Home | History | Annotate | Line # | Download | only in pci
if_wm.c revision 1.76
      1 /*	$NetBSD: if_wm.c,v 1.76 2004/08/21 22:23:13 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
     40  *
     41  * TODO (in order of importance):
     42  *
     43  *	- Rework how parameters are loaded from the EEPROM.
     44  *	- Figure out what to do with the i82545GM and i82546GB
     45  *	  SERDES controllers.
     46  *	- Fix hw VLAN assist.
     47  */
     48 
     49 #include <sys/cdefs.h>
     50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.76 2004/08/21 22:23:13 thorpej Exp $");
     51 
     52 #include "bpfilter.h"
     53 #include "rnd.h"
     54 
     55 #include <sys/param.h>
     56 #include <sys/systm.h>
     57 #include <sys/callout.h>
     58 #include <sys/mbuf.h>
     59 #include <sys/malloc.h>
     60 #include <sys/kernel.h>
     61 #include <sys/socket.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/errno.h>
     64 #include <sys/device.h>
     65 #include <sys/queue.h>
     66 
     67 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     68 
     69 #if NRND > 0
     70 #include <sys/rnd.h>
     71 #endif
     72 
     73 #include <net/if.h>
     74 #include <net/if_dl.h>
     75 #include <net/if_media.h>
     76 #include <net/if_ether.h>
     77 
     78 #if NBPFILTER > 0
     79 #include <net/bpf.h>
     80 #endif
     81 
     82 #include <netinet/in.h>			/* XXX for struct ip */
     83 #include <netinet/in_systm.h>		/* XXX for struct ip */
     84 #include <netinet/ip.h>			/* XXX for struct ip */
     85 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
     86 
     87 #include <machine/bus.h>
     88 #include <machine/intr.h>
     89 #include <machine/endian.h>
     90 
     91 #include <dev/mii/mii.h>
     92 #include <dev/mii/miivar.h>
     93 #include <dev/mii/mii_bitbang.h>
     94 
     95 #include <dev/pci/pcireg.h>
     96 #include <dev/pci/pcivar.h>
     97 #include <dev/pci/pcidevs.h>
     98 
     99 #include <dev/pci/if_wmreg.h>
    100 
    101 #ifdef WM_DEBUG
    102 #define	WM_DEBUG_LINK		0x01
    103 #define	WM_DEBUG_TX		0x02
    104 #define	WM_DEBUG_RX		0x04
    105 #define	WM_DEBUG_GMII		0x08
    106 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
    107 
    108 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
    109 #else
    110 #define	DPRINTF(x, y)	/* nothing */
    111 #endif /* WM_DEBUG */
    112 
    113 /*
    114  * Transmit descriptor list size.  Due to errata, we can only have
    115  * 256 hardware descriptors in the ring on < 82544, but we use 4096
    116  * on >= 82544.  We tell the upper layers that they can queue a lot
    117  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
    118  * of them at a time.
    119  *
    120  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
    121  * chains containing many small mbufs have been observed in zero-copy
    122  * situations with jumbo frames.
    123  */
    124 #define	WM_NTXSEGS		256
    125 #define	WM_IFQUEUELEN		256
    126 #define	WM_TXQUEUELEN_MAX	64
    127 #define	WM_TXQUEUELEN_MAX_82547	16
    128 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
    129 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
    130 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
    131 #define	WM_NTXDESC_82542	256
    132 #define	WM_NTXDESC_82544	4096
    133 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
    134 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
    135 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
    136 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
    137 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
    138 
    139 /*
    140  * Receive descriptor list size.  We have one Rx buffer for normal
    141  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
    142  * packet.  We allocate 256 receive descriptors, each with a 2k
    143  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
    144  */
    145 #define	WM_NRXDESC		256
    146 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
    147 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
    148 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
    149 
    150 /*
    151  * Control structures are DMA'd to the i82542 chip.  We allocate them in
    152  * a single clump that maps to a single DMA segment to make serveral things
    153  * easier.
    154  */
    155 struct wm_control_data_82544 {
    156 	/*
    157 	 * The receive descriptors.
    158 	 */
    159 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    160 
    161 	/*
    162 	 * The transmit descriptors.  Put these at the end, because
    163 	 * we might use a smaller number of them.
    164 	 */
    165 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
    166 };
    167 
    168 struct wm_control_data_82542 {
    169 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    170 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
    171 };
    172 
    173 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
    174 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
    175 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
    176 
    177 /*
    178  * Software state for transmit jobs.
    179  */
    180 struct wm_txsoft {
    181 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    182 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    183 	int txs_firstdesc;		/* first descriptor in packet */
    184 	int txs_lastdesc;		/* last descriptor in packet */
    185 	int txs_ndesc;			/* # of descriptors used */
    186 };
    187 
    188 /*
    189  * Software state for receive buffers.  Each descriptor gets a
    190  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    191  * more than one buffer, we chain them together.
    192  */
    193 struct wm_rxsoft {
    194 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    195 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    196 };
    197 
    198 typedef enum {
    199 	WM_T_unknown		= 0,
    200 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
    201 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
    202 	WM_T_82543,			/* i82543 */
    203 	WM_T_82544,			/* i82544 */
    204 	WM_T_82540,			/* i82540 */
    205 	WM_T_82545,			/* i82545 */
    206 	WM_T_82545_3,			/* i82545 3.0+ */
    207 	WM_T_82546,			/* i82546 */
    208 	WM_T_82546_3,			/* i82546 3.0+ */
    209 	WM_T_82541,			/* i82541 */
    210 	WM_T_82541_2,			/* i82541 2.0+ */
    211 	WM_T_82547,			/* i82547 */
    212 	WM_T_82547_2,			/* i82547 2.0+ */
    213 } wm_chip_type;
    214 
    215 /*
    216  * Software state per device.
    217  */
    218 struct wm_softc {
    219 	struct device sc_dev;		/* generic device information */
    220 	bus_space_tag_t sc_st;		/* bus space tag */
    221 	bus_space_handle_t sc_sh;	/* bus space handle */
    222 	bus_space_tag_t sc_iot;		/* I/O space tag */
    223 	bus_space_handle_t sc_ioh;	/* I/O space handle */
    224 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    225 	struct ethercom sc_ethercom;	/* ethernet common data */
    226 	void *sc_sdhook;		/* shutdown hook */
    227 
    228 	wm_chip_type sc_type;		/* chip type */
    229 	int sc_flags;			/* flags; see below */
    230 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    231 	int sc_pcix_offset;		/* PCIX capability register offset */
    232 	int sc_flowflags;		/* 802.3x flow control flags */
    233 
    234 	void *sc_ih;			/* interrupt cookie */
    235 
    236 	int sc_ee_addrbits;		/* EEPROM address bits */
    237 
    238 	struct mii_data sc_mii;		/* MII/media information */
    239 
    240 	struct callout sc_tick_ch;	/* tick callout */
    241 
    242 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    243 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    244 
    245 	int		sc_align_tweak;
    246 
    247 	/*
    248 	 * Software state for the transmit and receive descriptors.
    249 	 */
    250 	int			sc_txnum;	/* must be a power of two */
    251 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
    252 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
    253 
    254 	/*
    255 	 * Control data structures.
    256 	 */
    257 	int			sc_ntxdesc;	/* must be a power of two */
    258 	struct wm_control_data_82544 *sc_control_data;
    259 #define	sc_txdescs	sc_control_data->wcd_txdescs
    260 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    261 
    262 #ifdef WM_EVENT_COUNTERS
    263 	/* Event counters. */
    264 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    265 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    266 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    267 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    268 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    269 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    270 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    271 
    272 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    273 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    274 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    275 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    276 
    277 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
    278 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
    279 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
    280 
    281 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
    282 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    283 
    284 	struct evcnt sc_ev_tu;		/* Tx underrun */
    285 
    286 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
    287 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
    288 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
    289 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
    290 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
    291 #endif /* WM_EVENT_COUNTERS */
    292 
    293 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
    294 
    295 	int	sc_txfree;		/* number of free Tx descriptors */
    296 	int	sc_txnext;		/* next ready Tx descriptor */
    297 
    298 	int	sc_txsfree;		/* number of free Tx jobs */
    299 	int	sc_txsnext;		/* next free Tx job */
    300 	int	sc_txsdirty;		/* dirty Tx jobs */
    301 
    302 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
    303 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
    304 
    305 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
    306 
    307 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    308 	int	sc_rxdiscard;
    309 	int	sc_rxlen;
    310 	struct mbuf *sc_rxhead;
    311 	struct mbuf *sc_rxtail;
    312 	struct mbuf **sc_rxtailp;
    313 
    314 	uint32_t sc_ctrl;		/* prototype CTRL register */
    315 #if 0
    316 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
    317 #endif
    318 	uint32_t sc_icr;		/* prototype interrupt bits */
    319 	uint32_t sc_tctl;		/* prototype TCTL register */
    320 	uint32_t sc_rctl;		/* prototype RCTL register */
    321 	uint32_t sc_txcw;		/* prototype TXCW register */
    322 	uint32_t sc_tipg;		/* prototype TIPG register */
    323 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
    324 
    325 	int sc_tbi_linkup;		/* TBI link status */
    326 	int sc_tbi_anstate;		/* autonegotiation state */
    327 
    328 	int sc_mchash_type;		/* multicast filter offset */
    329 
    330 #if NRND > 0
    331 	rndsource_element_t rnd_source;	/* random source */
    332 #endif
    333 };
    334 
    335 #define	WM_RXCHAIN_RESET(sc)						\
    336 do {									\
    337 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    338 	*(sc)->sc_rxtailp = NULL;					\
    339 	(sc)->sc_rxlen = 0;						\
    340 } while (/*CONSTCOND*/0)
    341 
    342 #define	WM_RXCHAIN_LINK(sc, m)						\
    343 do {									\
    344 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    345 	(sc)->sc_rxtailp = &(m)->m_next;				\
    346 } while (/*CONSTCOND*/0)
    347 
    348 /* sc_flags */
    349 #define	WM_F_HAS_MII		0x01	/* has MII */
    350 #define	WM_F_EEPROM_HANDSHAKE	0x02	/* requires EEPROM handshake */
    351 #define	WM_F_EEPROM_SPI		0x04	/* EEPROM is SPI */
    352 #define	WM_F_IOH_VALID		0x10	/* I/O handle is valid */
    353 #define	WM_F_BUS64		0x20	/* bus is 64-bit */
    354 #define	WM_F_PCIX		0x40	/* bus is PCI-X */
    355 #define	WM_F_CSA		0x80	/* bus is CSA */
    356 
    357 #ifdef WM_EVENT_COUNTERS
    358 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
    359 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
    360 #else
    361 #define	WM_EVCNT_INCR(ev)	/* nothing */
    362 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
    363 #endif
    364 
    365 #define	CSR_READ(sc, reg)						\
    366 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    367 #define	CSR_WRITE(sc, reg, val)						\
    368 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    369 
    370 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
    371 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
    372 
    373 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
    374 #define	WM_CDTXADDR_HI(sc, x)						\
    375 	(sizeof(bus_addr_t) == 8 ?					\
    376 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
    377 
    378 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
    379 #define	WM_CDRXADDR_HI(sc, x)						\
    380 	(sizeof(bus_addr_t) == 8 ?					\
    381 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
    382 
    383 #define	WM_CDTXSYNC(sc, x, n, ops)					\
    384 do {									\
    385 	int __x, __n;							\
    386 									\
    387 	__x = (x);							\
    388 	__n = (n);							\
    389 									\
    390 	/* If it will wrap around, sync to the end of the ring. */	\
    391 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
    392 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    393 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
    394 		    (WM_NTXDESC(sc) - __x), (ops));			\
    395 		__n -= (WM_NTXDESC(sc) - __x);				\
    396 		__x = 0;						\
    397 	}								\
    398 									\
    399 	/* Now sync whatever is left. */				\
    400 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    401 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
    402 } while (/*CONSTCOND*/0)
    403 
    404 #define	WM_CDRXSYNC(sc, x, ops)						\
    405 do {									\
    406 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    407 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
    408 } while (/*CONSTCOND*/0)
    409 
    410 #define	WM_INIT_RXDESC(sc, x)						\
    411 do {									\
    412 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    413 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
    414 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    415 									\
    416 	/*								\
    417 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    418 	 * so that the payload after the Ethernet header is aligned	\
    419 	 * to a 4-byte boundary.					\
    420 	 *								\
    421 	 * XXX BRAINDAMAGE ALERT!					\
    422 	 * The stupid chip uses the same size for every buffer, which	\
    423 	 * is set in the Receive Control register.  We are using the 2K	\
    424 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    425 	 * reason, we can't "scoot" packets longer than the standard	\
    426 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    427 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    428 	 * the upper layer copy the headers.				\
    429 	 */								\
    430 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    431 									\
    432 	wm_set_dma_addr(&__rxd->wrx_addr,				\
    433 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
    434 	__rxd->wrx_len = 0;						\
    435 	__rxd->wrx_cksum = 0;						\
    436 	__rxd->wrx_status = 0;						\
    437 	__rxd->wrx_errors = 0;						\
    438 	__rxd->wrx_special = 0;						\
    439 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    440 									\
    441 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
    442 } while (/*CONSTCOND*/0)
    443 
    444 static void	wm_start(struct ifnet *);
    445 static void	wm_watchdog(struct ifnet *);
    446 static int	wm_ioctl(struct ifnet *, u_long, caddr_t);
    447 static int	wm_init(struct ifnet *);
    448 static void	wm_stop(struct ifnet *, int);
    449 
    450 static void	wm_shutdown(void *);
    451 
    452 static void	wm_reset(struct wm_softc *);
    453 static void	wm_rxdrain(struct wm_softc *);
    454 static int	wm_add_rxbuf(struct wm_softc *, int);
    455 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
    456 static void	wm_tick(void *);
    457 
    458 static void	wm_set_filter(struct wm_softc *);
    459 
    460 static int	wm_intr(void *);
    461 static void	wm_txintr(struct wm_softc *);
    462 static void	wm_rxintr(struct wm_softc *);
    463 static void	wm_linkintr(struct wm_softc *, uint32_t);
    464 
    465 static void	wm_tbi_mediainit(struct wm_softc *);
    466 static int	wm_tbi_mediachange(struct ifnet *);
    467 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
    468 
    469 static void	wm_tbi_set_linkled(struct wm_softc *);
    470 static void	wm_tbi_check_link(struct wm_softc *);
    471 
    472 static void	wm_gmii_reset(struct wm_softc *);
    473 
    474 static int	wm_gmii_i82543_readreg(struct device *, int, int);
    475 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
    476 
    477 static int	wm_gmii_i82544_readreg(struct device *, int, int);
    478 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
    479 
    480 static void	wm_gmii_statchg(struct device *);
    481 
    482 static void	wm_gmii_mediainit(struct wm_softc *);
    483 static int	wm_gmii_mediachange(struct ifnet *);
    484 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
    485 
    486 static int	wm_match(struct device *, struct cfdata *, void *);
    487 static void	wm_attach(struct device *, struct device *, void *);
    488 
    489 CFATTACH_DECL(wm, sizeof(struct wm_softc),
    490     wm_match, wm_attach, NULL, NULL);
    491 
    492 /*
    493  * Devices supported by this driver.
    494  */
    495 static const struct wm_product {
    496 	pci_vendor_id_t		wmp_vendor;
    497 	pci_product_id_t	wmp_product;
    498 	const char		*wmp_name;
    499 	wm_chip_type		wmp_type;
    500 	int			wmp_flags;
    501 #define	WMP_F_1000X		0x01
    502 #define	WMP_F_1000T		0x02
    503 } wm_products[] = {
    504 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
    505 	  "Intel i82542 1000BASE-X Ethernet",
    506 	  WM_T_82542_2_1,	WMP_F_1000X },
    507 
    508 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
    509 	  "Intel i82543GC 1000BASE-X Ethernet",
    510 	  WM_T_82543,		WMP_F_1000X },
    511 
    512 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
    513 	  "Intel i82543GC 1000BASE-T Ethernet",
    514 	  WM_T_82543,		WMP_F_1000T },
    515 
    516 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
    517 	  "Intel i82544EI 1000BASE-T Ethernet",
    518 	  WM_T_82544,		WMP_F_1000T },
    519 
    520 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
    521 	  "Intel i82544EI 1000BASE-X Ethernet",
    522 	  WM_T_82544,		WMP_F_1000X },
    523 
    524 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
    525 	  "Intel i82544GC 1000BASE-T Ethernet",
    526 	  WM_T_82544,		WMP_F_1000T },
    527 
    528 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
    529 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
    530 	  WM_T_82544,		WMP_F_1000T },
    531 
    532 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
    533 	  "Intel i82540EM 1000BASE-T Ethernet",
    534 	  WM_T_82540,		WMP_F_1000T },
    535 
    536 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
    537 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
    538 	  WM_T_82540,		WMP_F_1000T },
    539 
    540 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
    541 	  "Intel i82540EP 1000BASE-T Ethernet",
    542 	  WM_T_82540,		WMP_F_1000T },
    543 
    544 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
    545 	  "Intel i82540EP 1000BASE-T Ethernet",
    546 	  WM_T_82540,		WMP_F_1000T },
    547 
    548 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
    549 	  "Intel i82540EP 1000BASE-T Ethernet",
    550 	  WM_T_82540,		WMP_F_1000T },
    551 
    552 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
    553 	  "Intel i82545EM 1000BASE-T Ethernet",
    554 	  WM_T_82545,		WMP_F_1000T },
    555 
    556 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
    557 	  "Intel i82545GM 1000BASE-T Ethernet",
    558 	  WM_T_82545_3,		WMP_F_1000T },
    559 
    560 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
    561 	  "Intel i82545GM 1000BASE-X Ethernet",
    562 	  WM_T_82545_3,		WMP_F_1000X },
    563 #if 0
    564 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
    565 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
    566 	  WM_T_82545_3,		WMP_F_SERDES },
    567 #endif
    568 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
    569 	  "Intel i82546EB 1000BASE-T Ethernet",
    570 	  WM_T_82546,		WMP_F_1000T },
    571 
    572 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
    573 	  "Intel i82546EB 1000BASE-T Ethernet",
    574 	  WM_T_82546,		WMP_F_1000T },
    575 
    576 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
    577 	  "Intel i82545EM 1000BASE-X Ethernet",
    578 	  WM_T_82545,		WMP_F_1000X },
    579 
    580 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
    581 	  "Intel i82546EB 1000BASE-X Ethernet",
    582 	  WM_T_82546,		WMP_F_1000X },
    583 
    584 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
    585 	  "Intel i82546GB 1000BASE-T Ethernet",
    586 	  WM_T_82546_3,		WMP_F_1000T },
    587 
    588 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
    589 	  "Intel i82546GB 1000BASE-X Ethernet",
    590 	  WM_T_82546_3,		WMP_F_1000X },
    591 #if 0
    592 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
    593 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
    594 	  WM_T_82546_3,		WMP_F_SERDES },
    595 #endif
    596 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
    597 	  "Intel i82541EI 1000BASE-T Ethernet",
    598 	  WM_T_82541,		WMP_F_1000T },
    599 
    600 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
    601 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
    602 	  WM_T_82541,		WMP_F_1000T },
    603 
    604 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
    605 	  "Intel i82541ER 1000BASE-T Ethernet",
    606 	  WM_T_82541_2,		WMP_F_1000T },
    607 
    608 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
    609 	  "Intel i82541GI 1000BASE-T Ethernet",
    610 	  WM_T_82541_2,		WMP_F_1000T },
    611 
    612 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
    613 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
    614 	  WM_T_82541_2,		WMP_F_1000T },
    615 
    616 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
    617 	  "Intel i82547EI 1000BASE-T Ethernet",
    618 	  WM_T_82547,		WMP_F_1000T },
    619 
    620 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
    621 	  "Intel i82547GI 1000BASE-T Ethernet",
    622 	  WM_T_82547_2,		WMP_F_1000T },
    623 	{ 0,			0,
    624 	  NULL,
    625 	  0,			0 },
    626 };
    627 
    628 #ifdef WM_EVENT_COUNTERS
    629 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
    630 #endif /* WM_EVENT_COUNTERS */
    631 
    632 #if 0 /* Not currently used */
    633 static __inline uint32_t
    634 wm_io_read(struct wm_softc *sc, int reg)
    635 {
    636 
    637 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    638 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
    639 }
    640 #endif
    641 
    642 static __inline void
    643 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
    644 {
    645 
    646 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    647 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
    648 }
    649 
    650 static __inline void
    651 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
    652 {
    653 	wa->wa_low = htole32(v & 0xffffffffU);
    654 	if (sizeof(bus_addr_t) == 8)
    655 		wa->wa_high = htole32((uint64_t) v >> 32);
    656 	else
    657 		wa->wa_high = 0;
    658 }
    659 
    660 static const struct wm_product *
    661 wm_lookup(const struct pci_attach_args *pa)
    662 {
    663 	const struct wm_product *wmp;
    664 
    665 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
    666 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
    667 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
    668 			return (wmp);
    669 	}
    670 	return (NULL);
    671 }
    672 
    673 static int
    674 wm_match(struct device *parent, struct cfdata *cf, void *aux)
    675 {
    676 	struct pci_attach_args *pa = aux;
    677 
    678 	if (wm_lookup(pa) != NULL)
    679 		return (1);
    680 
    681 	return (0);
    682 }
    683 
    684 static void
    685 wm_attach(struct device *parent, struct device *self, void *aux)
    686 {
    687 	struct wm_softc *sc = (void *) self;
    688 	struct pci_attach_args *pa = aux;
    689 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    690 	pci_chipset_tag_t pc = pa->pa_pc;
    691 	pci_intr_handle_t ih;
    692 	size_t cdata_size;
    693 	const char *intrstr = NULL;
    694 	const char *eetype;
    695 	bus_space_tag_t memt;
    696 	bus_space_handle_t memh;
    697 	bus_dma_segment_t seg;
    698 	int memh_valid;
    699 	int i, rseg, error;
    700 	const struct wm_product *wmp;
    701 	uint8_t enaddr[ETHER_ADDR_LEN];
    702 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
    703 	pcireg_t preg, memtype;
    704 	uint32_t reg;
    705 	int pmreg;
    706 
    707 	callout_init(&sc->sc_tick_ch);
    708 
    709 	wmp = wm_lookup(pa);
    710 	if (wmp == NULL) {
    711 		printf("\n");
    712 		panic("wm_attach: impossible");
    713 	}
    714 
    715 	if (pci_dma64_available(pa))
    716 		sc->sc_dmat = pa->pa_dmat64;
    717 	else
    718 		sc->sc_dmat = pa->pa_dmat;
    719 
    720 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    721 	aprint_naive(": Ethernet controller\n");
    722 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
    723 
    724 	sc->sc_type = wmp->wmp_type;
    725 	if (sc->sc_type < WM_T_82543) {
    726 		if (preg < 2) {
    727 			aprint_error("%s: i82542 must be at least rev. 2\n",
    728 			    sc->sc_dev.dv_xname);
    729 			return;
    730 		}
    731 		if (preg < 3)
    732 			sc->sc_type = WM_T_82542_2_0;
    733 	}
    734 
    735 	/*
    736 	 * Map the device.  All devices support memory-mapped acccess,
    737 	 * and it is really required for normal operation.
    738 	 */
    739 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
    740 	switch (memtype) {
    741 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    742 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    743 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
    744 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    745 		break;
    746 	default:
    747 		memh_valid = 0;
    748 	}
    749 
    750 	if (memh_valid) {
    751 		sc->sc_st = memt;
    752 		sc->sc_sh = memh;
    753 	} else {
    754 		aprint_error("%s: unable to map device registers\n",
    755 		    sc->sc_dev.dv_xname);
    756 		return;
    757 	}
    758 
    759 	/*
    760 	 * In addition, i82544 and later support I/O mapped indirect
    761 	 * register access.  It is not desirable (nor supported in
    762 	 * this driver) to use it for normal operation, though it is
    763 	 * required to work around bugs in some chip versions.
    764 	 */
    765 	if (sc->sc_type >= WM_T_82544) {
    766 		/* First we have to find the I/O BAR. */
    767 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
    768 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
    769 			    PCI_MAPREG_TYPE_IO)
    770 				break;
    771 		}
    772 		if (i == PCI_MAPREG_END)
    773 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
    774 			    sc->sc_dev.dv_xname);
    775 		else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
    776 					0, &sc->sc_iot, &sc->sc_ioh,
    777 					NULL, NULL) == 0)
    778 			sc->sc_flags |= WM_F_IOH_VALID;
    779 		else
    780 			aprint_error("%s: WARNING: unable to map I/O space\n",
    781 			    sc->sc_dev.dv_xname);
    782 	}
    783 
    784 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
    785 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    786 	preg |= PCI_COMMAND_MASTER_ENABLE;
    787 	if (sc->sc_type < WM_T_82542_2_1)
    788 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
    789 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    790 
    791 	/* Get it out of power save mode, if needed. */
    792 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    793 		preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    794 		    PCI_PMCSR_STATE_MASK;
    795 		if (preg == PCI_PMCSR_STATE_D3) {
    796 			/*
    797 			 * The card has lost all configuration data in
    798 			 * this state, so punt.
    799 			 */
    800 			aprint_error("%s: unable to wake from power state D3\n",
    801 			    sc->sc_dev.dv_xname);
    802 			return;
    803 		}
    804 		if (preg != PCI_PMCSR_STATE_D0) {
    805 			aprint_normal("%s: waking up from power state D%d\n",
    806 			    sc->sc_dev.dv_xname, preg);
    807 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    808 			    PCI_PMCSR_STATE_D0);
    809 		}
    810 	}
    811 
    812 	/*
    813 	 * Map and establish our interrupt.
    814 	 */
    815 	if (pci_intr_map(pa, &ih)) {
    816 		aprint_error("%s: unable to map interrupt\n",
    817 		    sc->sc_dev.dv_xname);
    818 		return;
    819 	}
    820 	intrstr = pci_intr_string(pc, ih);
    821 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
    822 	if (sc->sc_ih == NULL) {
    823 		aprint_error("%s: unable to establish interrupt",
    824 		    sc->sc_dev.dv_xname);
    825 		if (intrstr != NULL)
    826 			aprint_normal(" at %s", intrstr);
    827 		aprint_normal("\n");
    828 		return;
    829 	}
    830 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    831 
    832 	/*
    833 	 * Determine a few things about the bus we're connected to.
    834 	 */
    835 	if (sc->sc_type < WM_T_82543) {
    836 		/* We don't really know the bus characteristics here. */
    837 		sc->sc_bus_speed = 33;
    838 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
    839 		/*
    840 		 * CSA (Communication Streaming Architecture) is about as fast
    841 		 * a 32-bit 66MHz PCI Bus.
    842 		 */
    843 		sc->sc_flags |= WM_F_CSA;
    844 		sc->sc_bus_speed = 66;
    845 		aprint_verbose("%s: Communication Streaming Architecture\n",
    846 		    sc->sc_dev.dv_xname);
    847 	} else {
    848 		reg = CSR_READ(sc, WMREG_STATUS);
    849 		if (reg & STATUS_BUS64)
    850 			sc->sc_flags |= WM_F_BUS64;
    851 		if (sc->sc_type >= WM_T_82544 &&
    852 		    (reg & STATUS_PCIX_MODE) != 0) {
    853 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
    854 
    855 			sc->sc_flags |= WM_F_PCIX;
    856 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    857 					       PCI_CAP_PCIX,
    858 					       &sc->sc_pcix_offset, NULL) == 0)
    859 				aprint_error("%s: unable to find PCIX "
    860 				    "capability\n", sc->sc_dev.dv_xname);
    861 			else if (sc->sc_type != WM_T_82545_3 &&
    862 				 sc->sc_type != WM_T_82546_3) {
    863 				/*
    864 				 * Work around a problem caused by the BIOS
    865 				 * setting the max memory read byte count
    866 				 * incorrectly.
    867 				 */
    868 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
    869 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
    870 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
    871 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
    872 
    873 				bytecnt =
    874 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
    875 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
    876 				maxb =
    877 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
    878 				    PCI_PCIX_STATUS_MAXB_SHIFT;
    879 				if (bytecnt > maxb) {
    880 					aprint_verbose("%s: resetting PCI-X "
    881 					    "MMRBC: %d -> %d\n",
    882 					    sc->sc_dev.dv_xname,
    883 					    512 << bytecnt, 512 << maxb);
    884 					pcix_cmd = (pcix_cmd &
    885 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
    886 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
    887 					pci_conf_write(pa->pa_pc, pa->pa_tag,
    888 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
    889 					    pcix_cmd);
    890 				}
    891 			}
    892 		}
    893 		/*
    894 		 * The quad port adapter is special; it has a PCIX-PCIX
    895 		 * bridge on the board, and can run the secondary bus at
    896 		 * a higher speed.
    897 		 */
    898 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
    899 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
    900 								      : 66;
    901 		} else if (sc->sc_flags & WM_F_PCIX) {
    902 			switch (reg & STATUS_PCIXSPD_MASK) {
    903 			case STATUS_PCIXSPD_50_66:
    904 				sc->sc_bus_speed = 66;
    905 				break;
    906 			case STATUS_PCIXSPD_66_100:
    907 				sc->sc_bus_speed = 100;
    908 				break;
    909 			case STATUS_PCIXSPD_100_133:
    910 				sc->sc_bus_speed = 133;
    911 				break;
    912 			default:
    913 				aprint_error(
    914 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
    915 				    sc->sc_dev.dv_xname,
    916 				    reg & STATUS_PCIXSPD_MASK);
    917 				sc->sc_bus_speed = 66;
    918 			}
    919 		} else
    920 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
    921 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
    922 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
    923 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
    924 	}
    925 
    926 	/*
    927 	 * Allocate the control data structures, and create and load the
    928 	 * DMA map for it.
    929 	 *
    930 	 * NOTE: All Tx descriptors must be in the same 4G segment of
    931 	 * memory.  So must Rx descriptors.  We simplify by allocating
    932 	 * both sets within the same 4G segment.
    933 	 */
    934 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
    935 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
    936 	cdata_size = sc->sc_type < WM_T_82544 ?
    937 	    sizeof(struct wm_control_data_82542) :
    938 	    sizeof(struct wm_control_data_82544);
    939 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
    940 				      (bus_size_t) 0x100000000ULL,
    941 				      &seg, 1, &rseg, 0)) != 0) {
    942 		aprint_error(
    943 		    "%s: unable to allocate control data, error = %d\n",
    944 		    sc->sc_dev.dv_xname, error);
    945 		goto fail_0;
    946 	}
    947 
    948 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
    949 				    (caddr_t *)&sc->sc_control_data, 0)) != 0) {
    950 		aprint_error("%s: unable to map control data, error = %d\n",
    951 		    sc->sc_dev.dv_xname, error);
    952 		goto fail_1;
    953 	}
    954 
    955 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
    956 				       0, 0, &sc->sc_cddmamap)) != 0) {
    957 		aprint_error("%s: unable to create control data DMA map, "
    958 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    959 		goto fail_2;
    960 	}
    961 
    962 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    963 				     sc->sc_control_data, cdata_size, NULL,
    964 				     0)) != 0) {
    965 		aprint_error(
    966 		    "%s: unable to load control data DMA map, error = %d\n",
    967 		    sc->sc_dev.dv_xname, error);
    968 		goto fail_3;
    969 	}
    970 
    971 
    972 	/*
    973 	 * Create the transmit buffer DMA maps.
    974 	 */
    975 	WM_TXQUEUELEN(sc) =
    976 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
    977 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
    978 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
    979 		if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
    980 					       WM_NTXSEGS, MCLBYTES, 0, 0,
    981 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    982 			aprint_error("%s: unable to create Tx DMA map %d, "
    983 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    984 			goto fail_4;
    985 		}
    986 	}
    987 
    988 	/*
    989 	 * Create the receive buffer DMA maps.
    990 	 */
    991 	for (i = 0; i < WM_NRXDESC; i++) {
    992 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    993 					       MCLBYTES, 0, 0,
    994 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    995 			aprint_error("%s: unable to create Rx DMA map %d, "
    996 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    997 			goto fail_5;
    998 		}
    999 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1000 	}
   1001 
   1002 	/*
   1003 	 * Reset the chip to a known state.
   1004 	 */
   1005 	wm_reset(sc);
   1006 
   1007 	/*
   1008 	 * Get some information about the EEPROM.
   1009 	 */
   1010 	if (sc->sc_type >= WM_T_82540)
   1011 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
   1012 	if (sc->sc_type <= WM_T_82544)
   1013 		sc->sc_ee_addrbits = 6;
   1014 	else if (sc->sc_type <= WM_T_82546_3) {
   1015 		reg = CSR_READ(sc, WMREG_EECD);
   1016 		if (reg & EECD_EE_SIZE)
   1017 			sc->sc_ee_addrbits = 8;
   1018 		else
   1019 			sc->sc_ee_addrbits = 6;
   1020 	} else if (sc->sc_type <= WM_T_82547_2) {
   1021 		reg = CSR_READ(sc, WMREG_EECD);
   1022 		if (reg & EECD_EE_TYPE) {
   1023 			sc->sc_flags |= WM_F_EEPROM_SPI;
   1024 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1025 		} else
   1026 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
   1027 	} else {
   1028 		/* Assume everything else is SPI. */
   1029 		reg = CSR_READ(sc, WMREG_EECD);
   1030 		sc->sc_flags |= WM_F_EEPROM_SPI;
   1031 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1032 	}
   1033 	if (sc->sc_flags & WM_F_EEPROM_SPI)
   1034 		eetype = "SPI";
   1035 	else
   1036 		eetype = "MicroWire";
   1037 	aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
   1038 	    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
   1039 	    sc->sc_ee_addrbits, eetype);
   1040 
   1041 	/*
   1042 	 * Read the Ethernet address from the EEPROM.
   1043 	 */
   1044 	if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
   1045 	    sizeof(myea) / sizeof(myea[0]), myea)) {
   1046 		aprint_error("%s: unable to read Ethernet address\n",
   1047 		    sc->sc_dev.dv_xname);
   1048 		return;
   1049 	}
   1050 	enaddr[0] = myea[0] & 0xff;
   1051 	enaddr[1] = myea[0] >> 8;
   1052 	enaddr[2] = myea[1] & 0xff;
   1053 	enaddr[3] = myea[1] >> 8;
   1054 	enaddr[4] = myea[2] & 0xff;
   1055 	enaddr[5] = myea[2] >> 8;
   1056 
   1057 	/*
   1058 	 * Toggle the LSB of the MAC address on the second port
   1059 	 * of the i82546.
   1060 	 */
   1061 	if (sc->sc_type == WM_T_82546) {
   1062 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
   1063 			enaddr[5] ^= 1;
   1064 	}
   1065 
   1066 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
   1067 	    ether_sprintf(enaddr));
   1068 
   1069 	/*
   1070 	 * Read the config info from the EEPROM, and set up various
   1071 	 * bits in the control registers based on their contents.
   1072 	 */
   1073 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
   1074 		aprint_error("%s: unable to read CFG1 from EEPROM\n",
   1075 		    sc->sc_dev.dv_xname);
   1076 		return;
   1077 	}
   1078 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
   1079 		aprint_error("%s: unable to read CFG2 from EEPROM\n",
   1080 		    sc->sc_dev.dv_xname);
   1081 		return;
   1082 	}
   1083 	if (sc->sc_type >= WM_T_82544) {
   1084 		if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
   1085 			aprint_error("%s: unable to read SWDPIN from EEPROM\n",
   1086 			    sc->sc_dev.dv_xname);
   1087 			return;
   1088 		}
   1089 	}
   1090 
   1091 	if (cfg1 & EEPROM_CFG1_ILOS)
   1092 		sc->sc_ctrl |= CTRL_ILOS;
   1093 	if (sc->sc_type >= WM_T_82544) {
   1094 		sc->sc_ctrl |=
   1095 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
   1096 		    CTRL_SWDPIO_SHIFT;
   1097 		sc->sc_ctrl |=
   1098 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
   1099 		    CTRL_SWDPINS_SHIFT;
   1100 	} else {
   1101 		sc->sc_ctrl |=
   1102 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
   1103 		    CTRL_SWDPIO_SHIFT;
   1104 	}
   1105 
   1106 #if 0
   1107 	if (sc->sc_type >= WM_T_82544) {
   1108 		if (cfg1 & EEPROM_CFG1_IPS0)
   1109 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
   1110 		if (cfg1 & EEPROM_CFG1_IPS1)
   1111 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
   1112 		sc->sc_ctrl_ext |=
   1113 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
   1114 		    CTRL_EXT_SWDPIO_SHIFT;
   1115 		sc->sc_ctrl_ext |=
   1116 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
   1117 		    CTRL_EXT_SWDPINS_SHIFT;
   1118 	} else {
   1119 		sc->sc_ctrl_ext |=
   1120 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
   1121 		    CTRL_EXT_SWDPIO_SHIFT;
   1122 	}
   1123 #endif
   1124 
   1125 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   1126 #if 0
   1127 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   1128 #endif
   1129 
   1130 	/*
   1131 	 * Set up some register offsets that are different between
   1132 	 * the i82542 and the i82543 and later chips.
   1133 	 */
   1134 	if (sc->sc_type < WM_T_82543) {
   1135 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
   1136 		sc->sc_tdt_reg = WMREG_OLD_TDT;
   1137 	} else {
   1138 		sc->sc_rdt_reg = WMREG_RDT;
   1139 		sc->sc_tdt_reg = WMREG_TDT;
   1140 	}
   1141 
   1142 	/*
   1143 	 * Determine if we're TBI or GMII mode, and initialize the
   1144 	 * media structures accordingly.
   1145 	 */
   1146 	if (sc->sc_type < WM_T_82543 ||
   1147 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
   1148 		if (wmp->wmp_flags & WMP_F_1000T)
   1149 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
   1150 			    "product!\n", sc->sc_dev.dv_xname);
   1151 		wm_tbi_mediainit(sc);
   1152 	} else {
   1153 		if (wmp->wmp_flags & WMP_F_1000X)
   1154 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
   1155 			    "product!\n", sc->sc_dev.dv_xname);
   1156 		wm_gmii_mediainit(sc);
   1157 	}
   1158 
   1159 	ifp = &sc->sc_ethercom.ec_if;
   1160 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
   1161 	ifp->if_softc = sc;
   1162 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1163 	ifp->if_ioctl = wm_ioctl;
   1164 	ifp->if_start = wm_start;
   1165 	ifp->if_watchdog = wm_watchdog;
   1166 	ifp->if_init = wm_init;
   1167 	ifp->if_stop = wm_stop;
   1168 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
   1169 	IFQ_SET_READY(&ifp->if_snd);
   1170 
   1171 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1172 
   1173 	/*
   1174 	 * If we're a i82543 or greater, we can support VLANs.
   1175 	 */
   1176 	if (sc->sc_type >= WM_T_82543)
   1177 		sc->sc_ethercom.ec_capabilities |=
   1178 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
   1179 
   1180 	/*
   1181 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
   1182 	 * on i82543 and later.
   1183 	 */
   1184 	if (sc->sc_type >= WM_T_82543)
   1185 		ifp->if_capabilities |=
   1186 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
   1187 
   1188 	/*
   1189 	 * Attach the interface.
   1190 	 */
   1191 	if_attach(ifp);
   1192 	ether_ifattach(ifp, enaddr);
   1193 #if NRND > 0
   1194 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1195 	    RND_TYPE_NET, 0);
   1196 #endif
   1197 
   1198 #ifdef WM_EVENT_COUNTERS
   1199 	/* Attach event counters. */
   1200 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1201 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1202 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1203 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1204 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
   1205 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
   1206 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
   1207 	    NULL, sc->sc_dev.dv_xname, "txdw");
   1208 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
   1209 	    NULL, sc->sc_dev.dv_xname, "txqe");
   1210 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1211 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1212 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
   1213 	    NULL, sc->sc_dev.dv_xname, "linkintr");
   1214 
   1215 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1216 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1217 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
   1218 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
   1219 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1220 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1221 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
   1222 	    NULL, sc->sc_dev.dv_xname, "txtusum");
   1223 
   1224 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
   1225 	    NULL, sc->sc_dev.dv_xname, "txctx init");
   1226 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
   1227 	    NULL, sc->sc_dev.dv_xname, "txctx hit");
   1228 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
   1229 	    NULL, sc->sc_dev.dv_xname, "txctx miss");
   1230 
   1231 	for (i = 0; i < WM_NTXSEGS; i++) {
   1232 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
   1233 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
   1234 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
   1235 	}
   1236 
   1237 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
   1238 	    NULL, sc->sc_dev.dv_xname, "txdrop");
   1239 
   1240 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
   1241 	    NULL, sc->sc_dev.dv_xname, "tu");
   1242 
   1243 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
   1244 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
   1245 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
   1246 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
   1247 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
   1248 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
   1249 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
   1250 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
   1251 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
   1252 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
   1253 #endif /* WM_EVENT_COUNTERS */
   1254 
   1255 	/*
   1256 	 * Make sure the interface is shutdown during reboot.
   1257 	 */
   1258 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
   1259 	if (sc->sc_sdhook == NULL)
   1260 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
   1261 		    sc->sc_dev.dv_xname);
   1262 	return;
   1263 
   1264 	/*
   1265 	 * Free any resources we've allocated during the failed attach
   1266 	 * attempt.  Do this in reverse order and fall through.
   1267 	 */
   1268  fail_5:
   1269 	for (i = 0; i < WM_NRXDESC; i++) {
   1270 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1271 			bus_dmamap_destroy(sc->sc_dmat,
   1272 			    sc->sc_rxsoft[i].rxs_dmamap);
   1273 	}
   1274  fail_4:
   1275 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1276 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1277 			bus_dmamap_destroy(sc->sc_dmat,
   1278 			    sc->sc_txsoft[i].txs_dmamap);
   1279 	}
   1280 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1281  fail_3:
   1282 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1283  fail_2:
   1284 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1285 	    cdata_size);
   1286  fail_1:
   1287 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1288  fail_0:
   1289 	return;
   1290 }
   1291 
   1292 /*
   1293  * wm_shutdown:
   1294  *
   1295  *	Make sure the interface is stopped at reboot time.
   1296  */
   1297 static void
   1298 wm_shutdown(void *arg)
   1299 {
   1300 	struct wm_softc *sc = arg;
   1301 
   1302 	wm_stop(&sc->sc_ethercom.ec_if, 1);
   1303 }
   1304 
   1305 /*
   1306  * wm_tx_cksum:
   1307  *
   1308  *	Set up TCP/IP checksumming parameters for the
   1309  *	specified packet.
   1310  */
   1311 static int
   1312 wm_tx_cksum(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
   1313     uint8_t *fieldsp)
   1314 {
   1315 	struct mbuf *m0 = txs->txs_mbuf;
   1316 	struct livengood_tcpip_ctxdesc *t;
   1317 	uint32_t ipcs, tucs;
   1318 	struct ip *ip;
   1319 	struct ether_header *eh;
   1320 	int offset, iphl;
   1321 	uint8_t fields = 0;
   1322 
   1323 	/*
   1324 	 * XXX It would be nice if the mbuf pkthdr had offset
   1325 	 * fields for the protocol headers.
   1326 	 */
   1327 
   1328 	eh = mtod(m0, struct ether_header *);
   1329 	switch (htons(eh->ether_type)) {
   1330 	case ETHERTYPE_IP:
   1331 		iphl = sizeof(struct ip);
   1332 		offset = ETHER_HDR_LEN;
   1333 		break;
   1334 
   1335 	case ETHERTYPE_VLAN:
   1336 		iphl = sizeof(struct ip);
   1337 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1338 		break;
   1339 
   1340 	default:
   1341 		/*
   1342 		 * Don't support this protocol or encapsulation.
   1343 		 */
   1344 		*fieldsp = 0;
   1345 		*cmdp = 0;
   1346 		return (0);
   1347 	}
   1348 
   1349 	if (m0->m_len < (offset + iphl)) {
   1350 		if ((txs->txs_mbuf = m_pullup(m0, offset + iphl)) == NULL) {
   1351 			printf("%s: wm_tx_cksum: mbuf allocation failed, "
   1352 			    "packet dropped\n", sc->sc_dev.dv_xname);
   1353 			return (ENOMEM);
   1354 		}
   1355 		m0 = txs->txs_mbuf;
   1356 	}
   1357 
   1358 	ip = (struct ip *) (mtod(m0, caddr_t) + offset);
   1359 	iphl = ip->ip_hl << 2;
   1360 
   1361 	/*
   1362 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1363 	 * offload feature, if we load the context descriptor, we
   1364 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1365 	 */
   1366 
   1367 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1368 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
   1369 		fields |= WTX_IXSM;
   1370 		ipcs = WTX_TCPIP_IPCSS(offset) |
   1371 		    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1372 		    WTX_TCPIP_IPCSE(offset + iphl - 1);
   1373 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
   1374 		/* Use the cached value. */
   1375 		ipcs = sc->sc_txctx_ipcs;
   1376 	} else {
   1377 		/* Just initialize it to the likely value anyway. */
   1378 		ipcs = WTX_TCPIP_IPCSS(offset) |
   1379 		    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1380 		    WTX_TCPIP_IPCSE(offset + iphl - 1);
   1381 	}
   1382 
   1383 	offset += iphl;
   1384 
   1385 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1386 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
   1387 		fields |= WTX_TXSM;
   1388 		tucs = WTX_TCPIP_TUCSS(offset) |
   1389 		    WTX_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
   1390 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1391 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
   1392 		/* Use the cached value. */
   1393 		tucs = sc->sc_txctx_tucs;
   1394 	} else {
   1395 		/* Just initialize it to a valid TCP context. */
   1396 		tucs = WTX_TCPIP_TUCSS(offset) |
   1397 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1398 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1399 	}
   1400 
   1401 	if (sc->sc_txctx_ipcs == ipcs &&
   1402 	    sc->sc_txctx_tucs == tucs) {
   1403 		/* Cached context is fine. */
   1404 		WM_EVCNT_INCR(&sc->sc_ev_txctx_hit);
   1405 	} else {
   1406 		/* Fill in the context descriptor. */
   1407 #ifdef WM_EVENT_COUNTERS
   1408 		if (sc->sc_txctx_ipcs == 0xffffffff &&
   1409 		    sc->sc_txctx_tucs == 0xffffffff)
   1410 			WM_EVCNT_INCR(&sc->sc_ev_txctx_init);
   1411 		else
   1412 			WM_EVCNT_INCR(&sc->sc_ev_txctx_miss);
   1413 #endif
   1414 		t = (struct livengood_tcpip_ctxdesc *)
   1415 		    &sc->sc_txdescs[sc->sc_txnext];
   1416 		t->tcpip_ipcs = htole32(ipcs);
   1417 		t->tcpip_tucs = htole32(tucs);
   1418 		t->tcpip_cmdlen = htole32(WTX_CMD_DEXT | WTX_DTYP_C);
   1419 		t->tcpip_seg = 0;
   1420 		WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1421 
   1422 		sc->sc_txctx_ipcs = ipcs;
   1423 		sc->sc_txctx_tucs = tucs;
   1424 
   1425 		sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
   1426 		txs->txs_ndesc++;
   1427 	}
   1428 
   1429 	*cmdp = WTX_CMD_DEXT | WTX_DTYP_D;
   1430 	*fieldsp = fields;
   1431 
   1432 	return (0);
   1433 }
   1434 
   1435 static void
   1436 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
   1437 {
   1438 	struct mbuf *m;
   1439 	int i;
   1440 
   1441 	printf("%s: mbuf chain:\n", sc->sc_dev.dv_xname);
   1442 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
   1443 		printf("\tm_data = %p, m_len = %d, m_flags = 0x%08x\n",
   1444 		    m->m_data, m->m_len, m->m_flags);
   1445 	printf("\t%d mbuf%s in chain\n", i, i == 1 ? "" : "s");
   1446 }
   1447 
   1448 /*
   1449  * wm_start:		[ifnet interface function]
   1450  *
   1451  *	Start packet transmission on the interface.
   1452  */
   1453 static void
   1454 wm_start(struct ifnet *ifp)
   1455 {
   1456 	struct wm_softc *sc = ifp->if_softc;
   1457 	struct mbuf *m0;
   1458 #if 0 /* XXXJRT */
   1459 	struct m_tag *mtag;
   1460 #endif
   1461 	struct wm_txsoft *txs;
   1462 	bus_dmamap_t dmamap;
   1463 	int error, nexttx, lasttx = -1, ofree, seg;
   1464 	uint32_t cksumcmd;
   1465 	uint8_t cksumfields;
   1466 
   1467 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1468 		return;
   1469 
   1470 	/*
   1471 	 * Remember the previous number of free descriptors.
   1472 	 */
   1473 	ofree = sc->sc_txfree;
   1474 
   1475 	/*
   1476 	 * Loop through the send queue, setting up transmit descriptors
   1477 	 * until we drain the queue, or use up all available transmit
   1478 	 * descriptors.
   1479 	 */
   1480 	for (;;) {
   1481 		/* Grab a packet off the queue. */
   1482 		IFQ_POLL(&ifp->if_snd, m0);
   1483 		if (m0 == NULL)
   1484 			break;
   1485 
   1486 		DPRINTF(WM_DEBUG_TX,
   1487 		    ("%s: TX: have packet to transmit: %p\n",
   1488 		    sc->sc_dev.dv_xname, m0));
   1489 
   1490 		/* Get a work queue entry. */
   1491 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
   1492 			wm_txintr(sc);
   1493 			if (sc->sc_txsfree == 0) {
   1494 				DPRINTF(WM_DEBUG_TX,
   1495 				    ("%s: TX: no free job descriptors\n",
   1496 					sc->sc_dev.dv_xname));
   1497 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   1498 				break;
   1499 			}
   1500 		}
   1501 
   1502 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1503 		dmamap = txs->txs_dmamap;
   1504 
   1505 		/*
   1506 		 * Load the DMA map.  If this fails, the packet either
   1507 		 * didn't fit in the allotted number of segments, or we
   1508 		 * were short on resources.  For the too-many-segments
   1509 		 * case, we simply report an error and drop the packet,
   1510 		 * since we can't sanely copy a jumbo packet to a single
   1511 		 * buffer.
   1512 		 */
   1513 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1514 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1515 		if (error) {
   1516 			if (error == EFBIG) {
   1517 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   1518 				printf("%s: Tx packet consumes too many "
   1519 				    "DMA segments, dropping...\n",
   1520 				    sc->sc_dev.dv_xname);
   1521 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1522 				wm_dump_mbuf_chain(sc, m0);
   1523 				m_freem(m0);
   1524 				continue;
   1525 			}
   1526 			/*
   1527 			 * Short on resources, just stop for now.
   1528 			 */
   1529 			DPRINTF(WM_DEBUG_TX,
   1530 			    ("%s: TX: dmamap load failed: %d\n",
   1531 			    sc->sc_dev.dv_xname, error));
   1532 			break;
   1533 		}
   1534 
   1535 		/*
   1536 		 * Ensure we have enough descriptors free to describe
   1537 		 * the packet.  Note, we always reserve one descriptor
   1538 		 * at the end of the ring due to the semantics of the
   1539 		 * TDT register, plus one more in the event we need
   1540 		 * to re-load checksum offload context.
   1541 		 */
   1542 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
   1543 			/*
   1544 			 * Not enough free descriptors to transmit this
   1545 			 * packet.  We haven't committed anything yet,
   1546 			 * so just unload the DMA map, put the packet
   1547 			 * pack on the queue, and punt.  Notify the upper
   1548 			 * layer that there are no more slots left.
   1549 			 */
   1550 			DPRINTF(WM_DEBUG_TX,
   1551 			    ("%s: TX: need %d descriptors, have %d\n",
   1552 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs,
   1553 			    sc->sc_txfree - 1));
   1554 			ifp->if_flags |= IFF_OACTIVE;
   1555 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1556 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   1557 			break;
   1558 		}
   1559 
   1560 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1561 
   1562 		/*
   1563 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1564 		 */
   1565 
   1566 		/* Sync the DMA map. */
   1567 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1568 		    BUS_DMASYNC_PREWRITE);
   1569 
   1570 		DPRINTF(WM_DEBUG_TX,
   1571 		    ("%s: TX: packet has %d DMA segments\n",
   1572 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs));
   1573 
   1574 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1575 
   1576 		/*
   1577 		 * Store a pointer to the packet so that we can free it
   1578 		 * later.
   1579 		 *
   1580 		 * Initially, we consider the number of descriptors the
   1581 		 * packet uses the number of DMA segments.  This may be
   1582 		 * incremented by 1 if we do checksum offload (a descriptor
   1583 		 * is used to set the checksum context).
   1584 		 */
   1585 		txs->txs_mbuf = m0;
   1586 		txs->txs_firstdesc = sc->sc_txnext;
   1587 		txs->txs_ndesc = dmamap->dm_nsegs;
   1588 
   1589 		/*
   1590 		 * Set up checksum offload parameters for
   1591 		 * this packet.
   1592 		 */
   1593 		if (m0->m_pkthdr.csum_flags &
   1594 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1595 			if (wm_tx_cksum(sc, txs, &cksumcmd,
   1596 					&cksumfields) != 0) {
   1597 				/* Error message already displayed. */
   1598 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1599 				continue;
   1600 			}
   1601 		} else {
   1602 			cksumcmd = 0;
   1603 			cksumfields = 0;
   1604 		}
   1605 
   1606 		cksumcmd |= WTX_CMD_IDE;
   1607 
   1608 		/*
   1609 		 * Initialize the transmit descriptor.
   1610 		 */
   1611 		for (nexttx = sc->sc_txnext, seg = 0;
   1612 		     seg < dmamap->dm_nsegs;
   1613 		     seg++, nexttx = WM_NEXTTX(sc, nexttx)) {
   1614 			wm_set_dma_addr(&sc->sc_txdescs[nexttx].wtx_addr,
   1615 			    dmamap->dm_segs[seg].ds_addr);
   1616 			sc->sc_txdescs[nexttx].wtx_cmdlen =
   1617 			    htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
   1618 			sc->sc_txdescs[nexttx].wtx_fields.wtxu_status = 0;
   1619 			sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
   1620 			    cksumfields;
   1621 			sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
   1622 			lasttx = nexttx;
   1623 
   1624 			DPRINTF(WM_DEBUG_TX,
   1625 			    ("%s: TX: desc %d: low 0x%08x, len 0x%04x\n",
   1626 			    sc->sc_dev.dv_xname, nexttx,
   1627 			    (u_int)le32toh(dmamap->dm_segs[seg].ds_addr),
   1628 			    (u_int)le32toh(dmamap->dm_segs[seg].ds_len)));
   1629 		}
   1630 
   1631 		KASSERT(lasttx != -1);
   1632 
   1633 		/*
   1634 		 * Set up the command byte on the last descriptor of
   1635 		 * the packet.  If we're in the interrupt delay window,
   1636 		 * delay the interrupt.
   1637 		 */
   1638 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1639 		    htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS);
   1640 
   1641 #if 0 /* XXXJRT */
   1642 		/*
   1643 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1644 		 * up the descriptor to encapsulate the packet for us.
   1645 		 *
   1646 		 * This is only valid on the last descriptor of the packet.
   1647 		 */
   1648 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1649 		    (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
   1650 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1651 			    htole32(WTX_CMD_VLE);
   1652 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
   1653 			    = htole16(*(u_int *)(mtag + 1) & 0xffff);
   1654 		}
   1655 #endif /* XXXJRT */
   1656 
   1657 		txs->txs_lastdesc = lasttx;
   1658 
   1659 		DPRINTF(WM_DEBUG_TX,
   1660 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   1661 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
   1662 
   1663 		/* Sync the descriptors we're using. */
   1664 		WM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1665 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1666 
   1667 		/* Give the packet to the chip. */
   1668 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   1669 
   1670 		DPRINTF(WM_DEBUG_TX,
   1671 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   1672 
   1673 		DPRINTF(WM_DEBUG_TX,
   1674 		    ("%s: TX: finished transmitting packet, job %d\n",
   1675 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   1676 
   1677 		/* Advance the tx pointer. */
   1678 		sc->sc_txfree -= txs->txs_ndesc;
   1679 		sc->sc_txnext = nexttx;
   1680 
   1681 		sc->sc_txsfree--;
   1682 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
   1683 
   1684 #if NBPFILTER > 0
   1685 		/* Pass the packet to any BPF listeners. */
   1686 		if (ifp->if_bpf)
   1687 			bpf_mtap(ifp->if_bpf, m0);
   1688 #endif /* NBPFILTER > 0 */
   1689 	}
   1690 
   1691 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1692 		/* No more slots; notify upper layer. */
   1693 		ifp->if_flags |= IFF_OACTIVE;
   1694 	}
   1695 
   1696 	if (sc->sc_txfree != ofree) {
   1697 		/* Set a watchdog timer in case the chip flakes out. */
   1698 		ifp->if_timer = 5;
   1699 	}
   1700 }
   1701 
   1702 /*
   1703  * wm_watchdog:		[ifnet interface function]
   1704  *
   1705  *	Watchdog timer handler.
   1706  */
   1707 static void
   1708 wm_watchdog(struct ifnet *ifp)
   1709 {
   1710 	struct wm_softc *sc = ifp->if_softc;
   1711 
   1712 	/*
   1713 	 * Since we're using delayed interrupts, sweep up
   1714 	 * before we report an error.
   1715 	 */
   1716 	wm_txintr(sc);
   1717 
   1718 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
   1719 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1720 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   1721 		    sc->sc_txnext);
   1722 		ifp->if_oerrors++;
   1723 
   1724 		/* Reset the interface. */
   1725 		(void) wm_init(ifp);
   1726 	}
   1727 
   1728 	/* Try to get more packets going. */
   1729 	wm_start(ifp);
   1730 }
   1731 
   1732 /*
   1733  * wm_ioctl:		[ifnet interface function]
   1734  *
   1735  *	Handle control requests from the operator.
   1736  */
   1737 static int
   1738 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1739 {
   1740 	struct wm_softc *sc = ifp->if_softc;
   1741 	struct ifreq *ifr = (struct ifreq *) data;
   1742 	int s, error;
   1743 
   1744 	s = splnet();
   1745 
   1746 	switch (cmd) {
   1747 	case SIOCSIFMEDIA:
   1748 	case SIOCGIFMEDIA:
   1749 		/* Flow control requires full-duplex mode. */
   1750 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1751 		    (ifr->ifr_media & IFM_FDX) == 0)
   1752 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1753 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1754 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1755 				/* We can do both TXPAUSE and RXPAUSE. */
   1756 				ifr->ifr_media |=
   1757 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1758 			}
   1759 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1760 		}
   1761 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1762 		break;
   1763 	default:
   1764 		error = ether_ioctl(ifp, cmd, data);
   1765 		if (error == ENETRESET) {
   1766 			/*
   1767 			 * Multicast list has changed; set the hardware filter
   1768 			 * accordingly.
   1769 			 */
   1770 			wm_set_filter(sc);
   1771 			error = 0;
   1772 		}
   1773 		break;
   1774 	}
   1775 
   1776 	/* Try to get more packets going. */
   1777 	wm_start(ifp);
   1778 
   1779 	splx(s);
   1780 	return (error);
   1781 }
   1782 
   1783 /*
   1784  * wm_intr:
   1785  *
   1786  *	Interrupt service routine.
   1787  */
   1788 static int
   1789 wm_intr(void *arg)
   1790 {
   1791 	struct wm_softc *sc = arg;
   1792 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1793 	uint32_t icr;
   1794 	int wantinit, handled = 0;
   1795 
   1796 	for (wantinit = 0; wantinit == 0;) {
   1797 		icr = CSR_READ(sc, WMREG_ICR);
   1798 		if ((icr & sc->sc_icr) == 0)
   1799 			break;
   1800 
   1801 #if 0 /*NRND > 0*/
   1802 		if (RND_ENABLED(&sc->rnd_source))
   1803 			rnd_add_uint32(&sc->rnd_source, icr);
   1804 #endif
   1805 
   1806 		handled = 1;
   1807 
   1808 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   1809 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1810 			DPRINTF(WM_DEBUG_RX,
   1811 			    ("%s: RX: got Rx intr 0x%08x\n",
   1812 			    sc->sc_dev.dv_xname,
   1813 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1814 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
   1815 		}
   1816 #endif
   1817 		wm_rxintr(sc);
   1818 
   1819 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   1820 		if (icr & ICR_TXDW) {
   1821 			DPRINTF(WM_DEBUG_TX,
   1822 			    ("%s: TX: got TXDW interrupt\n",
   1823 			    sc->sc_dev.dv_xname));
   1824 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
   1825 		}
   1826 #endif
   1827 		wm_txintr(sc);
   1828 
   1829 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
   1830 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
   1831 			wm_linkintr(sc, icr);
   1832 		}
   1833 
   1834 		if (icr & ICR_RXO) {
   1835 			printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
   1836 			wantinit = 1;
   1837 		}
   1838 	}
   1839 
   1840 	if (handled) {
   1841 		if (wantinit)
   1842 			wm_init(ifp);
   1843 
   1844 		/* Try to get more packets going. */
   1845 		wm_start(ifp);
   1846 	}
   1847 
   1848 	return (handled);
   1849 }
   1850 
   1851 /*
   1852  * wm_txintr:
   1853  *
   1854  *	Helper; handle transmit interrupts.
   1855  */
   1856 static void
   1857 wm_txintr(struct wm_softc *sc)
   1858 {
   1859 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1860 	struct wm_txsoft *txs;
   1861 	uint8_t status;
   1862 	int i;
   1863 
   1864 	ifp->if_flags &= ~IFF_OACTIVE;
   1865 
   1866 	/*
   1867 	 * Go through the Tx list and free mbufs for those
   1868 	 * frames which have been transmitted.
   1869 	 */
   1870 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
   1871 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
   1872 		txs = &sc->sc_txsoft[i];
   1873 
   1874 		DPRINTF(WM_DEBUG_TX,
   1875 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   1876 
   1877 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1878 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1879 
   1880 		status =
   1881 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
   1882 		if ((status & WTX_ST_DD) == 0) {
   1883 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   1884 			    BUS_DMASYNC_PREREAD);
   1885 			break;
   1886 		}
   1887 
   1888 		DPRINTF(WM_DEBUG_TX,
   1889 		    ("%s: TX: job %d done: descs %d..%d\n",
   1890 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   1891 		    txs->txs_lastdesc));
   1892 
   1893 		/*
   1894 		 * XXX We should probably be using the statistics
   1895 		 * XXX registers, but I don't know if they exist
   1896 		 * XXX on chips before the i82544.
   1897 		 */
   1898 
   1899 #ifdef WM_EVENT_COUNTERS
   1900 		if (status & WTX_ST_TU)
   1901 			WM_EVCNT_INCR(&sc->sc_ev_tu);
   1902 #endif /* WM_EVENT_COUNTERS */
   1903 
   1904 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
   1905 			ifp->if_oerrors++;
   1906 			if (status & WTX_ST_LC)
   1907 				printf("%s: late collision\n",
   1908 				    sc->sc_dev.dv_xname);
   1909 			else if (status & WTX_ST_EC) {
   1910 				ifp->if_collisions += 16;
   1911 				printf("%s: excessive collisions\n",
   1912 				    sc->sc_dev.dv_xname);
   1913 			}
   1914 		} else
   1915 			ifp->if_opackets++;
   1916 
   1917 		sc->sc_txfree += txs->txs_ndesc;
   1918 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1919 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1920 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1921 		m_freem(txs->txs_mbuf);
   1922 		txs->txs_mbuf = NULL;
   1923 	}
   1924 
   1925 	/* Update the dirty transmit buffer pointer. */
   1926 	sc->sc_txsdirty = i;
   1927 	DPRINTF(WM_DEBUG_TX,
   1928 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   1929 
   1930 	/*
   1931 	 * If there are no more pending transmissions, cancel the watchdog
   1932 	 * timer.
   1933 	 */
   1934 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
   1935 		ifp->if_timer = 0;
   1936 }
   1937 
   1938 /*
   1939  * wm_rxintr:
   1940  *
   1941  *	Helper; handle receive interrupts.
   1942  */
   1943 static void
   1944 wm_rxintr(struct wm_softc *sc)
   1945 {
   1946 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1947 	struct wm_rxsoft *rxs;
   1948 	struct mbuf *m;
   1949 	int i, len;
   1950 	uint8_t status, errors;
   1951 
   1952 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
   1953 		rxs = &sc->sc_rxsoft[i];
   1954 
   1955 		DPRINTF(WM_DEBUG_RX,
   1956 		    ("%s: RX: checking descriptor %d\n",
   1957 		    sc->sc_dev.dv_xname, i));
   1958 
   1959 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1960 
   1961 		status = sc->sc_rxdescs[i].wrx_status;
   1962 		errors = sc->sc_rxdescs[i].wrx_errors;
   1963 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
   1964 
   1965 		if ((status & WRX_ST_DD) == 0) {
   1966 			/*
   1967 			 * We have processed all of the receive descriptors.
   1968 			 */
   1969 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1970 			break;
   1971 		}
   1972 
   1973 		if (__predict_false(sc->sc_rxdiscard)) {
   1974 			DPRINTF(WM_DEBUG_RX,
   1975 			    ("%s: RX: discarding contents of descriptor %d\n",
   1976 			    sc->sc_dev.dv_xname, i));
   1977 			WM_INIT_RXDESC(sc, i);
   1978 			if (status & WRX_ST_EOP) {
   1979 				/* Reset our state. */
   1980 				DPRINTF(WM_DEBUG_RX,
   1981 				    ("%s: RX: resetting rxdiscard -> 0\n",
   1982 				    sc->sc_dev.dv_xname));
   1983 				sc->sc_rxdiscard = 0;
   1984 			}
   1985 			continue;
   1986 		}
   1987 
   1988 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1989 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1990 
   1991 		m = rxs->rxs_mbuf;
   1992 
   1993 		/*
   1994 		 * Add a new receive buffer to the ring.
   1995 		 */
   1996 		if (wm_add_rxbuf(sc, i) != 0) {
   1997 			/*
   1998 			 * Failed, throw away what we've done so
   1999 			 * far, and discard the rest of the packet.
   2000 			 */
   2001 			ifp->if_ierrors++;
   2002 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2003 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2004 			WM_INIT_RXDESC(sc, i);
   2005 			if ((status & WRX_ST_EOP) == 0)
   2006 				sc->sc_rxdiscard = 1;
   2007 			if (sc->sc_rxhead != NULL)
   2008 				m_freem(sc->sc_rxhead);
   2009 			WM_RXCHAIN_RESET(sc);
   2010 			DPRINTF(WM_DEBUG_RX,
   2011 			    ("%s: RX: Rx buffer allocation failed, "
   2012 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   2013 			    sc->sc_rxdiscard ? " (discard)" : ""));
   2014 			continue;
   2015 		}
   2016 
   2017 		WM_RXCHAIN_LINK(sc, m);
   2018 
   2019 		m->m_len = len;
   2020 
   2021 		DPRINTF(WM_DEBUG_RX,
   2022 		    ("%s: RX: buffer at %p len %d\n",
   2023 		    sc->sc_dev.dv_xname, m->m_data, len));
   2024 
   2025 		/*
   2026 		 * If this is not the end of the packet, keep
   2027 		 * looking.
   2028 		 */
   2029 		if ((status & WRX_ST_EOP) == 0) {
   2030 			sc->sc_rxlen += len;
   2031 			DPRINTF(WM_DEBUG_RX,
   2032 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   2033 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   2034 			continue;
   2035 		}
   2036 
   2037 		/*
   2038 		 * Okay, we have the entire packet now...
   2039 		 */
   2040 		*sc->sc_rxtailp = NULL;
   2041 		m = sc->sc_rxhead;
   2042 		len += sc->sc_rxlen;
   2043 
   2044 		WM_RXCHAIN_RESET(sc);
   2045 
   2046 		DPRINTF(WM_DEBUG_RX,
   2047 		    ("%s: RX: have entire packet, len -> %d\n",
   2048 		    sc->sc_dev.dv_xname, len));
   2049 
   2050 		/*
   2051 		 * If an error occurred, update stats and drop the packet.
   2052 		 */
   2053 		if (errors &
   2054 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
   2055 			ifp->if_ierrors++;
   2056 			if (errors & WRX_ER_SE)
   2057 				printf("%s: symbol error\n",
   2058 				    sc->sc_dev.dv_xname);
   2059 			else if (errors & WRX_ER_SEQ)
   2060 				printf("%s: receive sequence error\n",
   2061 				    sc->sc_dev.dv_xname);
   2062 			else if (errors & WRX_ER_CE)
   2063 				printf("%s: CRC error\n",
   2064 				    sc->sc_dev.dv_xname);
   2065 			m_freem(m);
   2066 			continue;
   2067 		}
   2068 
   2069 		/*
   2070 		 * No errors.  Receive the packet.
   2071 		 *
   2072 		 * Note, we have configured the chip to include the
   2073 		 * CRC with every packet.
   2074 		 */
   2075 		m->m_flags |= M_HASFCS;
   2076 		m->m_pkthdr.rcvif = ifp;
   2077 		m->m_pkthdr.len = len;
   2078 
   2079 #if 0 /* XXXJRT */
   2080 		/*
   2081 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2082 		 * for us.  Associate the tag with the packet.
   2083 		 */
   2084 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   2085 		    (status & WRX_ST_VP) != 0) {
   2086 			struct m_tag *vtag;
   2087 
   2088 			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
   2089 			    M_NOWAIT);
   2090 			if (vtag == NULL) {
   2091 				ifp->if_ierrors++;
   2092 				printf("%s: unable to allocate VLAN tag\n",
   2093 				    sc->sc_dev.dv_xname);
   2094 				m_freem(m);
   2095 				continue;
   2096 			}
   2097 
   2098 			*(u_int *)(vtag + 1) =
   2099 			    le16toh(sc->sc_rxdescs[i].wrx_special);
   2100 		}
   2101 #endif /* XXXJRT */
   2102 
   2103 		/*
   2104 		 * Set up checksum info for this packet.
   2105 		 */
   2106 		if (status & WRX_ST_IPCS) {
   2107 			WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2108 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2109 			if (errors & WRX_ER_IPE)
   2110 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2111 		}
   2112 		if (status & WRX_ST_TCPCS) {
   2113 			/*
   2114 			 * Note: we don't know if this was TCP or UDP,
   2115 			 * so we just set both bits, and expect the
   2116 			 * upper layers to deal.
   2117 			 */
   2118 			WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
   2119 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   2120 			if (errors & WRX_ER_TCPE)
   2121 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   2122 		}
   2123 
   2124 		ifp->if_ipackets++;
   2125 
   2126 #if NBPFILTER > 0
   2127 		/* Pass this up to any BPF listeners. */
   2128 		if (ifp->if_bpf)
   2129 			bpf_mtap(ifp->if_bpf, m);
   2130 #endif /* NBPFILTER > 0 */
   2131 
   2132 		/* Pass it on. */
   2133 		(*ifp->if_input)(ifp, m);
   2134 	}
   2135 
   2136 	/* Update the receive pointer. */
   2137 	sc->sc_rxptr = i;
   2138 
   2139 	DPRINTF(WM_DEBUG_RX,
   2140 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   2141 }
   2142 
   2143 /*
   2144  * wm_linkintr:
   2145  *
   2146  *	Helper; handle link interrupts.
   2147  */
   2148 static void
   2149 wm_linkintr(struct wm_softc *sc, uint32_t icr)
   2150 {
   2151 	uint32_t status;
   2152 
   2153 	/*
   2154 	 * If we get a link status interrupt on a 1000BASE-T
   2155 	 * device, just fall into the normal MII tick path.
   2156 	 */
   2157 	if (sc->sc_flags & WM_F_HAS_MII) {
   2158 		if (icr & ICR_LSC) {
   2159 			DPRINTF(WM_DEBUG_LINK,
   2160 			    ("%s: LINK: LSC -> mii_tick\n",
   2161 			    sc->sc_dev.dv_xname));
   2162 			mii_tick(&sc->sc_mii);
   2163 		} else if (icr & ICR_RXSEQ) {
   2164 			DPRINTF(WM_DEBUG_LINK,
   2165 			    ("%s: LINK Receive sequence error\n",
   2166 			    sc->sc_dev.dv_xname));
   2167 		}
   2168 		return;
   2169 	}
   2170 
   2171 	/*
   2172 	 * If we are now receiving /C/, check for link again in
   2173 	 * a couple of link clock ticks.
   2174 	 */
   2175 	if (icr & ICR_RXCFG) {
   2176 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
   2177 		    sc->sc_dev.dv_xname));
   2178 		sc->sc_tbi_anstate = 2;
   2179 	}
   2180 
   2181 	if (icr & ICR_LSC) {
   2182 		status = CSR_READ(sc, WMREG_STATUS);
   2183 		if (status & STATUS_LU) {
   2184 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
   2185 			    sc->sc_dev.dv_xname,
   2186 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   2187 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2188 			sc->sc_fcrtl &= ~FCRTL_XONE;
   2189 			if (status & STATUS_FD)
   2190 				sc->sc_tctl |=
   2191 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2192 			else
   2193 				sc->sc_tctl |=
   2194 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2195 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   2196 				sc->sc_fcrtl |= FCRTL_XONE;
   2197 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2198 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   2199 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   2200 				      sc->sc_fcrtl);
   2201 			sc->sc_tbi_linkup = 1;
   2202 		} else {
   2203 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   2204 			    sc->sc_dev.dv_xname));
   2205 			sc->sc_tbi_linkup = 0;
   2206 		}
   2207 		sc->sc_tbi_anstate = 2;
   2208 		wm_tbi_set_linkled(sc);
   2209 	} else if (icr & ICR_RXSEQ) {
   2210 		DPRINTF(WM_DEBUG_LINK,
   2211 		    ("%s: LINK: Receive sequence error\n",
   2212 		    sc->sc_dev.dv_xname));
   2213 	}
   2214 }
   2215 
   2216 /*
   2217  * wm_tick:
   2218  *
   2219  *	One second timer, used to check link status, sweep up
   2220  *	completed transmit jobs, etc.
   2221  */
   2222 static void
   2223 wm_tick(void *arg)
   2224 {
   2225 	struct wm_softc *sc = arg;
   2226 	int s;
   2227 
   2228 	s = splnet();
   2229 
   2230 	if (sc->sc_type >= WM_T_82542_2_1) {
   2231 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
   2232 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
   2233 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
   2234 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
   2235 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
   2236 	}
   2237 
   2238 	if (sc->sc_flags & WM_F_HAS_MII)
   2239 		mii_tick(&sc->sc_mii);
   2240 	else
   2241 		wm_tbi_check_link(sc);
   2242 
   2243 	splx(s);
   2244 
   2245 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2246 }
   2247 
   2248 /*
   2249  * wm_reset:
   2250  *
   2251  *	Reset the i82542 chip.
   2252  */
   2253 static void
   2254 wm_reset(struct wm_softc *sc)
   2255 {
   2256 	int i;
   2257 
   2258 	switch (sc->sc_type) {
   2259 	case WM_T_82544:
   2260 	case WM_T_82540:
   2261 	case WM_T_82545:
   2262 	case WM_T_82546:
   2263 	case WM_T_82541:
   2264 	case WM_T_82541_2:
   2265 		/*
   2266 		 * These chips have a problem with the memory-mapped
   2267 		 * write cycle when issuing the reset, so use I/O-mapped
   2268 		 * access, if possible.
   2269 		 */
   2270 		if (sc->sc_flags & WM_F_IOH_VALID)
   2271 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
   2272 		else
   2273 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2274 		break;
   2275 
   2276 	case WM_T_82545_3:
   2277 	case WM_T_82546_3:
   2278 		/* Use the shadow control register on these chips. */
   2279 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
   2280 		break;
   2281 
   2282 	default:
   2283 		/* Everything else can safely use the documented method. */
   2284 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2285 		break;
   2286 	}
   2287 	delay(10000);
   2288 
   2289 	for (i = 0; i < 1000; i++) {
   2290 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
   2291 			return;
   2292 		delay(20);
   2293 	}
   2294 
   2295 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
   2296 		printf("%s: WARNING: reset failed to complete\n",
   2297 		    sc->sc_dev.dv_xname);
   2298 }
   2299 
   2300 /*
   2301  * wm_init:		[ifnet interface function]
   2302  *
   2303  *	Initialize the interface.  Must be called at splnet().
   2304  */
   2305 static int
   2306 wm_init(struct ifnet *ifp)
   2307 {
   2308 	struct wm_softc *sc = ifp->if_softc;
   2309 	struct wm_rxsoft *rxs;
   2310 	int i, error = 0;
   2311 	uint32_t reg;
   2312 
   2313 	/*
   2314 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   2315 	 * There is a small but measurable benefit to avoiding the adjusment
   2316 	 * of the descriptor so that the headers are aligned, for normal mtu,
   2317 	 * on such platforms.  One possibility is that the DMA itself is
   2318 	 * slightly more efficient if the front of the entire packet (instead
   2319 	 * of the front of the headers) is aligned.
   2320 	 *
   2321 	 * Note we must always set align_tweak to 0 if we are using
   2322 	 * jumbo frames.
   2323 	 */
   2324 #ifdef __NO_STRICT_ALIGNMENT
   2325 	sc->sc_align_tweak = 0;
   2326 #else
   2327 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   2328 		sc->sc_align_tweak = 0;
   2329 	else
   2330 		sc->sc_align_tweak = 2;
   2331 #endif /* __NO_STRICT_ALIGNMENT */
   2332 
   2333 	/* Cancel any pending I/O. */
   2334 	wm_stop(ifp, 0);
   2335 
   2336 	/* Reset the chip to a known state. */
   2337 	wm_reset(sc);
   2338 
   2339 	/* Initialize the transmit descriptor ring. */
   2340 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
   2341 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
   2342 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2343 	sc->sc_txfree = WM_NTXDESC(sc);
   2344 	sc->sc_txnext = 0;
   2345 
   2346 	sc->sc_txctx_ipcs = 0xffffffff;
   2347 	sc->sc_txctx_tucs = 0xffffffff;
   2348 
   2349 	if (sc->sc_type < WM_T_82543) {
   2350 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
   2351 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
   2352 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
   2353 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
   2354 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
   2355 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
   2356 	} else {
   2357 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
   2358 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
   2359 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
   2360 		CSR_WRITE(sc, WMREG_TDH, 0);
   2361 		CSR_WRITE(sc, WMREG_TDT, 0);
   2362 		CSR_WRITE(sc, WMREG_TIDV, 128);
   2363 
   2364 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
   2365 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   2366 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
   2367 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
   2368 	}
   2369 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
   2370 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
   2371 
   2372 	/* Initialize the transmit job descriptors. */
   2373 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
   2374 		sc->sc_txsoft[i].txs_mbuf = NULL;
   2375 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
   2376 	sc->sc_txsnext = 0;
   2377 	sc->sc_txsdirty = 0;
   2378 
   2379 	/*
   2380 	 * Initialize the receive descriptor and receive job
   2381 	 * descriptor rings.
   2382 	 */
   2383 	if (sc->sc_type < WM_T_82543) {
   2384 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
   2385 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
   2386 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
   2387 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
   2388 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
   2389 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
   2390 
   2391 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
   2392 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
   2393 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
   2394 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
   2395 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
   2396 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
   2397 	} else {
   2398 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
   2399 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
   2400 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
   2401 		CSR_WRITE(sc, WMREG_RDH, 0);
   2402 		CSR_WRITE(sc, WMREG_RDT, 0);
   2403 		CSR_WRITE(sc, WMREG_RDTR, 28 | RDTR_FPD);
   2404 	}
   2405 	for (i = 0; i < WM_NRXDESC; i++) {
   2406 		rxs = &sc->sc_rxsoft[i];
   2407 		if (rxs->rxs_mbuf == NULL) {
   2408 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
   2409 				printf("%s: unable to allocate or map rx "
   2410 				    "buffer %d, error = %d\n",
   2411 				    sc->sc_dev.dv_xname, i, error);
   2412 				/*
   2413 				 * XXX Should attempt to run with fewer receive
   2414 				 * XXX buffers instead of just failing.
   2415 				 */
   2416 				wm_rxdrain(sc);
   2417 				goto out;
   2418 			}
   2419 		} else
   2420 			WM_INIT_RXDESC(sc, i);
   2421 	}
   2422 	sc->sc_rxptr = 0;
   2423 	sc->sc_rxdiscard = 0;
   2424 	WM_RXCHAIN_RESET(sc);
   2425 
   2426 	/*
   2427 	 * Clear out the VLAN table -- we don't use it (yet).
   2428 	 */
   2429 	CSR_WRITE(sc, WMREG_VET, 0);
   2430 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
   2431 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
   2432 
   2433 	/*
   2434 	 * Set up flow-control parameters.
   2435 	 *
   2436 	 * XXX Values could probably stand some tuning.
   2437 	 */
   2438 	CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
   2439 	CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
   2440 	CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
   2441 
   2442 	sc->sc_fcrtl = FCRTL_DFLT;
   2443 	if (sc->sc_type < WM_T_82543) {
   2444 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
   2445 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
   2446 	} else {
   2447 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
   2448 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
   2449 	}
   2450 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
   2451 
   2452 #if 0 /* XXXJRT */
   2453 	/* Deal with VLAN enables. */
   2454 	if (sc->sc_ethercom.ec_nvlans != 0)
   2455 		sc->sc_ctrl |= CTRL_VME;
   2456 	else
   2457 #endif /* XXXJRT */
   2458 		sc->sc_ctrl &= ~CTRL_VME;
   2459 
   2460 	/* Write the control registers. */
   2461 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2462 #if 0
   2463 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   2464 #endif
   2465 
   2466 	/*
   2467 	 * Set up checksum offload parameters.
   2468 	 */
   2469 	reg = CSR_READ(sc, WMREG_RXCSUM);
   2470 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
   2471 		reg |= RXCSUM_IPOFL;
   2472 	else
   2473 		reg &= ~RXCSUM_IPOFL;
   2474 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
   2475 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   2476 	else {
   2477 		reg &= ~RXCSUM_TUOFL;
   2478 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
   2479 			reg &= ~RXCSUM_IPOFL;
   2480 	}
   2481 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
   2482 
   2483 	/*
   2484 	 * Set up the interrupt registers.
   2485 	 */
   2486 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   2487 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   2488 	    ICR_RXO | ICR_RXT0;
   2489 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
   2490 		sc->sc_icr |= ICR_RXCFG;
   2491 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
   2492 
   2493 	/* Set up the inter-packet gap. */
   2494 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   2495 
   2496 #if 0 /* XXXJRT */
   2497 	/* Set the VLAN ethernetype. */
   2498 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
   2499 #endif
   2500 
   2501 	/*
   2502 	 * Set up the transmit control register; we start out with
   2503 	 * a collision distance suitable for FDX, but update it whe
   2504 	 * we resolve the media type.
   2505 	 */
   2506 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
   2507 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2508 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2509 
   2510 	/* Set the media. */
   2511 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
   2512 
   2513 	/*
   2514 	 * Set up the receive control register; we actually program
   2515 	 * the register when we set the receive filter.  Use multicast
   2516 	 * address offset type 0.
   2517 	 *
   2518 	 * Only the i82544 has the ability to strip the incoming
   2519 	 * CRC, so we don't enable that feature.
   2520 	 */
   2521 	sc->sc_mchash_type = 0;
   2522 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
   2523 	    RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
   2524 
   2525 	if(MCLBYTES == 2048) {
   2526 		sc->sc_rctl |= RCTL_2k;
   2527 	} else {
   2528 		if(sc->sc_type >= WM_T_82543) {
   2529 			switch(MCLBYTES) {
   2530 			case 4096:
   2531 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
   2532 				break;
   2533 			case 8192:
   2534 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
   2535 				break;
   2536 			case 16384:
   2537 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
   2538 				break;
   2539 			default:
   2540 				panic("wm_init: MCLBYTES %d unsupported",
   2541 				    MCLBYTES);
   2542 				break;
   2543 			}
   2544 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
   2545 	}
   2546 
   2547 	/* Set the receive filter. */
   2548 	wm_set_filter(sc);
   2549 
   2550 	/* Start the one second link check clock. */
   2551 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2552 
   2553 	/* ...all done! */
   2554 	ifp->if_flags |= IFF_RUNNING;
   2555 	ifp->if_flags &= ~IFF_OACTIVE;
   2556 
   2557  out:
   2558 	if (error)
   2559 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2560 	return (error);
   2561 }
   2562 
   2563 /*
   2564  * wm_rxdrain:
   2565  *
   2566  *	Drain the receive queue.
   2567  */
   2568 static void
   2569 wm_rxdrain(struct wm_softc *sc)
   2570 {
   2571 	struct wm_rxsoft *rxs;
   2572 	int i;
   2573 
   2574 	for (i = 0; i < WM_NRXDESC; i++) {
   2575 		rxs = &sc->sc_rxsoft[i];
   2576 		if (rxs->rxs_mbuf != NULL) {
   2577 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2578 			m_freem(rxs->rxs_mbuf);
   2579 			rxs->rxs_mbuf = NULL;
   2580 		}
   2581 	}
   2582 }
   2583 
   2584 /*
   2585  * wm_stop:		[ifnet interface function]
   2586  *
   2587  *	Stop transmission on the interface.
   2588  */
   2589 static void
   2590 wm_stop(struct ifnet *ifp, int disable)
   2591 {
   2592 	struct wm_softc *sc = ifp->if_softc;
   2593 	struct wm_txsoft *txs;
   2594 	int i;
   2595 
   2596 	/* Stop the one second clock. */
   2597 	callout_stop(&sc->sc_tick_ch);
   2598 
   2599 	if (sc->sc_flags & WM_F_HAS_MII) {
   2600 		/* Down the MII. */
   2601 		mii_down(&sc->sc_mii);
   2602 	}
   2603 
   2604 	/* Stop the transmit and receive processes. */
   2605 	CSR_WRITE(sc, WMREG_TCTL, 0);
   2606 	CSR_WRITE(sc, WMREG_RCTL, 0);
   2607 
   2608 	/* Release any queued transmit buffers. */
   2609 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   2610 		txs = &sc->sc_txsoft[i];
   2611 		if (txs->txs_mbuf != NULL) {
   2612 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2613 			m_freem(txs->txs_mbuf);
   2614 			txs->txs_mbuf = NULL;
   2615 		}
   2616 	}
   2617 
   2618 	if (disable)
   2619 		wm_rxdrain(sc);
   2620 
   2621 	/* Mark the interface as down and cancel the watchdog timer. */
   2622 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2623 	ifp->if_timer = 0;
   2624 }
   2625 
   2626 /*
   2627  * wm_acquire_eeprom:
   2628  *
   2629  *	Perform the EEPROM handshake required on some chips.
   2630  */
   2631 static int
   2632 wm_acquire_eeprom(struct wm_softc *sc)
   2633 {
   2634 	uint32_t reg;
   2635 	int x;
   2636 
   2637 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
   2638 		reg = CSR_READ(sc, WMREG_EECD);
   2639 
   2640 		/* Request EEPROM access. */
   2641 		reg |= EECD_EE_REQ;
   2642 		CSR_WRITE(sc, WMREG_EECD, reg);
   2643 
   2644 		/* ..and wait for it to be granted. */
   2645 		for (x = 0; x < 100; x++) {
   2646 			reg = CSR_READ(sc, WMREG_EECD);
   2647 			if (reg & EECD_EE_GNT)
   2648 				break;
   2649 			delay(5);
   2650 		}
   2651 		if ((reg & EECD_EE_GNT) == 0) {
   2652 			aprint_error("%s: could not acquire EEPROM GNT\n",
   2653 			    sc->sc_dev.dv_xname);
   2654 			reg &= ~EECD_EE_REQ;
   2655 			CSR_WRITE(sc, WMREG_EECD, reg);
   2656 			return (1);
   2657 		}
   2658 	}
   2659 
   2660 	return (0);
   2661 }
   2662 
   2663 /*
   2664  * wm_release_eeprom:
   2665  *
   2666  *	Release the EEPROM mutex.
   2667  */
   2668 static void
   2669 wm_release_eeprom(struct wm_softc *sc)
   2670 {
   2671 	uint32_t reg;
   2672 
   2673 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
   2674 		reg = CSR_READ(sc, WMREG_EECD);
   2675 		reg &= ~EECD_EE_REQ;
   2676 		CSR_WRITE(sc, WMREG_EECD, reg);
   2677 	}
   2678 }
   2679 
   2680 /*
   2681  * wm_eeprom_sendbits:
   2682  *
   2683  *	Send a series of bits to the EEPROM.
   2684  */
   2685 static void
   2686 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
   2687 {
   2688 	uint32_t reg;
   2689 	int x;
   2690 
   2691 	reg = CSR_READ(sc, WMREG_EECD);
   2692 
   2693 	for (x = nbits; x > 0; x--) {
   2694 		if (bits & (1U << (x - 1)))
   2695 			reg |= EECD_DI;
   2696 		else
   2697 			reg &= ~EECD_DI;
   2698 		CSR_WRITE(sc, WMREG_EECD, reg);
   2699 		delay(2);
   2700 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2701 		delay(2);
   2702 		CSR_WRITE(sc, WMREG_EECD, reg);
   2703 		delay(2);
   2704 	}
   2705 }
   2706 
   2707 /*
   2708  * wm_eeprom_recvbits:
   2709  *
   2710  *	Receive a series of bits from the EEPROM.
   2711  */
   2712 static void
   2713 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
   2714 {
   2715 	uint32_t reg, val;
   2716 	int x;
   2717 
   2718 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
   2719 
   2720 	val = 0;
   2721 	for (x = nbits; x > 0; x--) {
   2722 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2723 		delay(2);
   2724 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
   2725 			val |= (1U << (x - 1));
   2726 		CSR_WRITE(sc, WMREG_EECD, reg);
   2727 		delay(2);
   2728 	}
   2729 	*valp = val;
   2730 }
   2731 
   2732 /*
   2733  * wm_read_eeprom_uwire:
   2734  *
   2735  *	Read a word from the EEPROM using the MicroWire protocol.
   2736  */
   2737 static int
   2738 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   2739 {
   2740 	uint32_t reg, val;
   2741 	int i;
   2742 
   2743 	for (i = 0; i < wordcnt; i++) {
   2744 		/* Clear SK and DI. */
   2745 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
   2746 		CSR_WRITE(sc, WMREG_EECD, reg);
   2747 
   2748 		/* Set CHIP SELECT. */
   2749 		reg |= EECD_CS;
   2750 		CSR_WRITE(sc, WMREG_EECD, reg);
   2751 		delay(2);
   2752 
   2753 		/* Shift in the READ command. */
   2754 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
   2755 
   2756 		/* Shift in address. */
   2757 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
   2758 
   2759 		/* Shift out the data. */
   2760 		wm_eeprom_recvbits(sc, &val, 16);
   2761 		data[i] = val & 0xffff;
   2762 
   2763 		/* Clear CHIP SELECT. */
   2764 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
   2765 		CSR_WRITE(sc, WMREG_EECD, reg);
   2766 		delay(2);
   2767 	}
   2768 
   2769 	return (0);
   2770 }
   2771 
   2772 /*
   2773  * wm_spi_eeprom_ready:
   2774  *
   2775  *	Wait for a SPI EEPROM to be ready for commands.
   2776  */
   2777 static int
   2778 wm_spi_eeprom_ready(struct wm_softc *sc)
   2779 {
   2780 	uint32_t val;
   2781 	int usec;
   2782 
   2783 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
   2784 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
   2785 		wm_eeprom_recvbits(sc, &val, 8);
   2786 		if ((val & SPI_SR_RDY) == 0)
   2787 			break;
   2788 	}
   2789 	if (usec >= SPI_MAX_RETRIES) {
   2790 		aprint_error("%s: EEPROM failed to become ready\n",
   2791 		    sc->sc_dev.dv_xname);
   2792 		return (1);
   2793 	}
   2794 	return (0);
   2795 }
   2796 
   2797 /*
   2798  * wm_read_eeprom_spi:
   2799  *
   2800  *	Read a work from the EEPROM using the SPI protocol.
   2801  */
   2802 static int
   2803 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   2804 {
   2805 	uint32_t reg, val;
   2806 	int i;
   2807 	uint8_t opc;
   2808 
   2809 	/* Clear SK and CS. */
   2810 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
   2811 	CSR_WRITE(sc, WMREG_EECD, reg);
   2812 	delay(2);
   2813 
   2814 	if (wm_spi_eeprom_ready(sc))
   2815 		return (1);
   2816 
   2817 	/* Toggle CS to flush commands. */
   2818 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
   2819 	delay(2);
   2820 	CSR_WRITE(sc, WMREG_EECD, reg);
   2821 	delay(2);
   2822 
   2823 	opc = SPI_OPC_READ;
   2824 	if (sc->sc_ee_addrbits == 8 && word >= 128)
   2825 		opc |= SPI_OPC_A8;
   2826 
   2827 	wm_eeprom_sendbits(sc, opc, 8);
   2828 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
   2829 
   2830 	for (i = 0; i < wordcnt; i++) {
   2831 		wm_eeprom_recvbits(sc, &val, 16);
   2832 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
   2833 	}
   2834 
   2835 	/* Raise CS and clear SK. */
   2836 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
   2837 	CSR_WRITE(sc, WMREG_EECD, reg);
   2838 	delay(2);
   2839 
   2840 	return (0);
   2841 }
   2842 
   2843 /*
   2844  * wm_read_eeprom:
   2845  *
   2846  *	Read data from the serial EEPROM.
   2847  */
   2848 static int
   2849 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   2850 {
   2851 	int rv;
   2852 
   2853 	if (wm_acquire_eeprom(sc))
   2854 		return (1);
   2855 
   2856 	if (sc->sc_flags & WM_F_EEPROM_SPI)
   2857 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
   2858 	else
   2859 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
   2860 
   2861 	wm_release_eeprom(sc);
   2862 	return (rv);
   2863 }
   2864 
   2865 /*
   2866  * wm_add_rxbuf:
   2867  *
   2868  *	Add a receive buffer to the indiciated descriptor.
   2869  */
   2870 static int
   2871 wm_add_rxbuf(struct wm_softc *sc, int idx)
   2872 {
   2873 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2874 	struct mbuf *m;
   2875 	int error;
   2876 
   2877 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2878 	if (m == NULL)
   2879 		return (ENOBUFS);
   2880 
   2881 	MCLGET(m, M_DONTWAIT);
   2882 	if ((m->m_flags & M_EXT) == 0) {
   2883 		m_freem(m);
   2884 		return (ENOBUFS);
   2885 	}
   2886 
   2887 	if (rxs->rxs_mbuf != NULL)
   2888 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2889 
   2890 	rxs->rxs_mbuf = m;
   2891 
   2892 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   2893 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   2894 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2895 	if (error) {
   2896 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   2897 		    sc->sc_dev.dv_xname, idx, error);
   2898 		panic("wm_add_rxbuf");	/* XXX XXX XXX */
   2899 	}
   2900 
   2901 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2902 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2903 
   2904 	WM_INIT_RXDESC(sc, idx);
   2905 
   2906 	return (0);
   2907 }
   2908 
   2909 /*
   2910  * wm_set_ral:
   2911  *
   2912  *	Set an entery in the receive address list.
   2913  */
   2914 static void
   2915 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
   2916 {
   2917 	uint32_t ral_lo, ral_hi;
   2918 
   2919 	if (enaddr != NULL) {
   2920 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   2921 		    (enaddr[3] << 24);
   2922 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   2923 		ral_hi |= RAL_AV;
   2924 	} else {
   2925 		ral_lo = 0;
   2926 		ral_hi = 0;
   2927 	}
   2928 
   2929 	if (sc->sc_type >= WM_T_82544) {
   2930 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
   2931 		    ral_lo);
   2932 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
   2933 		    ral_hi);
   2934 	} else {
   2935 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
   2936 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
   2937 	}
   2938 }
   2939 
   2940 /*
   2941  * wm_mchash:
   2942  *
   2943  *	Compute the hash of the multicast address for the 4096-bit
   2944  *	multicast filter.
   2945  */
   2946 static uint32_t
   2947 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
   2948 {
   2949 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   2950 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   2951 	uint32_t hash;
   2952 
   2953 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   2954 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   2955 
   2956 	return (hash & 0xfff);
   2957 }
   2958 
   2959 /*
   2960  * wm_set_filter:
   2961  *
   2962  *	Set up the receive filter.
   2963  */
   2964 static void
   2965 wm_set_filter(struct wm_softc *sc)
   2966 {
   2967 	struct ethercom *ec = &sc->sc_ethercom;
   2968 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2969 	struct ether_multi *enm;
   2970 	struct ether_multistep step;
   2971 	bus_addr_t mta_reg;
   2972 	uint32_t hash, reg, bit;
   2973 	int i;
   2974 
   2975 	if (sc->sc_type >= WM_T_82544)
   2976 		mta_reg = WMREG_CORDOVA_MTA;
   2977 	else
   2978 		mta_reg = WMREG_MTA;
   2979 
   2980 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   2981 
   2982 	if (ifp->if_flags & IFF_BROADCAST)
   2983 		sc->sc_rctl |= RCTL_BAM;
   2984 	if (ifp->if_flags & IFF_PROMISC) {
   2985 		sc->sc_rctl |= RCTL_UPE;
   2986 		goto allmulti;
   2987 	}
   2988 
   2989 	/*
   2990 	 * Set the station address in the first RAL slot, and
   2991 	 * clear the remaining slots.
   2992 	 */
   2993 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
   2994 	for (i = 1; i < WM_RAL_TABSIZE; i++)
   2995 		wm_set_ral(sc, NULL, i);
   2996 
   2997 	/* Clear out the multicast table. */
   2998 	for (i = 0; i < WM_MC_TABSIZE; i++)
   2999 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
   3000 
   3001 	ETHER_FIRST_MULTI(step, ec, enm);
   3002 	while (enm != NULL) {
   3003 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3004 			/*
   3005 			 * We must listen to a range of multicast addresses.
   3006 			 * For now, just accept all multicasts, rather than
   3007 			 * trying to set only those filter bits needed to match
   3008 			 * the range.  (At this time, the only use of address
   3009 			 * ranges is for IP multicast routing, for which the
   3010 			 * range is big enough to require all bits set.)
   3011 			 */
   3012 			goto allmulti;
   3013 		}
   3014 
   3015 		hash = wm_mchash(sc, enm->enm_addrlo);
   3016 
   3017 		reg = (hash >> 5) & 0x7f;
   3018 		bit = hash & 0x1f;
   3019 
   3020 		hash = CSR_READ(sc, mta_reg + (reg << 2));
   3021 		hash |= 1U << bit;
   3022 
   3023 		/* XXX Hardware bug?? */
   3024 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
   3025 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
   3026 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3027 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
   3028 		} else
   3029 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3030 
   3031 		ETHER_NEXT_MULTI(step, enm);
   3032 	}
   3033 
   3034 	ifp->if_flags &= ~IFF_ALLMULTI;
   3035 	goto setit;
   3036 
   3037  allmulti:
   3038 	ifp->if_flags |= IFF_ALLMULTI;
   3039 	sc->sc_rctl |= RCTL_MPE;
   3040 
   3041  setit:
   3042 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
   3043 }
   3044 
   3045 /*
   3046  * wm_tbi_mediainit:
   3047  *
   3048  *	Initialize media for use on 1000BASE-X devices.
   3049  */
   3050 static void
   3051 wm_tbi_mediainit(struct wm_softc *sc)
   3052 {
   3053 	const char *sep = "";
   3054 
   3055 	if (sc->sc_type < WM_T_82543)
   3056 		sc->sc_tipg = TIPG_WM_DFLT;
   3057 	else
   3058 		sc->sc_tipg = TIPG_LG_DFLT;
   3059 
   3060 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
   3061 	    wm_tbi_mediastatus);
   3062 
   3063 	/*
   3064 	 * SWD Pins:
   3065 	 *
   3066 	 *	0 = Link LED (output)
   3067 	 *	1 = Loss Of Signal (input)
   3068 	 */
   3069 	sc->sc_ctrl |= CTRL_SWDPIO(0);
   3070 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
   3071 
   3072 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3073 
   3074 #define	ADD(ss, mm, dd)							\
   3075 do {									\
   3076 	printf("%s%s", sep, ss);					\
   3077 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
   3078 	sep = ", ";							\
   3079 } while (/*CONSTCOND*/0)
   3080 
   3081 	printf("%s: ", sc->sc_dev.dv_xname);
   3082 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
   3083 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
   3084 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
   3085 	printf("\n");
   3086 
   3087 #undef ADD
   3088 
   3089 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   3090 }
   3091 
   3092 /*
   3093  * wm_tbi_mediastatus:	[ifmedia interface function]
   3094  *
   3095  *	Get the current interface media status on a 1000BASE-X device.
   3096  */
   3097 static void
   3098 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3099 {
   3100 	struct wm_softc *sc = ifp->if_softc;
   3101 	uint32_t ctrl;
   3102 
   3103 	ifmr->ifm_status = IFM_AVALID;
   3104 	ifmr->ifm_active = IFM_ETHER;
   3105 
   3106 	if (sc->sc_tbi_linkup == 0) {
   3107 		ifmr->ifm_active |= IFM_NONE;
   3108 		return;
   3109 	}
   3110 
   3111 	ifmr->ifm_status |= IFM_ACTIVE;
   3112 	ifmr->ifm_active |= IFM_1000_SX;
   3113 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
   3114 		ifmr->ifm_active |= IFM_FDX;
   3115 	ctrl = CSR_READ(sc, WMREG_CTRL);
   3116 	if (ctrl & CTRL_RFCE)
   3117 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   3118 	if (ctrl & CTRL_TFCE)
   3119 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   3120 }
   3121 
   3122 /*
   3123  * wm_tbi_mediachange:	[ifmedia interface function]
   3124  *
   3125  *	Set hardware to newly-selected media on a 1000BASE-X device.
   3126  */
   3127 static int
   3128 wm_tbi_mediachange(struct ifnet *ifp)
   3129 {
   3130 	struct wm_softc *sc = ifp->if_softc;
   3131 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   3132 	uint32_t status;
   3133 	int i;
   3134 
   3135 	sc->sc_txcw = ife->ifm_data;
   3136 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
   3137 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
   3138 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
   3139 	sc->sc_txcw |= TXCW_ANE;
   3140 
   3141 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   3142 	delay(10000);
   3143 
   3144 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
   3145 
   3146 	sc->sc_tbi_anstate = 0;
   3147 
   3148 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
   3149 		/* Have signal; wait for the link to come up. */
   3150 		for (i = 0; i < 50; i++) {
   3151 			delay(10000);
   3152 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
   3153 				break;
   3154 		}
   3155 
   3156 		status = CSR_READ(sc, WMREG_STATUS);
   3157 		if (status & STATUS_LU) {
   3158 			/* Link is up. */
   3159 			DPRINTF(WM_DEBUG_LINK,
   3160 			    ("%s: LINK: set media -> link up %s\n",
   3161 			    sc->sc_dev.dv_xname,
   3162 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   3163 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3164 			sc->sc_fcrtl &= ~FCRTL_XONE;
   3165 			if (status & STATUS_FD)
   3166 				sc->sc_tctl |=
   3167 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3168 			else
   3169 				sc->sc_tctl |=
   3170 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3171 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   3172 				sc->sc_fcrtl |= FCRTL_XONE;
   3173 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3174 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   3175 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   3176 				      sc->sc_fcrtl);
   3177 			sc->sc_tbi_linkup = 1;
   3178 		} else {
   3179 			/* Link is down. */
   3180 			DPRINTF(WM_DEBUG_LINK,
   3181 			    ("%s: LINK: set media -> link down\n",
   3182 			    sc->sc_dev.dv_xname));
   3183 			sc->sc_tbi_linkup = 0;
   3184 		}
   3185 	} else {
   3186 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
   3187 		    sc->sc_dev.dv_xname));
   3188 		sc->sc_tbi_linkup = 0;
   3189 	}
   3190 
   3191 	wm_tbi_set_linkled(sc);
   3192 
   3193 	return (0);
   3194 }
   3195 
   3196 /*
   3197  * wm_tbi_set_linkled:
   3198  *
   3199  *	Update the link LED on 1000BASE-X devices.
   3200  */
   3201 static void
   3202 wm_tbi_set_linkled(struct wm_softc *sc)
   3203 {
   3204 
   3205 	if (sc->sc_tbi_linkup)
   3206 		sc->sc_ctrl |= CTRL_SWDPIN(0);
   3207 	else
   3208 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
   3209 
   3210 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3211 }
   3212 
   3213 /*
   3214  * wm_tbi_check_link:
   3215  *
   3216  *	Check the link on 1000BASE-X devices.
   3217  */
   3218 static void
   3219 wm_tbi_check_link(struct wm_softc *sc)
   3220 {
   3221 	uint32_t rxcw, ctrl, status;
   3222 
   3223 	if (sc->sc_tbi_anstate == 0)
   3224 		return;
   3225 	else if (sc->sc_tbi_anstate > 1) {
   3226 		DPRINTF(WM_DEBUG_LINK,
   3227 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
   3228 		    sc->sc_tbi_anstate));
   3229 		sc->sc_tbi_anstate--;
   3230 		return;
   3231 	}
   3232 
   3233 	sc->sc_tbi_anstate = 0;
   3234 
   3235 	rxcw = CSR_READ(sc, WMREG_RXCW);
   3236 	ctrl = CSR_READ(sc, WMREG_CTRL);
   3237 	status = CSR_READ(sc, WMREG_STATUS);
   3238 
   3239 	if ((status & STATUS_LU) == 0) {
   3240 		DPRINTF(WM_DEBUG_LINK,
   3241 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
   3242 		sc->sc_tbi_linkup = 0;
   3243 	} else {
   3244 		DPRINTF(WM_DEBUG_LINK,
   3245 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
   3246 		    (status & STATUS_FD) ? "FDX" : "HDX"));
   3247 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3248 		sc->sc_fcrtl &= ~FCRTL_XONE;
   3249 		if (status & STATUS_FD)
   3250 			sc->sc_tctl |=
   3251 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3252 		else
   3253 			sc->sc_tctl |=
   3254 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3255 		if (ctrl & CTRL_TFCE)
   3256 			sc->sc_fcrtl |= FCRTL_XONE;
   3257 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3258 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   3259 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
   3260 			      sc->sc_fcrtl);
   3261 		sc->sc_tbi_linkup = 1;
   3262 	}
   3263 
   3264 	wm_tbi_set_linkled(sc);
   3265 }
   3266 
   3267 /*
   3268  * wm_gmii_reset:
   3269  *
   3270  *	Reset the PHY.
   3271  */
   3272 static void
   3273 wm_gmii_reset(struct wm_softc *sc)
   3274 {
   3275 	uint32_t reg;
   3276 
   3277 	if (sc->sc_type >= WM_T_82544) {
   3278 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   3279 		delay(20000);
   3280 
   3281 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3282 		delay(20000);
   3283 	} else {
   3284 		/* The PHY reset pin is active-low. */
   3285 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   3286 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
   3287 		    CTRL_EXT_SWDPIN(4));
   3288 		reg |= CTRL_EXT_SWDPIO(4);
   3289 
   3290 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   3291 		delay(10);
   3292 
   3293 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   3294 		delay(10);
   3295 
   3296 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   3297 		delay(10);
   3298 #if 0
   3299 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
   3300 #endif
   3301 	}
   3302 }
   3303 
   3304 /*
   3305  * wm_gmii_mediainit:
   3306  *
   3307  *	Initialize media for use on 1000BASE-T devices.
   3308  */
   3309 static void
   3310 wm_gmii_mediainit(struct wm_softc *sc)
   3311 {
   3312 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3313 
   3314 	/* We have MII. */
   3315 	sc->sc_flags |= WM_F_HAS_MII;
   3316 
   3317 	sc->sc_tipg = TIPG_1000T_DFLT;
   3318 
   3319 	/*
   3320 	 * Let the chip set speed/duplex on its own based on
   3321 	 * signals from the PHY.
   3322 	 */
   3323 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
   3324 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3325 
   3326 	/* Initialize our media structures and probe the GMII. */
   3327 	sc->sc_mii.mii_ifp = ifp;
   3328 
   3329 	if (sc->sc_type >= WM_T_82544) {
   3330 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
   3331 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
   3332 	} else {
   3333 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
   3334 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
   3335 	}
   3336 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
   3337 
   3338 	wm_gmii_reset(sc);
   3339 
   3340 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
   3341 	    wm_gmii_mediastatus);
   3342 
   3343 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   3344 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
   3345 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   3346 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   3347 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   3348 	} else
   3349 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   3350 }
   3351 
   3352 /*
   3353  * wm_gmii_mediastatus:	[ifmedia interface function]
   3354  *
   3355  *	Get the current interface media status on a 1000BASE-T device.
   3356  */
   3357 static void
   3358 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3359 {
   3360 	struct wm_softc *sc = ifp->if_softc;
   3361 
   3362 	mii_pollstat(&sc->sc_mii);
   3363 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3364 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
   3365 			   sc->sc_flowflags;
   3366 }
   3367 
   3368 /*
   3369  * wm_gmii_mediachange:	[ifmedia interface function]
   3370  *
   3371  *	Set hardware to newly-selected media on a 1000BASE-T device.
   3372  */
   3373 static int
   3374 wm_gmii_mediachange(struct ifnet *ifp)
   3375 {
   3376 	struct wm_softc *sc = ifp->if_softc;
   3377 
   3378 	if (ifp->if_flags & IFF_UP)
   3379 		mii_mediachg(&sc->sc_mii);
   3380 	return (0);
   3381 }
   3382 
   3383 #define	MDI_IO		CTRL_SWDPIN(2)
   3384 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
   3385 #define	MDI_CLK		CTRL_SWDPIN(3)
   3386 
   3387 static void
   3388 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
   3389 {
   3390 	uint32_t i, v;
   3391 
   3392 	v = CSR_READ(sc, WMREG_CTRL);
   3393 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   3394 	v |= MDI_DIR | CTRL_SWDPIO(3);
   3395 
   3396 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
   3397 		if (data & i)
   3398 			v |= MDI_IO;
   3399 		else
   3400 			v &= ~MDI_IO;
   3401 		CSR_WRITE(sc, WMREG_CTRL, v);
   3402 		delay(10);
   3403 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3404 		delay(10);
   3405 		CSR_WRITE(sc, WMREG_CTRL, v);
   3406 		delay(10);
   3407 	}
   3408 }
   3409 
   3410 static uint32_t
   3411 i82543_mii_recvbits(struct wm_softc *sc)
   3412 {
   3413 	uint32_t v, i, data = 0;
   3414 
   3415 	v = CSR_READ(sc, WMREG_CTRL);
   3416 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   3417 	v |= CTRL_SWDPIO(3);
   3418 
   3419 	CSR_WRITE(sc, WMREG_CTRL, v);
   3420 	delay(10);
   3421 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3422 	delay(10);
   3423 	CSR_WRITE(sc, WMREG_CTRL, v);
   3424 	delay(10);
   3425 
   3426 	for (i = 0; i < 16; i++) {
   3427 		data <<= 1;
   3428 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3429 		delay(10);
   3430 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
   3431 			data |= 1;
   3432 		CSR_WRITE(sc, WMREG_CTRL, v);
   3433 		delay(10);
   3434 	}
   3435 
   3436 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3437 	delay(10);
   3438 	CSR_WRITE(sc, WMREG_CTRL, v);
   3439 	delay(10);
   3440 
   3441 	return (data);
   3442 }
   3443 
   3444 #undef MDI_IO
   3445 #undef MDI_DIR
   3446 #undef MDI_CLK
   3447 
   3448 /*
   3449  * wm_gmii_i82543_readreg:	[mii interface function]
   3450  *
   3451  *	Read a PHY register on the GMII (i82543 version).
   3452  */
   3453 static int
   3454 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
   3455 {
   3456 	struct wm_softc *sc = (void *) self;
   3457 	int rv;
   3458 
   3459 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   3460 	i82543_mii_sendbits(sc, reg | (phy << 5) |
   3461 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
   3462 	rv = i82543_mii_recvbits(sc) & 0xffff;
   3463 
   3464 	DPRINTF(WM_DEBUG_GMII,
   3465 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
   3466 	    sc->sc_dev.dv_xname, phy, reg, rv));
   3467 
   3468 	return (rv);
   3469 }
   3470 
   3471 /*
   3472  * wm_gmii_i82543_writereg:	[mii interface function]
   3473  *
   3474  *	Write a PHY register on the GMII (i82543 version).
   3475  */
   3476 static void
   3477 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
   3478 {
   3479 	struct wm_softc *sc = (void *) self;
   3480 
   3481 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   3482 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
   3483 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
   3484 	    (MII_COMMAND_START << 30), 32);
   3485 }
   3486 
   3487 /*
   3488  * wm_gmii_i82544_readreg:	[mii interface function]
   3489  *
   3490  *	Read a PHY register on the GMII.
   3491  */
   3492 static int
   3493 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
   3494 {
   3495 	struct wm_softc *sc = (void *) self;
   3496 	uint32_t mdic = 0;
   3497 	int i, rv;
   3498 
   3499 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
   3500 	    MDIC_REGADD(reg));
   3501 
   3502 	for (i = 0; i < 100; i++) {
   3503 		mdic = CSR_READ(sc, WMREG_MDIC);
   3504 		if (mdic & MDIC_READY)
   3505 			break;
   3506 		delay(10);
   3507 	}
   3508 
   3509 	if ((mdic & MDIC_READY) == 0) {
   3510 		printf("%s: MDIC read timed out: phy %d reg %d\n",
   3511 		    sc->sc_dev.dv_xname, phy, reg);
   3512 		rv = 0;
   3513 	} else if (mdic & MDIC_E) {
   3514 #if 0 /* This is normal if no PHY is present. */
   3515 		printf("%s: MDIC read error: phy %d reg %d\n",
   3516 		    sc->sc_dev.dv_xname, phy, reg);
   3517 #endif
   3518 		rv = 0;
   3519 	} else {
   3520 		rv = MDIC_DATA(mdic);
   3521 		if (rv == 0xffff)
   3522 			rv = 0;
   3523 	}
   3524 
   3525 	return (rv);
   3526 }
   3527 
   3528 /*
   3529  * wm_gmii_i82544_writereg:	[mii interface function]
   3530  *
   3531  *	Write a PHY register on the GMII.
   3532  */
   3533 static void
   3534 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
   3535 {
   3536 	struct wm_softc *sc = (void *) self;
   3537 	uint32_t mdic = 0;
   3538 	int i;
   3539 
   3540 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
   3541 	    MDIC_REGADD(reg) | MDIC_DATA(val));
   3542 
   3543 	for (i = 0; i < 100; i++) {
   3544 		mdic = CSR_READ(sc, WMREG_MDIC);
   3545 		if (mdic & MDIC_READY)
   3546 			break;
   3547 		delay(10);
   3548 	}
   3549 
   3550 	if ((mdic & MDIC_READY) == 0)
   3551 		printf("%s: MDIC write timed out: phy %d reg %d\n",
   3552 		    sc->sc_dev.dv_xname, phy, reg);
   3553 	else if (mdic & MDIC_E)
   3554 		printf("%s: MDIC write error: phy %d reg %d\n",
   3555 		    sc->sc_dev.dv_xname, phy, reg);
   3556 }
   3557 
   3558 /*
   3559  * wm_gmii_statchg:	[mii interface function]
   3560  *
   3561  *	Callback from MII layer when media changes.
   3562  */
   3563 static void
   3564 wm_gmii_statchg(struct device *self)
   3565 {
   3566 	struct wm_softc *sc = (void *) self;
   3567 	struct mii_data *mii = &sc->sc_mii;
   3568 
   3569 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
   3570 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3571 	sc->sc_fcrtl &= ~FCRTL_XONE;
   3572 
   3573 	/*
   3574 	 * Get flow control negotiation result.
   3575 	 */
   3576 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3577 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3578 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3579 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3580 	}
   3581 
   3582 	if (sc->sc_flowflags & IFM_FLOW) {
   3583 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
   3584 			sc->sc_ctrl |= CTRL_TFCE;
   3585 			sc->sc_fcrtl |= FCRTL_XONE;
   3586 		}
   3587 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3588 			sc->sc_ctrl |= CTRL_RFCE;
   3589 	}
   3590 
   3591 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   3592 		DPRINTF(WM_DEBUG_LINK,
   3593 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
   3594 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3595 	} else  {
   3596 		DPRINTF(WM_DEBUG_LINK,
   3597 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
   3598 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3599 	}
   3600 
   3601 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3602 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3603 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
   3604 						 : WMREG_FCRTL, sc->sc_fcrtl);
   3605 }
   3606