Home | History | Annotate | Line # | Download | only in pci
if_wm.c revision 1.84
      1 /*	$NetBSD: if_wm.c,v 1.84 2004/11/22 19:28:37 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
     40  *
     41  * TODO (in order of importance):
     42  *
     43  *	- Rework how parameters are loaded from the EEPROM.
     44  *	- Figure out what to do with the i82545GM and i82546GB
     45  *	  SERDES controllers.
     46  *	- Fix hw VLAN assist.
     47  */
     48 
     49 #include <sys/cdefs.h>
     50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.84 2004/11/22 19:28:37 thorpej Exp $");
     51 
     52 #include "bpfilter.h"
     53 #include "rnd.h"
     54 
     55 #include <sys/param.h>
     56 #include <sys/systm.h>
     57 #include <sys/callout.h>
     58 #include <sys/mbuf.h>
     59 #include <sys/malloc.h>
     60 #include <sys/kernel.h>
     61 #include <sys/socket.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/errno.h>
     64 #include <sys/device.h>
     65 #include <sys/queue.h>
     66 #include <sys/syslog.h>
     67 
     68 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     69 
     70 #if NRND > 0
     71 #include <sys/rnd.h>
     72 #endif
     73 
     74 #include <net/if.h>
     75 #include <net/if_dl.h>
     76 #include <net/if_media.h>
     77 #include <net/if_ether.h>
     78 
     79 #if NBPFILTER > 0
     80 #include <net/bpf.h>
     81 #endif
     82 
     83 #include <netinet/in.h>			/* XXX for struct ip */
     84 #include <netinet/in_systm.h>		/* XXX for struct ip */
     85 #include <netinet/ip.h>			/* XXX for struct ip */
     86 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
     87 
     88 #include <machine/bus.h>
     89 #include <machine/intr.h>
     90 #include <machine/endian.h>
     91 
     92 #include <dev/mii/mii.h>
     93 #include <dev/mii/miivar.h>
     94 #include <dev/mii/mii_bitbang.h>
     95 
     96 #include <dev/pci/pcireg.h>
     97 #include <dev/pci/pcivar.h>
     98 #include <dev/pci/pcidevs.h>
     99 
    100 #include <dev/pci/if_wmreg.h>
    101 
    102 #ifdef WM_DEBUG
    103 #define	WM_DEBUG_LINK		0x01
    104 #define	WM_DEBUG_TX		0x02
    105 #define	WM_DEBUG_RX		0x04
    106 #define	WM_DEBUG_GMII		0x08
    107 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
    108 
    109 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
    110 #else
    111 #define	DPRINTF(x, y)	/* nothing */
    112 #endif /* WM_DEBUG */
    113 
    114 /*
    115  * Transmit descriptor list size.  Due to errata, we can only have
    116  * 256 hardware descriptors in the ring on < 82544, but we use 4096
    117  * on >= 82544.  We tell the upper layers that they can queue a lot
    118  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
    119  * of them at a time.
    120  *
    121  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
    122  * chains containing many small mbufs have been observed in zero-copy
    123  * situations with jumbo frames.
    124  */
    125 #define	WM_NTXSEGS		256
    126 #define	WM_IFQUEUELEN		256
    127 #define	WM_TXQUEUELEN_MAX	64
    128 #define	WM_TXQUEUELEN_MAX_82547	16
    129 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
    130 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
    131 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
    132 #define	WM_NTXDESC_82542	256
    133 #define	WM_NTXDESC_82544	4096
    134 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
    135 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
    136 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
    137 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
    138 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
    139 
    140 #define	WM_MAXTXDMA		ETHER_MAX_LEN_JUMBO
    141 
    142 /*
    143  * Receive descriptor list size.  We have one Rx buffer for normal
    144  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
    145  * packet.  We allocate 256 receive descriptors, each with a 2k
    146  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
    147  */
    148 #define	WM_NRXDESC		256
    149 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
    150 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
    151 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
    152 
    153 /*
    154  * Control structures are DMA'd to the i82542 chip.  We allocate them in
    155  * a single clump that maps to a single DMA segment to make serveral things
    156  * easier.
    157  */
    158 struct wm_control_data_82544 {
    159 	/*
    160 	 * The receive descriptors.
    161 	 */
    162 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    163 
    164 	/*
    165 	 * The transmit descriptors.  Put these at the end, because
    166 	 * we might use a smaller number of them.
    167 	 */
    168 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
    169 };
    170 
    171 struct wm_control_data_82542 {
    172 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    173 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
    174 };
    175 
    176 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
    177 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
    178 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
    179 
    180 /*
    181  * Software state for transmit jobs.
    182  */
    183 struct wm_txsoft {
    184 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    185 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    186 	int txs_firstdesc;		/* first descriptor in packet */
    187 	int txs_lastdesc;		/* last descriptor in packet */
    188 	int txs_ndesc;			/* # of descriptors used */
    189 };
    190 
    191 /*
    192  * Software state for receive buffers.  Each descriptor gets a
    193  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    194  * more than one buffer, we chain them together.
    195  */
    196 struct wm_rxsoft {
    197 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    198 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    199 };
    200 
    201 typedef enum {
    202 	WM_T_unknown		= 0,
    203 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
    204 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
    205 	WM_T_82543,			/* i82543 */
    206 	WM_T_82544,			/* i82544 */
    207 	WM_T_82540,			/* i82540 */
    208 	WM_T_82545,			/* i82545 */
    209 	WM_T_82545_3,			/* i82545 3.0+ */
    210 	WM_T_82546,			/* i82546 */
    211 	WM_T_82546_3,			/* i82546 3.0+ */
    212 	WM_T_82541,			/* i82541 */
    213 	WM_T_82541_2,			/* i82541 2.0+ */
    214 	WM_T_82547,			/* i82547 */
    215 	WM_T_82547_2,			/* i82547 2.0+ */
    216 } wm_chip_type;
    217 
    218 /*
    219  * Software state per device.
    220  */
    221 struct wm_softc {
    222 	struct device sc_dev;		/* generic device information */
    223 	bus_space_tag_t sc_st;		/* bus space tag */
    224 	bus_space_handle_t sc_sh;	/* bus space handle */
    225 	bus_space_tag_t sc_iot;		/* I/O space tag */
    226 	bus_space_handle_t sc_ioh;	/* I/O space handle */
    227 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    228 	struct ethercom sc_ethercom;	/* ethernet common data */
    229 	void *sc_sdhook;		/* shutdown hook */
    230 
    231 	wm_chip_type sc_type;		/* chip type */
    232 	int sc_flags;			/* flags; see below */
    233 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    234 	int sc_pcix_offset;		/* PCIX capability register offset */
    235 	int sc_flowflags;		/* 802.3x flow control flags */
    236 
    237 	void *sc_ih;			/* interrupt cookie */
    238 
    239 	int sc_ee_addrbits;		/* EEPROM address bits */
    240 
    241 	struct mii_data sc_mii;		/* MII/media information */
    242 
    243 	struct callout sc_tick_ch;	/* tick callout */
    244 
    245 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    246 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    247 
    248 	int		sc_align_tweak;
    249 
    250 	/*
    251 	 * Software state for the transmit and receive descriptors.
    252 	 */
    253 	int			sc_txnum;	/* must be a power of two */
    254 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
    255 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
    256 
    257 	/*
    258 	 * Control data structures.
    259 	 */
    260 	int			sc_ntxdesc;	/* must be a power of two */
    261 	struct wm_control_data_82544 *sc_control_data;
    262 #define	sc_txdescs	sc_control_data->wcd_txdescs
    263 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    264 
    265 #ifdef WM_EVENT_COUNTERS
    266 	/* Event counters. */
    267 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    268 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    269 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
    270 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    271 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    272 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    273 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    274 
    275 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    276 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    277 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    278 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    279 
    280 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
    281 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
    282 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
    283 
    284 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
    285 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    286 
    287 	struct evcnt sc_ev_tu;		/* Tx underrun */
    288 
    289 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
    290 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
    291 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
    292 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
    293 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
    294 #endif /* WM_EVENT_COUNTERS */
    295 
    296 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
    297 
    298 	int	sc_txfree;		/* number of free Tx descriptors */
    299 	int	sc_txnext;		/* next ready Tx descriptor */
    300 
    301 	int	sc_txsfree;		/* number of free Tx jobs */
    302 	int	sc_txsnext;		/* next free Tx job */
    303 	int	sc_txsdirty;		/* dirty Tx jobs */
    304 
    305 	/* These 5 variables are used only on the 82547. */
    306 	int	sc_txfifo_size;		/* Tx FIFO size */
    307 	int	sc_txfifo_head;		/* current head of FIFO */
    308 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
    309 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
    310 	struct callout sc_txfifo_ch;	/* Tx FIFO stall work-around timer */
    311 
    312 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
    313 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
    314 
    315 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
    316 
    317 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    318 	int	sc_rxdiscard;
    319 	int	sc_rxlen;
    320 	struct mbuf *sc_rxhead;
    321 	struct mbuf *sc_rxtail;
    322 	struct mbuf **sc_rxtailp;
    323 
    324 	uint32_t sc_ctrl;		/* prototype CTRL register */
    325 #if 0
    326 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
    327 #endif
    328 	uint32_t sc_icr;		/* prototype interrupt bits */
    329 	uint32_t sc_tctl;		/* prototype TCTL register */
    330 	uint32_t sc_rctl;		/* prototype RCTL register */
    331 	uint32_t sc_txcw;		/* prototype TXCW register */
    332 	uint32_t sc_tipg;		/* prototype TIPG register */
    333 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
    334 	uint32_t sc_pba;		/* prototype PBA register */
    335 
    336 	int sc_tbi_linkup;		/* TBI link status */
    337 	int sc_tbi_anstate;		/* autonegotiation state */
    338 
    339 	int sc_mchash_type;		/* multicast filter offset */
    340 
    341 #if NRND > 0
    342 	rndsource_element_t rnd_source;	/* random source */
    343 #endif
    344 };
    345 
    346 #define	WM_RXCHAIN_RESET(sc)						\
    347 do {									\
    348 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    349 	*(sc)->sc_rxtailp = NULL;					\
    350 	(sc)->sc_rxlen = 0;						\
    351 } while (/*CONSTCOND*/0)
    352 
    353 #define	WM_RXCHAIN_LINK(sc, m)						\
    354 do {									\
    355 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    356 	(sc)->sc_rxtailp = &(m)->m_next;				\
    357 } while (/*CONSTCOND*/0)
    358 
    359 /* sc_flags */
    360 #define	WM_F_HAS_MII		0x01	/* has MII */
    361 #define	WM_F_EEPROM_HANDSHAKE	0x02	/* requires EEPROM handshake */
    362 #define	WM_F_EEPROM_SPI		0x04	/* EEPROM is SPI */
    363 #define	WM_F_IOH_VALID		0x10	/* I/O handle is valid */
    364 #define	WM_F_BUS64		0x20	/* bus is 64-bit */
    365 #define	WM_F_PCIX		0x40	/* bus is PCI-X */
    366 #define	WM_F_CSA		0x80	/* bus is CSA */
    367 
    368 #ifdef WM_EVENT_COUNTERS
    369 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
    370 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
    371 #else
    372 #define	WM_EVCNT_INCR(ev)	/* nothing */
    373 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
    374 #endif
    375 
    376 #define	CSR_READ(sc, reg)						\
    377 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    378 #define	CSR_WRITE(sc, reg, val)						\
    379 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    380 #define	CSR_WRITE_FLUSH(sc)						\
    381 	(void) CSR_READ((sc), WMREG_STATUS)
    382 
    383 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
    384 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
    385 
    386 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
    387 #define	WM_CDTXADDR_HI(sc, x)						\
    388 	(sizeof(bus_addr_t) == 8 ?					\
    389 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
    390 
    391 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
    392 #define	WM_CDRXADDR_HI(sc, x)						\
    393 	(sizeof(bus_addr_t) == 8 ?					\
    394 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
    395 
    396 #define	WM_CDTXSYNC(sc, x, n, ops)					\
    397 do {									\
    398 	int __x, __n;							\
    399 									\
    400 	__x = (x);							\
    401 	__n = (n);							\
    402 									\
    403 	/* If it will wrap around, sync to the end of the ring. */	\
    404 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
    405 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    406 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
    407 		    (WM_NTXDESC(sc) - __x), (ops));			\
    408 		__n -= (WM_NTXDESC(sc) - __x);				\
    409 		__x = 0;						\
    410 	}								\
    411 									\
    412 	/* Now sync whatever is left. */				\
    413 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    414 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
    415 } while (/*CONSTCOND*/0)
    416 
    417 #define	WM_CDRXSYNC(sc, x, ops)						\
    418 do {									\
    419 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    420 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
    421 } while (/*CONSTCOND*/0)
    422 
    423 #define	WM_INIT_RXDESC(sc, x)						\
    424 do {									\
    425 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    426 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
    427 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    428 									\
    429 	/*								\
    430 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    431 	 * so that the payload after the Ethernet header is aligned	\
    432 	 * to a 4-byte boundary.					\
    433 	 *								\
    434 	 * XXX BRAINDAMAGE ALERT!					\
    435 	 * The stupid chip uses the same size for every buffer, which	\
    436 	 * is set in the Receive Control register.  We are using the 2K	\
    437 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    438 	 * reason, we can't "scoot" packets longer than the standard	\
    439 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    440 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    441 	 * the upper layer copy the headers.				\
    442 	 */								\
    443 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    444 									\
    445 	wm_set_dma_addr(&__rxd->wrx_addr,				\
    446 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
    447 	__rxd->wrx_len = 0;						\
    448 	__rxd->wrx_cksum = 0;						\
    449 	__rxd->wrx_status = 0;						\
    450 	__rxd->wrx_errors = 0;						\
    451 	__rxd->wrx_special = 0;						\
    452 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    453 									\
    454 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
    455 } while (/*CONSTCOND*/0)
    456 
    457 static void	wm_start(struct ifnet *);
    458 static void	wm_watchdog(struct ifnet *);
    459 static int	wm_ioctl(struct ifnet *, u_long, caddr_t);
    460 static int	wm_init(struct ifnet *);
    461 static void	wm_stop(struct ifnet *, int);
    462 
    463 static void	wm_shutdown(void *);
    464 
    465 static void	wm_reset(struct wm_softc *);
    466 static void	wm_rxdrain(struct wm_softc *);
    467 static int	wm_add_rxbuf(struct wm_softc *, int);
    468 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
    469 static void	wm_tick(void *);
    470 
    471 static void	wm_set_filter(struct wm_softc *);
    472 
    473 static int	wm_intr(void *);
    474 static void	wm_txintr(struct wm_softc *);
    475 static void	wm_rxintr(struct wm_softc *);
    476 static void	wm_linkintr(struct wm_softc *, uint32_t);
    477 
    478 static void	wm_tbi_mediainit(struct wm_softc *);
    479 static int	wm_tbi_mediachange(struct ifnet *);
    480 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
    481 
    482 static void	wm_tbi_set_linkled(struct wm_softc *);
    483 static void	wm_tbi_check_link(struct wm_softc *);
    484 
    485 static void	wm_gmii_reset(struct wm_softc *);
    486 
    487 static int	wm_gmii_i82543_readreg(struct device *, int, int);
    488 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
    489 
    490 static int	wm_gmii_i82544_readreg(struct device *, int, int);
    491 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
    492 
    493 static void	wm_gmii_statchg(struct device *);
    494 
    495 static void	wm_gmii_mediainit(struct wm_softc *);
    496 static int	wm_gmii_mediachange(struct ifnet *);
    497 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
    498 
    499 static int	wm_match(struct device *, struct cfdata *, void *);
    500 static void	wm_attach(struct device *, struct device *, void *);
    501 
    502 CFATTACH_DECL(wm, sizeof(struct wm_softc),
    503     wm_match, wm_attach, NULL, NULL);
    504 
    505 static void	wm_82547_txfifo_stall(void *);
    506 
    507 /*
    508  * Devices supported by this driver.
    509  */
    510 static const struct wm_product {
    511 	pci_vendor_id_t		wmp_vendor;
    512 	pci_product_id_t	wmp_product;
    513 	const char		*wmp_name;
    514 	wm_chip_type		wmp_type;
    515 	int			wmp_flags;
    516 #define	WMP_F_1000X		0x01
    517 #define	WMP_F_1000T		0x02
    518 } wm_products[] = {
    519 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
    520 	  "Intel i82542 1000BASE-X Ethernet",
    521 	  WM_T_82542_2_1,	WMP_F_1000X },
    522 
    523 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
    524 	  "Intel i82543GC 1000BASE-X Ethernet",
    525 	  WM_T_82543,		WMP_F_1000X },
    526 
    527 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
    528 	  "Intel i82543GC 1000BASE-T Ethernet",
    529 	  WM_T_82543,		WMP_F_1000T },
    530 
    531 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
    532 	  "Intel i82544EI 1000BASE-T Ethernet",
    533 	  WM_T_82544,		WMP_F_1000T },
    534 
    535 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
    536 	  "Intel i82544EI 1000BASE-X Ethernet",
    537 	  WM_T_82544,		WMP_F_1000X },
    538 
    539 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
    540 	  "Intel i82544GC 1000BASE-T Ethernet",
    541 	  WM_T_82544,		WMP_F_1000T },
    542 
    543 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
    544 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
    545 	  WM_T_82544,		WMP_F_1000T },
    546 
    547 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
    548 	  "Intel i82540EM 1000BASE-T Ethernet",
    549 	  WM_T_82540,		WMP_F_1000T },
    550 
    551 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
    552 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
    553 	  WM_T_82540,		WMP_F_1000T },
    554 
    555 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
    556 	  "Intel i82540EP 1000BASE-T Ethernet",
    557 	  WM_T_82540,		WMP_F_1000T },
    558 
    559 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
    560 	  "Intel i82540EP 1000BASE-T Ethernet",
    561 	  WM_T_82540,		WMP_F_1000T },
    562 
    563 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
    564 	  "Intel i82540EP 1000BASE-T Ethernet",
    565 	  WM_T_82540,		WMP_F_1000T },
    566 
    567 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
    568 	  "Intel i82545EM 1000BASE-T Ethernet",
    569 	  WM_T_82545,		WMP_F_1000T },
    570 
    571 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
    572 	  "Intel i82545GM 1000BASE-T Ethernet",
    573 	  WM_T_82545_3,		WMP_F_1000T },
    574 
    575 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
    576 	  "Intel i82545GM 1000BASE-X Ethernet",
    577 	  WM_T_82545_3,		WMP_F_1000X },
    578 #if 0
    579 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
    580 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
    581 	  WM_T_82545_3,		WMP_F_SERDES },
    582 #endif
    583 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
    584 	  "Intel i82546EB 1000BASE-T Ethernet",
    585 	  WM_T_82546,		WMP_F_1000T },
    586 
    587 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
    588 	  "Intel i82546EB 1000BASE-T Ethernet",
    589 	  WM_T_82546,		WMP_F_1000T },
    590 
    591 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
    592 	  "Intel i82545EM 1000BASE-X Ethernet",
    593 	  WM_T_82545,		WMP_F_1000X },
    594 
    595 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
    596 	  "Intel i82546EB 1000BASE-X Ethernet",
    597 	  WM_T_82546,		WMP_F_1000X },
    598 
    599 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
    600 	  "Intel i82546GB 1000BASE-T Ethernet",
    601 	  WM_T_82546_3,		WMP_F_1000T },
    602 
    603 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
    604 	  "Intel i82546GB 1000BASE-X Ethernet",
    605 	  WM_T_82546_3,		WMP_F_1000X },
    606 #if 0
    607 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
    608 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
    609 	  WM_T_82546_3,		WMP_F_SERDES },
    610 #endif
    611 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
    612 	  "Intel i82541EI 1000BASE-T Ethernet",
    613 	  WM_T_82541,		WMP_F_1000T },
    614 
    615 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
    616 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
    617 	  WM_T_82541,		WMP_F_1000T },
    618 
    619 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
    620 	  "Intel i82541ER 1000BASE-T Ethernet",
    621 	  WM_T_82541_2,		WMP_F_1000T },
    622 
    623 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
    624 	  "Intel i82541GI 1000BASE-T Ethernet",
    625 	  WM_T_82541_2,		WMP_F_1000T },
    626 
    627 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
    628 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
    629 	  WM_T_82541_2,		WMP_F_1000T },
    630 
    631 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
    632 	  "Intel i82547EI 1000BASE-T Ethernet",
    633 	  WM_T_82547,		WMP_F_1000T },
    634 
    635 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
    636 	  "Intel i82547GI 1000BASE-T Ethernet",
    637 	  WM_T_82547_2,		WMP_F_1000T },
    638 	{ 0,			0,
    639 	  NULL,
    640 	  0,			0 },
    641 };
    642 
    643 #ifdef WM_EVENT_COUNTERS
    644 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
    645 #endif /* WM_EVENT_COUNTERS */
    646 
    647 #if 0 /* Not currently used */
    648 static __inline uint32_t
    649 wm_io_read(struct wm_softc *sc, int reg)
    650 {
    651 
    652 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    653 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
    654 }
    655 #endif
    656 
    657 static __inline void
    658 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
    659 {
    660 
    661 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    662 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
    663 }
    664 
    665 static __inline void
    666 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
    667 {
    668 	wa->wa_low = htole32(v & 0xffffffffU);
    669 	if (sizeof(bus_addr_t) == 8)
    670 		wa->wa_high = htole32((uint64_t) v >> 32);
    671 	else
    672 		wa->wa_high = 0;
    673 }
    674 
    675 static const struct wm_product *
    676 wm_lookup(const struct pci_attach_args *pa)
    677 {
    678 	const struct wm_product *wmp;
    679 
    680 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
    681 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
    682 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
    683 			return (wmp);
    684 	}
    685 	return (NULL);
    686 }
    687 
    688 static int
    689 wm_match(struct device *parent, struct cfdata *cf, void *aux)
    690 {
    691 	struct pci_attach_args *pa = aux;
    692 
    693 	if (wm_lookup(pa) != NULL)
    694 		return (1);
    695 
    696 	return (0);
    697 }
    698 
    699 static void
    700 wm_attach(struct device *parent, struct device *self, void *aux)
    701 {
    702 	struct wm_softc *sc = (void *) self;
    703 	struct pci_attach_args *pa = aux;
    704 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    705 	pci_chipset_tag_t pc = pa->pa_pc;
    706 	pci_intr_handle_t ih;
    707 	size_t cdata_size;
    708 	const char *intrstr = NULL;
    709 	const char *eetype;
    710 	bus_space_tag_t memt;
    711 	bus_space_handle_t memh;
    712 	bus_dma_segment_t seg;
    713 	int memh_valid;
    714 	int i, rseg, error;
    715 	const struct wm_product *wmp;
    716 	uint8_t enaddr[ETHER_ADDR_LEN];
    717 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
    718 	pcireg_t preg, memtype;
    719 	uint32_t reg;
    720 	int pmreg;
    721 
    722 	callout_init(&sc->sc_tick_ch);
    723 
    724 	wmp = wm_lookup(pa);
    725 	if (wmp == NULL) {
    726 		printf("\n");
    727 		panic("wm_attach: impossible");
    728 	}
    729 
    730 	if (pci_dma64_available(pa))
    731 		sc->sc_dmat = pa->pa_dmat64;
    732 	else
    733 		sc->sc_dmat = pa->pa_dmat;
    734 
    735 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    736 	aprint_naive(": Ethernet controller\n");
    737 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
    738 
    739 	sc->sc_type = wmp->wmp_type;
    740 	if (sc->sc_type < WM_T_82543) {
    741 		if (preg < 2) {
    742 			aprint_error("%s: i82542 must be at least rev. 2\n",
    743 			    sc->sc_dev.dv_xname);
    744 			return;
    745 		}
    746 		if (preg < 3)
    747 			sc->sc_type = WM_T_82542_2_0;
    748 	}
    749 
    750 	/*
    751 	 * Map the device.  All devices support memory-mapped acccess,
    752 	 * and it is really required for normal operation.
    753 	 */
    754 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
    755 	switch (memtype) {
    756 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    757 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    758 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
    759 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    760 		break;
    761 	default:
    762 		memh_valid = 0;
    763 	}
    764 
    765 	if (memh_valid) {
    766 		sc->sc_st = memt;
    767 		sc->sc_sh = memh;
    768 	} else {
    769 		aprint_error("%s: unable to map device registers\n",
    770 		    sc->sc_dev.dv_xname);
    771 		return;
    772 	}
    773 
    774 	/*
    775 	 * In addition, i82544 and later support I/O mapped indirect
    776 	 * register access.  It is not desirable (nor supported in
    777 	 * this driver) to use it for normal operation, though it is
    778 	 * required to work around bugs in some chip versions.
    779 	 */
    780 	if (sc->sc_type >= WM_T_82544) {
    781 		/* First we have to find the I/O BAR. */
    782 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
    783 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
    784 			    PCI_MAPREG_TYPE_IO)
    785 				break;
    786 		}
    787 		if (i == PCI_MAPREG_END)
    788 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
    789 			    sc->sc_dev.dv_xname);
    790 		else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
    791 					0, &sc->sc_iot, &sc->sc_ioh,
    792 					NULL, NULL) == 0)
    793 			sc->sc_flags |= WM_F_IOH_VALID;
    794 		else
    795 			aprint_error("%s: WARNING: unable to map I/O space\n",
    796 			    sc->sc_dev.dv_xname);
    797 	}
    798 
    799 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
    800 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    801 	preg |= PCI_COMMAND_MASTER_ENABLE;
    802 	if (sc->sc_type < WM_T_82542_2_1)
    803 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
    804 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    805 
    806 	/* Get it out of power save mode, if needed. */
    807 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    808 		preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    809 		    PCI_PMCSR_STATE_MASK;
    810 		if (preg == PCI_PMCSR_STATE_D3) {
    811 			/*
    812 			 * The card has lost all configuration data in
    813 			 * this state, so punt.
    814 			 */
    815 			aprint_error("%s: unable to wake from power state D3\n",
    816 			    sc->sc_dev.dv_xname);
    817 			return;
    818 		}
    819 		if (preg != PCI_PMCSR_STATE_D0) {
    820 			aprint_normal("%s: waking up from power state D%d\n",
    821 			    sc->sc_dev.dv_xname, preg);
    822 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    823 			    PCI_PMCSR_STATE_D0);
    824 		}
    825 	}
    826 
    827 	/*
    828 	 * Map and establish our interrupt.
    829 	 */
    830 	if (pci_intr_map(pa, &ih)) {
    831 		aprint_error("%s: unable to map interrupt\n",
    832 		    sc->sc_dev.dv_xname);
    833 		return;
    834 	}
    835 	intrstr = pci_intr_string(pc, ih);
    836 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
    837 	if (sc->sc_ih == NULL) {
    838 		aprint_error("%s: unable to establish interrupt",
    839 		    sc->sc_dev.dv_xname);
    840 		if (intrstr != NULL)
    841 			aprint_normal(" at %s", intrstr);
    842 		aprint_normal("\n");
    843 		return;
    844 	}
    845 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    846 
    847 	/*
    848 	 * Determine a few things about the bus we're connected to.
    849 	 */
    850 	if (sc->sc_type < WM_T_82543) {
    851 		/* We don't really know the bus characteristics here. */
    852 		sc->sc_bus_speed = 33;
    853 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
    854 		/*
    855 		 * CSA (Communication Streaming Architecture) is about as fast
    856 		 * a 32-bit 66MHz PCI Bus.
    857 		 */
    858 		sc->sc_flags |= WM_F_CSA;
    859 		sc->sc_bus_speed = 66;
    860 		aprint_verbose("%s: Communication Streaming Architecture\n",
    861 		    sc->sc_dev.dv_xname);
    862 		if (sc->sc_type == WM_T_82547) {
    863 			callout_init(&sc->sc_txfifo_ch);
    864 			callout_setfunc(&sc->sc_txfifo_ch,
    865 					wm_82547_txfifo_stall, sc);
    866 			aprint_verbose("%s: using 82547 Tx FIFO stall "
    867 				       "work-around\n", sc->sc_dev.dv_xname);
    868 		}
    869 	} else {
    870 		reg = CSR_READ(sc, WMREG_STATUS);
    871 		if (reg & STATUS_BUS64)
    872 			sc->sc_flags |= WM_F_BUS64;
    873 		if (sc->sc_type >= WM_T_82544 &&
    874 		    (reg & STATUS_PCIX_MODE) != 0) {
    875 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
    876 
    877 			sc->sc_flags |= WM_F_PCIX;
    878 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    879 					       PCI_CAP_PCIX,
    880 					       &sc->sc_pcix_offset, NULL) == 0)
    881 				aprint_error("%s: unable to find PCIX "
    882 				    "capability\n", sc->sc_dev.dv_xname);
    883 			else if (sc->sc_type != WM_T_82545_3 &&
    884 				 sc->sc_type != WM_T_82546_3) {
    885 				/*
    886 				 * Work around a problem caused by the BIOS
    887 				 * setting the max memory read byte count
    888 				 * incorrectly.
    889 				 */
    890 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
    891 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
    892 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
    893 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
    894 
    895 				bytecnt =
    896 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
    897 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
    898 				maxb =
    899 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
    900 				    PCI_PCIX_STATUS_MAXB_SHIFT;
    901 				if (bytecnt > maxb) {
    902 					aprint_verbose("%s: resetting PCI-X "
    903 					    "MMRBC: %d -> %d\n",
    904 					    sc->sc_dev.dv_xname,
    905 					    512 << bytecnt, 512 << maxb);
    906 					pcix_cmd = (pcix_cmd &
    907 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
    908 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
    909 					pci_conf_write(pa->pa_pc, pa->pa_tag,
    910 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
    911 					    pcix_cmd);
    912 				}
    913 			}
    914 		}
    915 		/*
    916 		 * The quad port adapter is special; it has a PCIX-PCIX
    917 		 * bridge on the board, and can run the secondary bus at
    918 		 * a higher speed.
    919 		 */
    920 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
    921 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
    922 								      : 66;
    923 		} else if (sc->sc_flags & WM_F_PCIX) {
    924 			switch (reg & STATUS_PCIXSPD_MASK) {
    925 			case STATUS_PCIXSPD_50_66:
    926 				sc->sc_bus_speed = 66;
    927 				break;
    928 			case STATUS_PCIXSPD_66_100:
    929 				sc->sc_bus_speed = 100;
    930 				break;
    931 			case STATUS_PCIXSPD_100_133:
    932 				sc->sc_bus_speed = 133;
    933 				break;
    934 			default:
    935 				aprint_error(
    936 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
    937 				    sc->sc_dev.dv_xname,
    938 				    reg & STATUS_PCIXSPD_MASK);
    939 				sc->sc_bus_speed = 66;
    940 			}
    941 		} else
    942 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
    943 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
    944 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
    945 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
    946 	}
    947 
    948 	/*
    949 	 * Allocate the control data structures, and create and load the
    950 	 * DMA map for it.
    951 	 *
    952 	 * NOTE: All Tx descriptors must be in the same 4G segment of
    953 	 * memory.  So must Rx descriptors.  We simplify by allocating
    954 	 * both sets within the same 4G segment.
    955 	 */
    956 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
    957 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
    958 	cdata_size = sc->sc_type < WM_T_82544 ?
    959 	    sizeof(struct wm_control_data_82542) :
    960 	    sizeof(struct wm_control_data_82544);
    961 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
    962 				      (bus_size_t) 0x100000000ULL,
    963 				      &seg, 1, &rseg, 0)) != 0) {
    964 		aprint_error(
    965 		    "%s: unable to allocate control data, error = %d\n",
    966 		    sc->sc_dev.dv_xname, error);
    967 		goto fail_0;
    968 	}
    969 
    970 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
    971 				    (caddr_t *)&sc->sc_control_data, 0)) != 0) {
    972 		aprint_error("%s: unable to map control data, error = %d\n",
    973 		    sc->sc_dev.dv_xname, error);
    974 		goto fail_1;
    975 	}
    976 
    977 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
    978 				       0, 0, &sc->sc_cddmamap)) != 0) {
    979 		aprint_error("%s: unable to create control data DMA map, "
    980 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    981 		goto fail_2;
    982 	}
    983 
    984 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    985 				     sc->sc_control_data, cdata_size, NULL,
    986 				     0)) != 0) {
    987 		aprint_error(
    988 		    "%s: unable to load control data DMA map, error = %d\n",
    989 		    sc->sc_dev.dv_xname, error);
    990 		goto fail_3;
    991 	}
    992 
    993 
    994 	/*
    995 	 * Create the transmit buffer DMA maps.
    996 	 */
    997 	WM_TXQUEUELEN(sc) =
    998 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
    999 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
   1000 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1001 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
   1002 					       WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
   1003 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1004 			aprint_error("%s: unable to create Tx DMA map %d, "
   1005 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1006 			goto fail_4;
   1007 		}
   1008 	}
   1009 
   1010 	/*
   1011 	 * Create the receive buffer DMA maps.
   1012 	 */
   1013 	for (i = 0; i < WM_NRXDESC; i++) {
   1014 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1015 					       MCLBYTES, 0, 0,
   1016 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1017 			aprint_error("%s: unable to create Rx DMA map %d, "
   1018 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1019 			goto fail_5;
   1020 		}
   1021 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1022 	}
   1023 
   1024 	/*
   1025 	 * Reset the chip to a known state.
   1026 	 */
   1027 	wm_reset(sc);
   1028 
   1029 	/*
   1030 	 * Get some information about the EEPROM.
   1031 	 */
   1032 	if (sc->sc_type >= WM_T_82540)
   1033 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
   1034 	if (sc->sc_type <= WM_T_82544)
   1035 		sc->sc_ee_addrbits = 6;
   1036 	else if (sc->sc_type <= WM_T_82546_3) {
   1037 		reg = CSR_READ(sc, WMREG_EECD);
   1038 		if (reg & EECD_EE_SIZE)
   1039 			sc->sc_ee_addrbits = 8;
   1040 		else
   1041 			sc->sc_ee_addrbits = 6;
   1042 	} else if (sc->sc_type <= WM_T_82547_2) {
   1043 		reg = CSR_READ(sc, WMREG_EECD);
   1044 		if (reg & EECD_EE_TYPE) {
   1045 			sc->sc_flags |= WM_F_EEPROM_SPI;
   1046 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1047 		} else
   1048 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
   1049 	} else {
   1050 		/* Assume everything else is SPI. */
   1051 		reg = CSR_READ(sc, WMREG_EECD);
   1052 		sc->sc_flags |= WM_F_EEPROM_SPI;
   1053 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1054 	}
   1055 	if (sc->sc_flags & WM_F_EEPROM_SPI)
   1056 		eetype = "SPI";
   1057 	else
   1058 		eetype = "MicroWire";
   1059 	aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
   1060 	    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
   1061 	    sc->sc_ee_addrbits, eetype);
   1062 
   1063 	/*
   1064 	 * Read the Ethernet address from the EEPROM.
   1065 	 */
   1066 	if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
   1067 	    sizeof(myea) / sizeof(myea[0]), myea)) {
   1068 		aprint_error("%s: unable to read Ethernet address\n",
   1069 		    sc->sc_dev.dv_xname);
   1070 		return;
   1071 	}
   1072 	enaddr[0] = myea[0] & 0xff;
   1073 	enaddr[1] = myea[0] >> 8;
   1074 	enaddr[2] = myea[1] & 0xff;
   1075 	enaddr[3] = myea[1] >> 8;
   1076 	enaddr[4] = myea[2] & 0xff;
   1077 	enaddr[5] = myea[2] >> 8;
   1078 
   1079 	/*
   1080 	 * Toggle the LSB of the MAC address on the second port
   1081 	 * of the i82546.
   1082 	 */
   1083 	if (sc->sc_type == WM_T_82546) {
   1084 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
   1085 			enaddr[5] ^= 1;
   1086 	}
   1087 
   1088 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
   1089 	    ether_sprintf(enaddr));
   1090 
   1091 	/*
   1092 	 * Read the config info from the EEPROM, and set up various
   1093 	 * bits in the control registers based on their contents.
   1094 	 */
   1095 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
   1096 		aprint_error("%s: unable to read CFG1 from EEPROM\n",
   1097 		    sc->sc_dev.dv_xname);
   1098 		return;
   1099 	}
   1100 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
   1101 		aprint_error("%s: unable to read CFG2 from EEPROM\n",
   1102 		    sc->sc_dev.dv_xname);
   1103 		return;
   1104 	}
   1105 	if (sc->sc_type >= WM_T_82544) {
   1106 		if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
   1107 			aprint_error("%s: unable to read SWDPIN from EEPROM\n",
   1108 			    sc->sc_dev.dv_xname);
   1109 			return;
   1110 		}
   1111 	}
   1112 
   1113 	if (cfg1 & EEPROM_CFG1_ILOS)
   1114 		sc->sc_ctrl |= CTRL_ILOS;
   1115 	if (sc->sc_type >= WM_T_82544) {
   1116 		sc->sc_ctrl |=
   1117 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
   1118 		    CTRL_SWDPIO_SHIFT;
   1119 		sc->sc_ctrl |=
   1120 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
   1121 		    CTRL_SWDPINS_SHIFT;
   1122 	} else {
   1123 		sc->sc_ctrl |=
   1124 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
   1125 		    CTRL_SWDPIO_SHIFT;
   1126 	}
   1127 
   1128 #if 0
   1129 	if (sc->sc_type >= WM_T_82544) {
   1130 		if (cfg1 & EEPROM_CFG1_IPS0)
   1131 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
   1132 		if (cfg1 & EEPROM_CFG1_IPS1)
   1133 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
   1134 		sc->sc_ctrl_ext |=
   1135 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
   1136 		    CTRL_EXT_SWDPIO_SHIFT;
   1137 		sc->sc_ctrl_ext |=
   1138 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
   1139 		    CTRL_EXT_SWDPINS_SHIFT;
   1140 	} else {
   1141 		sc->sc_ctrl_ext |=
   1142 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
   1143 		    CTRL_EXT_SWDPIO_SHIFT;
   1144 	}
   1145 #endif
   1146 
   1147 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   1148 #if 0
   1149 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   1150 #endif
   1151 
   1152 	/*
   1153 	 * Set up some register offsets that are different between
   1154 	 * the i82542 and the i82543 and later chips.
   1155 	 */
   1156 	if (sc->sc_type < WM_T_82543) {
   1157 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
   1158 		sc->sc_tdt_reg = WMREG_OLD_TDT;
   1159 	} else {
   1160 		sc->sc_rdt_reg = WMREG_RDT;
   1161 		sc->sc_tdt_reg = WMREG_TDT;
   1162 	}
   1163 
   1164 	/*
   1165 	 * Determine if we're TBI or GMII mode, and initialize the
   1166 	 * media structures accordingly.
   1167 	 */
   1168 	if (sc->sc_type < WM_T_82543 ||
   1169 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
   1170 		if (wmp->wmp_flags & WMP_F_1000T)
   1171 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
   1172 			    "product!\n", sc->sc_dev.dv_xname);
   1173 		wm_tbi_mediainit(sc);
   1174 	} else {
   1175 		if (wmp->wmp_flags & WMP_F_1000X)
   1176 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
   1177 			    "product!\n", sc->sc_dev.dv_xname);
   1178 		wm_gmii_mediainit(sc);
   1179 	}
   1180 
   1181 	ifp = &sc->sc_ethercom.ec_if;
   1182 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
   1183 	ifp->if_softc = sc;
   1184 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1185 	ifp->if_ioctl = wm_ioctl;
   1186 	ifp->if_start = wm_start;
   1187 	ifp->if_watchdog = wm_watchdog;
   1188 	ifp->if_init = wm_init;
   1189 	ifp->if_stop = wm_stop;
   1190 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
   1191 	IFQ_SET_READY(&ifp->if_snd);
   1192 
   1193 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1194 
   1195 	/*
   1196 	 * If we're a i82543 or greater, we can support VLANs.
   1197 	 */
   1198 	if (sc->sc_type >= WM_T_82543)
   1199 		sc->sc_ethercom.ec_capabilities |=
   1200 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
   1201 
   1202 	/*
   1203 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
   1204 	 * on i82543 and later.
   1205 	 */
   1206 	if (sc->sc_type >= WM_T_82543)
   1207 		ifp->if_capabilities |=
   1208 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
   1209 
   1210 	/*
   1211 	 * Attach the interface.
   1212 	 */
   1213 	if_attach(ifp);
   1214 	ether_ifattach(ifp, enaddr);
   1215 #if NRND > 0
   1216 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1217 	    RND_TYPE_NET, 0);
   1218 #endif
   1219 
   1220 #ifdef WM_EVENT_COUNTERS
   1221 	/* Attach event counters. */
   1222 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1223 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1224 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1225 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1226 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
   1227 	    NULL, sc->sc_dev.dv_xname, "txfifo_stall");
   1228 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
   1229 	    NULL, sc->sc_dev.dv_xname, "txdw");
   1230 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
   1231 	    NULL, sc->sc_dev.dv_xname, "txqe");
   1232 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1233 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1234 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
   1235 	    NULL, sc->sc_dev.dv_xname, "linkintr");
   1236 
   1237 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1238 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1239 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
   1240 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
   1241 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1242 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1243 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
   1244 	    NULL, sc->sc_dev.dv_xname, "txtusum");
   1245 
   1246 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
   1247 	    NULL, sc->sc_dev.dv_xname, "txctx init");
   1248 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
   1249 	    NULL, sc->sc_dev.dv_xname, "txctx hit");
   1250 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
   1251 	    NULL, sc->sc_dev.dv_xname, "txctx miss");
   1252 
   1253 	for (i = 0; i < WM_NTXSEGS; i++) {
   1254 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
   1255 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
   1256 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
   1257 	}
   1258 
   1259 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
   1260 	    NULL, sc->sc_dev.dv_xname, "txdrop");
   1261 
   1262 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
   1263 	    NULL, sc->sc_dev.dv_xname, "tu");
   1264 
   1265 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
   1266 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
   1267 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
   1268 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
   1269 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
   1270 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
   1271 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
   1272 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
   1273 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
   1274 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
   1275 #endif /* WM_EVENT_COUNTERS */
   1276 
   1277 	/*
   1278 	 * Make sure the interface is shutdown during reboot.
   1279 	 */
   1280 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
   1281 	if (sc->sc_sdhook == NULL)
   1282 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
   1283 		    sc->sc_dev.dv_xname);
   1284 	return;
   1285 
   1286 	/*
   1287 	 * Free any resources we've allocated during the failed attach
   1288 	 * attempt.  Do this in reverse order and fall through.
   1289 	 */
   1290  fail_5:
   1291 	for (i = 0; i < WM_NRXDESC; i++) {
   1292 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1293 			bus_dmamap_destroy(sc->sc_dmat,
   1294 			    sc->sc_rxsoft[i].rxs_dmamap);
   1295 	}
   1296  fail_4:
   1297 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1298 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1299 			bus_dmamap_destroy(sc->sc_dmat,
   1300 			    sc->sc_txsoft[i].txs_dmamap);
   1301 	}
   1302 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1303  fail_3:
   1304 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1305  fail_2:
   1306 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1307 	    cdata_size);
   1308  fail_1:
   1309 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1310  fail_0:
   1311 	return;
   1312 }
   1313 
   1314 /*
   1315  * wm_shutdown:
   1316  *
   1317  *	Make sure the interface is stopped at reboot time.
   1318  */
   1319 static void
   1320 wm_shutdown(void *arg)
   1321 {
   1322 	struct wm_softc *sc = arg;
   1323 
   1324 	wm_stop(&sc->sc_ethercom.ec_if, 1);
   1325 }
   1326 
   1327 /*
   1328  * wm_tx_cksum:
   1329  *
   1330  *	Set up TCP/IP checksumming parameters for the
   1331  *	specified packet.
   1332  */
   1333 static int
   1334 wm_tx_cksum(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
   1335     uint8_t *fieldsp)
   1336 {
   1337 	struct mbuf *m0 = txs->txs_mbuf;
   1338 	struct livengood_tcpip_ctxdesc *t;
   1339 	uint32_t ipcs, tucs;
   1340 	struct ip *ip;
   1341 	struct ether_header *eh;
   1342 	int offset, iphl;
   1343 	uint8_t fields = 0;
   1344 
   1345 	/*
   1346 	 * XXX It would be nice if the mbuf pkthdr had offset
   1347 	 * fields for the protocol headers.
   1348 	 */
   1349 
   1350 	eh = mtod(m0, struct ether_header *);
   1351 	switch (htons(eh->ether_type)) {
   1352 	case ETHERTYPE_IP:
   1353 		iphl = sizeof(struct ip);
   1354 		offset = ETHER_HDR_LEN;
   1355 		break;
   1356 
   1357 	case ETHERTYPE_VLAN:
   1358 		iphl = sizeof(struct ip);
   1359 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1360 		break;
   1361 
   1362 	default:
   1363 		/*
   1364 		 * Don't support this protocol or encapsulation.
   1365 		 */
   1366 		*fieldsp = 0;
   1367 		*cmdp = 0;
   1368 		return (0);
   1369 	}
   1370 
   1371 	if (m0->m_len < (offset + iphl)) {
   1372 		if ((txs->txs_mbuf = m_pullup(m0, offset + iphl)) == NULL) {
   1373 			log(LOG_ERR, "%s: wm_tx_cksum: mbuf allocation failed, "
   1374 			    "packet dropped\n", sc->sc_dev.dv_xname);
   1375 			return (ENOMEM);
   1376 		}
   1377 		m0 = txs->txs_mbuf;
   1378 	}
   1379 
   1380 	ip = (struct ip *) (mtod(m0, caddr_t) + offset);
   1381 	iphl = ip->ip_hl << 2;
   1382 
   1383 	/*
   1384 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1385 	 * offload feature, if we load the context descriptor, we
   1386 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1387 	 */
   1388 
   1389 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1390 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
   1391 		fields |= WTX_IXSM;
   1392 		ipcs = WTX_TCPIP_IPCSS(offset) |
   1393 		    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1394 		    WTX_TCPIP_IPCSE(offset + iphl - 1);
   1395 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
   1396 		/* Use the cached value. */
   1397 		ipcs = sc->sc_txctx_ipcs;
   1398 	} else {
   1399 		/* Just initialize it to the likely value anyway. */
   1400 		ipcs = WTX_TCPIP_IPCSS(offset) |
   1401 		    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1402 		    WTX_TCPIP_IPCSE(offset + iphl - 1);
   1403 	}
   1404 
   1405 	offset += iphl;
   1406 
   1407 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1408 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
   1409 		fields |= WTX_TXSM;
   1410 		tucs = WTX_TCPIP_TUCSS(offset) |
   1411 		    WTX_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
   1412 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1413 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
   1414 		/* Use the cached value. */
   1415 		tucs = sc->sc_txctx_tucs;
   1416 	} else {
   1417 		/* Just initialize it to a valid TCP context. */
   1418 		tucs = WTX_TCPIP_TUCSS(offset) |
   1419 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1420 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1421 	}
   1422 
   1423 	if (sc->sc_txctx_ipcs == ipcs &&
   1424 	    sc->sc_txctx_tucs == tucs) {
   1425 		/* Cached context is fine. */
   1426 		WM_EVCNT_INCR(&sc->sc_ev_txctx_hit);
   1427 	} else {
   1428 		/* Fill in the context descriptor. */
   1429 #ifdef WM_EVENT_COUNTERS
   1430 		if (sc->sc_txctx_ipcs == 0xffffffff &&
   1431 		    sc->sc_txctx_tucs == 0xffffffff)
   1432 			WM_EVCNT_INCR(&sc->sc_ev_txctx_init);
   1433 		else
   1434 			WM_EVCNT_INCR(&sc->sc_ev_txctx_miss);
   1435 #endif
   1436 		t = (struct livengood_tcpip_ctxdesc *)
   1437 		    &sc->sc_txdescs[sc->sc_txnext];
   1438 		t->tcpip_ipcs = htole32(ipcs);
   1439 		t->tcpip_tucs = htole32(tucs);
   1440 		t->tcpip_cmdlen = htole32(WTX_CMD_DEXT | WTX_DTYP_C);
   1441 		t->tcpip_seg = 0;
   1442 		WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1443 
   1444 		sc->sc_txctx_ipcs = ipcs;
   1445 		sc->sc_txctx_tucs = tucs;
   1446 
   1447 		sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
   1448 		txs->txs_ndesc++;
   1449 	}
   1450 
   1451 	*cmdp = WTX_CMD_DEXT | WTX_DTYP_D;
   1452 	*fieldsp = fields;
   1453 
   1454 	return (0);
   1455 }
   1456 
   1457 static void
   1458 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
   1459 {
   1460 	struct mbuf *m;
   1461 	int i;
   1462 
   1463 	log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
   1464 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
   1465 		log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
   1466 		    "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
   1467 		    m->m_data, m->m_len, m->m_flags);
   1468 	log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
   1469 	    i, i == 1 ? "" : "s");
   1470 }
   1471 
   1472 /*
   1473  * wm_82547_txfifo_stall:
   1474  *
   1475  *	Callout used to wait for the 82547 Tx FIFO to drain,
   1476  *	reset the FIFO pointers, and restart packet transmission.
   1477  */
   1478 static void
   1479 wm_82547_txfifo_stall(void *arg)
   1480 {
   1481 	struct wm_softc *sc = arg;
   1482 	int s;
   1483 
   1484 	s = splnet();
   1485 
   1486 	if (sc->sc_txfifo_stall) {
   1487 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
   1488 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
   1489 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
   1490 			/*
   1491 			 * Packets have drained.  Stop transmitter, reset
   1492 			 * FIFO pointers, restart transmitter, and kick
   1493 			 * the packet queue.
   1494 			 */
   1495 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
   1496 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
   1497 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
   1498 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
   1499 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
   1500 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
   1501 			CSR_WRITE(sc, WMREG_TCTL, tctl);
   1502 			CSR_WRITE_FLUSH(sc);
   1503 
   1504 			sc->sc_txfifo_head = 0;
   1505 			sc->sc_txfifo_stall = 0;
   1506 			wm_start(&sc->sc_ethercom.ec_if);
   1507 		} else {
   1508 			/*
   1509 			 * Still waiting for packets to drain; try again in
   1510 			 * another tick.
   1511 			 */
   1512 			callout_schedule(&sc->sc_txfifo_ch, 1);
   1513 		}
   1514 	}
   1515 
   1516 	splx(s);
   1517 }
   1518 
   1519 /*
   1520  * wm_82547_txfifo_bugchk:
   1521  *
   1522  *	Check for bug condition in the 82547 Tx FIFO.  We need to
   1523  *	prevent enqueueing a packet that would wrap around the end
   1524  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
   1525  *
   1526  *	We do this by checking the amount of space before the end
   1527  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
   1528  *	the Tx FIFO, wait for all remaining packets to drain, reset
   1529  *	the internal FIFO pointers to the beginning, and restart
   1530  *	transmission on the interface.
   1531  */
   1532 #define	WM_FIFO_HDR		0x10
   1533 #define	WM_82547_PAD_LEN	0x3e0
   1534 static int
   1535 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
   1536 {
   1537 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
   1538 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
   1539 
   1540 	/* Just return if already stalled. */
   1541 	if (sc->sc_txfifo_stall)
   1542 		return (1);
   1543 
   1544 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1545 		/* Stall only occurs in half-duplex mode. */
   1546 		goto send_packet;
   1547 	}
   1548 
   1549 	if (len >= WM_82547_PAD_LEN + space) {
   1550 		sc->sc_txfifo_stall = 1;
   1551 		callout_schedule(&sc->sc_txfifo_ch, 1);
   1552 		return (1);
   1553 	}
   1554 
   1555  send_packet:
   1556 	sc->sc_txfifo_head += len;
   1557 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
   1558 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
   1559 
   1560 	return (0);
   1561 }
   1562 
   1563 /*
   1564  * wm_start:		[ifnet interface function]
   1565  *
   1566  *	Start packet transmission on the interface.
   1567  */
   1568 static void
   1569 wm_start(struct ifnet *ifp)
   1570 {
   1571 	struct wm_softc *sc = ifp->if_softc;
   1572 	struct mbuf *m0;
   1573 #if 0 /* XXXJRT */
   1574 	struct m_tag *mtag;
   1575 #endif
   1576 	struct wm_txsoft *txs;
   1577 	bus_dmamap_t dmamap;
   1578 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed;
   1579 	bus_addr_t curaddr;
   1580 	bus_size_t seglen, curlen;
   1581 	uint32_t cksumcmd;
   1582 	uint8_t cksumfields;
   1583 
   1584 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1585 		return;
   1586 
   1587 	/*
   1588 	 * Remember the previous number of free descriptors.
   1589 	 */
   1590 	ofree = sc->sc_txfree;
   1591 
   1592 	/*
   1593 	 * Loop through the send queue, setting up transmit descriptors
   1594 	 * until we drain the queue, or use up all available transmit
   1595 	 * descriptors.
   1596 	 */
   1597 	for (;;) {
   1598 		/* Grab a packet off the queue. */
   1599 		IFQ_POLL(&ifp->if_snd, m0);
   1600 		if (m0 == NULL)
   1601 			break;
   1602 
   1603 		DPRINTF(WM_DEBUG_TX,
   1604 		    ("%s: TX: have packet to transmit: %p\n",
   1605 		    sc->sc_dev.dv_xname, m0));
   1606 
   1607 		/* Get a work queue entry. */
   1608 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
   1609 			wm_txintr(sc);
   1610 			if (sc->sc_txsfree == 0) {
   1611 				DPRINTF(WM_DEBUG_TX,
   1612 				    ("%s: TX: no free job descriptors\n",
   1613 					sc->sc_dev.dv_xname));
   1614 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   1615 				break;
   1616 			}
   1617 		}
   1618 
   1619 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1620 		dmamap = txs->txs_dmamap;
   1621 
   1622 		/*
   1623 		 * Load the DMA map.  If this fails, the packet either
   1624 		 * didn't fit in the allotted number of segments, or we
   1625 		 * were short on resources.  For the too-many-segments
   1626 		 * case, we simply report an error and drop the packet,
   1627 		 * since we can't sanely copy a jumbo packet to a single
   1628 		 * buffer.
   1629 		 */
   1630 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1631 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1632 		if (error) {
   1633 			if (error == EFBIG) {
   1634 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   1635 				log(LOG_ERR, "%s: Tx packet consumes too many "
   1636 				    "DMA segments, dropping...\n",
   1637 				    sc->sc_dev.dv_xname);
   1638 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1639 				wm_dump_mbuf_chain(sc, m0);
   1640 				m_freem(m0);
   1641 				continue;
   1642 			}
   1643 			/*
   1644 			 * Short on resources, just stop for now.
   1645 			 */
   1646 			DPRINTF(WM_DEBUG_TX,
   1647 			    ("%s: TX: dmamap load failed: %d\n",
   1648 			    sc->sc_dev.dv_xname, error));
   1649 			break;
   1650 		}
   1651 
   1652 		segs_needed = dmamap->dm_nsegs;
   1653 
   1654 		/*
   1655 		 * Ensure we have enough descriptors free to describe
   1656 		 * the packet.  Note, we always reserve one descriptor
   1657 		 * at the end of the ring due to the semantics of the
   1658 		 * TDT register, plus one more in the event we need
   1659 		 * to re-load checksum offload context.
   1660 		 */
   1661 		if (segs_needed > sc->sc_txfree - 2) {
   1662 			/*
   1663 			 * Not enough free descriptors to transmit this
   1664 			 * packet.  We haven't committed anything yet,
   1665 			 * so just unload the DMA map, put the packet
   1666 			 * pack on the queue, and punt.  Notify the upper
   1667 			 * layer that there are no more slots left.
   1668 			 */
   1669 			DPRINTF(WM_DEBUG_TX,
   1670 			    ("%s: TX: need %d (%) descriptors, have %d\n",
   1671 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
   1672 			    sc->sc_txfree - 1));
   1673 			ifp->if_flags |= IFF_OACTIVE;
   1674 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1675 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   1676 			break;
   1677 		}
   1678 
   1679 		/*
   1680 		 * Check for 82547 Tx FIFO bug.  We need to do this
   1681 		 * once we know we can transmit the packet, since we
   1682 		 * do some internal FIFO space accounting here.
   1683 		 */
   1684 		if (sc->sc_type == WM_T_82547 &&
   1685 		    wm_82547_txfifo_bugchk(sc, m0)) {
   1686 			DPRINTF(WM_DEBUG_TX,
   1687 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
   1688 			    sc->sc_dev.dv_xname));
   1689 			ifp->if_flags |= IFF_OACTIVE;
   1690 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1691 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
   1692 			break;
   1693 		}
   1694 
   1695 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1696 
   1697 		/*
   1698 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1699 		 */
   1700 
   1701 		DPRINTF(WM_DEBUG_TX,
   1702 		    ("%s: TX: packet has %d (%d) DMA segments\n",
   1703 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
   1704 
   1705 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1706 
   1707 		/*
   1708 		 * Store a pointer to the packet so that we can free it
   1709 		 * later.
   1710 		 *
   1711 		 * Initially, we consider the number of descriptors the
   1712 		 * packet uses the number of DMA segments.  This may be
   1713 		 * incremented by 1 if we do checksum offload (a descriptor
   1714 		 * is used to set the checksum context).
   1715 		 */
   1716 		txs->txs_mbuf = m0;
   1717 		txs->txs_firstdesc = sc->sc_txnext;
   1718 		txs->txs_ndesc = segs_needed;
   1719 
   1720 		/*
   1721 		 * Set up checksum offload parameters for
   1722 		 * this packet.
   1723 		 */
   1724 		if (m0->m_pkthdr.csum_flags &
   1725 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1726 			if (wm_tx_cksum(sc, txs, &cksumcmd,
   1727 					&cksumfields) != 0) {
   1728 				/* Error message already displayed. */
   1729 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1730 				continue;
   1731 			}
   1732 		} else {
   1733 			cksumcmd = 0;
   1734 			cksumfields = 0;
   1735 		}
   1736 
   1737 		cksumcmd |= WTX_CMD_IDE;
   1738 
   1739 		/* Sync the DMA map. */
   1740 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1741 		    BUS_DMASYNC_PREWRITE);
   1742 
   1743 		/*
   1744 		 * Initialize the transmit descriptor.
   1745 		 */
   1746 		for (nexttx = sc->sc_txnext, seg = 0;
   1747 		     seg < dmamap->dm_nsegs; seg++) {
   1748 			for (seglen = dmamap->dm_segs[seg].ds_len,
   1749 			     curaddr = dmamap->dm_segs[seg].ds_addr;
   1750 			     seglen != 0;
   1751 			     curaddr += curlen, seglen -= curlen,
   1752 			     nexttx = WM_NEXTTX(sc, nexttx)) {
   1753 				curlen = seglen;
   1754 
   1755 				wm_set_dma_addr(
   1756 				    &sc->sc_txdescs[nexttx].wtx_addr,
   1757 				    curaddr);
   1758 				sc->sc_txdescs[nexttx].wtx_cmdlen =
   1759 				    htole32(cksumcmd | curlen);
   1760 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
   1761 				    0;
   1762 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
   1763 				    cksumfields;
   1764 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
   1765 				lasttx = nexttx;
   1766 
   1767 				DPRINTF(WM_DEBUG_TX,
   1768 				    ("%s: TX: desc %d: low 0x%08x, "
   1769 				     "len 0x%04x\n",
   1770 				    sc->sc_dev.dv_xname, nexttx,
   1771 				    curaddr & 0xffffffffU, curlen, curlen));
   1772 			}
   1773 		}
   1774 
   1775 		KASSERT(lasttx != -1);
   1776 
   1777 		/*
   1778 		 * Set up the command byte on the last descriptor of
   1779 		 * the packet.  If we're in the interrupt delay window,
   1780 		 * delay the interrupt.
   1781 		 */
   1782 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1783 		    htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS);
   1784 
   1785 #if 0 /* XXXJRT */
   1786 		/*
   1787 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1788 		 * up the descriptor to encapsulate the packet for us.
   1789 		 *
   1790 		 * This is only valid on the last descriptor of the packet.
   1791 		 */
   1792 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1793 		    (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
   1794 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1795 			    htole32(WTX_CMD_VLE);
   1796 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
   1797 			    = htole16(*(u_int *)(mtag + 1) & 0xffff);
   1798 		}
   1799 #endif /* XXXJRT */
   1800 
   1801 		txs->txs_lastdesc = lasttx;
   1802 
   1803 		DPRINTF(WM_DEBUG_TX,
   1804 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   1805 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
   1806 
   1807 		/* Sync the descriptors we're using. */
   1808 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
   1809 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1810 
   1811 		/* Give the packet to the chip. */
   1812 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   1813 
   1814 		DPRINTF(WM_DEBUG_TX,
   1815 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   1816 
   1817 		DPRINTF(WM_DEBUG_TX,
   1818 		    ("%s: TX: finished transmitting packet, job %d\n",
   1819 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   1820 
   1821 		/* Advance the tx pointer. */
   1822 		sc->sc_txfree -= txs->txs_ndesc;
   1823 		sc->sc_txnext = nexttx;
   1824 
   1825 		sc->sc_txsfree--;
   1826 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
   1827 
   1828 #if NBPFILTER > 0
   1829 		/* Pass the packet to any BPF listeners. */
   1830 		if (ifp->if_bpf)
   1831 			bpf_mtap(ifp->if_bpf, m0);
   1832 #endif /* NBPFILTER > 0 */
   1833 	}
   1834 
   1835 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1836 		/* No more slots; notify upper layer. */
   1837 		ifp->if_flags |= IFF_OACTIVE;
   1838 	}
   1839 
   1840 	if (sc->sc_txfree != ofree) {
   1841 		/* Set a watchdog timer in case the chip flakes out. */
   1842 		ifp->if_timer = 5;
   1843 	}
   1844 }
   1845 
   1846 /*
   1847  * wm_watchdog:		[ifnet interface function]
   1848  *
   1849  *	Watchdog timer handler.
   1850  */
   1851 static void
   1852 wm_watchdog(struct ifnet *ifp)
   1853 {
   1854 	struct wm_softc *sc = ifp->if_softc;
   1855 
   1856 	/*
   1857 	 * Since we're using delayed interrupts, sweep up
   1858 	 * before we report an error.
   1859 	 */
   1860 	wm_txintr(sc);
   1861 
   1862 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
   1863 		log(LOG_ERR,
   1864 		    "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1865 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   1866 		    sc->sc_txnext);
   1867 		ifp->if_oerrors++;
   1868 
   1869 		/* Reset the interface. */
   1870 		(void) wm_init(ifp);
   1871 	}
   1872 
   1873 	/* Try to get more packets going. */
   1874 	wm_start(ifp);
   1875 }
   1876 
   1877 /*
   1878  * wm_ioctl:		[ifnet interface function]
   1879  *
   1880  *	Handle control requests from the operator.
   1881  */
   1882 static int
   1883 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1884 {
   1885 	struct wm_softc *sc = ifp->if_softc;
   1886 	struct ifreq *ifr = (struct ifreq *) data;
   1887 	int s, error;
   1888 
   1889 	s = splnet();
   1890 
   1891 	switch (cmd) {
   1892 	case SIOCSIFMEDIA:
   1893 	case SIOCGIFMEDIA:
   1894 		/* Flow control requires full-duplex mode. */
   1895 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1896 		    (ifr->ifr_media & IFM_FDX) == 0)
   1897 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1898 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1899 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1900 				/* We can do both TXPAUSE and RXPAUSE. */
   1901 				ifr->ifr_media |=
   1902 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1903 			}
   1904 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1905 		}
   1906 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1907 		break;
   1908 	default:
   1909 		error = ether_ioctl(ifp, cmd, data);
   1910 		if (error == ENETRESET) {
   1911 			/*
   1912 			 * Multicast list has changed; set the hardware filter
   1913 			 * accordingly.
   1914 			 */
   1915 			if (ifp->if_flags & IFF_RUNNING)
   1916 				wm_set_filter(sc);
   1917 			error = 0;
   1918 		}
   1919 		break;
   1920 	}
   1921 
   1922 	/* Try to get more packets going. */
   1923 	wm_start(ifp);
   1924 
   1925 	splx(s);
   1926 	return (error);
   1927 }
   1928 
   1929 /*
   1930  * wm_intr:
   1931  *
   1932  *	Interrupt service routine.
   1933  */
   1934 static int
   1935 wm_intr(void *arg)
   1936 {
   1937 	struct wm_softc *sc = arg;
   1938 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1939 	uint32_t icr;
   1940 	int wantinit, handled = 0;
   1941 
   1942 	for (wantinit = 0; wantinit == 0;) {
   1943 		icr = CSR_READ(sc, WMREG_ICR);
   1944 		if ((icr & sc->sc_icr) == 0)
   1945 			break;
   1946 
   1947 #if 0 /*NRND > 0*/
   1948 		if (RND_ENABLED(&sc->rnd_source))
   1949 			rnd_add_uint32(&sc->rnd_source, icr);
   1950 #endif
   1951 
   1952 		handled = 1;
   1953 
   1954 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   1955 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1956 			DPRINTF(WM_DEBUG_RX,
   1957 			    ("%s: RX: got Rx intr 0x%08x\n",
   1958 			    sc->sc_dev.dv_xname,
   1959 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1960 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
   1961 		}
   1962 #endif
   1963 		wm_rxintr(sc);
   1964 
   1965 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   1966 		if (icr & ICR_TXDW) {
   1967 			DPRINTF(WM_DEBUG_TX,
   1968 			    ("%s: TX: got TXDW interrupt\n",
   1969 			    sc->sc_dev.dv_xname));
   1970 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
   1971 		}
   1972 #endif
   1973 		wm_txintr(sc);
   1974 
   1975 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
   1976 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
   1977 			wm_linkintr(sc, icr);
   1978 		}
   1979 
   1980 		if (icr & ICR_RXO) {
   1981 			log(LOG_WARNING, "%s: Receive overrun\n",
   1982 			    sc->sc_dev.dv_xname);
   1983 			wantinit = 1;
   1984 		}
   1985 	}
   1986 
   1987 	if (handled) {
   1988 		if (wantinit)
   1989 			wm_init(ifp);
   1990 
   1991 		/* Try to get more packets going. */
   1992 		wm_start(ifp);
   1993 	}
   1994 
   1995 	return (handled);
   1996 }
   1997 
   1998 /*
   1999  * wm_txintr:
   2000  *
   2001  *	Helper; handle transmit interrupts.
   2002  */
   2003 static void
   2004 wm_txintr(struct wm_softc *sc)
   2005 {
   2006 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2007 	struct wm_txsoft *txs;
   2008 	uint8_t status;
   2009 	int i;
   2010 
   2011 	ifp->if_flags &= ~IFF_OACTIVE;
   2012 
   2013 	/*
   2014 	 * Go through the Tx list and free mbufs for those
   2015 	 * frames which have been transmitted.
   2016 	 */
   2017 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
   2018 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
   2019 		txs = &sc->sc_txsoft[i];
   2020 
   2021 		DPRINTF(WM_DEBUG_TX,
   2022 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   2023 
   2024 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   2025 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2026 
   2027 		status =
   2028 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
   2029 		if ((status & WTX_ST_DD) == 0) {
   2030 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   2031 			    BUS_DMASYNC_PREREAD);
   2032 			break;
   2033 		}
   2034 
   2035 		DPRINTF(WM_DEBUG_TX,
   2036 		    ("%s: TX: job %d done: descs %d..%d\n",
   2037 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   2038 		    txs->txs_lastdesc));
   2039 
   2040 		/*
   2041 		 * XXX We should probably be using the statistics
   2042 		 * XXX registers, but I don't know if they exist
   2043 		 * XXX on chips before the i82544.
   2044 		 */
   2045 
   2046 #ifdef WM_EVENT_COUNTERS
   2047 		if (status & WTX_ST_TU)
   2048 			WM_EVCNT_INCR(&sc->sc_ev_tu);
   2049 #endif /* WM_EVENT_COUNTERS */
   2050 
   2051 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
   2052 			ifp->if_oerrors++;
   2053 			if (status & WTX_ST_LC)
   2054 				log(LOG_WARNING, "%s: late collision\n",
   2055 				    sc->sc_dev.dv_xname);
   2056 			else if (status & WTX_ST_EC) {
   2057 				ifp->if_collisions += 16;
   2058 				log(LOG_WARNING, "%s: excessive collisions\n",
   2059 				    sc->sc_dev.dv_xname);
   2060 			}
   2061 		} else
   2062 			ifp->if_opackets++;
   2063 
   2064 		sc->sc_txfree += txs->txs_ndesc;
   2065 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   2066 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2067 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2068 		m_freem(txs->txs_mbuf);
   2069 		txs->txs_mbuf = NULL;
   2070 	}
   2071 
   2072 	/* Update the dirty transmit buffer pointer. */
   2073 	sc->sc_txsdirty = i;
   2074 	DPRINTF(WM_DEBUG_TX,
   2075 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   2076 
   2077 	/*
   2078 	 * If there are no more pending transmissions, cancel the watchdog
   2079 	 * timer.
   2080 	 */
   2081 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
   2082 		ifp->if_timer = 0;
   2083 }
   2084 
   2085 /*
   2086  * wm_rxintr:
   2087  *
   2088  *	Helper; handle receive interrupts.
   2089  */
   2090 static void
   2091 wm_rxintr(struct wm_softc *sc)
   2092 {
   2093 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2094 	struct wm_rxsoft *rxs;
   2095 	struct mbuf *m;
   2096 	int i, len;
   2097 	uint8_t status, errors;
   2098 
   2099 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
   2100 		rxs = &sc->sc_rxsoft[i];
   2101 
   2102 		DPRINTF(WM_DEBUG_RX,
   2103 		    ("%s: RX: checking descriptor %d\n",
   2104 		    sc->sc_dev.dv_xname, i));
   2105 
   2106 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2107 
   2108 		status = sc->sc_rxdescs[i].wrx_status;
   2109 		errors = sc->sc_rxdescs[i].wrx_errors;
   2110 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
   2111 
   2112 		if ((status & WRX_ST_DD) == 0) {
   2113 			/*
   2114 			 * We have processed all of the receive descriptors.
   2115 			 */
   2116 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   2117 			break;
   2118 		}
   2119 
   2120 		if (__predict_false(sc->sc_rxdiscard)) {
   2121 			DPRINTF(WM_DEBUG_RX,
   2122 			    ("%s: RX: discarding contents of descriptor %d\n",
   2123 			    sc->sc_dev.dv_xname, i));
   2124 			WM_INIT_RXDESC(sc, i);
   2125 			if (status & WRX_ST_EOP) {
   2126 				/* Reset our state. */
   2127 				DPRINTF(WM_DEBUG_RX,
   2128 				    ("%s: RX: resetting rxdiscard -> 0\n",
   2129 				    sc->sc_dev.dv_xname));
   2130 				sc->sc_rxdiscard = 0;
   2131 			}
   2132 			continue;
   2133 		}
   2134 
   2135 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2136 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2137 
   2138 		m = rxs->rxs_mbuf;
   2139 
   2140 		/*
   2141 		 * Add a new receive buffer to the ring.
   2142 		 */
   2143 		if (wm_add_rxbuf(sc, i) != 0) {
   2144 			/*
   2145 			 * Failed, throw away what we've done so
   2146 			 * far, and discard the rest of the packet.
   2147 			 */
   2148 			ifp->if_ierrors++;
   2149 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2150 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2151 			WM_INIT_RXDESC(sc, i);
   2152 			if ((status & WRX_ST_EOP) == 0)
   2153 				sc->sc_rxdiscard = 1;
   2154 			if (sc->sc_rxhead != NULL)
   2155 				m_freem(sc->sc_rxhead);
   2156 			WM_RXCHAIN_RESET(sc);
   2157 			DPRINTF(WM_DEBUG_RX,
   2158 			    ("%s: RX: Rx buffer allocation failed, "
   2159 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   2160 			    sc->sc_rxdiscard ? " (discard)" : ""));
   2161 			continue;
   2162 		}
   2163 
   2164 		WM_RXCHAIN_LINK(sc, m);
   2165 
   2166 		m->m_len = len;
   2167 
   2168 		DPRINTF(WM_DEBUG_RX,
   2169 		    ("%s: RX: buffer at %p len %d\n",
   2170 		    sc->sc_dev.dv_xname, m->m_data, len));
   2171 
   2172 		/*
   2173 		 * If this is not the end of the packet, keep
   2174 		 * looking.
   2175 		 */
   2176 		if ((status & WRX_ST_EOP) == 0) {
   2177 			sc->sc_rxlen += len;
   2178 			DPRINTF(WM_DEBUG_RX,
   2179 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   2180 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   2181 			continue;
   2182 		}
   2183 
   2184 		/*
   2185 		 * Okay, we have the entire packet now...
   2186 		 */
   2187 		*sc->sc_rxtailp = NULL;
   2188 		m = sc->sc_rxhead;
   2189 		len += sc->sc_rxlen;
   2190 
   2191 		WM_RXCHAIN_RESET(sc);
   2192 
   2193 		DPRINTF(WM_DEBUG_RX,
   2194 		    ("%s: RX: have entire packet, len -> %d\n",
   2195 		    sc->sc_dev.dv_xname, len));
   2196 
   2197 		/*
   2198 		 * If an error occurred, update stats and drop the packet.
   2199 		 */
   2200 		if (errors &
   2201 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
   2202 			ifp->if_ierrors++;
   2203 			if (errors & WRX_ER_SE)
   2204 				log(LOG_WARNING, "%s: symbol error\n",
   2205 				    sc->sc_dev.dv_xname);
   2206 			else if (errors & WRX_ER_SEQ)
   2207 				log(LOG_WARNING, "%s: receive sequence error\n",
   2208 				    sc->sc_dev.dv_xname);
   2209 			else if (errors & WRX_ER_CE)
   2210 				log(LOG_WARNING, "%s: CRC error\n",
   2211 				    sc->sc_dev.dv_xname);
   2212 			m_freem(m);
   2213 			continue;
   2214 		}
   2215 
   2216 		/*
   2217 		 * No errors.  Receive the packet.
   2218 		 *
   2219 		 * Note, we have configured the chip to include the
   2220 		 * CRC with every packet.
   2221 		 */
   2222 		m->m_flags |= M_HASFCS;
   2223 		m->m_pkthdr.rcvif = ifp;
   2224 		m->m_pkthdr.len = len;
   2225 
   2226 #if 0 /* XXXJRT */
   2227 		/*
   2228 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2229 		 * for us.  Associate the tag with the packet.
   2230 		 */
   2231 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   2232 		    (status & WRX_ST_VP) != 0) {
   2233 			struct m_tag *vtag;
   2234 
   2235 			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
   2236 			    M_NOWAIT);
   2237 			if (vtag == NULL) {
   2238 				ifp->if_ierrors++;
   2239 				log(LOG_ERR,
   2240 				    "%s: unable to allocate VLAN tag\n",
   2241 				    sc->sc_dev.dv_xname);
   2242 				m_freem(m);
   2243 				continue;
   2244 			}
   2245 
   2246 			*(u_int *)(vtag + 1) =
   2247 			    le16toh(sc->sc_rxdescs[i].wrx_special);
   2248 		}
   2249 #endif /* XXXJRT */
   2250 
   2251 		/*
   2252 		 * Set up checksum info for this packet.
   2253 		 */
   2254 		if (status & WRX_ST_IPCS) {
   2255 			WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2256 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2257 			if (errors & WRX_ER_IPE)
   2258 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2259 		}
   2260 		if (status & WRX_ST_TCPCS) {
   2261 			/*
   2262 			 * Note: we don't know if this was TCP or UDP,
   2263 			 * so we just set both bits, and expect the
   2264 			 * upper layers to deal.
   2265 			 */
   2266 			WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
   2267 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   2268 			if (errors & WRX_ER_TCPE)
   2269 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   2270 		}
   2271 
   2272 		ifp->if_ipackets++;
   2273 
   2274 #if NBPFILTER > 0
   2275 		/* Pass this up to any BPF listeners. */
   2276 		if (ifp->if_bpf)
   2277 			bpf_mtap(ifp->if_bpf, m);
   2278 #endif /* NBPFILTER > 0 */
   2279 
   2280 		/* Pass it on. */
   2281 		(*ifp->if_input)(ifp, m);
   2282 	}
   2283 
   2284 	/* Update the receive pointer. */
   2285 	sc->sc_rxptr = i;
   2286 
   2287 	DPRINTF(WM_DEBUG_RX,
   2288 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   2289 }
   2290 
   2291 /*
   2292  * wm_linkintr:
   2293  *
   2294  *	Helper; handle link interrupts.
   2295  */
   2296 static void
   2297 wm_linkintr(struct wm_softc *sc, uint32_t icr)
   2298 {
   2299 	uint32_t status;
   2300 
   2301 	/*
   2302 	 * If we get a link status interrupt on a 1000BASE-T
   2303 	 * device, just fall into the normal MII tick path.
   2304 	 */
   2305 	if (sc->sc_flags & WM_F_HAS_MII) {
   2306 		if (icr & ICR_LSC) {
   2307 			DPRINTF(WM_DEBUG_LINK,
   2308 			    ("%s: LINK: LSC -> mii_tick\n",
   2309 			    sc->sc_dev.dv_xname));
   2310 			mii_tick(&sc->sc_mii);
   2311 		} else if (icr & ICR_RXSEQ) {
   2312 			DPRINTF(WM_DEBUG_LINK,
   2313 			    ("%s: LINK Receive sequence error\n",
   2314 			    sc->sc_dev.dv_xname));
   2315 		}
   2316 		return;
   2317 	}
   2318 
   2319 	/*
   2320 	 * If we are now receiving /C/, check for link again in
   2321 	 * a couple of link clock ticks.
   2322 	 */
   2323 	if (icr & ICR_RXCFG) {
   2324 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
   2325 		    sc->sc_dev.dv_xname));
   2326 		sc->sc_tbi_anstate = 2;
   2327 	}
   2328 
   2329 	if (icr & ICR_LSC) {
   2330 		status = CSR_READ(sc, WMREG_STATUS);
   2331 		if (status & STATUS_LU) {
   2332 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
   2333 			    sc->sc_dev.dv_xname,
   2334 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   2335 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2336 			sc->sc_fcrtl &= ~FCRTL_XONE;
   2337 			if (status & STATUS_FD)
   2338 				sc->sc_tctl |=
   2339 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2340 			else
   2341 				sc->sc_tctl |=
   2342 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2343 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   2344 				sc->sc_fcrtl |= FCRTL_XONE;
   2345 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2346 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   2347 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   2348 				      sc->sc_fcrtl);
   2349 			sc->sc_tbi_linkup = 1;
   2350 		} else {
   2351 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   2352 			    sc->sc_dev.dv_xname));
   2353 			sc->sc_tbi_linkup = 0;
   2354 		}
   2355 		sc->sc_tbi_anstate = 2;
   2356 		wm_tbi_set_linkled(sc);
   2357 	} else if (icr & ICR_RXSEQ) {
   2358 		DPRINTF(WM_DEBUG_LINK,
   2359 		    ("%s: LINK: Receive sequence error\n",
   2360 		    sc->sc_dev.dv_xname));
   2361 	}
   2362 }
   2363 
   2364 /*
   2365  * wm_tick:
   2366  *
   2367  *	One second timer, used to check link status, sweep up
   2368  *	completed transmit jobs, etc.
   2369  */
   2370 static void
   2371 wm_tick(void *arg)
   2372 {
   2373 	struct wm_softc *sc = arg;
   2374 	int s;
   2375 
   2376 	s = splnet();
   2377 
   2378 	if (sc->sc_type >= WM_T_82542_2_1) {
   2379 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
   2380 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
   2381 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
   2382 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
   2383 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
   2384 	}
   2385 
   2386 	if (sc->sc_flags & WM_F_HAS_MII)
   2387 		mii_tick(&sc->sc_mii);
   2388 	else
   2389 		wm_tbi_check_link(sc);
   2390 
   2391 	splx(s);
   2392 
   2393 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2394 }
   2395 
   2396 /*
   2397  * wm_reset:
   2398  *
   2399  *	Reset the i82542 chip.
   2400  */
   2401 static void
   2402 wm_reset(struct wm_softc *sc)
   2403 {
   2404 	int i;
   2405 
   2406 	/*
   2407 	 * Allocate on-chip memory according to the MTU size.
   2408 	 * The Packet Buffer Allocation register must be written
   2409 	 * before the chip is reset.
   2410 	 */
   2411 	if (sc->sc_type < WM_T_82547) {
   2412 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2413 		    PBA_40K : PBA_48K;
   2414 	} else {
   2415 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2416 		    PBA_22K : PBA_30K;
   2417 		sc->sc_txfifo_head = 0;
   2418 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
   2419 		sc->sc_txfifo_size =
   2420 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
   2421 		sc->sc_txfifo_stall = 0;
   2422 	}
   2423 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
   2424 
   2425 	switch (sc->sc_type) {
   2426 	case WM_T_82544:
   2427 	case WM_T_82540:
   2428 	case WM_T_82545:
   2429 	case WM_T_82546:
   2430 	case WM_T_82541:
   2431 	case WM_T_82541_2:
   2432 		/*
   2433 		 * These chips have a problem with the memory-mapped
   2434 		 * write cycle when issuing the reset, so use I/O-mapped
   2435 		 * access, if possible.
   2436 		 */
   2437 		if (sc->sc_flags & WM_F_IOH_VALID)
   2438 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
   2439 		else
   2440 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2441 		break;
   2442 
   2443 	case WM_T_82545_3:
   2444 	case WM_T_82546_3:
   2445 		/* Use the shadow control register on these chips. */
   2446 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
   2447 		break;
   2448 
   2449 	default:
   2450 		/* Everything else can safely use the documented method. */
   2451 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2452 		break;
   2453 	}
   2454 	delay(10000);
   2455 
   2456 	for (i = 0; i < 1000; i++) {
   2457 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
   2458 			return;
   2459 		delay(20);
   2460 	}
   2461 
   2462 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
   2463 		log(LOG_ERR, "%s: reset failed to complete\n",
   2464 		    sc->sc_dev.dv_xname);
   2465 }
   2466 
   2467 /*
   2468  * wm_init:		[ifnet interface function]
   2469  *
   2470  *	Initialize the interface.  Must be called at splnet().
   2471  */
   2472 static int
   2473 wm_init(struct ifnet *ifp)
   2474 {
   2475 	struct wm_softc *sc = ifp->if_softc;
   2476 	struct wm_rxsoft *rxs;
   2477 	int i, error = 0;
   2478 	uint32_t reg;
   2479 
   2480 	/*
   2481 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   2482 	 * There is a small but measurable benefit to avoiding the adjusment
   2483 	 * of the descriptor so that the headers are aligned, for normal mtu,
   2484 	 * on such platforms.  One possibility is that the DMA itself is
   2485 	 * slightly more efficient if the front of the entire packet (instead
   2486 	 * of the front of the headers) is aligned.
   2487 	 *
   2488 	 * Note we must always set align_tweak to 0 if we are using
   2489 	 * jumbo frames.
   2490 	 */
   2491 #ifdef __NO_STRICT_ALIGNMENT
   2492 	sc->sc_align_tweak = 0;
   2493 #else
   2494 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   2495 		sc->sc_align_tweak = 0;
   2496 	else
   2497 		sc->sc_align_tweak = 2;
   2498 #endif /* __NO_STRICT_ALIGNMENT */
   2499 
   2500 	/* Cancel any pending I/O. */
   2501 	wm_stop(ifp, 0);
   2502 
   2503 	/* Reset the chip to a known state. */
   2504 	wm_reset(sc);
   2505 
   2506 	/* Initialize the transmit descriptor ring. */
   2507 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
   2508 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
   2509 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2510 	sc->sc_txfree = WM_NTXDESC(sc);
   2511 	sc->sc_txnext = 0;
   2512 
   2513 	sc->sc_txctx_ipcs = 0xffffffff;
   2514 	sc->sc_txctx_tucs = 0xffffffff;
   2515 
   2516 	if (sc->sc_type < WM_T_82543) {
   2517 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
   2518 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
   2519 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
   2520 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
   2521 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
   2522 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
   2523 	} else {
   2524 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
   2525 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
   2526 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
   2527 		CSR_WRITE(sc, WMREG_TDH, 0);
   2528 		CSR_WRITE(sc, WMREG_TDT, 0);
   2529 		CSR_WRITE(sc, WMREG_TIDV, 128);
   2530 
   2531 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
   2532 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   2533 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
   2534 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
   2535 	}
   2536 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
   2537 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
   2538 
   2539 	/* Initialize the transmit job descriptors. */
   2540 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
   2541 		sc->sc_txsoft[i].txs_mbuf = NULL;
   2542 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
   2543 	sc->sc_txsnext = 0;
   2544 	sc->sc_txsdirty = 0;
   2545 
   2546 	/*
   2547 	 * Initialize the receive descriptor and receive job
   2548 	 * descriptor rings.
   2549 	 */
   2550 	if (sc->sc_type < WM_T_82543) {
   2551 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
   2552 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
   2553 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
   2554 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
   2555 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
   2556 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
   2557 
   2558 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
   2559 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
   2560 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
   2561 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
   2562 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
   2563 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
   2564 	} else {
   2565 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
   2566 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
   2567 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
   2568 		CSR_WRITE(sc, WMREG_RDH, 0);
   2569 		CSR_WRITE(sc, WMREG_RDT, 0);
   2570 		CSR_WRITE(sc, WMREG_RDTR, 28 | RDTR_FPD);
   2571 	}
   2572 	for (i = 0; i < WM_NRXDESC; i++) {
   2573 		rxs = &sc->sc_rxsoft[i];
   2574 		if (rxs->rxs_mbuf == NULL) {
   2575 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
   2576 				log(LOG_ERR, "%s: unable to allocate or map rx "
   2577 				    "buffer %d, error = %d\n",
   2578 				    sc->sc_dev.dv_xname, i, error);
   2579 				/*
   2580 				 * XXX Should attempt to run with fewer receive
   2581 				 * XXX buffers instead of just failing.
   2582 				 */
   2583 				wm_rxdrain(sc);
   2584 				goto out;
   2585 			}
   2586 		} else
   2587 			WM_INIT_RXDESC(sc, i);
   2588 	}
   2589 	sc->sc_rxptr = 0;
   2590 	sc->sc_rxdiscard = 0;
   2591 	WM_RXCHAIN_RESET(sc);
   2592 
   2593 	/*
   2594 	 * Clear out the VLAN table -- we don't use it (yet).
   2595 	 */
   2596 	CSR_WRITE(sc, WMREG_VET, 0);
   2597 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
   2598 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
   2599 
   2600 	/*
   2601 	 * Set up flow-control parameters.
   2602 	 *
   2603 	 * XXX Values could probably stand some tuning.
   2604 	 */
   2605 	CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
   2606 	CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
   2607 	CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
   2608 
   2609 	sc->sc_fcrtl = FCRTL_DFLT;
   2610 	if (sc->sc_type < WM_T_82543) {
   2611 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
   2612 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
   2613 	} else {
   2614 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
   2615 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
   2616 	}
   2617 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
   2618 
   2619 #if 0 /* XXXJRT */
   2620 	/* Deal with VLAN enables. */
   2621 	if (sc->sc_ethercom.ec_nvlans != 0)
   2622 		sc->sc_ctrl |= CTRL_VME;
   2623 	else
   2624 #endif /* XXXJRT */
   2625 		sc->sc_ctrl &= ~CTRL_VME;
   2626 
   2627 	/* Write the control registers. */
   2628 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2629 #if 0
   2630 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   2631 #endif
   2632 
   2633 	/*
   2634 	 * Set up checksum offload parameters.
   2635 	 */
   2636 	reg = CSR_READ(sc, WMREG_RXCSUM);
   2637 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
   2638 		reg |= RXCSUM_IPOFL;
   2639 	else
   2640 		reg &= ~RXCSUM_IPOFL;
   2641 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
   2642 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   2643 	else {
   2644 		reg &= ~RXCSUM_TUOFL;
   2645 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
   2646 			reg &= ~RXCSUM_IPOFL;
   2647 	}
   2648 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
   2649 
   2650 	/*
   2651 	 * Set up the interrupt registers.
   2652 	 */
   2653 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   2654 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   2655 	    ICR_RXO | ICR_RXT0;
   2656 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
   2657 		sc->sc_icr |= ICR_RXCFG;
   2658 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
   2659 
   2660 	/* Set up the inter-packet gap. */
   2661 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   2662 
   2663 #if 0 /* XXXJRT */
   2664 	/* Set the VLAN ethernetype. */
   2665 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
   2666 #endif
   2667 
   2668 	/*
   2669 	 * Set up the transmit control register; we start out with
   2670 	 * a collision distance suitable for FDX, but update it whe
   2671 	 * we resolve the media type.
   2672 	 */
   2673 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
   2674 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2675 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2676 
   2677 	/* Set the media. */
   2678 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
   2679 
   2680 	/*
   2681 	 * Set up the receive control register; we actually program
   2682 	 * the register when we set the receive filter.  Use multicast
   2683 	 * address offset type 0.
   2684 	 *
   2685 	 * Only the i82544 has the ability to strip the incoming
   2686 	 * CRC, so we don't enable that feature.
   2687 	 */
   2688 	sc->sc_mchash_type = 0;
   2689 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
   2690 	    RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
   2691 
   2692 	if(MCLBYTES == 2048) {
   2693 		sc->sc_rctl |= RCTL_2k;
   2694 	} else {
   2695 		if(sc->sc_type >= WM_T_82543) {
   2696 			switch(MCLBYTES) {
   2697 			case 4096:
   2698 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
   2699 				break;
   2700 			case 8192:
   2701 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
   2702 				break;
   2703 			case 16384:
   2704 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
   2705 				break;
   2706 			default:
   2707 				panic("wm_init: MCLBYTES %d unsupported",
   2708 				    MCLBYTES);
   2709 				break;
   2710 			}
   2711 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
   2712 	}
   2713 
   2714 	/* Set the receive filter. */
   2715 	wm_set_filter(sc);
   2716 
   2717 	/* Start the one second link check clock. */
   2718 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2719 
   2720 	/* ...all done! */
   2721 	ifp->if_flags |= IFF_RUNNING;
   2722 	ifp->if_flags &= ~IFF_OACTIVE;
   2723 
   2724  out:
   2725 	if (error)
   2726 		log(LOG_ERR, "%s: interface not running\n",
   2727 		    sc->sc_dev.dv_xname);
   2728 	return (error);
   2729 }
   2730 
   2731 /*
   2732  * wm_rxdrain:
   2733  *
   2734  *	Drain the receive queue.
   2735  */
   2736 static void
   2737 wm_rxdrain(struct wm_softc *sc)
   2738 {
   2739 	struct wm_rxsoft *rxs;
   2740 	int i;
   2741 
   2742 	for (i = 0; i < WM_NRXDESC; i++) {
   2743 		rxs = &sc->sc_rxsoft[i];
   2744 		if (rxs->rxs_mbuf != NULL) {
   2745 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2746 			m_freem(rxs->rxs_mbuf);
   2747 			rxs->rxs_mbuf = NULL;
   2748 		}
   2749 	}
   2750 }
   2751 
   2752 /*
   2753  * wm_stop:		[ifnet interface function]
   2754  *
   2755  *	Stop transmission on the interface.
   2756  */
   2757 static void
   2758 wm_stop(struct ifnet *ifp, int disable)
   2759 {
   2760 	struct wm_softc *sc = ifp->if_softc;
   2761 	struct wm_txsoft *txs;
   2762 	int i;
   2763 
   2764 	/* Stop the one second clock. */
   2765 	callout_stop(&sc->sc_tick_ch);
   2766 
   2767 	/* Stop the 82547 Tx FIFO stall check timer. */
   2768 	if (sc->sc_type == WM_T_82547)
   2769 		callout_stop(&sc->sc_txfifo_ch);
   2770 
   2771 	if (sc->sc_flags & WM_F_HAS_MII) {
   2772 		/* Down the MII. */
   2773 		mii_down(&sc->sc_mii);
   2774 	}
   2775 
   2776 	/* Stop the transmit and receive processes. */
   2777 	CSR_WRITE(sc, WMREG_TCTL, 0);
   2778 	CSR_WRITE(sc, WMREG_RCTL, 0);
   2779 
   2780 	/* Release any queued transmit buffers. */
   2781 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   2782 		txs = &sc->sc_txsoft[i];
   2783 		if (txs->txs_mbuf != NULL) {
   2784 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2785 			m_freem(txs->txs_mbuf);
   2786 			txs->txs_mbuf = NULL;
   2787 		}
   2788 	}
   2789 
   2790 	if (disable)
   2791 		wm_rxdrain(sc);
   2792 
   2793 	/* Mark the interface as down and cancel the watchdog timer. */
   2794 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2795 	ifp->if_timer = 0;
   2796 }
   2797 
   2798 /*
   2799  * wm_acquire_eeprom:
   2800  *
   2801  *	Perform the EEPROM handshake required on some chips.
   2802  */
   2803 static int
   2804 wm_acquire_eeprom(struct wm_softc *sc)
   2805 {
   2806 	uint32_t reg;
   2807 	int x;
   2808 
   2809 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
   2810 		reg = CSR_READ(sc, WMREG_EECD);
   2811 
   2812 		/* Request EEPROM access. */
   2813 		reg |= EECD_EE_REQ;
   2814 		CSR_WRITE(sc, WMREG_EECD, reg);
   2815 
   2816 		/* ..and wait for it to be granted. */
   2817 		for (x = 0; x < 100; x++) {
   2818 			reg = CSR_READ(sc, WMREG_EECD);
   2819 			if (reg & EECD_EE_GNT)
   2820 				break;
   2821 			delay(5);
   2822 		}
   2823 		if ((reg & EECD_EE_GNT) == 0) {
   2824 			aprint_error("%s: could not acquire EEPROM GNT\n",
   2825 			    sc->sc_dev.dv_xname);
   2826 			reg &= ~EECD_EE_REQ;
   2827 			CSR_WRITE(sc, WMREG_EECD, reg);
   2828 			return (1);
   2829 		}
   2830 	}
   2831 
   2832 	return (0);
   2833 }
   2834 
   2835 /*
   2836  * wm_release_eeprom:
   2837  *
   2838  *	Release the EEPROM mutex.
   2839  */
   2840 static void
   2841 wm_release_eeprom(struct wm_softc *sc)
   2842 {
   2843 	uint32_t reg;
   2844 
   2845 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
   2846 		reg = CSR_READ(sc, WMREG_EECD);
   2847 		reg &= ~EECD_EE_REQ;
   2848 		CSR_WRITE(sc, WMREG_EECD, reg);
   2849 	}
   2850 }
   2851 
   2852 /*
   2853  * wm_eeprom_sendbits:
   2854  *
   2855  *	Send a series of bits to the EEPROM.
   2856  */
   2857 static void
   2858 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
   2859 {
   2860 	uint32_t reg;
   2861 	int x;
   2862 
   2863 	reg = CSR_READ(sc, WMREG_EECD);
   2864 
   2865 	for (x = nbits; x > 0; x--) {
   2866 		if (bits & (1U << (x - 1)))
   2867 			reg |= EECD_DI;
   2868 		else
   2869 			reg &= ~EECD_DI;
   2870 		CSR_WRITE(sc, WMREG_EECD, reg);
   2871 		delay(2);
   2872 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2873 		delay(2);
   2874 		CSR_WRITE(sc, WMREG_EECD, reg);
   2875 		delay(2);
   2876 	}
   2877 }
   2878 
   2879 /*
   2880  * wm_eeprom_recvbits:
   2881  *
   2882  *	Receive a series of bits from the EEPROM.
   2883  */
   2884 static void
   2885 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
   2886 {
   2887 	uint32_t reg, val;
   2888 	int x;
   2889 
   2890 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
   2891 
   2892 	val = 0;
   2893 	for (x = nbits; x > 0; x--) {
   2894 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2895 		delay(2);
   2896 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
   2897 			val |= (1U << (x - 1));
   2898 		CSR_WRITE(sc, WMREG_EECD, reg);
   2899 		delay(2);
   2900 	}
   2901 	*valp = val;
   2902 }
   2903 
   2904 /*
   2905  * wm_read_eeprom_uwire:
   2906  *
   2907  *	Read a word from the EEPROM using the MicroWire protocol.
   2908  */
   2909 static int
   2910 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   2911 {
   2912 	uint32_t reg, val;
   2913 	int i;
   2914 
   2915 	for (i = 0; i < wordcnt; i++) {
   2916 		/* Clear SK and DI. */
   2917 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
   2918 		CSR_WRITE(sc, WMREG_EECD, reg);
   2919 
   2920 		/* Set CHIP SELECT. */
   2921 		reg |= EECD_CS;
   2922 		CSR_WRITE(sc, WMREG_EECD, reg);
   2923 		delay(2);
   2924 
   2925 		/* Shift in the READ command. */
   2926 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
   2927 
   2928 		/* Shift in address. */
   2929 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
   2930 
   2931 		/* Shift out the data. */
   2932 		wm_eeprom_recvbits(sc, &val, 16);
   2933 		data[i] = val & 0xffff;
   2934 
   2935 		/* Clear CHIP SELECT. */
   2936 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
   2937 		CSR_WRITE(sc, WMREG_EECD, reg);
   2938 		delay(2);
   2939 	}
   2940 
   2941 	return (0);
   2942 }
   2943 
   2944 /*
   2945  * wm_spi_eeprom_ready:
   2946  *
   2947  *	Wait for a SPI EEPROM to be ready for commands.
   2948  */
   2949 static int
   2950 wm_spi_eeprom_ready(struct wm_softc *sc)
   2951 {
   2952 	uint32_t val;
   2953 	int usec;
   2954 
   2955 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
   2956 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
   2957 		wm_eeprom_recvbits(sc, &val, 8);
   2958 		if ((val & SPI_SR_RDY) == 0)
   2959 			break;
   2960 	}
   2961 	if (usec >= SPI_MAX_RETRIES) {
   2962 		aprint_error("%s: EEPROM failed to become ready\n",
   2963 		    sc->sc_dev.dv_xname);
   2964 		return (1);
   2965 	}
   2966 	return (0);
   2967 }
   2968 
   2969 /*
   2970  * wm_read_eeprom_spi:
   2971  *
   2972  *	Read a work from the EEPROM using the SPI protocol.
   2973  */
   2974 static int
   2975 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   2976 {
   2977 	uint32_t reg, val;
   2978 	int i;
   2979 	uint8_t opc;
   2980 
   2981 	/* Clear SK and CS. */
   2982 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
   2983 	CSR_WRITE(sc, WMREG_EECD, reg);
   2984 	delay(2);
   2985 
   2986 	if (wm_spi_eeprom_ready(sc))
   2987 		return (1);
   2988 
   2989 	/* Toggle CS to flush commands. */
   2990 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
   2991 	delay(2);
   2992 	CSR_WRITE(sc, WMREG_EECD, reg);
   2993 	delay(2);
   2994 
   2995 	opc = SPI_OPC_READ;
   2996 	if (sc->sc_ee_addrbits == 8 && word >= 128)
   2997 		opc |= SPI_OPC_A8;
   2998 
   2999 	wm_eeprom_sendbits(sc, opc, 8);
   3000 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
   3001 
   3002 	for (i = 0; i < wordcnt; i++) {
   3003 		wm_eeprom_recvbits(sc, &val, 16);
   3004 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
   3005 	}
   3006 
   3007 	/* Raise CS and clear SK. */
   3008 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
   3009 	CSR_WRITE(sc, WMREG_EECD, reg);
   3010 	delay(2);
   3011 
   3012 	return (0);
   3013 }
   3014 
   3015 /*
   3016  * wm_read_eeprom:
   3017  *
   3018  *	Read data from the serial EEPROM.
   3019  */
   3020 static int
   3021 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3022 {
   3023 	int rv;
   3024 
   3025 	if (wm_acquire_eeprom(sc))
   3026 		return (1);
   3027 
   3028 	if (sc->sc_flags & WM_F_EEPROM_SPI)
   3029 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
   3030 	else
   3031 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
   3032 
   3033 	wm_release_eeprom(sc);
   3034 	return (rv);
   3035 }
   3036 
   3037 /*
   3038  * wm_add_rxbuf:
   3039  *
   3040  *	Add a receive buffer to the indiciated descriptor.
   3041  */
   3042 static int
   3043 wm_add_rxbuf(struct wm_softc *sc, int idx)
   3044 {
   3045 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
   3046 	struct mbuf *m;
   3047 	int error;
   3048 
   3049 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3050 	if (m == NULL)
   3051 		return (ENOBUFS);
   3052 
   3053 	MCLGET(m, M_DONTWAIT);
   3054 	if ((m->m_flags & M_EXT) == 0) {
   3055 		m_freem(m);
   3056 		return (ENOBUFS);
   3057 	}
   3058 
   3059 	if (rxs->rxs_mbuf != NULL)
   3060 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3061 
   3062 	rxs->rxs_mbuf = m;
   3063 
   3064 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   3065 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   3066 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   3067 	if (error) {
   3068 		/* XXX XXX XXX */
   3069 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   3070 		    sc->sc_dev.dv_xname, idx, error);
   3071 		panic("wm_add_rxbuf");
   3072 	}
   3073 
   3074 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3075 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3076 
   3077 	WM_INIT_RXDESC(sc, idx);
   3078 
   3079 	return (0);
   3080 }
   3081 
   3082 /*
   3083  * wm_set_ral:
   3084  *
   3085  *	Set an entery in the receive address list.
   3086  */
   3087 static void
   3088 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
   3089 {
   3090 	uint32_t ral_lo, ral_hi;
   3091 
   3092 	if (enaddr != NULL) {
   3093 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   3094 		    (enaddr[3] << 24);
   3095 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   3096 		ral_hi |= RAL_AV;
   3097 	} else {
   3098 		ral_lo = 0;
   3099 		ral_hi = 0;
   3100 	}
   3101 
   3102 	if (sc->sc_type >= WM_T_82544) {
   3103 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
   3104 		    ral_lo);
   3105 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
   3106 		    ral_hi);
   3107 	} else {
   3108 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
   3109 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
   3110 	}
   3111 }
   3112 
   3113 /*
   3114  * wm_mchash:
   3115  *
   3116  *	Compute the hash of the multicast address for the 4096-bit
   3117  *	multicast filter.
   3118  */
   3119 static uint32_t
   3120 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
   3121 {
   3122 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   3123 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   3124 	uint32_t hash;
   3125 
   3126 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   3127 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   3128 
   3129 	return (hash & 0xfff);
   3130 }
   3131 
   3132 /*
   3133  * wm_set_filter:
   3134  *
   3135  *	Set up the receive filter.
   3136  */
   3137 static void
   3138 wm_set_filter(struct wm_softc *sc)
   3139 {
   3140 	struct ethercom *ec = &sc->sc_ethercom;
   3141 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3142 	struct ether_multi *enm;
   3143 	struct ether_multistep step;
   3144 	bus_addr_t mta_reg;
   3145 	uint32_t hash, reg, bit;
   3146 	int i;
   3147 
   3148 	if (sc->sc_type >= WM_T_82544)
   3149 		mta_reg = WMREG_CORDOVA_MTA;
   3150 	else
   3151 		mta_reg = WMREG_MTA;
   3152 
   3153 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   3154 
   3155 	if (ifp->if_flags & IFF_BROADCAST)
   3156 		sc->sc_rctl |= RCTL_BAM;
   3157 	if (ifp->if_flags & IFF_PROMISC) {
   3158 		sc->sc_rctl |= RCTL_UPE;
   3159 		goto allmulti;
   3160 	}
   3161 
   3162 	/*
   3163 	 * Set the station address in the first RAL slot, and
   3164 	 * clear the remaining slots.
   3165 	 */
   3166 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
   3167 	for (i = 1; i < WM_RAL_TABSIZE; i++)
   3168 		wm_set_ral(sc, NULL, i);
   3169 
   3170 	/* Clear out the multicast table. */
   3171 	for (i = 0; i < WM_MC_TABSIZE; i++)
   3172 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
   3173 
   3174 	ETHER_FIRST_MULTI(step, ec, enm);
   3175 	while (enm != NULL) {
   3176 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3177 			/*
   3178 			 * We must listen to a range of multicast addresses.
   3179 			 * For now, just accept all multicasts, rather than
   3180 			 * trying to set only those filter bits needed to match
   3181 			 * the range.  (At this time, the only use of address
   3182 			 * ranges is for IP multicast routing, for which the
   3183 			 * range is big enough to require all bits set.)
   3184 			 */
   3185 			goto allmulti;
   3186 		}
   3187 
   3188 		hash = wm_mchash(sc, enm->enm_addrlo);
   3189 
   3190 		reg = (hash >> 5) & 0x7f;
   3191 		bit = hash & 0x1f;
   3192 
   3193 		hash = CSR_READ(sc, mta_reg + (reg << 2));
   3194 		hash |= 1U << bit;
   3195 
   3196 		/* XXX Hardware bug?? */
   3197 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
   3198 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
   3199 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3200 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
   3201 		} else
   3202 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3203 
   3204 		ETHER_NEXT_MULTI(step, enm);
   3205 	}
   3206 
   3207 	ifp->if_flags &= ~IFF_ALLMULTI;
   3208 	goto setit;
   3209 
   3210  allmulti:
   3211 	ifp->if_flags |= IFF_ALLMULTI;
   3212 	sc->sc_rctl |= RCTL_MPE;
   3213 
   3214  setit:
   3215 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
   3216 }
   3217 
   3218 /*
   3219  * wm_tbi_mediainit:
   3220  *
   3221  *	Initialize media for use on 1000BASE-X devices.
   3222  */
   3223 static void
   3224 wm_tbi_mediainit(struct wm_softc *sc)
   3225 {
   3226 	const char *sep = "";
   3227 
   3228 	if (sc->sc_type < WM_T_82543)
   3229 		sc->sc_tipg = TIPG_WM_DFLT;
   3230 	else
   3231 		sc->sc_tipg = TIPG_LG_DFLT;
   3232 
   3233 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
   3234 	    wm_tbi_mediastatus);
   3235 
   3236 	/*
   3237 	 * SWD Pins:
   3238 	 *
   3239 	 *	0 = Link LED (output)
   3240 	 *	1 = Loss Of Signal (input)
   3241 	 */
   3242 	sc->sc_ctrl |= CTRL_SWDPIO(0);
   3243 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
   3244 
   3245 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3246 
   3247 #define	ADD(ss, mm, dd)							\
   3248 do {									\
   3249 	aprint_normal("%s%s", sep, ss);					\
   3250 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
   3251 	sep = ", ";							\
   3252 } while (/*CONSTCOND*/0)
   3253 
   3254 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
   3255 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
   3256 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
   3257 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
   3258 	aprint_normal("\n");
   3259 
   3260 #undef ADD
   3261 
   3262 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   3263 }
   3264 
   3265 /*
   3266  * wm_tbi_mediastatus:	[ifmedia interface function]
   3267  *
   3268  *	Get the current interface media status on a 1000BASE-X device.
   3269  */
   3270 static void
   3271 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3272 {
   3273 	struct wm_softc *sc = ifp->if_softc;
   3274 	uint32_t ctrl;
   3275 
   3276 	ifmr->ifm_status = IFM_AVALID;
   3277 	ifmr->ifm_active = IFM_ETHER;
   3278 
   3279 	if (sc->sc_tbi_linkup == 0) {
   3280 		ifmr->ifm_active |= IFM_NONE;
   3281 		return;
   3282 	}
   3283 
   3284 	ifmr->ifm_status |= IFM_ACTIVE;
   3285 	ifmr->ifm_active |= IFM_1000_SX;
   3286 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
   3287 		ifmr->ifm_active |= IFM_FDX;
   3288 	ctrl = CSR_READ(sc, WMREG_CTRL);
   3289 	if (ctrl & CTRL_RFCE)
   3290 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   3291 	if (ctrl & CTRL_TFCE)
   3292 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   3293 }
   3294 
   3295 /*
   3296  * wm_tbi_mediachange:	[ifmedia interface function]
   3297  *
   3298  *	Set hardware to newly-selected media on a 1000BASE-X device.
   3299  */
   3300 static int
   3301 wm_tbi_mediachange(struct ifnet *ifp)
   3302 {
   3303 	struct wm_softc *sc = ifp->if_softc;
   3304 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   3305 	uint32_t status;
   3306 	int i;
   3307 
   3308 	sc->sc_txcw = ife->ifm_data;
   3309 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
   3310 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
   3311 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
   3312 	sc->sc_txcw |= TXCW_ANE;
   3313 
   3314 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   3315 	delay(10000);
   3316 
   3317 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
   3318 
   3319 	sc->sc_tbi_anstate = 0;
   3320 
   3321 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
   3322 		/* Have signal; wait for the link to come up. */
   3323 		for (i = 0; i < 50; i++) {
   3324 			delay(10000);
   3325 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
   3326 				break;
   3327 		}
   3328 
   3329 		status = CSR_READ(sc, WMREG_STATUS);
   3330 		if (status & STATUS_LU) {
   3331 			/* Link is up. */
   3332 			DPRINTF(WM_DEBUG_LINK,
   3333 			    ("%s: LINK: set media -> link up %s\n",
   3334 			    sc->sc_dev.dv_xname,
   3335 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   3336 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3337 			sc->sc_fcrtl &= ~FCRTL_XONE;
   3338 			if (status & STATUS_FD)
   3339 				sc->sc_tctl |=
   3340 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3341 			else
   3342 				sc->sc_tctl |=
   3343 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3344 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   3345 				sc->sc_fcrtl |= FCRTL_XONE;
   3346 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3347 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   3348 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   3349 				      sc->sc_fcrtl);
   3350 			sc->sc_tbi_linkup = 1;
   3351 		} else {
   3352 			/* Link is down. */
   3353 			DPRINTF(WM_DEBUG_LINK,
   3354 			    ("%s: LINK: set media -> link down\n",
   3355 			    sc->sc_dev.dv_xname));
   3356 			sc->sc_tbi_linkup = 0;
   3357 		}
   3358 	} else {
   3359 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
   3360 		    sc->sc_dev.dv_xname));
   3361 		sc->sc_tbi_linkup = 0;
   3362 	}
   3363 
   3364 	wm_tbi_set_linkled(sc);
   3365 
   3366 	return (0);
   3367 }
   3368 
   3369 /*
   3370  * wm_tbi_set_linkled:
   3371  *
   3372  *	Update the link LED on 1000BASE-X devices.
   3373  */
   3374 static void
   3375 wm_tbi_set_linkled(struct wm_softc *sc)
   3376 {
   3377 
   3378 	if (sc->sc_tbi_linkup)
   3379 		sc->sc_ctrl |= CTRL_SWDPIN(0);
   3380 	else
   3381 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
   3382 
   3383 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3384 }
   3385 
   3386 /*
   3387  * wm_tbi_check_link:
   3388  *
   3389  *	Check the link on 1000BASE-X devices.
   3390  */
   3391 static void
   3392 wm_tbi_check_link(struct wm_softc *sc)
   3393 {
   3394 	uint32_t rxcw, ctrl, status;
   3395 
   3396 	if (sc->sc_tbi_anstate == 0)
   3397 		return;
   3398 	else if (sc->sc_tbi_anstate > 1) {
   3399 		DPRINTF(WM_DEBUG_LINK,
   3400 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
   3401 		    sc->sc_tbi_anstate));
   3402 		sc->sc_tbi_anstate--;
   3403 		return;
   3404 	}
   3405 
   3406 	sc->sc_tbi_anstate = 0;
   3407 
   3408 	rxcw = CSR_READ(sc, WMREG_RXCW);
   3409 	ctrl = CSR_READ(sc, WMREG_CTRL);
   3410 	status = CSR_READ(sc, WMREG_STATUS);
   3411 
   3412 	if ((status & STATUS_LU) == 0) {
   3413 		DPRINTF(WM_DEBUG_LINK,
   3414 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
   3415 		sc->sc_tbi_linkup = 0;
   3416 	} else {
   3417 		DPRINTF(WM_DEBUG_LINK,
   3418 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
   3419 		    (status & STATUS_FD) ? "FDX" : "HDX"));
   3420 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3421 		sc->sc_fcrtl &= ~FCRTL_XONE;
   3422 		if (status & STATUS_FD)
   3423 			sc->sc_tctl |=
   3424 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3425 		else
   3426 			sc->sc_tctl |=
   3427 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3428 		if (ctrl & CTRL_TFCE)
   3429 			sc->sc_fcrtl |= FCRTL_XONE;
   3430 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3431 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   3432 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
   3433 			      sc->sc_fcrtl);
   3434 		sc->sc_tbi_linkup = 1;
   3435 	}
   3436 
   3437 	wm_tbi_set_linkled(sc);
   3438 }
   3439 
   3440 /*
   3441  * wm_gmii_reset:
   3442  *
   3443  *	Reset the PHY.
   3444  */
   3445 static void
   3446 wm_gmii_reset(struct wm_softc *sc)
   3447 {
   3448 	uint32_t reg;
   3449 
   3450 	if (sc->sc_type >= WM_T_82544) {
   3451 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   3452 		delay(20000);
   3453 
   3454 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3455 		delay(20000);
   3456 	} else {
   3457 		/* The PHY reset pin is active-low. */
   3458 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   3459 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
   3460 		    CTRL_EXT_SWDPIN(4));
   3461 		reg |= CTRL_EXT_SWDPIO(4);
   3462 
   3463 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   3464 		delay(10);
   3465 
   3466 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   3467 		delay(10);
   3468 
   3469 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   3470 		delay(10);
   3471 #if 0
   3472 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
   3473 #endif
   3474 	}
   3475 }
   3476 
   3477 /*
   3478  * wm_gmii_mediainit:
   3479  *
   3480  *	Initialize media for use on 1000BASE-T devices.
   3481  */
   3482 static void
   3483 wm_gmii_mediainit(struct wm_softc *sc)
   3484 {
   3485 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3486 
   3487 	/* We have MII. */
   3488 	sc->sc_flags |= WM_F_HAS_MII;
   3489 
   3490 	sc->sc_tipg = TIPG_1000T_DFLT;
   3491 
   3492 	/*
   3493 	 * Let the chip set speed/duplex on its own based on
   3494 	 * signals from the PHY.
   3495 	 */
   3496 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
   3497 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3498 
   3499 	/* Initialize our media structures and probe the GMII. */
   3500 	sc->sc_mii.mii_ifp = ifp;
   3501 
   3502 	if (sc->sc_type >= WM_T_82544) {
   3503 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
   3504 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
   3505 	} else {
   3506 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
   3507 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
   3508 	}
   3509 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
   3510 
   3511 	wm_gmii_reset(sc);
   3512 
   3513 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
   3514 	    wm_gmii_mediastatus);
   3515 
   3516 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   3517 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
   3518 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   3519 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   3520 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   3521 	} else
   3522 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   3523 }
   3524 
   3525 /*
   3526  * wm_gmii_mediastatus:	[ifmedia interface function]
   3527  *
   3528  *	Get the current interface media status on a 1000BASE-T device.
   3529  */
   3530 static void
   3531 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3532 {
   3533 	struct wm_softc *sc = ifp->if_softc;
   3534 
   3535 	mii_pollstat(&sc->sc_mii);
   3536 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3537 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
   3538 			   sc->sc_flowflags;
   3539 }
   3540 
   3541 /*
   3542  * wm_gmii_mediachange:	[ifmedia interface function]
   3543  *
   3544  *	Set hardware to newly-selected media on a 1000BASE-T device.
   3545  */
   3546 static int
   3547 wm_gmii_mediachange(struct ifnet *ifp)
   3548 {
   3549 	struct wm_softc *sc = ifp->if_softc;
   3550 
   3551 	if (ifp->if_flags & IFF_UP)
   3552 		mii_mediachg(&sc->sc_mii);
   3553 	return (0);
   3554 }
   3555 
   3556 #define	MDI_IO		CTRL_SWDPIN(2)
   3557 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
   3558 #define	MDI_CLK		CTRL_SWDPIN(3)
   3559 
   3560 static void
   3561 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
   3562 {
   3563 	uint32_t i, v;
   3564 
   3565 	v = CSR_READ(sc, WMREG_CTRL);
   3566 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   3567 	v |= MDI_DIR | CTRL_SWDPIO(3);
   3568 
   3569 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
   3570 		if (data & i)
   3571 			v |= MDI_IO;
   3572 		else
   3573 			v &= ~MDI_IO;
   3574 		CSR_WRITE(sc, WMREG_CTRL, v);
   3575 		delay(10);
   3576 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3577 		delay(10);
   3578 		CSR_WRITE(sc, WMREG_CTRL, v);
   3579 		delay(10);
   3580 	}
   3581 }
   3582 
   3583 static uint32_t
   3584 i82543_mii_recvbits(struct wm_softc *sc)
   3585 {
   3586 	uint32_t v, i, data = 0;
   3587 
   3588 	v = CSR_READ(sc, WMREG_CTRL);
   3589 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   3590 	v |= CTRL_SWDPIO(3);
   3591 
   3592 	CSR_WRITE(sc, WMREG_CTRL, v);
   3593 	delay(10);
   3594 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3595 	delay(10);
   3596 	CSR_WRITE(sc, WMREG_CTRL, v);
   3597 	delay(10);
   3598 
   3599 	for (i = 0; i < 16; i++) {
   3600 		data <<= 1;
   3601 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3602 		delay(10);
   3603 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
   3604 			data |= 1;
   3605 		CSR_WRITE(sc, WMREG_CTRL, v);
   3606 		delay(10);
   3607 	}
   3608 
   3609 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3610 	delay(10);
   3611 	CSR_WRITE(sc, WMREG_CTRL, v);
   3612 	delay(10);
   3613 
   3614 	return (data);
   3615 }
   3616 
   3617 #undef MDI_IO
   3618 #undef MDI_DIR
   3619 #undef MDI_CLK
   3620 
   3621 /*
   3622  * wm_gmii_i82543_readreg:	[mii interface function]
   3623  *
   3624  *	Read a PHY register on the GMII (i82543 version).
   3625  */
   3626 static int
   3627 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
   3628 {
   3629 	struct wm_softc *sc = (void *) self;
   3630 	int rv;
   3631 
   3632 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   3633 	i82543_mii_sendbits(sc, reg | (phy << 5) |
   3634 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
   3635 	rv = i82543_mii_recvbits(sc) & 0xffff;
   3636 
   3637 	DPRINTF(WM_DEBUG_GMII,
   3638 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
   3639 	    sc->sc_dev.dv_xname, phy, reg, rv));
   3640 
   3641 	return (rv);
   3642 }
   3643 
   3644 /*
   3645  * wm_gmii_i82543_writereg:	[mii interface function]
   3646  *
   3647  *	Write a PHY register on the GMII (i82543 version).
   3648  */
   3649 static void
   3650 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
   3651 {
   3652 	struct wm_softc *sc = (void *) self;
   3653 
   3654 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   3655 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
   3656 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
   3657 	    (MII_COMMAND_START << 30), 32);
   3658 }
   3659 
   3660 /*
   3661  * wm_gmii_i82544_readreg:	[mii interface function]
   3662  *
   3663  *	Read a PHY register on the GMII.
   3664  */
   3665 static int
   3666 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
   3667 {
   3668 	struct wm_softc *sc = (void *) self;
   3669 	uint32_t mdic = 0;
   3670 	int i, rv;
   3671 
   3672 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
   3673 	    MDIC_REGADD(reg));
   3674 
   3675 	for (i = 0; i < 100; i++) {
   3676 		mdic = CSR_READ(sc, WMREG_MDIC);
   3677 		if (mdic & MDIC_READY)
   3678 			break;
   3679 		delay(10);
   3680 	}
   3681 
   3682 	if ((mdic & MDIC_READY) == 0) {
   3683 		log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
   3684 		    sc->sc_dev.dv_xname, phy, reg);
   3685 		rv = 0;
   3686 	} else if (mdic & MDIC_E) {
   3687 #if 0 /* This is normal if no PHY is present. */
   3688 		log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
   3689 		    sc->sc_dev.dv_xname, phy, reg);
   3690 #endif
   3691 		rv = 0;
   3692 	} else {
   3693 		rv = MDIC_DATA(mdic);
   3694 		if (rv == 0xffff)
   3695 			rv = 0;
   3696 	}
   3697 
   3698 	return (rv);
   3699 }
   3700 
   3701 /*
   3702  * wm_gmii_i82544_writereg:	[mii interface function]
   3703  *
   3704  *	Write a PHY register on the GMII.
   3705  */
   3706 static void
   3707 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
   3708 {
   3709 	struct wm_softc *sc = (void *) self;
   3710 	uint32_t mdic = 0;
   3711 	int i;
   3712 
   3713 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
   3714 	    MDIC_REGADD(reg) | MDIC_DATA(val));
   3715 
   3716 	for (i = 0; i < 100; i++) {
   3717 		mdic = CSR_READ(sc, WMREG_MDIC);
   3718 		if (mdic & MDIC_READY)
   3719 			break;
   3720 		delay(10);
   3721 	}
   3722 
   3723 	if ((mdic & MDIC_READY) == 0)
   3724 		log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
   3725 		    sc->sc_dev.dv_xname, phy, reg);
   3726 	else if (mdic & MDIC_E)
   3727 		log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
   3728 		    sc->sc_dev.dv_xname, phy, reg);
   3729 }
   3730 
   3731 /*
   3732  * wm_gmii_statchg:	[mii interface function]
   3733  *
   3734  *	Callback from MII layer when media changes.
   3735  */
   3736 static void
   3737 wm_gmii_statchg(struct device *self)
   3738 {
   3739 	struct wm_softc *sc = (void *) self;
   3740 	struct mii_data *mii = &sc->sc_mii;
   3741 
   3742 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
   3743 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3744 	sc->sc_fcrtl &= ~FCRTL_XONE;
   3745 
   3746 	/*
   3747 	 * Get flow control negotiation result.
   3748 	 */
   3749 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3750 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3751 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3752 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3753 	}
   3754 
   3755 	if (sc->sc_flowflags & IFM_FLOW) {
   3756 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
   3757 			sc->sc_ctrl |= CTRL_TFCE;
   3758 			sc->sc_fcrtl |= FCRTL_XONE;
   3759 		}
   3760 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3761 			sc->sc_ctrl |= CTRL_RFCE;
   3762 	}
   3763 
   3764 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   3765 		DPRINTF(WM_DEBUG_LINK,
   3766 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
   3767 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3768 	} else  {
   3769 		DPRINTF(WM_DEBUG_LINK,
   3770 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
   3771 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3772 	}
   3773 
   3774 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3775 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3776 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
   3777 						 : WMREG_FCRTL, sc->sc_fcrtl);
   3778 }
   3779