if_wm.c revision 1.88 1 /* $NetBSD: if_wm.c,v 1.88 2004/11/24 15:14:13 briggs Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40 *
41 * TODO (in order of importance):
42 *
43 * - Rework how parameters are loaded from the EEPROM.
44 * - Figure out what to do with the i82545GM and i82546GB
45 * SERDES controllers.
46 * - Fix hw VLAN assist.
47 */
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.88 2004/11/24 15:14:13 briggs Exp $");
51
52 #include "bpfilter.h"
53 #include "rnd.h"
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67
68 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
69
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82
83 #include <netinet/in.h> /* XXX for struct ip */
84 #include <netinet/in_systm.h> /* XXX for struct ip */
85 #include <netinet/ip.h> /* XXX for struct ip */
86 #include <netinet/tcp.h> /* XXX for struct tcphdr */
87
88 #include <machine/bus.h>
89 #include <machine/intr.h>
90 #include <machine/endian.h>
91
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99
100 #include <dev/pci/if_wmreg.h>
101
102 #ifdef WM_DEBUG
103 #define WM_DEBUG_LINK 0x01
104 #define WM_DEBUG_TX 0x02
105 #define WM_DEBUG_RX 0x04
106 #define WM_DEBUG_GMII 0x08
107 int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
108
109 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
110 #else
111 #define DPRINTF(x, y) /* nothing */
112 #endif /* WM_DEBUG */
113
114 /*
115 * Transmit descriptor list size. Due to errata, we can only have
116 * 256 hardware descriptors in the ring on < 82544, but we use 4096
117 * on >= 82544. We tell the upper layers that they can queue a lot
118 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
119 * of them at a time.
120 *
121 * We allow up to 256 (!) DMA segments per packet. Pathological packet
122 * chains containing many small mbufs have been observed in zero-copy
123 * situations with jumbo frames.
124 */
125 #define WM_NTXSEGS 256
126 #define WM_IFQUEUELEN 256
127 #define WM_TXQUEUELEN_MAX 64
128 #define WM_TXQUEUELEN_MAX_82547 16
129 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
130 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
131 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
132 #define WM_NTXDESC_82542 256
133 #define WM_NTXDESC_82544 4096
134 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
135 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
136 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
137 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
138 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
139
140 #define WM_MAXTXDMA ETHER_MAX_LEN_JUMBO
141
142 /*
143 * Receive descriptor list size. We have one Rx buffer for normal
144 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
145 * packet. We allocate 256 receive descriptors, each with a 2k
146 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
147 */
148 #define WM_NRXDESC 256
149 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
150 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
151 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
152
153 /*
154 * Control structures are DMA'd to the i82542 chip. We allocate them in
155 * a single clump that maps to a single DMA segment to make serveral things
156 * easier.
157 */
158 struct wm_control_data_82544 {
159 /*
160 * The receive descriptors.
161 */
162 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
163
164 /*
165 * The transmit descriptors. Put these at the end, because
166 * we might use a smaller number of them.
167 */
168 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
169 };
170
171 struct wm_control_data_82542 {
172 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
173 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
174 };
175
176 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
177 #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)])
178 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
179
180 /*
181 * Software state for transmit jobs.
182 */
183 struct wm_txsoft {
184 struct mbuf *txs_mbuf; /* head of our mbuf chain */
185 bus_dmamap_t txs_dmamap; /* our DMA map */
186 int txs_firstdesc; /* first descriptor in packet */
187 int txs_lastdesc; /* last descriptor in packet */
188 int txs_ndesc; /* # of descriptors used */
189 };
190
191 /*
192 * Software state for receive buffers. Each descriptor gets a
193 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
194 * more than one buffer, we chain them together.
195 */
196 struct wm_rxsoft {
197 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
198 bus_dmamap_t rxs_dmamap; /* our DMA map */
199 };
200
201 typedef enum {
202 WM_T_unknown = 0,
203 WM_T_82542_2_0, /* i82542 2.0 (really old) */
204 WM_T_82542_2_1, /* i82542 2.1+ (old) */
205 WM_T_82543, /* i82543 */
206 WM_T_82544, /* i82544 */
207 WM_T_82540, /* i82540 */
208 WM_T_82545, /* i82545 */
209 WM_T_82545_3, /* i82545 3.0+ */
210 WM_T_82546, /* i82546 */
211 WM_T_82546_3, /* i82546 3.0+ */
212 WM_T_82541, /* i82541 */
213 WM_T_82541_2, /* i82541 2.0+ */
214 WM_T_82547, /* i82547 */
215 WM_T_82547_2, /* i82547 2.0+ */
216 } wm_chip_type;
217
218 /*
219 * Software state per device.
220 */
221 struct wm_softc {
222 struct device sc_dev; /* generic device information */
223 bus_space_tag_t sc_st; /* bus space tag */
224 bus_space_handle_t sc_sh; /* bus space handle */
225 bus_space_tag_t sc_iot; /* I/O space tag */
226 bus_space_handle_t sc_ioh; /* I/O space handle */
227 bus_dma_tag_t sc_dmat; /* bus DMA tag */
228 struct ethercom sc_ethercom; /* ethernet common data */
229 void *sc_sdhook; /* shutdown hook */
230
231 wm_chip_type sc_type; /* chip type */
232 int sc_flags; /* flags; see below */
233 int sc_bus_speed; /* PCI/PCIX bus speed */
234 int sc_pcix_offset; /* PCIX capability register offset */
235 int sc_flowflags; /* 802.3x flow control flags */
236
237 void *sc_ih; /* interrupt cookie */
238
239 int sc_ee_addrbits; /* EEPROM address bits */
240
241 struct mii_data sc_mii; /* MII/media information */
242
243 struct callout sc_tick_ch; /* tick callout */
244
245 bus_dmamap_t sc_cddmamap; /* control data DMA map */
246 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
247
248 int sc_align_tweak;
249
250 /*
251 * Software state for the transmit and receive descriptors.
252 */
253 int sc_txnum; /* must be a power of two */
254 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
255 struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
256
257 /*
258 * Control data structures.
259 */
260 int sc_ntxdesc; /* must be a power of two */
261 struct wm_control_data_82544 *sc_control_data;
262 #define sc_txdescs sc_control_data->wcd_txdescs
263 #define sc_rxdescs sc_control_data->wcd_rxdescs
264
265 #ifdef WM_EVENT_COUNTERS
266 /* Event counters. */
267 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
268 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
269 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
270 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
271 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
272 struct evcnt sc_ev_rxintr; /* Rx interrupts */
273 struct evcnt sc_ev_linkintr; /* Link interrupts */
274
275 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
276 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
277 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
278 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
279
280 /* m_pullup() needed for Tx offload */
281 struct evcnt sc_ev_txpullup_needed;
282 /* ...failed due to no memory */
283 struct evcnt sc_ev_txpullup_nomem;
284 /* ...failed due to lack of space in first mbuf */
285 struct evcnt sc_ev_txpullup_fail;
286
287 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
288 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
289
290 struct evcnt sc_ev_tu; /* Tx underrun */
291
292 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
293 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
294 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
295 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
296 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
297 #endif /* WM_EVENT_COUNTERS */
298
299 bus_addr_t sc_tdt_reg; /* offset of TDT register */
300
301 int sc_txfree; /* number of free Tx descriptors */
302 int sc_txnext; /* next ready Tx descriptor */
303
304 int sc_txsfree; /* number of free Tx jobs */
305 int sc_txsnext; /* next free Tx job */
306 int sc_txsdirty; /* dirty Tx jobs */
307
308 /* These 5 variables are used only on the 82547. */
309 int sc_txfifo_size; /* Tx FIFO size */
310 int sc_txfifo_head; /* current head of FIFO */
311 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
312 int sc_txfifo_stall; /* Tx FIFO is stalled */
313 struct callout sc_txfifo_ch; /* Tx FIFO stall work-around timer */
314
315 bus_addr_t sc_rdt_reg; /* offset of RDT register */
316
317 int sc_rxptr; /* next ready Rx descriptor/queue ent */
318 int sc_rxdiscard;
319 int sc_rxlen;
320 struct mbuf *sc_rxhead;
321 struct mbuf *sc_rxtail;
322 struct mbuf **sc_rxtailp;
323
324 uint32_t sc_ctrl; /* prototype CTRL register */
325 #if 0
326 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
327 #endif
328 uint32_t sc_icr; /* prototype interrupt bits */
329 uint32_t sc_tctl; /* prototype TCTL register */
330 uint32_t sc_rctl; /* prototype RCTL register */
331 uint32_t sc_txcw; /* prototype TXCW register */
332 uint32_t sc_tipg; /* prototype TIPG register */
333 uint32_t sc_fcrtl; /* prototype FCRTL register */
334 uint32_t sc_pba; /* prototype PBA register */
335
336 int sc_tbi_linkup; /* TBI link status */
337 int sc_tbi_anstate; /* autonegotiation state */
338
339 int sc_mchash_type; /* multicast filter offset */
340
341 #if NRND > 0
342 rndsource_element_t rnd_source; /* random source */
343 #endif
344 };
345
346 #define WM_RXCHAIN_RESET(sc) \
347 do { \
348 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
349 *(sc)->sc_rxtailp = NULL; \
350 (sc)->sc_rxlen = 0; \
351 } while (/*CONSTCOND*/0)
352
353 #define WM_RXCHAIN_LINK(sc, m) \
354 do { \
355 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
356 (sc)->sc_rxtailp = &(m)->m_next; \
357 } while (/*CONSTCOND*/0)
358
359 /* sc_flags */
360 #define WM_F_HAS_MII 0x01 /* has MII */
361 #define WM_F_EEPROM_HANDSHAKE 0x02 /* requires EEPROM handshake */
362 #define WM_F_EEPROM_SPI 0x04 /* EEPROM is SPI */
363 #define WM_F_IOH_VALID 0x10 /* I/O handle is valid */
364 #define WM_F_BUS64 0x20 /* bus is 64-bit */
365 #define WM_F_PCIX 0x40 /* bus is PCI-X */
366 #define WM_F_CSA 0x80 /* bus is CSA */
367
368 #ifdef WM_EVENT_COUNTERS
369 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
370 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
371 #else
372 #define WM_EVCNT_INCR(ev) /* nothing */
373 #define WM_EVCNT_ADD(ev, val) /* nothing */
374 #endif
375
376 #define CSR_READ(sc, reg) \
377 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
378 #define CSR_WRITE(sc, reg, val) \
379 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
380 #define CSR_WRITE_FLUSH(sc) \
381 (void) CSR_READ((sc), WMREG_STATUS)
382
383 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
384 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
385
386 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
387 #define WM_CDTXADDR_HI(sc, x) \
388 (sizeof(bus_addr_t) == 8 ? \
389 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
390
391 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
392 #define WM_CDRXADDR_HI(sc, x) \
393 (sizeof(bus_addr_t) == 8 ? \
394 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
395
396 #define WM_CDTXSYNC(sc, x, n, ops) \
397 do { \
398 int __x, __n; \
399 \
400 __x = (x); \
401 __n = (n); \
402 \
403 /* If it will wrap around, sync to the end of the ring. */ \
404 if ((__x + __n) > WM_NTXDESC(sc)) { \
405 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
406 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
407 (WM_NTXDESC(sc) - __x), (ops)); \
408 __n -= (WM_NTXDESC(sc) - __x); \
409 __x = 0; \
410 } \
411 \
412 /* Now sync whatever is left. */ \
413 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
414 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
415 } while (/*CONSTCOND*/0)
416
417 #define WM_CDRXSYNC(sc, x, ops) \
418 do { \
419 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
420 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
421 } while (/*CONSTCOND*/0)
422
423 #define WM_INIT_RXDESC(sc, x) \
424 do { \
425 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
426 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
427 struct mbuf *__m = __rxs->rxs_mbuf; \
428 \
429 /* \
430 * Note: We scoot the packet forward 2 bytes in the buffer \
431 * so that the payload after the Ethernet header is aligned \
432 * to a 4-byte boundary. \
433 * \
434 * XXX BRAINDAMAGE ALERT! \
435 * The stupid chip uses the same size for every buffer, which \
436 * is set in the Receive Control register. We are using the 2K \
437 * size option, but what we REALLY want is (2K - 2)! For this \
438 * reason, we can't "scoot" packets longer than the standard \
439 * Ethernet MTU. On strict-alignment platforms, if the total \
440 * size exceeds (2K - 2) we set align_tweak to 0 and let \
441 * the upper layer copy the headers. \
442 */ \
443 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
444 \
445 wm_set_dma_addr(&__rxd->wrx_addr, \
446 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
447 __rxd->wrx_len = 0; \
448 __rxd->wrx_cksum = 0; \
449 __rxd->wrx_status = 0; \
450 __rxd->wrx_errors = 0; \
451 __rxd->wrx_special = 0; \
452 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
453 \
454 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
455 } while (/*CONSTCOND*/0)
456
457 static void wm_start(struct ifnet *);
458 static void wm_watchdog(struct ifnet *);
459 static int wm_ioctl(struct ifnet *, u_long, caddr_t);
460 static int wm_init(struct ifnet *);
461 static void wm_stop(struct ifnet *, int);
462
463 static void wm_shutdown(void *);
464
465 static void wm_reset(struct wm_softc *);
466 static void wm_rxdrain(struct wm_softc *);
467 static int wm_add_rxbuf(struct wm_softc *, int);
468 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
469 static void wm_tick(void *);
470
471 static void wm_set_filter(struct wm_softc *);
472
473 static int wm_intr(void *);
474 static void wm_txintr(struct wm_softc *);
475 static void wm_rxintr(struct wm_softc *);
476 static void wm_linkintr(struct wm_softc *, uint32_t);
477
478 static void wm_tbi_mediainit(struct wm_softc *);
479 static int wm_tbi_mediachange(struct ifnet *);
480 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
481
482 static void wm_tbi_set_linkled(struct wm_softc *);
483 static void wm_tbi_check_link(struct wm_softc *);
484
485 static void wm_gmii_reset(struct wm_softc *);
486
487 static int wm_gmii_i82543_readreg(struct device *, int, int);
488 static void wm_gmii_i82543_writereg(struct device *, int, int, int);
489
490 static int wm_gmii_i82544_readreg(struct device *, int, int);
491 static void wm_gmii_i82544_writereg(struct device *, int, int, int);
492
493 static void wm_gmii_statchg(struct device *);
494
495 static void wm_gmii_mediainit(struct wm_softc *);
496 static int wm_gmii_mediachange(struct ifnet *);
497 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
498
499 static int wm_match(struct device *, struct cfdata *, void *);
500 static void wm_attach(struct device *, struct device *, void *);
501
502 CFATTACH_DECL(wm, sizeof(struct wm_softc),
503 wm_match, wm_attach, NULL, NULL);
504
505 static void wm_82547_txfifo_stall(void *);
506
507 /*
508 * Devices supported by this driver.
509 */
510 static const struct wm_product {
511 pci_vendor_id_t wmp_vendor;
512 pci_product_id_t wmp_product;
513 const char *wmp_name;
514 wm_chip_type wmp_type;
515 int wmp_flags;
516 #define WMP_F_1000X 0x01
517 #define WMP_F_1000T 0x02
518 } wm_products[] = {
519 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
520 "Intel i82542 1000BASE-X Ethernet",
521 WM_T_82542_2_1, WMP_F_1000X },
522
523 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
524 "Intel i82543GC 1000BASE-X Ethernet",
525 WM_T_82543, WMP_F_1000X },
526
527 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
528 "Intel i82543GC 1000BASE-T Ethernet",
529 WM_T_82543, WMP_F_1000T },
530
531 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
532 "Intel i82544EI 1000BASE-T Ethernet",
533 WM_T_82544, WMP_F_1000T },
534
535 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
536 "Intel i82544EI 1000BASE-X Ethernet",
537 WM_T_82544, WMP_F_1000X },
538
539 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
540 "Intel i82544GC 1000BASE-T Ethernet",
541 WM_T_82544, WMP_F_1000T },
542
543 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
544 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
545 WM_T_82544, WMP_F_1000T },
546
547 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
548 "Intel i82540EM 1000BASE-T Ethernet",
549 WM_T_82540, WMP_F_1000T },
550
551 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
552 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
553 WM_T_82540, WMP_F_1000T },
554
555 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
556 "Intel i82540EP 1000BASE-T Ethernet",
557 WM_T_82540, WMP_F_1000T },
558
559 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
560 "Intel i82540EP 1000BASE-T Ethernet",
561 WM_T_82540, WMP_F_1000T },
562
563 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
564 "Intel i82540EP 1000BASE-T Ethernet",
565 WM_T_82540, WMP_F_1000T },
566
567 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
568 "Intel i82545EM 1000BASE-T Ethernet",
569 WM_T_82545, WMP_F_1000T },
570
571 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
572 "Intel i82545GM 1000BASE-T Ethernet",
573 WM_T_82545_3, WMP_F_1000T },
574
575 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
576 "Intel i82545GM 1000BASE-X Ethernet",
577 WM_T_82545_3, WMP_F_1000X },
578 #if 0
579 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
580 "Intel i82545GM Gigabit Ethernet (SERDES)",
581 WM_T_82545_3, WMP_F_SERDES },
582 #endif
583 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
584 "Intel i82546EB 1000BASE-T Ethernet",
585 WM_T_82546, WMP_F_1000T },
586
587 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
588 "Intel i82546EB 1000BASE-T Ethernet",
589 WM_T_82546, WMP_F_1000T },
590
591 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
592 "Intel i82545EM 1000BASE-X Ethernet",
593 WM_T_82545, WMP_F_1000X },
594
595 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
596 "Intel i82546EB 1000BASE-X Ethernet",
597 WM_T_82546, WMP_F_1000X },
598
599 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
600 "Intel i82546GB 1000BASE-T Ethernet",
601 WM_T_82546_3, WMP_F_1000T },
602
603 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
604 "Intel i82546GB 1000BASE-X Ethernet",
605 WM_T_82546_3, WMP_F_1000X },
606 #if 0
607 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
608 "Intel i82546GB Gigabit Ethernet (SERDES)",
609 WM_T_82546_3, WMP_F_SERDES },
610 #endif
611 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
612 "Intel i82541EI 1000BASE-T Ethernet",
613 WM_T_82541, WMP_F_1000T },
614
615 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
616 "Intel i82541EI Mobile 1000BASE-T Ethernet",
617 WM_T_82541, WMP_F_1000T },
618
619 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
620 "Intel i82541ER 1000BASE-T Ethernet",
621 WM_T_82541_2, WMP_F_1000T },
622
623 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
624 "Intel i82541GI 1000BASE-T Ethernet",
625 WM_T_82541_2, WMP_F_1000T },
626
627 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
628 "Intel i82541GI Mobile 1000BASE-T Ethernet",
629 WM_T_82541_2, WMP_F_1000T },
630
631 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
632 "Intel i82547EI 1000BASE-T Ethernet",
633 WM_T_82547, WMP_F_1000T },
634
635 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
636 "Intel i82547GI 1000BASE-T Ethernet",
637 WM_T_82547_2, WMP_F_1000T },
638 { 0, 0,
639 NULL,
640 0, 0 },
641 };
642
643 #ifdef WM_EVENT_COUNTERS
644 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
645 #endif /* WM_EVENT_COUNTERS */
646
647 #if 0 /* Not currently used */
648 static __inline uint32_t
649 wm_io_read(struct wm_softc *sc, int reg)
650 {
651
652 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
653 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
654 }
655 #endif
656
657 static __inline void
658 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
659 {
660
661 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
662 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
663 }
664
665 static __inline void
666 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
667 {
668 wa->wa_low = htole32(v & 0xffffffffU);
669 if (sizeof(bus_addr_t) == 8)
670 wa->wa_high = htole32((uint64_t) v >> 32);
671 else
672 wa->wa_high = 0;
673 }
674
675 static const struct wm_product *
676 wm_lookup(const struct pci_attach_args *pa)
677 {
678 const struct wm_product *wmp;
679
680 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
681 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
682 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
683 return (wmp);
684 }
685 return (NULL);
686 }
687
688 static int
689 wm_match(struct device *parent, struct cfdata *cf, void *aux)
690 {
691 struct pci_attach_args *pa = aux;
692
693 if (wm_lookup(pa) != NULL)
694 return (1);
695
696 return (0);
697 }
698
699 static void
700 wm_attach(struct device *parent, struct device *self, void *aux)
701 {
702 struct wm_softc *sc = (void *) self;
703 struct pci_attach_args *pa = aux;
704 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
705 pci_chipset_tag_t pc = pa->pa_pc;
706 pci_intr_handle_t ih;
707 size_t cdata_size;
708 const char *intrstr = NULL;
709 const char *eetype;
710 bus_space_tag_t memt;
711 bus_space_handle_t memh;
712 bus_dma_segment_t seg;
713 int memh_valid;
714 int i, rseg, error;
715 const struct wm_product *wmp;
716 uint8_t enaddr[ETHER_ADDR_LEN];
717 uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
718 pcireg_t preg, memtype;
719 uint32_t reg;
720 int pmreg;
721
722 callout_init(&sc->sc_tick_ch);
723
724 wmp = wm_lookup(pa);
725 if (wmp == NULL) {
726 printf("\n");
727 panic("wm_attach: impossible");
728 }
729
730 if (pci_dma64_available(pa))
731 sc->sc_dmat = pa->pa_dmat64;
732 else
733 sc->sc_dmat = pa->pa_dmat;
734
735 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
736 aprint_naive(": Ethernet controller\n");
737 aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
738
739 sc->sc_type = wmp->wmp_type;
740 if (sc->sc_type < WM_T_82543) {
741 if (preg < 2) {
742 aprint_error("%s: i82542 must be at least rev. 2\n",
743 sc->sc_dev.dv_xname);
744 return;
745 }
746 if (preg < 3)
747 sc->sc_type = WM_T_82542_2_0;
748 }
749
750 /*
751 * Map the device. All devices support memory-mapped acccess,
752 * and it is really required for normal operation.
753 */
754 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
755 switch (memtype) {
756 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
757 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
758 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
759 memtype, 0, &memt, &memh, NULL, NULL) == 0);
760 break;
761 default:
762 memh_valid = 0;
763 }
764
765 if (memh_valid) {
766 sc->sc_st = memt;
767 sc->sc_sh = memh;
768 } else {
769 aprint_error("%s: unable to map device registers\n",
770 sc->sc_dev.dv_xname);
771 return;
772 }
773
774 /*
775 * In addition, i82544 and later support I/O mapped indirect
776 * register access. It is not desirable (nor supported in
777 * this driver) to use it for normal operation, though it is
778 * required to work around bugs in some chip versions.
779 */
780 if (sc->sc_type >= WM_T_82544) {
781 /* First we have to find the I/O BAR. */
782 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
783 if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
784 PCI_MAPREG_TYPE_IO)
785 break;
786 }
787 if (i == PCI_MAPREG_END)
788 aprint_error("%s: WARNING: unable to find I/O BAR\n",
789 sc->sc_dev.dv_xname);
790 else {
791 /*
792 * The i8254x doesn't apparently respond when the
793 * I/O BAR is 0, which looks somewhat like it's not
794 * been configured.
795 */
796 preg = pci_conf_read(pc, pa->pa_tag, i);
797 if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
798 aprint_error("%s: WARNING: I/O BAR at zero.",
799 sc->sc_dev.dv_xname);
800 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
801 0, &sc->sc_iot, &sc->sc_ioh,
802 NULL, NULL) == 0) {
803 sc->sc_flags |= WM_F_IOH_VALID;
804 } else {
805 aprint_error("%s: WARNING: unable to map "
806 "I/O space\n", sc->sc_dev.dv_xname);
807 }
808 }
809
810 }
811
812 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
813 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
814 preg |= PCI_COMMAND_MASTER_ENABLE;
815 if (sc->sc_type < WM_T_82542_2_1)
816 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
817 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
818
819 /* Get it out of power save mode, if needed. */
820 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
821 preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
822 PCI_PMCSR_STATE_MASK;
823 if (preg == PCI_PMCSR_STATE_D3) {
824 /*
825 * The card has lost all configuration data in
826 * this state, so punt.
827 */
828 aprint_error("%s: unable to wake from power state D3\n",
829 sc->sc_dev.dv_xname);
830 return;
831 }
832 if (preg != PCI_PMCSR_STATE_D0) {
833 aprint_normal("%s: waking up from power state D%d\n",
834 sc->sc_dev.dv_xname, preg);
835 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
836 PCI_PMCSR_STATE_D0);
837 }
838 }
839
840 /*
841 * Map and establish our interrupt.
842 */
843 if (pci_intr_map(pa, &ih)) {
844 aprint_error("%s: unable to map interrupt\n",
845 sc->sc_dev.dv_xname);
846 return;
847 }
848 intrstr = pci_intr_string(pc, ih);
849 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
850 if (sc->sc_ih == NULL) {
851 aprint_error("%s: unable to establish interrupt",
852 sc->sc_dev.dv_xname);
853 if (intrstr != NULL)
854 aprint_normal(" at %s", intrstr);
855 aprint_normal("\n");
856 return;
857 }
858 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
859
860 /*
861 * Determine a few things about the bus we're connected to.
862 */
863 if (sc->sc_type < WM_T_82543) {
864 /* We don't really know the bus characteristics here. */
865 sc->sc_bus_speed = 33;
866 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
867 /*
868 * CSA (Communication Streaming Architecture) is about as fast
869 * a 32-bit 66MHz PCI Bus.
870 */
871 sc->sc_flags |= WM_F_CSA;
872 sc->sc_bus_speed = 66;
873 aprint_verbose("%s: Communication Streaming Architecture\n",
874 sc->sc_dev.dv_xname);
875 if (sc->sc_type == WM_T_82547) {
876 callout_init(&sc->sc_txfifo_ch);
877 callout_setfunc(&sc->sc_txfifo_ch,
878 wm_82547_txfifo_stall, sc);
879 aprint_verbose("%s: using 82547 Tx FIFO stall "
880 "work-around\n", sc->sc_dev.dv_xname);
881 }
882 } else {
883 reg = CSR_READ(sc, WMREG_STATUS);
884 if (reg & STATUS_BUS64)
885 sc->sc_flags |= WM_F_BUS64;
886 if (sc->sc_type >= WM_T_82544 &&
887 (reg & STATUS_PCIX_MODE) != 0) {
888 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
889
890 sc->sc_flags |= WM_F_PCIX;
891 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
892 PCI_CAP_PCIX,
893 &sc->sc_pcix_offset, NULL) == 0)
894 aprint_error("%s: unable to find PCIX "
895 "capability\n", sc->sc_dev.dv_xname);
896 else if (sc->sc_type != WM_T_82545_3 &&
897 sc->sc_type != WM_T_82546_3) {
898 /*
899 * Work around a problem caused by the BIOS
900 * setting the max memory read byte count
901 * incorrectly.
902 */
903 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
904 sc->sc_pcix_offset + PCI_PCIX_CMD);
905 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
906 sc->sc_pcix_offset + PCI_PCIX_STATUS);
907
908 bytecnt =
909 (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
910 PCI_PCIX_CMD_BYTECNT_SHIFT;
911 maxb =
912 (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
913 PCI_PCIX_STATUS_MAXB_SHIFT;
914 if (bytecnt > maxb) {
915 aprint_verbose("%s: resetting PCI-X "
916 "MMRBC: %d -> %d\n",
917 sc->sc_dev.dv_xname,
918 512 << bytecnt, 512 << maxb);
919 pcix_cmd = (pcix_cmd &
920 ~PCI_PCIX_CMD_BYTECNT_MASK) |
921 (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
922 pci_conf_write(pa->pa_pc, pa->pa_tag,
923 sc->sc_pcix_offset + PCI_PCIX_CMD,
924 pcix_cmd);
925 }
926 }
927 }
928 /*
929 * The quad port adapter is special; it has a PCIX-PCIX
930 * bridge on the board, and can run the secondary bus at
931 * a higher speed.
932 */
933 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
934 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
935 : 66;
936 } else if (sc->sc_flags & WM_F_PCIX) {
937 switch (reg & STATUS_PCIXSPD_MASK) {
938 case STATUS_PCIXSPD_50_66:
939 sc->sc_bus_speed = 66;
940 break;
941 case STATUS_PCIXSPD_66_100:
942 sc->sc_bus_speed = 100;
943 break;
944 case STATUS_PCIXSPD_100_133:
945 sc->sc_bus_speed = 133;
946 break;
947 default:
948 aprint_error(
949 "%s: unknown PCIXSPD %d; assuming 66MHz\n",
950 sc->sc_dev.dv_xname,
951 reg & STATUS_PCIXSPD_MASK);
952 sc->sc_bus_speed = 66;
953 }
954 } else
955 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
956 aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
957 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
958 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
959 }
960
961 /*
962 * Allocate the control data structures, and create and load the
963 * DMA map for it.
964 *
965 * NOTE: All Tx descriptors must be in the same 4G segment of
966 * memory. So must Rx descriptors. We simplify by allocating
967 * both sets within the same 4G segment.
968 */
969 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
970 WM_NTXDESC_82542 : WM_NTXDESC_82544;
971 cdata_size = sc->sc_type < WM_T_82544 ?
972 sizeof(struct wm_control_data_82542) :
973 sizeof(struct wm_control_data_82544);
974 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
975 (bus_size_t) 0x100000000ULL,
976 &seg, 1, &rseg, 0)) != 0) {
977 aprint_error(
978 "%s: unable to allocate control data, error = %d\n",
979 sc->sc_dev.dv_xname, error);
980 goto fail_0;
981 }
982
983 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
984 (caddr_t *)&sc->sc_control_data, 0)) != 0) {
985 aprint_error("%s: unable to map control data, error = %d\n",
986 sc->sc_dev.dv_xname, error);
987 goto fail_1;
988 }
989
990 if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
991 0, 0, &sc->sc_cddmamap)) != 0) {
992 aprint_error("%s: unable to create control data DMA map, "
993 "error = %d\n", sc->sc_dev.dv_xname, error);
994 goto fail_2;
995 }
996
997 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
998 sc->sc_control_data, cdata_size, NULL,
999 0)) != 0) {
1000 aprint_error(
1001 "%s: unable to load control data DMA map, error = %d\n",
1002 sc->sc_dev.dv_xname, error);
1003 goto fail_3;
1004 }
1005
1006
1007 /*
1008 * Create the transmit buffer DMA maps.
1009 */
1010 WM_TXQUEUELEN(sc) =
1011 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1012 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1013 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1014 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1015 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1016 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1017 aprint_error("%s: unable to create Tx DMA map %d, "
1018 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1019 goto fail_4;
1020 }
1021 }
1022
1023 /*
1024 * Create the receive buffer DMA maps.
1025 */
1026 for (i = 0; i < WM_NRXDESC; i++) {
1027 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1028 MCLBYTES, 0, 0,
1029 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1030 aprint_error("%s: unable to create Rx DMA map %d, "
1031 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1032 goto fail_5;
1033 }
1034 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1035 }
1036
1037 /*
1038 * Reset the chip to a known state.
1039 */
1040 wm_reset(sc);
1041
1042 /*
1043 * Get some information about the EEPROM.
1044 */
1045 if (sc->sc_type >= WM_T_82540)
1046 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1047 if (sc->sc_type <= WM_T_82544)
1048 sc->sc_ee_addrbits = 6;
1049 else if (sc->sc_type <= WM_T_82546_3) {
1050 reg = CSR_READ(sc, WMREG_EECD);
1051 if (reg & EECD_EE_SIZE)
1052 sc->sc_ee_addrbits = 8;
1053 else
1054 sc->sc_ee_addrbits = 6;
1055 } else if (sc->sc_type <= WM_T_82547_2) {
1056 reg = CSR_READ(sc, WMREG_EECD);
1057 if (reg & EECD_EE_TYPE) {
1058 sc->sc_flags |= WM_F_EEPROM_SPI;
1059 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1060 } else
1061 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1062 } else {
1063 /* Assume everything else is SPI. */
1064 reg = CSR_READ(sc, WMREG_EECD);
1065 sc->sc_flags |= WM_F_EEPROM_SPI;
1066 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1067 }
1068 if (sc->sc_flags & WM_F_EEPROM_SPI)
1069 eetype = "SPI";
1070 else
1071 eetype = "MicroWire";
1072 aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1073 sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1074 sc->sc_ee_addrbits, eetype);
1075
1076 /*
1077 * Read the Ethernet address from the EEPROM.
1078 */
1079 if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1080 sizeof(myea) / sizeof(myea[0]), myea)) {
1081 aprint_error("%s: unable to read Ethernet address\n",
1082 sc->sc_dev.dv_xname);
1083 return;
1084 }
1085 enaddr[0] = myea[0] & 0xff;
1086 enaddr[1] = myea[0] >> 8;
1087 enaddr[2] = myea[1] & 0xff;
1088 enaddr[3] = myea[1] >> 8;
1089 enaddr[4] = myea[2] & 0xff;
1090 enaddr[5] = myea[2] >> 8;
1091
1092 /*
1093 * Toggle the LSB of the MAC address on the second port
1094 * of the i82546.
1095 */
1096 if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
1097 if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1098 enaddr[5] ^= 1;
1099 }
1100
1101 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1102 ether_sprintf(enaddr));
1103
1104 /*
1105 * Read the config info from the EEPROM, and set up various
1106 * bits in the control registers based on their contents.
1107 */
1108 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1109 aprint_error("%s: unable to read CFG1 from EEPROM\n",
1110 sc->sc_dev.dv_xname);
1111 return;
1112 }
1113 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1114 aprint_error("%s: unable to read CFG2 from EEPROM\n",
1115 sc->sc_dev.dv_xname);
1116 return;
1117 }
1118 if (sc->sc_type >= WM_T_82544) {
1119 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1120 aprint_error("%s: unable to read SWDPIN from EEPROM\n",
1121 sc->sc_dev.dv_xname);
1122 return;
1123 }
1124 }
1125
1126 if (cfg1 & EEPROM_CFG1_ILOS)
1127 sc->sc_ctrl |= CTRL_ILOS;
1128 if (sc->sc_type >= WM_T_82544) {
1129 sc->sc_ctrl |=
1130 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1131 CTRL_SWDPIO_SHIFT;
1132 sc->sc_ctrl |=
1133 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1134 CTRL_SWDPINS_SHIFT;
1135 } else {
1136 sc->sc_ctrl |=
1137 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1138 CTRL_SWDPIO_SHIFT;
1139 }
1140
1141 #if 0
1142 if (sc->sc_type >= WM_T_82544) {
1143 if (cfg1 & EEPROM_CFG1_IPS0)
1144 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1145 if (cfg1 & EEPROM_CFG1_IPS1)
1146 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1147 sc->sc_ctrl_ext |=
1148 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1149 CTRL_EXT_SWDPIO_SHIFT;
1150 sc->sc_ctrl_ext |=
1151 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1152 CTRL_EXT_SWDPINS_SHIFT;
1153 } else {
1154 sc->sc_ctrl_ext |=
1155 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1156 CTRL_EXT_SWDPIO_SHIFT;
1157 }
1158 #endif
1159
1160 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1161 #if 0
1162 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1163 #endif
1164
1165 /*
1166 * Set up some register offsets that are different between
1167 * the i82542 and the i82543 and later chips.
1168 */
1169 if (sc->sc_type < WM_T_82543) {
1170 sc->sc_rdt_reg = WMREG_OLD_RDT0;
1171 sc->sc_tdt_reg = WMREG_OLD_TDT;
1172 } else {
1173 sc->sc_rdt_reg = WMREG_RDT;
1174 sc->sc_tdt_reg = WMREG_TDT;
1175 }
1176
1177 /*
1178 * Determine if we're TBI or GMII mode, and initialize the
1179 * media structures accordingly.
1180 */
1181 if (sc->sc_type < WM_T_82543 ||
1182 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1183 if (wmp->wmp_flags & WMP_F_1000T)
1184 aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1185 "product!\n", sc->sc_dev.dv_xname);
1186 wm_tbi_mediainit(sc);
1187 } else {
1188 if (wmp->wmp_flags & WMP_F_1000X)
1189 aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1190 "product!\n", sc->sc_dev.dv_xname);
1191 wm_gmii_mediainit(sc);
1192 }
1193
1194 ifp = &sc->sc_ethercom.ec_if;
1195 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1196 ifp->if_softc = sc;
1197 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1198 ifp->if_ioctl = wm_ioctl;
1199 ifp->if_start = wm_start;
1200 ifp->if_watchdog = wm_watchdog;
1201 ifp->if_init = wm_init;
1202 ifp->if_stop = wm_stop;
1203 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1204 IFQ_SET_READY(&ifp->if_snd);
1205
1206 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1207
1208 /*
1209 * If we're a i82543 or greater, we can support VLANs.
1210 */
1211 if (sc->sc_type >= WM_T_82543)
1212 sc->sc_ethercom.ec_capabilities |=
1213 ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1214
1215 /*
1216 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
1217 * on i82543 and later.
1218 */
1219 if (sc->sc_type >= WM_T_82543)
1220 ifp->if_capabilities |=
1221 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
1222
1223 /*
1224 * Attach the interface.
1225 */
1226 if_attach(ifp);
1227 ether_ifattach(ifp, enaddr);
1228 #if NRND > 0
1229 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1230 RND_TYPE_NET, 0);
1231 #endif
1232
1233 #ifdef WM_EVENT_COUNTERS
1234 /* Attach event counters. */
1235 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1236 NULL, sc->sc_dev.dv_xname, "txsstall");
1237 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1238 NULL, sc->sc_dev.dv_xname, "txdstall");
1239 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1240 NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1241 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1242 NULL, sc->sc_dev.dv_xname, "txdw");
1243 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1244 NULL, sc->sc_dev.dv_xname, "txqe");
1245 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1246 NULL, sc->sc_dev.dv_xname, "rxintr");
1247 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1248 NULL, sc->sc_dev.dv_xname, "linkintr");
1249
1250 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1251 NULL, sc->sc_dev.dv_xname, "rxipsum");
1252 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1253 NULL, sc->sc_dev.dv_xname, "rxtusum");
1254 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1255 NULL, sc->sc_dev.dv_xname, "txipsum");
1256 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1257 NULL, sc->sc_dev.dv_xname, "txtusum");
1258
1259 evcnt_attach_dynamic(&sc->sc_ev_txpullup_needed, EVCNT_TYPE_MISC,
1260 NULL, sc->sc_dev.dv_xname, "txpullup needed");
1261 evcnt_attach_dynamic(&sc->sc_ev_txpullup_nomem, EVCNT_TYPE_MISC,
1262 NULL, sc->sc_dev.dv_xname, "txpullup nomem");
1263 evcnt_attach_dynamic(&sc->sc_ev_txpullup_fail, EVCNT_TYPE_MISC,
1264 NULL, sc->sc_dev.dv_xname, "txpullup fail");
1265
1266 for (i = 0; i < WM_NTXSEGS; i++) {
1267 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1268 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1269 NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1270 }
1271
1272 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1273 NULL, sc->sc_dev.dv_xname, "txdrop");
1274
1275 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1276 NULL, sc->sc_dev.dv_xname, "tu");
1277
1278 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1279 NULL, sc->sc_dev.dv_xname, "tx_xoff");
1280 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1281 NULL, sc->sc_dev.dv_xname, "tx_xon");
1282 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1283 NULL, sc->sc_dev.dv_xname, "rx_xoff");
1284 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1285 NULL, sc->sc_dev.dv_xname, "rx_xon");
1286 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1287 NULL, sc->sc_dev.dv_xname, "rx_macctl");
1288 #endif /* WM_EVENT_COUNTERS */
1289
1290 /*
1291 * Make sure the interface is shutdown during reboot.
1292 */
1293 sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1294 if (sc->sc_sdhook == NULL)
1295 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1296 sc->sc_dev.dv_xname);
1297 return;
1298
1299 /*
1300 * Free any resources we've allocated during the failed attach
1301 * attempt. Do this in reverse order and fall through.
1302 */
1303 fail_5:
1304 for (i = 0; i < WM_NRXDESC; i++) {
1305 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1306 bus_dmamap_destroy(sc->sc_dmat,
1307 sc->sc_rxsoft[i].rxs_dmamap);
1308 }
1309 fail_4:
1310 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1311 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1312 bus_dmamap_destroy(sc->sc_dmat,
1313 sc->sc_txsoft[i].txs_dmamap);
1314 }
1315 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1316 fail_3:
1317 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1318 fail_2:
1319 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1320 cdata_size);
1321 fail_1:
1322 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1323 fail_0:
1324 return;
1325 }
1326
1327 /*
1328 * wm_shutdown:
1329 *
1330 * Make sure the interface is stopped at reboot time.
1331 */
1332 static void
1333 wm_shutdown(void *arg)
1334 {
1335 struct wm_softc *sc = arg;
1336
1337 wm_stop(&sc->sc_ethercom.ec_if, 1);
1338 }
1339
1340 /*
1341 * wm_tx_offload:
1342 *
1343 * Set up TCP/IP checksumming parameters for the
1344 * specified packet.
1345 */
1346 static int
1347 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1348 uint8_t *fieldsp)
1349 {
1350 struct mbuf *m0 = txs->txs_mbuf;
1351 struct livengood_tcpip_ctxdesc *t;
1352 uint32_t ipcs, tucs;
1353 struct ip *ip;
1354 struct ether_header *eh;
1355 int offset, iphl;
1356 uint8_t fields = 0;
1357
1358 /*
1359 * XXX It would be nice if the mbuf pkthdr had offset
1360 * fields for the protocol headers.
1361 */
1362
1363 eh = mtod(m0, struct ether_header *);
1364 switch (htons(eh->ether_type)) {
1365 case ETHERTYPE_IP:
1366 iphl = sizeof(struct ip);
1367 offset = ETHER_HDR_LEN;
1368 break;
1369
1370 case ETHERTYPE_VLAN:
1371 iphl = sizeof(struct ip);
1372 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1373 break;
1374
1375 default:
1376 /*
1377 * Don't support this protocol or encapsulation.
1378 */
1379 *fieldsp = 0;
1380 *cmdp = 0;
1381 return (0);
1382 }
1383
1384 if (m0->m_len < (offset + iphl)) {
1385 /*
1386 * Packet headers aren't in the first mbuf. Let's hope
1387 * there is space at the end if it for them.
1388 */
1389 WM_EVCNT_INCR(&sc->sc_ev_txpullup_needed);
1390 if ((txs->txs_mbuf = m_pullup(m0, offset + iphl)) == NULL) {
1391 WM_EVCNT_INCR(&sc->sc_ev_txpullup_nomem);
1392 log(LOG_ERR,
1393 "%s: wm_tx_offload: mbuf allocation failed, "
1394 "packet dropped\n", sc->sc_dev.dv_xname);
1395 return (ENOMEM);
1396 } else if (m0 != txs->txs_mbuf) {
1397 /*
1398 * The DMA map has already been loaded, so we
1399 * would have to unload and reload it. But then
1400 * if that were to fail, we are already committed
1401 * to transmitting the packet (can't put it back
1402 * on the queue), so we have to drop the packet.
1403 */
1404 WM_EVCNT_INCR(&sc->sc_ev_txpullup_fail);
1405 log(LOG_ERR, "%s: wm_tx_offload: packet headers did "
1406 "not fit in first mbuf, packet dropped\n",
1407 sc->sc_dev.dv_xname);
1408 m_freem(txs->txs_mbuf);
1409 txs->txs_mbuf = NULL;
1410 return (EINVAL);
1411 }
1412 }
1413
1414 ip = (struct ip *) (mtod(m0, caddr_t) + offset);
1415 iphl = ip->ip_hl << 2;
1416
1417 /*
1418 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1419 * offload feature, if we load the context descriptor, we
1420 * MUST provide valid values for IPCSS and TUCSS fields.
1421 */
1422
1423 ipcs = WTX_TCPIP_IPCSS(offset) |
1424 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1425 WTX_TCPIP_IPCSE(offset + iphl - 1);
1426 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1427 WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1428 fields |= WTX_IXSM;
1429 }
1430
1431 offset += iphl;
1432
1433 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1434 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1435 fields |= WTX_TXSM;
1436 tucs = WTX_TCPIP_TUCSS(offset) |
1437 WTX_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
1438 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1439 } else {
1440 /* Just initialize it to a valid TCP context. */
1441 tucs = WTX_TCPIP_TUCSS(offset) |
1442 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1443 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1444 }
1445
1446 /* Fill in the context descriptor. */
1447 t = (struct livengood_tcpip_ctxdesc *)
1448 &sc->sc_txdescs[sc->sc_txnext];
1449 t->tcpip_ipcs = htole32(ipcs);
1450 t->tcpip_tucs = htole32(tucs);
1451 t->tcpip_cmdlen = htole32(WTX_CMD_DEXT | WTX_DTYP_C);
1452 t->tcpip_seg = 0;
1453 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1454
1455 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1456 txs->txs_ndesc++;
1457
1458 *cmdp = WTX_CMD_DEXT | WTX_DTYP_D;
1459 *fieldsp = fields;
1460
1461 return (0);
1462 }
1463
1464 static void
1465 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1466 {
1467 struct mbuf *m;
1468 int i;
1469
1470 log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1471 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1472 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1473 "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1474 m->m_data, m->m_len, m->m_flags);
1475 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1476 i, i == 1 ? "" : "s");
1477 }
1478
1479 /*
1480 * wm_82547_txfifo_stall:
1481 *
1482 * Callout used to wait for the 82547 Tx FIFO to drain,
1483 * reset the FIFO pointers, and restart packet transmission.
1484 */
1485 static void
1486 wm_82547_txfifo_stall(void *arg)
1487 {
1488 struct wm_softc *sc = arg;
1489 int s;
1490
1491 s = splnet();
1492
1493 if (sc->sc_txfifo_stall) {
1494 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1495 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1496 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1497 /*
1498 * Packets have drained. Stop transmitter, reset
1499 * FIFO pointers, restart transmitter, and kick
1500 * the packet queue.
1501 */
1502 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1503 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1504 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1505 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1506 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1507 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1508 CSR_WRITE(sc, WMREG_TCTL, tctl);
1509 CSR_WRITE_FLUSH(sc);
1510
1511 sc->sc_txfifo_head = 0;
1512 sc->sc_txfifo_stall = 0;
1513 wm_start(&sc->sc_ethercom.ec_if);
1514 } else {
1515 /*
1516 * Still waiting for packets to drain; try again in
1517 * another tick.
1518 */
1519 callout_schedule(&sc->sc_txfifo_ch, 1);
1520 }
1521 }
1522
1523 splx(s);
1524 }
1525
1526 /*
1527 * wm_82547_txfifo_bugchk:
1528 *
1529 * Check for bug condition in the 82547 Tx FIFO. We need to
1530 * prevent enqueueing a packet that would wrap around the end
1531 * if the Tx FIFO ring buffer, otherwise the chip will croak.
1532 *
1533 * We do this by checking the amount of space before the end
1534 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
1535 * the Tx FIFO, wait for all remaining packets to drain, reset
1536 * the internal FIFO pointers to the beginning, and restart
1537 * transmission on the interface.
1538 */
1539 #define WM_FIFO_HDR 0x10
1540 #define WM_82547_PAD_LEN 0x3e0
1541 static int
1542 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1543 {
1544 int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1545 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1546
1547 /* Just return if already stalled. */
1548 if (sc->sc_txfifo_stall)
1549 return (1);
1550
1551 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1552 /* Stall only occurs in half-duplex mode. */
1553 goto send_packet;
1554 }
1555
1556 if (len >= WM_82547_PAD_LEN + space) {
1557 sc->sc_txfifo_stall = 1;
1558 callout_schedule(&sc->sc_txfifo_ch, 1);
1559 return (1);
1560 }
1561
1562 send_packet:
1563 sc->sc_txfifo_head += len;
1564 if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1565 sc->sc_txfifo_head -= sc->sc_txfifo_size;
1566
1567 return (0);
1568 }
1569
1570 /*
1571 * wm_start: [ifnet interface function]
1572 *
1573 * Start packet transmission on the interface.
1574 */
1575 static void
1576 wm_start(struct ifnet *ifp)
1577 {
1578 struct wm_softc *sc = ifp->if_softc;
1579 struct mbuf *m0;
1580 #if 0 /* XXXJRT */
1581 struct m_tag *mtag;
1582 #endif
1583 struct wm_txsoft *txs;
1584 bus_dmamap_t dmamap;
1585 int error, nexttx, lasttx = -1, ofree, seg, segs_needed;
1586 bus_addr_t curaddr;
1587 bus_size_t seglen, curlen;
1588 uint32_t cksumcmd;
1589 uint8_t cksumfields;
1590
1591 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1592 return;
1593
1594 /*
1595 * Remember the previous number of free descriptors.
1596 */
1597 ofree = sc->sc_txfree;
1598
1599 /*
1600 * Loop through the send queue, setting up transmit descriptors
1601 * until we drain the queue, or use up all available transmit
1602 * descriptors.
1603 */
1604 for (;;) {
1605 /* Grab a packet off the queue. */
1606 IFQ_POLL(&ifp->if_snd, m0);
1607 if (m0 == NULL)
1608 break;
1609
1610 DPRINTF(WM_DEBUG_TX,
1611 ("%s: TX: have packet to transmit: %p\n",
1612 sc->sc_dev.dv_xname, m0));
1613
1614 /* Get a work queue entry. */
1615 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1616 wm_txintr(sc);
1617 if (sc->sc_txsfree == 0) {
1618 DPRINTF(WM_DEBUG_TX,
1619 ("%s: TX: no free job descriptors\n",
1620 sc->sc_dev.dv_xname));
1621 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1622 break;
1623 }
1624 }
1625
1626 txs = &sc->sc_txsoft[sc->sc_txsnext];
1627 dmamap = txs->txs_dmamap;
1628
1629 /*
1630 * Load the DMA map. If this fails, the packet either
1631 * didn't fit in the allotted number of segments, or we
1632 * were short on resources. For the too-many-segments
1633 * case, we simply report an error and drop the packet,
1634 * since we can't sanely copy a jumbo packet to a single
1635 * buffer.
1636 */
1637 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1638 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1639 if (error) {
1640 if (error == EFBIG) {
1641 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1642 log(LOG_ERR, "%s: Tx packet consumes too many "
1643 "DMA segments, dropping...\n",
1644 sc->sc_dev.dv_xname);
1645 IFQ_DEQUEUE(&ifp->if_snd, m0);
1646 wm_dump_mbuf_chain(sc, m0);
1647 m_freem(m0);
1648 continue;
1649 }
1650 /*
1651 * Short on resources, just stop for now.
1652 */
1653 DPRINTF(WM_DEBUG_TX,
1654 ("%s: TX: dmamap load failed: %d\n",
1655 sc->sc_dev.dv_xname, error));
1656 break;
1657 }
1658
1659 segs_needed = dmamap->dm_nsegs;
1660
1661 /*
1662 * Ensure we have enough descriptors free to describe
1663 * the packet. Note, we always reserve one descriptor
1664 * at the end of the ring due to the semantics of the
1665 * TDT register, plus one more in the event we need
1666 * to load offload context.
1667 */
1668 if (segs_needed > sc->sc_txfree - 2) {
1669 /*
1670 * Not enough free descriptors to transmit this
1671 * packet. We haven't committed anything yet,
1672 * so just unload the DMA map, put the packet
1673 * pack on the queue, and punt. Notify the upper
1674 * layer that there are no more slots left.
1675 */
1676 DPRINTF(WM_DEBUG_TX,
1677 ("%s: TX: need %d (%) descriptors, have %d\n",
1678 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1679 sc->sc_txfree - 1));
1680 ifp->if_flags |= IFF_OACTIVE;
1681 bus_dmamap_unload(sc->sc_dmat, dmamap);
1682 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1683 break;
1684 }
1685
1686 /*
1687 * Check for 82547 Tx FIFO bug. We need to do this
1688 * once we know we can transmit the packet, since we
1689 * do some internal FIFO space accounting here.
1690 */
1691 if (sc->sc_type == WM_T_82547 &&
1692 wm_82547_txfifo_bugchk(sc, m0)) {
1693 DPRINTF(WM_DEBUG_TX,
1694 ("%s: TX: 82547 Tx FIFO bug detected\n",
1695 sc->sc_dev.dv_xname));
1696 ifp->if_flags |= IFF_OACTIVE;
1697 bus_dmamap_unload(sc->sc_dmat, dmamap);
1698 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1699 break;
1700 }
1701
1702 IFQ_DEQUEUE(&ifp->if_snd, m0);
1703
1704 /*
1705 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1706 */
1707
1708 DPRINTF(WM_DEBUG_TX,
1709 ("%s: TX: packet has %d (%d) DMA segments\n",
1710 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1711
1712 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1713
1714 /*
1715 * Store a pointer to the packet so that we can free it
1716 * later.
1717 *
1718 * Initially, we consider the number of descriptors the
1719 * packet uses the number of DMA segments. This may be
1720 * incremented by 1 if we do checksum offload (a descriptor
1721 * is used to set the checksum context).
1722 */
1723 txs->txs_mbuf = m0;
1724 txs->txs_firstdesc = sc->sc_txnext;
1725 txs->txs_ndesc = segs_needed;
1726
1727 /* Set up offload parameters for this packet. */
1728 if (m0->m_pkthdr.csum_flags &
1729 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1730 if (wm_tx_offload(sc, txs, &cksumcmd,
1731 &cksumfields) != 0) {
1732 /* Error message already displayed. */
1733 bus_dmamap_unload(sc->sc_dmat, dmamap);
1734 continue;
1735 }
1736 } else {
1737 cksumcmd = 0;
1738 cksumfields = 0;
1739 }
1740
1741 cksumcmd |= WTX_CMD_IDE;
1742
1743 /* Sync the DMA map. */
1744 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1745 BUS_DMASYNC_PREWRITE);
1746
1747 /*
1748 * Initialize the transmit descriptor.
1749 */
1750 for (nexttx = sc->sc_txnext, seg = 0;
1751 seg < dmamap->dm_nsegs; seg++) {
1752 for (seglen = dmamap->dm_segs[seg].ds_len,
1753 curaddr = dmamap->dm_segs[seg].ds_addr;
1754 seglen != 0;
1755 curaddr += curlen, seglen -= curlen,
1756 nexttx = WM_NEXTTX(sc, nexttx)) {
1757 curlen = seglen;
1758
1759 wm_set_dma_addr(
1760 &sc->sc_txdescs[nexttx].wtx_addr,
1761 curaddr);
1762 sc->sc_txdescs[nexttx].wtx_cmdlen =
1763 htole32(cksumcmd | curlen);
1764 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
1765 0;
1766 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1767 cksumfields;
1768 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1769 lasttx = nexttx;
1770
1771 DPRINTF(WM_DEBUG_TX,
1772 ("%s: TX: desc %d: low 0x%08x, "
1773 "len 0x%04x\n",
1774 sc->sc_dev.dv_xname, nexttx,
1775 curaddr & 0xffffffffU, curlen, curlen));
1776 }
1777 }
1778
1779 KASSERT(lasttx != -1);
1780
1781 /*
1782 * Set up the command byte on the last descriptor of
1783 * the packet. If we're in the interrupt delay window,
1784 * delay the interrupt.
1785 */
1786 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1787 htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS);
1788
1789 #if 0 /* XXXJRT */
1790 /*
1791 * If VLANs are enabled and the packet has a VLAN tag, set
1792 * up the descriptor to encapsulate the packet for us.
1793 *
1794 * This is only valid on the last descriptor of the packet.
1795 */
1796 if (sc->sc_ethercom.ec_nvlans != 0 &&
1797 (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1798 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1799 htole32(WTX_CMD_VLE);
1800 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
1801 = htole16(*(u_int *)(mtag + 1) & 0xffff);
1802 }
1803 #endif /* XXXJRT */
1804
1805 txs->txs_lastdesc = lasttx;
1806
1807 DPRINTF(WM_DEBUG_TX,
1808 ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1809 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
1810
1811 /* Sync the descriptors we're using. */
1812 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
1813 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1814
1815 /* Give the packet to the chip. */
1816 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1817
1818 DPRINTF(WM_DEBUG_TX,
1819 ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1820
1821 DPRINTF(WM_DEBUG_TX,
1822 ("%s: TX: finished transmitting packet, job %d\n",
1823 sc->sc_dev.dv_xname, sc->sc_txsnext));
1824
1825 /* Advance the tx pointer. */
1826 sc->sc_txfree -= txs->txs_ndesc;
1827 sc->sc_txnext = nexttx;
1828
1829 sc->sc_txsfree--;
1830 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
1831
1832 #if NBPFILTER > 0
1833 /* Pass the packet to any BPF listeners. */
1834 if (ifp->if_bpf)
1835 bpf_mtap(ifp->if_bpf, m0);
1836 #endif /* NBPFILTER > 0 */
1837 }
1838
1839 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1840 /* No more slots; notify upper layer. */
1841 ifp->if_flags |= IFF_OACTIVE;
1842 }
1843
1844 if (sc->sc_txfree != ofree) {
1845 /* Set a watchdog timer in case the chip flakes out. */
1846 ifp->if_timer = 5;
1847 }
1848 }
1849
1850 /*
1851 * wm_watchdog: [ifnet interface function]
1852 *
1853 * Watchdog timer handler.
1854 */
1855 static void
1856 wm_watchdog(struct ifnet *ifp)
1857 {
1858 struct wm_softc *sc = ifp->if_softc;
1859
1860 /*
1861 * Since we're using delayed interrupts, sweep up
1862 * before we report an error.
1863 */
1864 wm_txintr(sc);
1865
1866 if (sc->sc_txfree != WM_NTXDESC(sc)) {
1867 log(LOG_ERR,
1868 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1869 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1870 sc->sc_txnext);
1871 ifp->if_oerrors++;
1872
1873 /* Reset the interface. */
1874 (void) wm_init(ifp);
1875 }
1876
1877 /* Try to get more packets going. */
1878 wm_start(ifp);
1879 }
1880
1881 /*
1882 * wm_ioctl: [ifnet interface function]
1883 *
1884 * Handle control requests from the operator.
1885 */
1886 static int
1887 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1888 {
1889 struct wm_softc *sc = ifp->if_softc;
1890 struct ifreq *ifr = (struct ifreq *) data;
1891 int s, error;
1892
1893 s = splnet();
1894
1895 switch (cmd) {
1896 case SIOCSIFMEDIA:
1897 case SIOCGIFMEDIA:
1898 /* Flow control requires full-duplex mode. */
1899 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1900 (ifr->ifr_media & IFM_FDX) == 0)
1901 ifr->ifr_media &= ~IFM_ETH_FMASK;
1902 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1903 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1904 /* We can do both TXPAUSE and RXPAUSE. */
1905 ifr->ifr_media |=
1906 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1907 }
1908 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1909 }
1910 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1911 break;
1912 default:
1913 error = ether_ioctl(ifp, cmd, data);
1914 if (error == ENETRESET) {
1915 /*
1916 * Multicast list has changed; set the hardware filter
1917 * accordingly.
1918 */
1919 if (ifp->if_flags & IFF_RUNNING)
1920 wm_set_filter(sc);
1921 error = 0;
1922 }
1923 break;
1924 }
1925
1926 /* Try to get more packets going. */
1927 wm_start(ifp);
1928
1929 splx(s);
1930 return (error);
1931 }
1932
1933 /*
1934 * wm_intr:
1935 *
1936 * Interrupt service routine.
1937 */
1938 static int
1939 wm_intr(void *arg)
1940 {
1941 struct wm_softc *sc = arg;
1942 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1943 uint32_t icr;
1944 int wantinit, handled = 0;
1945
1946 for (wantinit = 0; wantinit == 0;) {
1947 icr = CSR_READ(sc, WMREG_ICR);
1948 if ((icr & sc->sc_icr) == 0)
1949 break;
1950
1951 #if 0 /*NRND > 0*/
1952 if (RND_ENABLED(&sc->rnd_source))
1953 rnd_add_uint32(&sc->rnd_source, icr);
1954 #endif
1955
1956 handled = 1;
1957
1958 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1959 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1960 DPRINTF(WM_DEBUG_RX,
1961 ("%s: RX: got Rx intr 0x%08x\n",
1962 sc->sc_dev.dv_xname,
1963 icr & (ICR_RXDMT0|ICR_RXT0)));
1964 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
1965 }
1966 #endif
1967 wm_rxintr(sc);
1968
1969 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1970 if (icr & ICR_TXDW) {
1971 DPRINTF(WM_DEBUG_TX,
1972 ("%s: TX: got TXDW interrupt\n",
1973 sc->sc_dev.dv_xname));
1974 WM_EVCNT_INCR(&sc->sc_ev_txdw);
1975 }
1976 #endif
1977 wm_txintr(sc);
1978
1979 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
1980 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
1981 wm_linkintr(sc, icr);
1982 }
1983
1984 if (icr & ICR_RXO) {
1985 log(LOG_WARNING, "%s: Receive overrun\n",
1986 sc->sc_dev.dv_xname);
1987 wantinit = 1;
1988 }
1989 }
1990
1991 if (handled) {
1992 if (wantinit)
1993 wm_init(ifp);
1994
1995 /* Try to get more packets going. */
1996 wm_start(ifp);
1997 }
1998
1999 return (handled);
2000 }
2001
2002 /*
2003 * wm_txintr:
2004 *
2005 * Helper; handle transmit interrupts.
2006 */
2007 static void
2008 wm_txintr(struct wm_softc *sc)
2009 {
2010 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2011 struct wm_txsoft *txs;
2012 uint8_t status;
2013 int i;
2014
2015 ifp->if_flags &= ~IFF_OACTIVE;
2016
2017 /*
2018 * Go through the Tx list and free mbufs for those
2019 * frames which have been transmitted.
2020 */
2021 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2022 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2023 txs = &sc->sc_txsoft[i];
2024
2025 DPRINTF(WM_DEBUG_TX,
2026 ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2027
2028 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2029 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2030
2031 status =
2032 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2033 if ((status & WTX_ST_DD) == 0) {
2034 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2035 BUS_DMASYNC_PREREAD);
2036 break;
2037 }
2038
2039 DPRINTF(WM_DEBUG_TX,
2040 ("%s: TX: job %d done: descs %d..%d\n",
2041 sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2042 txs->txs_lastdesc));
2043
2044 /*
2045 * XXX We should probably be using the statistics
2046 * XXX registers, but I don't know if they exist
2047 * XXX on chips before the i82544.
2048 */
2049
2050 #ifdef WM_EVENT_COUNTERS
2051 if (status & WTX_ST_TU)
2052 WM_EVCNT_INCR(&sc->sc_ev_tu);
2053 #endif /* WM_EVENT_COUNTERS */
2054
2055 if (status & (WTX_ST_EC|WTX_ST_LC)) {
2056 ifp->if_oerrors++;
2057 if (status & WTX_ST_LC)
2058 log(LOG_WARNING, "%s: late collision\n",
2059 sc->sc_dev.dv_xname);
2060 else if (status & WTX_ST_EC) {
2061 ifp->if_collisions += 16;
2062 log(LOG_WARNING, "%s: excessive collisions\n",
2063 sc->sc_dev.dv_xname);
2064 }
2065 } else
2066 ifp->if_opackets++;
2067
2068 sc->sc_txfree += txs->txs_ndesc;
2069 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2070 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2071 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2072 m_freem(txs->txs_mbuf);
2073 txs->txs_mbuf = NULL;
2074 }
2075
2076 /* Update the dirty transmit buffer pointer. */
2077 sc->sc_txsdirty = i;
2078 DPRINTF(WM_DEBUG_TX,
2079 ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2080
2081 /*
2082 * If there are no more pending transmissions, cancel the watchdog
2083 * timer.
2084 */
2085 if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2086 ifp->if_timer = 0;
2087 }
2088
2089 /*
2090 * wm_rxintr:
2091 *
2092 * Helper; handle receive interrupts.
2093 */
2094 static void
2095 wm_rxintr(struct wm_softc *sc)
2096 {
2097 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2098 struct wm_rxsoft *rxs;
2099 struct mbuf *m;
2100 int i, len;
2101 uint8_t status, errors;
2102
2103 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2104 rxs = &sc->sc_rxsoft[i];
2105
2106 DPRINTF(WM_DEBUG_RX,
2107 ("%s: RX: checking descriptor %d\n",
2108 sc->sc_dev.dv_xname, i));
2109
2110 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2111
2112 status = sc->sc_rxdescs[i].wrx_status;
2113 errors = sc->sc_rxdescs[i].wrx_errors;
2114 len = le16toh(sc->sc_rxdescs[i].wrx_len);
2115
2116 if ((status & WRX_ST_DD) == 0) {
2117 /*
2118 * We have processed all of the receive descriptors.
2119 */
2120 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2121 break;
2122 }
2123
2124 if (__predict_false(sc->sc_rxdiscard)) {
2125 DPRINTF(WM_DEBUG_RX,
2126 ("%s: RX: discarding contents of descriptor %d\n",
2127 sc->sc_dev.dv_xname, i));
2128 WM_INIT_RXDESC(sc, i);
2129 if (status & WRX_ST_EOP) {
2130 /* Reset our state. */
2131 DPRINTF(WM_DEBUG_RX,
2132 ("%s: RX: resetting rxdiscard -> 0\n",
2133 sc->sc_dev.dv_xname));
2134 sc->sc_rxdiscard = 0;
2135 }
2136 continue;
2137 }
2138
2139 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2140 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2141
2142 m = rxs->rxs_mbuf;
2143
2144 /*
2145 * Add a new receive buffer to the ring.
2146 */
2147 if (wm_add_rxbuf(sc, i) != 0) {
2148 /*
2149 * Failed, throw away what we've done so
2150 * far, and discard the rest of the packet.
2151 */
2152 ifp->if_ierrors++;
2153 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2154 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2155 WM_INIT_RXDESC(sc, i);
2156 if ((status & WRX_ST_EOP) == 0)
2157 sc->sc_rxdiscard = 1;
2158 if (sc->sc_rxhead != NULL)
2159 m_freem(sc->sc_rxhead);
2160 WM_RXCHAIN_RESET(sc);
2161 DPRINTF(WM_DEBUG_RX,
2162 ("%s: RX: Rx buffer allocation failed, "
2163 "dropping packet%s\n", sc->sc_dev.dv_xname,
2164 sc->sc_rxdiscard ? " (discard)" : ""));
2165 continue;
2166 }
2167
2168 WM_RXCHAIN_LINK(sc, m);
2169
2170 m->m_len = len;
2171
2172 DPRINTF(WM_DEBUG_RX,
2173 ("%s: RX: buffer at %p len %d\n",
2174 sc->sc_dev.dv_xname, m->m_data, len));
2175
2176 /*
2177 * If this is not the end of the packet, keep
2178 * looking.
2179 */
2180 if ((status & WRX_ST_EOP) == 0) {
2181 sc->sc_rxlen += len;
2182 DPRINTF(WM_DEBUG_RX,
2183 ("%s: RX: not yet EOP, rxlen -> %d\n",
2184 sc->sc_dev.dv_xname, sc->sc_rxlen));
2185 continue;
2186 }
2187
2188 /*
2189 * Okay, we have the entire packet now...
2190 */
2191 *sc->sc_rxtailp = NULL;
2192 m = sc->sc_rxhead;
2193 len += sc->sc_rxlen;
2194
2195 WM_RXCHAIN_RESET(sc);
2196
2197 DPRINTF(WM_DEBUG_RX,
2198 ("%s: RX: have entire packet, len -> %d\n",
2199 sc->sc_dev.dv_xname, len));
2200
2201 /*
2202 * If an error occurred, update stats and drop the packet.
2203 */
2204 if (errors &
2205 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2206 ifp->if_ierrors++;
2207 if (errors & WRX_ER_SE)
2208 log(LOG_WARNING, "%s: symbol error\n",
2209 sc->sc_dev.dv_xname);
2210 else if (errors & WRX_ER_SEQ)
2211 log(LOG_WARNING, "%s: receive sequence error\n",
2212 sc->sc_dev.dv_xname);
2213 else if (errors & WRX_ER_CE)
2214 log(LOG_WARNING, "%s: CRC error\n",
2215 sc->sc_dev.dv_xname);
2216 m_freem(m);
2217 continue;
2218 }
2219
2220 /*
2221 * No errors. Receive the packet.
2222 *
2223 * Note, we have configured the chip to include the
2224 * CRC with every packet.
2225 */
2226 m->m_flags |= M_HASFCS;
2227 m->m_pkthdr.rcvif = ifp;
2228 m->m_pkthdr.len = len;
2229
2230 #if 0 /* XXXJRT */
2231 /*
2232 * If VLANs are enabled, VLAN packets have been unwrapped
2233 * for us. Associate the tag with the packet.
2234 */
2235 if (sc->sc_ethercom.ec_nvlans != 0 &&
2236 (status & WRX_ST_VP) != 0) {
2237 struct m_tag *vtag;
2238
2239 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2240 M_NOWAIT);
2241 if (vtag == NULL) {
2242 ifp->if_ierrors++;
2243 log(LOG_ERR,
2244 "%s: unable to allocate VLAN tag\n",
2245 sc->sc_dev.dv_xname);
2246 m_freem(m);
2247 continue;
2248 }
2249
2250 *(u_int *)(vtag + 1) =
2251 le16toh(sc->sc_rxdescs[i].wrx_special);
2252 }
2253 #endif /* XXXJRT */
2254
2255 /*
2256 * Set up checksum info for this packet.
2257 */
2258 if (status & WRX_ST_IPCS) {
2259 WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2260 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2261 if (errors & WRX_ER_IPE)
2262 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2263 }
2264 if (status & WRX_ST_TCPCS) {
2265 /*
2266 * Note: we don't know if this was TCP or UDP,
2267 * so we just set both bits, and expect the
2268 * upper layers to deal.
2269 */
2270 WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2271 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
2272 if (errors & WRX_ER_TCPE)
2273 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
2274 }
2275
2276 ifp->if_ipackets++;
2277
2278 #if NBPFILTER > 0
2279 /* Pass this up to any BPF listeners. */
2280 if (ifp->if_bpf)
2281 bpf_mtap(ifp->if_bpf, m);
2282 #endif /* NBPFILTER > 0 */
2283
2284 /* Pass it on. */
2285 (*ifp->if_input)(ifp, m);
2286 }
2287
2288 /* Update the receive pointer. */
2289 sc->sc_rxptr = i;
2290
2291 DPRINTF(WM_DEBUG_RX,
2292 ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2293 }
2294
2295 /*
2296 * wm_linkintr:
2297 *
2298 * Helper; handle link interrupts.
2299 */
2300 static void
2301 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2302 {
2303 uint32_t status;
2304
2305 /*
2306 * If we get a link status interrupt on a 1000BASE-T
2307 * device, just fall into the normal MII tick path.
2308 */
2309 if (sc->sc_flags & WM_F_HAS_MII) {
2310 if (icr & ICR_LSC) {
2311 DPRINTF(WM_DEBUG_LINK,
2312 ("%s: LINK: LSC -> mii_tick\n",
2313 sc->sc_dev.dv_xname));
2314 mii_tick(&sc->sc_mii);
2315 } else if (icr & ICR_RXSEQ) {
2316 DPRINTF(WM_DEBUG_LINK,
2317 ("%s: LINK Receive sequence error\n",
2318 sc->sc_dev.dv_xname));
2319 }
2320 return;
2321 }
2322
2323 /*
2324 * If we are now receiving /C/, check for link again in
2325 * a couple of link clock ticks.
2326 */
2327 if (icr & ICR_RXCFG) {
2328 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2329 sc->sc_dev.dv_xname));
2330 sc->sc_tbi_anstate = 2;
2331 }
2332
2333 if (icr & ICR_LSC) {
2334 status = CSR_READ(sc, WMREG_STATUS);
2335 if (status & STATUS_LU) {
2336 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2337 sc->sc_dev.dv_xname,
2338 (status & STATUS_FD) ? "FDX" : "HDX"));
2339 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2340 sc->sc_fcrtl &= ~FCRTL_XONE;
2341 if (status & STATUS_FD)
2342 sc->sc_tctl |=
2343 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2344 else
2345 sc->sc_tctl |=
2346 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2347 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2348 sc->sc_fcrtl |= FCRTL_XONE;
2349 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2350 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2351 WMREG_OLD_FCRTL : WMREG_FCRTL,
2352 sc->sc_fcrtl);
2353 sc->sc_tbi_linkup = 1;
2354 } else {
2355 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2356 sc->sc_dev.dv_xname));
2357 sc->sc_tbi_linkup = 0;
2358 }
2359 sc->sc_tbi_anstate = 2;
2360 wm_tbi_set_linkled(sc);
2361 } else if (icr & ICR_RXSEQ) {
2362 DPRINTF(WM_DEBUG_LINK,
2363 ("%s: LINK: Receive sequence error\n",
2364 sc->sc_dev.dv_xname));
2365 }
2366 }
2367
2368 /*
2369 * wm_tick:
2370 *
2371 * One second timer, used to check link status, sweep up
2372 * completed transmit jobs, etc.
2373 */
2374 static void
2375 wm_tick(void *arg)
2376 {
2377 struct wm_softc *sc = arg;
2378 int s;
2379
2380 s = splnet();
2381
2382 if (sc->sc_type >= WM_T_82542_2_1) {
2383 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2384 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2385 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2386 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2387 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2388 }
2389
2390 if (sc->sc_flags & WM_F_HAS_MII)
2391 mii_tick(&sc->sc_mii);
2392 else
2393 wm_tbi_check_link(sc);
2394
2395 splx(s);
2396
2397 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2398 }
2399
2400 /*
2401 * wm_reset:
2402 *
2403 * Reset the i82542 chip.
2404 */
2405 static void
2406 wm_reset(struct wm_softc *sc)
2407 {
2408 int i;
2409
2410 /*
2411 * Allocate on-chip memory according to the MTU size.
2412 * The Packet Buffer Allocation register must be written
2413 * before the chip is reset.
2414 */
2415 if (sc->sc_type < WM_T_82547) {
2416 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2417 PBA_40K : PBA_48K;
2418 } else {
2419 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2420 PBA_22K : PBA_30K;
2421 sc->sc_txfifo_head = 0;
2422 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2423 sc->sc_txfifo_size =
2424 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2425 sc->sc_txfifo_stall = 0;
2426 }
2427 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2428
2429 switch (sc->sc_type) {
2430 case WM_T_82544:
2431 case WM_T_82540:
2432 case WM_T_82545:
2433 case WM_T_82546:
2434 case WM_T_82541:
2435 case WM_T_82541_2:
2436 /*
2437 * On some chipsets, a reset through a memory-mapped write
2438 * cycle can cause the chip to reset before completing the
2439 * write cycle. This causes major headache that can be
2440 * avoided by issuing the reset via indirect register writes
2441 * through I/O space.
2442 *
2443 * So, if we successfully mapped the I/O BAR at attach time,
2444 * use that. Otherwise, try our luck with a memory-mapped
2445 * reset.
2446 */
2447 if (sc->sc_flags & WM_F_IOH_VALID)
2448 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2449 else
2450 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2451 break;
2452
2453 case WM_T_82545_3:
2454 case WM_T_82546_3:
2455 /* Use the shadow control register on these chips. */
2456 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2457 break;
2458
2459 default:
2460 /* Everything else can safely use the documented method. */
2461 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2462 break;
2463 }
2464 delay(10000);
2465
2466 for (i = 0; i < 1000; i++) {
2467 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2468 return;
2469 delay(20);
2470 }
2471
2472 if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2473 log(LOG_ERR, "%s: reset failed to complete\n",
2474 sc->sc_dev.dv_xname);
2475 }
2476
2477 /*
2478 * wm_init: [ifnet interface function]
2479 *
2480 * Initialize the interface. Must be called at splnet().
2481 */
2482 static int
2483 wm_init(struct ifnet *ifp)
2484 {
2485 struct wm_softc *sc = ifp->if_softc;
2486 struct wm_rxsoft *rxs;
2487 int i, error = 0;
2488 uint32_t reg;
2489
2490 /*
2491 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2492 * There is a small but measurable benefit to avoiding the adjusment
2493 * of the descriptor so that the headers are aligned, for normal mtu,
2494 * on such platforms. One possibility is that the DMA itself is
2495 * slightly more efficient if the front of the entire packet (instead
2496 * of the front of the headers) is aligned.
2497 *
2498 * Note we must always set align_tweak to 0 if we are using
2499 * jumbo frames.
2500 */
2501 #ifdef __NO_STRICT_ALIGNMENT
2502 sc->sc_align_tweak = 0;
2503 #else
2504 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2505 sc->sc_align_tweak = 0;
2506 else
2507 sc->sc_align_tweak = 2;
2508 #endif /* __NO_STRICT_ALIGNMENT */
2509
2510 /* Cancel any pending I/O. */
2511 wm_stop(ifp, 0);
2512
2513 /* Reset the chip to a known state. */
2514 wm_reset(sc);
2515
2516 /* Initialize the transmit descriptor ring. */
2517 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2518 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2519 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2520 sc->sc_txfree = WM_NTXDESC(sc);
2521 sc->sc_txnext = 0;
2522
2523 if (sc->sc_type < WM_T_82543) {
2524 CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2525 CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2526 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2527 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2528 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2529 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2530 } else {
2531 CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2532 CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2533 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2534 CSR_WRITE(sc, WMREG_TDH, 0);
2535 CSR_WRITE(sc, WMREG_TDT, 0);
2536 CSR_WRITE(sc, WMREG_TIDV, 128);
2537
2538 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2539 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2540 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2541 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2542 }
2543 CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2544 CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2545
2546 /* Initialize the transmit job descriptors. */
2547 for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2548 sc->sc_txsoft[i].txs_mbuf = NULL;
2549 sc->sc_txsfree = WM_TXQUEUELEN(sc);
2550 sc->sc_txsnext = 0;
2551 sc->sc_txsdirty = 0;
2552
2553 /*
2554 * Initialize the receive descriptor and receive job
2555 * descriptor rings.
2556 */
2557 if (sc->sc_type < WM_T_82543) {
2558 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2559 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2560 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2561 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2562 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2563 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2564
2565 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2566 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2567 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2568 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2569 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2570 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2571 } else {
2572 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2573 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2574 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2575 CSR_WRITE(sc, WMREG_RDH, 0);
2576 CSR_WRITE(sc, WMREG_RDT, 0);
2577 CSR_WRITE(sc, WMREG_RDTR, 28 | RDTR_FPD);
2578 }
2579 for (i = 0; i < WM_NRXDESC; i++) {
2580 rxs = &sc->sc_rxsoft[i];
2581 if (rxs->rxs_mbuf == NULL) {
2582 if ((error = wm_add_rxbuf(sc, i)) != 0) {
2583 log(LOG_ERR, "%s: unable to allocate or map rx "
2584 "buffer %d, error = %d\n",
2585 sc->sc_dev.dv_xname, i, error);
2586 /*
2587 * XXX Should attempt to run with fewer receive
2588 * XXX buffers instead of just failing.
2589 */
2590 wm_rxdrain(sc);
2591 goto out;
2592 }
2593 } else
2594 WM_INIT_RXDESC(sc, i);
2595 }
2596 sc->sc_rxptr = 0;
2597 sc->sc_rxdiscard = 0;
2598 WM_RXCHAIN_RESET(sc);
2599
2600 /*
2601 * Clear out the VLAN table -- we don't use it (yet).
2602 */
2603 CSR_WRITE(sc, WMREG_VET, 0);
2604 for (i = 0; i < WM_VLAN_TABSIZE; i++)
2605 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2606
2607 /*
2608 * Set up flow-control parameters.
2609 *
2610 * XXX Values could probably stand some tuning.
2611 */
2612 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2613 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2614 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2615
2616 sc->sc_fcrtl = FCRTL_DFLT;
2617 if (sc->sc_type < WM_T_82543) {
2618 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2619 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2620 } else {
2621 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2622 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2623 }
2624 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2625
2626 #if 0 /* XXXJRT */
2627 /* Deal with VLAN enables. */
2628 if (sc->sc_ethercom.ec_nvlans != 0)
2629 sc->sc_ctrl |= CTRL_VME;
2630 else
2631 #endif /* XXXJRT */
2632 sc->sc_ctrl &= ~CTRL_VME;
2633
2634 /* Write the control registers. */
2635 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2636 #if 0
2637 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2638 #endif
2639
2640 /*
2641 * Set up checksum offload parameters.
2642 */
2643 reg = CSR_READ(sc, WMREG_RXCSUM);
2644 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
2645 reg |= RXCSUM_IPOFL;
2646 else
2647 reg &= ~RXCSUM_IPOFL;
2648 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
2649 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2650 else {
2651 reg &= ~RXCSUM_TUOFL;
2652 if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
2653 reg &= ~RXCSUM_IPOFL;
2654 }
2655 CSR_WRITE(sc, WMREG_RXCSUM, reg);
2656
2657 /*
2658 * Set up the interrupt registers.
2659 */
2660 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2661 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2662 ICR_RXO | ICR_RXT0;
2663 if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2664 sc->sc_icr |= ICR_RXCFG;
2665 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2666
2667 /* Set up the inter-packet gap. */
2668 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2669
2670 #if 0 /* XXXJRT */
2671 /* Set the VLAN ethernetype. */
2672 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2673 #endif
2674
2675 /*
2676 * Set up the transmit control register; we start out with
2677 * a collision distance suitable for FDX, but update it whe
2678 * we resolve the media type.
2679 */
2680 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2681 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2682 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2683
2684 /* Set the media. */
2685 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2686
2687 /*
2688 * Set up the receive control register; we actually program
2689 * the register when we set the receive filter. Use multicast
2690 * address offset type 0.
2691 *
2692 * Only the i82544 has the ability to strip the incoming
2693 * CRC, so we don't enable that feature.
2694 */
2695 sc->sc_mchash_type = 0;
2696 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
2697 RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2698
2699 if(MCLBYTES == 2048) {
2700 sc->sc_rctl |= RCTL_2k;
2701 } else {
2702 if(sc->sc_type >= WM_T_82543) {
2703 switch(MCLBYTES) {
2704 case 4096:
2705 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2706 break;
2707 case 8192:
2708 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2709 break;
2710 case 16384:
2711 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2712 break;
2713 default:
2714 panic("wm_init: MCLBYTES %d unsupported",
2715 MCLBYTES);
2716 break;
2717 }
2718 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
2719 }
2720
2721 /* Set the receive filter. */
2722 wm_set_filter(sc);
2723
2724 /* Start the one second link check clock. */
2725 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2726
2727 /* ...all done! */
2728 ifp->if_flags |= IFF_RUNNING;
2729 ifp->if_flags &= ~IFF_OACTIVE;
2730
2731 out:
2732 if (error)
2733 log(LOG_ERR, "%s: interface not running\n",
2734 sc->sc_dev.dv_xname);
2735 return (error);
2736 }
2737
2738 /*
2739 * wm_rxdrain:
2740 *
2741 * Drain the receive queue.
2742 */
2743 static void
2744 wm_rxdrain(struct wm_softc *sc)
2745 {
2746 struct wm_rxsoft *rxs;
2747 int i;
2748
2749 for (i = 0; i < WM_NRXDESC; i++) {
2750 rxs = &sc->sc_rxsoft[i];
2751 if (rxs->rxs_mbuf != NULL) {
2752 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2753 m_freem(rxs->rxs_mbuf);
2754 rxs->rxs_mbuf = NULL;
2755 }
2756 }
2757 }
2758
2759 /*
2760 * wm_stop: [ifnet interface function]
2761 *
2762 * Stop transmission on the interface.
2763 */
2764 static void
2765 wm_stop(struct ifnet *ifp, int disable)
2766 {
2767 struct wm_softc *sc = ifp->if_softc;
2768 struct wm_txsoft *txs;
2769 int i;
2770
2771 /* Stop the one second clock. */
2772 callout_stop(&sc->sc_tick_ch);
2773
2774 /* Stop the 82547 Tx FIFO stall check timer. */
2775 if (sc->sc_type == WM_T_82547)
2776 callout_stop(&sc->sc_txfifo_ch);
2777
2778 if (sc->sc_flags & WM_F_HAS_MII) {
2779 /* Down the MII. */
2780 mii_down(&sc->sc_mii);
2781 }
2782
2783 /* Stop the transmit and receive processes. */
2784 CSR_WRITE(sc, WMREG_TCTL, 0);
2785 CSR_WRITE(sc, WMREG_RCTL, 0);
2786
2787 /* Release any queued transmit buffers. */
2788 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2789 txs = &sc->sc_txsoft[i];
2790 if (txs->txs_mbuf != NULL) {
2791 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2792 m_freem(txs->txs_mbuf);
2793 txs->txs_mbuf = NULL;
2794 }
2795 }
2796
2797 if (disable)
2798 wm_rxdrain(sc);
2799
2800 /* Mark the interface as down and cancel the watchdog timer. */
2801 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2802 ifp->if_timer = 0;
2803 }
2804
2805 /*
2806 * wm_acquire_eeprom:
2807 *
2808 * Perform the EEPROM handshake required on some chips.
2809 */
2810 static int
2811 wm_acquire_eeprom(struct wm_softc *sc)
2812 {
2813 uint32_t reg;
2814 int x;
2815
2816 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2817 reg = CSR_READ(sc, WMREG_EECD);
2818
2819 /* Request EEPROM access. */
2820 reg |= EECD_EE_REQ;
2821 CSR_WRITE(sc, WMREG_EECD, reg);
2822
2823 /* ..and wait for it to be granted. */
2824 for (x = 0; x < 100; x++) {
2825 reg = CSR_READ(sc, WMREG_EECD);
2826 if (reg & EECD_EE_GNT)
2827 break;
2828 delay(5);
2829 }
2830 if ((reg & EECD_EE_GNT) == 0) {
2831 aprint_error("%s: could not acquire EEPROM GNT\n",
2832 sc->sc_dev.dv_xname);
2833 reg &= ~EECD_EE_REQ;
2834 CSR_WRITE(sc, WMREG_EECD, reg);
2835 return (1);
2836 }
2837 }
2838
2839 return (0);
2840 }
2841
2842 /*
2843 * wm_release_eeprom:
2844 *
2845 * Release the EEPROM mutex.
2846 */
2847 static void
2848 wm_release_eeprom(struct wm_softc *sc)
2849 {
2850 uint32_t reg;
2851
2852 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2853 reg = CSR_READ(sc, WMREG_EECD);
2854 reg &= ~EECD_EE_REQ;
2855 CSR_WRITE(sc, WMREG_EECD, reg);
2856 }
2857 }
2858
2859 /*
2860 * wm_eeprom_sendbits:
2861 *
2862 * Send a series of bits to the EEPROM.
2863 */
2864 static void
2865 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
2866 {
2867 uint32_t reg;
2868 int x;
2869
2870 reg = CSR_READ(sc, WMREG_EECD);
2871
2872 for (x = nbits; x > 0; x--) {
2873 if (bits & (1U << (x - 1)))
2874 reg |= EECD_DI;
2875 else
2876 reg &= ~EECD_DI;
2877 CSR_WRITE(sc, WMREG_EECD, reg);
2878 delay(2);
2879 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2880 delay(2);
2881 CSR_WRITE(sc, WMREG_EECD, reg);
2882 delay(2);
2883 }
2884 }
2885
2886 /*
2887 * wm_eeprom_recvbits:
2888 *
2889 * Receive a series of bits from the EEPROM.
2890 */
2891 static void
2892 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
2893 {
2894 uint32_t reg, val;
2895 int x;
2896
2897 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
2898
2899 val = 0;
2900 for (x = nbits; x > 0; x--) {
2901 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2902 delay(2);
2903 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
2904 val |= (1U << (x - 1));
2905 CSR_WRITE(sc, WMREG_EECD, reg);
2906 delay(2);
2907 }
2908 *valp = val;
2909 }
2910
2911 /*
2912 * wm_read_eeprom_uwire:
2913 *
2914 * Read a word from the EEPROM using the MicroWire protocol.
2915 */
2916 static int
2917 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2918 {
2919 uint32_t reg, val;
2920 int i;
2921
2922 for (i = 0; i < wordcnt; i++) {
2923 /* Clear SK and DI. */
2924 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
2925 CSR_WRITE(sc, WMREG_EECD, reg);
2926
2927 /* Set CHIP SELECT. */
2928 reg |= EECD_CS;
2929 CSR_WRITE(sc, WMREG_EECD, reg);
2930 delay(2);
2931
2932 /* Shift in the READ command. */
2933 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
2934
2935 /* Shift in address. */
2936 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
2937
2938 /* Shift out the data. */
2939 wm_eeprom_recvbits(sc, &val, 16);
2940 data[i] = val & 0xffff;
2941
2942 /* Clear CHIP SELECT. */
2943 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
2944 CSR_WRITE(sc, WMREG_EECD, reg);
2945 delay(2);
2946 }
2947
2948 return (0);
2949 }
2950
2951 /*
2952 * wm_spi_eeprom_ready:
2953 *
2954 * Wait for a SPI EEPROM to be ready for commands.
2955 */
2956 static int
2957 wm_spi_eeprom_ready(struct wm_softc *sc)
2958 {
2959 uint32_t val;
2960 int usec;
2961
2962 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
2963 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
2964 wm_eeprom_recvbits(sc, &val, 8);
2965 if ((val & SPI_SR_RDY) == 0)
2966 break;
2967 }
2968 if (usec >= SPI_MAX_RETRIES) {
2969 aprint_error("%s: EEPROM failed to become ready\n",
2970 sc->sc_dev.dv_xname);
2971 return (1);
2972 }
2973 return (0);
2974 }
2975
2976 /*
2977 * wm_read_eeprom_spi:
2978 *
2979 * Read a work from the EEPROM using the SPI protocol.
2980 */
2981 static int
2982 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2983 {
2984 uint32_t reg, val;
2985 int i;
2986 uint8_t opc;
2987
2988 /* Clear SK and CS. */
2989 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
2990 CSR_WRITE(sc, WMREG_EECD, reg);
2991 delay(2);
2992
2993 if (wm_spi_eeprom_ready(sc))
2994 return (1);
2995
2996 /* Toggle CS to flush commands. */
2997 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
2998 delay(2);
2999 CSR_WRITE(sc, WMREG_EECD, reg);
3000 delay(2);
3001
3002 opc = SPI_OPC_READ;
3003 if (sc->sc_ee_addrbits == 8 && word >= 128)
3004 opc |= SPI_OPC_A8;
3005
3006 wm_eeprom_sendbits(sc, opc, 8);
3007 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
3008
3009 for (i = 0; i < wordcnt; i++) {
3010 wm_eeprom_recvbits(sc, &val, 16);
3011 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
3012 }
3013
3014 /* Raise CS and clear SK. */
3015 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3016 CSR_WRITE(sc, WMREG_EECD, reg);
3017 delay(2);
3018
3019 return (0);
3020 }
3021
3022 /*
3023 * wm_read_eeprom:
3024 *
3025 * Read data from the serial EEPROM.
3026 */
3027 static int
3028 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3029 {
3030 int rv;
3031
3032 if (wm_acquire_eeprom(sc))
3033 return (1);
3034
3035 if (sc->sc_flags & WM_F_EEPROM_SPI)
3036 rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3037 else
3038 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3039
3040 wm_release_eeprom(sc);
3041 return (rv);
3042 }
3043
3044 /*
3045 * wm_add_rxbuf:
3046 *
3047 * Add a receive buffer to the indiciated descriptor.
3048 */
3049 static int
3050 wm_add_rxbuf(struct wm_softc *sc, int idx)
3051 {
3052 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3053 struct mbuf *m;
3054 int error;
3055
3056 MGETHDR(m, M_DONTWAIT, MT_DATA);
3057 if (m == NULL)
3058 return (ENOBUFS);
3059
3060 MCLGET(m, M_DONTWAIT);
3061 if ((m->m_flags & M_EXT) == 0) {
3062 m_freem(m);
3063 return (ENOBUFS);
3064 }
3065
3066 if (rxs->rxs_mbuf != NULL)
3067 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3068
3069 rxs->rxs_mbuf = m;
3070
3071 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3072 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3073 BUS_DMA_READ|BUS_DMA_NOWAIT);
3074 if (error) {
3075 /* XXX XXX XXX */
3076 printf("%s: unable to load rx DMA map %d, error = %d\n",
3077 sc->sc_dev.dv_xname, idx, error);
3078 panic("wm_add_rxbuf");
3079 }
3080
3081 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3082 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3083
3084 WM_INIT_RXDESC(sc, idx);
3085
3086 return (0);
3087 }
3088
3089 /*
3090 * wm_set_ral:
3091 *
3092 * Set an entery in the receive address list.
3093 */
3094 static void
3095 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3096 {
3097 uint32_t ral_lo, ral_hi;
3098
3099 if (enaddr != NULL) {
3100 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3101 (enaddr[3] << 24);
3102 ral_hi = enaddr[4] | (enaddr[5] << 8);
3103 ral_hi |= RAL_AV;
3104 } else {
3105 ral_lo = 0;
3106 ral_hi = 0;
3107 }
3108
3109 if (sc->sc_type >= WM_T_82544) {
3110 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3111 ral_lo);
3112 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3113 ral_hi);
3114 } else {
3115 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3116 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3117 }
3118 }
3119
3120 /*
3121 * wm_mchash:
3122 *
3123 * Compute the hash of the multicast address for the 4096-bit
3124 * multicast filter.
3125 */
3126 static uint32_t
3127 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3128 {
3129 static const int lo_shift[4] = { 4, 3, 2, 0 };
3130 static const int hi_shift[4] = { 4, 5, 6, 8 };
3131 uint32_t hash;
3132
3133 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3134 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3135
3136 return (hash & 0xfff);
3137 }
3138
3139 /*
3140 * wm_set_filter:
3141 *
3142 * Set up the receive filter.
3143 */
3144 static void
3145 wm_set_filter(struct wm_softc *sc)
3146 {
3147 struct ethercom *ec = &sc->sc_ethercom;
3148 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3149 struct ether_multi *enm;
3150 struct ether_multistep step;
3151 bus_addr_t mta_reg;
3152 uint32_t hash, reg, bit;
3153 int i;
3154
3155 if (sc->sc_type >= WM_T_82544)
3156 mta_reg = WMREG_CORDOVA_MTA;
3157 else
3158 mta_reg = WMREG_MTA;
3159
3160 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3161
3162 if (ifp->if_flags & IFF_BROADCAST)
3163 sc->sc_rctl |= RCTL_BAM;
3164 if (ifp->if_flags & IFF_PROMISC) {
3165 sc->sc_rctl |= RCTL_UPE;
3166 goto allmulti;
3167 }
3168
3169 /*
3170 * Set the station address in the first RAL slot, and
3171 * clear the remaining slots.
3172 */
3173 wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3174 for (i = 1; i < WM_RAL_TABSIZE; i++)
3175 wm_set_ral(sc, NULL, i);
3176
3177 /* Clear out the multicast table. */
3178 for (i = 0; i < WM_MC_TABSIZE; i++)
3179 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3180
3181 ETHER_FIRST_MULTI(step, ec, enm);
3182 while (enm != NULL) {
3183 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3184 /*
3185 * We must listen to a range of multicast addresses.
3186 * For now, just accept all multicasts, rather than
3187 * trying to set only those filter bits needed to match
3188 * the range. (At this time, the only use of address
3189 * ranges is for IP multicast routing, for which the
3190 * range is big enough to require all bits set.)
3191 */
3192 goto allmulti;
3193 }
3194
3195 hash = wm_mchash(sc, enm->enm_addrlo);
3196
3197 reg = (hash >> 5) & 0x7f;
3198 bit = hash & 0x1f;
3199
3200 hash = CSR_READ(sc, mta_reg + (reg << 2));
3201 hash |= 1U << bit;
3202
3203 /* XXX Hardware bug?? */
3204 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3205 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3206 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3207 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3208 } else
3209 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3210
3211 ETHER_NEXT_MULTI(step, enm);
3212 }
3213
3214 ifp->if_flags &= ~IFF_ALLMULTI;
3215 goto setit;
3216
3217 allmulti:
3218 ifp->if_flags |= IFF_ALLMULTI;
3219 sc->sc_rctl |= RCTL_MPE;
3220
3221 setit:
3222 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3223 }
3224
3225 /*
3226 * wm_tbi_mediainit:
3227 *
3228 * Initialize media for use on 1000BASE-X devices.
3229 */
3230 static void
3231 wm_tbi_mediainit(struct wm_softc *sc)
3232 {
3233 const char *sep = "";
3234
3235 if (sc->sc_type < WM_T_82543)
3236 sc->sc_tipg = TIPG_WM_DFLT;
3237 else
3238 sc->sc_tipg = TIPG_LG_DFLT;
3239
3240 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3241 wm_tbi_mediastatus);
3242
3243 /*
3244 * SWD Pins:
3245 *
3246 * 0 = Link LED (output)
3247 * 1 = Loss Of Signal (input)
3248 */
3249 sc->sc_ctrl |= CTRL_SWDPIO(0);
3250 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3251
3252 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3253
3254 #define ADD(ss, mm, dd) \
3255 do { \
3256 aprint_normal("%s%s", sep, ss); \
3257 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
3258 sep = ", "; \
3259 } while (/*CONSTCOND*/0)
3260
3261 aprint_normal("%s: ", sc->sc_dev.dv_xname);
3262 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3263 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3264 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3265 aprint_normal("\n");
3266
3267 #undef ADD
3268
3269 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3270 }
3271
3272 /*
3273 * wm_tbi_mediastatus: [ifmedia interface function]
3274 *
3275 * Get the current interface media status on a 1000BASE-X device.
3276 */
3277 static void
3278 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3279 {
3280 struct wm_softc *sc = ifp->if_softc;
3281 uint32_t ctrl;
3282
3283 ifmr->ifm_status = IFM_AVALID;
3284 ifmr->ifm_active = IFM_ETHER;
3285
3286 if (sc->sc_tbi_linkup == 0) {
3287 ifmr->ifm_active |= IFM_NONE;
3288 return;
3289 }
3290
3291 ifmr->ifm_status |= IFM_ACTIVE;
3292 ifmr->ifm_active |= IFM_1000_SX;
3293 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3294 ifmr->ifm_active |= IFM_FDX;
3295 ctrl = CSR_READ(sc, WMREG_CTRL);
3296 if (ctrl & CTRL_RFCE)
3297 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3298 if (ctrl & CTRL_TFCE)
3299 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3300 }
3301
3302 /*
3303 * wm_tbi_mediachange: [ifmedia interface function]
3304 *
3305 * Set hardware to newly-selected media on a 1000BASE-X device.
3306 */
3307 static int
3308 wm_tbi_mediachange(struct ifnet *ifp)
3309 {
3310 struct wm_softc *sc = ifp->if_softc;
3311 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3312 uint32_t status;
3313 int i;
3314
3315 sc->sc_txcw = ife->ifm_data;
3316 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3317 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3318 sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3319 sc->sc_txcw |= TXCW_ANE;
3320
3321 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3322 delay(10000);
3323
3324 /* NOTE: CTRL will update TFCE and RFCE automatically. */
3325
3326 sc->sc_tbi_anstate = 0;
3327
3328 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3329 /* Have signal; wait for the link to come up. */
3330 for (i = 0; i < 50; i++) {
3331 delay(10000);
3332 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3333 break;
3334 }
3335
3336 status = CSR_READ(sc, WMREG_STATUS);
3337 if (status & STATUS_LU) {
3338 /* Link is up. */
3339 DPRINTF(WM_DEBUG_LINK,
3340 ("%s: LINK: set media -> link up %s\n",
3341 sc->sc_dev.dv_xname,
3342 (status & STATUS_FD) ? "FDX" : "HDX"));
3343 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3344 sc->sc_fcrtl &= ~FCRTL_XONE;
3345 if (status & STATUS_FD)
3346 sc->sc_tctl |=
3347 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3348 else
3349 sc->sc_tctl |=
3350 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3351 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3352 sc->sc_fcrtl |= FCRTL_XONE;
3353 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3354 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3355 WMREG_OLD_FCRTL : WMREG_FCRTL,
3356 sc->sc_fcrtl);
3357 sc->sc_tbi_linkup = 1;
3358 } else {
3359 /* Link is down. */
3360 DPRINTF(WM_DEBUG_LINK,
3361 ("%s: LINK: set media -> link down\n",
3362 sc->sc_dev.dv_xname));
3363 sc->sc_tbi_linkup = 0;
3364 }
3365 } else {
3366 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3367 sc->sc_dev.dv_xname));
3368 sc->sc_tbi_linkup = 0;
3369 }
3370
3371 wm_tbi_set_linkled(sc);
3372
3373 return (0);
3374 }
3375
3376 /*
3377 * wm_tbi_set_linkled:
3378 *
3379 * Update the link LED on 1000BASE-X devices.
3380 */
3381 static void
3382 wm_tbi_set_linkled(struct wm_softc *sc)
3383 {
3384
3385 if (sc->sc_tbi_linkup)
3386 sc->sc_ctrl |= CTRL_SWDPIN(0);
3387 else
3388 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3389
3390 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3391 }
3392
3393 /*
3394 * wm_tbi_check_link:
3395 *
3396 * Check the link on 1000BASE-X devices.
3397 */
3398 static void
3399 wm_tbi_check_link(struct wm_softc *sc)
3400 {
3401 uint32_t rxcw, ctrl, status;
3402
3403 if (sc->sc_tbi_anstate == 0)
3404 return;
3405 else if (sc->sc_tbi_anstate > 1) {
3406 DPRINTF(WM_DEBUG_LINK,
3407 ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3408 sc->sc_tbi_anstate));
3409 sc->sc_tbi_anstate--;
3410 return;
3411 }
3412
3413 sc->sc_tbi_anstate = 0;
3414
3415 rxcw = CSR_READ(sc, WMREG_RXCW);
3416 ctrl = CSR_READ(sc, WMREG_CTRL);
3417 status = CSR_READ(sc, WMREG_STATUS);
3418
3419 if ((status & STATUS_LU) == 0) {
3420 DPRINTF(WM_DEBUG_LINK,
3421 ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3422 sc->sc_tbi_linkup = 0;
3423 } else {
3424 DPRINTF(WM_DEBUG_LINK,
3425 ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3426 (status & STATUS_FD) ? "FDX" : "HDX"));
3427 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3428 sc->sc_fcrtl &= ~FCRTL_XONE;
3429 if (status & STATUS_FD)
3430 sc->sc_tctl |=
3431 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3432 else
3433 sc->sc_tctl |=
3434 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3435 if (ctrl & CTRL_TFCE)
3436 sc->sc_fcrtl |= FCRTL_XONE;
3437 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3438 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3439 WMREG_OLD_FCRTL : WMREG_FCRTL,
3440 sc->sc_fcrtl);
3441 sc->sc_tbi_linkup = 1;
3442 }
3443
3444 wm_tbi_set_linkled(sc);
3445 }
3446
3447 /*
3448 * wm_gmii_reset:
3449 *
3450 * Reset the PHY.
3451 */
3452 static void
3453 wm_gmii_reset(struct wm_softc *sc)
3454 {
3455 uint32_t reg;
3456
3457 if (sc->sc_type >= WM_T_82544) {
3458 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3459 delay(20000);
3460
3461 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3462 delay(20000);
3463 } else {
3464 /* The PHY reset pin is active-low. */
3465 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3466 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3467 CTRL_EXT_SWDPIN(4));
3468 reg |= CTRL_EXT_SWDPIO(4);
3469
3470 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3471 delay(10);
3472
3473 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3474 delay(10);
3475
3476 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3477 delay(10);
3478 #if 0
3479 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3480 #endif
3481 }
3482 }
3483
3484 /*
3485 * wm_gmii_mediainit:
3486 *
3487 * Initialize media for use on 1000BASE-T devices.
3488 */
3489 static void
3490 wm_gmii_mediainit(struct wm_softc *sc)
3491 {
3492 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3493
3494 /* We have MII. */
3495 sc->sc_flags |= WM_F_HAS_MII;
3496
3497 sc->sc_tipg = TIPG_1000T_DFLT;
3498
3499 /*
3500 * Let the chip set speed/duplex on its own based on
3501 * signals from the PHY.
3502 */
3503 sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3504 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3505
3506 /* Initialize our media structures and probe the GMII. */
3507 sc->sc_mii.mii_ifp = ifp;
3508
3509 if (sc->sc_type >= WM_T_82544) {
3510 sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3511 sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3512 } else {
3513 sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3514 sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3515 }
3516 sc->sc_mii.mii_statchg = wm_gmii_statchg;
3517
3518 wm_gmii_reset(sc);
3519
3520 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3521 wm_gmii_mediastatus);
3522
3523 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3524 MII_OFFSET_ANY, MIIF_DOPAUSE);
3525 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3526 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3527 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3528 } else
3529 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3530 }
3531
3532 /*
3533 * wm_gmii_mediastatus: [ifmedia interface function]
3534 *
3535 * Get the current interface media status on a 1000BASE-T device.
3536 */
3537 static void
3538 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3539 {
3540 struct wm_softc *sc = ifp->if_softc;
3541
3542 mii_pollstat(&sc->sc_mii);
3543 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3544 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3545 sc->sc_flowflags;
3546 }
3547
3548 /*
3549 * wm_gmii_mediachange: [ifmedia interface function]
3550 *
3551 * Set hardware to newly-selected media on a 1000BASE-T device.
3552 */
3553 static int
3554 wm_gmii_mediachange(struct ifnet *ifp)
3555 {
3556 struct wm_softc *sc = ifp->if_softc;
3557
3558 if (ifp->if_flags & IFF_UP)
3559 mii_mediachg(&sc->sc_mii);
3560 return (0);
3561 }
3562
3563 #define MDI_IO CTRL_SWDPIN(2)
3564 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
3565 #define MDI_CLK CTRL_SWDPIN(3)
3566
3567 static void
3568 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3569 {
3570 uint32_t i, v;
3571
3572 v = CSR_READ(sc, WMREG_CTRL);
3573 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3574 v |= MDI_DIR | CTRL_SWDPIO(3);
3575
3576 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3577 if (data & i)
3578 v |= MDI_IO;
3579 else
3580 v &= ~MDI_IO;
3581 CSR_WRITE(sc, WMREG_CTRL, v);
3582 delay(10);
3583 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3584 delay(10);
3585 CSR_WRITE(sc, WMREG_CTRL, v);
3586 delay(10);
3587 }
3588 }
3589
3590 static uint32_t
3591 i82543_mii_recvbits(struct wm_softc *sc)
3592 {
3593 uint32_t v, i, data = 0;
3594
3595 v = CSR_READ(sc, WMREG_CTRL);
3596 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3597 v |= CTRL_SWDPIO(3);
3598
3599 CSR_WRITE(sc, WMREG_CTRL, v);
3600 delay(10);
3601 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3602 delay(10);
3603 CSR_WRITE(sc, WMREG_CTRL, v);
3604 delay(10);
3605
3606 for (i = 0; i < 16; i++) {
3607 data <<= 1;
3608 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3609 delay(10);
3610 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3611 data |= 1;
3612 CSR_WRITE(sc, WMREG_CTRL, v);
3613 delay(10);
3614 }
3615
3616 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3617 delay(10);
3618 CSR_WRITE(sc, WMREG_CTRL, v);
3619 delay(10);
3620
3621 return (data);
3622 }
3623
3624 #undef MDI_IO
3625 #undef MDI_DIR
3626 #undef MDI_CLK
3627
3628 /*
3629 * wm_gmii_i82543_readreg: [mii interface function]
3630 *
3631 * Read a PHY register on the GMII (i82543 version).
3632 */
3633 static int
3634 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3635 {
3636 struct wm_softc *sc = (void *) self;
3637 int rv;
3638
3639 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3640 i82543_mii_sendbits(sc, reg | (phy << 5) |
3641 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3642 rv = i82543_mii_recvbits(sc) & 0xffff;
3643
3644 DPRINTF(WM_DEBUG_GMII,
3645 ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3646 sc->sc_dev.dv_xname, phy, reg, rv));
3647
3648 return (rv);
3649 }
3650
3651 /*
3652 * wm_gmii_i82543_writereg: [mii interface function]
3653 *
3654 * Write a PHY register on the GMII (i82543 version).
3655 */
3656 static void
3657 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3658 {
3659 struct wm_softc *sc = (void *) self;
3660
3661 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3662 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3663 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3664 (MII_COMMAND_START << 30), 32);
3665 }
3666
3667 /*
3668 * wm_gmii_i82544_readreg: [mii interface function]
3669 *
3670 * Read a PHY register on the GMII.
3671 */
3672 static int
3673 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
3674 {
3675 struct wm_softc *sc = (void *) self;
3676 uint32_t mdic = 0;
3677 int i, rv;
3678
3679 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
3680 MDIC_REGADD(reg));
3681
3682 for (i = 0; i < 100; i++) {
3683 mdic = CSR_READ(sc, WMREG_MDIC);
3684 if (mdic & MDIC_READY)
3685 break;
3686 delay(10);
3687 }
3688
3689 if ((mdic & MDIC_READY) == 0) {
3690 log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
3691 sc->sc_dev.dv_xname, phy, reg);
3692 rv = 0;
3693 } else if (mdic & MDIC_E) {
3694 #if 0 /* This is normal if no PHY is present. */
3695 log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
3696 sc->sc_dev.dv_xname, phy, reg);
3697 #endif
3698 rv = 0;
3699 } else {
3700 rv = MDIC_DATA(mdic);
3701 if (rv == 0xffff)
3702 rv = 0;
3703 }
3704
3705 return (rv);
3706 }
3707
3708 /*
3709 * wm_gmii_i82544_writereg: [mii interface function]
3710 *
3711 * Write a PHY register on the GMII.
3712 */
3713 static void
3714 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
3715 {
3716 struct wm_softc *sc = (void *) self;
3717 uint32_t mdic = 0;
3718 int i;
3719
3720 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
3721 MDIC_REGADD(reg) | MDIC_DATA(val));
3722
3723 for (i = 0; i < 100; i++) {
3724 mdic = CSR_READ(sc, WMREG_MDIC);
3725 if (mdic & MDIC_READY)
3726 break;
3727 delay(10);
3728 }
3729
3730 if ((mdic & MDIC_READY) == 0)
3731 log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
3732 sc->sc_dev.dv_xname, phy, reg);
3733 else if (mdic & MDIC_E)
3734 log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
3735 sc->sc_dev.dv_xname, phy, reg);
3736 }
3737
3738 /*
3739 * wm_gmii_statchg: [mii interface function]
3740 *
3741 * Callback from MII layer when media changes.
3742 */
3743 static void
3744 wm_gmii_statchg(struct device *self)
3745 {
3746 struct wm_softc *sc = (void *) self;
3747 struct mii_data *mii = &sc->sc_mii;
3748
3749 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
3750 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3751 sc->sc_fcrtl &= ~FCRTL_XONE;
3752
3753 /*
3754 * Get flow control negotiation result.
3755 */
3756 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3757 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3758 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3759 mii->mii_media_active &= ~IFM_ETH_FMASK;
3760 }
3761
3762 if (sc->sc_flowflags & IFM_FLOW) {
3763 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
3764 sc->sc_ctrl |= CTRL_TFCE;
3765 sc->sc_fcrtl |= FCRTL_XONE;
3766 }
3767 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3768 sc->sc_ctrl |= CTRL_RFCE;
3769 }
3770
3771 if (sc->sc_mii.mii_media_active & IFM_FDX) {
3772 DPRINTF(WM_DEBUG_LINK,
3773 ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3774 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3775 } else {
3776 DPRINTF(WM_DEBUG_LINK,
3777 ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3778 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3779 }
3780
3781 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3782 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3783 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
3784 : WMREG_FCRTL, sc->sc_fcrtl);
3785 }
3786