if_wm.c revision 1.84 1 /* $NetBSD: if_wm.c,v 1.84 2004/11/22 19:28:37 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40 *
41 * TODO (in order of importance):
42 *
43 * - Rework how parameters are loaded from the EEPROM.
44 * - Figure out what to do with the i82545GM and i82546GB
45 * SERDES controllers.
46 * - Fix hw VLAN assist.
47 */
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.84 2004/11/22 19:28:37 thorpej Exp $");
51
52 #include "bpfilter.h"
53 #include "rnd.h"
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67
68 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
69
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82
83 #include <netinet/in.h> /* XXX for struct ip */
84 #include <netinet/in_systm.h> /* XXX for struct ip */
85 #include <netinet/ip.h> /* XXX for struct ip */
86 #include <netinet/tcp.h> /* XXX for struct tcphdr */
87
88 #include <machine/bus.h>
89 #include <machine/intr.h>
90 #include <machine/endian.h>
91
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99
100 #include <dev/pci/if_wmreg.h>
101
102 #ifdef WM_DEBUG
103 #define WM_DEBUG_LINK 0x01
104 #define WM_DEBUG_TX 0x02
105 #define WM_DEBUG_RX 0x04
106 #define WM_DEBUG_GMII 0x08
107 int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
108
109 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
110 #else
111 #define DPRINTF(x, y) /* nothing */
112 #endif /* WM_DEBUG */
113
114 /*
115 * Transmit descriptor list size. Due to errata, we can only have
116 * 256 hardware descriptors in the ring on < 82544, but we use 4096
117 * on >= 82544. We tell the upper layers that they can queue a lot
118 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
119 * of them at a time.
120 *
121 * We allow up to 256 (!) DMA segments per packet. Pathological packet
122 * chains containing many small mbufs have been observed in zero-copy
123 * situations with jumbo frames.
124 */
125 #define WM_NTXSEGS 256
126 #define WM_IFQUEUELEN 256
127 #define WM_TXQUEUELEN_MAX 64
128 #define WM_TXQUEUELEN_MAX_82547 16
129 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
130 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
131 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
132 #define WM_NTXDESC_82542 256
133 #define WM_NTXDESC_82544 4096
134 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
135 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
136 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
137 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
138 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
139
140 #define WM_MAXTXDMA ETHER_MAX_LEN_JUMBO
141
142 /*
143 * Receive descriptor list size. We have one Rx buffer for normal
144 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
145 * packet. We allocate 256 receive descriptors, each with a 2k
146 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
147 */
148 #define WM_NRXDESC 256
149 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
150 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
151 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
152
153 /*
154 * Control structures are DMA'd to the i82542 chip. We allocate them in
155 * a single clump that maps to a single DMA segment to make serveral things
156 * easier.
157 */
158 struct wm_control_data_82544 {
159 /*
160 * The receive descriptors.
161 */
162 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
163
164 /*
165 * The transmit descriptors. Put these at the end, because
166 * we might use a smaller number of them.
167 */
168 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
169 };
170
171 struct wm_control_data_82542 {
172 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
173 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
174 };
175
176 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
177 #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)])
178 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
179
180 /*
181 * Software state for transmit jobs.
182 */
183 struct wm_txsoft {
184 struct mbuf *txs_mbuf; /* head of our mbuf chain */
185 bus_dmamap_t txs_dmamap; /* our DMA map */
186 int txs_firstdesc; /* first descriptor in packet */
187 int txs_lastdesc; /* last descriptor in packet */
188 int txs_ndesc; /* # of descriptors used */
189 };
190
191 /*
192 * Software state for receive buffers. Each descriptor gets a
193 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
194 * more than one buffer, we chain them together.
195 */
196 struct wm_rxsoft {
197 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
198 bus_dmamap_t rxs_dmamap; /* our DMA map */
199 };
200
201 typedef enum {
202 WM_T_unknown = 0,
203 WM_T_82542_2_0, /* i82542 2.0 (really old) */
204 WM_T_82542_2_1, /* i82542 2.1+ (old) */
205 WM_T_82543, /* i82543 */
206 WM_T_82544, /* i82544 */
207 WM_T_82540, /* i82540 */
208 WM_T_82545, /* i82545 */
209 WM_T_82545_3, /* i82545 3.0+ */
210 WM_T_82546, /* i82546 */
211 WM_T_82546_3, /* i82546 3.0+ */
212 WM_T_82541, /* i82541 */
213 WM_T_82541_2, /* i82541 2.0+ */
214 WM_T_82547, /* i82547 */
215 WM_T_82547_2, /* i82547 2.0+ */
216 } wm_chip_type;
217
218 /*
219 * Software state per device.
220 */
221 struct wm_softc {
222 struct device sc_dev; /* generic device information */
223 bus_space_tag_t sc_st; /* bus space tag */
224 bus_space_handle_t sc_sh; /* bus space handle */
225 bus_space_tag_t sc_iot; /* I/O space tag */
226 bus_space_handle_t sc_ioh; /* I/O space handle */
227 bus_dma_tag_t sc_dmat; /* bus DMA tag */
228 struct ethercom sc_ethercom; /* ethernet common data */
229 void *sc_sdhook; /* shutdown hook */
230
231 wm_chip_type sc_type; /* chip type */
232 int sc_flags; /* flags; see below */
233 int sc_bus_speed; /* PCI/PCIX bus speed */
234 int sc_pcix_offset; /* PCIX capability register offset */
235 int sc_flowflags; /* 802.3x flow control flags */
236
237 void *sc_ih; /* interrupt cookie */
238
239 int sc_ee_addrbits; /* EEPROM address bits */
240
241 struct mii_data sc_mii; /* MII/media information */
242
243 struct callout sc_tick_ch; /* tick callout */
244
245 bus_dmamap_t sc_cddmamap; /* control data DMA map */
246 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
247
248 int sc_align_tweak;
249
250 /*
251 * Software state for the transmit and receive descriptors.
252 */
253 int sc_txnum; /* must be a power of two */
254 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
255 struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
256
257 /*
258 * Control data structures.
259 */
260 int sc_ntxdesc; /* must be a power of two */
261 struct wm_control_data_82544 *sc_control_data;
262 #define sc_txdescs sc_control_data->wcd_txdescs
263 #define sc_rxdescs sc_control_data->wcd_rxdescs
264
265 #ifdef WM_EVENT_COUNTERS
266 /* Event counters. */
267 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
268 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
269 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
270 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
271 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
272 struct evcnt sc_ev_rxintr; /* Rx interrupts */
273 struct evcnt sc_ev_linkintr; /* Link interrupts */
274
275 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
276 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
277 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
278 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
279
280 struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
281 struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
282 struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
283
284 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
285 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
286
287 struct evcnt sc_ev_tu; /* Tx underrun */
288
289 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
290 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
291 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
292 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
293 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
294 #endif /* WM_EVENT_COUNTERS */
295
296 bus_addr_t sc_tdt_reg; /* offset of TDT register */
297
298 int sc_txfree; /* number of free Tx descriptors */
299 int sc_txnext; /* next ready Tx descriptor */
300
301 int sc_txsfree; /* number of free Tx jobs */
302 int sc_txsnext; /* next free Tx job */
303 int sc_txsdirty; /* dirty Tx jobs */
304
305 /* These 5 variables are used only on the 82547. */
306 int sc_txfifo_size; /* Tx FIFO size */
307 int sc_txfifo_head; /* current head of FIFO */
308 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
309 int sc_txfifo_stall; /* Tx FIFO is stalled */
310 struct callout sc_txfifo_ch; /* Tx FIFO stall work-around timer */
311
312 uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
313 uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
314
315 bus_addr_t sc_rdt_reg; /* offset of RDT register */
316
317 int sc_rxptr; /* next ready Rx descriptor/queue ent */
318 int sc_rxdiscard;
319 int sc_rxlen;
320 struct mbuf *sc_rxhead;
321 struct mbuf *sc_rxtail;
322 struct mbuf **sc_rxtailp;
323
324 uint32_t sc_ctrl; /* prototype CTRL register */
325 #if 0
326 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
327 #endif
328 uint32_t sc_icr; /* prototype interrupt bits */
329 uint32_t sc_tctl; /* prototype TCTL register */
330 uint32_t sc_rctl; /* prototype RCTL register */
331 uint32_t sc_txcw; /* prototype TXCW register */
332 uint32_t sc_tipg; /* prototype TIPG register */
333 uint32_t sc_fcrtl; /* prototype FCRTL register */
334 uint32_t sc_pba; /* prototype PBA register */
335
336 int sc_tbi_linkup; /* TBI link status */
337 int sc_tbi_anstate; /* autonegotiation state */
338
339 int sc_mchash_type; /* multicast filter offset */
340
341 #if NRND > 0
342 rndsource_element_t rnd_source; /* random source */
343 #endif
344 };
345
346 #define WM_RXCHAIN_RESET(sc) \
347 do { \
348 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
349 *(sc)->sc_rxtailp = NULL; \
350 (sc)->sc_rxlen = 0; \
351 } while (/*CONSTCOND*/0)
352
353 #define WM_RXCHAIN_LINK(sc, m) \
354 do { \
355 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
356 (sc)->sc_rxtailp = &(m)->m_next; \
357 } while (/*CONSTCOND*/0)
358
359 /* sc_flags */
360 #define WM_F_HAS_MII 0x01 /* has MII */
361 #define WM_F_EEPROM_HANDSHAKE 0x02 /* requires EEPROM handshake */
362 #define WM_F_EEPROM_SPI 0x04 /* EEPROM is SPI */
363 #define WM_F_IOH_VALID 0x10 /* I/O handle is valid */
364 #define WM_F_BUS64 0x20 /* bus is 64-bit */
365 #define WM_F_PCIX 0x40 /* bus is PCI-X */
366 #define WM_F_CSA 0x80 /* bus is CSA */
367
368 #ifdef WM_EVENT_COUNTERS
369 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
370 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
371 #else
372 #define WM_EVCNT_INCR(ev) /* nothing */
373 #define WM_EVCNT_ADD(ev, val) /* nothing */
374 #endif
375
376 #define CSR_READ(sc, reg) \
377 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
378 #define CSR_WRITE(sc, reg, val) \
379 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
380 #define CSR_WRITE_FLUSH(sc) \
381 (void) CSR_READ((sc), WMREG_STATUS)
382
383 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
384 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
385
386 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
387 #define WM_CDTXADDR_HI(sc, x) \
388 (sizeof(bus_addr_t) == 8 ? \
389 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
390
391 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
392 #define WM_CDRXADDR_HI(sc, x) \
393 (sizeof(bus_addr_t) == 8 ? \
394 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
395
396 #define WM_CDTXSYNC(sc, x, n, ops) \
397 do { \
398 int __x, __n; \
399 \
400 __x = (x); \
401 __n = (n); \
402 \
403 /* If it will wrap around, sync to the end of the ring. */ \
404 if ((__x + __n) > WM_NTXDESC(sc)) { \
405 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
406 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
407 (WM_NTXDESC(sc) - __x), (ops)); \
408 __n -= (WM_NTXDESC(sc) - __x); \
409 __x = 0; \
410 } \
411 \
412 /* Now sync whatever is left. */ \
413 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
414 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
415 } while (/*CONSTCOND*/0)
416
417 #define WM_CDRXSYNC(sc, x, ops) \
418 do { \
419 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
420 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
421 } while (/*CONSTCOND*/0)
422
423 #define WM_INIT_RXDESC(sc, x) \
424 do { \
425 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
426 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
427 struct mbuf *__m = __rxs->rxs_mbuf; \
428 \
429 /* \
430 * Note: We scoot the packet forward 2 bytes in the buffer \
431 * so that the payload after the Ethernet header is aligned \
432 * to a 4-byte boundary. \
433 * \
434 * XXX BRAINDAMAGE ALERT! \
435 * The stupid chip uses the same size for every buffer, which \
436 * is set in the Receive Control register. We are using the 2K \
437 * size option, but what we REALLY want is (2K - 2)! For this \
438 * reason, we can't "scoot" packets longer than the standard \
439 * Ethernet MTU. On strict-alignment platforms, if the total \
440 * size exceeds (2K - 2) we set align_tweak to 0 and let \
441 * the upper layer copy the headers. \
442 */ \
443 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
444 \
445 wm_set_dma_addr(&__rxd->wrx_addr, \
446 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
447 __rxd->wrx_len = 0; \
448 __rxd->wrx_cksum = 0; \
449 __rxd->wrx_status = 0; \
450 __rxd->wrx_errors = 0; \
451 __rxd->wrx_special = 0; \
452 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
453 \
454 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
455 } while (/*CONSTCOND*/0)
456
457 static void wm_start(struct ifnet *);
458 static void wm_watchdog(struct ifnet *);
459 static int wm_ioctl(struct ifnet *, u_long, caddr_t);
460 static int wm_init(struct ifnet *);
461 static void wm_stop(struct ifnet *, int);
462
463 static void wm_shutdown(void *);
464
465 static void wm_reset(struct wm_softc *);
466 static void wm_rxdrain(struct wm_softc *);
467 static int wm_add_rxbuf(struct wm_softc *, int);
468 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
469 static void wm_tick(void *);
470
471 static void wm_set_filter(struct wm_softc *);
472
473 static int wm_intr(void *);
474 static void wm_txintr(struct wm_softc *);
475 static void wm_rxintr(struct wm_softc *);
476 static void wm_linkintr(struct wm_softc *, uint32_t);
477
478 static void wm_tbi_mediainit(struct wm_softc *);
479 static int wm_tbi_mediachange(struct ifnet *);
480 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
481
482 static void wm_tbi_set_linkled(struct wm_softc *);
483 static void wm_tbi_check_link(struct wm_softc *);
484
485 static void wm_gmii_reset(struct wm_softc *);
486
487 static int wm_gmii_i82543_readreg(struct device *, int, int);
488 static void wm_gmii_i82543_writereg(struct device *, int, int, int);
489
490 static int wm_gmii_i82544_readreg(struct device *, int, int);
491 static void wm_gmii_i82544_writereg(struct device *, int, int, int);
492
493 static void wm_gmii_statchg(struct device *);
494
495 static void wm_gmii_mediainit(struct wm_softc *);
496 static int wm_gmii_mediachange(struct ifnet *);
497 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
498
499 static int wm_match(struct device *, struct cfdata *, void *);
500 static void wm_attach(struct device *, struct device *, void *);
501
502 CFATTACH_DECL(wm, sizeof(struct wm_softc),
503 wm_match, wm_attach, NULL, NULL);
504
505 static void wm_82547_txfifo_stall(void *);
506
507 /*
508 * Devices supported by this driver.
509 */
510 static const struct wm_product {
511 pci_vendor_id_t wmp_vendor;
512 pci_product_id_t wmp_product;
513 const char *wmp_name;
514 wm_chip_type wmp_type;
515 int wmp_flags;
516 #define WMP_F_1000X 0x01
517 #define WMP_F_1000T 0x02
518 } wm_products[] = {
519 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
520 "Intel i82542 1000BASE-X Ethernet",
521 WM_T_82542_2_1, WMP_F_1000X },
522
523 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
524 "Intel i82543GC 1000BASE-X Ethernet",
525 WM_T_82543, WMP_F_1000X },
526
527 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
528 "Intel i82543GC 1000BASE-T Ethernet",
529 WM_T_82543, WMP_F_1000T },
530
531 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
532 "Intel i82544EI 1000BASE-T Ethernet",
533 WM_T_82544, WMP_F_1000T },
534
535 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
536 "Intel i82544EI 1000BASE-X Ethernet",
537 WM_T_82544, WMP_F_1000X },
538
539 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
540 "Intel i82544GC 1000BASE-T Ethernet",
541 WM_T_82544, WMP_F_1000T },
542
543 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
544 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
545 WM_T_82544, WMP_F_1000T },
546
547 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
548 "Intel i82540EM 1000BASE-T Ethernet",
549 WM_T_82540, WMP_F_1000T },
550
551 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
552 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
553 WM_T_82540, WMP_F_1000T },
554
555 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
556 "Intel i82540EP 1000BASE-T Ethernet",
557 WM_T_82540, WMP_F_1000T },
558
559 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
560 "Intel i82540EP 1000BASE-T Ethernet",
561 WM_T_82540, WMP_F_1000T },
562
563 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
564 "Intel i82540EP 1000BASE-T Ethernet",
565 WM_T_82540, WMP_F_1000T },
566
567 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
568 "Intel i82545EM 1000BASE-T Ethernet",
569 WM_T_82545, WMP_F_1000T },
570
571 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
572 "Intel i82545GM 1000BASE-T Ethernet",
573 WM_T_82545_3, WMP_F_1000T },
574
575 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
576 "Intel i82545GM 1000BASE-X Ethernet",
577 WM_T_82545_3, WMP_F_1000X },
578 #if 0
579 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
580 "Intel i82545GM Gigabit Ethernet (SERDES)",
581 WM_T_82545_3, WMP_F_SERDES },
582 #endif
583 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
584 "Intel i82546EB 1000BASE-T Ethernet",
585 WM_T_82546, WMP_F_1000T },
586
587 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
588 "Intel i82546EB 1000BASE-T Ethernet",
589 WM_T_82546, WMP_F_1000T },
590
591 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
592 "Intel i82545EM 1000BASE-X Ethernet",
593 WM_T_82545, WMP_F_1000X },
594
595 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
596 "Intel i82546EB 1000BASE-X Ethernet",
597 WM_T_82546, WMP_F_1000X },
598
599 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
600 "Intel i82546GB 1000BASE-T Ethernet",
601 WM_T_82546_3, WMP_F_1000T },
602
603 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
604 "Intel i82546GB 1000BASE-X Ethernet",
605 WM_T_82546_3, WMP_F_1000X },
606 #if 0
607 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
608 "Intel i82546GB Gigabit Ethernet (SERDES)",
609 WM_T_82546_3, WMP_F_SERDES },
610 #endif
611 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
612 "Intel i82541EI 1000BASE-T Ethernet",
613 WM_T_82541, WMP_F_1000T },
614
615 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
616 "Intel i82541EI Mobile 1000BASE-T Ethernet",
617 WM_T_82541, WMP_F_1000T },
618
619 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
620 "Intel i82541ER 1000BASE-T Ethernet",
621 WM_T_82541_2, WMP_F_1000T },
622
623 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
624 "Intel i82541GI 1000BASE-T Ethernet",
625 WM_T_82541_2, WMP_F_1000T },
626
627 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
628 "Intel i82541GI Mobile 1000BASE-T Ethernet",
629 WM_T_82541_2, WMP_F_1000T },
630
631 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
632 "Intel i82547EI 1000BASE-T Ethernet",
633 WM_T_82547, WMP_F_1000T },
634
635 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
636 "Intel i82547GI 1000BASE-T Ethernet",
637 WM_T_82547_2, WMP_F_1000T },
638 { 0, 0,
639 NULL,
640 0, 0 },
641 };
642
643 #ifdef WM_EVENT_COUNTERS
644 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
645 #endif /* WM_EVENT_COUNTERS */
646
647 #if 0 /* Not currently used */
648 static __inline uint32_t
649 wm_io_read(struct wm_softc *sc, int reg)
650 {
651
652 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
653 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
654 }
655 #endif
656
657 static __inline void
658 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
659 {
660
661 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
662 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
663 }
664
665 static __inline void
666 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
667 {
668 wa->wa_low = htole32(v & 0xffffffffU);
669 if (sizeof(bus_addr_t) == 8)
670 wa->wa_high = htole32((uint64_t) v >> 32);
671 else
672 wa->wa_high = 0;
673 }
674
675 static const struct wm_product *
676 wm_lookup(const struct pci_attach_args *pa)
677 {
678 const struct wm_product *wmp;
679
680 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
681 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
682 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
683 return (wmp);
684 }
685 return (NULL);
686 }
687
688 static int
689 wm_match(struct device *parent, struct cfdata *cf, void *aux)
690 {
691 struct pci_attach_args *pa = aux;
692
693 if (wm_lookup(pa) != NULL)
694 return (1);
695
696 return (0);
697 }
698
699 static void
700 wm_attach(struct device *parent, struct device *self, void *aux)
701 {
702 struct wm_softc *sc = (void *) self;
703 struct pci_attach_args *pa = aux;
704 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
705 pci_chipset_tag_t pc = pa->pa_pc;
706 pci_intr_handle_t ih;
707 size_t cdata_size;
708 const char *intrstr = NULL;
709 const char *eetype;
710 bus_space_tag_t memt;
711 bus_space_handle_t memh;
712 bus_dma_segment_t seg;
713 int memh_valid;
714 int i, rseg, error;
715 const struct wm_product *wmp;
716 uint8_t enaddr[ETHER_ADDR_LEN];
717 uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
718 pcireg_t preg, memtype;
719 uint32_t reg;
720 int pmreg;
721
722 callout_init(&sc->sc_tick_ch);
723
724 wmp = wm_lookup(pa);
725 if (wmp == NULL) {
726 printf("\n");
727 panic("wm_attach: impossible");
728 }
729
730 if (pci_dma64_available(pa))
731 sc->sc_dmat = pa->pa_dmat64;
732 else
733 sc->sc_dmat = pa->pa_dmat;
734
735 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
736 aprint_naive(": Ethernet controller\n");
737 aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
738
739 sc->sc_type = wmp->wmp_type;
740 if (sc->sc_type < WM_T_82543) {
741 if (preg < 2) {
742 aprint_error("%s: i82542 must be at least rev. 2\n",
743 sc->sc_dev.dv_xname);
744 return;
745 }
746 if (preg < 3)
747 sc->sc_type = WM_T_82542_2_0;
748 }
749
750 /*
751 * Map the device. All devices support memory-mapped acccess,
752 * and it is really required for normal operation.
753 */
754 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
755 switch (memtype) {
756 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
757 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
758 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
759 memtype, 0, &memt, &memh, NULL, NULL) == 0);
760 break;
761 default:
762 memh_valid = 0;
763 }
764
765 if (memh_valid) {
766 sc->sc_st = memt;
767 sc->sc_sh = memh;
768 } else {
769 aprint_error("%s: unable to map device registers\n",
770 sc->sc_dev.dv_xname);
771 return;
772 }
773
774 /*
775 * In addition, i82544 and later support I/O mapped indirect
776 * register access. It is not desirable (nor supported in
777 * this driver) to use it for normal operation, though it is
778 * required to work around bugs in some chip versions.
779 */
780 if (sc->sc_type >= WM_T_82544) {
781 /* First we have to find the I/O BAR. */
782 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
783 if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
784 PCI_MAPREG_TYPE_IO)
785 break;
786 }
787 if (i == PCI_MAPREG_END)
788 aprint_error("%s: WARNING: unable to find I/O BAR\n",
789 sc->sc_dev.dv_xname);
790 else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
791 0, &sc->sc_iot, &sc->sc_ioh,
792 NULL, NULL) == 0)
793 sc->sc_flags |= WM_F_IOH_VALID;
794 else
795 aprint_error("%s: WARNING: unable to map I/O space\n",
796 sc->sc_dev.dv_xname);
797 }
798
799 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
800 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
801 preg |= PCI_COMMAND_MASTER_ENABLE;
802 if (sc->sc_type < WM_T_82542_2_1)
803 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
804 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
805
806 /* Get it out of power save mode, if needed. */
807 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
808 preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
809 PCI_PMCSR_STATE_MASK;
810 if (preg == PCI_PMCSR_STATE_D3) {
811 /*
812 * The card has lost all configuration data in
813 * this state, so punt.
814 */
815 aprint_error("%s: unable to wake from power state D3\n",
816 sc->sc_dev.dv_xname);
817 return;
818 }
819 if (preg != PCI_PMCSR_STATE_D0) {
820 aprint_normal("%s: waking up from power state D%d\n",
821 sc->sc_dev.dv_xname, preg);
822 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
823 PCI_PMCSR_STATE_D0);
824 }
825 }
826
827 /*
828 * Map and establish our interrupt.
829 */
830 if (pci_intr_map(pa, &ih)) {
831 aprint_error("%s: unable to map interrupt\n",
832 sc->sc_dev.dv_xname);
833 return;
834 }
835 intrstr = pci_intr_string(pc, ih);
836 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
837 if (sc->sc_ih == NULL) {
838 aprint_error("%s: unable to establish interrupt",
839 sc->sc_dev.dv_xname);
840 if (intrstr != NULL)
841 aprint_normal(" at %s", intrstr);
842 aprint_normal("\n");
843 return;
844 }
845 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
846
847 /*
848 * Determine a few things about the bus we're connected to.
849 */
850 if (sc->sc_type < WM_T_82543) {
851 /* We don't really know the bus characteristics here. */
852 sc->sc_bus_speed = 33;
853 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
854 /*
855 * CSA (Communication Streaming Architecture) is about as fast
856 * a 32-bit 66MHz PCI Bus.
857 */
858 sc->sc_flags |= WM_F_CSA;
859 sc->sc_bus_speed = 66;
860 aprint_verbose("%s: Communication Streaming Architecture\n",
861 sc->sc_dev.dv_xname);
862 if (sc->sc_type == WM_T_82547) {
863 callout_init(&sc->sc_txfifo_ch);
864 callout_setfunc(&sc->sc_txfifo_ch,
865 wm_82547_txfifo_stall, sc);
866 aprint_verbose("%s: using 82547 Tx FIFO stall "
867 "work-around\n", sc->sc_dev.dv_xname);
868 }
869 } else {
870 reg = CSR_READ(sc, WMREG_STATUS);
871 if (reg & STATUS_BUS64)
872 sc->sc_flags |= WM_F_BUS64;
873 if (sc->sc_type >= WM_T_82544 &&
874 (reg & STATUS_PCIX_MODE) != 0) {
875 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
876
877 sc->sc_flags |= WM_F_PCIX;
878 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
879 PCI_CAP_PCIX,
880 &sc->sc_pcix_offset, NULL) == 0)
881 aprint_error("%s: unable to find PCIX "
882 "capability\n", sc->sc_dev.dv_xname);
883 else if (sc->sc_type != WM_T_82545_3 &&
884 sc->sc_type != WM_T_82546_3) {
885 /*
886 * Work around a problem caused by the BIOS
887 * setting the max memory read byte count
888 * incorrectly.
889 */
890 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
891 sc->sc_pcix_offset + PCI_PCIX_CMD);
892 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
893 sc->sc_pcix_offset + PCI_PCIX_STATUS);
894
895 bytecnt =
896 (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
897 PCI_PCIX_CMD_BYTECNT_SHIFT;
898 maxb =
899 (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
900 PCI_PCIX_STATUS_MAXB_SHIFT;
901 if (bytecnt > maxb) {
902 aprint_verbose("%s: resetting PCI-X "
903 "MMRBC: %d -> %d\n",
904 sc->sc_dev.dv_xname,
905 512 << bytecnt, 512 << maxb);
906 pcix_cmd = (pcix_cmd &
907 ~PCI_PCIX_CMD_BYTECNT_MASK) |
908 (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
909 pci_conf_write(pa->pa_pc, pa->pa_tag,
910 sc->sc_pcix_offset + PCI_PCIX_CMD,
911 pcix_cmd);
912 }
913 }
914 }
915 /*
916 * The quad port adapter is special; it has a PCIX-PCIX
917 * bridge on the board, and can run the secondary bus at
918 * a higher speed.
919 */
920 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
921 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
922 : 66;
923 } else if (sc->sc_flags & WM_F_PCIX) {
924 switch (reg & STATUS_PCIXSPD_MASK) {
925 case STATUS_PCIXSPD_50_66:
926 sc->sc_bus_speed = 66;
927 break;
928 case STATUS_PCIXSPD_66_100:
929 sc->sc_bus_speed = 100;
930 break;
931 case STATUS_PCIXSPD_100_133:
932 sc->sc_bus_speed = 133;
933 break;
934 default:
935 aprint_error(
936 "%s: unknown PCIXSPD %d; assuming 66MHz\n",
937 sc->sc_dev.dv_xname,
938 reg & STATUS_PCIXSPD_MASK);
939 sc->sc_bus_speed = 66;
940 }
941 } else
942 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
943 aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
944 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
945 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
946 }
947
948 /*
949 * Allocate the control data structures, and create and load the
950 * DMA map for it.
951 *
952 * NOTE: All Tx descriptors must be in the same 4G segment of
953 * memory. So must Rx descriptors. We simplify by allocating
954 * both sets within the same 4G segment.
955 */
956 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
957 WM_NTXDESC_82542 : WM_NTXDESC_82544;
958 cdata_size = sc->sc_type < WM_T_82544 ?
959 sizeof(struct wm_control_data_82542) :
960 sizeof(struct wm_control_data_82544);
961 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
962 (bus_size_t) 0x100000000ULL,
963 &seg, 1, &rseg, 0)) != 0) {
964 aprint_error(
965 "%s: unable to allocate control data, error = %d\n",
966 sc->sc_dev.dv_xname, error);
967 goto fail_0;
968 }
969
970 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
971 (caddr_t *)&sc->sc_control_data, 0)) != 0) {
972 aprint_error("%s: unable to map control data, error = %d\n",
973 sc->sc_dev.dv_xname, error);
974 goto fail_1;
975 }
976
977 if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
978 0, 0, &sc->sc_cddmamap)) != 0) {
979 aprint_error("%s: unable to create control data DMA map, "
980 "error = %d\n", sc->sc_dev.dv_xname, error);
981 goto fail_2;
982 }
983
984 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
985 sc->sc_control_data, cdata_size, NULL,
986 0)) != 0) {
987 aprint_error(
988 "%s: unable to load control data DMA map, error = %d\n",
989 sc->sc_dev.dv_xname, error);
990 goto fail_3;
991 }
992
993
994 /*
995 * Create the transmit buffer DMA maps.
996 */
997 WM_TXQUEUELEN(sc) =
998 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
999 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1000 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1001 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1002 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1003 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1004 aprint_error("%s: unable to create Tx DMA map %d, "
1005 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1006 goto fail_4;
1007 }
1008 }
1009
1010 /*
1011 * Create the receive buffer DMA maps.
1012 */
1013 for (i = 0; i < WM_NRXDESC; i++) {
1014 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1015 MCLBYTES, 0, 0,
1016 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1017 aprint_error("%s: unable to create Rx DMA map %d, "
1018 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1019 goto fail_5;
1020 }
1021 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1022 }
1023
1024 /*
1025 * Reset the chip to a known state.
1026 */
1027 wm_reset(sc);
1028
1029 /*
1030 * Get some information about the EEPROM.
1031 */
1032 if (sc->sc_type >= WM_T_82540)
1033 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1034 if (sc->sc_type <= WM_T_82544)
1035 sc->sc_ee_addrbits = 6;
1036 else if (sc->sc_type <= WM_T_82546_3) {
1037 reg = CSR_READ(sc, WMREG_EECD);
1038 if (reg & EECD_EE_SIZE)
1039 sc->sc_ee_addrbits = 8;
1040 else
1041 sc->sc_ee_addrbits = 6;
1042 } else if (sc->sc_type <= WM_T_82547_2) {
1043 reg = CSR_READ(sc, WMREG_EECD);
1044 if (reg & EECD_EE_TYPE) {
1045 sc->sc_flags |= WM_F_EEPROM_SPI;
1046 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1047 } else
1048 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1049 } else {
1050 /* Assume everything else is SPI. */
1051 reg = CSR_READ(sc, WMREG_EECD);
1052 sc->sc_flags |= WM_F_EEPROM_SPI;
1053 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1054 }
1055 if (sc->sc_flags & WM_F_EEPROM_SPI)
1056 eetype = "SPI";
1057 else
1058 eetype = "MicroWire";
1059 aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1060 sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1061 sc->sc_ee_addrbits, eetype);
1062
1063 /*
1064 * Read the Ethernet address from the EEPROM.
1065 */
1066 if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1067 sizeof(myea) / sizeof(myea[0]), myea)) {
1068 aprint_error("%s: unable to read Ethernet address\n",
1069 sc->sc_dev.dv_xname);
1070 return;
1071 }
1072 enaddr[0] = myea[0] & 0xff;
1073 enaddr[1] = myea[0] >> 8;
1074 enaddr[2] = myea[1] & 0xff;
1075 enaddr[3] = myea[1] >> 8;
1076 enaddr[4] = myea[2] & 0xff;
1077 enaddr[5] = myea[2] >> 8;
1078
1079 /*
1080 * Toggle the LSB of the MAC address on the second port
1081 * of the i82546.
1082 */
1083 if (sc->sc_type == WM_T_82546) {
1084 if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1085 enaddr[5] ^= 1;
1086 }
1087
1088 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1089 ether_sprintf(enaddr));
1090
1091 /*
1092 * Read the config info from the EEPROM, and set up various
1093 * bits in the control registers based on their contents.
1094 */
1095 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1096 aprint_error("%s: unable to read CFG1 from EEPROM\n",
1097 sc->sc_dev.dv_xname);
1098 return;
1099 }
1100 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1101 aprint_error("%s: unable to read CFG2 from EEPROM\n",
1102 sc->sc_dev.dv_xname);
1103 return;
1104 }
1105 if (sc->sc_type >= WM_T_82544) {
1106 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1107 aprint_error("%s: unable to read SWDPIN from EEPROM\n",
1108 sc->sc_dev.dv_xname);
1109 return;
1110 }
1111 }
1112
1113 if (cfg1 & EEPROM_CFG1_ILOS)
1114 sc->sc_ctrl |= CTRL_ILOS;
1115 if (sc->sc_type >= WM_T_82544) {
1116 sc->sc_ctrl |=
1117 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1118 CTRL_SWDPIO_SHIFT;
1119 sc->sc_ctrl |=
1120 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1121 CTRL_SWDPINS_SHIFT;
1122 } else {
1123 sc->sc_ctrl |=
1124 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1125 CTRL_SWDPIO_SHIFT;
1126 }
1127
1128 #if 0
1129 if (sc->sc_type >= WM_T_82544) {
1130 if (cfg1 & EEPROM_CFG1_IPS0)
1131 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1132 if (cfg1 & EEPROM_CFG1_IPS1)
1133 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1134 sc->sc_ctrl_ext |=
1135 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1136 CTRL_EXT_SWDPIO_SHIFT;
1137 sc->sc_ctrl_ext |=
1138 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1139 CTRL_EXT_SWDPINS_SHIFT;
1140 } else {
1141 sc->sc_ctrl_ext |=
1142 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1143 CTRL_EXT_SWDPIO_SHIFT;
1144 }
1145 #endif
1146
1147 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1148 #if 0
1149 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1150 #endif
1151
1152 /*
1153 * Set up some register offsets that are different between
1154 * the i82542 and the i82543 and later chips.
1155 */
1156 if (sc->sc_type < WM_T_82543) {
1157 sc->sc_rdt_reg = WMREG_OLD_RDT0;
1158 sc->sc_tdt_reg = WMREG_OLD_TDT;
1159 } else {
1160 sc->sc_rdt_reg = WMREG_RDT;
1161 sc->sc_tdt_reg = WMREG_TDT;
1162 }
1163
1164 /*
1165 * Determine if we're TBI or GMII mode, and initialize the
1166 * media structures accordingly.
1167 */
1168 if (sc->sc_type < WM_T_82543 ||
1169 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1170 if (wmp->wmp_flags & WMP_F_1000T)
1171 aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1172 "product!\n", sc->sc_dev.dv_xname);
1173 wm_tbi_mediainit(sc);
1174 } else {
1175 if (wmp->wmp_flags & WMP_F_1000X)
1176 aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1177 "product!\n", sc->sc_dev.dv_xname);
1178 wm_gmii_mediainit(sc);
1179 }
1180
1181 ifp = &sc->sc_ethercom.ec_if;
1182 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1183 ifp->if_softc = sc;
1184 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1185 ifp->if_ioctl = wm_ioctl;
1186 ifp->if_start = wm_start;
1187 ifp->if_watchdog = wm_watchdog;
1188 ifp->if_init = wm_init;
1189 ifp->if_stop = wm_stop;
1190 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1191 IFQ_SET_READY(&ifp->if_snd);
1192
1193 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1194
1195 /*
1196 * If we're a i82543 or greater, we can support VLANs.
1197 */
1198 if (sc->sc_type >= WM_T_82543)
1199 sc->sc_ethercom.ec_capabilities |=
1200 ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1201
1202 /*
1203 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
1204 * on i82543 and later.
1205 */
1206 if (sc->sc_type >= WM_T_82543)
1207 ifp->if_capabilities |=
1208 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
1209
1210 /*
1211 * Attach the interface.
1212 */
1213 if_attach(ifp);
1214 ether_ifattach(ifp, enaddr);
1215 #if NRND > 0
1216 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1217 RND_TYPE_NET, 0);
1218 #endif
1219
1220 #ifdef WM_EVENT_COUNTERS
1221 /* Attach event counters. */
1222 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1223 NULL, sc->sc_dev.dv_xname, "txsstall");
1224 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1225 NULL, sc->sc_dev.dv_xname, "txdstall");
1226 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1227 NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1228 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1229 NULL, sc->sc_dev.dv_xname, "txdw");
1230 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1231 NULL, sc->sc_dev.dv_xname, "txqe");
1232 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1233 NULL, sc->sc_dev.dv_xname, "rxintr");
1234 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1235 NULL, sc->sc_dev.dv_xname, "linkintr");
1236
1237 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1238 NULL, sc->sc_dev.dv_xname, "rxipsum");
1239 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1240 NULL, sc->sc_dev.dv_xname, "rxtusum");
1241 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1242 NULL, sc->sc_dev.dv_xname, "txipsum");
1243 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1244 NULL, sc->sc_dev.dv_xname, "txtusum");
1245
1246 evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
1247 NULL, sc->sc_dev.dv_xname, "txctx init");
1248 evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
1249 NULL, sc->sc_dev.dv_xname, "txctx hit");
1250 evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
1251 NULL, sc->sc_dev.dv_xname, "txctx miss");
1252
1253 for (i = 0; i < WM_NTXSEGS; i++) {
1254 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1255 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1256 NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1257 }
1258
1259 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1260 NULL, sc->sc_dev.dv_xname, "txdrop");
1261
1262 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1263 NULL, sc->sc_dev.dv_xname, "tu");
1264
1265 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1266 NULL, sc->sc_dev.dv_xname, "tx_xoff");
1267 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1268 NULL, sc->sc_dev.dv_xname, "tx_xon");
1269 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1270 NULL, sc->sc_dev.dv_xname, "rx_xoff");
1271 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1272 NULL, sc->sc_dev.dv_xname, "rx_xon");
1273 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1274 NULL, sc->sc_dev.dv_xname, "rx_macctl");
1275 #endif /* WM_EVENT_COUNTERS */
1276
1277 /*
1278 * Make sure the interface is shutdown during reboot.
1279 */
1280 sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1281 if (sc->sc_sdhook == NULL)
1282 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1283 sc->sc_dev.dv_xname);
1284 return;
1285
1286 /*
1287 * Free any resources we've allocated during the failed attach
1288 * attempt. Do this in reverse order and fall through.
1289 */
1290 fail_5:
1291 for (i = 0; i < WM_NRXDESC; i++) {
1292 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1293 bus_dmamap_destroy(sc->sc_dmat,
1294 sc->sc_rxsoft[i].rxs_dmamap);
1295 }
1296 fail_4:
1297 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1298 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1299 bus_dmamap_destroy(sc->sc_dmat,
1300 sc->sc_txsoft[i].txs_dmamap);
1301 }
1302 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1303 fail_3:
1304 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1305 fail_2:
1306 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1307 cdata_size);
1308 fail_1:
1309 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1310 fail_0:
1311 return;
1312 }
1313
1314 /*
1315 * wm_shutdown:
1316 *
1317 * Make sure the interface is stopped at reboot time.
1318 */
1319 static void
1320 wm_shutdown(void *arg)
1321 {
1322 struct wm_softc *sc = arg;
1323
1324 wm_stop(&sc->sc_ethercom.ec_if, 1);
1325 }
1326
1327 /*
1328 * wm_tx_cksum:
1329 *
1330 * Set up TCP/IP checksumming parameters for the
1331 * specified packet.
1332 */
1333 static int
1334 wm_tx_cksum(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1335 uint8_t *fieldsp)
1336 {
1337 struct mbuf *m0 = txs->txs_mbuf;
1338 struct livengood_tcpip_ctxdesc *t;
1339 uint32_t ipcs, tucs;
1340 struct ip *ip;
1341 struct ether_header *eh;
1342 int offset, iphl;
1343 uint8_t fields = 0;
1344
1345 /*
1346 * XXX It would be nice if the mbuf pkthdr had offset
1347 * fields for the protocol headers.
1348 */
1349
1350 eh = mtod(m0, struct ether_header *);
1351 switch (htons(eh->ether_type)) {
1352 case ETHERTYPE_IP:
1353 iphl = sizeof(struct ip);
1354 offset = ETHER_HDR_LEN;
1355 break;
1356
1357 case ETHERTYPE_VLAN:
1358 iphl = sizeof(struct ip);
1359 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1360 break;
1361
1362 default:
1363 /*
1364 * Don't support this protocol or encapsulation.
1365 */
1366 *fieldsp = 0;
1367 *cmdp = 0;
1368 return (0);
1369 }
1370
1371 if (m0->m_len < (offset + iphl)) {
1372 if ((txs->txs_mbuf = m_pullup(m0, offset + iphl)) == NULL) {
1373 log(LOG_ERR, "%s: wm_tx_cksum: mbuf allocation failed, "
1374 "packet dropped\n", sc->sc_dev.dv_xname);
1375 return (ENOMEM);
1376 }
1377 m0 = txs->txs_mbuf;
1378 }
1379
1380 ip = (struct ip *) (mtod(m0, caddr_t) + offset);
1381 iphl = ip->ip_hl << 2;
1382
1383 /*
1384 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1385 * offload feature, if we load the context descriptor, we
1386 * MUST provide valid values for IPCSS and TUCSS fields.
1387 */
1388
1389 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1390 WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1391 fields |= WTX_IXSM;
1392 ipcs = WTX_TCPIP_IPCSS(offset) |
1393 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1394 WTX_TCPIP_IPCSE(offset + iphl - 1);
1395 } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1396 /* Use the cached value. */
1397 ipcs = sc->sc_txctx_ipcs;
1398 } else {
1399 /* Just initialize it to the likely value anyway. */
1400 ipcs = WTX_TCPIP_IPCSS(offset) |
1401 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1402 WTX_TCPIP_IPCSE(offset + iphl - 1);
1403 }
1404
1405 offset += iphl;
1406
1407 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1408 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1409 fields |= WTX_TXSM;
1410 tucs = WTX_TCPIP_TUCSS(offset) |
1411 WTX_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
1412 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1413 } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1414 /* Use the cached value. */
1415 tucs = sc->sc_txctx_tucs;
1416 } else {
1417 /* Just initialize it to a valid TCP context. */
1418 tucs = WTX_TCPIP_TUCSS(offset) |
1419 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1420 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1421 }
1422
1423 if (sc->sc_txctx_ipcs == ipcs &&
1424 sc->sc_txctx_tucs == tucs) {
1425 /* Cached context is fine. */
1426 WM_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1427 } else {
1428 /* Fill in the context descriptor. */
1429 #ifdef WM_EVENT_COUNTERS
1430 if (sc->sc_txctx_ipcs == 0xffffffff &&
1431 sc->sc_txctx_tucs == 0xffffffff)
1432 WM_EVCNT_INCR(&sc->sc_ev_txctx_init);
1433 else
1434 WM_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1435 #endif
1436 t = (struct livengood_tcpip_ctxdesc *)
1437 &sc->sc_txdescs[sc->sc_txnext];
1438 t->tcpip_ipcs = htole32(ipcs);
1439 t->tcpip_tucs = htole32(tucs);
1440 t->tcpip_cmdlen = htole32(WTX_CMD_DEXT | WTX_DTYP_C);
1441 t->tcpip_seg = 0;
1442 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1443
1444 sc->sc_txctx_ipcs = ipcs;
1445 sc->sc_txctx_tucs = tucs;
1446
1447 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1448 txs->txs_ndesc++;
1449 }
1450
1451 *cmdp = WTX_CMD_DEXT | WTX_DTYP_D;
1452 *fieldsp = fields;
1453
1454 return (0);
1455 }
1456
1457 static void
1458 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1459 {
1460 struct mbuf *m;
1461 int i;
1462
1463 log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1464 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1465 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1466 "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1467 m->m_data, m->m_len, m->m_flags);
1468 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1469 i, i == 1 ? "" : "s");
1470 }
1471
1472 /*
1473 * wm_82547_txfifo_stall:
1474 *
1475 * Callout used to wait for the 82547 Tx FIFO to drain,
1476 * reset the FIFO pointers, and restart packet transmission.
1477 */
1478 static void
1479 wm_82547_txfifo_stall(void *arg)
1480 {
1481 struct wm_softc *sc = arg;
1482 int s;
1483
1484 s = splnet();
1485
1486 if (sc->sc_txfifo_stall) {
1487 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1488 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1489 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1490 /*
1491 * Packets have drained. Stop transmitter, reset
1492 * FIFO pointers, restart transmitter, and kick
1493 * the packet queue.
1494 */
1495 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1496 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1497 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1498 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1499 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1500 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1501 CSR_WRITE(sc, WMREG_TCTL, tctl);
1502 CSR_WRITE_FLUSH(sc);
1503
1504 sc->sc_txfifo_head = 0;
1505 sc->sc_txfifo_stall = 0;
1506 wm_start(&sc->sc_ethercom.ec_if);
1507 } else {
1508 /*
1509 * Still waiting for packets to drain; try again in
1510 * another tick.
1511 */
1512 callout_schedule(&sc->sc_txfifo_ch, 1);
1513 }
1514 }
1515
1516 splx(s);
1517 }
1518
1519 /*
1520 * wm_82547_txfifo_bugchk:
1521 *
1522 * Check for bug condition in the 82547 Tx FIFO. We need to
1523 * prevent enqueueing a packet that would wrap around the end
1524 * if the Tx FIFO ring buffer, otherwise the chip will croak.
1525 *
1526 * We do this by checking the amount of space before the end
1527 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
1528 * the Tx FIFO, wait for all remaining packets to drain, reset
1529 * the internal FIFO pointers to the beginning, and restart
1530 * transmission on the interface.
1531 */
1532 #define WM_FIFO_HDR 0x10
1533 #define WM_82547_PAD_LEN 0x3e0
1534 static int
1535 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1536 {
1537 int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1538 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1539
1540 /* Just return if already stalled. */
1541 if (sc->sc_txfifo_stall)
1542 return (1);
1543
1544 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1545 /* Stall only occurs in half-duplex mode. */
1546 goto send_packet;
1547 }
1548
1549 if (len >= WM_82547_PAD_LEN + space) {
1550 sc->sc_txfifo_stall = 1;
1551 callout_schedule(&sc->sc_txfifo_ch, 1);
1552 return (1);
1553 }
1554
1555 send_packet:
1556 sc->sc_txfifo_head += len;
1557 if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1558 sc->sc_txfifo_head -= sc->sc_txfifo_size;
1559
1560 return (0);
1561 }
1562
1563 /*
1564 * wm_start: [ifnet interface function]
1565 *
1566 * Start packet transmission on the interface.
1567 */
1568 static void
1569 wm_start(struct ifnet *ifp)
1570 {
1571 struct wm_softc *sc = ifp->if_softc;
1572 struct mbuf *m0;
1573 #if 0 /* XXXJRT */
1574 struct m_tag *mtag;
1575 #endif
1576 struct wm_txsoft *txs;
1577 bus_dmamap_t dmamap;
1578 int error, nexttx, lasttx = -1, ofree, seg, segs_needed;
1579 bus_addr_t curaddr;
1580 bus_size_t seglen, curlen;
1581 uint32_t cksumcmd;
1582 uint8_t cksumfields;
1583
1584 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1585 return;
1586
1587 /*
1588 * Remember the previous number of free descriptors.
1589 */
1590 ofree = sc->sc_txfree;
1591
1592 /*
1593 * Loop through the send queue, setting up transmit descriptors
1594 * until we drain the queue, or use up all available transmit
1595 * descriptors.
1596 */
1597 for (;;) {
1598 /* Grab a packet off the queue. */
1599 IFQ_POLL(&ifp->if_snd, m0);
1600 if (m0 == NULL)
1601 break;
1602
1603 DPRINTF(WM_DEBUG_TX,
1604 ("%s: TX: have packet to transmit: %p\n",
1605 sc->sc_dev.dv_xname, m0));
1606
1607 /* Get a work queue entry. */
1608 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1609 wm_txintr(sc);
1610 if (sc->sc_txsfree == 0) {
1611 DPRINTF(WM_DEBUG_TX,
1612 ("%s: TX: no free job descriptors\n",
1613 sc->sc_dev.dv_xname));
1614 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1615 break;
1616 }
1617 }
1618
1619 txs = &sc->sc_txsoft[sc->sc_txsnext];
1620 dmamap = txs->txs_dmamap;
1621
1622 /*
1623 * Load the DMA map. If this fails, the packet either
1624 * didn't fit in the allotted number of segments, or we
1625 * were short on resources. For the too-many-segments
1626 * case, we simply report an error and drop the packet,
1627 * since we can't sanely copy a jumbo packet to a single
1628 * buffer.
1629 */
1630 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1631 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1632 if (error) {
1633 if (error == EFBIG) {
1634 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1635 log(LOG_ERR, "%s: Tx packet consumes too many "
1636 "DMA segments, dropping...\n",
1637 sc->sc_dev.dv_xname);
1638 IFQ_DEQUEUE(&ifp->if_snd, m0);
1639 wm_dump_mbuf_chain(sc, m0);
1640 m_freem(m0);
1641 continue;
1642 }
1643 /*
1644 * Short on resources, just stop for now.
1645 */
1646 DPRINTF(WM_DEBUG_TX,
1647 ("%s: TX: dmamap load failed: %d\n",
1648 sc->sc_dev.dv_xname, error));
1649 break;
1650 }
1651
1652 segs_needed = dmamap->dm_nsegs;
1653
1654 /*
1655 * Ensure we have enough descriptors free to describe
1656 * the packet. Note, we always reserve one descriptor
1657 * at the end of the ring due to the semantics of the
1658 * TDT register, plus one more in the event we need
1659 * to re-load checksum offload context.
1660 */
1661 if (segs_needed > sc->sc_txfree - 2) {
1662 /*
1663 * Not enough free descriptors to transmit this
1664 * packet. We haven't committed anything yet,
1665 * so just unload the DMA map, put the packet
1666 * pack on the queue, and punt. Notify the upper
1667 * layer that there are no more slots left.
1668 */
1669 DPRINTF(WM_DEBUG_TX,
1670 ("%s: TX: need %d (%) descriptors, have %d\n",
1671 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1672 sc->sc_txfree - 1));
1673 ifp->if_flags |= IFF_OACTIVE;
1674 bus_dmamap_unload(sc->sc_dmat, dmamap);
1675 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1676 break;
1677 }
1678
1679 /*
1680 * Check for 82547 Tx FIFO bug. We need to do this
1681 * once we know we can transmit the packet, since we
1682 * do some internal FIFO space accounting here.
1683 */
1684 if (sc->sc_type == WM_T_82547 &&
1685 wm_82547_txfifo_bugchk(sc, m0)) {
1686 DPRINTF(WM_DEBUG_TX,
1687 ("%s: TX: 82547 Tx FIFO bug detected\n",
1688 sc->sc_dev.dv_xname));
1689 ifp->if_flags |= IFF_OACTIVE;
1690 bus_dmamap_unload(sc->sc_dmat, dmamap);
1691 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1692 break;
1693 }
1694
1695 IFQ_DEQUEUE(&ifp->if_snd, m0);
1696
1697 /*
1698 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1699 */
1700
1701 DPRINTF(WM_DEBUG_TX,
1702 ("%s: TX: packet has %d (%d) DMA segments\n",
1703 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1704
1705 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1706
1707 /*
1708 * Store a pointer to the packet so that we can free it
1709 * later.
1710 *
1711 * Initially, we consider the number of descriptors the
1712 * packet uses the number of DMA segments. This may be
1713 * incremented by 1 if we do checksum offload (a descriptor
1714 * is used to set the checksum context).
1715 */
1716 txs->txs_mbuf = m0;
1717 txs->txs_firstdesc = sc->sc_txnext;
1718 txs->txs_ndesc = segs_needed;
1719
1720 /*
1721 * Set up checksum offload parameters for
1722 * this packet.
1723 */
1724 if (m0->m_pkthdr.csum_flags &
1725 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1726 if (wm_tx_cksum(sc, txs, &cksumcmd,
1727 &cksumfields) != 0) {
1728 /* Error message already displayed. */
1729 bus_dmamap_unload(sc->sc_dmat, dmamap);
1730 continue;
1731 }
1732 } else {
1733 cksumcmd = 0;
1734 cksumfields = 0;
1735 }
1736
1737 cksumcmd |= WTX_CMD_IDE;
1738
1739 /* Sync the DMA map. */
1740 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1741 BUS_DMASYNC_PREWRITE);
1742
1743 /*
1744 * Initialize the transmit descriptor.
1745 */
1746 for (nexttx = sc->sc_txnext, seg = 0;
1747 seg < dmamap->dm_nsegs; seg++) {
1748 for (seglen = dmamap->dm_segs[seg].ds_len,
1749 curaddr = dmamap->dm_segs[seg].ds_addr;
1750 seglen != 0;
1751 curaddr += curlen, seglen -= curlen,
1752 nexttx = WM_NEXTTX(sc, nexttx)) {
1753 curlen = seglen;
1754
1755 wm_set_dma_addr(
1756 &sc->sc_txdescs[nexttx].wtx_addr,
1757 curaddr);
1758 sc->sc_txdescs[nexttx].wtx_cmdlen =
1759 htole32(cksumcmd | curlen);
1760 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
1761 0;
1762 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1763 cksumfields;
1764 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1765 lasttx = nexttx;
1766
1767 DPRINTF(WM_DEBUG_TX,
1768 ("%s: TX: desc %d: low 0x%08x, "
1769 "len 0x%04x\n",
1770 sc->sc_dev.dv_xname, nexttx,
1771 curaddr & 0xffffffffU, curlen, curlen));
1772 }
1773 }
1774
1775 KASSERT(lasttx != -1);
1776
1777 /*
1778 * Set up the command byte on the last descriptor of
1779 * the packet. If we're in the interrupt delay window,
1780 * delay the interrupt.
1781 */
1782 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1783 htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS);
1784
1785 #if 0 /* XXXJRT */
1786 /*
1787 * If VLANs are enabled and the packet has a VLAN tag, set
1788 * up the descriptor to encapsulate the packet for us.
1789 *
1790 * This is only valid on the last descriptor of the packet.
1791 */
1792 if (sc->sc_ethercom.ec_nvlans != 0 &&
1793 (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1794 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1795 htole32(WTX_CMD_VLE);
1796 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
1797 = htole16(*(u_int *)(mtag + 1) & 0xffff);
1798 }
1799 #endif /* XXXJRT */
1800
1801 txs->txs_lastdesc = lasttx;
1802
1803 DPRINTF(WM_DEBUG_TX,
1804 ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1805 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
1806
1807 /* Sync the descriptors we're using. */
1808 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
1809 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1810
1811 /* Give the packet to the chip. */
1812 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1813
1814 DPRINTF(WM_DEBUG_TX,
1815 ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1816
1817 DPRINTF(WM_DEBUG_TX,
1818 ("%s: TX: finished transmitting packet, job %d\n",
1819 sc->sc_dev.dv_xname, sc->sc_txsnext));
1820
1821 /* Advance the tx pointer. */
1822 sc->sc_txfree -= txs->txs_ndesc;
1823 sc->sc_txnext = nexttx;
1824
1825 sc->sc_txsfree--;
1826 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
1827
1828 #if NBPFILTER > 0
1829 /* Pass the packet to any BPF listeners. */
1830 if (ifp->if_bpf)
1831 bpf_mtap(ifp->if_bpf, m0);
1832 #endif /* NBPFILTER > 0 */
1833 }
1834
1835 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1836 /* No more slots; notify upper layer. */
1837 ifp->if_flags |= IFF_OACTIVE;
1838 }
1839
1840 if (sc->sc_txfree != ofree) {
1841 /* Set a watchdog timer in case the chip flakes out. */
1842 ifp->if_timer = 5;
1843 }
1844 }
1845
1846 /*
1847 * wm_watchdog: [ifnet interface function]
1848 *
1849 * Watchdog timer handler.
1850 */
1851 static void
1852 wm_watchdog(struct ifnet *ifp)
1853 {
1854 struct wm_softc *sc = ifp->if_softc;
1855
1856 /*
1857 * Since we're using delayed interrupts, sweep up
1858 * before we report an error.
1859 */
1860 wm_txintr(sc);
1861
1862 if (sc->sc_txfree != WM_NTXDESC(sc)) {
1863 log(LOG_ERR,
1864 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1865 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1866 sc->sc_txnext);
1867 ifp->if_oerrors++;
1868
1869 /* Reset the interface. */
1870 (void) wm_init(ifp);
1871 }
1872
1873 /* Try to get more packets going. */
1874 wm_start(ifp);
1875 }
1876
1877 /*
1878 * wm_ioctl: [ifnet interface function]
1879 *
1880 * Handle control requests from the operator.
1881 */
1882 static int
1883 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1884 {
1885 struct wm_softc *sc = ifp->if_softc;
1886 struct ifreq *ifr = (struct ifreq *) data;
1887 int s, error;
1888
1889 s = splnet();
1890
1891 switch (cmd) {
1892 case SIOCSIFMEDIA:
1893 case SIOCGIFMEDIA:
1894 /* Flow control requires full-duplex mode. */
1895 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1896 (ifr->ifr_media & IFM_FDX) == 0)
1897 ifr->ifr_media &= ~IFM_ETH_FMASK;
1898 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1899 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1900 /* We can do both TXPAUSE and RXPAUSE. */
1901 ifr->ifr_media |=
1902 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1903 }
1904 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1905 }
1906 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1907 break;
1908 default:
1909 error = ether_ioctl(ifp, cmd, data);
1910 if (error == ENETRESET) {
1911 /*
1912 * Multicast list has changed; set the hardware filter
1913 * accordingly.
1914 */
1915 if (ifp->if_flags & IFF_RUNNING)
1916 wm_set_filter(sc);
1917 error = 0;
1918 }
1919 break;
1920 }
1921
1922 /* Try to get more packets going. */
1923 wm_start(ifp);
1924
1925 splx(s);
1926 return (error);
1927 }
1928
1929 /*
1930 * wm_intr:
1931 *
1932 * Interrupt service routine.
1933 */
1934 static int
1935 wm_intr(void *arg)
1936 {
1937 struct wm_softc *sc = arg;
1938 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1939 uint32_t icr;
1940 int wantinit, handled = 0;
1941
1942 for (wantinit = 0; wantinit == 0;) {
1943 icr = CSR_READ(sc, WMREG_ICR);
1944 if ((icr & sc->sc_icr) == 0)
1945 break;
1946
1947 #if 0 /*NRND > 0*/
1948 if (RND_ENABLED(&sc->rnd_source))
1949 rnd_add_uint32(&sc->rnd_source, icr);
1950 #endif
1951
1952 handled = 1;
1953
1954 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1955 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1956 DPRINTF(WM_DEBUG_RX,
1957 ("%s: RX: got Rx intr 0x%08x\n",
1958 sc->sc_dev.dv_xname,
1959 icr & (ICR_RXDMT0|ICR_RXT0)));
1960 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
1961 }
1962 #endif
1963 wm_rxintr(sc);
1964
1965 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1966 if (icr & ICR_TXDW) {
1967 DPRINTF(WM_DEBUG_TX,
1968 ("%s: TX: got TXDW interrupt\n",
1969 sc->sc_dev.dv_xname));
1970 WM_EVCNT_INCR(&sc->sc_ev_txdw);
1971 }
1972 #endif
1973 wm_txintr(sc);
1974
1975 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
1976 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
1977 wm_linkintr(sc, icr);
1978 }
1979
1980 if (icr & ICR_RXO) {
1981 log(LOG_WARNING, "%s: Receive overrun\n",
1982 sc->sc_dev.dv_xname);
1983 wantinit = 1;
1984 }
1985 }
1986
1987 if (handled) {
1988 if (wantinit)
1989 wm_init(ifp);
1990
1991 /* Try to get more packets going. */
1992 wm_start(ifp);
1993 }
1994
1995 return (handled);
1996 }
1997
1998 /*
1999 * wm_txintr:
2000 *
2001 * Helper; handle transmit interrupts.
2002 */
2003 static void
2004 wm_txintr(struct wm_softc *sc)
2005 {
2006 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2007 struct wm_txsoft *txs;
2008 uint8_t status;
2009 int i;
2010
2011 ifp->if_flags &= ~IFF_OACTIVE;
2012
2013 /*
2014 * Go through the Tx list and free mbufs for those
2015 * frames which have been transmitted.
2016 */
2017 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2018 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2019 txs = &sc->sc_txsoft[i];
2020
2021 DPRINTF(WM_DEBUG_TX,
2022 ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2023
2024 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2025 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2026
2027 status =
2028 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2029 if ((status & WTX_ST_DD) == 0) {
2030 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2031 BUS_DMASYNC_PREREAD);
2032 break;
2033 }
2034
2035 DPRINTF(WM_DEBUG_TX,
2036 ("%s: TX: job %d done: descs %d..%d\n",
2037 sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2038 txs->txs_lastdesc));
2039
2040 /*
2041 * XXX We should probably be using the statistics
2042 * XXX registers, but I don't know if they exist
2043 * XXX on chips before the i82544.
2044 */
2045
2046 #ifdef WM_EVENT_COUNTERS
2047 if (status & WTX_ST_TU)
2048 WM_EVCNT_INCR(&sc->sc_ev_tu);
2049 #endif /* WM_EVENT_COUNTERS */
2050
2051 if (status & (WTX_ST_EC|WTX_ST_LC)) {
2052 ifp->if_oerrors++;
2053 if (status & WTX_ST_LC)
2054 log(LOG_WARNING, "%s: late collision\n",
2055 sc->sc_dev.dv_xname);
2056 else if (status & WTX_ST_EC) {
2057 ifp->if_collisions += 16;
2058 log(LOG_WARNING, "%s: excessive collisions\n",
2059 sc->sc_dev.dv_xname);
2060 }
2061 } else
2062 ifp->if_opackets++;
2063
2064 sc->sc_txfree += txs->txs_ndesc;
2065 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2066 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2067 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2068 m_freem(txs->txs_mbuf);
2069 txs->txs_mbuf = NULL;
2070 }
2071
2072 /* Update the dirty transmit buffer pointer. */
2073 sc->sc_txsdirty = i;
2074 DPRINTF(WM_DEBUG_TX,
2075 ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2076
2077 /*
2078 * If there are no more pending transmissions, cancel the watchdog
2079 * timer.
2080 */
2081 if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2082 ifp->if_timer = 0;
2083 }
2084
2085 /*
2086 * wm_rxintr:
2087 *
2088 * Helper; handle receive interrupts.
2089 */
2090 static void
2091 wm_rxintr(struct wm_softc *sc)
2092 {
2093 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2094 struct wm_rxsoft *rxs;
2095 struct mbuf *m;
2096 int i, len;
2097 uint8_t status, errors;
2098
2099 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2100 rxs = &sc->sc_rxsoft[i];
2101
2102 DPRINTF(WM_DEBUG_RX,
2103 ("%s: RX: checking descriptor %d\n",
2104 sc->sc_dev.dv_xname, i));
2105
2106 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2107
2108 status = sc->sc_rxdescs[i].wrx_status;
2109 errors = sc->sc_rxdescs[i].wrx_errors;
2110 len = le16toh(sc->sc_rxdescs[i].wrx_len);
2111
2112 if ((status & WRX_ST_DD) == 0) {
2113 /*
2114 * We have processed all of the receive descriptors.
2115 */
2116 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2117 break;
2118 }
2119
2120 if (__predict_false(sc->sc_rxdiscard)) {
2121 DPRINTF(WM_DEBUG_RX,
2122 ("%s: RX: discarding contents of descriptor %d\n",
2123 sc->sc_dev.dv_xname, i));
2124 WM_INIT_RXDESC(sc, i);
2125 if (status & WRX_ST_EOP) {
2126 /* Reset our state. */
2127 DPRINTF(WM_DEBUG_RX,
2128 ("%s: RX: resetting rxdiscard -> 0\n",
2129 sc->sc_dev.dv_xname));
2130 sc->sc_rxdiscard = 0;
2131 }
2132 continue;
2133 }
2134
2135 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2136 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2137
2138 m = rxs->rxs_mbuf;
2139
2140 /*
2141 * Add a new receive buffer to the ring.
2142 */
2143 if (wm_add_rxbuf(sc, i) != 0) {
2144 /*
2145 * Failed, throw away what we've done so
2146 * far, and discard the rest of the packet.
2147 */
2148 ifp->if_ierrors++;
2149 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2150 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2151 WM_INIT_RXDESC(sc, i);
2152 if ((status & WRX_ST_EOP) == 0)
2153 sc->sc_rxdiscard = 1;
2154 if (sc->sc_rxhead != NULL)
2155 m_freem(sc->sc_rxhead);
2156 WM_RXCHAIN_RESET(sc);
2157 DPRINTF(WM_DEBUG_RX,
2158 ("%s: RX: Rx buffer allocation failed, "
2159 "dropping packet%s\n", sc->sc_dev.dv_xname,
2160 sc->sc_rxdiscard ? " (discard)" : ""));
2161 continue;
2162 }
2163
2164 WM_RXCHAIN_LINK(sc, m);
2165
2166 m->m_len = len;
2167
2168 DPRINTF(WM_DEBUG_RX,
2169 ("%s: RX: buffer at %p len %d\n",
2170 sc->sc_dev.dv_xname, m->m_data, len));
2171
2172 /*
2173 * If this is not the end of the packet, keep
2174 * looking.
2175 */
2176 if ((status & WRX_ST_EOP) == 0) {
2177 sc->sc_rxlen += len;
2178 DPRINTF(WM_DEBUG_RX,
2179 ("%s: RX: not yet EOP, rxlen -> %d\n",
2180 sc->sc_dev.dv_xname, sc->sc_rxlen));
2181 continue;
2182 }
2183
2184 /*
2185 * Okay, we have the entire packet now...
2186 */
2187 *sc->sc_rxtailp = NULL;
2188 m = sc->sc_rxhead;
2189 len += sc->sc_rxlen;
2190
2191 WM_RXCHAIN_RESET(sc);
2192
2193 DPRINTF(WM_DEBUG_RX,
2194 ("%s: RX: have entire packet, len -> %d\n",
2195 sc->sc_dev.dv_xname, len));
2196
2197 /*
2198 * If an error occurred, update stats and drop the packet.
2199 */
2200 if (errors &
2201 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2202 ifp->if_ierrors++;
2203 if (errors & WRX_ER_SE)
2204 log(LOG_WARNING, "%s: symbol error\n",
2205 sc->sc_dev.dv_xname);
2206 else if (errors & WRX_ER_SEQ)
2207 log(LOG_WARNING, "%s: receive sequence error\n",
2208 sc->sc_dev.dv_xname);
2209 else if (errors & WRX_ER_CE)
2210 log(LOG_WARNING, "%s: CRC error\n",
2211 sc->sc_dev.dv_xname);
2212 m_freem(m);
2213 continue;
2214 }
2215
2216 /*
2217 * No errors. Receive the packet.
2218 *
2219 * Note, we have configured the chip to include the
2220 * CRC with every packet.
2221 */
2222 m->m_flags |= M_HASFCS;
2223 m->m_pkthdr.rcvif = ifp;
2224 m->m_pkthdr.len = len;
2225
2226 #if 0 /* XXXJRT */
2227 /*
2228 * If VLANs are enabled, VLAN packets have been unwrapped
2229 * for us. Associate the tag with the packet.
2230 */
2231 if (sc->sc_ethercom.ec_nvlans != 0 &&
2232 (status & WRX_ST_VP) != 0) {
2233 struct m_tag *vtag;
2234
2235 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2236 M_NOWAIT);
2237 if (vtag == NULL) {
2238 ifp->if_ierrors++;
2239 log(LOG_ERR,
2240 "%s: unable to allocate VLAN tag\n",
2241 sc->sc_dev.dv_xname);
2242 m_freem(m);
2243 continue;
2244 }
2245
2246 *(u_int *)(vtag + 1) =
2247 le16toh(sc->sc_rxdescs[i].wrx_special);
2248 }
2249 #endif /* XXXJRT */
2250
2251 /*
2252 * Set up checksum info for this packet.
2253 */
2254 if (status & WRX_ST_IPCS) {
2255 WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2256 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2257 if (errors & WRX_ER_IPE)
2258 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2259 }
2260 if (status & WRX_ST_TCPCS) {
2261 /*
2262 * Note: we don't know if this was TCP or UDP,
2263 * so we just set both bits, and expect the
2264 * upper layers to deal.
2265 */
2266 WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2267 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
2268 if (errors & WRX_ER_TCPE)
2269 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
2270 }
2271
2272 ifp->if_ipackets++;
2273
2274 #if NBPFILTER > 0
2275 /* Pass this up to any BPF listeners. */
2276 if (ifp->if_bpf)
2277 bpf_mtap(ifp->if_bpf, m);
2278 #endif /* NBPFILTER > 0 */
2279
2280 /* Pass it on. */
2281 (*ifp->if_input)(ifp, m);
2282 }
2283
2284 /* Update the receive pointer. */
2285 sc->sc_rxptr = i;
2286
2287 DPRINTF(WM_DEBUG_RX,
2288 ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2289 }
2290
2291 /*
2292 * wm_linkintr:
2293 *
2294 * Helper; handle link interrupts.
2295 */
2296 static void
2297 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2298 {
2299 uint32_t status;
2300
2301 /*
2302 * If we get a link status interrupt on a 1000BASE-T
2303 * device, just fall into the normal MII tick path.
2304 */
2305 if (sc->sc_flags & WM_F_HAS_MII) {
2306 if (icr & ICR_LSC) {
2307 DPRINTF(WM_DEBUG_LINK,
2308 ("%s: LINK: LSC -> mii_tick\n",
2309 sc->sc_dev.dv_xname));
2310 mii_tick(&sc->sc_mii);
2311 } else if (icr & ICR_RXSEQ) {
2312 DPRINTF(WM_DEBUG_LINK,
2313 ("%s: LINK Receive sequence error\n",
2314 sc->sc_dev.dv_xname));
2315 }
2316 return;
2317 }
2318
2319 /*
2320 * If we are now receiving /C/, check for link again in
2321 * a couple of link clock ticks.
2322 */
2323 if (icr & ICR_RXCFG) {
2324 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2325 sc->sc_dev.dv_xname));
2326 sc->sc_tbi_anstate = 2;
2327 }
2328
2329 if (icr & ICR_LSC) {
2330 status = CSR_READ(sc, WMREG_STATUS);
2331 if (status & STATUS_LU) {
2332 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2333 sc->sc_dev.dv_xname,
2334 (status & STATUS_FD) ? "FDX" : "HDX"));
2335 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2336 sc->sc_fcrtl &= ~FCRTL_XONE;
2337 if (status & STATUS_FD)
2338 sc->sc_tctl |=
2339 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2340 else
2341 sc->sc_tctl |=
2342 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2343 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2344 sc->sc_fcrtl |= FCRTL_XONE;
2345 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2346 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2347 WMREG_OLD_FCRTL : WMREG_FCRTL,
2348 sc->sc_fcrtl);
2349 sc->sc_tbi_linkup = 1;
2350 } else {
2351 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2352 sc->sc_dev.dv_xname));
2353 sc->sc_tbi_linkup = 0;
2354 }
2355 sc->sc_tbi_anstate = 2;
2356 wm_tbi_set_linkled(sc);
2357 } else if (icr & ICR_RXSEQ) {
2358 DPRINTF(WM_DEBUG_LINK,
2359 ("%s: LINK: Receive sequence error\n",
2360 sc->sc_dev.dv_xname));
2361 }
2362 }
2363
2364 /*
2365 * wm_tick:
2366 *
2367 * One second timer, used to check link status, sweep up
2368 * completed transmit jobs, etc.
2369 */
2370 static void
2371 wm_tick(void *arg)
2372 {
2373 struct wm_softc *sc = arg;
2374 int s;
2375
2376 s = splnet();
2377
2378 if (sc->sc_type >= WM_T_82542_2_1) {
2379 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2380 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2381 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2382 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2383 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2384 }
2385
2386 if (sc->sc_flags & WM_F_HAS_MII)
2387 mii_tick(&sc->sc_mii);
2388 else
2389 wm_tbi_check_link(sc);
2390
2391 splx(s);
2392
2393 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2394 }
2395
2396 /*
2397 * wm_reset:
2398 *
2399 * Reset the i82542 chip.
2400 */
2401 static void
2402 wm_reset(struct wm_softc *sc)
2403 {
2404 int i;
2405
2406 /*
2407 * Allocate on-chip memory according to the MTU size.
2408 * The Packet Buffer Allocation register must be written
2409 * before the chip is reset.
2410 */
2411 if (sc->sc_type < WM_T_82547) {
2412 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2413 PBA_40K : PBA_48K;
2414 } else {
2415 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2416 PBA_22K : PBA_30K;
2417 sc->sc_txfifo_head = 0;
2418 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2419 sc->sc_txfifo_size =
2420 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2421 sc->sc_txfifo_stall = 0;
2422 }
2423 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2424
2425 switch (sc->sc_type) {
2426 case WM_T_82544:
2427 case WM_T_82540:
2428 case WM_T_82545:
2429 case WM_T_82546:
2430 case WM_T_82541:
2431 case WM_T_82541_2:
2432 /*
2433 * These chips have a problem with the memory-mapped
2434 * write cycle when issuing the reset, so use I/O-mapped
2435 * access, if possible.
2436 */
2437 if (sc->sc_flags & WM_F_IOH_VALID)
2438 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2439 else
2440 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2441 break;
2442
2443 case WM_T_82545_3:
2444 case WM_T_82546_3:
2445 /* Use the shadow control register on these chips. */
2446 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2447 break;
2448
2449 default:
2450 /* Everything else can safely use the documented method. */
2451 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2452 break;
2453 }
2454 delay(10000);
2455
2456 for (i = 0; i < 1000; i++) {
2457 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2458 return;
2459 delay(20);
2460 }
2461
2462 if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2463 log(LOG_ERR, "%s: reset failed to complete\n",
2464 sc->sc_dev.dv_xname);
2465 }
2466
2467 /*
2468 * wm_init: [ifnet interface function]
2469 *
2470 * Initialize the interface. Must be called at splnet().
2471 */
2472 static int
2473 wm_init(struct ifnet *ifp)
2474 {
2475 struct wm_softc *sc = ifp->if_softc;
2476 struct wm_rxsoft *rxs;
2477 int i, error = 0;
2478 uint32_t reg;
2479
2480 /*
2481 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2482 * There is a small but measurable benefit to avoiding the adjusment
2483 * of the descriptor so that the headers are aligned, for normal mtu,
2484 * on such platforms. One possibility is that the DMA itself is
2485 * slightly more efficient if the front of the entire packet (instead
2486 * of the front of the headers) is aligned.
2487 *
2488 * Note we must always set align_tweak to 0 if we are using
2489 * jumbo frames.
2490 */
2491 #ifdef __NO_STRICT_ALIGNMENT
2492 sc->sc_align_tweak = 0;
2493 #else
2494 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2495 sc->sc_align_tweak = 0;
2496 else
2497 sc->sc_align_tweak = 2;
2498 #endif /* __NO_STRICT_ALIGNMENT */
2499
2500 /* Cancel any pending I/O. */
2501 wm_stop(ifp, 0);
2502
2503 /* Reset the chip to a known state. */
2504 wm_reset(sc);
2505
2506 /* Initialize the transmit descriptor ring. */
2507 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2508 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2509 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2510 sc->sc_txfree = WM_NTXDESC(sc);
2511 sc->sc_txnext = 0;
2512
2513 sc->sc_txctx_ipcs = 0xffffffff;
2514 sc->sc_txctx_tucs = 0xffffffff;
2515
2516 if (sc->sc_type < WM_T_82543) {
2517 CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2518 CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2519 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2520 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2521 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2522 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2523 } else {
2524 CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2525 CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2526 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2527 CSR_WRITE(sc, WMREG_TDH, 0);
2528 CSR_WRITE(sc, WMREG_TDT, 0);
2529 CSR_WRITE(sc, WMREG_TIDV, 128);
2530
2531 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2532 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2533 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2534 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2535 }
2536 CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2537 CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2538
2539 /* Initialize the transmit job descriptors. */
2540 for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2541 sc->sc_txsoft[i].txs_mbuf = NULL;
2542 sc->sc_txsfree = WM_TXQUEUELEN(sc);
2543 sc->sc_txsnext = 0;
2544 sc->sc_txsdirty = 0;
2545
2546 /*
2547 * Initialize the receive descriptor and receive job
2548 * descriptor rings.
2549 */
2550 if (sc->sc_type < WM_T_82543) {
2551 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2552 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2553 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2554 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2555 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2556 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2557
2558 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2559 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2560 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2561 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2562 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2563 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2564 } else {
2565 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2566 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2567 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2568 CSR_WRITE(sc, WMREG_RDH, 0);
2569 CSR_WRITE(sc, WMREG_RDT, 0);
2570 CSR_WRITE(sc, WMREG_RDTR, 28 | RDTR_FPD);
2571 }
2572 for (i = 0; i < WM_NRXDESC; i++) {
2573 rxs = &sc->sc_rxsoft[i];
2574 if (rxs->rxs_mbuf == NULL) {
2575 if ((error = wm_add_rxbuf(sc, i)) != 0) {
2576 log(LOG_ERR, "%s: unable to allocate or map rx "
2577 "buffer %d, error = %d\n",
2578 sc->sc_dev.dv_xname, i, error);
2579 /*
2580 * XXX Should attempt to run with fewer receive
2581 * XXX buffers instead of just failing.
2582 */
2583 wm_rxdrain(sc);
2584 goto out;
2585 }
2586 } else
2587 WM_INIT_RXDESC(sc, i);
2588 }
2589 sc->sc_rxptr = 0;
2590 sc->sc_rxdiscard = 0;
2591 WM_RXCHAIN_RESET(sc);
2592
2593 /*
2594 * Clear out the VLAN table -- we don't use it (yet).
2595 */
2596 CSR_WRITE(sc, WMREG_VET, 0);
2597 for (i = 0; i < WM_VLAN_TABSIZE; i++)
2598 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2599
2600 /*
2601 * Set up flow-control parameters.
2602 *
2603 * XXX Values could probably stand some tuning.
2604 */
2605 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2606 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2607 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2608
2609 sc->sc_fcrtl = FCRTL_DFLT;
2610 if (sc->sc_type < WM_T_82543) {
2611 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2612 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2613 } else {
2614 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2615 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2616 }
2617 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2618
2619 #if 0 /* XXXJRT */
2620 /* Deal with VLAN enables. */
2621 if (sc->sc_ethercom.ec_nvlans != 0)
2622 sc->sc_ctrl |= CTRL_VME;
2623 else
2624 #endif /* XXXJRT */
2625 sc->sc_ctrl &= ~CTRL_VME;
2626
2627 /* Write the control registers. */
2628 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2629 #if 0
2630 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2631 #endif
2632
2633 /*
2634 * Set up checksum offload parameters.
2635 */
2636 reg = CSR_READ(sc, WMREG_RXCSUM);
2637 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
2638 reg |= RXCSUM_IPOFL;
2639 else
2640 reg &= ~RXCSUM_IPOFL;
2641 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
2642 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2643 else {
2644 reg &= ~RXCSUM_TUOFL;
2645 if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
2646 reg &= ~RXCSUM_IPOFL;
2647 }
2648 CSR_WRITE(sc, WMREG_RXCSUM, reg);
2649
2650 /*
2651 * Set up the interrupt registers.
2652 */
2653 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2654 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2655 ICR_RXO | ICR_RXT0;
2656 if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2657 sc->sc_icr |= ICR_RXCFG;
2658 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2659
2660 /* Set up the inter-packet gap. */
2661 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2662
2663 #if 0 /* XXXJRT */
2664 /* Set the VLAN ethernetype. */
2665 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2666 #endif
2667
2668 /*
2669 * Set up the transmit control register; we start out with
2670 * a collision distance suitable for FDX, but update it whe
2671 * we resolve the media type.
2672 */
2673 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2674 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2675 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2676
2677 /* Set the media. */
2678 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2679
2680 /*
2681 * Set up the receive control register; we actually program
2682 * the register when we set the receive filter. Use multicast
2683 * address offset type 0.
2684 *
2685 * Only the i82544 has the ability to strip the incoming
2686 * CRC, so we don't enable that feature.
2687 */
2688 sc->sc_mchash_type = 0;
2689 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
2690 RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2691
2692 if(MCLBYTES == 2048) {
2693 sc->sc_rctl |= RCTL_2k;
2694 } else {
2695 if(sc->sc_type >= WM_T_82543) {
2696 switch(MCLBYTES) {
2697 case 4096:
2698 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2699 break;
2700 case 8192:
2701 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2702 break;
2703 case 16384:
2704 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2705 break;
2706 default:
2707 panic("wm_init: MCLBYTES %d unsupported",
2708 MCLBYTES);
2709 break;
2710 }
2711 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
2712 }
2713
2714 /* Set the receive filter. */
2715 wm_set_filter(sc);
2716
2717 /* Start the one second link check clock. */
2718 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2719
2720 /* ...all done! */
2721 ifp->if_flags |= IFF_RUNNING;
2722 ifp->if_flags &= ~IFF_OACTIVE;
2723
2724 out:
2725 if (error)
2726 log(LOG_ERR, "%s: interface not running\n",
2727 sc->sc_dev.dv_xname);
2728 return (error);
2729 }
2730
2731 /*
2732 * wm_rxdrain:
2733 *
2734 * Drain the receive queue.
2735 */
2736 static void
2737 wm_rxdrain(struct wm_softc *sc)
2738 {
2739 struct wm_rxsoft *rxs;
2740 int i;
2741
2742 for (i = 0; i < WM_NRXDESC; i++) {
2743 rxs = &sc->sc_rxsoft[i];
2744 if (rxs->rxs_mbuf != NULL) {
2745 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2746 m_freem(rxs->rxs_mbuf);
2747 rxs->rxs_mbuf = NULL;
2748 }
2749 }
2750 }
2751
2752 /*
2753 * wm_stop: [ifnet interface function]
2754 *
2755 * Stop transmission on the interface.
2756 */
2757 static void
2758 wm_stop(struct ifnet *ifp, int disable)
2759 {
2760 struct wm_softc *sc = ifp->if_softc;
2761 struct wm_txsoft *txs;
2762 int i;
2763
2764 /* Stop the one second clock. */
2765 callout_stop(&sc->sc_tick_ch);
2766
2767 /* Stop the 82547 Tx FIFO stall check timer. */
2768 if (sc->sc_type == WM_T_82547)
2769 callout_stop(&sc->sc_txfifo_ch);
2770
2771 if (sc->sc_flags & WM_F_HAS_MII) {
2772 /* Down the MII. */
2773 mii_down(&sc->sc_mii);
2774 }
2775
2776 /* Stop the transmit and receive processes. */
2777 CSR_WRITE(sc, WMREG_TCTL, 0);
2778 CSR_WRITE(sc, WMREG_RCTL, 0);
2779
2780 /* Release any queued transmit buffers. */
2781 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2782 txs = &sc->sc_txsoft[i];
2783 if (txs->txs_mbuf != NULL) {
2784 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2785 m_freem(txs->txs_mbuf);
2786 txs->txs_mbuf = NULL;
2787 }
2788 }
2789
2790 if (disable)
2791 wm_rxdrain(sc);
2792
2793 /* Mark the interface as down and cancel the watchdog timer. */
2794 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2795 ifp->if_timer = 0;
2796 }
2797
2798 /*
2799 * wm_acquire_eeprom:
2800 *
2801 * Perform the EEPROM handshake required on some chips.
2802 */
2803 static int
2804 wm_acquire_eeprom(struct wm_softc *sc)
2805 {
2806 uint32_t reg;
2807 int x;
2808
2809 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2810 reg = CSR_READ(sc, WMREG_EECD);
2811
2812 /* Request EEPROM access. */
2813 reg |= EECD_EE_REQ;
2814 CSR_WRITE(sc, WMREG_EECD, reg);
2815
2816 /* ..and wait for it to be granted. */
2817 for (x = 0; x < 100; x++) {
2818 reg = CSR_READ(sc, WMREG_EECD);
2819 if (reg & EECD_EE_GNT)
2820 break;
2821 delay(5);
2822 }
2823 if ((reg & EECD_EE_GNT) == 0) {
2824 aprint_error("%s: could not acquire EEPROM GNT\n",
2825 sc->sc_dev.dv_xname);
2826 reg &= ~EECD_EE_REQ;
2827 CSR_WRITE(sc, WMREG_EECD, reg);
2828 return (1);
2829 }
2830 }
2831
2832 return (0);
2833 }
2834
2835 /*
2836 * wm_release_eeprom:
2837 *
2838 * Release the EEPROM mutex.
2839 */
2840 static void
2841 wm_release_eeprom(struct wm_softc *sc)
2842 {
2843 uint32_t reg;
2844
2845 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2846 reg = CSR_READ(sc, WMREG_EECD);
2847 reg &= ~EECD_EE_REQ;
2848 CSR_WRITE(sc, WMREG_EECD, reg);
2849 }
2850 }
2851
2852 /*
2853 * wm_eeprom_sendbits:
2854 *
2855 * Send a series of bits to the EEPROM.
2856 */
2857 static void
2858 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
2859 {
2860 uint32_t reg;
2861 int x;
2862
2863 reg = CSR_READ(sc, WMREG_EECD);
2864
2865 for (x = nbits; x > 0; x--) {
2866 if (bits & (1U << (x - 1)))
2867 reg |= EECD_DI;
2868 else
2869 reg &= ~EECD_DI;
2870 CSR_WRITE(sc, WMREG_EECD, reg);
2871 delay(2);
2872 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2873 delay(2);
2874 CSR_WRITE(sc, WMREG_EECD, reg);
2875 delay(2);
2876 }
2877 }
2878
2879 /*
2880 * wm_eeprom_recvbits:
2881 *
2882 * Receive a series of bits from the EEPROM.
2883 */
2884 static void
2885 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
2886 {
2887 uint32_t reg, val;
2888 int x;
2889
2890 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
2891
2892 val = 0;
2893 for (x = nbits; x > 0; x--) {
2894 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2895 delay(2);
2896 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
2897 val |= (1U << (x - 1));
2898 CSR_WRITE(sc, WMREG_EECD, reg);
2899 delay(2);
2900 }
2901 *valp = val;
2902 }
2903
2904 /*
2905 * wm_read_eeprom_uwire:
2906 *
2907 * Read a word from the EEPROM using the MicroWire protocol.
2908 */
2909 static int
2910 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2911 {
2912 uint32_t reg, val;
2913 int i;
2914
2915 for (i = 0; i < wordcnt; i++) {
2916 /* Clear SK and DI. */
2917 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
2918 CSR_WRITE(sc, WMREG_EECD, reg);
2919
2920 /* Set CHIP SELECT. */
2921 reg |= EECD_CS;
2922 CSR_WRITE(sc, WMREG_EECD, reg);
2923 delay(2);
2924
2925 /* Shift in the READ command. */
2926 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
2927
2928 /* Shift in address. */
2929 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
2930
2931 /* Shift out the data. */
2932 wm_eeprom_recvbits(sc, &val, 16);
2933 data[i] = val & 0xffff;
2934
2935 /* Clear CHIP SELECT. */
2936 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
2937 CSR_WRITE(sc, WMREG_EECD, reg);
2938 delay(2);
2939 }
2940
2941 return (0);
2942 }
2943
2944 /*
2945 * wm_spi_eeprom_ready:
2946 *
2947 * Wait for a SPI EEPROM to be ready for commands.
2948 */
2949 static int
2950 wm_spi_eeprom_ready(struct wm_softc *sc)
2951 {
2952 uint32_t val;
2953 int usec;
2954
2955 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
2956 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
2957 wm_eeprom_recvbits(sc, &val, 8);
2958 if ((val & SPI_SR_RDY) == 0)
2959 break;
2960 }
2961 if (usec >= SPI_MAX_RETRIES) {
2962 aprint_error("%s: EEPROM failed to become ready\n",
2963 sc->sc_dev.dv_xname);
2964 return (1);
2965 }
2966 return (0);
2967 }
2968
2969 /*
2970 * wm_read_eeprom_spi:
2971 *
2972 * Read a work from the EEPROM using the SPI protocol.
2973 */
2974 static int
2975 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2976 {
2977 uint32_t reg, val;
2978 int i;
2979 uint8_t opc;
2980
2981 /* Clear SK and CS. */
2982 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
2983 CSR_WRITE(sc, WMREG_EECD, reg);
2984 delay(2);
2985
2986 if (wm_spi_eeprom_ready(sc))
2987 return (1);
2988
2989 /* Toggle CS to flush commands. */
2990 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
2991 delay(2);
2992 CSR_WRITE(sc, WMREG_EECD, reg);
2993 delay(2);
2994
2995 opc = SPI_OPC_READ;
2996 if (sc->sc_ee_addrbits == 8 && word >= 128)
2997 opc |= SPI_OPC_A8;
2998
2999 wm_eeprom_sendbits(sc, opc, 8);
3000 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
3001
3002 for (i = 0; i < wordcnt; i++) {
3003 wm_eeprom_recvbits(sc, &val, 16);
3004 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
3005 }
3006
3007 /* Raise CS and clear SK. */
3008 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3009 CSR_WRITE(sc, WMREG_EECD, reg);
3010 delay(2);
3011
3012 return (0);
3013 }
3014
3015 /*
3016 * wm_read_eeprom:
3017 *
3018 * Read data from the serial EEPROM.
3019 */
3020 static int
3021 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3022 {
3023 int rv;
3024
3025 if (wm_acquire_eeprom(sc))
3026 return (1);
3027
3028 if (sc->sc_flags & WM_F_EEPROM_SPI)
3029 rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3030 else
3031 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3032
3033 wm_release_eeprom(sc);
3034 return (rv);
3035 }
3036
3037 /*
3038 * wm_add_rxbuf:
3039 *
3040 * Add a receive buffer to the indiciated descriptor.
3041 */
3042 static int
3043 wm_add_rxbuf(struct wm_softc *sc, int idx)
3044 {
3045 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3046 struct mbuf *m;
3047 int error;
3048
3049 MGETHDR(m, M_DONTWAIT, MT_DATA);
3050 if (m == NULL)
3051 return (ENOBUFS);
3052
3053 MCLGET(m, M_DONTWAIT);
3054 if ((m->m_flags & M_EXT) == 0) {
3055 m_freem(m);
3056 return (ENOBUFS);
3057 }
3058
3059 if (rxs->rxs_mbuf != NULL)
3060 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3061
3062 rxs->rxs_mbuf = m;
3063
3064 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3065 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3066 BUS_DMA_READ|BUS_DMA_NOWAIT);
3067 if (error) {
3068 /* XXX XXX XXX */
3069 printf("%s: unable to load rx DMA map %d, error = %d\n",
3070 sc->sc_dev.dv_xname, idx, error);
3071 panic("wm_add_rxbuf");
3072 }
3073
3074 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3075 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3076
3077 WM_INIT_RXDESC(sc, idx);
3078
3079 return (0);
3080 }
3081
3082 /*
3083 * wm_set_ral:
3084 *
3085 * Set an entery in the receive address list.
3086 */
3087 static void
3088 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3089 {
3090 uint32_t ral_lo, ral_hi;
3091
3092 if (enaddr != NULL) {
3093 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3094 (enaddr[3] << 24);
3095 ral_hi = enaddr[4] | (enaddr[5] << 8);
3096 ral_hi |= RAL_AV;
3097 } else {
3098 ral_lo = 0;
3099 ral_hi = 0;
3100 }
3101
3102 if (sc->sc_type >= WM_T_82544) {
3103 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3104 ral_lo);
3105 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3106 ral_hi);
3107 } else {
3108 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3109 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3110 }
3111 }
3112
3113 /*
3114 * wm_mchash:
3115 *
3116 * Compute the hash of the multicast address for the 4096-bit
3117 * multicast filter.
3118 */
3119 static uint32_t
3120 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3121 {
3122 static const int lo_shift[4] = { 4, 3, 2, 0 };
3123 static const int hi_shift[4] = { 4, 5, 6, 8 };
3124 uint32_t hash;
3125
3126 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3127 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3128
3129 return (hash & 0xfff);
3130 }
3131
3132 /*
3133 * wm_set_filter:
3134 *
3135 * Set up the receive filter.
3136 */
3137 static void
3138 wm_set_filter(struct wm_softc *sc)
3139 {
3140 struct ethercom *ec = &sc->sc_ethercom;
3141 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3142 struct ether_multi *enm;
3143 struct ether_multistep step;
3144 bus_addr_t mta_reg;
3145 uint32_t hash, reg, bit;
3146 int i;
3147
3148 if (sc->sc_type >= WM_T_82544)
3149 mta_reg = WMREG_CORDOVA_MTA;
3150 else
3151 mta_reg = WMREG_MTA;
3152
3153 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3154
3155 if (ifp->if_flags & IFF_BROADCAST)
3156 sc->sc_rctl |= RCTL_BAM;
3157 if (ifp->if_flags & IFF_PROMISC) {
3158 sc->sc_rctl |= RCTL_UPE;
3159 goto allmulti;
3160 }
3161
3162 /*
3163 * Set the station address in the first RAL slot, and
3164 * clear the remaining slots.
3165 */
3166 wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3167 for (i = 1; i < WM_RAL_TABSIZE; i++)
3168 wm_set_ral(sc, NULL, i);
3169
3170 /* Clear out the multicast table. */
3171 for (i = 0; i < WM_MC_TABSIZE; i++)
3172 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3173
3174 ETHER_FIRST_MULTI(step, ec, enm);
3175 while (enm != NULL) {
3176 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3177 /*
3178 * We must listen to a range of multicast addresses.
3179 * For now, just accept all multicasts, rather than
3180 * trying to set only those filter bits needed to match
3181 * the range. (At this time, the only use of address
3182 * ranges is for IP multicast routing, for which the
3183 * range is big enough to require all bits set.)
3184 */
3185 goto allmulti;
3186 }
3187
3188 hash = wm_mchash(sc, enm->enm_addrlo);
3189
3190 reg = (hash >> 5) & 0x7f;
3191 bit = hash & 0x1f;
3192
3193 hash = CSR_READ(sc, mta_reg + (reg << 2));
3194 hash |= 1U << bit;
3195
3196 /* XXX Hardware bug?? */
3197 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3198 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3199 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3200 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3201 } else
3202 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3203
3204 ETHER_NEXT_MULTI(step, enm);
3205 }
3206
3207 ifp->if_flags &= ~IFF_ALLMULTI;
3208 goto setit;
3209
3210 allmulti:
3211 ifp->if_flags |= IFF_ALLMULTI;
3212 sc->sc_rctl |= RCTL_MPE;
3213
3214 setit:
3215 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3216 }
3217
3218 /*
3219 * wm_tbi_mediainit:
3220 *
3221 * Initialize media for use on 1000BASE-X devices.
3222 */
3223 static void
3224 wm_tbi_mediainit(struct wm_softc *sc)
3225 {
3226 const char *sep = "";
3227
3228 if (sc->sc_type < WM_T_82543)
3229 sc->sc_tipg = TIPG_WM_DFLT;
3230 else
3231 sc->sc_tipg = TIPG_LG_DFLT;
3232
3233 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3234 wm_tbi_mediastatus);
3235
3236 /*
3237 * SWD Pins:
3238 *
3239 * 0 = Link LED (output)
3240 * 1 = Loss Of Signal (input)
3241 */
3242 sc->sc_ctrl |= CTRL_SWDPIO(0);
3243 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3244
3245 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3246
3247 #define ADD(ss, mm, dd) \
3248 do { \
3249 aprint_normal("%s%s", sep, ss); \
3250 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
3251 sep = ", "; \
3252 } while (/*CONSTCOND*/0)
3253
3254 aprint_normal("%s: ", sc->sc_dev.dv_xname);
3255 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3256 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3257 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3258 aprint_normal("\n");
3259
3260 #undef ADD
3261
3262 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3263 }
3264
3265 /*
3266 * wm_tbi_mediastatus: [ifmedia interface function]
3267 *
3268 * Get the current interface media status on a 1000BASE-X device.
3269 */
3270 static void
3271 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3272 {
3273 struct wm_softc *sc = ifp->if_softc;
3274 uint32_t ctrl;
3275
3276 ifmr->ifm_status = IFM_AVALID;
3277 ifmr->ifm_active = IFM_ETHER;
3278
3279 if (sc->sc_tbi_linkup == 0) {
3280 ifmr->ifm_active |= IFM_NONE;
3281 return;
3282 }
3283
3284 ifmr->ifm_status |= IFM_ACTIVE;
3285 ifmr->ifm_active |= IFM_1000_SX;
3286 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3287 ifmr->ifm_active |= IFM_FDX;
3288 ctrl = CSR_READ(sc, WMREG_CTRL);
3289 if (ctrl & CTRL_RFCE)
3290 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3291 if (ctrl & CTRL_TFCE)
3292 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3293 }
3294
3295 /*
3296 * wm_tbi_mediachange: [ifmedia interface function]
3297 *
3298 * Set hardware to newly-selected media on a 1000BASE-X device.
3299 */
3300 static int
3301 wm_tbi_mediachange(struct ifnet *ifp)
3302 {
3303 struct wm_softc *sc = ifp->if_softc;
3304 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3305 uint32_t status;
3306 int i;
3307
3308 sc->sc_txcw = ife->ifm_data;
3309 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3310 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3311 sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3312 sc->sc_txcw |= TXCW_ANE;
3313
3314 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3315 delay(10000);
3316
3317 /* NOTE: CTRL will update TFCE and RFCE automatically. */
3318
3319 sc->sc_tbi_anstate = 0;
3320
3321 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3322 /* Have signal; wait for the link to come up. */
3323 for (i = 0; i < 50; i++) {
3324 delay(10000);
3325 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3326 break;
3327 }
3328
3329 status = CSR_READ(sc, WMREG_STATUS);
3330 if (status & STATUS_LU) {
3331 /* Link is up. */
3332 DPRINTF(WM_DEBUG_LINK,
3333 ("%s: LINK: set media -> link up %s\n",
3334 sc->sc_dev.dv_xname,
3335 (status & STATUS_FD) ? "FDX" : "HDX"));
3336 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3337 sc->sc_fcrtl &= ~FCRTL_XONE;
3338 if (status & STATUS_FD)
3339 sc->sc_tctl |=
3340 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3341 else
3342 sc->sc_tctl |=
3343 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3344 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3345 sc->sc_fcrtl |= FCRTL_XONE;
3346 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3347 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3348 WMREG_OLD_FCRTL : WMREG_FCRTL,
3349 sc->sc_fcrtl);
3350 sc->sc_tbi_linkup = 1;
3351 } else {
3352 /* Link is down. */
3353 DPRINTF(WM_DEBUG_LINK,
3354 ("%s: LINK: set media -> link down\n",
3355 sc->sc_dev.dv_xname));
3356 sc->sc_tbi_linkup = 0;
3357 }
3358 } else {
3359 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3360 sc->sc_dev.dv_xname));
3361 sc->sc_tbi_linkup = 0;
3362 }
3363
3364 wm_tbi_set_linkled(sc);
3365
3366 return (0);
3367 }
3368
3369 /*
3370 * wm_tbi_set_linkled:
3371 *
3372 * Update the link LED on 1000BASE-X devices.
3373 */
3374 static void
3375 wm_tbi_set_linkled(struct wm_softc *sc)
3376 {
3377
3378 if (sc->sc_tbi_linkup)
3379 sc->sc_ctrl |= CTRL_SWDPIN(0);
3380 else
3381 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3382
3383 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3384 }
3385
3386 /*
3387 * wm_tbi_check_link:
3388 *
3389 * Check the link on 1000BASE-X devices.
3390 */
3391 static void
3392 wm_tbi_check_link(struct wm_softc *sc)
3393 {
3394 uint32_t rxcw, ctrl, status;
3395
3396 if (sc->sc_tbi_anstate == 0)
3397 return;
3398 else if (sc->sc_tbi_anstate > 1) {
3399 DPRINTF(WM_DEBUG_LINK,
3400 ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3401 sc->sc_tbi_anstate));
3402 sc->sc_tbi_anstate--;
3403 return;
3404 }
3405
3406 sc->sc_tbi_anstate = 0;
3407
3408 rxcw = CSR_READ(sc, WMREG_RXCW);
3409 ctrl = CSR_READ(sc, WMREG_CTRL);
3410 status = CSR_READ(sc, WMREG_STATUS);
3411
3412 if ((status & STATUS_LU) == 0) {
3413 DPRINTF(WM_DEBUG_LINK,
3414 ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3415 sc->sc_tbi_linkup = 0;
3416 } else {
3417 DPRINTF(WM_DEBUG_LINK,
3418 ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3419 (status & STATUS_FD) ? "FDX" : "HDX"));
3420 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3421 sc->sc_fcrtl &= ~FCRTL_XONE;
3422 if (status & STATUS_FD)
3423 sc->sc_tctl |=
3424 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3425 else
3426 sc->sc_tctl |=
3427 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3428 if (ctrl & CTRL_TFCE)
3429 sc->sc_fcrtl |= FCRTL_XONE;
3430 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3431 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3432 WMREG_OLD_FCRTL : WMREG_FCRTL,
3433 sc->sc_fcrtl);
3434 sc->sc_tbi_linkup = 1;
3435 }
3436
3437 wm_tbi_set_linkled(sc);
3438 }
3439
3440 /*
3441 * wm_gmii_reset:
3442 *
3443 * Reset the PHY.
3444 */
3445 static void
3446 wm_gmii_reset(struct wm_softc *sc)
3447 {
3448 uint32_t reg;
3449
3450 if (sc->sc_type >= WM_T_82544) {
3451 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3452 delay(20000);
3453
3454 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3455 delay(20000);
3456 } else {
3457 /* The PHY reset pin is active-low. */
3458 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3459 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3460 CTRL_EXT_SWDPIN(4));
3461 reg |= CTRL_EXT_SWDPIO(4);
3462
3463 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3464 delay(10);
3465
3466 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3467 delay(10);
3468
3469 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3470 delay(10);
3471 #if 0
3472 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3473 #endif
3474 }
3475 }
3476
3477 /*
3478 * wm_gmii_mediainit:
3479 *
3480 * Initialize media for use on 1000BASE-T devices.
3481 */
3482 static void
3483 wm_gmii_mediainit(struct wm_softc *sc)
3484 {
3485 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3486
3487 /* We have MII. */
3488 sc->sc_flags |= WM_F_HAS_MII;
3489
3490 sc->sc_tipg = TIPG_1000T_DFLT;
3491
3492 /*
3493 * Let the chip set speed/duplex on its own based on
3494 * signals from the PHY.
3495 */
3496 sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3497 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3498
3499 /* Initialize our media structures and probe the GMII. */
3500 sc->sc_mii.mii_ifp = ifp;
3501
3502 if (sc->sc_type >= WM_T_82544) {
3503 sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3504 sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3505 } else {
3506 sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3507 sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3508 }
3509 sc->sc_mii.mii_statchg = wm_gmii_statchg;
3510
3511 wm_gmii_reset(sc);
3512
3513 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3514 wm_gmii_mediastatus);
3515
3516 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3517 MII_OFFSET_ANY, MIIF_DOPAUSE);
3518 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3519 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3520 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3521 } else
3522 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3523 }
3524
3525 /*
3526 * wm_gmii_mediastatus: [ifmedia interface function]
3527 *
3528 * Get the current interface media status on a 1000BASE-T device.
3529 */
3530 static void
3531 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3532 {
3533 struct wm_softc *sc = ifp->if_softc;
3534
3535 mii_pollstat(&sc->sc_mii);
3536 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3537 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3538 sc->sc_flowflags;
3539 }
3540
3541 /*
3542 * wm_gmii_mediachange: [ifmedia interface function]
3543 *
3544 * Set hardware to newly-selected media on a 1000BASE-T device.
3545 */
3546 static int
3547 wm_gmii_mediachange(struct ifnet *ifp)
3548 {
3549 struct wm_softc *sc = ifp->if_softc;
3550
3551 if (ifp->if_flags & IFF_UP)
3552 mii_mediachg(&sc->sc_mii);
3553 return (0);
3554 }
3555
3556 #define MDI_IO CTRL_SWDPIN(2)
3557 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
3558 #define MDI_CLK CTRL_SWDPIN(3)
3559
3560 static void
3561 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3562 {
3563 uint32_t i, v;
3564
3565 v = CSR_READ(sc, WMREG_CTRL);
3566 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3567 v |= MDI_DIR | CTRL_SWDPIO(3);
3568
3569 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3570 if (data & i)
3571 v |= MDI_IO;
3572 else
3573 v &= ~MDI_IO;
3574 CSR_WRITE(sc, WMREG_CTRL, v);
3575 delay(10);
3576 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3577 delay(10);
3578 CSR_WRITE(sc, WMREG_CTRL, v);
3579 delay(10);
3580 }
3581 }
3582
3583 static uint32_t
3584 i82543_mii_recvbits(struct wm_softc *sc)
3585 {
3586 uint32_t v, i, data = 0;
3587
3588 v = CSR_READ(sc, WMREG_CTRL);
3589 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3590 v |= CTRL_SWDPIO(3);
3591
3592 CSR_WRITE(sc, WMREG_CTRL, v);
3593 delay(10);
3594 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3595 delay(10);
3596 CSR_WRITE(sc, WMREG_CTRL, v);
3597 delay(10);
3598
3599 for (i = 0; i < 16; i++) {
3600 data <<= 1;
3601 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3602 delay(10);
3603 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3604 data |= 1;
3605 CSR_WRITE(sc, WMREG_CTRL, v);
3606 delay(10);
3607 }
3608
3609 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3610 delay(10);
3611 CSR_WRITE(sc, WMREG_CTRL, v);
3612 delay(10);
3613
3614 return (data);
3615 }
3616
3617 #undef MDI_IO
3618 #undef MDI_DIR
3619 #undef MDI_CLK
3620
3621 /*
3622 * wm_gmii_i82543_readreg: [mii interface function]
3623 *
3624 * Read a PHY register on the GMII (i82543 version).
3625 */
3626 static int
3627 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3628 {
3629 struct wm_softc *sc = (void *) self;
3630 int rv;
3631
3632 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3633 i82543_mii_sendbits(sc, reg | (phy << 5) |
3634 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3635 rv = i82543_mii_recvbits(sc) & 0xffff;
3636
3637 DPRINTF(WM_DEBUG_GMII,
3638 ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3639 sc->sc_dev.dv_xname, phy, reg, rv));
3640
3641 return (rv);
3642 }
3643
3644 /*
3645 * wm_gmii_i82543_writereg: [mii interface function]
3646 *
3647 * Write a PHY register on the GMII (i82543 version).
3648 */
3649 static void
3650 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3651 {
3652 struct wm_softc *sc = (void *) self;
3653
3654 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3655 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3656 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3657 (MII_COMMAND_START << 30), 32);
3658 }
3659
3660 /*
3661 * wm_gmii_i82544_readreg: [mii interface function]
3662 *
3663 * Read a PHY register on the GMII.
3664 */
3665 static int
3666 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
3667 {
3668 struct wm_softc *sc = (void *) self;
3669 uint32_t mdic = 0;
3670 int i, rv;
3671
3672 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
3673 MDIC_REGADD(reg));
3674
3675 for (i = 0; i < 100; i++) {
3676 mdic = CSR_READ(sc, WMREG_MDIC);
3677 if (mdic & MDIC_READY)
3678 break;
3679 delay(10);
3680 }
3681
3682 if ((mdic & MDIC_READY) == 0) {
3683 log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
3684 sc->sc_dev.dv_xname, phy, reg);
3685 rv = 0;
3686 } else if (mdic & MDIC_E) {
3687 #if 0 /* This is normal if no PHY is present. */
3688 log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
3689 sc->sc_dev.dv_xname, phy, reg);
3690 #endif
3691 rv = 0;
3692 } else {
3693 rv = MDIC_DATA(mdic);
3694 if (rv == 0xffff)
3695 rv = 0;
3696 }
3697
3698 return (rv);
3699 }
3700
3701 /*
3702 * wm_gmii_i82544_writereg: [mii interface function]
3703 *
3704 * Write a PHY register on the GMII.
3705 */
3706 static void
3707 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
3708 {
3709 struct wm_softc *sc = (void *) self;
3710 uint32_t mdic = 0;
3711 int i;
3712
3713 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
3714 MDIC_REGADD(reg) | MDIC_DATA(val));
3715
3716 for (i = 0; i < 100; i++) {
3717 mdic = CSR_READ(sc, WMREG_MDIC);
3718 if (mdic & MDIC_READY)
3719 break;
3720 delay(10);
3721 }
3722
3723 if ((mdic & MDIC_READY) == 0)
3724 log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
3725 sc->sc_dev.dv_xname, phy, reg);
3726 else if (mdic & MDIC_E)
3727 log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
3728 sc->sc_dev.dv_xname, phy, reg);
3729 }
3730
3731 /*
3732 * wm_gmii_statchg: [mii interface function]
3733 *
3734 * Callback from MII layer when media changes.
3735 */
3736 static void
3737 wm_gmii_statchg(struct device *self)
3738 {
3739 struct wm_softc *sc = (void *) self;
3740 struct mii_data *mii = &sc->sc_mii;
3741
3742 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
3743 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3744 sc->sc_fcrtl &= ~FCRTL_XONE;
3745
3746 /*
3747 * Get flow control negotiation result.
3748 */
3749 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3750 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3751 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3752 mii->mii_media_active &= ~IFM_ETH_FMASK;
3753 }
3754
3755 if (sc->sc_flowflags & IFM_FLOW) {
3756 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
3757 sc->sc_ctrl |= CTRL_TFCE;
3758 sc->sc_fcrtl |= FCRTL_XONE;
3759 }
3760 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3761 sc->sc_ctrl |= CTRL_RFCE;
3762 }
3763
3764 if (sc->sc_mii.mii_media_active & IFM_FDX) {
3765 DPRINTF(WM_DEBUG_LINK,
3766 ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3767 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3768 } else {
3769 DPRINTF(WM_DEBUG_LINK,
3770 ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3771 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3772 }
3773
3774 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3775 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3776 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
3777 : WMREG_FCRTL, sc->sc_fcrtl);
3778 }
3779