Home | History | Annotate | Line # | Download | only in pci
if_wm.c revision 1.82
      1 /*	$NetBSD: if_wm.c,v 1.82 2004/10/06 05:29:51 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
     40  *
     41  * TODO (in order of importance):
     42  *
     43  *	- Rework how parameters are loaded from the EEPROM.
     44  *	- Figure out what to do with the i82545GM and i82546GB
     45  *	  SERDES controllers.
     46  *	- Fix hw VLAN assist.
     47  */
     48 
     49 #include <sys/cdefs.h>
     50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.82 2004/10/06 05:29:51 thorpej Exp $");
     51 
     52 #include "bpfilter.h"
     53 #include "rnd.h"
     54 
     55 #include <sys/param.h>
     56 #include <sys/systm.h>
     57 #include <sys/callout.h>
     58 #include <sys/mbuf.h>
     59 #include <sys/malloc.h>
     60 #include <sys/kernel.h>
     61 #include <sys/socket.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/errno.h>
     64 #include <sys/device.h>
     65 #include <sys/queue.h>
     66 
     67 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     68 
     69 #if NRND > 0
     70 #include <sys/rnd.h>
     71 #endif
     72 
     73 #include <net/if.h>
     74 #include <net/if_dl.h>
     75 #include <net/if_media.h>
     76 #include <net/if_ether.h>
     77 
     78 #if NBPFILTER > 0
     79 #include <net/bpf.h>
     80 #endif
     81 
     82 #include <netinet/in.h>			/* XXX for struct ip */
     83 #include <netinet/in_systm.h>		/* XXX for struct ip */
     84 #include <netinet/ip.h>			/* XXX for struct ip */
     85 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
     86 
     87 #include <machine/bus.h>
     88 #include <machine/intr.h>
     89 #include <machine/endian.h>
     90 
     91 #include <dev/mii/mii.h>
     92 #include <dev/mii/miivar.h>
     93 #include <dev/mii/mii_bitbang.h>
     94 
     95 #include <dev/pci/pcireg.h>
     96 #include <dev/pci/pcivar.h>
     97 #include <dev/pci/pcidevs.h>
     98 
     99 #include <dev/pci/if_wmreg.h>
    100 
    101 #ifdef WM_DEBUG
    102 #define	WM_DEBUG_LINK		0x01
    103 #define	WM_DEBUG_TX		0x02
    104 #define	WM_DEBUG_RX		0x04
    105 #define	WM_DEBUG_GMII		0x08
    106 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
    107 
    108 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
    109 #else
    110 #define	DPRINTF(x, y)	/* nothing */
    111 #endif /* WM_DEBUG */
    112 
    113 /*
    114  * Transmit descriptor list size.  Due to errata, we can only have
    115  * 256 hardware descriptors in the ring on < 82544, but we use 4096
    116  * on >= 82544.  We tell the upper layers that they can queue a lot
    117  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
    118  * of them at a time.
    119  *
    120  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
    121  * chains containing many small mbufs have been observed in zero-copy
    122  * situations with jumbo frames.
    123  */
    124 #define	WM_NTXSEGS		256
    125 #define	WM_IFQUEUELEN		256
    126 #define	WM_TXQUEUELEN_MAX	64
    127 #define	WM_TXQUEUELEN_MAX_82547	16
    128 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
    129 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
    130 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
    131 #define	WM_NTXDESC_82542	256
    132 #define	WM_NTXDESC_82544	4096
    133 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
    134 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
    135 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
    136 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
    137 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
    138 
    139 #define	WM_MAXTXDMA		ETHER_MAX_LEN_JUMBO
    140 
    141 /*
    142  * Receive descriptor list size.  We have one Rx buffer for normal
    143  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
    144  * packet.  We allocate 256 receive descriptors, each with a 2k
    145  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
    146  */
    147 #define	WM_NRXDESC		256
    148 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
    149 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
    150 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
    151 
    152 /*
    153  * Control structures are DMA'd to the i82542 chip.  We allocate them in
    154  * a single clump that maps to a single DMA segment to make serveral things
    155  * easier.
    156  */
    157 struct wm_control_data_82544 {
    158 	/*
    159 	 * The receive descriptors.
    160 	 */
    161 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    162 
    163 	/*
    164 	 * The transmit descriptors.  Put these at the end, because
    165 	 * we might use a smaller number of them.
    166 	 */
    167 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
    168 };
    169 
    170 struct wm_control_data_82542 {
    171 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    172 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
    173 };
    174 
    175 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
    176 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
    177 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
    178 
    179 /*
    180  * Software state for transmit jobs.
    181  */
    182 struct wm_txsoft {
    183 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    184 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    185 	int txs_firstdesc;		/* first descriptor in packet */
    186 	int txs_lastdesc;		/* last descriptor in packet */
    187 	int txs_ndesc;			/* # of descriptors used */
    188 };
    189 
    190 /*
    191  * Software state for receive buffers.  Each descriptor gets a
    192  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    193  * more than one buffer, we chain them together.
    194  */
    195 struct wm_rxsoft {
    196 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    197 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    198 };
    199 
    200 typedef enum {
    201 	WM_T_unknown		= 0,
    202 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
    203 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
    204 	WM_T_82543,			/* i82543 */
    205 	WM_T_82544,			/* i82544 */
    206 	WM_T_82540,			/* i82540 */
    207 	WM_T_82545,			/* i82545 */
    208 	WM_T_82545_3,			/* i82545 3.0+ */
    209 	WM_T_82546,			/* i82546 */
    210 	WM_T_82546_3,			/* i82546 3.0+ */
    211 	WM_T_82541,			/* i82541 */
    212 	WM_T_82541_2,			/* i82541 2.0+ */
    213 	WM_T_82547,			/* i82547 */
    214 	WM_T_82547_2,			/* i82547 2.0+ */
    215 } wm_chip_type;
    216 
    217 /*
    218  * Software state per device.
    219  */
    220 struct wm_softc {
    221 	struct device sc_dev;		/* generic device information */
    222 	bus_space_tag_t sc_st;		/* bus space tag */
    223 	bus_space_handle_t sc_sh;	/* bus space handle */
    224 	bus_space_tag_t sc_iot;		/* I/O space tag */
    225 	bus_space_handle_t sc_ioh;	/* I/O space handle */
    226 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    227 	struct ethercom sc_ethercom;	/* ethernet common data */
    228 	void *sc_sdhook;		/* shutdown hook */
    229 
    230 	wm_chip_type sc_type;		/* chip type */
    231 	int sc_flags;			/* flags; see below */
    232 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    233 	int sc_pcix_offset;		/* PCIX capability register offset */
    234 	int sc_flowflags;		/* 802.3x flow control flags */
    235 
    236 	void *sc_ih;			/* interrupt cookie */
    237 
    238 	int sc_ee_addrbits;		/* EEPROM address bits */
    239 
    240 	struct mii_data sc_mii;		/* MII/media information */
    241 
    242 	struct callout sc_tick_ch;	/* tick callout */
    243 
    244 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    245 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    246 
    247 	int		sc_align_tweak;
    248 
    249 	/*
    250 	 * Software state for the transmit and receive descriptors.
    251 	 */
    252 	int			sc_txnum;	/* must be a power of two */
    253 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
    254 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
    255 
    256 	/*
    257 	 * Control data structures.
    258 	 */
    259 	int			sc_ntxdesc;	/* must be a power of two */
    260 	struct wm_control_data_82544 *sc_control_data;
    261 #define	sc_txdescs	sc_control_data->wcd_txdescs
    262 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    263 
    264 #ifdef WM_EVENT_COUNTERS
    265 	/* Event counters. */
    266 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    267 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    268 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
    269 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    270 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    271 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    272 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    273 
    274 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    275 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    276 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    277 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    278 
    279 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
    280 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
    281 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
    282 
    283 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
    284 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    285 
    286 	struct evcnt sc_ev_tu;		/* Tx underrun */
    287 
    288 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
    289 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
    290 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
    291 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
    292 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
    293 #endif /* WM_EVENT_COUNTERS */
    294 
    295 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
    296 
    297 	int	sc_txfree;		/* number of free Tx descriptors */
    298 	int	sc_txnext;		/* next ready Tx descriptor */
    299 
    300 	int	sc_txsfree;		/* number of free Tx jobs */
    301 	int	sc_txsnext;		/* next free Tx job */
    302 	int	sc_txsdirty;		/* dirty Tx jobs */
    303 
    304 	/* These 5 variables are used only on the 82547. */
    305 	int	sc_txfifo_size;		/* Tx FIFO size */
    306 	int	sc_txfifo_head;		/* current head of FIFO */
    307 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
    308 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
    309 	struct callout sc_txfifo_ch;	/* Tx FIFO stall work-around timer */
    310 
    311 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
    312 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
    313 
    314 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
    315 
    316 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    317 	int	sc_rxdiscard;
    318 	int	sc_rxlen;
    319 	struct mbuf *sc_rxhead;
    320 	struct mbuf *sc_rxtail;
    321 	struct mbuf **sc_rxtailp;
    322 
    323 	uint32_t sc_ctrl;		/* prototype CTRL register */
    324 #if 0
    325 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
    326 #endif
    327 	uint32_t sc_icr;		/* prototype interrupt bits */
    328 	uint32_t sc_tctl;		/* prototype TCTL register */
    329 	uint32_t sc_rctl;		/* prototype RCTL register */
    330 	uint32_t sc_txcw;		/* prototype TXCW register */
    331 	uint32_t sc_tipg;		/* prototype TIPG register */
    332 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
    333 	uint32_t sc_pba;		/* prototype PBA register */
    334 
    335 	int sc_tbi_linkup;		/* TBI link status */
    336 	int sc_tbi_anstate;		/* autonegotiation state */
    337 
    338 	int sc_mchash_type;		/* multicast filter offset */
    339 
    340 #if NRND > 0
    341 	rndsource_element_t rnd_source;	/* random source */
    342 #endif
    343 };
    344 
    345 #define	WM_RXCHAIN_RESET(sc)						\
    346 do {									\
    347 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    348 	*(sc)->sc_rxtailp = NULL;					\
    349 	(sc)->sc_rxlen = 0;						\
    350 } while (/*CONSTCOND*/0)
    351 
    352 #define	WM_RXCHAIN_LINK(sc, m)						\
    353 do {									\
    354 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    355 	(sc)->sc_rxtailp = &(m)->m_next;				\
    356 } while (/*CONSTCOND*/0)
    357 
    358 /* sc_flags */
    359 #define	WM_F_HAS_MII		0x01	/* has MII */
    360 #define	WM_F_EEPROM_HANDSHAKE	0x02	/* requires EEPROM handshake */
    361 #define	WM_F_EEPROM_SPI		0x04	/* EEPROM is SPI */
    362 #define	WM_F_IOH_VALID		0x10	/* I/O handle is valid */
    363 #define	WM_F_BUS64		0x20	/* bus is 64-bit */
    364 #define	WM_F_PCIX		0x40	/* bus is PCI-X */
    365 #define	WM_F_CSA		0x80	/* bus is CSA */
    366 
    367 #ifdef WM_EVENT_COUNTERS
    368 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
    369 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
    370 #else
    371 #define	WM_EVCNT_INCR(ev)	/* nothing */
    372 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
    373 #endif
    374 
    375 #define	CSR_READ(sc, reg)						\
    376 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    377 #define	CSR_WRITE(sc, reg, val)						\
    378 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    379 #define	CSR_WRITE_FLUSH(sc)						\
    380 	(void) CSR_READ((sc), WMREG_STATUS)
    381 
    382 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
    383 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
    384 
    385 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
    386 #define	WM_CDTXADDR_HI(sc, x)						\
    387 	(sizeof(bus_addr_t) == 8 ?					\
    388 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
    389 
    390 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
    391 #define	WM_CDRXADDR_HI(sc, x)						\
    392 	(sizeof(bus_addr_t) == 8 ?					\
    393 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
    394 
    395 #define	WM_CDTXSYNC(sc, x, n, ops)					\
    396 do {									\
    397 	int __x, __n;							\
    398 									\
    399 	__x = (x);							\
    400 	__n = (n);							\
    401 									\
    402 	/* If it will wrap around, sync to the end of the ring. */	\
    403 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
    404 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    405 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
    406 		    (WM_NTXDESC(sc) - __x), (ops));			\
    407 		__n -= (WM_NTXDESC(sc) - __x);				\
    408 		__x = 0;						\
    409 	}								\
    410 									\
    411 	/* Now sync whatever is left. */				\
    412 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    413 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
    414 } while (/*CONSTCOND*/0)
    415 
    416 #define	WM_CDRXSYNC(sc, x, ops)						\
    417 do {									\
    418 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    419 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
    420 } while (/*CONSTCOND*/0)
    421 
    422 #define	WM_INIT_RXDESC(sc, x)						\
    423 do {									\
    424 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    425 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
    426 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    427 									\
    428 	/*								\
    429 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    430 	 * so that the payload after the Ethernet header is aligned	\
    431 	 * to a 4-byte boundary.					\
    432 	 *								\
    433 	 * XXX BRAINDAMAGE ALERT!					\
    434 	 * The stupid chip uses the same size for every buffer, which	\
    435 	 * is set in the Receive Control register.  We are using the 2K	\
    436 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    437 	 * reason, we can't "scoot" packets longer than the standard	\
    438 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    439 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    440 	 * the upper layer copy the headers.				\
    441 	 */								\
    442 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    443 									\
    444 	wm_set_dma_addr(&__rxd->wrx_addr,				\
    445 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
    446 	__rxd->wrx_len = 0;						\
    447 	__rxd->wrx_cksum = 0;						\
    448 	__rxd->wrx_status = 0;						\
    449 	__rxd->wrx_errors = 0;						\
    450 	__rxd->wrx_special = 0;						\
    451 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    452 									\
    453 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
    454 } while (/*CONSTCOND*/0)
    455 
    456 static void	wm_start(struct ifnet *);
    457 static void	wm_watchdog(struct ifnet *);
    458 static int	wm_ioctl(struct ifnet *, u_long, caddr_t);
    459 static int	wm_init(struct ifnet *);
    460 static void	wm_stop(struct ifnet *, int);
    461 
    462 static void	wm_shutdown(void *);
    463 
    464 static void	wm_reset(struct wm_softc *);
    465 static void	wm_rxdrain(struct wm_softc *);
    466 static int	wm_add_rxbuf(struct wm_softc *, int);
    467 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
    468 static void	wm_tick(void *);
    469 
    470 static void	wm_set_filter(struct wm_softc *);
    471 
    472 static int	wm_intr(void *);
    473 static void	wm_txintr(struct wm_softc *);
    474 static void	wm_rxintr(struct wm_softc *);
    475 static void	wm_linkintr(struct wm_softc *, uint32_t);
    476 
    477 static void	wm_tbi_mediainit(struct wm_softc *);
    478 static int	wm_tbi_mediachange(struct ifnet *);
    479 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
    480 
    481 static void	wm_tbi_set_linkled(struct wm_softc *);
    482 static void	wm_tbi_check_link(struct wm_softc *);
    483 
    484 static void	wm_gmii_reset(struct wm_softc *);
    485 
    486 static int	wm_gmii_i82543_readreg(struct device *, int, int);
    487 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
    488 
    489 static int	wm_gmii_i82544_readreg(struct device *, int, int);
    490 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
    491 
    492 static void	wm_gmii_statchg(struct device *);
    493 
    494 static void	wm_gmii_mediainit(struct wm_softc *);
    495 static int	wm_gmii_mediachange(struct ifnet *);
    496 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
    497 
    498 static int	wm_match(struct device *, struct cfdata *, void *);
    499 static void	wm_attach(struct device *, struct device *, void *);
    500 
    501 CFATTACH_DECL(wm, sizeof(struct wm_softc),
    502     wm_match, wm_attach, NULL, NULL);
    503 
    504 static void	wm_82547_txfifo_stall(void *);
    505 
    506 /*
    507  * Devices supported by this driver.
    508  */
    509 static const struct wm_product {
    510 	pci_vendor_id_t		wmp_vendor;
    511 	pci_product_id_t	wmp_product;
    512 	const char		*wmp_name;
    513 	wm_chip_type		wmp_type;
    514 	int			wmp_flags;
    515 #define	WMP_F_1000X		0x01
    516 #define	WMP_F_1000T		0x02
    517 } wm_products[] = {
    518 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
    519 	  "Intel i82542 1000BASE-X Ethernet",
    520 	  WM_T_82542_2_1,	WMP_F_1000X },
    521 
    522 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
    523 	  "Intel i82543GC 1000BASE-X Ethernet",
    524 	  WM_T_82543,		WMP_F_1000X },
    525 
    526 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
    527 	  "Intel i82543GC 1000BASE-T Ethernet",
    528 	  WM_T_82543,		WMP_F_1000T },
    529 
    530 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
    531 	  "Intel i82544EI 1000BASE-T Ethernet",
    532 	  WM_T_82544,		WMP_F_1000T },
    533 
    534 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
    535 	  "Intel i82544EI 1000BASE-X Ethernet",
    536 	  WM_T_82544,		WMP_F_1000X },
    537 
    538 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
    539 	  "Intel i82544GC 1000BASE-T Ethernet",
    540 	  WM_T_82544,		WMP_F_1000T },
    541 
    542 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
    543 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
    544 	  WM_T_82544,		WMP_F_1000T },
    545 
    546 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
    547 	  "Intel i82540EM 1000BASE-T Ethernet",
    548 	  WM_T_82540,		WMP_F_1000T },
    549 
    550 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
    551 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
    552 	  WM_T_82540,		WMP_F_1000T },
    553 
    554 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
    555 	  "Intel i82540EP 1000BASE-T Ethernet",
    556 	  WM_T_82540,		WMP_F_1000T },
    557 
    558 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
    559 	  "Intel i82540EP 1000BASE-T Ethernet",
    560 	  WM_T_82540,		WMP_F_1000T },
    561 
    562 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
    563 	  "Intel i82540EP 1000BASE-T Ethernet",
    564 	  WM_T_82540,		WMP_F_1000T },
    565 
    566 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
    567 	  "Intel i82545EM 1000BASE-T Ethernet",
    568 	  WM_T_82545,		WMP_F_1000T },
    569 
    570 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
    571 	  "Intel i82545GM 1000BASE-T Ethernet",
    572 	  WM_T_82545_3,		WMP_F_1000T },
    573 
    574 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
    575 	  "Intel i82545GM 1000BASE-X Ethernet",
    576 	  WM_T_82545_3,		WMP_F_1000X },
    577 #if 0
    578 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
    579 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
    580 	  WM_T_82545_3,		WMP_F_SERDES },
    581 #endif
    582 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
    583 	  "Intel i82546EB 1000BASE-T Ethernet",
    584 	  WM_T_82546,		WMP_F_1000T },
    585 
    586 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
    587 	  "Intel i82546EB 1000BASE-T Ethernet",
    588 	  WM_T_82546,		WMP_F_1000T },
    589 
    590 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
    591 	  "Intel i82545EM 1000BASE-X Ethernet",
    592 	  WM_T_82545,		WMP_F_1000X },
    593 
    594 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
    595 	  "Intel i82546EB 1000BASE-X Ethernet",
    596 	  WM_T_82546,		WMP_F_1000X },
    597 
    598 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
    599 	  "Intel i82546GB 1000BASE-T Ethernet",
    600 	  WM_T_82546_3,		WMP_F_1000T },
    601 
    602 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
    603 	  "Intel i82546GB 1000BASE-X Ethernet",
    604 	  WM_T_82546_3,		WMP_F_1000X },
    605 #if 0
    606 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
    607 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
    608 	  WM_T_82546_3,		WMP_F_SERDES },
    609 #endif
    610 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
    611 	  "Intel i82541EI 1000BASE-T Ethernet",
    612 	  WM_T_82541,		WMP_F_1000T },
    613 
    614 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
    615 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
    616 	  WM_T_82541,		WMP_F_1000T },
    617 
    618 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
    619 	  "Intel i82541ER 1000BASE-T Ethernet",
    620 	  WM_T_82541_2,		WMP_F_1000T },
    621 
    622 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
    623 	  "Intel i82541GI 1000BASE-T Ethernet",
    624 	  WM_T_82541_2,		WMP_F_1000T },
    625 
    626 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
    627 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
    628 	  WM_T_82541_2,		WMP_F_1000T },
    629 
    630 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
    631 	  "Intel i82547EI 1000BASE-T Ethernet",
    632 	  WM_T_82547,		WMP_F_1000T },
    633 
    634 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
    635 	  "Intel i82547GI 1000BASE-T Ethernet",
    636 	  WM_T_82547_2,		WMP_F_1000T },
    637 	{ 0,			0,
    638 	  NULL,
    639 	  0,			0 },
    640 };
    641 
    642 #ifdef WM_EVENT_COUNTERS
    643 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
    644 #endif /* WM_EVENT_COUNTERS */
    645 
    646 #if 0 /* Not currently used */
    647 static __inline uint32_t
    648 wm_io_read(struct wm_softc *sc, int reg)
    649 {
    650 
    651 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    652 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
    653 }
    654 #endif
    655 
    656 static __inline void
    657 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
    658 {
    659 
    660 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    661 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
    662 }
    663 
    664 static __inline void
    665 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
    666 {
    667 	wa->wa_low = htole32(v & 0xffffffffU);
    668 	if (sizeof(bus_addr_t) == 8)
    669 		wa->wa_high = htole32((uint64_t) v >> 32);
    670 	else
    671 		wa->wa_high = 0;
    672 }
    673 
    674 static const struct wm_product *
    675 wm_lookup(const struct pci_attach_args *pa)
    676 {
    677 	const struct wm_product *wmp;
    678 
    679 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
    680 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
    681 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
    682 			return (wmp);
    683 	}
    684 	return (NULL);
    685 }
    686 
    687 static int
    688 wm_match(struct device *parent, struct cfdata *cf, void *aux)
    689 {
    690 	struct pci_attach_args *pa = aux;
    691 
    692 	if (wm_lookup(pa) != NULL)
    693 		return (1);
    694 
    695 	return (0);
    696 }
    697 
    698 static void
    699 wm_attach(struct device *parent, struct device *self, void *aux)
    700 {
    701 	struct wm_softc *sc = (void *) self;
    702 	struct pci_attach_args *pa = aux;
    703 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    704 	pci_chipset_tag_t pc = pa->pa_pc;
    705 	pci_intr_handle_t ih;
    706 	size_t cdata_size;
    707 	const char *intrstr = NULL;
    708 	const char *eetype;
    709 	bus_space_tag_t memt;
    710 	bus_space_handle_t memh;
    711 	bus_dma_segment_t seg;
    712 	int memh_valid;
    713 	int i, rseg, error;
    714 	const struct wm_product *wmp;
    715 	uint8_t enaddr[ETHER_ADDR_LEN];
    716 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
    717 	pcireg_t preg, memtype;
    718 	uint32_t reg;
    719 	int pmreg;
    720 
    721 	callout_init(&sc->sc_tick_ch);
    722 
    723 	wmp = wm_lookup(pa);
    724 	if (wmp == NULL) {
    725 		printf("\n");
    726 		panic("wm_attach: impossible");
    727 	}
    728 
    729 	if (pci_dma64_available(pa))
    730 		sc->sc_dmat = pa->pa_dmat64;
    731 	else
    732 		sc->sc_dmat = pa->pa_dmat;
    733 
    734 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    735 	aprint_naive(": Ethernet controller\n");
    736 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
    737 
    738 	sc->sc_type = wmp->wmp_type;
    739 	if (sc->sc_type < WM_T_82543) {
    740 		if (preg < 2) {
    741 			aprint_error("%s: i82542 must be at least rev. 2\n",
    742 			    sc->sc_dev.dv_xname);
    743 			return;
    744 		}
    745 		if (preg < 3)
    746 			sc->sc_type = WM_T_82542_2_0;
    747 	}
    748 
    749 	/*
    750 	 * Map the device.  All devices support memory-mapped acccess,
    751 	 * and it is really required for normal operation.
    752 	 */
    753 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
    754 	switch (memtype) {
    755 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    756 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    757 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
    758 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    759 		break;
    760 	default:
    761 		memh_valid = 0;
    762 	}
    763 
    764 	if (memh_valid) {
    765 		sc->sc_st = memt;
    766 		sc->sc_sh = memh;
    767 	} else {
    768 		aprint_error("%s: unable to map device registers\n",
    769 		    sc->sc_dev.dv_xname);
    770 		return;
    771 	}
    772 
    773 	/*
    774 	 * In addition, i82544 and later support I/O mapped indirect
    775 	 * register access.  It is not desirable (nor supported in
    776 	 * this driver) to use it for normal operation, though it is
    777 	 * required to work around bugs in some chip versions.
    778 	 */
    779 	if (sc->sc_type >= WM_T_82544) {
    780 		/* First we have to find the I/O BAR. */
    781 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
    782 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
    783 			    PCI_MAPREG_TYPE_IO)
    784 				break;
    785 		}
    786 		if (i == PCI_MAPREG_END)
    787 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
    788 			    sc->sc_dev.dv_xname);
    789 		else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
    790 					0, &sc->sc_iot, &sc->sc_ioh,
    791 					NULL, NULL) == 0)
    792 			sc->sc_flags |= WM_F_IOH_VALID;
    793 		else
    794 			aprint_error("%s: WARNING: unable to map I/O space\n",
    795 			    sc->sc_dev.dv_xname);
    796 	}
    797 
    798 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
    799 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    800 	preg |= PCI_COMMAND_MASTER_ENABLE;
    801 	if (sc->sc_type < WM_T_82542_2_1)
    802 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
    803 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    804 
    805 	/* Get it out of power save mode, if needed. */
    806 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    807 		preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    808 		    PCI_PMCSR_STATE_MASK;
    809 		if (preg == PCI_PMCSR_STATE_D3) {
    810 			/*
    811 			 * The card has lost all configuration data in
    812 			 * this state, so punt.
    813 			 */
    814 			aprint_error("%s: unable to wake from power state D3\n",
    815 			    sc->sc_dev.dv_xname);
    816 			return;
    817 		}
    818 		if (preg != PCI_PMCSR_STATE_D0) {
    819 			aprint_normal("%s: waking up from power state D%d\n",
    820 			    sc->sc_dev.dv_xname, preg);
    821 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    822 			    PCI_PMCSR_STATE_D0);
    823 		}
    824 	}
    825 
    826 	/*
    827 	 * Map and establish our interrupt.
    828 	 */
    829 	if (pci_intr_map(pa, &ih)) {
    830 		aprint_error("%s: unable to map interrupt\n",
    831 		    sc->sc_dev.dv_xname);
    832 		return;
    833 	}
    834 	intrstr = pci_intr_string(pc, ih);
    835 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
    836 	if (sc->sc_ih == NULL) {
    837 		aprint_error("%s: unable to establish interrupt",
    838 		    sc->sc_dev.dv_xname);
    839 		if (intrstr != NULL)
    840 			aprint_normal(" at %s", intrstr);
    841 		aprint_normal("\n");
    842 		return;
    843 	}
    844 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    845 
    846 	/*
    847 	 * Determine a few things about the bus we're connected to.
    848 	 */
    849 	if (sc->sc_type < WM_T_82543) {
    850 		/* We don't really know the bus characteristics here. */
    851 		sc->sc_bus_speed = 33;
    852 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
    853 		/*
    854 		 * CSA (Communication Streaming Architecture) is about as fast
    855 		 * a 32-bit 66MHz PCI Bus.
    856 		 */
    857 		sc->sc_flags |= WM_F_CSA;
    858 		sc->sc_bus_speed = 66;
    859 		aprint_verbose("%s: Communication Streaming Architecture\n",
    860 		    sc->sc_dev.dv_xname);
    861 		if (sc->sc_type == WM_T_82547) {
    862 			callout_init(&sc->sc_txfifo_ch);
    863 			callout_setfunc(&sc->sc_txfifo_ch,
    864 					wm_82547_txfifo_stall, sc);
    865 			aprint_verbose("%s: using 82547 Tx FIFO stall "
    866 				       "work-around\n", sc->sc_dev.dv_xname);
    867 		}
    868 	} else {
    869 		reg = CSR_READ(sc, WMREG_STATUS);
    870 		if (reg & STATUS_BUS64)
    871 			sc->sc_flags |= WM_F_BUS64;
    872 		if (sc->sc_type >= WM_T_82544 &&
    873 		    (reg & STATUS_PCIX_MODE) != 0) {
    874 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
    875 
    876 			sc->sc_flags |= WM_F_PCIX;
    877 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    878 					       PCI_CAP_PCIX,
    879 					       &sc->sc_pcix_offset, NULL) == 0)
    880 				aprint_error("%s: unable to find PCIX "
    881 				    "capability\n", sc->sc_dev.dv_xname);
    882 			else if (sc->sc_type != WM_T_82545_3 &&
    883 				 sc->sc_type != WM_T_82546_3) {
    884 				/*
    885 				 * Work around a problem caused by the BIOS
    886 				 * setting the max memory read byte count
    887 				 * incorrectly.
    888 				 */
    889 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
    890 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
    891 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
    892 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
    893 
    894 				bytecnt =
    895 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
    896 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
    897 				maxb =
    898 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
    899 				    PCI_PCIX_STATUS_MAXB_SHIFT;
    900 				if (bytecnt > maxb) {
    901 					aprint_verbose("%s: resetting PCI-X "
    902 					    "MMRBC: %d -> %d\n",
    903 					    sc->sc_dev.dv_xname,
    904 					    512 << bytecnt, 512 << maxb);
    905 					pcix_cmd = (pcix_cmd &
    906 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
    907 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
    908 					pci_conf_write(pa->pa_pc, pa->pa_tag,
    909 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
    910 					    pcix_cmd);
    911 				}
    912 			}
    913 		}
    914 		/*
    915 		 * The quad port adapter is special; it has a PCIX-PCIX
    916 		 * bridge on the board, and can run the secondary bus at
    917 		 * a higher speed.
    918 		 */
    919 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
    920 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
    921 								      : 66;
    922 		} else if (sc->sc_flags & WM_F_PCIX) {
    923 			switch (reg & STATUS_PCIXSPD_MASK) {
    924 			case STATUS_PCIXSPD_50_66:
    925 				sc->sc_bus_speed = 66;
    926 				break;
    927 			case STATUS_PCIXSPD_66_100:
    928 				sc->sc_bus_speed = 100;
    929 				break;
    930 			case STATUS_PCIXSPD_100_133:
    931 				sc->sc_bus_speed = 133;
    932 				break;
    933 			default:
    934 				aprint_error(
    935 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
    936 				    sc->sc_dev.dv_xname,
    937 				    reg & STATUS_PCIXSPD_MASK);
    938 				sc->sc_bus_speed = 66;
    939 			}
    940 		} else
    941 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
    942 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
    943 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
    944 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
    945 	}
    946 
    947 	/*
    948 	 * Allocate the control data structures, and create and load the
    949 	 * DMA map for it.
    950 	 *
    951 	 * NOTE: All Tx descriptors must be in the same 4G segment of
    952 	 * memory.  So must Rx descriptors.  We simplify by allocating
    953 	 * both sets within the same 4G segment.
    954 	 */
    955 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
    956 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
    957 	cdata_size = sc->sc_type < WM_T_82544 ?
    958 	    sizeof(struct wm_control_data_82542) :
    959 	    sizeof(struct wm_control_data_82544);
    960 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
    961 				      (bus_size_t) 0x100000000ULL,
    962 				      &seg, 1, &rseg, 0)) != 0) {
    963 		aprint_error(
    964 		    "%s: unable to allocate control data, error = %d\n",
    965 		    sc->sc_dev.dv_xname, error);
    966 		goto fail_0;
    967 	}
    968 
    969 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
    970 				    (caddr_t *)&sc->sc_control_data, 0)) != 0) {
    971 		aprint_error("%s: unable to map control data, error = %d\n",
    972 		    sc->sc_dev.dv_xname, error);
    973 		goto fail_1;
    974 	}
    975 
    976 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
    977 				       0, 0, &sc->sc_cddmamap)) != 0) {
    978 		aprint_error("%s: unable to create control data DMA map, "
    979 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    980 		goto fail_2;
    981 	}
    982 
    983 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    984 				     sc->sc_control_data, cdata_size, NULL,
    985 				     0)) != 0) {
    986 		aprint_error(
    987 		    "%s: unable to load control data DMA map, error = %d\n",
    988 		    sc->sc_dev.dv_xname, error);
    989 		goto fail_3;
    990 	}
    991 
    992 
    993 	/*
    994 	 * Create the transmit buffer DMA maps.
    995 	 */
    996 	WM_TXQUEUELEN(sc) =
    997 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
    998 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
    999 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1000 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
   1001 					       WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
   1002 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1003 			aprint_error("%s: unable to create Tx DMA map %d, "
   1004 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1005 			goto fail_4;
   1006 		}
   1007 	}
   1008 
   1009 	/*
   1010 	 * Create the receive buffer DMA maps.
   1011 	 */
   1012 	for (i = 0; i < WM_NRXDESC; i++) {
   1013 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1014 					       MCLBYTES, 0, 0,
   1015 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1016 			aprint_error("%s: unable to create Rx DMA map %d, "
   1017 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1018 			goto fail_5;
   1019 		}
   1020 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1021 	}
   1022 
   1023 	/*
   1024 	 * Reset the chip to a known state.
   1025 	 */
   1026 	wm_reset(sc);
   1027 
   1028 	/*
   1029 	 * Get some information about the EEPROM.
   1030 	 */
   1031 	if (sc->sc_type >= WM_T_82540)
   1032 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
   1033 	if (sc->sc_type <= WM_T_82544)
   1034 		sc->sc_ee_addrbits = 6;
   1035 	else if (sc->sc_type <= WM_T_82546_3) {
   1036 		reg = CSR_READ(sc, WMREG_EECD);
   1037 		if (reg & EECD_EE_SIZE)
   1038 			sc->sc_ee_addrbits = 8;
   1039 		else
   1040 			sc->sc_ee_addrbits = 6;
   1041 	} else if (sc->sc_type <= WM_T_82547_2) {
   1042 		reg = CSR_READ(sc, WMREG_EECD);
   1043 		if (reg & EECD_EE_TYPE) {
   1044 			sc->sc_flags |= WM_F_EEPROM_SPI;
   1045 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1046 		} else
   1047 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
   1048 	} else {
   1049 		/* Assume everything else is SPI. */
   1050 		reg = CSR_READ(sc, WMREG_EECD);
   1051 		sc->sc_flags |= WM_F_EEPROM_SPI;
   1052 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1053 	}
   1054 	if (sc->sc_flags & WM_F_EEPROM_SPI)
   1055 		eetype = "SPI";
   1056 	else
   1057 		eetype = "MicroWire";
   1058 	aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
   1059 	    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
   1060 	    sc->sc_ee_addrbits, eetype);
   1061 
   1062 	/*
   1063 	 * Read the Ethernet address from the EEPROM.
   1064 	 */
   1065 	if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
   1066 	    sizeof(myea) / sizeof(myea[0]), myea)) {
   1067 		aprint_error("%s: unable to read Ethernet address\n",
   1068 		    sc->sc_dev.dv_xname);
   1069 		return;
   1070 	}
   1071 	enaddr[0] = myea[0] & 0xff;
   1072 	enaddr[1] = myea[0] >> 8;
   1073 	enaddr[2] = myea[1] & 0xff;
   1074 	enaddr[3] = myea[1] >> 8;
   1075 	enaddr[4] = myea[2] & 0xff;
   1076 	enaddr[5] = myea[2] >> 8;
   1077 
   1078 	/*
   1079 	 * Toggle the LSB of the MAC address on the second port
   1080 	 * of the i82546.
   1081 	 */
   1082 	if (sc->sc_type == WM_T_82546) {
   1083 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
   1084 			enaddr[5] ^= 1;
   1085 	}
   1086 
   1087 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
   1088 	    ether_sprintf(enaddr));
   1089 
   1090 	/*
   1091 	 * Read the config info from the EEPROM, and set up various
   1092 	 * bits in the control registers based on their contents.
   1093 	 */
   1094 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
   1095 		aprint_error("%s: unable to read CFG1 from EEPROM\n",
   1096 		    sc->sc_dev.dv_xname);
   1097 		return;
   1098 	}
   1099 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
   1100 		aprint_error("%s: unable to read CFG2 from EEPROM\n",
   1101 		    sc->sc_dev.dv_xname);
   1102 		return;
   1103 	}
   1104 	if (sc->sc_type >= WM_T_82544) {
   1105 		if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
   1106 			aprint_error("%s: unable to read SWDPIN from EEPROM\n",
   1107 			    sc->sc_dev.dv_xname);
   1108 			return;
   1109 		}
   1110 	}
   1111 
   1112 	if (cfg1 & EEPROM_CFG1_ILOS)
   1113 		sc->sc_ctrl |= CTRL_ILOS;
   1114 	if (sc->sc_type >= WM_T_82544) {
   1115 		sc->sc_ctrl |=
   1116 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
   1117 		    CTRL_SWDPIO_SHIFT;
   1118 		sc->sc_ctrl |=
   1119 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
   1120 		    CTRL_SWDPINS_SHIFT;
   1121 	} else {
   1122 		sc->sc_ctrl |=
   1123 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
   1124 		    CTRL_SWDPIO_SHIFT;
   1125 	}
   1126 
   1127 #if 0
   1128 	if (sc->sc_type >= WM_T_82544) {
   1129 		if (cfg1 & EEPROM_CFG1_IPS0)
   1130 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
   1131 		if (cfg1 & EEPROM_CFG1_IPS1)
   1132 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
   1133 		sc->sc_ctrl_ext |=
   1134 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
   1135 		    CTRL_EXT_SWDPIO_SHIFT;
   1136 		sc->sc_ctrl_ext |=
   1137 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
   1138 		    CTRL_EXT_SWDPINS_SHIFT;
   1139 	} else {
   1140 		sc->sc_ctrl_ext |=
   1141 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
   1142 		    CTRL_EXT_SWDPIO_SHIFT;
   1143 	}
   1144 #endif
   1145 
   1146 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   1147 #if 0
   1148 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   1149 #endif
   1150 
   1151 	/*
   1152 	 * Set up some register offsets that are different between
   1153 	 * the i82542 and the i82543 and later chips.
   1154 	 */
   1155 	if (sc->sc_type < WM_T_82543) {
   1156 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
   1157 		sc->sc_tdt_reg = WMREG_OLD_TDT;
   1158 	} else {
   1159 		sc->sc_rdt_reg = WMREG_RDT;
   1160 		sc->sc_tdt_reg = WMREG_TDT;
   1161 	}
   1162 
   1163 	/*
   1164 	 * Determine if we're TBI or GMII mode, and initialize the
   1165 	 * media structures accordingly.
   1166 	 */
   1167 	if (sc->sc_type < WM_T_82543 ||
   1168 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
   1169 		if (wmp->wmp_flags & WMP_F_1000T)
   1170 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
   1171 			    "product!\n", sc->sc_dev.dv_xname);
   1172 		wm_tbi_mediainit(sc);
   1173 	} else {
   1174 		if (wmp->wmp_flags & WMP_F_1000X)
   1175 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
   1176 			    "product!\n", sc->sc_dev.dv_xname);
   1177 		wm_gmii_mediainit(sc);
   1178 	}
   1179 
   1180 	ifp = &sc->sc_ethercom.ec_if;
   1181 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
   1182 	ifp->if_softc = sc;
   1183 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1184 	ifp->if_ioctl = wm_ioctl;
   1185 	ifp->if_start = wm_start;
   1186 	ifp->if_watchdog = wm_watchdog;
   1187 	ifp->if_init = wm_init;
   1188 	ifp->if_stop = wm_stop;
   1189 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
   1190 	IFQ_SET_READY(&ifp->if_snd);
   1191 
   1192 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1193 
   1194 	/*
   1195 	 * If we're a i82543 or greater, we can support VLANs.
   1196 	 */
   1197 	if (sc->sc_type >= WM_T_82543)
   1198 		sc->sc_ethercom.ec_capabilities |=
   1199 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
   1200 
   1201 	/*
   1202 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
   1203 	 * on i82543 and later.
   1204 	 */
   1205 	if (sc->sc_type >= WM_T_82543)
   1206 		ifp->if_capabilities |=
   1207 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
   1208 
   1209 	/*
   1210 	 * Attach the interface.
   1211 	 */
   1212 	if_attach(ifp);
   1213 	ether_ifattach(ifp, enaddr);
   1214 #if NRND > 0
   1215 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1216 	    RND_TYPE_NET, 0);
   1217 #endif
   1218 
   1219 #ifdef WM_EVENT_COUNTERS
   1220 	/* Attach event counters. */
   1221 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1222 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1223 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1224 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1225 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
   1226 	    NULL, sc->sc_dev.dv_xname, "txfifo_stall");
   1227 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
   1228 	    NULL, sc->sc_dev.dv_xname, "txdw");
   1229 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
   1230 	    NULL, sc->sc_dev.dv_xname, "txqe");
   1231 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1232 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1233 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
   1234 	    NULL, sc->sc_dev.dv_xname, "linkintr");
   1235 
   1236 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1237 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1238 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
   1239 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
   1240 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1241 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1242 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
   1243 	    NULL, sc->sc_dev.dv_xname, "txtusum");
   1244 
   1245 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
   1246 	    NULL, sc->sc_dev.dv_xname, "txctx init");
   1247 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
   1248 	    NULL, sc->sc_dev.dv_xname, "txctx hit");
   1249 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
   1250 	    NULL, sc->sc_dev.dv_xname, "txctx miss");
   1251 
   1252 	for (i = 0; i < WM_NTXSEGS; i++) {
   1253 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
   1254 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
   1255 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
   1256 	}
   1257 
   1258 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
   1259 	    NULL, sc->sc_dev.dv_xname, "txdrop");
   1260 
   1261 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
   1262 	    NULL, sc->sc_dev.dv_xname, "tu");
   1263 
   1264 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
   1265 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
   1266 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
   1267 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
   1268 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
   1269 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
   1270 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
   1271 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
   1272 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
   1273 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
   1274 #endif /* WM_EVENT_COUNTERS */
   1275 
   1276 	/*
   1277 	 * Make sure the interface is shutdown during reboot.
   1278 	 */
   1279 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
   1280 	if (sc->sc_sdhook == NULL)
   1281 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
   1282 		    sc->sc_dev.dv_xname);
   1283 	return;
   1284 
   1285 	/*
   1286 	 * Free any resources we've allocated during the failed attach
   1287 	 * attempt.  Do this in reverse order and fall through.
   1288 	 */
   1289  fail_5:
   1290 	for (i = 0; i < WM_NRXDESC; i++) {
   1291 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1292 			bus_dmamap_destroy(sc->sc_dmat,
   1293 			    sc->sc_rxsoft[i].rxs_dmamap);
   1294 	}
   1295  fail_4:
   1296 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1297 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1298 			bus_dmamap_destroy(sc->sc_dmat,
   1299 			    sc->sc_txsoft[i].txs_dmamap);
   1300 	}
   1301 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1302  fail_3:
   1303 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1304  fail_2:
   1305 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1306 	    cdata_size);
   1307  fail_1:
   1308 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1309  fail_0:
   1310 	return;
   1311 }
   1312 
   1313 /*
   1314  * wm_shutdown:
   1315  *
   1316  *	Make sure the interface is stopped at reboot time.
   1317  */
   1318 static void
   1319 wm_shutdown(void *arg)
   1320 {
   1321 	struct wm_softc *sc = arg;
   1322 
   1323 	wm_stop(&sc->sc_ethercom.ec_if, 1);
   1324 }
   1325 
   1326 /*
   1327  * wm_tx_cksum:
   1328  *
   1329  *	Set up TCP/IP checksumming parameters for the
   1330  *	specified packet.
   1331  */
   1332 static int
   1333 wm_tx_cksum(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
   1334     uint8_t *fieldsp)
   1335 {
   1336 	struct mbuf *m0 = txs->txs_mbuf;
   1337 	struct livengood_tcpip_ctxdesc *t;
   1338 	uint32_t ipcs, tucs;
   1339 	struct ip *ip;
   1340 	struct ether_header *eh;
   1341 	int offset, iphl;
   1342 	uint8_t fields = 0;
   1343 
   1344 	/*
   1345 	 * XXX It would be nice if the mbuf pkthdr had offset
   1346 	 * fields for the protocol headers.
   1347 	 */
   1348 
   1349 	eh = mtod(m0, struct ether_header *);
   1350 	switch (htons(eh->ether_type)) {
   1351 	case ETHERTYPE_IP:
   1352 		iphl = sizeof(struct ip);
   1353 		offset = ETHER_HDR_LEN;
   1354 		break;
   1355 
   1356 	case ETHERTYPE_VLAN:
   1357 		iphl = sizeof(struct ip);
   1358 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1359 		break;
   1360 
   1361 	default:
   1362 		/*
   1363 		 * Don't support this protocol or encapsulation.
   1364 		 */
   1365 		*fieldsp = 0;
   1366 		*cmdp = 0;
   1367 		return (0);
   1368 	}
   1369 
   1370 	if (m0->m_len < (offset + iphl)) {
   1371 		if ((txs->txs_mbuf = m_pullup(m0, offset + iphl)) == NULL) {
   1372 			printf("%s: wm_tx_cksum: mbuf allocation failed, "
   1373 			    "packet dropped\n", sc->sc_dev.dv_xname);
   1374 			return (ENOMEM);
   1375 		}
   1376 		m0 = txs->txs_mbuf;
   1377 	}
   1378 
   1379 	ip = (struct ip *) (mtod(m0, caddr_t) + offset);
   1380 	iphl = ip->ip_hl << 2;
   1381 
   1382 	/*
   1383 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1384 	 * offload feature, if we load the context descriptor, we
   1385 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1386 	 */
   1387 
   1388 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1389 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
   1390 		fields |= WTX_IXSM;
   1391 		ipcs = WTX_TCPIP_IPCSS(offset) |
   1392 		    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1393 		    WTX_TCPIP_IPCSE(offset + iphl - 1);
   1394 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
   1395 		/* Use the cached value. */
   1396 		ipcs = sc->sc_txctx_ipcs;
   1397 	} else {
   1398 		/* Just initialize it to the likely value anyway. */
   1399 		ipcs = WTX_TCPIP_IPCSS(offset) |
   1400 		    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1401 		    WTX_TCPIP_IPCSE(offset + iphl - 1);
   1402 	}
   1403 
   1404 	offset += iphl;
   1405 
   1406 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1407 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
   1408 		fields |= WTX_TXSM;
   1409 		tucs = WTX_TCPIP_TUCSS(offset) |
   1410 		    WTX_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
   1411 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1412 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
   1413 		/* Use the cached value. */
   1414 		tucs = sc->sc_txctx_tucs;
   1415 	} else {
   1416 		/* Just initialize it to a valid TCP context. */
   1417 		tucs = WTX_TCPIP_TUCSS(offset) |
   1418 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1419 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1420 	}
   1421 
   1422 	if (sc->sc_txctx_ipcs == ipcs &&
   1423 	    sc->sc_txctx_tucs == tucs) {
   1424 		/* Cached context is fine. */
   1425 		WM_EVCNT_INCR(&sc->sc_ev_txctx_hit);
   1426 	} else {
   1427 		/* Fill in the context descriptor. */
   1428 #ifdef WM_EVENT_COUNTERS
   1429 		if (sc->sc_txctx_ipcs == 0xffffffff &&
   1430 		    sc->sc_txctx_tucs == 0xffffffff)
   1431 			WM_EVCNT_INCR(&sc->sc_ev_txctx_init);
   1432 		else
   1433 			WM_EVCNT_INCR(&sc->sc_ev_txctx_miss);
   1434 #endif
   1435 		t = (struct livengood_tcpip_ctxdesc *)
   1436 		    &sc->sc_txdescs[sc->sc_txnext];
   1437 		t->tcpip_ipcs = htole32(ipcs);
   1438 		t->tcpip_tucs = htole32(tucs);
   1439 		t->tcpip_cmdlen = htole32(WTX_CMD_DEXT | WTX_DTYP_C);
   1440 		t->tcpip_seg = 0;
   1441 		WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1442 
   1443 		sc->sc_txctx_ipcs = ipcs;
   1444 		sc->sc_txctx_tucs = tucs;
   1445 
   1446 		sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
   1447 		txs->txs_ndesc++;
   1448 	}
   1449 
   1450 	*cmdp = WTX_CMD_DEXT | WTX_DTYP_D;
   1451 	*fieldsp = fields;
   1452 
   1453 	return (0);
   1454 }
   1455 
   1456 static void
   1457 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
   1458 {
   1459 	struct mbuf *m;
   1460 	int i;
   1461 
   1462 	printf("%s: mbuf chain:\n", sc->sc_dev.dv_xname);
   1463 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
   1464 		printf("\tm_data = %p, m_len = %d, m_flags = 0x%08x\n",
   1465 		    m->m_data, m->m_len, m->m_flags);
   1466 	printf("\t%d mbuf%s in chain\n", i, i == 1 ? "" : "s");
   1467 }
   1468 
   1469 /*
   1470  * wm_82547_txfifo_stall:
   1471  *
   1472  *	Callout used to wait for the 82547 Tx FIFO to drain,
   1473  *	reset the FIFO pointers, and restart packet transmission.
   1474  */
   1475 static void
   1476 wm_82547_txfifo_stall(void *arg)
   1477 {
   1478 	struct wm_softc *sc = arg;
   1479 	int s;
   1480 
   1481 	s = splnet();
   1482 
   1483 	if (sc->sc_txfifo_stall) {
   1484 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
   1485 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
   1486 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
   1487 			/*
   1488 			 * Packets have drained.  Stop transmitter, reset
   1489 			 * FIFO pointers, restart transmitter, and kick
   1490 			 * the packet queue.
   1491 			 */
   1492 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
   1493 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
   1494 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
   1495 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
   1496 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
   1497 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
   1498 			CSR_WRITE(sc, WMREG_TCTL, tctl);
   1499 			CSR_WRITE_FLUSH(sc);
   1500 
   1501 			sc->sc_txfifo_head = 0;
   1502 			sc->sc_txfifo_stall = 0;
   1503 			wm_start(&sc->sc_ethercom.ec_if);
   1504 		} else {
   1505 			/*
   1506 			 * Still waiting for packets to drain; try again in
   1507 			 * another tick.
   1508 			 */
   1509 			callout_schedule(&sc->sc_txfifo_ch, 1);
   1510 		}
   1511 	}
   1512 
   1513 	splx(s);
   1514 }
   1515 
   1516 /*
   1517  * wm_82547_txfifo_bugchk:
   1518  *
   1519  *	Check for bug condition in the 82547 Tx FIFO.  We need to
   1520  *	prevent enqueueing a packet that would wrap around the end
   1521  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
   1522  *
   1523  *	We do this by checking the amount of space before the end
   1524  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
   1525  *	the Tx FIFO, wait for all remaining packets to drain, reset
   1526  *	the internal FIFO pointers to the beginning, and restart
   1527  *	transmission on the interface.
   1528  */
   1529 #define	WM_FIFO_HDR		0x10
   1530 #define	WM_82547_PAD_LEN	0x3e0
   1531 static int
   1532 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
   1533 {
   1534 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
   1535 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
   1536 
   1537 	/* Just return if already stalled. */
   1538 	if (sc->sc_txfifo_stall)
   1539 		return (1);
   1540 
   1541 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1542 		/* Stall only occurs in half-duplex mode. */
   1543 		goto send_packet;
   1544 	}
   1545 
   1546 	if (len >= WM_82547_PAD_LEN + space) {
   1547 		sc->sc_txfifo_stall = 1;
   1548 		callout_schedule(&sc->sc_txfifo_ch, 1);
   1549 		return (1);
   1550 	}
   1551 
   1552  send_packet:
   1553 	sc->sc_txfifo_head += len;
   1554 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
   1555 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
   1556 
   1557 	return (0);
   1558 }
   1559 
   1560 /*
   1561  * wm_start:		[ifnet interface function]
   1562  *
   1563  *	Start packet transmission on the interface.
   1564  */
   1565 static void
   1566 wm_start(struct ifnet *ifp)
   1567 {
   1568 	struct wm_softc *sc = ifp->if_softc;
   1569 	struct mbuf *m0;
   1570 #if 0 /* XXXJRT */
   1571 	struct m_tag *mtag;
   1572 #endif
   1573 	struct wm_txsoft *txs;
   1574 	bus_dmamap_t dmamap;
   1575 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed;
   1576 	bus_addr_t curaddr;
   1577 	bus_size_t seglen, curlen;
   1578 	uint32_t cksumcmd;
   1579 	uint8_t cksumfields;
   1580 
   1581 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1582 		return;
   1583 
   1584 	/*
   1585 	 * Remember the previous number of free descriptors.
   1586 	 */
   1587 	ofree = sc->sc_txfree;
   1588 
   1589 	/*
   1590 	 * Loop through the send queue, setting up transmit descriptors
   1591 	 * until we drain the queue, or use up all available transmit
   1592 	 * descriptors.
   1593 	 */
   1594 	for (;;) {
   1595 		/* Grab a packet off the queue. */
   1596 		IFQ_POLL(&ifp->if_snd, m0);
   1597 		if (m0 == NULL)
   1598 			break;
   1599 
   1600 		DPRINTF(WM_DEBUG_TX,
   1601 		    ("%s: TX: have packet to transmit: %p\n",
   1602 		    sc->sc_dev.dv_xname, m0));
   1603 
   1604 		/* Get a work queue entry. */
   1605 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
   1606 			wm_txintr(sc);
   1607 			if (sc->sc_txsfree == 0) {
   1608 				DPRINTF(WM_DEBUG_TX,
   1609 				    ("%s: TX: no free job descriptors\n",
   1610 					sc->sc_dev.dv_xname));
   1611 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   1612 				break;
   1613 			}
   1614 		}
   1615 
   1616 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1617 		dmamap = txs->txs_dmamap;
   1618 
   1619 		/*
   1620 		 * Load the DMA map.  If this fails, the packet either
   1621 		 * didn't fit in the allotted number of segments, or we
   1622 		 * were short on resources.  For the too-many-segments
   1623 		 * case, we simply report an error and drop the packet,
   1624 		 * since we can't sanely copy a jumbo packet to a single
   1625 		 * buffer.
   1626 		 */
   1627 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1628 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1629 		if (error) {
   1630 			if (error == EFBIG) {
   1631 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   1632 				printf("%s: Tx packet consumes too many "
   1633 				    "DMA segments, dropping...\n",
   1634 				    sc->sc_dev.dv_xname);
   1635 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1636 				wm_dump_mbuf_chain(sc, m0);
   1637 				m_freem(m0);
   1638 				continue;
   1639 			}
   1640 			/*
   1641 			 * Short on resources, just stop for now.
   1642 			 */
   1643 			DPRINTF(WM_DEBUG_TX,
   1644 			    ("%s: TX: dmamap load failed: %d\n",
   1645 			    sc->sc_dev.dv_xname, error));
   1646 			break;
   1647 		}
   1648 
   1649 		segs_needed = dmamap->dm_nsegs;
   1650 
   1651 		/*
   1652 		 * Ensure we have enough descriptors free to describe
   1653 		 * the packet.  Note, we always reserve one descriptor
   1654 		 * at the end of the ring due to the semantics of the
   1655 		 * TDT register, plus one more in the event we need
   1656 		 * to re-load checksum offload context.
   1657 		 */
   1658 		if (segs_needed > sc->sc_txfree - 2) {
   1659 			/*
   1660 			 * Not enough free descriptors to transmit this
   1661 			 * packet.  We haven't committed anything yet,
   1662 			 * so just unload the DMA map, put the packet
   1663 			 * pack on the queue, and punt.  Notify the upper
   1664 			 * layer that there are no more slots left.
   1665 			 */
   1666 			DPRINTF(WM_DEBUG_TX,
   1667 			    ("%s: TX: need %d (%) descriptors, have %d\n",
   1668 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
   1669 			    sc->sc_txfree - 1));
   1670 			ifp->if_flags |= IFF_OACTIVE;
   1671 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1672 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   1673 			break;
   1674 		}
   1675 
   1676 		/*
   1677 		 * Check for 82547 Tx FIFO bug.  We need to do this
   1678 		 * once we know we can transmit the packet, since we
   1679 		 * do some internal FIFO space accounting here.
   1680 		 */
   1681 		if (sc->sc_type == WM_T_82547 &&
   1682 		    wm_82547_txfifo_bugchk(sc, m0)) {
   1683 			DPRINTF(WM_DEBUG_TX,
   1684 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
   1685 			    sc->sc_dev.dv_xname));
   1686 			ifp->if_flags |= IFF_OACTIVE;
   1687 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1688 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
   1689 			break;
   1690 		}
   1691 
   1692 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1693 
   1694 		/*
   1695 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1696 		 */
   1697 
   1698 		DPRINTF(WM_DEBUG_TX,
   1699 		    ("%s: TX: packet has %d (%d) DMA segments\n",
   1700 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
   1701 
   1702 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1703 
   1704 		/*
   1705 		 * Store a pointer to the packet so that we can free it
   1706 		 * later.
   1707 		 *
   1708 		 * Initially, we consider the number of descriptors the
   1709 		 * packet uses the number of DMA segments.  This may be
   1710 		 * incremented by 1 if we do checksum offload (a descriptor
   1711 		 * is used to set the checksum context).
   1712 		 */
   1713 		txs->txs_mbuf = m0;
   1714 		txs->txs_firstdesc = sc->sc_txnext;
   1715 		txs->txs_ndesc = segs_needed;
   1716 
   1717 		/*
   1718 		 * Set up checksum offload parameters for
   1719 		 * this packet.
   1720 		 */
   1721 		if (m0->m_pkthdr.csum_flags &
   1722 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1723 			if (wm_tx_cksum(sc, txs, &cksumcmd,
   1724 					&cksumfields) != 0) {
   1725 				/* Error message already displayed. */
   1726 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1727 				continue;
   1728 			}
   1729 		} else {
   1730 			cksumcmd = 0;
   1731 			cksumfields = 0;
   1732 		}
   1733 
   1734 		cksumcmd |= WTX_CMD_IDE;
   1735 
   1736 		/* Sync the DMA map. */
   1737 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1738 		    BUS_DMASYNC_PREWRITE);
   1739 
   1740 		/*
   1741 		 * Initialize the transmit descriptor.
   1742 		 */
   1743 		for (nexttx = sc->sc_txnext, seg = 0;
   1744 		     seg < dmamap->dm_nsegs; seg++) {
   1745 			for (seglen = dmamap->dm_segs[seg].ds_len,
   1746 			     curaddr = dmamap->dm_segs[seg].ds_addr;
   1747 			     seglen != 0;
   1748 			     curaddr += curlen, seglen -= curlen,
   1749 			     nexttx = WM_NEXTTX(sc, nexttx)) {
   1750 				curlen = seglen;
   1751 
   1752 				wm_set_dma_addr(
   1753 				    &sc->sc_txdescs[nexttx].wtx_addr,
   1754 				    curaddr);
   1755 				sc->sc_txdescs[nexttx].wtx_cmdlen =
   1756 				    htole32(cksumcmd | curlen);
   1757 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
   1758 				    0;
   1759 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
   1760 				    cksumfields;
   1761 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
   1762 				lasttx = nexttx;
   1763 
   1764 				DPRINTF(WM_DEBUG_TX,
   1765 				    ("%s: TX: desc %d: low 0x%08x, "
   1766 				     "len 0x%04x\n",
   1767 				    sc->sc_dev.dv_xname, nexttx,
   1768 				    curaddr & 0xffffffffU, curlen, curlen));
   1769 			}
   1770 		}
   1771 
   1772 		KASSERT(lasttx != -1);
   1773 
   1774 		/*
   1775 		 * Set up the command byte on the last descriptor of
   1776 		 * the packet.  If we're in the interrupt delay window,
   1777 		 * delay the interrupt.
   1778 		 */
   1779 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1780 		    htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS);
   1781 
   1782 #if 0 /* XXXJRT */
   1783 		/*
   1784 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1785 		 * up the descriptor to encapsulate the packet for us.
   1786 		 *
   1787 		 * This is only valid on the last descriptor of the packet.
   1788 		 */
   1789 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1790 		    (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
   1791 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1792 			    htole32(WTX_CMD_VLE);
   1793 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
   1794 			    = htole16(*(u_int *)(mtag + 1) & 0xffff);
   1795 		}
   1796 #endif /* XXXJRT */
   1797 
   1798 		txs->txs_lastdesc = lasttx;
   1799 
   1800 		DPRINTF(WM_DEBUG_TX,
   1801 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   1802 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
   1803 
   1804 		/* Sync the descriptors we're using. */
   1805 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
   1806 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1807 
   1808 		/* Give the packet to the chip. */
   1809 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   1810 
   1811 		DPRINTF(WM_DEBUG_TX,
   1812 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   1813 
   1814 		DPRINTF(WM_DEBUG_TX,
   1815 		    ("%s: TX: finished transmitting packet, job %d\n",
   1816 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   1817 
   1818 		/* Advance the tx pointer. */
   1819 		sc->sc_txfree -= txs->txs_ndesc;
   1820 		sc->sc_txnext = nexttx;
   1821 
   1822 		sc->sc_txsfree--;
   1823 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
   1824 
   1825 #if NBPFILTER > 0
   1826 		/* Pass the packet to any BPF listeners. */
   1827 		if (ifp->if_bpf)
   1828 			bpf_mtap(ifp->if_bpf, m0);
   1829 #endif /* NBPFILTER > 0 */
   1830 	}
   1831 
   1832 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1833 		/* No more slots; notify upper layer. */
   1834 		ifp->if_flags |= IFF_OACTIVE;
   1835 	}
   1836 
   1837 	if (sc->sc_txfree != ofree) {
   1838 		/* Set a watchdog timer in case the chip flakes out. */
   1839 		ifp->if_timer = 5;
   1840 	}
   1841 }
   1842 
   1843 /*
   1844  * wm_watchdog:		[ifnet interface function]
   1845  *
   1846  *	Watchdog timer handler.
   1847  */
   1848 static void
   1849 wm_watchdog(struct ifnet *ifp)
   1850 {
   1851 	struct wm_softc *sc = ifp->if_softc;
   1852 
   1853 	/*
   1854 	 * Since we're using delayed interrupts, sweep up
   1855 	 * before we report an error.
   1856 	 */
   1857 	wm_txintr(sc);
   1858 
   1859 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
   1860 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1861 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   1862 		    sc->sc_txnext);
   1863 		ifp->if_oerrors++;
   1864 
   1865 		/* Reset the interface. */
   1866 		(void) wm_init(ifp);
   1867 	}
   1868 
   1869 	/* Try to get more packets going. */
   1870 	wm_start(ifp);
   1871 }
   1872 
   1873 /*
   1874  * wm_ioctl:		[ifnet interface function]
   1875  *
   1876  *	Handle control requests from the operator.
   1877  */
   1878 static int
   1879 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1880 {
   1881 	struct wm_softc *sc = ifp->if_softc;
   1882 	struct ifreq *ifr = (struct ifreq *) data;
   1883 	int s, error;
   1884 
   1885 	s = splnet();
   1886 
   1887 	switch (cmd) {
   1888 	case SIOCSIFMEDIA:
   1889 	case SIOCGIFMEDIA:
   1890 		/* Flow control requires full-duplex mode. */
   1891 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1892 		    (ifr->ifr_media & IFM_FDX) == 0)
   1893 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1894 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1895 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1896 				/* We can do both TXPAUSE and RXPAUSE. */
   1897 				ifr->ifr_media |=
   1898 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1899 			}
   1900 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1901 		}
   1902 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1903 		break;
   1904 	default:
   1905 		error = ether_ioctl(ifp, cmd, data);
   1906 		if (error == ENETRESET) {
   1907 			/*
   1908 			 * Multicast list has changed; set the hardware filter
   1909 			 * accordingly.
   1910 			 */
   1911 			wm_set_filter(sc);
   1912 			error = 0;
   1913 		}
   1914 		break;
   1915 	}
   1916 
   1917 	/* Try to get more packets going. */
   1918 	wm_start(ifp);
   1919 
   1920 	splx(s);
   1921 	return (error);
   1922 }
   1923 
   1924 /*
   1925  * wm_intr:
   1926  *
   1927  *	Interrupt service routine.
   1928  */
   1929 static int
   1930 wm_intr(void *arg)
   1931 {
   1932 	struct wm_softc *sc = arg;
   1933 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1934 	uint32_t icr;
   1935 	int wantinit, handled = 0;
   1936 
   1937 	for (wantinit = 0; wantinit == 0;) {
   1938 		icr = CSR_READ(sc, WMREG_ICR);
   1939 		if ((icr & sc->sc_icr) == 0)
   1940 			break;
   1941 
   1942 #if 0 /*NRND > 0*/
   1943 		if (RND_ENABLED(&sc->rnd_source))
   1944 			rnd_add_uint32(&sc->rnd_source, icr);
   1945 #endif
   1946 
   1947 		handled = 1;
   1948 
   1949 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   1950 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1951 			DPRINTF(WM_DEBUG_RX,
   1952 			    ("%s: RX: got Rx intr 0x%08x\n",
   1953 			    sc->sc_dev.dv_xname,
   1954 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1955 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
   1956 		}
   1957 #endif
   1958 		wm_rxintr(sc);
   1959 
   1960 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   1961 		if (icr & ICR_TXDW) {
   1962 			DPRINTF(WM_DEBUG_TX,
   1963 			    ("%s: TX: got TXDW interrupt\n",
   1964 			    sc->sc_dev.dv_xname));
   1965 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
   1966 		}
   1967 #endif
   1968 		wm_txintr(sc);
   1969 
   1970 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
   1971 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
   1972 			wm_linkintr(sc, icr);
   1973 		}
   1974 
   1975 		if (icr & ICR_RXO) {
   1976 			printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
   1977 			wantinit = 1;
   1978 		}
   1979 	}
   1980 
   1981 	if (handled) {
   1982 		if (wantinit)
   1983 			wm_init(ifp);
   1984 
   1985 		/* Try to get more packets going. */
   1986 		wm_start(ifp);
   1987 	}
   1988 
   1989 	return (handled);
   1990 }
   1991 
   1992 /*
   1993  * wm_txintr:
   1994  *
   1995  *	Helper; handle transmit interrupts.
   1996  */
   1997 static void
   1998 wm_txintr(struct wm_softc *sc)
   1999 {
   2000 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2001 	struct wm_txsoft *txs;
   2002 	uint8_t status;
   2003 	int i;
   2004 
   2005 	ifp->if_flags &= ~IFF_OACTIVE;
   2006 
   2007 	/*
   2008 	 * Go through the Tx list and free mbufs for those
   2009 	 * frames which have been transmitted.
   2010 	 */
   2011 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
   2012 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
   2013 		txs = &sc->sc_txsoft[i];
   2014 
   2015 		DPRINTF(WM_DEBUG_TX,
   2016 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   2017 
   2018 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   2019 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2020 
   2021 		status =
   2022 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
   2023 		if ((status & WTX_ST_DD) == 0) {
   2024 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   2025 			    BUS_DMASYNC_PREREAD);
   2026 			break;
   2027 		}
   2028 
   2029 		DPRINTF(WM_DEBUG_TX,
   2030 		    ("%s: TX: job %d done: descs %d..%d\n",
   2031 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   2032 		    txs->txs_lastdesc));
   2033 
   2034 		/*
   2035 		 * XXX We should probably be using the statistics
   2036 		 * XXX registers, but I don't know if they exist
   2037 		 * XXX on chips before the i82544.
   2038 		 */
   2039 
   2040 #ifdef WM_EVENT_COUNTERS
   2041 		if (status & WTX_ST_TU)
   2042 			WM_EVCNT_INCR(&sc->sc_ev_tu);
   2043 #endif /* WM_EVENT_COUNTERS */
   2044 
   2045 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
   2046 			ifp->if_oerrors++;
   2047 			if (status & WTX_ST_LC)
   2048 				printf("%s: late collision\n",
   2049 				    sc->sc_dev.dv_xname);
   2050 			else if (status & WTX_ST_EC) {
   2051 				ifp->if_collisions += 16;
   2052 				printf("%s: excessive collisions\n",
   2053 				    sc->sc_dev.dv_xname);
   2054 			}
   2055 		} else
   2056 			ifp->if_opackets++;
   2057 
   2058 		sc->sc_txfree += txs->txs_ndesc;
   2059 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   2060 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2061 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2062 		m_freem(txs->txs_mbuf);
   2063 		txs->txs_mbuf = NULL;
   2064 	}
   2065 
   2066 	/* Update the dirty transmit buffer pointer. */
   2067 	sc->sc_txsdirty = i;
   2068 	DPRINTF(WM_DEBUG_TX,
   2069 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   2070 
   2071 	/*
   2072 	 * If there are no more pending transmissions, cancel the watchdog
   2073 	 * timer.
   2074 	 */
   2075 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
   2076 		ifp->if_timer = 0;
   2077 }
   2078 
   2079 /*
   2080  * wm_rxintr:
   2081  *
   2082  *	Helper; handle receive interrupts.
   2083  */
   2084 static void
   2085 wm_rxintr(struct wm_softc *sc)
   2086 {
   2087 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2088 	struct wm_rxsoft *rxs;
   2089 	struct mbuf *m;
   2090 	int i, len;
   2091 	uint8_t status, errors;
   2092 
   2093 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
   2094 		rxs = &sc->sc_rxsoft[i];
   2095 
   2096 		DPRINTF(WM_DEBUG_RX,
   2097 		    ("%s: RX: checking descriptor %d\n",
   2098 		    sc->sc_dev.dv_xname, i));
   2099 
   2100 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2101 
   2102 		status = sc->sc_rxdescs[i].wrx_status;
   2103 		errors = sc->sc_rxdescs[i].wrx_errors;
   2104 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
   2105 
   2106 		if ((status & WRX_ST_DD) == 0) {
   2107 			/*
   2108 			 * We have processed all of the receive descriptors.
   2109 			 */
   2110 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   2111 			break;
   2112 		}
   2113 
   2114 		if (__predict_false(sc->sc_rxdiscard)) {
   2115 			DPRINTF(WM_DEBUG_RX,
   2116 			    ("%s: RX: discarding contents of descriptor %d\n",
   2117 			    sc->sc_dev.dv_xname, i));
   2118 			WM_INIT_RXDESC(sc, i);
   2119 			if (status & WRX_ST_EOP) {
   2120 				/* Reset our state. */
   2121 				DPRINTF(WM_DEBUG_RX,
   2122 				    ("%s: RX: resetting rxdiscard -> 0\n",
   2123 				    sc->sc_dev.dv_xname));
   2124 				sc->sc_rxdiscard = 0;
   2125 			}
   2126 			continue;
   2127 		}
   2128 
   2129 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2130 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2131 
   2132 		m = rxs->rxs_mbuf;
   2133 
   2134 		/*
   2135 		 * Add a new receive buffer to the ring.
   2136 		 */
   2137 		if (wm_add_rxbuf(sc, i) != 0) {
   2138 			/*
   2139 			 * Failed, throw away what we've done so
   2140 			 * far, and discard the rest of the packet.
   2141 			 */
   2142 			ifp->if_ierrors++;
   2143 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2144 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2145 			WM_INIT_RXDESC(sc, i);
   2146 			if ((status & WRX_ST_EOP) == 0)
   2147 				sc->sc_rxdiscard = 1;
   2148 			if (sc->sc_rxhead != NULL)
   2149 				m_freem(sc->sc_rxhead);
   2150 			WM_RXCHAIN_RESET(sc);
   2151 			DPRINTF(WM_DEBUG_RX,
   2152 			    ("%s: RX: Rx buffer allocation failed, "
   2153 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   2154 			    sc->sc_rxdiscard ? " (discard)" : ""));
   2155 			continue;
   2156 		}
   2157 
   2158 		WM_RXCHAIN_LINK(sc, m);
   2159 
   2160 		m->m_len = len;
   2161 
   2162 		DPRINTF(WM_DEBUG_RX,
   2163 		    ("%s: RX: buffer at %p len %d\n",
   2164 		    sc->sc_dev.dv_xname, m->m_data, len));
   2165 
   2166 		/*
   2167 		 * If this is not the end of the packet, keep
   2168 		 * looking.
   2169 		 */
   2170 		if ((status & WRX_ST_EOP) == 0) {
   2171 			sc->sc_rxlen += len;
   2172 			DPRINTF(WM_DEBUG_RX,
   2173 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   2174 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   2175 			continue;
   2176 		}
   2177 
   2178 		/*
   2179 		 * Okay, we have the entire packet now...
   2180 		 */
   2181 		*sc->sc_rxtailp = NULL;
   2182 		m = sc->sc_rxhead;
   2183 		len += sc->sc_rxlen;
   2184 
   2185 		WM_RXCHAIN_RESET(sc);
   2186 
   2187 		DPRINTF(WM_DEBUG_RX,
   2188 		    ("%s: RX: have entire packet, len -> %d\n",
   2189 		    sc->sc_dev.dv_xname, len));
   2190 
   2191 		/*
   2192 		 * If an error occurred, update stats and drop the packet.
   2193 		 */
   2194 		if (errors &
   2195 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
   2196 			ifp->if_ierrors++;
   2197 			if (errors & WRX_ER_SE)
   2198 				printf("%s: symbol error\n",
   2199 				    sc->sc_dev.dv_xname);
   2200 			else if (errors & WRX_ER_SEQ)
   2201 				printf("%s: receive sequence error\n",
   2202 				    sc->sc_dev.dv_xname);
   2203 			else if (errors & WRX_ER_CE)
   2204 				printf("%s: CRC error\n",
   2205 				    sc->sc_dev.dv_xname);
   2206 			m_freem(m);
   2207 			continue;
   2208 		}
   2209 
   2210 		/*
   2211 		 * No errors.  Receive the packet.
   2212 		 *
   2213 		 * Note, we have configured the chip to include the
   2214 		 * CRC with every packet.
   2215 		 */
   2216 		m->m_flags |= M_HASFCS;
   2217 		m->m_pkthdr.rcvif = ifp;
   2218 		m->m_pkthdr.len = len;
   2219 
   2220 #if 0 /* XXXJRT */
   2221 		/*
   2222 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2223 		 * for us.  Associate the tag with the packet.
   2224 		 */
   2225 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   2226 		    (status & WRX_ST_VP) != 0) {
   2227 			struct m_tag *vtag;
   2228 
   2229 			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
   2230 			    M_NOWAIT);
   2231 			if (vtag == NULL) {
   2232 				ifp->if_ierrors++;
   2233 				printf("%s: unable to allocate VLAN tag\n",
   2234 				    sc->sc_dev.dv_xname);
   2235 				m_freem(m);
   2236 				continue;
   2237 			}
   2238 
   2239 			*(u_int *)(vtag + 1) =
   2240 			    le16toh(sc->sc_rxdescs[i].wrx_special);
   2241 		}
   2242 #endif /* XXXJRT */
   2243 
   2244 		/*
   2245 		 * Set up checksum info for this packet.
   2246 		 */
   2247 		if (status & WRX_ST_IPCS) {
   2248 			WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2249 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2250 			if (errors & WRX_ER_IPE)
   2251 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2252 		}
   2253 		if (status & WRX_ST_TCPCS) {
   2254 			/*
   2255 			 * Note: we don't know if this was TCP or UDP,
   2256 			 * so we just set both bits, and expect the
   2257 			 * upper layers to deal.
   2258 			 */
   2259 			WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
   2260 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   2261 			if (errors & WRX_ER_TCPE)
   2262 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   2263 		}
   2264 
   2265 		ifp->if_ipackets++;
   2266 
   2267 #if NBPFILTER > 0
   2268 		/* Pass this up to any BPF listeners. */
   2269 		if (ifp->if_bpf)
   2270 			bpf_mtap(ifp->if_bpf, m);
   2271 #endif /* NBPFILTER > 0 */
   2272 
   2273 		/* Pass it on. */
   2274 		(*ifp->if_input)(ifp, m);
   2275 	}
   2276 
   2277 	/* Update the receive pointer. */
   2278 	sc->sc_rxptr = i;
   2279 
   2280 	DPRINTF(WM_DEBUG_RX,
   2281 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   2282 }
   2283 
   2284 /*
   2285  * wm_linkintr:
   2286  *
   2287  *	Helper; handle link interrupts.
   2288  */
   2289 static void
   2290 wm_linkintr(struct wm_softc *sc, uint32_t icr)
   2291 {
   2292 	uint32_t status;
   2293 
   2294 	/*
   2295 	 * If we get a link status interrupt on a 1000BASE-T
   2296 	 * device, just fall into the normal MII tick path.
   2297 	 */
   2298 	if (sc->sc_flags & WM_F_HAS_MII) {
   2299 		if (icr & ICR_LSC) {
   2300 			DPRINTF(WM_DEBUG_LINK,
   2301 			    ("%s: LINK: LSC -> mii_tick\n",
   2302 			    sc->sc_dev.dv_xname));
   2303 			mii_tick(&sc->sc_mii);
   2304 		} else if (icr & ICR_RXSEQ) {
   2305 			DPRINTF(WM_DEBUG_LINK,
   2306 			    ("%s: LINK Receive sequence error\n",
   2307 			    sc->sc_dev.dv_xname));
   2308 		}
   2309 		return;
   2310 	}
   2311 
   2312 	/*
   2313 	 * If we are now receiving /C/, check for link again in
   2314 	 * a couple of link clock ticks.
   2315 	 */
   2316 	if (icr & ICR_RXCFG) {
   2317 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
   2318 		    sc->sc_dev.dv_xname));
   2319 		sc->sc_tbi_anstate = 2;
   2320 	}
   2321 
   2322 	if (icr & ICR_LSC) {
   2323 		status = CSR_READ(sc, WMREG_STATUS);
   2324 		if (status & STATUS_LU) {
   2325 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
   2326 			    sc->sc_dev.dv_xname,
   2327 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   2328 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2329 			sc->sc_fcrtl &= ~FCRTL_XONE;
   2330 			if (status & STATUS_FD)
   2331 				sc->sc_tctl |=
   2332 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2333 			else
   2334 				sc->sc_tctl |=
   2335 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2336 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   2337 				sc->sc_fcrtl |= FCRTL_XONE;
   2338 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2339 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   2340 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   2341 				      sc->sc_fcrtl);
   2342 			sc->sc_tbi_linkup = 1;
   2343 		} else {
   2344 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   2345 			    sc->sc_dev.dv_xname));
   2346 			sc->sc_tbi_linkup = 0;
   2347 		}
   2348 		sc->sc_tbi_anstate = 2;
   2349 		wm_tbi_set_linkled(sc);
   2350 	} else if (icr & ICR_RXSEQ) {
   2351 		DPRINTF(WM_DEBUG_LINK,
   2352 		    ("%s: LINK: Receive sequence error\n",
   2353 		    sc->sc_dev.dv_xname));
   2354 	}
   2355 }
   2356 
   2357 /*
   2358  * wm_tick:
   2359  *
   2360  *	One second timer, used to check link status, sweep up
   2361  *	completed transmit jobs, etc.
   2362  */
   2363 static void
   2364 wm_tick(void *arg)
   2365 {
   2366 	struct wm_softc *sc = arg;
   2367 	int s;
   2368 
   2369 	s = splnet();
   2370 
   2371 	if (sc->sc_type >= WM_T_82542_2_1) {
   2372 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
   2373 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
   2374 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
   2375 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
   2376 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
   2377 	}
   2378 
   2379 	if (sc->sc_flags & WM_F_HAS_MII)
   2380 		mii_tick(&sc->sc_mii);
   2381 	else
   2382 		wm_tbi_check_link(sc);
   2383 
   2384 	splx(s);
   2385 
   2386 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2387 }
   2388 
   2389 /*
   2390  * wm_reset:
   2391  *
   2392  *	Reset the i82542 chip.
   2393  */
   2394 static void
   2395 wm_reset(struct wm_softc *sc)
   2396 {
   2397 	int i;
   2398 
   2399 	/*
   2400 	 * Allocate on-chip memory according to the MTU size.
   2401 	 * The Packet Buffer Allocation register must be written
   2402 	 * before the chip is reset.
   2403 	 */
   2404 	if (sc->sc_type < WM_T_82547) {
   2405 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2406 		    PBA_40K : PBA_48K;
   2407 	} else {
   2408 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2409 		    PBA_22K : PBA_30K;
   2410 		sc->sc_txfifo_head = 0;
   2411 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
   2412 		sc->sc_txfifo_size =
   2413 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
   2414 		sc->sc_txfifo_stall = 0;
   2415 	}
   2416 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
   2417 
   2418 	switch (sc->sc_type) {
   2419 	case WM_T_82544:
   2420 	case WM_T_82540:
   2421 	case WM_T_82545:
   2422 	case WM_T_82546:
   2423 	case WM_T_82541:
   2424 	case WM_T_82541_2:
   2425 		/*
   2426 		 * These chips have a problem with the memory-mapped
   2427 		 * write cycle when issuing the reset, so use I/O-mapped
   2428 		 * access, if possible.
   2429 		 */
   2430 		if (sc->sc_flags & WM_F_IOH_VALID)
   2431 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
   2432 		else
   2433 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2434 		break;
   2435 
   2436 	case WM_T_82545_3:
   2437 	case WM_T_82546_3:
   2438 		/* Use the shadow control register on these chips. */
   2439 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
   2440 		break;
   2441 
   2442 	default:
   2443 		/* Everything else can safely use the documented method. */
   2444 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2445 		break;
   2446 	}
   2447 	delay(10000);
   2448 
   2449 	for (i = 0; i < 1000; i++) {
   2450 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
   2451 			return;
   2452 		delay(20);
   2453 	}
   2454 
   2455 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
   2456 		printf("%s: WARNING: reset failed to complete\n",
   2457 		    sc->sc_dev.dv_xname);
   2458 }
   2459 
   2460 /*
   2461  * wm_init:		[ifnet interface function]
   2462  *
   2463  *	Initialize the interface.  Must be called at splnet().
   2464  */
   2465 static int
   2466 wm_init(struct ifnet *ifp)
   2467 {
   2468 	struct wm_softc *sc = ifp->if_softc;
   2469 	struct wm_rxsoft *rxs;
   2470 	int i, error = 0;
   2471 	uint32_t reg;
   2472 
   2473 	/*
   2474 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   2475 	 * There is a small but measurable benefit to avoiding the adjusment
   2476 	 * of the descriptor so that the headers are aligned, for normal mtu,
   2477 	 * on such platforms.  One possibility is that the DMA itself is
   2478 	 * slightly more efficient if the front of the entire packet (instead
   2479 	 * of the front of the headers) is aligned.
   2480 	 *
   2481 	 * Note we must always set align_tweak to 0 if we are using
   2482 	 * jumbo frames.
   2483 	 */
   2484 #ifdef __NO_STRICT_ALIGNMENT
   2485 	sc->sc_align_tweak = 0;
   2486 #else
   2487 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   2488 		sc->sc_align_tweak = 0;
   2489 	else
   2490 		sc->sc_align_tweak = 2;
   2491 #endif /* __NO_STRICT_ALIGNMENT */
   2492 
   2493 	/* Cancel any pending I/O. */
   2494 	wm_stop(ifp, 0);
   2495 
   2496 	/* Reset the chip to a known state. */
   2497 	wm_reset(sc);
   2498 
   2499 	/* Initialize the transmit descriptor ring. */
   2500 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
   2501 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
   2502 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2503 	sc->sc_txfree = WM_NTXDESC(sc);
   2504 	sc->sc_txnext = 0;
   2505 
   2506 	sc->sc_txctx_ipcs = 0xffffffff;
   2507 	sc->sc_txctx_tucs = 0xffffffff;
   2508 
   2509 	if (sc->sc_type < WM_T_82543) {
   2510 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
   2511 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
   2512 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
   2513 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
   2514 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
   2515 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
   2516 	} else {
   2517 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
   2518 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
   2519 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
   2520 		CSR_WRITE(sc, WMREG_TDH, 0);
   2521 		CSR_WRITE(sc, WMREG_TDT, 0);
   2522 		CSR_WRITE(sc, WMREG_TIDV, 128);
   2523 
   2524 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
   2525 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   2526 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
   2527 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
   2528 	}
   2529 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
   2530 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
   2531 
   2532 	/* Initialize the transmit job descriptors. */
   2533 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
   2534 		sc->sc_txsoft[i].txs_mbuf = NULL;
   2535 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
   2536 	sc->sc_txsnext = 0;
   2537 	sc->sc_txsdirty = 0;
   2538 
   2539 	/*
   2540 	 * Initialize the receive descriptor and receive job
   2541 	 * descriptor rings.
   2542 	 */
   2543 	if (sc->sc_type < WM_T_82543) {
   2544 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
   2545 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
   2546 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
   2547 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
   2548 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
   2549 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
   2550 
   2551 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
   2552 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
   2553 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
   2554 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
   2555 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
   2556 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
   2557 	} else {
   2558 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
   2559 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
   2560 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
   2561 		CSR_WRITE(sc, WMREG_RDH, 0);
   2562 		CSR_WRITE(sc, WMREG_RDT, 0);
   2563 		CSR_WRITE(sc, WMREG_RDTR, 28 | RDTR_FPD);
   2564 	}
   2565 	for (i = 0; i < WM_NRXDESC; i++) {
   2566 		rxs = &sc->sc_rxsoft[i];
   2567 		if (rxs->rxs_mbuf == NULL) {
   2568 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
   2569 				printf("%s: unable to allocate or map rx "
   2570 				    "buffer %d, error = %d\n",
   2571 				    sc->sc_dev.dv_xname, i, error);
   2572 				/*
   2573 				 * XXX Should attempt to run with fewer receive
   2574 				 * XXX buffers instead of just failing.
   2575 				 */
   2576 				wm_rxdrain(sc);
   2577 				goto out;
   2578 			}
   2579 		} else
   2580 			WM_INIT_RXDESC(sc, i);
   2581 	}
   2582 	sc->sc_rxptr = 0;
   2583 	sc->sc_rxdiscard = 0;
   2584 	WM_RXCHAIN_RESET(sc);
   2585 
   2586 	/*
   2587 	 * Clear out the VLAN table -- we don't use it (yet).
   2588 	 */
   2589 	CSR_WRITE(sc, WMREG_VET, 0);
   2590 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
   2591 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
   2592 
   2593 	/*
   2594 	 * Set up flow-control parameters.
   2595 	 *
   2596 	 * XXX Values could probably stand some tuning.
   2597 	 */
   2598 	CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
   2599 	CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
   2600 	CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
   2601 
   2602 	sc->sc_fcrtl = FCRTL_DFLT;
   2603 	if (sc->sc_type < WM_T_82543) {
   2604 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
   2605 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
   2606 	} else {
   2607 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
   2608 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
   2609 	}
   2610 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
   2611 
   2612 #if 0 /* XXXJRT */
   2613 	/* Deal with VLAN enables. */
   2614 	if (sc->sc_ethercom.ec_nvlans != 0)
   2615 		sc->sc_ctrl |= CTRL_VME;
   2616 	else
   2617 #endif /* XXXJRT */
   2618 		sc->sc_ctrl &= ~CTRL_VME;
   2619 
   2620 	/* Write the control registers. */
   2621 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2622 #if 0
   2623 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   2624 #endif
   2625 
   2626 	/*
   2627 	 * Set up checksum offload parameters.
   2628 	 */
   2629 	reg = CSR_READ(sc, WMREG_RXCSUM);
   2630 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
   2631 		reg |= RXCSUM_IPOFL;
   2632 	else
   2633 		reg &= ~RXCSUM_IPOFL;
   2634 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
   2635 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   2636 	else {
   2637 		reg &= ~RXCSUM_TUOFL;
   2638 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
   2639 			reg &= ~RXCSUM_IPOFL;
   2640 	}
   2641 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
   2642 
   2643 	/*
   2644 	 * Set up the interrupt registers.
   2645 	 */
   2646 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   2647 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   2648 	    ICR_RXO | ICR_RXT0;
   2649 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
   2650 		sc->sc_icr |= ICR_RXCFG;
   2651 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
   2652 
   2653 	/* Set up the inter-packet gap. */
   2654 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   2655 
   2656 #if 0 /* XXXJRT */
   2657 	/* Set the VLAN ethernetype. */
   2658 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
   2659 #endif
   2660 
   2661 	/*
   2662 	 * Set up the transmit control register; we start out with
   2663 	 * a collision distance suitable for FDX, but update it whe
   2664 	 * we resolve the media type.
   2665 	 */
   2666 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
   2667 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2668 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2669 
   2670 	/* Set the media. */
   2671 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
   2672 
   2673 	/*
   2674 	 * Set up the receive control register; we actually program
   2675 	 * the register when we set the receive filter.  Use multicast
   2676 	 * address offset type 0.
   2677 	 *
   2678 	 * Only the i82544 has the ability to strip the incoming
   2679 	 * CRC, so we don't enable that feature.
   2680 	 */
   2681 	sc->sc_mchash_type = 0;
   2682 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
   2683 	    RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
   2684 
   2685 	if(MCLBYTES == 2048) {
   2686 		sc->sc_rctl |= RCTL_2k;
   2687 	} else {
   2688 		if(sc->sc_type >= WM_T_82543) {
   2689 			switch(MCLBYTES) {
   2690 			case 4096:
   2691 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
   2692 				break;
   2693 			case 8192:
   2694 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
   2695 				break;
   2696 			case 16384:
   2697 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
   2698 				break;
   2699 			default:
   2700 				panic("wm_init: MCLBYTES %d unsupported",
   2701 				    MCLBYTES);
   2702 				break;
   2703 			}
   2704 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
   2705 	}
   2706 
   2707 	/* Set the receive filter. */
   2708 	wm_set_filter(sc);
   2709 
   2710 	/* Start the one second link check clock. */
   2711 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2712 
   2713 	/* ...all done! */
   2714 	ifp->if_flags |= IFF_RUNNING;
   2715 	ifp->if_flags &= ~IFF_OACTIVE;
   2716 
   2717  out:
   2718 	if (error)
   2719 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2720 	return (error);
   2721 }
   2722 
   2723 /*
   2724  * wm_rxdrain:
   2725  *
   2726  *	Drain the receive queue.
   2727  */
   2728 static void
   2729 wm_rxdrain(struct wm_softc *sc)
   2730 {
   2731 	struct wm_rxsoft *rxs;
   2732 	int i;
   2733 
   2734 	for (i = 0; i < WM_NRXDESC; i++) {
   2735 		rxs = &sc->sc_rxsoft[i];
   2736 		if (rxs->rxs_mbuf != NULL) {
   2737 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2738 			m_freem(rxs->rxs_mbuf);
   2739 			rxs->rxs_mbuf = NULL;
   2740 		}
   2741 	}
   2742 }
   2743 
   2744 /*
   2745  * wm_stop:		[ifnet interface function]
   2746  *
   2747  *	Stop transmission on the interface.
   2748  */
   2749 static void
   2750 wm_stop(struct ifnet *ifp, int disable)
   2751 {
   2752 	struct wm_softc *sc = ifp->if_softc;
   2753 	struct wm_txsoft *txs;
   2754 	int i;
   2755 
   2756 	/* Stop the one second clock. */
   2757 	callout_stop(&sc->sc_tick_ch);
   2758 
   2759 	/* Stop the 82547 Tx FIFO stall check timer. */
   2760 	if (sc->sc_type == WM_T_82547)
   2761 		callout_stop(&sc->sc_txfifo_ch);
   2762 
   2763 	if (sc->sc_flags & WM_F_HAS_MII) {
   2764 		/* Down the MII. */
   2765 		mii_down(&sc->sc_mii);
   2766 	}
   2767 
   2768 	/* Stop the transmit and receive processes. */
   2769 	CSR_WRITE(sc, WMREG_TCTL, 0);
   2770 	CSR_WRITE(sc, WMREG_RCTL, 0);
   2771 
   2772 	/* Release any queued transmit buffers. */
   2773 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   2774 		txs = &sc->sc_txsoft[i];
   2775 		if (txs->txs_mbuf != NULL) {
   2776 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2777 			m_freem(txs->txs_mbuf);
   2778 			txs->txs_mbuf = NULL;
   2779 		}
   2780 	}
   2781 
   2782 	if (disable)
   2783 		wm_rxdrain(sc);
   2784 
   2785 	/* Mark the interface as down and cancel the watchdog timer. */
   2786 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2787 	ifp->if_timer = 0;
   2788 }
   2789 
   2790 /*
   2791  * wm_acquire_eeprom:
   2792  *
   2793  *	Perform the EEPROM handshake required on some chips.
   2794  */
   2795 static int
   2796 wm_acquire_eeprom(struct wm_softc *sc)
   2797 {
   2798 	uint32_t reg;
   2799 	int x;
   2800 
   2801 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
   2802 		reg = CSR_READ(sc, WMREG_EECD);
   2803 
   2804 		/* Request EEPROM access. */
   2805 		reg |= EECD_EE_REQ;
   2806 		CSR_WRITE(sc, WMREG_EECD, reg);
   2807 
   2808 		/* ..and wait for it to be granted. */
   2809 		for (x = 0; x < 100; x++) {
   2810 			reg = CSR_READ(sc, WMREG_EECD);
   2811 			if (reg & EECD_EE_GNT)
   2812 				break;
   2813 			delay(5);
   2814 		}
   2815 		if ((reg & EECD_EE_GNT) == 0) {
   2816 			aprint_error("%s: could not acquire EEPROM GNT\n",
   2817 			    sc->sc_dev.dv_xname);
   2818 			reg &= ~EECD_EE_REQ;
   2819 			CSR_WRITE(sc, WMREG_EECD, reg);
   2820 			return (1);
   2821 		}
   2822 	}
   2823 
   2824 	return (0);
   2825 }
   2826 
   2827 /*
   2828  * wm_release_eeprom:
   2829  *
   2830  *	Release the EEPROM mutex.
   2831  */
   2832 static void
   2833 wm_release_eeprom(struct wm_softc *sc)
   2834 {
   2835 	uint32_t reg;
   2836 
   2837 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
   2838 		reg = CSR_READ(sc, WMREG_EECD);
   2839 		reg &= ~EECD_EE_REQ;
   2840 		CSR_WRITE(sc, WMREG_EECD, reg);
   2841 	}
   2842 }
   2843 
   2844 /*
   2845  * wm_eeprom_sendbits:
   2846  *
   2847  *	Send a series of bits to the EEPROM.
   2848  */
   2849 static void
   2850 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
   2851 {
   2852 	uint32_t reg;
   2853 	int x;
   2854 
   2855 	reg = CSR_READ(sc, WMREG_EECD);
   2856 
   2857 	for (x = nbits; x > 0; x--) {
   2858 		if (bits & (1U << (x - 1)))
   2859 			reg |= EECD_DI;
   2860 		else
   2861 			reg &= ~EECD_DI;
   2862 		CSR_WRITE(sc, WMREG_EECD, reg);
   2863 		delay(2);
   2864 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2865 		delay(2);
   2866 		CSR_WRITE(sc, WMREG_EECD, reg);
   2867 		delay(2);
   2868 	}
   2869 }
   2870 
   2871 /*
   2872  * wm_eeprom_recvbits:
   2873  *
   2874  *	Receive a series of bits from the EEPROM.
   2875  */
   2876 static void
   2877 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
   2878 {
   2879 	uint32_t reg, val;
   2880 	int x;
   2881 
   2882 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
   2883 
   2884 	val = 0;
   2885 	for (x = nbits; x > 0; x--) {
   2886 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2887 		delay(2);
   2888 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
   2889 			val |= (1U << (x - 1));
   2890 		CSR_WRITE(sc, WMREG_EECD, reg);
   2891 		delay(2);
   2892 	}
   2893 	*valp = val;
   2894 }
   2895 
   2896 /*
   2897  * wm_read_eeprom_uwire:
   2898  *
   2899  *	Read a word from the EEPROM using the MicroWire protocol.
   2900  */
   2901 static int
   2902 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   2903 {
   2904 	uint32_t reg, val;
   2905 	int i;
   2906 
   2907 	for (i = 0; i < wordcnt; i++) {
   2908 		/* Clear SK and DI. */
   2909 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
   2910 		CSR_WRITE(sc, WMREG_EECD, reg);
   2911 
   2912 		/* Set CHIP SELECT. */
   2913 		reg |= EECD_CS;
   2914 		CSR_WRITE(sc, WMREG_EECD, reg);
   2915 		delay(2);
   2916 
   2917 		/* Shift in the READ command. */
   2918 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
   2919 
   2920 		/* Shift in address. */
   2921 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
   2922 
   2923 		/* Shift out the data. */
   2924 		wm_eeprom_recvbits(sc, &val, 16);
   2925 		data[i] = val & 0xffff;
   2926 
   2927 		/* Clear CHIP SELECT. */
   2928 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
   2929 		CSR_WRITE(sc, WMREG_EECD, reg);
   2930 		delay(2);
   2931 	}
   2932 
   2933 	return (0);
   2934 }
   2935 
   2936 /*
   2937  * wm_spi_eeprom_ready:
   2938  *
   2939  *	Wait for a SPI EEPROM to be ready for commands.
   2940  */
   2941 static int
   2942 wm_spi_eeprom_ready(struct wm_softc *sc)
   2943 {
   2944 	uint32_t val;
   2945 	int usec;
   2946 
   2947 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
   2948 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
   2949 		wm_eeprom_recvbits(sc, &val, 8);
   2950 		if ((val & SPI_SR_RDY) == 0)
   2951 			break;
   2952 	}
   2953 	if (usec >= SPI_MAX_RETRIES) {
   2954 		aprint_error("%s: EEPROM failed to become ready\n",
   2955 		    sc->sc_dev.dv_xname);
   2956 		return (1);
   2957 	}
   2958 	return (0);
   2959 }
   2960 
   2961 /*
   2962  * wm_read_eeprom_spi:
   2963  *
   2964  *	Read a work from the EEPROM using the SPI protocol.
   2965  */
   2966 static int
   2967 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   2968 {
   2969 	uint32_t reg, val;
   2970 	int i;
   2971 	uint8_t opc;
   2972 
   2973 	/* Clear SK and CS. */
   2974 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
   2975 	CSR_WRITE(sc, WMREG_EECD, reg);
   2976 	delay(2);
   2977 
   2978 	if (wm_spi_eeprom_ready(sc))
   2979 		return (1);
   2980 
   2981 	/* Toggle CS to flush commands. */
   2982 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
   2983 	delay(2);
   2984 	CSR_WRITE(sc, WMREG_EECD, reg);
   2985 	delay(2);
   2986 
   2987 	opc = SPI_OPC_READ;
   2988 	if (sc->sc_ee_addrbits == 8 && word >= 128)
   2989 		opc |= SPI_OPC_A8;
   2990 
   2991 	wm_eeprom_sendbits(sc, opc, 8);
   2992 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
   2993 
   2994 	for (i = 0; i < wordcnt; i++) {
   2995 		wm_eeprom_recvbits(sc, &val, 16);
   2996 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
   2997 	}
   2998 
   2999 	/* Raise CS and clear SK. */
   3000 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
   3001 	CSR_WRITE(sc, WMREG_EECD, reg);
   3002 	delay(2);
   3003 
   3004 	return (0);
   3005 }
   3006 
   3007 /*
   3008  * wm_read_eeprom:
   3009  *
   3010  *	Read data from the serial EEPROM.
   3011  */
   3012 static int
   3013 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3014 {
   3015 	int rv;
   3016 
   3017 	if (wm_acquire_eeprom(sc))
   3018 		return (1);
   3019 
   3020 	if (sc->sc_flags & WM_F_EEPROM_SPI)
   3021 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
   3022 	else
   3023 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
   3024 
   3025 	wm_release_eeprom(sc);
   3026 	return (rv);
   3027 }
   3028 
   3029 /*
   3030  * wm_add_rxbuf:
   3031  *
   3032  *	Add a receive buffer to the indiciated descriptor.
   3033  */
   3034 static int
   3035 wm_add_rxbuf(struct wm_softc *sc, int idx)
   3036 {
   3037 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
   3038 	struct mbuf *m;
   3039 	int error;
   3040 
   3041 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3042 	if (m == NULL)
   3043 		return (ENOBUFS);
   3044 
   3045 	MCLGET(m, M_DONTWAIT);
   3046 	if ((m->m_flags & M_EXT) == 0) {
   3047 		m_freem(m);
   3048 		return (ENOBUFS);
   3049 	}
   3050 
   3051 	if (rxs->rxs_mbuf != NULL)
   3052 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3053 
   3054 	rxs->rxs_mbuf = m;
   3055 
   3056 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   3057 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   3058 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   3059 	if (error) {
   3060 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   3061 		    sc->sc_dev.dv_xname, idx, error);
   3062 		panic("wm_add_rxbuf");	/* XXX XXX XXX */
   3063 	}
   3064 
   3065 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3066 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3067 
   3068 	WM_INIT_RXDESC(sc, idx);
   3069 
   3070 	return (0);
   3071 }
   3072 
   3073 /*
   3074  * wm_set_ral:
   3075  *
   3076  *	Set an entery in the receive address list.
   3077  */
   3078 static void
   3079 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
   3080 {
   3081 	uint32_t ral_lo, ral_hi;
   3082 
   3083 	if (enaddr != NULL) {
   3084 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   3085 		    (enaddr[3] << 24);
   3086 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   3087 		ral_hi |= RAL_AV;
   3088 	} else {
   3089 		ral_lo = 0;
   3090 		ral_hi = 0;
   3091 	}
   3092 
   3093 	if (sc->sc_type >= WM_T_82544) {
   3094 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
   3095 		    ral_lo);
   3096 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
   3097 		    ral_hi);
   3098 	} else {
   3099 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
   3100 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
   3101 	}
   3102 }
   3103 
   3104 /*
   3105  * wm_mchash:
   3106  *
   3107  *	Compute the hash of the multicast address for the 4096-bit
   3108  *	multicast filter.
   3109  */
   3110 static uint32_t
   3111 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
   3112 {
   3113 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   3114 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   3115 	uint32_t hash;
   3116 
   3117 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   3118 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   3119 
   3120 	return (hash & 0xfff);
   3121 }
   3122 
   3123 /*
   3124  * wm_set_filter:
   3125  *
   3126  *	Set up the receive filter.
   3127  */
   3128 static void
   3129 wm_set_filter(struct wm_softc *sc)
   3130 {
   3131 	struct ethercom *ec = &sc->sc_ethercom;
   3132 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3133 	struct ether_multi *enm;
   3134 	struct ether_multistep step;
   3135 	bus_addr_t mta_reg;
   3136 	uint32_t hash, reg, bit;
   3137 	int i;
   3138 
   3139 	if (sc->sc_type >= WM_T_82544)
   3140 		mta_reg = WMREG_CORDOVA_MTA;
   3141 	else
   3142 		mta_reg = WMREG_MTA;
   3143 
   3144 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   3145 
   3146 	if (ifp->if_flags & IFF_BROADCAST)
   3147 		sc->sc_rctl |= RCTL_BAM;
   3148 	if (ifp->if_flags & IFF_PROMISC) {
   3149 		sc->sc_rctl |= RCTL_UPE;
   3150 		goto allmulti;
   3151 	}
   3152 
   3153 	/*
   3154 	 * Set the station address in the first RAL slot, and
   3155 	 * clear the remaining slots.
   3156 	 */
   3157 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
   3158 	for (i = 1; i < WM_RAL_TABSIZE; i++)
   3159 		wm_set_ral(sc, NULL, i);
   3160 
   3161 	/* Clear out the multicast table. */
   3162 	for (i = 0; i < WM_MC_TABSIZE; i++)
   3163 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
   3164 
   3165 	ETHER_FIRST_MULTI(step, ec, enm);
   3166 	while (enm != NULL) {
   3167 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3168 			/*
   3169 			 * We must listen to a range of multicast addresses.
   3170 			 * For now, just accept all multicasts, rather than
   3171 			 * trying to set only those filter bits needed to match
   3172 			 * the range.  (At this time, the only use of address
   3173 			 * ranges is for IP multicast routing, for which the
   3174 			 * range is big enough to require all bits set.)
   3175 			 */
   3176 			goto allmulti;
   3177 		}
   3178 
   3179 		hash = wm_mchash(sc, enm->enm_addrlo);
   3180 
   3181 		reg = (hash >> 5) & 0x7f;
   3182 		bit = hash & 0x1f;
   3183 
   3184 		hash = CSR_READ(sc, mta_reg + (reg << 2));
   3185 		hash |= 1U << bit;
   3186 
   3187 		/* XXX Hardware bug?? */
   3188 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
   3189 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
   3190 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3191 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
   3192 		} else
   3193 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3194 
   3195 		ETHER_NEXT_MULTI(step, enm);
   3196 	}
   3197 
   3198 	ifp->if_flags &= ~IFF_ALLMULTI;
   3199 	goto setit;
   3200 
   3201  allmulti:
   3202 	ifp->if_flags |= IFF_ALLMULTI;
   3203 	sc->sc_rctl |= RCTL_MPE;
   3204 
   3205  setit:
   3206 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
   3207 }
   3208 
   3209 /*
   3210  * wm_tbi_mediainit:
   3211  *
   3212  *	Initialize media for use on 1000BASE-X devices.
   3213  */
   3214 static void
   3215 wm_tbi_mediainit(struct wm_softc *sc)
   3216 {
   3217 	const char *sep = "";
   3218 
   3219 	if (sc->sc_type < WM_T_82543)
   3220 		sc->sc_tipg = TIPG_WM_DFLT;
   3221 	else
   3222 		sc->sc_tipg = TIPG_LG_DFLT;
   3223 
   3224 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
   3225 	    wm_tbi_mediastatus);
   3226 
   3227 	/*
   3228 	 * SWD Pins:
   3229 	 *
   3230 	 *	0 = Link LED (output)
   3231 	 *	1 = Loss Of Signal (input)
   3232 	 */
   3233 	sc->sc_ctrl |= CTRL_SWDPIO(0);
   3234 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
   3235 
   3236 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3237 
   3238 #define	ADD(ss, mm, dd)							\
   3239 do {									\
   3240 	printf("%s%s", sep, ss);					\
   3241 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
   3242 	sep = ", ";							\
   3243 } while (/*CONSTCOND*/0)
   3244 
   3245 	printf("%s: ", sc->sc_dev.dv_xname);
   3246 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
   3247 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
   3248 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
   3249 	printf("\n");
   3250 
   3251 #undef ADD
   3252 
   3253 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   3254 }
   3255 
   3256 /*
   3257  * wm_tbi_mediastatus:	[ifmedia interface function]
   3258  *
   3259  *	Get the current interface media status on a 1000BASE-X device.
   3260  */
   3261 static void
   3262 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3263 {
   3264 	struct wm_softc *sc = ifp->if_softc;
   3265 	uint32_t ctrl;
   3266 
   3267 	ifmr->ifm_status = IFM_AVALID;
   3268 	ifmr->ifm_active = IFM_ETHER;
   3269 
   3270 	if (sc->sc_tbi_linkup == 0) {
   3271 		ifmr->ifm_active |= IFM_NONE;
   3272 		return;
   3273 	}
   3274 
   3275 	ifmr->ifm_status |= IFM_ACTIVE;
   3276 	ifmr->ifm_active |= IFM_1000_SX;
   3277 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
   3278 		ifmr->ifm_active |= IFM_FDX;
   3279 	ctrl = CSR_READ(sc, WMREG_CTRL);
   3280 	if (ctrl & CTRL_RFCE)
   3281 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   3282 	if (ctrl & CTRL_TFCE)
   3283 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   3284 }
   3285 
   3286 /*
   3287  * wm_tbi_mediachange:	[ifmedia interface function]
   3288  *
   3289  *	Set hardware to newly-selected media on a 1000BASE-X device.
   3290  */
   3291 static int
   3292 wm_tbi_mediachange(struct ifnet *ifp)
   3293 {
   3294 	struct wm_softc *sc = ifp->if_softc;
   3295 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   3296 	uint32_t status;
   3297 	int i;
   3298 
   3299 	sc->sc_txcw = ife->ifm_data;
   3300 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
   3301 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
   3302 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
   3303 	sc->sc_txcw |= TXCW_ANE;
   3304 
   3305 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   3306 	delay(10000);
   3307 
   3308 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
   3309 
   3310 	sc->sc_tbi_anstate = 0;
   3311 
   3312 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
   3313 		/* Have signal; wait for the link to come up. */
   3314 		for (i = 0; i < 50; i++) {
   3315 			delay(10000);
   3316 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
   3317 				break;
   3318 		}
   3319 
   3320 		status = CSR_READ(sc, WMREG_STATUS);
   3321 		if (status & STATUS_LU) {
   3322 			/* Link is up. */
   3323 			DPRINTF(WM_DEBUG_LINK,
   3324 			    ("%s: LINK: set media -> link up %s\n",
   3325 			    sc->sc_dev.dv_xname,
   3326 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   3327 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3328 			sc->sc_fcrtl &= ~FCRTL_XONE;
   3329 			if (status & STATUS_FD)
   3330 				sc->sc_tctl |=
   3331 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3332 			else
   3333 				sc->sc_tctl |=
   3334 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3335 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   3336 				sc->sc_fcrtl |= FCRTL_XONE;
   3337 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3338 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   3339 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   3340 				      sc->sc_fcrtl);
   3341 			sc->sc_tbi_linkup = 1;
   3342 		} else {
   3343 			/* Link is down. */
   3344 			DPRINTF(WM_DEBUG_LINK,
   3345 			    ("%s: LINK: set media -> link down\n",
   3346 			    sc->sc_dev.dv_xname));
   3347 			sc->sc_tbi_linkup = 0;
   3348 		}
   3349 	} else {
   3350 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
   3351 		    sc->sc_dev.dv_xname));
   3352 		sc->sc_tbi_linkup = 0;
   3353 	}
   3354 
   3355 	wm_tbi_set_linkled(sc);
   3356 
   3357 	return (0);
   3358 }
   3359 
   3360 /*
   3361  * wm_tbi_set_linkled:
   3362  *
   3363  *	Update the link LED on 1000BASE-X devices.
   3364  */
   3365 static void
   3366 wm_tbi_set_linkled(struct wm_softc *sc)
   3367 {
   3368 
   3369 	if (sc->sc_tbi_linkup)
   3370 		sc->sc_ctrl |= CTRL_SWDPIN(0);
   3371 	else
   3372 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
   3373 
   3374 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3375 }
   3376 
   3377 /*
   3378  * wm_tbi_check_link:
   3379  *
   3380  *	Check the link on 1000BASE-X devices.
   3381  */
   3382 static void
   3383 wm_tbi_check_link(struct wm_softc *sc)
   3384 {
   3385 	uint32_t rxcw, ctrl, status;
   3386 
   3387 	if (sc->sc_tbi_anstate == 0)
   3388 		return;
   3389 	else if (sc->sc_tbi_anstate > 1) {
   3390 		DPRINTF(WM_DEBUG_LINK,
   3391 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
   3392 		    sc->sc_tbi_anstate));
   3393 		sc->sc_tbi_anstate--;
   3394 		return;
   3395 	}
   3396 
   3397 	sc->sc_tbi_anstate = 0;
   3398 
   3399 	rxcw = CSR_READ(sc, WMREG_RXCW);
   3400 	ctrl = CSR_READ(sc, WMREG_CTRL);
   3401 	status = CSR_READ(sc, WMREG_STATUS);
   3402 
   3403 	if ((status & STATUS_LU) == 0) {
   3404 		DPRINTF(WM_DEBUG_LINK,
   3405 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
   3406 		sc->sc_tbi_linkup = 0;
   3407 	} else {
   3408 		DPRINTF(WM_DEBUG_LINK,
   3409 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
   3410 		    (status & STATUS_FD) ? "FDX" : "HDX"));
   3411 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3412 		sc->sc_fcrtl &= ~FCRTL_XONE;
   3413 		if (status & STATUS_FD)
   3414 			sc->sc_tctl |=
   3415 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3416 		else
   3417 			sc->sc_tctl |=
   3418 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3419 		if (ctrl & CTRL_TFCE)
   3420 			sc->sc_fcrtl |= FCRTL_XONE;
   3421 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3422 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   3423 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
   3424 			      sc->sc_fcrtl);
   3425 		sc->sc_tbi_linkup = 1;
   3426 	}
   3427 
   3428 	wm_tbi_set_linkled(sc);
   3429 }
   3430 
   3431 /*
   3432  * wm_gmii_reset:
   3433  *
   3434  *	Reset the PHY.
   3435  */
   3436 static void
   3437 wm_gmii_reset(struct wm_softc *sc)
   3438 {
   3439 	uint32_t reg;
   3440 
   3441 	if (sc->sc_type >= WM_T_82544) {
   3442 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   3443 		delay(20000);
   3444 
   3445 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3446 		delay(20000);
   3447 	} else {
   3448 		/* The PHY reset pin is active-low. */
   3449 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   3450 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
   3451 		    CTRL_EXT_SWDPIN(4));
   3452 		reg |= CTRL_EXT_SWDPIO(4);
   3453 
   3454 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   3455 		delay(10);
   3456 
   3457 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   3458 		delay(10);
   3459 
   3460 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   3461 		delay(10);
   3462 #if 0
   3463 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
   3464 #endif
   3465 	}
   3466 }
   3467 
   3468 /*
   3469  * wm_gmii_mediainit:
   3470  *
   3471  *	Initialize media for use on 1000BASE-T devices.
   3472  */
   3473 static void
   3474 wm_gmii_mediainit(struct wm_softc *sc)
   3475 {
   3476 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3477 
   3478 	/* We have MII. */
   3479 	sc->sc_flags |= WM_F_HAS_MII;
   3480 
   3481 	sc->sc_tipg = TIPG_1000T_DFLT;
   3482 
   3483 	/*
   3484 	 * Let the chip set speed/duplex on its own based on
   3485 	 * signals from the PHY.
   3486 	 */
   3487 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
   3488 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3489 
   3490 	/* Initialize our media structures and probe the GMII. */
   3491 	sc->sc_mii.mii_ifp = ifp;
   3492 
   3493 	if (sc->sc_type >= WM_T_82544) {
   3494 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
   3495 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
   3496 	} else {
   3497 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
   3498 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
   3499 	}
   3500 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
   3501 
   3502 	wm_gmii_reset(sc);
   3503 
   3504 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
   3505 	    wm_gmii_mediastatus);
   3506 
   3507 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   3508 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
   3509 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   3510 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   3511 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   3512 	} else
   3513 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   3514 }
   3515 
   3516 /*
   3517  * wm_gmii_mediastatus:	[ifmedia interface function]
   3518  *
   3519  *	Get the current interface media status on a 1000BASE-T device.
   3520  */
   3521 static void
   3522 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3523 {
   3524 	struct wm_softc *sc = ifp->if_softc;
   3525 
   3526 	mii_pollstat(&sc->sc_mii);
   3527 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3528 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
   3529 			   sc->sc_flowflags;
   3530 }
   3531 
   3532 /*
   3533  * wm_gmii_mediachange:	[ifmedia interface function]
   3534  *
   3535  *	Set hardware to newly-selected media on a 1000BASE-T device.
   3536  */
   3537 static int
   3538 wm_gmii_mediachange(struct ifnet *ifp)
   3539 {
   3540 	struct wm_softc *sc = ifp->if_softc;
   3541 
   3542 	if (ifp->if_flags & IFF_UP)
   3543 		mii_mediachg(&sc->sc_mii);
   3544 	return (0);
   3545 }
   3546 
   3547 #define	MDI_IO		CTRL_SWDPIN(2)
   3548 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
   3549 #define	MDI_CLK		CTRL_SWDPIN(3)
   3550 
   3551 static void
   3552 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
   3553 {
   3554 	uint32_t i, v;
   3555 
   3556 	v = CSR_READ(sc, WMREG_CTRL);
   3557 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   3558 	v |= MDI_DIR | CTRL_SWDPIO(3);
   3559 
   3560 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
   3561 		if (data & i)
   3562 			v |= MDI_IO;
   3563 		else
   3564 			v &= ~MDI_IO;
   3565 		CSR_WRITE(sc, WMREG_CTRL, v);
   3566 		delay(10);
   3567 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3568 		delay(10);
   3569 		CSR_WRITE(sc, WMREG_CTRL, v);
   3570 		delay(10);
   3571 	}
   3572 }
   3573 
   3574 static uint32_t
   3575 i82543_mii_recvbits(struct wm_softc *sc)
   3576 {
   3577 	uint32_t v, i, data = 0;
   3578 
   3579 	v = CSR_READ(sc, WMREG_CTRL);
   3580 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   3581 	v |= CTRL_SWDPIO(3);
   3582 
   3583 	CSR_WRITE(sc, WMREG_CTRL, v);
   3584 	delay(10);
   3585 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3586 	delay(10);
   3587 	CSR_WRITE(sc, WMREG_CTRL, v);
   3588 	delay(10);
   3589 
   3590 	for (i = 0; i < 16; i++) {
   3591 		data <<= 1;
   3592 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3593 		delay(10);
   3594 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
   3595 			data |= 1;
   3596 		CSR_WRITE(sc, WMREG_CTRL, v);
   3597 		delay(10);
   3598 	}
   3599 
   3600 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3601 	delay(10);
   3602 	CSR_WRITE(sc, WMREG_CTRL, v);
   3603 	delay(10);
   3604 
   3605 	return (data);
   3606 }
   3607 
   3608 #undef MDI_IO
   3609 #undef MDI_DIR
   3610 #undef MDI_CLK
   3611 
   3612 /*
   3613  * wm_gmii_i82543_readreg:	[mii interface function]
   3614  *
   3615  *	Read a PHY register on the GMII (i82543 version).
   3616  */
   3617 static int
   3618 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
   3619 {
   3620 	struct wm_softc *sc = (void *) self;
   3621 	int rv;
   3622 
   3623 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   3624 	i82543_mii_sendbits(sc, reg | (phy << 5) |
   3625 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
   3626 	rv = i82543_mii_recvbits(sc) & 0xffff;
   3627 
   3628 	DPRINTF(WM_DEBUG_GMII,
   3629 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
   3630 	    sc->sc_dev.dv_xname, phy, reg, rv));
   3631 
   3632 	return (rv);
   3633 }
   3634 
   3635 /*
   3636  * wm_gmii_i82543_writereg:	[mii interface function]
   3637  *
   3638  *	Write a PHY register on the GMII (i82543 version).
   3639  */
   3640 static void
   3641 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
   3642 {
   3643 	struct wm_softc *sc = (void *) self;
   3644 
   3645 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   3646 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
   3647 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
   3648 	    (MII_COMMAND_START << 30), 32);
   3649 }
   3650 
   3651 /*
   3652  * wm_gmii_i82544_readreg:	[mii interface function]
   3653  *
   3654  *	Read a PHY register on the GMII.
   3655  */
   3656 static int
   3657 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
   3658 {
   3659 	struct wm_softc *sc = (void *) self;
   3660 	uint32_t mdic = 0;
   3661 	int i, rv;
   3662 
   3663 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
   3664 	    MDIC_REGADD(reg));
   3665 
   3666 	for (i = 0; i < 100; i++) {
   3667 		mdic = CSR_READ(sc, WMREG_MDIC);
   3668 		if (mdic & MDIC_READY)
   3669 			break;
   3670 		delay(10);
   3671 	}
   3672 
   3673 	if ((mdic & MDIC_READY) == 0) {
   3674 		printf("%s: MDIC read timed out: phy %d reg %d\n",
   3675 		    sc->sc_dev.dv_xname, phy, reg);
   3676 		rv = 0;
   3677 	} else if (mdic & MDIC_E) {
   3678 #if 0 /* This is normal if no PHY is present. */
   3679 		printf("%s: MDIC read error: phy %d reg %d\n",
   3680 		    sc->sc_dev.dv_xname, phy, reg);
   3681 #endif
   3682 		rv = 0;
   3683 	} else {
   3684 		rv = MDIC_DATA(mdic);
   3685 		if (rv == 0xffff)
   3686 			rv = 0;
   3687 	}
   3688 
   3689 	return (rv);
   3690 }
   3691 
   3692 /*
   3693  * wm_gmii_i82544_writereg:	[mii interface function]
   3694  *
   3695  *	Write a PHY register on the GMII.
   3696  */
   3697 static void
   3698 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
   3699 {
   3700 	struct wm_softc *sc = (void *) self;
   3701 	uint32_t mdic = 0;
   3702 	int i;
   3703 
   3704 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
   3705 	    MDIC_REGADD(reg) | MDIC_DATA(val));
   3706 
   3707 	for (i = 0; i < 100; i++) {
   3708 		mdic = CSR_READ(sc, WMREG_MDIC);
   3709 		if (mdic & MDIC_READY)
   3710 			break;
   3711 		delay(10);
   3712 	}
   3713 
   3714 	if ((mdic & MDIC_READY) == 0)
   3715 		printf("%s: MDIC write timed out: phy %d reg %d\n",
   3716 		    sc->sc_dev.dv_xname, phy, reg);
   3717 	else if (mdic & MDIC_E)
   3718 		printf("%s: MDIC write error: phy %d reg %d\n",
   3719 		    sc->sc_dev.dv_xname, phy, reg);
   3720 }
   3721 
   3722 /*
   3723  * wm_gmii_statchg:	[mii interface function]
   3724  *
   3725  *	Callback from MII layer when media changes.
   3726  */
   3727 static void
   3728 wm_gmii_statchg(struct device *self)
   3729 {
   3730 	struct wm_softc *sc = (void *) self;
   3731 	struct mii_data *mii = &sc->sc_mii;
   3732 
   3733 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
   3734 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3735 	sc->sc_fcrtl &= ~FCRTL_XONE;
   3736 
   3737 	/*
   3738 	 * Get flow control negotiation result.
   3739 	 */
   3740 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3741 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3742 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3743 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3744 	}
   3745 
   3746 	if (sc->sc_flowflags & IFM_FLOW) {
   3747 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
   3748 			sc->sc_ctrl |= CTRL_TFCE;
   3749 			sc->sc_fcrtl |= FCRTL_XONE;
   3750 		}
   3751 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3752 			sc->sc_ctrl |= CTRL_RFCE;
   3753 	}
   3754 
   3755 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   3756 		DPRINTF(WM_DEBUG_LINK,
   3757 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
   3758 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3759 	} else  {
   3760 		DPRINTF(WM_DEBUG_LINK,
   3761 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
   3762 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3763 	}
   3764 
   3765 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3766 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3767 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
   3768 						 : WMREG_FCRTL, sc->sc_fcrtl);
   3769 }
   3770