[3] = myea[1] >> 8;
3607 enaddr[4] = myea[2] & 0xff;
3608 enaddr[5] = myea[2] >> 8;
3609
3610 /*
3611 * Toggle the LSB of the MAC address on the second port
3612 * of some dual port cards.
3613 */
3614 if (do_invert != 0)
3615 enaddr[5] ^= 1;
3616
3617 return 0;
3618
3619 bad:
3620 return -1;
3621 }
3622
3623 /*
3624 * wm_set_ral:
3625 *
3626 * Set an entery in the receive address list.
3627 */
3628 static void
3629 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3630 {
3631 uint32_t ral_lo, ral_hi, addrl, addrh;
3632 uint32_t wlock_mac;
3633 int rv;
3634
3635 if (enaddr != NULL) {
3636 ral_lo = (uint32_t)enaddr[0] | ((uint32_t)enaddr[1] << 8) |
3637 ((uint32_t)enaddr[2] << 16) | ((uint32_t)enaddr[3] << 24);
3638 ral_hi = (uint32_t)enaddr[4] | ((uint32_t)enaddr[5] << 8);
3639 ral_hi |= RAL_AV;
3640 } else {
3641 ral_lo = 0;
3642 ral_hi = 0;
3643 }
3644
3645 switch (sc->sc_type) {
3646 case WM_T_82542_2_0:
3647 case WM_T_82542_2_1:
3648 case WM_T_82543:
3649 CSR_WRITE(sc, WMREG_RAL(idx), ral_lo);
3650 CSR_WRITE_FLUSH(sc);
3651 CSR_WRITE(sc, WMREG_RAH(idx), ral_hi);
3652 CSR_WRITE_FLUSH(sc);
3653 break;
3654 case WM_T_PCH2:
3655 case WM_T_PCH_LPT:
3656 case WM_T_PCH_SPT:
3657 case WM_T_PCH_CNP:
3658 if (idx == 0) {
3659 CSR_WRITE(sc, WMREG_CORDOVA_RAL(idx), ral_lo);
3660 CSR_WRITE_FLUSH(sc);
3661 CSR_WRITE(sc, WMREG_CORDOVA_RAH(idx), ral_hi);
3662 CSR_WRITE_FLUSH(sc);
3663 return;
3664 }
3665 if (sc->sc_type != WM_T_PCH2) {
3666 wlock_mac = __SHIFTOUT(CSR_READ(sc, WMREG_FWSM),
3667 FWSM_WLOCK_MAC);
3668 addrl = WMREG_SHRAL(idx - 1);
3669 addrh = WMREG_SHRAH(idx - 1);
3670 } else {
3671 wlock_mac = 0;
3672 addrl = WMREG_PCH_LPT_SHRAL(idx - 1);
3673 addrh = WMREG_PCH_LPT_SHRAH(idx - 1);
3674 }
3675
3676 if ((wlock_mac == 0) || (idx <= wlock_mac)) {
3677 rv = wm_get_swflag_ich8lan(sc);
3678 if (rv != 0)
3679 return;
3680 CSR_WRITE(sc, addrl, ral_lo);
3681 CSR_WRITE_FLUSH(sc);
3682 CSR_WRITE(sc, addrh, ral_hi);
3683 CSR_WRITE_FLUSH(sc);
3684 wm_put_swflag_ich8lan(sc);
3685 }
3686
3687 break;
3688 default:
3689 CSR_WRITE(sc, WMREG_CORDOVA_RAL(idx), ral_lo);
3690 CSR_WRITE_FLUSH(sc);
3691 CSR_WRITE(sc, WMREG_CORDOVA_RAH(idx), ral_hi);
3692 CSR_WRITE_FLUSH(sc);
3693 break;
3694 }
3695 }
3696
3697 /*
3698 * wm_mchash:
3699 *
3700 * Compute the hash of the multicast address for the 4096-bit
3701 * multicast filter.
3702 */
3703 static uint32_t
3704 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3705 {
3706 static const int lo_shift[4] = { 4, 3, 2, 0 };
3707 static const int hi_shift[4] = { 4, 5, 6, 8 };
3708 static const int ich8_lo_shift[4] = { 6, 5, 4, 2 };
3709 static const int ich8_hi_shift[4] = { 2, 3, 4, 6 };
3710 uint32_t hash;
3711
3712 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
3713 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
3714 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)
3715 || (sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP)){
3716 hash = (enaddr[4] >> ich8_lo_shift[sc->sc_mchash_type]) |
3717 (((uint16_t)enaddr[5]) << ich8_hi_shift[sc->sc_mchash_type]);
3718 return (hash & 0x3ff);
3719 }
3720 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3721 (((uint16_t)enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3722
3723 return (hash & 0xfff);
3724 }
3725
3726 /*
3727 *
3728 *
3729 */
3730 static int
3731 wm_rar_count(struct wm_softc *sc)
3732 {
3733 int size;
3734
3735 switch (sc->sc_type) {
3736 case WM_T_ICH8:
3737 size = WM_RAL_TABSIZE_ICH8 -1;
3738 break;
3739 case WM_T_ICH9:
3740 case WM_T_ICH10:
3741 case WM_T_PCH:
3742 size = WM_RAL_TABSIZE_ICH8;
3743 break;
3744 case WM_T_PCH2:
3745 size = WM_RAL_TABSIZE_PCH2;
3746 break;
3747 case WM_T_PCH_LPT:
3748 case WM_T_PCH_SPT:
3749 case WM_T_PCH_CNP:
3750 size = WM_RAL_TABSIZE_PCH_LPT;
3751 break;
3752 case WM_T_82575:
3753 case WM_T_I210:
3754 case WM_T_I211:
3755 size = WM_RAL_TABSIZE_82575;
3756 break;
3757 case WM_T_82576:
3758 case WM_T_82580:
3759 size = WM_RAL_TABSIZE_82576;
3760 break;
3761 case WM_T_I350:
3762 case WM_T_I354:
3763 size = WM_RAL_TABSIZE_I350;
3764 break;
3765 default:
3766 size = WM_RAL_TABSIZE;
3767 }
3768
3769 return size;
3770 }
3771
3772 /*
3773 * wm_set_filter:
3774 *
3775 * Set up the receive filter.
3776 */
3777 static void
3778 wm_set_filter(struct wm_softc *sc)
3779 {
3780 struct ethercom *ec = &sc->sc_ethercom;
3781 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3782 struct ether_multi *enm;
3783 struct ether_multistep step;
3784 bus_addr_t mta_reg;
3785 uint32_t hash, reg, bit;
3786 int i, size, ralmax;
3787
3788 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
3789 device_xname(sc->sc_dev), __func__));
3790
3791 if (sc->sc_type >= WM_T_82544)
3792 mta_reg = WMREG_CORDOVA_MTA;
3793 else
3794 mta_reg = WMREG_MTA;
3795
3796 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3797
3798 if (ifp->if_flags & IFF_BROADCAST)
3799 sc->sc_rctl |= RCTL_BAM;
3800 if (ifp->if_flags & IFF_PROMISC) {
3801 sc->sc_rctl |= RCTL_UPE;
3802 ETHER_LOCK(ec);
3803 ec->ec_flags |= ETHER_F_ALLMULTI;
3804 ETHER_UNLOCK(ec);
3805 goto allmulti;
3806 }
3807
3808 /*
3809 * Set the station address in the first RAL slot, and
3810 * clear the remaining slots.
3811 */
3812 size = wm_rar_count(sc);
3813 wm_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
3814
3815 if ((sc->sc_type == WM_T_PCH_LPT) || (sc->sc_type == WM_T_PCH_SPT)
3816 || (sc->sc_type == WM_T_PCH_CNP)) {
3817 i = __SHIFTOUT(CSR_READ(sc, WMREG_FWSM), FWSM_WLOCK_MAC);
3818 switch (i) {
3819 case 0:
3820 /* We can use all entries */
3821 ralmax = size;
3822 break;
3823 case 1:
3824 /* Only RAR[0] */
3825 ralmax = 1;
3826 break;
3827 default:
3828 /* Available SHRA + RAR[0] */
3829 ralmax = i + 1;
3830 }
3831 } else
3832 ralmax = size;
3833 for (i = 1; i < size; i++) {
3834 if (i < ralmax)
3835 wm_set_ral(sc, NULL, i);
3836 }
3837
3838 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
3839 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
3840 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)
3841 || (sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP))
3842 size = WM_ICH8_MC_TABSIZE;
3843 else
3844 size = WM_MC_TABSIZE;
3845 /* Clear out the multicast table. */
3846 for (i = 0; i < size; i++) {
3847 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3848 CSR_WRITE_FLUSH(sc);
3849 }
3850
3851 ETHER_LOCK(ec);
3852 ETHER_FIRST_MULTI(step, ec, enm);
3853 while (enm != NULL) {
3854 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3855 ec->ec_flags |= ETHER_F_ALLMULTI;
3856 ETHER_UNLOCK(ec);
3857 /*
3858 * We must listen to a range of multicast addresses.
3859 * For now, just accept all multicasts, rather than
3860 * trying to set only those filter bits needed to match
3861 * the range. (At this time, the only use of address
3862 * ranges is for IP multicast routing, for which the
3863 * range is big enough to require all bits set.)
3864 */
3865 goto allmulti;
3866 }
3867
3868 hash = wm_mchash(sc, enm->enm_addrlo);
3869
3870 reg = (hash >> 5);
3871 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
3872 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
3873 || (sc->sc_type == WM_T_PCH2)
3874 || (sc->sc_type == WM_T_PCH_LPT)
3875 || (sc->sc_type == WM_T_PCH_SPT)
3876 || (sc->sc_type == WM_T_PCH_CNP))
3877 reg &= 0x1f;
3878 else
3879 reg &= 0x7f;
3880 bit = hash & 0x1f;
3881
3882 hash = CSR_READ(sc, mta_reg + (reg << 2));
3883 hash |= 1U << bit;
3884
3885 if (sc->sc_type == WM_T_82544 && (reg & 1) != 0) {
3886 /*
3887 * 82544 Errata 9: Certain register cannot be written
3888 * with particular alignments in PCI-X bus operation
3889 * (FCAH, MTA and VFTA).
3890 */
3891 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3892 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3893 CSR_WRITE_FLUSH(sc);
3894 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3895 CSR_WRITE_FLUSH(sc);
3896 } else {
3897 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3898 CSR_WRITE_FLUSH(sc);
3899 }
3900
3901 ETHER_NEXT_MULTI(step, enm);
3902 }
3903 ec->ec_flags &= ~ETHER_F_ALLMULTI;
3904 ETHER_UNLOCK(ec);
3905
3906 goto setit;
3907
3908 allmulti:
3909 sc->sc_rctl |= RCTL_MPE;
3910
3911 setit:
3912 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3913 }
3914
3915 /* Reset and init related */
3916
3917 static void
3918 wm_set_vlan(struct wm_softc *sc)
3919 {
3920
3921 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
3922 device_xname(sc->sc_dev), __func__));
3923
3924 /* Deal with VLAN enables. */
3925 if (VLAN_ATTACHED(&sc->sc_ethercom))
3926 sc->sc_ctrl |= CTRL_VME;
3927 else
3928 sc->sc_ctrl &= ~CTRL_VME;
3929
3930 /* Write the control registers. */
3931 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3932 }
3933
3934 static void
3935 wm_set_pcie_completion_timeout(struct wm_softc *sc)
3936 {
3937 uint32_t gcr;
3938 pcireg_t ctrl2;
3939
3940 gcr = CSR_READ(sc, WMREG_GCR);
3941
3942 /* Only take action if timeout value is defaulted to 0 */
3943 if ((gcr & GCR_CMPL_TMOUT_MASK) != 0)
3944 goto out;
3945
3946 if ((gcr & GCR_CAP_VER2) == 0) {
3947 gcr |= GCR_CMPL_TMOUT_10MS;
3948 goto out;
3949 }
3950
3951 ctrl2 = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3952 sc->sc_pcixe_capoff + PCIE_DCSR2);
3953 ctrl2 |= WM_PCIE_DCSR2_16MS;
3954 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3955 sc->sc_pcixe_capoff + PCIE_DCSR2, ctrl2);
3956
3957 out:
3958 /* Disable completion timeout resend */
3959 gcr &= ~GCR_CMPL_TMOUT_RESEND;
3960
3961 CSR_WRITE(sc, WMREG_GCR, gcr);
3962 }
3963
3964 void
3965 wm_get_auto_rd_done(struct wm_softc *sc)
3966 {
3967 int i;
3968
3969 /* wait for eeprom to reload */
3970 switch (sc->sc_type) {
3971 case WM_T_82571:
3972 case WM_T_82572:
3973 case WM_T_82573:
3974 case WM_T_82574:
3975 case WM_T_82583:
3976 case WM_T_82575:
3977 case WM_T_82576:
3978 case WM_T_82580:
3979 case WM_T_I350:
3980 case WM_T_I354:
3981 case WM_T_I210:
3982 case WM_T_I211:
3983 case WM_T_80003:
3984 case WM_T_ICH8:
3985 case WM_T_ICH9:
3986 for (i = 0; i < 10; i++) {
3987 if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD)
3988 break;
3989 delay(1000);
3990 }
3991 if (i == 10) {
3992 log(LOG_ERR, "%s: auto read from eeprom failed to "
3993 "complete\n", device_xname(sc->sc_dev));
3994 }
3995 break;
3996 default:
3997 break;
3998 }
3999 }
4000
4001 void
4002 wm_lan_init_done(struct wm_softc *sc)
4003 {
4004 uint32_t reg = 0;
4005 int i;
4006
4007 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
4008 device_xname(sc->sc_dev), __func__));
4009
4010 /* Wait for eeprom to reload */
4011 switch (sc->sc_type) {
4012 case WM_T_ICH10:
4013 case WM_T_PCH:
4014 case WM_T_PCH2:
4015 case WM_T_PCH_LPT:
4016 case WM_T_PCH_SPT:
4017 case WM_T_PCH_CNP:
4018 for (i = 0; i < WM_ICH8_LAN_INIT_TIMEOUT; i++) {
4019 reg = CSR_READ(sc, WMREG_STATUS);
4020 if ((reg & STATUS_LAN_INIT_DONE) != 0)
4021 break;
4022 delay(100);
4023 }
4024 if (i >= WM_ICH8_LAN_INIT_TIMEOUT) {
4025 log(LOG_ERR, "%s: %s: lan_init_done failed to "
4026 "complete\n", device_xname(sc->sc_dev), __func__);
4027 }
4028 break;
4029 default:
4030 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
4031 __func__);
4032 break;
4033 }
4034
4035 reg &= ~STATUS_LAN_INIT_DONE;
4036 CSR_WRITE(sc, WMREG_STATUS, reg);
4037 }
4038
4039 void
4040 wm_get_cfg_done(struct wm_softc *sc)
4041 {
4042 int mask;
4043 uint32_t reg;
4044 int i;
4045
4046 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
4047 device_xname(sc->sc_dev), __func__));
4048
4049 /* Wait for eeprom to reload */
4050 switch (sc->sc_type) {
4051 case WM_T_82542_2_0:
4052 case WM_T_82542_2_1:
4053 /* null */
4054 break;
4055 case WM_T_82543:
4056 case WM_T_82544:
4057 case WM_T_82540:
4058 case WM_T_82545:
4059 case WM_T_82545_3:
4060 case WM_T_82546:
4061 case WM_T_82546_3:
4062 case WM_T_82541:
4063 case WM_T_82541_2:
4064 case WM_T_82547:
4065 case WM_T_82547_2:
4066 case WM_T_82573:
4067 case WM_T_82574:
4068 case WM_T_82583:
4069 /* generic */
4070 delay(10*1000);
4071 break;
4072 case WM_T_80003:
4073 case WM_T_82571:
4074 case WM_T_82572:
4075 case WM_T_82575:
4076 case WM_T_82576:
4077 case WM_T_82580:
4078 case WM_T_I350:
4079 case WM_T_I354:
4080 case WM_T_I210:
4081 case WM_T_I211:
4082 if (sc->sc_type == WM_T_82571) {
4083 /* Only 82571 shares port 0 */
4084 mask = EEMNGCTL_CFGDONE_0;
4085 } else
4086 mask = EEMNGCTL_CFGDONE_0 << sc->sc_funcid;
4087 for (i = 0; i < WM_PHY_CFG_TIMEOUT; i++) {
4088 if (CSR_READ(sc, WMREG_EEMNGCTL) & mask)
4089 break;
4090 delay(1000);
4091 }
4092 if (i >= WM_PHY_CFG_TIMEOUT)
4093 DPRINTF(WM_DEBUG_GMII, ("%s: %s failed\n",
4094 device_xname(sc->sc_dev), __func__));
4095 break;
4096 case WM_T_ICH8:
4097 case WM_T_ICH9:
4098 case WM_T_ICH10:
4099 case WM_T_PCH:
4100 case WM_T_PCH2:
4101 case WM_T_PCH_LPT:
4102 case WM_T_PCH_SPT:
4103 case WM_T_PCH_CNP:
4104 delay(10*1000);
4105 if (sc->sc_type >= WM_T_ICH10)
4106 wm_lan_init_done(sc);
4107 else
4108 wm_get_auto_rd_done(sc);
4109
4110 /* Clear PHY Reset Asserted bit */
4111 reg = CSR_READ(sc, WMREG_STATUS);
4112 if ((reg & STATUS_PHYRA) != 0)
4113 CSR_WRITE(sc, WMREG_STATUS, reg & ~STATUS_PHYRA);
4114 break;
4115 default:
4116 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
4117 __func__);
4118 break;
4119 }
4120 }
4121
4122 int
4123 wm_phy_post_reset(struct wm_softc *sc)
4124 {
4125 device_t dev = sc->sc_dev;
4126 uint16_t reg;
4127 int rv = 0;
4128
4129 /* This function is only for ICH8 and newer. */
4130 if (sc->sc_type < WM_T_ICH8)
4131 return 0;
4132
4133 if (wm_phy_resetisblocked(sc)) {
4134 /* XXX */
4135 device_printf(dev, "PHY is blocked\n");
4136 return -1;
4137 }
4138
4139 /* Allow time for h/w to get to quiescent state after reset */
4140 delay(10*1000);
4141
4142 /* Perform any necessary post-reset workarounds */
4143 if (sc->sc_type == WM_T_PCH)
4144 rv = wm_hv_phy_workarounds_ich8lan(sc);
4145 else if (sc->sc_type == WM_T_PCH2)
4146 rv = wm_lv_phy_workarounds_ich8lan(sc);
4147 if (rv != 0)
4148 return rv;
4149
4150 /* Clear the host wakeup bit after lcd reset */
4151 if (sc->sc_type >= WM_T_PCH) {
4152 wm_gmii_hv_readreg(dev, 2, BM_PORT_GEN_CFG, ®);
4153 reg &= ~BM_WUC_HOST_WU_BIT;
4154 wm_gmii_hv_writereg(dev, 2, BM_PORT_GEN_CFG, reg);
4155 }
4156
4157 /* Configure the LCD with the extended configuration region in NVM */
4158 if ((rv = wm_init_lcd_from_nvm(sc)) != 0)
4159 return rv;
4160
4161 /* Configure the LCD with the OEM bits in NVM */
4162 rv = wm_oem_bits_config_ich8lan(sc, true);
4163
4164 if (sc->sc_type == WM_T_PCH2) {
4165 /* Ungate automatic PHY configuration on non-managed 82579 */
4166 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID) == 0) {
4167 delay(10 * 1000);
4168 wm_gate_hw_phy_config_ich8lan(sc, false);
4169 }
4170 /* Set EEE LPI Update Timer to 200usec */
4171 rv = sc->phy.acquire(sc);
4172 if (rv)
4173 return rv;
4174 rv = wm_write_emi_reg_locked(dev,
4175 I82579_LPI_UPDATE_TIMER, 0x1387);
4176 sc->phy.release(sc);
4177 }
4178
4179 return rv;
4180 }
4181
4182 /* Only for PCH and newer */
4183 static int
4184 wm_write_smbus_addr(struct wm_softc *sc)
4185 {
4186 uint32_t strap, freq;
4187 uint16_t phy_data;
4188 int rv;
4189
4190 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
4191 device_xname(sc->sc_dev), __func__));
4192 KASSERT(CSR_READ(sc, WMREG_EXTCNFCTR) & EXTCNFCTR_MDIO_SW_OWNERSHIP);
4193
4194 strap = CSR_READ(sc, WMREG_STRAP);
4195 freq = __SHIFTOUT(strap, STRAP_FREQ);
4196
4197 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, HV_SMB_ADDR, &phy_data);
4198 if (rv != 0)
4199 return -1;
4200
4201 phy_data &= ~HV_SMB_ADDR_ADDR;
4202 phy_data |= __SHIFTOUT(strap, STRAP_SMBUSADDR);
4203 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
4204
4205 if (sc->sc_phytype == WMPHY_I217) {
4206 /* Restore SMBus frequency */
4207 if (freq --) {
4208 phy_data &= ~(HV_SMB_ADDR_FREQ_LOW
4209 | HV_SMB_ADDR_FREQ_HIGH);
4210 phy_data |= __SHIFTIN((freq & 0x01) != 0,
4211 HV_SMB_ADDR_FREQ_LOW);
4212 phy_data |= __SHIFTIN((freq & 0x02) != 0,
4213 HV_SMB_ADDR_FREQ_HIGH);
4214 } else
4215 DPRINTF(WM_DEBUG_INIT,
4216 ("%s: %s Unsupported SMB frequency in PHY\n",
4217 device_xname(sc->sc_dev), __func__));
4218 }
4219
4220 return wm_gmii_hv_writereg_locked(sc->sc_dev, 2, HV_SMB_ADDR,
4221 phy_data);
4222 }
4223
4224 static int
4225 wm_init_lcd_from_nvm(struct wm_softc *sc)
4226 {
4227 uint32_t extcnfctr, sw_cfg_mask, cnf_size, word_addr, i, reg;
4228 uint16_t phy_page = 0;
4229 int rv = 0;
4230
4231 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
4232 device_xname(sc->sc_dev), __func__));
4233
4234 switch (sc->sc_type) {
4235 case WM_T_ICH8:
4236 if ((sc->sc_phytype == WMPHY_UNKNOWN)
4237 || (sc->sc_phytype != WMPHY_IGP_3))
4238 return 0;
4239
4240 if ((sc->sc_pcidevid == PCI_PRODUCT_INTEL_82801H_AMT)
4241 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_82801H_LAN)) {
4242 sw_cfg_mask = FEXTNVM_SW_CONFIG;
4243 break;
4244 }
4245 /* FALLTHROUGH */
4246 case WM_T_PCH:
4247 case WM_T_PCH2:
4248 case WM_T_PCH_LPT:
4249 case WM_T_PCH_SPT:
4250 case WM_T_PCH_CNP:
4251 sw_cfg_mask = FEXTNVM_SW_CONFIG_ICH8M;
4252 break;
4253 default:
4254 return 0;
4255 }
4256
4257 if ((rv = sc->phy.acquire(sc)) != 0)
4258 return rv;
4259
4260 reg = CSR_READ(sc, WMREG_FEXTNVM);
4261 if ((reg & sw_cfg_mask) == 0)
4262 goto release;
4263
4264 /*
4265 * Make sure HW does not configure LCD from PHY extended configuration
4266 * before SW configuration
4267 */
4268 extcnfctr = CSR_READ(sc, WMREG_EXTCNFCTR);
4269 if ((sc->sc_type < WM_T_PCH2)
4270 && ((extcnfctr & EXTCNFCTR_PCIE_WRITE_ENABLE) != 0))
4271 goto release;
4272
4273 DPRINTF(WM_DEBUG_INIT, ("%s: %s: Configure LCD by software\n",
4274 device_xname(sc->sc_dev), __func__));
4275 /* word_addr is in DWORD */
4276 word_addr = __SHIFTOUT(extcnfctr, EXTCNFCTR_EXT_CNF_POINTER) << 1;
4277
4278 reg = CSR_READ(sc, WMREG_EXTCNFSIZE);
4279 cnf_size = __SHIFTOUT(reg, EXTCNFSIZE_LENGTH);
4280 if (cnf_size == 0)
4281 goto release;
4282
4283 if (((sc->sc_type == WM_T_PCH)
4284 && ((extcnfctr & EXTCNFCTR_OEM_WRITE_ENABLE) == 0))
4285 || (sc->sc_type > WM_T_PCH)) {
4286 /*
4287 * HW configures the SMBus address and LEDs when the OEM and
4288 * LCD Write Enable bits are set in the NVM. When both NVM bits
4289 * are cleared, SW will configure them instead.
4290 */
4291 DPRINTF(WM_DEBUG_INIT, ("%s: %s: Configure SMBus and LED\n",
4292 device_xname(sc->sc_dev), __func__));
4293 if ((rv = wm_write_smbus_addr(sc)) != 0)
4294 goto release;
4295
4296 reg = CSR_READ(sc, WMREG_LEDCTL);
4297 rv = wm_gmii_hv_writereg_locked(sc->sc_dev, 1, HV_LED_CONFIG,
4298 (uint16_t)reg);
4299 if (rv != 0)
4300 goto release;
4301 }
4302
4303 /* Configure LCD from extended configuration region. */
4304 for (i = 0; i < cnf_size; i++) {
4305 uint16_t reg_data, reg_addr;
4306
4307 if (wm_nvm_read(sc, (word_addr + i * 2), 1, ®_data) != 0)
4308 goto release;
4309
4310 if (wm_nvm_read(sc, (word_addr + i * 2 + 1), 1, ®_addr) !=0)
4311 goto release;
4312
4313 if (reg_addr == MII_IGPHY_PAGE_SELECT)
4314 phy_page = reg_data;
4315
4316 reg_addr &= IGPHY_MAXREGADDR;
4317 reg_addr |= phy_page;
4318
4319 KASSERT(sc->phy.writereg_locked != NULL);
4320 rv = sc->phy.writereg_locked(sc->sc_dev, 1, reg_addr,
4321 reg_data);
4322 }
4323
4324 release:
4325 sc->phy.release(sc);
4326 return rv;
4327 }
4328
4329 /*
4330 * wm_oem_bits_config_ich8lan - SW-based LCD Configuration
4331 * @sc: pointer to the HW structure
4332 * @d0_state: boolean if entering d0 or d3 device state
4333 *
4334 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
4335 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
4336 * in NVM determines whether HW should configure LPLU and Gbe Disable.
4337 */
4338 int
4339 wm_oem_bits_config_ich8lan(struct wm_softc *sc, bool d0_state)
4340 {
4341 uint32_t mac_reg;
4342 uint16_t oem_reg;
4343 int rv;
4344
4345 if (sc->sc_type < WM_T_PCH)
4346 return 0;
4347
4348 rv = sc->phy.acquire(sc);
4349 if (rv != 0)
4350 return rv;
4351
4352 if (sc->sc_type == WM_T_PCH) {
4353 mac_reg = CSR_READ(sc, WMREG_EXTCNFCTR);
4354 if ((mac_reg & EXTCNFCTR_OEM_WRITE_ENABLE) != 0)
4355 goto release;
4356 }
4357
4358 mac_reg = CSR_READ(sc, WMREG_FEXTNVM);
4359 if ((mac_reg & FEXTNVM_SW_CONFIG_ICH8M) == 0)
4360 goto release;
4361
4362 mac_reg = CSR_READ(sc, WMREG_PHY_CTRL);
4363
4364 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 1, HV_OEM_BITS, &oem_reg);
4365 if (rv != 0)
4366 goto release;
4367 oem_reg &= ~(HV_OEM_BITS_A1KDIS | HV_OEM_BITS_LPLU);
4368
4369 if (d0_state) {
4370 if ((mac_reg & PHY_CTRL_GBE_DIS) != 0)
4371 oem_reg |= HV_OEM_BITS_A1KDIS;
4372 if ((mac_reg & PHY_CTRL_D0A_LPLU) != 0)
4373 oem_reg |= HV_OEM_BITS_LPLU;
4374 } else {
4375 if ((mac_reg & (PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS))
4376 != 0)
4377 oem_reg |= HV_OEM_BITS_A1KDIS;
4378 if ((mac_reg & (PHY_CTRL_D0A_LPLU | PHY_CTRL_NOND0A_LPLU))
4379 != 0)
4380 oem_reg |= HV_OEM_BITS_LPLU;
4381 }
4382
4383 /* Set Restart auto-neg to activate the bits */
4384 if ((d0_state || (sc->sc_type != WM_T_PCH))
4385 && (wm_phy_resetisblocked(sc) == false))
4386 oem_reg |= HV_OEM_BITS_ANEGNOW;
4387
4388 rv = wm_gmii_hv_writereg_locked(sc->sc_dev, 1, HV_OEM_BITS, oem_reg);
4389
4390 release:
4391 sc->phy.release(sc);
4392
4393 return rv;
4394 }
4395
4396 /* Init hardware bits */
4397 void
4398 wm_initialize_hardware_bits(struct wm_softc *sc)
4399 {
4400 uint32_t tarc0, tarc1, reg;
4401
4402 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
4403 device_xname(sc->sc_dev), __func__));
4404
4405 /* For 82571 variant, 80003 and ICHs */
4406 if (((sc->sc_type >= WM_T_82571) && (sc->sc_type <= WM_T_82583))
4407 || (sc->sc_type >= WM_T_80003)) {
4408
4409 /* Transmit Descriptor Control 0 */
4410 reg = CSR_READ(sc, WMREG_TXDCTL(0));
4411 reg |= TXDCTL_COUNT_DESC;
4412 CSR_WRITE(sc, WMREG_TXDCTL(0), reg);
4413
4414 /* Transmit Descriptor Control 1 */
4415 reg = CSR_READ(sc, WMREG_TXDCTL(1));
4416 reg |= TXDCTL_COUNT_DESC;
4417 CSR_WRITE(sc, WMREG_TXDCTL(1), reg);
4418
4419 /* TARC0 */
4420 tarc0 = CSR_READ(sc, WMREG_TARC0);
4421 switch (sc->sc_type) {
4422 case WM_T_82571:
4423 case WM_T_82572:
4424 case WM_T_82573:
4425 case WM_T_82574:
4426 case WM_T_82583:
4427 case WM_T_80003:
4428 /* Clear bits 30..27 */
4429 tarc0 &= ~__BITS(30, 27);
4430 break;
4431 default:
4432 break;
4433 }
4434
4435 switch (sc->sc_type) {
4436 case WM_T_82571:
4437 case WM_T_82572:
4438 tarc0 |= __BITS(26, 23); /* TARC0 bits 23-26 */
4439
4440 tarc1 = CSR_READ(sc, WMREG_TARC1);
4441 tarc1 &= ~__BITS(30, 29); /* Clear bits 30 and 29 */
4442 tarc1 |= __BITS(26, 24); /* TARC1 bits 26-24 */
4443 /* 8257[12] Errata No.7 */
4444 tarc1 |= __BIT(22); /* TARC1 bits 22 */
4445
4446 /* TARC1 bit 28 */
4447 if ((CSR_READ(sc, WMREG_TCTL) & TCTL_MULR) != 0)
4448 tarc1 &= ~__BIT(28);
4449 else
4450 tarc1 |= __BIT(28);
4451 CSR_WRITE(sc, WMREG_TARC1, tarc1);
4452
4453 /*
4454 * 8257[12] Errata No.13
4455 * Disable Dyamic Clock Gating.
4456 */
4457 reg = CSR_READ(sc, WMREG_CTRL_EXT);
4458 reg &= ~CTRL_EXT_DMA_DYN_CLK;
4459 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
4460 break;
4461 case WM_T_82573:
4462 case WM_T_82574:
4463 case WM_T_82583:
4464 if ((sc->sc_type == WM_T_82574)
4465 || (sc->sc_type == WM_T_82583))
4466 tarc0 |= __BIT(26); /* TARC0 bit 26 */
4467
4468 /* Extended Device Control */
4469 reg = CSR_READ(sc, WMREG_CTRL_EXT);
4470 reg &= ~__BIT(23); /* Clear bit 23 */
4471 reg |= __BIT(22); /* Set bit 22 */
4472 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
4473
4474 /* Device Control */
4475 sc->sc_ctrl &= ~__BIT(29); /* Clear bit 29 */
4476 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4477
4478 /* PCIe Control Register */
4479 /*
4480 * 82573 Errata (unknown).
4481 *
4482 * 82574 Errata 25 and 82583 Errata 12
4483 * "Dropped Rx Packets":
4484 * NVM Image Version 2.1.4 and newer has no this bug.
4485 */
4486 reg = CSR_READ(sc, WMREG_GCR);
4487 reg |= GCR_L1_ACT_WITHOUT_L0S_RX;
4488 CSR_WRITE(sc, WMREG_GCR, reg);
4489
4490 if ((sc->sc_type == WM_T_82574)
4491 || (sc->sc_type == WM_T_82583)) {
4492 /*
4493 * Document says this bit must be set for
4494 * proper operation.
4495 */
4496 reg = CSR_READ(sc, WMREG_GCR);
4497 reg |= __BIT(22);
4498 CSR_WRITE(sc, WMREG_GCR, reg);
4499
4500 /*
4501 * Apply workaround for hardware errata
4502 * documented in errata docs Fixes issue where
4503 * some error prone or unreliable PCIe
4504 * completions are occurring, particularly
4505 * with ASPM enabled. Without fix, issue can
4506 * cause Tx timeouts.
4507 */
4508 reg = CSR_READ(sc, WMREG_GCR2);
4509 reg |= __BIT(0);
4510 CSR_WRITE(sc, WMREG_GCR2, reg);
4511 }
4512 break;
4513 case WM_T_80003:
4514 /* TARC0 */
4515 if ((sc->sc_mediatype == WM_MEDIATYPE_FIBER)
4516 || (sc->sc_mediatype == WM_MEDIATYPE_SERDES))
4517 tarc0 &= ~__BIT(20); /* Clear bits 20 */
4518
4519 /* TARC1 bit 28 */
4520 tarc1 = CSR_READ(sc, WMREG_TARC1);
4521 if ((CSR_READ(sc, WMREG_TCTL) & TCTL_MULR) != 0)
4522 tarc1 &= ~__BIT(28);
4523 else
4524 tarc1 |= __BIT(28);
4525 CSR_WRITE(sc, WMREG_TARC1, tarc1);
4526 break;
4527 case WM_T_ICH8:
4528 case WM_T_ICH9:
4529 case WM_T_ICH10:
4530 case WM_T_PCH:
4531 case WM_T_PCH2:
4532 case WM_T_PCH_LPT:
4533 case WM_T_PCH_SPT:
4534 case WM_T_PCH_CNP:
4535 /* TARC0 */
4536 if (sc->sc_type == WM_T_ICH8) {
4537 /* Set TARC0 bits 29 and 28 */
4538 tarc0 |= __BITS(29, 28);
4539 } else if (sc->sc_type == WM_T_PCH_SPT) {
4540 tarc0 |= __BIT(29);
4541 /*
4542 * Drop bit 28. From Linux.
4543 * See I218/I219 spec update
4544 * "5. Buffer Overrun While the I219 is
4545 * Processing DMA Transactions"
4546 */
4547 tarc0 &= ~__BIT(28);
4548 }
4549 /* Set TARC0 bits 23,24,26,27 */
4550 tarc0 |= __BITS(27, 26) | __BITS(24, 23);
4551
4552 /* CTRL_EXT */
4553 reg = CSR_READ(sc, WMREG_CTRL_EXT);
4554 reg |= __BIT(22); /* Set bit 22 */
4555 /*
4556 * Enable PHY low-power state when MAC is at D3
4557 * w/o WoL
4558 */
4559 if (sc->sc_type >= WM_T_PCH)
4560 reg |= CTRL_EXT_PHYPDEN;
4561 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
4562
4563 /* TARC1 */
4564 tarc1 = CSR_READ(sc, WMREG_TARC1);
4565 /* bit 28 */
4566 if ((CSR_READ(sc, WMREG_TCTL) & TCTL_MULR) != 0)
4567 tarc1 &= ~__BIT(28);
4568 else
4569 tarc1 |= __BIT(28);
4570 tarc1 |= __BIT(24) | __BIT(26) | __BIT(30);
4571 CSR_WRITE(sc, WMREG_TARC1, tarc1);
4572
4573 /* Device Status */
4574 if (sc->sc_type == WM_T_ICH8) {
4575 reg = CSR_READ(sc, WMREG_STATUS);
4576 reg &= ~__BIT(31);
4577 CSR_WRITE(sc, WMREG_STATUS, reg);
4578
4579 }
4580
4581 /* IOSFPC */
4582 if (sc->sc_type == WM_T_PCH_SPT) {
4583 reg = CSR_READ(sc, WMREG_IOSFPC);
4584 reg |= RCTL_RDMTS_HEX; /* XXX RTCL bit? */
4585 CSR_WRITE(sc, WMREG_IOSFPC, reg);
4586 }
4587 /*
4588 * Work-around descriptor data corruption issue during
4589 * NFS v2 UDP traffic, just disable the NFS filtering
4590 * capability.
4591 */
4592 reg = CSR_READ(sc, WMREG_RFCTL);
4593 reg |= WMREG_RFCTL_NFSWDIS | WMREG_RFCTL_NFSRDIS;
4594 CSR_WRITE(sc, WMREG_RFCTL, reg);
4595 break;
4596 default:
4597 break;
4598 }
4599 CSR_WRITE(sc, WMREG_TARC0, tarc0);
4600
4601 switch (sc->sc_type) {
4602 /*
4603 * 8257[12] Errata No.52, 82573 Errata No.43 and some others.
4604 * Avoid RSS Hash Value bug.
4605 */
4606 case WM_T_82571:
4607 case WM_T_82572:
4608 case WM_T_82573:
4609 case WM_T_80003:
4610 case WM_T_ICH8:
4611 reg = CSR_READ(sc, WMREG_RFCTL);
4612 reg |= WMREG_RFCTL_NEWIPV6EXDIS |WMREG_RFCTL_IPV6EXDIS;
4613 CSR_WRITE(sc, WMREG_RFCTL, reg);
4614 break;
4615 case WM_T_82574:
4616 /* Use extened Rx descriptor. */
4617 reg = CSR_READ(sc, WMREG_RFCTL);
4618 reg |= WMREG_RFCTL_EXSTEN;
4619 CSR_WRITE(sc, WMREG_RFCTL, reg);
4620 break;
4621 default:
4622 break;
4623 }
4624 } else if ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211)) {
4625 /*
4626 * 82575 Errata XXX, 82576 Errata 46, 82580 Errata 24,
4627 * I350 Errata 37, I210 Errata No. 31 and I211 Errata No. 11:
4628 * "Certain Malformed IPv6 Extension Headers are Not Processed
4629 * Correctly by the Device"
4630 *
4631 * I354(C2000) Errata AVR53:
4632 * "Malformed IPv6 Extension Headers May Result in LAN Device
4633 * Hang"
4634 */
4635 reg = CSR_READ(sc, WMREG_RFCTL);
4636 reg |= WMREG_RFCTL_IPV6EXDIS;
4637 CSR_WRITE(sc, WMREG_RFCTL, reg);
4638 }
4639 }
4640
4641 static uint32_t
4642 wm_rxpbs_adjust_82580(uint32_t val)
4643 {
4644 uint32_t rv = 0;
4645
4646 if (val < __arraycount(wm_82580_rxpbs_table))
4647 rv = wm_82580_rxpbs_table[val];
4648
4649 return rv;
4650 }
4651
4652 /*
4653 * wm_reset_phy:
4654 *
4655 * generic PHY reset function.
4656 * Same as e1000_phy_hw_reset_generic()
4657 */
4658 static int
4659 wm_reset_phy(struct wm_softc *sc)
4660 {
4661 uint32_t reg;
4662
4663 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
4664 device_xname(sc->sc_dev), __func__));
4665 if (wm_phy_resetisblocked(sc))
4666 return -1;
4667
4668 sc->phy.acquire(sc);
4669
4670 reg = CSR_READ(sc, WMREG_CTRL);
4671 CSR_WRITE(sc, WMREG_CTRL, reg | CTRL_PHY_RESET);
4672 CSR_WRITE_FLUSH(sc);
4673
4674 delay(sc->phy.reset_delay_us);
4675
4676 CSR_WRITE(sc, WMREG_CTRL, reg);
4677 CSR_WRITE_FLUSH(sc);
4678
4679 delay(150);
4680
4681 sc->phy.release(sc);
4682
4683 wm_get_cfg_done(sc);
4684 wm_phy_post_reset(sc);
4685
4686 return 0;
4687 }
4688
4689 /*
4690 * Only used by WM_T_PCH_SPT which does not use multiqueue,
4691 * so it is enough to check sc->sc_queue[0] only.
4692 */
4693 static void
4694 wm_flush_desc_rings(struct wm_softc *sc)
4695 {
4696 pcireg_t preg;
4697 uint32_t reg;
4698 struct wm_txqueue *txq;
4699 wiseman_txdesc_t *txd;
4700 int nexttx;
4701 uint32_t rctl;
4702
4703 /* First, disable MULR fix in FEXTNVM11 */
4704 reg = CSR_READ(sc, WMREG_FEXTNVM11);
4705 reg |= FEXTNVM11_DIS_MULRFIX;
4706 CSR_WRITE(sc, WMREG_FEXTNVM11, reg);
4707
4708 preg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, WM_PCI_DESCRING_STATUS);
4709 reg = CSR_READ(sc, WMREG_TDLEN(0));
4710 if (((preg & DESCRING_STATUS_FLUSH_REQ) == 0) || (reg == 0))
4711 return;
4712
4713 /* TX */
4714 device_printf(sc->sc_dev, "Need TX flush (reg = %08x, len = %u)\n",
4715 preg, reg);
4716 reg = CSR_READ(sc, WMREG_TCTL);
4717 CSR_WRITE(sc, WMREG_TCTL, reg | TCTL_EN);
4718
4719 txq = &sc->sc_queue[0].wmq_txq;
4720 nexttx = txq->txq_next;
4721 txd = &txq->txq_descs[nexttx];
4722 wm_set_dma_addr(&txd->wtx_addr, WM_CDTXADDR(txq, nexttx));
4723 txd->wtx_cmdlen = htole32(WTX_CMD_IFCS | 512);
4724 txd->wtx_fields.wtxu_status = 0;
4725 txd->wtx_fields.wtxu_options = 0;
4726 txd->wtx_fields.wtxu_vlan = 0;
4727
4728 bus_space_barrier(sc->sc_st, sc->sc_sh, 0, 0,
4729 BUS_SPACE_BARRIER_WRITE);
4730
4731 txq->txq_next = WM_NEXTTX(txq, txq->txq_next);
4732 CSR_WRITE(sc, WMREG_TDT(0), txq->txq_next);
4733 bus_space_barrier(sc->sc_st, sc->sc_sh, 0, 0,
4734 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
4735 delay(250);
4736
4737 preg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, WM_PCI_DESCRING_STATUS);
4738 if ((preg & DESCRING_STATUS_FLUSH_REQ) == 0)
4739 return;
4740
4741 /* RX */
4742 device_printf(sc->sc_dev, "Need RX flush (reg = %08x)\n", preg);
4743 rctl = CSR_READ(sc, WMREG_RCTL);
4744 CSR_WRITE(sc, WMREG_RCTL, rctl & ~RCTL_EN);
4745 CSR_WRITE_FLUSH(sc);
4746 delay(150);
4747
4748 reg = CSR_READ(sc, WMREG_RXDCTL(0));
4749 /* Zero the lower 14 bits (prefetch and host thresholds) */
4750 reg &= 0xffffc000;
4751 /*
4752 * Update thresholds: prefetch threshold to 31, host threshold
4753 * to 1 and make sure the granularity is "descriptors" and not
4754 * "cache lines"
4755 */
4756 reg |= (0x1f | (1 << 8) | RXDCTL_GRAN);
4757 CSR_WRITE(sc, WMREG_RXDCTL(0), reg);
4758
4759 /* Momentarily enable the RX ring for the changes to take effect */
4760 CSR_WRITE(sc, WMREG_RCTL, rctl | RCTL_EN);
4761 CSR_WRITE_FLUSH(sc);
4762 delay(150);
4763 CSR_WRITE(sc, WMREG_RCTL, rctl & ~RCTL_EN);
4764 }
4765
4766 /*
4767 * wm_reset:
4768 *
4769 * Reset the i82542 chip.
4770 */
4771 static void
4772 wm_reset(struct wm_softc *sc)
4773 {
4774 int phy_reset = 0;
4775 int i, error = 0;
4776 uint32_t reg;
4777 uint16_t kmreg;
4778 int rv;
4779
4780 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
4781 device_xname(sc->sc_dev), __func__));
4782 KASSERT(sc->sc_type != 0);
4783
4784 /*
4785 * Allocate on-chip memory according to the MTU size.
4786 * The Packet Buffer Allocation register must be written
4787 * before the chip is reset.
4788 */
4789 switch (sc->sc_type) {
4790 case WM_T_82547:
4791 case WM_T_82547_2:
4792 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
4793 PBA_22K : PBA_30K;
4794 for (i = 0; i < sc->sc_nqueues; i++) {
4795 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
4796 txq->txq_fifo_head = 0;
4797 txq->txq_fifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
4798 txq->txq_fifo_size =
4799 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
4800 txq->txq_fifo_stall = 0;
4801 }
4802 break;
4803 case WM_T_82571:
4804 case WM_T_82572:
4805 case WM_T_82575: /* XXX need special handing for jumbo frames */
4806 case WM_T_80003:
4807 sc->sc_pba = PBA_32K;
4808 break;
4809 case WM_T_82573:
4810 sc->sc_pba = PBA_12K;
4811 break;
4812 case WM_T_82574:
4813 case WM_T_82583:
4814 sc->sc_pba = PBA_20K;
4815 break;
4816 case WM_T_82576:
4817 sc->sc_pba = CSR_READ(sc, WMREG_RXPBS);
4818 sc->sc_pba &= RXPBS_SIZE_MASK_82576;
4819 break;
4820 case WM_T_82580:
4821 case WM_T_I350:
4822 case WM_T_I354:
4823 sc->sc_pba = wm_rxpbs_adjust_82580(CSR_READ(sc, WMREG_RXPBS));
4824 break;
4825 case WM_T_I210:
4826 case WM_T_I211:
4827 sc->sc_pba = PBA_34K;
4828 break;
4829 case WM_T_ICH8:
4830 /* Workaround for a bit corruption issue in FIFO memory */
4831 sc->sc_pba = PBA_8K;
4832 CSR_WRITE(sc, WMREG_PBS, PBA_16K);
4833 break;
4834 case WM_T_ICH9:
4835 case WM_T_ICH10:
4836 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 4096 ?
4837 PBA_14K : PBA_10K;
4838 break;
4839 case WM_T_PCH:
4840 case WM_T_PCH2: /* XXX 14K? */
4841 case WM_T_PCH_LPT:
4842 case WM_T_PCH_SPT:
4843 case WM_T_PCH_CNP:
4844 sc->sc_pba = PBA_26K;
4845 break;
4846 default:
4847 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
4848 PBA_40K : PBA_48K;
4849 break;
4850 }
4851 /*
4852 * Only old or non-multiqueue devices have the PBA register
4853 * XXX Need special handling for 82575.
4854 */
4855 if (((sc->sc_flags & WM_F_NEWQUEUE) == 0)
4856 || (sc->sc_type == WM_T_82575))
4857 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
4858
4859 /* Prevent the PCI-E bus from sticking */
4860 if (sc->sc_flags & WM_F_PCIE) {
4861 int timeout = 800;
4862
4863 sc->sc_ctrl |= CTRL_GIO_M_DIS;
4864 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4865
4866 while (timeout--) {
4867 if ((CSR_READ(sc, WMREG_STATUS) & STATUS_GIO_M_ENA)
4868 == 0)
4869 break;
4870 delay(100);
4871 }
4872 if (timeout == 0)
4873 device_printf(sc->sc_dev,
4874 "failed to disable busmastering\n");
4875 }
4876
4877 /* Set the completion timeout for interface */
4878 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
4879 || (sc->sc_type == WM_T_82580)
4880 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
4881 || (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211))
4882 wm_set_pcie_completion_timeout(sc);
4883
4884 /* Clear interrupt */
4885 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
4886 if (wm_is_using_msix(sc)) {
4887 if (sc->sc_type != WM_T_82574) {
4888 CSR_WRITE(sc, WMREG_EIMC, 0xffffffffU);
4889 CSR_WRITE(sc, WMREG_EIAC, 0);
4890 } else
4891 CSR_WRITE(sc, WMREG_EIAC_82574, 0);
4892 }
4893
4894 /* Stop the transmit and receive processes. */
4895 CSR_WRITE(sc, WMREG_RCTL, 0);
4896 sc->sc_rctl &= ~RCTL_EN;
4897 CSR_WRITE(sc, WMREG_TCTL, TCTL_PSP);
4898 CSR_WRITE_FLUSH(sc);
4899
4900 /* XXX set_tbi_sbp_82543() */
4901
4902 delay(10*1000);
4903
4904 /* Must acquire the MDIO ownership before MAC reset */
4905 switch (sc->sc_type) {
4906 case WM_T_82573:
4907 case WM_T_82574:
4908 case WM_T_82583:
4909 error = wm_get_hw_semaphore_82573(sc);
4910 break;
4911 default:
4912 break;
4913 }
4914
4915 /*
4916 * 82541 Errata 29? & 82547 Errata 28?
4917 * See also the description about PHY_RST bit in CTRL register
4918 * in 8254x_GBe_SDM.pdf.
4919 */
4920 if ((sc->sc_type == WM_T_82541) || (sc->sc_type == WM_T_82547)) {
4921 CSR_WRITE(sc, WMREG_CTRL,
4922 CSR_READ(sc, WMREG_CTRL) | CTRL_PHY_RESET);
4923 CSR_WRITE_FLUSH(sc);
4924 delay(5000);
4925 }
4926
4927 switch (sc->sc_type) {
4928 case WM_T_82544: /* XXX check whether WM_F_IOH_VALID is set */
4929 case WM_T_82541:
4930 case WM_T_82541_2:
4931 case WM_T_82547:
4932 case WM_T_82547_2:
4933 /*
4934 * On some chipsets, a reset through a memory-mapped write
4935 * cycle can cause the chip to reset before completing the
4936 * write cycle. This causes major headache that can be avoided
4937 * by issuing the reset via indirect register writes through
4938 * I/O space.
4939 *
4940 * So, if we successfully mapped the I/O BAR at attach time,
4941 * use that. Otherwise, try our luck with a memory-mapped
4942 * reset.
4943 */
4944 if (sc->sc_flags & WM_F_IOH_VALID)
4945 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
4946 else
4947 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
4948 break;
4949 case WM_T_82545_3:
4950 case WM_T_82546_3:
4951 /* Use the shadow control register on these chips. */
4952 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
4953 break;
4954 case WM_T_80003:
4955 reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST;
4956 sc->phy.acquire(sc);
4957 CSR_WRITE(sc, WMREG_CTRL, reg);
4958 sc->phy.release(sc);
4959 break;
4960 case WM_T_ICH8:
4961 case WM_T_ICH9:
4962 case WM_T_ICH10:
4963 case WM_T_PCH:
4964 case WM_T_PCH2:
4965 case WM_T_PCH_LPT:
4966 case WM_T_PCH_SPT:
4967 case WM_T_PCH_CNP:
4968 reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST;
4969 if (wm_phy_resetisblocked(sc) == false) {
4970 /*
4971 * Gate automatic PHY configuration by hardware on
4972 * non-managed 82579
4973 */
4974 if ((sc->sc_type == WM_T_PCH2)
4975 && ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID)
4976 == 0))
4977 wm_gate_hw_phy_config_ich8lan(sc, true);
4978
4979 reg |= CTRL_PHY_RESET;
4980 phy_reset = 1;
4981 } else
4982 device_printf(sc->sc_dev, "XXX reset is blocked!!!\n");
4983 sc->phy.acquire(sc);
4984 CSR_WRITE(sc, WMREG_CTRL, reg);
4985 /* Don't insert a completion barrier when reset */
4986 delay(20*1000);
4987 mutex_exit(sc->sc_ich_phymtx);
4988 break;
4989 case WM_T_82580:
4990 case WM_T_I350:
4991 case WM_T_I354:
4992 case WM_T_I210:
4993 case WM_T_I211:
4994 CSR_WRITE(sc, WMREG_CTRL, CSR_READ(sc, WMREG_CTRL) | CTRL_RST);
4995 if (sc->sc_pcidevid != PCI_PRODUCT_INTEL_DH89XXCC_SGMII)
4996 CSR_WRITE_FLUSH(sc);
4997 delay(5000);
4998 break;
4999 case WM_T_82542_2_0:
5000 case WM_T_82542_2_1:
5001 case WM_T_82543:
5002 case WM_T_82540:
5003 case WM_T_82545:
5004 case WM_T_82546:
5005 case WM_T_82571:
5006 case WM_T_82572:
5007 case WM_T_82573:
5008 case WM_T_82574:
5009 case WM_T_82575:
5010 case WM_T_82576:
5011 case WM_T_82583:
5012 default:
5013 /* Everything else can safely use the documented method. */
5014 CSR_WRITE(sc, WMREG_CTRL, CSR_READ(sc, WMREG_CTRL) | CTRL_RST);
5015 break;
5016 }
5017
5018 /* Must release the MDIO ownership after MAC reset */
5019 switch (sc->sc_type) {
5020 case WM_T_82573:
5021 case WM_T_82574:
5022 case WM_T_82583:
5023 if (error == 0)
5024 wm_put_hw_semaphore_82573(sc);
5025 break;
5026 default:
5027 break;
5028 }
5029
5030 /* Set Phy Config Counter to 50msec */
5031 if (sc->sc_type == WM_T_PCH2) {
5032 reg = CSR_READ(sc, WMREG_FEXTNVM3);
5033 reg &= ~FEXTNVM3_PHY_CFG_COUNTER_MASK;
5034 reg |= FEXTNVM3_PHY_CFG_COUNTER_50MS;
5035 CSR_WRITE(sc, WMREG_FEXTNVM3, reg);
5036 }
5037
5038 if (phy_reset != 0)
5039 wm_get_cfg_done(sc);
5040
5041 /* Reload EEPROM */
5042 switch (sc->sc_type) {
5043 case WM_T_82542_2_0:
5044 case WM_T_82542_2_1:
5045 case WM_T_82543:
5046 case WM_T_82544:
5047 delay(10);
5048 reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
5049 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
5050 CSR_WRITE_FLUSH(sc);
5051 delay(2000);
5052 break;
5053 case WM_T_82540:
5054 case WM_T_82545:
5055 case WM_T_82545_3:
5056 case WM_T_82546:
5057 case WM_T_82546_3:
5058 delay(5*1000);
5059 /* XXX Disable HW ARPs on ASF enabled adapters */
5060 break;
5061 case WM_T_82541:
5062 case WM_T_82541_2:
5063 case WM_T_82547:
5064 case WM_T_82547_2:
5065 delay(20000);
5066 /* XXX Disable HW ARPs on ASF enabled adapters */
5067 break;
5068 case WM_T_82571:
5069 case WM_T_82572:
5070 case WM_T_82573:
5071 case WM_T_82574:
5072 case WM_T_82583:
5073 if (sc->sc_flags & WM_F_EEPROM_FLASH) {
5074 delay(10);
5075 reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
5076 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
5077 CSR_WRITE_FLUSH(sc);
5078 }
5079 /* check EECD_EE_AUTORD */
5080 wm_get_auto_rd_done(sc);
5081 /*
5082 * Phy configuration from NVM just starts after EECD_AUTO_RD
5083 * is set.
5084 */
5085 if ((sc->sc_type == WM_T_82573) || (sc->sc_type == WM_T_82574)
5086 || (sc->sc_type == WM_T_82583))
5087 delay(25*1000);
5088 break;
5089 case WM_T_82575:
5090 case WM_T_82576:
5091 case WM_T_82580:
5092 case WM_T_I350:
5093 case WM_T_I354:
5094 case WM_T_I210:
5095 case WM_T_I211:
5096 case WM_T_80003:
5097 /* check EECD_EE_AUTORD */
5098 wm_get_auto_rd_done(sc);
5099 break;
5100 case WM_T_ICH8:
5101 case WM_T_ICH9:
5102 case WM_T_ICH10:
5103 case WM_T_PCH:
5104 case WM_T_PCH2:
5105 case WM_T_PCH_LPT:
5106 case WM_T_PCH_SPT:
5107 case WM_T_PCH_CNP:
5108 break;
5109 default:
5110 panic("%s: unknown type\n", __func__);
5111 }
5112
5113 /* Check whether EEPROM is present or not */
5114 switch (sc->sc_type) {
5115 case WM_T_82575:
5116 case WM_T_82576:
5117 case WM_T_82580:
5118 case WM_T_I350:
5119 case WM_T_I354:
5120 case WM_T_ICH8:
5121 case WM_T_ICH9:
5122 if ((CSR_READ(sc, WMREG_EECD) & EECD_EE_PRES) == 0) {
5123 /* Not found */
5124 sc->sc_flags |= WM_F_EEPROM_INVALID;
5125 if (sc->sc_type == WM_T_82575)
5126 wm_reset_init_script_82575(sc);
5127 }
5128 break;
5129 default:
5130 break;
5131 }
5132
5133 if (phy_reset != 0)
5134 wm_phy_post_reset(sc);
5135
5136 if ((sc->sc_type == WM_T_82580)
5137 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)) {
5138 /* Clear global device reset status bit */
5139 CSR_WRITE(sc, WMREG_STATUS, STATUS_DEV_RST_SET);
5140 }
5141
5142 /* Clear any pending interrupt events. */
5143 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
5144 reg = CSR_READ(sc, WMREG_ICR);
5145 if (wm_is_using_msix(sc)) {
5146 if (sc->sc_type != WM_T_82574) {
5147 CSR_WRITE(sc, WMREG_EIMC, 0xffffffffU);
5148 CSR_WRITE(sc, WMREG_EIAC, 0);
5149 } else
5150 CSR_WRITE(sc, WMREG_EIAC_82574, 0);
5151 }
5152
5153 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
5154 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
5155 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)
5156 || (sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP)){
5157 reg = CSR_READ(sc, WMREG_KABGTXD);
5158 reg |= KABGTXD_BGSQLBIAS;
5159 CSR_WRITE(sc, WMREG_KABGTXD, reg);
5160 }
5161
5162 /* Reload sc_ctrl */
5163 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
5164
5165 wm_set_eee(sc);
5166
5167 /*
5168 * For PCH, this write will make sure that any noise will be detected
5169 * as a CRC error and be dropped rather than show up as a bad packet
5170 * to the DMA engine
5171 */
5172 if (sc->sc_type == WM_T_PCH)
5173 CSR_WRITE(sc, WMREG_CRC_OFFSET, 0x65656565);
5174
5175 if (sc->sc_type >= WM_T_82544)
5176 CSR_WRITE(sc, WMREG_WUC, 0);
5177
5178 if (sc->sc_type < WM_T_82575)
5179 wm_disable_aspm(sc); /* Workaround for some chips */
5180
5181 wm_reset_mdicnfg_82580(sc);
5182
5183 if ((sc->sc_flags & WM_F_PLL_WA_I210) != 0)
5184 wm_pll_workaround_i210(sc);
5185
5186 if (sc->sc_type == WM_T_80003) {
5187 /* Default to TRUE to enable the MDIC W/A */
5188 sc->sc_flags |= WM_F_80003_MDIC_WA;
5189
5190 rv = wm_kmrn_readreg(sc,
5191 KUMCTRLSTA_OFFSET >> KUMCTRLSTA_OFFSET_SHIFT, &kmreg);
5192 if (rv == 0) {
5193 if ((kmreg & KUMCTRLSTA_OPMODE_MASK)
5194 == KUMCTRLSTA_OPMODE_INBAND_MDIO)
5195 sc->sc_flags &= ~WM_F_80003_MDIC_WA;
5196 else
5197 sc->sc_flags |= WM_F_80003_MDIC_WA;
5198 }
5199 }
5200 }
5201
5202 /*
5203 * wm_add_rxbuf:
5204 *
5205 * Add a receive buffer to the indiciated descriptor.
5206 */
5207 static int
5208 wm_add_rxbuf(struct wm_rxqueue *rxq, int idx)
5209 {
5210 struct wm_softc *sc = rxq->rxq_sc;
5211 struct wm_rxsoft *rxs = &rxq->rxq_soft[idx];
5212 struct mbuf *m;
5213 int error;
5214
5215 KASSERT(mutex_owned(rxq->rxq_lock));
5216
5217 MGETHDR(m, M_DONTWAIT, MT_DATA);
5218 if (m == NULL)
5219 return ENOBUFS;
5220
5221 MCLGET(m, M_DONTWAIT);
5222 if ((m->m_flags & M_EXT) == 0) {
5223 m_freem(m);
5224 return ENOBUFS;
5225 }
5226
5227 if (rxs->rxs_mbuf != NULL)
5228 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
5229
5230 rxs->rxs_mbuf = m;
5231
5232 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
5233 /*
5234 * Cannot use bus_dmamap_load_mbuf() here because m_data may be
5235 * sc_align_tweak'd between bus_dmamap_load() and bus_dmamap_sync().
5236 */
5237 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, m->m_ext.ext_buf,
5238 m->m_ext.ext_size, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
5239 if (error) {
5240 /* XXX XXX XXX */
5241 aprint_error_dev(sc->sc_dev,
5242 "unable to load rx DMA map %d, error = %d\n", idx, error);
5243 panic("wm_add_rxbuf");
5244 }
5245
5246 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
5247 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
5248
5249 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
5250 if ((sc->sc_rctl & RCTL_EN) != 0)
5251 wm_init_rxdesc(rxq, idx);
5252 } else
5253 wm_init_rxdesc(rxq, idx);
5254
5255 return 0;
5256 }
5257
5258 /*
5259 * wm_rxdrain:
5260 *
5261 * Drain the receive queue.
5262 */
5263 static void
5264 wm_rxdrain(struct wm_rxqueue *rxq)
5265 {
5266 struct wm_softc *sc = rxq->rxq_sc;
5267 struct wm_rxsoft *rxs;
5268 int i;
5269
5270 KASSERT(mutex_owned(rxq->rxq_lock));
5271
5272 for (i = 0; i < WM_NRXDESC; i++) {
5273 rxs = &rxq->rxq_soft[i];
5274 if (rxs->rxs_mbuf != NULL) {
5275 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
5276 m_freem(rxs->rxs_mbuf);
5277 rxs->rxs_mbuf = NULL;
5278 }
5279 }
5280 }
5281
5282 /*
5283 * Setup registers for RSS.
5284 *
5285 * XXX not yet VMDq support
5286 */
5287 static void
5288 wm_init_rss(struct wm_softc *sc)
5289 {
5290 uint32_t mrqc, reta_reg, rss_key[RSSRK_NUM_REGS];
5291 int i;
5292
5293 CTASSERT(sizeof(rss_key) == RSS_KEYSIZE);
5294
5295 for (i = 0; i < RETA_NUM_ENTRIES; i++) {
5296 unsigned int qid, reta_ent;
5297
5298 qid = i % sc->sc_nqueues;
5299 switch (sc->sc_type) {
5300 case WM_T_82574:
5301 reta_ent = __SHIFTIN(qid,
5302 RETA_ENT_QINDEX_MASK_82574);
5303 break;
5304 case WM_T_82575:
5305 reta_ent = __SHIFTIN(qid,
5306 RETA_ENT_QINDEX1_MASK_82575);
5307 break;
5308 default:
5309 reta_ent = __SHIFTIN(qid, RETA_ENT_QINDEX_MASK);
5310 break;
5311 }
5312
5313 reta_reg = CSR_READ(sc, WMREG_RETA_Q(i));
5314 reta_reg &= ~RETA_ENTRY_MASK_Q(i);
5315 reta_reg |= __SHIFTIN(reta_ent, RETA_ENTRY_MASK_Q(i));
5316 CSR_WRITE(sc, WMREG_RETA_Q(i), reta_reg);
5317 }
5318
5319 rss_getkey((uint8_t *)rss_key);
5320 for (i = 0; i < RSSRK_NUM_REGS; i++)
5321 CSR_WRITE(sc, WMREG_RSSRK(i), rss_key[i]);
5322
5323 if (sc->sc_type == WM_T_82574)
5324 mrqc = MRQC_ENABLE_RSS_MQ_82574;
5325 else
5326 mrqc = MRQC_ENABLE_RSS_MQ;
5327
5328 /*
5329 * MRQC_RSS_FIELD_IPV6_EX is not set because of an errata.
5330 * See IPV6EXDIS bit in wm_initialize_hardware_bits().
5331 */
5332 mrqc |= (MRQC_RSS_FIELD_IPV4 | MRQC_RSS_FIELD_IPV4_TCP);
5333 mrqc |= (MRQC_RSS_FIELD_IPV6 | MRQC_RSS_FIELD_IPV6_TCP);
5334 #if 0
5335 mrqc |= (MRQC_RSS_FIELD_IPV4_UDP | MRQC_RSS_FIELD_IPV6_UDP);
5336 mrqc |= MRQC_RSS_FIELD_IPV6_UDP_EX;
5337 #endif
5338 mrqc |= MRQC_RSS_FIELD_IPV6_TCP_EX;
5339
5340 CSR_WRITE(sc, WMREG_MRQC, mrqc);
5341 }
5342
5343 /*
5344 * Adjust TX and RX queue numbers which the system actulally uses.
5345 *
5346 * The numbers are affected by below parameters.
5347 * - The nubmer of hardware queues
5348 * - The number of MSI-X vectors (= "nvectors" argument)
5349 * - ncpu
5350 */
5351 static void
5352 wm_adjust_qnum(struct wm_softc *sc, int nvectors)
5353 {
5354 int hw_ntxqueues, hw_nrxqueues, hw_nqueues;
5355
5356 if (nvectors < 2) {
5357 sc->sc_nqueues = 1;
5358 return;
5359 }
5360
5361 switch (sc->sc_type) {
5362 case WM_T_82572:
5363 hw_ntxqueues = 2;
5364 hw_nrxqueues = 2;
5365 break;
5366 case WM_T_82574:
5367 hw_ntxqueues = 2;
5368 hw_nrxqueues = 2;
5369 break;
5370 case WM_T_82575:
5371 hw_ntxqueues = 4;
5372 hw_nrxqueues = 4;
5373 break;
5374 case WM_T_82576:
5375 hw_ntxqueues = 16;
5376 hw_nrxqueues = 16;
5377 break;
5378 case WM_T_82580:
5379 case WM_T_I350:
5380 case WM_T_I354:
5381 hw_ntxqueues = 8;
5382 hw_nrxqueues = 8;
5383 break;
5384 case WM_T_I210:
5385 hw_ntxqueues = 4;
5386 hw_nrxqueues = 4;
5387 break;
5388 case WM_T_I211:
5389 hw_ntxqueues = 2;
5390 hw_nrxqueues = 2;
5391 break;
5392 /*
5393 * As below ethernet controllers does not support MSI-X,
5394 * this driver let them not use multiqueue.
5395 * - WM_T_80003
5396 * - WM_T_ICH8
5397 * - WM_T_ICH9
5398 * - WM_T_ICH10
5399 * - WM_T_PCH
5400 * - WM_T_PCH2
5401 * - WM_T_PCH_LPT
5402 */
5403 default:
5404 hw_ntxqueues = 1;
5405 hw_nrxqueues = 1;
5406 break;
5407 }
5408
5409 hw_nqueues = uimin(hw_ntxqueues, hw_nrxqueues);
5410
5411 /*
5412 * As queues more than MSI-X vectors cannot improve scaling, we limit
5413 * the number of queues used actually.
5414 */
5415 if (nvectors < hw_nqueues + 1)
5416 sc->sc_nqueues = nvectors - 1;
5417 else
5418 sc->sc_nqueues = hw_nqueues;
5419
5420 /*
5421 * As queues more then cpus cannot improve scaling, we limit
5422 * the number of queues used actually.
5423 */
5424 if (ncpu < sc->sc_nqueues)
5425 sc->sc_nqueues = ncpu;
5426 }
5427
5428 static inline bool
5429 wm_is_using_msix(struct wm_softc *sc)
5430 {
5431
5432 return (sc->sc_nintrs > 1);
5433 }
5434
5435 static inline bool
5436 wm_is_using_multiqueue(struct wm_softc *sc)
5437 {
5438
5439 return (sc->sc_nqueues > 1);
5440 }
5441
5442 static int
5443 wm_softint_establish(struct wm_softc *sc, int qidx, int intr_idx)
5444 {
5445 struct wm_queue *wmq = &sc->sc_queue[qidx];
5446
5447 wmq->wmq_id = qidx;
5448 wmq->wmq_intr_idx = intr_idx;
5449 wmq->wmq_si = softint_establish(SOFTINT_NET
5450 #ifdef WM_MPSAFE
5451 | SOFTINT_MPSAFE
5452 #endif
5453 , wm_handle_queue, wmq);
5454 if (wmq->wmq_si != NULL)
5455 return 0;
5456
5457 aprint_error_dev(sc->sc_dev, "unable to establish queue[%d] handler\n",
5458 wmq->wmq_id);
5459 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[wmq->wmq_intr_idx]);
5460 sc->sc_ihs[wmq->wmq_intr_idx] = NULL;
5461 return ENOMEM;
5462 }
5463
5464 /*
5465 * Both single interrupt MSI and INTx can use this function.
5466 */
5467 static int
5468 wm_setup_legacy(struct wm_softc *sc)
5469 {
5470 pci_chipset_tag_t pc = sc->sc_pc;
5471 const char *intrstr = NULL;
5472 char intrbuf[PCI_INTRSTR_LEN];
5473 int error;
5474
5475 error = wm_alloc_txrx_queues(sc);
5476 if (error) {
5477 aprint_error_dev(sc->sc_dev, "cannot allocate queues %d\n",
5478 error);
5479 return ENOMEM;
5480 }
5481 intrstr = pci_intr_string(pc, sc->sc_intrs[0], intrbuf,
5482 sizeof(intrbuf));
5483 #ifdef WM_MPSAFE
5484 pci_intr_setattr(pc, &sc->sc_intrs[0], PCI_INTR_MPSAFE, true);
5485 #endif
5486 sc->sc_ihs[0] = pci_intr_establish_xname(pc, sc->sc_intrs[0],
5487 IPL_NET, wm_intr_legacy, sc, device_xname(sc->sc_dev));
5488 if (sc->sc_ihs[0] == NULL) {
5489 aprint_error_dev(sc->sc_dev,"unable to establish %s\n",
5490 (pci_intr_type(pc, sc->sc_intrs[0])
5491 == PCI_INTR_TYPE_MSI) ? "MSI" : "INTx");
5492 return ENOMEM;
5493 }
5494
5495 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
5496 sc->sc_nintrs = 1;
5497
5498 return wm_softint_establish(sc, 0, 0);
5499 }
5500
5501 static int
5502 wm_setup_msix(struct wm_softc *sc)
5503 {
5504 void *vih;
5505 kcpuset_t *affinity;
5506 int qidx, error, intr_idx, txrx_established;
5507 pci_chipset_tag_t pc = sc->sc_pc;
5508 const char *intrstr = NULL;
5509 char intrbuf[PCI_INTRSTR_LEN];
5510 char intr_xname[INTRDEVNAMEBUF];
5511
5512 if (sc->sc_nqueues < ncpu) {
5513 /*
5514 * To avoid other devices' interrupts, the affinity of Tx/Rx
5515 * interrupts start from CPU#1.
5516 */
5517 sc->sc_affinity_offset = 1;
5518 } else {
5519 /*
5520 * In this case, this device use all CPUs. So, we unify
5521 * affinitied cpu_index to msix vector number for readability.
5522 */
5523 sc->sc_affinity_offset = 0;
5524 }
5525
5526 error = wm_alloc_txrx_queues(sc);
5527 if (error) {
5528 aprint_error_dev(sc->sc_dev, "cannot allocate queues %d\n",
5529 error);
5530 return ENOMEM;
5531 }
5532
5533 kcpuset_create(&affinity, false);
5534 intr_idx = 0;
5535
5536 /*
5537 * TX and RX
5538 */
5539 txrx_established = 0;
5540 for (qidx = 0; qidx < sc->sc_nqueues; qidx++) {
5541 struct wm_queue *wmq = &sc->sc_queue[qidx];
5542 int affinity_to = (sc->sc_affinity_offset + intr_idx) % ncpu;
5543
5544 intrstr = pci_intr_string(pc, sc->sc_intrs[intr_idx], intrbuf,
5545 sizeof(intrbuf));
5546 #ifdef WM_MPSAFE
5547 pci_intr_setattr(pc, &sc->sc_intrs[intr_idx],
5548 PCI_INTR_MPSAFE, true);
5549 #endif
5550 memset(intr_xname, 0, sizeof(intr_xname));
5551 snprintf(intr_xname, sizeof(intr_xname), "%sTXRX%d",
5552 device_xname(sc->sc_dev), qidx);
5553 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intr_idx],
5554 IPL_NET, wm_txrxintr_msix, wmq, intr_xname);
5555 if (vih == NULL) {
5556 aprint_error_dev(sc->sc_dev,
5557 "unable to establish MSI-X(for TX and RX)%s%s\n",
5558 intrstr ? " at " : "",
5559 intrstr ? intrstr : "");
5560
5561 goto fail;
5562 }
5563 kcpuset_zero(affinity);
5564 /* Round-robin affinity */
5565 kcpuset_set(affinity, affinity_to);
5566 error = interrupt_distribute(vih, affinity, NULL);
5567 if (error == 0) {
5568 aprint_normal_dev(sc->sc_dev,
5569 "for TX and RX interrupting at %s affinity to %u\n",
5570 intrstr, affinity_to);
5571 } else {
5572 aprint_normal_dev(sc->sc_dev,
5573 "for TX and RX interrupting at %s\n", intrstr);
5574 }
5575 sc->sc_ihs[intr_idx] = vih;
5576 if (wm_softint_establish(sc, qidx, intr_idx) != 0)
5577 goto fail;
5578 txrx_established++;
5579 intr_idx++;
5580 }
5581
5582 /* LINK */
5583 intrstr = pci_intr_string(pc, sc->sc_intrs[intr_idx], intrbuf,
5584 sizeof(intrbuf));
5585 #ifdef WM_MPSAFE
5586 pci_intr_setattr(pc, &sc->sc_intrs[intr_idx], PCI_INTR_MPSAFE, true);
5587 #endif
5588 memset(intr_xname, 0, sizeof(intr_xname));
5589 snprintf(intr_xname, sizeof(intr_xname), "%sLINK",
5590 device_xname(sc->sc_dev));
5591 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intr_idx],
5592 IPL_NET, wm_linkintr_msix, sc, intr_xname);
5593 if (vih == NULL) {
5594 aprint_error_dev(sc->sc_dev,
5595 "unable to establish MSI-X(for LINK)%s%s\n",
5596 intrstr ? " at " : "",
5597 intrstr ? intrstr : "");
5598
5599 goto fail;
5600 }
5601 /* Keep default affinity to LINK interrupt */
5602 aprint_normal_dev(sc->sc_dev,
5603 "for LINK interrupting at %s\n", intrstr);
5604 sc->sc_ihs[intr_idx] = vih;
5605 sc->sc_link_intr_idx = intr_idx;
5606
5607 sc->sc_nintrs = sc->sc_nqueues + 1;
5608 kcpuset_destroy(affinity);
5609 return 0;
5610
5611 fail:
5612 for (qidx = 0; qidx < txrx_established; qidx++) {
5613 struct wm_queue *wmq = &sc->sc_queue[qidx];
5614 pci_intr_disestablish(sc->sc_pc,sc->sc_ihs[wmq->wmq_intr_idx]);
5615 sc->sc_ihs[wmq->wmq_intr_idx] = NULL;
5616 }
5617
5618 kcpuset_destroy(affinity);
5619 return ENOMEM;
5620 }
5621
5622 static void
5623 wm_unset_stopping_flags(struct wm_softc *sc)
5624 {
5625 int i;
5626
5627 KASSERT(WM_CORE_LOCKED(sc));
5628
5629 /* Must unset stopping flags in ascending order. */
5630 for (i = 0; i < sc->sc_nqueues; i++) {
5631 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
5632 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
5633
5634 mutex_enter(txq->txq_lock);
5635 txq->txq_stopping = false;
5636 mutex_exit(txq->txq_lock);
5637
5638 mutex_enter(rxq->rxq_lock);
5639 rxq->rxq_stopping = false;
5640 mutex_exit(rxq->rxq_lock);
5641 }
5642
5643 sc->sc_core_stopping = false;
5644 }
5645
5646 static void
5647 wm_set_stopping_flags(struct wm_softc *sc)
5648 {
5649 int i;
5650
5651 KASSERT(WM_CORE_LOCKED(sc));
5652
5653 sc->sc_core_stopping = true;
5654
5655 /* Must set stopping flags in ascending order. */
5656 for (i = 0; i < sc->sc_nqueues; i++) {
5657 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
5658 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
5659
5660 mutex_enter(rxq->rxq_lock);
5661 rxq->rxq_stopping = true;
5662 mutex_exit(rxq->rxq_lock);
5663
5664 mutex_enter(txq->txq_lock);
5665 txq->txq_stopping = true;
5666 mutex_exit(txq->txq_lock);
5667 }
5668 }
5669
5670 /*
5671 * Write interrupt interval value to ITR or EITR
5672 */
5673 static void
5674 wm_itrs_writereg(struct wm_softc *sc, struct wm_queue *wmq)
5675 {
5676
5677 if (!wmq->wmq_set_itr)
5678 return;
5679
5680 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
5681 uint32_t eitr = __SHIFTIN(wmq->wmq_itr, EITR_ITR_INT_MASK);
5682
5683 /*
5684 * 82575 doesn't have CNT_INGR field.
5685 * So, overwrite counter field by software.
5686 */
5687 if (sc->sc_type == WM_T_82575)
5688 eitr |= __SHIFTIN(wmq->wmq_itr, EITR_COUNTER_MASK_82575);
5689 else
5690 eitr |= EITR_CNT_INGR;
5691
5692 CSR_WRITE(sc, WMREG_EITR(wmq->wmq_intr_idx), eitr);
5693 } else if (sc->sc_type == WM_T_82574 && wm_is_using_msix(sc)) {
5694 /*
5695 * 82574 has both ITR and EITR. SET EITR when we use
5696 * the multi queue function with MSI-X.
5697 */
5698 CSR_WRITE(sc, WMREG_EITR_82574(wmq->wmq_intr_idx),
5699 wmq->wmq_itr & EITR_ITR_INT_MASK_82574);
5700 } else {
5701 KASSERT(wmq->wmq_id == 0);
5702 CSR_WRITE(sc, WMREG_ITR, wmq->wmq_itr);
5703 }
5704
5705 wmq->wmq_set_itr = false;
5706 }
5707
5708 /*
5709 * TODO
5710 * Below dynamic calculation of itr is almost the same as linux igb,
5711 * however it does not fit to wm(4). So, we will have been disable AIM
5712 * until we will find appropriate calculation of itr.
5713 */
5714 /*
5715 * calculate interrupt interval value to be going to write register in
5716 * wm_itrs_writereg(). This function does not write ITR/EITR register.
5717 */
5718 static void
5719 wm_itrs_calculate(struct wm_softc *sc, struct wm_queue *wmq)
5720 {
5721 #ifdef NOTYET
5722 struct wm_rxqueue *rxq = &wmq->wmq_rxq;
5723 struct wm_txqueue *txq = &wmq->wmq_txq;
5724 uint32_t avg_size = 0;
5725 uint32_t new_itr;
5726
5727 if (rxq->rxq_packets)
5728 avg_size = rxq->rxq_bytes / rxq->rxq_packets;
5729 if (txq->txq_packets)
5730 avg_size = uimax(avg_size, txq->txq_bytes / txq->txq_packets);
5731
5732 if (avg_size == 0) {
5733 new_itr = 450; /* restore default value */
5734 goto out;
5735 }
5736
5737 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5738 avg_size += 24;
5739
5740 /* Don't starve jumbo frames */
5741 avg_size = uimin(avg_size, 3000);
5742
5743 /* Give a little boost to mid-size frames */
5744 if ((avg_size > 300) && (avg_size < 1200))
5745 new_itr = avg_size / 3;
5746 else
5747 new_itr = avg_size / 2;
5748
5749 out:
5750 /*
5751 * The usage of 82574 and 82575 EITR is different from otther NEWQUEUE
5752 * controllers. See sc->sc_itr_init setting in wm_init_locked().
5753 */
5754 if ((sc->sc_flags & WM_F_NEWQUEUE) == 0 || sc->sc_type != WM_T_82575)
5755 new_itr *= 4;
5756
5757 if (new_itr != wmq->wmq_itr) {
5758 wmq->wmq_itr = new_itr;
5759 wmq->wmq_set_itr = true;
5760 } else
5761 wmq->wmq_set_itr = false;
5762
5763 rxq->rxq_packets = 0;
5764 rxq->rxq_bytes = 0;
5765 txq->txq_packets = 0;
5766 txq->txq_bytes = 0;
5767 #endif
5768 }
5769
5770 static void
5771 wm_init_sysctls(struct wm_softc *sc)
5772 {
5773 struct sysctllog **log;
5774 const struct sysctlnode *rnode, *cnode;
5775 int rv;
5776 const char *dvname;
5777
5778 log = &sc->sc_sysctllog;
5779 dvname = device_xname(sc->sc_dev);
5780
5781 rv = sysctl_createv(log, 0, NULL, &rnode,
5782 0, CTLTYPE_NODE, dvname,
5783 SYSCTL_DESCR("wm information and settings"),
5784 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
5785 if (rv != 0)
5786 goto err;
5787
5788 rv = sysctl_createv(log, 0, &rnode, &cnode, CTLFLAG_READWRITE,
5789 CTLTYPE_BOOL, "txrx_workqueue", SYSCTL_DESCR("Use workqueue for packet processing"),
5790 NULL, 0, &sc->sc_txrx_use_workqueue, 0, CTL_CREATE, CTL_EOL);
5791 if (rv != 0)
5792 goto teardown;
5793
5794 return;
5795
5796 teardown:
5797 sysctl_teardown(log);
5798 err:
5799 sc->sc_sysctllog = NULL;
5800 device_printf(sc->sc_dev, "%s: sysctl_createv failed, rv = %d\n",
5801 __func__, rv);
5802 }
5803
5804 /*
5805 * wm_init: [ifnet interface function]
5806 *
5807 * Initialize the interface.
5808 */
5809 static int
5810 wm_init(struct ifnet *ifp)
5811 {
5812 struct wm_softc *sc = ifp->if_softc;
5813 int ret;
5814
5815 WM_CORE_LOCK(sc);
5816 ret = wm_init_locked(ifp);
5817 WM_CORE_UNLOCK(sc);
5818
5819 return ret;
5820 }
5821
5822 static int
5823 wm_init_locked(struct ifnet *ifp)
5824 {
5825 struct wm_softc *sc = ifp->if_softc;
5826 struct ethercom *ec = &sc->sc_ethercom;
5827 int i, j, trynum, error = 0;
5828 uint32_t reg, sfp_mask = 0;
5829
5830 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
5831 device_xname(sc->sc_dev), __func__));
5832 KASSERT(WM_CORE_LOCKED(sc));
5833
5834 /*
5835 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
5836 * There is a small but measurable benefit to avoiding the adjusment
5837 * of the descriptor so that the headers are aligned, for normal mtu,
5838 * on such platforms. One possibility is that the DMA itself is
5839 * slightly more efficient if the front of the entire packet (instead
5840 * of the front of the headers) is aligned.
5841 *
5842 * Note we must always set align_tweak to 0 if we are using
5843 * jumbo frames.
5844 */
5845 #ifdef __NO_STRICT_ALIGNMENT
5846 sc->sc_align_tweak = 0;
5847 #else
5848 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
5849 sc->sc_align_tweak = 0;
5850 else
5851 sc->sc_align_tweak = 2;
5852 #endif /* __NO_STRICT_ALIGNMENT */
5853
5854 /* Cancel any pending I/O. */
5855 wm_stop_locked(ifp, false, false);
5856
5857 /* Update statistics before reset */
5858 if_statadd2(ifp, if_collisions, CSR_READ(sc, WMREG_COLC),
5859 if_ierrors, CSR_READ(sc, WMREG_RXERRC));
5860
5861 /* PCH_SPT hardware workaround */
5862 if (sc->sc_type == WM_T_PCH_SPT)
5863 wm_flush_desc_rings(sc);
5864
5865 /* Reset the chip to a known state. */
5866 wm_reset(sc);
5867
5868 /*
5869 * AMT based hardware can now take control from firmware
5870 * Do this after reset.
5871 */
5872 if ((sc->sc_flags & WM_F_HAS_AMT) != 0)
5873 wm_get_hw_control(sc);
5874
5875 if ((sc->sc_type >= WM_T_PCH_SPT) &&
5876 pci_intr_type(sc->sc_pc, sc->sc_intrs[0]) == PCI_INTR_TYPE_INTX)
5877 wm_legacy_irq_quirk_spt(sc);
5878
5879 /* Init hardware bits */
5880 wm_initialize_hardware_bits(sc);
5881
5882 /* Reset the PHY. */
5883 if (sc->sc_flags & WM_F_HAS_MII)
5884 wm_gmii_reset(sc);
5885
5886 if (sc->sc_type >= WM_T_ICH8) {
5887 reg = CSR_READ(sc, WMREG_GCR);
5888 /*
5889 * ICH8 No-snoop bits are opposite polarity. Set to snoop by
5890 * default after reset.
5891 */
5892 if (sc->sc_type == WM_T_ICH8)
5893 reg |= GCR_NO_SNOOP_ALL;
5894 else
5895 reg &= ~GCR_NO_SNOOP_ALL;
5896 CSR_WRITE(sc, WMREG_GCR, reg);
5897 }
5898 if ((sc->sc_type >= WM_T_ICH8)
5899 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER)
5900 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3)) {
5901
5902 reg = CSR_READ(sc, WMREG_CTRL_EXT);
5903 reg |= CTRL_EXT_RO_DIS;
5904 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
5905 }
5906
5907 /* Calculate (E)ITR value */
5908 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0 && sc->sc_type != WM_T_82575) {
5909 /*
5910 * For NEWQUEUE's EITR (except for 82575).
5911 * 82575's EITR should be set same throttling value as other
5912 * old controllers' ITR because the interrupt/sec calculation
5913 * is the same, that is, 1,000,000,000 / (N * 256).
5914 *
5915 * 82574's EITR should be set same throttling value as ITR.
5916 *
5917 * For N interrupts/sec, set this value to:
5918 * 1,000,000 / N in contrast to ITR throttoling value.
5919 */
5920 sc->sc_itr_init = 450;
5921 } else if (sc->sc_type >= WM_T_82543) {
5922 /*
5923 * Set up the interrupt throttling register (units of 256ns)
5924 * Note that a footnote in Intel's documentation says this
5925 * ticker runs at 1/4 the rate when the chip is in 100Mbit
5926 * or 10Mbit mode. Empirically, it appears to be the case
5927 * that that is also true for the 1024ns units of the other
5928 * interrupt-related timer registers -- so, really, we ought
5929 * to divide this value by 4 when the link speed is low.
5930 *
5931 * XXX implement this division at link speed change!
5932 */
5933
5934 /*
5935 * For N interrupts/sec, set this value to:
5936 * 1,000,000,000 / (N * 256). Note that we set the
5937 * absolute and packet timer values to this value
5938 * divided by 4 to get "simple timer" behavior.
5939 */
5940 sc->sc_itr_init = 1500; /* 2604 ints/sec */
5941 }
5942
5943 error = wm_init_txrx_queues(sc);
5944 if (error)
5945 goto out;
5946
5947 if (((sc->sc_flags & WM_F_SGMII) == 0) &&
5948 (sc->sc_mediatype == WM_MEDIATYPE_SERDES) &&
5949 (sc->sc_type >= WM_T_82575))
5950 wm_serdes_power_up_link_82575(sc);
5951
5952 /* Clear out the VLAN table -- we don't use it (yet). */
5953 CSR_WRITE(sc, WMREG_VET, 0);
5954 if ((sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354))
5955 trynum = 10; /* Due to hw errata */
5956 else
5957 trynum = 1;
5958 for (i = 0; i < WM_VLAN_TABSIZE; i++)
5959 for (j = 0; j < trynum; j++)
5960 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
5961
5962 /*
5963 * Set up flow-control parameters.
5964 *
5965 * XXX Values could probably stand some tuning.
5966 */
5967 if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9)
5968 && (sc->sc_type != WM_T_ICH10) && (sc->sc_type != WM_T_PCH)
5969 && (sc->sc_type != WM_T_PCH2) && (sc->sc_type != WM_T_PCH_LPT)
5970 && (sc->sc_type != WM_T_PCH_SPT) && (sc->sc_type != WM_T_PCH_CNP)){
5971 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
5972 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
5973 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
5974 }
5975
5976 sc->sc_fcrtl = FCRTL_DFLT;
5977 if (sc->sc_type < WM_T_82543) {
5978 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
5979 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
5980 } else {
5981 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
5982 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
5983 }
5984
5985 if (sc->sc_type == WM_T_80003)
5986 CSR_WRITE(sc, WMREG_FCTTV, 0xffff);
5987 else
5988 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
5989
5990 /* Writes the control register. */
5991 wm_set_vlan(sc);
5992
5993 if (sc->sc_flags & WM_F_HAS_MII) {
5994 uint16_t kmreg;
5995
5996 switch (sc->sc_type) {
5997 case WM_T_80003:
5998 case WM_T_ICH8:
5999 case WM_T_ICH9:
6000 case WM_T_ICH10:
6001 case WM_T_PCH:
6002 case WM_T_PCH2:
6003 case WM_T_PCH_LPT:
6004 case WM_T_PCH_SPT:
6005 case WM_T_PCH_CNP:
6006 /*
6007 * Set the mac to wait the maximum time between each
6008 * iteration and increase the max iterations when
6009 * polling the phy; this fixes erroneous timeouts at
6010 * 10Mbps.
6011 */
6012 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS,
6013 0xFFFF);
6014 wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_INB_PARAM,
6015 &kmreg);
6016 kmreg |= 0x3F;
6017 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_INB_PARAM,
6018 kmreg);
6019 break;
6020 default:
6021 break;
6022 }
6023
6024 if (sc->sc_type == WM_T_80003) {
6025 reg = CSR_READ(sc, WMREG_CTRL_EXT);
6026 reg &= ~CTRL_EXT_LINK_MODE_MASK;
6027 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
6028
6029 /* Bypass RX and TX FIFO's */
6030 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL,
6031 KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
6032 | KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
6033 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL,
6034 KUMCTRLSTA_INB_CTRL_DIS_PADDING |
6035 KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT);
6036 }
6037 }
6038 #if 0
6039 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
6040 #endif
6041
6042 /* Set up checksum offload parameters. */
6043 reg = CSR_READ(sc, WMREG_RXCSUM);
6044 reg &= ~(RXCSUM_IPOFL | RXCSUM_IPV6OFL | RXCSUM_TUOFL);
6045 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
6046 reg |= RXCSUM_IPOFL;
6047 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
6048 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
6049 if (ifp->if_capenable & (IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
6050 reg |= RXCSUM_IPV6OFL | RXCSUM_TUOFL;
6051 CSR_WRITE(sc, WMREG_RXCSUM, reg);
6052
6053 /* Set registers about MSI-X */
6054 if (wm_is_using_msix(sc)) {
6055 uint32_t ivar, qintr_idx;
6056 struct wm_queue *wmq;
6057 unsigned int qid;
6058
6059 if (sc->sc_type == WM_T_82575) {
6060 /* Interrupt control */
6061 reg = CSR_READ(sc, WMREG_CTRL_EXT);
6062 reg |= CTRL_EXT_PBA | CTRL_EXT_EIAME | CTRL_EXT_NSICR;
6063 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
6064
6065 /* TX and RX */
6066 for (i = 0; i < sc->sc_nqueues; i++) {
6067 wmq = &sc->sc_queue[i];
6068 CSR_WRITE(sc, WMREG_MSIXBM(wmq->wmq_intr_idx),
6069 EITR_TX_QUEUE(wmq->wmq_id)
6070 | EITR_RX_QUEUE(wmq->wmq_id));
6071 }
6072 /* Link status */
6073 CSR_WRITE(sc, WMREG_MSIXBM(sc->sc_link_intr_idx),
6074 EITR_OTHER);
6075 } else if (sc->sc_type == WM_T_82574) {
6076 /* Interrupt control */
6077 reg = CSR_READ(sc, WMREG_CTRL_EXT);
6078 reg |= CTRL_EXT_PBA | CTRL_EXT_EIAME;
6079 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
6080
6081 /*
6082 * Workaround issue with spurious interrupts
6083 * in MSI-X mode.
6084 * At wm_initialize_hardware_bits(), sc_nintrs has not
6085 * initialized yet. So re-initialize WMREG_RFCTL here.
6086 */
6087 reg = CSR_READ(sc, WMREG_RFCTL);
6088 reg |= WMREG_RFCTL_ACKDIS;
6089 CSR_WRITE(sc, WMREG_RFCTL, reg);
6090
6091 ivar = 0;
6092 /* TX and RX */
6093 for (i = 0; i < sc->sc_nqueues; i++) {
6094 wmq = &sc->sc_queue[i];
6095 qid = wmq->wmq_id;
6096 qintr_idx = wmq->wmq_intr_idx;
6097
6098 ivar |= __SHIFTIN((IVAR_VALID_82574|qintr_idx),
6099 IVAR_TX_MASK_Q_82574(qid));
6100 ivar |= __SHIFTIN((IVAR_VALID_82574|qintr_idx),
6101 IVAR_RX_MASK_Q_82574(qid));
6102 }
6103 /* Link status */
6104 ivar |= __SHIFTIN((IVAR_VALID_82574
6105 | sc->sc_link_intr_idx), IVAR_OTHER_MASK);
6106 CSR_WRITE(sc, WMREG_IVAR, ivar | IVAR_INT_ON_ALL_WB);
6107 } else {
6108 /* Interrupt control */
6109 CSR_WRITE(sc, WMREG_GPIE, GPIE_NSICR | GPIE_MULTI_MSIX
6110 | GPIE_EIAME | GPIE_PBA);
6111
6112 switch (sc->sc_type) {
6113 case WM_T_82580:
6114 case WM_T_I350:
6115 case WM_T_I354:
6116 case WM_T_I210:
6117 case WM_T_I211:
6118 /* TX and RX */
6119 for (i = 0; i < sc->sc_nqueues; i++) {
6120 wmq = &sc->sc_queue[i];
6121 qid = wmq->wmq_id;
6122 qintr_idx = wmq->wmq_intr_idx;
6123
6124 ivar = CSR_READ(sc, WMREG_IVAR_Q(qid));
6125 ivar &= ~IVAR_TX_MASK_Q(qid);
6126 ivar |= __SHIFTIN((qintr_idx
6127 | IVAR_VALID),
6128 IVAR_TX_MASK_Q(qid));
6129 ivar &= ~IVAR_RX_MASK_Q(qid);
6130 ivar |= __SHIFTIN((qintr_idx
6131 | IVAR_VALID),
6132 IVAR_RX_MASK_Q(qid));
6133 CSR_WRITE(sc, WMREG_IVAR_Q(qid), ivar);
6134 }
6135 break;
6136 case WM_T_82576:
6137 /* TX and RX */
6138 for (i = 0; i < sc->sc_nqueues; i++) {
6139 wmq = &sc->sc_queue[i];
6140 qid = wmq->wmq_id;
6141 qintr_idx = wmq->wmq_intr_idx;
6142
6143 ivar = CSR_READ(sc,
6144 WMREG_IVAR_Q_82576(qid));
6145 ivar &= ~IVAR_TX_MASK_Q_82576(qid);
6146 ivar |= __SHIFTIN((qintr_idx
6147 | IVAR_VALID),
6148 IVAR_TX_MASK_Q_82576(qid));
6149 ivar &= ~IVAR_RX_MASK_Q_82576(qid);
6150 ivar |= __SHIFTIN((qintr_idx
6151 | IVAR_VALID),
6152 IVAR_RX_MASK_Q_82576(qid));
6153 CSR_WRITE(sc, WMREG_IVAR_Q_82576(qid),
6154 ivar);
6155 }
6156 break;
6157 default:
6158 break;
6159 }
6160
6161 /* Link status */
6162 ivar = __SHIFTIN((sc->sc_link_intr_idx | IVAR_VALID),
6163 IVAR_MISC_OTHER);
6164 CSR_WRITE(sc, WMREG_IVAR_MISC, ivar);
6165 }
6166
6167 if (wm_is_using_multiqueue(sc)) {
6168 wm_init_rss(sc);
6169
6170 /*
6171 ** NOTE: Receive Full-Packet Checksum Offload
6172 ** is mutually exclusive with Multiqueue. However
6173 ** this is not the same as TCP/IP checksums which
6174 ** still work.
6175 */
6176 reg = CSR_READ(sc, WMREG_RXCSUM);
6177 reg |= RXCSUM_PCSD;
6178 CSR_WRITE(sc, WMREG_RXCSUM, reg);
6179 }
6180 }
6181
6182 /* Set up the interrupt registers. */
6183 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
6184
6185 /* Enable SFP module insertion interrupt if it's required */
6186 if ((sc->sc_flags & WM_F_SFP) != 0) {
6187 sc->sc_ctrl |= CTRL_EXTLINK_EN;
6188 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
6189 sfp_mask = ICR_GPI(0);
6190 }
6191
6192 if (wm_is_using_msix(sc)) {
6193 uint32_t mask;
6194 struct wm_queue *wmq;
6195
6196 switch (sc->sc_type) {
6197 case WM_T_82574:
6198 mask = 0;
6199 for (i = 0; i < sc->sc_nqueues; i++) {
6200 wmq = &sc->sc_queue[i];
6201 mask |= ICR_TXQ(wmq->wmq_id);
6202 mask |= ICR_RXQ(wmq->wmq_id);
6203 }
6204 mask |= ICR_OTHER;
6205 CSR_WRITE(sc, WMREG_EIAC_82574, mask);
6206 CSR_WRITE(sc, WMREG_IMS, mask | ICR_LSC);
6207 break;
6208 default:
6209 if (sc->sc_type == WM_T_82575) {
6210 mask = 0;
6211 for (i = 0; i < sc->sc_nqueues; i++) {
6212 wmq = &sc->sc_queue[i];
6213 mask |= EITR_TX_QUEUE(wmq->wmq_id);
6214 mask |= EITR_RX_QUEUE(wmq->wmq_id);
6215 }
6216 mask |= EITR_OTHER;
6217 } else {
6218 mask = 0;
6219 for (i = 0; i < sc->sc_nqueues; i++) {
6220 wmq = &sc->sc_queue[i];
6221 mask |= 1 << wmq->wmq_intr_idx;
6222 }
6223 mask |= 1 << sc->sc_link_intr_idx;
6224 }
6225 CSR_WRITE(sc, WMREG_EIAC, mask);
6226 CSR_WRITE(sc, WMREG_EIAM, mask);
6227 CSR_WRITE(sc, WMREG_EIMS, mask);
6228
6229 /* For other interrupts */
6230 CSR_WRITE(sc, WMREG_IMS, ICR_LSC | sfp_mask);
6231 break;
6232 }
6233 } else {
6234 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
6235 ICR_RXO | ICR_RXT0 | sfp_mask;
6236 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
6237 }
6238
6239 /* Set up the inter-packet gap. */
6240 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
6241
6242 if (sc->sc_type >= WM_T_82543) {
6243 for (int qidx = 0; qidx < sc->sc_nqueues; qidx++) {
6244 struct wm_queue *wmq = &sc->sc_queue[qidx];
6245 wm_itrs_writereg(sc, wmq);
6246 }
6247 /*
6248 * Link interrupts occur much less than TX
6249 * interrupts and RX interrupts. So, we don't
6250 * tune EINTR(WM_MSIX_LINKINTR_IDX) value like
6251 * FreeBSD's if_igb.
6252 */
6253 }
6254
6255 /* Set the VLAN ethernetype. */
6256 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
6257
6258 /*
6259 * Set up the transmit control register; we start out with
6260 * a collision distance suitable for FDX, but update it whe
6261 * we resolve the media type.
6262 */
6263 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_RTLC
6264 | TCTL_CT(TX_COLLISION_THRESHOLD)
6265 | TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
6266 if (sc->sc_type >= WM_T_82571)
6267 sc->sc_tctl |= TCTL_MULR;
6268 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
6269
6270 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
6271 /* Write TDT after TCTL.EN is set. See the document. */
6272 CSR_WRITE(sc, WMREG_TDT(0), 0);
6273 }
6274
6275 if (sc->sc_type == WM_T_80003) {
6276 reg = CSR_READ(sc, WMREG_TCTL_EXT);
6277 reg &= ~TCTL_EXT_GCEX_MASK;
6278 reg |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
6279 CSR_WRITE(sc, WMREG_TCTL_EXT, reg);
6280 }
6281
6282 /* Set the media. */
6283 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
6284 goto out;
6285
6286 /* Configure for OS presence */
6287 wm_init_manageability(sc);
6288
6289 /*
6290 * Set up the receive control register; we actually program the
6291 * register when we set the receive filter. Use multicast address
6292 * offset type 0.
6293 *
6294 * Only the i82544 has the ability to strip the incoming CRC, so we
6295 * don't enable that feature.
6296 */
6297 sc->sc_mchash_type = 0;
6298 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
6299 | __SHIFTIN(sc->sc_mchash_type, RCTL_MO);
6300
6301 /* 82574 use one buffer extended Rx descriptor. */
6302 if (sc->sc_type == WM_T_82574)
6303 sc->sc_rctl |= RCTL_DTYP_ONEBUF;
6304
6305 /*
6306 * The I350 has a bug where it always strips the CRC whether
6307 * asked to or not. So ask for stripped CRC here and cope in rxeof
6308 */
6309 if ((sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
6310 || (sc->sc_type == WM_T_I210))
6311 sc->sc_rctl |= RCTL_SECRC;
6312
6313 if (((ec->ec_capabilities & ETHERCAP_JUMBO_MTU) != 0)
6314 && (ifp->if_mtu > ETHERMTU)) {
6315 sc->sc_rctl |= RCTL_LPE;
6316 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
6317 CSR_WRITE(sc, WMREG_RLPML, ETHER_MAX_LEN_JUMBO);
6318 }
6319
6320 if (MCLBYTES == 2048)
6321 sc->sc_rctl |= RCTL_2k;
6322 else {
6323 if (sc->sc_type >= WM_T_82543) {
6324 switch (MCLBYTES) {
6325 case 4096:
6326 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
6327 break;
6328 case 8192:
6329 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
6330 break;
6331 case 16384:
6332 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
6333 break;
6334 default:
6335 panic("wm_init: MCLBYTES %d unsupported",
6336 MCLBYTES);
6337 break;
6338 }
6339 } else
6340 panic("wm_init: i82542 requires MCLBYTES = 2048");
6341 }
6342
6343 /* Enable ECC */
6344 switch (sc->sc_type) {
6345 case WM_T_82571:
6346 reg = CSR_READ(sc, WMREG_PBA_ECC);
6347 reg |= PBA_ECC_CORR_EN;
6348 CSR_WRITE(sc, WMREG_PBA_ECC, reg);
6349 break;
6350 case WM_T_PCH_LPT:
6351 case WM_T_PCH_SPT:
6352 case WM_T_PCH_CNP:
6353 reg = CSR_READ(sc, WMREG_PBECCSTS);
6354 reg |= PBECCSTS_UNCORR_ECC_ENABLE;
6355 CSR_WRITE(sc, WMREG_PBECCSTS, reg);
6356
6357 sc->sc_ctrl |= CTRL_MEHE;
6358 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
6359 break;
6360 default:
6361 break;
6362 }
6363
6364 /*
6365 * Set the receive filter.
6366 *
6367 * For 82575 and 82576, the RX descriptors must be initialized after
6368 * the setting of RCTL.EN in wm_set_filter()
6369 */
6370 wm_set_filter(sc);
6371
6372 /* On 575 and later set RDT only if RX enabled */
6373 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
6374 int qidx;
6375 for (qidx = 0; qidx < sc->sc_nqueues; qidx++) {
6376 struct wm_rxqueue *rxq = &sc->sc_queue[qidx].wmq_rxq;
6377 for (i = 0; i < WM_NRXDESC; i++) {
6378 mutex_enter(rxq->rxq_lock);
6379 wm_init_rxdesc(rxq, i);
6380 mutex_exit(rxq->rxq_lock);
6381
6382 }
6383 }
6384 }
6385
6386 wm_unset_stopping_flags(sc);
6387
6388 /* Start the one second link check clock. */
6389 callout_schedule(&sc->sc_tick_ch, hz);
6390
6391 /* ...all done! */
6392 ifp->if_flags |= IFF_RUNNING;
6393
6394 out:
6395 /* Save last flags for the callback */
6396 sc->sc_if_flags = ifp->if_flags;
6397 sc->sc_ec_capenable = ec->ec_capenable;
6398 if (error)
6399 log(LOG_ERR, "%s: interface not running\n",
6400 device_xname(sc->sc_dev));
6401 return error;
6402 }
6403
6404 /*
6405 * wm_stop: [ifnet interface function]
6406 *
6407 * Stop transmission on the interface.
6408 */
6409 static void
6410 wm_stop(struct ifnet *ifp, int disable)
6411 {
6412 struct wm_softc *sc = ifp->if_softc;
6413
6414 ASSERT_SLEEPABLE();
6415
6416 WM_CORE_LOCK(sc);
6417 wm_stop_locked(ifp, disable ? true : false, true);
6418 WM_CORE_UNLOCK(sc);
6419
6420 /*
6421 * After wm_set_stopping_flags(), it is guaranteed
6422 * wm_handle_queue_work() does not call workqueue_enqueue().
6423 * However, workqueue_wait() cannot call in wm_stop_locked()
6424 * because it can sleep...
6425 * so, call workqueue_wait() here.
6426 */
6427 for (int i = 0; i < sc->sc_nqueues; i++)
6428 workqueue_wait(sc->sc_queue_wq, &sc->sc_queue[i].wmq_cookie);
6429 }
6430
6431 static void
6432 wm_stop_locked(struct ifnet *ifp, bool disable, bool wait)
6433 {
6434 struct wm_softc *sc = ifp->if_softc;
6435 struct wm_txsoft *txs;
6436 int i, qidx;
6437
6438 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
6439 device_xname(sc->sc_dev), __func__));
6440 KASSERT(WM_CORE_LOCKED(sc));
6441
6442 wm_set_stopping_flags(sc);
6443
6444 if (sc->sc_flags & WM_F_HAS_MII) {
6445 /* Down the MII. */
6446 mii_down(&sc->sc_mii);
6447 } else {
6448 #if 0
6449 /* Should we clear PHY's status properly? */
6450 wm_reset(sc);
6451 #endif
6452 }
6453
6454 /* Stop the transmit and receive processes. */
6455 CSR_WRITE(sc, WMREG_TCTL, 0);
6456 CSR_WRITE(sc, WMREG_RCTL, 0);
6457 sc->sc_rctl &= ~RCTL_EN;
6458
6459 /*
6460 * Clear the interrupt mask to ensure the device cannot assert its
6461 * interrupt line.
6462 * Clear sc->sc_icr to ensure wm_intr_legacy() makes no attempt to
6463 * service any currently pending or shared interrupt.
6464 */
6465 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
6466 sc->sc_icr = 0;
6467 if (wm_is_using_msix(sc)) {
6468 if (sc->sc_type != WM_T_82574) {
6469 CSR_WRITE(sc, WMREG_EIMC, 0xffffffffU);
6470 CSR_WRITE(sc, WMREG_EIAC, 0);
6471 } else
6472 CSR_WRITE(sc, WMREG_EIAC_82574, 0);
6473 }
6474
6475 /*
6476 * Stop callouts after interrupts are disabled; if we have
6477 * to wait for them, we will be releasing the CORE_LOCK
6478 * briefly, which will unblock interrupts on the current CPU.
6479 */
6480
6481 /* Stop the one second clock. */
6482 if (wait)
6483 callout_halt(&sc->sc_tick_ch, sc->sc_core_lock);
6484 else
6485 callout_stop(&sc->sc_tick_ch);
6486
6487 /* Stop the 82547 Tx FIFO stall check timer. */
6488 if (sc->sc_type == WM_T_82547) {
6489 if (wait)
6490 callout_halt(&sc->sc_txfifo_ch, sc->sc_core_lock);
6491 else
6492 callout_stop(&sc->sc_txfifo_ch);
6493 }
6494
6495 /* Release any queued transmit buffers. */
6496 for (qidx = 0; qidx < sc->sc_nqueues; qidx++) {
6497 struct wm_queue *wmq = &sc->sc_queue[qidx];
6498 struct wm_txqueue *txq = &wmq->wmq_txq;
6499 mutex_enter(txq->txq_lock);
6500 txq->txq_sending = false; /* Ensure watchdog disabled */
6501 for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
6502 txs = &txq->txq_soft[i];
6503 if (txs->txs_mbuf != NULL) {
6504 bus_dmamap_unload(sc->sc_dmat,txs->txs_dmamap);
6505 m_freem(txs->txs_mbuf);
6506 txs->txs_mbuf = NULL;
6507 }
6508 }
6509 mutex_exit(txq->txq_lock);
6510 }
6511
6512 /* Mark the interface as down and cancel the watchdog timer. */
6513 ifp->if_flags &= ~IFF_RUNNING;
6514
6515 if (disable) {
6516 for (i = 0; i < sc->sc_nqueues; i++) {
6517 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
6518 mutex_enter(rxq->rxq_lock);
6519 wm_rxdrain(rxq);
6520 mutex_exit(rxq->rxq_lock);
6521 }
6522 }
6523
6524 #if 0 /* notyet */
6525 if (sc->sc_type >= WM_T_82544)
6526 CSR_WRITE(sc, WMREG_WUC, 0);
6527 #endif
6528 }
6529
6530 static void
6531 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
6532 {
6533 struct mbuf *m;
6534 int i;
6535
6536 log(LOG_DEBUG, "%s: mbuf chain:\n", device_xname(sc->sc_dev));
6537 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
6538 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
6539 "m_flags = 0x%08x\n", device_xname(sc->sc_dev),
6540 m->m_data, m->m_len, m->m_flags);
6541 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", device_xname(sc->sc_dev),
6542 i, i == 1 ? "" : "s");
6543 }
6544
6545 /*
6546 * wm_82547_txfifo_stall:
6547 *
6548 * Callout used to wait for the 82547 Tx FIFO to drain,
6549 * reset the FIFO pointers, and restart packet transmission.
6550 */
6551 static void
6552 wm_82547_txfifo_stall(void *arg)
6553 {
6554 struct wm_softc *sc = arg;
6555 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
6556
6557 mutex_enter(txq->txq_lock);
6558
6559 if (txq->txq_stopping)
6560 goto out;
6561
6562 if (txq->txq_fifo_stall) {
6563 if (CSR_READ(sc, WMREG_TDT(0)) == CSR_READ(sc, WMREG_TDH(0)) &&
6564 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
6565 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
6566 /*
6567 * Packets have drained. Stop transmitter, reset
6568 * FIFO pointers, restart transmitter, and kick
6569 * the packet queue.
6570 */
6571 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
6572 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
6573 CSR_WRITE(sc, WMREG_TDFT, txq->txq_fifo_addr);
6574 CSR_WRITE(sc, WMREG_TDFH, txq->txq_fifo_addr);
6575 CSR_WRITE(sc, WMREG_TDFTS, txq->txq_fifo_addr);
6576 CSR_WRITE(sc, WMREG_TDFHS, txq->txq_fifo_addr);
6577 CSR_WRITE(sc, WMREG_TCTL, tctl);
6578 CSR_WRITE_FLUSH(sc);
6579
6580 txq->txq_fifo_head = 0;
6581 txq->txq_fifo_stall = 0;
6582 wm_start_locked(&sc->sc_ethercom.ec_if);
6583 } else {
6584 /*
6585 * Still waiting for packets to drain; try again in
6586 * another tick.
6587 */
6588 callout_schedule(&sc->sc_txfifo_ch, 1);
6589 }
6590 }
6591
6592 out:
6593 mutex_exit(txq->txq_lock);
6594 }
6595
6596 /*
6597 * wm_82547_txfifo_bugchk:
6598 *
6599 * Check for bug condition in the 82547 Tx FIFO. We need to
6600 * prevent enqueueing a packet that would wrap around the end
6601 * if the Tx FIFO ring buffer, otherwise the chip will croak.
6602 *
6603 * We do this by checking the amount of space before the end
6604 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
6605 * the Tx FIFO, wait for all remaining packets to drain, reset
6606 * the internal FIFO pointers to the beginning, and restart
6607 * transmission on the interface.
6608 */
6609 #define WM_FIFO_HDR 0x10
6610 #define WM_82547_PAD_LEN 0x3e0
6611 static int
6612 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
6613 {
6614 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
6615 int space = txq->txq_fifo_size - txq->txq_fifo_head;
6616 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
6617
6618 /* Just return if already stalled. */
6619 if (txq->txq_fifo_stall)
6620 return 1;
6621
6622 if (sc->sc_mii.mii_media_active & IFM_FDX) {
6623 /* Stall only occurs in half-duplex mode. */
6624 goto send_packet;
6625 }
6626
6627 if (len >= WM_82547_PAD_LEN + space) {
6628 txq->txq_fifo_stall = 1;
6629 callout_schedule(&sc->sc_txfifo_ch, 1);
6630 return 1;
6631 }
6632
6633 send_packet:
6634 txq->txq_fifo_head += len;
6635 if (txq->txq_fifo_head >= txq->txq_fifo_size)
6636 txq->txq_fifo_head -= txq->txq_fifo_size;
6637
6638 return 0;
6639 }
6640
6641 static int
6642 wm_alloc_tx_descs(struct wm_softc *sc, struct wm_txqueue *txq)
6643 {
6644 int error;
6645
6646 /*
6647 * Allocate the control data structures, and create and load the
6648 * DMA map for it.
6649 *
6650 * NOTE: All Tx descriptors must be in the same 4G segment of
6651 * memory. So must Rx descriptors. We simplify by allocating
6652 * both sets within the same 4G segment.
6653 */
6654 if (sc->sc_type < WM_T_82544)
6655 WM_NTXDESC(txq) = WM_NTXDESC_82542;
6656 else
6657 WM_NTXDESC(txq) = WM_NTXDESC_82544;
6658 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
6659 txq->txq_descsize = sizeof(nq_txdesc_t);
6660 else
6661 txq->txq_descsize = sizeof(wiseman_txdesc_t);
6662
6663 if ((error = bus_dmamem_alloc(sc->sc_dmat, WM_TXDESCS_SIZE(txq),
6664 PAGE_SIZE, (bus_size_t) 0x100000000ULL, &txq->txq_desc_seg,
6665 1, &txq->txq_desc_rseg, 0)) != 0) {
6666 aprint_error_dev(sc->sc_dev,
6667 "unable to allocate TX control data, error = %d\n",
6668 error);
6669 goto fail_0;
6670 }
6671
6672 if ((error = bus_dmamem_map(sc->sc_dmat, &txq->txq_desc_seg,
6673 txq->txq_desc_rseg, WM_TXDESCS_SIZE(txq),
6674 (void **)&txq->txq_descs_u, BUS_DMA_COHERENT)) != 0) {
6675 aprint_error_dev(sc->sc_dev,
6676 "unable to map TX control data, error = %d\n", error);
6677 goto fail_1;
6678 }
6679
6680 if ((error = bus_dmamap_create(sc->sc_dmat, WM_TXDESCS_SIZE(txq), 1,
6681 WM_TXDESCS_SIZE(txq), 0, 0, &txq->txq_desc_dmamap)) != 0) {
6682 aprint_error_dev(sc->sc_dev,
6683 "unable to create TX control data DMA map, error = %d\n",
6684 error);
6685 goto fail_2;
6686 }
6687
6688 if ((error = bus_dmamap_load(sc->sc_dmat, txq->txq_desc_dmamap,
6689 txq->txq_descs_u, WM_TXDESCS_SIZE(txq), NULL, 0)) != 0) {
6690 aprint_error_dev(sc->sc_dev,
6691 "unable to load TX control data DMA map, error = %d\n",
6692 error);
6693 goto fail_3;
6694 }
6695
6696 return 0;
6697
6698 fail_3:
6699 bus_dmamap_destroy(sc->sc_dmat, txq->txq_desc_dmamap);
6700 fail_2:
6701 bus_dmamem_unmap(sc->sc_dmat, (void *)txq->txq_descs_u,
6702 WM_TXDESCS_SIZE(txq));
6703 fail_1:
6704 bus_dmamem_free(sc->sc_dmat, &txq->txq_desc_seg, txq->txq_desc_rseg);
6705 fail_0:
6706 return error;
6707 }
6708
6709 static void
6710 wm_free_tx_descs(struct wm_softc *sc, struct wm_txqueue *txq)
6711 {
6712
6713 bus_dmamap_unload(sc->sc_dmat, txq->txq_desc_dmamap);
6714 bus_dmamap_destroy(sc->sc_dmat, txq->txq_desc_dmamap);
6715 bus_dmamem_unmap(sc->sc_dmat, (void *)txq->txq_descs_u,
6716 WM_TXDESCS_SIZE(txq));
6717 bus_dmamem_free(sc->sc_dmat, &txq->txq_desc_seg, txq->txq_desc_rseg);
6718 }
6719
6720 static int
6721 wm_alloc_rx_descs(struct wm_softc *sc, struct wm_rxqueue *rxq)
6722 {
6723 int error;
6724 size_t rxq_descs_size;
6725
6726 /*
6727 * Allocate the control data structures, and create and load the
6728 * DMA map for it.
6729 *
6730 * NOTE: All Tx descriptors must be in the same 4G segment of
6731 * memory. So must Rx descriptors. We simplify by allocating
6732 * both sets within the same 4G segment.
6733 */
6734 rxq->rxq_ndesc = WM_NRXDESC;
6735 if (sc->sc_type == WM_T_82574)
6736 rxq->rxq_descsize = sizeof(ext_rxdesc_t);
6737 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
6738 rxq->rxq_descsize = sizeof(nq_rxdesc_t);
6739 else
6740 rxq->rxq_descsize = sizeof(wiseman_rxdesc_t);
6741 rxq_descs_size = rxq->rxq_descsize * rxq->rxq_ndesc;
6742
6743 if ((error = bus_dmamem_alloc(sc->sc_dmat, rxq_descs_size,
6744 PAGE_SIZE, (bus_size_t) 0x100000000ULL, &rxq->rxq_desc_seg,
6745 1, &rxq->rxq_desc_rseg, 0)) != 0) {
6746 aprint_error_dev(sc->sc_dev,
6747 "unable to allocate RX control data, error = %d\n",
6748 error);
6749 goto fail_0;
6750 }
6751
6752 if ((error = bus_dmamem_map(sc->sc_dmat, &rxq->rxq_desc_seg,
6753 rxq->rxq_desc_rseg, rxq_descs_size,
6754 (void **)&rxq->rxq_descs_u, BUS_DMA_COHERENT)) != 0) {
6755 aprint_error_dev(sc->sc_dev,
6756 "unable to map RX control data, error = %d\n", error);
6757 goto fail_1;
6758 }
6759
6760 if ((error = bus_dmamap_create(sc->sc_dmat, rxq_descs_size, 1,
6761 rxq_descs_size, 0, 0, &rxq->rxq_desc_dmamap)) != 0) {
6762 aprint_error_dev(sc->sc_dev,
6763 "unable to create RX control data DMA map, error = %d\n",
6764 error);
6765 goto fail_2;
6766 }
6767
6768 if ((error = bus_dmamap_load(sc->sc_dmat, rxq->rxq_desc_dmamap,
6769 rxq->rxq_descs_u, rxq_descs_size, NULL, 0)) != 0) {
6770 aprint_error_dev(sc->sc_dev,
6771 "unable to load RX control data DMA map, error = %d\n",
6772 error);
6773 goto fail_3;
6774 }
6775
6776 return 0;
6777
6778 fail_3:
6779 bus_dmamap_destroy(sc->sc_dmat, rxq->rxq_desc_dmamap);
6780 fail_2:
6781 bus_dmamem_unmap(sc->sc_dmat, (void *)rxq->rxq_descs_u,
6782 rxq_descs_size);
6783 fail_1:
6784 bus_dmamem_free(sc->sc_dmat, &rxq->rxq_desc_seg, rxq->rxq_desc_rseg);
6785 fail_0:
6786 return error;
6787 }
6788
6789 static void
6790 wm_free_rx_descs(struct wm_softc *sc, struct wm_rxqueue *rxq)
6791 {
6792
6793 bus_dmamap_unload(sc->sc_dmat, rxq->rxq_desc_dmamap);
6794 bus_dmamap_destroy(sc->sc_dmat, rxq->rxq_desc_dmamap);
6795 bus_dmamem_unmap(sc->sc_dmat, (void *)rxq->rxq_descs_u,
6796 rxq->rxq_descsize * rxq->rxq_ndesc);
6797 bus_dmamem_free(sc->sc_dmat, &rxq->rxq_desc_seg, rxq->rxq_desc_rseg);
6798 }
6799
6800
6801 static int
6802 wm_alloc_tx_buffer(struct wm_softc *sc, struct wm_txqueue *txq)
6803 {
6804 int i, error;
6805
6806 /* Create the transmit buffer DMA maps. */
6807 WM_TXQUEUELEN(txq) =
6808 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
6809 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
6810 for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
6811 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
6812 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
6813 &txq->txq_soft[i].txs_dmamap)) != 0) {
6814 aprint_error_dev(sc->sc_dev,
6815 "unable to create Tx DMA map %d, error = %d\n",
6816 i, error);
6817 goto fail;
6818 }
6819 }
6820
6821 return 0;
6822
6823 fail:
6824 for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
6825 if (txq->txq_soft[i].txs_dmamap != NULL)
6826 bus_dmamap_destroy(sc->sc_dmat,
6827 txq->txq_soft[i].txs_dmamap);
6828 }
6829 return error;
6830 }
6831
6832 static void
6833 wm_free_tx_buffer(struct wm_softc *sc, struct wm_txqueue *txq)
6834 {
6835 int i;
6836
6837 for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
6838 if (txq->txq_soft[i].txs_dmamap != NULL)
6839 bus_dmamap_destroy(sc->sc_dmat,
6840 txq->txq_soft[i].txs_dmamap);
6841 }
6842 }
6843
6844 static int
6845 wm_alloc_rx_buffer(struct wm_softc *sc, struct wm_rxqueue *rxq)
6846 {
6847 int i, error;
6848
6849 /* Create the receive buffer DMA maps. */
6850 for (i = 0; i < rxq->rxq_ndesc; i++) {
6851 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
6852 MCLBYTES, 0, 0,
6853 &rxq->rxq_soft[i].rxs_dmamap)) != 0) {
6854 aprint_error_dev(sc->sc_dev,
6855 "unable to create Rx DMA map %d error = %d\n",
6856 i, error);
6857 goto fail;
6858 }
6859 rxq->rxq_soft[i].rxs_mbuf = NULL;
6860 }
6861
6862 return 0;
6863
6864 fail:
6865 for (i = 0; i < rxq->rxq_ndesc; i++) {
6866 if (rxq->rxq_soft[i].rxs_dmamap != NULL)
6867 bus_dmamap_destroy(sc->sc_dmat,
6868 rxq->rxq_soft[i].rxs_dmamap);
6869 }
6870 return error;
6871 }
6872
6873 static void
6874 wm_free_rx_buffer(struct wm_softc *sc, struct wm_rxqueue *rxq)
6875 {
6876 int i;
6877
6878 for (i = 0; i < rxq->rxq_ndesc; i++) {
6879 if (rxq->rxq_soft[i].rxs_dmamap != NULL)
6880 bus_dmamap_destroy(sc->sc_dmat,
6881 rxq->rxq_soft[i].rxs_dmamap);
6882 }
6883 }
6884
6885 /*
6886 * wm_alloc_quques:
6887 * Allocate {tx,rx}descs and {tx,rx} buffers
6888 */
6889 static int
6890 wm_alloc_txrx_queues(struct wm_softc *sc)
6891 {
6892 int i, error, tx_done, rx_done;
6893
6894 sc->sc_queue = kmem_zalloc(sizeof(struct wm_queue) * sc->sc_nqueues,
6895 KM_SLEEP);
6896 if (sc->sc_queue == NULL) {
6897 aprint_error_dev(sc->sc_dev,"unable to allocate wm_queue\n");
6898 error = ENOMEM;
6899 goto fail_0;
6900 }
6901
6902 /* For transmission */
6903 error = 0;
6904 tx_done = 0;
6905 for (i = 0; i < sc->sc_nqueues; i++) {
6906 #ifdef WM_EVENT_COUNTERS
6907 int j;
6908 const char *xname;
6909 #endif
6910 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
6911 txq->txq_sc = sc;
6912 txq->txq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
6913
6914 error = wm_alloc_tx_descs(sc, txq);
6915 if (error)
6916 break;
6917 error = wm_alloc_tx_buffer(sc, txq);
6918 if (error) {
6919 wm_free_tx_descs(sc, txq);
6920 break;
6921 }
6922 txq->txq_interq = pcq_create(WM_TXINTERQSIZE, KM_SLEEP);
6923 if (txq->txq_interq == NULL) {
6924 wm_free_tx_descs(sc, txq);
6925 wm_free_tx_buffer(sc, txq);
6926 error = ENOMEM;
6927 break;
6928 }
6929
6930 #ifdef WM_EVENT_COUNTERS
6931 xname = device_xname(sc->sc_dev);
6932
6933 WM_Q_MISC_EVCNT_ATTACH(txq, txsstall, txq, i, xname);
6934 WM_Q_MISC_EVCNT_ATTACH(txq, txdstall, txq, i, xname);
6935 WM_Q_MISC_EVCNT_ATTACH(txq, fifo_stall, txq, i, xname);
6936 WM_Q_INTR_EVCNT_ATTACH(txq, txdw, txq, i, xname);
6937 WM_Q_INTR_EVCNT_ATTACH(txq, txqe, txq, i, xname);
6938 WM_Q_MISC_EVCNT_ATTACH(txq, ipsum, txq, i, xname);
6939 WM_Q_MISC_EVCNT_ATTACH(txq, tusum, txq, i, xname);
6940 WM_Q_MISC_EVCNT_ATTACH(txq, tusum6, txq, i, xname);
6941 WM_Q_MISC_EVCNT_ATTACH(txq, tso, txq, i, xname);
6942 WM_Q_MISC_EVCNT_ATTACH(txq, tso6, txq, i, xname);
6943 WM_Q_MISC_EVCNT_ATTACH(txq, tsopain, txq, i, xname);
6944
6945 for (j = 0; j < WM_NTXSEGS; j++) {
6946 snprintf(txq->txq_txseg_evcnt_names[j],
6947 sizeof(txq->txq_txseg_evcnt_names[j]), "txq%02dtxseg%d", i, j);
6948 evcnt_attach_dynamic(&txq->txq_ev_txseg[j], EVCNT_TYPE_MISC,
6949 NULL, xname, txq->txq_txseg_evcnt_names[j]);
6950 }
6951
6952 WM_Q_MISC_EVCNT_ATTACH(txq, pcqdrop, txq, i, xname);
6953 WM_Q_MISC_EVCNT_ATTACH(txq, descdrop, txq, i, xname);
6954 WM_Q_MISC_EVCNT_ATTACH(txq, toomanyseg, txq, i, xname);
6955 WM_Q_MISC_EVCNT_ATTACH(txq, defrag, txq, i, xname);
6956 WM_Q_MISC_EVCNT_ATTACH(txq, underrun, txq, i, xname);
6957 WM_Q_MISC_EVCNT_ATTACH(txq, skipcontext, txq, i, xname);
6958 #endif /* WM_EVENT_COUNTERS */
6959
6960 tx_done++;
6961 }
6962 if (error)
6963 goto fail_1;
6964
6965 /* For receive */
6966 error = 0;
6967 rx_done = 0;
6968 for (i = 0; i < sc->sc_nqueues; i++) {
6969 #ifdef WM_EVENT_COUNTERS
6970 const char *xname;
6971 #endif
6972 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
6973 rxq->rxq_sc = sc;
6974 rxq->rxq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
6975
6976 error = wm_alloc_rx_descs(sc, rxq);
6977 if (error)
6978 break;
6979
6980 error = wm_alloc_rx_buffer(sc, rxq);
6981 if (error) {
6982 wm_free_rx_descs(sc, rxq);
6983 break;
6984 }
6985
6986 #ifdef WM_EVENT_COUNTERS
6987 xname = device_xname(sc->sc_dev);
6988
6989 WM_Q_INTR_EVCNT_ATTACH(rxq, intr, rxq, i, xname);
6990 WM_Q_INTR_EVCNT_ATTACH(rxq, defer, rxq, i, xname);
6991
6992 WM_Q_MISC_EVCNT_ATTACH(rxq, ipsum, rxq, i, xname);
6993 WM_Q_MISC_EVCNT_ATTACH(rxq, tusum, rxq, i, xname);
6994 #endif /* WM_EVENT_COUNTERS */
6995
6996 rx_done++;
6997 }
6998 if (error)
6999 goto fail_2;
7000
7001 for (i = 0; i < sc->sc_nqueues; i++) {
7002 char rndname[16];
7003
7004 snprintf(rndname, sizeof(rndname), "%sTXRX%d",
7005 device_xname(sc->sc_dev), i);
7006 rnd_attach_source(&sc->sc_queue[i].rnd_source, rndname,
7007 RND_TYPE_NET, RND_FLAG_DEFAULT);
7008 }
7009
7010 return 0;
7011
7012 fail_2:
7013 for (i = 0; i < rx_done; i++) {
7014 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
7015 wm_free_rx_buffer(sc, rxq);
7016 wm_free_rx_descs(sc, rxq);
7017 if (rxq->rxq_lock)
7018 mutex_obj_free(rxq->rxq_lock);
7019 }
7020 fail_1:
7021 for (i = 0; i < tx_done; i++) {
7022 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
7023 pcq_destroy(txq->txq_interq);
7024 wm_free_tx_buffer(sc, txq);
7025 wm_free_tx_descs(sc, txq);
7026 if (txq->txq_lock)
7027 mutex_obj_free(txq->txq_lock);
7028 }
7029
7030 kmem_free(sc->sc_queue,
7031 sizeof(struct wm_queue) * sc->sc_nqueues);
7032 fail_0:
7033 return error;
7034 }
7035
7036 /*
7037 * wm_free_quques:
7038 * Free {tx,rx}descs and {tx,rx} buffers
7039 */
7040 static void
7041 wm_free_txrx_queues(struct wm_softc *sc)
7042 {
7043 int i;
7044
7045 for (i = 0; i < sc->sc_nqueues; i++)
7046 rnd_detach_source(&sc->sc_queue[i].rnd_source);
7047
7048 for (i = 0; i < sc->sc_nqueues; i++) {
7049 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
7050
7051 #ifdef WM_EVENT_COUNTERS
7052 WM_Q_EVCNT_DETACH(rxq, intr, rxq, i);
7053 WM_Q_EVCNT_DETACH(rxq, defer, rxq, i);
7054 WM_Q_EVCNT_DETACH(rxq, ipsum, rxq, i);
7055 WM_Q_EVCNT_DETACH(rxq, tusum, rxq, i);
7056 #endif /* WM_EVENT_COUNTERS */
7057
7058 wm_free_rx_buffer(sc, rxq);
7059 wm_free_rx_descs(sc, rxq);
7060 if (rxq->rxq_lock)
7061 mutex_obj_free(rxq->rxq_lock);
7062 }
7063
7064 for (i = 0; i < sc->sc_nqueues; i++) {
7065 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
7066 struct mbuf *m;
7067 #ifdef WM_EVENT_COUNTERS
7068 int j;
7069
7070 WM_Q_EVCNT_DETACH(txq, txsstall, txq, i);
7071 WM_Q_EVCNT_DETACH(txq, txdstall, txq, i);
7072 WM_Q_EVCNT_DETACH(txq, fifo_stall, txq, i);
7073 WM_Q_EVCNT_DETACH(txq, txdw, txq, i);
7074 WM_Q_EVCNT_DETACH(txq, txqe, txq, i);
7075 WM_Q_EVCNT_DETACH(txq, ipsum, txq, i);
7076 WM_Q_EVCNT_DETACH(txq, tusum, txq, i);
7077 WM_Q_EVCNT_DETACH(txq, tusum6, txq, i);
7078 WM_Q_EVCNT_DETACH(txq, tso, txq, i);
7079 WM_Q_EVCNT_DETACH(txq, tso6, txq, i);
7080 WM_Q_EVCNT_DETACH(txq, tsopain, txq, i);
7081
7082 for (j = 0; j < WM_NTXSEGS; j++)
7083 evcnt_detach(&txq->txq_ev_txseg[j]);
7084
7085 WM_Q_EVCNT_DETACH(txq, pcqdrop, txq, i);
7086 WM_Q_EVCNT_DETACH(txq, descdrop, txq, i);
7087 WM_Q_EVCNT_DETACH(txq, toomanyseg, txq, i);
7088 WM_Q_EVCNT_DETACH(txq, defrag, txq, i);
7089 WM_Q_EVCNT_DETACH(txq, underrun, txq, i);
7090 WM_Q_EVCNT_DETACH(txq, skipcontext, txq, i);
7091 #endif /* WM_EVENT_COUNTERS */
7092
7093 /* Drain txq_interq */
7094 while ((m = pcq_get(txq->txq_interq)) != NULL)
7095 m_freem(m);
7096 pcq_destroy(txq->txq_interq);
7097
7098 wm_free_tx_buffer(sc, txq);
7099 wm_free_tx_descs(sc, txq);
7100 if (txq->txq_lock)
7101 mutex_obj_free(txq->txq_lock);
7102 }
7103
7104 kmem_free(sc->sc_queue, sizeof(struct wm_queue) * sc->sc_nqueues);
7105 }
7106
7107 static void
7108 wm_init_tx_descs(struct wm_softc *sc __unused, struct wm_txqueue *txq)
7109 {
7110
7111 KASSERT(mutex_owned(txq->txq_lock));
7112
7113 /* Initialize the transmit descriptor ring. */
7114 memset(txq->txq_descs, 0, WM_TXDESCS_SIZE(txq));
7115 wm_cdtxsync(txq, 0, WM_NTXDESC(txq),
7116 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
7117 txq->txq_free = WM_NTXDESC(txq);
7118 txq->txq_next = 0;
7119 }
7120
7121 static void
7122 wm_init_tx_regs(struct wm_softc *sc, struct wm_queue *wmq,
7123 struct wm_txqueue *txq)
7124 {
7125
7126 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
7127 device_xname(sc->sc_dev), __func__));
7128 KASSERT(mutex_owned(txq->txq_lock));
7129
7130 if (sc->sc_type < WM_T_82543) {
7131 CSR_WRITE(sc, WMREG_OLD_TDBAH, WM_CDTXADDR_HI(txq, 0));
7132 CSR_WRITE(sc, WMREG_OLD_TDBAL, WM_CDTXADDR_LO(txq, 0));
7133 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCS_SIZE(txq));
7134 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
7135 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
7136 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
7137 } else {
7138 int qid = wmq->wmq_id;
7139
7140 CSR_WRITE(sc, WMREG_TDBAH(qid), WM_CDTXADDR_HI(txq, 0));
7141 CSR_WRITE(sc, WMREG_TDBAL(qid), WM_CDTXADDR_LO(txq, 0));
7142 CSR_WRITE(sc, WMREG_TDLEN(qid), WM_TXDESCS_SIZE(txq));
7143 CSR_WRITE(sc, WMREG_TDH(qid), 0);
7144
7145 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
7146 /*
7147 * Don't write TDT before TCTL.EN is set.
7148 * See the document.
7149 */
7150 CSR_WRITE(sc, WMREG_TXDCTL(qid), TXDCTL_QUEUE_ENABLE
7151 | TXDCTL_PTHRESH(0) | TXDCTL_HTHRESH(0)
7152 | TXDCTL_WTHRESH(0));
7153 else {
7154 /* XXX should update with AIM? */
7155 CSR_WRITE(sc, WMREG_TIDV, wmq->wmq_itr / 4);
7156 if (sc->sc_type >= WM_T_82540) {
7157 /* Should be the same */
7158 CSR_WRITE(sc, WMREG_TADV, wmq->wmq_itr / 4);
7159 }
7160
7161 CSR_WRITE(sc, WMREG_TDT(qid), 0);
7162 CSR_WRITE(sc, WMREG_TXDCTL(qid), TXDCTL_PTHRESH(0) |
7163 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
7164 }
7165 }
7166 }
7167
7168 static void
7169 wm_init_tx_buffer(struct wm_softc *sc __unused, struct wm_txqueue *txq)
7170 {
7171 int i;
7172
7173 KASSERT(mutex_owned(txq->txq_lock));
7174
7175 /* Initialize the transmit job descriptors. */
7176 for (i = 0; i < WM_TXQUEUELEN(txq); i++)
7177 txq->txq_soft[i].txs_mbuf = NULL;
7178 txq->txq_sfree = WM_TXQUEUELEN(txq);
7179 txq->txq_snext = 0;
7180 txq->txq_sdirty = 0;
7181 }
7182
7183 static void
7184 wm_init_tx_queue(struct wm_softc *sc, struct wm_queue *wmq,
7185 struct wm_txqueue *txq)
7186 {
7187
7188 KASSERT(mutex_owned(txq->txq_lock));
7189
7190 /*
7191 * Set up some register offsets that are different between
7192 * the i82542 and the i82543 and later chips.
7193 */
7194 if (sc->sc_type < WM_T_82543)
7195 txq->txq_tdt_reg = WMREG_OLD_TDT;
7196 else
7197 txq->txq_tdt_reg = WMREG_TDT(wmq->wmq_id);
7198
7199 wm_init_tx_descs(sc, txq);
7200 wm_init_tx_regs(sc, wmq, txq);
7201 wm_init_tx_buffer(sc, txq);
7202
7203 txq->txq_flags = 0; /* Clear WM_TXQ_NO_SPACE */
7204 txq->txq_sending = false;
7205 }
7206
7207 static void
7208 wm_init_rx_regs(struct wm_softc *sc, struct wm_queue *wmq,
7209 struct wm_rxqueue *rxq)
7210 {
7211
7212 KASSERT(mutex_owned(rxq->rxq_lock));
7213
7214 /*
7215 * Initialize the receive descriptor and receive job
7216 * descriptor rings.
7217 */
7218 if (sc->sc_type < WM_T_82543) {
7219 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(rxq, 0));
7220 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(rxq, 0));
7221 CSR_WRITE(sc, WMREG_OLD_RDLEN0,
7222 rxq->rxq_descsize * rxq->rxq_ndesc);
7223 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
7224 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
7225 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
7226
7227 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
7228 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
7229 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
7230 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
7231 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
7232 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
7233 } else {
7234 int qid = wmq->wmq_id;
7235
7236 CSR_WRITE(sc, WMREG_RDBAH(qid), WM_CDRXADDR_HI(rxq, 0));
7237 CSR_WRITE(sc, WMREG_RDBAL(qid), WM_CDRXADDR_LO(rxq, 0));
7238 CSR_WRITE(sc, WMREG_RDLEN(qid),
7239 rxq->rxq_descsize * rxq->rxq_ndesc);
7240
7241 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
7242 if (MCLBYTES & ((1 << SRRCTL_BSIZEPKT_SHIFT) - 1))
7243 panic("%s: MCLBYTES %d unsupported for 82575 or higher\n", __func__, MCLBYTES);
7244
7245 /* Currently, support SRRCTL_DESCTYPE_ADV_ONEBUF only. */
7246 CSR_WRITE(sc, WMREG_SRRCTL(qid), SRRCTL_DESCTYPE_ADV_ONEBUF
7247 | (MCLBYTES >> SRRCTL_BSIZEPKT_SHIFT));
7248 CSR_WRITE(sc, WMREG_RXDCTL(qid), RXDCTL_QUEUE_ENABLE
7249 | RXDCTL_PTHRESH(16) | RXDCTL_HTHRESH(8)
7250 | RXDCTL_WTHRESH(1));
7251 CSR_WRITE(sc, WMREG_RDH(qid), 0);
7252 CSR_WRITE(sc, WMREG_RDT(qid), 0);
7253 } else {
7254 CSR_WRITE(sc, WMREG_RDH(qid), 0);
7255 CSR_WRITE(sc, WMREG_RDT(qid), 0);
7256 /* XXX should update with AIM? */
7257 CSR_WRITE(sc, WMREG_RDTR,
7258 (wmq->wmq_itr / 4) | RDTR_FPD);
7259 /* MUST be same */
7260 CSR_WRITE(sc, WMREG_RADV, wmq->wmq_itr / 4);
7261 CSR_WRITE(sc, WMREG_RXDCTL(qid), RXDCTL_PTHRESH(0) |
7262 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
7263 }
7264 }
7265 }
7266
7267 static int
7268 wm_init_rx_buffer(struct wm_softc *sc, struct wm_rxqueue *rxq)
7269 {
7270 struct wm_rxsoft *rxs;
7271 int error, i;
7272
7273 KASSERT(mutex_owned(rxq->rxq_lock));
7274
7275 for (i = 0; i < rxq->rxq_ndesc; i++) {
7276 rxs = &rxq->rxq_soft[i];
7277 if (rxs->rxs_mbuf == NULL) {
7278 if ((error = wm_add_rxbuf(rxq, i)) != 0) {
7279 log(LOG_ERR, "%s: unable to allocate or map "
7280 "rx buffer %d, error = %d\n",
7281 device_xname(sc->sc_dev), i, error);
7282 /*
7283 * XXX Should attempt to run with fewer receive
7284 * XXX buffers instead of just failing.
7285 */
7286 wm_rxdrain(rxq);
7287 return ENOMEM;
7288 }
7289 } else {
7290 /*
7291 * For 82575 and 82576, the RX descriptors must be
7292 * initialized after the setting of RCTL.EN in
7293 * wm_set_filter()
7294 */
7295 if ((sc->sc_flags & WM_F_NEWQUEUE) == 0)
7296 wm_init_rxdesc(rxq, i);
7297 }
7298 }
7299 rxq->rxq_ptr = 0;
7300 rxq->rxq_discard = 0;
7301 WM_RXCHAIN_RESET(rxq);
7302
7303 return 0;
7304 }
7305
7306 static int
7307 wm_init_rx_queue(struct wm_softc *sc, struct wm_queue *wmq,
7308 struct wm_rxqueue *rxq)
7309 {
7310
7311 KASSERT(mutex_owned(rxq->rxq_lock));
7312
7313 /*
7314 * Set up some register offsets that are different between
7315 * the i82542 and the i82543 and later chips.
7316 */
7317 if (sc->sc_type < WM_T_82543)
7318 rxq->rxq_rdt_reg = WMREG_OLD_RDT0;
7319 else
7320 rxq->rxq_rdt_reg = WMREG_RDT(wmq->wmq_id);
7321
7322 wm_init_rx_regs(sc, wmq, rxq);
7323 return wm_init_rx_buffer(sc, rxq);
7324 }
7325
7326 /*
7327 * wm_init_quques:
7328 * Initialize {tx,rx}descs and {tx,rx} buffers
7329 */
7330 static int
7331 wm_init_txrx_queues(struct wm_softc *sc)
7332 {
7333 int i, error = 0;
7334
7335 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
7336 device_xname(sc->sc_dev), __func__));
7337
7338 for (i = 0; i < sc->sc_nqueues; i++) {
7339 struct wm_queue *wmq = &sc->sc_queue[i];
7340 struct wm_txqueue *txq = &wmq->wmq_txq;
7341 struct wm_rxqueue *rxq = &wmq->wmq_rxq;
7342
7343 /*
7344 * TODO
7345 * Currently, use constant variable instead of AIM.
7346 * Furthermore, the interrupt interval of multiqueue which use
7347 * polling mode is less than default value.
7348 * More tuning and AIM are required.
7349 */
7350 if (wm_is_using_multiqueue(sc))
7351 wmq->wmq_itr = 50;
7352 else
7353 wmq->wmq_itr = sc->sc_itr_init;
7354 wmq->wmq_set_itr = true;
7355
7356 mutex_enter(txq->txq_lock);
7357 wm_init_tx_queue(sc, wmq, txq);
7358 mutex_exit(txq->txq_lock);
7359
7360 mutex_enter(rxq->rxq_lock);
7361 error = wm_init_rx_queue(sc, wmq, rxq);
7362 mutex_exit(rxq->rxq_lock);
7363 if (error)
7364 break;
7365 }
7366
7367 return error;
7368 }
7369
7370 /*
7371 * wm_tx_offload:
7372 *
7373 * Set up TCP/IP checksumming parameters for the
7374 * specified packet.
7375 */
7376 static void
7377 wm_tx_offload(struct wm_softc *sc, struct wm_txqueue *txq,
7378 struct wm_txsoft *txs, uint32_t *cmdp, uint8_t *fieldsp)
7379 {
7380 struct mbuf *m0 = txs->txs_mbuf;
7381 struct livengood_tcpip_ctxdesc *t;
7382 uint32_t ipcs, tucs, cmd, cmdlen, seg;
7383 uint32_t ipcse;
7384 struct ether_header *eh;
7385 int offset, iphl;
7386 uint8_t fields;
7387
7388 /*
7389 * XXX It would be nice if the mbuf pkthdr had offset
7390 * fields for the protocol headers.
7391 */
7392
7393 eh = mtod(m0, struct ether_header *);
7394 switch (htons(eh->ether_type)) {
7395 case ETHERTYPE_IP:
7396 case ETHERTYPE_IPV6:
7397 offset = ETHER_HDR_LEN;
7398 break;
7399
7400 case ETHERTYPE_VLAN:
7401 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
7402 break;
7403
7404 default:
7405 /* Don't support this protocol or encapsulation. */
7406 txq->txq_last_hw_cmd = txq->txq_last_hw_fields = 0;
7407 txq->txq_last_hw_ipcs = 0;
7408 txq->txq_last_hw_tucs = 0;
7409 *fieldsp = 0;
7410 *cmdp = 0;
7411 return;
7412 }
7413
7414 if ((m0->m_pkthdr.csum_flags &
7415 (M_CSUM_TSOv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_IPv4)) != 0) {
7416 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
7417 } else
7418 iphl = M_CSUM_DATA_IPv6_IPHL(m0->m_pkthdr.csum_data);
7419
7420 ipcse = offset + iphl - 1;
7421
7422 cmd = WTX_CMD_DEXT | WTX_DTYP_D;
7423 cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
7424 seg = 0;
7425 fields = 0;
7426
7427 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
7428 int hlen = offset + iphl;
7429 bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
7430
7431 if (__predict_false(m0->m_len <
7432 (hlen + sizeof(struct tcphdr)))) {
7433 /*
7434 * TCP/IP headers are not in the first mbuf; we need
7435 * to do this the slow and painful way. Let's just
7436 * hope this doesn't happen very often.
7437 */
7438 struct tcphdr th;
7439
7440 WM_Q_EVCNT_INCR(txq, tsopain);
7441
7442 m_copydata(m0, hlen, sizeof(th), &th);
7443 if (v4) {
7444 struct ip ip;
7445
7446 m_copydata(m0, offset, sizeof(ip), &ip);
7447 ip.ip_len = 0;
7448 m_copyback(m0,
7449 offset + offsetof(struct ip, ip_len),
7450 sizeof(ip.ip_len), &ip.ip_len);
7451 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
7452 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
7453 } else {
7454 struct ip6_hdr ip6;
7455
7456 m_copydata(m0, offset, sizeof(ip6), &ip6);
7457 ip6.ip6_plen = 0;
7458 m_copyback(m0,
7459 offset + offsetof(struct ip6_hdr, ip6_plen),
7460 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
7461 th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
7462 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
7463 }
7464 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
7465 sizeof(th.th_sum), &th.th_sum);
7466
7467 hlen += th.th_off << 2;
7468 } else {
7469 /*
7470 * TCP/IP headers are in the first mbuf; we can do
7471 * this the easy way.
7472 */
7473 struct tcphdr *th;
7474
7475 if (v4) {
7476 struct ip *ip =
7477 (void *)(mtod(m0, char *) + offset);
7478 th = (void *)(mtod(m0, char *) + hlen);
7479
7480 ip->ip_len = 0;
7481 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
7482 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
7483 } else {
7484 struct ip6_hdr *ip6 =
7485 (void *)(mtod(m0, char *) + offset);
7486 th = (void *)(mtod(m0, char *) + hlen);
7487
7488 ip6->ip6_plen = 0;
7489 th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
7490 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
7491 }
7492 hlen += th->th_off << 2;
7493 }
7494
7495 if (v4) {
7496 WM_Q_EVCNT_INCR(txq, tso);
7497 cmdlen |= WTX_TCPIP_CMD_IP;
7498 } else {
7499 WM_Q_EVCNT_INCR(txq, tso6);
7500 ipcse = 0;
7501 }
7502 cmd |= WTX_TCPIP_CMD_TSE;
7503 cmdlen |= WTX_TCPIP_CMD_TSE |
7504 WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
7505 seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
7506 WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
7507 }
7508
7509 /*
7510 * NOTE: Even if we're not using the IP or TCP/UDP checksum
7511 * offload feature, if we load the context descriptor, we
7512 * MUST provide valid values for IPCSS and TUCSS fields.
7513 */
7514
7515 ipcs = WTX_TCPIP_IPCSS(offset) |
7516 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
7517 WTX_TCPIP_IPCSE(ipcse);
7518 if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4 | M_CSUM_TSOv4)) {
7519 WM_Q_EVCNT_INCR(txq, ipsum);
7520 fields |= WTX_IXSM;
7521 }
7522
7523 offset += iphl;
7524
7525 if (m0->m_pkthdr.csum_flags &
7526 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TSOv4)) {
7527 WM_Q_EVCNT_INCR(txq, tusum);
7528 fields |= WTX_TXSM;
7529 tucs = WTX_TCPIP_TUCSS(offset) |
7530 WTX_TCPIP_TUCSO(offset +
7531 M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
7532 WTX_TCPIP_TUCSE(0) /* Rest of packet */;
7533 } else if ((m0->m_pkthdr.csum_flags &
7534 (M_CSUM_TCPv6 | M_CSUM_UDPv6 | M_CSUM_TSOv6)) != 0) {
7535 WM_Q_EVCNT_INCR(txq, tusum6);
7536 fields |= WTX_TXSM;
7537 tucs = WTX_TCPIP_TUCSS(offset) |
7538 WTX_TCPIP_TUCSO(offset +
7539 M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
7540 WTX_TCPIP_TUCSE(0) /* Rest of packet */;
7541 } else {
7542 /* Just initialize it to a valid TCP context. */
7543 tucs = WTX_TCPIP_TUCSS(offset) |
7544 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
7545 WTX_TCPIP_TUCSE(0) /* Rest of packet */;
7546 }
7547
7548 *cmdp = cmd;
7549 *fieldsp = fields;
7550
7551 /*
7552 * We don't have to write context descriptor for every packet
7553 * except for 82574. For 82574, we must write context descriptor
7554 * for every packet when we use two descriptor queues.
7555 *
7556 * The 82574L can only remember the *last* context used
7557 * regardless of queue that it was use for. We cannot reuse
7558 * contexts on this hardware platform and must generate a new
7559 * context every time. 82574L hardware spec, section 7.2.6,
7560 * second note.
7561 *
7562 * Setting up new checksum offload context for every
7563 * frames takes a lot of processing time for hardware.
7564 * This also reduces performance a lot for small sized
7565 * frames so avoid it if driver can use previously
7566 * configured checksum offload context.
7567 * For TSO, in theory we can use the same TSO context if and only if
7568 * frame is the same type(IP/TCP) and the same MSS. However
7569 * checking whether a frame has the same IP/TCP structure is
7570 * hard thing so just ignore that and always restablish a
7571 * new TSO context.
7572 */
7573 KASSERT(!wm_is_using_multiqueue(sc));
7574 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) == 0) {
7575 if (txq->txq_last_hw_cmd == cmd &&
7576 txq->txq_last_hw_fields == fields &&
7577 txq->txq_last_hw_ipcs == (ipcs & 0xffff) &&
7578 txq->txq_last_hw_tucs == (tucs & 0xffff)) {
7579 WM_Q_EVCNT_INCR(txq, skipcontext);
7580 return;
7581 }
7582 }
7583
7584 txq->txq_last_hw_cmd = cmd;
7585 txq->txq_last_hw_fields = fields;
7586 txq->txq_last_hw_ipcs = (ipcs & 0xffff);
7587 txq->txq_last_hw_tucs = (tucs & 0xffff);
7588
7589 /* Fill in the context descriptor. */
7590 t = (struct livengood_tcpip_ctxdesc *)
7591 &txq->txq_descs[txq->txq_next];
7592 t->tcpip_ipcs = htole32(ipcs);
7593 t->tcpip_tucs = htole32(tucs);
7594 t->tcpip_cmdlen = htole32(cmdlen);
7595 t->tcpip_seg = htole32(seg);
7596 wm_cdtxsync(txq, txq->txq_next, 1, BUS_DMASYNC_PREWRITE);
7597
7598 txq->txq_next = WM_NEXTTX(txq, txq->txq_next);
7599 txs->txs_ndesc++;
7600 }
7601
7602 static inline int
7603 wm_select_txqueue(struct ifnet *ifp, struct mbuf *m)
7604 {
7605 struct wm_softc *sc = ifp->if_softc;
7606 u_int cpuid = cpu_index(curcpu());
7607
7608 /*
7609 * Currently, simple distribute strategy.
7610 * TODO:
7611 * distribute by flowid(RSS has value).
7612 */
7613 return ((cpuid + ncpu - sc->sc_affinity_offset) % ncpu) % sc->sc_nqueues;
7614 }
7615
7616 /*
7617 * wm_start: [ifnet interface function]
7618 *
7619 * Start packet transmission on the interface.
7620 */
7621 static void
7622 wm_start(struct ifnet *ifp)
7623 {
7624 struct wm_softc *sc = ifp->if_softc;
7625 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
7626
7627 #ifdef WM_MPSAFE
7628 KASSERT(if_is_mpsafe(ifp));
7629 #endif
7630 /*
7631 * if_obytes and if_omcasts are added in if_transmit()@if.c.
7632 */
7633
7634 mutex_enter(txq->txq_lock);
7635 if (!txq->txq_stopping)
7636 wm_start_locked(ifp);
7637 mutex_exit(txq->txq_lock);
7638 }
7639
7640 static void
7641 wm_start_locked(struct ifnet *ifp)
7642 {
7643 struct wm_softc *sc = ifp->if_softc;
7644 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
7645
7646 wm_send_common_locked(ifp, txq, false);
7647 }
7648
7649 static int
7650 wm_transmit(struct ifnet *ifp, struct mbuf *m)
7651 {
7652 int qid;
7653 struct wm_softc *sc = ifp->if_softc;
7654 struct wm_txqueue *txq;
7655
7656 qid = wm_select_txqueue(ifp, m);
7657 txq = &sc->sc_queue[qid].wmq_txq;
7658
7659 if (__predict_false(!pcq_put(txq->txq_interq, m))) {
7660 m_freem(m);
7661 WM_Q_EVCNT_INCR(txq, pcqdrop);
7662 return ENOBUFS;
7663 }
7664
7665 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
7666 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
7667 if (m->m_flags & M_MCAST)
7668 if_statinc_ref(nsr, if_omcasts);
7669 IF_STAT_PUTREF(ifp);
7670
7671 if (mutex_tryenter(txq->txq_lock)) {
7672 if (!txq->txq_stopping)
7673 wm_transmit_locked(ifp, txq);
7674 mutex_exit(txq->txq_lock);
7675 }
7676
7677 return 0;
7678 }
7679
7680 static void
7681 wm_transmit_locked(struct ifnet *ifp, struct wm_txqueue *txq)
7682 {
7683
7684 wm_send_common_locked(ifp, txq, true);
7685 }
7686
7687 static void
7688 wm_send_common_locked(struct ifnet *ifp, struct wm_txqueue *txq,
7689 bool is_transmit)
7690 {
7691 struct wm_softc *sc = ifp->if_softc;
7692 struct mbuf *m0;
7693 struct wm_txsoft *txs;
7694 bus_dmamap_t dmamap;
7695 int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
7696 bus_addr_t curaddr;
7697 bus_size_t seglen, curlen;
7698 uint32_t cksumcmd;
7699 uint8_t cksumfields;
7700 bool remap = true;
7701
7702 KASSERT(mutex_owned(txq->txq_lock));
7703
7704 if ((ifp->if_flags & IFF_RUNNING) == 0)
7705 return;
7706 if ((txq->txq_flags & WM_TXQ_NO_SPACE) != 0)
7707 return;
7708
7709 /* Remember the previous number of free descriptors. */
7710 ofree = txq->txq_free;
7711
7712 /*
7713 * Loop through the send queue, setting up transmit descriptors
7714 * until we drain the queue, or use up all available transmit
7715 * descriptors.
7716 */
7717 for (;;) {
7718 m0 = NULL;
7719
7720 /* Get a work queue entry. */
7721 if (txq->txq_sfree < WM_TXQUEUE_GC(txq)) {
7722 wm_txeof(txq, UINT_MAX);
7723 if (txq->txq_sfree == 0) {
7724 DPRINTF(WM_DEBUG_TX,
7725 ("%s: TX: no free job descriptors\n",
7726 device_xname(sc->sc_dev)));
7727 WM_Q_EVCNT_INCR(txq, txsstall);
7728 break;
7729 }
7730 }
7731
7732 /* Grab a packet off the queue. */
7733 if (is_transmit)
7734 m0 = pcq_get(txq->txq_interq);
7735 else
7736 IFQ_DEQUEUE(&ifp->if_snd, m0);
7737 if (m0 == NULL)
7738 break;
7739
7740 DPRINTF(WM_DEBUG_TX,
7741 ("%s: TX: have packet to transmit: %p\n",
7742 device_xname(sc->sc_dev), m0));
7743
7744 txs = &txq->txq_soft[txq->txq_snext];
7745 dmamap = txs->txs_dmamap;
7746
7747 use_tso = (m0->m_pkthdr.csum_flags &
7748 (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0;
7749
7750 /*
7751 * So says the Linux driver:
7752 * The controller does a simple calculation to make sure
7753 * there is enough room in the FIFO before initiating the
7754 * DMA for each buffer. The calc is:
7755 * 4 = ceil(buffer len / MSS)
7756 * To make sure we don't overrun the FIFO, adjust the max
7757 * buffer len if the MSS drops.
7758 */
7759 dmamap->dm_maxsegsz =
7760 (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
7761 ? m0->m_pkthdr.segsz << 2
7762 : WTX_MAX_LEN;
7763
7764 /*
7765 * Load the DMA map. If this fails, the packet either
7766 * didn't fit in the allotted number of segments, or we
7767 * were short on resources. For the too-many-segments
7768 * case, we simply report an error and drop the packet,
7769 * since we can't sanely copy a jumbo packet to a single
7770 * buffer.
7771 */
7772 retry:
7773 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
7774 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
7775 if (__predict_false(error)) {
7776 if (error == EFBIG) {
7777 if (remap == true) {
7778 struct mbuf *m;
7779
7780 remap = false;
7781 m = m_defrag(m0, M_NOWAIT);
7782 if (m != NULL) {
7783 WM_Q_EVCNT_INCR(txq, defrag);
7784 m0 = m;
7785 goto retry;
7786 }
7787 }
7788 WM_Q_EVCNT_INCR(txq, toomanyseg);
7789 log(LOG_ERR, "%s: Tx packet consumes too many "
7790 "DMA segments, dropping...\n",
7791 device_xname(sc->sc_dev));
7792 wm_dump_mbuf_chain(sc, m0);
7793 m_freem(m0);
7794 continue;
7795 }
7796 /* Short on resources, just stop for now. */
7797 DPRINTF(WM_DEBUG_TX,
7798 ("%s: TX: dmamap load failed: %d\n",
7799 device_xname(sc->sc_dev), error));
7800 break;
7801 }
7802
7803 segs_needed = dmamap->dm_nsegs;
7804 if (use_tso) {
7805 /* For sentinel descriptor; see below. */
7806 segs_needed++;
7807 }
7808
7809 /*
7810 * Ensure we have enough descriptors free to describe
7811 * the packet. Note, we always reserve one descriptor
7812 * at the end of the ring due to the semantics of the
7813 * TDT register, plus one more in the event we need
7814 * to load offload context.
7815 */
7816 if (segs_needed > txq->txq_free - 2) {
7817 /*
7818 * Not enough free descriptors to transmit this
7819 * packet. We haven't committed anything yet,
7820 * so just unload the DMA map, put the packet
7821 * pack on the queue, and punt. Notify the upper
7822 * layer that there are no more slots left.
7823 */
7824 DPRINTF(WM_DEBUG_TX,
7825 ("%s: TX: need %d (%d) descriptors, have %d\n",
7826 device_xname(sc->sc_dev), dmamap->dm_nsegs,
7827 segs_needed, txq->txq_free - 1));
7828 txq->txq_flags |= WM_TXQ_NO_SPACE;
7829 bus_dmamap_unload(sc->sc_dmat, dmamap);
7830 WM_Q_EVCNT_INCR(txq, txdstall);
7831 break;
7832 }
7833
7834 /*
7835 * Check for 82547 Tx FIFO bug. We need to do this
7836 * once we know we can transmit the packet, since we
7837 * do some internal FIFO space accounting here.
7838 */
7839 if (sc->sc_type == WM_T_82547 &&
7840 wm_82547_txfifo_bugchk(sc, m0)) {
7841 DPRINTF(WM_DEBUG_TX,
7842 ("%s: TX: 82547 Tx FIFO bug detected\n",
7843 device_xname(sc->sc_dev)));
7844 txq->txq_flags |= WM_TXQ_NO_SPACE;
7845 bus_dmamap_unload(sc->sc_dmat, dmamap);
7846 WM_Q_EVCNT_INCR(txq, fifo_stall);
7847 break;
7848 }
7849
7850 /* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */
7851
7852 DPRINTF(WM_DEBUG_TX,
7853 ("%s: TX: packet has %d (%d) DMA segments\n",
7854 device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed));
7855
7856 WM_EVCNT_INCR(&txq->txq_ev_txseg[dmamap->dm_nsegs - 1]);
7857
7858 /*
7859 * Store a pointer to the packet so that we can free it
7860 * later.
7861 *
7862 * Initially, we consider the number of descriptors the
7863 * packet uses the number of DMA segments. This may be
7864 * incremented by 1 if we do checksum offload (a descriptor
7865 * is used to set the checksum context).
7866 */
7867 txs->txs_mbuf = m0;
7868 txs->txs_firstdesc = txq->txq_next;
7869 txs->txs_ndesc = segs_needed;
7870
7871 /* Set up offload parameters for this packet. */
7872 if (m0->m_pkthdr.csum_flags &
7873 (M_CSUM_TSOv4 | M_CSUM_TSOv6 |
7874 M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4 |
7875 M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
7876 wm_tx_offload(sc, txq, txs, &cksumcmd, &cksumfields);
7877 } else {
7878 txq->txq_last_hw_cmd = txq->txq_last_hw_fields = 0;
7879 txq->txq_last_hw_ipcs = txq->txq_last_hw_tucs = 0;
7880 cksumcmd = 0;
7881 cksumfields = 0;
7882 }
7883
7884 cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
7885
7886 /* Sync the DMA map. */
7887 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
7888 BUS_DMASYNC_PREWRITE);
7889
7890 /* Initialize the transmit descriptor. */
7891 for (nexttx = txq->txq_next, seg = 0;
7892 seg < dmamap->dm_nsegs; seg++) {
7893 for (seglen = dmamap->dm_segs[seg].ds_len,
7894 curaddr = dmamap->dm_segs[seg].ds_addr;
7895 seglen != 0;
7896 curaddr += curlen, seglen -= curlen,
7897 nexttx = WM_NEXTTX(txq, nexttx)) {
7898 curlen = seglen;
7899
7900 /*
7901 * So says the Linux driver:
7902 * Work around for premature descriptor
7903 * write-backs in TSO mode. Append a
7904 * 4-byte sentinel descriptor.
7905 */
7906 if (use_tso && seg == dmamap->dm_nsegs - 1 &&
7907 curlen > 8)
7908 curlen -= 4;
7909
7910 wm_set_dma_addr(
7911 &txq->txq_descs[nexttx].wtx_addr, curaddr);
7912 txq->txq_descs[nexttx].wtx_cmdlen
7913 = htole32(cksumcmd | curlen);
7914 txq->txq_descs[nexttx].wtx_fields.wtxu_status
7915 = 0;
7916 txq->txq_descs[nexttx].wtx_fields.wtxu_options
7917 = cksumfields;
7918 txq->txq_descs[nexttx].wtx_fields.wtxu_vlan =0;
7919 lasttx = nexttx;
7920
7921 DPRINTF(WM_DEBUG_TX,
7922 ("%s: TX: desc %d: low %#" PRIx64 ", "
7923 "len %#04zx\n",
7924 device_xname(sc->sc_dev), nexttx,
7925 (uint64_t)curaddr, curlen));
7926 }
7927 }
7928
7929 KASSERT(lasttx != -1);
7930
7931 /*
7932 * Set up the command byte on the last descriptor of
7933 * the packet. If we're in the interrupt delay window,
7934 * delay the interrupt.
7935 */
7936 txq->txq_descs[lasttx].wtx_cmdlen |=
7937 htole32(WTX_CMD_EOP | WTX_CMD_RS);
7938
7939 /*
7940 * If VLANs are enabled and the packet has a VLAN tag, set
7941 * up the descriptor to encapsulate the packet for us.
7942 *
7943 * This is only valid on the last descriptor of the packet.
7944 */
7945 if (vlan_has_tag(m0)) {
7946 txq->txq_descs[lasttx].wtx_cmdlen |=
7947 htole32(WTX_CMD_VLE);
7948 txq->txq_descs[lasttx].wtx_fields.wtxu_vlan
7949 = htole16(vlan_get_tag(m0));
7950 }
7951
7952 txs->txs_lastdesc = lasttx;
7953
7954 DPRINTF(WM_DEBUG_TX,
7955 ("%s: TX: desc %d: cmdlen 0x%08x\n",
7956 device_xname(sc->sc_dev),
7957 lasttx, le32toh(txq->txq_descs[lasttx].wtx_cmdlen)));
7958
7959 /* Sync the descriptors we're using. */
7960 wm_cdtxsync(txq, txq->txq_next, txs->txs_ndesc,
7961 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
7962
7963 /* Give the packet to the chip. */
7964 CSR_WRITE(sc, txq->txq_tdt_reg, nexttx);
7965
7966 DPRINTF(WM_DEBUG_TX,
7967 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
7968
7969 DPRINTF(WM_DEBUG_TX,
7970 ("%s: TX: finished transmitting packet, job %d\n",
7971 device_xname(sc->sc_dev), txq->txq_snext));
7972
7973 /* Advance the tx pointer. */
7974 txq->txq_free -= txs->txs_ndesc;
7975 txq->txq_next = nexttx;
7976
7977 txq->txq_sfree--;
7978 txq->txq_snext = WM_NEXTTXS(txq, txq->txq_snext);
7979
7980 /* Pass the packet to any BPF listeners. */
7981 bpf_mtap(ifp, m0, BPF_D_OUT);
7982 }
7983
7984 if (m0 != NULL) {
7985 txq->txq_flags |= WM_TXQ_NO_SPACE;
7986 WM_Q_EVCNT_INCR(txq, descdrop);
7987 DPRINTF(WM_DEBUG_TX, ("%s: TX: error after IFQ_DEQUEUE\n",
7988 __func__));
7989 m_freem(m0);
7990 }
7991
7992 if (txq->txq_sfree == 0 || txq->txq_free <= 2) {
7993 /* No more slots; notify upper layer. */
7994 txq->txq_flags |= WM_TXQ_NO_SPACE;
7995 }
7996
7997 if (txq->txq_free != ofree) {
7998 /* Set a watchdog timer in case the chip flakes out. */
7999 txq->txq_lastsent = time_uptime;
8000 txq->txq_sending = true;
8001 }
8002 }
8003
8004 /*
8005 * wm_nq_tx_offload:
8006 *
8007 * Set up TCP/IP checksumming parameters for the
8008 * specified packet, for NEWQUEUE devices
8009 */
8010 static void
8011 wm_nq_tx_offload(struct wm_softc *sc, struct wm_txqueue *txq,
8012 struct wm_txsoft *txs, uint32_t *cmdlenp, uint32_t *fieldsp, bool *do_csum)
8013 {
8014 struct mbuf *m0 = txs->txs_mbuf;
8015 uint32_t vl_len, mssidx, cmdc;
8016 struct ether_header *eh;
8017 int offset, iphl;
8018
8019 /*
8020 * XXX It would be nice if the mbuf pkthdr had offset
8021 * fields for the protocol headers.
8022 */
8023 *cmdlenp = 0;
8024 *fieldsp = 0;
8025
8026 eh = mtod(m0, struct ether_header *);
8027 switch (htons(eh->ether_type)) {
8028 case ETHERTYPE_IP:
8029 case ETHERTYPE_IPV6:
8030 offset = ETHER_HDR_LEN;
8031 break;
8032
8033 case ETHERTYPE_VLAN:
8034 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
8035 break;
8036
8037 default:
8038 /* Don't support this protocol or encapsulation. */
8039 *do_csum = false;
8040 return;
8041 }
8042 *do_csum = true;
8043 *cmdlenp = NQTX_DTYP_D | NQTX_CMD_DEXT | NQTX_CMD_IFCS;
8044 cmdc = NQTX_DTYP_C | NQTX_CMD_DEXT;
8045
8046 vl_len = (offset << NQTXC_VLLEN_MACLEN_SHIFT);
8047 KASSERT((offset & ~NQTXC_VLLEN_MACLEN_MASK) == 0);
8048
8049 if ((m0->m_pkthdr.csum_flags &
8050 (M_CSUM_TSOv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_IPv4)) != 0) {
8051 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
8052 } else {
8053 iphl = M_CSUM_DATA_IPv6_IPHL(m0->m_pkthdr.csum_data);
8054 }
8055 vl_len |= (iphl << NQTXC_VLLEN_IPLEN_SHIFT);
8056 KASSERT((iphl & ~NQTXC_VLLEN_IPLEN_MASK) == 0);
8057
8058 if (vlan_has_tag(m0)) {
8059 vl_len |= ((vlan_get_tag(m0) & NQTXC_VLLEN_VLAN_MASK)
8060 << NQTXC_VLLEN_VLAN_SHIFT);
8061 *cmdlenp |= NQTX_CMD_VLE;
8062 }
8063
8064 mssidx = 0;
8065
8066 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
8067 int hlen = offset + iphl;
8068 int tcp_hlen;
8069 bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
8070
8071 if (__predict_false(m0->m_len <
8072 (hlen + sizeof(struct tcphdr)))) {
8073 /*
8074 * TCP/IP headers are not in the first mbuf; we need
8075 * to do this the slow and painful way. Let's just
8076 * hope this doesn't happen very often.
8077 */
8078 struct tcphdr th;
8079
8080 WM_Q_EVCNT_INCR(txq, tsopain);
8081
8082 m_copydata(m0, hlen, sizeof(th), &th);
8083 if (v4) {
8084 struct ip ip;
8085
8086 m_copydata(m0, offset, sizeof(ip), &ip);
8087 ip.ip_len = 0;
8088 m_copyback(m0,
8089 offset + offsetof(struct ip, ip_len),
8090 sizeof(ip.ip_len), &ip.ip_len);
8091 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
8092 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
8093 } else {
8094 struct ip6_hdr ip6;
8095
8096 m_copydata(m0, offset, sizeof(ip6), &ip6);
8097 ip6.ip6_plen = 0;
8098 m_copyback(m0,
8099 offset + offsetof(struct ip6_hdr, ip6_plen),
8100 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
8101 th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
8102 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
8103 }
8104 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
8105 sizeof(th.th_sum), &th.th_sum);
8106
8107 tcp_hlen = th.th_off << 2;
8108 } else {
8109 /*
8110 * TCP/IP headers are in the first mbuf; we can do
8111 * this the easy way.
8112 */
8113 struct tcphdr *th;
8114
8115 if (v4) {
8116 struct ip *ip =
8117 (void *)(mtod(m0, char *) + offset);
8118 th = (void *)(mtod(m0, char *) + hlen);
8119
8120 ip->ip_len = 0;
8121 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
8122 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
8123 } else {
8124 struct ip6_hdr *ip6 =
8125 (void *)(mtod(m0, char *) + offset);
8126 th = (void *)(mtod(m0, char *) + hlen);
8127
8128 ip6->ip6_plen = 0;
8129 th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
8130 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
8131 }
8132 tcp_hlen = th->th_off << 2;
8133 }
8134 hlen += tcp_hlen;
8135 *cmdlenp |= NQTX_CMD_TSE;
8136
8137 if (v4) {
8138 WM_Q_EVCNT_INCR(txq, tso);
8139 *fieldsp |= NQTXD_FIELDS_IXSM | NQTXD_FIELDS_TUXSM;
8140 } else {
8141 WM_Q_EVCNT_INCR(txq, tso6);
8142 *fieldsp |= NQTXD_FIELDS_TUXSM;
8143 }
8144 *fieldsp |= ((m0->m_pkthdr.len - hlen) << NQTXD_FIELDS_PAYLEN_SHIFT);
8145 KASSERT(((m0->m_pkthdr.len - hlen) & ~NQTXD_FIELDS_PAYLEN_MASK) == 0);
8146 mssidx |= (m0->m_pkthdr.segsz << NQTXC_MSSIDX_MSS_SHIFT);
8147 KASSERT((m0->m_pkthdr.segsz & ~NQTXC_MSSIDX_MSS_MASK) == 0);
8148 mssidx |= (tcp_hlen << NQTXC_MSSIDX_L4LEN_SHIFT);
8149 KASSERT((tcp_hlen & ~NQTXC_MSSIDX_L4LEN_MASK) == 0);
8150 } else {
8151 *fieldsp |= (m0->m_pkthdr.len << NQTXD_FIELDS_PAYLEN_SHIFT);
8152 KASSERT((m0->m_pkthdr.len & ~NQTXD_FIELDS_PAYLEN_MASK) == 0);
8153 }
8154
8155 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
8156 *fieldsp |= NQTXD_FIELDS_IXSM;
8157 cmdc |= NQTXC_CMD_IP4;
8158 }
8159
8160 if (m0->m_pkthdr.csum_flags &
8161 (M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_TSOv4)) {
8162 WM_Q_EVCNT_INCR(txq, tusum);
8163 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_TSOv4))
8164 cmdc |= NQTXC_CMD_TCP;
8165 else
8166 cmdc |= NQTXC_CMD_UDP;
8167
8168 cmdc |= NQTXC_CMD_IP4;
8169 *fieldsp |= NQTXD_FIELDS_TUXSM;
8170 }
8171 if (m0->m_pkthdr.csum_flags &
8172 (M_CSUM_UDPv6 | M_CSUM_TCPv6 | M_CSUM_TSOv6)) {
8173 WM_Q_EVCNT_INCR(txq, tusum6);
8174 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv6 | M_CSUM_TSOv6))
8175 cmdc |= NQTXC_CMD_TCP;
8176 else
8177 cmdc |= NQTXC_CMD_UDP;
8178
8179 cmdc |= NQTXC_CMD_IP6;
8180 *fieldsp |= NQTXD_FIELDS_TUXSM;
8181 }
8182
8183 /*
8184 * We don't have to write context descriptor for every packet to
8185 * NEWQUEUE controllers, that is 82575, 82576, 82580, I350, I354,
8186 * I210 and I211. It is enough to write once per a Tx queue for these
8187 * controllers.
8188 * It would be overhead to write context descriptor for every packet,
8189 * however it does not cause problems.
8190 */
8191 /* Fill in the context descriptor. */
8192 txq->txq_nq_descs[txq->txq_next].nqrx_ctx.nqtxc_vl_len =
8193 htole32(vl_len);
8194 txq->txq_nq_descs[txq->txq_next].nqrx_ctx.nqtxc_sn = 0;
8195 txq->txq_nq_descs[txq->txq_next].nqrx_ctx.nqtxc_cmd =
8196 htole32(cmdc);
8197 txq->txq_nq_descs[txq->txq_next].nqrx_ctx.nqtxc_mssidx =
8198 htole32(mssidx);
8199 wm_cdtxsync(txq, txq->txq_next, 1, BUS_DMASYNC_PREWRITE);
8200 DPRINTF(WM_DEBUG_TX,
8201 ("%s: TX: context desc %d 0x%08x%08x\n", device_xname(sc->sc_dev),
8202 txq->txq_next, 0, vl_len));
8203 DPRINTF(WM_DEBUG_TX, ("\t0x%08x%08x\n", mssidx, cmdc));
8204 txq->txq_next = WM_NEXTTX(txq, txq->txq_next);
8205 txs->txs_ndesc++;
8206 }
8207
8208 /*
8209 * wm_nq_start: [ifnet interface function]
8210 *
8211 * Start packet transmission on the interface for NEWQUEUE devices
8212 */
8213 static void
8214 wm_nq_start(struct ifnet *ifp)
8215 {
8216 struct wm_softc *sc = ifp->if_softc;
8217 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
8218
8219 #ifdef WM_MPSAFE
8220 KASSERT(if_is_mpsafe(ifp));
8221 #endif
8222 /*
8223 * if_obytes and if_omcasts are added in if_transmit()@if.c.
8224 */
8225
8226 mutex_enter(txq->txq_lock);
8227 if (!txq->txq_stopping)
8228 wm_nq_start_locked(ifp);
8229 mutex_exit(txq->txq_lock);
8230 }
8231
8232 static void
8233 wm_nq_start_locked(struct ifnet *ifp)
8234 {
8235 struct wm_softc *sc = ifp->if_softc;
8236 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
8237
8238 wm_nq_send_common_locked(ifp, txq, false);
8239 }
8240
8241 static int
8242 wm_nq_transmit(struct ifnet *ifp, struct mbuf *m)
8243 {
8244 int qid;
8245 struct wm_softc *sc = ifp->if_softc;
8246 struct wm_txqueue *txq;
8247
8248 qid = wm_select_txqueue(ifp, m);
8249 txq = &sc->sc_queue[qid].wmq_txq;
8250
8251 if (__predict_false(!pcq_put(txq->txq_interq, m))) {
8252 m_freem(m);
8253 WM_Q_EVCNT_INCR(txq, pcqdrop);
8254 return ENOBUFS;
8255 }
8256
8257 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
8258 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
8259 if (m->m_flags & M_MCAST)
8260 if_statinc_ref(nsr, if_omcasts);
8261 IF_STAT_PUTREF(ifp);
8262
8263 /*
8264 * The situations which this mutex_tryenter() fails at running time
8265 * are below two patterns.
8266 * (1) contention with interrupt handler(wm_txrxintr_msix())
8267 * (2) contention with deferred if_start softint(wm_handle_queue())
8268 * In the case of (1), the last packet enqueued to txq->txq_interq is
8269 * dequeued by wm_deferred_start_locked(). So, it does not get stuck.
8270 * In the case of (2), the last packet enqueued to txq->txq_interq is
8271 * also dequeued by wm_deferred_start_locked(). So, it does not get
8272 * stuck, either.
8273 */
8274 if (mutex_tryenter(txq->txq_lock)) {
8275 if (!txq->txq_stopping)
8276 wm_nq_transmit_locked(ifp, txq);
8277 mutex_exit(txq->txq_lock);
8278 }
8279
8280 return 0;
8281 }
8282
8283 static void
8284 wm_nq_transmit_locked(struct ifnet *ifp, struct wm_txqueue *txq)
8285 {
8286
8287 wm_nq_send_common_locked(ifp, txq, true);
8288 }
8289
8290 static void
8291 wm_nq_send_common_locked(struct ifnet *ifp, struct wm_txqueue *txq,
8292 bool is_transmit)
8293 {
8294 struct wm_softc *sc = ifp->if_softc;
8295 struct mbuf *m0;
8296 struct wm_txsoft *txs;
8297 bus_dmamap_t dmamap;
8298 int error, nexttx, lasttx = -1, seg, segs_needed;
8299 bool do_csum, sent;
8300 bool remap = true;
8301
8302 KASSERT(mutex_owned(txq->txq_lock));
8303
8304 if ((ifp->if_flags & IFF_RUNNING) == 0)
8305 return;
8306 if ((txq->txq_flags & WM_TXQ_NO_SPACE) != 0)
8307 return;
8308
8309 sent = false;
8310
8311 /*
8312 * Loop through the send queue, setting up transmit descriptors
8313 * until we drain the queue, or use up all available transmit
8314 * descriptors.
8315 */
8316 for (;;) {
8317 m0 = NULL;
8318
8319 /* Get a work queue entry. */
8320 if (txq->txq_sfree < WM_TXQUEUE_GC(txq)) {
8321 wm_txeof(txq, UINT_MAX);
8322 if (txq->txq_sfree == 0) {
8323 DPRINTF(WM_DEBUG_TX,
8324 ("%s: TX: no free job descriptors\n",
8325 device_xname(sc->sc_dev)));
8326 WM_Q_EVCNT_INCR(txq, txsstall);
8327 break;
8328 }
8329 }
8330
8331 /* Grab a packet off the queue. */
8332 if (is_transmit)
8333 m0 = pcq_get(txq->txq_interq);
8334 else
8335 IFQ_DEQUEUE(&ifp->if_snd, m0);
8336 if (m0 == NULL)
8337 break;
8338
8339 DPRINTF(WM_DEBUG_TX,
8340 ("%s: TX: have packet to transmit: %p\n",
8341 device_xname(sc->sc_dev), m0));
8342
8343 txs = &txq->txq_soft[txq->txq_snext];
8344 dmamap = txs->txs_dmamap;
8345
8346 /*
8347 * Load the DMA map. If this fails, the packet either
8348 * didn't fit in the allotted number of segments, or we
8349 * were short on resources. For the too-many-segments
8350 * case, we simply report an error and drop the packet,
8351 * since we can't sanely copy a jumbo packet to a single
8352 * buffer.
8353 */
8354 retry:
8355 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
8356 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
8357 if (__predict_false(error)) {
8358 if (error == EFBIG) {
8359 if (remap == true) {
8360 struct mbuf *m;
8361
8362 remap = false;
8363 m = m_defrag(m0, M_NOWAIT);
8364 if (m != NULL) {
8365 WM_Q_EVCNT_INCR(txq, defrag);
8366 m0 = m;
8367 goto retry;
8368 }
8369 }
8370 WM_Q_EVCNT_INCR(txq, toomanyseg);
8371 log(LOG_ERR, "%s: Tx packet consumes too many "
8372 "DMA segments, dropping...\n",
8373 device_xname(sc->sc_dev));
8374 wm_dump_mbuf_chain(sc, m0);
8375 m_freem(m0);
8376 continue;
8377 }
8378 /* Short on resources, just stop for now. */
8379 DPRINTF(WM_DEBUG_TX,
8380 ("%s: TX: dmamap load failed: %d\n",
8381 device_xname(sc->sc_dev), error));
8382 break;
8383 }
8384
8385 segs_needed = dmamap->dm_nsegs;
8386
8387 /*
8388 * Ensure we have enough descriptors free to describe
8389 * the packet. Note, we always reserve one descriptor
8390 * at the end of the ring due to the semantics of the
8391 * TDT register, plus one more in the event we need
8392 * to load offload context.
8393 */
8394 if (segs_needed > txq->txq_free - 2) {
8395 /*
8396 * Not enough free descriptors to transmit this
8397 * packet. We haven't committed anything yet,
8398 * so just unload the DMA map, put the packet
8399 * pack on the queue, and punt. Notify the upper
8400 * layer that there are no more slots left.
8401 */
8402 DPRINTF(WM_DEBUG_TX,
8403 ("%s: TX: need %d (%d) descriptors, have %d\n",
8404 device_xname(sc->sc_dev), dmamap->dm_nsegs,
8405 segs_needed, txq->txq_free - 1));
8406 txq->txq_flags |= WM_TXQ_NO_SPACE;
8407 bus_dmamap_unload(sc->sc_dmat, dmamap);
8408 WM_Q_EVCNT_INCR(txq, txdstall);
8409 break;
8410 }
8411
8412 /* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */
8413
8414 DPRINTF(WM_DEBUG_TX,
8415 ("%s: TX: packet has %d (%d) DMA segments\n",
8416 device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed));
8417
8418 WM_EVCNT_INCR(&txq->txq_ev_txseg[dmamap->dm_nsegs - 1]);
8419
8420 /*
8421 * Store a pointer to the packet so that we can free it
8422 * later.
8423 *
8424 * Initially, we consider the number of descriptors the
8425 * packet uses the number of DMA segments. This may be
8426 * incremented by 1 if we do checksum offload (a descriptor
8427 * is used to set the checksum context).
8428 */
8429 txs->txs_mbuf = m0;
8430 txs->txs_firstdesc = txq->txq_next;
8431 txs->txs_ndesc = segs_needed;
8432
8433 /* Set up offload parameters for this packet. */
8434 uint32_t cmdlen, fields, dcmdlen;
8435 if (m0->m_pkthdr.csum_flags &
8436 (M_CSUM_TSOv4 | M_CSUM_TSOv6 |
8437 M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4 |
8438 M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
8439 wm_nq_tx_offload(sc, txq, txs, &cmdlen, &fields,
8440 &do_csum);
8441 } else {
8442 do_csum = false;
8443 cmdlen = 0;
8444 fields = 0;
8445 }
8446
8447 /* Sync the DMA map. */
8448 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
8449 BUS_DMASYNC_PREWRITE);
8450
8451 /* Initialize the first transmit descriptor. */
8452 nexttx = txq->txq_next;
8453 if (!do_csum) {
8454 /* Setup a legacy descriptor */
8455 wm_set_dma_addr(&txq->txq_descs[nexttx].wtx_addr,
8456 dmamap->dm_segs[0].ds_addr);
8457 txq->txq_descs[nexttx].wtx_cmdlen =
8458 htole32(WTX_CMD_IFCS | dmamap->dm_segs[0].ds_len);
8459 txq->txq_descs[nexttx].wtx_fields.wtxu_status = 0;
8460 txq->txq_descs[nexttx].wtx_fields.wtxu_options = 0;
8461 if (vlan_has_tag(m0)) {
8462 txq->txq_descs[nexttx].wtx_cmdlen |=
8463 htole32(WTX_CMD_VLE);
8464 txq->txq_descs[nexttx].wtx_fields.wtxu_vlan =
8465 htole16(vlan_get_tag(m0));
8466 } else
8467 txq->txq_descs[nexttx].wtx_fields.wtxu_vlan =0;
8468
8469 dcmdlen = 0;
8470 } else {
8471 /* Setup an advanced data descriptor */
8472 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_addr =
8473 htole64(dmamap->dm_segs[0].ds_addr);
8474 KASSERT((dmamap->dm_segs[0].ds_len & cmdlen) == 0);
8475 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_cmdlen =
8476 htole32(dmamap->dm_segs[0].ds_len | cmdlen);
8477 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_fields =
8478 htole32(fields);
8479 DPRINTF(WM_DEBUG_TX,
8480 ("%s: TX: adv data desc %d 0x%" PRIx64 "\n",
8481 device_xname(sc->sc_dev), nexttx,
8482 (uint64_t)dmamap->dm_segs[0].ds_addr));
8483 DPRINTF(WM_DEBUG_TX,
8484 ("\t 0x%08x%08x\n", fields,
8485 (uint32_t)dmamap->dm_segs[0].ds_len | cmdlen));
8486 dcmdlen = NQTX_DTYP_D | NQTX_CMD_DEXT;
8487 }
8488
8489 lasttx = nexttx;
8490 nexttx = WM_NEXTTX(txq, nexttx);
8491 /*
8492 * Fill in the next descriptors. legacy or advanced format
8493 * is the same here
8494 */
8495 for (seg = 1; seg < dmamap->dm_nsegs;
8496 seg++, nexttx = WM_NEXTTX(txq, nexttx)) {
8497 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_addr =
8498 htole64(dmamap->dm_segs[seg].ds_addr);
8499 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_cmdlen =
8500 htole32(dcmdlen | dmamap->dm_segs[seg].ds_len);
8501 KASSERT((dcmdlen & dmamap->dm_segs[seg].ds_len) == 0);
8502 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_fields = 0;
8503 lasttx = nexttx;
8504
8505 DPRINTF(WM_DEBUG_TX,
8506 ("%s: TX: desc %d: %#" PRIx64 ", len %#04zx\n",
8507 device_xname(sc->sc_dev), nexttx,
8508 (uint64_t)dmamap->dm_segs[seg].ds_addr,
8509 dmamap->dm_segs[seg].ds_len));
8510 }
8511
8512 KASSERT(lasttx != -1);
8513
8514 /*
8515 * Set up the command byte on the last descriptor of
8516 * the packet. If we're in the interrupt delay window,
8517 * delay the interrupt.
8518 */
8519 KASSERT((WTX_CMD_EOP | WTX_CMD_RS) ==
8520 (NQTX_CMD_EOP | NQTX_CMD_RS));
8521 txq->txq_descs[lasttx].wtx_cmdlen |=
8522 htole32(WTX_CMD_EOP | WTX_CMD_RS);
8523
8524 txs->txs_lastdesc = lasttx;
8525
8526 DPRINTF(WM_DEBUG_TX, ("%s: TX: desc %d: cmdlen 0x%08x\n",
8527 device_xname(sc->sc_dev),
8528 lasttx, le32toh(txq->txq_descs[lasttx].wtx_cmdlen)));
8529
8530 /* Sync the descriptors we're using. */
8531 wm_cdtxsync(txq, txq->txq_next, txs->txs_ndesc,
8532 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
8533
8534 /* Give the packet to the chip. */
8535 CSR_WRITE(sc, txq->txq_tdt_reg, nexttx);
8536 sent = true;
8537
8538 DPRINTF(WM_DEBUG_TX,
8539 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
8540
8541 DPRINTF(WM_DEBUG_TX,
8542 ("%s: TX: finished transmitting packet, job %d\n",
8543 device_xname(sc->sc_dev), txq->txq_snext));
8544
8545 /* Advance the tx pointer. */
8546 txq->txq_free -= txs->txs_ndesc;
8547 txq->txq_next = nexttx;
8548
8549 txq->txq_sfree--;
8550 txq->txq_snext = WM_NEXTTXS(txq, txq->txq_snext);
8551
8552 /* Pass the packet to any BPF listeners. */
8553 bpf_mtap(ifp, m0, BPF_D_OUT);
8554 }
8555
8556 if (m0 != NULL) {
8557 txq->txq_flags |= WM_TXQ_NO_SPACE;
8558 WM_Q_EVCNT_INCR(txq, descdrop);
8559 DPRINTF(WM_DEBUG_TX, ("%s: TX: error after IFQ_DEQUEUE\n",
8560 __func__));
8561 m_freem(m0);
8562 }
8563
8564 if (txq->txq_sfree == 0 || txq->txq_free <= 2) {
8565 /* No more slots; notify upper layer. */
8566 txq->txq_flags |= WM_TXQ_NO_SPACE;
8567 }
8568
8569 if (sent) {
8570 /* Set a watchdog timer in case the chip flakes out. */
8571 txq->txq_lastsent = time_uptime;
8572 txq->txq_sending = true;
8573 }
8574 }
8575
8576 static void
8577 wm_deferred_start_locked(struct wm_txqueue *txq)
8578 {
8579 struct wm_softc *sc = txq->txq_sc;
8580 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
8581 struct wm_queue *wmq = container_of(txq, struct wm_queue, wmq_txq);
8582 int qid = wmq->wmq_id;
8583
8584 KASSERT(mutex_owned(txq->txq_lock));
8585
8586 if (txq->txq_stopping) {
8587 mutex_exit(txq->txq_lock);
8588 return;
8589 }
8590
8591 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
8592 /* XXX need for ALTQ or one CPU system */
8593 if (qid == 0)
8594 wm_nq_start_locked(ifp);
8595 wm_nq_transmit_locked(ifp, txq);
8596 } else {
8597 /* XXX need for ALTQ or one CPU system */
8598 if (qid == 0)
8599 wm_start_locked(ifp);
8600 wm_transmit_locked(ifp, txq);
8601 }
8602 }
8603
8604 /* Interrupt */
8605
8606 /*
8607 * wm_txeof:
8608 *
8609 * Helper; handle transmit interrupts.
8610 */
8611 static bool
8612 wm_txeof(struct wm_txqueue *txq, u_int limit)
8613 {
8614 struct wm_softc *sc = txq->txq_sc;
8615 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
8616 struct wm_txsoft *txs;
8617 int count = 0;
8618 int i;
8619 uint8_t status;
8620 bool more = false;
8621
8622 KASSERT(mutex_owned(txq->txq_lock));
8623
8624 if (txq->txq_stopping)
8625 return false;
8626
8627 txq->txq_flags &= ~WM_TXQ_NO_SPACE;
8628
8629 /*
8630 * Go through the Tx list and free mbufs for those
8631 * frames which have been transmitted.
8632 */
8633 for (i = txq->txq_sdirty; txq->txq_sfree != WM_TXQUEUELEN(txq);
8634 i = WM_NEXTTXS(txq, i), txq->txq_sfree++) {
8635 if (limit-- == 0) {
8636 more = true;
8637 DPRINTF(WM_DEBUG_TX,
8638 ("%s: TX: loop limited, job %d is not processed\n",
8639 device_xname(sc->sc_dev), i));
8640 break;
8641 }
8642
8643 txs = &txq->txq_soft[i];
8644
8645 DPRINTF(WM_DEBUG_TX, ("%s: TX: checking job %d\n",
8646 device_xname(sc->sc_dev), i));
8647
8648 wm_cdtxsync(txq, txs->txs_firstdesc, txs->txs_ndesc,
8649 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
8650
8651 status =
8652 txq->txq_descs[txs->txs_lastdesc].wtx_fields.wtxu_status;
8653 if ((status & WTX_ST_DD) == 0) {
8654 wm_cdtxsync(txq, txs->txs_lastdesc, 1,
8655 BUS_DMASYNC_PREREAD);
8656 break;
8657 }
8658
8659 count++;
8660 DPRINTF(WM_DEBUG_TX,
8661 ("%s: TX: job %d done: descs %d..%d\n",
8662 device_xname(sc->sc_dev), i, txs->txs_firstdesc,
8663 txs->txs_lastdesc));
8664
8665 /*
8666 * XXX We should probably be using the statistics
8667 * XXX registers, but I don't know if they exist
8668 * XXX on chips before the i82544.
8669 */
8670
8671 #ifdef WM_EVENT_COUNTERS
8672 if (status & WTX_ST_TU)
8673 WM_Q_EVCNT_INCR(txq, underrun);
8674 #endif /* WM_EVENT_COUNTERS */
8675
8676 /*
8677 * 82574 and newer's document says the status field has neither
8678 * EC (Excessive Collision) bit nor LC (Late Collision) bit
8679 * (reserved). Refer "PCIe GbE Controller Open Source Software
8680 * Developer's Manual", 82574 datasheet and newer.
8681 *
8682 * XXX I saw the LC bit was set on I218 even though the media
8683 * was full duplex, so the bit might be used for other
8684 * meaning ...(I have no document).
8685 */
8686
8687 if (((status & (WTX_ST_EC | WTX_ST_LC)) != 0)
8688 && ((sc->sc_type < WM_T_82574)
8689 || (sc->sc_type == WM_T_80003))) {
8690 if_statinc(ifp, if_oerrors);
8691 if (status & WTX_ST_LC)
8692 log(LOG_WARNING, "%s: late collision\n",
8693 device_xname(sc->sc_dev));
8694 else if (status & WTX_ST_EC) {
8695 if_statadd(ifp, if_collisions,
8696 TX_COLLISION_THRESHOLD + 1);
8697 log(LOG_WARNING, "%s: excessive collisions\n",
8698 device_xname(sc->sc_dev));
8699 }
8700 } else
8701 if_statinc(ifp, if_opackets);
8702
8703 txq->txq_packets++;
8704 txq->txq_bytes += txs->txs_mbuf->m_pkthdr.len;
8705
8706 txq->txq_free += txs->txs_ndesc;
8707 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
8708 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
8709 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
8710 m_freem(txs->txs_mbuf);
8711 txs->txs_mbuf = NULL;
8712 }
8713
8714 /* Update the dirty transmit buffer pointer. */
8715 txq->txq_sdirty = i;
8716 DPRINTF(WM_DEBUG_TX,
8717 ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
8718
8719 /*
8720 * If there are no more pending transmissions, cancel the watchdog
8721 * timer.
8722 */
8723 if (txq->txq_sfree == WM_TXQUEUELEN(txq))
8724 txq->txq_sending = false;
8725
8726 return more;
8727 }
8728
8729 static inline uint32_t
8730 wm_rxdesc_get_status(struct wm_rxqueue *rxq, int idx)
8731 {
8732 struct wm_softc *sc = rxq->rxq_sc;
8733
8734 if (sc->sc_type == WM_T_82574)
8735 return EXTRXC_STATUS(rxq->rxq_ext_descs[idx].erx_ctx.erxc_err_stat);
8736 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
8737 return NQRXC_STATUS(rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_err_stat);
8738 else
8739 return rxq->rxq_descs[idx].wrx_status;
8740 }
8741
8742 static inline uint32_t
8743 wm_rxdesc_get_errors(struct wm_rxqueue *rxq, int idx)
8744 {
8745 struct wm_softc *sc = rxq->rxq_sc;
8746
8747 if (sc->sc_type == WM_T_82574)
8748 return EXTRXC_ERROR(rxq->rxq_ext_descs[idx].erx_ctx.erxc_err_stat);
8749 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
8750 return NQRXC_ERROR(rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_err_stat);
8751 else
8752 return rxq->rxq_descs[idx].wrx_errors;
8753 }
8754
8755 static inline uint16_t
8756 wm_rxdesc_get_vlantag(struct wm_rxqueue *rxq, int idx)
8757 {
8758 struct wm_softc *sc = rxq->rxq_sc;
8759
8760 if (sc->sc_type == WM_T_82574)
8761 return rxq->rxq_ext_descs[idx].erx_ctx.erxc_vlan;
8762 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
8763 return rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_vlan;
8764 else
8765 return rxq->rxq_descs[idx].wrx_special;
8766 }
8767
8768 static inline int
8769 wm_rxdesc_get_pktlen(struct wm_rxqueue *rxq, int idx)
8770 {
8771 struct wm_softc *sc = rxq->rxq_sc;
8772
8773 if (sc->sc_type == WM_T_82574)
8774 return rxq->rxq_ext_descs[idx].erx_ctx.erxc_pktlen;
8775 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
8776 return rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_pktlen;
8777 else
8778 return rxq->rxq_descs[idx].wrx_len;
8779 }
8780
8781 #ifdef WM_DEBUG
8782 static inline uint32_t
8783 wm_rxdesc_get_rsshash(struct wm_rxqueue *rxq, int idx)
8784 {
8785 struct wm_softc *sc = rxq->rxq_sc;
8786
8787 if (sc->sc_type == WM_T_82574)
8788 return rxq->rxq_ext_descs[idx].erx_ctx.erxc_rsshash;
8789 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
8790 return rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_rsshash;
8791 else
8792 return 0;
8793 }
8794
8795 static inline uint8_t
8796 wm_rxdesc_get_rsstype(struct wm_rxqueue *rxq, int idx)
8797 {
8798 struct wm_softc *sc = rxq->rxq_sc;
8799
8800 if (sc->sc_type == WM_T_82574)
8801 return EXTRXC_RSS_TYPE(rxq->rxq_ext_descs[idx].erx_ctx.erxc_mrq);
8802 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
8803 return NQRXC_RSS_TYPE(rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_misc);
8804 else
8805 return 0;
8806 }
8807 #endif /* WM_DEBUG */
8808
8809 static inline bool
8810 wm_rxdesc_is_set_status(struct wm_softc *sc, uint32_t status,
8811 uint32_t legacy_bit, uint32_t ext_bit, uint32_t nq_bit)
8812 {
8813
8814 if (sc->sc_type == WM_T_82574)
8815 return (status & ext_bit) != 0;
8816 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
8817 return (status & nq_bit) != 0;
8818 else
8819 return (status & legacy_bit) != 0;
8820 }
8821
8822 static inline bool
8823 wm_rxdesc_is_set_error(struct wm_softc *sc, uint32_t error,
8824 uint32_t legacy_bit, uint32_t ext_bit, uint32_t nq_bit)
8825 {
8826
8827 if (sc->sc_type == WM_T_82574)
8828 return (error & ext_bit) != 0;
8829 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
8830 return (error & nq_bit) != 0;
8831 else
8832 return (error & legacy_bit) != 0;
8833 }
8834
8835 static inline bool
8836 wm_rxdesc_is_eop(struct wm_rxqueue *rxq, uint32_t status)
8837 {
8838
8839 if (wm_rxdesc_is_set_status(rxq->rxq_sc, status,
8840 WRX_ST_EOP, EXTRXC_STATUS_EOP, NQRXC_STATUS_EOP))
8841 return true;
8842 else
8843 return false;
8844 }
8845
8846 static inline bool
8847 wm_rxdesc_has_errors(struct wm_rxqueue *rxq, uint32_t errors)
8848 {
8849 struct wm_softc *sc = rxq->rxq_sc;
8850
8851 /* XXX missing error bit for newqueue? */
8852 if (wm_rxdesc_is_set_error(sc, errors,
8853 WRX_ER_CE | WRX_ER_SE | WRX_ER_SEQ | WRX_ER_CXE | WRX_ER_RXE,
8854 EXTRXC_ERROR_CE | EXTRXC_ERROR_SE | EXTRXC_ERROR_SEQ
8855 | EXTRXC_ERROR_CXE | EXTRXC_ERROR_RXE,
8856 NQRXC_ERROR_RXE)) {
8857 if (wm_rxdesc_is_set_error(sc, errors, WRX_ER_SE,
8858 EXTRXC_ERROR_SE, 0))
8859 log(LOG_WARNING, "%s: symbol error\n",
8860 device_xname(sc->sc_dev));
8861 else if (wm_rxdesc_is_set_error(sc, errors, WRX_ER_SEQ,
8862 EXTRXC_ERROR_SEQ, 0))
8863 log(LOG_WARNING, "%s: receive sequence error\n",
8864 device_xname(sc->sc_dev));
8865 else if (wm_rxdesc_is_set_error(sc, errors, WRX_ER_CE,
8866 EXTRXC_ERROR_CE, 0))
8867 log(LOG_WARNING, "%s: CRC error\n",
8868 device_xname(sc->sc_dev));
8869 return true;
8870 }
8871
8872 return false;
8873 }
8874
8875 static inline bool
8876 wm_rxdesc_dd(struct wm_rxqueue *rxq, int idx, uint32_t status)
8877 {
8878 struct wm_softc *sc = rxq->rxq_sc;
8879
8880 if (!wm_rxdesc_is_set_status(sc, status, WRX_ST_DD, EXTRXC_STATUS_DD,
8881 NQRXC_STATUS_DD)) {
8882 /* We have processed all of the receive descriptors. */
8883 wm_cdrxsync(rxq, idx, BUS_DMASYNC_PREREAD);
8884 return false;
8885 }
8886
8887 return true;
8888 }
8889
8890 static inline bool
8891 wm_rxdesc_input_vlantag(struct wm_rxqueue *rxq, uint32_t status,
8892 uint16_t vlantag, struct mbuf *m)
8893 {
8894
8895 if (wm_rxdesc_is_set_status(rxq->rxq_sc, status,
8896 WRX_ST_VP, EXTRXC_STATUS_VP, NQRXC_STATUS_VP)) {
8897 vlan_set_tag(m, le16toh(vlantag));
8898 }
8899
8900 return true;
8901 }
8902
8903 static inline void
8904 wm_rxdesc_ensure_checksum(struct wm_rxqueue *rxq, uint32_t status,
8905 uint32_t errors, struct mbuf *m)
8906 {
8907 struct wm_softc *sc = rxq->rxq_sc;
8908
8909 if (!wm_rxdesc_is_set_status(sc, status, WRX_ST_IXSM, 0, 0)) {
8910 if (wm_rxdesc_is_set_status(sc, status,
8911 WRX_ST_IPCS, EXTRXC_STATUS_IPCS, NQRXC_STATUS_IPCS)) {
8912 WM_Q_EVCNT_INCR(rxq, ipsum);
8913 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
8914 if (wm_rxdesc_is_set_error(sc, errors,
8915 WRX_ER_IPE, EXTRXC_ERROR_IPE, NQRXC_ERROR_IPE))
8916 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
8917 }
8918 if (wm_rxdesc_is_set_status(sc, status,
8919 WRX_ST_TCPCS, EXTRXC_STATUS_TCPCS, NQRXC_STATUS_L4I)) {
8920 /*
8921 * Note: we don't know if this was TCP or UDP,
8922 * so we just set both bits, and expect the
8923 * upper layers to deal.
8924 */
8925 WM_Q_EVCNT_INCR(rxq, tusum);
8926 m->m_pkthdr.csum_flags |=
8927 M_CSUM_TCPv4 | M_CSUM_UDPv4 |
8928 M_CSUM_TCPv6 | M_CSUM_UDPv6;
8929 if (wm_rxdesc_is_set_error(sc, errors, WRX_ER_TCPE,
8930 EXTRXC_ERROR_TCPE, NQRXC_ERROR_L4E))
8931 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
8932 }
8933 }
8934 }
8935
8936 /*
8937 * wm_rxeof:
8938 *
8939 * Helper; handle receive interrupts.
8940 */
8941 static bool
8942 wm_rxeof(struct wm_rxqueue *rxq, u_int limit)
8943 {
8944 struct wm_softc *sc = rxq->rxq_sc;
8945 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
8946 struct wm_rxsoft *rxs;
8947 struct mbuf *m;
8948 int i, len;
8949 int count = 0;
8950 uint32_t status, errors;
8951 uint16_t vlantag;
8952 bool more = false;
8953
8954 KASSERT(mutex_owned(rxq->rxq_lock));
8955
8956 for (i = rxq->rxq_ptr;; i = WM_NEXTRX(i)) {
8957 if (limit-- == 0) {
8958 rxq->rxq_ptr = i;
8959 more = true;
8960 DPRINTF(WM_DEBUG_RX,
8961 ("%s: RX: loop limited, descriptor %d is not processed\n",
8962 device_xname(sc->sc_dev), i));
8963 break;
8964 }
8965
8966 rxs = &rxq->rxq_soft[i];
8967
8968 DPRINTF(WM_DEBUG_RX,
8969 ("%s: RX: checking descriptor %d\n",
8970 device_xname(sc->sc_dev), i));
8971 wm_cdrxsync(rxq, i,
8972 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
8973
8974 status = wm_rxdesc_get_status(rxq, i);
8975 errors = wm_rxdesc_get_errors(rxq, i);
8976 len = le16toh(wm_rxdesc_get_pktlen(rxq, i));
8977 vlantag = wm_rxdesc_get_vlantag(rxq, i);
8978 #ifdef WM_DEBUG
8979 uint32_t rsshash = le32toh(wm_rxdesc_get_rsshash(rxq, i));
8980 uint8_t rsstype = wm_rxdesc_get_rsstype(rxq, i);
8981 #endif
8982
8983 if (!wm_rxdesc_dd(rxq, i, status)) {
8984 /*
8985 * Update the receive pointer holding rxq_lock
8986 * consistent with increment counter.
8987 */
8988 rxq->rxq_ptr = i;
8989 break;
8990 }
8991
8992 count++;
8993 if (__predict_false(rxq->rxq_discard)) {
8994 DPRINTF(WM_DEBUG_RX,
8995 ("%s: RX: discarding contents of descriptor %d\n",
8996 device_xname(sc->sc_dev), i));
8997 wm_init_rxdesc(rxq, i);
8998 if (wm_rxdesc_is_eop(rxq, status)) {
8999 /* Reset our state. */
9000 DPRINTF(WM_DEBUG_RX,
9001 ("%s: RX: resetting rxdiscard -> 0\n",
9002 device_xname(sc->sc_dev)));
9003 rxq->rxq_discard = 0;
9004 }
9005 continue;
9006 }
9007
9008 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
9009 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
9010
9011 m = rxs->rxs_mbuf;
9012
9013 /*
9014 * Add a new receive buffer to the ring, unless of
9015 * course the length is zero. Treat the latter as a
9016 * failed mapping.
9017 */
9018 if ((len == 0) || (wm_add_rxbuf(rxq, i) != 0)) {
9019 /*
9020 * Failed, throw away what we've done so
9021 * far, and discard the rest of the packet.
9022 */
9023 if_statinc(ifp, if_ierrors);
9024 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
9025 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
9026 wm_init_rxdesc(rxq, i);
9027 if (!wm_rxdesc_is_eop(rxq, status))
9028 rxq->rxq_discard = 1;
9029 if (rxq->rxq_head != NULL)
9030 m_freem(rxq->rxq_head);
9031 WM_RXCHAIN_RESET(rxq);
9032 DPRINTF(WM_DEBUG_RX,
9033 ("%s: RX: Rx buffer allocation failed, "
9034 "dropping packet%s\n", device_xname(sc->sc_dev),
9035 rxq->rxq_discard ? " (discard)" : ""));
9036 continue;
9037 }
9038
9039 m->m_len = len;
9040 rxq->rxq_len += len;
9041 DPRINTF(WM_DEBUG_RX,
9042 ("%s: RX: buffer at %p len %d\n",
9043 device_xname(sc->sc_dev), m->m_data, len));
9044
9045 /* If this is not the end of the packet, keep looking. */
9046 if (!wm_rxdesc_is_eop(rxq, status)) {
9047 WM_RXCHAIN_LINK(rxq, m);
9048 DPRINTF(WM_DEBUG_RX,
9049 ("%s: RX: not yet EOP, rxlen -> %d\n",
9050 device_xname(sc->sc_dev), rxq->rxq_len));
9051 continue;
9052 }
9053
9054 /*
9055 * Okay, we have the entire packet now. The chip is
9056 * configured to include the FCS except I350 and I21[01]
9057 * (not all chips can be configured to strip it),
9058 * so we need to trim it.
9059 * May need to adjust length of previous mbuf in the
9060 * chain if the current mbuf is too short.
9061 * For an eratta, the RCTL_SECRC bit in RCTL register
9062 * is always set in I350, so we don't trim it.
9063 */
9064 if ((sc->sc_type != WM_T_I350) && (sc->sc_type != WM_T_I354)
9065 && (sc->sc_type != WM_T_I210)
9066 && (sc->sc_type != WM_T_I211)) {
9067 if (m->m_len < ETHER_CRC_LEN) {
9068 rxq->rxq_tail->m_len
9069 -= (ETHER_CRC_LEN - m->m_len);
9070 m->m_len = 0;
9071 } else
9072 m->m_len -= ETHER_CRC_LEN;
9073 len = rxq->rxq_len - ETHER_CRC_LEN;
9074 } else
9075 len = rxq->rxq_len;
9076
9077 WM_RXCHAIN_LINK(rxq, m);
9078
9079 *rxq->rxq_tailp = NULL;
9080 m = rxq->rxq_head;
9081
9082 WM_RXCHAIN_RESET(rxq);
9083
9084 DPRINTF(WM_DEBUG_RX,
9085 ("%s: RX: have entire packet, len -> %d\n",
9086 device_xname(sc->sc_dev), len));
9087
9088 /* If an error occurred, update stats and drop the packet. */
9089 if (wm_rxdesc_has_errors(rxq, errors)) {
9090 m_freem(m);
9091 continue;
9092 }
9093
9094 /* No errors. Receive the packet. */
9095 m_set_rcvif(m, ifp);
9096 m->m_pkthdr.len = len;
9097 /*
9098 * TODO
9099 * should be save rsshash and rsstype to this mbuf.
9100 */
9101 DPRINTF(WM_DEBUG_RX,
9102 ("%s: RX: RSS type=%" PRIu8 ", RSS hash=%" PRIu32 "\n",
9103 device_xname(sc->sc_dev), rsstype, rsshash));
9104
9105 /*
9106 * If VLANs are enabled, VLAN packets have been unwrapped
9107 * for us. Associate the tag with the packet.
9108 */
9109 if (!wm_rxdesc_input_vlantag(rxq, status, vlantag, m))
9110 continue;
9111
9112 /* Set up checksum info for this packet. */
9113 wm_rxdesc_ensure_checksum(rxq, status, errors, m);
9114 /*
9115 * Update the receive pointer holding rxq_lock consistent with
9116 * increment counter.
9117 */
9118 rxq->rxq_ptr = i;
9119 rxq->rxq_packets++;
9120 rxq->rxq_bytes += len;
9121 mutex_exit(rxq->rxq_lock);
9122
9123 /* Pass it on. */
9124 if_percpuq_enqueue(sc->sc_ipq, m);
9125
9126 mutex_enter(rxq->rxq_lock);
9127
9128 if (rxq->rxq_stopping)
9129 break;
9130 }
9131
9132 DPRINTF(WM_DEBUG_RX,
9133 ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
9134
9135 return more;
9136 }
9137
9138 /*
9139 * wm_linkintr_gmii:
9140 *
9141 * Helper; handle link interrupts for GMII.
9142 */
9143 static void
9144 wm_linkintr_gmii(struct wm_softc *sc, uint32_t icr)
9145 {
9146 device_t dev = sc->sc_dev;
9147 uint32_t status, reg;
9148 bool link;
9149 int rv;
9150
9151 KASSERT(WM_CORE_LOCKED(sc));
9152
9153 DPRINTF(WM_DEBUG_LINK, ("%s: %s:\n", device_xname(dev),
9154 __func__));
9155
9156 if ((icr & ICR_LSC) == 0) {
9157 if (icr & ICR_RXSEQ)
9158 DPRINTF(WM_DEBUG_LINK,
9159 ("%s: LINK Receive sequence error\n",
9160 device_xname(dev)));
9161 return;
9162 }
9163
9164 /* Link status changed */
9165 status = CSR_READ(sc, WMREG_STATUS);
9166 link = status & STATUS_LU;
9167 if (link) {
9168 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
9169 device_xname(dev),
9170 (status & STATUS_FD) ? "FDX" : "HDX"));
9171 } else {
9172 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
9173 device_xname(dev)));
9174 }
9175 if ((sc->sc_type == WM_T_ICH8) && (link == false))
9176 wm_gig_downshift_workaround_ich8lan(sc);
9177
9178 if ((sc->sc_type == WM_T_ICH8)
9179 && (sc->sc_phytype == WMPHY_IGP_3)) {
9180 wm_kmrn_lock_loss_workaround_ich8lan(sc);
9181 }
9182 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> mii_pollstat\n",
9183 device_xname(dev)));
9184 mii_pollstat(&sc->sc_mii);
9185 if (sc->sc_type == WM_T_82543) {
9186 int miistatus, active;
9187
9188 /*
9189 * With 82543, we need to force speed and
9190 * duplex on the MAC equal to what the PHY
9191 * speed and duplex configuration is.
9192 */
9193 miistatus = sc->sc_mii.mii_media_status;
9194
9195 if (miistatus & IFM_ACTIVE) {
9196 active = sc->sc_mii.mii_media_active;
9197 sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
9198 switch (IFM_SUBTYPE(active)) {
9199 case IFM_10_T:
9200 sc->sc_ctrl |= CTRL_SPEED_10;
9201 break;
9202 case IFM_100_TX:
9203 sc->sc_ctrl |= CTRL_SPEED_100;
9204 break;
9205 case IFM_1000_T:
9206 sc->sc_ctrl |= CTRL_SPEED_1000;
9207 break;
9208 default:
9209 /*
9210 * Fiber?
9211 * Shoud not enter here.
9212 */
9213 device_printf(dev, "unknown media (%x)\n",
9214 active);
9215 break;
9216 }
9217 if (active & IFM_FDX)
9218 sc->sc_ctrl |= CTRL_FD;
9219 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
9220 }
9221 } else if (sc->sc_type == WM_T_PCH) {
9222 wm_k1_gig_workaround_hv(sc,
9223 ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0));
9224 }
9225
9226 /*
9227 * When connected at 10Mbps half-duplex, some parts are excessively
9228 * aggressive resulting in many collisions. To avoid this, increase
9229 * the IPG and reduce Rx latency in the PHY.
9230 */
9231 if ((sc->sc_type >= WM_T_PCH2) && (sc->sc_type <= WM_T_PCH_CNP)
9232 && link) {
9233 uint32_t tipg_reg;
9234 uint32_t speed = __SHIFTOUT(status, STATUS_SPEED);
9235 bool fdx;
9236 uint16_t emi_addr, emi_val;
9237
9238 tipg_reg = CSR_READ(sc, WMREG_TIPG);
9239 tipg_reg &= ~TIPG_IPGT_MASK;
9240 fdx = status & STATUS_FD;
9241
9242 if (!fdx && (speed == STATUS_SPEED_10)) {
9243 tipg_reg |= 0xff;
9244 /* Reduce Rx latency in analog PHY */
9245 emi_val = 0;
9246 } else if ((sc->sc_type >= WM_T_PCH_SPT) &&
9247 fdx && speed != STATUS_SPEED_1000) {
9248 tipg_reg |= 0xc;
9249 emi_val = 1;
9250 } else {
9251 /* Roll back the default values */
9252 tipg_reg |= 0x08;
9253 emi_val = 1;
9254 }
9255
9256 CSR_WRITE(sc, WMREG_TIPG, tipg_reg);
9257
9258 rv = sc->phy.acquire(sc);
9259 if (rv)
9260 return;
9261
9262 if (sc->sc_type == WM_T_PCH2)
9263 emi_addr = I82579_RX_CONFIG;
9264 else
9265 emi_addr = I217_RX_CONFIG;
9266 rv = wm_write_emi_reg_locked(dev, emi_addr, emi_val);
9267
9268 if (sc->sc_type >= WM_T_PCH_LPT) {
9269 uint16_t phy_reg;
9270
9271 sc->phy.readreg_locked(dev, 2,
9272 I217_PLL_CLOCK_GATE_REG, &phy_reg);
9273 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
9274 if (speed == STATUS_SPEED_100
9275 || speed == STATUS_SPEED_10)
9276 phy_reg |= 0x3e8;
9277 else
9278 phy_reg |= 0xfa;
9279 sc->phy.writereg_locked(dev, 2,
9280 I217_PLL_CLOCK_GATE_REG, phy_reg);
9281
9282 if (speed == STATUS_SPEED_1000) {
9283 sc->phy.readreg_locked(dev, 2,
9284 HV_PM_CTRL, &phy_reg);
9285
9286 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
9287
9288 sc->phy.writereg_locked(dev, 2,
9289 HV_PM_CTRL, phy_reg);
9290 }
9291 }
9292 sc->phy.release(sc);
9293
9294 if (rv)
9295 return;
9296
9297 if (sc->sc_type >= WM_T_PCH_SPT) {
9298 uint16_t data, ptr_gap;
9299
9300 if (speed == STATUS_SPEED_1000) {
9301 rv = sc->phy.acquire(sc);
9302 if (rv)
9303 return;
9304
9305 rv = sc->phy.readreg_locked(dev, 2,
9306 I219_UNKNOWN1, &data);
9307 if (rv) {
9308 sc->phy.release(sc);
9309 return;
9310 }
9311
9312 ptr_gap = (data & (0x3ff << 2)) >> 2;
9313 if (ptr_gap < 0x18) {
9314 data &= ~(0x3ff << 2);
9315 data |= (0x18 << 2);
9316 rv = sc->phy.writereg_locked(dev,
9317 2, I219_UNKNOWN1, data);
9318 }
9319 sc->phy.release(sc);
9320 if (rv)
9321 return;
9322 } else {
9323 rv = sc->phy.acquire(sc);
9324 if (rv)
9325 return;
9326
9327 rv = sc->phy.writereg_locked(dev, 2,
9328 I219_UNKNOWN1, 0xc023);
9329 sc->phy.release(sc);
9330 if (rv)
9331 return;
9332
9333 }
9334 }
9335 }
9336
9337 /*
9338 * I217 Packet Loss issue:
9339 * ensure that FEXTNVM4 Beacon Duration is set correctly
9340 * on power up.
9341 * Set the Beacon Duration for I217 to 8 usec
9342 */
9343 if (sc->sc_type >= WM_T_PCH_LPT) {
9344 reg = CSR_READ(sc, WMREG_FEXTNVM4);
9345 reg &= ~FEXTNVM4_BEACON_DURATION;
9346 reg |= FEXTNVM4_BEACON_DURATION_8US;
9347 CSR_WRITE(sc, WMREG_FEXTNVM4, reg);
9348 }
9349
9350 /* Work-around I218 hang issue */
9351 if ((sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_LM) ||
9352 (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_V) ||
9353 (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_LM3) ||
9354 (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_V3))
9355 wm_k1_workaround_lpt_lp(sc, link);
9356
9357 if (sc->sc_type >= WM_T_PCH_LPT) {
9358 /*
9359 * Set platform power management values for Latency
9360 * Tolerance Reporting (LTR)
9361 */
9362 wm_platform_pm_pch_lpt(sc,
9363 ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0));
9364 }
9365
9366 /* Clear link partner's EEE ability */
9367 sc->eee_lp_ability = 0;
9368
9369 /* FEXTNVM6 K1-off workaround */
9370 if (sc->sc_type == WM_T_PCH_SPT) {
9371 reg = CSR_READ(sc, WMREG_FEXTNVM6);
9372 if (CSR_READ(sc, WMREG_PCIEANACFG) & FEXTNVM6_K1_OFF_ENABLE)
9373 reg |= FEXTNVM6_K1_OFF_ENABLE;
9374 else
9375 reg &= ~FEXTNVM6_K1_OFF_ENABLE;
9376 CSR_WRITE(sc, WMREG_FEXTNVM6, reg);
9377 }
9378
9379 if (!link)
9380 return;
9381
9382 switch (sc->sc_type) {
9383 case WM_T_PCH2:
9384 wm_k1_workaround_lv(sc);
9385 /* FALLTHROUGH */
9386 case WM_T_PCH:
9387 if (sc->sc_phytype == WMPHY_82578)
9388 wm_link_stall_workaround_hv(sc);
9389 break;
9390 default:
9391 break;
9392 }
9393
9394 /* Enable/Disable EEE after link up */
9395 if (sc->sc_phytype > WMPHY_82579)
9396 wm_set_eee_pchlan(sc);
9397 }
9398
9399 /*
9400 * wm_linkintr_tbi:
9401 *
9402 * Helper; handle link interrupts for TBI mode.
9403 */
9404 static void
9405 wm_linkintr_tbi(struct wm_softc *sc, uint32_t icr)
9406 {
9407 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
9408 uint32_t status;
9409
9410 DPRINTF(WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
9411 __func__));
9412
9413 status = CSR_READ(sc, WMREG_STATUS);
9414 if (icr & ICR_LSC) {
9415 wm_check_for_link(sc);
9416 if (status & STATUS_LU) {
9417 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
9418 device_xname(sc->sc_dev),
9419 (status & STATUS_FD) ? "FDX" : "HDX"));
9420 /*
9421 * NOTE: CTRL will update TFCE and RFCE automatically,
9422 * so we should update sc->sc_ctrl
9423 */
9424
9425 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
9426 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
9427 sc->sc_fcrtl &= ~FCRTL_XONE;
9428 if (status & STATUS_FD)
9429 sc->sc_tctl |=
9430 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
9431 else
9432 sc->sc_tctl |=
9433 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
9434 if (sc->sc_ctrl & CTRL_TFCE)
9435 sc->sc_fcrtl |= FCRTL_XONE;
9436 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
9437 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
9438 WMREG_OLD_FCRTL : WMREG_FCRTL, sc->sc_fcrtl);
9439 sc->sc_tbi_linkup = 1;
9440 if_link_state_change(ifp, LINK_STATE_UP);
9441 } else {
9442 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
9443 device_xname(sc->sc_dev)));
9444 sc->sc_tbi_linkup = 0;
9445 if_link_state_change(ifp, LINK_STATE_DOWN);
9446 }
9447 /* Update LED */
9448 wm_tbi_serdes_set_linkled(sc);
9449 } else if (icr & ICR_RXSEQ)
9450 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: Receive sequence error\n",
9451 device_xname(sc->sc_dev)));
9452 }
9453
9454 /*
9455 * wm_linkintr_serdes:
9456 *
9457 * Helper; handle link interrupts for TBI mode.
9458 */
9459 static void
9460 wm_linkintr_serdes(struct wm_softc *sc, uint32_t icr)
9461 {
9462 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
9463 struct mii_data *mii = &sc->sc_mii;
9464 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
9465 uint32_t pcs_adv, pcs_lpab, reg;
9466
9467 DPRINTF(WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
9468 __func__));
9469
9470 if (icr & ICR_LSC) {
9471 /* Check PCS */
9472 reg = CSR_READ(sc, WMREG_PCS_LSTS);
9473 if ((reg & PCS_LSTS_LINKOK) != 0) {
9474 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
9475 device_xname(sc->sc_dev)));
9476 mii->mii_media_status |= IFM_ACTIVE;
9477 sc->sc_tbi_linkup = 1;
9478 if_link_state_change(ifp, LINK_STATE_UP);
9479 } else {
9480 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
9481 device_xname(sc->sc_dev)));
9482 mii->mii_media_status |= IFM_NONE;
9483 sc->sc_tbi_linkup = 0;
9484 if_link_state_change(ifp, LINK_STATE_DOWN);
9485 wm_tbi_serdes_set_linkled(sc);
9486 return;
9487 }
9488 mii->mii_media_active |= IFM_1000_SX;
9489 if ((reg & PCS_LSTS_FDX) != 0)
9490 mii->mii_media_active |= IFM_FDX;
9491 else
9492 mii->mii_media_active |= IFM_HDX;
9493 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
9494 /* Check flow */
9495 reg = CSR_READ(sc, WMREG_PCS_LSTS);
9496 if ((reg & PCS_LSTS_AN_COMP) == 0) {
9497 DPRINTF(WM_DEBUG_LINK,
9498 ("XXX LINKOK but not ACOMP\n"));
9499 return;
9500 }
9501 pcs_adv = CSR_READ(sc, WMREG_PCS_ANADV);
9502 pcs_lpab = CSR_READ(sc, WMREG_PCS_LPAB);
9503 DPRINTF(WM_DEBUG_LINK,
9504 ("XXX AN result %08x, %08x\n", pcs_adv, pcs_lpab));
9505 if ((pcs_adv & TXCW_SYM_PAUSE)
9506 && (pcs_lpab & TXCW_SYM_PAUSE)) {
9507 mii->mii_media_active |= IFM_FLOW
9508 | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
9509 } else if (((pcs_adv & TXCW_SYM_PAUSE) == 0)
9510 && (pcs_adv & TXCW_ASYM_PAUSE)
9511 && (pcs_lpab & TXCW_SYM_PAUSE)
9512 && (pcs_lpab & TXCW_ASYM_PAUSE))
9513 mii->mii_media_active |= IFM_FLOW
9514 | IFM_ETH_TXPAUSE;
9515 else if ((pcs_adv & TXCW_SYM_PAUSE)
9516 && (pcs_adv & TXCW_ASYM_PAUSE)
9517 && ((pcs_lpab & TXCW_SYM_PAUSE) == 0)
9518 && (pcs_lpab & TXCW_ASYM_PAUSE))
9519 mii->mii_media_active |= IFM_FLOW
9520 | IFM_ETH_RXPAUSE;
9521 }
9522 /* Update LED */
9523 wm_tbi_serdes_set_linkled(sc);
9524 } else
9525 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: Receive sequence error\n",
9526 device_xname(sc->sc_dev)));
9527 }
9528
9529 /*
9530 * wm_linkintr:
9531 *
9532 * Helper; handle link interrupts.
9533 */
9534 static void
9535 wm_linkintr(struct wm_softc *sc, uint32_t icr)
9536 {
9537
9538 KASSERT(WM_CORE_LOCKED(sc));
9539
9540 if (sc->sc_flags & WM_F_HAS_MII)
9541 wm_linkintr_gmii(sc, icr);
9542 else if ((sc->sc_mediatype == WM_MEDIATYPE_SERDES)
9543 && ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211)))
9544 wm_linkintr_serdes(sc, icr);
9545 else
9546 wm_linkintr_tbi(sc, icr);
9547 }
9548
9549
9550 static inline void
9551 wm_sched_handle_queue(struct wm_softc *sc, struct wm_queue *wmq)
9552 {
9553
9554 if (wmq->wmq_txrx_use_workqueue)
9555 workqueue_enqueue(sc->sc_queue_wq, &wmq->wmq_cookie, curcpu());
9556 else
9557 softint_schedule(wmq->wmq_si);
9558 }
9559
9560 /*
9561 * wm_intr_legacy:
9562 *
9563 * Interrupt service routine for INTx and MSI.
9564 */
9565 static int
9566 wm_intr_legacy(void *arg)
9567 {
9568 struct wm_softc *sc = arg;
9569 struct wm_queue *wmq = &sc->sc_queue[0];
9570 struct wm_txqueue *txq = &wmq->wmq_txq;
9571 struct wm_rxqueue *rxq = &wmq->wmq_rxq;
9572 uint32_t icr, rndval = 0;
9573 int handled = 0;
9574
9575 while (1 /* CONSTCOND */) {
9576 icr = CSR_READ(sc, WMREG_ICR);
9577 if ((icr & sc->sc_icr) == 0)
9578 break;
9579 if (handled == 0)
9580 DPRINTF(WM_DEBUG_TX,
9581 ("%s: INTx: got intr\n",device_xname(sc->sc_dev)));
9582 if (rndval == 0)
9583 rndval = icr;
9584
9585 mutex_enter(rxq->rxq_lock);
9586
9587 if (rxq->rxq_stopping) {
9588 mutex_exit(rxq->rxq_lock);
9589 break;
9590 }
9591
9592 handled = 1;
9593
9594 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
9595 if (icr & (ICR_RXDMT0 | ICR_RXT0)) {
9596 DPRINTF(WM_DEBUG_RX,
9597 ("%s: RX: got Rx intr 0x%08x\n",
9598 device_xname(sc->sc_dev),
9599 icr & (ICR_RXDMT0 | ICR_RXT0)));
9600 WM_Q_EVCNT_INCR(rxq, intr);
9601 }
9602 #endif
9603 /*
9604 * wm_rxeof() does *not* call upper layer functions directly,
9605 * as if_percpuq_enqueue() just call softint_schedule().
9606 * So, we can call wm_rxeof() in interrupt context.
9607 */
9608 wm_rxeof(rxq, UINT_MAX);
9609 /* Fill lower bits with RX index. See below for the upper. */
9610 rndval |= rxq->rxq_ptr & WM_NRXDESC_MASK;
9611
9612 mutex_exit(rxq->rxq_lock);
9613 mutex_enter(txq->txq_lock);
9614
9615 if (txq->txq_stopping) {
9616 mutex_exit(txq->txq_lock);
9617 break;
9618 }
9619
9620 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
9621 if (icr & ICR_TXDW) {
9622 DPRINTF(WM_DEBUG_TX,
9623 ("%s: TX: got TXDW interrupt\n",
9624 device_xname(sc->sc_dev)));
9625 WM_Q_EVCNT_INCR(txq, txdw);
9626 }
9627 #endif
9628 wm_txeof(txq, UINT_MAX);
9629 /* Fill upper bits with TX index. See above for the lower. */
9630 rndval = txq->txq_next * WM_NRXDESC;
9631
9632 mutex_exit(txq->txq_lock);
9633 WM_CORE_LOCK(sc);
9634
9635 if (sc->sc_core_stopping) {
9636 WM_CORE_UNLOCK(sc);
9637 break;
9638 }
9639
9640 if (icr & (ICR_LSC | ICR_RXSEQ)) {
9641 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
9642 wm_linkintr(sc, icr);
9643 }
9644 if ((icr & ICR_GPI(0)) != 0)
9645 device_printf(sc->sc_dev, "got module interrupt\n");
9646
9647 WM_CORE_UNLOCK(sc);
9648
9649 if (icr & ICR_RXO) {
9650 #if defined(WM_DEBUG)
9651 log(LOG_WARNING, "%s: Receive overrun\n",
9652 device_xname(sc->sc_dev));
9653 #endif /* defined(WM_DEBUG) */
9654 }
9655 }
9656
9657 rnd_add_uint32(&sc->sc_queue[0].rnd_source, rndval);
9658
9659 if (handled) {
9660 /* Try to get more packets going. */
9661 wmq->wmq_txrx_use_workqueue = sc->sc_txrx_use_workqueue;
9662 wm_sched_handle_queue(sc, wmq);
9663 }
9664
9665 return handled;
9666 }
9667
9668 static inline void
9669 wm_txrxintr_disable(struct wm_queue *wmq)
9670 {
9671 struct wm_softc *sc = wmq->wmq_txq.txq_sc;
9672
9673 if (sc->sc_type == WM_T_82574)
9674 CSR_WRITE(sc, WMREG_IMC,
9675 ICR_TXQ(wmq->wmq_id) | ICR_RXQ(wmq->wmq_id));
9676 else if (sc->sc_type == WM_T_82575)
9677 CSR_WRITE(sc, WMREG_EIMC,
9678 EITR_TX_QUEUE(wmq->wmq_id) | EITR_RX_QUEUE(wmq->wmq_id));
9679 else
9680 CSR_WRITE(sc, WMREG_EIMC, 1 << wmq->wmq_intr_idx);
9681 }
9682
9683 static inline void
9684 wm_txrxintr_enable(struct wm_queue *wmq)
9685 {
9686 struct wm_softc *sc = wmq->wmq_txq.txq_sc;
9687
9688 wm_itrs_calculate(sc, wmq);
9689
9690 /*
9691 * ICR_OTHER which is disabled in wm_linkintr_msix() is enabled here.
9692 * There is no need to care about which of RXQ(0) and RXQ(1) enable
9693 * ICR_OTHER in first, because each RXQ/TXQ interrupt is disabled
9694 * while each wm_handle_queue(wmq) is runnig.
9695 */
9696 if (sc->sc_type == WM_T_82574)
9697 CSR_WRITE(sc, WMREG_IMS,
9698 ICR_TXQ(wmq->wmq_id) | ICR_RXQ(wmq->wmq_id) | ICR_OTHER);
9699 else if (sc->sc_type == WM_T_82575)
9700 CSR_WRITE(sc, WMREG_EIMS,
9701 EITR_TX_QUEUE(wmq->wmq_id) | EITR_RX_QUEUE(wmq->wmq_id));
9702 else
9703 CSR_WRITE(sc, WMREG_EIMS, 1 << wmq->wmq_intr_idx);
9704 }
9705
9706 static int
9707 wm_txrxintr_msix(void *arg)
9708 {
9709 struct wm_queue *wmq = arg;
9710 struct wm_txqueue *txq = &wmq->wmq_txq;
9711 struct wm_rxqueue *rxq = &wmq->wmq_rxq;
9712 struct wm_softc *sc = txq->txq_sc;
9713 u_int txlimit = sc->sc_tx_intr_process_limit;
9714 u_int rxlimit = sc->sc_rx_intr_process_limit;
9715 uint32_t rndval = 0;
9716 bool txmore;
9717 bool rxmore;
9718
9719 KASSERT(wmq->wmq_intr_idx == wmq->wmq_id);
9720
9721 DPRINTF(WM_DEBUG_TX,
9722 ("%s: TX: got Tx intr\n", device_xname(sc->sc_dev)));
9723
9724 wm_txrxintr_disable(wmq);
9725
9726 mutex_enter(txq->txq_lock);
9727
9728 if (txq->txq_stopping) {
9729 mutex_exit(txq->txq_lock);
9730 return 0;
9731 }
9732
9733 WM_Q_EVCNT_INCR(txq, txdw);
9734 txmore = wm_txeof(txq, txlimit);
9735 /* Fill upper bits with TX index. See below for the lower. */
9736 rndval = txq->txq_next * WM_NRXDESC;
9737 /* wm_deferred start() is done in wm_handle_queue(). */
9738 mutex_exit(txq->txq_lock);
9739
9740 DPRINTF(WM_DEBUG_RX,
9741 ("%s: RX: got Rx intr\n", device_xname(sc->sc_dev)));
9742 mutex_enter(rxq->rxq_lock);
9743
9744 if (rxq->rxq_stopping) {
9745 mutex_exit(rxq->rxq_lock);
9746 return 0;
9747 }
9748
9749 WM_Q_EVCNT_INCR(rxq, intr);
9750 rxmore = wm_rxeof(rxq, rxlimit);
9751
9752 /* Fill lower bits with RX index. See above for the upper. */
9753 rndval |= rxq->rxq_ptr & WM_NRXDESC_MASK;
9754 mutex_exit(rxq->rxq_lock);
9755
9756 wm_itrs_writereg(sc, wmq);
9757
9758 /*
9759 * This function is called in the hardware interrupt context and
9760 * per-CPU, so it's not required to take a lock.
9761 */
9762 if (rndval != 0)
9763 rnd_add_uint32(&sc->sc_queue[wmq->wmq_id].rnd_source, rndval);
9764
9765 if (txmore || rxmore) {
9766 wmq->wmq_txrx_use_workqueue = sc->sc_txrx_use_workqueue;
9767 wm_sched_handle_queue(sc, wmq);
9768 } else
9769 wm_txrxintr_enable(wmq);
9770
9771 return 1;
9772 }
9773
9774 static void
9775 wm_handle_queue(void *arg)
9776 {
9777 struct wm_queue *wmq = arg;
9778 struct wm_txqueue *txq = &wmq->wmq_txq;
9779 struct wm_rxqueue *rxq = &wmq->wmq_rxq;
9780 struct wm_softc *sc = txq->txq_sc;
9781 u_int txlimit = sc->sc_tx_process_limit;
9782 u_int rxlimit = sc->sc_rx_process_limit;
9783 bool txmore;
9784 bool rxmore;
9785
9786 mutex_enter(txq->txq_lock);
9787 if (txq->txq_stopping) {
9788 mutex_exit(txq->txq_lock);
9789 return;
9790 }
9791 txmore = wm_txeof(txq, txlimit);
9792 wm_deferred_start_locked(txq);
9793 mutex_exit(txq->txq_lock);
9794
9795 mutex_enter(rxq->rxq_lock);
9796 if (rxq->rxq_stopping) {
9797 mutex_exit(rxq->rxq_lock);
9798 return;
9799 }
9800 WM_Q_EVCNT_INCR(rxq, defer);
9801 rxmore = wm_rxeof(rxq, rxlimit);
9802 mutex_exit(rxq->rxq_lock);
9803
9804 if (txmore || rxmore) {
9805 wmq->wmq_txrx_use_workqueue = sc->sc_txrx_use_workqueue;
9806 wm_sched_handle_queue(sc, wmq);
9807 } else
9808 wm_txrxintr_enable(wmq);
9809 }
9810
9811 static void
9812 wm_handle_queue_work(struct work *wk, void *context)
9813 {
9814 struct wm_queue *wmq = container_of(wk, struct wm_queue, wmq_cookie);
9815
9816 /*
9817 * "enqueued flag" is not required here.
9818 */
9819 wm_handle_queue(wmq);
9820 }
9821
9822 /*
9823 * wm_linkintr_msix:
9824 *
9825 * Interrupt service routine for link status change for MSI-X.
9826 */
9827 static int
9828 wm_linkintr_msix(void *arg)
9829 {
9830 struct wm_softc *sc = arg;
9831 uint32_t reg;
9832 bool has_rxo;
9833
9834 reg = CSR_READ(sc, WMREG_ICR);
9835 WM_CORE_LOCK(sc);
9836 DPRINTF(WM_DEBUG_LINK,
9837 ("%s: LINK: got link intr. ICR = %08x\n",
9838 device_xname(sc->sc_dev), reg));
9839
9840 if (sc->sc_core_stopping)
9841 goto out;
9842
9843 if ((reg & ICR_LSC) != 0) {
9844 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
9845 wm_linkintr(sc, ICR_LSC);
9846 }
9847 if ((reg & ICR_GPI(0)) != 0)
9848 device_printf(sc->sc_dev, "got module interrupt\n");
9849
9850 /*
9851 * XXX 82574 MSI-X mode workaround
9852 *
9853 * 82574 MSI-X mode causes receive overrun(RXO) interrupt as ICR_OTHER
9854 * MSI-X vector, furthermore it does not cause neigher ICR_RXQ(0) nor
9855 * ICR_RXQ(1) vector. So, we generate ICR_RXQ(0) and ICR_RXQ(1)
9856 * interrupts by writing WMREG_ICS to process receive packets.
9857 */
9858 if (sc->sc_type == WM_T_82574 && ((reg & ICR_RXO) != 0)) {
9859 #if defined(WM_DEBUG)
9860 log(LOG_WARNING, "%s: Receive overrun\n",
9861 device_xname(sc->sc_dev));
9862 #endif /* defined(WM_DEBUG) */
9863
9864 has_rxo = true;
9865 /*
9866 * The RXO interrupt is very high rate when receive traffic is
9867 * high rate. We use polling mode for ICR_OTHER like Tx/Rx
9868 * interrupts. ICR_OTHER will be enabled at the end of
9869 * wm_txrxintr_msix() which is kicked by both ICR_RXQ(0) and
9870 * ICR_RXQ(1) interrupts.
9871 */
9872 CSR_WRITE(sc, WMREG_IMC, ICR_OTHER);
9873
9874 CSR_WRITE(sc, WMREG_ICS, ICR_RXQ(0) | ICR_RXQ(1));
9875 }
9876
9877
9878
9879 out:
9880 WM_CORE_UNLOCK(sc);
9881
9882 if (sc->sc_type == WM_T_82574) {
9883 if (!has_rxo)
9884 CSR_WRITE(sc, WMREG_IMS, ICR_OTHER | ICR_LSC);
9885 else
9886 CSR_WRITE(sc, WMREG_IMS, ICR_LSC);
9887 } else if (sc->sc_type == WM_T_82575)
9888 CSR_WRITE(sc, WMREG_EIMS, EITR_OTHER);
9889 else
9890 CSR_WRITE(sc, WMREG_EIMS, 1 << sc->sc_link_intr_idx);
9891
9892 return 1;
9893 }
9894
9895 /*
9896 * Media related.
9897 * GMII, SGMII, TBI (and SERDES)
9898 */
9899
9900 /* Common */
9901
9902 /*
9903 * wm_tbi_serdes_set_linkled:
9904 *
9905 * Update the link LED on TBI and SERDES devices.
9906 */
9907 static void
9908 wm_tbi_serdes_set_linkled(struct wm_softc *sc)
9909 {
9910
9911 if (sc->sc_tbi_linkup)
9912 sc->sc_ctrl |= CTRL_SWDPIN(0);
9913 else
9914 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
9915
9916 /* 82540 or newer devices are active low */
9917 sc->sc_ctrl ^= (sc->sc_type >= WM_T_82540) ? CTRL_SWDPIN(0) : 0;
9918
9919 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
9920 }
9921
9922 /* GMII related */
9923
9924 /*
9925 * wm_gmii_reset:
9926 *
9927 * Reset the PHY.
9928 */
9929 static void
9930 wm_gmii_reset(struct wm_softc *sc)
9931 {
9932 uint32_t reg;
9933 int rv;
9934
9935 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
9936 device_xname(sc->sc_dev), __func__));
9937
9938 rv = sc->phy.acquire(sc);
9939 if (rv != 0) {
9940 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
9941 __func__);
9942 return;
9943 }
9944
9945 switch (sc->sc_type) {
9946 case WM_T_82542_2_0:
9947 case WM_T_82542_2_1:
9948 /* null */
9949 break;
9950 case WM_T_82543:
9951 /*
9952 * With 82543, we need to force speed and duplex on the MAC
9953 * equal to what the PHY speed and duplex configuration is.
9954 * In addition, we need to perform a hardware reset on the PHY
9955 * to take it out of reset.
9956 */
9957 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
9958 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
9959
9960 /* The PHY reset pin is active-low. */
9961 reg = CSR_READ(sc, WMREG_CTRL_EXT);
9962 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
9963 CTRL_EXT_SWDPIN(4));
9964 reg |= CTRL_EXT_SWDPIO(4);
9965
9966 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
9967 CSR_WRITE_FLUSH(sc);
9968 delay(10*1000);
9969
9970 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
9971 CSR_WRITE_FLUSH(sc);
9972 delay(150);
9973 #if 0
9974 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
9975 #endif
9976 delay(20*1000); /* XXX extra delay to get PHY ID? */
9977 break;
9978 case WM_T_82544: /* Reset 10000us */
9979 case WM_T_82540:
9980 case WM_T_82545:
9981 case WM_T_82545_3:
9982 case WM_T_82546:
9983 case WM_T_82546_3:
9984 case WM_T_82541:
9985 case WM_T_82541_2:
9986 case WM_T_82547:
9987 case WM_T_82547_2:
9988 case WM_T_82571: /* Reset 100us */
9989 case WM_T_82572:
9990 case WM_T_82573:
9991 case WM_T_82574:
9992 case WM_T_82575:
9993 case WM_T_82576:
9994 case WM_T_82580:
9995 case WM_T_I350:
9996 case WM_T_I354:
9997 case WM_T_I210:
9998 case WM_T_I211:
9999 case WM_T_82583:
10000 case WM_T_80003:
10001 /* Generic reset */
10002 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
10003 CSR_WRITE_FLUSH(sc);
10004 delay(20000);
10005 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
10006 CSR_WRITE_FLUSH(sc);
10007 delay(20000);
10008
10009 if ((sc->sc_type == WM_T_82541)
10010 || (sc->sc_type == WM_T_82541_2)
10011 || (sc->sc_type == WM_T_82547)
10012 || (sc->sc_type == WM_T_82547_2)) {
10013 /* Workaround for igp are done in igp_reset() */
10014 /* XXX add code to set LED after phy reset */
10015 }
10016 break;
10017 case WM_T_ICH8:
10018 case WM_T_ICH9:
10019 case WM_T_ICH10:
10020 case WM_T_PCH:
10021 case WM_T_PCH2:
10022 case WM_T_PCH_LPT:
10023 case WM_T_PCH_SPT:
10024 case WM_T_PCH_CNP:
10025 /* Generic reset */
10026 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
10027 CSR_WRITE_FLUSH(sc);
10028 delay(100);
10029 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
10030 CSR_WRITE_FLUSH(sc);
10031 delay(150);
10032 break;
10033 default:
10034 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
10035 __func__);
10036 break;
10037 }
10038
10039 sc->phy.release(sc);
10040
10041 /* get_cfg_done */
10042 wm_get_cfg_done(sc);
10043
10044 /* Extra setup */
10045 switch (sc->sc_type) {
10046 case WM_T_82542_2_0:
10047 case WM_T_82542_2_1:
10048 case WM_T_82543:
10049 case WM_T_82544:
10050 case WM_T_82540:
10051 case WM_T_82545:
10052 case WM_T_82545_3:
10053 case WM_T_82546:
10054 case WM_T_82546_3:
10055 case WM_T_82541_2:
10056 case WM_T_82547_2:
10057 case WM_T_82571:
10058 case WM_T_82572:
10059 case WM_T_82573:
10060 case WM_T_82574:
10061 case WM_T_82583:
10062 case WM_T_82575:
10063 case WM_T_82576:
10064 case WM_T_82580:
10065 case WM_T_I350:
10066 case WM_T_I354:
10067 case WM_T_I210:
10068 case WM_T_I211:
10069 case WM_T_80003:
10070 /* Null */
10071 break;
10072 case WM_T_82541:
10073 case WM_T_82547:
10074 /* XXX Configure actively LED after PHY reset */
10075 break;
10076 case WM_T_ICH8:
10077 case WM_T_ICH9:
10078 case WM_T_ICH10:
10079 case WM_T_PCH:
10080 case WM_T_PCH2:
10081 case WM_T_PCH_LPT:
10082 case WM_T_PCH_SPT:
10083 case WM_T_PCH_CNP:
10084 wm_phy_post_reset(sc);
10085 break;
10086 default:
10087 panic("%s: unknown type\n", __func__);
10088 break;
10089 }
10090 }
10091
10092 /*
10093 * Setup sc_phytype and mii_{read|write}reg.
10094 *
10095 * To identify PHY type, correct read/write function should be selected.
10096 * To select correct read/write function, PCI ID or MAC type are required
10097 * without accessing PHY registers.
10098 *
10099 * On the first call of this function, PHY ID is not known yet. Check
10100 * PCI ID or MAC type. The list of the PCI ID may not be perfect, so the
10101 * result might be incorrect.
10102 *
10103 * In the second call, PHY OUI and model is used to identify PHY type.
10104 * It might not be perfect because of the lack of compared entry, but it
10105 * would be better than the first call.
10106 *
10107 * If the detected new result and previous assumption is different,
10108 * diagnous message will be printed.
10109 */
10110 static void
10111 wm_gmii_setup_phytype(struct wm_softc *sc, uint32_t phy_oui,
10112 uint16_t phy_model)
10113 {
10114 device_t dev = sc->sc_dev;
10115 struct mii_data *mii = &sc->sc_mii;
10116 uint16_t new_phytype = WMPHY_UNKNOWN;
10117 uint16_t doubt_phytype = WMPHY_UNKNOWN;
10118 mii_readreg_t new_readreg;
10119 mii_writereg_t new_writereg;
10120 bool dodiag = true;
10121
10122 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
10123 device_xname(sc->sc_dev), __func__));
10124
10125 /*
10126 * 1000BASE-T SFP uses SGMII and the first asumed PHY type is always
10127 * incorrect. So don't print diag output when it's 2nd call.
10128 */
10129 if ((sc->sc_sfptype != 0) && (phy_oui == 0) && (phy_model == 0))
10130 dodiag = false;
10131
10132 if (mii->mii_readreg == NULL) {
10133 /*
10134 * This is the first call of this function. For ICH and PCH
10135 * variants, it's difficult to determine the PHY access method
10136 * by sc_type, so use the PCI product ID for some devices.
10137 */
10138
10139 switch (sc->sc_pcidevid) {
10140 case PCI_PRODUCT_INTEL_PCH_M_LM:
10141 case PCI_PRODUCT_INTEL_PCH_M_LC:
10142 /* 82577 */
10143 new_phytype = WMPHY_82577;
10144 break;
10145 case PCI_PRODUCT_INTEL_PCH_D_DM:
10146 case PCI_PRODUCT_INTEL_PCH_D_DC:
10147 /* 82578 */
10148 new_phytype = WMPHY_82578;
10149 break;
10150 case PCI_PRODUCT_INTEL_PCH2_LV_LM:
10151 case PCI_PRODUCT_INTEL_PCH2_LV_V:
10152 /* 82579 */
10153 new_phytype = WMPHY_82579;
10154 break;
10155 case PCI_PRODUCT_INTEL_82801H_82567V_3:
10156 case PCI_PRODUCT_INTEL_82801I_BM:
10157 case PCI_PRODUCT_INTEL_82801I_IGP_M_AMT: /* Not IGP but BM */
10158 case PCI_PRODUCT_INTEL_82801J_R_BM_LM:
10159 case PCI_PRODUCT_INTEL_82801J_R_BM_LF:
10160 case PCI_PRODUCT_INTEL_82801J_D_BM_LM:
10161 case PCI_PRODUCT_INTEL_82801J_D_BM_LF:
10162 case PCI_PRODUCT_INTEL_82801J_R_BM_V:
10163 /* ICH8, 9, 10 with 82567 */
10164 new_phytype = WMPHY_BM;
10165 break;
10166 default:
10167 break;
10168 }
10169 } else {
10170 /* It's not the first call. Use PHY OUI and model */
10171 switch (phy_oui) {
10172 case MII_OUI_ATTANSIC: /* XXX ??? */
10173 switch (phy_model) {
10174 case 0x0004: /* XXX */
10175 new_phytype = WMPHY_82578;
10176 break;
10177 default:
10178 break;
10179 }
10180 break;
10181 case MII_OUI_xxMARVELL:
10182 switch (phy_model) {
10183 case MII_MODEL_xxMARVELL_I210:
10184 new_phytype = WMPHY_I210;
10185 break;
10186 case MII_MODEL_xxMARVELL_E1011:
10187 case MII_MODEL_xxMARVELL_E1000_3:
10188 case MII_MODEL_xxMARVELL_E1000_5:
10189 case MII_MODEL_xxMARVELL_E1112:
10190 new_phytype = WMPHY_M88;
10191 break;
10192 case MII_MODEL_xxMARVELL_E1149:
10193 new_phytype = WMPHY_BM;
10194 break;
10195 case MII_MODEL_xxMARVELL_E1111:
10196 case MII_MODEL_xxMARVELL_I347:
10197 case MII_MODEL_xxMARVELL_E1512:
10198 case MII_MODEL_xxMARVELL_E1340M:
10199 case MII_MODEL_xxMARVELL_E1543:
10200 new_phytype = WMPHY_M88;
10201 break;
10202 case MII_MODEL_xxMARVELL_I82563:
10203 new_phytype = WMPHY_GG82563;
10204 break;
10205 default:
10206 break;
10207 }
10208 break;
10209 case MII_OUI_INTEL:
10210 switch (phy_model) {
10211 case MII_MODEL_INTEL_I82577:
10212 new_phytype = WMPHY_82577;
10213 break;
10214 case MII_MODEL_INTEL_I82579:
10215 new_phytype = WMPHY_82579;
10216 break;
10217 case MII_MODEL_INTEL_I217:
10218 new_phytype = WMPHY_I217;
10219 break;
10220 case MII_MODEL_INTEL_I82580:
10221 case MII_MODEL_INTEL_I350:
10222 new_phytype = WMPHY_82580;
10223 break;
10224 default:
10225 break;
10226 }
10227 break;
10228 case MII_OUI_yyINTEL:
10229 switch (phy_model) {
10230 case MII_MODEL_yyINTEL_I82562G:
10231 case MII_MODEL_yyINTEL_I82562EM:
10232 case MII_MODEL_yyINTEL_I82562ET:
10233 new_phytype = WMPHY_IFE;
10234 break;
10235 case MII_MODEL_yyINTEL_IGP01E1000:
10236 new_phytype = WMPHY_IGP;
10237 break;
10238 case MII_MODEL_yyINTEL_I82566:
10239 new_phytype = WMPHY_IGP_3;
10240 break;
10241 default:
10242 break;
10243 }
10244 break;
10245 default:
10246 break;
10247 }
10248
10249 if (dodiag) {
10250 if (new_phytype == WMPHY_UNKNOWN)
10251 aprint_verbose_dev(dev,
10252 "%s: Unknown PHY model. OUI=%06x, "
10253 "model=%04x\n", __func__, phy_oui,
10254 phy_model);
10255
10256 if ((sc->sc_phytype != WMPHY_UNKNOWN)
10257 && (sc->sc_phytype != new_phytype)) {
10258 aprint_error_dev(dev, "Previously assumed PHY "
10259 "type(%u) was incorrect. PHY type from PHY"
10260 "ID = %u\n", sc->sc_phytype, new_phytype);
10261 }
10262 }
10263 }
10264
10265 /* Next, use sc->sc_flags and sc->sc_type to set read/write funcs. */
10266 if (((sc->sc_flags & WM_F_SGMII) != 0) && !wm_sgmii_uses_mdio(sc)) {
10267 /* SGMII */
10268 new_readreg = wm_sgmii_readreg;
10269 new_writereg = wm_sgmii_writereg;
10270 } else if ((sc->sc_type == WM_T_82574) || (sc->sc_type == WM_T_82583)){
10271 /* BM2 (phyaddr == 1) */
10272 if ((sc->sc_phytype != WMPHY_UNKNOWN)
10273 && (new_phytype != WMPHY_BM)
10274 && (new_phytype != WMPHY_UNKNOWN))
10275 doubt_phytype = new_phytype;
10276 new_phytype = WMPHY_BM;
10277 new_readreg = wm_gmii_bm_readreg;
10278 new_writereg = wm_gmii_bm_writereg;
10279 } else if (sc->sc_type >= WM_T_PCH) {
10280 /* All PCH* use _hv_ */
10281 new_readreg = wm_gmii_hv_readreg;
10282 new_writereg = wm_gmii_hv_writereg;
10283 } else if (sc->sc_type >= WM_T_ICH8) {
10284 /* non-82567 ICH8, 9 and 10 */
10285 new_readreg = wm_gmii_i82544_readreg;
10286 new_writereg = wm_gmii_i82544_writereg;
10287 } else if (sc->sc_type >= WM_T_80003) {
10288 /* 80003 */
10289 if ((sc->sc_phytype != WMPHY_UNKNOWN)
10290 && (new_phytype != WMPHY_GG82563)
10291 && (new_phytype != WMPHY_UNKNOWN))
10292 doubt_phytype = new_phytype;
10293 new_phytype = WMPHY_GG82563;
10294 new_readreg = wm_gmii_i80003_readreg;
10295 new_writereg = wm_gmii_i80003_writereg;
10296 } else if (sc->sc_type >= WM_T_I210) {
10297 /* I210 and I211 */
10298 if ((sc->sc_phytype != WMPHY_UNKNOWN)
10299 && (new_phytype != WMPHY_I210)
10300 && (new_phytype != WMPHY_UNKNOWN))
10301 doubt_phytype = new_phytype;
10302 new_phytype = WMPHY_I210;
10303 new_readreg = wm_gmii_gs40g_readreg;
10304 new_writereg = wm_gmii_gs40g_writereg;
10305 } else if (sc->sc_type >= WM_T_82580) {
10306 /* 82580, I350 and I354 */
10307 new_readreg = wm_gmii_82580_readreg;
10308 new_writereg = wm_gmii_82580_writereg;
10309 } else if (sc->sc_type >= WM_T_82544) {
10310 /* 82544, 0, [56], [17], 8257[1234] and 82583 */
10311 new_readreg = wm_gmii_i82544_readreg;
10312 new_writereg = wm_gmii_i82544_writereg;
10313 } else {
10314 new_readreg = wm_gmii_i82543_readreg;
10315 new_writereg = wm_gmii_i82543_writereg;
10316 }
10317
10318 if (new_phytype == WMPHY_BM) {
10319 /* All BM use _bm_ */
10320 new_readreg = wm_gmii_bm_readreg;
10321 new_writereg = wm_gmii_bm_writereg;
10322 }
10323 if ((sc->sc_type >= WM_T_PCH) && (sc->sc_type <= WM_T_PCH_CNP)) {
10324 /* All PCH* use _hv_ */
10325 new_readreg = wm_gmii_hv_readreg;
10326 new_writereg = wm_gmii_hv_writereg;
10327 }
10328
10329 /* Diag output */
10330 if (dodiag) {
10331 if (doubt_phytype != WMPHY_UNKNOWN)
10332 aprint_error_dev(dev, "Assumed new PHY type was "
10333 "incorrect. old = %u, new = %u\n", sc->sc_phytype,
10334 new_phytype);
10335 else if ((sc->sc_phytype != WMPHY_UNKNOWN)
10336 && (sc->sc_phytype != new_phytype))
10337 aprint_error_dev(dev, "Previously assumed PHY type(%u)"
10338 "was incorrect. New PHY type = %u\n",
10339 sc->sc_phytype, new_phytype);
10340
10341 if ((mii->mii_readreg != NULL) &&
10342 (new_phytype == WMPHY_UNKNOWN))
10343 aprint_error_dev(dev, "PHY type is still unknown.\n");
10344
10345 if ((mii->mii_readreg != NULL) &&
10346 (mii->mii_readreg != new_readreg))
10347 aprint_error_dev(dev, "Previously assumed PHY "
10348 "read/write function was incorrect.\n");
10349 }
10350
10351 /* Update now */
10352 sc->sc_phytype = new_phytype;
10353 mii->mii_readreg = new_readreg;
10354 mii->mii_writereg = new_writereg;
10355 if (new_readreg == wm_gmii_hv_readreg) {
10356 sc->phy.readreg_locked = wm_gmii_hv_readreg_locked;
10357 sc->phy.writereg_locked = wm_gmii_hv_writereg_locked;
10358 } else if (new_readreg == wm_sgmii_readreg) {
10359 sc->phy.readreg_locked = wm_sgmii_readreg_locked;
10360 sc->phy.writereg_locked = wm_sgmii_writereg_locked;
10361 } else if (new_readreg == wm_gmii_i82544_readreg) {
10362 sc->phy.readreg_locked = wm_gmii_i82544_readreg_locked;
10363 sc->phy.writereg_locked = wm_gmii_i82544_writereg_locked;
10364 }
10365 }
10366
10367 /*
10368 * wm_get_phy_id_82575:
10369 *
10370 * Return PHY ID. Return -1 if it failed.
10371 */
10372 static int
10373 wm_get_phy_id_82575(struct wm_softc *sc)
10374 {
10375 uint32_t reg;
10376 int phyid = -1;
10377
10378 /* XXX */
10379 if ((sc->sc_flags & WM_F_SGMII) == 0)
10380 return -1;
10381
10382 if (wm_sgmii_uses_mdio(sc)) {
10383 switch (sc->sc_type) {
10384 case WM_T_82575:
10385 case WM_T_82576:
10386 reg = CSR_READ(sc, WMREG_MDIC);
10387 phyid = (reg & MDIC_PHY_MASK) >> MDIC_PHY_SHIFT;
10388 break;
10389 case WM_T_82580:
10390 case WM_T_I350:
10391 case WM_T_I354:
10392 case WM_T_I210:
10393 case WM_T_I211:
10394 reg = CSR_READ(sc, WMREG_MDICNFG);
10395 phyid = (reg & MDICNFG_PHY_MASK) >> MDICNFG_PHY_SHIFT;
10396 break;
10397 default:
10398 return -1;
10399 }
10400 }
10401
10402 return phyid;
10403 }
10404
10405
10406 /*
10407 * wm_gmii_mediainit:
10408 *
10409 * Initialize media for use on 1000BASE-T devices.
10410 */
10411 static void
10412 wm_gmii_mediainit(struct wm_softc *sc, pci_product_id_t prodid)
10413 {
10414 device_t dev = sc->sc_dev;
10415 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
10416 struct mii_data *mii = &sc->sc_mii;
10417
10418 DPRINTF(WM_DEBUG_GMII, ("%s: %s called\n",
10419 device_xname(sc->sc_dev), __func__));
10420
10421 /* We have GMII. */
10422 sc->sc_flags |= WM_F_HAS_MII;
10423
10424 if (sc->sc_type == WM_T_80003)
10425 sc->sc_tipg = TIPG_1000T_80003_DFLT;
10426 else
10427 sc->sc_tipg = TIPG_1000T_DFLT;
10428
10429 /*
10430 * Let the chip set speed/duplex on its own based on
10431 * signals from the PHY.
10432 * XXXbouyer - I'm not sure this is right for the 80003,
10433 * the em driver only sets CTRL_SLU here - but it seems to work.
10434 */
10435 sc->sc_ctrl |= CTRL_SLU;
10436 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
10437
10438 /* Initialize our media structures and probe the GMII. */
10439 mii->mii_ifp = ifp;
10440
10441 mii->mii_statchg = wm_gmii_statchg;
10442
10443 /* get PHY control from SMBus to PCIe */
10444 if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)
10445 || (sc->sc_type == WM_T_PCH_LPT) || (sc->sc_type == WM_T_PCH_SPT)
10446 || (sc->sc_type == WM_T_PCH_CNP))
10447 wm_init_phy_workarounds_pchlan(sc);
10448
10449 wm_gmii_reset(sc);
10450
10451 sc->sc_ethercom.ec_mii = &sc->sc_mii;
10452 ifmedia_init_with_lock(&mii->mii_media, IFM_IMASK, wm_gmii_mediachange,
10453 wm_gmii_mediastatus, sc->sc_core_lock);
10454
10455 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
10456 || (sc->sc_type == WM_T_82580)
10457 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
10458 || (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211)) {
10459 if ((sc->sc_flags & WM_F_SGMII) == 0) {
10460 /* Attach only one port */
10461 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, 1,
10462 MII_OFFSET_ANY, MIIF_DOPAUSE);
10463 } else {
10464 int i, id;
10465 uint32_t ctrl_ext;
10466
10467 id = wm_get_phy_id_82575(sc);
10468 if (id != -1) {
10469 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff,
10470 id, MII_OFFSET_ANY, MIIF_DOPAUSE);
10471 }
10472 if ((id == -1)
10473 || (LIST_FIRST(&mii->mii_phys) == NULL)) {
10474 /* Power on sgmii phy if it is disabled */
10475 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
10476 CSR_WRITE(sc, WMREG_CTRL_EXT,
10477 ctrl_ext &~ CTRL_EXT_SWDPIN(3));
10478 CSR_WRITE_FLUSH(sc);
10479 delay(300*1000); /* XXX too long */
10480
10481 /*
10482 * From 1 to 8.
10483 *
10484 * I2C access fails with I2C register's ERROR
10485 * bit set, so prevent error message while
10486 * scanning.
10487 */
10488 sc->phy.no_errprint = true;
10489 for (i = 1; i < 8; i++)
10490 mii_attach(sc->sc_dev, &sc->sc_mii,
10491 0xffffffff, i, MII_OFFSET_ANY,
10492 MIIF_DOPAUSE);
10493 sc->phy.no_errprint = false;
10494
10495 /* Restore previous sfp cage power state */
10496 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
10497 }
10498 }
10499 } else
10500 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
10501 MII_OFFSET_ANY, MIIF_DOPAUSE);
10502
10503 /*
10504 * If the MAC is PCH2 or PCH_LPT and failed to detect MII PHY, call
10505 * wm_set_mdio_slow_mode_hv() for a workaround and retry.
10506 */
10507 if (((sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)
10508 || (sc->sc_type == WM_T_PCH_SPT)
10509 || (sc->sc_type == WM_T_PCH_CNP))
10510 && (LIST_FIRST(&mii->mii_phys) == NULL)) {
10511 wm_set_mdio_slow_mode_hv(sc);
10512 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
10513 MII_OFFSET_ANY, MIIF_DOPAUSE);
10514 }
10515
10516 /*
10517 * (For ICH8 variants)
10518 * If PHY detection failed, use BM's r/w function and retry.
10519 */
10520 if (LIST_FIRST(&mii->mii_phys) == NULL) {
10521 /* if failed, retry with *_bm_* */
10522 aprint_verbose_dev(dev, "Assumed PHY access function "
10523 "(type = %d) might be incorrect. Use BM and retry.\n",
10524 sc->sc_phytype);
10525 sc->sc_phytype = WMPHY_BM;
10526 mii->mii_readreg = wm_gmii_bm_readreg;
10527 mii->mii_writereg = wm_gmii_bm_writereg;
10528
10529 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
10530 MII_OFFSET_ANY, MIIF_DOPAUSE);
10531 }
10532
10533 if (LIST_FIRST(&mii->mii_phys) == NULL) {
10534 /* Any PHY wasn't find */
10535 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
10536 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
10537 sc->sc_phytype = WMPHY_NONE;
10538 } else {
10539 struct mii_softc *child = LIST_FIRST(&mii->mii_phys);
10540
10541 /*
10542 * PHY Found! Check PHY type again by the second call of
10543 * wm_gmii_setup_phytype.
10544 */
10545 wm_gmii_setup_phytype(sc, child->mii_mpd_oui,
10546 child->mii_mpd_model);
10547
10548 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
10549 }
10550 }
10551
10552 /*
10553 * wm_gmii_mediachange: [ifmedia interface function]
10554 *
10555 * Set hardware to newly-selected media on a 1000BASE-T device.
10556 */
10557 static int
10558 wm_gmii_mediachange(struct ifnet *ifp)
10559 {
10560 struct wm_softc *sc = ifp->if_softc;
10561 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
10562 uint32_t reg;
10563 int rc;
10564
10565 DPRINTF(WM_DEBUG_GMII, ("%s: %s called\n",
10566 device_xname(sc->sc_dev), __func__));
10567 if ((ifp->if_flags & IFF_UP) == 0)
10568 return 0;
10569
10570 /* XXX Not for I354? FreeBSD's e1000_82575.c doesn't include it */
10571 if ((sc->sc_type == WM_T_82580)
10572 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I210)
10573 || (sc->sc_type == WM_T_I211)) {
10574 reg = CSR_READ(sc, WMREG_PHPM);
10575 reg &= ~PHPM_GO_LINK_D;
10576 CSR_WRITE(sc, WMREG_PHPM, reg);
10577 }
10578
10579 /* Disable D0 LPLU. */
10580 wm_lplu_d0_disable(sc);
10581
10582 sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
10583 sc->sc_ctrl |= CTRL_SLU;
10584 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
10585 || (sc->sc_type > WM_T_82543)) {
10586 sc->sc_ctrl &= ~(CTRL_FRCSPD | CTRL_FRCFDX);
10587 } else {
10588 sc->sc_ctrl &= ~CTRL_ASDE;
10589 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
10590 if (ife->ifm_media & IFM_FDX)
10591 sc->sc_ctrl |= CTRL_FD;
10592 switch (IFM_SUBTYPE(ife->ifm_media)) {
10593 case IFM_10_T:
10594 sc->sc_ctrl |= CTRL_SPEED_10;
10595 break;
10596 case IFM_100_TX:
10597 sc->sc_ctrl |= CTRL_SPEED_100;
10598 break;
10599 case IFM_1000_T:
10600 sc->sc_ctrl |= CTRL_SPEED_1000;
10601 break;
10602 case IFM_NONE:
10603 /* There is no specific setting for IFM_NONE */
10604 break;
10605 default:
10606 panic("wm_gmii_mediachange: bad media 0x%x",
10607 ife->ifm_media);
10608 }
10609 }
10610 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
10611 CSR_WRITE_FLUSH(sc);
10612
10613 if ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211))
10614 wm_serdes_mediachange(ifp);
10615
10616 if (sc->sc_type <= WM_T_82543)
10617 wm_gmii_reset(sc);
10618 else if ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211)
10619 && ((sc->sc_flags & WM_F_SGMII) != 0)) {
10620 /* allow time for SFP cage time to power up phy */
10621 delay(300 * 1000);
10622 wm_gmii_reset(sc);
10623 }
10624
10625 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
10626 return 0;
10627 return rc;
10628 }
10629
10630 /*
10631 * wm_gmii_mediastatus: [ifmedia interface function]
10632 *
10633 * Get the current interface media status on a 1000BASE-T device.
10634 */
10635 static void
10636 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
10637 {
10638 struct wm_softc *sc = ifp->if_softc;
10639
10640 ether_mediastatus(ifp, ifmr);
10641 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
10642 | sc->sc_flowflags;
10643 }
10644
10645 #define MDI_IO CTRL_SWDPIN(2)
10646 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
10647 #define MDI_CLK CTRL_SWDPIN(3)
10648
10649 static void
10650 wm_i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
10651 {
10652 uint32_t i, v;
10653
10654 v = CSR_READ(sc, WMREG_CTRL);
10655 v &= ~(MDI_IO | MDI_CLK | (CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
10656 v |= MDI_DIR | CTRL_SWDPIO(3);
10657
10658 for (i = __BIT(nbits - 1); i != 0; i >>= 1) {
10659 if (data & i)
10660 v |= MDI_IO;
10661 else
10662 v &= ~MDI_IO;
10663 CSR_WRITE(sc, WMREG_CTRL, v);
10664 CSR_WRITE_FLUSH(sc);
10665 delay(10);
10666 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
10667 CSR_WRITE_FLUSH(sc);
10668 delay(10);
10669 CSR_WRITE(sc, WMREG_CTRL, v);
10670 CSR_WRITE_FLUSH(sc);
10671 delay(10);
10672 }
10673 }
10674
10675 static uint16_t
10676 wm_i82543_mii_recvbits(struct wm_softc *sc)
10677 {
10678 uint32_t v, i;
10679 uint16_t data = 0;
10680
10681 v = CSR_READ(sc, WMREG_CTRL);
10682 v &= ~(MDI_IO | MDI_CLK | (CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
10683 v |= CTRL_SWDPIO(3);
10684
10685 CSR_WRITE(sc, WMREG_CTRL, v);
10686 CSR_WRITE_FLUSH(sc);
10687 delay(10);
10688 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
10689 CSR_WRITE_FLUSH(sc);
10690 delay(10);
10691 CSR_WRITE(sc, WMREG_CTRL, v);
10692 CSR_WRITE_FLUSH(sc);
10693 delay(10);
10694
10695 for (i = 0; i < 16; i++) {
10696 data <<= 1;
10697 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
10698 CSR_WRITE_FLUSH(sc);
10699 delay(10);
10700 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
10701 data |= 1;
10702 CSR_WRITE(sc, WMREG_CTRL, v);
10703 CSR_WRITE_FLUSH(sc);
10704 delay(10);
10705 }
10706
10707 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
10708 CSR_WRITE_FLUSH(sc);
10709 delay(10);
10710 CSR_WRITE(sc, WMREG_CTRL, v);
10711 CSR_WRITE_FLUSH(sc);
10712 delay(10);
10713
10714 return data;
10715 }
10716
10717 #undef MDI_IO
10718 #undef MDI_DIR
10719 #undef MDI_CLK
10720
10721 /*
10722 * wm_gmii_i82543_readreg: [mii interface function]
10723 *
10724 * Read a PHY register on the GMII (i82543 version).
10725 */
10726 static int
10727 wm_gmii_i82543_readreg(device_t dev, int phy, int reg, uint16_t *val)
10728 {
10729 struct wm_softc *sc = device_private(dev);
10730
10731 wm_i82543_mii_sendbits(sc, 0xffffffffU, 32);
10732 wm_i82543_mii_sendbits(sc, reg | (phy << 5) |
10733 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
10734 *val = wm_i82543_mii_recvbits(sc) & 0xffff;
10735
10736 DPRINTF(WM_DEBUG_GMII, ("%s: GMII: read phy %d reg %d -> 0x%04hx\n",
10737 device_xname(dev), phy, reg, *val));
10738
10739 return 0;
10740 }
10741
10742 /*
10743 * wm_gmii_i82543_writereg: [mii interface function]
10744 *
10745 * Write a PHY register on the GMII (i82543 version).
10746 */
10747 static int
10748 wm_gmii_i82543_writereg(device_t dev, int phy, int reg, uint16_t val)
10749 {
10750 struct wm_softc *sc = device_private(dev);
10751
10752 wm_i82543_mii_sendbits(sc, 0xffffffffU, 32);
10753 wm_i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
10754 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
10755 (MII_COMMAND_START << 30), 32);
10756
10757 return 0;
10758 }
10759
10760 /*
10761 * wm_gmii_mdic_readreg: [mii interface function]
10762 *
10763 * Read a PHY register on the GMII.
10764 */
10765 static int
10766 wm_gmii_mdic_readreg(device_t dev, int phy, int reg, uint16_t *val)
10767 {
10768 struct wm_softc *sc = device_private(dev);
10769 uint32_t mdic = 0;
10770 int i;
10771
10772 if ((sc->sc_phytype != WMPHY_82579) && (sc->sc_phytype != WMPHY_I217)
10773 && (reg > MII_ADDRMASK)) {
10774 device_printf(dev, "%s: PHYTYPE = %d, addr 0x%x > 0x1f\n",
10775 __func__, sc->sc_phytype, reg);
10776 reg &= MII_ADDRMASK;
10777 }
10778
10779 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
10780 MDIC_REGADD(reg));
10781
10782 for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) {
10783 delay(50);
10784 mdic = CSR_READ(sc, WMREG_MDIC);
10785 if (mdic & MDIC_READY)
10786 break;
10787 }
10788
10789 if ((mdic & MDIC_READY) == 0) {
10790 DPRINTF(WM_DEBUG_GMII,
10791 ("%s: MDIC read timed out: phy %d reg %d\n",
10792 device_xname(dev), phy, reg));
10793 return ETIMEDOUT;
10794 } else if (mdic & MDIC_E) {
10795 /* This is normal if no PHY is present. */
10796 DPRINTF(WM_DEBUG_GMII, ("%s: MDIC read error: phy %d reg %d\n",
10797 device_xname(sc->sc_dev), phy, reg));
10798 return -1;
10799 } else
10800 *val = MDIC_DATA(mdic);
10801
10802 /*
10803 * Allow some time after each MDIC transaction to avoid
10804 * reading duplicate data in the next MDIC transaction.
10805 */
10806 if (sc->sc_type == WM_T_PCH2)
10807 delay(100);
10808
10809 return 0;
10810 }
10811
10812 /*
10813 * wm_gmii_mdic_writereg: [mii interface function]
10814 *
10815 * Write a PHY register on the GMII.
10816 */
10817 static int
10818 wm_gmii_mdic_writereg(device_t dev, int phy, int reg, uint16_t val)
10819 {
10820 struct wm_softc *sc = device_private(dev);
10821 uint32_t mdic = 0;
10822 int i;
10823
10824 if ((sc->sc_phytype != WMPHY_82579) && (sc->sc_phytype != WMPHY_I217)
10825 && (reg > MII_ADDRMASK)) {
10826 device_printf(dev, "%s: PHYTYPE = %d, addr 0x%x > 0x1f\n",
10827 __func__, sc->sc_phytype, reg);
10828 reg &= MII_ADDRMASK;
10829 }
10830
10831 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
10832 MDIC_REGADD(reg) | MDIC_DATA(val));
10833
10834 for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) {
10835 delay(50);
10836 mdic = CSR_READ(sc, WMREG_MDIC);
10837 if (mdic & MDIC_READY)
10838 break;
10839 }
10840
10841 if ((mdic & MDIC_READY) == 0) {
10842 DPRINTF(WM_DEBUG_GMII,
10843 ("%s: MDIC write timed out: phy %d reg %d\n",
10844 device_xname(dev), phy, reg));
10845 return ETIMEDOUT;
10846 } else if (mdic & MDIC_E) {
10847 DPRINTF(WM_DEBUG_GMII,
10848 ("%s: MDIC write error: phy %d reg %d\n",
10849 device_xname(dev), phy, reg));
10850 return -1;
10851 }
10852
10853 /*
10854 * Allow some time after each MDIC transaction to avoid
10855 * reading duplicate data in the next MDIC transaction.
10856 */
10857 if (sc->sc_type == WM_T_PCH2)
10858 delay(100);
10859
10860 return 0;
10861 }
10862
10863 /*
10864 * wm_gmii_i82544_readreg: [mii interface function]
10865 *
10866 * Read a PHY register on the GMII.
10867 */
10868 static int
10869 wm_gmii_i82544_readreg(device_t dev, int phy, int reg, uint16_t *val)
10870 {
10871 struct wm_softc *sc = device_private(dev);
10872 int rv;
10873
10874 if (sc->phy.acquire(sc)) {
10875 device_printf(dev, "%s: failed to get semaphore\n", __func__);
10876 return -1;
10877 }
10878
10879 rv = wm_gmii_i82544_readreg_locked(dev, phy, reg, val);
10880
10881 sc->phy.release(sc);
10882
10883 return rv;
10884 }
10885
10886 static int
10887 wm_gmii_i82544_readreg_locked(device_t dev, int phy, int reg, uint16_t *val)
10888 {
10889 struct wm_softc *sc = device_private(dev);
10890 int rv;
10891
10892 if (reg > BME1000_MAX_MULTI_PAGE_REG) {
10893 switch (sc->sc_phytype) {
10894 case WMPHY_IGP:
10895 case WMPHY_IGP_2:
10896 case WMPHY_IGP_3:
10897 rv = wm_gmii_mdic_writereg(dev, phy,
10898 MII_IGPHY_PAGE_SELECT, reg);
10899 if (rv != 0)
10900 return rv;
10901 break;
10902 default:
10903 #ifdef WM_DEBUG
10904 device_printf(dev, "%s: PHYTYPE = 0x%x, addr = %02x\n",
10905 __func__, sc->sc_phytype, reg);
10906 #endif
10907 break;
10908 }
10909 }
10910
10911 return wm_gmii_mdic_readreg(dev, phy, reg & MII_ADDRMASK, val);
10912 }
10913
10914 /*
10915 * wm_gmii_i82544_writereg: [mii interface function]
10916 *
10917 * Write a PHY register on the GMII.
10918 */
10919 static int
10920 wm_gmii_i82544_writereg(device_t dev, int phy, int reg, uint16_t val)
10921 {
10922 struct wm_softc *sc = device_private(dev);
10923 int rv;
10924
10925 if (sc->phy.acquire(sc)) {
10926 device_printf(dev, "%s: failed to get semaphore\n", __func__);
10927 return -1;
10928 }
10929
10930 rv = wm_gmii_i82544_writereg_locked(dev, phy, reg & MII_ADDRMASK, val);
10931 sc->phy.release(sc);
10932
10933 return rv;
10934 }
10935
10936 static int
10937 wm_gmii_i82544_writereg_locked(device_t dev, int phy, int reg, uint16_t val)
10938 {
10939 struct wm_softc *sc = device_private(dev);
10940 int rv;
10941
10942 if (reg > BME1000_MAX_MULTI_PAGE_REG) {
10943 switch (sc->sc_phytype) {
10944 case WMPHY_IGP:
10945 case WMPHY_IGP_2:
10946 case WMPHY_IGP_3:
10947 rv = wm_gmii_mdic_writereg(dev, phy,
10948 MII_IGPHY_PAGE_SELECT, reg);
10949 if (rv != 0)
10950 return rv;
10951 break;
10952 default:
10953 #ifdef WM_DEBUG
10954 device_printf(dev, "%s: PHYTYPE == 0x%x, addr = %02x",
10955 __func__, sc->sc_phytype, reg);
10956 #endif
10957 break;
10958 }
10959 }
10960
10961 return wm_gmii_mdic_writereg(dev, phy, reg & MII_ADDRMASK, val);
10962 }
10963
10964 /*
10965 * wm_gmii_i80003_readreg: [mii interface function]
10966 *
10967 * Read a PHY register on the kumeran
10968 * This could be handled by the PHY layer if we didn't have to lock the
10969 * ressource ...
10970 */
10971 static int
10972 wm_gmii_i80003_readreg(device_t dev, int phy, int reg, uint16_t *val)
10973 {
10974 struct wm_softc *sc = device_private(dev);
10975 int page_select;
10976 uint16_t temp, temp2;
10977 int rv = 0;
10978
10979 if (phy != 1) /* Only one PHY on kumeran bus */
10980 return -1;
10981
10982 if (sc->phy.acquire(sc)) {
10983 device_printf(dev, "%s: failed to get semaphore\n", __func__);
10984 return -1;
10985 }
10986
10987 if ((reg & MII_ADDRMASK) < GG82563_MIN_ALT_REG)
10988 page_select = GG82563_PHY_PAGE_SELECT;
10989 else {
10990 /*
10991 * Use Alternative Page Select register to access registers
10992 * 30 and 31.
10993 */
10994 page_select = GG82563_PHY_PAGE_SELECT_ALT;
10995 }
10996 temp = reg >> GG82563_PAGE_SHIFT;
10997 if ((rv = wm_gmii_mdic_writereg(dev, phy, page_select, temp)) != 0)
10998 goto out;
10999
11000 if ((sc->sc_flags & WM_F_80003_MDIC_WA) != 0) {
11001 /*
11002 * Wait more 200us for a bug of the ready bit in the MDIC
11003 * register.
11004 */
11005 delay(200);
11006 rv = wm_gmii_mdic_readreg(dev, phy, page_select, &temp2);
11007 if ((rv != 0) || (temp2 != temp)) {
11008 device_printf(dev, "%s failed\n", __func__);
11009 rv = -1;
11010 goto out;
11011 }
11012 delay(200);
11013 rv = wm_gmii_mdic_readreg(dev, phy, reg & MII_ADDRMASK, val);
11014 delay(200);
11015 } else
11016 rv = wm_gmii_mdic_readreg(dev, phy, reg & MII_ADDRMASK, val);
11017
11018 out:
11019 sc->phy.release(sc);
11020 return rv;
11021 }
11022
11023 /*
11024 * wm_gmii_i80003_writereg: [mii interface function]
11025 *
11026 * Write a PHY register on the kumeran.
11027 * This could be handled by the PHY layer if we didn't have to lock the
11028 * ressource ...
11029 */
11030 static int
11031 wm_gmii_i80003_writereg(device_t dev, int phy, int reg, uint16_t val)
11032 {
11033 struct wm_softc *sc = device_private(dev);
11034 int page_select, rv;
11035 uint16_t temp, temp2;
11036
11037 if (phy != 1) /* Only one PHY on kumeran bus */
11038 return -1;
11039
11040 if (sc->phy.acquire(sc)) {
11041 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11042 return -1;
11043 }
11044
11045 if ((reg & MII_ADDRMASK) < GG82563_MIN_ALT_REG)
11046 page_select = GG82563_PHY_PAGE_SELECT;
11047 else {
11048 /*
11049 * Use Alternative Page Select register to access registers
11050 * 30 and 31.
11051 */
11052 page_select = GG82563_PHY_PAGE_SELECT_ALT;
11053 }
11054 temp = (uint16_t)reg >> GG82563_PAGE_SHIFT;
11055 if ((rv = wm_gmii_mdic_writereg(dev, phy, page_select, temp)) != 0)
11056 goto out;
11057
11058 if ((sc->sc_flags & WM_F_80003_MDIC_WA) != 0) {
11059 /*
11060 * Wait more 200us for a bug of the ready bit in the MDIC
11061 * register.
11062 */
11063 delay(200);
11064 rv = wm_gmii_mdic_readreg(dev, phy, page_select, &temp2);
11065 if ((rv != 0) || (temp2 != temp)) {
11066 device_printf(dev, "%s failed\n", __func__);
11067 rv = -1;
11068 goto out;
11069 }
11070 delay(200);
11071 rv = wm_gmii_mdic_writereg(dev, phy, reg & MII_ADDRMASK, val);
11072 delay(200);
11073 } else
11074 rv = wm_gmii_mdic_writereg(dev, phy, reg & MII_ADDRMASK, val);
11075
11076 out:
11077 sc->phy.release(sc);
11078 return rv;
11079 }
11080
11081 /*
11082 * wm_gmii_bm_readreg: [mii interface function]
11083 *
11084 * Read a PHY register on the kumeran
11085 * This could be handled by the PHY layer if we didn't have to lock the
11086 * ressource ...
11087 */
11088 static int
11089 wm_gmii_bm_readreg(device_t dev, int phy, int reg, uint16_t *val)
11090 {
11091 struct wm_softc *sc = device_private(dev);
11092 uint16_t page = reg >> BME1000_PAGE_SHIFT;
11093 int rv;
11094
11095 if (sc->phy.acquire(sc)) {
11096 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11097 return -1;
11098 }
11099
11100 if ((sc->sc_type != WM_T_82574) && (sc->sc_type != WM_T_82583))
11101 phy = ((page >= 768) || ((page == 0) && (reg == 25))
11102 || (reg == 31)) ? 1 : phy;
11103 /* Page 800 works differently than the rest so it has its own func */
11104 if (page == BM_WUC_PAGE) {
11105 rv = wm_access_phy_wakeup_reg_bm(dev, reg, val, true, false);
11106 goto release;
11107 }
11108
11109 if (reg > BME1000_MAX_MULTI_PAGE_REG) {
11110 if ((phy == 1) && (sc->sc_type != WM_T_82574)
11111 && (sc->sc_type != WM_T_82583))
11112 rv = wm_gmii_mdic_writereg(dev, phy,
11113 MII_IGPHY_PAGE_SELECT, page << BME1000_PAGE_SHIFT);
11114 else
11115 rv = wm_gmii_mdic_writereg(dev, phy,
11116 BME1000_PHY_PAGE_SELECT, page);
11117 if (rv != 0)
11118 goto release;
11119 }
11120
11121 rv = wm_gmii_mdic_readreg(dev, phy, reg & MII_ADDRMASK, val);
11122
11123 release:
11124 sc->phy.release(sc);
11125 return rv;
11126 }
11127
11128 /*
11129 * wm_gmii_bm_writereg: [mii interface function]
11130 *
11131 * Write a PHY register on the kumeran.
11132 * This could be handled by the PHY layer if we didn't have to lock the
11133 * ressource ...
11134 */
11135 static int
11136 wm_gmii_bm_writereg(device_t dev, int phy, int reg, uint16_t val)
11137 {
11138 struct wm_softc *sc = device_private(dev);
11139 uint16_t page = reg >> BME1000_PAGE_SHIFT;
11140 int rv;
11141
11142 if (sc->phy.acquire(sc)) {
11143 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11144 return -1;
11145 }
11146
11147 if ((sc->sc_type != WM_T_82574) && (sc->sc_type != WM_T_82583))
11148 phy = ((page >= 768) || ((page == 0) && (reg == 25))
11149 || (reg == 31)) ? 1 : phy;
11150 /* Page 800 works differently than the rest so it has its own func */
11151 if (page == BM_WUC_PAGE) {
11152 rv = wm_access_phy_wakeup_reg_bm(dev, reg, &val, false, false);
11153 goto release;
11154 }
11155
11156 if (reg > BME1000_MAX_MULTI_PAGE_REG) {
11157 if ((phy == 1) && (sc->sc_type != WM_T_82574)
11158 && (sc->sc_type != WM_T_82583))
11159 rv = wm_gmii_mdic_writereg(dev, phy,
11160 MII_IGPHY_PAGE_SELECT, page << BME1000_PAGE_SHIFT);
11161 else
11162 rv = wm_gmii_mdic_writereg(dev, phy,
11163 BME1000_PHY_PAGE_SELECT, page);
11164 if (rv != 0)
11165 goto release;
11166 }
11167
11168 rv = wm_gmii_mdic_writereg(dev, phy, reg & MII_ADDRMASK, val);
11169
11170 release:
11171 sc->phy.release(sc);
11172 return rv;
11173 }
11174
11175 /*
11176 * wm_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
11177 * @dev: pointer to the HW structure
11178 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
11179 *
11180 * Assumes semaphore already acquired and phy_reg points to a valid memory
11181 * address to store contents of the BM_WUC_ENABLE_REG register.
11182 */
11183 static int
11184 wm_enable_phy_wakeup_reg_access_bm(device_t dev, uint16_t *phy_regp)
11185 {
11186 uint16_t temp;
11187 int rv;
11188
11189 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
11190 device_xname(dev), __func__));
11191
11192 if (!phy_regp)
11193 return -1;
11194
11195 /* All page select, port ctrl and wakeup registers use phy address 1 */
11196
11197 /* Select Port Control Registers page */
11198 rv = wm_gmii_mdic_writereg(dev, 1, MII_IGPHY_PAGE_SELECT,
11199 BM_PORT_CTRL_PAGE << IGP3_PAGE_SHIFT);
11200 if (rv != 0)
11201 return rv;
11202
11203 /* Read WUCE and save it */
11204 rv = wm_gmii_mdic_readreg(dev, 1, BM_WUC_ENABLE_REG, phy_regp);
11205 if (rv != 0)
11206 return rv;
11207
11208 /* Enable both PHY wakeup mode and Wakeup register page writes.
11209 * Prevent a power state change by disabling ME and Host PHY wakeup.
11210 */
11211 temp = *phy_regp;
11212 temp |= BM_WUC_ENABLE_BIT;
11213 temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
11214
11215 if ((rv = wm_gmii_mdic_writereg(dev, 1, BM_WUC_ENABLE_REG, temp)) != 0)
11216 return rv;
11217
11218 /* Select Host Wakeup Registers page - caller now able to write
11219 * registers on the Wakeup registers page
11220 */
11221 return wm_gmii_mdic_writereg(dev, 1, MII_IGPHY_PAGE_SELECT,
11222 BM_WUC_PAGE << IGP3_PAGE_SHIFT);
11223 }
11224
11225 /*
11226 * wm_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
11227 * @dev: pointer to the HW structure
11228 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
11229 *
11230 * Restore BM_WUC_ENABLE_REG to its original value.
11231 *
11232 * Assumes semaphore already acquired and *phy_reg is the contents of the
11233 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
11234 * caller.
11235 */
11236 static int
11237 wm_disable_phy_wakeup_reg_access_bm(device_t dev, uint16_t *phy_regp)
11238 {
11239
11240 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
11241 device_xname(dev), __func__));
11242
11243 if (!phy_regp)
11244 return -1;
11245
11246 /* Select Port Control Registers page */
11247 wm_gmii_mdic_writereg(dev, 1, MII_IGPHY_PAGE_SELECT,
11248 BM_PORT_CTRL_PAGE << IGP3_PAGE_SHIFT);
11249
11250 /* Restore 769.17 to its original value */
11251 wm_gmii_mdic_writereg(dev, 1, BM_WUC_ENABLE_REG, *phy_regp);
11252
11253 return 0;
11254 }
11255
11256 /*
11257 * wm_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
11258 * @sc: pointer to the HW structure
11259 * @offset: register offset to be read or written
11260 * @val: pointer to the data to read or write
11261 * @rd: determines if operation is read or write
11262 * @page_set: BM_WUC_PAGE already set and access enabled
11263 *
11264 * Read the PHY register at offset and store the retrieved information in
11265 * data, or write data to PHY register at offset. Note the procedure to
11266 * access the PHY wakeup registers is different than reading the other PHY
11267 * registers. It works as such:
11268 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
11269 * 2) Set page to 800 for host (801 if we were manageability)
11270 * 3) Write the address using the address opcode (0x11)
11271 * 4) Read or write the data using the data opcode (0x12)
11272 * 5) Restore 769.17.2 to its original value
11273 *
11274 * Steps 1 and 2 are done by wm_enable_phy_wakeup_reg_access_bm() and
11275 * step 5 is done by wm_disable_phy_wakeup_reg_access_bm().
11276 *
11277 * Assumes semaphore is already acquired. When page_set==TRUE, assumes
11278 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
11279 * is responsible for calls to wm_[enable|disable]_phy_wakeup_reg_bm()).
11280 */
11281 static int
11282 wm_access_phy_wakeup_reg_bm(device_t dev, int offset, int16_t *val, int rd,
11283 bool page_set)
11284 {
11285 struct wm_softc *sc = device_private(dev);
11286 uint16_t regnum = BM_PHY_REG_NUM(offset);
11287 uint16_t page = BM_PHY_REG_PAGE(offset);
11288 uint16_t wuce;
11289 int rv = 0;
11290
11291 DPRINTF(WM_DEBUG_GMII, ("%s: %s called\n",
11292 device_xname(dev), __func__));
11293 /* XXX Gig must be disabled for MDIO accesses to page 800 */
11294 if ((sc->sc_type == WM_T_PCH)
11295 && ((CSR_READ(sc, WMREG_PHY_CTRL) & PHY_CTRL_GBE_DIS) == 0)) {
11296 device_printf(dev,
11297 "Attempting to access page %d while gig enabled.\n", page);
11298 }
11299
11300 if (!page_set) {
11301 /* Enable access to PHY wakeup registers */
11302 rv = wm_enable_phy_wakeup_reg_access_bm(dev, &wuce);
11303 if (rv != 0) {
11304 device_printf(dev,
11305 "%s: Could not enable PHY wakeup reg access\n",
11306 __func__);
11307 return rv;
11308 }
11309 }
11310 DPRINTF(WM_DEBUG_GMII, ("%s: %s: Accessing PHY page %d reg 0x%x\n",
11311 device_xname(sc->sc_dev), __func__, page, regnum));
11312
11313 /*
11314 * 2) Access PHY wakeup register.
11315 * See wm_access_phy_wakeup_reg_bm.
11316 */
11317
11318 /* Write the Wakeup register page offset value using opcode 0x11 */
11319 rv = wm_gmii_mdic_writereg(dev, 1, BM_WUC_ADDRESS_OPCODE, regnum);
11320 if (rv != 0)
11321 return rv;
11322
11323 if (rd) {
11324 /* Read the Wakeup register page value using opcode 0x12 */
11325 rv = wm_gmii_mdic_readreg(dev, 1, BM_WUC_DATA_OPCODE, val);
11326 } else {
11327 /* Write the Wakeup register page value using opcode 0x12 */
11328 rv = wm_gmii_mdic_writereg(dev, 1, BM_WUC_DATA_OPCODE, *val);
11329 }
11330 if (rv != 0)
11331 return rv;
11332
11333 if (!page_set)
11334 rv = wm_disable_phy_wakeup_reg_access_bm(dev, &wuce);
11335
11336 return rv;
11337 }
11338
11339 /*
11340 * wm_gmii_hv_readreg: [mii interface function]
11341 *
11342 * Read a PHY register on the kumeran
11343 * This could be handled by the PHY layer if we didn't have to lock the
11344 * ressource ...
11345 */
11346 static int
11347 wm_gmii_hv_readreg(device_t dev, int phy, int reg, uint16_t *val)
11348 {
11349 struct wm_softc *sc = device_private(dev);
11350 int rv;
11351
11352 DPRINTF(WM_DEBUG_GMII, ("%s: %s called\n",
11353 device_xname(dev), __func__));
11354 if (sc->phy.acquire(sc)) {
11355 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11356 return -1;
11357 }
11358
11359 rv = wm_gmii_hv_readreg_locked(dev, phy, reg, val);
11360 sc->phy.release(sc);
11361 return rv;
11362 }
11363
11364 static int
11365 wm_gmii_hv_readreg_locked(device_t dev, int phy, int reg, uint16_t *val)
11366 {
11367 uint16_t page = BM_PHY_REG_PAGE(reg);
11368 uint16_t regnum = BM_PHY_REG_NUM(reg);
11369 int rv;
11370
11371 phy = (page >= HV_INTC_FC_PAGE_START) ? 1 : phy;
11372
11373 /* Page 800 works differently than the rest so it has its own func */
11374 if (page == BM_WUC_PAGE)
11375 return wm_access_phy_wakeup_reg_bm(dev, reg, val, true, false);
11376
11377 /*
11378 * Lower than page 768 works differently than the rest so it has its
11379 * own func
11380 */
11381 if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) {
11382 device_printf(dev, "gmii_hv_readreg!!!\n");
11383 return -1;
11384 }
11385
11386 /*
11387 * XXX I21[789] documents say that the SMBus Address register is at
11388 * PHY address 01, Page 0 (not 768), Register 26.
11389 */
11390 if (page == HV_INTC_FC_PAGE_START)
11391 page = 0;
11392
11393 if (regnum > BME1000_MAX_MULTI_PAGE_REG) {
11394 rv = wm_gmii_mdic_writereg(dev, 1, MII_IGPHY_PAGE_SELECT,
11395 page << BME1000_PAGE_SHIFT);
11396 if (rv != 0)
11397 return rv;
11398 }
11399
11400 return wm_gmii_mdic_readreg(dev, phy, regnum & MII_ADDRMASK, val);
11401 }
11402
11403 /*
11404 * wm_gmii_hv_writereg: [mii interface function]
11405 *
11406 * Write a PHY register on the kumeran.
11407 * This could be handled by the PHY layer if we didn't have to lock the
11408 * ressource ...
11409 */
11410 static int
11411 wm_gmii_hv_writereg(device_t dev, int phy, int reg, uint16_t val)
11412 {
11413 struct wm_softc *sc = device_private(dev);
11414 int rv;
11415
11416 DPRINTF(WM_DEBUG_GMII, ("%s: %s called\n",
11417 device_xname(dev), __func__));
11418
11419 if (sc->phy.acquire(sc)) {
11420 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11421 return -1;
11422 }
11423
11424 rv = wm_gmii_hv_writereg_locked(dev, phy, reg, val);
11425 sc->phy.release(sc);
11426
11427 return rv;
11428 }
11429
11430 static int
11431 wm_gmii_hv_writereg_locked(device_t dev, int phy, int reg, uint16_t val)
11432 {
11433 struct wm_softc *sc = device_private(dev);
11434 uint16_t page = BM_PHY_REG_PAGE(reg);
11435 uint16_t regnum = BM_PHY_REG_NUM(reg);
11436 int rv;
11437
11438 phy = (page >= HV_INTC_FC_PAGE_START) ? 1 : phy;
11439
11440 /* Page 800 works differently than the rest so it has its own func */
11441 if (page == BM_WUC_PAGE)
11442 return wm_access_phy_wakeup_reg_bm(dev, reg, &val, false,
11443 false);
11444
11445 /*
11446 * Lower than page 768 works differently than the rest so it has its
11447 * own func
11448 */
11449 if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) {
11450 device_printf(dev, "gmii_hv_writereg!!!\n");
11451 return -1;
11452 }
11453
11454 {
11455 /*
11456 * XXX I21[789] documents say that the SMBus Address register
11457 * is at PHY address 01, Page 0 (not 768), Register 26.
11458 */
11459 if (page == HV_INTC_FC_PAGE_START)
11460 page = 0;
11461
11462 /*
11463 * XXX Workaround MDIO accesses being disabled after entering
11464 * IEEE Power Down (whenever bit 11 of the PHY control
11465 * register is set)
11466 */
11467 if (sc->sc_phytype == WMPHY_82578) {
11468 struct mii_softc *child;
11469
11470 child = LIST_FIRST(&sc->sc_mii.mii_phys);
11471 if ((child != NULL) && (child->mii_mpd_rev >= 1)
11472 && (phy == 2) && ((regnum & MII_ADDRMASK) == 0)
11473 && ((val & (1 << 11)) != 0)) {
11474 device_printf(dev, "XXX need workaround\n");
11475 }
11476 }
11477
11478 if (regnum > BME1000_MAX_MULTI_PAGE_REG) {
11479 rv = wm_gmii_mdic_writereg(dev, 1,
11480 MII_IGPHY_PAGE_SELECT, page << BME1000_PAGE_SHIFT);
11481 if (rv != 0)
11482 return rv;
11483 }
11484 }
11485
11486 return wm_gmii_mdic_writereg(dev, phy, regnum & MII_ADDRMASK, val);
11487 }
11488
11489 /*
11490 * wm_gmii_82580_readreg: [mii interface function]
11491 *
11492 * Read a PHY register on the 82580 and I350.
11493 * This could be handled by the PHY layer if we didn't have to lock the
11494 * ressource ...
11495 */
11496 static int
11497 wm_gmii_82580_readreg(device_t dev, int phy, int reg, uint16_t *val)
11498 {
11499 struct wm_softc *sc = device_private(dev);
11500 int rv;
11501
11502 if (sc->phy.acquire(sc) != 0) {
11503 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11504 return -1;
11505 }
11506
11507 #ifdef DIAGNOSTIC
11508 if (reg > MII_ADDRMASK) {
11509 device_printf(dev, "%s: PHYTYPE = %d, addr 0x%x > 0x1f\n",
11510 __func__, sc->sc_phytype, reg);
11511 reg &= MII_ADDRMASK;
11512 }
11513 #endif
11514 rv = wm_gmii_mdic_readreg(dev, phy, reg, val);
11515
11516 sc->phy.release(sc);
11517 return rv;
11518 }
11519
11520 /*
11521 * wm_gmii_82580_writereg: [mii interface function]
11522 *
11523 * Write a PHY register on the 82580 and I350.
11524 * This could be handled by the PHY layer if we didn't have to lock the
11525 * ressource ...
11526 */
11527 static int
11528 wm_gmii_82580_writereg(device_t dev, int phy, int reg, uint16_t val)
11529 {
11530 struct wm_softc *sc = device_private(dev);
11531 int rv;
11532
11533 if (sc->phy.acquire(sc) != 0) {
11534 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11535 return -1;
11536 }
11537
11538 #ifdef DIAGNOSTIC
11539 if (reg > MII_ADDRMASK) {
11540 device_printf(dev, "%s: PHYTYPE = %d, addr 0x%x > 0x1f\n",
11541 __func__, sc->sc_phytype, reg);
11542 reg &= MII_ADDRMASK;
11543 }
11544 #endif
11545 rv = wm_gmii_mdic_writereg(dev, phy, reg, val);
11546
11547 sc->phy.release(sc);
11548 return rv;
11549 }
11550
11551 /*
11552 * wm_gmii_gs40g_readreg: [mii interface function]
11553 *
11554 * Read a PHY register on the I2100 and I211.
11555 * This could be handled by the PHY layer if we didn't have to lock the
11556 * ressource ...
11557 */
11558 static int
11559 wm_gmii_gs40g_readreg(device_t dev, int phy, int reg, uint16_t *val)
11560 {
11561 struct wm_softc *sc = device_private(dev);
11562 int page, offset;
11563 int rv;
11564
11565 /* Acquire semaphore */
11566 if (sc->phy.acquire(sc)) {
11567 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11568 return -1;
11569 }
11570
11571 /* Page select */
11572 page = reg >> GS40G_PAGE_SHIFT;
11573 rv = wm_gmii_mdic_writereg(dev, phy, GS40G_PAGE_SELECT, page);
11574 if (rv != 0)
11575 goto release;
11576
11577 /* Read reg */
11578 offset = reg & GS40G_OFFSET_MASK;
11579 rv = wm_gmii_mdic_readreg(dev, phy, offset, val);
11580
11581 release:
11582 sc->phy.release(sc);
11583 return rv;
11584 }
11585
11586 /*
11587 * wm_gmii_gs40g_writereg: [mii interface function]
11588 *
11589 * Write a PHY register on the I210 and I211.
11590 * This could be handled by the PHY layer if we didn't have to lock the
11591 * ressource ...
11592 */
11593 static int
11594 wm_gmii_gs40g_writereg(device_t dev, int phy, int reg, uint16_t val)
11595 {
11596 struct wm_softc *sc = device_private(dev);
11597 uint16_t page;
11598 int offset, rv;
11599
11600 /* Acquire semaphore */
11601 if (sc->phy.acquire(sc)) {
11602 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11603 return -1;
11604 }
11605
11606 /* Page select */
11607 page = reg >> GS40G_PAGE_SHIFT;
11608 rv = wm_gmii_mdic_writereg(dev, phy, GS40G_PAGE_SELECT, page);
11609 if (rv != 0)
11610 goto release;
11611
11612 /* Write reg */
11613 offset = reg & GS40G_OFFSET_MASK;
11614 rv = wm_gmii_mdic_writereg(dev, phy, offset, val);
11615
11616 release:
11617 /* Release semaphore */
11618 sc->phy.release(sc);
11619 return rv;
11620 }
11621
11622 /*
11623 * wm_gmii_statchg: [mii interface function]
11624 *
11625 * Callback from MII layer when media changes.
11626 */
11627 static void
11628 wm_gmii_statchg(struct ifnet *ifp)
11629 {
11630 struct wm_softc *sc = ifp->if_softc;
11631 struct mii_data *mii = &sc->sc_mii;
11632
11633 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
11634 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
11635 sc->sc_fcrtl &= ~FCRTL_XONE;
11636
11637 /* Get flow control negotiation result. */
11638 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
11639 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
11640 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
11641 mii->mii_media_active &= ~IFM_ETH_FMASK;
11642 }
11643
11644 if (sc->sc_flowflags & IFM_FLOW) {
11645 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
11646 sc->sc_ctrl |= CTRL_TFCE;
11647 sc->sc_fcrtl |= FCRTL_XONE;
11648 }
11649 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
11650 sc->sc_ctrl |= CTRL_RFCE;
11651 }
11652
11653 if (mii->mii_media_active & IFM_FDX) {
11654 DPRINTF(WM_DEBUG_LINK,
11655 ("%s: LINK: statchg: FDX\n", ifp->if_xname));
11656 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
11657 } else {
11658 DPRINTF(WM_DEBUG_LINK,
11659 ("%s: LINK: statchg: HDX\n", ifp->if_xname));
11660 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
11661 }
11662
11663 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
11664 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
11665 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
11666 : WMREG_FCRTL, sc->sc_fcrtl);
11667 if (sc->sc_type == WM_T_80003) {
11668 switch (IFM_SUBTYPE(mii->mii_media_active)) {
11669 case IFM_1000_T:
11670 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
11671 KUMCTRLSTA_HD_CTRL_1000_DEFAULT);
11672 sc->sc_tipg = TIPG_1000T_80003_DFLT;
11673 break;
11674 default:
11675 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
11676 KUMCTRLSTA_HD_CTRL_10_100_DEFAULT);
11677 sc->sc_tipg = TIPG_10_100_80003_DFLT;
11678 break;
11679 }
11680 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
11681 }
11682 }
11683
11684 /* kumeran related (80003, ICH* and PCH*) */
11685
11686 /*
11687 * wm_kmrn_readreg:
11688 *
11689 * Read a kumeran register
11690 */
11691 static int
11692 wm_kmrn_readreg(struct wm_softc *sc, int reg, uint16_t *val)
11693 {
11694 int rv;
11695
11696 if (sc->sc_type == WM_T_80003)
11697 rv = wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
11698 else
11699 rv = sc->phy.acquire(sc);
11700 if (rv != 0) {
11701 device_printf(sc->sc_dev, "%s: failed to get semaphore\n",
11702 __func__);
11703 return rv;
11704 }
11705
11706 rv = wm_kmrn_readreg_locked(sc, reg, val);
11707
11708 if (sc->sc_type == WM_T_80003)
11709 wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
11710 else
11711 sc->phy.release(sc);
11712
11713 return rv;
11714 }
11715
11716 static int
11717 wm_kmrn_readreg_locked(struct wm_softc *sc, int reg, uint16_t *val)
11718 {
11719
11720 CSR_WRITE(sc, WMREG_KUMCTRLSTA,
11721 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
11722 KUMCTRLSTA_REN);
11723 CSR_WRITE_FLUSH(sc);
11724 delay(2);
11725
11726 *val = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK;
11727
11728 return 0;
11729 }
11730
11731 /*
11732 * wm_kmrn_writereg:
11733 *
11734 * Write a kumeran register
11735 */
11736 static int
11737 wm_kmrn_writereg(struct wm_softc *sc, int reg, uint16_t val)
11738 {
11739 int rv;
11740
11741 if (sc->sc_type == WM_T_80003)
11742 rv = wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
11743 else
11744 rv = sc->phy.acquire(sc);
11745 if (rv != 0) {
11746 device_printf(sc->sc_dev, "%s: failed to get semaphore\n",
11747 __func__);
11748 return rv;
11749 }
11750
11751 rv = wm_kmrn_writereg_locked(sc, reg, val);
11752
11753 if (sc->sc_type == WM_T_80003)
11754 wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
11755 else
11756 sc->phy.release(sc);
11757
11758 return rv;
11759 }
11760
11761 static int
11762 wm_kmrn_writereg_locked(struct wm_softc *sc, int reg, uint16_t val)
11763 {
11764
11765 CSR_WRITE(sc, WMREG_KUMCTRLSTA,
11766 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) | val);
11767
11768 return 0;
11769 }
11770
11771 /*
11772 * EMI register related (82579, WMPHY_I217(PCH2 and newer))
11773 * This access method is different from IEEE MMD.
11774 */
11775 static int
11776 wm_access_emi_reg_locked(device_t dev, int reg, uint16_t *val, bool rd)
11777 {
11778 struct wm_softc *sc = device_private(dev);
11779 int rv;
11780
11781 rv = sc->phy.writereg_locked(dev, 2, I82579_EMI_ADDR, reg);
11782 if (rv != 0)
11783 return rv;
11784
11785 if (rd)
11786 rv = sc->phy.readreg_locked(dev, 2, I82579_EMI_DATA, val);
11787 else
11788 rv = sc->phy.writereg_locked(dev, 2, I82579_EMI_DATA, *val);
11789 return rv;
11790 }
11791
11792 static int
11793 wm_read_emi_reg_locked(device_t dev, int reg, uint16_t *val)
11794 {
11795
11796 return wm_access_emi_reg_locked(dev, reg, val, true);
11797 }
11798
11799 static int
11800 wm_write_emi_reg_locked(device_t dev, int reg, uint16_t val)
11801 {
11802
11803 return wm_access_emi_reg_locked(dev, reg, &val, false);
11804 }
11805
11806 /* SGMII related */
11807
11808 /*
11809 * wm_sgmii_uses_mdio
11810 *
11811 * Check whether the transaction is to the internal PHY or the external
11812 * MDIO interface. Return true if it's MDIO.
11813 */
11814 static bool
11815 wm_sgmii_uses_mdio(struct wm_softc *sc)
11816 {
11817 uint32_t reg;
11818 bool ismdio = false;
11819
11820 switch (sc->sc_type) {
11821 case WM_T_82575:
11822 case WM_T_82576:
11823 reg = CSR_READ(sc, WMREG_MDIC);
11824 ismdio = ((reg & MDIC_DEST) != 0);
11825 break;
11826 case WM_T_82580:
11827 case WM_T_I350:
11828 case WM_T_I354:
11829 case WM_T_I210:
11830 case WM_T_I211:
11831 reg = CSR_READ(sc, WMREG_MDICNFG);
11832 ismdio = ((reg & MDICNFG_DEST) != 0);
11833 break;
11834 default:
11835 break;
11836 }
11837
11838 return ismdio;
11839 }
11840
11841 /*
11842 * wm_sgmii_readreg: [mii interface function]
11843 *
11844 * Read a PHY register on the SGMII
11845 * This could be handled by the PHY layer if we didn't have to lock the
11846 * ressource ...
11847 */
11848 static int
11849 wm_sgmii_readreg(device_t dev, int phy, int reg, uint16_t *val)
11850 {
11851 struct wm_softc *sc = device_private(dev);
11852 int rv;
11853
11854 if (sc->phy.acquire(sc)) {
11855 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11856 return -1;
11857 }
11858
11859 rv = wm_sgmii_readreg_locked(dev, phy, reg, val);
11860
11861 sc->phy.release(sc);
11862 return rv;
11863 }
11864
11865 static int
11866 wm_sgmii_readreg_locked(device_t dev, int phy, int reg, uint16_t *val)
11867 {
11868 struct wm_softc *sc = device_private(dev);
11869 uint32_t i2ccmd;
11870 int i, rv = 0;
11871
11872 i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT)
11873 | (phy << I2CCMD_PHY_ADDR_SHIFT) | I2CCMD_OPCODE_READ;
11874 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
11875
11876 /* Poll the ready bit */
11877 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
11878 delay(50);
11879 i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
11880 if (i2ccmd & I2CCMD_READY)
11881 break;
11882 }
11883 if ((i2ccmd & I2CCMD_READY) == 0) {
11884 device_printf(dev, "I2CCMD Read did not complete\n");
11885 rv = ETIMEDOUT;
11886 }
11887 if ((i2ccmd & I2CCMD_ERROR) != 0) {
11888 if (!sc->phy.no_errprint)
11889 device_printf(dev, "I2CCMD Error bit set\n");
11890 rv = EIO;
11891 }
11892
11893 *val = (uint16_t)((i2ccmd >> 8) & 0x00ff) | ((i2ccmd << 8) & 0xff00);
11894
11895 return rv;
11896 }
11897
11898 /*
11899 * wm_sgmii_writereg: [mii interface function]
11900 *
11901 * Write a PHY register on the SGMII.
11902 * This could be handled by the PHY layer if we didn't have to lock the
11903 * ressource ...
11904 */
11905 static int
11906 wm_sgmii_writereg(device_t dev, int phy, int reg, uint16_t val)
11907 {
11908 struct wm_softc *sc = device_private(dev);
11909 int rv;
11910
11911 if (sc->phy.acquire(sc) != 0) {
11912 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11913 return -1;
11914 }
11915
11916 rv = wm_sgmii_writereg_locked(dev, phy, reg, val);
11917
11918 sc->phy.release(sc);
11919
11920 return rv;
11921 }
11922
11923 static int
11924 wm_sgmii_writereg_locked(device_t dev, int phy, int reg, uint16_t val)
11925 {
11926 struct wm_softc *sc = device_private(dev);
11927 uint32_t i2ccmd;
11928 uint16_t swapdata;
11929 int rv = 0;
11930 int i;
11931
11932 /* Swap the data bytes for the I2C interface */
11933 swapdata = ((val >> 8) & 0x00FF) | ((val << 8) & 0xFF00);
11934 i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT)
11935 | (phy << I2CCMD_PHY_ADDR_SHIFT) | I2CCMD_OPCODE_WRITE | swapdata;
11936 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
11937
11938 /* Poll the ready bit */
11939 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
11940 delay(50);
11941 i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
11942 if (i2ccmd & I2CCMD_READY)
11943 break;
11944 }
11945 if ((i2ccmd & I2CCMD_READY) == 0) {
11946 device_printf(dev, "I2CCMD Write did not complete\n");
11947 rv = ETIMEDOUT;
11948 }
11949 if ((i2ccmd & I2CCMD_ERROR) != 0) {
11950 device_printf(dev, "I2CCMD Error bit set\n");
11951 rv = EIO;
11952 }
11953
11954 return rv;
11955 }
11956
11957 /* TBI related */
11958
11959 static bool
11960 wm_tbi_havesignal(struct wm_softc *sc, uint32_t ctrl)
11961 {
11962 bool sig;
11963
11964 sig = ctrl & CTRL_SWDPIN(1);
11965
11966 /*
11967 * On 82543 and 82544, the CTRL_SWDPIN(1) bit will be 0 if the optics
11968 * detect a signal, 1 if they don't.
11969 */
11970 if ((sc->sc_type == WM_T_82543) || (sc->sc_type == WM_T_82544))
11971 sig = !sig;
11972
11973 return sig;
11974 }
11975
11976 /*
11977 * wm_tbi_mediainit:
11978 *
11979 * Initialize media for use on 1000BASE-X devices.
11980 */
11981 static void
11982 wm_tbi_mediainit(struct wm_softc *sc)
11983 {
11984 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
11985 const char *sep = "";
11986
11987 if (sc->sc_type < WM_T_82543)
11988 sc->sc_tipg = TIPG_WM_DFLT;
11989 else
11990 sc->sc_tipg = TIPG_LG_DFLT;
11991
11992 sc->sc_tbi_serdes_anegticks = 5;
11993
11994 /* Initialize our media structures */
11995 sc->sc_mii.mii_ifp = ifp;
11996 sc->sc_ethercom.ec_mii = &sc->sc_mii;
11997
11998 if (((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211))
11999 && (sc->sc_mediatype == WM_MEDIATYPE_SERDES)) {
12000 ifmedia_init_with_lock(&sc->sc_mii.mii_media, IFM_IMASK,
12001 wm_serdes_mediachange, wm_serdes_mediastatus,
12002 sc->sc_core_lock);
12003 } else {
12004 ifmedia_init_with_lock(&sc->sc_mii.mii_media, IFM_IMASK,
12005 wm_tbi_mediachange, wm_tbi_mediastatus, sc->sc_core_lock);
12006 }
12007
12008 /*
12009 * SWD Pins:
12010 *
12011 * 0 = Link LED (output)
12012 * 1 = Loss Of Signal (input)
12013 */
12014 sc->sc_ctrl |= CTRL_SWDPIO(0);
12015
12016 /* XXX Perhaps this is only for TBI */
12017 if (sc->sc_mediatype != WM_MEDIATYPE_SERDES)
12018 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
12019
12020 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES)
12021 sc->sc_ctrl &= ~CTRL_LRST;
12022
12023 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
12024
12025 #define ADD(ss, mm, dd) \
12026 do { \
12027 aprint_normal("%s%s", sep, ss); \
12028 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | (mm), (dd), NULL); \
12029 sep = ", "; \
12030 } while (/*CONSTCOND*/0)
12031
12032 aprint_normal_dev(sc->sc_dev, "");
12033
12034 if (sc->sc_type == WM_T_I354) {
12035 uint32_t status;
12036
12037 status = CSR_READ(sc, WMREG_STATUS);
12038 if (((status & STATUS_2P5_SKU) != 0)
12039 && ((status & STATUS_2P5_SKU_OVER) == 0)) {
12040 ADD("2500baseKX-FDX", IFM_2500_KX | IFM_FDX,ANAR_X_FD);
12041 } else
12042 ADD("1000baseKX-FDX", IFM_1000_KX | IFM_FDX,ANAR_X_FD);
12043 } else if (sc->sc_type == WM_T_82545) {
12044 /* Only 82545 is LX (XXX except SFP) */
12045 ADD("1000baseLX", IFM_1000_LX, ANAR_X_HD);
12046 ADD("1000baseLX-FDX", IFM_1000_LX | IFM_FDX, ANAR_X_FD);
12047 } else if (sc->sc_sfptype != 0) {
12048 /* XXX wm(4) fiber/serdes don't use ifm_data */
12049 switch (sc->sc_sfptype) {
12050 default:
12051 case SFF_SFP_ETH_FLAGS_1000SX:
12052 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
12053 ADD("1000baseSX-FDX", IFM_1000_SX | IFM_FDX, ANAR_X_FD);
12054 break;
12055 case SFF_SFP_ETH_FLAGS_1000LX:
12056 ADD("1000baseLX", IFM_1000_LX, ANAR_X_HD);
12057 ADD("1000baseLX-FDX", IFM_1000_LX | IFM_FDX, ANAR_X_FD);
12058 break;
12059 case SFF_SFP_ETH_FLAGS_1000CX:
12060 ADD("1000baseCX", IFM_1000_CX, ANAR_X_HD);
12061 ADD("1000baseCX-FDX", IFM_1000_CX | IFM_FDX, ANAR_X_FD);
12062 break;
12063 case SFF_SFP_ETH_FLAGS_1000T:
12064 ADD("1000baseT", IFM_1000_T, 0);
12065 ADD("1000baseT-FDX", IFM_1000_T | IFM_FDX, 0);
12066 break;
12067 case SFF_SFP_ETH_FLAGS_100FX:
12068 ADD("100baseFX", IFM_100_FX, ANAR_TX);
12069 ADD("100baseFX-FDX", IFM_100_FX | IFM_FDX, ANAR_TX_FD);
12070 break;
12071 }
12072 } else {
12073 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
12074 ADD("1000baseSX-FDX", IFM_1000_SX | IFM_FDX, ANAR_X_FD);
12075 }
12076 ADD("auto", IFM_AUTO, ANAR_X_FD | ANAR_X_HD);
12077 aprint_normal("\n");
12078
12079 #undef ADD
12080
12081 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
12082 }
12083
12084 /*
12085 * wm_tbi_mediachange: [ifmedia interface function]
12086 *
12087 * Set hardware to newly-selected media on a 1000BASE-X device.
12088 */
12089 static int
12090 wm_tbi_mediachange(struct ifnet *ifp)
12091 {
12092 struct wm_softc *sc = ifp->if_softc;
12093 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
12094 uint32_t status, ctrl;
12095 bool signal;
12096 int i;
12097
12098 KASSERT(sc->sc_mediatype != WM_MEDIATYPE_COPPER);
12099 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES) {
12100 /* XXX need some work for >= 82571 and < 82575 */
12101 if (sc->sc_type < WM_T_82575)
12102 return 0;
12103 }
12104
12105 if ((sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_82572)
12106 || (sc->sc_type >= WM_T_82575))
12107 CSR_WRITE(sc, WMREG_SCTL, SCTL_DISABLE_SERDES_LOOPBACK);
12108
12109 sc->sc_ctrl &= ~CTRL_LRST;
12110 sc->sc_txcw = TXCW_ANE;
12111 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
12112 sc->sc_txcw |= TXCW_FD | TXCW_HD;
12113 else if (ife->ifm_media & IFM_FDX)
12114 sc->sc_txcw |= TXCW_FD;
12115 else
12116 sc->sc_txcw |= TXCW_HD;
12117
12118 if ((sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
12119 sc->sc_txcw |= TXCW_SYM_PAUSE | TXCW_ASYM_PAUSE;
12120
12121 DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x after autoneg check\n",
12122 device_xname(sc->sc_dev), sc->sc_txcw));
12123 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
12124 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
12125 CSR_WRITE_FLUSH(sc);
12126 delay(1000);
12127
12128 ctrl = CSR_READ(sc, WMREG_CTRL);
12129 signal = wm_tbi_havesignal(sc, ctrl);
12130
12131 DPRINTF(WM_DEBUG_LINK, ("%s: signal = %d\n", device_xname(sc->sc_dev),
12132 signal));
12133
12134 if (signal) {
12135 /* Have signal; wait for the link to come up. */
12136 for (i = 0; i < WM_LINKUP_TIMEOUT; i++) {
12137 delay(10000);
12138 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
12139 break;
12140 }
12141
12142 DPRINTF(WM_DEBUG_LINK,("%s: i = %d after waiting for link\n",
12143 device_xname(sc->sc_dev), i));
12144
12145 status = CSR_READ(sc, WMREG_STATUS);
12146 DPRINTF(WM_DEBUG_LINK,
12147 ("%s: status after final read = 0x%x, STATUS_LU = 0x%x\n",
12148 device_xname(sc->sc_dev), status, STATUS_LU));
12149 if (status & STATUS_LU) {
12150 /* Link is up. */
12151 DPRINTF(WM_DEBUG_LINK,
12152 ("%s: LINK: set media -> link up %s\n",
12153 device_xname(sc->sc_dev),
12154 (status & STATUS_FD) ? "FDX" : "HDX"));
12155
12156 /*
12157 * NOTE: CTRL will update TFCE and RFCE automatically,
12158 * so we should update sc->sc_ctrl
12159 */
12160 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
12161 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
12162 sc->sc_fcrtl &= ~FCRTL_XONE;
12163 if (status & STATUS_FD)
12164 sc->sc_tctl |=
12165 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
12166 else
12167 sc->sc_tctl |=
12168 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
12169 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
12170 sc->sc_fcrtl |= FCRTL_XONE;
12171 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
12172 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
12173 WMREG_OLD_FCRTL : WMREG_FCRTL, sc->sc_fcrtl);
12174 sc->sc_tbi_linkup = 1;
12175 } else {
12176 if (i == WM_LINKUP_TIMEOUT)
12177 wm_check_for_link(sc);
12178 /* Link is down. */
12179 DPRINTF(WM_DEBUG_LINK,
12180 ("%s: LINK: set media -> link down\n",
12181 device_xname(sc->sc_dev)));
12182 sc->sc_tbi_linkup = 0;
12183 }
12184 } else {
12185 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
12186 device_xname(sc->sc_dev)));
12187 sc->sc_tbi_linkup = 0;
12188 }
12189
12190 wm_tbi_serdes_set_linkled(sc);
12191
12192 return 0;
12193 }
12194
12195 /*
12196 * wm_tbi_mediastatus: [ifmedia interface function]
12197 *
12198 * Get the current interface media status on a 1000BASE-X device.
12199 */
12200 static void
12201 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
12202 {
12203 struct wm_softc *sc = ifp->if_softc;
12204 uint32_t ctrl, status;
12205
12206 ifmr->ifm_status = IFM_AVALID;
12207 ifmr->ifm_active = IFM_ETHER;
12208
12209 status = CSR_READ(sc, WMREG_STATUS);
12210 if ((status & STATUS_LU) == 0) {
12211 ifmr->ifm_active |= IFM_NONE;
12212 return;
12213 }
12214
12215 ifmr->ifm_status |= IFM_ACTIVE;
12216 /* Only 82545 is LX */
12217 if (sc->sc_type == WM_T_82545)
12218 ifmr->ifm_active |= IFM_1000_LX;
12219 else
12220 ifmr->ifm_active |= IFM_1000_SX;
12221 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
12222 ifmr->ifm_active |= IFM_FDX;
12223 else
12224 ifmr->ifm_active |= IFM_HDX;
12225 ctrl = CSR_READ(sc, WMREG_CTRL);
12226 if (ctrl & CTRL_RFCE)
12227 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
12228 if (ctrl & CTRL_TFCE)
12229 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
12230 }
12231
12232 /* XXX TBI only */
12233 static int
12234 wm_check_for_link(struct wm_softc *sc)
12235 {
12236 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
12237 uint32_t rxcw;
12238 uint32_t ctrl;
12239 uint32_t status;
12240 bool signal;
12241
12242 DPRINTF(WM_DEBUG_LINK, ("%s: %s called\n",
12243 device_xname(sc->sc_dev), __func__));
12244
12245 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES) {
12246 /* XXX need some work for >= 82571 */
12247 if (sc->sc_type >= WM_T_82571) {
12248 sc->sc_tbi_linkup = 1;
12249 return 0;
12250 }
12251 }
12252
12253 rxcw = CSR_READ(sc, WMREG_RXCW);
12254 ctrl = CSR_READ(sc, WMREG_CTRL);
12255 status = CSR_READ(sc, WMREG_STATUS);
12256 signal = wm_tbi_havesignal(sc, ctrl);
12257
12258 DPRINTF(WM_DEBUG_LINK,
12259 ("%s: %s: signal = %d, status_lu = %d, rxcw_c = %d\n",
12260 device_xname(sc->sc_dev), __func__, signal,
12261 ((status & STATUS_LU) != 0), ((rxcw & RXCW_C) != 0)));
12262
12263 /*
12264 * SWDPIN LU RXCW
12265 * 0 0 0
12266 * 0 0 1 (should not happen)
12267 * 0 1 0 (should not happen)
12268 * 0 1 1 (should not happen)
12269 * 1 0 0 Disable autonego and force linkup
12270 * 1 0 1 got /C/ but not linkup yet
12271 * 1 1 0 (linkup)
12272 * 1 1 1 If IFM_AUTO, back to autonego
12273 *
12274 */
12275 if (signal && ((status & STATUS_LU) == 0) && ((rxcw & RXCW_C) == 0)) {
12276 DPRINTF(WM_DEBUG_LINK,
12277 ("%s: %s: force linkup and fullduplex\n",
12278 device_xname(sc->sc_dev), __func__));
12279 sc->sc_tbi_linkup = 0;
12280 /* Disable auto-negotiation in the TXCW register */
12281 CSR_WRITE(sc, WMREG_TXCW, (sc->sc_txcw & ~TXCW_ANE));
12282
12283 /*
12284 * Force link-up and also force full-duplex.
12285 *
12286 * NOTE: CTRL was updated TFCE and RFCE automatically,
12287 * so we should update sc->sc_ctrl
12288 */
12289 sc->sc_ctrl = ctrl | CTRL_SLU | CTRL_FD;
12290 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
12291 } else if (((status & STATUS_LU) != 0)
12292 && ((rxcw & RXCW_C) != 0)
12293 && (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)) {
12294 sc->sc_tbi_linkup = 1;
12295 DPRINTF(WM_DEBUG_LINK, ("%s: %s: go back to autonego\n",
12296 device_xname(sc->sc_dev),
12297 __func__));
12298 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
12299 CSR_WRITE(sc, WMREG_CTRL, (ctrl & ~CTRL_SLU));
12300 } else if (signal && ((rxcw & RXCW_C) != 0)) {
12301 DPRINTF(WM_DEBUG_LINK, ("%s: %s: /C/",
12302 device_xname(sc->sc_dev), __func__));
12303 } else {
12304 DPRINTF(WM_DEBUG_LINK, ("%s: %s: linkup %08x,%08x,%08x\n",
12305 device_xname(sc->sc_dev), __func__, rxcw, ctrl,
12306 status));
12307 }
12308
12309 return 0;
12310 }
12311
12312 /*
12313 * wm_tbi_tick:
12314 *
12315 * Check the link on TBI devices.
12316 * This function acts as mii_tick().
12317 */
12318 static void
12319 wm_tbi_tick(struct wm_softc *sc)
12320 {
12321 struct mii_data *mii = &sc->sc_mii;
12322 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
12323 uint32_t status;
12324
12325 KASSERT(WM_CORE_LOCKED(sc));
12326
12327 status = CSR_READ(sc, WMREG_STATUS);
12328
12329 /* XXX is this needed? */
12330 (void)CSR_READ(sc, WMREG_RXCW);
12331 (void)CSR_READ(sc, WMREG_CTRL);
12332
12333 /* set link status */
12334 if ((status & STATUS_LU) == 0) {
12335 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: checklink -> down\n",
12336 device_xname(sc->sc_dev)));
12337 sc->sc_tbi_linkup = 0;
12338 } else if (sc->sc_tbi_linkup == 0) {
12339 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: checklink -> up %s\n",
12340 device_xname(sc->sc_dev),
12341 (status & STATUS_FD) ? "FDX" : "HDX"));
12342 sc->sc_tbi_linkup = 1;
12343 sc->sc_tbi_serdes_ticks = 0;
12344 }
12345
12346 if ((sc->sc_ethercom.ec_if.if_flags & IFF_UP) == 0)
12347 goto setled;
12348
12349 if ((status & STATUS_LU) == 0) {
12350 sc->sc_tbi_linkup = 0;
12351 /* If the timer expired, retry autonegotiation */
12352 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
12353 && (++sc->sc_tbi_serdes_ticks
12354 >= sc->sc_tbi_serdes_anegticks)) {
12355 DPRINTF(WM_DEBUG_LINK, ("%s: %s: EXPIRE\n",
12356 device_xname(sc->sc_dev), __func__));
12357 sc->sc_tbi_serdes_ticks = 0;
12358 /*
12359 * Reset the link, and let autonegotiation do
12360 * its thing
12361 */
12362 sc->sc_ctrl |= CTRL_LRST;
12363 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
12364 CSR_WRITE_FLUSH(sc);
12365 delay(1000);
12366 sc->sc_ctrl &= ~CTRL_LRST;
12367 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
12368 CSR_WRITE_FLUSH(sc);
12369 delay(1000);
12370 CSR_WRITE(sc, WMREG_TXCW,
12371 sc->sc_txcw & ~TXCW_ANE);
12372 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
12373 }
12374 }
12375
12376 setled:
12377 wm_tbi_serdes_set_linkled(sc);
12378 }
12379
12380 /* SERDES related */
12381 static void
12382 wm_serdes_power_up_link_82575(struct wm_softc *sc)
12383 {
12384 uint32_t reg;
12385
12386 if ((sc->sc_mediatype != WM_MEDIATYPE_SERDES)
12387 && ((sc->sc_flags & WM_F_SGMII) == 0))
12388 return;
12389
12390 /* Enable PCS to turn on link */
12391 reg = CSR_READ(sc, WMREG_PCS_CFG);
12392 reg |= PCS_CFG_PCS_EN;
12393 CSR_WRITE(sc, WMREG_PCS_CFG, reg);
12394
12395 /* Power up the laser */
12396 reg = CSR_READ(sc, WMREG_CTRL_EXT);
12397 reg &= ~CTRL_EXT_SWDPIN(3);
12398 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
12399
12400 /* Flush the write to verify completion */
12401 CSR_WRITE_FLUSH(sc);
12402 delay(1000);
12403 }
12404
12405 static int
12406 wm_serdes_mediachange(struct ifnet *ifp)
12407 {
12408 struct wm_softc *sc = ifp->if_softc;
12409 bool pcs_autoneg = true; /* XXX */
12410 uint32_t ctrl_ext, pcs_lctl, reg;
12411
12412 if ((sc->sc_mediatype != WM_MEDIATYPE_SERDES)
12413 && ((sc->sc_flags & WM_F_SGMII) == 0))
12414 return 0;
12415
12416 /* XXX Currently, this function is not called on 8257[12] */
12417 if ((sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_82572)
12418 || (sc->sc_type >= WM_T_82575))
12419 CSR_WRITE(sc, WMREG_SCTL, SCTL_DISABLE_SERDES_LOOPBACK);
12420
12421 /* Power on the sfp cage if present */
12422 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
12423 ctrl_ext &= ~CTRL_EXT_SWDPIN(3);
12424 ctrl_ext |= CTRL_EXT_I2C_ENA;
12425 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
12426
12427 sc->sc_ctrl |= CTRL_SLU;
12428
12429 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576))
12430 sc->sc_ctrl |= CTRL_SWDPIN(0) | CTRL_SWDPIN(1);
12431
12432 pcs_lctl = CSR_READ(sc, WMREG_PCS_LCTL);
12433 switch (ctrl_ext & CTRL_EXT_LINK_MODE_MASK) {
12434 case CTRL_EXT_LINK_MODE_SGMII:
12435 /* SGMII mode lets the phy handle forcing speed/duplex */
12436 pcs_autoneg = true;
12437 /* Autoneg time out should be disabled for SGMII mode */
12438 pcs_lctl &= ~PCS_LCTL_AN_TIMEOUT;
12439 break;
12440 case CTRL_EXT_LINK_MODE_1000KX:
12441 pcs_autoneg = false;
12442 /* FALLTHROUGH */
12443 default:
12444 if ((sc->sc_type == WM_T_82575)
12445 || (sc->sc_type == WM_T_82576)) {
12446 if ((sc->sc_flags & WM_F_PCS_DIS_AUTONEGO) != 0)
12447 pcs_autoneg = false;
12448 }
12449 sc->sc_ctrl |= CTRL_SPEED_1000 | CTRL_FRCSPD | CTRL_FD
12450 | CTRL_FRCFDX;
12451
12452 /* Set speed of 1000/Full if speed/duplex is forced */
12453 pcs_lctl |= PCS_LCTL_FSV_1000 | PCS_LCTL_FDV_FULL;
12454 }
12455 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
12456
12457 pcs_lctl &= ~(PCS_LCTL_AN_ENABLE | PCS_LCTL_FLV_LINK_UP |
12458 PCS_LCTL_FSD | PCS_LCTL_FORCE_LINK);
12459
12460 if (pcs_autoneg) {
12461 /* Set PCS register for autoneg */
12462 pcs_lctl |= PCS_LCTL_AN_ENABLE | PCS_LCTL_AN_RESTART;
12463
12464 /* Disable force flow control for autoneg */
12465 pcs_lctl &= ~PCS_LCTL_FORCE_FC;
12466
12467 /* Configure flow control advertisement for autoneg */
12468 reg = CSR_READ(sc, WMREG_PCS_ANADV);
12469 reg &= ~(TXCW_ASYM_PAUSE | TXCW_SYM_PAUSE);
12470 reg |= TXCW_ASYM_PAUSE | TXCW_SYM_PAUSE;
12471 CSR_WRITE(sc, WMREG_PCS_ANADV, reg);
12472 } else
12473 pcs_lctl |= PCS_LCTL_FSD | PCS_LCTL_FORCE_FC;
12474
12475 CSR_WRITE(sc, WMREG_PCS_LCTL, pcs_lctl);
12476
12477 return 0;
12478 }
12479
12480 static void
12481 wm_serdes_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
12482 {
12483 struct wm_softc *sc = ifp->if_softc;
12484 struct mii_data *mii = &sc->sc_mii;
12485 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
12486 uint32_t pcs_adv, pcs_lpab, reg;
12487
12488 ifmr->ifm_status = IFM_AVALID;
12489 ifmr->ifm_active = IFM_ETHER;
12490
12491 /* Check PCS */
12492 reg = CSR_READ(sc, WMREG_PCS_LSTS);
12493 if ((reg & PCS_LSTS_LINKOK) == 0) {
12494 ifmr->ifm_active |= IFM_NONE;
12495 sc->sc_tbi_linkup = 0;
12496 goto setled;
12497 }
12498
12499 sc->sc_tbi_linkup = 1;
12500 ifmr->ifm_status |= IFM_ACTIVE;
12501 if (sc->sc_type == WM_T_I354) {
12502 uint32_t status;
12503
12504 status = CSR_READ(sc, WMREG_STATUS);
12505 if (((status & STATUS_2P5_SKU) != 0)
12506 && ((status & STATUS_2P5_SKU_OVER) == 0)) {
12507 ifmr->ifm_active |= IFM_2500_KX;
12508 } else
12509 ifmr->ifm_active |= IFM_1000_KX;
12510 } else {
12511 switch (__SHIFTOUT(reg, PCS_LSTS_SPEED)) {
12512 case PCS_LSTS_SPEED_10:
12513 ifmr->ifm_active |= IFM_10_T; /* XXX */
12514 break;
12515 case PCS_LSTS_SPEED_100:
12516 ifmr->ifm_active |= IFM_100_FX; /* XXX */
12517 break;
12518 case PCS_LSTS_SPEED_1000:
12519 ifmr->ifm_active |= IFM_1000_SX; /* XXX */
12520 break;
12521 default:
12522 device_printf(sc->sc_dev, "Unknown speed\n");
12523 ifmr->ifm_active |= IFM_1000_SX; /* XXX */
12524 break;
12525 }
12526 }
12527 if ((reg & PCS_LSTS_FDX) != 0)
12528 ifmr->ifm_active |= IFM_FDX;
12529 else
12530 ifmr->ifm_active |= IFM_HDX;
12531 mii->mii_media_active &= ~IFM_ETH_FMASK;
12532 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
12533 /* Check flow */
12534 reg = CSR_READ(sc, WMREG_PCS_LSTS);
12535 if ((reg & PCS_LSTS_AN_COMP) == 0) {
12536 DPRINTF(WM_DEBUG_LINK, ("XXX LINKOK but not ACOMP\n"));
12537 goto setled;
12538 }
12539 pcs_adv = CSR_READ(sc, WMREG_PCS_ANADV);
12540 pcs_lpab = CSR_READ(sc, WMREG_PCS_LPAB);
12541 DPRINTF(WM_DEBUG_LINK,
12542 ("XXX AN result(2) %08x, %08x\n", pcs_adv, pcs_lpab));
12543 if ((pcs_adv & TXCW_SYM_PAUSE)
12544 && (pcs_lpab & TXCW_SYM_PAUSE)) {
12545 mii->mii_media_active |= IFM_FLOW
12546 | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
12547 } else if (((pcs_adv & TXCW_SYM_PAUSE) == 0)
12548 && (pcs_adv & TXCW_ASYM_PAUSE)
12549 && (pcs_lpab & TXCW_SYM_PAUSE)
12550 && (pcs_lpab & TXCW_ASYM_PAUSE)) {
12551 mii->mii_media_active |= IFM_FLOW
12552 | IFM_ETH_TXPAUSE;
12553 } else if ((pcs_adv & TXCW_SYM_PAUSE)
12554 && (pcs_adv & TXCW_ASYM_PAUSE)
12555 && ((pcs_lpab & TXCW_SYM_PAUSE) == 0)
12556 && (pcs_lpab & TXCW_ASYM_PAUSE)) {
12557 mii->mii_media_active |= IFM_FLOW
12558 | IFM_ETH_RXPAUSE;
12559 }
12560 }
12561 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
12562 | (mii->mii_media_active & IFM_ETH_FMASK);
12563 setled:
12564 wm_tbi_serdes_set_linkled(sc);
12565 }
12566
12567 /*
12568 * wm_serdes_tick:
12569 *
12570 * Check the link on serdes devices.
12571 */
12572 static void
12573 wm_serdes_tick(struct wm_softc *sc)
12574 {
12575 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
12576 struct mii_data *mii = &sc->sc_mii;
12577 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
12578 uint32_t reg;
12579
12580 KASSERT(WM_CORE_LOCKED(sc));
12581
12582 mii->mii_media_status = IFM_AVALID;
12583 mii->mii_media_active = IFM_ETHER;
12584
12585 /* Check PCS */
12586 reg = CSR_READ(sc, WMREG_PCS_LSTS);
12587 if ((reg & PCS_LSTS_LINKOK) != 0) {
12588 mii->mii_media_status |= IFM_ACTIVE;
12589 sc->sc_tbi_linkup = 1;
12590 sc->sc_tbi_serdes_ticks = 0;
12591 mii->mii_media_active |= IFM_1000_SX; /* XXX */
12592 if ((reg & PCS_LSTS_FDX) != 0)
12593 mii->mii_media_active |= IFM_FDX;
12594 else
12595 mii->mii_media_active |= IFM_HDX;
12596 } else {
12597 mii->mii_media_status |= IFM_NONE;
12598 sc->sc_tbi_linkup = 0;
12599 /* If the timer expired, retry autonegotiation */
12600 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
12601 && (++sc->sc_tbi_serdes_ticks
12602 >= sc->sc_tbi_serdes_anegticks)) {
12603 DPRINTF(WM_DEBUG_LINK, ("%s: %s: EXPIRE\n",
12604 device_xname(sc->sc_dev), __func__));
12605 sc->sc_tbi_serdes_ticks = 0;
12606 /* XXX */
12607 wm_serdes_mediachange(ifp);
12608 }
12609 }
12610
12611 wm_tbi_serdes_set_linkled(sc);
12612 }
12613
12614 /* SFP related */
12615
12616 static int
12617 wm_sfp_read_data_byte(struct wm_softc *sc, uint16_t offset, uint8_t *data)
12618 {
12619 uint32_t i2ccmd;
12620 int i;
12621
12622 i2ccmd = (offset << I2CCMD_REG_ADDR_SHIFT) | I2CCMD_OPCODE_READ;
12623 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
12624
12625 /* Poll the ready bit */
12626 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
12627 delay(50);
12628 i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
12629 if (i2ccmd & I2CCMD_READY)
12630 break;
12631 }
12632 if ((i2ccmd & I2CCMD_READY) == 0)
12633 return -1;
12634 if ((i2ccmd & I2CCMD_ERROR) != 0)
12635 return -1;
12636
12637 *data = i2ccmd & 0x00ff;
12638
12639 return 0;
12640 }
12641
12642 static uint32_t
12643 wm_sfp_get_media_type(struct wm_softc *sc)
12644 {
12645 uint32_t ctrl_ext;
12646 uint8_t val = 0;
12647 int timeout = 3;
12648 uint32_t mediatype = WM_MEDIATYPE_UNKNOWN;
12649 int rv = -1;
12650
12651 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
12652 ctrl_ext &= ~CTRL_EXT_SWDPIN(3);
12653 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext | CTRL_EXT_I2C_ENA);
12654 CSR_WRITE_FLUSH(sc);
12655
12656 /* Read SFP module data */
12657 while (timeout) {
12658 rv = wm_sfp_read_data_byte(sc, SFF_SFP_ID_OFF, &val);
12659 if (rv == 0)
12660 break;
12661 delay(100*1000); /* XXX too big */
12662 timeout--;
12663 }
12664 if (rv != 0)
12665 goto out;
12666
12667 switch (val) {
12668 case SFF_SFP_ID_SFF:
12669 aprint_normal_dev(sc->sc_dev,
12670 "Module/Connector soldered to board\n");
12671 break;
12672 case SFF_SFP_ID_SFP:
12673 sc->sc_flags |= WM_F_SFP;
12674 break;
12675 case SFF_SFP_ID_UNKNOWN:
12676 goto out;
12677 default:
12678 break;
12679 }
12680
12681 rv = wm_sfp_read_data_byte(sc, SFF_SFP_ETH_FLAGS_OFF, &val);
12682 if (rv != 0)
12683 goto out;
12684
12685 sc->sc_sfptype = val;
12686 if ((val & (SFF_SFP_ETH_FLAGS_1000SX | SFF_SFP_ETH_FLAGS_1000LX)) != 0)
12687 mediatype = WM_MEDIATYPE_SERDES;
12688 else if ((val & SFF_SFP_ETH_FLAGS_1000T) != 0) {
12689 sc->sc_flags |= WM_F_SGMII;
12690 mediatype = WM_MEDIATYPE_COPPER;
12691 } else if ((val & SFF_SFP_ETH_FLAGS_100FX) != 0) {
12692 sc->sc_flags |= WM_F_SGMII;
12693 mediatype = WM_MEDIATYPE_SERDES;
12694 } else {
12695 device_printf(sc->sc_dev, "%s: unknown media type? (0x%hhx)\n",
12696 __func__, sc->sc_sfptype);
12697 sc->sc_sfptype = 0; /* XXX unknown */
12698 }
12699
12700 out:
12701 /* Restore I2C interface setting */
12702 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
12703
12704 return mediatype;
12705 }
12706
12707 /*
12708 * NVM related.
12709 * Microwire, SPI (w/wo EERD) and Flash.
12710 */
12711
12712 /* Both spi and uwire */
12713
12714 /*
12715 * wm_eeprom_sendbits:
12716 *
12717 * Send a series of bits to the EEPROM.
12718 */
12719 static void
12720 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
12721 {
12722 uint32_t reg;
12723 int x;
12724
12725 reg = CSR_READ(sc, WMREG_EECD);
12726
12727 for (x = nbits; x > 0; x--) {
12728 if (bits & (1U << (x - 1)))
12729 reg |= EECD_DI;
12730 else
12731 reg &= ~EECD_DI;
12732 CSR_WRITE(sc, WMREG_EECD, reg);
12733 CSR_WRITE_FLUSH(sc);
12734 delay(2);
12735 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
12736 CSR_WRITE_FLUSH(sc);
12737 delay(2);
12738 CSR_WRITE(sc, WMREG_EECD, reg);
12739 CSR_WRITE_FLUSH(sc);
12740 delay(2);
12741 }
12742 }
12743
12744 /*
12745 * wm_eeprom_recvbits:
12746 *
12747 * Receive a series of bits from the EEPROM.
12748 */
12749 static void
12750 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
12751 {
12752 uint32_t reg, val;
12753 int x;
12754
12755 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
12756
12757 val = 0;
12758 for (x = nbits; x > 0; x--) {
12759 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
12760 CSR_WRITE_FLUSH(sc);
12761 delay(2);
12762 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
12763 val |= (1U << (x - 1));
12764 CSR_WRITE(sc, WMREG_EECD, reg);
12765 CSR_WRITE_FLUSH(sc);
12766 delay(2);
12767 }
12768 *valp = val;
12769 }
12770
12771 /* Microwire */
12772
12773 /*
12774 * wm_nvm_read_uwire:
12775 *
12776 * Read a word from the EEPROM using the MicroWire protocol.
12777 */
12778 static int
12779 wm_nvm_read_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
12780 {
12781 uint32_t reg, val;
12782 int i;
12783
12784 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
12785 device_xname(sc->sc_dev), __func__));
12786
12787 if (sc->nvm.acquire(sc) != 0)
12788 return -1;
12789
12790 for (i = 0; i < wordcnt; i++) {
12791 /* Clear SK and DI. */
12792 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
12793 CSR_WRITE(sc, WMREG_EECD, reg);
12794
12795 /*
12796 * XXX: workaround for a bug in qemu-0.12.x and prior
12797 * and Xen.
12798 *
12799 * We use this workaround only for 82540 because qemu's
12800 * e1000 act as 82540.
12801 */
12802 if (sc->sc_type == WM_T_82540) {
12803 reg |= EECD_SK;
12804 CSR_WRITE(sc, WMREG_EECD, reg);
12805 reg &= ~EECD_SK;
12806 CSR_WRITE(sc, WMREG_EECD, reg);
12807 CSR_WRITE_FLUSH(sc);
12808 delay(2);
12809 }
12810 /* XXX: end of workaround */
12811
12812 /* Set CHIP SELECT. */
12813 reg |= EECD_CS;
12814 CSR_WRITE(sc, WMREG_EECD, reg);
12815 CSR_WRITE_FLUSH(sc);
12816 delay(2);
12817
12818 /* Shift in the READ command. */
12819 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
12820
12821 /* Shift in address. */
12822 wm_eeprom_sendbits(sc, word + i, sc->sc_nvm_addrbits);
12823
12824 /* Shift out the data. */
12825 wm_eeprom_recvbits(sc, &val, 16);
12826 data[i] = val & 0xffff;
12827
12828 /* Clear CHIP SELECT. */
12829 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
12830 CSR_WRITE(sc, WMREG_EECD, reg);
12831 CSR_WRITE_FLUSH(sc);
12832 delay(2);
12833 }
12834
12835 sc->nvm.release(sc);
12836 return 0;
12837 }
12838
12839 /* SPI */
12840
12841 /*
12842 * Set SPI and FLASH related information from the EECD register.
12843 * For 82541 and 82547, the word size is taken from EEPROM.
12844 */
12845 static int
12846 wm_nvm_set_addrbits_size_eecd(struct wm_softc *sc)
12847 {
12848 int size;
12849 uint32_t reg;
12850 uint16_t data;
12851
12852 reg = CSR_READ(sc, WMREG_EECD);
12853 sc->sc_nvm_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
12854
12855 /* Read the size of NVM from EECD by default */
12856 size = __SHIFTOUT(reg, EECD_EE_SIZE_EX_MASK);
12857 switch (sc->sc_type) {
12858 case WM_T_82541:
12859 case WM_T_82541_2:
12860 case WM_T_82547:
12861 case WM_T_82547_2:
12862 /* Set dummy value to access EEPROM */
12863 sc->sc_nvm_wordsize = 64;
12864 if (wm_nvm_read(sc, NVM_OFF_EEPROM_SIZE, 1, &data) != 0) {
12865 aprint_error_dev(sc->sc_dev,
12866 "%s: failed to read EEPROM size\n", __func__);
12867 }
12868 reg = data;
12869 size = __SHIFTOUT(reg, EECD_EE_SIZE_EX_MASK);
12870 if (size == 0)
12871 size = 6; /* 64 word size */
12872 else
12873 size += NVM_WORD_SIZE_BASE_SHIFT + 1;
12874 break;
12875 case WM_T_80003:
12876 case WM_T_82571:
12877 case WM_T_82572:
12878 case WM_T_82573: /* SPI case */
12879 case WM_T_82574: /* SPI case */
12880 case WM_T_82583: /* SPI case */
12881 size += NVM_WORD_SIZE_BASE_SHIFT;
12882 if (size > 14)
12883 size = 14;
12884 break;
12885 case WM_T_82575:
12886 case WM_T_82576:
12887 case WM_T_82580:
12888 case WM_T_I350:
12889 case WM_T_I354:
12890 case WM_T_I210:
12891 case WM_T_I211:
12892 size += NVM_WORD_SIZE_BASE_SHIFT;
12893 if (size > 15)
12894 size = 15;
12895 break;
12896 default:
12897 aprint_error_dev(sc->sc_dev,
12898 "%s: unknown device(%d)?\n", __func__, sc->sc_type);
12899 return -1;
12900 break;
12901 }
12902
12903 sc->sc_nvm_wordsize = 1 << size;
12904
12905 return 0;
12906 }
12907
12908 /*
12909 * wm_nvm_ready_spi:
12910 *
12911 * Wait for a SPI EEPROM to be ready for commands.
12912 */
12913 static int
12914 wm_nvm_ready_spi(struct wm_softc *sc)
12915 {
12916 uint32_t val;
12917 int usec;
12918
12919 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
12920 device_xname(sc->sc_dev), __func__));
12921
12922 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
12923 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
12924 wm_eeprom_recvbits(sc, &val, 8);
12925 if ((val & SPI_SR_RDY) == 0)
12926 break;
12927 }
12928 if (usec >= SPI_MAX_RETRIES) {
12929 aprint_error_dev(sc->sc_dev,"EEPROM failed to become ready\n");
12930 return -1;
12931 }
12932 return 0;
12933 }
12934
12935 /*
12936 * wm_nvm_read_spi:
12937 *
12938 * Read a work from the EEPROM using the SPI protocol.
12939 */
12940 static int
12941 wm_nvm_read_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
12942 {
12943 uint32_t reg, val;
12944 int i;
12945 uint8_t opc;
12946 int rv = 0;
12947
12948 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
12949 device_xname(sc->sc_dev), __func__));
12950
12951 if (sc->nvm.acquire(sc) != 0)
12952 return -1;
12953
12954 /* Clear SK and CS. */
12955 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
12956 CSR_WRITE(sc, WMREG_EECD, reg);
12957 CSR_WRITE_FLUSH(sc);
12958 delay(2);
12959
12960 if ((rv = wm_nvm_ready_spi(sc)) != 0)
12961 goto out;
12962
12963 /* Toggle CS to flush commands. */
12964 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
12965 CSR_WRITE_FLUSH(sc);
12966 delay(2);
12967 CSR_WRITE(sc, WMREG_EECD, reg);
12968 CSR_WRITE_FLUSH(sc);
12969 delay(2);
12970
12971 opc = SPI_OPC_READ;
12972 if (sc->sc_nvm_addrbits == 8 && word >= 128)
12973 opc |= SPI_OPC_A8;
12974
12975 wm_eeprom_sendbits(sc, opc, 8);
12976 wm_eeprom_sendbits(sc, word << 1, sc->sc_nvm_addrbits);
12977
12978 for (i = 0; i < wordcnt; i++) {
12979 wm_eeprom_recvbits(sc, &val, 16);
12980 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
12981 }
12982
12983 /* Raise CS and clear SK. */
12984 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
12985 CSR_WRITE(sc, WMREG_EECD, reg);
12986 CSR_WRITE_FLUSH(sc);
12987 delay(2);
12988
12989 out:
12990 sc->nvm.release(sc);
12991 return rv;
12992 }
12993
12994 /* Using with EERD */
12995
12996 static int
12997 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
12998 {
12999 uint32_t attempts = 100000;
13000 uint32_t i, reg = 0;
13001 int32_t done = -1;
13002
13003 for (i = 0; i < attempts; i++) {
13004 reg = CSR_READ(sc, rw);
13005
13006 if (reg & EERD_DONE) {
13007 done = 0;
13008 break;
13009 }
13010 delay(5);
13011 }
13012
13013 return done;
13014 }
13015
13016 static int
13017 wm_nvm_read_eerd(struct wm_softc *sc, int offset, int wordcnt, uint16_t *data)
13018 {
13019 int i, eerd = 0;
13020 int rv = 0;
13021
13022 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
13023 device_xname(sc->sc_dev), __func__));
13024
13025 if (sc->nvm.acquire(sc) != 0)
13026 return -1;
13027
13028 for (i = 0; i < wordcnt; i++) {
13029 eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
13030 CSR_WRITE(sc, WMREG_EERD, eerd);
13031 rv = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
13032 if (rv != 0) {
13033 aprint_error_dev(sc->sc_dev, "EERD polling failed: "
13034 "offset=%d. wordcnt=%d\n", offset, wordcnt);
13035 break;
13036 }
13037 data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
13038 }
13039
13040 sc->nvm.release(sc);
13041 return rv;
13042 }
13043
13044 /* Flash */
13045
13046 static int
13047 wm_nvm_valid_bank_detect_ich8lan(struct wm_softc *sc, unsigned int *bank)
13048 {
13049 uint32_t eecd;
13050 uint32_t act_offset = ICH_NVM_SIG_WORD * 2 + 1;
13051 uint32_t bank1_offset = sc->sc_ich8_flash_bank_size * sizeof(uint16_t);
13052 uint32_t nvm_dword = 0;
13053 uint8_t sig_byte = 0;
13054 int rv;
13055
13056 switch (sc->sc_type) {
13057 case WM_T_PCH_SPT:
13058 case WM_T_PCH_CNP:
13059 bank1_offset = sc->sc_ich8_flash_bank_size * 2;
13060 act_offset = ICH_NVM_SIG_WORD * 2;
13061
13062 /* Set bank to 0 in case flash read fails. */
13063 *bank = 0;
13064
13065 /* Check bank 0 */
13066 rv = wm_read_ich8_dword(sc, act_offset, &nvm_dword);
13067 if (rv != 0)
13068 return rv;
13069 sig_byte = (uint8_t)((nvm_dword & 0xFF00) >> 8);
13070 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
13071 *bank = 0;
13072 return 0;
13073 }
13074
13075 /* Check bank 1 */
13076 rv = wm_read_ich8_dword(sc, act_offset + bank1_offset,
13077 &nvm_dword);
13078 sig_byte = (uint8_t)((nvm_dword & 0xFF00) >> 8);
13079 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
13080 *bank = 1;
13081 return 0;
13082 }
13083 aprint_error_dev(sc->sc_dev,
13084 "%s: no valid NVM bank present (%u)\n", __func__, *bank);
13085 return -1;
13086 case WM_T_ICH8:
13087 case WM_T_ICH9:
13088 eecd = CSR_READ(sc, WMREG_EECD);
13089 if ((eecd & EECD_SEC1VAL_VALMASK) == EECD_SEC1VAL_VALMASK) {
13090 *bank = ((eecd & EECD_SEC1VAL) != 0) ? 1 : 0;
13091 return 0;
13092 }
13093 /* FALLTHROUGH */
13094 default:
13095 /* Default to 0 */
13096 *bank = 0;
13097
13098 /* Check bank 0 */
13099 wm_read_ich8_byte(sc, act_offset, &sig_byte);
13100 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
13101 *bank = 0;
13102 return 0;
13103 }
13104
13105 /* Check bank 1 */
13106 wm_read_ich8_byte(sc, act_offset + bank1_offset,
13107 &sig_byte);
13108 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
13109 *bank = 1;
13110 return 0;
13111 }
13112 }
13113
13114 DPRINTF(WM_DEBUG_NVM, ("%s: No valid NVM bank present\n",
13115 device_xname(sc->sc_dev)));
13116 return -1;
13117 }
13118
13119 /******************************************************************************
13120 * This function does initial flash setup so that a new read/write/erase cycle
13121 * can be started.
13122 *
13123 * sc - The pointer to the hw structure
13124 ****************************************************************************/
13125 static int32_t
13126 wm_ich8_cycle_init(struct wm_softc *sc)
13127 {
13128 uint16_t hsfsts;
13129 int32_t error = 1;
13130 int32_t i = 0;
13131
13132 if (sc->sc_type >= WM_T_PCH_SPT)
13133 hsfsts = ICH8_FLASH_READ32(sc, ICH_FLASH_HSFSTS) & 0xffffUL;
13134 else
13135 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
13136
13137 /* May be check the Flash Des Valid bit in Hw status */
13138 if ((hsfsts & HSFSTS_FLDVAL) == 0)
13139 return error;
13140
13141 /* Clear FCERR in Hw status by writing 1 */
13142 /* Clear DAEL in Hw status by writing a 1 */
13143 hsfsts |= HSFSTS_ERR | HSFSTS_DAEL;
13144
13145 if (sc->sc_type >= WM_T_PCH_SPT)
13146 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS, hsfsts & 0xffffUL);
13147 else
13148 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
13149
13150 /*
13151 * Either we should have a hardware SPI cycle in progress bit to check
13152 * against, in order to start a new cycle or FDONE bit should be
13153 * changed in the hardware so that it is 1 after hardware reset, which
13154 * can then be used as an indication whether a cycle is in progress or
13155 * has been completed .. we should also have some software semaphore
13156 * mechanism to guard FDONE or the cycle in progress bit so that two
13157 * threads access to those bits can be sequentiallized or a way so that
13158 * 2 threads don't start the cycle at the same time
13159 */
13160
13161 if ((hsfsts & HSFSTS_FLINPRO) == 0) {
13162 /*
13163 * There is no cycle running at present, so we can start a
13164 * cycle
13165 */
13166
13167 /* Begin by setting Flash Cycle Done. */
13168 hsfsts |= HSFSTS_DONE;
13169 if (sc->sc_type >= WM_T_PCH_SPT)
13170 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS,
13171 hsfsts & 0xffffUL);
13172 else
13173 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
13174 error = 0;
13175 } else {
13176 /*
13177 * Otherwise poll for sometime so the current cycle has a
13178 * chance to end before giving up.
13179 */
13180 for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
13181 if (sc->sc_type >= WM_T_PCH_SPT)
13182 hsfsts = ICH8_FLASH_READ32(sc,
13183 ICH_FLASH_HSFSTS) & 0xffffUL;
13184 else
13185 hsfsts = ICH8_FLASH_READ16(sc,
13186 ICH_FLASH_HSFSTS);
13187 if ((hsfsts & HSFSTS_FLINPRO) == 0) {
13188 error = 0;
13189 break;
13190 }
13191 delay(1);
13192 }
13193 if (error == 0) {
13194 /*
13195 * Successful in waiting for previous cycle to timeout,
13196 * now set the Flash Cycle Done.
13197 */
13198 hsfsts |= HSFSTS_DONE;
13199 if (sc->sc_type >= WM_T_PCH_SPT)
13200 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS,
13201 hsfsts & 0xffffUL);
13202 else
13203 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS,
13204 hsfsts);
13205 }
13206 }
13207 return error;
13208 }
13209
13210 /******************************************************************************
13211 * This function starts a flash cycle and waits for its completion
13212 *
13213 * sc - The pointer to the hw structure
13214 ****************************************************************************/
13215 static int32_t
13216 wm_ich8_flash_cycle(struct wm_softc *sc, uint32_t timeout)
13217 {
13218 uint16_t hsflctl;
13219 uint16_t hsfsts;
13220 int32_t error = 1;
13221 uint32_t i = 0;
13222
13223 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
13224 if (sc->sc_type >= WM_T_PCH_SPT)
13225 hsflctl = ICH8_FLASH_READ32(sc, ICH_FLASH_HSFSTS) >> 16;
13226 else
13227 hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
13228 hsflctl |= HSFCTL_GO;
13229 if (sc->sc_type >= WM_T_PCH_SPT)
13230 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS,
13231 (uint32_t)hsflctl << 16);
13232 else
13233 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
13234
13235 /* Wait till FDONE bit is set to 1 */
13236 do {
13237 if (sc->sc_type >= WM_T_PCH_SPT)
13238 hsfsts = ICH8_FLASH_READ32(sc, ICH_FLASH_HSFSTS)
13239 & 0xffffUL;
13240 else
13241 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
13242 if (hsfsts & HSFSTS_DONE)
13243 break;
13244 delay(1);
13245 i++;
13246 } while (i < timeout);
13247 if ((hsfsts & HSFSTS_DONE) == 1 && (hsfsts & HSFSTS_ERR) == 0)
13248 error = 0;
13249
13250 return error;
13251 }
13252
13253 /******************************************************************************
13254 * Reads a byte or (d)word from the NVM using the ICH8 flash access registers.
13255 *
13256 * sc - The pointer to the hw structure
13257 * index - The index of the byte or word to read.
13258 * size - Size of data to read, 1=byte 2=word, 4=dword
13259 * data - Pointer to the word to store the value read.
13260 *****************************************************************************/
13261 static int32_t
13262 wm_read_ich8_data(struct wm_softc *sc, uint32_t index,
13263 uint32_t size, uint32_t *data)
13264 {
13265 uint16_t hsfsts;
13266 uint16_t hsflctl;
13267 uint32_t flash_linear_address;
13268 uint32_t flash_data = 0;
13269 int32_t error = 1;
13270 int32_t count = 0;
13271
13272 if (size < 1 || size > 4 || data == 0x0 ||
13273 index > ICH_FLASH_LINEAR_ADDR_MASK)
13274 return error;
13275
13276 flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
13277 sc->sc_ich8_flash_base;
13278
13279 do {
13280 delay(1);
13281 /* Steps */
13282 error = wm_ich8_cycle_init(sc);
13283 if (error)
13284 break;
13285
13286 if (sc->sc_type >= WM_T_PCH_SPT)
13287 hsflctl = ICH8_FLASH_READ32(sc, ICH_FLASH_HSFSTS)
13288 >> 16;
13289 else
13290 hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
13291 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
13292 hsflctl |= ((size - 1) << HSFCTL_BCOUNT_SHIFT)
13293 & HSFCTL_BCOUNT_MASK;
13294 hsflctl |= ICH_CYCLE_READ << HSFCTL_CYCLE_SHIFT;
13295 if (sc->sc_type >= WM_T_PCH_SPT) {
13296 /*
13297 * In SPT, This register is in Lan memory space, not
13298 * flash. Therefore, only 32 bit access is supported.
13299 */
13300 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS,
13301 (uint32_t)hsflctl << 16);
13302 } else
13303 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
13304
13305 /*
13306 * Write the last 24 bits of index into Flash Linear address
13307 * field in Flash Address
13308 */
13309 /* TODO: TBD maybe check the index against the size of flash */
13310
13311 ICH8_FLASH_WRITE32(sc, ICH_FLASH_FADDR, flash_linear_address);
13312
13313 error = wm_ich8_flash_cycle(sc, ICH_FLASH_COMMAND_TIMEOUT);
13314
13315 /*
13316 * Check if FCERR is set to 1, if set to 1, clear it and try
13317 * the whole sequence a few more times, else read in (shift in)
13318 * the Flash Data0, the order is least significant byte first
13319 * msb to lsb
13320 */
13321 if (error == 0) {
13322 flash_data = ICH8_FLASH_READ32(sc, ICH_FLASH_FDATA0);
13323 if (size == 1)
13324 *data = (uint8_t)(flash_data & 0x000000FF);
13325 else if (size == 2)
13326 *data = (uint16_t)(flash_data & 0x0000FFFF);
13327 else if (size == 4)
13328 *data = (uint32_t)flash_data;
13329 break;
13330 } else {
13331 /*
13332 * If we've gotten here, then things are probably
13333 * completely hosed, but if the error condition is
13334 * detected, it won't hurt to give it another try...
13335 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
13336 */
13337 if (sc->sc_type >= WM_T_PCH_SPT)
13338 hsfsts = ICH8_FLASH_READ32(sc,
13339 ICH_FLASH_HSFSTS) & 0xffffUL;
13340 else
13341 hsfsts = ICH8_FLASH_READ16(sc,
13342 ICH_FLASH_HSFSTS);
13343
13344 if (hsfsts & HSFSTS_ERR) {
13345 /* Repeat for some time before giving up. */
13346 continue;
13347 } else if ((hsfsts & HSFSTS_DONE) == 0)
13348 break;
13349 }
13350 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
13351
13352 return error;
13353 }
13354
13355 /******************************************************************************
13356 * Reads a single byte from the NVM using the ICH8 flash access registers.
13357 *
13358 * sc - pointer to wm_hw structure
13359 * index - The index of the byte to read.
13360 * data - Pointer to a byte to store the value read.
13361 *****************************************************************************/
13362 static int32_t
13363 wm_read_ich8_byte(struct wm_softc *sc, uint32_t index, uint8_t* data)
13364 {
13365 int32_t status;
13366 uint32_t word = 0;
13367
13368 status = wm_read_ich8_data(sc, index, 1, &word);
13369 if (status == 0)
13370 *data = (uint8_t)word;
13371 else
13372 *data = 0;
13373
13374 return status;
13375 }
13376
13377 /******************************************************************************
13378 * Reads a word from the NVM using the ICH8 flash access registers.
13379 *
13380 * sc - pointer to wm_hw structure
13381 * index - The starting byte index of the word to read.
13382 * data - Pointer to a word to store the value read.
13383 *****************************************************************************/
13384 static int32_t
13385 wm_read_ich8_word(struct wm_softc *sc, uint32_t index, uint16_t *data)
13386 {
13387 int32_t status;
13388 uint32_t word = 0;
13389
13390 status = wm_read_ich8_data(sc, index, 2, &word);
13391 if (status == 0)
13392 *data = (uint16_t)word;
13393 else
13394 *data = 0;
13395
13396 return status;
13397 }
13398
13399 /******************************************************************************
13400 * Reads a dword from the NVM using the ICH8 flash access registers.
13401 *
13402 * sc - pointer to wm_hw structure
13403 * index - The starting byte index of the word to read.
13404 * data - Pointer to a word to store the value read.
13405 *****************************************************************************/
13406 static int32_t
13407 wm_read_ich8_dword(struct wm_softc *sc, uint32_t index, uint32_t *data)
13408 {
13409 int32_t status;
13410
13411 status = wm_read_ich8_data(sc, index, 4, data);
13412 return status;
13413 }
13414
13415 /******************************************************************************
13416 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
13417 * register.
13418 *
13419 * sc - Struct containing variables accessed by shared code
13420 * offset - offset of word in the EEPROM to read
13421 * data - word read from the EEPROM
13422 * words - number of words to read
13423 *****************************************************************************/
13424 static int
13425 wm_nvm_read_ich8(struct wm_softc *sc, int offset, int words, uint16_t *data)
13426 {
13427 int32_t rv = 0;
13428 uint32_t flash_bank = 0;
13429 uint32_t act_offset = 0;
13430 uint32_t bank_offset = 0;
13431 uint16_t word = 0;
13432 uint16_t i = 0;
13433
13434 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
13435 device_xname(sc->sc_dev), __func__));
13436
13437 if (sc->nvm.acquire(sc) != 0)
13438 return -1;
13439
13440 /*
13441 * We need to know which is the valid flash bank. In the event
13442 * that we didn't allocate eeprom_shadow_ram, we may not be
13443 * managing flash_bank. So it cannot be trusted and needs
13444 * to be updated with each read.
13445 */
13446 rv = wm_nvm_valid_bank_detect_ich8lan(sc, &flash_bank);
13447 if (rv) {
13448 DPRINTF(WM_DEBUG_NVM, ("%s: failed to detect NVM bank\n",
13449 device_xname(sc->sc_dev)));
13450 flash_bank = 0;
13451 }
13452
13453 /*
13454 * Adjust offset appropriately if we're on bank 1 - adjust for word
13455 * size
13456 */
13457 bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
13458
13459 for (i = 0; i < words; i++) {
13460 /* The NVM part needs a byte offset, hence * 2 */
13461 act_offset = bank_offset + ((offset + i) * 2);
13462 rv = wm_read_ich8_word(sc, act_offset, &word);
13463 if (rv) {
13464 aprint_error_dev(sc->sc_dev,
13465 "%s: failed to read NVM\n", __func__);
13466 break;
13467 }
13468 data[i] = word;
13469 }
13470
13471 sc->nvm.release(sc);
13472 return rv;
13473 }
13474
13475 /******************************************************************************
13476 * Reads a 16 bit word or words from the EEPROM using the SPT's flash access
13477 * register.
13478 *
13479 * sc - Struct containing variables accessed by shared code
13480 * offset - offset of word in the EEPROM to read
13481 * data - word read from the EEPROM
13482 * words - number of words to read
13483 *****************************************************************************/
13484 static int
13485 wm_nvm_read_spt(struct wm_softc *sc, int offset, int words, uint16_t *data)
13486 {
13487 int32_t rv = 0;
13488 uint32_t flash_bank = 0;
13489 uint32_t act_offset = 0;
13490 uint32_t bank_offset = 0;
13491 uint32_t dword = 0;
13492 uint16_t i = 0;
13493
13494 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
13495 device_xname(sc->sc_dev), __func__));
13496
13497 if (sc->nvm.acquire(sc) != 0)
13498 return -1;
13499
13500 /*
13501 * We need to know which is the valid flash bank. In the event
13502 * that we didn't allocate eeprom_shadow_ram, we may not be
13503 * managing flash_bank. So it cannot be trusted and needs
13504 * to be updated with each read.
13505 */
13506 rv = wm_nvm_valid_bank_detect_ich8lan(sc, &flash_bank);
13507 if (rv) {
13508 DPRINTF(WM_DEBUG_NVM, ("%s: failed to detect NVM bank\n",
13509 device_xname(sc->sc_dev)));
13510 flash_bank = 0;
13511 }
13512
13513 /*
13514 * Adjust offset appropriately if we're on bank 1 - adjust for word
13515 * size
13516 */
13517 bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
13518
13519 for (i = 0; i < words; i++) {
13520 /* The NVM part needs a byte offset, hence * 2 */
13521 act_offset = bank_offset + ((offset + i) * 2);
13522 /* but we must read dword aligned, so mask ... */
13523 rv = wm_read_ich8_dword(sc, act_offset & ~0x3, &dword);
13524 if (rv) {
13525 aprint_error_dev(sc->sc_dev,
13526 "%s: failed to read NVM\n", __func__);
13527 break;
13528 }
13529 /* ... and pick out low or high word */
13530 if ((act_offset & 0x2) == 0)
13531 data[i] = (uint16_t)(dword & 0xFFFF);
13532 else
13533 data[i] = (uint16_t)((dword >> 16) & 0xFFFF);
13534 }
13535
13536 sc->nvm.release(sc);
13537 return rv;
13538 }
13539
13540 /* iNVM */
13541
13542 static int
13543 wm_nvm_read_word_invm(struct wm_softc *sc, uint16_t address, uint16_t *data)
13544 {
13545 int32_t rv = 0;
13546 uint32_t invm_dword;
13547 uint16_t i;
13548 uint8_t record_type, word_address;
13549
13550 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
13551 device_xname(sc->sc_dev), __func__));
13552
13553 for (i = 0; i < INVM_SIZE; i++) {
13554 invm_dword = CSR_READ(sc, WM_INVM_DATA_REG(i));
13555 /* Get record type */
13556 record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
13557 if (record_type == INVM_UNINITIALIZED_STRUCTURE)
13558 break;
13559 if (record_type == INVM_CSR_AUTOLOAD_STRUCTURE)
13560 i += INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
13561 if (record_type == INVM_RSA_KEY_SHA256_STRUCTURE)
13562 i += INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
13563 if (record_type == INVM_WORD_AUTOLOAD_STRUCTURE) {
13564 word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
13565 if (word_address == address) {
13566 *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
13567 rv = 0;
13568 break;
13569 }
13570 }
13571 }
13572
13573 return rv;
13574 }
13575
13576 static int
13577 wm_nvm_read_invm(struct wm_softc *sc, int offset, int words, uint16_t *data)
13578 {
13579 int rv = 0;
13580 int i;
13581
13582 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
13583 device_xname(sc->sc_dev), __func__));
13584
13585 if (sc->nvm.acquire(sc) != 0)
13586 return -1;
13587
13588 for (i = 0; i < words; i++) {
13589 switch (offset + i) {
13590 case NVM_OFF_MACADDR:
13591 case NVM_OFF_MACADDR1:
13592 case NVM_OFF_MACADDR2:
13593 rv = wm_nvm_read_word_invm(sc, offset + i, &data[i]);
13594 if (rv != 0) {
13595 data[i] = 0xffff;
13596 rv = -1;
13597 }
13598 break;
13599 case NVM_OFF_CFG2:
13600 rv = wm_nvm_read_word_invm(sc, offset, data);
13601 if (rv != 0) {
13602 *data = NVM_INIT_CTRL_2_DEFAULT_I211;
13603 rv = 0;
13604 }
13605 break;
13606 case NVM_OFF_CFG4:
13607 rv = wm_nvm_read_word_invm(sc, offset, data);
13608 if (rv != 0) {
13609 *data = NVM_INIT_CTRL_4_DEFAULT_I211;
13610 rv = 0;
13611 }
13612 break;
13613 case NVM_OFF_LED_1_CFG:
13614 rv = wm_nvm_read_word_invm(sc, offset, data);
13615 if (rv != 0) {
13616 *data = NVM_LED_1_CFG_DEFAULT_I211;
13617 rv = 0;
13618 }
13619 break;
13620 case NVM_OFF_LED_0_2_CFG:
13621 rv = wm_nvm_read_word_invm(sc, offset, data);
13622 if (rv != 0) {
13623 *data = NVM_LED_0_2_CFG_DEFAULT_I211;
13624 rv = 0;
13625 }
13626 break;
13627 case NVM_OFF_ID_LED_SETTINGS:
13628 rv = wm_nvm_read_word_invm(sc, offset, data);
13629 if (rv != 0) {
13630 *data = ID_LED_RESERVED_FFFF;
13631 rv = 0;
13632 }
13633 break;
13634 default:
13635 DPRINTF(WM_DEBUG_NVM,
13636 ("NVM word 0x%02x is not mapped.\n", offset));
13637 *data = NVM_RESERVED_WORD;
13638 break;
13639 }
13640 }
13641
13642 sc->nvm.release(sc);
13643 return rv;
13644 }
13645
13646 /* Lock, detecting NVM type, validate checksum, version and read */
13647
13648 static int
13649 wm_nvm_is_onboard_eeprom(struct wm_softc *sc)
13650 {
13651 uint32_t eecd = 0;
13652
13653 if (sc->sc_type == WM_T_82573 || sc->sc_type == WM_T_82574
13654 || sc->sc_type == WM_T_82583) {
13655 eecd = CSR_READ(sc, WMREG_EECD);
13656
13657 /* Isolate bits 15 & 16 */
13658 eecd = ((eecd >> 15) & 0x03);
13659
13660 /* If both bits are set, device is Flash type */
13661 if (eecd == 0x03)
13662 return 0;
13663 }
13664 return 1;
13665 }
13666
13667 static int
13668 wm_nvm_flash_presence_i210(struct wm_softc *sc)
13669 {
13670 uint32_t eec;
13671
13672 eec = CSR_READ(sc, WMREG_EEC);
13673 if ((eec & EEC_FLASH_DETECTED) != 0)
13674 return 1;
13675
13676 return 0;
13677 }
13678
13679 /*
13680 * wm_nvm_validate_checksum
13681 *
13682 * The checksum is defined as the sum of the first 64 (16 bit) words.
13683 */
13684 static int
13685 wm_nvm_validate_checksum(struct wm_softc *sc)
13686 {
13687 uint16_t checksum;
13688 uint16_t eeprom_data;
13689 #ifdef WM_DEBUG
13690 uint16_t csum_wordaddr, valid_checksum;
13691 #endif
13692 int i;
13693
13694 checksum = 0;
13695
13696 /* Don't check for I211 */
13697 if (sc->sc_type == WM_T_I211)
13698 return 0;
13699
13700 #ifdef WM_DEBUG
13701 if ((sc->sc_type == WM_T_PCH_LPT) || (sc->sc_type == WM_T_PCH_SPT)
13702 || (sc->sc_type == WM_T_PCH_CNP)) {
13703 csum_wordaddr = NVM_OFF_COMPAT;
13704 valid_checksum = NVM_COMPAT_VALID_CHECKSUM;
13705 } else {
13706 csum_wordaddr = NVM_OFF_FUTURE_INIT_WORD1;
13707 valid_checksum = NVM_FUTURE_INIT_WORD1_VALID_CHECKSUM;
13708 }
13709
13710 /* Dump EEPROM image for debug */
13711 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
13712 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
13713 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) {
13714 /* XXX PCH_SPT? */
13715 wm_nvm_read(sc, csum_wordaddr, 1, &eeprom_data);
13716 if ((eeprom_data & valid_checksum) == 0)
13717 DPRINTF(WM_DEBUG_NVM,
13718 ("%s: NVM need to be updated (%04x != %04x)\n",
13719 device_xname(sc->sc_dev), eeprom_data,
13720 valid_checksum));
13721 }
13722
13723 if ((wm_debug & WM_DEBUG_NVM) != 0) {
13724 printf("%s: NVM dump:\n", device_xname(sc->sc_dev));
13725 for (i = 0; i < NVM_SIZE; i++) {
13726 if (wm_nvm_read(sc, i, 1, &eeprom_data))
13727 printf("XXXX ");
13728 else
13729 printf("%04hx ", eeprom_data);
13730 if (i % 8 == 7)
13731 printf("\n");
13732 }
13733 }
13734
13735 #endif /* WM_DEBUG */
13736
13737 for (i = 0; i < NVM_SIZE; i++) {
13738 if (wm_nvm_read(sc, i, 1, &eeprom_data))
13739 return 1;
13740 checksum += eeprom_data;
13741 }
13742
13743 if (checksum != (uint16_t) NVM_CHECKSUM) {
13744 #ifdef WM_DEBUG
13745 printf("%s: NVM checksum mismatch (%04x != %04x)\n",
13746 device_xname(sc->sc_dev), checksum, NVM_CHECKSUM);
13747 #endif
13748 }
13749
13750 return 0;
13751 }
13752
13753 static void
13754 wm_nvm_version_invm(struct wm_softc *sc)
13755 {
13756 uint32_t dword;
13757
13758 /*
13759 * Linux's code to decode version is very strange, so we don't
13760 * obey that algorithm and just use word 61 as the document.
13761 * Perhaps it's not perfect though...
13762 *
13763 * Example:
13764 *
13765 * Word61: 00800030 -> Version 0.6 (I211 spec update notes about 0.6)
13766 */
13767 dword = CSR_READ(sc, WM_INVM_DATA_REG(61));
13768 dword = __SHIFTOUT(dword, INVM_VER_1);
13769 sc->sc_nvm_ver_major = __SHIFTOUT(dword, INVM_MAJOR);
13770 sc->sc_nvm_ver_minor = __SHIFTOUT(dword, INVM_MINOR);
13771 }
13772
13773 static void
13774 wm_nvm_version(struct wm_softc *sc)
13775 {
13776 uint16_t major, minor, build, patch;
13777 uint16_t uid0, uid1;
13778 uint16_t nvm_data;
13779 uint16_t off;
13780 bool check_version = false;
13781 bool check_optionrom = false;
13782 bool have_build = false;
13783 bool have_uid = true;
13784
13785 /*
13786 * Version format:
13787 *
13788 * XYYZ
13789 * X0YZ
13790 * X0YY
13791 *
13792 * Example:
13793 *
13794 * 82571 0x50a2 5.10.2? (the spec update notes about 5.6-5.10)
13795 * 82571 0x50a6 5.10.6?
13796 * 82572 0x506a 5.6.10?
13797 * 82572EI 0x5069 5.6.9?
13798 * 82574L 0x1080 1.8.0? (the spec update notes about 2.1.4)
13799 * 0x2013 2.1.3?
13800 * 82583 0x10a0 1.10.0? (document says it's default value)
13801 * ICH8+82567 0x0040 0.4.0?
13802 * ICH9+82566 0x1040 1.4.0?
13803 *ICH10+82567 0x0043 0.4.3?
13804 * PCH+82577 0x00c1 0.12.1?
13805 * PCH2+82579 0x00d3 0.13.3?
13806 * 0x00d4 0.13.4?
13807 * LPT+I218 0x0023 0.2.3?
13808 * SPT+I219 0x0084 0.8.4?
13809 * CNP+I219 0x0054 0.5.4?
13810 */
13811
13812 /*
13813 * XXX
13814 * Qemu's e1000e emulation (82574L)'s SPI has only 64 words.
13815 * I've never seen on real 82574 hardware with such small SPI ROM.
13816 */
13817 if ((sc->sc_nvm_wordsize < NVM_OFF_IMAGE_UID1)
13818 || (wm_nvm_read(sc, NVM_OFF_IMAGE_UID1, 1, &uid1) != 0))
13819 have_uid = false;
13820
13821 switch (sc->sc_type) {
13822 case WM_T_82571:
13823 case WM_T_82572:
13824 case WM_T_82574:
13825 case WM_T_82583:
13826 check_version = true;
13827 check_optionrom = true;
13828 have_build = true;
13829 break;
13830 case WM_T_ICH8:
13831 case WM_T_ICH9:
13832 case WM_T_ICH10:
13833 case WM_T_PCH:
13834 case WM_T_PCH2:
13835 case WM_T_PCH_LPT:
13836 case WM_T_PCH_SPT:
13837 case WM_T_PCH_CNP:
13838 check_version = true;
13839 have_build = true;
13840 have_uid = false;
13841 break;
13842 case WM_T_82575:
13843 case WM_T_82576:
13844 case WM_T_82580:
13845 if (have_uid && (uid1 & NVM_MAJOR_MASK) != NVM_UID_VALID)
13846 check_version = true;
13847 break;
13848 case WM_T_I211:
13849 wm_nvm_version_invm(sc);
13850 have_uid = false;
13851 goto printver;
13852 case WM_T_I210:
13853 if (!wm_nvm_flash_presence_i210(sc)) {
13854 wm_nvm_version_invm(sc);
13855 have_uid = false;
13856 goto printver;
13857 }
13858 /* FALLTHROUGH */
13859 case WM_T_I350:
13860 case WM_T_I354:
13861 check_version = true;
13862 check_optionrom = true;
13863 break;
13864 default:
13865 return;
13866 }
13867 if (check_version
13868 && (wm_nvm_read(sc, NVM_OFF_VERSION, 1, &nvm_data) == 0)) {
13869 major = (nvm_data & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT;
13870 if (have_build || ((nvm_data & 0x0f00) != 0x0000)) {
13871 minor = (nvm_data & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT;
13872 build = nvm_data & NVM_BUILD_MASK;
13873 have_build = true;
13874 } else
13875 minor = nvm_data & 0x00ff;
13876
13877 /* Decimal */
13878 minor = (minor / 16) * 10 + (minor % 16);
13879 sc->sc_nvm_ver_major = major;
13880 sc->sc_nvm_ver_minor = minor;
13881
13882 printver:
13883 aprint_verbose(", version %d.%d", sc->sc_nvm_ver_major,
13884 sc->sc_nvm_ver_minor);
13885 if (have_build) {
13886 sc->sc_nvm_ver_build = build;
13887 aprint_verbose(".%d", build);
13888 }
13889 }
13890
13891 /* Assume the Option ROM area is at avove NVM_SIZE */
13892 if ((sc->sc_nvm_wordsize > NVM_SIZE) && check_optionrom
13893 && (wm_nvm_read(sc, NVM_OFF_COMB_VER_PTR, 1, &off) == 0)) {
13894 /* Option ROM Version */
13895 if ((off != 0x0000) && (off != 0xffff)) {
13896 int rv;
13897
13898 off += NVM_COMBO_VER_OFF;
13899 rv = wm_nvm_read(sc, off + 1, 1, &uid1);
13900 rv |= wm_nvm_read(sc, off, 1, &uid0);
13901 if ((rv == 0) && (uid0 != 0) && (uid0 != 0xffff)
13902 && (uid1 != 0) && (uid1 != 0xffff)) {
13903 /* 16bits */
13904 major = uid0 >> 8;
13905 build = (uid0 << 8) | (uid1 >> 8);
13906 patch = uid1 & 0x00ff;
13907 aprint_verbose(", option ROM Version %d.%d.%d",
13908 major, build, patch);
13909 }
13910 }
13911 }
13912
13913 if (have_uid && (wm_nvm_read(sc, NVM_OFF_IMAGE_UID0, 1, &uid0) == 0))
13914 aprint_verbose(", Image Unique ID %08x", (uid1 << 16) | uid0);
13915 }
13916
13917 /*
13918 * wm_nvm_read:
13919 *
13920 * Read data from the serial EEPROM.
13921 */
13922 static int
13923 wm_nvm_read(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
13924 {
13925 int rv;
13926
13927 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
13928 device_xname(sc->sc_dev), __func__));
13929
13930 if (sc->sc_flags & WM_F_EEPROM_INVALID)
13931 return -1;
13932
13933 rv = sc->nvm.read(sc, word, wordcnt, data);
13934
13935 return rv;
13936 }
13937
13938 /*
13939 * Hardware semaphores.
13940 * Very complexed...
13941 */
13942
13943 static int
13944 wm_get_null(struct wm_softc *sc)
13945 {
13946
13947 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
13948 device_xname(sc->sc_dev), __func__));
13949 return 0;
13950 }
13951
13952 static void
13953 wm_put_null(struct wm_softc *sc)
13954 {
13955
13956 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
13957 device_xname(sc->sc_dev), __func__));
13958 return;
13959 }
13960
13961 static int
13962 wm_get_eecd(struct wm_softc *sc)
13963 {
13964 uint32_t reg;
13965 int x;
13966
13967 DPRINTF(WM_DEBUG_LOCK | WM_DEBUG_NVM, ("%s: %s called\n",
13968 device_xname(sc->sc_dev), __func__));
13969
13970 reg = CSR_READ(sc, WMREG_EECD);
13971
13972 /* Request EEPROM access. */
13973 reg |= EECD_EE_REQ;
13974 CSR_WRITE(sc, WMREG_EECD, reg);
13975
13976 /* ..and wait for it to be granted. */
13977 for (x = 0; x < 1000; x++) {
13978 reg = CSR_READ(sc, WMREG_EECD);
13979 if (reg & EECD_EE_GNT)
13980 break;
13981 delay(5);
13982 }
13983 if ((reg & EECD_EE_GNT) == 0) {
13984 aprint_error_dev(sc->sc_dev,
13985 "could not acquire EEPROM GNT\n");
13986 reg &= ~EECD_EE_REQ;
13987 CSR_WRITE(sc, WMREG_EECD, reg);
13988 return -1;
13989 }
13990
13991 return 0;
13992 }
13993
13994 static void
13995 wm_nvm_eec_clock_raise(struct wm_softc *sc, uint32_t *eecd)
13996 {
13997
13998 *eecd |= EECD_SK;
13999 CSR_WRITE(sc, WMREG_EECD, *eecd);
14000 CSR_WRITE_FLUSH(sc);
14001 if ((sc->sc_flags & WM_F_EEPROM_SPI) != 0)
14002 delay(1);
14003 else
14004 delay(50);
14005 }
14006
14007 static void
14008 wm_nvm_eec_clock_lower(struct wm_softc *sc, uint32_t *eecd)
14009 {
14010
14011 *eecd &= ~EECD_SK;
14012 CSR_WRITE(sc, WMREG_EECD, *eecd);
14013 CSR_WRITE_FLUSH(sc);
14014 if ((sc->sc_flags & WM_F_EEPROM_SPI) != 0)
14015 delay(1);
14016 else
14017 delay(50);
14018 }
14019
14020 static void
14021 wm_put_eecd(struct wm_softc *sc)
14022 {
14023 uint32_t reg;
14024
14025 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14026 device_xname(sc->sc_dev), __func__));
14027
14028 /* Stop nvm */
14029 reg = CSR_READ(sc, WMREG_EECD);
14030 if ((sc->sc_flags & WM_F_EEPROM_SPI) != 0) {
14031 /* Pull CS high */
14032 reg |= EECD_CS;
14033 wm_nvm_eec_clock_lower(sc, ®);
14034 } else {
14035 /* CS on Microwire is active-high */
14036 reg &= ~(EECD_CS | EECD_DI);
14037 CSR_WRITE(sc, WMREG_EECD, reg);
14038 wm_nvm_eec_clock_raise(sc, ®);
14039 wm_nvm_eec_clock_lower(sc, ®);
14040 }
14041
14042 reg = CSR_READ(sc, WMREG_EECD);
14043 reg &= ~EECD_EE_REQ;
14044 CSR_WRITE(sc, WMREG_EECD, reg);
14045
14046 return;
14047 }
14048
14049 /*
14050 * Get hardware semaphore.
14051 * Same as e1000_get_hw_semaphore_generic()
14052 */
14053 static int
14054 wm_get_swsm_semaphore(struct wm_softc *sc)
14055 {
14056 int32_t timeout;
14057 uint32_t swsm;
14058
14059 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14060 device_xname(sc->sc_dev), __func__));
14061 KASSERT(sc->sc_nvm_wordsize > 0);
14062
14063 retry:
14064 /* Get the SW semaphore. */
14065 timeout = sc->sc_nvm_wordsize + 1;
14066 while (timeout) {
14067 swsm = CSR_READ(sc, WMREG_SWSM);
14068
14069 if ((swsm & SWSM_SMBI) == 0)
14070 break;
14071
14072 delay(50);
14073 timeout--;
14074 }
14075
14076 if (timeout == 0) {
14077 if ((sc->sc_flags & WM_F_WA_I210_CLSEM) != 0) {
14078 /*
14079 * In rare circumstances, the SW semaphore may already
14080 * be held unintentionally. Clear the semaphore once
14081 * before giving up.
14082 */
14083 sc->sc_flags &= ~WM_F_WA_I210_CLSEM;
14084 wm_put_swsm_semaphore(sc);
14085 goto retry;
14086 }
14087 aprint_error_dev(sc->sc_dev,
14088 "could not acquire SWSM SMBI\n");
14089 return 1;
14090 }
14091
14092 /* Get the FW semaphore. */
14093 timeout = sc->sc_nvm_wordsize + 1;
14094 while (timeout) {
14095 swsm = CSR_READ(sc, WMREG_SWSM);
14096 swsm |= SWSM_SWESMBI;
14097 CSR_WRITE(sc, WMREG_SWSM, swsm);
14098 /* If we managed to set the bit we got the semaphore. */
14099 swsm = CSR_READ(sc, WMREG_SWSM);
14100 if (swsm & SWSM_SWESMBI)
14101 break;
14102
14103 delay(50);
14104 timeout--;
14105 }
14106
14107 if (timeout == 0) {
14108 aprint_error_dev(sc->sc_dev,
14109 "could not acquire SWSM SWESMBI\n");
14110 /* Release semaphores */
14111 wm_put_swsm_semaphore(sc);
14112 return 1;
14113 }
14114 return 0;
14115 }
14116
14117 /*
14118 * Put hardware semaphore.
14119 * Same as e1000_put_hw_semaphore_generic()
14120 */
14121 static void
14122 wm_put_swsm_semaphore(struct wm_softc *sc)
14123 {
14124 uint32_t swsm;
14125
14126 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14127 device_xname(sc->sc_dev), __func__));
14128
14129 swsm = CSR_READ(sc, WMREG_SWSM);
14130 swsm &= ~(SWSM_SMBI | SWSM_SWESMBI);
14131 CSR_WRITE(sc, WMREG_SWSM, swsm);
14132 }
14133
14134 /*
14135 * Get SW/FW semaphore.
14136 * Same as e1000_acquire_swfw_sync_{80003es2lan,82575}().
14137 */
14138 static int
14139 wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
14140 {
14141 uint32_t swfw_sync;
14142 uint32_t swmask = mask << SWFW_SOFT_SHIFT;
14143 uint32_t fwmask = mask << SWFW_FIRM_SHIFT;
14144 int timeout;
14145
14146 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14147 device_xname(sc->sc_dev), __func__));
14148
14149 if (sc->sc_type == WM_T_80003)
14150 timeout = 50;
14151 else
14152 timeout = 200;
14153
14154 while (timeout) {
14155 if (wm_get_swsm_semaphore(sc)) {
14156 aprint_error_dev(sc->sc_dev,
14157 "%s: failed to get semaphore\n",
14158 __func__);
14159 return 1;
14160 }
14161 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
14162 if ((swfw_sync & (swmask | fwmask)) == 0) {
14163 swfw_sync |= swmask;
14164 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
14165 wm_put_swsm_semaphore(sc);
14166 return 0;
14167 }
14168 wm_put_swsm_semaphore(sc);
14169 delay(5000);
14170 timeout--;
14171 }
14172 device_printf(sc->sc_dev,
14173 "failed to get swfw semaphore mask 0x%x swfw 0x%x\n",
14174 mask, swfw_sync);
14175 return 1;
14176 }
14177
14178 static void
14179 wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
14180 {
14181 uint32_t swfw_sync;
14182
14183 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14184 device_xname(sc->sc_dev), __func__));
14185
14186 while (wm_get_swsm_semaphore(sc) != 0)
14187 continue;
14188
14189 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
14190 swfw_sync &= ~(mask << SWFW_SOFT_SHIFT);
14191 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
14192
14193 wm_put_swsm_semaphore(sc);
14194 }
14195
14196 static int
14197 wm_get_nvm_80003(struct wm_softc *sc)
14198 {
14199 int rv;
14200
14201 DPRINTF(WM_DEBUG_LOCK | WM_DEBUG_NVM, ("%s: %s called\n",
14202 device_xname(sc->sc_dev), __func__));
14203
14204 if ((rv = wm_get_swfw_semaphore(sc, SWFW_EEP_SM)) != 0) {
14205 aprint_error_dev(sc->sc_dev,
14206 "%s: failed to get semaphore(SWFW)\n", __func__);
14207 return rv;
14208 }
14209
14210 if (((sc->sc_flags & WM_F_LOCK_EECD) != 0)
14211 && (rv = wm_get_eecd(sc)) != 0) {
14212 aprint_error_dev(sc->sc_dev,
14213 "%s: failed to get semaphore(EECD)\n", __func__);
14214 wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
14215 return rv;
14216 }
14217
14218 return 0;
14219 }
14220
14221 static void
14222 wm_put_nvm_80003(struct wm_softc *sc)
14223 {
14224
14225 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14226 device_xname(sc->sc_dev), __func__));
14227
14228 if ((sc->sc_flags & WM_F_LOCK_EECD) != 0)
14229 wm_put_eecd(sc);
14230 wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
14231 }
14232
14233 static int
14234 wm_get_nvm_82571(struct wm_softc *sc)
14235 {
14236 int rv;
14237
14238 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14239 device_xname(sc->sc_dev), __func__));
14240
14241 if ((rv = wm_get_swsm_semaphore(sc)) != 0)
14242 return rv;
14243
14244 switch (sc->sc_type) {
14245 case WM_T_82573:
14246 break;
14247 default:
14248 if ((sc->sc_flags & WM_F_LOCK_EECD) != 0)
14249 rv = wm_get_eecd(sc);
14250 break;
14251 }
14252
14253 if (rv != 0) {
14254 aprint_error_dev(sc->sc_dev,
14255 "%s: failed to get semaphore\n",
14256 __func__);
14257 wm_put_swsm_semaphore(sc);
14258 }
14259
14260 return rv;
14261 }
14262
14263 static void
14264 wm_put_nvm_82571(struct wm_softc *sc)
14265 {
14266
14267 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14268 device_xname(sc->sc_dev), __func__));
14269
14270 switch (sc->sc_type) {
14271 case WM_T_82573:
14272 break;
14273 default:
14274 if ((sc->sc_flags & WM_F_LOCK_EECD) != 0)
14275 wm_put_eecd(sc);
14276 break;
14277 }
14278
14279 wm_put_swsm_semaphore(sc);
14280 }
14281
14282 static int
14283 wm_get_phy_82575(struct wm_softc *sc)
14284 {
14285
14286 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14287 device_xname(sc->sc_dev), __func__));
14288 return wm_get_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
14289 }
14290
14291 static void
14292 wm_put_phy_82575(struct wm_softc *sc)
14293 {
14294
14295 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14296 device_xname(sc->sc_dev), __func__));
14297 return wm_put_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
14298 }
14299
14300 static int
14301 wm_get_swfwhw_semaphore(struct wm_softc *sc)
14302 {
14303 uint32_t ext_ctrl;
14304 int timeout = 200;
14305
14306 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14307 device_xname(sc->sc_dev), __func__));
14308
14309 mutex_enter(sc->sc_ich_phymtx); /* Use PHY mtx for both PHY and NVM */
14310 for (timeout = 0; timeout < 200; timeout++) {
14311 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
14312 ext_ctrl |= EXTCNFCTR_MDIO_SW_OWNERSHIP;
14313 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
14314
14315 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
14316 if (ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP)
14317 return 0;
14318 delay(5000);
14319 }
14320 device_printf(sc->sc_dev,
14321 "failed to get swfwhw semaphore ext_ctrl 0x%x\n", ext_ctrl);
14322 mutex_exit(sc->sc_ich_phymtx); /* Use PHY mtx for both PHY and NVM */
14323 return 1;
14324 }
14325
14326 static void
14327 wm_put_swfwhw_semaphore(struct wm_softc *sc)
14328 {
14329 uint32_t ext_ctrl;
14330
14331 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14332 device_xname(sc->sc_dev), __func__));
14333
14334 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
14335 ext_ctrl &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
14336 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
14337
14338 mutex_exit(sc->sc_ich_phymtx); /* Use PHY mtx for both PHY and NVM */
14339 }
14340
14341 static int
14342 wm_get_swflag_ich8lan(struct wm_softc *sc)
14343 {
14344 uint32_t ext_ctrl;
14345 int timeout;
14346
14347 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14348 device_xname(sc->sc_dev), __func__));
14349 mutex_enter(sc->sc_ich_phymtx);
14350 for (timeout = 0; timeout < WM_PHY_CFG_TIMEOUT; timeout++) {
14351 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
14352 if ((ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP) == 0)
14353 break;
14354 delay(1000);
14355 }
14356 if (timeout >= WM_PHY_CFG_TIMEOUT) {
14357 device_printf(sc->sc_dev,
14358 "SW has already locked the resource\n");
14359 goto out;
14360 }
14361
14362 ext_ctrl |= EXTCNFCTR_MDIO_SW_OWNERSHIP;
14363 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
14364 for (timeout = 0; timeout < 1000; timeout++) {
14365 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
14366 if (ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP)
14367 break;
14368 delay(1000);
14369 }
14370 if (timeout >= 1000) {
14371 device_printf(sc->sc_dev, "failed to acquire semaphore\n");
14372 ext_ctrl &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
14373 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
14374 goto out;
14375 }
14376 return 0;
14377
14378 out:
14379 mutex_exit(sc->sc_ich_phymtx);
14380 return 1;
14381 }
14382
14383 static void
14384 wm_put_swflag_ich8lan(struct wm_softc *sc)
14385 {
14386 uint32_t ext_ctrl;
14387
14388 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14389 device_xname(sc->sc_dev), __func__));
14390 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
14391 if (ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP) {
14392 ext_ctrl &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
14393 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
14394 } else {
14395 device_printf(sc->sc_dev, "Semaphore unexpectedly released\n");
14396 }
14397
14398 mutex_exit(sc->sc_ich_phymtx);
14399 }
14400
14401 static int
14402 wm_get_nvm_ich8lan(struct wm_softc *sc)
14403 {
14404
14405 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14406 device_xname(sc->sc_dev), __func__));
14407 mutex_enter(sc->sc_ich_nvmmtx);
14408
14409 return 0;
14410 }
14411
14412 static void
14413 wm_put_nvm_ich8lan(struct wm_softc *sc)
14414 {
14415
14416 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14417 device_xname(sc->sc_dev), __func__));
14418 mutex_exit(sc->sc_ich_nvmmtx);
14419 }
14420
14421 static int
14422 wm_get_hw_semaphore_82573(struct wm_softc *sc)
14423 {
14424 int i = 0;
14425 uint32_t reg;
14426
14427 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14428 device_xname(sc->sc_dev), __func__));
14429
14430 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
14431 do {
14432 CSR_WRITE(sc, WMREG_EXTCNFCTR,
14433 reg | EXTCNFCTR_MDIO_SW_OWNERSHIP);
14434 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
14435 if ((reg & EXTCNFCTR_MDIO_SW_OWNERSHIP) != 0)
14436 break;
14437 delay(2*1000);
14438 i++;
14439 } while (i < WM_MDIO_OWNERSHIP_TIMEOUT);
14440
14441 if (i == WM_MDIO_OWNERSHIP_TIMEOUT) {
14442 wm_put_hw_semaphore_82573(sc);
14443 log(LOG_ERR, "%s: Driver can't access the PHY\n",
14444 device_xname(sc->sc_dev));
14445 return -1;
14446 }
14447
14448 return 0;
14449 }
14450
14451 static void
14452 wm_put_hw_semaphore_82573(struct wm_softc *sc)
14453 {
14454 uint32_t reg;
14455
14456 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14457 device_xname(sc->sc_dev), __func__));
14458
14459 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
14460 reg &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
14461 CSR_WRITE(sc, WMREG_EXTCNFCTR, reg);
14462 }
14463
14464 /*
14465 * Management mode and power management related subroutines.
14466 * BMC, AMT, suspend/resume and EEE.
14467 */
14468
14469 #ifdef WM_WOL
14470 static int
14471 wm_check_mng_mode(struct wm_softc *sc)
14472 {
14473 int rv;
14474
14475 switch (sc->sc_type) {
14476 case WM_T_ICH8:
14477 case WM_T_ICH9:
14478 case WM_T_ICH10:
14479 case WM_T_PCH:
14480 case WM_T_PCH2:
14481 case WM_T_PCH_LPT:
14482 case WM_T_PCH_SPT:
14483 case WM_T_PCH_CNP:
14484 rv = wm_check_mng_mode_ich8lan(sc);
14485 break;
14486 case WM_T_82574:
14487 case WM_T_82583:
14488 rv = wm_check_mng_mode_82574(sc);
14489 break;
14490 case WM_T_82571:
14491 case WM_T_82572:
14492 case WM_T_82573:
14493 case WM_T_80003:
14494 rv = wm_check_mng_mode_generic(sc);
14495 break;
14496 default:
14497 /* Noting to do */
14498 rv = 0;
14499 break;
14500 }
14501
14502 return rv;
14503 }
14504
14505 static int
14506 wm_check_mng_mode_ich8lan(struct wm_softc *sc)
14507 {
14508 uint32_t fwsm;
14509
14510 fwsm = CSR_READ(sc, WMREG_FWSM);
14511
14512 if (((fwsm & FWSM_FW_VALID) != 0)
14513 && (__SHIFTOUT(fwsm, FWSM_MODE) == MNG_ICH_IAMT_MODE))
14514 return 1;
14515
14516 return 0;
14517 }
14518
14519 static int
14520 wm_check_mng_mode_82574(struct wm_softc *sc)
14521 {
14522 uint16_t data;
14523
14524 wm_nvm_read(sc, NVM_OFF_CFG2, 1, &data);
14525
14526 if ((data & NVM_CFG2_MNGM_MASK) != 0)
14527 return 1;
14528
14529 return 0;
14530 }
14531
14532 static int
14533 wm_check_mng_mode_generic(struct wm_softc *sc)
14534 {
14535 uint32_t fwsm;
14536
14537 fwsm = CSR_READ(sc, WMREG_FWSM);
14538
14539 if (__SHIFTOUT(fwsm, FWSM_MODE) == MNG_IAMT_MODE)
14540 return 1;
14541
14542 return 0;
14543 }
14544 #endif /* WM_WOL */
14545
14546 static int
14547 wm_enable_mng_pass_thru(struct wm_softc *sc)
14548 {
14549 uint32_t manc, fwsm, factps;
14550
14551 if ((sc->sc_flags & WM_F_ASF_FIRMWARE_PRES) == 0)
14552 return 0;
14553
14554 manc = CSR_READ(sc, WMREG_MANC);
14555
14556 DPRINTF(WM_DEBUG_MANAGE, ("%s: MANC (%08x)\n",
14557 device_xname(sc->sc_dev), manc));
14558 if ((manc & MANC_RECV_TCO_EN) == 0)
14559 return 0;
14560
14561 if ((sc->sc_flags & WM_F_ARC_SUBSYS_VALID) != 0) {
14562 fwsm = CSR_READ(sc, WMREG_FWSM);
14563 factps = CSR_READ(sc, WMREG_FACTPS);
14564 if (((factps & FACTPS_MNGCG) == 0)
14565 && (__SHIFTOUT(fwsm, FWSM_MODE) == MNG_ICH_IAMT_MODE))
14566 return 1;
14567 } else if ((sc->sc_type == WM_T_82574) || (sc->sc_type == WM_T_82583)){
14568 uint16_t data;
14569
14570 factps = CSR_READ(sc, WMREG_FACTPS);
14571 wm_nvm_read(sc, NVM_OFF_CFG2, 1, &data);
14572 DPRINTF(WM_DEBUG_MANAGE, ("%s: FACTPS = %08x, CFG2=%04x\n",
14573 device_xname(sc->sc_dev), factps, data));
14574 if (((factps & FACTPS_MNGCG) == 0)
14575 && ((data & NVM_CFG2_MNGM_MASK)
14576 == (NVM_CFG2_MNGM_PT << NVM_CFG2_MNGM_SHIFT)))
14577 return 1;
14578 } else if (((manc & MANC_SMBUS_EN) != 0)
14579 && ((manc & MANC_ASF_EN) == 0))
14580 return 1;
14581
14582 return 0;
14583 }
14584
14585 static bool
14586 wm_phy_resetisblocked(struct wm_softc *sc)
14587 {
14588 bool blocked = false;
14589 uint32_t reg;
14590 int i = 0;
14591
14592 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
14593 device_xname(sc->sc_dev), __func__));
14594
14595 switch (sc->sc_type) {
14596 case WM_T_ICH8:
14597 case WM_T_ICH9:
14598 case WM_T_ICH10:
14599 case WM_T_PCH:
14600 case WM_T_PCH2:
14601 case WM_T_PCH_LPT:
14602 case WM_T_PCH_SPT:
14603 case WM_T_PCH_CNP:
14604 do {
14605 reg = CSR_READ(sc, WMREG_FWSM);
14606 if ((reg & FWSM_RSPCIPHY) == 0) {
14607 blocked = true;
14608 delay(10*1000);
14609 continue;
14610 }
14611 blocked = false;
14612 } while (blocked && (i++ < 30));
14613 return blocked;
14614 break;
14615 case WM_T_82571:
14616 case WM_T_82572:
14617 case WM_T_82573:
14618 case WM_T_82574:
14619 case WM_T_82583:
14620 case WM_T_80003:
14621 reg = CSR_READ(sc, WMREG_MANC);
14622 if ((reg & MANC_BLK_PHY_RST_ON_IDE) != 0)
14623 return true;
14624 else
14625 return false;
14626 break;
14627 default:
14628 /* No problem */
14629 break;
14630 }
14631
14632 return false;
14633 }
14634
14635 static void
14636 wm_get_hw_control(struct wm_softc *sc)
14637 {
14638 uint32_t reg;
14639
14640 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14641 device_xname(sc->sc_dev), __func__));
14642
14643 if (sc->sc_type == WM_T_82573) {
14644 reg = CSR_READ(sc, WMREG_SWSM);
14645 CSR_WRITE(sc, WMREG_SWSM, reg | SWSM_DRV_LOAD);
14646 } else if (sc->sc_type >= WM_T_82571) {
14647 reg = CSR_READ(sc, WMREG_CTRL_EXT);
14648 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_DRV_LOAD);
14649 }
14650 }
14651
14652 static void
14653 wm_release_hw_control(struct wm_softc *sc)
14654 {
14655 uint32_t reg;
14656
14657 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14658 device_xname(sc->sc_dev), __func__));
14659
14660 if (sc->sc_type == WM_T_82573) {
14661 reg = CSR_READ(sc, WMREG_SWSM);
14662 CSR_WRITE(sc, WMREG_SWSM, reg & ~SWSM_DRV_LOAD);
14663 } else if (sc->sc_type >= WM_T_82571) {
14664 reg = CSR_READ(sc, WMREG_CTRL_EXT);
14665 CSR_WRITE(sc, WMREG_CTRL_EXT, reg & ~CTRL_EXT_DRV_LOAD);
14666 }
14667 }
14668
14669 static void
14670 wm_gate_hw_phy_config_ich8lan(struct wm_softc *sc, bool gate)
14671 {
14672 uint32_t reg;
14673
14674 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
14675 device_xname(sc->sc_dev), __func__));
14676
14677 if (sc->sc_type < WM_T_PCH2)
14678 return;
14679
14680 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
14681
14682 if (gate)
14683 reg |= EXTCNFCTR_GATE_PHY_CFG;
14684 else
14685 reg &= ~EXTCNFCTR_GATE_PHY_CFG;
14686
14687 CSR_WRITE(sc, WMREG_EXTCNFCTR, reg);
14688 }
14689
14690 static int
14691 wm_init_phy_workarounds_pchlan(struct wm_softc *sc)
14692 {
14693 uint32_t fwsm, reg;
14694 int rv = 0;
14695
14696 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
14697 device_xname(sc->sc_dev), __func__));
14698
14699 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
14700 wm_gate_hw_phy_config_ich8lan(sc, true);
14701
14702 /* Disable ULP */
14703 wm_ulp_disable(sc);
14704
14705 /* Acquire PHY semaphore */
14706 rv = sc->phy.acquire(sc);
14707 if (rv != 0) {
14708 DPRINTF(WM_DEBUG_INIT, ("%s: %s: failed\n",
14709 device_xname(sc->sc_dev), __func__));
14710 return -1;
14711 }
14712
14713 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
14714 * inaccessible and resetting the PHY is not blocked, toggle the
14715 * LANPHYPC Value bit to force the interconnect to PCIe mode.
14716 */
14717 fwsm = CSR_READ(sc, WMREG_FWSM);
14718 switch (sc->sc_type) {
14719 case WM_T_PCH_LPT:
14720 case WM_T_PCH_SPT:
14721 case WM_T_PCH_CNP:
14722 if (wm_phy_is_accessible_pchlan(sc))
14723 break;
14724
14725 /* Before toggling LANPHYPC, see if PHY is accessible by
14726 * forcing MAC to SMBus mode first.
14727 */
14728 reg = CSR_READ(sc, WMREG_CTRL_EXT);
14729 reg |= CTRL_EXT_FORCE_SMBUS;
14730 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
14731 #if 0
14732 /* XXX Isn't this required??? */
14733 CSR_WRITE_FLUSH(sc);
14734 #endif
14735 /* Wait 50 milliseconds for MAC to finish any retries
14736 * that it might be trying to perform from previous
14737 * attempts to acknowledge any phy read requests.
14738 */
14739 delay(50 * 1000);
14740 /* FALLTHROUGH */
14741 case WM_T_PCH2:
14742 if (wm_phy_is_accessible_pchlan(sc) == true)
14743 break;
14744 /* FALLTHROUGH */
14745 case WM_T_PCH:
14746 if (sc->sc_type == WM_T_PCH)
14747 if ((fwsm & FWSM_FW_VALID) != 0)
14748 break;
14749
14750 if (wm_phy_resetisblocked(sc) == true) {
14751 device_printf(sc->sc_dev, "XXX reset is blocked(3)\n");
14752 break;
14753 }
14754
14755 /* Toggle LANPHYPC Value bit */
14756 wm_toggle_lanphypc_pch_lpt(sc);
14757
14758 if (sc->sc_type >= WM_T_PCH_LPT) {
14759 if (wm_phy_is_accessible_pchlan(sc) == true)
14760 break;
14761
14762 /* Toggling LANPHYPC brings the PHY out of SMBus mode
14763 * so ensure that the MAC is also out of SMBus mode
14764 */
14765 reg = CSR_READ(sc, WMREG_CTRL_EXT);
14766 reg &= ~CTRL_EXT_FORCE_SMBUS;
14767 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
14768
14769 if (wm_phy_is_accessible_pchlan(sc) == true)
14770 break;
14771 rv = -1;
14772 }
14773 break;
14774 default:
14775 break;
14776 }
14777
14778 /* Release semaphore */
14779 sc->phy.release(sc);
14780
14781 if (rv == 0) {
14782 /* Check to see if able to reset PHY. Print error if not */
14783 if (wm_phy_resetisblocked(sc)) {
14784 device_printf(sc->sc_dev, "XXX reset is blocked(4)\n");
14785 goto out;
14786 }
14787
14788 /* Reset the PHY before any access to it. Doing so, ensures
14789 * that the PHY is in a known good state before we read/write
14790 * PHY registers. The generic reset is sufficient here,
14791 * because we haven't determined the PHY type yet.
14792 */
14793 if (wm_reset_phy(sc) != 0)
14794 goto out;
14795
14796 /* On a successful reset, possibly need to wait for the PHY
14797 * to quiesce to an accessible state before returning control
14798 * to the calling function. If the PHY does not quiesce, then
14799 * return E1000E_BLK_PHY_RESET, as this is the condition that
14800 * the PHY is in.
14801 */
14802 if (wm_phy_resetisblocked(sc))
14803 device_printf(sc->sc_dev, "XXX reset is blocked(4)\n");
14804 }
14805
14806 out:
14807 /* Ungate automatic PHY configuration on non-managed 82579 */
14808 if ((sc->sc_type == WM_T_PCH2) && ((fwsm & FWSM_FW_VALID) == 0)) {
14809 delay(10*1000);
14810 wm_gate_hw_phy_config_ich8lan(sc, false);
14811 }
14812
14813 return 0;
14814 }
14815
14816 static void
14817 wm_init_manageability(struct wm_softc *sc)
14818 {
14819
14820 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
14821 device_xname(sc->sc_dev), __func__));
14822 if (sc->sc_flags & WM_F_HAS_MANAGE) {
14823 uint32_t manc2h = CSR_READ(sc, WMREG_MANC2H);
14824 uint32_t manc = CSR_READ(sc, WMREG_MANC);
14825
14826 /* Disable hardware interception of ARP */
14827 manc &= ~MANC_ARP_EN;
14828
14829 /* Enable receiving management packets to the host */
14830 if (sc->sc_type >= WM_T_82571) {
14831 manc |= MANC_EN_MNG2HOST;
14832 manc2h |= MANC2H_PORT_623 | MANC2H_PORT_624;
14833 CSR_WRITE(sc, WMREG_MANC2H, manc2h);
14834 }
14835
14836 CSR_WRITE(sc, WMREG_MANC, manc);
14837 }
14838 }
14839
14840 static void
14841 wm_release_manageability(struct wm_softc *sc)
14842 {
14843
14844 if (sc->sc_flags & WM_F_HAS_MANAGE) {
14845 uint32_t manc = CSR_READ(sc, WMREG_MANC);
14846
14847 manc |= MANC_ARP_EN;
14848 if (sc->sc_type >= WM_T_82571)
14849 manc &= ~MANC_EN_MNG2HOST;
14850
14851 CSR_WRITE(sc, WMREG_MANC, manc);
14852 }
14853 }
14854
14855 static void
14856 wm_get_wakeup(struct wm_softc *sc)
14857 {
14858
14859 /* 0: HAS_AMT, ARC_SUBSYS_VALID, ASF_FIRMWARE_PRES */
14860 switch (sc->sc_type) {
14861 case WM_T_82573:
14862 case WM_T_82583:
14863 sc->sc_flags |= WM_F_HAS_AMT;
14864 /* FALLTHROUGH */
14865 case WM_T_80003:
14866 case WM_T_82575:
14867 case WM_T_82576:
14868 case WM_T_82580:
14869 case WM_T_I350:
14870 case WM_T_I354:
14871 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_MODE) != 0)
14872 sc->sc_flags |= WM_F_ARC_SUBSYS_VALID;
14873 /* FALLTHROUGH */
14874 case WM_T_82541:
14875 case WM_T_82541_2:
14876 case WM_T_82547:
14877 case WM_T_82547_2:
14878 case WM_T_82571:
14879 case WM_T_82572:
14880 case WM_T_82574:
14881 sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES;
14882 break;
14883 case WM_T_ICH8:
14884 case WM_T_ICH9:
14885 case WM_T_ICH10:
14886 case WM_T_PCH:
14887 case WM_T_PCH2:
14888 case WM_T_PCH_LPT:
14889 case WM_T_PCH_SPT:
14890 case WM_T_PCH_CNP:
14891 sc->sc_flags |= WM_F_HAS_AMT;
14892 sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES;
14893 break;
14894 default:
14895 break;
14896 }
14897
14898 /* 1: HAS_MANAGE */
14899 if (wm_enable_mng_pass_thru(sc) != 0)
14900 sc->sc_flags |= WM_F_HAS_MANAGE;
14901
14902 /*
14903 * Note that the WOL flags is set after the resetting of the eeprom
14904 * stuff
14905 */
14906 }
14907
14908 /*
14909 * Unconfigure Ultra Low Power mode.
14910 * Only for I217 and newer (see below).
14911 */
14912 static int
14913 wm_ulp_disable(struct wm_softc *sc)
14914 {
14915 uint32_t reg;
14916 uint16_t phyreg;
14917 int i = 0, rv = 0;
14918
14919 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
14920 device_xname(sc->sc_dev), __func__));
14921 /* Exclude old devices */
14922 if ((sc->sc_type < WM_T_PCH_LPT)
14923 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I217_LM)
14924 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I217_V)
14925 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_LM2)
14926 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_V2))
14927 return 0;
14928
14929 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID) != 0) {
14930 /* Request ME un-configure ULP mode in the PHY */
14931 reg = CSR_READ(sc, WMREG_H2ME);
14932 reg &= ~H2ME_ULP;
14933 reg |= H2ME_ENFORCE_SETTINGS;
14934 CSR_WRITE(sc, WMREG_H2ME, reg);
14935
14936 /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
14937 while ((CSR_READ(sc, WMREG_FWSM) & FWSM_ULP_CFG_DONE) != 0) {
14938 if (i++ == 30) {
14939 device_printf(sc->sc_dev, "%s timed out\n",
14940 __func__);
14941 return -1;
14942 }
14943 delay(10 * 1000);
14944 }
14945 reg = CSR_READ(sc, WMREG_H2ME);
14946 reg &= ~H2ME_ENFORCE_SETTINGS;
14947 CSR_WRITE(sc, WMREG_H2ME, reg);
14948
14949 return 0;
14950 }
14951
14952 /* Acquire semaphore */
14953 rv = sc->phy.acquire(sc);
14954 if (rv != 0) {
14955 DPRINTF(WM_DEBUG_INIT, ("%s: %s: failed\n",
14956 device_xname(sc->sc_dev), __func__));
14957 return -1;
14958 }
14959
14960 /* Toggle LANPHYPC */
14961 wm_toggle_lanphypc_pch_lpt(sc);
14962
14963 /* Unforce SMBus mode in PHY */
14964 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, CV_SMB_CTRL, &phyreg);
14965 if (rv != 0) {
14966 uint32_t reg2;
14967
14968 aprint_debug_dev(sc->sc_dev, "%s: Force SMBus first.\n",
14969 __func__);
14970 reg2 = CSR_READ(sc, WMREG_CTRL_EXT);
14971 reg2 |= CTRL_EXT_FORCE_SMBUS;
14972 CSR_WRITE(sc, WMREG_CTRL_EXT, reg2);
14973 delay(50 * 1000);
14974
14975 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, CV_SMB_CTRL,
14976 &phyreg);
14977 if (rv != 0)
14978 goto release;
14979 }
14980 phyreg &= ~CV_SMB_CTRL_FORCE_SMBUS;
14981 wm_gmii_hv_writereg_locked(sc->sc_dev, 2, CV_SMB_CTRL, phyreg);
14982
14983 /* Unforce SMBus mode in MAC */
14984 reg = CSR_READ(sc, WMREG_CTRL_EXT);
14985 reg &= ~CTRL_EXT_FORCE_SMBUS;
14986 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
14987
14988 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, HV_PM_CTRL, &phyreg);
14989 if (rv != 0)
14990 goto release;
14991 phyreg |= HV_PM_CTRL_K1_ENA;
14992 wm_gmii_hv_writereg_locked(sc->sc_dev, 2, HV_PM_CTRL, phyreg);
14993
14994 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, I218_ULP_CONFIG1,
14995 &phyreg);
14996 if (rv != 0)
14997 goto release;
14998 phyreg &= ~(I218_ULP_CONFIG1_IND
14999 | I218_ULP_CONFIG1_STICKY_ULP
15000 | I218_ULP_CONFIG1_RESET_TO_SMBUS
15001 | I218_ULP_CONFIG1_WOL_HOST
15002 | I218_ULP_CONFIG1_INBAND_EXIT
15003 | I218_ULP_CONFIG1_EN_ULP_LANPHYPC
15004 | I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST
15005 | I218_ULP_CONFIG1_DIS_SMB_PERST);
15006 wm_gmii_hv_writereg_locked(sc->sc_dev, 2, I218_ULP_CONFIG1, phyreg);
15007 phyreg |= I218_ULP_CONFIG1_START;
15008 wm_gmii_hv_writereg_locked(sc->sc_dev, 2, I218_ULP_CONFIG1, phyreg);
15009
15010 reg = CSR_READ(sc, WMREG_FEXTNVM7);
15011 reg &= ~FEXTNVM7_DIS_SMB_PERST;
15012 CSR_WRITE(sc, WMREG_FEXTNVM7, reg);
15013
15014 release:
15015 /* Release semaphore */
15016 sc->phy.release(sc);
15017 wm_gmii_reset(sc);
15018 delay(50 * 1000);
15019
15020 return rv;
15021 }
15022
15023 /* WOL in the newer chipset interfaces (pchlan) */
15024 static int
15025 wm_enable_phy_wakeup(struct wm_softc *sc)
15026 {
15027 device_t dev = sc->sc_dev;
15028 uint32_t mreg, moff;
15029 uint16_t wuce, wuc, wufc, preg;
15030 int i, rv;
15031
15032 KASSERT(sc->sc_type >= WM_T_PCH);
15033
15034 /* Copy MAC RARs to PHY RARs */
15035 wm_copy_rx_addrs_to_phy_ich8lan(sc);
15036
15037 /* Activate PHY wakeup */
15038 rv = sc->phy.acquire(sc);
15039 if (rv != 0) {
15040 device_printf(dev, "%s: failed to acquire semaphore\n",
15041 __func__);
15042 return rv;
15043 }
15044
15045 /*
15046 * Enable access to PHY wakeup registers.
15047 * BM_MTA, BM_RCTL, BM_WUFC and BM_WUC are in BM_WUC_PAGE.
15048 */
15049 rv = wm_enable_phy_wakeup_reg_access_bm(dev, &wuce);
15050 if (rv != 0) {
15051 device_printf(dev,
15052 "%s: Could not enable PHY wakeup reg access\n", __func__);
15053 goto release;
15054 }
15055
15056 /* Copy MAC MTA to PHY MTA */
15057 for (i = 0; i < WM_ICH8_MC_TABSIZE; i++) {
15058 uint16_t lo, hi;
15059
15060 mreg = CSR_READ(sc, WMREG_CORDOVA_MTA + (i * 4));
15061 lo = (uint16_t)(mreg & 0xffff);
15062 hi = (uint16_t)((mreg >> 16) & 0xffff);
15063 wm_access_phy_wakeup_reg_bm(dev, BM_MTA(i), &lo, 0, true);
15064 wm_access_phy_wakeup_reg_bm(dev, BM_MTA(i) + 1, &hi, 0, true);
15065 }
15066
15067 /* Configure PHY Rx Control register */
15068 wm_access_phy_wakeup_reg_bm(dev, BM_RCTL, &preg, 1, true);
15069 mreg = CSR_READ(sc, WMREG_RCTL);
15070 if (mreg & RCTL_UPE)
15071 preg |= BM_RCTL_UPE;
15072 if (mreg & RCTL_MPE)
15073 preg |= BM_RCTL_MPE;
15074 preg &= ~(BM_RCTL_MO_MASK);
15075 moff = __SHIFTOUT(mreg, RCTL_MO);
15076 if (moff != 0)
15077 preg |= moff << BM_RCTL_MO_SHIFT;
15078 if (mreg & RCTL_BAM)
15079 preg |= BM_RCTL_BAM;
15080 if (mreg & RCTL_PMCF)
15081 preg |= BM_RCTL_PMCF;
15082 mreg = CSR_READ(sc, WMREG_CTRL);
15083 if (mreg & CTRL_RFCE)
15084 preg |= BM_RCTL_RFCE;
15085 wm_access_phy_wakeup_reg_bm(dev, BM_RCTL, &preg, 0, true);
15086
15087 wuc = WUC_APME | WUC_PME_EN;
15088 wufc = WUFC_MAG;
15089 /* Enable PHY wakeup in MAC register */
15090 CSR_WRITE(sc, WMREG_WUC,
15091 WUC_PHY_WAKE | WUC_PME_STATUS | WUC_APMPME | wuc);
15092 CSR_WRITE(sc, WMREG_WUFC, wufc);
15093
15094 /* Configure and enable PHY wakeup in PHY registers */
15095 wm_access_phy_wakeup_reg_bm(dev, BM_WUC, &wuc, 0, true);
15096 wm_access_phy_wakeup_reg_bm(dev, BM_WUFC, &wufc, 0, true);
15097
15098 wuce |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
15099 wm_disable_phy_wakeup_reg_access_bm(dev, &wuce);
15100
15101 release:
15102 sc->phy.release(sc);
15103
15104 return 0;
15105 }
15106
15107 /* Power down workaround on D3 */
15108 static void
15109 wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *sc)
15110 {
15111 uint32_t reg;
15112 uint16_t phyreg;
15113 int i;
15114
15115 for (i = 0; i < 2; i++) {
15116 /* Disable link */
15117 reg = CSR_READ(sc, WMREG_PHY_CTRL);
15118 reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS;
15119 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
15120
15121 /*
15122 * Call gig speed drop workaround on Gig disable before
15123 * accessing any PHY registers
15124 */
15125 if (sc->sc_type == WM_T_ICH8)
15126 wm_gig_downshift_workaround_ich8lan(sc);
15127
15128 /* Write VR power-down enable */
15129 sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL, &phyreg);
15130 phyreg &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
15131 phyreg |= IGP3_VR_CTRL_MODE_SHUTDOWN;
15132 sc->sc_mii.mii_writereg(sc->sc_dev, 1, IGP3_VR_CTRL, phyreg);
15133
15134 /* Read it back and test */
15135 sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL, &phyreg);
15136 phyreg &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
15137 if ((phyreg == IGP3_VR_CTRL_MODE_SHUTDOWN) || (i != 0))
15138 break;
15139
15140 /* Issue PHY reset and repeat at most one more time */
15141 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
15142 }
15143 }
15144
15145 /*
15146 * wm_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
15147 * @sc: pointer to the HW structure
15148 *
15149 * During S0 to Sx transition, it is possible the link remains at gig
15150 * instead of negotiating to a lower speed. Before going to Sx, set
15151 * 'Gig Disable' to force link speed negotiation to a lower speed based on
15152 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
15153 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
15154 * needs to be written.
15155 * Parts that support (and are linked to a partner which support) EEE in
15156 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
15157 * than 10Mbps w/o EEE.
15158 */
15159 static void
15160 wm_suspend_workarounds_ich8lan(struct wm_softc *sc)
15161 {
15162 device_t dev = sc->sc_dev;
15163 struct ethercom *ec = &sc->sc_ethercom;
15164 uint32_t phy_ctrl;
15165 int rv;
15166
15167 phy_ctrl = CSR_READ(sc, WMREG_PHY_CTRL);
15168 phy_ctrl |= PHY_CTRL_GBE_DIS;
15169
15170 KASSERT((sc->sc_type >= WM_T_ICH8) && (sc->sc_type <= WM_T_PCH_CNP));
15171
15172 if (sc->sc_phytype == WMPHY_I217) {
15173 uint16_t devid = sc->sc_pcidevid;
15174
15175 if ((devid == PCI_PRODUCT_INTEL_I218_LM) ||
15176 (devid == PCI_PRODUCT_INTEL_I218_V) ||
15177 (devid == PCI_PRODUCT_INTEL_I218_LM3) ||
15178 (devid == PCI_PRODUCT_INTEL_I218_V3) ||
15179 (sc->sc_type >= WM_T_PCH_SPT))
15180 CSR_WRITE(sc, WMREG_FEXTNVM6,
15181 CSR_READ(sc, WMREG_FEXTNVM6)
15182 & ~FEXTNVM6_REQ_PLL_CLK);
15183
15184 if (sc->phy.acquire(sc) != 0)
15185 goto out;
15186
15187 if ((ec->ec_capenable & ETHERCAP_EEE) != 0) {
15188 uint16_t eee_advert;
15189
15190 rv = wm_read_emi_reg_locked(dev,
15191 I217_EEE_ADVERTISEMENT, &eee_advert);
15192 if (rv)
15193 goto release;
15194
15195 /*
15196 * Disable LPLU if both link partners support 100BaseT
15197 * EEE and 100Full is advertised on both ends of the
15198 * link, and enable Auto Enable LPI since there will
15199 * be no driver to enable LPI while in Sx.
15200 */
15201 if ((eee_advert & AN_EEEADVERT_100_TX) &&
15202 (sc->eee_lp_ability & AN_EEEADVERT_100_TX)) {
15203 uint16_t anar, phy_reg;
15204
15205 sc->phy.readreg_locked(dev, 2, MII_ANAR,
15206 &anar);
15207 if (anar & ANAR_TX_FD) {
15208 phy_ctrl &= ~(PHY_CTRL_D0A_LPLU |
15209 PHY_CTRL_NOND0A_LPLU);
15210
15211 /* Set Auto Enable LPI after link up */
15212 sc->phy.readreg_locked(dev, 2,
15213 I217_LPI_GPIO_CTRL, &phy_reg);
15214 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
15215 sc->phy.writereg_locked(dev, 2,
15216 I217_LPI_GPIO_CTRL, phy_reg);
15217 }
15218 }
15219 }
15220
15221 /*
15222 * For i217 Intel Rapid Start Technology support,
15223 * when the system is going into Sx and no manageability engine
15224 * is present, the driver must configure proxy to reset only on
15225 * power good. LPI (Low Power Idle) state must also reset only
15226 * on power good, as well as the MTA (Multicast table array).
15227 * The SMBus release must also be disabled on LCD reset.
15228 */
15229
15230 /*
15231 * Enable MTA to reset for Intel Rapid Start Technology
15232 * Support
15233 */
15234
15235 release:
15236 sc->phy.release(sc);
15237 }
15238 out:
15239 CSR_WRITE(sc, WMREG_PHY_CTRL, phy_ctrl);
15240
15241 if (sc->sc_type == WM_T_ICH8)
15242 wm_gig_downshift_workaround_ich8lan(sc);
15243
15244 if (sc->sc_type >= WM_T_PCH) {
15245 wm_oem_bits_config_ich8lan(sc, false);
15246
15247 /* Reset PHY to activate OEM bits on 82577/8 */
15248 if (sc->sc_type == WM_T_PCH)
15249 wm_reset_phy(sc);
15250
15251 if (sc->phy.acquire(sc) != 0)
15252 return;
15253 wm_write_smbus_addr(sc);
15254 sc->phy.release(sc);
15255 }
15256 }
15257
15258 /*
15259 * wm_resume_workarounds_pchlan - workarounds needed during Sx->S0
15260 * @sc: pointer to the HW structure
15261 *
15262 * During Sx to S0 transitions on non-managed devices or managed devices
15263 * on which PHY resets are not blocked, if the PHY registers cannot be
15264 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
15265 * the PHY.
15266 * On i217, setup Intel Rapid Start Technology.
15267 */
15268 static int
15269 wm_resume_workarounds_pchlan(struct wm_softc *sc)
15270 {
15271 device_t dev = sc->sc_dev;
15272 int rv;
15273
15274 if (sc->sc_type < WM_T_PCH2)
15275 return 0;
15276
15277 rv = wm_init_phy_workarounds_pchlan(sc);
15278 if (rv != 0)
15279 return -1;
15280
15281 /* For i217 Intel Rapid Start Technology support when the system
15282 * is transitioning from Sx and no manageability engine is present
15283 * configure SMBus to restore on reset, disable proxy, and enable
15284 * the reset on MTA (Multicast table array).
15285 */
15286 if (sc->sc_phytype == WMPHY_I217) {
15287 uint16_t phy_reg;
15288
15289 if (sc->phy.acquire(sc) != 0)
15290 return -1;
15291
15292 /* Clear Auto Enable LPI after link up */
15293 sc->phy.readreg_locked(dev, 1, I217_LPI_GPIO_CTRL, &phy_reg);
15294 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
15295 sc->phy.writereg_locked(dev, 1, I217_LPI_GPIO_CTRL, phy_reg);
15296
15297 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID) == 0) {
15298 /* Restore clear on SMB if no manageability engine
15299 * is present
15300 */
15301 rv = sc->phy.readreg_locked(dev, 1, I217_MEMPWR,
15302 &phy_reg);
15303 if (rv != 0)
15304 goto release;
15305 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
15306 sc->phy.writereg_locked(dev, 1, I217_MEMPWR, phy_reg);
15307
15308 /* Disable Proxy */
15309 sc->phy.writereg_locked(dev, 1, I217_PROXY_CTRL, 0);
15310 }
15311 /* Enable reset on MTA */
15312 sc->phy.readreg_locked(dev, 1, I217_CFGREG, &phy_reg);
15313 if (rv != 0)
15314 goto release;
15315 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
15316 sc->phy.writereg_locked(dev, 1, I217_CFGREG, phy_reg);
15317
15318 release:
15319 sc->phy.release(sc);
15320 return rv;
15321 }
15322
15323 return 0;
15324 }
15325
15326 static void
15327 wm_enable_wakeup(struct wm_softc *sc)
15328 {
15329 uint32_t reg, pmreg;
15330 pcireg_t pmode;
15331 int rv = 0;
15332
15333 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
15334 device_xname(sc->sc_dev), __func__));
15335
15336 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PWRMGMT,
15337 &pmreg, NULL) == 0)
15338 return;
15339
15340 if ((sc->sc_flags & WM_F_WOL) == 0)
15341 goto pme;
15342
15343 /* Advertise the wakeup capability */
15344 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_SWDPIN(2)
15345 | CTRL_SWDPIN(3));
15346
15347 /* Keep the laser running on fiber adapters */
15348 if ((sc->sc_mediatype == WM_MEDIATYPE_FIBER)
15349 || (sc->sc_mediatype == WM_MEDIATYPE_SERDES)) {
15350 reg = CSR_READ(sc, WMREG_CTRL_EXT);
15351 reg |= CTRL_EXT_SWDPIN(3);
15352 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
15353 }
15354
15355 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9) ||
15356 (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH) ||
15357 (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT) ||
15358 (sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP))
15359 wm_suspend_workarounds_ich8lan(sc);
15360
15361 #if 0 /* For the multicast packet */
15362 reg = CSR_READ(sc, WMREG_WUFC) | WUFC_MAG;
15363 reg |= WUFC_MC;
15364 CSR_WRITE(sc, WMREG_RCTL, CSR_READ(sc, WMREG_RCTL) | RCTL_MPE);
15365 #endif
15366
15367 if (sc->sc_type >= WM_T_PCH) {
15368 rv = wm_enable_phy_wakeup(sc);
15369 if (rv != 0)
15370 goto pme;
15371 } else {
15372 /* Enable wakeup by the MAC */
15373 CSR_WRITE(sc, WMREG_WUC, WUC_APME | WUC_PME_EN);
15374 CSR_WRITE(sc, WMREG_WUFC, WUFC_MAG);
15375 }
15376
15377 if (((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
15378 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
15379 || (sc->sc_type == WM_T_PCH2))
15380 && (sc->sc_phytype == WMPHY_IGP_3))
15381 wm_igp3_phy_powerdown_workaround_ich8lan(sc);
15382
15383 pme:
15384 /* Request PME */
15385 pmode = pci_conf_read(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR);
15386 pmode |= PCI_PMCSR_PME_STS; /* in case it's already set (W1C) */
15387 if ((rv == 0) && (sc->sc_flags & WM_F_WOL) != 0) {
15388 /* For WOL */
15389 pmode |= PCI_PMCSR_PME_EN;
15390 } else {
15391 /* Disable WOL */
15392 pmode &= ~PCI_PMCSR_PME_EN;
15393 }
15394 pci_conf_write(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR, pmode);
15395 }
15396
15397 /* Disable ASPM L0s and/or L1 for workaround */
15398 static void
15399 wm_disable_aspm(struct wm_softc *sc)
15400 {
15401 pcireg_t reg, mask = 0;
15402 unsigned const char *str = "";
15403
15404 /*
15405 * Only for PCIe device which has PCIe capability in the PCI config
15406 * space.
15407 */
15408 if (((sc->sc_flags & WM_F_PCIE) == 0) || (sc->sc_pcixe_capoff == 0))
15409 return;
15410
15411 switch (sc->sc_type) {
15412 case WM_T_82571:
15413 case WM_T_82572:
15414 /*
15415 * 8257[12] Errata 13: Device Does Not Support PCIe Active
15416 * State Power management L1 State (ASPM L1).
15417 */
15418 mask = PCIE_LCSR_ASPM_L1;
15419 str = "L1 is";
15420 break;
15421 case WM_T_82573:
15422 case WM_T_82574:
15423 case WM_T_82583:
15424 /*
15425 * The 82573 disappears when PCIe ASPM L0s is enabled.
15426 *
15427 * The 82574 and 82583 does not support PCIe ASPM L0s with
15428 * some chipset. The document of 82574 and 82583 says that
15429 * disabling L0s with some specific chipset is sufficient,
15430 * but we follow as of the Intel em driver does.
15431 *
15432 * References:
15433 * Errata 8 of the Specification Update of i82573.
15434 * Errata 20 of the Specification Update of i82574.
15435 * Errata 9 of the Specification Update of i82583.
15436 */
15437 mask = PCIE_LCSR_ASPM_L1 | PCIE_LCSR_ASPM_L0S;
15438 str = "L0s and L1 are";
15439 break;
15440 default:
15441 return;
15442 }
15443
15444 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
15445 sc->sc_pcixe_capoff + PCIE_LCSR);
15446 reg &= ~mask;
15447 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
15448 sc->sc_pcixe_capoff + PCIE_LCSR, reg);
15449
15450 /* Print only in wm_attach() */
15451 if ((sc->sc_flags & WM_F_ATTACHED) == 0)
15452 aprint_verbose_dev(sc->sc_dev,
15453 "ASPM %s disabled to workaround the errata.\n", str);
15454 }
15455
15456 /* LPLU */
15457
15458 static void
15459 wm_lplu_d0_disable(struct wm_softc *sc)
15460 {
15461 struct mii_data *mii = &sc->sc_mii;
15462 uint32_t reg;
15463 uint16_t phyval;
15464
15465 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
15466 device_xname(sc->sc_dev), __func__));
15467
15468 if (sc->sc_phytype == WMPHY_IFE)
15469 return;
15470
15471 switch (sc->sc_type) {
15472 case WM_T_82571:
15473 case WM_T_82572:
15474 case WM_T_82573:
15475 case WM_T_82575:
15476 case WM_T_82576:
15477 mii->mii_readreg(sc->sc_dev, 1, MII_IGPHY_POWER_MGMT, &phyval);
15478 phyval &= ~PMR_D0_LPLU;
15479 mii->mii_writereg(sc->sc_dev, 1, MII_IGPHY_POWER_MGMT, phyval);
15480 break;
15481 case WM_T_82580:
15482 case WM_T_I350:
15483 case WM_T_I210:
15484 case WM_T_I211:
15485 reg = CSR_READ(sc, WMREG_PHPM);
15486 reg &= ~PHPM_D0A_LPLU;
15487 CSR_WRITE(sc, WMREG_PHPM, reg);
15488 break;
15489 case WM_T_82574:
15490 case WM_T_82583:
15491 case WM_T_ICH8:
15492 case WM_T_ICH9:
15493 case WM_T_ICH10:
15494 reg = CSR_READ(sc, WMREG_PHY_CTRL);
15495 reg &= ~(PHY_CTRL_GBE_DIS | PHY_CTRL_D0A_LPLU);
15496 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
15497 CSR_WRITE_FLUSH(sc);
15498 break;
15499 case WM_T_PCH:
15500 case WM_T_PCH2:
15501 case WM_T_PCH_LPT:
15502 case WM_T_PCH_SPT:
15503 case WM_T_PCH_CNP:
15504 wm_gmii_hv_readreg(sc->sc_dev, 1, HV_OEM_BITS, &phyval);
15505 phyval &= ~(HV_OEM_BITS_A1KDIS | HV_OEM_BITS_LPLU);
15506 if (wm_phy_resetisblocked(sc) == false)
15507 phyval |= HV_OEM_BITS_ANEGNOW;
15508 wm_gmii_hv_writereg(sc->sc_dev, 1, HV_OEM_BITS, phyval);
15509 break;
15510 default:
15511 break;
15512 }
15513 }
15514
15515 /* EEE */
15516
15517 static int
15518 wm_set_eee_i350(struct wm_softc *sc)
15519 {
15520 struct ethercom *ec = &sc->sc_ethercom;
15521 uint32_t ipcnfg, eeer;
15522 uint32_t ipcnfg_mask
15523 = IPCNFG_EEE_1G_AN | IPCNFG_EEE_100M_AN | IPCNFG_10BASE_TE;
15524 uint32_t eeer_mask = EEER_TX_LPI_EN | EEER_RX_LPI_EN | EEER_LPI_FC;
15525
15526 KASSERT(sc->sc_mediatype == WM_MEDIATYPE_COPPER);
15527
15528 ipcnfg = CSR_READ(sc, WMREG_IPCNFG);
15529 eeer = CSR_READ(sc, WMREG_EEER);
15530
15531 /* Enable or disable per user setting */
15532 if ((ec->ec_capenable & ETHERCAP_EEE) != 0) {
15533 ipcnfg |= ipcnfg_mask;
15534 eeer |= eeer_mask;
15535 } else {
15536 ipcnfg &= ~ipcnfg_mask;
15537 eeer &= ~eeer_mask;
15538 }
15539
15540 CSR_WRITE(sc, WMREG_IPCNFG, ipcnfg);
15541 CSR_WRITE(sc, WMREG_EEER, eeer);
15542 CSR_READ(sc, WMREG_IPCNFG); /* XXX flush? */
15543 CSR_READ(sc, WMREG_EEER); /* XXX flush? */
15544
15545 return 0;
15546 }
15547
15548 static int
15549 wm_set_eee_pchlan(struct wm_softc *sc)
15550 {
15551 device_t dev = sc->sc_dev;
15552 struct ethercom *ec = &sc->sc_ethercom;
15553 uint16_t lpa, pcs_status, adv_addr, adv, lpi_ctrl, data;
15554 int rv = 0;
15555
15556 switch (sc->sc_phytype) {
15557 case WMPHY_82579:
15558 lpa = I82579_EEE_LP_ABILITY;
15559 pcs_status = I82579_EEE_PCS_STATUS;
15560 adv_addr = I82579_EEE_ADVERTISEMENT;
15561 break;
15562 case WMPHY_I217:
15563 lpa = I217_EEE_LP_ABILITY;
15564 pcs_status = I217_EEE_PCS_STATUS;
15565 adv_addr = I217_EEE_ADVERTISEMENT;
15566 break;
15567 default:
15568 return 0;
15569 }
15570
15571 if (sc->phy.acquire(sc)) {
15572 device_printf(dev, "%s: failed to get semaphore\n", __func__);
15573 return 0;
15574 }
15575
15576 rv = sc->phy.readreg_locked(dev, 1, I82579_LPI_CTRL, &lpi_ctrl);
15577 if (rv != 0)
15578 goto release;
15579
15580 /* Clear bits that enable EEE in various speeds */
15581 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE;
15582
15583 if ((ec->ec_capenable & ETHERCAP_EEE) != 0) {
15584 /* Save off link partner's EEE ability */
15585 rv = wm_read_emi_reg_locked(dev, lpa, &sc->eee_lp_ability);
15586 if (rv != 0)
15587 goto release;
15588
15589 /* Read EEE advertisement */
15590 if ((rv = wm_read_emi_reg_locked(dev, adv_addr, &adv)) != 0)
15591 goto release;
15592
15593 /*
15594 * Enable EEE only for speeds in which the link partner is
15595 * EEE capable and for which we advertise EEE.
15596 */
15597 if (adv & sc->eee_lp_ability & AN_EEEADVERT_1000_T)
15598 lpi_ctrl |= I82579_LPI_CTRL_EN_1000;
15599 if (adv & sc->eee_lp_ability & AN_EEEADVERT_100_TX) {
15600 sc->phy.readreg_locked(dev, 2, MII_ANLPAR, &data);
15601 if ((data & ANLPAR_TX_FD) != 0)
15602 lpi_ctrl |= I82579_LPI_CTRL_EN_100;
15603 else {
15604 /*
15605 * EEE is not supported in 100Half, so ignore
15606 * partner's EEE in 100 ability if full-duplex
15607 * is not advertised.
15608 */
15609 sc->eee_lp_ability
15610 &= ~AN_EEEADVERT_100_TX;
15611 }
15612 }
15613 }
15614
15615 if (sc->sc_phytype == WMPHY_82579) {
15616 rv = wm_read_emi_reg_locked(dev, I82579_LPI_PLL_SHUT, &data);
15617 if (rv != 0)
15618 goto release;
15619
15620 data &= ~I82579_LPI_PLL_SHUT_100;
15621 rv = wm_write_emi_reg_locked(dev, I82579_LPI_PLL_SHUT, data);
15622 }
15623
15624 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
15625 if ((rv = wm_read_emi_reg_locked(dev, pcs_status, &data)) != 0)
15626 goto release;
15627
15628 rv = sc->phy.writereg_locked(dev, 1, I82579_LPI_CTRL, lpi_ctrl);
15629 release:
15630 sc->phy.release(sc);
15631
15632 return rv;
15633 }
15634
15635 static int
15636 wm_set_eee(struct wm_softc *sc)
15637 {
15638 struct ethercom *ec = &sc->sc_ethercom;
15639
15640 if ((ec->ec_capabilities & ETHERCAP_EEE) == 0)
15641 return 0;
15642
15643 if (sc->sc_type == WM_T_I354) {
15644 /* I354 uses an external PHY */
15645 return 0; /* not yet */
15646 } else if ((sc->sc_type >= WM_T_I350) && (sc->sc_type <= WM_T_I211))
15647 return wm_set_eee_i350(sc);
15648 else if (sc->sc_type >= WM_T_PCH2)
15649 return wm_set_eee_pchlan(sc);
15650
15651 return 0;
15652 }
15653
15654 /*
15655 * Workarounds (mainly PHY related).
15656 * Basically, PHY's workarounds are in the PHY drivers.
15657 */
15658
15659 /* Work-around for 82566 Kumeran PCS lock loss */
15660 static int
15661 wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *sc)
15662 {
15663 struct mii_data *mii = &sc->sc_mii;
15664 uint32_t status = CSR_READ(sc, WMREG_STATUS);
15665 int i, reg, rv;
15666 uint16_t phyreg;
15667
15668 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
15669 device_xname(sc->sc_dev), __func__));
15670
15671 /* If the link is not up, do nothing */
15672 if ((status & STATUS_LU) == 0)
15673 return 0;
15674
15675 /* Nothing to do if the link is other than 1Gbps */
15676 if (__SHIFTOUT(status, STATUS_SPEED) != STATUS_SPEED_1000)
15677 return 0;
15678
15679 for (i = 0; i < 10; i++) {
15680 /* read twice */
15681 rv = mii->mii_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG, &phyreg);
15682 if (rv != 0)
15683 return rv;
15684 rv = mii->mii_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG, &phyreg);
15685 if (rv != 0)
15686 return rv;
15687
15688 if ((phyreg & IGP3_KMRN_DIAG_PCS_LOCK_LOSS) == 0)
15689 goto out; /* GOOD! */
15690
15691 /* Reset the PHY */
15692 wm_reset_phy(sc);
15693 delay(5*1000);
15694 }
15695
15696 /* Disable GigE link negotiation */
15697 reg = CSR_READ(sc, WMREG_PHY_CTRL);
15698 reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS;
15699 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
15700
15701 /*
15702 * Call gig speed drop workaround on Gig disable before accessing
15703 * any PHY registers.
15704 */
15705 wm_gig_downshift_workaround_ich8lan(sc);
15706
15707 out:
15708 return 0;
15709 }
15710
15711 /*
15712 * wm_gig_downshift_workaround_ich8lan - WoL from S5 stops working
15713 * @sc: pointer to the HW structure
15714 *
15715 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
15716 * LPLU, Gig disable, MDIC PHY reset):
15717 * 1) Set Kumeran Near-end loopback
15718 * 2) Clear Kumeran Near-end loopback
15719 * Should only be called for ICH8[m] devices with any 1G Phy.
15720 */
15721 static void
15722 wm_gig_downshift_workaround_ich8lan(struct wm_softc *sc)
15723 {
15724 uint16_t kmreg;
15725
15726 /* Only for igp3 */
15727 if (sc->sc_phytype == WMPHY_IGP_3) {
15728 if (wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_DIAG, &kmreg) != 0)
15729 return;
15730 kmreg |= KUMCTRLSTA_DIAG_NELPBK;
15731 if (wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmreg) != 0)
15732 return;
15733 kmreg &= ~KUMCTRLSTA_DIAG_NELPBK;
15734 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmreg);
15735 }
15736 }
15737
15738 /*
15739 * Workaround for pch's PHYs
15740 * XXX should be moved to new PHY driver?
15741 */
15742 static int
15743 wm_hv_phy_workarounds_ich8lan(struct wm_softc *sc)
15744 {
15745 device_t dev = sc->sc_dev;
15746 struct mii_data *mii = &sc->sc_mii;
15747 struct mii_softc *child;
15748 uint16_t phy_data, phyrev = 0;
15749 int phytype = sc->sc_phytype;
15750 int rv;
15751
15752 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
15753 device_xname(dev), __func__));
15754 KASSERT(sc->sc_type == WM_T_PCH);
15755
15756 /* Set MDIO slow mode before any other MDIO access */
15757 if (phytype == WMPHY_82577)
15758 if ((rv = wm_set_mdio_slow_mode_hv(sc)) != 0)
15759 return rv;
15760
15761 child = LIST_FIRST(&mii->mii_phys);
15762 if (child != NULL)
15763 phyrev = child->mii_mpd_rev;
15764
15765 /* (82577 && (phy rev 1 or 2)) || (82578 & phy rev 1)*/
15766 if ((child != NULL) &&
15767 (((phytype == WMPHY_82577) && ((phyrev == 1) || (phyrev == 2))) ||
15768 ((phytype == WMPHY_82578) && (phyrev == 1)))) {
15769 /* Disable generation of early preamble (0x4431) */
15770 rv = mii->mii_readreg(dev, 2, BM_RATE_ADAPTATION_CTRL,
15771 &phy_data);
15772 if (rv != 0)
15773 return rv;
15774 phy_data &= ~(BM_RATE_ADAPTATION_CTRL_RX_RXDV_PRE |
15775 BM_RATE_ADAPTATION_CTRL_RX_CRS_PRE);
15776 rv = mii->mii_writereg(dev, 2, BM_RATE_ADAPTATION_CTRL,
15777 phy_data);
15778 if (rv != 0)
15779 return rv;
15780
15781 /* Preamble tuning for SSC */
15782 rv = mii->mii_writereg(dev, 2, HV_KMRN_FIFO_CTRLSTA, 0xa204);
15783 if (rv != 0)
15784 return rv;
15785 }
15786
15787 /* 82578 */
15788 if (phytype == WMPHY_82578) {
15789 /*
15790 * Return registers to default by doing a soft reset then
15791 * writing 0x3140 to the control register
15792 * 0x3140 == BMCR_SPEED0 | BMCR_AUTOEN | BMCR_FDX | BMCR_SPEED1
15793 */
15794 if ((child != NULL) && (phyrev < 2)) {
15795 PHY_RESET(child);
15796 rv = mii->mii_writereg(dev, 2, MII_BMCR, 0x3140);
15797 if (rv != 0)
15798 return rv;
15799 }
15800 }
15801
15802 /* Select page 0 */
15803 if ((rv = sc->phy.acquire(sc)) != 0)
15804 return rv;
15805 rv = wm_gmii_mdic_writereg(dev, 1, MII_IGPHY_PAGE_SELECT, 0);
15806 sc->phy.release(sc);
15807 if (rv != 0)
15808 return rv;
15809
15810 /*
15811 * Configure the K1 Si workaround during phy reset assuming there is
15812 * link so that it disables K1 if link is in 1Gbps.
15813 */
15814 if ((rv = wm_k1_gig_workaround_hv(sc, 1)) != 0)
15815 return rv;
15816
15817 /* Workaround for link disconnects on a busy hub in half duplex */
15818 rv = sc->phy.acquire(sc);
15819 if (rv)
15820 return rv;
15821 rv = sc->phy.readreg_locked(dev, 2, BM_PORT_GEN_CFG, &phy_data);
15822 if (rv)
15823 goto release;
15824 rv = sc->phy.writereg_locked(dev, 2, BM_PORT_GEN_CFG,
15825 phy_data & 0x00ff);
15826 if (rv)
15827 goto release;
15828
15829 /* Set MSE higher to enable link to stay up when noise is high */
15830 rv = wm_write_emi_reg_locked(dev, I82577_MSE_THRESHOLD, 0x0034);
15831 release:
15832 sc->phy.release(sc);
15833
15834 return rv;
15835 }
15836
15837 /*
15838 * wm_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
15839 * @sc: pointer to the HW structure
15840 */
15841 static void
15842 wm_copy_rx_addrs_to_phy_ich8lan(struct wm_softc *sc)
15843 {
15844 device_t dev = sc->sc_dev;
15845 uint32_t mac_reg;
15846 uint16_t i, wuce;
15847 int count;
15848
15849 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
15850 device_xname(sc->sc_dev), __func__));
15851
15852 if (sc->phy.acquire(sc) != 0)
15853 return;
15854 if (wm_enable_phy_wakeup_reg_access_bm(dev, &wuce) != 0)
15855 goto release;
15856
15857 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
15858 count = wm_rar_count(sc);
15859 for (i = 0; i < count; i++) {
15860 uint16_t lo, hi;
15861 mac_reg = CSR_READ(sc, WMREG_CORDOVA_RAL(i));
15862 lo = (uint16_t)(mac_reg & 0xffff);
15863 hi = (uint16_t)((mac_reg >> 16) & 0xffff);
15864 wm_access_phy_wakeup_reg_bm(dev, BM_RAR_L(i), &lo, 0, true);
15865 wm_access_phy_wakeup_reg_bm(dev, BM_RAR_M(i), &hi, 0, true);
15866
15867 mac_reg = CSR_READ(sc, WMREG_CORDOVA_RAH(i));
15868 lo = (uint16_t)(mac_reg & 0xffff);
15869 hi = (uint16_t)((mac_reg & RAL_AV) >> 16);
15870 wm_access_phy_wakeup_reg_bm(dev, BM_RAR_H(i), &lo, 0, true);
15871 wm_access_phy_wakeup_reg_bm(dev, BM_RAR_CTRL(i), &hi, 0, true);
15872 }
15873
15874 wm_disable_phy_wakeup_reg_access_bm(dev, &wuce);
15875
15876 release:
15877 sc->phy.release(sc);
15878 }
15879
15880 /*
15881 * wm_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
15882 * done after every PHY reset.
15883 */
15884 static int
15885 wm_lv_phy_workarounds_ich8lan(struct wm_softc *sc)
15886 {
15887 device_t dev = sc->sc_dev;
15888 int rv;
15889
15890 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
15891 device_xname(dev), __func__));
15892 KASSERT(sc->sc_type == WM_T_PCH2);
15893
15894 /* Set MDIO slow mode before any other MDIO access */
15895 rv = wm_set_mdio_slow_mode_hv(sc);
15896 if (rv != 0)
15897 return rv;
15898
15899 rv = sc->phy.acquire(sc);
15900 if (rv != 0)
15901 return rv;
15902 /* Set MSE higher to enable link to stay up when noise is high */
15903 rv = wm_write_emi_reg_locked(dev, I82579_MSE_THRESHOLD, 0x0034);
15904 if (rv != 0)
15905 goto release;
15906 /* Drop link after 5 times MSE threshold was reached */
15907 rv = wm_write_emi_reg_locked(dev, I82579_MSE_LINK_DOWN, 0x0005);
15908 release:
15909 sc->phy.release(sc);
15910
15911 return rv;
15912 }
15913
15914 /**
15915 * wm_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
15916 * @link: link up bool flag
15917 *
15918 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
15919 * preventing further DMA write requests. Workaround the issue by disabling
15920 * the de-assertion of the clock request when in 1Gpbs mode.
15921 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
15922 * speeds in order to avoid Tx hangs.
15923 **/
15924 static int
15925 wm_k1_workaround_lpt_lp(struct wm_softc *sc, bool link)
15926 {
15927 uint32_t fextnvm6 = CSR_READ(sc, WMREG_FEXTNVM6);
15928 uint32_t status = CSR_READ(sc, WMREG_STATUS);
15929 uint32_t speed = __SHIFTOUT(status, STATUS_SPEED);
15930 uint16_t phyreg;
15931
15932 if (link && (speed == STATUS_SPEED_1000)) {
15933 sc->phy.acquire(sc);
15934 int rv = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG,
15935 &phyreg);
15936 if (rv != 0)
15937 goto release;
15938 rv = wm_kmrn_writereg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG,
15939 phyreg & ~KUMCTRLSTA_K1_ENABLE);
15940 if (rv != 0)
15941 goto release;
15942 delay(20);
15943 CSR_WRITE(sc, WMREG_FEXTNVM6, fextnvm6 | FEXTNVM6_REQ_PLL_CLK);
15944
15945 rv = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG,
15946 &phyreg);
15947 release:
15948 sc->phy.release(sc);
15949 return rv;
15950 }
15951
15952 fextnvm6 &= ~FEXTNVM6_REQ_PLL_CLK;
15953
15954 struct mii_softc *child = LIST_FIRST(&sc->sc_mii.mii_phys);
15955 if (((child != NULL) && (child->mii_mpd_rev > 5))
15956 || !link
15957 || ((speed == STATUS_SPEED_100) && (status & STATUS_FD)))
15958 goto update_fextnvm6;
15959
15960 wm_gmii_hv_readreg(sc->sc_dev, 2, I217_INBAND_CTRL, &phyreg);
15961
15962 /* Clear link status transmit timeout */
15963 phyreg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
15964 if (speed == STATUS_SPEED_100) {
15965 /* Set inband Tx timeout to 5x10us for 100Half */
15966 phyreg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
15967
15968 /* Do not extend the K1 entry latency for 100Half */
15969 fextnvm6 &= ~FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
15970 } else {
15971 /* Set inband Tx timeout to 50x10us for 10Full/Half */
15972 phyreg |= 50 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
15973
15974 /* Extend the K1 entry latency for 10 Mbps */
15975 fextnvm6 |= FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
15976 }
15977
15978 wm_gmii_hv_writereg(sc->sc_dev, 2, I217_INBAND_CTRL, phyreg);
15979
15980 update_fextnvm6:
15981 CSR_WRITE(sc, WMREG_FEXTNVM6, fextnvm6);
15982 return 0;
15983 }
15984
15985 /*
15986 * wm_k1_gig_workaround_hv - K1 Si workaround
15987 * @sc: pointer to the HW structure
15988 * @link: link up bool flag
15989 *
15990 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
15991 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
15992 * If link is down, the function will restore the default K1 setting located
15993 * in the NVM.
15994 */
15995 static int
15996 wm_k1_gig_workaround_hv(struct wm_softc *sc, int link)
15997 {
15998 int k1_enable = sc->sc_nvm_k1_enabled;
15999
16000 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
16001 device_xname(sc->sc_dev), __func__));
16002
16003 if (sc->phy.acquire(sc) != 0)
16004 return -1;
16005
16006 if (link) {
16007 k1_enable = 0;
16008
16009 /* Link stall fix for link up */
16010 wm_gmii_hv_writereg_locked(sc->sc_dev, 1, IGP3_KMRN_DIAG,
16011 0x0100);
16012 } else {
16013 /* Link stall fix for link down */
16014 wm_gmii_hv_writereg_locked(sc->sc_dev, 1, IGP3_KMRN_DIAG,
16015 0x4100);
16016 }
16017
16018 wm_configure_k1_ich8lan(sc, k1_enable);
16019 sc->phy.release(sc);
16020
16021 return 0;
16022 }
16023
16024 /*
16025 * wm_k1_workaround_lv - K1 Si workaround
16026 * @sc: pointer to the HW structure
16027 *
16028 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
16029 * Disable K1 for 1000 and 100 speeds
16030 */
16031 static int
16032 wm_k1_workaround_lv(struct wm_softc *sc)
16033 {
16034 uint32_t reg;
16035 uint16_t phyreg;
16036 int rv;
16037
16038 if (sc->sc_type != WM_T_PCH2)
16039 return 0;
16040
16041 /* Set K1 beacon duration based on 10Mbps speed */
16042 rv = wm_gmii_hv_readreg(sc->sc_dev, 2, HV_M_STATUS, &phyreg);
16043 if (rv != 0)
16044 return rv;
16045
16046 if ((phyreg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
16047 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
16048 if (phyreg &
16049 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
16050 /* LV 1G/100 Packet drop issue wa */
16051 rv = wm_gmii_hv_readreg(sc->sc_dev, 1, HV_PM_CTRL,
16052 &phyreg);
16053 if (rv != 0)
16054 return rv;
16055 phyreg &= ~HV_PM_CTRL_K1_ENA;
16056 rv = wm_gmii_hv_writereg(sc->sc_dev, 1, HV_PM_CTRL,
16057 phyreg);
16058 if (rv != 0)
16059 return rv;
16060 } else {
16061 /* For 10Mbps */
16062 reg = CSR_READ(sc, WMREG_FEXTNVM4);
16063 reg &= ~FEXTNVM4_BEACON_DURATION;
16064 reg |= FEXTNVM4_BEACON_DURATION_16US;
16065 CSR_WRITE(sc, WMREG_FEXTNVM4, reg);
16066 }
16067 }
16068
16069 return 0;
16070 }
16071
16072 /*
16073 * wm_link_stall_workaround_hv - Si workaround
16074 * @sc: pointer to the HW structure
16075 *
16076 * This function works around a Si bug where the link partner can get
16077 * a link up indication before the PHY does. If small packets are sent
16078 * by the link partner they can be placed in the packet buffer without
16079 * being properly accounted for by the PHY and will stall preventing
16080 * further packets from being received. The workaround is to clear the
16081 * packet buffer after the PHY detects link up.
16082 */
16083 static int
16084 wm_link_stall_workaround_hv(struct wm_softc *sc)
16085 {
16086 uint16_t phyreg;
16087
16088 if (sc->sc_phytype != WMPHY_82578)
16089 return 0;
16090
16091 /* Do not apply workaround if in PHY loopback bit 14 set */
16092 wm_gmii_hv_readreg(sc->sc_dev, 2, MII_BMCR, &phyreg);
16093 if ((phyreg & BMCR_LOOP) != 0)
16094 return 0;
16095
16096 /* Check if link is up and at 1Gbps */
16097 wm_gmii_hv_readreg(sc->sc_dev, 2, BM_CS_STATUS, &phyreg);
16098 phyreg &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED
16099 | BM_CS_STATUS_SPEED_MASK;
16100 if (phyreg != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED
16101 | BM_CS_STATUS_SPEED_1000))
16102 return 0;
16103
16104 delay(200 * 1000); /* XXX too big */
16105
16106 /* Flush the packets in the fifo buffer */
16107 wm_gmii_hv_writereg(sc->sc_dev, 1, HV_MUX_DATA_CTRL,
16108 HV_MUX_DATA_CTRL_GEN_TO_MAC | HV_MUX_DATA_CTRL_FORCE_SPEED);
16109 wm_gmii_hv_writereg(sc->sc_dev, 1, HV_MUX_DATA_CTRL,
16110 HV_MUX_DATA_CTRL_GEN_TO_MAC);
16111
16112 return 0;
16113 }
16114
16115 static int
16116 wm_set_mdio_slow_mode_hv(struct wm_softc *sc)
16117 {
16118 int rv;
16119 uint16_t reg;
16120
16121 rv = wm_gmii_hv_readreg(sc->sc_dev, 1, HV_KMRN_MODE_CTRL, ®);
16122 if (rv != 0)
16123 return rv;
16124
16125 return wm_gmii_hv_writereg(sc->sc_dev, 1, HV_KMRN_MODE_CTRL,
16126 reg | HV_KMRN_MDIO_SLOW);
16127 }
16128
16129 /*
16130 * wm_configure_k1_ich8lan - Configure K1 power state
16131 * @sc: pointer to the HW structure
16132 * @enable: K1 state to configure
16133 *
16134 * Configure the K1 power state based on the provided parameter.
16135 * Assumes semaphore already acquired.
16136 */
16137 static void
16138 wm_configure_k1_ich8lan(struct wm_softc *sc, int k1_enable)
16139 {
16140 uint32_t ctrl, ctrl_ext, tmp;
16141 uint16_t kmreg;
16142 int rv;
16143
16144 KASSERT(CSR_READ(sc, WMREG_EXTCNFCTR) & EXTCNFCTR_MDIO_SW_OWNERSHIP);
16145
16146 rv = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG, &kmreg);
16147 if (rv != 0)
16148 return;
16149
16150 if (k1_enable)
16151 kmreg |= KUMCTRLSTA_K1_ENABLE;
16152 else
16153 kmreg &= ~KUMCTRLSTA_K1_ENABLE;
16154
16155 rv = wm_kmrn_writereg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG, kmreg);
16156 if (rv != 0)
16157 return;
16158
16159 delay(20);
16160
16161 ctrl = CSR_READ(sc, WMREG_CTRL);
16162 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
16163
16164 tmp = ctrl & ~(CTRL_SPEED_1000 | CTRL_SPEED_100);
16165 tmp |= CTRL_FRCSPD;
16166
16167 CSR_WRITE(sc, WMREG_CTRL, tmp);
16168 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext | CTRL_EXT_SPD_BYPS);
16169 CSR_WRITE_FLUSH(sc);
16170 delay(20);
16171
16172 CSR_WRITE(sc, WMREG_CTRL, ctrl);
16173 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
16174 CSR_WRITE_FLUSH(sc);
16175 delay(20);
16176
16177 return;
16178 }
16179
16180 /* special case - for 82575 - need to do manual init ... */
16181 static void
16182 wm_reset_init_script_82575(struct wm_softc *sc)
16183 {
16184 /*
16185 * Remark: this is untested code - we have no board without EEPROM
16186 * same setup as mentioned int the FreeBSD driver for the i82575
16187 */
16188
16189 /* SerDes configuration via SERDESCTRL */
16190 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x00, 0x0c);
16191 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x01, 0x78);
16192 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x1b, 0x23);
16193 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x23, 0x15);
16194
16195 /* CCM configuration via CCMCTL register */
16196 wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x14, 0x00);
16197 wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x10, 0x00);
16198
16199 /* PCIe lanes configuration */
16200 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x00, 0xec);
16201 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x61, 0xdf);
16202 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x34, 0x05);
16203 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x2f, 0x81);
16204
16205 /* PCIe PLL Configuration */
16206 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x02, 0x47);
16207 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x14, 0x00);
16208 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x10, 0x00);
16209 }
16210
16211 static void
16212 wm_reset_mdicnfg_82580(struct wm_softc *sc)
16213 {
16214 uint32_t reg;
16215 uint16_t nvmword;
16216 int rv;
16217
16218 if (sc->sc_type != WM_T_82580)
16219 return;
16220 if ((sc->sc_flags & WM_F_SGMII) == 0)
16221 return;
16222
16223 rv = wm_nvm_read(sc, NVM_OFF_LAN_FUNC_82580(sc->sc_funcid)
16224 + NVM_OFF_CFG3_PORTA, 1, &nvmword);
16225 if (rv != 0) {
16226 aprint_error_dev(sc->sc_dev, "%s: failed to read NVM\n",
16227 __func__);
16228 return;
16229 }
16230
16231 reg = CSR_READ(sc, WMREG_MDICNFG);
16232 if (nvmword & NVM_CFG3_PORTA_EXT_MDIO)
16233 reg |= MDICNFG_DEST;
16234 if (nvmword & NVM_CFG3_PORTA_COM_MDIO)
16235 reg |= MDICNFG_COM_MDIO;
16236 CSR_WRITE(sc, WMREG_MDICNFG, reg);
16237 }
16238
16239 #define MII_INVALIDID(x) (((x) == 0x0000) || ((x) == 0xffff))
16240
16241 static bool
16242 wm_phy_is_accessible_pchlan(struct wm_softc *sc)
16243 {
16244 uint32_t reg;
16245 uint16_t id1, id2;
16246 int i, rv;
16247
16248 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
16249 device_xname(sc->sc_dev), __func__));
16250 KASSERT(CSR_READ(sc, WMREG_EXTCNFCTR) & EXTCNFCTR_MDIO_SW_OWNERSHIP);
16251
16252 id1 = id2 = 0xffff;
16253 for (i = 0; i < 2; i++) {
16254 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, MII_PHYIDR1,
16255 &id1);
16256 if ((rv != 0) || MII_INVALIDID(id1))
16257 continue;
16258 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, MII_PHYIDR2,
16259 &id2);
16260 if ((rv != 0) || MII_INVALIDID(id2))
16261 continue;
16262 break;
16263 }
16264 if ((rv == 0) && !MII_INVALIDID(id1) && !MII_INVALIDID(id2))
16265 goto out;
16266
16267 /*
16268 * In case the PHY needs to be in mdio slow mode,
16269 * set slow mode and try to get the PHY id again.
16270 */
16271 rv = 0;
16272 if (sc->sc_type < WM_T_PCH_LPT) {
16273 sc->phy.release(sc);
16274 wm_set_mdio_slow_mode_hv(sc);
16275 rv = wm_gmii_hv_readreg(sc->sc_dev, 2, MII_PHYIDR1, &id1);
16276 rv |= wm_gmii_hv_readreg(sc->sc_dev, 2, MII_PHYIDR2, &id2);
16277 sc->phy.acquire(sc);
16278 }
16279 if ((rv != 0) || MII_INVALIDID(id1) || MII_INVALIDID(id2)) {
16280 device_printf(sc->sc_dev, "XXX return with false\n");
16281 return false;
16282 }
16283 out:
16284 if (sc->sc_type >= WM_T_PCH_LPT) {
16285 /* Only unforce SMBus if ME is not active */
16286 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID) == 0) {
16287 uint16_t phyreg;
16288
16289 /* Unforce SMBus mode in PHY */
16290 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2,
16291 CV_SMB_CTRL, &phyreg);
16292 phyreg &= ~CV_SMB_CTRL_FORCE_SMBUS;
16293 wm_gmii_hv_writereg_locked(sc->sc_dev, 2,
16294 CV_SMB_CTRL, phyreg);
16295
16296 /* Unforce SMBus mode in MAC */
16297 reg = CSR_READ(sc, WMREG_CTRL_EXT);
16298 reg &= ~CTRL_EXT_FORCE_SMBUS;
16299 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
16300 }
16301 }
16302 return true;
16303 }
16304
16305 static void
16306 wm_toggle_lanphypc_pch_lpt(struct wm_softc *sc)
16307 {
16308 uint32_t reg;
16309 int i;
16310
16311 /* Set PHY Config Counter to 50msec */
16312 reg = CSR_READ(sc, WMREG_FEXTNVM3);
16313 reg &= ~FEXTNVM3_PHY_CFG_COUNTER_MASK;
16314 reg |= FEXTNVM3_PHY_CFG_COUNTER_50MS;
16315 CSR_WRITE(sc, WMREG_FEXTNVM3, reg);
16316
16317 /* Toggle LANPHYPC */
16318 reg = CSR_READ(sc, WMREG_CTRL);
16319 reg |= CTRL_LANPHYPC_OVERRIDE;
16320 reg &= ~CTRL_LANPHYPC_VALUE;
16321 CSR_WRITE(sc, WMREG_CTRL, reg);
16322 CSR_WRITE_FLUSH(sc);
16323 delay(1000);
16324 reg &= ~CTRL_LANPHYPC_OVERRIDE;
16325 CSR_WRITE(sc, WMREG_CTRL, reg);
16326 CSR_WRITE_FLUSH(sc);
16327
16328 if (sc->sc_type < WM_T_PCH_LPT)
16329 delay(50 * 1000);
16330 else {
16331 i = 20;
16332
16333 do {
16334 delay(5 * 1000);
16335 } while (((CSR_READ(sc, WMREG_CTRL_EXT) & CTRL_EXT_LPCD) == 0)
16336 && i--);
16337
16338 delay(30 * 1000);
16339 }
16340 }
16341
16342 static int
16343 wm_platform_pm_pch_lpt(struct wm_softc *sc, bool link)
16344 {
16345 uint32_t reg = __SHIFTIN(link, LTRV_NONSNOOP_REQ)
16346 | __SHIFTIN(link, LTRV_SNOOP_REQ) | LTRV_SEND;
16347 uint32_t rxa;
16348 uint16_t scale = 0, lat_enc = 0;
16349 int32_t obff_hwm = 0;
16350 int64_t lat_ns, value;
16351
16352 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
16353 device_xname(sc->sc_dev), __func__));
16354
16355 if (link) {
16356 uint16_t max_snoop, max_nosnoop, max_ltr_enc;
16357 uint32_t status;
16358 uint16_t speed;
16359 pcireg_t preg;
16360
16361 status = CSR_READ(sc, WMREG_STATUS);
16362 switch (__SHIFTOUT(status, STATUS_SPEED)) {
16363 case STATUS_SPEED_10:
16364 speed = 10;
16365 break;
16366 case STATUS_SPEED_100:
16367 speed = 100;
16368 break;
16369 case STATUS_SPEED_1000:
16370 speed = 1000;
16371 break;
16372 default:
16373 device_printf(sc->sc_dev, "Unknown speed "
16374 "(status = %08x)\n", status);
16375 return -1;
16376 }
16377
16378 /* Rx Packet Buffer Allocation size (KB) */
16379 rxa = CSR_READ(sc, WMREG_PBA) & PBA_RXA_MASK;
16380
16381 /*
16382 * Determine the maximum latency tolerated by the device.
16383 *
16384 * Per the PCIe spec, the tolerated latencies are encoded as
16385 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
16386 * a 10-bit value (0-1023) to provide a range from 1 ns to
16387 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
16388 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
16389 */
16390 lat_ns = ((int64_t)rxa * 1024 -
16391 (2 * ((int64_t)sc->sc_ethercom.ec_if.if_mtu
16392 + ETHER_HDR_LEN))) * 8 * 1000;
16393 if (lat_ns < 0)
16394 lat_ns = 0;
16395 else
16396 lat_ns /= speed;
16397 value = lat_ns;
16398
16399 while (value > LTRV_VALUE) {
16400 scale ++;
16401 value = howmany(value, __BIT(5));
16402 }
16403 if (scale > LTRV_SCALE_MAX) {
16404 device_printf(sc->sc_dev,
16405 "Invalid LTR latency scale %d\n", scale);
16406 return -1;
16407 }
16408 lat_enc = (uint16_t)(__SHIFTIN(scale, LTRV_SCALE) | value);
16409
16410 /* Determine the maximum latency tolerated by the platform */
16411 preg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
16412 WM_PCI_LTR_CAP_LPT);
16413 max_snoop = preg & 0xffff;
16414 max_nosnoop = preg >> 16;
16415
16416 max_ltr_enc = MAX(max_snoop, max_nosnoop);
16417
16418 if (lat_enc > max_ltr_enc) {
16419 lat_enc = max_ltr_enc;
16420 lat_ns = __SHIFTOUT(lat_enc, PCI_LTR_MAXSNOOPLAT_VAL)
16421 * PCI_LTR_SCALETONS(
16422 __SHIFTOUT(lat_enc,
16423 PCI_LTR_MAXSNOOPLAT_SCALE));
16424 }
16425
16426 if (lat_ns) {
16427 lat_ns *= speed * 1000;
16428 lat_ns /= 8;
16429 lat_ns /= 1000000000;
16430 obff_hwm = (int32_t)(rxa - lat_ns);
16431 }
16432 if ((obff_hwm < 0) || (obff_hwm > SVT_OFF_HWM)) {
16433 device_printf(sc->sc_dev, "Invalid high water mark %d"
16434 "(rxa = %d, lat_ns = %d)\n",
16435 obff_hwm, (int32_t)rxa, (int32_t)lat_ns);
16436 return -1;
16437 }
16438 }
16439 /* Snoop and No-Snoop latencies the same */
16440 reg |= lat_enc | __SHIFTIN(lat_enc, LTRV_NONSNOOP);
16441 CSR_WRITE(sc, WMREG_LTRV, reg);
16442
16443 /* Set OBFF high water mark */
16444 reg = CSR_READ(sc, WMREG_SVT) & ~SVT_OFF_HWM;
16445 reg |= obff_hwm;
16446 CSR_WRITE(sc, WMREG_SVT, reg);
16447
16448 /* Enable OBFF */
16449 reg = CSR_READ(sc, WMREG_SVCR);
16450 reg |= SVCR_OFF_EN | SVCR_OFF_MASKINT;
16451 CSR_WRITE(sc, WMREG_SVCR, reg);
16452
16453 return 0;
16454 }
16455
16456 /*
16457 * I210 Errata 25 and I211 Errata 10
16458 * Slow System Clock.
16459 */
16460 static int
16461 wm_pll_workaround_i210(struct wm_softc *sc)
16462 {
16463 uint32_t mdicnfg, wuc;
16464 uint32_t reg;
16465 pcireg_t pcireg;
16466 uint32_t pmreg;
16467 uint16_t nvmword, tmp_nvmword;
16468 uint16_t phyval;
16469 bool wa_done = false;
16470 int i, rv = 0;
16471
16472 /* Get Power Management cap offset */
16473 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PWRMGMT,
16474 &pmreg, NULL) == 0)
16475 return -1;
16476
16477 /* Save WUC and MDICNFG registers */
16478 wuc = CSR_READ(sc, WMREG_WUC);
16479 mdicnfg = CSR_READ(sc, WMREG_MDICNFG);
16480
16481 reg = mdicnfg & ~MDICNFG_DEST;
16482 CSR_WRITE(sc, WMREG_MDICNFG, reg);
16483
16484 if (wm_nvm_read(sc, INVM_AUTOLOAD, 1, &nvmword) != 0)
16485 nvmword = INVM_DEFAULT_AL;
16486 tmp_nvmword = nvmword | INVM_PLL_WO_VAL;
16487
16488 for (i = 0; i < WM_MAX_PLL_TRIES; i++) {
16489 wm_gmii_gs40g_readreg(sc->sc_dev, 1,
16490 GS40G_PHY_PLL_FREQ_PAGE | GS40G_PHY_PLL_FREQ_REG, &phyval);
16491
16492 if ((phyval & GS40G_PHY_PLL_UNCONF) != GS40G_PHY_PLL_UNCONF) {
16493 rv = 0;
16494 break; /* OK */
16495 } else
16496 rv = -1;
16497
16498 wa_done = true;
16499 /* Directly reset the internal PHY */
16500 reg = CSR_READ(sc, WMREG_CTRL);
16501 CSR_WRITE(sc, WMREG_CTRL, reg | CTRL_PHY_RESET);
16502
16503 reg = CSR_READ(sc, WMREG_CTRL_EXT);
16504 reg |= CTRL_EXT_PHYPDEN | CTRL_EXT_SDLPE;
16505 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
16506
16507 CSR_WRITE(sc, WMREG_WUC, 0);
16508 reg = (INVM_AUTOLOAD << 4) | (tmp_nvmword << 16);
16509 CSR_WRITE(sc, WMREG_EEARBC_I210, reg);
16510
16511 pcireg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
16512 pmreg + PCI_PMCSR);
16513 pcireg |= PCI_PMCSR_STATE_D3;
16514 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
16515 pmreg + PCI_PMCSR, pcireg);
16516 delay(1000);
16517 pcireg &= ~PCI_PMCSR_STATE_D3;
16518 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
16519 pmreg + PCI_PMCSR, pcireg);
16520
16521 reg = (INVM_AUTOLOAD << 4) | (nvmword << 16);
16522 CSR_WRITE(sc, WMREG_EEARBC_I210, reg);
16523
16524 /* Restore WUC register */
16525 CSR_WRITE(sc, WMREG_WUC, wuc);
16526 }
16527
16528 /* Restore MDICNFG setting */
16529 CSR_WRITE(sc, WMREG_MDICNFG, mdicnfg);
16530 if (wa_done)
16531 aprint_verbose_dev(sc->sc_dev, "I210 workaround done\n");
16532 return rv;
16533 }
16534
16535 static void
16536 wm_legacy_irq_quirk_spt(struct wm_softc *sc)
16537 {
16538 uint32_t reg;
16539
16540 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
16541 device_xname(sc->sc_dev), __func__));
16542 KASSERT((sc->sc_type == WM_T_PCH_SPT)
16543 || (sc->sc_type == WM_T_PCH_CNP));
16544
16545 reg = CSR_READ(sc, WMREG_FEXTNVM7);
16546 reg |= FEXTNVM7_SIDE_CLK_UNGATE;
16547 CSR_WRITE(sc, WMREG_FEXTNVM7, reg);
16548
16549 reg = CSR_READ(sc, WMREG_FEXTNVM9);
16550 reg |= FEXTNVM9_IOSFSB_CLKGATE_DIS | FEXTNVM9_IOSFSB_CLKREQ_DIS;
16551 CSR_WRITE(sc, WMREG_FEXTNVM9, reg);
16552 }
16553