if_wm.c revision 1.80 1 /* $NetBSD: if_wm.c,v 1.80 2004/10/06 00:04:01 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40 *
41 * TODO (in order of importance):
42 *
43 * - Rework how parameters are loaded from the EEPROM.
44 * - Figure out what to do with the i82545GM and i82546GB
45 * SERDES controllers.
46 * - Fix hw VLAN assist.
47 */
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.80 2004/10/06 00:04:01 thorpej Exp $");
51
52 #include "bpfilter.h"
53 #include "rnd.h"
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66
67 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
68
69 #if NRND > 0
70 #include <sys/rnd.h>
71 #endif
72
73 #include <net/if.h>
74 #include <net/if_dl.h>
75 #include <net/if_media.h>
76 #include <net/if_ether.h>
77
78 #if NBPFILTER > 0
79 #include <net/bpf.h>
80 #endif
81
82 #include <netinet/in.h> /* XXX for struct ip */
83 #include <netinet/in_systm.h> /* XXX for struct ip */
84 #include <netinet/ip.h> /* XXX for struct ip */
85 #include <netinet/tcp.h> /* XXX for struct tcphdr */
86
87 #include <machine/bus.h>
88 #include <machine/intr.h>
89 #include <machine/endian.h>
90
91 #include <dev/mii/mii.h>
92 #include <dev/mii/miivar.h>
93 #include <dev/mii/mii_bitbang.h>
94
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 #include <dev/pci/pcidevs.h>
98
99 #include <dev/pci/if_wmreg.h>
100
101 #ifdef WM_DEBUG
102 #define WM_DEBUG_LINK 0x01
103 #define WM_DEBUG_TX 0x02
104 #define WM_DEBUG_RX 0x04
105 #define WM_DEBUG_GMII 0x08
106 int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
107
108 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
109 #else
110 #define DPRINTF(x, y) /* nothing */
111 #endif /* WM_DEBUG */
112
113 /*
114 * Transmit descriptor list size. Due to errata, we can only have
115 * 256 hardware descriptors in the ring on < 82544, but we use 4096
116 * on >= 82544. We tell the upper layers that they can queue a lot
117 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
118 * of them at a time.
119 *
120 * We allow up to 256 (!) DMA segments per packet. Pathological packet
121 * chains containing many small mbufs have been observed in zero-copy
122 * situations with jumbo frames.
123 */
124 #define WM_NTXSEGS 256
125 #define WM_IFQUEUELEN 256
126 #define WM_TXQUEUELEN_MAX 64
127 #define WM_TXQUEUELEN_MAX_82547 16
128 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
129 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
130 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
131 #define WM_NTXDESC_82542 256
132 #define WM_NTXDESC_82544 4096
133 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
134 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
135 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
136 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
137 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
138
139 /*
140 * Receive descriptor list size. We have one Rx buffer for normal
141 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
142 * packet. We allocate 256 receive descriptors, each with a 2k
143 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
144 */
145 #define WM_NRXDESC 256
146 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
147 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
148 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
149
150 /*
151 * Control structures are DMA'd to the i82542 chip. We allocate them in
152 * a single clump that maps to a single DMA segment to make serveral things
153 * easier.
154 */
155 struct wm_control_data_82544 {
156 /*
157 * The receive descriptors.
158 */
159 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
160
161 /*
162 * The transmit descriptors. Put these at the end, because
163 * we might use a smaller number of them.
164 */
165 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
166 };
167
168 struct wm_control_data_82542 {
169 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
170 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
171 };
172
173 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
174 #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)])
175 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
176
177 /*
178 * Software state for transmit jobs.
179 */
180 struct wm_txsoft {
181 struct mbuf *txs_mbuf; /* head of our mbuf chain */
182 bus_dmamap_t txs_dmamap; /* our DMA map */
183 int txs_firstdesc; /* first descriptor in packet */
184 int txs_lastdesc; /* last descriptor in packet */
185 int txs_ndesc; /* # of descriptors used */
186 };
187
188 /*
189 * Software state for receive buffers. Each descriptor gets a
190 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
191 * more than one buffer, we chain them together.
192 */
193 struct wm_rxsoft {
194 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
195 bus_dmamap_t rxs_dmamap; /* our DMA map */
196 };
197
198 typedef enum {
199 WM_T_unknown = 0,
200 WM_T_82542_2_0, /* i82542 2.0 (really old) */
201 WM_T_82542_2_1, /* i82542 2.1+ (old) */
202 WM_T_82543, /* i82543 */
203 WM_T_82544, /* i82544 */
204 WM_T_82540, /* i82540 */
205 WM_T_82545, /* i82545 */
206 WM_T_82545_3, /* i82545 3.0+ */
207 WM_T_82546, /* i82546 */
208 WM_T_82546_3, /* i82546 3.0+ */
209 WM_T_82541, /* i82541 */
210 WM_T_82541_2, /* i82541 2.0+ */
211 WM_T_82547, /* i82547 */
212 WM_T_82547_2, /* i82547 2.0+ */
213 } wm_chip_type;
214
215 /*
216 * Software state per device.
217 */
218 struct wm_softc {
219 struct device sc_dev; /* generic device information */
220 bus_space_tag_t sc_st; /* bus space tag */
221 bus_space_handle_t sc_sh; /* bus space handle */
222 bus_space_tag_t sc_iot; /* I/O space tag */
223 bus_space_handle_t sc_ioh; /* I/O space handle */
224 bus_dma_tag_t sc_dmat; /* bus DMA tag */
225 struct ethercom sc_ethercom; /* ethernet common data */
226 void *sc_sdhook; /* shutdown hook */
227
228 wm_chip_type sc_type; /* chip type */
229 int sc_flags; /* flags; see below */
230 int sc_bus_speed; /* PCI/PCIX bus speed */
231 int sc_pcix_offset; /* PCIX capability register offset */
232 int sc_flowflags; /* 802.3x flow control flags */
233
234 void *sc_ih; /* interrupt cookie */
235
236 int sc_ee_addrbits; /* EEPROM address bits */
237
238 struct mii_data sc_mii; /* MII/media information */
239
240 struct callout sc_tick_ch; /* tick callout */
241
242 bus_dmamap_t sc_cddmamap; /* control data DMA map */
243 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
244
245 int sc_align_tweak;
246
247 /*
248 * Software state for the transmit and receive descriptors.
249 */
250 int sc_txnum; /* must be a power of two */
251 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
252 struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
253
254 /*
255 * Control data structures.
256 */
257 int sc_ntxdesc; /* must be a power of two */
258 struct wm_control_data_82544 *sc_control_data;
259 #define sc_txdescs sc_control_data->wcd_txdescs
260 #define sc_rxdescs sc_control_data->wcd_rxdescs
261
262 #ifdef WM_EVENT_COUNTERS
263 /* Event counters. */
264 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
265 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
266 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
267 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
268 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
269 struct evcnt sc_ev_rxintr; /* Rx interrupts */
270 struct evcnt sc_ev_linkintr; /* Link interrupts */
271
272 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
273 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
274 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
275 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
276
277 struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
278 struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
279 struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
280
281 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
282 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
283
284 struct evcnt sc_ev_tu; /* Tx underrun */
285
286 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
287 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
288 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
289 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
290 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
291 #endif /* WM_EVENT_COUNTERS */
292
293 bus_addr_t sc_tdt_reg; /* offset of TDT register */
294
295 int sc_txfree; /* number of free Tx descriptors */
296 int sc_txnext; /* next ready Tx descriptor */
297
298 int sc_txsfree; /* number of free Tx jobs */
299 int sc_txsnext; /* next free Tx job */
300 int sc_txsdirty; /* dirty Tx jobs */
301
302 /* These 5 variables are used only on the 82547. */
303 int sc_txfifo_size; /* Tx FIFO size */
304 int sc_txfifo_head; /* current head of FIFO */
305 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
306 int sc_txfifo_stall; /* Tx FIFO is stalled */
307 struct callout sc_txfifo_ch; /* Tx FIFO stall work-around timer */
308
309 uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
310 uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
311
312 bus_addr_t sc_rdt_reg; /* offset of RDT register */
313
314 int sc_rxptr; /* next ready Rx descriptor/queue ent */
315 int sc_rxdiscard;
316 int sc_rxlen;
317 struct mbuf *sc_rxhead;
318 struct mbuf *sc_rxtail;
319 struct mbuf **sc_rxtailp;
320
321 uint32_t sc_ctrl; /* prototype CTRL register */
322 #if 0
323 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
324 #endif
325 uint32_t sc_icr; /* prototype interrupt bits */
326 uint32_t sc_tctl; /* prototype TCTL register */
327 uint32_t sc_rctl; /* prototype RCTL register */
328 uint32_t sc_txcw; /* prototype TXCW register */
329 uint32_t sc_tipg; /* prototype TIPG register */
330 uint32_t sc_fcrtl; /* prototype FCRTL register */
331 uint32_t sc_pba; /* prototype PBA register */
332
333 int sc_tbi_linkup; /* TBI link status */
334 int sc_tbi_anstate; /* autonegotiation state */
335
336 int sc_mchash_type; /* multicast filter offset */
337
338 #if NRND > 0
339 rndsource_element_t rnd_source; /* random source */
340 #endif
341 };
342
343 #define WM_RXCHAIN_RESET(sc) \
344 do { \
345 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
346 *(sc)->sc_rxtailp = NULL; \
347 (sc)->sc_rxlen = 0; \
348 } while (/*CONSTCOND*/0)
349
350 #define WM_RXCHAIN_LINK(sc, m) \
351 do { \
352 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
353 (sc)->sc_rxtailp = &(m)->m_next; \
354 } while (/*CONSTCOND*/0)
355
356 /* sc_flags */
357 #define WM_F_HAS_MII 0x01 /* has MII */
358 #define WM_F_EEPROM_HANDSHAKE 0x02 /* requires EEPROM handshake */
359 #define WM_F_EEPROM_SPI 0x04 /* EEPROM is SPI */
360 #define WM_F_IOH_VALID 0x10 /* I/O handle is valid */
361 #define WM_F_BUS64 0x20 /* bus is 64-bit */
362 #define WM_F_PCIX 0x40 /* bus is PCI-X */
363 #define WM_F_CSA 0x80 /* bus is CSA */
364
365 #ifdef WM_EVENT_COUNTERS
366 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
367 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
368 #else
369 #define WM_EVCNT_INCR(ev) /* nothing */
370 #define WM_EVCNT_ADD(ev, val) /* nothing */
371 #endif
372
373 #define CSR_READ(sc, reg) \
374 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
375 #define CSR_WRITE(sc, reg, val) \
376 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
377 #define CSR_WRITE_FLUSH(sc) \
378 (void) CSR_READ((sc), WMREG_STATUS)
379
380 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
381 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
382
383 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
384 #define WM_CDTXADDR_HI(sc, x) \
385 (sizeof(bus_addr_t) == 8 ? \
386 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
387
388 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
389 #define WM_CDRXADDR_HI(sc, x) \
390 (sizeof(bus_addr_t) == 8 ? \
391 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
392
393 #define WM_CDTXSYNC(sc, x, n, ops) \
394 do { \
395 int __x, __n; \
396 \
397 __x = (x); \
398 __n = (n); \
399 \
400 /* If it will wrap around, sync to the end of the ring. */ \
401 if ((__x + __n) > WM_NTXDESC(sc)) { \
402 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
403 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
404 (WM_NTXDESC(sc) - __x), (ops)); \
405 __n -= (WM_NTXDESC(sc) - __x); \
406 __x = 0; \
407 } \
408 \
409 /* Now sync whatever is left. */ \
410 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
411 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
412 } while (/*CONSTCOND*/0)
413
414 #define WM_CDRXSYNC(sc, x, ops) \
415 do { \
416 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
417 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
418 } while (/*CONSTCOND*/0)
419
420 #define WM_INIT_RXDESC(sc, x) \
421 do { \
422 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
423 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
424 struct mbuf *__m = __rxs->rxs_mbuf; \
425 \
426 /* \
427 * Note: We scoot the packet forward 2 bytes in the buffer \
428 * so that the payload after the Ethernet header is aligned \
429 * to a 4-byte boundary. \
430 * \
431 * XXX BRAINDAMAGE ALERT! \
432 * The stupid chip uses the same size for every buffer, which \
433 * is set in the Receive Control register. We are using the 2K \
434 * size option, but what we REALLY want is (2K - 2)! For this \
435 * reason, we can't "scoot" packets longer than the standard \
436 * Ethernet MTU. On strict-alignment platforms, if the total \
437 * size exceeds (2K - 2) we set align_tweak to 0 and let \
438 * the upper layer copy the headers. \
439 */ \
440 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
441 \
442 wm_set_dma_addr(&__rxd->wrx_addr, \
443 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
444 __rxd->wrx_len = 0; \
445 __rxd->wrx_cksum = 0; \
446 __rxd->wrx_status = 0; \
447 __rxd->wrx_errors = 0; \
448 __rxd->wrx_special = 0; \
449 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
450 \
451 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
452 } while (/*CONSTCOND*/0)
453
454 static void wm_start(struct ifnet *);
455 static void wm_watchdog(struct ifnet *);
456 static int wm_ioctl(struct ifnet *, u_long, caddr_t);
457 static int wm_init(struct ifnet *);
458 static void wm_stop(struct ifnet *, int);
459
460 static void wm_shutdown(void *);
461
462 static void wm_reset(struct wm_softc *);
463 static void wm_rxdrain(struct wm_softc *);
464 static int wm_add_rxbuf(struct wm_softc *, int);
465 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
466 static void wm_tick(void *);
467
468 static void wm_set_filter(struct wm_softc *);
469
470 static int wm_intr(void *);
471 static void wm_txintr(struct wm_softc *);
472 static void wm_rxintr(struct wm_softc *);
473 static void wm_linkintr(struct wm_softc *, uint32_t);
474
475 static void wm_tbi_mediainit(struct wm_softc *);
476 static int wm_tbi_mediachange(struct ifnet *);
477 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
478
479 static void wm_tbi_set_linkled(struct wm_softc *);
480 static void wm_tbi_check_link(struct wm_softc *);
481
482 static void wm_gmii_reset(struct wm_softc *);
483
484 static int wm_gmii_i82543_readreg(struct device *, int, int);
485 static void wm_gmii_i82543_writereg(struct device *, int, int, int);
486
487 static int wm_gmii_i82544_readreg(struct device *, int, int);
488 static void wm_gmii_i82544_writereg(struct device *, int, int, int);
489
490 static void wm_gmii_statchg(struct device *);
491
492 static void wm_gmii_mediainit(struct wm_softc *);
493 static int wm_gmii_mediachange(struct ifnet *);
494 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
495
496 static int wm_match(struct device *, struct cfdata *, void *);
497 static void wm_attach(struct device *, struct device *, void *);
498
499 CFATTACH_DECL(wm, sizeof(struct wm_softc),
500 wm_match, wm_attach, NULL, NULL);
501
502 static void wm_82547_txfifo_stall(void *);
503
504 /*
505 * Devices supported by this driver.
506 */
507 static const struct wm_product {
508 pci_vendor_id_t wmp_vendor;
509 pci_product_id_t wmp_product;
510 const char *wmp_name;
511 wm_chip_type wmp_type;
512 int wmp_flags;
513 #define WMP_F_1000X 0x01
514 #define WMP_F_1000T 0x02
515 } wm_products[] = {
516 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
517 "Intel i82542 1000BASE-X Ethernet",
518 WM_T_82542_2_1, WMP_F_1000X },
519
520 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
521 "Intel i82543GC 1000BASE-X Ethernet",
522 WM_T_82543, WMP_F_1000X },
523
524 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
525 "Intel i82543GC 1000BASE-T Ethernet",
526 WM_T_82543, WMP_F_1000T },
527
528 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
529 "Intel i82544EI 1000BASE-T Ethernet",
530 WM_T_82544, WMP_F_1000T },
531
532 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
533 "Intel i82544EI 1000BASE-X Ethernet",
534 WM_T_82544, WMP_F_1000X },
535
536 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
537 "Intel i82544GC 1000BASE-T Ethernet",
538 WM_T_82544, WMP_F_1000T },
539
540 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
541 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
542 WM_T_82544, WMP_F_1000T },
543
544 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
545 "Intel i82540EM 1000BASE-T Ethernet",
546 WM_T_82540, WMP_F_1000T },
547
548 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
549 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
550 WM_T_82540, WMP_F_1000T },
551
552 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
553 "Intel i82540EP 1000BASE-T Ethernet",
554 WM_T_82540, WMP_F_1000T },
555
556 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
557 "Intel i82540EP 1000BASE-T Ethernet",
558 WM_T_82540, WMP_F_1000T },
559
560 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
561 "Intel i82540EP 1000BASE-T Ethernet",
562 WM_T_82540, WMP_F_1000T },
563
564 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
565 "Intel i82545EM 1000BASE-T Ethernet",
566 WM_T_82545, WMP_F_1000T },
567
568 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
569 "Intel i82545GM 1000BASE-T Ethernet",
570 WM_T_82545_3, WMP_F_1000T },
571
572 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
573 "Intel i82545GM 1000BASE-X Ethernet",
574 WM_T_82545_3, WMP_F_1000X },
575 #if 0
576 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
577 "Intel i82545GM Gigabit Ethernet (SERDES)",
578 WM_T_82545_3, WMP_F_SERDES },
579 #endif
580 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
581 "Intel i82546EB 1000BASE-T Ethernet",
582 WM_T_82546, WMP_F_1000T },
583
584 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
585 "Intel i82546EB 1000BASE-T Ethernet",
586 WM_T_82546, WMP_F_1000T },
587
588 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
589 "Intel i82545EM 1000BASE-X Ethernet",
590 WM_T_82545, WMP_F_1000X },
591
592 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
593 "Intel i82546EB 1000BASE-X Ethernet",
594 WM_T_82546, WMP_F_1000X },
595
596 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
597 "Intel i82546GB 1000BASE-T Ethernet",
598 WM_T_82546_3, WMP_F_1000T },
599
600 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
601 "Intel i82546GB 1000BASE-X Ethernet",
602 WM_T_82546_3, WMP_F_1000X },
603 #if 0
604 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
605 "Intel i82546GB Gigabit Ethernet (SERDES)",
606 WM_T_82546_3, WMP_F_SERDES },
607 #endif
608 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
609 "Intel i82541EI 1000BASE-T Ethernet",
610 WM_T_82541, WMP_F_1000T },
611
612 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
613 "Intel i82541EI Mobile 1000BASE-T Ethernet",
614 WM_T_82541, WMP_F_1000T },
615
616 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
617 "Intel i82541ER 1000BASE-T Ethernet",
618 WM_T_82541_2, WMP_F_1000T },
619
620 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
621 "Intel i82541GI 1000BASE-T Ethernet",
622 WM_T_82541_2, WMP_F_1000T },
623
624 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
625 "Intel i82541GI Mobile 1000BASE-T Ethernet",
626 WM_T_82541_2, WMP_F_1000T },
627
628 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
629 "Intel i82547EI 1000BASE-T Ethernet",
630 WM_T_82547, WMP_F_1000T },
631
632 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
633 "Intel i82547GI 1000BASE-T Ethernet",
634 WM_T_82547_2, WMP_F_1000T },
635 { 0, 0,
636 NULL,
637 0, 0 },
638 };
639
640 #ifdef WM_EVENT_COUNTERS
641 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
642 #endif /* WM_EVENT_COUNTERS */
643
644 #if 0 /* Not currently used */
645 static __inline uint32_t
646 wm_io_read(struct wm_softc *sc, int reg)
647 {
648
649 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
650 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
651 }
652 #endif
653
654 static __inline void
655 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
656 {
657
658 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
659 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
660 }
661
662 static __inline void
663 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
664 {
665 wa->wa_low = htole32(v & 0xffffffffU);
666 if (sizeof(bus_addr_t) == 8)
667 wa->wa_high = htole32((uint64_t) v >> 32);
668 else
669 wa->wa_high = 0;
670 }
671
672 static const struct wm_product *
673 wm_lookup(const struct pci_attach_args *pa)
674 {
675 const struct wm_product *wmp;
676
677 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
678 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
679 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
680 return (wmp);
681 }
682 return (NULL);
683 }
684
685 static int
686 wm_match(struct device *parent, struct cfdata *cf, void *aux)
687 {
688 struct pci_attach_args *pa = aux;
689
690 if (wm_lookup(pa) != NULL)
691 return (1);
692
693 return (0);
694 }
695
696 static void
697 wm_attach(struct device *parent, struct device *self, void *aux)
698 {
699 struct wm_softc *sc = (void *) self;
700 struct pci_attach_args *pa = aux;
701 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
702 pci_chipset_tag_t pc = pa->pa_pc;
703 pci_intr_handle_t ih;
704 size_t cdata_size;
705 const char *intrstr = NULL;
706 const char *eetype;
707 bus_space_tag_t memt;
708 bus_space_handle_t memh;
709 bus_dma_segment_t seg;
710 int memh_valid;
711 int i, rseg, error;
712 const struct wm_product *wmp;
713 uint8_t enaddr[ETHER_ADDR_LEN];
714 uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
715 pcireg_t preg, memtype;
716 uint32_t reg;
717 int pmreg;
718
719 callout_init(&sc->sc_tick_ch);
720
721 wmp = wm_lookup(pa);
722 if (wmp == NULL) {
723 printf("\n");
724 panic("wm_attach: impossible");
725 }
726
727 if (pci_dma64_available(pa))
728 sc->sc_dmat = pa->pa_dmat64;
729 else
730 sc->sc_dmat = pa->pa_dmat;
731
732 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
733 aprint_naive(": Ethernet controller\n");
734 aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
735
736 sc->sc_type = wmp->wmp_type;
737 if (sc->sc_type < WM_T_82543) {
738 if (preg < 2) {
739 aprint_error("%s: i82542 must be at least rev. 2\n",
740 sc->sc_dev.dv_xname);
741 return;
742 }
743 if (preg < 3)
744 sc->sc_type = WM_T_82542_2_0;
745 }
746
747 /*
748 * Map the device. All devices support memory-mapped acccess,
749 * and it is really required for normal operation.
750 */
751 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
752 switch (memtype) {
753 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
754 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
755 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
756 memtype, 0, &memt, &memh, NULL, NULL) == 0);
757 break;
758 default:
759 memh_valid = 0;
760 }
761
762 if (memh_valid) {
763 sc->sc_st = memt;
764 sc->sc_sh = memh;
765 } else {
766 aprint_error("%s: unable to map device registers\n",
767 sc->sc_dev.dv_xname);
768 return;
769 }
770
771 /*
772 * In addition, i82544 and later support I/O mapped indirect
773 * register access. It is not desirable (nor supported in
774 * this driver) to use it for normal operation, though it is
775 * required to work around bugs in some chip versions.
776 */
777 if (sc->sc_type >= WM_T_82544) {
778 /* First we have to find the I/O BAR. */
779 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
780 if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
781 PCI_MAPREG_TYPE_IO)
782 break;
783 }
784 if (i == PCI_MAPREG_END)
785 aprint_error("%s: WARNING: unable to find I/O BAR\n",
786 sc->sc_dev.dv_xname);
787 else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
788 0, &sc->sc_iot, &sc->sc_ioh,
789 NULL, NULL) == 0)
790 sc->sc_flags |= WM_F_IOH_VALID;
791 else
792 aprint_error("%s: WARNING: unable to map I/O space\n",
793 sc->sc_dev.dv_xname);
794 }
795
796 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
797 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
798 preg |= PCI_COMMAND_MASTER_ENABLE;
799 if (sc->sc_type < WM_T_82542_2_1)
800 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
801 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
802
803 /* Get it out of power save mode, if needed. */
804 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
805 preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
806 PCI_PMCSR_STATE_MASK;
807 if (preg == PCI_PMCSR_STATE_D3) {
808 /*
809 * The card has lost all configuration data in
810 * this state, so punt.
811 */
812 aprint_error("%s: unable to wake from power state D3\n",
813 sc->sc_dev.dv_xname);
814 return;
815 }
816 if (preg != PCI_PMCSR_STATE_D0) {
817 aprint_normal("%s: waking up from power state D%d\n",
818 sc->sc_dev.dv_xname, preg);
819 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
820 PCI_PMCSR_STATE_D0);
821 }
822 }
823
824 /*
825 * Map and establish our interrupt.
826 */
827 if (pci_intr_map(pa, &ih)) {
828 aprint_error("%s: unable to map interrupt\n",
829 sc->sc_dev.dv_xname);
830 return;
831 }
832 intrstr = pci_intr_string(pc, ih);
833 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
834 if (sc->sc_ih == NULL) {
835 aprint_error("%s: unable to establish interrupt",
836 sc->sc_dev.dv_xname);
837 if (intrstr != NULL)
838 aprint_normal(" at %s", intrstr);
839 aprint_normal("\n");
840 return;
841 }
842 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
843
844 /*
845 * Determine a few things about the bus we're connected to.
846 */
847 if (sc->sc_type < WM_T_82543) {
848 /* We don't really know the bus characteristics here. */
849 sc->sc_bus_speed = 33;
850 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
851 /*
852 * CSA (Communication Streaming Architecture) is about as fast
853 * a 32-bit 66MHz PCI Bus.
854 */
855 sc->sc_flags |= WM_F_CSA;
856 sc->sc_bus_speed = 66;
857 aprint_verbose("%s: Communication Streaming Architecture\n",
858 sc->sc_dev.dv_xname);
859 if (sc->sc_type == WM_T_82547) {
860 callout_init(&sc->sc_txfifo_ch);
861 callout_setfunc(&sc->sc_txfifo_ch,
862 wm_82547_txfifo_stall, sc);
863 aprint_verbose("%s: using 82547 Tx FIFO stall "
864 "work-around\n", sc->sc_dev.dv_xname);
865 }
866 } else {
867 reg = CSR_READ(sc, WMREG_STATUS);
868 if (reg & STATUS_BUS64)
869 sc->sc_flags |= WM_F_BUS64;
870 if (sc->sc_type >= WM_T_82544 &&
871 (reg & STATUS_PCIX_MODE) != 0) {
872 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
873
874 sc->sc_flags |= WM_F_PCIX;
875 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
876 PCI_CAP_PCIX,
877 &sc->sc_pcix_offset, NULL) == 0)
878 aprint_error("%s: unable to find PCIX "
879 "capability\n", sc->sc_dev.dv_xname);
880 else if (sc->sc_type != WM_T_82545_3 &&
881 sc->sc_type != WM_T_82546_3) {
882 /*
883 * Work around a problem caused by the BIOS
884 * setting the max memory read byte count
885 * incorrectly.
886 */
887 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
888 sc->sc_pcix_offset + PCI_PCIX_CMD);
889 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
890 sc->sc_pcix_offset + PCI_PCIX_STATUS);
891
892 bytecnt =
893 (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
894 PCI_PCIX_CMD_BYTECNT_SHIFT;
895 maxb =
896 (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
897 PCI_PCIX_STATUS_MAXB_SHIFT;
898 if (bytecnt > maxb) {
899 aprint_verbose("%s: resetting PCI-X "
900 "MMRBC: %d -> %d\n",
901 sc->sc_dev.dv_xname,
902 512 << bytecnt, 512 << maxb);
903 pcix_cmd = (pcix_cmd &
904 ~PCI_PCIX_CMD_BYTECNT_MASK) |
905 (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
906 pci_conf_write(pa->pa_pc, pa->pa_tag,
907 sc->sc_pcix_offset + PCI_PCIX_CMD,
908 pcix_cmd);
909 }
910 }
911 }
912 /*
913 * The quad port adapter is special; it has a PCIX-PCIX
914 * bridge on the board, and can run the secondary bus at
915 * a higher speed.
916 */
917 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
918 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
919 : 66;
920 } else if (sc->sc_flags & WM_F_PCIX) {
921 switch (reg & STATUS_PCIXSPD_MASK) {
922 case STATUS_PCIXSPD_50_66:
923 sc->sc_bus_speed = 66;
924 break;
925 case STATUS_PCIXSPD_66_100:
926 sc->sc_bus_speed = 100;
927 break;
928 case STATUS_PCIXSPD_100_133:
929 sc->sc_bus_speed = 133;
930 break;
931 default:
932 aprint_error(
933 "%s: unknown PCIXSPD %d; assuming 66MHz\n",
934 sc->sc_dev.dv_xname,
935 reg & STATUS_PCIXSPD_MASK);
936 sc->sc_bus_speed = 66;
937 }
938 } else
939 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
940 aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
941 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
942 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
943 }
944
945 /*
946 * Allocate the control data structures, and create and load the
947 * DMA map for it.
948 *
949 * NOTE: All Tx descriptors must be in the same 4G segment of
950 * memory. So must Rx descriptors. We simplify by allocating
951 * both sets within the same 4G segment.
952 */
953 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
954 WM_NTXDESC_82542 : WM_NTXDESC_82544;
955 cdata_size = sc->sc_type < WM_T_82544 ?
956 sizeof(struct wm_control_data_82542) :
957 sizeof(struct wm_control_data_82544);
958 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
959 (bus_size_t) 0x100000000ULL,
960 &seg, 1, &rseg, 0)) != 0) {
961 aprint_error(
962 "%s: unable to allocate control data, error = %d\n",
963 sc->sc_dev.dv_xname, error);
964 goto fail_0;
965 }
966
967 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
968 (caddr_t *)&sc->sc_control_data, 0)) != 0) {
969 aprint_error("%s: unable to map control data, error = %d\n",
970 sc->sc_dev.dv_xname, error);
971 goto fail_1;
972 }
973
974 if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
975 0, 0, &sc->sc_cddmamap)) != 0) {
976 aprint_error("%s: unable to create control data DMA map, "
977 "error = %d\n", sc->sc_dev.dv_xname, error);
978 goto fail_2;
979 }
980
981 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
982 sc->sc_control_data, cdata_size, NULL,
983 0)) != 0) {
984 aprint_error(
985 "%s: unable to load control data DMA map, error = %d\n",
986 sc->sc_dev.dv_xname, error);
987 goto fail_3;
988 }
989
990
991 /*
992 * Create the transmit buffer DMA maps.
993 */
994 WM_TXQUEUELEN(sc) =
995 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
996 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
997 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
998 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
999 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1000 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1001 aprint_error("%s: unable to create Tx DMA map %d, "
1002 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1003 goto fail_4;
1004 }
1005 }
1006
1007 /*
1008 * Create the receive buffer DMA maps.
1009 */
1010 for (i = 0; i < WM_NRXDESC; i++) {
1011 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1012 MCLBYTES, 0, 0,
1013 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1014 aprint_error("%s: unable to create Rx DMA map %d, "
1015 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1016 goto fail_5;
1017 }
1018 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1019 }
1020
1021 /*
1022 * Reset the chip to a known state.
1023 */
1024 wm_reset(sc);
1025
1026 /*
1027 * Get some information about the EEPROM.
1028 */
1029 if (sc->sc_type >= WM_T_82540)
1030 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1031 if (sc->sc_type <= WM_T_82544)
1032 sc->sc_ee_addrbits = 6;
1033 else if (sc->sc_type <= WM_T_82546_3) {
1034 reg = CSR_READ(sc, WMREG_EECD);
1035 if (reg & EECD_EE_SIZE)
1036 sc->sc_ee_addrbits = 8;
1037 else
1038 sc->sc_ee_addrbits = 6;
1039 } else if (sc->sc_type <= WM_T_82547_2) {
1040 reg = CSR_READ(sc, WMREG_EECD);
1041 if (reg & EECD_EE_TYPE) {
1042 sc->sc_flags |= WM_F_EEPROM_SPI;
1043 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1044 } else
1045 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1046 } else {
1047 /* Assume everything else is SPI. */
1048 reg = CSR_READ(sc, WMREG_EECD);
1049 sc->sc_flags |= WM_F_EEPROM_SPI;
1050 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1051 }
1052 if (sc->sc_flags & WM_F_EEPROM_SPI)
1053 eetype = "SPI";
1054 else
1055 eetype = "MicroWire";
1056 aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1057 sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1058 sc->sc_ee_addrbits, eetype);
1059
1060 /*
1061 * Read the Ethernet address from the EEPROM.
1062 */
1063 if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1064 sizeof(myea) / sizeof(myea[0]), myea)) {
1065 aprint_error("%s: unable to read Ethernet address\n",
1066 sc->sc_dev.dv_xname);
1067 return;
1068 }
1069 enaddr[0] = myea[0] & 0xff;
1070 enaddr[1] = myea[0] >> 8;
1071 enaddr[2] = myea[1] & 0xff;
1072 enaddr[3] = myea[1] >> 8;
1073 enaddr[4] = myea[2] & 0xff;
1074 enaddr[5] = myea[2] >> 8;
1075
1076 /*
1077 * Toggle the LSB of the MAC address on the second port
1078 * of the i82546.
1079 */
1080 if (sc->sc_type == WM_T_82546) {
1081 if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1082 enaddr[5] ^= 1;
1083 }
1084
1085 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1086 ether_sprintf(enaddr));
1087
1088 /*
1089 * Read the config info from the EEPROM, and set up various
1090 * bits in the control registers based on their contents.
1091 */
1092 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1093 aprint_error("%s: unable to read CFG1 from EEPROM\n",
1094 sc->sc_dev.dv_xname);
1095 return;
1096 }
1097 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1098 aprint_error("%s: unable to read CFG2 from EEPROM\n",
1099 sc->sc_dev.dv_xname);
1100 return;
1101 }
1102 if (sc->sc_type >= WM_T_82544) {
1103 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1104 aprint_error("%s: unable to read SWDPIN from EEPROM\n",
1105 sc->sc_dev.dv_xname);
1106 return;
1107 }
1108 }
1109
1110 if (cfg1 & EEPROM_CFG1_ILOS)
1111 sc->sc_ctrl |= CTRL_ILOS;
1112 if (sc->sc_type >= WM_T_82544) {
1113 sc->sc_ctrl |=
1114 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1115 CTRL_SWDPIO_SHIFT;
1116 sc->sc_ctrl |=
1117 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1118 CTRL_SWDPINS_SHIFT;
1119 } else {
1120 sc->sc_ctrl |=
1121 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1122 CTRL_SWDPIO_SHIFT;
1123 }
1124
1125 #if 0
1126 if (sc->sc_type >= WM_T_82544) {
1127 if (cfg1 & EEPROM_CFG1_IPS0)
1128 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1129 if (cfg1 & EEPROM_CFG1_IPS1)
1130 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1131 sc->sc_ctrl_ext |=
1132 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1133 CTRL_EXT_SWDPIO_SHIFT;
1134 sc->sc_ctrl_ext |=
1135 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1136 CTRL_EXT_SWDPINS_SHIFT;
1137 } else {
1138 sc->sc_ctrl_ext |=
1139 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1140 CTRL_EXT_SWDPIO_SHIFT;
1141 }
1142 #endif
1143
1144 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1145 #if 0
1146 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1147 #endif
1148
1149 /*
1150 * Set up some register offsets that are different between
1151 * the i82542 and the i82543 and later chips.
1152 */
1153 if (sc->sc_type < WM_T_82543) {
1154 sc->sc_rdt_reg = WMREG_OLD_RDT0;
1155 sc->sc_tdt_reg = WMREG_OLD_TDT;
1156 } else {
1157 sc->sc_rdt_reg = WMREG_RDT;
1158 sc->sc_tdt_reg = WMREG_TDT;
1159 }
1160
1161 /*
1162 * Determine if we're TBI or GMII mode, and initialize the
1163 * media structures accordingly.
1164 */
1165 if (sc->sc_type < WM_T_82543 ||
1166 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1167 if (wmp->wmp_flags & WMP_F_1000T)
1168 aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1169 "product!\n", sc->sc_dev.dv_xname);
1170 wm_tbi_mediainit(sc);
1171 } else {
1172 if (wmp->wmp_flags & WMP_F_1000X)
1173 aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1174 "product!\n", sc->sc_dev.dv_xname);
1175 wm_gmii_mediainit(sc);
1176 }
1177
1178 ifp = &sc->sc_ethercom.ec_if;
1179 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1180 ifp->if_softc = sc;
1181 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1182 ifp->if_ioctl = wm_ioctl;
1183 ifp->if_start = wm_start;
1184 ifp->if_watchdog = wm_watchdog;
1185 ifp->if_init = wm_init;
1186 ifp->if_stop = wm_stop;
1187 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1188 IFQ_SET_READY(&ifp->if_snd);
1189
1190 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1191
1192 /*
1193 * If we're a i82543 or greater, we can support VLANs.
1194 */
1195 if (sc->sc_type >= WM_T_82543)
1196 sc->sc_ethercom.ec_capabilities |=
1197 ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1198
1199 /*
1200 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
1201 * on i82543 and later.
1202 */
1203 if (sc->sc_type >= WM_T_82543)
1204 ifp->if_capabilities |=
1205 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
1206
1207 /*
1208 * Attach the interface.
1209 */
1210 if_attach(ifp);
1211 ether_ifattach(ifp, enaddr);
1212 #if NRND > 0
1213 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1214 RND_TYPE_NET, 0);
1215 #endif
1216
1217 #ifdef WM_EVENT_COUNTERS
1218 /* Attach event counters. */
1219 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1220 NULL, sc->sc_dev.dv_xname, "txsstall");
1221 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1222 NULL, sc->sc_dev.dv_xname, "txdstall");
1223 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1224 NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1225 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1226 NULL, sc->sc_dev.dv_xname, "txdw");
1227 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1228 NULL, sc->sc_dev.dv_xname, "txqe");
1229 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1230 NULL, sc->sc_dev.dv_xname, "rxintr");
1231 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1232 NULL, sc->sc_dev.dv_xname, "linkintr");
1233
1234 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1235 NULL, sc->sc_dev.dv_xname, "rxipsum");
1236 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1237 NULL, sc->sc_dev.dv_xname, "rxtusum");
1238 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1239 NULL, sc->sc_dev.dv_xname, "txipsum");
1240 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1241 NULL, sc->sc_dev.dv_xname, "txtusum");
1242
1243 evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
1244 NULL, sc->sc_dev.dv_xname, "txctx init");
1245 evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
1246 NULL, sc->sc_dev.dv_xname, "txctx hit");
1247 evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
1248 NULL, sc->sc_dev.dv_xname, "txctx miss");
1249
1250 for (i = 0; i < WM_NTXSEGS; i++) {
1251 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1252 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1253 NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1254 }
1255
1256 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1257 NULL, sc->sc_dev.dv_xname, "txdrop");
1258
1259 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1260 NULL, sc->sc_dev.dv_xname, "tu");
1261
1262 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1263 NULL, sc->sc_dev.dv_xname, "tx_xoff");
1264 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1265 NULL, sc->sc_dev.dv_xname, "tx_xon");
1266 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1267 NULL, sc->sc_dev.dv_xname, "rx_xoff");
1268 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1269 NULL, sc->sc_dev.dv_xname, "rx_xon");
1270 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1271 NULL, sc->sc_dev.dv_xname, "rx_macctl");
1272 #endif /* WM_EVENT_COUNTERS */
1273
1274 /*
1275 * Make sure the interface is shutdown during reboot.
1276 */
1277 sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1278 if (sc->sc_sdhook == NULL)
1279 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1280 sc->sc_dev.dv_xname);
1281 return;
1282
1283 /*
1284 * Free any resources we've allocated during the failed attach
1285 * attempt. Do this in reverse order and fall through.
1286 */
1287 fail_5:
1288 for (i = 0; i < WM_NRXDESC; i++) {
1289 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1290 bus_dmamap_destroy(sc->sc_dmat,
1291 sc->sc_rxsoft[i].rxs_dmamap);
1292 }
1293 fail_4:
1294 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1295 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1296 bus_dmamap_destroy(sc->sc_dmat,
1297 sc->sc_txsoft[i].txs_dmamap);
1298 }
1299 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1300 fail_3:
1301 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1302 fail_2:
1303 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1304 cdata_size);
1305 fail_1:
1306 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1307 fail_0:
1308 return;
1309 }
1310
1311 /*
1312 * wm_shutdown:
1313 *
1314 * Make sure the interface is stopped at reboot time.
1315 */
1316 static void
1317 wm_shutdown(void *arg)
1318 {
1319 struct wm_softc *sc = arg;
1320
1321 wm_stop(&sc->sc_ethercom.ec_if, 1);
1322 }
1323
1324 /*
1325 * wm_tx_cksum:
1326 *
1327 * Set up TCP/IP checksumming parameters for the
1328 * specified packet.
1329 */
1330 static int
1331 wm_tx_cksum(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1332 uint8_t *fieldsp)
1333 {
1334 struct mbuf *m0 = txs->txs_mbuf;
1335 struct livengood_tcpip_ctxdesc *t;
1336 uint32_t ipcs, tucs;
1337 struct ip *ip;
1338 struct ether_header *eh;
1339 int offset, iphl;
1340 uint8_t fields = 0;
1341
1342 /*
1343 * XXX It would be nice if the mbuf pkthdr had offset
1344 * fields for the protocol headers.
1345 */
1346
1347 eh = mtod(m0, struct ether_header *);
1348 switch (htons(eh->ether_type)) {
1349 case ETHERTYPE_IP:
1350 iphl = sizeof(struct ip);
1351 offset = ETHER_HDR_LEN;
1352 break;
1353
1354 case ETHERTYPE_VLAN:
1355 iphl = sizeof(struct ip);
1356 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1357 break;
1358
1359 default:
1360 /*
1361 * Don't support this protocol or encapsulation.
1362 */
1363 *fieldsp = 0;
1364 *cmdp = 0;
1365 return (0);
1366 }
1367
1368 if (m0->m_len < (offset + iphl)) {
1369 if ((txs->txs_mbuf = m_pullup(m0, offset + iphl)) == NULL) {
1370 printf("%s: wm_tx_cksum: mbuf allocation failed, "
1371 "packet dropped\n", sc->sc_dev.dv_xname);
1372 return (ENOMEM);
1373 }
1374 m0 = txs->txs_mbuf;
1375 }
1376
1377 ip = (struct ip *) (mtod(m0, caddr_t) + offset);
1378 iphl = ip->ip_hl << 2;
1379
1380 /*
1381 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1382 * offload feature, if we load the context descriptor, we
1383 * MUST provide valid values for IPCSS and TUCSS fields.
1384 */
1385
1386 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1387 WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1388 fields |= WTX_IXSM;
1389 ipcs = WTX_TCPIP_IPCSS(offset) |
1390 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1391 WTX_TCPIP_IPCSE(offset + iphl - 1);
1392 } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1393 /* Use the cached value. */
1394 ipcs = sc->sc_txctx_ipcs;
1395 } else {
1396 /* Just initialize it to the likely value anyway. */
1397 ipcs = WTX_TCPIP_IPCSS(offset) |
1398 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1399 WTX_TCPIP_IPCSE(offset + iphl - 1);
1400 }
1401
1402 offset += iphl;
1403
1404 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1405 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1406 fields |= WTX_TXSM;
1407 tucs = WTX_TCPIP_TUCSS(offset) |
1408 WTX_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
1409 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1410 } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1411 /* Use the cached value. */
1412 tucs = sc->sc_txctx_tucs;
1413 } else {
1414 /* Just initialize it to a valid TCP context. */
1415 tucs = WTX_TCPIP_TUCSS(offset) |
1416 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1417 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1418 }
1419
1420 if (sc->sc_txctx_ipcs == ipcs &&
1421 sc->sc_txctx_tucs == tucs) {
1422 /* Cached context is fine. */
1423 WM_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1424 } else {
1425 /* Fill in the context descriptor. */
1426 #ifdef WM_EVENT_COUNTERS
1427 if (sc->sc_txctx_ipcs == 0xffffffff &&
1428 sc->sc_txctx_tucs == 0xffffffff)
1429 WM_EVCNT_INCR(&sc->sc_ev_txctx_init);
1430 else
1431 WM_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1432 #endif
1433 t = (struct livengood_tcpip_ctxdesc *)
1434 &sc->sc_txdescs[sc->sc_txnext];
1435 t->tcpip_ipcs = htole32(ipcs);
1436 t->tcpip_tucs = htole32(tucs);
1437 t->tcpip_cmdlen = htole32(WTX_CMD_DEXT | WTX_DTYP_C);
1438 t->tcpip_seg = 0;
1439 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1440
1441 sc->sc_txctx_ipcs = ipcs;
1442 sc->sc_txctx_tucs = tucs;
1443
1444 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1445 txs->txs_ndesc++;
1446 }
1447
1448 *cmdp = WTX_CMD_DEXT | WTX_DTYP_D;
1449 *fieldsp = fields;
1450
1451 return (0);
1452 }
1453
1454 static void
1455 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1456 {
1457 struct mbuf *m;
1458 int i;
1459
1460 printf("%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1461 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1462 printf("\tm_data = %p, m_len = %d, m_flags = 0x%08x\n",
1463 m->m_data, m->m_len, m->m_flags);
1464 printf("\t%d mbuf%s in chain\n", i, i == 1 ? "" : "s");
1465 }
1466
1467 /*
1468 * wm_82547_txfifo_stall:
1469 *
1470 * Callout used to wait for the 82547 Tx FIFO to drain,
1471 * reset the FIFO pointers, and restart packet transmission.
1472 */
1473 static void
1474 wm_82547_txfifo_stall(void *arg)
1475 {
1476 struct wm_softc *sc = arg;
1477 int s;
1478
1479 s = splnet();
1480
1481 if (sc->sc_txfifo_stall) {
1482 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1483 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1484 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1485 /*
1486 * Packets have drained. Stop transmitter, reset
1487 * FIFO pointers, restart transmitter, and kick
1488 * the packet queue.
1489 */
1490 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1491 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1492 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1493 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1494 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1495 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1496 CSR_WRITE(sc, WMREG_TCTL, tctl);
1497 CSR_WRITE_FLUSH(sc);
1498
1499 sc->sc_txfifo_head = 0;
1500 sc->sc_txfifo_stall = 0;
1501 wm_start(&sc->sc_ethercom.ec_if);
1502 } else {
1503 /*
1504 * Still waiting for packets to drain; try again in
1505 * another tick.
1506 */
1507 callout_schedule(&sc->sc_txfifo_ch, 1);
1508 }
1509 }
1510
1511 splx(s);
1512 }
1513
1514 /*
1515 * wm_82547_txfifo_bugchk:
1516 *
1517 * Check for bug condition in the 82547 Tx FIFO. We need to
1518 * prevent enqueueing a packet that would wrap around the end
1519 * if the Tx FIFO ring buffer, otherwise the chip will croak.
1520 *
1521 * We do this by checking the amount of space before the end
1522 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
1523 * the Tx FIFO, wait for all remaining packets to drain, reset
1524 * the internal FIFO pointers to the beginning, and restart
1525 * transmission on the interface.
1526 */
1527 #define WM_FIFO_HDR 0x10
1528 #define WM_82547_PAD_LEN 0x3e0
1529 static int
1530 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1531 {
1532 int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1533 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1534
1535 /* Just return if already stalled. */
1536 if (sc->sc_txfifo_stall)
1537 return (1);
1538
1539 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1540 /* Stall only occurs in half-duplex mode. */
1541 goto send_packet;
1542 }
1543
1544 if (len >= WM_82547_PAD_LEN + space) {
1545 sc->sc_txfifo_stall = 1;
1546 callout_schedule(&sc->sc_txfifo_ch, 1);
1547 return (1);
1548 }
1549
1550 send_packet:
1551 sc->sc_txfifo_head += len;
1552 if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1553 sc->sc_txfifo_head -= sc->sc_txfifo_size;
1554
1555 return (0);
1556 }
1557
1558 /*
1559 * wm_start: [ifnet interface function]
1560 *
1561 * Start packet transmission on the interface.
1562 */
1563 static void
1564 wm_start(struct ifnet *ifp)
1565 {
1566 struct wm_softc *sc = ifp->if_softc;
1567 struct mbuf *m0;
1568 #if 0 /* XXXJRT */
1569 struct m_tag *mtag;
1570 #endif
1571 struct wm_txsoft *txs;
1572 bus_dmamap_t dmamap;
1573 int error, nexttx, lasttx = -1, ofree, seg, segs_needed;
1574 bus_addr_t curaddr;
1575 bus_size_t seglen, curlen;
1576 uint32_t cksumcmd;
1577 uint8_t cksumfields;
1578
1579 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1580 return;
1581
1582 /*
1583 * Remember the previous number of free descriptors.
1584 */
1585 ofree = sc->sc_txfree;
1586
1587 /*
1588 * Loop through the send queue, setting up transmit descriptors
1589 * until we drain the queue, or use up all available transmit
1590 * descriptors.
1591 */
1592 for (;;) {
1593 /* Grab a packet off the queue. */
1594 IFQ_POLL(&ifp->if_snd, m0);
1595 if (m0 == NULL)
1596 break;
1597
1598 DPRINTF(WM_DEBUG_TX,
1599 ("%s: TX: have packet to transmit: %p\n",
1600 sc->sc_dev.dv_xname, m0));
1601
1602 /* Get a work queue entry. */
1603 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1604 wm_txintr(sc);
1605 if (sc->sc_txsfree == 0) {
1606 DPRINTF(WM_DEBUG_TX,
1607 ("%s: TX: no free job descriptors\n",
1608 sc->sc_dev.dv_xname));
1609 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1610 break;
1611 }
1612 }
1613
1614 txs = &sc->sc_txsoft[sc->sc_txsnext];
1615 dmamap = txs->txs_dmamap;
1616
1617 /*
1618 * Load the DMA map. If this fails, the packet either
1619 * didn't fit in the allotted number of segments, or we
1620 * were short on resources. For the too-many-segments
1621 * case, we simply report an error and drop the packet,
1622 * since we can't sanely copy a jumbo packet to a single
1623 * buffer.
1624 */
1625 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1626 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1627 if (error) {
1628 if (error == EFBIG) {
1629 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1630 printf("%s: Tx packet consumes too many "
1631 "DMA segments, dropping...\n",
1632 sc->sc_dev.dv_xname);
1633 IFQ_DEQUEUE(&ifp->if_snd, m0);
1634 wm_dump_mbuf_chain(sc, m0);
1635 m_freem(m0);
1636 continue;
1637 }
1638 /*
1639 * Short on resources, just stop for now.
1640 */
1641 DPRINTF(WM_DEBUG_TX,
1642 ("%s: TX: dmamap load failed: %d\n",
1643 sc->sc_dev.dv_xname, error));
1644 break;
1645 }
1646
1647 segs_needed = dmamap->dm_nsegs;
1648
1649 /*
1650 * Ensure we have enough descriptors free to describe
1651 * the packet. Note, we always reserve one descriptor
1652 * at the end of the ring due to the semantics of the
1653 * TDT register, plus one more in the event we need
1654 * to re-load checksum offload context.
1655 */
1656 if (segs_needed > sc->sc_txfree - 2) {
1657 /*
1658 * Not enough free descriptors to transmit this
1659 * packet. We haven't committed anything yet,
1660 * so just unload the DMA map, put the packet
1661 * pack on the queue, and punt. Notify the upper
1662 * layer that there are no more slots left.
1663 */
1664 DPRINTF(WM_DEBUG_TX,
1665 ("%s: TX: need %d (%) descriptors, have %d\n",
1666 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1667 sc->sc_txfree - 1));
1668 ifp->if_flags |= IFF_OACTIVE;
1669 bus_dmamap_unload(sc->sc_dmat, dmamap);
1670 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1671 break;
1672 }
1673
1674 /*
1675 * Check for 82547 Tx FIFO bug. We need to do this
1676 * once we know we can transmit the packet, since we
1677 * do some internal FIFO space accounting here.
1678 */
1679 if (sc->sc_type == WM_T_82547 &&
1680 wm_82547_txfifo_bugchk(sc, m0)) {
1681 DPRINTF(WM_DEBUG_TX,
1682 ("%s: TX: 82547 Tx FIFO bug detected\n",
1683 sc->sc_dev.dv_xname));
1684 ifp->if_flags |= IFF_OACTIVE;
1685 bus_dmamap_unload(sc->sc_dmat, dmamap);
1686 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1687 break;
1688 }
1689
1690 IFQ_DEQUEUE(&ifp->if_snd, m0);
1691
1692 /*
1693 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1694 */
1695
1696 /* Sync the DMA map. */
1697 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1698 BUS_DMASYNC_PREWRITE);
1699
1700 DPRINTF(WM_DEBUG_TX,
1701 ("%s: TX: packet has %d (%d) DMA segments\n",
1702 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1703
1704 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1705
1706 /*
1707 * Store a pointer to the packet so that we can free it
1708 * later.
1709 *
1710 * Initially, we consider the number of descriptors the
1711 * packet uses the number of DMA segments. This may be
1712 * incremented by 1 if we do checksum offload (a descriptor
1713 * is used to set the checksum context).
1714 */
1715 txs->txs_mbuf = m0;
1716 txs->txs_firstdesc = sc->sc_txnext;
1717 txs->txs_ndesc = segs_needed;
1718
1719 /*
1720 * Set up checksum offload parameters for
1721 * this packet.
1722 */
1723 if (m0->m_pkthdr.csum_flags &
1724 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1725 if (wm_tx_cksum(sc, txs, &cksumcmd,
1726 &cksumfields) != 0) {
1727 /* Error message already displayed. */
1728 bus_dmamap_unload(sc->sc_dmat, dmamap);
1729 continue;
1730 }
1731 } else {
1732 cksumcmd = 0;
1733 cksumfields = 0;
1734 }
1735
1736 cksumcmd |= WTX_CMD_IDE;
1737
1738 /*
1739 * Initialize the transmit descriptor.
1740 */
1741 for (nexttx = sc->sc_txnext, seg = 0;
1742 seg < dmamap->dm_nsegs; seg++) {
1743 for (seglen = dmamap->dm_segs[seg].ds_len,
1744 curaddr = dmamap->dm_segs[seg].ds_addr;
1745 seglen != 0;
1746 curaddr += curlen, seglen -= curlen,
1747 nexttx = WM_NEXTTX(sc, nexttx)) {
1748 curlen = seglen;
1749
1750 wm_set_dma_addr(
1751 &sc->sc_txdescs[nexttx].wtx_addr,
1752 curaddr);
1753 sc->sc_txdescs[nexttx].wtx_cmdlen =
1754 htole32(cksumcmd | curlen);
1755 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
1756 0;
1757 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1758 cksumfields;
1759 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1760 lasttx = nexttx;
1761
1762 DPRINTF(WM_DEBUG_TX,
1763 ("%s: TX: desc %d: low 0x%08x, "
1764 "len 0x%04x\n",
1765 sc->sc_dev.dv_xname, nexttx,
1766 curaddr & 0xffffffffU, curlen, curlen));
1767 }
1768 }
1769
1770 KASSERT(lasttx != -1);
1771
1772 /*
1773 * Set up the command byte on the last descriptor of
1774 * the packet. If we're in the interrupt delay window,
1775 * delay the interrupt.
1776 */
1777 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1778 htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS);
1779
1780 #if 0 /* XXXJRT */
1781 /*
1782 * If VLANs are enabled and the packet has a VLAN tag, set
1783 * up the descriptor to encapsulate the packet for us.
1784 *
1785 * This is only valid on the last descriptor of the packet.
1786 */
1787 if (sc->sc_ethercom.ec_nvlans != 0 &&
1788 (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1789 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1790 htole32(WTX_CMD_VLE);
1791 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
1792 = htole16(*(u_int *)(mtag + 1) & 0xffff);
1793 }
1794 #endif /* XXXJRT */
1795
1796 txs->txs_lastdesc = lasttx;
1797
1798 DPRINTF(WM_DEBUG_TX,
1799 ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1800 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
1801
1802 /* Sync the descriptors we're using. */
1803 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
1804 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1805
1806 /* Give the packet to the chip. */
1807 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1808
1809 DPRINTF(WM_DEBUG_TX,
1810 ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1811
1812 DPRINTF(WM_DEBUG_TX,
1813 ("%s: TX: finished transmitting packet, job %d\n",
1814 sc->sc_dev.dv_xname, sc->sc_txsnext));
1815
1816 /* Advance the tx pointer. */
1817 sc->sc_txfree -= txs->txs_ndesc;
1818 sc->sc_txnext = nexttx;
1819
1820 sc->sc_txsfree--;
1821 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
1822
1823 #if NBPFILTER > 0
1824 /* Pass the packet to any BPF listeners. */
1825 if (ifp->if_bpf)
1826 bpf_mtap(ifp->if_bpf, m0);
1827 #endif /* NBPFILTER > 0 */
1828 }
1829
1830 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1831 /* No more slots; notify upper layer. */
1832 ifp->if_flags |= IFF_OACTIVE;
1833 }
1834
1835 if (sc->sc_txfree != ofree) {
1836 /* Set a watchdog timer in case the chip flakes out. */
1837 ifp->if_timer = 5;
1838 }
1839 }
1840
1841 /*
1842 * wm_watchdog: [ifnet interface function]
1843 *
1844 * Watchdog timer handler.
1845 */
1846 static void
1847 wm_watchdog(struct ifnet *ifp)
1848 {
1849 struct wm_softc *sc = ifp->if_softc;
1850
1851 /*
1852 * Since we're using delayed interrupts, sweep up
1853 * before we report an error.
1854 */
1855 wm_txintr(sc);
1856
1857 if (sc->sc_txfree != WM_NTXDESC(sc)) {
1858 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1859 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1860 sc->sc_txnext);
1861 ifp->if_oerrors++;
1862
1863 /* Reset the interface. */
1864 (void) wm_init(ifp);
1865 }
1866
1867 /* Try to get more packets going. */
1868 wm_start(ifp);
1869 }
1870
1871 /*
1872 * wm_ioctl: [ifnet interface function]
1873 *
1874 * Handle control requests from the operator.
1875 */
1876 static int
1877 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1878 {
1879 struct wm_softc *sc = ifp->if_softc;
1880 struct ifreq *ifr = (struct ifreq *) data;
1881 int s, error;
1882
1883 s = splnet();
1884
1885 switch (cmd) {
1886 case SIOCSIFMEDIA:
1887 case SIOCGIFMEDIA:
1888 /* Flow control requires full-duplex mode. */
1889 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1890 (ifr->ifr_media & IFM_FDX) == 0)
1891 ifr->ifr_media &= ~IFM_ETH_FMASK;
1892 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1893 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1894 /* We can do both TXPAUSE and RXPAUSE. */
1895 ifr->ifr_media |=
1896 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1897 }
1898 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1899 }
1900 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1901 break;
1902 default:
1903 error = ether_ioctl(ifp, cmd, data);
1904 if (error == ENETRESET) {
1905 /*
1906 * Multicast list has changed; set the hardware filter
1907 * accordingly.
1908 */
1909 wm_set_filter(sc);
1910 error = 0;
1911 }
1912 break;
1913 }
1914
1915 /* Try to get more packets going. */
1916 wm_start(ifp);
1917
1918 splx(s);
1919 return (error);
1920 }
1921
1922 /*
1923 * wm_intr:
1924 *
1925 * Interrupt service routine.
1926 */
1927 static int
1928 wm_intr(void *arg)
1929 {
1930 struct wm_softc *sc = arg;
1931 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1932 uint32_t icr;
1933 int wantinit, handled = 0;
1934
1935 for (wantinit = 0; wantinit == 0;) {
1936 icr = CSR_READ(sc, WMREG_ICR);
1937 if ((icr & sc->sc_icr) == 0)
1938 break;
1939
1940 #if 0 /*NRND > 0*/
1941 if (RND_ENABLED(&sc->rnd_source))
1942 rnd_add_uint32(&sc->rnd_source, icr);
1943 #endif
1944
1945 handled = 1;
1946
1947 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1948 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1949 DPRINTF(WM_DEBUG_RX,
1950 ("%s: RX: got Rx intr 0x%08x\n",
1951 sc->sc_dev.dv_xname,
1952 icr & (ICR_RXDMT0|ICR_RXT0)));
1953 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
1954 }
1955 #endif
1956 wm_rxintr(sc);
1957
1958 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1959 if (icr & ICR_TXDW) {
1960 DPRINTF(WM_DEBUG_TX,
1961 ("%s: TX: got TXDW interrupt\n",
1962 sc->sc_dev.dv_xname));
1963 WM_EVCNT_INCR(&sc->sc_ev_txdw);
1964 }
1965 #endif
1966 wm_txintr(sc);
1967
1968 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
1969 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
1970 wm_linkintr(sc, icr);
1971 }
1972
1973 if (icr & ICR_RXO) {
1974 printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
1975 wantinit = 1;
1976 }
1977 }
1978
1979 if (handled) {
1980 if (wantinit)
1981 wm_init(ifp);
1982
1983 /* Try to get more packets going. */
1984 wm_start(ifp);
1985 }
1986
1987 return (handled);
1988 }
1989
1990 /*
1991 * wm_txintr:
1992 *
1993 * Helper; handle transmit interrupts.
1994 */
1995 static void
1996 wm_txintr(struct wm_softc *sc)
1997 {
1998 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1999 struct wm_txsoft *txs;
2000 uint8_t status;
2001 int i;
2002
2003 ifp->if_flags &= ~IFF_OACTIVE;
2004
2005 /*
2006 * Go through the Tx list and free mbufs for those
2007 * frames which have been transmitted.
2008 */
2009 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2010 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2011 txs = &sc->sc_txsoft[i];
2012
2013 DPRINTF(WM_DEBUG_TX,
2014 ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2015
2016 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2017 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2018
2019 status =
2020 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2021 if ((status & WTX_ST_DD) == 0) {
2022 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2023 BUS_DMASYNC_PREREAD);
2024 break;
2025 }
2026
2027 DPRINTF(WM_DEBUG_TX,
2028 ("%s: TX: job %d done: descs %d..%d\n",
2029 sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2030 txs->txs_lastdesc));
2031
2032 /*
2033 * XXX We should probably be using the statistics
2034 * XXX registers, but I don't know if they exist
2035 * XXX on chips before the i82544.
2036 */
2037
2038 #ifdef WM_EVENT_COUNTERS
2039 if (status & WTX_ST_TU)
2040 WM_EVCNT_INCR(&sc->sc_ev_tu);
2041 #endif /* WM_EVENT_COUNTERS */
2042
2043 if (status & (WTX_ST_EC|WTX_ST_LC)) {
2044 ifp->if_oerrors++;
2045 if (status & WTX_ST_LC)
2046 printf("%s: late collision\n",
2047 sc->sc_dev.dv_xname);
2048 else if (status & WTX_ST_EC) {
2049 ifp->if_collisions += 16;
2050 printf("%s: excessive collisions\n",
2051 sc->sc_dev.dv_xname);
2052 }
2053 } else
2054 ifp->if_opackets++;
2055
2056 sc->sc_txfree += txs->txs_ndesc;
2057 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2058 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2059 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2060 m_freem(txs->txs_mbuf);
2061 txs->txs_mbuf = NULL;
2062 }
2063
2064 /* Update the dirty transmit buffer pointer. */
2065 sc->sc_txsdirty = i;
2066 DPRINTF(WM_DEBUG_TX,
2067 ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2068
2069 /*
2070 * If there are no more pending transmissions, cancel the watchdog
2071 * timer.
2072 */
2073 if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2074 ifp->if_timer = 0;
2075 }
2076
2077 /*
2078 * wm_rxintr:
2079 *
2080 * Helper; handle receive interrupts.
2081 */
2082 static void
2083 wm_rxintr(struct wm_softc *sc)
2084 {
2085 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2086 struct wm_rxsoft *rxs;
2087 struct mbuf *m;
2088 int i, len;
2089 uint8_t status, errors;
2090
2091 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2092 rxs = &sc->sc_rxsoft[i];
2093
2094 DPRINTF(WM_DEBUG_RX,
2095 ("%s: RX: checking descriptor %d\n",
2096 sc->sc_dev.dv_xname, i));
2097
2098 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2099
2100 status = sc->sc_rxdescs[i].wrx_status;
2101 errors = sc->sc_rxdescs[i].wrx_errors;
2102 len = le16toh(sc->sc_rxdescs[i].wrx_len);
2103
2104 if ((status & WRX_ST_DD) == 0) {
2105 /*
2106 * We have processed all of the receive descriptors.
2107 */
2108 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2109 break;
2110 }
2111
2112 if (__predict_false(sc->sc_rxdiscard)) {
2113 DPRINTF(WM_DEBUG_RX,
2114 ("%s: RX: discarding contents of descriptor %d\n",
2115 sc->sc_dev.dv_xname, i));
2116 WM_INIT_RXDESC(sc, i);
2117 if (status & WRX_ST_EOP) {
2118 /* Reset our state. */
2119 DPRINTF(WM_DEBUG_RX,
2120 ("%s: RX: resetting rxdiscard -> 0\n",
2121 sc->sc_dev.dv_xname));
2122 sc->sc_rxdiscard = 0;
2123 }
2124 continue;
2125 }
2126
2127 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2128 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2129
2130 m = rxs->rxs_mbuf;
2131
2132 /*
2133 * Add a new receive buffer to the ring.
2134 */
2135 if (wm_add_rxbuf(sc, i) != 0) {
2136 /*
2137 * Failed, throw away what we've done so
2138 * far, and discard the rest of the packet.
2139 */
2140 ifp->if_ierrors++;
2141 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2142 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2143 WM_INIT_RXDESC(sc, i);
2144 if ((status & WRX_ST_EOP) == 0)
2145 sc->sc_rxdiscard = 1;
2146 if (sc->sc_rxhead != NULL)
2147 m_freem(sc->sc_rxhead);
2148 WM_RXCHAIN_RESET(sc);
2149 DPRINTF(WM_DEBUG_RX,
2150 ("%s: RX: Rx buffer allocation failed, "
2151 "dropping packet%s\n", sc->sc_dev.dv_xname,
2152 sc->sc_rxdiscard ? " (discard)" : ""));
2153 continue;
2154 }
2155
2156 WM_RXCHAIN_LINK(sc, m);
2157
2158 m->m_len = len;
2159
2160 DPRINTF(WM_DEBUG_RX,
2161 ("%s: RX: buffer at %p len %d\n",
2162 sc->sc_dev.dv_xname, m->m_data, len));
2163
2164 /*
2165 * If this is not the end of the packet, keep
2166 * looking.
2167 */
2168 if ((status & WRX_ST_EOP) == 0) {
2169 sc->sc_rxlen += len;
2170 DPRINTF(WM_DEBUG_RX,
2171 ("%s: RX: not yet EOP, rxlen -> %d\n",
2172 sc->sc_dev.dv_xname, sc->sc_rxlen));
2173 continue;
2174 }
2175
2176 /*
2177 * Okay, we have the entire packet now...
2178 */
2179 *sc->sc_rxtailp = NULL;
2180 m = sc->sc_rxhead;
2181 len += sc->sc_rxlen;
2182
2183 WM_RXCHAIN_RESET(sc);
2184
2185 DPRINTF(WM_DEBUG_RX,
2186 ("%s: RX: have entire packet, len -> %d\n",
2187 sc->sc_dev.dv_xname, len));
2188
2189 /*
2190 * If an error occurred, update stats and drop the packet.
2191 */
2192 if (errors &
2193 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2194 ifp->if_ierrors++;
2195 if (errors & WRX_ER_SE)
2196 printf("%s: symbol error\n",
2197 sc->sc_dev.dv_xname);
2198 else if (errors & WRX_ER_SEQ)
2199 printf("%s: receive sequence error\n",
2200 sc->sc_dev.dv_xname);
2201 else if (errors & WRX_ER_CE)
2202 printf("%s: CRC error\n",
2203 sc->sc_dev.dv_xname);
2204 m_freem(m);
2205 continue;
2206 }
2207
2208 /*
2209 * No errors. Receive the packet.
2210 *
2211 * Note, we have configured the chip to include the
2212 * CRC with every packet.
2213 */
2214 m->m_flags |= M_HASFCS;
2215 m->m_pkthdr.rcvif = ifp;
2216 m->m_pkthdr.len = len;
2217
2218 #if 0 /* XXXJRT */
2219 /*
2220 * If VLANs are enabled, VLAN packets have been unwrapped
2221 * for us. Associate the tag with the packet.
2222 */
2223 if (sc->sc_ethercom.ec_nvlans != 0 &&
2224 (status & WRX_ST_VP) != 0) {
2225 struct m_tag *vtag;
2226
2227 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2228 M_NOWAIT);
2229 if (vtag == NULL) {
2230 ifp->if_ierrors++;
2231 printf("%s: unable to allocate VLAN tag\n",
2232 sc->sc_dev.dv_xname);
2233 m_freem(m);
2234 continue;
2235 }
2236
2237 *(u_int *)(vtag + 1) =
2238 le16toh(sc->sc_rxdescs[i].wrx_special);
2239 }
2240 #endif /* XXXJRT */
2241
2242 /*
2243 * Set up checksum info for this packet.
2244 */
2245 if (status & WRX_ST_IPCS) {
2246 WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2247 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2248 if (errors & WRX_ER_IPE)
2249 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2250 }
2251 if (status & WRX_ST_TCPCS) {
2252 /*
2253 * Note: we don't know if this was TCP or UDP,
2254 * so we just set both bits, and expect the
2255 * upper layers to deal.
2256 */
2257 WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2258 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
2259 if (errors & WRX_ER_TCPE)
2260 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
2261 }
2262
2263 ifp->if_ipackets++;
2264
2265 #if NBPFILTER > 0
2266 /* Pass this up to any BPF listeners. */
2267 if (ifp->if_bpf)
2268 bpf_mtap(ifp->if_bpf, m);
2269 #endif /* NBPFILTER > 0 */
2270
2271 /* Pass it on. */
2272 (*ifp->if_input)(ifp, m);
2273 }
2274
2275 /* Update the receive pointer. */
2276 sc->sc_rxptr = i;
2277
2278 DPRINTF(WM_DEBUG_RX,
2279 ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2280 }
2281
2282 /*
2283 * wm_linkintr:
2284 *
2285 * Helper; handle link interrupts.
2286 */
2287 static void
2288 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2289 {
2290 uint32_t status;
2291
2292 /*
2293 * If we get a link status interrupt on a 1000BASE-T
2294 * device, just fall into the normal MII tick path.
2295 */
2296 if (sc->sc_flags & WM_F_HAS_MII) {
2297 if (icr & ICR_LSC) {
2298 DPRINTF(WM_DEBUG_LINK,
2299 ("%s: LINK: LSC -> mii_tick\n",
2300 sc->sc_dev.dv_xname));
2301 mii_tick(&sc->sc_mii);
2302 } else if (icr & ICR_RXSEQ) {
2303 DPRINTF(WM_DEBUG_LINK,
2304 ("%s: LINK Receive sequence error\n",
2305 sc->sc_dev.dv_xname));
2306 }
2307 return;
2308 }
2309
2310 /*
2311 * If we are now receiving /C/, check for link again in
2312 * a couple of link clock ticks.
2313 */
2314 if (icr & ICR_RXCFG) {
2315 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2316 sc->sc_dev.dv_xname));
2317 sc->sc_tbi_anstate = 2;
2318 }
2319
2320 if (icr & ICR_LSC) {
2321 status = CSR_READ(sc, WMREG_STATUS);
2322 if (status & STATUS_LU) {
2323 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2324 sc->sc_dev.dv_xname,
2325 (status & STATUS_FD) ? "FDX" : "HDX"));
2326 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2327 sc->sc_fcrtl &= ~FCRTL_XONE;
2328 if (status & STATUS_FD)
2329 sc->sc_tctl |=
2330 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2331 else
2332 sc->sc_tctl |=
2333 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2334 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2335 sc->sc_fcrtl |= FCRTL_XONE;
2336 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2337 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2338 WMREG_OLD_FCRTL : WMREG_FCRTL,
2339 sc->sc_fcrtl);
2340 sc->sc_tbi_linkup = 1;
2341 } else {
2342 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2343 sc->sc_dev.dv_xname));
2344 sc->sc_tbi_linkup = 0;
2345 }
2346 sc->sc_tbi_anstate = 2;
2347 wm_tbi_set_linkled(sc);
2348 } else if (icr & ICR_RXSEQ) {
2349 DPRINTF(WM_DEBUG_LINK,
2350 ("%s: LINK: Receive sequence error\n",
2351 sc->sc_dev.dv_xname));
2352 }
2353 }
2354
2355 /*
2356 * wm_tick:
2357 *
2358 * One second timer, used to check link status, sweep up
2359 * completed transmit jobs, etc.
2360 */
2361 static void
2362 wm_tick(void *arg)
2363 {
2364 struct wm_softc *sc = arg;
2365 int s;
2366
2367 s = splnet();
2368
2369 if (sc->sc_type >= WM_T_82542_2_1) {
2370 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2371 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2372 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2373 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2374 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2375 }
2376
2377 if (sc->sc_flags & WM_F_HAS_MII)
2378 mii_tick(&sc->sc_mii);
2379 else
2380 wm_tbi_check_link(sc);
2381
2382 splx(s);
2383
2384 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2385 }
2386
2387 /*
2388 * wm_reset:
2389 *
2390 * Reset the i82542 chip.
2391 */
2392 static void
2393 wm_reset(struct wm_softc *sc)
2394 {
2395 int i;
2396
2397 /*
2398 * Allocate on-chip memory according to the MTU size.
2399 * The Packet Buffer Allocation register must be written
2400 * before the chip is reset.
2401 */
2402 if (sc->sc_type < WM_T_82547) {
2403 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2404 PBA_40K : PBA_48K;
2405 } else {
2406 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2407 PBA_22K : PBA_30K;
2408 sc->sc_txfifo_head = 0;
2409 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2410 sc->sc_txfifo_size =
2411 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2412 sc->sc_txfifo_stall = 0;
2413 }
2414 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2415
2416 switch (sc->sc_type) {
2417 case WM_T_82544:
2418 case WM_T_82540:
2419 case WM_T_82545:
2420 case WM_T_82546:
2421 case WM_T_82541:
2422 case WM_T_82541_2:
2423 /*
2424 * These chips have a problem with the memory-mapped
2425 * write cycle when issuing the reset, so use I/O-mapped
2426 * access, if possible.
2427 */
2428 if (sc->sc_flags & WM_F_IOH_VALID)
2429 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2430 else
2431 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2432 break;
2433
2434 case WM_T_82545_3:
2435 case WM_T_82546_3:
2436 /* Use the shadow control register on these chips. */
2437 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2438 break;
2439
2440 default:
2441 /* Everything else can safely use the documented method. */
2442 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2443 break;
2444 }
2445 delay(10000);
2446
2447 for (i = 0; i < 1000; i++) {
2448 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2449 return;
2450 delay(20);
2451 }
2452
2453 if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2454 printf("%s: WARNING: reset failed to complete\n",
2455 sc->sc_dev.dv_xname);
2456 }
2457
2458 /*
2459 * wm_init: [ifnet interface function]
2460 *
2461 * Initialize the interface. Must be called at splnet().
2462 */
2463 static int
2464 wm_init(struct ifnet *ifp)
2465 {
2466 struct wm_softc *sc = ifp->if_softc;
2467 struct wm_rxsoft *rxs;
2468 int i, error = 0;
2469 uint32_t reg;
2470
2471 /*
2472 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2473 * There is a small but measurable benefit to avoiding the adjusment
2474 * of the descriptor so that the headers are aligned, for normal mtu,
2475 * on such platforms. One possibility is that the DMA itself is
2476 * slightly more efficient if the front of the entire packet (instead
2477 * of the front of the headers) is aligned.
2478 *
2479 * Note we must always set align_tweak to 0 if we are using
2480 * jumbo frames.
2481 */
2482 #ifdef __NO_STRICT_ALIGNMENT
2483 sc->sc_align_tweak = 0;
2484 #else
2485 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2486 sc->sc_align_tweak = 0;
2487 else
2488 sc->sc_align_tweak = 2;
2489 #endif /* __NO_STRICT_ALIGNMENT */
2490
2491 /* Cancel any pending I/O. */
2492 wm_stop(ifp, 0);
2493
2494 /* Reset the chip to a known state. */
2495 wm_reset(sc);
2496
2497 /* Initialize the transmit descriptor ring. */
2498 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2499 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2500 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2501 sc->sc_txfree = WM_NTXDESC(sc);
2502 sc->sc_txnext = 0;
2503
2504 sc->sc_txctx_ipcs = 0xffffffff;
2505 sc->sc_txctx_tucs = 0xffffffff;
2506
2507 if (sc->sc_type < WM_T_82543) {
2508 CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2509 CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2510 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2511 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2512 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2513 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2514 } else {
2515 CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2516 CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2517 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2518 CSR_WRITE(sc, WMREG_TDH, 0);
2519 CSR_WRITE(sc, WMREG_TDT, 0);
2520 CSR_WRITE(sc, WMREG_TIDV, 128);
2521
2522 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2523 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2524 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2525 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2526 }
2527 CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2528 CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2529
2530 /* Initialize the transmit job descriptors. */
2531 for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2532 sc->sc_txsoft[i].txs_mbuf = NULL;
2533 sc->sc_txsfree = WM_TXQUEUELEN(sc);
2534 sc->sc_txsnext = 0;
2535 sc->sc_txsdirty = 0;
2536
2537 /*
2538 * Initialize the receive descriptor and receive job
2539 * descriptor rings.
2540 */
2541 if (sc->sc_type < WM_T_82543) {
2542 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2543 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2544 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2545 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2546 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2547 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2548
2549 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2550 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2551 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2552 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2553 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2554 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2555 } else {
2556 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2557 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2558 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2559 CSR_WRITE(sc, WMREG_RDH, 0);
2560 CSR_WRITE(sc, WMREG_RDT, 0);
2561 CSR_WRITE(sc, WMREG_RDTR, 28 | RDTR_FPD);
2562 }
2563 for (i = 0; i < WM_NRXDESC; i++) {
2564 rxs = &sc->sc_rxsoft[i];
2565 if (rxs->rxs_mbuf == NULL) {
2566 if ((error = wm_add_rxbuf(sc, i)) != 0) {
2567 printf("%s: unable to allocate or map rx "
2568 "buffer %d, error = %d\n",
2569 sc->sc_dev.dv_xname, i, error);
2570 /*
2571 * XXX Should attempt to run with fewer receive
2572 * XXX buffers instead of just failing.
2573 */
2574 wm_rxdrain(sc);
2575 goto out;
2576 }
2577 } else
2578 WM_INIT_RXDESC(sc, i);
2579 }
2580 sc->sc_rxptr = 0;
2581 sc->sc_rxdiscard = 0;
2582 WM_RXCHAIN_RESET(sc);
2583
2584 /*
2585 * Clear out the VLAN table -- we don't use it (yet).
2586 */
2587 CSR_WRITE(sc, WMREG_VET, 0);
2588 for (i = 0; i < WM_VLAN_TABSIZE; i++)
2589 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2590
2591 /*
2592 * Set up flow-control parameters.
2593 *
2594 * XXX Values could probably stand some tuning.
2595 */
2596 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2597 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2598 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2599
2600 sc->sc_fcrtl = FCRTL_DFLT;
2601 if (sc->sc_type < WM_T_82543) {
2602 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2603 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2604 } else {
2605 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2606 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2607 }
2608 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2609
2610 #if 0 /* XXXJRT */
2611 /* Deal with VLAN enables. */
2612 if (sc->sc_ethercom.ec_nvlans != 0)
2613 sc->sc_ctrl |= CTRL_VME;
2614 else
2615 #endif /* XXXJRT */
2616 sc->sc_ctrl &= ~CTRL_VME;
2617
2618 /* Write the control registers. */
2619 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2620 #if 0
2621 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2622 #endif
2623
2624 /*
2625 * Set up checksum offload parameters.
2626 */
2627 reg = CSR_READ(sc, WMREG_RXCSUM);
2628 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
2629 reg |= RXCSUM_IPOFL;
2630 else
2631 reg &= ~RXCSUM_IPOFL;
2632 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
2633 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2634 else {
2635 reg &= ~RXCSUM_TUOFL;
2636 if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
2637 reg &= ~RXCSUM_IPOFL;
2638 }
2639 CSR_WRITE(sc, WMREG_RXCSUM, reg);
2640
2641 /*
2642 * Set up the interrupt registers.
2643 */
2644 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2645 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2646 ICR_RXO | ICR_RXT0;
2647 if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2648 sc->sc_icr |= ICR_RXCFG;
2649 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2650
2651 /* Set up the inter-packet gap. */
2652 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2653
2654 #if 0 /* XXXJRT */
2655 /* Set the VLAN ethernetype. */
2656 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2657 #endif
2658
2659 /*
2660 * Set up the transmit control register; we start out with
2661 * a collision distance suitable for FDX, but update it whe
2662 * we resolve the media type.
2663 */
2664 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2665 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2666 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2667
2668 /* Set the media. */
2669 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2670
2671 /*
2672 * Set up the receive control register; we actually program
2673 * the register when we set the receive filter. Use multicast
2674 * address offset type 0.
2675 *
2676 * Only the i82544 has the ability to strip the incoming
2677 * CRC, so we don't enable that feature.
2678 */
2679 sc->sc_mchash_type = 0;
2680 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
2681 RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2682
2683 if(MCLBYTES == 2048) {
2684 sc->sc_rctl |= RCTL_2k;
2685 } else {
2686 if(sc->sc_type >= WM_T_82543) {
2687 switch(MCLBYTES) {
2688 case 4096:
2689 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2690 break;
2691 case 8192:
2692 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2693 break;
2694 case 16384:
2695 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2696 break;
2697 default:
2698 panic("wm_init: MCLBYTES %d unsupported",
2699 MCLBYTES);
2700 break;
2701 }
2702 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
2703 }
2704
2705 /* Set the receive filter. */
2706 wm_set_filter(sc);
2707
2708 /* Start the one second link check clock. */
2709 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2710
2711 /* ...all done! */
2712 ifp->if_flags |= IFF_RUNNING;
2713 ifp->if_flags &= ~IFF_OACTIVE;
2714
2715 out:
2716 if (error)
2717 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2718 return (error);
2719 }
2720
2721 /*
2722 * wm_rxdrain:
2723 *
2724 * Drain the receive queue.
2725 */
2726 static void
2727 wm_rxdrain(struct wm_softc *sc)
2728 {
2729 struct wm_rxsoft *rxs;
2730 int i;
2731
2732 for (i = 0; i < WM_NRXDESC; i++) {
2733 rxs = &sc->sc_rxsoft[i];
2734 if (rxs->rxs_mbuf != NULL) {
2735 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2736 m_freem(rxs->rxs_mbuf);
2737 rxs->rxs_mbuf = NULL;
2738 }
2739 }
2740 }
2741
2742 /*
2743 * wm_stop: [ifnet interface function]
2744 *
2745 * Stop transmission on the interface.
2746 */
2747 static void
2748 wm_stop(struct ifnet *ifp, int disable)
2749 {
2750 struct wm_softc *sc = ifp->if_softc;
2751 struct wm_txsoft *txs;
2752 int i;
2753
2754 /* Stop the one second clock. */
2755 callout_stop(&sc->sc_tick_ch);
2756
2757 /* Stop the 82547 Tx FIFO stall check timer. */
2758 if (sc->sc_type == WM_T_82547)
2759 callout_stop(&sc->sc_txfifo_ch);
2760
2761 if (sc->sc_flags & WM_F_HAS_MII) {
2762 /* Down the MII. */
2763 mii_down(&sc->sc_mii);
2764 }
2765
2766 /* Stop the transmit and receive processes. */
2767 CSR_WRITE(sc, WMREG_TCTL, 0);
2768 CSR_WRITE(sc, WMREG_RCTL, 0);
2769
2770 /* Release any queued transmit buffers. */
2771 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2772 txs = &sc->sc_txsoft[i];
2773 if (txs->txs_mbuf != NULL) {
2774 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2775 m_freem(txs->txs_mbuf);
2776 txs->txs_mbuf = NULL;
2777 }
2778 }
2779
2780 if (disable)
2781 wm_rxdrain(sc);
2782
2783 /* Mark the interface as down and cancel the watchdog timer. */
2784 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2785 ifp->if_timer = 0;
2786 }
2787
2788 /*
2789 * wm_acquire_eeprom:
2790 *
2791 * Perform the EEPROM handshake required on some chips.
2792 */
2793 static int
2794 wm_acquire_eeprom(struct wm_softc *sc)
2795 {
2796 uint32_t reg;
2797 int x;
2798
2799 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2800 reg = CSR_READ(sc, WMREG_EECD);
2801
2802 /* Request EEPROM access. */
2803 reg |= EECD_EE_REQ;
2804 CSR_WRITE(sc, WMREG_EECD, reg);
2805
2806 /* ..and wait for it to be granted. */
2807 for (x = 0; x < 100; x++) {
2808 reg = CSR_READ(sc, WMREG_EECD);
2809 if (reg & EECD_EE_GNT)
2810 break;
2811 delay(5);
2812 }
2813 if ((reg & EECD_EE_GNT) == 0) {
2814 aprint_error("%s: could not acquire EEPROM GNT\n",
2815 sc->sc_dev.dv_xname);
2816 reg &= ~EECD_EE_REQ;
2817 CSR_WRITE(sc, WMREG_EECD, reg);
2818 return (1);
2819 }
2820 }
2821
2822 return (0);
2823 }
2824
2825 /*
2826 * wm_release_eeprom:
2827 *
2828 * Release the EEPROM mutex.
2829 */
2830 static void
2831 wm_release_eeprom(struct wm_softc *sc)
2832 {
2833 uint32_t reg;
2834
2835 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2836 reg = CSR_READ(sc, WMREG_EECD);
2837 reg &= ~EECD_EE_REQ;
2838 CSR_WRITE(sc, WMREG_EECD, reg);
2839 }
2840 }
2841
2842 /*
2843 * wm_eeprom_sendbits:
2844 *
2845 * Send a series of bits to the EEPROM.
2846 */
2847 static void
2848 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
2849 {
2850 uint32_t reg;
2851 int x;
2852
2853 reg = CSR_READ(sc, WMREG_EECD);
2854
2855 for (x = nbits; x > 0; x--) {
2856 if (bits & (1U << (x - 1)))
2857 reg |= EECD_DI;
2858 else
2859 reg &= ~EECD_DI;
2860 CSR_WRITE(sc, WMREG_EECD, reg);
2861 delay(2);
2862 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2863 delay(2);
2864 CSR_WRITE(sc, WMREG_EECD, reg);
2865 delay(2);
2866 }
2867 }
2868
2869 /*
2870 * wm_eeprom_recvbits:
2871 *
2872 * Receive a series of bits from the EEPROM.
2873 */
2874 static void
2875 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
2876 {
2877 uint32_t reg, val;
2878 int x;
2879
2880 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
2881
2882 val = 0;
2883 for (x = nbits; x > 0; x--) {
2884 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2885 delay(2);
2886 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
2887 val |= (1U << (x - 1));
2888 CSR_WRITE(sc, WMREG_EECD, reg);
2889 delay(2);
2890 }
2891 *valp = val;
2892 }
2893
2894 /*
2895 * wm_read_eeprom_uwire:
2896 *
2897 * Read a word from the EEPROM using the MicroWire protocol.
2898 */
2899 static int
2900 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2901 {
2902 uint32_t reg, val;
2903 int i;
2904
2905 for (i = 0; i < wordcnt; i++) {
2906 /* Clear SK and DI. */
2907 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
2908 CSR_WRITE(sc, WMREG_EECD, reg);
2909
2910 /* Set CHIP SELECT. */
2911 reg |= EECD_CS;
2912 CSR_WRITE(sc, WMREG_EECD, reg);
2913 delay(2);
2914
2915 /* Shift in the READ command. */
2916 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
2917
2918 /* Shift in address. */
2919 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
2920
2921 /* Shift out the data. */
2922 wm_eeprom_recvbits(sc, &val, 16);
2923 data[i] = val & 0xffff;
2924
2925 /* Clear CHIP SELECT. */
2926 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
2927 CSR_WRITE(sc, WMREG_EECD, reg);
2928 delay(2);
2929 }
2930
2931 return (0);
2932 }
2933
2934 /*
2935 * wm_spi_eeprom_ready:
2936 *
2937 * Wait for a SPI EEPROM to be ready for commands.
2938 */
2939 static int
2940 wm_spi_eeprom_ready(struct wm_softc *sc)
2941 {
2942 uint32_t val;
2943 int usec;
2944
2945 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
2946 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
2947 wm_eeprom_recvbits(sc, &val, 8);
2948 if ((val & SPI_SR_RDY) == 0)
2949 break;
2950 }
2951 if (usec >= SPI_MAX_RETRIES) {
2952 aprint_error("%s: EEPROM failed to become ready\n",
2953 sc->sc_dev.dv_xname);
2954 return (1);
2955 }
2956 return (0);
2957 }
2958
2959 /*
2960 * wm_read_eeprom_spi:
2961 *
2962 * Read a work from the EEPROM using the SPI protocol.
2963 */
2964 static int
2965 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2966 {
2967 uint32_t reg, val;
2968 int i;
2969 uint8_t opc;
2970
2971 /* Clear SK and CS. */
2972 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
2973 CSR_WRITE(sc, WMREG_EECD, reg);
2974 delay(2);
2975
2976 if (wm_spi_eeprom_ready(sc))
2977 return (1);
2978
2979 /* Toggle CS to flush commands. */
2980 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
2981 delay(2);
2982 CSR_WRITE(sc, WMREG_EECD, reg);
2983 delay(2);
2984
2985 opc = SPI_OPC_READ;
2986 if (sc->sc_ee_addrbits == 8 && word >= 128)
2987 opc |= SPI_OPC_A8;
2988
2989 wm_eeprom_sendbits(sc, opc, 8);
2990 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
2991
2992 for (i = 0; i < wordcnt; i++) {
2993 wm_eeprom_recvbits(sc, &val, 16);
2994 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
2995 }
2996
2997 /* Raise CS and clear SK. */
2998 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
2999 CSR_WRITE(sc, WMREG_EECD, reg);
3000 delay(2);
3001
3002 return (0);
3003 }
3004
3005 /*
3006 * wm_read_eeprom:
3007 *
3008 * Read data from the serial EEPROM.
3009 */
3010 static int
3011 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3012 {
3013 int rv;
3014
3015 if (wm_acquire_eeprom(sc))
3016 return (1);
3017
3018 if (sc->sc_flags & WM_F_EEPROM_SPI)
3019 rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3020 else
3021 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3022
3023 wm_release_eeprom(sc);
3024 return (rv);
3025 }
3026
3027 /*
3028 * wm_add_rxbuf:
3029 *
3030 * Add a receive buffer to the indiciated descriptor.
3031 */
3032 static int
3033 wm_add_rxbuf(struct wm_softc *sc, int idx)
3034 {
3035 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3036 struct mbuf *m;
3037 int error;
3038
3039 MGETHDR(m, M_DONTWAIT, MT_DATA);
3040 if (m == NULL)
3041 return (ENOBUFS);
3042
3043 MCLGET(m, M_DONTWAIT);
3044 if ((m->m_flags & M_EXT) == 0) {
3045 m_freem(m);
3046 return (ENOBUFS);
3047 }
3048
3049 if (rxs->rxs_mbuf != NULL)
3050 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3051
3052 rxs->rxs_mbuf = m;
3053
3054 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3055 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3056 BUS_DMA_READ|BUS_DMA_NOWAIT);
3057 if (error) {
3058 printf("%s: unable to load rx DMA map %d, error = %d\n",
3059 sc->sc_dev.dv_xname, idx, error);
3060 panic("wm_add_rxbuf"); /* XXX XXX XXX */
3061 }
3062
3063 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3064 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3065
3066 WM_INIT_RXDESC(sc, idx);
3067
3068 return (0);
3069 }
3070
3071 /*
3072 * wm_set_ral:
3073 *
3074 * Set an entery in the receive address list.
3075 */
3076 static void
3077 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3078 {
3079 uint32_t ral_lo, ral_hi;
3080
3081 if (enaddr != NULL) {
3082 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3083 (enaddr[3] << 24);
3084 ral_hi = enaddr[4] | (enaddr[5] << 8);
3085 ral_hi |= RAL_AV;
3086 } else {
3087 ral_lo = 0;
3088 ral_hi = 0;
3089 }
3090
3091 if (sc->sc_type >= WM_T_82544) {
3092 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3093 ral_lo);
3094 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3095 ral_hi);
3096 } else {
3097 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3098 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3099 }
3100 }
3101
3102 /*
3103 * wm_mchash:
3104 *
3105 * Compute the hash of the multicast address for the 4096-bit
3106 * multicast filter.
3107 */
3108 static uint32_t
3109 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3110 {
3111 static const int lo_shift[4] = { 4, 3, 2, 0 };
3112 static const int hi_shift[4] = { 4, 5, 6, 8 };
3113 uint32_t hash;
3114
3115 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3116 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3117
3118 return (hash & 0xfff);
3119 }
3120
3121 /*
3122 * wm_set_filter:
3123 *
3124 * Set up the receive filter.
3125 */
3126 static void
3127 wm_set_filter(struct wm_softc *sc)
3128 {
3129 struct ethercom *ec = &sc->sc_ethercom;
3130 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3131 struct ether_multi *enm;
3132 struct ether_multistep step;
3133 bus_addr_t mta_reg;
3134 uint32_t hash, reg, bit;
3135 int i;
3136
3137 if (sc->sc_type >= WM_T_82544)
3138 mta_reg = WMREG_CORDOVA_MTA;
3139 else
3140 mta_reg = WMREG_MTA;
3141
3142 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3143
3144 if (ifp->if_flags & IFF_BROADCAST)
3145 sc->sc_rctl |= RCTL_BAM;
3146 if (ifp->if_flags & IFF_PROMISC) {
3147 sc->sc_rctl |= RCTL_UPE;
3148 goto allmulti;
3149 }
3150
3151 /*
3152 * Set the station address in the first RAL slot, and
3153 * clear the remaining slots.
3154 */
3155 wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3156 for (i = 1; i < WM_RAL_TABSIZE; i++)
3157 wm_set_ral(sc, NULL, i);
3158
3159 /* Clear out the multicast table. */
3160 for (i = 0; i < WM_MC_TABSIZE; i++)
3161 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3162
3163 ETHER_FIRST_MULTI(step, ec, enm);
3164 while (enm != NULL) {
3165 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3166 /*
3167 * We must listen to a range of multicast addresses.
3168 * For now, just accept all multicasts, rather than
3169 * trying to set only those filter bits needed to match
3170 * the range. (At this time, the only use of address
3171 * ranges is for IP multicast routing, for which the
3172 * range is big enough to require all bits set.)
3173 */
3174 goto allmulti;
3175 }
3176
3177 hash = wm_mchash(sc, enm->enm_addrlo);
3178
3179 reg = (hash >> 5) & 0x7f;
3180 bit = hash & 0x1f;
3181
3182 hash = CSR_READ(sc, mta_reg + (reg << 2));
3183 hash |= 1U << bit;
3184
3185 /* XXX Hardware bug?? */
3186 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3187 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3188 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3189 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3190 } else
3191 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3192
3193 ETHER_NEXT_MULTI(step, enm);
3194 }
3195
3196 ifp->if_flags &= ~IFF_ALLMULTI;
3197 goto setit;
3198
3199 allmulti:
3200 ifp->if_flags |= IFF_ALLMULTI;
3201 sc->sc_rctl |= RCTL_MPE;
3202
3203 setit:
3204 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3205 }
3206
3207 /*
3208 * wm_tbi_mediainit:
3209 *
3210 * Initialize media for use on 1000BASE-X devices.
3211 */
3212 static void
3213 wm_tbi_mediainit(struct wm_softc *sc)
3214 {
3215 const char *sep = "";
3216
3217 if (sc->sc_type < WM_T_82543)
3218 sc->sc_tipg = TIPG_WM_DFLT;
3219 else
3220 sc->sc_tipg = TIPG_LG_DFLT;
3221
3222 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3223 wm_tbi_mediastatus);
3224
3225 /*
3226 * SWD Pins:
3227 *
3228 * 0 = Link LED (output)
3229 * 1 = Loss Of Signal (input)
3230 */
3231 sc->sc_ctrl |= CTRL_SWDPIO(0);
3232 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3233
3234 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3235
3236 #define ADD(ss, mm, dd) \
3237 do { \
3238 printf("%s%s", sep, ss); \
3239 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
3240 sep = ", "; \
3241 } while (/*CONSTCOND*/0)
3242
3243 printf("%s: ", sc->sc_dev.dv_xname);
3244 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3245 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3246 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3247 printf("\n");
3248
3249 #undef ADD
3250
3251 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3252 }
3253
3254 /*
3255 * wm_tbi_mediastatus: [ifmedia interface function]
3256 *
3257 * Get the current interface media status on a 1000BASE-X device.
3258 */
3259 static void
3260 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3261 {
3262 struct wm_softc *sc = ifp->if_softc;
3263 uint32_t ctrl;
3264
3265 ifmr->ifm_status = IFM_AVALID;
3266 ifmr->ifm_active = IFM_ETHER;
3267
3268 if (sc->sc_tbi_linkup == 0) {
3269 ifmr->ifm_active |= IFM_NONE;
3270 return;
3271 }
3272
3273 ifmr->ifm_status |= IFM_ACTIVE;
3274 ifmr->ifm_active |= IFM_1000_SX;
3275 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3276 ifmr->ifm_active |= IFM_FDX;
3277 ctrl = CSR_READ(sc, WMREG_CTRL);
3278 if (ctrl & CTRL_RFCE)
3279 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3280 if (ctrl & CTRL_TFCE)
3281 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3282 }
3283
3284 /*
3285 * wm_tbi_mediachange: [ifmedia interface function]
3286 *
3287 * Set hardware to newly-selected media on a 1000BASE-X device.
3288 */
3289 static int
3290 wm_tbi_mediachange(struct ifnet *ifp)
3291 {
3292 struct wm_softc *sc = ifp->if_softc;
3293 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3294 uint32_t status;
3295 int i;
3296
3297 sc->sc_txcw = ife->ifm_data;
3298 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3299 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3300 sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3301 sc->sc_txcw |= TXCW_ANE;
3302
3303 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3304 delay(10000);
3305
3306 /* NOTE: CTRL will update TFCE and RFCE automatically. */
3307
3308 sc->sc_tbi_anstate = 0;
3309
3310 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3311 /* Have signal; wait for the link to come up. */
3312 for (i = 0; i < 50; i++) {
3313 delay(10000);
3314 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3315 break;
3316 }
3317
3318 status = CSR_READ(sc, WMREG_STATUS);
3319 if (status & STATUS_LU) {
3320 /* Link is up. */
3321 DPRINTF(WM_DEBUG_LINK,
3322 ("%s: LINK: set media -> link up %s\n",
3323 sc->sc_dev.dv_xname,
3324 (status & STATUS_FD) ? "FDX" : "HDX"));
3325 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3326 sc->sc_fcrtl &= ~FCRTL_XONE;
3327 if (status & STATUS_FD)
3328 sc->sc_tctl |=
3329 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3330 else
3331 sc->sc_tctl |=
3332 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3333 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3334 sc->sc_fcrtl |= FCRTL_XONE;
3335 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3336 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3337 WMREG_OLD_FCRTL : WMREG_FCRTL,
3338 sc->sc_fcrtl);
3339 sc->sc_tbi_linkup = 1;
3340 } else {
3341 /* Link is down. */
3342 DPRINTF(WM_DEBUG_LINK,
3343 ("%s: LINK: set media -> link down\n",
3344 sc->sc_dev.dv_xname));
3345 sc->sc_tbi_linkup = 0;
3346 }
3347 } else {
3348 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3349 sc->sc_dev.dv_xname));
3350 sc->sc_tbi_linkup = 0;
3351 }
3352
3353 wm_tbi_set_linkled(sc);
3354
3355 return (0);
3356 }
3357
3358 /*
3359 * wm_tbi_set_linkled:
3360 *
3361 * Update the link LED on 1000BASE-X devices.
3362 */
3363 static void
3364 wm_tbi_set_linkled(struct wm_softc *sc)
3365 {
3366
3367 if (sc->sc_tbi_linkup)
3368 sc->sc_ctrl |= CTRL_SWDPIN(0);
3369 else
3370 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3371
3372 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3373 }
3374
3375 /*
3376 * wm_tbi_check_link:
3377 *
3378 * Check the link on 1000BASE-X devices.
3379 */
3380 static void
3381 wm_tbi_check_link(struct wm_softc *sc)
3382 {
3383 uint32_t rxcw, ctrl, status;
3384
3385 if (sc->sc_tbi_anstate == 0)
3386 return;
3387 else if (sc->sc_tbi_anstate > 1) {
3388 DPRINTF(WM_DEBUG_LINK,
3389 ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3390 sc->sc_tbi_anstate));
3391 sc->sc_tbi_anstate--;
3392 return;
3393 }
3394
3395 sc->sc_tbi_anstate = 0;
3396
3397 rxcw = CSR_READ(sc, WMREG_RXCW);
3398 ctrl = CSR_READ(sc, WMREG_CTRL);
3399 status = CSR_READ(sc, WMREG_STATUS);
3400
3401 if ((status & STATUS_LU) == 0) {
3402 DPRINTF(WM_DEBUG_LINK,
3403 ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3404 sc->sc_tbi_linkup = 0;
3405 } else {
3406 DPRINTF(WM_DEBUG_LINK,
3407 ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3408 (status & STATUS_FD) ? "FDX" : "HDX"));
3409 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3410 sc->sc_fcrtl &= ~FCRTL_XONE;
3411 if (status & STATUS_FD)
3412 sc->sc_tctl |=
3413 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3414 else
3415 sc->sc_tctl |=
3416 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3417 if (ctrl & CTRL_TFCE)
3418 sc->sc_fcrtl |= FCRTL_XONE;
3419 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3420 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3421 WMREG_OLD_FCRTL : WMREG_FCRTL,
3422 sc->sc_fcrtl);
3423 sc->sc_tbi_linkup = 1;
3424 }
3425
3426 wm_tbi_set_linkled(sc);
3427 }
3428
3429 /*
3430 * wm_gmii_reset:
3431 *
3432 * Reset the PHY.
3433 */
3434 static void
3435 wm_gmii_reset(struct wm_softc *sc)
3436 {
3437 uint32_t reg;
3438
3439 if (sc->sc_type >= WM_T_82544) {
3440 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3441 delay(20000);
3442
3443 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3444 delay(20000);
3445 } else {
3446 /* The PHY reset pin is active-low. */
3447 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3448 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3449 CTRL_EXT_SWDPIN(4));
3450 reg |= CTRL_EXT_SWDPIO(4);
3451
3452 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3453 delay(10);
3454
3455 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3456 delay(10);
3457
3458 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3459 delay(10);
3460 #if 0
3461 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3462 #endif
3463 }
3464 }
3465
3466 /*
3467 * wm_gmii_mediainit:
3468 *
3469 * Initialize media for use on 1000BASE-T devices.
3470 */
3471 static void
3472 wm_gmii_mediainit(struct wm_softc *sc)
3473 {
3474 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3475
3476 /* We have MII. */
3477 sc->sc_flags |= WM_F_HAS_MII;
3478
3479 sc->sc_tipg = TIPG_1000T_DFLT;
3480
3481 /*
3482 * Let the chip set speed/duplex on its own based on
3483 * signals from the PHY.
3484 */
3485 sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3486 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3487
3488 /* Initialize our media structures and probe the GMII. */
3489 sc->sc_mii.mii_ifp = ifp;
3490
3491 if (sc->sc_type >= WM_T_82544) {
3492 sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3493 sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3494 } else {
3495 sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3496 sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3497 }
3498 sc->sc_mii.mii_statchg = wm_gmii_statchg;
3499
3500 wm_gmii_reset(sc);
3501
3502 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3503 wm_gmii_mediastatus);
3504
3505 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3506 MII_OFFSET_ANY, MIIF_DOPAUSE);
3507 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3508 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3509 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3510 } else
3511 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3512 }
3513
3514 /*
3515 * wm_gmii_mediastatus: [ifmedia interface function]
3516 *
3517 * Get the current interface media status on a 1000BASE-T device.
3518 */
3519 static void
3520 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3521 {
3522 struct wm_softc *sc = ifp->if_softc;
3523
3524 mii_pollstat(&sc->sc_mii);
3525 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3526 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3527 sc->sc_flowflags;
3528 }
3529
3530 /*
3531 * wm_gmii_mediachange: [ifmedia interface function]
3532 *
3533 * Set hardware to newly-selected media on a 1000BASE-T device.
3534 */
3535 static int
3536 wm_gmii_mediachange(struct ifnet *ifp)
3537 {
3538 struct wm_softc *sc = ifp->if_softc;
3539
3540 if (ifp->if_flags & IFF_UP)
3541 mii_mediachg(&sc->sc_mii);
3542 return (0);
3543 }
3544
3545 #define MDI_IO CTRL_SWDPIN(2)
3546 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
3547 #define MDI_CLK CTRL_SWDPIN(3)
3548
3549 static void
3550 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3551 {
3552 uint32_t i, v;
3553
3554 v = CSR_READ(sc, WMREG_CTRL);
3555 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3556 v |= MDI_DIR | CTRL_SWDPIO(3);
3557
3558 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3559 if (data & i)
3560 v |= MDI_IO;
3561 else
3562 v &= ~MDI_IO;
3563 CSR_WRITE(sc, WMREG_CTRL, v);
3564 delay(10);
3565 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3566 delay(10);
3567 CSR_WRITE(sc, WMREG_CTRL, v);
3568 delay(10);
3569 }
3570 }
3571
3572 static uint32_t
3573 i82543_mii_recvbits(struct wm_softc *sc)
3574 {
3575 uint32_t v, i, data = 0;
3576
3577 v = CSR_READ(sc, WMREG_CTRL);
3578 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3579 v |= CTRL_SWDPIO(3);
3580
3581 CSR_WRITE(sc, WMREG_CTRL, v);
3582 delay(10);
3583 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3584 delay(10);
3585 CSR_WRITE(sc, WMREG_CTRL, v);
3586 delay(10);
3587
3588 for (i = 0; i < 16; i++) {
3589 data <<= 1;
3590 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3591 delay(10);
3592 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3593 data |= 1;
3594 CSR_WRITE(sc, WMREG_CTRL, v);
3595 delay(10);
3596 }
3597
3598 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3599 delay(10);
3600 CSR_WRITE(sc, WMREG_CTRL, v);
3601 delay(10);
3602
3603 return (data);
3604 }
3605
3606 #undef MDI_IO
3607 #undef MDI_DIR
3608 #undef MDI_CLK
3609
3610 /*
3611 * wm_gmii_i82543_readreg: [mii interface function]
3612 *
3613 * Read a PHY register on the GMII (i82543 version).
3614 */
3615 static int
3616 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3617 {
3618 struct wm_softc *sc = (void *) self;
3619 int rv;
3620
3621 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3622 i82543_mii_sendbits(sc, reg | (phy << 5) |
3623 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3624 rv = i82543_mii_recvbits(sc) & 0xffff;
3625
3626 DPRINTF(WM_DEBUG_GMII,
3627 ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3628 sc->sc_dev.dv_xname, phy, reg, rv));
3629
3630 return (rv);
3631 }
3632
3633 /*
3634 * wm_gmii_i82543_writereg: [mii interface function]
3635 *
3636 * Write a PHY register on the GMII (i82543 version).
3637 */
3638 static void
3639 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3640 {
3641 struct wm_softc *sc = (void *) self;
3642
3643 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3644 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3645 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3646 (MII_COMMAND_START << 30), 32);
3647 }
3648
3649 /*
3650 * wm_gmii_i82544_readreg: [mii interface function]
3651 *
3652 * Read a PHY register on the GMII.
3653 */
3654 static int
3655 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
3656 {
3657 struct wm_softc *sc = (void *) self;
3658 uint32_t mdic = 0;
3659 int i, rv;
3660
3661 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
3662 MDIC_REGADD(reg));
3663
3664 for (i = 0; i < 100; i++) {
3665 mdic = CSR_READ(sc, WMREG_MDIC);
3666 if (mdic & MDIC_READY)
3667 break;
3668 delay(10);
3669 }
3670
3671 if ((mdic & MDIC_READY) == 0) {
3672 printf("%s: MDIC read timed out: phy %d reg %d\n",
3673 sc->sc_dev.dv_xname, phy, reg);
3674 rv = 0;
3675 } else if (mdic & MDIC_E) {
3676 #if 0 /* This is normal if no PHY is present. */
3677 printf("%s: MDIC read error: phy %d reg %d\n",
3678 sc->sc_dev.dv_xname, phy, reg);
3679 #endif
3680 rv = 0;
3681 } else {
3682 rv = MDIC_DATA(mdic);
3683 if (rv == 0xffff)
3684 rv = 0;
3685 }
3686
3687 return (rv);
3688 }
3689
3690 /*
3691 * wm_gmii_i82544_writereg: [mii interface function]
3692 *
3693 * Write a PHY register on the GMII.
3694 */
3695 static void
3696 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
3697 {
3698 struct wm_softc *sc = (void *) self;
3699 uint32_t mdic = 0;
3700 int i;
3701
3702 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
3703 MDIC_REGADD(reg) | MDIC_DATA(val));
3704
3705 for (i = 0; i < 100; i++) {
3706 mdic = CSR_READ(sc, WMREG_MDIC);
3707 if (mdic & MDIC_READY)
3708 break;
3709 delay(10);
3710 }
3711
3712 if ((mdic & MDIC_READY) == 0)
3713 printf("%s: MDIC write timed out: phy %d reg %d\n",
3714 sc->sc_dev.dv_xname, phy, reg);
3715 else if (mdic & MDIC_E)
3716 printf("%s: MDIC write error: phy %d reg %d\n",
3717 sc->sc_dev.dv_xname, phy, reg);
3718 }
3719
3720 /*
3721 * wm_gmii_statchg: [mii interface function]
3722 *
3723 * Callback from MII layer when media changes.
3724 */
3725 static void
3726 wm_gmii_statchg(struct device *self)
3727 {
3728 struct wm_softc *sc = (void *) self;
3729 struct mii_data *mii = &sc->sc_mii;
3730
3731 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
3732 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3733 sc->sc_fcrtl &= ~FCRTL_XONE;
3734
3735 /*
3736 * Get flow control negotiation result.
3737 */
3738 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3739 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3740 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3741 mii->mii_media_active &= ~IFM_ETH_FMASK;
3742 }
3743
3744 if (sc->sc_flowflags & IFM_FLOW) {
3745 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
3746 sc->sc_ctrl |= CTRL_TFCE;
3747 sc->sc_fcrtl |= FCRTL_XONE;
3748 }
3749 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3750 sc->sc_ctrl |= CTRL_RFCE;
3751 }
3752
3753 if (sc->sc_mii.mii_media_active & IFM_FDX) {
3754 DPRINTF(WM_DEBUG_LINK,
3755 ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3756 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3757 } else {
3758 DPRINTF(WM_DEBUG_LINK,
3759 ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3760 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3761 }
3762
3763 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3764 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3765 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
3766 : WMREG_FCRTL, sc->sc_fcrtl);
3767 }
3768