if_wm.c revision 1.83 1 /* $NetBSD: if_wm.c,v 1.83 2004/10/30 18:09:22 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40 *
41 * TODO (in order of importance):
42 *
43 * - Rework how parameters are loaded from the EEPROM.
44 * - Figure out what to do with the i82545GM and i82546GB
45 * SERDES controllers.
46 * - Fix hw VLAN assist.
47 */
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.83 2004/10/30 18:09:22 thorpej Exp $");
51
52 #include "bpfilter.h"
53 #include "rnd.h"
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66
67 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
68
69 #if NRND > 0
70 #include <sys/rnd.h>
71 #endif
72
73 #include <net/if.h>
74 #include <net/if_dl.h>
75 #include <net/if_media.h>
76 #include <net/if_ether.h>
77
78 #if NBPFILTER > 0
79 #include <net/bpf.h>
80 #endif
81
82 #include <netinet/in.h> /* XXX for struct ip */
83 #include <netinet/in_systm.h> /* XXX for struct ip */
84 #include <netinet/ip.h> /* XXX for struct ip */
85 #include <netinet/tcp.h> /* XXX for struct tcphdr */
86
87 #include <machine/bus.h>
88 #include <machine/intr.h>
89 #include <machine/endian.h>
90
91 #include <dev/mii/mii.h>
92 #include <dev/mii/miivar.h>
93 #include <dev/mii/mii_bitbang.h>
94
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 #include <dev/pci/pcidevs.h>
98
99 #include <dev/pci/if_wmreg.h>
100
101 #ifdef WM_DEBUG
102 #define WM_DEBUG_LINK 0x01
103 #define WM_DEBUG_TX 0x02
104 #define WM_DEBUG_RX 0x04
105 #define WM_DEBUG_GMII 0x08
106 int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
107
108 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
109 #else
110 #define DPRINTF(x, y) /* nothing */
111 #endif /* WM_DEBUG */
112
113 /*
114 * Transmit descriptor list size. Due to errata, we can only have
115 * 256 hardware descriptors in the ring on < 82544, but we use 4096
116 * on >= 82544. We tell the upper layers that they can queue a lot
117 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
118 * of them at a time.
119 *
120 * We allow up to 256 (!) DMA segments per packet. Pathological packet
121 * chains containing many small mbufs have been observed in zero-copy
122 * situations with jumbo frames.
123 */
124 #define WM_NTXSEGS 256
125 #define WM_IFQUEUELEN 256
126 #define WM_TXQUEUELEN_MAX 64
127 #define WM_TXQUEUELEN_MAX_82547 16
128 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
129 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
130 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
131 #define WM_NTXDESC_82542 256
132 #define WM_NTXDESC_82544 4096
133 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
134 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
135 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
136 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
137 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
138
139 #define WM_MAXTXDMA ETHER_MAX_LEN_JUMBO
140
141 /*
142 * Receive descriptor list size. We have one Rx buffer for normal
143 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
144 * packet. We allocate 256 receive descriptors, each with a 2k
145 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
146 */
147 #define WM_NRXDESC 256
148 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
149 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
150 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
151
152 /*
153 * Control structures are DMA'd to the i82542 chip. We allocate them in
154 * a single clump that maps to a single DMA segment to make serveral things
155 * easier.
156 */
157 struct wm_control_data_82544 {
158 /*
159 * The receive descriptors.
160 */
161 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
162
163 /*
164 * The transmit descriptors. Put these at the end, because
165 * we might use a smaller number of them.
166 */
167 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
168 };
169
170 struct wm_control_data_82542 {
171 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
172 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
173 };
174
175 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
176 #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)])
177 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
178
179 /*
180 * Software state for transmit jobs.
181 */
182 struct wm_txsoft {
183 struct mbuf *txs_mbuf; /* head of our mbuf chain */
184 bus_dmamap_t txs_dmamap; /* our DMA map */
185 int txs_firstdesc; /* first descriptor in packet */
186 int txs_lastdesc; /* last descriptor in packet */
187 int txs_ndesc; /* # of descriptors used */
188 };
189
190 /*
191 * Software state for receive buffers. Each descriptor gets a
192 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
193 * more than one buffer, we chain them together.
194 */
195 struct wm_rxsoft {
196 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
197 bus_dmamap_t rxs_dmamap; /* our DMA map */
198 };
199
200 typedef enum {
201 WM_T_unknown = 0,
202 WM_T_82542_2_0, /* i82542 2.0 (really old) */
203 WM_T_82542_2_1, /* i82542 2.1+ (old) */
204 WM_T_82543, /* i82543 */
205 WM_T_82544, /* i82544 */
206 WM_T_82540, /* i82540 */
207 WM_T_82545, /* i82545 */
208 WM_T_82545_3, /* i82545 3.0+ */
209 WM_T_82546, /* i82546 */
210 WM_T_82546_3, /* i82546 3.0+ */
211 WM_T_82541, /* i82541 */
212 WM_T_82541_2, /* i82541 2.0+ */
213 WM_T_82547, /* i82547 */
214 WM_T_82547_2, /* i82547 2.0+ */
215 } wm_chip_type;
216
217 /*
218 * Software state per device.
219 */
220 struct wm_softc {
221 struct device sc_dev; /* generic device information */
222 bus_space_tag_t sc_st; /* bus space tag */
223 bus_space_handle_t sc_sh; /* bus space handle */
224 bus_space_tag_t sc_iot; /* I/O space tag */
225 bus_space_handle_t sc_ioh; /* I/O space handle */
226 bus_dma_tag_t sc_dmat; /* bus DMA tag */
227 struct ethercom sc_ethercom; /* ethernet common data */
228 void *sc_sdhook; /* shutdown hook */
229
230 wm_chip_type sc_type; /* chip type */
231 int sc_flags; /* flags; see below */
232 int sc_bus_speed; /* PCI/PCIX bus speed */
233 int sc_pcix_offset; /* PCIX capability register offset */
234 int sc_flowflags; /* 802.3x flow control flags */
235
236 void *sc_ih; /* interrupt cookie */
237
238 int sc_ee_addrbits; /* EEPROM address bits */
239
240 struct mii_data sc_mii; /* MII/media information */
241
242 struct callout sc_tick_ch; /* tick callout */
243
244 bus_dmamap_t sc_cddmamap; /* control data DMA map */
245 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
246
247 int sc_align_tweak;
248
249 /*
250 * Software state for the transmit and receive descriptors.
251 */
252 int sc_txnum; /* must be a power of two */
253 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
254 struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
255
256 /*
257 * Control data structures.
258 */
259 int sc_ntxdesc; /* must be a power of two */
260 struct wm_control_data_82544 *sc_control_data;
261 #define sc_txdescs sc_control_data->wcd_txdescs
262 #define sc_rxdescs sc_control_data->wcd_rxdescs
263
264 #ifdef WM_EVENT_COUNTERS
265 /* Event counters. */
266 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
267 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
268 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
269 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
270 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
271 struct evcnt sc_ev_rxintr; /* Rx interrupts */
272 struct evcnt sc_ev_linkintr; /* Link interrupts */
273
274 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
275 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
276 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
277 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
278
279 struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
280 struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
281 struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
282
283 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
284 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
285
286 struct evcnt sc_ev_tu; /* Tx underrun */
287
288 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
289 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
290 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
291 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
292 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
293 #endif /* WM_EVENT_COUNTERS */
294
295 bus_addr_t sc_tdt_reg; /* offset of TDT register */
296
297 int sc_txfree; /* number of free Tx descriptors */
298 int sc_txnext; /* next ready Tx descriptor */
299
300 int sc_txsfree; /* number of free Tx jobs */
301 int sc_txsnext; /* next free Tx job */
302 int sc_txsdirty; /* dirty Tx jobs */
303
304 /* These 5 variables are used only on the 82547. */
305 int sc_txfifo_size; /* Tx FIFO size */
306 int sc_txfifo_head; /* current head of FIFO */
307 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
308 int sc_txfifo_stall; /* Tx FIFO is stalled */
309 struct callout sc_txfifo_ch; /* Tx FIFO stall work-around timer */
310
311 uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
312 uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
313
314 bus_addr_t sc_rdt_reg; /* offset of RDT register */
315
316 int sc_rxptr; /* next ready Rx descriptor/queue ent */
317 int sc_rxdiscard;
318 int sc_rxlen;
319 struct mbuf *sc_rxhead;
320 struct mbuf *sc_rxtail;
321 struct mbuf **sc_rxtailp;
322
323 uint32_t sc_ctrl; /* prototype CTRL register */
324 #if 0
325 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
326 #endif
327 uint32_t sc_icr; /* prototype interrupt bits */
328 uint32_t sc_tctl; /* prototype TCTL register */
329 uint32_t sc_rctl; /* prototype RCTL register */
330 uint32_t sc_txcw; /* prototype TXCW register */
331 uint32_t sc_tipg; /* prototype TIPG register */
332 uint32_t sc_fcrtl; /* prototype FCRTL register */
333 uint32_t sc_pba; /* prototype PBA register */
334
335 int sc_tbi_linkup; /* TBI link status */
336 int sc_tbi_anstate; /* autonegotiation state */
337
338 int sc_mchash_type; /* multicast filter offset */
339
340 #if NRND > 0
341 rndsource_element_t rnd_source; /* random source */
342 #endif
343 };
344
345 #define WM_RXCHAIN_RESET(sc) \
346 do { \
347 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
348 *(sc)->sc_rxtailp = NULL; \
349 (sc)->sc_rxlen = 0; \
350 } while (/*CONSTCOND*/0)
351
352 #define WM_RXCHAIN_LINK(sc, m) \
353 do { \
354 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
355 (sc)->sc_rxtailp = &(m)->m_next; \
356 } while (/*CONSTCOND*/0)
357
358 /* sc_flags */
359 #define WM_F_HAS_MII 0x01 /* has MII */
360 #define WM_F_EEPROM_HANDSHAKE 0x02 /* requires EEPROM handshake */
361 #define WM_F_EEPROM_SPI 0x04 /* EEPROM is SPI */
362 #define WM_F_IOH_VALID 0x10 /* I/O handle is valid */
363 #define WM_F_BUS64 0x20 /* bus is 64-bit */
364 #define WM_F_PCIX 0x40 /* bus is PCI-X */
365 #define WM_F_CSA 0x80 /* bus is CSA */
366
367 #ifdef WM_EVENT_COUNTERS
368 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
369 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
370 #else
371 #define WM_EVCNT_INCR(ev) /* nothing */
372 #define WM_EVCNT_ADD(ev, val) /* nothing */
373 #endif
374
375 #define CSR_READ(sc, reg) \
376 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
377 #define CSR_WRITE(sc, reg, val) \
378 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
379 #define CSR_WRITE_FLUSH(sc) \
380 (void) CSR_READ((sc), WMREG_STATUS)
381
382 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
383 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
384
385 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
386 #define WM_CDTXADDR_HI(sc, x) \
387 (sizeof(bus_addr_t) == 8 ? \
388 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
389
390 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
391 #define WM_CDRXADDR_HI(sc, x) \
392 (sizeof(bus_addr_t) == 8 ? \
393 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
394
395 #define WM_CDTXSYNC(sc, x, n, ops) \
396 do { \
397 int __x, __n; \
398 \
399 __x = (x); \
400 __n = (n); \
401 \
402 /* If it will wrap around, sync to the end of the ring. */ \
403 if ((__x + __n) > WM_NTXDESC(sc)) { \
404 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
405 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
406 (WM_NTXDESC(sc) - __x), (ops)); \
407 __n -= (WM_NTXDESC(sc) - __x); \
408 __x = 0; \
409 } \
410 \
411 /* Now sync whatever is left. */ \
412 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
413 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
414 } while (/*CONSTCOND*/0)
415
416 #define WM_CDRXSYNC(sc, x, ops) \
417 do { \
418 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
419 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
420 } while (/*CONSTCOND*/0)
421
422 #define WM_INIT_RXDESC(sc, x) \
423 do { \
424 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
425 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
426 struct mbuf *__m = __rxs->rxs_mbuf; \
427 \
428 /* \
429 * Note: We scoot the packet forward 2 bytes in the buffer \
430 * so that the payload after the Ethernet header is aligned \
431 * to a 4-byte boundary. \
432 * \
433 * XXX BRAINDAMAGE ALERT! \
434 * The stupid chip uses the same size for every buffer, which \
435 * is set in the Receive Control register. We are using the 2K \
436 * size option, but what we REALLY want is (2K - 2)! For this \
437 * reason, we can't "scoot" packets longer than the standard \
438 * Ethernet MTU. On strict-alignment platforms, if the total \
439 * size exceeds (2K - 2) we set align_tweak to 0 and let \
440 * the upper layer copy the headers. \
441 */ \
442 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
443 \
444 wm_set_dma_addr(&__rxd->wrx_addr, \
445 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
446 __rxd->wrx_len = 0; \
447 __rxd->wrx_cksum = 0; \
448 __rxd->wrx_status = 0; \
449 __rxd->wrx_errors = 0; \
450 __rxd->wrx_special = 0; \
451 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
452 \
453 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
454 } while (/*CONSTCOND*/0)
455
456 static void wm_start(struct ifnet *);
457 static void wm_watchdog(struct ifnet *);
458 static int wm_ioctl(struct ifnet *, u_long, caddr_t);
459 static int wm_init(struct ifnet *);
460 static void wm_stop(struct ifnet *, int);
461
462 static void wm_shutdown(void *);
463
464 static void wm_reset(struct wm_softc *);
465 static void wm_rxdrain(struct wm_softc *);
466 static int wm_add_rxbuf(struct wm_softc *, int);
467 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
468 static void wm_tick(void *);
469
470 static void wm_set_filter(struct wm_softc *);
471
472 static int wm_intr(void *);
473 static void wm_txintr(struct wm_softc *);
474 static void wm_rxintr(struct wm_softc *);
475 static void wm_linkintr(struct wm_softc *, uint32_t);
476
477 static void wm_tbi_mediainit(struct wm_softc *);
478 static int wm_tbi_mediachange(struct ifnet *);
479 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
480
481 static void wm_tbi_set_linkled(struct wm_softc *);
482 static void wm_tbi_check_link(struct wm_softc *);
483
484 static void wm_gmii_reset(struct wm_softc *);
485
486 static int wm_gmii_i82543_readreg(struct device *, int, int);
487 static void wm_gmii_i82543_writereg(struct device *, int, int, int);
488
489 static int wm_gmii_i82544_readreg(struct device *, int, int);
490 static void wm_gmii_i82544_writereg(struct device *, int, int, int);
491
492 static void wm_gmii_statchg(struct device *);
493
494 static void wm_gmii_mediainit(struct wm_softc *);
495 static int wm_gmii_mediachange(struct ifnet *);
496 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
497
498 static int wm_match(struct device *, struct cfdata *, void *);
499 static void wm_attach(struct device *, struct device *, void *);
500
501 CFATTACH_DECL(wm, sizeof(struct wm_softc),
502 wm_match, wm_attach, NULL, NULL);
503
504 static void wm_82547_txfifo_stall(void *);
505
506 /*
507 * Devices supported by this driver.
508 */
509 static const struct wm_product {
510 pci_vendor_id_t wmp_vendor;
511 pci_product_id_t wmp_product;
512 const char *wmp_name;
513 wm_chip_type wmp_type;
514 int wmp_flags;
515 #define WMP_F_1000X 0x01
516 #define WMP_F_1000T 0x02
517 } wm_products[] = {
518 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
519 "Intel i82542 1000BASE-X Ethernet",
520 WM_T_82542_2_1, WMP_F_1000X },
521
522 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
523 "Intel i82543GC 1000BASE-X Ethernet",
524 WM_T_82543, WMP_F_1000X },
525
526 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
527 "Intel i82543GC 1000BASE-T Ethernet",
528 WM_T_82543, WMP_F_1000T },
529
530 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
531 "Intel i82544EI 1000BASE-T Ethernet",
532 WM_T_82544, WMP_F_1000T },
533
534 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
535 "Intel i82544EI 1000BASE-X Ethernet",
536 WM_T_82544, WMP_F_1000X },
537
538 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
539 "Intel i82544GC 1000BASE-T Ethernet",
540 WM_T_82544, WMP_F_1000T },
541
542 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
543 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
544 WM_T_82544, WMP_F_1000T },
545
546 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
547 "Intel i82540EM 1000BASE-T Ethernet",
548 WM_T_82540, WMP_F_1000T },
549
550 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
551 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
552 WM_T_82540, WMP_F_1000T },
553
554 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
555 "Intel i82540EP 1000BASE-T Ethernet",
556 WM_T_82540, WMP_F_1000T },
557
558 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
559 "Intel i82540EP 1000BASE-T Ethernet",
560 WM_T_82540, WMP_F_1000T },
561
562 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
563 "Intel i82540EP 1000BASE-T Ethernet",
564 WM_T_82540, WMP_F_1000T },
565
566 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
567 "Intel i82545EM 1000BASE-T Ethernet",
568 WM_T_82545, WMP_F_1000T },
569
570 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
571 "Intel i82545GM 1000BASE-T Ethernet",
572 WM_T_82545_3, WMP_F_1000T },
573
574 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
575 "Intel i82545GM 1000BASE-X Ethernet",
576 WM_T_82545_3, WMP_F_1000X },
577 #if 0
578 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
579 "Intel i82545GM Gigabit Ethernet (SERDES)",
580 WM_T_82545_3, WMP_F_SERDES },
581 #endif
582 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
583 "Intel i82546EB 1000BASE-T Ethernet",
584 WM_T_82546, WMP_F_1000T },
585
586 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
587 "Intel i82546EB 1000BASE-T Ethernet",
588 WM_T_82546, WMP_F_1000T },
589
590 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
591 "Intel i82545EM 1000BASE-X Ethernet",
592 WM_T_82545, WMP_F_1000X },
593
594 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
595 "Intel i82546EB 1000BASE-X Ethernet",
596 WM_T_82546, WMP_F_1000X },
597
598 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
599 "Intel i82546GB 1000BASE-T Ethernet",
600 WM_T_82546_3, WMP_F_1000T },
601
602 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
603 "Intel i82546GB 1000BASE-X Ethernet",
604 WM_T_82546_3, WMP_F_1000X },
605 #if 0
606 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
607 "Intel i82546GB Gigabit Ethernet (SERDES)",
608 WM_T_82546_3, WMP_F_SERDES },
609 #endif
610 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
611 "Intel i82541EI 1000BASE-T Ethernet",
612 WM_T_82541, WMP_F_1000T },
613
614 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
615 "Intel i82541EI Mobile 1000BASE-T Ethernet",
616 WM_T_82541, WMP_F_1000T },
617
618 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
619 "Intel i82541ER 1000BASE-T Ethernet",
620 WM_T_82541_2, WMP_F_1000T },
621
622 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
623 "Intel i82541GI 1000BASE-T Ethernet",
624 WM_T_82541_2, WMP_F_1000T },
625
626 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
627 "Intel i82541GI Mobile 1000BASE-T Ethernet",
628 WM_T_82541_2, WMP_F_1000T },
629
630 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
631 "Intel i82547EI 1000BASE-T Ethernet",
632 WM_T_82547, WMP_F_1000T },
633
634 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
635 "Intel i82547GI 1000BASE-T Ethernet",
636 WM_T_82547_2, WMP_F_1000T },
637 { 0, 0,
638 NULL,
639 0, 0 },
640 };
641
642 #ifdef WM_EVENT_COUNTERS
643 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
644 #endif /* WM_EVENT_COUNTERS */
645
646 #if 0 /* Not currently used */
647 static __inline uint32_t
648 wm_io_read(struct wm_softc *sc, int reg)
649 {
650
651 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
652 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
653 }
654 #endif
655
656 static __inline void
657 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
658 {
659
660 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
661 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
662 }
663
664 static __inline void
665 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
666 {
667 wa->wa_low = htole32(v & 0xffffffffU);
668 if (sizeof(bus_addr_t) == 8)
669 wa->wa_high = htole32((uint64_t) v >> 32);
670 else
671 wa->wa_high = 0;
672 }
673
674 static const struct wm_product *
675 wm_lookup(const struct pci_attach_args *pa)
676 {
677 const struct wm_product *wmp;
678
679 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
680 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
681 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
682 return (wmp);
683 }
684 return (NULL);
685 }
686
687 static int
688 wm_match(struct device *parent, struct cfdata *cf, void *aux)
689 {
690 struct pci_attach_args *pa = aux;
691
692 if (wm_lookup(pa) != NULL)
693 return (1);
694
695 return (0);
696 }
697
698 static void
699 wm_attach(struct device *parent, struct device *self, void *aux)
700 {
701 struct wm_softc *sc = (void *) self;
702 struct pci_attach_args *pa = aux;
703 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
704 pci_chipset_tag_t pc = pa->pa_pc;
705 pci_intr_handle_t ih;
706 size_t cdata_size;
707 const char *intrstr = NULL;
708 const char *eetype;
709 bus_space_tag_t memt;
710 bus_space_handle_t memh;
711 bus_dma_segment_t seg;
712 int memh_valid;
713 int i, rseg, error;
714 const struct wm_product *wmp;
715 uint8_t enaddr[ETHER_ADDR_LEN];
716 uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
717 pcireg_t preg, memtype;
718 uint32_t reg;
719 int pmreg;
720
721 callout_init(&sc->sc_tick_ch);
722
723 wmp = wm_lookup(pa);
724 if (wmp == NULL) {
725 printf("\n");
726 panic("wm_attach: impossible");
727 }
728
729 if (pci_dma64_available(pa))
730 sc->sc_dmat = pa->pa_dmat64;
731 else
732 sc->sc_dmat = pa->pa_dmat;
733
734 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
735 aprint_naive(": Ethernet controller\n");
736 aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
737
738 sc->sc_type = wmp->wmp_type;
739 if (sc->sc_type < WM_T_82543) {
740 if (preg < 2) {
741 aprint_error("%s: i82542 must be at least rev. 2\n",
742 sc->sc_dev.dv_xname);
743 return;
744 }
745 if (preg < 3)
746 sc->sc_type = WM_T_82542_2_0;
747 }
748
749 /*
750 * Map the device. All devices support memory-mapped acccess,
751 * and it is really required for normal operation.
752 */
753 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
754 switch (memtype) {
755 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
756 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
757 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
758 memtype, 0, &memt, &memh, NULL, NULL) == 0);
759 break;
760 default:
761 memh_valid = 0;
762 }
763
764 if (memh_valid) {
765 sc->sc_st = memt;
766 sc->sc_sh = memh;
767 } else {
768 aprint_error("%s: unable to map device registers\n",
769 sc->sc_dev.dv_xname);
770 return;
771 }
772
773 /*
774 * In addition, i82544 and later support I/O mapped indirect
775 * register access. It is not desirable (nor supported in
776 * this driver) to use it for normal operation, though it is
777 * required to work around bugs in some chip versions.
778 */
779 if (sc->sc_type >= WM_T_82544) {
780 /* First we have to find the I/O BAR. */
781 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
782 if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
783 PCI_MAPREG_TYPE_IO)
784 break;
785 }
786 if (i == PCI_MAPREG_END)
787 aprint_error("%s: WARNING: unable to find I/O BAR\n",
788 sc->sc_dev.dv_xname);
789 else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
790 0, &sc->sc_iot, &sc->sc_ioh,
791 NULL, NULL) == 0)
792 sc->sc_flags |= WM_F_IOH_VALID;
793 else
794 aprint_error("%s: WARNING: unable to map I/O space\n",
795 sc->sc_dev.dv_xname);
796 }
797
798 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
799 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
800 preg |= PCI_COMMAND_MASTER_ENABLE;
801 if (sc->sc_type < WM_T_82542_2_1)
802 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
803 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
804
805 /* Get it out of power save mode, if needed. */
806 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
807 preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
808 PCI_PMCSR_STATE_MASK;
809 if (preg == PCI_PMCSR_STATE_D3) {
810 /*
811 * The card has lost all configuration data in
812 * this state, so punt.
813 */
814 aprint_error("%s: unable to wake from power state D3\n",
815 sc->sc_dev.dv_xname);
816 return;
817 }
818 if (preg != PCI_PMCSR_STATE_D0) {
819 aprint_normal("%s: waking up from power state D%d\n",
820 sc->sc_dev.dv_xname, preg);
821 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
822 PCI_PMCSR_STATE_D0);
823 }
824 }
825
826 /*
827 * Map and establish our interrupt.
828 */
829 if (pci_intr_map(pa, &ih)) {
830 aprint_error("%s: unable to map interrupt\n",
831 sc->sc_dev.dv_xname);
832 return;
833 }
834 intrstr = pci_intr_string(pc, ih);
835 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
836 if (sc->sc_ih == NULL) {
837 aprint_error("%s: unable to establish interrupt",
838 sc->sc_dev.dv_xname);
839 if (intrstr != NULL)
840 aprint_normal(" at %s", intrstr);
841 aprint_normal("\n");
842 return;
843 }
844 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
845
846 /*
847 * Determine a few things about the bus we're connected to.
848 */
849 if (sc->sc_type < WM_T_82543) {
850 /* We don't really know the bus characteristics here. */
851 sc->sc_bus_speed = 33;
852 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
853 /*
854 * CSA (Communication Streaming Architecture) is about as fast
855 * a 32-bit 66MHz PCI Bus.
856 */
857 sc->sc_flags |= WM_F_CSA;
858 sc->sc_bus_speed = 66;
859 aprint_verbose("%s: Communication Streaming Architecture\n",
860 sc->sc_dev.dv_xname);
861 if (sc->sc_type == WM_T_82547) {
862 callout_init(&sc->sc_txfifo_ch);
863 callout_setfunc(&sc->sc_txfifo_ch,
864 wm_82547_txfifo_stall, sc);
865 aprint_verbose("%s: using 82547 Tx FIFO stall "
866 "work-around\n", sc->sc_dev.dv_xname);
867 }
868 } else {
869 reg = CSR_READ(sc, WMREG_STATUS);
870 if (reg & STATUS_BUS64)
871 sc->sc_flags |= WM_F_BUS64;
872 if (sc->sc_type >= WM_T_82544 &&
873 (reg & STATUS_PCIX_MODE) != 0) {
874 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
875
876 sc->sc_flags |= WM_F_PCIX;
877 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
878 PCI_CAP_PCIX,
879 &sc->sc_pcix_offset, NULL) == 0)
880 aprint_error("%s: unable to find PCIX "
881 "capability\n", sc->sc_dev.dv_xname);
882 else if (sc->sc_type != WM_T_82545_3 &&
883 sc->sc_type != WM_T_82546_3) {
884 /*
885 * Work around a problem caused by the BIOS
886 * setting the max memory read byte count
887 * incorrectly.
888 */
889 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
890 sc->sc_pcix_offset + PCI_PCIX_CMD);
891 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
892 sc->sc_pcix_offset + PCI_PCIX_STATUS);
893
894 bytecnt =
895 (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
896 PCI_PCIX_CMD_BYTECNT_SHIFT;
897 maxb =
898 (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
899 PCI_PCIX_STATUS_MAXB_SHIFT;
900 if (bytecnt > maxb) {
901 aprint_verbose("%s: resetting PCI-X "
902 "MMRBC: %d -> %d\n",
903 sc->sc_dev.dv_xname,
904 512 << bytecnt, 512 << maxb);
905 pcix_cmd = (pcix_cmd &
906 ~PCI_PCIX_CMD_BYTECNT_MASK) |
907 (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
908 pci_conf_write(pa->pa_pc, pa->pa_tag,
909 sc->sc_pcix_offset + PCI_PCIX_CMD,
910 pcix_cmd);
911 }
912 }
913 }
914 /*
915 * The quad port adapter is special; it has a PCIX-PCIX
916 * bridge on the board, and can run the secondary bus at
917 * a higher speed.
918 */
919 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
920 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
921 : 66;
922 } else if (sc->sc_flags & WM_F_PCIX) {
923 switch (reg & STATUS_PCIXSPD_MASK) {
924 case STATUS_PCIXSPD_50_66:
925 sc->sc_bus_speed = 66;
926 break;
927 case STATUS_PCIXSPD_66_100:
928 sc->sc_bus_speed = 100;
929 break;
930 case STATUS_PCIXSPD_100_133:
931 sc->sc_bus_speed = 133;
932 break;
933 default:
934 aprint_error(
935 "%s: unknown PCIXSPD %d; assuming 66MHz\n",
936 sc->sc_dev.dv_xname,
937 reg & STATUS_PCIXSPD_MASK);
938 sc->sc_bus_speed = 66;
939 }
940 } else
941 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
942 aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
943 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
944 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
945 }
946
947 /*
948 * Allocate the control data structures, and create and load the
949 * DMA map for it.
950 *
951 * NOTE: All Tx descriptors must be in the same 4G segment of
952 * memory. So must Rx descriptors. We simplify by allocating
953 * both sets within the same 4G segment.
954 */
955 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
956 WM_NTXDESC_82542 : WM_NTXDESC_82544;
957 cdata_size = sc->sc_type < WM_T_82544 ?
958 sizeof(struct wm_control_data_82542) :
959 sizeof(struct wm_control_data_82544);
960 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
961 (bus_size_t) 0x100000000ULL,
962 &seg, 1, &rseg, 0)) != 0) {
963 aprint_error(
964 "%s: unable to allocate control data, error = %d\n",
965 sc->sc_dev.dv_xname, error);
966 goto fail_0;
967 }
968
969 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
970 (caddr_t *)&sc->sc_control_data, 0)) != 0) {
971 aprint_error("%s: unable to map control data, error = %d\n",
972 sc->sc_dev.dv_xname, error);
973 goto fail_1;
974 }
975
976 if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
977 0, 0, &sc->sc_cddmamap)) != 0) {
978 aprint_error("%s: unable to create control data DMA map, "
979 "error = %d\n", sc->sc_dev.dv_xname, error);
980 goto fail_2;
981 }
982
983 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
984 sc->sc_control_data, cdata_size, NULL,
985 0)) != 0) {
986 aprint_error(
987 "%s: unable to load control data DMA map, error = %d\n",
988 sc->sc_dev.dv_xname, error);
989 goto fail_3;
990 }
991
992
993 /*
994 * Create the transmit buffer DMA maps.
995 */
996 WM_TXQUEUELEN(sc) =
997 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
998 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
999 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1000 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1001 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1002 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1003 aprint_error("%s: unable to create Tx DMA map %d, "
1004 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1005 goto fail_4;
1006 }
1007 }
1008
1009 /*
1010 * Create the receive buffer DMA maps.
1011 */
1012 for (i = 0; i < WM_NRXDESC; i++) {
1013 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1014 MCLBYTES, 0, 0,
1015 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1016 aprint_error("%s: unable to create Rx DMA map %d, "
1017 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1018 goto fail_5;
1019 }
1020 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1021 }
1022
1023 /*
1024 * Reset the chip to a known state.
1025 */
1026 wm_reset(sc);
1027
1028 /*
1029 * Get some information about the EEPROM.
1030 */
1031 if (sc->sc_type >= WM_T_82540)
1032 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1033 if (sc->sc_type <= WM_T_82544)
1034 sc->sc_ee_addrbits = 6;
1035 else if (sc->sc_type <= WM_T_82546_3) {
1036 reg = CSR_READ(sc, WMREG_EECD);
1037 if (reg & EECD_EE_SIZE)
1038 sc->sc_ee_addrbits = 8;
1039 else
1040 sc->sc_ee_addrbits = 6;
1041 } else if (sc->sc_type <= WM_T_82547_2) {
1042 reg = CSR_READ(sc, WMREG_EECD);
1043 if (reg & EECD_EE_TYPE) {
1044 sc->sc_flags |= WM_F_EEPROM_SPI;
1045 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1046 } else
1047 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1048 } else {
1049 /* Assume everything else is SPI. */
1050 reg = CSR_READ(sc, WMREG_EECD);
1051 sc->sc_flags |= WM_F_EEPROM_SPI;
1052 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1053 }
1054 if (sc->sc_flags & WM_F_EEPROM_SPI)
1055 eetype = "SPI";
1056 else
1057 eetype = "MicroWire";
1058 aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1059 sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1060 sc->sc_ee_addrbits, eetype);
1061
1062 /*
1063 * Read the Ethernet address from the EEPROM.
1064 */
1065 if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1066 sizeof(myea) / sizeof(myea[0]), myea)) {
1067 aprint_error("%s: unable to read Ethernet address\n",
1068 sc->sc_dev.dv_xname);
1069 return;
1070 }
1071 enaddr[0] = myea[0] & 0xff;
1072 enaddr[1] = myea[0] >> 8;
1073 enaddr[2] = myea[1] & 0xff;
1074 enaddr[3] = myea[1] >> 8;
1075 enaddr[4] = myea[2] & 0xff;
1076 enaddr[5] = myea[2] >> 8;
1077
1078 /*
1079 * Toggle the LSB of the MAC address on the second port
1080 * of the i82546.
1081 */
1082 if (sc->sc_type == WM_T_82546) {
1083 if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1084 enaddr[5] ^= 1;
1085 }
1086
1087 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1088 ether_sprintf(enaddr));
1089
1090 /*
1091 * Read the config info from the EEPROM, and set up various
1092 * bits in the control registers based on their contents.
1093 */
1094 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1095 aprint_error("%s: unable to read CFG1 from EEPROM\n",
1096 sc->sc_dev.dv_xname);
1097 return;
1098 }
1099 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1100 aprint_error("%s: unable to read CFG2 from EEPROM\n",
1101 sc->sc_dev.dv_xname);
1102 return;
1103 }
1104 if (sc->sc_type >= WM_T_82544) {
1105 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1106 aprint_error("%s: unable to read SWDPIN from EEPROM\n",
1107 sc->sc_dev.dv_xname);
1108 return;
1109 }
1110 }
1111
1112 if (cfg1 & EEPROM_CFG1_ILOS)
1113 sc->sc_ctrl |= CTRL_ILOS;
1114 if (sc->sc_type >= WM_T_82544) {
1115 sc->sc_ctrl |=
1116 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1117 CTRL_SWDPIO_SHIFT;
1118 sc->sc_ctrl |=
1119 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1120 CTRL_SWDPINS_SHIFT;
1121 } else {
1122 sc->sc_ctrl |=
1123 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1124 CTRL_SWDPIO_SHIFT;
1125 }
1126
1127 #if 0
1128 if (sc->sc_type >= WM_T_82544) {
1129 if (cfg1 & EEPROM_CFG1_IPS0)
1130 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1131 if (cfg1 & EEPROM_CFG1_IPS1)
1132 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1133 sc->sc_ctrl_ext |=
1134 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1135 CTRL_EXT_SWDPIO_SHIFT;
1136 sc->sc_ctrl_ext |=
1137 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1138 CTRL_EXT_SWDPINS_SHIFT;
1139 } else {
1140 sc->sc_ctrl_ext |=
1141 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1142 CTRL_EXT_SWDPIO_SHIFT;
1143 }
1144 #endif
1145
1146 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1147 #if 0
1148 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1149 #endif
1150
1151 /*
1152 * Set up some register offsets that are different between
1153 * the i82542 and the i82543 and later chips.
1154 */
1155 if (sc->sc_type < WM_T_82543) {
1156 sc->sc_rdt_reg = WMREG_OLD_RDT0;
1157 sc->sc_tdt_reg = WMREG_OLD_TDT;
1158 } else {
1159 sc->sc_rdt_reg = WMREG_RDT;
1160 sc->sc_tdt_reg = WMREG_TDT;
1161 }
1162
1163 /*
1164 * Determine if we're TBI or GMII mode, and initialize the
1165 * media structures accordingly.
1166 */
1167 if (sc->sc_type < WM_T_82543 ||
1168 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1169 if (wmp->wmp_flags & WMP_F_1000T)
1170 aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1171 "product!\n", sc->sc_dev.dv_xname);
1172 wm_tbi_mediainit(sc);
1173 } else {
1174 if (wmp->wmp_flags & WMP_F_1000X)
1175 aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1176 "product!\n", sc->sc_dev.dv_xname);
1177 wm_gmii_mediainit(sc);
1178 }
1179
1180 ifp = &sc->sc_ethercom.ec_if;
1181 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1182 ifp->if_softc = sc;
1183 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1184 ifp->if_ioctl = wm_ioctl;
1185 ifp->if_start = wm_start;
1186 ifp->if_watchdog = wm_watchdog;
1187 ifp->if_init = wm_init;
1188 ifp->if_stop = wm_stop;
1189 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1190 IFQ_SET_READY(&ifp->if_snd);
1191
1192 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1193
1194 /*
1195 * If we're a i82543 or greater, we can support VLANs.
1196 */
1197 if (sc->sc_type >= WM_T_82543)
1198 sc->sc_ethercom.ec_capabilities |=
1199 ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1200
1201 /*
1202 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
1203 * on i82543 and later.
1204 */
1205 if (sc->sc_type >= WM_T_82543)
1206 ifp->if_capabilities |=
1207 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
1208
1209 /*
1210 * Attach the interface.
1211 */
1212 if_attach(ifp);
1213 ether_ifattach(ifp, enaddr);
1214 #if NRND > 0
1215 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1216 RND_TYPE_NET, 0);
1217 #endif
1218
1219 #ifdef WM_EVENT_COUNTERS
1220 /* Attach event counters. */
1221 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1222 NULL, sc->sc_dev.dv_xname, "txsstall");
1223 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1224 NULL, sc->sc_dev.dv_xname, "txdstall");
1225 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1226 NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1227 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1228 NULL, sc->sc_dev.dv_xname, "txdw");
1229 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1230 NULL, sc->sc_dev.dv_xname, "txqe");
1231 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1232 NULL, sc->sc_dev.dv_xname, "rxintr");
1233 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1234 NULL, sc->sc_dev.dv_xname, "linkintr");
1235
1236 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1237 NULL, sc->sc_dev.dv_xname, "rxipsum");
1238 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1239 NULL, sc->sc_dev.dv_xname, "rxtusum");
1240 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1241 NULL, sc->sc_dev.dv_xname, "txipsum");
1242 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1243 NULL, sc->sc_dev.dv_xname, "txtusum");
1244
1245 evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
1246 NULL, sc->sc_dev.dv_xname, "txctx init");
1247 evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
1248 NULL, sc->sc_dev.dv_xname, "txctx hit");
1249 evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
1250 NULL, sc->sc_dev.dv_xname, "txctx miss");
1251
1252 for (i = 0; i < WM_NTXSEGS; i++) {
1253 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1254 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1255 NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1256 }
1257
1258 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1259 NULL, sc->sc_dev.dv_xname, "txdrop");
1260
1261 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1262 NULL, sc->sc_dev.dv_xname, "tu");
1263
1264 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1265 NULL, sc->sc_dev.dv_xname, "tx_xoff");
1266 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1267 NULL, sc->sc_dev.dv_xname, "tx_xon");
1268 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1269 NULL, sc->sc_dev.dv_xname, "rx_xoff");
1270 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1271 NULL, sc->sc_dev.dv_xname, "rx_xon");
1272 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1273 NULL, sc->sc_dev.dv_xname, "rx_macctl");
1274 #endif /* WM_EVENT_COUNTERS */
1275
1276 /*
1277 * Make sure the interface is shutdown during reboot.
1278 */
1279 sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1280 if (sc->sc_sdhook == NULL)
1281 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1282 sc->sc_dev.dv_xname);
1283 return;
1284
1285 /*
1286 * Free any resources we've allocated during the failed attach
1287 * attempt. Do this in reverse order and fall through.
1288 */
1289 fail_5:
1290 for (i = 0; i < WM_NRXDESC; i++) {
1291 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1292 bus_dmamap_destroy(sc->sc_dmat,
1293 sc->sc_rxsoft[i].rxs_dmamap);
1294 }
1295 fail_4:
1296 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1297 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1298 bus_dmamap_destroy(sc->sc_dmat,
1299 sc->sc_txsoft[i].txs_dmamap);
1300 }
1301 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1302 fail_3:
1303 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1304 fail_2:
1305 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1306 cdata_size);
1307 fail_1:
1308 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1309 fail_0:
1310 return;
1311 }
1312
1313 /*
1314 * wm_shutdown:
1315 *
1316 * Make sure the interface is stopped at reboot time.
1317 */
1318 static void
1319 wm_shutdown(void *arg)
1320 {
1321 struct wm_softc *sc = arg;
1322
1323 wm_stop(&sc->sc_ethercom.ec_if, 1);
1324 }
1325
1326 /*
1327 * wm_tx_cksum:
1328 *
1329 * Set up TCP/IP checksumming parameters for the
1330 * specified packet.
1331 */
1332 static int
1333 wm_tx_cksum(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1334 uint8_t *fieldsp)
1335 {
1336 struct mbuf *m0 = txs->txs_mbuf;
1337 struct livengood_tcpip_ctxdesc *t;
1338 uint32_t ipcs, tucs;
1339 struct ip *ip;
1340 struct ether_header *eh;
1341 int offset, iphl;
1342 uint8_t fields = 0;
1343
1344 /*
1345 * XXX It would be nice if the mbuf pkthdr had offset
1346 * fields for the protocol headers.
1347 */
1348
1349 eh = mtod(m0, struct ether_header *);
1350 switch (htons(eh->ether_type)) {
1351 case ETHERTYPE_IP:
1352 iphl = sizeof(struct ip);
1353 offset = ETHER_HDR_LEN;
1354 break;
1355
1356 case ETHERTYPE_VLAN:
1357 iphl = sizeof(struct ip);
1358 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1359 break;
1360
1361 default:
1362 /*
1363 * Don't support this protocol or encapsulation.
1364 */
1365 *fieldsp = 0;
1366 *cmdp = 0;
1367 return (0);
1368 }
1369
1370 if (m0->m_len < (offset + iphl)) {
1371 if ((txs->txs_mbuf = m_pullup(m0, offset + iphl)) == NULL) {
1372 printf("%s: wm_tx_cksum: mbuf allocation failed, "
1373 "packet dropped\n", sc->sc_dev.dv_xname);
1374 return (ENOMEM);
1375 }
1376 m0 = txs->txs_mbuf;
1377 }
1378
1379 ip = (struct ip *) (mtod(m0, caddr_t) + offset);
1380 iphl = ip->ip_hl << 2;
1381
1382 /*
1383 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1384 * offload feature, if we load the context descriptor, we
1385 * MUST provide valid values for IPCSS and TUCSS fields.
1386 */
1387
1388 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1389 WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1390 fields |= WTX_IXSM;
1391 ipcs = WTX_TCPIP_IPCSS(offset) |
1392 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1393 WTX_TCPIP_IPCSE(offset + iphl - 1);
1394 } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1395 /* Use the cached value. */
1396 ipcs = sc->sc_txctx_ipcs;
1397 } else {
1398 /* Just initialize it to the likely value anyway. */
1399 ipcs = WTX_TCPIP_IPCSS(offset) |
1400 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1401 WTX_TCPIP_IPCSE(offset + iphl - 1);
1402 }
1403
1404 offset += iphl;
1405
1406 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1407 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1408 fields |= WTX_TXSM;
1409 tucs = WTX_TCPIP_TUCSS(offset) |
1410 WTX_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
1411 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1412 } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1413 /* Use the cached value. */
1414 tucs = sc->sc_txctx_tucs;
1415 } else {
1416 /* Just initialize it to a valid TCP context. */
1417 tucs = WTX_TCPIP_TUCSS(offset) |
1418 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1419 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1420 }
1421
1422 if (sc->sc_txctx_ipcs == ipcs &&
1423 sc->sc_txctx_tucs == tucs) {
1424 /* Cached context is fine. */
1425 WM_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1426 } else {
1427 /* Fill in the context descriptor. */
1428 #ifdef WM_EVENT_COUNTERS
1429 if (sc->sc_txctx_ipcs == 0xffffffff &&
1430 sc->sc_txctx_tucs == 0xffffffff)
1431 WM_EVCNT_INCR(&sc->sc_ev_txctx_init);
1432 else
1433 WM_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1434 #endif
1435 t = (struct livengood_tcpip_ctxdesc *)
1436 &sc->sc_txdescs[sc->sc_txnext];
1437 t->tcpip_ipcs = htole32(ipcs);
1438 t->tcpip_tucs = htole32(tucs);
1439 t->tcpip_cmdlen = htole32(WTX_CMD_DEXT | WTX_DTYP_C);
1440 t->tcpip_seg = 0;
1441 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1442
1443 sc->sc_txctx_ipcs = ipcs;
1444 sc->sc_txctx_tucs = tucs;
1445
1446 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1447 txs->txs_ndesc++;
1448 }
1449
1450 *cmdp = WTX_CMD_DEXT | WTX_DTYP_D;
1451 *fieldsp = fields;
1452
1453 return (0);
1454 }
1455
1456 static void
1457 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1458 {
1459 struct mbuf *m;
1460 int i;
1461
1462 printf("%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1463 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1464 printf("\tm_data = %p, m_len = %d, m_flags = 0x%08x\n",
1465 m->m_data, m->m_len, m->m_flags);
1466 printf("\t%d mbuf%s in chain\n", i, i == 1 ? "" : "s");
1467 }
1468
1469 /*
1470 * wm_82547_txfifo_stall:
1471 *
1472 * Callout used to wait for the 82547 Tx FIFO to drain,
1473 * reset the FIFO pointers, and restart packet transmission.
1474 */
1475 static void
1476 wm_82547_txfifo_stall(void *arg)
1477 {
1478 struct wm_softc *sc = arg;
1479 int s;
1480
1481 s = splnet();
1482
1483 if (sc->sc_txfifo_stall) {
1484 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1485 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1486 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1487 /*
1488 * Packets have drained. Stop transmitter, reset
1489 * FIFO pointers, restart transmitter, and kick
1490 * the packet queue.
1491 */
1492 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1493 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1494 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1495 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1496 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1497 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1498 CSR_WRITE(sc, WMREG_TCTL, tctl);
1499 CSR_WRITE_FLUSH(sc);
1500
1501 sc->sc_txfifo_head = 0;
1502 sc->sc_txfifo_stall = 0;
1503 wm_start(&sc->sc_ethercom.ec_if);
1504 } else {
1505 /*
1506 * Still waiting for packets to drain; try again in
1507 * another tick.
1508 */
1509 callout_schedule(&sc->sc_txfifo_ch, 1);
1510 }
1511 }
1512
1513 splx(s);
1514 }
1515
1516 /*
1517 * wm_82547_txfifo_bugchk:
1518 *
1519 * Check for bug condition in the 82547 Tx FIFO. We need to
1520 * prevent enqueueing a packet that would wrap around the end
1521 * if the Tx FIFO ring buffer, otherwise the chip will croak.
1522 *
1523 * We do this by checking the amount of space before the end
1524 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
1525 * the Tx FIFO, wait for all remaining packets to drain, reset
1526 * the internal FIFO pointers to the beginning, and restart
1527 * transmission on the interface.
1528 */
1529 #define WM_FIFO_HDR 0x10
1530 #define WM_82547_PAD_LEN 0x3e0
1531 static int
1532 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1533 {
1534 int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1535 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1536
1537 /* Just return if already stalled. */
1538 if (sc->sc_txfifo_stall)
1539 return (1);
1540
1541 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1542 /* Stall only occurs in half-duplex mode. */
1543 goto send_packet;
1544 }
1545
1546 if (len >= WM_82547_PAD_LEN + space) {
1547 sc->sc_txfifo_stall = 1;
1548 callout_schedule(&sc->sc_txfifo_ch, 1);
1549 return (1);
1550 }
1551
1552 send_packet:
1553 sc->sc_txfifo_head += len;
1554 if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1555 sc->sc_txfifo_head -= sc->sc_txfifo_size;
1556
1557 return (0);
1558 }
1559
1560 /*
1561 * wm_start: [ifnet interface function]
1562 *
1563 * Start packet transmission on the interface.
1564 */
1565 static void
1566 wm_start(struct ifnet *ifp)
1567 {
1568 struct wm_softc *sc = ifp->if_softc;
1569 struct mbuf *m0;
1570 #if 0 /* XXXJRT */
1571 struct m_tag *mtag;
1572 #endif
1573 struct wm_txsoft *txs;
1574 bus_dmamap_t dmamap;
1575 int error, nexttx, lasttx = -1, ofree, seg, segs_needed;
1576 bus_addr_t curaddr;
1577 bus_size_t seglen, curlen;
1578 uint32_t cksumcmd;
1579 uint8_t cksumfields;
1580
1581 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1582 return;
1583
1584 /*
1585 * Remember the previous number of free descriptors.
1586 */
1587 ofree = sc->sc_txfree;
1588
1589 /*
1590 * Loop through the send queue, setting up transmit descriptors
1591 * until we drain the queue, or use up all available transmit
1592 * descriptors.
1593 */
1594 for (;;) {
1595 /* Grab a packet off the queue. */
1596 IFQ_POLL(&ifp->if_snd, m0);
1597 if (m0 == NULL)
1598 break;
1599
1600 DPRINTF(WM_DEBUG_TX,
1601 ("%s: TX: have packet to transmit: %p\n",
1602 sc->sc_dev.dv_xname, m0));
1603
1604 /* Get a work queue entry. */
1605 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1606 wm_txintr(sc);
1607 if (sc->sc_txsfree == 0) {
1608 DPRINTF(WM_DEBUG_TX,
1609 ("%s: TX: no free job descriptors\n",
1610 sc->sc_dev.dv_xname));
1611 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1612 break;
1613 }
1614 }
1615
1616 txs = &sc->sc_txsoft[sc->sc_txsnext];
1617 dmamap = txs->txs_dmamap;
1618
1619 /*
1620 * Load the DMA map. If this fails, the packet either
1621 * didn't fit in the allotted number of segments, or we
1622 * were short on resources. For the too-many-segments
1623 * case, we simply report an error and drop the packet,
1624 * since we can't sanely copy a jumbo packet to a single
1625 * buffer.
1626 */
1627 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1628 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1629 if (error) {
1630 if (error == EFBIG) {
1631 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1632 printf("%s: Tx packet consumes too many "
1633 "DMA segments, dropping...\n",
1634 sc->sc_dev.dv_xname);
1635 IFQ_DEQUEUE(&ifp->if_snd, m0);
1636 wm_dump_mbuf_chain(sc, m0);
1637 m_freem(m0);
1638 continue;
1639 }
1640 /*
1641 * Short on resources, just stop for now.
1642 */
1643 DPRINTF(WM_DEBUG_TX,
1644 ("%s: TX: dmamap load failed: %d\n",
1645 sc->sc_dev.dv_xname, error));
1646 break;
1647 }
1648
1649 segs_needed = dmamap->dm_nsegs;
1650
1651 /*
1652 * Ensure we have enough descriptors free to describe
1653 * the packet. Note, we always reserve one descriptor
1654 * at the end of the ring due to the semantics of the
1655 * TDT register, plus one more in the event we need
1656 * to re-load checksum offload context.
1657 */
1658 if (segs_needed > sc->sc_txfree - 2) {
1659 /*
1660 * Not enough free descriptors to transmit this
1661 * packet. We haven't committed anything yet,
1662 * so just unload the DMA map, put the packet
1663 * pack on the queue, and punt. Notify the upper
1664 * layer that there are no more slots left.
1665 */
1666 DPRINTF(WM_DEBUG_TX,
1667 ("%s: TX: need %d (%) descriptors, have %d\n",
1668 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1669 sc->sc_txfree - 1));
1670 ifp->if_flags |= IFF_OACTIVE;
1671 bus_dmamap_unload(sc->sc_dmat, dmamap);
1672 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1673 break;
1674 }
1675
1676 /*
1677 * Check for 82547 Tx FIFO bug. We need to do this
1678 * once we know we can transmit the packet, since we
1679 * do some internal FIFO space accounting here.
1680 */
1681 if (sc->sc_type == WM_T_82547 &&
1682 wm_82547_txfifo_bugchk(sc, m0)) {
1683 DPRINTF(WM_DEBUG_TX,
1684 ("%s: TX: 82547 Tx FIFO bug detected\n",
1685 sc->sc_dev.dv_xname));
1686 ifp->if_flags |= IFF_OACTIVE;
1687 bus_dmamap_unload(sc->sc_dmat, dmamap);
1688 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1689 break;
1690 }
1691
1692 IFQ_DEQUEUE(&ifp->if_snd, m0);
1693
1694 /*
1695 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1696 */
1697
1698 DPRINTF(WM_DEBUG_TX,
1699 ("%s: TX: packet has %d (%d) DMA segments\n",
1700 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1701
1702 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1703
1704 /*
1705 * Store a pointer to the packet so that we can free it
1706 * later.
1707 *
1708 * Initially, we consider the number of descriptors the
1709 * packet uses the number of DMA segments. This may be
1710 * incremented by 1 if we do checksum offload (a descriptor
1711 * is used to set the checksum context).
1712 */
1713 txs->txs_mbuf = m0;
1714 txs->txs_firstdesc = sc->sc_txnext;
1715 txs->txs_ndesc = segs_needed;
1716
1717 /*
1718 * Set up checksum offload parameters for
1719 * this packet.
1720 */
1721 if (m0->m_pkthdr.csum_flags &
1722 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1723 if (wm_tx_cksum(sc, txs, &cksumcmd,
1724 &cksumfields) != 0) {
1725 /* Error message already displayed. */
1726 bus_dmamap_unload(sc->sc_dmat, dmamap);
1727 continue;
1728 }
1729 } else {
1730 cksumcmd = 0;
1731 cksumfields = 0;
1732 }
1733
1734 cksumcmd |= WTX_CMD_IDE;
1735
1736 /* Sync the DMA map. */
1737 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1738 BUS_DMASYNC_PREWRITE);
1739
1740 /*
1741 * Initialize the transmit descriptor.
1742 */
1743 for (nexttx = sc->sc_txnext, seg = 0;
1744 seg < dmamap->dm_nsegs; seg++) {
1745 for (seglen = dmamap->dm_segs[seg].ds_len,
1746 curaddr = dmamap->dm_segs[seg].ds_addr;
1747 seglen != 0;
1748 curaddr += curlen, seglen -= curlen,
1749 nexttx = WM_NEXTTX(sc, nexttx)) {
1750 curlen = seglen;
1751
1752 wm_set_dma_addr(
1753 &sc->sc_txdescs[nexttx].wtx_addr,
1754 curaddr);
1755 sc->sc_txdescs[nexttx].wtx_cmdlen =
1756 htole32(cksumcmd | curlen);
1757 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
1758 0;
1759 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1760 cksumfields;
1761 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1762 lasttx = nexttx;
1763
1764 DPRINTF(WM_DEBUG_TX,
1765 ("%s: TX: desc %d: low 0x%08x, "
1766 "len 0x%04x\n",
1767 sc->sc_dev.dv_xname, nexttx,
1768 curaddr & 0xffffffffU, curlen, curlen));
1769 }
1770 }
1771
1772 KASSERT(lasttx != -1);
1773
1774 /*
1775 * Set up the command byte on the last descriptor of
1776 * the packet. If we're in the interrupt delay window,
1777 * delay the interrupt.
1778 */
1779 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1780 htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS);
1781
1782 #if 0 /* XXXJRT */
1783 /*
1784 * If VLANs are enabled and the packet has a VLAN tag, set
1785 * up the descriptor to encapsulate the packet for us.
1786 *
1787 * This is only valid on the last descriptor of the packet.
1788 */
1789 if (sc->sc_ethercom.ec_nvlans != 0 &&
1790 (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1791 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1792 htole32(WTX_CMD_VLE);
1793 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
1794 = htole16(*(u_int *)(mtag + 1) & 0xffff);
1795 }
1796 #endif /* XXXJRT */
1797
1798 txs->txs_lastdesc = lasttx;
1799
1800 DPRINTF(WM_DEBUG_TX,
1801 ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1802 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
1803
1804 /* Sync the descriptors we're using. */
1805 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
1806 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1807
1808 /* Give the packet to the chip. */
1809 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1810
1811 DPRINTF(WM_DEBUG_TX,
1812 ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1813
1814 DPRINTF(WM_DEBUG_TX,
1815 ("%s: TX: finished transmitting packet, job %d\n",
1816 sc->sc_dev.dv_xname, sc->sc_txsnext));
1817
1818 /* Advance the tx pointer. */
1819 sc->sc_txfree -= txs->txs_ndesc;
1820 sc->sc_txnext = nexttx;
1821
1822 sc->sc_txsfree--;
1823 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
1824
1825 #if NBPFILTER > 0
1826 /* Pass the packet to any BPF listeners. */
1827 if (ifp->if_bpf)
1828 bpf_mtap(ifp->if_bpf, m0);
1829 #endif /* NBPFILTER > 0 */
1830 }
1831
1832 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1833 /* No more slots; notify upper layer. */
1834 ifp->if_flags |= IFF_OACTIVE;
1835 }
1836
1837 if (sc->sc_txfree != ofree) {
1838 /* Set a watchdog timer in case the chip flakes out. */
1839 ifp->if_timer = 5;
1840 }
1841 }
1842
1843 /*
1844 * wm_watchdog: [ifnet interface function]
1845 *
1846 * Watchdog timer handler.
1847 */
1848 static void
1849 wm_watchdog(struct ifnet *ifp)
1850 {
1851 struct wm_softc *sc = ifp->if_softc;
1852
1853 /*
1854 * Since we're using delayed interrupts, sweep up
1855 * before we report an error.
1856 */
1857 wm_txintr(sc);
1858
1859 if (sc->sc_txfree != WM_NTXDESC(sc)) {
1860 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1861 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1862 sc->sc_txnext);
1863 ifp->if_oerrors++;
1864
1865 /* Reset the interface. */
1866 (void) wm_init(ifp);
1867 }
1868
1869 /* Try to get more packets going. */
1870 wm_start(ifp);
1871 }
1872
1873 /*
1874 * wm_ioctl: [ifnet interface function]
1875 *
1876 * Handle control requests from the operator.
1877 */
1878 static int
1879 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1880 {
1881 struct wm_softc *sc = ifp->if_softc;
1882 struct ifreq *ifr = (struct ifreq *) data;
1883 int s, error;
1884
1885 s = splnet();
1886
1887 switch (cmd) {
1888 case SIOCSIFMEDIA:
1889 case SIOCGIFMEDIA:
1890 /* Flow control requires full-duplex mode. */
1891 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1892 (ifr->ifr_media & IFM_FDX) == 0)
1893 ifr->ifr_media &= ~IFM_ETH_FMASK;
1894 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1895 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1896 /* We can do both TXPAUSE and RXPAUSE. */
1897 ifr->ifr_media |=
1898 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1899 }
1900 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1901 }
1902 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1903 break;
1904 default:
1905 error = ether_ioctl(ifp, cmd, data);
1906 if (error == ENETRESET) {
1907 /*
1908 * Multicast list has changed; set the hardware filter
1909 * accordingly.
1910 */
1911 if (ifp->if_flags & IFF_RUNNING)
1912 wm_set_filter(sc);
1913 error = 0;
1914 }
1915 break;
1916 }
1917
1918 /* Try to get more packets going. */
1919 wm_start(ifp);
1920
1921 splx(s);
1922 return (error);
1923 }
1924
1925 /*
1926 * wm_intr:
1927 *
1928 * Interrupt service routine.
1929 */
1930 static int
1931 wm_intr(void *arg)
1932 {
1933 struct wm_softc *sc = arg;
1934 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1935 uint32_t icr;
1936 int wantinit, handled = 0;
1937
1938 for (wantinit = 0; wantinit == 0;) {
1939 icr = CSR_READ(sc, WMREG_ICR);
1940 if ((icr & sc->sc_icr) == 0)
1941 break;
1942
1943 #if 0 /*NRND > 0*/
1944 if (RND_ENABLED(&sc->rnd_source))
1945 rnd_add_uint32(&sc->rnd_source, icr);
1946 #endif
1947
1948 handled = 1;
1949
1950 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1951 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1952 DPRINTF(WM_DEBUG_RX,
1953 ("%s: RX: got Rx intr 0x%08x\n",
1954 sc->sc_dev.dv_xname,
1955 icr & (ICR_RXDMT0|ICR_RXT0)));
1956 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
1957 }
1958 #endif
1959 wm_rxintr(sc);
1960
1961 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1962 if (icr & ICR_TXDW) {
1963 DPRINTF(WM_DEBUG_TX,
1964 ("%s: TX: got TXDW interrupt\n",
1965 sc->sc_dev.dv_xname));
1966 WM_EVCNT_INCR(&sc->sc_ev_txdw);
1967 }
1968 #endif
1969 wm_txintr(sc);
1970
1971 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
1972 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
1973 wm_linkintr(sc, icr);
1974 }
1975
1976 if (icr & ICR_RXO) {
1977 printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
1978 wantinit = 1;
1979 }
1980 }
1981
1982 if (handled) {
1983 if (wantinit)
1984 wm_init(ifp);
1985
1986 /* Try to get more packets going. */
1987 wm_start(ifp);
1988 }
1989
1990 return (handled);
1991 }
1992
1993 /*
1994 * wm_txintr:
1995 *
1996 * Helper; handle transmit interrupts.
1997 */
1998 static void
1999 wm_txintr(struct wm_softc *sc)
2000 {
2001 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2002 struct wm_txsoft *txs;
2003 uint8_t status;
2004 int i;
2005
2006 ifp->if_flags &= ~IFF_OACTIVE;
2007
2008 /*
2009 * Go through the Tx list and free mbufs for those
2010 * frames which have been transmitted.
2011 */
2012 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2013 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2014 txs = &sc->sc_txsoft[i];
2015
2016 DPRINTF(WM_DEBUG_TX,
2017 ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2018
2019 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2020 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2021
2022 status =
2023 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2024 if ((status & WTX_ST_DD) == 0) {
2025 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2026 BUS_DMASYNC_PREREAD);
2027 break;
2028 }
2029
2030 DPRINTF(WM_DEBUG_TX,
2031 ("%s: TX: job %d done: descs %d..%d\n",
2032 sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2033 txs->txs_lastdesc));
2034
2035 /*
2036 * XXX We should probably be using the statistics
2037 * XXX registers, but I don't know if they exist
2038 * XXX on chips before the i82544.
2039 */
2040
2041 #ifdef WM_EVENT_COUNTERS
2042 if (status & WTX_ST_TU)
2043 WM_EVCNT_INCR(&sc->sc_ev_tu);
2044 #endif /* WM_EVENT_COUNTERS */
2045
2046 if (status & (WTX_ST_EC|WTX_ST_LC)) {
2047 ifp->if_oerrors++;
2048 if (status & WTX_ST_LC)
2049 printf("%s: late collision\n",
2050 sc->sc_dev.dv_xname);
2051 else if (status & WTX_ST_EC) {
2052 ifp->if_collisions += 16;
2053 printf("%s: excessive collisions\n",
2054 sc->sc_dev.dv_xname);
2055 }
2056 } else
2057 ifp->if_opackets++;
2058
2059 sc->sc_txfree += txs->txs_ndesc;
2060 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2061 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2062 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2063 m_freem(txs->txs_mbuf);
2064 txs->txs_mbuf = NULL;
2065 }
2066
2067 /* Update the dirty transmit buffer pointer. */
2068 sc->sc_txsdirty = i;
2069 DPRINTF(WM_DEBUG_TX,
2070 ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2071
2072 /*
2073 * If there are no more pending transmissions, cancel the watchdog
2074 * timer.
2075 */
2076 if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2077 ifp->if_timer = 0;
2078 }
2079
2080 /*
2081 * wm_rxintr:
2082 *
2083 * Helper; handle receive interrupts.
2084 */
2085 static void
2086 wm_rxintr(struct wm_softc *sc)
2087 {
2088 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2089 struct wm_rxsoft *rxs;
2090 struct mbuf *m;
2091 int i, len;
2092 uint8_t status, errors;
2093
2094 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2095 rxs = &sc->sc_rxsoft[i];
2096
2097 DPRINTF(WM_DEBUG_RX,
2098 ("%s: RX: checking descriptor %d\n",
2099 sc->sc_dev.dv_xname, i));
2100
2101 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2102
2103 status = sc->sc_rxdescs[i].wrx_status;
2104 errors = sc->sc_rxdescs[i].wrx_errors;
2105 len = le16toh(sc->sc_rxdescs[i].wrx_len);
2106
2107 if ((status & WRX_ST_DD) == 0) {
2108 /*
2109 * We have processed all of the receive descriptors.
2110 */
2111 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2112 break;
2113 }
2114
2115 if (__predict_false(sc->sc_rxdiscard)) {
2116 DPRINTF(WM_DEBUG_RX,
2117 ("%s: RX: discarding contents of descriptor %d\n",
2118 sc->sc_dev.dv_xname, i));
2119 WM_INIT_RXDESC(sc, i);
2120 if (status & WRX_ST_EOP) {
2121 /* Reset our state. */
2122 DPRINTF(WM_DEBUG_RX,
2123 ("%s: RX: resetting rxdiscard -> 0\n",
2124 sc->sc_dev.dv_xname));
2125 sc->sc_rxdiscard = 0;
2126 }
2127 continue;
2128 }
2129
2130 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2131 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2132
2133 m = rxs->rxs_mbuf;
2134
2135 /*
2136 * Add a new receive buffer to the ring.
2137 */
2138 if (wm_add_rxbuf(sc, i) != 0) {
2139 /*
2140 * Failed, throw away what we've done so
2141 * far, and discard the rest of the packet.
2142 */
2143 ifp->if_ierrors++;
2144 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2145 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2146 WM_INIT_RXDESC(sc, i);
2147 if ((status & WRX_ST_EOP) == 0)
2148 sc->sc_rxdiscard = 1;
2149 if (sc->sc_rxhead != NULL)
2150 m_freem(sc->sc_rxhead);
2151 WM_RXCHAIN_RESET(sc);
2152 DPRINTF(WM_DEBUG_RX,
2153 ("%s: RX: Rx buffer allocation failed, "
2154 "dropping packet%s\n", sc->sc_dev.dv_xname,
2155 sc->sc_rxdiscard ? " (discard)" : ""));
2156 continue;
2157 }
2158
2159 WM_RXCHAIN_LINK(sc, m);
2160
2161 m->m_len = len;
2162
2163 DPRINTF(WM_DEBUG_RX,
2164 ("%s: RX: buffer at %p len %d\n",
2165 sc->sc_dev.dv_xname, m->m_data, len));
2166
2167 /*
2168 * If this is not the end of the packet, keep
2169 * looking.
2170 */
2171 if ((status & WRX_ST_EOP) == 0) {
2172 sc->sc_rxlen += len;
2173 DPRINTF(WM_DEBUG_RX,
2174 ("%s: RX: not yet EOP, rxlen -> %d\n",
2175 sc->sc_dev.dv_xname, sc->sc_rxlen));
2176 continue;
2177 }
2178
2179 /*
2180 * Okay, we have the entire packet now...
2181 */
2182 *sc->sc_rxtailp = NULL;
2183 m = sc->sc_rxhead;
2184 len += sc->sc_rxlen;
2185
2186 WM_RXCHAIN_RESET(sc);
2187
2188 DPRINTF(WM_DEBUG_RX,
2189 ("%s: RX: have entire packet, len -> %d\n",
2190 sc->sc_dev.dv_xname, len));
2191
2192 /*
2193 * If an error occurred, update stats and drop the packet.
2194 */
2195 if (errors &
2196 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2197 ifp->if_ierrors++;
2198 if (errors & WRX_ER_SE)
2199 printf("%s: symbol error\n",
2200 sc->sc_dev.dv_xname);
2201 else if (errors & WRX_ER_SEQ)
2202 printf("%s: receive sequence error\n",
2203 sc->sc_dev.dv_xname);
2204 else if (errors & WRX_ER_CE)
2205 printf("%s: CRC error\n",
2206 sc->sc_dev.dv_xname);
2207 m_freem(m);
2208 continue;
2209 }
2210
2211 /*
2212 * No errors. Receive the packet.
2213 *
2214 * Note, we have configured the chip to include the
2215 * CRC with every packet.
2216 */
2217 m->m_flags |= M_HASFCS;
2218 m->m_pkthdr.rcvif = ifp;
2219 m->m_pkthdr.len = len;
2220
2221 #if 0 /* XXXJRT */
2222 /*
2223 * If VLANs are enabled, VLAN packets have been unwrapped
2224 * for us. Associate the tag with the packet.
2225 */
2226 if (sc->sc_ethercom.ec_nvlans != 0 &&
2227 (status & WRX_ST_VP) != 0) {
2228 struct m_tag *vtag;
2229
2230 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2231 M_NOWAIT);
2232 if (vtag == NULL) {
2233 ifp->if_ierrors++;
2234 printf("%s: unable to allocate VLAN tag\n",
2235 sc->sc_dev.dv_xname);
2236 m_freem(m);
2237 continue;
2238 }
2239
2240 *(u_int *)(vtag + 1) =
2241 le16toh(sc->sc_rxdescs[i].wrx_special);
2242 }
2243 #endif /* XXXJRT */
2244
2245 /*
2246 * Set up checksum info for this packet.
2247 */
2248 if (status & WRX_ST_IPCS) {
2249 WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2250 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2251 if (errors & WRX_ER_IPE)
2252 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2253 }
2254 if (status & WRX_ST_TCPCS) {
2255 /*
2256 * Note: we don't know if this was TCP or UDP,
2257 * so we just set both bits, and expect the
2258 * upper layers to deal.
2259 */
2260 WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2261 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
2262 if (errors & WRX_ER_TCPE)
2263 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
2264 }
2265
2266 ifp->if_ipackets++;
2267
2268 #if NBPFILTER > 0
2269 /* Pass this up to any BPF listeners. */
2270 if (ifp->if_bpf)
2271 bpf_mtap(ifp->if_bpf, m);
2272 #endif /* NBPFILTER > 0 */
2273
2274 /* Pass it on. */
2275 (*ifp->if_input)(ifp, m);
2276 }
2277
2278 /* Update the receive pointer. */
2279 sc->sc_rxptr = i;
2280
2281 DPRINTF(WM_DEBUG_RX,
2282 ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2283 }
2284
2285 /*
2286 * wm_linkintr:
2287 *
2288 * Helper; handle link interrupts.
2289 */
2290 static void
2291 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2292 {
2293 uint32_t status;
2294
2295 /*
2296 * If we get a link status interrupt on a 1000BASE-T
2297 * device, just fall into the normal MII tick path.
2298 */
2299 if (sc->sc_flags & WM_F_HAS_MII) {
2300 if (icr & ICR_LSC) {
2301 DPRINTF(WM_DEBUG_LINK,
2302 ("%s: LINK: LSC -> mii_tick\n",
2303 sc->sc_dev.dv_xname));
2304 mii_tick(&sc->sc_mii);
2305 } else if (icr & ICR_RXSEQ) {
2306 DPRINTF(WM_DEBUG_LINK,
2307 ("%s: LINK Receive sequence error\n",
2308 sc->sc_dev.dv_xname));
2309 }
2310 return;
2311 }
2312
2313 /*
2314 * If we are now receiving /C/, check for link again in
2315 * a couple of link clock ticks.
2316 */
2317 if (icr & ICR_RXCFG) {
2318 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2319 sc->sc_dev.dv_xname));
2320 sc->sc_tbi_anstate = 2;
2321 }
2322
2323 if (icr & ICR_LSC) {
2324 status = CSR_READ(sc, WMREG_STATUS);
2325 if (status & STATUS_LU) {
2326 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2327 sc->sc_dev.dv_xname,
2328 (status & STATUS_FD) ? "FDX" : "HDX"));
2329 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2330 sc->sc_fcrtl &= ~FCRTL_XONE;
2331 if (status & STATUS_FD)
2332 sc->sc_tctl |=
2333 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2334 else
2335 sc->sc_tctl |=
2336 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2337 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2338 sc->sc_fcrtl |= FCRTL_XONE;
2339 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2340 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2341 WMREG_OLD_FCRTL : WMREG_FCRTL,
2342 sc->sc_fcrtl);
2343 sc->sc_tbi_linkup = 1;
2344 } else {
2345 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2346 sc->sc_dev.dv_xname));
2347 sc->sc_tbi_linkup = 0;
2348 }
2349 sc->sc_tbi_anstate = 2;
2350 wm_tbi_set_linkled(sc);
2351 } else if (icr & ICR_RXSEQ) {
2352 DPRINTF(WM_DEBUG_LINK,
2353 ("%s: LINK: Receive sequence error\n",
2354 sc->sc_dev.dv_xname));
2355 }
2356 }
2357
2358 /*
2359 * wm_tick:
2360 *
2361 * One second timer, used to check link status, sweep up
2362 * completed transmit jobs, etc.
2363 */
2364 static void
2365 wm_tick(void *arg)
2366 {
2367 struct wm_softc *sc = arg;
2368 int s;
2369
2370 s = splnet();
2371
2372 if (sc->sc_type >= WM_T_82542_2_1) {
2373 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2374 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2375 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2376 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2377 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2378 }
2379
2380 if (sc->sc_flags & WM_F_HAS_MII)
2381 mii_tick(&sc->sc_mii);
2382 else
2383 wm_tbi_check_link(sc);
2384
2385 splx(s);
2386
2387 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2388 }
2389
2390 /*
2391 * wm_reset:
2392 *
2393 * Reset the i82542 chip.
2394 */
2395 static void
2396 wm_reset(struct wm_softc *sc)
2397 {
2398 int i;
2399
2400 /*
2401 * Allocate on-chip memory according to the MTU size.
2402 * The Packet Buffer Allocation register must be written
2403 * before the chip is reset.
2404 */
2405 if (sc->sc_type < WM_T_82547) {
2406 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2407 PBA_40K : PBA_48K;
2408 } else {
2409 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2410 PBA_22K : PBA_30K;
2411 sc->sc_txfifo_head = 0;
2412 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2413 sc->sc_txfifo_size =
2414 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2415 sc->sc_txfifo_stall = 0;
2416 }
2417 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2418
2419 switch (sc->sc_type) {
2420 case WM_T_82544:
2421 case WM_T_82540:
2422 case WM_T_82545:
2423 case WM_T_82546:
2424 case WM_T_82541:
2425 case WM_T_82541_2:
2426 /*
2427 * These chips have a problem with the memory-mapped
2428 * write cycle when issuing the reset, so use I/O-mapped
2429 * access, if possible.
2430 */
2431 if (sc->sc_flags & WM_F_IOH_VALID)
2432 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2433 else
2434 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2435 break;
2436
2437 case WM_T_82545_3:
2438 case WM_T_82546_3:
2439 /* Use the shadow control register on these chips. */
2440 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2441 break;
2442
2443 default:
2444 /* Everything else can safely use the documented method. */
2445 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2446 break;
2447 }
2448 delay(10000);
2449
2450 for (i = 0; i < 1000; i++) {
2451 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2452 return;
2453 delay(20);
2454 }
2455
2456 if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2457 printf("%s: WARNING: reset failed to complete\n",
2458 sc->sc_dev.dv_xname);
2459 }
2460
2461 /*
2462 * wm_init: [ifnet interface function]
2463 *
2464 * Initialize the interface. Must be called at splnet().
2465 */
2466 static int
2467 wm_init(struct ifnet *ifp)
2468 {
2469 struct wm_softc *sc = ifp->if_softc;
2470 struct wm_rxsoft *rxs;
2471 int i, error = 0;
2472 uint32_t reg;
2473
2474 /*
2475 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2476 * There is a small but measurable benefit to avoiding the adjusment
2477 * of the descriptor so that the headers are aligned, for normal mtu,
2478 * on such platforms. One possibility is that the DMA itself is
2479 * slightly more efficient if the front of the entire packet (instead
2480 * of the front of the headers) is aligned.
2481 *
2482 * Note we must always set align_tweak to 0 if we are using
2483 * jumbo frames.
2484 */
2485 #ifdef __NO_STRICT_ALIGNMENT
2486 sc->sc_align_tweak = 0;
2487 #else
2488 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2489 sc->sc_align_tweak = 0;
2490 else
2491 sc->sc_align_tweak = 2;
2492 #endif /* __NO_STRICT_ALIGNMENT */
2493
2494 /* Cancel any pending I/O. */
2495 wm_stop(ifp, 0);
2496
2497 /* Reset the chip to a known state. */
2498 wm_reset(sc);
2499
2500 /* Initialize the transmit descriptor ring. */
2501 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2502 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2503 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2504 sc->sc_txfree = WM_NTXDESC(sc);
2505 sc->sc_txnext = 0;
2506
2507 sc->sc_txctx_ipcs = 0xffffffff;
2508 sc->sc_txctx_tucs = 0xffffffff;
2509
2510 if (sc->sc_type < WM_T_82543) {
2511 CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2512 CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2513 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2514 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2515 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2516 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2517 } else {
2518 CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2519 CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2520 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2521 CSR_WRITE(sc, WMREG_TDH, 0);
2522 CSR_WRITE(sc, WMREG_TDT, 0);
2523 CSR_WRITE(sc, WMREG_TIDV, 128);
2524
2525 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2526 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2527 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2528 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2529 }
2530 CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2531 CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2532
2533 /* Initialize the transmit job descriptors. */
2534 for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2535 sc->sc_txsoft[i].txs_mbuf = NULL;
2536 sc->sc_txsfree = WM_TXQUEUELEN(sc);
2537 sc->sc_txsnext = 0;
2538 sc->sc_txsdirty = 0;
2539
2540 /*
2541 * Initialize the receive descriptor and receive job
2542 * descriptor rings.
2543 */
2544 if (sc->sc_type < WM_T_82543) {
2545 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2546 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2547 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2548 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2549 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2550 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2551
2552 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2553 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2554 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2555 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2556 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2557 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2558 } else {
2559 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2560 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2561 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2562 CSR_WRITE(sc, WMREG_RDH, 0);
2563 CSR_WRITE(sc, WMREG_RDT, 0);
2564 CSR_WRITE(sc, WMREG_RDTR, 28 | RDTR_FPD);
2565 }
2566 for (i = 0; i < WM_NRXDESC; i++) {
2567 rxs = &sc->sc_rxsoft[i];
2568 if (rxs->rxs_mbuf == NULL) {
2569 if ((error = wm_add_rxbuf(sc, i)) != 0) {
2570 printf("%s: unable to allocate or map rx "
2571 "buffer %d, error = %d\n",
2572 sc->sc_dev.dv_xname, i, error);
2573 /*
2574 * XXX Should attempt to run with fewer receive
2575 * XXX buffers instead of just failing.
2576 */
2577 wm_rxdrain(sc);
2578 goto out;
2579 }
2580 } else
2581 WM_INIT_RXDESC(sc, i);
2582 }
2583 sc->sc_rxptr = 0;
2584 sc->sc_rxdiscard = 0;
2585 WM_RXCHAIN_RESET(sc);
2586
2587 /*
2588 * Clear out the VLAN table -- we don't use it (yet).
2589 */
2590 CSR_WRITE(sc, WMREG_VET, 0);
2591 for (i = 0; i < WM_VLAN_TABSIZE; i++)
2592 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2593
2594 /*
2595 * Set up flow-control parameters.
2596 *
2597 * XXX Values could probably stand some tuning.
2598 */
2599 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2600 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2601 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2602
2603 sc->sc_fcrtl = FCRTL_DFLT;
2604 if (sc->sc_type < WM_T_82543) {
2605 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2606 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2607 } else {
2608 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2609 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2610 }
2611 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2612
2613 #if 0 /* XXXJRT */
2614 /* Deal with VLAN enables. */
2615 if (sc->sc_ethercom.ec_nvlans != 0)
2616 sc->sc_ctrl |= CTRL_VME;
2617 else
2618 #endif /* XXXJRT */
2619 sc->sc_ctrl &= ~CTRL_VME;
2620
2621 /* Write the control registers. */
2622 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2623 #if 0
2624 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2625 #endif
2626
2627 /*
2628 * Set up checksum offload parameters.
2629 */
2630 reg = CSR_READ(sc, WMREG_RXCSUM);
2631 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
2632 reg |= RXCSUM_IPOFL;
2633 else
2634 reg &= ~RXCSUM_IPOFL;
2635 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
2636 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2637 else {
2638 reg &= ~RXCSUM_TUOFL;
2639 if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
2640 reg &= ~RXCSUM_IPOFL;
2641 }
2642 CSR_WRITE(sc, WMREG_RXCSUM, reg);
2643
2644 /*
2645 * Set up the interrupt registers.
2646 */
2647 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2648 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2649 ICR_RXO | ICR_RXT0;
2650 if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2651 sc->sc_icr |= ICR_RXCFG;
2652 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2653
2654 /* Set up the inter-packet gap. */
2655 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2656
2657 #if 0 /* XXXJRT */
2658 /* Set the VLAN ethernetype. */
2659 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2660 #endif
2661
2662 /*
2663 * Set up the transmit control register; we start out with
2664 * a collision distance suitable for FDX, but update it whe
2665 * we resolve the media type.
2666 */
2667 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2668 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2669 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2670
2671 /* Set the media. */
2672 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2673
2674 /*
2675 * Set up the receive control register; we actually program
2676 * the register when we set the receive filter. Use multicast
2677 * address offset type 0.
2678 *
2679 * Only the i82544 has the ability to strip the incoming
2680 * CRC, so we don't enable that feature.
2681 */
2682 sc->sc_mchash_type = 0;
2683 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
2684 RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2685
2686 if(MCLBYTES == 2048) {
2687 sc->sc_rctl |= RCTL_2k;
2688 } else {
2689 if(sc->sc_type >= WM_T_82543) {
2690 switch(MCLBYTES) {
2691 case 4096:
2692 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2693 break;
2694 case 8192:
2695 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2696 break;
2697 case 16384:
2698 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2699 break;
2700 default:
2701 panic("wm_init: MCLBYTES %d unsupported",
2702 MCLBYTES);
2703 break;
2704 }
2705 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
2706 }
2707
2708 /* Set the receive filter. */
2709 wm_set_filter(sc);
2710
2711 /* Start the one second link check clock. */
2712 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2713
2714 /* ...all done! */
2715 ifp->if_flags |= IFF_RUNNING;
2716 ifp->if_flags &= ~IFF_OACTIVE;
2717
2718 out:
2719 if (error)
2720 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2721 return (error);
2722 }
2723
2724 /*
2725 * wm_rxdrain:
2726 *
2727 * Drain the receive queue.
2728 */
2729 static void
2730 wm_rxdrain(struct wm_softc *sc)
2731 {
2732 struct wm_rxsoft *rxs;
2733 int i;
2734
2735 for (i = 0; i < WM_NRXDESC; i++) {
2736 rxs = &sc->sc_rxsoft[i];
2737 if (rxs->rxs_mbuf != NULL) {
2738 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2739 m_freem(rxs->rxs_mbuf);
2740 rxs->rxs_mbuf = NULL;
2741 }
2742 }
2743 }
2744
2745 /*
2746 * wm_stop: [ifnet interface function]
2747 *
2748 * Stop transmission on the interface.
2749 */
2750 static void
2751 wm_stop(struct ifnet *ifp, int disable)
2752 {
2753 struct wm_softc *sc = ifp->if_softc;
2754 struct wm_txsoft *txs;
2755 int i;
2756
2757 /* Stop the one second clock. */
2758 callout_stop(&sc->sc_tick_ch);
2759
2760 /* Stop the 82547 Tx FIFO stall check timer. */
2761 if (sc->sc_type == WM_T_82547)
2762 callout_stop(&sc->sc_txfifo_ch);
2763
2764 if (sc->sc_flags & WM_F_HAS_MII) {
2765 /* Down the MII. */
2766 mii_down(&sc->sc_mii);
2767 }
2768
2769 /* Stop the transmit and receive processes. */
2770 CSR_WRITE(sc, WMREG_TCTL, 0);
2771 CSR_WRITE(sc, WMREG_RCTL, 0);
2772
2773 /* Release any queued transmit buffers. */
2774 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2775 txs = &sc->sc_txsoft[i];
2776 if (txs->txs_mbuf != NULL) {
2777 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2778 m_freem(txs->txs_mbuf);
2779 txs->txs_mbuf = NULL;
2780 }
2781 }
2782
2783 if (disable)
2784 wm_rxdrain(sc);
2785
2786 /* Mark the interface as down and cancel the watchdog timer. */
2787 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2788 ifp->if_timer = 0;
2789 }
2790
2791 /*
2792 * wm_acquire_eeprom:
2793 *
2794 * Perform the EEPROM handshake required on some chips.
2795 */
2796 static int
2797 wm_acquire_eeprom(struct wm_softc *sc)
2798 {
2799 uint32_t reg;
2800 int x;
2801
2802 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2803 reg = CSR_READ(sc, WMREG_EECD);
2804
2805 /* Request EEPROM access. */
2806 reg |= EECD_EE_REQ;
2807 CSR_WRITE(sc, WMREG_EECD, reg);
2808
2809 /* ..and wait for it to be granted. */
2810 for (x = 0; x < 100; x++) {
2811 reg = CSR_READ(sc, WMREG_EECD);
2812 if (reg & EECD_EE_GNT)
2813 break;
2814 delay(5);
2815 }
2816 if ((reg & EECD_EE_GNT) == 0) {
2817 aprint_error("%s: could not acquire EEPROM GNT\n",
2818 sc->sc_dev.dv_xname);
2819 reg &= ~EECD_EE_REQ;
2820 CSR_WRITE(sc, WMREG_EECD, reg);
2821 return (1);
2822 }
2823 }
2824
2825 return (0);
2826 }
2827
2828 /*
2829 * wm_release_eeprom:
2830 *
2831 * Release the EEPROM mutex.
2832 */
2833 static void
2834 wm_release_eeprom(struct wm_softc *sc)
2835 {
2836 uint32_t reg;
2837
2838 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2839 reg = CSR_READ(sc, WMREG_EECD);
2840 reg &= ~EECD_EE_REQ;
2841 CSR_WRITE(sc, WMREG_EECD, reg);
2842 }
2843 }
2844
2845 /*
2846 * wm_eeprom_sendbits:
2847 *
2848 * Send a series of bits to the EEPROM.
2849 */
2850 static void
2851 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
2852 {
2853 uint32_t reg;
2854 int x;
2855
2856 reg = CSR_READ(sc, WMREG_EECD);
2857
2858 for (x = nbits; x > 0; x--) {
2859 if (bits & (1U << (x - 1)))
2860 reg |= EECD_DI;
2861 else
2862 reg &= ~EECD_DI;
2863 CSR_WRITE(sc, WMREG_EECD, reg);
2864 delay(2);
2865 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2866 delay(2);
2867 CSR_WRITE(sc, WMREG_EECD, reg);
2868 delay(2);
2869 }
2870 }
2871
2872 /*
2873 * wm_eeprom_recvbits:
2874 *
2875 * Receive a series of bits from the EEPROM.
2876 */
2877 static void
2878 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
2879 {
2880 uint32_t reg, val;
2881 int x;
2882
2883 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
2884
2885 val = 0;
2886 for (x = nbits; x > 0; x--) {
2887 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2888 delay(2);
2889 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
2890 val |= (1U << (x - 1));
2891 CSR_WRITE(sc, WMREG_EECD, reg);
2892 delay(2);
2893 }
2894 *valp = val;
2895 }
2896
2897 /*
2898 * wm_read_eeprom_uwire:
2899 *
2900 * Read a word from the EEPROM using the MicroWire protocol.
2901 */
2902 static int
2903 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2904 {
2905 uint32_t reg, val;
2906 int i;
2907
2908 for (i = 0; i < wordcnt; i++) {
2909 /* Clear SK and DI. */
2910 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
2911 CSR_WRITE(sc, WMREG_EECD, reg);
2912
2913 /* Set CHIP SELECT. */
2914 reg |= EECD_CS;
2915 CSR_WRITE(sc, WMREG_EECD, reg);
2916 delay(2);
2917
2918 /* Shift in the READ command. */
2919 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
2920
2921 /* Shift in address. */
2922 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
2923
2924 /* Shift out the data. */
2925 wm_eeprom_recvbits(sc, &val, 16);
2926 data[i] = val & 0xffff;
2927
2928 /* Clear CHIP SELECT. */
2929 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
2930 CSR_WRITE(sc, WMREG_EECD, reg);
2931 delay(2);
2932 }
2933
2934 return (0);
2935 }
2936
2937 /*
2938 * wm_spi_eeprom_ready:
2939 *
2940 * Wait for a SPI EEPROM to be ready for commands.
2941 */
2942 static int
2943 wm_spi_eeprom_ready(struct wm_softc *sc)
2944 {
2945 uint32_t val;
2946 int usec;
2947
2948 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
2949 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
2950 wm_eeprom_recvbits(sc, &val, 8);
2951 if ((val & SPI_SR_RDY) == 0)
2952 break;
2953 }
2954 if (usec >= SPI_MAX_RETRIES) {
2955 aprint_error("%s: EEPROM failed to become ready\n",
2956 sc->sc_dev.dv_xname);
2957 return (1);
2958 }
2959 return (0);
2960 }
2961
2962 /*
2963 * wm_read_eeprom_spi:
2964 *
2965 * Read a work from the EEPROM using the SPI protocol.
2966 */
2967 static int
2968 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2969 {
2970 uint32_t reg, val;
2971 int i;
2972 uint8_t opc;
2973
2974 /* Clear SK and CS. */
2975 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
2976 CSR_WRITE(sc, WMREG_EECD, reg);
2977 delay(2);
2978
2979 if (wm_spi_eeprom_ready(sc))
2980 return (1);
2981
2982 /* Toggle CS to flush commands. */
2983 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
2984 delay(2);
2985 CSR_WRITE(sc, WMREG_EECD, reg);
2986 delay(2);
2987
2988 opc = SPI_OPC_READ;
2989 if (sc->sc_ee_addrbits == 8 && word >= 128)
2990 opc |= SPI_OPC_A8;
2991
2992 wm_eeprom_sendbits(sc, opc, 8);
2993 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
2994
2995 for (i = 0; i < wordcnt; i++) {
2996 wm_eeprom_recvbits(sc, &val, 16);
2997 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
2998 }
2999
3000 /* Raise CS and clear SK. */
3001 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3002 CSR_WRITE(sc, WMREG_EECD, reg);
3003 delay(2);
3004
3005 return (0);
3006 }
3007
3008 /*
3009 * wm_read_eeprom:
3010 *
3011 * Read data from the serial EEPROM.
3012 */
3013 static int
3014 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3015 {
3016 int rv;
3017
3018 if (wm_acquire_eeprom(sc))
3019 return (1);
3020
3021 if (sc->sc_flags & WM_F_EEPROM_SPI)
3022 rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3023 else
3024 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3025
3026 wm_release_eeprom(sc);
3027 return (rv);
3028 }
3029
3030 /*
3031 * wm_add_rxbuf:
3032 *
3033 * Add a receive buffer to the indiciated descriptor.
3034 */
3035 static int
3036 wm_add_rxbuf(struct wm_softc *sc, int idx)
3037 {
3038 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3039 struct mbuf *m;
3040 int error;
3041
3042 MGETHDR(m, M_DONTWAIT, MT_DATA);
3043 if (m == NULL)
3044 return (ENOBUFS);
3045
3046 MCLGET(m, M_DONTWAIT);
3047 if ((m->m_flags & M_EXT) == 0) {
3048 m_freem(m);
3049 return (ENOBUFS);
3050 }
3051
3052 if (rxs->rxs_mbuf != NULL)
3053 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3054
3055 rxs->rxs_mbuf = m;
3056
3057 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3058 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3059 BUS_DMA_READ|BUS_DMA_NOWAIT);
3060 if (error) {
3061 printf("%s: unable to load rx DMA map %d, error = %d\n",
3062 sc->sc_dev.dv_xname, idx, error);
3063 panic("wm_add_rxbuf"); /* XXX XXX XXX */
3064 }
3065
3066 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3067 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3068
3069 WM_INIT_RXDESC(sc, idx);
3070
3071 return (0);
3072 }
3073
3074 /*
3075 * wm_set_ral:
3076 *
3077 * Set an entery in the receive address list.
3078 */
3079 static void
3080 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3081 {
3082 uint32_t ral_lo, ral_hi;
3083
3084 if (enaddr != NULL) {
3085 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3086 (enaddr[3] << 24);
3087 ral_hi = enaddr[4] | (enaddr[5] << 8);
3088 ral_hi |= RAL_AV;
3089 } else {
3090 ral_lo = 0;
3091 ral_hi = 0;
3092 }
3093
3094 if (sc->sc_type >= WM_T_82544) {
3095 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3096 ral_lo);
3097 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3098 ral_hi);
3099 } else {
3100 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3101 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3102 }
3103 }
3104
3105 /*
3106 * wm_mchash:
3107 *
3108 * Compute the hash of the multicast address for the 4096-bit
3109 * multicast filter.
3110 */
3111 static uint32_t
3112 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3113 {
3114 static const int lo_shift[4] = { 4, 3, 2, 0 };
3115 static const int hi_shift[4] = { 4, 5, 6, 8 };
3116 uint32_t hash;
3117
3118 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3119 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3120
3121 return (hash & 0xfff);
3122 }
3123
3124 /*
3125 * wm_set_filter:
3126 *
3127 * Set up the receive filter.
3128 */
3129 static void
3130 wm_set_filter(struct wm_softc *sc)
3131 {
3132 struct ethercom *ec = &sc->sc_ethercom;
3133 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3134 struct ether_multi *enm;
3135 struct ether_multistep step;
3136 bus_addr_t mta_reg;
3137 uint32_t hash, reg, bit;
3138 int i;
3139
3140 if (sc->sc_type >= WM_T_82544)
3141 mta_reg = WMREG_CORDOVA_MTA;
3142 else
3143 mta_reg = WMREG_MTA;
3144
3145 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3146
3147 if (ifp->if_flags & IFF_BROADCAST)
3148 sc->sc_rctl |= RCTL_BAM;
3149 if (ifp->if_flags & IFF_PROMISC) {
3150 sc->sc_rctl |= RCTL_UPE;
3151 goto allmulti;
3152 }
3153
3154 /*
3155 * Set the station address in the first RAL slot, and
3156 * clear the remaining slots.
3157 */
3158 wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3159 for (i = 1; i < WM_RAL_TABSIZE; i++)
3160 wm_set_ral(sc, NULL, i);
3161
3162 /* Clear out the multicast table. */
3163 for (i = 0; i < WM_MC_TABSIZE; i++)
3164 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3165
3166 ETHER_FIRST_MULTI(step, ec, enm);
3167 while (enm != NULL) {
3168 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3169 /*
3170 * We must listen to a range of multicast addresses.
3171 * For now, just accept all multicasts, rather than
3172 * trying to set only those filter bits needed to match
3173 * the range. (At this time, the only use of address
3174 * ranges is for IP multicast routing, for which the
3175 * range is big enough to require all bits set.)
3176 */
3177 goto allmulti;
3178 }
3179
3180 hash = wm_mchash(sc, enm->enm_addrlo);
3181
3182 reg = (hash >> 5) & 0x7f;
3183 bit = hash & 0x1f;
3184
3185 hash = CSR_READ(sc, mta_reg + (reg << 2));
3186 hash |= 1U << bit;
3187
3188 /* XXX Hardware bug?? */
3189 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3190 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3191 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3192 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3193 } else
3194 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3195
3196 ETHER_NEXT_MULTI(step, enm);
3197 }
3198
3199 ifp->if_flags &= ~IFF_ALLMULTI;
3200 goto setit;
3201
3202 allmulti:
3203 ifp->if_flags |= IFF_ALLMULTI;
3204 sc->sc_rctl |= RCTL_MPE;
3205
3206 setit:
3207 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3208 }
3209
3210 /*
3211 * wm_tbi_mediainit:
3212 *
3213 * Initialize media for use on 1000BASE-X devices.
3214 */
3215 static void
3216 wm_tbi_mediainit(struct wm_softc *sc)
3217 {
3218 const char *sep = "";
3219
3220 if (sc->sc_type < WM_T_82543)
3221 sc->sc_tipg = TIPG_WM_DFLT;
3222 else
3223 sc->sc_tipg = TIPG_LG_DFLT;
3224
3225 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3226 wm_tbi_mediastatus);
3227
3228 /*
3229 * SWD Pins:
3230 *
3231 * 0 = Link LED (output)
3232 * 1 = Loss Of Signal (input)
3233 */
3234 sc->sc_ctrl |= CTRL_SWDPIO(0);
3235 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3236
3237 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3238
3239 #define ADD(ss, mm, dd) \
3240 do { \
3241 printf("%s%s", sep, ss); \
3242 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
3243 sep = ", "; \
3244 } while (/*CONSTCOND*/0)
3245
3246 printf("%s: ", sc->sc_dev.dv_xname);
3247 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3248 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3249 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3250 printf("\n");
3251
3252 #undef ADD
3253
3254 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3255 }
3256
3257 /*
3258 * wm_tbi_mediastatus: [ifmedia interface function]
3259 *
3260 * Get the current interface media status on a 1000BASE-X device.
3261 */
3262 static void
3263 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3264 {
3265 struct wm_softc *sc = ifp->if_softc;
3266 uint32_t ctrl;
3267
3268 ifmr->ifm_status = IFM_AVALID;
3269 ifmr->ifm_active = IFM_ETHER;
3270
3271 if (sc->sc_tbi_linkup == 0) {
3272 ifmr->ifm_active |= IFM_NONE;
3273 return;
3274 }
3275
3276 ifmr->ifm_status |= IFM_ACTIVE;
3277 ifmr->ifm_active |= IFM_1000_SX;
3278 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3279 ifmr->ifm_active |= IFM_FDX;
3280 ctrl = CSR_READ(sc, WMREG_CTRL);
3281 if (ctrl & CTRL_RFCE)
3282 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3283 if (ctrl & CTRL_TFCE)
3284 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3285 }
3286
3287 /*
3288 * wm_tbi_mediachange: [ifmedia interface function]
3289 *
3290 * Set hardware to newly-selected media on a 1000BASE-X device.
3291 */
3292 static int
3293 wm_tbi_mediachange(struct ifnet *ifp)
3294 {
3295 struct wm_softc *sc = ifp->if_softc;
3296 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3297 uint32_t status;
3298 int i;
3299
3300 sc->sc_txcw = ife->ifm_data;
3301 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3302 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3303 sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3304 sc->sc_txcw |= TXCW_ANE;
3305
3306 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3307 delay(10000);
3308
3309 /* NOTE: CTRL will update TFCE and RFCE automatically. */
3310
3311 sc->sc_tbi_anstate = 0;
3312
3313 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3314 /* Have signal; wait for the link to come up. */
3315 for (i = 0; i < 50; i++) {
3316 delay(10000);
3317 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3318 break;
3319 }
3320
3321 status = CSR_READ(sc, WMREG_STATUS);
3322 if (status & STATUS_LU) {
3323 /* Link is up. */
3324 DPRINTF(WM_DEBUG_LINK,
3325 ("%s: LINK: set media -> link up %s\n",
3326 sc->sc_dev.dv_xname,
3327 (status & STATUS_FD) ? "FDX" : "HDX"));
3328 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3329 sc->sc_fcrtl &= ~FCRTL_XONE;
3330 if (status & STATUS_FD)
3331 sc->sc_tctl |=
3332 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3333 else
3334 sc->sc_tctl |=
3335 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3336 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3337 sc->sc_fcrtl |= FCRTL_XONE;
3338 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3339 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3340 WMREG_OLD_FCRTL : WMREG_FCRTL,
3341 sc->sc_fcrtl);
3342 sc->sc_tbi_linkup = 1;
3343 } else {
3344 /* Link is down. */
3345 DPRINTF(WM_DEBUG_LINK,
3346 ("%s: LINK: set media -> link down\n",
3347 sc->sc_dev.dv_xname));
3348 sc->sc_tbi_linkup = 0;
3349 }
3350 } else {
3351 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3352 sc->sc_dev.dv_xname));
3353 sc->sc_tbi_linkup = 0;
3354 }
3355
3356 wm_tbi_set_linkled(sc);
3357
3358 return (0);
3359 }
3360
3361 /*
3362 * wm_tbi_set_linkled:
3363 *
3364 * Update the link LED on 1000BASE-X devices.
3365 */
3366 static void
3367 wm_tbi_set_linkled(struct wm_softc *sc)
3368 {
3369
3370 if (sc->sc_tbi_linkup)
3371 sc->sc_ctrl |= CTRL_SWDPIN(0);
3372 else
3373 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3374
3375 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3376 }
3377
3378 /*
3379 * wm_tbi_check_link:
3380 *
3381 * Check the link on 1000BASE-X devices.
3382 */
3383 static void
3384 wm_tbi_check_link(struct wm_softc *sc)
3385 {
3386 uint32_t rxcw, ctrl, status;
3387
3388 if (sc->sc_tbi_anstate == 0)
3389 return;
3390 else if (sc->sc_tbi_anstate > 1) {
3391 DPRINTF(WM_DEBUG_LINK,
3392 ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3393 sc->sc_tbi_anstate));
3394 sc->sc_tbi_anstate--;
3395 return;
3396 }
3397
3398 sc->sc_tbi_anstate = 0;
3399
3400 rxcw = CSR_READ(sc, WMREG_RXCW);
3401 ctrl = CSR_READ(sc, WMREG_CTRL);
3402 status = CSR_READ(sc, WMREG_STATUS);
3403
3404 if ((status & STATUS_LU) == 0) {
3405 DPRINTF(WM_DEBUG_LINK,
3406 ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3407 sc->sc_tbi_linkup = 0;
3408 } else {
3409 DPRINTF(WM_DEBUG_LINK,
3410 ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3411 (status & STATUS_FD) ? "FDX" : "HDX"));
3412 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3413 sc->sc_fcrtl &= ~FCRTL_XONE;
3414 if (status & STATUS_FD)
3415 sc->sc_tctl |=
3416 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3417 else
3418 sc->sc_tctl |=
3419 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3420 if (ctrl & CTRL_TFCE)
3421 sc->sc_fcrtl |= FCRTL_XONE;
3422 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3423 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3424 WMREG_OLD_FCRTL : WMREG_FCRTL,
3425 sc->sc_fcrtl);
3426 sc->sc_tbi_linkup = 1;
3427 }
3428
3429 wm_tbi_set_linkled(sc);
3430 }
3431
3432 /*
3433 * wm_gmii_reset:
3434 *
3435 * Reset the PHY.
3436 */
3437 static void
3438 wm_gmii_reset(struct wm_softc *sc)
3439 {
3440 uint32_t reg;
3441
3442 if (sc->sc_type >= WM_T_82544) {
3443 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3444 delay(20000);
3445
3446 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3447 delay(20000);
3448 } else {
3449 /* The PHY reset pin is active-low. */
3450 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3451 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3452 CTRL_EXT_SWDPIN(4));
3453 reg |= CTRL_EXT_SWDPIO(4);
3454
3455 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3456 delay(10);
3457
3458 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3459 delay(10);
3460
3461 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3462 delay(10);
3463 #if 0
3464 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3465 #endif
3466 }
3467 }
3468
3469 /*
3470 * wm_gmii_mediainit:
3471 *
3472 * Initialize media for use on 1000BASE-T devices.
3473 */
3474 static void
3475 wm_gmii_mediainit(struct wm_softc *sc)
3476 {
3477 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3478
3479 /* We have MII. */
3480 sc->sc_flags |= WM_F_HAS_MII;
3481
3482 sc->sc_tipg = TIPG_1000T_DFLT;
3483
3484 /*
3485 * Let the chip set speed/duplex on its own based on
3486 * signals from the PHY.
3487 */
3488 sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3489 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3490
3491 /* Initialize our media structures and probe the GMII. */
3492 sc->sc_mii.mii_ifp = ifp;
3493
3494 if (sc->sc_type >= WM_T_82544) {
3495 sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3496 sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3497 } else {
3498 sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3499 sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3500 }
3501 sc->sc_mii.mii_statchg = wm_gmii_statchg;
3502
3503 wm_gmii_reset(sc);
3504
3505 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3506 wm_gmii_mediastatus);
3507
3508 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3509 MII_OFFSET_ANY, MIIF_DOPAUSE);
3510 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3511 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3512 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3513 } else
3514 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3515 }
3516
3517 /*
3518 * wm_gmii_mediastatus: [ifmedia interface function]
3519 *
3520 * Get the current interface media status on a 1000BASE-T device.
3521 */
3522 static void
3523 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3524 {
3525 struct wm_softc *sc = ifp->if_softc;
3526
3527 mii_pollstat(&sc->sc_mii);
3528 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3529 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3530 sc->sc_flowflags;
3531 }
3532
3533 /*
3534 * wm_gmii_mediachange: [ifmedia interface function]
3535 *
3536 * Set hardware to newly-selected media on a 1000BASE-T device.
3537 */
3538 static int
3539 wm_gmii_mediachange(struct ifnet *ifp)
3540 {
3541 struct wm_softc *sc = ifp->if_softc;
3542
3543 if (ifp->if_flags & IFF_UP)
3544 mii_mediachg(&sc->sc_mii);
3545 return (0);
3546 }
3547
3548 #define MDI_IO CTRL_SWDPIN(2)
3549 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
3550 #define MDI_CLK CTRL_SWDPIN(3)
3551
3552 static void
3553 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3554 {
3555 uint32_t i, v;
3556
3557 v = CSR_READ(sc, WMREG_CTRL);
3558 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3559 v |= MDI_DIR | CTRL_SWDPIO(3);
3560
3561 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3562 if (data & i)
3563 v |= MDI_IO;
3564 else
3565 v &= ~MDI_IO;
3566 CSR_WRITE(sc, WMREG_CTRL, v);
3567 delay(10);
3568 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3569 delay(10);
3570 CSR_WRITE(sc, WMREG_CTRL, v);
3571 delay(10);
3572 }
3573 }
3574
3575 static uint32_t
3576 i82543_mii_recvbits(struct wm_softc *sc)
3577 {
3578 uint32_t v, i, data = 0;
3579
3580 v = CSR_READ(sc, WMREG_CTRL);
3581 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3582 v |= CTRL_SWDPIO(3);
3583
3584 CSR_WRITE(sc, WMREG_CTRL, v);
3585 delay(10);
3586 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3587 delay(10);
3588 CSR_WRITE(sc, WMREG_CTRL, v);
3589 delay(10);
3590
3591 for (i = 0; i < 16; i++) {
3592 data <<= 1;
3593 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3594 delay(10);
3595 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3596 data |= 1;
3597 CSR_WRITE(sc, WMREG_CTRL, v);
3598 delay(10);
3599 }
3600
3601 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3602 delay(10);
3603 CSR_WRITE(sc, WMREG_CTRL, v);
3604 delay(10);
3605
3606 return (data);
3607 }
3608
3609 #undef MDI_IO
3610 #undef MDI_DIR
3611 #undef MDI_CLK
3612
3613 /*
3614 * wm_gmii_i82543_readreg: [mii interface function]
3615 *
3616 * Read a PHY register on the GMII (i82543 version).
3617 */
3618 static int
3619 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3620 {
3621 struct wm_softc *sc = (void *) self;
3622 int rv;
3623
3624 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3625 i82543_mii_sendbits(sc, reg | (phy << 5) |
3626 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3627 rv = i82543_mii_recvbits(sc) & 0xffff;
3628
3629 DPRINTF(WM_DEBUG_GMII,
3630 ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3631 sc->sc_dev.dv_xname, phy, reg, rv));
3632
3633 return (rv);
3634 }
3635
3636 /*
3637 * wm_gmii_i82543_writereg: [mii interface function]
3638 *
3639 * Write a PHY register on the GMII (i82543 version).
3640 */
3641 static void
3642 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3643 {
3644 struct wm_softc *sc = (void *) self;
3645
3646 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3647 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3648 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3649 (MII_COMMAND_START << 30), 32);
3650 }
3651
3652 /*
3653 * wm_gmii_i82544_readreg: [mii interface function]
3654 *
3655 * Read a PHY register on the GMII.
3656 */
3657 static int
3658 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
3659 {
3660 struct wm_softc *sc = (void *) self;
3661 uint32_t mdic = 0;
3662 int i, rv;
3663
3664 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
3665 MDIC_REGADD(reg));
3666
3667 for (i = 0; i < 100; i++) {
3668 mdic = CSR_READ(sc, WMREG_MDIC);
3669 if (mdic & MDIC_READY)
3670 break;
3671 delay(10);
3672 }
3673
3674 if ((mdic & MDIC_READY) == 0) {
3675 printf("%s: MDIC read timed out: phy %d reg %d\n",
3676 sc->sc_dev.dv_xname, phy, reg);
3677 rv = 0;
3678 } else if (mdic & MDIC_E) {
3679 #if 0 /* This is normal if no PHY is present. */
3680 printf("%s: MDIC read error: phy %d reg %d\n",
3681 sc->sc_dev.dv_xname, phy, reg);
3682 #endif
3683 rv = 0;
3684 } else {
3685 rv = MDIC_DATA(mdic);
3686 if (rv == 0xffff)
3687 rv = 0;
3688 }
3689
3690 return (rv);
3691 }
3692
3693 /*
3694 * wm_gmii_i82544_writereg: [mii interface function]
3695 *
3696 * Write a PHY register on the GMII.
3697 */
3698 static void
3699 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
3700 {
3701 struct wm_softc *sc = (void *) self;
3702 uint32_t mdic = 0;
3703 int i;
3704
3705 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
3706 MDIC_REGADD(reg) | MDIC_DATA(val));
3707
3708 for (i = 0; i < 100; i++) {
3709 mdic = CSR_READ(sc, WMREG_MDIC);
3710 if (mdic & MDIC_READY)
3711 break;
3712 delay(10);
3713 }
3714
3715 if ((mdic & MDIC_READY) == 0)
3716 printf("%s: MDIC write timed out: phy %d reg %d\n",
3717 sc->sc_dev.dv_xname, phy, reg);
3718 else if (mdic & MDIC_E)
3719 printf("%s: MDIC write error: phy %d reg %d\n",
3720 sc->sc_dev.dv_xname, phy, reg);
3721 }
3722
3723 /*
3724 * wm_gmii_statchg: [mii interface function]
3725 *
3726 * Callback from MII layer when media changes.
3727 */
3728 static void
3729 wm_gmii_statchg(struct device *self)
3730 {
3731 struct wm_softc *sc = (void *) self;
3732 struct mii_data *mii = &sc->sc_mii;
3733
3734 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
3735 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3736 sc->sc_fcrtl &= ~FCRTL_XONE;
3737
3738 /*
3739 * Get flow control negotiation result.
3740 */
3741 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3742 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3743 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3744 mii->mii_media_active &= ~IFM_ETH_FMASK;
3745 }
3746
3747 if (sc->sc_flowflags & IFM_FLOW) {
3748 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
3749 sc->sc_ctrl |= CTRL_TFCE;
3750 sc->sc_fcrtl |= FCRTL_XONE;
3751 }
3752 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3753 sc->sc_ctrl |= CTRL_RFCE;
3754 }
3755
3756 if (sc->sc_mii.mii_media_active & IFM_FDX) {
3757 DPRINTF(WM_DEBUG_LINK,
3758 ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3759 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3760 } else {
3761 DPRINTF(WM_DEBUG_LINK,
3762 ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3763 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3764 }
3765
3766 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3767 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3768 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
3769 : WMREG_FCRTL, sc->sc_fcrtl);
3770 }
3771