if_wm.c revision 1.684 1 /* $NetBSD: if_wm.c,v 1.684 2020/08/05 01:58:42 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*******************************************************************************
39
40 Copyright (c) 2001-2005, Intel Corporation
41 All rights reserved.
42
43 Redistribution and use in source and binary forms, with or without
44 modification, are permitted provided that the following conditions are met:
45
46 1. Redistributions of source code must retain the above copyright notice,
47 this list of conditions and the following disclaimer.
48
49 2. Redistributions in binary form must reproduce the above copyright
50 notice, this list of conditions and the following disclaimer in the
51 documentation and/or other materials provided with the distribution.
52
53 3. Neither the name of the Intel Corporation nor the names of its
54 contributors may be used to endorse or promote products derived from
55 this software without specific prior written permission.
56
57 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
58 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
61 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67 POSSIBILITY OF SUCH DAMAGE.
68
69 *******************************************************************************/
70 /*
71 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
72 *
73 * TODO (in order of importance):
74 *
75 * - Check XXX'ed comments
76 * - TX Multi queue improvement (refine queue selection logic)
77 * - Split header buffer for newer descriptors
78 * - EEE (Energy Efficiency Ethernet) for I354
79 * - Virtual Function
80 * - Set LED correctly (based on contents in EEPROM)
81 * - Rework how parameters are loaded from the EEPROM.
82 */
83
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.684 2020/08/05 01:58:42 msaitoh Exp $");
86
87 #ifdef _KERNEL_OPT
88 #include "opt_net_mpsafe.h"
89 #include "opt_if_wm.h"
90 #endif
91
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/callout.h>
95 #include <sys/mbuf.h>
96 #include <sys/malloc.h>
97 #include <sys/kmem.h>
98 #include <sys/kernel.h>
99 #include <sys/socket.h>
100 #include <sys/ioctl.h>
101 #include <sys/errno.h>
102 #include <sys/device.h>
103 #include <sys/queue.h>
104 #include <sys/syslog.h>
105 #include <sys/interrupt.h>
106 #include <sys/cpu.h>
107 #include <sys/pcq.h>
108 #include <sys/sysctl.h>
109 #include <sys/workqueue.h>
110
111 #include <sys/rndsource.h>
112
113 #include <net/if.h>
114 #include <net/if_dl.h>
115 #include <net/if_media.h>
116 #include <net/if_ether.h>
117
118 #include <net/bpf.h>
119
120 #include <net/rss_config.h>
121
122 #include <netinet/in.h> /* XXX for struct ip */
123 #include <netinet/in_systm.h> /* XXX for struct ip */
124 #include <netinet/ip.h> /* XXX for struct ip */
125 #include <netinet/ip6.h> /* XXX for struct ip6_hdr */
126 #include <netinet/tcp.h> /* XXX for struct tcphdr */
127
128 #include <sys/bus.h>
129 #include <sys/intr.h>
130 #include <machine/endian.h>
131
132 #include <dev/mii/mii.h>
133 #include <dev/mii/mdio.h>
134 #include <dev/mii/miivar.h>
135 #include <dev/mii/miidevs.h>
136 #include <dev/mii/mii_bitbang.h>
137 #include <dev/mii/ikphyreg.h>
138 #include <dev/mii/igphyreg.h>
139 #include <dev/mii/igphyvar.h>
140 #include <dev/mii/inbmphyreg.h>
141 #include <dev/mii/ihphyreg.h>
142 #include <dev/mii/makphyreg.h>
143
144 #include <dev/pci/pcireg.h>
145 #include <dev/pci/pcivar.h>
146 #include <dev/pci/pcidevs.h>
147
148 #include <dev/pci/if_wmreg.h>
149 #include <dev/pci/if_wmvar.h>
150
151 #ifdef WM_DEBUG
152 #define WM_DEBUG_LINK __BIT(0)
153 #define WM_DEBUG_TX __BIT(1)
154 #define WM_DEBUG_RX __BIT(2)
155 #define WM_DEBUG_GMII __BIT(3)
156 #define WM_DEBUG_MANAGE __BIT(4)
157 #define WM_DEBUG_NVM __BIT(5)
158 #define WM_DEBUG_INIT __BIT(6)
159 #define WM_DEBUG_LOCK __BIT(7)
160 int wm_debug = WM_DEBUG_TX | WM_DEBUG_RX | WM_DEBUG_LINK | WM_DEBUG_GMII
161 | WM_DEBUG_MANAGE | WM_DEBUG_NVM | WM_DEBUG_INIT | WM_DEBUG_LOCK;
162 #define DPRINTF(x, y) do { if (wm_debug & (x)) printf y; } while (0)
163 #else
164 #define DPRINTF(x, y) __nothing
165 #endif /* WM_DEBUG */
166
167 #ifdef NET_MPSAFE
168 #define WM_MPSAFE 1
169 #define WM_CALLOUT_FLAGS CALLOUT_MPSAFE
170 #define WM_SOFTINT_FLAGS SOFTINT_MPSAFE
171 #define WM_WORKQUEUE_FLAGS WQ_PERCPU | WQ_MPSAFE
172 #else
173 #define WM_CALLOUT_FLAGS 0
174 #define WM_SOFTINT_FLAGS 0
175 #define WM_WORKQUEUE_FLAGS WQ_PERCPU
176 #endif
177
178 #define WM_WORKQUEUE_PRI PRI_SOFTNET
179
180 /*
181 * This device driver's max interrupt numbers.
182 */
183 #define WM_MAX_NQUEUEINTR 16
184 #define WM_MAX_NINTR (WM_MAX_NQUEUEINTR + 1)
185
186 #ifndef WM_DISABLE_MSI
187 #define WM_DISABLE_MSI 0
188 #endif
189 #ifndef WM_DISABLE_MSIX
190 #define WM_DISABLE_MSIX 0
191 #endif
192
193 int wm_disable_msi = WM_DISABLE_MSI;
194 int wm_disable_msix = WM_DISABLE_MSIX;
195
196 #ifndef WM_WATCHDOG_TIMEOUT
197 #define WM_WATCHDOG_TIMEOUT 5
198 #endif
199 static int wm_watchdog_timeout = WM_WATCHDOG_TIMEOUT;
200
201 /*
202 * Transmit descriptor list size. Due to errata, we can only have
203 * 256 hardware descriptors in the ring on < 82544, but we use 4096
204 * on >= 82544. We tell the upper layers that they can queue a lot
205 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
206 * of them at a time.
207 *
208 * We allow up to 64 DMA segments per packet. Pathological packet
209 * chains containing many small mbufs have been observed in zero-copy
210 * situations with jumbo frames. If a mbuf chain has more than 64 DMA segments,
211 * m_defrag() is called to reduce it.
212 */
213 #define WM_NTXSEGS 64
214 #define WM_IFQUEUELEN 256
215 #define WM_TXQUEUELEN_MAX 64
216 #define WM_TXQUEUELEN_MAX_82547 16
217 #define WM_TXQUEUELEN(txq) ((txq)->txq_num)
218 #define WM_TXQUEUELEN_MASK(txq) (WM_TXQUEUELEN(txq) - 1)
219 #define WM_TXQUEUE_GC(txq) (WM_TXQUEUELEN(txq) / 8)
220 #define WM_NTXDESC_82542 256
221 #define WM_NTXDESC_82544 4096
222 #define WM_NTXDESC(txq) ((txq)->txq_ndesc)
223 #define WM_NTXDESC_MASK(txq) (WM_NTXDESC(txq) - 1)
224 #define WM_TXDESCS_SIZE(txq) (WM_NTXDESC(txq) * (txq)->txq_descsize)
225 #define WM_NEXTTX(txq, x) (((x) + 1) & WM_NTXDESC_MASK(txq))
226 #define WM_NEXTTXS(txq, x) (((x) + 1) & WM_TXQUEUELEN_MASK(txq))
227
228 #define WM_MAXTXDMA (2 * round_page(IP_MAXPACKET)) /* for TSO */
229
230 #define WM_TXINTERQSIZE 256
231
232 #ifndef WM_TX_PROCESS_LIMIT_DEFAULT
233 #define WM_TX_PROCESS_LIMIT_DEFAULT 100U
234 #endif
235 #ifndef WM_TX_INTR_PROCESS_LIMIT_DEFAULT
236 #define WM_TX_INTR_PROCESS_LIMIT_DEFAULT 0U
237 #endif
238
239 /*
240 * Receive descriptor list size. We have one Rx buffer for normal
241 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
242 * packet. We allocate 256 receive descriptors, each with a 2k
243 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
244 */
245 #define WM_NRXDESC 256U
246 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
247 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
248 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
249
250 #ifndef WM_RX_PROCESS_LIMIT_DEFAULT
251 #define WM_RX_PROCESS_LIMIT_DEFAULT 100U
252 #endif
253 #ifndef WM_RX_INTR_PROCESS_LIMIT_DEFAULT
254 #define WM_RX_INTR_PROCESS_LIMIT_DEFAULT 0U
255 #endif
256
257 typedef union txdescs {
258 wiseman_txdesc_t sctxu_txdescs[WM_NTXDESC_82544];
259 nq_txdesc_t sctxu_nq_txdescs[WM_NTXDESC_82544];
260 } txdescs_t;
261
262 typedef union rxdescs {
263 wiseman_rxdesc_t sctxu_rxdescs[WM_NRXDESC];
264 ext_rxdesc_t sctxu_ext_rxdescs[WM_NRXDESC]; /* 82574 only */
265 nq_rxdesc_t sctxu_nq_rxdescs[WM_NRXDESC]; /* 82575 and newer */
266 } rxdescs_t;
267
268 #define WM_CDTXOFF(txq, x) ((txq)->txq_descsize * (x))
269 #define WM_CDRXOFF(rxq, x) ((rxq)->rxq_descsize * (x))
270
271 /*
272 * Software state for transmit jobs.
273 */
274 struct wm_txsoft {
275 struct mbuf *txs_mbuf; /* head of our mbuf chain */
276 bus_dmamap_t txs_dmamap; /* our DMA map */
277 int txs_firstdesc; /* first descriptor in packet */
278 int txs_lastdesc; /* last descriptor in packet */
279 int txs_ndesc; /* # of descriptors used */
280 };
281
282 /*
283 * Software state for receive buffers. Each descriptor gets a 2k (MCLBYTES)
284 * buffer and a DMA map. For packets which fill more than one buffer, we chain
285 * them together.
286 */
287 struct wm_rxsoft {
288 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
289 bus_dmamap_t rxs_dmamap; /* our DMA map */
290 };
291
292 #define WM_LINKUP_TIMEOUT 50
293
294 static uint16_t swfwphysem[] = {
295 SWFW_PHY0_SM,
296 SWFW_PHY1_SM,
297 SWFW_PHY2_SM,
298 SWFW_PHY3_SM
299 };
300
301 static const uint32_t wm_82580_rxpbs_table[] = {
302 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140
303 };
304
305 struct wm_softc;
306
307 #ifdef WM_EVENT_COUNTERS
308 #define WM_Q_EVCNT_DEFINE(qname, evname) \
309 char qname##_##evname##_evcnt_name[sizeof("qname##XX##evname")]; \
310 struct evcnt qname##_ev_##evname;
311
312 #define WM_Q_EVCNT_ATTACH(qname, evname, q, qnum, xname, evtype) \
313 do { \
314 snprintf((q)->qname##_##evname##_evcnt_name, \
315 sizeof((q)->qname##_##evname##_evcnt_name), \
316 "%s%02d%s", #qname, (qnum), #evname); \
317 evcnt_attach_dynamic(&(q)->qname##_ev_##evname, \
318 (evtype), NULL, (xname), \
319 (q)->qname##_##evname##_evcnt_name); \
320 } while (0)
321
322 #define WM_Q_MISC_EVCNT_ATTACH(qname, evname, q, qnum, xname) \
323 WM_Q_EVCNT_ATTACH(qname, evname, q, qnum, xname, EVCNT_TYPE_MISC)
324
325 #define WM_Q_INTR_EVCNT_ATTACH(qname, evname, q, qnum, xname) \
326 WM_Q_EVCNT_ATTACH(qname, evname, q, qnum, xname, EVCNT_TYPE_INTR)
327
328 #define WM_Q_EVCNT_DETACH(qname, evname, q, qnum) \
329 evcnt_detach(&(q)->qname##_ev_##evname);
330 #endif /* WM_EVENT_COUNTERS */
331
332 struct wm_txqueue {
333 kmutex_t *txq_lock; /* lock for tx operations */
334
335 struct wm_softc *txq_sc; /* shortcut (skip struct wm_queue) */
336
337 /* Software state for the transmit descriptors. */
338 int txq_num; /* must be a power of two */
339 struct wm_txsoft txq_soft[WM_TXQUEUELEN_MAX];
340
341 /* TX control data structures. */
342 int txq_ndesc; /* must be a power of two */
343 size_t txq_descsize; /* a tx descriptor size */
344 txdescs_t *txq_descs_u;
345 bus_dmamap_t txq_desc_dmamap; /* control data DMA map */
346 bus_dma_segment_t txq_desc_seg; /* control data segment */
347 int txq_desc_rseg; /* real number of control segment */
348 #define txq_desc_dma txq_desc_dmamap->dm_segs[0].ds_addr
349 #define txq_descs txq_descs_u->sctxu_txdescs
350 #define txq_nq_descs txq_descs_u->sctxu_nq_txdescs
351
352 bus_addr_t txq_tdt_reg; /* offset of TDT register */
353
354 int txq_free; /* number of free Tx descriptors */
355 int txq_next; /* next ready Tx descriptor */
356
357 int txq_sfree; /* number of free Tx jobs */
358 int txq_snext; /* next free Tx job */
359 int txq_sdirty; /* dirty Tx jobs */
360
361 /* These 4 variables are used only on the 82547. */
362 int txq_fifo_size; /* Tx FIFO size */
363 int txq_fifo_head; /* current head of FIFO */
364 uint32_t txq_fifo_addr; /* internal address of start of FIFO */
365 int txq_fifo_stall; /* Tx FIFO is stalled */
366
367 /*
368 * When ncpu > number of Tx queues, a Tx queue is shared by multiple
369 * CPUs. This queue intermediate them without block.
370 */
371 pcq_t *txq_interq;
372
373 /*
374 * NEWQUEUE devices must use not ifp->if_flags but txq->txq_flags
375 * to manage Tx H/W queue's busy flag.
376 */
377 int txq_flags; /* flags for H/W queue, see below */
378 #define WM_TXQ_NO_SPACE 0x1
379
380 bool txq_stopping;
381
382 bool txq_sending;
383 time_t txq_lastsent;
384
385 /* Checksum flags used for previous packet */
386 uint32_t txq_last_hw_cmd;
387 uint8_t txq_last_hw_fields;
388 uint16_t txq_last_hw_ipcs;
389 uint16_t txq_last_hw_tucs;
390
391 uint32_t txq_packets; /* for AIM */
392 uint32_t txq_bytes; /* for AIM */
393 #ifdef WM_EVENT_COUNTERS
394 /* TX event counters */
395 WM_Q_EVCNT_DEFINE(txq, txsstall) /* Stalled due to no txs */
396 WM_Q_EVCNT_DEFINE(txq, txdstall) /* Stalled due to no txd */
397 WM_Q_EVCNT_DEFINE(txq, fifo_stall) /* FIFO stalls (82547) */
398 WM_Q_EVCNT_DEFINE(txq, txdw) /* Tx descriptor interrupts */
399 WM_Q_EVCNT_DEFINE(txq, txqe) /* Tx queue empty interrupts */
400 /* XXX not used? */
401
402 WM_Q_EVCNT_DEFINE(txq, ipsum) /* IP checksums comp. */
403 WM_Q_EVCNT_DEFINE(txq, tusum) /* TCP/UDP cksums comp. */
404 WM_Q_EVCNT_DEFINE(txq, tusum6) /* TCP/UDP v6 cksums comp. */
405 WM_Q_EVCNT_DEFINE(txq, tso) /* TCP seg offload (IPv4) */
406 WM_Q_EVCNT_DEFINE(txq, tso6) /* TCP seg offload (IPv6) */
407 WM_Q_EVCNT_DEFINE(txq, tsopain) /* Painful header manip. for TSO */
408 WM_Q_EVCNT_DEFINE(txq, pcqdrop) /* Pkt dropped in pcq */
409 WM_Q_EVCNT_DEFINE(txq, descdrop) /* Pkt dropped in MAC desc ring */
410 /* other than toomanyseg */
411
412 WM_Q_EVCNT_DEFINE(txq, toomanyseg) /* Pkt dropped(toomany DMA segs) */
413 WM_Q_EVCNT_DEFINE(txq, defrag) /* m_defrag() */
414 WM_Q_EVCNT_DEFINE(txq, underrun) /* Tx underrun */
415 WM_Q_EVCNT_DEFINE(txq, skipcontext) /* Tx skip wring cksum context */
416
417 char txq_txseg_evcnt_names[WM_NTXSEGS][sizeof("txqXXtxsegXXX")];
418 struct evcnt txq_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
419 #endif /* WM_EVENT_COUNTERS */
420 };
421
422 struct wm_rxqueue {
423 kmutex_t *rxq_lock; /* lock for rx operations */
424
425 struct wm_softc *rxq_sc; /* shortcut (skip struct wm_queue) */
426
427 /* Software state for the receive descriptors. */
428 struct wm_rxsoft rxq_soft[WM_NRXDESC];
429
430 /* RX control data structures. */
431 int rxq_ndesc; /* must be a power of two */
432 size_t rxq_descsize; /* a rx descriptor size */
433 rxdescs_t *rxq_descs_u;
434 bus_dmamap_t rxq_desc_dmamap; /* control data DMA map */
435 bus_dma_segment_t rxq_desc_seg; /* control data segment */
436 int rxq_desc_rseg; /* real number of control segment */
437 #define rxq_desc_dma rxq_desc_dmamap->dm_segs[0].ds_addr
438 #define rxq_descs rxq_descs_u->sctxu_rxdescs
439 #define rxq_ext_descs rxq_descs_u->sctxu_ext_rxdescs
440 #define rxq_nq_descs rxq_descs_u->sctxu_nq_rxdescs
441
442 bus_addr_t rxq_rdt_reg; /* offset of RDT register */
443
444 int rxq_ptr; /* next ready Rx desc/queue ent */
445 int rxq_discard;
446 int rxq_len;
447 struct mbuf *rxq_head;
448 struct mbuf *rxq_tail;
449 struct mbuf **rxq_tailp;
450
451 bool rxq_stopping;
452
453 uint32_t rxq_packets; /* for AIM */
454 uint32_t rxq_bytes; /* for AIM */
455 #ifdef WM_EVENT_COUNTERS
456 /* RX event counters */
457 WM_Q_EVCNT_DEFINE(rxq, intr); /* Interrupts */
458 WM_Q_EVCNT_DEFINE(rxq, defer); /* Rx deferred processing */
459
460 WM_Q_EVCNT_DEFINE(rxq, ipsum); /* IP checksums checked */
461 WM_Q_EVCNT_DEFINE(rxq, tusum); /* TCP/UDP cksums checked */
462 #endif
463 };
464
465 struct wm_queue {
466 int wmq_id; /* index of TX/RX queues */
467 int wmq_intr_idx; /* index of MSI-X tables */
468
469 uint32_t wmq_itr; /* interrupt interval per queue. */
470 bool wmq_set_itr;
471
472 struct wm_txqueue wmq_txq;
473 struct wm_rxqueue wmq_rxq;
474
475 bool wmq_txrx_use_workqueue;
476 struct work wmq_cookie;
477 void *wmq_si;
478 };
479
480 struct wm_phyop {
481 int (*acquire)(struct wm_softc *);
482 void (*release)(struct wm_softc *);
483 int (*readreg_locked)(device_t, int, int, uint16_t *);
484 int (*writereg_locked)(device_t, int, int, uint16_t);
485 int reset_delay_us;
486 bool no_errprint;
487 };
488
489 struct wm_nvmop {
490 int (*acquire)(struct wm_softc *);
491 void (*release)(struct wm_softc *);
492 int (*read)(struct wm_softc *, int, int, uint16_t *);
493 };
494
495 /*
496 * Software state per device.
497 */
498 struct wm_softc {
499 device_t sc_dev; /* generic device information */
500 bus_space_tag_t sc_st; /* bus space tag */
501 bus_space_handle_t sc_sh; /* bus space handle */
502 bus_size_t sc_ss; /* bus space size */
503 bus_space_tag_t sc_iot; /* I/O space tag */
504 bus_space_handle_t sc_ioh; /* I/O space handle */
505 bus_size_t sc_ios; /* I/O space size */
506 bus_space_tag_t sc_flasht; /* flash registers space tag */
507 bus_space_handle_t sc_flashh; /* flash registers space handle */
508 bus_size_t sc_flashs; /* flash registers space size */
509 off_t sc_flashreg_offset; /*
510 * offset to flash registers from
511 * start of BAR
512 */
513 bus_dma_tag_t sc_dmat; /* bus DMA tag */
514
515 struct ethercom sc_ethercom; /* ethernet common data */
516 struct mii_data sc_mii; /* MII/media information */
517
518 pci_chipset_tag_t sc_pc;
519 pcitag_t sc_pcitag;
520 int sc_bus_speed; /* PCI/PCIX bus speed */
521 int sc_pcixe_capoff; /* PCI[Xe] capability reg offset */
522
523 uint16_t sc_pcidevid; /* PCI device ID */
524 wm_chip_type sc_type; /* MAC type */
525 int sc_rev; /* MAC revision */
526 wm_phy_type sc_phytype; /* PHY type */
527 uint8_t sc_sfptype; /* SFP type */
528 uint32_t sc_mediatype; /* Media type (Copper, Fiber, SERDES)*/
529 #define WM_MEDIATYPE_UNKNOWN 0x00
530 #define WM_MEDIATYPE_FIBER 0x01
531 #define WM_MEDIATYPE_COPPER 0x02
532 #define WM_MEDIATYPE_SERDES 0x03 /* Internal SERDES */
533 int sc_funcid; /* unit number of the chip (0 to 3) */
534 int sc_flags; /* flags; see below */
535 u_short sc_if_flags; /* last if_flags */
536 int sc_ec_capenable; /* last ec_capenable */
537 int sc_flowflags; /* 802.3x flow control flags */
538 uint16_t eee_lp_ability; /* EEE link partner's ability */
539 int sc_align_tweak;
540
541 void *sc_ihs[WM_MAX_NINTR]; /*
542 * interrupt cookie.
543 * - legacy and msi use sc_ihs[0] only
544 * - msix use sc_ihs[0] to sc_ihs[nintrs-1]
545 */
546 pci_intr_handle_t *sc_intrs; /*
547 * legacy and msi use sc_intrs[0] only
548 * msix use sc_intrs[0] to sc_ihs[nintrs-1]
549 */
550 int sc_nintrs; /* number of interrupts */
551
552 int sc_link_intr_idx; /* index of MSI-X tables */
553
554 callout_t sc_tick_ch; /* tick callout */
555 bool sc_core_stopping;
556
557 int sc_nvm_ver_major;
558 int sc_nvm_ver_minor;
559 int sc_nvm_ver_build;
560 int sc_nvm_addrbits; /* NVM address bits */
561 unsigned int sc_nvm_wordsize; /* NVM word size */
562 int sc_ich8_flash_base;
563 int sc_ich8_flash_bank_size;
564 int sc_nvm_k1_enabled;
565
566 int sc_nqueues;
567 struct wm_queue *sc_queue;
568 u_int sc_tx_process_limit; /* Tx proc. repeat limit in softint */
569 u_int sc_tx_intr_process_limit; /* Tx proc. repeat limit in H/W intr */
570 u_int sc_rx_process_limit; /* Rx proc. repeat limit in softint */
571 u_int sc_rx_intr_process_limit; /* Rx proc. repeat limit in H/W intr */
572 struct workqueue *sc_queue_wq;
573 bool sc_txrx_use_workqueue;
574
575 int sc_affinity_offset;
576
577 #ifdef WM_EVENT_COUNTERS
578 /* Event counters. */
579 struct evcnt sc_ev_linkintr; /* Link interrupts */
580
581 /* WM_T_82542_2_1 only */
582 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
583 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
584 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
585 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
586 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
587 #endif /* WM_EVENT_COUNTERS */
588
589 struct sysctllog *sc_sysctllog;
590
591 /* This variable are used only on the 82547. */
592 callout_t sc_txfifo_ch; /* Tx FIFO stall work-around timer */
593
594 uint32_t sc_ctrl; /* prototype CTRL register */
595 #if 0
596 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
597 #endif
598 uint32_t sc_icr; /* prototype interrupt bits */
599 uint32_t sc_itr_init; /* prototype intr throttling reg */
600 uint32_t sc_tctl; /* prototype TCTL register */
601 uint32_t sc_rctl; /* prototype RCTL register */
602 uint32_t sc_txcw; /* prototype TXCW register */
603 uint32_t sc_tipg; /* prototype TIPG register */
604 uint32_t sc_fcrtl; /* prototype FCRTL register */
605 uint32_t sc_pba; /* prototype PBA register */
606
607 int sc_tbi_linkup; /* TBI link status */
608 int sc_tbi_serdes_anegticks; /* autonegotiation ticks */
609 int sc_tbi_serdes_ticks; /* tbi ticks */
610
611 int sc_mchash_type; /* multicast filter offset */
612
613 krndsource_t rnd_source; /* random source */
614
615 struct if_percpuq *sc_ipq; /* softint-based input queues */
616
617 kmutex_t *sc_core_lock; /* lock for softc operations */
618 kmutex_t *sc_ich_phymtx; /*
619 * 82574/82583/ICH/PCH specific PHY
620 * mutex. For 82574/82583, the mutex
621 * is used for both PHY and NVM.
622 */
623 kmutex_t *sc_ich_nvmmtx; /* ICH/PCH specific NVM mutex */
624
625 struct wm_phyop phy;
626 struct wm_nvmop nvm;
627 };
628
629 #define WM_CORE_LOCK(_sc) \
630 if ((_sc)->sc_core_lock) mutex_enter((_sc)->sc_core_lock)
631 #define WM_CORE_UNLOCK(_sc) \
632 if ((_sc)->sc_core_lock) mutex_exit((_sc)->sc_core_lock)
633 #define WM_CORE_LOCKED(_sc) \
634 (!(_sc)->sc_core_lock || mutex_owned((_sc)->sc_core_lock))
635
636 #define WM_RXCHAIN_RESET(rxq) \
637 do { \
638 (rxq)->rxq_tailp = &(rxq)->rxq_head; \
639 *(rxq)->rxq_tailp = NULL; \
640 (rxq)->rxq_len = 0; \
641 } while (/*CONSTCOND*/0)
642
643 #define WM_RXCHAIN_LINK(rxq, m) \
644 do { \
645 *(rxq)->rxq_tailp = (rxq)->rxq_tail = (m); \
646 (rxq)->rxq_tailp = &(m)->m_next; \
647 } while (/*CONSTCOND*/0)
648
649 #ifdef WM_EVENT_COUNTERS
650 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
651 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
652
653 #define WM_Q_EVCNT_INCR(qname, evname) \
654 WM_EVCNT_INCR(&(qname)->qname##_ev_##evname)
655 #define WM_Q_EVCNT_ADD(qname, evname, val) \
656 WM_EVCNT_ADD(&(qname)->qname##_ev_##evname, (val))
657 #else /* !WM_EVENT_COUNTERS */
658 #define WM_EVCNT_INCR(ev) /* nothing */
659 #define WM_EVCNT_ADD(ev, val) /* nothing */
660
661 #define WM_Q_EVCNT_INCR(qname, evname) /* nothing */
662 #define WM_Q_EVCNT_ADD(qname, evname, val) /* nothing */
663 #endif /* !WM_EVENT_COUNTERS */
664
665 #define CSR_READ(sc, reg) \
666 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
667 #define CSR_WRITE(sc, reg, val) \
668 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
669 #define CSR_WRITE_FLUSH(sc) \
670 (void)CSR_READ((sc), WMREG_STATUS)
671
672 #define ICH8_FLASH_READ32(sc, reg) \
673 bus_space_read_4((sc)->sc_flasht, (sc)->sc_flashh, \
674 (reg) + sc->sc_flashreg_offset)
675 #define ICH8_FLASH_WRITE32(sc, reg, data) \
676 bus_space_write_4((sc)->sc_flasht, (sc)->sc_flashh, \
677 (reg) + sc->sc_flashreg_offset, (data))
678
679 #define ICH8_FLASH_READ16(sc, reg) \
680 bus_space_read_2((sc)->sc_flasht, (sc)->sc_flashh, \
681 (reg) + sc->sc_flashreg_offset)
682 #define ICH8_FLASH_WRITE16(sc, reg, data) \
683 bus_space_write_2((sc)->sc_flasht, (sc)->sc_flashh, \
684 (reg) + sc->sc_flashreg_offset, (data))
685
686 #define WM_CDTXADDR(txq, x) ((txq)->txq_desc_dma + WM_CDTXOFF((txq), (x)))
687 #define WM_CDRXADDR(rxq, x) ((rxq)->rxq_desc_dma + WM_CDRXOFF((rxq), (x)))
688
689 #define WM_CDTXADDR_LO(txq, x) (WM_CDTXADDR((txq), (x)) & 0xffffffffU)
690 #define WM_CDTXADDR_HI(txq, x) \
691 (sizeof(bus_addr_t) == 8 ? \
692 (uint64_t)WM_CDTXADDR((txq), (x)) >> 32 : 0)
693
694 #define WM_CDRXADDR_LO(rxq, x) (WM_CDRXADDR((rxq), (x)) & 0xffffffffU)
695 #define WM_CDRXADDR_HI(rxq, x) \
696 (sizeof(bus_addr_t) == 8 ? \
697 (uint64_t)WM_CDRXADDR((rxq), (x)) >> 32 : 0)
698
699 /*
700 * Register read/write functions.
701 * Other than CSR_{READ|WRITE}().
702 */
703 #if 0
704 static inline uint32_t wm_io_read(struct wm_softc *, int);
705 #endif
706 static inline void wm_io_write(struct wm_softc *, int, uint32_t);
707 static inline void wm_82575_write_8bit_ctlr_reg(struct wm_softc *, uint32_t,
708 uint32_t, uint32_t);
709 static inline void wm_set_dma_addr(volatile wiseman_addr_t *, bus_addr_t);
710
711 /*
712 * Descriptor sync/init functions.
713 */
714 static inline void wm_cdtxsync(struct wm_txqueue *, int, int, int);
715 static inline void wm_cdrxsync(struct wm_rxqueue *, int, int);
716 static inline void wm_init_rxdesc(struct wm_rxqueue *, int);
717
718 /*
719 * Device driver interface functions and commonly used functions.
720 * match, attach, detach, init, start, stop, ioctl, watchdog and so on.
721 */
722 static const struct wm_product *wm_lookup(const struct pci_attach_args *);
723 static int wm_match(device_t, cfdata_t, void *);
724 static void wm_attach(device_t, device_t, void *);
725 static int wm_detach(device_t, int);
726 static bool wm_suspend(device_t, const pmf_qual_t *);
727 static bool wm_resume(device_t, const pmf_qual_t *);
728 static void wm_watchdog(struct ifnet *);
729 static void wm_watchdog_txq(struct ifnet *, struct wm_txqueue *,
730 uint16_t *);
731 static void wm_watchdog_txq_locked(struct ifnet *, struct wm_txqueue *,
732 uint16_t *);
733 static void wm_tick(void *);
734 static int wm_ifflags_cb(struct ethercom *);
735 static int wm_ioctl(struct ifnet *, u_long, void *);
736 /* MAC address related */
737 static uint16_t wm_check_alt_mac_addr(struct wm_softc *);
738 static int wm_read_mac_addr(struct wm_softc *, uint8_t *);
739 static void wm_set_ral(struct wm_softc *, const uint8_t *, int);
740 static uint32_t wm_mchash(struct wm_softc *, const uint8_t *);
741 static int wm_rar_count(struct wm_softc *);
742 static void wm_set_filter(struct wm_softc *);
743 /* Reset and init related */
744 static void wm_set_vlan(struct wm_softc *);
745 static void wm_set_pcie_completion_timeout(struct wm_softc *);
746 static void wm_get_auto_rd_done(struct wm_softc *);
747 static void wm_lan_init_done(struct wm_softc *);
748 static void wm_get_cfg_done(struct wm_softc *);
749 static int wm_phy_post_reset(struct wm_softc *);
750 static int wm_write_smbus_addr(struct wm_softc *);
751 static int wm_init_lcd_from_nvm(struct wm_softc *);
752 static int wm_oem_bits_config_ich8lan(struct wm_softc *, bool);
753 static void wm_initialize_hardware_bits(struct wm_softc *);
754 static uint32_t wm_rxpbs_adjust_82580(uint32_t);
755 static int wm_reset_phy(struct wm_softc *);
756 static void wm_flush_desc_rings(struct wm_softc *);
757 static void wm_reset(struct wm_softc *);
758 static int wm_add_rxbuf(struct wm_rxqueue *, int);
759 static void wm_rxdrain(struct wm_rxqueue *);
760 static void wm_init_rss(struct wm_softc *);
761 static void wm_adjust_qnum(struct wm_softc *, int);
762 static inline bool wm_is_using_msix(struct wm_softc *);
763 static inline bool wm_is_using_multiqueue(struct wm_softc *);
764 static int wm_softint_establish_queue(struct wm_softc *, int, int);
765 static int wm_setup_legacy(struct wm_softc *);
766 static int wm_setup_msix(struct wm_softc *);
767 static int wm_init(struct ifnet *);
768 static int wm_init_locked(struct ifnet *);
769 static void wm_init_sysctls(struct wm_softc *);
770 static void wm_unset_stopping_flags(struct wm_softc *);
771 static void wm_set_stopping_flags(struct wm_softc *);
772 static void wm_stop(struct ifnet *, int);
773 static void wm_stop_locked(struct ifnet *, bool, bool);
774 static void wm_dump_mbuf_chain(struct wm_softc *, struct mbuf *);
775 static void wm_82547_txfifo_stall(void *);
776 static int wm_82547_txfifo_bugchk(struct wm_softc *, struct mbuf *);
777 static void wm_itrs_writereg(struct wm_softc *, struct wm_queue *);
778 /* DMA related */
779 static int wm_alloc_tx_descs(struct wm_softc *, struct wm_txqueue *);
780 static void wm_free_tx_descs(struct wm_softc *, struct wm_txqueue *);
781 static void wm_init_tx_descs(struct wm_softc *, struct wm_txqueue *);
782 static void wm_init_tx_regs(struct wm_softc *, struct wm_queue *,
783 struct wm_txqueue *);
784 static int wm_alloc_rx_descs(struct wm_softc *, struct wm_rxqueue *);
785 static void wm_free_rx_descs(struct wm_softc *, struct wm_rxqueue *);
786 static void wm_init_rx_regs(struct wm_softc *, struct wm_queue *,
787 struct wm_rxqueue *);
788 static int wm_alloc_tx_buffer(struct wm_softc *, struct wm_txqueue *);
789 static void wm_free_tx_buffer(struct wm_softc *, struct wm_txqueue *);
790 static void wm_init_tx_buffer(struct wm_softc *, struct wm_txqueue *);
791 static int wm_alloc_rx_buffer(struct wm_softc *, struct wm_rxqueue *);
792 static void wm_free_rx_buffer(struct wm_softc *, struct wm_rxqueue *);
793 static int wm_init_rx_buffer(struct wm_softc *, struct wm_rxqueue *);
794 static void wm_init_tx_queue(struct wm_softc *, struct wm_queue *,
795 struct wm_txqueue *);
796 static int wm_init_rx_queue(struct wm_softc *, struct wm_queue *,
797 struct wm_rxqueue *);
798 static int wm_alloc_txrx_queues(struct wm_softc *);
799 static void wm_free_txrx_queues(struct wm_softc *);
800 static int wm_init_txrx_queues(struct wm_softc *);
801 /* Start */
802 static void wm_tx_offload(struct wm_softc *, struct wm_txqueue *,
803 struct wm_txsoft *, uint32_t *, uint8_t *);
804 static inline int wm_select_txqueue(struct ifnet *, struct mbuf *);
805 static void wm_start(struct ifnet *);
806 static void wm_start_locked(struct ifnet *);
807 static int wm_transmit(struct ifnet *, struct mbuf *);
808 static void wm_transmit_locked(struct ifnet *, struct wm_txqueue *);
809 static void wm_send_common_locked(struct ifnet *, struct wm_txqueue *,
810 bool);
811 static void wm_nq_tx_offload(struct wm_softc *, struct wm_txqueue *,
812 struct wm_txsoft *, uint32_t *, uint32_t *, bool *);
813 static void wm_nq_start(struct ifnet *);
814 static void wm_nq_start_locked(struct ifnet *);
815 static int wm_nq_transmit(struct ifnet *, struct mbuf *);
816 static void wm_nq_transmit_locked(struct ifnet *, struct wm_txqueue *);
817 static void wm_nq_send_common_locked(struct ifnet *, struct wm_txqueue *,
818 bool);
819 static void wm_deferred_start_locked(struct wm_txqueue *);
820 static void wm_handle_queue(void *);
821 static void wm_handle_queue_work(struct work *, void *);
822 /* Interrupt */
823 static bool wm_txeof(struct wm_txqueue *, u_int);
824 static bool wm_rxeof(struct wm_rxqueue *, u_int);
825 static void wm_linkintr_gmii(struct wm_softc *, uint32_t);
826 static void wm_linkintr_tbi(struct wm_softc *, uint32_t);
827 static void wm_linkintr_serdes(struct wm_softc *, uint32_t);
828 static void wm_linkintr(struct wm_softc *, uint32_t);
829 static int wm_intr_legacy(void *);
830 static inline void wm_txrxintr_disable(struct wm_queue *);
831 static inline void wm_txrxintr_enable(struct wm_queue *);
832 static void wm_itrs_calculate(struct wm_softc *, struct wm_queue *);
833 static int wm_txrxintr_msix(void *);
834 static int wm_linkintr_msix(void *);
835
836 /*
837 * Media related.
838 * GMII, SGMII, TBI, SERDES and SFP.
839 */
840 /* Common */
841 static void wm_tbi_serdes_set_linkled(struct wm_softc *);
842 /* GMII related */
843 static void wm_gmii_reset(struct wm_softc *);
844 static void wm_gmii_setup_phytype(struct wm_softc *, uint32_t, uint16_t);
845 static int wm_get_phy_id_82575(struct wm_softc *);
846 static void wm_gmii_mediainit(struct wm_softc *, pci_product_id_t);
847 static int wm_gmii_mediachange(struct ifnet *);
848 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
849 static void wm_i82543_mii_sendbits(struct wm_softc *, uint32_t, int);
850 static uint16_t wm_i82543_mii_recvbits(struct wm_softc *);
851 static int wm_gmii_i82543_readreg(device_t, int, int, uint16_t *);
852 static int wm_gmii_i82543_writereg(device_t, int, int, uint16_t);
853 static int wm_gmii_mdic_readreg(device_t, int, int, uint16_t *);
854 static int wm_gmii_mdic_writereg(device_t, int, int, uint16_t);
855 static int wm_gmii_i82544_readreg(device_t, int, int, uint16_t *);
856 static int wm_gmii_i82544_readreg_locked(device_t, int, int, uint16_t *);
857 static int wm_gmii_i82544_writereg(device_t, int, int, uint16_t);
858 static int wm_gmii_i82544_writereg_locked(device_t, int, int, uint16_t);
859 static int wm_gmii_i80003_readreg(device_t, int, int, uint16_t *);
860 static int wm_gmii_i80003_writereg(device_t, int, int, uint16_t);
861 static int wm_gmii_bm_readreg(device_t, int, int, uint16_t *);
862 static int wm_gmii_bm_writereg(device_t, int, int, uint16_t);
863 static int wm_enable_phy_wakeup_reg_access_bm(device_t, uint16_t *);
864 static int wm_disable_phy_wakeup_reg_access_bm(device_t, uint16_t *);
865 static int wm_access_phy_wakeup_reg_bm(device_t, int, int16_t *, int,
866 bool);
867 static int wm_gmii_hv_readreg(device_t, int, int, uint16_t *);
868 static int wm_gmii_hv_readreg_locked(device_t, int, int, uint16_t *);
869 static int wm_gmii_hv_writereg(device_t, int, int, uint16_t);
870 static int wm_gmii_hv_writereg_locked(device_t, int, int, uint16_t);
871 static int wm_gmii_82580_readreg(device_t, int, int, uint16_t *);
872 static int wm_gmii_82580_writereg(device_t, int, int, uint16_t);
873 static int wm_gmii_gs40g_readreg(device_t, int, int, uint16_t *);
874 static int wm_gmii_gs40g_writereg(device_t, int, int, uint16_t);
875 static void wm_gmii_statchg(struct ifnet *);
876 /*
877 * kumeran related (80003, ICH* and PCH*).
878 * These functions are not for accessing MII registers but for accessing
879 * kumeran specific registers.
880 */
881 static int wm_kmrn_readreg(struct wm_softc *, int, uint16_t *);
882 static int wm_kmrn_readreg_locked(struct wm_softc *, int, uint16_t *);
883 static int wm_kmrn_writereg(struct wm_softc *, int, uint16_t);
884 static int wm_kmrn_writereg_locked(struct wm_softc *, int, uint16_t);
885 /* EMI register related */
886 static int wm_access_emi_reg_locked(device_t, int, uint16_t *, bool);
887 static int wm_read_emi_reg_locked(device_t, int, uint16_t *);
888 static int wm_write_emi_reg_locked(device_t, int, uint16_t);
889 /* SGMII */
890 static bool wm_sgmii_uses_mdio(struct wm_softc *);
891 static void wm_sgmii_sfp_preconfig(struct wm_softc *);
892 static int wm_sgmii_readreg(device_t, int, int, uint16_t *);
893 static int wm_sgmii_readreg_locked(device_t, int, int, uint16_t *);
894 static int wm_sgmii_writereg(device_t, int, int, uint16_t);
895 static int wm_sgmii_writereg_locked(device_t, int, int, uint16_t);
896 /* TBI related */
897 static bool wm_tbi_havesignal(struct wm_softc *, uint32_t);
898 static void wm_tbi_mediainit(struct wm_softc *);
899 static int wm_tbi_mediachange(struct ifnet *);
900 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
901 static int wm_check_for_link(struct wm_softc *);
902 static void wm_tbi_tick(struct wm_softc *);
903 /* SERDES related */
904 static void wm_serdes_power_up_link_82575(struct wm_softc *);
905 static int wm_serdes_mediachange(struct ifnet *);
906 static void wm_serdes_mediastatus(struct ifnet *, struct ifmediareq *);
907 static void wm_serdes_tick(struct wm_softc *);
908 /* SFP related */
909 static int wm_sfp_read_data_byte(struct wm_softc *, uint16_t, uint8_t *);
910 static uint32_t wm_sfp_get_media_type(struct wm_softc *);
911
912 /*
913 * NVM related.
914 * Microwire, SPI (w/wo EERD) and Flash.
915 */
916 /* Misc functions */
917 static void wm_eeprom_sendbits(struct wm_softc *, uint32_t, int);
918 static void wm_eeprom_recvbits(struct wm_softc *, uint32_t *, int);
919 static int wm_nvm_set_addrbits_size_eecd(struct wm_softc *);
920 /* Microwire */
921 static int wm_nvm_read_uwire(struct wm_softc *, int, int, uint16_t *);
922 /* SPI */
923 static int wm_nvm_ready_spi(struct wm_softc *);
924 static int wm_nvm_read_spi(struct wm_softc *, int, int, uint16_t *);
925 /* Using with EERD */
926 static int wm_poll_eerd_eewr_done(struct wm_softc *, int);
927 static int wm_nvm_read_eerd(struct wm_softc *, int, int, uint16_t *);
928 /* Flash */
929 static int wm_nvm_valid_bank_detect_ich8lan(struct wm_softc *,
930 unsigned int *);
931 static int32_t wm_ich8_cycle_init(struct wm_softc *);
932 static int32_t wm_ich8_flash_cycle(struct wm_softc *, uint32_t);
933 static int32_t wm_read_ich8_data(struct wm_softc *, uint32_t, uint32_t,
934 uint32_t *);
935 static int32_t wm_read_ich8_byte(struct wm_softc *, uint32_t, uint8_t *);
936 static int32_t wm_read_ich8_word(struct wm_softc *, uint32_t, uint16_t *);
937 static int32_t wm_read_ich8_dword(struct wm_softc *, uint32_t, uint32_t *);
938 static int wm_nvm_read_ich8(struct wm_softc *, int, int, uint16_t *);
939 static int wm_nvm_read_spt(struct wm_softc *, int, int, uint16_t *);
940 /* iNVM */
941 static int wm_nvm_read_word_invm(struct wm_softc *, uint16_t, uint16_t *);
942 static int wm_nvm_read_invm(struct wm_softc *, int, int, uint16_t *);
943 /* Lock, detecting NVM type, validate checksum and read */
944 static int wm_nvm_is_onboard_eeprom(struct wm_softc *);
945 static int wm_nvm_flash_presence_i210(struct wm_softc *);
946 static int wm_nvm_validate_checksum(struct wm_softc *);
947 static void wm_nvm_version_invm(struct wm_softc *);
948 static void wm_nvm_version(struct wm_softc *);
949 static int wm_nvm_read(struct wm_softc *, int, int, uint16_t *);
950
951 /*
952 * Hardware semaphores.
953 * Very complexed...
954 */
955 static int wm_get_null(struct wm_softc *);
956 static void wm_put_null(struct wm_softc *);
957 static int wm_get_eecd(struct wm_softc *);
958 static void wm_put_eecd(struct wm_softc *);
959 static int wm_get_swsm_semaphore(struct wm_softc *); /* 8257[123] */
960 static void wm_put_swsm_semaphore(struct wm_softc *);
961 static int wm_get_swfw_semaphore(struct wm_softc *, uint16_t);
962 static void wm_put_swfw_semaphore(struct wm_softc *, uint16_t);
963 static int wm_get_nvm_80003(struct wm_softc *);
964 static void wm_put_nvm_80003(struct wm_softc *);
965 static int wm_get_nvm_82571(struct wm_softc *);
966 static void wm_put_nvm_82571(struct wm_softc *);
967 static int wm_get_phy_82575(struct wm_softc *);
968 static void wm_put_phy_82575(struct wm_softc *);
969 static int wm_get_swfwhw_semaphore(struct wm_softc *); /* For 574/583 */
970 static void wm_put_swfwhw_semaphore(struct wm_softc *);
971 static int wm_get_swflag_ich8lan(struct wm_softc *); /* For PHY */
972 static void wm_put_swflag_ich8lan(struct wm_softc *);
973 static int wm_get_nvm_ich8lan(struct wm_softc *);
974 static void wm_put_nvm_ich8lan(struct wm_softc *);
975 static int wm_get_hw_semaphore_82573(struct wm_softc *);
976 static void wm_put_hw_semaphore_82573(struct wm_softc *);
977
978 /*
979 * Management mode and power management related subroutines.
980 * BMC, AMT, suspend/resume and EEE.
981 */
982 #if 0
983 static int wm_check_mng_mode(struct wm_softc *);
984 static int wm_check_mng_mode_ich8lan(struct wm_softc *);
985 static int wm_check_mng_mode_82574(struct wm_softc *);
986 static int wm_check_mng_mode_generic(struct wm_softc *);
987 #endif
988 static int wm_enable_mng_pass_thru(struct wm_softc *);
989 static bool wm_phy_resetisblocked(struct wm_softc *);
990 static void wm_get_hw_control(struct wm_softc *);
991 static void wm_release_hw_control(struct wm_softc *);
992 static void wm_gate_hw_phy_config_ich8lan(struct wm_softc *, bool);
993 static int wm_init_phy_workarounds_pchlan(struct wm_softc *);
994 static void wm_init_manageability(struct wm_softc *);
995 static void wm_release_manageability(struct wm_softc *);
996 static void wm_get_wakeup(struct wm_softc *);
997 static int wm_ulp_disable(struct wm_softc *);
998 static int wm_enable_phy_wakeup(struct wm_softc *);
999 static void wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *);
1000 static void wm_suspend_workarounds_ich8lan(struct wm_softc *);
1001 static int wm_resume_workarounds_pchlan(struct wm_softc *);
1002 static void wm_enable_wakeup(struct wm_softc *);
1003 static void wm_disable_aspm(struct wm_softc *);
1004 /* LPLU (Low Power Link Up) */
1005 static void wm_lplu_d0_disable(struct wm_softc *);
1006 /* EEE */
1007 static int wm_set_eee_i350(struct wm_softc *);
1008 static int wm_set_eee_pchlan(struct wm_softc *);
1009 static int wm_set_eee(struct wm_softc *);
1010
1011 /*
1012 * Workarounds (mainly PHY related).
1013 * Basically, PHY's workarounds are in the PHY drivers.
1014 */
1015 static int wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *);
1016 static void wm_gig_downshift_workaround_ich8lan(struct wm_softc *);
1017 static int wm_hv_phy_workarounds_ich8lan(struct wm_softc *);
1018 static void wm_copy_rx_addrs_to_phy_ich8lan(struct wm_softc *);
1019 static int wm_lv_phy_workarounds_ich8lan(struct wm_softc *);
1020 static int wm_k1_workaround_lpt_lp(struct wm_softc *, bool);
1021 static int wm_k1_gig_workaround_hv(struct wm_softc *, int);
1022 static int wm_k1_workaround_lv(struct wm_softc *);
1023 static int wm_link_stall_workaround_hv(struct wm_softc *);
1024 static int wm_set_mdio_slow_mode_hv(struct wm_softc *);
1025 static void wm_configure_k1_ich8lan(struct wm_softc *, int);
1026 static void wm_reset_init_script_82575(struct wm_softc *);
1027 static void wm_reset_mdicnfg_82580(struct wm_softc *);
1028 static bool wm_phy_is_accessible_pchlan(struct wm_softc *);
1029 static void wm_toggle_lanphypc_pch_lpt(struct wm_softc *);
1030 static int wm_platform_pm_pch_lpt(struct wm_softc *, bool);
1031 static int wm_pll_workaround_i210(struct wm_softc *);
1032 static void wm_legacy_irq_quirk_spt(struct wm_softc *);
1033
1034 CFATTACH_DECL3_NEW(wm, sizeof(struct wm_softc),
1035 wm_match, wm_attach, wm_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1036
1037 /*
1038 * Devices supported by this driver.
1039 */
1040 static const struct wm_product {
1041 pci_vendor_id_t wmp_vendor;
1042 pci_product_id_t wmp_product;
1043 const char *wmp_name;
1044 wm_chip_type wmp_type;
1045 uint32_t wmp_flags;
1046 #define WMP_F_UNKNOWN WM_MEDIATYPE_UNKNOWN
1047 #define WMP_F_FIBER WM_MEDIATYPE_FIBER
1048 #define WMP_F_COPPER WM_MEDIATYPE_COPPER
1049 #define WMP_F_SERDES WM_MEDIATYPE_SERDES
1050 #define WMP_MEDIATYPE(x) ((x) & 0x03)
1051 } wm_products[] = {
1052 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
1053 "Intel i82542 1000BASE-X Ethernet",
1054 WM_T_82542_2_1, WMP_F_FIBER },
1055
1056 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
1057 "Intel i82543GC 1000BASE-X Ethernet",
1058 WM_T_82543, WMP_F_FIBER },
1059
1060 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
1061 "Intel i82543GC 1000BASE-T Ethernet",
1062 WM_T_82543, WMP_F_COPPER },
1063
1064 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
1065 "Intel i82544EI 1000BASE-T Ethernet",
1066 WM_T_82544, WMP_F_COPPER },
1067
1068 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
1069 "Intel i82544EI 1000BASE-X Ethernet",
1070 WM_T_82544, WMP_F_FIBER },
1071
1072 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
1073 "Intel i82544GC 1000BASE-T Ethernet",
1074 WM_T_82544, WMP_F_COPPER },
1075
1076 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
1077 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
1078 WM_T_82544, WMP_F_COPPER },
1079
1080 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
1081 "Intel i82540EM 1000BASE-T Ethernet",
1082 WM_T_82540, WMP_F_COPPER },
1083
1084 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
1085 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
1086 WM_T_82540, WMP_F_COPPER },
1087
1088 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
1089 "Intel i82540EP 1000BASE-T Ethernet",
1090 WM_T_82540, WMP_F_COPPER },
1091
1092 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
1093 "Intel i82540EP 1000BASE-T Ethernet",
1094 WM_T_82540, WMP_F_COPPER },
1095
1096 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
1097 "Intel i82540EP 1000BASE-T Ethernet",
1098 WM_T_82540, WMP_F_COPPER },
1099
1100 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
1101 "Intel i82545EM 1000BASE-T Ethernet",
1102 WM_T_82545, WMP_F_COPPER },
1103
1104 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
1105 "Intel i82545GM 1000BASE-T Ethernet",
1106 WM_T_82545_3, WMP_F_COPPER },
1107
1108 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
1109 "Intel i82545GM 1000BASE-X Ethernet",
1110 WM_T_82545_3, WMP_F_FIBER },
1111
1112 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
1113 "Intel i82545GM Gigabit Ethernet (SERDES)",
1114 WM_T_82545_3, WMP_F_SERDES },
1115
1116 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
1117 "Intel i82546EB 1000BASE-T Ethernet",
1118 WM_T_82546, WMP_F_COPPER },
1119
1120 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
1121 "Intel i82546EB 1000BASE-T Ethernet",
1122 WM_T_82546, WMP_F_COPPER },
1123
1124 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
1125 "Intel i82545EM 1000BASE-X Ethernet",
1126 WM_T_82545, WMP_F_FIBER },
1127
1128 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
1129 "Intel i82546EB 1000BASE-X Ethernet",
1130 WM_T_82546, WMP_F_FIBER },
1131
1132 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
1133 "Intel i82546GB 1000BASE-T Ethernet",
1134 WM_T_82546_3, WMP_F_COPPER },
1135
1136 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
1137 "Intel i82546GB 1000BASE-X Ethernet",
1138 WM_T_82546_3, WMP_F_FIBER },
1139
1140 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
1141 "Intel i82546GB Gigabit Ethernet (SERDES)",
1142 WM_T_82546_3, WMP_F_SERDES },
1143
1144 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER,
1145 "i82546GB quad-port Gigabit Ethernet",
1146 WM_T_82546_3, WMP_F_COPPER },
1147
1148 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3,
1149 "i82546GB quad-port Gigabit Ethernet (KSP3)",
1150 WM_T_82546_3, WMP_F_COPPER },
1151
1152 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_PCIE,
1153 "Intel PRO/1000MT (82546GB)",
1154 WM_T_82546_3, WMP_F_COPPER },
1155
1156 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
1157 "Intel i82541EI 1000BASE-T Ethernet",
1158 WM_T_82541, WMP_F_COPPER },
1159
1160 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER_LOM,
1161 "Intel i82541ER (LOM) 1000BASE-T Ethernet",
1162 WM_T_82541, WMP_F_COPPER },
1163
1164 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
1165 "Intel i82541EI Mobile 1000BASE-T Ethernet",
1166 WM_T_82541, WMP_F_COPPER },
1167
1168 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
1169 "Intel i82541ER 1000BASE-T Ethernet",
1170 WM_T_82541_2, WMP_F_COPPER },
1171
1172 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
1173 "Intel i82541GI 1000BASE-T Ethernet",
1174 WM_T_82541_2, WMP_F_COPPER },
1175
1176 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
1177 "Intel i82541GI Mobile 1000BASE-T Ethernet",
1178 WM_T_82541_2, WMP_F_COPPER },
1179
1180 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI,
1181 "Intel i82541PI 1000BASE-T Ethernet",
1182 WM_T_82541_2, WMP_F_COPPER },
1183
1184 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
1185 "Intel i82547EI 1000BASE-T Ethernet",
1186 WM_T_82547, WMP_F_COPPER },
1187
1188 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI_MOBILE,
1189 "Intel i82547EI Mobile 1000BASE-T Ethernet",
1190 WM_T_82547, WMP_F_COPPER },
1191
1192 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
1193 "Intel i82547GI 1000BASE-T Ethernet",
1194 WM_T_82547_2, WMP_F_COPPER },
1195
1196 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_COPPER,
1197 "Intel PRO/1000 PT (82571EB)",
1198 WM_T_82571, WMP_F_COPPER },
1199
1200 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_FIBER,
1201 "Intel PRO/1000 PF (82571EB)",
1202 WM_T_82571, WMP_F_FIBER },
1203
1204 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_SERDES,
1205 "Intel PRO/1000 PB (82571EB)",
1206 WM_T_82571, WMP_F_SERDES },
1207
1208 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER,
1209 "Intel PRO/1000 QT (82571EB)",
1210 WM_T_82571, WMP_F_COPPER },
1211
1212 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER,
1213 "Intel PRO/1000 PT Quad Port Server Adapter",
1214 WM_T_82571, WMP_F_COPPER },
1215
1216 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571PT_QUAD_COPPER,
1217 "Intel Gigabit PT Quad Port Server ExpressModule",
1218 WM_T_82571, WMP_F_COPPER },
1219
1220 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_DUAL_SERDES,
1221 "Intel 82571EB Dual Gigabit Ethernet (SERDES)",
1222 WM_T_82571, WMP_F_SERDES },
1223
1224 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_SERDES,
1225 "Intel 82571EB Quad Gigabit Ethernet (SERDES)",
1226 WM_T_82571, WMP_F_SERDES },
1227
1228 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_FIBER,
1229 "Intel 82571EB Quad 1000baseX Ethernet",
1230 WM_T_82571, WMP_F_FIBER },
1231
1232 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_COPPER,
1233 "Intel i82572EI 1000baseT Ethernet",
1234 WM_T_82572, WMP_F_COPPER },
1235
1236 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_FIBER,
1237 "Intel i82572EI 1000baseX Ethernet",
1238 WM_T_82572, WMP_F_FIBER },
1239
1240 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_SERDES,
1241 "Intel i82572EI Gigabit Ethernet (SERDES)",
1242 WM_T_82572, WMP_F_SERDES },
1243
1244 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI,
1245 "Intel i82572EI 1000baseT Ethernet",
1246 WM_T_82572, WMP_F_COPPER },
1247
1248 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E,
1249 "Intel i82573E",
1250 WM_T_82573, WMP_F_COPPER },
1251
1252 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E_IAMT,
1253 "Intel i82573E IAMT",
1254 WM_T_82573, WMP_F_COPPER },
1255
1256 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L,
1257 "Intel i82573L Gigabit Ethernet",
1258 WM_T_82573, WMP_F_COPPER },
1259
1260 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82574L,
1261 "Intel i82574L",
1262 WM_T_82574, WMP_F_COPPER },
1263
1264 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82574LA,
1265 "Intel i82574L",
1266 WM_T_82574, WMP_F_COPPER },
1267
1268 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82583V,
1269 "Intel i82583V",
1270 WM_T_82583, WMP_F_COPPER },
1271
1272 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT,
1273 "i80003 dual 1000baseT Ethernet",
1274 WM_T_80003, WMP_F_COPPER },
1275
1276 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT,
1277 "i80003 dual 1000baseX Ethernet",
1278 WM_T_80003, WMP_F_COPPER },
1279
1280 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT,
1281 "Intel i80003ES2 dual Gigabit Ethernet (SERDES)",
1282 WM_T_80003, WMP_F_SERDES },
1283
1284 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT,
1285 "Intel i80003 1000baseT Ethernet",
1286 WM_T_80003, WMP_F_COPPER },
1287
1288 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT,
1289 "Intel i80003 Gigabit Ethernet (SERDES)",
1290 WM_T_80003, WMP_F_SERDES },
1291
1292 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_AMT,
1293 "Intel i82801H (M_AMT) LAN Controller",
1294 WM_T_ICH8, WMP_F_COPPER },
1295 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_AMT,
1296 "Intel i82801H (AMT) LAN Controller",
1297 WM_T_ICH8, WMP_F_COPPER },
1298 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_LAN,
1299 "Intel i82801H LAN Controller",
1300 WM_T_ICH8, WMP_F_COPPER },
1301 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_LAN,
1302 "Intel i82801H (IFE) 10/100 LAN Controller",
1303 WM_T_ICH8, WMP_F_COPPER },
1304 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_LAN,
1305 "Intel i82801H (M) LAN Controller",
1306 WM_T_ICH8, WMP_F_COPPER },
1307 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_GT,
1308 "Intel i82801H IFE (GT) 10/100 LAN Controller",
1309 WM_T_ICH8, WMP_F_COPPER },
1310 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_G,
1311 "Intel i82801H IFE (G) 10/100 LAN Controller",
1312 WM_T_ICH8, WMP_F_COPPER },
1313 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_82567V_3,
1314 "82567V-3 LAN Controller",
1315 WM_T_ICH8, WMP_F_COPPER },
1316 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_AMT,
1317 "82801I (AMT) LAN Controller",
1318 WM_T_ICH9, WMP_F_COPPER },
1319 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE,
1320 "82801I 10/100 LAN Controller",
1321 WM_T_ICH9, WMP_F_COPPER },
1322 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_G,
1323 "82801I (G) 10/100 LAN Controller",
1324 WM_T_ICH9, WMP_F_COPPER },
1325 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_GT,
1326 "82801I (GT) 10/100 LAN Controller",
1327 WM_T_ICH9, WMP_F_COPPER },
1328 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_C,
1329 "82801I (C) LAN Controller",
1330 WM_T_ICH9, WMP_F_COPPER },
1331 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M,
1332 "82801I mobile LAN Controller",
1333 WM_T_ICH9, WMP_F_COPPER },
1334 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M_V,
1335 "82801I mobile (V) LAN Controller",
1336 WM_T_ICH9, WMP_F_COPPER },
1337 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M_AMT,
1338 "82801I mobile (AMT) LAN Controller",
1339 WM_T_ICH9, WMP_F_COPPER },
1340 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_BM,
1341 "82567LM-4 LAN Controller",
1342 WM_T_ICH9, WMP_F_COPPER },
1343 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_LM,
1344 "82567LM-2 LAN Controller",
1345 WM_T_ICH10, WMP_F_COPPER },
1346 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_LF,
1347 "82567LF-2 LAN Controller",
1348 WM_T_ICH10, WMP_F_COPPER },
1349 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_LM,
1350 "82567LM-3 LAN Controller",
1351 WM_T_ICH10, WMP_F_COPPER },
1352 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_LF,
1353 "82567LF-3 LAN Controller",
1354 WM_T_ICH10, WMP_F_COPPER },
1355 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_V,
1356 "82567V-2 LAN Controller",
1357 WM_T_ICH10, WMP_F_COPPER },
1358 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_V,
1359 "82567V-3? LAN Controller",
1360 WM_T_ICH10, WMP_F_COPPER },
1361 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_HANKSVILLE,
1362 "HANKSVILLE LAN Controller",
1363 WM_T_ICH10, WMP_F_COPPER },
1364 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_M_LM,
1365 "PCH LAN (82577LM) Controller",
1366 WM_T_PCH, WMP_F_COPPER },
1367 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_M_LC,
1368 "PCH LAN (82577LC) Controller",
1369 WM_T_PCH, WMP_F_COPPER },
1370 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_D_DM,
1371 "PCH LAN (82578DM) Controller",
1372 WM_T_PCH, WMP_F_COPPER },
1373 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_D_DC,
1374 "PCH LAN (82578DC) Controller",
1375 WM_T_PCH, WMP_F_COPPER },
1376 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH2_LV_LM,
1377 "PCH2 LAN (82579LM) Controller",
1378 WM_T_PCH2, WMP_F_COPPER },
1379 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH2_LV_V,
1380 "PCH2 LAN (82579V) Controller",
1381 WM_T_PCH2, WMP_F_COPPER },
1382 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575EB_COPPER,
1383 "82575EB dual-1000baseT Ethernet",
1384 WM_T_82575, WMP_F_COPPER },
1385 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575EB_FIBER_SERDES,
1386 "82575EB dual-1000baseX Ethernet (SERDES)",
1387 WM_T_82575, WMP_F_SERDES },
1388 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER,
1389 "82575GB quad-1000baseT Ethernet",
1390 WM_T_82575, WMP_F_COPPER },
1391 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER_PM,
1392 "82575GB quad-1000baseT Ethernet (PM)",
1393 WM_T_82575, WMP_F_COPPER },
1394 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_COPPER,
1395 "82576 1000BaseT Ethernet",
1396 WM_T_82576, WMP_F_COPPER },
1397 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_FIBER,
1398 "82576 1000BaseX Ethernet",
1399 WM_T_82576, WMP_F_FIBER },
1400
1401 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_SERDES,
1402 "82576 gigabit Ethernet (SERDES)",
1403 WM_T_82576, WMP_F_SERDES },
1404
1405 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_QUAD_COPPER,
1406 "82576 quad-1000BaseT Ethernet",
1407 WM_T_82576, WMP_F_COPPER },
1408
1409 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_QUAD_COPPER_ET2,
1410 "82576 Gigabit ET2 Quad Port Server Adapter",
1411 WM_T_82576, WMP_F_COPPER },
1412
1413 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_NS,
1414 "82576 gigabit Ethernet",
1415 WM_T_82576, WMP_F_COPPER },
1416
1417 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_NS_SERDES,
1418 "82576 gigabit Ethernet (SERDES)",
1419 WM_T_82576, WMP_F_SERDES },
1420 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_SERDES_QUAD,
1421 "82576 quad-gigabit Ethernet (SERDES)",
1422 WM_T_82576, WMP_F_SERDES },
1423
1424 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_COPPER,
1425 "82580 1000BaseT Ethernet",
1426 WM_T_82580, WMP_F_COPPER },
1427 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_FIBER,
1428 "82580 1000BaseX Ethernet",
1429 WM_T_82580, WMP_F_FIBER },
1430
1431 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_SERDES,
1432 "82580 1000BaseT Ethernet (SERDES)",
1433 WM_T_82580, WMP_F_SERDES },
1434
1435 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_SGMII,
1436 "82580 gigabit Ethernet (SGMII)",
1437 WM_T_82580, WMP_F_COPPER },
1438 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_COPPER_DUAL,
1439 "82580 dual-1000BaseT Ethernet",
1440 WM_T_82580, WMP_F_COPPER },
1441
1442 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_QUAD_FIBER,
1443 "82580 quad-1000BaseX Ethernet",
1444 WM_T_82580, WMP_F_FIBER },
1445
1446 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SGMII,
1447 "DH89XXCC Gigabit Ethernet (SGMII)",
1448 WM_T_82580, WMP_F_COPPER },
1449
1450 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SERDES,
1451 "DH89XXCC Gigabit Ethernet (SERDES)",
1452 WM_T_82580, WMP_F_SERDES },
1453
1454 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_BPLANE,
1455 "DH89XXCC 1000BASE-KX Ethernet",
1456 WM_T_82580, WMP_F_SERDES },
1457
1458 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SFP,
1459 "DH89XXCC Gigabit Ethernet (SFP)",
1460 WM_T_82580, WMP_F_SERDES },
1461
1462 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_COPPER,
1463 "I350 Gigabit Network Connection",
1464 WM_T_I350, WMP_F_COPPER },
1465
1466 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_FIBER,
1467 "I350 Gigabit Fiber Network Connection",
1468 WM_T_I350, WMP_F_FIBER },
1469
1470 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_SERDES,
1471 "I350 Gigabit Backplane Connection",
1472 WM_T_I350, WMP_F_SERDES },
1473
1474 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_DA4,
1475 "I350 Quad Port Gigabit Ethernet",
1476 WM_T_I350, WMP_F_SERDES },
1477
1478 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_SGMII,
1479 "I350 Gigabit Connection",
1480 WM_T_I350, WMP_F_COPPER },
1481
1482 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_1000KX,
1483 "I354 Gigabit Ethernet (KX)",
1484 WM_T_I354, WMP_F_SERDES },
1485
1486 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_SGMII,
1487 "I354 Gigabit Ethernet (SGMII)",
1488 WM_T_I354, WMP_F_COPPER },
1489
1490 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_25GBE,
1491 "I354 Gigabit Ethernet (2.5G)",
1492 WM_T_I354, WMP_F_COPPER },
1493
1494 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_T1,
1495 "I210-T1 Ethernet Server Adapter",
1496 WM_T_I210, WMP_F_COPPER },
1497
1498 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_OEM1,
1499 "I210 Ethernet (Copper OEM)",
1500 WM_T_I210, WMP_F_COPPER },
1501
1502 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_IT,
1503 "I210 Ethernet (Copper IT)",
1504 WM_T_I210, WMP_F_COPPER },
1505
1506 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_WOF,
1507 "I210 Ethernet (Copper, FLASH less)",
1508 WM_T_I210, WMP_F_COPPER },
1509
1510 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_FIBER,
1511 "I210 Gigabit Ethernet (Fiber)",
1512 WM_T_I210, WMP_F_FIBER },
1513
1514 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SERDES,
1515 "I210 Gigabit Ethernet (SERDES)",
1516 WM_T_I210, WMP_F_SERDES },
1517
1518 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SERDES_WOF,
1519 "I210 Gigabit Ethernet (SERDES, FLASH less)",
1520 WM_T_I210, WMP_F_SERDES },
1521
1522 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SGMII,
1523 "I210 Gigabit Ethernet (SGMII)",
1524 WM_T_I210, WMP_F_COPPER },
1525
1526 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SGMII_WOF,
1527 "I210 Gigabit Ethernet (SGMII, FLASH less)",
1528 WM_T_I210, WMP_F_COPPER },
1529
1530 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I211_COPPER,
1531 "I211 Ethernet (COPPER)",
1532 WM_T_I211, WMP_F_COPPER },
1533 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I217_V,
1534 "I217 V Ethernet Connection",
1535 WM_T_PCH_LPT, WMP_F_COPPER },
1536 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I217_LM,
1537 "I217 LM Ethernet Connection",
1538 WM_T_PCH_LPT, WMP_F_COPPER },
1539 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V,
1540 "I218 V Ethernet Connection",
1541 WM_T_PCH_LPT, WMP_F_COPPER },
1542 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V2,
1543 "I218 V Ethernet Connection",
1544 WM_T_PCH_LPT, WMP_F_COPPER },
1545 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V3,
1546 "I218 V Ethernet Connection",
1547 WM_T_PCH_LPT, WMP_F_COPPER },
1548 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM,
1549 "I218 LM Ethernet Connection",
1550 WM_T_PCH_LPT, WMP_F_COPPER },
1551 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM2,
1552 "I218 LM Ethernet Connection",
1553 WM_T_PCH_LPT, WMP_F_COPPER },
1554 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM3,
1555 "I218 LM Ethernet Connection",
1556 WM_T_PCH_LPT, WMP_F_COPPER },
1557 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM,
1558 "I219 LM Ethernet Connection",
1559 WM_T_PCH_SPT, WMP_F_COPPER },
1560 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM2,
1561 "I219 LM Ethernet Connection",
1562 WM_T_PCH_SPT, WMP_F_COPPER },
1563 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM3,
1564 "I219 LM Ethernet Connection",
1565 WM_T_PCH_SPT, WMP_F_COPPER },
1566 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM4,
1567 "I219 LM Ethernet Connection",
1568 WM_T_PCH_SPT, WMP_F_COPPER },
1569 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM5,
1570 "I219 LM Ethernet Connection",
1571 WM_T_PCH_SPT, WMP_F_COPPER },
1572 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM6,
1573 "I219 LM Ethernet Connection",
1574 WM_T_PCH_CNP, WMP_F_COPPER },
1575 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM7,
1576 "I219 LM Ethernet Connection",
1577 WM_T_PCH_CNP, WMP_F_COPPER },
1578 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM8,
1579 "I219 LM Ethernet Connection",
1580 WM_T_PCH_CNP, WMP_F_COPPER },
1581 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM9,
1582 "I219 LM Ethernet Connection",
1583 WM_T_PCH_CNP, WMP_F_COPPER },
1584 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM10,
1585 "I219 LM Ethernet Connection",
1586 WM_T_PCH_CNP, WMP_F_COPPER },
1587 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM11,
1588 "I219 LM Ethernet Connection",
1589 WM_T_PCH_CNP, WMP_F_COPPER },
1590 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM12,
1591 "I219 LM Ethernet Connection",
1592 WM_T_PCH_SPT, WMP_F_COPPER },
1593 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM13,
1594 "I219 LM Ethernet Connection",
1595 WM_T_PCH_CNP, WMP_F_COPPER },
1596 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM14,
1597 "I219 LM Ethernet Connection",
1598 WM_T_PCH_CNP, WMP_F_COPPER },
1599 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM15,
1600 "I219 LM Ethernet Connection",
1601 WM_T_PCH_CNP, WMP_F_COPPER },
1602 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V,
1603 "I219 V Ethernet Connection",
1604 WM_T_PCH_SPT, WMP_F_COPPER },
1605 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V2,
1606 "I219 V Ethernet Connection",
1607 WM_T_PCH_SPT, WMP_F_COPPER },
1608 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V4,
1609 "I219 V Ethernet Connection",
1610 WM_T_PCH_SPT, WMP_F_COPPER },
1611 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V5,
1612 "I219 V Ethernet Connection",
1613 WM_T_PCH_SPT, WMP_F_COPPER },
1614 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V6,
1615 "I219 V Ethernet Connection",
1616 WM_T_PCH_CNP, WMP_F_COPPER },
1617 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V7,
1618 "I219 V Ethernet Connection",
1619 WM_T_PCH_CNP, WMP_F_COPPER },
1620 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V8,
1621 "I219 V Ethernet Connection",
1622 WM_T_PCH_CNP, WMP_F_COPPER },
1623 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V9,
1624 "I219 V Ethernet Connection",
1625 WM_T_PCH_CNP, WMP_F_COPPER },
1626 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V10,
1627 "I219 V Ethernet Connection",
1628 WM_T_PCH_CNP, WMP_F_COPPER },
1629 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V11,
1630 "I219 V Ethernet Connection",
1631 WM_T_PCH_CNP, WMP_F_COPPER },
1632 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V12,
1633 "I219 V Ethernet Connection",
1634 WM_T_PCH_SPT, WMP_F_COPPER },
1635 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V13,
1636 "I219 V Ethernet Connection",
1637 WM_T_PCH_CNP, WMP_F_COPPER },
1638 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V14,
1639 "I219 V Ethernet Connection",
1640 WM_T_PCH_CNP, WMP_F_COPPER },
1641 { 0, 0,
1642 NULL,
1643 0, 0 },
1644 };
1645
1646 /*
1647 * Register read/write functions.
1648 * Other than CSR_{READ|WRITE}().
1649 */
1650
1651 #if 0 /* Not currently used */
1652 static inline uint32_t
1653 wm_io_read(struct wm_softc *sc, int reg)
1654 {
1655
1656 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
1657 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
1658 }
1659 #endif
1660
1661 static inline void
1662 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
1663 {
1664
1665 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
1666 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
1667 }
1668
1669 static inline void
1670 wm_82575_write_8bit_ctlr_reg(struct wm_softc *sc, uint32_t reg, uint32_t off,
1671 uint32_t data)
1672 {
1673 uint32_t regval;
1674 int i;
1675
1676 regval = (data & SCTL_CTL_DATA_MASK) | (off << SCTL_CTL_ADDR_SHIFT);
1677
1678 CSR_WRITE(sc, reg, regval);
1679
1680 for (i = 0; i < SCTL_CTL_POLL_TIMEOUT; i++) {
1681 delay(5);
1682 if (CSR_READ(sc, reg) & SCTL_CTL_READY)
1683 break;
1684 }
1685 if (i == SCTL_CTL_POLL_TIMEOUT) {
1686 aprint_error("%s: WARNING:"
1687 " i82575 reg 0x%08x setup did not indicate ready\n",
1688 device_xname(sc->sc_dev), reg);
1689 }
1690 }
1691
1692 static inline void
1693 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
1694 {
1695 wa->wa_low = htole32(v & 0xffffffffU);
1696 if (sizeof(bus_addr_t) == 8)
1697 wa->wa_high = htole32((uint64_t) v >> 32);
1698 else
1699 wa->wa_high = 0;
1700 }
1701
1702 /*
1703 * Descriptor sync/init functions.
1704 */
1705 static inline void
1706 wm_cdtxsync(struct wm_txqueue *txq, int start, int num, int ops)
1707 {
1708 struct wm_softc *sc = txq->txq_sc;
1709
1710 /* If it will wrap around, sync to the end of the ring. */
1711 if ((start + num) > WM_NTXDESC(txq)) {
1712 bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_dmamap,
1713 WM_CDTXOFF(txq, start), txq->txq_descsize *
1714 (WM_NTXDESC(txq) - start), ops);
1715 num -= (WM_NTXDESC(txq) - start);
1716 start = 0;
1717 }
1718
1719 /* Now sync whatever is left. */
1720 bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_dmamap,
1721 WM_CDTXOFF(txq, start), txq->txq_descsize * num, ops);
1722 }
1723
1724 static inline void
1725 wm_cdrxsync(struct wm_rxqueue *rxq, int start, int ops)
1726 {
1727 struct wm_softc *sc = rxq->rxq_sc;
1728
1729 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_dmamap,
1730 WM_CDRXOFF(rxq, start), rxq->rxq_descsize, ops);
1731 }
1732
1733 static inline void
1734 wm_init_rxdesc(struct wm_rxqueue *rxq, int start)
1735 {
1736 struct wm_softc *sc = rxq->rxq_sc;
1737 struct wm_rxsoft *rxs = &rxq->rxq_soft[start];
1738 struct mbuf *m = rxs->rxs_mbuf;
1739
1740 /*
1741 * Note: We scoot the packet forward 2 bytes in the buffer
1742 * so that the payload after the Ethernet header is aligned
1743 * to a 4-byte boundary.
1744
1745 * XXX BRAINDAMAGE ALERT!
1746 * The stupid chip uses the same size for every buffer, which
1747 * is set in the Receive Control register. We are using the 2K
1748 * size option, but what we REALLY want is (2K - 2)! For this
1749 * reason, we can't "scoot" packets longer than the standard
1750 * Ethernet MTU. On strict-alignment platforms, if the total
1751 * size exceeds (2K - 2) we set align_tweak to 0 and let
1752 * the upper layer copy the headers.
1753 */
1754 m->m_data = m->m_ext.ext_buf + sc->sc_align_tweak;
1755
1756 if (sc->sc_type == WM_T_82574) {
1757 ext_rxdesc_t *rxd = &rxq->rxq_ext_descs[start];
1758 rxd->erx_data.erxd_addr =
1759 htole64(rxs->rxs_dmamap->dm_segs[0].ds_addr + sc->sc_align_tweak);
1760 rxd->erx_data.erxd_dd = 0;
1761 } else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
1762 nq_rxdesc_t *rxd = &rxq->rxq_nq_descs[start];
1763
1764 rxd->nqrx_data.nrxd_paddr =
1765 htole64(rxs->rxs_dmamap->dm_segs[0].ds_addr + sc->sc_align_tweak);
1766 /* Currently, split header is not supported. */
1767 rxd->nqrx_data.nrxd_haddr = 0;
1768 } else {
1769 wiseman_rxdesc_t *rxd = &rxq->rxq_descs[start];
1770
1771 wm_set_dma_addr(&rxd->wrx_addr,
1772 rxs->rxs_dmamap->dm_segs[0].ds_addr + sc->sc_align_tweak);
1773 rxd->wrx_len = 0;
1774 rxd->wrx_cksum = 0;
1775 rxd->wrx_status = 0;
1776 rxd->wrx_errors = 0;
1777 rxd->wrx_special = 0;
1778 }
1779 wm_cdrxsync(rxq, start, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1780
1781 CSR_WRITE(sc, rxq->rxq_rdt_reg, start);
1782 }
1783
1784 /*
1785 * Device driver interface functions and commonly used functions.
1786 * match, attach, detach, init, start, stop, ioctl, watchdog and so on.
1787 */
1788
1789 /* Lookup supported device table */
1790 static const struct wm_product *
1791 wm_lookup(const struct pci_attach_args *pa)
1792 {
1793 const struct wm_product *wmp;
1794
1795 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
1796 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
1797 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
1798 return wmp;
1799 }
1800 return NULL;
1801 }
1802
1803 /* The match function (ca_match) */
1804 static int
1805 wm_match(device_t parent, cfdata_t cf, void *aux)
1806 {
1807 struct pci_attach_args *pa = aux;
1808
1809 if (wm_lookup(pa) != NULL)
1810 return 1;
1811
1812 return 0;
1813 }
1814
1815 /* The attach function (ca_attach) */
1816 static void
1817 wm_attach(device_t parent, device_t self, void *aux)
1818 {
1819 struct wm_softc *sc = device_private(self);
1820 struct pci_attach_args *pa = aux;
1821 prop_dictionary_t dict;
1822 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1823 pci_chipset_tag_t pc = pa->pa_pc;
1824 int counts[PCI_INTR_TYPE_SIZE];
1825 pci_intr_type_t max_type;
1826 const char *eetype, *xname;
1827 bus_space_tag_t memt;
1828 bus_space_handle_t memh;
1829 bus_size_t memsize;
1830 int memh_valid;
1831 int i, error;
1832 const struct wm_product *wmp;
1833 prop_data_t ea;
1834 prop_number_t pn;
1835 uint8_t enaddr[ETHER_ADDR_LEN];
1836 char buf[256];
1837 char wqname[MAXCOMLEN];
1838 uint16_t cfg1, cfg2, swdpin, nvmword;
1839 pcireg_t preg, memtype;
1840 uint16_t eeprom_data, apme_mask;
1841 bool force_clear_smbi;
1842 uint32_t link_mode;
1843 uint32_t reg;
1844
1845 sc->sc_dev = self;
1846 callout_init(&sc->sc_tick_ch, WM_CALLOUT_FLAGS);
1847 callout_setfunc(&sc->sc_tick_ch, wm_tick, sc);
1848 sc->sc_core_stopping = false;
1849
1850 wmp = wm_lookup(pa);
1851 #ifdef DIAGNOSTIC
1852 if (wmp == NULL) {
1853 printf("\n");
1854 panic("wm_attach: impossible");
1855 }
1856 #endif
1857 sc->sc_mediatype = WMP_MEDIATYPE(wmp->wmp_flags);
1858
1859 sc->sc_pc = pa->pa_pc;
1860 sc->sc_pcitag = pa->pa_tag;
1861
1862 if (pci_dma64_available(pa))
1863 sc->sc_dmat = pa->pa_dmat64;
1864 else
1865 sc->sc_dmat = pa->pa_dmat;
1866
1867 sc->sc_pcidevid = PCI_PRODUCT(pa->pa_id);
1868 sc->sc_rev = PCI_REVISION(pci_conf_read(pc, pa->pa_tag,PCI_CLASS_REG));
1869 pci_aprint_devinfo_fancy(pa, "Ethernet controller", wmp->wmp_name, 1);
1870
1871 sc->sc_type = wmp->wmp_type;
1872
1873 /* Set default function pointers */
1874 sc->phy.acquire = sc->nvm.acquire = wm_get_null;
1875 sc->phy.release = sc->nvm.release = wm_put_null;
1876 sc->phy.reset_delay_us = (sc->sc_type >= WM_T_82571) ? 100 : 10000;
1877
1878 if (sc->sc_type < WM_T_82543) {
1879 if (sc->sc_rev < 2) {
1880 aprint_error_dev(sc->sc_dev,
1881 "i82542 must be at least rev. 2\n");
1882 return;
1883 }
1884 if (sc->sc_rev < 3)
1885 sc->sc_type = WM_T_82542_2_0;
1886 }
1887
1888 /*
1889 * Disable MSI for Errata:
1890 * "Message Signaled Interrupt Feature May Corrupt Write Transactions"
1891 *
1892 * 82544: Errata 25
1893 * 82540: Errata 6 (easy to reproduce device timeout)
1894 * 82545: Errata 4 (easy to reproduce device timeout)
1895 * 82546: Errata 26 (easy to reproduce device timeout)
1896 * 82541: Errata 7 (easy to reproduce device timeout)
1897 *
1898 * "Byte Enables 2 and 3 are not set on MSI writes"
1899 *
1900 * 82571 & 82572: Errata 63
1901 */
1902 if ((sc->sc_type <= WM_T_82541_2) || (sc->sc_type == WM_T_82571)
1903 || (sc->sc_type == WM_T_82572))
1904 pa->pa_flags &= ~PCI_FLAGS_MSI_OKAY;
1905
1906 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
1907 || (sc->sc_type == WM_T_82580)
1908 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
1909 || (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211))
1910 sc->sc_flags |= WM_F_NEWQUEUE;
1911
1912 /* Set device properties (mactype) */
1913 dict = device_properties(sc->sc_dev);
1914 prop_dictionary_set_uint32(dict, "mactype", sc->sc_type);
1915
1916 /*
1917 * Map the device. All devices support memory-mapped acccess,
1918 * and it is really required for normal operation.
1919 */
1920 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
1921 switch (memtype) {
1922 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1923 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1924 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
1925 memtype, 0, &memt, &memh, NULL, &memsize) == 0);
1926 break;
1927 default:
1928 memh_valid = 0;
1929 break;
1930 }
1931
1932 if (memh_valid) {
1933 sc->sc_st = memt;
1934 sc->sc_sh = memh;
1935 sc->sc_ss = memsize;
1936 } else {
1937 aprint_error_dev(sc->sc_dev,
1938 "unable to map device registers\n");
1939 return;
1940 }
1941
1942 /*
1943 * In addition, i82544 and later support I/O mapped indirect
1944 * register access. It is not desirable (nor supported in
1945 * this driver) to use it for normal operation, though it is
1946 * required to work around bugs in some chip versions.
1947 */
1948 if (sc->sc_type >= WM_T_82544) {
1949 /* First we have to find the I/O BAR. */
1950 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
1951 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, i);
1952 if (memtype == PCI_MAPREG_TYPE_IO)
1953 break;
1954 if (PCI_MAPREG_MEM_TYPE(memtype) ==
1955 PCI_MAPREG_MEM_TYPE_64BIT)
1956 i += 4; /* skip high bits, too */
1957 }
1958 if (i < PCI_MAPREG_END) {
1959 /*
1960 * We found PCI_MAPREG_TYPE_IO. Note that 82580
1961 * (and newer?) chip has no PCI_MAPREG_TYPE_IO.
1962 * It's no problem because newer chips has no this
1963 * bug.
1964 *
1965 * The i8254x doesn't apparently respond when the
1966 * I/O BAR is 0, which looks somewhat like it's not
1967 * been configured.
1968 */
1969 preg = pci_conf_read(pc, pa->pa_tag, i);
1970 if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
1971 aprint_error_dev(sc->sc_dev,
1972 "WARNING: I/O BAR at zero.\n");
1973 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
1974 0, &sc->sc_iot, &sc->sc_ioh,
1975 NULL, &sc->sc_ios) == 0) {
1976 sc->sc_flags |= WM_F_IOH_VALID;
1977 } else
1978 aprint_error_dev(sc->sc_dev,
1979 "WARNING: unable to map I/O space\n");
1980 }
1981
1982 }
1983
1984 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
1985 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1986 preg |= PCI_COMMAND_MASTER_ENABLE;
1987 if (sc->sc_type < WM_T_82542_2_1)
1988 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
1989 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
1990
1991 /* Power up chip */
1992 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL))
1993 && error != EOPNOTSUPP) {
1994 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1995 return;
1996 }
1997
1998 wm_adjust_qnum(sc, pci_msix_count(pa->pa_pc, pa->pa_tag));
1999 /*
2000 * Don't use MSI-X if we can use only one queue to save interrupt
2001 * resource.
2002 */
2003 if (sc->sc_nqueues > 1) {
2004 max_type = PCI_INTR_TYPE_MSIX;
2005 /*
2006 * 82583 has a MSI-X capability in the PCI configuration space
2007 * but it doesn't support it. At least the document doesn't
2008 * say anything about MSI-X.
2009 */
2010 counts[PCI_INTR_TYPE_MSIX]
2011 = (sc->sc_type == WM_T_82583) ? 0 : sc->sc_nqueues + 1;
2012 } else {
2013 max_type = PCI_INTR_TYPE_MSI;
2014 counts[PCI_INTR_TYPE_MSIX] = 0;
2015 }
2016
2017 /* Allocation settings */
2018 counts[PCI_INTR_TYPE_MSI] = 1;
2019 counts[PCI_INTR_TYPE_INTX] = 1;
2020 /* overridden by disable flags */
2021 if (wm_disable_msi != 0) {
2022 counts[PCI_INTR_TYPE_MSI] = 0;
2023 if (wm_disable_msix != 0) {
2024 max_type = PCI_INTR_TYPE_INTX;
2025 counts[PCI_INTR_TYPE_MSIX] = 0;
2026 }
2027 } else if (wm_disable_msix != 0) {
2028 max_type = PCI_INTR_TYPE_MSI;
2029 counts[PCI_INTR_TYPE_MSIX] = 0;
2030 }
2031
2032 alloc_retry:
2033 if (pci_intr_alloc(pa, &sc->sc_intrs, counts, max_type) != 0) {
2034 aprint_error_dev(sc->sc_dev, "failed to allocate interrupt\n");
2035 return;
2036 }
2037
2038 if (pci_intr_type(pc, sc->sc_intrs[0]) == PCI_INTR_TYPE_MSIX) {
2039 error = wm_setup_msix(sc);
2040 if (error) {
2041 pci_intr_release(pc, sc->sc_intrs,
2042 counts[PCI_INTR_TYPE_MSIX]);
2043
2044 /* Setup for MSI: Disable MSI-X */
2045 max_type = PCI_INTR_TYPE_MSI;
2046 counts[PCI_INTR_TYPE_MSI] = 1;
2047 counts[PCI_INTR_TYPE_INTX] = 1;
2048 goto alloc_retry;
2049 }
2050 } else if (pci_intr_type(pc, sc->sc_intrs[0]) == PCI_INTR_TYPE_MSI) {
2051 wm_adjust_qnum(sc, 0); /* Must not use multiqueue */
2052 error = wm_setup_legacy(sc);
2053 if (error) {
2054 pci_intr_release(sc->sc_pc, sc->sc_intrs,
2055 counts[PCI_INTR_TYPE_MSI]);
2056
2057 /* The next try is for INTx: Disable MSI */
2058 max_type = PCI_INTR_TYPE_INTX;
2059 counts[PCI_INTR_TYPE_INTX] = 1;
2060 goto alloc_retry;
2061 }
2062 } else {
2063 wm_adjust_qnum(sc, 0); /* Must not use multiqueue */
2064 error = wm_setup_legacy(sc);
2065 if (error) {
2066 pci_intr_release(sc->sc_pc, sc->sc_intrs,
2067 counts[PCI_INTR_TYPE_INTX]);
2068 return;
2069 }
2070 }
2071
2072 snprintf(wqname, sizeof(wqname), "%sTxRx", device_xname(sc->sc_dev));
2073 error = workqueue_create(&sc->sc_queue_wq, wqname,
2074 wm_handle_queue_work, sc, WM_WORKQUEUE_PRI, IPL_NET,
2075 WM_WORKQUEUE_FLAGS);
2076 if (error) {
2077 aprint_error_dev(sc->sc_dev,
2078 "unable to create workqueue\n");
2079 goto out;
2080 }
2081
2082 /*
2083 * Check the function ID (unit number of the chip).
2084 */
2085 if ((sc->sc_type == WM_T_82546) || (sc->sc_type == WM_T_82546_3)
2086 || (sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_80003)
2087 || (sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
2088 || (sc->sc_type == WM_T_82580)
2089 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354))
2090 sc->sc_funcid = (CSR_READ(sc, WMREG_STATUS)
2091 >> STATUS_FUNCID_SHIFT) & STATUS_FUNCID_MASK;
2092 else
2093 sc->sc_funcid = 0;
2094
2095 /*
2096 * Determine a few things about the bus we're connected to.
2097 */
2098 if (sc->sc_type < WM_T_82543) {
2099 /* We don't really know the bus characteristics here. */
2100 sc->sc_bus_speed = 33;
2101 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
2102 /*
2103 * CSA (Communication Streaming Architecture) is about as fast
2104 * a 32-bit 66MHz PCI Bus.
2105 */
2106 sc->sc_flags |= WM_F_CSA;
2107 sc->sc_bus_speed = 66;
2108 aprint_verbose_dev(sc->sc_dev,
2109 "Communication Streaming Architecture\n");
2110 if (sc->sc_type == WM_T_82547) {
2111 callout_init(&sc->sc_txfifo_ch, WM_CALLOUT_FLAGS);
2112 callout_setfunc(&sc->sc_txfifo_ch,
2113 wm_82547_txfifo_stall, sc);
2114 aprint_verbose_dev(sc->sc_dev,
2115 "using 82547 Tx FIFO stall work-around\n");
2116 }
2117 } else if (sc->sc_type >= WM_T_82571) {
2118 sc->sc_flags |= WM_F_PCIE;
2119 if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9)
2120 && (sc->sc_type != WM_T_ICH10)
2121 && (sc->sc_type != WM_T_PCH)
2122 && (sc->sc_type != WM_T_PCH2)
2123 && (sc->sc_type != WM_T_PCH_LPT)
2124 && (sc->sc_type != WM_T_PCH_SPT)
2125 && (sc->sc_type != WM_T_PCH_CNP)) {
2126 /* ICH* and PCH* have no PCIe capability registers */
2127 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
2128 PCI_CAP_PCIEXPRESS, &sc->sc_pcixe_capoff,
2129 NULL) == 0)
2130 aprint_error_dev(sc->sc_dev,
2131 "unable to find PCIe capability\n");
2132 }
2133 aprint_verbose_dev(sc->sc_dev, "PCI-Express bus\n");
2134 } else {
2135 reg = CSR_READ(sc, WMREG_STATUS);
2136 if (reg & STATUS_BUS64)
2137 sc->sc_flags |= WM_F_BUS64;
2138 if ((reg & STATUS_PCIX_MODE) != 0) {
2139 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
2140
2141 sc->sc_flags |= WM_F_PCIX;
2142 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
2143 PCI_CAP_PCIX, &sc->sc_pcixe_capoff, NULL) == 0)
2144 aprint_error_dev(sc->sc_dev,
2145 "unable to find PCIX capability\n");
2146 else if (sc->sc_type != WM_T_82545_3 &&
2147 sc->sc_type != WM_T_82546_3) {
2148 /*
2149 * Work around a problem caused by the BIOS
2150 * setting the max memory read byte count
2151 * incorrectly.
2152 */
2153 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
2154 sc->sc_pcixe_capoff + PCIX_CMD);
2155 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
2156 sc->sc_pcixe_capoff + PCIX_STATUS);
2157
2158 bytecnt = (pcix_cmd & PCIX_CMD_BYTECNT_MASK) >>
2159 PCIX_CMD_BYTECNT_SHIFT;
2160 maxb = (pcix_sts & PCIX_STATUS_MAXB_MASK) >>
2161 PCIX_STATUS_MAXB_SHIFT;
2162 if (bytecnt > maxb) {
2163 aprint_verbose_dev(sc->sc_dev,
2164 "resetting PCI-X MMRBC: %d -> %d\n",
2165 512 << bytecnt, 512 << maxb);
2166 pcix_cmd = (pcix_cmd &
2167 ~PCIX_CMD_BYTECNT_MASK) |
2168 (maxb << PCIX_CMD_BYTECNT_SHIFT);
2169 pci_conf_write(pa->pa_pc, pa->pa_tag,
2170 sc->sc_pcixe_capoff + PCIX_CMD,
2171 pcix_cmd);
2172 }
2173 }
2174 }
2175 /*
2176 * The quad port adapter is special; it has a PCIX-PCIX
2177 * bridge on the board, and can run the secondary bus at
2178 * a higher speed.
2179 */
2180 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
2181 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
2182 : 66;
2183 } else if (sc->sc_flags & WM_F_PCIX) {
2184 switch (reg & STATUS_PCIXSPD_MASK) {
2185 case STATUS_PCIXSPD_50_66:
2186 sc->sc_bus_speed = 66;
2187 break;
2188 case STATUS_PCIXSPD_66_100:
2189 sc->sc_bus_speed = 100;
2190 break;
2191 case STATUS_PCIXSPD_100_133:
2192 sc->sc_bus_speed = 133;
2193 break;
2194 default:
2195 aprint_error_dev(sc->sc_dev,
2196 "unknown PCIXSPD %d; assuming 66MHz\n",
2197 reg & STATUS_PCIXSPD_MASK);
2198 sc->sc_bus_speed = 66;
2199 break;
2200 }
2201 } else
2202 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
2203 aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
2204 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
2205 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
2206 }
2207
2208 /* clear interesting stat counters */
2209 CSR_READ(sc, WMREG_COLC);
2210 CSR_READ(sc, WMREG_RXERRC);
2211
2212 if ((sc->sc_type == WM_T_82574) || (sc->sc_type == WM_T_82583)
2213 || (sc->sc_type >= WM_T_ICH8))
2214 sc->sc_ich_phymtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
2215 if (sc->sc_type >= WM_T_ICH8)
2216 sc->sc_ich_nvmmtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
2217
2218 /* Set PHY, NVM mutex related stuff */
2219 switch (sc->sc_type) {
2220 case WM_T_82542_2_0:
2221 case WM_T_82542_2_1:
2222 case WM_T_82543:
2223 case WM_T_82544:
2224 /* Microwire */
2225 sc->nvm.read = wm_nvm_read_uwire;
2226 sc->sc_nvm_wordsize = 64;
2227 sc->sc_nvm_addrbits = 6;
2228 break;
2229 case WM_T_82540:
2230 case WM_T_82545:
2231 case WM_T_82545_3:
2232 case WM_T_82546:
2233 case WM_T_82546_3:
2234 /* Microwire */
2235 sc->nvm.read = wm_nvm_read_uwire;
2236 reg = CSR_READ(sc, WMREG_EECD);
2237 if (reg & EECD_EE_SIZE) {
2238 sc->sc_nvm_wordsize = 256;
2239 sc->sc_nvm_addrbits = 8;
2240 } else {
2241 sc->sc_nvm_wordsize = 64;
2242 sc->sc_nvm_addrbits = 6;
2243 }
2244 sc->sc_flags |= WM_F_LOCK_EECD;
2245 sc->nvm.acquire = wm_get_eecd;
2246 sc->nvm.release = wm_put_eecd;
2247 break;
2248 case WM_T_82541:
2249 case WM_T_82541_2:
2250 case WM_T_82547:
2251 case WM_T_82547_2:
2252 reg = CSR_READ(sc, WMREG_EECD);
2253 /*
2254 * wm_nvm_set_addrbits_size_eecd() accesses SPI in it only
2255 * on 8254[17], so set flags and functios before calling it.
2256 */
2257 sc->sc_flags |= WM_F_LOCK_EECD;
2258 sc->nvm.acquire = wm_get_eecd;
2259 sc->nvm.release = wm_put_eecd;
2260 if (reg & EECD_EE_TYPE) {
2261 /* SPI */
2262 sc->nvm.read = wm_nvm_read_spi;
2263 sc->sc_flags |= WM_F_EEPROM_SPI;
2264 wm_nvm_set_addrbits_size_eecd(sc);
2265 } else {
2266 /* Microwire */
2267 sc->nvm.read = wm_nvm_read_uwire;
2268 if ((reg & EECD_EE_ABITS) != 0) {
2269 sc->sc_nvm_wordsize = 256;
2270 sc->sc_nvm_addrbits = 8;
2271 } else {
2272 sc->sc_nvm_wordsize = 64;
2273 sc->sc_nvm_addrbits = 6;
2274 }
2275 }
2276 break;
2277 case WM_T_82571:
2278 case WM_T_82572:
2279 /* SPI */
2280 sc->nvm.read = wm_nvm_read_eerd;
2281 /* Not use WM_F_LOCK_EECD because we use EERD */
2282 sc->sc_flags |= WM_F_EEPROM_SPI;
2283 wm_nvm_set_addrbits_size_eecd(sc);
2284 sc->phy.acquire = wm_get_swsm_semaphore;
2285 sc->phy.release = wm_put_swsm_semaphore;
2286 sc->nvm.acquire = wm_get_nvm_82571;
2287 sc->nvm.release = wm_put_nvm_82571;
2288 break;
2289 case WM_T_82573:
2290 case WM_T_82574:
2291 case WM_T_82583:
2292 sc->nvm.read = wm_nvm_read_eerd;
2293 /* Not use WM_F_LOCK_EECD because we use EERD */
2294 if (sc->sc_type == WM_T_82573) {
2295 sc->phy.acquire = wm_get_swsm_semaphore;
2296 sc->phy.release = wm_put_swsm_semaphore;
2297 sc->nvm.acquire = wm_get_nvm_82571;
2298 sc->nvm.release = wm_put_nvm_82571;
2299 } else {
2300 /* Both PHY and NVM use the same semaphore. */
2301 sc->phy.acquire = sc->nvm.acquire
2302 = wm_get_swfwhw_semaphore;
2303 sc->phy.release = sc->nvm.release
2304 = wm_put_swfwhw_semaphore;
2305 }
2306 if (wm_nvm_is_onboard_eeprom(sc) == 0) {
2307 sc->sc_flags |= WM_F_EEPROM_FLASH;
2308 sc->sc_nvm_wordsize = 2048;
2309 } else {
2310 /* SPI */
2311 sc->sc_flags |= WM_F_EEPROM_SPI;
2312 wm_nvm_set_addrbits_size_eecd(sc);
2313 }
2314 break;
2315 case WM_T_82575:
2316 case WM_T_82576:
2317 case WM_T_82580:
2318 case WM_T_I350:
2319 case WM_T_I354:
2320 case WM_T_80003:
2321 /* SPI */
2322 sc->sc_flags |= WM_F_EEPROM_SPI;
2323 wm_nvm_set_addrbits_size_eecd(sc);
2324 if ((sc->sc_type == WM_T_80003)
2325 || (sc->sc_nvm_wordsize < (1 << 15))) {
2326 sc->nvm.read = wm_nvm_read_eerd;
2327 /* Don't use WM_F_LOCK_EECD because we use EERD */
2328 } else {
2329 sc->nvm.read = wm_nvm_read_spi;
2330 sc->sc_flags |= WM_F_LOCK_EECD;
2331 }
2332 sc->phy.acquire = wm_get_phy_82575;
2333 sc->phy.release = wm_put_phy_82575;
2334 sc->nvm.acquire = wm_get_nvm_80003;
2335 sc->nvm.release = wm_put_nvm_80003;
2336 break;
2337 case WM_T_ICH8:
2338 case WM_T_ICH9:
2339 case WM_T_ICH10:
2340 case WM_T_PCH:
2341 case WM_T_PCH2:
2342 case WM_T_PCH_LPT:
2343 sc->nvm.read = wm_nvm_read_ich8;
2344 /* FLASH */
2345 sc->sc_flags |= WM_F_EEPROM_FLASH;
2346 sc->sc_nvm_wordsize = 2048;
2347 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag,WM_ICH8_FLASH);
2348 if (pci_mapreg_map(pa, WM_ICH8_FLASH, memtype, 0,
2349 &sc->sc_flasht, &sc->sc_flashh, NULL, &sc->sc_flashs)) {
2350 aprint_error_dev(sc->sc_dev,
2351 "can't map FLASH registers\n");
2352 goto out;
2353 }
2354 reg = ICH8_FLASH_READ32(sc, ICH_FLASH_GFPREG);
2355 sc->sc_ich8_flash_base = (reg & ICH_GFPREG_BASE_MASK) *
2356 ICH_FLASH_SECTOR_SIZE;
2357 sc->sc_ich8_flash_bank_size =
2358 ((reg >> 16) & ICH_GFPREG_BASE_MASK) + 1;
2359 sc->sc_ich8_flash_bank_size -= (reg & ICH_GFPREG_BASE_MASK);
2360 sc->sc_ich8_flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
2361 sc->sc_ich8_flash_bank_size /= 2 * sizeof(uint16_t);
2362 sc->sc_flashreg_offset = 0;
2363 sc->phy.acquire = wm_get_swflag_ich8lan;
2364 sc->phy.release = wm_put_swflag_ich8lan;
2365 sc->nvm.acquire = wm_get_nvm_ich8lan;
2366 sc->nvm.release = wm_put_nvm_ich8lan;
2367 break;
2368 case WM_T_PCH_SPT:
2369 case WM_T_PCH_CNP:
2370 sc->nvm.read = wm_nvm_read_spt;
2371 /* SPT has no GFPREG; flash registers mapped through BAR0 */
2372 sc->sc_flags |= WM_F_EEPROM_FLASH;
2373 sc->sc_flasht = sc->sc_st;
2374 sc->sc_flashh = sc->sc_sh;
2375 sc->sc_ich8_flash_base = 0;
2376 sc->sc_nvm_wordsize =
2377 (((CSR_READ(sc, WMREG_STRAP) >> 1) & 0x1F) + 1)
2378 * NVM_SIZE_MULTIPLIER;
2379 /* It is size in bytes, we want words */
2380 sc->sc_nvm_wordsize /= 2;
2381 /* Assume 2 banks */
2382 sc->sc_ich8_flash_bank_size = sc->sc_nvm_wordsize / 2;
2383 sc->sc_flashreg_offset = WM_PCH_SPT_FLASHOFFSET;
2384 sc->phy.acquire = wm_get_swflag_ich8lan;
2385 sc->phy.release = wm_put_swflag_ich8lan;
2386 sc->nvm.acquire = wm_get_nvm_ich8lan;
2387 sc->nvm.release = wm_put_nvm_ich8lan;
2388 break;
2389 case WM_T_I210:
2390 case WM_T_I211:
2391 /* Allow a single clear of the SW semaphore on I210 and newer*/
2392 sc->sc_flags |= WM_F_WA_I210_CLSEM;
2393 if (wm_nvm_flash_presence_i210(sc)) {
2394 sc->nvm.read = wm_nvm_read_eerd;
2395 /* Don't use WM_F_LOCK_EECD because we use EERD */
2396 sc->sc_flags |= WM_F_EEPROM_FLASH_HW;
2397 wm_nvm_set_addrbits_size_eecd(sc);
2398 } else {
2399 sc->nvm.read = wm_nvm_read_invm;
2400 sc->sc_flags |= WM_F_EEPROM_INVM;
2401 sc->sc_nvm_wordsize = INVM_SIZE;
2402 }
2403 sc->phy.acquire = wm_get_phy_82575;
2404 sc->phy.release = wm_put_phy_82575;
2405 sc->nvm.acquire = wm_get_nvm_80003;
2406 sc->nvm.release = wm_put_nvm_80003;
2407 break;
2408 default:
2409 break;
2410 }
2411
2412 /* Ensure the SMBI bit is clear before first NVM or PHY access */
2413 switch (sc->sc_type) {
2414 case WM_T_82571:
2415 case WM_T_82572:
2416 reg = CSR_READ(sc, WMREG_SWSM2);
2417 if ((reg & SWSM2_LOCK) == 0) {
2418 CSR_WRITE(sc, WMREG_SWSM2, reg | SWSM2_LOCK);
2419 force_clear_smbi = true;
2420 } else
2421 force_clear_smbi = false;
2422 break;
2423 case WM_T_82573:
2424 case WM_T_82574:
2425 case WM_T_82583:
2426 force_clear_smbi = true;
2427 break;
2428 default:
2429 force_clear_smbi = false;
2430 break;
2431 }
2432 if (force_clear_smbi) {
2433 reg = CSR_READ(sc, WMREG_SWSM);
2434 if ((reg & SWSM_SMBI) != 0)
2435 aprint_error_dev(sc->sc_dev,
2436 "Please update the Bootagent\n");
2437 CSR_WRITE(sc, WMREG_SWSM, reg & ~SWSM_SMBI);
2438 }
2439
2440 /*
2441 * Defer printing the EEPROM type until after verifying the checksum
2442 * This allows the EEPROM type to be printed correctly in the case
2443 * that no EEPROM is attached.
2444 */
2445 /*
2446 * Validate the EEPROM checksum. If the checksum fails, flag
2447 * this for later, so we can fail future reads from the EEPROM.
2448 */
2449 if (wm_nvm_validate_checksum(sc)) {
2450 /*
2451 * Read twice again because some PCI-e parts fail the
2452 * first check due to the link being in sleep state.
2453 */
2454 if (wm_nvm_validate_checksum(sc))
2455 sc->sc_flags |= WM_F_EEPROM_INVALID;
2456 }
2457
2458 if (sc->sc_flags & WM_F_EEPROM_INVALID)
2459 aprint_verbose_dev(sc->sc_dev, "No EEPROM");
2460 else {
2461 aprint_verbose_dev(sc->sc_dev, "%u words ",
2462 sc->sc_nvm_wordsize);
2463 if (sc->sc_flags & WM_F_EEPROM_INVM)
2464 aprint_verbose("iNVM");
2465 else if (sc->sc_flags & WM_F_EEPROM_FLASH_HW)
2466 aprint_verbose("FLASH(HW)");
2467 else if (sc->sc_flags & WM_F_EEPROM_FLASH)
2468 aprint_verbose("FLASH");
2469 else {
2470 if (sc->sc_flags & WM_F_EEPROM_SPI)
2471 eetype = "SPI";
2472 else
2473 eetype = "MicroWire";
2474 aprint_verbose("(%d address bits) %s EEPROM",
2475 sc->sc_nvm_addrbits, eetype);
2476 }
2477 }
2478 wm_nvm_version(sc);
2479 aprint_verbose("\n");
2480
2481 /*
2482 * XXX The first call of wm_gmii_setup_phytype. The result might be
2483 * incorrect.
2484 */
2485 wm_gmii_setup_phytype(sc, 0, 0);
2486
2487 /* Check for WM_F_WOL on some chips before wm_reset() */
2488 switch (sc->sc_type) {
2489 case WM_T_ICH8:
2490 case WM_T_ICH9:
2491 case WM_T_ICH10:
2492 case WM_T_PCH:
2493 case WM_T_PCH2:
2494 case WM_T_PCH_LPT:
2495 case WM_T_PCH_SPT:
2496 case WM_T_PCH_CNP:
2497 apme_mask = WUC_APME;
2498 eeprom_data = CSR_READ(sc, WMREG_WUC);
2499 if ((eeprom_data & apme_mask) != 0)
2500 sc->sc_flags |= WM_F_WOL;
2501 break;
2502 default:
2503 break;
2504 }
2505
2506 /* Reset the chip to a known state. */
2507 wm_reset(sc);
2508
2509 /*
2510 * Check for I21[01] PLL workaround.
2511 *
2512 * Three cases:
2513 * a) Chip is I211.
2514 * b) Chip is I210 and it uses INVM (not FLASH).
2515 * c) Chip is I210 (and it uses FLASH) and the NVM image version < 3.25
2516 */
2517 if (sc->sc_type == WM_T_I211)
2518 sc->sc_flags |= WM_F_PLL_WA_I210;
2519 if (sc->sc_type == WM_T_I210) {
2520 if (!wm_nvm_flash_presence_i210(sc))
2521 sc->sc_flags |= WM_F_PLL_WA_I210;
2522 else if ((sc->sc_nvm_ver_major < 3)
2523 || ((sc->sc_nvm_ver_major == 3)
2524 && (sc->sc_nvm_ver_minor < 25))) {
2525 aprint_verbose_dev(sc->sc_dev,
2526 "ROM image version %d.%d is older than 3.25\n",
2527 sc->sc_nvm_ver_major, sc->sc_nvm_ver_minor);
2528 sc->sc_flags |= WM_F_PLL_WA_I210;
2529 }
2530 }
2531 if ((sc->sc_flags & WM_F_PLL_WA_I210) != 0)
2532 wm_pll_workaround_i210(sc);
2533
2534 wm_get_wakeup(sc);
2535
2536 /* Non-AMT based hardware can now take control from firmware */
2537 if ((sc->sc_flags & WM_F_HAS_AMT) == 0)
2538 wm_get_hw_control(sc);
2539
2540 /*
2541 * Read the Ethernet address from the EEPROM, if not first found
2542 * in device properties.
2543 */
2544 ea = prop_dictionary_get(dict, "mac-address");
2545 if (ea != NULL) {
2546 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
2547 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
2548 memcpy(enaddr, prop_data_value(ea), ETHER_ADDR_LEN);
2549 } else {
2550 if (wm_read_mac_addr(sc, enaddr) != 0) {
2551 aprint_error_dev(sc->sc_dev,
2552 "unable to read Ethernet address\n");
2553 goto out;
2554 }
2555 }
2556
2557 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
2558 ether_sprintf(enaddr));
2559
2560 /*
2561 * Read the config info from the EEPROM, and set up various
2562 * bits in the control registers based on their contents.
2563 */
2564 pn = prop_dictionary_get(dict, "i82543-cfg1");
2565 if (pn != NULL) {
2566 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
2567 cfg1 = (uint16_t) prop_number_signed_value(pn);
2568 } else {
2569 if (wm_nvm_read(sc, NVM_OFF_CFG1, 1, &cfg1)) {
2570 aprint_error_dev(sc->sc_dev, "unable to read CFG1\n");
2571 goto out;
2572 }
2573 }
2574
2575 pn = prop_dictionary_get(dict, "i82543-cfg2");
2576 if (pn != NULL) {
2577 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
2578 cfg2 = (uint16_t) prop_number_signed_value(pn);
2579 } else {
2580 if (wm_nvm_read(sc, NVM_OFF_CFG2, 1, &cfg2)) {
2581 aprint_error_dev(sc->sc_dev, "unable to read CFG2\n");
2582 goto out;
2583 }
2584 }
2585
2586 /* check for WM_F_WOL */
2587 switch (sc->sc_type) {
2588 case WM_T_82542_2_0:
2589 case WM_T_82542_2_1:
2590 case WM_T_82543:
2591 /* dummy? */
2592 eeprom_data = 0;
2593 apme_mask = NVM_CFG3_APME;
2594 break;
2595 case WM_T_82544:
2596 apme_mask = NVM_CFG2_82544_APM_EN;
2597 eeprom_data = cfg2;
2598 break;
2599 case WM_T_82546:
2600 case WM_T_82546_3:
2601 case WM_T_82571:
2602 case WM_T_82572:
2603 case WM_T_82573:
2604 case WM_T_82574:
2605 case WM_T_82583:
2606 case WM_T_80003:
2607 case WM_T_82575:
2608 case WM_T_82576:
2609 apme_mask = NVM_CFG3_APME;
2610 wm_nvm_read(sc, (sc->sc_funcid == 1) ? NVM_OFF_CFG3_PORTB
2611 : NVM_OFF_CFG3_PORTA, 1, &eeprom_data);
2612 break;
2613 case WM_T_82580:
2614 case WM_T_I350:
2615 case WM_T_I354:
2616 case WM_T_I210:
2617 case WM_T_I211:
2618 apme_mask = NVM_CFG3_APME;
2619 wm_nvm_read(sc,
2620 NVM_OFF_LAN_FUNC_82580(sc->sc_funcid) + NVM_OFF_CFG3_PORTA,
2621 1, &eeprom_data);
2622 break;
2623 case WM_T_ICH8:
2624 case WM_T_ICH9:
2625 case WM_T_ICH10:
2626 case WM_T_PCH:
2627 case WM_T_PCH2:
2628 case WM_T_PCH_LPT:
2629 case WM_T_PCH_SPT:
2630 case WM_T_PCH_CNP:
2631 /* Already checked before wm_reset () */
2632 apme_mask = eeprom_data = 0;
2633 break;
2634 default: /* XXX 82540 */
2635 apme_mask = NVM_CFG3_APME;
2636 wm_nvm_read(sc, NVM_OFF_CFG3_PORTA, 1, &eeprom_data);
2637 break;
2638 }
2639 /* Check for WM_F_WOL flag after the setting of the EEPROM stuff */
2640 if ((eeprom_data & apme_mask) != 0)
2641 sc->sc_flags |= WM_F_WOL;
2642
2643 /*
2644 * We have the eeprom settings, now apply the special cases
2645 * where the eeprom may be wrong or the board won't support
2646 * wake on lan on a particular port
2647 */
2648 switch (sc->sc_pcidevid) {
2649 case PCI_PRODUCT_INTEL_82546GB_PCIE:
2650 sc->sc_flags &= ~WM_F_WOL;
2651 break;
2652 case PCI_PRODUCT_INTEL_82546EB_FIBER:
2653 case PCI_PRODUCT_INTEL_82546GB_FIBER:
2654 /* Wake events only supported on port A for dual fiber
2655 * regardless of eeprom setting */
2656 if (sc->sc_funcid == 1)
2657 sc->sc_flags &= ~WM_F_WOL;
2658 break;
2659 case PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3:
2660 /* If quad port adapter, disable WoL on all but port A */
2661 if (sc->sc_funcid != 0)
2662 sc->sc_flags &= ~WM_F_WOL;
2663 break;
2664 case PCI_PRODUCT_INTEL_82571EB_FIBER:
2665 /* Wake events only supported on port A for dual fiber
2666 * regardless of eeprom setting */
2667 if (sc->sc_funcid == 1)
2668 sc->sc_flags &= ~WM_F_WOL;
2669 break;
2670 case PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER:
2671 case PCI_PRODUCT_INTEL_82571EB_QUAD_FIBER:
2672 case PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER:
2673 /* If quad port adapter, disable WoL on all but port A */
2674 if (sc->sc_funcid != 0)
2675 sc->sc_flags &= ~WM_F_WOL;
2676 break;
2677 }
2678
2679 if (sc->sc_type >= WM_T_82575) {
2680 if (wm_nvm_read(sc, NVM_OFF_COMPAT, 1, &nvmword) == 0) {
2681 aprint_debug_dev(sc->sc_dev, "COMPAT = %hx\n",
2682 nvmword);
2683 if ((sc->sc_type == WM_T_82575) ||
2684 (sc->sc_type == WM_T_82576)) {
2685 /* Check NVM for autonegotiation */
2686 if ((nvmword & NVM_COMPAT_SERDES_FORCE_MODE)
2687 != 0)
2688 sc->sc_flags |= WM_F_PCS_DIS_AUTONEGO;
2689 }
2690 if ((sc->sc_type == WM_T_82575) ||
2691 (sc->sc_type == WM_T_I350)) {
2692 if (nvmword & NVM_COMPAT_MAS_EN(sc->sc_funcid))
2693 sc->sc_flags |= WM_F_MAS;
2694 }
2695 }
2696 }
2697
2698 /*
2699 * XXX need special handling for some multiple port cards
2700 * to disable a paticular port.
2701 */
2702
2703 if (sc->sc_type >= WM_T_82544) {
2704 pn = prop_dictionary_get(dict, "i82543-swdpin");
2705 if (pn != NULL) {
2706 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
2707 swdpin = (uint16_t) prop_number_signed_value(pn);
2708 } else {
2709 if (wm_nvm_read(sc, NVM_OFF_SWDPIN, 1, &swdpin)) {
2710 aprint_error_dev(sc->sc_dev,
2711 "unable to read SWDPIN\n");
2712 goto out;
2713 }
2714 }
2715 }
2716
2717 if (cfg1 & NVM_CFG1_ILOS)
2718 sc->sc_ctrl |= CTRL_ILOS;
2719
2720 /*
2721 * XXX
2722 * This code isn't correct because pin 2 and 3 are located
2723 * in different position on newer chips. Check all datasheet.
2724 *
2725 * Until resolve this problem, check if a chip < 82580
2726 */
2727 if (sc->sc_type <= WM_T_82580) {
2728 if (sc->sc_type >= WM_T_82544) {
2729 sc->sc_ctrl |=
2730 ((swdpin >> NVM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
2731 CTRL_SWDPIO_SHIFT;
2732 sc->sc_ctrl |=
2733 ((swdpin >> NVM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
2734 CTRL_SWDPINS_SHIFT;
2735 } else {
2736 sc->sc_ctrl |=
2737 ((cfg1 >> NVM_CFG1_SWDPIO_SHIFT) & 0xf) <<
2738 CTRL_SWDPIO_SHIFT;
2739 }
2740 }
2741
2742 if ((sc->sc_type >= WM_T_82580) && (sc->sc_type <= WM_T_I211)) {
2743 wm_nvm_read(sc,
2744 NVM_OFF_LAN_FUNC_82580(sc->sc_funcid) + NVM_OFF_CFG3_PORTA,
2745 1, &nvmword);
2746 if (nvmword & NVM_CFG3_ILOS)
2747 sc->sc_ctrl |= CTRL_ILOS;
2748 }
2749
2750 #if 0
2751 if (sc->sc_type >= WM_T_82544) {
2752 if (cfg1 & NVM_CFG1_IPS0)
2753 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
2754 if (cfg1 & NVM_CFG1_IPS1)
2755 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
2756 sc->sc_ctrl_ext |=
2757 ((swdpin >> (NVM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
2758 CTRL_EXT_SWDPIO_SHIFT;
2759 sc->sc_ctrl_ext |=
2760 ((swdpin >> (NVM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
2761 CTRL_EXT_SWDPINS_SHIFT;
2762 } else {
2763 sc->sc_ctrl_ext |=
2764 ((cfg2 >> NVM_CFG2_SWDPIO_SHIFT) & 0xf) <<
2765 CTRL_EXT_SWDPIO_SHIFT;
2766 }
2767 #endif
2768
2769 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2770 #if 0
2771 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2772 #endif
2773
2774 if (sc->sc_type == WM_T_PCH) {
2775 uint16_t val;
2776
2777 /* Save the NVM K1 bit setting */
2778 wm_nvm_read(sc, NVM_OFF_K1_CONFIG, 1, &val);
2779
2780 if ((val & NVM_K1_CONFIG_ENABLE) != 0)
2781 sc->sc_nvm_k1_enabled = 1;
2782 else
2783 sc->sc_nvm_k1_enabled = 0;
2784 }
2785
2786 /* Determine if we're GMII, TBI, SERDES or SGMII mode */
2787 if (sc->sc_type == WM_T_ICH8 || sc->sc_type == WM_T_ICH9
2788 || sc->sc_type == WM_T_ICH10 || sc->sc_type == WM_T_PCH
2789 || sc->sc_type == WM_T_PCH2 || sc->sc_type == WM_T_PCH_LPT
2790 || sc->sc_type == WM_T_PCH_SPT || sc->sc_type == WM_T_PCH_CNP
2791 || sc->sc_type == WM_T_82573
2792 || sc->sc_type == WM_T_82574 || sc->sc_type == WM_T_82583) {
2793 /* Copper only */
2794 } else if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
2795 || (sc->sc_type ==WM_T_82580) || (sc->sc_type ==WM_T_I350)
2796 || (sc->sc_type ==WM_T_I354) || (sc->sc_type ==WM_T_I210)
2797 || (sc->sc_type ==WM_T_I211)) {
2798 reg = CSR_READ(sc, WMREG_CTRL_EXT);
2799 link_mode = reg & CTRL_EXT_LINK_MODE_MASK;
2800 switch (link_mode) {
2801 case CTRL_EXT_LINK_MODE_1000KX:
2802 aprint_normal_dev(sc->sc_dev, "1000KX\n");
2803 sc->sc_mediatype = WM_MEDIATYPE_SERDES;
2804 break;
2805 case CTRL_EXT_LINK_MODE_SGMII:
2806 if (wm_sgmii_uses_mdio(sc)) {
2807 aprint_normal_dev(sc->sc_dev,
2808 "SGMII(MDIO)\n");
2809 sc->sc_flags |= WM_F_SGMII;
2810 sc->sc_mediatype = WM_MEDIATYPE_COPPER;
2811 break;
2812 }
2813 aprint_verbose_dev(sc->sc_dev, "SGMII(I2C)\n");
2814 /*FALLTHROUGH*/
2815 case CTRL_EXT_LINK_MODE_PCIE_SERDES:
2816 sc->sc_mediatype = wm_sfp_get_media_type(sc);
2817 if (sc->sc_mediatype == WM_MEDIATYPE_UNKNOWN) {
2818 if (link_mode
2819 == CTRL_EXT_LINK_MODE_SGMII) {
2820 sc->sc_mediatype = WM_MEDIATYPE_COPPER;
2821 sc->sc_flags |= WM_F_SGMII;
2822 aprint_verbose_dev(sc->sc_dev,
2823 "SGMII\n");
2824 } else {
2825 sc->sc_mediatype = WM_MEDIATYPE_SERDES;
2826 aprint_verbose_dev(sc->sc_dev,
2827 "SERDES\n");
2828 }
2829 break;
2830 }
2831 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES)
2832 aprint_normal_dev(sc->sc_dev, "SERDES(SFP)\n");
2833 else if (sc->sc_mediatype == WM_MEDIATYPE_COPPER) {
2834 aprint_normal_dev(sc->sc_dev, "SGMII(SFP)\n");
2835 sc->sc_flags |= WM_F_SGMII;
2836 }
2837 /* Do not change link mode for 100BaseFX */
2838 if (sc->sc_sfptype == SFF_SFP_ETH_FLAGS_100FX)
2839 break;
2840
2841 /* Change current link mode setting */
2842 reg &= ~CTRL_EXT_LINK_MODE_MASK;
2843 if (sc->sc_mediatype == WM_MEDIATYPE_COPPER)
2844 reg |= CTRL_EXT_LINK_MODE_SGMII;
2845 else
2846 reg |= CTRL_EXT_LINK_MODE_PCIE_SERDES;
2847 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
2848 break;
2849 case CTRL_EXT_LINK_MODE_GMII:
2850 default:
2851 aprint_normal_dev(sc->sc_dev, "Copper\n");
2852 sc->sc_mediatype = WM_MEDIATYPE_COPPER;
2853 break;
2854 }
2855
2856 reg &= ~CTRL_EXT_I2C_ENA;
2857 if ((sc->sc_flags & WM_F_SGMII) != 0)
2858 reg |= CTRL_EXT_I2C_ENA;
2859 else
2860 reg &= ~CTRL_EXT_I2C_ENA;
2861 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
2862 if ((sc->sc_flags & WM_F_SGMII) != 0) {
2863 wm_gmii_setup_phytype(sc, 0, 0);
2864 wm_reset_mdicnfg_82580(sc);
2865 }
2866 } else if (sc->sc_type < WM_T_82543 ||
2867 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
2868 if (sc->sc_mediatype == WM_MEDIATYPE_COPPER) {
2869 aprint_error_dev(sc->sc_dev,
2870 "WARNING: TBIMODE set on 1000BASE-T product!\n");
2871 sc->sc_mediatype = WM_MEDIATYPE_FIBER;
2872 }
2873 } else {
2874 if (sc->sc_mediatype == WM_MEDIATYPE_FIBER) {
2875 aprint_error_dev(sc->sc_dev,
2876 "WARNING: TBIMODE clear on 1000BASE-X product!\n");
2877 sc->sc_mediatype = WM_MEDIATYPE_COPPER;
2878 }
2879 }
2880
2881 if (sc->sc_type >= WM_T_PCH2)
2882 sc->sc_flags |= WM_F_EEE;
2883 else if ((sc->sc_type >= WM_T_I350) && (sc->sc_type <= WM_T_I211)
2884 && (sc->sc_mediatype == WM_MEDIATYPE_COPPER)) {
2885 /* XXX: Need special handling for I354. (not yet) */
2886 if (sc->sc_type != WM_T_I354)
2887 sc->sc_flags |= WM_F_EEE;
2888 }
2889
2890 /* Set device properties (macflags) */
2891 prop_dictionary_set_uint32(dict, "macflags", sc->sc_flags);
2892
2893 if (sc->sc_flags != 0) {
2894 snprintb(buf, sizeof(buf), WM_FLAGS, sc->sc_flags);
2895 aprint_verbose_dev(sc->sc_dev, "%s\n", buf);
2896 }
2897
2898 #ifdef WM_MPSAFE
2899 sc->sc_core_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
2900 #else
2901 sc->sc_core_lock = NULL;
2902 #endif
2903
2904 /* Initialize the media structures accordingly. */
2905 if (sc->sc_mediatype == WM_MEDIATYPE_COPPER)
2906 wm_gmii_mediainit(sc, wmp->wmp_product);
2907 else
2908 wm_tbi_mediainit(sc); /* All others */
2909
2910 ifp = &sc->sc_ethercom.ec_if;
2911 xname = device_xname(sc->sc_dev);
2912 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
2913 ifp->if_softc = sc;
2914 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2915 #ifdef WM_MPSAFE
2916 ifp->if_extflags = IFEF_MPSAFE;
2917 #endif
2918 ifp->if_ioctl = wm_ioctl;
2919 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
2920 ifp->if_start = wm_nq_start;
2921 /*
2922 * When the number of CPUs is one and the controller can use
2923 * MSI-X, wm(4) use MSI-X but *does not* use multiqueue.
2924 * That is, wm(4) use two interrupts, one is used for Tx/Rx
2925 * and the other is used for link status changing.
2926 * In this situation, wm_nq_transmit() is disadvantageous
2927 * because of wm_select_txqueue() and pcq(9) overhead.
2928 */
2929 if (wm_is_using_multiqueue(sc))
2930 ifp->if_transmit = wm_nq_transmit;
2931 } else {
2932 ifp->if_start = wm_start;
2933 /*
2934 * wm_transmit() has the same disadvantage as wm_transmit().
2935 */
2936 if (wm_is_using_multiqueue(sc))
2937 ifp->if_transmit = wm_transmit;
2938 }
2939 /* wm(4) doest not use ifp->if_watchdog, use wm_tick as watchdog. */
2940 ifp->if_init = wm_init;
2941 ifp->if_stop = wm_stop;
2942 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(WM_IFQUEUELEN, IFQ_MAXLEN));
2943 IFQ_SET_READY(&ifp->if_snd);
2944
2945 /* Check for jumbo frame */
2946 switch (sc->sc_type) {
2947 case WM_T_82573:
2948 /* XXX limited to 9234 if ASPM is disabled */
2949 wm_nvm_read(sc, NVM_OFF_INIT_3GIO_3, 1, &nvmword);
2950 if ((nvmword & NVM_3GIO_3_ASPM_MASK) != 0)
2951 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2952 break;
2953 case WM_T_82571:
2954 case WM_T_82572:
2955 case WM_T_82574:
2956 case WM_T_82583:
2957 case WM_T_82575:
2958 case WM_T_82576:
2959 case WM_T_82580:
2960 case WM_T_I350:
2961 case WM_T_I354:
2962 case WM_T_I210:
2963 case WM_T_I211:
2964 case WM_T_80003:
2965 case WM_T_ICH9:
2966 case WM_T_ICH10:
2967 case WM_T_PCH2: /* PCH2 supports 9K frame size */
2968 case WM_T_PCH_LPT:
2969 case WM_T_PCH_SPT:
2970 case WM_T_PCH_CNP:
2971 /* XXX limited to 9234 */
2972 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2973 break;
2974 case WM_T_PCH:
2975 /* XXX limited to 4096 */
2976 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2977 break;
2978 case WM_T_82542_2_0:
2979 case WM_T_82542_2_1:
2980 case WM_T_ICH8:
2981 /* No support for jumbo frame */
2982 break;
2983 default:
2984 /* ETHER_MAX_LEN_JUMBO */
2985 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2986 break;
2987 }
2988
2989 /* If we're a i82543 or greater, we can support VLANs. */
2990 if (sc->sc_type >= WM_T_82543) {
2991 sc->sc_ethercom.ec_capabilities |=
2992 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
2993 sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
2994 }
2995
2996 if ((sc->sc_flags & WM_F_EEE) != 0)
2997 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
2998
2999 /*
3000 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
3001 * on i82543 and later.
3002 */
3003 if (sc->sc_type >= WM_T_82543) {
3004 ifp->if_capabilities |=
3005 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
3006 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3007 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
3008 IFCAP_CSUM_TCPv6_Tx |
3009 IFCAP_CSUM_UDPv6_Tx;
3010 }
3011
3012 /*
3013 * XXXyamt: i'm not sure which chips support RXCSUM_IPV6OFL.
3014 *
3015 * 82541GI (8086:1076) ... no
3016 * 82572EI (8086:10b9) ... yes
3017 */
3018 if (sc->sc_type >= WM_T_82571) {
3019 ifp->if_capabilities |=
3020 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
3021 }
3022
3023 /*
3024 * If we're a i82544 or greater (except i82547), we can do
3025 * TCP segmentation offload.
3026 */
3027 if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547) {
3028 ifp->if_capabilities |= IFCAP_TSOv4;
3029 }
3030
3031 if (sc->sc_type >= WM_T_82571) {
3032 ifp->if_capabilities |= IFCAP_TSOv6;
3033 }
3034
3035 sc->sc_tx_process_limit = WM_TX_PROCESS_LIMIT_DEFAULT;
3036 sc->sc_tx_intr_process_limit = WM_TX_INTR_PROCESS_LIMIT_DEFAULT;
3037 sc->sc_rx_process_limit = WM_RX_PROCESS_LIMIT_DEFAULT;
3038 sc->sc_rx_intr_process_limit = WM_RX_INTR_PROCESS_LIMIT_DEFAULT;
3039
3040 /* Attach the interface. */
3041 error = if_initialize(ifp);
3042 if (error != 0) {
3043 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
3044 error);
3045 return; /* Error */
3046 }
3047 sc->sc_ipq = if_percpuq_create(&sc->sc_ethercom.ec_if);
3048 ether_ifattach(ifp, enaddr);
3049 ether_set_ifflags_cb(&sc->sc_ethercom, wm_ifflags_cb);
3050 if_register(ifp);
3051 rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET,
3052 RND_FLAG_DEFAULT);
3053
3054 #ifdef WM_EVENT_COUNTERS
3055 /* Attach event counters. */
3056 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
3057 NULL, xname, "linkintr");
3058
3059 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
3060 NULL, xname, "tx_xoff");
3061 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
3062 NULL, xname, "tx_xon");
3063 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
3064 NULL, xname, "rx_xoff");
3065 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
3066 NULL, xname, "rx_xon");
3067 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
3068 NULL, xname, "rx_macctl");
3069 #endif /* WM_EVENT_COUNTERS */
3070
3071 sc->sc_txrx_use_workqueue = false;
3072
3073 wm_init_sysctls(sc);
3074
3075 if (pmf_device_register(self, wm_suspend, wm_resume))
3076 pmf_class_network_register(self, ifp);
3077 else
3078 aprint_error_dev(self, "couldn't establish power handler\n");
3079
3080 sc->sc_flags |= WM_F_ATTACHED;
3081 out:
3082 return;
3083 }
3084
3085 /* The detach function (ca_detach) */
3086 static int
3087 wm_detach(device_t self, int flags __unused)
3088 {
3089 struct wm_softc *sc = device_private(self);
3090 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3091 int i;
3092
3093 if ((sc->sc_flags & WM_F_ATTACHED) == 0)
3094 return 0;
3095
3096 /* Stop the interface. Callouts are stopped in it. */
3097 wm_stop(ifp, 1);
3098
3099 pmf_device_deregister(self);
3100
3101 sysctl_teardown(&sc->sc_sysctllog);
3102
3103 #ifdef WM_EVENT_COUNTERS
3104 evcnt_detach(&sc->sc_ev_linkintr);
3105
3106 evcnt_detach(&sc->sc_ev_tx_xoff);
3107 evcnt_detach(&sc->sc_ev_tx_xon);
3108 evcnt_detach(&sc->sc_ev_rx_xoff);
3109 evcnt_detach(&sc->sc_ev_rx_xon);
3110 evcnt_detach(&sc->sc_ev_rx_macctl);
3111 #endif /* WM_EVENT_COUNTERS */
3112
3113 rnd_detach_source(&sc->rnd_source);
3114
3115 /* Tell the firmware about the release */
3116 WM_CORE_LOCK(sc);
3117 wm_release_manageability(sc);
3118 wm_release_hw_control(sc);
3119 wm_enable_wakeup(sc);
3120 WM_CORE_UNLOCK(sc);
3121
3122 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
3123
3124 ether_ifdetach(ifp);
3125 if_detach(ifp);
3126 if_percpuq_destroy(sc->sc_ipq);
3127
3128 /* Delete all remaining media. */
3129 ifmedia_fini(&sc->sc_mii.mii_media);
3130
3131 /* Unload RX dmamaps and free mbufs */
3132 for (i = 0; i < sc->sc_nqueues; i++) {
3133 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
3134 mutex_enter(rxq->rxq_lock);
3135 wm_rxdrain(rxq);
3136 mutex_exit(rxq->rxq_lock);
3137 }
3138 /* Must unlock here */
3139
3140 /* Disestablish the interrupt handler */
3141 for (i = 0; i < sc->sc_nintrs; i++) {
3142 if (sc->sc_ihs[i] != NULL) {
3143 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
3144 sc->sc_ihs[i] = NULL;
3145 }
3146 }
3147 pci_intr_release(sc->sc_pc, sc->sc_intrs, sc->sc_nintrs);
3148
3149 /* wm_stop() ensure workqueue is stopped. */
3150 workqueue_destroy(sc->sc_queue_wq);
3151
3152 for (i = 0; i < sc->sc_nqueues; i++)
3153 softint_disestablish(sc->sc_queue[i].wmq_si);
3154
3155 wm_free_txrx_queues(sc);
3156
3157 /* Unmap the registers */
3158 if (sc->sc_ss) {
3159 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_ss);
3160 sc->sc_ss = 0;
3161 }
3162 if (sc->sc_ios) {
3163 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
3164 sc->sc_ios = 0;
3165 }
3166 if (sc->sc_flashs) {
3167 bus_space_unmap(sc->sc_flasht, sc->sc_flashh, sc->sc_flashs);
3168 sc->sc_flashs = 0;
3169 }
3170
3171 if (sc->sc_core_lock)
3172 mutex_obj_free(sc->sc_core_lock);
3173 if (sc->sc_ich_phymtx)
3174 mutex_obj_free(sc->sc_ich_phymtx);
3175 if (sc->sc_ich_nvmmtx)
3176 mutex_obj_free(sc->sc_ich_nvmmtx);
3177
3178 return 0;
3179 }
3180
3181 static bool
3182 wm_suspend(device_t self, const pmf_qual_t *qual)
3183 {
3184 struct wm_softc *sc = device_private(self);
3185
3186 wm_release_manageability(sc);
3187 wm_release_hw_control(sc);
3188 wm_enable_wakeup(sc);
3189
3190 return true;
3191 }
3192
3193 static bool
3194 wm_resume(device_t self, const pmf_qual_t *qual)
3195 {
3196 struct wm_softc *sc = device_private(self);
3197 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3198 pcireg_t reg;
3199 char buf[256];
3200
3201 reg = CSR_READ(sc, WMREG_WUS);
3202 if (reg != 0) {
3203 snprintb(buf, sizeof(buf), WUS_FLAGS, reg);
3204 device_printf(sc->sc_dev, "wakeup status %s\n", buf);
3205 CSR_WRITE(sc, WMREG_WUS, 0xffffffff); /* W1C */
3206 }
3207
3208 if (sc->sc_type >= WM_T_PCH2)
3209 wm_resume_workarounds_pchlan(sc);
3210 if ((ifp->if_flags & IFF_UP) == 0) {
3211 wm_reset(sc);
3212 /* Non-AMT based hardware can now take control from firmware */
3213 if ((sc->sc_flags & WM_F_HAS_AMT) == 0)
3214 wm_get_hw_control(sc);
3215 wm_init_manageability(sc);
3216 } else {
3217 /*
3218 * We called pmf_class_network_register(), so if_init() is
3219 * automatically called when IFF_UP. wm_reset(),
3220 * wm_get_hw_control() and wm_init_manageability() are called
3221 * via wm_init().
3222 */
3223 }
3224
3225 return true;
3226 }
3227
3228 /*
3229 * wm_watchdog: [ifnet interface function]
3230 *
3231 * Watchdog timer handler.
3232 */
3233 static void
3234 wm_watchdog(struct ifnet *ifp)
3235 {
3236 int qid;
3237 struct wm_softc *sc = ifp->if_softc;
3238 uint16_t hang_queue = 0; /* Max queue number of wm(4) is 82576's 16. */
3239
3240 for (qid = 0; qid < sc->sc_nqueues; qid++) {
3241 struct wm_txqueue *txq = &sc->sc_queue[qid].wmq_txq;
3242
3243 wm_watchdog_txq(ifp, txq, &hang_queue);
3244 }
3245
3246 /* IF any of queues hanged up, reset the interface. */
3247 if (hang_queue != 0) {
3248 (void)wm_init(ifp);
3249
3250 /*
3251 * There are still some upper layer processing which call
3252 * ifp->if_start(). e.g. ALTQ or one CPU system
3253 */
3254 /* Try to get more packets going. */
3255 ifp->if_start(ifp);
3256 }
3257 }
3258
3259
3260 static void
3261 wm_watchdog_txq(struct ifnet *ifp, struct wm_txqueue *txq, uint16_t *hang)
3262 {
3263
3264 mutex_enter(txq->txq_lock);
3265 if (txq->txq_sending &&
3266 time_uptime - txq->txq_lastsent > wm_watchdog_timeout)
3267 wm_watchdog_txq_locked(ifp, txq, hang);
3268
3269 mutex_exit(txq->txq_lock);
3270 }
3271
3272 static void
3273 wm_watchdog_txq_locked(struct ifnet *ifp, struct wm_txqueue *txq,
3274 uint16_t *hang)
3275 {
3276 struct wm_softc *sc = ifp->if_softc;
3277 struct wm_queue *wmq = container_of(txq, struct wm_queue, wmq_txq);
3278
3279 KASSERT(mutex_owned(txq->txq_lock));
3280
3281 /*
3282 * Since we're using delayed interrupts, sweep up
3283 * before we report an error.
3284 */
3285 wm_txeof(txq, UINT_MAX);
3286
3287 if (txq->txq_sending)
3288 *hang |= __BIT(wmq->wmq_id);
3289
3290 if (txq->txq_free == WM_NTXDESC(txq)) {
3291 log(LOG_ERR, "%s: device timeout (lost interrupt)\n",
3292 device_xname(sc->sc_dev));
3293 } else {
3294 #ifdef WM_DEBUG
3295 int i, j;
3296 struct wm_txsoft *txs;
3297 #endif
3298 log(LOG_ERR,
3299 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
3300 device_xname(sc->sc_dev), txq->txq_free, txq->txq_sfree,
3301 txq->txq_next);
3302 if_statinc(ifp, if_oerrors);
3303 #ifdef WM_DEBUG
3304 for (i = txq->txq_sdirty; i != txq->txq_snext;
3305 i = WM_NEXTTXS(txq, i)) {
3306 txs = &txq->txq_soft[i];
3307 printf("txs %d tx %d -> %d\n",
3308 i, txs->txs_firstdesc, txs->txs_lastdesc);
3309 for (j = txs->txs_firstdesc; ; j = WM_NEXTTX(txq, j)) {
3310 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
3311 printf("\tdesc %d: 0x%" PRIx64 "\n", j,
3312 txq->txq_nq_descs[j].nqtx_data.nqtxd_addr);
3313 printf("\t %#08x%08x\n",
3314 txq->txq_nq_descs[j].nqtx_data.nqtxd_fields,
3315 txq->txq_nq_descs[j].nqtx_data.nqtxd_cmdlen);
3316 } else {
3317 printf("\tdesc %d: 0x%" PRIx64 "\n", j,
3318 (uint64_t)txq->txq_descs[j].wtx_addr.wa_high << 32 |
3319 txq->txq_descs[j].wtx_addr.wa_low);
3320 printf("\t %#04x%02x%02x%08x\n",
3321 txq->txq_descs[j].wtx_fields.wtxu_vlan,
3322 txq->txq_descs[j].wtx_fields.wtxu_options,
3323 txq->txq_descs[j].wtx_fields.wtxu_status,
3324 txq->txq_descs[j].wtx_cmdlen);
3325 }
3326 if (j == txs->txs_lastdesc)
3327 break;
3328 }
3329 }
3330 #endif
3331 }
3332 }
3333
3334 /*
3335 * wm_tick:
3336 *
3337 * One second timer, used to check link status, sweep up
3338 * completed transmit jobs, etc.
3339 */
3340 static void
3341 wm_tick(void *arg)
3342 {
3343 struct wm_softc *sc = arg;
3344 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3345 #ifndef WM_MPSAFE
3346 int s = splnet();
3347 #endif
3348
3349 WM_CORE_LOCK(sc);
3350
3351 if (sc->sc_core_stopping) {
3352 WM_CORE_UNLOCK(sc);
3353 #ifndef WM_MPSAFE
3354 splx(s);
3355 #endif
3356 return;
3357 }
3358
3359 if (sc->sc_type >= WM_T_82542_2_1) {
3360 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
3361 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
3362 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
3363 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
3364 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
3365 }
3366
3367 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
3368 if_statadd_ref(nsr, if_collisions, CSR_READ(sc, WMREG_COLC));
3369 if_statadd_ref(nsr, if_ierrors, 0ULL /* ensure quad_t */
3370 + CSR_READ(sc, WMREG_CRCERRS)
3371 + CSR_READ(sc, WMREG_ALGNERRC)
3372 + CSR_READ(sc, WMREG_SYMERRC)
3373 + CSR_READ(sc, WMREG_RXERRC)
3374 + CSR_READ(sc, WMREG_SEC)
3375 + CSR_READ(sc, WMREG_CEXTERR)
3376 + CSR_READ(sc, WMREG_RLEC));
3377 /*
3378 * WMREG_RNBC is incremented when there is no available buffers in host
3379 * memory. It does not mean the number of dropped packet. Because
3380 * ethernet controller can receive packets in such case if there is
3381 * space in phy's FIFO.
3382 *
3383 * If you want to know the nubmer of WMREG_RMBC, you should use such as
3384 * own EVCNT instead of if_iqdrops.
3385 */
3386 if_statadd_ref(nsr, if_iqdrops, CSR_READ(sc, WMREG_MPC));
3387 IF_STAT_PUTREF(ifp);
3388
3389 if (sc->sc_flags & WM_F_HAS_MII)
3390 mii_tick(&sc->sc_mii);
3391 else if ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211)
3392 && (sc->sc_mediatype == WM_MEDIATYPE_SERDES))
3393 wm_serdes_tick(sc);
3394 else
3395 wm_tbi_tick(sc);
3396
3397 WM_CORE_UNLOCK(sc);
3398
3399 wm_watchdog(ifp);
3400
3401 callout_schedule(&sc->sc_tick_ch, hz);
3402 }
3403
3404 static int
3405 wm_ifflags_cb(struct ethercom *ec)
3406 {
3407 struct ifnet *ifp = &ec->ec_if;
3408 struct wm_softc *sc = ifp->if_softc;
3409 u_short iffchange;
3410 int ecchange;
3411 bool needreset = false;
3412 int rc = 0;
3413
3414 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
3415 device_xname(sc->sc_dev), __func__));
3416
3417 WM_CORE_LOCK(sc);
3418
3419 /*
3420 * Check for if_flags.
3421 * Main usage is to prevent linkdown when opening bpf.
3422 */
3423 iffchange = ifp->if_flags ^ sc->sc_if_flags;
3424 sc->sc_if_flags = ifp->if_flags;
3425 if ((iffchange & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
3426 needreset = true;
3427 goto ec;
3428 }
3429
3430 /* iff related updates */
3431 if ((iffchange & IFF_PROMISC) != 0)
3432 wm_set_filter(sc);
3433
3434 wm_set_vlan(sc);
3435
3436 ec:
3437 /* Check for ec_capenable. */
3438 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
3439 sc->sc_ec_capenable = ec->ec_capenable;
3440 if ((ecchange & ~ETHERCAP_EEE) != 0) {
3441 needreset = true;
3442 goto out;
3443 }
3444
3445 /* ec related updates */
3446 wm_set_eee(sc);
3447
3448 out:
3449 if (needreset)
3450 rc = ENETRESET;
3451 WM_CORE_UNLOCK(sc);
3452
3453 return rc;
3454 }
3455
3456 /*
3457 * wm_ioctl: [ifnet interface function]
3458 *
3459 * Handle control requests from the operator.
3460 */
3461 static int
3462 wm_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3463 {
3464 struct wm_softc *sc = ifp->if_softc;
3465 struct ifreq *ifr = (struct ifreq *)data;
3466 struct ifaddr *ifa = (struct ifaddr *)data;
3467 struct sockaddr_dl *sdl;
3468 int s, error;
3469
3470 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
3471 device_xname(sc->sc_dev), __func__));
3472
3473 #ifndef WM_MPSAFE
3474 s = splnet();
3475 #endif
3476 switch (cmd) {
3477 case SIOCSIFMEDIA:
3478 WM_CORE_LOCK(sc);
3479 /* Flow control requires full-duplex mode. */
3480 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
3481 (ifr->ifr_media & IFM_FDX) == 0)
3482 ifr->ifr_media &= ~IFM_ETH_FMASK;
3483 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
3484 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
3485 /* We can do both TXPAUSE and RXPAUSE. */
3486 ifr->ifr_media |=
3487 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
3488 }
3489 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
3490 }
3491 WM_CORE_UNLOCK(sc);
3492 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
3493 break;
3494 case SIOCINITIFADDR:
3495 WM_CORE_LOCK(sc);
3496 if (ifa->ifa_addr->sa_family == AF_LINK) {
3497 sdl = satosdl(ifp->if_dl->ifa_addr);
3498 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len,
3499 LLADDR(satosdl(ifa->ifa_addr)), ifp->if_addrlen);
3500 /* Unicast address is the first multicast entry */
3501 wm_set_filter(sc);
3502 error = 0;
3503 WM_CORE_UNLOCK(sc);
3504 break;
3505 }
3506 WM_CORE_UNLOCK(sc);
3507 /*FALLTHROUGH*/
3508 default:
3509 #ifdef WM_MPSAFE
3510 s = splnet();
3511 #endif
3512 /* It may call wm_start, so unlock here */
3513 error = ether_ioctl(ifp, cmd, data);
3514 #ifdef WM_MPSAFE
3515 splx(s);
3516 #endif
3517 if (error != ENETRESET)
3518 break;
3519
3520 error = 0;
3521
3522 if (cmd == SIOCSIFCAP)
3523 error = (*ifp->if_init)(ifp);
3524 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
3525 ;
3526 else if (ifp->if_flags & IFF_RUNNING) {
3527 /*
3528 * Multicast list has changed; set the hardware filter
3529 * accordingly.
3530 */
3531 WM_CORE_LOCK(sc);
3532 wm_set_filter(sc);
3533 WM_CORE_UNLOCK(sc);
3534 }
3535 break;
3536 }
3537
3538 #ifndef WM_MPSAFE
3539 splx(s);
3540 #endif
3541 return error;
3542 }
3543
3544 /* MAC address related */
3545
3546 /*
3547 * Get the offset of MAC address and return it.
3548 * If error occured, use offset 0.
3549 */
3550 static uint16_t
3551 wm_check_alt_mac_addr(struct wm_softc *sc)
3552 {
3553 uint16_t myea[ETHER_ADDR_LEN / 2];
3554 uint16_t offset = NVM_OFF_MACADDR;
3555
3556 /* Try to read alternative MAC address pointer */
3557 if (wm_nvm_read(sc, NVM_OFF_ALT_MAC_ADDR_PTR, 1, &offset) != 0)
3558 return 0;
3559
3560 /* Check pointer if it's valid or not. */
3561 if ((offset == 0x0000) || (offset == 0xffff))
3562 return 0;
3563
3564 offset += NVM_OFF_MACADDR_82571(sc->sc_funcid);
3565 /*
3566 * Check whether alternative MAC address is valid or not.
3567 * Some cards have non 0xffff pointer but those don't use
3568 * alternative MAC address in reality.
3569 *
3570 * Check whether the broadcast bit is set or not.
3571 */
3572 if (wm_nvm_read(sc, offset, 1, myea) == 0)
3573 if (((myea[0] & 0xff) & 0x01) == 0)
3574 return offset; /* Found */
3575
3576 /* Not found */
3577 return 0;
3578 }
3579
3580 static int
3581 wm_read_mac_addr(struct wm_softc *sc, uint8_t *enaddr)
3582 {
3583 uint16_t myea[ETHER_ADDR_LEN / 2];
3584 uint16_t offset = NVM_OFF_MACADDR;
3585 int do_invert = 0;
3586
3587 switch (sc->sc_type) {
3588 case WM_T_82580:
3589 case WM_T_I350:
3590 case WM_T_I354:
3591 /* EEPROM Top Level Partitioning */
3592 offset = NVM_OFF_LAN_FUNC_82580(sc->sc_funcid) + 0;
3593 break;
3594 case WM_T_82571:
3595 case WM_T_82575:
3596 case WM_T_82576:
3597 case WM_T_80003:
3598 case WM_T_I210:
3599 case WM_T_I211:
3600 offset = wm_check_alt_mac_addr(sc);
3601 if (offset == 0)
3602 if ((sc->sc_funcid & 0x01) == 1)
3603 do_invert = 1;
3604 break;
3605 default:
3606 if ((sc->sc_funcid & 0x01) == 1)
3607 do_invert = 1;
3608 break;
3609 }
3610
3611 if (wm_nvm_read(sc, offset, sizeof(myea) / sizeof(myea[0]), myea) != 0)
3612 goto bad;
3613
3614 enaddr[0] = myea[0] & 0xff;
3615 enaddr[1] = myea[0] >> 8;
3616 enaddr[2] = myea[1] & 0xff;
3617 enaddr[3] = myea[1] >> 8;
3618 enaddr[4] = myea[2] & 0xff;
3619 enaddr[5] = myea[2] >> 8;
3620
3621 /*
3622 * Toggle the LSB of the MAC address on the second port
3623 * of some dual port cards.
3624 */
3625 if (do_invert != 0)
3626 enaddr[5] ^= 1;
3627
3628 return 0;
3629
3630 bad:
3631 return -1;
3632 }
3633
3634 /*
3635 * wm_set_ral:
3636 *
3637 * Set an entery in the receive address list.
3638 */
3639 static void
3640 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3641 {
3642 uint32_t ral_lo, ral_hi, addrl, addrh;
3643 uint32_t wlock_mac;
3644 int rv;
3645
3646 if (enaddr != NULL) {
3647 ral_lo = (uint32_t)enaddr[0] | ((uint32_t)enaddr[1] << 8) |
3648 ((uint32_t)enaddr[2] << 16) | ((uint32_t)enaddr[3] << 24);
3649 ral_hi = (uint32_t)enaddr[4] | ((uint32_t)enaddr[5] << 8);
3650 ral_hi |= RAL_AV;
3651 } else {
3652 ral_lo = 0;
3653 ral_hi = 0;
3654 }
3655
3656 switch (sc->sc_type) {
3657 case WM_T_82542_2_0:
3658 case WM_T_82542_2_1:
3659 case WM_T_82543:
3660 CSR_WRITE(sc, WMREG_RAL(idx), ral_lo);
3661 CSR_WRITE_FLUSH(sc);
3662 CSR_WRITE(sc, WMREG_RAH(idx), ral_hi);
3663 CSR_WRITE_FLUSH(sc);
3664 break;
3665 case WM_T_PCH2:
3666 case WM_T_PCH_LPT:
3667 case WM_T_PCH_SPT:
3668 case WM_T_PCH_CNP:
3669 if (idx == 0) {
3670 CSR_WRITE(sc, WMREG_CORDOVA_RAL(idx), ral_lo);
3671 CSR_WRITE_FLUSH(sc);
3672 CSR_WRITE(sc, WMREG_CORDOVA_RAH(idx), ral_hi);
3673 CSR_WRITE_FLUSH(sc);
3674 return;
3675 }
3676 if (sc->sc_type != WM_T_PCH2) {
3677 wlock_mac = __SHIFTOUT(CSR_READ(sc, WMREG_FWSM),
3678 FWSM_WLOCK_MAC);
3679 addrl = WMREG_SHRAL(idx - 1);
3680 addrh = WMREG_SHRAH(idx - 1);
3681 } else {
3682 wlock_mac = 0;
3683 addrl = WMREG_PCH_LPT_SHRAL(idx - 1);
3684 addrh = WMREG_PCH_LPT_SHRAH(idx - 1);
3685 }
3686
3687 if ((wlock_mac == 0) || (idx <= wlock_mac)) {
3688 rv = wm_get_swflag_ich8lan(sc);
3689 if (rv != 0)
3690 return;
3691 CSR_WRITE(sc, addrl, ral_lo);
3692 CSR_WRITE_FLUSH(sc);
3693 CSR_WRITE(sc, addrh, ral_hi);
3694 CSR_WRITE_FLUSH(sc);
3695 wm_put_swflag_ich8lan(sc);
3696 }
3697
3698 break;
3699 default:
3700 CSR_WRITE(sc, WMREG_CORDOVA_RAL(idx), ral_lo);
3701 CSR_WRITE_FLUSH(sc);
3702 CSR_WRITE(sc, WMREG_CORDOVA_RAH(idx), ral_hi);
3703 CSR_WRITE_FLUSH(sc);
3704 break;
3705 }
3706 }
3707
3708 /*
3709 * wm_mchash:
3710 *
3711 * Compute the hash of the multicast address for the 4096-bit
3712 * multicast filter.
3713 */
3714 static uint32_t
3715 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3716 {
3717 static const int lo_shift[4] = { 4, 3, 2, 0 };
3718 static const int hi_shift[4] = { 4, 5, 6, 8 };
3719 static const int ich8_lo_shift[4] = { 6, 5, 4, 2 };
3720 static const int ich8_hi_shift[4] = { 2, 3, 4, 6 };
3721 uint32_t hash;
3722
3723 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
3724 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
3725 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)
3726 || (sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP)){
3727 hash = (enaddr[4] >> ich8_lo_shift[sc->sc_mchash_type]) |
3728 (((uint16_t)enaddr[5]) << ich8_hi_shift[sc->sc_mchash_type]);
3729 return (hash & 0x3ff);
3730 }
3731 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3732 (((uint16_t)enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3733
3734 return (hash & 0xfff);
3735 }
3736
3737 /*
3738 *
3739 *
3740 */
3741 static int
3742 wm_rar_count(struct wm_softc *sc)
3743 {
3744 int size;
3745
3746 switch (sc->sc_type) {
3747 case WM_T_ICH8:
3748 size = WM_RAL_TABSIZE_ICH8 -1;
3749 break;
3750 case WM_T_ICH9:
3751 case WM_T_ICH10:
3752 case WM_T_PCH:
3753 size = WM_RAL_TABSIZE_ICH8;
3754 break;
3755 case WM_T_PCH2:
3756 size = WM_RAL_TABSIZE_PCH2;
3757 break;
3758 case WM_T_PCH_LPT:
3759 case WM_T_PCH_SPT:
3760 case WM_T_PCH_CNP:
3761 size = WM_RAL_TABSIZE_PCH_LPT;
3762 break;
3763 case WM_T_82575:
3764 case WM_T_I210:
3765 case WM_T_I211:
3766 size = WM_RAL_TABSIZE_82575;
3767 break;
3768 case WM_T_82576:
3769 case WM_T_82580:
3770 size = WM_RAL_TABSIZE_82576;
3771 break;
3772 case WM_T_I350:
3773 case WM_T_I354:
3774 size = WM_RAL_TABSIZE_I350;
3775 break;
3776 default:
3777 size = WM_RAL_TABSIZE;
3778 }
3779
3780 return size;
3781 }
3782
3783 /*
3784 * wm_set_filter:
3785 *
3786 * Set up the receive filter.
3787 */
3788 static void
3789 wm_set_filter(struct wm_softc *sc)
3790 {
3791 struct ethercom *ec = &sc->sc_ethercom;
3792 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3793 struct ether_multi *enm;
3794 struct ether_multistep step;
3795 bus_addr_t mta_reg;
3796 uint32_t hash, reg, bit;
3797 int i, size, ralmax;
3798
3799 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
3800 device_xname(sc->sc_dev), __func__));
3801
3802 if (sc->sc_type >= WM_T_82544)
3803 mta_reg = WMREG_CORDOVA_MTA;
3804 else
3805 mta_reg = WMREG_MTA;
3806
3807 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3808
3809 if (ifp->if_flags & IFF_BROADCAST)
3810 sc->sc_rctl |= RCTL_BAM;
3811 if (ifp->if_flags & IFF_PROMISC) {
3812 sc->sc_rctl |= RCTL_UPE;
3813 ETHER_LOCK(ec);
3814 ec->ec_flags |= ETHER_F_ALLMULTI;
3815 ETHER_UNLOCK(ec);
3816 goto allmulti;
3817 }
3818
3819 /*
3820 * Set the station address in the first RAL slot, and
3821 * clear the remaining slots.
3822 */
3823 size = wm_rar_count(sc);
3824 wm_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
3825
3826 if ((sc->sc_type == WM_T_PCH_LPT) || (sc->sc_type == WM_T_PCH_SPT)
3827 || (sc->sc_type == WM_T_PCH_CNP)) {
3828 i = __SHIFTOUT(CSR_READ(sc, WMREG_FWSM), FWSM_WLOCK_MAC);
3829 switch (i) {
3830 case 0:
3831 /* We can use all entries */
3832 ralmax = size;
3833 break;
3834 case 1:
3835 /* Only RAR[0] */
3836 ralmax = 1;
3837 break;
3838 default:
3839 /* Available SHRA + RAR[0] */
3840 ralmax = i + 1;
3841 }
3842 } else
3843 ralmax = size;
3844 for (i = 1; i < size; i++) {
3845 if (i < ralmax)
3846 wm_set_ral(sc, NULL, i);
3847 }
3848
3849 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
3850 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
3851 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)
3852 || (sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP))
3853 size = WM_ICH8_MC_TABSIZE;
3854 else
3855 size = WM_MC_TABSIZE;
3856 /* Clear out the multicast table. */
3857 for (i = 0; i < size; i++) {
3858 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3859 CSR_WRITE_FLUSH(sc);
3860 }
3861
3862 ETHER_LOCK(ec);
3863 ETHER_FIRST_MULTI(step, ec, enm);
3864 while (enm != NULL) {
3865 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3866 ec->ec_flags |= ETHER_F_ALLMULTI;
3867 ETHER_UNLOCK(ec);
3868 /*
3869 * We must listen to a range of multicast addresses.
3870 * For now, just accept all multicasts, rather than
3871 * trying to set only those filter bits needed to match
3872 * the range. (At this time, the only use of address
3873 * ranges is for IP multicast routing, for which the
3874 * range is big enough to require all bits set.)
3875 */
3876 goto allmulti;
3877 }
3878
3879 hash = wm_mchash(sc, enm->enm_addrlo);
3880
3881 reg = (hash >> 5);
3882 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
3883 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
3884 || (sc->sc_type == WM_T_PCH2)
3885 || (sc->sc_type == WM_T_PCH_LPT)
3886 || (sc->sc_type == WM_T_PCH_SPT)
3887 || (sc->sc_type == WM_T_PCH_CNP))
3888 reg &= 0x1f;
3889 else
3890 reg &= 0x7f;
3891 bit = hash & 0x1f;
3892
3893 hash = CSR_READ(sc, mta_reg + (reg << 2));
3894 hash |= 1U << bit;
3895
3896 if (sc->sc_type == WM_T_82544 && (reg & 1) != 0) {
3897 /*
3898 * 82544 Errata 9: Certain register cannot be written
3899 * with particular alignments in PCI-X bus operation
3900 * (FCAH, MTA and VFTA).
3901 */
3902 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3903 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3904 CSR_WRITE_FLUSH(sc);
3905 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3906 CSR_WRITE_FLUSH(sc);
3907 } else {
3908 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3909 CSR_WRITE_FLUSH(sc);
3910 }
3911
3912 ETHER_NEXT_MULTI(step, enm);
3913 }
3914 ec->ec_flags &= ~ETHER_F_ALLMULTI;
3915 ETHER_UNLOCK(ec);
3916
3917 goto setit;
3918
3919 allmulti:
3920 sc->sc_rctl |= RCTL_MPE;
3921
3922 setit:
3923 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3924 }
3925
3926 /* Reset and init related */
3927
3928 static void
3929 wm_set_vlan(struct wm_softc *sc)
3930 {
3931
3932 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
3933 device_xname(sc->sc_dev), __func__));
3934
3935 /* Deal with VLAN enables. */
3936 if (VLAN_ATTACHED(&sc->sc_ethercom))
3937 sc->sc_ctrl |= CTRL_VME;
3938 else
3939 sc->sc_ctrl &= ~CTRL_VME;
3940
3941 /* Write the control registers. */
3942 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3943 }
3944
3945 static void
3946 wm_set_pcie_completion_timeout(struct wm_softc *sc)
3947 {
3948 uint32_t gcr;
3949 pcireg_t ctrl2;
3950
3951 gcr = CSR_READ(sc, WMREG_GCR);
3952
3953 /* Only take action if timeout value is defaulted to 0 */
3954 if ((gcr & GCR_CMPL_TMOUT_MASK) != 0)
3955 goto out;
3956
3957 if ((gcr & GCR_CAP_VER2) == 0) {
3958 gcr |= GCR_CMPL_TMOUT_10MS;
3959 goto out;
3960 }
3961
3962 ctrl2 = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3963 sc->sc_pcixe_capoff + PCIE_DCSR2);
3964 ctrl2 |= WM_PCIE_DCSR2_16MS;
3965 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3966 sc->sc_pcixe_capoff + PCIE_DCSR2, ctrl2);
3967
3968 out:
3969 /* Disable completion timeout resend */
3970 gcr &= ~GCR_CMPL_TMOUT_RESEND;
3971
3972 CSR_WRITE(sc, WMREG_GCR, gcr);
3973 }
3974
3975 void
3976 wm_get_auto_rd_done(struct wm_softc *sc)
3977 {
3978 int i;
3979
3980 /* wait for eeprom to reload */
3981 switch (sc->sc_type) {
3982 case WM_T_82571:
3983 case WM_T_82572:
3984 case WM_T_82573:
3985 case WM_T_82574:
3986 case WM_T_82583:
3987 case WM_T_82575:
3988 case WM_T_82576:
3989 case WM_T_82580:
3990 case WM_T_I350:
3991 case WM_T_I354:
3992 case WM_T_I210:
3993 case WM_T_I211:
3994 case WM_T_80003:
3995 case WM_T_ICH8:
3996 case WM_T_ICH9:
3997 for (i = 0; i < 10; i++) {
3998 if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD)
3999 break;
4000 delay(1000);
4001 }
4002 if (i == 10) {
4003 log(LOG_ERR, "%s: auto read from eeprom failed to "
4004 "complete\n", device_xname(sc->sc_dev));
4005 }
4006 break;
4007 default:
4008 break;
4009 }
4010 }
4011
4012 void
4013 wm_lan_init_done(struct wm_softc *sc)
4014 {
4015 uint32_t reg = 0;
4016 int i;
4017
4018 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
4019 device_xname(sc->sc_dev), __func__));
4020
4021 /* Wait for eeprom to reload */
4022 switch (sc->sc_type) {
4023 case WM_T_ICH10:
4024 case WM_T_PCH:
4025 case WM_T_PCH2:
4026 case WM_T_PCH_LPT:
4027 case WM_T_PCH_SPT:
4028 case WM_T_PCH_CNP:
4029 for (i = 0; i < WM_ICH8_LAN_INIT_TIMEOUT; i++) {
4030 reg = CSR_READ(sc, WMREG_STATUS);
4031 if ((reg & STATUS_LAN_INIT_DONE) != 0)
4032 break;
4033 delay(100);
4034 }
4035 if (i >= WM_ICH8_LAN_INIT_TIMEOUT) {
4036 log(LOG_ERR, "%s: %s: lan_init_done failed to "
4037 "complete\n", device_xname(sc->sc_dev), __func__);
4038 }
4039 break;
4040 default:
4041 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
4042 __func__);
4043 break;
4044 }
4045
4046 reg &= ~STATUS_LAN_INIT_DONE;
4047 CSR_WRITE(sc, WMREG_STATUS, reg);
4048 }
4049
4050 void
4051 wm_get_cfg_done(struct wm_softc *sc)
4052 {
4053 int mask;
4054 uint32_t reg;
4055 int i;
4056
4057 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
4058 device_xname(sc->sc_dev), __func__));
4059
4060 /* Wait for eeprom to reload */
4061 switch (sc->sc_type) {
4062 case WM_T_82542_2_0:
4063 case WM_T_82542_2_1:
4064 /* null */
4065 break;
4066 case WM_T_82543:
4067 case WM_T_82544:
4068 case WM_T_82540:
4069 case WM_T_82545:
4070 case WM_T_82545_3:
4071 case WM_T_82546:
4072 case WM_T_82546_3:
4073 case WM_T_82541:
4074 case WM_T_82541_2:
4075 case WM_T_82547:
4076 case WM_T_82547_2:
4077 case WM_T_82573:
4078 case WM_T_82574:
4079 case WM_T_82583:
4080 /* generic */
4081 delay(10*1000);
4082 break;
4083 case WM_T_80003:
4084 case WM_T_82571:
4085 case WM_T_82572:
4086 case WM_T_82575:
4087 case WM_T_82576:
4088 case WM_T_82580:
4089 case WM_T_I350:
4090 case WM_T_I354:
4091 case WM_T_I210:
4092 case WM_T_I211:
4093 if (sc->sc_type == WM_T_82571) {
4094 /* Only 82571 shares port 0 */
4095 mask = EEMNGCTL_CFGDONE_0;
4096 } else
4097 mask = EEMNGCTL_CFGDONE_0 << sc->sc_funcid;
4098 for (i = 0; i < WM_PHY_CFG_TIMEOUT; i++) {
4099 if (CSR_READ(sc, WMREG_EEMNGCTL) & mask)
4100 break;
4101 delay(1000);
4102 }
4103 if (i >= WM_PHY_CFG_TIMEOUT)
4104 DPRINTF(WM_DEBUG_GMII, ("%s: %s failed\n",
4105 device_xname(sc->sc_dev), __func__));
4106 break;
4107 case WM_T_ICH8:
4108 case WM_T_ICH9:
4109 case WM_T_ICH10:
4110 case WM_T_PCH:
4111 case WM_T_PCH2:
4112 case WM_T_PCH_LPT:
4113 case WM_T_PCH_SPT:
4114 case WM_T_PCH_CNP:
4115 delay(10*1000);
4116 if (sc->sc_type >= WM_T_ICH10)
4117 wm_lan_init_done(sc);
4118 else
4119 wm_get_auto_rd_done(sc);
4120
4121 /* Clear PHY Reset Asserted bit */
4122 reg = CSR_READ(sc, WMREG_STATUS);
4123 if ((reg & STATUS_PHYRA) != 0)
4124 CSR_WRITE(sc, WMREG_STATUS, reg & ~STATUS_PHYRA);
4125 break;
4126 default:
4127 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
4128 __func__);
4129 break;
4130 }
4131 }
4132
4133 int
4134 wm_phy_post_reset(struct wm_softc *sc)
4135 {
4136 device_t dev = sc->sc_dev;
4137 uint16_t reg;
4138 int rv = 0;
4139
4140 /* This function is only for ICH8 and newer. */
4141 if (sc->sc_type < WM_T_ICH8)
4142 return 0;
4143
4144 if (wm_phy_resetisblocked(sc)) {
4145 /* XXX */
4146 device_printf(dev, "PHY is blocked\n");
4147 return -1;
4148 }
4149
4150 /* Allow time for h/w to get to quiescent state after reset */
4151 delay(10*1000);
4152
4153 /* Perform any necessary post-reset workarounds */
4154 if (sc->sc_type == WM_T_PCH)
4155 rv = wm_hv_phy_workarounds_ich8lan(sc);
4156 else if (sc->sc_type == WM_T_PCH2)
4157 rv = wm_lv_phy_workarounds_ich8lan(sc);
4158 if (rv != 0)
4159 return rv;
4160
4161 /* Clear the host wakeup bit after lcd reset */
4162 if (sc->sc_type >= WM_T_PCH) {
4163 wm_gmii_hv_readreg(dev, 2, BM_PORT_GEN_CFG, ®);
4164 reg &= ~BM_WUC_HOST_WU_BIT;
4165 wm_gmii_hv_writereg(dev, 2, BM_PORT_GEN_CFG, reg);
4166 }
4167
4168 /* Configure the LCD with the extended configuration region in NVM */
4169 if ((rv = wm_init_lcd_from_nvm(sc)) != 0)
4170 return rv;
4171
4172 /* Configure the LCD with the OEM bits in NVM */
4173 rv = wm_oem_bits_config_ich8lan(sc, true);
4174
4175 if (sc->sc_type == WM_T_PCH2) {
4176 /* Ungate automatic PHY configuration on non-managed 82579 */
4177 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID) == 0) {
4178 delay(10 * 1000);
4179 wm_gate_hw_phy_config_ich8lan(sc, false);
4180 }
4181 /* Set EEE LPI Update Timer to 200usec */
4182 rv = sc->phy.acquire(sc);
4183 if (rv)
4184 return rv;
4185 rv = wm_write_emi_reg_locked(dev,
4186 I82579_LPI_UPDATE_TIMER, 0x1387);
4187 sc->phy.release(sc);
4188 }
4189
4190 return rv;
4191 }
4192
4193 /* Only for PCH and newer */
4194 static int
4195 wm_write_smbus_addr(struct wm_softc *sc)
4196 {
4197 uint32_t strap, freq;
4198 uint16_t phy_data;
4199 int rv;
4200
4201 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
4202 device_xname(sc->sc_dev), __func__));
4203 KASSERT(CSR_READ(sc, WMREG_EXTCNFCTR) & EXTCNFCTR_MDIO_SW_OWNERSHIP);
4204
4205 strap = CSR_READ(sc, WMREG_STRAP);
4206 freq = __SHIFTOUT(strap, STRAP_FREQ);
4207
4208 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, HV_SMB_ADDR, &phy_data);
4209 if (rv != 0)
4210 return -1;
4211
4212 phy_data &= ~HV_SMB_ADDR_ADDR;
4213 phy_data |= __SHIFTOUT(strap, STRAP_SMBUSADDR);
4214 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
4215
4216 if (sc->sc_phytype == WMPHY_I217) {
4217 /* Restore SMBus frequency */
4218 if (freq --) {
4219 phy_data &= ~(HV_SMB_ADDR_FREQ_LOW
4220 | HV_SMB_ADDR_FREQ_HIGH);
4221 phy_data |= __SHIFTIN((freq & 0x01) != 0,
4222 HV_SMB_ADDR_FREQ_LOW);
4223 phy_data |= __SHIFTIN((freq & 0x02) != 0,
4224 HV_SMB_ADDR_FREQ_HIGH);
4225 } else
4226 DPRINTF(WM_DEBUG_INIT,
4227 ("%s: %s Unsupported SMB frequency in PHY\n",
4228 device_xname(sc->sc_dev), __func__));
4229 }
4230
4231 return wm_gmii_hv_writereg_locked(sc->sc_dev, 2, HV_SMB_ADDR,
4232 phy_data);
4233 }
4234
4235 static int
4236 wm_init_lcd_from_nvm(struct wm_softc *sc)
4237 {
4238 uint32_t extcnfctr, sw_cfg_mask, cnf_size, word_addr, i, reg;
4239 uint16_t phy_page = 0;
4240 int rv = 0;
4241
4242 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
4243 device_xname(sc->sc_dev), __func__));
4244
4245 switch (sc->sc_type) {
4246 case WM_T_ICH8:
4247 if ((sc->sc_phytype == WMPHY_UNKNOWN)
4248 || (sc->sc_phytype != WMPHY_IGP_3))
4249 return 0;
4250
4251 if ((sc->sc_pcidevid == PCI_PRODUCT_INTEL_82801H_AMT)
4252 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_82801H_LAN)) {
4253 sw_cfg_mask = FEXTNVM_SW_CONFIG;
4254 break;
4255 }
4256 /* FALLTHROUGH */
4257 case WM_T_PCH:
4258 case WM_T_PCH2:
4259 case WM_T_PCH_LPT:
4260 case WM_T_PCH_SPT:
4261 case WM_T_PCH_CNP:
4262 sw_cfg_mask = FEXTNVM_SW_CONFIG_ICH8M;
4263 break;
4264 default:
4265 return 0;
4266 }
4267
4268 if ((rv = sc->phy.acquire(sc)) != 0)
4269 return rv;
4270
4271 reg = CSR_READ(sc, WMREG_FEXTNVM);
4272 if ((reg & sw_cfg_mask) == 0)
4273 goto release;
4274
4275 /*
4276 * Make sure HW does not configure LCD from PHY extended configuration
4277 * before SW configuration
4278 */
4279 extcnfctr = CSR_READ(sc, WMREG_EXTCNFCTR);
4280 if ((sc->sc_type < WM_T_PCH2)
4281 && ((extcnfctr & EXTCNFCTR_PCIE_WRITE_ENABLE) != 0))
4282 goto release;
4283
4284 DPRINTF(WM_DEBUG_INIT, ("%s: %s: Configure LCD by software\n",
4285 device_xname(sc->sc_dev), __func__));
4286 /* word_addr is in DWORD */
4287 word_addr = __SHIFTOUT(extcnfctr, EXTCNFCTR_EXT_CNF_POINTER) << 1;
4288
4289 reg = CSR_READ(sc, WMREG_EXTCNFSIZE);
4290 cnf_size = __SHIFTOUT(reg, EXTCNFSIZE_LENGTH);
4291 if (cnf_size == 0)
4292 goto release;
4293
4294 if (((sc->sc_type == WM_T_PCH)
4295 && ((extcnfctr & EXTCNFCTR_OEM_WRITE_ENABLE) == 0))
4296 || (sc->sc_type > WM_T_PCH)) {
4297 /*
4298 * HW configures the SMBus address and LEDs when the OEM and
4299 * LCD Write Enable bits are set in the NVM. When both NVM bits
4300 * are cleared, SW will configure them instead.
4301 */
4302 DPRINTF(WM_DEBUG_INIT, ("%s: %s: Configure SMBus and LED\n",
4303 device_xname(sc->sc_dev), __func__));
4304 if ((rv = wm_write_smbus_addr(sc)) != 0)
4305 goto release;
4306
4307 reg = CSR_READ(sc, WMREG_LEDCTL);
4308 rv = wm_gmii_hv_writereg_locked(sc->sc_dev, 1, HV_LED_CONFIG,
4309 (uint16_t)reg);
4310 if (rv != 0)
4311 goto release;
4312 }
4313
4314 /* Configure LCD from extended configuration region. */
4315 for (i = 0; i < cnf_size; i++) {
4316 uint16_t reg_data, reg_addr;
4317
4318 if (wm_nvm_read(sc, (word_addr + i * 2), 1, ®_data) != 0)
4319 goto release;
4320
4321 if (wm_nvm_read(sc, (word_addr + i * 2 + 1), 1, ®_addr) !=0)
4322 goto release;
4323
4324 if (reg_addr == IGPHY_PAGE_SELECT)
4325 phy_page = reg_data;
4326
4327 reg_addr &= IGPHY_MAXREGADDR;
4328 reg_addr |= phy_page;
4329
4330 KASSERT(sc->phy.writereg_locked != NULL);
4331 rv = sc->phy.writereg_locked(sc->sc_dev, 1, reg_addr,
4332 reg_data);
4333 }
4334
4335 release:
4336 sc->phy.release(sc);
4337 return rv;
4338 }
4339
4340 /*
4341 * wm_oem_bits_config_ich8lan - SW-based LCD Configuration
4342 * @sc: pointer to the HW structure
4343 * @d0_state: boolean if entering d0 or d3 device state
4344 *
4345 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
4346 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
4347 * in NVM determines whether HW should configure LPLU and Gbe Disable.
4348 */
4349 int
4350 wm_oem_bits_config_ich8lan(struct wm_softc *sc, bool d0_state)
4351 {
4352 uint32_t mac_reg;
4353 uint16_t oem_reg;
4354 int rv;
4355
4356 if (sc->sc_type < WM_T_PCH)
4357 return 0;
4358
4359 rv = sc->phy.acquire(sc);
4360 if (rv != 0)
4361 return rv;
4362
4363 if (sc->sc_type == WM_T_PCH) {
4364 mac_reg = CSR_READ(sc, WMREG_EXTCNFCTR);
4365 if ((mac_reg & EXTCNFCTR_OEM_WRITE_ENABLE) != 0)
4366 goto release;
4367 }
4368
4369 mac_reg = CSR_READ(sc, WMREG_FEXTNVM);
4370 if ((mac_reg & FEXTNVM_SW_CONFIG_ICH8M) == 0)
4371 goto release;
4372
4373 mac_reg = CSR_READ(sc, WMREG_PHY_CTRL);
4374
4375 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 1, HV_OEM_BITS, &oem_reg);
4376 if (rv != 0)
4377 goto release;
4378 oem_reg &= ~(HV_OEM_BITS_A1KDIS | HV_OEM_BITS_LPLU);
4379
4380 if (d0_state) {
4381 if ((mac_reg & PHY_CTRL_GBE_DIS) != 0)
4382 oem_reg |= HV_OEM_BITS_A1KDIS;
4383 if ((mac_reg & PHY_CTRL_D0A_LPLU) != 0)
4384 oem_reg |= HV_OEM_BITS_LPLU;
4385 } else {
4386 if ((mac_reg & (PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS))
4387 != 0)
4388 oem_reg |= HV_OEM_BITS_A1KDIS;
4389 if ((mac_reg & (PHY_CTRL_D0A_LPLU | PHY_CTRL_NOND0A_LPLU))
4390 != 0)
4391 oem_reg |= HV_OEM_BITS_LPLU;
4392 }
4393
4394 /* Set Restart auto-neg to activate the bits */
4395 if ((d0_state || (sc->sc_type != WM_T_PCH))
4396 && (wm_phy_resetisblocked(sc) == false))
4397 oem_reg |= HV_OEM_BITS_ANEGNOW;
4398
4399 rv = wm_gmii_hv_writereg_locked(sc->sc_dev, 1, HV_OEM_BITS, oem_reg);
4400
4401 release:
4402 sc->phy.release(sc);
4403
4404 return rv;
4405 }
4406
4407 /* Init hardware bits */
4408 void
4409 wm_initialize_hardware_bits(struct wm_softc *sc)
4410 {
4411 uint32_t tarc0, tarc1, reg;
4412
4413 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
4414 device_xname(sc->sc_dev), __func__));
4415
4416 /* For 82571 variant, 80003 and ICHs */
4417 if (((sc->sc_type >= WM_T_82571) && (sc->sc_type <= WM_T_82583))
4418 || (sc->sc_type >= WM_T_80003)) {
4419
4420 /* Transmit Descriptor Control 0 */
4421 reg = CSR_READ(sc, WMREG_TXDCTL(0));
4422 reg |= TXDCTL_COUNT_DESC;
4423 CSR_WRITE(sc, WMREG_TXDCTL(0), reg);
4424
4425 /* Transmit Descriptor Control 1 */
4426 reg = CSR_READ(sc, WMREG_TXDCTL(1));
4427 reg |= TXDCTL_COUNT_DESC;
4428 CSR_WRITE(sc, WMREG_TXDCTL(1), reg);
4429
4430 /* TARC0 */
4431 tarc0 = CSR_READ(sc, WMREG_TARC0);
4432 switch (sc->sc_type) {
4433 case WM_T_82571:
4434 case WM_T_82572:
4435 case WM_T_82573:
4436 case WM_T_82574:
4437 case WM_T_82583:
4438 case WM_T_80003:
4439 /* Clear bits 30..27 */
4440 tarc0 &= ~__BITS(30, 27);
4441 break;
4442 default:
4443 break;
4444 }
4445
4446 switch (sc->sc_type) {
4447 case WM_T_82571:
4448 case WM_T_82572:
4449 tarc0 |= __BITS(26, 23); /* TARC0 bits 23-26 */
4450
4451 tarc1 = CSR_READ(sc, WMREG_TARC1);
4452 tarc1 &= ~__BITS(30, 29); /* Clear bits 30 and 29 */
4453 tarc1 |= __BITS(26, 24); /* TARC1 bits 26-24 */
4454 /* 8257[12] Errata No.7 */
4455 tarc1 |= __BIT(22); /* TARC1 bits 22 */
4456
4457 /* TARC1 bit 28 */
4458 if ((CSR_READ(sc, WMREG_TCTL) & TCTL_MULR) != 0)
4459 tarc1 &= ~__BIT(28);
4460 else
4461 tarc1 |= __BIT(28);
4462 CSR_WRITE(sc, WMREG_TARC1, tarc1);
4463
4464 /*
4465 * 8257[12] Errata No.13
4466 * Disable Dyamic Clock Gating.
4467 */
4468 reg = CSR_READ(sc, WMREG_CTRL_EXT);
4469 reg &= ~CTRL_EXT_DMA_DYN_CLK;
4470 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
4471 break;
4472 case WM_T_82573:
4473 case WM_T_82574:
4474 case WM_T_82583:
4475 if ((sc->sc_type == WM_T_82574)
4476 || (sc->sc_type == WM_T_82583))
4477 tarc0 |= __BIT(26); /* TARC0 bit 26 */
4478
4479 /* Extended Device Control */
4480 reg = CSR_READ(sc, WMREG_CTRL_EXT);
4481 reg &= ~__BIT(23); /* Clear bit 23 */
4482 reg |= __BIT(22); /* Set bit 22 */
4483 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
4484
4485 /* Device Control */
4486 sc->sc_ctrl &= ~__BIT(29); /* Clear bit 29 */
4487 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4488
4489 /* PCIe Control Register */
4490 /*
4491 * 82573 Errata (unknown).
4492 *
4493 * 82574 Errata 25 and 82583 Errata 12
4494 * "Dropped Rx Packets":
4495 * NVM Image Version 2.1.4 and newer has no this bug.
4496 */
4497 reg = CSR_READ(sc, WMREG_GCR);
4498 reg |= GCR_L1_ACT_WITHOUT_L0S_RX;
4499 CSR_WRITE(sc, WMREG_GCR, reg);
4500
4501 if ((sc->sc_type == WM_T_82574)
4502 || (sc->sc_type == WM_T_82583)) {
4503 /*
4504 * Document says this bit must be set for
4505 * proper operation.
4506 */
4507 reg = CSR_READ(sc, WMREG_GCR);
4508 reg |= __BIT(22);
4509 CSR_WRITE(sc, WMREG_GCR, reg);
4510
4511 /*
4512 * Apply workaround for hardware errata
4513 * documented in errata docs Fixes issue where
4514 * some error prone or unreliable PCIe
4515 * completions are occurring, particularly
4516 * with ASPM enabled. Without fix, issue can
4517 * cause Tx timeouts.
4518 */
4519 reg = CSR_READ(sc, WMREG_GCR2);
4520 reg |= __BIT(0);
4521 CSR_WRITE(sc, WMREG_GCR2, reg);
4522 }
4523 break;
4524 case WM_T_80003:
4525 /* TARC0 */
4526 if ((sc->sc_mediatype == WM_MEDIATYPE_FIBER)
4527 || (sc->sc_mediatype == WM_MEDIATYPE_SERDES))
4528 tarc0 &= ~__BIT(20); /* Clear bits 20 */
4529
4530 /* TARC1 bit 28 */
4531 tarc1 = CSR_READ(sc, WMREG_TARC1);
4532 if ((CSR_READ(sc, WMREG_TCTL) & TCTL_MULR) != 0)
4533 tarc1 &= ~__BIT(28);
4534 else
4535 tarc1 |= __BIT(28);
4536 CSR_WRITE(sc, WMREG_TARC1, tarc1);
4537 break;
4538 case WM_T_ICH8:
4539 case WM_T_ICH9:
4540 case WM_T_ICH10:
4541 case WM_T_PCH:
4542 case WM_T_PCH2:
4543 case WM_T_PCH_LPT:
4544 case WM_T_PCH_SPT:
4545 case WM_T_PCH_CNP:
4546 /* TARC0 */
4547 if (sc->sc_type == WM_T_ICH8) {
4548 /* Set TARC0 bits 29 and 28 */
4549 tarc0 |= __BITS(29, 28);
4550 } else if (sc->sc_type == WM_T_PCH_SPT) {
4551 tarc0 |= __BIT(29);
4552 /*
4553 * Drop bit 28. From Linux.
4554 * See I218/I219 spec update
4555 * "5. Buffer Overrun While the I219 is
4556 * Processing DMA Transactions"
4557 */
4558 tarc0 &= ~__BIT(28);
4559 }
4560 /* Set TARC0 bits 23,24,26,27 */
4561 tarc0 |= __BITS(27, 26) | __BITS(24, 23);
4562
4563 /* CTRL_EXT */
4564 reg = CSR_READ(sc, WMREG_CTRL_EXT);
4565 reg |= __BIT(22); /* Set bit 22 */
4566 /*
4567 * Enable PHY low-power state when MAC is at D3
4568 * w/o WoL
4569 */
4570 if (sc->sc_type >= WM_T_PCH)
4571 reg |= CTRL_EXT_PHYPDEN;
4572 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
4573
4574 /* TARC1 */
4575 tarc1 = CSR_READ(sc, WMREG_TARC1);
4576 /* bit 28 */
4577 if ((CSR_READ(sc, WMREG_TCTL) & TCTL_MULR) != 0)
4578 tarc1 &= ~__BIT(28);
4579 else
4580 tarc1 |= __BIT(28);
4581 tarc1 |= __BIT(24) | __BIT(26) | __BIT(30);
4582 CSR_WRITE(sc, WMREG_TARC1, tarc1);
4583
4584 /* Device Status */
4585 if (sc->sc_type == WM_T_ICH8) {
4586 reg = CSR_READ(sc, WMREG_STATUS);
4587 reg &= ~__BIT(31);
4588 CSR_WRITE(sc, WMREG_STATUS, reg);
4589
4590 }
4591
4592 /* IOSFPC */
4593 if (sc->sc_type == WM_T_PCH_SPT) {
4594 reg = CSR_READ(sc, WMREG_IOSFPC);
4595 reg |= RCTL_RDMTS_HEX; /* XXX RTCL bit? */
4596 CSR_WRITE(sc, WMREG_IOSFPC, reg);
4597 }
4598 /*
4599 * Work-around descriptor data corruption issue during
4600 * NFS v2 UDP traffic, just disable the NFS filtering
4601 * capability.
4602 */
4603 reg = CSR_READ(sc, WMREG_RFCTL);
4604 reg |= WMREG_RFCTL_NFSWDIS | WMREG_RFCTL_NFSRDIS;
4605 CSR_WRITE(sc, WMREG_RFCTL, reg);
4606 break;
4607 default:
4608 break;
4609 }
4610 CSR_WRITE(sc, WMREG_TARC0, tarc0);
4611
4612 switch (sc->sc_type) {
4613 /*
4614 * 8257[12] Errata No.52, 82573 Errata No.43 and some others.
4615 * Avoid RSS Hash Value bug.
4616 */
4617 case WM_T_82571:
4618 case WM_T_82572:
4619 case WM_T_82573:
4620 case WM_T_80003:
4621 case WM_T_ICH8:
4622 reg = CSR_READ(sc, WMREG_RFCTL);
4623 reg |= WMREG_RFCTL_NEWIPV6EXDIS |WMREG_RFCTL_IPV6EXDIS;
4624 CSR_WRITE(sc, WMREG_RFCTL, reg);
4625 break;
4626 case WM_T_82574:
4627 /* Use extened Rx descriptor. */
4628 reg = CSR_READ(sc, WMREG_RFCTL);
4629 reg |= WMREG_RFCTL_EXSTEN;
4630 CSR_WRITE(sc, WMREG_RFCTL, reg);
4631 break;
4632 default:
4633 break;
4634 }
4635 } else if ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211)) {
4636 /*
4637 * 82575 Errata XXX, 82576 Errata 46, 82580 Errata 24,
4638 * I350 Errata 37, I210 Errata No. 31 and I211 Errata No. 11:
4639 * "Certain Malformed IPv6 Extension Headers are Not Processed
4640 * Correctly by the Device"
4641 *
4642 * I354(C2000) Errata AVR53:
4643 * "Malformed IPv6 Extension Headers May Result in LAN Device
4644 * Hang"
4645 */
4646 reg = CSR_READ(sc, WMREG_RFCTL);
4647 reg |= WMREG_RFCTL_IPV6EXDIS;
4648 CSR_WRITE(sc, WMREG_RFCTL, reg);
4649 }
4650 }
4651
4652 static uint32_t
4653 wm_rxpbs_adjust_82580(uint32_t val)
4654 {
4655 uint32_t rv = 0;
4656
4657 if (val < __arraycount(wm_82580_rxpbs_table))
4658 rv = wm_82580_rxpbs_table[val];
4659
4660 return rv;
4661 }
4662
4663 /*
4664 * wm_reset_phy:
4665 *
4666 * generic PHY reset function.
4667 * Same as e1000_phy_hw_reset_generic()
4668 */
4669 static int
4670 wm_reset_phy(struct wm_softc *sc)
4671 {
4672 uint32_t reg;
4673
4674 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
4675 device_xname(sc->sc_dev), __func__));
4676 if (wm_phy_resetisblocked(sc))
4677 return -1;
4678
4679 sc->phy.acquire(sc);
4680
4681 reg = CSR_READ(sc, WMREG_CTRL);
4682 CSR_WRITE(sc, WMREG_CTRL, reg | CTRL_PHY_RESET);
4683 CSR_WRITE_FLUSH(sc);
4684
4685 delay(sc->phy.reset_delay_us);
4686
4687 CSR_WRITE(sc, WMREG_CTRL, reg);
4688 CSR_WRITE_FLUSH(sc);
4689
4690 delay(150);
4691
4692 sc->phy.release(sc);
4693
4694 wm_get_cfg_done(sc);
4695 wm_phy_post_reset(sc);
4696
4697 return 0;
4698 }
4699
4700 /*
4701 * Only used by WM_T_PCH_SPT which does not use multiqueue,
4702 * so it is enough to check sc->sc_queue[0] only.
4703 */
4704 static void
4705 wm_flush_desc_rings(struct wm_softc *sc)
4706 {
4707 pcireg_t preg;
4708 uint32_t reg;
4709 struct wm_txqueue *txq;
4710 wiseman_txdesc_t *txd;
4711 int nexttx;
4712 uint32_t rctl;
4713
4714 /* First, disable MULR fix in FEXTNVM11 */
4715 reg = CSR_READ(sc, WMREG_FEXTNVM11);
4716 reg |= FEXTNVM11_DIS_MULRFIX;
4717 CSR_WRITE(sc, WMREG_FEXTNVM11, reg);
4718
4719 preg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, WM_PCI_DESCRING_STATUS);
4720 reg = CSR_READ(sc, WMREG_TDLEN(0));
4721 if (((preg & DESCRING_STATUS_FLUSH_REQ) == 0) || (reg == 0))
4722 return;
4723
4724 /* TX */
4725 device_printf(sc->sc_dev, "Need TX flush (reg = %08x, len = %u)\n",
4726 preg, reg);
4727 reg = CSR_READ(sc, WMREG_TCTL);
4728 CSR_WRITE(sc, WMREG_TCTL, reg | TCTL_EN);
4729
4730 txq = &sc->sc_queue[0].wmq_txq;
4731 nexttx = txq->txq_next;
4732 txd = &txq->txq_descs[nexttx];
4733 wm_set_dma_addr(&txd->wtx_addr, WM_CDTXADDR(txq, nexttx));
4734 txd->wtx_cmdlen = htole32(WTX_CMD_IFCS | 512);
4735 txd->wtx_fields.wtxu_status = 0;
4736 txd->wtx_fields.wtxu_options = 0;
4737 txd->wtx_fields.wtxu_vlan = 0;
4738
4739 bus_space_barrier(sc->sc_st, sc->sc_sh, 0, 0,
4740 BUS_SPACE_BARRIER_WRITE);
4741
4742 txq->txq_next = WM_NEXTTX(txq, txq->txq_next);
4743 CSR_WRITE(sc, WMREG_TDT(0), txq->txq_next);
4744 bus_space_barrier(sc->sc_st, sc->sc_sh, 0, 0,
4745 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
4746 delay(250);
4747
4748 preg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, WM_PCI_DESCRING_STATUS);
4749 if ((preg & DESCRING_STATUS_FLUSH_REQ) == 0)
4750 return;
4751
4752 /* RX */
4753 device_printf(sc->sc_dev, "Need RX flush (reg = %08x)\n", preg);
4754 rctl = CSR_READ(sc, WMREG_RCTL);
4755 CSR_WRITE(sc, WMREG_RCTL, rctl & ~RCTL_EN);
4756 CSR_WRITE_FLUSH(sc);
4757 delay(150);
4758
4759 reg = CSR_READ(sc, WMREG_RXDCTL(0));
4760 /* Zero the lower 14 bits (prefetch and host thresholds) */
4761 reg &= 0xffffc000;
4762 /*
4763 * Update thresholds: prefetch threshold to 31, host threshold
4764 * to 1 and make sure the granularity is "descriptors" and not
4765 * "cache lines"
4766 */
4767 reg |= (0x1f | (1 << 8) | RXDCTL_GRAN);
4768 CSR_WRITE(sc, WMREG_RXDCTL(0), reg);
4769
4770 /* Momentarily enable the RX ring for the changes to take effect */
4771 CSR_WRITE(sc, WMREG_RCTL, rctl | RCTL_EN);
4772 CSR_WRITE_FLUSH(sc);
4773 delay(150);
4774 CSR_WRITE(sc, WMREG_RCTL, rctl & ~RCTL_EN);
4775 }
4776
4777 /*
4778 * wm_reset:
4779 *
4780 * Reset the i82542 chip.
4781 */
4782 static void
4783 wm_reset(struct wm_softc *sc)
4784 {
4785 int phy_reset = 0;
4786 int i, error = 0;
4787 uint32_t reg;
4788 uint16_t kmreg;
4789 int rv;
4790
4791 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
4792 device_xname(sc->sc_dev), __func__));
4793 KASSERT(sc->sc_type != 0);
4794
4795 /*
4796 * Allocate on-chip memory according to the MTU size.
4797 * The Packet Buffer Allocation register must be written
4798 * before the chip is reset.
4799 */
4800 switch (sc->sc_type) {
4801 case WM_T_82547:
4802 case WM_T_82547_2:
4803 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
4804 PBA_22K : PBA_30K;
4805 for (i = 0; i < sc->sc_nqueues; i++) {
4806 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
4807 txq->txq_fifo_head = 0;
4808 txq->txq_fifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
4809 txq->txq_fifo_size =
4810 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
4811 txq->txq_fifo_stall = 0;
4812 }
4813 break;
4814 case WM_T_82571:
4815 case WM_T_82572:
4816 case WM_T_82575: /* XXX need special handing for jumbo frames */
4817 case WM_T_80003:
4818 sc->sc_pba = PBA_32K;
4819 break;
4820 case WM_T_82573:
4821 sc->sc_pba = PBA_12K;
4822 break;
4823 case WM_T_82574:
4824 case WM_T_82583:
4825 sc->sc_pba = PBA_20K;
4826 break;
4827 case WM_T_82576:
4828 sc->sc_pba = CSR_READ(sc, WMREG_RXPBS);
4829 sc->sc_pba &= RXPBS_SIZE_MASK_82576;
4830 break;
4831 case WM_T_82580:
4832 case WM_T_I350:
4833 case WM_T_I354:
4834 sc->sc_pba = wm_rxpbs_adjust_82580(CSR_READ(sc, WMREG_RXPBS));
4835 break;
4836 case WM_T_I210:
4837 case WM_T_I211:
4838 sc->sc_pba = PBA_34K;
4839 break;
4840 case WM_T_ICH8:
4841 /* Workaround for a bit corruption issue in FIFO memory */
4842 sc->sc_pba = PBA_8K;
4843 CSR_WRITE(sc, WMREG_PBS, PBA_16K);
4844 break;
4845 case WM_T_ICH9:
4846 case WM_T_ICH10:
4847 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 4096 ?
4848 PBA_14K : PBA_10K;
4849 break;
4850 case WM_T_PCH:
4851 case WM_T_PCH2: /* XXX 14K? */
4852 case WM_T_PCH_LPT:
4853 case WM_T_PCH_SPT:
4854 case WM_T_PCH_CNP:
4855 sc->sc_pba = PBA_26K;
4856 break;
4857 default:
4858 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
4859 PBA_40K : PBA_48K;
4860 break;
4861 }
4862 /*
4863 * Only old or non-multiqueue devices have the PBA register
4864 * XXX Need special handling for 82575.
4865 */
4866 if (((sc->sc_flags & WM_F_NEWQUEUE) == 0)
4867 || (sc->sc_type == WM_T_82575))
4868 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
4869
4870 /* Prevent the PCI-E bus from sticking */
4871 if (sc->sc_flags & WM_F_PCIE) {
4872 int timeout = 800;
4873
4874 sc->sc_ctrl |= CTRL_GIO_M_DIS;
4875 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4876
4877 while (timeout--) {
4878 if ((CSR_READ(sc, WMREG_STATUS) & STATUS_GIO_M_ENA)
4879 == 0)
4880 break;
4881 delay(100);
4882 }
4883 if (timeout == 0)
4884 device_printf(sc->sc_dev,
4885 "failed to disable busmastering\n");
4886 }
4887
4888 /* Set the completion timeout for interface */
4889 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
4890 || (sc->sc_type == WM_T_82580)
4891 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
4892 || (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211))
4893 wm_set_pcie_completion_timeout(sc);
4894
4895 /* Clear interrupt */
4896 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
4897 if (wm_is_using_msix(sc)) {
4898 if (sc->sc_type != WM_T_82574) {
4899 CSR_WRITE(sc, WMREG_EIMC, 0xffffffffU);
4900 CSR_WRITE(sc, WMREG_EIAC, 0);
4901 } else
4902 CSR_WRITE(sc, WMREG_EIAC_82574, 0);
4903 }
4904
4905 /* Stop the transmit and receive processes. */
4906 CSR_WRITE(sc, WMREG_RCTL, 0);
4907 sc->sc_rctl &= ~RCTL_EN;
4908 CSR_WRITE(sc, WMREG_TCTL, TCTL_PSP);
4909 CSR_WRITE_FLUSH(sc);
4910
4911 /* XXX set_tbi_sbp_82543() */
4912
4913 delay(10*1000);
4914
4915 /* Must acquire the MDIO ownership before MAC reset */
4916 switch (sc->sc_type) {
4917 case WM_T_82573:
4918 case WM_T_82574:
4919 case WM_T_82583:
4920 error = wm_get_hw_semaphore_82573(sc);
4921 break;
4922 default:
4923 break;
4924 }
4925
4926 /*
4927 * 82541 Errata 29? & 82547 Errata 28?
4928 * See also the description about PHY_RST bit in CTRL register
4929 * in 8254x_GBe_SDM.pdf.
4930 */
4931 if ((sc->sc_type == WM_T_82541) || (sc->sc_type == WM_T_82547)) {
4932 CSR_WRITE(sc, WMREG_CTRL,
4933 CSR_READ(sc, WMREG_CTRL) | CTRL_PHY_RESET);
4934 CSR_WRITE_FLUSH(sc);
4935 delay(5000);
4936 }
4937
4938 switch (sc->sc_type) {
4939 case WM_T_82544: /* XXX check whether WM_F_IOH_VALID is set */
4940 case WM_T_82541:
4941 case WM_T_82541_2:
4942 case WM_T_82547:
4943 case WM_T_82547_2:
4944 /*
4945 * On some chipsets, a reset through a memory-mapped write
4946 * cycle can cause the chip to reset before completing the
4947 * write cycle. This causes major headache that can be avoided
4948 * by issuing the reset via indirect register writes through
4949 * I/O space.
4950 *
4951 * So, if we successfully mapped the I/O BAR at attach time,
4952 * use that. Otherwise, try our luck with a memory-mapped
4953 * reset.
4954 */
4955 if (sc->sc_flags & WM_F_IOH_VALID)
4956 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
4957 else
4958 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
4959 break;
4960 case WM_T_82545_3:
4961 case WM_T_82546_3:
4962 /* Use the shadow control register on these chips. */
4963 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
4964 break;
4965 case WM_T_80003:
4966 reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST;
4967 sc->phy.acquire(sc);
4968 CSR_WRITE(sc, WMREG_CTRL, reg);
4969 sc->phy.release(sc);
4970 break;
4971 case WM_T_ICH8:
4972 case WM_T_ICH9:
4973 case WM_T_ICH10:
4974 case WM_T_PCH:
4975 case WM_T_PCH2:
4976 case WM_T_PCH_LPT:
4977 case WM_T_PCH_SPT:
4978 case WM_T_PCH_CNP:
4979 reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST;
4980 if (wm_phy_resetisblocked(sc) == false) {
4981 /*
4982 * Gate automatic PHY configuration by hardware on
4983 * non-managed 82579
4984 */
4985 if ((sc->sc_type == WM_T_PCH2)
4986 && ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID)
4987 == 0))
4988 wm_gate_hw_phy_config_ich8lan(sc, true);
4989
4990 reg |= CTRL_PHY_RESET;
4991 phy_reset = 1;
4992 } else
4993 device_printf(sc->sc_dev, "XXX reset is blocked!!!\n");
4994 sc->phy.acquire(sc);
4995 CSR_WRITE(sc, WMREG_CTRL, reg);
4996 /* Don't insert a completion barrier when reset */
4997 delay(20*1000);
4998 mutex_exit(sc->sc_ich_phymtx);
4999 break;
5000 case WM_T_82580:
5001 case WM_T_I350:
5002 case WM_T_I354:
5003 case WM_T_I210:
5004 case WM_T_I211:
5005 CSR_WRITE(sc, WMREG_CTRL, CSR_READ(sc, WMREG_CTRL) | CTRL_RST);
5006 if (sc->sc_pcidevid != PCI_PRODUCT_INTEL_DH89XXCC_SGMII)
5007 CSR_WRITE_FLUSH(sc);
5008 delay(5000);
5009 break;
5010 case WM_T_82542_2_0:
5011 case WM_T_82542_2_1:
5012 case WM_T_82543:
5013 case WM_T_82540:
5014 case WM_T_82545:
5015 case WM_T_82546:
5016 case WM_T_82571:
5017 case WM_T_82572:
5018 case WM_T_82573:
5019 case WM_T_82574:
5020 case WM_T_82575:
5021 case WM_T_82576:
5022 case WM_T_82583:
5023 default:
5024 /* Everything else can safely use the documented method. */
5025 CSR_WRITE(sc, WMREG_CTRL, CSR_READ(sc, WMREG_CTRL) | CTRL_RST);
5026 break;
5027 }
5028
5029 /* Must release the MDIO ownership after MAC reset */
5030 switch (sc->sc_type) {
5031 case WM_T_82573:
5032 case WM_T_82574:
5033 case WM_T_82583:
5034 if (error == 0)
5035 wm_put_hw_semaphore_82573(sc);
5036 break;
5037 default:
5038 break;
5039 }
5040
5041 /* Set Phy Config Counter to 50msec */
5042 if (sc->sc_type == WM_T_PCH2) {
5043 reg = CSR_READ(sc, WMREG_FEXTNVM3);
5044 reg &= ~FEXTNVM3_PHY_CFG_COUNTER_MASK;
5045 reg |= FEXTNVM3_PHY_CFG_COUNTER_50MS;
5046 CSR_WRITE(sc, WMREG_FEXTNVM3, reg);
5047 }
5048
5049 if (phy_reset != 0)
5050 wm_get_cfg_done(sc);
5051
5052 /* Reload EEPROM */
5053 switch (sc->sc_type) {
5054 case WM_T_82542_2_0:
5055 case WM_T_82542_2_1:
5056 case WM_T_82543:
5057 case WM_T_82544:
5058 delay(10);
5059 reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
5060 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
5061 CSR_WRITE_FLUSH(sc);
5062 delay(2000);
5063 break;
5064 case WM_T_82540:
5065 case WM_T_82545:
5066 case WM_T_82545_3:
5067 case WM_T_82546:
5068 case WM_T_82546_3:
5069 delay(5*1000);
5070 /* XXX Disable HW ARPs on ASF enabled adapters */
5071 break;
5072 case WM_T_82541:
5073 case WM_T_82541_2:
5074 case WM_T_82547:
5075 case WM_T_82547_2:
5076 delay(20000);
5077 /* XXX Disable HW ARPs on ASF enabled adapters */
5078 break;
5079 case WM_T_82571:
5080 case WM_T_82572:
5081 case WM_T_82573:
5082 case WM_T_82574:
5083 case WM_T_82583:
5084 if (sc->sc_flags & WM_F_EEPROM_FLASH) {
5085 delay(10);
5086 reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
5087 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
5088 CSR_WRITE_FLUSH(sc);
5089 }
5090 /* check EECD_EE_AUTORD */
5091 wm_get_auto_rd_done(sc);
5092 /*
5093 * Phy configuration from NVM just starts after EECD_AUTO_RD
5094 * is set.
5095 */
5096 if ((sc->sc_type == WM_T_82573) || (sc->sc_type == WM_T_82574)
5097 || (sc->sc_type == WM_T_82583))
5098 delay(25*1000);
5099 break;
5100 case WM_T_82575:
5101 case WM_T_82576:
5102 case WM_T_82580:
5103 case WM_T_I350:
5104 case WM_T_I354:
5105 case WM_T_I210:
5106 case WM_T_I211:
5107 case WM_T_80003:
5108 /* check EECD_EE_AUTORD */
5109 wm_get_auto_rd_done(sc);
5110 break;
5111 case WM_T_ICH8:
5112 case WM_T_ICH9:
5113 case WM_T_ICH10:
5114 case WM_T_PCH:
5115 case WM_T_PCH2:
5116 case WM_T_PCH_LPT:
5117 case WM_T_PCH_SPT:
5118 case WM_T_PCH_CNP:
5119 break;
5120 default:
5121 panic("%s: unknown type\n", __func__);
5122 }
5123
5124 /* Check whether EEPROM is present or not */
5125 switch (sc->sc_type) {
5126 case WM_T_82575:
5127 case WM_T_82576:
5128 case WM_T_82580:
5129 case WM_T_I350:
5130 case WM_T_I354:
5131 case WM_T_ICH8:
5132 case WM_T_ICH9:
5133 if ((CSR_READ(sc, WMREG_EECD) & EECD_EE_PRES) == 0) {
5134 /* Not found */
5135 sc->sc_flags |= WM_F_EEPROM_INVALID;
5136 if (sc->sc_type == WM_T_82575)
5137 wm_reset_init_script_82575(sc);
5138 }
5139 break;
5140 default:
5141 break;
5142 }
5143
5144 if (phy_reset != 0)
5145 wm_phy_post_reset(sc);
5146
5147 if ((sc->sc_type == WM_T_82580)
5148 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)) {
5149 /* Clear global device reset status bit */
5150 CSR_WRITE(sc, WMREG_STATUS, STATUS_DEV_RST_SET);
5151 }
5152
5153 /* Clear any pending interrupt events. */
5154 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
5155 reg = CSR_READ(sc, WMREG_ICR);
5156 if (wm_is_using_msix(sc)) {
5157 if (sc->sc_type != WM_T_82574) {
5158 CSR_WRITE(sc, WMREG_EIMC, 0xffffffffU);
5159 CSR_WRITE(sc, WMREG_EIAC, 0);
5160 } else
5161 CSR_WRITE(sc, WMREG_EIAC_82574, 0);
5162 }
5163
5164 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
5165 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
5166 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)
5167 || (sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP)){
5168 reg = CSR_READ(sc, WMREG_KABGTXD);
5169 reg |= KABGTXD_BGSQLBIAS;
5170 CSR_WRITE(sc, WMREG_KABGTXD, reg);
5171 }
5172
5173 /* Reload sc_ctrl */
5174 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
5175
5176 wm_set_eee(sc);
5177
5178 /*
5179 * For PCH, this write will make sure that any noise will be detected
5180 * as a CRC error and be dropped rather than show up as a bad packet
5181 * to the DMA engine
5182 */
5183 if (sc->sc_type == WM_T_PCH)
5184 CSR_WRITE(sc, WMREG_CRC_OFFSET, 0x65656565);
5185
5186 if (sc->sc_type >= WM_T_82544)
5187 CSR_WRITE(sc, WMREG_WUC, 0);
5188
5189 if (sc->sc_type < WM_T_82575)
5190 wm_disable_aspm(sc); /* Workaround for some chips */
5191
5192 wm_reset_mdicnfg_82580(sc);
5193
5194 if ((sc->sc_flags & WM_F_PLL_WA_I210) != 0)
5195 wm_pll_workaround_i210(sc);
5196
5197 if (sc->sc_type == WM_T_80003) {
5198 /* Default to TRUE to enable the MDIC W/A */
5199 sc->sc_flags |= WM_F_80003_MDIC_WA;
5200
5201 rv = wm_kmrn_readreg(sc,
5202 KUMCTRLSTA_OFFSET >> KUMCTRLSTA_OFFSET_SHIFT, &kmreg);
5203 if (rv == 0) {
5204 if ((kmreg & KUMCTRLSTA_OPMODE_MASK)
5205 == KUMCTRLSTA_OPMODE_INBAND_MDIO)
5206 sc->sc_flags &= ~WM_F_80003_MDIC_WA;
5207 else
5208 sc->sc_flags |= WM_F_80003_MDIC_WA;
5209 }
5210 }
5211 }
5212
5213 /*
5214 * wm_add_rxbuf:
5215 *
5216 * Add a receive buffer to the indiciated descriptor.
5217 */
5218 static int
5219 wm_add_rxbuf(struct wm_rxqueue *rxq, int idx)
5220 {
5221 struct wm_softc *sc = rxq->rxq_sc;
5222 struct wm_rxsoft *rxs = &rxq->rxq_soft[idx];
5223 struct mbuf *m;
5224 int error;
5225
5226 KASSERT(mutex_owned(rxq->rxq_lock));
5227
5228 MGETHDR(m, M_DONTWAIT, MT_DATA);
5229 if (m == NULL)
5230 return ENOBUFS;
5231
5232 MCLGET(m, M_DONTWAIT);
5233 if ((m->m_flags & M_EXT) == 0) {
5234 m_freem(m);
5235 return ENOBUFS;
5236 }
5237
5238 if (rxs->rxs_mbuf != NULL)
5239 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
5240
5241 rxs->rxs_mbuf = m;
5242
5243 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
5244 /*
5245 * Cannot use bus_dmamap_load_mbuf() here because m_data may be
5246 * sc_align_tweak'd between bus_dmamap_load() and bus_dmamap_sync().
5247 */
5248 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, m->m_ext.ext_buf,
5249 m->m_ext.ext_size, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
5250 if (error) {
5251 /* XXX XXX XXX */
5252 aprint_error_dev(sc->sc_dev,
5253 "unable to load rx DMA map %d, error = %d\n", idx, error);
5254 panic("wm_add_rxbuf");
5255 }
5256
5257 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
5258 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
5259
5260 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
5261 if ((sc->sc_rctl & RCTL_EN) != 0)
5262 wm_init_rxdesc(rxq, idx);
5263 } else
5264 wm_init_rxdesc(rxq, idx);
5265
5266 return 0;
5267 }
5268
5269 /*
5270 * wm_rxdrain:
5271 *
5272 * Drain the receive queue.
5273 */
5274 static void
5275 wm_rxdrain(struct wm_rxqueue *rxq)
5276 {
5277 struct wm_softc *sc = rxq->rxq_sc;
5278 struct wm_rxsoft *rxs;
5279 int i;
5280
5281 KASSERT(mutex_owned(rxq->rxq_lock));
5282
5283 for (i = 0; i < WM_NRXDESC; i++) {
5284 rxs = &rxq->rxq_soft[i];
5285 if (rxs->rxs_mbuf != NULL) {
5286 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
5287 m_freem(rxs->rxs_mbuf);
5288 rxs->rxs_mbuf = NULL;
5289 }
5290 }
5291 }
5292
5293 /*
5294 * Setup registers for RSS.
5295 *
5296 * XXX not yet VMDq support
5297 */
5298 static void
5299 wm_init_rss(struct wm_softc *sc)
5300 {
5301 uint32_t mrqc, reta_reg, rss_key[RSSRK_NUM_REGS];
5302 int i;
5303
5304 CTASSERT(sizeof(rss_key) == RSS_KEYSIZE);
5305
5306 for (i = 0; i < RETA_NUM_ENTRIES; i++) {
5307 unsigned int qid, reta_ent;
5308
5309 qid = i % sc->sc_nqueues;
5310 switch (sc->sc_type) {
5311 case WM_T_82574:
5312 reta_ent = __SHIFTIN(qid,
5313 RETA_ENT_QINDEX_MASK_82574);
5314 break;
5315 case WM_T_82575:
5316 reta_ent = __SHIFTIN(qid,
5317 RETA_ENT_QINDEX1_MASK_82575);
5318 break;
5319 default:
5320 reta_ent = __SHIFTIN(qid, RETA_ENT_QINDEX_MASK);
5321 break;
5322 }
5323
5324 reta_reg = CSR_READ(sc, WMREG_RETA_Q(i));
5325 reta_reg &= ~RETA_ENTRY_MASK_Q(i);
5326 reta_reg |= __SHIFTIN(reta_ent, RETA_ENTRY_MASK_Q(i));
5327 CSR_WRITE(sc, WMREG_RETA_Q(i), reta_reg);
5328 }
5329
5330 rss_getkey((uint8_t *)rss_key);
5331 for (i = 0; i < RSSRK_NUM_REGS; i++)
5332 CSR_WRITE(sc, WMREG_RSSRK(i), rss_key[i]);
5333
5334 if (sc->sc_type == WM_T_82574)
5335 mrqc = MRQC_ENABLE_RSS_MQ_82574;
5336 else
5337 mrqc = MRQC_ENABLE_RSS_MQ;
5338
5339 /*
5340 * MRQC_RSS_FIELD_IPV6_EX is not set because of an errata.
5341 * See IPV6EXDIS bit in wm_initialize_hardware_bits().
5342 */
5343 mrqc |= (MRQC_RSS_FIELD_IPV4 | MRQC_RSS_FIELD_IPV4_TCP);
5344 mrqc |= (MRQC_RSS_FIELD_IPV6 | MRQC_RSS_FIELD_IPV6_TCP);
5345 #if 0
5346 mrqc |= (MRQC_RSS_FIELD_IPV4_UDP | MRQC_RSS_FIELD_IPV6_UDP);
5347 mrqc |= MRQC_RSS_FIELD_IPV6_UDP_EX;
5348 #endif
5349 mrqc |= MRQC_RSS_FIELD_IPV6_TCP_EX;
5350
5351 CSR_WRITE(sc, WMREG_MRQC, mrqc);
5352 }
5353
5354 /*
5355 * Adjust TX and RX queue numbers which the system actulally uses.
5356 *
5357 * The numbers are affected by below parameters.
5358 * - The nubmer of hardware queues
5359 * - The number of MSI-X vectors (= "nvectors" argument)
5360 * - ncpu
5361 */
5362 static void
5363 wm_adjust_qnum(struct wm_softc *sc, int nvectors)
5364 {
5365 int hw_ntxqueues, hw_nrxqueues, hw_nqueues;
5366
5367 if (nvectors < 2) {
5368 sc->sc_nqueues = 1;
5369 return;
5370 }
5371
5372 switch (sc->sc_type) {
5373 case WM_T_82572:
5374 hw_ntxqueues = 2;
5375 hw_nrxqueues = 2;
5376 break;
5377 case WM_T_82574:
5378 hw_ntxqueues = 2;
5379 hw_nrxqueues = 2;
5380 break;
5381 case WM_T_82575:
5382 hw_ntxqueues = 4;
5383 hw_nrxqueues = 4;
5384 break;
5385 case WM_T_82576:
5386 hw_ntxqueues = 16;
5387 hw_nrxqueues = 16;
5388 break;
5389 case WM_T_82580:
5390 case WM_T_I350:
5391 case WM_T_I354:
5392 hw_ntxqueues = 8;
5393 hw_nrxqueues = 8;
5394 break;
5395 case WM_T_I210:
5396 hw_ntxqueues = 4;
5397 hw_nrxqueues = 4;
5398 break;
5399 case WM_T_I211:
5400 hw_ntxqueues = 2;
5401 hw_nrxqueues = 2;
5402 break;
5403 /*
5404 * As below ethernet controllers does not support MSI-X,
5405 * this driver let them not use multiqueue.
5406 * - WM_T_80003
5407 * - WM_T_ICH8
5408 * - WM_T_ICH9
5409 * - WM_T_ICH10
5410 * - WM_T_PCH
5411 * - WM_T_PCH2
5412 * - WM_T_PCH_LPT
5413 */
5414 default:
5415 hw_ntxqueues = 1;
5416 hw_nrxqueues = 1;
5417 break;
5418 }
5419
5420 hw_nqueues = uimin(hw_ntxqueues, hw_nrxqueues);
5421
5422 /*
5423 * As queues more than MSI-X vectors cannot improve scaling, we limit
5424 * the number of queues used actually.
5425 */
5426 if (nvectors < hw_nqueues + 1)
5427 sc->sc_nqueues = nvectors - 1;
5428 else
5429 sc->sc_nqueues = hw_nqueues;
5430
5431 /*
5432 * As queues more then cpus cannot improve scaling, we limit
5433 * the number of queues used actually.
5434 */
5435 if (ncpu < sc->sc_nqueues)
5436 sc->sc_nqueues = ncpu;
5437 }
5438
5439 static inline bool
5440 wm_is_using_msix(struct wm_softc *sc)
5441 {
5442
5443 return (sc->sc_nintrs > 1);
5444 }
5445
5446 static inline bool
5447 wm_is_using_multiqueue(struct wm_softc *sc)
5448 {
5449
5450 return (sc->sc_nqueues > 1);
5451 }
5452
5453 static int
5454 wm_softint_establish_queue(struct wm_softc *sc, int qidx, int intr_idx)
5455 {
5456 struct wm_queue *wmq = &sc->sc_queue[qidx];
5457
5458 wmq->wmq_id = qidx;
5459 wmq->wmq_intr_idx = intr_idx;
5460 wmq->wmq_si = softint_establish(SOFTINT_NET | WM_SOFTINT_FLAGS,
5461 wm_handle_queue, wmq);
5462 if (wmq->wmq_si != NULL)
5463 return 0;
5464
5465 aprint_error_dev(sc->sc_dev, "unable to establish queue[%d] handler\n",
5466 wmq->wmq_id);
5467 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[wmq->wmq_intr_idx]);
5468 sc->sc_ihs[wmq->wmq_intr_idx] = NULL;
5469 return ENOMEM;
5470 }
5471
5472 /*
5473 * Both single interrupt MSI and INTx can use this function.
5474 */
5475 static int
5476 wm_setup_legacy(struct wm_softc *sc)
5477 {
5478 pci_chipset_tag_t pc = sc->sc_pc;
5479 const char *intrstr = NULL;
5480 char intrbuf[PCI_INTRSTR_LEN];
5481 int error;
5482
5483 error = wm_alloc_txrx_queues(sc);
5484 if (error) {
5485 aprint_error_dev(sc->sc_dev, "cannot allocate queues %d\n",
5486 error);
5487 return ENOMEM;
5488 }
5489 intrstr = pci_intr_string(pc, sc->sc_intrs[0], intrbuf,
5490 sizeof(intrbuf));
5491 #ifdef WM_MPSAFE
5492 pci_intr_setattr(pc, &sc->sc_intrs[0], PCI_INTR_MPSAFE, true);
5493 #endif
5494 sc->sc_ihs[0] = pci_intr_establish_xname(pc, sc->sc_intrs[0],
5495 IPL_NET, wm_intr_legacy, sc, device_xname(sc->sc_dev));
5496 if (sc->sc_ihs[0] == NULL) {
5497 aprint_error_dev(sc->sc_dev,"unable to establish %s\n",
5498 (pci_intr_type(pc, sc->sc_intrs[0])
5499 == PCI_INTR_TYPE_MSI) ? "MSI" : "INTx");
5500 return ENOMEM;
5501 }
5502
5503 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
5504 sc->sc_nintrs = 1;
5505
5506 return wm_softint_establish_queue(sc, 0, 0);
5507 }
5508
5509 static int
5510 wm_setup_msix(struct wm_softc *sc)
5511 {
5512 void *vih;
5513 kcpuset_t *affinity;
5514 int qidx, error, intr_idx, txrx_established;
5515 pci_chipset_tag_t pc = sc->sc_pc;
5516 const char *intrstr = NULL;
5517 char intrbuf[PCI_INTRSTR_LEN];
5518 char intr_xname[INTRDEVNAMEBUF];
5519
5520 if (sc->sc_nqueues < ncpu) {
5521 /*
5522 * To avoid other devices' interrupts, the affinity of Tx/Rx
5523 * interrupts start from CPU#1.
5524 */
5525 sc->sc_affinity_offset = 1;
5526 } else {
5527 /*
5528 * In this case, this device use all CPUs. So, we unify
5529 * affinitied cpu_index to msix vector number for readability.
5530 */
5531 sc->sc_affinity_offset = 0;
5532 }
5533
5534 error = wm_alloc_txrx_queues(sc);
5535 if (error) {
5536 aprint_error_dev(sc->sc_dev, "cannot allocate queues %d\n",
5537 error);
5538 return ENOMEM;
5539 }
5540
5541 kcpuset_create(&affinity, false);
5542 intr_idx = 0;
5543
5544 /*
5545 * TX and RX
5546 */
5547 txrx_established = 0;
5548 for (qidx = 0; qidx < sc->sc_nqueues; qidx++) {
5549 struct wm_queue *wmq = &sc->sc_queue[qidx];
5550 int affinity_to = (sc->sc_affinity_offset + intr_idx) % ncpu;
5551
5552 intrstr = pci_intr_string(pc, sc->sc_intrs[intr_idx], intrbuf,
5553 sizeof(intrbuf));
5554 #ifdef WM_MPSAFE
5555 pci_intr_setattr(pc, &sc->sc_intrs[intr_idx],
5556 PCI_INTR_MPSAFE, true);
5557 #endif
5558 memset(intr_xname, 0, sizeof(intr_xname));
5559 snprintf(intr_xname, sizeof(intr_xname), "%sTXRX%d",
5560 device_xname(sc->sc_dev), qidx);
5561 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intr_idx],
5562 IPL_NET, wm_txrxintr_msix, wmq, intr_xname);
5563 if (vih == NULL) {
5564 aprint_error_dev(sc->sc_dev,
5565 "unable to establish MSI-X(for TX and RX)%s%s\n",
5566 intrstr ? " at " : "",
5567 intrstr ? intrstr : "");
5568
5569 goto fail;
5570 }
5571 kcpuset_zero(affinity);
5572 /* Round-robin affinity */
5573 kcpuset_set(affinity, affinity_to);
5574 error = interrupt_distribute(vih, affinity, NULL);
5575 if (error == 0) {
5576 aprint_normal_dev(sc->sc_dev,
5577 "for TX and RX interrupting at %s affinity to %u\n",
5578 intrstr, affinity_to);
5579 } else {
5580 aprint_normal_dev(sc->sc_dev,
5581 "for TX and RX interrupting at %s\n", intrstr);
5582 }
5583 sc->sc_ihs[intr_idx] = vih;
5584 if (wm_softint_establish_queue(sc, qidx, intr_idx) != 0)
5585 goto fail;
5586 txrx_established++;
5587 intr_idx++;
5588 }
5589
5590 /* LINK */
5591 intrstr = pci_intr_string(pc, sc->sc_intrs[intr_idx], intrbuf,
5592 sizeof(intrbuf));
5593 #ifdef WM_MPSAFE
5594 pci_intr_setattr(pc, &sc->sc_intrs[intr_idx], PCI_INTR_MPSAFE, true);
5595 #endif
5596 memset(intr_xname, 0, sizeof(intr_xname));
5597 snprintf(intr_xname, sizeof(intr_xname), "%sLINK",
5598 device_xname(sc->sc_dev));
5599 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intr_idx],
5600 IPL_NET, wm_linkintr_msix, sc, intr_xname);
5601 if (vih == NULL) {
5602 aprint_error_dev(sc->sc_dev,
5603 "unable to establish MSI-X(for LINK)%s%s\n",
5604 intrstr ? " at " : "",
5605 intrstr ? intrstr : "");
5606
5607 goto fail;
5608 }
5609 /* Keep default affinity to LINK interrupt */
5610 aprint_normal_dev(sc->sc_dev,
5611 "for LINK interrupting at %s\n", intrstr);
5612 sc->sc_ihs[intr_idx] = vih;
5613 sc->sc_link_intr_idx = intr_idx;
5614
5615 sc->sc_nintrs = sc->sc_nqueues + 1;
5616 kcpuset_destroy(affinity);
5617 return 0;
5618
5619 fail:
5620 for (qidx = 0; qidx < txrx_established; qidx++) {
5621 struct wm_queue *wmq = &sc->sc_queue[qidx];
5622 pci_intr_disestablish(sc->sc_pc,sc->sc_ihs[wmq->wmq_intr_idx]);
5623 sc->sc_ihs[wmq->wmq_intr_idx] = NULL;
5624 }
5625
5626 kcpuset_destroy(affinity);
5627 return ENOMEM;
5628 }
5629
5630 static void
5631 wm_unset_stopping_flags(struct wm_softc *sc)
5632 {
5633 int i;
5634
5635 KASSERT(WM_CORE_LOCKED(sc));
5636
5637 /* Must unset stopping flags in ascending order. */
5638 for (i = 0; i < sc->sc_nqueues; i++) {
5639 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
5640 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
5641
5642 mutex_enter(txq->txq_lock);
5643 txq->txq_stopping = false;
5644 mutex_exit(txq->txq_lock);
5645
5646 mutex_enter(rxq->rxq_lock);
5647 rxq->rxq_stopping = false;
5648 mutex_exit(rxq->rxq_lock);
5649 }
5650
5651 sc->sc_core_stopping = false;
5652 }
5653
5654 static void
5655 wm_set_stopping_flags(struct wm_softc *sc)
5656 {
5657 int i;
5658
5659 KASSERT(WM_CORE_LOCKED(sc));
5660
5661 sc->sc_core_stopping = true;
5662
5663 /* Must set stopping flags in ascending order. */
5664 for (i = 0; i < sc->sc_nqueues; i++) {
5665 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
5666 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
5667
5668 mutex_enter(rxq->rxq_lock);
5669 rxq->rxq_stopping = true;
5670 mutex_exit(rxq->rxq_lock);
5671
5672 mutex_enter(txq->txq_lock);
5673 txq->txq_stopping = true;
5674 mutex_exit(txq->txq_lock);
5675 }
5676 }
5677
5678 /*
5679 * Write interrupt interval value to ITR or EITR
5680 */
5681 static void
5682 wm_itrs_writereg(struct wm_softc *sc, struct wm_queue *wmq)
5683 {
5684
5685 if (!wmq->wmq_set_itr)
5686 return;
5687
5688 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
5689 uint32_t eitr = __SHIFTIN(wmq->wmq_itr, EITR_ITR_INT_MASK);
5690
5691 /*
5692 * 82575 doesn't have CNT_INGR field.
5693 * So, overwrite counter field by software.
5694 */
5695 if (sc->sc_type == WM_T_82575)
5696 eitr |= __SHIFTIN(wmq->wmq_itr, EITR_COUNTER_MASK_82575);
5697 else
5698 eitr |= EITR_CNT_INGR;
5699
5700 CSR_WRITE(sc, WMREG_EITR(wmq->wmq_intr_idx), eitr);
5701 } else if (sc->sc_type == WM_T_82574 && wm_is_using_msix(sc)) {
5702 /*
5703 * 82574 has both ITR and EITR. SET EITR when we use
5704 * the multi queue function with MSI-X.
5705 */
5706 CSR_WRITE(sc, WMREG_EITR_82574(wmq->wmq_intr_idx),
5707 wmq->wmq_itr & EITR_ITR_INT_MASK_82574);
5708 } else {
5709 KASSERT(wmq->wmq_id == 0);
5710 CSR_WRITE(sc, WMREG_ITR, wmq->wmq_itr);
5711 }
5712
5713 wmq->wmq_set_itr = false;
5714 }
5715
5716 /*
5717 * TODO
5718 * Below dynamic calculation of itr is almost the same as linux igb,
5719 * however it does not fit to wm(4). So, we will have been disable AIM
5720 * until we will find appropriate calculation of itr.
5721 */
5722 /*
5723 * calculate interrupt interval value to be going to write register in
5724 * wm_itrs_writereg(). This function does not write ITR/EITR register.
5725 */
5726 static void
5727 wm_itrs_calculate(struct wm_softc *sc, struct wm_queue *wmq)
5728 {
5729 #ifdef NOTYET
5730 struct wm_rxqueue *rxq = &wmq->wmq_rxq;
5731 struct wm_txqueue *txq = &wmq->wmq_txq;
5732 uint32_t avg_size = 0;
5733 uint32_t new_itr;
5734
5735 if (rxq->rxq_packets)
5736 avg_size = rxq->rxq_bytes / rxq->rxq_packets;
5737 if (txq->txq_packets)
5738 avg_size = uimax(avg_size, txq->txq_bytes / txq->txq_packets);
5739
5740 if (avg_size == 0) {
5741 new_itr = 450; /* restore default value */
5742 goto out;
5743 }
5744
5745 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5746 avg_size += 24;
5747
5748 /* Don't starve jumbo frames */
5749 avg_size = uimin(avg_size, 3000);
5750
5751 /* Give a little boost to mid-size frames */
5752 if ((avg_size > 300) && (avg_size < 1200))
5753 new_itr = avg_size / 3;
5754 else
5755 new_itr = avg_size / 2;
5756
5757 out:
5758 /*
5759 * The usage of 82574 and 82575 EITR is different from otther NEWQUEUE
5760 * controllers. See sc->sc_itr_init setting in wm_init_locked().
5761 */
5762 if ((sc->sc_flags & WM_F_NEWQUEUE) == 0 || sc->sc_type != WM_T_82575)
5763 new_itr *= 4;
5764
5765 if (new_itr != wmq->wmq_itr) {
5766 wmq->wmq_itr = new_itr;
5767 wmq->wmq_set_itr = true;
5768 } else
5769 wmq->wmq_set_itr = false;
5770
5771 rxq->rxq_packets = 0;
5772 rxq->rxq_bytes = 0;
5773 txq->txq_packets = 0;
5774 txq->txq_bytes = 0;
5775 #endif
5776 }
5777
5778 static void
5779 wm_init_sysctls(struct wm_softc *sc)
5780 {
5781 struct sysctllog **log;
5782 const struct sysctlnode *rnode, *cnode;
5783 int rv;
5784 const char *dvname;
5785
5786 log = &sc->sc_sysctllog;
5787 dvname = device_xname(sc->sc_dev);
5788
5789 rv = sysctl_createv(log, 0, NULL, &rnode,
5790 0, CTLTYPE_NODE, dvname,
5791 SYSCTL_DESCR("wm information and settings"),
5792 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
5793 if (rv != 0)
5794 goto err;
5795
5796 rv = sysctl_createv(log, 0, &rnode, &cnode, CTLFLAG_READWRITE,
5797 CTLTYPE_BOOL, "txrx_workqueue", SYSCTL_DESCR("Use workqueue for packet processing"),
5798 NULL, 0, &sc->sc_txrx_use_workqueue, 0, CTL_CREATE, CTL_EOL);
5799 if (rv != 0)
5800 goto teardown;
5801
5802 return;
5803
5804 teardown:
5805 sysctl_teardown(log);
5806 err:
5807 sc->sc_sysctllog = NULL;
5808 device_printf(sc->sc_dev, "%s: sysctl_createv failed, rv = %d\n",
5809 __func__, rv);
5810 }
5811
5812 /*
5813 * wm_init: [ifnet interface function]
5814 *
5815 * Initialize the interface.
5816 */
5817 static int
5818 wm_init(struct ifnet *ifp)
5819 {
5820 struct wm_softc *sc = ifp->if_softc;
5821 int ret;
5822
5823 WM_CORE_LOCK(sc);
5824 ret = wm_init_locked(ifp);
5825 WM_CORE_UNLOCK(sc);
5826
5827 return ret;
5828 }
5829
5830 static int
5831 wm_init_locked(struct ifnet *ifp)
5832 {
5833 struct wm_softc *sc = ifp->if_softc;
5834 struct ethercom *ec = &sc->sc_ethercom;
5835 int i, j, trynum, error = 0;
5836 uint32_t reg, sfp_mask = 0;
5837
5838 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
5839 device_xname(sc->sc_dev), __func__));
5840 KASSERT(WM_CORE_LOCKED(sc));
5841
5842 /*
5843 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
5844 * There is a small but measurable benefit to avoiding the adjusment
5845 * of the descriptor so that the headers are aligned, for normal mtu,
5846 * on such platforms. One possibility is that the DMA itself is
5847 * slightly more efficient if the front of the entire packet (instead
5848 * of the front of the headers) is aligned.
5849 *
5850 * Note we must always set align_tweak to 0 if we are using
5851 * jumbo frames.
5852 */
5853 #ifdef __NO_STRICT_ALIGNMENT
5854 sc->sc_align_tweak = 0;
5855 #else
5856 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
5857 sc->sc_align_tweak = 0;
5858 else
5859 sc->sc_align_tweak = 2;
5860 #endif /* __NO_STRICT_ALIGNMENT */
5861
5862 /* Cancel any pending I/O. */
5863 wm_stop_locked(ifp, false, false);
5864
5865 /* Update statistics before reset */
5866 if_statadd2(ifp, if_collisions, CSR_READ(sc, WMREG_COLC),
5867 if_ierrors, CSR_READ(sc, WMREG_RXERRC));
5868
5869 /* PCH_SPT hardware workaround */
5870 if (sc->sc_type == WM_T_PCH_SPT)
5871 wm_flush_desc_rings(sc);
5872
5873 /* Reset the chip to a known state. */
5874 wm_reset(sc);
5875
5876 /*
5877 * AMT based hardware can now take control from firmware
5878 * Do this after reset.
5879 */
5880 if ((sc->sc_flags & WM_F_HAS_AMT) != 0)
5881 wm_get_hw_control(sc);
5882
5883 if ((sc->sc_type >= WM_T_PCH_SPT) &&
5884 pci_intr_type(sc->sc_pc, sc->sc_intrs[0]) == PCI_INTR_TYPE_INTX)
5885 wm_legacy_irq_quirk_spt(sc);
5886
5887 /* Init hardware bits */
5888 wm_initialize_hardware_bits(sc);
5889
5890 /* Reset the PHY. */
5891 if (sc->sc_flags & WM_F_HAS_MII)
5892 wm_gmii_reset(sc);
5893
5894 if (sc->sc_type >= WM_T_ICH8) {
5895 reg = CSR_READ(sc, WMREG_GCR);
5896 /*
5897 * ICH8 No-snoop bits are opposite polarity. Set to snoop by
5898 * default after reset.
5899 */
5900 if (sc->sc_type == WM_T_ICH8)
5901 reg |= GCR_NO_SNOOP_ALL;
5902 else
5903 reg &= ~GCR_NO_SNOOP_ALL;
5904 CSR_WRITE(sc, WMREG_GCR, reg);
5905 }
5906
5907 if ((sc->sc_type >= WM_T_ICH8)
5908 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER)
5909 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3)) {
5910
5911 reg = CSR_READ(sc, WMREG_CTRL_EXT);
5912 reg |= CTRL_EXT_RO_DIS;
5913 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
5914 }
5915
5916 /* Calculate (E)ITR value */
5917 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0 && sc->sc_type != WM_T_82575) {
5918 /*
5919 * For NEWQUEUE's EITR (except for 82575).
5920 * 82575's EITR should be set same throttling value as other
5921 * old controllers' ITR because the interrupt/sec calculation
5922 * is the same, that is, 1,000,000,000 / (N * 256).
5923 *
5924 * 82574's EITR should be set same throttling value as ITR.
5925 *
5926 * For N interrupts/sec, set this value to:
5927 * 1,000,000 / N in contrast to ITR throttoling value.
5928 */
5929 sc->sc_itr_init = 450;
5930 } else if (sc->sc_type >= WM_T_82543) {
5931 /*
5932 * Set up the interrupt throttling register (units of 256ns)
5933 * Note that a footnote in Intel's documentation says this
5934 * ticker runs at 1/4 the rate when the chip is in 100Mbit
5935 * or 10Mbit mode. Empirically, it appears to be the case
5936 * that that is also true for the 1024ns units of the other
5937 * interrupt-related timer registers -- so, really, we ought
5938 * to divide this value by 4 when the link speed is low.
5939 *
5940 * XXX implement this division at link speed change!
5941 */
5942
5943 /*
5944 * For N interrupts/sec, set this value to:
5945 * 1,000,000,000 / (N * 256). Note that we set the
5946 * absolute and packet timer values to this value
5947 * divided by 4 to get "simple timer" behavior.
5948 */
5949 sc->sc_itr_init = 1500; /* 2604 ints/sec */
5950 }
5951
5952 error = wm_init_txrx_queues(sc);
5953 if (error)
5954 goto out;
5955
5956 if (((sc->sc_flags & WM_F_SGMII) == 0) &&
5957 (sc->sc_mediatype == WM_MEDIATYPE_SERDES) &&
5958 (sc->sc_type >= WM_T_82575))
5959 wm_serdes_power_up_link_82575(sc);
5960
5961 /* Clear out the VLAN table -- we don't use it (yet). */
5962 CSR_WRITE(sc, WMREG_VET, 0);
5963 if ((sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354))
5964 trynum = 10; /* Due to hw errata */
5965 else
5966 trynum = 1;
5967 for (i = 0; i < WM_VLAN_TABSIZE; i++)
5968 for (j = 0; j < trynum; j++)
5969 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
5970
5971 /*
5972 * Set up flow-control parameters.
5973 *
5974 * XXX Values could probably stand some tuning.
5975 */
5976 if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9)
5977 && (sc->sc_type != WM_T_ICH10) && (sc->sc_type != WM_T_PCH)
5978 && (sc->sc_type != WM_T_PCH2) && (sc->sc_type != WM_T_PCH_LPT)
5979 && (sc->sc_type != WM_T_PCH_SPT) && (sc->sc_type != WM_T_PCH_CNP)){
5980 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
5981 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
5982 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
5983 }
5984
5985 sc->sc_fcrtl = FCRTL_DFLT;
5986 if (sc->sc_type < WM_T_82543) {
5987 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
5988 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
5989 } else {
5990 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
5991 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
5992 }
5993
5994 if (sc->sc_type == WM_T_80003)
5995 CSR_WRITE(sc, WMREG_FCTTV, 0xffff);
5996 else
5997 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
5998
5999 /* Writes the control register. */
6000 wm_set_vlan(sc);
6001
6002 if (sc->sc_flags & WM_F_HAS_MII) {
6003 uint16_t kmreg;
6004
6005 switch (sc->sc_type) {
6006 case WM_T_80003:
6007 case WM_T_ICH8:
6008 case WM_T_ICH9:
6009 case WM_T_ICH10:
6010 case WM_T_PCH:
6011 case WM_T_PCH2:
6012 case WM_T_PCH_LPT:
6013 case WM_T_PCH_SPT:
6014 case WM_T_PCH_CNP:
6015 /*
6016 * Set the mac to wait the maximum time between each
6017 * iteration and increase the max iterations when
6018 * polling the phy; this fixes erroneous timeouts at
6019 * 10Mbps.
6020 */
6021 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS,
6022 0xFFFF);
6023 wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_INB_PARAM,
6024 &kmreg);
6025 kmreg |= 0x3F;
6026 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_INB_PARAM,
6027 kmreg);
6028 break;
6029 default:
6030 break;
6031 }
6032
6033 if (sc->sc_type == WM_T_80003) {
6034 reg = CSR_READ(sc, WMREG_CTRL_EXT);
6035 reg &= ~CTRL_EXT_LINK_MODE_MASK;
6036 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
6037
6038 /* Bypass RX and TX FIFO's */
6039 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL,
6040 KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
6041 | KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
6042 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL,
6043 KUMCTRLSTA_INB_CTRL_DIS_PADDING |
6044 KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT);
6045 }
6046 }
6047 #if 0
6048 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
6049 #endif
6050
6051 /* Set up checksum offload parameters. */
6052 reg = CSR_READ(sc, WMREG_RXCSUM);
6053 reg &= ~(RXCSUM_IPOFL | RXCSUM_IPV6OFL | RXCSUM_TUOFL);
6054 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
6055 reg |= RXCSUM_IPOFL;
6056 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
6057 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
6058 if (ifp->if_capenable & (IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
6059 reg |= RXCSUM_IPV6OFL | RXCSUM_TUOFL;
6060 CSR_WRITE(sc, WMREG_RXCSUM, reg);
6061
6062 /* Set registers about MSI-X */
6063 if (wm_is_using_msix(sc)) {
6064 uint32_t ivar, qintr_idx;
6065 struct wm_queue *wmq;
6066 unsigned int qid;
6067
6068 if (sc->sc_type == WM_T_82575) {
6069 /* Interrupt control */
6070 reg = CSR_READ(sc, WMREG_CTRL_EXT);
6071 reg |= CTRL_EXT_PBA | CTRL_EXT_EIAME | CTRL_EXT_NSICR;
6072 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
6073
6074 /* TX and RX */
6075 for (i = 0; i < sc->sc_nqueues; i++) {
6076 wmq = &sc->sc_queue[i];
6077 CSR_WRITE(sc, WMREG_MSIXBM(wmq->wmq_intr_idx),
6078 EITR_TX_QUEUE(wmq->wmq_id)
6079 | EITR_RX_QUEUE(wmq->wmq_id));
6080 }
6081 /* Link status */
6082 CSR_WRITE(sc, WMREG_MSIXBM(sc->sc_link_intr_idx),
6083 EITR_OTHER);
6084 } else if (sc->sc_type == WM_T_82574) {
6085 /* Interrupt control */
6086 reg = CSR_READ(sc, WMREG_CTRL_EXT);
6087 reg |= CTRL_EXT_PBA | CTRL_EXT_EIAME;
6088 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
6089
6090 /*
6091 * Workaround issue with spurious interrupts
6092 * in MSI-X mode.
6093 * At wm_initialize_hardware_bits(), sc_nintrs has not
6094 * initialized yet. So re-initialize WMREG_RFCTL here.
6095 */
6096 reg = CSR_READ(sc, WMREG_RFCTL);
6097 reg |= WMREG_RFCTL_ACKDIS;
6098 CSR_WRITE(sc, WMREG_RFCTL, reg);
6099
6100 ivar = 0;
6101 /* TX and RX */
6102 for (i = 0; i < sc->sc_nqueues; i++) {
6103 wmq = &sc->sc_queue[i];
6104 qid = wmq->wmq_id;
6105 qintr_idx = wmq->wmq_intr_idx;
6106
6107 ivar |= __SHIFTIN((IVAR_VALID_82574|qintr_idx),
6108 IVAR_TX_MASK_Q_82574(qid));
6109 ivar |= __SHIFTIN((IVAR_VALID_82574|qintr_idx),
6110 IVAR_RX_MASK_Q_82574(qid));
6111 }
6112 /* Link status */
6113 ivar |= __SHIFTIN((IVAR_VALID_82574
6114 | sc->sc_link_intr_idx), IVAR_OTHER_MASK);
6115 CSR_WRITE(sc, WMREG_IVAR, ivar | IVAR_INT_ON_ALL_WB);
6116 } else {
6117 /* Interrupt control */
6118 CSR_WRITE(sc, WMREG_GPIE, GPIE_NSICR | GPIE_MULTI_MSIX
6119 | GPIE_EIAME | GPIE_PBA);
6120
6121 switch (sc->sc_type) {
6122 case WM_T_82580:
6123 case WM_T_I350:
6124 case WM_T_I354:
6125 case WM_T_I210:
6126 case WM_T_I211:
6127 /* TX and RX */
6128 for (i = 0; i < sc->sc_nqueues; i++) {
6129 wmq = &sc->sc_queue[i];
6130 qid = wmq->wmq_id;
6131 qintr_idx = wmq->wmq_intr_idx;
6132
6133 ivar = CSR_READ(sc, WMREG_IVAR_Q(qid));
6134 ivar &= ~IVAR_TX_MASK_Q(qid);
6135 ivar |= __SHIFTIN((qintr_idx
6136 | IVAR_VALID),
6137 IVAR_TX_MASK_Q(qid));
6138 ivar &= ~IVAR_RX_MASK_Q(qid);
6139 ivar |= __SHIFTIN((qintr_idx
6140 | IVAR_VALID),
6141 IVAR_RX_MASK_Q(qid));
6142 CSR_WRITE(sc, WMREG_IVAR_Q(qid), ivar);
6143 }
6144 break;
6145 case WM_T_82576:
6146 /* TX and RX */
6147 for (i = 0; i < sc->sc_nqueues; i++) {
6148 wmq = &sc->sc_queue[i];
6149 qid = wmq->wmq_id;
6150 qintr_idx = wmq->wmq_intr_idx;
6151
6152 ivar = CSR_READ(sc,
6153 WMREG_IVAR_Q_82576(qid));
6154 ivar &= ~IVAR_TX_MASK_Q_82576(qid);
6155 ivar |= __SHIFTIN((qintr_idx
6156 | IVAR_VALID),
6157 IVAR_TX_MASK_Q_82576(qid));
6158 ivar &= ~IVAR_RX_MASK_Q_82576(qid);
6159 ivar |= __SHIFTIN((qintr_idx
6160 | IVAR_VALID),
6161 IVAR_RX_MASK_Q_82576(qid));
6162 CSR_WRITE(sc, WMREG_IVAR_Q_82576(qid),
6163 ivar);
6164 }
6165 break;
6166 default:
6167 break;
6168 }
6169
6170 /* Link status */
6171 ivar = __SHIFTIN((sc->sc_link_intr_idx | IVAR_VALID),
6172 IVAR_MISC_OTHER);
6173 CSR_WRITE(sc, WMREG_IVAR_MISC, ivar);
6174 }
6175
6176 if (wm_is_using_multiqueue(sc)) {
6177 wm_init_rss(sc);
6178
6179 /*
6180 ** NOTE: Receive Full-Packet Checksum Offload
6181 ** is mutually exclusive with Multiqueue. However
6182 ** this is not the same as TCP/IP checksums which
6183 ** still work.
6184 */
6185 reg = CSR_READ(sc, WMREG_RXCSUM);
6186 reg |= RXCSUM_PCSD;
6187 CSR_WRITE(sc, WMREG_RXCSUM, reg);
6188 }
6189 }
6190
6191 /* Set up the interrupt registers. */
6192 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
6193
6194 /* Enable SFP module insertion interrupt if it's required */
6195 if ((sc->sc_flags & WM_F_SFP) != 0) {
6196 sc->sc_ctrl |= CTRL_EXTLINK_EN;
6197 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
6198 sfp_mask = ICR_GPI(0);
6199 }
6200
6201 if (wm_is_using_msix(sc)) {
6202 uint32_t mask;
6203 struct wm_queue *wmq;
6204
6205 switch (sc->sc_type) {
6206 case WM_T_82574:
6207 mask = 0;
6208 for (i = 0; i < sc->sc_nqueues; i++) {
6209 wmq = &sc->sc_queue[i];
6210 mask |= ICR_TXQ(wmq->wmq_id);
6211 mask |= ICR_RXQ(wmq->wmq_id);
6212 }
6213 mask |= ICR_OTHER;
6214 CSR_WRITE(sc, WMREG_EIAC_82574, mask);
6215 CSR_WRITE(sc, WMREG_IMS, mask | ICR_LSC);
6216 break;
6217 default:
6218 if (sc->sc_type == WM_T_82575) {
6219 mask = 0;
6220 for (i = 0; i < sc->sc_nqueues; i++) {
6221 wmq = &sc->sc_queue[i];
6222 mask |= EITR_TX_QUEUE(wmq->wmq_id);
6223 mask |= EITR_RX_QUEUE(wmq->wmq_id);
6224 }
6225 mask |= EITR_OTHER;
6226 } else {
6227 mask = 0;
6228 for (i = 0; i < sc->sc_nqueues; i++) {
6229 wmq = &sc->sc_queue[i];
6230 mask |= 1 << wmq->wmq_intr_idx;
6231 }
6232 mask |= 1 << sc->sc_link_intr_idx;
6233 }
6234 CSR_WRITE(sc, WMREG_EIAC, mask);
6235 CSR_WRITE(sc, WMREG_EIAM, mask);
6236 CSR_WRITE(sc, WMREG_EIMS, mask);
6237
6238 /* For other interrupts */
6239 CSR_WRITE(sc, WMREG_IMS, ICR_LSC | sfp_mask);
6240 break;
6241 }
6242 } else {
6243 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
6244 ICR_RXO | ICR_RXT0 | sfp_mask;
6245 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
6246 }
6247
6248 /* Set up the inter-packet gap. */
6249 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
6250
6251 if (sc->sc_type >= WM_T_82543) {
6252 for (int qidx = 0; qidx < sc->sc_nqueues; qidx++) {
6253 struct wm_queue *wmq = &sc->sc_queue[qidx];
6254 wm_itrs_writereg(sc, wmq);
6255 }
6256 /*
6257 * Link interrupts occur much less than TX
6258 * interrupts and RX interrupts. So, we don't
6259 * tune EINTR(WM_MSIX_LINKINTR_IDX) value like
6260 * FreeBSD's if_igb.
6261 */
6262 }
6263
6264 /* Set the VLAN ethernetype. */
6265 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
6266
6267 /*
6268 * Set up the transmit control register; we start out with
6269 * a collision distance suitable for FDX, but update it whe
6270 * we resolve the media type.
6271 */
6272 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_RTLC
6273 | TCTL_CT(TX_COLLISION_THRESHOLD)
6274 | TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
6275 if (sc->sc_type >= WM_T_82571)
6276 sc->sc_tctl |= TCTL_MULR;
6277 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
6278
6279 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
6280 /* Write TDT after TCTL.EN is set. See the document. */
6281 CSR_WRITE(sc, WMREG_TDT(0), 0);
6282 }
6283
6284 if (sc->sc_type == WM_T_80003) {
6285 reg = CSR_READ(sc, WMREG_TCTL_EXT);
6286 reg &= ~TCTL_EXT_GCEX_MASK;
6287 reg |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
6288 CSR_WRITE(sc, WMREG_TCTL_EXT, reg);
6289 }
6290
6291 /* Set the media. */
6292 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
6293 goto out;
6294
6295 /* Configure for OS presence */
6296 wm_init_manageability(sc);
6297
6298 /*
6299 * Set up the receive control register; we actually program the
6300 * register when we set the receive filter. Use multicast address
6301 * offset type 0.
6302 *
6303 * Only the i82544 has the ability to strip the incoming CRC, so we
6304 * don't enable that feature.
6305 */
6306 sc->sc_mchash_type = 0;
6307 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
6308 | __SHIFTIN(sc->sc_mchash_type, RCTL_MO);
6309
6310 /* 82574 use one buffer extended Rx descriptor. */
6311 if (sc->sc_type == WM_T_82574)
6312 sc->sc_rctl |= RCTL_DTYP_ONEBUF;
6313
6314 /*
6315 * The I350 has a bug where it always strips the CRC whether
6316 * asked to or not. So ask for stripped CRC here and cope in rxeof
6317 */
6318 if ((sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
6319 || (sc->sc_type == WM_T_I210))
6320 sc->sc_rctl |= RCTL_SECRC;
6321
6322 if (((ec->ec_capabilities & ETHERCAP_JUMBO_MTU) != 0)
6323 && (ifp->if_mtu > ETHERMTU)) {
6324 sc->sc_rctl |= RCTL_LPE;
6325 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
6326 CSR_WRITE(sc, WMREG_RLPML, ETHER_MAX_LEN_JUMBO);
6327 }
6328
6329 if (MCLBYTES == 2048)
6330 sc->sc_rctl |= RCTL_2k;
6331 else {
6332 if (sc->sc_type >= WM_T_82543) {
6333 switch (MCLBYTES) {
6334 case 4096:
6335 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
6336 break;
6337 case 8192:
6338 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
6339 break;
6340 case 16384:
6341 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
6342 break;
6343 default:
6344 panic("wm_init: MCLBYTES %d unsupported",
6345 MCLBYTES);
6346 break;
6347 }
6348 } else
6349 panic("wm_init: i82542 requires MCLBYTES = 2048");
6350 }
6351
6352 /* Enable ECC */
6353 switch (sc->sc_type) {
6354 case WM_T_82571:
6355 reg = CSR_READ(sc, WMREG_PBA_ECC);
6356 reg |= PBA_ECC_CORR_EN;
6357 CSR_WRITE(sc, WMREG_PBA_ECC, reg);
6358 break;
6359 case WM_T_PCH_LPT:
6360 case WM_T_PCH_SPT:
6361 case WM_T_PCH_CNP:
6362 reg = CSR_READ(sc, WMREG_PBECCSTS);
6363 reg |= PBECCSTS_UNCORR_ECC_ENABLE;
6364 CSR_WRITE(sc, WMREG_PBECCSTS, reg);
6365
6366 sc->sc_ctrl |= CTRL_MEHE;
6367 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
6368 break;
6369 default:
6370 break;
6371 }
6372
6373 /*
6374 * Set the receive filter.
6375 *
6376 * For 82575 and 82576, the RX descriptors must be initialized after
6377 * the setting of RCTL.EN in wm_set_filter()
6378 */
6379 wm_set_filter(sc);
6380
6381 /* On 575 and later set RDT only if RX enabled */
6382 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
6383 int qidx;
6384 for (qidx = 0; qidx < sc->sc_nqueues; qidx++) {
6385 struct wm_rxqueue *rxq = &sc->sc_queue[qidx].wmq_rxq;
6386 for (i = 0; i < WM_NRXDESC; i++) {
6387 mutex_enter(rxq->rxq_lock);
6388 wm_init_rxdesc(rxq, i);
6389 mutex_exit(rxq->rxq_lock);
6390
6391 }
6392 }
6393 }
6394
6395 wm_unset_stopping_flags(sc);
6396
6397 /* Start the one second link check clock. */
6398 callout_schedule(&sc->sc_tick_ch, hz);
6399
6400 /* ...all done! */
6401 ifp->if_flags |= IFF_RUNNING;
6402
6403 out:
6404 /* Save last flags for the callback */
6405 sc->sc_if_flags = ifp->if_flags;
6406 sc->sc_ec_capenable = ec->ec_capenable;
6407 if (error)
6408 log(LOG_ERR, "%s: interface not running\n",
6409 device_xname(sc->sc_dev));
6410 return error;
6411 }
6412
6413 /*
6414 * wm_stop: [ifnet interface function]
6415 *
6416 * Stop transmission on the interface.
6417 */
6418 static void
6419 wm_stop(struct ifnet *ifp, int disable)
6420 {
6421 struct wm_softc *sc = ifp->if_softc;
6422
6423 ASSERT_SLEEPABLE();
6424
6425 WM_CORE_LOCK(sc);
6426 wm_stop_locked(ifp, disable ? true : false, true);
6427 WM_CORE_UNLOCK(sc);
6428
6429 /*
6430 * After wm_set_stopping_flags(), it is guaranteed
6431 * wm_handle_queue_work() does not call workqueue_enqueue().
6432 * However, workqueue_wait() cannot call in wm_stop_locked()
6433 * because it can sleep...
6434 * so, call workqueue_wait() here.
6435 */
6436 for (int i = 0; i < sc->sc_nqueues; i++)
6437 workqueue_wait(sc->sc_queue_wq, &sc->sc_queue[i].wmq_cookie);
6438 }
6439
6440 static void
6441 wm_stop_locked(struct ifnet *ifp, bool disable, bool wait)
6442 {
6443 struct wm_softc *sc = ifp->if_softc;
6444 struct wm_txsoft *txs;
6445 int i, qidx;
6446
6447 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
6448 device_xname(sc->sc_dev), __func__));
6449 KASSERT(WM_CORE_LOCKED(sc));
6450
6451 wm_set_stopping_flags(sc);
6452
6453 if (sc->sc_flags & WM_F_HAS_MII) {
6454 /* Down the MII. */
6455 mii_down(&sc->sc_mii);
6456 } else {
6457 #if 0
6458 /* Should we clear PHY's status properly? */
6459 wm_reset(sc);
6460 #endif
6461 }
6462
6463 /* Stop the transmit and receive processes. */
6464 CSR_WRITE(sc, WMREG_TCTL, 0);
6465 CSR_WRITE(sc, WMREG_RCTL, 0);
6466 sc->sc_rctl &= ~RCTL_EN;
6467
6468 /*
6469 * Clear the interrupt mask to ensure the device cannot assert its
6470 * interrupt line.
6471 * Clear sc->sc_icr to ensure wm_intr_legacy() makes no attempt to
6472 * service any currently pending or shared interrupt.
6473 */
6474 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
6475 sc->sc_icr = 0;
6476 if (wm_is_using_msix(sc)) {
6477 if (sc->sc_type != WM_T_82574) {
6478 CSR_WRITE(sc, WMREG_EIMC, 0xffffffffU);
6479 CSR_WRITE(sc, WMREG_EIAC, 0);
6480 } else
6481 CSR_WRITE(sc, WMREG_EIAC_82574, 0);
6482 }
6483
6484 /*
6485 * Stop callouts after interrupts are disabled; if we have
6486 * to wait for them, we will be releasing the CORE_LOCK
6487 * briefly, which will unblock interrupts on the current CPU.
6488 */
6489
6490 /* Stop the one second clock. */
6491 if (wait)
6492 callout_halt(&sc->sc_tick_ch, sc->sc_core_lock);
6493 else
6494 callout_stop(&sc->sc_tick_ch);
6495
6496 /* Stop the 82547 Tx FIFO stall check timer. */
6497 if (sc->sc_type == WM_T_82547) {
6498 if (wait)
6499 callout_halt(&sc->sc_txfifo_ch, sc->sc_core_lock);
6500 else
6501 callout_stop(&sc->sc_txfifo_ch);
6502 }
6503
6504 /* Release any queued transmit buffers. */
6505 for (qidx = 0; qidx < sc->sc_nqueues; qidx++) {
6506 struct wm_queue *wmq = &sc->sc_queue[qidx];
6507 struct wm_txqueue *txq = &wmq->wmq_txq;
6508 mutex_enter(txq->txq_lock);
6509 txq->txq_sending = false; /* Ensure watchdog disabled */
6510 for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
6511 txs = &txq->txq_soft[i];
6512 if (txs->txs_mbuf != NULL) {
6513 bus_dmamap_unload(sc->sc_dmat,txs->txs_dmamap);
6514 m_freem(txs->txs_mbuf);
6515 txs->txs_mbuf = NULL;
6516 }
6517 }
6518 mutex_exit(txq->txq_lock);
6519 }
6520
6521 /* Mark the interface as down and cancel the watchdog timer. */
6522 ifp->if_flags &= ~IFF_RUNNING;
6523
6524 if (disable) {
6525 for (i = 0; i < sc->sc_nqueues; i++) {
6526 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
6527 mutex_enter(rxq->rxq_lock);
6528 wm_rxdrain(rxq);
6529 mutex_exit(rxq->rxq_lock);
6530 }
6531 }
6532
6533 #if 0 /* notyet */
6534 if (sc->sc_type >= WM_T_82544)
6535 CSR_WRITE(sc, WMREG_WUC, 0);
6536 #endif
6537 }
6538
6539 static void
6540 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
6541 {
6542 struct mbuf *m;
6543 int i;
6544
6545 log(LOG_DEBUG, "%s: mbuf chain:\n", device_xname(sc->sc_dev));
6546 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
6547 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
6548 "m_flags = 0x%08x\n", device_xname(sc->sc_dev),
6549 m->m_data, m->m_len, m->m_flags);
6550 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", device_xname(sc->sc_dev),
6551 i, i == 1 ? "" : "s");
6552 }
6553
6554 /*
6555 * wm_82547_txfifo_stall:
6556 *
6557 * Callout used to wait for the 82547 Tx FIFO to drain,
6558 * reset the FIFO pointers, and restart packet transmission.
6559 */
6560 static void
6561 wm_82547_txfifo_stall(void *arg)
6562 {
6563 struct wm_softc *sc = arg;
6564 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
6565
6566 mutex_enter(txq->txq_lock);
6567
6568 if (txq->txq_stopping)
6569 goto out;
6570
6571 if (txq->txq_fifo_stall) {
6572 if (CSR_READ(sc, WMREG_TDT(0)) == CSR_READ(sc, WMREG_TDH(0)) &&
6573 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
6574 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
6575 /*
6576 * Packets have drained. Stop transmitter, reset
6577 * FIFO pointers, restart transmitter, and kick
6578 * the packet queue.
6579 */
6580 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
6581 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
6582 CSR_WRITE(sc, WMREG_TDFT, txq->txq_fifo_addr);
6583 CSR_WRITE(sc, WMREG_TDFH, txq->txq_fifo_addr);
6584 CSR_WRITE(sc, WMREG_TDFTS, txq->txq_fifo_addr);
6585 CSR_WRITE(sc, WMREG_TDFHS, txq->txq_fifo_addr);
6586 CSR_WRITE(sc, WMREG_TCTL, tctl);
6587 CSR_WRITE_FLUSH(sc);
6588
6589 txq->txq_fifo_head = 0;
6590 txq->txq_fifo_stall = 0;
6591 wm_start_locked(&sc->sc_ethercom.ec_if);
6592 } else {
6593 /*
6594 * Still waiting for packets to drain; try again in
6595 * another tick.
6596 */
6597 callout_schedule(&sc->sc_txfifo_ch, 1);
6598 }
6599 }
6600
6601 out:
6602 mutex_exit(txq->txq_lock);
6603 }
6604
6605 /*
6606 * wm_82547_txfifo_bugchk:
6607 *
6608 * Check for bug condition in the 82547 Tx FIFO. We need to
6609 * prevent enqueueing a packet that would wrap around the end
6610 * if the Tx FIFO ring buffer, otherwise the chip will croak.
6611 *
6612 * We do this by checking the amount of space before the end
6613 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
6614 * the Tx FIFO, wait for all remaining packets to drain, reset
6615 * the internal FIFO pointers to the beginning, and restart
6616 * transmission on the interface.
6617 */
6618 #define WM_FIFO_HDR 0x10
6619 #define WM_82547_PAD_LEN 0x3e0
6620 static int
6621 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
6622 {
6623 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
6624 int space = txq->txq_fifo_size - txq->txq_fifo_head;
6625 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
6626
6627 /* Just return if already stalled. */
6628 if (txq->txq_fifo_stall)
6629 return 1;
6630
6631 if (sc->sc_mii.mii_media_active & IFM_FDX) {
6632 /* Stall only occurs in half-duplex mode. */
6633 goto send_packet;
6634 }
6635
6636 if (len >= WM_82547_PAD_LEN + space) {
6637 txq->txq_fifo_stall = 1;
6638 callout_schedule(&sc->sc_txfifo_ch, 1);
6639 return 1;
6640 }
6641
6642 send_packet:
6643 txq->txq_fifo_head += len;
6644 if (txq->txq_fifo_head >= txq->txq_fifo_size)
6645 txq->txq_fifo_head -= txq->txq_fifo_size;
6646
6647 return 0;
6648 }
6649
6650 static int
6651 wm_alloc_tx_descs(struct wm_softc *sc, struct wm_txqueue *txq)
6652 {
6653 int error;
6654
6655 /*
6656 * Allocate the control data structures, and create and load the
6657 * DMA map for it.
6658 *
6659 * NOTE: All Tx descriptors must be in the same 4G segment of
6660 * memory. So must Rx descriptors. We simplify by allocating
6661 * both sets within the same 4G segment.
6662 */
6663 if (sc->sc_type < WM_T_82544)
6664 WM_NTXDESC(txq) = WM_NTXDESC_82542;
6665 else
6666 WM_NTXDESC(txq) = WM_NTXDESC_82544;
6667 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
6668 txq->txq_descsize = sizeof(nq_txdesc_t);
6669 else
6670 txq->txq_descsize = sizeof(wiseman_txdesc_t);
6671
6672 if ((error = bus_dmamem_alloc(sc->sc_dmat, WM_TXDESCS_SIZE(txq),
6673 PAGE_SIZE, (bus_size_t) 0x100000000ULL, &txq->txq_desc_seg,
6674 1, &txq->txq_desc_rseg, 0)) != 0) {
6675 aprint_error_dev(sc->sc_dev,
6676 "unable to allocate TX control data, error = %d\n",
6677 error);
6678 goto fail_0;
6679 }
6680
6681 if ((error = bus_dmamem_map(sc->sc_dmat, &txq->txq_desc_seg,
6682 txq->txq_desc_rseg, WM_TXDESCS_SIZE(txq),
6683 (void **)&txq->txq_descs_u, BUS_DMA_COHERENT)) != 0) {
6684 aprint_error_dev(sc->sc_dev,
6685 "unable to map TX control data, error = %d\n", error);
6686 goto fail_1;
6687 }
6688
6689 if ((error = bus_dmamap_create(sc->sc_dmat, WM_TXDESCS_SIZE(txq), 1,
6690 WM_TXDESCS_SIZE(txq), 0, 0, &txq->txq_desc_dmamap)) != 0) {
6691 aprint_error_dev(sc->sc_dev,
6692 "unable to create TX control data DMA map, error = %d\n",
6693 error);
6694 goto fail_2;
6695 }
6696
6697 if ((error = bus_dmamap_load(sc->sc_dmat, txq->txq_desc_dmamap,
6698 txq->txq_descs_u, WM_TXDESCS_SIZE(txq), NULL, 0)) != 0) {
6699 aprint_error_dev(sc->sc_dev,
6700 "unable to load TX control data DMA map, error = %d\n",
6701 error);
6702 goto fail_3;
6703 }
6704
6705 return 0;
6706
6707 fail_3:
6708 bus_dmamap_destroy(sc->sc_dmat, txq->txq_desc_dmamap);
6709 fail_2:
6710 bus_dmamem_unmap(sc->sc_dmat, (void *)txq->txq_descs_u,
6711 WM_TXDESCS_SIZE(txq));
6712 fail_1:
6713 bus_dmamem_free(sc->sc_dmat, &txq->txq_desc_seg, txq->txq_desc_rseg);
6714 fail_0:
6715 return error;
6716 }
6717
6718 static void
6719 wm_free_tx_descs(struct wm_softc *sc, struct wm_txqueue *txq)
6720 {
6721
6722 bus_dmamap_unload(sc->sc_dmat, txq->txq_desc_dmamap);
6723 bus_dmamap_destroy(sc->sc_dmat, txq->txq_desc_dmamap);
6724 bus_dmamem_unmap(sc->sc_dmat, (void *)txq->txq_descs_u,
6725 WM_TXDESCS_SIZE(txq));
6726 bus_dmamem_free(sc->sc_dmat, &txq->txq_desc_seg, txq->txq_desc_rseg);
6727 }
6728
6729 static int
6730 wm_alloc_rx_descs(struct wm_softc *sc, struct wm_rxqueue *rxq)
6731 {
6732 int error;
6733 size_t rxq_descs_size;
6734
6735 /*
6736 * Allocate the control data structures, and create and load the
6737 * DMA map for it.
6738 *
6739 * NOTE: All Tx descriptors must be in the same 4G segment of
6740 * memory. So must Rx descriptors. We simplify by allocating
6741 * both sets within the same 4G segment.
6742 */
6743 rxq->rxq_ndesc = WM_NRXDESC;
6744 if (sc->sc_type == WM_T_82574)
6745 rxq->rxq_descsize = sizeof(ext_rxdesc_t);
6746 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
6747 rxq->rxq_descsize = sizeof(nq_rxdesc_t);
6748 else
6749 rxq->rxq_descsize = sizeof(wiseman_rxdesc_t);
6750 rxq_descs_size = rxq->rxq_descsize * rxq->rxq_ndesc;
6751
6752 if ((error = bus_dmamem_alloc(sc->sc_dmat, rxq_descs_size,
6753 PAGE_SIZE, (bus_size_t) 0x100000000ULL, &rxq->rxq_desc_seg,
6754 1, &rxq->rxq_desc_rseg, 0)) != 0) {
6755 aprint_error_dev(sc->sc_dev,
6756 "unable to allocate RX control data, error = %d\n",
6757 error);
6758 goto fail_0;
6759 }
6760
6761 if ((error = bus_dmamem_map(sc->sc_dmat, &rxq->rxq_desc_seg,
6762 rxq->rxq_desc_rseg, rxq_descs_size,
6763 (void **)&rxq->rxq_descs_u, BUS_DMA_COHERENT)) != 0) {
6764 aprint_error_dev(sc->sc_dev,
6765 "unable to map RX control data, error = %d\n", error);
6766 goto fail_1;
6767 }
6768
6769 if ((error = bus_dmamap_create(sc->sc_dmat, rxq_descs_size, 1,
6770 rxq_descs_size, 0, 0, &rxq->rxq_desc_dmamap)) != 0) {
6771 aprint_error_dev(sc->sc_dev,
6772 "unable to create RX control data DMA map, error = %d\n",
6773 error);
6774 goto fail_2;
6775 }
6776
6777 if ((error = bus_dmamap_load(sc->sc_dmat, rxq->rxq_desc_dmamap,
6778 rxq->rxq_descs_u, rxq_descs_size, NULL, 0)) != 0) {
6779 aprint_error_dev(sc->sc_dev,
6780 "unable to load RX control data DMA map, error = %d\n",
6781 error);
6782 goto fail_3;
6783 }
6784
6785 return 0;
6786
6787 fail_3:
6788 bus_dmamap_destroy(sc->sc_dmat, rxq->rxq_desc_dmamap);
6789 fail_2:
6790 bus_dmamem_unmap(sc->sc_dmat, (void *)rxq->rxq_descs_u,
6791 rxq_descs_size);
6792 fail_1:
6793 bus_dmamem_free(sc->sc_dmat, &rxq->rxq_desc_seg, rxq->rxq_desc_rseg);
6794 fail_0:
6795 return error;
6796 }
6797
6798 static void
6799 wm_free_rx_descs(struct wm_softc *sc, struct wm_rxqueue *rxq)
6800 {
6801
6802 bus_dmamap_unload(sc->sc_dmat, rxq->rxq_desc_dmamap);
6803 bus_dmamap_destroy(sc->sc_dmat, rxq->rxq_desc_dmamap);
6804 bus_dmamem_unmap(sc->sc_dmat, (void *)rxq->rxq_descs_u,
6805 rxq->rxq_descsize * rxq->rxq_ndesc);
6806 bus_dmamem_free(sc->sc_dmat, &rxq->rxq_desc_seg, rxq->rxq_desc_rseg);
6807 }
6808
6809
6810 static int
6811 wm_alloc_tx_buffer(struct wm_softc *sc, struct wm_txqueue *txq)
6812 {
6813 int i, error;
6814
6815 /* Create the transmit buffer DMA maps. */
6816 WM_TXQUEUELEN(txq) =
6817 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
6818 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
6819 for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
6820 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
6821 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
6822 &txq->txq_soft[i].txs_dmamap)) != 0) {
6823 aprint_error_dev(sc->sc_dev,
6824 "unable to create Tx DMA map %d, error = %d\n",
6825 i, error);
6826 goto fail;
6827 }
6828 }
6829
6830 return 0;
6831
6832 fail:
6833 for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
6834 if (txq->txq_soft[i].txs_dmamap != NULL)
6835 bus_dmamap_destroy(sc->sc_dmat,
6836 txq->txq_soft[i].txs_dmamap);
6837 }
6838 return error;
6839 }
6840
6841 static void
6842 wm_free_tx_buffer(struct wm_softc *sc, struct wm_txqueue *txq)
6843 {
6844 int i;
6845
6846 for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
6847 if (txq->txq_soft[i].txs_dmamap != NULL)
6848 bus_dmamap_destroy(sc->sc_dmat,
6849 txq->txq_soft[i].txs_dmamap);
6850 }
6851 }
6852
6853 static int
6854 wm_alloc_rx_buffer(struct wm_softc *sc, struct wm_rxqueue *rxq)
6855 {
6856 int i, error;
6857
6858 /* Create the receive buffer DMA maps. */
6859 for (i = 0; i < rxq->rxq_ndesc; i++) {
6860 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
6861 MCLBYTES, 0, 0,
6862 &rxq->rxq_soft[i].rxs_dmamap)) != 0) {
6863 aprint_error_dev(sc->sc_dev,
6864 "unable to create Rx DMA map %d error = %d\n",
6865 i, error);
6866 goto fail;
6867 }
6868 rxq->rxq_soft[i].rxs_mbuf = NULL;
6869 }
6870
6871 return 0;
6872
6873 fail:
6874 for (i = 0; i < rxq->rxq_ndesc; i++) {
6875 if (rxq->rxq_soft[i].rxs_dmamap != NULL)
6876 bus_dmamap_destroy(sc->sc_dmat,
6877 rxq->rxq_soft[i].rxs_dmamap);
6878 }
6879 return error;
6880 }
6881
6882 static void
6883 wm_free_rx_buffer(struct wm_softc *sc, struct wm_rxqueue *rxq)
6884 {
6885 int i;
6886
6887 for (i = 0; i < rxq->rxq_ndesc; i++) {
6888 if (rxq->rxq_soft[i].rxs_dmamap != NULL)
6889 bus_dmamap_destroy(sc->sc_dmat,
6890 rxq->rxq_soft[i].rxs_dmamap);
6891 }
6892 }
6893
6894 /*
6895 * wm_alloc_quques:
6896 * Allocate {tx,rx}descs and {tx,rx} buffers
6897 */
6898 static int
6899 wm_alloc_txrx_queues(struct wm_softc *sc)
6900 {
6901 int i, error, tx_done, rx_done;
6902
6903 sc->sc_queue = kmem_zalloc(sizeof(struct wm_queue) * sc->sc_nqueues,
6904 KM_SLEEP);
6905 if (sc->sc_queue == NULL) {
6906 aprint_error_dev(sc->sc_dev,"unable to allocate wm_queue\n");
6907 error = ENOMEM;
6908 goto fail_0;
6909 }
6910
6911 /* For transmission */
6912 error = 0;
6913 tx_done = 0;
6914 for (i = 0; i < sc->sc_nqueues; i++) {
6915 #ifdef WM_EVENT_COUNTERS
6916 int j;
6917 const char *xname;
6918 #endif
6919 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
6920 txq->txq_sc = sc;
6921 txq->txq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
6922
6923 error = wm_alloc_tx_descs(sc, txq);
6924 if (error)
6925 break;
6926 error = wm_alloc_tx_buffer(sc, txq);
6927 if (error) {
6928 wm_free_tx_descs(sc, txq);
6929 break;
6930 }
6931 txq->txq_interq = pcq_create(WM_TXINTERQSIZE, KM_SLEEP);
6932 if (txq->txq_interq == NULL) {
6933 wm_free_tx_descs(sc, txq);
6934 wm_free_tx_buffer(sc, txq);
6935 error = ENOMEM;
6936 break;
6937 }
6938
6939 #ifdef WM_EVENT_COUNTERS
6940 xname = device_xname(sc->sc_dev);
6941
6942 WM_Q_MISC_EVCNT_ATTACH(txq, txsstall, txq, i, xname);
6943 WM_Q_MISC_EVCNT_ATTACH(txq, txdstall, txq, i, xname);
6944 WM_Q_MISC_EVCNT_ATTACH(txq, fifo_stall, txq, i, xname);
6945 WM_Q_INTR_EVCNT_ATTACH(txq, txdw, txq, i, xname);
6946 WM_Q_INTR_EVCNT_ATTACH(txq, txqe, txq, i, xname);
6947 WM_Q_MISC_EVCNT_ATTACH(txq, ipsum, txq, i, xname);
6948 WM_Q_MISC_EVCNT_ATTACH(txq, tusum, txq, i, xname);
6949 WM_Q_MISC_EVCNT_ATTACH(txq, tusum6, txq, i, xname);
6950 WM_Q_MISC_EVCNT_ATTACH(txq, tso, txq, i, xname);
6951 WM_Q_MISC_EVCNT_ATTACH(txq, tso6, txq, i, xname);
6952 WM_Q_MISC_EVCNT_ATTACH(txq, tsopain, txq, i, xname);
6953
6954 for (j = 0; j < WM_NTXSEGS; j++) {
6955 snprintf(txq->txq_txseg_evcnt_names[j],
6956 sizeof(txq->txq_txseg_evcnt_names[j]), "txq%02dtxseg%d", i, j);
6957 evcnt_attach_dynamic(&txq->txq_ev_txseg[j], EVCNT_TYPE_MISC,
6958 NULL, xname, txq->txq_txseg_evcnt_names[j]);
6959 }
6960
6961 WM_Q_MISC_EVCNT_ATTACH(txq, pcqdrop, txq, i, xname);
6962 WM_Q_MISC_EVCNT_ATTACH(txq, descdrop, txq, i, xname);
6963 WM_Q_MISC_EVCNT_ATTACH(txq, toomanyseg, txq, i, xname);
6964 WM_Q_MISC_EVCNT_ATTACH(txq, defrag, txq, i, xname);
6965 WM_Q_MISC_EVCNT_ATTACH(txq, underrun, txq, i, xname);
6966 WM_Q_MISC_EVCNT_ATTACH(txq, skipcontext, txq, i, xname);
6967 #endif /* WM_EVENT_COUNTERS */
6968
6969 tx_done++;
6970 }
6971 if (error)
6972 goto fail_1;
6973
6974 /* For receive */
6975 error = 0;
6976 rx_done = 0;
6977 for (i = 0; i < sc->sc_nqueues; i++) {
6978 #ifdef WM_EVENT_COUNTERS
6979 const char *xname;
6980 #endif
6981 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
6982 rxq->rxq_sc = sc;
6983 rxq->rxq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
6984
6985 error = wm_alloc_rx_descs(sc, rxq);
6986 if (error)
6987 break;
6988
6989 error = wm_alloc_rx_buffer(sc, rxq);
6990 if (error) {
6991 wm_free_rx_descs(sc, rxq);
6992 break;
6993 }
6994
6995 #ifdef WM_EVENT_COUNTERS
6996 xname = device_xname(sc->sc_dev);
6997
6998 WM_Q_INTR_EVCNT_ATTACH(rxq, intr, rxq, i, xname);
6999 WM_Q_INTR_EVCNT_ATTACH(rxq, defer, rxq, i, xname);
7000
7001 WM_Q_MISC_EVCNT_ATTACH(rxq, ipsum, rxq, i, xname);
7002 WM_Q_MISC_EVCNT_ATTACH(rxq, tusum, rxq, i, xname);
7003 #endif /* WM_EVENT_COUNTERS */
7004
7005 rx_done++;
7006 }
7007 if (error)
7008 goto fail_2;
7009
7010 return 0;
7011
7012 fail_2:
7013 for (i = 0; i < rx_done; i++) {
7014 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
7015 wm_free_rx_buffer(sc, rxq);
7016 wm_free_rx_descs(sc, rxq);
7017 if (rxq->rxq_lock)
7018 mutex_obj_free(rxq->rxq_lock);
7019 }
7020 fail_1:
7021 for (i = 0; i < tx_done; i++) {
7022 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
7023 pcq_destroy(txq->txq_interq);
7024 wm_free_tx_buffer(sc, txq);
7025 wm_free_tx_descs(sc, txq);
7026 if (txq->txq_lock)
7027 mutex_obj_free(txq->txq_lock);
7028 }
7029
7030 kmem_free(sc->sc_queue,
7031 sizeof(struct wm_queue) * sc->sc_nqueues);
7032 fail_0:
7033 return error;
7034 }
7035
7036 /*
7037 * wm_free_quques:
7038 * Free {tx,rx}descs and {tx,rx} buffers
7039 */
7040 static void
7041 wm_free_txrx_queues(struct wm_softc *sc)
7042 {
7043 int i;
7044
7045 for (i = 0; i < sc->sc_nqueues; i++) {
7046 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
7047
7048 #ifdef WM_EVENT_COUNTERS
7049 WM_Q_EVCNT_DETACH(rxq, intr, rxq, i);
7050 WM_Q_EVCNT_DETACH(rxq, defer, rxq, i);
7051 WM_Q_EVCNT_DETACH(rxq, ipsum, rxq, i);
7052 WM_Q_EVCNT_DETACH(rxq, tusum, rxq, i);
7053 #endif /* WM_EVENT_COUNTERS */
7054
7055 wm_free_rx_buffer(sc, rxq);
7056 wm_free_rx_descs(sc, rxq);
7057 if (rxq->rxq_lock)
7058 mutex_obj_free(rxq->rxq_lock);
7059 }
7060
7061 for (i = 0; i < sc->sc_nqueues; i++) {
7062 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
7063 struct mbuf *m;
7064 #ifdef WM_EVENT_COUNTERS
7065 int j;
7066
7067 WM_Q_EVCNT_DETACH(txq, txsstall, txq, i);
7068 WM_Q_EVCNT_DETACH(txq, txdstall, txq, i);
7069 WM_Q_EVCNT_DETACH(txq, fifo_stall, txq, i);
7070 WM_Q_EVCNT_DETACH(txq, txdw, txq, i);
7071 WM_Q_EVCNT_DETACH(txq, txqe, txq, i);
7072 WM_Q_EVCNT_DETACH(txq, ipsum, txq, i);
7073 WM_Q_EVCNT_DETACH(txq, tusum, txq, i);
7074 WM_Q_EVCNT_DETACH(txq, tusum6, txq, i);
7075 WM_Q_EVCNT_DETACH(txq, tso, txq, i);
7076 WM_Q_EVCNT_DETACH(txq, tso6, txq, i);
7077 WM_Q_EVCNT_DETACH(txq, tsopain, txq, i);
7078
7079 for (j = 0; j < WM_NTXSEGS; j++)
7080 evcnt_detach(&txq->txq_ev_txseg[j]);
7081
7082 WM_Q_EVCNT_DETACH(txq, pcqdrop, txq, i);
7083 WM_Q_EVCNT_DETACH(txq, descdrop, txq, i);
7084 WM_Q_EVCNT_DETACH(txq, toomanyseg, txq, i);
7085 WM_Q_EVCNT_DETACH(txq, defrag, txq, i);
7086 WM_Q_EVCNT_DETACH(txq, underrun, txq, i);
7087 WM_Q_EVCNT_DETACH(txq, skipcontext, txq, i);
7088 #endif /* WM_EVENT_COUNTERS */
7089
7090 /* Drain txq_interq */
7091 while ((m = pcq_get(txq->txq_interq)) != NULL)
7092 m_freem(m);
7093 pcq_destroy(txq->txq_interq);
7094
7095 wm_free_tx_buffer(sc, txq);
7096 wm_free_tx_descs(sc, txq);
7097 if (txq->txq_lock)
7098 mutex_obj_free(txq->txq_lock);
7099 }
7100
7101 kmem_free(sc->sc_queue, sizeof(struct wm_queue) * sc->sc_nqueues);
7102 }
7103
7104 static void
7105 wm_init_tx_descs(struct wm_softc *sc __unused, struct wm_txqueue *txq)
7106 {
7107
7108 KASSERT(mutex_owned(txq->txq_lock));
7109
7110 /* Initialize the transmit descriptor ring. */
7111 memset(txq->txq_descs, 0, WM_TXDESCS_SIZE(txq));
7112 wm_cdtxsync(txq, 0, WM_NTXDESC(txq),
7113 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
7114 txq->txq_free = WM_NTXDESC(txq);
7115 txq->txq_next = 0;
7116 }
7117
7118 static void
7119 wm_init_tx_regs(struct wm_softc *sc, struct wm_queue *wmq,
7120 struct wm_txqueue *txq)
7121 {
7122
7123 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
7124 device_xname(sc->sc_dev), __func__));
7125 KASSERT(mutex_owned(txq->txq_lock));
7126
7127 if (sc->sc_type < WM_T_82543) {
7128 CSR_WRITE(sc, WMREG_OLD_TDBAH, WM_CDTXADDR_HI(txq, 0));
7129 CSR_WRITE(sc, WMREG_OLD_TDBAL, WM_CDTXADDR_LO(txq, 0));
7130 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCS_SIZE(txq));
7131 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
7132 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
7133 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
7134 } else {
7135 int qid = wmq->wmq_id;
7136
7137 CSR_WRITE(sc, WMREG_TDBAH(qid), WM_CDTXADDR_HI(txq, 0));
7138 CSR_WRITE(sc, WMREG_TDBAL(qid), WM_CDTXADDR_LO(txq, 0));
7139 CSR_WRITE(sc, WMREG_TDLEN(qid), WM_TXDESCS_SIZE(txq));
7140 CSR_WRITE(sc, WMREG_TDH(qid), 0);
7141
7142 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
7143 /*
7144 * Don't write TDT before TCTL.EN is set.
7145 * See the document.
7146 */
7147 CSR_WRITE(sc, WMREG_TXDCTL(qid), TXDCTL_QUEUE_ENABLE
7148 | TXDCTL_PTHRESH(0) | TXDCTL_HTHRESH(0)
7149 | TXDCTL_WTHRESH(0));
7150 else {
7151 /* XXX should update with AIM? */
7152 CSR_WRITE(sc, WMREG_TIDV, wmq->wmq_itr / 4);
7153 if (sc->sc_type >= WM_T_82540) {
7154 /* Should be the same */
7155 CSR_WRITE(sc, WMREG_TADV, wmq->wmq_itr / 4);
7156 }
7157
7158 CSR_WRITE(sc, WMREG_TDT(qid), 0);
7159 CSR_WRITE(sc, WMREG_TXDCTL(qid), TXDCTL_PTHRESH(0) |
7160 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
7161 }
7162 }
7163 }
7164
7165 static void
7166 wm_init_tx_buffer(struct wm_softc *sc __unused, struct wm_txqueue *txq)
7167 {
7168 int i;
7169
7170 KASSERT(mutex_owned(txq->txq_lock));
7171
7172 /* Initialize the transmit job descriptors. */
7173 for (i = 0; i < WM_TXQUEUELEN(txq); i++)
7174 txq->txq_soft[i].txs_mbuf = NULL;
7175 txq->txq_sfree = WM_TXQUEUELEN(txq);
7176 txq->txq_snext = 0;
7177 txq->txq_sdirty = 0;
7178 }
7179
7180 static void
7181 wm_init_tx_queue(struct wm_softc *sc, struct wm_queue *wmq,
7182 struct wm_txqueue *txq)
7183 {
7184
7185 KASSERT(mutex_owned(txq->txq_lock));
7186
7187 /*
7188 * Set up some register offsets that are different between
7189 * the i82542 and the i82543 and later chips.
7190 */
7191 if (sc->sc_type < WM_T_82543)
7192 txq->txq_tdt_reg = WMREG_OLD_TDT;
7193 else
7194 txq->txq_tdt_reg = WMREG_TDT(wmq->wmq_id);
7195
7196 wm_init_tx_descs(sc, txq);
7197 wm_init_tx_regs(sc, wmq, txq);
7198 wm_init_tx_buffer(sc, txq);
7199
7200 txq->txq_flags = 0; /* Clear WM_TXQ_NO_SPACE */
7201 txq->txq_sending = false;
7202 }
7203
7204 static void
7205 wm_init_rx_regs(struct wm_softc *sc, struct wm_queue *wmq,
7206 struct wm_rxqueue *rxq)
7207 {
7208
7209 KASSERT(mutex_owned(rxq->rxq_lock));
7210
7211 /*
7212 * Initialize the receive descriptor and receive job
7213 * descriptor rings.
7214 */
7215 if (sc->sc_type < WM_T_82543) {
7216 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(rxq, 0));
7217 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(rxq, 0));
7218 CSR_WRITE(sc, WMREG_OLD_RDLEN0,
7219 rxq->rxq_descsize * rxq->rxq_ndesc);
7220 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
7221 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
7222 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
7223
7224 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
7225 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
7226 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
7227 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
7228 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
7229 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
7230 } else {
7231 int qid = wmq->wmq_id;
7232
7233 CSR_WRITE(sc, WMREG_RDBAH(qid), WM_CDRXADDR_HI(rxq, 0));
7234 CSR_WRITE(sc, WMREG_RDBAL(qid), WM_CDRXADDR_LO(rxq, 0));
7235 CSR_WRITE(sc, WMREG_RDLEN(qid),
7236 rxq->rxq_descsize * rxq->rxq_ndesc);
7237
7238 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
7239 if (MCLBYTES & ((1 << SRRCTL_BSIZEPKT_SHIFT) - 1))
7240 panic("%s: MCLBYTES %d unsupported for 82575 or higher\n", __func__, MCLBYTES);
7241
7242 /* Currently, support SRRCTL_DESCTYPE_ADV_ONEBUF only. */
7243 CSR_WRITE(sc, WMREG_SRRCTL(qid), SRRCTL_DESCTYPE_ADV_ONEBUF
7244 | (MCLBYTES >> SRRCTL_BSIZEPKT_SHIFT));
7245 CSR_WRITE(sc, WMREG_RXDCTL(qid), RXDCTL_QUEUE_ENABLE
7246 | RXDCTL_PTHRESH(16) | RXDCTL_HTHRESH(8)
7247 | RXDCTL_WTHRESH(1));
7248 CSR_WRITE(sc, WMREG_RDH(qid), 0);
7249 CSR_WRITE(sc, WMREG_RDT(qid), 0);
7250 } else {
7251 CSR_WRITE(sc, WMREG_RDH(qid), 0);
7252 CSR_WRITE(sc, WMREG_RDT(qid), 0);
7253 /* XXX should update with AIM? */
7254 CSR_WRITE(sc, WMREG_RDTR,
7255 (wmq->wmq_itr / 4) | RDTR_FPD);
7256 /* MUST be same */
7257 CSR_WRITE(sc, WMREG_RADV, wmq->wmq_itr / 4);
7258 CSR_WRITE(sc, WMREG_RXDCTL(qid), RXDCTL_PTHRESH(0) |
7259 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
7260 }
7261 }
7262 }
7263
7264 static int
7265 wm_init_rx_buffer(struct wm_softc *sc, struct wm_rxqueue *rxq)
7266 {
7267 struct wm_rxsoft *rxs;
7268 int error, i;
7269
7270 KASSERT(mutex_owned(rxq->rxq_lock));
7271
7272 for (i = 0; i < rxq->rxq_ndesc; i++) {
7273 rxs = &rxq->rxq_soft[i];
7274 if (rxs->rxs_mbuf == NULL) {
7275 if ((error = wm_add_rxbuf(rxq, i)) != 0) {
7276 log(LOG_ERR, "%s: unable to allocate or map "
7277 "rx buffer %d, error = %d\n",
7278 device_xname(sc->sc_dev), i, error);
7279 /*
7280 * XXX Should attempt to run with fewer receive
7281 * XXX buffers instead of just failing.
7282 */
7283 wm_rxdrain(rxq);
7284 return ENOMEM;
7285 }
7286 } else {
7287 /*
7288 * For 82575 and 82576, the RX descriptors must be
7289 * initialized after the setting of RCTL.EN in
7290 * wm_set_filter()
7291 */
7292 if ((sc->sc_flags & WM_F_NEWQUEUE) == 0)
7293 wm_init_rxdesc(rxq, i);
7294 }
7295 }
7296 rxq->rxq_ptr = 0;
7297 rxq->rxq_discard = 0;
7298 WM_RXCHAIN_RESET(rxq);
7299
7300 return 0;
7301 }
7302
7303 static int
7304 wm_init_rx_queue(struct wm_softc *sc, struct wm_queue *wmq,
7305 struct wm_rxqueue *rxq)
7306 {
7307
7308 KASSERT(mutex_owned(rxq->rxq_lock));
7309
7310 /*
7311 * Set up some register offsets that are different between
7312 * the i82542 and the i82543 and later chips.
7313 */
7314 if (sc->sc_type < WM_T_82543)
7315 rxq->rxq_rdt_reg = WMREG_OLD_RDT0;
7316 else
7317 rxq->rxq_rdt_reg = WMREG_RDT(wmq->wmq_id);
7318
7319 wm_init_rx_regs(sc, wmq, rxq);
7320 return wm_init_rx_buffer(sc, rxq);
7321 }
7322
7323 /*
7324 * wm_init_quques:
7325 * Initialize {tx,rx}descs and {tx,rx} buffers
7326 */
7327 static int
7328 wm_init_txrx_queues(struct wm_softc *sc)
7329 {
7330 int i, error = 0;
7331
7332 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
7333 device_xname(sc->sc_dev), __func__));
7334
7335 for (i = 0; i < sc->sc_nqueues; i++) {
7336 struct wm_queue *wmq = &sc->sc_queue[i];
7337 struct wm_txqueue *txq = &wmq->wmq_txq;
7338 struct wm_rxqueue *rxq = &wmq->wmq_rxq;
7339
7340 /*
7341 * TODO
7342 * Currently, use constant variable instead of AIM.
7343 * Furthermore, the interrupt interval of multiqueue which use
7344 * polling mode is less than default value.
7345 * More tuning and AIM are required.
7346 */
7347 if (wm_is_using_multiqueue(sc))
7348 wmq->wmq_itr = 50;
7349 else
7350 wmq->wmq_itr = sc->sc_itr_init;
7351 wmq->wmq_set_itr = true;
7352
7353 mutex_enter(txq->txq_lock);
7354 wm_init_tx_queue(sc, wmq, txq);
7355 mutex_exit(txq->txq_lock);
7356
7357 mutex_enter(rxq->rxq_lock);
7358 error = wm_init_rx_queue(sc, wmq, rxq);
7359 mutex_exit(rxq->rxq_lock);
7360 if (error)
7361 break;
7362 }
7363
7364 return error;
7365 }
7366
7367 /*
7368 * wm_tx_offload:
7369 *
7370 * Set up TCP/IP checksumming parameters for the
7371 * specified packet.
7372 */
7373 static void
7374 wm_tx_offload(struct wm_softc *sc, struct wm_txqueue *txq,
7375 struct wm_txsoft *txs, uint32_t *cmdp, uint8_t *fieldsp)
7376 {
7377 struct mbuf *m0 = txs->txs_mbuf;
7378 struct livengood_tcpip_ctxdesc *t;
7379 uint32_t ipcs, tucs, cmd, cmdlen, seg;
7380 uint32_t ipcse;
7381 struct ether_header *eh;
7382 int offset, iphl;
7383 uint8_t fields;
7384
7385 /*
7386 * XXX It would be nice if the mbuf pkthdr had offset
7387 * fields for the protocol headers.
7388 */
7389
7390 eh = mtod(m0, struct ether_header *);
7391 switch (htons(eh->ether_type)) {
7392 case ETHERTYPE_IP:
7393 case ETHERTYPE_IPV6:
7394 offset = ETHER_HDR_LEN;
7395 break;
7396
7397 case ETHERTYPE_VLAN:
7398 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
7399 break;
7400
7401 default:
7402 /* Don't support this protocol or encapsulation. */
7403 txq->txq_last_hw_cmd = txq->txq_last_hw_fields = 0;
7404 txq->txq_last_hw_ipcs = 0;
7405 txq->txq_last_hw_tucs = 0;
7406 *fieldsp = 0;
7407 *cmdp = 0;
7408 return;
7409 }
7410
7411 if ((m0->m_pkthdr.csum_flags &
7412 (M_CSUM_TSOv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_IPv4)) != 0) {
7413 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
7414 } else
7415 iphl = M_CSUM_DATA_IPv6_IPHL(m0->m_pkthdr.csum_data);
7416
7417 ipcse = offset + iphl - 1;
7418
7419 cmd = WTX_CMD_DEXT | WTX_DTYP_D;
7420 cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
7421 seg = 0;
7422 fields = 0;
7423
7424 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
7425 int hlen = offset + iphl;
7426 bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
7427
7428 if (__predict_false(m0->m_len <
7429 (hlen + sizeof(struct tcphdr)))) {
7430 /*
7431 * TCP/IP headers are not in the first mbuf; we need
7432 * to do this the slow and painful way. Let's just
7433 * hope this doesn't happen very often.
7434 */
7435 struct tcphdr th;
7436
7437 WM_Q_EVCNT_INCR(txq, tsopain);
7438
7439 m_copydata(m0, hlen, sizeof(th), &th);
7440 if (v4) {
7441 struct ip ip;
7442
7443 m_copydata(m0, offset, sizeof(ip), &ip);
7444 ip.ip_len = 0;
7445 m_copyback(m0,
7446 offset + offsetof(struct ip, ip_len),
7447 sizeof(ip.ip_len), &ip.ip_len);
7448 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
7449 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
7450 } else {
7451 struct ip6_hdr ip6;
7452
7453 m_copydata(m0, offset, sizeof(ip6), &ip6);
7454 ip6.ip6_plen = 0;
7455 m_copyback(m0,
7456 offset + offsetof(struct ip6_hdr, ip6_plen),
7457 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
7458 th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
7459 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
7460 }
7461 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
7462 sizeof(th.th_sum), &th.th_sum);
7463
7464 hlen += th.th_off << 2;
7465 } else {
7466 /*
7467 * TCP/IP headers are in the first mbuf; we can do
7468 * this the easy way.
7469 */
7470 struct tcphdr *th;
7471
7472 if (v4) {
7473 struct ip *ip =
7474 (void *)(mtod(m0, char *) + offset);
7475 th = (void *)(mtod(m0, char *) + hlen);
7476
7477 ip->ip_len = 0;
7478 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
7479 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
7480 } else {
7481 struct ip6_hdr *ip6 =
7482 (void *)(mtod(m0, char *) + offset);
7483 th = (void *)(mtod(m0, char *) + hlen);
7484
7485 ip6->ip6_plen = 0;
7486 th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
7487 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
7488 }
7489 hlen += th->th_off << 2;
7490 }
7491
7492 if (v4) {
7493 WM_Q_EVCNT_INCR(txq, tso);
7494 cmdlen |= WTX_TCPIP_CMD_IP;
7495 } else {
7496 WM_Q_EVCNT_INCR(txq, tso6);
7497 ipcse = 0;
7498 }
7499 cmd |= WTX_TCPIP_CMD_TSE;
7500 cmdlen |= WTX_TCPIP_CMD_TSE |
7501 WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
7502 seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
7503 WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
7504 }
7505
7506 /*
7507 * NOTE: Even if we're not using the IP or TCP/UDP checksum
7508 * offload feature, if we load the context descriptor, we
7509 * MUST provide valid values for IPCSS and TUCSS fields.
7510 */
7511
7512 ipcs = WTX_TCPIP_IPCSS(offset) |
7513 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
7514 WTX_TCPIP_IPCSE(ipcse);
7515 if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4 | M_CSUM_TSOv4)) {
7516 WM_Q_EVCNT_INCR(txq, ipsum);
7517 fields |= WTX_IXSM;
7518 }
7519
7520 offset += iphl;
7521
7522 if (m0->m_pkthdr.csum_flags &
7523 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TSOv4)) {
7524 WM_Q_EVCNT_INCR(txq, tusum);
7525 fields |= WTX_TXSM;
7526 tucs = WTX_TCPIP_TUCSS(offset) |
7527 WTX_TCPIP_TUCSO(offset +
7528 M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
7529 WTX_TCPIP_TUCSE(0) /* Rest of packet */;
7530 } else if ((m0->m_pkthdr.csum_flags &
7531 (M_CSUM_TCPv6 | M_CSUM_UDPv6 | M_CSUM_TSOv6)) != 0) {
7532 WM_Q_EVCNT_INCR(txq, tusum6);
7533 fields |= WTX_TXSM;
7534 tucs = WTX_TCPIP_TUCSS(offset) |
7535 WTX_TCPIP_TUCSO(offset +
7536 M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
7537 WTX_TCPIP_TUCSE(0) /* Rest of packet */;
7538 } else {
7539 /* Just initialize it to a valid TCP context. */
7540 tucs = WTX_TCPIP_TUCSS(offset) |
7541 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
7542 WTX_TCPIP_TUCSE(0) /* Rest of packet */;
7543 }
7544
7545 *cmdp = cmd;
7546 *fieldsp = fields;
7547
7548 /*
7549 * We don't have to write context descriptor for every packet
7550 * except for 82574. For 82574, we must write context descriptor
7551 * for every packet when we use two descriptor queues.
7552 *
7553 * The 82574L can only remember the *last* context used
7554 * regardless of queue that it was use for. We cannot reuse
7555 * contexts on this hardware platform and must generate a new
7556 * context every time. 82574L hardware spec, section 7.2.6,
7557 * second note.
7558 */
7559 if (sc->sc_nqueues < 2) {
7560 /*
7561 *
7562 * Setting up new checksum offload context for every
7563 * frames takes a lot of processing time for hardware.
7564 * This also reduces performance a lot for small sized
7565 * frames so avoid it if driver can use previously
7566 * configured checksum offload context.
7567 * For TSO, in theory we can use the same TSO context only if
7568 * frame is the same type(IP/TCP) and the same MSS. However
7569 * checking whether a frame has the same IP/TCP structure is
7570 * hard thing so just ignore that and always restablish a
7571 * new TSO context.
7572 */
7573 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6))
7574 == 0) {
7575 if (txq->txq_last_hw_cmd == cmd &&
7576 txq->txq_last_hw_fields == fields &&
7577 txq->txq_last_hw_ipcs == (ipcs & 0xffff) &&
7578 txq->txq_last_hw_tucs == (tucs & 0xffff)) {
7579 WM_Q_EVCNT_INCR(txq, skipcontext);
7580 return;
7581 }
7582 }
7583
7584 txq->txq_last_hw_cmd = cmd;
7585 txq->txq_last_hw_fields = fields;
7586 txq->txq_last_hw_ipcs = (ipcs & 0xffff);
7587 txq->txq_last_hw_tucs = (tucs & 0xffff);
7588 }
7589
7590 /* Fill in the context descriptor. */
7591 t = (struct livengood_tcpip_ctxdesc *)
7592 &txq->txq_descs[txq->txq_next];
7593 t->tcpip_ipcs = htole32(ipcs);
7594 t->tcpip_tucs = htole32(tucs);
7595 t->tcpip_cmdlen = htole32(cmdlen);
7596 t->tcpip_seg = htole32(seg);
7597 wm_cdtxsync(txq, txq->txq_next, 1, BUS_DMASYNC_PREWRITE);
7598
7599 txq->txq_next = WM_NEXTTX(txq, txq->txq_next);
7600 txs->txs_ndesc++;
7601 }
7602
7603 static inline int
7604 wm_select_txqueue(struct ifnet *ifp, struct mbuf *m)
7605 {
7606 struct wm_softc *sc = ifp->if_softc;
7607 u_int cpuid = cpu_index(curcpu());
7608
7609 /*
7610 * Currently, simple distribute strategy.
7611 * TODO:
7612 * distribute by flowid(RSS has value).
7613 */
7614 return ((cpuid + ncpu - sc->sc_affinity_offset) % ncpu) % sc->sc_nqueues;
7615 }
7616
7617 /*
7618 * wm_start: [ifnet interface function]
7619 *
7620 * Start packet transmission on the interface.
7621 */
7622 static void
7623 wm_start(struct ifnet *ifp)
7624 {
7625 struct wm_softc *sc = ifp->if_softc;
7626 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
7627
7628 #ifdef WM_MPSAFE
7629 KASSERT(if_is_mpsafe(ifp));
7630 #endif
7631 /*
7632 * if_obytes and if_omcasts are added in if_transmit()@if.c.
7633 */
7634
7635 mutex_enter(txq->txq_lock);
7636 if (!txq->txq_stopping)
7637 wm_start_locked(ifp);
7638 mutex_exit(txq->txq_lock);
7639 }
7640
7641 static void
7642 wm_start_locked(struct ifnet *ifp)
7643 {
7644 struct wm_softc *sc = ifp->if_softc;
7645 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
7646
7647 wm_send_common_locked(ifp, txq, false);
7648 }
7649
7650 static int
7651 wm_transmit(struct ifnet *ifp, struct mbuf *m)
7652 {
7653 int qid;
7654 struct wm_softc *sc = ifp->if_softc;
7655 struct wm_txqueue *txq;
7656
7657 qid = wm_select_txqueue(ifp, m);
7658 txq = &sc->sc_queue[qid].wmq_txq;
7659
7660 if (__predict_false(!pcq_put(txq->txq_interq, m))) {
7661 m_freem(m);
7662 WM_Q_EVCNT_INCR(txq, pcqdrop);
7663 return ENOBUFS;
7664 }
7665
7666 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
7667 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
7668 if (m->m_flags & M_MCAST)
7669 if_statinc_ref(nsr, if_omcasts);
7670 IF_STAT_PUTREF(ifp);
7671
7672 if (mutex_tryenter(txq->txq_lock)) {
7673 if (!txq->txq_stopping)
7674 wm_transmit_locked(ifp, txq);
7675 mutex_exit(txq->txq_lock);
7676 }
7677
7678 return 0;
7679 }
7680
7681 static void
7682 wm_transmit_locked(struct ifnet *ifp, struct wm_txqueue *txq)
7683 {
7684
7685 wm_send_common_locked(ifp, txq, true);
7686 }
7687
7688 static void
7689 wm_send_common_locked(struct ifnet *ifp, struct wm_txqueue *txq,
7690 bool is_transmit)
7691 {
7692 struct wm_softc *sc = ifp->if_softc;
7693 struct mbuf *m0;
7694 struct wm_txsoft *txs;
7695 bus_dmamap_t dmamap;
7696 int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
7697 bus_addr_t curaddr;
7698 bus_size_t seglen, curlen;
7699 uint32_t cksumcmd;
7700 uint8_t cksumfields;
7701 bool remap = true;
7702
7703 KASSERT(mutex_owned(txq->txq_lock));
7704
7705 if ((ifp->if_flags & IFF_RUNNING) == 0)
7706 return;
7707 if ((txq->txq_flags & WM_TXQ_NO_SPACE) != 0)
7708 return;
7709
7710 /* Remember the previous number of free descriptors. */
7711 ofree = txq->txq_free;
7712
7713 /*
7714 * Loop through the send queue, setting up transmit descriptors
7715 * until we drain the queue, or use up all available transmit
7716 * descriptors.
7717 */
7718 for (;;) {
7719 m0 = NULL;
7720
7721 /* Get a work queue entry. */
7722 if (txq->txq_sfree < WM_TXQUEUE_GC(txq)) {
7723 wm_txeof(txq, UINT_MAX);
7724 if (txq->txq_sfree == 0) {
7725 DPRINTF(WM_DEBUG_TX,
7726 ("%s: TX: no free job descriptors\n",
7727 device_xname(sc->sc_dev)));
7728 WM_Q_EVCNT_INCR(txq, txsstall);
7729 break;
7730 }
7731 }
7732
7733 /* Grab a packet off the queue. */
7734 if (is_transmit)
7735 m0 = pcq_get(txq->txq_interq);
7736 else
7737 IFQ_DEQUEUE(&ifp->if_snd, m0);
7738 if (m0 == NULL)
7739 break;
7740
7741 DPRINTF(WM_DEBUG_TX,
7742 ("%s: TX: have packet to transmit: %p\n",
7743 device_xname(sc->sc_dev), m0));
7744
7745 txs = &txq->txq_soft[txq->txq_snext];
7746 dmamap = txs->txs_dmamap;
7747
7748 use_tso = (m0->m_pkthdr.csum_flags &
7749 (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0;
7750
7751 /*
7752 * So says the Linux driver:
7753 * The controller does a simple calculation to make sure
7754 * there is enough room in the FIFO before initiating the
7755 * DMA for each buffer. The calc is:
7756 * 4 = ceil(buffer len / MSS)
7757 * To make sure we don't overrun the FIFO, adjust the max
7758 * buffer len if the MSS drops.
7759 */
7760 dmamap->dm_maxsegsz =
7761 (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
7762 ? m0->m_pkthdr.segsz << 2
7763 : WTX_MAX_LEN;
7764
7765 /*
7766 * Load the DMA map. If this fails, the packet either
7767 * didn't fit in the allotted number of segments, or we
7768 * were short on resources. For the too-many-segments
7769 * case, we simply report an error and drop the packet,
7770 * since we can't sanely copy a jumbo packet to a single
7771 * buffer.
7772 */
7773 retry:
7774 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
7775 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
7776 if (__predict_false(error)) {
7777 if (error == EFBIG) {
7778 if (remap == true) {
7779 struct mbuf *m;
7780
7781 remap = false;
7782 m = m_defrag(m0, M_NOWAIT);
7783 if (m != NULL) {
7784 WM_Q_EVCNT_INCR(txq, defrag);
7785 m0 = m;
7786 goto retry;
7787 }
7788 }
7789 WM_Q_EVCNT_INCR(txq, toomanyseg);
7790 log(LOG_ERR, "%s: Tx packet consumes too many "
7791 "DMA segments, dropping...\n",
7792 device_xname(sc->sc_dev));
7793 wm_dump_mbuf_chain(sc, m0);
7794 m_freem(m0);
7795 continue;
7796 }
7797 /* Short on resources, just stop for now. */
7798 DPRINTF(WM_DEBUG_TX,
7799 ("%s: TX: dmamap load failed: %d\n",
7800 device_xname(sc->sc_dev), error));
7801 break;
7802 }
7803
7804 segs_needed = dmamap->dm_nsegs;
7805 if (use_tso) {
7806 /* For sentinel descriptor; see below. */
7807 segs_needed++;
7808 }
7809
7810 /*
7811 * Ensure we have enough descriptors free to describe
7812 * the packet. Note, we always reserve one descriptor
7813 * at the end of the ring due to the semantics of the
7814 * TDT register, plus one more in the event we need
7815 * to load offload context.
7816 */
7817 if (segs_needed > txq->txq_free - 2) {
7818 /*
7819 * Not enough free descriptors to transmit this
7820 * packet. We haven't committed anything yet,
7821 * so just unload the DMA map, put the packet
7822 * pack on the queue, and punt. Notify the upper
7823 * layer that there are no more slots left.
7824 */
7825 DPRINTF(WM_DEBUG_TX,
7826 ("%s: TX: need %d (%d) descriptors, have %d\n",
7827 device_xname(sc->sc_dev), dmamap->dm_nsegs,
7828 segs_needed, txq->txq_free - 1));
7829 txq->txq_flags |= WM_TXQ_NO_SPACE;
7830 bus_dmamap_unload(sc->sc_dmat, dmamap);
7831 WM_Q_EVCNT_INCR(txq, txdstall);
7832 break;
7833 }
7834
7835 /*
7836 * Check for 82547 Tx FIFO bug. We need to do this
7837 * once we know we can transmit the packet, since we
7838 * do some internal FIFO space accounting here.
7839 */
7840 if (sc->sc_type == WM_T_82547 &&
7841 wm_82547_txfifo_bugchk(sc, m0)) {
7842 DPRINTF(WM_DEBUG_TX,
7843 ("%s: TX: 82547 Tx FIFO bug detected\n",
7844 device_xname(sc->sc_dev)));
7845 txq->txq_flags |= WM_TXQ_NO_SPACE;
7846 bus_dmamap_unload(sc->sc_dmat, dmamap);
7847 WM_Q_EVCNT_INCR(txq, fifo_stall);
7848 break;
7849 }
7850
7851 /* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */
7852
7853 DPRINTF(WM_DEBUG_TX,
7854 ("%s: TX: packet has %d (%d) DMA segments\n",
7855 device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed));
7856
7857 WM_EVCNT_INCR(&txq->txq_ev_txseg[dmamap->dm_nsegs - 1]);
7858
7859 /*
7860 * Store a pointer to the packet so that we can free it
7861 * later.
7862 *
7863 * Initially, we consider the number of descriptors the
7864 * packet uses the number of DMA segments. This may be
7865 * incremented by 1 if we do checksum offload (a descriptor
7866 * is used to set the checksum context).
7867 */
7868 txs->txs_mbuf = m0;
7869 txs->txs_firstdesc = txq->txq_next;
7870 txs->txs_ndesc = segs_needed;
7871
7872 /* Set up offload parameters for this packet. */
7873 if (m0->m_pkthdr.csum_flags &
7874 (M_CSUM_TSOv4 | M_CSUM_TSOv6 |
7875 M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4 |
7876 M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
7877 wm_tx_offload(sc, txq, txs, &cksumcmd, &cksumfields);
7878 } else {
7879 txq->txq_last_hw_cmd = txq->txq_last_hw_fields = 0;
7880 txq->txq_last_hw_ipcs = txq->txq_last_hw_tucs = 0;
7881 cksumcmd = 0;
7882 cksumfields = 0;
7883 }
7884
7885 cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
7886
7887 /* Sync the DMA map. */
7888 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
7889 BUS_DMASYNC_PREWRITE);
7890
7891 /* Initialize the transmit descriptor. */
7892 for (nexttx = txq->txq_next, seg = 0;
7893 seg < dmamap->dm_nsegs; seg++) {
7894 for (seglen = dmamap->dm_segs[seg].ds_len,
7895 curaddr = dmamap->dm_segs[seg].ds_addr;
7896 seglen != 0;
7897 curaddr += curlen, seglen -= curlen,
7898 nexttx = WM_NEXTTX(txq, nexttx)) {
7899 curlen = seglen;
7900
7901 /*
7902 * So says the Linux driver:
7903 * Work around for premature descriptor
7904 * write-backs in TSO mode. Append a
7905 * 4-byte sentinel descriptor.
7906 */
7907 if (use_tso && seg == dmamap->dm_nsegs - 1 &&
7908 curlen > 8)
7909 curlen -= 4;
7910
7911 wm_set_dma_addr(
7912 &txq->txq_descs[nexttx].wtx_addr, curaddr);
7913 txq->txq_descs[nexttx].wtx_cmdlen
7914 = htole32(cksumcmd | curlen);
7915 txq->txq_descs[nexttx].wtx_fields.wtxu_status
7916 = 0;
7917 txq->txq_descs[nexttx].wtx_fields.wtxu_options
7918 = cksumfields;
7919 txq->txq_descs[nexttx].wtx_fields.wtxu_vlan =0;
7920 lasttx = nexttx;
7921
7922 DPRINTF(WM_DEBUG_TX,
7923 ("%s: TX: desc %d: low %#" PRIx64 ", "
7924 "len %#04zx\n",
7925 device_xname(sc->sc_dev), nexttx,
7926 (uint64_t)curaddr, curlen));
7927 }
7928 }
7929
7930 KASSERT(lasttx != -1);
7931
7932 /*
7933 * Set up the command byte on the last descriptor of
7934 * the packet. If we're in the interrupt delay window,
7935 * delay the interrupt.
7936 */
7937 txq->txq_descs[lasttx].wtx_cmdlen |=
7938 htole32(WTX_CMD_EOP | WTX_CMD_RS);
7939
7940 /*
7941 * If VLANs are enabled and the packet has a VLAN tag, set
7942 * up the descriptor to encapsulate the packet for us.
7943 *
7944 * This is only valid on the last descriptor of the packet.
7945 */
7946 if (vlan_has_tag(m0)) {
7947 txq->txq_descs[lasttx].wtx_cmdlen |=
7948 htole32(WTX_CMD_VLE);
7949 txq->txq_descs[lasttx].wtx_fields.wtxu_vlan
7950 = htole16(vlan_get_tag(m0));
7951 }
7952
7953 txs->txs_lastdesc = lasttx;
7954
7955 DPRINTF(WM_DEBUG_TX,
7956 ("%s: TX: desc %d: cmdlen 0x%08x\n",
7957 device_xname(sc->sc_dev),
7958 lasttx, le32toh(txq->txq_descs[lasttx].wtx_cmdlen)));
7959
7960 /* Sync the descriptors we're using. */
7961 wm_cdtxsync(txq, txq->txq_next, txs->txs_ndesc,
7962 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
7963
7964 /* Give the packet to the chip. */
7965 CSR_WRITE(sc, txq->txq_tdt_reg, nexttx);
7966
7967 DPRINTF(WM_DEBUG_TX,
7968 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
7969
7970 DPRINTF(WM_DEBUG_TX,
7971 ("%s: TX: finished transmitting packet, job %d\n",
7972 device_xname(sc->sc_dev), txq->txq_snext));
7973
7974 /* Advance the tx pointer. */
7975 txq->txq_free -= txs->txs_ndesc;
7976 txq->txq_next = nexttx;
7977
7978 txq->txq_sfree--;
7979 txq->txq_snext = WM_NEXTTXS(txq, txq->txq_snext);
7980
7981 /* Pass the packet to any BPF listeners. */
7982 bpf_mtap(ifp, m0, BPF_D_OUT);
7983 }
7984
7985 if (m0 != NULL) {
7986 txq->txq_flags |= WM_TXQ_NO_SPACE;
7987 WM_Q_EVCNT_INCR(txq, descdrop);
7988 DPRINTF(WM_DEBUG_TX, ("%s: TX: error after IFQ_DEQUEUE\n",
7989 __func__));
7990 m_freem(m0);
7991 }
7992
7993 if (txq->txq_sfree == 0 || txq->txq_free <= 2) {
7994 /* No more slots; notify upper layer. */
7995 txq->txq_flags |= WM_TXQ_NO_SPACE;
7996 }
7997
7998 if (txq->txq_free != ofree) {
7999 /* Set a watchdog timer in case the chip flakes out. */
8000 txq->txq_lastsent = time_uptime;
8001 txq->txq_sending = true;
8002 }
8003 }
8004
8005 /*
8006 * wm_nq_tx_offload:
8007 *
8008 * Set up TCP/IP checksumming parameters for the
8009 * specified packet, for NEWQUEUE devices
8010 */
8011 static void
8012 wm_nq_tx_offload(struct wm_softc *sc, struct wm_txqueue *txq,
8013 struct wm_txsoft *txs, uint32_t *cmdlenp, uint32_t *fieldsp, bool *do_csum)
8014 {
8015 struct mbuf *m0 = txs->txs_mbuf;
8016 uint32_t vl_len, mssidx, cmdc;
8017 struct ether_header *eh;
8018 int offset, iphl;
8019
8020 /*
8021 * XXX It would be nice if the mbuf pkthdr had offset
8022 * fields for the protocol headers.
8023 */
8024 *cmdlenp = 0;
8025 *fieldsp = 0;
8026
8027 eh = mtod(m0, struct ether_header *);
8028 switch (htons(eh->ether_type)) {
8029 case ETHERTYPE_IP:
8030 case ETHERTYPE_IPV6:
8031 offset = ETHER_HDR_LEN;
8032 break;
8033
8034 case ETHERTYPE_VLAN:
8035 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
8036 break;
8037
8038 default:
8039 /* Don't support this protocol or encapsulation. */
8040 *do_csum = false;
8041 return;
8042 }
8043 *do_csum = true;
8044 *cmdlenp = NQTX_DTYP_D | NQTX_CMD_DEXT | NQTX_CMD_IFCS;
8045 cmdc = NQTX_DTYP_C | NQTX_CMD_DEXT;
8046
8047 vl_len = (offset << NQTXC_VLLEN_MACLEN_SHIFT);
8048 KASSERT((offset & ~NQTXC_VLLEN_MACLEN_MASK) == 0);
8049
8050 if ((m0->m_pkthdr.csum_flags &
8051 (M_CSUM_TSOv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_IPv4)) != 0) {
8052 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
8053 } else {
8054 iphl = M_CSUM_DATA_IPv6_IPHL(m0->m_pkthdr.csum_data);
8055 }
8056 vl_len |= (iphl << NQTXC_VLLEN_IPLEN_SHIFT);
8057 KASSERT((iphl & ~NQTXC_VLLEN_IPLEN_MASK) == 0);
8058
8059 if (vlan_has_tag(m0)) {
8060 vl_len |= ((vlan_get_tag(m0) & NQTXC_VLLEN_VLAN_MASK)
8061 << NQTXC_VLLEN_VLAN_SHIFT);
8062 *cmdlenp |= NQTX_CMD_VLE;
8063 }
8064
8065 mssidx = 0;
8066
8067 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
8068 int hlen = offset + iphl;
8069 int tcp_hlen;
8070 bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
8071
8072 if (__predict_false(m0->m_len <
8073 (hlen + sizeof(struct tcphdr)))) {
8074 /*
8075 * TCP/IP headers are not in the first mbuf; we need
8076 * to do this the slow and painful way. Let's just
8077 * hope this doesn't happen very often.
8078 */
8079 struct tcphdr th;
8080
8081 WM_Q_EVCNT_INCR(txq, tsopain);
8082
8083 m_copydata(m0, hlen, sizeof(th), &th);
8084 if (v4) {
8085 struct ip ip;
8086
8087 m_copydata(m0, offset, sizeof(ip), &ip);
8088 ip.ip_len = 0;
8089 m_copyback(m0,
8090 offset + offsetof(struct ip, ip_len),
8091 sizeof(ip.ip_len), &ip.ip_len);
8092 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
8093 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
8094 } else {
8095 struct ip6_hdr ip6;
8096
8097 m_copydata(m0, offset, sizeof(ip6), &ip6);
8098 ip6.ip6_plen = 0;
8099 m_copyback(m0,
8100 offset + offsetof(struct ip6_hdr, ip6_plen),
8101 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
8102 th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
8103 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
8104 }
8105 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
8106 sizeof(th.th_sum), &th.th_sum);
8107
8108 tcp_hlen = th.th_off << 2;
8109 } else {
8110 /*
8111 * TCP/IP headers are in the first mbuf; we can do
8112 * this the easy way.
8113 */
8114 struct tcphdr *th;
8115
8116 if (v4) {
8117 struct ip *ip =
8118 (void *)(mtod(m0, char *) + offset);
8119 th = (void *)(mtod(m0, char *) + hlen);
8120
8121 ip->ip_len = 0;
8122 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
8123 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
8124 } else {
8125 struct ip6_hdr *ip6 =
8126 (void *)(mtod(m0, char *) + offset);
8127 th = (void *)(mtod(m0, char *) + hlen);
8128
8129 ip6->ip6_plen = 0;
8130 th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
8131 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
8132 }
8133 tcp_hlen = th->th_off << 2;
8134 }
8135 hlen += tcp_hlen;
8136 *cmdlenp |= NQTX_CMD_TSE;
8137
8138 if (v4) {
8139 WM_Q_EVCNT_INCR(txq, tso);
8140 *fieldsp |= NQTXD_FIELDS_IXSM | NQTXD_FIELDS_TUXSM;
8141 } else {
8142 WM_Q_EVCNT_INCR(txq, tso6);
8143 *fieldsp |= NQTXD_FIELDS_TUXSM;
8144 }
8145 *fieldsp |= ((m0->m_pkthdr.len - hlen) << NQTXD_FIELDS_PAYLEN_SHIFT);
8146 KASSERT(((m0->m_pkthdr.len - hlen) & ~NQTXD_FIELDS_PAYLEN_MASK) == 0);
8147 mssidx |= (m0->m_pkthdr.segsz << NQTXC_MSSIDX_MSS_SHIFT);
8148 KASSERT((m0->m_pkthdr.segsz & ~NQTXC_MSSIDX_MSS_MASK) == 0);
8149 mssidx |= (tcp_hlen << NQTXC_MSSIDX_L4LEN_SHIFT);
8150 KASSERT((tcp_hlen & ~NQTXC_MSSIDX_L4LEN_MASK) == 0);
8151 } else {
8152 *fieldsp |= (m0->m_pkthdr.len << NQTXD_FIELDS_PAYLEN_SHIFT);
8153 KASSERT((m0->m_pkthdr.len & ~NQTXD_FIELDS_PAYLEN_MASK) == 0);
8154 }
8155
8156 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
8157 *fieldsp |= NQTXD_FIELDS_IXSM;
8158 cmdc |= NQTXC_CMD_IP4;
8159 }
8160
8161 if (m0->m_pkthdr.csum_flags &
8162 (M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_TSOv4)) {
8163 WM_Q_EVCNT_INCR(txq, tusum);
8164 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_TSOv4))
8165 cmdc |= NQTXC_CMD_TCP;
8166 else
8167 cmdc |= NQTXC_CMD_UDP;
8168
8169 cmdc |= NQTXC_CMD_IP4;
8170 *fieldsp |= NQTXD_FIELDS_TUXSM;
8171 }
8172 if (m0->m_pkthdr.csum_flags &
8173 (M_CSUM_UDPv6 | M_CSUM_TCPv6 | M_CSUM_TSOv6)) {
8174 WM_Q_EVCNT_INCR(txq, tusum6);
8175 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv6 | M_CSUM_TSOv6))
8176 cmdc |= NQTXC_CMD_TCP;
8177 else
8178 cmdc |= NQTXC_CMD_UDP;
8179
8180 cmdc |= NQTXC_CMD_IP6;
8181 *fieldsp |= NQTXD_FIELDS_TUXSM;
8182 }
8183
8184 /*
8185 * We don't have to write context descriptor for every packet to
8186 * NEWQUEUE controllers, that is 82575, 82576, 82580, I350, I354,
8187 * I210 and I211. It is enough to write once per a Tx queue for these
8188 * controllers.
8189 * It would be overhead to write context descriptor for every packet,
8190 * however it does not cause problems.
8191 */
8192 /* Fill in the context descriptor. */
8193 txq->txq_nq_descs[txq->txq_next].nqrx_ctx.nqtxc_vl_len =
8194 htole32(vl_len);
8195 txq->txq_nq_descs[txq->txq_next].nqrx_ctx.nqtxc_sn = 0;
8196 txq->txq_nq_descs[txq->txq_next].nqrx_ctx.nqtxc_cmd =
8197 htole32(cmdc);
8198 txq->txq_nq_descs[txq->txq_next].nqrx_ctx.nqtxc_mssidx =
8199 htole32(mssidx);
8200 wm_cdtxsync(txq, txq->txq_next, 1, BUS_DMASYNC_PREWRITE);
8201 DPRINTF(WM_DEBUG_TX,
8202 ("%s: TX: context desc %d 0x%08x%08x\n", device_xname(sc->sc_dev),
8203 txq->txq_next, 0, vl_len));
8204 DPRINTF(WM_DEBUG_TX, ("\t0x%08x%08x\n", mssidx, cmdc));
8205 txq->txq_next = WM_NEXTTX(txq, txq->txq_next);
8206 txs->txs_ndesc++;
8207 }
8208
8209 /*
8210 * wm_nq_start: [ifnet interface function]
8211 *
8212 * Start packet transmission on the interface for NEWQUEUE devices
8213 */
8214 static void
8215 wm_nq_start(struct ifnet *ifp)
8216 {
8217 struct wm_softc *sc = ifp->if_softc;
8218 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
8219
8220 #ifdef WM_MPSAFE
8221 KASSERT(if_is_mpsafe(ifp));
8222 #endif
8223 /*
8224 * if_obytes and if_omcasts are added in if_transmit()@if.c.
8225 */
8226
8227 mutex_enter(txq->txq_lock);
8228 if (!txq->txq_stopping)
8229 wm_nq_start_locked(ifp);
8230 mutex_exit(txq->txq_lock);
8231 }
8232
8233 static void
8234 wm_nq_start_locked(struct ifnet *ifp)
8235 {
8236 struct wm_softc *sc = ifp->if_softc;
8237 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
8238
8239 wm_nq_send_common_locked(ifp, txq, false);
8240 }
8241
8242 static int
8243 wm_nq_transmit(struct ifnet *ifp, struct mbuf *m)
8244 {
8245 int qid;
8246 struct wm_softc *sc = ifp->if_softc;
8247 struct wm_txqueue *txq;
8248
8249 qid = wm_select_txqueue(ifp, m);
8250 txq = &sc->sc_queue[qid].wmq_txq;
8251
8252 if (__predict_false(!pcq_put(txq->txq_interq, m))) {
8253 m_freem(m);
8254 WM_Q_EVCNT_INCR(txq, pcqdrop);
8255 return ENOBUFS;
8256 }
8257
8258 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
8259 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
8260 if (m->m_flags & M_MCAST)
8261 if_statinc_ref(nsr, if_omcasts);
8262 IF_STAT_PUTREF(ifp);
8263
8264 /*
8265 * The situations which this mutex_tryenter() fails at running time
8266 * are below two patterns.
8267 * (1) contention with interrupt handler(wm_txrxintr_msix())
8268 * (2) contention with deferred if_start softint(wm_handle_queue())
8269 * In the case of (1), the last packet enqueued to txq->txq_interq is
8270 * dequeued by wm_deferred_start_locked(). So, it does not get stuck.
8271 * In the case of (2), the last packet enqueued to txq->txq_interq is
8272 * also dequeued by wm_deferred_start_locked(). So, it does not get
8273 * stuck, either.
8274 */
8275 if (mutex_tryenter(txq->txq_lock)) {
8276 if (!txq->txq_stopping)
8277 wm_nq_transmit_locked(ifp, txq);
8278 mutex_exit(txq->txq_lock);
8279 }
8280
8281 return 0;
8282 }
8283
8284 static void
8285 wm_nq_transmit_locked(struct ifnet *ifp, struct wm_txqueue *txq)
8286 {
8287
8288 wm_nq_send_common_locked(ifp, txq, true);
8289 }
8290
8291 static void
8292 wm_nq_send_common_locked(struct ifnet *ifp, struct wm_txqueue *txq,
8293 bool is_transmit)
8294 {
8295 struct wm_softc *sc = ifp->if_softc;
8296 struct mbuf *m0;
8297 struct wm_txsoft *txs;
8298 bus_dmamap_t dmamap;
8299 int error, nexttx, lasttx = -1, seg, segs_needed;
8300 bool do_csum, sent;
8301 bool remap = true;
8302
8303 KASSERT(mutex_owned(txq->txq_lock));
8304
8305 if ((ifp->if_flags & IFF_RUNNING) == 0)
8306 return;
8307 if ((txq->txq_flags & WM_TXQ_NO_SPACE) != 0)
8308 return;
8309
8310 sent = false;
8311
8312 /*
8313 * Loop through the send queue, setting up transmit descriptors
8314 * until we drain the queue, or use up all available transmit
8315 * descriptors.
8316 */
8317 for (;;) {
8318 m0 = NULL;
8319
8320 /* Get a work queue entry. */
8321 if (txq->txq_sfree < WM_TXQUEUE_GC(txq)) {
8322 wm_txeof(txq, UINT_MAX);
8323 if (txq->txq_sfree == 0) {
8324 DPRINTF(WM_DEBUG_TX,
8325 ("%s: TX: no free job descriptors\n",
8326 device_xname(sc->sc_dev)));
8327 WM_Q_EVCNT_INCR(txq, txsstall);
8328 break;
8329 }
8330 }
8331
8332 /* Grab a packet off the queue. */
8333 if (is_transmit)
8334 m0 = pcq_get(txq->txq_interq);
8335 else
8336 IFQ_DEQUEUE(&ifp->if_snd, m0);
8337 if (m0 == NULL)
8338 break;
8339
8340 DPRINTF(WM_DEBUG_TX,
8341 ("%s: TX: have packet to transmit: %p\n",
8342 device_xname(sc->sc_dev), m0));
8343
8344 txs = &txq->txq_soft[txq->txq_snext];
8345 dmamap = txs->txs_dmamap;
8346
8347 /*
8348 * Load the DMA map. If this fails, the packet either
8349 * didn't fit in the allotted number of segments, or we
8350 * were short on resources. For the too-many-segments
8351 * case, we simply report an error and drop the packet,
8352 * since we can't sanely copy a jumbo packet to a single
8353 * buffer.
8354 */
8355 retry:
8356 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
8357 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
8358 if (__predict_false(error)) {
8359 if (error == EFBIG) {
8360 if (remap == true) {
8361 struct mbuf *m;
8362
8363 remap = false;
8364 m = m_defrag(m0, M_NOWAIT);
8365 if (m != NULL) {
8366 WM_Q_EVCNT_INCR(txq, defrag);
8367 m0 = m;
8368 goto retry;
8369 }
8370 }
8371 WM_Q_EVCNT_INCR(txq, toomanyseg);
8372 log(LOG_ERR, "%s: Tx packet consumes too many "
8373 "DMA segments, dropping...\n",
8374 device_xname(sc->sc_dev));
8375 wm_dump_mbuf_chain(sc, m0);
8376 m_freem(m0);
8377 continue;
8378 }
8379 /* Short on resources, just stop for now. */
8380 DPRINTF(WM_DEBUG_TX,
8381 ("%s: TX: dmamap load failed: %d\n",
8382 device_xname(sc->sc_dev), error));
8383 break;
8384 }
8385
8386 segs_needed = dmamap->dm_nsegs;
8387
8388 /*
8389 * Ensure we have enough descriptors free to describe
8390 * the packet. Note, we always reserve one descriptor
8391 * at the end of the ring due to the semantics of the
8392 * TDT register, plus one more in the event we need
8393 * to load offload context.
8394 */
8395 if (segs_needed > txq->txq_free - 2) {
8396 /*
8397 * Not enough free descriptors to transmit this
8398 * packet. We haven't committed anything yet,
8399 * so just unload the DMA map, put the packet
8400 * pack on the queue, and punt. Notify the upper
8401 * layer that there are no more slots left.
8402 */
8403 DPRINTF(WM_DEBUG_TX,
8404 ("%s: TX: need %d (%d) descriptors, have %d\n",
8405 device_xname(sc->sc_dev), dmamap->dm_nsegs,
8406 segs_needed, txq->txq_free - 1));
8407 txq->txq_flags |= WM_TXQ_NO_SPACE;
8408 bus_dmamap_unload(sc->sc_dmat, dmamap);
8409 WM_Q_EVCNT_INCR(txq, txdstall);
8410 break;
8411 }
8412
8413 /* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */
8414
8415 DPRINTF(WM_DEBUG_TX,
8416 ("%s: TX: packet has %d (%d) DMA segments\n",
8417 device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed));
8418
8419 WM_EVCNT_INCR(&txq->txq_ev_txseg[dmamap->dm_nsegs - 1]);
8420
8421 /*
8422 * Store a pointer to the packet so that we can free it
8423 * later.
8424 *
8425 * Initially, we consider the number of descriptors the
8426 * packet uses the number of DMA segments. This may be
8427 * incremented by 1 if we do checksum offload (a descriptor
8428 * is used to set the checksum context).
8429 */
8430 txs->txs_mbuf = m0;
8431 txs->txs_firstdesc = txq->txq_next;
8432 txs->txs_ndesc = segs_needed;
8433
8434 /* Set up offload parameters for this packet. */
8435 uint32_t cmdlen, fields, dcmdlen;
8436 if (m0->m_pkthdr.csum_flags &
8437 (M_CSUM_TSOv4 | M_CSUM_TSOv6 |
8438 M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4 |
8439 M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
8440 wm_nq_tx_offload(sc, txq, txs, &cmdlen, &fields,
8441 &do_csum);
8442 } else {
8443 do_csum = false;
8444 cmdlen = 0;
8445 fields = 0;
8446 }
8447
8448 /* Sync the DMA map. */
8449 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
8450 BUS_DMASYNC_PREWRITE);
8451
8452 /* Initialize the first transmit descriptor. */
8453 nexttx = txq->txq_next;
8454 if (!do_csum) {
8455 /* Setup a legacy descriptor */
8456 wm_set_dma_addr(&txq->txq_descs[nexttx].wtx_addr,
8457 dmamap->dm_segs[0].ds_addr);
8458 txq->txq_descs[nexttx].wtx_cmdlen =
8459 htole32(WTX_CMD_IFCS | dmamap->dm_segs[0].ds_len);
8460 txq->txq_descs[nexttx].wtx_fields.wtxu_status = 0;
8461 txq->txq_descs[nexttx].wtx_fields.wtxu_options = 0;
8462 if (vlan_has_tag(m0)) {
8463 txq->txq_descs[nexttx].wtx_cmdlen |=
8464 htole32(WTX_CMD_VLE);
8465 txq->txq_descs[nexttx].wtx_fields.wtxu_vlan =
8466 htole16(vlan_get_tag(m0));
8467 } else
8468 txq->txq_descs[nexttx].wtx_fields.wtxu_vlan =0;
8469
8470 dcmdlen = 0;
8471 } else {
8472 /* Setup an advanced data descriptor */
8473 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_addr =
8474 htole64(dmamap->dm_segs[0].ds_addr);
8475 KASSERT((dmamap->dm_segs[0].ds_len & cmdlen) == 0);
8476 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_cmdlen =
8477 htole32(dmamap->dm_segs[0].ds_len | cmdlen);
8478 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_fields =
8479 htole32(fields);
8480 DPRINTF(WM_DEBUG_TX,
8481 ("%s: TX: adv data desc %d 0x%" PRIx64 "\n",
8482 device_xname(sc->sc_dev), nexttx,
8483 (uint64_t)dmamap->dm_segs[0].ds_addr));
8484 DPRINTF(WM_DEBUG_TX,
8485 ("\t 0x%08x%08x\n", fields,
8486 (uint32_t)dmamap->dm_segs[0].ds_len | cmdlen));
8487 dcmdlen = NQTX_DTYP_D | NQTX_CMD_DEXT;
8488 }
8489
8490 lasttx = nexttx;
8491 nexttx = WM_NEXTTX(txq, nexttx);
8492 /*
8493 * Fill in the next descriptors. legacy or advanced format
8494 * is the same here
8495 */
8496 for (seg = 1; seg < dmamap->dm_nsegs;
8497 seg++, nexttx = WM_NEXTTX(txq, nexttx)) {
8498 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_addr =
8499 htole64(dmamap->dm_segs[seg].ds_addr);
8500 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_cmdlen =
8501 htole32(dcmdlen | dmamap->dm_segs[seg].ds_len);
8502 KASSERT((dcmdlen & dmamap->dm_segs[seg].ds_len) == 0);
8503 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_fields = 0;
8504 lasttx = nexttx;
8505
8506 DPRINTF(WM_DEBUG_TX,
8507 ("%s: TX: desc %d: %#" PRIx64 ", len %#04zx\n",
8508 device_xname(sc->sc_dev), nexttx,
8509 (uint64_t)dmamap->dm_segs[seg].ds_addr,
8510 dmamap->dm_segs[seg].ds_len));
8511 }
8512
8513 KASSERT(lasttx != -1);
8514
8515 /*
8516 * Set up the command byte on the last descriptor of
8517 * the packet. If we're in the interrupt delay window,
8518 * delay the interrupt.
8519 */
8520 KASSERT((WTX_CMD_EOP | WTX_CMD_RS) ==
8521 (NQTX_CMD_EOP | NQTX_CMD_RS));
8522 txq->txq_descs[lasttx].wtx_cmdlen |=
8523 htole32(WTX_CMD_EOP | WTX_CMD_RS);
8524
8525 txs->txs_lastdesc = lasttx;
8526
8527 DPRINTF(WM_DEBUG_TX, ("%s: TX: desc %d: cmdlen 0x%08x\n",
8528 device_xname(sc->sc_dev),
8529 lasttx, le32toh(txq->txq_descs[lasttx].wtx_cmdlen)));
8530
8531 /* Sync the descriptors we're using. */
8532 wm_cdtxsync(txq, txq->txq_next, txs->txs_ndesc,
8533 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
8534
8535 /* Give the packet to the chip. */
8536 CSR_WRITE(sc, txq->txq_tdt_reg, nexttx);
8537 sent = true;
8538
8539 DPRINTF(WM_DEBUG_TX,
8540 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
8541
8542 DPRINTF(WM_DEBUG_TX,
8543 ("%s: TX: finished transmitting packet, job %d\n",
8544 device_xname(sc->sc_dev), txq->txq_snext));
8545
8546 /* Advance the tx pointer. */
8547 txq->txq_free -= txs->txs_ndesc;
8548 txq->txq_next = nexttx;
8549
8550 txq->txq_sfree--;
8551 txq->txq_snext = WM_NEXTTXS(txq, txq->txq_snext);
8552
8553 /* Pass the packet to any BPF listeners. */
8554 bpf_mtap(ifp, m0, BPF_D_OUT);
8555 }
8556
8557 if (m0 != NULL) {
8558 txq->txq_flags |= WM_TXQ_NO_SPACE;
8559 WM_Q_EVCNT_INCR(txq, descdrop);
8560 DPRINTF(WM_DEBUG_TX, ("%s: TX: error after IFQ_DEQUEUE\n",
8561 __func__));
8562 m_freem(m0);
8563 }
8564
8565 if (txq->txq_sfree == 0 || txq->txq_free <= 2) {
8566 /* No more slots; notify upper layer. */
8567 txq->txq_flags |= WM_TXQ_NO_SPACE;
8568 }
8569
8570 if (sent) {
8571 /* Set a watchdog timer in case the chip flakes out. */
8572 txq->txq_lastsent = time_uptime;
8573 txq->txq_sending = true;
8574 }
8575 }
8576
8577 static void
8578 wm_deferred_start_locked(struct wm_txqueue *txq)
8579 {
8580 struct wm_softc *sc = txq->txq_sc;
8581 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
8582 struct wm_queue *wmq = container_of(txq, struct wm_queue, wmq_txq);
8583 int qid = wmq->wmq_id;
8584
8585 KASSERT(mutex_owned(txq->txq_lock));
8586
8587 if (txq->txq_stopping) {
8588 mutex_exit(txq->txq_lock);
8589 return;
8590 }
8591
8592 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
8593 /* XXX need for ALTQ or one CPU system */
8594 if (qid == 0)
8595 wm_nq_start_locked(ifp);
8596 wm_nq_transmit_locked(ifp, txq);
8597 } else {
8598 /* XXX need for ALTQ or one CPU system */
8599 if (qid == 0)
8600 wm_start_locked(ifp);
8601 wm_transmit_locked(ifp, txq);
8602 }
8603 }
8604
8605 /* Interrupt */
8606
8607 /*
8608 * wm_txeof:
8609 *
8610 * Helper; handle transmit interrupts.
8611 */
8612 static bool
8613 wm_txeof(struct wm_txqueue *txq, u_int limit)
8614 {
8615 struct wm_softc *sc = txq->txq_sc;
8616 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
8617 struct wm_txsoft *txs;
8618 int count = 0;
8619 int i;
8620 uint8_t status;
8621 bool more = false;
8622
8623 KASSERT(mutex_owned(txq->txq_lock));
8624
8625 if (txq->txq_stopping)
8626 return false;
8627
8628 txq->txq_flags &= ~WM_TXQ_NO_SPACE;
8629
8630 /*
8631 * Go through the Tx list and free mbufs for those
8632 * frames which have been transmitted.
8633 */
8634 for (i = txq->txq_sdirty; txq->txq_sfree != WM_TXQUEUELEN(txq);
8635 i = WM_NEXTTXS(txq, i), txq->txq_sfree++) {
8636 if (limit-- == 0) {
8637 more = true;
8638 DPRINTF(WM_DEBUG_TX,
8639 ("%s: TX: loop limited, job %d is not processed\n",
8640 device_xname(sc->sc_dev), i));
8641 break;
8642 }
8643
8644 txs = &txq->txq_soft[i];
8645
8646 DPRINTF(WM_DEBUG_TX, ("%s: TX: checking job %d\n",
8647 device_xname(sc->sc_dev), i));
8648
8649 wm_cdtxsync(txq, txs->txs_firstdesc, txs->txs_ndesc,
8650 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
8651
8652 status =
8653 txq->txq_descs[txs->txs_lastdesc].wtx_fields.wtxu_status;
8654 if ((status & WTX_ST_DD) == 0) {
8655 wm_cdtxsync(txq, txs->txs_lastdesc, 1,
8656 BUS_DMASYNC_PREREAD);
8657 break;
8658 }
8659
8660 count++;
8661 DPRINTF(WM_DEBUG_TX,
8662 ("%s: TX: job %d done: descs %d..%d\n",
8663 device_xname(sc->sc_dev), i, txs->txs_firstdesc,
8664 txs->txs_lastdesc));
8665
8666 /*
8667 * XXX We should probably be using the statistics
8668 * XXX registers, but I don't know if they exist
8669 * XXX on chips before the i82544.
8670 */
8671
8672 #ifdef WM_EVENT_COUNTERS
8673 if (status & WTX_ST_TU)
8674 WM_Q_EVCNT_INCR(txq, underrun);
8675 #endif /* WM_EVENT_COUNTERS */
8676
8677 /*
8678 * 82574 and newer's document says the status field has neither
8679 * EC (Excessive Collision) bit nor LC (Late Collision) bit
8680 * (reserved). Refer "PCIe GbE Controller Open Source Software
8681 * Developer's Manual", 82574 datasheet and newer.
8682 *
8683 * XXX I saw the LC bit was set on I218 even though the media
8684 * was full duplex, so the bit might be used for other
8685 * meaning ...(I have no document).
8686 */
8687
8688 if (((status & (WTX_ST_EC | WTX_ST_LC)) != 0)
8689 && ((sc->sc_type < WM_T_82574)
8690 || (sc->sc_type == WM_T_80003))) {
8691 if_statinc(ifp, if_oerrors);
8692 if (status & WTX_ST_LC)
8693 log(LOG_WARNING, "%s: late collision\n",
8694 device_xname(sc->sc_dev));
8695 else if (status & WTX_ST_EC) {
8696 if_statadd(ifp, if_collisions,
8697 TX_COLLISION_THRESHOLD + 1);
8698 log(LOG_WARNING, "%s: excessive collisions\n",
8699 device_xname(sc->sc_dev));
8700 }
8701 } else
8702 if_statinc(ifp, if_opackets);
8703
8704 txq->txq_packets++;
8705 txq->txq_bytes += txs->txs_mbuf->m_pkthdr.len;
8706
8707 txq->txq_free += txs->txs_ndesc;
8708 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
8709 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
8710 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
8711 m_freem(txs->txs_mbuf);
8712 txs->txs_mbuf = NULL;
8713 }
8714
8715 /* Update the dirty transmit buffer pointer. */
8716 txq->txq_sdirty = i;
8717 DPRINTF(WM_DEBUG_TX,
8718 ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
8719
8720 if (count != 0)
8721 rnd_add_uint32(&sc->rnd_source, count);
8722
8723 /*
8724 * If there are no more pending transmissions, cancel the watchdog
8725 * timer.
8726 */
8727 if (txq->txq_sfree == WM_TXQUEUELEN(txq))
8728 txq->txq_sending = false;
8729
8730 return more;
8731 }
8732
8733 static inline uint32_t
8734 wm_rxdesc_get_status(struct wm_rxqueue *rxq, int idx)
8735 {
8736 struct wm_softc *sc = rxq->rxq_sc;
8737
8738 if (sc->sc_type == WM_T_82574)
8739 return EXTRXC_STATUS(rxq->rxq_ext_descs[idx].erx_ctx.erxc_err_stat);
8740 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
8741 return NQRXC_STATUS(rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_err_stat);
8742 else
8743 return rxq->rxq_descs[idx].wrx_status;
8744 }
8745
8746 static inline uint32_t
8747 wm_rxdesc_get_errors(struct wm_rxqueue *rxq, int idx)
8748 {
8749 struct wm_softc *sc = rxq->rxq_sc;
8750
8751 if (sc->sc_type == WM_T_82574)
8752 return EXTRXC_ERROR(rxq->rxq_ext_descs[idx].erx_ctx.erxc_err_stat);
8753 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
8754 return NQRXC_ERROR(rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_err_stat);
8755 else
8756 return rxq->rxq_descs[idx].wrx_errors;
8757 }
8758
8759 static inline uint16_t
8760 wm_rxdesc_get_vlantag(struct wm_rxqueue *rxq, int idx)
8761 {
8762 struct wm_softc *sc = rxq->rxq_sc;
8763
8764 if (sc->sc_type == WM_T_82574)
8765 return rxq->rxq_ext_descs[idx].erx_ctx.erxc_vlan;
8766 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
8767 return rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_vlan;
8768 else
8769 return rxq->rxq_descs[idx].wrx_special;
8770 }
8771
8772 static inline int
8773 wm_rxdesc_get_pktlen(struct wm_rxqueue *rxq, int idx)
8774 {
8775 struct wm_softc *sc = rxq->rxq_sc;
8776
8777 if (sc->sc_type == WM_T_82574)
8778 return rxq->rxq_ext_descs[idx].erx_ctx.erxc_pktlen;
8779 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
8780 return rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_pktlen;
8781 else
8782 return rxq->rxq_descs[idx].wrx_len;
8783 }
8784
8785 #ifdef WM_DEBUG
8786 static inline uint32_t
8787 wm_rxdesc_get_rsshash(struct wm_rxqueue *rxq, int idx)
8788 {
8789 struct wm_softc *sc = rxq->rxq_sc;
8790
8791 if (sc->sc_type == WM_T_82574)
8792 return rxq->rxq_ext_descs[idx].erx_ctx.erxc_rsshash;
8793 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
8794 return rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_rsshash;
8795 else
8796 return 0;
8797 }
8798
8799 static inline uint8_t
8800 wm_rxdesc_get_rsstype(struct wm_rxqueue *rxq, int idx)
8801 {
8802 struct wm_softc *sc = rxq->rxq_sc;
8803
8804 if (sc->sc_type == WM_T_82574)
8805 return EXTRXC_RSS_TYPE(rxq->rxq_ext_descs[idx].erx_ctx.erxc_mrq);
8806 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
8807 return NQRXC_RSS_TYPE(rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_misc);
8808 else
8809 return 0;
8810 }
8811 #endif /* WM_DEBUG */
8812
8813 static inline bool
8814 wm_rxdesc_is_set_status(struct wm_softc *sc, uint32_t status,
8815 uint32_t legacy_bit, uint32_t ext_bit, uint32_t nq_bit)
8816 {
8817
8818 if (sc->sc_type == WM_T_82574)
8819 return (status & ext_bit) != 0;
8820 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
8821 return (status & nq_bit) != 0;
8822 else
8823 return (status & legacy_bit) != 0;
8824 }
8825
8826 static inline bool
8827 wm_rxdesc_is_set_error(struct wm_softc *sc, uint32_t error,
8828 uint32_t legacy_bit, uint32_t ext_bit, uint32_t nq_bit)
8829 {
8830
8831 if (sc->sc_type == WM_T_82574)
8832 return (error & ext_bit) != 0;
8833 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
8834 return (error & nq_bit) != 0;
8835 else
8836 return (error & legacy_bit) != 0;
8837 }
8838
8839 static inline bool
8840 wm_rxdesc_is_eop(struct wm_rxqueue *rxq, uint32_t status)
8841 {
8842
8843 if (wm_rxdesc_is_set_status(rxq->rxq_sc, status,
8844 WRX_ST_EOP, EXTRXC_STATUS_EOP, NQRXC_STATUS_EOP))
8845 return true;
8846 else
8847 return false;
8848 }
8849
8850 static inline bool
8851 wm_rxdesc_has_errors(struct wm_rxqueue *rxq, uint32_t errors)
8852 {
8853 struct wm_softc *sc = rxq->rxq_sc;
8854
8855 /* XXX missing error bit for newqueue? */
8856 if (wm_rxdesc_is_set_error(sc, errors,
8857 WRX_ER_CE | WRX_ER_SE | WRX_ER_SEQ | WRX_ER_CXE | WRX_ER_RXE,
8858 EXTRXC_ERROR_CE | EXTRXC_ERROR_SE | EXTRXC_ERROR_SEQ
8859 | EXTRXC_ERROR_CXE | EXTRXC_ERROR_RXE,
8860 NQRXC_ERROR_RXE)) {
8861 if (wm_rxdesc_is_set_error(sc, errors, WRX_ER_SE,
8862 EXTRXC_ERROR_SE, 0))
8863 log(LOG_WARNING, "%s: symbol error\n",
8864 device_xname(sc->sc_dev));
8865 else if (wm_rxdesc_is_set_error(sc, errors, WRX_ER_SEQ,
8866 EXTRXC_ERROR_SEQ, 0))
8867 log(LOG_WARNING, "%s: receive sequence error\n",
8868 device_xname(sc->sc_dev));
8869 else if (wm_rxdesc_is_set_error(sc, errors, WRX_ER_CE,
8870 EXTRXC_ERROR_CE, 0))
8871 log(LOG_WARNING, "%s: CRC error\n",
8872 device_xname(sc->sc_dev));
8873 return true;
8874 }
8875
8876 return false;
8877 }
8878
8879 static inline bool
8880 wm_rxdesc_dd(struct wm_rxqueue *rxq, int idx, uint32_t status)
8881 {
8882 struct wm_softc *sc = rxq->rxq_sc;
8883
8884 if (!wm_rxdesc_is_set_status(sc, status, WRX_ST_DD, EXTRXC_STATUS_DD,
8885 NQRXC_STATUS_DD)) {
8886 /* We have processed all of the receive descriptors. */
8887 wm_cdrxsync(rxq, idx, BUS_DMASYNC_PREREAD);
8888 return false;
8889 }
8890
8891 return true;
8892 }
8893
8894 static inline bool
8895 wm_rxdesc_input_vlantag(struct wm_rxqueue *rxq, uint32_t status,
8896 uint16_t vlantag, struct mbuf *m)
8897 {
8898
8899 if (wm_rxdesc_is_set_status(rxq->rxq_sc, status,
8900 WRX_ST_VP, EXTRXC_STATUS_VP, NQRXC_STATUS_VP)) {
8901 vlan_set_tag(m, le16toh(vlantag));
8902 }
8903
8904 return true;
8905 }
8906
8907 static inline void
8908 wm_rxdesc_ensure_checksum(struct wm_rxqueue *rxq, uint32_t status,
8909 uint32_t errors, struct mbuf *m)
8910 {
8911 struct wm_softc *sc = rxq->rxq_sc;
8912
8913 if (!wm_rxdesc_is_set_status(sc, status, WRX_ST_IXSM, 0, 0)) {
8914 if (wm_rxdesc_is_set_status(sc, status,
8915 WRX_ST_IPCS, EXTRXC_STATUS_IPCS, NQRXC_STATUS_IPCS)) {
8916 WM_Q_EVCNT_INCR(rxq, ipsum);
8917 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
8918 if (wm_rxdesc_is_set_error(sc, errors,
8919 WRX_ER_IPE, EXTRXC_ERROR_IPE, NQRXC_ERROR_IPE))
8920 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
8921 }
8922 if (wm_rxdesc_is_set_status(sc, status,
8923 WRX_ST_TCPCS, EXTRXC_STATUS_TCPCS, NQRXC_STATUS_L4I)) {
8924 /*
8925 * Note: we don't know if this was TCP or UDP,
8926 * so we just set both bits, and expect the
8927 * upper layers to deal.
8928 */
8929 WM_Q_EVCNT_INCR(rxq, tusum);
8930 m->m_pkthdr.csum_flags |=
8931 M_CSUM_TCPv4 | M_CSUM_UDPv4 |
8932 M_CSUM_TCPv6 | M_CSUM_UDPv6;
8933 if (wm_rxdesc_is_set_error(sc, errors, WRX_ER_TCPE,
8934 EXTRXC_ERROR_TCPE, NQRXC_ERROR_L4E))
8935 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
8936 }
8937 }
8938 }
8939
8940 /*
8941 * wm_rxeof:
8942 *
8943 * Helper; handle receive interrupts.
8944 */
8945 static bool
8946 wm_rxeof(struct wm_rxqueue *rxq, u_int limit)
8947 {
8948 struct wm_softc *sc = rxq->rxq_sc;
8949 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
8950 struct wm_rxsoft *rxs;
8951 struct mbuf *m;
8952 int i, len;
8953 int count = 0;
8954 uint32_t status, errors;
8955 uint16_t vlantag;
8956 bool more = false;
8957
8958 KASSERT(mutex_owned(rxq->rxq_lock));
8959
8960 for (i = rxq->rxq_ptr;; i = WM_NEXTRX(i)) {
8961 if (limit-- == 0) {
8962 rxq->rxq_ptr = i;
8963 more = true;
8964 DPRINTF(WM_DEBUG_RX,
8965 ("%s: RX: loop limited, descriptor %d is not processed\n",
8966 device_xname(sc->sc_dev), i));
8967 break;
8968 }
8969
8970 rxs = &rxq->rxq_soft[i];
8971
8972 DPRINTF(WM_DEBUG_RX,
8973 ("%s: RX: checking descriptor %d\n",
8974 device_xname(sc->sc_dev), i));
8975 wm_cdrxsync(rxq, i,
8976 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
8977
8978 status = wm_rxdesc_get_status(rxq, i);
8979 errors = wm_rxdesc_get_errors(rxq, i);
8980 len = le16toh(wm_rxdesc_get_pktlen(rxq, i));
8981 vlantag = wm_rxdesc_get_vlantag(rxq, i);
8982 #ifdef WM_DEBUG
8983 uint32_t rsshash = le32toh(wm_rxdesc_get_rsshash(rxq, i));
8984 uint8_t rsstype = wm_rxdesc_get_rsstype(rxq, i);
8985 #endif
8986
8987 if (!wm_rxdesc_dd(rxq, i, status)) {
8988 /*
8989 * Update the receive pointer holding rxq_lock
8990 * consistent with increment counter.
8991 */
8992 rxq->rxq_ptr = i;
8993 break;
8994 }
8995
8996 count++;
8997 if (__predict_false(rxq->rxq_discard)) {
8998 DPRINTF(WM_DEBUG_RX,
8999 ("%s: RX: discarding contents of descriptor %d\n",
9000 device_xname(sc->sc_dev), i));
9001 wm_init_rxdesc(rxq, i);
9002 if (wm_rxdesc_is_eop(rxq, status)) {
9003 /* Reset our state. */
9004 DPRINTF(WM_DEBUG_RX,
9005 ("%s: RX: resetting rxdiscard -> 0\n",
9006 device_xname(sc->sc_dev)));
9007 rxq->rxq_discard = 0;
9008 }
9009 continue;
9010 }
9011
9012 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
9013 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
9014
9015 m = rxs->rxs_mbuf;
9016
9017 /*
9018 * Add a new receive buffer to the ring, unless of
9019 * course the length is zero. Treat the latter as a
9020 * failed mapping.
9021 */
9022 if ((len == 0) || (wm_add_rxbuf(rxq, i) != 0)) {
9023 /*
9024 * Failed, throw away what we've done so
9025 * far, and discard the rest of the packet.
9026 */
9027 if_statinc(ifp, if_ierrors);
9028 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
9029 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
9030 wm_init_rxdesc(rxq, i);
9031 if (!wm_rxdesc_is_eop(rxq, status))
9032 rxq->rxq_discard = 1;
9033 if (rxq->rxq_head != NULL)
9034 m_freem(rxq->rxq_head);
9035 WM_RXCHAIN_RESET(rxq);
9036 DPRINTF(WM_DEBUG_RX,
9037 ("%s: RX: Rx buffer allocation failed, "
9038 "dropping packet%s\n", device_xname(sc->sc_dev),
9039 rxq->rxq_discard ? " (discard)" : ""));
9040 continue;
9041 }
9042
9043 m->m_len = len;
9044 rxq->rxq_len += len;
9045 DPRINTF(WM_DEBUG_RX,
9046 ("%s: RX: buffer at %p len %d\n",
9047 device_xname(sc->sc_dev), m->m_data, len));
9048
9049 /* If this is not the end of the packet, keep looking. */
9050 if (!wm_rxdesc_is_eop(rxq, status)) {
9051 WM_RXCHAIN_LINK(rxq, m);
9052 DPRINTF(WM_DEBUG_RX,
9053 ("%s: RX: not yet EOP, rxlen -> %d\n",
9054 device_xname(sc->sc_dev), rxq->rxq_len));
9055 continue;
9056 }
9057
9058 /*
9059 * Okay, we have the entire packet now. The chip is
9060 * configured to include the FCS except I350 and I21[01]
9061 * (not all chips can be configured to strip it),
9062 * so we need to trim it.
9063 * May need to adjust length of previous mbuf in the
9064 * chain if the current mbuf is too short.
9065 * For an eratta, the RCTL_SECRC bit in RCTL register
9066 * is always set in I350, so we don't trim it.
9067 */
9068 if ((sc->sc_type != WM_T_I350) && (sc->sc_type != WM_T_I354)
9069 && (sc->sc_type != WM_T_I210)
9070 && (sc->sc_type != WM_T_I211)) {
9071 if (m->m_len < ETHER_CRC_LEN) {
9072 rxq->rxq_tail->m_len
9073 -= (ETHER_CRC_LEN - m->m_len);
9074 m->m_len = 0;
9075 } else
9076 m->m_len -= ETHER_CRC_LEN;
9077 len = rxq->rxq_len - ETHER_CRC_LEN;
9078 } else
9079 len = rxq->rxq_len;
9080
9081 WM_RXCHAIN_LINK(rxq, m);
9082
9083 *rxq->rxq_tailp = NULL;
9084 m = rxq->rxq_head;
9085
9086 WM_RXCHAIN_RESET(rxq);
9087
9088 DPRINTF(WM_DEBUG_RX,
9089 ("%s: RX: have entire packet, len -> %d\n",
9090 device_xname(sc->sc_dev), len));
9091
9092 /* If an error occurred, update stats and drop the packet. */
9093 if (wm_rxdesc_has_errors(rxq, errors)) {
9094 m_freem(m);
9095 continue;
9096 }
9097
9098 /* No errors. Receive the packet. */
9099 m_set_rcvif(m, ifp);
9100 m->m_pkthdr.len = len;
9101 /*
9102 * TODO
9103 * should be save rsshash and rsstype to this mbuf.
9104 */
9105 DPRINTF(WM_DEBUG_RX,
9106 ("%s: RX: RSS type=%" PRIu8 ", RSS hash=%" PRIu32 "\n",
9107 device_xname(sc->sc_dev), rsstype, rsshash));
9108
9109 /*
9110 * If VLANs are enabled, VLAN packets have been unwrapped
9111 * for us. Associate the tag with the packet.
9112 */
9113 if (!wm_rxdesc_input_vlantag(rxq, status, vlantag, m))
9114 continue;
9115
9116 /* Set up checksum info for this packet. */
9117 wm_rxdesc_ensure_checksum(rxq, status, errors, m);
9118 /*
9119 * Update the receive pointer holding rxq_lock consistent with
9120 * increment counter.
9121 */
9122 rxq->rxq_ptr = i;
9123 rxq->rxq_packets++;
9124 rxq->rxq_bytes += len;
9125 mutex_exit(rxq->rxq_lock);
9126
9127 /* Pass it on. */
9128 if_percpuq_enqueue(sc->sc_ipq, m);
9129
9130 mutex_enter(rxq->rxq_lock);
9131
9132 if (rxq->rxq_stopping)
9133 break;
9134 }
9135
9136 if (count != 0)
9137 rnd_add_uint32(&sc->rnd_source, count);
9138
9139 DPRINTF(WM_DEBUG_RX,
9140 ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
9141
9142 return more;
9143 }
9144
9145 /*
9146 * wm_linkintr_gmii:
9147 *
9148 * Helper; handle link interrupts for GMII.
9149 */
9150 static void
9151 wm_linkintr_gmii(struct wm_softc *sc, uint32_t icr)
9152 {
9153 device_t dev = sc->sc_dev;
9154 uint32_t status, reg;
9155 bool link;
9156 int rv;
9157
9158 KASSERT(WM_CORE_LOCKED(sc));
9159
9160 DPRINTF(WM_DEBUG_LINK, ("%s: %s:\n", device_xname(dev),
9161 __func__));
9162
9163 if ((icr & ICR_LSC) == 0) {
9164 if (icr & ICR_RXSEQ)
9165 DPRINTF(WM_DEBUG_LINK,
9166 ("%s: LINK Receive sequence error\n",
9167 device_xname(dev)));
9168 return;
9169 }
9170
9171 /* Link status changed */
9172 status = CSR_READ(sc, WMREG_STATUS);
9173 link = status & STATUS_LU;
9174 if (link) {
9175 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
9176 device_xname(dev),
9177 (status & STATUS_FD) ? "FDX" : "HDX"));
9178 } else {
9179 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
9180 device_xname(dev)));
9181 }
9182 if ((sc->sc_type == WM_T_ICH8) && (link == false))
9183 wm_gig_downshift_workaround_ich8lan(sc);
9184
9185 if ((sc->sc_type == WM_T_ICH8)
9186 && (sc->sc_phytype == WMPHY_IGP_3)) {
9187 wm_kmrn_lock_loss_workaround_ich8lan(sc);
9188 }
9189 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> mii_pollstat\n",
9190 device_xname(dev)));
9191 mii_pollstat(&sc->sc_mii);
9192 if (sc->sc_type == WM_T_82543) {
9193 int miistatus, active;
9194
9195 /*
9196 * With 82543, we need to force speed and
9197 * duplex on the MAC equal to what the PHY
9198 * speed and duplex configuration is.
9199 */
9200 miistatus = sc->sc_mii.mii_media_status;
9201
9202 if (miistatus & IFM_ACTIVE) {
9203 active = sc->sc_mii.mii_media_active;
9204 sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
9205 switch (IFM_SUBTYPE(active)) {
9206 case IFM_10_T:
9207 sc->sc_ctrl |= CTRL_SPEED_10;
9208 break;
9209 case IFM_100_TX:
9210 sc->sc_ctrl |= CTRL_SPEED_100;
9211 break;
9212 case IFM_1000_T:
9213 sc->sc_ctrl |= CTRL_SPEED_1000;
9214 break;
9215 default:
9216 /*
9217 * Fiber?
9218 * Shoud not enter here.
9219 */
9220 device_printf(dev, "unknown media (%x)\n",
9221 active);
9222 break;
9223 }
9224 if (active & IFM_FDX)
9225 sc->sc_ctrl |= CTRL_FD;
9226 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
9227 }
9228 } else if (sc->sc_type == WM_T_PCH) {
9229 wm_k1_gig_workaround_hv(sc,
9230 ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0));
9231 }
9232
9233 /*
9234 * When connected at 10Mbps half-duplex, some parts are excessively
9235 * aggressive resulting in many collisions. To avoid this, increase
9236 * the IPG and reduce Rx latency in the PHY.
9237 */
9238 if ((sc->sc_type >= WM_T_PCH2) && (sc->sc_type <= WM_T_PCH_CNP)
9239 && link) {
9240 uint32_t tipg_reg;
9241 uint32_t speed = __SHIFTOUT(status, STATUS_SPEED);
9242 bool fdx;
9243 uint16_t emi_addr, emi_val;
9244
9245 tipg_reg = CSR_READ(sc, WMREG_TIPG);
9246 tipg_reg &= ~TIPG_IPGT_MASK;
9247 fdx = status & STATUS_FD;
9248
9249 if (!fdx && (speed == STATUS_SPEED_10)) {
9250 tipg_reg |= 0xff;
9251 /* Reduce Rx latency in analog PHY */
9252 emi_val = 0;
9253 } else if ((sc->sc_type >= WM_T_PCH_SPT) &&
9254 fdx && speed != STATUS_SPEED_1000) {
9255 tipg_reg |= 0xc;
9256 emi_val = 1;
9257 } else {
9258 /* Roll back the default values */
9259 tipg_reg |= 0x08;
9260 emi_val = 1;
9261 }
9262
9263 CSR_WRITE(sc, WMREG_TIPG, tipg_reg);
9264
9265 rv = sc->phy.acquire(sc);
9266 if (rv)
9267 return;
9268
9269 if (sc->sc_type == WM_T_PCH2)
9270 emi_addr = I82579_RX_CONFIG;
9271 else
9272 emi_addr = I217_RX_CONFIG;
9273 rv = wm_write_emi_reg_locked(dev, emi_addr, emi_val);
9274
9275 if (sc->sc_type >= WM_T_PCH_LPT) {
9276 uint16_t phy_reg;
9277
9278 sc->phy.readreg_locked(dev, 2,
9279 I217_PLL_CLOCK_GATE_REG, &phy_reg);
9280 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
9281 if (speed == STATUS_SPEED_100
9282 || speed == STATUS_SPEED_10)
9283 phy_reg |= 0x3e8;
9284 else
9285 phy_reg |= 0xfa;
9286 sc->phy.writereg_locked(dev, 2,
9287 I217_PLL_CLOCK_GATE_REG, phy_reg);
9288
9289 if (speed == STATUS_SPEED_1000) {
9290 sc->phy.readreg_locked(dev, 2,
9291 HV_PM_CTRL, &phy_reg);
9292
9293 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
9294
9295 sc->phy.writereg_locked(dev, 2,
9296 HV_PM_CTRL, phy_reg);
9297 }
9298 }
9299 sc->phy.release(sc);
9300
9301 if (rv)
9302 return;
9303
9304 if (sc->sc_type >= WM_T_PCH_SPT) {
9305 uint16_t data, ptr_gap;
9306
9307 if (speed == STATUS_SPEED_1000) {
9308 rv = sc->phy.acquire(sc);
9309 if (rv)
9310 return;
9311
9312 rv = sc->phy.readreg_locked(dev, 2,
9313 I219_UNKNOWN1, &data);
9314 if (rv) {
9315 sc->phy.release(sc);
9316 return;
9317 }
9318
9319 ptr_gap = (data & (0x3ff << 2)) >> 2;
9320 if (ptr_gap < 0x18) {
9321 data &= ~(0x3ff << 2);
9322 data |= (0x18 << 2);
9323 rv = sc->phy.writereg_locked(dev,
9324 2, I219_UNKNOWN1, data);
9325 }
9326 sc->phy.release(sc);
9327 if (rv)
9328 return;
9329 } else {
9330 rv = sc->phy.acquire(sc);
9331 if (rv)
9332 return;
9333
9334 rv = sc->phy.writereg_locked(dev, 2,
9335 I219_UNKNOWN1, 0xc023);
9336 sc->phy.release(sc);
9337 if (rv)
9338 return;
9339
9340 }
9341 }
9342 }
9343
9344 /*
9345 * I217 Packet Loss issue:
9346 * ensure that FEXTNVM4 Beacon Duration is set correctly
9347 * on power up.
9348 * Set the Beacon Duration for I217 to 8 usec
9349 */
9350 if (sc->sc_type >= WM_T_PCH_LPT) {
9351 reg = CSR_READ(sc, WMREG_FEXTNVM4);
9352 reg &= ~FEXTNVM4_BEACON_DURATION;
9353 reg |= FEXTNVM4_BEACON_DURATION_8US;
9354 CSR_WRITE(sc, WMREG_FEXTNVM4, reg);
9355 }
9356
9357 /* Work-around I218 hang issue */
9358 if ((sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_LM) ||
9359 (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_V) ||
9360 (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_LM3) ||
9361 (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_V3))
9362 wm_k1_workaround_lpt_lp(sc, link);
9363
9364 if (sc->sc_type >= WM_T_PCH_LPT) {
9365 /*
9366 * Set platform power management values for Latency
9367 * Tolerance Reporting (LTR)
9368 */
9369 wm_platform_pm_pch_lpt(sc,
9370 ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0));
9371 }
9372
9373 /* Clear link partner's EEE ability */
9374 sc->eee_lp_ability = 0;
9375
9376 /* FEXTNVM6 K1-off workaround */
9377 if (sc->sc_type == WM_T_PCH_SPT) {
9378 reg = CSR_READ(sc, WMREG_FEXTNVM6);
9379 if (CSR_READ(sc, WMREG_PCIEANACFG) & FEXTNVM6_K1_OFF_ENABLE)
9380 reg |= FEXTNVM6_K1_OFF_ENABLE;
9381 else
9382 reg &= ~FEXTNVM6_K1_OFF_ENABLE;
9383 CSR_WRITE(sc, WMREG_FEXTNVM6, reg);
9384 }
9385
9386 if (!link)
9387 return;
9388
9389 switch (sc->sc_type) {
9390 case WM_T_PCH2:
9391 wm_k1_workaround_lv(sc);
9392 /* FALLTHROUGH */
9393 case WM_T_PCH:
9394 if (sc->sc_phytype == WMPHY_82578)
9395 wm_link_stall_workaround_hv(sc);
9396 break;
9397 default:
9398 break;
9399 }
9400
9401 /* Enable/Disable EEE after link up */
9402 if (sc->sc_phytype > WMPHY_82579)
9403 wm_set_eee_pchlan(sc);
9404 }
9405
9406 /*
9407 * wm_linkintr_tbi:
9408 *
9409 * Helper; handle link interrupts for TBI mode.
9410 */
9411 static void
9412 wm_linkintr_tbi(struct wm_softc *sc, uint32_t icr)
9413 {
9414 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
9415 uint32_t status;
9416
9417 DPRINTF(WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
9418 __func__));
9419
9420 status = CSR_READ(sc, WMREG_STATUS);
9421 if (icr & ICR_LSC) {
9422 wm_check_for_link(sc);
9423 if (status & STATUS_LU) {
9424 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
9425 device_xname(sc->sc_dev),
9426 (status & STATUS_FD) ? "FDX" : "HDX"));
9427 /*
9428 * NOTE: CTRL will update TFCE and RFCE automatically,
9429 * so we should update sc->sc_ctrl
9430 */
9431
9432 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
9433 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
9434 sc->sc_fcrtl &= ~FCRTL_XONE;
9435 if (status & STATUS_FD)
9436 sc->sc_tctl |=
9437 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
9438 else
9439 sc->sc_tctl |=
9440 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
9441 if (sc->sc_ctrl & CTRL_TFCE)
9442 sc->sc_fcrtl |= FCRTL_XONE;
9443 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
9444 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
9445 WMREG_OLD_FCRTL : WMREG_FCRTL, sc->sc_fcrtl);
9446 sc->sc_tbi_linkup = 1;
9447 if_link_state_change(ifp, LINK_STATE_UP);
9448 } else {
9449 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
9450 device_xname(sc->sc_dev)));
9451 sc->sc_tbi_linkup = 0;
9452 if_link_state_change(ifp, LINK_STATE_DOWN);
9453 }
9454 /* Update LED */
9455 wm_tbi_serdes_set_linkled(sc);
9456 } else if (icr & ICR_RXSEQ)
9457 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: Receive sequence error\n",
9458 device_xname(sc->sc_dev)));
9459 }
9460
9461 /*
9462 * wm_linkintr_serdes:
9463 *
9464 * Helper; handle link interrupts for TBI mode.
9465 */
9466 static void
9467 wm_linkintr_serdes(struct wm_softc *sc, uint32_t icr)
9468 {
9469 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
9470 struct mii_data *mii = &sc->sc_mii;
9471 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
9472 uint32_t pcs_adv, pcs_lpab, reg;
9473
9474 DPRINTF(WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
9475 __func__));
9476
9477 if (icr & ICR_LSC) {
9478 /* Check PCS */
9479 reg = CSR_READ(sc, WMREG_PCS_LSTS);
9480 if ((reg & PCS_LSTS_LINKOK) != 0) {
9481 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
9482 device_xname(sc->sc_dev)));
9483 mii->mii_media_status |= IFM_ACTIVE;
9484 sc->sc_tbi_linkup = 1;
9485 if_link_state_change(ifp, LINK_STATE_UP);
9486 } else {
9487 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
9488 device_xname(sc->sc_dev)));
9489 mii->mii_media_status |= IFM_NONE;
9490 sc->sc_tbi_linkup = 0;
9491 if_link_state_change(ifp, LINK_STATE_DOWN);
9492 wm_tbi_serdes_set_linkled(sc);
9493 return;
9494 }
9495 mii->mii_media_active |= IFM_1000_SX;
9496 if ((reg & PCS_LSTS_FDX) != 0)
9497 mii->mii_media_active |= IFM_FDX;
9498 else
9499 mii->mii_media_active |= IFM_HDX;
9500 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
9501 /* Check flow */
9502 reg = CSR_READ(sc, WMREG_PCS_LSTS);
9503 if ((reg & PCS_LSTS_AN_COMP) == 0) {
9504 DPRINTF(WM_DEBUG_LINK,
9505 ("XXX LINKOK but not ACOMP\n"));
9506 return;
9507 }
9508 pcs_adv = CSR_READ(sc, WMREG_PCS_ANADV);
9509 pcs_lpab = CSR_READ(sc, WMREG_PCS_LPAB);
9510 DPRINTF(WM_DEBUG_LINK,
9511 ("XXX AN result %08x, %08x\n", pcs_adv, pcs_lpab));
9512 if ((pcs_adv & TXCW_SYM_PAUSE)
9513 && (pcs_lpab & TXCW_SYM_PAUSE)) {
9514 mii->mii_media_active |= IFM_FLOW
9515 | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
9516 } else if (((pcs_adv & TXCW_SYM_PAUSE) == 0)
9517 && (pcs_adv & TXCW_ASYM_PAUSE)
9518 && (pcs_lpab & TXCW_SYM_PAUSE)
9519 && (pcs_lpab & TXCW_ASYM_PAUSE))
9520 mii->mii_media_active |= IFM_FLOW
9521 | IFM_ETH_TXPAUSE;
9522 else if ((pcs_adv & TXCW_SYM_PAUSE)
9523 && (pcs_adv & TXCW_ASYM_PAUSE)
9524 && ((pcs_lpab & TXCW_SYM_PAUSE) == 0)
9525 && (pcs_lpab & TXCW_ASYM_PAUSE))
9526 mii->mii_media_active |= IFM_FLOW
9527 | IFM_ETH_RXPAUSE;
9528 }
9529 /* Update LED */
9530 wm_tbi_serdes_set_linkled(sc);
9531 } else
9532 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: Receive sequence error\n",
9533 device_xname(sc->sc_dev)));
9534 }
9535
9536 /*
9537 * wm_linkintr:
9538 *
9539 * Helper; handle link interrupts.
9540 */
9541 static void
9542 wm_linkintr(struct wm_softc *sc, uint32_t icr)
9543 {
9544
9545 KASSERT(WM_CORE_LOCKED(sc));
9546
9547 if (sc->sc_flags & WM_F_HAS_MII)
9548 wm_linkintr_gmii(sc, icr);
9549 else if ((sc->sc_mediatype == WM_MEDIATYPE_SERDES)
9550 && ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211)))
9551 wm_linkintr_serdes(sc, icr);
9552 else
9553 wm_linkintr_tbi(sc, icr);
9554 }
9555
9556
9557 static inline void
9558 wm_sched_handle_queue(struct wm_softc *sc, struct wm_queue *wmq)
9559 {
9560
9561 if (wmq->wmq_txrx_use_workqueue)
9562 workqueue_enqueue(sc->sc_queue_wq, &wmq->wmq_cookie, curcpu());
9563 else
9564 softint_schedule(wmq->wmq_si);
9565 }
9566
9567 /*
9568 * wm_intr_legacy:
9569 *
9570 * Interrupt service routine for INTx and MSI.
9571 */
9572 static int
9573 wm_intr_legacy(void *arg)
9574 {
9575 struct wm_softc *sc = arg;
9576 struct wm_queue *wmq = &sc->sc_queue[0];
9577 struct wm_txqueue *txq = &wmq->wmq_txq;
9578 struct wm_rxqueue *rxq = &wmq->wmq_rxq;
9579 uint32_t icr, rndval = 0;
9580 int handled = 0;
9581
9582 while (1 /* CONSTCOND */) {
9583 icr = CSR_READ(sc, WMREG_ICR);
9584 if ((icr & sc->sc_icr) == 0)
9585 break;
9586 if (handled == 0)
9587 DPRINTF(WM_DEBUG_TX,
9588 ("%s: INTx: got intr\n",device_xname(sc->sc_dev)));
9589 if (rndval == 0)
9590 rndval = icr;
9591
9592 mutex_enter(rxq->rxq_lock);
9593
9594 if (rxq->rxq_stopping) {
9595 mutex_exit(rxq->rxq_lock);
9596 break;
9597 }
9598
9599 handled = 1;
9600
9601 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
9602 if (icr & (ICR_RXDMT0 | ICR_RXT0)) {
9603 DPRINTF(WM_DEBUG_RX,
9604 ("%s: RX: got Rx intr 0x%08x\n",
9605 device_xname(sc->sc_dev),
9606 icr & (ICR_RXDMT0 | ICR_RXT0)));
9607 WM_Q_EVCNT_INCR(rxq, intr);
9608 }
9609 #endif
9610 /*
9611 * wm_rxeof() does *not* call upper layer functions directly,
9612 * as if_percpuq_enqueue() just call softint_schedule().
9613 * So, we can call wm_rxeof() in interrupt context.
9614 */
9615 wm_rxeof(rxq, UINT_MAX);
9616
9617 mutex_exit(rxq->rxq_lock);
9618 mutex_enter(txq->txq_lock);
9619
9620 if (txq->txq_stopping) {
9621 mutex_exit(txq->txq_lock);
9622 break;
9623 }
9624
9625 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
9626 if (icr & ICR_TXDW) {
9627 DPRINTF(WM_DEBUG_TX,
9628 ("%s: TX: got TXDW interrupt\n",
9629 device_xname(sc->sc_dev)));
9630 WM_Q_EVCNT_INCR(txq, txdw);
9631 }
9632 #endif
9633 wm_txeof(txq, UINT_MAX);
9634
9635 mutex_exit(txq->txq_lock);
9636 WM_CORE_LOCK(sc);
9637
9638 if (sc->sc_core_stopping) {
9639 WM_CORE_UNLOCK(sc);
9640 break;
9641 }
9642
9643 if (icr & (ICR_LSC | ICR_RXSEQ)) {
9644 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
9645 wm_linkintr(sc, icr);
9646 }
9647 if ((icr & ICR_GPI(0)) != 0)
9648 device_printf(sc->sc_dev, "got module interrupt\n");
9649
9650 WM_CORE_UNLOCK(sc);
9651
9652 if (icr & ICR_RXO) {
9653 #if defined(WM_DEBUG)
9654 log(LOG_WARNING, "%s: Receive overrun\n",
9655 device_xname(sc->sc_dev));
9656 #endif /* defined(WM_DEBUG) */
9657 }
9658 }
9659
9660 rnd_add_uint32(&sc->rnd_source, rndval);
9661
9662 if (handled) {
9663 /* Try to get more packets going. */
9664 wmq->wmq_txrx_use_workqueue = sc->sc_txrx_use_workqueue;
9665 wm_sched_handle_queue(sc, wmq);
9666 }
9667
9668 return handled;
9669 }
9670
9671 static inline void
9672 wm_txrxintr_disable(struct wm_queue *wmq)
9673 {
9674 struct wm_softc *sc = wmq->wmq_txq.txq_sc;
9675
9676 if (sc->sc_type == WM_T_82574)
9677 CSR_WRITE(sc, WMREG_IMC,
9678 ICR_TXQ(wmq->wmq_id) | ICR_RXQ(wmq->wmq_id));
9679 else if (sc->sc_type == WM_T_82575)
9680 CSR_WRITE(sc, WMREG_EIMC,
9681 EITR_TX_QUEUE(wmq->wmq_id) | EITR_RX_QUEUE(wmq->wmq_id));
9682 else
9683 CSR_WRITE(sc, WMREG_EIMC, 1 << wmq->wmq_intr_idx);
9684 }
9685
9686 static inline void
9687 wm_txrxintr_enable(struct wm_queue *wmq)
9688 {
9689 struct wm_softc *sc = wmq->wmq_txq.txq_sc;
9690
9691 wm_itrs_calculate(sc, wmq);
9692
9693 /*
9694 * ICR_OTHER which is disabled in wm_linkintr_msix() is enabled here.
9695 * There is no need to care about which of RXQ(0) and RXQ(1) enable
9696 * ICR_OTHER in first, because each RXQ/TXQ interrupt is disabled
9697 * while each wm_handle_queue(wmq) is runnig.
9698 */
9699 if (sc->sc_type == WM_T_82574)
9700 CSR_WRITE(sc, WMREG_IMS,
9701 ICR_TXQ(wmq->wmq_id) | ICR_RXQ(wmq->wmq_id) | ICR_OTHER);
9702 else if (sc->sc_type == WM_T_82575)
9703 CSR_WRITE(sc, WMREG_EIMS,
9704 EITR_TX_QUEUE(wmq->wmq_id) | EITR_RX_QUEUE(wmq->wmq_id));
9705 else
9706 CSR_WRITE(sc, WMREG_EIMS, 1 << wmq->wmq_intr_idx);
9707 }
9708
9709 static int
9710 wm_txrxintr_msix(void *arg)
9711 {
9712 struct wm_queue *wmq = arg;
9713 struct wm_txqueue *txq = &wmq->wmq_txq;
9714 struct wm_rxqueue *rxq = &wmq->wmq_rxq;
9715 struct wm_softc *sc = txq->txq_sc;
9716 u_int txlimit = sc->sc_tx_intr_process_limit;
9717 u_int rxlimit = sc->sc_rx_intr_process_limit;
9718 bool txmore;
9719 bool rxmore;
9720
9721 KASSERT(wmq->wmq_intr_idx == wmq->wmq_id);
9722
9723 DPRINTF(WM_DEBUG_TX,
9724 ("%s: TX: got Tx intr\n", device_xname(sc->sc_dev)));
9725
9726 wm_txrxintr_disable(wmq);
9727
9728 mutex_enter(txq->txq_lock);
9729
9730 if (txq->txq_stopping) {
9731 mutex_exit(txq->txq_lock);
9732 return 0;
9733 }
9734
9735 WM_Q_EVCNT_INCR(txq, txdw);
9736 txmore = wm_txeof(txq, txlimit);
9737 /* wm_deferred start() is done in wm_handle_queue(). */
9738 mutex_exit(txq->txq_lock);
9739
9740 DPRINTF(WM_DEBUG_RX,
9741 ("%s: RX: got Rx intr\n", device_xname(sc->sc_dev)));
9742 mutex_enter(rxq->rxq_lock);
9743
9744 if (rxq->rxq_stopping) {
9745 mutex_exit(rxq->rxq_lock);
9746 return 0;
9747 }
9748
9749 WM_Q_EVCNT_INCR(rxq, intr);
9750 rxmore = wm_rxeof(rxq, rxlimit);
9751 mutex_exit(rxq->rxq_lock);
9752
9753 wm_itrs_writereg(sc, wmq);
9754
9755 if (txmore || rxmore) {
9756 wmq->wmq_txrx_use_workqueue = sc->sc_txrx_use_workqueue;
9757 wm_sched_handle_queue(sc, wmq);
9758 } else
9759 wm_txrxintr_enable(wmq);
9760
9761 return 1;
9762 }
9763
9764 static void
9765 wm_handle_queue(void *arg)
9766 {
9767 struct wm_queue *wmq = arg;
9768 struct wm_txqueue *txq = &wmq->wmq_txq;
9769 struct wm_rxqueue *rxq = &wmq->wmq_rxq;
9770 struct wm_softc *sc = txq->txq_sc;
9771 u_int txlimit = sc->sc_tx_process_limit;
9772 u_int rxlimit = sc->sc_rx_process_limit;
9773 bool txmore;
9774 bool rxmore;
9775
9776 mutex_enter(txq->txq_lock);
9777 if (txq->txq_stopping) {
9778 mutex_exit(txq->txq_lock);
9779 return;
9780 }
9781 txmore = wm_txeof(txq, txlimit);
9782 wm_deferred_start_locked(txq);
9783 mutex_exit(txq->txq_lock);
9784
9785 mutex_enter(rxq->rxq_lock);
9786 if (rxq->rxq_stopping) {
9787 mutex_exit(rxq->rxq_lock);
9788 return;
9789 }
9790 WM_Q_EVCNT_INCR(rxq, defer);
9791 rxmore = wm_rxeof(rxq, rxlimit);
9792 mutex_exit(rxq->rxq_lock);
9793
9794 if (txmore || rxmore) {
9795 wmq->wmq_txrx_use_workqueue = sc->sc_txrx_use_workqueue;
9796 wm_sched_handle_queue(sc, wmq);
9797 } else
9798 wm_txrxintr_enable(wmq);
9799 }
9800
9801 static void
9802 wm_handle_queue_work(struct work *wk, void *context)
9803 {
9804 struct wm_queue *wmq = container_of(wk, struct wm_queue, wmq_cookie);
9805
9806 /*
9807 * "enqueued flag" is not required here.
9808 */
9809 wm_handle_queue(wmq);
9810 }
9811
9812 /*
9813 * wm_linkintr_msix:
9814 *
9815 * Interrupt service routine for link status change for MSI-X.
9816 */
9817 static int
9818 wm_linkintr_msix(void *arg)
9819 {
9820 struct wm_softc *sc = arg;
9821 uint32_t reg;
9822 bool has_rxo;
9823
9824 reg = CSR_READ(sc, WMREG_ICR);
9825 WM_CORE_LOCK(sc);
9826 DPRINTF(WM_DEBUG_LINK,
9827 ("%s: LINK: got link intr. ICR = %08x\n",
9828 device_xname(sc->sc_dev), reg));
9829
9830 if (sc->sc_core_stopping)
9831 goto out;
9832
9833 if ((reg & ICR_LSC) != 0) {
9834 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
9835 wm_linkintr(sc, ICR_LSC);
9836 }
9837 if ((reg & ICR_GPI(0)) != 0)
9838 device_printf(sc->sc_dev, "got module interrupt\n");
9839
9840 /*
9841 * XXX 82574 MSI-X mode workaround
9842 *
9843 * 82574 MSI-X mode causes receive overrun(RXO) interrupt as ICR_OTHER
9844 * MSI-X vector, furthermore it does not cause neigher ICR_RXQ(0) nor
9845 * ICR_RXQ(1) vector. So, we generate ICR_RXQ(0) and ICR_RXQ(1)
9846 * interrupts by writing WMREG_ICS to process receive packets.
9847 */
9848 if (sc->sc_type == WM_T_82574 && ((reg & ICR_RXO) != 0)) {
9849 #if defined(WM_DEBUG)
9850 log(LOG_WARNING, "%s: Receive overrun\n",
9851 device_xname(sc->sc_dev));
9852 #endif /* defined(WM_DEBUG) */
9853
9854 has_rxo = true;
9855 /*
9856 * The RXO interrupt is very high rate when receive traffic is
9857 * high rate. We use polling mode for ICR_OTHER like Tx/Rx
9858 * interrupts. ICR_OTHER will be enabled at the end of
9859 * wm_txrxintr_msix() which is kicked by both ICR_RXQ(0) and
9860 * ICR_RXQ(1) interrupts.
9861 */
9862 CSR_WRITE(sc, WMREG_IMC, ICR_OTHER);
9863
9864 CSR_WRITE(sc, WMREG_ICS, ICR_RXQ(0) | ICR_RXQ(1));
9865 }
9866
9867
9868
9869 out:
9870 WM_CORE_UNLOCK(sc);
9871
9872 if (sc->sc_type == WM_T_82574) {
9873 if (!has_rxo)
9874 CSR_WRITE(sc, WMREG_IMS, ICR_OTHER | ICR_LSC);
9875 else
9876 CSR_WRITE(sc, WMREG_IMS, ICR_LSC);
9877 } else if (sc->sc_type == WM_T_82575)
9878 CSR_WRITE(sc, WMREG_EIMS, EITR_OTHER);
9879 else
9880 CSR_WRITE(sc, WMREG_EIMS, 1 << sc->sc_link_intr_idx);
9881
9882 return 1;
9883 }
9884
9885 /*
9886 * Media related.
9887 * GMII, SGMII, TBI (and SERDES)
9888 */
9889
9890 /* Common */
9891
9892 /*
9893 * wm_tbi_serdes_set_linkled:
9894 *
9895 * Update the link LED on TBI and SERDES devices.
9896 */
9897 static void
9898 wm_tbi_serdes_set_linkled(struct wm_softc *sc)
9899 {
9900
9901 if (sc->sc_tbi_linkup)
9902 sc->sc_ctrl |= CTRL_SWDPIN(0);
9903 else
9904 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
9905
9906 /* 82540 or newer devices are active low */
9907 sc->sc_ctrl ^= (sc->sc_type >= WM_T_82540) ? CTRL_SWDPIN(0) : 0;
9908
9909 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
9910 }
9911
9912 /* GMII related */
9913
9914 /*
9915 * wm_gmii_reset:
9916 *
9917 * Reset the PHY.
9918 */
9919 static void
9920 wm_gmii_reset(struct wm_softc *sc)
9921 {
9922 uint32_t reg;
9923 int rv;
9924
9925 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
9926 device_xname(sc->sc_dev), __func__));
9927
9928 rv = sc->phy.acquire(sc);
9929 if (rv != 0) {
9930 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
9931 __func__);
9932 return;
9933 }
9934
9935 switch (sc->sc_type) {
9936 case WM_T_82542_2_0:
9937 case WM_T_82542_2_1:
9938 /* null */
9939 break;
9940 case WM_T_82543:
9941 /*
9942 * With 82543, we need to force speed and duplex on the MAC
9943 * equal to what the PHY speed and duplex configuration is.
9944 * In addition, we need to perform a hardware reset on the PHY
9945 * to take it out of reset.
9946 */
9947 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
9948 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
9949
9950 /* The PHY reset pin is active-low. */
9951 reg = CSR_READ(sc, WMREG_CTRL_EXT);
9952 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
9953 CTRL_EXT_SWDPIN(4));
9954 reg |= CTRL_EXT_SWDPIO(4);
9955
9956 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
9957 CSR_WRITE_FLUSH(sc);
9958 delay(10*1000);
9959
9960 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
9961 CSR_WRITE_FLUSH(sc);
9962 delay(150);
9963 #if 0
9964 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
9965 #endif
9966 delay(20*1000); /* XXX extra delay to get PHY ID? */
9967 break;
9968 case WM_T_82544: /* Reset 10000us */
9969 case WM_T_82540:
9970 case WM_T_82545:
9971 case WM_T_82545_3:
9972 case WM_T_82546:
9973 case WM_T_82546_3:
9974 case WM_T_82541:
9975 case WM_T_82541_2:
9976 case WM_T_82547:
9977 case WM_T_82547_2:
9978 case WM_T_82571: /* Reset 100us */
9979 case WM_T_82572:
9980 case WM_T_82573:
9981 case WM_T_82574:
9982 case WM_T_82575:
9983 case WM_T_82576:
9984 case WM_T_82580:
9985 case WM_T_I350:
9986 case WM_T_I354:
9987 case WM_T_I210:
9988 case WM_T_I211:
9989 case WM_T_82583:
9990 case WM_T_80003:
9991 /* Generic reset */
9992 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
9993 CSR_WRITE_FLUSH(sc);
9994 delay(20000);
9995 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
9996 CSR_WRITE_FLUSH(sc);
9997 delay(20000);
9998
9999 if ((sc->sc_type == WM_T_82541)
10000 || (sc->sc_type == WM_T_82541_2)
10001 || (sc->sc_type == WM_T_82547)
10002 || (sc->sc_type == WM_T_82547_2)) {
10003 /* Workaround for igp are done in igp_reset() */
10004 /* XXX add code to set LED after phy reset */
10005 }
10006 break;
10007 case WM_T_ICH8:
10008 case WM_T_ICH9:
10009 case WM_T_ICH10:
10010 case WM_T_PCH:
10011 case WM_T_PCH2:
10012 case WM_T_PCH_LPT:
10013 case WM_T_PCH_SPT:
10014 case WM_T_PCH_CNP:
10015 /* Generic reset */
10016 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
10017 CSR_WRITE_FLUSH(sc);
10018 delay(100);
10019 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
10020 CSR_WRITE_FLUSH(sc);
10021 delay(150);
10022 break;
10023 default:
10024 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
10025 __func__);
10026 break;
10027 }
10028
10029 sc->phy.release(sc);
10030
10031 /* get_cfg_done */
10032 wm_get_cfg_done(sc);
10033
10034 /* Extra setup */
10035 switch (sc->sc_type) {
10036 case WM_T_82542_2_0:
10037 case WM_T_82542_2_1:
10038 case WM_T_82543:
10039 case WM_T_82544:
10040 case WM_T_82540:
10041 case WM_T_82545:
10042 case WM_T_82545_3:
10043 case WM_T_82546:
10044 case WM_T_82546_3:
10045 case WM_T_82541_2:
10046 case WM_T_82547_2:
10047 case WM_T_82571:
10048 case WM_T_82572:
10049 case WM_T_82573:
10050 case WM_T_82574:
10051 case WM_T_82583:
10052 case WM_T_82575:
10053 case WM_T_82576:
10054 case WM_T_82580:
10055 case WM_T_I350:
10056 case WM_T_I354:
10057 case WM_T_I210:
10058 case WM_T_I211:
10059 case WM_T_80003:
10060 /* Null */
10061 break;
10062 case WM_T_82541:
10063 case WM_T_82547:
10064 /* XXX Configure actively LED after PHY reset */
10065 break;
10066 case WM_T_ICH8:
10067 case WM_T_ICH9:
10068 case WM_T_ICH10:
10069 case WM_T_PCH:
10070 case WM_T_PCH2:
10071 case WM_T_PCH_LPT:
10072 case WM_T_PCH_SPT:
10073 case WM_T_PCH_CNP:
10074 wm_phy_post_reset(sc);
10075 break;
10076 default:
10077 panic("%s: unknown type\n", __func__);
10078 break;
10079 }
10080 }
10081
10082 /*
10083 * Setup sc_phytype and mii_{read|write}reg.
10084 *
10085 * To identify PHY type, correct read/write function should be selected.
10086 * To select correct read/write function, PCI ID or MAC type are required
10087 * without accessing PHY registers.
10088 *
10089 * On the first call of this function, PHY ID is not known yet. Check
10090 * PCI ID or MAC type. The list of the PCI ID may not be perfect, so the
10091 * result might be incorrect.
10092 *
10093 * In the second call, PHY OUI and model is used to identify PHY type.
10094 * It might not be perfect because of the lack of compared entry, but it
10095 * would be better than the first call.
10096 *
10097 * If the detected new result and previous assumption is different,
10098 * diagnous message will be printed.
10099 */
10100 static void
10101 wm_gmii_setup_phytype(struct wm_softc *sc, uint32_t phy_oui,
10102 uint16_t phy_model)
10103 {
10104 device_t dev = sc->sc_dev;
10105 struct mii_data *mii = &sc->sc_mii;
10106 uint16_t new_phytype = WMPHY_UNKNOWN;
10107 uint16_t doubt_phytype = WMPHY_UNKNOWN;
10108 mii_readreg_t new_readreg;
10109 mii_writereg_t new_writereg;
10110 bool dodiag = true;
10111
10112 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
10113 device_xname(sc->sc_dev), __func__));
10114
10115 /*
10116 * 1000BASE-T SFP uses SGMII and the first asumed PHY type is always
10117 * incorrect. So don't print diag output when it's 2nd call.
10118 */
10119 if ((sc->sc_sfptype != 0) && (phy_oui == 0) && (phy_model == 0))
10120 dodiag = false;
10121
10122 if (mii->mii_readreg == NULL) {
10123 /*
10124 * This is the first call of this function. For ICH and PCH
10125 * variants, it's difficult to determine the PHY access method
10126 * by sc_type, so use the PCI product ID for some devices.
10127 */
10128
10129 switch (sc->sc_pcidevid) {
10130 case PCI_PRODUCT_INTEL_PCH_M_LM:
10131 case PCI_PRODUCT_INTEL_PCH_M_LC:
10132 /* 82577 */
10133 new_phytype = WMPHY_82577;
10134 break;
10135 case PCI_PRODUCT_INTEL_PCH_D_DM:
10136 case PCI_PRODUCT_INTEL_PCH_D_DC:
10137 /* 82578 */
10138 new_phytype = WMPHY_82578;
10139 break;
10140 case PCI_PRODUCT_INTEL_PCH2_LV_LM:
10141 case PCI_PRODUCT_INTEL_PCH2_LV_V:
10142 /* 82579 */
10143 new_phytype = WMPHY_82579;
10144 break;
10145 case PCI_PRODUCT_INTEL_82801H_82567V_3:
10146 case PCI_PRODUCT_INTEL_82801I_BM:
10147 case PCI_PRODUCT_INTEL_82801I_IGP_M_AMT: /* Not IGP but BM */
10148 case PCI_PRODUCT_INTEL_82801J_R_BM_LM:
10149 case PCI_PRODUCT_INTEL_82801J_R_BM_LF:
10150 case PCI_PRODUCT_INTEL_82801J_D_BM_LM:
10151 case PCI_PRODUCT_INTEL_82801J_D_BM_LF:
10152 case PCI_PRODUCT_INTEL_82801J_R_BM_V:
10153 /* ICH8, 9, 10 with 82567 */
10154 new_phytype = WMPHY_BM;
10155 break;
10156 default:
10157 break;
10158 }
10159 } else {
10160 /* It's not the first call. Use PHY OUI and model */
10161 switch (phy_oui) {
10162 case MII_OUI_ATTANSIC: /* XXX ??? */
10163 switch (phy_model) {
10164 case 0x0004: /* XXX */
10165 new_phytype = WMPHY_82578;
10166 break;
10167 default:
10168 break;
10169 }
10170 break;
10171 case MII_OUI_xxMARVELL:
10172 switch (phy_model) {
10173 case MII_MODEL_xxMARVELL_I210:
10174 new_phytype = WMPHY_I210;
10175 break;
10176 case MII_MODEL_xxMARVELL_E1011:
10177 case MII_MODEL_xxMARVELL_E1000_3:
10178 case MII_MODEL_xxMARVELL_E1000_5:
10179 case MII_MODEL_xxMARVELL_E1112:
10180 new_phytype = WMPHY_M88;
10181 break;
10182 case MII_MODEL_xxMARVELL_E1149:
10183 new_phytype = WMPHY_BM;
10184 break;
10185 case MII_MODEL_xxMARVELL_E1111:
10186 case MII_MODEL_xxMARVELL_I347:
10187 case MII_MODEL_xxMARVELL_E1512:
10188 case MII_MODEL_xxMARVELL_E1340M:
10189 case MII_MODEL_xxMARVELL_E1543:
10190 new_phytype = WMPHY_M88;
10191 break;
10192 case MII_MODEL_xxMARVELL_I82563:
10193 new_phytype = WMPHY_GG82563;
10194 break;
10195 default:
10196 break;
10197 }
10198 break;
10199 case MII_OUI_INTEL:
10200 switch (phy_model) {
10201 case MII_MODEL_INTEL_I82577:
10202 new_phytype = WMPHY_82577;
10203 break;
10204 case MII_MODEL_INTEL_I82579:
10205 new_phytype = WMPHY_82579;
10206 break;
10207 case MII_MODEL_INTEL_I217:
10208 new_phytype = WMPHY_I217;
10209 break;
10210 case MII_MODEL_INTEL_I82580:
10211 case MII_MODEL_INTEL_I350:
10212 new_phytype = WMPHY_82580;
10213 break;
10214 default:
10215 break;
10216 }
10217 break;
10218 case MII_OUI_yyINTEL:
10219 switch (phy_model) {
10220 case MII_MODEL_yyINTEL_I82562G:
10221 case MII_MODEL_yyINTEL_I82562EM:
10222 case MII_MODEL_yyINTEL_I82562ET:
10223 new_phytype = WMPHY_IFE;
10224 break;
10225 case MII_MODEL_yyINTEL_IGP01E1000:
10226 new_phytype = WMPHY_IGP;
10227 break;
10228 case MII_MODEL_yyINTEL_I82566:
10229 new_phytype = WMPHY_IGP_3;
10230 break;
10231 default:
10232 break;
10233 }
10234 break;
10235 default:
10236 break;
10237 }
10238
10239 if (dodiag) {
10240 if (new_phytype == WMPHY_UNKNOWN)
10241 aprint_verbose_dev(dev,
10242 "%s: Unknown PHY model. OUI=%06x, "
10243 "model=%04x\n", __func__, phy_oui,
10244 phy_model);
10245
10246 if ((sc->sc_phytype != WMPHY_UNKNOWN)
10247 && (sc->sc_phytype != new_phytype)) {
10248 aprint_error_dev(dev, "Previously assumed PHY "
10249 "type(%u) was incorrect. PHY type from PHY"
10250 "ID = %u\n", sc->sc_phytype, new_phytype);
10251 }
10252 }
10253 }
10254
10255 /* Next, use sc->sc_flags and sc->sc_type to set read/write funcs. */
10256 if (((sc->sc_flags & WM_F_SGMII) != 0) && !wm_sgmii_uses_mdio(sc)) {
10257 /* SGMII */
10258 new_readreg = wm_sgmii_readreg;
10259 new_writereg = wm_sgmii_writereg;
10260 } else if ((sc->sc_type == WM_T_82574) || (sc->sc_type == WM_T_82583)){
10261 /* BM2 (phyaddr == 1) */
10262 if ((sc->sc_phytype != WMPHY_UNKNOWN)
10263 && (new_phytype != WMPHY_BM)
10264 && (new_phytype != WMPHY_UNKNOWN))
10265 doubt_phytype = new_phytype;
10266 new_phytype = WMPHY_BM;
10267 new_readreg = wm_gmii_bm_readreg;
10268 new_writereg = wm_gmii_bm_writereg;
10269 } else if (sc->sc_type >= WM_T_PCH) {
10270 /* All PCH* use _hv_ */
10271 new_readreg = wm_gmii_hv_readreg;
10272 new_writereg = wm_gmii_hv_writereg;
10273 } else if (sc->sc_type >= WM_T_ICH8) {
10274 /* non-82567 ICH8, 9 and 10 */
10275 new_readreg = wm_gmii_i82544_readreg;
10276 new_writereg = wm_gmii_i82544_writereg;
10277 } else if (sc->sc_type >= WM_T_80003) {
10278 /* 80003 */
10279 if ((sc->sc_phytype != WMPHY_UNKNOWN)
10280 && (new_phytype != WMPHY_GG82563)
10281 && (new_phytype != WMPHY_UNKNOWN))
10282 doubt_phytype = new_phytype;
10283 new_phytype = WMPHY_GG82563;
10284 new_readreg = wm_gmii_i80003_readreg;
10285 new_writereg = wm_gmii_i80003_writereg;
10286 } else if (sc->sc_type >= WM_T_I210) {
10287 /* I210 and I211 */
10288 if ((sc->sc_phytype != WMPHY_UNKNOWN)
10289 && (new_phytype != WMPHY_I210)
10290 && (new_phytype != WMPHY_UNKNOWN))
10291 doubt_phytype = new_phytype;
10292 new_phytype = WMPHY_I210;
10293 new_readreg = wm_gmii_gs40g_readreg;
10294 new_writereg = wm_gmii_gs40g_writereg;
10295 } else if (sc->sc_type >= WM_T_82580) {
10296 /* 82580, I350 and I354 */
10297 new_readreg = wm_gmii_82580_readreg;
10298 new_writereg = wm_gmii_82580_writereg;
10299 } else if (sc->sc_type >= WM_T_82544) {
10300 /* 82544, 0, [56], [17], 8257[1234] and 82583 */
10301 new_readreg = wm_gmii_i82544_readreg;
10302 new_writereg = wm_gmii_i82544_writereg;
10303 } else {
10304 new_readreg = wm_gmii_i82543_readreg;
10305 new_writereg = wm_gmii_i82543_writereg;
10306 }
10307
10308 if (new_phytype == WMPHY_BM) {
10309 /* All BM use _bm_ */
10310 new_readreg = wm_gmii_bm_readreg;
10311 new_writereg = wm_gmii_bm_writereg;
10312 }
10313 if ((sc->sc_type >= WM_T_PCH) && (sc->sc_type <= WM_T_PCH_CNP)) {
10314 /* All PCH* use _hv_ */
10315 new_readreg = wm_gmii_hv_readreg;
10316 new_writereg = wm_gmii_hv_writereg;
10317 }
10318
10319 /* Diag output */
10320 if (dodiag) {
10321 if (doubt_phytype != WMPHY_UNKNOWN)
10322 aprint_error_dev(dev, "Assumed new PHY type was "
10323 "incorrect. old = %u, new = %u\n", sc->sc_phytype,
10324 new_phytype);
10325 else if ((sc->sc_phytype != WMPHY_UNKNOWN)
10326 && (sc->sc_phytype != new_phytype))
10327 aprint_error_dev(dev, "Previously assumed PHY type(%u)"
10328 "was incorrect. New PHY type = %u\n",
10329 sc->sc_phytype, new_phytype);
10330
10331 if ((mii->mii_readreg != NULL) &&
10332 (new_phytype == WMPHY_UNKNOWN))
10333 aprint_error_dev(dev, "PHY type is still unknown.\n");
10334
10335 if ((mii->mii_readreg != NULL) &&
10336 (mii->mii_readreg != new_readreg))
10337 aprint_error_dev(dev, "Previously assumed PHY "
10338 "read/write function was incorrect.\n");
10339 }
10340
10341 /* Update now */
10342 sc->sc_phytype = new_phytype;
10343 mii->mii_readreg = new_readreg;
10344 mii->mii_writereg = new_writereg;
10345 if (new_readreg == wm_gmii_hv_readreg) {
10346 sc->phy.readreg_locked = wm_gmii_hv_readreg_locked;
10347 sc->phy.writereg_locked = wm_gmii_hv_writereg_locked;
10348 } else if (new_readreg == wm_sgmii_readreg) {
10349 sc->phy.readreg_locked = wm_sgmii_readreg_locked;
10350 sc->phy.writereg_locked = wm_sgmii_writereg_locked;
10351 } else if (new_readreg == wm_gmii_i82544_readreg) {
10352 sc->phy.readreg_locked = wm_gmii_i82544_readreg_locked;
10353 sc->phy.writereg_locked = wm_gmii_i82544_writereg_locked;
10354 }
10355 }
10356
10357 /*
10358 * wm_get_phy_id_82575:
10359 *
10360 * Return PHY ID. Return -1 if it failed.
10361 */
10362 static int
10363 wm_get_phy_id_82575(struct wm_softc *sc)
10364 {
10365 uint32_t reg;
10366 int phyid = -1;
10367
10368 /* XXX */
10369 if ((sc->sc_flags & WM_F_SGMII) == 0)
10370 return -1;
10371
10372 if (wm_sgmii_uses_mdio(sc)) {
10373 switch (sc->sc_type) {
10374 case WM_T_82575:
10375 case WM_T_82576:
10376 reg = CSR_READ(sc, WMREG_MDIC);
10377 phyid = (reg & MDIC_PHY_MASK) >> MDIC_PHY_SHIFT;
10378 break;
10379 case WM_T_82580:
10380 case WM_T_I350:
10381 case WM_T_I354:
10382 case WM_T_I210:
10383 case WM_T_I211:
10384 reg = CSR_READ(sc, WMREG_MDICNFG);
10385 phyid = (reg & MDICNFG_PHY_MASK) >> MDICNFG_PHY_SHIFT;
10386 break;
10387 default:
10388 return -1;
10389 }
10390 }
10391
10392 return phyid;
10393 }
10394
10395 /*
10396 * wm_gmii_mediainit:
10397 *
10398 * Initialize media for use on 1000BASE-T devices.
10399 */
10400 static void
10401 wm_gmii_mediainit(struct wm_softc *sc, pci_product_id_t prodid)
10402 {
10403 device_t dev = sc->sc_dev;
10404 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
10405 struct mii_data *mii = &sc->sc_mii;
10406
10407 DPRINTF(WM_DEBUG_GMII, ("%s: %s called\n",
10408 device_xname(sc->sc_dev), __func__));
10409
10410 /* We have GMII. */
10411 sc->sc_flags |= WM_F_HAS_MII;
10412
10413 if (sc->sc_type == WM_T_80003)
10414 sc->sc_tipg = TIPG_1000T_80003_DFLT;
10415 else
10416 sc->sc_tipg = TIPG_1000T_DFLT;
10417
10418 /*
10419 * Let the chip set speed/duplex on its own based on
10420 * signals from the PHY.
10421 * XXXbouyer - I'm not sure this is right for the 80003,
10422 * the em driver only sets CTRL_SLU here - but it seems to work.
10423 */
10424 sc->sc_ctrl |= CTRL_SLU;
10425 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
10426
10427 /* Initialize our media structures and probe the GMII. */
10428 mii->mii_ifp = ifp;
10429
10430 mii->mii_statchg = wm_gmii_statchg;
10431
10432 /* get PHY control from SMBus to PCIe */
10433 if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)
10434 || (sc->sc_type == WM_T_PCH_LPT) || (sc->sc_type == WM_T_PCH_SPT)
10435 || (sc->sc_type == WM_T_PCH_CNP))
10436 wm_init_phy_workarounds_pchlan(sc);
10437
10438 wm_gmii_reset(sc);
10439
10440 sc->sc_ethercom.ec_mii = &sc->sc_mii;
10441 ifmedia_init_with_lock(&mii->mii_media, IFM_IMASK, wm_gmii_mediachange,
10442 wm_gmii_mediastatus, sc->sc_core_lock);
10443
10444 /* Setup internal SGMII PHY for SFP */
10445 wm_sgmii_sfp_preconfig(sc);
10446
10447 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
10448 || (sc->sc_type == WM_T_82580)
10449 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
10450 || (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211)) {
10451 if ((sc->sc_flags & WM_F_SGMII) == 0) {
10452 /* Attach only one port */
10453 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, 1,
10454 MII_OFFSET_ANY, MIIF_DOPAUSE);
10455 } else {
10456 int i, id;
10457 uint32_t ctrl_ext;
10458
10459 id = wm_get_phy_id_82575(sc);
10460 if (id != -1) {
10461 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff,
10462 id, MII_OFFSET_ANY, MIIF_DOPAUSE);
10463 }
10464 if ((id == -1)
10465 || (LIST_FIRST(&mii->mii_phys) == NULL)) {
10466 /* Power on sgmii phy if it is disabled */
10467 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
10468 CSR_WRITE(sc, WMREG_CTRL_EXT,
10469 ctrl_ext &~ CTRL_EXT_SWDPIN(3));
10470 CSR_WRITE_FLUSH(sc);
10471 delay(300*1000); /* XXX too long */
10472
10473 /*
10474 * From 1 to 8.
10475 *
10476 * I2C access fails with I2C register's ERROR
10477 * bit set, so prevent error message while
10478 * scanning.
10479 */
10480 sc->phy.no_errprint = true;
10481 for (i = 1; i < 8; i++)
10482 mii_attach(sc->sc_dev, &sc->sc_mii,
10483 0xffffffff, i, MII_OFFSET_ANY,
10484 MIIF_DOPAUSE);
10485 sc->phy.no_errprint = false;
10486
10487 /* Restore previous sfp cage power state */
10488 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
10489 }
10490 }
10491 } else
10492 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
10493 MII_OFFSET_ANY, MIIF_DOPAUSE);
10494
10495 /*
10496 * If the MAC is PCH2 or PCH_LPT and failed to detect MII PHY, call
10497 * wm_set_mdio_slow_mode_hv() for a workaround and retry.
10498 */
10499 if (((sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)
10500 || (sc->sc_type == WM_T_PCH_SPT)
10501 || (sc->sc_type == WM_T_PCH_CNP))
10502 && (LIST_FIRST(&mii->mii_phys) == NULL)) {
10503 wm_set_mdio_slow_mode_hv(sc);
10504 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
10505 MII_OFFSET_ANY, MIIF_DOPAUSE);
10506 }
10507
10508 /*
10509 * (For ICH8 variants)
10510 * If PHY detection failed, use BM's r/w function and retry.
10511 */
10512 if (LIST_FIRST(&mii->mii_phys) == NULL) {
10513 /* if failed, retry with *_bm_* */
10514 aprint_verbose_dev(dev, "Assumed PHY access function "
10515 "(type = %d) might be incorrect. Use BM and retry.\n",
10516 sc->sc_phytype);
10517 sc->sc_phytype = WMPHY_BM;
10518 mii->mii_readreg = wm_gmii_bm_readreg;
10519 mii->mii_writereg = wm_gmii_bm_writereg;
10520
10521 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
10522 MII_OFFSET_ANY, MIIF_DOPAUSE);
10523 }
10524
10525 if (LIST_FIRST(&mii->mii_phys) == NULL) {
10526 /* Any PHY wasn't find */
10527 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
10528 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
10529 sc->sc_phytype = WMPHY_NONE;
10530 } else {
10531 struct mii_softc *child = LIST_FIRST(&mii->mii_phys);
10532
10533 /*
10534 * PHY Found! Check PHY type again by the second call of
10535 * wm_gmii_setup_phytype.
10536 */
10537 wm_gmii_setup_phytype(sc, child->mii_mpd_oui,
10538 child->mii_mpd_model);
10539
10540 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
10541 }
10542 }
10543
10544 /*
10545 * wm_gmii_mediachange: [ifmedia interface function]
10546 *
10547 * Set hardware to newly-selected media on a 1000BASE-T device.
10548 */
10549 static int
10550 wm_gmii_mediachange(struct ifnet *ifp)
10551 {
10552 struct wm_softc *sc = ifp->if_softc;
10553 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
10554 uint32_t reg;
10555 int rc;
10556
10557 DPRINTF(WM_DEBUG_GMII, ("%s: %s called\n",
10558 device_xname(sc->sc_dev), __func__));
10559 if ((ifp->if_flags & IFF_UP) == 0)
10560 return 0;
10561
10562 /* XXX Not for I354? FreeBSD's e1000_82575.c doesn't include it */
10563 if ((sc->sc_type == WM_T_82580)
10564 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I210)
10565 || (sc->sc_type == WM_T_I211)) {
10566 reg = CSR_READ(sc, WMREG_PHPM);
10567 reg &= ~PHPM_GO_LINK_D;
10568 CSR_WRITE(sc, WMREG_PHPM, reg);
10569 }
10570
10571 /* Disable D0 LPLU. */
10572 wm_lplu_d0_disable(sc);
10573
10574 sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
10575 sc->sc_ctrl |= CTRL_SLU;
10576 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
10577 || (sc->sc_type > WM_T_82543)) {
10578 sc->sc_ctrl &= ~(CTRL_FRCSPD | CTRL_FRCFDX);
10579 } else {
10580 sc->sc_ctrl &= ~CTRL_ASDE;
10581 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
10582 if (ife->ifm_media & IFM_FDX)
10583 sc->sc_ctrl |= CTRL_FD;
10584 switch (IFM_SUBTYPE(ife->ifm_media)) {
10585 case IFM_10_T:
10586 sc->sc_ctrl |= CTRL_SPEED_10;
10587 break;
10588 case IFM_100_TX:
10589 sc->sc_ctrl |= CTRL_SPEED_100;
10590 break;
10591 case IFM_1000_T:
10592 sc->sc_ctrl |= CTRL_SPEED_1000;
10593 break;
10594 case IFM_NONE:
10595 /* There is no specific setting for IFM_NONE */
10596 break;
10597 default:
10598 panic("wm_gmii_mediachange: bad media 0x%x",
10599 ife->ifm_media);
10600 }
10601 }
10602 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
10603 CSR_WRITE_FLUSH(sc);
10604
10605 if ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211))
10606 wm_serdes_mediachange(ifp);
10607
10608 if (sc->sc_type <= WM_T_82543)
10609 wm_gmii_reset(sc);
10610 else if ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211)
10611 && ((sc->sc_flags & WM_F_SGMII) != 0)) {
10612 /* allow time for SFP cage time to power up phy */
10613 delay(300 * 1000);
10614 wm_gmii_reset(sc);
10615 }
10616
10617 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
10618 return 0;
10619 return rc;
10620 }
10621
10622 /*
10623 * wm_gmii_mediastatus: [ifmedia interface function]
10624 *
10625 * Get the current interface media status on a 1000BASE-T device.
10626 */
10627 static void
10628 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
10629 {
10630 struct wm_softc *sc = ifp->if_softc;
10631
10632 ether_mediastatus(ifp, ifmr);
10633 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
10634 | sc->sc_flowflags;
10635 }
10636
10637 #define MDI_IO CTRL_SWDPIN(2)
10638 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
10639 #define MDI_CLK CTRL_SWDPIN(3)
10640
10641 static void
10642 wm_i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
10643 {
10644 uint32_t i, v;
10645
10646 v = CSR_READ(sc, WMREG_CTRL);
10647 v &= ~(MDI_IO | MDI_CLK | (CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
10648 v |= MDI_DIR | CTRL_SWDPIO(3);
10649
10650 for (i = __BIT(nbits - 1); i != 0; i >>= 1) {
10651 if (data & i)
10652 v |= MDI_IO;
10653 else
10654 v &= ~MDI_IO;
10655 CSR_WRITE(sc, WMREG_CTRL, v);
10656 CSR_WRITE_FLUSH(sc);
10657 delay(10);
10658 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
10659 CSR_WRITE_FLUSH(sc);
10660 delay(10);
10661 CSR_WRITE(sc, WMREG_CTRL, v);
10662 CSR_WRITE_FLUSH(sc);
10663 delay(10);
10664 }
10665 }
10666
10667 static uint16_t
10668 wm_i82543_mii_recvbits(struct wm_softc *sc)
10669 {
10670 uint32_t v, i;
10671 uint16_t data = 0;
10672
10673 v = CSR_READ(sc, WMREG_CTRL);
10674 v &= ~(MDI_IO | MDI_CLK | (CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
10675 v |= CTRL_SWDPIO(3);
10676
10677 CSR_WRITE(sc, WMREG_CTRL, v);
10678 CSR_WRITE_FLUSH(sc);
10679 delay(10);
10680 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
10681 CSR_WRITE_FLUSH(sc);
10682 delay(10);
10683 CSR_WRITE(sc, WMREG_CTRL, v);
10684 CSR_WRITE_FLUSH(sc);
10685 delay(10);
10686
10687 for (i = 0; i < 16; i++) {
10688 data <<= 1;
10689 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
10690 CSR_WRITE_FLUSH(sc);
10691 delay(10);
10692 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
10693 data |= 1;
10694 CSR_WRITE(sc, WMREG_CTRL, v);
10695 CSR_WRITE_FLUSH(sc);
10696 delay(10);
10697 }
10698
10699 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
10700 CSR_WRITE_FLUSH(sc);
10701 delay(10);
10702 CSR_WRITE(sc, WMREG_CTRL, v);
10703 CSR_WRITE_FLUSH(sc);
10704 delay(10);
10705
10706 return data;
10707 }
10708
10709 #undef MDI_IO
10710 #undef MDI_DIR
10711 #undef MDI_CLK
10712
10713 /*
10714 * wm_gmii_i82543_readreg: [mii interface function]
10715 *
10716 * Read a PHY register on the GMII (i82543 version).
10717 */
10718 static int
10719 wm_gmii_i82543_readreg(device_t dev, int phy, int reg, uint16_t *val)
10720 {
10721 struct wm_softc *sc = device_private(dev);
10722
10723 wm_i82543_mii_sendbits(sc, 0xffffffffU, 32);
10724 wm_i82543_mii_sendbits(sc, reg | (phy << 5) |
10725 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
10726 *val = wm_i82543_mii_recvbits(sc) & 0xffff;
10727
10728 DPRINTF(WM_DEBUG_GMII, ("%s: GMII: read phy %d reg %d -> 0x%04hx\n",
10729 device_xname(dev), phy, reg, *val));
10730
10731 return 0;
10732 }
10733
10734 /*
10735 * wm_gmii_i82543_writereg: [mii interface function]
10736 *
10737 * Write a PHY register on the GMII (i82543 version).
10738 */
10739 static int
10740 wm_gmii_i82543_writereg(device_t dev, int phy, int reg, uint16_t val)
10741 {
10742 struct wm_softc *sc = device_private(dev);
10743
10744 wm_i82543_mii_sendbits(sc, 0xffffffffU, 32);
10745 wm_i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
10746 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
10747 (MII_COMMAND_START << 30), 32);
10748
10749 return 0;
10750 }
10751
10752 /*
10753 * wm_gmii_mdic_readreg: [mii interface function]
10754 *
10755 * Read a PHY register on the GMII.
10756 */
10757 static int
10758 wm_gmii_mdic_readreg(device_t dev, int phy, int reg, uint16_t *val)
10759 {
10760 struct wm_softc *sc = device_private(dev);
10761 uint32_t mdic = 0;
10762 int i;
10763
10764 if ((sc->sc_phytype != WMPHY_82579) && (sc->sc_phytype != WMPHY_I217)
10765 && (reg > MII_ADDRMASK)) {
10766 device_printf(dev, "%s: PHYTYPE = %d, addr 0x%x > 0x1f\n",
10767 __func__, sc->sc_phytype, reg);
10768 reg &= MII_ADDRMASK;
10769 }
10770
10771 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
10772 MDIC_REGADD(reg));
10773
10774 for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) {
10775 delay(50);
10776 mdic = CSR_READ(sc, WMREG_MDIC);
10777 if (mdic & MDIC_READY)
10778 break;
10779 }
10780
10781 if ((mdic & MDIC_READY) == 0) {
10782 DPRINTF(WM_DEBUG_GMII,
10783 ("%s: MDIC read timed out: phy %d reg %d\n",
10784 device_xname(dev), phy, reg));
10785 return ETIMEDOUT;
10786 } else if (mdic & MDIC_E) {
10787 /* This is normal if no PHY is present. */
10788 DPRINTF(WM_DEBUG_GMII, ("%s: MDIC read error: phy %d reg %d\n",
10789 device_xname(sc->sc_dev), phy, reg));
10790 return -1;
10791 } else
10792 *val = MDIC_DATA(mdic);
10793
10794 /*
10795 * Allow some time after each MDIC transaction to avoid
10796 * reading duplicate data in the next MDIC transaction.
10797 */
10798 if (sc->sc_type == WM_T_PCH2)
10799 delay(100);
10800
10801 return 0;
10802 }
10803
10804 /*
10805 * wm_gmii_mdic_writereg: [mii interface function]
10806 *
10807 * Write a PHY register on the GMII.
10808 */
10809 static int
10810 wm_gmii_mdic_writereg(device_t dev, int phy, int reg, uint16_t val)
10811 {
10812 struct wm_softc *sc = device_private(dev);
10813 uint32_t mdic = 0;
10814 int i;
10815
10816 if ((sc->sc_phytype != WMPHY_82579) && (sc->sc_phytype != WMPHY_I217)
10817 && (reg > MII_ADDRMASK)) {
10818 device_printf(dev, "%s: PHYTYPE = %d, addr 0x%x > 0x1f\n",
10819 __func__, sc->sc_phytype, reg);
10820 reg &= MII_ADDRMASK;
10821 }
10822
10823 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
10824 MDIC_REGADD(reg) | MDIC_DATA(val));
10825
10826 for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) {
10827 delay(50);
10828 mdic = CSR_READ(sc, WMREG_MDIC);
10829 if (mdic & MDIC_READY)
10830 break;
10831 }
10832
10833 if ((mdic & MDIC_READY) == 0) {
10834 DPRINTF(WM_DEBUG_GMII,
10835 ("%s: MDIC write timed out: phy %d reg %d\n",
10836 device_xname(dev), phy, reg));
10837 return ETIMEDOUT;
10838 } else if (mdic & MDIC_E) {
10839 DPRINTF(WM_DEBUG_GMII,
10840 ("%s: MDIC write error: phy %d reg %d\n",
10841 device_xname(dev), phy, reg));
10842 return -1;
10843 }
10844
10845 /*
10846 * Allow some time after each MDIC transaction to avoid
10847 * reading duplicate data in the next MDIC transaction.
10848 */
10849 if (sc->sc_type == WM_T_PCH2)
10850 delay(100);
10851
10852 return 0;
10853 }
10854
10855 /*
10856 * wm_gmii_i82544_readreg: [mii interface function]
10857 *
10858 * Read a PHY register on the GMII.
10859 */
10860 static int
10861 wm_gmii_i82544_readreg(device_t dev, int phy, int reg, uint16_t *val)
10862 {
10863 struct wm_softc *sc = device_private(dev);
10864 int rv;
10865
10866 if (sc->phy.acquire(sc)) {
10867 device_printf(dev, "%s: failed to get semaphore\n", __func__);
10868 return -1;
10869 }
10870
10871 rv = wm_gmii_i82544_readreg_locked(dev, phy, reg, val);
10872
10873 sc->phy.release(sc);
10874
10875 return rv;
10876 }
10877
10878 static int
10879 wm_gmii_i82544_readreg_locked(device_t dev, int phy, int reg, uint16_t *val)
10880 {
10881 struct wm_softc *sc = device_private(dev);
10882 int rv;
10883
10884 if (reg > BME1000_MAX_MULTI_PAGE_REG) {
10885 switch (sc->sc_phytype) {
10886 case WMPHY_IGP:
10887 case WMPHY_IGP_2:
10888 case WMPHY_IGP_3:
10889 rv = wm_gmii_mdic_writereg(dev, phy,
10890 IGPHY_PAGE_SELECT, reg);
10891 if (rv != 0)
10892 return rv;
10893 break;
10894 default:
10895 #ifdef WM_DEBUG
10896 device_printf(dev, "%s: PHYTYPE = 0x%x, addr = %02x\n",
10897 __func__, sc->sc_phytype, reg);
10898 #endif
10899 break;
10900 }
10901 }
10902
10903 return wm_gmii_mdic_readreg(dev, phy, reg & MII_ADDRMASK, val);
10904 }
10905
10906 /*
10907 * wm_gmii_i82544_writereg: [mii interface function]
10908 *
10909 * Write a PHY register on the GMII.
10910 */
10911 static int
10912 wm_gmii_i82544_writereg(device_t dev, int phy, int reg, uint16_t val)
10913 {
10914 struct wm_softc *sc = device_private(dev);
10915 int rv;
10916
10917 if (sc->phy.acquire(sc)) {
10918 device_printf(dev, "%s: failed to get semaphore\n", __func__);
10919 return -1;
10920 }
10921
10922 rv = wm_gmii_i82544_writereg_locked(dev, phy, reg & MII_ADDRMASK, val);
10923 sc->phy.release(sc);
10924
10925 return rv;
10926 }
10927
10928 static int
10929 wm_gmii_i82544_writereg_locked(device_t dev, int phy, int reg, uint16_t val)
10930 {
10931 struct wm_softc *sc = device_private(dev);
10932 int rv;
10933
10934 if (reg > BME1000_MAX_MULTI_PAGE_REG) {
10935 switch (sc->sc_phytype) {
10936 case WMPHY_IGP:
10937 case WMPHY_IGP_2:
10938 case WMPHY_IGP_3:
10939 rv = wm_gmii_mdic_writereg(dev, phy,
10940 IGPHY_PAGE_SELECT, reg);
10941 if (rv != 0)
10942 return rv;
10943 break;
10944 default:
10945 #ifdef WM_DEBUG
10946 device_printf(dev, "%s: PHYTYPE == 0x%x, addr = %02x",
10947 __func__, sc->sc_phytype, reg);
10948 #endif
10949 break;
10950 }
10951 }
10952
10953 return wm_gmii_mdic_writereg(dev, phy, reg & MII_ADDRMASK, val);
10954 }
10955
10956 /*
10957 * wm_gmii_i80003_readreg: [mii interface function]
10958 *
10959 * Read a PHY register on the kumeran
10960 * This could be handled by the PHY layer if we didn't have to lock the
10961 * ressource ...
10962 */
10963 static int
10964 wm_gmii_i80003_readreg(device_t dev, int phy, int reg, uint16_t *val)
10965 {
10966 struct wm_softc *sc = device_private(dev);
10967 int page_select;
10968 uint16_t temp, temp2;
10969 int rv = 0;
10970
10971 if (phy != 1) /* Only one PHY on kumeran bus */
10972 return -1;
10973
10974 if (sc->phy.acquire(sc)) {
10975 device_printf(dev, "%s: failed to get semaphore\n", __func__);
10976 return -1;
10977 }
10978
10979 if ((reg & MII_ADDRMASK) < GG82563_MIN_ALT_REG)
10980 page_select = GG82563_PHY_PAGE_SELECT;
10981 else {
10982 /*
10983 * Use Alternative Page Select register to access registers
10984 * 30 and 31.
10985 */
10986 page_select = GG82563_PHY_PAGE_SELECT_ALT;
10987 }
10988 temp = reg >> GG82563_PAGE_SHIFT;
10989 if ((rv = wm_gmii_mdic_writereg(dev, phy, page_select, temp)) != 0)
10990 goto out;
10991
10992 if ((sc->sc_flags & WM_F_80003_MDIC_WA) != 0) {
10993 /*
10994 * Wait more 200us for a bug of the ready bit in the MDIC
10995 * register.
10996 */
10997 delay(200);
10998 rv = wm_gmii_mdic_readreg(dev, phy, page_select, &temp2);
10999 if ((rv != 0) || (temp2 != temp)) {
11000 device_printf(dev, "%s failed\n", __func__);
11001 rv = -1;
11002 goto out;
11003 }
11004 delay(200);
11005 rv = wm_gmii_mdic_readreg(dev, phy, reg & MII_ADDRMASK, val);
11006 delay(200);
11007 } else
11008 rv = wm_gmii_mdic_readreg(dev, phy, reg & MII_ADDRMASK, val);
11009
11010 out:
11011 sc->phy.release(sc);
11012 return rv;
11013 }
11014
11015 /*
11016 * wm_gmii_i80003_writereg: [mii interface function]
11017 *
11018 * Write a PHY register on the kumeran.
11019 * This could be handled by the PHY layer if we didn't have to lock the
11020 * ressource ...
11021 */
11022 static int
11023 wm_gmii_i80003_writereg(device_t dev, int phy, int reg, uint16_t val)
11024 {
11025 struct wm_softc *sc = device_private(dev);
11026 int page_select, rv;
11027 uint16_t temp, temp2;
11028
11029 if (phy != 1) /* Only one PHY on kumeran bus */
11030 return -1;
11031
11032 if (sc->phy.acquire(sc)) {
11033 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11034 return -1;
11035 }
11036
11037 if ((reg & MII_ADDRMASK) < GG82563_MIN_ALT_REG)
11038 page_select = GG82563_PHY_PAGE_SELECT;
11039 else {
11040 /*
11041 * Use Alternative Page Select register to access registers
11042 * 30 and 31.
11043 */
11044 page_select = GG82563_PHY_PAGE_SELECT_ALT;
11045 }
11046 temp = (uint16_t)reg >> GG82563_PAGE_SHIFT;
11047 if ((rv = wm_gmii_mdic_writereg(dev, phy, page_select, temp)) != 0)
11048 goto out;
11049
11050 if ((sc->sc_flags & WM_F_80003_MDIC_WA) != 0) {
11051 /*
11052 * Wait more 200us for a bug of the ready bit in the MDIC
11053 * register.
11054 */
11055 delay(200);
11056 rv = wm_gmii_mdic_readreg(dev, phy, page_select, &temp2);
11057 if ((rv != 0) || (temp2 != temp)) {
11058 device_printf(dev, "%s failed\n", __func__);
11059 rv = -1;
11060 goto out;
11061 }
11062 delay(200);
11063 rv = wm_gmii_mdic_writereg(dev, phy, reg & MII_ADDRMASK, val);
11064 delay(200);
11065 } else
11066 rv = wm_gmii_mdic_writereg(dev, phy, reg & MII_ADDRMASK, val);
11067
11068 out:
11069 sc->phy.release(sc);
11070 return rv;
11071 }
11072
11073 /*
11074 * wm_gmii_bm_readreg: [mii interface function]
11075 *
11076 * Read a PHY register on the kumeran
11077 * This could be handled by the PHY layer if we didn't have to lock the
11078 * ressource ...
11079 */
11080 static int
11081 wm_gmii_bm_readreg(device_t dev, int phy, int reg, uint16_t *val)
11082 {
11083 struct wm_softc *sc = device_private(dev);
11084 uint16_t page = reg >> BME1000_PAGE_SHIFT;
11085 int rv;
11086
11087 if (sc->phy.acquire(sc)) {
11088 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11089 return -1;
11090 }
11091
11092 if ((sc->sc_type != WM_T_82574) && (sc->sc_type != WM_T_82583))
11093 phy = ((page >= 768) || ((page == 0) && (reg == 25))
11094 || (reg == 31)) ? 1 : phy;
11095 /* Page 800 works differently than the rest so it has its own func */
11096 if (page == BM_WUC_PAGE) {
11097 rv = wm_access_phy_wakeup_reg_bm(dev, reg, val, true, false);
11098 goto release;
11099 }
11100
11101 if (reg > BME1000_MAX_MULTI_PAGE_REG) {
11102 if ((phy == 1) && (sc->sc_type != WM_T_82574)
11103 && (sc->sc_type != WM_T_82583))
11104 rv = wm_gmii_mdic_writereg(dev, phy,
11105 IGPHY_PAGE_SELECT, page << BME1000_PAGE_SHIFT);
11106 else
11107 rv = wm_gmii_mdic_writereg(dev, phy,
11108 BME1000_PHY_PAGE_SELECT, page);
11109 if (rv != 0)
11110 goto release;
11111 }
11112
11113 rv = wm_gmii_mdic_readreg(dev, phy, reg & MII_ADDRMASK, val);
11114
11115 release:
11116 sc->phy.release(sc);
11117 return rv;
11118 }
11119
11120 /*
11121 * wm_gmii_bm_writereg: [mii interface function]
11122 *
11123 * Write a PHY register on the kumeran.
11124 * This could be handled by the PHY layer if we didn't have to lock the
11125 * ressource ...
11126 */
11127 static int
11128 wm_gmii_bm_writereg(device_t dev, int phy, int reg, uint16_t val)
11129 {
11130 struct wm_softc *sc = device_private(dev);
11131 uint16_t page = reg >> BME1000_PAGE_SHIFT;
11132 int rv;
11133
11134 if (sc->phy.acquire(sc)) {
11135 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11136 return -1;
11137 }
11138
11139 if ((sc->sc_type != WM_T_82574) && (sc->sc_type != WM_T_82583))
11140 phy = ((page >= 768) || ((page == 0) && (reg == 25))
11141 || (reg == 31)) ? 1 : phy;
11142 /* Page 800 works differently than the rest so it has its own func */
11143 if (page == BM_WUC_PAGE) {
11144 rv = wm_access_phy_wakeup_reg_bm(dev, reg, &val, false, false);
11145 goto release;
11146 }
11147
11148 if (reg > BME1000_MAX_MULTI_PAGE_REG) {
11149 if ((phy == 1) && (sc->sc_type != WM_T_82574)
11150 && (sc->sc_type != WM_T_82583))
11151 rv = wm_gmii_mdic_writereg(dev, phy,
11152 IGPHY_PAGE_SELECT, page << BME1000_PAGE_SHIFT);
11153 else
11154 rv = wm_gmii_mdic_writereg(dev, phy,
11155 BME1000_PHY_PAGE_SELECT, page);
11156 if (rv != 0)
11157 goto release;
11158 }
11159
11160 rv = wm_gmii_mdic_writereg(dev, phy, reg & MII_ADDRMASK, val);
11161
11162 release:
11163 sc->phy.release(sc);
11164 return rv;
11165 }
11166
11167 /*
11168 * wm_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
11169 * @dev: pointer to the HW structure
11170 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
11171 *
11172 * Assumes semaphore already acquired and phy_reg points to a valid memory
11173 * address to store contents of the BM_WUC_ENABLE_REG register.
11174 */
11175 static int
11176 wm_enable_phy_wakeup_reg_access_bm(device_t dev, uint16_t *phy_regp)
11177 {
11178 uint16_t temp;
11179 int rv;
11180
11181 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
11182 device_xname(dev), __func__));
11183
11184 if (!phy_regp)
11185 return -1;
11186
11187 /* All page select, port ctrl and wakeup registers use phy address 1 */
11188
11189 /* Select Port Control Registers page */
11190 rv = wm_gmii_mdic_writereg(dev, 1, IGPHY_PAGE_SELECT,
11191 BM_PORT_CTRL_PAGE << IGP3_PAGE_SHIFT);
11192 if (rv != 0)
11193 return rv;
11194
11195 /* Read WUCE and save it */
11196 rv = wm_gmii_mdic_readreg(dev, 1, BM_WUC_ENABLE_REG, phy_regp);
11197 if (rv != 0)
11198 return rv;
11199
11200 /* Enable both PHY wakeup mode and Wakeup register page writes.
11201 * Prevent a power state change by disabling ME and Host PHY wakeup.
11202 */
11203 temp = *phy_regp;
11204 temp |= BM_WUC_ENABLE_BIT;
11205 temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
11206
11207 if ((rv = wm_gmii_mdic_writereg(dev, 1, BM_WUC_ENABLE_REG, temp)) != 0)
11208 return rv;
11209
11210 /* Select Host Wakeup Registers page - caller now able to write
11211 * registers on the Wakeup registers page
11212 */
11213 return wm_gmii_mdic_writereg(dev, 1, IGPHY_PAGE_SELECT,
11214 BM_WUC_PAGE << IGP3_PAGE_SHIFT);
11215 }
11216
11217 /*
11218 * wm_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
11219 * @dev: pointer to the HW structure
11220 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
11221 *
11222 * Restore BM_WUC_ENABLE_REG to its original value.
11223 *
11224 * Assumes semaphore already acquired and *phy_reg is the contents of the
11225 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
11226 * caller.
11227 */
11228 static int
11229 wm_disable_phy_wakeup_reg_access_bm(device_t dev, uint16_t *phy_regp)
11230 {
11231
11232 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
11233 device_xname(dev), __func__));
11234
11235 if (!phy_regp)
11236 return -1;
11237
11238 /* Select Port Control Registers page */
11239 wm_gmii_mdic_writereg(dev, 1, IGPHY_PAGE_SELECT,
11240 BM_PORT_CTRL_PAGE << IGP3_PAGE_SHIFT);
11241
11242 /* Restore 769.17 to its original value */
11243 wm_gmii_mdic_writereg(dev, 1, BM_WUC_ENABLE_REG, *phy_regp);
11244
11245 return 0;
11246 }
11247
11248 /*
11249 * wm_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
11250 * @sc: pointer to the HW structure
11251 * @offset: register offset to be read or written
11252 * @val: pointer to the data to read or write
11253 * @rd: determines if operation is read or write
11254 * @page_set: BM_WUC_PAGE already set and access enabled
11255 *
11256 * Read the PHY register at offset and store the retrieved information in
11257 * data, or write data to PHY register at offset. Note the procedure to
11258 * access the PHY wakeup registers is different than reading the other PHY
11259 * registers. It works as such:
11260 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
11261 * 2) Set page to 800 for host (801 if we were manageability)
11262 * 3) Write the address using the address opcode (0x11)
11263 * 4) Read or write the data using the data opcode (0x12)
11264 * 5) Restore 769.17.2 to its original value
11265 *
11266 * Steps 1 and 2 are done by wm_enable_phy_wakeup_reg_access_bm() and
11267 * step 5 is done by wm_disable_phy_wakeup_reg_access_bm().
11268 *
11269 * Assumes semaphore is already acquired. When page_set==TRUE, assumes
11270 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
11271 * is responsible for calls to wm_[enable|disable]_phy_wakeup_reg_bm()).
11272 */
11273 static int
11274 wm_access_phy_wakeup_reg_bm(device_t dev, int offset, int16_t *val, int rd,
11275 bool page_set)
11276 {
11277 struct wm_softc *sc = device_private(dev);
11278 uint16_t regnum = BM_PHY_REG_NUM(offset);
11279 uint16_t page = BM_PHY_REG_PAGE(offset);
11280 uint16_t wuce;
11281 int rv = 0;
11282
11283 DPRINTF(WM_DEBUG_GMII, ("%s: %s called\n",
11284 device_xname(dev), __func__));
11285 /* XXX Gig must be disabled for MDIO accesses to page 800 */
11286 if ((sc->sc_type == WM_T_PCH)
11287 && ((CSR_READ(sc, WMREG_PHY_CTRL) & PHY_CTRL_GBE_DIS) == 0)) {
11288 device_printf(dev,
11289 "Attempting to access page %d while gig enabled.\n", page);
11290 }
11291
11292 if (!page_set) {
11293 /* Enable access to PHY wakeup registers */
11294 rv = wm_enable_phy_wakeup_reg_access_bm(dev, &wuce);
11295 if (rv != 0) {
11296 device_printf(dev,
11297 "%s: Could not enable PHY wakeup reg access\n",
11298 __func__);
11299 return rv;
11300 }
11301 }
11302 DPRINTF(WM_DEBUG_GMII, ("%s: %s: Accessing PHY page %d reg 0x%x\n",
11303 device_xname(sc->sc_dev), __func__, page, regnum));
11304
11305 /*
11306 * 2) Access PHY wakeup register.
11307 * See wm_access_phy_wakeup_reg_bm.
11308 */
11309
11310 /* Write the Wakeup register page offset value using opcode 0x11 */
11311 rv = wm_gmii_mdic_writereg(dev, 1, BM_WUC_ADDRESS_OPCODE, regnum);
11312 if (rv != 0)
11313 return rv;
11314
11315 if (rd) {
11316 /* Read the Wakeup register page value using opcode 0x12 */
11317 rv = wm_gmii_mdic_readreg(dev, 1, BM_WUC_DATA_OPCODE, val);
11318 } else {
11319 /* Write the Wakeup register page value using opcode 0x12 */
11320 rv = wm_gmii_mdic_writereg(dev, 1, BM_WUC_DATA_OPCODE, *val);
11321 }
11322 if (rv != 0)
11323 return rv;
11324
11325 if (!page_set)
11326 rv = wm_disable_phy_wakeup_reg_access_bm(dev, &wuce);
11327
11328 return rv;
11329 }
11330
11331 /*
11332 * wm_gmii_hv_readreg: [mii interface function]
11333 *
11334 * Read a PHY register on the kumeran
11335 * This could be handled by the PHY layer if we didn't have to lock the
11336 * ressource ...
11337 */
11338 static int
11339 wm_gmii_hv_readreg(device_t dev, int phy, int reg, uint16_t *val)
11340 {
11341 struct wm_softc *sc = device_private(dev);
11342 int rv;
11343
11344 DPRINTF(WM_DEBUG_GMII, ("%s: %s called\n",
11345 device_xname(dev), __func__));
11346 if (sc->phy.acquire(sc)) {
11347 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11348 return -1;
11349 }
11350
11351 rv = wm_gmii_hv_readreg_locked(dev, phy, reg, val);
11352 sc->phy.release(sc);
11353 return rv;
11354 }
11355
11356 static int
11357 wm_gmii_hv_readreg_locked(device_t dev, int phy, int reg, uint16_t *val)
11358 {
11359 uint16_t page = BM_PHY_REG_PAGE(reg);
11360 uint16_t regnum = BM_PHY_REG_NUM(reg);
11361 int rv;
11362
11363 phy = (page >= HV_INTC_FC_PAGE_START) ? 1 : phy;
11364
11365 /* Page 800 works differently than the rest so it has its own func */
11366 if (page == BM_WUC_PAGE)
11367 return wm_access_phy_wakeup_reg_bm(dev, reg, val, true, false);
11368
11369 /*
11370 * Lower than page 768 works differently than the rest so it has its
11371 * own func
11372 */
11373 if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) {
11374 device_printf(dev, "gmii_hv_readreg!!!\n");
11375 return -1;
11376 }
11377
11378 /*
11379 * XXX I21[789] documents say that the SMBus Address register is at
11380 * PHY address 01, Page 0 (not 768), Register 26.
11381 */
11382 if (page == HV_INTC_FC_PAGE_START)
11383 page = 0;
11384
11385 if (regnum > BME1000_MAX_MULTI_PAGE_REG) {
11386 rv = wm_gmii_mdic_writereg(dev, 1, IGPHY_PAGE_SELECT,
11387 page << BME1000_PAGE_SHIFT);
11388 if (rv != 0)
11389 return rv;
11390 }
11391
11392 return wm_gmii_mdic_readreg(dev, phy, regnum & MII_ADDRMASK, val);
11393 }
11394
11395 /*
11396 * wm_gmii_hv_writereg: [mii interface function]
11397 *
11398 * Write a PHY register on the kumeran.
11399 * This could be handled by the PHY layer if we didn't have to lock the
11400 * ressource ...
11401 */
11402 static int
11403 wm_gmii_hv_writereg(device_t dev, int phy, int reg, uint16_t val)
11404 {
11405 struct wm_softc *sc = device_private(dev);
11406 int rv;
11407
11408 DPRINTF(WM_DEBUG_GMII, ("%s: %s called\n",
11409 device_xname(dev), __func__));
11410
11411 if (sc->phy.acquire(sc)) {
11412 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11413 return -1;
11414 }
11415
11416 rv = wm_gmii_hv_writereg_locked(dev, phy, reg, val);
11417 sc->phy.release(sc);
11418
11419 return rv;
11420 }
11421
11422 static int
11423 wm_gmii_hv_writereg_locked(device_t dev, int phy, int reg, uint16_t val)
11424 {
11425 struct wm_softc *sc = device_private(dev);
11426 uint16_t page = BM_PHY_REG_PAGE(reg);
11427 uint16_t regnum = BM_PHY_REG_NUM(reg);
11428 int rv;
11429
11430 phy = (page >= HV_INTC_FC_PAGE_START) ? 1 : phy;
11431
11432 /* Page 800 works differently than the rest so it has its own func */
11433 if (page == BM_WUC_PAGE)
11434 return wm_access_phy_wakeup_reg_bm(dev, reg, &val, false,
11435 false);
11436
11437 /*
11438 * Lower than page 768 works differently than the rest so it has its
11439 * own func
11440 */
11441 if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) {
11442 device_printf(dev, "gmii_hv_writereg!!!\n");
11443 return -1;
11444 }
11445
11446 {
11447 /*
11448 * XXX I21[789] documents say that the SMBus Address register
11449 * is at PHY address 01, Page 0 (not 768), Register 26.
11450 */
11451 if (page == HV_INTC_FC_PAGE_START)
11452 page = 0;
11453
11454 /*
11455 * XXX Workaround MDIO accesses being disabled after entering
11456 * IEEE Power Down (whenever bit 11 of the PHY control
11457 * register is set)
11458 */
11459 if (sc->sc_phytype == WMPHY_82578) {
11460 struct mii_softc *child;
11461
11462 child = LIST_FIRST(&sc->sc_mii.mii_phys);
11463 if ((child != NULL) && (child->mii_mpd_rev >= 1)
11464 && (phy == 2) && ((regnum & MII_ADDRMASK) == 0)
11465 && ((val & (1 << 11)) != 0)) {
11466 device_printf(dev, "XXX need workaround\n");
11467 }
11468 }
11469
11470 if (regnum > BME1000_MAX_MULTI_PAGE_REG) {
11471 rv = wm_gmii_mdic_writereg(dev, 1,
11472 IGPHY_PAGE_SELECT, page << BME1000_PAGE_SHIFT);
11473 if (rv != 0)
11474 return rv;
11475 }
11476 }
11477
11478 return wm_gmii_mdic_writereg(dev, phy, regnum & MII_ADDRMASK, val);
11479 }
11480
11481 /*
11482 * wm_gmii_82580_readreg: [mii interface function]
11483 *
11484 * Read a PHY register on the 82580 and I350.
11485 * This could be handled by the PHY layer if we didn't have to lock the
11486 * ressource ...
11487 */
11488 static int
11489 wm_gmii_82580_readreg(device_t dev, int phy, int reg, uint16_t *val)
11490 {
11491 struct wm_softc *sc = device_private(dev);
11492 int rv;
11493
11494 if (sc->phy.acquire(sc) != 0) {
11495 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11496 return -1;
11497 }
11498
11499 #ifdef DIAGNOSTIC
11500 if (reg > MII_ADDRMASK) {
11501 device_printf(dev, "%s: PHYTYPE = %d, addr 0x%x > 0x1f\n",
11502 __func__, sc->sc_phytype, reg);
11503 reg &= MII_ADDRMASK;
11504 }
11505 #endif
11506 rv = wm_gmii_mdic_readreg(dev, phy, reg, val);
11507
11508 sc->phy.release(sc);
11509 return rv;
11510 }
11511
11512 /*
11513 * wm_gmii_82580_writereg: [mii interface function]
11514 *
11515 * Write a PHY register on the 82580 and I350.
11516 * This could be handled by the PHY layer if we didn't have to lock the
11517 * ressource ...
11518 */
11519 static int
11520 wm_gmii_82580_writereg(device_t dev, int phy, int reg, uint16_t val)
11521 {
11522 struct wm_softc *sc = device_private(dev);
11523 int rv;
11524
11525 if (sc->phy.acquire(sc) != 0) {
11526 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11527 return -1;
11528 }
11529
11530 #ifdef DIAGNOSTIC
11531 if (reg > MII_ADDRMASK) {
11532 device_printf(dev, "%s: PHYTYPE = %d, addr 0x%x > 0x1f\n",
11533 __func__, sc->sc_phytype, reg);
11534 reg &= MII_ADDRMASK;
11535 }
11536 #endif
11537 rv = wm_gmii_mdic_writereg(dev, phy, reg, val);
11538
11539 sc->phy.release(sc);
11540 return rv;
11541 }
11542
11543 /*
11544 * wm_gmii_gs40g_readreg: [mii interface function]
11545 *
11546 * Read a PHY register on the I2100 and I211.
11547 * This could be handled by the PHY layer if we didn't have to lock the
11548 * ressource ...
11549 */
11550 static int
11551 wm_gmii_gs40g_readreg(device_t dev, int phy, int reg, uint16_t *val)
11552 {
11553 struct wm_softc *sc = device_private(dev);
11554 int page, offset;
11555 int rv;
11556
11557 /* Acquire semaphore */
11558 if (sc->phy.acquire(sc)) {
11559 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11560 return -1;
11561 }
11562
11563 /* Page select */
11564 page = reg >> GS40G_PAGE_SHIFT;
11565 rv = wm_gmii_mdic_writereg(dev, phy, GS40G_PAGE_SELECT, page);
11566 if (rv != 0)
11567 goto release;
11568
11569 /* Read reg */
11570 offset = reg & GS40G_OFFSET_MASK;
11571 rv = wm_gmii_mdic_readreg(dev, phy, offset, val);
11572
11573 release:
11574 sc->phy.release(sc);
11575 return rv;
11576 }
11577
11578 /*
11579 * wm_gmii_gs40g_writereg: [mii interface function]
11580 *
11581 * Write a PHY register on the I210 and I211.
11582 * This could be handled by the PHY layer if we didn't have to lock the
11583 * ressource ...
11584 */
11585 static int
11586 wm_gmii_gs40g_writereg(device_t dev, int phy, int reg, uint16_t val)
11587 {
11588 struct wm_softc *sc = device_private(dev);
11589 uint16_t page;
11590 int offset, rv;
11591
11592 /* Acquire semaphore */
11593 if (sc->phy.acquire(sc)) {
11594 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11595 return -1;
11596 }
11597
11598 /* Page select */
11599 page = reg >> GS40G_PAGE_SHIFT;
11600 rv = wm_gmii_mdic_writereg(dev, phy, GS40G_PAGE_SELECT, page);
11601 if (rv != 0)
11602 goto release;
11603
11604 /* Write reg */
11605 offset = reg & GS40G_OFFSET_MASK;
11606 rv = wm_gmii_mdic_writereg(dev, phy, offset, val);
11607
11608 release:
11609 /* Release semaphore */
11610 sc->phy.release(sc);
11611 return rv;
11612 }
11613
11614 /*
11615 * wm_gmii_statchg: [mii interface function]
11616 *
11617 * Callback from MII layer when media changes.
11618 */
11619 static void
11620 wm_gmii_statchg(struct ifnet *ifp)
11621 {
11622 struct wm_softc *sc = ifp->if_softc;
11623 struct mii_data *mii = &sc->sc_mii;
11624
11625 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
11626 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
11627 sc->sc_fcrtl &= ~FCRTL_XONE;
11628
11629 /* Get flow control negotiation result. */
11630 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
11631 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
11632 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
11633 mii->mii_media_active &= ~IFM_ETH_FMASK;
11634 }
11635
11636 if (sc->sc_flowflags & IFM_FLOW) {
11637 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
11638 sc->sc_ctrl |= CTRL_TFCE;
11639 sc->sc_fcrtl |= FCRTL_XONE;
11640 }
11641 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
11642 sc->sc_ctrl |= CTRL_RFCE;
11643 }
11644
11645 if (mii->mii_media_active & IFM_FDX) {
11646 DPRINTF(WM_DEBUG_LINK,
11647 ("%s: LINK: statchg: FDX\n", ifp->if_xname));
11648 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
11649 } else {
11650 DPRINTF(WM_DEBUG_LINK,
11651 ("%s: LINK: statchg: HDX\n", ifp->if_xname));
11652 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
11653 }
11654
11655 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
11656 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
11657 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
11658 : WMREG_FCRTL, sc->sc_fcrtl);
11659 if (sc->sc_type == WM_T_80003) {
11660 switch (IFM_SUBTYPE(mii->mii_media_active)) {
11661 case IFM_1000_T:
11662 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
11663 KUMCTRLSTA_HD_CTRL_1000_DEFAULT);
11664 sc->sc_tipg = TIPG_1000T_80003_DFLT;
11665 break;
11666 default:
11667 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
11668 KUMCTRLSTA_HD_CTRL_10_100_DEFAULT);
11669 sc->sc_tipg = TIPG_10_100_80003_DFLT;
11670 break;
11671 }
11672 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
11673 }
11674 }
11675
11676 /* kumeran related (80003, ICH* and PCH*) */
11677
11678 /*
11679 * wm_kmrn_readreg:
11680 *
11681 * Read a kumeran register
11682 */
11683 static int
11684 wm_kmrn_readreg(struct wm_softc *sc, int reg, uint16_t *val)
11685 {
11686 int rv;
11687
11688 if (sc->sc_type == WM_T_80003)
11689 rv = wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
11690 else
11691 rv = sc->phy.acquire(sc);
11692 if (rv != 0) {
11693 device_printf(sc->sc_dev, "%s: failed to get semaphore\n",
11694 __func__);
11695 return rv;
11696 }
11697
11698 rv = wm_kmrn_readreg_locked(sc, reg, val);
11699
11700 if (sc->sc_type == WM_T_80003)
11701 wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
11702 else
11703 sc->phy.release(sc);
11704
11705 return rv;
11706 }
11707
11708 static int
11709 wm_kmrn_readreg_locked(struct wm_softc *sc, int reg, uint16_t *val)
11710 {
11711
11712 CSR_WRITE(sc, WMREG_KUMCTRLSTA,
11713 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
11714 KUMCTRLSTA_REN);
11715 CSR_WRITE_FLUSH(sc);
11716 delay(2);
11717
11718 *val = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK;
11719
11720 return 0;
11721 }
11722
11723 /*
11724 * wm_kmrn_writereg:
11725 *
11726 * Write a kumeran register
11727 */
11728 static int
11729 wm_kmrn_writereg(struct wm_softc *sc, int reg, uint16_t val)
11730 {
11731 int rv;
11732
11733 if (sc->sc_type == WM_T_80003)
11734 rv = wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
11735 else
11736 rv = sc->phy.acquire(sc);
11737 if (rv != 0) {
11738 device_printf(sc->sc_dev, "%s: failed to get semaphore\n",
11739 __func__);
11740 return rv;
11741 }
11742
11743 rv = wm_kmrn_writereg_locked(sc, reg, val);
11744
11745 if (sc->sc_type == WM_T_80003)
11746 wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
11747 else
11748 sc->phy.release(sc);
11749
11750 return rv;
11751 }
11752
11753 static int
11754 wm_kmrn_writereg_locked(struct wm_softc *sc, int reg, uint16_t val)
11755 {
11756
11757 CSR_WRITE(sc, WMREG_KUMCTRLSTA,
11758 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) | val);
11759
11760 return 0;
11761 }
11762
11763 /*
11764 * EMI register related (82579, WMPHY_I217(PCH2 and newer))
11765 * This access method is different from IEEE MMD.
11766 */
11767 static int
11768 wm_access_emi_reg_locked(device_t dev, int reg, uint16_t *val, bool rd)
11769 {
11770 struct wm_softc *sc = device_private(dev);
11771 int rv;
11772
11773 rv = sc->phy.writereg_locked(dev, 2, I82579_EMI_ADDR, reg);
11774 if (rv != 0)
11775 return rv;
11776
11777 if (rd)
11778 rv = sc->phy.readreg_locked(dev, 2, I82579_EMI_DATA, val);
11779 else
11780 rv = sc->phy.writereg_locked(dev, 2, I82579_EMI_DATA, *val);
11781 return rv;
11782 }
11783
11784 static int
11785 wm_read_emi_reg_locked(device_t dev, int reg, uint16_t *val)
11786 {
11787
11788 return wm_access_emi_reg_locked(dev, reg, val, true);
11789 }
11790
11791 static int
11792 wm_write_emi_reg_locked(device_t dev, int reg, uint16_t val)
11793 {
11794
11795 return wm_access_emi_reg_locked(dev, reg, &val, false);
11796 }
11797
11798 /* SGMII related */
11799
11800 /*
11801 * wm_sgmii_uses_mdio
11802 *
11803 * Check whether the transaction is to the internal PHY or the external
11804 * MDIO interface. Return true if it's MDIO.
11805 */
11806 static bool
11807 wm_sgmii_uses_mdio(struct wm_softc *sc)
11808 {
11809 uint32_t reg;
11810 bool ismdio = false;
11811
11812 switch (sc->sc_type) {
11813 case WM_T_82575:
11814 case WM_T_82576:
11815 reg = CSR_READ(sc, WMREG_MDIC);
11816 ismdio = ((reg & MDIC_DEST) != 0);
11817 break;
11818 case WM_T_82580:
11819 case WM_T_I350:
11820 case WM_T_I354:
11821 case WM_T_I210:
11822 case WM_T_I211:
11823 reg = CSR_READ(sc, WMREG_MDICNFG);
11824 ismdio = ((reg & MDICNFG_DEST) != 0);
11825 break;
11826 default:
11827 break;
11828 }
11829
11830 return ismdio;
11831 }
11832
11833 /* Setup internal SGMII PHY for SFP */
11834 static void
11835 wm_sgmii_sfp_preconfig(struct wm_softc *sc)
11836 {
11837 uint16_t id1, id2, phyreg;
11838 int i, rv;
11839
11840 if (((sc->sc_flags & WM_F_SGMII) == 0)
11841 || ((sc->sc_flags & WM_F_SFP) == 0))
11842 return;
11843
11844 for (i = 0; i < MII_NPHY; i++) {
11845 sc->phy.no_errprint = true;
11846 rv = sc->phy.readreg_locked(sc->sc_dev, i, MII_PHYIDR1, &id1);
11847 if (rv != 0)
11848 continue;
11849 rv = sc->phy.readreg_locked(sc->sc_dev, i, MII_PHYIDR2, &id2);
11850 if (rv != 0)
11851 continue;
11852 if (MII_OUI(id1, id2) != MII_OUI_xxMARVELL)
11853 continue;
11854 sc->phy.no_errprint = false;
11855
11856 sc->phy.readreg_locked(sc->sc_dev, i, MAKPHY_ESSR, &phyreg);
11857 phyreg &= ~(ESSR_SER_ANEG_BYPASS | ESSR_HWCFG_MODE);
11858 phyreg |= ESSR_SGMII_WOC_COPPER;
11859 sc->phy.writereg_locked(sc->sc_dev, i, MAKPHY_ESSR, phyreg);
11860 break;
11861 }
11862
11863 }
11864
11865 /*
11866 * wm_sgmii_readreg: [mii interface function]
11867 *
11868 * Read a PHY register on the SGMII
11869 * This could be handled by the PHY layer if we didn't have to lock the
11870 * ressource ...
11871 */
11872 static int
11873 wm_sgmii_readreg(device_t dev, int phy, int reg, uint16_t *val)
11874 {
11875 struct wm_softc *sc = device_private(dev);
11876 int rv;
11877
11878 if (sc->phy.acquire(sc)) {
11879 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11880 return -1;
11881 }
11882
11883 rv = wm_sgmii_readreg_locked(dev, phy, reg, val);
11884
11885 sc->phy.release(sc);
11886 return rv;
11887 }
11888
11889 static int
11890 wm_sgmii_readreg_locked(device_t dev, int phy, int reg, uint16_t *val)
11891 {
11892 struct wm_softc *sc = device_private(dev);
11893 uint32_t i2ccmd;
11894 int i, rv = 0;
11895
11896 i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT)
11897 | (phy << I2CCMD_PHY_ADDR_SHIFT) | I2CCMD_OPCODE_READ;
11898 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
11899
11900 /* Poll the ready bit */
11901 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
11902 delay(50);
11903 i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
11904 if (i2ccmd & I2CCMD_READY)
11905 break;
11906 }
11907 if ((i2ccmd & I2CCMD_READY) == 0) {
11908 device_printf(dev, "I2CCMD Read did not complete\n");
11909 rv = ETIMEDOUT;
11910 }
11911 if ((i2ccmd & I2CCMD_ERROR) != 0) {
11912 if (!sc->phy.no_errprint)
11913 device_printf(dev, "I2CCMD Error bit set\n");
11914 rv = EIO;
11915 }
11916
11917 *val = (uint16_t)((i2ccmd >> 8) & 0x00ff) | ((i2ccmd << 8) & 0xff00);
11918
11919 return rv;
11920 }
11921
11922 /*
11923 * wm_sgmii_writereg: [mii interface function]
11924 *
11925 * Write a PHY register on the SGMII.
11926 * This could be handled by the PHY layer if we didn't have to lock the
11927 * ressource ...
11928 */
11929 static int
11930 wm_sgmii_writereg(device_t dev, int phy, int reg, uint16_t val)
11931 {
11932 struct wm_softc *sc = device_private(dev);
11933 int rv;
11934
11935 if (sc->phy.acquire(sc) != 0) {
11936 device_printf(dev, "%s: failed to get semaphore\n", __func__);
11937 return -1;
11938 }
11939
11940 rv = wm_sgmii_writereg_locked(dev, phy, reg, val);
11941
11942 sc->phy.release(sc);
11943
11944 return rv;
11945 }
11946
11947 static int
11948 wm_sgmii_writereg_locked(device_t dev, int phy, int reg, uint16_t val)
11949 {
11950 struct wm_softc *sc = device_private(dev);
11951 uint32_t i2ccmd;
11952 uint16_t swapdata;
11953 int rv = 0;
11954 int i;
11955
11956 /* Swap the data bytes for the I2C interface */
11957 swapdata = ((val >> 8) & 0x00FF) | ((val << 8) & 0xFF00);
11958 i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT)
11959 | (phy << I2CCMD_PHY_ADDR_SHIFT) | I2CCMD_OPCODE_WRITE | swapdata;
11960 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
11961
11962 /* Poll the ready bit */
11963 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
11964 delay(50);
11965 i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
11966 if (i2ccmd & I2CCMD_READY)
11967 break;
11968 }
11969 if ((i2ccmd & I2CCMD_READY) == 0) {
11970 device_printf(dev, "I2CCMD Write did not complete\n");
11971 rv = ETIMEDOUT;
11972 }
11973 if ((i2ccmd & I2CCMD_ERROR) != 0) {
11974 device_printf(dev, "I2CCMD Error bit set\n");
11975 rv = EIO;
11976 }
11977
11978 return rv;
11979 }
11980
11981 /* TBI related */
11982
11983 static bool
11984 wm_tbi_havesignal(struct wm_softc *sc, uint32_t ctrl)
11985 {
11986 bool sig;
11987
11988 sig = ctrl & CTRL_SWDPIN(1);
11989
11990 /*
11991 * On 82543 and 82544, the CTRL_SWDPIN(1) bit will be 0 if the optics
11992 * detect a signal, 1 if they don't.
11993 */
11994 if ((sc->sc_type == WM_T_82543) || (sc->sc_type == WM_T_82544))
11995 sig = !sig;
11996
11997 return sig;
11998 }
11999
12000 /*
12001 * wm_tbi_mediainit:
12002 *
12003 * Initialize media for use on 1000BASE-X devices.
12004 */
12005 static void
12006 wm_tbi_mediainit(struct wm_softc *sc)
12007 {
12008 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
12009 const char *sep = "";
12010
12011 if (sc->sc_type < WM_T_82543)
12012 sc->sc_tipg = TIPG_WM_DFLT;
12013 else
12014 sc->sc_tipg = TIPG_LG_DFLT;
12015
12016 sc->sc_tbi_serdes_anegticks = 5;
12017
12018 /* Initialize our media structures */
12019 sc->sc_mii.mii_ifp = ifp;
12020 sc->sc_ethercom.ec_mii = &sc->sc_mii;
12021
12022 if (((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211))
12023 && (sc->sc_mediatype == WM_MEDIATYPE_SERDES)) {
12024 ifmedia_init_with_lock(&sc->sc_mii.mii_media, IFM_IMASK,
12025 wm_serdes_mediachange, wm_serdes_mediastatus,
12026 sc->sc_core_lock);
12027 } else {
12028 ifmedia_init_with_lock(&sc->sc_mii.mii_media, IFM_IMASK,
12029 wm_tbi_mediachange, wm_tbi_mediastatus, sc->sc_core_lock);
12030 }
12031
12032 /*
12033 * SWD Pins:
12034 *
12035 * 0 = Link LED (output)
12036 * 1 = Loss Of Signal (input)
12037 */
12038 sc->sc_ctrl |= CTRL_SWDPIO(0);
12039
12040 /* XXX Perhaps this is only for TBI */
12041 if (sc->sc_mediatype != WM_MEDIATYPE_SERDES)
12042 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
12043
12044 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES)
12045 sc->sc_ctrl &= ~CTRL_LRST;
12046
12047 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
12048
12049 #define ADD(ss, mm, dd) \
12050 do { \
12051 aprint_normal("%s%s", sep, ss); \
12052 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | (mm), (dd), NULL); \
12053 sep = ", "; \
12054 } while (/*CONSTCOND*/0)
12055
12056 aprint_normal_dev(sc->sc_dev, "");
12057
12058 if (sc->sc_type == WM_T_I354) {
12059 uint32_t status;
12060
12061 status = CSR_READ(sc, WMREG_STATUS);
12062 if (((status & STATUS_2P5_SKU) != 0)
12063 && ((status & STATUS_2P5_SKU_OVER) == 0)) {
12064 ADD("2500baseKX-FDX", IFM_2500_KX | IFM_FDX,ANAR_X_FD);
12065 } else
12066 ADD("1000baseKX-FDX", IFM_1000_KX | IFM_FDX,ANAR_X_FD);
12067 } else if (sc->sc_type == WM_T_82545) {
12068 /* Only 82545 is LX (XXX except SFP) */
12069 ADD("1000baseLX", IFM_1000_LX, ANAR_X_HD);
12070 ADD("1000baseLX-FDX", IFM_1000_LX | IFM_FDX, ANAR_X_FD);
12071 } else if (sc->sc_sfptype != 0) {
12072 /* XXX wm(4) fiber/serdes don't use ifm_data */
12073 switch (sc->sc_sfptype) {
12074 default:
12075 case SFF_SFP_ETH_FLAGS_1000SX:
12076 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
12077 ADD("1000baseSX-FDX", IFM_1000_SX | IFM_FDX, ANAR_X_FD);
12078 break;
12079 case SFF_SFP_ETH_FLAGS_1000LX:
12080 ADD("1000baseLX", IFM_1000_LX, ANAR_X_HD);
12081 ADD("1000baseLX-FDX", IFM_1000_LX | IFM_FDX, ANAR_X_FD);
12082 break;
12083 case SFF_SFP_ETH_FLAGS_1000CX:
12084 ADD("1000baseCX", IFM_1000_CX, ANAR_X_HD);
12085 ADD("1000baseCX-FDX", IFM_1000_CX | IFM_FDX, ANAR_X_FD);
12086 break;
12087 case SFF_SFP_ETH_FLAGS_1000T:
12088 ADD("1000baseT", IFM_1000_T, 0);
12089 ADD("1000baseT-FDX", IFM_1000_T | IFM_FDX, 0);
12090 break;
12091 case SFF_SFP_ETH_FLAGS_100FX:
12092 ADD("100baseFX", IFM_100_FX, ANAR_TX);
12093 ADD("100baseFX-FDX", IFM_100_FX | IFM_FDX, ANAR_TX_FD);
12094 break;
12095 }
12096 } else {
12097 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
12098 ADD("1000baseSX-FDX", IFM_1000_SX | IFM_FDX, ANAR_X_FD);
12099 }
12100 ADD("auto", IFM_AUTO, ANAR_X_FD | ANAR_X_HD);
12101 aprint_normal("\n");
12102
12103 #undef ADD
12104
12105 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
12106 }
12107
12108 /*
12109 * wm_tbi_mediachange: [ifmedia interface function]
12110 *
12111 * Set hardware to newly-selected media on a 1000BASE-X device.
12112 */
12113 static int
12114 wm_tbi_mediachange(struct ifnet *ifp)
12115 {
12116 struct wm_softc *sc = ifp->if_softc;
12117 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
12118 uint32_t status, ctrl;
12119 bool signal;
12120 int i;
12121
12122 KASSERT(sc->sc_mediatype != WM_MEDIATYPE_COPPER);
12123 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES) {
12124 /* XXX need some work for >= 82571 and < 82575 */
12125 if (sc->sc_type < WM_T_82575)
12126 return 0;
12127 }
12128
12129 if ((sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_82572)
12130 || (sc->sc_type >= WM_T_82575))
12131 CSR_WRITE(sc, WMREG_SCTL, SCTL_DISABLE_SERDES_LOOPBACK);
12132
12133 sc->sc_ctrl &= ~CTRL_LRST;
12134 sc->sc_txcw = TXCW_ANE;
12135 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
12136 sc->sc_txcw |= TXCW_FD | TXCW_HD;
12137 else if (ife->ifm_media & IFM_FDX)
12138 sc->sc_txcw |= TXCW_FD;
12139 else
12140 sc->sc_txcw |= TXCW_HD;
12141
12142 if ((sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
12143 sc->sc_txcw |= TXCW_SYM_PAUSE | TXCW_ASYM_PAUSE;
12144
12145 DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x after autoneg check\n",
12146 device_xname(sc->sc_dev), sc->sc_txcw));
12147 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
12148 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
12149 CSR_WRITE_FLUSH(sc);
12150 delay(1000);
12151
12152 ctrl = CSR_READ(sc, WMREG_CTRL);
12153 signal = wm_tbi_havesignal(sc, ctrl);
12154
12155 DPRINTF(WM_DEBUG_LINK, ("%s: signal = %d\n", device_xname(sc->sc_dev),
12156 signal));
12157
12158 if (signal) {
12159 /* Have signal; wait for the link to come up. */
12160 for (i = 0; i < WM_LINKUP_TIMEOUT; i++) {
12161 delay(10000);
12162 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
12163 break;
12164 }
12165
12166 DPRINTF(WM_DEBUG_LINK,("%s: i = %d after waiting for link\n",
12167 device_xname(sc->sc_dev), i));
12168
12169 status = CSR_READ(sc, WMREG_STATUS);
12170 DPRINTF(WM_DEBUG_LINK,
12171 ("%s: status after final read = 0x%x, STATUS_LU = 0x%x\n",
12172 device_xname(sc->sc_dev), status, STATUS_LU));
12173 if (status & STATUS_LU) {
12174 /* Link is up. */
12175 DPRINTF(WM_DEBUG_LINK,
12176 ("%s: LINK: set media -> link up %s\n",
12177 device_xname(sc->sc_dev),
12178 (status & STATUS_FD) ? "FDX" : "HDX"));
12179
12180 /*
12181 * NOTE: CTRL will update TFCE and RFCE automatically,
12182 * so we should update sc->sc_ctrl
12183 */
12184 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
12185 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
12186 sc->sc_fcrtl &= ~FCRTL_XONE;
12187 if (status & STATUS_FD)
12188 sc->sc_tctl |=
12189 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
12190 else
12191 sc->sc_tctl |=
12192 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
12193 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
12194 sc->sc_fcrtl |= FCRTL_XONE;
12195 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
12196 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
12197 WMREG_OLD_FCRTL : WMREG_FCRTL, sc->sc_fcrtl);
12198 sc->sc_tbi_linkup = 1;
12199 } else {
12200 if (i == WM_LINKUP_TIMEOUT)
12201 wm_check_for_link(sc);
12202 /* Link is down. */
12203 DPRINTF(WM_DEBUG_LINK,
12204 ("%s: LINK: set media -> link down\n",
12205 device_xname(sc->sc_dev)));
12206 sc->sc_tbi_linkup = 0;
12207 }
12208 } else {
12209 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
12210 device_xname(sc->sc_dev)));
12211 sc->sc_tbi_linkup = 0;
12212 }
12213
12214 wm_tbi_serdes_set_linkled(sc);
12215
12216 return 0;
12217 }
12218
12219 /*
12220 * wm_tbi_mediastatus: [ifmedia interface function]
12221 *
12222 * Get the current interface media status on a 1000BASE-X device.
12223 */
12224 static void
12225 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
12226 {
12227 struct wm_softc *sc = ifp->if_softc;
12228 uint32_t ctrl, status;
12229
12230 ifmr->ifm_status = IFM_AVALID;
12231 ifmr->ifm_active = IFM_ETHER;
12232
12233 status = CSR_READ(sc, WMREG_STATUS);
12234 if ((status & STATUS_LU) == 0) {
12235 ifmr->ifm_active |= IFM_NONE;
12236 return;
12237 }
12238
12239 ifmr->ifm_status |= IFM_ACTIVE;
12240 /* Only 82545 is LX */
12241 if (sc->sc_type == WM_T_82545)
12242 ifmr->ifm_active |= IFM_1000_LX;
12243 else
12244 ifmr->ifm_active |= IFM_1000_SX;
12245 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
12246 ifmr->ifm_active |= IFM_FDX;
12247 else
12248 ifmr->ifm_active |= IFM_HDX;
12249 ctrl = CSR_READ(sc, WMREG_CTRL);
12250 if (ctrl & CTRL_RFCE)
12251 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
12252 if (ctrl & CTRL_TFCE)
12253 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
12254 }
12255
12256 /* XXX TBI only */
12257 static int
12258 wm_check_for_link(struct wm_softc *sc)
12259 {
12260 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
12261 uint32_t rxcw;
12262 uint32_t ctrl;
12263 uint32_t status;
12264 bool signal;
12265
12266 DPRINTF(WM_DEBUG_LINK, ("%s: %s called\n",
12267 device_xname(sc->sc_dev), __func__));
12268
12269 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES) {
12270 /* XXX need some work for >= 82571 */
12271 if (sc->sc_type >= WM_T_82571) {
12272 sc->sc_tbi_linkup = 1;
12273 return 0;
12274 }
12275 }
12276
12277 rxcw = CSR_READ(sc, WMREG_RXCW);
12278 ctrl = CSR_READ(sc, WMREG_CTRL);
12279 status = CSR_READ(sc, WMREG_STATUS);
12280 signal = wm_tbi_havesignal(sc, ctrl);
12281
12282 DPRINTF(WM_DEBUG_LINK,
12283 ("%s: %s: signal = %d, status_lu = %d, rxcw_c = %d\n",
12284 device_xname(sc->sc_dev), __func__, signal,
12285 ((status & STATUS_LU) != 0), ((rxcw & RXCW_C) != 0)));
12286
12287 /*
12288 * SWDPIN LU RXCW
12289 * 0 0 0
12290 * 0 0 1 (should not happen)
12291 * 0 1 0 (should not happen)
12292 * 0 1 1 (should not happen)
12293 * 1 0 0 Disable autonego and force linkup
12294 * 1 0 1 got /C/ but not linkup yet
12295 * 1 1 0 (linkup)
12296 * 1 1 1 If IFM_AUTO, back to autonego
12297 *
12298 */
12299 if (signal && ((status & STATUS_LU) == 0) && ((rxcw & RXCW_C) == 0)) {
12300 DPRINTF(WM_DEBUG_LINK,
12301 ("%s: %s: force linkup and fullduplex\n",
12302 device_xname(sc->sc_dev), __func__));
12303 sc->sc_tbi_linkup = 0;
12304 /* Disable auto-negotiation in the TXCW register */
12305 CSR_WRITE(sc, WMREG_TXCW, (sc->sc_txcw & ~TXCW_ANE));
12306
12307 /*
12308 * Force link-up and also force full-duplex.
12309 *
12310 * NOTE: CTRL was updated TFCE and RFCE automatically,
12311 * so we should update sc->sc_ctrl
12312 */
12313 sc->sc_ctrl = ctrl | CTRL_SLU | CTRL_FD;
12314 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
12315 } else if (((status & STATUS_LU) != 0)
12316 && ((rxcw & RXCW_C) != 0)
12317 && (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)) {
12318 sc->sc_tbi_linkup = 1;
12319 DPRINTF(WM_DEBUG_LINK, ("%s: %s: go back to autonego\n",
12320 device_xname(sc->sc_dev),
12321 __func__));
12322 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
12323 CSR_WRITE(sc, WMREG_CTRL, (ctrl & ~CTRL_SLU));
12324 } else if (signal && ((rxcw & RXCW_C) != 0)) {
12325 DPRINTF(WM_DEBUG_LINK, ("%s: %s: /C/",
12326 device_xname(sc->sc_dev), __func__));
12327 } else {
12328 DPRINTF(WM_DEBUG_LINK, ("%s: %s: linkup %08x,%08x,%08x\n",
12329 device_xname(sc->sc_dev), __func__, rxcw, ctrl,
12330 status));
12331 }
12332
12333 return 0;
12334 }
12335
12336 /*
12337 * wm_tbi_tick:
12338 *
12339 * Check the link on TBI devices.
12340 * This function acts as mii_tick().
12341 */
12342 static void
12343 wm_tbi_tick(struct wm_softc *sc)
12344 {
12345 struct mii_data *mii = &sc->sc_mii;
12346 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
12347 uint32_t status;
12348
12349 KASSERT(WM_CORE_LOCKED(sc));
12350
12351 status = CSR_READ(sc, WMREG_STATUS);
12352
12353 /* XXX is this needed? */
12354 (void)CSR_READ(sc, WMREG_RXCW);
12355 (void)CSR_READ(sc, WMREG_CTRL);
12356
12357 /* set link status */
12358 if ((status & STATUS_LU) == 0) {
12359 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: checklink -> down\n",
12360 device_xname(sc->sc_dev)));
12361 sc->sc_tbi_linkup = 0;
12362 } else if (sc->sc_tbi_linkup == 0) {
12363 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: checklink -> up %s\n",
12364 device_xname(sc->sc_dev),
12365 (status & STATUS_FD) ? "FDX" : "HDX"));
12366 sc->sc_tbi_linkup = 1;
12367 sc->sc_tbi_serdes_ticks = 0;
12368 }
12369
12370 if ((sc->sc_ethercom.ec_if.if_flags & IFF_UP) == 0)
12371 goto setled;
12372
12373 if ((status & STATUS_LU) == 0) {
12374 sc->sc_tbi_linkup = 0;
12375 /* If the timer expired, retry autonegotiation */
12376 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
12377 && (++sc->sc_tbi_serdes_ticks
12378 >= sc->sc_tbi_serdes_anegticks)) {
12379 DPRINTF(WM_DEBUG_LINK, ("%s: %s: EXPIRE\n",
12380 device_xname(sc->sc_dev), __func__));
12381 sc->sc_tbi_serdes_ticks = 0;
12382 /*
12383 * Reset the link, and let autonegotiation do
12384 * its thing
12385 */
12386 sc->sc_ctrl |= CTRL_LRST;
12387 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
12388 CSR_WRITE_FLUSH(sc);
12389 delay(1000);
12390 sc->sc_ctrl &= ~CTRL_LRST;
12391 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
12392 CSR_WRITE_FLUSH(sc);
12393 delay(1000);
12394 CSR_WRITE(sc, WMREG_TXCW,
12395 sc->sc_txcw & ~TXCW_ANE);
12396 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
12397 }
12398 }
12399
12400 setled:
12401 wm_tbi_serdes_set_linkled(sc);
12402 }
12403
12404 /* SERDES related */
12405 static void
12406 wm_serdes_power_up_link_82575(struct wm_softc *sc)
12407 {
12408 uint32_t reg;
12409
12410 if ((sc->sc_mediatype != WM_MEDIATYPE_SERDES)
12411 && ((sc->sc_flags & WM_F_SGMII) == 0))
12412 return;
12413
12414 /* Enable PCS to turn on link */
12415 reg = CSR_READ(sc, WMREG_PCS_CFG);
12416 reg |= PCS_CFG_PCS_EN;
12417 CSR_WRITE(sc, WMREG_PCS_CFG, reg);
12418
12419 /* Power up the laser */
12420 reg = CSR_READ(sc, WMREG_CTRL_EXT);
12421 reg &= ~CTRL_EXT_SWDPIN(3);
12422 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
12423
12424 /* Flush the write to verify completion */
12425 CSR_WRITE_FLUSH(sc);
12426 delay(1000);
12427 }
12428
12429 static int
12430 wm_serdes_mediachange(struct ifnet *ifp)
12431 {
12432 struct wm_softc *sc = ifp->if_softc;
12433 bool pcs_autoneg = true; /* XXX */
12434 uint32_t ctrl_ext, pcs_lctl, reg;
12435
12436 if ((sc->sc_mediatype != WM_MEDIATYPE_SERDES)
12437 && ((sc->sc_flags & WM_F_SGMII) == 0))
12438 return 0;
12439
12440 /* XXX Currently, this function is not called on 8257[12] */
12441 if ((sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_82572)
12442 || (sc->sc_type >= WM_T_82575))
12443 CSR_WRITE(sc, WMREG_SCTL, SCTL_DISABLE_SERDES_LOOPBACK);
12444
12445 /* Power on the sfp cage if present */
12446 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
12447 ctrl_ext &= ~CTRL_EXT_SWDPIN(3);
12448 ctrl_ext |= CTRL_EXT_I2C_ENA;
12449 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
12450
12451 sc->sc_ctrl |= CTRL_SLU;
12452
12453 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)) {
12454 sc->sc_ctrl |= CTRL_SWDPIN(0) | CTRL_SWDPIN(1);
12455
12456 reg = CSR_READ(sc, WMREG_CONNSW);
12457 reg |= CONNSW_ENRGSRC;
12458 CSR_WRITE(sc, WMREG_CONNSW, reg);
12459 }
12460
12461 pcs_lctl = CSR_READ(sc, WMREG_PCS_LCTL);
12462 switch (ctrl_ext & CTRL_EXT_LINK_MODE_MASK) {
12463 case CTRL_EXT_LINK_MODE_SGMII:
12464 /* SGMII mode lets the phy handle forcing speed/duplex */
12465 pcs_autoneg = true;
12466 /* Autoneg time out should be disabled for SGMII mode */
12467 pcs_lctl &= ~PCS_LCTL_AN_TIMEOUT;
12468 break;
12469 case CTRL_EXT_LINK_MODE_1000KX:
12470 pcs_autoneg = false;
12471 /* FALLTHROUGH */
12472 default:
12473 if ((sc->sc_type == WM_T_82575)
12474 || (sc->sc_type == WM_T_82576)) {
12475 if ((sc->sc_flags & WM_F_PCS_DIS_AUTONEGO) != 0)
12476 pcs_autoneg = false;
12477 }
12478 sc->sc_ctrl |= CTRL_SPEED_1000 | CTRL_FRCSPD | CTRL_FD
12479 | CTRL_FRCFDX;
12480
12481 /* Set speed of 1000/Full if speed/duplex is forced */
12482 pcs_lctl |= PCS_LCTL_FSV_1000 | PCS_LCTL_FDV_FULL;
12483 }
12484 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
12485
12486 pcs_lctl &= ~(PCS_LCTL_AN_ENABLE | PCS_LCTL_FLV_LINK_UP |
12487 PCS_LCTL_FSD | PCS_LCTL_FORCE_LINK);
12488
12489 if (pcs_autoneg) {
12490 /* Set PCS register for autoneg */
12491 pcs_lctl |= PCS_LCTL_AN_ENABLE | PCS_LCTL_AN_RESTART;
12492
12493 /* Disable force flow control for autoneg */
12494 pcs_lctl &= ~PCS_LCTL_FORCE_FC;
12495
12496 /* Configure flow control advertisement for autoneg */
12497 reg = CSR_READ(sc, WMREG_PCS_ANADV);
12498 reg &= ~(TXCW_ASYM_PAUSE | TXCW_SYM_PAUSE);
12499 reg |= TXCW_ASYM_PAUSE | TXCW_SYM_PAUSE;
12500 CSR_WRITE(sc, WMREG_PCS_ANADV, reg);
12501 } else
12502 pcs_lctl |= PCS_LCTL_FSD | PCS_LCTL_FORCE_FC;
12503
12504 CSR_WRITE(sc, WMREG_PCS_LCTL, pcs_lctl);
12505
12506 return 0;
12507 }
12508
12509 static void
12510 wm_serdes_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
12511 {
12512 struct wm_softc *sc = ifp->if_softc;
12513 struct mii_data *mii = &sc->sc_mii;
12514 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
12515 uint32_t pcs_adv, pcs_lpab, reg;
12516
12517 ifmr->ifm_status = IFM_AVALID;
12518 ifmr->ifm_active = IFM_ETHER;
12519
12520 /* Check PCS */
12521 reg = CSR_READ(sc, WMREG_PCS_LSTS);
12522 if ((reg & PCS_LSTS_LINKOK) == 0) {
12523 ifmr->ifm_active |= IFM_NONE;
12524 sc->sc_tbi_linkup = 0;
12525 goto setled;
12526 }
12527
12528 sc->sc_tbi_linkup = 1;
12529 ifmr->ifm_status |= IFM_ACTIVE;
12530 if (sc->sc_type == WM_T_I354) {
12531 uint32_t status;
12532
12533 status = CSR_READ(sc, WMREG_STATUS);
12534 if (((status & STATUS_2P5_SKU) != 0)
12535 && ((status & STATUS_2P5_SKU_OVER) == 0)) {
12536 ifmr->ifm_active |= IFM_2500_KX;
12537 } else
12538 ifmr->ifm_active |= IFM_1000_KX;
12539 } else {
12540 switch (__SHIFTOUT(reg, PCS_LSTS_SPEED)) {
12541 case PCS_LSTS_SPEED_10:
12542 ifmr->ifm_active |= IFM_10_T; /* XXX */
12543 break;
12544 case PCS_LSTS_SPEED_100:
12545 ifmr->ifm_active |= IFM_100_FX; /* XXX */
12546 break;
12547 case PCS_LSTS_SPEED_1000:
12548 ifmr->ifm_active |= IFM_1000_SX; /* XXX */
12549 break;
12550 default:
12551 device_printf(sc->sc_dev, "Unknown speed\n");
12552 ifmr->ifm_active |= IFM_1000_SX; /* XXX */
12553 break;
12554 }
12555 }
12556 if ((reg & PCS_LSTS_FDX) != 0)
12557 ifmr->ifm_active |= IFM_FDX;
12558 else
12559 ifmr->ifm_active |= IFM_HDX;
12560 mii->mii_media_active &= ~IFM_ETH_FMASK;
12561 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
12562 /* Check flow */
12563 reg = CSR_READ(sc, WMREG_PCS_LSTS);
12564 if ((reg & PCS_LSTS_AN_COMP) == 0) {
12565 DPRINTF(WM_DEBUG_LINK, ("XXX LINKOK but not ACOMP\n"));
12566 goto setled;
12567 }
12568 pcs_adv = CSR_READ(sc, WMREG_PCS_ANADV);
12569 pcs_lpab = CSR_READ(sc, WMREG_PCS_LPAB);
12570 DPRINTF(WM_DEBUG_LINK,
12571 ("XXX AN result(2) %08x, %08x\n", pcs_adv, pcs_lpab));
12572 if ((pcs_adv & TXCW_SYM_PAUSE)
12573 && (pcs_lpab & TXCW_SYM_PAUSE)) {
12574 mii->mii_media_active |= IFM_FLOW
12575 | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
12576 } else if (((pcs_adv & TXCW_SYM_PAUSE) == 0)
12577 && (pcs_adv & TXCW_ASYM_PAUSE)
12578 && (pcs_lpab & TXCW_SYM_PAUSE)
12579 && (pcs_lpab & TXCW_ASYM_PAUSE)) {
12580 mii->mii_media_active |= IFM_FLOW
12581 | IFM_ETH_TXPAUSE;
12582 } else if ((pcs_adv & TXCW_SYM_PAUSE)
12583 && (pcs_adv & TXCW_ASYM_PAUSE)
12584 && ((pcs_lpab & TXCW_SYM_PAUSE) == 0)
12585 && (pcs_lpab & TXCW_ASYM_PAUSE)) {
12586 mii->mii_media_active |= IFM_FLOW
12587 | IFM_ETH_RXPAUSE;
12588 }
12589 }
12590 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
12591 | (mii->mii_media_active & IFM_ETH_FMASK);
12592 setled:
12593 wm_tbi_serdes_set_linkled(sc);
12594 }
12595
12596 /*
12597 * wm_serdes_tick:
12598 *
12599 * Check the link on serdes devices.
12600 */
12601 static void
12602 wm_serdes_tick(struct wm_softc *sc)
12603 {
12604 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
12605 struct mii_data *mii = &sc->sc_mii;
12606 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
12607 uint32_t reg;
12608
12609 KASSERT(WM_CORE_LOCKED(sc));
12610
12611 mii->mii_media_status = IFM_AVALID;
12612 mii->mii_media_active = IFM_ETHER;
12613
12614 /* Check PCS */
12615 reg = CSR_READ(sc, WMREG_PCS_LSTS);
12616 if ((reg & PCS_LSTS_LINKOK) != 0) {
12617 mii->mii_media_status |= IFM_ACTIVE;
12618 sc->sc_tbi_linkup = 1;
12619 sc->sc_tbi_serdes_ticks = 0;
12620 mii->mii_media_active |= IFM_1000_SX; /* XXX */
12621 if ((reg & PCS_LSTS_FDX) != 0)
12622 mii->mii_media_active |= IFM_FDX;
12623 else
12624 mii->mii_media_active |= IFM_HDX;
12625 } else {
12626 mii->mii_media_status |= IFM_NONE;
12627 sc->sc_tbi_linkup = 0;
12628 /* If the timer expired, retry autonegotiation */
12629 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
12630 && (++sc->sc_tbi_serdes_ticks
12631 >= sc->sc_tbi_serdes_anegticks)) {
12632 DPRINTF(WM_DEBUG_LINK, ("%s: %s: EXPIRE\n",
12633 device_xname(sc->sc_dev), __func__));
12634 sc->sc_tbi_serdes_ticks = 0;
12635 /* XXX */
12636 wm_serdes_mediachange(ifp);
12637 }
12638 }
12639
12640 wm_tbi_serdes_set_linkled(sc);
12641 }
12642
12643 /* SFP related */
12644
12645 static int
12646 wm_sfp_read_data_byte(struct wm_softc *sc, uint16_t offset, uint8_t *data)
12647 {
12648 uint32_t i2ccmd;
12649 int i;
12650
12651 i2ccmd = (offset << I2CCMD_REG_ADDR_SHIFT) | I2CCMD_OPCODE_READ;
12652 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
12653
12654 /* Poll the ready bit */
12655 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
12656 delay(50);
12657 i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
12658 if (i2ccmd & I2CCMD_READY)
12659 break;
12660 }
12661 if ((i2ccmd & I2CCMD_READY) == 0)
12662 return -1;
12663 if ((i2ccmd & I2CCMD_ERROR) != 0)
12664 return -1;
12665
12666 *data = i2ccmd & 0x00ff;
12667
12668 return 0;
12669 }
12670
12671 static uint32_t
12672 wm_sfp_get_media_type(struct wm_softc *sc)
12673 {
12674 uint32_t ctrl_ext;
12675 uint8_t val = 0;
12676 int timeout = 3;
12677 uint32_t mediatype = WM_MEDIATYPE_UNKNOWN;
12678 int rv = -1;
12679
12680 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
12681 ctrl_ext &= ~CTRL_EXT_SWDPIN(3);
12682 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext | CTRL_EXT_I2C_ENA);
12683 CSR_WRITE_FLUSH(sc);
12684
12685 /* Read SFP module data */
12686 while (timeout) {
12687 rv = wm_sfp_read_data_byte(sc, SFF_SFP_ID_OFF, &val);
12688 if (rv == 0)
12689 break;
12690 delay(100*1000); /* XXX too big */
12691 timeout--;
12692 }
12693 if (rv != 0)
12694 goto out;
12695
12696 switch (val) {
12697 case SFF_SFP_ID_SFF:
12698 aprint_normal_dev(sc->sc_dev,
12699 "Module/Connector soldered to board\n");
12700 break;
12701 case SFF_SFP_ID_SFP:
12702 sc->sc_flags |= WM_F_SFP;
12703 break;
12704 case SFF_SFP_ID_UNKNOWN:
12705 goto out;
12706 default:
12707 break;
12708 }
12709
12710 rv = wm_sfp_read_data_byte(sc, SFF_SFP_ETH_FLAGS_OFF, &val);
12711 if (rv != 0)
12712 goto out;
12713
12714 sc->sc_sfptype = val;
12715 if ((val & (SFF_SFP_ETH_FLAGS_1000SX | SFF_SFP_ETH_FLAGS_1000LX)) != 0)
12716 mediatype = WM_MEDIATYPE_SERDES;
12717 else if ((val & SFF_SFP_ETH_FLAGS_1000T) != 0) {
12718 sc->sc_flags |= WM_F_SGMII;
12719 mediatype = WM_MEDIATYPE_COPPER;
12720 } else if ((val & SFF_SFP_ETH_FLAGS_100FX) != 0) {
12721 sc->sc_flags |= WM_F_SGMII;
12722 mediatype = WM_MEDIATYPE_SERDES;
12723 } else {
12724 device_printf(sc->sc_dev, "%s: unknown media type? (0x%hhx)\n",
12725 __func__, sc->sc_sfptype);
12726 sc->sc_sfptype = 0; /* XXX unknown */
12727 }
12728
12729 out:
12730 /* Restore I2C interface setting */
12731 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
12732
12733 return mediatype;
12734 }
12735
12736 /*
12737 * NVM related.
12738 * Microwire, SPI (w/wo EERD) and Flash.
12739 */
12740
12741 /* Both spi and uwire */
12742
12743 /*
12744 * wm_eeprom_sendbits:
12745 *
12746 * Send a series of bits to the EEPROM.
12747 */
12748 static void
12749 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
12750 {
12751 uint32_t reg;
12752 int x;
12753
12754 reg = CSR_READ(sc, WMREG_EECD);
12755
12756 for (x = nbits; x > 0; x--) {
12757 if (bits & (1U << (x - 1)))
12758 reg |= EECD_DI;
12759 else
12760 reg &= ~EECD_DI;
12761 CSR_WRITE(sc, WMREG_EECD, reg);
12762 CSR_WRITE_FLUSH(sc);
12763 delay(2);
12764 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
12765 CSR_WRITE_FLUSH(sc);
12766 delay(2);
12767 CSR_WRITE(sc, WMREG_EECD, reg);
12768 CSR_WRITE_FLUSH(sc);
12769 delay(2);
12770 }
12771 }
12772
12773 /*
12774 * wm_eeprom_recvbits:
12775 *
12776 * Receive a series of bits from the EEPROM.
12777 */
12778 static void
12779 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
12780 {
12781 uint32_t reg, val;
12782 int x;
12783
12784 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
12785
12786 val = 0;
12787 for (x = nbits; x > 0; x--) {
12788 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
12789 CSR_WRITE_FLUSH(sc);
12790 delay(2);
12791 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
12792 val |= (1U << (x - 1));
12793 CSR_WRITE(sc, WMREG_EECD, reg);
12794 CSR_WRITE_FLUSH(sc);
12795 delay(2);
12796 }
12797 *valp = val;
12798 }
12799
12800 /* Microwire */
12801
12802 /*
12803 * wm_nvm_read_uwire:
12804 *
12805 * Read a word from the EEPROM using the MicroWire protocol.
12806 */
12807 static int
12808 wm_nvm_read_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
12809 {
12810 uint32_t reg, val;
12811 int i;
12812
12813 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
12814 device_xname(sc->sc_dev), __func__));
12815
12816 if (sc->nvm.acquire(sc) != 0)
12817 return -1;
12818
12819 for (i = 0; i < wordcnt; i++) {
12820 /* Clear SK and DI. */
12821 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
12822 CSR_WRITE(sc, WMREG_EECD, reg);
12823
12824 /*
12825 * XXX: workaround for a bug in qemu-0.12.x and prior
12826 * and Xen.
12827 *
12828 * We use this workaround only for 82540 because qemu's
12829 * e1000 act as 82540.
12830 */
12831 if (sc->sc_type == WM_T_82540) {
12832 reg |= EECD_SK;
12833 CSR_WRITE(sc, WMREG_EECD, reg);
12834 reg &= ~EECD_SK;
12835 CSR_WRITE(sc, WMREG_EECD, reg);
12836 CSR_WRITE_FLUSH(sc);
12837 delay(2);
12838 }
12839 /* XXX: end of workaround */
12840
12841 /* Set CHIP SELECT. */
12842 reg |= EECD_CS;
12843 CSR_WRITE(sc, WMREG_EECD, reg);
12844 CSR_WRITE_FLUSH(sc);
12845 delay(2);
12846
12847 /* Shift in the READ command. */
12848 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
12849
12850 /* Shift in address. */
12851 wm_eeprom_sendbits(sc, word + i, sc->sc_nvm_addrbits);
12852
12853 /* Shift out the data. */
12854 wm_eeprom_recvbits(sc, &val, 16);
12855 data[i] = val & 0xffff;
12856
12857 /* Clear CHIP SELECT. */
12858 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
12859 CSR_WRITE(sc, WMREG_EECD, reg);
12860 CSR_WRITE_FLUSH(sc);
12861 delay(2);
12862 }
12863
12864 sc->nvm.release(sc);
12865 return 0;
12866 }
12867
12868 /* SPI */
12869
12870 /*
12871 * Set SPI and FLASH related information from the EECD register.
12872 * For 82541 and 82547, the word size is taken from EEPROM.
12873 */
12874 static int
12875 wm_nvm_set_addrbits_size_eecd(struct wm_softc *sc)
12876 {
12877 int size;
12878 uint32_t reg;
12879 uint16_t data;
12880
12881 reg = CSR_READ(sc, WMREG_EECD);
12882 sc->sc_nvm_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
12883
12884 /* Read the size of NVM from EECD by default */
12885 size = __SHIFTOUT(reg, EECD_EE_SIZE_EX_MASK);
12886 switch (sc->sc_type) {
12887 case WM_T_82541:
12888 case WM_T_82541_2:
12889 case WM_T_82547:
12890 case WM_T_82547_2:
12891 /* Set dummy value to access EEPROM */
12892 sc->sc_nvm_wordsize = 64;
12893 if (wm_nvm_read(sc, NVM_OFF_EEPROM_SIZE, 1, &data) != 0) {
12894 aprint_error_dev(sc->sc_dev,
12895 "%s: failed to read EEPROM size\n", __func__);
12896 }
12897 reg = data;
12898 size = __SHIFTOUT(reg, EECD_EE_SIZE_EX_MASK);
12899 if (size == 0)
12900 size = 6; /* 64 word size */
12901 else
12902 size += NVM_WORD_SIZE_BASE_SHIFT + 1;
12903 break;
12904 case WM_T_80003:
12905 case WM_T_82571:
12906 case WM_T_82572:
12907 case WM_T_82573: /* SPI case */
12908 case WM_T_82574: /* SPI case */
12909 case WM_T_82583: /* SPI case */
12910 size += NVM_WORD_SIZE_BASE_SHIFT;
12911 if (size > 14)
12912 size = 14;
12913 break;
12914 case WM_T_82575:
12915 case WM_T_82576:
12916 case WM_T_82580:
12917 case WM_T_I350:
12918 case WM_T_I354:
12919 case WM_T_I210:
12920 case WM_T_I211:
12921 size += NVM_WORD_SIZE_BASE_SHIFT;
12922 if (size > 15)
12923 size = 15;
12924 break;
12925 default:
12926 aprint_error_dev(sc->sc_dev,
12927 "%s: unknown device(%d)?\n", __func__, sc->sc_type);
12928 return -1;
12929 break;
12930 }
12931
12932 sc->sc_nvm_wordsize = 1 << size;
12933
12934 return 0;
12935 }
12936
12937 /*
12938 * wm_nvm_ready_spi:
12939 *
12940 * Wait for a SPI EEPROM to be ready for commands.
12941 */
12942 static int
12943 wm_nvm_ready_spi(struct wm_softc *sc)
12944 {
12945 uint32_t val;
12946 int usec;
12947
12948 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
12949 device_xname(sc->sc_dev), __func__));
12950
12951 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
12952 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
12953 wm_eeprom_recvbits(sc, &val, 8);
12954 if ((val & SPI_SR_RDY) == 0)
12955 break;
12956 }
12957 if (usec >= SPI_MAX_RETRIES) {
12958 aprint_error_dev(sc->sc_dev,"EEPROM failed to become ready\n");
12959 return -1;
12960 }
12961 return 0;
12962 }
12963
12964 /*
12965 * wm_nvm_read_spi:
12966 *
12967 * Read a work from the EEPROM using the SPI protocol.
12968 */
12969 static int
12970 wm_nvm_read_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
12971 {
12972 uint32_t reg, val;
12973 int i;
12974 uint8_t opc;
12975 int rv = 0;
12976
12977 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
12978 device_xname(sc->sc_dev), __func__));
12979
12980 if (sc->nvm.acquire(sc) != 0)
12981 return -1;
12982
12983 /* Clear SK and CS. */
12984 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
12985 CSR_WRITE(sc, WMREG_EECD, reg);
12986 CSR_WRITE_FLUSH(sc);
12987 delay(2);
12988
12989 if ((rv = wm_nvm_ready_spi(sc)) != 0)
12990 goto out;
12991
12992 /* Toggle CS to flush commands. */
12993 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
12994 CSR_WRITE_FLUSH(sc);
12995 delay(2);
12996 CSR_WRITE(sc, WMREG_EECD, reg);
12997 CSR_WRITE_FLUSH(sc);
12998 delay(2);
12999
13000 opc = SPI_OPC_READ;
13001 if (sc->sc_nvm_addrbits == 8 && word >= 128)
13002 opc |= SPI_OPC_A8;
13003
13004 wm_eeprom_sendbits(sc, opc, 8);
13005 wm_eeprom_sendbits(sc, word << 1, sc->sc_nvm_addrbits);
13006
13007 for (i = 0; i < wordcnt; i++) {
13008 wm_eeprom_recvbits(sc, &val, 16);
13009 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
13010 }
13011
13012 /* Raise CS and clear SK. */
13013 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
13014 CSR_WRITE(sc, WMREG_EECD, reg);
13015 CSR_WRITE_FLUSH(sc);
13016 delay(2);
13017
13018 out:
13019 sc->nvm.release(sc);
13020 return rv;
13021 }
13022
13023 /* Using with EERD */
13024
13025 static int
13026 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
13027 {
13028 uint32_t attempts = 100000;
13029 uint32_t i, reg = 0;
13030 int32_t done = -1;
13031
13032 for (i = 0; i < attempts; i++) {
13033 reg = CSR_READ(sc, rw);
13034
13035 if (reg & EERD_DONE) {
13036 done = 0;
13037 break;
13038 }
13039 delay(5);
13040 }
13041
13042 return done;
13043 }
13044
13045 static int
13046 wm_nvm_read_eerd(struct wm_softc *sc, int offset, int wordcnt, uint16_t *data)
13047 {
13048 int i, eerd = 0;
13049 int rv = 0;
13050
13051 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
13052 device_xname(sc->sc_dev), __func__));
13053
13054 if (sc->nvm.acquire(sc) != 0)
13055 return -1;
13056
13057 for (i = 0; i < wordcnt; i++) {
13058 eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
13059 CSR_WRITE(sc, WMREG_EERD, eerd);
13060 rv = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
13061 if (rv != 0) {
13062 aprint_error_dev(sc->sc_dev, "EERD polling failed: "
13063 "offset=%d. wordcnt=%d\n", offset, wordcnt);
13064 break;
13065 }
13066 data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
13067 }
13068
13069 sc->nvm.release(sc);
13070 return rv;
13071 }
13072
13073 /* Flash */
13074
13075 static int
13076 wm_nvm_valid_bank_detect_ich8lan(struct wm_softc *sc, unsigned int *bank)
13077 {
13078 uint32_t eecd;
13079 uint32_t act_offset = ICH_NVM_SIG_WORD * 2 + 1;
13080 uint32_t bank1_offset = sc->sc_ich8_flash_bank_size * sizeof(uint16_t);
13081 uint32_t nvm_dword = 0;
13082 uint8_t sig_byte = 0;
13083 int rv;
13084
13085 switch (sc->sc_type) {
13086 case WM_T_PCH_SPT:
13087 case WM_T_PCH_CNP:
13088 bank1_offset = sc->sc_ich8_flash_bank_size * 2;
13089 act_offset = ICH_NVM_SIG_WORD * 2;
13090
13091 /* Set bank to 0 in case flash read fails. */
13092 *bank = 0;
13093
13094 /* Check bank 0 */
13095 rv = wm_read_ich8_dword(sc, act_offset, &nvm_dword);
13096 if (rv != 0)
13097 return rv;
13098 sig_byte = (uint8_t)((nvm_dword & 0xFF00) >> 8);
13099 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
13100 *bank = 0;
13101 return 0;
13102 }
13103
13104 /* Check bank 1 */
13105 rv = wm_read_ich8_dword(sc, act_offset + bank1_offset,
13106 &nvm_dword);
13107 sig_byte = (uint8_t)((nvm_dword & 0xFF00) >> 8);
13108 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
13109 *bank = 1;
13110 return 0;
13111 }
13112 aprint_error_dev(sc->sc_dev,
13113 "%s: no valid NVM bank present (%u)\n", __func__, *bank);
13114 return -1;
13115 case WM_T_ICH8:
13116 case WM_T_ICH9:
13117 eecd = CSR_READ(sc, WMREG_EECD);
13118 if ((eecd & EECD_SEC1VAL_VALMASK) == EECD_SEC1VAL_VALMASK) {
13119 *bank = ((eecd & EECD_SEC1VAL) != 0) ? 1 : 0;
13120 return 0;
13121 }
13122 /* FALLTHROUGH */
13123 default:
13124 /* Default to 0 */
13125 *bank = 0;
13126
13127 /* Check bank 0 */
13128 wm_read_ich8_byte(sc, act_offset, &sig_byte);
13129 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
13130 *bank = 0;
13131 return 0;
13132 }
13133
13134 /* Check bank 1 */
13135 wm_read_ich8_byte(sc, act_offset + bank1_offset,
13136 &sig_byte);
13137 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
13138 *bank = 1;
13139 return 0;
13140 }
13141 }
13142
13143 DPRINTF(WM_DEBUG_NVM, ("%s: No valid NVM bank present\n",
13144 device_xname(sc->sc_dev)));
13145 return -1;
13146 }
13147
13148 /******************************************************************************
13149 * This function does initial flash setup so that a new read/write/erase cycle
13150 * can be started.
13151 *
13152 * sc - The pointer to the hw structure
13153 ****************************************************************************/
13154 static int32_t
13155 wm_ich8_cycle_init(struct wm_softc *sc)
13156 {
13157 uint16_t hsfsts;
13158 int32_t error = 1;
13159 int32_t i = 0;
13160
13161 if (sc->sc_type >= WM_T_PCH_SPT)
13162 hsfsts = ICH8_FLASH_READ32(sc, ICH_FLASH_HSFSTS) & 0xffffUL;
13163 else
13164 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
13165
13166 /* May be check the Flash Des Valid bit in Hw status */
13167 if ((hsfsts & HSFSTS_FLDVAL) == 0)
13168 return error;
13169
13170 /* Clear FCERR in Hw status by writing 1 */
13171 /* Clear DAEL in Hw status by writing a 1 */
13172 hsfsts |= HSFSTS_ERR | HSFSTS_DAEL;
13173
13174 if (sc->sc_type >= WM_T_PCH_SPT)
13175 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS, hsfsts & 0xffffUL);
13176 else
13177 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
13178
13179 /*
13180 * Either we should have a hardware SPI cycle in progress bit to check
13181 * against, in order to start a new cycle or FDONE bit should be
13182 * changed in the hardware so that it is 1 after hardware reset, which
13183 * can then be used as an indication whether a cycle is in progress or
13184 * has been completed .. we should also have some software semaphore
13185 * mechanism to guard FDONE or the cycle in progress bit so that two
13186 * threads access to those bits can be sequentiallized or a way so that
13187 * 2 threads don't start the cycle at the same time
13188 */
13189
13190 if ((hsfsts & HSFSTS_FLINPRO) == 0) {
13191 /*
13192 * There is no cycle running at present, so we can start a
13193 * cycle
13194 */
13195
13196 /* Begin by setting Flash Cycle Done. */
13197 hsfsts |= HSFSTS_DONE;
13198 if (sc->sc_type >= WM_T_PCH_SPT)
13199 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS,
13200 hsfsts & 0xffffUL);
13201 else
13202 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
13203 error = 0;
13204 } else {
13205 /*
13206 * Otherwise poll for sometime so the current cycle has a
13207 * chance to end before giving up.
13208 */
13209 for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
13210 if (sc->sc_type >= WM_T_PCH_SPT)
13211 hsfsts = ICH8_FLASH_READ32(sc,
13212 ICH_FLASH_HSFSTS) & 0xffffUL;
13213 else
13214 hsfsts = ICH8_FLASH_READ16(sc,
13215 ICH_FLASH_HSFSTS);
13216 if ((hsfsts & HSFSTS_FLINPRO) == 0) {
13217 error = 0;
13218 break;
13219 }
13220 delay(1);
13221 }
13222 if (error == 0) {
13223 /*
13224 * Successful in waiting for previous cycle to timeout,
13225 * now set the Flash Cycle Done.
13226 */
13227 hsfsts |= HSFSTS_DONE;
13228 if (sc->sc_type >= WM_T_PCH_SPT)
13229 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS,
13230 hsfsts & 0xffffUL);
13231 else
13232 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS,
13233 hsfsts);
13234 }
13235 }
13236 return error;
13237 }
13238
13239 /******************************************************************************
13240 * This function starts a flash cycle and waits for its completion
13241 *
13242 * sc - The pointer to the hw structure
13243 ****************************************************************************/
13244 static int32_t
13245 wm_ich8_flash_cycle(struct wm_softc *sc, uint32_t timeout)
13246 {
13247 uint16_t hsflctl;
13248 uint16_t hsfsts;
13249 int32_t error = 1;
13250 uint32_t i = 0;
13251
13252 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
13253 if (sc->sc_type >= WM_T_PCH_SPT)
13254 hsflctl = ICH8_FLASH_READ32(sc, ICH_FLASH_HSFSTS) >> 16;
13255 else
13256 hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
13257 hsflctl |= HSFCTL_GO;
13258 if (sc->sc_type >= WM_T_PCH_SPT)
13259 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS,
13260 (uint32_t)hsflctl << 16);
13261 else
13262 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
13263
13264 /* Wait till FDONE bit is set to 1 */
13265 do {
13266 if (sc->sc_type >= WM_T_PCH_SPT)
13267 hsfsts = ICH8_FLASH_READ32(sc, ICH_FLASH_HSFSTS)
13268 & 0xffffUL;
13269 else
13270 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
13271 if (hsfsts & HSFSTS_DONE)
13272 break;
13273 delay(1);
13274 i++;
13275 } while (i < timeout);
13276 if ((hsfsts & HSFSTS_DONE) == 1 && (hsfsts & HSFSTS_ERR) == 0)
13277 error = 0;
13278
13279 return error;
13280 }
13281
13282 /******************************************************************************
13283 * Reads a byte or (d)word from the NVM using the ICH8 flash access registers.
13284 *
13285 * sc - The pointer to the hw structure
13286 * index - The index of the byte or word to read.
13287 * size - Size of data to read, 1=byte 2=word, 4=dword
13288 * data - Pointer to the word to store the value read.
13289 *****************************************************************************/
13290 static int32_t
13291 wm_read_ich8_data(struct wm_softc *sc, uint32_t index,
13292 uint32_t size, uint32_t *data)
13293 {
13294 uint16_t hsfsts;
13295 uint16_t hsflctl;
13296 uint32_t flash_linear_address;
13297 uint32_t flash_data = 0;
13298 int32_t error = 1;
13299 int32_t count = 0;
13300
13301 if (size < 1 || size > 4 || data == 0x0 ||
13302 index > ICH_FLASH_LINEAR_ADDR_MASK)
13303 return error;
13304
13305 flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
13306 sc->sc_ich8_flash_base;
13307
13308 do {
13309 delay(1);
13310 /* Steps */
13311 error = wm_ich8_cycle_init(sc);
13312 if (error)
13313 break;
13314
13315 if (sc->sc_type >= WM_T_PCH_SPT)
13316 hsflctl = ICH8_FLASH_READ32(sc, ICH_FLASH_HSFSTS)
13317 >> 16;
13318 else
13319 hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
13320 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
13321 hsflctl |= ((size - 1) << HSFCTL_BCOUNT_SHIFT)
13322 & HSFCTL_BCOUNT_MASK;
13323 hsflctl |= ICH_CYCLE_READ << HSFCTL_CYCLE_SHIFT;
13324 if (sc->sc_type >= WM_T_PCH_SPT) {
13325 /*
13326 * In SPT, This register is in Lan memory space, not
13327 * flash. Therefore, only 32 bit access is supported.
13328 */
13329 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS,
13330 (uint32_t)hsflctl << 16);
13331 } else
13332 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
13333
13334 /*
13335 * Write the last 24 bits of index into Flash Linear address
13336 * field in Flash Address
13337 */
13338 /* TODO: TBD maybe check the index against the size of flash */
13339
13340 ICH8_FLASH_WRITE32(sc, ICH_FLASH_FADDR, flash_linear_address);
13341
13342 error = wm_ich8_flash_cycle(sc, ICH_FLASH_COMMAND_TIMEOUT);
13343
13344 /*
13345 * Check if FCERR is set to 1, if set to 1, clear it and try
13346 * the whole sequence a few more times, else read in (shift in)
13347 * the Flash Data0, the order is least significant byte first
13348 * msb to lsb
13349 */
13350 if (error == 0) {
13351 flash_data = ICH8_FLASH_READ32(sc, ICH_FLASH_FDATA0);
13352 if (size == 1)
13353 *data = (uint8_t)(flash_data & 0x000000FF);
13354 else if (size == 2)
13355 *data = (uint16_t)(flash_data & 0x0000FFFF);
13356 else if (size == 4)
13357 *data = (uint32_t)flash_data;
13358 break;
13359 } else {
13360 /*
13361 * If we've gotten here, then things are probably
13362 * completely hosed, but if the error condition is
13363 * detected, it won't hurt to give it another try...
13364 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
13365 */
13366 if (sc->sc_type >= WM_T_PCH_SPT)
13367 hsfsts = ICH8_FLASH_READ32(sc,
13368 ICH_FLASH_HSFSTS) & 0xffffUL;
13369 else
13370 hsfsts = ICH8_FLASH_READ16(sc,
13371 ICH_FLASH_HSFSTS);
13372
13373 if (hsfsts & HSFSTS_ERR) {
13374 /* Repeat for some time before giving up. */
13375 continue;
13376 } else if ((hsfsts & HSFSTS_DONE) == 0)
13377 break;
13378 }
13379 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
13380
13381 return error;
13382 }
13383
13384 /******************************************************************************
13385 * Reads a single byte from the NVM using the ICH8 flash access registers.
13386 *
13387 * sc - pointer to wm_hw structure
13388 * index - The index of the byte to read.
13389 * data - Pointer to a byte to store the value read.
13390 *****************************************************************************/
13391 static int32_t
13392 wm_read_ich8_byte(struct wm_softc *sc, uint32_t index, uint8_t* data)
13393 {
13394 int32_t status;
13395 uint32_t word = 0;
13396
13397 status = wm_read_ich8_data(sc, index, 1, &word);
13398 if (status == 0)
13399 *data = (uint8_t)word;
13400 else
13401 *data = 0;
13402
13403 return status;
13404 }
13405
13406 /******************************************************************************
13407 * Reads a word from the NVM using the ICH8 flash access registers.
13408 *
13409 * sc - pointer to wm_hw structure
13410 * index - The starting byte index of the word to read.
13411 * data - Pointer to a word to store the value read.
13412 *****************************************************************************/
13413 static int32_t
13414 wm_read_ich8_word(struct wm_softc *sc, uint32_t index, uint16_t *data)
13415 {
13416 int32_t status;
13417 uint32_t word = 0;
13418
13419 status = wm_read_ich8_data(sc, index, 2, &word);
13420 if (status == 0)
13421 *data = (uint16_t)word;
13422 else
13423 *data = 0;
13424
13425 return status;
13426 }
13427
13428 /******************************************************************************
13429 * Reads a dword from the NVM using the ICH8 flash access registers.
13430 *
13431 * sc - pointer to wm_hw structure
13432 * index - The starting byte index of the word to read.
13433 * data - Pointer to a word to store the value read.
13434 *****************************************************************************/
13435 static int32_t
13436 wm_read_ich8_dword(struct wm_softc *sc, uint32_t index, uint32_t *data)
13437 {
13438 int32_t status;
13439
13440 status = wm_read_ich8_data(sc, index, 4, data);
13441 return status;
13442 }
13443
13444 /******************************************************************************
13445 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
13446 * register.
13447 *
13448 * sc - Struct containing variables accessed by shared code
13449 * offset - offset of word in the EEPROM to read
13450 * data - word read from the EEPROM
13451 * words - number of words to read
13452 *****************************************************************************/
13453 static int
13454 wm_nvm_read_ich8(struct wm_softc *sc, int offset, int words, uint16_t *data)
13455 {
13456 int32_t rv = 0;
13457 uint32_t flash_bank = 0;
13458 uint32_t act_offset = 0;
13459 uint32_t bank_offset = 0;
13460 uint16_t word = 0;
13461 uint16_t i = 0;
13462
13463 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
13464 device_xname(sc->sc_dev), __func__));
13465
13466 if (sc->nvm.acquire(sc) != 0)
13467 return -1;
13468
13469 /*
13470 * We need to know which is the valid flash bank. In the event
13471 * that we didn't allocate eeprom_shadow_ram, we may not be
13472 * managing flash_bank. So it cannot be trusted and needs
13473 * to be updated with each read.
13474 */
13475 rv = wm_nvm_valid_bank_detect_ich8lan(sc, &flash_bank);
13476 if (rv) {
13477 DPRINTF(WM_DEBUG_NVM, ("%s: failed to detect NVM bank\n",
13478 device_xname(sc->sc_dev)));
13479 flash_bank = 0;
13480 }
13481
13482 /*
13483 * Adjust offset appropriately if we're on bank 1 - adjust for word
13484 * size
13485 */
13486 bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
13487
13488 for (i = 0; i < words; i++) {
13489 /* The NVM part needs a byte offset, hence * 2 */
13490 act_offset = bank_offset + ((offset + i) * 2);
13491 rv = wm_read_ich8_word(sc, act_offset, &word);
13492 if (rv) {
13493 aprint_error_dev(sc->sc_dev,
13494 "%s: failed to read NVM\n", __func__);
13495 break;
13496 }
13497 data[i] = word;
13498 }
13499
13500 sc->nvm.release(sc);
13501 return rv;
13502 }
13503
13504 /******************************************************************************
13505 * Reads a 16 bit word or words from the EEPROM using the SPT's flash access
13506 * register.
13507 *
13508 * sc - Struct containing variables accessed by shared code
13509 * offset - offset of word in the EEPROM to read
13510 * data - word read from the EEPROM
13511 * words - number of words to read
13512 *****************************************************************************/
13513 static int
13514 wm_nvm_read_spt(struct wm_softc *sc, int offset, int words, uint16_t *data)
13515 {
13516 int32_t rv = 0;
13517 uint32_t flash_bank = 0;
13518 uint32_t act_offset = 0;
13519 uint32_t bank_offset = 0;
13520 uint32_t dword = 0;
13521 uint16_t i = 0;
13522
13523 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
13524 device_xname(sc->sc_dev), __func__));
13525
13526 if (sc->nvm.acquire(sc) != 0)
13527 return -1;
13528
13529 /*
13530 * We need to know which is the valid flash bank. In the event
13531 * that we didn't allocate eeprom_shadow_ram, we may not be
13532 * managing flash_bank. So it cannot be trusted and needs
13533 * to be updated with each read.
13534 */
13535 rv = wm_nvm_valid_bank_detect_ich8lan(sc, &flash_bank);
13536 if (rv) {
13537 DPRINTF(WM_DEBUG_NVM, ("%s: failed to detect NVM bank\n",
13538 device_xname(sc->sc_dev)));
13539 flash_bank = 0;
13540 }
13541
13542 /*
13543 * Adjust offset appropriately if we're on bank 1 - adjust for word
13544 * size
13545 */
13546 bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
13547
13548 for (i = 0; i < words; i++) {
13549 /* The NVM part needs a byte offset, hence * 2 */
13550 act_offset = bank_offset + ((offset + i) * 2);
13551 /* but we must read dword aligned, so mask ... */
13552 rv = wm_read_ich8_dword(sc, act_offset & ~0x3, &dword);
13553 if (rv) {
13554 aprint_error_dev(sc->sc_dev,
13555 "%s: failed to read NVM\n", __func__);
13556 break;
13557 }
13558 /* ... and pick out low or high word */
13559 if ((act_offset & 0x2) == 0)
13560 data[i] = (uint16_t)(dword & 0xFFFF);
13561 else
13562 data[i] = (uint16_t)((dword >> 16) & 0xFFFF);
13563 }
13564
13565 sc->nvm.release(sc);
13566 return rv;
13567 }
13568
13569 /* iNVM */
13570
13571 static int
13572 wm_nvm_read_word_invm(struct wm_softc *sc, uint16_t address, uint16_t *data)
13573 {
13574 int32_t rv = 0;
13575 uint32_t invm_dword;
13576 uint16_t i;
13577 uint8_t record_type, word_address;
13578
13579 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
13580 device_xname(sc->sc_dev), __func__));
13581
13582 for (i = 0; i < INVM_SIZE; i++) {
13583 invm_dword = CSR_READ(sc, WM_INVM_DATA_REG(i));
13584 /* Get record type */
13585 record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
13586 if (record_type == INVM_UNINITIALIZED_STRUCTURE)
13587 break;
13588 if (record_type == INVM_CSR_AUTOLOAD_STRUCTURE)
13589 i += INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
13590 if (record_type == INVM_RSA_KEY_SHA256_STRUCTURE)
13591 i += INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
13592 if (record_type == INVM_WORD_AUTOLOAD_STRUCTURE) {
13593 word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
13594 if (word_address == address) {
13595 *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
13596 rv = 0;
13597 break;
13598 }
13599 }
13600 }
13601
13602 return rv;
13603 }
13604
13605 static int
13606 wm_nvm_read_invm(struct wm_softc *sc, int offset, int words, uint16_t *data)
13607 {
13608 int rv = 0;
13609 int i;
13610
13611 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
13612 device_xname(sc->sc_dev), __func__));
13613
13614 if (sc->nvm.acquire(sc) != 0)
13615 return -1;
13616
13617 for (i = 0; i < words; i++) {
13618 switch (offset + i) {
13619 case NVM_OFF_MACADDR:
13620 case NVM_OFF_MACADDR1:
13621 case NVM_OFF_MACADDR2:
13622 rv = wm_nvm_read_word_invm(sc, offset + i, &data[i]);
13623 if (rv != 0) {
13624 data[i] = 0xffff;
13625 rv = -1;
13626 }
13627 break;
13628 case NVM_OFF_CFG1: /* == INVM_AUTOLOAD */
13629 rv = wm_nvm_read_word_invm(sc, offset, data);
13630 if (rv != 0) {
13631 *data = INVM_DEFAULT_AL;
13632 rv = 0;
13633 }
13634 break;
13635 case NVM_OFF_CFG2:
13636 rv = wm_nvm_read_word_invm(sc, offset, data);
13637 if (rv != 0) {
13638 *data = NVM_INIT_CTRL_2_DEFAULT_I211;
13639 rv = 0;
13640 }
13641 break;
13642 case NVM_OFF_CFG4:
13643 rv = wm_nvm_read_word_invm(sc, offset, data);
13644 if (rv != 0) {
13645 *data = NVM_INIT_CTRL_4_DEFAULT_I211;
13646 rv = 0;
13647 }
13648 break;
13649 case NVM_OFF_LED_1_CFG:
13650 rv = wm_nvm_read_word_invm(sc, offset, data);
13651 if (rv != 0) {
13652 *data = NVM_LED_1_CFG_DEFAULT_I211;
13653 rv = 0;
13654 }
13655 break;
13656 case NVM_OFF_LED_0_2_CFG:
13657 rv = wm_nvm_read_word_invm(sc, offset, data);
13658 if (rv != 0) {
13659 *data = NVM_LED_0_2_CFG_DEFAULT_I211;
13660 rv = 0;
13661 }
13662 break;
13663 case NVM_OFF_ID_LED_SETTINGS:
13664 rv = wm_nvm_read_word_invm(sc, offset, data);
13665 if (rv != 0) {
13666 *data = ID_LED_RESERVED_FFFF;
13667 rv = 0;
13668 }
13669 break;
13670 default:
13671 DPRINTF(WM_DEBUG_NVM,
13672 ("NVM word 0x%02x is not mapped.\n", offset));
13673 *data = NVM_RESERVED_WORD;
13674 break;
13675 }
13676 }
13677
13678 sc->nvm.release(sc);
13679 return rv;
13680 }
13681
13682 /* Lock, detecting NVM type, validate checksum, version and read */
13683
13684 static int
13685 wm_nvm_is_onboard_eeprom(struct wm_softc *sc)
13686 {
13687 uint32_t eecd = 0;
13688
13689 if (sc->sc_type == WM_T_82573 || sc->sc_type == WM_T_82574
13690 || sc->sc_type == WM_T_82583) {
13691 eecd = CSR_READ(sc, WMREG_EECD);
13692
13693 /* Isolate bits 15 & 16 */
13694 eecd = ((eecd >> 15) & 0x03);
13695
13696 /* If both bits are set, device is Flash type */
13697 if (eecd == 0x03)
13698 return 0;
13699 }
13700 return 1;
13701 }
13702
13703 static int
13704 wm_nvm_flash_presence_i210(struct wm_softc *sc)
13705 {
13706 uint32_t eec;
13707
13708 eec = CSR_READ(sc, WMREG_EEC);
13709 if ((eec & EEC_FLASH_DETECTED) != 0)
13710 return 1;
13711
13712 return 0;
13713 }
13714
13715 /*
13716 * wm_nvm_validate_checksum
13717 *
13718 * The checksum is defined as the sum of the first 64 (16 bit) words.
13719 */
13720 static int
13721 wm_nvm_validate_checksum(struct wm_softc *sc)
13722 {
13723 uint16_t checksum;
13724 uint16_t eeprom_data;
13725 #ifdef WM_DEBUG
13726 uint16_t csum_wordaddr, valid_checksum;
13727 #endif
13728 int i;
13729
13730 checksum = 0;
13731
13732 /* Don't check for I211 */
13733 if (sc->sc_type == WM_T_I211)
13734 return 0;
13735
13736 #ifdef WM_DEBUG
13737 if ((sc->sc_type == WM_T_PCH_LPT) || (sc->sc_type == WM_T_PCH_SPT)
13738 || (sc->sc_type == WM_T_PCH_CNP)) {
13739 csum_wordaddr = NVM_OFF_COMPAT;
13740 valid_checksum = NVM_COMPAT_VALID_CHECKSUM;
13741 } else {
13742 csum_wordaddr = NVM_OFF_FUTURE_INIT_WORD1;
13743 valid_checksum = NVM_FUTURE_INIT_WORD1_VALID_CHECKSUM;
13744 }
13745
13746 /* Dump EEPROM image for debug */
13747 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
13748 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
13749 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) {
13750 /* XXX PCH_SPT? */
13751 wm_nvm_read(sc, csum_wordaddr, 1, &eeprom_data);
13752 if ((eeprom_data & valid_checksum) == 0)
13753 DPRINTF(WM_DEBUG_NVM,
13754 ("%s: NVM need to be updated (%04x != %04x)\n",
13755 device_xname(sc->sc_dev), eeprom_data,
13756 valid_checksum));
13757 }
13758
13759 if ((wm_debug & WM_DEBUG_NVM) != 0) {
13760 printf("%s: NVM dump:\n", device_xname(sc->sc_dev));
13761 for (i = 0; i < NVM_SIZE; i++) {
13762 if (wm_nvm_read(sc, i, 1, &eeprom_data))
13763 printf("XXXX ");
13764 else
13765 printf("%04hx ", eeprom_data);
13766 if (i % 8 == 7)
13767 printf("\n");
13768 }
13769 }
13770
13771 #endif /* WM_DEBUG */
13772
13773 for (i = 0; i < NVM_SIZE; i++) {
13774 if (wm_nvm_read(sc, i, 1, &eeprom_data))
13775 return 1;
13776 checksum += eeprom_data;
13777 }
13778
13779 if (checksum != (uint16_t) NVM_CHECKSUM) {
13780 #ifdef WM_DEBUG
13781 printf("%s: NVM checksum mismatch (%04x != %04x)\n",
13782 device_xname(sc->sc_dev), checksum, NVM_CHECKSUM);
13783 #endif
13784 }
13785
13786 return 0;
13787 }
13788
13789 static void
13790 wm_nvm_version_invm(struct wm_softc *sc)
13791 {
13792 uint32_t dword;
13793
13794 /*
13795 * Linux's code to decode version is very strange, so we don't
13796 * obey that algorithm and just use word 61 as the document.
13797 * Perhaps it's not perfect though...
13798 *
13799 * Example:
13800 *
13801 * Word61: 00800030 -> Version 0.6 (I211 spec update notes about 0.6)
13802 */
13803 dword = CSR_READ(sc, WM_INVM_DATA_REG(61));
13804 dword = __SHIFTOUT(dword, INVM_VER_1);
13805 sc->sc_nvm_ver_major = __SHIFTOUT(dword, INVM_MAJOR);
13806 sc->sc_nvm_ver_minor = __SHIFTOUT(dword, INVM_MINOR);
13807 }
13808
13809 static void
13810 wm_nvm_version(struct wm_softc *sc)
13811 {
13812 uint16_t major, minor, build, patch;
13813 uint16_t uid0, uid1;
13814 uint16_t nvm_data;
13815 uint16_t off;
13816 bool check_version = false;
13817 bool check_optionrom = false;
13818 bool have_build = false;
13819 bool have_uid = true;
13820
13821 /*
13822 * Version format:
13823 *
13824 * XYYZ
13825 * X0YZ
13826 * X0YY
13827 *
13828 * Example:
13829 *
13830 * 82571 0x50a2 5.10.2? (the spec update notes about 5.6-5.10)
13831 * 82571 0x50a6 5.10.6?
13832 * 82572 0x506a 5.6.10?
13833 * 82572EI 0x5069 5.6.9?
13834 * 82574L 0x1080 1.8.0? (the spec update notes about 2.1.4)
13835 * 0x2013 2.1.3?
13836 * 82583 0x10a0 1.10.0? (document says it's default value)
13837 * ICH8+82567 0x0040 0.4.0?
13838 * ICH9+82566 0x1040 1.4.0?
13839 *ICH10+82567 0x0043 0.4.3?
13840 * PCH+82577 0x00c1 0.12.1?
13841 * PCH2+82579 0x00d3 0.13.3?
13842 * 0x00d4 0.13.4?
13843 * LPT+I218 0x0023 0.2.3?
13844 * SPT+I219 0x0084 0.8.4?
13845 * CNP+I219 0x0054 0.5.4?
13846 */
13847
13848 /*
13849 * XXX
13850 * Qemu's e1000e emulation (82574L)'s SPI has only 64 words.
13851 * I've never seen on real 82574 hardware with such small SPI ROM.
13852 */
13853 if ((sc->sc_nvm_wordsize < NVM_OFF_IMAGE_UID1)
13854 || (wm_nvm_read(sc, NVM_OFF_IMAGE_UID1, 1, &uid1) != 0))
13855 have_uid = false;
13856
13857 switch (sc->sc_type) {
13858 case WM_T_82571:
13859 case WM_T_82572:
13860 case WM_T_82574:
13861 case WM_T_82583:
13862 check_version = true;
13863 check_optionrom = true;
13864 have_build = true;
13865 break;
13866 case WM_T_ICH8:
13867 case WM_T_ICH9:
13868 case WM_T_ICH10:
13869 case WM_T_PCH:
13870 case WM_T_PCH2:
13871 case WM_T_PCH_LPT:
13872 case WM_T_PCH_SPT:
13873 case WM_T_PCH_CNP:
13874 check_version = true;
13875 have_build = true;
13876 have_uid = false;
13877 break;
13878 case WM_T_82575:
13879 case WM_T_82576:
13880 case WM_T_82580:
13881 if (have_uid && (uid1 & NVM_MAJOR_MASK) != NVM_UID_VALID)
13882 check_version = true;
13883 break;
13884 case WM_T_I211:
13885 wm_nvm_version_invm(sc);
13886 have_uid = false;
13887 goto printver;
13888 case WM_T_I210:
13889 if (!wm_nvm_flash_presence_i210(sc)) {
13890 wm_nvm_version_invm(sc);
13891 have_uid = false;
13892 goto printver;
13893 }
13894 /* FALLTHROUGH */
13895 case WM_T_I350:
13896 case WM_T_I354:
13897 check_version = true;
13898 check_optionrom = true;
13899 break;
13900 default:
13901 return;
13902 }
13903 if (check_version
13904 && (wm_nvm_read(sc, NVM_OFF_VERSION, 1, &nvm_data) == 0)) {
13905 major = (nvm_data & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT;
13906 if (have_build || ((nvm_data & 0x0f00) != 0x0000)) {
13907 minor = (nvm_data & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT;
13908 build = nvm_data & NVM_BUILD_MASK;
13909 have_build = true;
13910 } else
13911 minor = nvm_data & 0x00ff;
13912
13913 /* Decimal */
13914 minor = (minor / 16) * 10 + (minor % 16);
13915 sc->sc_nvm_ver_major = major;
13916 sc->sc_nvm_ver_minor = minor;
13917
13918 printver:
13919 aprint_verbose(", version %d.%d", sc->sc_nvm_ver_major,
13920 sc->sc_nvm_ver_minor);
13921 if (have_build) {
13922 sc->sc_nvm_ver_build = build;
13923 aprint_verbose(".%d", build);
13924 }
13925 }
13926
13927 /* Assume the Option ROM area is at avove NVM_SIZE */
13928 if ((sc->sc_nvm_wordsize > NVM_SIZE) && check_optionrom
13929 && (wm_nvm_read(sc, NVM_OFF_COMB_VER_PTR, 1, &off) == 0)) {
13930 /* Option ROM Version */
13931 if ((off != 0x0000) && (off != 0xffff)) {
13932 int rv;
13933
13934 off += NVM_COMBO_VER_OFF;
13935 rv = wm_nvm_read(sc, off + 1, 1, &uid1);
13936 rv |= wm_nvm_read(sc, off, 1, &uid0);
13937 if ((rv == 0) && (uid0 != 0) && (uid0 != 0xffff)
13938 && (uid1 != 0) && (uid1 != 0xffff)) {
13939 /* 16bits */
13940 major = uid0 >> 8;
13941 build = (uid0 << 8) | (uid1 >> 8);
13942 patch = uid1 & 0x00ff;
13943 aprint_verbose(", option ROM Version %d.%d.%d",
13944 major, build, patch);
13945 }
13946 }
13947 }
13948
13949 if (have_uid && (wm_nvm_read(sc, NVM_OFF_IMAGE_UID0, 1, &uid0) == 0))
13950 aprint_verbose(", Image Unique ID %08x",
13951 ((uint32_t)uid1 << 16) | uid0);
13952 }
13953
13954 /*
13955 * wm_nvm_read:
13956 *
13957 * Read data from the serial EEPROM.
13958 */
13959 static int
13960 wm_nvm_read(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
13961 {
13962 int rv;
13963
13964 DPRINTF(WM_DEBUG_NVM, ("%s: %s called\n",
13965 device_xname(sc->sc_dev), __func__));
13966
13967 if (sc->sc_flags & WM_F_EEPROM_INVALID)
13968 return -1;
13969
13970 rv = sc->nvm.read(sc, word, wordcnt, data);
13971
13972 return rv;
13973 }
13974
13975 /*
13976 * Hardware semaphores.
13977 * Very complexed...
13978 */
13979
13980 static int
13981 wm_get_null(struct wm_softc *sc)
13982 {
13983
13984 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
13985 device_xname(sc->sc_dev), __func__));
13986 return 0;
13987 }
13988
13989 static void
13990 wm_put_null(struct wm_softc *sc)
13991 {
13992
13993 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
13994 device_xname(sc->sc_dev), __func__));
13995 return;
13996 }
13997
13998 static int
13999 wm_get_eecd(struct wm_softc *sc)
14000 {
14001 uint32_t reg;
14002 int x;
14003
14004 DPRINTF(WM_DEBUG_LOCK | WM_DEBUG_NVM, ("%s: %s called\n",
14005 device_xname(sc->sc_dev), __func__));
14006
14007 reg = CSR_READ(sc, WMREG_EECD);
14008
14009 /* Request EEPROM access. */
14010 reg |= EECD_EE_REQ;
14011 CSR_WRITE(sc, WMREG_EECD, reg);
14012
14013 /* ..and wait for it to be granted. */
14014 for (x = 0; x < 1000; x++) {
14015 reg = CSR_READ(sc, WMREG_EECD);
14016 if (reg & EECD_EE_GNT)
14017 break;
14018 delay(5);
14019 }
14020 if ((reg & EECD_EE_GNT) == 0) {
14021 aprint_error_dev(sc->sc_dev,
14022 "could not acquire EEPROM GNT\n");
14023 reg &= ~EECD_EE_REQ;
14024 CSR_WRITE(sc, WMREG_EECD, reg);
14025 return -1;
14026 }
14027
14028 return 0;
14029 }
14030
14031 static void
14032 wm_nvm_eec_clock_raise(struct wm_softc *sc, uint32_t *eecd)
14033 {
14034
14035 *eecd |= EECD_SK;
14036 CSR_WRITE(sc, WMREG_EECD, *eecd);
14037 CSR_WRITE_FLUSH(sc);
14038 if ((sc->sc_flags & WM_F_EEPROM_SPI) != 0)
14039 delay(1);
14040 else
14041 delay(50);
14042 }
14043
14044 static void
14045 wm_nvm_eec_clock_lower(struct wm_softc *sc, uint32_t *eecd)
14046 {
14047
14048 *eecd &= ~EECD_SK;
14049 CSR_WRITE(sc, WMREG_EECD, *eecd);
14050 CSR_WRITE_FLUSH(sc);
14051 if ((sc->sc_flags & WM_F_EEPROM_SPI) != 0)
14052 delay(1);
14053 else
14054 delay(50);
14055 }
14056
14057 static void
14058 wm_put_eecd(struct wm_softc *sc)
14059 {
14060 uint32_t reg;
14061
14062 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14063 device_xname(sc->sc_dev), __func__));
14064
14065 /* Stop nvm */
14066 reg = CSR_READ(sc, WMREG_EECD);
14067 if ((sc->sc_flags & WM_F_EEPROM_SPI) != 0) {
14068 /* Pull CS high */
14069 reg |= EECD_CS;
14070 wm_nvm_eec_clock_lower(sc, ®);
14071 } else {
14072 /* CS on Microwire is active-high */
14073 reg &= ~(EECD_CS | EECD_DI);
14074 CSR_WRITE(sc, WMREG_EECD, reg);
14075 wm_nvm_eec_clock_raise(sc, ®);
14076 wm_nvm_eec_clock_lower(sc, ®);
14077 }
14078
14079 reg = CSR_READ(sc, WMREG_EECD);
14080 reg &= ~EECD_EE_REQ;
14081 CSR_WRITE(sc, WMREG_EECD, reg);
14082
14083 return;
14084 }
14085
14086 /*
14087 * Get hardware semaphore.
14088 * Same as e1000_get_hw_semaphore_generic()
14089 */
14090 static int
14091 wm_get_swsm_semaphore(struct wm_softc *sc)
14092 {
14093 int32_t timeout;
14094 uint32_t swsm;
14095
14096 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14097 device_xname(sc->sc_dev), __func__));
14098 KASSERT(sc->sc_nvm_wordsize > 0);
14099
14100 retry:
14101 /* Get the SW semaphore. */
14102 timeout = sc->sc_nvm_wordsize + 1;
14103 while (timeout) {
14104 swsm = CSR_READ(sc, WMREG_SWSM);
14105
14106 if ((swsm & SWSM_SMBI) == 0)
14107 break;
14108
14109 delay(50);
14110 timeout--;
14111 }
14112
14113 if (timeout == 0) {
14114 if ((sc->sc_flags & WM_F_WA_I210_CLSEM) != 0) {
14115 /*
14116 * In rare circumstances, the SW semaphore may already
14117 * be held unintentionally. Clear the semaphore once
14118 * before giving up.
14119 */
14120 sc->sc_flags &= ~WM_F_WA_I210_CLSEM;
14121 wm_put_swsm_semaphore(sc);
14122 goto retry;
14123 }
14124 aprint_error_dev(sc->sc_dev,
14125 "could not acquire SWSM SMBI\n");
14126 return 1;
14127 }
14128
14129 /* Get the FW semaphore. */
14130 timeout = sc->sc_nvm_wordsize + 1;
14131 while (timeout) {
14132 swsm = CSR_READ(sc, WMREG_SWSM);
14133 swsm |= SWSM_SWESMBI;
14134 CSR_WRITE(sc, WMREG_SWSM, swsm);
14135 /* If we managed to set the bit we got the semaphore. */
14136 swsm = CSR_READ(sc, WMREG_SWSM);
14137 if (swsm & SWSM_SWESMBI)
14138 break;
14139
14140 delay(50);
14141 timeout--;
14142 }
14143
14144 if (timeout == 0) {
14145 aprint_error_dev(sc->sc_dev,
14146 "could not acquire SWSM SWESMBI\n");
14147 /* Release semaphores */
14148 wm_put_swsm_semaphore(sc);
14149 return 1;
14150 }
14151 return 0;
14152 }
14153
14154 /*
14155 * Put hardware semaphore.
14156 * Same as e1000_put_hw_semaphore_generic()
14157 */
14158 static void
14159 wm_put_swsm_semaphore(struct wm_softc *sc)
14160 {
14161 uint32_t swsm;
14162
14163 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14164 device_xname(sc->sc_dev), __func__));
14165
14166 swsm = CSR_READ(sc, WMREG_SWSM);
14167 swsm &= ~(SWSM_SMBI | SWSM_SWESMBI);
14168 CSR_WRITE(sc, WMREG_SWSM, swsm);
14169 }
14170
14171 /*
14172 * Get SW/FW semaphore.
14173 * Same as e1000_acquire_swfw_sync_{80003es2lan,82575}().
14174 */
14175 static int
14176 wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
14177 {
14178 uint32_t swfw_sync;
14179 uint32_t swmask = mask << SWFW_SOFT_SHIFT;
14180 uint32_t fwmask = mask << SWFW_FIRM_SHIFT;
14181 int timeout;
14182
14183 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14184 device_xname(sc->sc_dev), __func__));
14185
14186 if (sc->sc_type == WM_T_80003)
14187 timeout = 50;
14188 else
14189 timeout = 200;
14190
14191 while (timeout) {
14192 if (wm_get_swsm_semaphore(sc)) {
14193 aprint_error_dev(sc->sc_dev,
14194 "%s: failed to get semaphore\n",
14195 __func__);
14196 return 1;
14197 }
14198 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
14199 if ((swfw_sync & (swmask | fwmask)) == 0) {
14200 swfw_sync |= swmask;
14201 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
14202 wm_put_swsm_semaphore(sc);
14203 return 0;
14204 }
14205 wm_put_swsm_semaphore(sc);
14206 delay(5000);
14207 timeout--;
14208 }
14209 device_printf(sc->sc_dev,
14210 "failed to get swfw semaphore mask 0x%x swfw 0x%x\n",
14211 mask, swfw_sync);
14212 return 1;
14213 }
14214
14215 static void
14216 wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
14217 {
14218 uint32_t swfw_sync;
14219
14220 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14221 device_xname(sc->sc_dev), __func__));
14222
14223 while (wm_get_swsm_semaphore(sc) != 0)
14224 continue;
14225
14226 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
14227 swfw_sync &= ~(mask << SWFW_SOFT_SHIFT);
14228 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
14229
14230 wm_put_swsm_semaphore(sc);
14231 }
14232
14233 static int
14234 wm_get_nvm_80003(struct wm_softc *sc)
14235 {
14236 int rv;
14237
14238 DPRINTF(WM_DEBUG_LOCK | WM_DEBUG_NVM, ("%s: %s called\n",
14239 device_xname(sc->sc_dev), __func__));
14240
14241 if ((rv = wm_get_swfw_semaphore(sc, SWFW_EEP_SM)) != 0) {
14242 aprint_error_dev(sc->sc_dev,
14243 "%s: failed to get semaphore(SWFW)\n", __func__);
14244 return rv;
14245 }
14246
14247 if (((sc->sc_flags & WM_F_LOCK_EECD) != 0)
14248 && (rv = wm_get_eecd(sc)) != 0) {
14249 aprint_error_dev(sc->sc_dev,
14250 "%s: failed to get semaphore(EECD)\n", __func__);
14251 wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
14252 return rv;
14253 }
14254
14255 return 0;
14256 }
14257
14258 static void
14259 wm_put_nvm_80003(struct wm_softc *sc)
14260 {
14261
14262 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14263 device_xname(sc->sc_dev), __func__));
14264
14265 if ((sc->sc_flags & WM_F_LOCK_EECD) != 0)
14266 wm_put_eecd(sc);
14267 wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
14268 }
14269
14270 static int
14271 wm_get_nvm_82571(struct wm_softc *sc)
14272 {
14273 int rv;
14274
14275 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14276 device_xname(sc->sc_dev), __func__));
14277
14278 if ((rv = wm_get_swsm_semaphore(sc)) != 0)
14279 return rv;
14280
14281 switch (sc->sc_type) {
14282 case WM_T_82573:
14283 break;
14284 default:
14285 if ((sc->sc_flags & WM_F_LOCK_EECD) != 0)
14286 rv = wm_get_eecd(sc);
14287 break;
14288 }
14289
14290 if (rv != 0) {
14291 aprint_error_dev(sc->sc_dev,
14292 "%s: failed to get semaphore\n",
14293 __func__);
14294 wm_put_swsm_semaphore(sc);
14295 }
14296
14297 return rv;
14298 }
14299
14300 static void
14301 wm_put_nvm_82571(struct wm_softc *sc)
14302 {
14303
14304 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14305 device_xname(sc->sc_dev), __func__));
14306
14307 switch (sc->sc_type) {
14308 case WM_T_82573:
14309 break;
14310 default:
14311 if ((sc->sc_flags & WM_F_LOCK_EECD) != 0)
14312 wm_put_eecd(sc);
14313 break;
14314 }
14315
14316 wm_put_swsm_semaphore(sc);
14317 }
14318
14319 static int
14320 wm_get_phy_82575(struct wm_softc *sc)
14321 {
14322
14323 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14324 device_xname(sc->sc_dev), __func__));
14325 return wm_get_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
14326 }
14327
14328 static void
14329 wm_put_phy_82575(struct wm_softc *sc)
14330 {
14331
14332 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14333 device_xname(sc->sc_dev), __func__));
14334 return wm_put_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
14335 }
14336
14337 static int
14338 wm_get_swfwhw_semaphore(struct wm_softc *sc)
14339 {
14340 uint32_t ext_ctrl;
14341 int timeout = 200;
14342
14343 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14344 device_xname(sc->sc_dev), __func__));
14345
14346 mutex_enter(sc->sc_ich_phymtx); /* Use PHY mtx for both PHY and NVM */
14347 for (timeout = 0; timeout < 200; timeout++) {
14348 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
14349 ext_ctrl |= EXTCNFCTR_MDIO_SW_OWNERSHIP;
14350 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
14351
14352 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
14353 if (ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP)
14354 return 0;
14355 delay(5000);
14356 }
14357 device_printf(sc->sc_dev,
14358 "failed to get swfwhw semaphore ext_ctrl 0x%x\n", ext_ctrl);
14359 mutex_exit(sc->sc_ich_phymtx); /* Use PHY mtx for both PHY and NVM */
14360 return 1;
14361 }
14362
14363 static void
14364 wm_put_swfwhw_semaphore(struct wm_softc *sc)
14365 {
14366 uint32_t ext_ctrl;
14367
14368 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14369 device_xname(sc->sc_dev), __func__));
14370
14371 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
14372 ext_ctrl &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
14373 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
14374
14375 mutex_exit(sc->sc_ich_phymtx); /* Use PHY mtx for both PHY and NVM */
14376 }
14377
14378 static int
14379 wm_get_swflag_ich8lan(struct wm_softc *sc)
14380 {
14381 uint32_t ext_ctrl;
14382 int timeout;
14383
14384 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14385 device_xname(sc->sc_dev), __func__));
14386 mutex_enter(sc->sc_ich_phymtx);
14387 for (timeout = 0; timeout < WM_PHY_CFG_TIMEOUT; timeout++) {
14388 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
14389 if ((ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP) == 0)
14390 break;
14391 delay(1000);
14392 }
14393 if (timeout >= WM_PHY_CFG_TIMEOUT) {
14394 device_printf(sc->sc_dev,
14395 "SW has already locked the resource\n");
14396 goto out;
14397 }
14398
14399 ext_ctrl |= EXTCNFCTR_MDIO_SW_OWNERSHIP;
14400 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
14401 for (timeout = 0; timeout < 1000; timeout++) {
14402 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
14403 if (ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP)
14404 break;
14405 delay(1000);
14406 }
14407 if (timeout >= 1000) {
14408 device_printf(sc->sc_dev, "failed to acquire semaphore\n");
14409 ext_ctrl &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
14410 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
14411 goto out;
14412 }
14413 return 0;
14414
14415 out:
14416 mutex_exit(sc->sc_ich_phymtx);
14417 return 1;
14418 }
14419
14420 static void
14421 wm_put_swflag_ich8lan(struct wm_softc *sc)
14422 {
14423 uint32_t ext_ctrl;
14424
14425 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14426 device_xname(sc->sc_dev), __func__));
14427 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
14428 if (ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP) {
14429 ext_ctrl &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
14430 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
14431 } else {
14432 device_printf(sc->sc_dev, "Semaphore unexpectedly released\n");
14433 }
14434
14435 mutex_exit(sc->sc_ich_phymtx);
14436 }
14437
14438 static int
14439 wm_get_nvm_ich8lan(struct wm_softc *sc)
14440 {
14441
14442 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14443 device_xname(sc->sc_dev), __func__));
14444 mutex_enter(sc->sc_ich_nvmmtx);
14445
14446 return 0;
14447 }
14448
14449 static void
14450 wm_put_nvm_ich8lan(struct wm_softc *sc)
14451 {
14452
14453 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14454 device_xname(sc->sc_dev), __func__));
14455 mutex_exit(sc->sc_ich_nvmmtx);
14456 }
14457
14458 static int
14459 wm_get_hw_semaphore_82573(struct wm_softc *sc)
14460 {
14461 int i = 0;
14462 uint32_t reg;
14463
14464 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14465 device_xname(sc->sc_dev), __func__));
14466
14467 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
14468 do {
14469 CSR_WRITE(sc, WMREG_EXTCNFCTR,
14470 reg | EXTCNFCTR_MDIO_SW_OWNERSHIP);
14471 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
14472 if ((reg & EXTCNFCTR_MDIO_SW_OWNERSHIP) != 0)
14473 break;
14474 delay(2*1000);
14475 i++;
14476 } while (i < WM_MDIO_OWNERSHIP_TIMEOUT);
14477
14478 if (i == WM_MDIO_OWNERSHIP_TIMEOUT) {
14479 wm_put_hw_semaphore_82573(sc);
14480 log(LOG_ERR, "%s: Driver can't access the PHY\n",
14481 device_xname(sc->sc_dev));
14482 return -1;
14483 }
14484
14485 return 0;
14486 }
14487
14488 static void
14489 wm_put_hw_semaphore_82573(struct wm_softc *sc)
14490 {
14491 uint32_t reg;
14492
14493 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14494 device_xname(sc->sc_dev), __func__));
14495
14496 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
14497 reg &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
14498 CSR_WRITE(sc, WMREG_EXTCNFCTR, reg);
14499 }
14500
14501 /*
14502 * Management mode and power management related subroutines.
14503 * BMC, AMT, suspend/resume and EEE.
14504 */
14505
14506 #ifdef WM_WOL
14507 static int
14508 wm_check_mng_mode(struct wm_softc *sc)
14509 {
14510 int rv;
14511
14512 switch (sc->sc_type) {
14513 case WM_T_ICH8:
14514 case WM_T_ICH9:
14515 case WM_T_ICH10:
14516 case WM_T_PCH:
14517 case WM_T_PCH2:
14518 case WM_T_PCH_LPT:
14519 case WM_T_PCH_SPT:
14520 case WM_T_PCH_CNP:
14521 rv = wm_check_mng_mode_ich8lan(sc);
14522 break;
14523 case WM_T_82574:
14524 case WM_T_82583:
14525 rv = wm_check_mng_mode_82574(sc);
14526 break;
14527 case WM_T_82571:
14528 case WM_T_82572:
14529 case WM_T_82573:
14530 case WM_T_80003:
14531 rv = wm_check_mng_mode_generic(sc);
14532 break;
14533 default:
14534 /* Noting to do */
14535 rv = 0;
14536 break;
14537 }
14538
14539 return rv;
14540 }
14541
14542 static int
14543 wm_check_mng_mode_ich8lan(struct wm_softc *sc)
14544 {
14545 uint32_t fwsm;
14546
14547 fwsm = CSR_READ(sc, WMREG_FWSM);
14548
14549 if (((fwsm & FWSM_FW_VALID) != 0)
14550 && (__SHIFTOUT(fwsm, FWSM_MODE) == MNG_ICH_IAMT_MODE))
14551 return 1;
14552
14553 return 0;
14554 }
14555
14556 static int
14557 wm_check_mng_mode_82574(struct wm_softc *sc)
14558 {
14559 uint16_t data;
14560
14561 wm_nvm_read(sc, NVM_OFF_CFG2, 1, &data);
14562
14563 if ((data & NVM_CFG2_MNGM_MASK) != 0)
14564 return 1;
14565
14566 return 0;
14567 }
14568
14569 static int
14570 wm_check_mng_mode_generic(struct wm_softc *sc)
14571 {
14572 uint32_t fwsm;
14573
14574 fwsm = CSR_READ(sc, WMREG_FWSM);
14575
14576 if (__SHIFTOUT(fwsm, FWSM_MODE) == MNG_IAMT_MODE)
14577 return 1;
14578
14579 return 0;
14580 }
14581 #endif /* WM_WOL */
14582
14583 static int
14584 wm_enable_mng_pass_thru(struct wm_softc *sc)
14585 {
14586 uint32_t manc, fwsm, factps;
14587
14588 if ((sc->sc_flags & WM_F_ASF_FIRMWARE_PRES) == 0)
14589 return 0;
14590
14591 manc = CSR_READ(sc, WMREG_MANC);
14592
14593 DPRINTF(WM_DEBUG_MANAGE, ("%s: MANC (%08x)\n",
14594 device_xname(sc->sc_dev), manc));
14595 if ((manc & MANC_RECV_TCO_EN) == 0)
14596 return 0;
14597
14598 if ((sc->sc_flags & WM_F_ARC_SUBSYS_VALID) != 0) {
14599 fwsm = CSR_READ(sc, WMREG_FWSM);
14600 factps = CSR_READ(sc, WMREG_FACTPS);
14601 if (((factps & FACTPS_MNGCG) == 0)
14602 && (__SHIFTOUT(fwsm, FWSM_MODE) == MNG_ICH_IAMT_MODE))
14603 return 1;
14604 } else if ((sc->sc_type == WM_T_82574) || (sc->sc_type == WM_T_82583)){
14605 uint16_t data;
14606
14607 factps = CSR_READ(sc, WMREG_FACTPS);
14608 wm_nvm_read(sc, NVM_OFF_CFG2, 1, &data);
14609 DPRINTF(WM_DEBUG_MANAGE, ("%s: FACTPS = %08x, CFG2=%04x\n",
14610 device_xname(sc->sc_dev), factps, data));
14611 if (((factps & FACTPS_MNGCG) == 0)
14612 && ((data & NVM_CFG2_MNGM_MASK)
14613 == (NVM_CFG2_MNGM_PT << NVM_CFG2_MNGM_SHIFT)))
14614 return 1;
14615 } else if (((manc & MANC_SMBUS_EN) != 0)
14616 && ((manc & MANC_ASF_EN) == 0))
14617 return 1;
14618
14619 return 0;
14620 }
14621
14622 static bool
14623 wm_phy_resetisblocked(struct wm_softc *sc)
14624 {
14625 bool blocked = false;
14626 uint32_t reg;
14627 int i = 0;
14628
14629 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
14630 device_xname(sc->sc_dev), __func__));
14631
14632 switch (sc->sc_type) {
14633 case WM_T_ICH8:
14634 case WM_T_ICH9:
14635 case WM_T_ICH10:
14636 case WM_T_PCH:
14637 case WM_T_PCH2:
14638 case WM_T_PCH_LPT:
14639 case WM_T_PCH_SPT:
14640 case WM_T_PCH_CNP:
14641 do {
14642 reg = CSR_READ(sc, WMREG_FWSM);
14643 if ((reg & FWSM_RSPCIPHY) == 0) {
14644 blocked = true;
14645 delay(10*1000);
14646 continue;
14647 }
14648 blocked = false;
14649 } while (blocked && (i++ < 30));
14650 return blocked;
14651 break;
14652 case WM_T_82571:
14653 case WM_T_82572:
14654 case WM_T_82573:
14655 case WM_T_82574:
14656 case WM_T_82583:
14657 case WM_T_80003:
14658 reg = CSR_READ(sc, WMREG_MANC);
14659 if ((reg & MANC_BLK_PHY_RST_ON_IDE) != 0)
14660 return true;
14661 else
14662 return false;
14663 break;
14664 default:
14665 /* No problem */
14666 break;
14667 }
14668
14669 return false;
14670 }
14671
14672 static void
14673 wm_get_hw_control(struct wm_softc *sc)
14674 {
14675 uint32_t reg;
14676
14677 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14678 device_xname(sc->sc_dev), __func__));
14679
14680 if (sc->sc_type == WM_T_82573) {
14681 reg = CSR_READ(sc, WMREG_SWSM);
14682 CSR_WRITE(sc, WMREG_SWSM, reg | SWSM_DRV_LOAD);
14683 } else if (sc->sc_type >= WM_T_82571) {
14684 reg = CSR_READ(sc, WMREG_CTRL_EXT);
14685 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_DRV_LOAD);
14686 }
14687 }
14688
14689 static void
14690 wm_release_hw_control(struct wm_softc *sc)
14691 {
14692 uint32_t reg;
14693
14694 DPRINTF(WM_DEBUG_LOCK, ("%s: %s called\n",
14695 device_xname(sc->sc_dev), __func__));
14696
14697 if (sc->sc_type == WM_T_82573) {
14698 reg = CSR_READ(sc, WMREG_SWSM);
14699 CSR_WRITE(sc, WMREG_SWSM, reg & ~SWSM_DRV_LOAD);
14700 } else if (sc->sc_type >= WM_T_82571) {
14701 reg = CSR_READ(sc, WMREG_CTRL_EXT);
14702 CSR_WRITE(sc, WMREG_CTRL_EXT, reg & ~CTRL_EXT_DRV_LOAD);
14703 }
14704 }
14705
14706 static void
14707 wm_gate_hw_phy_config_ich8lan(struct wm_softc *sc, bool gate)
14708 {
14709 uint32_t reg;
14710
14711 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
14712 device_xname(sc->sc_dev), __func__));
14713
14714 if (sc->sc_type < WM_T_PCH2)
14715 return;
14716
14717 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
14718
14719 if (gate)
14720 reg |= EXTCNFCTR_GATE_PHY_CFG;
14721 else
14722 reg &= ~EXTCNFCTR_GATE_PHY_CFG;
14723
14724 CSR_WRITE(sc, WMREG_EXTCNFCTR, reg);
14725 }
14726
14727 static int
14728 wm_init_phy_workarounds_pchlan(struct wm_softc *sc)
14729 {
14730 uint32_t fwsm, reg;
14731 int rv = 0;
14732
14733 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
14734 device_xname(sc->sc_dev), __func__));
14735
14736 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
14737 wm_gate_hw_phy_config_ich8lan(sc, true);
14738
14739 /* Disable ULP */
14740 wm_ulp_disable(sc);
14741
14742 /* Acquire PHY semaphore */
14743 rv = sc->phy.acquire(sc);
14744 if (rv != 0) {
14745 DPRINTF(WM_DEBUG_INIT, ("%s: %s: failed\n",
14746 device_xname(sc->sc_dev), __func__));
14747 return -1;
14748 }
14749
14750 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
14751 * inaccessible and resetting the PHY is not blocked, toggle the
14752 * LANPHYPC Value bit to force the interconnect to PCIe mode.
14753 */
14754 fwsm = CSR_READ(sc, WMREG_FWSM);
14755 switch (sc->sc_type) {
14756 case WM_T_PCH_LPT:
14757 case WM_T_PCH_SPT:
14758 case WM_T_PCH_CNP:
14759 if (wm_phy_is_accessible_pchlan(sc))
14760 break;
14761
14762 /* Before toggling LANPHYPC, see if PHY is accessible by
14763 * forcing MAC to SMBus mode first.
14764 */
14765 reg = CSR_READ(sc, WMREG_CTRL_EXT);
14766 reg |= CTRL_EXT_FORCE_SMBUS;
14767 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
14768 #if 0
14769 /* XXX Isn't this required??? */
14770 CSR_WRITE_FLUSH(sc);
14771 #endif
14772 /* Wait 50 milliseconds for MAC to finish any retries
14773 * that it might be trying to perform from previous
14774 * attempts to acknowledge any phy read requests.
14775 */
14776 delay(50 * 1000);
14777 /* FALLTHROUGH */
14778 case WM_T_PCH2:
14779 if (wm_phy_is_accessible_pchlan(sc) == true)
14780 break;
14781 /* FALLTHROUGH */
14782 case WM_T_PCH:
14783 if (sc->sc_type == WM_T_PCH)
14784 if ((fwsm & FWSM_FW_VALID) != 0)
14785 break;
14786
14787 if (wm_phy_resetisblocked(sc) == true) {
14788 device_printf(sc->sc_dev, "XXX reset is blocked(3)\n");
14789 break;
14790 }
14791
14792 /* Toggle LANPHYPC Value bit */
14793 wm_toggle_lanphypc_pch_lpt(sc);
14794
14795 if (sc->sc_type >= WM_T_PCH_LPT) {
14796 if (wm_phy_is_accessible_pchlan(sc) == true)
14797 break;
14798
14799 /* Toggling LANPHYPC brings the PHY out of SMBus mode
14800 * so ensure that the MAC is also out of SMBus mode
14801 */
14802 reg = CSR_READ(sc, WMREG_CTRL_EXT);
14803 reg &= ~CTRL_EXT_FORCE_SMBUS;
14804 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
14805
14806 if (wm_phy_is_accessible_pchlan(sc) == true)
14807 break;
14808 rv = -1;
14809 }
14810 break;
14811 default:
14812 break;
14813 }
14814
14815 /* Release semaphore */
14816 sc->phy.release(sc);
14817
14818 if (rv == 0) {
14819 /* Check to see if able to reset PHY. Print error if not */
14820 if (wm_phy_resetisblocked(sc)) {
14821 device_printf(sc->sc_dev, "XXX reset is blocked(4)\n");
14822 goto out;
14823 }
14824
14825 /* Reset the PHY before any access to it. Doing so, ensures
14826 * that the PHY is in a known good state before we read/write
14827 * PHY registers. The generic reset is sufficient here,
14828 * because we haven't determined the PHY type yet.
14829 */
14830 if (wm_reset_phy(sc) != 0)
14831 goto out;
14832
14833 /* On a successful reset, possibly need to wait for the PHY
14834 * to quiesce to an accessible state before returning control
14835 * to the calling function. If the PHY does not quiesce, then
14836 * return E1000E_BLK_PHY_RESET, as this is the condition that
14837 * the PHY is in.
14838 */
14839 if (wm_phy_resetisblocked(sc))
14840 device_printf(sc->sc_dev, "XXX reset is blocked(4)\n");
14841 }
14842
14843 out:
14844 /* Ungate automatic PHY configuration on non-managed 82579 */
14845 if ((sc->sc_type == WM_T_PCH2) && ((fwsm & FWSM_FW_VALID) == 0)) {
14846 delay(10*1000);
14847 wm_gate_hw_phy_config_ich8lan(sc, false);
14848 }
14849
14850 return 0;
14851 }
14852
14853 static void
14854 wm_init_manageability(struct wm_softc *sc)
14855 {
14856
14857 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
14858 device_xname(sc->sc_dev), __func__));
14859 if (sc->sc_flags & WM_F_HAS_MANAGE) {
14860 uint32_t manc2h = CSR_READ(sc, WMREG_MANC2H);
14861 uint32_t manc = CSR_READ(sc, WMREG_MANC);
14862
14863 /* Disable hardware interception of ARP */
14864 manc &= ~MANC_ARP_EN;
14865
14866 /* Enable receiving management packets to the host */
14867 if (sc->sc_type >= WM_T_82571) {
14868 manc |= MANC_EN_MNG2HOST;
14869 manc2h |= MANC2H_PORT_623 | MANC2H_PORT_624;
14870 CSR_WRITE(sc, WMREG_MANC2H, manc2h);
14871 }
14872
14873 CSR_WRITE(sc, WMREG_MANC, manc);
14874 }
14875 }
14876
14877 static void
14878 wm_release_manageability(struct wm_softc *sc)
14879 {
14880
14881 if (sc->sc_flags & WM_F_HAS_MANAGE) {
14882 uint32_t manc = CSR_READ(sc, WMREG_MANC);
14883
14884 manc |= MANC_ARP_EN;
14885 if (sc->sc_type >= WM_T_82571)
14886 manc &= ~MANC_EN_MNG2HOST;
14887
14888 CSR_WRITE(sc, WMREG_MANC, manc);
14889 }
14890 }
14891
14892 static void
14893 wm_get_wakeup(struct wm_softc *sc)
14894 {
14895
14896 /* 0: HAS_AMT, ARC_SUBSYS_VALID, ASF_FIRMWARE_PRES */
14897 switch (sc->sc_type) {
14898 case WM_T_82573:
14899 case WM_T_82583:
14900 sc->sc_flags |= WM_F_HAS_AMT;
14901 /* FALLTHROUGH */
14902 case WM_T_80003:
14903 case WM_T_82575:
14904 case WM_T_82576:
14905 case WM_T_82580:
14906 case WM_T_I350:
14907 case WM_T_I354:
14908 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_MODE) != 0)
14909 sc->sc_flags |= WM_F_ARC_SUBSYS_VALID;
14910 /* FALLTHROUGH */
14911 case WM_T_82541:
14912 case WM_T_82541_2:
14913 case WM_T_82547:
14914 case WM_T_82547_2:
14915 case WM_T_82571:
14916 case WM_T_82572:
14917 case WM_T_82574:
14918 sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES;
14919 break;
14920 case WM_T_ICH8:
14921 case WM_T_ICH9:
14922 case WM_T_ICH10:
14923 case WM_T_PCH:
14924 case WM_T_PCH2:
14925 case WM_T_PCH_LPT:
14926 case WM_T_PCH_SPT:
14927 case WM_T_PCH_CNP:
14928 sc->sc_flags |= WM_F_HAS_AMT;
14929 sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES;
14930 break;
14931 default:
14932 break;
14933 }
14934
14935 /* 1: HAS_MANAGE */
14936 if (wm_enable_mng_pass_thru(sc) != 0)
14937 sc->sc_flags |= WM_F_HAS_MANAGE;
14938
14939 /*
14940 * Note that the WOL flags is set after the resetting of the eeprom
14941 * stuff
14942 */
14943 }
14944
14945 /*
14946 * Unconfigure Ultra Low Power mode.
14947 * Only for I217 and newer (see below).
14948 */
14949 static int
14950 wm_ulp_disable(struct wm_softc *sc)
14951 {
14952 uint32_t reg;
14953 uint16_t phyreg;
14954 int i = 0, rv = 0;
14955
14956 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
14957 device_xname(sc->sc_dev), __func__));
14958 /* Exclude old devices */
14959 if ((sc->sc_type < WM_T_PCH_LPT)
14960 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I217_LM)
14961 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I217_V)
14962 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_LM2)
14963 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_V2))
14964 return 0;
14965
14966 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID) != 0) {
14967 /* Request ME un-configure ULP mode in the PHY */
14968 reg = CSR_READ(sc, WMREG_H2ME);
14969 reg &= ~H2ME_ULP;
14970 reg |= H2ME_ENFORCE_SETTINGS;
14971 CSR_WRITE(sc, WMREG_H2ME, reg);
14972
14973 /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
14974 while ((CSR_READ(sc, WMREG_FWSM) & FWSM_ULP_CFG_DONE) != 0) {
14975 if (i++ == 30) {
14976 device_printf(sc->sc_dev, "%s timed out\n",
14977 __func__);
14978 return -1;
14979 }
14980 delay(10 * 1000);
14981 }
14982 reg = CSR_READ(sc, WMREG_H2ME);
14983 reg &= ~H2ME_ENFORCE_SETTINGS;
14984 CSR_WRITE(sc, WMREG_H2ME, reg);
14985
14986 return 0;
14987 }
14988
14989 /* Acquire semaphore */
14990 rv = sc->phy.acquire(sc);
14991 if (rv != 0) {
14992 DPRINTF(WM_DEBUG_INIT, ("%s: %s: failed\n",
14993 device_xname(sc->sc_dev), __func__));
14994 return -1;
14995 }
14996
14997 /* Toggle LANPHYPC */
14998 wm_toggle_lanphypc_pch_lpt(sc);
14999
15000 /* Unforce SMBus mode in PHY */
15001 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, CV_SMB_CTRL, &phyreg);
15002 if (rv != 0) {
15003 uint32_t reg2;
15004
15005 aprint_debug_dev(sc->sc_dev, "%s: Force SMBus first.\n",
15006 __func__);
15007 reg2 = CSR_READ(sc, WMREG_CTRL_EXT);
15008 reg2 |= CTRL_EXT_FORCE_SMBUS;
15009 CSR_WRITE(sc, WMREG_CTRL_EXT, reg2);
15010 delay(50 * 1000);
15011
15012 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, CV_SMB_CTRL,
15013 &phyreg);
15014 if (rv != 0)
15015 goto release;
15016 }
15017 phyreg &= ~CV_SMB_CTRL_FORCE_SMBUS;
15018 wm_gmii_hv_writereg_locked(sc->sc_dev, 2, CV_SMB_CTRL, phyreg);
15019
15020 /* Unforce SMBus mode in MAC */
15021 reg = CSR_READ(sc, WMREG_CTRL_EXT);
15022 reg &= ~CTRL_EXT_FORCE_SMBUS;
15023 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
15024
15025 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, HV_PM_CTRL, &phyreg);
15026 if (rv != 0)
15027 goto release;
15028 phyreg |= HV_PM_CTRL_K1_ENA;
15029 wm_gmii_hv_writereg_locked(sc->sc_dev, 2, HV_PM_CTRL, phyreg);
15030
15031 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, I218_ULP_CONFIG1,
15032 &phyreg);
15033 if (rv != 0)
15034 goto release;
15035 phyreg &= ~(I218_ULP_CONFIG1_IND
15036 | I218_ULP_CONFIG1_STICKY_ULP
15037 | I218_ULP_CONFIG1_RESET_TO_SMBUS
15038 | I218_ULP_CONFIG1_WOL_HOST
15039 | I218_ULP_CONFIG1_INBAND_EXIT
15040 | I218_ULP_CONFIG1_EN_ULP_LANPHYPC
15041 | I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST
15042 | I218_ULP_CONFIG1_DIS_SMB_PERST);
15043 wm_gmii_hv_writereg_locked(sc->sc_dev, 2, I218_ULP_CONFIG1, phyreg);
15044 phyreg |= I218_ULP_CONFIG1_START;
15045 wm_gmii_hv_writereg_locked(sc->sc_dev, 2, I218_ULP_CONFIG1, phyreg);
15046
15047 reg = CSR_READ(sc, WMREG_FEXTNVM7);
15048 reg &= ~FEXTNVM7_DIS_SMB_PERST;
15049 CSR_WRITE(sc, WMREG_FEXTNVM7, reg);
15050
15051 release:
15052 /* Release semaphore */
15053 sc->phy.release(sc);
15054 wm_gmii_reset(sc);
15055 delay(50 * 1000);
15056
15057 return rv;
15058 }
15059
15060 /* WOL in the newer chipset interfaces (pchlan) */
15061 static int
15062 wm_enable_phy_wakeup(struct wm_softc *sc)
15063 {
15064 device_t dev = sc->sc_dev;
15065 uint32_t mreg, moff;
15066 uint16_t wuce, wuc, wufc, preg;
15067 int i, rv;
15068
15069 KASSERT(sc->sc_type >= WM_T_PCH);
15070
15071 /* Copy MAC RARs to PHY RARs */
15072 wm_copy_rx_addrs_to_phy_ich8lan(sc);
15073
15074 /* Activate PHY wakeup */
15075 rv = sc->phy.acquire(sc);
15076 if (rv != 0) {
15077 device_printf(dev, "%s: failed to acquire semaphore\n",
15078 __func__);
15079 return rv;
15080 }
15081
15082 /*
15083 * Enable access to PHY wakeup registers.
15084 * BM_MTA, BM_RCTL, BM_WUFC and BM_WUC are in BM_WUC_PAGE.
15085 */
15086 rv = wm_enable_phy_wakeup_reg_access_bm(dev, &wuce);
15087 if (rv != 0) {
15088 device_printf(dev,
15089 "%s: Could not enable PHY wakeup reg access\n", __func__);
15090 goto release;
15091 }
15092
15093 /* Copy MAC MTA to PHY MTA */
15094 for (i = 0; i < WM_ICH8_MC_TABSIZE; i++) {
15095 uint16_t lo, hi;
15096
15097 mreg = CSR_READ(sc, WMREG_CORDOVA_MTA + (i * 4));
15098 lo = (uint16_t)(mreg & 0xffff);
15099 hi = (uint16_t)((mreg >> 16) & 0xffff);
15100 wm_access_phy_wakeup_reg_bm(dev, BM_MTA(i), &lo, 0, true);
15101 wm_access_phy_wakeup_reg_bm(dev, BM_MTA(i) + 1, &hi, 0, true);
15102 }
15103
15104 /* Configure PHY Rx Control register */
15105 wm_access_phy_wakeup_reg_bm(dev, BM_RCTL, &preg, 1, true);
15106 mreg = CSR_READ(sc, WMREG_RCTL);
15107 if (mreg & RCTL_UPE)
15108 preg |= BM_RCTL_UPE;
15109 if (mreg & RCTL_MPE)
15110 preg |= BM_RCTL_MPE;
15111 preg &= ~(BM_RCTL_MO_MASK);
15112 moff = __SHIFTOUT(mreg, RCTL_MO);
15113 if (moff != 0)
15114 preg |= moff << BM_RCTL_MO_SHIFT;
15115 if (mreg & RCTL_BAM)
15116 preg |= BM_RCTL_BAM;
15117 if (mreg & RCTL_PMCF)
15118 preg |= BM_RCTL_PMCF;
15119 mreg = CSR_READ(sc, WMREG_CTRL);
15120 if (mreg & CTRL_RFCE)
15121 preg |= BM_RCTL_RFCE;
15122 wm_access_phy_wakeup_reg_bm(dev, BM_RCTL, &preg, 0, true);
15123
15124 wuc = WUC_APME | WUC_PME_EN;
15125 wufc = WUFC_MAG;
15126 /* Enable PHY wakeup in MAC register */
15127 CSR_WRITE(sc, WMREG_WUC,
15128 WUC_PHY_WAKE | WUC_PME_STATUS | WUC_APMPME | wuc);
15129 CSR_WRITE(sc, WMREG_WUFC, wufc);
15130
15131 /* Configure and enable PHY wakeup in PHY registers */
15132 wm_access_phy_wakeup_reg_bm(dev, BM_WUC, &wuc, 0, true);
15133 wm_access_phy_wakeup_reg_bm(dev, BM_WUFC, &wufc, 0, true);
15134
15135 wuce |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
15136 wm_disable_phy_wakeup_reg_access_bm(dev, &wuce);
15137
15138 release:
15139 sc->phy.release(sc);
15140
15141 return 0;
15142 }
15143
15144 /* Power down workaround on D3 */
15145 static void
15146 wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *sc)
15147 {
15148 uint32_t reg;
15149 uint16_t phyreg;
15150 int i;
15151
15152 for (i = 0; i < 2; i++) {
15153 /* Disable link */
15154 reg = CSR_READ(sc, WMREG_PHY_CTRL);
15155 reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS;
15156 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
15157
15158 /*
15159 * Call gig speed drop workaround on Gig disable before
15160 * accessing any PHY registers
15161 */
15162 if (sc->sc_type == WM_T_ICH8)
15163 wm_gig_downshift_workaround_ich8lan(sc);
15164
15165 /* Write VR power-down enable */
15166 sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL, &phyreg);
15167 phyreg &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
15168 phyreg |= IGP3_VR_CTRL_MODE_SHUTDOWN;
15169 sc->sc_mii.mii_writereg(sc->sc_dev, 1, IGP3_VR_CTRL, phyreg);
15170
15171 /* Read it back and test */
15172 sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL, &phyreg);
15173 phyreg &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
15174 if ((phyreg == IGP3_VR_CTRL_MODE_SHUTDOWN) || (i != 0))
15175 break;
15176
15177 /* Issue PHY reset and repeat at most one more time */
15178 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
15179 }
15180 }
15181
15182 /*
15183 * wm_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
15184 * @sc: pointer to the HW structure
15185 *
15186 * During S0 to Sx transition, it is possible the link remains at gig
15187 * instead of negotiating to a lower speed. Before going to Sx, set
15188 * 'Gig Disable' to force link speed negotiation to a lower speed based on
15189 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
15190 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
15191 * needs to be written.
15192 * Parts that support (and are linked to a partner which support) EEE in
15193 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
15194 * than 10Mbps w/o EEE.
15195 */
15196 static void
15197 wm_suspend_workarounds_ich8lan(struct wm_softc *sc)
15198 {
15199 device_t dev = sc->sc_dev;
15200 struct ethercom *ec = &sc->sc_ethercom;
15201 uint32_t phy_ctrl;
15202 int rv;
15203
15204 phy_ctrl = CSR_READ(sc, WMREG_PHY_CTRL);
15205 phy_ctrl |= PHY_CTRL_GBE_DIS;
15206
15207 KASSERT((sc->sc_type >= WM_T_ICH8) && (sc->sc_type <= WM_T_PCH_CNP));
15208
15209 if (sc->sc_phytype == WMPHY_I217) {
15210 uint16_t devid = sc->sc_pcidevid;
15211
15212 if ((devid == PCI_PRODUCT_INTEL_I218_LM) ||
15213 (devid == PCI_PRODUCT_INTEL_I218_V) ||
15214 (devid == PCI_PRODUCT_INTEL_I218_LM3) ||
15215 (devid == PCI_PRODUCT_INTEL_I218_V3) ||
15216 (sc->sc_type >= WM_T_PCH_SPT))
15217 CSR_WRITE(sc, WMREG_FEXTNVM6,
15218 CSR_READ(sc, WMREG_FEXTNVM6)
15219 & ~FEXTNVM6_REQ_PLL_CLK);
15220
15221 if (sc->phy.acquire(sc) != 0)
15222 goto out;
15223
15224 if ((ec->ec_capenable & ETHERCAP_EEE) != 0) {
15225 uint16_t eee_advert;
15226
15227 rv = wm_read_emi_reg_locked(dev,
15228 I217_EEE_ADVERTISEMENT, &eee_advert);
15229 if (rv)
15230 goto release;
15231
15232 /*
15233 * Disable LPLU if both link partners support 100BaseT
15234 * EEE and 100Full is advertised on both ends of the
15235 * link, and enable Auto Enable LPI since there will
15236 * be no driver to enable LPI while in Sx.
15237 */
15238 if ((eee_advert & AN_EEEADVERT_100_TX) &&
15239 (sc->eee_lp_ability & AN_EEEADVERT_100_TX)) {
15240 uint16_t anar, phy_reg;
15241
15242 sc->phy.readreg_locked(dev, 2, MII_ANAR,
15243 &anar);
15244 if (anar & ANAR_TX_FD) {
15245 phy_ctrl &= ~(PHY_CTRL_D0A_LPLU |
15246 PHY_CTRL_NOND0A_LPLU);
15247
15248 /* Set Auto Enable LPI after link up */
15249 sc->phy.readreg_locked(dev, 2,
15250 I217_LPI_GPIO_CTRL, &phy_reg);
15251 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
15252 sc->phy.writereg_locked(dev, 2,
15253 I217_LPI_GPIO_CTRL, phy_reg);
15254 }
15255 }
15256 }
15257
15258 /*
15259 * For i217 Intel Rapid Start Technology support,
15260 * when the system is going into Sx and no manageability engine
15261 * is present, the driver must configure proxy to reset only on
15262 * power good. LPI (Low Power Idle) state must also reset only
15263 * on power good, as well as the MTA (Multicast table array).
15264 * The SMBus release must also be disabled on LCD reset.
15265 */
15266
15267 /*
15268 * Enable MTA to reset for Intel Rapid Start Technology
15269 * Support
15270 */
15271
15272 release:
15273 sc->phy.release(sc);
15274 }
15275 out:
15276 CSR_WRITE(sc, WMREG_PHY_CTRL, phy_ctrl);
15277
15278 if (sc->sc_type == WM_T_ICH8)
15279 wm_gig_downshift_workaround_ich8lan(sc);
15280
15281 if (sc->sc_type >= WM_T_PCH) {
15282 wm_oem_bits_config_ich8lan(sc, false);
15283
15284 /* Reset PHY to activate OEM bits on 82577/8 */
15285 if (sc->sc_type == WM_T_PCH)
15286 wm_reset_phy(sc);
15287
15288 if (sc->phy.acquire(sc) != 0)
15289 return;
15290 wm_write_smbus_addr(sc);
15291 sc->phy.release(sc);
15292 }
15293 }
15294
15295 /*
15296 * wm_resume_workarounds_pchlan - workarounds needed during Sx->S0
15297 * @sc: pointer to the HW structure
15298 *
15299 * During Sx to S0 transitions on non-managed devices or managed devices
15300 * on which PHY resets are not blocked, if the PHY registers cannot be
15301 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
15302 * the PHY.
15303 * On i217, setup Intel Rapid Start Technology.
15304 */
15305 static int
15306 wm_resume_workarounds_pchlan(struct wm_softc *sc)
15307 {
15308 device_t dev = sc->sc_dev;
15309 int rv;
15310
15311 if (sc->sc_type < WM_T_PCH2)
15312 return 0;
15313
15314 rv = wm_init_phy_workarounds_pchlan(sc);
15315 if (rv != 0)
15316 return -1;
15317
15318 /* For i217 Intel Rapid Start Technology support when the system
15319 * is transitioning from Sx and no manageability engine is present
15320 * configure SMBus to restore on reset, disable proxy, and enable
15321 * the reset on MTA (Multicast table array).
15322 */
15323 if (sc->sc_phytype == WMPHY_I217) {
15324 uint16_t phy_reg;
15325
15326 if (sc->phy.acquire(sc) != 0)
15327 return -1;
15328
15329 /* Clear Auto Enable LPI after link up */
15330 sc->phy.readreg_locked(dev, 1, I217_LPI_GPIO_CTRL, &phy_reg);
15331 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
15332 sc->phy.writereg_locked(dev, 1, I217_LPI_GPIO_CTRL, phy_reg);
15333
15334 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID) == 0) {
15335 /* Restore clear on SMB if no manageability engine
15336 * is present
15337 */
15338 rv = sc->phy.readreg_locked(dev, 1, I217_MEMPWR,
15339 &phy_reg);
15340 if (rv != 0)
15341 goto release;
15342 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
15343 sc->phy.writereg_locked(dev, 1, I217_MEMPWR, phy_reg);
15344
15345 /* Disable Proxy */
15346 sc->phy.writereg_locked(dev, 1, I217_PROXY_CTRL, 0);
15347 }
15348 /* Enable reset on MTA */
15349 sc->phy.readreg_locked(dev, 1, I217_CFGREG, &phy_reg);
15350 if (rv != 0)
15351 goto release;
15352 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
15353 sc->phy.writereg_locked(dev, 1, I217_CFGREG, phy_reg);
15354
15355 release:
15356 sc->phy.release(sc);
15357 return rv;
15358 }
15359
15360 return 0;
15361 }
15362
15363 static void
15364 wm_enable_wakeup(struct wm_softc *sc)
15365 {
15366 uint32_t reg, pmreg;
15367 pcireg_t pmode;
15368 int rv = 0;
15369
15370 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
15371 device_xname(sc->sc_dev), __func__));
15372
15373 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PWRMGMT,
15374 &pmreg, NULL) == 0)
15375 return;
15376
15377 if ((sc->sc_flags & WM_F_WOL) == 0)
15378 goto pme;
15379
15380 /* Advertise the wakeup capability */
15381 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_SWDPIN(2)
15382 | CTRL_SWDPIN(3));
15383
15384 /* Keep the laser running on fiber adapters */
15385 if ((sc->sc_mediatype == WM_MEDIATYPE_FIBER)
15386 || (sc->sc_mediatype == WM_MEDIATYPE_SERDES)) {
15387 reg = CSR_READ(sc, WMREG_CTRL_EXT);
15388 reg |= CTRL_EXT_SWDPIN(3);
15389 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
15390 }
15391
15392 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9) ||
15393 (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH) ||
15394 (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT) ||
15395 (sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP))
15396 wm_suspend_workarounds_ich8lan(sc);
15397
15398 #if 0 /* For the multicast packet */
15399 reg = CSR_READ(sc, WMREG_WUFC) | WUFC_MAG;
15400 reg |= WUFC_MC;
15401 CSR_WRITE(sc, WMREG_RCTL, CSR_READ(sc, WMREG_RCTL) | RCTL_MPE);
15402 #endif
15403
15404 if (sc->sc_type >= WM_T_PCH) {
15405 rv = wm_enable_phy_wakeup(sc);
15406 if (rv != 0)
15407 goto pme;
15408 } else {
15409 /* Enable wakeup by the MAC */
15410 CSR_WRITE(sc, WMREG_WUC, WUC_APME | WUC_PME_EN);
15411 CSR_WRITE(sc, WMREG_WUFC, WUFC_MAG);
15412 }
15413
15414 if (((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
15415 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
15416 || (sc->sc_type == WM_T_PCH2))
15417 && (sc->sc_phytype == WMPHY_IGP_3))
15418 wm_igp3_phy_powerdown_workaround_ich8lan(sc);
15419
15420 pme:
15421 /* Request PME */
15422 pmode = pci_conf_read(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR);
15423 pmode |= PCI_PMCSR_PME_STS; /* in case it's already set (W1C) */
15424 if ((rv == 0) && (sc->sc_flags & WM_F_WOL) != 0) {
15425 /* For WOL */
15426 pmode |= PCI_PMCSR_PME_EN;
15427 } else {
15428 /* Disable WOL */
15429 pmode &= ~PCI_PMCSR_PME_EN;
15430 }
15431 pci_conf_write(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR, pmode);
15432 }
15433
15434 /* Disable ASPM L0s and/or L1 for workaround */
15435 static void
15436 wm_disable_aspm(struct wm_softc *sc)
15437 {
15438 pcireg_t reg, mask = 0;
15439 unsigned const char *str = "";
15440
15441 /*
15442 * Only for PCIe device which has PCIe capability in the PCI config
15443 * space.
15444 */
15445 if (((sc->sc_flags & WM_F_PCIE) == 0) || (sc->sc_pcixe_capoff == 0))
15446 return;
15447
15448 switch (sc->sc_type) {
15449 case WM_T_82571:
15450 case WM_T_82572:
15451 /*
15452 * 8257[12] Errata 13: Device Does Not Support PCIe Active
15453 * State Power management L1 State (ASPM L1).
15454 */
15455 mask = PCIE_LCSR_ASPM_L1;
15456 str = "L1 is";
15457 break;
15458 case WM_T_82573:
15459 case WM_T_82574:
15460 case WM_T_82583:
15461 /*
15462 * The 82573 disappears when PCIe ASPM L0s is enabled.
15463 *
15464 * The 82574 and 82583 does not support PCIe ASPM L0s with
15465 * some chipset. The document of 82574 and 82583 says that
15466 * disabling L0s with some specific chipset is sufficient,
15467 * but we follow as of the Intel em driver does.
15468 *
15469 * References:
15470 * Errata 8 of the Specification Update of i82573.
15471 * Errata 20 of the Specification Update of i82574.
15472 * Errata 9 of the Specification Update of i82583.
15473 */
15474 mask = PCIE_LCSR_ASPM_L1 | PCIE_LCSR_ASPM_L0S;
15475 str = "L0s and L1 are";
15476 break;
15477 default:
15478 return;
15479 }
15480
15481 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
15482 sc->sc_pcixe_capoff + PCIE_LCSR);
15483 reg &= ~mask;
15484 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
15485 sc->sc_pcixe_capoff + PCIE_LCSR, reg);
15486
15487 /* Print only in wm_attach() */
15488 if ((sc->sc_flags & WM_F_ATTACHED) == 0)
15489 aprint_verbose_dev(sc->sc_dev,
15490 "ASPM %s disabled to workaround the errata.\n", str);
15491 }
15492
15493 /* LPLU */
15494
15495 static void
15496 wm_lplu_d0_disable(struct wm_softc *sc)
15497 {
15498 struct mii_data *mii = &sc->sc_mii;
15499 uint32_t reg;
15500 uint16_t phyval;
15501
15502 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
15503 device_xname(sc->sc_dev), __func__));
15504
15505 if (sc->sc_phytype == WMPHY_IFE)
15506 return;
15507
15508 switch (sc->sc_type) {
15509 case WM_T_82571:
15510 case WM_T_82572:
15511 case WM_T_82573:
15512 case WM_T_82575:
15513 case WM_T_82576:
15514 mii->mii_readreg(sc->sc_dev, 1, IGPHY_POWER_MGMT, &phyval);
15515 phyval &= ~PMR_D0_LPLU;
15516 mii->mii_writereg(sc->sc_dev, 1, IGPHY_POWER_MGMT, phyval);
15517 break;
15518 case WM_T_82580:
15519 case WM_T_I350:
15520 case WM_T_I210:
15521 case WM_T_I211:
15522 reg = CSR_READ(sc, WMREG_PHPM);
15523 reg &= ~PHPM_D0A_LPLU;
15524 CSR_WRITE(sc, WMREG_PHPM, reg);
15525 break;
15526 case WM_T_82574:
15527 case WM_T_82583:
15528 case WM_T_ICH8:
15529 case WM_T_ICH9:
15530 case WM_T_ICH10:
15531 reg = CSR_READ(sc, WMREG_PHY_CTRL);
15532 reg &= ~(PHY_CTRL_GBE_DIS | PHY_CTRL_D0A_LPLU);
15533 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
15534 CSR_WRITE_FLUSH(sc);
15535 break;
15536 case WM_T_PCH:
15537 case WM_T_PCH2:
15538 case WM_T_PCH_LPT:
15539 case WM_T_PCH_SPT:
15540 case WM_T_PCH_CNP:
15541 wm_gmii_hv_readreg(sc->sc_dev, 1, HV_OEM_BITS, &phyval);
15542 phyval &= ~(HV_OEM_BITS_A1KDIS | HV_OEM_BITS_LPLU);
15543 if (wm_phy_resetisblocked(sc) == false)
15544 phyval |= HV_OEM_BITS_ANEGNOW;
15545 wm_gmii_hv_writereg(sc->sc_dev, 1, HV_OEM_BITS, phyval);
15546 break;
15547 default:
15548 break;
15549 }
15550 }
15551
15552 /* EEE */
15553
15554 static int
15555 wm_set_eee_i350(struct wm_softc *sc)
15556 {
15557 struct ethercom *ec = &sc->sc_ethercom;
15558 uint32_t ipcnfg, eeer;
15559 uint32_t ipcnfg_mask
15560 = IPCNFG_EEE_1G_AN | IPCNFG_EEE_100M_AN | IPCNFG_10BASE_TE;
15561 uint32_t eeer_mask = EEER_TX_LPI_EN | EEER_RX_LPI_EN | EEER_LPI_FC;
15562
15563 KASSERT(sc->sc_mediatype == WM_MEDIATYPE_COPPER);
15564
15565 ipcnfg = CSR_READ(sc, WMREG_IPCNFG);
15566 eeer = CSR_READ(sc, WMREG_EEER);
15567
15568 /* Enable or disable per user setting */
15569 if ((ec->ec_capenable & ETHERCAP_EEE) != 0) {
15570 ipcnfg |= ipcnfg_mask;
15571 eeer |= eeer_mask;
15572 } else {
15573 ipcnfg &= ~ipcnfg_mask;
15574 eeer &= ~eeer_mask;
15575 }
15576
15577 CSR_WRITE(sc, WMREG_IPCNFG, ipcnfg);
15578 CSR_WRITE(sc, WMREG_EEER, eeer);
15579 CSR_READ(sc, WMREG_IPCNFG); /* XXX flush? */
15580 CSR_READ(sc, WMREG_EEER); /* XXX flush? */
15581
15582 return 0;
15583 }
15584
15585 static int
15586 wm_set_eee_pchlan(struct wm_softc *sc)
15587 {
15588 device_t dev = sc->sc_dev;
15589 struct ethercom *ec = &sc->sc_ethercom;
15590 uint16_t lpa, pcs_status, adv_addr, adv, lpi_ctrl, data;
15591 int rv = 0;
15592
15593 switch (sc->sc_phytype) {
15594 case WMPHY_82579:
15595 lpa = I82579_EEE_LP_ABILITY;
15596 pcs_status = I82579_EEE_PCS_STATUS;
15597 adv_addr = I82579_EEE_ADVERTISEMENT;
15598 break;
15599 case WMPHY_I217:
15600 lpa = I217_EEE_LP_ABILITY;
15601 pcs_status = I217_EEE_PCS_STATUS;
15602 adv_addr = I217_EEE_ADVERTISEMENT;
15603 break;
15604 default:
15605 return 0;
15606 }
15607
15608 if (sc->phy.acquire(sc)) {
15609 device_printf(dev, "%s: failed to get semaphore\n", __func__);
15610 return 0;
15611 }
15612
15613 rv = sc->phy.readreg_locked(dev, 1, I82579_LPI_CTRL, &lpi_ctrl);
15614 if (rv != 0)
15615 goto release;
15616
15617 /* Clear bits that enable EEE in various speeds */
15618 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE;
15619
15620 if ((ec->ec_capenable & ETHERCAP_EEE) != 0) {
15621 /* Save off link partner's EEE ability */
15622 rv = wm_read_emi_reg_locked(dev, lpa, &sc->eee_lp_ability);
15623 if (rv != 0)
15624 goto release;
15625
15626 /* Read EEE advertisement */
15627 if ((rv = wm_read_emi_reg_locked(dev, adv_addr, &adv)) != 0)
15628 goto release;
15629
15630 /*
15631 * Enable EEE only for speeds in which the link partner is
15632 * EEE capable and for which we advertise EEE.
15633 */
15634 if (adv & sc->eee_lp_ability & AN_EEEADVERT_1000_T)
15635 lpi_ctrl |= I82579_LPI_CTRL_EN_1000;
15636 if (adv & sc->eee_lp_ability & AN_EEEADVERT_100_TX) {
15637 sc->phy.readreg_locked(dev, 2, MII_ANLPAR, &data);
15638 if ((data & ANLPAR_TX_FD) != 0)
15639 lpi_ctrl |= I82579_LPI_CTRL_EN_100;
15640 else {
15641 /*
15642 * EEE is not supported in 100Half, so ignore
15643 * partner's EEE in 100 ability if full-duplex
15644 * is not advertised.
15645 */
15646 sc->eee_lp_ability
15647 &= ~AN_EEEADVERT_100_TX;
15648 }
15649 }
15650 }
15651
15652 if (sc->sc_phytype == WMPHY_82579) {
15653 rv = wm_read_emi_reg_locked(dev, I82579_LPI_PLL_SHUT, &data);
15654 if (rv != 0)
15655 goto release;
15656
15657 data &= ~I82579_LPI_PLL_SHUT_100;
15658 rv = wm_write_emi_reg_locked(dev, I82579_LPI_PLL_SHUT, data);
15659 }
15660
15661 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
15662 if ((rv = wm_read_emi_reg_locked(dev, pcs_status, &data)) != 0)
15663 goto release;
15664
15665 rv = sc->phy.writereg_locked(dev, 1, I82579_LPI_CTRL, lpi_ctrl);
15666 release:
15667 sc->phy.release(sc);
15668
15669 return rv;
15670 }
15671
15672 static int
15673 wm_set_eee(struct wm_softc *sc)
15674 {
15675 struct ethercom *ec = &sc->sc_ethercom;
15676
15677 if ((ec->ec_capabilities & ETHERCAP_EEE) == 0)
15678 return 0;
15679
15680 if (sc->sc_type == WM_T_I354) {
15681 /* I354 uses an external PHY */
15682 return 0; /* not yet */
15683 } else if ((sc->sc_type >= WM_T_I350) && (sc->sc_type <= WM_T_I211))
15684 return wm_set_eee_i350(sc);
15685 else if (sc->sc_type >= WM_T_PCH2)
15686 return wm_set_eee_pchlan(sc);
15687
15688 return 0;
15689 }
15690
15691 /*
15692 * Workarounds (mainly PHY related).
15693 * Basically, PHY's workarounds are in the PHY drivers.
15694 */
15695
15696 /* Work-around for 82566 Kumeran PCS lock loss */
15697 static int
15698 wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *sc)
15699 {
15700 struct mii_data *mii = &sc->sc_mii;
15701 uint32_t status = CSR_READ(sc, WMREG_STATUS);
15702 int i, reg, rv;
15703 uint16_t phyreg;
15704
15705 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
15706 device_xname(sc->sc_dev), __func__));
15707
15708 /* If the link is not up, do nothing */
15709 if ((status & STATUS_LU) == 0)
15710 return 0;
15711
15712 /* Nothing to do if the link is other than 1Gbps */
15713 if (__SHIFTOUT(status, STATUS_SPEED) != STATUS_SPEED_1000)
15714 return 0;
15715
15716 for (i = 0; i < 10; i++) {
15717 /* read twice */
15718 rv = mii->mii_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG, &phyreg);
15719 if (rv != 0)
15720 return rv;
15721 rv = mii->mii_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG, &phyreg);
15722 if (rv != 0)
15723 return rv;
15724
15725 if ((phyreg & IGP3_KMRN_DIAG_PCS_LOCK_LOSS) == 0)
15726 goto out; /* GOOD! */
15727
15728 /* Reset the PHY */
15729 wm_reset_phy(sc);
15730 delay(5*1000);
15731 }
15732
15733 /* Disable GigE link negotiation */
15734 reg = CSR_READ(sc, WMREG_PHY_CTRL);
15735 reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS;
15736 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
15737
15738 /*
15739 * Call gig speed drop workaround on Gig disable before accessing
15740 * any PHY registers.
15741 */
15742 wm_gig_downshift_workaround_ich8lan(sc);
15743
15744 out:
15745 return 0;
15746 }
15747
15748 /*
15749 * wm_gig_downshift_workaround_ich8lan - WoL from S5 stops working
15750 * @sc: pointer to the HW structure
15751 *
15752 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
15753 * LPLU, Gig disable, MDIC PHY reset):
15754 * 1) Set Kumeran Near-end loopback
15755 * 2) Clear Kumeran Near-end loopback
15756 * Should only be called for ICH8[m] devices with any 1G Phy.
15757 */
15758 static void
15759 wm_gig_downshift_workaround_ich8lan(struct wm_softc *sc)
15760 {
15761 uint16_t kmreg;
15762
15763 /* Only for igp3 */
15764 if (sc->sc_phytype == WMPHY_IGP_3) {
15765 if (wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_DIAG, &kmreg) != 0)
15766 return;
15767 kmreg |= KUMCTRLSTA_DIAG_NELPBK;
15768 if (wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmreg) != 0)
15769 return;
15770 kmreg &= ~KUMCTRLSTA_DIAG_NELPBK;
15771 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmreg);
15772 }
15773 }
15774
15775 /*
15776 * Workaround for pch's PHYs
15777 * XXX should be moved to new PHY driver?
15778 */
15779 static int
15780 wm_hv_phy_workarounds_ich8lan(struct wm_softc *sc)
15781 {
15782 device_t dev = sc->sc_dev;
15783 struct mii_data *mii = &sc->sc_mii;
15784 struct mii_softc *child;
15785 uint16_t phy_data, phyrev = 0;
15786 int phytype = sc->sc_phytype;
15787 int rv;
15788
15789 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
15790 device_xname(dev), __func__));
15791 KASSERT(sc->sc_type == WM_T_PCH);
15792
15793 /* Set MDIO slow mode before any other MDIO access */
15794 if (phytype == WMPHY_82577)
15795 if ((rv = wm_set_mdio_slow_mode_hv(sc)) != 0)
15796 return rv;
15797
15798 child = LIST_FIRST(&mii->mii_phys);
15799 if (child != NULL)
15800 phyrev = child->mii_mpd_rev;
15801
15802 /* (82577 && (phy rev 1 or 2)) || (82578 & phy rev 1)*/
15803 if ((child != NULL) &&
15804 (((phytype == WMPHY_82577) && ((phyrev == 1) || (phyrev == 2))) ||
15805 ((phytype == WMPHY_82578) && (phyrev == 1)))) {
15806 /* Disable generation of early preamble (0x4431) */
15807 rv = mii->mii_readreg(dev, 2, BM_RATE_ADAPTATION_CTRL,
15808 &phy_data);
15809 if (rv != 0)
15810 return rv;
15811 phy_data &= ~(BM_RATE_ADAPTATION_CTRL_RX_RXDV_PRE |
15812 BM_RATE_ADAPTATION_CTRL_RX_CRS_PRE);
15813 rv = mii->mii_writereg(dev, 2, BM_RATE_ADAPTATION_CTRL,
15814 phy_data);
15815 if (rv != 0)
15816 return rv;
15817
15818 /* Preamble tuning for SSC */
15819 rv = mii->mii_writereg(dev, 2, HV_KMRN_FIFO_CTRLSTA, 0xa204);
15820 if (rv != 0)
15821 return rv;
15822 }
15823
15824 /* 82578 */
15825 if (phytype == WMPHY_82578) {
15826 /*
15827 * Return registers to default by doing a soft reset then
15828 * writing 0x3140 to the control register
15829 * 0x3140 == BMCR_SPEED0 | BMCR_AUTOEN | BMCR_FDX | BMCR_SPEED1
15830 */
15831 if ((child != NULL) && (phyrev < 2)) {
15832 PHY_RESET(child);
15833 rv = mii->mii_writereg(dev, 2, MII_BMCR, 0x3140);
15834 if (rv != 0)
15835 return rv;
15836 }
15837 }
15838
15839 /* Select page 0 */
15840 if ((rv = sc->phy.acquire(sc)) != 0)
15841 return rv;
15842 rv = wm_gmii_mdic_writereg(dev, 1, IGPHY_PAGE_SELECT, 0);
15843 sc->phy.release(sc);
15844 if (rv != 0)
15845 return rv;
15846
15847 /*
15848 * Configure the K1 Si workaround during phy reset assuming there is
15849 * link so that it disables K1 if link is in 1Gbps.
15850 */
15851 if ((rv = wm_k1_gig_workaround_hv(sc, 1)) != 0)
15852 return rv;
15853
15854 /* Workaround for link disconnects on a busy hub in half duplex */
15855 rv = sc->phy.acquire(sc);
15856 if (rv)
15857 return rv;
15858 rv = sc->phy.readreg_locked(dev, 2, BM_PORT_GEN_CFG, &phy_data);
15859 if (rv)
15860 goto release;
15861 rv = sc->phy.writereg_locked(dev, 2, BM_PORT_GEN_CFG,
15862 phy_data & 0x00ff);
15863 if (rv)
15864 goto release;
15865
15866 /* Set MSE higher to enable link to stay up when noise is high */
15867 rv = wm_write_emi_reg_locked(dev, I82577_MSE_THRESHOLD, 0x0034);
15868 release:
15869 sc->phy.release(sc);
15870
15871 return rv;
15872 }
15873
15874 /*
15875 * wm_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
15876 * @sc: pointer to the HW structure
15877 */
15878 static void
15879 wm_copy_rx_addrs_to_phy_ich8lan(struct wm_softc *sc)
15880 {
15881 device_t dev = sc->sc_dev;
15882 uint32_t mac_reg;
15883 uint16_t i, wuce;
15884 int count;
15885
15886 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
15887 device_xname(sc->sc_dev), __func__));
15888
15889 if (sc->phy.acquire(sc) != 0)
15890 return;
15891 if (wm_enable_phy_wakeup_reg_access_bm(dev, &wuce) != 0)
15892 goto release;
15893
15894 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
15895 count = wm_rar_count(sc);
15896 for (i = 0; i < count; i++) {
15897 uint16_t lo, hi;
15898 mac_reg = CSR_READ(sc, WMREG_CORDOVA_RAL(i));
15899 lo = (uint16_t)(mac_reg & 0xffff);
15900 hi = (uint16_t)((mac_reg >> 16) & 0xffff);
15901 wm_access_phy_wakeup_reg_bm(dev, BM_RAR_L(i), &lo, 0, true);
15902 wm_access_phy_wakeup_reg_bm(dev, BM_RAR_M(i), &hi, 0, true);
15903
15904 mac_reg = CSR_READ(sc, WMREG_CORDOVA_RAH(i));
15905 lo = (uint16_t)(mac_reg & 0xffff);
15906 hi = (uint16_t)((mac_reg & RAL_AV) >> 16);
15907 wm_access_phy_wakeup_reg_bm(dev, BM_RAR_H(i), &lo, 0, true);
15908 wm_access_phy_wakeup_reg_bm(dev, BM_RAR_CTRL(i), &hi, 0, true);
15909 }
15910
15911 wm_disable_phy_wakeup_reg_access_bm(dev, &wuce);
15912
15913 release:
15914 sc->phy.release(sc);
15915 }
15916
15917 /*
15918 * wm_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
15919 * done after every PHY reset.
15920 */
15921 static int
15922 wm_lv_phy_workarounds_ich8lan(struct wm_softc *sc)
15923 {
15924 device_t dev = sc->sc_dev;
15925 int rv;
15926
15927 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
15928 device_xname(dev), __func__));
15929 KASSERT(sc->sc_type == WM_T_PCH2);
15930
15931 /* Set MDIO slow mode before any other MDIO access */
15932 rv = wm_set_mdio_slow_mode_hv(sc);
15933 if (rv != 0)
15934 return rv;
15935
15936 rv = sc->phy.acquire(sc);
15937 if (rv != 0)
15938 return rv;
15939 /* Set MSE higher to enable link to stay up when noise is high */
15940 rv = wm_write_emi_reg_locked(dev, I82579_MSE_THRESHOLD, 0x0034);
15941 if (rv != 0)
15942 goto release;
15943 /* Drop link after 5 times MSE threshold was reached */
15944 rv = wm_write_emi_reg_locked(dev, I82579_MSE_LINK_DOWN, 0x0005);
15945 release:
15946 sc->phy.release(sc);
15947
15948 return rv;
15949 }
15950
15951 /**
15952 * wm_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
15953 * @link: link up bool flag
15954 *
15955 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
15956 * preventing further DMA write requests. Workaround the issue by disabling
15957 * the de-assertion of the clock request when in 1Gpbs mode.
15958 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
15959 * speeds in order to avoid Tx hangs.
15960 **/
15961 static int
15962 wm_k1_workaround_lpt_lp(struct wm_softc *sc, bool link)
15963 {
15964 uint32_t fextnvm6 = CSR_READ(sc, WMREG_FEXTNVM6);
15965 uint32_t status = CSR_READ(sc, WMREG_STATUS);
15966 uint32_t speed = __SHIFTOUT(status, STATUS_SPEED);
15967 uint16_t phyreg;
15968
15969 if (link && (speed == STATUS_SPEED_1000)) {
15970 sc->phy.acquire(sc);
15971 int rv = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG,
15972 &phyreg);
15973 if (rv != 0)
15974 goto release;
15975 rv = wm_kmrn_writereg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG,
15976 phyreg & ~KUMCTRLSTA_K1_ENABLE);
15977 if (rv != 0)
15978 goto release;
15979 delay(20);
15980 CSR_WRITE(sc, WMREG_FEXTNVM6, fextnvm6 | FEXTNVM6_REQ_PLL_CLK);
15981
15982 rv = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG,
15983 &phyreg);
15984 release:
15985 sc->phy.release(sc);
15986 return rv;
15987 }
15988
15989 fextnvm6 &= ~FEXTNVM6_REQ_PLL_CLK;
15990
15991 struct mii_softc *child = LIST_FIRST(&sc->sc_mii.mii_phys);
15992 if (((child != NULL) && (child->mii_mpd_rev > 5))
15993 || !link
15994 || ((speed == STATUS_SPEED_100) && (status & STATUS_FD)))
15995 goto update_fextnvm6;
15996
15997 wm_gmii_hv_readreg(sc->sc_dev, 2, I217_INBAND_CTRL, &phyreg);
15998
15999 /* Clear link status transmit timeout */
16000 phyreg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
16001 if (speed == STATUS_SPEED_100) {
16002 /* Set inband Tx timeout to 5x10us for 100Half */
16003 phyreg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
16004
16005 /* Do not extend the K1 entry latency for 100Half */
16006 fextnvm6 &= ~FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
16007 } else {
16008 /* Set inband Tx timeout to 50x10us for 10Full/Half */
16009 phyreg |= 50 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
16010
16011 /* Extend the K1 entry latency for 10 Mbps */
16012 fextnvm6 |= FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
16013 }
16014
16015 wm_gmii_hv_writereg(sc->sc_dev, 2, I217_INBAND_CTRL, phyreg);
16016
16017 update_fextnvm6:
16018 CSR_WRITE(sc, WMREG_FEXTNVM6, fextnvm6);
16019 return 0;
16020 }
16021
16022 /*
16023 * wm_k1_gig_workaround_hv - K1 Si workaround
16024 * @sc: pointer to the HW structure
16025 * @link: link up bool flag
16026 *
16027 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
16028 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
16029 * If link is down, the function will restore the default K1 setting located
16030 * in the NVM.
16031 */
16032 static int
16033 wm_k1_gig_workaround_hv(struct wm_softc *sc, int link)
16034 {
16035 int k1_enable = sc->sc_nvm_k1_enabled;
16036
16037 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
16038 device_xname(sc->sc_dev), __func__));
16039
16040 if (sc->phy.acquire(sc) != 0)
16041 return -1;
16042
16043 if (link) {
16044 k1_enable = 0;
16045
16046 /* Link stall fix for link up */
16047 wm_gmii_hv_writereg_locked(sc->sc_dev, 1, IGP3_KMRN_DIAG,
16048 0x0100);
16049 } else {
16050 /* Link stall fix for link down */
16051 wm_gmii_hv_writereg_locked(sc->sc_dev, 1, IGP3_KMRN_DIAG,
16052 0x4100);
16053 }
16054
16055 wm_configure_k1_ich8lan(sc, k1_enable);
16056 sc->phy.release(sc);
16057
16058 return 0;
16059 }
16060
16061 /*
16062 * wm_k1_workaround_lv - K1 Si workaround
16063 * @sc: pointer to the HW structure
16064 *
16065 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
16066 * Disable K1 for 1000 and 100 speeds
16067 */
16068 static int
16069 wm_k1_workaround_lv(struct wm_softc *sc)
16070 {
16071 uint32_t reg;
16072 uint16_t phyreg;
16073 int rv;
16074
16075 if (sc->sc_type != WM_T_PCH2)
16076 return 0;
16077
16078 /* Set K1 beacon duration based on 10Mbps speed */
16079 rv = wm_gmii_hv_readreg(sc->sc_dev, 2, HV_M_STATUS, &phyreg);
16080 if (rv != 0)
16081 return rv;
16082
16083 if ((phyreg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
16084 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
16085 if (phyreg &
16086 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
16087 /* LV 1G/100 Packet drop issue wa */
16088 rv = wm_gmii_hv_readreg(sc->sc_dev, 1, HV_PM_CTRL,
16089 &phyreg);
16090 if (rv != 0)
16091 return rv;
16092 phyreg &= ~HV_PM_CTRL_K1_ENA;
16093 rv = wm_gmii_hv_writereg(sc->sc_dev, 1, HV_PM_CTRL,
16094 phyreg);
16095 if (rv != 0)
16096 return rv;
16097 } else {
16098 /* For 10Mbps */
16099 reg = CSR_READ(sc, WMREG_FEXTNVM4);
16100 reg &= ~FEXTNVM4_BEACON_DURATION;
16101 reg |= FEXTNVM4_BEACON_DURATION_16US;
16102 CSR_WRITE(sc, WMREG_FEXTNVM4, reg);
16103 }
16104 }
16105
16106 return 0;
16107 }
16108
16109 /*
16110 * wm_link_stall_workaround_hv - Si workaround
16111 * @sc: pointer to the HW structure
16112 *
16113 * This function works around a Si bug where the link partner can get
16114 * a link up indication before the PHY does. If small packets are sent
16115 * by the link partner they can be placed in the packet buffer without
16116 * being properly accounted for by the PHY and will stall preventing
16117 * further packets from being received. The workaround is to clear the
16118 * packet buffer after the PHY detects link up.
16119 */
16120 static int
16121 wm_link_stall_workaround_hv(struct wm_softc *sc)
16122 {
16123 uint16_t phyreg;
16124
16125 if (sc->sc_phytype != WMPHY_82578)
16126 return 0;
16127
16128 /* Do not apply workaround if in PHY loopback bit 14 set */
16129 wm_gmii_hv_readreg(sc->sc_dev, 2, MII_BMCR, &phyreg);
16130 if ((phyreg & BMCR_LOOP) != 0)
16131 return 0;
16132
16133 /* Check if link is up and at 1Gbps */
16134 wm_gmii_hv_readreg(sc->sc_dev, 2, BM_CS_STATUS, &phyreg);
16135 phyreg &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED
16136 | BM_CS_STATUS_SPEED_MASK;
16137 if (phyreg != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED
16138 | BM_CS_STATUS_SPEED_1000))
16139 return 0;
16140
16141 delay(200 * 1000); /* XXX too big */
16142
16143 /* Flush the packets in the fifo buffer */
16144 wm_gmii_hv_writereg(sc->sc_dev, 1, HV_MUX_DATA_CTRL,
16145 HV_MUX_DATA_CTRL_GEN_TO_MAC | HV_MUX_DATA_CTRL_FORCE_SPEED);
16146 wm_gmii_hv_writereg(sc->sc_dev, 1, HV_MUX_DATA_CTRL,
16147 HV_MUX_DATA_CTRL_GEN_TO_MAC);
16148
16149 return 0;
16150 }
16151
16152 static int
16153 wm_set_mdio_slow_mode_hv(struct wm_softc *sc)
16154 {
16155 int rv;
16156 uint16_t reg;
16157
16158 rv = wm_gmii_hv_readreg(sc->sc_dev, 1, HV_KMRN_MODE_CTRL, ®);
16159 if (rv != 0)
16160 return rv;
16161
16162 return wm_gmii_hv_writereg(sc->sc_dev, 1, HV_KMRN_MODE_CTRL,
16163 reg | HV_KMRN_MDIO_SLOW);
16164 }
16165
16166 /*
16167 * wm_configure_k1_ich8lan - Configure K1 power state
16168 * @sc: pointer to the HW structure
16169 * @enable: K1 state to configure
16170 *
16171 * Configure the K1 power state based on the provided parameter.
16172 * Assumes semaphore already acquired.
16173 */
16174 static void
16175 wm_configure_k1_ich8lan(struct wm_softc *sc, int k1_enable)
16176 {
16177 uint32_t ctrl, ctrl_ext, tmp;
16178 uint16_t kmreg;
16179 int rv;
16180
16181 KASSERT(CSR_READ(sc, WMREG_EXTCNFCTR) & EXTCNFCTR_MDIO_SW_OWNERSHIP);
16182
16183 rv = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG, &kmreg);
16184 if (rv != 0)
16185 return;
16186
16187 if (k1_enable)
16188 kmreg |= KUMCTRLSTA_K1_ENABLE;
16189 else
16190 kmreg &= ~KUMCTRLSTA_K1_ENABLE;
16191
16192 rv = wm_kmrn_writereg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG, kmreg);
16193 if (rv != 0)
16194 return;
16195
16196 delay(20);
16197
16198 ctrl = CSR_READ(sc, WMREG_CTRL);
16199 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
16200
16201 tmp = ctrl & ~(CTRL_SPEED_1000 | CTRL_SPEED_100);
16202 tmp |= CTRL_FRCSPD;
16203
16204 CSR_WRITE(sc, WMREG_CTRL, tmp);
16205 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext | CTRL_EXT_SPD_BYPS);
16206 CSR_WRITE_FLUSH(sc);
16207 delay(20);
16208
16209 CSR_WRITE(sc, WMREG_CTRL, ctrl);
16210 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
16211 CSR_WRITE_FLUSH(sc);
16212 delay(20);
16213
16214 return;
16215 }
16216
16217 /* special case - for 82575 - need to do manual init ... */
16218 static void
16219 wm_reset_init_script_82575(struct wm_softc *sc)
16220 {
16221 /*
16222 * Remark: this is untested code - we have no board without EEPROM
16223 * same setup as mentioned int the FreeBSD driver for the i82575
16224 */
16225
16226 /* SerDes configuration via SERDESCTRL */
16227 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x00, 0x0c);
16228 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x01, 0x78);
16229 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x1b, 0x23);
16230 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x23, 0x15);
16231
16232 /* CCM configuration via CCMCTL register */
16233 wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x14, 0x00);
16234 wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x10, 0x00);
16235
16236 /* PCIe lanes configuration */
16237 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x00, 0xec);
16238 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x61, 0xdf);
16239 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x34, 0x05);
16240 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x2f, 0x81);
16241
16242 /* PCIe PLL Configuration */
16243 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x02, 0x47);
16244 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x14, 0x00);
16245 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x10, 0x00);
16246 }
16247
16248 static void
16249 wm_reset_mdicnfg_82580(struct wm_softc *sc)
16250 {
16251 uint32_t reg;
16252 uint16_t nvmword;
16253 int rv;
16254
16255 if (sc->sc_type != WM_T_82580)
16256 return;
16257 if ((sc->sc_flags & WM_F_SGMII) == 0)
16258 return;
16259
16260 rv = wm_nvm_read(sc, NVM_OFF_LAN_FUNC_82580(sc->sc_funcid)
16261 + NVM_OFF_CFG3_PORTA, 1, &nvmword);
16262 if (rv != 0) {
16263 aprint_error_dev(sc->sc_dev, "%s: failed to read NVM\n",
16264 __func__);
16265 return;
16266 }
16267
16268 reg = CSR_READ(sc, WMREG_MDICNFG);
16269 if (nvmword & NVM_CFG3_PORTA_EXT_MDIO)
16270 reg |= MDICNFG_DEST;
16271 if (nvmword & NVM_CFG3_PORTA_COM_MDIO)
16272 reg |= MDICNFG_COM_MDIO;
16273 CSR_WRITE(sc, WMREG_MDICNFG, reg);
16274 }
16275
16276 #define MII_INVALIDID(x) (((x) == 0x0000) || ((x) == 0xffff))
16277
16278 static bool
16279 wm_phy_is_accessible_pchlan(struct wm_softc *sc)
16280 {
16281 uint32_t reg;
16282 uint16_t id1, id2;
16283 int i, rv;
16284
16285 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
16286 device_xname(sc->sc_dev), __func__));
16287 KASSERT(CSR_READ(sc, WMREG_EXTCNFCTR) & EXTCNFCTR_MDIO_SW_OWNERSHIP);
16288
16289 id1 = id2 = 0xffff;
16290 for (i = 0; i < 2; i++) {
16291 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, MII_PHYIDR1,
16292 &id1);
16293 if ((rv != 0) || MII_INVALIDID(id1))
16294 continue;
16295 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, MII_PHYIDR2,
16296 &id2);
16297 if ((rv != 0) || MII_INVALIDID(id2))
16298 continue;
16299 break;
16300 }
16301 if ((rv == 0) && !MII_INVALIDID(id1) && !MII_INVALIDID(id2))
16302 goto out;
16303
16304 /*
16305 * In case the PHY needs to be in mdio slow mode,
16306 * set slow mode and try to get the PHY id again.
16307 */
16308 rv = 0;
16309 if (sc->sc_type < WM_T_PCH_LPT) {
16310 sc->phy.release(sc);
16311 wm_set_mdio_slow_mode_hv(sc);
16312 rv = wm_gmii_hv_readreg(sc->sc_dev, 2, MII_PHYIDR1, &id1);
16313 rv |= wm_gmii_hv_readreg(sc->sc_dev, 2, MII_PHYIDR2, &id2);
16314 sc->phy.acquire(sc);
16315 }
16316 if ((rv != 0) || MII_INVALIDID(id1) || MII_INVALIDID(id2)) {
16317 device_printf(sc->sc_dev, "XXX return with false\n");
16318 return false;
16319 }
16320 out:
16321 if (sc->sc_type >= WM_T_PCH_LPT) {
16322 /* Only unforce SMBus if ME is not active */
16323 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID) == 0) {
16324 uint16_t phyreg;
16325
16326 /* Unforce SMBus mode in PHY */
16327 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2,
16328 CV_SMB_CTRL, &phyreg);
16329 phyreg &= ~CV_SMB_CTRL_FORCE_SMBUS;
16330 wm_gmii_hv_writereg_locked(sc->sc_dev, 2,
16331 CV_SMB_CTRL, phyreg);
16332
16333 /* Unforce SMBus mode in MAC */
16334 reg = CSR_READ(sc, WMREG_CTRL_EXT);
16335 reg &= ~CTRL_EXT_FORCE_SMBUS;
16336 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
16337 }
16338 }
16339 return true;
16340 }
16341
16342 static void
16343 wm_toggle_lanphypc_pch_lpt(struct wm_softc *sc)
16344 {
16345 uint32_t reg;
16346 int i;
16347
16348 /* Set PHY Config Counter to 50msec */
16349 reg = CSR_READ(sc, WMREG_FEXTNVM3);
16350 reg &= ~FEXTNVM3_PHY_CFG_COUNTER_MASK;
16351 reg |= FEXTNVM3_PHY_CFG_COUNTER_50MS;
16352 CSR_WRITE(sc, WMREG_FEXTNVM3, reg);
16353
16354 /* Toggle LANPHYPC */
16355 reg = CSR_READ(sc, WMREG_CTRL);
16356 reg |= CTRL_LANPHYPC_OVERRIDE;
16357 reg &= ~CTRL_LANPHYPC_VALUE;
16358 CSR_WRITE(sc, WMREG_CTRL, reg);
16359 CSR_WRITE_FLUSH(sc);
16360 delay(1000);
16361 reg &= ~CTRL_LANPHYPC_OVERRIDE;
16362 CSR_WRITE(sc, WMREG_CTRL, reg);
16363 CSR_WRITE_FLUSH(sc);
16364
16365 if (sc->sc_type < WM_T_PCH_LPT)
16366 delay(50 * 1000);
16367 else {
16368 i = 20;
16369
16370 do {
16371 delay(5 * 1000);
16372 } while (((CSR_READ(sc, WMREG_CTRL_EXT) & CTRL_EXT_LPCD) == 0)
16373 && i--);
16374
16375 delay(30 * 1000);
16376 }
16377 }
16378
16379 static int
16380 wm_platform_pm_pch_lpt(struct wm_softc *sc, bool link)
16381 {
16382 uint32_t reg = __SHIFTIN(link, LTRV_NONSNOOP_REQ)
16383 | __SHIFTIN(link, LTRV_SNOOP_REQ) | LTRV_SEND;
16384 uint32_t rxa;
16385 uint16_t scale = 0, lat_enc = 0;
16386 int32_t obff_hwm = 0;
16387 int64_t lat_ns, value;
16388
16389 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
16390 device_xname(sc->sc_dev), __func__));
16391
16392 if (link) {
16393 uint16_t max_snoop, max_nosnoop, max_ltr_enc;
16394 uint32_t status;
16395 uint16_t speed;
16396 pcireg_t preg;
16397
16398 status = CSR_READ(sc, WMREG_STATUS);
16399 switch (__SHIFTOUT(status, STATUS_SPEED)) {
16400 case STATUS_SPEED_10:
16401 speed = 10;
16402 break;
16403 case STATUS_SPEED_100:
16404 speed = 100;
16405 break;
16406 case STATUS_SPEED_1000:
16407 speed = 1000;
16408 break;
16409 default:
16410 device_printf(sc->sc_dev, "Unknown speed "
16411 "(status = %08x)\n", status);
16412 return -1;
16413 }
16414
16415 /* Rx Packet Buffer Allocation size (KB) */
16416 rxa = CSR_READ(sc, WMREG_PBA) & PBA_RXA_MASK;
16417
16418 /*
16419 * Determine the maximum latency tolerated by the device.
16420 *
16421 * Per the PCIe spec, the tolerated latencies are encoded as
16422 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
16423 * a 10-bit value (0-1023) to provide a range from 1 ns to
16424 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
16425 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
16426 */
16427 lat_ns = ((int64_t)rxa * 1024 -
16428 (2 * ((int64_t)sc->sc_ethercom.ec_if.if_mtu
16429 + ETHER_HDR_LEN))) * 8 * 1000;
16430 if (lat_ns < 0)
16431 lat_ns = 0;
16432 else
16433 lat_ns /= speed;
16434 value = lat_ns;
16435
16436 while (value > LTRV_VALUE) {
16437 scale ++;
16438 value = howmany(value, __BIT(5));
16439 }
16440 if (scale > LTRV_SCALE_MAX) {
16441 device_printf(sc->sc_dev,
16442 "Invalid LTR latency scale %d\n", scale);
16443 return -1;
16444 }
16445 lat_enc = (uint16_t)(__SHIFTIN(scale, LTRV_SCALE) | value);
16446
16447 /* Determine the maximum latency tolerated by the platform */
16448 preg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
16449 WM_PCI_LTR_CAP_LPT);
16450 max_snoop = preg & 0xffff;
16451 max_nosnoop = preg >> 16;
16452
16453 max_ltr_enc = MAX(max_snoop, max_nosnoop);
16454
16455 if (lat_enc > max_ltr_enc) {
16456 lat_enc = max_ltr_enc;
16457 lat_ns = __SHIFTOUT(lat_enc, PCI_LTR_MAXSNOOPLAT_VAL)
16458 * PCI_LTR_SCALETONS(
16459 __SHIFTOUT(lat_enc,
16460 PCI_LTR_MAXSNOOPLAT_SCALE));
16461 }
16462
16463 if (lat_ns) {
16464 lat_ns *= speed * 1000;
16465 lat_ns /= 8;
16466 lat_ns /= 1000000000;
16467 obff_hwm = (int32_t)(rxa - lat_ns);
16468 }
16469 if ((obff_hwm < 0) || (obff_hwm > SVT_OFF_HWM)) {
16470 device_printf(sc->sc_dev, "Invalid high water mark %d"
16471 "(rxa = %d, lat_ns = %d)\n",
16472 obff_hwm, (int32_t)rxa, (int32_t)lat_ns);
16473 return -1;
16474 }
16475 }
16476 /* Snoop and No-Snoop latencies the same */
16477 reg |= lat_enc | __SHIFTIN(lat_enc, LTRV_NONSNOOP);
16478 CSR_WRITE(sc, WMREG_LTRV, reg);
16479
16480 /* Set OBFF high water mark */
16481 reg = CSR_READ(sc, WMREG_SVT) & ~SVT_OFF_HWM;
16482 reg |= obff_hwm;
16483 CSR_WRITE(sc, WMREG_SVT, reg);
16484
16485 /* Enable OBFF */
16486 reg = CSR_READ(sc, WMREG_SVCR);
16487 reg |= SVCR_OFF_EN | SVCR_OFF_MASKINT;
16488 CSR_WRITE(sc, WMREG_SVCR, reg);
16489
16490 return 0;
16491 }
16492
16493 /*
16494 * I210 Errata 25 and I211 Errata 10
16495 * Slow System Clock.
16496 *
16497 * Note that this function is called on both FLASH and iNVM case on NetBSD.
16498 */
16499 static int
16500 wm_pll_workaround_i210(struct wm_softc *sc)
16501 {
16502 uint32_t mdicnfg, wuc;
16503 uint32_t reg;
16504 pcireg_t pcireg;
16505 uint32_t pmreg;
16506 uint16_t nvmword, tmp_nvmword;
16507 uint16_t phyval;
16508 bool wa_done = false;
16509 int i, rv = 0;
16510
16511 /* Get Power Management cap offset */
16512 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PWRMGMT,
16513 &pmreg, NULL) == 0)
16514 return -1;
16515
16516 /* Save WUC and MDICNFG registers */
16517 wuc = CSR_READ(sc, WMREG_WUC);
16518 mdicnfg = CSR_READ(sc, WMREG_MDICNFG);
16519
16520 reg = mdicnfg & ~MDICNFG_DEST;
16521 CSR_WRITE(sc, WMREG_MDICNFG, reg);
16522
16523 if (wm_nvm_read(sc, INVM_AUTOLOAD, 1, &nvmword) != 0) {
16524 /*
16525 * The default value of the Initialization Control Word 1
16526 * is the same on both I210's FLASH_HW and I21[01]'s iNVM.
16527 */
16528 nvmword = INVM_DEFAULT_AL;
16529 }
16530 tmp_nvmword = nvmword | INVM_PLL_WO_VAL;
16531
16532 for (i = 0; i < WM_MAX_PLL_TRIES; i++) {
16533 wm_gmii_gs40g_readreg(sc->sc_dev, 1,
16534 GS40G_PHY_PLL_FREQ_PAGE | GS40G_PHY_PLL_FREQ_REG, &phyval);
16535
16536 if ((phyval & GS40G_PHY_PLL_UNCONF) != GS40G_PHY_PLL_UNCONF) {
16537 rv = 0;
16538 break; /* OK */
16539 } else
16540 rv = -1;
16541
16542 wa_done = true;
16543 /* Directly reset the internal PHY */
16544 reg = CSR_READ(sc, WMREG_CTRL);
16545 CSR_WRITE(sc, WMREG_CTRL, reg | CTRL_PHY_RESET);
16546
16547 reg = CSR_READ(sc, WMREG_CTRL_EXT);
16548 reg |= CTRL_EXT_PHYPDEN | CTRL_EXT_SDLPE;
16549 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
16550
16551 CSR_WRITE(sc, WMREG_WUC, 0);
16552 reg = (INVM_AUTOLOAD << 4) | (tmp_nvmword << 16);
16553 CSR_WRITE(sc, WMREG_EEARBC_I210, reg);
16554
16555 pcireg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
16556 pmreg + PCI_PMCSR);
16557 pcireg |= PCI_PMCSR_STATE_D3;
16558 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
16559 pmreg + PCI_PMCSR, pcireg);
16560 delay(1000);
16561 pcireg &= ~PCI_PMCSR_STATE_D3;
16562 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
16563 pmreg + PCI_PMCSR, pcireg);
16564
16565 reg = (INVM_AUTOLOAD << 4) | (nvmword << 16);
16566 CSR_WRITE(sc, WMREG_EEARBC_I210, reg);
16567
16568 /* Restore WUC register */
16569 CSR_WRITE(sc, WMREG_WUC, wuc);
16570 }
16571
16572 /* Restore MDICNFG setting */
16573 CSR_WRITE(sc, WMREG_MDICNFG, mdicnfg);
16574 if (wa_done)
16575 aprint_verbose_dev(sc->sc_dev, "I210 workaround done\n");
16576 return rv;
16577 }
16578
16579 static void
16580 wm_legacy_irq_quirk_spt(struct wm_softc *sc)
16581 {
16582 uint32_t reg;
16583
16584 DPRINTF(WM_DEBUG_INIT, ("%s: %s called\n",
16585 device_xname(sc->sc_dev), __func__));
16586 KASSERT((sc->sc_type == WM_T_PCH_SPT)
16587 || (sc->sc_type == WM_T_PCH_CNP));
16588
16589 reg = CSR_READ(sc, WMREG_FEXTNVM7);
16590 reg |= FEXTNVM7_SIDE_CLK_UNGATE;
16591 CSR_WRITE(sc, WMREG_FEXTNVM7, reg);
16592
16593 reg = CSR_READ(sc, WMREG_FEXTNVM9);
16594 reg |= FEXTNVM9_IOSFSB_CLKGATE_DIS | FEXTNVM9_IOSFSB_CLKREQ_DIS;
16595 CSR_WRITE(sc, WMREG_FEXTNVM9, reg);
16596 }
16597