if_wm.c revision 1.799 1 /* $NetBSD: if_wm.c,v 1.799 2024/06/29 12:11:12 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*******************************************************************************
39
40 Copyright (c) 2001-2005, Intel Corporation
41 All rights reserved.
42
43 Redistribution and use in source and binary forms, with or without
44 modification, are permitted provided that the following conditions are met:
45
46 1. Redistributions of source code must retain the above copyright notice,
47 this list of conditions and the following disclaimer.
48
49 2. Redistributions in binary form must reproduce the above copyright
50 notice, this list of conditions and the following disclaimer in the
51 documentation and/or other materials provided with the distribution.
52
53 3. Neither the name of the Intel Corporation nor the names of its
54 contributors may be used to endorse or promote products derived from
55 this software without specific prior written permission.
56
57 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
58 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
61 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67 POSSIBILITY OF SUCH DAMAGE.
68
69 *******************************************************************************/
70 /*
71 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
72 *
73 * TODO (in order of importance):
74 *
75 * - Check XXX'ed comments
76 * - TX Multi queue improvement (refine queue selection logic)
77 * - Split header buffer for newer descriptors
78 * - EEE (Energy Efficiency Ethernet) for I354
79 * - Virtual Function
80 * - Set LED correctly (based on contents in EEPROM)
81 * - Rework how parameters are loaded from the EEPROM.
82 */
83
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.799 2024/06/29 12:11:12 riastradh Exp $");
86
87 #ifdef _KERNEL_OPT
88 #include "opt_if_wm.h"
89 #endif
90
91 #include <sys/param.h>
92
93 #include <sys/atomic.h>
94 #include <sys/callout.h>
95 #include <sys/cpu.h>
96 #include <sys/device.h>
97 #include <sys/errno.h>
98 #include <sys/interrupt.h>
99 #include <sys/ioctl.h>
100 #include <sys/kernel.h>
101 #include <sys/kmem.h>
102 #include <sys/mbuf.h>
103 #include <sys/pcq.h>
104 #include <sys/queue.h>
105 #include <sys/rndsource.h>
106 #include <sys/socket.h>
107 #include <sys/sysctl.h>
108 #include <sys/syslog.h>
109 #include <sys/systm.h>
110 #include <sys/workqueue.h>
111
112 #include <net/if.h>
113 #include <net/if_dl.h>
114 #include <net/if_media.h>
115 #include <net/if_ether.h>
116
117 #include <net/bpf.h>
118
119 #include <net/rss_config.h>
120
121 #include <netinet/in.h> /* XXX for struct ip */
122 #include <netinet/in_systm.h> /* XXX for struct ip */
123 #include <netinet/ip.h> /* XXX for struct ip */
124 #include <netinet/ip6.h> /* XXX for struct ip6_hdr */
125 #include <netinet/tcp.h> /* XXX for struct tcphdr */
126
127 #include <sys/bus.h>
128 #include <sys/intr.h>
129 #include <machine/endian.h>
130
131 #include <dev/mii/mii.h>
132 #include <dev/mii/mdio.h>
133 #include <dev/mii/miivar.h>
134 #include <dev/mii/miidevs.h>
135 #include <dev/mii/mii_bitbang.h>
136 #include <dev/mii/ikphyreg.h>
137 #include <dev/mii/igphyreg.h>
138 #include <dev/mii/igphyvar.h>
139 #include <dev/mii/inbmphyreg.h>
140 #include <dev/mii/ihphyreg.h>
141 #include <dev/mii/makphyreg.h>
142
143 #include <dev/pci/pcireg.h>
144 #include <dev/pci/pcivar.h>
145 #include <dev/pci/pcidevs.h>
146
147 #include <dev/pci/if_wmreg.h>
148 #include <dev/pci/if_wmvar.h>
149
150 #ifdef WM_DEBUG
151 #define WM_DEBUG_LINK __BIT(0)
152 #define WM_DEBUG_TX __BIT(1)
153 #define WM_DEBUG_RX __BIT(2)
154 #define WM_DEBUG_GMII __BIT(3)
155 #define WM_DEBUG_MANAGE __BIT(4)
156 #define WM_DEBUG_NVM __BIT(5)
157 #define WM_DEBUG_INIT __BIT(6)
158 #define WM_DEBUG_LOCK __BIT(7)
159
160 #if 0
161 #define WM_DEBUG_DEFAULT WM_DEBUG_TX | WM_DEBUG_RX | WM_DEBUG_LINK | \
162 WM_DEBUG_GMII | WM_DEBUG_MANAGE | WM_DEBUG_NVM | WM_DEBUG_INIT | \
163 WM_DEBUG_LOCK
164 #endif
165
166 #define DPRINTF(sc, x, y) \
167 do { \
168 if ((sc)->sc_debug & (x)) \
169 printf y; \
170 } while (0)
171 #else
172 #define DPRINTF(sc, x, y) __nothing
173 #endif /* WM_DEBUG */
174
175 #define WM_WORKQUEUE_PRI PRI_SOFTNET
176
177 /*
178 * This device driver's max interrupt numbers.
179 */
180 #define WM_MAX_NQUEUEINTR 16
181 #define WM_MAX_NINTR (WM_MAX_NQUEUEINTR + 1)
182
183 #ifndef WM_DISABLE_MSI
184 #define WM_DISABLE_MSI 0
185 #endif
186 #ifndef WM_DISABLE_MSIX
187 #define WM_DISABLE_MSIX 0
188 #endif
189
190 int wm_disable_msi = WM_DISABLE_MSI;
191 int wm_disable_msix = WM_DISABLE_MSIX;
192
193 #ifndef WM_WATCHDOG_TIMEOUT
194 #define WM_WATCHDOG_TIMEOUT 5
195 #endif
196 static int wm_watchdog_timeout = WM_WATCHDOG_TIMEOUT;
197
198 /*
199 * Transmit descriptor list size. Due to errata, we can only have
200 * 256 hardware descriptors in the ring on < 82544, but we use 4096
201 * on >= 82544. We tell the upper layers that they can queue a lot
202 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
203 * of them at a time.
204 *
205 * We allow up to 64 DMA segments per packet. Pathological packet
206 * chains containing many small mbufs have been observed in zero-copy
207 * situations with jumbo frames. If a mbuf chain has more than 64 DMA segments,
208 * m_defrag() is called to reduce it.
209 */
210 #define WM_NTXSEGS 64
211 #define WM_IFQUEUELEN 256
212 #define WM_TXQUEUELEN_MAX 64
213 #define WM_TXQUEUELEN_MAX_82547 16
214 #define WM_TXQUEUELEN(txq) ((txq)->txq_num)
215 #define WM_TXQUEUELEN_MASK(txq) (WM_TXQUEUELEN(txq) - 1)
216 #define WM_TXQUEUE_GC(txq) (WM_TXQUEUELEN(txq) / 8)
217 #define WM_NTXDESC_82542 256
218 #define WM_NTXDESC_82544 4096
219 #define WM_NTXDESC(txq) ((txq)->txq_ndesc)
220 #define WM_NTXDESC_MASK(txq) (WM_NTXDESC(txq) - 1)
221 #define WM_TXDESCS_SIZE(txq) (WM_NTXDESC(txq) * (txq)->txq_descsize)
222 #define WM_NEXTTX(txq, x) (((x) + 1) & WM_NTXDESC_MASK(txq))
223 #define WM_NEXTTXS(txq, x) (((x) + 1) & WM_TXQUEUELEN_MASK(txq))
224
225 #define WM_MAXTXDMA (2 * round_page(IP_MAXPACKET)) /* for TSO */
226
227 #define WM_TXINTERQSIZE 256
228
229 #ifndef WM_TX_PROCESS_LIMIT_DEFAULT
230 #define WM_TX_PROCESS_LIMIT_DEFAULT 100U
231 #endif
232 #ifndef WM_TX_INTR_PROCESS_LIMIT_DEFAULT
233 #define WM_TX_INTR_PROCESS_LIMIT_DEFAULT 0U
234 #endif
235
236 /*
237 * Receive descriptor list size. We have one Rx buffer for normal
238 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
239 * packet. We allocate 256 receive descriptors, each with a 2k
240 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
241 */
242 #define WM_NRXDESC 256U
243 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
244 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
245 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
246
247 #ifndef WM_RX_PROCESS_LIMIT_DEFAULT
248 #define WM_RX_PROCESS_LIMIT_DEFAULT 100U
249 #endif
250 #ifndef WM_RX_INTR_PROCESS_LIMIT_DEFAULT
251 #define WM_RX_INTR_PROCESS_LIMIT_DEFAULT 0U
252 #endif
253
254 typedef union txdescs {
255 wiseman_txdesc_t sctxu_txdescs[WM_NTXDESC_82544];
256 nq_txdesc_t sctxu_nq_txdescs[WM_NTXDESC_82544];
257 } txdescs_t;
258
259 typedef union rxdescs {
260 wiseman_rxdesc_t sctxu_rxdescs[WM_NRXDESC];
261 ext_rxdesc_t sctxu_ext_rxdescs[WM_NRXDESC]; /* 82574 only */
262 nq_rxdesc_t sctxu_nq_rxdescs[WM_NRXDESC]; /* 82575 and newer */
263 } rxdescs_t;
264
265 #define WM_CDTXOFF(txq, x) ((txq)->txq_descsize * (x))
266 #define WM_CDRXOFF(rxq, x) ((rxq)->rxq_descsize * (x))
267
268 /*
269 * Software state for transmit jobs.
270 */
271 struct wm_txsoft {
272 struct mbuf *txs_mbuf; /* head of our mbuf chain */
273 bus_dmamap_t txs_dmamap; /* our DMA map */
274 int txs_firstdesc; /* first descriptor in packet */
275 int txs_lastdesc; /* last descriptor in packet */
276 int txs_ndesc; /* # of descriptors used */
277 };
278
279 /*
280 * Software state for receive buffers. Each descriptor gets a 2k (MCLBYTES)
281 * buffer and a DMA map. For packets which fill more than one buffer, we chain
282 * them together.
283 */
284 struct wm_rxsoft {
285 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
286 bus_dmamap_t rxs_dmamap; /* our DMA map */
287 };
288
289 #define WM_LINKUP_TIMEOUT 50
290
291 static uint16_t swfwphysem[] = {
292 SWFW_PHY0_SM,
293 SWFW_PHY1_SM,
294 SWFW_PHY2_SM,
295 SWFW_PHY3_SM
296 };
297
298 static const uint32_t wm_82580_rxpbs_table[] = {
299 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140
300 };
301
302 struct wm_softc;
303
304 #if defined(_LP64) && !defined(WM_DISABLE_EVENT_COUNTERS)
305 #if !defined(WM_EVENT_COUNTERS)
306 #define WM_EVENT_COUNTERS 1
307 #endif
308 #endif
309
310 #ifdef WM_EVENT_COUNTERS
311 #define WM_Q_EVCNT_DEFINE(qname, evname) \
312 char qname##_##evname##_evcnt_name[sizeof("qname##XX##evname")]; \
313 struct evcnt qname##_ev_##evname
314
315 #define WM_Q_EVCNT_ATTACH(qname, evname, q, qnum, xname, evtype) \
316 do { \
317 snprintf((q)->qname##_##evname##_evcnt_name, \
318 sizeof((q)->qname##_##evname##_evcnt_name), \
319 "%s%02d%s", #qname, (qnum), #evname); \
320 evcnt_attach_dynamic(&(q)->qname##_ev_##evname, \
321 (evtype), NULL, (xname), \
322 (q)->qname##_##evname##_evcnt_name); \
323 } while (0)
324
325 #define WM_Q_MISC_EVCNT_ATTACH(qname, evname, q, qnum, xname) \
326 WM_Q_EVCNT_ATTACH(qname, evname, q, qnum, xname, EVCNT_TYPE_MISC)
327
328 #define WM_Q_INTR_EVCNT_ATTACH(qname, evname, q, qnum, xname) \
329 WM_Q_EVCNT_ATTACH(qname, evname, q, qnum, xname, EVCNT_TYPE_INTR)
330
331 #define WM_Q_EVCNT_DETACH(qname, evname, q, qnum) \
332 evcnt_detach(&(q)->qname##_ev_##evname)
333 #endif /* WM_EVENT_COUNTERS */
334
335 struct wm_txqueue {
336 kmutex_t *txq_lock; /* lock for tx operations */
337
338 struct wm_softc *txq_sc; /* shortcut (skip struct wm_queue) */
339
340 /* Software state for the transmit descriptors. */
341 int txq_num; /* must be a power of two */
342 struct wm_txsoft txq_soft[WM_TXQUEUELEN_MAX];
343
344 /* TX control data structures. */
345 int txq_ndesc; /* must be a power of two */
346 size_t txq_descsize; /* a tx descriptor size */
347 txdescs_t *txq_descs_u;
348 bus_dmamap_t txq_desc_dmamap; /* control data DMA map */
349 bus_dma_segment_t txq_desc_seg; /* control data segment */
350 int txq_desc_rseg; /* real number of control segment */
351 #define txq_desc_dma txq_desc_dmamap->dm_segs[0].ds_addr
352 #define txq_descs txq_descs_u->sctxu_txdescs
353 #define txq_nq_descs txq_descs_u->sctxu_nq_txdescs
354
355 bus_addr_t txq_tdt_reg; /* offset of TDT register */
356
357 int txq_free; /* number of free Tx descriptors */
358 int txq_next; /* next ready Tx descriptor */
359
360 int txq_sfree; /* number of free Tx jobs */
361 int txq_snext; /* next free Tx job */
362 int txq_sdirty; /* dirty Tx jobs */
363
364 /* These 4 variables are used only on the 82547. */
365 int txq_fifo_size; /* Tx FIFO size */
366 int txq_fifo_head; /* current head of FIFO */
367 uint32_t txq_fifo_addr; /* internal address of start of FIFO */
368 int txq_fifo_stall; /* Tx FIFO is stalled */
369
370 /*
371 * When ncpu > number of Tx queues, a Tx queue is shared by multiple
372 * CPUs. This queue intermediate them without block.
373 */
374 pcq_t *txq_interq;
375
376 /*
377 * NEWQUEUE devices must use not ifp->if_flags but txq->txq_flags
378 * to manage Tx H/W queue's busy flag.
379 */
380 int txq_flags; /* flags for H/W queue, see below */
381 #define WM_TXQ_NO_SPACE 0x1
382 #define WM_TXQ_LINKDOWN_DISCARD 0x2
383
384 bool txq_stopping;
385
386 bool txq_sending;
387 time_t txq_lastsent;
388
389 /* Checksum flags used for previous packet */
390 uint32_t txq_last_hw_cmd;
391 uint8_t txq_last_hw_fields;
392 uint16_t txq_last_hw_ipcs;
393 uint16_t txq_last_hw_tucs;
394
395 uint32_t txq_packets; /* for AIM */
396 uint32_t txq_bytes; /* for AIM */
397 #ifdef WM_EVENT_COUNTERS
398 /* TX event counters */
399 WM_Q_EVCNT_DEFINE(txq, txsstall); /* Stalled due to no txs */
400 WM_Q_EVCNT_DEFINE(txq, txdstall); /* Stalled due to no txd */
401 WM_Q_EVCNT_DEFINE(txq, fifo_stall); /* FIFO stalls (82547) */
402 WM_Q_EVCNT_DEFINE(txq, txdw); /* Tx descriptor interrupts */
403 WM_Q_EVCNT_DEFINE(txq, txqe); /* Tx queue empty interrupts */
404 /* XXX not used? */
405
406 WM_Q_EVCNT_DEFINE(txq, ipsum); /* IP checksums comp. */
407 WM_Q_EVCNT_DEFINE(txq, tusum); /* TCP/UDP cksums comp. */
408 WM_Q_EVCNT_DEFINE(txq, tusum6); /* TCP/UDP v6 cksums comp. */
409 WM_Q_EVCNT_DEFINE(txq, tso); /* TCP seg offload (IPv4) */
410 WM_Q_EVCNT_DEFINE(txq, tso6); /* TCP seg offload (IPv6) */
411 WM_Q_EVCNT_DEFINE(txq, tsopain); /* Painful header manip. for TSO */
412 WM_Q_EVCNT_DEFINE(txq, pcqdrop); /* Pkt dropped in pcq */
413 WM_Q_EVCNT_DEFINE(txq, descdrop); /* Pkt dropped in MAC desc ring */
414 /* other than toomanyseg */
415
416 WM_Q_EVCNT_DEFINE(txq, toomanyseg); /* Pkt dropped(toomany DMA segs) */
417 WM_Q_EVCNT_DEFINE(txq, defrag); /* m_defrag() */
418 WM_Q_EVCNT_DEFINE(txq, underrun); /* Tx underrun */
419 WM_Q_EVCNT_DEFINE(txq, skipcontext); /* Tx skip wrong cksum context */
420
421 char txq_txseg_evcnt_names[WM_NTXSEGS][sizeof("txqXXtxsegXXX")];
422 struct evcnt txq_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
423 #endif /* WM_EVENT_COUNTERS */
424 };
425
426 struct wm_rxqueue {
427 kmutex_t *rxq_lock; /* lock for rx operations */
428
429 struct wm_softc *rxq_sc; /* shortcut (skip struct wm_queue) */
430
431 /* Software state for the receive descriptors. */
432 struct wm_rxsoft rxq_soft[WM_NRXDESC];
433
434 /* RX control data structures. */
435 int rxq_ndesc; /* must be a power of two */
436 size_t rxq_descsize; /* a rx descriptor size */
437 rxdescs_t *rxq_descs_u;
438 bus_dmamap_t rxq_desc_dmamap; /* control data DMA map */
439 bus_dma_segment_t rxq_desc_seg; /* control data segment */
440 int rxq_desc_rseg; /* real number of control segment */
441 #define rxq_desc_dma rxq_desc_dmamap->dm_segs[0].ds_addr
442 #define rxq_descs rxq_descs_u->sctxu_rxdescs
443 #define rxq_ext_descs rxq_descs_u->sctxu_ext_rxdescs
444 #define rxq_nq_descs rxq_descs_u->sctxu_nq_rxdescs
445
446 bus_addr_t rxq_rdt_reg; /* offset of RDT register */
447
448 int rxq_ptr; /* next ready Rx desc/queue ent */
449 int rxq_discard;
450 int rxq_len;
451 struct mbuf *rxq_head;
452 struct mbuf *rxq_tail;
453 struct mbuf **rxq_tailp;
454
455 bool rxq_stopping;
456
457 uint32_t rxq_packets; /* for AIM */
458 uint32_t rxq_bytes; /* for AIM */
459 #ifdef WM_EVENT_COUNTERS
460 /* RX event counters */
461 WM_Q_EVCNT_DEFINE(rxq, intr); /* Interrupts */
462 WM_Q_EVCNT_DEFINE(rxq, defer); /* Rx deferred processing */
463 WM_Q_EVCNT_DEFINE(rxq, ipsum); /* IP checksums checked */
464 WM_Q_EVCNT_DEFINE(rxq, tusum); /* TCP/UDP cksums checked */
465 WM_Q_EVCNT_DEFINE(rxq, qdrop); /* Rx queue drop packet */
466 #endif
467 };
468
469 struct wm_queue {
470 int wmq_id; /* index of TX/RX queues */
471 int wmq_intr_idx; /* index of MSI-X tables */
472
473 uint32_t wmq_itr; /* interrupt interval per queue. */
474 bool wmq_set_itr;
475
476 struct wm_txqueue wmq_txq;
477 struct wm_rxqueue wmq_rxq;
478 char sysctlname[32]; /* Name for sysctl */
479
480 bool wmq_txrx_use_workqueue;
481 bool wmq_wq_enqueued;
482 struct work wmq_cookie;
483 void *wmq_si;
484 };
485
486 struct wm_phyop {
487 int (*acquire)(struct wm_softc *) __attribute__((warn_unused_result));
488 void (*release)(struct wm_softc *);
489 int (*readreg_locked)(device_t, int, int, uint16_t *);
490 int (*writereg_locked)(device_t, int, int, uint16_t);
491 int reset_delay_us;
492 bool no_errprint;
493 };
494
495 struct wm_nvmop {
496 int (*acquire)(struct wm_softc *) __attribute__((warn_unused_result));
497 void (*release)(struct wm_softc *);
498 int (*read)(struct wm_softc *, int, int, uint16_t *);
499 };
500
501 /*
502 * Software state per device.
503 */
504 struct wm_softc {
505 device_t sc_dev; /* generic device information */
506 bus_space_tag_t sc_st; /* bus space tag */
507 bus_space_handle_t sc_sh; /* bus space handle */
508 bus_size_t sc_ss; /* bus space size */
509 bus_space_tag_t sc_iot; /* I/O space tag */
510 bus_space_handle_t sc_ioh; /* I/O space handle */
511 bus_size_t sc_ios; /* I/O space size */
512 bus_space_tag_t sc_flasht; /* flash registers space tag */
513 bus_space_handle_t sc_flashh; /* flash registers space handle */
514 bus_size_t sc_flashs; /* flash registers space size */
515 off_t sc_flashreg_offset; /*
516 * offset to flash registers from
517 * start of BAR
518 */
519 bus_dma_tag_t sc_dmat; /* bus DMA tag */
520
521 struct ethercom sc_ethercom; /* Ethernet common data */
522 struct mii_data sc_mii; /* MII/media information */
523
524 pci_chipset_tag_t sc_pc;
525 pcitag_t sc_pcitag;
526 int sc_bus_speed; /* PCI/PCIX bus speed */
527 int sc_pcixe_capoff; /* PCI[Xe] capability reg offset */
528
529 uint16_t sc_pcidevid; /* PCI device ID */
530 wm_chip_type sc_type; /* MAC type */
531 int sc_rev; /* MAC revision */
532 wm_phy_type sc_phytype; /* PHY type */
533 uint8_t sc_sfptype; /* SFP type */
534 uint32_t sc_mediatype; /* Media type (Copper, Fiber, SERDES)*/
535 #define WM_MEDIATYPE_UNKNOWN 0x00
536 #define WM_MEDIATYPE_FIBER 0x01
537 #define WM_MEDIATYPE_COPPER 0x02
538 #define WM_MEDIATYPE_SERDES 0x03 /* Internal SERDES */
539 int sc_funcid; /* unit number of the chip (0 to 3) */
540 u_int sc_flags; /* flags; see below */
541 u_short sc_if_flags; /* last if_flags */
542 int sc_ec_capenable; /* last ec_capenable */
543 int sc_flowflags; /* 802.3x flow control flags */
544 uint16_t eee_lp_ability; /* EEE link partner's ability */
545 int sc_align_tweak;
546
547 void *sc_ihs[WM_MAX_NINTR]; /*
548 * interrupt cookie.
549 * - legacy and msi use sc_ihs[0] only
550 * - msix use sc_ihs[0] to sc_ihs[nintrs-1]
551 */
552 pci_intr_handle_t *sc_intrs; /*
553 * legacy and msi use sc_intrs[0] only
554 * msix use sc_intrs[0] to sc_ihs[nintrs-1]
555 */
556 int sc_nintrs; /* number of interrupts */
557
558 int sc_link_intr_idx; /* index of MSI-X tables */
559
560 callout_t sc_tick_ch; /* tick callout */
561 bool sc_core_stopping;
562
563 int sc_nvm_ver_major;
564 int sc_nvm_ver_minor;
565 int sc_nvm_ver_build;
566 int sc_nvm_addrbits; /* NVM address bits */
567 unsigned int sc_nvm_wordsize; /* NVM word size */
568 int sc_ich8_flash_base;
569 int sc_ich8_flash_bank_size;
570 int sc_nvm_k1_enabled;
571
572 int sc_nqueues;
573 struct wm_queue *sc_queue;
574 u_int sc_tx_process_limit; /* Tx proc. repeat limit in softint */
575 u_int sc_tx_intr_process_limit; /* Tx proc. repeat limit in H/W intr */
576 u_int sc_rx_process_limit; /* Rx proc. repeat limit in softint */
577 u_int sc_rx_intr_process_limit; /* Rx proc. repeat limit in H/W intr */
578 struct workqueue *sc_queue_wq;
579 bool sc_txrx_use_workqueue;
580
581 int sc_affinity_offset;
582
583 #ifdef WM_EVENT_COUNTERS
584 /* Event counters. */
585 struct evcnt sc_ev_linkintr; /* Link interrupts */
586
587 /* >= WM_T_82542_2_1 */
588 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
589 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
590 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
591 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
592 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
593
594 struct evcnt sc_ev_crcerrs; /* CRC Error */
595 struct evcnt sc_ev_algnerrc; /* Alignment Error */
596 struct evcnt sc_ev_symerrc; /* Symbol Error */
597 struct evcnt sc_ev_rxerrc; /* Receive Error */
598 struct evcnt sc_ev_mpc; /* Missed Packets */
599 struct evcnt sc_ev_scc; /* Single Collision */
600 struct evcnt sc_ev_ecol; /* Excessive Collision */
601 struct evcnt sc_ev_mcc; /* Multiple Collision */
602 struct evcnt sc_ev_latecol; /* Late Collision */
603 struct evcnt sc_ev_colc; /* Collision */
604 struct evcnt sc_ev_cbtmpc; /* Circuit Breaker Tx Mng. Packet */
605 struct evcnt sc_ev_dc; /* Defer */
606 struct evcnt sc_ev_tncrs; /* Tx-No CRS */
607 struct evcnt sc_ev_sec; /* Sequence Error */
608
609 /* Old */
610 struct evcnt sc_ev_cexterr; /* Carrier Extension Error */
611 /* New */
612 struct evcnt sc_ev_htdpmc; /* Host Tx Discarded Pkts by MAC */
613
614 struct evcnt sc_ev_rlec; /* Receive Length Error */
615 struct evcnt sc_ev_cbrdpc; /* Circuit Breaker Rx Dropped Packet */
616 struct evcnt sc_ev_prc64; /* Packets Rx (64 bytes) */
617 struct evcnt sc_ev_prc127; /* Packets Rx (65-127 bytes) */
618 struct evcnt sc_ev_prc255; /* Packets Rx (128-255 bytes) */
619 struct evcnt sc_ev_prc511; /* Packets Rx (256-511 bytes) */
620 struct evcnt sc_ev_prc1023; /* Packets Rx (512-1023 bytes) */
621 struct evcnt sc_ev_prc1522; /* Packets Rx (1024-1522 bytes) */
622 struct evcnt sc_ev_gprc; /* Good Packets Rx */
623 struct evcnt sc_ev_bprc; /* Broadcast Packets Rx */
624 struct evcnt sc_ev_mprc; /* Multicast Packets Rx */
625 struct evcnt sc_ev_gptc; /* Good Packets Tx */
626 struct evcnt sc_ev_gorc; /* Good Octets Rx */
627 struct evcnt sc_ev_gotc; /* Good Octets Tx */
628 struct evcnt sc_ev_rnbc; /* Rx No Buffers */
629 struct evcnt sc_ev_ruc; /* Rx Undersize */
630 struct evcnt sc_ev_rfc; /* Rx Fragment */
631 struct evcnt sc_ev_roc; /* Rx Oversize */
632 struct evcnt sc_ev_rjc; /* Rx Jabber */
633 struct evcnt sc_ev_mgtprc; /* Management Packets RX */
634 struct evcnt sc_ev_mgtpdc; /* Management Packets Dropped */
635 struct evcnt sc_ev_mgtptc; /* Management Packets TX */
636 struct evcnt sc_ev_tor; /* Total Octets Rx */
637 struct evcnt sc_ev_tot; /* Total Octets Tx */
638 struct evcnt sc_ev_tpr; /* Total Packets Rx */
639 struct evcnt sc_ev_tpt; /* Total Packets Tx */
640 struct evcnt sc_ev_ptc64; /* Packets Tx (64 bytes) */
641 struct evcnt sc_ev_ptc127; /* Packets Tx (65-127 bytes) */
642 struct evcnt sc_ev_ptc255; /* Packets Tx (128-255 bytes) */
643 struct evcnt sc_ev_ptc511; /* Packets Tx (256-511 bytes) */
644 struct evcnt sc_ev_ptc1023; /* Packets Tx (512-1023 bytes) */
645 struct evcnt sc_ev_ptc1522; /* Packets Tx (1024-1522 Bytes) */
646 struct evcnt sc_ev_mptc; /* Multicast Packets Tx */
647 struct evcnt sc_ev_bptc; /* Broadcast Packets Tx */
648 struct evcnt sc_ev_tsctc; /* TCP Segmentation Context Tx */
649
650 /* Old */
651 struct evcnt sc_ev_tsctfc; /* TCP Segmentation Context Tx Fail */
652 /* New */
653 struct evcnt sc_ev_cbrmpc; /* Circuit Breaker Rx Mng. Packet */
654
655 struct evcnt sc_ev_iac; /* Interrupt Assertion */
656
657 /* Old */
658 struct evcnt sc_ev_icrxptc; /* Intr. Cause Rx Pkt Timer Expire */
659 struct evcnt sc_ev_icrxatc; /* Intr. Cause Rx Abs Timer Expire */
660 struct evcnt sc_ev_ictxptc; /* Intr. Cause Tx Pkt Timer Expire */
661 struct evcnt sc_ev_ictxatc; /* Intr. Cause Tx Abs Timer Expire */
662 struct evcnt sc_ev_ictxqec; /* Intr. Cause Tx Queue Empty */
663 struct evcnt sc_ev_ictxqmtc; /* Intr. Cause Tx Queue Min Thresh */
664 /*
665 * sc_ev_rxdmtc is shared with both "Intr. cause" and
666 * non "Intr. cause" register.
667 */
668 struct evcnt sc_ev_rxdmtc; /* (Intr. Cause) Rx Desc Min Thresh */
669 struct evcnt sc_ev_icrxoc; /* Intr. Cause Receiver Overrun */
670 /* New */
671 struct evcnt sc_ev_rpthc; /* Rx Packets To Host */
672 struct evcnt sc_ev_debug1; /* Debug Counter 1 */
673 struct evcnt sc_ev_debug2; /* Debug Counter 2 */
674 struct evcnt sc_ev_debug3; /* Debug Counter 3 */
675 struct evcnt sc_ev_hgptc; /* Host Good Packets TX */
676 struct evcnt sc_ev_debug4; /* Debug Counter 4 */
677 struct evcnt sc_ev_htcbdpc; /* Host Tx Circuit Breaker Drp. Pkts */
678 struct evcnt sc_ev_hgorc; /* Host Good Octets Rx */
679 struct evcnt sc_ev_hgotc; /* Host Good Octets Tx */
680 struct evcnt sc_ev_lenerrs; /* Length Error */
681 struct evcnt sc_ev_tlpic; /* EEE Tx LPI */
682 struct evcnt sc_ev_rlpic; /* EEE Rx LPI */
683 struct evcnt sc_ev_b2ogprc; /* BMC2OS pkts received by host */
684 struct evcnt sc_ev_o2bspc; /* OS2BMC pkts transmitted by host */
685 struct evcnt sc_ev_b2ospc; /* BMC2OS pkts sent by BMC */
686 struct evcnt sc_ev_o2bgptc; /* OS2BMC pkts received by BMC */
687 struct evcnt sc_ev_scvpc; /* SerDes/SGMII Code Violation Pkt. */
688 struct evcnt sc_ev_hrmpc; /* Header Redirection Missed Packet */
689 #endif /* WM_EVENT_COUNTERS */
690
691 struct sysctllog *sc_sysctllog;
692
693 /* This variable are used only on the 82547. */
694 callout_t sc_txfifo_ch; /* Tx FIFO stall work-around timer */
695
696 uint32_t sc_ctrl; /* prototype CTRL register */
697 #if 0
698 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
699 #endif
700 uint32_t sc_icr; /* prototype interrupt bits */
701 uint32_t sc_itr_init; /* prototype intr throttling reg */
702 uint32_t sc_tctl; /* prototype TCTL register */
703 uint32_t sc_rctl; /* prototype RCTL register */
704 uint32_t sc_txcw; /* prototype TXCW register */
705 uint32_t sc_tipg; /* prototype TIPG register */
706 uint32_t sc_fcrtl; /* prototype FCRTL register */
707 uint32_t sc_pba; /* prototype PBA register */
708
709 int sc_tbi_linkup; /* TBI link status */
710 int sc_tbi_serdes_anegticks; /* autonegotiation ticks */
711 int sc_tbi_serdes_ticks; /* tbi ticks */
712 struct timeval sc_linkup_delay_time; /* delay LINK_STATE_UP */
713
714 int sc_mchash_type; /* multicast filter offset */
715
716 krndsource_t rnd_source; /* random source */
717
718 struct if_percpuq *sc_ipq; /* softint-based input queues */
719
720 kmutex_t *sc_core_lock; /* lock for softc operations */
721 kmutex_t *sc_ich_phymtx; /*
722 * 82574/82583/ICH/PCH specific PHY
723 * mutex. For 82574/82583, the mutex
724 * is used for both PHY and NVM.
725 */
726 kmutex_t *sc_ich_nvmmtx; /* ICH/PCH specific NVM mutex */
727
728 struct wm_phyop phy;
729 struct wm_nvmop nvm;
730
731 struct workqueue *sc_reset_wq;
732 struct work sc_reset_work;
733 volatile unsigned sc_reset_pending;
734
735 bool sc_dying;
736
737 #ifdef WM_DEBUG
738 uint32_t sc_debug;
739 bool sc_trigger_reset;
740 #endif
741 };
742
743 #define WM_RXCHAIN_RESET(rxq) \
744 do { \
745 (rxq)->rxq_tailp = &(rxq)->rxq_head; \
746 *(rxq)->rxq_tailp = NULL; \
747 (rxq)->rxq_len = 0; \
748 } while (/*CONSTCOND*/0)
749
750 #define WM_RXCHAIN_LINK(rxq, m) \
751 do { \
752 *(rxq)->rxq_tailp = (rxq)->rxq_tail = (m); \
753 (rxq)->rxq_tailp = &(m)->m_next; \
754 } while (/*CONSTCOND*/0)
755
756 #ifdef WM_EVENT_COUNTERS
757 #ifdef __HAVE_ATOMIC64_LOADSTORE
758 #define WM_EVCNT_INCR(ev) \
759 atomic_store_relaxed(&((ev)->ev_count), \
760 atomic_load_relaxed(&(ev)->ev_count) + 1)
761 #define WM_EVCNT_STORE(ev, val) \
762 atomic_store_relaxed(&((ev)->ev_count), (val))
763 #define WM_EVCNT_ADD(ev, val) \
764 atomic_store_relaxed(&((ev)->ev_count), \
765 atomic_load_relaxed(&(ev)->ev_count) + (val))
766 #else
767 #define WM_EVCNT_INCR(ev) \
768 ((ev)->ev_count)++
769 #define WM_EVCNT_STORE(ev, val) \
770 ((ev)->ev_count = (val))
771 #define WM_EVCNT_ADD(ev, val) \
772 (ev)->ev_count += (val)
773 #endif
774
775 #define WM_Q_EVCNT_INCR(qname, evname) \
776 WM_EVCNT_INCR(&(qname)->qname##_ev_##evname)
777 #define WM_Q_EVCNT_STORE(qname, evname, val) \
778 WM_EVCNT_STORE(&(qname)->qname##_ev_##evname, (val))
779 #define WM_Q_EVCNT_ADD(qname, evname, val) \
780 WM_EVCNT_ADD(&(qname)->qname##_ev_##evname, (val))
781 #else /* !WM_EVENT_COUNTERS */
782 #define WM_EVCNT_INCR(ev) __nothing
783 #define WM_EVCNT_STORE(ev, val) __nothing
784 #define WM_EVCNT_ADD(ev, val) __nothing
785
786 #define WM_Q_EVCNT_INCR(qname, evname) __nothing
787 #define WM_Q_EVCNT_STORE(qname, evname, val) __nothing
788 #define WM_Q_EVCNT_ADD(qname, evname, val) __nothing
789 #endif /* !WM_EVENT_COUNTERS */
790
791 #define CSR_READ(sc, reg) \
792 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
793 #define CSR_WRITE(sc, reg, val) \
794 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
795 #define CSR_WRITE_FLUSH(sc) \
796 (void)CSR_READ((sc), WMREG_STATUS)
797
798 #define ICH8_FLASH_READ32(sc, reg) \
799 bus_space_read_4((sc)->sc_flasht, (sc)->sc_flashh, \
800 (reg) + sc->sc_flashreg_offset)
801 #define ICH8_FLASH_WRITE32(sc, reg, data) \
802 bus_space_write_4((sc)->sc_flasht, (sc)->sc_flashh, \
803 (reg) + sc->sc_flashreg_offset, (data))
804
805 #define ICH8_FLASH_READ16(sc, reg) \
806 bus_space_read_2((sc)->sc_flasht, (sc)->sc_flashh, \
807 (reg) + sc->sc_flashreg_offset)
808 #define ICH8_FLASH_WRITE16(sc, reg, data) \
809 bus_space_write_2((sc)->sc_flasht, (sc)->sc_flashh, \
810 (reg) + sc->sc_flashreg_offset, (data))
811
812 #define WM_CDTXADDR(txq, x) ((txq)->txq_desc_dma + WM_CDTXOFF((txq), (x)))
813 #define WM_CDRXADDR(rxq, x) ((rxq)->rxq_desc_dma + WM_CDRXOFF((rxq), (x)))
814
815 #define WM_CDTXADDR_LO(txq, x) (WM_CDTXADDR((txq), (x)) & 0xffffffffU)
816 #define WM_CDTXADDR_HI(txq, x) \
817 (sizeof(bus_addr_t) == 8 ? \
818 (uint64_t)WM_CDTXADDR((txq), (x)) >> 32 : 0)
819
820 #define WM_CDRXADDR_LO(rxq, x) (WM_CDRXADDR((rxq), (x)) & 0xffffffffU)
821 #define WM_CDRXADDR_HI(rxq, x) \
822 (sizeof(bus_addr_t) == 8 ? \
823 (uint64_t)WM_CDRXADDR((rxq), (x)) >> 32 : 0)
824
825 /*
826 * Register read/write functions.
827 * Other than CSR_{READ|WRITE}().
828 */
829 #if 0
830 static inline uint32_t wm_io_read(struct wm_softc *, int);
831 #endif
832 static inline void wm_io_write(struct wm_softc *, int, uint32_t);
833 static inline void wm_82575_write_8bit_ctlr_reg(struct wm_softc *, uint32_t,
834 uint32_t, uint32_t);
835 static inline void wm_set_dma_addr(volatile wiseman_addr_t *, bus_addr_t);
836
837 /*
838 * Descriptor sync/init functions.
839 */
840 static inline void wm_cdtxsync(struct wm_txqueue *, int, int, int);
841 static inline void wm_cdrxsync(struct wm_rxqueue *, int, int);
842 static inline void wm_init_rxdesc(struct wm_rxqueue *, int);
843
844 /*
845 * Device driver interface functions and commonly used functions.
846 * match, attach, detach, init, start, stop, ioctl, watchdog and so on.
847 */
848 static const struct wm_product *wm_lookup(const struct pci_attach_args *);
849 static int wm_match(device_t, cfdata_t, void *);
850 static void wm_attach(device_t, device_t, void *);
851 static int wm_detach(device_t, int);
852 static bool wm_suspend(device_t, const pmf_qual_t *);
853 static bool wm_resume(device_t, const pmf_qual_t *);
854 static bool wm_watchdog(struct ifnet *);
855 static void wm_watchdog_txq(struct ifnet *, struct wm_txqueue *,
856 uint16_t *);
857 static void wm_watchdog_txq_locked(struct ifnet *, struct wm_txqueue *,
858 uint16_t *);
859 static void wm_tick(void *);
860 static int wm_ifflags_cb(struct ethercom *);
861 static int wm_ioctl(struct ifnet *, u_long, void *);
862 /* MAC address related */
863 static uint16_t wm_check_alt_mac_addr(struct wm_softc *);
864 static int wm_read_mac_addr(struct wm_softc *, uint8_t *);
865 static void wm_set_ral(struct wm_softc *, const uint8_t *, int);
866 static uint32_t wm_mchash(struct wm_softc *, const uint8_t *);
867 static int wm_rar_count(struct wm_softc *);
868 static void wm_set_filter(struct wm_softc *);
869 /* Reset and init related */
870 static void wm_set_vlan(struct wm_softc *);
871 static void wm_set_pcie_completion_timeout(struct wm_softc *);
872 static void wm_get_auto_rd_done(struct wm_softc *);
873 static void wm_lan_init_done(struct wm_softc *);
874 static void wm_get_cfg_done(struct wm_softc *);
875 static int wm_phy_post_reset(struct wm_softc *);
876 static int wm_write_smbus_addr(struct wm_softc *);
877 static int wm_init_lcd_from_nvm(struct wm_softc *);
878 static int wm_oem_bits_config_ich8lan(struct wm_softc *, bool);
879 static void wm_initialize_hardware_bits(struct wm_softc *);
880 static uint32_t wm_rxpbs_adjust_82580(uint32_t);
881 static int wm_reset_phy(struct wm_softc *);
882 static void wm_flush_desc_rings(struct wm_softc *);
883 static void wm_reset(struct wm_softc *);
884 static int wm_add_rxbuf(struct wm_rxqueue *, int);
885 static void wm_rxdrain(struct wm_rxqueue *);
886 static void wm_init_rss(struct wm_softc *);
887 static void wm_adjust_qnum(struct wm_softc *, int);
888 static inline bool wm_is_using_msix(struct wm_softc *);
889 static inline bool wm_is_using_multiqueue(struct wm_softc *);
890 static int wm_softint_establish_queue(struct wm_softc *, int, int);
891 static int wm_setup_legacy(struct wm_softc *);
892 static int wm_setup_msix(struct wm_softc *);
893 static int wm_init(struct ifnet *);
894 static int wm_init_locked(struct ifnet *);
895 static void wm_init_sysctls(struct wm_softc *);
896 static void wm_update_stats(struct wm_softc *);
897 static void wm_clear_evcnt(struct wm_softc *);
898 static void wm_unset_stopping_flags(struct wm_softc *);
899 static void wm_set_stopping_flags(struct wm_softc *);
900 static void wm_stop(struct ifnet *, int);
901 static void wm_stop_locked(struct ifnet *, bool, bool);
902 static void wm_dump_mbuf_chain(struct wm_softc *, struct mbuf *);
903 static void wm_82547_txfifo_stall(void *);
904 static int wm_82547_txfifo_bugchk(struct wm_softc *, struct mbuf *);
905 static void wm_itrs_writereg(struct wm_softc *, struct wm_queue *);
906 /* DMA related */
907 static int wm_alloc_tx_descs(struct wm_softc *, struct wm_txqueue *);
908 static void wm_free_tx_descs(struct wm_softc *, struct wm_txqueue *);
909 static void wm_init_tx_descs(struct wm_softc *, struct wm_txqueue *);
910 static void wm_init_tx_regs(struct wm_softc *, struct wm_queue *,
911 struct wm_txqueue *);
912 static int wm_alloc_rx_descs(struct wm_softc *, struct wm_rxqueue *);
913 static void wm_free_rx_descs(struct wm_softc *, struct wm_rxqueue *);
914 static void wm_init_rx_regs(struct wm_softc *, struct wm_queue *,
915 struct wm_rxqueue *);
916 static int wm_alloc_tx_buffer(struct wm_softc *, struct wm_txqueue *);
917 static void wm_free_tx_buffer(struct wm_softc *, struct wm_txqueue *);
918 static void wm_init_tx_buffer(struct wm_softc *, struct wm_txqueue *);
919 static int wm_alloc_rx_buffer(struct wm_softc *, struct wm_rxqueue *);
920 static void wm_free_rx_buffer(struct wm_softc *, struct wm_rxqueue *);
921 static int wm_init_rx_buffer(struct wm_softc *, struct wm_rxqueue *);
922 static void wm_init_tx_queue(struct wm_softc *, struct wm_queue *,
923 struct wm_txqueue *);
924 static int wm_init_rx_queue(struct wm_softc *, struct wm_queue *,
925 struct wm_rxqueue *);
926 static int wm_alloc_txrx_queues(struct wm_softc *);
927 static void wm_free_txrx_queues(struct wm_softc *);
928 static int wm_init_txrx_queues(struct wm_softc *);
929 /* Start */
930 static void wm_tx_offload(struct wm_softc *, struct wm_txqueue *,
931 struct wm_txsoft *, uint32_t *, uint8_t *);
932 static inline int wm_select_txqueue(struct ifnet *, struct mbuf *);
933 static void wm_start(struct ifnet *);
934 static void wm_start_locked(struct ifnet *);
935 static int wm_transmit(struct ifnet *, struct mbuf *);
936 static void wm_transmit_locked(struct ifnet *, struct wm_txqueue *);
937 static void wm_send_common_locked(struct ifnet *, struct wm_txqueue *,
938 bool);
939 static void wm_nq_tx_offload(struct wm_softc *, struct wm_txqueue *,
940 struct wm_txsoft *, uint32_t *, uint32_t *, bool *);
941 static void wm_nq_start(struct ifnet *);
942 static void wm_nq_start_locked(struct ifnet *);
943 static int wm_nq_transmit(struct ifnet *, struct mbuf *);
944 static void wm_nq_transmit_locked(struct ifnet *, struct wm_txqueue *);
945 static void wm_nq_send_common_locked(struct ifnet *, struct wm_txqueue *,
946 bool);
947 static void wm_deferred_start_locked(struct wm_txqueue *);
948 static void wm_handle_queue(void *);
949 static void wm_handle_queue_work(struct work *, void *);
950 static void wm_handle_reset_work(struct work *, void *);
951 /* Interrupt */
952 static bool wm_txeof(struct wm_txqueue *, u_int);
953 static bool wm_rxeof(struct wm_rxqueue *, u_int);
954 static void wm_linkintr_gmii(struct wm_softc *, uint32_t);
955 static void wm_linkintr_tbi(struct wm_softc *, uint32_t);
956 static void wm_linkintr_serdes(struct wm_softc *, uint32_t);
957 static void wm_linkintr(struct wm_softc *, uint32_t);
958 static int wm_intr_legacy(void *);
959 static inline void wm_txrxintr_disable(struct wm_queue *);
960 static inline void wm_txrxintr_enable(struct wm_queue *);
961 static void wm_itrs_calculate(struct wm_softc *, struct wm_queue *);
962 static int wm_txrxintr_msix(void *);
963 static int wm_linkintr_msix(void *);
964
965 /*
966 * Media related.
967 * GMII, SGMII, TBI, SERDES and SFP.
968 */
969 /* Common */
970 static void wm_tbi_serdes_set_linkled(struct wm_softc *);
971 /* GMII related */
972 static void wm_gmii_reset(struct wm_softc *);
973 static void wm_gmii_setup_phytype(struct wm_softc *, uint32_t, uint16_t);
974 static int wm_get_phy_id_82575(struct wm_softc *);
975 static void wm_gmii_mediainit(struct wm_softc *, pci_product_id_t);
976 static int wm_gmii_mediachange(struct ifnet *);
977 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
978 static void wm_i82543_mii_sendbits(struct wm_softc *, uint32_t, int);
979 static uint16_t wm_i82543_mii_recvbits(struct wm_softc *);
980 static int wm_gmii_i82543_readreg(device_t, int, int, uint16_t *);
981 static int wm_gmii_i82543_writereg(device_t, int, int, uint16_t);
982 static int wm_gmii_mdic_readreg(device_t, int, int, uint16_t *);
983 static int wm_gmii_mdic_writereg(device_t, int, int, uint16_t);
984 static int wm_gmii_i82544_readreg(device_t, int, int, uint16_t *);
985 static int wm_gmii_i82544_readreg_locked(device_t, int, int, uint16_t *);
986 static int wm_gmii_i82544_writereg(device_t, int, int, uint16_t);
987 static int wm_gmii_i82544_writereg_locked(device_t, int, int, uint16_t);
988 static int wm_gmii_i80003_readreg(device_t, int, int, uint16_t *);
989 static int wm_gmii_i80003_writereg(device_t, int, int, uint16_t);
990 static int wm_gmii_bm_readreg(device_t, int, int, uint16_t *);
991 static int wm_gmii_bm_writereg(device_t, int, int, uint16_t);
992 static int wm_enable_phy_wakeup_reg_access_bm(device_t, uint16_t *);
993 static int wm_disable_phy_wakeup_reg_access_bm(device_t, uint16_t *);
994 static int wm_access_phy_wakeup_reg_bm(device_t, int, int16_t *, int,
995 bool);
996 static int wm_gmii_hv_readreg(device_t, int, int, uint16_t *);
997 static int wm_gmii_hv_readreg_locked(device_t, int, int, uint16_t *);
998 static int wm_gmii_hv_writereg(device_t, int, int, uint16_t);
999 static int wm_gmii_hv_writereg_locked(device_t, int, int, uint16_t);
1000 static int wm_gmii_82580_readreg(device_t, int, int, uint16_t *);
1001 static int wm_gmii_82580_writereg(device_t, int, int, uint16_t);
1002 static int wm_gmii_gs40g_readreg(device_t, int, int, uint16_t *);
1003 static int wm_gmii_gs40g_writereg(device_t, int, int, uint16_t);
1004 static void wm_gmii_statchg(struct ifnet *);
1005 /*
1006 * kumeran related (80003, ICH* and PCH*).
1007 * These functions are not for accessing MII registers but for accessing
1008 * kumeran specific registers.
1009 */
1010 static int wm_kmrn_readreg(struct wm_softc *, int, uint16_t *);
1011 static int wm_kmrn_readreg_locked(struct wm_softc *, int, uint16_t *);
1012 static int wm_kmrn_writereg(struct wm_softc *, int, uint16_t);
1013 static int wm_kmrn_writereg_locked(struct wm_softc *, int, uint16_t);
1014 /* EMI register related */
1015 static int wm_access_emi_reg_locked(device_t, int, uint16_t *, bool);
1016 static int wm_read_emi_reg_locked(device_t, int, uint16_t *);
1017 static int wm_write_emi_reg_locked(device_t, int, uint16_t);
1018 /* SGMII */
1019 static bool wm_sgmii_uses_mdio(struct wm_softc *);
1020 static void wm_sgmii_sfp_preconfig(struct wm_softc *);
1021 static int wm_sgmii_readreg(device_t, int, int, uint16_t *);
1022 static int wm_sgmii_readreg_locked(device_t, int, int, uint16_t *);
1023 static int wm_sgmii_writereg(device_t, int, int, uint16_t);
1024 static int wm_sgmii_writereg_locked(device_t, int, int, uint16_t);
1025 /* TBI related */
1026 static bool wm_tbi_havesignal(struct wm_softc *, uint32_t);
1027 static void wm_tbi_mediainit(struct wm_softc *);
1028 static int wm_tbi_mediachange(struct ifnet *);
1029 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
1030 static int wm_check_for_link(struct wm_softc *);
1031 static void wm_tbi_tick(struct wm_softc *);
1032 /* SERDES related */
1033 static void wm_serdes_power_up_link_82575(struct wm_softc *);
1034 static int wm_serdes_mediachange(struct ifnet *);
1035 static void wm_serdes_mediastatus(struct ifnet *, struct ifmediareq *);
1036 static void wm_serdes_tick(struct wm_softc *);
1037 /* SFP related */
1038 static int wm_sfp_read_data_byte(struct wm_softc *, uint16_t, uint8_t *);
1039 static uint32_t wm_sfp_get_media_type(struct wm_softc *);
1040
1041 /*
1042 * NVM related.
1043 * Microwire, SPI (w/wo EERD) and Flash.
1044 */
1045 /* Misc functions */
1046 static void wm_eeprom_sendbits(struct wm_softc *, uint32_t, int);
1047 static void wm_eeprom_recvbits(struct wm_softc *, uint32_t *, int);
1048 static int wm_nvm_set_addrbits_size_eecd(struct wm_softc *);
1049 /* Microwire */
1050 static int wm_nvm_read_uwire(struct wm_softc *, int, int, uint16_t *);
1051 /* SPI */
1052 static int wm_nvm_ready_spi(struct wm_softc *);
1053 static int wm_nvm_read_spi(struct wm_softc *, int, int, uint16_t *);
1054 /* Using with EERD */
1055 static int wm_poll_eerd_eewr_done(struct wm_softc *, int);
1056 static int wm_nvm_read_eerd(struct wm_softc *, int, int, uint16_t *);
1057 /* Flash */
1058 static int wm_nvm_valid_bank_detect_ich8lan(struct wm_softc *,
1059 unsigned int *);
1060 static int32_t wm_ich8_cycle_init(struct wm_softc *);
1061 static int32_t wm_ich8_flash_cycle(struct wm_softc *, uint32_t);
1062 static int32_t wm_read_ich8_data(struct wm_softc *, uint32_t, uint32_t,
1063 uint32_t *);
1064 static int32_t wm_read_ich8_byte(struct wm_softc *, uint32_t, uint8_t *);
1065 static int32_t wm_read_ich8_word(struct wm_softc *, uint32_t, uint16_t *);
1066 static int32_t wm_read_ich8_dword(struct wm_softc *, uint32_t, uint32_t *);
1067 static int wm_nvm_read_ich8(struct wm_softc *, int, int, uint16_t *);
1068 static int wm_nvm_read_spt(struct wm_softc *, int, int, uint16_t *);
1069 /* iNVM */
1070 static int wm_nvm_read_word_invm(struct wm_softc *, uint16_t, uint16_t *);
1071 static int wm_nvm_read_invm(struct wm_softc *, int, int, uint16_t *);
1072 /* Lock, detecting NVM type, validate checksum and read */
1073 static int wm_nvm_is_onboard_eeprom(struct wm_softc *);
1074 static int wm_nvm_flash_presence_i210(struct wm_softc *);
1075 static int wm_nvm_validate_checksum(struct wm_softc *);
1076 static void wm_nvm_version_invm(struct wm_softc *);
1077 static void wm_nvm_version(struct wm_softc *);
1078 static int wm_nvm_read(struct wm_softc *, int, int, uint16_t *);
1079
1080 /*
1081 * Hardware semaphores.
1082 * Very complexed...
1083 */
1084 static int wm_get_null(struct wm_softc *);
1085 static void wm_put_null(struct wm_softc *);
1086 static int wm_get_eecd(struct wm_softc *);
1087 static void wm_put_eecd(struct wm_softc *);
1088 static int wm_get_swsm_semaphore(struct wm_softc *); /* 8257[123] */
1089 static void wm_put_swsm_semaphore(struct wm_softc *);
1090 static int wm_get_swfw_semaphore(struct wm_softc *, uint16_t);
1091 static void wm_put_swfw_semaphore(struct wm_softc *, uint16_t);
1092 static int wm_get_nvm_80003(struct wm_softc *);
1093 static void wm_put_nvm_80003(struct wm_softc *);
1094 static int wm_get_nvm_82571(struct wm_softc *);
1095 static void wm_put_nvm_82571(struct wm_softc *);
1096 static int wm_get_phy_82575(struct wm_softc *);
1097 static void wm_put_phy_82575(struct wm_softc *);
1098 static int wm_get_swfwhw_semaphore(struct wm_softc *); /* For 574/583 */
1099 static void wm_put_swfwhw_semaphore(struct wm_softc *);
1100 static int wm_get_swflag_ich8lan(struct wm_softc *); /* For PHY */
1101 static void wm_put_swflag_ich8lan(struct wm_softc *);
1102 static int wm_get_nvm_ich8lan(struct wm_softc *);
1103 static void wm_put_nvm_ich8lan(struct wm_softc *);
1104 static int wm_get_hw_semaphore_82573(struct wm_softc *);
1105 static void wm_put_hw_semaphore_82573(struct wm_softc *);
1106
1107 /*
1108 * Management mode and power management related subroutines.
1109 * BMC, AMT, suspend/resume and EEE.
1110 */
1111 #if 0
1112 static int wm_check_mng_mode(struct wm_softc *);
1113 static int wm_check_mng_mode_ich8lan(struct wm_softc *);
1114 static int wm_check_mng_mode_82574(struct wm_softc *);
1115 static int wm_check_mng_mode_generic(struct wm_softc *);
1116 #endif
1117 static int wm_enable_mng_pass_thru(struct wm_softc *);
1118 static bool wm_phy_resetisblocked(struct wm_softc *);
1119 static void wm_get_hw_control(struct wm_softc *);
1120 static void wm_release_hw_control(struct wm_softc *);
1121 static void wm_gate_hw_phy_config_ich8lan(struct wm_softc *, bool);
1122 static int wm_init_phy_workarounds_pchlan(struct wm_softc *);
1123 static void wm_init_manageability(struct wm_softc *);
1124 static void wm_release_manageability(struct wm_softc *);
1125 static void wm_get_wakeup(struct wm_softc *);
1126 static int wm_ulp_disable(struct wm_softc *);
1127 static int wm_enable_phy_wakeup(struct wm_softc *);
1128 static void wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *);
1129 static void wm_suspend_workarounds_ich8lan(struct wm_softc *);
1130 static int wm_resume_workarounds_pchlan(struct wm_softc *);
1131 static void wm_enable_wakeup(struct wm_softc *);
1132 static void wm_disable_aspm(struct wm_softc *);
1133 /* LPLU (Low Power Link Up) */
1134 static void wm_lplu_d0_disable(struct wm_softc *);
1135 /* EEE */
1136 static int wm_set_eee_i350(struct wm_softc *);
1137 static int wm_set_eee_pchlan(struct wm_softc *);
1138 static int wm_set_eee(struct wm_softc *);
1139
1140 /*
1141 * Workarounds (mainly PHY related).
1142 * Basically, PHY's workarounds are in the PHY drivers.
1143 */
1144 static int wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *);
1145 static void wm_gig_downshift_workaround_ich8lan(struct wm_softc *);
1146 static int wm_hv_phy_workarounds_ich8lan(struct wm_softc *);
1147 static void wm_copy_rx_addrs_to_phy_ich8lan(struct wm_softc *);
1148 static void wm_copy_rx_addrs_to_phy_ich8lan_locked(struct wm_softc *);
1149 static int wm_lv_jumbo_workaround_ich8lan(struct wm_softc *, bool);
1150 static int wm_lv_phy_workarounds_ich8lan(struct wm_softc *);
1151 static int wm_k1_workaround_lpt_lp(struct wm_softc *, bool);
1152 static int wm_k1_gig_workaround_hv(struct wm_softc *, int);
1153 static int wm_k1_workaround_lv(struct wm_softc *);
1154 static int wm_link_stall_workaround_hv(struct wm_softc *);
1155 static int wm_set_mdio_slow_mode_hv(struct wm_softc *);
1156 static int wm_set_mdio_slow_mode_hv_locked(struct wm_softc *);
1157 static void wm_configure_k1_ich8lan(struct wm_softc *, int);
1158 static void wm_reset_init_script_82575(struct wm_softc *);
1159 static void wm_reset_mdicnfg_82580(struct wm_softc *);
1160 static bool wm_phy_is_accessible_pchlan(struct wm_softc *);
1161 static void wm_toggle_lanphypc_pch_lpt(struct wm_softc *);
1162 static int wm_platform_pm_pch_lpt(struct wm_softc *, bool);
1163 static int wm_pll_workaround_i210(struct wm_softc *);
1164 static void wm_legacy_irq_quirk_spt(struct wm_softc *);
1165 static bool wm_phy_need_linkdown_discard(struct wm_softc *);
1166 static void wm_set_linkdown_discard(struct wm_softc *);
1167 static void wm_clear_linkdown_discard(struct wm_softc *);
1168
1169 static int wm_sysctl_tdh_handler(SYSCTLFN_PROTO);
1170 static int wm_sysctl_tdt_handler(SYSCTLFN_PROTO);
1171 #ifdef WM_DEBUG
1172 static int wm_sysctl_debug(SYSCTLFN_PROTO);
1173 #endif
1174
1175 CFATTACH_DECL3_NEW(wm, sizeof(struct wm_softc),
1176 wm_match, wm_attach, wm_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1177
1178 /*
1179 * Devices supported by this driver.
1180 */
1181 static const struct wm_product {
1182 pci_vendor_id_t wmp_vendor;
1183 pci_product_id_t wmp_product;
1184 const char *wmp_name;
1185 wm_chip_type wmp_type;
1186 uint32_t wmp_flags;
1187 #define WMP_F_UNKNOWN WM_MEDIATYPE_UNKNOWN
1188 #define WMP_F_FIBER WM_MEDIATYPE_FIBER
1189 #define WMP_F_COPPER WM_MEDIATYPE_COPPER
1190 #define WMP_F_SERDES WM_MEDIATYPE_SERDES
1191 #define WMP_MEDIATYPE(x) ((x) & 0x03)
1192 } wm_products[] = {
1193 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
1194 "Intel i82542 1000BASE-X Ethernet",
1195 WM_T_82542_2_1, WMP_F_FIBER },
1196
1197 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
1198 "Intel i82543GC 1000BASE-X Ethernet",
1199 WM_T_82543, WMP_F_FIBER },
1200
1201 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
1202 "Intel i82543GC 1000BASE-T Ethernet",
1203 WM_T_82543, WMP_F_COPPER },
1204
1205 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
1206 "Intel i82544EI 1000BASE-T Ethernet",
1207 WM_T_82544, WMP_F_COPPER },
1208
1209 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
1210 "Intel i82544EI 1000BASE-X Ethernet",
1211 WM_T_82544, WMP_F_FIBER },
1212
1213 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
1214 "Intel i82544GC 1000BASE-T Ethernet",
1215 WM_T_82544, WMP_F_COPPER },
1216
1217 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
1218 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
1219 WM_T_82544, WMP_F_COPPER },
1220
1221 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
1222 "Intel i82540EM 1000BASE-T Ethernet",
1223 WM_T_82540, WMP_F_COPPER },
1224
1225 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
1226 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
1227 WM_T_82540, WMP_F_COPPER },
1228
1229 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
1230 "Intel i82540EP 1000BASE-T Ethernet",
1231 WM_T_82540, WMP_F_COPPER },
1232
1233 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
1234 "Intel i82540EP 1000BASE-T Ethernet",
1235 WM_T_82540, WMP_F_COPPER },
1236
1237 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
1238 "Intel i82540EP 1000BASE-T Ethernet",
1239 WM_T_82540, WMP_F_COPPER },
1240
1241 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
1242 "Intel i82545EM 1000BASE-T Ethernet",
1243 WM_T_82545, WMP_F_COPPER },
1244
1245 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
1246 "Intel i82545GM 1000BASE-T Ethernet",
1247 WM_T_82545_3, WMP_F_COPPER },
1248
1249 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
1250 "Intel i82545GM 1000BASE-X Ethernet",
1251 WM_T_82545_3, WMP_F_FIBER },
1252
1253 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
1254 "Intel i82545GM Gigabit Ethernet (SERDES)",
1255 WM_T_82545_3, WMP_F_SERDES },
1256
1257 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
1258 "Intel i82546EB 1000BASE-T Ethernet",
1259 WM_T_82546, WMP_F_COPPER },
1260
1261 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
1262 "Intel i82546EB 1000BASE-T Ethernet",
1263 WM_T_82546, WMP_F_COPPER },
1264
1265 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
1266 "Intel i82545EM 1000BASE-X Ethernet",
1267 WM_T_82545, WMP_F_FIBER },
1268
1269 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
1270 "Intel i82546EB 1000BASE-X Ethernet",
1271 WM_T_82546, WMP_F_FIBER },
1272
1273 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
1274 "Intel i82546GB 1000BASE-T Ethernet",
1275 WM_T_82546_3, WMP_F_COPPER },
1276
1277 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
1278 "Intel i82546GB 1000BASE-X Ethernet",
1279 WM_T_82546_3, WMP_F_FIBER },
1280
1281 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
1282 "Intel i82546GB Gigabit Ethernet (SERDES)",
1283 WM_T_82546_3, WMP_F_SERDES },
1284
1285 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER,
1286 "i82546GB quad-port Gigabit Ethernet",
1287 WM_T_82546_3, WMP_F_COPPER },
1288
1289 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3,
1290 "i82546GB quad-port Gigabit Ethernet (KSP3)",
1291 WM_T_82546_3, WMP_F_COPPER },
1292
1293 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_PCIE,
1294 "Intel PRO/1000MT (82546GB)",
1295 WM_T_82546_3, WMP_F_COPPER },
1296
1297 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
1298 "Intel i82541EI 1000BASE-T Ethernet",
1299 WM_T_82541, WMP_F_COPPER },
1300
1301 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER_LOM,
1302 "Intel i82541ER (LOM) 1000BASE-T Ethernet",
1303 WM_T_82541, WMP_F_COPPER },
1304
1305 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
1306 "Intel i82541EI Mobile 1000BASE-T Ethernet",
1307 WM_T_82541, WMP_F_COPPER },
1308
1309 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
1310 "Intel i82541ER 1000BASE-T Ethernet",
1311 WM_T_82541_2, WMP_F_COPPER },
1312
1313 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
1314 "Intel i82541GI 1000BASE-T Ethernet",
1315 WM_T_82541_2, WMP_F_COPPER },
1316
1317 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
1318 "Intel i82541GI Mobile 1000BASE-T Ethernet",
1319 WM_T_82541_2, WMP_F_COPPER },
1320
1321 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI,
1322 "Intel i82541PI 1000BASE-T Ethernet",
1323 WM_T_82541_2, WMP_F_COPPER },
1324
1325 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
1326 "Intel i82547EI 1000BASE-T Ethernet",
1327 WM_T_82547, WMP_F_COPPER },
1328
1329 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI_MOBILE,
1330 "Intel i82547EI Mobile 1000BASE-T Ethernet",
1331 WM_T_82547, WMP_F_COPPER },
1332
1333 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
1334 "Intel i82547GI 1000BASE-T Ethernet",
1335 WM_T_82547_2, WMP_F_COPPER },
1336
1337 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_COPPER,
1338 "Intel PRO/1000 PT (82571EB)",
1339 WM_T_82571, WMP_F_COPPER },
1340
1341 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_FIBER,
1342 "Intel PRO/1000 PF (82571EB)",
1343 WM_T_82571, WMP_F_FIBER },
1344
1345 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_SERDES,
1346 "Intel PRO/1000 PB (82571EB)",
1347 WM_T_82571, WMP_F_SERDES },
1348
1349 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER,
1350 "Intel PRO/1000 QT (82571EB)",
1351 WM_T_82571, WMP_F_COPPER },
1352
1353 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER,
1354 "Intel PRO/1000 PT Quad Port Server Adapter",
1355 WM_T_82571, WMP_F_COPPER },
1356
1357 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571PT_QUAD_COPPER,
1358 "Intel Gigabit PT Quad Port Server ExpressModule",
1359 WM_T_82571, WMP_F_COPPER },
1360
1361 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_DUAL_SERDES,
1362 "Intel 82571EB Dual Gigabit Ethernet (SERDES)",
1363 WM_T_82571, WMP_F_SERDES },
1364
1365 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_SERDES,
1366 "Intel 82571EB Quad Gigabit Ethernet (SERDES)",
1367 WM_T_82571, WMP_F_SERDES },
1368
1369 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_FIBER,
1370 "Intel 82571EB Quad 1000baseX Ethernet",
1371 WM_T_82571, WMP_F_FIBER },
1372
1373 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_COPPER,
1374 "Intel i82572EI 1000baseT Ethernet",
1375 WM_T_82572, WMP_F_COPPER },
1376
1377 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_FIBER,
1378 "Intel i82572EI 1000baseX Ethernet",
1379 WM_T_82572, WMP_F_FIBER },
1380
1381 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_SERDES,
1382 "Intel i82572EI Gigabit Ethernet (SERDES)",
1383 WM_T_82572, WMP_F_SERDES },
1384
1385 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI,
1386 "Intel i82572EI 1000baseT Ethernet",
1387 WM_T_82572, WMP_F_COPPER },
1388
1389 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E,
1390 "Intel i82573E",
1391 WM_T_82573, WMP_F_COPPER },
1392
1393 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E_IAMT,
1394 "Intel i82573E IAMT",
1395 WM_T_82573, WMP_F_COPPER },
1396
1397 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L,
1398 "Intel i82573L Gigabit Ethernet",
1399 WM_T_82573, WMP_F_COPPER },
1400
1401 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82574L,
1402 "Intel i82574L",
1403 WM_T_82574, WMP_F_COPPER },
1404
1405 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82574LA,
1406 "Intel i82574L",
1407 WM_T_82574, WMP_F_COPPER },
1408
1409 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82583V,
1410 "Intel i82583V",
1411 WM_T_82583, WMP_F_COPPER },
1412
1413 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT,
1414 "i80003 dual 1000baseT Ethernet",
1415 WM_T_80003, WMP_F_COPPER },
1416
1417 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT,
1418 "i80003 dual 1000baseX Ethernet",
1419 WM_T_80003, WMP_F_COPPER },
1420
1421 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT,
1422 "Intel i80003ES2 dual Gigabit Ethernet (SERDES)",
1423 WM_T_80003, WMP_F_SERDES },
1424
1425 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT,
1426 "Intel i80003 1000baseT Ethernet",
1427 WM_T_80003, WMP_F_COPPER },
1428
1429 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT,
1430 "Intel i80003 Gigabit Ethernet (SERDES)",
1431 WM_T_80003, WMP_F_SERDES },
1432
1433 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_AMT,
1434 "Intel i82801H (M_AMT) LAN Controller",
1435 WM_T_ICH8, WMP_F_COPPER },
1436 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_AMT,
1437 "Intel i82801H (AMT) LAN Controller",
1438 WM_T_ICH8, WMP_F_COPPER },
1439 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_LAN,
1440 "Intel i82801H LAN Controller",
1441 WM_T_ICH8, WMP_F_COPPER },
1442 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_LAN,
1443 "Intel i82801H (IFE) 10/100 LAN Controller",
1444 WM_T_ICH8, WMP_F_COPPER },
1445 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_M_LAN,
1446 "Intel i82801H (M) LAN Controller",
1447 WM_T_ICH8, WMP_F_COPPER },
1448 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_GT,
1449 "Intel i82801H IFE (GT) 10/100 LAN Controller",
1450 WM_T_ICH8, WMP_F_COPPER },
1451 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_IFE_G,
1452 "Intel i82801H IFE (G) 10/100 LAN Controller",
1453 WM_T_ICH8, WMP_F_COPPER },
1454 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801H_82567V_3,
1455 "82567V-3 LAN Controller",
1456 WM_T_ICH8, WMP_F_COPPER },
1457 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_AMT,
1458 "82801I (AMT) LAN Controller",
1459 WM_T_ICH9, WMP_F_COPPER },
1460 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE,
1461 "82801I 10/100 LAN Controller",
1462 WM_T_ICH9, WMP_F_COPPER },
1463 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_G,
1464 "82801I (G) 10/100 LAN Controller",
1465 WM_T_ICH9, WMP_F_COPPER },
1466 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IFE_GT,
1467 "82801I (GT) 10/100 LAN Controller",
1468 WM_T_ICH9, WMP_F_COPPER },
1469 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_C,
1470 "82801I (C) LAN Controller",
1471 WM_T_ICH9, WMP_F_COPPER },
1472 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M,
1473 "82801I mobile LAN Controller",
1474 WM_T_ICH9, WMP_F_COPPER },
1475 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M_V,
1476 "82801I mobile (V) LAN Controller",
1477 WM_T_ICH9, WMP_F_COPPER },
1478 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_IGP_M_AMT,
1479 "82801I mobile (AMT) LAN Controller",
1480 WM_T_ICH9, WMP_F_COPPER },
1481 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801I_BM,
1482 "82567LM-4 LAN Controller",
1483 WM_T_ICH9, WMP_F_COPPER },
1484 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_LM,
1485 "82567LM-2 LAN Controller",
1486 WM_T_ICH10, WMP_F_COPPER },
1487 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_LF,
1488 "82567LF-2 LAN Controller",
1489 WM_T_ICH10, WMP_F_COPPER },
1490 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_LM,
1491 "82567LM-3 LAN Controller",
1492 WM_T_ICH10, WMP_F_COPPER },
1493 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_LF,
1494 "82567LF-3 LAN Controller",
1495 WM_T_ICH10, WMP_F_COPPER },
1496 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_R_BM_V,
1497 "82567V-2 LAN Controller",
1498 WM_T_ICH10, WMP_F_COPPER },
1499 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82801J_D_BM_V,
1500 "82567V-3? LAN Controller",
1501 WM_T_ICH10, WMP_F_COPPER },
1502 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_HANKSVILLE,
1503 "HANKSVILLE LAN Controller",
1504 WM_T_ICH10, WMP_F_COPPER },
1505 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_M_LM,
1506 "PCH LAN (82577LM) Controller",
1507 WM_T_PCH, WMP_F_COPPER },
1508 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_M_LC,
1509 "PCH LAN (82577LC) Controller",
1510 WM_T_PCH, WMP_F_COPPER },
1511 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_D_DM,
1512 "PCH LAN (82578DM) Controller",
1513 WM_T_PCH, WMP_F_COPPER },
1514 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH_D_DC,
1515 "PCH LAN (82578DC) Controller",
1516 WM_T_PCH, WMP_F_COPPER },
1517 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH2_LV_LM,
1518 "PCH2 LAN (82579LM) Controller",
1519 WM_T_PCH2, WMP_F_COPPER },
1520 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PCH2_LV_V,
1521 "PCH2 LAN (82579V) Controller",
1522 WM_T_PCH2, WMP_F_COPPER },
1523 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575EB_COPPER,
1524 "82575EB dual-1000baseT Ethernet",
1525 WM_T_82575, WMP_F_COPPER },
1526 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575EB_FIBER_SERDES,
1527 "82575EB dual-1000baseX Ethernet (SERDES)",
1528 WM_T_82575, WMP_F_SERDES },
1529 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER,
1530 "82575GB quad-1000baseT Ethernet",
1531 WM_T_82575, WMP_F_COPPER },
1532 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82575GB_QUAD_COPPER_PM,
1533 "82575GB quad-1000baseT Ethernet (PM)",
1534 WM_T_82575, WMP_F_COPPER },
1535 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_COPPER,
1536 "82576 1000BaseT Ethernet",
1537 WM_T_82576, WMP_F_COPPER },
1538 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_FIBER,
1539 "82576 1000BaseX Ethernet",
1540 WM_T_82576, WMP_F_FIBER },
1541
1542 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_SERDES,
1543 "82576 gigabit Ethernet (SERDES)",
1544 WM_T_82576, WMP_F_SERDES },
1545
1546 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_QUAD_COPPER,
1547 "82576 quad-1000BaseT Ethernet",
1548 WM_T_82576, WMP_F_COPPER },
1549
1550 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_QUAD_COPPER_ET2,
1551 "82576 Gigabit ET2 Quad Port Server Adapter",
1552 WM_T_82576, WMP_F_COPPER },
1553
1554 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_NS,
1555 "82576 gigabit Ethernet",
1556 WM_T_82576, WMP_F_COPPER },
1557
1558 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_NS_SERDES,
1559 "82576 gigabit Ethernet (SERDES)",
1560 WM_T_82576, WMP_F_SERDES },
1561 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82576_SERDES_QUAD,
1562 "82576 quad-gigabit Ethernet (SERDES)",
1563 WM_T_82576, WMP_F_SERDES },
1564
1565 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_COPPER,
1566 "82580 1000BaseT Ethernet",
1567 WM_T_82580, WMP_F_COPPER },
1568 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_FIBER,
1569 "82580 1000BaseX Ethernet",
1570 WM_T_82580, WMP_F_FIBER },
1571
1572 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_SERDES,
1573 "82580 1000BaseT Ethernet (SERDES)",
1574 WM_T_82580, WMP_F_SERDES },
1575
1576 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_SGMII,
1577 "82580 gigabit Ethernet (SGMII)",
1578 WM_T_82580, WMP_F_COPPER },
1579 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_COPPER_DUAL,
1580 "82580 dual-1000BaseT Ethernet",
1581 WM_T_82580, WMP_F_COPPER },
1582
1583 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82580_QUAD_FIBER,
1584 "82580 quad-1000BaseX Ethernet",
1585 WM_T_82580, WMP_F_FIBER },
1586
1587 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SGMII,
1588 "DH89XXCC Gigabit Ethernet (SGMII)",
1589 WM_T_82580, WMP_F_COPPER },
1590
1591 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SERDES,
1592 "DH89XXCC Gigabit Ethernet (SERDES)",
1593 WM_T_82580, WMP_F_SERDES },
1594
1595 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_BPLANE,
1596 "DH89XXCC 1000BASE-KX Ethernet",
1597 WM_T_82580, WMP_F_SERDES },
1598
1599 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_DH89XXCC_SFP,
1600 "DH89XXCC Gigabit Ethernet (SFP)",
1601 WM_T_82580, WMP_F_SERDES },
1602
1603 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_COPPER,
1604 "I350 Gigabit Network Connection",
1605 WM_T_I350, WMP_F_COPPER },
1606
1607 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_FIBER,
1608 "I350 Gigabit Fiber Network Connection",
1609 WM_T_I350, WMP_F_FIBER },
1610
1611 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_SERDES,
1612 "I350 Gigabit Backplane Connection",
1613 WM_T_I350, WMP_F_SERDES },
1614
1615 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_DA4,
1616 "I350 Quad Port Gigabit Ethernet",
1617 WM_T_I350, WMP_F_SERDES },
1618
1619 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I350_SGMII,
1620 "I350 Gigabit Connection",
1621 WM_T_I350, WMP_F_COPPER },
1622
1623 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_1000KX,
1624 "I354 Gigabit Ethernet (KX)",
1625 WM_T_I354, WMP_F_SERDES },
1626
1627 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_SGMII,
1628 "I354 Gigabit Ethernet (SGMII)",
1629 WM_T_I354, WMP_F_COPPER },
1630
1631 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_C2000_25GBE,
1632 "I354 Gigabit Ethernet (2.5G)",
1633 WM_T_I354, WMP_F_COPPER },
1634
1635 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_T1,
1636 "I210-T1 Ethernet Server Adapter",
1637 WM_T_I210, WMP_F_COPPER },
1638
1639 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_OEM1,
1640 "I210 Ethernet (Copper OEM)",
1641 WM_T_I210, WMP_F_COPPER },
1642
1643 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_IT,
1644 "I210 Ethernet (Copper IT)",
1645 WM_T_I210, WMP_F_COPPER },
1646
1647 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_COPPER_WOF,
1648 "I210 Ethernet (Copper, FLASH less)",
1649 WM_T_I210, WMP_F_COPPER },
1650
1651 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_FIBER,
1652 "I210 Gigabit Ethernet (Fiber)",
1653 WM_T_I210, WMP_F_FIBER },
1654
1655 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SERDES,
1656 "I210 Gigabit Ethernet (SERDES)",
1657 WM_T_I210, WMP_F_SERDES },
1658
1659 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SERDES_WOF,
1660 "I210 Gigabit Ethernet (SERDES, FLASH less)",
1661 WM_T_I210, WMP_F_SERDES },
1662
1663 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SGMII,
1664 "I210 Gigabit Ethernet (SGMII)",
1665 WM_T_I210, WMP_F_COPPER },
1666
1667 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I210_SGMII_WOF,
1668 "I210 Gigabit Ethernet (SGMII, FLASH less)",
1669 WM_T_I210, WMP_F_COPPER },
1670
1671 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I211_COPPER,
1672 "I211 Ethernet (COPPER)",
1673 WM_T_I211, WMP_F_COPPER },
1674 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I217_V,
1675 "I217 V Ethernet Connection",
1676 WM_T_PCH_LPT, WMP_F_COPPER },
1677 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I217_LM,
1678 "I217 LM Ethernet Connection",
1679 WM_T_PCH_LPT, WMP_F_COPPER },
1680 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V,
1681 "I218 V Ethernet Connection",
1682 WM_T_PCH_LPT, WMP_F_COPPER },
1683 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V2,
1684 "I218 V Ethernet Connection",
1685 WM_T_PCH_LPT, WMP_F_COPPER },
1686 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_V3,
1687 "I218 V Ethernet Connection",
1688 WM_T_PCH_LPT, WMP_F_COPPER },
1689 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM,
1690 "I218 LM Ethernet Connection",
1691 WM_T_PCH_LPT, WMP_F_COPPER },
1692 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM2,
1693 "I218 LM Ethernet Connection",
1694 WM_T_PCH_LPT, WMP_F_COPPER },
1695 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I218_LM3,
1696 "I218 LM Ethernet Connection",
1697 WM_T_PCH_LPT, WMP_F_COPPER },
1698 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM,
1699 "I219 LM Ethernet Connection",
1700 WM_T_PCH_SPT, WMP_F_COPPER },
1701 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM2,
1702 "I219 LM (2) Ethernet Connection",
1703 WM_T_PCH_SPT, WMP_F_COPPER },
1704 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM3,
1705 "I219 LM (3) Ethernet Connection",
1706 WM_T_PCH_SPT, WMP_F_COPPER },
1707 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM4,
1708 "I219 LM (4) Ethernet Connection",
1709 WM_T_PCH_SPT, WMP_F_COPPER },
1710 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM5,
1711 "I219 LM (5) Ethernet Connection",
1712 WM_T_PCH_SPT, WMP_F_COPPER },
1713 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM6,
1714 "I219 LM (6) Ethernet Connection",
1715 WM_T_PCH_CNP, WMP_F_COPPER },
1716 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM7,
1717 "I219 LM (7) Ethernet Connection",
1718 WM_T_PCH_CNP, WMP_F_COPPER },
1719 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM8,
1720 "I219 LM (8) Ethernet Connection",
1721 WM_T_PCH_CNP, WMP_F_COPPER },
1722 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM9,
1723 "I219 LM (9) Ethernet Connection",
1724 WM_T_PCH_CNP, WMP_F_COPPER },
1725 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM10,
1726 "I219 LM (10) Ethernet Connection",
1727 WM_T_PCH_CNP, WMP_F_COPPER },
1728 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM11,
1729 "I219 LM (11) Ethernet Connection",
1730 WM_T_PCH_CNP, WMP_F_COPPER },
1731 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM12,
1732 "I219 LM (12) Ethernet Connection",
1733 WM_T_PCH_SPT, WMP_F_COPPER },
1734 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM13,
1735 "I219 LM (13) Ethernet Connection",
1736 WM_T_PCH_TGP, WMP_F_COPPER },
1737 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM14,
1738 "I219 LM (14) Ethernet Connection",
1739 WM_T_PCH_TGP, WMP_F_COPPER },
1740 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM15,
1741 "I219 LM (15) Ethernet Connection",
1742 WM_T_PCH_TGP, WMP_F_COPPER },
1743 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM16,
1744 "I219 LM (16) Ethernet Connection",
1745 WM_T_PCH_TGP, WMP_F_COPPER }, /* ADP */
1746 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM17,
1747 "I219 LM (17) Ethernet Connection",
1748 WM_T_PCH_TGP, WMP_F_COPPER }, /* ADP */
1749 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM18,
1750 "I219 LM (18) Ethernet Connection",
1751 WM_T_PCH_TGP, WMP_F_COPPER }, /* MTP */
1752 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM19,
1753 "I219 LM (19) Ethernet Connection",
1754 WM_T_PCH_TGP, WMP_F_COPPER }, /* MTP */
1755 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM20,
1756 "I219 LM (20) Ethernet Connection",
1757 WM_T_PCH_TGP, WMP_F_COPPER }, /* MTP */
1758 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM21,
1759 "I219 LM (21) Ethernet Connection",
1760 WM_T_PCH_TGP, WMP_F_COPPER }, /* MTP */
1761 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM22,
1762 "I219 LM (22) Ethernet Connection",
1763 WM_T_PCH_TGP, WMP_F_COPPER }, /* ADP(RPL) */
1764 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_LM23,
1765 "I219 LM (23) Ethernet Connection",
1766 WM_T_PCH_TGP, WMP_F_COPPER }, /* ADP(RPL) */
1767 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V,
1768 "I219 V Ethernet Connection",
1769 WM_T_PCH_SPT, WMP_F_COPPER },
1770 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V2,
1771 "I219 V (2) Ethernet Connection",
1772 WM_T_PCH_SPT, WMP_F_COPPER },
1773 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V4,
1774 "I219 V (4) Ethernet Connection",
1775 WM_T_PCH_SPT, WMP_F_COPPER },
1776 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V5,
1777 "I219 V (5) Ethernet Connection",
1778 WM_T_PCH_SPT, WMP_F_COPPER },
1779 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V6,
1780 "I219 V (6) Ethernet Connection",
1781 WM_T_PCH_CNP, WMP_F_COPPER },
1782 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V7,
1783 "I219 V (7) Ethernet Connection",
1784 WM_T_PCH_CNP, WMP_F_COPPER },
1785 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V8,
1786 "I219 V (8) Ethernet Connection",
1787 WM_T_PCH_CNP, WMP_F_COPPER },
1788 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V9,
1789 "I219 V (9) Ethernet Connection",
1790 WM_T_PCH_CNP, WMP_F_COPPER },
1791 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V10,
1792 "I219 V (10) Ethernet Connection",
1793 WM_T_PCH_CNP, WMP_F_COPPER },
1794 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V11,
1795 "I219 V (11) Ethernet Connection",
1796 WM_T_PCH_CNP, WMP_F_COPPER },
1797 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V12,
1798 "I219 V (12) Ethernet Connection",
1799 WM_T_PCH_SPT, WMP_F_COPPER },
1800 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V13,
1801 "I219 V (13) Ethernet Connection",
1802 WM_T_PCH_TGP, WMP_F_COPPER },
1803 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V14,
1804 "I219 V (14) Ethernet Connection",
1805 WM_T_PCH_TGP, WMP_F_COPPER },
1806 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V15,
1807 "I219 V (15) Ethernet Connection",
1808 WM_T_PCH_TGP, WMP_F_COPPER },
1809 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V16,
1810 "I219 V (16) Ethernet Connection",
1811 WM_T_PCH_TGP, WMP_F_COPPER }, /* ADP */
1812 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V17,
1813 "I219 V (17) Ethernet Connection",
1814 WM_T_PCH_TGP, WMP_F_COPPER }, /* ADP */
1815 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V18,
1816 "I219 V (18) Ethernet Connection",
1817 WM_T_PCH_TGP, WMP_F_COPPER }, /* MTP */
1818 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V19,
1819 "I219 V (19) Ethernet Connection",
1820 WM_T_PCH_TGP, WMP_F_COPPER }, /* MTP */
1821 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V20,
1822 "I219 V (20) Ethernet Connection",
1823 WM_T_PCH_TGP, WMP_F_COPPER }, /* MTP */
1824 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V21,
1825 "I219 V (21) Ethernet Connection",
1826 WM_T_PCH_TGP, WMP_F_COPPER }, /* MTP */
1827 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V22,
1828 "I219 V (22) Ethernet Connection",
1829 WM_T_PCH_TGP, WMP_F_COPPER }, /* ADP(RPL) */
1830 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I219_V23,
1831 "I219 V (23) Ethernet Connection",
1832 WM_T_PCH_TGP, WMP_F_COPPER }, /* ADP(RPL) */
1833 { 0, 0,
1834 NULL,
1835 0, 0 },
1836 };
1837
1838 /*
1839 * Register read/write functions.
1840 * Other than CSR_{READ|WRITE}().
1841 */
1842
1843 #if 0 /* Not currently used */
1844 static inline uint32_t
1845 wm_io_read(struct wm_softc *sc, int reg)
1846 {
1847
1848 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
1849 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
1850 }
1851 #endif
1852
1853 static inline void
1854 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
1855 {
1856
1857 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
1858 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
1859 }
1860
1861 static inline void
1862 wm_82575_write_8bit_ctlr_reg(struct wm_softc *sc, uint32_t reg, uint32_t off,
1863 uint32_t data)
1864 {
1865 uint32_t regval;
1866 int i;
1867
1868 regval = (data & SCTL_CTL_DATA_MASK) | (off << SCTL_CTL_ADDR_SHIFT);
1869
1870 CSR_WRITE(sc, reg, regval);
1871
1872 for (i = 0; i < SCTL_CTL_POLL_TIMEOUT; i++) {
1873 delay(5);
1874 if (CSR_READ(sc, reg) & SCTL_CTL_READY)
1875 break;
1876 }
1877 if (i == SCTL_CTL_POLL_TIMEOUT) {
1878 aprint_error("%s: WARNING:"
1879 " i82575 reg 0x%08x setup did not indicate ready\n",
1880 device_xname(sc->sc_dev), reg);
1881 }
1882 }
1883
1884 static inline void
1885 wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
1886 {
1887 wa->wa_low = htole32(BUS_ADDR_LO32(v));
1888 wa->wa_high = htole32(BUS_ADDR_HI32(v));
1889 }
1890
1891 /*
1892 * Descriptor sync/init functions.
1893 */
1894 static inline void
1895 wm_cdtxsync(struct wm_txqueue *txq, int start, int num, int ops)
1896 {
1897 struct wm_softc *sc = txq->txq_sc;
1898
1899 /* If it will wrap around, sync to the end of the ring. */
1900 if ((start + num) > WM_NTXDESC(txq)) {
1901 bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_dmamap,
1902 WM_CDTXOFF(txq, start), txq->txq_descsize *
1903 (WM_NTXDESC(txq) - start), ops);
1904 num -= (WM_NTXDESC(txq) - start);
1905 start = 0;
1906 }
1907
1908 /* Now sync whatever is left. */
1909 bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_dmamap,
1910 WM_CDTXOFF(txq, start), txq->txq_descsize * num, ops);
1911 }
1912
1913 static inline void
1914 wm_cdrxsync(struct wm_rxqueue *rxq, int start, int ops)
1915 {
1916 struct wm_softc *sc = rxq->rxq_sc;
1917
1918 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_dmamap,
1919 WM_CDRXOFF(rxq, start), rxq->rxq_descsize, ops);
1920 }
1921
1922 static inline void
1923 wm_init_rxdesc(struct wm_rxqueue *rxq, int start)
1924 {
1925 struct wm_softc *sc = rxq->rxq_sc;
1926 struct wm_rxsoft *rxs = &rxq->rxq_soft[start];
1927 struct mbuf *m = rxs->rxs_mbuf;
1928
1929 /*
1930 * Note: We scoot the packet forward 2 bytes in the buffer
1931 * so that the payload after the Ethernet header is aligned
1932 * to a 4-byte boundary.
1933
1934 * XXX BRAINDAMAGE ALERT!
1935 * The stupid chip uses the same size for every buffer, which
1936 * is set in the Receive Control register. We are using the 2K
1937 * size option, but what we REALLY want is (2K - 2)! For this
1938 * reason, we can't "scoot" packets longer than the standard
1939 * Ethernet MTU. On strict-alignment platforms, if the total
1940 * size exceeds (2K - 2) we set align_tweak to 0 and let
1941 * the upper layer copy the headers.
1942 */
1943 m->m_data = m->m_ext.ext_buf + sc->sc_align_tweak;
1944
1945 if (sc->sc_type == WM_T_82574) {
1946 ext_rxdesc_t *rxd = &rxq->rxq_ext_descs[start];
1947 rxd->erx_data.erxd_addr =
1948 htole64(rxs->rxs_dmamap->dm_segs[0].ds_addr + sc->sc_align_tweak);
1949 rxd->erx_data.erxd_dd = 0;
1950 } else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
1951 nq_rxdesc_t *rxd = &rxq->rxq_nq_descs[start];
1952
1953 rxd->nqrx_data.nrxd_paddr =
1954 htole64(rxs->rxs_dmamap->dm_segs[0].ds_addr + sc->sc_align_tweak);
1955 /* Currently, split header is not supported. */
1956 rxd->nqrx_data.nrxd_haddr = 0;
1957 } else {
1958 wiseman_rxdesc_t *rxd = &rxq->rxq_descs[start];
1959
1960 wm_set_dma_addr(&rxd->wrx_addr,
1961 rxs->rxs_dmamap->dm_segs[0].ds_addr + sc->sc_align_tweak);
1962 rxd->wrx_len = 0;
1963 rxd->wrx_cksum = 0;
1964 rxd->wrx_status = 0;
1965 rxd->wrx_errors = 0;
1966 rxd->wrx_special = 0;
1967 }
1968 wm_cdrxsync(rxq, start, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1969
1970 CSR_WRITE(sc, rxq->rxq_rdt_reg, start);
1971 }
1972
1973 /*
1974 * Device driver interface functions and commonly used functions.
1975 * match, attach, detach, init, start, stop, ioctl, watchdog and so on.
1976 */
1977
1978 /* Lookup supported device table */
1979 static const struct wm_product *
1980 wm_lookup(const struct pci_attach_args *pa)
1981 {
1982 const struct wm_product *wmp;
1983
1984 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
1985 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
1986 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
1987 return wmp;
1988 }
1989 return NULL;
1990 }
1991
1992 /* The match function (ca_match) */
1993 static int
1994 wm_match(device_t parent, cfdata_t cf, void *aux)
1995 {
1996 struct pci_attach_args *pa = aux;
1997
1998 if (wm_lookup(pa) != NULL)
1999 return 1;
2000
2001 return 0;
2002 }
2003
2004 /* The attach function (ca_attach) */
2005 static void
2006 wm_attach(device_t parent, device_t self, void *aux)
2007 {
2008 struct wm_softc *sc = device_private(self);
2009 struct pci_attach_args *pa = aux;
2010 prop_dictionary_t dict;
2011 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2012 pci_chipset_tag_t pc = pa->pa_pc;
2013 int counts[PCI_INTR_TYPE_SIZE];
2014 pci_intr_type_t max_type;
2015 const char *eetype, *xname;
2016 bus_space_tag_t memt;
2017 bus_space_handle_t memh;
2018 bus_size_t memsize;
2019 int memh_valid;
2020 int i, error;
2021 const struct wm_product *wmp;
2022 prop_data_t ea;
2023 prop_number_t pn;
2024 uint8_t enaddr[ETHER_ADDR_LEN];
2025 char buf[256];
2026 char wqname[MAXCOMLEN];
2027 uint16_t cfg1, cfg2, swdpin, nvmword;
2028 pcireg_t preg, memtype;
2029 uint16_t eeprom_data, apme_mask;
2030 bool force_clear_smbi;
2031 uint32_t link_mode;
2032 uint32_t reg;
2033
2034 #if defined(WM_DEBUG) && defined(WM_DEBUG_DEFAULT)
2035 sc->sc_debug = WM_DEBUG_DEFAULT;
2036 #endif
2037 sc->sc_dev = self;
2038 callout_init(&sc->sc_tick_ch, CALLOUT_MPSAFE);
2039 callout_setfunc(&sc->sc_tick_ch, wm_tick, sc);
2040 sc->sc_core_stopping = false;
2041
2042 wmp = wm_lookup(pa);
2043 #ifdef DIAGNOSTIC
2044 if (wmp == NULL) {
2045 printf("\n");
2046 panic("wm_attach: impossible");
2047 }
2048 #endif
2049 sc->sc_mediatype = WMP_MEDIATYPE(wmp->wmp_flags);
2050
2051 sc->sc_pc = pa->pa_pc;
2052 sc->sc_pcitag = pa->pa_tag;
2053
2054 if (pci_dma64_available(pa)) {
2055 aprint_verbose(", 64-bit DMA");
2056 sc->sc_dmat = pa->pa_dmat64;
2057 } else {
2058 aprint_verbose(", 32-bit DMA");
2059 sc->sc_dmat = pa->pa_dmat;
2060 }
2061
2062 sc->sc_pcidevid = PCI_PRODUCT(pa->pa_id);
2063 sc->sc_rev = PCI_REVISION(pci_conf_read(pc, pa->pa_tag,PCI_CLASS_REG));
2064 pci_aprint_devinfo_fancy(pa, "Ethernet controller", wmp->wmp_name, 1);
2065
2066 sc->sc_type = wmp->wmp_type;
2067
2068 /* Set default function pointers */
2069 sc->phy.acquire = sc->nvm.acquire = wm_get_null;
2070 sc->phy.release = sc->nvm.release = wm_put_null;
2071 sc->phy.reset_delay_us = (sc->sc_type >= WM_T_82571) ? 100 : 10000;
2072
2073 if (sc->sc_type < WM_T_82543) {
2074 if (sc->sc_rev < 2) {
2075 aprint_error_dev(sc->sc_dev,
2076 "i82542 must be at least rev. 2\n");
2077 return;
2078 }
2079 if (sc->sc_rev < 3)
2080 sc->sc_type = WM_T_82542_2_0;
2081 }
2082
2083 /*
2084 * Disable MSI for Errata:
2085 * "Message Signaled Interrupt Feature May Corrupt Write Transactions"
2086 *
2087 * 82544: Errata 25
2088 * 82540: Errata 6 (easy to reproduce device timeout)
2089 * 82545: Errata 4 (easy to reproduce device timeout)
2090 * 82546: Errata 26 (easy to reproduce device timeout)
2091 * 82541: Errata 7 (easy to reproduce device timeout)
2092 *
2093 * "Byte Enables 2 and 3 are not set on MSI writes"
2094 *
2095 * 82571 & 82572: Errata 63
2096 */
2097 if ((sc->sc_type <= WM_T_82541_2) || (sc->sc_type == WM_T_82571)
2098 || (sc->sc_type == WM_T_82572))
2099 pa->pa_flags &= ~PCI_FLAGS_MSI_OKAY;
2100
2101 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
2102 || (sc->sc_type == WM_T_82580)
2103 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
2104 || (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211))
2105 sc->sc_flags |= WM_F_NEWQUEUE;
2106
2107 /* Set device properties (mactype) */
2108 dict = device_properties(sc->sc_dev);
2109 prop_dictionary_set_uint32(dict, "mactype", sc->sc_type);
2110
2111 /*
2112 * Map the device. All devices support memory-mapped acccess,
2113 * and it is really required for normal operation.
2114 */
2115 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
2116 switch (memtype) {
2117 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2118 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2119 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
2120 memtype, 0, &memt, &memh, NULL, &memsize) == 0);
2121 break;
2122 default:
2123 memh_valid = 0;
2124 break;
2125 }
2126
2127 if (memh_valid) {
2128 sc->sc_st = memt;
2129 sc->sc_sh = memh;
2130 sc->sc_ss = memsize;
2131 } else {
2132 aprint_error_dev(sc->sc_dev,
2133 "unable to map device registers\n");
2134 return;
2135 }
2136
2137 /*
2138 * In addition, i82544 and later support I/O mapped indirect
2139 * register access. It is not desirable (nor supported in
2140 * this driver) to use it for normal operation, though it is
2141 * required to work around bugs in some chip versions.
2142 */
2143 switch (sc->sc_type) {
2144 case WM_T_82544:
2145 case WM_T_82541:
2146 case WM_T_82541_2:
2147 case WM_T_82547:
2148 case WM_T_82547_2:
2149 /* First we have to find the I/O BAR. */
2150 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
2151 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, i);
2152 if (memtype == PCI_MAPREG_TYPE_IO)
2153 break;
2154 if (PCI_MAPREG_MEM_TYPE(memtype) ==
2155 PCI_MAPREG_MEM_TYPE_64BIT)
2156 i += 4; /* skip high bits, too */
2157 }
2158 if (i < PCI_MAPREG_END) {
2159 /*
2160 * We found PCI_MAPREG_TYPE_IO. Note that 82580
2161 * (and newer?) chip has no PCI_MAPREG_TYPE_IO.
2162 * It's no problem because newer chips has no this
2163 * bug.
2164 *
2165 * The i8254x doesn't apparently respond when the
2166 * I/O BAR is 0, which looks somewhat like it's not
2167 * been configured.
2168 */
2169 preg = pci_conf_read(pc, pa->pa_tag, i);
2170 if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
2171 aprint_error_dev(sc->sc_dev,
2172 "WARNING: I/O BAR at zero.\n");
2173 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
2174 0, &sc->sc_iot, &sc->sc_ioh, NULL, &sc->sc_ios)
2175 == 0) {
2176 sc->sc_flags |= WM_F_IOH_VALID;
2177 } else
2178 aprint_error_dev(sc->sc_dev,
2179 "WARNING: unable to map I/O space\n");
2180 }
2181 break;
2182 default:
2183 break;
2184 }
2185
2186 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
2187 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2188 preg |= PCI_COMMAND_MASTER_ENABLE;
2189 if (sc->sc_type < WM_T_82542_2_1)
2190 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
2191 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
2192
2193 /* Power up chip */
2194 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL))
2195 && error != EOPNOTSUPP) {
2196 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
2197 return;
2198 }
2199
2200 wm_adjust_qnum(sc, pci_msix_count(pa->pa_pc, pa->pa_tag));
2201 /*
2202 * Don't use MSI-X if we can use only one queue to save interrupt
2203 * resource.
2204 */
2205 if (sc->sc_nqueues > 1) {
2206 max_type = PCI_INTR_TYPE_MSIX;
2207 /*
2208 * 82583 has a MSI-X capability in the PCI configuration space
2209 * but it doesn't support it. At least the document doesn't
2210 * say anything about MSI-X.
2211 */
2212 counts[PCI_INTR_TYPE_MSIX]
2213 = (sc->sc_type == WM_T_82583) ? 0 : sc->sc_nqueues + 1;
2214 } else {
2215 max_type = PCI_INTR_TYPE_MSI;
2216 counts[PCI_INTR_TYPE_MSIX] = 0;
2217 }
2218
2219 /* Allocation settings */
2220 counts[PCI_INTR_TYPE_MSI] = 1;
2221 counts[PCI_INTR_TYPE_INTX] = 1;
2222 /* overridden by disable flags */
2223 if (wm_disable_msi != 0) {
2224 counts[PCI_INTR_TYPE_MSI] = 0;
2225 if (wm_disable_msix != 0) {
2226 max_type = PCI_INTR_TYPE_INTX;
2227 counts[PCI_INTR_TYPE_MSIX] = 0;
2228 }
2229 } else if (wm_disable_msix != 0) {
2230 max_type = PCI_INTR_TYPE_MSI;
2231 counts[PCI_INTR_TYPE_MSIX] = 0;
2232 }
2233
2234 alloc_retry:
2235 if (pci_intr_alloc(pa, &sc->sc_intrs, counts, max_type) != 0) {
2236 aprint_error_dev(sc->sc_dev, "failed to allocate interrupt\n");
2237 return;
2238 }
2239
2240 if (pci_intr_type(pc, sc->sc_intrs[0]) == PCI_INTR_TYPE_MSIX) {
2241 error = wm_setup_msix(sc);
2242 if (error) {
2243 pci_intr_release(pc, sc->sc_intrs,
2244 counts[PCI_INTR_TYPE_MSIX]);
2245
2246 /* Setup for MSI: Disable MSI-X */
2247 max_type = PCI_INTR_TYPE_MSI;
2248 counts[PCI_INTR_TYPE_MSI] = 1;
2249 counts[PCI_INTR_TYPE_INTX] = 1;
2250 goto alloc_retry;
2251 }
2252 } else if (pci_intr_type(pc, sc->sc_intrs[0]) == PCI_INTR_TYPE_MSI) {
2253 wm_adjust_qnum(sc, 0); /* Must not use multiqueue */
2254 error = wm_setup_legacy(sc);
2255 if (error) {
2256 pci_intr_release(sc->sc_pc, sc->sc_intrs,
2257 counts[PCI_INTR_TYPE_MSI]);
2258
2259 /* The next try is for INTx: Disable MSI */
2260 max_type = PCI_INTR_TYPE_INTX;
2261 counts[PCI_INTR_TYPE_INTX] = 1;
2262 goto alloc_retry;
2263 }
2264 } else {
2265 wm_adjust_qnum(sc, 0); /* Must not use multiqueue */
2266 error = wm_setup_legacy(sc);
2267 if (error) {
2268 pci_intr_release(sc->sc_pc, sc->sc_intrs,
2269 counts[PCI_INTR_TYPE_INTX]);
2270 return;
2271 }
2272 }
2273
2274 snprintf(wqname, sizeof(wqname), "%sTxRx", device_xname(sc->sc_dev));
2275 error = workqueue_create(&sc->sc_queue_wq, wqname,
2276 wm_handle_queue_work, sc, WM_WORKQUEUE_PRI, IPL_NET,
2277 WQ_PERCPU | WQ_MPSAFE);
2278 if (error) {
2279 aprint_error_dev(sc->sc_dev,
2280 "unable to create TxRx workqueue\n");
2281 goto out;
2282 }
2283
2284 snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->sc_dev));
2285 error = workqueue_create(&sc->sc_reset_wq, wqname,
2286 wm_handle_reset_work, sc, WM_WORKQUEUE_PRI, IPL_SOFTCLOCK,
2287 WQ_MPSAFE);
2288 if (error) {
2289 workqueue_destroy(sc->sc_queue_wq);
2290 aprint_error_dev(sc->sc_dev,
2291 "unable to create reset workqueue\n");
2292 goto out;
2293 }
2294
2295 /*
2296 * Check the function ID (unit number of the chip).
2297 */
2298 if ((sc->sc_type == WM_T_82546) || (sc->sc_type == WM_T_82546_3)
2299 || (sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_80003)
2300 || (sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
2301 || (sc->sc_type == WM_T_82580)
2302 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354))
2303 sc->sc_funcid = (CSR_READ(sc, WMREG_STATUS)
2304 >> STATUS_FUNCID_SHIFT) & STATUS_FUNCID_MASK;
2305 else
2306 sc->sc_funcid = 0;
2307
2308 /*
2309 * Determine a few things about the bus we're connected to.
2310 */
2311 if (sc->sc_type < WM_T_82543) {
2312 /* We don't really know the bus characteristics here. */
2313 sc->sc_bus_speed = 33;
2314 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
2315 /*
2316 * CSA (Communication Streaming Architecture) is about as fast
2317 * a 32-bit 66MHz PCI Bus.
2318 */
2319 sc->sc_flags |= WM_F_CSA;
2320 sc->sc_bus_speed = 66;
2321 aprint_verbose_dev(sc->sc_dev,
2322 "Communication Streaming Architecture\n");
2323 if (sc->sc_type == WM_T_82547) {
2324 callout_init(&sc->sc_txfifo_ch, CALLOUT_MPSAFE);
2325 callout_setfunc(&sc->sc_txfifo_ch,
2326 wm_82547_txfifo_stall, sc);
2327 aprint_verbose_dev(sc->sc_dev,
2328 "using 82547 Tx FIFO stall work-around\n");
2329 }
2330 } else if (sc->sc_type >= WM_T_82571) {
2331 sc->sc_flags |= WM_F_PCIE;
2332 if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9)
2333 && (sc->sc_type != WM_T_ICH10)
2334 && (sc->sc_type != WM_T_PCH)
2335 && (sc->sc_type != WM_T_PCH2)
2336 && (sc->sc_type != WM_T_PCH_LPT)
2337 && (sc->sc_type != WM_T_PCH_SPT)
2338 && (sc->sc_type != WM_T_PCH_CNP)
2339 && (sc->sc_type != WM_T_PCH_TGP)) {
2340 /* ICH* and PCH* have no PCIe capability registers */
2341 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
2342 PCI_CAP_PCIEXPRESS, &sc->sc_pcixe_capoff,
2343 NULL) == 0)
2344 aprint_error_dev(sc->sc_dev,
2345 "unable to find PCIe capability\n");
2346 }
2347 aprint_verbose_dev(sc->sc_dev, "PCI-Express bus\n");
2348 } else {
2349 reg = CSR_READ(sc, WMREG_STATUS);
2350 if (reg & STATUS_BUS64)
2351 sc->sc_flags |= WM_F_BUS64;
2352 if ((reg & STATUS_PCIX_MODE) != 0) {
2353 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
2354
2355 sc->sc_flags |= WM_F_PCIX;
2356 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
2357 PCI_CAP_PCIX, &sc->sc_pcixe_capoff, NULL) == 0)
2358 aprint_error_dev(sc->sc_dev,
2359 "unable to find PCIX capability\n");
2360 else if (sc->sc_type != WM_T_82545_3 &&
2361 sc->sc_type != WM_T_82546_3) {
2362 /*
2363 * Work around a problem caused by the BIOS
2364 * setting the max memory read byte count
2365 * incorrectly.
2366 */
2367 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
2368 sc->sc_pcixe_capoff + PCIX_CMD);
2369 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
2370 sc->sc_pcixe_capoff + PCIX_STATUS);
2371
2372 bytecnt = (pcix_cmd & PCIX_CMD_BYTECNT_MASK) >>
2373 PCIX_CMD_BYTECNT_SHIFT;
2374 maxb = (pcix_sts & PCIX_STATUS_MAXB_MASK) >>
2375 PCIX_STATUS_MAXB_SHIFT;
2376 if (bytecnt > maxb) {
2377 aprint_verbose_dev(sc->sc_dev,
2378 "resetting PCI-X MMRBC: %d -> %d\n",
2379 512 << bytecnt, 512 << maxb);
2380 pcix_cmd = (pcix_cmd &
2381 ~PCIX_CMD_BYTECNT_MASK) |
2382 (maxb << PCIX_CMD_BYTECNT_SHIFT);
2383 pci_conf_write(pa->pa_pc, pa->pa_tag,
2384 sc->sc_pcixe_capoff + PCIX_CMD,
2385 pcix_cmd);
2386 }
2387 }
2388 }
2389 /*
2390 * The quad port adapter is special; it has a PCIX-PCIX
2391 * bridge on the board, and can run the secondary bus at
2392 * a higher speed.
2393 */
2394 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
2395 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
2396 : 66;
2397 } else if (sc->sc_flags & WM_F_PCIX) {
2398 switch (reg & STATUS_PCIXSPD_MASK) {
2399 case STATUS_PCIXSPD_50_66:
2400 sc->sc_bus_speed = 66;
2401 break;
2402 case STATUS_PCIXSPD_66_100:
2403 sc->sc_bus_speed = 100;
2404 break;
2405 case STATUS_PCIXSPD_100_133:
2406 sc->sc_bus_speed = 133;
2407 break;
2408 default:
2409 aprint_error_dev(sc->sc_dev,
2410 "unknown PCIXSPD %d; assuming 66MHz\n",
2411 reg & STATUS_PCIXSPD_MASK);
2412 sc->sc_bus_speed = 66;
2413 break;
2414 }
2415 } else
2416 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
2417 aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
2418 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
2419 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
2420 }
2421
2422 /* clear interesting stat counters */
2423 CSR_READ(sc, WMREG_COLC);
2424 CSR_READ(sc, WMREG_RXERRC);
2425
2426 if ((sc->sc_type == WM_T_82574) || (sc->sc_type == WM_T_82583)
2427 || (sc->sc_type >= WM_T_ICH8))
2428 sc->sc_ich_phymtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
2429 if (sc->sc_type >= WM_T_ICH8)
2430 sc->sc_ich_nvmmtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
2431
2432 /* Set PHY, NVM mutex related stuff */
2433 switch (sc->sc_type) {
2434 case WM_T_82542_2_0:
2435 case WM_T_82542_2_1:
2436 case WM_T_82543:
2437 case WM_T_82544:
2438 /* Microwire */
2439 sc->nvm.read = wm_nvm_read_uwire;
2440 sc->sc_nvm_wordsize = 64;
2441 sc->sc_nvm_addrbits = 6;
2442 break;
2443 case WM_T_82540:
2444 case WM_T_82545:
2445 case WM_T_82545_3:
2446 case WM_T_82546:
2447 case WM_T_82546_3:
2448 /* Microwire */
2449 sc->nvm.read = wm_nvm_read_uwire;
2450 reg = CSR_READ(sc, WMREG_EECD);
2451 if (reg & EECD_EE_SIZE) {
2452 sc->sc_nvm_wordsize = 256;
2453 sc->sc_nvm_addrbits = 8;
2454 } else {
2455 sc->sc_nvm_wordsize = 64;
2456 sc->sc_nvm_addrbits = 6;
2457 }
2458 sc->sc_flags |= WM_F_LOCK_EECD;
2459 sc->nvm.acquire = wm_get_eecd;
2460 sc->nvm.release = wm_put_eecd;
2461 break;
2462 case WM_T_82541:
2463 case WM_T_82541_2:
2464 case WM_T_82547:
2465 case WM_T_82547_2:
2466 reg = CSR_READ(sc, WMREG_EECD);
2467 /*
2468 * wm_nvm_set_addrbits_size_eecd() accesses SPI in it only
2469 * on 8254[17], so set flags and functios before calling it.
2470 */
2471 sc->sc_flags |= WM_F_LOCK_EECD;
2472 sc->nvm.acquire = wm_get_eecd;
2473 sc->nvm.release = wm_put_eecd;
2474 if (reg & EECD_EE_TYPE) {
2475 /* SPI */
2476 sc->nvm.read = wm_nvm_read_spi;
2477 sc->sc_flags |= WM_F_EEPROM_SPI;
2478 wm_nvm_set_addrbits_size_eecd(sc);
2479 } else {
2480 /* Microwire */
2481 sc->nvm.read = wm_nvm_read_uwire;
2482 if ((reg & EECD_EE_ABITS) != 0) {
2483 sc->sc_nvm_wordsize = 256;
2484 sc->sc_nvm_addrbits = 8;
2485 } else {
2486 sc->sc_nvm_wordsize = 64;
2487 sc->sc_nvm_addrbits = 6;
2488 }
2489 }
2490 break;
2491 case WM_T_82571:
2492 case WM_T_82572:
2493 /* SPI */
2494 sc->nvm.read = wm_nvm_read_eerd;
2495 /* Not use WM_F_LOCK_EECD because we use EERD */
2496 sc->sc_flags |= WM_F_EEPROM_SPI;
2497 wm_nvm_set_addrbits_size_eecd(sc);
2498 sc->phy.acquire = wm_get_swsm_semaphore;
2499 sc->phy.release = wm_put_swsm_semaphore;
2500 sc->nvm.acquire = wm_get_nvm_82571;
2501 sc->nvm.release = wm_put_nvm_82571;
2502 break;
2503 case WM_T_82573:
2504 case WM_T_82574:
2505 case WM_T_82583:
2506 sc->nvm.read = wm_nvm_read_eerd;
2507 /* Not use WM_F_LOCK_EECD because we use EERD */
2508 if (sc->sc_type == WM_T_82573) {
2509 sc->phy.acquire = wm_get_swsm_semaphore;
2510 sc->phy.release = wm_put_swsm_semaphore;
2511 sc->nvm.acquire = wm_get_nvm_82571;
2512 sc->nvm.release = wm_put_nvm_82571;
2513 } else {
2514 /* Both PHY and NVM use the same semaphore. */
2515 sc->phy.acquire = sc->nvm.acquire
2516 = wm_get_swfwhw_semaphore;
2517 sc->phy.release = sc->nvm.release
2518 = wm_put_swfwhw_semaphore;
2519 }
2520 if (wm_nvm_is_onboard_eeprom(sc) == 0) {
2521 sc->sc_flags |= WM_F_EEPROM_FLASH;
2522 sc->sc_nvm_wordsize = 2048;
2523 } else {
2524 /* SPI */
2525 sc->sc_flags |= WM_F_EEPROM_SPI;
2526 wm_nvm_set_addrbits_size_eecd(sc);
2527 }
2528 break;
2529 case WM_T_82575:
2530 case WM_T_82576:
2531 case WM_T_82580:
2532 case WM_T_I350:
2533 case WM_T_I354:
2534 case WM_T_80003:
2535 /* SPI */
2536 sc->sc_flags |= WM_F_EEPROM_SPI;
2537 wm_nvm_set_addrbits_size_eecd(sc);
2538 if ((sc->sc_type == WM_T_80003)
2539 || (sc->sc_nvm_wordsize < (1 << 15))) {
2540 sc->nvm.read = wm_nvm_read_eerd;
2541 /* Don't use WM_F_LOCK_EECD because we use EERD */
2542 } else {
2543 sc->nvm.read = wm_nvm_read_spi;
2544 sc->sc_flags |= WM_F_LOCK_EECD;
2545 }
2546 sc->phy.acquire = wm_get_phy_82575;
2547 sc->phy.release = wm_put_phy_82575;
2548 sc->nvm.acquire = wm_get_nvm_80003;
2549 sc->nvm.release = wm_put_nvm_80003;
2550 break;
2551 case WM_T_ICH8:
2552 case WM_T_ICH9:
2553 case WM_T_ICH10:
2554 case WM_T_PCH:
2555 case WM_T_PCH2:
2556 case WM_T_PCH_LPT:
2557 sc->nvm.read = wm_nvm_read_ich8;
2558 /* FLASH */
2559 sc->sc_flags |= WM_F_EEPROM_FLASH;
2560 sc->sc_nvm_wordsize = 2048;
2561 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag,WM_ICH8_FLASH);
2562 if (pci_mapreg_map(pa, WM_ICH8_FLASH, memtype, 0,
2563 &sc->sc_flasht, &sc->sc_flashh, NULL, &sc->sc_flashs)) {
2564 aprint_error_dev(sc->sc_dev,
2565 "can't map FLASH registers\n");
2566 goto out;
2567 }
2568 reg = ICH8_FLASH_READ32(sc, ICH_FLASH_GFPREG);
2569 sc->sc_ich8_flash_base = (reg & ICH_GFPREG_BASE_MASK) *
2570 ICH_FLASH_SECTOR_SIZE;
2571 sc->sc_ich8_flash_bank_size =
2572 ((reg >> 16) & ICH_GFPREG_BASE_MASK) + 1;
2573 sc->sc_ich8_flash_bank_size -= (reg & ICH_GFPREG_BASE_MASK);
2574 sc->sc_ich8_flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
2575 sc->sc_ich8_flash_bank_size /= 2 * sizeof(uint16_t);
2576 sc->sc_flashreg_offset = 0;
2577 sc->phy.acquire = wm_get_swflag_ich8lan;
2578 sc->phy.release = wm_put_swflag_ich8lan;
2579 sc->nvm.acquire = wm_get_nvm_ich8lan;
2580 sc->nvm.release = wm_put_nvm_ich8lan;
2581 break;
2582 case WM_T_PCH_SPT:
2583 case WM_T_PCH_CNP:
2584 case WM_T_PCH_TGP:
2585 sc->nvm.read = wm_nvm_read_spt;
2586 /* SPT has no GFPREG; flash registers mapped through BAR0 */
2587 sc->sc_flags |= WM_F_EEPROM_FLASH;
2588 sc->sc_flasht = sc->sc_st;
2589 sc->sc_flashh = sc->sc_sh;
2590 sc->sc_ich8_flash_base = 0;
2591 sc->sc_nvm_wordsize =
2592 (((CSR_READ(sc, WMREG_STRAP) >> 1) & 0x1F) + 1)
2593 * NVM_SIZE_MULTIPLIER;
2594 /* It is size in bytes, we want words */
2595 sc->sc_nvm_wordsize /= 2;
2596 /* Assume 2 banks */
2597 sc->sc_ich8_flash_bank_size = sc->sc_nvm_wordsize / 2;
2598 sc->sc_flashreg_offset = WM_PCH_SPT_FLASHOFFSET;
2599 sc->phy.acquire = wm_get_swflag_ich8lan;
2600 sc->phy.release = wm_put_swflag_ich8lan;
2601 sc->nvm.acquire = wm_get_nvm_ich8lan;
2602 sc->nvm.release = wm_put_nvm_ich8lan;
2603 break;
2604 case WM_T_I210:
2605 case WM_T_I211:
2606 /* Allow a single clear of the SW semaphore on I210 and newer*/
2607 sc->sc_flags |= WM_F_WA_I210_CLSEM;
2608 if (wm_nvm_flash_presence_i210(sc)) {
2609 sc->nvm.read = wm_nvm_read_eerd;
2610 /* Don't use WM_F_LOCK_EECD because we use EERD */
2611 sc->sc_flags |= WM_F_EEPROM_FLASH_HW;
2612 wm_nvm_set_addrbits_size_eecd(sc);
2613 } else {
2614 sc->nvm.read = wm_nvm_read_invm;
2615 sc->sc_flags |= WM_F_EEPROM_INVM;
2616 sc->sc_nvm_wordsize = INVM_SIZE;
2617 }
2618 sc->phy.acquire = wm_get_phy_82575;
2619 sc->phy.release = wm_put_phy_82575;
2620 sc->nvm.acquire = wm_get_nvm_80003;
2621 sc->nvm.release = wm_put_nvm_80003;
2622 break;
2623 default:
2624 break;
2625 }
2626
2627 /* Ensure the SMBI bit is clear before first NVM or PHY access */
2628 switch (sc->sc_type) {
2629 case WM_T_82571:
2630 case WM_T_82572:
2631 reg = CSR_READ(sc, WMREG_SWSM2);
2632 if ((reg & SWSM2_LOCK) == 0) {
2633 CSR_WRITE(sc, WMREG_SWSM2, reg | SWSM2_LOCK);
2634 force_clear_smbi = true;
2635 } else
2636 force_clear_smbi = false;
2637 break;
2638 case WM_T_82573:
2639 case WM_T_82574:
2640 case WM_T_82583:
2641 force_clear_smbi = true;
2642 break;
2643 default:
2644 force_clear_smbi = false;
2645 break;
2646 }
2647 if (force_clear_smbi) {
2648 reg = CSR_READ(sc, WMREG_SWSM);
2649 if ((reg & SWSM_SMBI) != 0)
2650 aprint_error_dev(sc->sc_dev,
2651 "Please update the Bootagent\n");
2652 CSR_WRITE(sc, WMREG_SWSM, reg & ~SWSM_SMBI);
2653 }
2654
2655 /*
2656 * Defer printing the EEPROM type until after verifying the checksum
2657 * This allows the EEPROM type to be printed correctly in the case
2658 * that no EEPROM is attached.
2659 */
2660 /*
2661 * Validate the EEPROM checksum. If the checksum fails, flag
2662 * this for later, so we can fail future reads from the EEPROM.
2663 */
2664 if (wm_nvm_validate_checksum(sc)) {
2665 /*
2666 * Read twice again because some PCI-e parts fail the
2667 * first check due to the link being in sleep state.
2668 */
2669 if (wm_nvm_validate_checksum(sc))
2670 sc->sc_flags |= WM_F_EEPROM_INVALID;
2671 }
2672
2673 if (sc->sc_flags & WM_F_EEPROM_INVALID)
2674 aprint_verbose_dev(sc->sc_dev, "No EEPROM");
2675 else {
2676 aprint_verbose_dev(sc->sc_dev, "%u words ",
2677 sc->sc_nvm_wordsize);
2678 if (sc->sc_flags & WM_F_EEPROM_INVM)
2679 aprint_verbose("iNVM");
2680 else if (sc->sc_flags & WM_F_EEPROM_FLASH_HW)
2681 aprint_verbose("FLASH(HW)");
2682 else if (sc->sc_flags & WM_F_EEPROM_FLASH)
2683 aprint_verbose("FLASH");
2684 else {
2685 if (sc->sc_flags & WM_F_EEPROM_SPI)
2686 eetype = "SPI";
2687 else
2688 eetype = "MicroWire";
2689 aprint_verbose("(%d address bits) %s EEPROM",
2690 sc->sc_nvm_addrbits, eetype);
2691 }
2692 }
2693 wm_nvm_version(sc);
2694 aprint_verbose("\n");
2695
2696 /*
2697 * XXX The first call of wm_gmii_setup_phytype. The result might be
2698 * incorrect.
2699 */
2700 wm_gmii_setup_phytype(sc, 0, 0);
2701
2702 /* Check for WM_F_WOL on some chips before wm_reset() */
2703 switch (sc->sc_type) {
2704 case WM_T_ICH8:
2705 case WM_T_ICH9:
2706 case WM_T_ICH10:
2707 case WM_T_PCH:
2708 case WM_T_PCH2:
2709 case WM_T_PCH_LPT:
2710 case WM_T_PCH_SPT:
2711 case WM_T_PCH_CNP:
2712 case WM_T_PCH_TGP:
2713 apme_mask = WUC_APME;
2714 eeprom_data = CSR_READ(sc, WMREG_WUC);
2715 if ((eeprom_data & apme_mask) != 0)
2716 sc->sc_flags |= WM_F_WOL;
2717 break;
2718 default:
2719 break;
2720 }
2721
2722 /* Reset the chip to a known state. */
2723 wm_reset(sc);
2724
2725 /* sc->sc_pba is set in wm_reset(). */
2726 aprint_verbose_dev(sc->sc_dev, "RX packet buffer size: %uKB\n",
2727 sc->sc_pba);
2728
2729 /*
2730 * Check for I21[01] PLL workaround.
2731 *
2732 * Three cases:
2733 * a) Chip is I211.
2734 * b) Chip is I210 and it uses INVM (not FLASH).
2735 * c) Chip is I210 (and it uses FLASH) and the NVM image version < 3.25
2736 */
2737 if (sc->sc_type == WM_T_I211)
2738 sc->sc_flags |= WM_F_PLL_WA_I210;
2739 if (sc->sc_type == WM_T_I210) {
2740 if (!wm_nvm_flash_presence_i210(sc))
2741 sc->sc_flags |= WM_F_PLL_WA_I210;
2742 else if ((sc->sc_nvm_ver_major < 3)
2743 || ((sc->sc_nvm_ver_major == 3)
2744 && (sc->sc_nvm_ver_minor < 25))) {
2745 aprint_verbose_dev(sc->sc_dev,
2746 "ROM image version %d.%d is older than 3.25\n",
2747 sc->sc_nvm_ver_major, sc->sc_nvm_ver_minor);
2748 sc->sc_flags |= WM_F_PLL_WA_I210;
2749 }
2750 }
2751 if ((sc->sc_flags & WM_F_PLL_WA_I210) != 0)
2752 wm_pll_workaround_i210(sc);
2753
2754 wm_get_wakeup(sc);
2755
2756 /* Non-AMT based hardware can now take control from firmware */
2757 if ((sc->sc_flags & WM_F_HAS_AMT) == 0)
2758 wm_get_hw_control(sc);
2759
2760 /*
2761 * Read the Ethernet address from the EEPROM, if not first found
2762 * in device properties.
2763 */
2764 ea = prop_dictionary_get(dict, "mac-address");
2765 if (ea != NULL) {
2766 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
2767 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
2768 memcpy(enaddr, prop_data_value(ea), ETHER_ADDR_LEN);
2769 } else {
2770 if (wm_read_mac_addr(sc, enaddr) != 0) {
2771 aprint_error_dev(sc->sc_dev,
2772 "unable to read Ethernet address\n");
2773 goto out;
2774 }
2775 }
2776
2777 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
2778 ether_sprintf(enaddr));
2779
2780 /*
2781 * Read the config info from the EEPROM, and set up various
2782 * bits in the control registers based on their contents.
2783 */
2784 pn = prop_dictionary_get(dict, "i82543-cfg1");
2785 if (pn != NULL) {
2786 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
2787 cfg1 = (uint16_t) prop_number_signed_value(pn);
2788 } else {
2789 if (wm_nvm_read(sc, NVM_OFF_CFG1, 1, &cfg1)) {
2790 aprint_error_dev(sc->sc_dev, "unable to read CFG1\n");
2791 goto out;
2792 }
2793 }
2794
2795 pn = prop_dictionary_get(dict, "i82543-cfg2");
2796 if (pn != NULL) {
2797 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
2798 cfg2 = (uint16_t) prop_number_signed_value(pn);
2799 } else {
2800 if (wm_nvm_read(sc, NVM_OFF_CFG2, 1, &cfg2)) {
2801 aprint_error_dev(sc->sc_dev, "unable to read CFG2\n");
2802 goto out;
2803 }
2804 }
2805
2806 /* check for WM_F_WOL */
2807 switch (sc->sc_type) {
2808 case WM_T_82542_2_0:
2809 case WM_T_82542_2_1:
2810 case WM_T_82543:
2811 /* dummy? */
2812 eeprom_data = 0;
2813 apme_mask = NVM_CFG3_APME;
2814 break;
2815 case WM_T_82544:
2816 apme_mask = NVM_CFG2_82544_APM_EN;
2817 eeprom_data = cfg2;
2818 break;
2819 case WM_T_82546:
2820 case WM_T_82546_3:
2821 case WM_T_82571:
2822 case WM_T_82572:
2823 case WM_T_82573:
2824 case WM_T_82574:
2825 case WM_T_82583:
2826 case WM_T_80003:
2827 case WM_T_82575:
2828 case WM_T_82576:
2829 apme_mask = NVM_CFG3_APME;
2830 wm_nvm_read(sc, (sc->sc_funcid == 1) ? NVM_OFF_CFG3_PORTB
2831 : NVM_OFF_CFG3_PORTA, 1, &eeprom_data);
2832 break;
2833 case WM_T_82580:
2834 case WM_T_I350:
2835 case WM_T_I354:
2836 case WM_T_I210:
2837 case WM_T_I211:
2838 apme_mask = NVM_CFG3_APME;
2839 wm_nvm_read(sc,
2840 NVM_OFF_LAN_FUNC_82580(sc->sc_funcid) + NVM_OFF_CFG3_PORTA,
2841 1, &eeprom_data);
2842 break;
2843 case WM_T_ICH8:
2844 case WM_T_ICH9:
2845 case WM_T_ICH10:
2846 case WM_T_PCH:
2847 case WM_T_PCH2:
2848 case WM_T_PCH_LPT:
2849 case WM_T_PCH_SPT:
2850 case WM_T_PCH_CNP:
2851 case WM_T_PCH_TGP:
2852 /* Already checked before wm_reset () */
2853 apme_mask = eeprom_data = 0;
2854 break;
2855 default: /* XXX 82540 */
2856 apme_mask = NVM_CFG3_APME;
2857 wm_nvm_read(sc, NVM_OFF_CFG3_PORTA, 1, &eeprom_data);
2858 break;
2859 }
2860 /* Check for WM_F_WOL flag after the setting of the EEPROM stuff */
2861 if ((eeprom_data & apme_mask) != 0)
2862 sc->sc_flags |= WM_F_WOL;
2863
2864 /*
2865 * We have the eeprom settings, now apply the special cases
2866 * where the eeprom may be wrong or the board won't support
2867 * wake on lan on a particular port
2868 */
2869 switch (sc->sc_pcidevid) {
2870 case PCI_PRODUCT_INTEL_82546GB_PCIE:
2871 sc->sc_flags &= ~WM_F_WOL;
2872 break;
2873 case PCI_PRODUCT_INTEL_82546EB_FIBER:
2874 case PCI_PRODUCT_INTEL_82546GB_FIBER:
2875 /* Wake events only supported on port A for dual fiber
2876 * regardless of eeprom setting */
2877 if (sc->sc_funcid == 1)
2878 sc->sc_flags &= ~WM_F_WOL;
2879 break;
2880 case PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3:
2881 /* If quad port adapter, disable WoL on all but port A */
2882 if (sc->sc_funcid != 0)
2883 sc->sc_flags &= ~WM_F_WOL;
2884 break;
2885 case PCI_PRODUCT_INTEL_82571EB_FIBER:
2886 /* Wake events only supported on port A for dual fiber
2887 * regardless of eeprom setting */
2888 if (sc->sc_funcid == 1)
2889 sc->sc_flags &= ~WM_F_WOL;
2890 break;
2891 case PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER:
2892 case PCI_PRODUCT_INTEL_82571EB_QUAD_FIBER:
2893 case PCI_PRODUCT_INTEL_82571GB_QUAD_COPPER:
2894 /* If quad port adapter, disable WoL on all but port A */
2895 if (sc->sc_funcid != 0)
2896 sc->sc_flags &= ~WM_F_WOL;
2897 break;
2898 }
2899
2900 if (sc->sc_type >= WM_T_82575) {
2901 if (wm_nvm_read(sc, NVM_OFF_COMPAT, 1, &nvmword) == 0) {
2902 aprint_debug_dev(sc->sc_dev, "COMPAT = %hx\n",
2903 nvmword);
2904 if ((sc->sc_type == WM_T_82575) ||
2905 (sc->sc_type == WM_T_82576)) {
2906 /* Check NVM for autonegotiation */
2907 if ((nvmword & NVM_COMPAT_SERDES_FORCE_MODE)
2908 != 0)
2909 sc->sc_flags |= WM_F_PCS_DIS_AUTONEGO;
2910 }
2911 if ((sc->sc_type == WM_T_82575) ||
2912 (sc->sc_type == WM_T_I350)) {
2913 if (nvmword & NVM_COMPAT_MAS_EN(sc->sc_funcid))
2914 sc->sc_flags |= WM_F_MAS;
2915 }
2916 }
2917 }
2918
2919 /*
2920 * XXX need special handling for some multiple port cards
2921 * to disable a paticular port.
2922 */
2923
2924 if (sc->sc_type >= WM_T_82544) {
2925 pn = prop_dictionary_get(dict, "i82543-swdpin");
2926 if (pn != NULL) {
2927 KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
2928 swdpin = (uint16_t) prop_number_signed_value(pn);
2929 } else {
2930 if (wm_nvm_read(sc, NVM_OFF_SWDPIN, 1, &swdpin)) {
2931 aprint_error_dev(sc->sc_dev,
2932 "unable to read SWDPIN\n");
2933 goto out;
2934 }
2935 }
2936 }
2937
2938 if (cfg1 & NVM_CFG1_ILOS)
2939 sc->sc_ctrl |= CTRL_ILOS;
2940
2941 /*
2942 * XXX
2943 * This code isn't correct because pin 2 and 3 are located
2944 * in different position on newer chips. Check all datasheet.
2945 *
2946 * Until resolve this problem, check if a chip < 82580
2947 */
2948 if (sc->sc_type <= WM_T_82580) {
2949 if (sc->sc_type >= WM_T_82544) {
2950 sc->sc_ctrl |=
2951 ((swdpin >> NVM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
2952 CTRL_SWDPIO_SHIFT;
2953 sc->sc_ctrl |=
2954 ((swdpin >> NVM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
2955 CTRL_SWDPINS_SHIFT;
2956 } else {
2957 sc->sc_ctrl |=
2958 ((cfg1 >> NVM_CFG1_SWDPIO_SHIFT) & 0xf) <<
2959 CTRL_SWDPIO_SHIFT;
2960 }
2961 }
2962
2963 if ((sc->sc_type >= WM_T_82580) && (sc->sc_type <= WM_T_I211)) {
2964 wm_nvm_read(sc,
2965 NVM_OFF_LAN_FUNC_82580(sc->sc_funcid) + NVM_OFF_CFG3_PORTA,
2966 1, &nvmword);
2967 if (nvmword & NVM_CFG3_ILOS)
2968 sc->sc_ctrl |= CTRL_ILOS;
2969 }
2970
2971 #if 0
2972 if (sc->sc_type >= WM_T_82544) {
2973 if (cfg1 & NVM_CFG1_IPS0)
2974 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
2975 if (cfg1 & NVM_CFG1_IPS1)
2976 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
2977 sc->sc_ctrl_ext |=
2978 ((swdpin >> (NVM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
2979 CTRL_EXT_SWDPIO_SHIFT;
2980 sc->sc_ctrl_ext |=
2981 ((swdpin >> (NVM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
2982 CTRL_EXT_SWDPINS_SHIFT;
2983 } else {
2984 sc->sc_ctrl_ext |=
2985 ((cfg2 >> NVM_CFG2_SWDPIO_SHIFT) & 0xf) <<
2986 CTRL_EXT_SWDPIO_SHIFT;
2987 }
2988 #endif
2989
2990 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2991 #if 0
2992 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2993 #endif
2994
2995 if (sc->sc_type == WM_T_PCH) {
2996 uint16_t val;
2997
2998 /* Save the NVM K1 bit setting */
2999 wm_nvm_read(sc, NVM_OFF_K1_CONFIG, 1, &val);
3000
3001 if ((val & NVM_K1_CONFIG_ENABLE) != 0)
3002 sc->sc_nvm_k1_enabled = 1;
3003 else
3004 sc->sc_nvm_k1_enabled = 0;
3005 }
3006
3007 /* Determine if we're GMII, TBI, SERDES or SGMII mode */
3008 if (sc->sc_type == WM_T_ICH8 || sc->sc_type == WM_T_ICH9
3009 || sc->sc_type == WM_T_ICH10 || sc->sc_type == WM_T_PCH
3010 || sc->sc_type == WM_T_PCH2 || sc->sc_type == WM_T_PCH_LPT
3011 || sc->sc_type == WM_T_PCH_SPT || sc->sc_type == WM_T_PCH_CNP
3012 || sc->sc_type == WM_T_PCH_TGP
3013 || sc->sc_type == WM_T_82573
3014 || sc->sc_type == WM_T_82574 || sc->sc_type == WM_T_82583) {
3015 /* Copper only */
3016 } else if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
3017 || (sc->sc_type ==WM_T_82580) || (sc->sc_type ==WM_T_I350)
3018 || (sc->sc_type ==WM_T_I354) || (sc->sc_type ==WM_T_I210)
3019 || (sc->sc_type ==WM_T_I211)) {
3020 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3021 link_mode = reg & CTRL_EXT_LINK_MODE_MASK;
3022 switch (link_mode) {
3023 case CTRL_EXT_LINK_MODE_1000KX:
3024 aprint_normal_dev(sc->sc_dev, "1000KX\n");
3025 sc->sc_mediatype = WM_MEDIATYPE_SERDES;
3026 break;
3027 case CTRL_EXT_LINK_MODE_SGMII:
3028 if (wm_sgmii_uses_mdio(sc)) {
3029 aprint_normal_dev(sc->sc_dev,
3030 "SGMII(MDIO)\n");
3031 sc->sc_flags |= WM_F_SGMII;
3032 sc->sc_mediatype = WM_MEDIATYPE_COPPER;
3033 break;
3034 }
3035 aprint_verbose_dev(sc->sc_dev, "SGMII(I2C)\n");
3036 /*FALLTHROUGH*/
3037 case CTRL_EXT_LINK_MODE_PCIE_SERDES:
3038 sc->sc_mediatype = wm_sfp_get_media_type(sc);
3039 if (sc->sc_mediatype == WM_MEDIATYPE_UNKNOWN) {
3040 if (link_mode
3041 == CTRL_EXT_LINK_MODE_SGMII) {
3042 sc->sc_mediatype = WM_MEDIATYPE_COPPER;
3043 sc->sc_flags |= WM_F_SGMII;
3044 aprint_verbose_dev(sc->sc_dev,
3045 "SGMII\n");
3046 } else {
3047 sc->sc_mediatype = WM_MEDIATYPE_SERDES;
3048 aprint_verbose_dev(sc->sc_dev,
3049 "SERDES\n");
3050 }
3051 break;
3052 }
3053 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES)
3054 aprint_normal_dev(sc->sc_dev, "SERDES(SFP)\n");
3055 else if (sc->sc_mediatype == WM_MEDIATYPE_COPPER) {
3056 aprint_normal_dev(sc->sc_dev, "SGMII(SFP)\n");
3057 sc->sc_flags |= WM_F_SGMII;
3058 }
3059 /* Do not change link mode for 100BaseFX */
3060 if (sc->sc_sfptype == SFF_SFP_ETH_FLAGS_100FX)
3061 break;
3062
3063 /* Change current link mode setting */
3064 reg &= ~CTRL_EXT_LINK_MODE_MASK;
3065 if (sc->sc_mediatype == WM_MEDIATYPE_COPPER)
3066 reg |= CTRL_EXT_LINK_MODE_SGMII;
3067 else
3068 reg |= CTRL_EXT_LINK_MODE_PCIE_SERDES;
3069 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3070 break;
3071 case CTRL_EXT_LINK_MODE_GMII:
3072 default:
3073 aprint_normal_dev(sc->sc_dev, "Copper\n");
3074 sc->sc_mediatype = WM_MEDIATYPE_COPPER;
3075 break;
3076 }
3077
3078 reg &= ~CTRL_EXT_I2C_ENA;
3079 if ((sc->sc_flags & WM_F_SGMII) != 0)
3080 reg |= CTRL_EXT_I2C_ENA;
3081 else
3082 reg &= ~CTRL_EXT_I2C_ENA;
3083 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3084 if ((sc->sc_flags & WM_F_SGMII) != 0) {
3085 if (!wm_sgmii_uses_mdio(sc))
3086 wm_gmii_setup_phytype(sc, 0, 0);
3087 wm_reset_mdicnfg_82580(sc);
3088 }
3089 } else if (sc->sc_type < WM_T_82543 ||
3090 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
3091 if (sc->sc_mediatype == WM_MEDIATYPE_COPPER) {
3092 aprint_error_dev(sc->sc_dev,
3093 "WARNING: TBIMODE set on 1000BASE-T product!\n");
3094 sc->sc_mediatype = WM_MEDIATYPE_FIBER;
3095 }
3096 } else {
3097 if (sc->sc_mediatype == WM_MEDIATYPE_FIBER) {
3098 aprint_error_dev(sc->sc_dev,
3099 "WARNING: TBIMODE clear on 1000BASE-X product!\n");
3100 sc->sc_mediatype = WM_MEDIATYPE_COPPER;
3101 }
3102 }
3103
3104 if (sc->sc_type >= WM_T_PCH2)
3105 sc->sc_flags |= WM_F_EEE;
3106 else if ((sc->sc_type >= WM_T_I350) && (sc->sc_type <= WM_T_I211)
3107 && (sc->sc_mediatype == WM_MEDIATYPE_COPPER)) {
3108 /* XXX: Need special handling for I354. (not yet) */
3109 if (sc->sc_type != WM_T_I354)
3110 sc->sc_flags |= WM_F_EEE;
3111 }
3112
3113 /*
3114 * The I350 has a bug where it always strips the CRC whether
3115 * asked to or not. So ask for stripped CRC here and cope in rxeof
3116 */
3117 if ((sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
3118 || (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211))
3119 sc->sc_flags |= WM_F_CRC_STRIP;
3120
3121 /*
3122 * Workaround for some chips to delay sending LINK_STATE_UP.
3123 * Some systems can't send packet soon after linkup. See also
3124 * wm_linkintr_gmii(), wm_tick() and wm_gmii_mediastatus().
3125 */
3126 switch (sc->sc_type) {
3127 case WM_T_I350:
3128 case WM_T_I354:
3129 case WM_T_I210:
3130 case WM_T_I211:
3131 if (sc->sc_mediatype == WM_MEDIATYPE_COPPER)
3132 sc->sc_flags |= WM_F_DELAY_LINKUP;
3133 break;
3134 default:
3135 break;
3136 }
3137
3138 /* Set device properties (macflags) */
3139 prop_dictionary_set_uint32(dict, "macflags", sc->sc_flags);
3140
3141 if (sc->sc_flags != 0) {
3142 snprintb(buf, sizeof(buf), WM_FLAGS, sc->sc_flags);
3143 aprint_verbose_dev(sc->sc_dev, "%s\n", buf);
3144 }
3145
3146 sc->sc_core_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
3147
3148 /* Initialize the media structures accordingly. */
3149 if (sc->sc_mediatype == WM_MEDIATYPE_COPPER)
3150 wm_gmii_mediainit(sc, wmp->wmp_product);
3151 else
3152 wm_tbi_mediainit(sc); /* All others */
3153
3154 ifp = &sc->sc_ethercom.ec_if;
3155 xname = device_xname(sc->sc_dev);
3156 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
3157 ifp->if_softc = sc;
3158 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3159 ifp->if_extflags = IFEF_MPSAFE;
3160 ifp->if_ioctl = wm_ioctl;
3161 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
3162 ifp->if_start = wm_nq_start;
3163 /*
3164 * When the number of CPUs is one and the controller can use
3165 * MSI-X, wm(4) use MSI-X but *does not* use multiqueue.
3166 * That is, wm(4) use two interrupts, one is used for Tx/Rx
3167 * and the other is used for link status changing.
3168 * In this situation, wm_nq_transmit() is disadvantageous
3169 * because of wm_select_txqueue() and pcq(9) overhead.
3170 */
3171 if (wm_is_using_multiqueue(sc))
3172 ifp->if_transmit = wm_nq_transmit;
3173 } else {
3174 ifp->if_start = wm_start;
3175 /*
3176 * wm_transmit() has the same disadvantages as wm_nq_transmit()
3177 * described above.
3178 */
3179 if (wm_is_using_multiqueue(sc))
3180 ifp->if_transmit = wm_transmit;
3181 }
3182 /* wm(4) doest not use ifp->if_watchdog, use wm_tick as watchdog. */
3183 ifp->if_init = wm_init;
3184 ifp->if_stop = wm_stop;
3185 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(WM_IFQUEUELEN, IFQ_MAXLEN));
3186 IFQ_SET_READY(&ifp->if_snd);
3187
3188 /* Check for jumbo frame */
3189 switch (sc->sc_type) {
3190 case WM_T_82573:
3191 /* XXX limited to 9234 if ASPM is disabled */
3192 wm_nvm_read(sc, NVM_OFF_INIT_3GIO_3, 1, &nvmword);
3193 if ((nvmword & NVM_3GIO_3_ASPM_MASK) != 0)
3194 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3195 break;
3196 case WM_T_82571:
3197 case WM_T_82572:
3198 case WM_T_82574:
3199 case WM_T_82583:
3200 case WM_T_82575:
3201 case WM_T_82576:
3202 case WM_T_82580:
3203 case WM_T_I350:
3204 case WM_T_I354:
3205 case WM_T_I210:
3206 case WM_T_I211:
3207 case WM_T_80003:
3208 case WM_T_ICH9:
3209 case WM_T_ICH10:
3210 case WM_T_PCH2: /* PCH2 supports 9K frame size */
3211 case WM_T_PCH_LPT:
3212 case WM_T_PCH_SPT:
3213 case WM_T_PCH_CNP:
3214 case WM_T_PCH_TGP:
3215 /* XXX limited to 9234 */
3216 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3217 break;
3218 case WM_T_PCH:
3219 /* XXX limited to 4096 */
3220 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3221 break;
3222 case WM_T_82542_2_0:
3223 case WM_T_82542_2_1:
3224 case WM_T_ICH8:
3225 /* No support for jumbo frame */
3226 break;
3227 default:
3228 /* ETHER_MAX_LEN_JUMBO */
3229 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3230 break;
3231 }
3232
3233 /* If we're a i82543 or greater, we can support VLANs. */
3234 if (sc->sc_type >= WM_T_82543) {
3235 sc->sc_ethercom.ec_capabilities |=
3236 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
3237 sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
3238 }
3239
3240 if ((sc->sc_flags & WM_F_EEE) != 0)
3241 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
3242
3243 /*
3244 * We can perform TCPv4 and UDPv4 checksums in-bound. Only
3245 * on i82543 and later.
3246 */
3247 if (sc->sc_type >= WM_T_82543) {
3248 ifp->if_capabilities |=
3249 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
3250 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3251 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
3252 IFCAP_CSUM_TCPv6_Tx |
3253 IFCAP_CSUM_UDPv6_Tx;
3254 }
3255
3256 /*
3257 * XXXyamt: i'm not sure which chips support RXCSUM_IPV6OFL.
3258 *
3259 * 82541GI (8086:1076) ... no
3260 * 82572EI (8086:10b9) ... yes
3261 */
3262 if (sc->sc_type >= WM_T_82571) {
3263 ifp->if_capabilities |=
3264 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
3265 }
3266
3267 /*
3268 * If we're a i82544 or greater (except i82547), we can do
3269 * TCP segmentation offload.
3270 */
3271 if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547)
3272 ifp->if_capabilities |= IFCAP_TSOv4;
3273
3274 if (sc->sc_type >= WM_T_82571)
3275 ifp->if_capabilities |= IFCAP_TSOv6;
3276
3277 sc->sc_tx_process_limit = WM_TX_PROCESS_LIMIT_DEFAULT;
3278 sc->sc_tx_intr_process_limit = WM_TX_INTR_PROCESS_LIMIT_DEFAULT;
3279 sc->sc_rx_process_limit = WM_RX_PROCESS_LIMIT_DEFAULT;
3280 sc->sc_rx_intr_process_limit = WM_RX_INTR_PROCESS_LIMIT_DEFAULT;
3281
3282 /* Attach the interface. */
3283 if_initialize(ifp);
3284 sc->sc_ipq = if_percpuq_create(&sc->sc_ethercom.ec_if);
3285 ether_ifattach(ifp, enaddr);
3286 ether_set_ifflags_cb(&sc->sc_ethercom, wm_ifflags_cb);
3287 if_register(ifp);
3288 rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET,
3289 RND_FLAG_DEFAULT);
3290
3291 #ifdef WM_EVENT_COUNTERS
3292 /* Attach event counters. */
3293 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
3294 NULL, xname, "linkintr");
3295
3296 evcnt_attach_dynamic(&sc->sc_ev_crcerrs, EVCNT_TYPE_MISC,
3297 NULL, xname, "CRC Error");
3298 evcnt_attach_dynamic(&sc->sc_ev_symerrc, EVCNT_TYPE_MISC,
3299 NULL, xname, "Symbol Error");
3300 evcnt_attach_dynamic(&sc->sc_ev_mpc, EVCNT_TYPE_MISC,
3301 NULL, xname, "Missed Packets");
3302 evcnt_attach_dynamic(&sc->sc_ev_colc, EVCNT_TYPE_MISC,
3303 NULL, xname, "Collision");
3304 evcnt_attach_dynamic(&sc->sc_ev_sec, EVCNT_TYPE_MISC,
3305 NULL, xname, "Sequence Error");
3306 evcnt_attach_dynamic(&sc->sc_ev_rlec, EVCNT_TYPE_MISC,
3307 NULL, xname, "Receive Length Error");
3308
3309 if (sc->sc_type >= WM_T_82543) {
3310 evcnt_attach_dynamic(&sc->sc_ev_algnerrc, EVCNT_TYPE_MISC,
3311 NULL, xname, "Alignment Error");
3312 evcnt_attach_dynamic(&sc->sc_ev_rxerrc, EVCNT_TYPE_MISC,
3313 NULL, xname, "Receive Error");
3314 /* XXX Does 82575 have HTDPMC? */
3315 if ((sc->sc_type < WM_T_82575) || WM_IS_ICHPCH(sc))
3316 evcnt_attach_dynamic(&sc->sc_ev_cexterr,
3317 EVCNT_TYPE_MISC, NULL, xname,
3318 "Carrier Extension Error");
3319 else
3320 evcnt_attach_dynamic(&sc->sc_ev_htdpmc,
3321 EVCNT_TYPE_MISC, NULL, xname,
3322 "Host Transmit Discarded Packets by MAC");
3323
3324 evcnt_attach_dynamic(&sc->sc_ev_tncrs, EVCNT_TYPE_MISC,
3325 NULL, xname, "Tx with No CRS");
3326 evcnt_attach_dynamic(&sc->sc_ev_tsctc, EVCNT_TYPE_MISC,
3327 NULL, xname, "TCP Segmentation Context Tx");
3328 if ((sc->sc_type < WM_T_82575) || WM_IS_ICHPCH(sc))
3329 evcnt_attach_dynamic(&sc->sc_ev_tsctfc,
3330 EVCNT_TYPE_MISC, NULL, xname,
3331 "TCP Segmentation Context Tx Fail");
3332 else {
3333 /* XXX Is the circuit breaker only for 82576? */
3334 evcnt_attach_dynamic(&sc->sc_ev_cbrdpc,
3335 EVCNT_TYPE_MISC, NULL, xname,
3336 "Circuit Breaker Rx Dropped Packet");
3337 evcnt_attach_dynamic(&sc->sc_ev_cbrmpc,
3338 EVCNT_TYPE_MISC, NULL, xname,
3339 "Circuit Breaker Rx Manageability Packet");
3340 }
3341 }
3342
3343 if (sc->sc_type >= WM_T_82542_2_1) {
3344 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
3345 NULL, xname, "XOFF Transmitted");
3346 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
3347 NULL, xname, "XON Transmitted");
3348 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
3349 NULL, xname, "XOFF Received");
3350 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
3351 NULL, xname, "XON Received");
3352 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
3353 NULL, xname, "FC Received Unsupported");
3354 }
3355
3356 evcnt_attach_dynamic(&sc->sc_ev_scc, EVCNT_TYPE_MISC,
3357 NULL, xname, "Single Collision");
3358 evcnt_attach_dynamic(&sc->sc_ev_ecol, EVCNT_TYPE_MISC,
3359 NULL, xname, "Excessive Collisions");
3360 evcnt_attach_dynamic(&sc->sc_ev_mcc, EVCNT_TYPE_MISC,
3361 NULL, xname, "Multiple Collision");
3362 evcnt_attach_dynamic(&sc->sc_ev_latecol, EVCNT_TYPE_MISC,
3363 NULL, xname, "Late Collisions");
3364
3365 if ((sc->sc_type >= WM_T_I350) && !WM_IS_ICHPCH(sc))
3366 evcnt_attach_dynamic(&sc->sc_ev_cbtmpc, EVCNT_TYPE_MISC,
3367 NULL, xname, "Circuit Breaker Tx Manageability Packet");
3368
3369 evcnt_attach_dynamic(&sc->sc_ev_dc, EVCNT_TYPE_MISC,
3370 NULL, xname, "Defer");
3371 evcnt_attach_dynamic(&sc->sc_ev_prc64, EVCNT_TYPE_MISC,
3372 NULL, xname, "Packets Rx (64 bytes)");
3373 evcnt_attach_dynamic(&sc->sc_ev_prc127, EVCNT_TYPE_MISC,
3374 NULL, xname, "Packets Rx (65-127 bytes)");
3375 evcnt_attach_dynamic(&sc->sc_ev_prc255, EVCNT_TYPE_MISC,
3376 NULL, xname, "Packets Rx (128-255 bytes)");
3377 evcnt_attach_dynamic(&sc->sc_ev_prc511, EVCNT_TYPE_MISC,
3378 NULL, xname, "Packets Rx (256-511 bytes)");
3379 evcnt_attach_dynamic(&sc->sc_ev_prc1023, EVCNT_TYPE_MISC,
3380 NULL, xname, "Packets Rx (512-1023 bytes)");
3381 evcnt_attach_dynamic(&sc->sc_ev_prc1522, EVCNT_TYPE_MISC,
3382 NULL, xname, "Packets Rx (1024-1522 bytes)");
3383 evcnt_attach_dynamic(&sc->sc_ev_gprc, EVCNT_TYPE_MISC,
3384 NULL, xname, "Good Packets Rx");
3385 evcnt_attach_dynamic(&sc->sc_ev_bprc, EVCNT_TYPE_MISC,
3386 NULL, xname, "Broadcast Packets Rx");
3387 evcnt_attach_dynamic(&sc->sc_ev_mprc, EVCNT_TYPE_MISC,
3388 NULL, xname, "Multicast Packets Rx");
3389 evcnt_attach_dynamic(&sc->sc_ev_gptc, EVCNT_TYPE_MISC,
3390 NULL, xname, "Good Packets Tx");
3391 evcnt_attach_dynamic(&sc->sc_ev_gorc, EVCNT_TYPE_MISC,
3392 NULL, xname, "Good Octets Rx");
3393 evcnt_attach_dynamic(&sc->sc_ev_gotc, EVCNT_TYPE_MISC,
3394 NULL, xname, "Good Octets Tx");
3395 evcnt_attach_dynamic(&sc->sc_ev_rnbc, EVCNT_TYPE_MISC,
3396 NULL, xname, "Rx No Buffers");
3397 evcnt_attach_dynamic(&sc->sc_ev_ruc, EVCNT_TYPE_MISC,
3398 NULL, xname, "Rx Undersize (valid CRC)");
3399 evcnt_attach_dynamic(&sc->sc_ev_rfc, EVCNT_TYPE_MISC,
3400 NULL, xname, "Rx Fragment (bad CRC)");
3401 evcnt_attach_dynamic(&sc->sc_ev_roc, EVCNT_TYPE_MISC,
3402 NULL, xname, "Rx Oversize (valid CRC)");
3403 evcnt_attach_dynamic(&sc->sc_ev_rjc, EVCNT_TYPE_MISC,
3404 NULL, xname, "Rx Jabber (bad CRC)");
3405 if (sc->sc_type >= WM_T_82540) {
3406 evcnt_attach_dynamic(&sc->sc_ev_mgtprc, EVCNT_TYPE_MISC,
3407 NULL, xname, "Management Packets RX");
3408 evcnt_attach_dynamic(&sc->sc_ev_mgtpdc, EVCNT_TYPE_MISC,
3409 NULL, xname, "Management Packets Dropped");
3410 evcnt_attach_dynamic(&sc->sc_ev_mgtptc, EVCNT_TYPE_MISC,
3411 NULL, xname, "Management Packets TX");
3412 }
3413 evcnt_attach_dynamic(&sc->sc_ev_tor, EVCNT_TYPE_MISC,
3414 NULL, xname, "Total Octets Rx");
3415 evcnt_attach_dynamic(&sc->sc_ev_tot, EVCNT_TYPE_MISC,
3416 NULL, xname, "Total Octets Tx");
3417 evcnt_attach_dynamic(&sc->sc_ev_tpr, EVCNT_TYPE_MISC,
3418 NULL, xname, "Total Packets Rx");
3419 evcnt_attach_dynamic(&sc->sc_ev_tpt, EVCNT_TYPE_MISC,
3420 NULL, xname, "Total Packets Tx");
3421 evcnt_attach_dynamic(&sc->sc_ev_ptc64, EVCNT_TYPE_MISC,
3422 NULL, xname, "Packets Tx (64 bytes)");
3423 evcnt_attach_dynamic(&sc->sc_ev_ptc127, EVCNT_TYPE_MISC,
3424 NULL, xname, "Packets Tx (65-127 bytes)");
3425 evcnt_attach_dynamic(&sc->sc_ev_ptc255, EVCNT_TYPE_MISC,
3426 NULL, xname, "Packets Tx (128-255 bytes)");
3427 evcnt_attach_dynamic(&sc->sc_ev_ptc511, EVCNT_TYPE_MISC,
3428 NULL, xname, "Packets Tx (256-511 bytes)");
3429 evcnt_attach_dynamic(&sc->sc_ev_ptc1023, EVCNT_TYPE_MISC,
3430 NULL, xname, "Packets Tx (512-1023 bytes)");
3431 evcnt_attach_dynamic(&sc->sc_ev_ptc1522, EVCNT_TYPE_MISC,
3432 NULL, xname, "Packets Tx (1024-1522 Bytes)");
3433 evcnt_attach_dynamic(&sc->sc_ev_mptc, EVCNT_TYPE_MISC,
3434 NULL, xname, "Multicast Packets Tx");
3435 evcnt_attach_dynamic(&sc->sc_ev_bptc, EVCNT_TYPE_MISC,
3436 NULL, xname, "Broadcast Packets Tx");
3437 if (sc->sc_type >= WM_T_82571) /* PCIe, 80003 and ICH/PCHs */
3438 evcnt_attach_dynamic(&sc->sc_ev_iac, EVCNT_TYPE_MISC,
3439 NULL, xname, "Interrupt Assertion");
3440 if (sc->sc_type < WM_T_82575) {
3441 evcnt_attach_dynamic(&sc->sc_ev_icrxptc, EVCNT_TYPE_MISC,
3442 NULL, xname, "Intr. Cause Rx Pkt Timer Expire");
3443 evcnt_attach_dynamic(&sc->sc_ev_icrxatc, EVCNT_TYPE_MISC,
3444 NULL, xname, "Intr. Cause Rx Abs Timer Expire");
3445 evcnt_attach_dynamic(&sc->sc_ev_ictxptc, EVCNT_TYPE_MISC,
3446 NULL, xname, "Intr. Cause Tx Pkt Timer Expire");
3447 evcnt_attach_dynamic(&sc->sc_ev_ictxatc, EVCNT_TYPE_MISC,
3448 NULL, xname, "Intr. Cause Tx Abs Timer Expire");
3449 evcnt_attach_dynamic(&sc->sc_ev_ictxqec, EVCNT_TYPE_MISC,
3450 NULL, xname, "Intr. Cause Tx Queue Empty");
3451 evcnt_attach_dynamic(&sc->sc_ev_ictxqmtc, EVCNT_TYPE_MISC,
3452 NULL, xname, "Intr. Cause Tx Queue Min Thresh");
3453 evcnt_attach_dynamic(&sc->sc_ev_rxdmtc, EVCNT_TYPE_MISC,
3454 NULL, xname, "Intr. Cause Rx Desc Min Thresh");
3455
3456 /* XXX 82575 document says it has ICRXOC. Is that right? */
3457 evcnt_attach_dynamic(&sc->sc_ev_icrxoc, EVCNT_TYPE_MISC,
3458 NULL, xname, "Interrupt Cause Receiver Overrun");
3459 } else if (!WM_IS_ICHPCH(sc)) {
3460 /*
3461 * For 82575 and newer.
3462 *
3463 * On 80003, ICHs and PCHs, it seems all of the following
3464 * registers are zero.
3465 */
3466 evcnt_attach_dynamic(&sc->sc_ev_rpthc, EVCNT_TYPE_MISC,
3467 NULL, xname, "Rx Packets To Host");
3468 evcnt_attach_dynamic(&sc->sc_ev_debug1, EVCNT_TYPE_MISC,
3469 NULL, xname, "Debug Counter 1");
3470 evcnt_attach_dynamic(&sc->sc_ev_debug2, EVCNT_TYPE_MISC,
3471 NULL, xname, "Debug Counter 2");
3472 evcnt_attach_dynamic(&sc->sc_ev_debug3, EVCNT_TYPE_MISC,
3473 NULL, xname, "Debug Counter 3");
3474
3475 /*
3476 * 82575 datasheet says 0x4118 is for TXQEC(Tx Queue Empty).
3477 * I think it's wrong. The real count I observed is the same
3478 * as GPTC(Good Packets Tx) and TPT(Total Packets Tx).
3479 * It's HGPTC(Host Good Packets Tx) which is described in
3480 * 82576's datasheet.
3481 */
3482 evcnt_attach_dynamic(&sc->sc_ev_hgptc, EVCNT_TYPE_MISC,
3483 NULL, xname, "Host Good Packets TX");
3484
3485 evcnt_attach_dynamic(&sc->sc_ev_debug4, EVCNT_TYPE_MISC,
3486 NULL, xname, "Debug Counter 4");
3487 evcnt_attach_dynamic(&sc->sc_ev_rxdmtc, EVCNT_TYPE_MISC,
3488 NULL, xname, "Rx Desc Min Thresh");
3489 /* XXX Is the circuit breaker only for 82576? */
3490 evcnt_attach_dynamic(&sc->sc_ev_htcbdpc, EVCNT_TYPE_MISC,
3491 NULL, xname, "Host Tx Circuit Breaker Dropped Packets");
3492
3493 evcnt_attach_dynamic(&sc->sc_ev_hgorc, EVCNT_TYPE_MISC,
3494 NULL, xname, "Host Good Octets Rx");
3495 evcnt_attach_dynamic(&sc->sc_ev_hgotc, EVCNT_TYPE_MISC,
3496 NULL, xname, "Host Good Octets Tx");
3497 evcnt_attach_dynamic(&sc->sc_ev_lenerrs, EVCNT_TYPE_MISC,
3498 NULL, xname, "Length Errors (length/type <= 1500)");
3499 evcnt_attach_dynamic(&sc->sc_ev_scvpc, EVCNT_TYPE_MISC,
3500 NULL, xname, "SerDes/SGMII Code Violation Packet");
3501 evcnt_attach_dynamic(&sc->sc_ev_hrmpc, EVCNT_TYPE_MISC,
3502 NULL, xname, "Header Redirection Missed Packet");
3503 }
3504 if ((sc->sc_type >= WM_T_I350) && !WM_IS_ICHPCH(sc)) {
3505 evcnt_attach_dynamic(&sc->sc_ev_tlpic, EVCNT_TYPE_MISC,
3506 NULL, xname, "EEE Tx LPI");
3507 evcnt_attach_dynamic(&sc->sc_ev_rlpic, EVCNT_TYPE_MISC,
3508 NULL, xname, "EEE Rx LPI");
3509 evcnt_attach_dynamic(&sc->sc_ev_b2ogprc, EVCNT_TYPE_MISC,
3510 NULL, xname, "BMC2OS Packets received by host");
3511 evcnt_attach_dynamic(&sc->sc_ev_o2bspc, EVCNT_TYPE_MISC,
3512 NULL, xname, "OS2BMC Packets transmitted by host");
3513 evcnt_attach_dynamic(&sc->sc_ev_b2ospc, EVCNT_TYPE_MISC,
3514 NULL, xname, "BMC2OS Packets sent by BMC");
3515 evcnt_attach_dynamic(&sc->sc_ev_o2bgptc, EVCNT_TYPE_MISC,
3516 NULL, xname, "OS2BMC Packets received by BMC");
3517 }
3518 #endif /* WM_EVENT_COUNTERS */
3519
3520 sc->sc_txrx_use_workqueue = false;
3521
3522 if (wm_phy_need_linkdown_discard(sc)) {
3523 DPRINTF(sc, WM_DEBUG_LINK,
3524 ("%s: %s: Set linkdown discard flag\n",
3525 device_xname(sc->sc_dev), __func__));
3526 wm_set_linkdown_discard(sc);
3527 }
3528
3529 wm_init_sysctls(sc);
3530
3531 if (pmf_device_register(self, wm_suspend, wm_resume))
3532 pmf_class_network_register(self, ifp);
3533 else
3534 aprint_error_dev(self, "couldn't establish power handler\n");
3535
3536 sc->sc_flags |= WM_F_ATTACHED;
3537 out:
3538 return;
3539 }
3540
3541 /* The detach function (ca_detach) */
3542 static int
3543 wm_detach(device_t self, int flags __unused)
3544 {
3545 struct wm_softc *sc = device_private(self);
3546 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3547 int i;
3548
3549 if ((sc->sc_flags & WM_F_ATTACHED) == 0)
3550 return 0;
3551
3552 /* Stop the interface. Callouts are stopped in it. */
3553 IFNET_LOCK(ifp);
3554 sc->sc_dying = true;
3555 wm_stop(ifp, 1);
3556 IFNET_UNLOCK(ifp);
3557
3558 pmf_device_deregister(self);
3559
3560 sysctl_teardown(&sc->sc_sysctllog);
3561
3562 #ifdef WM_EVENT_COUNTERS
3563 evcnt_detach(&sc->sc_ev_linkintr);
3564
3565 evcnt_detach(&sc->sc_ev_crcerrs);
3566 evcnt_detach(&sc->sc_ev_symerrc);
3567 evcnt_detach(&sc->sc_ev_mpc);
3568 evcnt_detach(&sc->sc_ev_colc);
3569 evcnt_detach(&sc->sc_ev_sec);
3570 evcnt_detach(&sc->sc_ev_rlec);
3571
3572 if (sc->sc_type >= WM_T_82543) {
3573 evcnt_detach(&sc->sc_ev_algnerrc);
3574 evcnt_detach(&sc->sc_ev_rxerrc);
3575 if ((sc->sc_type < WM_T_82575) || WM_IS_ICHPCH(sc))
3576 evcnt_detach(&sc->sc_ev_cexterr);
3577 else
3578 evcnt_detach(&sc->sc_ev_htdpmc);
3579
3580 evcnt_detach(&sc->sc_ev_tncrs);
3581 evcnt_detach(&sc->sc_ev_tsctc);
3582 if ((sc->sc_type < WM_T_82575) || WM_IS_ICHPCH(sc))
3583 evcnt_detach(&sc->sc_ev_tsctfc);
3584 else {
3585 evcnt_detach(&sc->sc_ev_cbrdpc);
3586 evcnt_detach(&sc->sc_ev_cbrmpc);
3587 }
3588 }
3589
3590 if (sc->sc_type >= WM_T_82542_2_1) {
3591 evcnt_detach(&sc->sc_ev_tx_xoff);
3592 evcnt_detach(&sc->sc_ev_tx_xon);
3593 evcnt_detach(&sc->sc_ev_rx_xoff);
3594 evcnt_detach(&sc->sc_ev_rx_xon);
3595 evcnt_detach(&sc->sc_ev_rx_macctl);
3596 }
3597
3598 evcnt_detach(&sc->sc_ev_scc);
3599 evcnt_detach(&sc->sc_ev_ecol);
3600 evcnt_detach(&sc->sc_ev_mcc);
3601 evcnt_detach(&sc->sc_ev_latecol);
3602
3603 if ((sc->sc_type >= WM_T_I350) && !WM_IS_ICHPCH(sc))
3604 evcnt_detach(&sc->sc_ev_cbtmpc);
3605
3606 evcnt_detach(&sc->sc_ev_dc);
3607 evcnt_detach(&sc->sc_ev_prc64);
3608 evcnt_detach(&sc->sc_ev_prc127);
3609 evcnt_detach(&sc->sc_ev_prc255);
3610 evcnt_detach(&sc->sc_ev_prc511);
3611 evcnt_detach(&sc->sc_ev_prc1023);
3612 evcnt_detach(&sc->sc_ev_prc1522);
3613 evcnt_detach(&sc->sc_ev_gprc);
3614 evcnt_detach(&sc->sc_ev_bprc);
3615 evcnt_detach(&sc->sc_ev_mprc);
3616 evcnt_detach(&sc->sc_ev_gptc);
3617 evcnt_detach(&sc->sc_ev_gorc);
3618 evcnt_detach(&sc->sc_ev_gotc);
3619 evcnt_detach(&sc->sc_ev_rnbc);
3620 evcnt_detach(&sc->sc_ev_ruc);
3621 evcnt_detach(&sc->sc_ev_rfc);
3622 evcnt_detach(&sc->sc_ev_roc);
3623 evcnt_detach(&sc->sc_ev_rjc);
3624 if (sc->sc_type >= WM_T_82540) {
3625 evcnt_detach(&sc->sc_ev_mgtprc);
3626 evcnt_detach(&sc->sc_ev_mgtpdc);
3627 evcnt_detach(&sc->sc_ev_mgtptc);
3628 }
3629 evcnt_detach(&sc->sc_ev_tor);
3630 evcnt_detach(&sc->sc_ev_tot);
3631 evcnt_detach(&sc->sc_ev_tpr);
3632 evcnt_detach(&sc->sc_ev_tpt);
3633 evcnt_detach(&sc->sc_ev_ptc64);
3634 evcnt_detach(&sc->sc_ev_ptc127);
3635 evcnt_detach(&sc->sc_ev_ptc255);
3636 evcnt_detach(&sc->sc_ev_ptc511);
3637 evcnt_detach(&sc->sc_ev_ptc1023);
3638 evcnt_detach(&sc->sc_ev_ptc1522);
3639 evcnt_detach(&sc->sc_ev_mptc);
3640 evcnt_detach(&sc->sc_ev_bptc);
3641 if (sc->sc_type >= WM_T_82571)
3642 evcnt_detach(&sc->sc_ev_iac);
3643 if (sc->sc_type < WM_T_82575) {
3644 evcnt_detach(&sc->sc_ev_icrxptc);
3645 evcnt_detach(&sc->sc_ev_icrxatc);
3646 evcnt_detach(&sc->sc_ev_ictxptc);
3647 evcnt_detach(&sc->sc_ev_ictxatc);
3648 evcnt_detach(&sc->sc_ev_ictxqec);
3649 evcnt_detach(&sc->sc_ev_ictxqmtc);
3650 evcnt_detach(&sc->sc_ev_rxdmtc);
3651 evcnt_detach(&sc->sc_ev_icrxoc);
3652 } else if (!WM_IS_ICHPCH(sc)) {
3653 evcnt_detach(&sc->sc_ev_rpthc);
3654 evcnt_detach(&sc->sc_ev_debug1);
3655 evcnt_detach(&sc->sc_ev_debug2);
3656 evcnt_detach(&sc->sc_ev_debug3);
3657 evcnt_detach(&sc->sc_ev_hgptc);
3658 evcnt_detach(&sc->sc_ev_debug4);
3659 evcnt_detach(&sc->sc_ev_rxdmtc);
3660 evcnt_detach(&sc->sc_ev_htcbdpc);
3661
3662 evcnt_detach(&sc->sc_ev_hgorc);
3663 evcnt_detach(&sc->sc_ev_hgotc);
3664 evcnt_detach(&sc->sc_ev_lenerrs);
3665 evcnt_detach(&sc->sc_ev_scvpc);
3666 evcnt_detach(&sc->sc_ev_hrmpc);
3667 }
3668 if ((sc->sc_type >= WM_T_I350) && !WM_IS_ICHPCH(sc)) {
3669 evcnt_detach(&sc->sc_ev_tlpic);
3670 evcnt_detach(&sc->sc_ev_rlpic);
3671 evcnt_detach(&sc->sc_ev_b2ogprc);
3672 evcnt_detach(&sc->sc_ev_o2bspc);
3673 evcnt_detach(&sc->sc_ev_b2ospc);
3674 evcnt_detach(&sc->sc_ev_o2bgptc);
3675 }
3676 #endif /* WM_EVENT_COUNTERS */
3677
3678 rnd_detach_source(&sc->rnd_source);
3679
3680 /* Tell the firmware about the release */
3681 mutex_enter(sc->sc_core_lock);
3682 wm_release_manageability(sc);
3683 wm_release_hw_control(sc);
3684 wm_enable_wakeup(sc);
3685 mutex_exit(sc->sc_core_lock);
3686
3687 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
3688
3689 ether_ifdetach(ifp);
3690 if_detach(ifp);
3691 if_percpuq_destroy(sc->sc_ipq);
3692
3693 /* Delete all remaining media. */
3694 ifmedia_fini(&sc->sc_mii.mii_media);
3695
3696 /* Unload RX dmamaps and free mbufs */
3697 for (i = 0; i < sc->sc_nqueues; i++) {
3698 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
3699 mutex_enter(rxq->rxq_lock);
3700 wm_rxdrain(rxq);
3701 mutex_exit(rxq->rxq_lock);
3702 }
3703 /* Must unlock here */
3704
3705 /* Disestablish the interrupt handler */
3706 for (i = 0; i < sc->sc_nintrs; i++) {
3707 if (sc->sc_ihs[i] != NULL) {
3708 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
3709 sc->sc_ihs[i] = NULL;
3710 }
3711 }
3712 pci_intr_release(sc->sc_pc, sc->sc_intrs, sc->sc_nintrs);
3713
3714 /* wm_stop() ensured that the workqueues are stopped. */
3715 workqueue_destroy(sc->sc_queue_wq);
3716 workqueue_destroy(sc->sc_reset_wq);
3717
3718 for (i = 0; i < sc->sc_nqueues; i++)
3719 softint_disestablish(sc->sc_queue[i].wmq_si);
3720
3721 wm_free_txrx_queues(sc);
3722
3723 /* Unmap the registers */
3724 if (sc->sc_ss) {
3725 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_ss);
3726 sc->sc_ss = 0;
3727 }
3728 if (sc->sc_ios) {
3729 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
3730 sc->sc_ios = 0;
3731 }
3732 if (sc->sc_flashs) {
3733 bus_space_unmap(sc->sc_flasht, sc->sc_flashh, sc->sc_flashs);
3734 sc->sc_flashs = 0;
3735 }
3736
3737 if (sc->sc_core_lock)
3738 mutex_obj_free(sc->sc_core_lock);
3739 if (sc->sc_ich_phymtx)
3740 mutex_obj_free(sc->sc_ich_phymtx);
3741 if (sc->sc_ich_nvmmtx)
3742 mutex_obj_free(sc->sc_ich_nvmmtx);
3743
3744 return 0;
3745 }
3746
3747 static bool
3748 wm_suspend(device_t self, const pmf_qual_t *qual)
3749 {
3750 struct wm_softc *sc = device_private(self);
3751
3752 wm_release_manageability(sc);
3753 wm_release_hw_control(sc);
3754 wm_enable_wakeup(sc);
3755
3756 return true;
3757 }
3758
3759 static bool
3760 wm_resume(device_t self, const pmf_qual_t *qual)
3761 {
3762 struct wm_softc *sc = device_private(self);
3763 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3764 pcireg_t reg;
3765 char buf[256];
3766
3767 reg = CSR_READ(sc, WMREG_WUS);
3768 if (reg != 0) {
3769 snprintb(buf, sizeof(buf), WUS_FLAGS, reg);
3770 device_printf(sc->sc_dev, "wakeup status %s\n", buf);
3771 CSR_WRITE(sc, WMREG_WUS, 0xffffffff); /* W1C */
3772 }
3773
3774 if (sc->sc_type >= WM_T_PCH2)
3775 wm_resume_workarounds_pchlan(sc);
3776 IFNET_LOCK(ifp);
3777 if ((ifp->if_flags & IFF_UP) == 0) {
3778 /* >= PCH_SPT hardware workaround before reset. */
3779 if (sc->sc_type >= WM_T_PCH_SPT)
3780 wm_flush_desc_rings(sc);
3781
3782 wm_reset(sc);
3783 /* Non-AMT based hardware can now take control from firmware */
3784 if ((sc->sc_flags & WM_F_HAS_AMT) == 0)
3785 wm_get_hw_control(sc);
3786 wm_init_manageability(sc);
3787 } else {
3788 /*
3789 * We called pmf_class_network_register(), so if_init() is
3790 * automatically called when IFF_UP. wm_reset(),
3791 * wm_get_hw_control() and wm_init_manageability() are called
3792 * via wm_init().
3793 */
3794 }
3795 IFNET_UNLOCK(ifp);
3796
3797 return true;
3798 }
3799
3800 /*
3801 * wm_watchdog:
3802 *
3803 * Watchdog checker.
3804 */
3805 static bool
3806 wm_watchdog(struct ifnet *ifp)
3807 {
3808 int qid;
3809 struct wm_softc *sc = ifp->if_softc;
3810 uint16_t hang_queue = 0; /* Max queue number of wm(4) is 82576's 16. */
3811
3812 for (qid = 0; qid < sc->sc_nqueues; qid++) {
3813 struct wm_txqueue *txq = &sc->sc_queue[qid].wmq_txq;
3814
3815 wm_watchdog_txq(ifp, txq, &hang_queue);
3816 }
3817
3818 #ifdef WM_DEBUG
3819 if (sc->sc_trigger_reset) {
3820 /* debug operation, no need for atomicity or reliability */
3821 sc->sc_trigger_reset = 0;
3822 hang_queue++;
3823 }
3824 #endif
3825
3826 if (hang_queue == 0)
3827 return true;
3828
3829 if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0)
3830 workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL);
3831
3832 return false;
3833 }
3834
3835 /*
3836 * Perform an interface watchdog reset.
3837 */
3838 static void
3839 wm_handle_reset_work(struct work *work, void *arg)
3840 {
3841 struct wm_softc * const sc = arg;
3842 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
3843
3844 /* Don't want ioctl operations to happen */
3845 IFNET_LOCK(ifp);
3846
3847 /* reset the interface. */
3848 wm_init(ifp);
3849
3850 IFNET_UNLOCK(ifp);
3851
3852 /*
3853 * There are still some upper layer processing which call
3854 * ifp->if_start(). e.g. ALTQ or one CPU system
3855 */
3856 /* Try to get more packets going. */
3857 ifp->if_start(ifp);
3858
3859 atomic_store_relaxed(&sc->sc_reset_pending, 0);
3860 }
3861
3862
3863 static void
3864 wm_watchdog_txq(struct ifnet *ifp, struct wm_txqueue *txq, uint16_t *hang)
3865 {
3866
3867 mutex_enter(txq->txq_lock);
3868 if (txq->txq_sending &&
3869 time_uptime - txq->txq_lastsent > wm_watchdog_timeout)
3870 wm_watchdog_txq_locked(ifp, txq, hang);
3871
3872 mutex_exit(txq->txq_lock);
3873 }
3874
3875 static void
3876 wm_watchdog_txq_locked(struct ifnet *ifp, struct wm_txqueue *txq,
3877 uint16_t *hang)
3878 {
3879 struct wm_softc *sc = ifp->if_softc;
3880 struct wm_queue *wmq = container_of(txq, struct wm_queue, wmq_txq);
3881
3882 KASSERT(mutex_owned(txq->txq_lock));
3883
3884 /*
3885 * Since we're using delayed interrupts, sweep up
3886 * before we report an error.
3887 */
3888 wm_txeof(txq, UINT_MAX);
3889
3890 if (txq->txq_sending)
3891 *hang |= __BIT(wmq->wmq_id);
3892
3893 if (txq->txq_free == WM_NTXDESC(txq)) {
3894 log(LOG_ERR, "%s: device timeout (lost interrupt)\n",
3895 device_xname(sc->sc_dev));
3896 } else {
3897 #ifdef WM_DEBUG
3898 int i, j;
3899 struct wm_txsoft *txs;
3900 #endif
3901 log(LOG_ERR,
3902 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
3903 device_xname(sc->sc_dev), txq->txq_free, txq->txq_sfree,
3904 txq->txq_next);
3905 if_statinc(ifp, if_oerrors);
3906 #ifdef WM_DEBUG
3907 for (i = txq->txq_sdirty; i != txq->txq_snext;
3908 i = WM_NEXTTXS(txq, i)) {
3909 txs = &txq->txq_soft[i];
3910 printf("txs %d tx %d -> %d\n",
3911 i, txs->txs_firstdesc, txs->txs_lastdesc);
3912 for (j = txs->txs_firstdesc; ; j = WM_NEXTTX(txq, j)) {
3913 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
3914 printf("\tdesc %d: 0x%" PRIx64 "\n", j,
3915 txq->txq_nq_descs[j].nqtx_data.nqtxd_addr);
3916 printf("\t %#08x%08x\n",
3917 txq->txq_nq_descs[j].nqtx_data.nqtxd_fields,
3918 txq->txq_nq_descs[j].nqtx_data.nqtxd_cmdlen);
3919 } else {
3920 printf("\tdesc %d: 0x%" PRIx64 "\n", j,
3921 (uint64_t)txq->txq_descs[j].wtx_addr.wa_high << 32 |
3922 txq->txq_descs[j].wtx_addr.wa_low);
3923 printf("\t %#04x%02x%02x%08x\n",
3924 txq->txq_descs[j].wtx_fields.wtxu_vlan,
3925 txq->txq_descs[j].wtx_fields.wtxu_options,
3926 txq->txq_descs[j].wtx_fields.wtxu_status,
3927 txq->txq_descs[j].wtx_cmdlen);
3928 }
3929 if (j == txs->txs_lastdesc)
3930 break;
3931 }
3932 }
3933 #endif
3934 }
3935 }
3936
3937 /*
3938 * wm_tick:
3939 *
3940 * One second timer, used to check link status, sweep up
3941 * completed transmit jobs, etc.
3942 */
3943 static void
3944 wm_tick(void *arg)
3945 {
3946 struct wm_softc *sc = arg;
3947 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3948
3949 mutex_enter(sc->sc_core_lock);
3950
3951 if (sc->sc_core_stopping) {
3952 mutex_exit(sc->sc_core_lock);
3953 return;
3954 }
3955
3956 wm_update_stats(sc);
3957
3958 if (sc->sc_flags & WM_F_HAS_MII) {
3959 bool dotick = true;
3960
3961 /*
3962 * Workaround for some chips to delay sending LINK_STATE_UP.
3963 * See also wm_linkintr_gmii() and wm_gmii_mediastatus().
3964 */
3965 if ((sc->sc_flags & WM_F_DELAY_LINKUP) != 0) {
3966 struct timeval now;
3967
3968 getmicrotime(&now);
3969 if (timercmp(&now, &sc->sc_linkup_delay_time, <))
3970 dotick = false;
3971 else if (sc->sc_linkup_delay_time.tv_sec != 0) {
3972 /* Simplify by checking tv_sec only. */
3973
3974 sc->sc_linkup_delay_time.tv_sec = 0;
3975 sc->sc_linkup_delay_time.tv_usec = 0;
3976 }
3977 }
3978 if (dotick)
3979 mii_tick(&sc->sc_mii);
3980 } else if ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211)
3981 && (sc->sc_mediatype == WM_MEDIATYPE_SERDES))
3982 wm_serdes_tick(sc);
3983 else
3984 wm_tbi_tick(sc);
3985
3986 mutex_exit(sc->sc_core_lock);
3987
3988 if (wm_watchdog(ifp))
3989 callout_schedule(&sc->sc_tick_ch, hz);
3990 }
3991
3992 static int
3993 wm_ifflags_cb(struct ethercom *ec)
3994 {
3995 struct ifnet *ifp = &ec->ec_if;
3996 struct wm_softc *sc = ifp->if_softc;
3997 u_short iffchange;
3998 int ecchange;
3999 bool needreset = false;
4000 int rc = 0;
4001
4002 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
4003 device_xname(sc->sc_dev), __func__));
4004
4005 KASSERT(IFNET_LOCKED(ifp));
4006
4007 mutex_enter(sc->sc_core_lock);
4008
4009 /*
4010 * Check for if_flags.
4011 * Main usage is to prevent linkdown when opening bpf.
4012 */
4013 iffchange = ifp->if_flags ^ sc->sc_if_flags;
4014 sc->sc_if_flags = ifp->if_flags;
4015 if ((iffchange & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
4016 needreset = true;
4017 goto ec;
4018 }
4019
4020 /* iff related updates */
4021 if ((iffchange & IFF_PROMISC) != 0)
4022 wm_set_filter(sc);
4023
4024 wm_set_vlan(sc);
4025
4026 ec:
4027 /* Check for ec_capenable. */
4028 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4029 sc->sc_ec_capenable = ec->ec_capenable;
4030 if ((ecchange & ~ETHERCAP_EEE) != 0) {
4031 needreset = true;
4032 goto out;
4033 }
4034
4035 /* ec related updates */
4036 wm_set_eee(sc);
4037
4038 out:
4039 if (needreset)
4040 rc = ENETRESET;
4041 mutex_exit(sc->sc_core_lock);
4042
4043 return rc;
4044 }
4045
4046 static bool
4047 wm_phy_need_linkdown_discard(struct wm_softc *sc)
4048 {
4049
4050 switch (sc->sc_phytype) {
4051 case WMPHY_82577: /* ihphy */
4052 case WMPHY_82578: /* atphy */
4053 case WMPHY_82579: /* ihphy */
4054 case WMPHY_I217: /* ihphy */
4055 case WMPHY_82580: /* ihphy */
4056 case WMPHY_I350: /* ihphy */
4057 return true;
4058 default:
4059 return false;
4060 }
4061 }
4062
4063 static void
4064 wm_set_linkdown_discard(struct wm_softc *sc)
4065 {
4066
4067 for (int i = 0; i < sc->sc_nqueues; i++) {
4068 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
4069
4070 mutex_enter(txq->txq_lock);
4071 txq->txq_flags |= WM_TXQ_LINKDOWN_DISCARD;
4072 mutex_exit(txq->txq_lock);
4073 }
4074 }
4075
4076 static void
4077 wm_clear_linkdown_discard(struct wm_softc *sc)
4078 {
4079
4080 for (int i = 0; i < sc->sc_nqueues; i++) {
4081 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
4082
4083 mutex_enter(txq->txq_lock);
4084 txq->txq_flags &= ~WM_TXQ_LINKDOWN_DISCARD;
4085 mutex_exit(txq->txq_lock);
4086 }
4087 }
4088
4089 /*
4090 * wm_ioctl: [ifnet interface function]
4091 *
4092 * Handle control requests from the operator.
4093 */
4094 static int
4095 wm_ioctl(struct ifnet *ifp, u_long cmd, void *data)
4096 {
4097 struct wm_softc *sc = ifp->if_softc;
4098 struct ifreq *ifr = (struct ifreq *)data;
4099 struct ifaddr *ifa = (struct ifaddr *)data;
4100 struct sockaddr_dl *sdl;
4101 int error;
4102
4103 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
4104 device_xname(sc->sc_dev), __func__));
4105
4106 switch (cmd) {
4107 case SIOCADDMULTI:
4108 case SIOCDELMULTI:
4109 break;
4110 default:
4111 KASSERT(IFNET_LOCKED(ifp));
4112 }
4113
4114 if (cmd == SIOCZIFDATA) {
4115 /*
4116 * Special handling for SIOCZIFDATA.
4117 * Copying and clearing the if_data structure is done with
4118 * ether_ioctl() below.
4119 */
4120 mutex_enter(sc->sc_core_lock);
4121 wm_update_stats(sc);
4122 wm_clear_evcnt(sc);
4123 mutex_exit(sc->sc_core_lock);
4124 }
4125
4126 switch (cmd) {
4127 case SIOCSIFMEDIA:
4128 mutex_enter(sc->sc_core_lock);
4129 /* Flow control requires full-duplex mode. */
4130 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4131 (ifr->ifr_media & IFM_FDX) == 0)
4132 ifr->ifr_media &= ~IFM_ETH_FMASK;
4133 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4134 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4135 /* We can do both TXPAUSE and RXPAUSE. */
4136 ifr->ifr_media |=
4137 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4138 }
4139 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4140 }
4141 mutex_exit(sc->sc_core_lock);
4142 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
4143 if (error == 0 && wm_phy_need_linkdown_discard(sc)) {
4144 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_NONE) {
4145 DPRINTF(sc, WM_DEBUG_LINK,
4146 ("%s: %s: Set linkdown discard flag\n",
4147 device_xname(sc->sc_dev), __func__));
4148 wm_set_linkdown_discard(sc);
4149 }
4150 }
4151 break;
4152 case SIOCINITIFADDR:
4153 mutex_enter(sc->sc_core_lock);
4154 if (ifa->ifa_addr->sa_family == AF_LINK) {
4155 sdl = satosdl(ifp->if_dl->ifa_addr);
4156 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len,
4157 LLADDR(satosdl(ifa->ifa_addr)), ifp->if_addrlen);
4158 /* Unicast address is the first multicast entry */
4159 wm_set_filter(sc);
4160 error = 0;
4161 mutex_exit(sc->sc_core_lock);
4162 break;
4163 }
4164 mutex_exit(sc->sc_core_lock);
4165 /*FALLTHROUGH*/
4166 default:
4167 if (cmd == SIOCSIFFLAGS && wm_phy_need_linkdown_discard(sc)) {
4168 if (((ifp->if_flags & IFF_UP) != 0) &&
4169 ((ifr->ifr_flags & IFF_UP) == 0)) {
4170 DPRINTF(sc, WM_DEBUG_LINK,
4171 ("%s: %s: Set linkdown discard flag\n",
4172 device_xname(sc->sc_dev), __func__));
4173 wm_set_linkdown_discard(sc);
4174 }
4175 }
4176 const int s = splnet();
4177 /* It may call wm_start, so unlock here */
4178 error = ether_ioctl(ifp, cmd, data);
4179 splx(s);
4180 if (error != ENETRESET)
4181 break;
4182
4183 error = 0;
4184
4185 if (cmd == SIOCSIFCAP)
4186 error = if_init(ifp);
4187 else if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
4188 mutex_enter(sc->sc_core_lock);
4189 if (sc->sc_if_flags & IFF_RUNNING) {
4190 /*
4191 * Multicast list has changed; set the
4192 * hardware filter accordingly.
4193 */
4194 wm_set_filter(sc);
4195 }
4196 mutex_exit(sc->sc_core_lock);
4197 }
4198 break;
4199 }
4200
4201 return error;
4202 }
4203
4204 /* MAC address related */
4205
4206 /*
4207 * Get the offset of MAC address and return it.
4208 * If error occured, use offset 0.
4209 */
4210 static uint16_t
4211 wm_check_alt_mac_addr(struct wm_softc *sc)
4212 {
4213 uint16_t myea[ETHER_ADDR_LEN / 2];
4214 uint16_t offset = NVM_OFF_MACADDR;
4215
4216 /* Try to read alternative MAC address pointer */
4217 if (wm_nvm_read(sc, NVM_OFF_ALT_MAC_ADDR_PTR, 1, &offset) != 0)
4218 return 0;
4219
4220 /* Check pointer if it's valid or not. */
4221 if ((offset == 0x0000) || (offset == 0xffff))
4222 return 0;
4223
4224 offset += NVM_OFF_MACADDR_82571(sc->sc_funcid);
4225 /*
4226 * Check whether alternative MAC address is valid or not.
4227 * Some cards have non 0xffff pointer but those don't use
4228 * alternative MAC address in reality.
4229 *
4230 * Check whether the broadcast bit is set or not.
4231 */
4232 if (wm_nvm_read(sc, offset, 1, myea) == 0)
4233 if (((myea[0] & 0xff) & 0x01) == 0)
4234 return offset; /* Found */
4235
4236 /* Not found */
4237 return 0;
4238 }
4239
4240 static int
4241 wm_read_mac_addr(struct wm_softc *sc, uint8_t *enaddr)
4242 {
4243 uint16_t myea[ETHER_ADDR_LEN / 2];
4244 uint16_t offset = NVM_OFF_MACADDR;
4245 int do_invert = 0;
4246
4247 switch (sc->sc_type) {
4248 case WM_T_82580:
4249 case WM_T_I350:
4250 case WM_T_I354:
4251 /* EEPROM Top Level Partitioning */
4252 offset = NVM_OFF_LAN_FUNC_82580(sc->sc_funcid) + 0;
4253 break;
4254 case WM_T_82571:
4255 case WM_T_82575:
4256 case WM_T_82576:
4257 case WM_T_80003:
4258 case WM_T_I210:
4259 case WM_T_I211:
4260 offset = wm_check_alt_mac_addr(sc);
4261 if (offset == 0)
4262 if ((sc->sc_funcid & 0x01) == 1)
4263 do_invert = 1;
4264 break;
4265 default:
4266 if ((sc->sc_funcid & 0x01) == 1)
4267 do_invert = 1;
4268 break;
4269 }
4270
4271 if (wm_nvm_read(sc, offset, sizeof(myea) / sizeof(myea[0]), myea) != 0)
4272 goto bad;
4273
4274 enaddr[0] = myea[0] & 0xff;
4275 enaddr[1] = myea[0] >> 8;
4276 enaddr[2] = myea[1] & 0xff;
4277 enaddr[3] = myea[1] >> 8;
4278 enaddr[4] = myea[2] & 0xff;
4279 enaddr[5] = myea[2] >> 8;
4280
4281 /*
4282 * Toggle the LSB of the MAC address on the second port
4283 * of some dual port cards.
4284 */
4285 if (do_invert != 0)
4286 enaddr[5] ^= 1;
4287
4288 return 0;
4289
4290 bad:
4291 return -1;
4292 }
4293
4294 /*
4295 * wm_set_ral:
4296 *
4297 * Set an entery in the receive address list.
4298 */
4299 static void
4300 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
4301 {
4302 uint32_t ral_lo, ral_hi, addrl, addrh;
4303 uint32_t wlock_mac;
4304 int rv;
4305
4306 if (enaddr != NULL) {
4307 ral_lo = (uint32_t)enaddr[0] | ((uint32_t)enaddr[1] << 8) |
4308 ((uint32_t)enaddr[2] << 16) | ((uint32_t)enaddr[3] << 24);
4309 ral_hi = (uint32_t)enaddr[4] | ((uint32_t)enaddr[5] << 8);
4310 ral_hi |= RAL_AV;
4311 } else {
4312 ral_lo = 0;
4313 ral_hi = 0;
4314 }
4315
4316 switch (sc->sc_type) {
4317 case WM_T_82542_2_0:
4318 case WM_T_82542_2_1:
4319 case WM_T_82543:
4320 CSR_WRITE(sc, WMREG_RAL(idx), ral_lo);
4321 CSR_WRITE_FLUSH(sc);
4322 CSR_WRITE(sc, WMREG_RAH(idx), ral_hi);
4323 CSR_WRITE_FLUSH(sc);
4324 break;
4325 case WM_T_PCH2:
4326 case WM_T_PCH_LPT:
4327 case WM_T_PCH_SPT:
4328 case WM_T_PCH_CNP:
4329 case WM_T_PCH_TGP:
4330 if (idx == 0) {
4331 CSR_WRITE(sc, WMREG_CORDOVA_RAL(idx), ral_lo);
4332 CSR_WRITE_FLUSH(sc);
4333 CSR_WRITE(sc, WMREG_CORDOVA_RAH(idx), ral_hi);
4334 CSR_WRITE_FLUSH(sc);
4335 return;
4336 }
4337 if (sc->sc_type != WM_T_PCH2) {
4338 wlock_mac = __SHIFTOUT(CSR_READ(sc, WMREG_FWSM),
4339 FWSM_WLOCK_MAC);
4340 addrl = WMREG_SHRAL(idx - 1);
4341 addrh = WMREG_SHRAH(idx - 1);
4342 } else {
4343 wlock_mac = 0;
4344 addrl = WMREG_PCH_LPT_SHRAL(idx - 1);
4345 addrh = WMREG_PCH_LPT_SHRAH(idx - 1);
4346 }
4347
4348 if ((wlock_mac == 0) || (idx <= wlock_mac)) {
4349 rv = wm_get_swflag_ich8lan(sc);
4350 if (rv != 0)
4351 return;
4352 CSR_WRITE(sc, addrl, ral_lo);
4353 CSR_WRITE_FLUSH(sc);
4354 CSR_WRITE(sc, addrh, ral_hi);
4355 CSR_WRITE_FLUSH(sc);
4356 wm_put_swflag_ich8lan(sc);
4357 }
4358
4359 break;
4360 default:
4361 CSR_WRITE(sc, WMREG_CORDOVA_RAL(idx), ral_lo);
4362 CSR_WRITE_FLUSH(sc);
4363 CSR_WRITE(sc, WMREG_CORDOVA_RAH(idx), ral_hi);
4364 CSR_WRITE_FLUSH(sc);
4365 break;
4366 }
4367 }
4368
4369 /*
4370 * wm_mchash:
4371 *
4372 * Compute the hash of the multicast address for the 4096-bit
4373 * multicast filter.
4374 */
4375 static uint32_t
4376 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
4377 {
4378 static const int lo_shift[4] = { 4, 3, 2, 0 };
4379 static const int hi_shift[4] = { 4, 5, 6, 8 };
4380 static const int ich8_lo_shift[4] = { 6, 5, 4, 2 };
4381 static const int ich8_hi_shift[4] = { 2, 3, 4, 6 };
4382 uint32_t hash;
4383
4384 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
4385 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
4386 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)
4387 || (sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP)
4388 || (sc->sc_type == WM_T_PCH_TGP)) {
4389 hash = (enaddr[4] >> ich8_lo_shift[sc->sc_mchash_type]) |
4390 (((uint16_t)enaddr[5]) << ich8_hi_shift[sc->sc_mchash_type]);
4391 return (hash & 0x3ff);
4392 }
4393 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
4394 (((uint16_t)enaddr[5]) << hi_shift[sc->sc_mchash_type]);
4395
4396 return (hash & 0xfff);
4397 }
4398
4399 /*
4400 *
4401 *
4402 */
4403 static int
4404 wm_rar_count(struct wm_softc *sc)
4405 {
4406 int size;
4407
4408 switch (sc->sc_type) {
4409 case WM_T_ICH8:
4410 size = WM_RAL_TABSIZE_ICH8 -1;
4411 break;
4412 case WM_T_ICH9:
4413 case WM_T_ICH10:
4414 case WM_T_PCH:
4415 size = WM_RAL_TABSIZE_ICH8;
4416 break;
4417 case WM_T_PCH2:
4418 size = WM_RAL_TABSIZE_PCH2;
4419 break;
4420 case WM_T_PCH_LPT:
4421 case WM_T_PCH_SPT:
4422 case WM_T_PCH_CNP:
4423 case WM_T_PCH_TGP:
4424 size = WM_RAL_TABSIZE_PCH_LPT;
4425 break;
4426 case WM_T_82575:
4427 case WM_T_I210:
4428 case WM_T_I211:
4429 size = WM_RAL_TABSIZE_82575;
4430 break;
4431 case WM_T_82576:
4432 case WM_T_82580:
4433 size = WM_RAL_TABSIZE_82576;
4434 break;
4435 case WM_T_I350:
4436 case WM_T_I354:
4437 size = WM_RAL_TABSIZE_I350;
4438 break;
4439 default:
4440 size = WM_RAL_TABSIZE;
4441 }
4442
4443 return size;
4444 }
4445
4446 /*
4447 * wm_set_filter:
4448 *
4449 * Set up the receive filter.
4450 */
4451 static void
4452 wm_set_filter(struct wm_softc *sc)
4453 {
4454 struct ethercom *ec = &sc->sc_ethercom;
4455 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4456 struct ether_multi *enm;
4457 struct ether_multistep step;
4458 bus_addr_t mta_reg;
4459 uint32_t hash, reg, bit;
4460 int i, size, ralmax, rv;
4461
4462 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
4463 device_xname(sc->sc_dev), __func__));
4464 KASSERT(mutex_owned(sc->sc_core_lock));
4465
4466 if (sc->sc_type >= WM_T_82544)
4467 mta_reg = WMREG_CORDOVA_MTA;
4468 else
4469 mta_reg = WMREG_MTA;
4470
4471 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
4472
4473 if (sc->sc_if_flags & IFF_BROADCAST)
4474 sc->sc_rctl |= RCTL_BAM;
4475 if (sc->sc_if_flags & IFF_PROMISC) {
4476 sc->sc_rctl |= RCTL_UPE;
4477 ETHER_LOCK(ec);
4478 ec->ec_flags |= ETHER_F_ALLMULTI;
4479 ETHER_UNLOCK(ec);
4480 goto allmulti;
4481 }
4482
4483 /*
4484 * Set the station address in the first RAL slot, and
4485 * clear the remaining slots.
4486 */
4487 size = wm_rar_count(sc);
4488 wm_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
4489
4490 if ((sc->sc_type == WM_T_PCH_LPT) || (sc->sc_type == WM_T_PCH_SPT) ||
4491 (sc->sc_type == WM_T_PCH_CNP) || (sc->sc_type == WM_T_PCH_TGP)) {
4492 i = __SHIFTOUT(CSR_READ(sc, WMREG_FWSM), FWSM_WLOCK_MAC);
4493 switch (i) {
4494 case 0:
4495 /* We can use all entries */
4496 ralmax = size;
4497 break;
4498 case 1:
4499 /* Only RAR[0] */
4500 ralmax = 1;
4501 break;
4502 default:
4503 /* Available SHRA + RAR[0] */
4504 ralmax = i + 1;
4505 }
4506 } else
4507 ralmax = size;
4508 for (i = 1; i < size; i++) {
4509 if (i < ralmax)
4510 wm_set_ral(sc, NULL, i);
4511 }
4512
4513 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
4514 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
4515 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)
4516 || (sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP)
4517 || (sc->sc_type == WM_T_PCH_TGP))
4518 size = WM_ICH8_MC_TABSIZE;
4519 else
4520 size = WM_MC_TABSIZE;
4521 /* Clear out the multicast table. */
4522 for (i = 0; i < size; i++) {
4523 CSR_WRITE(sc, mta_reg + (i << 2), 0);
4524 CSR_WRITE_FLUSH(sc);
4525 }
4526
4527 ETHER_LOCK(ec);
4528 ETHER_FIRST_MULTI(step, ec, enm);
4529 while (enm != NULL) {
4530 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
4531 ec->ec_flags |= ETHER_F_ALLMULTI;
4532 ETHER_UNLOCK(ec);
4533 /*
4534 * We must listen to a range of multicast addresses.
4535 * For now, just accept all multicasts, rather than
4536 * trying to set only those filter bits needed to match
4537 * the range. (At this time, the only use of address
4538 * ranges is for IP multicast routing, for which the
4539 * range is big enough to require all bits set.)
4540 */
4541 goto allmulti;
4542 }
4543
4544 hash = wm_mchash(sc, enm->enm_addrlo);
4545
4546 reg = (hash >> 5);
4547 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
4548 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
4549 || (sc->sc_type == WM_T_PCH2)
4550 || (sc->sc_type == WM_T_PCH_LPT)
4551 || (sc->sc_type == WM_T_PCH_SPT)
4552 || (sc->sc_type == WM_T_PCH_CNP)
4553 || (sc->sc_type == WM_T_PCH_TGP))
4554 reg &= 0x1f;
4555 else
4556 reg &= 0x7f;
4557 bit = hash & 0x1f;
4558
4559 hash = CSR_READ(sc, mta_reg + (reg << 2));
4560 hash |= 1U << bit;
4561
4562 if (sc->sc_type == WM_T_82544 && (reg & 1) != 0) {
4563 /*
4564 * 82544 Errata 9: Certain register cannot be written
4565 * with particular alignments in PCI-X bus operation
4566 * (FCAH, MTA and VFTA).
4567 */
4568 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
4569 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
4570 CSR_WRITE_FLUSH(sc);
4571 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
4572 CSR_WRITE_FLUSH(sc);
4573 } else {
4574 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
4575 CSR_WRITE_FLUSH(sc);
4576 }
4577
4578 ETHER_NEXT_MULTI(step, enm);
4579 }
4580 ec->ec_flags &= ~ETHER_F_ALLMULTI;
4581 ETHER_UNLOCK(ec);
4582
4583 goto setit;
4584
4585 allmulti:
4586 sc->sc_rctl |= RCTL_MPE;
4587
4588 setit:
4589 if (sc->sc_type >= WM_T_PCH2) {
4590 if (((ec->ec_capabilities & ETHERCAP_JUMBO_MTU) != 0)
4591 && (ifp->if_mtu > ETHERMTU))
4592 rv = wm_lv_jumbo_workaround_ich8lan(sc, true);
4593 else
4594 rv = wm_lv_jumbo_workaround_ich8lan(sc, false);
4595 if (rv != 0)
4596 device_printf(sc->sc_dev,
4597 "Failed to do workaround for jumbo frame.\n");
4598 }
4599
4600 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
4601 }
4602
4603 /* Reset and init related */
4604
4605 static void
4606 wm_set_vlan(struct wm_softc *sc)
4607 {
4608
4609 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
4610 device_xname(sc->sc_dev), __func__));
4611
4612 /* Deal with VLAN enables. */
4613 if (VLAN_ATTACHED(&sc->sc_ethercom))
4614 sc->sc_ctrl |= CTRL_VME;
4615 else
4616 sc->sc_ctrl &= ~CTRL_VME;
4617
4618 /* Write the control registers. */
4619 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
4620 }
4621
4622 static void
4623 wm_set_pcie_completion_timeout(struct wm_softc *sc)
4624 {
4625 uint32_t gcr;
4626 pcireg_t ctrl2;
4627
4628 gcr = CSR_READ(sc, WMREG_GCR);
4629
4630 /* Only take action if timeout value is defaulted to 0 */
4631 if ((gcr & GCR_CMPL_TMOUT_MASK) != 0)
4632 goto out;
4633
4634 if ((gcr & GCR_CAP_VER2) == 0) {
4635 gcr |= GCR_CMPL_TMOUT_10MS;
4636 goto out;
4637 }
4638
4639 ctrl2 = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4640 sc->sc_pcixe_capoff + PCIE_DCSR2);
4641 ctrl2 |= WM_PCIE_DCSR2_16MS;
4642 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4643 sc->sc_pcixe_capoff + PCIE_DCSR2, ctrl2);
4644
4645 out:
4646 /* Disable completion timeout resend */
4647 gcr &= ~GCR_CMPL_TMOUT_RESEND;
4648
4649 CSR_WRITE(sc, WMREG_GCR, gcr);
4650 }
4651
4652 void
4653 wm_get_auto_rd_done(struct wm_softc *sc)
4654 {
4655 int i;
4656
4657 /* wait for eeprom to reload */
4658 switch (sc->sc_type) {
4659 case WM_T_82571:
4660 case WM_T_82572:
4661 case WM_T_82573:
4662 case WM_T_82574:
4663 case WM_T_82583:
4664 case WM_T_82575:
4665 case WM_T_82576:
4666 case WM_T_82580:
4667 case WM_T_I350:
4668 case WM_T_I354:
4669 case WM_T_I210:
4670 case WM_T_I211:
4671 case WM_T_80003:
4672 case WM_T_ICH8:
4673 case WM_T_ICH9:
4674 for (i = 0; i < 10; i++) {
4675 if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD)
4676 break;
4677 delay(1000);
4678 }
4679 if (i == 10) {
4680 log(LOG_ERR, "%s: auto read from eeprom failed to "
4681 "complete\n", device_xname(sc->sc_dev));
4682 }
4683 break;
4684 default:
4685 break;
4686 }
4687 }
4688
4689 void
4690 wm_lan_init_done(struct wm_softc *sc)
4691 {
4692 uint32_t reg = 0;
4693 int i;
4694
4695 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
4696 device_xname(sc->sc_dev), __func__));
4697
4698 /* Wait for eeprom to reload */
4699 switch (sc->sc_type) {
4700 case WM_T_ICH10:
4701 case WM_T_PCH:
4702 case WM_T_PCH2:
4703 case WM_T_PCH_LPT:
4704 case WM_T_PCH_SPT:
4705 case WM_T_PCH_CNP:
4706 case WM_T_PCH_TGP:
4707 for (i = 0; i < WM_ICH8_LAN_INIT_TIMEOUT; i++) {
4708 reg = CSR_READ(sc, WMREG_STATUS);
4709 if ((reg & STATUS_LAN_INIT_DONE) != 0)
4710 break;
4711 delay(100);
4712 }
4713 if (i >= WM_ICH8_LAN_INIT_TIMEOUT) {
4714 log(LOG_ERR, "%s: %s: lan_init_done failed to "
4715 "complete\n", device_xname(sc->sc_dev), __func__);
4716 }
4717 break;
4718 default:
4719 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
4720 __func__);
4721 break;
4722 }
4723
4724 reg &= ~STATUS_LAN_INIT_DONE;
4725 CSR_WRITE(sc, WMREG_STATUS, reg);
4726 }
4727
4728 void
4729 wm_get_cfg_done(struct wm_softc *sc)
4730 {
4731 int mask;
4732 uint32_t reg;
4733 int i;
4734
4735 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
4736 device_xname(sc->sc_dev), __func__));
4737
4738 /* Wait for eeprom to reload */
4739 switch (sc->sc_type) {
4740 case WM_T_82542_2_0:
4741 case WM_T_82542_2_1:
4742 /* null */
4743 break;
4744 case WM_T_82543:
4745 case WM_T_82544:
4746 case WM_T_82540:
4747 case WM_T_82545:
4748 case WM_T_82545_3:
4749 case WM_T_82546:
4750 case WM_T_82546_3:
4751 case WM_T_82541:
4752 case WM_T_82541_2:
4753 case WM_T_82547:
4754 case WM_T_82547_2:
4755 case WM_T_82573:
4756 case WM_T_82574:
4757 case WM_T_82583:
4758 /* generic */
4759 delay(10*1000);
4760 break;
4761 case WM_T_80003:
4762 case WM_T_82571:
4763 case WM_T_82572:
4764 case WM_T_82575:
4765 case WM_T_82576:
4766 case WM_T_82580:
4767 case WM_T_I350:
4768 case WM_T_I354:
4769 case WM_T_I210:
4770 case WM_T_I211:
4771 if (sc->sc_type == WM_T_82571) {
4772 /* Only 82571 shares port 0 */
4773 mask = EEMNGCTL_CFGDONE_0;
4774 } else
4775 mask = EEMNGCTL_CFGDONE_0 << sc->sc_funcid;
4776 for (i = 0; i < WM_PHY_CFG_TIMEOUT; i++) {
4777 if (CSR_READ(sc, WMREG_EEMNGCTL) & mask)
4778 break;
4779 delay(1000);
4780 }
4781 if (i >= WM_PHY_CFG_TIMEOUT)
4782 DPRINTF(sc, WM_DEBUG_GMII, ("%s: %s failed\n",
4783 device_xname(sc->sc_dev), __func__));
4784 break;
4785 case WM_T_ICH8:
4786 case WM_T_ICH9:
4787 case WM_T_ICH10:
4788 case WM_T_PCH:
4789 case WM_T_PCH2:
4790 case WM_T_PCH_LPT:
4791 case WM_T_PCH_SPT:
4792 case WM_T_PCH_CNP:
4793 case WM_T_PCH_TGP:
4794 delay(10*1000);
4795 if (sc->sc_type >= WM_T_ICH10)
4796 wm_lan_init_done(sc);
4797 else
4798 wm_get_auto_rd_done(sc);
4799
4800 /* Clear PHY Reset Asserted bit */
4801 reg = CSR_READ(sc, WMREG_STATUS);
4802 if ((reg & STATUS_PHYRA) != 0)
4803 CSR_WRITE(sc, WMREG_STATUS, reg & ~STATUS_PHYRA);
4804 break;
4805 default:
4806 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
4807 __func__);
4808 break;
4809 }
4810 }
4811
4812 int
4813 wm_phy_post_reset(struct wm_softc *sc)
4814 {
4815 device_t dev = sc->sc_dev;
4816 uint16_t reg;
4817 int rv = 0;
4818
4819 /* This function is only for ICH8 and newer. */
4820 if (sc->sc_type < WM_T_ICH8)
4821 return 0;
4822
4823 if (wm_phy_resetisblocked(sc)) {
4824 /* XXX */
4825 device_printf(dev, "PHY is blocked\n");
4826 return -1;
4827 }
4828
4829 /* Allow time for h/w to get to quiescent state after reset */
4830 delay(10*1000);
4831
4832 /* Perform any necessary post-reset workarounds */
4833 if (sc->sc_type == WM_T_PCH)
4834 rv = wm_hv_phy_workarounds_ich8lan(sc);
4835 else if (sc->sc_type == WM_T_PCH2)
4836 rv = wm_lv_phy_workarounds_ich8lan(sc);
4837 if (rv != 0)
4838 return rv;
4839
4840 /* Clear the host wakeup bit after lcd reset */
4841 if (sc->sc_type >= WM_T_PCH) {
4842 wm_gmii_hv_readreg(dev, 2, BM_PORT_GEN_CFG, ®);
4843 reg &= ~BM_WUC_HOST_WU_BIT;
4844 wm_gmii_hv_writereg(dev, 2, BM_PORT_GEN_CFG, reg);
4845 }
4846
4847 /* Configure the LCD with the extended configuration region in NVM */
4848 if ((rv = wm_init_lcd_from_nvm(sc)) != 0)
4849 return rv;
4850
4851 /* Configure the LCD with the OEM bits in NVM */
4852 rv = wm_oem_bits_config_ich8lan(sc, true);
4853
4854 if (sc->sc_type == WM_T_PCH2) {
4855 /* Ungate automatic PHY configuration on non-managed 82579 */
4856 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID) == 0) {
4857 delay(10 * 1000);
4858 wm_gate_hw_phy_config_ich8lan(sc, false);
4859 }
4860 /* Set EEE LPI Update Timer to 200usec */
4861 rv = sc->phy.acquire(sc);
4862 if (rv)
4863 return rv;
4864 rv = wm_write_emi_reg_locked(dev,
4865 I82579_LPI_UPDATE_TIMER, 0x1387);
4866 sc->phy.release(sc);
4867 }
4868
4869 return rv;
4870 }
4871
4872 /* Only for PCH and newer */
4873 static int
4874 wm_write_smbus_addr(struct wm_softc *sc)
4875 {
4876 uint32_t strap, freq;
4877 uint16_t phy_data;
4878 int rv;
4879
4880 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
4881 device_xname(sc->sc_dev), __func__));
4882 KASSERT(CSR_READ(sc, WMREG_EXTCNFCTR) & EXTCNFCTR_MDIO_SW_OWNERSHIP);
4883
4884 strap = CSR_READ(sc, WMREG_STRAP);
4885 freq = __SHIFTOUT(strap, STRAP_FREQ);
4886
4887 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, HV_SMB_ADDR, &phy_data);
4888 if (rv != 0)
4889 return rv;
4890
4891 phy_data &= ~HV_SMB_ADDR_ADDR;
4892 phy_data |= __SHIFTOUT(strap, STRAP_SMBUSADDR);
4893 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
4894
4895 if (sc->sc_phytype == WMPHY_I217) {
4896 /* Restore SMBus frequency */
4897 if (freq --) {
4898 phy_data &= ~(HV_SMB_ADDR_FREQ_LOW
4899 | HV_SMB_ADDR_FREQ_HIGH);
4900 phy_data |= __SHIFTIN((freq & 0x01) != 0,
4901 HV_SMB_ADDR_FREQ_LOW);
4902 phy_data |= __SHIFTIN((freq & 0x02) != 0,
4903 HV_SMB_ADDR_FREQ_HIGH);
4904 } else
4905 DPRINTF(sc, WM_DEBUG_INIT,
4906 ("%s: %s Unsupported SMB frequency in PHY\n",
4907 device_xname(sc->sc_dev), __func__));
4908 }
4909
4910 return wm_gmii_hv_writereg_locked(sc->sc_dev, 2, HV_SMB_ADDR,
4911 phy_data);
4912 }
4913
4914 static int
4915 wm_init_lcd_from_nvm(struct wm_softc *sc)
4916 {
4917 uint32_t extcnfctr, sw_cfg_mask, cnf_size, word_addr, i, reg;
4918 uint16_t phy_page = 0;
4919 int rv = 0;
4920
4921 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
4922 device_xname(sc->sc_dev), __func__));
4923
4924 switch (sc->sc_type) {
4925 case WM_T_ICH8:
4926 if ((sc->sc_phytype == WMPHY_UNKNOWN)
4927 || (sc->sc_phytype != WMPHY_IGP_3))
4928 return 0;
4929
4930 if ((sc->sc_pcidevid == PCI_PRODUCT_INTEL_82801H_AMT)
4931 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_82801H_LAN)) {
4932 sw_cfg_mask = FEXTNVM_SW_CONFIG;
4933 break;
4934 }
4935 /* FALLTHROUGH */
4936 case WM_T_PCH:
4937 case WM_T_PCH2:
4938 case WM_T_PCH_LPT:
4939 case WM_T_PCH_SPT:
4940 case WM_T_PCH_CNP:
4941 case WM_T_PCH_TGP:
4942 sw_cfg_mask = FEXTNVM_SW_CONFIG_ICH8M;
4943 break;
4944 default:
4945 return 0;
4946 }
4947
4948 if ((rv = sc->phy.acquire(sc)) != 0)
4949 return rv;
4950
4951 reg = CSR_READ(sc, WMREG_FEXTNVM);
4952 if ((reg & sw_cfg_mask) == 0)
4953 goto release;
4954
4955 /*
4956 * Make sure HW does not configure LCD from PHY extended configuration
4957 * before SW configuration
4958 */
4959 extcnfctr = CSR_READ(sc, WMREG_EXTCNFCTR);
4960 if ((sc->sc_type < WM_T_PCH2)
4961 && ((extcnfctr & EXTCNFCTR_PCIE_WRITE_ENABLE) != 0))
4962 goto release;
4963
4964 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s: Configure LCD by software\n",
4965 device_xname(sc->sc_dev), __func__));
4966 /* word_addr is in DWORD */
4967 word_addr = __SHIFTOUT(extcnfctr, EXTCNFCTR_EXT_CNF_POINTER) << 1;
4968
4969 reg = CSR_READ(sc, WMREG_EXTCNFSIZE);
4970 cnf_size = __SHIFTOUT(reg, EXTCNFSIZE_LENGTH);
4971 if (cnf_size == 0)
4972 goto release;
4973
4974 if (((sc->sc_type == WM_T_PCH)
4975 && ((extcnfctr & EXTCNFCTR_OEM_WRITE_ENABLE) == 0))
4976 || (sc->sc_type > WM_T_PCH)) {
4977 /*
4978 * HW configures the SMBus address and LEDs when the OEM and
4979 * LCD Write Enable bits are set in the NVM. When both NVM bits
4980 * are cleared, SW will configure them instead.
4981 */
4982 DPRINTF(sc, WM_DEBUG_INIT,
4983 ("%s: %s: Configure SMBus and LED\n",
4984 device_xname(sc->sc_dev), __func__));
4985 if ((rv = wm_write_smbus_addr(sc)) != 0)
4986 goto release;
4987
4988 reg = CSR_READ(sc, WMREG_LEDCTL);
4989 rv = wm_gmii_hv_writereg_locked(sc->sc_dev, 1, HV_LED_CONFIG,
4990 (uint16_t)reg);
4991 if (rv != 0)
4992 goto release;
4993 }
4994
4995 /* Configure LCD from extended configuration region. */
4996 for (i = 0; i < cnf_size; i++) {
4997 uint16_t reg_data, reg_addr;
4998
4999 if (wm_nvm_read(sc, (word_addr + i * 2), 1, ®_data) != 0)
5000 goto release;
5001
5002 if (wm_nvm_read(sc, (word_addr + i * 2 + 1), 1, ®_addr) !=0)
5003 goto release;
5004
5005 if (reg_addr == IGPHY_PAGE_SELECT)
5006 phy_page = reg_data;
5007
5008 reg_addr &= IGPHY_MAXREGADDR;
5009 reg_addr |= phy_page;
5010
5011 KASSERT(sc->phy.writereg_locked != NULL);
5012 rv = sc->phy.writereg_locked(sc->sc_dev, 1, reg_addr,
5013 reg_data);
5014 }
5015
5016 release:
5017 sc->phy.release(sc);
5018 return rv;
5019 }
5020
5021 /*
5022 * wm_oem_bits_config_ich8lan - SW-based LCD Configuration
5023 * @sc: pointer to the HW structure
5024 * @d0_state: boolean if entering d0 or d3 device state
5025 *
5026 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
5027 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
5028 * in NVM determines whether HW should configure LPLU and Gbe Disable.
5029 */
5030 int
5031 wm_oem_bits_config_ich8lan(struct wm_softc *sc, bool d0_state)
5032 {
5033 uint32_t mac_reg;
5034 uint16_t oem_reg;
5035 int rv;
5036
5037 if (sc->sc_type < WM_T_PCH)
5038 return 0;
5039
5040 rv = sc->phy.acquire(sc);
5041 if (rv != 0)
5042 return rv;
5043
5044 if (sc->sc_type == WM_T_PCH) {
5045 mac_reg = CSR_READ(sc, WMREG_EXTCNFCTR);
5046 if ((mac_reg & EXTCNFCTR_OEM_WRITE_ENABLE) != 0)
5047 goto release;
5048 }
5049
5050 mac_reg = CSR_READ(sc, WMREG_FEXTNVM);
5051 if ((mac_reg & FEXTNVM_SW_CONFIG_ICH8M) == 0)
5052 goto release;
5053
5054 mac_reg = CSR_READ(sc, WMREG_PHY_CTRL);
5055
5056 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 1, HV_OEM_BITS, &oem_reg);
5057 if (rv != 0)
5058 goto release;
5059 oem_reg &= ~(HV_OEM_BITS_A1KDIS | HV_OEM_BITS_LPLU);
5060
5061 if (d0_state) {
5062 if ((mac_reg & PHY_CTRL_GBE_DIS) != 0)
5063 oem_reg |= HV_OEM_BITS_A1KDIS;
5064 if ((mac_reg & PHY_CTRL_D0A_LPLU) != 0)
5065 oem_reg |= HV_OEM_BITS_LPLU;
5066 } else {
5067 if ((mac_reg & (PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS))
5068 != 0)
5069 oem_reg |= HV_OEM_BITS_A1KDIS;
5070 if ((mac_reg & (PHY_CTRL_D0A_LPLU | PHY_CTRL_NOND0A_LPLU))
5071 != 0)
5072 oem_reg |= HV_OEM_BITS_LPLU;
5073 }
5074
5075 /* Set Restart auto-neg to activate the bits */
5076 if ((d0_state || (sc->sc_type != WM_T_PCH))
5077 && (wm_phy_resetisblocked(sc) == false))
5078 oem_reg |= HV_OEM_BITS_ANEGNOW;
5079
5080 rv = wm_gmii_hv_writereg_locked(sc->sc_dev, 1, HV_OEM_BITS, oem_reg);
5081
5082 release:
5083 sc->phy.release(sc);
5084
5085 return rv;
5086 }
5087
5088 /* Init hardware bits */
5089 void
5090 wm_initialize_hardware_bits(struct wm_softc *sc)
5091 {
5092 uint32_t tarc0, tarc1, reg;
5093
5094 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
5095 device_xname(sc->sc_dev), __func__));
5096
5097 /* For 82571 variant, 80003 and ICHs */
5098 if (((sc->sc_type >= WM_T_82571) && (sc->sc_type <= WM_T_82583))
5099 || WM_IS_ICHPCH(sc)) {
5100
5101 /* Transmit Descriptor Control 0 */
5102 reg = CSR_READ(sc, WMREG_TXDCTL(0));
5103 reg |= TXDCTL_COUNT_DESC;
5104 CSR_WRITE(sc, WMREG_TXDCTL(0), reg);
5105
5106 /* Transmit Descriptor Control 1 */
5107 reg = CSR_READ(sc, WMREG_TXDCTL(1));
5108 reg |= TXDCTL_COUNT_DESC;
5109 CSR_WRITE(sc, WMREG_TXDCTL(1), reg);
5110
5111 /* TARC0 */
5112 tarc0 = CSR_READ(sc, WMREG_TARC0);
5113 switch (sc->sc_type) {
5114 case WM_T_82571:
5115 case WM_T_82572:
5116 case WM_T_82573:
5117 case WM_T_82574:
5118 case WM_T_82583:
5119 case WM_T_80003:
5120 /* Clear bits 30..27 */
5121 tarc0 &= ~__BITS(30, 27);
5122 break;
5123 default:
5124 break;
5125 }
5126
5127 switch (sc->sc_type) {
5128 case WM_T_82571:
5129 case WM_T_82572:
5130 tarc0 |= __BITS(26, 23); /* TARC0 bits 23-26 */
5131
5132 tarc1 = CSR_READ(sc, WMREG_TARC1);
5133 tarc1 &= ~__BITS(30, 29); /* Clear bits 30 and 29 */
5134 tarc1 |= __BITS(26, 24); /* TARC1 bits 26-24 */
5135 /* 8257[12] Errata No.7 */
5136 tarc1 |= __BIT(22); /* TARC1 bits 22 */
5137
5138 /* TARC1 bit 28 */
5139 if ((CSR_READ(sc, WMREG_TCTL) & TCTL_MULR) != 0)
5140 tarc1 &= ~__BIT(28);
5141 else
5142 tarc1 |= __BIT(28);
5143 CSR_WRITE(sc, WMREG_TARC1, tarc1);
5144
5145 /*
5146 * 8257[12] Errata No.13
5147 * Disable Dyamic Clock Gating.
5148 */
5149 reg = CSR_READ(sc, WMREG_CTRL_EXT);
5150 reg &= ~CTRL_EXT_DMA_DYN_CLK;
5151 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
5152 break;
5153 case WM_T_82573:
5154 case WM_T_82574:
5155 case WM_T_82583:
5156 if ((sc->sc_type == WM_T_82574)
5157 || (sc->sc_type == WM_T_82583))
5158 tarc0 |= __BIT(26); /* TARC0 bit 26 */
5159
5160 /* Extended Device Control */
5161 reg = CSR_READ(sc, WMREG_CTRL_EXT);
5162 reg &= ~__BIT(23); /* Clear bit 23 */
5163 reg |= __BIT(22); /* Set bit 22 */
5164 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
5165
5166 /* Device Control */
5167 sc->sc_ctrl &= ~__BIT(29); /* Clear bit 29 */
5168 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
5169
5170 /* PCIe Control Register */
5171 /*
5172 * 82573 Errata (unknown).
5173 *
5174 * 82574 Errata 25 and 82583 Errata 12
5175 * "Dropped Rx Packets":
5176 * NVM Image Version 2.1.4 and newer has no this bug.
5177 */
5178 reg = CSR_READ(sc, WMREG_GCR);
5179 reg |= GCR_L1_ACT_WITHOUT_L0S_RX;
5180 CSR_WRITE(sc, WMREG_GCR, reg);
5181
5182 if ((sc->sc_type == WM_T_82574)
5183 || (sc->sc_type == WM_T_82583)) {
5184 /*
5185 * Document says this bit must be set for
5186 * proper operation.
5187 */
5188 reg = CSR_READ(sc, WMREG_GCR);
5189 reg |= __BIT(22);
5190 CSR_WRITE(sc, WMREG_GCR, reg);
5191
5192 /*
5193 * Apply workaround for hardware errata
5194 * documented in errata docs Fixes issue where
5195 * some error prone or unreliable PCIe
5196 * completions are occurring, particularly
5197 * with ASPM enabled. Without fix, issue can
5198 * cause Tx timeouts.
5199 */
5200 reg = CSR_READ(sc, WMREG_GCR2);
5201 reg |= __BIT(0);
5202 CSR_WRITE(sc, WMREG_GCR2, reg);
5203 }
5204 break;
5205 case WM_T_80003:
5206 /* TARC0 */
5207 if ((sc->sc_mediatype == WM_MEDIATYPE_FIBER)
5208 || (sc->sc_mediatype == WM_MEDIATYPE_SERDES))
5209 tarc0 &= ~__BIT(20); /* Clear bits 20 */
5210
5211 /* TARC1 bit 28 */
5212 tarc1 = CSR_READ(sc, WMREG_TARC1);
5213 if ((CSR_READ(sc, WMREG_TCTL) & TCTL_MULR) != 0)
5214 tarc1 &= ~__BIT(28);
5215 else
5216 tarc1 |= __BIT(28);
5217 CSR_WRITE(sc, WMREG_TARC1, tarc1);
5218 break;
5219 case WM_T_ICH8:
5220 case WM_T_ICH9:
5221 case WM_T_ICH10:
5222 case WM_T_PCH:
5223 case WM_T_PCH2:
5224 case WM_T_PCH_LPT:
5225 case WM_T_PCH_SPT:
5226 case WM_T_PCH_CNP:
5227 case WM_T_PCH_TGP:
5228 /* TARC0 */
5229 if (sc->sc_type == WM_T_ICH8) {
5230 /* Set TARC0 bits 29 and 28 */
5231 tarc0 |= __BITS(29, 28);
5232 } else if (sc->sc_type == WM_T_PCH_SPT) {
5233 tarc0 |= __BIT(29);
5234 /*
5235 * Drop bit 28. From Linux.
5236 * See I218/I219 spec update
5237 * "5. Buffer Overrun While the I219 is
5238 * Processing DMA Transactions"
5239 */
5240 tarc0 &= ~__BIT(28);
5241 }
5242 /* Set TARC0 bits 23,24,26,27 */
5243 tarc0 |= __BITS(27, 26) | __BITS(24, 23);
5244
5245 /* CTRL_EXT */
5246 reg = CSR_READ(sc, WMREG_CTRL_EXT);
5247 reg |= __BIT(22); /* Set bit 22 */
5248 /*
5249 * Enable PHY low-power state when MAC is at D3
5250 * w/o WoL
5251 */
5252 if (sc->sc_type >= WM_T_PCH)
5253 reg |= CTRL_EXT_PHYPDEN;
5254 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
5255
5256 /* TARC1 */
5257 tarc1 = CSR_READ(sc, WMREG_TARC1);
5258 /* bit 28 */
5259 if ((CSR_READ(sc, WMREG_TCTL) & TCTL_MULR) != 0)
5260 tarc1 &= ~__BIT(28);
5261 else
5262 tarc1 |= __BIT(28);
5263 tarc1 |= __BIT(24) | __BIT(26) | __BIT(30);
5264 CSR_WRITE(sc, WMREG_TARC1, tarc1);
5265
5266 /* Device Status */
5267 if (sc->sc_type == WM_T_ICH8) {
5268 reg = CSR_READ(sc, WMREG_STATUS);
5269 reg &= ~__BIT(31);
5270 CSR_WRITE(sc, WMREG_STATUS, reg);
5271
5272 }
5273
5274 /* IOSFPC */
5275 if (sc->sc_type == WM_T_PCH_SPT) {
5276 reg = CSR_READ(sc, WMREG_IOSFPC);
5277 reg |= RCTL_RDMTS_HEX; /* XXX RTCL bit? */
5278 CSR_WRITE(sc, WMREG_IOSFPC, reg);
5279 }
5280 /*
5281 * Work-around descriptor data corruption issue during
5282 * NFS v2 UDP traffic, just disable the NFS filtering
5283 * capability.
5284 */
5285 reg = CSR_READ(sc, WMREG_RFCTL);
5286 reg |= WMREG_RFCTL_NFSWDIS | WMREG_RFCTL_NFSRDIS;
5287 CSR_WRITE(sc, WMREG_RFCTL, reg);
5288 break;
5289 default:
5290 break;
5291 }
5292 CSR_WRITE(sc, WMREG_TARC0, tarc0);
5293
5294 switch (sc->sc_type) {
5295 case WM_T_82571:
5296 case WM_T_82572:
5297 case WM_T_82573:
5298 case WM_T_80003:
5299 case WM_T_ICH8:
5300 /*
5301 * 8257[12] Errata No.52, 82573 Errata No.43 and some
5302 * others to avoid RSS Hash Value bug.
5303 */
5304 reg = CSR_READ(sc, WMREG_RFCTL);
5305 reg |= WMREG_RFCTL_NEWIPV6EXDIS |WMREG_RFCTL_IPV6EXDIS;
5306 CSR_WRITE(sc, WMREG_RFCTL, reg);
5307 break;
5308 case WM_T_82574:
5309 /* Use extened Rx descriptor. */
5310 reg = CSR_READ(sc, WMREG_RFCTL);
5311 reg |= WMREG_RFCTL_EXSTEN;
5312 CSR_WRITE(sc, WMREG_RFCTL, reg);
5313 break;
5314 default:
5315 break;
5316 }
5317 } else if ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211)) {
5318 /*
5319 * 82575 Errata XXX, 82576 Errata 46, 82580 Errata 24,
5320 * I350 Errata 37, I210 Errata No. 31 and I211 Errata No. 11:
5321 * "Certain Malformed IPv6 Extension Headers are Not Processed
5322 * Correctly by the Device"
5323 *
5324 * I354(C2000) Errata AVR53:
5325 * "Malformed IPv6 Extension Headers May Result in LAN Device
5326 * Hang"
5327 */
5328 reg = CSR_READ(sc, WMREG_RFCTL);
5329 reg |= WMREG_RFCTL_IPV6EXDIS;
5330 CSR_WRITE(sc, WMREG_RFCTL, reg);
5331 }
5332 }
5333
5334 static uint32_t
5335 wm_rxpbs_adjust_82580(uint32_t val)
5336 {
5337 uint32_t rv = 0;
5338
5339 if (val < __arraycount(wm_82580_rxpbs_table))
5340 rv = wm_82580_rxpbs_table[val];
5341
5342 return rv;
5343 }
5344
5345 /*
5346 * wm_reset_phy:
5347 *
5348 * generic PHY reset function.
5349 * Same as e1000_phy_hw_reset_generic()
5350 */
5351 static int
5352 wm_reset_phy(struct wm_softc *sc)
5353 {
5354 uint32_t reg;
5355 int rv;
5356
5357 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
5358 device_xname(sc->sc_dev), __func__));
5359 if (wm_phy_resetisblocked(sc))
5360 return -1;
5361
5362 rv = sc->phy.acquire(sc);
5363 if (rv) {
5364 device_printf(sc->sc_dev, "%s: failed to acquire phy: %d\n",
5365 __func__, rv);
5366 return rv;
5367 }
5368
5369 reg = CSR_READ(sc, WMREG_CTRL);
5370 CSR_WRITE(sc, WMREG_CTRL, reg | CTRL_PHY_RESET);
5371 CSR_WRITE_FLUSH(sc);
5372
5373 delay(sc->phy.reset_delay_us);
5374
5375 CSR_WRITE(sc, WMREG_CTRL, reg);
5376 CSR_WRITE_FLUSH(sc);
5377
5378 delay(150);
5379
5380 sc->phy.release(sc);
5381
5382 wm_get_cfg_done(sc);
5383 wm_phy_post_reset(sc);
5384
5385 return 0;
5386 }
5387
5388 /*
5389 * wm_flush_desc_rings - remove all descriptors from the descriptor rings.
5390 *
5391 * In i219, the descriptor rings must be emptied before resetting the HW
5392 * or before changing the device state to D3 during runtime (runtime PM).
5393 *
5394 * Failure to do this will cause the HW to enter a unit hang state which can
5395 * only be released by PCI reset on the device.
5396 *
5397 * I219 does not use multiqueue, so it is enough to check sc->sc_queue[0] only.
5398 */
5399 static void
5400 wm_flush_desc_rings(struct wm_softc *sc)
5401 {
5402 pcireg_t preg;
5403 uint32_t reg;
5404 struct wm_txqueue *txq;
5405 wiseman_txdesc_t *txd;
5406 int nexttx;
5407 uint32_t rctl;
5408
5409 KASSERT(IFNET_LOCKED(&sc->sc_ethercom.ec_if));
5410
5411 /* First, disable MULR fix in FEXTNVM11 */
5412 reg = CSR_READ(sc, WMREG_FEXTNVM11);
5413 reg |= FEXTNVM11_DIS_MULRFIX;
5414 CSR_WRITE(sc, WMREG_FEXTNVM11, reg);
5415
5416 preg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, WM_PCI_DESCRING_STATUS);
5417 reg = CSR_READ(sc, WMREG_TDLEN(0));
5418 if (((preg & DESCRING_STATUS_FLUSH_REQ) == 0) || (reg == 0))
5419 return;
5420
5421 /*
5422 * Remove all descriptors from the tx_ring.
5423 *
5424 * We want to clear all pending descriptors from the TX ring. Zeroing
5425 * happens when the HW reads the regs. We assign the ring itself as
5426 * the data of the next descriptor. We don't care about the data we are
5427 * about to reset the HW.
5428 */
5429 #ifdef WM_DEBUG
5430 device_printf(sc->sc_dev, "Need TX flush (reg = %08x)\n", preg);
5431 #endif
5432 reg = CSR_READ(sc, WMREG_TCTL);
5433 CSR_WRITE(sc, WMREG_TCTL, reg | TCTL_EN);
5434
5435 txq = &sc->sc_queue[0].wmq_txq;
5436 nexttx = txq->txq_next;
5437 txd = &txq->txq_descs[nexttx];
5438 wm_set_dma_addr(&txd->wtx_addr, txq->txq_desc_dma);
5439 txd->wtx_cmdlen = htole32(WTX_CMD_IFCS | 512);
5440 txd->wtx_fields.wtxu_status = 0;
5441 txd->wtx_fields.wtxu_options = 0;
5442 txd->wtx_fields.wtxu_vlan = 0;
5443
5444 wm_cdtxsync(txq, 0, WM_NTXDESC(txq),
5445 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5446
5447 txq->txq_next = WM_NEXTTX(txq, txq->txq_next);
5448 CSR_WRITE(sc, WMREG_TDT(0), txq->txq_next);
5449 CSR_WRITE_FLUSH(sc);
5450 delay(250);
5451
5452 preg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, WM_PCI_DESCRING_STATUS);
5453 if ((preg & DESCRING_STATUS_FLUSH_REQ) == 0)
5454 return;
5455
5456 /*
5457 * Mark all descriptors in the RX ring as consumed and disable the
5458 * rx ring.
5459 */
5460 #ifdef WM_DEBUG
5461 device_printf(sc->sc_dev, "Need RX flush (reg = %08x)\n", preg);
5462 #endif
5463 rctl = CSR_READ(sc, WMREG_RCTL);
5464 CSR_WRITE(sc, WMREG_RCTL, rctl & ~RCTL_EN);
5465 CSR_WRITE_FLUSH(sc);
5466 delay(150);
5467
5468 reg = CSR_READ(sc, WMREG_RXDCTL(0));
5469 /* Zero the lower 14 bits (prefetch and host thresholds) */
5470 reg &= 0xffffc000;
5471 /*
5472 * Update thresholds: prefetch threshold to 31, host threshold
5473 * to 1 and make sure the granularity is "descriptors" and not
5474 * "cache lines"
5475 */
5476 reg |= (0x1f | (1 << 8) | RXDCTL_GRAN);
5477 CSR_WRITE(sc, WMREG_RXDCTL(0), reg);
5478
5479 /* Momentarily enable the RX ring for the changes to take effect */
5480 CSR_WRITE(sc, WMREG_RCTL, rctl | RCTL_EN);
5481 CSR_WRITE_FLUSH(sc);
5482 delay(150);
5483 CSR_WRITE(sc, WMREG_RCTL, rctl & ~RCTL_EN);
5484 }
5485
5486 /*
5487 * wm_reset:
5488 *
5489 * Reset the i82542 chip.
5490 */
5491 static void
5492 wm_reset(struct wm_softc *sc)
5493 {
5494 int phy_reset = 0;
5495 int i, error = 0;
5496 uint32_t reg;
5497 uint16_t kmreg;
5498 int rv;
5499
5500 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
5501 device_xname(sc->sc_dev), __func__));
5502 KASSERT(sc->sc_type != 0);
5503
5504 /*
5505 * Allocate on-chip memory according to the MTU size.
5506 * The Packet Buffer Allocation register must be written
5507 * before the chip is reset.
5508 */
5509 switch (sc->sc_type) {
5510 case WM_T_82547:
5511 case WM_T_82547_2:
5512 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
5513 PBA_22K : PBA_30K;
5514 for (i = 0; i < sc->sc_nqueues; i++) {
5515 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
5516 txq->txq_fifo_head = 0;
5517 txq->txq_fifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
5518 txq->txq_fifo_size =
5519 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
5520 txq->txq_fifo_stall = 0;
5521 }
5522 break;
5523 case WM_T_82571:
5524 case WM_T_82572:
5525 case WM_T_82575: /* XXX need special handing for jumbo frames */
5526 case WM_T_80003:
5527 sc->sc_pba = PBA_32K;
5528 break;
5529 case WM_T_82573:
5530 sc->sc_pba = PBA_12K;
5531 break;
5532 case WM_T_82574:
5533 case WM_T_82583:
5534 sc->sc_pba = PBA_20K;
5535 break;
5536 case WM_T_82576:
5537 sc->sc_pba = CSR_READ(sc, WMREG_RXPBS);
5538 sc->sc_pba &= RXPBS_SIZE_MASK_82576;
5539 break;
5540 case WM_T_82580:
5541 case WM_T_I350:
5542 case WM_T_I354:
5543 sc->sc_pba = wm_rxpbs_adjust_82580(CSR_READ(sc, WMREG_RXPBS));
5544 break;
5545 case WM_T_I210:
5546 case WM_T_I211:
5547 sc->sc_pba = PBA_34K;
5548 break;
5549 case WM_T_ICH8:
5550 /* Workaround for a bit corruption issue in FIFO memory */
5551 sc->sc_pba = PBA_8K;
5552 CSR_WRITE(sc, WMREG_PBS, PBA_16K);
5553 break;
5554 case WM_T_ICH9:
5555 case WM_T_ICH10:
5556 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 4096 ?
5557 PBA_14K : PBA_10K;
5558 break;
5559 case WM_T_PCH:
5560 case WM_T_PCH2: /* XXX 14K? */
5561 case WM_T_PCH_LPT:
5562 case WM_T_PCH_SPT:
5563 case WM_T_PCH_CNP:
5564 case WM_T_PCH_TGP:
5565 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 1500 ?
5566 PBA_12K : PBA_26K;
5567 break;
5568 default:
5569 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
5570 PBA_40K : PBA_48K;
5571 break;
5572 }
5573 /*
5574 * Only old or non-multiqueue devices have the PBA register
5575 * XXX Need special handling for 82575.
5576 */
5577 if (((sc->sc_flags & WM_F_NEWQUEUE) == 0)
5578 || (sc->sc_type == WM_T_82575))
5579 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
5580
5581 /* Prevent the PCI-E bus from sticking */
5582 if (sc->sc_flags & WM_F_PCIE) {
5583 int timeout = 800;
5584
5585 sc->sc_ctrl |= CTRL_GIO_M_DIS;
5586 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
5587
5588 while (timeout--) {
5589 if ((CSR_READ(sc, WMREG_STATUS) & STATUS_GIO_M_ENA)
5590 == 0)
5591 break;
5592 delay(100);
5593 }
5594 if (timeout == 0)
5595 device_printf(sc->sc_dev,
5596 "failed to disable bus mastering\n");
5597 }
5598
5599 /* Set the completion timeout for interface */
5600 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
5601 || (sc->sc_type == WM_T_82580)
5602 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
5603 || (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211))
5604 wm_set_pcie_completion_timeout(sc);
5605
5606 /* Clear interrupt */
5607 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
5608 if (wm_is_using_msix(sc)) {
5609 if (sc->sc_type != WM_T_82574) {
5610 CSR_WRITE(sc, WMREG_EIMC, 0xffffffffU);
5611 CSR_WRITE(sc, WMREG_EIAC, 0);
5612 } else
5613 CSR_WRITE(sc, WMREG_EIAC_82574, 0);
5614 }
5615
5616 /* Stop the transmit and receive processes. */
5617 CSR_WRITE(sc, WMREG_RCTL, 0);
5618 sc->sc_rctl &= ~RCTL_EN;
5619 CSR_WRITE(sc, WMREG_TCTL, TCTL_PSP);
5620 CSR_WRITE_FLUSH(sc);
5621
5622 /* XXX set_tbi_sbp_82543() */
5623
5624 delay(10*1000);
5625
5626 /* Must acquire the MDIO ownership before MAC reset */
5627 switch (sc->sc_type) {
5628 case WM_T_82573:
5629 case WM_T_82574:
5630 case WM_T_82583:
5631 error = wm_get_hw_semaphore_82573(sc);
5632 break;
5633 default:
5634 break;
5635 }
5636
5637 /*
5638 * 82541 Errata 29? & 82547 Errata 28?
5639 * See also the description about PHY_RST bit in CTRL register
5640 * in 8254x_GBe_SDM.pdf.
5641 */
5642 if ((sc->sc_type == WM_T_82541) || (sc->sc_type == WM_T_82547)) {
5643 CSR_WRITE(sc, WMREG_CTRL,
5644 CSR_READ(sc, WMREG_CTRL) | CTRL_PHY_RESET);
5645 CSR_WRITE_FLUSH(sc);
5646 delay(5000);
5647 }
5648
5649 switch (sc->sc_type) {
5650 case WM_T_82544: /* XXX check whether WM_F_IOH_VALID is set */
5651 case WM_T_82541:
5652 case WM_T_82541_2:
5653 case WM_T_82547:
5654 case WM_T_82547_2:
5655 /*
5656 * On some chipsets, a reset through a memory-mapped write
5657 * cycle can cause the chip to reset before completing the
5658 * write cycle. This causes major headache that can be avoided
5659 * by issuing the reset via indirect register writes through
5660 * I/O space.
5661 *
5662 * So, if we successfully mapped the I/O BAR at attach time,
5663 * use that. Otherwise, try our luck with a memory-mapped
5664 * reset.
5665 */
5666 if (sc->sc_flags & WM_F_IOH_VALID)
5667 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
5668 else
5669 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
5670 break;
5671 case WM_T_82545_3:
5672 case WM_T_82546_3:
5673 /* Use the shadow control register on these chips. */
5674 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
5675 break;
5676 case WM_T_80003:
5677 reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST;
5678 if (sc->phy.acquire(sc) != 0)
5679 break;
5680 CSR_WRITE(sc, WMREG_CTRL, reg);
5681 sc->phy.release(sc);
5682 break;
5683 case WM_T_ICH8:
5684 case WM_T_ICH9:
5685 case WM_T_ICH10:
5686 case WM_T_PCH:
5687 case WM_T_PCH2:
5688 case WM_T_PCH_LPT:
5689 case WM_T_PCH_SPT:
5690 case WM_T_PCH_CNP:
5691 case WM_T_PCH_TGP:
5692 reg = CSR_READ(sc, WMREG_CTRL) | CTRL_RST;
5693 if (wm_phy_resetisblocked(sc) == false) {
5694 /*
5695 * Gate automatic PHY configuration by hardware on
5696 * non-managed 82579
5697 */
5698 if ((sc->sc_type == WM_T_PCH2)
5699 && ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID)
5700 == 0))
5701 wm_gate_hw_phy_config_ich8lan(sc, true);
5702
5703 reg |= CTRL_PHY_RESET;
5704 phy_reset = 1;
5705 } else
5706 device_printf(sc->sc_dev, "XXX reset is blocked!!!\n");
5707 if (sc->phy.acquire(sc) != 0)
5708 break;
5709 CSR_WRITE(sc, WMREG_CTRL, reg);
5710 /* Don't insert a completion barrier when reset */
5711 delay(20*1000);
5712 /*
5713 * The EXTCNFCTR_MDIO_SW_OWNERSHIP bit is cleared by the reset,
5714 * so don't use sc->phy.release(sc). Release sc_ich_phymtx
5715 * only. See also wm_get_swflag_ich8lan().
5716 */
5717 mutex_exit(sc->sc_ich_phymtx);
5718 break;
5719 case WM_T_82580:
5720 case WM_T_I350:
5721 case WM_T_I354:
5722 case WM_T_I210:
5723 case WM_T_I211:
5724 CSR_WRITE(sc, WMREG_CTRL, CSR_READ(sc, WMREG_CTRL) | CTRL_RST);
5725 if (sc->sc_pcidevid != PCI_PRODUCT_INTEL_DH89XXCC_SGMII)
5726 CSR_WRITE_FLUSH(sc);
5727 delay(5000);
5728 break;
5729 case WM_T_82542_2_0:
5730 case WM_T_82542_2_1:
5731 case WM_T_82543:
5732 case WM_T_82540:
5733 case WM_T_82545:
5734 case WM_T_82546:
5735 case WM_T_82571:
5736 case WM_T_82572:
5737 case WM_T_82573:
5738 case WM_T_82574:
5739 case WM_T_82575:
5740 case WM_T_82576:
5741 case WM_T_82583:
5742 default:
5743 /* Everything else can safely use the documented method. */
5744 CSR_WRITE(sc, WMREG_CTRL, CSR_READ(sc, WMREG_CTRL) | CTRL_RST);
5745 break;
5746 }
5747
5748 /* Must release the MDIO ownership after MAC reset */
5749 switch (sc->sc_type) {
5750 case WM_T_82573:
5751 case WM_T_82574:
5752 case WM_T_82583:
5753 if (error == 0)
5754 wm_put_hw_semaphore_82573(sc);
5755 break;
5756 default:
5757 break;
5758 }
5759
5760 /* Set Phy Config Counter to 50msec */
5761 if (sc->sc_type == WM_T_PCH2) {
5762 reg = CSR_READ(sc, WMREG_FEXTNVM3);
5763 reg &= ~FEXTNVM3_PHY_CFG_COUNTER_MASK;
5764 reg |= FEXTNVM3_PHY_CFG_COUNTER_50MS;
5765 CSR_WRITE(sc, WMREG_FEXTNVM3, reg);
5766 }
5767
5768 if (phy_reset != 0)
5769 wm_get_cfg_done(sc);
5770
5771 /* Reload EEPROM */
5772 switch (sc->sc_type) {
5773 case WM_T_82542_2_0:
5774 case WM_T_82542_2_1:
5775 case WM_T_82543:
5776 case WM_T_82544:
5777 delay(10);
5778 reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
5779 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
5780 CSR_WRITE_FLUSH(sc);
5781 delay(2000);
5782 break;
5783 case WM_T_82540:
5784 case WM_T_82545:
5785 case WM_T_82545_3:
5786 case WM_T_82546:
5787 case WM_T_82546_3:
5788 delay(5*1000);
5789 /* XXX Disable HW ARPs on ASF enabled adapters */
5790 break;
5791 case WM_T_82541:
5792 case WM_T_82541_2:
5793 case WM_T_82547:
5794 case WM_T_82547_2:
5795 delay(20000);
5796 /* XXX Disable HW ARPs on ASF enabled adapters */
5797 break;
5798 case WM_T_82571:
5799 case WM_T_82572:
5800 case WM_T_82573:
5801 case WM_T_82574:
5802 case WM_T_82583:
5803 if (sc->sc_flags & WM_F_EEPROM_FLASH) {
5804 delay(10);
5805 reg = CSR_READ(sc, WMREG_CTRL_EXT) | CTRL_EXT_EE_RST;
5806 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
5807 CSR_WRITE_FLUSH(sc);
5808 }
5809 /* check EECD_EE_AUTORD */
5810 wm_get_auto_rd_done(sc);
5811 /*
5812 * Phy configuration from NVM just starts after EECD_AUTO_RD
5813 * is set.
5814 */
5815 if ((sc->sc_type == WM_T_82573) || (sc->sc_type == WM_T_82574)
5816 || (sc->sc_type == WM_T_82583))
5817 delay(25*1000);
5818 break;
5819 case WM_T_82575:
5820 case WM_T_82576:
5821 case WM_T_82580:
5822 case WM_T_I350:
5823 case WM_T_I354:
5824 case WM_T_I210:
5825 case WM_T_I211:
5826 case WM_T_80003:
5827 /* check EECD_EE_AUTORD */
5828 wm_get_auto_rd_done(sc);
5829 break;
5830 case WM_T_ICH8:
5831 case WM_T_ICH9:
5832 case WM_T_ICH10:
5833 case WM_T_PCH:
5834 case WM_T_PCH2:
5835 case WM_T_PCH_LPT:
5836 case WM_T_PCH_SPT:
5837 case WM_T_PCH_CNP:
5838 case WM_T_PCH_TGP:
5839 break;
5840 default:
5841 panic("%s: unknown type\n", __func__);
5842 }
5843
5844 /* Check whether EEPROM is present or not */
5845 switch (sc->sc_type) {
5846 case WM_T_82575:
5847 case WM_T_82576:
5848 case WM_T_82580:
5849 case WM_T_I350:
5850 case WM_T_I354:
5851 case WM_T_ICH8:
5852 case WM_T_ICH9:
5853 if ((CSR_READ(sc, WMREG_EECD) & EECD_EE_PRES) == 0) {
5854 /* Not found */
5855 sc->sc_flags |= WM_F_EEPROM_INVALID;
5856 if (sc->sc_type == WM_T_82575)
5857 wm_reset_init_script_82575(sc);
5858 }
5859 break;
5860 default:
5861 break;
5862 }
5863
5864 if (phy_reset != 0)
5865 wm_phy_post_reset(sc);
5866
5867 if ((sc->sc_type == WM_T_82580)
5868 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)) {
5869 /* Clear global device reset status bit */
5870 CSR_WRITE(sc, WMREG_STATUS, STATUS_DEV_RST_SET);
5871 }
5872
5873 /* Clear any pending interrupt events. */
5874 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
5875 reg = CSR_READ(sc, WMREG_ICR);
5876 if (wm_is_using_msix(sc)) {
5877 if (sc->sc_type != WM_T_82574) {
5878 CSR_WRITE(sc, WMREG_EIMC, 0xffffffffU);
5879 CSR_WRITE(sc, WMREG_EIAC, 0);
5880 } else
5881 CSR_WRITE(sc, WMREG_EIAC_82574, 0);
5882 }
5883
5884 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
5885 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
5886 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)
5887 || (sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP)
5888 || (sc->sc_type == WM_T_PCH_TGP)) {
5889 reg = CSR_READ(sc, WMREG_KABGTXD);
5890 reg |= KABGTXD_BGSQLBIAS;
5891 CSR_WRITE(sc, WMREG_KABGTXD, reg);
5892 }
5893
5894 /* Reload sc_ctrl */
5895 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
5896
5897 wm_set_eee(sc);
5898
5899 /*
5900 * For PCH, this write will make sure that any noise will be detected
5901 * as a CRC error and be dropped rather than show up as a bad packet
5902 * to the DMA engine
5903 */
5904 if (sc->sc_type == WM_T_PCH)
5905 CSR_WRITE(sc, WMREG_CRC_OFFSET, 0x65656565);
5906
5907 if (sc->sc_type >= WM_T_82544)
5908 CSR_WRITE(sc, WMREG_WUC, 0);
5909
5910 if (sc->sc_type < WM_T_82575)
5911 wm_disable_aspm(sc); /* Workaround for some chips */
5912
5913 wm_reset_mdicnfg_82580(sc);
5914
5915 if ((sc->sc_flags & WM_F_PLL_WA_I210) != 0)
5916 wm_pll_workaround_i210(sc);
5917
5918 if (sc->sc_type == WM_T_80003) {
5919 /* Default to TRUE to enable the MDIC W/A */
5920 sc->sc_flags |= WM_F_80003_MDIC_WA;
5921
5922 rv = wm_kmrn_readreg(sc,
5923 KUMCTRLSTA_OFFSET >> KUMCTRLSTA_OFFSET_SHIFT, &kmreg);
5924 if (rv == 0) {
5925 if ((kmreg & KUMCTRLSTA_OPMODE_MASK)
5926 == KUMCTRLSTA_OPMODE_INBAND_MDIO)
5927 sc->sc_flags &= ~WM_F_80003_MDIC_WA;
5928 else
5929 sc->sc_flags |= WM_F_80003_MDIC_WA;
5930 }
5931 }
5932 }
5933
5934 /*
5935 * wm_add_rxbuf:
5936 *
5937 * Add a receive buffer to the indiciated descriptor.
5938 */
5939 static int
5940 wm_add_rxbuf(struct wm_rxqueue *rxq, int idx)
5941 {
5942 struct wm_softc *sc = rxq->rxq_sc;
5943 struct wm_rxsoft *rxs = &rxq->rxq_soft[idx];
5944 struct mbuf *m;
5945 int error;
5946
5947 KASSERT(mutex_owned(rxq->rxq_lock));
5948
5949 MGETHDR(m, M_DONTWAIT, MT_DATA);
5950 if (m == NULL)
5951 return ENOBUFS;
5952
5953 MCLGET(m, M_DONTWAIT);
5954 if ((m->m_flags & M_EXT) == 0) {
5955 m_freem(m);
5956 return ENOBUFS;
5957 }
5958
5959 if (rxs->rxs_mbuf != NULL)
5960 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
5961
5962 rxs->rxs_mbuf = m;
5963
5964 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
5965 /*
5966 * Cannot use bus_dmamap_load_mbuf() here because m_data may be
5967 * sc_align_tweak'd between bus_dmamap_load() and bus_dmamap_sync().
5968 */
5969 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, m->m_ext.ext_buf,
5970 m->m_ext.ext_size, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
5971 if (error) {
5972 /* XXX XXX XXX */
5973 aprint_error_dev(sc->sc_dev,
5974 "unable to load rx DMA map %d, error = %d\n", idx, error);
5975 panic("wm_add_rxbuf");
5976 }
5977
5978 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
5979 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
5980
5981 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
5982 if ((sc->sc_rctl & RCTL_EN) != 0)
5983 wm_init_rxdesc(rxq, idx);
5984 } else
5985 wm_init_rxdesc(rxq, idx);
5986
5987 return 0;
5988 }
5989
5990 /*
5991 * wm_rxdrain:
5992 *
5993 * Drain the receive queue.
5994 */
5995 static void
5996 wm_rxdrain(struct wm_rxqueue *rxq)
5997 {
5998 struct wm_softc *sc = rxq->rxq_sc;
5999 struct wm_rxsoft *rxs;
6000 int i;
6001
6002 KASSERT(mutex_owned(rxq->rxq_lock));
6003
6004 for (i = 0; i < WM_NRXDESC; i++) {
6005 rxs = &rxq->rxq_soft[i];
6006 if (rxs->rxs_mbuf != NULL) {
6007 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
6008 m_freem(rxs->rxs_mbuf);
6009 rxs->rxs_mbuf = NULL;
6010 }
6011 }
6012 }
6013
6014 /*
6015 * Setup registers for RSS.
6016 *
6017 * XXX not yet VMDq support
6018 */
6019 static void
6020 wm_init_rss(struct wm_softc *sc)
6021 {
6022 uint32_t mrqc, reta_reg, rss_key[RSSRK_NUM_REGS];
6023 int i;
6024
6025 CTASSERT(sizeof(rss_key) == RSS_KEYSIZE);
6026
6027 for (i = 0; i < RETA_NUM_ENTRIES; i++) {
6028 unsigned int qid, reta_ent;
6029
6030 qid = i % sc->sc_nqueues;
6031 switch (sc->sc_type) {
6032 case WM_T_82574:
6033 reta_ent = __SHIFTIN(qid,
6034 RETA_ENT_QINDEX_MASK_82574);
6035 break;
6036 case WM_T_82575:
6037 reta_ent = __SHIFTIN(qid,
6038 RETA_ENT_QINDEX1_MASK_82575);
6039 break;
6040 default:
6041 reta_ent = __SHIFTIN(qid, RETA_ENT_QINDEX_MASK);
6042 break;
6043 }
6044
6045 reta_reg = CSR_READ(sc, WMREG_RETA_Q(i));
6046 reta_reg &= ~RETA_ENTRY_MASK_Q(i);
6047 reta_reg |= __SHIFTIN(reta_ent, RETA_ENTRY_MASK_Q(i));
6048 CSR_WRITE(sc, WMREG_RETA_Q(i), reta_reg);
6049 }
6050
6051 rss_getkey((uint8_t *)rss_key);
6052 for (i = 0; i < RSSRK_NUM_REGS; i++)
6053 CSR_WRITE(sc, WMREG_RSSRK(i), rss_key[i]);
6054
6055 if (sc->sc_type == WM_T_82574)
6056 mrqc = MRQC_ENABLE_RSS_MQ_82574;
6057 else
6058 mrqc = MRQC_ENABLE_RSS_MQ;
6059
6060 /*
6061 * MRQC_RSS_FIELD_IPV6_EX is not set because of an errata.
6062 * See IPV6EXDIS bit in wm_initialize_hardware_bits().
6063 */
6064 mrqc |= (MRQC_RSS_FIELD_IPV4 | MRQC_RSS_FIELD_IPV4_TCP);
6065 mrqc |= (MRQC_RSS_FIELD_IPV6 | MRQC_RSS_FIELD_IPV6_TCP);
6066 #if 0
6067 mrqc |= (MRQC_RSS_FIELD_IPV4_UDP | MRQC_RSS_FIELD_IPV6_UDP);
6068 mrqc |= MRQC_RSS_FIELD_IPV6_UDP_EX;
6069 #endif
6070 mrqc |= MRQC_RSS_FIELD_IPV6_TCP_EX;
6071
6072 CSR_WRITE(sc, WMREG_MRQC, mrqc);
6073 }
6074
6075 /*
6076 * Adjust TX and RX queue numbers which the system actulally uses.
6077 *
6078 * The numbers are affected by below parameters.
6079 * - The nubmer of hardware queues
6080 * - The number of MSI-X vectors (= "nvectors" argument)
6081 * - ncpu
6082 */
6083 static void
6084 wm_adjust_qnum(struct wm_softc *sc, int nvectors)
6085 {
6086 int hw_ntxqueues, hw_nrxqueues, hw_nqueues;
6087
6088 if (nvectors < 2) {
6089 sc->sc_nqueues = 1;
6090 return;
6091 }
6092
6093 switch (sc->sc_type) {
6094 case WM_T_82572:
6095 hw_ntxqueues = 2;
6096 hw_nrxqueues = 2;
6097 break;
6098 case WM_T_82574:
6099 hw_ntxqueues = 2;
6100 hw_nrxqueues = 2;
6101 break;
6102 case WM_T_82575:
6103 hw_ntxqueues = 4;
6104 hw_nrxqueues = 4;
6105 break;
6106 case WM_T_82576:
6107 hw_ntxqueues = 16;
6108 hw_nrxqueues = 16;
6109 break;
6110 case WM_T_82580:
6111 case WM_T_I350:
6112 case WM_T_I354:
6113 hw_ntxqueues = 8;
6114 hw_nrxqueues = 8;
6115 break;
6116 case WM_T_I210:
6117 hw_ntxqueues = 4;
6118 hw_nrxqueues = 4;
6119 break;
6120 case WM_T_I211:
6121 hw_ntxqueues = 2;
6122 hw_nrxqueues = 2;
6123 break;
6124 /*
6125 * The below Ethernet controllers do not support MSI-X;
6126 * this driver doesn't let them use multiqueue.
6127 * - WM_T_80003
6128 * - WM_T_ICH8
6129 * - WM_T_ICH9
6130 * - WM_T_ICH10
6131 * - WM_T_PCH
6132 * - WM_T_PCH2
6133 * - WM_T_PCH_LPT
6134 */
6135 default:
6136 hw_ntxqueues = 1;
6137 hw_nrxqueues = 1;
6138 break;
6139 }
6140
6141 hw_nqueues = uimin(hw_ntxqueues, hw_nrxqueues);
6142
6143 /*
6144 * As queues more than MSI-X vectors cannot improve scaling, we limit
6145 * the number of queues used actually.
6146 */
6147 if (nvectors < hw_nqueues + 1)
6148 sc->sc_nqueues = nvectors - 1;
6149 else
6150 sc->sc_nqueues = hw_nqueues;
6151
6152 /*
6153 * As queues more than CPUs cannot improve scaling, we limit
6154 * the number of queues used actually.
6155 */
6156 if (ncpu < sc->sc_nqueues)
6157 sc->sc_nqueues = ncpu;
6158 }
6159
6160 static inline bool
6161 wm_is_using_msix(struct wm_softc *sc)
6162 {
6163
6164 return (sc->sc_nintrs > 1);
6165 }
6166
6167 static inline bool
6168 wm_is_using_multiqueue(struct wm_softc *sc)
6169 {
6170
6171 return (sc->sc_nqueues > 1);
6172 }
6173
6174 static int
6175 wm_softint_establish_queue(struct wm_softc *sc, int qidx, int intr_idx)
6176 {
6177 struct wm_queue *wmq = &sc->sc_queue[qidx];
6178
6179 wmq->wmq_id = qidx;
6180 wmq->wmq_intr_idx = intr_idx;
6181 wmq->wmq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
6182 wm_handle_queue, wmq);
6183 if (wmq->wmq_si != NULL)
6184 return 0;
6185
6186 aprint_error_dev(sc->sc_dev, "unable to establish queue[%d] handler\n",
6187 wmq->wmq_id);
6188 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[wmq->wmq_intr_idx]);
6189 sc->sc_ihs[wmq->wmq_intr_idx] = NULL;
6190 return ENOMEM;
6191 }
6192
6193 /*
6194 * Both single interrupt MSI and INTx can use this function.
6195 */
6196 static int
6197 wm_setup_legacy(struct wm_softc *sc)
6198 {
6199 pci_chipset_tag_t pc = sc->sc_pc;
6200 const char *intrstr = NULL;
6201 char intrbuf[PCI_INTRSTR_LEN];
6202 int error;
6203
6204 error = wm_alloc_txrx_queues(sc);
6205 if (error) {
6206 aprint_error_dev(sc->sc_dev, "cannot allocate queues %d\n",
6207 error);
6208 return ENOMEM;
6209 }
6210 intrstr = pci_intr_string(pc, sc->sc_intrs[0], intrbuf,
6211 sizeof(intrbuf));
6212 pci_intr_setattr(pc, &sc->sc_intrs[0], PCI_INTR_MPSAFE, true);
6213 sc->sc_ihs[0] = pci_intr_establish_xname(pc, sc->sc_intrs[0],
6214 IPL_NET, wm_intr_legacy, sc, device_xname(sc->sc_dev));
6215 if (sc->sc_ihs[0] == NULL) {
6216 aprint_error_dev(sc->sc_dev,"unable to establish %s\n",
6217 (pci_intr_type(pc, sc->sc_intrs[0])
6218 == PCI_INTR_TYPE_MSI) ? "MSI" : "INTx");
6219 return ENOMEM;
6220 }
6221
6222 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
6223 sc->sc_nintrs = 1;
6224
6225 return wm_softint_establish_queue(sc, 0, 0);
6226 }
6227
6228 static int
6229 wm_setup_msix(struct wm_softc *sc)
6230 {
6231 void *vih;
6232 kcpuset_t *affinity;
6233 int qidx, error, intr_idx, txrx_established;
6234 pci_chipset_tag_t pc = sc->sc_pc;
6235 const char *intrstr = NULL;
6236 char intrbuf[PCI_INTRSTR_LEN];
6237 char intr_xname[INTRDEVNAMEBUF];
6238
6239 if (sc->sc_nqueues < ncpu) {
6240 /*
6241 * To avoid other devices' interrupts, the affinity of Tx/Rx
6242 * interrupts start from CPU#1.
6243 */
6244 sc->sc_affinity_offset = 1;
6245 } else {
6246 /*
6247 * In this case, this device use all CPUs. So, we unify
6248 * affinitied cpu_index to msix vector number for readability.
6249 */
6250 sc->sc_affinity_offset = 0;
6251 }
6252
6253 error = wm_alloc_txrx_queues(sc);
6254 if (error) {
6255 aprint_error_dev(sc->sc_dev, "cannot allocate queues %d\n",
6256 error);
6257 return ENOMEM;
6258 }
6259
6260 kcpuset_create(&affinity, false);
6261 intr_idx = 0;
6262
6263 /*
6264 * TX and RX
6265 */
6266 txrx_established = 0;
6267 for (qidx = 0; qidx < sc->sc_nqueues; qidx++) {
6268 struct wm_queue *wmq = &sc->sc_queue[qidx];
6269 int affinity_to = (sc->sc_affinity_offset + intr_idx) % ncpu;
6270
6271 intrstr = pci_intr_string(pc, sc->sc_intrs[intr_idx], intrbuf,
6272 sizeof(intrbuf));
6273 pci_intr_setattr(pc, &sc->sc_intrs[intr_idx],
6274 PCI_INTR_MPSAFE, true);
6275 memset(intr_xname, 0, sizeof(intr_xname));
6276 snprintf(intr_xname, sizeof(intr_xname), "%sTXRX%d",
6277 device_xname(sc->sc_dev), qidx);
6278 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intr_idx],
6279 IPL_NET, wm_txrxintr_msix, wmq, intr_xname);
6280 if (vih == NULL) {
6281 aprint_error_dev(sc->sc_dev,
6282 "unable to establish MSI-X(for TX and RX)%s%s\n",
6283 intrstr ? " at " : "",
6284 intrstr ? intrstr : "");
6285
6286 goto fail;
6287 }
6288 kcpuset_zero(affinity);
6289 /* Round-robin affinity */
6290 kcpuset_set(affinity, affinity_to);
6291 error = interrupt_distribute(vih, affinity, NULL);
6292 if (error == 0) {
6293 aprint_normal_dev(sc->sc_dev,
6294 "for TX and RX interrupting at %s affinity to %u\n",
6295 intrstr, affinity_to);
6296 } else {
6297 aprint_normal_dev(sc->sc_dev,
6298 "for TX and RX interrupting at %s\n", intrstr);
6299 }
6300 sc->sc_ihs[intr_idx] = vih;
6301 if (wm_softint_establish_queue(sc, qidx, intr_idx) != 0)
6302 goto fail;
6303 txrx_established++;
6304 intr_idx++;
6305 }
6306
6307 /* LINK */
6308 intrstr = pci_intr_string(pc, sc->sc_intrs[intr_idx], intrbuf,
6309 sizeof(intrbuf));
6310 pci_intr_setattr(pc, &sc->sc_intrs[intr_idx], PCI_INTR_MPSAFE, true);
6311 memset(intr_xname, 0, sizeof(intr_xname));
6312 snprintf(intr_xname, sizeof(intr_xname), "%sLINK",
6313 device_xname(sc->sc_dev));
6314 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intr_idx],
6315 IPL_NET, wm_linkintr_msix, sc, intr_xname);
6316 if (vih == NULL) {
6317 aprint_error_dev(sc->sc_dev,
6318 "unable to establish MSI-X(for LINK)%s%s\n",
6319 intrstr ? " at " : "",
6320 intrstr ? intrstr : "");
6321
6322 goto fail;
6323 }
6324 /* Keep default affinity to LINK interrupt */
6325 aprint_normal_dev(sc->sc_dev,
6326 "for LINK interrupting at %s\n", intrstr);
6327 sc->sc_ihs[intr_idx] = vih;
6328 sc->sc_link_intr_idx = intr_idx;
6329
6330 sc->sc_nintrs = sc->sc_nqueues + 1;
6331 kcpuset_destroy(affinity);
6332 return 0;
6333
6334 fail:
6335 for (qidx = 0; qidx < txrx_established; qidx++) {
6336 struct wm_queue *wmq = &sc->sc_queue[qidx];
6337 pci_intr_disestablish(sc->sc_pc,sc->sc_ihs[wmq->wmq_intr_idx]);
6338 sc->sc_ihs[wmq->wmq_intr_idx] = NULL;
6339 }
6340
6341 kcpuset_destroy(affinity);
6342 return ENOMEM;
6343 }
6344
6345 static void
6346 wm_unset_stopping_flags(struct wm_softc *sc)
6347 {
6348 int i;
6349
6350 KASSERT(mutex_owned(sc->sc_core_lock));
6351
6352 /* Must unset stopping flags in ascending order. */
6353 for (i = 0; i < sc->sc_nqueues; i++) {
6354 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
6355 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
6356
6357 mutex_enter(txq->txq_lock);
6358 txq->txq_stopping = false;
6359 mutex_exit(txq->txq_lock);
6360
6361 mutex_enter(rxq->rxq_lock);
6362 rxq->rxq_stopping = false;
6363 mutex_exit(rxq->rxq_lock);
6364 }
6365
6366 sc->sc_core_stopping = false;
6367 }
6368
6369 static void
6370 wm_set_stopping_flags(struct wm_softc *sc)
6371 {
6372 int i;
6373
6374 KASSERT(mutex_owned(sc->sc_core_lock));
6375
6376 sc->sc_core_stopping = true;
6377
6378 /* Must set stopping flags in ascending order. */
6379 for (i = 0; i < sc->sc_nqueues; i++) {
6380 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
6381 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
6382
6383 mutex_enter(rxq->rxq_lock);
6384 rxq->rxq_stopping = true;
6385 mutex_exit(rxq->rxq_lock);
6386
6387 mutex_enter(txq->txq_lock);
6388 txq->txq_stopping = true;
6389 mutex_exit(txq->txq_lock);
6390 }
6391 }
6392
6393 /*
6394 * Write interrupt interval value to ITR or EITR
6395 */
6396 static void
6397 wm_itrs_writereg(struct wm_softc *sc, struct wm_queue *wmq)
6398 {
6399
6400 if (!wmq->wmq_set_itr)
6401 return;
6402
6403 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
6404 uint32_t eitr = __SHIFTIN(wmq->wmq_itr, EITR_ITR_INT_MASK);
6405
6406 /*
6407 * 82575 doesn't have CNT_INGR field.
6408 * So, overwrite counter field by software.
6409 */
6410 if (sc->sc_type == WM_T_82575)
6411 eitr |= __SHIFTIN(wmq->wmq_itr,
6412 EITR_COUNTER_MASK_82575);
6413 else
6414 eitr |= EITR_CNT_INGR;
6415
6416 CSR_WRITE(sc, WMREG_EITR(wmq->wmq_intr_idx), eitr);
6417 } else if (sc->sc_type == WM_T_82574 && wm_is_using_msix(sc)) {
6418 /*
6419 * 82574 has both ITR and EITR. SET EITR when we use
6420 * the multi queue function with MSI-X.
6421 */
6422 CSR_WRITE(sc, WMREG_EITR_82574(wmq->wmq_intr_idx),
6423 wmq->wmq_itr & EITR_ITR_INT_MASK_82574);
6424 } else {
6425 KASSERT(wmq->wmq_id == 0);
6426 CSR_WRITE(sc, WMREG_ITR, wmq->wmq_itr);
6427 }
6428
6429 wmq->wmq_set_itr = false;
6430 }
6431
6432 /*
6433 * TODO
6434 * Below dynamic calculation of itr is almost the same as Linux igb,
6435 * however it does not fit to wm(4). So, we will have been disable AIM
6436 * until we will find appropriate calculation of itr.
6437 */
6438 /*
6439 * Calculate interrupt interval value to be going to write register in
6440 * wm_itrs_writereg(). This function does not write ITR/EITR register.
6441 */
6442 static void
6443 wm_itrs_calculate(struct wm_softc *sc, struct wm_queue *wmq)
6444 {
6445 #ifdef NOTYET
6446 struct wm_rxqueue *rxq = &wmq->wmq_rxq;
6447 struct wm_txqueue *txq = &wmq->wmq_txq;
6448 uint32_t avg_size = 0;
6449 uint32_t new_itr;
6450
6451 if (rxq->rxq_packets)
6452 avg_size = rxq->rxq_bytes / rxq->rxq_packets;
6453 if (txq->txq_packets)
6454 avg_size = uimax(avg_size, txq->txq_bytes / txq->txq_packets);
6455
6456 if (avg_size == 0) {
6457 new_itr = 450; /* restore default value */
6458 goto out;
6459 }
6460
6461 /* Add 24 bytes to size to account for CRC, preamble, and gap */
6462 avg_size += 24;
6463
6464 /* Don't starve jumbo frames */
6465 avg_size = uimin(avg_size, 3000);
6466
6467 /* Give a little boost to mid-size frames */
6468 if ((avg_size > 300) && (avg_size < 1200))
6469 new_itr = avg_size / 3;
6470 else
6471 new_itr = avg_size / 2;
6472
6473 out:
6474 /*
6475 * The usage of 82574 and 82575 EITR is different from otther NEWQUEUE
6476 * controllers. See sc->sc_itr_init setting in wm_init_locked().
6477 */
6478 if ((sc->sc_flags & WM_F_NEWQUEUE) == 0 || sc->sc_type != WM_T_82575)
6479 new_itr *= 4;
6480
6481 if (new_itr != wmq->wmq_itr) {
6482 wmq->wmq_itr = new_itr;
6483 wmq->wmq_set_itr = true;
6484 } else
6485 wmq->wmq_set_itr = false;
6486
6487 rxq->rxq_packets = 0;
6488 rxq->rxq_bytes = 0;
6489 txq->txq_packets = 0;
6490 txq->txq_bytes = 0;
6491 #endif
6492 }
6493
6494 static void
6495 wm_init_sysctls(struct wm_softc *sc)
6496 {
6497 struct sysctllog **log;
6498 const struct sysctlnode *rnode, *qnode, *cnode;
6499 int i, rv;
6500 const char *dvname;
6501
6502 log = &sc->sc_sysctllog;
6503 dvname = device_xname(sc->sc_dev);
6504
6505 rv = sysctl_createv(log, 0, NULL, &rnode,
6506 0, CTLTYPE_NODE, dvname,
6507 SYSCTL_DESCR("wm information and settings"),
6508 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
6509 if (rv != 0)
6510 goto err;
6511
6512 rv = sysctl_createv(log, 0, &rnode, &cnode, CTLFLAG_READWRITE,
6513 CTLTYPE_BOOL, "txrx_workqueue",
6514 SYSCTL_DESCR("Use workqueue for packet processing"),
6515 NULL, 0, &sc->sc_txrx_use_workqueue, 0, CTL_CREATE, CTL_EOL);
6516 if (rv != 0)
6517 goto teardown;
6518
6519 for (i = 0; i < sc->sc_nqueues; i++) {
6520 struct wm_queue *wmq = &sc->sc_queue[i];
6521 struct wm_txqueue *txq = &wmq->wmq_txq;
6522 struct wm_rxqueue *rxq = &wmq->wmq_rxq;
6523
6524 snprintf(sc->sc_queue[i].sysctlname,
6525 sizeof(sc->sc_queue[i].sysctlname), "q%d", i);
6526
6527 if (sysctl_createv(log, 0, &rnode, &qnode,
6528 0, CTLTYPE_NODE,
6529 sc->sc_queue[i].sysctlname, SYSCTL_DESCR("Queue Name"),
6530 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL) != 0)
6531 break;
6532
6533 if (sysctl_createv(log, 0, &qnode, &cnode,
6534 CTLFLAG_READONLY, CTLTYPE_INT,
6535 "txq_free", SYSCTL_DESCR("TX queue free"),
6536 NULL, 0, &txq->txq_free,
6537 0, CTL_CREATE, CTL_EOL) != 0)
6538 break;
6539 if (sysctl_createv(log, 0, &qnode, &cnode,
6540 CTLFLAG_READONLY, CTLTYPE_INT,
6541 "txd_head", SYSCTL_DESCR("TX descriptor head"),
6542 wm_sysctl_tdh_handler, 0, (void *)txq,
6543 0, CTL_CREATE, CTL_EOL) != 0)
6544 break;
6545 if (sysctl_createv(log, 0, &qnode, &cnode,
6546 CTLFLAG_READONLY, CTLTYPE_INT,
6547 "txd_tail", SYSCTL_DESCR("TX descriptor tail"),
6548 wm_sysctl_tdt_handler, 0, (void *)txq,
6549 0, CTL_CREATE, CTL_EOL) != 0)
6550 break;
6551 if (sysctl_createv(log, 0, &qnode, &cnode,
6552 CTLFLAG_READONLY, CTLTYPE_INT,
6553 "txq_next", SYSCTL_DESCR("TX queue next"),
6554 NULL, 0, &txq->txq_next,
6555 0, CTL_CREATE, CTL_EOL) != 0)
6556 break;
6557 if (sysctl_createv(log, 0, &qnode, &cnode,
6558 CTLFLAG_READONLY, CTLTYPE_INT,
6559 "txq_sfree", SYSCTL_DESCR("TX queue sfree"),
6560 NULL, 0, &txq->txq_sfree,
6561 0, CTL_CREATE, CTL_EOL) != 0)
6562 break;
6563 if (sysctl_createv(log, 0, &qnode, &cnode,
6564 CTLFLAG_READONLY, CTLTYPE_INT,
6565 "txq_snext", SYSCTL_DESCR("TX queue snext"),
6566 NULL, 0, &txq->txq_snext,
6567 0, CTL_CREATE, CTL_EOL) != 0)
6568 break;
6569 if (sysctl_createv(log, 0, &qnode, &cnode,
6570 CTLFLAG_READONLY, CTLTYPE_INT,
6571 "txq_sdirty", SYSCTL_DESCR("TX queue sdirty"),
6572 NULL, 0, &txq->txq_sdirty,
6573 0, CTL_CREATE, CTL_EOL) != 0)
6574 break;
6575 if (sysctl_createv(log, 0, &qnode, &cnode,
6576 CTLFLAG_READONLY, CTLTYPE_INT,
6577 "txq_flags", SYSCTL_DESCR("TX queue flags"),
6578 NULL, 0, &txq->txq_flags,
6579 0, CTL_CREATE, CTL_EOL) != 0)
6580 break;
6581 if (sysctl_createv(log, 0, &qnode, &cnode,
6582 CTLFLAG_READONLY, CTLTYPE_BOOL,
6583 "txq_stopping", SYSCTL_DESCR("TX queue stopping"),
6584 NULL, 0, &txq->txq_stopping,
6585 0, CTL_CREATE, CTL_EOL) != 0)
6586 break;
6587 if (sysctl_createv(log, 0, &qnode, &cnode,
6588 CTLFLAG_READONLY, CTLTYPE_BOOL,
6589 "txq_sending", SYSCTL_DESCR("TX queue sending"),
6590 NULL, 0, &txq->txq_sending,
6591 0, CTL_CREATE, CTL_EOL) != 0)
6592 break;
6593
6594 if (sysctl_createv(log, 0, &qnode, &cnode,
6595 CTLFLAG_READONLY, CTLTYPE_INT,
6596 "rxq_ptr", SYSCTL_DESCR("RX queue pointer"),
6597 NULL, 0, &rxq->rxq_ptr,
6598 0, CTL_CREATE, CTL_EOL) != 0)
6599 break;
6600 }
6601
6602 #ifdef WM_DEBUG
6603 rv = sysctl_createv(log, 0, &rnode, &cnode, CTLFLAG_READWRITE,
6604 CTLTYPE_INT, "debug_flags",
6605 SYSCTL_DESCR(
6606 "Debug flags:\n" \
6607 "\t0x01 LINK\n" \
6608 "\t0x02 TX\n" \
6609 "\t0x04 RX\n" \
6610 "\t0x08 GMII\n" \
6611 "\t0x10 MANAGE\n" \
6612 "\t0x20 NVM\n" \
6613 "\t0x40 INIT\n" \
6614 "\t0x80 LOCK"),
6615 wm_sysctl_debug, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL);
6616 if (rv != 0)
6617 goto teardown;
6618 rv = sysctl_createv(log, 0, &rnode, &cnode, CTLFLAG_READWRITE,
6619 CTLTYPE_BOOL, "trigger_reset",
6620 SYSCTL_DESCR("Trigger an interface reset"),
6621 NULL, 0, &sc->sc_trigger_reset, 0, CTL_CREATE, CTL_EOL);
6622 if (rv != 0)
6623 goto teardown;
6624 #endif
6625
6626 return;
6627
6628 teardown:
6629 sysctl_teardown(log);
6630 err:
6631 sc->sc_sysctllog = NULL;
6632 device_printf(sc->sc_dev, "%s: sysctl_createv failed, rv = %d\n",
6633 __func__, rv);
6634 }
6635
6636 static void
6637 wm_update_stats(struct wm_softc *sc)
6638 {
6639 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
6640 uint64_t crcerrs, algnerrc, symerrc, mpc, colc, sec, rlec, rxerrc,
6641 cexterr;
6642 uint64_t total_qdrop = 0;
6643
6644 crcerrs = CSR_READ(sc, WMREG_CRCERRS);
6645 symerrc = CSR_READ(sc, WMREG_SYMERRC);
6646 mpc = CSR_READ(sc, WMREG_MPC);
6647 colc = CSR_READ(sc, WMREG_COLC);
6648 sec = CSR_READ(sc, WMREG_SEC);
6649 rlec = CSR_READ(sc, WMREG_RLEC);
6650
6651 WM_EVCNT_ADD(&sc->sc_ev_crcerrs, crcerrs);
6652 WM_EVCNT_ADD(&sc->sc_ev_symerrc, symerrc);
6653 WM_EVCNT_ADD(&sc->sc_ev_mpc, mpc);
6654 WM_EVCNT_ADD(&sc->sc_ev_colc, colc);
6655 WM_EVCNT_ADD(&sc->sc_ev_sec, sec);
6656 WM_EVCNT_ADD(&sc->sc_ev_rlec, rlec);
6657
6658 if (sc->sc_type >= WM_T_82543) {
6659 algnerrc = CSR_READ(sc, WMREG_ALGNERRC);
6660 rxerrc = CSR_READ(sc, WMREG_RXERRC);
6661 WM_EVCNT_ADD(&sc->sc_ev_algnerrc, algnerrc);
6662 WM_EVCNT_ADD(&sc->sc_ev_rxerrc, rxerrc);
6663 if ((sc->sc_type < WM_T_82575) || WM_IS_ICHPCH(sc)) {
6664 cexterr = CSR_READ(sc, WMREG_CEXTERR);
6665 WM_EVCNT_ADD(&sc->sc_ev_cexterr, cexterr);
6666 } else {
6667 cexterr = 0;
6668 /* Excessive collision + Link down */
6669 WM_EVCNT_ADD(&sc->sc_ev_htdpmc,
6670 CSR_READ(sc, WMREG_HTDPMC));
6671 }
6672
6673 WM_EVCNT_ADD(&sc->sc_ev_tncrs, CSR_READ(sc, WMREG_TNCRS));
6674 WM_EVCNT_ADD(&sc->sc_ev_tsctc, CSR_READ(sc, WMREG_TSCTC));
6675 if ((sc->sc_type < WM_T_82575) || WM_IS_ICHPCH(sc))
6676 WM_EVCNT_ADD(&sc->sc_ev_tsctfc,
6677 CSR_READ(sc, WMREG_TSCTFC));
6678 else {
6679 WM_EVCNT_ADD(&sc->sc_ev_cbrdpc,
6680 CSR_READ(sc, WMREG_CBRDPC));
6681 WM_EVCNT_ADD(&sc->sc_ev_cbrmpc,
6682 CSR_READ(sc, WMREG_CBRMPC));
6683 }
6684 } else
6685 algnerrc = rxerrc = cexterr = 0;
6686
6687 if (sc->sc_type >= WM_T_82542_2_1) {
6688 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
6689 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
6690 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
6691 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
6692 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
6693 }
6694
6695 WM_EVCNT_ADD(&sc->sc_ev_scc, CSR_READ(sc, WMREG_SCC));
6696 WM_EVCNT_ADD(&sc->sc_ev_ecol, CSR_READ(sc, WMREG_ECOL));
6697 WM_EVCNT_ADD(&sc->sc_ev_mcc, CSR_READ(sc, WMREG_MCC));
6698 WM_EVCNT_ADD(&sc->sc_ev_latecol, CSR_READ(sc, WMREG_LATECOL));
6699
6700 if ((sc->sc_type >= WM_T_I350) && !WM_IS_ICHPCH(sc)) {
6701 WM_EVCNT_ADD(&sc->sc_ev_cbtmpc, CSR_READ(sc, WMREG_CBTMPC));
6702 }
6703
6704 WM_EVCNT_ADD(&sc->sc_ev_dc, CSR_READ(sc, WMREG_DC));
6705 WM_EVCNT_ADD(&sc->sc_ev_prc64, CSR_READ(sc, WMREG_PRC64));
6706 WM_EVCNT_ADD(&sc->sc_ev_prc127, CSR_READ(sc, WMREG_PRC127));
6707 WM_EVCNT_ADD(&sc->sc_ev_prc255, CSR_READ(sc, WMREG_PRC255));
6708 WM_EVCNT_ADD(&sc->sc_ev_prc511, CSR_READ(sc, WMREG_PRC511));
6709 WM_EVCNT_ADD(&sc->sc_ev_prc1023, CSR_READ(sc, WMREG_PRC1023));
6710 WM_EVCNT_ADD(&sc->sc_ev_prc1522, CSR_READ(sc, WMREG_PRC1522));
6711 WM_EVCNT_ADD(&sc->sc_ev_gprc, CSR_READ(sc, WMREG_GPRC));
6712 WM_EVCNT_ADD(&sc->sc_ev_bprc, CSR_READ(sc, WMREG_BPRC));
6713 WM_EVCNT_ADD(&sc->sc_ev_mprc, CSR_READ(sc, WMREG_MPRC));
6714 WM_EVCNT_ADD(&sc->sc_ev_gptc, CSR_READ(sc, WMREG_GPTC));
6715
6716 WM_EVCNT_ADD(&sc->sc_ev_gorc,
6717 CSR_READ(sc, WMREG_GORCL) +
6718 ((uint64_t)CSR_READ(sc, WMREG_GORCH) << 32));
6719 WM_EVCNT_ADD(&sc->sc_ev_gotc,
6720 CSR_READ(sc, WMREG_GOTCL) +
6721 ((uint64_t)CSR_READ(sc, WMREG_GOTCH) << 32));
6722
6723 WM_EVCNT_ADD(&sc->sc_ev_rnbc, CSR_READ(sc, WMREG_RNBC));
6724 WM_EVCNT_ADD(&sc->sc_ev_ruc, CSR_READ(sc, WMREG_RUC));
6725 WM_EVCNT_ADD(&sc->sc_ev_rfc, CSR_READ(sc, WMREG_RFC));
6726 WM_EVCNT_ADD(&sc->sc_ev_roc, CSR_READ(sc, WMREG_ROC));
6727 WM_EVCNT_ADD(&sc->sc_ev_rjc, CSR_READ(sc, WMREG_RJC));
6728
6729 if (sc->sc_type >= WM_T_82540) {
6730 WM_EVCNT_ADD(&sc->sc_ev_mgtprc, CSR_READ(sc, WMREG_MGTPRC));
6731 WM_EVCNT_ADD(&sc->sc_ev_mgtpdc, CSR_READ(sc, WMREG_MGTPDC));
6732 WM_EVCNT_ADD(&sc->sc_ev_mgtptc, CSR_READ(sc, WMREG_MGTPTC));
6733 }
6734
6735 /*
6736 * The TOR(L) register includes:
6737 * - Error
6738 * - Flow control
6739 * - Broadcast rejected (This note is described in 82574 and newer
6740 * datasheets. What does "broadcast rejected" mean?)
6741 */
6742 WM_EVCNT_ADD(&sc->sc_ev_tor,
6743 CSR_READ(sc, WMREG_TORL) +
6744 ((uint64_t)CSR_READ(sc, WMREG_TORH) << 32));
6745 WM_EVCNT_ADD(&sc->sc_ev_tot,
6746 CSR_READ(sc, WMREG_TOTL) +
6747 ((uint64_t)CSR_READ(sc, WMREG_TOTH) << 32));
6748
6749 WM_EVCNT_ADD(&sc->sc_ev_tpr, CSR_READ(sc, WMREG_TPR));
6750 WM_EVCNT_ADD(&sc->sc_ev_tpt, CSR_READ(sc, WMREG_TPT));
6751 WM_EVCNT_ADD(&sc->sc_ev_ptc64, CSR_READ(sc, WMREG_PTC64));
6752 WM_EVCNT_ADD(&sc->sc_ev_ptc127, CSR_READ(sc, WMREG_PTC127));
6753 WM_EVCNT_ADD(&sc->sc_ev_ptc255, CSR_READ(sc, WMREG_PTC255));
6754 WM_EVCNT_ADD(&sc->sc_ev_ptc511, CSR_READ(sc, WMREG_PTC511));
6755 WM_EVCNT_ADD(&sc->sc_ev_ptc1023, CSR_READ(sc, WMREG_PTC1023));
6756 WM_EVCNT_ADD(&sc->sc_ev_ptc1522, CSR_READ(sc, WMREG_PTC1522));
6757 WM_EVCNT_ADD(&sc->sc_ev_mptc, CSR_READ(sc, WMREG_MPTC));
6758 WM_EVCNT_ADD(&sc->sc_ev_bptc, CSR_READ(sc, WMREG_BPTC));
6759 if (sc->sc_type >= WM_T_82571)
6760 WM_EVCNT_ADD(&sc->sc_ev_iac, CSR_READ(sc, WMREG_IAC));
6761 if (sc->sc_type < WM_T_82575) {
6762 WM_EVCNT_ADD(&sc->sc_ev_icrxptc, CSR_READ(sc, WMREG_ICRXPTC));
6763 WM_EVCNT_ADD(&sc->sc_ev_icrxatc, CSR_READ(sc, WMREG_ICRXATC));
6764 WM_EVCNT_ADD(&sc->sc_ev_ictxptc, CSR_READ(sc, WMREG_ICTXPTC));
6765 WM_EVCNT_ADD(&sc->sc_ev_ictxatc, CSR_READ(sc, WMREG_ICTXATC));
6766 WM_EVCNT_ADD(&sc->sc_ev_ictxqec, CSR_READ(sc, WMREG_ICTXQEC));
6767 WM_EVCNT_ADD(&sc->sc_ev_ictxqmtc,
6768 CSR_READ(sc, WMREG_ICTXQMTC));
6769 WM_EVCNT_ADD(&sc->sc_ev_rxdmtc,
6770 CSR_READ(sc, WMREG_ICRXDMTC));
6771 WM_EVCNT_ADD(&sc->sc_ev_icrxoc, CSR_READ(sc, WMREG_ICRXOC));
6772 } else if (!WM_IS_ICHPCH(sc)) {
6773 WM_EVCNT_ADD(&sc->sc_ev_rpthc, CSR_READ(sc, WMREG_RPTHC));
6774 WM_EVCNT_ADD(&sc->sc_ev_debug1, CSR_READ(sc, WMREG_DEBUG1));
6775 WM_EVCNT_ADD(&sc->sc_ev_debug2, CSR_READ(sc, WMREG_DEBUG2));
6776 WM_EVCNT_ADD(&sc->sc_ev_debug3, CSR_READ(sc, WMREG_DEBUG3));
6777 WM_EVCNT_ADD(&sc->sc_ev_hgptc, CSR_READ(sc, WMREG_HGPTC));
6778 WM_EVCNT_ADD(&sc->sc_ev_debug4, CSR_READ(sc, WMREG_DEBUG4));
6779 WM_EVCNT_ADD(&sc->sc_ev_rxdmtc, CSR_READ(sc, WMREG_RXDMTC));
6780 WM_EVCNT_ADD(&sc->sc_ev_htcbdpc, CSR_READ(sc, WMREG_HTCBDPC));
6781
6782 WM_EVCNT_ADD(&sc->sc_ev_hgorc,
6783 CSR_READ(sc, WMREG_HGORCL) +
6784 ((uint64_t)CSR_READ(sc, WMREG_HGORCH) << 32));
6785 WM_EVCNT_ADD(&sc->sc_ev_hgotc,
6786 CSR_READ(sc, WMREG_HGOTCL) +
6787 ((uint64_t)CSR_READ(sc, WMREG_HGOTCH) << 32));
6788 WM_EVCNT_ADD(&sc->sc_ev_lenerrs, CSR_READ(sc, WMREG_LENERRS));
6789 WM_EVCNT_ADD(&sc->sc_ev_scvpc, CSR_READ(sc, WMREG_SCVPC));
6790 WM_EVCNT_ADD(&sc->sc_ev_hrmpc, CSR_READ(sc, WMREG_HRMPC));
6791 #ifdef WM_EVENT_COUNTERS
6792 for (int i = 0; i < sc->sc_nqueues; i++) {
6793 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
6794 uint32_t rqdpc;
6795
6796 rqdpc = CSR_READ(sc, WMREG_RQDPC(i));
6797 /*
6798 * On I210 and newer device, the RQDPC register is not
6799 * cleard on read.
6800 */
6801 if ((rqdpc != 0) && (sc->sc_type >= WM_T_I210))
6802 CSR_WRITE(sc, WMREG_RQDPC(i), 0);
6803 WM_Q_EVCNT_ADD(rxq, qdrop, rqdpc);
6804 total_qdrop += rqdpc;
6805 }
6806 #endif
6807 }
6808 if ((sc->sc_type >= WM_T_I350) && !WM_IS_ICHPCH(sc)) {
6809 WM_EVCNT_ADD(&sc->sc_ev_tlpic, CSR_READ(sc, WMREG_TLPIC));
6810 WM_EVCNT_ADD(&sc->sc_ev_rlpic, CSR_READ(sc, WMREG_RLPIC));
6811 if ((CSR_READ(sc, WMREG_MANC) & MANC_EN_BMC2OS) != 0) {
6812 WM_EVCNT_ADD(&sc->sc_ev_b2ogprc,
6813 CSR_READ(sc, WMREG_B2OGPRC));
6814 WM_EVCNT_ADD(&sc->sc_ev_o2bspc,
6815 CSR_READ(sc, WMREG_O2BSPC));
6816 WM_EVCNT_ADD(&sc->sc_ev_b2ospc,
6817 CSR_READ(sc, WMREG_B2OSPC));
6818 WM_EVCNT_ADD(&sc->sc_ev_o2bgptc,
6819 CSR_READ(sc, WMREG_O2BGPTC));
6820 }
6821 }
6822 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
6823 if_statadd_ref(ifp, nsr, if_collisions, colc);
6824 if_statadd_ref(ifp, nsr, if_ierrors,
6825 crcerrs + algnerrc + symerrc + rxerrc + sec + cexterr + rlec);
6826 /*
6827 * WMREG_RNBC is incremented when there are no available buffers in
6828 * host memory. It does not mean the number of dropped packets, because
6829 * an Ethernet controller can receive packets in such case if there is
6830 * space in the phy's FIFO.
6831 *
6832 * If you want to know the nubmer of WMREG_RMBC, you should use such as
6833 * own EVCNT instead of if_iqdrops.
6834 */
6835 if_statadd_ref(ifp, nsr, if_iqdrops, mpc + total_qdrop);
6836 IF_STAT_PUTREF(ifp);
6837 }
6838
6839 void
6840 wm_clear_evcnt(struct wm_softc *sc)
6841 {
6842 #ifdef WM_EVENT_COUNTERS
6843 int i;
6844
6845 /* RX queues */
6846 for (i = 0; i < sc->sc_nqueues; i++) {
6847 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
6848
6849 WM_Q_EVCNT_STORE(rxq, intr, 0);
6850 WM_Q_EVCNT_STORE(rxq, defer, 0);
6851 WM_Q_EVCNT_STORE(rxq, ipsum, 0);
6852 WM_Q_EVCNT_STORE(rxq, tusum, 0);
6853 if ((sc->sc_type >= WM_T_82575) && !WM_IS_ICHPCH(sc))
6854 WM_Q_EVCNT_STORE(rxq, qdrop, 0);
6855 }
6856
6857 /* TX queues */
6858 for (i = 0; i < sc->sc_nqueues; i++) {
6859 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
6860 int j;
6861
6862 WM_Q_EVCNT_STORE(txq, txsstall, 0);
6863 WM_Q_EVCNT_STORE(txq, txdstall, 0);
6864 WM_Q_EVCNT_STORE(txq, fifo_stall, 0);
6865 WM_Q_EVCNT_STORE(txq, txdw, 0);
6866 WM_Q_EVCNT_STORE(txq, txqe, 0);
6867 WM_Q_EVCNT_STORE(txq, ipsum, 0);
6868 WM_Q_EVCNT_STORE(txq, tusum, 0);
6869 WM_Q_EVCNT_STORE(txq, tusum6, 0);
6870 WM_Q_EVCNT_STORE(txq, tso, 0);
6871 WM_Q_EVCNT_STORE(txq, tso6, 0);
6872 WM_Q_EVCNT_STORE(txq, tsopain, 0);
6873
6874 for (j = 0; j < WM_NTXSEGS; j++)
6875 WM_EVCNT_STORE(&txq->txq_ev_txseg[j], 0);
6876
6877 WM_Q_EVCNT_STORE(txq, pcqdrop, 0);
6878 WM_Q_EVCNT_STORE(txq, descdrop, 0);
6879 WM_Q_EVCNT_STORE(txq, toomanyseg, 0);
6880 WM_Q_EVCNT_STORE(txq, defrag, 0);
6881 if (sc->sc_type <= WM_T_82544)
6882 WM_Q_EVCNT_STORE(txq, underrun, 0);
6883 WM_Q_EVCNT_STORE(txq, skipcontext, 0);
6884 }
6885
6886 /* Miscs */
6887 WM_EVCNT_STORE(&sc->sc_ev_linkintr, 0);
6888
6889 WM_EVCNT_STORE(&sc->sc_ev_crcerrs, 0);
6890 WM_EVCNT_STORE(&sc->sc_ev_symerrc, 0);
6891 WM_EVCNT_STORE(&sc->sc_ev_mpc, 0);
6892 WM_EVCNT_STORE(&sc->sc_ev_colc, 0);
6893 WM_EVCNT_STORE(&sc->sc_ev_sec, 0);
6894 WM_EVCNT_STORE(&sc->sc_ev_rlec, 0);
6895
6896 if (sc->sc_type >= WM_T_82543) {
6897 WM_EVCNT_STORE(&sc->sc_ev_algnerrc, 0);
6898 WM_EVCNT_STORE(&sc->sc_ev_rxerrc, 0);
6899 if ((sc->sc_type < WM_T_82575) || WM_IS_ICHPCH(sc))
6900 WM_EVCNT_STORE(&sc->sc_ev_cexterr, 0);
6901 else
6902 WM_EVCNT_STORE(&sc->sc_ev_htdpmc, 0);
6903
6904 WM_EVCNT_STORE(&sc->sc_ev_tncrs, 0);
6905 WM_EVCNT_STORE(&sc->sc_ev_tsctc, 0);
6906 if ((sc->sc_type < WM_T_82575) || WM_IS_ICHPCH(sc))
6907 WM_EVCNT_STORE(&sc->sc_ev_tsctfc, 0);
6908 else {
6909 WM_EVCNT_STORE(&sc->sc_ev_cbrdpc, 0);
6910 WM_EVCNT_STORE(&sc->sc_ev_cbrmpc, 0);
6911 }
6912 }
6913
6914 if (sc->sc_type >= WM_T_82542_2_1) {
6915 WM_EVCNT_STORE(&sc->sc_ev_tx_xoff, 0);
6916 WM_EVCNT_STORE(&sc->sc_ev_tx_xon, 0);
6917 WM_EVCNT_STORE(&sc->sc_ev_rx_xoff, 0);
6918 WM_EVCNT_STORE(&sc->sc_ev_rx_xon, 0);
6919 WM_EVCNT_STORE(&sc->sc_ev_rx_macctl, 0);
6920 }
6921
6922 WM_EVCNT_STORE(&sc->sc_ev_scc, 0);
6923 WM_EVCNT_STORE(&sc->sc_ev_ecol, 0);
6924 WM_EVCNT_STORE(&sc->sc_ev_mcc, 0);
6925 WM_EVCNT_STORE(&sc->sc_ev_latecol, 0);
6926
6927 if ((sc->sc_type >= WM_T_I350) && !WM_IS_ICHPCH(sc))
6928 WM_EVCNT_STORE(&sc->sc_ev_cbtmpc, 0);
6929
6930 WM_EVCNT_STORE(&sc->sc_ev_dc, 0);
6931 WM_EVCNT_STORE(&sc->sc_ev_prc64, 0);
6932 WM_EVCNT_STORE(&sc->sc_ev_prc127, 0);
6933 WM_EVCNT_STORE(&sc->sc_ev_prc255, 0);
6934 WM_EVCNT_STORE(&sc->sc_ev_prc511, 0);
6935 WM_EVCNT_STORE(&sc->sc_ev_prc1023, 0);
6936 WM_EVCNT_STORE(&sc->sc_ev_prc1522, 0);
6937 WM_EVCNT_STORE(&sc->sc_ev_gprc, 0);
6938 WM_EVCNT_STORE(&sc->sc_ev_bprc, 0);
6939 WM_EVCNT_STORE(&sc->sc_ev_mprc, 0);
6940 WM_EVCNT_STORE(&sc->sc_ev_gptc, 0);
6941 WM_EVCNT_STORE(&sc->sc_ev_gorc, 0);
6942 WM_EVCNT_STORE(&sc->sc_ev_gotc, 0);
6943 WM_EVCNT_STORE(&sc->sc_ev_rnbc, 0);
6944 WM_EVCNT_STORE(&sc->sc_ev_ruc, 0);
6945 WM_EVCNT_STORE(&sc->sc_ev_rfc, 0);
6946 WM_EVCNT_STORE(&sc->sc_ev_roc, 0);
6947 WM_EVCNT_STORE(&sc->sc_ev_rjc, 0);
6948 if (sc->sc_type >= WM_T_82540) {
6949 WM_EVCNT_STORE(&sc->sc_ev_mgtprc, 0);
6950 WM_EVCNT_STORE(&sc->sc_ev_mgtpdc, 0);
6951 WM_EVCNT_STORE(&sc->sc_ev_mgtptc, 0);
6952 }
6953 WM_EVCNT_STORE(&sc->sc_ev_tor, 0);
6954 WM_EVCNT_STORE(&sc->sc_ev_tot, 0);
6955 WM_EVCNT_STORE(&sc->sc_ev_tpr, 0);
6956 WM_EVCNT_STORE(&sc->sc_ev_tpt, 0);
6957 WM_EVCNT_STORE(&sc->sc_ev_ptc64, 0);
6958 WM_EVCNT_STORE(&sc->sc_ev_ptc127, 0);
6959 WM_EVCNT_STORE(&sc->sc_ev_ptc255, 0);
6960 WM_EVCNT_STORE(&sc->sc_ev_ptc511, 0);
6961 WM_EVCNT_STORE(&sc->sc_ev_ptc1023, 0);
6962 WM_EVCNT_STORE(&sc->sc_ev_ptc1522, 0);
6963 WM_EVCNT_STORE(&sc->sc_ev_mptc, 0);
6964 WM_EVCNT_STORE(&sc->sc_ev_bptc, 0);
6965 if (sc->sc_type >= WM_T_82571)
6966 WM_EVCNT_STORE(&sc->sc_ev_iac, 0);
6967 if (sc->sc_type < WM_T_82575) {
6968 WM_EVCNT_STORE(&sc->sc_ev_icrxptc, 0);
6969 WM_EVCNT_STORE(&sc->sc_ev_icrxatc, 0);
6970 WM_EVCNT_STORE(&sc->sc_ev_ictxptc, 0);
6971 WM_EVCNT_STORE(&sc->sc_ev_ictxatc, 0);
6972 WM_EVCNT_STORE(&sc->sc_ev_ictxqec, 0);
6973 WM_EVCNT_STORE(&sc->sc_ev_ictxqmtc, 0);
6974 WM_EVCNT_STORE(&sc->sc_ev_rxdmtc, 0);
6975 WM_EVCNT_STORE(&sc->sc_ev_icrxoc, 0);
6976 } else if (!WM_IS_ICHPCH(sc)) {
6977 WM_EVCNT_STORE(&sc->sc_ev_rpthc, 0);
6978 WM_EVCNT_STORE(&sc->sc_ev_debug1, 0);
6979 WM_EVCNT_STORE(&sc->sc_ev_debug2, 0);
6980 WM_EVCNT_STORE(&sc->sc_ev_debug3, 0);
6981 WM_EVCNT_STORE(&sc->sc_ev_hgptc, 0);
6982 WM_EVCNT_STORE(&sc->sc_ev_debug4, 0);
6983 WM_EVCNT_STORE(&sc->sc_ev_rxdmtc, 0);
6984 WM_EVCNT_STORE(&sc->sc_ev_htcbdpc, 0);
6985
6986 WM_EVCNT_STORE(&sc->sc_ev_hgorc, 0);
6987 WM_EVCNT_STORE(&sc->sc_ev_hgotc, 0);
6988 WM_EVCNT_STORE(&sc->sc_ev_lenerrs, 0);
6989 WM_EVCNT_STORE(&sc->sc_ev_scvpc, 0);
6990 WM_EVCNT_STORE(&sc->sc_ev_hrmpc, 0);
6991 }
6992 if ((sc->sc_type >= WM_T_I350) && !WM_IS_ICHPCH(sc)) {
6993 WM_EVCNT_STORE(&sc->sc_ev_tlpic, 0);
6994 WM_EVCNT_STORE(&sc->sc_ev_rlpic, 0);
6995 WM_EVCNT_STORE(&sc->sc_ev_b2ogprc, 0);
6996 WM_EVCNT_STORE(&sc->sc_ev_o2bspc, 0);
6997 WM_EVCNT_STORE(&sc->sc_ev_b2ospc, 0);
6998 WM_EVCNT_STORE(&sc->sc_ev_o2bgptc, 0);
6999 }
7000 #endif
7001 }
7002
7003 /*
7004 * wm_init: [ifnet interface function]
7005 *
7006 * Initialize the interface.
7007 */
7008 static int
7009 wm_init(struct ifnet *ifp)
7010 {
7011 struct wm_softc *sc = ifp->if_softc;
7012 int ret;
7013
7014 KASSERT(IFNET_LOCKED(ifp));
7015
7016 if (sc->sc_dying)
7017 return ENXIO;
7018
7019 mutex_enter(sc->sc_core_lock);
7020 ret = wm_init_locked(ifp);
7021 mutex_exit(sc->sc_core_lock);
7022
7023 return ret;
7024 }
7025
7026 static int
7027 wm_init_locked(struct ifnet *ifp)
7028 {
7029 struct wm_softc *sc = ifp->if_softc;
7030 struct ethercom *ec = &sc->sc_ethercom;
7031 int i, j, trynum, error = 0;
7032 uint32_t reg, sfp_mask = 0;
7033
7034 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
7035 device_xname(sc->sc_dev), __func__));
7036 KASSERT(IFNET_LOCKED(ifp));
7037 KASSERT(mutex_owned(sc->sc_core_lock));
7038
7039 /*
7040 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
7041 * There is a small but measurable benefit to avoiding the adjusment
7042 * of the descriptor so that the headers are aligned, for normal mtu,
7043 * on such platforms. One possibility is that the DMA itself is
7044 * slightly more efficient if the front of the entire packet (instead
7045 * of the front of the headers) is aligned.
7046 *
7047 * Note we must always set align_tweak to 0 if we are using
7048 * jumbo frames.
7049 */
7050 #ifdef __NO_STRICT_ALIGNMENT
7051 sc->sc_align_tweak = 0;
7052 #else
7053 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
7054 sc->sc_align_tweak = 0;
7055 else
7056 sc->sc_align_tweak = 2;
7057 #endif /* __NO_STRICT_ALIGNMENT */
7058
7059 /* Cancel any pending I/O. */
7060 wm_stop_locked(ifp, false, false);
7061
7062 /* Update statistics before reset */
7063 if_statadd2(ifp, if_collisions, CSR_READ(sc, WMREG_COLC),
7064 if_ierrors, CSR_READ(sc, WMREG_RXERRC));
7065
7066 /* >= PCH_SPT hardware workaround before reset. */
7067 if (sc->sc_type >= WM_T_PCH_SPT)
7068 wm_flush_desc_rings(sc);
7069
7070 /* Reset the chip to a known state. */
7071 wm_reset(sc);
7072
7073 /*
7074 * AMT based hardware can now take control from firmware
7075 * Do this after reset.
7076 */
7077 if ((sc->sc_flags & WM_F_HAS_AMT) != 0)
7078 wm_get_hw_control(sc);
7079
7080 if ((sc->sc_type >= WM_T_PCH_SPT) &&
7081 pci_intr_type(sc->sc_pc, sc->sc_intrs[0]) == PCI_INTR_TYPE_INTX)
7082 wm_legacy_irq_quirk_spt(sc);
7083
7084 /* Init hardware bits */
7085 wm_initialize_hardware_bits(sc);
7086
7087 /* Reset the PHY. */
7088 if (sc->sc_flags & WM_F_HAS_MII)
7089 wm_gmii_reset(sc);
7090
7091 if (sc->sc_type >= WM_T_ICH8) {
7092 reg = CSR_READ(sc, WMREG_GCR);
7093 /*
7094 * ICH8 No-snoop bits are opposite polarity. Set to snoop by
7095 * default after reset.
7096 */
7097 if (sc->sc_type == WM_T_ICH8)
7098 reg |= GCR_NO_SNOOP_ALL;
7099 else
7100 reg &= ~GCR_NO_SNOOP_ALL;
7101 CSR_WRITE(sc, WMREG_GCR, reg);
7102 }
7103
7104 /* Ungate DMA clock to avoid packet loss */
7105 if (sc->sc_type >= WM_T_PCH_TGP) {
7106 reg = CSR_READ(sc, WMREG_FFLT_DBG);
7107 reg |= (1 << 12);
7108 CSR_WRITE(sc, WMREG_FFLT_DBG, reg);
7109 }
7110
7111 if ((sc->sc_type >= WM_T_ICH8)
7112 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER)
7113 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3)) {
7114
7115 reg = CSR_READ(sc, WMREG_CTRL_EXT);
7116 reg |= CTRL_EXT_RO_DIS;
7117 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
7118 }
7119
7120 /* Calculate (E)ITR value */
7121 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0 && sc->sc_type != WM_T_82575) {
7122 /*
7123 * For NEWQUEUE's EITR (except for 82575).
7124 * 82575's EITR should be set same throttling value as other
7125 * old controllers' ITR because the interrupt/sec calculation
7126 * is the same, that is, 1,000,000,000 / (N * 256).
7127 *
7128 * 82574's EITR should be set same throttling value as ITR.
7129 *
7130 * For N interrupts/sec, set this value to:
7131 * 1,000,000 / N in contrast to ITR throttling value.
7132 */
7133 sc->sc_itr_init = 450;
7134 } else if (sc->sc_type >= WM_T_82543) {
7135 /*
7136 * Set up the interrupt throttling register (units of 256ns)
7137 * Note that a footnote in Intel's documentation says this
7138 * ticker runs at 1/4 the rate when the chip is in 100Mbit
7139 * or 10Mbit mode. Empirically, it appears to be the case
7140 * that that is also true for the 1024ns units of the other
7141 * interrupt-related timer registers -- so, really, we ought
7142 * to divide this value by 4 when the link speed is low.
7143 *
7144 * XXX implement this division at link speed change!
7145 */
7146
7147 /*
7148 * For N interrupts/sec, set this value to:
7149 * 1,000,000,000 / (N * 256). Note that we set the
7150 * absolute and packet timer values to this value
7151 * divided by 4 to get "simple timer" behavior.
7152 */
7153 sc->sc_itr_init = 1500; /* 2604 ints/sec */
7154 }
7155
7156 error = wm_init_txrx_queues(sc);
7157 if (error)
7158 goto out;
7159
7160 if (((sc->sc_flags & WM_F_SGMII) == 0) &&
7161 (sc->sc_mediatype == WM_MEDIATYPE_SERDES) &&
7162 (sc->sc_type >= WM_T_82575))
7163 wm_serdes_power_up_link_82575(sc);
7164
7165 /* Clear out the VLAN table -- we don't use it (yet). */
7166 CSR_WRITE(sc, WMREG_VET, 0);
7167 if ((sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354))
7168 trynum = 10; /* Due to hw errata */
7169 else
7170 trynum = 1;
7171 for (i = 0; i < WM_VLAN_TABSIZE; i++)
7172 for (j = 0; j < trynum; j++)
7173 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
7174
7175 /*
7176 * Set up flow-control parameters.
7177 *
7178 * XXX Values could probably stand some tuning.
7179 */
7180 if ((sc->sc_type != WM_T_ICH8) && (sc->sc_type != WM_T_ICH9)
7181 && (sc->sc_type != WM_T_ICH10) && (sc->sc_type != WM_T_PCH)
7182 && (sc->sc_type != WM_T_PCH2) && (sc->sc_type != WM_T_PCH_LPT)
7183 && (sc->sc_type != WM_T_PCH_SPT) && (sc->sc_type != WM_T_PCH_CNP)
7184 && (sc->sc_type != WM_T_PCH_TGP)) {
7185 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
7186 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
7187 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
7188 }
7189
7190 sc->sc_fcrtl = FCRTL_DFLT;
7191 if (sc->sc_type < WM_T_82543) {
7192 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
7193 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
7194 } else {
7195 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
7196 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
7197 }
7198
7199 if (sc->sc_type == WM_T_80003)
7200 CSR_WRITE(sc, WMREG_FCTTV, 0xffff);
7201 else
7202 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
7203
7204 /* Writes the control register. */
7205 wm_set_vlan(sc);
7206
7207 if (sc->sc_flags & WM_F_HAS_MII) {
7208 uint16_t kmreg;
7209
7210 switch (sc->sc_type) {
7211 case WM_T_80003:
7212 case WM_T_ICH8:
7213 case WM_T_ICH9:
7214 case WM_T_ICH10:
7215 case WM_T_PCH:
7216 case WM_T_PCH2:
7217 case WM_T_PCH_LPT:
7218 case WM_T_PCH_SPT:
7219 case WM_T_PCH_CNP:
7220 case WM_T_PCH_TGP:
7221 /*
7222 * Set the mac to wait the maximum time between each
7223 * iteration and increase the max iterations when
7224 * polling the phy; this fixes erroneous timeouts at
7225 * 10Mbps.
7226 */
7227 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS,
7228 0xFFFF);
7229 wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_INB_PARAM,
7230 &kmreg);
7231 kmreg |= 0x3F;
7232 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_INB_PARAM,
7233 kmreg);
7234 break;
7235 default:
7236 break;
7237 }
7238
7239 if (sc->sc_type == WM_T_80003) {
7240 reg = CSR_READ(sc, WMREG_CTRL_EXT);
7241 reg &= ~CTRL_EXT_LINK_MODE_MASK;
7242 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
7243
7244 /* Bypass RX and TX FIFOs */
7245 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL,
7246 KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
7247 | KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
7248 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL,
7249 KUMCTRLSTA_INB_CTRL_DIS_PADDING |
7250 KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT);
7251 }
7252 }
7253 #if 0
7254 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
7255 #endif
7256
7257 /* Set up checksum offload parameters. */
7258 reg = CSR_READ(sc, WMREG_RXCSUM);
7259 reg &= ~(RXCSUM_IPOFL | RXCSUM_IPV6OFL | RXCSUM_TUOFL);
7260 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
7261 reg |= RXCSUM_IPOFL;
7262 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
7263 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
7264 if (ifp->if_capenable & (IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
7265 reg |= RXCSUM_IPV6OFL | RXCSUM_TUOFL;
7266 CSR_WRITE(sc, WMREG_RXCSUM, reg);
7267
7268 /* Set registers about MSI-X */
7269 if (wm_is_using_msix(sc)) {
7270 uint32_t ivar, qintr_idx;
7271 struct wm_queue *wmq;
7272 unsigned int qid;
7273
7274 if (sc->sc_type == WM_T_82575) {
7275 /* Interrupt control */
7276 reg = CSR_READ(sc, WMREG_CTRL_EXT);
7277 reg |= CTRL_EXT_PBA | CTRL_EXT_EIAME | CTRL_EXT_NSICR;
7278 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
7279
7280 /* TX and RX */
7281 for (i = 0; i < sc->sc_nqueues; i++) {
7282 wmq = &sc->sc_queue[i];
7283 CSR_WRITE(sc, WMREG_MSIXBM(wmq->wmq_intr_idx),
7284 EITR_TX_QUEUE(wmq->wmq_id)
7285 | EITR_RX_QUEUE(wmq->wmq_id));
7286 }
7287 /* Link status */
7288 CSR_WRITE(sc, WMREG_MSIXBM(sc->sc_link_intr_idx),
7289 EITR_OTHER);
7290 } else if (sc->sc_type == WM_T_82574) {
7291 /* Interrupt control */
7292 reg = CSR_READ(sc, WMREG_CTRL_EXT);
7293 reg |= CTRL_EXT_PBA | CTRL_EXT_EIAME;
7294 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
7295
7296 /*
7297 * Work around issue with spurious interrupts
7298 * in MSI-X mode.
7299 * At wm_initialize_hardware_bits(), sc_nintrs has not
7300 * initialized yet. So re-initialize WMREG_RFCTL here.
7301 */
7302 reg = CSR_READ(sc, WMREG_RFCTL);
7303 reg |= WMREG_RFCTL_ACKDIS;
7304 CSR_WRITE(sc, WMREG_RFCTL, reg);
7305
7306 ivar = 0;
7307 /* TX and RX */
7308 for (i = 0; i < sc->sc_nqueues; i++) {
7309 wmq = &sc->sc_queue[i];
7310 qid = wmq->wmq_id;
7311 qintr_idx = wmq->wmq_intr_idx;
7312
7313 ivar |= __SHIFTIN((IVAR_VALID_82574|qintr_idx),
7314 IVAR_TX_MASK_Q_82574(qid));
7315 ivar |= __SHIFTIN((IVAR_VALID_82574|qintr_idx),
7316 IVAR_RX_MASK_Q_82574(qid));
7317 }
7318 /* Link status */
7319 ivar |= __SHIFTIN((IVAR_VALID_82574
7320 | sc->sc_link_intr_idx), IVAR_OTHER_MASK);
7321 CSR_WRITE(sc, WMREG_IVAR, ivar | IVAR_INT_ON_ALL_WB);
7322 } else {
7323 /* Interrupt control */
7324 CSR_WRITE(sc, WMREG_GPIE, GPIE_NSICR | GPIE_MULTI_MSIX
7325 | GPIE_EIAME | GPIE_PBA);
7326
7327 switch (sc->sc_type) {
7328 case WM_T_82580:
7329 case WM_T_I350:
7330 case WM_T_I354:
7331 case WM_T_I210:
7332 case WM_T_I211:
7333 /* TX and RX */
7334 for (i = 0; i < sc->sc_nqueues; i++) {
7335 wmq = &sc->sc_queue[i];
7336 qid = wmq->wmq_id;
7337 qintr_idx = wmq->wmq_intr_idx;
7338
7339 ivar = CSR_READ(sc, WMREG_IVAR_Q(qid));
7340 ivar &= ~IVAR_TX_MASK_Q(qid);
7341 ivar |= __SHIFTIN((qintr_idx
7342 | IVAR_VALID),
7343 IVAR_TX_MASK_Q(qid));
7344 ivar &= ~IVAR_RX_MASK_Q(qid);
7345 ivar |= __SHIFTIN((qintr_idx
7346 | IVAR_VALID),
7347 IVAR_RX_MASK_Q(qid));
7348 CSR_WRITE(sc, WMREG_IVAR_Q(qid), ivar);
7349 }
7350 break;
7351 case WM_T_82576:
7352 /* TX and RX */
7353 for (i = 0; i < sc->sc_nqueues; i++) {
7354 wmq = &sc->sc_queue[i];
7355 qid = wmq->wmq_id;
7356 qintr_idx = wmq->wmq_intr_idx;
7357
7358 ivar = CSR_READ(sc,
7359 WMREG_IVAR_Q_82576(qid));
7360 ivar &= ~IVAR_TX_MASK_Q_82576(qid);
7361 ivar |= __SHIFTIN((qintr_idx
7362 | IVAR_VALID),
7363 IVAR_TX_MASK_Q_82576(qid));
7364 ivar &= ~IVAR_RX_MASK_Q_82576(qid);
7365 ivar |= __SHIFTIN((qintr_idx
7366 | IVAR_VALID),
7367 IVAR_RX_MASK_Q_82576(qid));
7368 CSR_WRITE(sc, WMREG_IVAR_Q_82576(qid),
7369 ivar);
7370 }
7371 break;
7372 default:
7373 break;
7374 }
7375
7376 /* Link status */
7377 ivar = __SHIFTIN((sc->sc_link_intr_idx | IVAR_VALID),
7378 IVAR_MISC_OTHER);
7379 CSR_WRITE(sc, WMREG_IVAR_MISC, ivar);
7380 }
7381
7382 if (wm_is_using_multiqueue(sc)) {
7383 wm_init_rss(sc);
7384
7385 /*
7386 ** NOTE: Receive Full-Packet Checksum Offload
7387 ** is mutually exclusive with Multiqueue. However
7388 ** this is not the same as TCP/IP checksums which
7389 ** still work.
7390 */
7391 reg = CSR_READ(sc, WMREG_RXCSUM);
7392 reg |= RXCSUM_PCSD;
7393 CSR_WRITE(sc, WMREG_RXCSUM, reg);
7394 }
7395 }
7396
7397 /* Set up the interrupt registers. */
7398 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
7399
7400 /* Enable SFP module insertion interrupt if it's required */
7401 if ((sc->sc_flags & WM_F_SFP) != 0) {
7402 sc->sc_ctrl |= CTRL_EXTLINK_EN;
7403 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
7404 sfp_mask = ICR_GPI(0);
7405 }
7406
7407 if (wm_is_using_msix(sc)) {
7408 uint32_t mask;
7409 struct wm_queue *wmq;
7410
7411 switch (sc->sc_type) {
7412 case WM_T_82574:
7413 mask = 0;
7414 for (i = 0; i < sc->sc_nqueues; i++) {
7415 wmq = &sc->sc_queue[i];
7416 mask |= ICR_TXQ(wmq->wmq_id);
7417 mask |= ICR_RXQ(wmq->wmq_id);
7418 }
7419 mask |= ICR_OTHER;
7420 CSR_WRITE(sc, WMREG_EIAC_82574, mask);
7421 CSR_WRITE(sc, WMREG_IMS, mask | ICR_LSC);
7422 break;
7423 default:
7424 if (sc->sc_type == WM_T_82575) {
7425 mask = 0;
7426 for (i = 0; i < sc->sc_nqueues; i++) {
7427 wmq = &sc->sc_queue[i];
7428 mask |= EITR_TX_QUEUE(wmq->wmq_id);
7429 mask |= EITR_RX_QUEUE(wmq->wmq_id);
7430 }
7431 mask |= EITR_OTHER;
7432 } else {
7433 mask = 0;
7434 for (i = 0; i < sc->sc_nqueues; i++) {
7435 wmq = &sc->sc_queue[i];
7436 mask |= 1 << wmq->wmq_intr_idx;
7437 }
7438 mask |= 1 << sc->sc_link_intr_idx;
7439 }
7440 CSR_WRITE(sc, WMREG_EIAC, mask);
7441 CSR_WRITE(sc, WMREG_EIAM, mask);
7442 CSR_WRITE(sc, WMREG_EIMS, mask);
7443
7444 /* For other interrupts */
7445 CSR_WRITE(sc, WMREG_IMS, ICR_LSC | sfp_mask);
7446 break;
7447 }
7448 } else {
7449 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
7450 ICR_RXO | ICR_RXT0 | sfp_mask;
7451 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
7452 }
7453
7454 /* Set up the inter-packet gap. */
7455 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
7456
7457 if (sc->sc_type >= WM_T_82543) {
7458 for (int qidx = 0; qidx < sc->sc_nqueues; qidx++) {
7459 struct wm_queue *wmq = &sc->sc_queue[qidx];
7460 wm_itrs_writereg(sc, wmq);
7461 }
7462 /*
7463 * Link interrupts occur much less than TX
7464 * interrupts and RX interrupts. So, we don't
7465 * tune EINTR(WM_MSIX_LINKINTR_IDX) value like
7466 * FreeBSD's if_igb.
7467 */
7468 }
7469
7470 /* Set the VLAN EtherType. */
7471 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
7472
7473 /*
7474 * Set up the transmit control register; we start out with
7475 * a collision distance suitable for FDX, but update it when
7476 * we resolve the media type.
7477 */
7478 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_RTLC
7479 | TCTL_CT(TX_COLLISION_THRESHOLD)
7480 | TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
7481 if (sc->sc_type >= WM_T_82571)
7482 sc->sc_tctl |= TCTL_MULR;
7483 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
7484
7485 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
7486 /* Write TDT after TCTL.EN is set. See the document. */
7487 CSR_WRITE(sc, WMREG_TDT(0), 0);
7488 }
7489
7490 if (sc->sc_type == WM_T_80003) {
7491 reg = CSR_READ(sc, WMREG_TCTL_EXT);
7492 reg &= ~TCTL_EXT_GCEX_MASK;
7493 reg |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
7494 CSR_WRITE(sc, WMREG_TCTL_EXT, reg);
7495 }
7496
7497 /* Set the media. */
7498 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
7499 goto out;
7500
7501 /* Configure for OS presence */
7502 wm_init_manageability(sc);
7503
7504 /*
7505 * Set up the receive control register; we actually program the
7506 * register when we set the receive filter. Use multicast address
7507 * offset type 0.
7508 *
7509 * Only the i82544 has the ability to strip the incoming CRC, so we
7510 * don't enable that feature.
7511 */
7512 sc->sc_mchash_type = 0;
7513 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
7514 | __SHIFTIN(sc->sc_mchash_type, RCTL_MO);
7515
7516 /* 82574 use one buffer extended Rx descriptor. */
7517 if (sc->sc_type == WM_T_82574)
7518 sc->sc_rctl |= RCTL_DTYP_ONEBUF;
7519
7520 if ((sc->sc_flags & WM_F_CRC_STRIP) != 0)
7521 sc->sc_rctl |= RCTL_SECRC;
7522
7523 if (((ec->ec_capabilities & ETHERCAP_JUMBO_MTU) != 0)
7524 && (ifp->if_mtu > ETHERMTU)) {
7525 sc->sc_rctl |= RCTL_LPE;
7526 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
7527 CSR_WRITE(sc, WMREG_RLPML, ETHER_MAX_LEN_JUMBO);
7528 }
7529
7530 if (MCLBYTES == 2048)
7531 sc->sc_rctl |= RCTL_2k;
7532 else {
7533 if (sc->sc_type >= WM_T_82543) {
7534 switch (MCLBYTES) {
7535 case 4096:
7536 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
7537 break;
7538 case 8192:
7539 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
7540 break;
7541 case 16384:
7542 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
7543 break;
7544 default:
7545 panic("wm_init: MCLBYTES %d unsupported",
7546 MCLBYTES);
7547 break;
7548 }
7549 } else
7550 panic("wm_init: i82542 requires MCLBYTES = 2048");
7551 }
7552
7553 /* Enable ECC */
7554 switch (sc->sc_type) {
7555 case WM_T_82571:
7556 reg = CSR_READ(sc, WMREG_PBA_ECC);
7557 reg |= PBA_ECC_CORR_EN;
7558 CSR_WRITE(sc, WMREG_PBA_ECC, reg);
7559 break;
7560 case WM_T_PCH_LPT:
7561 case WM_T_PCH_SPT:
7562 case WM_T_PCH_CNP:
7563 case WM_T_PCH_TGP:
7564 reg = CSR_READ(sc, WMREG_PBECCSTS);
7565 reg |= PBECCSTS_UNCORR_ECC_ENABLE;
7566 CSR_WRITE(sc, WMREG_PBECCSTS, reg);
7567
7568 sc->sc_ctrl |= CTRL_MEHE;
7569 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
7570 break;
7571 default:
7572 break;
7573 }
7574
7575 /*
7576 * Set the receive filter.
7577 *
7578 * For 82575 and 82576, the RX descriptors must be initialized after
7579 * the setting of RCTL.EN in wm_set_filter()
7580 */
7581 wm_set_filter(sc);
7582
7583 /* On 575 and later set RDT only if RX enabled */
7584 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
7585 int qidx;
7586 for (qidx = 0; qidx < sc->sc_nqueues; qidx++) {
7587 struct wm_rxqueue *rxq = &sc->sc_queue[qidx].wmq_rxq;
7588 for (i = 0; i < WM_NRXDESC; i++) {
7589 mutex_enter(rxq->rxq_lock);
7590 wm_init_rxdesc(rxq, i);
7591 mutex_exit(rxq->rxq_lock);
7592
7593 }
7594 }
7595 }
7596
7597 wm_unset_stopping_flags(sc);
7598
7599 /* Start the one second link check clock. */
7600 callout_schedule(&sc->sc_tick_ch, hz);
7601
7602 /*
7603 * ...all done! (IFNET_LOCKED asserted above.)
7604 */
7605 ifp->if_flags |= IFF_RUNNING;
7606
7607 out:
7608 /* Save last flags for the callback */
7609 sc->sc_if_flags = ifp->if_flags;
7610 sc->sc_ec_capenable = ec->ec_capenable;
7611 if (error)
7612 log(LOG_ERR, "%s: interface not running\n",
7613 device_xname(sc->sc_dev));
7614 return error;
7615 }
7616
7617 /*
7618 * wm_stop: [ifnet interface function]
7619 *
7620 * Stop transmission on the interface.
7621 */
7622 static void
7623 wm_stop(struct ifnet *ifp, int disable)
7624 {
7625 struct wm_softc *sc = ifp->if_softc;
7626
7627 ASSERT_SLEEPABLE();
7628 KASSERT(IFNET_LOCKED(ifp));
7629
7630 mutex_enter(sc->sc_core_lock);
7631 wm_stop_locked(ifp, disable ? true : false, true);
7632 mutex_exit(sc->sc_core_lock);
7633
7634 /*
7635 * After wm_set_stopping_flags(), it is guaranteed that
7636 * wm_handle_queue_work() does not call workqueue_enqueue().
7637 * However, workqueue_wait() cannot call in wm_stop_locked()
7638 * because it can sleep...
7639 * so, call workqueue_wait() here.
7640 */
7641 for (int i = 0; i < sc->sc_nqueues; i++)
7642 workqueue_wait(sc->sc_queue_wq, &sc->sc_queue[i].wmq_cookie);
7643 workqueue_wait(sc->sc_reset_wq, &sc->sc_reset_work);
7644 }
7645
7646 static void
7647 wm_stop_locked(struct ifnet *ifp, bool disable, bool wait)
7648 {
7649 struct wm_softc *sc = ifp->if_softc;
7650 struct wm_txsoft *txs;
7651 int i, qidx;
7652
7653 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
7654 device_xname(sc->sc_dev), __func__));
7655 KASSERT(IFNET_LOCKED(ifp));
7656 KASSERT(mutex_owned(sc->sc_core_lock));
7657
7658 wm_set_stopping_flags(sc);
7659
7660 if (sc->sc_flags & WM_F_HAS_MII) {
7661 /* Down the MII. */
7662 mii_down(&sc->sc_mii);
7663 } else {
7664 #if 0
7665 /* Should we clear PHY's status properly? */
7666 wm_reset(sc);
7667 #endif
7668 }
7669
7670 /* Stop the transmit and receive processes. */
7671 CSR_WRITE(sc, WMREG_TCTL, 0);
7672 CSR_WRITE(sc, WMREG_RCTL, 0);
7673 sc->sc_rctl &= ~RCTL_EN;
7674
7675 /*
7676 * Clear the interrupt mask to ensure the device cannot assert its
7677 * interrupt line.
7678 * Clear sc->sc_icr to ensure wm_intr_legacy() makes no attempt to
7679 * service any currently pending or shared interrupt.
7680 */
7681 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
7682 sc->sc_icr = 0;
7683 if (wm_is_using_msix(sc)) {
7684 if (sc->sc_type != WM_T_82574) {
7685 CSR_WRITE(sc, WMREG_EIMC, 0xffffffffU);
7686 CSR_WRITE(sc, WMREG_EIAC, 0);
7687 } else
7688 CSR_WRITE(sc, WMREG_EIAC_82574, 0);
7689 }
7690
7691 /*
7692 * Stop callouts after interrupts are disabled; if we have
7693 * to wait for them, we will be releasing the CORE_LOCK
7694 * briefly, which will unblock interrupts on the current CPU.
7695 */
7696
7697 /* Stop the one second clock. */
7698 if (wait)
7699 callout_halt(&sc->sc_tick_ch, sc->sc_core_lock);
7700 else
7701 callout_stop(&sc->sc_tick_ch);
7702
7703 /* Stop the 82547 Tx FIFO stall check timer. */
7704 if (sc->sc_type == WM_T_82547) {
7705 if (wait)
7706 callout_halt(&sc->sc_txfifo_ch, sc->sc_core_lock);
7707 else
7708 callout_stop(&sc->sc_txfifo_ch);
7709 }
7710
7711 /* Release any queued transmit buffers. */
7712 for (qidx = 0; qidx < sc->sc_nqueues; qidx++) {
7713 struct wm_queue *wmq = &sc->sc_queue[qidx];
7714 struct wm_txqueue *txq = &wmq->wmq_txq;
7715 struct mbuf *m;
7716
7717 mutex_enter(txq->txq_lock);
7718 txq->txq_sending = false; /* Ensure watchdog disabled */
7719 for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
7720 txs = &txq->txq_soft[i];
7721 if (txs->txs_mbuf != NULL) {
7722 bus_dmamap_unload(sc->sc_dmat,txs->txs_dmamap);
7723 m_freem(txs->txs_mbuf);
7724 txs->txs_mbuf = NULL;
7725 }
7726 }
7727 /* Drain txq_interq */
7728 while ((m = pcq_get(txq->txq_interq)) != NULL)
7729 m_freem(m);
7730 mutex_exit(txq->txq_lock);
7731 }
7732
7733 /* Mark the interface as down and cancel the watchdog timer. */
7734 ifp->if_flags &= ~IFF_RUNNING;
7735 sc->sc_if_flags = ifp->if_flags;
7736
7737 if (disable) {
7738 for (i = 0; i < sc->sc_nqueues; i++) {
7739 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
7740 mutex_enter(rxq->rxq_lock);
7741 wm_rxdrain(rxq);
7742 mutex_exit(rxq->rxq_lock);
7743 }
7744 }
7745
7746 #if 0 /* notyet */
7747 if (sc->sc_type >= WM_T_82544)
7748 CSR_WRITE(sc, WMREG_WUC, 0);
7749 #endif
7750 }
7751
7752 static void
7753 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
7754 {
7755 struct mbuf *m;
7756 int i;
7757
7758 log(LOG_DEBUG, "%s: mbuf chain:\n", device_xname(sc->sc_dev));
7759 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
7760 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
7761 "m_flags = 0x%08x\n", device_xname(sc->sc_dev),
7762 m->m_data, m->m_len, m->m_flags);
7763 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", device_xname(sc->sc_dev),
7764 i, i == 1 ? "" : "s");
7765 }
7766
7767 /*
7768 * wm_82547_txfifo_stall:
7769 *
7770 * Callout used to wait for the 82547 Tx FIFO to drain,
7771 * reset the FIFO pointers, and restart packet transmission.
7772 */
7773 static void
7774 wm_82547_txfifo_stall(void *arg)
7775 {
7776 struct wm_softc *sc = arg;
7777 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
7778
7779 mutex_enter(txq->txq_lock);
7780
7781 if (txq->txq_stopping)
7782 goto out;
7783
7784 if (txq->txq_fifo_stall) {
7785 if (CSR_READ(sc, WMREG_TDT(0)) == CSR_READ(sc, WMREG_TDH(0)) &&
7786 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
7787 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
7788 /*
7789 * Packets have drained. Stop transmitter, reset
7790 * FIFO pointers, restart transmitter, and kick
7791 * the packet queue.
7792 */
7793 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
7794 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
7795 CSR_WRITE(sc, WMREG_TDFT, txq->txq_fifo_addr);
7796 CSR_WRITE(sc, WMREG_TDFH, txq->txq_fifo_addr);
7797 CSR_WRITE(sc, WMREG_TDFTS, txq->txq_fifo_addr);
7798 CSR_WRITE(sc, WMREG_TDFHS, txq->txq_fifo_addr);
7799 CSR_WRITE(sc, WMREG_TCTL, tctl);
7800 CSR_WRITE_FLUSH(sc);
7801
7802 txq->txq_fifo_head = 0;
7803 txq->txq_fifo_stall = 0;
7804 wm_start_locked(&sc->sc_ethercom.ec_if);
7805 } else {
7806 /*
7807 * Still waiting for packets to drain; try again in
7808 * another tick.
7809 */
7810 callout_schedule(&sc->sc_txfifo_ch, 1);
7811 }
7812 }
7813
7814 out:
7815 mutex_exit(txq->txq_lock);
7816 }
7817
7818 /*
7819 * wm_82547_txfifo_bugchk:
7820 *
7821 * Check for bug condition in the 82547 Tx FIFO. We need to
7822 * prevent enqueueing a packet that would wrap around the end
7823 * if the Tx FIFO ring buffer, otherwise the chip will croak.
7824 *
7825 * We do this by checking the amount of space before the end
7826 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
7827 * the Tx FIFO, wait for all remaining packets to drain, reset
7828 * the internal FIFO pointers to the beginning, and restart
7829 * transmission on the interface.
7830 */
7831 #define WM_FIFO_HDR 0x10
7832 #define WM_82547_PAD_LEN 0x3e0
7833 static int
7834 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
7835 {
7836 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
7837 int space = txq->txq_fifo_size - txq->txq_fifo_head;
7838 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
7839
7840 /* Just return if already stalled. */
7841 if (txq->txq_fifo_stall)
7842 return 1;
7843
7844 if (sc->sc_mii.mii_media_active & IFM_FDX) {
7845 /* Stall only occurs in half-duplex mode. */
7846 goto send_packet;
7847 }
7848
7849 if (len >= WM_82547_PAD_LEN + space) {
7850 txq->txq_fifo_stall = 1;
7851 callout_schedule(&sc->sc_txfifo_ch, 1);
7852 return 1;
7853 }
7854
7855 send_packet:
7856 txq->txq_fifo_head += len;
7857 if (txq->txq_fifo_head >= txq->txq_fifo_size)
7858 txq->txq_fifo_head -= txq->txq_fifo_size;
7859
7860 return 0;
7861 }
7862
7863 static int
7864 wm_alloc_tx_descs(struct wm_softc *sc, struct wm_txqueue *txq)
7865 {
7866 int error;
7867
7868 /*
7869 * Allocate the control data structures, and create and load the
7870 * DMA map for it.
7871 *
7872 * NOTE: All Tx descriptors must be in the same 4G segment of
7873 * memory. So must Rx descriptors. We simplify by allocating
7874 * both sets within the same 4G segment.
7875 */
7876 if (sc->sc_type < WM_T_82544)
7877 WM_NTXDESC(txq) = WM_NTXDESC_82542;
7878 else
7879 WM_NTXDESC(txq) = WM_NTXDESC_82544;
7880 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
7881 txq->txq_descsize = sizeof(nq_txdesc_t);
7882 else
7883 txq->txq_descsize = sizeof(wiseman_txdesc_t);
7884
7885 if ((error = bus_dmamem_alloc(sc->sc_dmat, WM_TXDESCS_SIZE(txq),
7886 PAGE_SIZE, (bus_size_t) 0x100000000ULL, &txq->txq_desc_seg,
7887 1, &txq->txq_desc_rseg, 0)) != 0) {
7888 aprint_error_dev(sc->sc_dev,
7889 "unable to allocate TX control data, error = %d\n",
7890 error);
7891 goto fail_0;
7892 }
7893
7894 if ((error = bus_dmamem_map(sc->sc_dmat, &txq->txq_desc_seg,
7895 txq->txq_desc_rseg, WM_TXDESCS_SIZE(txq),
7896 (void **)&txq->txq_descs_u, BUS_DMA_COHERENT)) != 0) {
7897 aprint_error_dev(sc->sc_dev,
7898 "unable to map TX control data, error = %d\n", error);
7899 goto fail_1;
7900 }
7901
7902 if ((error = bus_dmamap_create(sc->sc_dmat, WM_TXDESCS_SIZE(txq), 1,
7903 WM_TXDESCS_SIZE(txq), 0, 0, &txq->txq_desc_dmamap)) != 0) {
7904 aprint_error_dev(sc->sc_dev,
7905 "unable to create TX control data DMA map, error = %d\n",
7906 error);
7907 goto fail_2;
7908 }
7909
7910 if ((error = bus_dmamap_load(sc->sc_dmat, txq->txq_desc_dmamap,
7911 txq->txq_descs_u, WM_TXDESCS_SIZE(txq), NULL, 0)) != 0) {
7912 aprint_error_dev(sc->sc_dev,
7913 "unable to load TX control data DMA map, error = %d\n",
7914 error);
7915 goto fail_3;
7916 }
7917
7918 return 0;
7919
7920 fail_3:
7921 bus_dmamap_destroy(sc->sc_dmat, txq->txq_desc_dmamap);
7922 fail_2:
7923 bus_dmamem_unmap(sc->sc_dmat, (void *)txq->txq_descs_u,
7924 WM_TXDESCS_SIZE(txq));
7925 fail_1:
7926 bus_dmamem_free(sc->sc_dmat, &txq->txq_desc_seg, txq->txq_desc_rseg);
7927 fail_0:
7928 return error;
7929 }
7930
7931 static void
7932 wm_free_tx_descs(struct wm_softc *sc, struct wm_txqueue *txq)
7933 {
7934
7935 bus_dmamap_unload(sc->sc_dmat, txq->txq_desc_dmamap);
7936 bus_dmamap_destroy(sc->sc_dmat, txq->txq_desc_dmamap);
7937 bus_dmamem_unmap(sc->sc_dmat, (void *)txq->txq_descs_u,
7938 WM_TXDESCS_SIZE(txq));
7939 bus_dmamem_free(sc->sc_dmat, &txq->txq_desc_seg, txq->txq_desc_rseg);
7940 }
7941
7942 static int
7943 wm_alloc_rx_descs(struct wm_softc *sc, struct wm_rxqueue *rxq)
7944 {
7945 int error;
7946 size_t rxq_descs_size;
7947
7948 /*
7949 * Allocate the control data structures, and create and load the
7950 * DMA map for it.
7951 *
7952 * NOTE: All Tx descriptors must be in the same 4G segment of
7953 * memory. So must Rx descriptors. We simplify by allocating
7954 * both sets within the same 4G segment.
7955 */
7956 rxq->rxq_ndesc = WM_NRXDESC;
7957 if (sc->sc_type == WM_T_82574)
7958 rxq->rxq_descsize = sizeof(ext_rxdesc_t);
7959 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
7960 rxq->rxq_descsize = sizeof(nq_rxdesc_t);
7961 else
7962 rxq->rxq_descsize = sizeof(wiseman_rxdesc_t);
7963 rxq_descs_size = rxq->rxq_descsize * rxq->rxq_ndesc;
7964
7965 if ((error = bus_dmamem_alloc(sc->sc_dmat, rxq_descs_size,
7966 PAGE_SIZE, (bus_size_t) 0x100000000ULL, &rxq->rxq_desc_seg,
7967 1, &rxq->rxq_desc_rseg, 0)) != 0) {
7968 aprint_error_dev(sc->sc_dev,
7969 "unable to allocate RX control data, error = %d\n",
7970 error);
7971 goto fail_0;
7972 }
7973
7974 if ((error = bus_dmamem_map(sc->sc_dmat, &rxq->rxq_desc_seg,
7975 rxq->rxq_desc_rseg, rxq_descs_size,
7976 (void **)&rxq->rxq_descs_u, BUS_DMA_COHERENT)) != 0) {
7977 aprint_error_dev(sc->sc_dev,
7978 "unable to map RX control data, error = %d\n", error);
7979 goto fail_1;
7980 }
7981
7982 if ((error = bus_dmamap_create(sc->sc_dmat, rxq_descs_size, 1,
7983 rxq_descs_size, 0, 0, &rxq->rxq_desc_dmamap)) != 0) {
7984 aprint_error_dev(sc->sc_dev,
7985 "unable to create RX control data DMA map, error = %d\n",
7986 error);
7987 goto fail_2;
7988 }
7989
7990 if ((error = bus_dmamap_load(sc->sc_dmat, rxq->rxq_desc_dmamap,
7991 rxq->rxq_descs_u, rxq_descs_size, NULL, 0)) != 0) {
7992 aprint_error_dev(sc->sc_dev,
7993 "unable to load RX control data DMA map, error = %d\n",
7994 error);
7995 goto fail_3;
7996 }
7997
7998 return 0;
7999
8000 fail_3:
8001 bus_dmamap_destroy(sc->sc_dmat, rxq->rxq_desc_dmamap);
8002 fail_2:
8003 bus_dmamem_unmap(sc->sc_dmat, (void *)rxq->rxq_descs_u,
8004 rxq_descs_size);
8005 fail_1:
8006 bus_dmamem_free(sc->sc_dmat, &rxq->rxq_desc_seg, rxq->rxq_desc_rseg);
8007 fail_0:
8008 return error;
8009 }
8010
8011 static void
8012 wm_free_rx_descs(struct wm_softc *sc, struct wm_rxqueue *rxq)
8013 {
8014
8015 bus_dmamap_unload(sc->sc_dmat, rxq->rxq_desc_dmamap);
8016 bus_dmamap_destroy(sc->sc_dmat, rxq->rxq_desc_dmamap);
8017 bus_dmamem_unmap(sc->sc_dmat, (void *)rxq->rxq_descs_u,
8018 rxq->rxq_descsize * rxq->rxq_ndesc);
8019 bus_dmamem_free(sc->sc_dmat, &rxq->rxq_desc_seg, rxq->rxq_desc_rseg);
8020 }
8021
8022
8023 static int
8024 wm_alloc_tx_buffer(struct wm_softc *sc, struct wm_txqueue *txq)
8025 {
8026 int i, error;
8027
8028 /* Create the transmit buffer DMA maps. */
8029 WM_TXQUEUELEN(txq) =
8030 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
8031 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
8032 for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
8033 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
8034 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
8035 &txq->txq_soft[i].txs_dmamap)) != 0) {
8036 aprint_error_dev(sc->sc_dev,
8037 "unable to create Tx DMA map %d, error = %d\n",
8038 i, error);
8039 goto fail;
8040 }
8041 }
8042
8043 return 0;
8044
8045 fail:
8046 for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
8047 if (txq->txq_soft[i].txs_dmamap != NULL)
8048 bus_dmamap_destroy(sc->sc_dmat,
8049 txq->txq_soft[i].txs_dmamap);
8050 }
8051 return error;
8052 }
8053
8054 static void
8055 wm_free_tx_buffer(struct wm_softc *sc, struct wm_txqueue *txq)
8056 {
8057 int i;
8058
8059 for (i = 0; i < WM_TXQUEUELEN(txq); i++) {
8060 if (txq->txq_soft[i].txs_dmamap != NULL)
8061 bus_dmamap_destroy(sc->sc_dmat,
8062 txq->txq_soft[i].txs_dmamap);
8063 }
8064 }
8065
8066 static int
8067 wm_alloc_rx_buffer(struct wm_softc *sc, struct wm_rxqueue *rxq)
8068 {
8069 int i, error;
8070
8071 /* Create the receive buffer DMA maps. */
8072 for (i = 0; i < rxq->rxq_ndesc; i++) {
8073 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
8074 MCLBYTES, 0, 0,
8075 &rxq->rxq_soft[i].rxs_dmamap)) != 0) {
8076 aprint_error_dev(sc->sc_dev,
8077 "unable to create Rx DMA map %d error = %d\n",
8078 i, error);
8079 goto fail;
8080 }
8081 rxq->rxq_soft[i].rxs_mbuf = NULL;
8082 }
8083
8084 return 0;
8085
8086 fail:
8087 for (i = 0; i < rxq->rxq_ndesc; i++) {
8088 if (rxq->rxq_soft[i].rxs_dmamap != NULL)
8089 bus_dmamap_destroy(sc->sc_dmat,
8090 rxq->rxq_soft[i].rxs_dmamap);
8091 }
8092 return error;
8093 }
8094
8095 static void
8096 wm_free_rx_buffer(struct wm_softc *sc, struct wm_rxqueue *rxq)
8097 {
8098 int i;
8099
8100 for (i = 0; i < rxq->rxq_ndesc; i++) {
8101 if (rxq->rxq_soft[i].rxs_dmamap != NULL)
8102 bus_dmamap_destroy(sc->sc_dmat,
8103 rxq->rxq_soft[i].rxs_dmamap);
8104 }
8105 }
8106
8107 /*
8108 * wm_alloc_quques:
8109 * Allocate {tx,rx}descs and {tx,rx} buffers
8110 */
8111 static int
8112 wm_alloc_txrx_queues(struct wm_softc *sc)
8113 {
8114 int i, error, tx_done, rx_done;
8115
8116 sc->sc_queue = kmem_zalloc(sizeof(struct wm_queue) * sc->sc_nqueues,
8117 KM_SLEEP);
8118 if (sc->sc_queue == NULL) {
8119 aprint_error_dev(sc->sc_dev,"unable to allocate wm_queue\n");
8120 error = ENOMEM;
8121 goto fail_0;
8122 }
8123
8124 /* For transmission */
8125 error = 0;
8126 tx_done = 0;
8127 for (i = 0; i < sc->sc_nqueues; i++) {
8128 #ifdef WM_EVENT_COUNTERS
8129 int j;
8130 const char *xname;
8131 #endif
8132 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
8133 txq->txq_sc = sc;
8134 txq->txq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
8135
8136 error = wm_alloc_tx_descs(sc, txq);
8137 if (error)
8138 break;
8139 error = wm_alloc_tx_buffer(sc, txq);
8140 if (error) {
8141 wm_free_tx_descs(sc, txq);
8142 break;
8143 }
8144 txq->txq_interq = pcq_create(WM_TXINTERQSIZE, KM_SLEEP);
8145 if (txq->txq_interq == NULL) {
8146 wm_free_tx_descs(sc, txq);
8147 wm_free_tx_buffer(sc, txq);
8148 error = ENOMEM;
8149 break;
8150 }
8151
8152 #ifdef WM_EVENT_COUNTERS
8153 xname = device_xname(sc->sc_dev);
8154
8155 WM_Q_MISC_EVCNT_ATTACH(txq, txsstall, txq, i, xname);
8156 WM_Q_MISC_EVCNT_ATTACH(txq, txdstall, txq, i, xname);
8157 WM_Q_MISC_EVCNT_ATTACH(txq, fifo_stall, txq, i, xname);
8158 WM_Q_INTR_EVCNT_ATTACH(txq, txdw, txq, i, xname);
8159 WM_Q_INTR_EVCNT_ATTACH(txq, txqe, txq, i, xname);
8160 WM_Q_MISC_EVCNT_ATTACH(txq, ipsum, txq, i, xname);
8161 WM_Q_MISC_EVCNT_ATTACH(txq, tusum, txq, i, xname);
8162 WM_Q_MISC_EVCNT_ATTACH(txq, tusum6, txq, i, xname);
8163 WM_Q_MISC_EVCNT_ATTACH(txq, tso, txq, i, xname);
8164 WM_Q_MISC_EVCNT_ATTACH(txq, tso6, txq, i, xname);
8165 WM_Q_MISC_EVCNT_ATTACH(txq, tsopain, txq, i, xname);
8166
8167 for (j = 0; j < WM_NTXSEGS; j++) {
8168 snprintf(txq->txq_txseg_evcnt_names[j],
8169 sizeof(txq->txq_txseg_evcnt_names[j]),
8170 "txq%02dtxseg%d", i, j);
8171 evcnt_attach_dynamic(&txq->txq_ev_txseg[j],
8172 EVCNT_TYPE_MISC,
8173 NULL, xname, txq->txq_txseg_evcnt_names[j]);
8174 }
8175
8176 WM_Q_MISC_EVCNT_ATTACH(txq, pcqdrop, txq, i, xname);
8177 WM_Q_MISC_EVCNT_ATTACH(txq, descdrop, txq, i, xname);
8178 WM_Q_MISC_EVCNT_ATTACH(txq, toomanyseg, txq, i, xname);
8179 WM_Q_MISC_EVCNT_ATTACH(txq, defrag, txq, i, xname);
8180 /* Only for 82544 (and earlier?) */
8181 if (sc->sc_type <= WM_T_82544)
8182 WM_Q_MISC_EVCNT_ATTACH(txq, underrun, txq, i, xname);
8183 WM_Q_MISC_EVCNT_ATTACH(txq, skipcontext, txq, i, xname);
8184 #endif /* WM_EVENT_COUNTERS */
8185
8186 tx_done++;
8187 }
8188 if (error)
8189 goto fail_1;
8190
8191 /* For receive */
8192 error = 0;
8193 rx_done = 0;
8194 for (i = 0; i < sc->sc_nqueues; i++) {
8195 #ifdef WM_EVENT_COUNTERS
8196 const char *xname;
8197 #endif
8198 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
8199 rxq->rxq_sc = sc;
8200 rxq->rxq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
8201
8202 error = wm_alloc_rx_descs(sc, rxq);
8203 if (error)
8204 break;
8205
8206 error = wm_alloc_rx_buffer(sc, rxq);
8207 if (error) {
8208 wm_free_rx_descs(sc, rxq);
8209 break;
8210 }
8211
8212 #ifdef WM_EVENT_COUNTERS
8213 xname = device_xname(sc->sc_dev);
8214
8215 WM_Q_INTR_EVCNT_ATTACH(rxq, intr, rxq, i, xname);
8216 WM_Q_INTR_EVCNT_ATTACH(rxq, defer, rxq, i, xname);
8217 WM_Q_MISC_EVCNT_ATTACH(rxq, ipsum, rxq, i, xname);
8218 WM_Q_MISC_EVCNT_ATTACH(rxq, tusum, rxq, i, xname);
8219 if ((sc->sc_type >= WM_T_82575) && !WM_IS_ICHPCH(sc))
8220 WM_Q_MISC_EVCNT_ATTACH(rxq, qdrop, rxq, i, xname);
8221 #endif /* WM_EVENT_COUNTERS */
8222
8223 rx_done++;
8224 }
8225 if (error)
8226 goto fail_2;
8227
8228 return 0;
8229
8230 fail_2:
8231 for (i = 0; i < rx_done; i++) {
8232 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
8233 wm_free_rx_buffer(sc, rxq);
8234 wm_free_rx_descs(sc, rxq);
8235 if (rxq->rxq_lock)
8236 mutex_obj_free(rxq->rxq_lock);
8237 }
8238 fail_1:
8239 for (i = 0; i < tx_done; i++) {
8240 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
8241 pcq_destroy(txq->txq_interq);
8242 wm_free_tx_buffer(sc, txq);
8243 wm_free_tx_descs(sc, txq);
8244 if (txq->txq_lock)
8245 mutex_obj_free(txq->txq_lock);
8246 }
8247
8248 kmem_free(sc->sc_queue,
8249 sizeof(struct wm_queue) * sc->sc_nqueues);
8250 fail_0:
8251 return error;
8252 }
8253
8254 /*
8255 * wm_free_quques:
8256 * Free {tx,rx}descs and {tx,rx} buffers
8257 */
8258 static void
8259 wm_free_txrx_queues(struct wm_softc *sc)
8260 {
8261 int i;
8262
8263 for (i = 0; i < sc->sc_nqueues; i++) {
8264 struct wm_rxqueue *rxq = &sc->sc_queue[i].wmq_rxq;
8265
8266 #ifdef WM_EVENT_COUNTERS
8267 WM_Q_EVCNT_DETACH(rxq, intr, rxq, i);
8268 WM_Q_EVCNT_DETACH(rxq, defer, rxq, i);
8269 WM_Q_EVCNT_DETACH(rxq, ipsum, rxq, i);
8270 WM_Q_EVCNT_DETACH(rxq, tusum, rxq, i);
8271 if ((sc->sc_type >= WM_T_82575) && !WM_IS_ICHPCH(sc))
8272 WM_Q_EVCNT_DETACH(rxq, qdrop, rxq, i);
8273 #endif /* WM_EVENT_COUNTERS */
8274
8275 wm_free_rx_buffer(sc, rxq);
8276 wm_free_rx_descs(sc, rxq);
8277 if (rxq->rxq_lock)
8278 mutex_obj_free(rxq->rxq_lock);
8279 }
8280
8281 for (i = 0; i < sc->sc_nqueues; i++) {
8282 struct wm_txqueue *txq = &sc->sc_queue[i].wmq_txq;
8283 struct mbuf *m;
8284 #ifdef WM_EVENT_COUNTERS
8285 int j;
8286
8287 WM_Q_EVCNT_DETACH(txq, txsstall, txq, i);
8288 WM_Q_EVCNT_DETACH(txq, txdstall, txq, i);
8289 WM_Q_EVCNT_DETACH(txq, fifo_stall, txq, i);
8290 WM_Q_EVCNT_DETACH(txq, txdw, txq, i);
8291 WM_Q_EVCNT_DETACH(txq, txqe, txq, i);
8292 WM_Q_EVCNT_DETACH(txq, ipsum, txq, i);
8293 WM_Q_EVCNT_DETACH(txq, tusum, txq, i);
8294 WM_Q_EVCNT_DETACH(txq, tusum6, txq, i);
8295 WM_Q_EVCNT_DETACH(txq, tso, txq, i);
8296 WM_Q_EVCNT_DETACH(txq, tso6, txq, i);
8297 WM_Q_EVCNT_DETACH(txq, tsopain, txq, i);
8298
8299 for (j = 0; j < WM_NTXSEGS; j++)
8300 evcnt_detach(&txq->txq_ev_txseg[j]);
8301
8302 WM_Q_EVCNT_DETACH(txq, pcqdrop, txq, i);
8303 WM_Q_EVCNT_DETACH(txq, descdrop, txq, i);
8304 WM_Q_EVCNT_DETACH(txq, toomanyseg, txq, i);
8305 WM_Q_EVCNT_DETACH(txq, defrag, txq, i);
8306 if (sc->sc_type <= WM_T_82544)
8307 WM_Q_EVCNT_DETACH(txq, underrun, txq, i);
8308 WM_Q_EVCNT_DETACH(txq, skipcontext, txq, i);
8309 #endif /* WM_EVENT_COUNTERS */
8310
8311 /* Drain txq_interq */
8312 while ((m = pcq_get(txq->txq_interq)) != NULL)
8313 m_freem(m);
8314 pcq_destroy(txq->txq_interq);
8315
8316 wm_free_tx_buffer(sc, txq);
8317 wm_free_tx_descs(sc, txq);
8318 if (txq->txq_lock)
8319 mutex_obj_free(txq->txq_lock);
8320 }
8321
8322 kmem_free(sc->sc_queue, sizeof(struct wm_queue) * sc->sc_nqueues);
8323 }
8324
8325 static void
8326 wm_init_tx_descs(struct wm_softc *sc __unused, struct wm_txqueue *txq)
8327 {
8328
8329 KASSERT(mutex_owned(txq->txq_lock));
8330
8331 /* Initialize the transmit descriptor ring. */
8332 memset(txq->txq_descs, 0, WM_TXDESCS_SIZE(txq));
8333 wm_cdtxsync(txq, 0, WM_NTXDESC(txq),
8334 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
8335 txq->txq_free = WM_NTXDESC(txq);
8336 txq->txq_next = 0;
8337 }
8338
8339 static void
8340 wm_init_tx_regs(struct wm_softc *sc, struct wm_queue *wmq,
8341 struct wm_txqueue *txq)
8342 {
8343
8344 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
8345 device_xname(sc->sc_dev), __func__));
8346 KASSERT(mutex_owned(txq->txq_lock));
8347
8348 if (sc->sc_type < WM_T_82543) {
8349 CSR_WRITE(sc, WMREG_OLD_TDBAH, WM_CDTXADDR_HI(txq, 0));
8350 CSR_WRITE(sc, WMREG_OLD_TDBAL, WM_CDTXADDR_LO(txq, 0));
8351 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCS_SIZE(txq));
8352 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
8353 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
8354 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
8355 } else {
8356 int qid = wmq->wmq_id;
8357
8358 CSR_WRITE(sc, WMREG_TDBAH(qid), WM_CDTXADDR_HI(txq, 0));
8359 CSR_WRITE(sc, WMREG_TDBAL(qid), WM_CDTXADDR_LO(txq, 0));
8360 CSR_WRITE(sc, WMREG_TDLEN(qid), WM_TXDESCS_SIZE(txq));
8361 CSR_WRITE(sc, WMREG_TDH(qid), 0);
8362
8363 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
8364 /*
8365 * Don't write TDT before TCTL.EN is set.
8366 * See the document.
8367 */
8368 CSR_WRITE(sc, WMREG_TXDCTL(qid), TXDCTL_QUEUE_ENABLE
8369 | TXDCTL_PTHRESH(0) | TXDCTL_HTHRESH(0)
8370 | TXDCTL_WTHRESH(0));
8371 else {
8372 /* XXX should update with AIM? */
8373 CSR_WRITE(sc, WMREG_TIDV, wmq->wmq_itr / 4);
8374 if (sc->sc_type >= WM_T_82540) {
8375 /* Should be the same */
8376 CSR_WRITE(sc, WMREG_TADV, wmq->wmq_itr / 4);
8377 }
8378
8379 CSR_WRITE(sc, WMREG_TDT(qid), 0);
8380 CSR_WRITE(sc, WMREG_TXDCTL(qid), TXDCTL_PTHRESH(0) |
8381 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
8382 }
8383 }
8384 }
8385
8386 static void
8387 wm_init_tx_buffer(struct wm_softc *sc __unused, struct wm_txqueue *txq)
8388 {
8389 int i;
8390
8391 KASSERT(mutex_owned(txq->txq_lock));
8392
8393 /* Initialize the transmit job descriptors. */
8394 for (i = 0; i < WM_TXQUEUELEN(txq); i++)
8395 txq->txq_soft[i].txs_mbuf = NULL;
8396 txq->txq_sfree = WM_TXQUEUELEN(txq);
8397 txq->txq_snext = 0;
8398 txq->txq_sdirty = 0;
8399 }
8400
8401 static void
8402 wm_init_tx_queue(struct wm_softc *sc, struct wm_queue *wmq,
8403 struct wm_txqueue *txq)
8404 {
8405
8406 KASSERT(mutex_owned(txq->txq_lock));
8407
8408 /*
8409 * Set up some register offsets that are different between
8410 * the i82542 and the i82543 and later chips.
8411 */
8412 if (sc->sc_type < WM_T_82543)
8413 txq->txq_tdt_reg = WMREG_OLD_TDT;
8414 else
8415 txq->txq_tdt_reg = WMREG_TDT(wmq->wmq_id);
8416
8417 wm_init_tx_descs(sc, txq);
8418 wm_init_tx_regs(sc, wmq, txq);
8419 wm_init_tx_buffer(sc, txq);
8420
8421 /* Clear other than WM_TXQ_LINKDOWN_DISCARD */
8422 txq->txq_flags &= WM_TXQ_LINKDOWN_DISCARD;
8423
8424 txq->txq_sending = false;
8425 }
8426
8427 static void
8428 wm_init_rx_regs(struct wm_softc *sc, struct wm_queue *wmq,
8429 struct wm_rxqueue *rxq)
8430 {
8431
8432 KASSERT(mutex_owned(rxq->rxq_lock));
8433
8434 /*
8435 * Initialize the receive descriptor and receive job
8436 * descriptor rings.
8437 */
8438 if (sc->sc_type < WM_T_82543) {
8439 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(rxq, 0));
8440 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(rxq, 0));
8441 CSR_WRITE(sc, WMREG_OLD_RDLEN0,
8442 rxq->rxq_descsize * rxq->rxq_ndesc);
8443 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
8444 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
8445 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
8446
8447 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
8448 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
8449 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
8450 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
8451 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
8452 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
8453 } else {
8454 int qid = wmq->wmq_id;
8455
8456 CSR_WRITE(sc, WMREG_RDBAH(qid), WM_CDRXADDR_HI(rxq, 0));
8457 CSR_WRITE(sc, WMREG_RDBAL(qid), WM_CDRXADDR_LO(rxq, 0));
8458 CSR_WRITE(sc, WMREG_RDLEN(qid),
8459 rxq->rxq_descsize * rxq->rxq_ndesc);
8460
8461 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
8462 uint32_t srrctl;
8463
8464 if (MCLBYTES & ((1 << SRRCTL_BSIZEPKT_SHIFT) - 1))
8465 panic("%s: MCLBYTES %d unsupported for 82575 "
8466 "or higher\n", __func__, MCLBYTES);
8467
8468 /*
8469 * Currently, support SRRCTL_DESCTYPE_ADV_ONEBUF
8470 * only.
8471 */
8472 srrctl = SRRCTL_DESCTYPE_ADV_ONEBUF
8473 | (MCLBYTES >> SRRCTL_BSIZEPKT_SHIFT);
8474 /*
8475 * Drop frames if the RX descriptor ring has no room.
8476 * This is enabled only on multiqueue system to avoid
8477 * bad influence to other queues.
8478 */
8479 if (sc->sc_nqueues > 1)
8480 srrctl |= SRRCTL_DROP_EN;
8481 CSR_WRITE(sc, WMREG_SRRCTL(qid), srrctl);
8482
8483 CSR_WRITE(sc, WMREG_RXDCTL(qid), RXDCTL_QUEUE_ENABLE
8484 | RXDCTL_PTHRESH(16) | RXDCTL_HTHRESH(8)
8485 | RXDCTL_WTHRESH(1));
8486 CSR_WRITE(sc, WMREG_RDH(qid), 0);
8487 CSR_WRITE(sc, WMREG_RDT(qid), 0);
8488 } else {
8489 CSR_WRITE(sc, WMREG_RDH(qid), 0);
8490 CSR_WRITE(sc, WMREG_RDT(qid), 0);
8491 /* XXX should update with AIM? */
8492 CSR_WRITE(sc, WMREG_RDTR,
8493 (wmq->wmq_itr / 4) | RDTR_FPD);
8494 /* MUST be same */
8495 CSR_WRITE(sc, WMREG_RADV, wmq->wmq_itr / 4);
8496 CSR_WRITE(sc, WMREG_RXDCTL(qid), RXDCTL_PTHRESH(0) |
8497 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
8498 }
8499 }
8500 }
8501
8502 static int
8503 wm_init_rx_buffer(struct wm_softc *sc, struct wm_rxqueue *rxq)
8504 {
8505 struct wm_rxsoft *rxs;
8506 int error, i;
8507
8508 KASSERT(mutex_owned(rxq->rxq_lock));
8509
8510 for (i = 0; i < rxq->rxq_ndesc; i++) {
8511 rxs = &rxq->rxq_soft[i];
8512 if (rxs->rxs_mbuf == NULL) {
8513 if ((error = wm_add_rxbuf(rxq, i)) != 0) {
8514 log(LOG_ERR, "%s: unable to allocate or map "
8515 "rx buffer %d, error = %d\n",
8516 device_xname(sc->sc_dev), i, error);
8517 /*
8518 * XXX Should attempt to run with fewer receive
8519 * XXX buffers instead of just failing.
8520 */
8521 wm_rxdrain(rxq);
8522 return ENOMEM;
8523 }
8524 } else {
8525 /*
8526 * For 82575 and 82576, the RX descriptors must be
8527 * initialized after the setting of RCTL.EN in
8528 * wm_set_filter()
8529 */
8530 if ((sc->sc_flags & WM_F_NEWQUEUE) == 0)
8531 wm_init_rxdesc(rxq, i);
8532 }
8533 }
8534 rxq->rxq_ptr = 0;
8535 rxq->rxq_discard = 0;
8536 WM_RXCHAIN_RESET(rxq);
8537
8538 return 0;
8539 }
8540
8541 static int
8542 wm_init_rx_queue(struct wm_softc *sc, struct wm_queue *wmq,
8543 struct wm_rxqueue *rxq)
8544 {
8545
8546 KASSERT(mutex_owned(rxq->rxq_lock));
8547
8548 /*
8549 * Set up some register offsets that are different between
8550 * the i82542 and the i82543 and later chips.
8551 */
8552 if (sc->sc_type < WM_T_82543)
8553 rxq->rxq_rdt_reg = WMREG_OLD_RDT0;
8554 else
8555 rxq->rxq_rdt_reg = WMREG_RDT(wmq->wmq_id);
8556
8557 wm_init_rx_regs(sc, wmq, rxq);
8558 return wm_init_rx_buffer(sc, rxq);
8559 }
8560
8561 /*
8562 * wm_init_quques:
8563 * Initialize {tx,rx}descs and {tx,rx} buffers
8564 */
8565 static int
8566 wm_init_txrx_queues(struct wm_softc *sc)
8567 {
8568 int i, error = 0;
8569
8570 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
8571 device_xname(sc->sc_dev), __func__));
8572
8573 for (i = 0; i < sc->sc_nqueues; i++) {
8574 struct wm_queue *wmq = &sc->sc_queue[i];
8575 struct wm_txqueue *txq = &wmq->wmq_txq;
8576 struct wm_rxqueue *rxq = &wmq->wmq_rxq;
8577
8578 /*
8579 * TODO
8580 * Currently, use constant variable instead of AIM.
8581 * Furthermore, the interrupt interval of multiqueue which use
8582 * polling mode is less than default value.
8583 * More tuning and AIM are required.
8584 */
8585 if (wm_is_using_multiqueue(sc))
8586 wmq->wmq_itr = 50;
8587 else
8588 wmq->wmq_itr = sc->sc_itr_init;
8589 wmq->wmq_set_itr = true;
8590
8591 mutex_enter(txq->txq_lock);
8592 wm_init_tx_queue(sc, wmq, txq);
8593 mutex_exit(txq->txq_lock);
8594
8595 mutex_enter(rxq->rxq_lock);
8596 error = wm_init_rx_queue(sc, wmq, rxq);
8597 mutex_exit(rxq->rxq_lock);
8598 if (error)
8599 break;
8600 }
8601
8602 return error;
8603 }
8604
8605 /*
8606 * wm_tx_offload:
8607 *
8608 * Set up TCP/IP checksumming parameters for the
8609 * specified packet.
8610 */
8611 static void
8612 wm_tx_offload(struct wm_softc *sc, struct wm_txqueue *txq,
8613 struct wm_txsoft *txs, uint32_t *cmdp, uint8_t *fieldsp)
8614 {
8615 struct mbuf *m0 = txs->txs_mbuf;
8616 struct livengood_tcpip_ctxdesc *t;
8617 uint32_t ipcs, tucs, cmd, cmdlen, seg;
8618 uint32_t ipcse;
8619 struct ether_header *eh;
8620 int offset, iphl;
8621 uint8_t fields;
8622
8623 /*
8624 * XXX It would be nice if the mbuf pkthdr had offset
8625 * fields for the protocol headers.
8626 */
8627
8628 eh = mtod(m0, struct ether_header *);
8629 switch (htons(eh->ether_type)) {
8630 case ETHERTYPE_IP:
8631 case ETHERTYPE_IPV6:
8632 offset = ETHER_HDR_LEN;
8633 break;
8634
8635 case ETHERTYPE_VLAN:
8636 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
8637 break;
8638
8639 default:
8640 /* Don't support this protocol or encapsulation. */
8641 txq->txq_last_hw_cmd = txq->txq_last_hw_fields = 0;
8642 txq->txq_last_hw_ipcs = 0;
8643 txq->txq_last_hw_tucs = 0;
8644 *fieldsp = 0;
8645 *cmdp = 0;
8646 return;
8647 }
8648
8649 if ((m0->m_pkthdr.csum_flags &
8650 (M_CSUM_TSOv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_IPv4)) != 0) {
8651 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
8652 } else
8653 iphl = M_CSUM_DATA_IPv6_IPHL(m0->m_pkthdr.csum_data);
8654
8655 ipcse = offset + iphl - 1;
8656
8657 cmd = WTX_CMD_DEXT | WTX_DTYP_D;
8658 cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
8659 seg = 0;
8660 fields = 0;
8661
8662 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
8663 int hlen = offset + iphl;
8664 bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
8665
8666 if (__predict_false(m0->m_len <
8667 (hlen + sizeof(struct tcphdr)))) {
8668 /*
8669 * TCP/IP headers are not in the first mbuf; we need
8670 * to do this the slow and painful way. Let's just
8671 * hope this doesn't happen very often.
8672 */
8673 struct tcphdr th;
8674
8675 WM_Q_EVCNT_INCR(txq, tsopain);
8676
8677 m_copydata(m0, hlen, sizeof(th), &th);
8678 if (v4) {
8679 struct ip ip;
8680
8681 m_copydata(m0, offset, sizeof(ip), &ip);
8682 ip.ip_len = 0;
8683 m_copyback(m0,
8684 offset + offsetof(struct ip, ip_len),
8685 sizeof(ip.ip_len), &ip.ip_len);
8686 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
8687 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
8688 } else {
8689 struct ip6_hdr ip6;
8690
8691 m_copydata(m0, offset, sizeof(ip6), &ip6);
8692 ip6.ip6_plen = 0;
8693 m_copyback(m0,
8694 offset + offsetof(struct ip6_hdr, ip6_plen),
8695 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
8696 th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
8697 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
8698 }
8699 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
8700 sizeof(th.th_sum), &th.th_sum);
8701
8702 hlen += th.th_off << 2;
8703 } else {
8704 /*
8705 * TCP/IP headers are in the first mbuf; we can do
8706 * this the easy way.
8707 */
8708 struct tcphdr *th;
8709
8710 if (v4) {
8711 struct ip *ip =
8712 (void *)(mtod(m0, char *) + offset);
8713 th = (void *)(mtod(m0, char *) + hlen);
8714
8715 ip->ip_len = 0;
8716 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
8717 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
8718 } else {
8719 struct ip6_hdr *ip6 =
8720 (void *)(mtod(m0, char *) + offset);
8721 th = (void *)(mtod(m0, char *) + hlen);
8722
8723 ip6->ip6_plen = 0;
8724 th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
8725 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
8726 }
8727 hlen += th->th_off << 2;
8728 }
8729
8730 if (v4) {
8731 WM_Q_EVCNT_INCR(txq, tso);
8732 cmdlen |= WTX_TCPIP_CMD_IP;
8733 } else {
8734 WM_Q_EVCNT_INCR(txq, tso6);
8735 ipcse = 0;
8736 }
8737 cmd |= WTX_TCPIP_CMD_TSE;
8738 cmdlen |= WTX_TCPIP_CMD_TSE |
8739 WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
8740 seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
8741 WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
8742 }
8743
8744 /*
8745 * NOTE: Even if we're not using the IP or TCP/UDP checksum
8746 * offload feature, if we load the context descriptor, we
8747 * MUST provide valid values for IPCSS and TUCSS fields.
8748 */
8749
8750 ipcs = WTX_TCPIP_IPCSS(offset) |
8751 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
8752 WTX_TCPIP_IPCSE(ipcse);
8753 if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4 | M_CSUM_TSOv4)) {
8754 WM_Q_EVCNT_INCR(txq, ipsum);
8755 fields |= WTX_IXSM;
8756 }
8757
8758 offset += iphl;
8759
8760 if (m0->m_pkthdr.csum_flags &
8761 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TSOv4)) {
8762 WM_Q_EVCNT_INCR(txq, tusum);
8763 fields |= WTX_TXSM;
8764 tucs = WTX_TCPIP_TUCSS(offset) |
8765 WTX_TCPIP_TUCSO(offset +
8766 M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
8767 WTX_TCPIP_TUCSE(0) /* Rest of packet */;
8768 } else if ((m0->m_pkthdr.csum_flags &
8769 (M_CSUM_TCPv6 | M_CSUM_UDPv6 | M_CSUM_TSOv6)) != 0) {
8770 WM_Q_EVCNT_INCR(txq, tusum6);
8771 fields |= WTX_TXSM;
8772 tucs = WTX_TCPIP_TUCSS(offset) |
8773 WTX_TCPIP_TUCSO(offset +
8774 M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
8775 WTX_TCPIP_TUCSE(0) /* Rest of packet */;
8776 } else {
8777 /* Just initialize it to a valid TCP context. */
8778 tucs = WTX_TCPIP_TUCSS(offset) |
8779 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
8780 WTX_TCPIP_TUCSE(0) /* Rest of packet */;
8781 }
8782
8783 *cmdp = cmd;
8784 *fieldsp = fields;
8785
8786 /*
8787 * We don't have to write context descriptor for every packet
8788 * except for 82574. For 82574, we must write context descriptor
8789 * for every packet when we use two descriptor queues.
8790 *
8791 * The 82574L can only remember the *last* context used
8792 * regardless of queue that it was use for. We cannot reuse
8793 * contexts on this hardware platform and must generate a new
8794 * context every time. 82574L hardware spec, section 7.2.6,
8795 * second note.
8796 */
8797 if (sc->sc_nqueues < 2) {
8798 /*
8799 * Setting up new checksum offload context for every
8800 * frames takes a lot of processing time for hardware.
8801 * This also reduces performance a lot for small sized
8802 * frames so avoid it if driver can use previously
8803 * configured checksum offload context.
8804 * For TSO, in theory we can use the same TSO context only if
8805 * frame is the same type(IP/TCP) and the same MSS. However
8806 * checking whether a frame has the same IP/TCP structure is a
8807 * hard thing so just ignore that and always restablish a
8808 * new TSO context.
8809 */
8810 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6))
8811 == 0) {
8812 if (txq->txq_last_hw_cmd == cmd &&
8813 txq->txq_last_hw_fields == fields &&
8814 txq->txq_last_hw_ipcs == (ipcs & 0xffff) &&
8815 txq->txq_last_hw_tucs == (tucs & 0xffff)) {
8816 WM_Q_EVCNT_INCR(txq, skipcontext);
8817 return;
8818 }
8819 }
8820
8821 txq->txq_last_hw_cmd = cmd;
8822 txq->txq_last_hw_fields = fields;
8823 txq->txq_last_hw_ipcs = (ipcs & 0xffff);
8824 txq->txq_last_hw_tucs = (tucs & 0xffff);
8825 }
8826
8827 /* Fill in the context descriptor. */
8828 t = (struct livengood_tcpip_ctxdesc *)
8829 &txq->txq_descs[txq->txq_next];
8830 t->tcpip_ipcs = htole32(ipcs);
8831 t->tcpip_tucs = htole32(tucs);
8832 t->tcpip_cmdlen = htole32(cmdlen);
8833 t->tcpip_seg = htole32(seg);
8834 wm_cdtxsync(txq, txq->txq_next, 1, BUS_DMASYNC_PREWRITE);
8835
8836 txq->txq_next = WM_NEXTTX(txq, txq->txq_next);
8837 txs->txs_ndesc++;
8838 }
8839
8840 static inline int
8841 wm_select_txqueue(struct ifnet *ifp, struct mbuf *m)
8842 {
8843 struct wm_softc *sc = ifp->if_softc;
8844 u_int cpuid = cpu_index(curcpu());
8845
8846 /*
8847 * Currently, simple distribute strategy.
8848 * TODO:
8849 * distribute by flowid(RSS has value).
8850 */
8851 return ((cpuid + ncpu - sc->sc_affinity_offset) % ncpu) % sc->sc_nqueues;
8852 }
8853
8854 static inline bool
8855 wm_linkdown_discard(struct wm_txqueue *txq)
8856 {
8857
8858 if ((txq->txq_flags & WM_TXQ_LINKDOWN_DISCARD) != 0)
8859 return true;
8860
8861 return false;
8862 }
8863
8864 /*
8865 * wm_start: [ifnet interface function]
8866 *
8867 * Start packet transmission on the interface.
8868 */
8869 static void
8870 wm_start(struct ifnet *ifp)
8871 {
8872 struct wm_softc *sc = ifp->if_softc;
8873 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
8874
8875 KASSERT(if_is_mpsafe(ifp));
8876 /*
8877 * if_obytes and if_omcasts are added in if_transmit()@if.c.
8878 */
8879
8880 mutex_enter(txq->txq_lock);
8881 if (!txq->txq_stopping)
8882 wm_start_locked(ifp);
8883 mutex_exit(txq->txq_lock);
8884 }
8885
8886 static void
8887 wm_start_locked(struct ifnet *ifp)
8888 {
8889 struct wm_softc *sc = ifp->if_softc;
8890 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
8891
8892 wm_send_common_locked(ifp, txq, false);
8893 }
8894
8895 static int
8896 wm_transmit(struct ifnet *ifp, struct mbuf *m)
8897 {
8898 int qid;
8899 struct wm_softc *sc = ifp->if_softc;
8900 struct wm_txqueue *txq;
8901
8902 qid = wm_select_txqueue(ifp, m);
8903 txq = &sc->sc_queue[qid].wmq_txq;
8904
8905 if (__predict_false(!pcq_put(txq->txq_interq, m))) {
8906 m_freem(m);
8907 WM_Q_EVCNT_INCR(txq, pcqdrop);
8908 return ENOBUFS;
8909 }
8910
8911 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
8912 if_statadd_ref(ifp, nsr, if_obytes, m->m_pkthdr.len);
8913 if (m->m_flags & M_MCAST)
8914 if_statinc_ref(ifp, nsr, if_omcasts);
8915 IF_STAT_PUTREF(ifp);
8916
8917 if (mutex_tryenter(txq->txq_lock)) {
8918 if (!txq->txq_stopping)
8919 wm_transmit_locked(ifp, txq);
8920 mutex_exit(txq->txq_lock);
8921 }
8922
8923 return 0;
8924 }
8925
8926 static void
8927 wm_transmit_locked(struct ifnet *ifp, struct wm_txqueue *txq)
8928 {
8929
8930 wm_send_common_locked(ifp, txq, true);
8931 }
8932
8933 static void
8934 wm_send_common_locked(struct ifnet *ifp, struct wm_txqueue *txq,
8935 bool is_transmit)
8936 {
8937 struct wm_softc *sc = ifp->if_softc;
8938 struct mbuf *m0;
8939 struct wm_txsoft *txs;
8940 bus_dmamap_t dmamap;
8941 int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
8942 bus_addr_t curaddr;
8943 bus_size_t seglen, curlen;
8944 uint32_t cksumcmd;
8945 uint8_t cksumfields;
8946 bool remap = true;
8947
8948 KASSERT(mutex_owned(txq->txq_lock));
8949 KASSERT(!txq->txq_stopping);
8950
8951 if ((txq->txq_flags & WM_TXQ_NO_SPACE) != 0)
8952 return;
8953
8954 if (__predict_false(wm_linkdown_discard(txq))) {
8955 do {
8956 if (is_transmit)
8957 m0 = pcq_get(txq->txq_interq);
8958 else
8959 IFQ_DEQUEUE(&ifp->if_snd, m0);
8960 /*
8961 * increment successed packet counter as in the case
8962 * which the packet is discarded by link down PHY.
8963 */
8964 if (m0 != NULL) {
8965 if_statinc(ifp, if_opackets);
8966 m_freem(m0);
8967 }
8968 } while (m0 != NULL);
8969 return;
8970 }
8971
8972 /* Remember the previous number of free descriptors. */
8973 ofree = txq->txq_free;
8974
8975 /*
8976 * Loop through the send queue, setting up transmit descriptors
8977 * until we drain the queue, or use up all available transmit
8978 * descriptors.
8979 */
8980 for (;;) {
8981 m0 = NULL;
8982
8983 /* Get a work queue entry. */
8984 if (txq->txq_sfree < WM_TXQUEUE_GC(txq)) {
8985 wm_txeof(txq, UINT_MAX);
8986 if (txq->txq_sfree == 0) {
8987 DPRINTF(sc, WM_DEBUG_TX,
8988 ("%s: TX: no free job descriptors\n",
8989 device_xname(sc->sc_dev)));
8990 WM_Q_EVCNT_INCR(txq, txsstall);
8991 break;
8992 }
8993 }
8994
8995 /* Grab a packet off the queue. */
8996 if (is_transmit)
8997 m0 = pcq_get(txq->txq_interq);
8998 else
8999 IFQ_DEQUEUE(&ifp->if_snd, m0);
9000 if (m0 == NULL)
9001 break;
9002
9003 DPRINTF(sc, WM_DEBUG_TX,
9004 ("%s: TX: have packet to transmit: %p\n",
9005 device_xname(sc->sc_dev), m0));
9006
9007 txs = &txq->txq_soft[txq->txq_snext];
9008 dmamap = txs->txs_dmamap;
9009
9010 use_tso = (m0->m_pkthdr.csum_flags &
9011 (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0;
9012
9013 /*
9014 * So says the Linux driver:
9015 * The controller does a simple calculation to make sure
9016 * there is enough room in the FIFO before initiating the
9017 * DMA for each buffer. The calc is:
9018 * 4 = ceil(buffer len / MSS)
9019 * To make sure we don't overrun the FIFO, adjust the max
9020 * buffer len if the MSS drops.
9021 */
9022 dmamap->dm_maxsegsz =
9023 (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
9024 ? m0->m_pkthdr.segsz << 2
9025 : WTX_MAX_LEN;
9026
9027 /*
9028 * Load the DMA map. If this fails, the packet either
9029 * didn't fit in the allotted number of segments, or we
9030 * were short on resources. For the too-many-segments
9031 * case, we simply report an error and drop the packet,
9032 * since we can't sanely copy a jumbo packet to a single
9033 * buffer.
9034 */
9035 retry:
9036 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
9037 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
9038 if (__predict_false(error)) {
9039 if (error == EFBIG) {
9040 if (remap == true) {
9041 struct mbuf *m;
9042
9043 remap = false;
9044 m = m_defrag(m0, M_NOWAIT);
9045 if (m != NULL) {
9046 WM_Q_EVCNT_INCR(txq, defrag);
9047 m0 = m;
9048 goto retry;
9049 }
9050 }
9051 WM_Q_EVCNT_INCR(txq, toomanyseg);
9052 log(LOG_ERR, "%s: Tx packet consumes too many "
9053 "DMA segments, dropping...\n",
9054 device_xname(sc->sc_dev));
9055 wm_dump_mbuf_chain(sc, m0);
9056 m_freem(m0);
9057 continue;
9058 }
9059 /* Short on resources, just stop for now. */
9060 DPRINTF(sc, WM_DEBUG_TX,
9061 ("%s: TX: dmamap load failed: %d\n",
9062 device_xname(sc->sc_dev), error));
9063 break;
9064 }
9065
9066 segs_needed = dmamap->dm_nsegs;
9067 if (use_tso) {
9068 /* For sentinel descriptor; see below. */
9069 segs_needed++;
9070 }
9071
9072 /*
9073 * Ensure we have enough descriptors free to describe
9074 * the packet. Note, we always reserve one descriptor
9075 * at the end of the ring due to the semantics of the
9076 * TDT register, plus one more in the event we need
9077 * to load offload context.
9078 */
9079 if (segs_needed > txq->txq_free - 2) {
9080 /*
9081 * Not enough free descriptors to transmit this
9082 * packet. We haven't committed anything yet,
9083 * so just unload the DMA map, put the packet
9084 * pack on the queue, and punt. Notify the upper
9085 * layer that there are no more slots left.
9086 */
9087 DPRINTF(sc, WM_DEBUG_TX,
9088 ("%s: TX: need %d (%d) descriptors, have %d\n",
9089 device_xname(sc->sc_dev), dmamap->dm_nsegs,
9090 segs_needed, txq->txq_free - 1));
9091 txq->txq_flags |= WM_TXQ_NO_SPACE;
9092 bus_dmamap_unload(sc->sc_dmat, dmamap);
9093 WM_Q_EVCNT_INCR(txq, txdstall);
9094 break;
9095 }
9096
9097 /*
9098 * Check for 82547 Tx FIFO bug. We need to do this
9099 * once we know we can transmit the packet, since we
9100 * do some internal FIFO space accounting here.
9101 */
9102 if (sc->sc_type == WM_T_82547 &&
9103 wm_82547_txfifo_bugchk(sc, m0)) {
9104 DPRINTF(sc, WM_DEBUG_TX,
9105 ("%s: TX: 82547 Tx FIFO bug detected\n",
9106 device_xname(sc->sc_dev)));
9107 txq->txq_flags |= WM_TXQ_NO_SPACE;
9108 bus_dmamap_unload(sc->sc_dmat, dmamap);
9109 WM_Q_EVCNT_INCR(txq, fifo_stall);
9110 break;
9111 }
9112
9113 /* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */
9114
9115 DPRINTF(sc, WM_DEBUG_TX,
9116 ("%s: TX: packet has %d (%d) DMA segments\n",
9117 device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed));
9118
9119 WM_EVCNT_INCR(&txq->txq_ev_txseg[dmamap->dm_nsegs - 1]);
9120
9121 /*
9122 * Store a pointer to the packet so that we can free it
9123 * later.
9124 *
9125 * Initially, we consider the number of descriptors the
9126 * packet uses the number of DMA segments. This may be
9127 * incremented by 1 if we do checksum offload (a descriptor
9128 * is used to set the checksum context).
9129 */
9130 txs->txs_mbuf = m0;
9131 txs->txs_firstdesc = txq->txq_next;
9132 txs->txs_ndesc = segs_needed;
9133
9134 /* Set up offload parameters for this packet. */
9135 if (m0->m_pkthdr.csum_flags &
9136 (M_CSUM_TSOv4 | M_CSUM_TSOv6 |
9137 M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4 |
9138 M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
9139 wm_tx_offload(sc, txq, txs, &cksumcmd, &cksumfields);
9140 } else {
9141 txq->txq_last_hw_cmd = txq->txq_last_hw_fields = 0;
9142 txq->txq_last_hw_ipcs = txq->txq_last_hw_tucs = 0;
9143 cksumcmd = 0;
9144 cksumfields = 0;
9145 }
9146
9147 cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
9148
9149 /* Sync the DMA map. */
9150 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
9151 BUS_DMASYNC_PREWRITE);
9152
9153 /* Initialize the transmit descriptor. */
9154 for (nexttx = txq->txq_next, seg = 0;
9155 seg < dmamap->dm_nsegs; seg++) {
9156 for (seglen = dmamap->dm_segs[seg].ds_len,
9157 curaddr = dmamap->dm_segs[seg].ds_addr;
9158 seglen != 0;
9159 curaddr += curlen, seglen -= curlen,
9160 nexttx = WM_NEXTTX(txq, nexttx)) {
9161 curlen = seglen;
9162
9163 /*
9164 * So says the Linux driver:
9165 * Work around for premature descriptor
9166 * write-backs in TSO mode. Append a
9167 * 4-byte sentinel descriptor.
9168 */
9169 if (use_tso && seg == dmamap->dm_nsegs - 1 &&
9170 curlen > 8)
9171 curlen -= 4;
9172
9173 wm_set_dma_addr(
9174 &txq->txq_descs[nexttx].wtx_addr, curaddr);
9175 txq->txq_descs[nexttx].wtx_cmdlen
9176 = htole32(cksumcmd | curlen);
9177 txq->txq_descs[nexttx].wtx_fields.wtxu_status
9178 = 0;
9179 txq->txq_descs[nexttx].wtx_fields.wtxu_options
9180 = cksumfields;
9181 txq->txq_descs[nexttx].wtx_fields.wtxu_vlan =0;
9182 lasttx = nexttx;
9183
9184 DPRINTF(sc, WM_DEBUG_TX,
9185 ("%s: TX: desc %d: low %#" PRIx64 ", "
9186 "len %#04zx\n",
9187 device_xname(sc->sc_dev), nexttx,
9188 (uint64_t)curaddr, curlen));
9189 }
9190 }
9191
9192 KASSERT(lasttx != -1);
9193
9194 /*
9195 * Set up the command byte on the last descriptor of
9196 * the packet. If we're in the interrupt delay window,
9197 * delay the interrupt.
9198 */
9199 txq->txq_descs[lasttx].wtx_cmdlen |=
9200 htole32(WTX_CMD_EOP | WTX_CMD_RS);
9201
9202 /*
9203 * If VLANs are enabled and the packet has a VLAN tag, set
9204 * up the descriptor to encapsulate the packet for us.
9205 *
9206 * This is only valid on the last descriptor of the packet.
9207 */
9208 if (vlan_has_tag(m0)) {
9209 txq->txq_descs[lasttx].wtx_cmdlen |=
9210 htole32(WTX_CMD_VLE);
9211 txq->txq_descs[lasttx].wtx_fields.wtxu_vlan
9212 = htole16(vlan_get_tag(m0));
9213 }
9214
9215 txs->txs_lastdesc = lasttx;
9216
9217 DPRINTF(sc, WM_DEBUG_TX,
9218 ("%s: TX: desc %d: cmdlen 0x%08x\n",
9219 device_xname(sc->sc_dev),
9220 lasttx, le32toh(txq->txq_descs[lasttx].wtx_cmdlen)));
9221
9222 /* Sync the descriptors we're using. */
9223 wm_cdtxsync(txq, txq->txq_next, txs->txs_ndesc,
9224 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
9225
9226 /* Give the packet to the chip. */
9227 CSR_WRITE(sc, txq->txq_tdt_reg, nexttx);
9228
9229 DPRINTF(sc, WM_DEBUG_TX,
9230 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
9231
9232 DPRINTF(sc, WM_DEBUG_TX,
9233 ("%s: TX: finished transmitting packet, job %d\n",
9234 device_xname(sc->sc_dev), txq->txq_snext));
9235
9236 /* Advance the tx pointer. */
9237 txq->txq_free -= txs->txs_ndesc;
9238 txq->txq_next = nexttx;
9239
9240 txq->txq_sfree--;
9241 txq->txq_snext = WM_NEXTTXS(txq, txq->txq_snext);
9242
9243 /* Pass the packet to any BPF listeners. */
9244 bpf_mtap(ifp, m0, BPF_D_OUT);
9245 }
9246
9247 if (m0 != NULL) {
9248 txq->txq_flags |= WM_TXQ_NO_SPACE;
9249 WM_Q_EVCNT_INCR(txq, descdrop);
9250 DPRINTF(sc, WM_DEBUG_TX, ("%s: TX: error after IFQ_DEQUEUE\n",
9251 __func__));
9252 m_freem(m0);
9253 }
9254
9255 if (txq->txq_sfree == 0 || txq->txq_free <= 2) {
9256 /* No more slots; notify upper layer. */
9257 txq->txq_flags |= WM_TXQ_NO_SPACE;
9258 }
9259
9260 if (txq->txq_free != ofree) {
9261 /* Set a watchdog timer in case the chip flakes out. */
9262 txq->txq_lastsent = time_uptime;
9263 txq->txq_sending = true;
9264 }
9265 }
9266
9267 /*
9268 * wm_nq_tx_offload:
9269 *
9270 * Set up TCP/IP checksumming parameters for the
9271 * specified packet, for NEWQUEUE devices
9272 */
9273 static void
9274 wm_nq_tx_offload(struct wm_softc *sc, struct wm_txqueue *txq,
9275 struct wm_txsoft *txs, uint32_t *cmdlenp, uint32_t *fieldsp, bool *do_csum)
9276 {
9277 struct mbuf *m0 = txs->txs_mbuf;
9278 uint32_t vl_len, mssidx, cmdc;
9279 struct ether_header *eh;
9280 int offset, iphl;
9281
9282 /*
9283 * XXX It would be nice if the mbuf pkthdr had offset
9284 * fields for the protocol headers.
9285 */
9286 *cmdlenp = 0;
9287 *fieldsp = 0;
9288
9289 eh = mtod(m0, struct ether_header *);
9290 switch (htons(eh->ether_type)) {
9291 case ETHERTYPE_IP:
9292 case ETHERTYPE_IPV6:
9293 offset = ETHER_HDR_LEN;
9294 break;
9295
9296 case ETHERTYPE_VLAN:
9297 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9298 break;
9299
9300 default:
9301 /* Don't support this protocol or encapsulation. */
9302 *do_csum = false;
9303 return;
9304 }
9305 *do_csum = true;
9306 *cmdlenp = NQTX_DTYP_D | NQTX_CMD_DEXT | NQTX_CMD_IFCS;
9307 cmdc = NQTX_DTYP_C | NQTX_CMD_DEXT;
9308
9309 vl_len = (offset << NQTXC_VLLEN_MACLEN_SHIFT);
9310 KASSERT((offset & ~NQTXC_VLLEN_MACLEN_MASK) == 0);
9311
9312 if ((m0->m_pkthdr.csum_flags &
9313 (M_CSUM_TSOv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_IPv4)) != 0) {
9314 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
9315 } else {
9316 iphl = M_CSUM_DATA_IPv6_IPHL(m0->m_pkthdr.csum_data);
9317 }
9318 vl_len |= (iphl << NQTXC_VLLEN_IPLEN_SHIFT);
9319 KASSERT((iphl & ~NQTXC_VLLEN_IPLEN_MASK) == 0);
9320
9321 if (vlan_has_tag(m0)) {
9322 vl_len |= ((vlan_get_tag(m0) & NQTXC_VLLEN_VLAN_MASK)
9323 << NQTXC_VLLEN_VLAN_SHIFT);
9324 *cmdlenp |= NQTX_CMD_VLE;
9325 }
9326
9327 mssidx = 0;
9328
9329 if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
9330 int hlen = offset + iphl;
9331 int tcp_hlen;
9332 bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
9333
9334 if (__predict_false(m0->m_len <
9335 (hlen + sizeof(struct tcphdr)))) {
9336 /*
9337 * TCP/IP headers are not in the first mbuf; we need
9338 * to do this the slow and painful way. Let's just
9339 * hope this doesn't happen very often.
9340 */
9341 struct tcphdr th;
9342
9343 WM_Q_EVCNT_INCR(txq, tsopain);
9344
9345 m_copydata(m0, hlen, sizeof(th), &th);
9346 if (v4) {
9347 struct ip ip;
9348
9349 m_copydata(m0, offset, sizeof(ip), &ip);
9350 ip.ip_len = 0;
9351 m_copyback(m0,
9352 offset + offsetof(struct ip, ip_len),
9353 sizeof(ip.ip_len), &ip.ip_len);
9354 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
9355 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
9356 } else {
9357 struct ip6_hdr ip6;
9358
9359 m_copydata(m0, offset, sizeof(ip6), &ip6);
9360 ip6.ip6_plen = 0;
9361 m_copyback(m0,
9362 offset + offsetof(struct ip6_hdr, ip6_plen),
9363 sizeof(ip6.ip6_plen), &ip6.ip6_plen);
9364 th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
9365 &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
9366 }
9367 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
9368 sizeof(th.th_sum), &th.th_sum);
9369
9370 tcp_hlen = th.th_off << 2;
9371 } else {
9372 /*
9373 * TCP/IP headers are in the first mbuf; we can do
9374 * this the easy way.
9375 */
9376 struct tcphdr *th;
9377
9378 if (v4) {
9379 struct ip *ip =
9380 (void *)(mtod(m0, char *) + offset);
9381 th = (void *)(mtod(m0, char *) + hlen);
9382
9383 ip->ip_len = 0;
9384 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
9385 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
9386 } else {
9387 struct ip6_hdr *ip6 =
9388 (void *)(mtod(m0, char *) + offset);
9389 th = (void *)(mtod(m0, char *) + hlen);
9390
9391 ip6->ip6_plen = 0;
9392 th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
9393 &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
9394 }
9395 tcp_hlen = th->th_off << 2;
9396 }
9397 hlen += tcp_hlen;
9398 *cmdlenp |= NQTX_CMD_TSE;
9399
9400 if (v4) {
9401 WM_Q_EVCNT_INCR(txq, tso);
9402 *fieldsp |= NQTXD_FIELDS_IXSM | NQTXD_FIELDS_TUXSM;
9403 } else {
9404 WM_Q_EVCNT_INCR(txq, tso6);
9405 *fieldsp |= NQTXD_FIELDS_TUXSM;
9406 }
9407 *fieldsp |= ((m0->m_pkthdr.len - hlen) << NQTXD_FIELDS_PAYLEN_SHIFT);
9408 KASSERT(((m0->m_pkthdr.len - hlen) & ~NQTXD_FIELDS_PAYLEN_MASK) == 0);
9409 mssidx |= (m0->m_pkthdr.segsz << NQTXC_MSSIDX_MSS_SHIFT);
9410 KASSERT((m0->m_pkthdr.segsz & ~NQTXC_MSSIDX_MSS_MASK) == 0);
9411 mssidx |= (tcp_hlen << NQTXC_MSSIDX_L4LEN_SHIFT);
9412 KASSERT((tcp_hlen & ~NQTXC_MSSIDX_L4LEN_MASK) == 0);
9413 } else {
9414 *fieldsp |= (m0->m_pkthdr.len << NQTXD_FIELDS_PAYLEN_SHIFT);
9415 KASSERT((m0->m_pkthdr.len & ~NQTXD_FIELDS_PAYLEN_MASK) == 0);
9416 }
9417
9418 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
9419 *fieldsp |= NQTXD_FIELDS_IXSM;
9420 cmdc |= NQTXC_CMD_IP4;
9421 }
9422
9423 if (m0->m_pkthdr.csum_flags &
9424 (M_CSUM_UDPv4 | M_CSUM_TCPv4 | M_CSUM_TSOv4)) {
9425 WM_Q_EVCNT_INCR(txq, tusum);
9426 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_TSOv4))
9427 cmdc |= NQTXC_CMD_TCP;
9428 else
9429 cmdc |= NQTXC_CMD_UDP;
9430
9431 cmdc |= NQTXC_CMD_IP4;
9432 *fieldsp |= NQTXD_FIELDS_TUXSM;
9433 }
9434 if (m0->m_pkthdr.csum_flags &
9435 (M_CSUM_UDPv6 | M_CSUM_TCPv6 | M_CSUM_TSOv6)) {
9436 WM_Q_EVCNT_INCR(txq, tusum6);
9437 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv6 | M_CSUM_TSOv6))
9438 cmdc |= NQTXC_CMD_TCP;
9439 else
9440 cmdc |= NQTXC_CMD_UDP;
9441
9442 cmdc |= NQTXC_CMD_IP6;
9443 *fieldsp |= NQTXD_FIELDS_TUXSM;
9444 }
9445
9446 /*
9447 * We don't have to write context descriptor for every packet to
9448 * NEWQUEUE controllers, that is 82575, 82576, 82580, I350, I354,
9449 * I210 and I211. It is enough to write once per a Tx queue for these
9450 * controllers.
9451 * It would be overhead to write context descriptor for every packet,
9452 * however it does not cause problems.
9453 */
9454 /* Fill in the context descriptor. */
9455 txq->txq_nq_descs[txq->txq_next].nqtx_ctx.nqtxc_vl_len =
9456 htole32(vl_len);
9457 txq->txq_nq_descs[txq->txq_next].nqtx_ctx.nqtxc_sn = 0;
9458 txq->txq_nq_descs[txq->txq_next].nqtx_ctx.nqtxc_cmd =
9459 htole32(cmdc);
9460 txq->txq_nq_descs[txq->txq_next].nqtx_ctx.nqtxc_mssidx =
9461 htole32(mssidx);
9462 wm_cdtxsync(txq, txq->txq_next, 1, BUS_DMASYNC_PREWRITE);
9463 DPRINTF(sc, WM_DEBUG_TX,
9464 ("%s: TX: context desc %d 0x%08x%08x\n", device_xname(sc->sc_dev),
9465 txq->txq_next, 0, vl_len));
9466 DPRINTF(sc, WM_DEBUG_TX, ("\t0x%08x%08x\n", mssidx, cmdc));
9467 txq->txq_next = WM_NEXTTX(txq, txq->txq_next);
9468 txs->txs_ndesc++;
9469 }
9470
9471 /*
9472 * wm_nq_start: [ifnet interface function]
9473 *
9474 * Start packet transmission on the interface for NEWQUEUE devices
9475 */
9476 static void
9477 wm_nq_start(struct ifnet *ifp)
9478 {
9479 struct wm_softc *sc = ifp->if_softc;
9480 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
9481
9482 KASSERT(if_is_mpsafe(ifp));
9483 /*
9484 * if_obytes and if_omcasts are added in if_transmit()@if.c.
9485 */
9486
9487 mutex_enter(txq->txq_lock);
9488 if (!txq->txq_stopping)
9489 wm_nq_start_locked(ifp);
9490 mutex_exit(txq->txq_lock);
9491 }
9492
9493 static void
9494 wm_nq_start_locked(struct ifnet *ifp)
9495 {
9496 struct wm_softc *sc = ifp->if_softc;
9497 struct wm_txqueue *txq = &sc->sc_queue[0].wmq_txq;
9498
9499 wm_nq_send_common_locked(ifp, txq, false);
9500 }
9501
9502 static int
9503 wm_nq_transmit(struct ifnet *ifp, struct mbuf *m)
9504 {
9505 int qid;
9506 struct wm_softc *sc = ifp->if_softc;
9507 struct wm_txqueue *txq;
9508
9509 qid = wm_select_txqueue(ifp, m);
9510 txq = &sc->sc_queue[qid].wmq_txq;
9511
9512 if (__predict_false(!pcq_put(txq->txq_interq, m))) {
9513 m_freem(m);
9514 WM_Q_EVCNT_INCR(txq, pcqdrop);
9515 return ENOBUFS;
9516 }
9517
9518 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
9519 if_statadd_ref(ifp, nsr, if_obytes, m->m_pkthdr.len);
9520 if (m->m_flags & M_MCAST)
9521 if_statinc_ref(ifp, nsr, if_omcasts);
9522 IF_STAT_PUTREF(ifp);
9523
9524 /*
9525 * The situations which this mutex_tryenter() fails at running time
9526 * are below two patterns.
9527 * (1) contention with interrupt handler(wm_txrxintr_msix())
9528 * (2) contention with deferred if_start softint(wm_handle_queue())
9529 * In the case of (1), the last packet enqueued to txq->txq_interq is
9530 * dequeued by wm_deferred_start_locked(). So, it does not get stuck.
9531 * In the case of (2), the last packet enqueued to txq->txq_interq is
9532 * also dequeued by wm_deferred_start_locked(). So, it does not get
9533 * stuck, either.
9534 */
9535 if (mutex_tryenter(txq->txq_lock)) {
9536 if (!txq->txq_stopping)
9537 wm_nq_transmit_locked(ifp, txq);
9538 mutex_exit(txq->txq_lock);
9539 }
9540
9541 return 0;
9542 }
9543
9544 static void
9545 wm_nq_transmit_locked(struct ifnet *ifp, struct wm_txqueue *txq)
9546 {
9547
9548 wm_nq_send_common_locked(ifp, txq, true);
9549 }
9550
9551 static void
9552 wm_nq_send_common_locked(struct ifnet *ifp, struct wm_txqueue *txq,
9553 bool is_transmit)
9554 {
9555 struct wm_softc *sc = ifp->if_softc;
9556 struct mbuf *m0;
9557 struct wm_txsoft *txs;
9558 bus_dmamap_t dmamap;
9559 int error, nexttx, lasttx = -1, seg, segs_needed;
9560 bool do_csum, sent;
9561 bool remap = true;
9562
9563 KASSERT(mutex_owned(txq->txq_lock));
9564 KASSERT(!txq->txq_stopping);
9565
9566 if ((txq->txq_flags & WM_TXQ_NO_SPACE) != 0)
9567 return;
9568
9569 if (__predict_false(wm_linkdown_discard(txq))) {
9570 do {
9571 if (is_transmit)
9572 m0 = pcq_get(txq->txq_interq);
9573 else
9574 IFQ_DEQUEUE(&ifp->if_snd, m0);
9575 /*
9576 * increment successed packet counter as in the case
9577 * which the packet is discarded by link down PHY.
9578 */
9579 if (m0 != NULL) {
9580 if_statinc(ifp, if_opackets);
9581 m_freem(m0);
9582 }
9583 } while (m0 != NULL);
9584 return;
9585 }
9586
9587 sent = false;
9588
9589 /*
9590 * Loop through the send queue, setting up transmit descriptors
9591 * until we drain the queue, or use up all available transmit
9592 * descriptors.
9593 */
9594 for (;;) {
9595 m0 = NULL;
9596
9597 /* Get a work queue entry. */
9598 if (txq->txq_sfree < WM_TXQUEUE_GC(txq)) {
9599 wm_txeof(txq, UINT_MAX);
9600 if (txq->txq_sfree == 0) {
9601 DPRINTF(sc, WM_DEBUG_TX,
9602 ("%s: TX: no free job descriptors\n",
9603 device_xname(sc->sc_dev)));
9604 WM_Q_EVCNT_INCR(txq, txsstall);
9605 break;
9606 }
9607 }
9608
9609 /* Grab a packet off the queue. */
9610 if (is_transmit)
9611 m0 = pcq_get(txq->txq_interq);
9612 else
9613 IFQ_DEQUEUE(&ifp->if_snd, m0);
9614 if (m0 == NULL)
9615 break;
9616
9617 DPRINTF(sc, WM_DEBUG_TX,
9618 ("%s: TX: have packet to transmit: %p\n",
9619 device_xname(sc->sc_dev), m0));
9620
9621 txs = &txq->txq_soft[txq->txq_snext];
9622 dmamap = txs->txs_dmamap;
9623
9624 /*
9625 * Load the DMA map. If this fails, the packet either
9626 * didn't fit in the allotted number of segments, or we
9627 * were short on resources. For the too-many-segments
9628 * case, we simply report an error and drop the packet,
9629 * since we can't sanely copy a jumbo packet to a single
9630 * buffer.
9631 */
9632 retry:
9633 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
9634 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
9635 if (__predict_false(error)) {
9636 if (error == EFBIG) {
9637 if (remap == true) {
9638 struct mbuf *m;
9639
9640 remap = false;
9641 m = m_defrag(m0, M_NOWAIT);
9642 if (m != NULL) {
9643 WM_Q_EVCNT_INCR(txq, defrag);
9644 m0 = m;
9645 goto retry;
9646 }
9647 }
9648 WM_Q_EVCNT_INCR(txq, toomanyseg);
9649 log(LOG_ERR, "%s: Tx packet consumes too many "
9650 "DMA segments, dropping...\n",
9651 device_xname(sc->sc_dev));
9652 wm_dump_mbuf_chain(sc, m0);
9653 m_freem(m0);
9654 continue;
9655 }
9656 /* Short on resources, just stop for now. */
9657 DPRINTF(sc, WM_DEBUG_TX,
9658 ("%s: TX: dmamap load failed: %d\n",
9659 device_xname(sc->sc_dev), error));
9660 break;
9661 }
9662
9663 segs_needed = dmamap->dm_nsegs;
9664
9665 /*
9666 * Ensure we have enough descriptors free to describe
9667 * the packet. Note, we always reserve one descriptor
9668 * at the end of the ring due to the semantics of the
9669 * TDT register, plus one more in the event we need
9670 * to load offload context.
9671 */
9672 if (segs_needed > txq->txq_free - 2) {
9673 /*
9674 * Not enough free descriptors to transmit this
9675 * packet. We haven't committed anything yet,
9676 * so just unload the DMA map, put the packet
9677 * pack on the queue, and punt. Notify the upper
9678 * layer that there are no more slots left.
9679 */
9680 DPRINTF(sc, WM_DEBUG_TX,
9681 ("%s: TX: need %d (%d) descriptors, have %d\n",
9682 device_xname(sc->sc_dev), dmamap->dm_nsegs,
9683 segs_needed, txq->txq_free - 1));
9684 txq->txq_flags |= WM_TXQ_NO_SPACE;
9685 bus_dmamap_unload(sc->sc_dmat, dmamap);
9686 WM_Q_EVCNT_INCR(txq, txdstall);
9687 break;
9688 }
9689
9690 /* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */
9691
9692 DPRINTF(sc, WM_DEBUG_TX,
9693 ("%s: TX: packet has %d (%d) DMA segments\n",
9694 device_xname(sc->sc_dev), dmamap->dm_nsegs, segs_needed));
9695
9696 WM_EVCNT_INCR(&txq->txq_ev_txseg[dmamap->dm_nsegs - 1]);
9697
9698 /*
9699 * Store a pointer to the packet so that we can free it
9700 * later.
9701 *
9702 * Initially, we consider the number of descriptors the
9703 * packet uses the number of DMA segments. This may be
9704 * incremented by 1 if we do checksum offload (a descriptor
9705 * is used to set the checksum context).
9706 */
9707 txs->txs_mbuf = m0;
9708 txs->txs_firstdesc = txq->txq_next;
9709 txs->txs_ndesc = segs_needed;
9710
9711 /* Set up offload parameters for this packet. */
9712 uint32_t cmdlen, fields, dcmdlen;
9713 if (m0->m_pkthdr.csum_flags &
9714 (M_CSUM_TSOv4 | M_CSUM_TSOv6 |
9715 M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4 |
9716 M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
9717 wm_nq_tx_offload(sc, txq, txs, &cmdlen, &fields,
9718 &do_csum);
9719 } else {
9720 do_csum = false;
9721 cmdlen = 0;
9722 fields = 0;
9723 }
9724
9725 /* Sync the DMA map. */
9726 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
9727 BUS_DMASYNC_PREWRITE);
9728
9729 /* Initialize the first transmit descriptor. */
9730 nexttx = txq->txq_next;
9731 if (!do_csum) {
9732 /* Set up a legacy descriptor */
9733 wm_set_dma_addr(&txq->txq_descs[nexttx].wtx_addr,
9734 dmamap->dm_segs[0].ds_addr);
9735 txq->txq_descs[nexttx].wtx_cmdlen =
9736 htole32(WTX_CMD_IFCS | dmamap->dm_segs[0].ds_len);
9737 txq->txq_descs[nexttx].wtx_fields.wtxu_status = 0;
9738 txq->txq_descs[nexttx].wtx_fields.wtxu_options = 0;
9739 if (vlan_has_tag(m0)) {
9740 txq->txq_descs[nexttx].wtx_cmdlen |=
9741 htole32(WTX_CMD_VLE);
9742 txq->txq_descs[nexttx].wtx_fields.wtxu_vlan =
9743 htole16(vlan_get_tag(m0));
9744 } else
9745 txq->txq_descs[nexttx].wtx_fields.wtxu_vlan =0;
9746
9747 dcmdlen = 0;
9748 } else {
9749 /* Set up an advanced data descriptor */
9750 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_addr =
9751 htole64(dmamap->dm_segs[0].ds_addr);
9752 KASSERT((dmamap->dm_segs[0].ds_len & cmdlen) == 0);
9753 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_cmdlen =
9754 htole32(dmamap->dm_segs[0].ds_len | cmdlen);
9755 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_fields =
9756 htole32(fields);
9757 DPRINTF(sc, WM_DEBUG_TX,
9758 ("%s: TX: adv data desc %d 0x%" PRIx64 "\n",
9759 device_xname(sc->sc_dev), nexttx,
9760 (uint64_t)dmamap->dm_segs[0].ds_addr));
9761 DPRINTF(sc, WM_DEBUG_TX,
9762 ("\t 0x%08x%08x\n", fields,
9763 (uint32_t)dmamap->dm_segs[0].ds_len | cmdlen));
9764 dcmdlen = NQTX_DTYP_D | NQTX_CMD_DEXT;
9765 }
9766
9767 lasttx = nexttx;
9768 nexttx = WM_NEXTTX(txq, nexttx);
9769 /*
9770 * Fill in the next descriptors. Legacy or advanced format
9771 * is the same here.
9772 */
9773 for (seg = 1; seg < dmamap->dm_nsegs;
9774 seg++, nexttx = WM_NEXTTX(txq, nexttx)) {
9775 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_addr =
9776 htole64(dmamap->dm_segs[seg].ds_addr);
9777 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_cmdlen =
9778 htole32(dcmdlen | dmamap->dm_segs[seg].ds_len);
9779 KASSERT((dcmdlen & dmamap->dm_segs[seg].ds_len) == 0);
9780 txq->txq_nq_descs[nexttx].nqtx_data.nqtxd_fields = 0;
9781 lasttx = nexttx;
9782
9783 DPRINTF(sc, WM_DEBUG_TX,
9784 ("%s: TX: desc %d: %#" PRIx64 ", len %#04zx\n",
9785 device_xname(sc->sc_dev), nexttx,
9786 (uint64_t)dmamap->dm_segs[seg].ds_addr,
9787 dmamap->dm_segs[seg].ds_len));
9788 }
9789
9790 KASSERT(lasttx != -1);
9791
9792 /*
9793 * Set up the command byte on the last descriptor of
9794 * the packet. If we're in the interrupt delay window,
9795 * delay the interrupt.
9796 */
9797 KASSERT((WTX_CMD_EOP | WTX_CMD_RS) ==
9798 (NQTX_CMD_EOP | NQTX_CMD_RS));
9799 txq->txq_descs[lasttx].wtx_cmdlen |=
9800 htole32(WTX_CMD_EOP | WTX_CMD_RS);
9801
9802 txs->txs_lastdesc = lasttx;
9803
9804 DPRINTF(sc, WM_DEBUG_TX, ("%s: TX: desc %d: cmdlen 0x%08x\n",
9805 device_xname(sc->sc_dev),
9806 lasttx, le32toh(txq->txq_descs[lasttx].wtx_cmdlen)));
9807
9808 /* Sync the descriptors we're using. */
9809 wm_cdtxsync(txq, txq->txq_next, txs->txs_ndesc,
9810 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
9811
9812 /* Give the packet to the chip. */
9813 CSR_WRITE(sc, txq->txq_tdt_reg, nexttx);
9814 sent = true;
9815
9816 DPRINTF(sc, WM_DEBUG_TX,
9817 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
9818
9819 DPRINTF(sc, WM_DEBUG_TX,
9820 ("%s: TX: finished transmitting packet, job %d\n",
9821 device_xname(sc->sc_dev), txq->txq_snext));
9822
9823 /* Advance the tx pointer. */
9824 txq->txq_free -= txs->txs_ndesc;
9825 txq->txq_next = nexttx;
9826
9827 txq->txq_sfree--;
9828 txq->txq_snext = WM_NEXTTXS(txq, txq->txq_snext);
9829
9830 /* Pass the packet to any BPF listeners. */
9831 bpf_mtap(ifp, m0, BPF_D_OUT);
9832 }
9833
9834 if (m0 != NULL) {
9835 txq->txq_flags |= WM_TXQ_NO_SPACE;
9836 WM_Q_EVCNT_INCR(txq, descdrop);
9837 DPRINTF(sc, WM_DEBUG_TX, ("%s: TX: error after IFQ_DEQUEUE\n",
9838 __func__));
9839 m_freem(m0);
9840 }
9841
9842 if (txq->txq_sfree == 0 || txq->txq_free <= 2) {
9843 /* No more slots; notify upper layer. */
9844 txq->txq_flags |= WM_TXQ_NO_SPACE;
9845 }
9846
9847 if (sent) {
9848 /* Set a watchdog timer in case the chip flakes out. */
9849 txq->txq_lastsent = time_uptime;
9850 txq->txq_sending = true;
9851 }
9852 }
9853
9854 static void
9855 wm_deferred_start_locked(struct wm_txqueue *txq)
9856 {
9857 struct wm_softc *sc = txq->txq_sc;
9858 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
9859 struct wm_queue *wmq = container_of(txq, struct wm_queue, wmq_txq);
9860 int qid = wmq->wmq_id;
9861
9862 KASSERT(mutex_owned(txq->txq_lock));
9863 KASSERT(!txq->txq_stopping);
9864
9865 if ((sc->sc_flags & WM_F_NEWQUEUE) != 0) {
9866 /* XXX need for ALTQ or one CPU system */
9867 if (qid == 0)
9868 wm_nq_start_locked(ifp);
9869 wm_nq_transmit_locked(ifp, txq);
9870 } else {
9871 /* XXX need for ALTQ or one CPU system */
9872 if (qid == 0)
9873 wm_start_locked(ifp);
9874 wm_transmit_locked(ifp, txq);
9875 }
9876 }
9877
9878 /* Interrupt */
9879
9880 /*
9881 * wm_txeof:
9882 *
9883 * Helper; handle transmit interrupts.
9884 */
9885 static bool
9886 wm_txeof(struct wm_txqueue *txq, u_int limit)
9887 {
9888 struct wm_softc *sc = txq->txq_sc;
9889 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
9890 struct wm_txsoft *txs;
9891 int count = 0;
9892 int i;
9893 uint8_t status;
9894 bool more = false;
9895
9896 KASSERT(mutex_owned(txq->txq_lock));
9897
9898 if (txq->txq_stopping)
9899 return false;
9900
9901 txq->txq_flags &= ~WM_TXQ_NO_SPACE;
9902
9903 /*
9904 * Go through the Tx list and free mbufs for those
9905 * frames which have been transmitted.
9906 */
9907 for (i = txq->txq_sdirty; txq->txq_sfree != WM_TXQUEUELEN(txq);
9908 i = WM_NEXTTXS(txq, i), txq->txq_sfree++) {
9909 txs = &txq->txq_soft[i];
9910
9911 DPRINTF(sc, WM_DEBUG_TX, ("%s: TX: checking job %d\n",
9912 device_xname(sc->sc_dev), i));
9913
9914 wm_cdtxsync(txq, txs->txs_firstdesc, txs->txs_ndesc,
9915 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
9916
9917 status =
9918 txq->txq_descs[txs->txs_lastdesc].wtx_fields.wtxu_status;
9919 if ((status & WTX_ST_DD) == 0) {
9920 wm_cdtxsync(txq, txs->txs_lastdesc, 1,
9921 BUS_DMASYNC_PREREAD);
9922 break;
9923 }
9924
9925 if (limit-- == 0) {
9926 more = true;
9927 DPRINTF(sc, WM_DEBUG_TX,
9928 ("%s: TX: loop limited, job %d is not processed\n",
9929 device_xname(sc->sc_dev), i));
9930 break;
9931 }
9932
9933 count++;
9934 DPRINTF(sc, WM_DEBUG_TX,
9935 ("%s: TX: job %d done: descs %d..%d\n",
9936 device_xname(sc->sc_dev), i, txs->txs_firstdesc,
9937 txs->txs_lastdesc));
9938
9939 #ifdef WM_EVENT_COUNTERS
9940 if ((status & WTX_ST_TU) && (sc->sc_type <= WM_T_82544))
9941 WM_Q_EVCNT_INCR(txq, underrun);
9942 #endif /* WM_EVENT_COUNTERS */
9943
9944 /*
9945 * 82574 and newer's document says the status field has neither
9946 * EC (Excessive Collision) bit nor LC (Late Collision) bit
9947 * (reserved). Refer "PCIe GbE Controller Open Source Software
9948 * Developer's Manual", 82574 datasheet and newer.
9949 *
9950 * XXX I saw the LC bit was set on I218 even though the media
9951 * was full duplex, so the bit might be used for other
9952 * meaning ...(I have no document).
9953 */
9954
9955 if (((status & (WTX_ST_EC | WTX_ST_LC)) != 0)
9956 && ((sc->sc_type < WM_T_82574)
9957 || (sc->sc_type == WM_T_80003))) {
9958 if_statinc(ifp, if_oerrors);
9959 if (status & WTX_ST_LC)
9960 log(LOG_WARNING, "%s: late collision\n",
9961 device_xname(sc->sc_dev));
9962 else if (status & WTX_ST_EC) {
9963 if_statadd(ifp, if_collisions,
9964 TX_COLLISION_THRESHOLD + 1);
9965 log(LOG_WARNING, "%s: excessive collisions\n",
9966 device_xname(sc->sc_dev));
9967 }
9968 } else
9969 if_statinc(ifp, if_opackets);
9970
9971 txq->txq_packets++;
9972 txq->txq_bytes += txs->txs_mbuf->m_pkthdr.len;
9973
9974 txq->txq_free += txs->txs_ndesc;
9975 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
9976 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
9977 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
9978 m_freem(txs->txs_mbuf);
9979 txs->txs_mbuf = NULL;
9980 }
9981
9982 /* Update the dirty transmit buffer pointer. */
9983 txq->txq_sdirty = i;
9984 DPRINTF(sc, WM_DEBUG_TX,
9985 ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
9986
9987 if (count != 0)
9988 rnd_add_uint32(&sc->rnd_source, count);
9989
9990 /*
9991 * If there are no more pending transmissions, cancel the watchdog
9992 * timer.
9993 */
9994 if (txq->txq_sfree == WM_TXQUEUELEN(txq))
9995 txq->txq_sending = false;
9996
9997 return more;
9998 }
9999
10000 static inline uint32_t
10001 wm_rxdesc_get_status(struct wm_rxqueue *rxq, int idx)
10002 {
10003 struct wm_softc *sc = rxq->rxq_sc;
10004
10005 if (sc->sc_type == WM_T_82574)
10006 return EXTRXC_STATUS(
10007 le32toh(rxq->rxq_ext_descs[idx].erx_ctx.erxc_err_stat));
10008 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
10009 return NQRXC_STATUS(
10010 le32toh(rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_err_stat));
10011 else
10012 return rxq->rxq_descs[idx].wrx_status;
10013 }
10014
10015 static inline uint32_t
10016 wm_rxdesc_get_errors(struct wm_rxqueue *rxq, int idx)
10017 {
10018 struct wm_softc *sc = rxq->rxq_sc;
10019
10020 if (sc->sc_type == WM_T_82574)
10021 return EXTRXC_ERROR(
10022 le32toh(rxq->rxq_ext_descs[idx].erx_ctx.erxc_err_stat));
10023 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
10024 return NQRXC_ERROR(
10025 le32toh(rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_err_stat));
10026 else
10027 return rxq->rxq_descs[idx].wrx_errors;
10028 }
10029
10030 static inline uint16_t
10031 wm_rxdesc_get_vlantag(struct wm_rxqueue *rxq, int idx)
10032 {
10033 struct wm_softc *sc = rxq->rxq_sc;
10034
10035 if (sc->sc_type == WM_T_82574)
10036 return rxq->rxq_ext_descs[idx].erx_ctx.erxc_vlan;
10037 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
10038 return rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_vlan;
10039 else
10040 return rxq->rxq_descs[idx].wrx_special;
10041 }
10042
10043 static inline int
10044 wm_rxdesc_get_pktlen(struct wm_rxqueue *rxq, int idx)
10045 {
10046 struct wm_softc *sc = rxq->rxq_sc;
10047
10048 if (sc->sc_type == WM_T_82574)
10049 return rxq->rxq_ext_descs[idx].erx_ctx.erxc_pktlen;
10050 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
10051 return rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_pktlen;
10052 else
10053 return rxq->rxq_descs[idx].wrx_len;
10054 }
10055
10056 #ifdef WM_DEBUG
10057 static inline uint32_t
10058 wm_rxdesc_get_rsshash(struct wm_rxqueue *rxq, int idx)
10059 {
10060 struct wm_softc *sc = rxq->rxq_sc;
10061
10062 if (sc->sc_type == WM_T_82574)
10063 return rxq->rxq_ext_descs[idx].erx_ctx.erxc_rsshash;
10064 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
10065 return rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_rsshash;
10066 else
10067 return 0;
10068 }
10069
10070 static inline uint8_t
10071 wm_rxdesc_get_rsstype(struct wm_rxqueue *rxq, int idx)
10072 {
10073 struct wm_softc *sc = rxq->rxq_sc;
10074
10075 if (sc->sc_type == WM_T_82574)
10076 return EXTRXC_RSS_TYPE(rxq->rxq_ext_descs[idx].erx_ctx.erxc_mrq);
10077 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
10078 return NQRXC_RSS_TYPE(rxq->rxq_nq_descs[idx].nqrx_ctx.nrxc_misc);
10079 else
10080 return 0;
10081 }
10082 #endif /* WM_DEBUG */
10083
10084 static inline bool
10085 wm_rxdesc_is_set_status(struct wm_softc *sc, uint32_t status,
10086 uint32_t legacy_bit, uint32_t ext_bit, uint32_t nq_bit)
10087 {
10088
10089 if (sc->sc_type == WM_T_82574)
10090 return (status & ext_bit) != 0;
10091 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
10092 return (status & nq_bit) != 0;
10093 else
10094 return (status & legacy_bit) != 0;
10095 }
10096
10097 static inline bool
10098 wm_rxdesc_is_set_error(struct wm_softc *sc, uint32_t error,
10099 uint32_t legacy_bit, uint32_t ext_bit, uint32_t nq_bit)
10100 {
10101
10102 if (sc->sc_type == WM_T_82574)
10103 return (error & ext_bit) != 0;
10104 else if ((sc->sc_flags & WM_F_NEWQUEUE) != 0)
10105 return (error & nq_bit) != 0;
10106 else
10107 return (error & legacy_bit) != 0;
10108 }
10109
10110 static inline bool
10111 wm_rxdesc_is_eop(struct wm_rxqueue *rxq, uint32_t status)
10112 {
10113
10114 if (wm_rxdesc_is_set_status(rxq->rxq_sc, status,
10115 WRX_ST_EOP, EXTRXC_STATUS_EOP, NQRXC_STATUS_EOP))
10116 return true;
10117 else
10118 return false;
10119 }
10120
10121 static inline bool
10122 wm_rxdesc_has_errors(struct wm_rxqueue *rxq, uint32_t errors)
10123 {
10124 struct wm_softc *sc = rxq->rxq_sc;
10125
10126 /* XXX missing error bit for newqueue? */
10127 if (wm_rxdesc_is_set_error(sc, errors,
10128 WRX_ER_CE | WRX_ER_SE | WRX_ER_SEQ | WRX_ER_CXE | WRX_ER_RXE,
10129 EXTRXC_ERROR_CE | EXTRXC_ERROR_SE | EXTRXC_ERROR_SEQ
10130 | EXTRXC_ERROR_CXE | EXTRXC_ERROR_RXE,
10131 NQRXC_ERROR_RXE)) {
10132 if (wm_rxdesc_is_set_error(sc, errors, WRX_ER_SE,
10133 EXTRXC_ERROR_SE, 0))
10134 log(LOG_WARNING, "%s: symbol error\n",
10135 device_xname(sc->sc_dev));
10136 else if (wm_rxdesc_is_set_error(sc, errors, WRX_ER_SEQ,
10137 EXTRXC_ERROR_SEQ, 0))
10138 log(LOG_WARNING, "%s: receive sequence error\n",
10139 device_xname(sc->sc_dev));
10140 else if (wm_rxdesc_is_set_error(sc, errors, WRX_ER_CE,
10141 EXTRXC_ERROR_CE, 0))
10142 log(LOG_WARNING, "%s: CRC error\n",
10143 device_xname(sc->sc_dev));
10144 return true;
10145 }
10146
10147 return false;
10148 }
10149
10150 static inline bool
10151 wm_rxdesc_dd(struct wm_rxqueue *rxq, int idx, uint32_t status)
10152 {
10153 struct wm_softc *sc = rxq->rxq_sc;
10154
10155 if (!wm_rxdesc_is_set_status(sc, status, WRX_ST_DD, EXTRXC_STATUS_DD,
10156 NQRXC_STATUS_DD)) {
10157 /* We have processed all of the receive descriptors. */
10158 wm_cdrxsync(rxq, idx, BUS_DMASYNC_PREREAD);
10159 return false;
10160 }
10161
10162 return true;
10163 }
10164
10165 static inline bool
10166 wm_rxdesc_input_vlantag(struct wm_rxqueue *rxq, uint32_t status,
10167 uint16_t vlantag, struct mbuf *m)
10168 {
10169
10170 if (wm_rxdesc_is_set_status(rxq->rxq_sc, status,
10171 WRX_ST_VP, EXTRXC_STATUS_VP, NQRXC_STATUS_VP)) {
10172 vlan_set_tag(m, le16toh(vlantag));
10173 }
10174
10175 return true;
10176 }
10177
10178 static inline void
10179 wm_rxdesc_ensure_checksum(struct wm_rxqueue *rxq, uint32_t status,
10180 uint32_t errors, struct mbuf *m)
10181 {
10182 struct wm_softc *sc = rxq->rxq_sc;
10183
10184 if (!wm_rxdesc_is_set_status(sc, status, WRX_ST_IXSM, 0, 0)) {
10185 if (wm_rxdesc_is_set_status(sc, status,
10186 WRX_ST_IPCS, EXTRXC_STATUS_IPCS, NQRXC_STATUS_IPCS)) {
10187 WM_Q_EVCNT_INCR(rxq, ipsum);
10188 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
10189 if (wm_rxdesc_is_set_error(sc, errors,
10190 WRX_ER_IPE, EXTRXC_ERROR_IPE, NQRXC_ERROR_IPE))
10191 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
10192 }
10193 if (wm_rxdesc_is_set_status(sc, status,
10194 WRX_ST_TCPCS, EXTRXC_STATUS_TCPCS, NQRXC_STATUS_L4I)) {
10195 /*
10196 * Note: we don't know if this was TCP or UDP,
10197 * so we just set both bits, and expect the
10198 * upper layers to deal.
10199 */
10200 WM_Q_EVCNT_INCR(rxq, tusum);
10201 m->m_pkthdr.csum_flags |=
10202 M_CSUM_TCPv4 | M_CSUM_UDPv4 |
10203 M_CSUM_TCPv6 | M_CSUM_UDPv6;
10204 if (wm_rxdesc_is_set_error(sc, errors, WRX_ER_TCPE,
10205 EXTRXC_ERROR_TCPE, NQRXC_ERROR_L4E))
10206 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
10207 }
10208 }
10209 }
10210
10211 /*
10212 * wm_rxeof:
10213 *
10214 * Helper; handle receive interrupts.
10215 */
10216 static bool
10217 wm_rxeof(struct wm_rxqueue *rxq, u_int limit)
10218 {
10219 struct wm_softc *sc = rxq->rxq_sc;
10220 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
10221 struct wm_rxsoft *rxs;
10222 struct mbuf *m;
10223 int i, len;
10224 int count = 0;
10225 uint32_t status, errors;
10226 uint16_t vlantag;
10227 bool more = false;
10228
10229 KASSERT(mutex_owned(rxq->rxq_lock));
10230
10231 for (i = rxq->rxq_ptr;; i = WM_NEXTRX(i)) {
10232 rxs = &rxq->rxq_soft[i];
10233
10234 DPRINTF(sc, WM_DEBUG_RX,
10235 ("%s: RX: checking descriptor %d\n",
10236 device_xname(sc->sc_dev), i));
10237 wm_cdrxsync(rxq, i,
10238 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
10239
10240 status = wm_rxdesc_get_status(rxq, i);
10241 errors = wm_rxdesc_get_errors(rxq, i);
10242 len = le16toh(wm_rxdesc_get_pktlen(rxq, i));
10243 vlantag = wm_rxdesc_get_vlantag(rxq, i);
10244 #ifdef WM_DEBUG
10245 uint32_t rsshash = le32toh(wm_rxdesc_get_rsshash(rxq, i));
10246 uint8_t rsstype = wm_rxdesc_get_rsstype(rxq, i);
10247 #endif
10248
10249 if (!wm_rxdesc_dd(rxq, i, status))
10250 break;
10251
10252 if (limit-- == 0) {
10253 more = true;
10254 DPRINTF(sc, WM_DEBUG_RX,
10255 ("%s: RX: loop limited, descriptor %d is not processed\n",
10256 device_xname(sc->sc_dev), i));
10257 break;
10258 }
10259
10260 count++;
10261 if (__predict_false(rxq->rxq_discard)) {
10262 DPRINTF(sc, WM_DEBUG_RX,
10263 ("%s: RX: discarding contents of descriptor %d\n",
10264 device_xname(sc->sc_dev), i));
10265 wm_init_rxdesc(rxq, i);
10266 if (wm_rxdesc_is_eop(rxq, status)) {
10267 /* Reset our state. */
10268 DPRINTF(sc, WM_DEBUG_RX,
10269 ("%s: RX: resetting rxdiscard -> 0\n",
10270 device_xname(sc->sc_dev)));
10271 rxq->rxq_discard = 0;
10272 }
10273 continue;
10274 }
10275
10276 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
10277 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
10278
10279 m = rxs->rxs_mbuf;
10280
10281 /*
10282 * Add a new receive buffer to the ring, unless of
10283 * course the length is zero. Treat the latter as a
10284 * failed mapping.
10285 */
10286 if ((len == 0) || (wm_add_rxbuf(rxq, i) != 0)) {
10287 /*
10288 * Failed, throw away what we've done so
10289 * far, and discard the rest of the packet.
10290 */
10291 if_statinc(ifp, if_ierrors);
10292 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
10293 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
10294 wm_init_rxdesc(rxq, i);
10295 if (!wm_rxdesc_is_eop(rxq, status))
10296 rxq->rxq_discard = 1;
10297 if (rxq->rxq_head != NULL)
10298 m_freem(rxq->rxq_head);
10299 WM_RXCHAIN_RESET(rxq);
10300 DPRINTF(sc, WM_DEBUG_RX,
10301 ("%s: RX: Rx buffer allocation failed, "
10302 "dropping packet%s\n", device_xname(sc->sc_dev),
10303 rxq->rxq_discard ? " (discard)" : ""));
10304 continue;
10305 }
10306
10307 m->m_len = len;
10308 rxq->rxq_len += len;
10309 DPRINTF(sc, WM_DEBUG_RX,
10310 ("%s: RX: buffer at %p len %d\n",
10311 device_xname(sc->sc_dev), m->m_data, len));
10312
10313 /* If this is not the end of the packet, keep looking. */
10314 if (!wm_rxdesc_is_eop(rxq, status)) {
10315 WM_RXCHAIN_LINK(rxq, m);
10316 DPRINTF(sc, WM_DEBUG_RX,
10317 ("%s: RX: not yet EOP, rxlen -> %d\n",
10318 device_xname(sc->sc_dev), rxq->rxq_len));
10319 continue;
10320 }
10321
10322 /*
10323 * Okay, we have the entire packet now. The chip is
10324 * configured to include the FCS except I35[04], I21[01].
10325 * (not all chips can be configured to strip it), so we need
10326 * to trim it. Those chips have an eratta, the RCTL_SECRC bit
10327 * in RCTL register is always set, so we don't trim it.
10328 * PCH2 and newer chip also not include FCS when jumbo
10329 * frame is used to do workaround an errata.
10330 * May need to adjust length of previous mbuf in the
10331 * chain if the current mbuf is too short.
10332 */
10333 if ((sc->sc_flags & WM_F_CRC_STRIP) == 0) {
10334 if (m->m_len < ETHER_CRC_LEN) {
10335 rxq->rxq_tail->m_len
10336 -= (ETHER_CRC_LEN - m->m_len);
10337 m->m_len = 0;
10338 } else
10339 m->m_len -= ETHER_CRC_LEN;
10340 len = rxq->rxq_len - ETHER_CRC_LEN;
10341 } else
10342 len = rxq->rxq_len;
10343
10344 WM_RXCHAIN_LINK(rxq, m);
10345
10346 *rxq->rxq_tailp = NULL;
10347 m = rxq->rxq_head;
10348
10349 WM_RXCHAIN_RESET(rxq);
10350
10351 DPRINTF(sc, WM_DEBUG_RX,
10352 ("%s: RX: have entire packet, len -> %d\n",
10353 device_xname(sc->sc_dev), len));
10354
10355 /* If an error occurred, update stats and drop the packet. */
10356 if (wm_rxdesc_has_errors(rxq, errors)) {
10357 m_freem(m);
10358 continue;
10359 }
10360
10361 /* No errors. Receive the packet. */
10362 m_set_rcvif(m, ifp);
10363 m->m_pkthdr.len = len;
10364 /*
10365 * TODO
10366 * should be save rsshash and rsstype to this mbuf.
10367 */
10368 DPRINTF(sc, WM_DEBUG_RX,
10369 ("%s: RX: RSS type=%" PRIu8 ", RSS hash=%" PRIu32 "\n",
10370 device_xname(sc->sc_dev), rsstype, rsshash));
10371
10372 /*
10373 * If VLANs are enabled, VLAN packets have been unwrapped
10374 * for us. Associate the tag with the packet.
10375 */
10376 if (!wm_rxdesc_input_vlantag(rxq, status, vlantag, m))
10377 continue;
10378
10379 /* Set up checksum info for this packet. */
10380 wm_rxdesc_ensure_checksum(rxq, status, errors, m);
10381
10382 rxq->rxq_packets++;
10383 rxq->rxq_bytes += len;
10384 /* Pass it on. */
10385 if_percpuq_enqueue(sc->sc_ipq, m);
10386
10387 if (rxq->rxq_stopping)
10388 break;
10389 }
10390 rxq->rxq_ptr = i;
10391
10392 if (count != 0)
10393 rnd_add_uint32(&sc->rnd_source, count);
10394
10395 DPRINTF(sc, WM_DEBUG_RX,
10396 ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
10397
10398 return more;
10399 }
10400
10401 /*
10402 * wm_linkintr_gmii:
10403 *
10404 * Helper; handle link interrupts for GMII.
10405 */
10406 static void
10407 wm_linkintr_gmii(struct wm_softc *sc, uint32_t icr)
10408 {
10409 device_t dev = sc->sc_dev;
10410 uint32_t status, reg;
10411 bool link;
10412 bool dopoll = true;
10413 int rv;
10414
10415 KASSERT(mutex_owned(sc->sc_core_lock));
10416
10417 DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s:\n", device_xname(dev),
10418 __func__));
10419
10420 if ((icr & ICR_LSC) == 0) {
10421 if (icr & ICR_RXSEQ)
10422 DPRINTF(sc, WM_DEBUG_LINK,
10423 ("%s: LINK Receive sequence error\n",
10424 device_xname(dev)));
10425 return;
10426 }
10427
10428 /* Link status changed */
10429 status = CSR_READ(sc, WMREG_STATUS);
10430 link = status & STATUS_LU;
10431 if (link) {
10432 DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
10433 device_xname(dev),
10434 (status & STATUS_FD) ? "FDX" : "HDX"));
10435 if (wm_phy_need_linkdown_discard(sc)) {
10436 DPRINTF(sc, WM_DEBUG_LINK,
10437 ("%s: linkintr: Clear linkdown discard flag\n",
10438 device_xname(dev)));
10439 wm_clear_linkdown_discard(sc);
10440 }
10441 } else {
10442 DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
10443 device_xname(dev)));
10444 if (wm_phy_need_linkdown_discard(sc)) {
10445 DPRINTF(sc, WM_DEBUG_LINK,
10446 ("%s: linkintr: Set linkdown discard flag\n",
10447 device_xname(dev)));
10448 wm_set_linkdown_discard(sc);
10449 }
10450 }
10451 if ((sc->sc_type == WM_T_ICH8) && (link == false))
10452 wm_gig_downshift_workaround_ich8lan(sc);
10453
10454 if ((sc->sc_type == WM_T_ICH8) && (sc->sc_phytype == WMPHY_IGP_3))
10455 wm_kmrn_lock_loss_workaround_ich8lan(sc);
10456
10457 DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: LSC -> mii_pollstat\n",
10458 device_xname(dev)));
10459 if ((sc->sc_flags & WM_F_DELAY_LINKUP) != 0) {
10460 if (link) {
10461 /*
10462 * To workaround the problem, it's required to wait
10463 * several hundred miliseconds. The time depend
10464 * on the environment. Wait 1 second for the safety.
10465 */
10466 dopoll = false;
10467 getmicrotime(&sc->sc_linkup_delay_time);
10468 sc->sc_linkup_delay_time.tv_sec += 1;
10469 } else if (sc->sc_linkup_delay_time.tv_sec != 0) {
10470 /*
10471 * Simplify by checking tv_sec only. It's enough.
10472 *
10473 * Currently, it's not required to clear the time.
10474 * It's just to know the timer is stopped
10475 * (for debugging).
10476 */
10477
10478 sc->sc_linkup_delay_time.tv_sec = 0;
10479 sc->sc_linkup_delay_time.tv_usec = 0;
10480 }
10481 }
10482
10483 /*
10484 * Call mii_pollstat().
10485 *
10486 * Some (not all) systems use I35[04] or I21[01] don't send packet soon
10487 * after linkup. The MAC send a packet to the PHY and any error is not
10488 * observed. This behavior causes a problem that gratuitous ARP and/or
10489 * IPv6 DAD packet are silently dropped. To avoid this problem, don't
10490 * call mii_pollstat() here which will send LINK_STATE_UP notification
10491 * to the upper layer. Instead, mii_pollstat() will be called in
10492 * wm_gmii_mediastatus() or mii_tick() will be called in wm_tick().
10493 */
10494 if (dopoll)
10495 mii_pollstat(&sc->sc_mii);
10496
10497 /* Do some workarounds soon after link status is changed. */
10498
10499 if (sc->sc_type == WM_T_82543) {
10500 int miistatus, active;
10501
10502 /*
10503 * With 82543, we need to force speed and
10504 * duplex on the MAC equal to what the PHY
10505 * speed and duplex configuration is.
10506 */
10507 miistatus = sc->sc_mii.mii_media_status;
10508
10509 if (miistatus & IFM_ACTIVE) {
10510 active = sc->sc_mii.mii_media_active;
10511 sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
10512 switch (IFM_SUBTYPE(active)) {
10513 case IFM_10_T:
10514 sc->sc_ctrl |= CTRL_SPEED_10;
10515 break;
10516 case IFM_100_TX:
10517 sc->sc_ctrl |= CTRL_SPEED_100;
10518 break;
10519 case IFM_1000_T:
10520 sc->sc_ctrl |= CTRL_SPEED_1000;
10521 break;
10522 default:
10523 /*
10524 * Fiber?
10525 * Shoud not enter here.
10526 */
10527 device_printf(dev, "unknown media (%x)\n",
10528 active);
10529 break;
10530 }
10531 if (active & IFM_FDX)
10532 sc->sc_ctrl |= CTRL_FD;
10533 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
10534 }
10535 } else if (sc->sc_type == WM_T_PCH) {
10536 wm_k1_gig_workaround_hv(sc,
10537 ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0));
10538 }
10539
10540 /*
10541 * When connected at 10Mbps half-duplex, some parts are excessively
10542 * aggressive resulting in many collisions. To avoid this, increase
10543 * the IPG and reduce Rx latency in the PHY.
10544 */
10545 if ((sc->sc_type >= WM_T_PCH2) && (sc->sc_type <= WM_T_PCH_TGP)
10546 && link) {
10547 uint32_t tipg_reg;
10548 uint32_t speed = __SHIFTOUT(status, STATUS_SPEED);
10549 bool fdx;
10550 uint16_t emi_addr, emi_val;
10551
10552 tipg_reg = CSR_READ(sc, WMREG_TIPG);
10553 tipg_reg &= ~TIPG_IPGT_MASK;
10554 fdx = status & STATUS_FD;
10555
10556 if (!fdx && (speed == STATUS_SPEED_10)) {
10557 tipg_reg |= 0xff;
10558 /* Reduce Rx latency in analog PHY */
10559 emi_val = 0;
10560 } else if ((sc->sc_type >= WM_T_PCH_SPT) &&
10561 fdx && speed != STATUS_SPEED_1000) {
10562 tipg_reg |= 0xc;
10563 emi_val = 1;
10564 } else {
10565 /* Roll back the default values */
10566 tipg_reg |= 0x08;
10567 emi_val = 1;
10568 }
10569
10570 CSR_WRITE(sc, WMREG_TIPG, tipg_reg);
10571
10572 rv = sc->phy.acquire(sc);
10573 if (rv)
10574 return;
10575
10576 if (sc->sc_type == WM_T_PCH2)
10577 emi_addr = I82579_RX_CONFIG;
10578 else
10579 emi_addr = I217_RX_CONFIG;
10580 rv = wm_write_emi_reg_locked(dev, emi_addr, emi_val);
10581
10582 if (sc->sc_type >= WM_T_PCH_LPT) {
10583 uint16_t phy_reg;
10584
10585 sc->phy.readreg_locked(dev, 2,
10586 I217_PLL_CLOCK_GATE_REG, &phy_reg);
10587 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
10588 if (speed == STATUS_SPEED_100
10589 || speed == STATUS_SPEED_10)
10590 phy_reg |= 0x3e8;
10591 else
10592 phy_reg |= 0xfa;
10593 sc->phy.writereg_locked(dev, 2,
10594 I217_PLL_CLOCK_GATE_REG, phy_reg);
10595
10596 if (speed == STATUS_SPEED_1000) {
10597 sc->phy.readreg_locked(dev, 2,
10598 HV_PM_CTRL, &phy_reg);
10599
10600 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
10601
10602 sc->phy.writereg_locked(dev, 2,
10603 HV_PM_CTRL, phy_reg);
10604 }
10605 }
10606 sc->phy.release(sc);
10607
10608 if (rv)
10609 return;
10610
10611 if (sc->sc_type >= WM_T_PCH_SPT) {
10612 uint16_t data, ptr_gap;
10613
10614 if (speed == STATUS_SPEED_1000) {
10615 rv = sc->phy.acquire(sc);
10616 if (rv)
10617 return;
10618
10619 rv = sc->phy.readreg_locked(dev, 2,
10620 I82579_UNKNOWN1, &data);
10621 if (rv) {
10622 sc->phy.release(sc);
10623 return;
10624 }
10625
10626 ptr_gap = (data & (0x3ff << 2)) >> 2;
10627 if (ptr_gap < 0x18) {
10628 data &= ~(0x3ff << 2);
10629 data |= (0x18 << 2);
10630 rv = sc->phy.writereg_locked(dev,
10631 2, I82579_UNKNOWN1, data);
10632 }
10633 sc->phy.release(sc);
10634 if (rv)
10635 return;
10636 } else {
10637 rv = sc->phy.acquire(sc);
10638 if (rv)
10639 return;
10640
10641 rv = sc->phy.writereg_locked(dev, 2,
10642 I82579_UNKNOWN1, 0xc023);
10643 sc->phy.release(sc);
10644 if (rv)
10645 return;
10646
10647 }
10648 }
10649 }
10650
10651 /*
10652 * I217 Packet Loss issue:
10653 * ensure that FEXTNVM4 Beacon Duration is set correctly
10654 * on power up.
10655 * Set the Beacon Duration for I217 to 8 usec
10656 */
10657 if (sc->sc_type >= WM_T_PCH_LPT) {
10658 reg = CSR_READ(sc, WMREG_FEXTNVM4);
10659 reg &= ~FEXTNVM4_BEACON_DURATION;
10660 reg |= FEXTNVM4_BEACON_DURATION_8US;
10661 CSR_WRITE(sc, WMREG_FEXTNVM4, reg);
10662 }
10663
10664 /* Work-around I218 hang issue */
10665 if ((sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_LM) ||
10666 (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_V) ||
10667 (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_LM3) ||
10668 (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_V3))
10669 wm_k1_workaround_lpt_lp(sc, link);
10670
10671 if (sc->sc_type >= WM_T_PCH_LPT) {
10672 /*
10673 * Set platform power management values for Latency
10674 * Tolerance Reporting (LTR)
10675 */
10676 wm_platform_pm_pch_lpt(sc,
10677 ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0));
10678 }
10679
10680 /* Clear link partner's EEE ability */
10681 sc->eee_lp_ability = 0;
10682
10683 /* FEXTNVM6 K1-off workaround */
10684 if (sc->sc_type == WM_T_PCH_SPT) {
10685 reg = CSR_READ(sc, WMREG_FEXTNVM6);
10686 if (CSR_READ(sc, WMREG_PCIEANACFG) & FEXTNVM6_K1_OFF_ENABLE)
10687 reg |= FEXTNVM6_K1_OFF_ENABLE;
10688 else
10689 reg &= ~FEXTNVM6_K1_OFF_ENABLE;
10690 CSR_WRITE(sc, WMREG_FEXTNVM6, reg);
10691 }
10692
10693 if (!link)
10694 return;
10695
10696 switch (sc->sc_type) {
10697 case WM_T_PCH2:
10698 wm_k1_workaround_lv(sc);
10699 /* FALLTHROUGH */
10700 case WM_T_PCH:
10701 if (sc->sc_phytype == WMPHY_82578)
10702 wm_link_stall_workaround_hv(sc);
10703 break;
10704 default:
10705 break;
10706 }
10707
10708 /* Enable/Disable EEE after link up */
10709 if (sc->sc_phytype > WMPHY_82579)
10710 wm_set_eee_pchlan(sc);
10711 }
10712
10713 /*
10714 * wm_linkintr_tbi:
10715 *
10716 * Helper; handle link interrupts for TBI mode.
10717 */
10718 static void
10719 wm_linkintr_tbi(struct wm_softc *sc, uint32_t icr)
10720 {
10721 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
10722 uint32_t status;
10723
10724 DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
10725 __func__));
10726
10727 status = CSR_READ(sc, WMREG_STATUS);
10728 if (icr & ICR_LSC) {
10729 wm_check_for_link(sc);
10730 if (status & STATUS_LU) {
10731 DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
10732 device_xname(sc->sc_dev),
10733 (status & STATUS_FD) ? "FDX" : "HDX"));
10734 /*
10735 * NOTE: CTRL will update TFCE and RFCE automatically,
10736 * so we should update sc->sc_ctrl
10737 */
10738
10739 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
10740 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
10741 sc->sc_fcrtl &= ~FCRTL_XONE;
10742 if (status & STATUS_FD)
10743 sc->sc_tctl |=
10744 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
10745 else
10746 sc->sc_tctl |=
10747 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
10748 if (sc->sc_ctrl & CTRL_TFCE)
10749 sc->sc_fcrtl |= FCRTL_XONE;
10750 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
10751 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
10752 WMREG_OLD_FCRTL : WMREG_FCRTL, sc->sc_fcrtl);
10753 sc->sc_tbi_linkup = 1;
10754 if_link_state_change(ifp, LINK_STATE_UP);
10755 } else {
10756 DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
10757 device_xname(sc->sc_dev)));
10758 sc->sc_tbi_linkup = 0;
10759 if_link_state_change(ifp, LINK_STATE_DOWN);
10760 }
10761 /* Update LED */
10762 wm_tbi_serdes_set_linkled(sc);
10763 } else if (icr & ICR_RXSEQ)
10764 DPRINTF(sc, WM_DEBUG_LINK,
10765 ("%s: LINK: Receive sequence error\n",
10766 device_xname(sc->sc_dev)));
10767 }
10768
10769 /*
10770 * wm_linkintr_serdes:
10771 *
10772 * Helper; handle link interrupts for TBI mode.
10773 */
10774 static void
10775 wm_linkintr_serdes(struct wm_softc *sc, uint32_t icr)
10776 {
10777 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
10778 struct mii_data *mii = &sc->sc_mii;
10779 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
10780 uint32_t pcs_adv, pcs_lpab, reg;
10781
10782 DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s:\n", device_xname(sc->sc_dev),
10783 __func__));
10784
10785 if (icr & ICR_LSC) {
10786 /* Check PCS */
10787 reg = CSR_READ(sc, WMREG_PCS_LSTS);
10788 if ((reg & PCS_LSTS_LINKOK) != 0) {
10789 DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
10790 device_xname(sc->sc_dev)));
10791 mii->mii_media_status |= IFM_ACTIVE;
10792 sc->sc_tbi_linkup = 1;
10793 if_link_state_change(ifp, LINK_STATE_UP);
10794 } else {
10795 DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
10796 device_xname(sc->sc_dev)));
10797 mii->mii_media_status |= IFM_NONE;
10798 sc->sc_tbi_linkup = 0;
10799 if_link_state_change(ifp, LINK_STATE_DOWN);
10800 wm_tbi_serdes_set_linkled(sc);
10801 return;
10802 }
10803 mii->mii_media_active |= IFM_1000_SX;
10804 if ((reg & PCS_LSTS_FDX) != 0)
10805 mii->mii_media_active |= IFM_FDX;
10806 else
10807 mii->mii_media_active |= IFM_HDX;
10808 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
10809 /* Check flow */
10810 reg = CSR_READ(sc, WMREG_PCS_LSTS);
10811 if ((reg & PCS_LSTS_AN_COMP) == 0) {
10812 DPRINTF(sc, WM_DEBUG_LINK,
10813 ("XXX LINKOK but not ACOMP\n"));
10814 return;
10815 }
10816 pcs_adv = CSR_READ(sc, WMREG_PCS_ANADV);
10817 pcs_lpab = CSR_READ(sc, WMREG_PCS_LPAB);
10818 DPRINTF(sc, WM_DEBUG_LINK,
10819 ("XXX AN result %08x, %08x\n", pcs_adv, pcs_lpab));
10820 if ((pcs_adv & TXCW_SYM_PAUSE)
10821 && (pcs_lpab & TXCW_SYM_PAUSE)) {
10822 mii->mii_media_active |= IFM_FLOW
10823 | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
10824 } else if (((pcs_adv & TXCW_SYM_PAUSE) == 0)
10825 && (pcs_adv & TXCW_ASYM_PAUSE)
10826 && (pcs_lpab & TXCW_SYM_PAUSE)
10827 && (pcs_lpab & TXCW_ASYM_PAUSE))
10828 mii->mii_media_active |= IFM_FLOW
10829 | IFM_ETH_TXPAUSE;
10830 else if ((pcs_adv & TXCW_SYM_PAUSE)
10831 && (pcs_adv & TXCW_ASYM_PAUSE)
10832 && ((pcs_lpab & TXCW_SYM_PAUSE) == 0)
10833 && (pcs_lpab & TXCW_ASYM_PAUSE))
10834 mii->mii_media_active |= IFM_FLOW
10835 | IFM_ETH_RXPAUSE;
10836 }
10837 /* Update LED */
10838 wm_tbi_serdes_set_linkled(sc);
10839 } else
10840 DPRINTF(sc, WM_DEBUG_LINK,
10841 ("%s: LINK: Receive sequence error\n",
10842 device_xname(sc->sc_dev)));
10843 }
10844
10845 /*
10846 * wm_linkintr:
10847 *
10848 * Helper; handle link interrupts.
10849 */
10850 static void
10851 wm_linkintr(struct wm_softc *sc, uint32_t icr)
10852 {
10853
10854 KASSERT(mutex_owned(sc->sc_core_lock));
10855
10856 if (sc->sc_flags & WM_F_HAS_MII)
10857 wm_linkintr_gmii(sc, icr);
10858 else if ((sc->sc_mediatype == WM_MEDIATYPE_SERDES)
10859 && ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211)))
10860 wm_linkintr_serdes(sc, icr);
10861 else
10862 wm_linkintr_tbi(sc, icr);
10863 }
10864
10865
10866 static inline void
10867 wm_sched_handle_queue(struct wm_softc *sc, struct wm_queue *wmq)
10868 {
10869
10870 if (wmq->wmq_txrx_use_workqueue) {
10871 if (!wmq->wmq_wq_enqueued) {
10872 wmq->wmq_wq_enqueued = true;
10873 workqueue_enqueue(sc->sc_queue_wq, &wmq->wmq_cookie,
10874 curcpu());
10875 }
10876 } else
10877 softint_schedule(wmq->wmq_si);
10878 }
10879
10880 static inline void
10881 wm_legacy_intr_disable(struct wm_softc *sc)
10882 {
10883
10884 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
10885 }
10886
10887 static inline void
10888 wm_legacy_intr_enable(struct wm_softc *sc)
10889 {
10890
10891 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
10892 }
10893
10894 /*
10895 * wm_intr_legacy:
10896 *
10897 * Interrupt service routine for INTx and MSI.
10898 */
10899 static int
10900 wm_intr_legacy(void *arg)
10901 {
10902 struct wm_softc *sc = arg;
10903 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
10904 struct wm_queue *wmq = &sc->sc_queue[0];
10905 struct wm_txqueue *txq = &wmq->wmq_txq;
10906 struct wm_rxqueue *rxq = &wmq->wmq_rxq;
10907 u_int txlimit = sc->sc_tx_intr_process_limit;
10908 u_int rxlimit = sc->sc_rx_intr_process_limit;
10909 uint32_t icr, rndval = 0;
10910 bool more = false;
10911
10912 icr = CSR_READ(sc, WMREG_ICR);
10913 if ((icr & sc->sc_icr) == 0)
10914 return 0;
10915
10916 DPRINTF(sc, WM_DEBUG_TX,
10917 ("%s: INTx: got intr\n",device_xname(sc->sc_dev)));
10918 if (rndval == 0)
10919 rndval = icr;
10920
10921 mutex_enter(txq->txq_lock);
10922
10923 if (txq->txq_stopping) {
10924 mutex_exit(txq->txq_lock);
10925 return 1;
10926 }
10927
10928 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
10929 if (icr & ICR_TXDW) {
10930 DPRINTF(sc, WM_DEBUG_TX,
10931 ("%s: TX: got TXDW interrupt\n",
10932 device_xname(sc->sc_dev)));
10933 WM_Q_EVCNT_INCR(txq, txdw);
10934 }
10935 #endif
10936 if (txlimit > 0) {
10937 more |= wm_txeof(txq, txlimit);
10938 if (!IF_IS_EMPTY(&ifp->if_snd))
10939 more = true;
10940 } else
10941 more = true;
10942 mutex_exit(txq->txq_lock);
10943
10944 mutex_enter(rxq->rxq_lock);
10945
10946 if (rxq->rxq_stopping) {
10947 mutex_exit(rxq->rxq_lock);
10948 return 1;
10949 }
10950
10951 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
10952 if (icr & (ICR_RXDMT0 | ICR_RXT0)) {
10953 DPRINTF(sc, WM_DEBUG_RX,
10954 ("%s: RX: got Rx intr %#" __PRIxBIT "\n",
10955 device_xname(sc->sc_dev),
10956 icr & (ICR_RXDMT0 | ICR_RXT0)));
10957 WM_Q_EVCNT_INCR(rxq, intr);
10958 }
10959 #endif
10960 if (rxlimit > 0) {
10961 /*
10962 * wm_rxeof() does *not* call upper layer functions directly,
10963 * as if_percpuq_enqueue() just call softint_schedule().
10964 * So, we can call wm_rxeof() in interrupt context.
10965 */
10966 more = wm_rxeof(rxq, rxlimit);
10967 } else
10968 more = true;
10969
10970 mutex_exit(rxq->rxq_lock);
10971
10972 mutex_enter(sc->sc_core_lock);
10973
10974 if (sc->sc_core_stopping) {
10975 mutex_exit(sc->sc_core_lock);
10976 return 1;
10977 }
10978
10979 if (icr & (ICR_LSC | ICR_RXSEQ)) {
10980 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
10981 wm_linkintr(sc, icr);
10982 }
10983 if ((icr & ICR_GPI(0)) != 0)
10984 device_printf(sc->sc_dev, "got module interrupt\n");
10985
10986 mutex_exit(sc->sc_core_lock);
10987
10988 if (icr & ICR_RXO) {
10989 #if defined(WM_DEBUG)
10990 log(LOG_WARNING, "%s: Receive overrun\n",
10991 device_xname(sc->sc_dev));
10992 #endif /* defined(WM_DEBUG) */
10993 }
10994
10995 rnd_add_uint32(&sc->rnd_source, rndval);
10996
10997 if (more) {
10998 /* Try to get more packets going. */
10999 wm_legacy_intr_disable(sc);
11000 wmq->wmq_txrx_use_workqueue = sc->sc_txrx_use_workqueue;
11001 wm_sched_handle_queue(sc, wmq);
11002 }
11003
11004 return 1;
11005 }
11006
11007 static inline void
11008 wm_txrxintr_disable(struct wm_queue *wmq)
11009 {
11010 struct wm_softc *sc = wmq->wmq_txq.txq_sc;
11011
11012 if (__predict_false(!wm_is_using_msix(sc))) {
11013 wm_legacy_intr_disable(sc);
11014 return;
11015 }
11016
11017 if (sc->sc_type == WM_T_82574)
11018 CSR_WRITE(sc, WMREG_IMC,
11019 ICR_TXQ(wmq->wmq_id) | ICR_RXQ(wmq->wmq_id));
11020 else if (sc->sc_type == WM_T_82575)
11021 CSR_WRITE(sc, WMREG_EIMC,
11022 EITR_TX_QUEUE(wmq->wmq_id) | EITR_RX_QUEUE(wmq->wmq_id));
11023 else
11024 CSR_WRITE(sc, WMREG_EIMC, 1 << wmq->wmq_intr_idx);
11025 }
11026
11027 static inline void
11028 wm_txrxintr_enable(struct wm_queue *wmq)
11029 {
11030 struct wm_softc *sc = wmq->wmq_txq.txq_sc;
11031
11032 wm_itrs_calculate(sc, wmq);
11033
11034 if (__predict_false(!wm_is_using_msix(sc))) {
11035 wm_legacy_intr_enable(sc);
11036 return;
11037 }
11038
11039 /*
11040 * ICR_OTHER which is disabled in wm_linkintr_msix() is enabled here.
11041 * There is no need to care about which of RXQ(0) and RXQ(1) enable
11042 * ICR_OTHER in first, because each RXQ/TXQ interrupt is disabled
11043 * while each wm_handle_queue(wmq) is runnig.
11044 */
11045 if (sc->sc_type == WM_T_82574)
11046 CSR_WRITE(sc, WMREG_IMS,
11047 ICR_TXQ(wmq->wmq_id) | ICR_RXQ(wmq->wmq_id) | ICR_OTHER);
11048 else if (sc->sc_type == WM_T_82575)
11049 CSR_WRITE(sc, WMREG_EIMS,
11050 EITR_TX_QUEUE(wmq->wmq_id) | EITR_RX_QUEUE(wmq->wmq_id));
11051 else
11052 CSR_WRITE(sc, WMREG_EIMS, 1 << wmq->wmq_intr_idx);
11053 }
11054
11055 static int
11056 wm_txrxintr_msix(void *arg)
11057 {
11058 struct wm_queue *wmq = arg;
11059 struct wm_txqueue *txq = &wmq->wmq_txq;
11060 struct wm_rxqueue *rxq = &wmq->wmq_rxq;
11061 struct wm_softc *sc = txq->txq_sc;
11062 u_int txlimit = sc->sc_tx_intr_process_limit;
11063 u_int rxlimit = sc->sc_rx_intr_process_limit;
11064 bool txmore;
11065 bool rxmore;
11066
11067 KASSERT(wmq->wmq_intr_idx == wmq->wmq_id);
11068
11069 DPRINTF(sc, WM_DEBUG_TX,
11070 ("%s: TX: got Tx intr\n", device_xname(sc->sc_dev)));
11071
11072 wm_txrxintr_disable(wmq);
11073
11074 mutex_enter(txq->txq_lock);
11075
11076 if (txq->txq_stopping) {
11077 mutex_exit(txq->txq_lock);
11078 return 1;
11079 }
11080
11081 WM_Q_EVCNT_INCR(txq, txdw);
11082 if (txlimit > 0) {
11083 txmore = wm_txeof(txq, txlimit);
11084 /* wm_deferred start() is done in wm_handle_queue(). */
11085 } else
11086 txmore = true;
11087 mutex_exit(txq->txq_lock);
11088
11089 DPRINTF(sc, WM_DEBUG_RX,
11090 ("%s: RX: got Rx intr\n", device_xname(sc->sc_dev)));
11091 mutex_enter(rxq->rxq_lock);
11092
11093 if (rxq->rxq_stopping) {
11094 mutex_exit(rxq->rxq_lock);
11095 return 1;
11096 }
11097
11098 WM_Q_EVCNT_INCR(rxq, intr);
11099 if (rxlimit > 0) {
11100 rxmore = wm_rxeof(rxq, rxlimit);
11101 } else
11102 rxmore = true;
11103 mutex_exit(rxq->rxq_lock);
11104
11105 wm_itrs_writereg(sc, wmq);
11106
11107 if (txmore || rxmore) {
11108 wmq->wmq_txrx_use_workqueue = sc->sc_txrx_use_workqueue;
11109 wm_sched_handle_queue(sc, wmq);
11110 } else
11111 wm_txrxintr_enable(wmq);
11112
11113 return 1;
11114 }
11115
11116 static void
11117 wm_handle_queue(void *arg)
11118 {
11119 struct wm_queue *wmq = arg;
11120 struct wm_txqueue *txq = &wmq->wmq_txq;
11121 struct wm_rxqueue *rxq = &wmq->wmq_rxq;
11122 struct wm_softc *sc = txq->txq_sc;
11123 u_int txlimit = sc->sc_tx_process_limit;
11124 u_int rxlimit = sc->sc_rx_process_limit;
11125 bool txmore;
11126 bool rxmore;
11127
11128 mutex_enter(txq->txq_lock);
11129 if (txq->txq_stopping) {
11130 mutex_exit(txq->txq_lock);
11131 return;
11132 }
11133 txmore = wm_txeof(txq, txlimit);
11134 wm_deferred_start_locked(txq);
11135 mutex_exit(txq->txq_lock);
11136
11137 mutex_enter(rxq->rxq_lock);
11138 if (rxq->rxq_stopping) {
11139 mutex_exit(rxq->rxq_lock);
11140 return;
11141 }
11142 WM_Q_EVCNT_INCR(rxq, defer);
11143 rxmore = wm_rxeof(rxq, rxlimit);
11144 mutex_exit(rxq->rxq_lock);
11145
11146 if (txmore || rxmore) {
11147 wmq->wmq_txrx_use_workqueue = sc->sc_txrx_use_workqueue;
11148 wm_sched_handle_queue(sc, wmq);
11149 } else
11150 wm_txrxintr_enable(wmq);
11151 }
11152
11153 static void
11154 wm_handle_queue_work(struct work *wk, void *context)
11155 {
11156 struct wm_queue *wmq = container_of(wk, struct wm_queue, wmq_cookie);
11157
11158 /*
11159 * Some qemu environment workaround. They don't stop interrupt
11160 * immediately.
11161 */
11162 wmq->wmq_wq_enqueued = false;
11163 wm_handle_queue(wmq);
11164 }
11165
11166 /*
11167 * wm_linkintr_msix:
11168 *
11169 * Interrupt service routine for link status change for MSI-X.
11170 */
11171 static int
11172 wm_linkintr_msix(void *arg)
11173 {
11174 struct wm_softc *sc = arg;
11175 uint32_t reg;
11176 bool has_rxo;
11177
11178 reg = CSR_READ(sc, WMREG_ICR);
11179 mutex_enter(sc->sc_core_lock);
11180 DPRINTF(sc, WM_DEBUG_LINK,
11181 ("%s: LINK: got link intr. ICR = %08x\n",
11182 device_xname(sc->sc_dev), reg));
11183
11184 if (sc->sc_core_stopping)
11185 goto out;
11186
11187 if ((reg & ICR_LSC) != 0) {
11188 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
11189 wm_linkintr(sc, ICR_LSC);
11190 }
11191 if ((reg & ICR_GPI(0)) != 0)
11192 device_printf(sc->sc_dev, "got module interrupt\n");
11193
11194 /*
11195 * XXX 82574 MSI-X mode workaround
11196 *
11197 * 82574 MSI-X mode causes a receive overrun(RXO) interrupt as an
11198 * ICR_OTHER MSI-X vector; furthermore it causes neither ICR_RXQ(0)
11199 * nor ICR_RXQ(1) vectors. So, we generate ICR_RXQ(0) and ICR_RXQ(1)
11200 * interrupts by writing WMREG_ICS to process receive packets.
11201 */
11202 if (sc->sc_type == WM_T_82574 && ((reg & ICR_RXO) != 0)) {
11203 #if defined(WM_DEBUG)
11204 log(LOG_WARNING, "%s: Receive overrun\n",
11205 device_xname(sc->sc_dev));
11206 #endif /* defined(WM_DEBUG) */
11207
11208 has_rxo = true;
11209 /*
11210 * The RXO interrupt is very high rate when receive traffic is
11211 * high rate. We use polling mode for ICR_OTHER like Tx/Rx
11212 * interrupts. ICR_OTHER will be enabled at the end of
11213 * wm_txrxintr_msix() which is kicked by both ICR_RXQ(0) and
11214 * ICR_RXQ(1) interrupts.
11215 */
11216 CSR_WRITE(sc, WMREG_IMC, ICR_OTHER);
11217
11218 CSR_WRITE(sc, WMREG_ICS, ICR_RXQ(0) | ICR_RXQ(1));
11219 }
11220
11221
11222
11223 out:
11224 mutex_exit(sc->sc_core_lock);
11225
11226 if (sc->sc_type == WM_T_82574) {
11227 if (!has_rxo)
11228 CSR_WRITE(sc, WMREG_IMS, ICR_OTHER | ICR_LSC);
11229 else
11230 CSR_WRITE(sc, WMREG_IMS, ICR_LSC);
11231 } else if (sc->sc_type == WM_T_82575)
11232 CSR_WRITE(sc, WMREG_EIMS, EITR_OTHER);
11233 else
11234 CSR_WRITE(sc, WMREG_EIMS, 1 << sc->sc_link_intr_idx);
11235
11236 return 1;
11237 }
11238
11239 /*
11240 * Media related.
11241 * GMII, SGMII, TBI (and SERDES)
11242 */
11243
11244 /* Common */
11245
11246 /*
11247 * wm_tbi_serdes_set_linkled:
11248 *
11249 * Update the link LED on TBI and SERDES devices.
11250 */
11251 static void
11252 wm_tbi_serdes_set_linkled(struct wm_softc *sc)
11253 {
11254
11255 if (sc->sc_tbi_linkup)
11256 sc->sc_ctrl |= CTRL_SWDPIN(0);
11257 else
11258 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
11259
11260 /* 82540 or newer devices are active low */
11261 sc->sc_ctrl ^= (sc->sc_type >= WM_T_82540) ? CTRL_SWDPIN(0) : 0;
11262
11263 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
11264 }
11265
11266 /* GMII related */
11267
11268 /*
11269 * wm_gmii_reset:
11270 *
11271 * Reset the PHY.
11272 */
11273 static void
11274 wm_gmii_reset(struct wm_softc *sc)
11275 {
11276 uint32_t reg;
11277 int rv;
11278
11279 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
11280 device_xname(sc->sc_dev), __func__));
11281
11282 rv = sc->phy.acquire(sc);
11283 if (rv != 0) {
11284 aprint_error_dev(sc->sc_dev, "%s: failed to get semaphore\n",
11285 __func__);
11286 return;
11287 }
11288
11289 switch (sc->sc_type) {
11290 case WM_T_82542_2_0:
11291 case WM_T_82542_2_1:
11292 /* null */
11293 break;
11294 case WM_T_82543:
11295 /*
11296 * With 82543, we need to force speed and duplex on the MAC
11297 * equal to what the PHY speed and duplex configuration is.
11298 * In addition, we need to perform a hardware reset on the PHY
11299 * to take it out of reset.
11300 */
11301 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
11302 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
11303
11304 /* The PHY reset pin is active-low. */
11305 reg = CSR_READ(sc, WMREG_CTRL_EXT);
11306 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
11307 CTRL_EXT_SWDPIN(4));
11308 reg |= CTRL_EXT_SWDPIO(4);
11309
11310 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
11311 CSR_WRITE_FLUSH(sc);
11312 delay(10*1000);
11313
11314 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
11315 CSR_WRITE_FLUSH(sc);
11316 delay(150);
11317 #if 0
11318 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
11319 #endif
11320 delay(20*1000); /* XXX extra delay to get PHY ID? */
11321 break;
11322 case WM_T_82544: /* Reset 10000us */
11323 case WM_T_82540:
11324 case WM_T_82545:
11325 case WM_T_82545_3:
11326 case WM_T_82546:
11327 case WM_T_82546_3:
11328 case WM_T_82541:
11329 case WM_T_82541_2:
11330 case WM_T_82547:
11331 case WM_T_82547_2:
11332 case WM_T_82571: /* Reset 100us */
11333 case WM_T_82572:
11334 case WM_T_82573:
11335 case WM_T_82574:
11336 case WM_T_82575:
11337 case WM_T_82576:
11338 case WM_T_82580:
11339 case WM_T_I350:
11340 case WM_T_I354:
11341 case WM_T_I210:
11342 case WM_T_I211:
11343 case WM_T_82583:
11344 case WM_T_80003:
11345 /* Generic reset */
11346 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
11347 CSR_WRITE_FLUSH(sc);
11348 delay(20000);
11349 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
11350 CSR_WRITE_FLUSH(sc);
11351 delay(20000);
11352
11353 if ((sc->sc_type == WM_T_82541)
11354 || (sc->sc_type == WM_T_82541_2)
11355 || (sc->sc_type == WM_T_82547)
11356 || (sc->sc_type == WM_T_82547_2)) {
11357 /* Workaround for igp are done in igp_reset() */
11358 /* XXX add code to set LED after phy reset */
11359 }
11360 break;
11361 case WM_T_ICH8:
11362 case WM_T_ICH9:
11363 case WM_T_ICH10:
11364 case WM_T_PCH:
11365 case WM_T_PCH2:
11366 case WM_T_PCH_LPT:
11367 case WM_T_PCH_SPT:
11368 case WM_T_PCH_CNP:
11369 case WM_T_PCH_TGP:
11370 /* Generic reset */
11371 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
11372 CSR_WRITE_FLUSH(sc);
11373 delay(100);
11374 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
11375 CSR_WRITE_FLUSH(sc);
11376 delay(150);
11377 break;
11378 default:
11379 panic("%s: %s: unknown type\n", device_xname(sc->sc_dev),
11380 __func__);
11381 break;
11382 }
11383
11384 sc->phy.release(sc);
11385
11386 /* get_cfg_done */
11387 wm_get_cfg_done(sc);
11388
11389 /* Extra setup */
11390 switch (sc->sc_type) {
11391 case WM_T_82542_2_0:
11392 case WM_T_82542_2_1:
11393 case WM_T_82543:
11394 case WM_T_82544:
11395 case WM_T_82540:
11396 case WM_T_82545:
11397 case WM_T_82545_3:
11398 case WM_T_82546:
11399 case WM_T_82546_3:
11400 case WM_T_82541_2:
11401 case WM_T_82547_2:
11402 case WM_T_82571:
11403 case WM_T_82572:
11404 case WM_T_82573:
11405 case WM_T_82574:
11406 case WM_T_82583:
11407 case WM_T_82575:
11408 case WM_T_82576:
11409 case WM_T_82580:
11410 case WM_T_I350:
11411 case WM_T_I354:
11412 case WM_T_I210:
11413 case WM_T_I211:
11414 case WM_T_80003:
11415 /* Null */
11416 break;
11417 case WM_T_82541:
11418 case WM_T_82547:
11419 /* XXX Configure actively LED after PHY reset */
11420 break;
11421 case WM_T_ICH8:
11422 case WM_T_ICH9:
11423 case WM_T_ICH10:
11424 case WM_T_PCH:
11425 case WM_T_PCH2:
11426 case WM_T_PCH_LPT:
11427 case WM_T_PCH_SPT:
11428 case WM_T_PCH_CNP:
11429 case WM_T_PCH_TGP:
11430 wm_phy_post_reset(sc);
11431 break;
11432 default:
11433 panic("%s: unknown type\n", __func__);
11434 break;
11435 }
11436 }
11437
11438 /*
11439 * Set up sc_phytype and mii_{read|write}reg.
11440 *
11441 * To identify PHY type, correct read/write function should be selected.
11442 * To select correct read/write function, PCI ID or MAC type are required
11443 * without accessing PHY registers.
11444 *
11445 * On the first call of this function, PHY ID is not known yet. Check
11446 * PCI ID or MAC type. The list of the PCI ID may not be perfect, so the
11447 * result might be incorrect.
11448 *
11449 * In the second call, PHY OUI and model is used to identify PHY type.
11450 * It might not be perfect because of the lack of compared entry, but it
11451 * would be better than the first call.
11452 *
11453 * If the detected new result and previous assumption is different,
11454 * a diagnostic message will be printed.
11455 */
11456 static void
11457 wm_gmii_setup_phytype(struct wm_softc *sc, uint32_t phy_oui,
11458 uint16_t phy_model)
11459 {
11460 device_t dev = sc->sc_dev;
11461 struct mii_data *mii = &sc->sc_mii;
11462 uint16_t new_phytype = WMPHY_UNKNOWN;
11463 uint16_t doubt_phytype = WMPHY_UNKNOWN;
11464 mii_readreg_t new_readreg;
11465 mii_writereg_t new_writereg;
11466 bool dodiag = true;
11467
11468 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
11469 device_xname(sc->sc_dev), __func__));
11470
11471 /*
11472 * 1000BASE-T SFP uses SGMII and the first asumed PHY type is always
11473 * incorrect. So don't print diag output when it's 2nd call.
11474 */
11475 if ((sc->sc_sfptype != 0) && (phy_oui == 0) && (phy_model == 0))
11476 dodiag = false;
11477
11478 if (mii->mii_readreg == NULL) {
11479 /*
11480 * This is the first call of this function. For ICH and PCH
11481 * variants, it's difficult to determine the PHY access method
11482 * by sc_type, so use the PCI product ID for some devices.
11483 */
11484
11485 switch (sc->sc_pcidevid) {
11486 case PCI_PRODUCT_INTEL_PCH_M_LM:
11487 case PCI_PRODUCT_INTEL_PCH_M_LC:
11488 /* 82577 */
11489 new_phytype = WMPHY_82577;
11490 break;
11491 case PCI_PRODUCT_INTEL_PCH_D_DM:
11492 case PCI_PRODUCT_INTEL_PCH_D_DC:
11493 /* 82578 */
11494 new_phytype = WMPHY_82578;
11495 break;
11496 case PCI_PRODUCT_INTEL_PCH2_LV_LM:
11497 case PCI_PRODUCT_INTEL_PCH2_LV_V:
11498 /* 82579 */
11499 new_phytype = WMPHY_82579;
11500 break;
11501 case PCI_PRODUCT_INTEL_82801H_82567V_3:
11502 case PCI_PRODUCT_INTEL_82801I_BM:
11503 case PCI_PRODUCT_INTEL_82801I_IGP_M_AMT: /* Not IGP but BM */
11504 case PCI_PRODUCT_INTEL_82801J_R_BM_LM:
11505 case PCI_PRODUCT_INTEL_82801J_R_BM_LF:
11506 case PCI_PRODUCT_INTEL_82801J_D_BM_LM:
11507 case PCI_PRODUCT_INTEL_82801J_D_BM_LF:
11508 case PCI_PRODUCT_INTEL_82801J_R_BM_V:
11509 /* ICH8, 9, 10 with 82567 */
11510 new_phytype = WMPHY_BM;
11511 break;
11512 default:
11513 break;
11514 }
11515 } else {
11516 /* It's not the first call. Use PHY OUI and model */
11517 switch (phy_oui) {
11518 case MII_OUI_ATTANSIC: /* atphy(4) */
11519 switch (phy_model) {
11520 case MII_MODEL_ATTANSIC_AR8021:
11521 new_phytype = WMPHY_82578;
11522 break;
11523 default:
11524 break;
11525 }
11526 break;
11527 case MII_OUI_xxMARVELL:
11528 switch (phy_model) {
11529 case MII_MODEL_xxMARVELL_I210:
11530 new_phytype = WMPHY_I210;
11531 break;
11532 case MII_MODEL_xxMARVELL_E1011:
11533 case MII_MODEL_xxMARVELL_E1000_3:
11534 case MII_MODEL_xxMARVELL_E1000_5:
11535 case MII_MODEL_xxMARVELL_E1112:
11536 new_phytype = WMPHY_M88;
11537 break;
11538 case MII_MODEL_xxMARVELL_E1149:
11539 new_phytype = WMPHY_BM;
11540 break;
11541 case MII_MODEL_xxMARVELL_E1111:
11542 case MII_MODEL_xxMARVELL_I347:
11543 case MII_MODEL_xxMARVELL_E1512:
11544 case MII_MODEL_xxMARVELL_E1340M:
11545 case MII_MODEL_xxMARVELL_E1543:
11546 new_phytype = WMPHY_M88;
11547 break;
11548 case MII_MODEL_xxMARVELL_I82563:
11549 new_phytype = WMPHY_GG82563;
11550 break;
11551 default:
11552 break;
11553 }
11554 break;
11555 case MII_OUI_INTEL:
11556 switch (phy_model) {
11557 case MII_MODEL_INTEL_I82577:
11558 new_phytype = WMPHY_82577;
11559 break;
11560 case MII_MODEL_INTEL_I82579:
11561 new_phytype = WMPHY_82579;
11562 break;
11563 case MII_MODEL_INTEL_I217:
11564 new_phytype = WMPHY_I217;
11565 break;
11566 case MII_MODEL_INTEL_I82580:
11567 new_phytype = WMPHY_82580;
11568 break;
11569 case MII_MODEL_INTEL_I350:
11570 new_phytype = WMPHY_I350;
11571 break;
11572 default:
11573 break;
11574 }
11575 break;
11576 case MII_OUI_yyINTEL:
11577 switch (phy_model) {
11578 case MII_MODEL_yyINTEL_I82562G:
11579 case MII_MODEL_yyINTEL_I82562EM:
11580 case MII_MODEL_yyINTEL_I82562ET:
11581 new_phytype = WMPHY_IFE;
11582 break;
11583 case MII_MODEL_yyINTEL_IGP01E1000:
11584 new_phytype = WMPHY_IGP;
11585 break;
11586 case MII_MODEL_yyINTEL_I82566:
11587 new_phytype = WMPHY_IGP_3;
11588 break;
11589 default:
11590 break;
11591 }
11592 break;
11593 default:
11594 break;
11595 }
11596
11597 if (dodiag) {
11598 if (new_phytype == WMPHY_UNKNOWN)
11599 aprint_verbose_dev(dev,
11600 "%s: Unknown PHY model. OUI=%06x, "
11601 "model=%04x\n", __func__, phy_oui,
11602 phy_model);
11603
11604 if ((sc->sc_phytype != WMPHY_UNKNOWN)
11605 && (sc->sc_phytype != new_phytype)) {
11606 aprint_error_dev(dev, "Previously assumed PHY "
11607 "type(%u) was incorrect. PHY type from PHY"
11608 "ID = %u\n", sc->sc_phytype, new_phytype);
11609 }
11610 }
11611 }
11612
11613 /* Next, use sc->sc_flags and sc->sc_type to set read/write funcs. */
11614 if (((sc->sc_flags & WM_F_SGMII) != 0) && !wm_sgmii_uses_mdio(sc)) {
11615 /* SGMII */
11616 new_readreg = wm_sgmii_readreg;
11617 new_writereg = wm_sgmii_writereg;
11618 } else if ((sc->sc_type == WM_T_82574) || (sc->sc_type == WM_T_82583)){
11619 /* BM2 (phyaddr == 1) */
11620 if ((sc->sc_phytype != WMPHY_UNKNOWN)
11621 && (new_phytype != WMPHY_BM)
11622 && (new_phytype != WMPHY_UNKNOWN))
11623 doubt_phytype = new_phytype;
11624 new_phytype = WMPHY_BM;
11625 new_readreg = wm_gmii_bm_readreg;
11626 new_writereg = wm_gmii_bm_writereg;
11627 } else if (sc->sc_type >= WM_T_PCH) {
11628 /* All PCH* use _hv_ */
11629 new_readreg = wm_gmii_hv_readreg;
11630 new_writereg = wm_gmii_hv_writereg;
11631 } else if (sc->sc_type >= WM_T_ICH8) {
11632 /* non-82567 ICH8, 9 and 10 */
11633 new_readreg = wm_gmii_i82544_readreg;
11634 new_writereg = wm_gmii_i82544_writereg;
11635 } else if (sc->sc_type >= WM_T_80003) {
11636 /* 80003 */
11637 if ((sc->sc_phytype != WMPHY_UNKNOWN)
11638 && (new_phytype != WMPHY_GG82563)
11639 && (new_phytype != WMPHY_UNKNOWN))
11640 doubt_phytype = new_phytype;
11641 new_phytype = WMPHY_GG82563;
11642 new_readreg = wm_gmii_i80003_readreg;
11643 new_writereg = wm_gmii_i80003_writereg;
11644 } else if (sc->sc_type >= WM_T_I210) {
11645 /* I210 and I211 */
11646 if ((sc->sc_phytype != WMPHY_UNKNOWN)
11647 && (new_phytype != WMPHY_I210)
11648 && (new_phytype != WMPHY_UNKNOWN))
11649 doubt_phytype = new_phytype;
11650 new_phytype = WMPHY_I210;
11651 new_readreg = wm_gmii_gs40g_readreg;
11652 new_writereg = wm_gmii_gs40g_writereg;
11653 } else if (sc->sc_type >= WM_T_82580) {
11654 /* 82580, I350 and I354 */
11655 new_readreg = wm_gmii_82580_readreg;
11656 new_writereg = wm_gmii_82580_writereg;
11657 } else if (sc->sc_type >= WM_T_82544) {
11658 /* 82544, 0, [56], [17], 8257[1234] and 82583 */
11659 new_readreg = wm_gmii_i82544_readreg;
11660 new_writereg = wm_gmii_i82544_writereg;
11661 } else {
11662 new_readreg = wm_gmii_i82543_readreg;
11663 new_writereg = wm_gmii_i82543_writereg;
11664 }
11665
11666 if (new_phytype == WMPHY_BM) {
11667 /* All BM use _bm_ */
11668 new_readreg = wm_gmii_bm_readreg;
11669 new_writereg = wm_gmii_bm_writereg;
11670 }
11671 if ((sc->sc_type >= WM_T_PCH) && (sc->sc_type <= WM_T_PCH_TGP)) {
11672 /* All PCH* use _hv_ */
11673 new_readreg = wm_gmii_hv_readreg;
11674 new_writereg = wm_gmii_hv_writereg;
11675 }
11676
11677 /* Diag output */
11678 if (dodiag) {
11679 if (doubt_phytype != WMPHY_UNKNOWN)
11680 aprint_error_dev(dev, "Assumed new PHY type was "
11681 "incorrect. old = %u, new = %u\n", sc->sc_phytype,
11682 new_phytype);
11683 else if ((sc->sc_phytype != WMPHY_UNKNOWN)
11684 && (sc->sc_phytype != new_phytype))
11685 aprint_error_dev(dev, "Previously assumed PHY type(%u)"
11686 "was incorrect. New PHY type = %u\n",
11687 sc->sc_phytype, new_phytype);
11688
11689 if ((mii->mii_readreg != NULL) &&
11690 (new_phytype == WMPHY_UNKNOWN))
11691 aprint_error_dev(dev, "PHY type is still unknown.\n");
11692
11693 if ((mii->mii_readreg != NULL) &&
11694 (mii->mii_readreg != new_readreg))
11695 aprint_error_dev(dev, "Previously assumed PHY "
11696 "read/write function was incorrect.\n");
11697 }
11698
11699 /* Update now */
11700 sc->sc_phytype = new_phytype;
11701 mii->mii_readreg = new_readreg;
11702 mii->mii_writereg = new_writereg;
11703 if (new_readreg == wm_gmii_hv_readreg) {
11704 sc->phy.readreg_locked = wm_gmii_hv_readreg_locked;
11705 sc->phy.writereg_locked = wm_gmii_hv_writereg_locked;
11706 } else if (new_readreg == wm_sgmii_readreg) {
11707 sc->phy.readreg_locked = wm_sgmii_readreg_locked;
11708 sc->phy.writereg_locked = wm_sgmii_writereg_locked;
11709 } else if (new_readreg == wm_gmii_i82544_readreg) {
11710 sc->phy.readreg_locked = wm_gmii_i82544_readreg_locked;
11711 sc->phy.writereg_locked = wm_gmii_i82544_writereg_locked;
11712 }
11713 }
11714
11715 /*
11716 * wm_get_phy_id_82575:
11717 *
11718 * Return PHY ID. Return -1 if it failed.
11719 */
11720 static int
11721 wm_get_phy_id_82575(struct wm_softc *sc)
11722 {
11723 uint32_t reg;
11724 int phyid = -1;
11725
11726 /* XXX */
11727 if ((sc->sc_flags & WM_F_SGMII) == 0)
11728 return -1;
11729
11730 if (wm_sgmii_uses_mdio(sc)) {
11731 switch (sc->sc_type) {
11732 case WM_T_82575:
11733 case WM_T_82576:
11734 reg = CSR_READ(sc, WMREG_MDIC);
11735 phyid = (reg & MDIC_PHY_MASK) >> MDIC_PHY_SHIFT;
11736 break;
11737 case WM_T_82580:
11738 case WM_T_I350:
11739 case WM_T_I354:
11740 case WM_T_I210:
11741 case WM_T_I211:
11742 reg = CSR_READ(sc, WMREG_MDICNFG);
11743 phyid = (reg & MDICNFG_PHY_MASK) >> MDICNFG_PHY_SHIFT;
11744 break;
11745 default:
11746 return -1;
11747 }
11748 }
11749
11750 return phyid;
11751 }
11752
11753 /*
11754 * wm_gmii_mediainit:
11755 *
11756 * Initialize media for use on 1000BASE-T devices.
11757 */
11758 static void
11759 wm_gmii_mediainit(struct wm_softc *sc, pci_product_id_t prodid)
11760 {
11761 device_t dev = sc->sc_dev;
11762 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
11763 struct mii_data *mii = &sc->sc_mii;
11764
11765 DPRINTF(sc, WM_DEBUG_GMII, ("%s: %s called\n",
11766 device_xname(sc->sc_dev), __func__));
11767
11768 /* We have GMII. */
11769 sc->sc_flags |= WM_F_HAS_MII;
11770
11771 if (sc->sc_type == WM_T_80003)
11772 sc->sc_tipg = TIPG_1000T_80003_DFLT;
11773 else
11774 sc->sc_tipg = TIPG_1000T_DFLT;
11775
11776 /*
11777 * Let the chip set speed/duplex on its own based on
11778 * signals from the PHY.
11779 * XXXbouyer - I'm not sure this is right for the 80003,
11780 * the em driver only sets CTRL_SLU here - but it seems to work.
11781 */
11782 sc->sc_ctrl |= CTRL_SLU;
11783 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
11784
11785 /* Initialize our media structures and probe the GMII. */
11786 mii->mii_ifp = ifp;
11787
11788 mii->mii_statchg = wm_gmii_statchg;
11789
11790 /* get PHY control from SMBus to PCIe */
11791 if ((sc->sc_type == WM_T_PCH) || (sc->sc_type == WM_T_PCH2)
11792 || (sc->sc_type == WM_T_PCH_LPT) || (sc->sc_type == WM_T_PCH_SPT)
11793 || (sc->sc_type == WM_T_PCH_CNP) || (sc->sc_type == WM_T_PCH_TGP))
11794 wm_init_phy_workarounds_pchlan(sc);
11795
11796 wm_gmii_reset(sc);
11797
11798 sc->sc_ethercom.ec_mii = &sc->sc_mii;
11799 ifmedia_init_with_lock(&mii->mii_media, IFM_IMASK, wm_gmii_mediachange,
11800 wm_gmii_mediastatus, sc->sc_core_lock);
11801
11802 /* Setup internal SGMII PHY for SFP */
11803 wm_sgmii_sfp_preconfig(sc);
11804
11805 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)
11806 || (sc->sc_type == WM_T_82580)
11807 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I354)
11808 || (sc->sc_type == WM_T_I210) || (sc->sc_type == WM_T_I211)) {
11809 if ((sc->sc_flags & WM_F_SGMII) == 0) {
11810 /* Attach only one port */
11811 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, 1,
11812 MII_OFFSET_ANY, MIIF_DOPAUSE);
11813 } else {
11814 int i, id;
11815 uint32_t ctrl_ext;
11816
11817 id = wm_get_phy_id_82575(sc);
11818 if (id != -1) {
11819 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff,
11820 id, MII_OFFSET_ANY, MIIF_DOPAUSE);
11821 }
11822 if ((id == -1)
11823 || (LIST_FIRST(&mii->mii_phys) == NULL)) {
11824 /* Power on sgmii phy if it is disabled */
11825 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
11826 CSR_WRITE(sc, WMREG_CTRL_EXT,
11827 ctrl_ext &~ CTRL_EXT_SWDPIN(3));
11828 CSR_WRITE_FLUSH(sc);
11829 delay(300*1000); /* XXX too long */
11830
11831 /*
11832 * From 1 to 8.
11833 *
11834 * I2C access fails with I2C register's ERROR
11835 * bit set, so prevent error message while
11836 * scanning.
11837 */
11838 sc->phy.no_errprint = true;
11839 for (i = 1; i < 8; i++)
11840 mii_attach(sc->sc_dev, &sc->sc_mii,
11841 0xffffffff, i, MII_OFFSET_ANY,
11842 MIIF_DOPAUSE);
11843 sc->phy.no_errprint = false;
11844
11845 /* Restore previous sfp cage power state */
11846 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
11847 }
11848 }
11849 } else
11850 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
11851 MII_OFFSET_ANY, MIIF_DOPAUSE);
11852
11853 /*
11854 * If the MAC is PCH2 or PCH_LPT and failed to detect MII PHY, call
11855 * wm_set_mdio_slow_mode_hv() for a workaround and retry.
11856 */
11857 if (((sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT) ||
11858 (sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP)
11859 || (sc->sc_type == WM_T_PCH_TGP))
11860 && (LIST_FIRST(&mii->mii_phys) == NULL)) {
11861 wm_set_mdio_slow_mode_hv(sc);
11862 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
11863 MII_OFFSET_ANY, MIIF_DOPAUSE);
11864 }
11865
11866 /*
11867 * (For ICH8 variants)
11868 * If PHY detection failed, use BM's r/w function and retry.
11869 */
11870 if (LIST_FIRST(&mii->mii_phys) == NULL) {
11871 /* if failed, retry with *_bm_* */
11872 aprint_verbose_dev(dev, "Assumed PHY access function "
11873 "(type = %d) might be incorrect. Use BM and retry.\n",
11874 sc->sc_phytype);
11875 sc->sc_phytype = WMPHY_BM;
11876 mii->mii_readreg = wm_gmii_bm_readreg;
11877 mii->mii_writereg = wm_gmii_bm_writereg;
11878
11879 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
11880 MII_OFFSET_ANY, MIIF_DOPAUSE);
11881 }
11882
11883 if (LIST_FIRST(&mii->mii_phys) == NULL) {
11884 /* Any PHY wasn't found */
11885 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
11886 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
11887 sc->sc_phytype = WMPHY_NONE;
11888 } else {
11889 struct mii_softc *child = LIST_FIRST(&mii->mii_phys);
11890
11891 /*
11892 * PHY found! Check PHY type again by the second call of
11893 * wm_gmii_setup_phytype.
11894 */
11895 wm_gmii_setup_phytype(sc, child->mii_mpd_oui,
11896 child->mii_mpd_model);
11897
11898 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
11899 }
11900 }
11901
11902 /*
11903 * wm_gmii_mediachange: [ifmedia interface function]
11904 *
11905 * Set hardware to newly-selected media on a 1000BASE-T device.
11906 */
11907 static int
11908 wm_gmii_mediachange(struct ifnet *ifp)
11909 {
11910 struct wm_softc *sc = ifp->if_softc;
11911 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
11912 uint32_t reg;
11913 int rc;
11914
11915 DPRINTF(sc, WM_DEBUG_GMII, ("%s: %s called\n",
11916 device_xname(sc->sc_dev), __func__));
11917
11918 KASSERT(mutex_owned(sc->sc_core_lock));
11919
11920 if ((sc->sc_if_flags & IFF_UP) == 0)
11921 return 0;
11922
11923 /* XXX Not for I354? FreeBSD's e1000_82575.c doesn't include it */
11924 if ((sc->sc_type == WM_T_82580)
11925 || (sc->sc_type == WM_T_I350) || (sc->sc_type == WM_T_I210)
11926 || (sc->sc_type == WM_T_I211)) {
11927 reg = CSR_READ(sc, WMREG_PHPM);
11928 reg &= ~PHPM_GO_LINK_D;
11929 CSR_WRITE(sc, WMREG_PHPM, reg);
11930 }
11931
11932 /* Disable D0 LPLU. */
11933 wm_lplu_d0_disable(sc);
11934
11935 sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
11936 sc->sc_ctrl |= CTRL_SLU;
11937 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
11938 || (sc->sc_type > WM_T_82543)) {
11939 sc->sc_ctrl &= ~(CTRL_FRCSPD | CTRL_FRCFDX);
11940 } else {
11941 sc->sc_ctrl &= ~CTRL_ASDE;
11942 sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
11943 if (ife->ifm_media & IFM_FDX)
11944 sc->sc_ctrl |= CTRL_FD;
11945 switch (IFM_SUBTYPE(ife->ifm_media)) {
11946 case IFM_10_T:
11947 sc->sc_ctrl |= CTRL_SPEED_10;
11948 break;
11949 case IFM_100_TX:
11950 sc->sc_ctrl |= CTRL_SPEED_100;
11951 break;
11952 case IFM_1000_T:
11953 sc->sc_ctrl |= CTRL_SPEED_1000;
11954 break;
11955 case IFM_NONE:
11956 /* There is no specific setting for IFM_NONE */
11957 break;
11958 default:
11959 panic("wm_gmii_mediachange: bad media 0x%x",
11960 ife->ifm_media);
11961 }
11962 }
11963 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
11964 CSR_WRITE_FLUSH(sc);
11965
11966 if ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211))
11967 wm_serdes_mediachange(ifp);
11968
11969 if (sc->sc_type <= WM_T_82543)
11970 wm_gmii_reset(sc);
11971 else if ((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211)
11972 && ((sc->sc_flags & WM_F_SGMII) != 0)) {
11973 /* allow time for SFP cage time to power up phy */
11974 delay(300 * 1000);
11975 wm_gmii_reset(sc);
11976 }
11977
11978 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
11979 return 0;
11980 return rc;
11981 }
11982
11983 /*
11984 * wm_gmii_mediastatus: [ifmedia interface function]
11985 *
11986 * Get the current interface media status on a 1000BASE-T device.
11987 */
11988 static void
11989 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
11990 {
11991 struct wm_softc *sc = ifp->if_softc;
11992 struct ethercom *ec = &sc->sc_ethercom;
11993 struct mii_data *mii;
11994 bool dopoll = true;
11995
11996 /*
11997 * In normal drivers, ether_mediastatus() is called here.
11998 * To avoid calling mii_pollstat(), ether_mediastatus() is open coded.
11999 */
12000 KASSERT(mutex_owned(sc->sc_core_lock));
12001 KASSERT(ec->ec_mii != NULL);
12002 KASSERT(mii_locked(ec->ec_mii));
12003
12004 mii = ec->ec_mii;
12005 if ((sc->sc_flags & WM_F_DELAY_LINKUP) != 0) {
12006 struct timeval now;
12007
12008 getmicrotime(&now);
12009 if (timercmp(&now, &sc->sc_linkup_delay_time, <))
12010 dopoll = false;
12011 else if (sc->sc_linkup_delay_time.tv_sec != 0) {
12012 /* Simplify by checking tv_sec only. It's enough. */
12013
12014 sc->sc_linkup_delay_time.tv_sec = 0;
12015 sc->sc_linkup_delay_time.tv_usec = 0;
12016 }
12017 }
12018
12019 /*
12020 * Don't call mii_pollstat() while doing workaround.
12021 * See also wm_linkintr_gmii() and wm_tick().
12022 */
12023 if (dopoll)
12024 mii_pollstat(mii);
12025 ifmr->ifm_active = mii->mii_media_active;
12026 ifmr->ifm_status = mii->mii_media_status;
12027
12028 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
12029 | sc->sc_flowflags;
12030 }
12031
12032 #define MDI_IO CTRL_SWDPIN(2)
12033 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
12034 #define MDI_CLK CTRL_SWDPIN(3)
12035
12036 static void
12037 wm_i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
12038 {
12039 uint32_t i, v;
12040
12041 v = CSR_READ(sc, WMREG_CTRL);
12042 v &= ~(MDI_IO | MDI_CLK | (CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
12043 v |= MDI_DIR | CTRL_SWDPIO(3);
12044
12045 for (i = __BIT(nbits - 1); i != 0; i >>= 1) {
12046 if (data & i)
12047 v |= MDI_IO;
12048 else
12049 v &= ~MDI_IO;
12050 CSR_WRITE(sc, WMREG_CTRL, v);
12051 CSR_WRITE_FLUSH(sc);
12052 delay(10);
12053 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
12054 CSR_WRITE_FLUSH(sc);
12055 delay(10);
12056 CSR_WRITE(sc, WMREG_CTRL, v);
12057 CSR_WRITE_FLUSH(sc);
12058 delay(10);
12059 }
12060 }
12061
12062 static uint16_t
12063 wm_i82543_mii_recvbits(struct wm_softc *sc)
12064 {
12065 uint32_t v, i;
12066 uint16_t data = 0;
12067
12068 v = CSR_READ(sc, WMREG_CTRL);
12069 v &= ~(MDI_IO | MDI_CLK | (CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
12070 v |= CTRL_SWDPIO(3);
12071
12072 CSR_WRITE(sc, WMREG_CTRL, v);
12073 CSR_WRITE_FLUSH(sc);
12074 delay(10);
12075 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
12076 CSR_WRITE_FLUSH(sc);
12077 delay(10);
12078 CSR_WRITE(sc, WMREG_CTRL, v);
12079 CSR_WRITE_FLUSH(sc);
12080 delay(10);
12081
12082 for (i = 0; i < 16; i++) {
12083 data <<= 1;
12084 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
12085 CSR_WRITE_FLUSH(sc);
12086 delay(10);
12087 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
12088 data |= 1;
12089 CSR_WRITE(sc, WMREG_CTRL, v);
12090 CSR_WRITE_FLUSH(sc);
12091 delay(10);
12092 }
12093
12094 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
12095 CSR_WRITE_FLUSH(sc);
12096 delay(10);
12097 CSR_WRITE(sc, WMREG_CTRL, v);
12098 CSR_WRITE_FLUSH(sc);
12099 delay(10);
12100
12101 return data;
12102 }
12103
12104 #undef MDI_IO
12105 #undef MDI_DIR
12106 #undef MDI_CLK
12107
12108 /*
12109 * wm_gmii_i82543_readreg: [mii interface function]
12110 *
12111 * Read a PHY register on the GMII (i82543 version).
12112 */
12113 static int
12114 wm_gmii_i82543_readreg(device_t dev, int phy, int reg, uint16_t *val)
12115 {
12116 struct wm_softc *sc = device_private(dev);
12117
12118 wm_i82543_mii_sendbits(sc, 0xffffffffU, 32);
12119 wm_i82543_mii_sendbits(sc, reg | (phy << 5) |
12120 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
12121 *val = wm_i82543_mii_recvbits(sc) & 0xffff;
12122
12123 DPRINTF(sc, WM_DEBUG_GMII,
12124 ("%s: GMII: read phy %d reg %d -> 0x%04hx\n",
12125 device_xname(dev), phy, reg, *val));
12126
12127 return 0;
12128 }
12129
12130 /*
12131 * wm_gmii_i82543_writereg: [mii interface function]
12132 *
12133 * Write a PHY register on the GMII (i82543 version).
12134 */
12135 static int
12136 wm_gmii_i82543_writereg(device_t dev, int phy, int reg, uint16_t val)
12137 {
12138 struct wm_softc *sc = device_private(dev);
12139
12140 wm_i82543_mii_sendbits(sc, 0xffffffffU, 32);
12141 wm_i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
12142 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
12143 (MII_COMMAND_START << 30), 32);
12144
12145 return 0;
12146 }
12147
12148 /*
12149 * wm_gmii_mdic_readreg: [mii interface function]
12150 *
12151 * Read a PHY register on the GMII.
12152 */
12153 static int
12154 wm_gmii_mdic_readreg(device_t dev, int phy, int reg, uint16_t *val)
12155 {
12156 struct wm_softc *sc = device_private(dev);
12157 uint32_t mdic = 0;
12158 int i;
12159
12160 if ((sc->sc_phytype != WMPHY_82579) && (sc->sc_phytype != WMPHY_I217)
12161 && (reg > MII_ADDRMASK)) {
12162 device_printf(dev, "%s: PHYTYPE = %d, addr 0x%x > 0x1f\n",
12163 __func__, sc->sc_phytype, reg);
12164 reg &= MII_ADDRMASK;
12165 }
12166
12167 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
12168 MDIC_REGADD(reg));
12169
12170 for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) {
12171 delay(50);
12172 mdic = CSR_READ(sc, WMREG_MDIC);
12173 if (mdic & MDIC_READY)
12174 break;
12175 }
12176
12177 if ((mdic & MDIC_READY) == 0) {
12178 DPRINTF(sc, WM_DEBUG_GMII,
12179 ("%s: MDIC read timed out: phy %d reg %d\n",
12180 device_xname(dev), phy, reg));
12181 return ETIMEDOUT;
12182 } else if (mdic & MDIC_E) {
12183 /* This is normal if no PHY is present. */
12184 DPRINTF(sc, WM_DEBUG_GMII,
12185 ("%s: MDIC read error: phy %d reg %d\n",
12186 device_xname(sc->sc_dev), phy, reg));
12187 return -1;
12188 } else
12189 *val = MDIC_DATA(mdic);
12190
12191 /*
12192 * Allow some time after each MDIC transaction to avoid
12193 * reading duplicate data in the next MDIC transaction.
12194 */
12195 if (sc->sc_type == WM_T_PCH2)
12196 delay(100);
12197
12198 return 0;
12199 }
12200
12201 /*
12202 * wm_gmii_mdic_writereg: [mii interface function]
12203 *
12204 * Write a PHY register on the GMII.
12205 */
12206 static int
12207 wm_gmii_mdic_writereg(device_t dev, int phy, int reg, uint16_t val)
12208 {
12209 struct wm_softc *sc = device_private(dev);
12210 uint32_t mdic = 0;
12211 int i;
12212
12213 if ((sc->sc_phytype != WMPHY_82579) && (sc->sc_phytype != WMPHY_I217)
12214 && (reg > MII_ADDRMASK)) {
12215 device_printf(dev, "%s: PHYTYPE = %d, addr 0x%x > 0x1f\n",
12216 __func__, sc->sc_phytype, reg);
12217 reg &= MII_ADDRMASK;
12218 }
12219
12220 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
12221 MDIC_REGADD(reg) | MDIC_DATA(val));
12222
12223 for (i = 0; i < WM_GEN_POLL_TIMEOUT * 3; i++) {
12224 delay(50);
12225 mdic = CSR_READ(sc, WMREG_MDIC);
12226 if (mdic & MDIC_READY)
12227 break;
12228 }
12229
12230 if ((mdic & MDIC_READY) == 0) {
12231 DPRINTF(sc, WM_DEBUG_GMII,
12232 ("%s: MDIC write timed out: phy %d reg %d\n",
12233 device_xname(dev), phy, reg));
12234 return ETIMEDOUT;
12235 } else if (mdic & MDIC_E) {
12236 DPRINTF(sc, WM_DEBUG_GMII,
12237 ("%s: MDIC write error: phy %d reg %d\n",
12238 device_xname(dev), phy, reg));
12239 return -1;
12240 }
12241
12242 /*
12243 * Allow some time after each MDIC transaction to avoid
12244 * reading duplicate data in the next MDIC transaction.
12245 */
12246 if (sc->sc_type == WM_T_PCH2)
12247 delay(100);
12248
12249 return 0;
12250 }
12251
12252 /*
12253 * wm_gmii_i82544_readreg: [mii interface function]
12254 *
12255 * Read a PHY register on the GMII.
12256 */
12257 static int
12258 wm_gmii_i82544_readreg(device_t dev, int phy, int reg, uint16_t *val)
12259 {
12260 struct wm_softc *sc = device_private(dev);
12261 int rv;
12262
12263 rv = sc->phy.acquire(sc);
12264 if (rv != 0) {
12265 device_printf(dev, "%s: failed to get semaphore\n", __func__);
12266 return rv;
12267 }
12268
12269 rv = wm_gmii_i82544_readreg_locked(dev, phy, reg, val);
12270
12271 sc->phy.release(sc);
12272
12273 return rv;
12274 }
12275
12276 static int
12277 wm_gmii_i82544_readreg_locked(device_t dev, int phy, int reg, uint16_t *val)
12278 {
12279 struct wm_softc *sc = device_private(dev);
12280 int rv;
12281
12282 switch (sc->sc_phytype) {
12283 case WMPHY_IGP:
12284 case WMPHY_IGP_2:
12285 case WMPHY_IGP_3:
12286 if (reg > BME1000_MAX_MULTI_PAGE_REG) {
12287 rv = wm_gmii_mdic_writereg(dev, phy,
12288 IGPHY_PAGE_SELECT, reg);
12289 if (rv != 0)
12290 return rv;
12291 }
12292 break;
12293 default:
12294 #ifdef WM_DEBUG
12295 if ((reg >> MII_ADDRBITS) != 0)
12296 device_printf(dev,
12297 "%s: PHYTYPE = 0x%x, addr = 0x%02x\n",
12298 __func__, sc->sc_phytype, reg);
12299 #endif
12300 break;
12301 }
12302
12303 return wm_gmii_mdic_readreg(dev, phy, reg & MII_ADDRMASK, val);
12304 }
12305
12306 /*
12307 * wm_gmii_i82544_writereg: [mii interface function]
12308 *
12309 * Write a PHY register on the GMII.
12310 */
12311 static int
12312 wm_gmii_i82544_writereg(device_t dev, int phy, int reg, uint16_t val)
12313 {
12314 struct wm_softc *sc = device_private(dev);
12315 int rv;
12316
12317 rv = sc->phy.acquire(sc);
12318 if (rv != 0) {
12319 device_printf(dev, "%s: failed to get semaphore\n", __func__);
12320 return rv;
12321 }
12322
12323 rv = wm_gmii_i82544_writereg_locked(dev, phy, reg & MII_ADDRMASK, val);
12324 sc->phy.release(sc);
12325
12326 return rv;
12327 }
12328
12329 static int
12330 wm_gmii_i82544_writereg_locked(device_t dev, int phy, int reg, uint16_t val)
12331 {
12332 struct wm_softc *sc = device_private(dev);
12333 int rv;
12334
12335 switch (sc->sc_phytype) {
12336 case WMPHY_IGP:
12337 case WMPHY_IGP_2:
12338 case WMPHY_IGP_3:
12339 if (reg > BME1000_MAX_MULTI_PAGE_REG) {
12340 rv = wm_gmii_mdic_writereg(dev, phy,
12341 IGPHY_PAGE_SELECT, reg);
12342 if (rv != 0)
12343 return rv;
12344 }
12345 break;
12346 default:
12347 #ifdef WM_DEBUG
12348 if ((reg >> MII_ADDRBITS) != 0)
12349 device_printf(dev,
12350 "%s: PHYTYPE == 0x%x, addr = 0x%02x",
12351 __func__, sc->sc_phytype, reg);
12352 #endif
12353 break;
12354 }
12355
12356 return wm_gmii_mdic_writereg(dev, phy, reg & MII_ADDRMASK, val);
12357 }
12358
12359 /*
12360 * wm_gmii_i80003_readreg: [mii interface function]
12361 *
12362 * Read a PHY register on the kumeran
12363 * This could be handled by the PHY layer if we didn't have to lock the
12364 * resource ...
12365 */
12366 static int
12367 wm_gmii_i80003_readreg(device_t dev, int phy, int reg, uint16_t *val)
12368 {
12369 struct wm_softc *sc = device_private(dev);
12370 int page_select;
12371 uint16_t temp, temp2;
12372 int rv;
12373
12374 if (phy != 1) /* Only one PHY on kumeran bus */
12375 return -1;
12376
12377 rv = sc->phy.acquire(sc);
12378 if (rv != 0) {
12379 device_printf(dev, "%s: failed to get semaphore\n", __func__);
12380 return rv;
12381 }
12382
12383 if ((reg & MII_ADDRMASK) < GG82563_MIN_ALT_REG)
12384 page_select = GG82563_PHY_PAGE_SELECT;
12385 else {
12386 /*
12387 * Use Alternative Page Select register to access registers
12388 * 30 and 31.
12389 */
12390 page_select = GG82563_PHY_PAGE_SELECT_ALT;
12391 }
12392 temp = reg >> GG82563_PAGE_SHIFT;
12393 if ((rv = wm_gmii_mdic_writereg(dev, phy, page_select, temp)) != 0)
12394 goto out;
12395
12396 if ((sc->sc_flags & WM_F_80003_MDIC_WA) != 0) {
12397 /*
12398 * Wait more 200us for a bug of the ready bit in the MDIC
12399 * register.
12400 */
12401 delay(200);
12402 rv = wm_gmii_mdic_readreg(dev, phy, page_select, &temp2);
12403 if ((rv != 0) || (temp2 != temp)) {
12404 device_printf(dev, "%s failed\n", __func__);
12405 rv = -1;
12406 goto out;
12407 }
12408 delay(200);
12409 rv = wm_gmii_mdic_readreg(dev, phy, reg & MII_ADDRMASK, val);
12410 delay(200);
12411 } else
12412 rv = wm_gmii_mdic_readreg(dev, phy, reg & MII_ADDRMASK, val);
12413
12414 out:
12415 sc->phy.release(sc);
12416 return rv;
12417 }
12418
12419 /*
12420 * wm_gmii_i80003_writereg: [mii interface function]
12421 *
12422 * Write a PHY register on the kumeran.
12423 * This could be handled by the PHY layer if we didn't have to lock the
12424 * resource ...
12425 */
12426 static int
12427 wm_gmii_i80003_writereg(device_t dev, int phy, int reg, uint16_t val)
12428 {
12429 struct wm_softc *sc = device_private(dev);
12430 int page_select, rv;
12431 uint16_t temp, temp2;
12432
12433 if (phy != 1) /* Only one PHY on kumeran bus */
12434 return -1;
12435
12436 rv = sc->phy.acquire(sc);
12437 if (rv != 0) {
12438 device_printf(dev, "%s: failed to get semaphore\n", __func__);
12439 return rv;
12440 }
12441
12442 if ((reg & MII_ADDRMASK) < GG82563_MIN_ALT_REG)
12443 page_select = GG82563_PHY_PAGE_SELECT;
12444 else {
12445 /*
12446 * Use Alternative Page Select register to access registers
12447 * 30 and 31.
12448 */
12449 page_select = GG82563_PHY_PAGE_SELECT_ALT;
12450 }
12451 temp = (uint16_t)reg >> GG82563_PAGE_SHIFT;
12452 if ((rv = wm_gmii_mdic_writereg(dev, phy, page_select, temp)) != 0)
12453 goto out;
12454
12455 if ((sc->sc_flags & WM_F_80003_MDIC_WA) != 0) {
12456 /*
12457 * Wait more 200us for a bug of the ready bit in the MDIC
12458 * register.
12459 */
12460 delay(200);
12461 rv = wm_gmii_mdic_readreg(dev, phy, page_select, &temp2);
12462 if ((rv != 0) || (temp2 != temp)) {
12463 device_printf(dev, "%s failed\n", __func__);
12464 rv = -1;
12465 goto out;
12466 }
12467 delay(200);
12468 rv = wm_gmii_mdic_writereg(dev, phy, reg & MII_ADDRMASK, val);
12469 delay(200);
12470 } else
12471 rv = wm_gmii_mdic_writereg(dev, phy, reg & MII_ADDRMASK, val);
12472
12473 out:
12474 sc->phy.release(sc);
12475 return rv;
12476 }
12477
12478 /*
12479 * wm_gmii_bm_readreg: [mii interface function]
12480 *
12481 * Read a PHY register on the kumeran
12482 * This could be handled by the PHY layer if we didn't have to lock the
12483 * resource ...
12484 */
12485 static int
12486 wm_gmii_bm_readreg(device_t dev, int phy, int reg, uint16_t *val)
12487 {
12488 struct wm_softc *sc = device_private(dev);
12489 uint16_t page = reg >> BME1000_PAGE_SHIFT;
12490 int rv;
12491
12492 rv = sc->phy.acquire(sc);
12493 if (rv != 0) {
12494 device_printf(dev, "%s: failed to get semaphore\n", __func__);
12495 return rv;
12496 }
12497
12498 if ((sc->sc_type != WM_T_82574) && (sc->sc_type != WM_T_82583))
12499 phy = ((page >= 768) || ((page == 0) && (reg == 25))
12500 || (reg == 31)) ? 1 : phy;
12501 /* Page 800 works differently than the rest so it has its own func */
12502 if (page == BM_WUC_PAGE) {
12503 rv = wm_access_phy_wakeup_reg_bm(dev, reg, val, true, false);
12504 goto release;
12505 }
12506
12507 if (reg > BME1000_MAX_MULTI_PAGE_REG) {
12508 if ((phy == 1) && (sc->sc_type != WM_T_82574)
12509 && (sc->sc_type != WM_T_82583))
12510 rv = wm_gmii_mdic_writereg(dev, phy,
12511 IGPHY_PAGE_SELECT, page << BME1000_PAGE_SHIFT);
12512 else
12513 rv = wm_gmii_mdic_writereg(dev, phy,
12514 BME1000_PHY_PAGE_SELECT, page);
12515 if (rv != 0)
12516 goto release;
12517 }
12518
12519 rv = wm_gmii_mdic_readreg(dev, phy, reg & MII_ADDRMASK, val);
12520
12521 release:
12522 sc->phy.release(sc);
12523 return rv;
12524 }
12525
12526 /*
12527 * wm_gmii_bm_writereg: [mii interface function]
12528 *
12529 * Write a PHY register on the kumeran.
12530 * This could be handled by the PHY layer if we didn't have to lock the
12531 * resource ...
12532 */
12533 static int
12534 wm_gmii_bm_writereg(device_t dev, int phy, int reg, uint16_t val)
12535 {
12536 struct wm_softc *sc = device_private(dev);
12537 uint16_t page = reg >> BME1000_PAGE_SHIFT;
12538 int rv;
12539
12540 rv = sc->phy.acquire(sc);
12541 if (rv != 0) {
12542 device_printf(dev, "%s: failed to get semaphore\n", __func__);
12543 return rv;
12544 }
12545
12546 if ((sc->sc_type != WM_T_82574) && (sc->sc_type != WM_T_82583))
12547 phy = ((page >= 768) || ((page == 0) && (reg == 25))
12548 || (reg == 31)) ? 1 : phy;
12549 /* Page 800 works differently than the rest so it has its own func */
12550 if (page == BM_WUC_PAGE) {
12551 rv = wm_access_phy_wakeup_reg_bm(dev, reg, &val, false, false);
12552 goto release;
12553 }
12554
12555 if (reg > BME1000_MAX_MULTI_PAGE_REG) {
12556 if ((phy == 1) && (sc->sc_type != WM_T_82574)
12557 && (sc->sc_type != WM_T_82583))
12558 rv = wm_gmii_mdic_writereg(dev, phy,
12559 IGPHY_PAGE_SELECT, page << BME1000_PAGE_SHIFT);
12560 else
12561 rv = wm_gmii_mdic_writereg(dev, phy,
12562 BME1000_PHY_PAGE_SELECT, page);
12563 if (rv != 0)
12564 goto release;
12565 }
12566
12567 rv = wm_gmii_mdic_writereg(dev, phy, reg & MII_ADDRMASK, val);
12568
12569 release:
12570 sc->phy.release(sc);
12571 return rv;
12572 }
12573
12574 /*
12575 * wm_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
12576 * @dev: pointer to the HW structure
12577 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
12578 *
12579 * Assumes semaphore already acquired and phy_reg points to a valid memory
12580 * address to store contents of the BM_WUC_ENABLE_REG register.
12581 */
12582 static int
12583 wm_enable_phy_wakeup_reg_access_bm(device_t dev, uint16_t *phy_regp)
12584 {
12585 #ifdef WM_DEBUG
12586 struct wm_softc *sc = device_private(dev);
12587 #endif
12588 uint16_t temp;
12589 int rv;
12590
12591 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
12592 device_xname(dev), __func__));
12593
12594 if (!phy_regp)
12595 return -1;
12596
12597 /* All page select, port ctrl and wakeup registers use phy address 1 */
12598
12599 /* Select Port Control Registers page */
12600 rv = wm_gmii_mdic_writereg(dev, 1, IGPHY_PAGE_SELECT,
12601 BM_PORT_CTRL_PAGE << IGP3_PAGE_SHIFT);
12602 if (rv != 0)
12603 return rv;
12604
12605 /* Read WUCE and save it */
12606 rv = wm_gmii_mdic_readreg(dev, 1, BM_WUC_ENABLE_REG, phy_regp);
12607 if (rv != 0)
12608 return rv;
12609
12610 /* Enable both PHY wakeup mode and Wakeup register page writes.
12611 * Prevent a power state change by disabling ME and Host PHY wakeup.
12612 */
12613 temp = *phy_regp;
12614 temp |= BM_WUC_ENABLE_BIT;
12615 temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
12616
12617 if ((rv = wm_gmii_mdic_writereg(dev, 1, BM_WUC_ENABLE_REG, temp)) != 0)
12618 return rv;
12619
12620 /* Select Host Wakeup Registers page - caller now able to write
12621 * registers on the Wakeup registers page
12622 */
12623 return wm_gmii_mdic_writereg(dev, 1, IGPHY_PAGE_SELECT,
12624 BM_WUC_PAGE << IGP3_PAGE_SHIFT);
12625 }
12626
12627 /*
12628 * wm_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
12629 * @dev: pointer to the HW structure
12630 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
12631 *
12632 * Restore BM_WUC_ENABLE_REG to its original value.
12633 *
12634 * Assumes semaphore already acquired and *phy_reg is the contents of the
12635 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
12636 * caller.
12637 */
12638 static int
12639 wm_disable_phy_wakeup_reg_access_bm(device_t dev, uint16_t *phy_regp)
12640 {
12641 #ifdef WM_DEBUG
12642 struct wm_softc *sc = device_private(dev);
12643 #endif
12644
12645 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
12646 device_xname(dev), __func__));
12647
12648 if (!phy_regp)
12649 return -1;
12650
12651 /* Select Port Control Registers page */
12652 wm_gmii_mdic_writereg(dev, 1, IGPHY_PAGE_SELECT,
12653 BM_PORT_CTRL_PAGE << IGP3_PAGE_SHIFT);
12654
12655 /* Restore 769.17 to its original value */
12656 wm_gmii_mdic_writereg(dev, 1, BM_WUC_ENABLE_REG, *phy_regp);
12657
12658 return 0;
12659 }
12660
12661 /*
12662 * wm_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
12663 * @sc: pointer to the HW structure
12664 * @offset: register offset to be read or written
12665 * @val: pointer to the data to read or write
12666 * @rd: determines if operation is read or write
12667 * @page_set: BM_WUC_PAGE already set and access enabled
12668 *
12669 * Read the PHY register at offset and store the retrieved information in
12670 * data, or write data to PHY register at offset. Note the procedure to
12671 * access the PHY wakeup registers is different than reading the other PHY
12672 * registers. It works as such:
12673 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
12674 * 2) Set page to 800 for host (801 if we were manageability)
12675 * 3) Write the address using the address opcode (0x11)
12676 * 4) Read or write the data using the data opcode (0x12)
12677 * 5) Restore 769.17.2 to its original value
12678 *
12679 * Steps 1 and 2 are done by wm_enable_phy_wakeup_reg_access_bm() and
12680 * step 5 is done by wm_disable_phy_wakeup_reg_access_bm().
12681 *
12682 * Assumes semaphore is already acquired. When page_set==TRUE, assumes
12683 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
12684 * is responsible for calls to wm_[enable|disable]_phy_wakeup_reg_bm()).
12685 */
12686 static int
12687 wm_access_phy_wakeup_reg_bm(device_t dev, int offset, int16_t *val, int rd,
12688 bool page_set)
12689 {
12690 struct wm_softc *sc = device_private(dev);
12691 uint16_t regnum = BM_PHY_REG_NUM(offset);
12692 uint16_t page = BM_PHY_REG_PAGE(offset);
12693 uint16_t wuce;
12694 int rv = 0;
12695
12696 DPRINTF(sc, WM_DEBUG_GMII, ("%s: %s called\n",
12697 device_xname(dev), __func__));
12698 /* XXX Gig must be disabled for MDIO accesses to page 800 */
12699 if ((sc->sc_type == WM_T_PCH)
12700 && ((CSR_READ(sc, WMREG_PHY_CTRL) & PHY_CTRL_GBE_DIS) == 0)) {
12701 device_printf(dev,
12702 "Attempting to access page %d while gig enabled.\n", page);
12703 }
12704
12705 if (!page_set) {
12706 /* Enable access to PHY wakeup registers */
12707 rv = wm_enable_phy_wakeup_reg_access_bm(dev, &wuce);
12708 if (rv != 0) {
12709 device_printf(dev,
12710 "%s: Could not enable PHY wakeup reg access\n",
12711 __func__);
12712 return rv;
12713 }
12714 }
12715 DPRINTF(sc, WM_DEBUG_GMII, ("%s: %s: Accessing PHY page %d reg 0x%x\n",
12716 device_xname(sc->sc_dev), __func__, page, regnum));
12717
12718 /*
12719 * 2) Access PHY wakeup register.
12720 * See wm_access_phy_wakeup_reg_bm.
12721 */
12722
12723 /* Write the Wakeup register page offset value using opcode 0x11 */
12724 rv = wm_gmii_mdic_writereg(dev, 1, BM_WUC_ADDRESS_OPCODE, regnum);
12725 if (rv != 0)
12726 return rv;
12727
12728 if (rd) {
12729 /* Read the Wakeup register page value using opcode 0x12 */
12730 rv = wm_gmii_mdic_readreg(dev, 1, BM_WUC_DATA_OPCODE, val);
12731 } else {
12732 /* Write the Wakeup register page value using opcode 0x12 */
12733 rv = wm_gmii_mdic_writereg(dev, 1, BM_WUC_DATA_OPCODE, *val);
12734 }
12735 if (rv != 0)
12736 return rv;
12737
12738 if (!page_set)
12739 rv = wm_disable_phy_wakeup_reg_access_bm(dev, &wuce);
12740
12741 return rv;
12742 }
12743
12744 /*
12745 * wm_gmii_hv_readreg: [mii interface function]
12746 *
12747 * Read a PHY register on the kumeran
12748 * This could be handled by the PHY layer if we didn't have to lock the
12749 * resource ...
12750 */
12751 static int
12752 wm_gmii_hv_readreg(device_t dev, int phy, int reg, uint16_t *val)
12753 {
12754 struct wm_softc *sc = device_private(dev);
12755 int rv;
12756
12757 DPRINTF(sc, WM_DEBUG_GMII, ("%s: %s called\n",
12758 device_xname(dev), __func__));
12759
12760 rv = sc->phy.acquire(sc);
12761 if (rv != 0) {
12762 device_printf(dev, "%s: failed to get semaphore\n", __func__);
12763 return rv;
12764 }
12765
12766 rv = wm_gmii_hv_readreg_locked(dev, phy, reg, val);
12767 sc->phy.release(sc);
12768 return rv;
12769 }
12770
12771 static int
12772 wm_gmii_hv_readreg_locked(device_t dev, int phy, int reg, uint16_t *val)
12773 {
12774 uint16_t page = BM_PHY_REG_PAGE(reg);
12775 uint16_t regnum = BM_PHY_REG_NUM(reg);
12776 int rv;
12777
12778 phy = (page >= HV_INTC_FC_PAGE_START) ? 1 : phy;
12779
12780 /* Page 800 works differently than the rest so it has its own func */
12781 if (page == BM_WUC_PAGE)
12782 return wm_access_phy_wakeup_reg_bm(dev, reg, val, true, false);
12783
12784 /*
12785 * Lower than page 768 works differently than the rest so it has its
12786 * own func
12787 */
12788 if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) {
12789 device_printf(dev, "gmii_hv_readreg!!!\n");
12790 return -1;
12791 }
12792
12793 /*
12794 * XXX I21[789] documents say that the SMBus Address register is at
12795 * PHY address 01, Page 0 (not 768), Register 26.
12796 */
12797 if (page == HV_INTC_FC_PAGE_START)
12798 page = 0;
12799
12800 if (regnum > BME1000_MAX_MULTI_PAGE_REG) {
12801 rv = wm_gmii_mdic_writereg(dev, 1, IGPHY_PAGE_SELECT,
12802 page << BME1000_PAGE_SHIFT);
12803 if (rv != 0)
12804 return rv;
12805 }
12806
12807 return wm_gmii_mdic_readreg(dev, phy, regnum & MII_ADDRMASK, val);
12808 }
12809
12810 /*
12811 * wm_gmii_hv_writereg: [mii interface function]
12812 *
12813 * Write a PHY register on the kumeran.
12814 * This could be handled by the PHY layer if we didn't have to lock the
12815 * resource ...
12816 */
12817 static int
12818 wm_gmii_hv_writereg(device_t dev, int phy, int reg, uint16_t val)
12819 {
12820 struct wm_softc *sc = device_private(dev);
12821 int rv;
12822
12823 DPRINTF(sc, WM_DEBUG_GMII, ("%s: %s called\n",
12824 device_xname(dev), __func__));
12825
12826 rv = sc->phy.acquire(sc);
12827 if (rv != 0) {
12828 device_printf(dev, "%s: failed to get semaphore\n", __func__);
12829 return rv;
12830 }
12831
12832 rv = wm_gmii_hv_writereg_locked(dev, phy, reg, val);
12833 sc->phy.release(sc);
12834
12835 return rv;
12836 }
12837
12838 static int
12839 wm_gmii_hv_writereg_locked(device_t dev, int phy, int reg, uint16_t val)
12840 {
12841 struct wm_softc *sc = device_private(dev);
12842 uint16_t page = BM_PHY_REG_PAGE(reg);
12843 uint16_t regnum = BM_PHY_REG_NUM(reg);
12844 int rv;
12845
12846 phy = (page >= HV_INTC_FC_PAGE_START) ? 1 : phy;
12847
12848 /* Page 800 works differently than the rest so it has its own func */
12849 if (page == BM_WUC_PAGE)
12850 return wm_access_phy_wakeup_reg_bm(dev, reg, &val, false,
12851 false);
12852
12853 /*
12854 * Lower than page 768 works differently than the rest so it has its
12855 * own func
12856 */
12857 if ((page > 0) && (page < HV_INTC_FC_PAGE_START)) {
12858 device_printf(dev, "gmii_hv_writereg!!!\n");
12859 return -1;
12860 }
12861
12862 {
12863 /*
12864 * XXX I21[789] documents say that the SMBus Address register
12865 * is at PHY address 01, Page 0 (not 768), Register 26.
12866 */
12867 if (page == HV_INTC_FC_PAGE_START)
12868 page = 0;
12869
12870 /*
12871 * XXX Workaround MDIO accesses being disabled after entering
12872 * IEEE Power Down (whenever bit 11 of the PHY control
12873 * register is set)
12874 */
12875 if (sc->sc_phytype == WMPHY_82578) {
12876 struct mii_softc *child;
12877
12878 child = LIST_FIRST(&sc->sc_mii.mii_phys);
12879 if ((child != NULL) && (child->mii_mpd_rev >= 1)
12880 && (phy == 2) && ((regnum & MII_ADDRMASK) == 0)
12881 && ((val & (1 << 11)) != 0)) {
12882 device_printf(dev, "XXX need workaround\n");
12883 }
12884 }
12885
12886 if (regnum > BME1000_MAX_MULTI_PAGE_REG) {
12887 rv = wm_gmii_mdic_writereg(dev, 1,
12888 IGPHY_PAGE_SELECT, page << BME1000_PAGE_SHIFT);
12889 if (rv != 0)
12890 return rv;
12891 }
12892 }
12893
12894 return wm_gmii_mdic_writereg(dev, phy, regnum & MII_ADDRMASK, val);
12895 }
12896
12897 /*
12898 * wm_gmii_82580_readreg: [mii interface function]
12899 *
12900 * Read a PHY register on the 82580 and I350.
12901 * This could be handled by the PHY layer if we didn't have to lock the
12902 * resource ...
12903 */
12904 static int
12905 wm_gmii_82580_readreg(device_t dev, int phy, int reg, uint16_t *val)
12906 {
12907 struct wm_softc *sc = device_private(dev);
12908 int rv;
12909
12910 rv = sc->phy.acquire(sc);
12911 if (rv != 0) {
12912 device_printf(dev, "%s: failed to get semaphore\n", __func__);
12913 return rv;
12914 }
12915
12916 #ifdef DIAGNOSTIC
12917 if (reg > MII_ADDRMASK) {
12918 device_printf(dev, "%s: PHYTYPE = %d, addr 0x%x > 0x1f\n",
12919 __func__, sc->sc_phytype, reg);
12920 reg &= MII_ADDRMASK;
12921 }
12922 #endif
12923 rv = wm_gmii_mdic_readreg(dev, phy, reg, val);
12924
12925 sc->phy.release(sc);
12926 return rv;
12927 }
12928
12929 /*
12930 * wm_gmii_82580_writereg: [mii interface function]
12931 *
12932 * Write a PHY register on the 82580 and I350.
12933 * This could be handled by the PHY layer if we didn't have to lock the
12934 * resource ...
12935 */
12936 static int
12937 wm_gmii_82580_writereg(device_t dev, int phy, int reg, uint16_t val)
12938 {
12939 struct wm_softc *sc = device_private(dev);
12940 int rv;
12941
12942 rv = sc->phy.acquire(sc);
12943 if (rv != 0) {
12944 device_printf(dev, "%s: failed to get semaphore\n", __func__);
12945 return rv;
12946 }
12947
12948 #ifdef DIAGNOSTIC
12949 if (reg > MII_ADDRMASK) {
12950 device_printf(dev, "%s: PHYTYPE = %d, addr 0x%x > 0x1f\n",
12951 __func__, sc->sc_phytype, reg);
12952 reg &= MII_ADDRMASK;
12953 }
12954 #endif
12955 rv = wm_gmii_mdic_writereg(dev, phy, reg, val);
12956
12957 sc->phy.release(sc);
12958 return rv;
12959 }
12960
12961 /*
12962 * wm_gmii_gs40g_readreg: [mii interface function]
12963 *
12964 * Read a PHY register on the I2100 and I211.
12965 * This could be handled by the PHY layer if we didn't have to lock the
12966 * resource ...
12967 */
12968 static int
12969 wm_gmii_gs40g_readreg(device_t dev, int phy, int reg, uint16_t *val)
12970 {
12971 struct wm_softc *sc = device_private(dev);
12972 int page, offset;
12973 int rv;
12974
12975 /* Acquire semaphore */
12976 rv = sc->phy.acquire(sc);
12977 if (rv != 0) {
12978 device_printf(dev, "%s: failed to get semaphore\n", __func__);
12979 return rv;
12980 }
12981
12982 /* Page select */
12983 page = reg >> GS40G_PAGE_SHIFT;
12984 rv = wm_gmii_mdic_writereg(dev, phy, GS40G_PAGE_SELECT, page);
12985 if (rv != 0)
12986 goto release;
12987
12988 /* Read reg */
12989 offset = reg & GS40G_OFFSET_MASK;
12990 rv = wm_gmii_mdic_readreg(dev, phy, offset, val);
12991
12992 release:
12993 sc->phy.release(sc);
12994 return rv;
12995 }
12996
12997 /*
12998 * wm_gmii_gs40g_writereg: [mii interface function]
12999 *
13000 * Write a PHY register on the I210 and I211.
13001 * This could be handled by the PHY layer if we didn't have to lock the
13002 * resource ...
13003 */
13004 static int
13005 wm_gmii_gs40g_writereg(device_t dev, int phy, int reg, uint16_t val)
13006 {
13007 struct wm_softc *sc = device_private(dev);
13008 uint16_t page;
13009 int offset, rv;
13010
13011 /* Acquire semaphore */
13012 rv = sc->phy.acquire(sc);
13013 if (rv != 0) {
13014 device_printf(dev, "%s: failed to get semaphore\n", __func__);
13015 return rv;
13016 }
13017
13018 /* Page select */
13019 page = reg >> GS40G_PAGE_SHIFT;
13020 rv = wm_gmii_mdic_writereg(dev, phy, GS40G_PAGE_SELECT, page);
13021 if (rv != 0)
13022 goto release;
13023
13024 /* Write reg */
13025 offset = reg & GS40G_OFFSET_MASK;
13026 rv = wm_gmii_mdic_writereg(dev, phy, offset, val);
13027
13028 release:
13029 /* Release semaphore */
13030 sc->phy.release(sc);
13031 return rv;
13032 }
13033
13034 /*
13035 * wm_gmii_statchg: [mii interface function]
13036 *
13037 * Callback from MII layer when media changes.
13038 */
13039 static void
13040 wm_gmii_statchg(struct ifnet *ifp)
13041 {
13042 struct wm_softc *sc = ifp->if_softc;
13043 struct mii_data *mii = &sc->sc_mii;
13044
13045 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
13046 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
13047 sc->sc_fcrtl &= ~FCRTL_XONE;
13048
13049 /* Get flow control negotiation result. */
13050 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
13051 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
13052 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
13053 mii->mii_media_active &= ~IFM_ETH_FMASK;
13054 }
13055
13056 if (sc->sc_flowflags & IFM_FLOW) {
13057 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
13058 sc->sc_ctrl |= CTRL_TFCE;
13059 sc->sc_fcrtl |= FCRTL_XONE;
13060 }
13061 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
13062 sc->sc_ctrl |= CTRL_RFCE;
13063 }
13064
13065 if (mii->mii_media_active & IFM_FDX) {
13066 DPRINTF(sc, WM_DEBUG_LINK,
13067 ("%s: LINK: statchg: FDX\n", ifp->if_xname));
13068 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
13069 } else {
13070 DPRINTF(sc, WM_DEBUG_LINK,
13071 ("%s: LINK: statchg: HDX\n", ifp->if_xname));
13072 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
13073 }
13074
13075 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
13076 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
13077 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
13078 WMREG_OLD_FCRTL : WMREG_FCRTL, sc->sc_fcrtl);
13079 if (sc->sc_type == WM_T_80003) {
13080 switch (IFM_SUBTYPE(mii->mii_media_active)) {
13081 case IFM_1000_T:
13082 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
13083 KUMCTRLSTA_HD_CTRL_1000_DEFAULT);
13084 sc->sc_tipg = TIPG_1000T_80003_DFLT;
13085 break;
13086 default:
13087 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
13088 KUMCTRLSTA_HD_CTRL_10_100_DEFAULT);
13089 sc->sc_tipg = TIPG_10_100_80003_DFLT;
13090 break;
13091 }
13092 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
13093 }
13094 }
13095
13096 /* kumeran related (80003, ICH* and PCH*) */
13097
13098 /*
13099 * wm_kmrn_readreg:
13100 *
13101 * Read a kumeran register
13102 */
13103 static int
13104 wm_kmrn_readreg(struct wm_softc *sc, int reg, uint16_t *val)
13105 {
13106 int rv;
13107
13108 if (sc->sc_type == WM_T_80003)
13109 rv = wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
13110 else
13111 rv = sc->phy.acquire(sc);
13112 if (rv != 0) {
13113 device_printf(sc->sc_dev, "%s: failed to get semaphore\n",
13114 __func__);
13115 return rv;
13116 }
13117
13118 rv = wm_kmrn_readreg_locked(sc, reg, val);
13119
13120 if (sc->sc_type == WM_T_80003)
13121 wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
13122 else
13123 sc->phy.release(sc);
13124
13125 return rv;
13126 }
13127
13128 static int
13129 wm_kmrn_readreg_locked(struct wm_softc *sc, int reg, uint16_t *val)
13130 {
13131
13132 CSR_WRITE(sc, WMREG_KUMCTRLSTA,
13133 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
13134 KUMCTRLSTA_REN);
13135 CSR_WRITE_FLUSH(sc);
13136 delay(2);
13137
13138 *val = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK;
13139
13140 return 0;
13141 }
13142
13143 /*
13144 * wm_kmrn_writereg:
13145 *
13146 * Write a kumeran register
13147 */
13148 static int
13149 wm_kmrn_writereg(struct wm_softc *sc, int reg, uint16_t val)
13150 {
13151 int rv;
13152
13153 if (sc->sc_type == WM_T_80003)
13154 rv = wm_get_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
13155 else
13156 rv = sc->phy.acquire(sc);
13157 if (rv != 0) {
13158 device_printf(sc->sc_dev, "%s: failed to get semaphore\n",
13159 __func__);
13160 return rv;
13161 }
13162
13163 rv = wm_kmrn_writereg_locked(sc, reg, val);
13164
13165 if (sc->sc_type == WM_T_80003)
13166 wm_put_swfw_semaphore(sc, SWFW_MAC_CSR_SM);
13167 else
13168 sc->phy.release(sc);
13169
13170 return rv;
13171 }
13172
13173 static int
13174 wm_kmrn_writereg_locked(struct wm_softc *sc, int reg, uint16_t val)
13175 {
13176
13177 CSR_WRITE(sc, WMREG_KUMCTRLSTA,
13178 ((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) | val);
13179
13180 return 0;
13181 }
13182
13183 /*
13184 * EMI register related (82579, WMPHY_I217(PCH2 and newer))
13185 * This access method is different from IEEE MMD.
13186 */
13187 static int
13188 wm_access_emi_reg_locked(device_t dev, int reg, uint16_t *val, bool rd)
13189 {
13190 struct wm_softc *sc = device_private(dev);
13191 int rv;
13192
13193 rv = sc->phy.writereg_locked(dev, 2, I82579_EMI_ADDR, reg);
13194 if (rv != 0)
13195 return rv;
13196
13197 if (rd)
13198 rv = sc->phy.readreg_locked(dev, 2, I82579_EMI_DATA, val);
13199 else
13200 rv = sc->phy.writereg_locked(dev, 2, I82579_EMI_DATA, *val);
13201 return rv;
13202 }
13203
13204 static int
13205 wm_read_emi_reg_locked(device_t dev, int reg, uint16_t *val)
13206 {
13207
13208 return wm_access_emi_reg_locked(dev, reg, val, true);
13209 }
13210
13211 static int
13212 wm_write_emi_reg_locked(device_t dev, int reg, uint16_t val)
13213 {
13214
13215 return wm_access_emi_reg_locked(dev, reg, &val, false);
13216 }
13217
13218 /* SGMII related */
13219
13220 /*
13221 * wm_sgmii_uses_mdio
13222 *
13223 * Check whether the transaction is to the internal PHY or the external
13224 * MDIO interface. Return true if it's MDIO.
13225 */
13226 static bool
13227 wm_sgmii_uses_mdio(struct wm_softc *sc)
13228 {
13229 uint32_t reg;
13230 bool ismdio = false;
13231
13232 switch (sc->sc_type) {
13233 case WM_T_82575:
13234 case WM_T_82576:
13235 reg = CSR_READ(sc, WMREG_MDIC);
13236 ismdio = ((reg & MDIC_DEST) != 0);
13237 break;
13238 case WM_T_82580:
13239 case WM_T_I350:
13240 case WM_T_I354:
13241 case WM_T_I210:
13242 case WM_T_I211:
13243 reg = CSR_READ(sc, WMREG_MDICNFG);
13244 ismdio = ((reg & MDICNFG_DEST) != 0);
13245 break;
13246 default:
13247 break;
13248 }
13249
13250 return ismdio;
13251 }
13252
13253 /* Setup internal SGMII PHY for SFP */
13254 static void
13255 wm_sgmii_sfp_preconfig(struct wm_softc *sc)
13256 {
13257 uint16_t id1, id2, phyreg;
13258 int i, rv;
13259
13260 if (((sc->sc_flags & WM_F_SGMII) == 0)
13261 || ((sc->sc_flags & WM_F_SFP) == 0))
13262 return;
13263
13264 for (i = 0; i < MII_NPHY; i++) {
13265 sc->phy.no_errprint = true;
13266 rv = sc->phy.readreg_locked(sc->sc_dev, i, MII_PHYIDR1, &id1);
13267 if (rv != 0)
13268 continue;
13269 rv = sc->phy.readreg_locked(sc->sc_dev, i, MII_PHYIDR2, &id2);
13270 if (rv != 0)
13271 continue;
13272 if (MII_OUI(id1, id2) != MII_OUI_xxMARVELL)
13273 continue;
13274 sc->phy.no_errprint = false;
13275
13276 sc->phy.readreg_locked(sc->sc_dev, i, MAKPHY_ESSR, &phyreg);
13277 phyreg &= ~(ESSR_SER_ANEG_BYPASS | ESSR_HWCFG_MODE);
13278 phyreg |= ESSR_SGMII_WOC_COPPER;
13279 sc->phy.writereg_locked(sc->sc_dev, i, MAKPHY_ESSR, phyreg);
13280 break;
13281 }
13282
13283 }
13284
13285 /*
13286 * wm_sgmii_readreg: [mii interface function]
13287 *
13288 * Read a PHY register on the SGMII
13289 * This could be handled by the PHY layer if we didn't have to lock the
13290 * resource ...
13291 */
13292 static int
13293 wm_sgmii_readreg(device_t dev, int phy, int reg, uint16_t *val)
13294 {
13295 struct wm_softc *sc = device_private(dev);
13296 int rv;
13297
13298 rv = sc->phy.acquire(sc);
13299 if (rv != 0) {
13300 device_printf(dev, "%s: failed to get semaphore\n", __func__);
13301 return rv;
13302 }
13303
13304 rv = wm_sgmii_readreg_locked(dev, phy, reg, val);
13305
13306 sc->phy.release(sc);
13307 return rv;
13308 }
13309
13310 static int
13311 wm_sgmii_readreg_locked(device_t dev, int phy, int reg, uint16_t *val)
13312 {
13313 struct wm_softc *sc = device_private(dev);
13314 uint32_t i2ccmd;
13315 int i, rv = 0;
13316
13317 i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT)
13318 | (phy << I2CCMD_PHY_ADDR_SHIFT) | I2CCMD_OPCODE_READ;
13319 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
13320
13321 /* Poll the ready bit */
13322 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
13323 delay(50);
13324 i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
13325 if (i2ccmd & I2CCMD_READY)
13326 break;
13327 }
13328 if ((i2ccmd & I2CCMD_READY) == 0) {
13329 device_printf(dev, "I2CCMD Read did not complete\n");
13330 rv = ETIMEDOUT;
13331 }
13332 if ((i2ccmd & I2CCMD_ERROR) != 0) {
13333 if (!sc->phy.no_errprint)
13334 device_printf(dev, "I2CCMD Error bit set\n");
13335 rv = EIO;
13336 }
13337
13338 *val = (uint16_t)((i2ccmd >> 8) & 0x00ff) | ((i2ccmd << 8) & 0xff00);
13339
13340 return rv;
13341 }
13342
13343 /*
13344 * wm_sgmii_writereg: [mii interface function]
13345 *
13346 * Write a PHY register on the SGMII.
13347 * This could be handled by the PHY layer if we didn't have to lock the
13348 * resource ...
13349 */
13350 static int
13351 wm_sgmii_writereg(device_t dev, int phy, int reg, uint16_t val)
13352 {
13353 struct wm_softc *sc = device_private(dev);
13354 int rv;
13355
13356 rv = sc->phy.acquire(sc);
13357 if (rv != 0) {
13358 device_printf(dev, "%s: failed to get semaphore\n", __func__);
13359 return rv;
13360 }
13361
13362 rv = wm_sgmii_writereg_locked(dev, phy, reg, val);
13363
13364 sc->phy.release(sc);
13365
13366 return rv;
13367 }
13368
13369 static int
13370 wm_sgmii_writereg_locked(device_t dev, int phy, int reg, uint16_t val)
13371 {
13372 struct wm_softc *sc = device_private(dev);
13373 uint32_t i2ccmd;
13374 uint16_t swapdata;
13375 int rv = 0;
13376 int i;
13377
13378 /* Swap the data bytes for the I2C interface */
13379 swapdata = ((val >> 8) & 0x00FF) | ((val << 8) & 0xFF00);
13380 i2ccmd = (reg << I2CCMD_REG_ADDR_SHIFT)
13381 | (phy << I2CCMD_PHY_ADDR_SHIFT) | I2CCMD_OPCODE_WRITE | swapdata;
13382 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
13383
13384 /* Poll the ready bit */
13385 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
13386 delay(50);
13387 i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
13388 if (i2ccmd & I2CCMD_READY)
13389 break;
13390 }
13391 if ((i2ccmd & I2CCMD_READY) == 0) {
13392 device_printf(dev, "I2CCMD Write did not complete\n");
13393 rv = ETIMEDOUT;
13394 }
13395 if ((i2ccmd & I2CCMD_ERROR) != 0) {
13396 device_printf(dev, "I2CCMD Error bit set\n");
13397 rv = EIO;
13398 }
13399
13400 return rv;
13401 }
13402
13403 /* TBI related */
13404
13405 static bool
13406 wm_tbi_havesignal(struct wm_softc *sc, uint32_t ctrl)
13407 {
13408 bool sig;
13409
13410 sig = ctrl & CTRL_SWDPIN(1);
13411
13412 /*
13413 * On 82543 and 82544, the CTRL_SWDPIN(1) bit will be 0 if the optics
13414 * detect a signal, 1 if they don't.
13415 */
13416 if ((sc->sc_type == WM_T_82543) || (sc->sc_type == WM_T_82544))
13417 sig = !sig;
13418
13419 return sig;
13420 }
13421
13422 /*
13423 * wm_tbi_mediainit:
13424 *
13425 * Initialize media for use on 1000BASE-X devices.
13426 */
13427 static void
13428 wm_tbi_mediainit(struct wm_softc *sc)
13429 {
13430 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
13431 const char *sep = "";
13432
13433 if (sc->sc_type < WM_T_82543)
13434 sc->sc_tipg = TIPG_WM_DFLT;
13435 else
13436 sc->sc_tipg = TIPG_LG_DFLT;
13437
13438 sc->sc_tbi_serdes_anegticks = 5;
13439
13440 /* Initialize our media structures */
13441 sc->sc_mii.mii_ifp = ifp;
13442 sc->sc_ethercom.ec_mii = &sc->sc_mii;
13443
13444 ifp->if_baudrate = IF_Gbps(1);
13445 if (((sc->sc_type >= WM_T_82575) && (sc->sc_type <= WM_T_I211))
13446 && (sc->sc_mediatype == WM_MEDIATYPE_SERDES)) {
13447 ifmedia_init_with_lock(&sc->sc_mii.mii_media, IFM_IMASK,
13448 wm_serdes_mediachange, wm_serdes_mediastatus,
13449 sc->sc_core_lock);
13450 } else {
13451 ifmedia_init_with_lock(&sc->sc_mii.mii_media, IFM_IMASK,
13452 wm_tbi_mediachange, wm_tbi_mediastatus, sc->sc_core_lock);
13453 }
13454
13455 /*
13456 * SWD Pins:
13457 *
13458 * 0 = Link LED (output)
13459 * 1 = Loss Of Signal (input)
13460 */
13461 sc->sc_ctrl |= CTRL_SWDPIO(0);
13462
13463 /* XXX Perhaps this is only for TBI */
13464 if (sc->sc_mediatype != WM_MEDIATYPE_SERDES)
13465 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
13466
13467 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES)
13468 sc->sc_ctrl &= ~CTRL_LRST;
13469
13470 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
13471
13472 #define ADD(ss, mm, dd) \
13473 do { \
13474 aprint_normal("%s%s", sep, ss); \
13475 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | (mm), (dd), NULL); \
13476 sep = ", "; \
13477 } while (/*CONSTCOND*/0)
13478
13479 aprint_normal_dev(sc->sc_dev, "");
13480
13481 if (sc->sc_type == WM_T_I354) {
13482 uint32_t status;
13483
13484 status = CSR_READ(sc, WMREG_STATUS);
13485 if (((status & STATUS_2P5_SKU) != 0)
13486 && ((status & STATUS_2P5_SKU_OVER) == 0)) {
13487 ADD("2500baseKX-FDX", IFM_2500_KX | IFM_FDX,ANAR_X_FD);
13488 } else
13489 ADD("1000baseKX-FDX", IFM_1000_KX | IFM_FDX,ANAR_X_FD);
13490 } else if (sc->sc_type == WM_T_82545) {
13491 /* Only 82545 is LX (XXX except SFP) */
13492 ADD("1000baseLX", IFM_1000_LX, ANAR_X_HD);
13493 ADD("1000baseLX-FDX", IFM_1000_LX | IFM_FDX, ANAR_X_FD);
13494 } else if (sc->sc_sfptype != 0) {
13495 /* XXX wm(4) fiber/serdes don't use ifm_data */
13496 switch (sc->sc_sfptype) {
13497 default:
13498 case SFF_SFP_ETH_FLAGS_1000SX:
13499 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
13500 ADD("1000baseSX-FDX", IFM_1000_SX | IFM_FDX, ANAR_X_FD);
13501 break;
13502 case SFF_SFP_ETH_FLAGS_1000LX:
13503 ADD("1000baseLX", IFM_1000_LX, ANAR_X_HD);
13504 ADD("1000baseLX-FDX", IFM_1000_LX | IFM_FDX, ANAR_X_FD);
13505 break;
13506 case SFF_SFP_ETH_FLAGS_1000CX:
13507 ADD("1000baseCX", IFM_1000_CX, ANAR_X_HD);
13508 ADD("1000baseCX-FDX", IFM_1000_CX | IFM_FDX, ANAR_X_FD);
13509 break;
13510 case SFF_SFP_ETH_FLAGS_1000T:
13511 ADD("1000baseT", IFM_1000_T, 0);
13512 ADD("1000baseT-FDX", IFM_1000_T | IFM_FDX, 0);
13513 break;
13514 case SFF_SFP_ETH_FLAGS_100FX:
13515 ADD("100baseFX", IFM_100_FX, ANAR_TX);
13516 ADD("100baseFX-FDX", IFM_100_FX | IFM_FDX, ANAR_TX_FD);
13517 break;
13518 }
13519 } else {
13520 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
13521 ADD("1000baseSX-FDX", IFM_1000_SX | IFM_FDX, ANAR_X_FD);
13522 }
13523 ADD("auto", IFM_AUTO, ANAR_X_FD | ANAR_X_HD);
13524 aprint_normal("\n");
13525
13526 #undef ADD
13527
13528 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
13529 }
13530
13531 /*
13532 * wm_tbi_mediachange: [ifmedia interface function]
13533 *
13534 * Set hardware to newly-selected media on a 1000BASE-X device.
13535 */
13536 static int
13537 wm_tbi_mediachange(struct ifnet *ifp)
13538 {
13539 struct wm_softc *sc = ifp->if_softc;
13540 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
13541 uint32_t status, ctrl;
13542 bool signal;
13543 int i;
13544
13545 KASSERT(sc->sc_mediatype != WM_MEDIATYPE_COPPER);
13546 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES) {
13547 /* XXX need some work for >= 82571 and < 82575 */
13548 if (sc->sc_type < WM_T_82575)
13549 return 0;
13550 }
13551
13552 if ((sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_82572)
13553 || (sc->sc_type >= WM_T_82575))
13554 CSR_WRITE(sc, WMREG_SCTL, SCTL_DISABLE_SERDES_LOOPBACK);
13555
13556 sc->sc_ctrl &= ~CTRL_LRST;
13557 sc->sc_txcw = TXCW_ANE;
13558 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
13559 sc->sc_txcw |= TXCW_FD | TXCW_HD;
13560 else if (ife->ifm_media & IFM_FDX)
13561 sc->sc_txcw |= TXCW_FD;
13562 else
13563 sc->sc_txcw |= TXCW_HD;
13564
13565 if ((sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
13566 sc->sc_txcw |= TXCW_SYM_PAUSE | TXCW_ASYM_PAUSE;
13567
13568 DPRINTF(sc, WM_DEBUG_LINK,("%s: sc_txcw = 0x%x after autoneg check\n",
13569 device_xname(sc->sc_dev), sc->sc_txcw));
13570 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
13571 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
13572 CSR_WRITE_FLUSH(sc);
13573 delay(1000);
13574
13575 ctrl = CSR_READ(sc, WMREG_CTRL);
13576 signal = wm_tbi_havesignal(sc, ctrl);
13577
13578 DPRINTF(sc, WM_DEBUG_LINK,
13579 ("%s: signal = %d\n", device_xname(sc->sc_dev), signal));
13580
13581 if (signal) {
13582 /* Have signal; wait for the link to come up. */
13583 for (i = 0; i < WM_LINKUP_TIMEOUT; i++) {
13584 delay(10000);
13585 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
13586 break;
13587 }
13588
13589 DPRINTF(sc, WM_DEBUG_LINK,
13590 ("%s: i = %d after waiting for link\n",
13591 device_xname(sc->sc_dev), i));
13592
13593 status = CSR_READ(sc, WMREG_STATUS);
13594 DPRINTF(sc, WM_DEBUG_LINK,
13595 ("%s: status after final read = 0x%x, STATUS_LU = %#"
13596 __PRIxBIT "\n",
13597 device_xname(sc->sc_dev), status, STATUS_LU));
13598 if (status & STATUS_LU) {
13599 /* Link is up. */
13600 DPRINTF(sc, WM_DEBUG_LINK,
13601 ("%s: LINK: set media -> link up %s\n",
13602 device_xname(sc->sc_dev),
13603 (status & STATUS_FD) ? "FDX" : "HDX"));
13604
13605 /*
13606 * NOTE: CTRL will update TFCE and RFCE automatically,
13607 * so we should update sc->sc_ctrl
13608 */
13609 sc->sc_ctrl = CSR_READ(sc, WMREG_CTRL);
13610 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
13611 sc->sc_fcrtl &= ~FCRTL_XONE;
13612 if (status & STATUS_FD)
13613 sc->sc_tctl |=
13614 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
13615 else
13616 sc->sc_tctl |=
13617 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
13618 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
13619 sc->sc_fcrtl |= FCRTL_XONE;
13620 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
13621 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
13622 WMREG_OLD_FCRTL : WMREG_FCRTL, sc->sc_fcrtl);
13623 sc->sc_tbi_linkup = 1;
13624 } else {
13625 if (i == WM_LINKUP_TIMEOUT)
13626 wm_check_for_link(sc);
13627 /* Link is down. */
13628 DPRINTF(sc, WM_DEBUG_LINK,
13629 ("%s: LINK: set media -> link down\n",
13630 device_xname(sc->sc_dev)));
13631 sc->sc_tbi_linkup = 0;
13632 }
13633 } else {
13634 DPRINTF(sc, WM_DEBUG_LINK,
13635 ("%s: LINK: set media -> no signal\n",
13636 device_xname(sc->sc_dev)));
13637 sc->sc_tbi_linkup = 0;
13638 }
13639
13640 wm_tbi_serdes_set_linkled(sc);
13641
13642 return 0;
13643 }
13644
13645 /*
13646 * wm_tbi_mediastatus: [ifmedia interface function]
13647 *
13648 * Get the current interface media status on a 1000BASE-X device.
13649 */
13650 static void
13651 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
13652 {
13653 struct wm_softc *sc = ifp->if_softc;
13654 uint32_t ctrl, status;
13655
13656 ifmr->ifm_status = IFM_AVALID;
13657 ifmr->ifm_active = IFM_ETHER;
13658
13659 status = CSR_READ(sc, WMREG_STATUS);
13660 if ((status & STATUS_LU) == 0) {
13661 ifmr->ifm_active |= IFM_NONE;
13662 return;
13663 }
13664
13665 ifmr->ifm_status |= IFM_ACTIVE;
13666 /* Only 82545 is LX */
13667 if (sc->sc_type == WM_T_82545)
13668 ifmr->ifm_active |= IFM_1000_LX;
13669 else
13670 ifmr->ifm_active |= IFM_1000_SX;
13671 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
13672 ifmr->ifm_active |= IFM_FDX;
13673 else
13674 ifmr->ifm_active |= IFM_HDX;
13675 ctrl = CSR_READ(sc, WMREG_CTRL);
13676 if (ctrl & CTRL_RFCE)
13677 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
13678 if (ctrl & CTRL_TFCE)
13679 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
13680 }
13681
13682 /* XXX TBI only */
13683 static int
13684 wm_check_for_link(struct wm_softc *sc)
13685 {
13686 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
13687 uint32_t rxcw;
13688 uint32_t ctrl;
13689 uint32_t status;
13690 bool signal;
13691
13692 DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s called\n",
13693 device_xname(sc->sc_dev), __func__));
13694
13695 if (sc->sc_mediatype == WM_MEDIATYPE_SERDES) {
13696 /* XXX need some work for >= 82571 */
13697 if (sc->sc_type >= WM_T_82571) {
13698 sc->sc_tbi_linkup = 1;
13699 return 0;
13700 }
13701 }
13702
13703 rxcw = CSR_READ(sc, WMREG_RXCW);
13704 ctrl = CSR_READ(sc, WMREG_CTRL);
13705 status = CSR_READ(sc, WMREG_STATUS);
13706 signal = wm_tbi_havesignal(sc, ctrl);
13707
13708 DPRINTF(sc, WM_DEBUG_LINK,
13709 ("%s: %s: signal = %d, status_lu = %d, rxcw_c = %d\n",
13710 device_xname(sc->sc_dev), __func__, signal,
13711 ((status & STATUS_LU) != 0), ((rxcw & RXCW_C) != 0)));
13712
13713 /*
13714 * SWDPIN LU RXCW
13715 * 0 0 0
13716 * 0 0 1 (should not happen)
13717 * 0 1 0 (should not happen)
13718 * 0 1 1 (should not happen)
13719 * 1 0 0 Disable autonego and force linkup
13720 * 1 0 1 got /C/ but not linkup yet
13721 * 1 1 0 (linkup)
13722 * 1 1 1 If IFM_AUTO, back to autonego
13723 *
13724 */
13725 if (signal && ((status & STATUS_LU) == 0) && ((rxcw & RXCW_C) == 0)) {
13726 DPRINTF(sc, WM_DEBUG_LINK,
13727 ("%s: %s: force linkup and fullduplex\n",
13728 device_xname(sc->sc_dev), __func__));
13729 sc->sc_tbi_linkup = 0;
13730 /* Disable auto-negotiation in the TXCW register */
13731 CSR_WRITE(sc, WMREG_TXCW, (sc->sc_txcw & ~TXCW_ANE));
13732
13733 /*
13734 * Force link-up and also force full-duplex.
13735 *
13736 * NOTE: CTRL was updated TFCE and RFCE automatically,
13737 * so we should update sc->sc_ctrl
13738 */
13739 sc->sc_ctrl = ctrl | CTRL_SLU | CTRL_FD;
13740 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
13741 } else if (((status & STATUS_LU) != 0)
13742 && ((rxcw & RXCW_C) != 0)
13743 && (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)) {
13744 sc->sc_tbi_linkup = 1;
13745 DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s: go back to autonego\n",
13746 device_xname(sc->sc_dev), __func__));
13747 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
13748 CSR_WRITE(sc, WMREG_CTRL, (ctrl & ~CTRL_SLU));
13749 } else if (signal && ((rxcw & RXCW_C) != 0)) {
13750 DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s: /C/",
13751 device_xname(sc->sc_dev), __func__));
13752 } else {
13753 DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s: linkup %08x,%08x,%08x\n",
13754 device_xname(sc->sc_dev), __func__, rxcw, ctrl,
13755 status));
13756 }
13757
13758 return 0;
13759 }
13760
13761 /*
13762 * wm_tbi_tick:
13763 *
13764 * Check the link on TBI devices.
13765 * This function acts as mii_tick().
13766 */
13767 static void
13768 wm_tbi_tick(struct wm_softc *sc)
13769 {
13770 struct mii_data *mii = &sc->sc_mii;
13771 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
13772 uint32_t status;
13773
13774 KASSERT(mutex_owned(sc->sc_core_lock));
13775
13776 status = CSR_READ(sc, WMREG_STATUS);
13777
13778 /* XXX is this needed? */
13779 (void)CSR_READ(sc, WMREG_RXCW);
13780 (void)CSR_READ(sc, WMREG_CTRL);
13781
13782 /* set link status */
13783 if ((status & STATUS_LU) == 0) {
13784 DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: checklink -> down\n",
13785 device_xname(sc->sc_dev)));
13786 sc->sc_tbi_linkup = 0;
13787 } else if (sc->sc_tbi_linkup == 0) {
13788 DPRINTF(sc, WM_DEBUG_LINK, ("%s: LINK: checklink -> up %s\n",
13789 device_xname(sc->sc_dev),
13790 (status & STATUS_FD) ? "FDX" : "HDX"));
13791 sc->sc_tbi_linkup = 1;
13792 sc->sc_tbi_serdes_ticks = 0;
13793 }
13794
13795 if ((sc->sc_if_flags & IFF_UP) == 0)
13796 goto setled;
13797
13798 if ((status & STATUS_LU) == 0) {
13799 sc->sc_tbi_linkup = 0;
13800 /* If the timer expired, retry autonegotiation */
13801 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
13802 && (++sc->sc_tbi_serdes_ticks
13803 >= sc->sc_tbi_serdes_anegticks)) {
13804 DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s: EXPIRE\n",
13805 device_xname(sc->sc_dev), __func__));
13806 sc->sc_tbi_serdes_ticks = 0;
13807 /*
13808 * Reset the link, and let autonegotiation do
13809 * its thing
13810 */
13811 sc->sc_ctrl |= CTRL_LRST;
13812 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
13813 CSR_WRITE_FLUSH(sc);
13814 delay(1000);
13815 sc->sc_ctrl &= ~CTRL_LRST;
13816 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
13817 CSR_WRITE_FLUSH(sc);
13818 delay(1000);
13819 CSR_WRITE(sc, WMREG_TXCW,
13820 sc->sc_txcw & ~TXCW_ANE);
13821 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
13822 }
13823 }
13824
13825 setled:
13826 wm_tbi_serdes_set_linkled(sc);
13827 }
13828
13829 /* SERDES related */
13830 static void
13831 wm_serdes_power_up_link_82575(struct wm_softc *sc)
13832 {
13833 uint32_t reg;
13834
13835 if ((sc->sc_mediatype != WM_MEDIATYPE_SERDES)
13836 && ((sc->sc_flags & WM_F_SGMII) == 0))
13837 return;
13838
13839 /* Enable PCS to turn on link */
13840 reg = CSR_READ(sc, WMREG_PCS_CFG);
13841 reg |= PCS_CFG_PCS_EN;
13842 CSR_WRITE(sc, WMREG_PCS_CFG, reg);
13843
13844 /* Power up the laser */
13845 reg = CSR_READ(sc, WMREG_CTRL_EXT);
13846 reg &= ~CTRL_EXT_SWDPIN(3);
13847 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
13848
13849 /* Flush the write to verify completion */
13850 CSR_WRITE_FLUSH(sc);
13851 delay(1000);
13852 }
13853
13854 static int
13855 wm_serdes_mediachange(struct ifnet *ifp)
13856 {
13857 struct wm_softc *sc = ifp->if_softc;
13858 bool pcs_autoneg = true; /* XXX */
13859 uint32_t ctrl_ext, pcs_lctl, reg;
13860
13861 if ((sc->sc_mediatype != WM_MEDIATYPE_SERDES)
13862 && ((sc->sc_flags & WM_F_SGMII) == 0))
13863 return 0;
13864
13865 /* XXX Currently, this function is not called on 8257[12] */
13866 if ((sc->sc_type == WM_T_82571) || (sc->sc_type == WM_T_82572)
13867 || (sc->sc_type >= WM_T_82575))
13868 CSR_WRITE(sc, WMREG_SCTL, SCTL_DISABLE_SERDES_LOOPBACK);
13869
13870 /* Power on the sfp cage if present */
13871 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
13872 ctrl_ext &= ~CTRL_EXT_SWDPIN(3);
13873 ctrl_ext |= CTRL_EXT_I2C_ENA;
13874 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
13875
13876 sc->sc_ctrl |= CTRL_SLU;
13877
13878 if ((sc->sc_type == WM_T_82575) || (sc->sc_type == WM_T_82576)) {
13879 sc->sc_ctrl |= CTRL_SWDPIN(0) | CTRL_SWDPIN(1);
13880
13881 reg = CSR_READ(sc, WMREG_CONNSW);
13882 reg |= CONNSW_ENRGSRC;
13883 CSR_WRITE(sc, WMREG_CONNSW, reg);
13884 }
13885
13886 pcs_lctl = CSR_READ(sc, WMREG_PCS_LCTL);
13887 switch (ctrl_ext & CTRL_EXT_LINK_MODE_MASK) {
13888 case CTRL_EXT_LINK_MODE_SGMII:
13889 /* SGMII mode lets the phy handle forcing speed/duplex */
13890 pcs_autoneg = true;
13891 /* Autoneg time out should be disabled for SGMII mode */
13892 pcs_lctl &= ~PCS_LCTL_AN_TIMEOUT;
13893 break;
13894 case CTRL_EXT_LINK_MODE_1000KX:
13895 pcs_autoneg = false;
13896 /* FALLTHROUGH */
13897 default:
13898 if ((sc->sc_type == WM_T_82575)
13899 || (sc->sc_type == WM_T_82576)) {
13900 if ((sc->sc_flags & WM_F_PCS_DIS_AUTONEGO) != 0)
13901 pcs_autoneg = false;
13902 }
13903 sc->sc_ctrl |= CTRL_SPEED_1000 | CTRL_FRCSPD | CTRL_FD
13904 | CTRL_FRCFDX;
13905
13906 /* Set speed of 1000/Full if speed/duplex is forced */
13907 pcs_lctl |= PCS_LCTL_FSV_1000 | PCS_LCTL_FDV_FULL;
13908 }
13909 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
13910
13911 pcs_lctl &= ~(PCS_LCTL_AN_ENABLE | PCS_LCTL_FLV_LINK_UP |
13912 PCS_LCTL_FSD | PCS_LCTL_FORCE_LINK);
13913
13914 if (pcs_autoneg) {
13915 /* Set PCS register for autoneg */
13916 pcs_lctl |= PCS_LCTL_AN_ENABLE | PCS_LCTL_AN_RESTART;
13917
13918 /* Disable force flow control for autoneg */
13919 pcs_lctl &= ~PCS_LCTL_FORCE_FC;
13920
13921 /* Configure flow control advertisement for autoneg */
13922 reg = CSR_READ(sc, WMREG_PCS_ANADV);
13923 reg &= ~(TXCW_ASYM_PAUSE | TXCW_SYM_PAUSE);
13924 reg |= TXCW_ASYM_PAUSE | TXCW_SYM_PAUSE;
13925 CSR_WRITE(sc, WMREG_PCS_ANADV, reg);
13926 } else
13927 pcs_lctl |= PCS_LCTL_FSD | PCS_LCTL_FORCE_FC;
13928
13929 CSR_WRITE(sc, WMREG_PCS_LCTL, pcs_lctl);
13930
13931 return 0;
13932 }
13933
13934 static void
13935 wm_serdes_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
13936 {
13937 struct wm_softc *sc = ifp->if_softc;
13938 struct mii_data *mii = &sc->sc_mii;
13939 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
13940 uint32_t pcs_adv, pcs_lpab, reg;
13941
13942 ifmr->ifm_status = IFM_AVALID;
13943 ifmr->ifm_active = IFM_ETHER;
13944
13945 /* Check PCS */
13946 reg = CSR_READ(sc, WMREG_PCS_LSTS);
13947 if ((reg & PCS_LSTS_LINKOK) == 0) {
13948 ifmr->ifm_active |= IFM_NONE;
13949 sc->sc_tbi_linkup = 0;
13950 goto setled;
13951 }
13952
13953 sc->sc_tbi_linkup = 1;
13954 ifmr->ifm_status |= IFM_ACTIVE;
13955 if (sc->sc_type == WM_T_I354) {
13956 uint32_t status;
13957
13958 status = CSR_READ(sc, WMREG_STATUS);
13959 if (((status & STATUS_2P5_SKU) != 0)
13960 && ((status & STATUS_2P5_SKU_OVER) == 0)) {
13961 ifmr->ifm_active |= IFM_2500_KX;
13962 } else
13963 ifmr->ifm_active |= IFM_1000_KX;
13964 } else {
13965 switch (__SHIFTOUT(reg, PCS_LSTS_SPEED)) {
13966 case PCS_LSTS_SPEED_10:
13967 ifmr->ifm_active |= IFM_10_T; /* XXX */
13968 break;
13969 case PCS_LSTS_SPEED_100:
13970 ifmr->ifm_active |= IFM_100_FX; /* XXX */
13971 break;
13972 case PCS_LSTS_SPEED_1000:
13973 ifmr->ifm_active |= IFM_1000_SX; /* XXX */
13974 break;
13975 default:
13976 device_printf(sc->sc_dev, "Unknown speed\n");
13977 ifmr->ifm_active |= IFM_1000_SX; /* XXX */
13978 break;
13979 }
13980 }
13981 ifp->if_baudrate = ifmedia_baudrate(ifmr->ifm_active);
13982 if ((reg & PCS_LSTS_FDX) != 0)
13983 ifmr->ifm_active |= IFM_FDX;
13984 else
13985 ifmr->ifm_active |= IFM_HDX;
13986 mii->mii_media_active &= ~IFM_ETH_FMASK;
13987 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
13988 /* Check flow */
13989 reg = CSR_READ(sc, WMREG_PCS_LSTS);
13990 if ((reg & PCS_LSTS_AN_COMP) == 0) {
13991 DPRINTF(sc, WM_DEBUG_LINK,
13992 ("XXX LINKOK but not ACOMP\n"));
13993 goto setled;
13994 }
13995 pcs_adv = CSR_READ(sc, WMREG_PCS_ANADV);
13996 pcs_lpab = CSR_READ(sc, WMREG_PCS_LPAB);
13997 DPRINTF(sc, WM_DEBUG_LINK,
13998 ("XXX AN result(2) %08x, %08x\n", pcs_adv, pcs_lpab));
13999 if ((pcs_adv & TXCW_SYM_PAUSE)
14000 && (pcs_lpab & TXCW_SYM_PAUSE)) {
14001 mii->mii_media_active |= IFM_FLOW
14002 | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
14003 } else if (((pcs_adv & TXCW_SYM_PAUSE) == 0)
14004 && (pcs_adv & TXCW_ASYM_PAUSE)
14005 && (pcs_lpab & TXCW_SYM_PAUSE)
14006 && (pcs_lpab & TXCW_ASYM_PAUSE)) {
14007 mii->mii_media_active |= IFM_FLOW
14008 | IFM_ETH_TXPAUSE;
14009 } else if ((pcs_adv & TXCW_SYM_PAUSE)
14010 && (pcs_adv & TXCW_ASYM_PAUSE)
14011 && ((pcs_lpab & TXCW_SYM_PAUSE) == 0)
14012 && (pcs_lpab & TXCW_ASYM_PAUSE)) {
14013 mii->mii_media_active |= IFM_FLOW
14014 | IFM_ETH_RXPAUSE;
14015 }
14016 }
14017 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
14018 | (mii->mii_media_active & IFM_ETH_FMASK);
14019 setled:
14020 wm_tbi_serdes_set_linkled(sc);
14021 }
14022
14023 /*
14024 * wm_serdes_tick:
14025 *
14026 * Check the link on serdes devices.
14027 */
14028 static void
14029 wm_serdes_tick(struct wm_softc *sc)
14030 {
14031 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
14032 struct mii_data *mii = &sc->sc_mii;
14033 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
14034 uint32_t reg;
14035
14036 KASSERT(mutex_owned(sc->sc_core_lock));
14037
14038 mii->mii_media_status = IFM_AVALID;
14039 mii->mii_media_active = IFM_ETHER;
14040
14041 /* Check PCS */
14042 reg = CSR_READ(sc, WMREG_PCS_LSTS);
14043 if ((reg & PCS_LSTS_LINKOK) != 0) {
14044 mii->mii_media_status |= IFM_ACTIVE;
14045 sc->sc_tbi_linkup = 1;
14046 sc->sc_tbi_serdes_ticks = 0;
14047 mii->mii_media_active |= IFM_1000_SX; /* XXX */
14048 if ((reg & PCS_LSTS_FDX) != 0)
14049 mii->mii_media_active |= IFM_FDX;
14050 else
14051 mii->mii_media_active |= IFM_HDX;
14052 } else {
14053 mii->mii_media_status |= IFM_NONE;
14054 sc->sc_tbi_linkup = 0;
14055 /* If the timer expired, retry autonegotiation */
14056 if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
14057 && (++sc->sc_tbi_serdes_ticks
14058 >= sc->sc_tbi_serdes_anegticks)) {
14059 DPRINTF(sc, WM_DEBUG_LINK, ("%s: %s: EXPIRE\n",
14060 device_xname(sc->sc_dev), __func__));
14061 sc->sc_tbi_serdes_ticks = 0;
14062 /* XXX */
14063 wm_serdes_mediachange(ifp);
14064 }
14065 }
14066
14067 wm_tbi_serdes_set_linkled(sc);
14068 }
14069
14070 /* SFP related */
14071
14072 static int
14073 wm_sfp_read_data_byte(struct wm_softc *sc, uint16_t offset, uint8_t *data)
14074 {
14075 uint32_t i2ccmd;
14076 int i;
14077
14078 i2ccmd = (offset << I2CCMD_REG_ADDR_SHIFT) | I2CCMD_OPCODE_READ;
14079 CSR_WRITE(sc, WMREG_I2CCMD, i2ccmd);
14080
14081 /* Poll the ready bit */
14082 for (i = 0; i < I2CCMD_PHY_TIMEOUT; i++) {
14083 delay(50);
14084 i2ccmd = CSR_READ(sc, WMREG_I2CCMD);
14085 if (i2ccmd & I2CCMD_READY)
14086 break;
14087 }
14088 if ((i2ccmd & I2CCMD_READY) == 0)
14089 return -1;
14090 if ((i2ccmd & I2CCMD_ERROR) != 0)
14091 return -1;
14092
14093 *data = i2ccmd & 0x00ff;
14094
14095 return 0;
14096 }
14097
14098 static uint32_t
14099 wm_sfp_get_media_type(struct wm_softc *sc)
14100 {
14101 uint32_t ctrl_ext;
14102 uint8_t val = 0;
14103 int timeout = 3;
14104 uint32_t mediatype = WM_MEDIATYPE_UNKNOWN;
14105 int rv = -1;
14106
14107 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
14108 ctrl_ext &= ~CTRL_EXT_SWDPIN(3);
14109 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext | CTRL_EXT_I2C_ENA);
14110 CSR_WRITE_FLUSH(sc);
14111
14112 /* Read SFP module data */
14113 while (timeout) {
14114 rv = wm_sfp_read_data_byte(sc, SFF_SFP_ID_OFF, &val);
14115 if (rv == 0)
14116 break;
14117 delay(100*1000); /* XXX too big */
14118 timeout--;
14119 }
14120 if (rv != 0)
14121 goto out;
14122
14123 switch (val) {
14124 case SFF_SFP_ID_SFF:
14125 aprint_normal_dev(sc->sc_dev,
14126 "Module/Connector soldered to board\n");
14127 break;
14128 case SFF_SFP_ID_SFP:
14129 sc->sc_flags |= WM_F_SFP;
14130 break;
14131 case SFF_SFP_ID_UNKNOWN:
14132 goto out;
14133 default:
14134 break;
14135 }
14136
14137 rv = wm_sfp_read_data_byte(sc, SFF_SFP_ETH_FLAGS_OFF, &val);
14138 if (rv != 0)
14139 goto out;
14140
14141 sc->sc_sfptype = val;
14142 if ((val & (SFF_SFP_ETH_FLAGS_1000SX | SFF_SFP_ETH_FLAGS_1000LX)) != 0)
14143 mediatype = WM_MEDIATYPE_SERDES;
14144 else if ((val & SFF_SFP_ETH_FLAGS_1000T) != 0) {
14145 sc->sc_flags |= WM_F_SGMII;
14146 mediatype = WM_MEDIATYPE_COPPER;
14147 } else if ((val & SFF_SFP_ETH_FLAGS_100FX) != 0) {
14148 sc->sc_flags |= WM_F_SGMII;
14149 mediatype = WM_MEDIATYPE_SERDES;
14150 } else {
14151 device_printf(sc->sc_dev, "%s: unknown media type? (0x%hhx)\n",
14152 __func__, sc->sc_sfptype);
14153 sc->sc_sfptype = 0; /* XXX unknown */
14154 }
14155
14156 out:
14157 /* Restore I2C interface setting */
14158 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
14159
14160 return mediatype;
14161 }
14162
14163 /*
14164 * NVM related.
14165 * Microwire, SPI (w/wo EERD) and Flash.
14166 */
14167
14168 /* Both spi and uwire */
14169
14170 /*
14171 * wm_eeprom_sendbits:
14172 *
14173 * Send a series of bits to the EEPROM.
14174 */
14175 static void
14176 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
14177 {
14178 uint32_t reg;
14179 int x;
14180
14181 reg = CSR_READ(sc, WMREG_EECD);
14182
14183 for (x = nbits; x > 0; x--) {
14184 if (bits & (1U << (x - 1)))
14185 reg |= EECD_DI;
14186 else
14187 reg &= ~EECD_DI;
14188 CSR_WRITE(sc, WMREG_EECD, reg);
14189 CSR_WRITE_FLUSH(sc);
14190 delay(2);
14191 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
14192 CSR_WRITE_FLUSH(sc);
14193 delay(2);
14194 CSR_WRITE(sc, WMREG_EECD, reg);
14195 CSR_WRITE_FLUSH(sc);
14196 delay(2);
14197 }
14198 }
14199
14200 /*
14201 * wm_eeprom_recvbits:
14202 *
14203 * Receive a series of bits from the EEPROM.
14204 */
14205 static void
14206 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
14207 {
14208 uint32_t reg, val;
14209 int x;
14210
14211 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
14212
14213 val = 0;
14214 for (x = nbits; x > 0; x--) {
14215 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
14216 CSR_WRITE_FLUSH(sc);
14217 delay(2);
14218 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
14219 val |= (1U << (x - 1));
14220 CSR_WRITE(sc, WMREG_EECD, reg);
14221 CSR_WRITE_FLUSH(sc);
14222 delay(2);
14223 }
14224 *valp = val;
14225 }
14226
14227 /* Microwire */
14228
14229 /*
14230 * wm_nvm_read_uwire:
14231 *
14232 * Read a word from the EEPROM using the MicroWire protocol.
14233 */
14234 static int
14235 wm_nvm_read_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
14236 {
14237 uint32_t reg, val;
14238 int i, rv;
14239
14240 DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n",
14241 device_xname(sc->sc_dev), __func__));
14242
14243 rv = sc->nvm.acquire(sc);
14244 if (rv != 0)
14245 return rv;
14246
14247 for (i = 0; i < wordcnt; i++) {
14248 /* Clear SK and DI. */
14249 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
14250 CSR_WRITE(sc, WMREG_EECD, reg);
14251
14252 /*
14253 * XXX: workaround for a bug in qemu-0.12.x and prior
14254 * and Xen.
14255 *
14256 * We use this workaround only for 82540 because qemu's
14257 * e1000 act as 82540.
14258 */
14259 if (sc->sc_type == WM_T_82540) {
14260 reg |= EECD_SK;
14261 CSR_WRITE(sc, WMREG_EECD, reg);
14262 reg &= ~EECD_SK;
14263 CSR_WRITE(sc, WMREG_EECD, reg);
14264 CSR_WRITE_FLUSH(sc);
14265 delay(2);
14266 }
14267 /* XXX: end of workaround */
14268
14269 /* Set CHIP SELECT. */
14270 reg |= EECD_CS;
14271 CSR_WRITE(sc, WMREG_EECD, reg);
14272 CSR_WRITE_FLUSH(sc);
14273 delay(2);
14274
14275 /* Shift in the READ command. */
14276 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
14277
14278 /* Shift in address. */
14279 wm_eeprom_sendbits(sc, word + i, sc->sc_nvm_addrbits);
14280
14281 /* Shift out the data. */
14282 wm_eeprom_recvbits(sc, &val, 16);
14283 data[i] = val & 0xffff;
14284
14285 /* Clear CHIP SELECT. */
14286 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
14287 CSR_WRITE(sc, WMREG_EECD, reg);
14288 CSR_WRITE_FLUSH(sc);
14289 delay(2);
14290 }
14291
14292 sc->nvm.release(sc);
14293 return 0;
14294 }
14295
14296 /* SPI */
14297
14298 /*
14299 * Set SPI and FLASH related information from the EECD register.
14300 * For 82541 and 82547, the word size is taken from EEPROM.
14301 */
14302 static int
14303 wm_nvm_set_addrbits_size_eecd(struct wm_softc *sc)
14304 {
14305 int size;
14306 uint32_t reg;
14307 uint16_t data;
14308
14309 reg = CSR_READ(sc, WMREG_EECD);
14310 sc->sc_nvm_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
14311
14312 /* Read the size of NVM from EECD by default */
14313 size = __SHIFTOUT(reg, EECD_EE_SIZE_EX_MASK);
14314 switch (sc->sc_type) {
14315 case WM_T_82541:
14316 case WM_T_82541_2:
14317 case WM_T_82547:
14318 case WM_T_82547_2:
14319 /* Set dummy value to access EEPROM */
14320 sc->sc_nvm_wordsize = 64;
14321 if (wm_nvm_read(sc, NVM_OFF_EEPROM_SIZE, 1, &data) != 0) {
14322 aprint_error_dev(sc->sc_dev,
14323 "%s: failed to read EEPROM size\n", __func__);
14324 }
14325 reg = data;
14326 size = __SHIFTOUT(reg, EECD_EE_SIZE_EX_MASK);
14327 if (size == 0)
14328 size = 6; /* 64 word size */
14329 else
14330 size += NVM_WORD_SIZE_BASE_SHIFT + 1;
14331 break;
14332 case WM_T_80003:
14333 case WM_T_82571:
14334 case WM_T_82572:
14335 case WM_T_82573: /* SPI case */
14336 case WM_T_82574: /* SPI case */
14337 case WM_T_82583: /* SPI case */
14338 size += NVM_WORD_SIZE_BASE_SHIFT;
14339 if (size > 14)
14340 size = 14;
14341 break;
14342 case WM_T_82575:
14343 case WM_T_82576:
14344 case WM_T_82580:
14345 case WM_T_I350:
14346 case WM_T_I354:
14347 case WM_T_I210:
14348 case WM_T_I211:
14349 size += NVM_WORD_SIZE_BASE_SHIFT;
14350 if (size > 15)
14351 size = 15;
14352 break;
14353 default:
14354 aprint_error_dev(sc->sc_dev,
14355 "%s: unknown device(%d)?\n", __func__, sc->sc_type);
14356 return -1;
14357 break;
14358 }
14359
14360 sc->sc_nvm_wordsize = 1 << size;
14361
14362 return 0;
14363 }
14364
14365 /*
14366 * wm_nvm_ready_spi:
14367 *
14368 * Wait for a SPI EEPROM to be ready for commands.
14369 */
14370 static int
14371 wm_nvm_ready_spi(struct wm_softc *sc)
14372 {
14373 uint32_t val;
14374 int usec;
14375
14376 DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n",
14377 device_xname(sc->sc_dev), __func__));
14378
14379 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
14380 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
14381 wm_eeprom_recvbits(sc, &val, 8);
14382 if ((val & SPI_SR_RDY) == 0)
14383 break;
14384 }
14385 if (usec >= SPI_MAX_RETRIES) {
14386 aprint_error_dev(sc->sc_dev,"EEPROM failed to become ready\n");
14387 return -1;
14388 }
14389 return 0;
14390 }
14391
14392 /*
14393 * wm_nvm_read_spi:
14394 *
14395 * Read a work from the EEPROM using the SPI protocol.
14396 */
14397 static int
14398 wm_nvm_read_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
14399 {
14400 uint32_t reg, val;
14401 int i;
14402 uint8_t opc;
14403 int rv;
14404
14405 DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n",
14406 device_xname(sc->sc_dev), __func__));
14407
14408 rv = sc->nvm.acquire(sc);
14409 if (rv != 0)
14410 return rv;
14411
14412 /* Clear SK and CS. */
14413 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
14414 CSR_WRITE(sc, WMREG_EECD, reg);
14415 CSR_WRITE_FLUSH(sc);
14416 delay(2);
14417
14418 if ((rv = wm_nvm_ready_spi(sc)) != 0)
14419 goto out;
14420
14421 /* Toggle CS to flush commands. */
14422 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
14423 CSR_WRITE_FLUSH(sc);
14424 delay(2);
14425 CSR_WRITE(sc, WMREG_EECD, reg);
14426 CSR_WRITE_FLUSH(sc);
14427 delay(2);
14428
14429 opc = SPI_OPC_READ;
14430 if (sc->sc_nvm_addrbits == 8 && word >= 128)
14431 opc |= SPI_OPC_A8;
14432
14433 wm_eeprom_sendbits(sc, opc, 8);
14434 wm_eeprom_sendbits(sc, word << 1, sc->sc_nvm_addrbits);
14435
14436 for (i = 0; i < wordcnt; i++) {
14437 wm_eeprom_recvbits(sc, &val, 16);
14438 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
14439 }
14440
14441 /* Raise CS and clear SK. */
14442 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
14443 CSR_WRITE(sc, WMREG_EECD, reg);
14444 CSR_WRITE_FLUSH(sc);
14445 delay(2);
14446
14447 out:
14448 sc->nvm.release(sc);
14449 return rv;
14450 }
14451
14452 /* Using with EERD */
14453
14454 static int
14455 wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
14456 {
14457 uint32_t attempts = 100000;
14458 uint32_t i, reg = 0;
14459 int32_t done = -1;
14460
14461 for (i = 0; i < attempts; i++) {
14462 reg = CSR_READ(sc, rw);
14463
14464 if (reg & EERD_DONE) {
14465 done = 0;
14466 break;
14467 }
14468 delay(5);
14469 }
14470
14471 return done;
14472 }
14473
14474 static int
14475 wm_nvm_read_eerd(struct wm_softc *sc, int offset, int wordcnt, uint16_t *data)
14476 {
14477 int i, eerd = 0;
14478 int rv;
14479
14480 DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n",
14481 device_xname(sc->sc_dev), __func__));
14482
14483 rv = sc->nvm.acquire(sc);
14484 if (rv != 0)
14485 return rv;
14486
14487 for (i = 0; i < wordcnt; i++) {
14488 eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
14489 CSR_WRITE(sc, WMREG_EERD, eerd);
14490 rv = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
14491 if (rv != 0) {
14492 aprint_error_dev(sc->sc_dev, "EERD polling failed: "
14493 "offset=%d. wordcnt=%d\n", offset, wordcnt);
14494 break;
14495 }
14496 data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
14497 }
14498
14499 sc->nvm.release(sc);
14500 return rv;
14501 }
14502
14503 /* Flash */
14504
14505 static int
14506 wm_nvm_valid_bank_detect_ich8lan(struct wm_softc *sc, unsigned int *bank)
14507 {
14508 uint32_t eecd;
14509 uint32_t act_offset = ICH_NVM_SIG_WORD * 2 + 1;
14510 uint32_t bank1_offset = sc->sc_ich8_flash_bank_size * sizeof(uint16_t);
14511 uint32_t nvm_dword = 0;
14512 uint8_t sig_byte = 0;
14513 int rv;
14514
14515 switch (sc->sc_type) {
14516 case WM_T_PCH_SPT:
14517 case WM_T_PCH_CNP:
14518 case WM_T_PCH_TGP:
14519 bank1_offset = sc->sc_ich8_flash_bank_size * 2;
14520 act_offset = ICH_NVM_SIG_WORD * 2;
14521
14522 /* Set bank to 0 in case flash read fails. */
14523 *bank = 0;
14524
14525 /* Check bank 0 */
14526 rv = wm_read_ich8_dword(sc, act_offset, &nvm_dword);
14527 if (rv != 0)
14528 return rv;
14529 sig_byte = (uint8_t)((nvm_dword & 0xFF00) >> 8);
14530 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
14531 *bank = 0;
14532 return 0;
14533 }
14534
14535 /* Check bank 1 */
14536 rv = wm_read_ich8_dword(sc, act_offset + bank1_offset,
14537 &nvm_dword);
14538 sig_byte = (uint8_t)((nvm_dword & 0xFF00) >> 8);
14539 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
14540 *bank = 1;
14541 return 0;
14542 }
14543 aprint_error_dev(sc->sc_dev,
14544 "%s: no valid NVM bank present (%u)\n", __func__, *bank);
14545 return -1;
14546 case WM_T_ICH8:
14547 case WM_T_ICH9:
14548 eecd = CSR_READ(sc, WMREG_EECD);
14549 if ((eecd & EECD_SEC1VAL_VALMASK) == EECD_SEC1VAL_VALMASK) {
14550 *bank = ((eecd & EECD_SEC1VAL) != 0) ? 1 : 0;
14551 return 0;
14552 }
14553 /* FALLTHROUGH */
14554 default:
14555 /* Default to 0 */
14556 *bank = 0;
14557
14558 /* Check bank 0 */
14559 wm_read_ich8_byte(sc, act_offset, &sig_byte);
14560 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
14561 *bank = 0;
14562 return 0;
14563 }
14564
14565 /* Check bank 1 */
14566 wm_read_ich8_byte(sc, act_offset + bank1_offset,
14567 &sig_byte);
14568 if ((sig_byte & ICH_NVM_VALID_SIG_MASK) == ICH_NVM_SIG_VALUE) {
14569 *bank = 1;
14570 return 0;
14571 }
14572 }
14573
14574 DPRINTF(sc, WM_DEBUG_NVM, ("%s: No valid NVM bank present\n",
14575 device_xname(sc->sc_dev)));
14576 return -1;
14577 }
14578
14579 /******************************************************************************
14580 * This function does initial flash setup so that a new read/write/erase cycle
14581 * can be started.
14582 *
14583 * sc - The pointer to the hw structure
14584 ****************************************************************************/
14585 static int32_t
14586 wm_ich8_cycle_init(struct wm_softc *sc)
14587 {
14588 uint16_t hsfsts;
14589 int32_t error = 1;
14590 int32_t i = 0;
14591
14592 if (sc->sc_type >= WM_T_PCH_SPT)
14593 hsfsts = ICH8_FLASH_READ32(sc, ICH_FLASH_HSFSTS) & 0xffffUL;
14594 else
14595 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
14596
14597 /* May be check the Flash Des Valid bit in Hw status */
14598 if ((hsfsts & HSFSTS_FLDVAL) == 0)
14599 return error;
14600
14601 /* Clear FCERR in Hw status by writing 1 */
14602 /* Clear DAEL in Hw status by writing a 1 */
14603 hsfsts |= HSFSTS_ERR | HSFSTS_DAEL;
14604
14605 if (sc->sc_type >= WM_T_PCH_SPT)
14606 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS, hsfsts & 0xffffUL);
14607 else
14608 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
14609
14610 /*
14611 * Either we should have a hardware SPI cycle in progress bit to check
14612 * against, in order to start a new cycle or FDONE bit should be
14613 * changed in the hardware so that it is 1 after hardware reset, which
14614 * can then be used as an indication whether a cycle is in progress or
14615 * has been completed .. we should also have some software semaphore
14616 * mechanism to guard FDONE or the cycle in progress bit so that two
14617 * threads access to those bits can be sequentiallized or a way so that
14618 * 2 threads don't start the cycle at the same time
14619 */
14620
14621 if ((hsfsts & HSFSTS_FLINPRO) == 0) {
14622 /*
14623 * There is no cycle running at present, so we can start a
14624 * cycle
14625 */
14626
14627 /* Begin by setting Flash Cycle Done. */
14628 hsfsts |= HSFSTS_DONE;
14629 if (sc->sc_type >= WM_T_PCH_SPT)
14630 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS,
14631 hsfsts & 0xffffUL);
14632 else
14633 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS, hsfsts);
14634 error = 0;
14635 } else {
14636 /*
14637 * Otherwise poll for sometime so the current cycle has a
14638 * chance to end before giving up.
14639 */
14640 for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
14641 if (sc->sc_type >= WM_T_PCH_SPT)
14642 hsfsts = ICH8_FLASH_READ32(sc,
14643 ICH_FLASH_HSFSTS) & 0xffffUL;
14644 else
14645 hsfsts = ICH8_FLASH_READ16(sc,
14646 ICH_FLASH_HSFSTS);
14647 if ((hsfsts & HSFSTS_FLINPRO) == 0) {
14648 error = 0;
14649 break;
14650 }
14651 delay(1);
14652 }
14653 if (error == 0) {
14654 /*
14655 * Successful in waiting for previous cycle to timeout,
14656 * now set the Flash Cycle Done.
14657 */
14658 hsfsts |= HSFSTS_DONE;
14659 if (sc->sc_type >= WM_T_PCH_SPT)
14660 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS,
14661 hsfsts & 0xffffUL);
14662 else
14663 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFSTS,
14664 hsfsts);
14665 }
14666 }
14667 return error;
14668 }
14669
14670 /******************************************************************************
14671 * This function starts a flash cycle and waits for its completion
14672 *
14673 * sc - The pointer to the hw structure
14674 ****************************************************************************/
14675 static int32_t
14676 wm_ich8_flash_cycle(struct wm_softc *sc, uint32_t timeout)
14677 {
14678 uint16_t hsflctl;
14679 uint16_t hsfsts;
14680 int32_t error = 1;
14681 uint32_t i = 0;
14682
14683 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
14684 if (sc->sc_type >= WM_T_PCH_SPT)
14685 hsflctl = ICH8_FLASH_READ32(sc, ICH_FLASH_HSFSTS) >> 16;
14686 else
14687 hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
14688 hsflctl |= HSFCTL_GO;
14689 if (sc->sc_type >= WM_T_PCH_SPT)
14690 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS,
14691 (uint32_t)hsflctl << 16);
14692 else
14693 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
14694
14695 /* Wait till FDONE bit is set to 1 */
14696 do {
14697 if (sc->sc_type >= WM_T_PCH_SPT)
14698 hsfsts = ICH8_FLASH_READ32(sc, ICH_FLASH_HSFSTS)
14699 & 0xffffUL;
14700 else
14701 hsfsts = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFSTS);
14702 if (hsfsts & HSFSTS_DONE)
14703 break;
14704 delay(1);
14705 i++;
14706 } while (i < timeout);
14707 if ((hsfsts & HSFSTS_DONE) == 1 && (hsfsts & HSFSTS_ERR) == 0)
14708 error = 0;
14709
14710 return error;
14711 }
14712
14713 /******************************************************************************
14714 * Reads a byte or (d)word from the NVM using the ICH8 flash access registers.
14715 *
14716 * sc - The pointer to the hw structure
14717 * index - The index of the byte or word to read.
14718 * size - Size of data to read, 1=byte 2=word, 4=dword
14719 * data - Pointer to the word to store the value read.
14720 *****************************************************************************/
14721 static int32_t
14722 wm_read_ich8_data(struct wm_softc *sc, uint32_t index,
14723 uint32_t size, uint32_t *data)
14724 {
14725 uint16_t hsfsts;
14726 uint16_t hsflctl;
14727 uint32_t flash_linear_address;
14728 uint32_t flash_data = 0;
14729 int32_t error = 1;
14730 int32_t count = 0;
14731
14732 if (size < 1 || size > 4 || data == 0x0 ||
14733 index > ICH_FLASH_LINEAR_ADDR_MASK)
14734 return error;
14735
14736 flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
14737 sc->sc_ich8_flash_base;
14738
14739 do {
14740 delay(1);
14741 /* Steps */
14742 error = wm_ich8_cycle_init(sc);
14743 if (error)
14744 break;
14745
14746 if (sc->sc_type >= WM_T_PCH_SPT)
14747 hsflctl = ICH8_FLASH_READ32(sc, ICH_FLASH_HSFSTS)
14748 >> 16;
14749 else
14750 hsflctl = ICH8_FLASH_READ16(sc, ICH_FLASH_HSFCTL);
14751 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
14752 hsflctl |= ((size - 1) << HSFCTL_BCOUNT_SHIFT)
14753 & HSFCTL_BCOUNT_MASK;
14754 hsflctl |= ICH_CYCLE_READ << HSFCTL_CYCLE_SHIFT;
14755 if (sc->sc_type >= WM_T_PCH_SPT) {
14756 /*
14757 * In SPT, This register is in Lan memory space, not
14758 * flash. Therefore, only 32 bit access is supported.
14759 */
14760 ICH8_FLASH_WRITE32(sc, ICH_FLASH_HSFSTS,
14761 (uint32_t)hsflctl << 16);
14762 } else
14763 ICH8_FLASH_WRITE16(sc, ICH_FLASH_HSFCTL, hsflctl);
14764
14765 /*
14766 * Write the last 24 bits of index into Flash Linear address
14767 * field in Flash Address
14768 */
14769 /* TODO: TBD maybe check the index against the size of flash */
14770
14771 ICH8_FLASH_WRITE32(sc, ICH_FLASH_FADDR, flash_linear_address);
14772
14773 error = wm_ich8_flash_cycle(sc, ICH_FLASH_COMMAND_TIMEOUT);
14774
14775 /*
14776 * Check if FCERR is set to 1, if set to 1, clear it and try
14777 * the whole sequence a few more times, else read in (shift in)
14778 * the Flash Data0, the order is least significant byte first
14779 * msb to lsb
14780 */
14781 if (error == 0) {
14782 flash_data = ICH8_FLASH_READ32(sc, ICH_FLASH_FDATA0);
14783 if (size == 1)
14784 *data = (uint8_t)(flash_data & 0x000000FF);
14785 else if (size == 2)
14786 *data = (uint16_t)(flash_data & 0x0000FFFF);
14787 else if (size == 4)
14788 *data = (uint32_t)flash_data;
14789 break;
14790 } else {
14791 /*
14792 * If we've gotten here, then things are probably
14793 * completely hosed, but if the error condition is
14794 * detected, it won't hurt to give it another try...
14795 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
14796 */
14797 if (sc->sc_type >= WM_T_PCH_SPT)
14798 hsfsts = ICH8_FLASH_READ32(sc,
14799 ICH_FLASH_HSFSTS) & 0xffffUL;
14800 else
14801 hsfsts = ICH8_FLASH_READ16(sc,
14802 ICH_FLASH_HSFSTS);
14803
14804 if (hsfsts & HSFSTS_ERR) {
14805 /* Repeat for some time before giving up. */
14806 continue;
14807 } else if ((hsfsts & HSFSTS_DONE) == 0)
14808 break;
14809 }
14810 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
14811
14812 return error;
14813 }
14814
14815 /******************************************************************************
14816 * Reads a single byte from the NVM using the ICH8 flash access registers.
14817 *
14818 * sc - pointer to wm_hw structure
14819 * index - The index of the byte to read.
14820 * data - Pointer to a byte to store the value read.
14821 *****************************************************************************/
14822 static int32_t
14823 wm_read_ich8_byte(struct wm_softc *sc, uint32_t index, uint8_t* data)
14824 {
14825 int32_t status;
14826 uint32_t word = 0;
14827
14828 status = wm_read_ich8_data(sc, index, 1, &word);
14829 if (status == 0)
14830 *data = (uint8_t)word;
14831 else
14832 *data = 0;
14833
14834 return status;
14835 }
14836
14837 /******************************************************************************
14838 * Reads a word from the NVM using the ICH8 flash access registers.
14839 *
14840 * sc - pointer to wm_hw structure
14841 * index - The starting byte index of the word to read.
14842 * data - Pointer to a word to store the value read.
14843 *****************************************************************************/
14844 static int32_t
14845 wm_read_ich8_word(struct wm_softc *sc, uint32_t index, uint16_t *data)
14846 {
14847 int32_t status;
14848 uint32_t word = 0;
14849
14850 status = wm_read_ich8_data(sc, index, 2, &word);
14851 if (status == 0)
14852 *data = (uint16_t)word;
14853 else
14854 *data = 0;
14855
14856 return status;
14857 }
14858
14859 /******************************************************************************
14860 * Reads a dword from the NVM using the ICH8 flash access registers.
14861 *
14862 * sc - pointer to wm_hw structure
14863 * index - The starting byte index of the word to read.
14864 * data - Pointer to a word to store the value read.
14865 *****************************************************************************/
14866 static int32_t
14867 wm_read_ich8_dword(struct wm_softc *sc, uint32_t index, uint32_t *data)
14868 {
14869 int32_t status;
14870
14871 status = wm_read_ich8_data(sc, index, 4, data);
14872 return status;
14873 }
14874
14875 /******************************************************************************
14876 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
14877 * register.
14878 *
14879 * sc - Struct containing variables accessed by shared code
14880 * offset - offset of word in the EEPROM to read
14881 * data - word read from the EEPROM
14882 * words - number of words to read
14883 *****************************************************************************/
14884 static int
14885 wm_nvm_read_ich8(struct wm_softc *sc, int offset, int words, uint16_t *data)
14886 {
14887 int rv;
14888 uint32_t flash_bank = 0;
14889 uint32_t act_offset = 0;
14890 uint32_t bank_offset = 0;
14891 uint16_t word = 0;
14892 uint16_t i = 0;
14893
14894 DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n",
14895 device_xname(sc->sc_dev), __func__));
14896
14897 rv = sc->nvm.acquire(sc);
14898 if (rv != 0)
14899 return rv;
14900
14901 /*
14902 * We need to know which is the valid flash bank. In the event
14903 * that we didn't allocate eeprom_shadow_ram, we may not be
14904 * managing flash_bank. So it cannot be trusted and needs
14905 * to be updated with each read.
14906 */
14907 rv = wm_nvm_valid_bank_detect_ich8lan(sc, &flash_bank);
14908 if (rv) {
14909 DPRINTF(sc, WM_DEBUG_NVM, ("%s: failed to detect NVM bank\n",
14910 device_xname(sc->sc_dev)));
14911 flash_bank = 0;
14912 }
14913
14914 /*
14915 * Adjust offset appropriately if we're on bank 1 - adjust for word
14916 * size
14917 */
14918 bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
14919
14920 for (i = 0; i < words; i++) {
14921 /* The NVM part needs a byte offset, hence * 2 */
14922 act_offset = bank_offset + ((offset + i) * 2);
14923 rv = wm_read_ich8_word(sc, act_offset, &word);
14924 if (rv) {
14925 aprint_error_dev(sc->sc_dev,
14926 "%s: failed to read NVM\n", __func__);
14927 break;
14928 }
14929 data[i] = word;
14930 }
14931
14932 sc->nvm.release(sc);
14933 return rv;
14934 }
14935
14936 /******************************************************************************
14937 * Reads a 16 bit word or words from the EEPROM using the SPT's flash access
14938 * register.
14939 *
14940 * sc - Struct containing variables accessed by shared code
14941 * offset - offset of word in the EEPROM to read
14942 * data - word read from the EEPROM
14943 * words - number of words to read
14944 *****************************************************************************/
14945 static int
14946 wm_nvm_read_spt(struct wm_softc *sc, int offset, int words, uint16_t *data)
14947 {
14948 int rv;
14949 uint32_t flash_bank = 0;
14950 uint32_t act_offset = 0;
14951 uint32_t bank_offset = 0;
14952 uint32_t dword = 0;
14953 uint16_t i = 0;
14954
14955 DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n",
14956 device_xname(sc->sc_dev), __func__));
14957
14958 rv = sc->nvm.acquire(sc);
14959 if (rv != 0)
14960 return rv;
14961
14962 /*
14963 * We need to know which is the valid flash bank. In the event
14964 * that we didn't allocate eeprom_shadow_ram, we may not be
14965 * managing flash_bank. So it cannot be trusted and needs
14966 * to be updated with each read.
14967 */
14968 rv = wm_nvm_valid_bank_detect_ich8lan(sc, &flash_bank);
14969 if (rv) {
14970 DPRINTF(sc, WM_DEBUG_NVM, ("%s: failed to detect NVM bank\n",
14971 device_xname(sc->sc_dev)));
14972 flash_bank = 0;
14973 }
14974
14975 /*
14976 * Adjust offset appropriately if we're on bank 1 - adjust for word
14977 * size
14978 */
14979 bank_offset = flash_bank * (sc->sc_ich8_flash_bank_size * 2);
14980
14981 for (i = 0; i < words; i++) {
14982 /* The NVM part needs a byte offset, hence * 2 */
14983 act_offset = bank_offset + ((offset + i) * 2);
14984 /* but we must read dword aligned, so mask ... */
14985 rv = wm_read_ich8_dword(sc, act_offset & ~0x3, &dword);
14986 if (rv) {
14987 aprint_error_dev(sc->sc_dev,
14988 "%s: failed to read NVM\n", __func__);
14989 break;
14990 }
14991 /* ... and pick out low or high word */
14992 if ((act_offset & 0x2) == 0)
14993 data[i] = (uint16_t)(dword & 0xFFFF);
14994 else
14995 data[i] = (uint16_t)((dword >> 16) & 0xFFFF);
14996 }
14997
14998 sc->nvm.release(sc);
14999 return rv;
15000 }
15001
15002 /* iNVM */
15003
15004 static int
15005 wm_nvm_read_word_invm(struct wm_softc *sc, uint16_t address, uint16_t *data)
15006 {
15007 int32_t rv = 0;
15008 uint32_t invm_dword;
15009 uint16_t i;
15010 uint8_t record_type, word_address;
15011
15012 DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n",
15013 device_xname(sc->sc_dev), __func__));
15014
15015 for (i = 0; i < INVM_SIZE; i++) {
15016 invm_dword = CSR_READ(sc, WM_INVM_DATA_REG(i));
15017 /* Get record type */
15018 record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
15019 if (record_type == INVM_UNINITIALIZED_STRUCTURE)
15020 break;
15021 if (record_type == INVM_CSR_AUTOLOAD_STRUCTURE)
15022 i += INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
15023 if (record_type == INVM_RSA_KEY_SHA256_STRUCTURE)
15024 i += INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
15025 if (record_type == INVM_WORD_AUTOLOAD_STRUCTURE) {
15026 word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
15027 if (word_address == address) {
15028 *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
15029 rv = 0;
15030 break;
15031 }
15032 }
15033 }
15034
15035 return rv;
15036 }
15037
15038 static int
15039 wm_nvm_read_invm(struct wm_softc *sc, int offset, int words, uint16_t *data)
15040 {
15041 int i, rv;
15042
15043 DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n",
15044 device_xname(sc->sc_dev), __func__));
15045
15046 rv = sc->nvm.acquire(sc);
15047 if (rv != 0)
15048 return rv;
15049
15050 for (i = 0; i < words; i++) {
15051 switch (offset + i) {
15052 case NVM_OFF_MACADDR:
15053 case NVM_OFF_MACADDR1:
15054 case NVM_OFF_MACADDR2:
15055 rv = wm_nvm_read_word_invm(sc, offset + i, &data[i]);
15056 if (rv != 0) {
15057 data[i] = 0xffff;
15058 rv = -1;
15059 }
15060 break;
15061 case NVM_OFF_CFG1: /* == INVM_AUTOLOAD */
15062 rv = wm_nvm_read_word_invm(sc, offset, data);
15063 if (rv != 0) {
15064 *data = INVM_DEFAULT_AL;
15065 rv = 0;
15066 }
15067 break;
15068 case NVM_OFF_CFG2:
15069 rv = wm_nvm_read_word_invm(sc, offset, data);
15070 if (rv != 0) {
15071 *data = NVM_INIT_CTRL_2_DEFAULT_I211;
15072 rv = 0;
15073 }
15074 break;
15075 case NVM_OFF_CFG4:
15076 rv = wm_nvm_read_word_invm(sc, offset, data);
15077 if (rv != 0) {
15078 *data = NVM_INIT_CTRL_4_DEFAULT_I211;
15079 rv = 0;
15080 }
15081 break;
15082 case NVM_OFF_LED_1_CFG:
15083 rv = wm_nvm_read_word_invm(sc, offset, data);
15084 if (rv != 0) {
15085 *data = NVM_LED_1_CFG_DEFAULT_I211;
15086 rv = 0;
15087 }
15088 break;
15089 case NVM_OFF_LED_0_2_CFG:
15090 rv = wm_nvm_read_word_invm(sc, offset, data);
15091 if (rv != 0) {
15092 *data = NVM_LED_0_2_CFG_DEFAULT_I211;
15093 rv = 0;
15094 }
15095 break;
15096 case NVM_OFF_ID_LED_SETTINGS:
15097 rv = wm_nvm_read_word_invm(sc, offset, data);
15098 if (rv != 0) {
15099 *data = ID_LED_RESERVED_FFFF;
15100 rv = 0;
15101 }
15102 break;
15103 default:
15104 DPRINTF(sc, WM_DEBUG_NVM,
15105 ("NVM word 0x%02x is not mapped.\n", offset));
15106 *data = NVM_RESERVED_WORD;
15107 break;
15108 }
15109 }
15110
15111 sc->nvm.release(sc);
15112 return rv;
15113 }
15114
15115 /* Lock, detecting NVM type, validate checksum, version and read */
15116
15117 static int
15118 wm_nvm_is_onboard_eeprom(struct wm_softc *sc)
15119 {
15120 uint32_t eecd = 0;
15121
15122 if (sc->sc_type == WM_T_82573 || sc->sc_type == WM_T_82574
15123 || sc->sc_type == WM_T_82583) {
15124 eecd = CSR_READ(sc, WMREG_EECD);
15125
15126 /* Isolate bits 15 & 16 */
15127 eecd = ((eecd >> 15) & 0x03);
15128
15129 /* If both bits are set, device is Flash type */
15130 if (eecd == 0x03)
15131 return 0;
15132 }
15133 return 1;
15134 }
15135
15136 static int
15137 wm_nvm_flash_presence_i210(struct wm_softc *sc)
15138 {
15139 uint32_t eec;
15140
15141 eec = CSR_READ(sc, WMREG_EEC);
15142 if ((eec & EEC_FLASH_DETECTED) != 0)
15143 return 1;
15144
15145 return 0;
15146 }
15147
15148 /*
15149 * wm_nvm_validate_checksum
15150 *
15151 * The checksum is defined as the sum of the first 64 (16 bit) words.
15152 */
15153 static int
15154 wm_nvm_validate_checksum(struct wm_softc *sc)
15155 {
15156 uint16_t checksum;
15157 uint16_t eeprom_data;
15158 #ifdef WM_DEBUG
15159 uint16_t csum_wordaddr, valid_checksum;
15160 #endif
15161 int i;
15162
15163 checksum = 0;
15164
15165 /* Don't check for I211 */
15166 if (sc->sc_type == WM_T_I211)
15167 return 0;
15168
15169 #ifdef WM_DEBUG
15170 if ((sc->sc_type == WM_T_PCH_LPT) || (sc->sc_type == WM_T_PCH_SPT) ||
15171 (sc->sc_type == WM_T_PCH_CNP) || (sc->sc_type == WM_T_PCH_TGP)) {
15172 csum_wordaddr = NVM_OFF_COMPAT;
15173 valid_checksum = NVM_COMPAT_VALID_CHECKSUM;
15174 } else {
15175 csum_wordaddr = NVM_OFF_FUTURE_INIT_WORD1;
15176 valid_checksum = NVM_FUTURE_INIT_WORD1_VALID_CHECKSUM;
15177 }
15178
15179 /* Dump EEPROM image for debug */
15180 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
15181 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
15182 || (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT)) {
15183 /* XXX PCH_SPT? */
15184 wm_nvm_read(sc, csum_wordaddr, 1, &eeprom_data);
15185 if ((eeprom_data & valid_checksum) == 0)
15186 DPRINTF(sc, WM_DEBUG_NVM,
15187 ("%s: NVM need to be updated (%04x != %04x)\n",
15188 device_xname(sc->sc_dev), eeprom_data,
15189 valid_checksum));
15190 }
15191
15192 if ((sc->sc_debug & WM_DEBUG_NVM) != 0) {
15193 printf("%s: NVM dump:\n", device_xname(sc->sc_dev));
15194 for (i = 0; i < NVM_SIZE; i++) {
15195 if (wm_nvm_read(sc, i, 1, &eeprom_data))
15196 printf("XXXX ");
15197 else
15198 printf("%04hx ", eeprom_data);
15199 if (i % 8 == 7)
15200 printf("\n");
15201 }
15202 }
15203
15204 #endif /* WM_DEBUG */
15205
15206 for (i = 0; i < NVM_SIZE; i++) {
15207 if (wm_nvm_read(sc, i, 1, &eeprom_data))
15208 return -1;
15209 checksum += eeprom_data;
15210 }
15211
15212 if (checksum != (uint16_t) NVM_CHECKSUM) {
15213 #ifdef WM_DEBUG
15214 printf("%s: NVM checksum mismatch (%04x != %04x)\n",
15215 device_xname(sc->sc_dev), checksum, NVM_CHECKSUM);
15216 #endif
15217 }
15218
15219 return 0;
15220 }
15221
15222 static void
15223 wm_nvm_version_invm(struct wm_softc *sc)
15224 {
15225 uint32_t dword;
15226
15227 /*
15228 * Linux's code to decode version is very strange, so we don't
15229 * obey that algorithm and just use word 61 as the document.
15230 * Perhaps it's not perfect though...
15231 *
15232 * Example:
15233 *
15234 * Word61: 00800030 -> Version 0.6 (I211 spec update notes about 0.6)
15235 */
15236 dword = CSR_READ(sc, WM_INVM_DATA_REG(61));
15237 dword = __SHIFTOUT(dword, INVM_VER_1);
15238 sc->sc_nvm_ver_major = __SHIFTOUT(dword, INVM_MAJOR);
15239 sc->sc_nvm_ver_minor = __SHIFTOUT(dword, INVM_MINOR);
15240 }
15241
15242 static void
15243 wm_nvm_version(struct wm_softc *sc)
15244 {
15245 uint16_t major, minor, build, patch;
15246 uint16_t uid0, uid1;
15247 uint16_t nvm_data;
15248 uint16_t off;
15249 bool check_version = false;
15250 bool check_optionrom = false;
15251 bool have_build = false;
15252 bool have_uid = true;
15253
15254 /*
15255 * Version format:
15256 *
15257 * XYYZ
15258 * X0YZ
15259 * X0YY
15260 *
15261 * Example:
15262 *
15263 * 82571 0x50a2 5.10.2? (the spec update notes about 5.6-5.10)
15264 * 82571 0x50a6 5.10.6?
15265 * 82572 0x506a 5.6.10?
15266 * 82572EI 0x5069 5.6.9?
15267 * 82574L 0x1080 1.8.0? (the spec update notes about 2.1.4)
15268 * 0x2013 2.1.3?
15269 * 82583 0x10a0 1.10.0? (document says it's default value)
15270 * ICH8+82567 0x0040 0.4.0?
15271 * ICH9+82566 0x1040 1.4.0?
15272 *ICH10+82567 0x0043 0.4.3?
15273 * PCH+82577 0x00c1 0.12.1?
15274 * PCH2+82579 0x00d3 0.13.3?
15275 * 0x00d4 0.13.4?
15276 * LPT+I218 0x0023 0.2.3?
15277 * SPT+I219 0x0084 0.8.4?
15278 * CNP+I219 0x0054 0.5.4?
15279 */
15280
15281 /*
15282 * XXX
15283 * Qemu's e1000e emulation (82574L)'s SPI has only 64 words.
15284 * I've never seen real 82574 hardware with such small SPI ROM.
15285 */
15286 if ((sc->sc_nvm_wordsize < NVM_OFF_IMAGE_UID1)
15287 || (wm_nvm_read(sc, NVM_OFF_IMAGE_UID1, 1, &uid1) != 0))
15288 have_uid = false;
15289
15290 switch (sc->sc_type) {
15291 case WM_T_82571:
15292 case WM_T_82572:
15293 case WM_T_82574:
15294 case WM_T_82583:
15295 check_version = true;
15296 check_optionrom = true;
15297 have_build = true;
15298 break;
15299 case WM_T_ICH8:
15300 case WM_T_ICH9:
15301 case WM_T_ICH10:
15302 case WM_T_PCH:
15303 case WM_T_PCH2:
15304 case WM_T_PCH_LPT:
15305 case WM_T_PCH_SPT:
15306 case WM_T_PCH_CNP:
15307 case WM_T_PCH_TGP:
15308 check_version = true;
15309 have_build = true;
15310 have_uid = false;
15311 break;
15312 case WM_T_82575:
15313 case WM_T_82576:
15314 case WM_T_82580:
15315 if (have_uid && (uid1 & NVM_MAJOR_MASK) != NVM_UID_VALID)
15316 check_version = true;
15317 break;
15318 case WM_T_I211:
15319 wm_nvm_version_invm(sc);
15320 have_uid = false;
15321 goto printver;
15322 case WM_T_I210:
15323 if (!wm_nvm_flash_presence_i210(sc)) {
15324 wm_nvm_version_invm(sc);
15325 have_uid = false;
15326 goto printver;
15327 }
15328 /* FALLTHROUGH */
15329 case WM_T_I350:
15330 case WM_T_I354:
15331 check_version = true;
15332 check_optionrom = true;
15333 break;
15334 default:
15335 return;
15336 }
15337 if (check_version
15338 && (wm_nvm_read(sc, NVM_OFF_VERSION, 1, &nvm_data) == 0)) {
15339 major = (nvm_data & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT;
15340 if (have_build || ((nvm_data & 0x0f00) != 0x0000)) {
15341 minor = (nvm_data & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT;
15342 build = nvm_data & NVM_BUILD_MASK;
15343 have_build = true;
15344 } else
15345 minor = nvm_data & 0x00ff;
15346
15347 /* Decimal */
15348 minor = (minor / 16) * 10 + (minor % 16);
15349 sc->sc_nvm_ver_major = major;
15350 sc->sc_nvm_ver_minor = minor;
15351
15352 printver:
15353 aprint_verbose(", version %d.%d", sc->sc_nvm_ver_major,
15354 sc->sc_nvm_ver_minor);
15355 if (have_build) {
15356 sc->sc_nvm_ver_build = build;
15357 aprint_verbose(".%d", build);
15358 }
15359 }
15360
15361 /* Assume the Option ROM area is at avove NVM_SIZE */
15362 if ((sc->sc_nvm_wordsize > NVM_SIZE) && check_optionrom
15363 && (wm_nvm_read(sc, NVM_OFF_COMB_VER_PTR, 1, &off) == 0)) {
15364 /* Option ROM Version */
15365 if ((off != 0x0000) && (off != 0xffff)) {
15366 int rv;
15367 uint16_t oid0, oid1;
15368
15369 off += NVM_COMBO_VER_OFF;
15370 rv = wm_nvm_read(sc, off + 1, 1, &oid1);
15371 rv |= wm_nvm_read(sc, off, 1, &oid0);
15372 if ((rv == 0) && (oid0 != 0) && (oid0 != 0xffff)
15373 && (oid1 != 0) && (oid1 != 0xffff)) {
15374 /* 16bits */
15375 major = oid0 >> 8;
15376 build = (oid0 << 8) | (oid1 >> 8);
15377 patch = oid1 & 0x00ff;
15378 aprint_verbose(", option ROM Version %d.%d.%d",
15379 major, build, patch);
15380 }
15381 }
15382 }
15383
15384 if (have_uid && (wm_nvm_read(sc, NVM_OFF_IMAGE_UID0, 1, &uid0) == 0))
15385 aprint_verbose(", Image Unique ID %08x",
15386 ((uint32_t)uid1 << 16) | uid0);
15387 }
15388
15389 /*
15390 * wm_nvm_read:
15391 *
15392 * Read data from the serial EEPROM.
15393 */
15394 static int
15395 wm_nvm_read(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
15396 {
15397 int rv;
15398
15399 DPRINTF(sc, WM_DEBUG_NVM, ("%s: %s called\n",
15400 device_xname(sc->sc_dev), __func__));
15401
15402 if (sc->sc_flags & WM_F_EEPROM_INVALID)
15403 return -1;
15404
15405 rv = sc->nvm.read(sc, word, wordcnt, data);
15406
15407 return rv;
15408 }
15409
15410 /*
15411 * Hardware semaphores.
15412 * Very complexed...
15413 */
15414
15415 static int
15416 wm_get_null(struct wm_softc *sc)
15417 {
15418
15419 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
15420 device_xname(sc->sc_dev), __func__));
15421 return 0;
15422 }
15423
15424 static void
15425 wm_put_null(struct wm_softc *sc)
15426 {
15427
15428 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
15429 device_xname(sc->sc_dev), __func__));
15430 return;
15431 }
15432
15433 static int
15434 wm_get_eecd(struct wm_softc *sc)
15435 {
15436 uint32_t reg;
15437 int x;
15438
15439 DPRINTF(sc, WM_DEBUG_LOCK | WM_DEBUG_NVM, ("%s: %s called\n",
15440 device_xname(sc->sc_dev), __func__));
15441
15442 reg = CSR_READ(sc, WMREG_EECD);
15443
15444 /* Request EEPROM access. */
15445 reg |= EECD_EE_REQ;
15446 CSR_WRITE(sc, WMREG_EECD, reg);
15447
15448 /* ..and wait for it to be granted. */
15449 for (x = 0; x < 1000; x++) {
15450 reg = CSR_READ(sc, WMREG_EECD);
15451 if (reg & EECD_EE_GNT)
15452 break;
15453 delay(5);
15454 }
15455 if ((reg & EECD_EE_GNT) == 0) {
15456 aprint_error_dev(sc->sc_dev,
15457 "could not acquire EEPROM GNT\n");
15458 reg &= ~EECD_EE_REQ;
15459 CSR_WRITE(sc, WMREG_EECD, reg);
15460 return -1;
15461 }
15462
15463 return 0;
15464 }
15465
15466 static void
15467 wm_nvm_eec_clock_raise(struct wm_softc *sc, uint32_t *eecd)
15468 {
15469
15470 *eecd |= EECD_SK;
15471 CSR_WRITE(sc, WMREG_EECD, *eecd);
15472 CSR_WRITE_FLUSH(sc);
15473 if ((sc->sc_flags & WM_F_EEPROM_SPI) != 0)
15474 delay(1);
15475 else
15476 delay(50);
15477 }
15478
15479 static void
15480 wm_nvm_eec_clock_lower(struct wm_softc *sc, uint32_t *eecd)
15481 {
15482
15483 *eecd &= ~EECD_SK;
15484 CSR_WRITE(sc, WMREG_EECD, *eecd);
15485 CSR_WRITE_FLUSH(sc);
15486 if ((sc->sc_flags & WM_F_EEPROM_SPI) != 0)
15487 delay(1);
15488 else
15489 delay(50);
15490 }
15491
15492 static void
15493 wm_put_eecd(struct wm_softc *sc)
15494 {
15495 uint32_t reg;
15496
15497 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
15498 device_xname(sc->sc_dev), __func__));
15499
15500 /* Stop nvm */
15501 reg = CSR_READ(sc, WMREG_EECD);
15502 if ((sc->sc_flags & WM_F_EEPROM_SPI) != 0) {
15503 /* Pull CS high */
15504 reg |= EECD_CS;
15505 wm_nvm_eec_clock_lower(sc, ®);
15506 } else {
15507 /* CS on Microwire is active-high */
15508 reg &= ~(EECD_CS | EECD_DI);
15509 CSR_WRITE(sc, WMREG_EECD, reg);
15510 wm_nvm_eec_clock_raise(sc, ®);
15511 wm_nvm_eec_clock_lower(sc, ®);
15512 }
15513
15514 reg = CSR_READ(sc, WMREG_EECD);
15515 reg &= ~EECD_EE_REQ;
15516 CSR_WRITE(sc, WMREG_EECD, reg);
15517
15518 return;
15519 }
15520
15521 /*
15522 * Get hardware semaphore.
15523 * Same as e1000_get_hw_semaphore_generic()
15524 */
15525 static int
15526 wm_get_swsm_semaphore(struct wm_softc *sc)
15527 {
15528 int32_t timeout;
15529 uint32_t swsm;
15530
15531 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
15532 device_xname(sc->sc_dev), __func__));
15533 KASSERT(sc->sc_nvm_wordsize > 0);
15534
15535 retry:
15536 /* Get the SW semaphore. */
15537 timeout = sc->sc_nvm_wordsize + 1;
15538 while (timeout) {
15539 swsm = CSR_READ(sc, WMREG_SWSM);
15540
15541 if ((swsm & SWSM_SMBI) == 0)
15542 break;
15543
15544 delay(50);
15545 timeout--;
15546 }
15547
15548 if (timeout == 0) {
15549 if ((sc->sc_flags & WM_F_WA_I210_CLSEM) != 0) {
15550 /*
15551 * In rare circumstances, the SW semaphore may already
15552 * be held unintentionally. Clear the semaphore once
15553 * before giving up.
15554 */
15555 sc->sc_flags &= ~WM_F_WA_I210_CLSEM;
15556 wm_put_swsm_semaphore(sc);
15557 goto retry;
15558 }
15559 aprint_error_dev(sc->sc_dev, "could not acquire SWSM SMBI\n");
15560 return -1;
15561 }
15562
15563 /* Get the FW semaphore. */
15564 timeout = sc->sc_nvm_wordsize + 1;
15565 while (timeout) {
15566 swsm = CSR_READ(sc, WMREG_SWSM);
15567 swsm |= SWSM_SWESMBI;
15568 CSR_WRITE(sc, WMREG_SWSM, swsm);
15569 /* If we managed to set the bit we got the semaphore. */
15570 swsm = CSR_READ(sc, WMREG_SWSM);
15571 if (swsm & SWSM_SWESMBI)
15572 break;
15573
15574 delay(50);
15575 timeout--;
15576 }
15577
15578 if (timeout == 0) {
15579 aprint_error_dev(sc->sc_dev,
15580 "could not acquire SWSM SWESMBI\n");
15581 /* Release semaphores */
15582 wm_put_swsm_semaphore(sc);
15583 return -1;
15584 }
15585 return 0;
15586 }
15587
15588 /*
15589 * Put hardware semaphore.
15590 * Same as e1000_put_hw_semaphore_generic()
15591 */
15592 static void
15593 wm_put_swsm_semaphore(struct wm_softc *sc)
15594 {
15595 uint32_t swsm;
15596
15597 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
15598 device_xname(sc->sc_dev), __func__));
15599
15600 swsm = CSR_READ(sc, WMREG_SWSM);
15601 swsm &= ~(SWSM_SMBI | SWSM_SWESMBI);
15602 CSR_WRITE(sc, WMREG_SWSM, swsm);
15603 }
15604
15605 /*
15606 * Get SW/FW semaphore.
15607 * Same as e1000_acquire_swfw_sync_{80003es2lan,82575}().
15608 */
15609 static int
15610 wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
15611 {
15612 uint32_t swfw_sync;
15613 uint32_t swmask = mask << SWFW_SOFT_SHIFT;
15614 uint32_t fwmask = mask << SWFW_FIRM_SHIFT;
15615 int timeout;
15616
15617 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
15618 device_xname(sc->sc_dev), __func__));
15619
15620 if (sc->sc_type == WM_T_80003)
15621 timeout = 50;
15622 else
15623 timeout = 200;
15624
15625 while (timeout) {
15626 if (wm_get_swsm_semaphore(sc)) {
15627 aprint_error_dev(sc->sc_dev,
15628 "%s: failed to get semaphore\n",
15629 __func__);
15630 return -1;
15631 }
15632 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
15633 if ((swfw_sync & (swmask | fwmask)) == 0) {
15634 swfw_sync |= swmask;
15635 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
15636 wm_put_swsm_semaphore(sc);
15637 return 0;
15638 }
15639 wm_put_swsm_semaphore(sc);
15640 delay(5000);
15641 timeout--;
15642 }
15643 device_printf(sc->sc_dev,
15644 "failed to get swfw semaphore mask 0x%x swfw 0x%x\n",
15645 mask, swfw_sync);
15646 return -1;
15647 }
15648
15649 static void
15650 wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask)
15651 {
15652 uint32_t swfw_sync;
15653
15654 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
15655 device_xname(sc->sc_dev), __func__));
15656
15657 while (wm_get_swsm_semaphore(sc) != 0)
15658 continue;
15659
15660 swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
15661 swfw_sync &= ~(mask << SWFW_SOFT_SHIFT);
15662 CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
15663
15664 wm_put_swsm_semaphore(sc);
15665 }
15666
15667 static int
15668 wm_get_nvm_80003(struct wm_softc *sc)
15669 {
15670 int rv;
15671
15672 DPRINTF(sc, WM_DEBUG_LOCK | WM_DEBUG_NVM, ("%s: %s called\n",
15673 device_xname(sc->sc_dev), __func__));
15674
15675 if ((rv = wm_get_swfw_semaphore(sc, SWFW_EEP_SM)) != 0) {
15676 aprint_error_dev(sc->sc_dev,
15677 "%s: failed to get semaphore(SWFW)\n", __func__);
15678 return rv;
15679 }
15680
15681 if (((sc->sc_flags & WM_F_LOCK_EECD) != 0)
15682 && (rv = wm_get_eecd(sc)) != 0) {
15683 aprint_error_dev(sc->sc_dev,
15684 "%s: failed to get semaphore(EECD)\n", __func__);
15685 wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
15686 return rv;
15687 }
15688
15689 return 0;
15690 }
15691
15692 static void
15693 wm_put_nvm_80003(struct wm_softc *sc)
15694 {
15695
15696 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
15697 device_xname(sc->sc_dev), __func__));
15698
15699 if ((sc->sc_flags & WM_F_LOCK_EECD) != 0)
15700 wm_put_eecd(sc);
15701 wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
15702 }
15703
15704 static int
15705 wm_get_nvm_82571(struct wm_softc *sc)
15706 {
15707 int rv;
15708
15709 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
15710 device_xname(sc->sc_dev), __func__));
15711
15712 if ((rv = wm_get_swsm_semaphore(sc)) != 0)
15713 return rv;
15714
15715 switch (sc->sc_type) {
15716 case WM_T_82573:
15717 break;
15718 default:
15719 if ((sc->sc_flags & WM_F_LOCK_EECD) != 0)
15720 rv = wm_get_eecd(sc);
15721 break;
15722 }
15723
15724 if (rv != 0) {
15725 aprint_error_dev(sc->sc_dev,
15726 "%s: failed to get semaphore\n",
15727 __func__);
15728 wm_put_swsm_semaphore(sc);
15729 }
15730
15731 return rv;
15732 }
15733
15734 static void
15735 wm_put_nvm_82571(struct wm_softc *sc)
15736 {
15737
15738 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
15739 device_xname(sc->sc_dev), __func__));
15740
15741 switch (sc->sc_type) {
15742 case WM_T_82573:
15743 break;
15744 default:
15745 if ((sc->sc_flags & WM_F_LOCK_EECD) != 0)
15746 wm_put_eecd(sc);
15747 break;
15748 }
15749
15750 wm_put_swsm_semaphore(sc);
15751 }
15752
15753 static int
15754 wm_get_phy_82575(struct wm_softc *sc)
15755 {
15756
15757 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
15758 device_xname(sc->sc_dev), __func__));
15759 return wm_get_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
15760 }
15761
15762 static void
15763 wm_put_phy_82575(struct wm_softc *sc)
15764 {
15765
15766 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
15767 device_xname(sc->sc_dev), __func__));
15768 wm_put_swfw_semaphore(sc, swfwphysem[sc->sc_funcid]);
15769 }
15770
15771 static int
15772 wm_get_swfwhw_semaphore(struct wm_softc *sc)
15773 {
15774 uint32_t ext_ctrl;
15775 int timeout = 200;
15776
15777 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
15778 device_xname(sc->sc_dev), __func__));
15779
15780 mutex_enter(sc->sc_ich_phymtx); /* Use PHY mtx for both PHY and NVM */
15781 for (timeout = 0; timeout < 200; timeout++) {
15782 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
15783 ext_ctrl |= EXTCNFCTR_MDIO_SW_OWNERSHIP;
15784 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
15785
15786 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
15787 if (ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP)
15788 return 0;
15789 delay(5000);
15790 }
15791 device_printf(sc->sc_dev,
15792 "failed to get swfwhw semaphore ext_ctrl 0x%x\n", ext_ctrl);
15793 mutex_exit(sc->sc_ich_phymtx); /* Use PHY mtx for both PHY and NVM */
15794 return -1;
15795 }
15796
15797 static void
15798 wm_put_swfwhw_semaphore(struct wm_softc *sc)
15799 {
15800 uint32_t ext_ctrl;
15801
15802 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
15803 device_xname(sc->sc_dev), __func__));
15804
15805 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
15806 ext_ctrl &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
15807 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
15808
15809 mutex_exit(sc->sc_ich_phymtx); /* Use PHY mtx for both PHY and NVM */
15810 }
15811
15812 static int
15813 wm_get_swflag_ich8lan(struct wm_softc *sc)
15814 {
15815 uint32_t ext_ctrl;
15816 int timeout;
15817
15818 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
15819 device_xname(sc->sc_dev), __func__));
15820 mutex_enter(sc->sc_ich_phymtx);
15821 for (timeout = 0; timeout < WM_PHY_CFG_TIMEOUT; timeout++) {
15822 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
15823 if ((ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP) == 0)
15824 break;
15825 delay(1000);
15826 }
15827 if (timeout >= WM_PHY_CFG_TIMEOUT) {
15828 device_printf(sc->sc_dev,
15829 "SW has already locked the resource\n");
15830 goto out;
15831 }
15832
15833 ext_ctrl |= EXTCNFCTR_MDIO_SW_OWNERSHIP;
15834 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
15835 for (timeout = 0; timeout < 1000; timeout++) {
15836 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
15837 if (ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP)
15838 break;
15839 delay(1000);
15840 }
15841 if (timeout >= 1000) {
15842 device_printf(sc->sc_dev, "failed to acquire semaphore\n");
15843 ext_ctrl &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
15844 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
15845 goto out;
15846 }
15847 return 0;
15848
15849 out:
15850 mutex_exit(sc->sc_ich_phymtx);
15851 return -1;
15852 }
15853
15854 static void
15855 wm_put_swflag_ich8lan(struct wm_softc *sc)
15856 {
15857 uint32_t ext_ctrl;
15858
15859 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
15860 device_xname(sc->sc_dev), __func__));
15861 ext_ctrl = CSR_READ(sc, WMREG_EXTCNFCTR);
15862 if (ext_ctrl & EXTCNFCTR_MDIO_SW_OWNERSHIP) {
15863 ext_ctrl &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
15864 CSR_WRITE(sc, WMREG_EXTCNFCTR, ext_ctrl);
15865 } else
15866 device_printf(sc->sc_dev, "Semaphore unexpectedly released\n");
15867
15868 mutex_exit(sc->sc_ich_phymtx);
15869 }
15870
15871 static int
15872 wm_get_nvm_ich8lan(struct wm_softc *sc)
15873 {
15874
15875 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
15876 device_xname(sc->sc_dev), __func__));
15877 mutex_enter(sc->sc_ich_nvmmtx);
15878
15879 return 0;
15880 }
15881
15882 static void
15883 wm_put_nvm_ich8lan(struct wm_softc *sc)
15884 {
15885
15886 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
15887 device_xname(sc->sc_dev), __func__));
15888 mutex_exit(sc->sc_ich_nvmmtx);
15889 }
15890
15891 static int
15892 wm_get_hw_semaphore_82573(struct wm_softc *sc)
15893 {
15894 int i = 0;
15895 uint32_t reg;
15896
15897 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
15898 device_xname(sc->sc_dev), __func__));
15899
15900 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
15901 do {
15902 CSR_WRITE(sc, WMREG_EXTCNFCTR,
15903 reg | EXTCNFCTR_MDIO_SW_OWNERSHIP);
15904 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
15905 if ((reg & EXTCNFCTR_MDIO_SW_OWNERSHIP) != 0)
15906 break;
15907 delay(2*1000);
15908 i++;
15909 } while (i < WM_MDIO_OWNERSHIP_TIMEOUT);
15910
15911 if (i == WM_MDIO_OWNERSHIP_TIMEOUT) {
15912 wm_put_hw_semaphore_82573(sc);
15913 log(LOG_ERR, "%s: Driver can't access the PHY\n",
15914 device_xname(sc->sc_dev));
15915 return -1;
15916 }
15917
15918 return 0;
15919 }
15920
15921 static void
15922 wm_put_hw_semaphore_82573(struct wm_softc *sc)
15923 {
15924 uint32_t reg;
15925
15926 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
15927 device_xname(sc->sc_dev), __func__));
15928
15929 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
15930 reg &= ~EXTCNFCTR_MDIO_SW_OWNERSHIP;
15931 CSR_WRITE(sc, WMREG_EXTCNFCTR, reg);
15932 }
15933
15934 /*
15935 * Management mode and power management related subroutines.
15936 * BMC, AMT, suspend/resume and EEE.
15937 */
15938
15939 #ifdef WM_WOL
15940 static int
15941 wm_check_mng_mode(struct wm_softc *sc)
15942 {
15943 int rv;
15944
15945 switch (sc->sc_type) {
15946 case WM_T_ICH8:
15947 case WM_T_ICH9:
15948 case WM_T_ICH10:
15949 case WM_T_PCH:
15950 case WM_T_PCH2:
15951 case WM_T_PCH_LPT:
15952 case WM_T_PCH_SPT:
15953 case WM_T_PCH_CNP:
15954 case WM_T_PCH_TGP:
15955 rv = wm_check_mng_mode_ich8lan(sc);
15956 break;
15957 case WM_T_82574:
15958 case WM_T_82583:
15959 rv = wm_check_mng_mode_82574(sc);
15960 break;
15961 case WM_T_82571:
15962 case WM_T_82572:
15963 case WM_T_82573:
15964 case WM_T_80003:
15965 rv = wm_check_mng_mode_generic(sc);
15966 break;
15967 default:
15968 /* Noting to do */
15969 rv = 0;
15970 break;
15971 }
15972
15973 return rv;
15974 }
15975
15976 static int
15977 wm_check_mng_mode_ich8lan(struct wm_softc *sc)
15978 {
15979 uint32_t fwsm;
15980
15981 fwsm = CSR_READ(sc, WMREG_FWSM);
15982
15983 if (((fwsm & FWSM_FW_VALID) != 0)
15984 && (__SHIFTOUT(fwsm, FWSM_MODE) == MNG_ICH_IAMT_MODE))
15985 return 1;
15986
15987 return 0;
15988 }
15989
15990 static int
15991 wm_check_mng_mode_82574(struct wm_softc *sc)
15992 {
15993 uint16_t data;
15994
15995 wm_nvm_read(sc, NVM_OFF_CFG2, 1, &data);
15996
15997 if ((data & NVM_CFG2_MNGM_MASK) != 0)
15998 return 1;
15999
16000 return 0;
16001 }
16002
16003 static int
16004 wm_check_mng_mode_generic(struct wm_softc *sc)
16005 {
16006 uint32_t fwsm;
16007
16008 fwsm = CSR_READ(sc, WMREG_FWSM);
16009
16010 if (__SHIFTOUT(fwsm, FWSM_MODE) == MNG_IAMT_MODE)
16011 return 1;
16012
16013 return 0;
16014 }
16015 #endif /* WM_WOL */
16016
16017 static int
16018 wm_enable_mng_pass_thru(struct wm_softc *sc)
16019 {
16020 uint32_t manc, fwsm, factps;
16021
16022 if ((sc->sc_flags & WM_F_ASF_FIRMWARE_PRES) == 0)
16023 return 0;
16024
16025 manc = CSR_READ(sc, WMREG_MANC);
16026
16027 DPRINTF(sc, WM_DEBUG_MANAGE, ("%s: MANC (%08x)\n",
16028 device_xname(sc->sc_dev), manc));
16029 if ((manc & MANC_RECV_TCO_EN) == 0)
16030 return 0;
16031
16032 if ((sc->sc_flags & WM_F_ARC_SUBSYS_VALID) != 0) {
16033 fwsm = CSR_READ(sc, WMREG_FWSM);
16034 factps = CSR_READ(sc, WMREG_FACTPS);
16035 if (((factps & FACTPS_MNGCG) == 0)
16036 && (__SHIFTOUT(fwsm, FWSM_MODE) == MNG_ICH_IAMT_MODE))
16037 return 1;
16038 } else if ((sc->sc_type == WM_T_82574) || (sc->sc_type == WM_T_82583)){
16039 uint16_t data;
16040
16041 factps = CSR_READ(sc, WMREG_FACTPS);
16042 wm_nvm_read(sc, NVM_OFF_CFG2, 1, &data);
16043 DPRINTF(sc, WM_DEBUG_MANAGE, ("%s: FACTPS = %08x, CFG2=%04x\n",
16044 device_xname(sc->sc_dev), factps, data));
16045 if (((factps & FACTPS_MNGCG) == 0)
16046 && ((data & NVM_CFG2_MNGM_MASK)
16047 == (NVM_CFG2_MNGM_PT << NVM_CFG2_MNGM_SHIFT)))
16048 return 1;
16049 } else if (((manc & MANC_SMBUS_EN) != 0)
16050 && ((manc & MANC_ASF_EN) == 0))
16051 return 1;
16052
16053 return 0;
16054 }
16055
16056 static bool
16057 wm_phy_resetisblocked(struct wm_softc *sc)
16058 {
16059 bool blocked = false;
16060 uint32_t reg;
16061 int i = 0;
16062
16063 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
16064 device_xname(sc->sc_dev), __func__));
16065
16066 switch (sc->sc_type) {
16067 case WM_T_ICH8:
16068 case WM_T_ICH9:
16069 case WM_T_ICH10:
16070 case WM_T_PCH:
16071 case WM_T_PCH2:
16072 case WM_T_PCH_LPT:
16073 case WM_T_PCH_SPT:
16074 case WM_T_PCH_CNP:
16075 case WM_T_PCH_TGP:
16076 do {
16077 reg = CSR_READ(sc, WMREG_FWSM);
16078 if ((reg & FWSM_RSPCIPHY) == 0) {
16079 blocked = true;
16080 delay(10*1000);
16081 continue;
16082 }
16083 blocked = false;
16084 } while (blocked && (i++ < 30));
16085 return blocked;
16086 break;
16087 case WM_T_82571:
16088 case WM_T_82572:
16089 case WM_T_82573:
16090 case WM_T_82574:
16091 case WM_T_82583:
16092 case WM_T_80003:
16093 reg = CSR_READ(sc, WMREG_MANC);
16094 if ((reg & MANC_BLK_PHY_RST_ON_IDE) != 0)
16095 return true;
16096 else
16097 return false;
16098 break;
16099 default:
16100 /* No problem */
16101 break;
16102 }
16103
16104 return false;
16105 }
16106
16107 static void
16108 wm_get_hw_control(struct wm_softc *sc)
16109 {
16110 uint32_t reg;
16111
16112 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
16113 device_xname(sc->sc_dev), __func__));
16114
16115 if (sc->sc_type == WM_T_82573) {
16116 reg = CSR_READ(sc, WMREG_SWSM);
16117 CSR_WRITE(sc, WMREG_SWSM, reg | SWSM_DRV_LOAD);
16118 } else if (sc->sc_type >= WM_T_82571) {
16119 reg = CSR_READ(sc, WMREG_CTRL_EXT);
16120 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_DRV_LOAD);
16121 }
16122 }
16123
16124 static void
16125 wm_release_hw_control(struct wm_softc *sc)
16126 {
16127 uint32_t reg;
16128
16129 DPRINTF(sc, WM_DEBUG_LOCK, ("%s: %s called\n",
16130 device_xname(sc->sc_dev), __func__));
16131
16132 if (sc->sc_type == WM_T_82573) {
16133 reg = CSR_READ(sc, WMREG_SWSM);
16134 CSR_WRITE(sc, WMREG_SWSM, reg & ~SWSM_DRV_LOAD);
16135 } else if (sc->sc_type >= WM_T_82571) {
16136 reg = CSR_READ(sc, WMREG_CTRL_EXT);
16137 CSR_WRITE(sc, WMREG_CTRL_EXT, reg & ~CTRL_EXT_DRV_LOAD);
16138 }
16139 }
16140
16141 static void
16142 wm_gate_hw_phy_config_ich8lan(struct wm_softc *sc, bool gate)
16143 {
16144 uint32_t reg;
16145
16146 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
16147 device_xname(sc->sc_dev), __func__));
16148
16149 if (sc->sc_type < WM_T_PCH2)
16150 return;
16151
16152 reg = CSR_READ(sc, WMREG_EXTCNFCTR);
16153
16154 if (gate)
16155 reg |= EXTCNFCTR_GATE_PHY_CFG;
16156 else
16157 reg &= ~EXTCNFCTR_GATE_PHY_CFG;
16158
16159 CSR_WRITE(sc, WMREG_EXTCNFCTR, reg);
16160 }
16161
16162 static int
16163 wm_init_phy_workarounds_pchlan(struct wm_softc *sc)
16164 {
16165 uint32_t fwsm, reg;
16166 int rv;
16167
16168 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
16169 device_xname(sc->sc_dev), __func__));
16170
16171 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
16172 wm_gate_hw_phy_config_ich8lan(sc, true);
16173
16174 /* Disable ULP */
16175 wm_ulp_disable(sc);
16176
16177 /* Acquire PHY semaphore */
16178 rv = sc->phy.acquire(sc);
16179 if (rv != 0) {
16180 DPRINTF(sc, WM_DEBUG_INIT,
16181 ("%s: %s: failed\n", device_xname(sc->sc_dev), __func__));
16182 return rv;
16183 }
16184
16185 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
16186 * inaccessible and resetting the PHY is not blocked, toggle the
16187 * LANPHYPC Value bit to force the interconnect to PCIe mode.
16188 */
16189 fwsm = CSR_READ(sc, WMREG_FWSM);
16190 switch (sc->sc_type) {
16191 case WM_T_PCH_LPT:
16192 case WM_T_PCH_SPT:
16193 case WM_T_PCH_CNP:
16194 case WM_T_PCH_TGP:
16195 if (wm_phy_is_accessible_pchlan(sc))
16196 break;
16197
16198 /* Before toggling LANPHYPC, see if PHY is accessible by
16199 * forcing MAC to SMBus mode first.
16200 */
16201 reg = CSR_READ(sc, WMREG_CTRL_EXT);
16202 reg |= CTRL_EXT_FORCE_SMBUS;
16203 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
16204 #if 0
16205 /* XXX Isn't this required??? */
16206 CSR_WRITE_FLUSH(sc);
16207 #endif
16208 /* Wait 50 milliseconds for MAC to finish any retries
16209 * that it might be trying to perform from previous
16210 * attempts to acknowledge any phy read requests.
16211 */
16212 delay(50 * 1000);
16213 /* FALLTHROUGH */
16214 case WM_T_PCH2:
16215 if (wm_phy_is_accessible_pchlan(sc) == true)
16216 break;
16217 /* FALLTHROUGH */
16218 case WM_T_PCH:
16219 if (sc->sc_type == WM_T_PCH)
16220 if ((fwsm & FWSM_FW_VALID) != 0)
16221 break;
16222
16223 if (wm_phy_resetisblocked(sc) == true) {
16224 device_printf(sc->sc_dev, "XXX reset is blocked(2)\n");
16225 break;
16226 }
16227
16228 /* Toggle LANPHYPC Value bit */
16229 wm_toggle_lanphypc_pch_lpt(sc);
16230
16231 if (sc->sc_type >= WM_T_PCH_LPT) {
16232 if (wm_phy_is_accessible_pchlan(sc) == true)
16233 break;
16234
16235 /* Toggling LANPHYPC brings the PHY out of SMBus mode
16236 * so ensure that the MAC is also out of SMBus mode
16237 */
16238 reg = CSR_READ(sc, WMREG_CTRL_EXT);
16239 reg &= ~CTRL_EXT_FORCE_SMBUS;
16240 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
16241
16242 if (wm_phy_is_accessible_pchlan(sc) == true)
16243 break;
16244 rv = -1;
16245 }
16246 break;
16247 default:
16248 break;
16249 }
16250
16251 /* Release semaphore */
16252 sc->phy.release(sc);
16253
16254 if (rv == 0) {
16255 /* Check to see if able to reset PHY. Print error if not */
16256 if (wm_phy_resetisblocked(sc)) {
16257 device_printf(sc->sc_dev, "XXX reset is blocked(3)\n");
16258 goto out;
16259 }
16260
16261 /* Reset the PHY before any access to it. Doing so, ensures
16262 * that the PHY is in a known good state before we read/write
16263 * PHY registers. The generic reset is sufficient here,
16264 * because we haven't determined the PHY type yet.
16265 */
16266 if (wm_reset_phy(sc) != 0)
16267 goto out;
16268
16269 /* On a successful reset, possibly need to wait for the PHY
16270 * to quiesce to an accessible state before returning control
16271 * to the calling function. If the PHY does not quiesce, then
16272 * return E1000E_BLK_PHY_RESET, as this is the condition that
16273 * the PHY is in.
16274 */
16275 if (wm_phy_resetisblocked(sc))
16276 device_printf(sc->sc_dev, "XXX reset is blocked(4)\n");
16277 }
16278
16279 out:
16280 /* Ungate automatic PHY configuration on non-managed 82579 */
16281 if ((sc->sc_type == WM_T_PCH2) && ((fwsm & FWSM_FW_VALID) == 0)) {
16282 delay(10*1000);
16283 wm_gate_hw_phy_config_ich8lan(sc, false);
16284 }
16285
16286 return 0;
16287 }
16288
16289 static void
16290 wm_init_manageability(struct wm_softc *sc)
16291 {
16292
16293 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
16294 device_xname(sc->sc_dev), __func__));
16295 KASSERT(IFNET_LOCKED(&sc->sc_ethercom.ec_if));
16296
16297 if (sc->sc_flags & WM_F_HAS_MANAGE) {
16298 uint32_t manc2h = CSR_READ(sc, WMREG_MANC2H);
16299 uint32_t manc = CSR_READ(sc, WMREG_MANC);
16300
16301 /* Disable hardware interception of ARP */
16302 manc &= ~MANC_ARP_EN;
16303
16304 /* Enable receiving management packets to the host */
16305 if (sc->sc_type >= WM_T_82571) {
16306 manc |= MANC_EN_MNG2HOST;
16307 manc2h |= MANC2H_PORT_623 | MANC2H_PORT_624;
16308 CSR_WRITE(sc, WMREG_MANC2H, manc2h);
16309 }
16310
16311 CSR_WRITE(sc, WMREG_MANC, manc);
16312 }
16313 }
16314
16315 static void
16316 wm_release_manageability(struct wm_softc *sc)
16317 {
16318
16319 if (sc->sc_flags & WM_F_HAS_MANAGE) {
16320 uint32_t manc = CSR_READ(sc, WMREG_MANC);
16321
16322 manc |= MANC_ARP_EN;
16323 if (sc->sc_type >= WM_T_82571)
16324 manc &= ~MANC_EN_MNG2HOST;
16325
16326 CSR_WRITE(sc, WMREG_MANC, manc);
16327 }
16328 }
16329
16330 static void
16331 wm_get_wakeup(struct wm_softc *sc)
16332 {
16333
16334 /* 0: HAS_AMT, ARC_SUBSYS_VALID, ASF_FIRMWARE_PRES */
16335 switch (sc->sc_type) {
16336 case WM_T_82573:
16337 case WM_T_82583:
16338 sc->sc_flags |= WM_F_HAS_AMT;
16339 /* FALLTHROUGH */
16340 case WM_T_80003:
16341 case WM_T_82575:
16342 case WM_T_82576:
16343 case WM_T_82580:
16344 case WM_T_I350:
16345 case WM_T_I354:
16346 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_MODE) != 0)
16347 sc->sc_flags |= WM_F_ARC_SUBSYS_VALID;
16348 /* FALLTHROUGH */
16349 case WM_T_82541:
16350 case WM_T_82541_2:
16351 case WM_T_82547:
16352 case WM_T_82547_2:
16353 case WM_T_82571:
16354 case WM_T_82572:
16355 case WM_T_82574:
16356 sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES;
16357 break;
16358 case WM_T_ICH8:
16359 case WM_T_ICH9:
16360 case WM_T_ICH10:
16361 case WM_T_PCH:
16362 case WM_T_PCH2:
16363 case WM_T_PCH_LPT:
16364 case WM_T_PCH_SPT:
16365 case WM_T_PCH_CNP:
16366 case WM_T_PCH_TGP:
16367 sc->sc_flags |= WM_F_HAS_AMT;
16368 sc->sc_flags |= WM_F_ASF_FIRMWARE_PRES;
16369 break;
16370 default:
16371 break;
16372 }
16373
16374 /* 1: HAS_MANAGE */
16375 if (wm_enable_mng_pass_thru(sc) != 0)
16376 sc->sc_flags |= WM_F_HAS_MANAGE;
16377
16378 /*
16379 * Note that the WOL flags is set after the resetting of the eeprom
16380 * stuff
16381 */
16382 }
16383
16384 /*
16385 * Unconfigure Ultra Low Power mode.
16386 * Only for I217 and newer (see below).
16387 */
16388 static int
16389 wm_ulp_disable(struct wm_softc *sc)
16390 {
16391 uint32_t reg;
16392 uint16_t phyreg;
16393 int i = 0, rv;
16394
16395 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
16396 device_xname(sc->sc_dev), __func__));
16397 /* Exclude old devices */
16398 if ((sc->sc_type < WM_T_PCH_LPT)
16399 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I217_LM)
16400 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I217_V)
16401 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_LM2)
16402 || (sc->sc_pcidevid == PCI_PRODUCT_INTEL_I218_V2))
16403 return 0;
16404
16405 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID) != 0) {
16406 /* Request ME un-configure ULP mode in the PHY */
16407 reg = CSR_READ(sc, WMREG_H2ME);
16408 reg &= ~H2ME_ULP;
16409 reg |= H2ME_ENFORCE_SETTINGS;
16410 CSR_WRITE(sc, WMREG_H2ME, reg);
16411
16412 /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
16413 while ((CSR_READ(sc, WMREG_FWSM) & FWSM_ULP_CFG_DONE) != 0) {
16414 if (i++ == 30) {
16415 device_printf(sc->sc_dev, "%s timed out\n",
16416 __func__);
16417 return -1;
16418 }
16419 delay(10 * 1000);
16420 }
16421 reg = CSR_READ(sc, WMREG_H2ME);
16422 reg &= ~H2ME_ENFORCE_SETTINGS;
16423 CSR_WRITE(sc, WMREG_H2ME, reg);
16424
16425 return 0;
16426 }
16427
16428 /* Acquire semaphore */
16429 rv = sc->phy.acquire(sc);
16430 if (rv != 0) {
16431 DPRINTF(sc, WM_DEBUG_INIT,
16432 ("%s: %s: failed\n", device_xname(sc->sc_dev), __func__));
16433 return rv;
16434 }
16435
16436 /* Toggle LANPHYPC */
16437 wm_toggle_lanphypc_pch_lpt(sc);
16438
16439 /* Unforce SMBus mode in PHY */
16440 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, CV_SMB_CTRL, &phyreg);
16441 if (rv != 0) {
16442 uint32_t reg2;
16443
16444 aprint_debug_dev(sc->sc_dev, "%s: Force SMBus first.\n",
16445 __func__);
16446 reg2 = CSR_READ(sc, WMREG_CTRL_EXT);
16447 reg2 |= CTRL_EXT_FORCE_SMBUS;
16448 CSR_WRITE(sc, WMREG_CTRL_EXT, reg2);
16449 delay(50 * 1000);
16450
16451 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, CV_SMB_CTRL,
16452 &phyreg);
16453 if (rv != 0)
16454 goto release;
16455 }
16456 phyreg &= ~CV_SMB_CTRL_FORCE_SMBUS;
16457 wm_gmii_hv_writereg_locked(sc->sc_dev, 2, CV_SMB_CTRL, phyreg);
16458
16459 /* Unforce SMBus mode in MAC */
16460 reg = CSR_READ(sc, WMREG_CTRL_EXT);
16461 reg &= ~CTRL_EXT_FORCE_SMBUS;
16462 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
16463
16464 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, HV_PM_CTRL, &phyreg);
16465 if (rv != 0)
16466 goto release;
16467 phyreg |= HV_PM_CTRL_K1_ENA;
16468 wm_gmii_hv_writereg_locked(sc->sc_dev, 2, HV_PM_CTRL, phyreg);
16469
16470 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, I218_ULP_CONFIG1,
16471 &phyreg);
16472 if (rv != 0)
16473 goto release;
16474 phyreg &= ~(I218_ULP_CONFIG1_IND
16475 | I218_ULP_CONFIG1_STICKY_ULP
16476 | I218_ULP_CONFIG1_RESET_TO_SMBUS
16477 | I218_ULP_CONFIG1_WOL_HOST
16478 | I218_ULP_CONFIG1_INBAND_EXIT
16479 | I218_ULP_CONFIG1_EN_ULP_LANPHYPC
16480 | I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST
16481 | I218_ULP_CONFIG1_DIS_SMB_PERST);
16482 wm_gmii_hv_writereg_locked(sc->sc_dev, 2, I218_ULP_CONFIG1, phyreg);
16483 phyreg |= I218_ULP_CONFIG1_START;
16484 wm_gmii_hv_writereg_locked(sc->sc_dev, 2, I218_ULP_CONFIG1, phyreg);
16485
16486 reg = CSR_READ(sc, WMREG_FEXTNVM7);
16487 reg &= ~FEXTNVM7_DIS_SMB_PERST;
16488 CSR_WRITE(sc, WMREG_FEXTNVM7, reg);
16489
16490 release:
16491 /* Release semaphore */
16492 sc->phy.release(sc);
16493 wm_gmii_reset(sc);
16494 delay(50 * 1000);
16495
16496 return rv;
16497 }
16498
16499 /* WOL in the newer chipset interfaces (pchlan) */
16500 static int
16501 wm_enable_phy_wakeup(struct wm_softc *sc)
16502 {
16503 device_t dev = sc->sc_dev;
16504 uint32_t mreg, moff;
16505 uint16_t wuce, wuc, wufc, preg;
16506 int i, rv;
16507
16508 KASSERT(sc->sc_type >= WM_T_PCH);
16509
16510 /* Copy MAC RARs to PHY RARs */
16511 wm_copy_rx_addrs_to_phy_ich8lan(sc);
16512
16513 /* Activate PHY wakeup */
16514 rv = sc->phy.acquire(sc);
16515 if (rv != 0) {
16516 device_printf(dev, "%s: failed to acquire semaphore\n",
16517 __func__);
16518 return rv;
16519 }
16520
16521 /*
16522 * Enable access to PHY wakeup registers.
16523 * BM_MTA, BM_RCTL, BM_WUFC and BM_WUC are in BM_WUC_PAGE.
16524 */
16525 rv = wm_enable_phy_wakeup_reg_access_bm(dev, &wuce);
16526 if (rv != 0) {
16527 device_printf(dev,
16528 "%s: Could not enable PHY wakeup reg access\n", __func__);
16529 goto release;
16530 }
16531
16532 /* Copy MAC MTA to PHY MTA */
16533 for (i = 0; i < WM_ICH8_MC_TABSIZE; i++) {
16534 uint16_t lo, hi;
16535
16536 mreg = CSR_READ(sc, WMREG_CORDOVA_MTA + (i * 4));
16537 lo = (uint16_t)(mreg & 0xffff);
16538 hi = (uint16_t)((mreg >> 16) & 0xffff);
16539 wm_access_phy_wakeup_reg_bm(dev, BM_MTA(i), &lo, 0, true);
16540 wm_access_phy_wakeup_reg_bm(dev, BM_MTA(i) + 1, &hi, 0, true);
16541 }
16542
16543 /* Configure PHY Rx Control register */
16544 wm_access_phy_wakeup_reg_bm(dev, BM_RCTL, &preg, 1, true);
16545 mreg = CSR_READ(sc, WMREG_RCTL);
16546 if (mreg & RCTL_UPE)
16547 preg |= BM_RCTL_UPE;
16548 if (mreg & RCTL_MPE)
16549 preg |= BM_RCTL_MPE;
16550 preg &= ~(BM_RCTL_MO_MASK);
16551 moff = __SHIFTOUT(mreg, RCTL_MO);
16552 if (moff != 0)
16553 preg |= moff << BM_RCTL_MO_SHIFT;
16554 if (mreg & RCTL_BAM)
16555 preg |= BM_RCTL_BAM;
16556 if (mreg & RCTL_PMCF)
16557 preg |= BM_RCTL_PMCF;
16558 mreg = CSR_READ(sc, WMREG_CTRL);
16559 if (mreg & CTRL_RFCE)
16560 preg |= BM_RCTL_RFCE;
16561 wm_access_phy_wakeup_reg_bm(dev, BM_RCTL, &preg, 0, true);
16562
16563 wuc = WUC_APME | WUC_PME_EN;
16564 wufc = WUFC_MAG;
16565 /* Enable PHY wakeup in MAC register */
16566 CSR_WRITE(sc, WMREG_WUC,
16567 WUC_PHY_WAKE | WUC_PME_STATUS | WUC_APMPME | wuc);
16568 CSR_WRITE(sc, WMREG_WUFC, wufc);
16569
16570 /* Configure and enable PHY wakeup in PHY registers */
16571 wm_access_phy_wakeup_reg_bm(dev, BM_WUC, &wuc, 0, true);
16572 wm_access_phy_wakeup_reg_bm(dev, BM_WUFC, &wufc, 0, true);
16573
16574 wuce |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
16575 wm_disable_phy_wakeup_reg_access_bm(dev, &wuce);
16576
16577 release:
16578 sc->phy.release(sc);
16579
16580 return 0;
16581 }
16582
16583 /* Power down workaround on D3 */
16584 static void
16585 wm_igp3_phy_powerdown_workaround_ich8lan(struct wm_softc *sc)
16586 {
16587 uint32_t reg;
16588 uint16_t phyreg;
16589 int i;
16590
16591 for (i = 0; i < 2; i++) {
16592 /* Disable link */
16593 reg = CSR_READ(sc, WMREG_PHY_CTRL);
16594 reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS;
16595 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
16596
16597 /*
16598 * Call gig speed drop workaround on Gig disable before
16599 * accessing any PHY registers
16600 */
16601 if (sc->sc_type == WM_T_ICH8)
16602 wm_gig_downshift_workaround_ich8lan(sc);
16603
16604 /* Write VR power-down enable */
16605 sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL, &phyreg);
16606 phyreg &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
16607 phyreg |= IGP3_VR_CTRL_MODE_SHUTDOWN;
16608 sc->sc_mii.mii_writereg(sc->sc_dev, 1, IGP3_VR_CTRL, phyreg);
16609
16610 /* Read it back and test */
16611 sc->sc_mii.mii_readreg(sc->sc_dev, 1, IGP3_VR_CTRL, &phyreg);
16612 phyreg &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
16613 if ((phyreg == IGP3_VR_CTRL_MODE_SHUTDOWN) || (i != 0))
16614 break;
16615
16616 /* Issue PHY reset and repeat at most one more time */
16617 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
16618 }
16619 }
16620
16621 /*
16622 * wm_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
16623 * @sc: pointer to the HW structure
16624 *
16625 * During S0 to Sx transition, it is possible the link remains at gig
16626 * instead of negotiating to a lower speed. Before going to Sx, set
16627 * 'Gig Disable' to force link speed negotiation to a lower speed based on
16628 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
16629 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
16630 * needs to be written.
16631 * Parts that support (and are linked to a partner which support) EEE in
16632 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
16633 * than 10Mbps w/o EEE.
16634 */
16635 static void
16636 wm_suspend_workarounds_ich8lan(struct wm_softc *sc)
16637 {
16638 device_t dev = sc->sc_dev;
16639 struct ethercom *ec = &sc->sc_ethercom;
16640 uint32_t phy_ctrl;
16641 int rv;
16642
16643 phy_ctrl = CSR_READ(sc, WMREG_PHY_CTRL);
16644 phy_ctrl |= PHY_CTRL_GBE_DIS;
16645
16646 KASSERT((sc->sc_type >= WM_T_ICH8) && (sc->sc_type <= WM_T_PCH_TGP));
16647
16648 if (sc->sc_phytype == WMPHY_I217) {
16649 uint16_t devid = sc->sc_pcidevid;
16650
16651 if ((devid == PCI_PRODUCT_INTEL_I218_LM) ||
16652 (devid == PCI_PRODUCT_INTEL_I218_V) ||
16653 (devid == PCI_PRODUCT_INTEL_I218_LM3) ||
16654 (devid == PCI_PRODUCT_INTEL_I218_V3) ||
16655 (sc->sc_type >= WM_T_PCH_SPT))
16656 CSR_WRITE(sc, WMREG_FEXTNVM6,
16657 CSR_READ(sc, WMREG_FEXTNVM6)
16658 & ~FEXTNVM6_REQ_PLL_CLK);
16659
16660 if (sc->phy.acquire(sc) != 0)
16661 goto out;
16662
16663 if ((ec->ec_capenable & ETHERCAP_EEE) != 0) {
16664 uint16_t eee_advert;
16665
16666 rv = wm_read_emi_reg_locked(dev,
16667 I217_EEE_ADVERTISEMENT, &eee_advert);
16668 if (rv)
16669 goto release;
16670
16671 /*
16672 * Disable LPLU if both link partners support 100BaseT
16673 * EEE and 100Full is advertised on both ends of the
16674 * link, and enable Auto Enable LPI since there will
16675 * be no driver to enable LPI while in Sx.
16676 */
16677 if ((eee_advert & AN_EEEADVERT_100_TX) &&
16678 (sc->eee_lp_ability & AN_EEEADVERT_100_TX)) {
16679 uint16_t anar, phy_reg;
16680
16681 sc->phy.readreg_locked(dev, 2, MII_ANAR,
16682 &anar);
16683 if (anar & ANAR_TX_FD) {
16684 phy_ctrl &= ~(PHY_CTRL_D0A_LPLU |
16685 PHY_CTRL_NOND0A_LPLU);
16686
16687 /* Set Auto Enable LPI after link up */
16688 sc->phy.readreg_locked(dev, 2,
16689 I217_LPI_GPIO_CTRL, &phy_reg);
16690 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
16691 sc->phy.writereg_locked(dev, 2,
16692 I217_LPI_GPIO_CTRL, phy_reg);
16693 }
16694 }
16695 }
16696
16697 /*
16698 * For i217 Intel Rapid Start Technology support,
16699 * when the system is going into Sx and no manageability engine
16700 * is present, the driver must configure proxy to reset only on
16701 * power good. LPI (Low Power Idle) state must also reset only
16702 * on power good, as well as the MTA (Multicast table array).
16703 * The SMBus release must also be disabled on LCD reset.
16704 */
16705
16706 /*
16707 * Enable MTA to reset for Intel Rapid Start Technology
16708 * Support
16709 */
16710
16711 release:
16712 sc->phy.release(sc);
16713 }
16714 out:
16715 CSR_WRITE(sc, WMREG_PHY_CTRL, phy_ctrl);
16716
16717 if (sc->sc_type == WM_T_ICH8)
16718 wm_gig_downshift_workaround_ich8lan(sc);
16719
16720 if (sc->sc_type >= WM_T_PCH) {
16721 wm_oem_bits_config_ich8lan(sc, false);
16722
16723 /* Reset PHY to activate OEM bits on 82577/8 */
16724 if (sc->sc_type == WM_T_PCH)
16725 wm_reset_phy(sc);
16726
16727 if (sc->phy.acquire(sc) != 0)
16728 return;
16729 wm_write_smbus_addr(sc);
16730 sc->phy.release(sc);
16731 }
16732 }
16733
16734 /*
16735 * wm_resume_workarounds_pchlan - workarounds needed during Sx->S0
16736 * @sc: pointer to the HW structure
16737 *
16738 * During Sx to S0 transitions on non-managed devices or managed devices
16739 * on which PHY resets are not blocked, if the PHY registers cannot be
16740 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
16741 * the PHY.
16742 * On i217, setup Intel Rapid Start Technology.
16743 */
16744 static int
16745 wm_resume_workarounds_pchlan(struct wm_softc *sc)
16746 {
16747 device_t dev = sc->sc_dev;
16748 int rv;
16749
16750 if (sc->sc_type < WM_T_PCH2)
16751 return 0;
16752
16753 rv = wm_init_phy_workarounds_pchlan(sc);
16754 if (rv != 0)
16755 return rv;
16756
16757 /* For i217 Intel Rapid Start Technology support when the system
16758 * is transitioning from Sx and no manageability engine is present
16759 * configure SMBus to restore on reset, disable proxy, and enable
16760 * the reset on MTA (Multicast table array).
16761 */
16762 if (sc->sc_phytype == WMPHY_I217) {
16763 uint16_t phy_reg;
16764
16765 rv = sc->phy.acquire(sc);
16766 if (rv != 0)
16767 return rv;
16768
16769 /* Clear Auto Enable LPI after link up */
16770 sc->phy.readreg_locked(dev, 1, I217_LPI_GPIO_CTRL, &phy_reg);
16771 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
16772 sc->phy.writereg_locked(dev, 1, I217_LPI_GPIO_CTRL, phy_reg);
16773
16774 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID) == 0) {
16775 /* Restore clear on SMB if no manageability engine
16776 * is present
16777 */
16778 rv = sc->phy.readreg_locked(dev, 1, I217_MEMPWR,
16779 &phy_reg);
16780 if (rv != 0)
16781 goto release;
16782 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
16783 sc->phy.writereg_locked(dev, 1, I217_MEMPWR, phy_reg);
16784
16785 /* Disable Proxy */
16786 sc->phy.writereg_locked(dev, 1, I217_PROXY_CTRL, 0);
16787 }
16788 /* Enable reset on MTA */
16789 sc->phy.readreg_locked(dev, 1, I217_CFGREG, &phy_reg);
16790 if (rv != 0)
16791 goto release;
16792 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
16793 sc->phy.writereg_locked(dev, 1, I217_CFGREG, phy_reg);
16794
16795 release:
16796 sc->phy.release(sc);
16797 return rv;
16798 }
16799
16800 return 0;
16801 }
16802
16803 static void
16804 wm_enable_wakeup(struct wm_softc *sc)
16805 {
16806 uint32_t reg, pmreg;
16807 pcireg_t pmode;
16808 int rv = 0;
16809
16810 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
16811 device_xname(sc->sc_dev), __func__));
16812
16813 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PWRMGMT,
16814 &pmreg, NULL) == 0)
16815 return;
16816
16817 if ((sc->sc_flags & WM_F_WOL) == 0)
16818 goto pme;
16819
16820 /* Advertise the wakeup capability */
16821 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_SWDPIN(2)
16822 | CTRL_SWDPIN(3));
16823
16824 /* Keep the laser running on fiber adapters */
16825 if ((sc->sc_mediatype == WM_MEDIATYPE_FIBER)
16826 || (sc->sc_mediatype == WM_MEDIATYPE_SERDES)) {
16827 reg = CSR_READ(sc, WMREG_CTRL_EXT);
16828 reg |= CTRL_EXT_SWDPIN(3);
16829 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
16830 }
16831
16832 if ((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9) ||
16833 (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH) ||
16834 (sc->sc_type == WM_T_PCH2) || (sc->sc_type == WM_T_PCH_LPT) ||
16835 (sc->sc_type == WM_T_PCH_SPT) || (sc->sc_type == WM_T_PCH_CNP) ||
16836 (sc->sc_type == WM_T_PCH_TGP))
16837 wm_suspend_workarounds_ich8lan(sc);
16838
16839 #if 0 /* For the multicast packet */
16840 reg = CSR_READ(sc, WMREG_WUFC) | WUFC_MAG;
16841 reg |= WUFC_MC;
16842 CSR_WRITE(sc, WMREG_RCTL, CSR_READ(sc, WMREG_RCTL) | RCTL_MPE);
16843 #endif
16844
16845 if (sc->sc_type >= WM_T_PCH) {
16846 rv = wm_enable_phy_wakeup(sc);
16847 if (rv != 0)
16848 goto pme;
16849 } else {
16850 /* Enable wakeup by the MAC */
16851 CSR_WRITE(sc, WMREG_WUC, WUC_APME | WUC_PME_EN);
16852 CSR_WRITE(sc, WMREG_WUFC, WUFC_MAG);
16853 }
16854
16855 if (((sc->sc_type == WM_T_ICH8) || (sc->sc_type == WM_T_ICH9)
16856 || (sc->sc_type == WM_T_ICH10) || (sc->sc_type == WM_T_PCH)
16857 || (sc->sc_type == WM_T_PCH2))
16858 && (sc->sc_phytype == WMPHY_IGP_3))
16859 wm_igp3_phy_powerdown_workaround_ich8lan(sc);
16860
16861 pme:
16862 /* Request PME */
16863 pmode = pci_conf_read(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR);
16864 pmode |= PCI_PMCSR_PME_STS; /* in case it's already set (W1C) */
16865 if ((rv == 0) && (sc->sc_flags & WM_F_WOL) != 0) {
16866 /* For WOL */
16867 pmode |= PCI_PMCSR_PME_EN;
16868 } else {
16869 /* Disable WOL */
16870 pmode &= ~PCI_PMCSR_PME_EN;
16871 }
16872 pci_conf_write(sc->sc_pc, sc->sc_pcitag, pmreg + PCI_PMCSR, pmode);
16873 }
16874
16875 /* Disable ASPM L0s and/or L1 for workaround */
16876 static void
16877 wm_disable_aspm(struct wm_softc *sc)
16878 {
16879 pcireg_t reg, mask = 0;
16880 unsigned const char *str = "";
16881
16882 /*
16883 * Only for PCIe device which has PCIe capability in the PCI config
16884 * space.
16885 */
16886 if (((sc->sc_flags & WM_F_PCIE) == 0) || (sc->sc_pcixe_capoff == 0))
16887 return;
16888
16889 switch (sc->sc_type) {
16890 case WM_T_82571:
16891 case WM_T_82572:
16892 /*
16893 * 8257[12] Errata 13: Device Does Not Support PCIe Active
16894 * State Power management L1 State (ASPM L1).
16895 */
16896 mask = PCIE_LCSR_ASPM_L1;
16897 str = "L1 is";
16898 break;
16899 case WM_T_82573:
16900 case WM_T_82574:
16901 case WM_T_82583:
16902 /*
16903 * The 82573 disappears when PCIe ASPM L0s is enabled.
16904 *
16905 * The 82574 and 82583 does not support PCIe ASPM L0s with
16906 * some chipset. The document of 82574 and 82583 says that
16907 * disabling L0s with some specific chipset is sufficient,
16908 * but we follow as of the Intel em driver does.
16909 *
16910 * References:
16911 * Errata 8 of the Specification Update of i82573.
16912 * Errata 20 of the Specification Update of i82574.
16913 * Errata 9 of the Specification Update of i82583.
16914 */
16915 mask = PCIE_LCSR_ASPM_L1 | PCIE_LCSR_ASPM_L0S;
16916 str = "L0s and L1 are";
16917 break;
16918 default:
16919 return;
16920 }
16921
16922 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
16923 sc->sc_pcixe_capoff + PCIE_LCSR);
16924 reg &= ~mask;
16925 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
16926 sc->sc_pcixe_capoff + PCIE_LCSR, reg);
16927
16928 /* Print only in wm_attach() */
16929 if ((sc->sc_flags & WM_F_ATTACHED) == 0)
16930 aprint_verbose_dev(sc->sc_dev,
16931 "ASPM %s disabled to workaround the errata.\n", str);
16932 }
16933
16934 /* LPLU */
16935
16936 static void
16937 wm_lplu_d0_disable(struct wm_softc *sc)
16938 {
16939 struct mii_data *mii = &sc->sc_mii;
16940 uint32_t reg;
16941 uint16_t phyval;
16942
16943 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
16944 device_xname(sc->sc_dev), __func__));
16945
16946 if (sc->sc_phytype == WMPHY_IFE)
16947 return;
16948
16949 switch (sc->sc_type) {
16950 case WM_T_82571:
16951 case WM_T_82572:
16952 case WM_T_82573:
16953 case WM_T_82575:
16954 case WM_T_82576:
16955 mii->mii_readreg(sc->sc_dev, 1, IGPHY_POWER_MGMT, &phyval);
16956 phyval &= ~PMR_D0_LPLU;
16957 mii->mii_writereg(sc->sc_dev, 1, IGPHY_POWER_MGMT, phyval);
16958 break;
16959 case WM_T_82580:
16960 case WM_T_I350:
16961 case WM_T_I210:
16962 case WM_T_I211:
16963 reg = CSR_READ(sc, WMREG_PHPM);
16964 reg &= ~PHPM_D0A_LPLU;
16965 CSR_WRITE(sc, WMREG_PHPM, reg);
16966 break;
16967 case WM_T_82574:
16968 case WM_T_82583:
16969 case WM_T_ICH8:
16970 case WM_T_ICH9:
16971 case WM_T_ICH10:
16972 reg = CSR_READ(sc, WMREG_PHY_CTRL);
16973 reg &= ~(PHY_CTRL_GBE_DIS | PHY_CTRL_D0A_LPLU);
16974 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
16975 CSR_WRITE_FLUSH(sc);
16976 break;
16977 case WM_T_PCH:
16978 case WM_T_PCH2:
16979 case WM_T_PCH_LPT:
16980 case WM_T_PCH_SPT:
16981 case WM_T_PCH_CNP:
16982 case WM_T_PCH_TGP:
16983 wm_gmii_hv_readreg(sc->sc_dev, 1, HV_OEM_BITS, &phyval);
16984 phyval &= ~(HV_OEM_BITS_A1KDIS | HV_OEM_BITS_LPLU);
16985 if (wm_phy_resetisblocked(sc) == false)
16986 phyval |= HV_OEM_BITS_ANEGNOW;
16987 wm_gmii_hv_writereg(sc->sc_dev, 1, HV_OEM_BITS, phyval);
16988 break;
16989 default:
16990 break;
16991 }
16992 }
16993
16994 /* EEE */
16995
16996 static int
16997 wm_set_eee_i350(struct wm_softc *sc)
16998 {
16999 struct ethercom *ec = &sc->sc_ethercom;
17000 uint32_t ipcnfg, eeer;
17001 uint32_t ipcnfg_mask
17002 = IPCNFG_EEE_1G_AN | IPCNFG_EEE_100M_AN | IPCNFG_10BASE_TE;
17003 uint32_t eeer_mask = EEER_TX_LPI_EN | EEER_RX_LPI_EN | EEER_LPI_FC;
17004
17005 KASSERT(sc->sc_mediatype == WM_MEDIATYPE_COPPER);
17006
17007 ipcnfg = CSR_READ(sc, WMREG_IPCNFG);
17008 eeer = CSR_READ(sc, WMREG_EEER);
17009
17010 /* Enable or disable per user setting */
17011 if ((ec->ec_capenable & ETHERCAP_EEE) != 0) {
17012 ipcnfg |= ipcnfg_mask;
17013 eeer |= eeer_mask;
17014 } else {
17015 ipcnfg &= ~ipcnfg_mask;
17016 eeer &= ~eeer_mask;
17017 }
17018
17019 CSR_WRITE(sc, WMREG_IPCNFG, ipcnfg);
17020 CSR_WRITE(sc, WMREG_EEER, eeer);
17021 CSR_READ(sc, WMREG_IPCNFG); /* XXX flush? */
17022 CSR_READ(sc, WMREG_EEER); /* XXX flush? */
17023
17024 return 0;
17025 }
17026
17027 static int
17028 wm_set_eee_pchlan(struct wm_softc *sc)
17029 {
17030 device_t dev = sc->sc_dev;
17031 struct ethercom *ec = &sc->sc_ethercom;
17032 uint16_t lpa, pcs_status, adv_addr, adv, lpi_ctrl, data;
17033 int rv;
17034
17035 switch (sc->sc_phytype) {
17036 case WMPHY_82579:
17037 lpa = I82579_EEE_LP_ABILITY;
17038 pcs_status = I82579_EEE_PCS_STATUS;
17039 adv_addr = I82579_EEE_ADVERTISEMENT;
17040 break;
17041 case WMPHY_I217:
17042 lpa = I217_EEE_LP_ABILITY;
17043 pcs_status = I217_EEE_PCS_STATUS;
17044 adv_addr = I217_EEE_ADVERTISEMENT;
17045 break;
17046 default:
17047 return 0;
17048 }
17049
17050 rv = sc->phy.acquire(sc);
17051 if (rv != 0) {
17052 device_printf(dev, "%s: failed to get semaphore\n", __func__);
17053 return rv;
17054 }
17055
17056 rv = sc->phy.readreg_locked(dev, 1, I82579_LPI_CTRL, &lpi_ctrl);
17057 if (rv != 0)
17058 goto release;
17059
17060 /* Clear bits that enable EEE in various speeds */
17061 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE;
17062
17063 if ((ec->ec_capenable & ETHERCAP_EEE) != 0) {
17064 /* Save off link partner's EEE ability */
17065 rv = wm_read_emi_reg_locked(dev, lpa, &sc->eee_lp_ability);
17066 if (rv != 0)
17067 goto release;
17068
17069 /* Read EEE advertisement */
17070 if ((rv = wm_read_emi_reg_locked(dev, adv_addr, &adv)) != 0)
17071 goto release;
17072
17073 /*
17074 * Enable EEE only for speeds in which the link partner is
17075 * EEE capable and for which we advertise EEE.
17076 */
17077 if (adv & sc->eee_lp_ability & AN_EEEADVERT_1000_T)
17078 lpi_ctrl |= I82579_LPI_CTRL_EN_1000;
17079 if (adv & sc->eee_lp_ability & AN_EEEADVERT_100_TX) {
17080 sc->phy.readreg_locked(dev, 2, MII_ANLPAR, &data);
17081 if ((data & ANLPAR_TX_FD) != 0)
17082 lpi_ctrl |= I82579_LPI_CTRL_EN_100;
17083 else {
17084 /*
17085 * EEE is not supported in 100Half, so ignore
17086 * partner's EEE in 100 ability if full-duplex
17087 * is not advertised.
17088 */
17089 sc->eee_lp_ability
17090 &= ~AN_EEEADVERT_100_TX;
17091 }
17092 }
17093 }
17094
17095 if (sc->sc_phytype == WMPHY_82579) {
17096 rv = wm_read_emi_reg_locked(dev, I82579_LPI_PLL_SHUT, &data);
17097 if (rv != 0)
17098 goto release;
17099
17100 data &= ~I82579_LPI_PLL_SHUT_100;
17101 rv = wm_write_emi_reg_locked(dev, I82579_LPI_PLL_SHUT, data);
17102 }
17103
17104 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
17105 if ((rv = wm_read_emi_reg_locked(dev, pcs_status, &data)) != 0)
17106 goto release;
17107
17108 rv = sc->phy.writereg_locked(dev, 1, I82579_LPI_CTRL, lpi_ctrl);
17109 release:
17110 sc->phy.release(sc);
17111
17112 return rv;
17113 }
17114
17115 static int
17116 wm_set_eee(struct wm_softc *sc)
17117 {
17118 struct ethercom *ec = &sc->sc_ethercom;
17119
17120 if ((ec->ec_capabilities & ETHERCAP_EEE) == 0)
17121 return 0;
17122
17123 if (sc->sc_type == WM_T_I354) {
17124 /* I354 uses an external PHY */
17125 return 0; /* not yet */
17126 } else if ((sc->sc_type >= WM_T_I350) && (sc->sc_type <= WM_T_I211))
17127 return wm_set_eee_i350(sc);
17128 else if (sc->sc_type >= WM_T_PCH2)
17129 return wm_set_eee_pchlan(sc);
17130
17131 return 0;
17132 }
17133
17134 /*
17135 * Workarounds (mainly PHY related).
17136 * Basically, PHY's workarounds are in the PHY drivers.
17137 */
17138
17139 /* Workaround for 82566 Kumeran PCS lock loss */
17140 static int
17141 wm_kmrn_lock_loss_workaround_ich8lan(struct wm_softc *sc)
17142 {
17143 struct mii_data *mii = &sc->sc_mii;
17144 uint32_t status = CSR_READ(sc, WMREG_STATUS);
17145 int i, reg, rv;
17146 uint16_t phyreg;
17147
17148 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
17149 device_xname(sc->sc_dev), __func__));
17150
17151 /* If the link is not up, do nothing */
17152 if ((status & STATUS_LU) == 0)
17153 return 0;
17154
17155 /* Nothing to do if the link is other than 1Gbps */
17156 if (__SHIFTOUT(status, STATUS_SPEED) != STATUS_SPEED_1000)
17157 return 0;
17158
17159 for (i = 0; i < 10; i++) {
17160 /* read twice */
17161 rv = mii->mii_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG, &phyreg);
17162 if (rv != 0)
17163 return rv;
17164 rv = mii->mii_readreg(sc->sc_dev, 1, IGP3_KMRN_DIAG, &phyreg);
17165 if (rv != 0)
17166 return rv;
17167
17168 if ((phyreg & IGP3_KMRN_DIAG_PCS_LOCK_LOSS) == 0)
17169 goto out; /* GOOD! */
17170
17171 /* Reset the PHY */
17172 wm_reset_phy(sc);
17173 delay(5*1000);
17174 }
17175
17176 /* Disable GigE link negotiation */
17177 reg = CSR_READ(sc, WMREG_PHY_CTRL);
17178 reg |= PHY_CTRL_GBE_DIS | PHY_CTRL_NOND0A_GBE_DIS;
17179 CSR_WRITE(sc, WMREG_PHY_CTRL, reg);
17180
17181 /*
17182 * Call gig speed drop workaround on Gig disable before accessing
17183 * any PHY registers.
17184 */
17185 wm_gig_downshift_workaround_ich8lan(sc);
17186
17187 out:
17188 return 0;
17189 }
17190
17191 /*
17192 * wm_gig_downshift_workaround_ich8lan - WoL from S5 stops working
17193 * @sc: pointer to the HW structure
17194 *
17195 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
17196 * LPLU, Gig disable, MDIC PHY reset):
17197 * 1) Set Kumeran Near-end loopback
17198 * 2) Clear Kumeran Near-end loopback
17199 * Should only be called for ICH8[m] devices with any 1G Phy.
17200 */
17201 static void
17202 wm_gig_downshift_workaround_ich8lan(struct wm_softc *sc)
17203 {
17204 uint16_t kmreg;
17205
17206 /* Only for igp3 */
17207 if (sc->sc_phytype == WMPHY_IGP_3) {
17208 if (wm_kmrn_readreg(sc, KUMCTRLSTA_OFFSET_DIAG, &kmreg) != 0)
17209 return;
17210 kmreg |= KUMCTRLSTA_DIAG_NELPBK;
17211 if (wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmreg) != 0)
17212 return;
17213 kmreg &= ~KUMCTRLSTA_DIAG_NELPBK;
17214 wm_kmrn_writereg(sc, KUMCTRLSTA_OFFSET_DIAG, kmreg);
17215 }
17216 }
17217
17218 /*
17219 * Workaround for pch's PHYs
17220 * XXX should be moved to new PHY driver?
17221 */
17222 static int
17223 wm_hv_phy_workarounds_ich8lan(struct wm_softc *sc)
17224 {
17225 device_t dev = sc->sc_dev;
17226 struct mii_data *mii = &sc->sc_mii;
17227 struct mii_softc *child;
17228 uint16_t phy_data, phyrev = 0;
17229 int phytype = sc->sc_phytype;
17230 int rv;
17231
17232 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
17233 device_xname(dev), __func__));
17234 KASSERT(sc->sc_type == WM_T_PCH);
17235
17236 /* Set MDIO slow mode before any other MDIO access */
17237 if (phytype == WMPHY_82577)
17238 if ((rv = wm_set_mdio_slow_mode_hv(sc)) != 0)
17239 return rv;
17240
17241 child = LIST_FIRST(&mii->mii_phys);
17242 if (child != NULL)
17243 phyrev = child->mii_mpd_rev;
17244
17245 /* (82577 && (phy rev 1 or 2)) || (82578 & phy rev 1)*/
17246 if ((child != NULL) &&
17247 (((phytype == WMPHY_82577) && ((phyrev == 1) || (phyrev == 2))) ||
17248 ((phytype == WMPHY_82578) && (phyrev == 1)))) {
17249 /* Disable generation of early preamble (0x4431) */
17250 rv = mii->mii_readreg(dev, 2, BM_RATE_ADAPTATION_CTRL,
17251 &phy_data);
17252 if (rv != 0)
17253 return rv;
17254 phy_data &= ~(BM_RATE_ADAPTATION_CTRL_RX_RXDV_PRE |
17255 BM_RATE_ADAPTATION_CTRL_RX_CRS_PRE);
17256 rv = mii->mii_writereg(dev, 2, BM_RATE_ADAPTATION_CTRL,
17257 phy_data);
17258 if (rv != 0)
17259 return rv;
17260
17261 /* Preamble tuning for SSC */
17262 rv = mii->mii_writereg(dev, 2, HV_KMRN_FIFO_CTRLSTA, 0xa204);
17263 if (rv != 0)
17264 return rv;
17265 }
17266
17267 /* 82578 */
17268 if (phytype == WMPHY_82578) {
17269 /*
17270 * Return registers to default by doing a soft reset then
17271 * writing 0x3140 to the control register
17272 * 0x3140 == BMCR_SPEED0 | BMCR_AUTOEN | BMCR_FDX | BMCR_SPEED1
17273 */
17274 if ((child != NULL) && (phyrev < 2)) {
17275 PHY_RESET(child);
17276 rv = mii->mii_writereg(dev, 2, MII_BMCR, 0x3140);
17277 if (rv != 0)
17278 return rv;
17279 }
17280 }
17281
17282 /* Select page 0 */
17283 if ((rv = sc->phy.acquire(sc)) != 0)
17284 return rv;
17285 rv = wm_gmii_mdic_writereg(dev, 1, IGPHY_PAGE_SELECT, 0);
17286 sc->phy.release(sc);
17287 if (rv != 0)
17288 return rv;
17289
17290 /*
17291 * Configure the K1 Si workaround during phy reset assuming there is
17292 * link so that it disables K1 if link is in 1Gbps.
17293 */
17294 if ((rv = wm_k1_gig_workaround_hv(sc, 1)) != 0)
17295 return rv;
17296
17297 /* Workaround for link disconnects on a busy hub in half duplex */
17298 rv = sc->phy.acquire(sc);
17299 if (rv)
17300 return rv;
17301 rv = sc->phy.readreg_locked(dev, 2, BM_PORT_GEN_CFG, &phy_data);
17302 if (rv)
17303 goto release;
17304 rv = sc->phy.writereg_locked(dev, 2, BM_PORT_GEN_CFG,
17305 phy_data & 0x00ff);
17306 if (rv)
17307 goto release;
17308
17309 /* Set MSE higher to enable link to stay up when noise is high */
17310 rv = wm_write_emi_reg_locked(dev, I82577_MSE_THRESHOLD, 0x0034);
17311 release:
17312 sc->phy.release(sc);
17313
17314 return rv;
17315 }
17316
17317 /*
17318 * wm_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
17319 * @sc: pointer to the HW structure
17320 */
17321 static void
17322 wm_copy_rx_addrs_to_phy_ich8lan(struct wm_softc *sc)
17323 {
17324
17325 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
17326 device_xname(sc->sc_dev), __func__));
17327
17328 if (sc->phy.acquire(sc) != 0)
17329 return;
17330
17331 wm_copy_rx_addrs_to_phy_ich8lan_locked(sc);
17332
17333 sc->phy.release(sc);
17334 }
17335
17336 static void
17337 wm_copy_rx_addrs_to_phy_ich8lan_locked(struct wm_softc *sc)
17338 {
17339 device_t dev = sc->sc_dev;
17340 uint32_t mac_reg;
17341 uint16_t i, wuce;
17342 int count;
17343
17344 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
17345 device_xname(dev), __func__));
17346
17347 if (wm_enable_phy_wakeup_reg_access_bm(dev, &wuce) != 0)
17348 return;
17349
17350 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
17351 count = wm_rar_count(sc);
17352 for (i = 0; i < count; i++) {
17353 uint16_t lo, hi;
17354 mac_reg = CSR_READ(sc, WMREG_CORDOVA_RAL(i));
17355 lo = (uint16_t)(mac_reg & 0xffff);
17356 hi = (uint16_t)((mac_reg >> 16) & 0xffff);
17357 wm_access_phy_wakeup_reg_bm(dev, BM_RAR_L(i), &lo, 0, true);
17358 wm_access_phy_wakeup_reg_bm(dev, BM_RAR_M(i), &hi, 0, true);
17359
17360 mac_reg = CSR_READ(sc, WMREG_CORDOVA_RAH(i));
17361 lo = (uint16_t)(mac_reg & 0xffff);
17362 hi = (uint16_t)((mac_reg & RAL_AV) >> 16);
17363 wm_access_phy_wakeup_reg_bm(dev, BM_RAR_H(i), &lo, 0, true);
17364 wm_access_phy_wakeup_reg_bm(dev, BM_RAR_CTRL(i), &hi, 0, true);
17365 }
17366
17367 wm_disable_phy_wakeup_reg_access_bm(dev, &wuce);
17368 }
17369
17370 /*
17371 * wm_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
17372 * with 82579 PHY
17373 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
17374 */
17375 static int
17376 wm_lv_jumbo_workaround_ich8lan(struct wm_softc *sc, bool enable)
17377 {
17378 device_t dev = sc->sc_dev;
17379 int rar_count;
17380 int rv;
17381 uint32_t mac_reg;
17382 uint16_t dft_ctrl, data;
17383 uint16_t i;
17384
17385 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
17386 device_xname(dev), __func__));
17387
17388 if (sc->sc_type < WM_T_PCH2)
17389 return 0;
17390
17391 /* Acquire PHY semaphore */
17392 rv = sc->phy.acquire(sc);
17393 if (rv != 0)
17394 return rv;
17395
17396 /* Disable Rx path while enabling/disabling workaround */
17397 rv = sc->phy.readreg_locked(dev, 2, I82579_DFT_CTRL, &dft_ctrl);
17398 if (rv != 0)
17399 goto out;
17400 rv = sc->phy.writereg_locked(dev, 2, I82579_DFT_CTRL,
17401 dft_ctrl | (1 << 14));
17402 if (rv != 0)
17403 goto out;
17404
17405 if (enable) {
17406 /* Write Rx addresses (rar_entry_count for RAL/H, and
17407 * SHRAL/H) and initial CRC values to the MAC
17408 */
17409 rar_count = wm_rar_count(sc);
17410 for (i = 0; i < rar_count; i++) {
17411 uint8_t mac_addr[ETHER_ADDR_LEN] = {0};
17412 uint32_t addr_high, addr_low;
17413
17414 addr_high = CSR_READ(sc, WMREG_CORDOVA_RAH(i));
17415 if (!(addr_high & RAL_AV))
17416 continue;
17417 addr_low = CSR_READ(sc, WMREG_CORDOVA_RAL(i));
17418 mac_addr[0] = (addr_low & 0xFF);
17419 mac_addr[1] = ((addr_low >> 8) & 0xFF);
17420 mac_addr[2] = ((addr_low >> 16) & 0xFF);
17421 mac_addr[3] = ((addr_low >> 24) & 0xFF);
17422 mac_addr[4] = (addr_high & 0xFF);
17423 mac_addr[5] = ((addr_high >> 8) & 0xFF);
17424
17425 CSR_WRITE(sc, WMREG_PCH_RAICC(i),
17426 ~ether_crc32_le(mac_addr, ETHER_ADDR_LEN));
17427 }
17428
17429 /* Write Rx addresses to the PHY */
17430 wm_copy_rx_addrs_to_phy_ich8lan_locked(sc);
17431 }
17432
17433 /*
17434 * If enable ==
17435 * true: Enable jumbo frame workaround in the MAC.
17436 * false: Write MAC register values back to h/w defaults.
17437 */
17438 mac_reg = CSR_READ(sc, WMREG_FFLT_DBG);
17439 if (enable) {
17440 mac_reg &= ~(1 << 14);
17441 mac_reg |= (7 << 15);
17442 } else
17443 mac_reg &= ~(0xf << 14);
17444 CSR_WRITE(sc, WMREG_FFLT_DBG, mac_reg);
17445
17446 mac_reg = CSR_READ(sc, WMREG_RCTL);
17447 if (enable) {
17448 mac_reg |= RCTL_SECRC;
17449 sc->sc_rctl |= RCTL_SECRC;
17450 sc->sc_flags |= WM_F_CRC_STRIP;
17451 } else {
17452 mac_reg &= ~RCTL_SECRC;
17453 sc->sc_rctl &= ~RCTL_SECRC;
17454 sc->sc_flags &= ~WM_F_CRC_STRIP;
17455 }
17456 CSR_WRITE(sc, WMREG_RCTL, mac_reg);
17457
17458 rv = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_CTRL, &data);
17459 if (rv != 0)
17460 goto out;
17461 if (enable)
17462 data |= 1 << 0;
17463 else
17464 data &= ~(1 << 0);
17465 rv = wm_kmrn_writereg_locked(sc, KUMCTRLSTA_OFFSET_CTRL, data);
17466 if (rv != 0)
17467 goto out;
17468
17469 rv = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_HD_CTRL, &data);
17470 if (rv != 0)
17471 goto out;
17472 /*
17473 * XXX FreeBSD and Linux do the same thing that they set the same value
17474 * on both the enable case and the disable case. Is it correct?
17475 */
17476 data &= ~(0xf << 8);
17477 data |= (0xb << 8);
17478 rv = wm_kmrn_writereg_locked(sc, KUMCTRLSTA_OFFSET_HD_CTRL, data);
17479 if (rv != 0)
17480 goto out;
17481
17482 /*
17483 * If enable ==
17484 * true: Enable jumbo frame workaround in the PHY.
17485 * false: Write PHY register values back to h/w defaults.
17486 */
17487 rv = sc->phy.readreg_locked(dev, 2, BME1000_REG(769, 23), &data);
17488 if (rv != 0)
17489 goto out;
17490 data &= ~(0x7F << 5);
17491 if (enable)
17492 data |= (0x37 << 5);
17493 rv = sc->phy.writereg_locked(dev, 2, BME1000_REG(769, 23), data);
17494 if (rv != 0)
17495 goto out;
17496
17497 rv = sc->phy.readreg_locked(dev, 2, BME1000_REG(769, 16), &data);
17498 if (rv != 0)
17499 goto out;
17500 if (enable)
17501 data &= ~(1 << 13);
17502 else
17503 data |= (1 << 13);
17504 rv = sc->phy.writereg_locked(dev, 2, BME1000_REG(769, 16), data);
17505 if (rv != 0)
17506 goto out;
17507
17508 rv = sc->phy.readreg_locked(dev, 2, I82579_UNKNOWN1, &data);
17509 if (rv != 0)
17510 goto out;
17511 data &= ~(0x3FF << 2);
17512 if (enable)
17513 data |= (I82579_TX_PTR_GAP << 2);
17514 else
17515 data |= (0x8 << 2);
17516 rv = sc->phy.writereg_locked(dev, 2, I82579_UNKNOWN1, data);
17517 if (rv != 0)
17518 goto out;
17519
17520 rv = sc->phy.writereg_locked(dev, 2, BME1000_REG(776, 23),
17521 enable ? 0xf100 : 0x7e00);
17522 if (rv != 0)
17523 goto out;
17524
17525 rv = sc->phy.readreg_locked(dev, 2, HV_PM_CTRL, &data);
17526 if (rv != 0)
17527 goto out;
17528 if (enable)
17529 data |= 1 << 10;
17530 else
17531 data &= ~(1 << 10);
17532 rv = sc->phy.writereg_locked(dev, 2, HV_PM_CTRL, data);
17533 if (rv != 0)
17534 goto out;
17535
17536 /* Re-enable Rx path after enabling/disabling workaround */
17537 rv = sc->phy.writereg_locked(dev, 2, I82579_DFT_CTRL,
17538 dft_ctrl & ~(1 << 14));
17539
17540 out:
17541 sc->phy.release(sc);
17542
17543 return rv;
17544 }
17545
17546 /*
17547 * wm_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
17548 * done after every PHY reset.
17549 */
17550 static int
17551 wm_lv_phy_workarounds_ich8lan(struct wm_softc *sc)
17552 {
17553 device_t dev = sc->sc_dev;
17554 int rv;
17555
17556 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
17557 device_xname(dev), __func__));
17558 KASSERT(sc->sc_type == WM_T_PCH2);
17559
17560 /* Set MDIO slow mode before any other MDIO access */
17561 rv = wm_set_mdio_slow_mode_hv(sc);
17562 if (rv != 0)
17563 return rv;
17564
17565 rv = sc->phy.acquire(sc);
17566 if (rv != 0)
17567 return rv;
17568 /* Set MSE higher to enable link to stay up when noise is high */
17569 rv = wm_write_emi_reg_locked(dev, I82579_MSE_THRESHOLD, 0x0034);
17570 if (rv != 0)
17571 goto release;
17572 /* Drop link after 5 times MSE threshold was reached */
17573 rv = wm_write_emi_reg_locked(dev, I82579_MSE_LINK_DOWN, 0x0005);
17574 release:
17575 sc->phy.release(sc);
17576
17577 return rv;
17578 }
17579
17580 /**
17581 * wm_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
17582 * @link: link up bool flag
17583 *
17584 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
17585 * preventing further DMA write requests. Workaround the issue by disabling
17586 * the de-assertion of the clock request when in 1Gpbs mode.
17587 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
17588 * speeds in order to avoid Tx hangs.
17589 **/
17590 static int
17591 wm_k1_workaround_lpt_lp(struct wm_softc *sc, bool link)
17592 {
17593 uint32_t fextnvm6 = CSR_READ(sc, WMREG_FEXTNVM6);
17594 uint32_t status = CSR_READ(sc, WMREG_STATUS);
17595 uint32_t speed = __SHIFTOUT(status, STATUS_SPEED);
17596 uint16_t phyreg;
17597
17598 if (link && (speed == STATUS_SPEED_1000)) {
17599 int rv;
17600
17601 rv = sc->phy.acquire(sc);
17602 if (rv != 0)
17603 return rv;
17604 rv = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG,
17605 &phyreg);
17606 if (rv != 0)
17607 goto release;
17608 rv = wm_kmrn_writereg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG,
17609 phyreg & ~KUMCTRLSTA_K1_ENABLE);
17610 if (rv != 0)
17611 goto release;
17612 delay(20);
17613 CSR_WRITE(sc, WMREG_FEXTNVM6, fextnvm6 | FEXTNVM6_REQ_PLL_CLK);
17614
17615 rv = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG,
17616 &phyreg);
17617 release:
17618 sc->phy.release(sc);
17619 return rv;
17620 }
17621
17622 fextnvm6 &= ~FEXTNVM6_REQ_PLL_CLK;
17623
17624 struct mii_softc *child = LIST_FIRST(&sc->sc_mii.mii_phys);
17625 if (((child != NULL) && (child->mii_mpd_rev > 5))
17626 || !link
17627 || ((speed == STATUS_SPEED_100) && (status & STATUS_FD)))
17628 goto update_fextnvm6;
17629
17630 wm_gmii_hv_readreg(sc->sc_dev, 2, I217_INBAND_CTRL, &phyreg);
17631
17632 /* Clear link status transmit timeout */
17633 phyreg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
17634 if (speed == STATUS_SPEED_100) {
17635 /* Set inband Tx timeout to 5x10us for 100Half */
17636 phyreg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
17637
17638 /* Do not extend the K1 entry latency for 100Half */
17639 fextnvm6 &= ~FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
17640 } else {
17641 /* Set inband Tx timeout to 50x10us for 10Full/Half */
17642 phyreg |= 50 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
17643
17644 /* Extend the K1 entry latency for 10 Mbps */
17645 fextnvm6 |= FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
17646 }
17647
17648 wm_gmii_hv_writereg(sc->sc_dev, 2, I217_INBAND_CTRL, phyreg);
17649
17650 update_fextnvm6:
17651 CSR_WRITE(sc, WMREG_FEXTNVM6, fextnvm6);
17652 return 0;
17653 }
17654
17655 /*
17656 * wm_k1_gig_workaround_hv - K1 Si workaround
17657 * @sc: pointer to the HW structure
17658 * @link: link up bool flag
17659 *
17660 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
17661 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
17662 * If link is down, the function will restore the default K1 setting located
17663 * in the NVM.
17664 */
17665 static int
17666 wm_k1_gig_workaround_hv(struct wm_softc *sc, int link)
17667 {
17668 int k1_enable = sc->sc_nvm_k1_enabled;
17669 int rv;
17670
17671 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
17672 device_xname(sc->sc_dev), __func__));
17673
17674 rv = sc->phy.acquire(sc);
17675 if (rv != 0)
17676 return rv;
17677
17678 if (link) {
17679 k1_enable = 0;
17680
17681 /* Link stall fix for link up */
17682 wm_gmii_hv_writereg_locked(sc->sc_dev, 1, IGP3_KMRN_DIAG,
17683 0x0100);
17684 } else {
17685 /* Link stall fix for link down */
17686 wm_gmii_hv_writereg_locked(sc->sc_dev, 1, IGP3_KMRN_DIAG,
17687 0x4100);
17688 }
17689
17690 wm_configure_k1_ich8lan(sc, k1_enable);
17691 sc->phy.release(sc);
17692
17693 return 0;
17694 }
17695
17696 /*
17697 * wm_k1_workaround_lv - K1 Si workaround
17698 * @sc: pointer to the HW structure
17699 *
17700 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
17701 * Disable K1 for 1000 and 100 speeds
17702 */
17703 static int
17704 wm_k1_workaround_lv(struct wm_softc *sc)
17705 {
17706 uint32_t reg;
17707 uint16_t phyreg;
17708 int rv;
17709
17710 if (sc->sc_type != WM_T_PCH2)
17711 return 0;
17712
17713 /* Set K1 beacon duration based on 10Mbps speed */
17714 rv = wm_gmii_hv_readreg(sc->sc_dev, 2, HV_M_STATUS, &phyreg);
17715 if (rv != 0)
17716 return rv;
17717
17718 if ((phyreg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
17719 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
17720 if (phyreg &
17721 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
17722 /* LV 1G/100 Packet drop issue wa */
17723 rv = wm_gmii_hv_readreg(sc->sc_dev, 1, HV_PM_CTRL,
17724 &phyreg);
17725 if (rv != 0)
17726 return rv;
17727 phyreg &= ~HV_PM_CTRL_K1_ENA;
17728 rv = wm_gmii_hv_writereg(sc->sc_dev, 1, HV_PM_CTRL,
17729 phyreg);
17730 if (rv != 0)
17731 return rv;
17732 } else {
17733 /* For 10Mbps */
17734 reg = CSR_READ(sc, WMREG_FEXTNVM4);
17735 reg &= ~FEXTNVM4_BEACON_DURATION;
17736 reg |= FEXTNVM4_BEACON_DURATION_16US;
17737 CSR_WRITE(sc, WMREG_FEXTNVM4, reg);
17738 }
17739 }
17740
17741 return 0;
17742 }
17743
17744 /*
17745 * wm_link_stall_workaround_hv - Si workaround
17746 * @sc: pointer to the HW structure
17747 *
17748 * This function works around a Si bug where the link partner can get
17749 * a link up indication before the PHY does. If small packets are sent
17750 * by the link partner they can be placed in the packet buffer without
17751 * being properly accounted for by the PHY and will stall preventing
17752 * further packets from being received. The workaround is to clear the
17753 * packet buffer after the PHY detects link up.
17754 */
17755 static int
17756 wm_link_stall_workaround_hv(struct wm_softc *sc)
17757 {
17758 uint16_t phyreg;
17759
17760 if (sc->sc_phytype != WMPHY_82578)
17761 return 0;
17762
17763 /* Do not apply workaround if in PHY loopback bit 14 set */
17764 wm_gmii_hv_readreg(sc->sc_dev, 2, MII_BMCR, &phyreg);
17765 if ((phyreg & BMCR_LOOP) != 0)
17766 return 0;
17767
17768 /* Check if link is up and at 1Gbps */
17769 wm_gmii_hv_readreg(sc->sc_dev, 2, BM_CS_STATUS, &phyreg);
17770 phyreg &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED
17771 | BM_CS_STATUS_SPEED_MASK;
17772 if (phyreg != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED
17773 | BM_CS_STATUS_SPEED_1000))
17774 return 0;
17775
17776 delay(200 * 1000); /* XXX too big */
17777
17778 /* Flush the packets in the fifo buffer */
17779 wm_gmii_hv_writereg(sc->sc_dev, 1, HV_MUX_DATA_CTRL,
17780 HV_MUX_DATA_CTRL_GEN_TO_MAC | HV_MUX_DATA_CTRL_FORCE_SPEED);
17781 wm_gmii_hv_writereg(sc->sc_dev, 1, HV_MUX_DATA_CTRL,
17782 HV_MUX_DATA_CTRL_GEN_TO_MAC);
17783
17784 return 0;
17785 }
17786
17787 static int
17788 wm_set_mdio_slow_mode_hv(struct wm_softc *sc)
17789 {
17790 int rv;
17791
17792 rv = sc->phy.acquire(sc);
17793 if (rv != 0) {
17794 device_printf(sc->sc_dev, "%s: failed to get semaphore\n",
17795 __func__);
17796 return rv;
17797 }
17798
17799 rv = wm_set_mdio_slow_mode_hv_locked(sc);
17800
17801 sc->phy.release(sc);
17802
17803 return rv;
17804 }
17805
17806 static int
17807 wm_set_mdio_slow_mode_hv_locked(struct wm_softc *sc)
17808 {
17809 int rv;
17810 uint16_t reg;
17811
17812 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 1, HV_KMRN_MODE_CTRL, ®);
17813 if (rv != 0)
17814 return rv;
17815
17816 return wm_gmii_hv_writereg_locked(sc->sc_dev, 1, HV_KMRN_MODE_CTRL,
17817 reg | HV_KMRN_MDIO_SLOW);
17818 }
17819
17820 /*
17821 * wm_configure_k1_ich8lan - Configure K1 power state
17822 * @sc: pointer to the HW structure
17823 * @enable: K1 state to configure
17824 *
17825 * Configure the K1 power state based on the provided parameter.
17826 * Assumes semaphore already acquired.
17827 */
17828 static void
17829 wm_configure_k1_ich8lan(struct wm_softc *sc, int k1_enable)
17830 {
17831 uint32_t ctrl, ctrl_ext, tmp;
17832 uint16_t kmreg;
17833 int rv;
17834
17835 KASSERT(CSR_READ(sc, WMREG_EXTCNFCTR) & EXTCNFCTR_MDIO_SW_OWNERSHIP);
17836
17837 rv = wm_kmrn_readreg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG, &kmreg);
17838 if (rv != 0)
17839 return;
17840
17841 if (k1_enable)
17842 kmreg |= KUMCTRLSTA_K1_ENABLE;
17843 else
17844 kmreg &= ~KUMCTRLSTA_K1_ENABLE;
17845
17846 rv = wm_kmrn_writereg_locked(sc, KUMCTRLSTA_OFFSET_K1_CONFIG, kmreg);
17847 if (rv != 0)
17848 return;
17849
17850 delay(20);
17851
17852 ctrl = CSR_READ(sc, WMREG_CTRL);
17853 ctrl_ext = CSR_READ(sc, WMREG_CTRL_EXT);
17854
17855 tmp = ctrl & ~(CTRL_SPEED_1000 | CTRL_SPEED_100);
17856 tmp |= CTRL_FRCSPD;
17857
17858 CSR_WRITE(sc, WMREG_CTRL, tmp);
17859 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext | CTRL_EXT_SPD_BYPS);
17860 CSR_WRITE_FLUSH(sc);
17861 delay(20);
17862
17863 CSR_WRITE(sc, WMREG_CTRL, ctrl);
17864 CSR_WRITE(sc, WMREG_CTRL_EXT, ctrl_ext);
17865 CSR_WRITE_FLUSH(sc);
17866 delay(20);
17867
17868 return;
17869 }
17870
17871 /* special case - for 82575 - need to do manual init ... */
17872 static void
17873 wm_reset_init_script_82575(struct wm_softc *sc)
17874 {
17875 /*
17876 * Remark: this is untested code - we have no board without EEPROM
17877 * same setup as mentioned int the FreeBSD driver for the i82575
17878 */
17879
17880 /* SerDes configuration via SERDESCTRL */
17881 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x00, 0x0c);
17882 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x01, 0x78);
17883 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x1b, 0x23);
17884 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCTL, 0x23, 0x15);
17885
17886 /* CCM configuration via CCMCTL register */
17887 wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x14, 0x00);
17888 wm_82575_write_8bit_ctlr_reg(sc, WMREG_CCMCTL, 0x10, 0x00);
17889
17890 /* PCIe lanes configuration */
17891 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x00, 0xec);
17892 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x61, 0xdf);
17893 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x34, 0x05);
17894 wm_82575_write_8bit_ctlr_reg(sc, WMREG_GIOCTL, 0x2f, 0x81);
17895
17896 /* PCIe PLL Configuration */
17897 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x02, 0x47);
17898 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x14, 0x00);
17899 wm_82575_write_8bit_ctlr_reg(sc, WMREG_SCCTL, 0x10, 0x00);
17900 }
17901
17902 static void
17903 wm_reset_mdicnfg_82580(struct wm_softc *sc)
17904 {
17905 uint32_t reg;
17906 uint16_t nvmword;
17907 int rv;
17908
17909 if (sc->sc_type != WM_T_82580)
17910 return;
17911 if ((sc->sc_flags & WM_F_SGMII) == 0)
17912 return;
17913
17914 rv = wm_nvm_read(sc, NVM_OFF_LAN_FUNC_82580(sc->sc_funcid)
17915 + NVM_OFF_CFG3_PORTA, 1, &nvmword);
17916 if (rv != 0) {
17917 aprint_error_dev(sc->sc_dev, "%s: failed to read NVM\n",
17918 __func__);
17919 return;
17920 }
17921
17922 reg = CSR_READ(sc, WMREG_MDICNFG);
17923 if (nvmword & NVM_CFG3_PORTA_EXT_MDIO)
17924 reg |= MDICNFG_DEST;
17925 if (nvmword & NVM_CFG3_PORTA_COM_MDIO)
17926 reg |= MDICNFG_COM_MDIO;
17927 CSR_WRITE(sc, WMREG_MDICNFG, reg);
17928 }
17929
17930 #define MII_INVALIDID(x) (((x) == 0x0000) || ((x) == 0xffff))
17931
17932 static bool
17933 wm_phy_is_accessible_pchlan(struct wm_softc *sc)
17934 {
17935 uint32_t reg;
17936 uint16_t id1, id2;
17937 int i, rv;
17938
17939 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
17940 device_xname(sc->sc_dev), __func__));
17941 KASSERT(CSR_READ(sc, WMREG_EXTCNFCTR) & EXTCNFCTR_MDIO_SW_OWNERSHIP);
17942
17943 id1 = id2 = 0xffff;
17944 for (i = 0; i < 2; i++) {
17945 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, MII_PHYIDR1,
17946 &id1);
17947 if ((rv != 0) || MII_INVALIDID(id1))
17948 continue;
17949 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, MII_PHYIDR2,
17950 &id2);
17951 if ((rv != 0) || MII_INVALIDID(id2))
17952 continue;
17953 break;
17954 }
17955 if ((rv == 0) && !MII_INVALIDID(id1) && !MII_INVALIDID(id2))
17956 goto out;
17957
17958 /*
17959 * In case the PHY needs to be in mdio slow mode,
17960 * set slow mode and try to get the PHY id again.
17961 */
17962 rv = 0;
17963 if (sc->sc_type < WM_T_PCH_LPT) {
17964 wm_set_mdio_slow_mode_hv_locked(sc);
17965 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2, MII_PHYIDR1,
17966 &id1);
17967 rv |= wm_gmii_hv_readreg_locked(sc->sc_dev, 2, MII_PHYIDR2,
17968 &id2);
17969 }
17970 if ((rv != 0) || MII_INVALIDID(id1) || MII_INVALIDID(id2)) {
17971 device_printf(sc->sc_dev, "XXX return with false\n");
17972 return false;
17973 }
17974 out:
17975 if (sc->sc_type >= WM_T_PCH_LPT) {
17976 /* Only unforce SMBus if ME is not active */
17977 if ((CSR_READ(sc, WMREG_FWSM) & FWSM_FW_VALID) == 0) {
17978 uint16_t phyreg;
17979
17980 /* Unforce SMBus mode in PHY */
17981 rv = wm_gmii_hv_readreg_locked(sc->sc_dev, 2,
17982 CV_SMB_CTRL, &phyreg);
17983 phyreg &= ~CV_SMB_CTRL_FORCE_SMBUS;
17984 wm_gmii_hv_writereg_locked(sc->sc_dev, 2,
17985 CV_SMB_CTRL, phyreg);
17986
17987 /* Unforce SMBus mode in MAC */
17988 reg = CSR_READ(sc, WMREG_CTRL_EXT);
17989 reg &= ~CTRL_EXT_FORCE_SMBUS;
17990 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
17991 }
17992 }
17993 return true;
17994 }
17995
17996 static void
17997 wm_toggle_lanphypc_pch_lpt(struct wm_softc *sc)
17998 {
17999 uint32_t reg;
18000 int i;
18001
18002 /* Set PHY Config Counter to 50msec */
18003 reg = CSR_READ(sc, WMREG_FEXTNVM3);
18004 reg &= ~FEXTNVM3_PHY_CFG_COUNTER_MASK;
18005 reg |= FEXTNVM3_PHY_CFG_COUNTER_50MS;
18006 CSR_WRITE(sc, WMREG_FEXTNVM3, reg);
18007
18008 /* Toggle LANPHYPC */
18009 reg = CSR_READ(sc, WMREG_CTRL);
18010 reg |= CTRL_LANPHYPC_OVERRIDE;
18011 reg &= ~CTRL_LANPHYPC_VALUE;
18012 CSR_WRITE(sc, WMREG_CTRL, reg);
18013 CSR_WRITE_FLUSH(sc);
18014 delay(1000);
18015 reg &= ~CTRL_LANPHYPC_OVERRIDE;
18016 CSR_WRITE(sc, WMREG_CTRL, reg);
18017 CSR_WRITE_FLUSH(sc);
18018
18019 if (sc->sc_type < WM_T_PCH_LPT)
18020 delay(50 * 1000);
18021 else {
18022 i = 20;
18023
18024 do {
18025 delay(5 * 1000);
18026 } while (((CSR_READ(sc, WMREG_CTRL_EXT) & CTRL_EXT_LPCD) == 0)
18027 && i--);
18028
18029 delay(30 * 1000);
18030 }
18031 }
18032
18033 static int
18034 wm_platform_pm_pch_lpt(struct wm_softc *sc, bool link)
18035 {
18036 uint32_t reg = __SHIFTIN(link, LTRV_NONSNOOP_REQ)
18037 | __SHIFTIN(link, LTRV_SNOOP_REQ) | LTRV_SEND;
18038 uint32_t rxa;
18039 uint16_t scale = 0, lat_enc = 0;
18040 int32_t obff_hwm = 0;
18041 int64_t lat_ns, value;
18042
18043 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
18044 device_xname(sc->sc_dev), __func__));
18045
18046 if (link) {
18047 uint16_t max_snoop, max_nosnoop, max_ltr_enc;
18048 uint32_t status;
18049 uint16_t speed;
18050 pcireg_t preg;
18051
18052 status = CSR_READ(sc, WMREG_STATUS);
18053 switch (__SHIFTOUT(status, STATUS_SPEED)) {
18054 case STATUS_SPEED_10:
18055 speed = 10;
18056 break;
18057 case STATUS_SPEED_100:
18058 speed = 100;
18059 break;
18060 case STATUS_SPEED_1000:
18061 speed = 1000;
18062 break;
18063 default:
18064 device_printf(sc->sc_dev, "Unknown speed "
18065 "(status = %08x)\n", status);
18066 return -1;
18067 }
18068
18069 /* Rx Packet Buffer Allocation size (KB) */
18070 rxa = CSR_READ(sc, WMREG_PBA) & PBA_RXA_MASK;
18071
18072 /*
18073 * Determine the maximum latency tolerated by the device.
18074 *
18075 * Per the PCIe spec, the tolerated latencies are encoded as
18076 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
18077 * a 10-bit value (0-1023) to provide a range from 1 ns to
18078 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
18079 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
18080 */
18081 lat_ns = ((int64_t)rxa * 1024 -
18082 (2 * ((int64_t)sc->sc_ethercom.ec_if.if_mtu
18083 + ETHER_HDR_LEN))) * 8 * 1000;
18084 if (lat_ns < 0)
18085 lat_ns = 0;
18086 else
18087 lat_ns /= speed;
18088 value = lat_ns;
18089
18090 while (value > LTRV_VALUE) {
18091 scale ++;
18092 value = howmany(value, __BIT(5));
18093 }
18094 if (scale > LTRV_SCALE_MAX) {
18095 device_printf(sc->sc_dev,
18096 "Invalid LTR latency scale %d\n", scale);
18097 return -1;
18098 }
18099 lat_enc = (uint16_t)(__SHIFTIN(scale, LTRV_SCALE) | value);
18100
18101 /* Determine the maximum latency tolerated by the platform */
18102 preg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
18103 WM_PCI_LTR_CAP_LPT);
18104 max_snoop = preg & 0xffff;
18105 max_nosnoop = preg >> 16;
18106
18107 max_ltr_enc = MAX(max_snoop, max_nosnoop);
18108
18109 if (lat_enc > max_ltr_enc) {
18110 lat_enc = max_ltr_enc;
18111 lat_ns = __SHIFTOUT(lat_enc, PCI_LTR_MAXSNOOPLAT_VAL)
18112 * PCI_LTR_SCALETONS(
18113 __SHIFTOUT(lat_enc,
18114 PCI_LTR_MAXSNOOPLAT_SCALE));
18115 }
18116
18117 if (lat_ns) {
18118 lat_ns *= speed * 1000;
18119 lat_ns /= 8;
18120 lat_ns /= 1000000000;
18121 obff_hwm = (int32_t)(rxa - lat_ns);
18122 }
18123 if ((obff_hwm < 0) || (obff_hwm > SVT_OFF_HWM)) {
18124 device_printf(sc->sc_dev, "Invalid high water mark %d"
18125 "(rxa = %d, lat_ns = %d)\n",
18126 obff_hwm, (int32_t)rxa, (int32_t)lat_ns);
18127 return -1;
18128 }
18129 }
18130 /* Snoop and No-Snoop latencies the same */
18131 reg |= lat_enc | __SHIFTIN(lat_enc, LTRV_NONSNOOP);
18132 CSR_WRITE(sc, WMREG_LTRV, reg);
18133
18134 /* Set OBFF high water mark */
18135 reg = CSR_READ(sc, WMREG_SVT) & ~SVT_OFF_HWM;
18136 reg |= obff_hwm;
18137 CSR_WRITE(sc, WMREG_SVT, reg);
18138
18139 /* Enable OBFF */
18140 reg = CSR_READ(sc, WMREG_SVCR);
18141 reg |= SVCR_OFF_EN | SVCR_OFF_MASKINT;
18142 CSR_WRITE(sc, WMREG_SVCR, reg);
18143
18144 return 0;
18145 }
18146
18147 /*
18148 * I210 Errata 25 and I211 Errata 10
18149 * Slow System Clock.
18150 *
18151 * Note that this function is called on both FLASH and iNVM case on NetBSD.
18152 */
18153 static int
18154 wm_pll_workaround_i210(struct wm_softc *sc)
18155 {
18156 uint32_t mdicnfg, wuc;
18157 uint32_t reg;
18158 pcireg_t pcireg;
18159 uint32_t pmreg;
18160 uint16_t nvmword, tmp_nvmword;
18161 uint16_t phyval;
18162 bool wa_done = false;
18163 int i, rv = 0;
18164
18165 /* Get Power Management cap offset */
18166 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PWRMGMT,
18167 &pmreg, NULL) == 0)
18168 return -1;
18169
18170 /* Save WUC and MDICNFG registers */
18171 wuc = CSR_READ(sc, WMREG_WUC);
18172 mdicnfg = CSR_READ(sc, WMREG_MDICNFG);
18173
18174 reg = mdicnfg & ~MDICNFG_DEST;
18175 CSR_WRITE(sc, WMREG_MDICNFG, reg);
18176
18177 if (wm_nvm_read(sc, INVM_AUTOLOAD, 1, &nvmword) != 0) {
18178 /*
18179 * The default value of the Initialization Control Word 1
18180 * is the same on both I210's FLASH_HW and I21[01]'s iNVM.
18181 */
18182 nvmword = INVM_DEFAULT_AL;
18183 }
18184 tmp_nvmword = nvmword | INVM_PLL_WO_VAL;
18185
18186 for (i = 0; i < WM_MAX_PLL_TRIES; i++) {
18187 wm_gmii_gs40g_readreg(sc->sc_dev, 1,
18188 GS40G_PHY_PLL_FREQ_PAGE | GS40G_PHY_PLL_FREQ_REG, &phyval);
18189
18190 if ((phyval & GS40G_PHY_PLL_UNCONF) != GS40G_PHY_PLL_UNCONF) {
18191 rv = 0;
18192 break; /* OK */
18193 } else
18194 rv = -1;
18195
18196 wa_done = true;
18197 /* Directly reset the internal PHY */
18198 reg = CSR_READ(sc, WMREG_CTRL);
18199 CSR_WRITE(sc, WMREG_CTRL, reg | CTRL_PHY_RESET);
18200
18201 reg = CSR_READ(sc, WMREG_CTRL_EXT);
18202 reg |= CTRL_EXT_PHYPDEN | CTRL_EXT_SDLPE;
18203 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
18204
18205 CSR_WRITE(sc, WMREG_WUC, 0);
18206 reg = (INVM_AUTOLOAD << 4) | (tmp_nvmword << 16);
18207 CSR_WRITE(sc, WMREG_EEARBC_I210, reg);
18208
18209 pcireg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
18210 pmreg + PCI_PMCSR);
18211 pcireg |= PCI_PMCSR_STATE_D3;
18212 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
18213 pmreg + PCI_PMCSR, pcireg);
18214 delay(1000);
18215 pcireg &= ~PCI_PMCSR_STATE_D3;
18216 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
18217 pmreg + PCI_PMCSR, pcireg);
18218
18219 reg = (INVM_AUTOLOAD << 4) | (nvmword << 16);
18220 CSR_WRITE(sc, WMREG_EEARBC_I210, reg);
18221
18222 /* Restore WUC register */
18223 CSR_WRITE(sc, WMREG_WUC, wuc);
18224 }
18225
18226 /* Restore MDICNFG setting */
18227 CSR_WRITE(sc, WMREG_MDICNFG, mdicnfg);
18228 if (wa_done)
18229 aprint_verbose_dev(sc->sc_dev, "I210 workaround done\n");
18230 return rv;
18231 }
18232
18233 static void
18234 wm_legacy_irq_quirk_spt(struct wm_softc *sc)
18235 {
18236 uint32_t reg;
18237
18238 DPRINTF(sc, WM_DEBUG_INIT, ("%s: %s called\n",
18239 device_xname(sc->sc_dev), __func__));
18240 KASSERT((sc->sc_type == WM_T_PCH_SPT)
18241 || (sc->sc_type == WM_T_PCH_CNP) || (sc->sc_type == WM_T_PCH_TGP));
18242
18243 reg = CSR_READ(sc, WMREG_FEXTNVM7);
18244 reg |= FEXTNVM7_SIDE_CLK_UNGATE;
18245 CSR_WRITE(sc, WMREG_FEXTNVM7, reg);
18246
18247 reg = CSR_READ(sc, WMREG_FEXTNVM9);
18248 reg |= FEXTNVM9_IOSFSB_CLKGATE_DIS | FEXTNVM9_IOSFSB_CLKREQ_DIS;
18249 CSR_WRITE(sc, WMREG_FEXTNVM9, reg);
18250 }
18251
18252 /* Sysctl functions */
18253 static int
18254 wm_sysctl_tdh_handler(SYSCTLFN_ARGS)
18255 {
18256 struct sysctlnode node = *rnode;
18257 struct wm_txqueue *txq = (struct wm_txqueue *)node.sysctl_data;
18258 struct wm_queue *wmq = container_of(txq, struct wm_queue, wmq_txq);
18259 struct wm_softc *sc = txq->txq_sc;
18260 uint32_t reg;
18261
18262 reg = CSR_READ(sc, WMREG_TDH(wmq->wmq_id));
18263 node.sysctl_data = ®
18264 return sysctl_lookup(SYSCTLFN_CALL(&node));
18265 }
18266
18267 static int
18268 wm_sysctl_tdt_handler(SYSCTLFN_ARGS)
18269 {
18270 struct sysctlnode node = *rnode;
18271 struct wm_txqueue *txq = (struct wm_txqueue *)node.sysctl_data;
18272 struct wm_queue *wmq = container_of(txq, struct wm_queue, wmq_txq);
18273 struct wm_softc *sc = txq->txq_sc;
18274 uint32_t reg;
18275
18276 reg = CSR_READ(sc, WMREG_TDT(wmq->wmq_id));
18277 node.sysctl_data = ®
18278 return sysctl_lookup(SYSCTLFN_CALL(&node));
18279 }
18280
18281 #ifdef WM_DEBUG
18282 static int
18283 wm_sysctl_debug(SYSCTLFN_ARGS)
18284 {
18285 struct sysctlnode node = *rnode;
18286 struct wm_softc *sc = (struct wm_softc *)node.sysctl_data;
18287 uint32_t dflags;
18288 int error;
18289
18290 dflags = sc->sc_debug;
18291 node.sysctl_data = &dflags;
18292 error = sysctl_lookup(SYSCTLFN_CALL(&node));
18293
18294 if (error || newp == NULL)
18295 return error;
18296
18297 sc->sc_debug = dflags;
18298 device_printf(sc->sc_dev, "TARC0: %08x\n", CSR_READ(sc, WMREG_TARC0));
18299 device_printf(sc->sc_dev, "TDT0: %08x\n", CSR_READ(sc, WMREG_TDT(0)));
18300
18301 return 0;
18302 }
18303 #endif
18304