if_wm.c revision 1.78 1 /* $NetBSD: if_wm.c,v 1.78 2004/10/05 20:14:52 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40 *
41 * TODO (in order of importance):
42 *
43 * - Rework how parameters are loaded from the EEPROM.
44 * - Figure out what to do with the i82545GM and i82546GB
45 * SERDES controllers.
46 * - Fix hw VLAN assist.
47 */
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.78 2004/10/05 20:14:52 thorpej Exp $");
51
52 #include "bpfilter.h"
53 #include "rnd.h"
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66
67 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
68
69 #if NRND > 0
70 #include <sys/rnd.h>
71 #endif
72
73 #include <net/if.h>
74 #include <net/if_dl.h>
75 #include <net/if_media.h>
76 #include <net/if_ether.h>
77
78 #if NBPFILTER > 0
79 #include <net/bpf.h>
80 #endif
81
82 #include <netinet/in.h> /* XXX for struct ip */
83 #include <netinet/in_systm.h> /* XXX for struct ip */
84 #include <netinet/ip.h> /* XXX for struct ip */
85 #include <netinet/tcp.h> /* XXX for struct tcphdr */
86
87 #include <machine/bus.h>
88 #include <machine/intr.h>
89 #include <machine/endian.h>
90
91 #include <dev/mii/mii.h>
92 #include <dev/mii/miivar.h>
93 #include <dev/mii/mii_bitbang.h>
94
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 #include <dev/pci/pcidevs.h>
98
99 #include <dev/pci/if_wmreg.h>
100
101 #ifdef WM_DEBUG
102 #define WM_DEBUG_LINK 0x01
103 #define WM_DEBUG_TX 0x02
104 #define WM_DEBUG_RX 0x04
105 #define WM_DEBUG_GMII 0x08
106 int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
107
108 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
109 #else
110 #define DPRINTF(x, y) /* nothing */
111 #endif /* WM_DEBUG */
112
113 /*
114 * Transmit descriptor list size. Due to errata, we can only have
115 * 256 hardware descriptors in the ring on < 82544, but we use 4096
116 * on >= 82544. We tell the upper layers that they can queue a lot
117 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
118 * of them at a time.
119 *
120 * We allow up to 256 (!) DMA segments per packet. Pathological packet
121 * chains containing many small mbufs have been observed in zero-copy
122 * situations with jumbo frames.
123 */
124 #define WM_NTXSEGS 256
125 #define WM_IFQUEUELEN 256
126 #define WM_TXQUEUELEN_MAX 64
127 #define WM_TXQUEUELEN_MAX_82547 16
128 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
129 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
130 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
131 #define WM_NTXDESC_82542 256
132 #define WM_NTXDESC_82544 4096
133 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
134 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
135 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
136 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
137 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
138
139 /*
140 * Receive descriptor list size. We have one Rx buffer for normal
141 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
142 * packet. We allocate 256 receive descriptors, each with a 2k
143 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
144 */
145 #define WM_NRXDESC 256
146 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
147 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
148 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
149
150 /*
151 * Control structures are DMA'd to the i82542 chip. We allocate them in
152 * a single clump that maps to a single DMA segment to make serveral things
153 * easier.
154 */
155 struct wm_control_data_82544 {
156 /*
157 * The receive descriptors.
158 */
159 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
160
161 /*
162 * The transmit descriptors. Put these at the end, because
163 * we might use a smaller number of them.
164 */
165 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
166 };
167
168 struct wm_control_data_82542 {
169 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
170 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
171 };
172
173 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
174 #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)])
175 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
176
177 /*
178 * Software state for transmit jobs.
179 */
180 struct wm_txsoft {
181 struct mbuf *txs_mbuf; /* head of our mbuf chain */
182 bus_dmamap_t txs_dmamap; /* our DMA map */
183 int txs_firstdesc; /* first descriptor in packet */
184 int txs_lastdesc; /* last descriptor in packet */
185 int txs_ndesc; /* # of descriptors used */
186 };
187
188 /*
189 * Software state for receive buffers. Each descriptor gets a
190 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
191 * more than one buffer, we chain them together.
192 */
193 struct wm_rxsoft {
194 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
195 bus_dmamap_t rxs_dmamap; /* our DMA map */
196 };
197
198 typedef enum {
199 WM_T_unknown = 0,
200 WM_T_82542_2_0, /* i82542 2.0 (really old) */
201 WM_T_82542_2_1, /* i82542 2.1+ (old) */
202 WM_T_82543, /* i82543 */
203 WM_T_82544, /* i82544 */
204 WM_T_82540, /* i82540 */
205 WM_T_82545, /* i82545 */
206 WM_T_82545_3, /* i82545 3.0+ */
207 WM_T_82546, /* i82546 */
208 WM_T_82546_3, /* i82546 3.0+ */
209 WM_T_82541, /* i82541 */
210 WM_T_82541_2, /* i82541 2.0+ */
211 WM_T_82547, /* i82547 */
212 WM_T_82547_2, /* i82547 2.0+ */
213 } wm_chip_type;
214
215 /*
216 * Software state per device.
217 */
218 struct wm_softc {
219 struct device sc_dev; /* generic device information */
220 bus_space_tag_t sc_st; /* bus space tag */
221 bus_space_handle_t sc_sh; /* bus space handle */
222 bus_space_tag_t sc_iot; /* I/O space tag */
223 bus_space_handle_t sc_ioh; /* I/O space handle */
224 bus_dma_tag_t sc_dmat; /* bus DMA tag */
225 struct ethercom sc_ethercom; /* ethernet common data */
226 void *sc_sdhook; /* shutdown hook */
227
228 wm_chip_type sc_type; /* chip type */
229 int sc_flags; /* flags; see below */
230 int sc_bus_speed; /* PCI/PCIX bus speed */
231 int sc_pcix_offset; /* PCIX capability register offset */
232 int sc_flowflags; /* 802.3x flow control flags */
233
234 void *sc_ih; /* interrupt cookie */
235
236 int sc_ee_addrbits; /* EEPROM address bits */
237
238 struct mii_data sc_mii; /* MII/media information */
239
240 struct callout sc_tick_ch; /* tick callout */
241
242 bus_dmamap_t sc_cddmamap; /* control data DMA map */
243 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
244
245 int sc_align_tweak;
246
247 /*
248 * Software state for the transmit and receive descriptors.
249 */
250 int sc_txnum; /* must be a power of two */
251 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
252 struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
253
254 /*
255 * Control data structures.
256 */
257 int sc_ntxdesc; /* must be a power of two */
258 struct wm_control_data_82544 *sc_control_data;
259 #define sc_txdescs sc_control_data->wcd_txdescs
260 #define sc_rxdescs sc_control_data->wcd_rxdescs
261
262 #ifdef WM_EVENT_COUNTERS
263 /* Event counters. */
264 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
265 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
266 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
267 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
268 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
269 struct evcnt sc_ev_rxintr; /* Rx interrupts */
270 struct evcnt sc_ev_linkintr; /* Link interrupts */
271
272 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
273 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
274 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
275 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
276
277 struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
278 struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
279 struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
280
281 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
282 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
283
284 struct evcnt sc_ev_tu; /* Tx underrun */
285
286 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
287 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
288 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
289 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
290 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
291 #endif /* WM_EVENT_COUNTERS */
292
293 bus_addr_t sc_tdt_reg; /* offset of TDT register */
294
295 int sc_txfree; /* number of free Tx descriptors */
296 int sc_txnext; /* next ready Tx descriptor */
297
298 int sc_txsfree; /* number of free Tx jobs */
299 int sc_txsnext; /* next free Tx job */
300 int sc_txsdirty; /* dirty Tx jobs */
301
302 /* These 5 variables are used only on the 82547. */
303 int sc_txfifo_size; /* Tx FIFO size */
304 int sc_txfifo_head; /* current head of FIFO */
305 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
306 int sc_txfifo_stall; /* Tx FIFO is stalled */
307 struct callout sc_txfifo_ch; /* Tx FIFO stall work-around timer */
308
309 uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
310 uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
311
312 bus_addr_t sc_rdt_reg; /* offset of RDT register */
313
314 int sc_rxptr; /* next ready Rx descriptor/queue ent */
315 int sc_rxdiscard;
316 int sc_rxlen;
317 struct mbuf *sc_rxhead;
318 struct mbuf *sc_rxtail;
319 struct mbuf **sc_rxtailp;
320
321 uint32_t sc_ctrl; /* prototype CTRL register */
322 #if 0
323 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
324 #endif
325 uint32_t sc_icr; /* prototype interrupt bits */
326 uint32_t sc_tctl; /* prototype TCTL register */
327 uint32_t sc_rctl; /* prototype RCTL register */
328 uint32_t sc_txcw; /* prototype TXCW register */
329 uint32_t sc_tipg; /* prototype TIPG register */
330 uint32_t sc_fcrtl; /* prototype FCRTL register */
331 uint32_t sc_pba; /* prototype PBA register */
332
333 int sc_tbi_linkup; /* TBI link status */
334 int sc_tbi_anstate; /* autonegotiation state */
335
336 int sc_mchash_type; /* multicast filter offset */
337
338 #if NRND > 0
339 rndsource_element_t rnd_source; /* random source */
340 #endif
341 };
342
343 #define WM_RXCHAIN_RESET(sc) \
344 do { \
345 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
346 *(sc)->sc_rxtailp = NULL; \
347 (sc)->sc_rxlen = 0; \
348 } while (/*CONSTCOND*/0)
349
350 #define WM_RXCHAIN_LINK(sc, m) \
351 do { \
352 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
353 (sc)->sc_rxtailp = &(m)->m_next; \
354 } while (/*CONSTCOND*/0)
355
356 /* sc_flags */
357 #define WM_F_HAS_MII 0x01 /* has MII */
358 #define WM_F_EEPROM_HANDSHAKE 0x02 /* requires EEPROM handshake */
359 #define WM_F_EEPROM_SPI 0x04 /* EEPROM is SPI */
360 #define WM_F_IOH_VALID 0x10 /* I/O handle is valid */
361 #define WM_F_BUS64 0x20 /* bus is 64-bit */
362 #define WM_F_PCIX 0x40 /* bus is PCI-X */
363 #define WM_F_CSA 0x80 /* bus is CSA */
364
365 #ifdef WM_EVENT_COUNTERS
366 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
367 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
368 #else
369 #define WM_EVCNT_INCR(ev) /* nothing */
370 #define WM_EVCNT_ADD(ev, val) /* nothing */
371 #endif
372
373 #define CSR_READ(sc, reg) \
374 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
375 #define CSR_WRITE(sc, reg, val) \
376 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
377 #define CSR_WRITE_FLUSH(sc) \
378 (void) CSR_READ((sc), WMREG_STATUS)
379
380 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
381 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
382
383 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
384 #define WM_CDTXADDR_HI(sc, x) \
385 (sizeof(bus_addr_t) == 8 ? \
386 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
387
388 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
389 #define WM_CDRXADDR_HI(sc, x) \
390 (sizeof(bus_addr_t) == 8 ? \
391 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
392
393 #define WM_CDTXSYNC(sc, x, n, ops) \
394 do { \
395 int __x, __n; \
396 \
397 __x = (x); \
398 __n = (n); \
399 \
400 /* If it will wrap around, sync to the end of the ring. */ \
401 if ((__x + __n) > WM_NTXDESC(sc)) { \
402 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
403 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
404 (WM_NTXDESC(sc) - __x), (ops)); \
405 __n -= (WM_NTXDESC(sc) - __x); \
406 __x = 0; \
407 } \
408 \
409 /* Now sync whatever is left. */ \
410 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
411 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
412 } while (/*CONSTCOND*/0)
413
414 #define WM_CDRXSYNC(sc, x, ops) \
415 do { \
416 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
417 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
418 } while (/*CONSTCOND*/0)
419
420 #define WM_INIT_RXDESC(sc, x) \
421 do { \
422 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
423 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
424 struct mbuf *__m = __rxs->rxs_mbuf; \
425 \
426 /* \
427 * Note: We scoot the packet forward 2 bytes in the buffer \
428 * so that the payload after the Ethernet header is aligned \
429 * to a 4-byte boundary. \
430 * \
431 * XXX BRAINDAMAGE ALERT! \
432 * The stupid chip uses the same size for every buffer, which \
433 * is set in the Receive Control register. We are using the 2K \
434 * size option, but what we REALLY want is (2K - 2)! For this \
435 * reason, we can't "scoot" packets longer than the standard \
436 * Ethernet MTU. On strict-alignment platforms, if the total \
437 * size exceeds (2K - 2) we set align_tweak to 0 and let \
438 * the upper layer copy the headers. \
439 */ \
440 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
441 \
442 wm_set_dma_addr(&__rxd->wrx_addr, \
443 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
444 __rxd->wrx_len = 0; \
445 __rxd->wrx_cksum = 0; \
446 __rxd->wrx_status = 0; \
447 __rxd->wrx_errors = 0; \
448 __rxd->wrx_special = 0; \
449 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
450 \
451 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
452 } while (/*CONSTCOND*/0)
453
454 static void wm_start(struct ifnet *);
455 static void wm_watchdog(struct ifnet *);
456 static int wm_ioctl(struct ifnet *, u_long, caddr_t);
457 static int wm_init(struct ifnet *);
458 static void wm_stop(struct ifnet *, int);
459
460 static void wm_shutdown(void *);
461
462 static void wm_reset(struct wm_softc *);
463 static void wm_rxdrain(struct wm_softc *);
464 static int wm_add_rxbuf(struct wm_softc *, int);
465 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
466 static void wm_tick(void *);
467
468 static void wm_set_filter(struct wm_softc *);
469
470 static int wm_intr(void *);
471 static void wm_txintr(struct wm_softc *);
472 static void wm_rxintr(struct wm_softc *);
473 static void wm_linkintr(struct wm_softc *, uint32_t);
474
475 static void wm_tbi_mediainit(struct wm_softc *);
476 static int wm_tbi_mediachange(struct ifnet *);
477 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
478
479 static void wm_tbi_set_linkled(struct wm_softc *);
480 static void wm_tbi_check_link(struct wm_softc *);
481
482 static void wm_gmii_reset(struct wm_softc *);
483
484 static int wm_gmii_i82543_readreg(struct device *, int, int);
485 static void wm_gmii_i82543_writereg(struct device *, int, int, int);
486
487 static int wm_gmii_i82544_readreg(struct device *, int, int);
488 static void wm_gmii_i82544_writereg(struct device *, int, int, int);
489
490 static void wm_gmii_statchg(struct device *);
491
492 static void wm_gmii_mediainit(struct wm_softc *);
493 static int wm_gmii_mediachange(struct ifnet *);
494 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
495
496 static int wm_match(struct device *, struct cfdata *, void *);
497 static void wm_attach(struct device *, struct device *, void *);
498
499 CFATTACH_DECL(wm, sizeof(struct wm_softc),
500 wm_match, wm_attach, NULL, NULL);
501
502 static void wm_82547_txfifo_stall(void *);
503
504 /*
505 * Devices supported by this driver.
506 */
507 static const struct wm_product {
508 pci_vendor_id_t wmp_vendor;
509 pci_product_id_t wmp_product;
510 const char *wmp_name;
511 wm_chip_type wmp_type;
512 int wmp_flags;
513 #define WMP_F_1000X 0x01
514 #define WMP_F_1000T 0x02
515 } wm_products[] = {
516 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
517 "Intel i82542 1000BASE-X Ethernet",
518 WM_T_82542_2_1, WMP_F_1000X },
519
520 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
521 "Intel i82543GC 1000BASE-X Ethernet",
522 WM_T_82543, WMP_F_1000X },
523
524 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
525 "Intel i82543GC 1000BASE-T Ethernet",
526 WM_T_82543, WMP_F_1000T },
527
528 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
529 "Intel i82544EI 1000BASE-T Ethernet",
530 WM_T_82544, WMP_F_1000T },
531
532 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
533 "Intel i82544EI 1000BASE-X Ethernet",
534 WM_T_82544, WMP_F_1000X },
535
536 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
537 "Intel i82544GC 1000BASE-T Ethernet",
538 WM_T_82544, WMP_F_1000T },
539
540 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
541 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
542 WM_T_82544, WMP_F_1000T },
543
544 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
545 "Intel i82540EM 1000BASE-T Ethernet",
546 WM_T_82540, WMP_F_1000T },
547
548 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
549 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
550 WM_T_82540, WMP_F_1000T },
551
552 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
553 "Intel i82540EP 1000BASE-T Ethernet",
554 WM_T_82540, WMP_F_1000T },
555
556 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
557 "Intel i82540EP 1000BASE-T Ethernet",
558 WM_T_82540, WMP_F_1000T },
559
560 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
561 "Intel i82540EP 1000BASE-T Ethernet",
562 WM_T_82540, WMP_F_1000T },
563
564 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
565 "Intel i82545EM 1000BASE-T Ethernet",
566 WM_T_82545, WMP_F_1000T },
567
568 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
569 "Intel i82545GM 1000BASE-T Ethernet",
570 WM_T_82545_3, WMP_F_1000T },
571
572 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
573 "Intel i82545GM 1000BASE-X Ethernet",
574 WM_T_82545_3, WMP_F_1000X },
575 #if 0
576 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
577 "Intel i82545GM Gigabit Ethernet (SERDES)",
578 WM_T_82545_3, WMP_F_SERDES },
579 #endif
580 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
581 "Intel i82546EB 1000BASE-T Ethernet",
582 WM_T_82546, WMP_F_1000T },
583
584 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
585 "Intel i82546EB 1000BASE-T Ethernet",
586 WM_T_82546, WMP_F_1000T },
587
588 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
589 "Intel i82545EM 1000BASE-X Ethernet",
590 WM_T_82545, WMP_F_1000X },
591
592 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
593 "Intel i82546EB 1000BASE-X Ethernet",
594 WM_T_82546, WMP_F_1000X },
595
596 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
597 "Intel i82546GB 1000BASE-T Ethernet",
598 WM_T_82546_3, WMP_F_1000T },
599
600 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
601 "Intel i82546GB 1000BASE-X Ethernet",
602 WM_T_82546_3, WMP_F_1000X },
603 #if 0
604 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
605 "Intel i82546GB Gigabit Ethernet (SERDES)",
606 WM_T_82546_3, WMP_F_SERDES },
607 #endif
608 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
609 "Intel i82541EI 1000BASE-T Ethernet",
610 WM_T_82541, WMP_F_1000T },
611
612 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
613 "Intel i82541EI Mobile 1000BASE-T Ethernet",
614 WM_T_82541, WMP_F_1000T },
615
616 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
617 "Intel i82541ER 1000BASE-T Ethernet",
618 WM_T_82541_2, WMP_F_1000T },
619
620 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
621 "Intel i82541GI 1000BASE-T Ethernet",
622 WM_T_82541_2, WMP_F_1000T },
623
624 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
625 "Intel i82541GI Mobile 1000BASE-T Ethernet",
626 WM_T_82541_2, WMP_F_1000T },
627
628 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
629 "Intel i82547EI 1000BASE-T Ethernet",
630 WM_T_82547, WMP_F_1000T },
631
632 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
633 "Intel i82547GI 1000BASE-T Ethernet",
634 WM_T_82547_2, WMP_F_1000T },
635 { 0, 0,
636 NULL,
637 0, 0 },
638 };
639
640 #ifdef WM_EVENT_COUNTERS
641 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
642 #endif /* WM_EVENT_COUNTERS */
643
644 #if 0 /* Not currently used */
645 static __inline uint32_t
646 wm_io_read(struct wm_softc *sc, int reg)
647 {
648
649 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
650 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
651 }
652 #endif
653
654 static __inline void
655 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
656 {
657
658 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
659 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
660 }
661
662 static __inline void
663 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
664 {
665 wa->wa_low = htole32(v & 0xffffffffU);
666 if (sizeof(bus_addr_t) == 8)
667 wa->wa_high = htole32((uint64_t) v >> 32);
668 else
669 wa->wa_high = 0;
670 }
671
672 static const struct wm_product *
673 wm_lookup(const struct pci_attach_args *pa)
674 {
675 const struct wm_product *wmp;
676
677 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
678 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
679 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
680 return (wmp);
681 }
682 return (NULL);
683 }
684
685 static int
686 wm_match(struct device *parent, struct cfdata *cf, void *aux)
687 {
688 struct pci_attach_args *pa = aux;
689
690 if (wm_lookup(pa) != NULL)
691 return (1);
692
693 return (0);
694 }
695
696 static void
697 wm_attach(struct device *parent, struct device *self, void *aux)
698 {
699 struct wm_softc *sc = (void *) self;
700 struct pci_attach_args *pa = aux;
701 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
702 pci_chipset_tag_t pc = pa->pa_pc;
703 pci_intr_handle_t ih;
704 size_t cdata_size;
705 const char *intrstr = NULL;
706 const char *eetype;
707 bus_space_tag_t memt;
708 bus_space_handle_t memh;
709 bus_dma_segment_t seg;
710 int memh_valid;
711 int i, rseg, error;
712 const struct wm_product *wmp;
713 uint8_t enaddr[ETHER_ADDR_LEN];
714 uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
715 pcireg_t preg, memtype;
716 uint32_t reg;
717 int pmreg;
718
719 callout_init(&sc->sc_tick_ch);
720
721 wmp = wm_lookup(pa);
722 if (wmp == NULL) {
723 printf("\n");
724 panic("wm_attach: impossible");
725 }
726
727 if (pci_dma64_available(pa))
728 sc->sc_dmat = pa->pa_dmat64;
729 else
730 sc->sc_dmat = pa->pa_dmat;
731
732 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
733 aprint_naive(": Ethernet controller\n");
734 aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
735
736 sc->sc_type = wmp->wmp_type;
737 if (sc->sc_type < WM_T_82543) {
738 if (preg < 2) {
739 aprint_error("%s: i82542 must be at least rev. 2\n",
740 sc->sc_dev.dv_xname);
741 return;
742 }
743 if (preg < 3)
744 sc->sc_type = WM_T_82542_2_0;
745 }
746
747 /*
748 * Map the device. All devices support memory-mapped acccess,
749 * and it is really required for normal operation.
750 */
751 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
752 switch (memtype) {
753 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
754 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
755 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
756 memtype, 0, &memt, &memh, NULL, NULL) == 0);
757 break;
758 default:
759 memh_valid = 0;
760 }
761
762 if (memh_valid) {
763 sc->sc_st = memt;
764 sc->sc_sh = memh;
765 } else {
766 aprint_error("%s: unable to map device registers\n",
767 sc->sc_dev.dv_xname);
768 return;
769 }
770
771 /*
772 * In addition, i82544 and later support I/O mapped indirect
773 * register access. It is not desirable (nor supported in
774 * this driver) to use it for normal operation, though it is
775 * required to work around bugs in some chip versions.
776 */
777 if (sc->sc_type >= WM_T_82544) {
778 /* First we have to find the I/O BAR. */
779 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
780 if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
781 PCI_MAPREG_TYPE_IO)
782 break;
783 }
784 if (i == PCI_MAPREG_END)
785 aprint_error("%s: WARNING: unable to find I/O BAR\n",
786 sc->sc_dev.dv_xname);
787 else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
788 0, &sc->sc_iot, &sc->sc_ioh,
789 NULL, NULL) == 0)
790 sc->sc_flags |= WM_F_IOH_VALID;
791 else
792 aprint_error("%s: WARNING: unable to map I/O space\n",
793 sc->sc_dev.dv_xname);
794 }
795
796 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
797 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
798 preg |= PCI_COMMAND_MASTER_ENABLE;
799 if (sc->sc_type < WM_T_82542_2_1)
800 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
801 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
802
803 /* Get it out of power save mode, if needed. */
804 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
805 preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
806 PCI_PMCSR_STATE_MASK;
807 if (preg == PCI_PMCSR_STATE_D3) {
808 /*
809 * The card has lost all configuration data in
810 * this state, so punt.
811 */
812 aprint_error("%s: unable to wake from power state D3\n",
813 sc->sc_dev.dv_xname);
814 return;
815 }
816 if (preg != PCI_PMCSR_STATE_D0) {
817 aprint_normal("%s: waking up from power state D%d\n",
818 sc->sc_dev.dv_xname, preg);
819 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
820 PCI_PMCSR_STATE_D0);
821 }
822 }
823
824 /*
825 * Map and establish our interrupt.
826 */
827 if (pci_intr_map(pa, &ih)) {
828 aprint_error("%s: unable to map interrupt\n",
829 sc->sc_dev.dv_xname);
830 return;
831 }
832 intrstr = pci_intr_string(pc, ih);
833 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
834 if (sc->sc_ih == NULL) {
835 aprint_error("%s: unable to establish interrupt",
836 sc->sc_dev.dv_xname);
837 if (intrstr != NULL)
838 aprint_normal(" at %s", intrstr);
839 aprint_normal("\n");
840 return;
841 }
842 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
843
844 /*
845 * Determine a few things about the bus we're connected to.
846 */
847 if (sc->sc_type < WM_T_82543) {
848 /* We don't really know the bus characteristics here. */
849 sc->sc_bus_speed = 33;
850 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
851 /*
852 * CSA (Communication Streaming Architecture) is about as fast
853 * a 32-bit 66MHz PCI Bus.
854 */
855 sc->sc_flags |= WM_F_CSA;
856 sc->sc_bus_speed = 66;
857 aprint_verbose("%s: Communication Streaming Architecture\n",
858 sc->sc_dev.dv_xname);
859 if (sc->sc_type == WM_T_82547) {
860 callout_init(&sc->sc_txfifo_ch);
861 callout_setfunc(&sc->sc_txfifo_ch,
862 wm_82547_txfifo_stall, sc);
863 aprint_verbose("%s: using 82547 Tx FIFO stall "
864 "work-around\n", sc->sc_dev.dv_xname);
865 }
866 } else {
867 reg = CSR_READ(sc, WMREG_STATUS);
868 if (reg & STATUS_BUS64)
869 sc->sc_flags |= WM_F_BUS64;
870 if (sc->sc_type >= WM_T_82544 &&
871 (reg & STATUS_PCIX_MODE) != 0) {
872 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
873
874 sc->sc_flags |= WM_F_PCIX;
875 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
876 PCI_CAP_PCIX,
877 &sc->sc_pcix_offset, NULL) == 0)
878 aprint_error("%s: unable to find PCIX "
879 "capability\n", sc->sc_dev.dv_xname);
880 else if (sc->sc_type != WM_T_82545_3 &&
881 sc->sc_type != WM_T_82546_3) {
882 /*
883 * Work around a problem caused by the BIOS
884 * setting the max memory read byte count
885 * incorrectly.
886 */
887 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
888 sc->sc_pcix_offset + PCI_PCIX_CMD);
889 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
890 sc->sc_pcix_offset + PCI_PCIX_STATUS);
891
892 bytecnt =
893 (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
894 PCI_PCIX_CMD_BYTECNT_SHIFT;
895 maxb =
896 (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
897 PCI_PCIX_STATUS_MAXB_SHIFT;
898 if (bytecnt > maxb) {
899 aprint_verbose("%s: resetting PCI-X "
900 "MMRBC: %d -> %d\n",
901 sc->sc_dev.dv_xname,
902 512 << bytecnt, 512 << maxb);
903 pcix_cmd = (pcix_cmd &
904 ~PCI_PCIX_CMD_BYTECNT_MASK) |
905 (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
906 pci_conf_write(pa->pa_pc, pa->pa_tag,
907 sc->sc_pcix_offset + PCI_PCIX_CMD,
908 pcix_cmd);
909 }
910 }
911 }
912 /*
913 * The quad port adapter is special; it has a PCIX-PCIX
914 * bridge on the board, and can run the secondary bus at
915 * a higher speed.
916 */
917 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
918 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
919 : 66;
920 } else if (sc->sc_flags & WM_F_PCIX) {
921 switch (reg & STATUS_PCIXSPD_MASK) {
922 case STATUS_PCIXSPD_50_66:
923 sc->sc_bus_speed = 66;
924 break;
925 case STATUS_PCIXSPD_66_100:
926 sc->sc_bus_speed = 100;
927 break;
928 case STATUS_PCIXSPD_100_133:
929 sc->sc_bus_speed = 133;
930 break;
931 default:
932 aprint_error(
933 "%s: unknown PCIXSPD %d; assuming 66MHz\n",
934 sc->sc_dev.dv_xname,
935 reg & STATUS_PCIXSPD_MASK);
936 sc->sc_bus_speed = 66;
937 }
938 } else
939 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
940 aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
941 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
942 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
943 }
944
945 /*
946 * Allocate the control data structures, and create and load the
947 * DMA map for it.
948 *
949 * NOTE: All Tx descriptors must be in the same 4G segment of
950 * memory. So must Rx descriptors. We simplify by allocating
951 * both sets within the same 4G segment.
952 */
953 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
954 WM_NTXDESC_82542 : WM_NTXDESC_82544;
955 cdata_size = sc->sc_type < WM_T_82544 ?
956 sizeof(struct wm_control_data_82542) :
957 sizeof(struct wm_control_data_82544);
958 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
959 (bus_size_t) 0x100000000ULL,
960 &seg, 1, &rseg, 0)) != 0) {
961 aprint_error(
962 "%s: unable to allocate control data, error = %d\n",
963 sc->sc_dev.dv_xname, error);
964 goto fail_0;
965 }
966
967 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
968 (caddr_t *)&sc->sc_control_data, 0)) != 0) {
969 aprint_error("%s: unable to map control data, error = %d\n",
970 sc->sc_dev.dv_xname, error);
971 goto fail_1;
972 }
973
974 if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
975 0, 0, &sc->sc_cddmamap)) != 0) {
976 aprint_error("%s: unable to create control data DMA map, "
977 "error = %d\n", sc->sc_dev.dv_xname, error);
978 goto fail_2;
979 }
980
981 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
982 sc->sc_control_data, cdata_size, NULL,
983 0)) != 0) {
984 aprint_error(
985 "%s: unable to load control data DMA map, error = %d\n",
986 sc->sc_dev.dv_xname, error);
987 goto fail_3;
988 }
989
990
991 /*
992 * Create the transmit buffer DMA maps.
993 */
994 WM_TXQUEUELEN(sc) =
995 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
996 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
997 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
998 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
999 WM_NTXSEGS, MCLBYTES, 0, 0,
1000 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1001 aprint_error("%s: unable to create Tx DMA map %d, "
1002 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1003 goto fail_4;
1004 }
1005 }
1006
1007 /*
1008 * Create the receive buffer DMA maps.
1009 */
1010 for (i = 0; i < WM_NRXDESC; i++) {
1011 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1012 MCLBYTES, 0, 0,
1013 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1014 aprint_error("%s: unable to create Rx DMA map %d, "
1015 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1016 goto fail_5;
1017 }
1018 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1019 }
1020
1021 /*
1022 * Reset the chip to a known state.
1023 */
1024 wm_reset(sc);
1025
1026 /*
1027 * Get some information about the EEPROM.
1028 */
1029 if (sc->sc_type >= WM_T_82540)
1030 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1031 if (sc->sc_type <= WM_T_82544)
1032 sc->sc_ee_addrbits = 6;
1033 else if (sc->sc_type <= WM_T_82546_3) {
1034 reg = CSR_READ(sc, WMREG_EECD);
1035 if (reg & EECD_EE_SIZE)
1036 sc->sc_ee_addrbits = 8;
1037 else
1038 sc->sc_ee_addrbits = 6;
1039 } else if (sc->sc_type <= WM_T_82547_2) {
1040 reg = CSR_READ(sc, WMREG_EECD);
1041 if (reg & EECD_EE_TYPE) {
1042 sc->sc_flags |= WM_F_EEPROM_SPI;
1043 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1044 } else
1045 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1046 } else {
1047 /* Assume everything else is SPI. */
1048 reg = CSR_READ(sc, WMREG_EECD);
1049 sc->sc_flags |= WM_F_EEPROM_SPI;
1050 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1051 }
1052 if (sc->sc_flags & WM_F_EEPROM_SPI)
1053 eetype = "SPI";
1054 else
1055 eetype = "MicroWire";
1056 aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1057 sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1058 sc->sc_ee_addrbits, eetype);
1059
1060 /*
1061 * Read the Ethernet address from the EEPROM.
1062 */
1063 if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1064 sizeof(myea) / sizeof(myea[0]), myea)) {
1065 aprint_error("%s: unable to read Ethernet address\n",
1066 sc->sc_dev.dv_xname);
1067 return;
1068 }
1069 enaddr[0] = myea[0] & 0xff;
1070 enaddr[1] = myea[0] >> 8;
1071 enaddr[2] = myea[1] & 0xff;
1072 enaddr[3] = myea[1] >> 8;
1073 enaddr[4] = myea[2] & 0xff;
1074 enaddr[5] = myea[2] >> 8;
1075
1076 /*
1077 * Toggle the LSB of the MAC address on the second port
1078 * of the i82546.
1079 */
1080 if (sc->sc_type == WM_T_82546) {
1081 if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1082 enaddr[5] ^= 1;
1083 }
1084
1085 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1086 ether_sprintf(enaddr));
1087
1088 /*
1089 * Read the config info from the EEPROM, and set up various
1090 * bits in the control registers based on their contents.
1091 */
1092 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1093 aprint_error("%s: unable to read CFG1 from EEPROM\n",
1094 sc->sc_dev.dv_xname);
1095 return;
1096 }
1097 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1098 aprint_error("%s: unable to read CFG2 from EEPROM\n",
1099 sc->sc_dev.dv_xname);
1100 return;
1101 }
1102 if (sc->sc_type >= WM_T_82544) {
1103 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1104 aprint_error("%s: unable to read SWDPIN from EEPROM\n",
1105 sc->sc_dev.dv_xname);
1106 return;
1107 }
1108 }
1109
1110 if (cfg1 & EEPROM_CFG1_ILOS)
1111 sc->sc_ctrl |= CTRL_ILOS;
1112 if (sc->sc_type >= WM_T_82544) {
1113 sc->sc_ctrl |=
1114 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1115 CTRL_SWDPIO_SHIFT;
1116 sc->sc_ctrl |=
1117 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1118 CTRL_SWDPINS_SHIFT;
1119 } else {
1120 sc->sc_ctrl |=
1121 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1122 CTRL_SWDPIO_SHIFT;
1123 }
1124
1125 #if 0
1126 if (sc->sc_type >= WM_T_82544) {
1127 if (cfg1 & EEPROM_CFG1_IPS0)
1128 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1129 if (cfg1 & EEPROM_CFG1_IPS1)
1130 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1131 sc->sc_ctrl_ext |=
1132 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1133 CTRL_EXT_SWDPIO_SHIFT;
1134 sc->sc_ctrl_ext |=
1135 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1136 CTRL_EXT_SWDPINS_SHIFT;
1137 } else {
1138 sc->sc_ctrl_ext |=
1139 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1140 CTRL_EXT_SWDPIO_SHIFT;
1141 }
1142 #endif
1143
1144 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1145 #if 0
1146 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1147 #endif
1148
1149 /*
1150 * Set up some register offsets that are different between
1151 * the i82542 and the i82543 and later chips.
1152 */
1153 if (sc->sc_type < WM_T_82543) {
1154 sc->sc_rdt_reg = WMREG_OLD_RDT0;
1155 sc->sc_tdt_reg = WMREG_OLD_TDT;
1156 } else {
1157 sc->sc_rdt_reg = WMREG_RDT;
1158 sc->sc_tdt_reg = WMREG_TDT;
1159 }
1160
1161 /*
1162 * Determine if we're TBI or GMII mode, and initialize the
1163 * media structures accordingly.
1164 */
1165 if (sc->sc_type < WM_T_82543 ||
1166 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1167 if (wmp->wmp_flags & WMP_F_1000T)
1168 aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1169 "product!\n", sc->sc_dev.dv_xname);
1170 wm_tbi_mediainit(sc);
1171 } else {
1172 if (wmp->wmp_flags & WMP_F_1000X)
1173 aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1174 "product!\n", sc->sc_dev.dv_xname);
1175 wm_gmii_mediainit(sc);
1176 }
1177
1178 ifp = &sc->sc_ethercom.ec_if;
1179 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1180 ifp->if_softc = sc;
1181 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1182 ifp->if_ioctl = wm_ioctl;
1183 ifp->if_start = wm_start;
1184 ifp->if_watchdog = wm_watchdog;
1185 ifp->if_init = wm_init;
1186 ifp->if_stop = wm_stop;
1187 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1188 IFQ_SET_READY(&ifp->if_snd);
1189
1190 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1191
1192 /*
1193 * If we're a i82543 or greater, we can support VLANs.
1194 */
1195 if (sc->sc_type >= WM_T_82543)
1196 sc->sc_ethercom.ec_capabilities |=
1197 ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1198
1199 /*
1200 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
1201 * on i82543 and later.
1202 */
1203 if (sc->sc_type >= WM_T_82543)
1204 ifp->if_capabilities |=
1205 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
1206
1207 /*
1208 * Attach the interface.
1209 */
1210 if_attach(ifp);
1211 ether_ifattach(ifp, enaddr);
1212 #if NRND > 0
1213 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1214 RND_TYPE_NET, 0);
1215 #endif
1216
1217 #ifdef WM_EVENT_COUNTERS
1218 /* Attach event counters. */
1219 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1220 NULL, sc->sc_dev.dv_xname, "txsstall");
1221 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1222 NULL, sc->sc_dev.dv_xname, "txdstall");
1223 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1224 NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1225 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1226 NULL, sc->sc_dev.dv_xname, "txdw");
1227 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1228 NULL, sc->sc_dev.dv_xname, "txqe");
1229 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1230 NULL, sc->sc_dev.dv_xname, "rxintr");
1231 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1232 NULL, sc->sc_dev.dv_xname, "linkintr");
1233
1234 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1235 NULL, sc->sc_dev.dv_xname, "rxipsum");
1236 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1237 NULL, sc->sc_dev.dv_xname, "rxtusum");
1238 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1239 NULL, sc->sc_dev.dv_xname, "txipsum");
1240 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1241 NULL, sc->sc_dev.dv_xname, "txtusum");
1242
1243 evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
1244 NULL, sc->sc_dev.dv_xname, "txctx init");
1245 evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
1246 NULL, sc->sc_dev.dv_xname, "txctx hit");
1247 evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
1248 NULL, sc->sc_dev.dv_xname, "txctx miss");
1249
1250 for (i = 0; i < WM_NTXSEGS; i++) {
1251 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1252 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1253 NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1254 }
1255
1256 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1257 NULL, sc->sc_dev.dv_xname, "txdrop");
1258
1259 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1260 NULL, sc->sc_dev.dv_xname, "tu");
1261
1262 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1263 NULL, sc->sc_dev.dv_xname, "tx_xoff");
1264 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1265 NULL, sc->sc_dev.dv_xname, "tx_xon");
1266 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1267 NULL, sc->sc_dev.dv_xname, "rx_xoff");
1268 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1269 NULL, sc->sc_dev.dv_xname, "rx_xon");
1270 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1271 NULL, sc->sc_dev.dv_xname, "rx_macctl");
1272 #endif /* WM_EVENT_COUNTERS */
1273
1274 /*
1275 * Make sure the interface is shutdown during reboot.
1276 */
1277 sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1278 if (sc->sc_sdhook == NULL)
1279 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1280 sc->sc_dev.dv_xname);
1281 return;
1282
1283 /*
1284 * Free any resources we've allocated during the failed attach
1285 * attempt. Do this in reverse order and fall through.
1286 */
1287 fail_5:
1288 for (i = 0; i < WM_NRXDESC; i++) {
1289 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1290 bus_dmamap_destroy(sc->sc_dmat,
1291 sc->sc_rxsoft[i].rxs_dmamap);
1292 }
1293 fail_4:
1294 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1295 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1296 bus_dmamap_destroy(sc->sc_dmat,
1297 sc->sc_txsoft[i].txs_dmamap);
1298 }
1299 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1300 fail_3:
1301 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1302 fail_2:
1303 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1304 cdata_size);
1305 fail_1:
1306 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1307 fail_0:
1308 return;
1309 }
1310
1311 /*
1312 * wm_shutdown:
1313 *
1314 * Make sure the interface is stopped at reboot time.
1315 */
1316 static void
1317 wm_shutdown(void *arg)
1318 {
1319 struct wm_softc *sc = arg;
1320
1321 wm_stop(&sc->sc_ethercom.ec_if, 1);
1322 }
1323
1324 /*
1325 * wm_tx_cksum:
1326 *
1327 * Set up TCP/IP checksumming parameters for the
1328 * specified packet.
1329 */
1330 static int
1331 wm_tx_cksum(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1332 uint8_t *fieldsp)
1333 {
1334 struct mbuf *m0 = txs->txs_mbuf;
1335 struct livengood_tcpip_ctxdesc *t;
1336 uint32_t ipcs, tucs;
1337 struct ip *ip;
1338 struct ether_header *eh;
1339 int offset, iphl;
1340 uint8_t fields = 0;
1341
1342 /*
1343 * XXX It would be nice if the mbuf pkthdr had offset
1344 * fields for the protocol headers.
1345 */
1346
1347 eh = mtod(m0, struct ether_header *);
1348 switch (htons(eh->ether_type)) {
1349 case ETHERTYPE_IP:
1350 iphl = sizeof(struct ip);
1351 offset = ETHER_HDR_LEN;
1352 break;
1353
1354 case ETHERTYPE_VLAN:
1355 iphl = sizeof(struct ip);
1356 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1357 break;
1358
1359 default:
1360 /*
1361 * Don't support this protocol or encapsulation.
1362 */
1363 *fieldsp = 0;
1364 *cmdp = 0;
1365 return (0);
1366 }
1367
1368 if (m0->m_len < (offset + iphl)) {
1369 if ((txs->txs_mbuf = m_pullup(m0, offset + iphl)) == NULL) {
1370 printf("%s: wm_tx_cksum: mbuf allocation failed, "
1371 "packet dropped\n", sc->sc_dev.dv_xname);
1372 return (ENOMEM);
1373 }
1374 m0 = txs->txs_mbuf;
1375 }
1376
1377 ip = (struct ip *) (mtod(m0, caddr_t) + offset);
1378 iphl = ip->ip_hl << 2;
1379
1380 /*
1381 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1382 * offload feature, if we load the context descriptor, we
1383 * MUST provide valid values for IPCSS and TUCSS fields.
1384 */
1385
1386 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1387 WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1388 fields |= WTX_IXSM;
1389 ipcs = WTX_TCPIP_IPCSS(offset) |
1390 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1391 WTX_TCPIP_IPCSE(offset + iphl - 1);
1392 } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1393 /* Use the cached value. */
1394 ipcs = sc->sc_txctx_ipcs;
1395 } else {
1396 /* Just initialize it to the likely value anyway. */
1397 ipcs = WTX_TCPIP_IPCSS(offset) |
1398 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1399 WTX_TCPIP_IPCSE(offset + iphl - 1);
1400 }
1401
1402 offset += iphl;
1403
1404 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1405 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1406 fields |= WTX_TXSM;
1407 tucs = WTX_TCPIP_TUCSS(offset) |
1408 WTX_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
1409 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1410 } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1411 /* Use the cached value. */
1412 tucs = sc->sc_txctx_tucs;
1413 } else {
1414 /* Just initialize it to a valid TCP context. */
1415 tucs = WTX_TCPIP_TUCSS(offset) |
1416 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1417 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1418 }
1419
1420 if (sc->sc_txctx_ipcs == ipcs &&
1421 sc->sc_txctx_tucs == tucs) {
1422 /* Cached context is fine. */
1423 WM_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1424 } else {
1425 /* Fill in the context descriptor. */
1426 #ifdef WM_EVENT_COUNTERS
1427 if (sc->sc_txctx_ipcs == 0xffffffff &&
1428 sc->sc_txctx_tucs == 0xffffffff)
1429 WM_EVCNT_INCR(&sc->sc_ev_txctx_init);
1430 else
1431 WM_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1432 #endif
1433 t = (struct livengood_tcpip_ctxdesc *)
1434 &sc->sc_txdescs[sc->sc_txnext];
1435 t->tcpip_ipcs = htole32(ipcs);
1436 t->tcpip_tucs = htole32(tucs);
1437 t->tcpip_cmdlen = htole32(WTX_CMD_DEXT | WTX_DTYP_C);
1438 t->tcpip_seg = 0;
1439 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1440
1441 sc->sc_txctx_ipcs = ipcs;
1442 sc->sc_txctx_tucs = tucs;
1443
1444 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1445 txs->txs_ndesc++;
1446 }
1447
1448 *cmdp = WTX_CMD_DEXT | WTX_DTYP_D;
1449 *fieldsp = fields;
1450
1451 return (0);
1452 }
1453
1454 static void
1455 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1456 {
1457 struct mbuf *m;
1458 int i;
1459
1460 printf("%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1461 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1462 printf("\tm_data = %p, m_len = %d, m_flags = 0x%08x\n",
1463 m->m_data, m->m_len, m->m_flags);
1464 printf("\t%d mbuf%s in chain\n", i, i == 1 ? "" : "s");
1465 }
1466
1467 /*
1468 * wm_82547_txfifo_stall:
1469 *
1470 * Callout used to wait for the 82547 Tx FIFO to drain,
1471 * reset the FIFO pointers, and restart packet transmission.
1472 */
1473 static void
1474 wm_82547_txfifo_stall(void *arg)
1475 {
1476 struct wm_softc *sc = arg;
1477 int s;
1478
1479 s = splnet();
1480
1481 if (sc->sc_txfifo_stall) {
1482 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1483 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1484 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1485 /*
1486 * Packets have drained. Stop transmitter, reset
1487 * FIFO pointers, restart transmitter, and kick
1488 * the packet queue.
1489 */
1490 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1491 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1492 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1493 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1494 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1495 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1496 CSR_WRITE(sc, WMREG_TCTL, tctl);
1497 CSR_WRITE_FLUSH(sc);
1498
1499 sc->sc_txfifo_head = 0;
1500 sc->sc_txfifo_stall = 0;
1501 wm_start(&sc->sc_ethercom.ec_if);
1502 } else {
1503 /*
1504 * Still waiting for packets to drain; try again in
1505 * another tick.
1506 */
1507 callout_schedule(&sc->sc_txfifo_ch, 1);
1508 }
1509 }
1510
1511 splx(s);
1512 }
1513
1514 /*
1515 * wm_82547_txfifo_bugchk:
1516 *
1517 * Check for bug condition in the 82547 Tx FIFO. We need to
1518 * prevent enqueueing a packet that would wrap around the end
1519 * if the Tx FIFO ring buffer, otherwise the chip will croak.
1520 *
1521 * We do this by checking the amount of space before the end
1522 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
1523 * the Tx FIFO, wait for all remaining packets to drain, reset
1524 * the internal FIFO pointers to the beginning, and restart
1525 * transmission on the interface.
1526 */
1527 #define WM_FIFO_HDR 0x10
1528 #define WM_82547_PAD_LEN 0x3e0
1529 static int
1530 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1531 {
1532 int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1533 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1534
1535 /* Just return if already stalled. */
1536 if (sc->sc_txfifo_stall)
1537 return (1);
1538
1539 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1540 /* Stall only occurs in half-duplex mode. */
1541 goto send_packet;
1542 }
1543
1544 if (len >= WM_82547_PAD_LEN + space) {
1545 sc->sc_txfifo_stall = 1;
1546 callout_schedule(&sc->sc_txfifo_ch, 1);
1547 return (1);
1548 }
1549
1550 send_packet:
1551 sc->sc_txfifo_head += len;
1552 if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1553 sc->sc_txfifo_head -= sc->sc_txfifo_size;
1554
1555 return (0);
1556 }
1557
1558 /*
1559 * wm_start: [ifnet interface function]
1560 *
1561 * Start packet transmission on the interface.
1562 */
1563 static void
1564 wm_start(struct ifnet *ifp)
1565 {
1566 struct wm_softc *sc = ifp->if_softc;
1567 struct mbuf *m0;
1568 #if 0 /* XXXJRT */
1569 struct m_tag *mtag;
1570 #endif
1571 struct wm_txsoft *txs;
1572 bus_dmamap_t dmamap;
1573 int error, nexttx, lasttx = -1, ofree, seg;
1574 uint32_t cksumcmd;
1575 uint8_t cksumfields;
1576
1577 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1578 return;
1579
1580 /*
1581 * Remember the previous number of free descriptors.
1582 */
1583 ofree = sc->sc_txfree;
1584
1585 /*
1586 * Loop through the send queue, setting up transmit descriptors
1587 * until we drain the queue, or use up all available transmit
1588 * descriptors.
1589 */
1590 for (;;) {
1591 /* Grab a packet off the queue. */
1592 IFQ_POLL(&ifp->if_snd, m0);
1593 if (m0 == NULL)
1594 break;
1595
1596 DPRINTF(WM_DEBUG_TX,
1597 ("%s: TX: have packet to transmit: %p\n",
1598 sc->sc_dev.dv_xname, m0));
1599
1600 /* Get a work queue entry. */
1601 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1602 wm_txintr(sc);
1603 if (sc->sc_txsfree == 0) {
1604 DPRINTF(WM_DEBUG_TX,
1605 ("%s: TX: no free job descriptors\n",
1606 sc->sc_dev.dv_xname));
1607 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1608 break;
1609 }
1610 }
1611
1612 txs = &sc->sc_txsoft[sc->sc_txsnext];
1613 dmamap = txs->txs_dmamap;
1614
1615 /*
1616 * Load the DMA map. If this fails, the packet either
1617 * didn't fit in the allotted number of segments, or we
1618 * were short on resources. For the too-many-segments
1619 * case, we simply report an error and drop the packet,
1620 * since we can't sanely copy a jumbo packet to a single
1621 * buffer.
1622 */
1623 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1624 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1625 if (error) {
1626 if (error == EFBIG) {
1627 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1628 printf("%s: Tx packet consumes too many "
1629 "DMA segments, dropping...\n",
1630 sc->sc_dev.dv_xname);
1631 IFQ_DEQUEUE(&ifp->if_snd, m0);
1632 wm_dump_mbuf_chain(sc, m0);
1633 m_freem(m0);
1634 continue;
1635 }
1636 /*
1637 * Short on resources, just stop for now.
1638 */
1639 DPRINTF(WM_DEBUG_TX,
1640 ("%s: TX: dmamap load failed: %d\n",
1641 sc->sc_dev.dv_xname, error));
1642 break;
1643 }
1644
1645 /*
1646 * Ensure we have enough descriptors free to describe
1647 * the packet. Note, we always reserve one descriptor
1648 * at the end of the ring due to the semantics of the
1649 * TDT register, plus one more in the event we need
1650 * to re-load checksum offload context.
1651 */
1652 if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1653 /*
1654 * Not enough free descriptors to transmit this
1655 * packet. We haven't committed anything yet,
1656 * so just unload the DMA map, put the packet
1657 * pack on the queue, and punt. Notify the upper
1658 * layer that there are no more slots left.
1659 */
1660 DPRINTF(WM_DEBUG_TX,
1661 ("%s: TX: need %d descriptors, have %d\n",
1662 sc->sc_dev.dv_xname, dmamap->dm_nsegs,
1663 sc->sc_txfree - 1));
1664 ifp->if_flags |= IFF_OACTIVE;
1665 bus_dmamap_unload(sc->sc_dmat, dmamap);
1666 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1667 break;
1668 }
1669
1670 /*
1671 * Check for 82547 Tx FIFO bug. We need to do this
1672 * once we know we can transmit the packet, since we
1673 * do some internal FIFO space accounting here.
1674 */
1675 if (sc->sc_type == WM_T_82547 &&
1676 wm_82547_txfifo_bugchk(sc, m0)) {
1677 DPRINTF(WM_DEBUG_TX,
1678 ("%s: TX: 82547 Tx FIFO bug detected\n",
1679 sc->sc_dev.dv_xname));
1680 ifp->if_flags |= IFF_OACTIVE;
1681 bus_dmamap_unload(sc->sc_dmat, dmamap);
1682 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1683 break;
1684 }
1685
1686 IFQ_DEQUEUE(&ifp->if_snd, m0);
1687
1688 /*
1689 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1690 */
1691
1692 /* Sync the DMA map. */
1693 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1694 BUS_DMASYNC_PREWRITE);
1695
1696 DPRINTF(WM_DEBUG_TX,
1697 ("%s: TX: packet has %d DMA segments\n",
1698 sc->sc_dev.dv_xname, dmamap->dm_nsegs));
1699
1700 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1701
1702 /*
1703 * Store a pointer to the packet so that we can free it
1704 * later.
1705 *
1706 * Initially, we consider the number of descriptors the
1707 * packet uses the number of DMA segments. This may be
1708 * incremented by 1 if we do checksum offload (a descriptor
1709 * is used to set the checksum context).
1710 */
1711 txs->txs_mbuf = m0;
1712 txs->txs_firstdesc = sc->sc_txnext;
1713 txs->txs_ndesc = dmamap->dm_nsegs;
1714
1715 /*
1716 * Set up checksum offload parameters for
1717 * this packet.
1718 */
1719 if (m0->m_pkthdr.csum_flags &
1720 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1721 if (wm_tx_cksum(sc, txs, &cksumcmd,
1722 &cksumfields) != 0) {
1723 /* Error message already displayed. */
1724 bus_dmamap_unload(sc->sc_dmat, dmamap);
1725 continue;
1726 }
1727 } else {
1728 cksumcmd = 0;
1729 cksumfields = 0;
1730 }
1731
1732 cksumcmd |= WTX_CMD_IDE;
1733
1734 /*
1735 * Initialize the transmit descriptor.
1736 */
1737 for (nexttx = sc->sc_txnext, seg = 0;
1738 seg < dmamap->dm_nsegs;
1739 seg++, nexttx = WM_NEXTTX(sc, nexttx)) {
1740 wm_set_dma_addr(&sc->sc_txdescs[nexttx].wtx_addr,
1741 dmamap->dm_segs[seg].ds_addr);
1742 sc->sc_txdescs[nexttx].wtx_cmdlen =
1743 htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1744 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status = 0;
1745 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1746 cksumfields;
1747 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1748 lasttx = nexttx;
1749
1750 DPRINTF(WM_DEBUG_TX,
1751 ("%s: TX: desc %d: low 0x%08x, len 0x%04x\n",
1752 sc->sc_dev.dv_xname, nexttx,
1753 (u_int)le32toh(dmamap->dm_segs[seg].ds_addr),
1754 (u_int)le32toh(dmamap->dm_segs[seg].ds_len)));
1755 }
1756
1757 KASSERT(lasttx != -1);
1758
1759 /*
1760 * Set up the command byte on the last descriptor of
1761 * the packet. If we're in the interrupt delay window,
1762 * delay the interrupt.
1763 */
1764 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1765 htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS);
1766
1767 #if 0 /* XXXJRT */
1768 /*
1769 * If VLANs are enabled and the packet has a VLAN tag, set
1770 * up the descriptor to encapsulate the packet for us.
1771 *
1772 * This is only valid on the last descriptor of the packet.
1773 */
1774 if (sc->sc_ethercom.ec_nvlans != 0 &&
1775 (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1776 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1777 htole32(WTX_CMD_VLE);
1778 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
1779 = htole16(*(u_int *)(mtag + 1) & 0xffff);
1780 }
1781 #endif /* XXXJRT */
1782
1783 txs->txs_lastdesc = lasttx;
1784
1785 DPRINTF(WM_DEBUG_TX,
1786 ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1787 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
1788
1789 /* Sync the descriptors we're using. */
1790 WM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1791 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1792
1793 /* Give the packet to the chip. */
1794 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1795
1796 DPRINTF(WM_DEBUG_TX,
1797 ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1798
1799 DPRINTF(WM_DEBUG_TX,
1800 ("%s: TX: finished transmitting packet, job %d\n",
1801 sc->sc_dev.dv_xname, sc->sc_txsnext));
1802
1803 /* Advance the tx pointer. */
1804 sc->sc_txfree -= txs->txs_ndesc;
1805 sc->sc_txnext = nexttx;
1806
1807 sc->sc_txsfree--;
1808 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
1809
1810 #if NBPFILTER > 0
1811 /* Pass the packet to any BPF listeners. */
1812 if (ifp->if_bpf)
1813 bpf_mtap(ifp->if_bpf, m0);
1814 #endif /* NBPFILTER > 0 */
1815 }
1816
1817 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1818 /* No more slots; notify upper layer. */
1819 ifp->if_flags |= IFF_OACTIVE;
1820 }
1821
1822 if (sc->sc_txfree != ofree) {
1823 /* Set a watchdog timer in case the chip flakes out. */
1824 ifp->if_timer = 5;
1825 }
1826 }
1827
1828 /*
1829 * wm_watchdog: [ifnet interface function]
1830 *
1831 * Watchdog timer handler.
1832 */
1833 static void
1834 wm_watchdog(struct ifnet *ifp)
1835 {
1836 struct wm_softc *sc = ifp->if_softc;
1837
1838 /*
1839 * Since we're using delayed interrupts, sweep up
1840 * before we report an error.
1841 */
1842 wm_txintr(sc);
1843
1844 if (sc->sc_txfree != WM_NTXDESC(sc)) {
1845 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1846 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1847 sc->sc_txnext);
1848 ifp->if_oerrors++;
1849
1850 /* Reset the interface. */
1851 (void) wm_init(ifp);
1852 }
1853
1854 /* Try to get more packets going. */
1855 wm_start(ifp);
1856 }
1857
1858 /*
1859 * wm_ioctl: [ifnet interface function]
1860 *
1861 * Handle control requests from the operator.
1862 */
1863 static int
1864 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1865 {
1866 struct wm_softc *sc = ifp->if_softc;
1867 struct ifreq *ifr = (struct ifreq *) data;
1868 int s, error;
1869
1870 s = splnet();
1871
1872 switch (cmd) {
1873 case SIOCSIFMEDIA:
1874 case SIOCGIFMEDIA:
1875 /* Flow control requires full-duplex mode. */
1876 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1877 (ifr->ifr_media & IFM_FDX) == 0)
1878 ifr->ifr_media &= ~IFM_ETH_FMASK;
1879 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1880 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1881 /* We can do both TXPAUSE and RXPAUSE. */
1882 ifr->ifr_media |=
1883 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1884 }
1885 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1886 }
1887 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1888 break;
1889 default:
1890 error = ether_ioctl(ifp, cmd, data);
1891 if (error == ENETRESET) {
1892 /*
1893 * Multicast list has changed; set the hardware filter
1894 * accordingly.
1895 */
1896 wm_set_filter(sc);
1897 error = 0;
1898 }
1899 break;
1900 }
1901
1902 /* Try to get more packets going. */
1903 wm_start(ifp);
1904
1905 splx(s);
1906 return (error);
1907 }
1908
1909 /*
1910 * wm_intr:
1911 *
1912 * Interrupt service routine.
1913 */
1914 static int
1915 wm_intr(void *arg)
1916 {
1917 struct wm_softc *sc = arg;
1918 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1919 uint32_t icr;
1920 int wantinit, handled = 0;
1921
1922 for (wantinit = 0; wantinit == 0;) {
1923 icr = CSR_READ(sc, WMREG_ICR);
1924 if ((icr & sc->sc_icr) == 0)
1925 break;
1926
1927 #if 0 /*NRND > 0*/
1928 if (RND_ENABLED(&sc->rnd_source))
1929 rnd_add_uint32(&sc->rnd_source, icr);
1930 #endif
1931
1932 handled = 1;
1933
1934 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1935 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1936 DPRINTF(WM_DEBUG_RX,
1937 ("%s: RX: got Rx intr 0x%08x\n",
1938 sc->sc_dev.dv_xname,
1939 icr & (ICR_RXDMT0|ICR_RXT0)));
1940 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
1941 }
1942 #endif
1943 wm_rxintr(sc);
1944
1945 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1946 if (icr & ICR_TXDW) {
1947 DPRINTF(WM_DEBUG_TX,
1948 ("%s: TX: got TXDW interrupt\n",
1949 sc->sc_dev.dv_xname));
1950 WM_EVCNT_INCR(&sc->sc_ev_txdw);
1951 }
1952 #endif
1953 wm_txintr(sc);
1954
1955 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
1956 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
1957 wm_linkintr(sc, icr);
1958 }
1959
1960 if (icr & ICR_RXO) {
1961 printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
1962 wantinit = 1;
1963 }
1964 }
1965
1966 if (handled) {
1967 if (wantinit)
1968 wm_init(ifp);
1969
1970 /* Try to get more packets going. */
1971 wm_start(ifp);
1972 }
1973
1974 return (handled);
1975 }
1976
1977 /*
1978 * wm_txintr:
1979 *
1980 * Helper; handle transmit interrupts.
1981 */
1982 static void
1983 wm_txintr(struct wm_softc *sc)
1984 {
1985 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1986 struct wm_txsoft *txs;
1987 uint8_t status;
1988 int i;
1989
1990 ifp->if_flags &= ~IFF_OACTIVE;
1991
1992 /*
1993 * Go through the Tx list and free mbufs for those
1994 * frames which have been transmitted.
1995 */
1996 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
1997 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
1998 txs = &sc->sc_txsoft[i];
1999
2000 DPRINTF(WM_DEBUG_TX,
2001 ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2002
2003 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
2004 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2005
2006 status =
2007 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2008 if ((status & WTX_ST_DD) == 0) {
2009 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2010 BUS_DMASYNC_PREREAD);
2011 break;
2012 }
2013
2014 DPRINTF(WM_DEBUG_TX,
2015 ("%s: TX: job %d done: descs %d..%d\n",
2016 sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2017 txs->txs_lastdesc));
2018
2019 /*
2020 * XXX We should probably be using the statistics
2021 * XXX registers, but I don't know if they exist
2022 * XXX on chips before the i82544.
2023 */
2024
2025 #ifdef WM_EVENT_COUNTERS
2026 if (status & WTX_ST_TU)
2027 WM_EVCNT_INCR(&sc->sc_ev_tu);
2028 #endif /* WM_EVENT_COUNTERS */
2029
2030 if (status & (WTX_ST_EC|WTX_ST_LC)) {
2031 ifp->if_oerrors++;
2032 if (status & WTX_ST_LC)
2033 printf("%s: late collision\n",
2034 sc->sc_dev.dv_xname);
2035 else if (status & WTX_ST_EC) {
2036 ifp->if_collisions += 16;
2037 printf("%s: excessive collisions\n",
2038 sc->sc_dev.dv_xname);
2039 }
2040 } else
2041 ifp->if_opackets++;
2042
2043 sc->sc_txfree += txs->txs_ndesc;
2044 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2045 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2046 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2047 m_freem(txs->txs_mbuf);
2048 txs->txs_mbuf = NULL;
2049 }
2050
2051 /* Update the dirty transmit buffer pointer. */
2052 sc->sc_txsdirty = i;
2053 DPRINTF(WM_DEBUG_TX,
2054 ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2055
2056 /*
2057 * If there are no more pending transmissions, cancel the watchdog
2058 * timer.
2059 */
2060 if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2061 ifp->if_timer = 0;
2062 }
2063
2064 /*
2065 * wm_rxintr:
2066 *
2067 * Helper; handle receive interrupts.
2068 */
2069 static void
2070 wm_rxintr(struct wm_softc *sc)
2071 {
2072 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2073 struct wm_rxsoft *rxs;
2074 struct mbuf *m;
2075 int i, len;
2076 uint8_t status, errors;
2077
2078 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2079 rxs = &sc->sc_rxsoft[i];
2080
2081 DPRINTF(WM_DEBUG_RX,
2082 ("%s: RX: checking descriptor %d\n",
2083 sc->sc_dev.dv_xname, i));
2084
2085 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2086
2087 status = sc->sc_rxdescs[i].wrx_status;
2088 errors = sc->sc_rxdescs[i].wrx_errors;
2089 len = le16toh(sc->sc_rxdescs[i].wrx_len);
2090
2091 if ((status & WRX_ST_DD) == 0) {
2092 /*
2093 * We have processed all of the receive descriptors.
2094 */
2095 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2096 break;
2097 }
2098
2099 if (__predict_false(sc->sc_rxdiscard)) {
2100 DPRINTF(WM_DEBUG_RX,
2101 ("%s: RX: discarding contents of descriptor %d\n",
2102 sc->sc_dev.dv_xname, i));
2103 WM_INIT_RXDESC(sc, i);
2104 if (status & WRX_ST_EOP) {
2105 /* Reset our state. */
2106 DPRINTF(WM_DEBUG_RX,
2107 ("%s: RX: resetting rxdiscard -> 0\n",
2108 sc->sc_dev.dv_xname));
2109 sc->sc_rxdiscard = 0;
2110 }
2111 continue;
2112 }
2113
2114 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2115 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2116
2117 m = rxs->rxs_mbuf;
2118
2119 /*
2120 * Add a new receive buffer to the ring.
2121 */
2122 if (wm_add_rxbuf(sc, i) != 0) {
2123 /*
2124 * Failed, throw away what we've done so
2125 * far, and discard the rest of the packet.
2126 */
2127 ifp->if_ierrors++;
2128 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2129 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2130 WM_INIT_RXDESC(sc, i);
2131 if ((status & WRX_ST_EOP) == 0)
2132 sc->sc_rxdiscard = 1;
2133 if (sc->sc_rxhead != NULL)
2134 m_freem(sc->sc_rxhead);
2135 WM_RXCHAIN_RESET(sc);
2136 DPRINTF(WM_DEBUG_RX,
2137 ("%s: RX: Rx buffer allocation failed, "
2138 "dropping packet%s\n", sc->sc_dev.dv_xname,
2139 sc->sc_rxdiscard ? " (discard)" : ""));
2140 continue;
2141 }
2142
2143 WM_RXCHAIN_LINK(sc, m);
2144
2145 m->m_len = len;
2146
2147 DPRINTF(WM_DEBUG_RX,
2148 ("%s: RX: buffer at %p len %d\n",
2149 sc->sc_dev.dv_xname, m->m_data, len));
2150
2151 /*
2152 * If this is not the end of the packet, keep
2153 * looking.
2154 */
2155 if ((status & WRX_ST_EOP) == 0) {
2156 sc->sc_rxlen += len;
2157 DPRINTF(WM_DEBUG_RX,
2158 ("%s: RX: not yet EOP, rxlen -> %d\n",
2159 sc->sc_dev.dv_xname, sc->sc_rxlen));
2160 continue;
2161 }
2162
2163 /*
2164 * Okay, we have the entire packet now...
2165 */
2166 *sc->sc_rxtailp = NULL;
2167 m = sc->sc_rxhead;
2168 len += sc->sc_rxlen;
2169
2170 WM_RXCHAIN_RESET(sc);
2171
2172 DPRINTF(WM_DEBUG_RX,
2173 ("%s: RX: have entire packet, len -> %d\n",
2174 sc->sc_dev.dv_xname, len));
2175
2176 /*
2177 * If an error occurred, update stats and drop the packet.
2178 */
2179 if (errors &
2180 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2181 ifp->if_ierrors++;
2182 if (errors & WRX_ER_SE)
2183 printf("%s: symbol error\n",
2184 sc->sc_dev.dv_xname);
2185 else if (errors & WRX_ER_SEQ)
2186 printf("%s: receive sequence error\n",
2187 sc->sc_dev.dv_xname);
2188 else if (errors & WRX_ER_CE)
2189 printf("%s: CRC error\n",
2190 sc->sc_dev.dv_xname);
2191 m_freem(m);
2192 continue;
2193 }
2194
2195 /*
2196 * No errors. Receive the packet.
2197 *
2198 * Note, we have configured the chip to include the
2199 * CRC with every packet.
2200 */
2201 m->m_flags |= M_HASFCS;
2202 m->m_pkthdr.rcvif = ifp;
2203 m->m_pkthdr.len = len;
2204
2205 #if 0 /* XXXJRT */
2206 /*
2207 * If VLANs are enabled, VLAN packets have been unwrapped
2208 * for us. Associate the tag with the packet.
2209 */
2210 if (sc->sc_ethercom.ec_nvlans != 0 &&
2211 (status & WRX_ST_VP) != 0) {
2212 struct m_tag *vtag;
2213
2214 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2215 M_NOWAIT);
2216 if (vtag == NULL) {
2217 ifp->if_ierrors++;
2218 printf("%s: unable to allocate VLAN tag\n",
2219 sc->sc_dev.dv_xname);
2220 m_freem(m);
2221 continue;
2222 }
2223
2224 *(u_int *)(vtag + 1) =
2225 le16toh(sc->sc_rxdescs[i].wrx_special);
2226 }
2227 #endif /* XXXJRT */
2228
2229 /*
2230 * Set up checksum info for this packet.
2231 */
2232 if (status & WRX_ST_IPCS) {
2233 WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2234 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2235 if (errors & WRX_ER_IPE)
2236 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2237 }
2238 if (status & WRX_ST_TCPCS) {
2239 /*
2240 * Note: we don't know if this was TCP or UDP,
2241 * so we just set both bits, and expect the
2242 * upper layers to deal.
2243 */
2244 WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2245 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
2246 if (errors & WRX_ER_TCPE)
2247 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
2248 }
2249
2250 ifp->if_ipackets++;
2251
2252 #if NBPFILTER > 0
2253 /* Pass this up to any BPF listeners. */
2254 if (ifp->if_bpf)
2255 bpf_mtap(ifp->if_bpf, m);
2256 #endif /* NBPFILTER > 0 */
2257
2258 /* Pass it on. */
2259 (*ifp->if_input)(ifp, m);
2260 }
2261
2262 /* Update the receive pointer. */
2263 sc->sc_rxptr = i;
2264
2265 DPRINTF(WM_DEBUG_RX,
2266 ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2267 }
2268
2269 /*
2270 * wm_linkintr:
2271 *
2272 * Helper; handle link interrupts.
2273 */
2274 static void
2275 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2276 {
2277 uint32_t status;
2278
2279 /*
2280 * If we get a link status interrupt on a 1000BASE-T
2281 * device, just fall into the normal MII tick path.
2282 */
2283 if (sc->sc_flags & WM_F_HAS_MII) {
2284 if (icr & ICR_LSC) {
2285 DPRINTF(WM_DEBUG_LINK,
2286 ("%s: LINK: LSC -> mii_tick\n",
2287 sc->sc_dev.dv_xname));
2288 mii_tick(&sc->sc_mii);
2289 } else if (icr & ICR_RXSEQ) {
2290 DPRINTF(WM_DEBUG_LINK,
2291 ("%s: LINK Receive sequence error\n",
2292 sc->sc_dev.dv_xname));
2293 }
2294 return;
2295 }
2296
2297 /*
2298 * If we are now receiving /C/, check for link again in
2299 * a couple of link clock ticks.
2300 */
2301 if (icr & ICR_RXCFG) {
2302 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2303 sc->sc_dev.dv_xname));
2304 sc->sc_tbi_anstate = 2;
2305 }
2306
2307 if (icr & ICR_LSC) {
2308 status = CSR_READ(sc, WMREG_STATUS);
2309 if (status & STATUS_LU) {
2310 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2311 sc->sc_dev.dv_xname,
2312 (status & STATUS_FD) ? "FDX" : "HDX"));
2313 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2314 sc->sc_fcrtl &= ~FCRTL_XONE;
2315 if (status & STATUS_FD)
2316 sc->sc_tctl |=
2317 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2318 else
2319 sc->sc_tctl |=
2320 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2321 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2322 sc->sc_fcrtl |= FCRTL_XONE;
2323 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2324 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2325 WMREG_OLD_FCRTL : WMREG_FCRTL,
2326 sc->sc_fcrtl);
2327 sc->sc_tbi_linkup = 1;
2328 } else {
2329 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2330 sc->sc_dev.dv_xname));
2331 sc->sc_tbi_linkup = 0;
2332 }
2333 sc->sc_tbi_anstate = 2;
2334 wm_tbi_set_linkled(sc);
2335 } else if (icr & ICR_RXSEQ) {
2336 DPRINTF(WM_DEBUG_LINK,
2337 ("%s: LINK: Receive sequence error\n",
2338 sc->sc_dev.dv_xname));
2339 }
2340 }
2341
2342 /*
2343 * wm_tick:
2344 *
2345 * One second timer, used to check link status, sweep up
2346 * completed transmit jobs, etc.
2347 */
2348 static void
2349 wm_tick(void *arg)
2350 {
2351 struct wm_softc *sc = arg;
2352 int s;
2353
2354 s = splnet();
2355
2356 if (sc->sc_type >= WM_T_82542_2_1) {
2357 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2358 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2359 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2360 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2361 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2362 }
2363
2364 if (sc->sc_flags & WM_F_HAS_MII)
2365 mii_tick(&sc->sc_mii);
2366 else
2367 wm_tbi_check_link(sc);
2368
2369 splx(s);
2370
2371 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2372 }
2373
2374 /*
2375 * wm_reset:
2376 *
2377 * Reset the i82542 chip.
2378 */
2379 static void
2380 wm_reset(struct wm_softc *sc)
2381 {
2382 int i;
2383
2384 /*
2385 * Allocate on-chip memory according to the MTU size.
2386 * The Packet Buffer Allocation register must be written
2387 * before the chip is reset.
2388 */
2389 if (sc->sc_type < WM_T_82547) {
2390 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2391 PBA_40K : PBA_48K;
2392 } else {
2393 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2394 PBA_22K : PBA_30K;
2395 sc->sc_txfifo_head = 0;
2396 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2397 sc->sc_txfifo_size =
2398 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2399 sc->sc_txfifo_stall = 0;
2400 }
2401 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2402
2403 switch (sc->sc_type) {
2404 case WM_T_82544:
2405 case WM_T_82540:
2406 case WM_T_82545:
2407 case WM_T_82546:
2408 case WM_T_82541:
2409 case WM_T_82541_2:
2410 /*
2411 * These chips have a problem with the memory-mapped
2412 * write cycle when issuing the reset, so use I/O-mapped
2413 * access, if possible.
2414 */
2415 if (sc->sc_flags & WM_F_IOH_VALID)
2416 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2417 else
2418 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2419 break;
2420
2421 case WM_T_82545_3:
2422 case WM_T_82546_3:
2423 /* Use the shadow control register on these chips. */
2424 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2425 break;
2426
2427 default:
2428 /* Everything else can safely use the documented method. */
2429 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2430 break;
2431 }
2432 delay(10000);
2433
2434 for (i = 0; i < 1000; i++) {
2435 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2436 return;
2437 delay(20);
2438 }
2439
2440 if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2441 printf("%s: WARNING: reset failed to complete\n",
2442 sc->sc_dev.dv_xname);
2443 }
2444
2445 /*
2446 * wm_init: [ifnet interface function]
2447 *
2448 * Initialize the interface. Must be called at splnet().
2449 */
2450 static int
2451 wm_init(struct ifnet *ifp)
2452 {
2453 struct wm_softc *sc = ifp->if_softc;
2454 struct wm_rxsoft *rxs;
2455 int i, error = 0;
2456 uint32_t reg;
2457
2458 /*
2459 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2460 * There is a small but measurable benefit to avoiding the adjusment
2461 * of the descriptor so that the headers are aligned, for normal mtu,
2462 * on such platforms. One possibility is that the DMA itself is
2463 * slightly more efficient if the front of the entire packet (instead
2464 * of the front of the headers) is aligned.
2465 *
2466 * Note we must always set align_tweak to 0 if we are using
2467 * jumbo frames.
2468 */
2469 #ifdef __NO_STRICT_ALIGNMENT
2470 sc->sc_align_tweak = 0;
2471 #else
2472 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2473 sc->sc_align_tweak = 0;
2474 else
2475 sc->sc_align_tweak = 2;
2476 #endif /* __NO_STRICT_ALIGNMENT */
2477
2478 /* Cancel any pending I/O. */
2479 wm_stop(ifp, 0);
2480
2481 /* Reset the chip to a known state. */
2482 wm_reset(sc);
2483
2484 /* Initialize the transmit descriptor ring. */
2485 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2486 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2487 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2488 sc->sc_txfree = WM_NTXDESC(sc);
2489 sc->sc_txnext = 0;
2490
2491 sc->sc_txctx_ipcs = 0xffffffff;
2492 sc->sc_txctx_tucs = 0xffffffff;
2493
2494 if (sc->sc_type < WM_T_82543) {
2495 CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2496 CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2497 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2498 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2499 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2500 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2501 } else {
2502 CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2503 CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2504 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2505 CSR_WRITE(sc, WMREG_TDH, 0);
2506 CSR_WRITE(sc, WMREG_TDT, 0);
2507 CSR_WRITE(sc, WMREG_TIDV, 128);
2508
2509 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2510 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2511 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2512 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2513 }
2514 CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2515 CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2516
2517 /* Initialize the transmit job descriptors. */
2518 for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2519 sc->sc_txsoft[i].txs_mbuf = NULL;
2520 sc->sc_txsfree = WM_TXQUEUELEN(sc);
2521 sc->sc_txsnext = 0;
2522 sc->sc_txsdirty = 0;
2523
2524 /*
2525 * Initialize the receive descriptor and receive job
2526 * descriptor rings.
2527 */
2528 if (sc->sc_type < WM_T_82543) {
2529 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2530 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2531 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2532 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2533 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2534 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2535
2536 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2537 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2538 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2539 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2540 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2541 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2542 } else {
2543 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2544 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2545 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2546 CSR_WRITE(sc, WMREG_RDH, 0);
2547 CSR_WRITE(sc, WMREG_RDT, 0);
2548 CSR_WRITE(sc, WMREG_RDTR, 28 | RDTR_FPD);
2549 }
2550 for (i = 0; i < WM_NRXDESC; i++) {
2551 rxs = &sc->sc_rxsoft[i];
2552 if (rxs->rxs_mbuf == NULL) {
2553 if ((error = wm_add_rxbuf(sc, i)) != 0) {
2554 printf("%s: unable to allocate or map rx "
2555 "buffer %d, error = %d\n",
2556 sc->sc_dev.dv_xname, i, error);
2557 /*
2558 * XXX Should attempt to run with fewer receive
2559 * XXX buffers instead of just failing.
2560 */
2561 wm_rxdrain(sc);
2562 goto out;
2563 }
2564 } else
2565 WM_INIT_RXDESC(sc, i);
2566 }
2567 sc->sc_rxptr = 0;
2568 sc->sc_rxdiscard = 0;
2569 WM_RXCHAIN_RESET(sc);
2570
2571 /*
2572 * Clear out the VLAN table -- we don't use it (yet).
2573 */
2574 CSR_WRITE(sc, WMREG_VET, 0);
2575 for (i = 0; i < WM_VLAN_TABSIZE; i++)
2576 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2577
2578 /*
2579 * Set up flow-control parameters.
2580 *
2581 * XXX Values could probably stand some tuning.
2582 */
2583 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2584 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2585 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2586
2587 sc->sc_fcrtl = FCRTL_DFLT;
2588 if (sc->sc_type < WM_T_82543) {
2589 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2590 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2591 } else {
2592 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2593 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2594 }
2595 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2596
2597 #if 0 /* XXXJRT */
2598 /* Deal with VLAN enables. */
2599 if (sc->sc_ethercom.ec_nvlans != 0)
2600 sc->sc_ctrl |= CTRL_VME;
2601 else
2602 #endif /* XXXJRT */
2603 sc->sc_ctrl &= ~CTRL_VME;
2604
2605 /* Write the control registers. */
2606 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2607 #if 0
2608 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2609 #endif
2610
2611 /*
2612 * Set up checksum offload parameters.
2613 */
2614 reg = CSR_READ(sc, WMREG_RXCSUM);
2615 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
2616 reg |= RXCSUM_IPOFL;
2617 else
2618 reg &= ~RXCSUM_IPOFL;
2619 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
2620 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2621 else {
2622 reg &= ~RXCSUM_TUOFL;
2623 if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
2624 reg &= ~RXCSUM_IPOFL;
2625 }
2626 CSR_WRITE(sc, WMREG_RXCSUM, reg);
2627
2628 /*
2629 * Set up the interrupt registers.
2630 */
2631 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2632 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2633 ICR_RXO | ICR_RXT0;
2634 if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2635 sc->sc_icr |= ICR_RXCFG;
2636 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2637
2638 /* Set up the inter-packet gap. */
2639 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2640
2641 #if 0 /* XXXJRT */
2642 /* Set the VLAN ethernetype. */
2643 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2644 #endif
2645
2646 /*
2647 * Set up the transmit control register; we start out with
2648 * a collision distance suitable for FDX, but update it whe
2649 * we resolve the media type.
2650 */
2651 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2652 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2653 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2654
2655 /* Set the media. */
2656 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2657
2658 /*
2659 * Set up the receive control register; we actually program
2660 * the register when we set the receive filter. Use multicast
2661 * address offset type 0.
2662 *
2663 * Only the i82544 has the ability to strip the incoming
2664 * CRC, so we don't enable that feature.
2665 */
2666 sc->sc_mchash_type = 0;
2667 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
2668 RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2669
2670 if(MCLBYTES == 2048) {
2671 sc->sc_rctl |= RCTL_2k;
2672 } else {
2673 if(sc->sc_type >= WM_T_82543) {
2674 switch(MCLBYTES) {
2675 case 4096:
2676 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2677 break;
2678 case 8192:
2679 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2680 break;
2681 case 16384:
2682 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2683 break;
2684 default:
2685 panic("wm_init: MCLBYTES %d unsupported",
2686 MCLBYTES);
2687 break;
2688 }
2689 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
2690 }
2691
2692 /* Set the receive filter. */
2693 wm_set_filter(sc);
2694
2695 /* Start the one second link check clock. */
2696 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2697
2698 /* ...all done! */
2699 ifp->if_flags |= IFF_RUNNING;
2700 ifp->if_flags &= ~IFF_OACTIVE;
2701
2702 out:
2703 if (error)
2704 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2705 return (error);
2706 }
2707
2708 /*
2709 * wm_rxdrain:
2710 *
2711 * Drain the receive queue.
2712 */
2713 static void
2714 wm_rxdrain(struct wm_softc *sc)
2715 {
2716 struct wm_rxsoft *rxs;
2717 int i;
2718
2719 for (i = 0; i < WM_NRXDESC; i++) {
2720 rxs = &sc->sc_rxsoft[i];
2721 if (rxs->rxs_mbuf != NULL) {
2722 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2723 m_freem(rxs->rxs_mbuf);
2724 rxs->rxs_mbuf = NULL;
2725 }
2726 }
2727 }
2728
2729 /*
2730 * wm_stop: [ifnet interface function]
2731 *
2732 * Stop transmission on the interface.
2733 */
2734 static void
2735 wm_stop(struct ifnet *ifp, int disable)
2736 {
2737 struct wm_softc *sc = ifp->if_softc;
2738 struct wm_txsoft *txs;
2739 int i;
2740
2741 /* Stop the one second clock. */
2742 callout_stop(&sc->sc_tick_ch);
2743
2744 /* Stop the 82547 Tx FIFO stall check timer. */
2745 if (sc->sc_type == WM_T_82547)
2746 callout_stop(&sc->sc_txfifo_ch);
2747
2748 if (sc->sc_flags & WM_F_HAS_MII) {
2749 /* Down the MII. */
2750 mii_down(&sc->sc_mii);
2751 }
2752
2753 /* Stop the transmit and receive processes. */
2754 CSR_WRITE(sc, WMREG_TCTL, 0);
2755 CSR_WRITE(sc, WMREG_RCTL, 0);
2756
2757 /* Release any queued transmit buffers. */
2758 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2759 txs = &sc->sc_txsoft[i];
2760 if (txs->txs_mbuf != NULL) {
2761 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2762 m_freem(txs->txs_mbuf);
2763 txs->txs_mbuf = NULL;
2764 }
2765 }
2766
2767 if (disable)
2768 wm_rxdrain(sc);
2769
2770 /* Mark the interface as down and cancel the watchdog timer. */
2771 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2772 ifp->if_timer = 0;
2773 }
2774
2775 /*
2776 * wm_acquire_eeprom:
2777 *
2778 * Perform the EEPROM handshake required on some chips.
2779 */
2780 static int
2781 wm_acquire_eeprom(struct wm_softc *sc)
2782 {
2783 uint32_t reg;
2784 int x;
2785
2786 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2787 reg = CSR_READ(sc, WMREG_EECD);
2788
2789 /* Request EEPROM access. */
2790 reg |= EECD_EE_REQ;
2791 CSR_WRITE(sc, WMREG_EECD, reg);
2792
2793 /* ..and wait for it to be granted. */
2794 for (x = 0; x < 100; x++) {
2795 reg = CSR_READ(sc, WMREG_EECD);
2796 if (reg & EECD_EE_GNT)
2797 break;
2798 delay(5);
2799 }
2800 if ((reg & EECD_EE_GNT) == 0) {
2801 aprint_error("%s: could not acquire EEPROM GNT\n",
2802 sc->sc_dev.dv_xname);
2803 reg &= ~EECD_EE_REQ;
2804 CSR_WRITE(sc, WMREG_EECD, reg);
2805 return (1);
2806 }
2807 }
2808
2809 return (0);
2810 }
2811
2812 /*
2813 * wm_release_eeprom:
2814 *
2815 * Release the EEPROM mutex.
2816 */
2817 static void
2818 wm_release_eeprom(struct wm_softc *sc)
2819 {
2820 uint32_t reg;
2821
2822 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2823 reg = CSR_READ(sc, WMREG_EECD);
2824 reg &= ~EECD_EE_REQ;
2825 CSR_WRITE(sc, WMREG_EECD, reg);
2826 }
2827 }
2828
2829 /*
2830 * wm_eeprom_sendbits:
2831 *
2832 * Send a series of bits to the EEPROM.
2833 */
2834 static void
2835 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
2836 {
2837 uint32_t reg;
2838 int x;
2839
2840 reg = CSR_READ(sc, WMREG_EECD);
2841
2842 for (x = nbits; x > 0; x--) {
2843 if (bits & (1U << (x - 1)))
2844 reg |= EECD_DI;
2845 else
2846 reg &= ~EECD_DI;
2847 CSR_WRITE(sc, WMREG_EECD, reg);
2848 delay(2);
2849 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2850 delay(2);
2851 CSR_WRITE(sc, WMREG_EECD, reg);
2852 delay(2);
2853 }
2854 }
2855
2856 /*
2857 * wm_eeprom_recvbits:
2858 *
2859 * Receive a series of bits from the EEPROM.
2860 */
2861 static void
2862 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
2863 {
2864 uint32_t reg, val;
2865 int x;
2866
2867 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
2868
2869 val = 0;
2870 for (x = nbits; x > 0; x--) {
2871 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2872 delay(2);
2873 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
2874 val |= (1U << (x - 1));
2875 CSR_WRITE(sc, WMREG_EECD, reg);
2876 delay(2);
2877 }
2878 *valp = val;
2879 }
2880
2881 /*
2882 * wm_read_eeprom_uwire:
2883 *
2884 * Read a word from the EEPROM using the MicroWire protocol.
2885 */
2886 static int
2887 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2888 {
2889 uint32_t reg, val;
2890 int i;
2891
2892 for (i = 0; i < wordcnt; i++) {
2893 /* Clear SK and DI. */
2894 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
2895 CSR_WRITE(sc, WMREG_EECD, reg);
2896
2897 /* Set CHIP SELECT. */
2898 reg |= EECD_CS;
2899 CSR_WRITE(sc, WMREG_EECD, reg);
2900 delay(2);
2901
2902 /* Shift in the READ command. */
2903 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
2904
2905 /* Shift in address. */
2906 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
2907
2908 /* Shift out the data. */
2909 wm_eeprom_recvbits(sc, &val, 16);
2910 data[i] = val & 0xffff;
2911
2912 /* Clear CHIP SELECT. */
2913 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
2914 CSR_WRITE(sc, WMREG_EECD, reg);
2915 delay(2);
2916 }
2917
2918 return (0);
2919 }
2920
2921 /*
2922 * wm_spi_eeprom_ready:
2923 *
2924 * Wait for a SPI EEPROM to be ready for commands.
2925 */
2926 static int
2927 wm_spi_eeprom_ready(struct wm_softc *sc)
2928 {
2929 uint32_t val;
2930 int usec;
2931
2932 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
2933 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
2934 wm_eeprom_recvbits(sc, &val, 8);
2935 if ((val & SPI_SR_RDY) == 0)
2936 break;
2937 }
2938 if (usec >= SPI_MAX_RETRIES) {
2939 aprint_error("%s: EEPROM failed to become ready\n",
2940 sc->sc_dev.dv_xname);
2941 return (1);
2942 }
2943 return (0);
2944 }
2945
2946 /*
2947 * wm_read_eeprom_spi:
2948 *
2949 * Read a work from the EEPROM using the SPI protocol.
2950 */
2951 static int
2952 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2953 {
2954 uint32_t reg, val;
2955 int i;
2956 uint8_t opc;
2957
2958 /* Clear SK and CS. */
2959 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
2960 CSR_WRITE(sc, WMREG_EECD, reg);
2961 delay(2);
2962
2963 if (wm_spi_eeprom_ready(sc))
2964 return (1);
2965
2966 /* Toggle CS to flush commands. */
2967 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
2968 delay(2);
2969 CSR_WRITE(sc, WMREG_EECD, reg);
2970 delay(2);
2971
2972 opc = SPI_OPC_READ;
2973 if (sc->sc_ee_addrbits == 8 && word >= 128)
2974 opc |= SPI_OPC_A8;
2975
2976 wm_eeprom_sendbits(sc, opc, 8);
2977 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
2978
2979 for (i = 0; i < wordcnt; i++) {
2980 wm_eeprom_recvbits(sc, &val, 16);
2981 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
2982 }
2983
2984 /* Raise CS and clear SK. */
2985 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
2986 CSR_WRITE(sc, WMREG_EECD, reg);
2987 delay(2);
2988
2989 return (0);
2990 }
2991
2992 /*
2993 * wm_read_eeprom:
2994 *
2995 * Read data from the serial EEPROM.
2996 */
2997 static int
2998 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2999 {
3000 int rv;
3001
3002 if (wm_acquire_eeprom(sc))
3003 return (1);
3004
3005 if (sc->sc_flags & WM_F_EEPROM_SPI)
3006 rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3007 else
3008 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3009
3010 wm_release_eeprom(sc);
3011 return (rv);
3012 }
3013
3014 /*
3015 * wm_add_rxbuf:
3016 *
3017 * Add a receive buffer to the indiciated descriptor.
3018 */
3019 static int
3020 wm_add_rxbuf(struct wm_softc *sc, int idx)
3021 {
3022 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3023 struct mbuf *m;
3024 int error;
3025
3026 MGETHDR(m, M_DONTWAIT, MT_DATA);
3027 if (m == NULL)
3028 return (ENOBUFS);
3029
3030 MCLGET(m, M_DONTWAIT);
3031 if ((m->m_flags & M_EXT) == 0) {
3032 m_freem(m);
3033 return (ENOBUFS);
3034 }
3035
3036 if (rxs->rxs_mbuf != NULL)
3037 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3038
3039 rxs->rxs_mbuf = m;
3040
3041 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3042 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3043 BUS_DMA_READ|BUS_DMA_NOWAIT);
3044 if (error) {
3045 printf("%s: unable to load rx DMA map %d, error = %d\n",
3046 sc->sc_dev.dv_xname, idx, error);
3047 panic("wm_add_rxbuf"); /* XXX XXX XXX */
3048 }
3049
3050 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3051 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3052
3053 WM_INIT_RXDESC(sc, idx);
3054
3055 return (0);
3056 }
3057
3058 /*
3059 * wm_set_ral:
3060 *
3061 * Set an entery in the receive address list.
3062 */
3063 static void
3064 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3065 {
3066 uint32_t ral_lo, ral_hi;
3067
3068 if (enaddr != NULL) {
3069 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3070 (enaddr[3] << 24);
3071 ral_hi = enaddr[4] | (enaddr[5] << 8);
3072 ral_hi |= RAL_AV;
3073 } else {
3074 ral_lo = 0;
3075 ral_hi = 0;
3076 }
3077
3078 if (sc->sc_type >= WM_T_82544) {
3079 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3080 ral_lo);
3081 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3082 ral_hi);
3083 } else {
3084 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3085 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3086 }
3087 }
3088
3089 /*
3090 * wm_mchash:
3091 *
3092 * Compute the hash of the multicast address for the 4096-bit
3093 * multicast filter.
3094 */
3095 static uint32_t
3096 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3097 {
3098 static const int lo_shift[4] = { 4, 3, 2, 0 };
3099 static const int hi_shift[4] = { 4, 5, 6, 8 };
3100 uint32_t hash;
3101
3102 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3103 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3104
3105 return (hash & 0xfff);
3106 }
3107
3108 /*
3109 * wm_set_filter:
3110 *
3111 * Set up the receive filter.
3112 */
3113 static void
3114 wm_set_filter(struct wm_softc *sc)
3115 {
3116 struct ethercom *ec = &sc->sc_ethercom;
3117 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3118 struct ether_multi *enm;
3119 struct ether_multistep step;
3120 bus_addr_t mta_reg;
3121 uint32_t hash, reg, bit;
3122 int i;
3123
3124 if (sc->sc_type >= WM_T_82544)
3125 mta_reg = WMREG_CORDOVA_MTA;
3126 else
3127 mta_reg = WMREG_MTA;
3128
3129 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3130
3131 if (ifp->if_flags & IFF_BROADCAST)
3132 sc->sc_rctl |= RCTL_BAM;
3133 if (ifp->if_flags & IFF_PROMISC) {
3134 sc->sc_rctl |= RCTL_UPE;
3135 goto allmulti;
3136 }
3137
3138 /*
3139 * Set the station address in the first RAL slot, and
3140 * clear the remaining slots.
3141 */
3142 wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3143 for (i = 1; i < WM_RAL_TABSIZE; i++)
3144 wm_set_ral(sc, NULL, i);
3145
3146 /* Clear out the multicast table. */
3147 for (i = 0; i < WM_MC_TABSIZE; i++)
3148 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3149
3150 ETHER_FIRST_MULTI(step, ec, enm);
3151 while (enm != NULL) {
3152 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3153 /*
3154 * We must listen to a range of multicast addresses.
3155 * For now, just accept all multicasts, rather than
3156 * trying to set only those filter bits needed to match
3157 * the range. (At this time, the only use of address
3158 * ranges is for IP multicast routing, for which the
3159 * range is big enough to require all bits set.)
3160 */
3161 goto allmulti;
3162 }
3163
3164 hash = wm_mchash(sc, enm->enm_addrlo);
3165
3166 reg = (hash >> 5) & 0x7f;
3167 bit = hash & 0x1f;
3168
3169 hash = CSR_READ(sc, mta_reg + (reg << 2));
3170 hash |= 1U << bit;
3171
3172 /* XXX Hardware bug?? */
3173 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3174 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3175 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3176 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3177 } else
3178 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3179
3180 ETHER_NEXT_MULTI(step, enm);
3181 }
3182
3183 ifp->if_flags &= ~IFF_ALLMULTI;
3184 goto setit;
3185
3186 allmulti:
3187 ifp->if_flags |= IFF_ALLMULTI;
3188 sc->sc_rctl |= RCTL_MPE;
3189
3190 setit:
3191 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3192 }
3193
3194 /*
3195 * wm_tbi_mediainit:
3196 *
3197 * Initialize media for use on 1000BASE-X devices.
3198 */
3199 static void
3200 wm_tbi_mediainit(struct wm_softc *sc)
3201 {
3202 const char *sep = "";
3203
3204 if (sc->sc_type < WM_T_82543)
3205 sc->sc_tipg = TIPG_WM_DFLT;
3206 else
3207 sc->sc_tipg = TIPG_LG_DFLT;
3208
3209 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3210 wm_tbi_mediastatus);
3211
3212 /*
3213 * SWD Pins:
3214 *
3215 * 0 = Link LED (output)
3216 * 1 = Loss Of Signal (input)
3217 */
3218 sc->sc_ctrl |= CTRL_SWDPIO(0);
3219 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3220
3221 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3222
3223 #define ADD(ss, mm, dd) \
3224 do { \
3225 printf("%s%s", sep, ss); \
3226 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
3227 sep = ", "; \
3228 } while (/*CONSTCOND*/0)
3229
3230 printf("%s: ", sc->sc_dev.dv_xname);
3231 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3232 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3233 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3234 printf("\n");
3235
3236 #undef ADD
3237
3238 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3239 }
3240
3241 /*
3242 * wm_tbi_mediastatus: [ifmedia interface function]
3243 *
3244 * Get the current interface media status on a 1000BASE-X device.
3245 */
3246 static void
3247 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3248 {
3249 struct wm_softc *sc = ifp->if_softc;
3250 uint32_t ctrl;
3251
3252 ifmr->ifm_status = IFM_AVALID;
3253 ifmr->ifm_active = IFM_ETHER;
3254
3255 if (sc->sc_tbi_linkup == 0) {
3256 ifmr->ifm_active |= IFM_NONE;
3257 return;
3258 }
3259
3260 ifmr->ifm_status |= IFM_ACTIVE;
3261 ifmr->ifm_active |= IFM_1000_SX;
3262 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3263 ifmr->ifm_active |= IFM_FDX;
3264 ctrl = CSR_READ(sc, WMREG_CTRL);
3265 if (ctrl & CTRL_RFCE)
3266 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3267 if (ctrl & CTRL_TFCE)
3268 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3269 }
3270
3271 /*
3272 * wm_tbi_mediachange: [ifmedia interface function]
3273 *
3274 * Set hardware to newly-selected media on a 1000BASE-X device.
3275 */
3276 static int
3277 wm_tbi_mediachange(struct ifnet *ifp)
3278 {
3279 struct wm_softc *sc = ifp->if_softc;
3280 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3281 uint32_t status;
3282 int i;
3283
3284 sc->sc_txcw = ife->ifm_data;
3285 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3286 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3287 sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3288 sc->sc_txcw |= TXCW_ANE;
3289
3290 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3291 delay(10000);
3292
3293 /* NOTE: CTRL will update TFCE and RFCE automatically. */
3294
3295 sc->sc_tbi_anstate = 0;
3296
3297 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3298 /* Have signal; wait for the link to come up. */
3299 for (i = 0; i < 50; i++) {
3300 delay(10000);
3301 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3302 break;
3303 }
3304
3305 status = CSR_READ(sc, WMREG_STATUS);
3306 if (status & STATUS_LU) {
3307 /* Link is up. */
3308 DPRINTF(WM_DEBUG_LINK,
3309 ("%s: LINK: set media -> link up %s\n",
3310 sc->sc_dev.dv_xname,
3311 (status & STATUS_FD) ? "FDX" : "HDX"));
3312 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3313 sc->sc_fcrtl &= ~FCRTL_XONE;
3314 if (status & STATUS_FD)
3315 sc->sc_tctl |=
3316 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3317 else
3318 sc->sc_tctl |=
3319 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3320 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3321 sc->sc_fcrtl |= FCRTL_XONE;
3322 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3323 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3324 WMREG_OLD_FCRTL : WMREG_FCRTL,
3325 sc->sc_fcrtl);
3326 sc->sc_tbi_linkup = 1;
3327 } else {
3328 /* Link is down. */
3329 DPRINTF(WM_DEBUG_LINK,
3330 ("%s: LINK: set media -> link down\n",
3331 sc->sc_dev.dv_xname));
3332 sc->sc_tbi_linkup = 0;
3333 }
3334 } else {
3335 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3336 sc->sc_dev.dv_xname));
3337 sc->sc_tbi_linkup = 0;
3338 }
3339
3340 wm_tbi_set_linkled(sc);
3341
3342 return (0);
3343 }
3344
3345 /*
3346 * wm_tbi_set_linkled:
3347 *
3348 * Update the link LED on 1000BASE-X devices.
3349 */
3350 static void
3351 wm_tbi_set_linkled(struct wm_softc *sc)
3352 {
3353
3354 if (sc->sc_tbi_linkup)
3355 sc->sc_ctrl |= CTRL_SWDPIN(0);
3356 else
3357 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3358
3359 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3360 }
3361
3362 /*
3363 * wm_tbi_check_link:
3364 *
3365 * Check the link on 1000BASE-X devices.
3366 */
3367 static void
3368 wm_tbi_check_link(struct wm_softc *sc)
3369 {
3370 uint32_t rxcw, ctrl, status;
3371
3372 if (sc->sc_tbi_anstate == 0)
3373 return;
3374 else if (sc->sc_tbi_anstate > 1) {
3375 DPRINTF(WM_DEBUG_LINK,
3376 ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3377 sc->sc_tbi_anstate));
3378 sc->sc_tbi_anstate--;
3379 return;
3380 }
3381
3382 sc->sc_tbi_anstate = 0;
3383
3384 rxcw = CSR_READ(sc, WMREG_RXCW);
3385 ctrl = CSR_READ(sc, WMREG_CTRL);
3386 status = CSR_READ(sc, WMREG_STATUS);
3387
3388 if ((status & STATUS_LU) == 0) {
3389 DPRINTF(WM_DEBUG_LINK,
3390 ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3391 sc->sc_tbi_linkup = 0;
3392 } else {
3393 DPRINTF(WM_DEBUG_LINK,
3394 ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3395 (status & STATUS_FD) ? "FDX" : "HDX"));
3396 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3397 sc->sc_fcrtl &= ~FCRTL_XONE;
3398 if (status & STATUS_FD)
3399 sc->sc_tctl |=
3400 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3401 else
3402 sc->sc_tctl |=
3403 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3404 if (ctrl & CTRL_TFCE)
3405 sc->sc_fcrtl |= FCRTL_XONE;
3406 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3407 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3408 WMREG_OLD_FCRTL : WMREG_FCRTL,
3409 sc->sc_fcrtl);
3410 sc->sc_tbi_linkup = 1;
3411 }
3412
3413 wm_tbi_set_linkled(sc);
3414 }
3415
3416 /*
3417 * wm_gmii_reset:
3418 *
3419 * Reset the PHY.
3420 */
3421 static void
3422 wm_gmii_reset(struct wm_softc *sc)
3423 {
3424 uint32_t reg;
3425
3426 if (sc->sc_type >= WM_T_82544) {
3427 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3428 delay(20000);
3429
3430 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3431 delay(20000);
3432 } else {
3433 /* The PHY reset pin is active-low. */
3434 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3435 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3436 CTRL_EXT_SWDPIN(4));
3437 reg |= CTRL_EXT_SWDPIO(4);
3438
3439 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3440 delay(10);
3441
3442 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3443 delay(10);
3444
3445 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3446 delay(10);
3447 #if 0
3448 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3449 #endif
3450 }
3451 }
3452
3453 /*
3454 * wm_gmii_mediainit:
3455 *
3456 * Initialize media for use on 1000BASE-T devices.
3457 */
3458 static void
3459 wm_gmii_mediainit(struct wm_softc *sc)
3460 {
3461 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3462
3463 /* We have MII. */
3464 sc->sc_flags |= WM_F_HAS_MII;
3465
3466 sc->sc_tipg = TIPG_1000T_DFLT;
3467
3468 /*
3469 * Let the chip set speed/duplex on its own based on
3470 * signals from the PHY.
3471 */
3472 sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3473 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3474
3475 /* Initialize our media structures and probe the GMII. */
3476 sc->sc_mii.mii_ifp = ifp;
3477
3478 if (sc->sc_type >= WM_T_82544) {
3479 sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3480 sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3481 } else {
3482 sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3483 sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3484 }
3485 sc->sc_mii.mii_statchg = wm_gmii_statchg;
3486
3487 wm_gmii_reset(sc);
3488
3489 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3490 wm_gmii_mediastatus);
3491
3492 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3493 MII_OFFSET_ANY, MIIF_DOPAUSE);
3494 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3495 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3496 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3497 } else
3498 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3499 }
3500
3501 /*
3502 * wm_gmii_mediastatus: [ifmedia interface function]
3503 *
3504 * Get the current interface media status on a 1000BASE-T device.
3505 */
3506 static void
3507 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3508 {
3509 struct wm_softc *sc = ifp->if_softc;
3510
3511 mii_pollstat(&sc->sc_mii);
3512 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3513 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3514 sc->sc_flowflags;
3515 }
3516
3517 /*
3518 * wm_gmii_mediachange: [ifmedia interface function]
3519 *
3520 * Set hardware to newly-selected media on a 1000BASE-T device.
3521 */
3522 static int
3523 wm_gmii_mediachange(struct ifnet *ifp)
3524 {
3525 struct wm_softc *sc = ifp->if_softc;
3526
3527 if (ifp->if_flags & IFF_UP)
3528 mii_mediachg(&sc->sc_mii);
3529 return (0);
3530 }
3531
3532 #define MDI_IO CTRL_SWDPIN(2)
3533 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
3534 #define MDI_CLK CTRL_SWDPIN(3)
3535
3536 static void
3537 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3538 {
3539 uint32_t i, v;
3540
3541 v = CSR_READ(sc, WMREG_CTRL);
3542 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3543 v |= MDI_DIR | CTRL_SWDPIO(3);
3544
3545 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3546 if (data & i)
3547 v |= MDI_IO;
3548 else
3549 v &= ~MDI_IO;
3550 CSR_WRITE(sc, WMREG_CTRL, v);
3551 delay(10);
3552 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3553 delay(10);
3554 CSR_WRITE(sc, WMREG_CTRL, v);
3555 delay(10);
3556 }
3557 }
3558
3559 static uint32_t
3560 i82543_mii_recvbits(struct wm_softc *sc)
3561 {
3562 uint32_t v, i, data = 0;
3563
3564 v = CSR_READ(sc, WMREG_CTRL);
3565 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3566 v |= CTRL_SWDPIO(3);
3567
3568 CSR_WRITE(sc, WMREG_CTRL, v);
3569 delay(10);
3570 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3571 delay(10);
3572 CSR_WRITE(sc, WMREG_CTRL, v);
3573 delay(10);
3574
3575 for (i = 0; i < 16; i++) {
3576 data <<= 1;
3577 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3578 delay(10);
3579 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3580 data |= 1;
3581 CSR_WRITE(sc, WMREG_CTRL, v);
3582 delay(10);
3583 }
3584
3585 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3586 delay(10);
3587 CSR_WRITE(sc, WMREG_CTRL, v);
3588 delay(10);
3589
3590 return (data);
3591 }
3592
3593 #undef MDI_IO
3594 #undef MDI_DIR
3595 #undef MDI_CLK
3596
3597 /*
3598 * wm_gmii_i82543_readreg: [mii interface function]
3599 *
3600 * Read a PHY register on the GMII (i82543 version).
3601 */
3602 static int
3603 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3604 {
3605 struct wm_softc *sc = (void *) self;
3606 int rv;
3607
3608 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3609 i82543_mii_sendbits(sc, reg | (phy << 5) |
3610 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3611 rv = i82543_mii_recvbits(sc) & 0xffff;
3612
3613 DPRINTF(WM_DEBUG_GMII,
3614 ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3615 sc->sc_dev.dv_xname, phy, reg, rv));
3616
3617 return (rv);
3618 }
3619
3620 /*
3621 * wm_gmii_i82543_writereg: [mii interface function]
3622 *
3623 * Write a PHY register on the GMII (i82543 version).
3624 */
3625 static void
3626 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3627 {
3628 struct wm_softc *sc = (void *) self;
3629
3630 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3631 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3632 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3633 (MII_COMMAND_START << 30), 32);
3634 }
3635
3636 /*
3637 * wm_gmii_i82544_readreg: [mii interface function]
3638 *
3639 * Read a PHY register on the GMII.
3640 */
3641 static int
3642 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
3643 {
3644 struct wm_softc *sc = (void *) self;
3645 uint32_t mdic = 0;
3646 int i, rv;
3647
3648 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
3649 MDIC_REGADD(reg));
3650
3651 for (i = 0; i < 100; i++) {
3652 mdic = CSR_READ(sc, WMREG_MDIC);
3653 if (mdic & MDIC_READY)
3654 break;
3655 delay(10);
3656 }
3657
3658 if ((mdic & MDIC_READY) == 0) {
3659 printf("%s: MDIC read timed out: phy %d reg %d\n",
3660 sc->sc_dev.dv_xname, phy, reg);
3661 rv = 0;
3662 } else if (mdic & MDIC_E) {
3663 #if 0 /* This is normal if no PHY is present. */
3664 printf("%s: MDIC read error: phy %d reg %d\n",
3665 sc->sc_dev.dv_xname, phy, reg);
3666 #endif
3667 rv = 0;
3668 } else {
3669 rv = MDIC_DATA(mdic);
3670 if (rv == 0xffff)
3671 rv = 0;
3672 }
3673
3674 return (rv);
3675 }
3676
3677 /*
3678 * wm_gmii_i82544_writereg: [mii interface function]
3679 *
3680 * Write a PHY register on the GMII.
3681 */
3682 static void
3683 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
3684 {
3685 struct wm_softc *sc = (void *) self;
3686 uint32_t mdic = 0;
3687 int i;
3688
3689 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
3690 MDIC_REGADD(reg) | MDIC_DATA(val));
3691
3692 for (i = 0; i < 100; i++) {
3693 mdic = CSR_READ(sc, WMREG_MDIC);
3694 if (mdic & MDIC_READY)
3695 break;
3696 delay(10);
3697 }
3698
3699 if ((mdic & MDIC_READY) == 0)
3700 printf("%s: MDIC write timed out: phy %d reg %d\n",
3701 sc->sc_dev.dv_xname, phy, reg);
3702 else if (mdic & MDIC_E)
3703 printf("%s: MDIC write error: phy %d reg %d\n",
3704 sc->sc_dev.dv_xname, phy, reg);
3705 }
3706
3707 /*
3708 * wm_gmii_statchg: [mii interface function]
3709 *
3710 * Callback from MII layer when media changes.
3711 */
3712 static void
3713 wm_gmii_statchg(struct device *self)
3714 {
3715 struct wm_softc *sc = (void *) self;
3716 struct mii_data *mii = &sc->sc_mii;
3717
3718 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
3719 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3720 sc->sc_fcrtl &= ~FCRTL_XONE;
3721
3722 /*
3723 * Get flow control negotiation result.
3724 */
3725 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3726 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3727 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3728 mii->mii_media_active &= ~IFM_ETH_FMASK;
3729 }
3730
3731 if (sc->sc_flowflags & IFM_FLOW) {
3732 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
3733 sc->sc_ctrl |= CTRL_TFCE;
3734 sc->sc_fcrtl |= FCRTL_XONE;
3735 }
3736 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3737 sc->sc_ctrl |= CTRL_RFCE;
3738 }
3739
3740 if (sc->sc_mii.mii_media_active & IFM_FDX) {
3741 DPRINTF(WM_DEBUG_LINK,
3742 ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3743 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3744 } else {
3745 DPRINTF(WM_DEBUG_LINK,
3746 ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3747 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3748 }
3749
3750 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3751 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3752 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
3753 : WMREG_FCRTL, sc->sc_fcrtl);
3754 }
3755