if_wm.c revision 1.87 1 /* $NetBSD: if_wm.c,v 1.87 2004/11/24 00:02:50 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40 *
41 * TODO (in order of importance):
42 *
43 * - Rework how parameters are loaded from the EEPROM.
44 * - Figure out what to do with the i82545GM and i82546GB
45 * SERDES controllers.
46 * - Fix hw VLAN assist.
47 */
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.87 2004/11/24 00:02:50 thorpej Exp $");
51
52 #include "bpfilter.h"
53 #include "rnd.h"
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67
68 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
69
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82
83 #include <netinet/in.h> /* XXX for struct ip */
84 #include <netinet/in_systm.h> /* XXX for struct ip */
85 #include <netinet/ip.h> /* XXX for struct ip */
86 #include <netinet/tcp.h> /* XXX for struct tcphdr */
87
88 #include <machine/bus.h>
89 #include <machine/intr.h>
90 #include <machine/endian.h>
91
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99
100 #include <dev/pci/if_wmreg.h>
101
102 #ifdef WM_DEBUG
103 #define WM_DEBUG_LINK 0x01
104 #define WM_DEBUG_TX 0x02
105 #define WM_DEBUG_RX 0x04
106 #define WM_DEBUG_GMII 0x08
107 int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
108
109 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
110 #else
111 #define DPRINTF(x, y) /* nothing */
112 #endif /* WM_DEBUG */
113
114 /*
115 * Transmit descriptor list size. Due to errata, we can only have
116 * 256 hardware descriptors in the ring on < 82544, but we use 4096
117 * on >= 82544. We tell the upper layers that they can queue a lot
118 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
119 * of them at a time.
120 *
121 * We allow up to 256 (!) DMA segments per packet. Pathological packet
122 * chains containing many small mbufs have been observed in zero-copy
123 * situations with jumbo frames.
124 */
125 #define WM_NTXSEGS 256
126 #define WM_IFQUEUELEN 256
127 #define WM_TXQUEUELEN_MAX 64
128 #define WM_TXQUEUELEN_MAX_82547 16
129 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
130 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
131 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
132 #define WM_NTXDESC_82542 256
133 #define WM_NTXDESC_82544 4096
134 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
135 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
136 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
137 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
138 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
139
140 #define WM_MAXTXDMA ETHER_MAX_LEN_JUMBO
141
142 /*
143 * Receive descriptor list size. We have one Rx buffer for normal
144 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
145 * packet. We allocate 256 receive descriptors, each with a 2k
146 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
147 */
148 #define WM_NRXDESC 256
149 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
150 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
151 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
152
153 /*
154 * Control structures are DMA'd to the i82542 chip. We allocate them in
155 * a single clump that maps to a single DMA segment to make serveral things
156 * easier.
157 */
158 struct wm_control_data_82544 {
159 /*
160 * The receive descriptors.
161 */
162 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
163
164 /*
165 * The transmit descriptors. Put these at the end, because
166 * we might use a smaller number of them.
167 */
168 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
169 };
170
171 struct wm_control_data_82542 {
172 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
173 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
174 };
175
176 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
177 #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)])
178 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
179
180 /*
181 * Software state for transmit jobs.
182 */
183 struct wm_txsoft {
184 struct mbuf *txs_mbuf; /* head of our mbuf chain */
185 bus_dmamap_t txs_dmamap; /* our DMA map */
186 int txs_firstdesc; /* first descriptor in packet */
187 int txs_lastdesc; /* last descriptor in packet */
188 int txs_ndesc; /* # of descriptors used */
189 };
190
191 /*
192 * Software state for receive buffers. Each descriptor gets a
193 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
194 * more than one buffer, we chain them together.
195 */
196 struct wm_rxsoft {
197 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
198 bus_dmamap_t rxs_dmamap; /* our DMA map */
199 };
200
201 typedef enum {
202 WM_T_unknown = 0,
203 WM_T_82542_2_0, /* i82542 2.0 (really old) */
204 WM_T_82542_2_1, /* i82542 2.1+ (old) */
205 WM_T_82543, /* i82543 */
206 WM_T_82544, /* i82544 */
207 WM_T_82540, /* i82540 */
208 WM_T_82545, /* i82545 */
209 WM_T_82545_3, /* i82545 3.0+ */
210 WM_T_82546, /* i82546 */
211 WM_T_82546_3, /* i82546 3.0+ */
212 WM_T_82541, /* i82541 */
213 WM_T_82541_2, /* i82541 2.0+ */
214 WM_T_82547, /* i82547 */
215 WM_T_82547_2, /* i82547 2.0+ */
216 } wm_chip_type;
217
218 /*
219 * Software state per device.
220 */
221 struct wm_softc {
222 struct device sc_dev; /* generic device information */
223 bus_space_tag_t sc_st; /* bus space tag */
224 bus_space_handle_t sc_sh; /* bus space handle */
225 bus_space_tag_t sc_iot; /* I/O space tag */
226 bus_space_handle_t sc_ioh; /* I/O space handle */
227 bus_dma_tag_t sc_dmat; /* bus DMA tag */
228 struct ethercom sc_ethercom; /* ethernet common data */
229 void *sc_sdhook; /* shutdown hook */
230
231 wm_chip_type sc_type; /* chip type */
232 int sc_flags; /* flags; see below */
233 int sc_bus_speed; /* PCI/PCIX bus speed */
234 int sc_pcix_offset; /* PCIX capability register offset */
235 int sc_flowflags; /* 802.3x flow control flags */
236
237 void *sc_ih; /* interrupt cookie */
238
239 int sc_ee_addrbits; /* EEPROM address bits */
240
241 struct mii_data sc_mii; /* MII/media information */
242
243 struct callout sc_tick_ch; /* tick callout */
244
245 bus_dmamap_t sc_cddmamap; /* control data DMA map */
246 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
247
248 int sc_align_tweak;
249
250 /*
251 * Software state for the transmit and receive descriptors.
252 */
253 int sc_txnum; /* must be a power of two */
254 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
255 struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
256
257 /*
258 * Control data structures.
259 */
260 int sc_ntxdesc; /* must be a power of two */
261 struct wm_control_data_82544 *sc_control_data;
262 #define sc_txdescs sc_control_data->wcd_txdescs
263 #define sc_rxdescs sc_control_data->wcd_rxdescs
264
265 #ifdef WM_EVENT_COUNTERS
266 /* Event counters. */
267 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
268 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
269 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
270 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
271 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
272 struct evcnt sc_ev_rxintr; /* Rx interrupts */
273 struct evcnt sc_ev_linkintr; /* Link interrupts */
274
275 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
276 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
277 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
278 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
279
280 /* m_pullup() needed for Tx offload */
281 struct evcnt sc_ev_txpullup_needed;
282 /* ...failed due to no memory */
283 struct evcnt sc_ev_txpullup_nomem;
284 /* ...failed due to lack of space in first mbuf */
285 struct evcnt sc_ev_txpullup_fail;
286
287 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
288 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
289
290 struct evcnt sc_ev_tu; /* Tx underrun */
291
292 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
293 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
294 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
295 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
296 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
297 #endif /* WM_EVENT_COUNTERS */
298
299 bus_addr_t sc_tdt_reg; /* offset of TDT register */
300
301 int sc_txfree; /* number of free Tx descriptors */
302 int sc_txnext; /* next ready Tx descriptor */
303
304 int sc_txsfree; /* number of free Tx jobs */
305 int sc_txsnext; /* next free Tx job */
306 int sc_txsdirty; /* dirty Tx jobs */
307
308 /* These 5 variables are used only on the 82547. */
309 int sc_txfifo_size; /* Tx FIFO size */
310 int sc_txfifo_head; /* current head of FIFO */
311 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
312 int sc_txfifo_stall; /* Tx FIFO is stalled */
313 struct callout sc_txfifo_ch; /* Tx FIFO stall work-around timer */
314
315 bus_addr_t sc_rdt_reg; /* offset of RDT register */
316
317 int sc_rxptr; /* next ready Rx descriptor/queue ent */
318 int sc_rxdiscard;
319 int sc_rxlen;
320 struct mbuf *sc_rxhead;
321 struct mbuf *sc_rxtail;
322 struct mbuf **sc_rxtailp;
323
324 uint32_t sc_ctrl; /* prototype CTRL register */
325 #if 0
326 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
327 #endif
328 uint32_t sc_icr; /* prototype interrupt bits */
329 uint32_t sc_tctl; /* prototype TCTL register */
330 uint32_t sc_rctl; /* prototype RCTL register */
331 uint32_t sc_txcw; /* prototype TXCW register */
332 uint32_t sc_tipg; /* prototype TIPG register */
333 uint32_t sc_fcrtl; /* prototype FCRTL register */
334 uint32_t sc_pba; /* prototype PBA register */
335
336 int sc_tbi_linkup; /* TBI link status */
337 int sc_tbi_anstate; /* autonegotiation state */
338
339 int sc_mchash_type; /* multicast filter offset */
340
341 #if NRND > 0
342 rndsource_element_t rnd_source; /* random source */
343 #endif
344 };
345
346 #define WM_RXCHAIN_RESET(sc) \
347 do { \
348 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
349 *(sc)->sc_rxtailp = NULL; \
350 (sc)->sc_rxlen = 0; \
351 } while (/*CONSTCOND*/0)
352
353 #define WM_RXCHAIN_LINK(sc, m) \
354 do { \
355 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
356 (sc)->sc_rxtailp = &(m)->m_next; \
357 } while (/*CONSTCOND*/0)
358
359 /* sc_flags */
360 #define WM_F_HAS_MII 0x01 /* has MII */
361 #define WM_F_EEPROM_HANDSHAKE 0x02 /* requires EEPROM handshake */
362 #define WM_F_EEPROM_SPI 0x04 /* EEPROM is SPI */
363 #define WM_F_IOH_VALID 0x10 /* I/O handle is valid */
364 #define WM_F_BUS64 0x20 /* bus is 64-bit */
365 #define WM_F_PCIX 0x40 /* bus is PCI-X */
366 #define WM_F_CSA 0x80 /* bus is CSA */
367
368 #ifdef WM_EVENT_COUNTERS
369 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
370 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
371 #else
372 #define WM_EVCNT_INCR(ev) /* nothing */
373 #define WM_EVCNT_ADD(ev, val) /* nothing */
374 #endif
375
376 #define CSR_READ(sc, reg) \
377 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
378 #define CSR_WRITE(sc, reg, val) \
379 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
380 #define CSR_WRITE_FLUSH(sc) \
381 (void) CSR_READ((sc), WMREG_STATUS)
382
383 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
384 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
385
386 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
387 #define WM_CDTXADDR_HI(sc, x) \
388 (sizeof(bus_addr_t) == 8 ? \
389 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
390
391 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
392 #define WM_CDRXADDR_HI(sc, x) \
393 (sizeof(bus_addr_t) == 8 ? \
394 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
395
396 #define WM_CDTXSYNC(sc, x, n, ops) \
397 do { \
398 int __x, __n; \
399 \
400 __x = (x); \
401 __n = (n); \
402 \
403 /* If it will wrap around, sync to the end of the ring. */ \
404 if ((__x + __n) > WM_NTXDESC(sc)) { \
405 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
406 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
407 (WM_NTXDESC(sc) - __x), (ops)); \
408 __n -= (WM_NTXDESC(sc) - __x); \
409 __x = 0; \
410 } \
411 \
412 /* Now sync whatever is left. */ \
413 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
414 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
415 } while (/*CONSTCOND*/0)
416
417 #define WM_CDRXSYNC(sc, x, ops) \
418 do { \
419 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
420 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
421 } while (/*CONSTCOND*/0)
422
423 #define WM_INIT_RXDESC(sc, x) \
424 do { \
425 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
426 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
427 struct mbuf *__m = __rxs->rxs_mbuf; \
428 \
429 /* \
430 * Note: We scoot the packet forward 2 bytes in the buffer \
431 * so that the payload after the Ethernet header is aligned \
432 * to a 4-byte boundary. \
433 * \
434 * XXX BRAINDAMAGE ALERT! \
435 * The stupid chip uses the same size for every buffer, which \
436 * is set in the Receive Control register. We are using the 2K \
437 * size option, but what we REALLY want is (2K - 2)! For this \
438 * reason, we can't "scoot" packets longer than the standard \
439 * Ethernet MTU. On strict-alignment platforms, if the total \
440 * size exceeds (2K - 2) we set align_tweak to 0 and let \
441 * the upper layer copy the headers. \
442 */ \
443 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
444 \
445 wm_set_dma_addr(&__rxd->wrx_addr, \
446 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
447 __rxd->wrx_len = 0; \
448 __rxd->wrx_cksum = 0; \
449 __rxd->wrx_status = 0; \
450 __rxd->wrx_errors = 0; \
451 __rxd->wrx_special = 0; \
452 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
453 \
454 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
455 } while (/*CONSTCOND*/0)
456
457 static void wm_start(struct ifnet *);
458 static void wm_watchdog(struct ifnet *);
459 static int wm_ioctl(struct ifnet *, u_long, caddr_t);
460 static int wm_init(struct ifnet *);
461 static void wm_stop(struct ifnet *, int);
462
463 static void wm_shutdown(void *);
464
465 static void wm_reset(struct wm_softc *);
466 static void wm_rxdrain(struct wm_softc *);
467 static int wm_add_rxbuf(struct wm_softc *, int);
468 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
469 static void wm_tick(void *);
470
471 static void wm_set_filter(struct wm_softc *);
472
473 static int wm_intr(void *);
474 static void wm_txintr(struct wm_softc *);
475 static void wm_rxintr(struct wm_softc *);
476 static void wm_linkintr(struct wm_softc *, uint32_t);
477
478 static void wm_tbi_mediainit(struct wm_softc *);
479 static int wm_tbi_mediachange(struct ifnet *);
480 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
481
482 static void wm_tbi_set_linkled(struct wm_softc *);
483 static void wm_tbi_check_link(struct wm_softc *);
484
485 static void wm_gmii_reset(struct wm_softc *);
486
487 static int wm_gmii_i82543_readreg(struct device *, int, int);
488 static void wm_gmii_i82543_writereg(struct device *, int, int, int);
489
490 static int wm_gmii_i82544_readreg(struct device *, int, int);
491 static void wm_gmii_i82544_writereg(struct device *, int, int, int);
492
493 static void wm_gmii_statchg(struct device *);
494
495 static void wm_gmii_mediainit(struct wm_softc *);
496 static int wm_gmii_mediachange(struct ifnet *);
497 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
498
499 static int wm_match(struct device *, struct cfdata *, void *);
500 static void wm_attach(struct device *, struct device *, void *);
501
502 CFATTACH_DECL(wm, sizeof(struct wm_softc),
503 wm_match, wm_attach, NULL, NULL);
504
505 static void wm_82547_txfifo_stall(void *);
506
507 /*
508 * Devices supported by this driver.
509 */
510 static const struct wm_product {
511 pci_vendor_id_t wmp_vendor;
512 pci_product_id_t wmp_product;
513 const char *wmp_name;
514 wm_chip_type wmp_type;
515 int wmp_flags;
516 #define WMP_F_1000X 0x01
517 #define WMP_F_1000T 0x02
518 } wm_products[] = {
519 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
520 "Intel i82542 1000BASE-X Ethernet",
521 WM_T_82542_2_1, WMP_F_1000X },
522
523 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
524 "Intel i82543GC 1000BASE-X Ethernet",
525 WM_T_82543, WMP_F_1000X },
526
527 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
528 "Intel i82543GC 1000BASE-T Ethernet",
529 WM_T_82543, WMP_F_1000T },
530
531 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
532 "Intel i82544EI 1000BASE-T Ethernet",
533 WM_T_82544, WMP_F_1000T },
534
535 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
536 "Intel i82544EI 1000BASE-X Ethernet",
537 WM_T_82544, WMP_F_1000X },
538
539 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
540 "Intel i82544GC 1000BASE-T Ethernet",
541 WM_T_82544, WMP_F_1000T },
542
543 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
544 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
545 WM_T_82544, WMP_F_1000T },
546
547 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
548 "Intel i82540EM 1000BASE-T Ethernet",
549 WM_T_82540, WMP_F_1000T },
550
551 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
552 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
553 WM_T_82540, WMP_F_1000T },
554
555 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
556 "Intel i82540EP 1000BASE-T Ethernet",
557 WM_T_82540, WMP_F_1000T },
558
559 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
560 "Intel i82540EP 1000BASE-T Ethernet",
561 WM_T_82540, WMP_F_1000T },
562
563 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
564 "Intel i82540EP 1000BASE-T Ethernet",
565 WM_T_82540, WMP_F_1000T },
566
567 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
568 "Intel i82545EM 1000BASE-T Ethernet",
569 WM_T_82545, WMP_F_1000T },
570
571 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
572 "Intel i82545GM 1000BASE-T Ethernet",
573 WM_T_82545_3, WMP_F_1000T },
574
575 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
576 "Intel i82545GM 1000BASE-X Ethernet",
577 WM_T_82545_3, WMP_F_1000X },
578 #if 0
579 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
580 "Intel i82545GM Gigabit Ethernet (SERDES)",
581 WM_T_82545_3, WMP_F_SERDES },
582 #endif
583 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
584 "Intel i82546EB 1000BASE-T Ethernet",
585 WM_T_82546, WMP_F_1000T },
586
587 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
588 "Intel i82546EB 1000BASE-T Ethernet",
589 WM_T_82546, WMP_F_1000T },
590
591 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
592 "Intel i82545EM 1000BASE-X Ethernet",
593 WM_T_82545, WMP_F_1000X },
594
595 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
596 "Intel i82546EB 1000BASE-X Ethernet",
597 WM_T_82546, WMP_F_1000X },
598
599 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
600 "Intel i82546GB 1000BASE-T Ethernet",
601 WM_T_82546_3, WMP_F_1000T },
602
603 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
604 "Intel i82546GB 1000BASE-X Ethernet",
605 WM_T_82546_3, WMP_F_1000X },
606 #if 0
607 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
608 "Intel i82546GB Gigabit Ethernet (SERDES)",
609 WM_T_82546_3, WMP_F_SERDES },
610 #endif
611 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
612 "Intel i82541EI 1000BASE-T Ethernet",
613 WM_T_82541, WMP_F_1000T },
614
615 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
616 "Intel i82541EI Mobile 1000BASE-T Ethernet",
617 WM_T_82541, WMP_F_1000T },
618
619 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
620 "Intel i82541ER 1000BASE-T Ethernet",
621 WM_T_82541_2, WMP_F_1000T },
622
623 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
624 "Intel i82541GI 1000BASE-T Ethernet",
625 WM_T_82541_2, WMP_F_1000T },
626
627 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
628 "Intel i82541GI Mobile 1000BASE-T Ethernet",
629 WM_T_82541_2, WMP_F_1000T },
630
631 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
632 "Intel i82547EI 1000BASE-T Ethernet",
633 WM_T_82547, WMP_F_1000T },
634
635 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
636 "Intel i82547GI 1000BASE-T Ethernet",
637 WM_T_82547_2, WMP_F_1000T },
638 { 0, 0,
639 NULL,
640 0, 0 },
641 };
642
643 #ifdef WM_EVENT_COUNTERS
644 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
645 #endif /* WM_EVENT_COUNTERS */
646
647 #if 0 /* Not currently used */
648 static __inline uint32_t
649 wm_io_read(struct wm_softc *sc, int reg)
650 {
651
652 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
653 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
654 }
655 #endif
656
657 static __inline void
658 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
659 {
660
661 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
662 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
663 }
664
665 static __inline void
666 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
667 {
668 wa->wa_low = htole32(v & 0xffffffffU);
669 if (sizeof(bus_addr_t) == 8)
670 wa->wa_high = htole32((uint64_t) v >> 32);
671 else
672 wa->wa_high = 0;
673 }
674
675 static const struct wm_product *
676 wm_lookup(const struct pci_attach_args *pa)
677 {
678 const struct wm_product *wmp;
679
680 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
681 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
682 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
683 return (wmp);
684 }
685 return (NULL);
686 }
687
688 static int
689 wm_match(struct device *parent, struct cfdata *cf, void *aux)
690 {
691 struct pci_attach_args *pa = aux;
692
693 if (wm_lookup(pa) != NULL)
694 return (1);
695
696 return (0);
697 }
698
699 static void
700 wm_attach(struct device *parent, struct device *self, void *aux)
701 {
702 struct wm_softc *sc = (void *) self;
703 struct pci_attach_args *pa = aux;
704 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
705 pci_chipset_tag_t pc = pa->pa_pc;
706 pci_intr_handle_t ih;
707 size_t cdata_size;
708 const char *intrstr = NULL;
709 const char *eetype;
710 bus_space_tag_t memt;
711 bus_space_handle_t memh;
712 bus_dma_segment_t seg;
713 int memh_valid;
714 int i, rseg, error;
715 const struct wm_product *wmp;
716 uint8_t enaddr[ETHER_ADDR_LEN];
717 uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
718 pcireg_t preg, memtype;
719 uint32_t reg;
720 int pmreg;
721
722 callout_init(&sc->sc_tick_ch);
723
724 wmp = wm_lookup(pa);
725 if (wmp == NULL) {
726 printf("\n");
727 panic("wm_attach: impossible");
728 }
729
730 if (pci_dma64_available(pa))
731 sc->sc_dmat = pa->pa_dmat64;
732 else
733 sc->sc_dmat = pa->pa_dmat;
734
735 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
736 aprint_naive(": Ethernet controller\n");
737 aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
738
739 sc->sc_type = wmp->wmp_type;
740 if (sc->sc_type < WM_T_82543) {
741 if (preg < 2) {
742 aprint_error("%s: i82542 must be at least rev. 2\n",
743 sc->sc_dev.dv_xname);
744 return;
745 }
746 if (preg < 3)
747 sc->sc_type = WM_T_82542_2_0;
748 }
749
750 /*
751 * Map the device. All devices support memory-mapped acccess,
752 * and it is really required for normal operation.
753 */
754 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
755 switch (memtype) {
756 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
757 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
758 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
759 memtype, 0, &memt, &memh, NULL, NULL) == 0);
760 break;
761 default:
762 memh_valid = 0;
763 }
764
765 if (memh_valid) {
766 sc->sc_st = memt;
767 sc->sc_sh = memh;
768 } else {
769 aprint_error("%s: unable to map device registers\n",
770 sc->sc_dev.dv_xname);
771 return;
772 }
773
774 /*
775 * In addition, i82544 and later support I/O mapped indirect
776 * register access. It is not desirable (nor supported in
777 * this driver) to use it for normal operation, though it is
778 * required to work around bugs in some chip versions.
779 */
780 if (sc->sc_type >= WM_T_82544) {
781 /* First we have to find the I/O BAR. */
782 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
783 if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
784 PCI_MAPREG_TYPE_IO)
785 break;
786 }
787 if (i == PCI_MAPREG_END)
788 aprint_error("%s: WARNING: unable to find I/O BAR\n",
789 sc->sc_dev.dv_xname);
790 else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
791 0, &sc->sc_iot, &sc->sc_ioh,
792 NULL, NULL) == 0)
793 sc->sc_flags |= WM_F_IOH_VALID;
794 else
795 aprint_error("%s: WARNING: unable to map I/O space\n",
796 sc->sc_dev.dv_xname);
797 }
798
799 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
800 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
801 preg |= PCI_COMMAND_MASTER_ENABLE;
802 if (sc->sc_type < WM_T_82542_2_1)
803 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
804 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
805
806 /* Get it out of power save mode, if needed. */
807 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
808 preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
809 PCI_PMCSR_STATE_MASK;
810 if (preg == PCI_PMCSR_STATE_D3) {
811 /*
812 * The card has lost all configuration data in
813 * this state, so punt.
814 */
815 aprint_error("%s: unable to wake from power state D3\n",
816 sc->sc_dev.dv_xname);
817 return;
818 }
819 if (preg != PCI_PMCSR_STATE_D0) {
820 aprint_normal("%s: waking up from power state D%d\n",
821 sc->sc_dev.dv_xname, preg);
822 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
823 PCI_PMCSR_STATE_D0);
824 }
825 }
826
827 /*
828 * Map and establish our interrupt.
829 */
830 if (pci_intr_map(pa, &ih)) {
831 aprint_error("%s: unable to map interrupt\n",
832 sc->sc_dev.dv_xname);
833 return;
834 }
835 intrstr = pci_intr_string(pc, ih);
836 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
837 if (sc->sc_ih == NULL) {
838 aprint_error("%s: unable to establish interrupt",
839 sc->sc_dev.dv_xname);
840 if (intrstr != NULL)
841 aprint_normal(" at %s", intrstr);
842 aprint_normal("\n");
843 return;
844 }
845 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
846
847 /*
848 * Determine a few things about the bus we're connected to.
849 */
850 if (sc->sc_type < WM_T_82543) {
851 /* We don't really know the bus characteristics here. */
852 sc->sc_bus_speed = 33;
853 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
854 /*
855 * CSA (Communication Streaming Architecture) is about as fast
856 * a 32-bit 66MHz PCI Bus.
857 */
858 sc->sc_flags |= WM_F_CSA;
859 sc->sc_bus_speed = 66;
860 aprint_verbose("%s: Communication Streaming Architecture\n",
861 sc->sc_dev.dv_xname);
862 if (sc->sc_type == WM_T_82547) {
863 callout_init(&sc->sc_txfifo_ch);
864 callout_setfunc(&sc->sc_txfifo_ch,
865 wm_82547_txfifo_stall, sc);
866 aprint_verbose("%s: using 82547 Tx FIFO stall "
867 "work-around\n", sc->sc_dev.dv_xname);
868 }
869 } else {
870 reg = CSR_READ(sc, WMREG_STATUS);
871 if (reg & STATUS_BUS64)
872 sc->sc_flags |= WM_F_BUS64;
873 if (sc->sc_type >= WM_T_82544 &&
874 (reg & STATUS_PCIX_MODE) != 0) {
875 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
876
877 sc->sc_flags |= WM_F_PCIX;
878 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
879 PCI_CAP_PCIX,
880 &sc->sc_pcix_offset, NULL) == 0)
881 aprint_error("%s: unable to find PCIX "
882 "capability\n", sc->sc_dev.dv_xname);
883 else if (sc->sc_type != WM_T_82545_3 &&
884 sc->sc_type != WM_T_82546_3) {
885 /*
886 * Work around a problem caused by the BIOS
887 * setting the max memory read byte count
888 * incorrectly.
889 */
890 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
891 sc->sc_pcix_offset + PCI_PCIX_CMD);
892 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
893 sc->sc_pcix_offset + PCI_PCIX_STATUS);
894
895 bytecnt =
896 (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
897 PCI_PCIX_CMD_BYTECNT_SHIFT;
898 maxb =
899 (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
900 PCI_PCIX_STATUS_MAXB_SHIFT;
901 if (bytecnt > maxb) {
902 aprint_verbose("%s: resetting PCI-X "
903 "MMRBC: %d -> %d\n",
904 sc->sc_dev.dv_xname,
905 512 << bytecnt, 512 << maxb);
906 pcix_cmd = (pcix_cmd &
907 ~PCI_PCIX_CMD_BYTECNT_MASK) |
908 (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
909 pci_conf_write(pa->pa_pc, pa->pa_tag,
910 sc->sc_pcix_offset + PCI_PCIX_CMD,
911 pcix_cmd);
912 }
913 }
914 }
915 /*
916 * The quad port adapter is special; it has a PCIX-PCIX
917 * bridge on the board, and can run the secondary bus at
918 * a higher speed.
919 */
920 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
921 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
922 : 66;
923 } else if (sc->sc_flags & WM_F_PCIX) {
924 switch (reg & STATUS_PCIXSPD_MASK) {
925 case STATUS_PCIXSPD_50_66:
926 sc->sc_bus_speed = 66;
927 break;
928 case STATUS_PCIXSPD_66_100:
929 sc->sc_bus_speed = 100;
930 break;
931 case STATUS_PCIXSPD_100_133:
932 sc->sc_bus_speed = 133;
933 break;
934 default:
935 aprint_error(
936 "%s: unknown PCIXSPD %d; assuming 66MHz\n",
937 sc->sc_dev.dv_xname,
938 reg & STATUS_PCIXSPD_MASK);
939 sc->sc_bus_speed = 66;
940 }
941 } else
942 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
943 aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
944 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
945 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
946 }
947
948 /*
949 * Allocate the control data structures, and create and load the
950 * DMA map for it.
951 *
952 * NOTE: All Tx descriptors must be in the same 4G segment of
953 * memory. So must Rx descriptors. We simplify by allocating
954 * both sets within the same 4G segment.
955 */
956 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
957 WM_NTXDESC_82542 : WM_NTXDESC_82544;
958 cdata_size = sc->sc_type < WM_T_82544 ?
959 sizeof(struct wm_control_data_82542) :
960 sizeof(struct wm_control_data_82544);
961 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
962 (bus_size_t) 0x100000000ULL,
963 &seg, 1, &rseg, 0)) != 0) {
964 aprint_error(
965 "%s: unable to allocate control data, error = %d\n",
966 sc->sc_dev.dv_xname, error);
967 goto fail_0;
968 }
969
970 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
971 (caddr_t *)&sc->sc_control_data, 0)) != 0) {
972 aprint_error("%s: unable to map control data, error = %d\n",
973 sc->sc_dev.dv_xname, error);
974 goto fail_1;
975 }
976
977 if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
978 0, 0, &sc->sc_cddmamap)) != 0) {
979 aprint_error("%s: unable to create control data DMA map, "
980 "error = %d\n", sc->sc_dev.dv_xname, error);
981 goto fail_2;
982 }
983
984 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
985 sc->sc_control_data, cdata_size, NULL,
986 0)) != 0) {
987 aprint_error(
988 "%s: unable to load control data DMA map, error = %d\n",
989 sc->sc_dev.dv_xname, error);
990 goto fail_3;
991 }
992
993
994 /*
995 * Create the transmit buffer DMA maps.
996 */
997 WM_TXQUEUELEN(sc) =
998 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
999 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1000 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1001 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1002 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1003 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1004 aprint_error("%s: unable to create Tx DMA map %d, "
1005 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1006 goto fail_4;
1007 }
1008 }
1009
1010 /*
1011 * Create the receive buffer DMA maps.
1012 */
1013 for (i = 0; i < WM_NRXDESC; i++) {
1014 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1015 MCLBYTES, 0, 0,
1016 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1017 aprint_error("%s: unable to create Rx DMA map %d, "
1018 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1019 goto fail_5;
1020 }
1021 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1022 }
1023
1024 /*
1025 * Reset the chip to a known state.
1026 */
1027 wm_reset(sc);
1028
1029 /*
1030 * Get some information about the EEPROM.
1031 */
1032 if (sc->sc_type >= WM_T_82540)
1033 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1034 if (sc->sc_type <= WM_T_82544)
1035 sc->sc_ee_addrbits = 6;
1036 else if (sc->sc_type <= WM_T_82546_3) {
1037 reg = CSR_READ(sc, WMREG_EECD);
1038 if (reg & EECD_EE_SIZE)
1039 sc->sc_ee_addrbits = 8;
1040 else
1041 sc->sc_ee_addrbits = 6;
1042 } else if (sc->sc_type <= WM_T_82547_2) {
1043 reg = CSR_READ(sc, WMREG_EECD);
1044 if (reg & EECD_EE_TYPE) {
1045 sc->sc_flags |= WM_F_EEPROM_SPI;
1046 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1047 } else
1048 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1049 } else {
1050 /* Assume everything else is SPI. */
1051 reg = CSR_READ(sc, WMREG_EECD);
1052 sc->sc_flags |= WM_F_EEPROM_SPI;
1053 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1054 }
1055 if (sc->sc_flags & WM_F_EEPROM_SPI)
1056 eetype = "SPI";
1057 else
1058 eetype = "MicroWire";
1059 aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1060 sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1061 sc->sc_ee_addrbits, eetype);
1062
1063 /*
1064 * Read the Ethernet address from the EEPROM.
1065 */
1066 if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1067 sizeof(myea) / sizeof(myea[0]), myea)) {
1068 aprint_error("%s: unable to read Ethernet address\n",
1069 sc->sc_dev.dv_xname);
1070 return;
1071 }
1072 enaddr[0] = myea[0] & 0xff;
1073 enaddr[1] = myea[0] >> 8;
1074 enaddr[2] = myea[1] & 0xff;
1075 enaddr[3] = myea[1] >> 8;
1076 enaddr[4] = myea[2] & 0xff;
1077 enaddr[5] = myea[2] >> 8;
1078
1079 /*
1080 * Toggle the LSB of the MAC address on the second port
1081 * of the i82546.
1082 */
1083 if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
1084 if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1085 enaddr[5] ^= 1;
1086 }
1087
1088 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1089 ether_sprintf(enaddr));
1090
1091 /*
1092 * Read the config info from the EEPROM, and set up various
1093 * bits in the control registers based on their contents.
1094 */
1095 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1096 aprint_error("%s: unable to read CFG1 from EEPROM\n",
1097 sc->sc_dev.dv_xname);
1098 return;
1099 }
1100 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1101 aprint_error("%s: unable to read CFG2 from EEPROM\n",
1102 sc->sc_dev.dv_xname);
1103 return;
1104 }
1105 if (sc->sc_type >= WM_T_82544) {
1106 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1107 aprint_error("%s: unable to read SWDPIN from EEPROM\n",
1108 sc->sc_dev.dv_xname);
1109 return;
1110 }
1111 }
1112
1113 if (cfg1 & EEPROM_CFG1_ILOS)
1114 sc->sc_ctrl |= CTRL_ILOS;
1115 if (sc->sc_type >= WM_T_82544) {
1116 sc->sc_ctrl |=
1117 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1118 CTRL_SWDPIO_SHIFT;
1119 sc->sc_ctrl |=
1120 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1121 CTRL_SWDPINS_SHIFT;
1122 } else {
1123 sc->sc_ctrl |=
1124 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1125 CTRL_SWDPIO_SHIFT;
1126 }
1127
1128 #if 0
1129 if (sc->sc_type >= WM_T_82544) {
1130 if (cfg1 & EEPROM_CFG1_IPS0)
1131 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1132 if (cfg1 & EEPROM_CFG1_IPS1)
1133 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1134 sc->sc_ctrl_ext |=
1135 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1136 CTRL_EXT_SWDPIO_SHIFT;
1137 sc->sc_ctrl_ext |=
1138 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1139 CTRL_EXT_SWDPINS_SHIFT;
1140 } else {
1141 sc->sc_ctrl_ext |=
1142 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1143 CTRL_EXT_SWDPIO_SHIFT;
1144 }
1145 #endif
1146
1147 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1148 #if 0
1149 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1150 #endif
1151
1152 /*
1153 * Set up some register offsets that are different between
1154 * the i82542 and the i82543 and later chips.
1155 */
1156 if (sc->sc_type < WM_T_82543) {
1157 sc->sc_rdt_reg = WMREG_OLD_RDT0;
1158 sc->sc_tdt_reg = WMREG_OLD_TDT;
1159 } else {
1160 sc->sc_rdt_reg = WMREG_RDT;
1161 sc->sc_tdt_reg = WMREG_TDT;
1162 }
1163
1164 /*
1165 * Determine if we're TBI or GMII mode, and initialize the
1166 * media structures accordingly.
1167 */
1168 if (sc->sc_type < WM_T_82543 ||
1169 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1170 if (wmp->wmp_flags & WMP_F_1000T)
1171 aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1172 "product!\n", sc->sc_dev.dv_xname);
1173 wm_tbi_mediainit(sc);
1174 } else {
1175 if (wmp->wmp_flags & WMP_F_1000X)
1176 aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1177 "product!\n", sc->sc_dev.dv_xname);
1178 wm_gmii_mediainit(sc);
1179 }
1180
1181 ifp = &sc->sc_ethercom.ec_if;
1182 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1183 ifp->if_softc = sc;
1184 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1185 ifp->if_ioctl = wm_ioctl;
1186 ifp->if_start = wm_start;
1187 ifp->if_watchdog = wm_watchdog;
1188 ifp->if_init = wm_init;
1189 ifp->if_stop = wm_stop;
1190 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1191 IFQ_SET_READY(&ifp->if_snd);
1192
1193 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1194
1195 /*
1196 * If we're a i82543 or greater, we can support VLANs.
1197 */
1198 if (sc->sc_type >= WM_T_82543)
1199 sc->sc_ethercom.ec_capabilities |=
1200 ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1201
1202 /*
1203 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
1204 * on i82543 and later.
1205 */
1206 if (sc->sc_type >= WM_T_82543)
1207 ifp->if_capabilities |=
1208 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
1209
1210 /*
1211 * Attach the interface.
1212 */
1213 if_attach(ifp);
1214 ether_ifattach(ifp, enaddr);
1215 #if NRND > 0
1216 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1217 RND_TYPE_NET, 0);
1218 #endif
1219
1220 #ifdef WM_EVENT_COUNTERS
1221 /* Attach event counters. */
1222 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1223 NULL, sc->sc_dev.dv_xname, "txsstall");
1224 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1225 NULL, sc->sc_dev.dv_xname, "txdstall");
1226 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1227 NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1228 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1229 NULL, sc->sc_dev.dv_xname, "txdw");
1230 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1231 NULL, sc->sc_dev.dv_xname, "txqe");
1232 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1233 NULL, sc->sc_dev.dv_xname, "rxintr");
1234 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1235 NULL, sc->sc_dev.dv_xname, "linkintr");
1236
1237 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1238 NULL, sc->sc_dev.dv_xname, "rxipsum");
1239 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1240 NULL, sc->sc_dev.dv_xname, "rxtusum");
1241 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1242 NULL, sc->sc_dev.dv_xname, "txipsum");
1243 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1244 NULL, sc->sc_dev.dv_xname, "txtusum");
1245
1246 evcnt_attach_dynamic(&sc->sc_ev_txpullup_needed, EVCNT_TYPE_MISC,
1247 NULL, sc->sc_dev.dv_xname, "txpullup needed");
1248 evcnt_attach_dynamic(&sc->sc_ev_txpullup_nomem, EVCNT_TYPE_MISC,
1249 NULL, sc->sc_dev.dv_xname, "txpullup nomem");
1250 evcnt_attach_dynamic(&sc->sc_ev_txpullup_fail, EVCNT_TYPE_MISC,
1251 NULL, sc->sc_dev.dv_xname, "txpullup fail");
1252
1253 for (i = 0; i < WM_NTXSEGS; i++) {
1254 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1255 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1256 NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1257 }
1258
1259 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1260 NULL, sc->sc_dev.dv_xname, "txdrop");
1261
1262 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1263 NULL, sc->sc_dev.dv_xname, "tu");
1264
1265 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1266 NULL, sc->sc_dev.dv_xname, "tx_xoff");
1267 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1268 NULL, sc->sc_dev.dv_xname, "tx_xon");
1269 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1270 NULL, sc->sc_dev.dv_xname, "rx_xoff");
1271 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1272 NULL, sc->sc_dev.dv_xname, "rx_xon");
1273 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1274 NULL, sc->sc_dev.dv_xname, "rx_macctl");
1275 #endif /* WM_EVENT_COUNTERS */
1276
1277 /*
1278 * Make sure the interface is shutdown during reboot.
1279 */
1280 sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1281 if (sc->sc_sdhook == NULL)
1282 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1283 sc->sc_dev.dv_xname);
1284 return;
1285
1286 /*
1287 * Free any resources we've allocated during the failed attach
1288 * attempt. Do this in reverse order and fall through.
1289 */
1290 fail_5:
1291 for (i = 0; i < WM_NRXDESC; i++) {
1292 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1293 bus_dmamap_destroy(sc->sc_dmat,
1294 sc->sc_rxsoft[i].rxs_dmamap);
1295 }
1296 fail_4:
1297 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1298 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1299 bus_dmamap_destroy(sc->sc_dmat,
1300 sc->sc_txsoft[i].txs_dmamap);
1301 }
1302 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1303 fail_3:
1304 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1305 fail_2:
1306 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1307 cdata_size);
1308 fail_1:
1309 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1310 fail_0:
1311 return;
1312 }
1313
1314 /*
1315 * wm_shutdown:
1316 *
1317 * Make sure the interface is stopped at reboot time.
1318 */
1319 static void
1320 wm_shutdown(void *arg)
1321 {
1322 struct wm_softc *sc = arg;
1323
1324 wm_stop(&sc->sc_ethercom.ec_if, 1);
1325 }
1326
1327 /*
1328 * wm_tx_offload:
1329 *
1330 * Set up TCP/IP checksumming parameters for the
1331 * specified packet.
1332 */
1333 static int
1334 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1335 uint8_t *fieldsp)
1336 {
1337 struct mbuf *m0 = txs->txs_mbuf;
1338 struct livengood_tcpip_ctxdesc *t;
1339 uint32_t ipcs, tucs;
1340 struct ip *ip;
1341 struct ether_header *eh;
1342 int offset, iphl;
1343 uint8_t fields = 0;
1344
1345 /*
1346 * XXX It would be nice if the mbuf pkthdr had offset
1347 * fields for the protocol headers.
1348 */
1349
1350 eh = mtod(m0, struct ether_header *);
1351 switch (htons(eh->ether_type)) {
1352 case ETHERTYPE_IP:
1353 iphl = sizeof(struct ip);
1354 offset = ETHER_HDR_LEN;
1355 break;
1356
1357 case ETHERTYPE_VLAN:
1358 iphl = sizeof(struct ip);
1359 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1360 break;
1361
1362 default:
1363 /*
1364 * Don't support this protocol or encapsulation.
1365 */
1366 *fieldsp = 0;
1367 *cmdp = 0;
1368 return (0);
1369 }
1370
1371 if (m0->m_len < (offset + iphl)) {
1372 /*
1373 * Packet headers aren't in the first mbuf. Let's hope
1374 * there is space at the end if it for them.
1375 */
1376 WM_EVCNT_INCR(&sc->sc_ev_txpullup_needed);
1377 if ((txs->txs_mbuf = m_pullup(m0, offset + iphl)) == NULL) {
1378 WM_EVCNT_INCR(&sc->sc_ev_txpullup_nomem);
1379 log(LOG_ERR,
1380 "%s: wm_tx_offload: mbuf allocation failed, "
1381 "packet dropped\n", sc->sc_dev.dv_xname);
1382 return (ENOMEM);
1383 } else if (m0 != txs->txs_mbuf) {
1384 /*
1385 * The DMA map has already been loaded, so we
1386 * would have to unload and reload it. But then
1387 * if that were to fail, we are already committed
1388 * to transmitting the packet (can't put it back
1389 * on the queue), so we have to drop the packet.
1390 */
1391 WM_EVCNT_INCR(&sc->sc_ev_txpullup_fail);
1392 log(LOG_ERR, "%s: wm_tx_offload: packet headers did "
1393 "not fit in first mbuf, packet dropped\n",
1394 sc->sc_dev.dv_xname);
1395 m_freem(txs->txs_mbuf);
1396 txs->txs_mbuf = NULL;
1397 return (EINVAL);
1398 }
1399 }
1400
1401 ip = (struct ip *) (mtod(m0, caddr_t) + offset);
1402 iphl = ip->ip_hl << 2;
1403
1404 /*
1405 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1406 * offload feature, if we load the context descriptor, we
1407 * MUST provide valid values for IPCSS and TUCSS fields.
1408 */
1409
1410 ipcs = WTX_TCPIP_IPCSS(offset) |
1411 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1412 WTX_TCPIP_IPCSE(offset + iphl - 1);
1413 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1414 WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1415 fields |= WTX_IXSM;
1416 }
1417
1418 offset += iphl;
1419
1420 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1421 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1422 fields |= WTX_TXSM;
1423 tucs = WTX_TCPIP_TUCSS(offset) |
1424 WTX_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
1425 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1426 } else {
1427 /* Just initialize it to a valid TCP context. */
1428 tucs = WTX_TCPIP_TUCSS(offset) |
1429 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1430 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1431 }
1432
1433 /* Fill in the context descriptor. */
1434 t = (struct livengood_tcpip_ctxdesc *)
1435 &sc->sc_txdescs[sc->sc_txnext];
1436 t->tcpip_ipcs = htole32(ipcs);
1437 t->tcpip_tucs = htole32(tucs);
1438 t->tcpip_cmdlen = htole32(WTX_CMD_DEXT | WTX_DTYP_C);
1439 t->tcpip_seg = 0;
1440 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1441
1442 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1443 txs->txs_ndesc++;
1444
1445 *cmdp = WTX_CMD_DEXT | WTX_DTYP_D;
1446 *fieldsp = fields;
1447
1448 return (0);
1449 }
1450
1451 static void
1452 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1453 {
1454 struct mbuf *m;
1455 int i;
1456
1457 log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1458 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1459 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1460 "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1461 m->m_data, m->m_len, m->m_flags);
1462 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1463 i, i == 1 ? "" : "s");
1464 }
1465
1466 /*
1467 * wm_82547_txfifo_stall:
1468 *
1469 * Callout used to wait for the 82547 Tx FIFO to drain,
1470 * reset the FIFO pointers, and restart packet transmission.
1471 */
1472 static void
1473 wm_82547_txfifo_stall(void *arg)
1474 {
1475 struct wm_softc *sc = arg;
1476 int s;
1477
1478 s = splnet();
1479
1480 if (sc->sc_txfifo_stall) {
1481 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1482 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1483 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1484 /*
1485 * Packets have drained. Stop transmitter, reset
1486 * FIFO pointers, restart transmitter, and kick
1487 * the packet queue.
1488 */
1489 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1490 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1491 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1492 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1493 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1494 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1495 CSR_WRITE(sc, WMREG_TCTL, tctl);
1496 CSR_WRITE_FLUSH(sc);
1497
1498 sc->sc_txfifo_head = 0;
1499 sc->sc_txfifo_stall = 0;
1500 wm_start(&sc->sc_ethercom.ec_if);
1501 } else {
1502 /*
1503 * Still waiting for packets to drain; try again in
1504 * another tick.
1505 */
1506 callout_schedule(&sc->sc_txfifo_ch, 1);
1507 }
1508 }
1509
1510 splx(s);
1511 }
1512
1513 /*
1514 * wm_82547_txfifo_bugchk:
1515 *
1516 * Check for bug condition in the 82547 Tx FIFO. We need to
1517 * prevent enqueueing a packet that would wrap around the end
1518 * if the Tx FIFO ring buffer, otherwise the chip will croak.
1519 *
1520 * We do this by checking the amount of space before the end
1521 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
1522 * the Tx FIFO, wait for all remaining packets to drain, reset
1523 * the internal FIFO pointers to the beginning, and restart
1524 * transmission on the interface.
1525 */
1526 #define WM_FIFO_HDR 0x10
1527 #define WM_82547_PAD_LEN 0x3e0
1528 static int
1529 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1530 {
1531 int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1532 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1533
1534 /* Just return if already stalled. */
1535 if (sc->sc_txfifo_stall)
1536 return (1);
1537
1538 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1539 /* Stall only occurs in half-duplex mode. */
1540 goto send_packet;
1541 }
1542
1543 if (len >= WM_82547_PAD_LEN + space) {
1544 sc->sc_txfifo_stall = 1;
1545 callout_schedule(&sc->sc_txfifo_ch, 1);
1546 return (1);
1547 }
1548
1549 send_packet:
1550 sc->sc_txfifo_head += len;
1551 if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1552 sc->sc_txfifo_head -= sc->sc_txfifo_size;
1553
1554 return (0);
1555 }
1556
1557 /*
1558 * wm_start: [ifnet interface function]
1559 *
1560 * Start packet transmission on the interface.
1561 */
1562 static void
1563 wm_start(struct ifnet *ifp)
1564 {
1565 struct wm_softc *sc = ifp->if_softc;
1566 struct mbuf *m0;
1567 #if 0 /* XXXJRT */
1568 struct m_tag *mtag;
1569 #endif
1570 struct wm_txsoft *txs;
1571 bus_dmamap_t dmamap;
1572 int error, nexttx, lasttx = -1, ofree, seg, segs_needed;
1573 bus_addr_t curaddr;
1574 bus_size_t seglen, curlen;
1575 uint32_t cksumcmd;
1576 uint8_t cksumfields;
1577
1578 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1579 return;
1580
1581 /*
1582 * Remember the previous number of free descriptors.
1583 */
1584 ofree = sc->sc_txfree;
1585
1586 /*
1587 * Loop through the send queue, setting up transmit descriptors
1588 * until we drain the queue, or use up all available transmit
1589 * descriptors.
1590 */
1591 for (;;) {
1592 /* Grab a packet off the queue. */
1593 IFQ_POLL(&ifp->if_snd, m0);
1594 if (m0 == NULL)
1595 break;
1596
1597 DPRINTF(WM_DEBUG_TX,
1598 ("%s: TX: have packet to transmit: %p\n",
1599 sc->sc_dev.dv_xname, m0));
1600
1601 /* Get a work queue entry. */
1602 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1603 wm_txintr(sc);
1604 if (sc->sc_txsfree == 0) {
1605 DPRINTF(WM_DEBUG_TX,
1606 ("%s: TX: no free job descriptors\n",
1607 sc->sc_dev.dv_xname));
1608 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1609 break;
1610 }
1611 }
1612
1613 txs = &sc->sc_txsoft[sc->sc_txsnext];
1614 dmamap = txs->txs_dmamap;
1615
1616 /*
1617 * Load the DMA map. If this fails, the packet either
1618 * didn't fit in the allotted number of segments, or we
1619 * were short on resources. For the too-many-segments
1620 * case, we simply report an error and drop the packet,
1621 * since we can't sanely copy a jumbo packet to a single
1622 * buffer.
1623 */
1624 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1625 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1626 if (error) {
1627 if (error == EFBIG) {
1628 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1629 log(LOG_ERR, "%s: Tx packet consumes too many "
1630 "DMA segments, dropping...\n",
1631 sc->sc_dev.dv_xname);
1632 IFQ_DEQUEUE(&ifp->if_snd, m0);
1633 wm_dump_mbuf_chain(sc, m0);
1634 m_freem(m0);
1635 continue;
1636 }
1637 /*
1638 * Short on resources, just stop for now.
1639 */
1640 DPRINTF(WM_DEBUG_TX,
1641 ("%s: TX: dmamap load failed: %d\n",
1642 sc->sc_dev.dv_xname, error));
1643 break;
1644 }
1645
1646 segs_needed = dmamap->dm_nsegs;
1647
1648 /*
1649 * Ensure we have enough descriptors free to describe
1650 * the packet. Note, we always reserve one descriptor
1651 * at the end of the ring due to the semantics of the
1652 * TDT register, plus one more in the event we need
1653 * to load offload context.
1654 */
1655 if (segs_needed > sc->sc_txfree - 2) {
1656 /*
1657 * Not enough free descriptors to transmit this
1658 * packet. We haven't committed anything yet,
1659 * so just unload the DMA map, put the packet
1660 * pack on the queue, and punt. Notify the upper
1661 * layer that there are no more slots left.
1662 */
1663 DPRINTF(WM_DEBUG_TX,
1664 ("%s: TX: need %d (%) descriptors, have %d\n",
1665 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1666 sc->sc_txfree - 1));
1667 ifp->if_flags |= IFF_OACTIVE;
1668 bus_dmamap_unload(sc->sc_dmat, dmamap);
1669 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1670 break;
1671 }
1672
1673 /*
1674 * Check for 82547 Tx FIFO bug. We need to do this
1675 * once we know we can transmit the packet, since we
1676 * do some internal FIFO space accounting here.
1677 */
1678 if (sc->sc_type == WM_T_82547 &&
1679 wm_82547_txfifo_bugchk(sc, m0)) {
1680 DPRINTF(WM_DEBUG_TX,
1681 ("%s: TX: 82547 Tx FIFO bug detected\n",
1682 sc->sc_dev.dv_xname));
1683 ifp->if_flags |= IFF_OACTIVE;
1684 bus_dmamap_unload(sc->sc_dmat, dmamap);
1685 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1686 break;
1687 }
1688
1689 IFQ_DEQUEUE(&ifp->if_snd, m0);
1690
1691 /*
1692 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1693 */
1694
1695 DPRINTF(WM_DEBUG_TX,
1696 ("%s: TX: packet has %d (%d) DMA segments\n",
1697 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1698
1699 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1700
1701 /*
1702 * Store a pointer to the packet so that we can free it
1703 * later.
1704 *
1705 * Initially, we consider the number of descriptors the
1706 * packet uses the number of DMA segments. This may be
1707 * incremented by 1 if we do checksum offload (a descriptor
1708 * is used to set the checksum context).
1709 */
1710 txs->txs_mbuf = m0;
1711 txs->txs_firstdesc = sc->sc_txnext;
1712 txs->txs_ndesc = segs_needed;
1713
1714 /* Set up offload parameters for this packet. */
1715 if (m0->m_pkthdr.csum_flags &
1716 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1717 if (wm_tx_offload(sc, txs, &cksumcmd,
1718 &cksumfields) != 0) {
1719 /* Error message already displayed. */
1720 bus_dmamap_unload(sc->sc_dmat, dmamap);
1721 continue;
1722 }
1723 } else {
1724 cksumcmd = 0;
1725 cksumfields = 0;
1726 }
1727
1728 cksumcmd |= WTX_CMD_IDE;
1729
1730 /* Sync the DMA map. */
1731 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1732 BUS_DMASYNC_PREWRITE);
1733
1734 /*
1735 * Initialize the transmit descriptor.
1736 */
1737 for (nexttx = sc->sc_txnext, seg = 0;
1738 seg < dmamap->dm_nsegs; seg++) {
1739 for (seglen = dmamap->dm_segs[seg].ds_len,
1740 curaddr = dmamap->dm_segs[seg].ds_addr;
1741 seglen != 0;
1742 curaddr += curlen, seglen -= curlen,
1743 nexttx = WM_NEXTTX(sc, nexttx)) {
1744 curlen = seglen;
1745
1746 wm_set_dma_addr(
1747 &sc->sc_txdescs[nexttx].wtx_addr,
1748 curaddr);
1749 sc->sc_txdescs[nexttx].wtx_cmdlen =
1750 htole32(cksumcmd | curlen);
1751 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
1752 0;
1753 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1754 cksumfields;
1755 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1756 lasttx = nexttx;
1757
1758 DPRINTF(WM_DEBUG_TX,
1759 ("%s: TX: desc %d: low 0x%08x, "
1760 "len 0x%04x\n",
1761 sc->sc_dev.dv_xname, nexttx,
1762 curaddr & 0xffffffffU, curlen, curlen));
1763 }
1764 }
1765
1766 KASSERT(lasttx != -1);
1767
1768 /*
1769 * Set up the command byte on the last descriptor of
1770 * the packet. If we're in the interrupt delay window,
1771 * delay the interrupt.
1772 */
1773 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1774 htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS);
1775
1776 #if 0 /* XXXJRT */
1777 /*
1778 * If VLANs are enabled and the packet has a VLAN tag, set
1779 * up the descriptor to encapsulate the packet for us.
1780 *
1781 * This is only valid on the last descriptor of the packet.
1782 */
1783 if (sc->sc_ethercom.ec_nvlans != 0 &&
1784 (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1785 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1786 htole32(WTX_CMD_VLE);
1787 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
1788 = htole16(*(u_int *)(mtag + 1) & 0xffff);
1789 }
1790 #endif /* XXXJRT */
1791
1792 txs->txs_lastdesc = lasttx;
1793
1794 DPRINTF(WM_DEBUG_TX,
1795 ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1796 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
1797
1798 /* Sync the descriptors we're using. */
1799 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
1800 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1801
1802 /* Give the packet to the chip. */
1803 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1804
1805 DPRINTF(WM_DEBUG_TX,
1806 ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1807
1808 DPRINTF(WM_DEBUG_TX,
1809 ("%s: TX: finished transmitting packet, job %d\n",
1810 sc->sc_dev.dv_xname, sc->sc_txsnext));
1811
1812 /* Advance the tx pointer. */
1813 sc->sc_txfree -= txs->txs_ndesc;
1814 sc->sc_txnext = nexttx;
1815
1816 sc->sc_txsfree--;
1817 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
1818
1819 #if NBPFILTER > 0
1820 /* Pass the packet to any BPF listeners. */
1821 if (ifp->if_bpf)
1822 bpf_mtap(ifp->if_bpf, m0);
1823 #endif /* NBPFILTER > 0 */
1824 }
1825
1826 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1827 /* No more slots; notify upper layer. */
1828 ifp->if_flags |= IFF_OACTIVE;
1829 }
1830
1831 if (sc->sc_txfree != ofree) {
1832 /* Set a watchdog timer in case the chip flakes out. */
1833 ifp->if_timer = 5;
1834 }
1835 }
1836
1837 /*
1838 * wm_watchdog: [ifnet interface function]
1839 *
1840 * Watchdog timer handler.
1841 */
1842 static void
1843 wm_watchdog(struct ifnet *ifp)
1844 {
1845 struct wm_softc *sc = ifp->if_softc;
1846
1847 /*
1848 * Since we're using delayed interrupts, sweep up
1849 * before we report an error.
1850 */
1851 wm_txintr(sc);
1852
1853 if (sc->sc_txfree != WM_NTXDESC(sc)) {
1854 log(LOG_ERR,
1855 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1856 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1857 sc->sc_txnext);
1858 ifp->if_oerrors++;
1859
1860 /* Reset the interface. */
1861 (void) wm_init(ifp);
1862 }
1863
1864 /* Try to get more packets going. */
1865 wm_start(ifp);
1866 }
1867
1868 /*
1869 * wm_ioctl: [ifnet interface function]
1870 *
1871 * Handle control requests from the operator.
1872 */
1873 static int
1874 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1875 {
1876 struct wm_softc *sc = ifp->if_softc;
1877 struct ifreq *ifr = (struct ifreq *) data;
1878 int s, error;
1879
1880 s = splnet();
1881
1882 switch (cmd) {
1883 case SIOCSIFMEDIA:
1884 case SIOCGIFMEDIA:
1885 /* Flow control requires full-duplex mode. */
1886 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1887 (ifr->ifr_media & IFM_FDX) == 0)
1888 ifr->ifr_media &= ~IFM_ETH_FMASK;
1889 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1890 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1891 /* We can do both TXPAUSE and RXPAUSE. */
1892 ifr->ifr_media |=
1893 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1894 }
1895 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1896 }
1897 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1898 break;
1899 default:
1900 error = ether_ioctl(ifp, cmd, data);
1901 if (error == ENETRESET) {
1902 /*
1903 * Multicast list has changed; set the hardware filter
1904 * accordingly.
1905 */
1906 if (ifp->if_flags & IFF_RUNNING)
1907 wm_set_filter(sc);
1908 error = 0;
1909 }
1910 break;
1911 }
1912
1913 /* Try to get more packets going. */
1914 wm_start(ifp);
1915
1916 splx(s);
1917 return (error);
1918 }
1919
1920 /*
1921 * wm_intr:
1922 *
1923 * Interrupt service routine.
1924 */
1925 static int
1926 wm_intr(void *arg)
1927 {
1928 struct wm_softc *sc = arg;
1929 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1930 uint32_t icr;
1931 int wantinit, handled = 0;
1932
1933 for (wantinit = 0; wantinit == 0;) {
1934 icr = CSR_READ(sc, WMREG_ICR);
1935 if ((icr & sc->sc_icr) == 0)
1936 break;
1937
1938 #if 0 /*NRND > 0*/
1939 if (RND_ENABLED(&sc->rnd_source))
1940 rnd_add_uint32(&sc->rnd_source, icr);
1941 #endif
1942
1943 handled = 1;
1944
1945 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1946 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1947 DPRINTF(WM_DEBUG_RX,
1948 ("%s: RX: got Rx intr 0x%08x\n",
1949 sc->sc_dev.dv_xname,
1950 icr & (ICR_RXDMT0|ICR_RXT0)));
1951 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
1952 }
1953 #endif
1954 wm_rxintr(sc);
1955
1956 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1957 if (icr & ICR_TXDW) {
1958 DPRINTF(WM_DEBUG_TX,
1959 ("%s: TX: got TXDW interrupt\n",
1960 sc->sc_dev.dv_xname));
1961 WM_EVCNT_INCR(&sc->sc_ev_txdw);
1962 }
1963 #endif
1964 wm_txintr(sc);
1965
1966 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
1967 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
1968 wm_linkintr(sc, icr);
1969 }
1970
1971 if (icr & ICR_RXO) {
1972 log(LOG_WARNING, "%s: Receive overrun\n",
1973 sc->sc_dev.dv_xname);
1974 wantinit = 1;
1975 }
1976 }
1977
1978 if (handled) {
1979 if (wantinit)
1980 wm_init(ifp);
1981
1982 /* Try to get more packets going. */
1983 wm_start(ifp);
1984 }
1985
1986 return (handled);
1987 }
1988
1989 /*
1990 * wm_txintr:
1991 *
1992 * Helper; handle transmit interrupts.
1993 */
1994 static void
1995 wm_txintr(struct wm_softc *sc)
1996 {
1997 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1998 struct wm_txsoft *txs;
1999 uint8_t status;
2000 int i;
2001
2002 ifp->if_flags &= ~IFF_OACTIVE;
2003
2004 /*
2005 * Go through the Tx list and free mbufs for those
2006 * frames which have been transmitted.
2007 */
2008 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2009 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2010 txs = &sc->sc_txsoft[i];
2011
2012 DPRINTF(WM_DEBUG_TX,
2013 ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2014
2015 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2016 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2017
2018 status =
2019 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2020 if ((status & WTX_ST_DD) == 0) {
2021 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2022 BUS_DMASYNC_PREREAD);
2023 break;
2024 }
2025
2026 DPRINTF(WM_DEBUG_TX,
2027 ("%s: TX: job %d done: descs %d..%d\n",
2028 sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2029 txs->txs_lastdesc));
2030
2031 /*
2032 * XXX We should probably be using the statistics
2033 * XXX registers, but I don't know if they exist
2034 * XXX on chips before the i82544.
2035 */
2036
2037 #ifdef WM_EVENT_COUNTERS
2038 if (status & WTX_ST_TU)
2039 WM_EVCNT_INCR(&sc->sc_ev_tu);
2040 #endif /* WM_EVENT_COUNTERS */
2041
2042 if (status & (WTX_ST_EC|WTX_ST_LC)) {
2043 ifp->if_oerrors++;
2044 if (status & WTX_ST_LC)
2045 log(LOG_WARNING, "%s: late collision\n",
2046 sc->sc_dev.dv_xname);
2047 else if (status & WTX_ST_EC) {
2048 ifp->if_collisions += 16;
2049 log(LOG_WARNING, "%s: excessive collisions\n",
2050 sc->sc_dev.dv_xname);
2051 }
2052 } else
2053 ifp->if_opackets++;
2054
2055 sc->sc_txfree += txs->txs_ndesc;
2056 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2057 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2058 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2059 m_freem(txs->txs_mbuf);
2060 txs->txs_mbuf = NULL;
2061 }
2062
2063 /* Update the dirty transmit buffer pointer. */
2064 sc->sc_txsdirty = i;
2065 DPRINTF(WM_DEBUG_TX,
2066 ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2067
2068 /*
2069 * If there are no more pending transmissions, cancel the watchdog
2070 * timer.
2071 */
2072 if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2073 ifp->if_timer = 0;
2074 }
2075
2076 /*
2077 * wm_rxintr:
2078 *
2079 * Helper; handle receive interrupts.
2080 */
2081 static void
2082 wm_rxintr(struct wm_softc *sc)
2083 {
2084 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2085 struct wm_rxsoft *rxs;
2086 struct mbuf *m;
2087 int i, len;
2088 uint8_t status, errors;
2089
2090 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2091 rxs = &sc->sc_rxsoft[i];
2092
2093 DPRINTF(WM_DEBUG_RX,
2094 ("%s: RX: checking descriptor %d\n",
2095 sc->sc_dev.dv_xname, i));
2096
2097 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2098
2099 status = sc->sc_rxdescs[i].wrx_status;
2100 errors = sc->sc_rxdescs[i].wrx_errors;
2101 len = le16toh(sc->sc_rxdescs[i].wrx_len);
2102
2103 if ((status & WRX_ST_DD) == 0) {
2104 /*
2105 * We have processed all of the receive descriptors.
2106 */
2107 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2108 break;
2109 }
2110
2111 if (__predict_false(sc->sc_rxdiscard)) {
2112 DPRINTF(WM_DEBUG_RX,
2113 ("%s: RX: discarding contents of descriptor %d\n",
2114 sc->sc_dev.dv_xname, i));
2115 WM_INIT_RXDESC(sc, i);
2116 if (status & WRX_ST_EOP) {
2117 /* Reset our state. */
2118 DPRINTF(WM_DEBUG_RX,
2119 ("%s: RX: resetting rxdiscard -> 0\n",
2120 sc->sc_dev.dv_xname));
2121 sc->sc_rxdiscard = 0;
2122 }
2123 continue;
2124 }
2125
2126 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2127 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2128
2129 m = rxs->rxs_mbuf;
2130
2131 /*
2132 * Add a new receive buffer to the ring.
2133 */
2134 if (wm_add_rxbuf(sc, i) != 0) {
2135 /*
2136 * Failed, throw away what we've done so
2137 * far, and discard the rest of the packet.
2138 */
2139 ifp->if_ierrors++;
2140 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2141 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2142 WM_INIT_RXDESC(sc, i);
2143 if ((status & WRX_ST_EOP) == 0)
2144 sc->sc_rxdiscard = 1;
2145 if (sc->sc_rxhead != NULL)
2146 m_freem(sc->sc_rxhead);
2147 WM_RXCHAIN_RESET(sc);
2148 DPRINTF(WM_DEBUG_RX,
2149 ("%s: RX: Rx buffer allocation failed, "
2150 "dropping packet%s\n", sc->sc_dev.dv_xname,
2151 sc->sc_rxdiscard ? " (discard)" : ""));
2152 continue;
2153 }
2154
2155 WM_RXCHAIN_LINK(sc, m);
2156
2157 m->m_len = len;
2158
2159 DPRINTF(WM_DEBUG_RX,
2160 ("%s: RX: buffer at %p len %d\n",
2161 sc->sc_dev.dv_xname, m->m_data, len));
2162
2163 /*
2164 * If this is not the end of the packet, keep
2165 * looking.
2166 */
2167 if ((status & WRX_ST_EOP) == 0) {
2168 sc->sc_rxlen += len;
2169 DPRINTF(WM_DEBUG_RX,
2170 ("%s: RX: not yet EOP, rxlen -> %d\n",
2171 sc->sc_dev.dv_xname, sc->sc_rxlen));
2172 continue;
2173 }
2174
2175 /*
2176 * Okay, we have the entire packet now...
2177 */
2178 *sc->sc_rxtailp = NULL;
2179 m = sc->sc_rxhead;
2180 len += sc->sc_rxlen;
2181
2182 WM_RXCHAIN_RESET(sc);
2183
2184 DPRINTF(WM_DEBUG_RX,
2185 ("%s: RX: have entire packet, len -> %d\n",
2186 sc->sc_dev.dv_xname, len));
2187
2188 /*
2189 * If an error occurred, update stats and drop the packet.
2190 */
2191 if (errors &
2192 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2193 ifp->if_ierrors++;
2194 if (errors & WRX_ER_SE)
2195 log(LOG_WARNING, "%s: symbol error\n",
2196 sc->sc_dev.dv_xname);
2197 else if (errors & WRX_ER_SEQ)
2198 log(LOG_WARNING, "%s: receive sequence error\n",
2199 sc->sc_dev.dv_xname);
2200 else if (errors & WRX_ER_CE)
2201 log(LOG_WARNING, "%s: CRC error\n",
2202 sc->sc_dev.dv_xname);
2203 m_freem(m);
2204 continue;
2205 }
2206
2207 /*
2208 * No errors. Receive the packet.
2209 *
2210 * Note, we have configured the chip to include the
2211 * CRC with every packet.
2212 */
2213 m->m_flags |= M_HASFCS;
2214 m->m_pkthdr.rcvif = ifp;
2215 m->m_pkthdr.len = len;
2216
2217 #if 0 /* XXXJRT */
2218 /*
2219 * If VLANs are enabled, VLAN packets have been unwrapped
2220 * for us. Associate the tag with the packet.
2221 */
2222 if (sc->sc_ethercom.ec_nvlans != 0 &&
2223 (status & WRX_ST_VP) != 0) {
2224 struct m_tag *vtag;
2225
2226 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2227 M_NOWAIT);
2228 if (vtag == NULL) {
2229 ifp->if_ierrors++;
2230 log(LOG_ERR,
2231 "%s: unable to allocate VLAN tag\n",
2232 sc->sc_dev.dv_xname);
2233 m_freem(m);
2234 continue;
2235 }
2236
2237 *(u_int *)(vtag + 1) =
2238 le16toh(sc->sc_rxdescs[i].wrx_special);
2239 }
2240 #endif /* XXXJRT */
2241
2242 /*
2243 * Set up checksum info for this packet.
2244 */
2245 if (status & WRX_ST_IPCS) {
2246 WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2247 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2248 if (errors & WRX_ER_IPE)
2249 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2250 }
2251 if (status & WRX_ST_TCPCS) {
2252 /*
2253 * Note: we don't know if this was TCP or UDP,
2254 * so we just set both bits, and expect the
2255 * upper layers to deal.
2256 */
2257 WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2258 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
2259 if (errors & WRX_ER_TCPE)
2260 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
2261 }
2262
2263 ifp->if_ipackets++;
2264
2265 #if NBPFILTER > 0
2266 /* Pass this up to any BPF listeners. */
2267 if (ifp->if_bpf)
2268 bpf_mtap(ifp->if_bpf, m);
2269 #endif /* NBPFILTER > 0 */
2270
2271 /* Pass it on. */
2272 (*ifp->if_input)(ifp, m);
2273 }
2274
2275 /* Update the receive pointer. */
2276 sc->sc_rxptr = i;
2277
2278 DPRINTF(WM_DEBUG_RX,
2279 ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2280 }
2281
2282 /*
2283 * wm_linkintr:
2284 *
2285 * Helper; handle link interrupts.
2286 */
2287 static void
2288 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2289 {
2290 uint32_t status;
2291
2292 /*
2293 * If we get a link status interrupt on a 1000BASE-T
2294 * device, just fall into the normal MII tick path.
2295 */
2296 if (sc->sc_flags & WM_F_HAS_MII) {
2297 if (icr & ICR_LSC) {
2298 DPRINTF(WM_DEBUG_LINK,
2299 ("%s: LINK: LSC -> mii_tick\n",
2300 sc->sc_dev.dv_xname));
2301 mii_tick(&sc->sc_mii);
2302 } else if (icr & ICR_RXSEQ) {
2303 DPRINTF(WM_DEBUG_LINK,
2304 ("%s: LINK Receive sequence error\n",
2305 sc->sc_dev.dv_xname));
2306 }
2307 return;
2308 }
2309
2310 /*
2311 * If we are now receiving /C/, check for link again in
2312 * a couple of link clock ticks.
2313 */
2314 if (icr & ICR_RXCFG) {
2315 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2316 sc->sc_dev.dv_xname));
2317 sc->sc_tbi_anstate = 2;
2318 }
2319
2320 if (icr & ICR_LSC) {
2321 status = CSR_READ(sc, WMREG_STATUS);
2322 if (status & STATUS_LU) {
2323 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2324 sc->sc_dev.dv_xname,
2325 (status & STATUS_FD) ? "FDX" : "HDX"));
2326 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2327 sc->sc_fcrtl &= ~FCRTL_XONE;
2328 if (status & STATUS_FD)
2329 sc->sc_tctl |=
2330 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2331 else
2332 sc->sc_tctl |=
2333 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2334 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2335 sc->sc_fcrtl |= FCRTL_XONE;
2336 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2337 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2338 WMREG_OLD_FCRTL : WMREG_FCRTL,
2339 sc->sc_fcrtl);
2340 sc->sc_tbi_linkup = 1;
2341 } else {
2342 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2343 sc->sc_dev.dv_xname));
2344 sc->sc_tbi_linkup = 0;
2345 }
2346 sc->sc_tbi_anstate = 2;
2347 wm_tbi_set_linkled(sc);
2348 } else if (icr & ICR_RXSEQ) {
2349 DPRINTF(WM_DEBUG_LINK,
2350 ("%s: LINK: Receive sequence error\n",
2351 sc->sc_dev.dv_xname));
2352 }
2353 }
2354
2355 /*
2356 * wm_tick:
2357 *
2358 * One second timer, used to check link status, sweep up
2359 * completed transmit jobs, etc.
2360 */
2361 static void
2362 wm_tick(void *arg)
2363 {
2364 struct wm_softc *sc = arg;
2365 int s;
2366
2367 s = splnet();
2368
2369 if (sc->sc_type >= WM_T_82542_2_1) {
2370 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2371 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2372 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2373 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2374 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2375 }
2376
2377 if (sc->sc_flags & WM_F_HAS_MII)
2378 mii_tick(&sc->sc_mii);
2379 else
2380 wm_tbi_check_link(sc);
2381
2382 splx(s);
2383
2384 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2385 }
2386
2387 /*
2388 * wm_reset:
2389 *
2390 * Reset the i82542 chip.
2391 */
2392 static void
2393 wm_reset(struct wm_softc *sc)
2394 {
2395 int i;
2396
2397 /*
2398 * Allocate on-chip memory according to the MTU size.
2399 * The Packet Buffer Allocation register must be written
2400 * before the chip is reset.
2401 */
2402 if (sc->sc_type < WM_T_82547) {
2403 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2404 PBA_40K : PBA_48K;
2405 } else {
2406 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2407 PBA_22K : PBA_30K;
2408 sc->sc_txfifo_head = 0;
2409 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2410 sc->sc_txfifo_size =
2411 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2412 sc->sc_txfifo_stall = 0;
2413 }
2414 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2415
2416 switch (sc->sc_type) {
2417 case WM_T_82544:
2418 case WM_T_82540:
2419 case WM_T_82545:
2420 case WM_T_82546:
2421 case WM_T_82541:
2422 case WM_T_82541_2:
2423 /*
2424 * These chips have a problem with the memory-mapped
2425 * write cycle when issuing the reset, so use I/O-mapped
2426 * access, if possible.
2427 */
2428 if (sc->sc_flags & WM_F_IOH_VALID)
2429 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2430 else
2431 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2432 break;
2433
2434 case WM_T_82545_3:
2435 case WM_T_82546_3:
2436 /* Use the shadow control register on these chips. */
2437 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2438 break;
2439
2440 default:
2441 /* Everything else can safely use the documented method. */
2442 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2443 break;
2444 }
2445 delay(10000);
2446
2447 for (i = 0; i < 1000; i++) {
2448 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2449 return;
2450 delay(20);
2451 }
2452
2453 if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2454 log(LOG_ERR, "%s: reset failed to complete\n",
2455 sc->sc_dev.dv_xname);
2456 }
2457
2458 /*
2459 * wm_init: [ifnet interface function]
2460 *
2461 * Initialize the interface. Must be called at splnet().
2462 */
2463 static int
2464 wm_init(struct ifnet *ifp)
2465 {
2466 struct wm_softc *sc = ifp->if_softc;
2467 struct wm_rxsoft *rxs;
2468 int i, error = 0;
2469 uint32_t reg;
2470
2471 /*
2472 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2473 * There is a small but measurable benefit to avoiding the adjusment
2474 * of the descriptor so that the headers are aligned, for normal mtu,
2475 * on such platforms. One possibility is that the DMA itself is
2476 * slightly more efficient if the front of the entire packet (instead
2477 * of the front of the headers) is aligned.
2478 *
2479 * Note we must always set align_tweak to 0 if we are using
2480 * jumbo frames.
2481 */
2482 #ifdef __NO_STRICT_ALIGNMENT
2483 sc->sc_align_tweak = 0;
2484 #else
2485 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2486 sc->sc_align_tweak = 0;
2487 else
2488 sc->sc_align_tweak = 2;
2489 #endif /* __NO_STRICT_ALIGNMENT */
2490
2491 /* Cancel any pending I/O. */
2492 wm_stop(ifp, 0);
2493
2494 /* Reset the chip to a known state. */
2495 wm_reset(sc);
2496
2497 /* Initialize the transmit descriptor ring. */
2498 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2499 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2500 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2501 sc->sc_txfree = WM_NTXDESC(sc);
2502 sc->sc_txnext = 0;
2503
2504 if (sc->sc_type < WM_T_82543) {
2505 CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2506 CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2507 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2508 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2509 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2510 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2511 } else {
2512 CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2513 CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2514 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2515 CSR_WRITE(sc, WMREG_TDH, 0);
2516 CSR_WRITE(sc, WMREG_TDT, 0);
2517 CSR_WRITE(sc, WMREG_TIDV, 128);
2518
2519 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2520 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2521 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2522 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2523 }
2524 CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2525 CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2526
2527 /* Initialize the transmit job descriptors. */
2528 for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2529 sc->sc_txsoft[i].txs_mbuf = NULL;
2530 sc->sc_txsfree = WM_TXQUEUELEN(sc);
2531 sc->sc_txsnext = 0;
2532 sc->sc_txsdirty = 0;
2533
2534 /*
2535 * Initialize the receive descriptor and receive job
2536 * descriptor rings.
2537 */
2538 if (sc->sc_type < WM_T_82543) {
2539 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2540 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2541 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2542 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2543 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2544 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2545
2546 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2547 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2548 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2549 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2550 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2551 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2552 } else {
2553 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2554 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2555 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2556 CSR_WRITE(sc, WMREG_RDH, 0);
2557 CSR_WRITE(sc, WMREG_RDT, 0);
2558 CSR_WRITE(sc, WMREG_RDTR, 28 | RDTR_FPD);
2559 }
2560 for (i = 0; i < WM_NRXDESC; i++) {
2561 rxs = &sc->sc_rxsoft[i];
2562 if (rxs->rxs_mbuf == NULL) {
2563 if ((error = wm_add_rxbuf(sc, i)) != 0) {
2564 log(LOG_ERR, "%s: unable to allocate or map rx "
2565 "buffer %d, error = %d\n",
2566 sc->sc_dev.dv_xname, i, error);
2567 /*
2568 * XXX Should attempt to run with fewer receive
2569 * XXX buffers instead of just failing.
2570 */
2571 wm_rxdrain(sc);
2572 goto out;
2573 }
2574 } else
2575 WM_INIT_RXDESC(sc, i);
2576 }
2577 sc->sc_rxptr = 0;
2578 sc->sc_rxdiscard = 0;
2579 WM_RXCHAIN_RESET(sc);
2580
2581 /*
2582 * Clear out the VLAN table -- we don't use it (yet).
2583 */
2584 CSR_WRITE(sc, WMREG_VET, 0);
2585 for (i = 0; i < WM_VLAN_TABSIZE; i++)
2586 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2587
2588 /*
2589 * Set up flow-control parameters.
2590 *
2591 * XXX Values could probably stand some tuning.
2592 */
2593 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2594 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2595 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2596
2597 sc->sc_fcrtl = FCRTL_DFLT;
2598 if (sc->sc_type < WM_T_82543) {
2599 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2600 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2601 } else {
2602 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2603 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2604 }
2605 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2606
2607 #if 0 /* XXXJRT */
2608 /* Deal with VLAN enables. */
2609 if (sc->sc_ethercom.ec_nvlans != 0)
2610 sc->sc_ctrl |= CTRL_VME;
2611 else
2612 #endif /* XXXJRT */
2613 sc->sc_ctrl &= ~CTRL_VME;
2614
2615 /* Write the control registers. */
2616 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2617 #if 0
2618 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2619 #endif
2620
2621 /*
2622 * Set up checksum offload parameters.
2623 */
2624 reg = CSR_READ(sc, WMREG_RXCSUM);
2625 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
2626 reg |= RXCSUM_IPOFL;
2627 else
2628 reg &= ~RXCSUM_IPOFL;
2629 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
2630 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2631 else {
2632 reg &= ~RXCSUM_TUOFL;
2633 if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
2634 reg &= ~RXCSUM_IPOFL;
2635 }
2636 CSR_WRITE(sc, WMREG_RXCSUM, reg);
2637
2638 /*
2639 * Set up the interrupt registers.
2640 */
2641 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2642 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2643 ICR_RXO | ICR_RXT0;
2644 if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2645 sc->sc_icr |= ICR_RXCFG;
2646 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2647
2648 /* Set up the inter-packet gap. */
2649 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2650
2651 #if 0 /* XXXJRT */
2652 /* Set the VLAN ethernetype. */
2653 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2654 #endif
2655
2656 /*
2657 * Set up the transmit control register; we start out with
2658 * a collision distance suitable for FDX, but update it whe
2659 * we resolve the media type.
2660 */
2661 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2662 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2663 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2664
2665 /* Set the media. */
2666 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2667
2668 /*
2669 * Set up the receive control register; we actually program
2670 * the register when we set the receive filter. Use multicast
2671 * address offset type 0.
2672 *
2673 * Only the i82544 has the ability to strip the incoming
2674 * CRC, so we don't enable that feature.
2675 */
2676 sc->sc_mchash_type = 0;
2677 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
2678 RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2679
2680 if(MCLBYTES == 2048) {
2681 sc->sc_rctl |= RCTL_2k;
2682 } else {
2683 if(sc->sc_type >= WM_T_82543) {
2684 switch(MCLBYTES) {
2685 case 4096:
2686 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2687 break;
2688 case 8192:
2689 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2690 break;
2691 case 16384:
2692 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2693 break;
2694 default:
2695 panic("wm_init: MCLBYTES %d unsupported",
2696 MCLBYTES);
2697 break;
2698 }
2699 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
2700 }
2701
2702 /* Set the receive filter. */
2703 wm_set_filter(sc);
2704
2705 /* Start the one second link check clock. */
2706 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2707
2708 /* ...all done! */
2709 ifp->if_flags |= IFF_RUNNING;
2710 ifp->if_flags &= ~IFF_OACTIVE;
2711
2712 out:
2713 if (error)
2714 log(LOG_ERR, "%s: interface not running\n",
2715 sc->sc_dev.dv_xname);
2716 return (error);
2717 }
2718
2719 /*
2720 * wm_rxdrain:
2721 *
2722 * Drain the receive queue.
2723 */
2724 static void
2725 wm_rxdrain(struct wm_softc *sc)
2726 {
2727 struct wm_rxsoft *rxs;
2728 int i;
2729
2730 for (i = 0; i < WM_NRXDESC; i++) {
2731 rxs = &sc->sc_rxsoft[i];
2732 if (rxs->rxs_mbuf != NULL) {
2733 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2734 m_freem(rxs->rxs_mbuf);
2735 rxs->rxs_mbuf = NULL;
2736 }
2737 }
2738 }
2739
2740 /*
2741 * wm_stop: [ifnet interface function]
2742 *
2743 * Stop transmission on the interface.
2744 */
2745 static void
2746 wm_stop(struct ifnet *ifp, int disable)
2747 {
2748 struct wm_softc *sc = ifp->if_softc;
2749 struct wm_txsoft *txs;
2750 int i;
2751
2752 /* Stop the one second clock. */
2753 callout_stop(&sc->sc_tick_ch);
2754
2755 /* Stop the 82547 Tx FIFO stall check timer. */
2756 if (sc->sc_type == WM_T_82547)
2757 callout_stop(&sc->sc_txfifo_ch);
2758
2759 if (sc->sc_flags & WM_F_HAS_MII) {
2760 /* Down the MII. */
2761 mii_down(&sc->sc_mii);
2762 }
2763
2764 /* Stop the transmit and receive processes. */
2765 CSR_WRITE(sc, WMREG_TCTL, 0);
2766 CSR_WRITE(sc, WMREG_RCTL, 0);
2767
2768 /* Release any queued transmit buffers. */
2769 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2770 txs = &sc->sc_txsoft[i];
2771 if (txs->txs_mbuf != NULL) {
2772 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2773 m_freem(txs->txs_mbuf);
2774 txs->txs_mbuf = NULL;
2775 }
2776 }
2777
2778 if (disable)
2779 wm_rxdrain(sc);
2780
2781 /* Mark the interface as down and cancel the watchdog timer. */
2782 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2783 ifp->if_timer = 0;
2784 }
2785
2786 /*
2787 * wm_acquire_eeprom:
2788 *
2789 * Perform the EEPROM handshake required on some chips.
2790 */
2791 static int
2792 wm_acquire_eeprom(struct wm_softc *sc)
2793 {
2794 uint32_t reg;
2795 int x;
2796
2797 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2798 reg = CSR_READ(sc, WMREG_EECD);
2799
2800 /* Request EEPROM access. */
2801 reg |= EECD_EE_REQ;
2802 CSR_WRITE(sc, WMREG_EECD, reg);
2803
2804 /* ..and wait for it to be granted. */
2805 for (x = 0; x < 100; x++) {
2806 reg = CSR_READ(sc, WMREG_EECD);
2807 if (reg & EECD_EE_GNT)
2808 break;
2809 delay(5);
2810 }
2811 if ((reg & EECD_EE_GNT) == 0) {
2812 aprint_error("%s: could not acquire EEPROM GNT\n",
2813 sc->sc_dev.dv_xname);
2814 reg &= ~EECD_EE_REQ;
2815 CSR_WRITE(sc, WMREG_EECD, reg);
2816 return (1);
2817 }
2818 }
2819
2820 return (0);
2821 }
2822
2823 /*
2824 * wm_release_eeprom:
2825 *
2826 * Release the EEPROM mutex.
2827 */
2828 static void
2829 wm_release_eeprom(struct wm_softc *sc)
2830 {
2831 uint32_t reg;
2832
2833 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2834 reg = CSR_READ(sc, WMREG_EECD);
2835 reg &= ~EECD_EE_REQ;
2836 CSR_WRITE(sc, WMREG_EECD, reg);
2837 }
2838 }
2839
2840 /*
2841 * wm_eeprom_sendbits:
2842 *
2843 * Send a series of bits to the EEPROM.
2844 */
2845 static void
2846 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
2847 {
2848 uint32_t reg;
2849 int x;
2850
2851 reg = CSR_READ(sc, WMREG_EECD);
2852
2853 for (x = nbits; x > 0; x--) {
2854 if (bits & (1U << (x - 1)))
2855 reg |= EECD_DI;
2856 else
2857 reg &= ~EECD_DI;
2858 CSR_WRITE(sc, WMREG_EECD, reg);
2859 delay(2);
2860 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2861 delay(2);
2862 CSR_WRITE(sc, WMREG_EECD, reg);
2863 delay(2);
2864 }
2865 }
2866
2867 /*
2868 * wm_eeprom_recvbits:
2869 *
2870 * Receive a series of bits from the EEPROM.
2871 */
2872 static void
2873 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
2874 {
2875 uint32_t reg, val;
2876 int x;
2877
2878 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
2879
2880 val = 0;
2881 for (x = nbits; x > 0; x--) {
2882 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2883 delay(2);
2884 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
2885 val |= (1U << (x - 1));
2886 CSR_WRITE(sc, WMREG_EECD, reg);
2887 delay(2);
2888 }
2889 *valp = val;
2890 }
2891
2892 /*
2893 * wm_read_eeprom_uwire:
2894 *
2895 * Read a word from the EEPROM using the MicroWire protocol.
2896 */
2897 static int
2898 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2899 {
2900 uint32_t reg, val;
2901 int i;
2902
2903 for (i = 0; i < wordcnt; i++) {
2904 /* Clear SK and DI. */
2905 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
2906 CSR_WRITE(sc, WMREG_EECD, reg);
2907
2908 /* Set CHIP SELECT. */
2909 reg |= EECD_CS;
2910 CSR_WRITE(sc, WMREG_EECD, reg);
2911 delay(2);
2912
2913 /* Shift in the READ command. */
2914 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
2915
2916 /* Shift in address. */
2917 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
2918
2919 /* Shift out the data. */
2920 wm_eeprom_recvbits(sc, &val, 16);
2921 data[i] = val & 0xffff;
2922
2923 /* Clear CHIP SELECT. */
2924 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
2925 CSR_WRITE(sc, WMREG_EECD, reg);
2926 delay(2);
2927 }
2928
2929 return (0);
2930 }
2931
2932 /*
2933 * wm_spi_eeprom_ready:
2934 *
2935 * Wait for a SPI EEPROM to be ready for commands.
2936 */
2937 static int
2938 wm_spi_eeprom_ready(struct wm_softc *sc)
2939 {
2940 uint32_t val;
2941 int usec;
2942
2943 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
2944 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
2945 wm_eeprom_recvbits(sc, &val, 8);
2946 if ((val & SPI_SR_RDY) == 0)
2947 break;
2948 }
2949 if (usec >= SPI_MAX_RETRIES) {
2950 aprint_error("%s: EEPROM failed to become ready\n",
2951 sc->sc_dev.dv_xname);
2952 return (1);
2953 }
2954 return (0);
2955 }
2956
2957 /*
2958 * wm_read_eeprom_spi:
2959 *
2960 * Read a work from the EEPROM using the SPI protocol.
2961 */
2962 static int
2963 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2964 {
2965 uint32_t reg, val;
2966 int i;
2967 uint8_t opc;
2968
2969 /* Clear SK and CS. */
2970 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
2971 CSR_WRITE(sc, WMREG_EECD, reg);
2972 delay(2);
2973
2974 if (wm_spi_eeprom_ready(sc))
2975 return (1);
2976
2977 /* Toggle CS to flush commands. */
2978 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
2979 delay(2);
2980 CSR_WRITE(sc, WMREG_EECD, reg);
2981 delay(2);
2982
2983 opc = SPI_OPC_READ;
2984 if (sc->sc_ee_addrbits == 8 && word >= 128)
2985 opc |= SPI_OPC_A8;
2986
2987 wm_eeprom_sendbits(sc, opc, 8);
2988 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
2989
2990 for (i = 0; i < wordcnt; i++) {
2991 wm_eeprom_recvbits(sc, &val, 16);
2992 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
2993 }
2994
2995 /* Raise CS and clear SK. */
2996 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
2997 CSR_WRITE(sc, WMREG_EECD, reg);
2998 delay(2);
2999
3000 return (0);
3001 }
3002
3003 /*
3004 * wm_read_eeprom:
3005 *
3006 * Read data from the serial EEPROM.
3007 */
3008 static int
3009 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3010 {
3011 int rv;
3012
3013 if (wm_acquire_eeprom(sc))
3014 return (1);
3015
3016 if (sc->sc_flags & WM_F_EEPROM_SPI)
3017 rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3018 else
3019 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3020
3021 wm_release_eeprom(sc);
3022 return (rv);
3023 }
3024
3025 /*
3026 * wm_add_rxbuf:
3027 *
3028 * Add a receive buffer to the indiciated descriptor.
3029 */
3030 static int
3031 wm_add_rxbuf(struct wm_softc *sc, int idx)
3032 {
3033 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3034 struct mbuf *m;
3035 int error;
3036
3037 MGETHDR(m, M_DONTWAIT, MT_DATA);
3038 if (m == NULL)
3039 return (ENOBUFS);
3040
3041 MCLGET(m, M_DONTWAIT);
3042 if ((m->m_flags & M_EXT) == 0) {
3043 m_freem(m);
3044 return (ENOBUFS);
3045 }
3046
3047 if (rxs->rxs_mbuf != NULL)
3048 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3049
3050 rxs->rxs_mbuf = m;
3051
3052 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3053 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3054 BUS_DMA_READ|BUS_DMA_NOWAIT);
3055 if (error) {
3056 /* XXX XXX XXX */
3057 printf("%s: unable to load rx DMA map %d, error = %d\n",
3058 sc->sc_dev.dv_xname, idx, error);
3059 panic("wm_add_rxbuf");
3060 }
3061
3062 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3063 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3064
3065 WM_INIT_RXDESC(sc, idx);
3066
3067 return (0);
3068 }
3069
3070 /*
3071 * wm_set_ral:
3072 *
3073 * Set an entery in the receive address list.
3074 */
3075 static void
3076 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3077 {
3078 uint32_t ral_lo, ral_hi;
3079
3080 if (enaddr != NULL) {
3081 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3082 (enaddr[3] << 24);
3083 ral_hi = enaddr[4] | (enaddr[5] << 8);
3084 ral_hi |= RAL_AV;
3085 } else {
3086 ral_lo = 0;
3087 ral_hi = 0;
3088 }
3089
3090 if (sc->sc_type >= WM_T_82544) {
3091 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3092 ral_lo);
3093 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3094 ral_hi);
3095 } else {
3096 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3097 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3098 }
3099 }
3100
3101 /*
3102 * wm_mchash:
3103 *
3104 * Compute the hash of the multicast address for the 4096-bit
3105 * multicast filter.
3106 */
3107 static uint32_t
3108 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3109 {
3110 static const int lo_shift[4] = { 4, 3, 2, 0 };
3111 static const int hi_shift[4] = { 4, 5, 6, 8 };
3112 uint32_t hash;
3113
3114 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3115 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3116
3117 return (hash & 0xfff);
3118 }
3119
3120 /*
3121 * wm_set_filter:
3122 *
3123 * Set up the receive filter.
3124 */
3125 static void
3126 wm_set_filter(struct wm_softc *sc)
3127 {
3128 struct ethercom *ec = &sc->sc_ethercom;
3129 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3130 struct ether_multi *enm;
3131 struct ether_multistep step;
3132 bus_addr_t mta_reg;
3133 uint32_t hash, reg, bit;
3134 int i;
3135
3136 if (sc->sc_type >= WM_T_82544)
3137 mta_reg = WMREG_CORDOVA_MTA;
3138 else
3139 mta_reg = WMREG_MTA;
3140
3141 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3142
3143 if (ifp->if_flags & IFF_BROADCAST)
3144 sc->sc_rctl |= RCTL_BAM;
3145 if (ifp->if_flags & IFF_PROMISC) {
3146 sc->sc_rctl |= RCTL_UPE;
3147 goto allmulti;
3148 }
3149
3150 /*
3151 * Set the station address in the first RAL slot, and
3152 * clear the remaining slots.
3153 */
3154 wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3155 for (i = 1; i < WM_RAL_TABSIZE; i++)
3156 wm_set_ral(sc, NULL, i);
3157
3158 /* Clear out the multicast table. */
3159 for (i = 0; i < WM_MC_TABSIZE; i++)
3160 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3161
3162 ETHER_FIRST_MULTI(step, ec, enm);
3163 while (enm != NULL) {
3164 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3165 /*
3166 * We must listen to a range of multicast addresses.
3167 * For now, just accept all multicasts, rather than
3168 * trying to set only those filter bits needed to match
3169 * the range. (At this time, the only use of address
3170 * ranges is for IP multicast routing, for which the
3171 * range is big enough to require all bits set.)
3172 */
3173 goto allmulti;
3174 }
3175
3176 hash = wm_mchash(sc, enm->enm_addrlo);
3177
3178 reg = (hash >> 5) & 0x7f;
3179 bit = hash & 0x1f;
3180
3181 hash = CSR_READ(sc, mta_reg + (reg << 2));
3182 hash |= 1U << bit;
3183
3184 /* XXX Hardware bug?? */
3185 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3186 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3187 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3188 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3189 } else
3190 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3191
3192 ETHER_NEXT_MULTI(step, enm);
3193 }
3194
3195 ifp->if_flags &= ~IFF_ALLMULTI;
3196 goto setit;
3197
3198 allmulti:
3199 ifp->if_flags |= IFF_ALLMULTI;
3200 sc->sc_rctl |= RCTL_MPE;
3201
3202 setit:
3203 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3204 }
3205
3206 /*
3207 * wm_tbi_mediainit:
3208 *
3209 * Initialize media for use on 1000BASE-X devices.
3210 */
3211 static void
3212 wm_tbi_mediainit(struct wm_softc *sc)
3213 {
3214 const char *sep = "";
3215
3216 if (sc->sc_type < WM_T_82543)
3217 sc->sc_tipg = TIPG_WM_DFLT;
3218 else
3219 sc->sc_tipg = TIPG_LG_DFLT;
3220
3221 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3222 wm_tbi_mediastatus);
3223
3224 /*
3225 * SWD Pins:
3226 *
3227 * 0 = Link LED (output)
3228 * 1 = Loss Of Signal (input)
3229 */
3230 sc->sc_ctrl |= CTRL_SWDPIO(0);
3231 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3232
3233 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3234
3235 #define ADD(ss, mm, dd) \
3236 do { \
3237 aprint_normal("%s%s", sep, ss); \
3238 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
3239 sep = ", "; \
3240 } while (/*CONSTCOND*/0)
3241
3242 aprint_normal("%s: ", sc->sc_dev.dv_xname);
3243 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3244 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3245 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3246 aprint_normal("\n");
3247
3248 #undef ADD
3249
3250 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3251 }
3252
3253 /*
3254 * wm_tbi_mediastatus: [ifmedia interface function]
3255 *
3256 * Get the current interface media status on a 1000BASE-X device.
3257 */
3258 static void
3259 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3260 {
3261 struct wm_softc *sc = ifp->if_softc;
3262 uint32_t ctrl;
3263
3264 ifmr->ifm_status = IFM_AVALID;
3265 ifmr->ifm_active = IFM_ETHER;
3266
3267 if (sc->sc_tbi_linkup == 0) {
3268 ifmr->ifm_active |= IFM_NONE;
3269 return;
3270 }
3271
3272 ifmr->ifm_status |= IFM_ACTIVE;
3273 ifmr->ifm_active |= IFM_1000_SX;
3274 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3275 ifmr->ifm_active |= IFM_FDX;
3276 ctrl = CSR_READ(sc, WMREG_CTRL);
3277 if (ctrl & CTRL_RFCE)
3278 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3279 if (ctrl & CTRL_TFCE)
3280 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3281 }
3282
3283 /*
3284 * wm_tbi_mediachange: [ifmedia interface function]
3285 *
3286 * Set hardware to newly-selected media on a 1000BASE-X device.
3287 */
3288 static int
3289 wm_tbi_mediachange(struct ifnet *ifp)
3290 {
3291 struct wm_softc *sc = ifp->if_softc;
3292 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3293 uint32_t status;
3294 int i;
3295
3296 sc->sc_txcw = ife->ifm_data;
3297 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3298 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3299 sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3300 sc->sc_txcw |= TXCW_ANE;
3301
3302 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3303 delay(10000);
3304
3305 /* NOTE: CTRL will update TFCE and RFCE automatically. */
3306
3307 sc->sc_tbi_anstate = 0;
3308
3309 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3310 /* Have signal; wait for the link to come up. */
3311 for (i = 0; i < 50; i++) {
3312 delay(10000);
3313 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3314 break;
3315 }
3316
3317 status = CSR_READ(sc, WMREG_STATUS);
3318 if (status & STATUS_LU) {
3319 /* Link is up. */
3320 DPRINTF(WM_DEBUG_LINK,
3321 ("%s: LINK: set media -> link up %s\n",
3322 sc->sc_dev.dv_xname,
3323 (status & STATUS_FD) ? "FDX" : "HDX"));
3324 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3325 sc->sc_fcrtl &= ~FCRTL_XONE;
3326 if (status & STATUS_FD)
3327 sc->sc_tctl |=
3328 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3329 else
3330 sc->sc_tctl |=
3331 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3332 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3333 sc->sc_fcrtl |= FCRTL_XONE;
3334 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3335 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3336 WMREG_OLD_FCRTL : WMREG_FCRTL,
3337 sc->sc_fcrtl);
3338 sc->sc_tbi_linkup = 1;
3339 } else {
3340 /* Link is down. */
3341 DPRINTF(WM_DEBUG_LINK,
3342 ("%s: LINK: set media -> link down\n",
3343 sc->sc_dev.dv_xname));
3344 sc->sc_tbi_linkup = 0;
3345 }
3346 } else {
3347 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3348 sc->sc_dev.dv_xname));
3349 sc->sc_tbi_linkup = 0;
3350 }
3351
3352 wm_tbi_set_linkled(sc);
3353
3354 return (0);
3355 }
3356
3357 /*
3358 * wm_tbi_set_linkled:
3359 *
3360 * Update the link LED on 1000BASE-X devices.
3361 */
3362 static void
3363 wm_tbi_set_linkled(struct wm_softc *sc)
3364 {
3365
3366 if (sc->sc_tbi_linkup)
3367 sc->sc_ctrl |= CTRL_SWDPIN(0);
3368 else
3369 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3370
3371 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3372 }
3373
3374 /*
3375 * wm_tbi_check_link:
3376 *
3377 * Check the link on 1000BASE-X devices.
3378 */
3379 static void
3380 wm_tbi_check_link(struct wm_softc *sc)
3381 {
3382 uint32_t rxcw, ctrl, status;
3383
3384 if (sc->sc_tbi_anstate == 0)
3385 return;
3386 else if (sc->sc_tbi_anstate > 1) {
3387 DPRINTF(WM_DEBUG_LINK,
3388 ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3389 sc->sc_tbi_anstate));
3390 sc->sc_tbi_anstate--;
3391 return;
3392 }
3393
3394 sc->sc_tbi_anstate = 0;
3395
3396 rxcw = CSR_READ(sc, WMREG_RXCW);
3397 ctrl = CSR_READ(sc, WMREG_CTRL);
3398 status = CSR_READ(sc, WMREG_STATUS);
3399
3400 if ((status & STATUS_LU) == 0) {
3401 DPRINTF(WM_DEBUG_LINK,
3402 ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3403 sc->sc_tbi_linkup = 0;
3404 } else {
3405 DPRINTF(WM_DEBUG_LINK,
3406 ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3407 (status & STATUS_FD) ? "FDX" : "HDX"));
3408 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3409 sc->sc_fcrtl &= ~FCRTL_XONE;
3410 if (status & STATUS_FD)
3411 sc->sc_tctl |=
3412 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3413 else
3414 sc->sc_tctl |=
3415 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3416 if (ctrl & CTRL_TFCE)
3417 sc->sc_fcrtl |= FCRTL_XONE;
3418 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3419 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3420 WMREG_OLD_FCRTL : WMREG_FCRTL,
3421 sc->sc_fcrtl);
3422 sc->sc_tbi_linkup = 1;
3423 }
3424
3425 wm_tbi_set_linkled(sc);
3426 }
3427
3428 /*
3429 * wm_gmii_reset:
3430 *
3431 * Reset the PHY.
3432 */
3433 static void
3434 wm_gmii_reset(struct wm_softc *sc)
3435 {
3436 uint32_t reg;
3437
3438 if (sc->sc_type >= WM_T_82544) {
3439 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3440 delay(20000);
3441
3442 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3443 delay(20000);
3444 } else {
3445 /* The PHY reset pin is active-low. */
3446 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3447 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3448 CTRL_EXT_SWDPIN(4));
3449 reg |= CTRL_EXT_SWDPIO(4);
3450
3451 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3452 delay(10);
3453
3454 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3455 delay(10);
3456
3457 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3458 delay(10);
3459 #if 0
3460 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3461 #endif
3462 }
3463 }
3464
3465 /*
3466 * wm_gmii_mediainit:
3467 *
3468 * Initialize media for use on 1000BASE-T devices.
3469 */
3470 static void
3471 wm_gmii_mediainit(struct wm_softc *sc)
3472 {
3473 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3474
3475 /* We have MII. */
3476 sc->sc_flags |= WM_F_HAS_MII;
3477
3478 sc->sc_tipg = TIPG_1000T_DFLT;
3479
3480 /*
3481 * Let the chip set speed/duplex on its own based on
3482 * signals from the PHY.
3483 */
3484 sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3485 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3486
3487 /* Initialize our media structures and probe the GMII. */
3488 sc->sc_mii.mii_ifp = ifp;
3489
3490 if (sc->sc_type >= WM_T_82544) {
3491 sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3492 sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3493 } else {
3494 sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3495 sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3496 }
3497 sc->sc_mii.mii_statchg = wm_gmii_statchg;
3498
3499 wm_gmii_reset(sc);
3500
3501 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3502 wm_gmii_mediastatus);
3503
3504 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3505 MII_OFFSET_ANY, MIIF_DOPAUSE);
3506 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3507 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3508 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3509 } else
3510 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3511 }
3512
3513 /*
3514 * wm_gmii_mediastatus: [ifmedia interface function]
3515 *
3516 * Get the current interface media status on a 1000BASE-T device.
3517 */
3518 static void
3519 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3520 {
3521 struct wm_softc *sc = ifp->if_softc;
3522
3523 mii_pollstat(&sc->sc_mii);
3524 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3525 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3526 sc->sc_flowflags;
3527 }
3528
3529 /*
3530 * wm_gmii_mediachange: [ifmedia interface function]
3531 *
3532 * Set hardware to newly-selected media on a 1000BASE-T device.
3533 */
3534 static int
3535 wm_gmii_mediachange(struct ifnet *ifp)
3536 {
3537 struct wm_softc *sc = ifp->if_softc;
3538
3539 if (ifp->if_flags & IFF_UP)
3540 mii_mediachg(&sc->sc_mii);
3541 return (0);
3542 }
3543
3544 #define MDI_IO CTRL_SWDPIN(2)
3545 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
3546 #define MDI_CLK CTRL_SWDPIN(3)
3547
3548 static void
3549 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3550 {
3551 uint32_t i, v;
3552
3553 v = CSR_READ(sc, WMREG_CTRL);
3554 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3555 v |= MDI_DIR | CTRL_SWDPIO(3);
3556
3557 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3558 if (data & i)
3559 v |= MDI_IO;
3560 else
3561 v &= ~MDI_IO;
3562 CSR_WRITE(sc, WMREG_CTRL, v);
3563 delay(10);
3564 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3565 delay(10);
3566 CSR_WRITE(sc, WMREG_CTRL, v);
3567 delay(10);
3568 }
3569 }
3570
3571 static uint32_t
3572 i82543_mii_recvbits(struct wm_softc *sc)
3573 {
3574 uint32_t v, i, data = 0;
3575
3576 v = CSR_READ(sc, WMREG_CTRL);
3577 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3578 v |= CTRL_SWDPIO(3);
3579
3580 CSR_WRITE(sc, WMREG_CTRL, v);
3581 delay(10);
3582 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3583 delay(10);
3584 CSR_WRITE(sc, WMREG_CTRL, v);
3585 delay(10);
3586
3587 for (i = 0; i < 16; i++) {
3588 data <<= 1;
3589 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3590 delay(10);
3591 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3592 data |= 1;
3593 CSR_WRITE(sc, WMREG_CTRL, v);
3594 delay(10);
3595 }
3596
3597 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3598 delay(10);
3599 CSR_WRITE(sc, WMREG_CTRL, v);
3600 delay(10);
3601
3602 return (data);
3603 }
3604
3605 #undef MDI_IO
3606 #undef MDI_DIR
3607 #undef MDI_CLK
3608
3609 /*
3610 * wm_gmii_i82543_readreg: [mii interface function]
3611 *
3612 * Read a PHY register on the GMII (i82543 version).
3613 */
3614 static int
3615 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3616 {
3617 struct wm_softc *sc = (void *) self;
3618 int rv;
3619
3620 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3621 i82543_mii_sendbits(sc, reg | (phy << 5) |
3622 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3623 rv = i82543_mii_recvbits(sc) & 0xffff;
3624
3625 DPRINTF(WM_DEBUG_GMII,
3626 ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3627 sc->sc_dev.dv_xname, phy, reg, rv));
3628
3629 return (rv);
3630 }
3631
3632 /*
3633 * wm_gmii_i82543_writereg: [mii interface function]
3634 *
3635 * Write a PHY register on the GMII (i82543 version).
3636 */
3637 static void
3638 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3639 {
3640 struct wm_softc *sc = (void *) self;
3641
3642 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3643 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3644 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3645 (MII_COMMAND_START << 30), 32);
3646 }
3647
3648 /*
3649 * wm_gmii_i82544_readreg: [mii interface function]
3650 *
3651 * Read a PHY register on the GMII.
3652 */
3653 static int
3654 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
3655 {
3656 struct wm_softc *sc = (void *) self;
3657 uint32_t mdic = 0;
3658 int i, rv;
3659
3660 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
3661 MDIC_REGADD(reg));
3662
3663 for (i = 0; i < 100; i++) {
3664 mdic = CSR_READ(sc, WMREG_MDIC);
3665 if (mdic & MDIC_READY)
3666 break;
3667 delay(10);
3668 }
3669
3670 if ((mdic & MDIC_READY) == 0) {
3671 log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
3672 sc->sc_dev.dv_xname, phy, reg);
3673 rv = 0;
3674 } else if (mdic & MDIC_E) {
3675 #if 0 /* This is normal if no PHY is present. */
3676 log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
3677 sc->sc_dev.dv_xname, phy, reg);
3678 #endif
3679 rv = 0;
3680 } else {
3681 rv = MDIC_DATA(mdic);
3682 if (rv == 0xffff)
3683 rv = 0;
3684 }
3685
3686 return (rv);
3687 }
3688
3689 /*
3690 * wm_gmii_i82544_writereg: [mii interface function]
3691 *
3692 * Write a PHY register on the GMII.
3693 */
3694 static void
3695 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
3696 {
3697 struct wm_softc *sc = (void *) self;
3698 uint32_t mdic = 0;
3699 int i;
3700
3701 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
3702 MDIC_REGADD(reg) | MDIC_DATA(val));
3703
3704 for (i = 0; i < 100; i++) {
3705 mdic = CSR_READ(sc, WMREG_MDIC);
3706 if (mdic & MDIC_READY)
3707 break;
3708 delay(10);
3709 }
3710
3711 if ((mdic & MDIC_READY) == 0)
3712 log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
3713 sc->sc_dev.dv_xname, phy, reg);
3714 else if (mdic & MDIC_E)
3715 log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
3716 sc->sc_dev.dv_xname, phy, reg);
3717 }
3718
3719 /*
3720 * wm_gmii_statchg: [mii interface function]
3721 *
3722 * Callback from MII layer when media changes.
3723 */
3724 static void
3725 wm_gmii_statchg(struct device *self)
3726 {
3727 struct wm_softc *sc = (void *) self;
3728 struct mii_data *mii = &sc->sc_mii;
3729
3730 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
3731 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3732 sc->sc_fcrtl &= ~FCRTL_XONE;
3733
3734 /*
3735 * Get flow control negotiation result.
3736 */
3737 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3738 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3739 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3740 mii->mii_media_active &= ~IFM_ETH_FMASK;
3741 }
3742
3743 if (sc->sc_flowflags & IFM_FLOW) {
3744 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
3745 sc->sc_ctrl |= CTRL_TFCE;
3746 sc->sc_fcrtl |= FCRTL_XONE;
3747 }
3748 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3749 sc->sc_ctrl |= CTRL_RFCE;
3750 }
3751
3752 if (sc->sc_mii.mii_media_active & IFM_FDX) {
3753 DPRINTF(WM_DEBUG_LINK,
3754 ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3755 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3756 } else {
3757 DPRINTF(WM_DEBUG_LINK,
3758 ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3759 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3760 }
3761
3762 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3763 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3764 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
3765 : WMREG_FCRTL, sc->sc_fcrtl);
3766 }
3767