if_wm.c revision 1.92 1 /* $NetBSD: if_wm.c,v 1.92 2005/02/18 04:32:35 briggs Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40 *
41 * TODO (in order of importance):
42 *
43 * - Rework how parameters are loaded from the EEPROM.
44 * - Figure out what to do with the i82545GM and i82546GB
45 * SERDES controllers.
46 * - Fix hw VLAN assist.
47 */
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.92 2005/02/18 04:32:35 briggs Exp $");
51
52 #include "bpfilter.h"
53 #include "rnd.h"
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67
68 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
69
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82
83 #include <netinet/in.h> /* XXX for struct ip */
84 #include <netinet/in_systm.h> /* XXX for struct ip */
85 #include <netinet/ip.h> /* XXX for struct ip */
86 #include <netinet/tcp.h> /* XXX for struct tcphdr */
87
88 #include <machine/bus.h>
89 #include <machine/intr.h>
90 #include <machine/endian.h>
91
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99
100 #include <dev/pci/if_wmreg.h>
101
102 #ifdef WM_DEBUG
103 #define WM_DEBUG_LINK 0x01
104 #define WM_DEBUG_TX 0x02
105 #define WM_DEBUG_RX 0x04
106 #define WM_DEBUG_GMII 0x08
107 int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
108
109 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
110 #else
111 #define DPRINTF(x, y) /* nothing */
112 #endif /* WM_DEBUG */
113
114 /*
115 * Transmit descriptor list size. Due to errata, we can only have
116 * 256 hardware descriptors in the ring on < 82544, but we use 4096
117 * on >= 82544. We tell the upper layers that they can queue a lot
118 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
119 * of them at a time.
120 *
121 * We allow up to 256 (!) DMA segments per packet. Pathological packet
122 * chains containing many small mbufs have been observed in zero-copy
123 * situations with jumbo frames.
124 */
125 #define WM_NTXSEGS 256
126 #define WM_IFQUEUELEN 256
127 #define WM_TXQUEUELEN_MAX 64
128 #define WM_TXQUEUELEN_MAX_82547 16
129 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
130 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
131 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
132 #define WM_NTXDESC_82542 256
133 #define WM_NTXDESC_82544 4096
134 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
135 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
136 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
137 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
138 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
139
140 #define WM_MAXTXDMA ETHER_MAX_LEN_JUMBO
141
142 /*
143 * Receive descriptor list size. We have one Rx buffer for normal
144 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
145 * packet. We allocate 256 receive descriptors, each with a 2k
146 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
147 */
148 #define WM_NRXDESC 256
149 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
150 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
151 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
152
153 /*
154 * Control structures are DMA'd to the i82542 chip. We allocate them in
155 * a single clump that maps to a single DMA segment to make serveral things
156 * easier.
157 */
158 struct wm_control_data_82544 {
159 /*
160 * The receive descriptors.
161 */
162 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
163
164 /*
165 * The transmit descriptors. Put these at the end, because
166 * we might use a smaller number of them.
167 */
168 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
169 };
170
171 struct wm_control_data_82542 {
172 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
173 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
174 };
175
176 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
177 #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)])
178 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
179
180 /*
181 * Software state for transmit jobs.
182 */
183 struct wm_txsoft {
184 struct mbuf *txs_mbuf; /* head of our mbuf chain */
185 bus_dmamap_t txs_dmamap; /* our DMA map */
186 int txs_firstdesc; /* first descriptor in packet */
187 int txs_lastdesc; /* last descriptor in packet */
188 int txs_ndesc; /* # of descriptors used */
189 };
190
191 /*
192 * Software state for receive buffers. Each descriptor gets a
193 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
194 * more than one buffer, we chain them together.
195 */
196 struct wm_rxsoft {
197 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
198 bus_dmamap_t rxs_dmamap; /* our DMA map */
199 };
200
201 typedef enum {
202 WM_T_unknown = 0,
203 WM_T_82542_2_0, /* i82542 2.0 (really old) */
204 WM_T_82542_2_1, /* i82542 2.1+ (old) */
205 WM_T_82543, /* i82543 */
206 WM_T_82544, /* i82544 */
207 WM_T_82540, /* i82540 */
208 WM_T_82545, /* i82545 */
209 WM_T_82545_3, /* i82545 3.0+ */
210 WM_T_82546, /* i82546 */
211 WM_T_82546_3, /* i82546 3.0+ */
212 WM_T_82541, /* i82541 */
213 WM_T_82541_2, /* i82541 2.0+ */
214 WM_T_82547, /* i82547 */
215 WM_T_82547_2, /* i82547 2.0+ */
216 } wm_chip_type;
217
218 /*
219 * Software state per device.
220 */
221 struct wm_softc {
222 struct device sc_dev; /* generic device information */
223 bus_space_tag_t sc_st; /* bus space tag */
224 bus_space_handle_t sc_sh; /* bus space handle */
225 bus_space_tag_t sc_iot; /* I/O space tag */
226 bus_space_handle_t sc_ioh; /* I/O space handle */
227 bus_dma_tag_t sc_dmat; /* bus DMA tag */
228 struct ethercom sc_ethercom; /* ethernet common data */
229 void *sc_sdhook; /* shutdown hook */
230
231 wm_chip_type sc_type; /* chip type */
232 int sc_flags; /* flags; see below */
233 int sc_bus_speed; /* PCI/PCIX bus speed */
234 int sc_pcix_offset; /* PCIX capability register offset */
235 int sc_flowflags; /* 802.3x flow control flags */
236
237 void *sc_ih; /* interrupt cookie */
238
239 int sc_ee_addrbits; /* EEPROM address bits */
240
241 struct mii_data sc_mii; /* MII/media information */
242
243 struct callout sc_tick_ch; /* tick callout */
244
245 bus_dmamap_t sc_cddmamap; /* control data DMA map */
246 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
247
248 int sc_align_tweak;
249
250 /*
251 * Software state for the transmit and receive descriptors.
252 */
253 int sc_txnum; /* must be a power of two */
254 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
255 struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
256
257 /*
258 * Control data structures.
259 */
260 int sc_ntxdesc; /* must be a power of two */
261 struct wm_control_data_82544 *sc_control_data;
262 #define sc_txdescs sc_control_data->wcd_txdescs
263 #define sc_rxdescs sc_control_data->wcd_rxdescs
264
265 #ifdef WM_EVENT_COUNTERS
266 /* Event counters. */
267 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
268 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
269 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
270 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
271 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
272 struct evcnt sc_ev_rxintr; /* Rx interrupts */
273 struct evcnt sc_ev_linkintr; /* Link interrupts */
274
275 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
276 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
277 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
278 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
279
280 /* m_pullup() needed for Tx offload */
281 struct evcnt sc_ev_txpullup_needed;
282 /* ...failed due to no memory */
283 struct evcnt sc_ev_txpullup_nomem;
284 /* ...failed due to lack of space in first mbuf */
285 struct evcnt sc_ev_txpullup_fail;
286
287 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
288 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
289
290 struct evcnt sc_ev_tu; /* Tx underrun */
291
292 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
293 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
294 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
295 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
296 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
297 #endif /* WM_EVENT_COUNTERS */
298
299 bus_addr_t sc_tdt_reg; /* offset of TDT register */
300
301 int sc_txfree; /* number of free Tx descriptors */
302 int sc_txnext; /* next ready Tx descriptor */
303
304 int sc_txsfree; /* number of free Tx jobs */
305 int sc_txsnext; /* next free Tx job */
306 int sc_txsdirty; /* dirty Tx jobs */
307
308 /* These 5 variables are used only on the 82547. */
309 int sc_txfifo_size; /* Tx FIFO size */
310 int sc_txfifo_head; /* current head of FIFO */
311 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
312 int sc_txfifo_stall; /* Tx FIFO is stalled */
313 struct callout sc_txfifo_ch; /* Tx FIFO stall work-around timer */
314
315 bus_addr_t sc_rdt_reg; /* offset of RDT register */
316
317 int sc_rxptr; /* next ready Rx descriptor/queue ent */
318 int sc_rxdiscard;
319 int sc_rxlen;
320 struct mbuf *sc_rxhead;
321 struct mbuf *sc_rxtail;
322 struct mbuf **sc_rxtailp;
323
324 uint32_t sc_ctrl; /* prototype CTRL register */
325 #if 0
326 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
327 #endif
328 uint32_t sc_icr; /* prototype interrupt bits */
329 uint32_t sc_itr; /* prototype intr throttling reg */
330 uint32_t sc_tctl; /* prototype TCTL register */
331 uint32_t sc_rctl; /* prototype RCTL register */
332 uint32_t sc_txcw; /* prototype TXCW register */
333 uint32_t sc_tipg; /* prototype TIPG register */
334 uint32_t sc_fcrtl; /* prototype FCRTL register */
335 uint32_t sc_pba; /* prototype PBA register */
336
337 int sc_tbi_linkup; /* TBI link status */
338 int sc_tbi_anstate; /* autonegotiation state */
339
340 int sc_mchash_type; /* multicast filter offset */
341
342 #if NRND > 0
343 rndsource_element_t rnd_source; /* random source */
344 #endif
345 };
346
347 #define WM_RXCHAIN_RESET(sc) \
348 do { \
349 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
350 *(sc)->sc_rxtailp = NULL; \
351 (sc)->sc_rxlen = 0; \
352 } while (/*CONSTCOND*/0)
353
354 #define WM_RXCHAIN_LINK(sc, m) \
355 do { \
356 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
357 (sc)->sc_rxtailp = &(m)->m_next; \
358 } while (/*CONSTCOND*/0)
359
360 /* sc_flags */
361 #define WM_F_HAS_MII 0x01 /* has MII */
362 #define WM_F_EEPROM_HANDSHAKE 0x02 /* requires EEPROM handshake */
363 #define WM_F_EEPROM_SPI 0x04 /* EEPROM is SPI */
364 #define WM_F_IOH_VALID 0x10 /* I/O handle is valid */
365 #define WM_F_BUS64 0x20 /* bus is 64-bit */
366 #define WM_F_PCIX 0x40 /* bus is PCI-X */
367 #define WM_F_CSA 0x80 /* bus is CSA */
368
369 #ifdef WM_EVENT_COUNTERS
370 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
371 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
372 #else
373 #define WM_EVCNT_INCR(ev) /* nothing */
374 #define WM_EVCNT_ADD(ev, val) /* nothing */
375 #endif
376
377 #define CSR_READ(sc, reg) \
378 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
379 #define CSR_WRITE(sc, reg, val) \
380 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
381 #define CSR_WRITE_FLUSH(sc) \
382 (void) CSR_READ((sc), WMREG_STATUS)
383
384 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
385 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
386
387 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
388 #define WM_CDTXADDR_HI(sc, x) \
389 (sizeof(bus_addr_t) == 8 ? \
390 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
391
392 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
393 #define WM_CDRXADDR_HI(sc, x) \
394 (sizeof(bus_addr_t) == 8 ? \
395 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
396
397 #define WM_CDTXSYNC(sc, x, n, ops) \
398 do { \
399 int __x, __n; \
400 \
401 __x = (x); \
402 __n = (n); \
403 \
404 /* If it will wrap around, sync to the end of the ring. */ \
405 if ((__x + __n) > WM_NTXDESC(sc)) { \
406 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
407 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
408 (WM_NTXDESC(sc) - __x), (ops)); \
409 __n -= (WM_NTXDESC(sc) - __x); \
410 __x = 0; \
411 } \
412 \
413 /* Now sync whatever is left. */ \
414 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
415 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
416 } while (/*CONSTCOND*/0)
417
418 #define WM_CDRXSYNC(sc, x, ops) \
419 do { \
420 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
421 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
422 } while (/*CONSTCOND*/0)
423
424 #define WM_INIT_RXDESC(sc, x) \
425 do { \
426 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
427 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
428 struct mbuf *__m = __rxs->rxs_mbuf; \
429 \
430 /* \
431 * Note: We scoot the packet forward 2 bytes in the buffer \
432 * so that the payload after the Ethernet header is aligned \
433 * to a 4-byte boundary. \
434 * \
435 * XXX BRAINDAMAGE ALERT! \
436 * The stupid chip uses the same size for every buffer, which \
437 * is set in the Receive Control register. We are using the 2K \
438 * size option, but what we REALLY want is (2K - 2)! For this \
439 * reason, we can't "scoot" packets longer than the standard \
440 * Ethernet MTU. On strict-alignment platforms, if the total \
441 * size exceeds (2K - 2) we set align_tweak to 0 and let \
442 * the upper layer copy the headers. \
443 */ \
444 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
445 \
446 wm_set_dma_addr(&__rxd->wrx_addr, \
447 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
448 __rxd->wrx_len = 0; \
449 __rxd->wrx_cksum = 0; \
450 __rxd->wrx_status = 0; \
451 __rxd->wrx_errors = 0; \
452 __rxd->wrx_special = 0; \
453 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
454 \
455 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
456 } while (/*CONSTCOND*/0)
457
458 static void wm_start(struct ifnet *);
459 static void wm_watchdog(struct ifnet *);
460 static int wm_ioctl(struct ifnet *, u_long, caddr_t);
461 static int wm_init(struct ifnet *);
462 static void wm_stop(struct ifnet *, int);
463
464 static void wm_shutdown(void *);
465
466 static void wm_reset(struct wm_softc *);
467 static void wm_rxdrain(struct wm_softc *);
468 static int wm_add_rxbuf(struct wm_softc *, int);
469 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
470 static void wm_tick(void *);
471
472 static void wm_set_filter(struct wm_softc *);
473
474 static int wm_intr(void *);
475 static void wm_txintr(struct wm_softc *);
476 static void wm_rxintr(struct wm_softc *);
477 static void wm_linkintr(struct wm_softc *, uint32_t);
478
479 static void wm_tbi_mediainit(struct wm_softc *);
480 static int wm_tbi_mediachange(struct ifnet *);
481 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
482
483 static void wm_tbi_set_linkled(struct wm_softc *);
484 static void wm_tbi_check_link(struct wm_softc *);
485
486 static void wm_gmii_reset(struct wm_softc *);
487
488 static int wm_gmii_i82543_readreg(struct device *, int, int);
489 static void wm_gmii_i82543_writereg(struct device *, int, int, int);
490
491 static int wm_gmii_i82544_readreg(struct device *, int, int);
492 static void wm_gmii_i82544_writereg(struct device *, int, int, int);
493
494 static void wm_gmii_statchg(struct device *);
495
496 static void wm_gmii_mediainit(struct wm_softc *);
497 static int wm_gmii_mediachange(struct ifnet *);
498 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
499
500 static int wm_match(struct device *, struct cfdata *, void *);
501 static void wm_attach(struct device *, struct device *, void *);
502
503 CFATTACH_DECL(wm, sizeof(struct wm_softc),
504 wm_match, wm_attach, NULL, NULL);
505
506 static void wm_82547_txfifo_stall(void *);
507
508 /*
509 * Devices supported by this driver.
510 */
511 static const struct wm_product {
512 pci_vendor_id_t wmp_vendor;
513 pci_product_id_t wmp_product;
514 const char *wmp_name;
515 wm_chip_type wmp_type;
516 int wmp_flags;
517 #define WMP_F_1000X 0x01
518 #define WMP_F_1000T 0x02
519 } wm_products[] = {
520 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
521 "Intel i82542 1000BASE-X Ethernet",
522 WM_T_82542_2_1, WMP_F_1000X },
523
524 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
525 "Intel i82543GC 1000BASE-X Ethernet",
526 WM_T_82543, WMP_F_1000X },
527
528 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
529 "Intel i82543GC 1000BASE-T Ethernet",
530 WM_T_82543, WMP_F_1000T },
531
532 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
533 "Intel i82544EI 1000BASE-T Ethernet",
534 WM_T_82544, WMP_F_1000T },
535
536 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
537 "Intel i82544EI 1000BASE-X Ethernet",
538 WM_T_82544, WMP_F_1000X },
539
540 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
541 "Intel i82544GC 1000BASE-T Ethernet",
542 WM_T_82544, WMP_F_1000T },
543
544 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
545 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
546 WM_T_82544, WMP_F_1000T },
547
548 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
549 "Intel i82540EM 1000BASE-T Ethernet",
550 WM_T_82540, WMP_F_1000T },
551
552 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
553 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
554 WM_T_82540, WMP_F_1000T },
555
556 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
557 "Intel i82540EP 1000BASE-T Ethernet",
558 WM_T_82540, WMP_F_1000T },
559
560 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
561 "Intel i82540EP 1000BASE-T Ethernet",
562 WM_T_82540, WMP_F_1000T },
563
564 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
565 "Intel i82540EP 1000BASE-T Ethernet",
566 WM_T_82540, WMP_F_1000T },
567
568 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
569 "Intel i82545EM 1000BASE-T Ethernet",
570 WM_T_82545, WMP_F_1000T },
571
572 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
573 "Intel i82545GM 1000BASE-T Ethernet",
574 WM_T_82545_3, WMP_F_1000T },
575
576 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
577 "Intel i82545GM 1000BASE-X Ethernet",
578 WM_T_82545_3, WMP_F_1000X },
579 #if 0
580 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
581 "Intel i82545GM Gigabit Ethernet (SERDES)",
582 WM_T_82545_3, WMP_F_SERDES },
583 #endif
584 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
585 "Intel i82546EB 1000BASE-T Ethernet",
586 WM_T_82546, WMP_F_1000T },
587
588 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
589 "Intel i82546EB 1000BASE-T Ethernet",
590 WM_T_82546, WMP_F_1000T },
591
592 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
593 "Intel i82545EM 1000BASE-X Ethernet",
594 WM_T_82545, WMP_F_1000X },
595
596 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
597 "Intel i82546EB 1000BASE-X Ethernet",
598 WM_T_82546, WMP_F_1000X },
599
600 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
601 "Intel i82546GB 1000BASE-T Ethernet",
602 WM_T_82546_3, WMP_F_1000T },
603
604 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
605 "Intel i82546GB 1000BASE-X Ethernet",
606 WM_T_82546_3, WMP_F_1000X },
607 #if 0
608 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
609 "Intel i82546GB Gigabit Ethernet (SERDES)",
610 WM_T_82546_3, WMP_F_SERDES },
611 #endif
612 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
613 "Intel i82541EI 1000BASE-T Ethernet",
614 WM_T_82541, WMP_F_1000T },
615
616 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
617 "Intel i82541EI Mobile 1000BASE-T Ethernet",
618 WM_T_82541, WMP_F_1000T },
619
620 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
621 "Intel i82541ER 1000BASE-T Ethernet",
622 WM_T_82541_2, WMP_F_1000T },
623
624 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
625 "Intel i82541GI 1000BASE-T Ethernet",
626 WM_T_82541_2, WMP_F_1000T },
627
628 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
629 "Intel i82541GI Mobile 1000BASE-T Ethernet",
630 WM_T_82541_2, WMP_F_1000T },
631
632 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
633 "Intel i82547EI 1000BASE-T Ethernet",
634 WM_T_82547, WMP_F_1000T },
635
636 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
637 "Intel i82547GI 1000BASE-T Ethernet",
638 WM_T_82547_2, WMP_F_1000T },
639 { 0, 0,
640 NULL,
641 0, 0 },
642 };
643
644 #ifdef WM_EVENT_COUNTERS
645 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
646 #endif /* WM_EVENT_COUNTERS */
647
648 #if 0 /* Not currently used */
649 static __inline uint32_t
650 wm_io_read(struct wm_softc *sc, int reg)
651 {
652
653 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
654 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
655 }
656 #endif
657
658 static __inline void
659 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
660 {
661
662 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
663 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
664 }
665
666 static __inline void
667 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
668 {
669 wa->wa_low = htole32(v & 0xffffffffU);
670 if (sizeof(bus_addr_t) == 8)
671 wa->wa_high = htole32((uint64_t) v >> 32);
672 else
673 wa->wa_high = 0;
674 }
675
676 static const struct wm_product *
677 wm_lookup(const struct pci_attach_args *pa)
678 {
679 const struct wm_product *wmp;
680
681 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
682 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
683 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
684 return (wmp);
685 }
686 return (NULL);
687 }
688
689 static int
690 wm_match(struct device *parent, struct cfdata *cf, void *aux)
691 {
692 struct pci_attach_args *pa = aux;
693
694 if (wm_lookup(pa) != NULL)
695 return (1);
696
697 return (0);
698 }
699
700 static void
701 wm_attach(struct device *parent, struct device *self, void *aux)
702 {
703 struct wm_softc *sc = (void *) self;
704 struct pci_attach_args *pa = aux;
705 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
706 pci_chipset_tag_t pc = pa->pa_pc;
707 pci_intr_handle_t ih;
708 size_t cdata_size;
709 const char *intrstr = NULL;
710 const char *eetype;
711 bus_space_tag_t memt;
712 bus_space_handle_t memh;
713 bus_dma_segment_t seg;
714 int memh_valid;
715 int i, rseg, error;
716 const struct wm_product *wmp;
717 uint8_t enaddr[ETHER_ADDR_LEN];
718 uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
719 pcireg_t preg, memtype;
720 uint32_t reg;
721 int pmreg;
722
723 callout_init(&sc->sc_tick_ch);
724
725 wmp = wm_lookup(pa);
726 if (wmp == NULL) {
727 printf("\n");
728 panic("wm_attach: impossible");
729 }
730
731 if (pci_dma64_available(pa))
732 sc->sc_dmat = pa->pa_dmat64;
733 else
734 sc->sc_dmat = pa->pa_dmat;
735
736 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
737 aprint_naive(": Ethernet controller\n");
738 aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
739
740 sc->sc_type = wmp->wmp_type;
741 if (sc->sc_type < WM_T_82543) {
742 if (preg < 2) {
743 aprint_error("%s: i82542 must be at least rev. 2\n",
744 sc->sc_dev.dv_xname);
745 return;
746 }
747 if (preg < 3)
748 sc->sc_type = WM_T_82542_2_0;
749 }
750
751 /*
752 * Map the device. All devices support memory-mapped acccess,
753 * and it is really required for normal operation.
754 */
755 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
756 switch (memtype) {
757 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
758 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
759 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
760 memtype, 0, &memt, &memh, NULL, NULL) == 0);
761 break;
762 default:
763 memh_valid = 0;
764 }
765
766 if (memh_valid) {
767 sc->sc_st = memt;
768 sc->sc_sh = memh;
769 } else {
770 aprint_error("%s: unable to map device registers\n",
771 sc->sc_dev.dv_xname);
772 return;
773 }
774
775 /*
776 * In addition, i82544 and later support I/O mapped indirect
777 * register access. It is not desirable (nor supported in
778 * this driver) to use it for normal operation, though it is
779 * required to work around bugs in some chip versions.
780 */
781 if (sc->sc_type >= WM_T_82544) {
782 /* First we have to find the I/O BAR. */
783 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
784 if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
785 PCI_MAPREG_TYPE_IO)
786 break;
787 }
788 if (i == PCI_MAPREG_END)
789 aprint_error("%s: WARNING: unable to find I/O BAR\n",
790 sc->sc_dev.dv_xname);
791 else {
792 /*
793 * The i8254x doesn't apparently respond when the
794 * I/O BAR is 0, which looks somewhat like it's not
795 * been configured.
796 */
797 preg = pci_conf_read(pc, pa->pa_tag, i);
798 if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
799 aprint_error("%s: WARNING: I/O BAR at zero.",
800 sc->sc_dev.dv_xname);
801 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
802 0, &sc->sc_iot, &sc->sc_ioh,
803 NULL, NULL) == 0) {
804 sc->sc_flags |= WM_F_IOH_VALID;
805 } else {
806 aprint_error("%s: WARNING: unable to map "
807 "I/O space\n", sc->sc_dev.dv_xname);
808 }
809 }
810
811 }
812
813 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
814 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
815 preg |= PCI_COMMAND_MASTER_ENABLE;
816 if (sc->sc_type < WM_T_82542_2_1)
817 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
818 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
819
820 /* Get it out of power save mode, if needed. */
821 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
822 preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
823 PCI_PMCSR_STATE_MASK;
824 if (preg == PCI_PMCSR_STATE_D3) {
825 /*
826 * The card has lost all configuration data in
827 * this state, so punt.
828 */
829 aprint_error("%s: unable to wake from power state D3\n",
830 sc->sc_dev.dv_xname);
831 return;
832 }
833 if (preg != PCI_PMCSR_STATE_D0) {
834 aprint_normal("%s: waking up from power state D%d\n",
835 sc->sc_dev.dv_xname, preg);
836 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
837 PCI_PMCSR_STATE_D0);
838 }
839 }
840
841 /*
842 * Map and establish our interrupt.
843 */
844 if (pci_intr_map(pa, &ih)) {
845 aprint_error("%s: unable to map interrupt\n",
846 sc->sc_dev.dv_xname);
847 return;
848 }
849 intrstr = pci_intr_string(pc, ih);
850 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
851 if (sc->sc_ih == NULL) {
852 aprint_error("%s: unable to establish interrupt",
853 sc->sc_dev.dv_xname);
854 if (intrstr != NULL)
855 aprint_normal(" at %s", intrstr);
856 aprint_normal("\n");
857 return;
858 }
859 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
860
861 /*
862 * Determine a few things about the bus we're connected to.
863 */
864 if (sc->sc_type < WM_T_82543) {
865 /* We don't really know the bus characteristics here. */
866 sc->sc_bus_speed = 33;
867 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
868 /*
869 * CSA (Communication Streaming Architecture) is about as fast
870 * a 32-bit 66MHz PCI Bus.
871 */
872 sc->sc_flags |= WM_F_CSA;
873 sc->sc_bus_speed = 66;
874 aprint_verbose("%s: Communication Streaming Architecture\n",
875 sc->sc_dev.dv_xname);
876 if (sc->sc_type == WM_T_82547) {
877 callout_init(&sc->sc_txfifo_ch);
878 callout_setfunc(&sc->sc_txfifo_ch,
879 wm_82547_txfifo_stall, sc);
880 aprint_verbose("%s: using 82547 Tx FIFO stall "
881 "work-around\n", sc->sc_dev.dv_xname);
882 }
883 } else {
884 reg = CSR_READ(sc, WMREG_STATUS);
885 if (reg & STATUS_BUS64)
886 sc->sc_flags |= WM_F_BUS64;
887 if (sc->sc_type >= WM_T_82544 &&
888 (reg & STATUS_PCIX_MODE) != 0) {
889 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
890
891 sc->sc_flags |= WM_F_PCIX;
892 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
893 PCI_CAP_PCIX,
894 &sc->sc_pcix_offset, NULL) == 0)
895 aprint_error("%s: unable to find PCIX "
896 "capability\n", sc->sc_dev.dv_xname);
897 else if (sc->sc_type != WM_T_82545_3 &&
898 sc->sc_type != WM_T_82546_3) {
899 /*
900 * Work around a problem caused by the BIOS
901 * setting the max memory read byte count
902 * incorrectly.
903 */
904 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
905 sc->sc_pcix_offset + PCI_PCIX_CMD);
906 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
907 sc->sc_pcix_offset + PCI_PCIX_STATUS);
908
909 bytecnt =
910 (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
911 PCI_PCIX_CMD_BYTECNT_SHIFT;
912 maxb =
913 (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
914 PCI_PCIX_STATUS_MAXB_SHIFT;
915 if (bytecnt > maxb) {
916 aprint_verbose("%s: resetting PCI-X "
917 "MMRBC: %d -> %d\n",
918 sc->sc_dev.dv_xname,
919 512 << bytecnt, 512 << maxb);
920 pcix_cmd = (pcix_cmd &
921 ~PCI_PCIX_CMD_BYTECNT_MASK) |
922 (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
923 pci_conf_write(pa->pa_pc, pa->pa_tag,
924 sc->sc_pcix_offset + PCI_PCIX_CMD,
925 pcix_cmd);
926 }
927 }
928 }
929 /*
930 * The quad port adapter is special; it has a PCIX-PCIX
931 * bridge on the board, and can run the secondary bus at
932 * a higher speed.
933 */
934 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
935 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
936 : 66;
937 } else if (sc->sc_flags & WM_F_PCIX) {
938 switch (reg & STATUS_PCIXSPD_MASK) {
939 case STATUS_PCIXSPD_50_66:
940 sc->sc_bus_speed = 66;
941 break;
942 case STATUS_PCIXSPD_66_100:
943 sc->sc_bus_speed = 100;
944 break;
945 case STATUS_PCIXSPD_100_133:
946 sc->sc_bus_speed = 133;
947 break;
948 default:
949 aprint_error(
950 "%s: unknown PCIXSPD %d; assuming 66MHz\n",
951 sc->sc_dev.dv_xname,
952 reg & STATUS_PCIXSPD_MASK);
953 sc->sc_bus_speed = 66;
954 }
955 } else
956 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
957 aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
958 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
959 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
960 }
961
962 /*
963 * Allocate the control data structures, and create and load the
964 * DMA map for it.
965 *
966 * NOTE: All Tx descriptors must be in the same 4G segment of
967 * memory. So must Rx descriptors. We simplify by allocating
968 * both sets within the same 4G segment.
969 */
970 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
971 WM_NTXDESC_82542 : WM_NTXDESC_82544;
972 cdata_size = sc->sc_type < WM_T_82544 ?
973 sizeof(struct wm_control_data_82542) :
974 sizeof(struct wm_control_data_82544);
975 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
976 (bus_size_t) 0x100000000ULL,
977 &seg, 1, &rseg, 0)) != 0) {
978 aprint_error(
979 "%s: unable to allocate control data, error = %d\n",
980 sc->sc_dev.dv_xname, error);
981 goto fail_0;
982 }
983
984 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
985 (caddr_t *)&sc->sc_control_data, 0)) != 0) {
986 aprint_error("%s: unable to map control data, error = %d\n",
987 sc->sc_dev.dv_xname, error);
988 goto fail_1;
989 }
990
991 if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
992 0, 0, &sc->sc_cddmamap)) != 0) {
993 aprint_error("%s: unable to create control data DMA map, "
994 "error = %d\n", sc->sc_dev.dv_xname, error);
995 goto fail_2;
996 }
997
998 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
999 sc->sc_control_data, cdata_size, NULL,
1000 0)) != 0) {
1001 aprint_error(
1002 "%s: unable to load control data DMA map, error = %d\n",
1003 sc->sc_dev.dv_xname, error);
1004 goto fail_3;
1005 }
1006
1007
1008 /*
1009 * Create the transmit buffer DMA maps.
1010 */
1011 WM_TXQUEUELEN(sc) =
1012 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1013 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1014 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1015 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1016 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1017 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1018 aprint_error("%s: unable to create Tx DMA map %d, "
1019 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1020 goto fail_4;
1021 }
1022 }
1023
1024 /*
1025 * Create the receive buffer DMA maps.
1026 */
1027 for (i = 0; i < WM_NRXDESC; i++) {
1028 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1029 MCLBYTES, 0, 0,
1030 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1031 aprint_error("%s: unable to create Rx DMA map %d, "
1032 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1033 goto fail_5;
1034 }
1035 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1036 }
1037
1038 /*
1039 * Reset the chip to a known state.
1040 */
1041 wm_reset(sc);
1042
1043 /*
1044 * Get some information about the EEPROM.
1045 */
1046 if (sc->sc_type >= WM_T_82540)
1047 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1048 if (sc->sc_type <= WM_T_82544)
1049 sc->sc_ee_addrbits = 6;
1050 else if (sc->sc_type <= WM_T_82546_3) {
1051 reg = CSR_READ(sc, WMREG_EECD);
1052 if (reg & EECD_EE_SIZE)
1053 sc->sc_ee_addrbits = 8;
1054 else
1055 sc->sc_ee_addrbits = 6;
1056 } else if (sc->sc_type <= WM_T_82547_2) {
1057 reg = CSR_READ(sc, WMREG_EECD);
1058 if (reg & EECD_EE_TYPE) {
1059 sc->sc_flags |= WM_F_EEPROM_SPI;
1060 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1061 } else
1062 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1063 } else {
1064 /* Assume everything else is SPI. */
1065 reg = CSR_READ(sc, WMREG_EECD);
1066 sc->sc_flags |= WM_F_EEPROM_SPI;
1067 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1068 }
1069 if (sc->sc_flags & WM_F_EEPROM_SPI)
1070 eetype = "SPI";
1071 else
1072 eetype = "MicroWire";
1073 aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1074 sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1075 sc->sc_ee_addrbits, eetype);
1076
1077 /*
1078 * Read the Ethernet address from the EEPROM.
1079 */
1080 if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1081 sizeof(myea) / sizeof(myea[0]), myea)) {
1082 aprint_error("%s: unable to read Ethernet address\n",
1083 sc->sc_dev.dv_xname);
1084 return;
1085 }
1086 enaddr[0] = myea[0] & 0xff;
1087 enaddr[1] = myea[0] >> 8;
1088 enaddr[2] = myea[1] & 0xff;
1089 enaddr[3] = myea[1] >> 8;
1090 enaddr[4] = myea[2] & 0xff;
1091 enaddr[5] = myea[2] >> 8;
1092
1093 /*
1094 * Toggle the LSB of the MAC address on the second port
1095 * of the i82546.
1096 */
1097 if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
1098 if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1099 enaddr[5] ^= 1;
1100 }
1101
1102 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1103 ether_sprintf(enaddr));
1104
1105 /*
1106 * Read the config info from the EEPROM, and set up various
1107 * bits in the control registers based on their contents.
1108 */
1109 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1110 aprint_error("%s: unable to read CFG1 from EEPROM\n",
1111 sc->sc_dev.dv_xname);
1112 return;
1113 }
1114 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1115 aprint_error("%s: unable to read CFG2 from EEPROM\n",
1116 sc->sc_dev.dv_xname);
1117 return;
1118 }
1119 if (sc->sc_type >= WM_T_82544) {
1120 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1121 aprint_error("%s: unable to read SWDPIN from EEPROM\n",
1122 sc->sc_dev.dv_xname);
1123 return;
1124 }
1125 }
1126
1127 if (cfg1 & EEPROM_CFG1_ILOS)
1128 sc->sc_ctrl |= CTRL_ILOS;
1129 if (sc->sc_type >= WM_T_82544) {
1130 sc->sc_ctrl |=
1131 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1132 CTRL_SWDPIO_SHIFT;
1133 sc->sc_ctrl |=
1134 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1135 CTRL_SWDPINS_SHIFT;
1136 } else {
1137 sc->sc_ctrl |=
1138 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1139 CTRL_SWDPIO_SHIFT;
1140 }
1141
1142 #if 0
1143 if (sc->sc_type >= WM_T_82544) {
1144 if (cfg1 & EEPROM_CFG1_IPS0)
1145 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1146 if (cfg1 & EEPROM_CFG1_IPS1)
1147 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1148 sc->sc_ctrl_ext |=
1149 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1150 CTRL_EXT_SWDPIO_SHIFT;
1151 sc->sc_ctrl_ext |=
1152 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1153 CTRL_EXT_SWDPINS_SHIFT;
1154 } else {
1155 sc->sc_ctrl_ext |=
1156 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1157 CTRL_EXT_SWDPIO_SHIFT;
1158 }
1159 #endif
1160
1161 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1162 #if 0
1163 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1164 #endif
1165
1166 /*
1167 * Set up some register offsets that are different between
1168 * the i82542 and the i82543 and later chips.
1169 */
1170 if (sc->sc_type < WM_T_82543) {
1171 sc->sc_rdt_reg = WMREG_OLD_RDT0;
1172 sc->sc_tdt_reg = WMREG_OLD_TDT;
1173 } else {
1174 sc->sc_rdt_reg = WMREG_RDT;
1175 sc->sc_tdt_reg = WMREG_TDT;
1176 }
1177
1178 /*
1179 * Determine if we're TBI or GMII mode, and initialize the
1180 * media structures accordingly.
1181 */
1182 if (sc->sc_type < WM_T_82543 ||
1183 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1184 if (wmp->wmp_flags & WMP_F_1000T)
1185 aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1186 "product!\n", sc->sc_dev.dv_xname);
1187 wm_tbi_mediainit(sc);
1188 } else {
1189 if (wmp->wmp_flags & WMP_F_1000X)
1190 aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1191 "product!\n", sc->sc_dev.dv_xname);
1192 wm_gmii_mediainit(sc);
1193 }
1194
1195 ifp = &sc->sc_ethercom.ec_if;
1196 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1197 ifp->if_softc = sc;
1198 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1199 ifp->if_ioctl = wm_ioctl;
1200 ifp->if_start = wm_start;
1201 ifp->if_watchdog = wm_watchdog;
1202 ifp->if_init = wm_init;
1203 ifp->if_stop = wm_stop;
1204 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1205 IFQ_SET_READY(&ifp->if_snd);
1206
1207 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1208
1209 /*
1210 * If we're a i82543 or greater, we can support VLANs.
1211 */
1212 if (sc->sc_type >= WM_T_82543)
1213 sc->sc_ethercom.ec_capabilities |=
1214 ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1215
1216 /*
1217 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
1218 * on i82543 and later.
1219 */
1220 if (sc->sc_type >= WM_T_82543)
1221 ifp->if_capabilities |=
1222 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
1223
1224 /*
1225 * Attach the interface.
1226 */
1227 if_attach(ifp);
1228 ether_ifattach(ifp, enaddr);
1229 #if NRND > 0
1230 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1231 RND_TYPE_NET, 0);
1232 #endif
1233
1234 #ifdef WM_EVENT_COUNTERS
1235 /* Attach event counters. */
1236 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1237 NULL, sc->sc_dev.dv_xname, "txsstall");
1238 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1239 NULL, sc->sc_dev.dv_xname, "txdstall");
1240 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1241 NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1242 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1243 NULL, sc->sc_dev.dv_xname, "txdw");
1244 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1245 NULL, sc->sc_dev.dv_xname, "txqe");
1246 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1247 NULL, sc->sc_dev.dv_xname, "rxintr");
1248 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1249 NULL, sc->sc_dev.dv_xname, "linkintr");
1250
1251 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1252 NULL, sc->sc_dev.dv_xname, "rxipsum");
1253 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1254 NULL, sc->sc_dev.dv_xname, "rxtusum");
1255 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1256 NULL, sc->sc_dev.dv_xname, "txipsum");
1257 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1258 NULL, sc->sc_dev.dv_xname, "txtusum");
1259
1260 evcnt_attach_dynamic(&sc->sc_ev_txpullup_needed, EVCNT_TYPE_MISC,
1261 NULL, sc->sc_dev.dv_xname, "txpullup needed");
1262 evcnt_attach_dynamic(&sc->sc_ev_txpullup_nomem, EVCNT_TYPE_MISC,
1263 NULL, sc->sc_dev.dv_xname, "txpullup nomem");
1264 evcnt_attach_dynamic(&sc->sc_ev_txpullup_fail, EVCNT_TYPE_MISC,
1265 NULL, sc->sc_dev.dv_xname, "txpullup fail");
1266
1267 for (i = 0; i < WM_NTXSEGS; i++) {
1268 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1269 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1270 NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1271 }
1272
1273 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1274 NULL, sc->sc_dev.dv_xname, "txdrop");
1275
1276 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1277 NULL, sc->sc_dev.dv_xname, "tu");
1278
1279 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1280 NULL, sc->sc_dev.dv_xname, "tx_xoff");
1281 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1282 NULL, sc->sc_dev.dv_xname, "tx_xon");
1283 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1284 NULL, sc->sc_dev.dv_xname, "rx_xoff");
1285 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1286 NULL, sc->sc_dev.dv_xname, "rx_xon");
1287 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1288 NULL, sc->sc_dev.dv_xname, "rx_macctl");
1289 #endif /* WM_EVENT_COUNTERS */
1290
1291 /*
1292 * Make sure the interface is shutdown during reboot.
1293 */
1294 sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1295 if (sc->sc_sdhook == NULL)
1296 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1297 sc->sc_dev.dv_xname);
1298 return;
1299
1300 /*
1301 * Free any resources we've allocated during the failed attach
1302 * attempt. Do this in reverse order and fall through.
1303 */
1304 fail_5:
1305 for (i = 0; i < WM_NRXDESC; i++) {
1306 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1307 bus_dmamap_destroy(sc->sc_dmat,
1308 sc->sc_rxsoft[i].rxs_dmamap);
1309 }
1310 fail_4:
1311 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1312 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1313 bus_dmamap_destroy(sc->sc_dmat,
1314 sc->sc_txsoft[i].txs_dmamap);
1315 }
1316 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1317 fail_3:
1318 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1319 fail_2:
1320 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1321 cdata_size);
1322 fail_1:
1323 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1324 fail_0:
1325 return;
1326 }
1327
1328 /*
1329 * wm_shutdown:
1330 *
1331 * Make sure the interface is stopped at reboot time.
1332 */
1333 static void
1334 wm_shutdown(void *arg)
1335 {
1336 struct wm_softc *sc = arg;
1337
1338 wm_stop(&sc->sc_ethercom.ec_if, 1);
1339 }
1340
1341 /*
1342 * wm_tx_offload:
1343 *
1344 * Set up TCP/IP checksumming parameters for the
1345 * specified packet.
1346 */
1347 static int
1348 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1349 uint8_t *fieldsp)
1350 {
1351 struct mbuf *m0 = txs->txs_mbuf;
1352 struct livengood_tcpip_ctxdesc *t;
1353 uint32_t ipcs, tucs;
1354 struct ip *ip;
1355 struct ether_header *eh;
1356 int offset, iphl;
1357 uint8_t fields = 0;
1358
1359 /*
1360 * XXX It would be nice if the mbuf pkthdr had offset
1361 * fields for the protocol headers.
1362 */
1363
1364 eh = mtod(m0, struct ether_header *);
1365 switch (htons(eh->ether_type)) {
1366 case ETHERTYPE_IP:
1367 iphl = sizeof(struct ip);
1368 offset = ETHER_HDR_LEN;
1369 break;
1370
1371 case ETHERTYPE_VLAN:
1372 iphl = sizeof(struct ip);
1373 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1374 break;
1375
1376 default:
1377 /*
1378 * Don't support this protocol or encapsulation.
1379 */
1380 *fieldsp = 0;
1381 *cmdp = 0;
1382 return (0);
1383 }
1384
1385 if (m0->m_len < (offset + iphl)) {
1386 /*
1387 * Packet headers aren't in the first mbuf. Let's hope
1388 * there is space at the end if it for them.
1389 */
1390 WM_EVCNT_INCR(&sc->sc_ev_txpullup_needed);
1391 if ((txs->txs_mbuf = m_pullup(m0, offset + iphl)) == NULL) {
1392 WM_EVCNT_INCR(&sc->sc_ev_txpullup_nomem);
1393 log(LOG_ERR,
1394 "%s: wm_tx_offload: mbuf allocation failed, "
1395 "packet dropped\n", sc->sc_dev.dv_xname);
1396 return (ENOMEM);
1397 } else if (m0 != txs->txs_mbuf) {
1398 /*
1399 * The DMA map has already been loaded, so we
1400 * would have to unload and reload it. But then
1401 * if that were to fail, we are already committed
1402 * to transmitting the packet (can't put it back
1403 * on the queue), so we have to drop the packet.
1404 */
1405 WM_EVCNT_INCR(&sc->sc_ev_txpullup_fail);
1406 log(LOG_ERR, "%s: wm_tx_offload: packet headers did "
1407 "not fit in first mbuf, packet dropped\n",
1408 sc->sc_dev.dv_xname);
1409 m_freem(txs->txs_mbuf);
1410 txs->txs_mbuf = NULL;
1411 return (EINVAL);
1412 }
1413 }
1414
1415 ip = (struct ip *) (mtod(m0, caddr_t) + offset);
1416 iphl = ip->ip_hl << 2;
1417
1418 /*
1419 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1420 * offload feature, if we load the context descriptor, we
1421 * MUST provide valid values for IPCSS and TUCSS fields.
1422 */
1423
1424 ipcs = WTX_TCPIP_IPCSS(offset) |
1425 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1426 WTX_TCPIP_IPCSE(offset + iphl - 1);
1427 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1428 WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1429 fields |= WTX_IXSM;
1430 }
1431
1432 offset += iphl;
1433
1434 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1435 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1436 fields |= WTX_TXSM;
1437 tucs = WTX_TCPIP_TUCSS(offset) |
1438 WTX_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
1439 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1440 } else {
1441 /* Just initialize it to a valid TCP context. */
1442 tucs = WTX_TCPIP_TUCSS(offset) |
1443 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1444 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1445 }
1446
1447 /* Fill in the context descriptor. */
1448 t = (struct livengood_tcpip_ctxdesc *)
1449 &sc->sc_txdescs[sc->sc_txnext];
1450 t->tcpip_ipcs = htole32(ipcs);
1451 t->tcpip_tucs = htole32(tucs);
1452 t->tcpip_cmdlen = htole32(WTX_CMD_DEXT | WTX_DTYP_C);
1453 t->tcpip_seg = 0;
1454 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1455
1456 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1457 txs->txs_ndesc++;
1458
1459 *cmdp = WTX_CMD_DEXT | WTX_DTYP_D;
1460 *fieldsp = fields;
1461
1462 return (0);
1463 }
1464
1465 static void
1466 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1467 {
1468 struct mbuf *m;
1469 int i;
1470
1471 log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1472 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1473 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1474 "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1475 m->m_data, m->m_len, m->m_flags);
1476 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1477 i, i == 1 ? "" : "s");
1478 }
1479
1480 /*
1481 * wm_82547_txfifo_stall:
1482 *
1483 * Callout used to wait for the 82547 Tx FIFO to drain,
1484 * reset the FIFO pointers, and restart packet transmission.
1485 */
1486 static void
1487 wm_82547_txfifo_stall(void *arg)
1488 {
1489 struct wm_softc *sc = arg;
1490 int s;
1491
1492 s = splnet();
1493
1494 if (sc->sc_txfifo_stall) {
1495 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1496 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1497 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1498 /*
1499 * Packets have drained. Stop transmitter, reset
1500 * FIFO pointers, restart transmitter, and kick
1501 * the packet queue.
1502 */
1503 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1504 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1505 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1506 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1507 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1508 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1509 CSR_WRITE(sc, WMREG_TCTL, tctl);
1510 CSR_WRITE_FLUSH(sc);
1511
1512 sc->sc_txfifo_head = 0;
1513 sc->sc_txfifo_stall = 0;
1514 wm_start(&sc->sc_ethercom.ec_if);
1515 } else {
1516 /*
1517 * Still waiting for packets to drain; try again in
1518 * another tick.
1519 */
1520 callout_schedule(&sc->sc_txfifo_ch, 1);
1521 }
1522 }
1523
1524 splx(s);
1525 }
1526
1527 /*
1528 * wm_82547_txfifo_bugchk:
1529 *
1530 * Check for bug condition in the 82547 Tx FIFO. We need to
1531 * prevent enqueueing a packet that would wrap around the end
1532 * if the Tx FIFO ring buffer, otherwise the chip will croak.
1533 *
1534 * We do this by checking the amount of space before the end
1535 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
1536 * the Tx FIFO, wait for all remaining packets to drain, reset
1537 * the internal FIFO pointers to the beginning, and restart
1538 * transmission on the interface.
1539 */
1540 #define WM_FIFO_HDR 0x10
1541 #define WM_82547_PAD_LEN 0x3e0
1542 static int
1543 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1544 {
1545 int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1546 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1547
1548 /* Just return if already stalled. */
1549 if (sc->sc_txfifo_stall)
1550 return (1);
1551
1552 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1553 /* Stall only occurs in half-duplex mode. */
1554 goto send_packet;
1555 }
1556
1557 if (len >= WM_82547_PAD_LEN + space) {
1558 sc->sc_txfifo_stall = 1;
1559 callout_schedule(&sc->sc_txfifo_ch, 1);
1560 return (1);
1561 }
1562
1563 send_packet:
1564 sc->sc_txfifo_head += len;
1565 if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1566 sc->sc_txfifo_head -= sc->sc_txfifo_size;
1567
1568 return (0);
1569 }
1570
1571 /*
1572 * wm_start: [ifnet interface function]
1573 *
1574 * Start packet transmission on the interface.
1575 */
1576 static void
1577 wm_start(struct ifnet *ifp)
1578 {
1579 struct wm_softc *sc = ifp->if_softc;
1580 struct mbuf *m0;
1581 #if 0 /* XXXJRT */
1582 struct m_tag *mtag;
1583 #endif
1584 struct wm_txsoft *txs;
1585 bus_dmamap_t dmamap;
1586 int error, nexttx, lasttx = -1, ofree, seg, segs_needed;
1587 bus_addr_t curaddr;
1588 bus_size_t seglen, curlen;
1589 uint32_t cksumcmd;
1590 uint8_t cksumfields;
1591
1592 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1593 return;
1594
1595 /*
1596 * Remember the previous number of free descriptors.
1597 */
1598 ofree = sc->sc_txfree;
1599
1600 /*
1601 * Loop through the send queue, setting up transmit descriptors
1602 * until we drain the queue, or use up all available transmit
1603 * descriptors.
1604 */
1605 for (;;) {
1606 /* Grab a packet off the queue. */
1607 IFQ_POLL(&ifp->if_snd, m0);
1608 if (m0 == NULL)
1609 break;
1610
1611 DPRINTF(WM_DEBUG_TX,
1612 ("%s: TX: have packet to transmit: %p\n",
1613 sc->sc_dev.dv_xname, m0));
1614
1615 /* Get a work queue entry. */
1616 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1617 wm_txintr(sc);
1618 if (sc->sc_txsfree == 0) {
1619 DPRINTF(WM_DEBUG_TX,
1620 ("%s: TX: no free job descriptors\n",
1621 sc->sc_dev.dv_xname));
1622 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1623 break;
1624 }
1625 }
1626
1627 txs = &sc->sc_txsoft[sc->sc_txsnext];
1628 dmamap = txs->txs_dmamap;
1629
1630 /*
1631 * Load the DMA map. If this fails, the packet either
1632 * didn't fit in the allotted number of segments, or we
1633 * were short on resources. For the too-many-segments
1634 * case, we simply report an error and drop the packet,
1635 * since we can't sanely copy a jumbo packet to a single
1636 * buffer.
1637 */
1638 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1639 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1640 if (error) {
1641 if (error == EFBIG) {
1642 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1643 log(LOG_ERR, "%s: Tx packet consumes too many "
1644 "DMA segments, dropping...\n",
1645 sc->sc_dev.dv_xname);
1646 IFQ_DEQUEUE(&ifp->if_snd, m0);
1647 wm_dump_mbuf_chain(sc, m0);
1648 m_freem(m0);
1649 continue;
1650 }
1651 /*
1652 * Short on resources, just stop for now.
1653 */
1654 DPRINTF(WM_DEBUG_TX,
1655 ("%s: TX: dmamap load failed: %d\n",
1656 sc->sc_dev.dv_xname, error));
1657 break;
1658 }
1659
1660 segs_needed = dmamap->dm_nsegs;
1661
1662 /*
1663 * Ensure we have enough descriptors free to describe
1664 * the packet. Note, we always reserve one descriptor
1665 * at the end of the ring due to the semantics of the
1666 * TDT register, plus one more in the event we need
1667 * to load offload context.
1668 */
1669 if (segs_needed > sc->sc_txfree - 2) {
1670 /*
1671 * Not enough free descriptors to transmit this
1672 * packet. We haven't committed anything yet,
1673 * so just unload the DMA map, put the packet
1674 * pack on the queue, and punt. Notify the upper
1675 * layer that there are no more slots left.
1676 */
1677 DPRINTF(WM_DEBUG_TX,
1678 ("%s: TX: need %d (%) descriptors, have %d\n",
1679 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1680 sc->sc_txfree - 1));
1681 ifp->if_flags |= IFF_OACTIVE;
1682 bus_dmamap_unload(sc->sc_dmat, dmamap);
1683 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1684 break;
1685 }
1686
1687 /*
1688 * Check for 82547 Tx FIFO bug. We need to do this
1689 * once we know we can transmit the packet, since we
1690 * do some internal FIFO space accounting here.
1691 */
1692 if (sc->sc_type == WM_T_82547 &&
1693 wm_82547_txfifo_bugchk(sc, m0)) {
1694 DPRINTF(WM_DEBUG_TX,
1695 ("%s: TX: 82547 Tx FIFO bug detected\n",
1696 sc->sc_dev.dv_xname));
1697 ifp->if_flags |= IFF_OACTIVE;
1698 bus_dmamap_unload(sc->sc_dmat, dmamap);
1699 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1700 break;
1701 }
1702
1703 IFQ_DEQUEUE(&ifp->if_snd, m0);
1704
1705 /*
1706 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1707 */
1708
1709 DPRINTF(WM_DEBUG_TX,
1710 ("%s: TX: packet has %d (%d) DMA segments\n",
1711 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1712
1713 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1714
1715 /*
1716 * Store a pointer to the packet so that we can free it
1717 * later.
1718 *
1719 * Initially, we consider the number of descriptors the
1720 * packet uses the number of DMA segments. This may be
1721 * incremented by 1 if we do checksum offload (a descriptor
1722 * is used to set the checksum context).
1723 */
1724 txs->txs_mbuf = m0;
1725 txs->txs_firstdesc = sc->sc_txnext;
1726 txs->txs_ndesc = segs_needed;
1727
1728 /* Set up offload parameters for this packet. */
1729 if (m0->m_pkthdr.csum_flags &
1730 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1731 if (wm_tx_offload(sc, txs, &cksumcmd,
1732 &cksumfields) != 0) {
1733 /* Error message already displayed. */
1734 bus_dmamap_unload(sc->sc_dmat, dmamap);
1735 continue;
1736 }
1737 } else {
1738 cksumcmd = 0;
1739 cksumfields = 0;
1740 }
1741
1742 cksumcmd |= WTX_CMD_IDE;
1743
1744 /* Sync the DMA map. */
1745 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1746 BUS_DMASYNC_PREWRITE);
1747
1748 /*
1749 * Initialize the transmit descriptor.
1750 */
1751 for (nexttx = sc->sc_txnext, seg = 0;
1752 seg < dmamap->dm_nsegs; seg++) {
1753 for (seglen = dmamap->dm_segs[seg].ds_len,
1754 curaddr = dmamap->dm_segs[seg].ds_addr;
1755 seglen != 0;
1756 curaddr += curlen, seglen -= curlen,
1757 nexttx = WM_NEXTTX(sc, nexttx)) {
1758 curlen = seglen;
1759
1760 wm_set_dma_addr(
1761 &sc->sc_txdescs[nexttx].wtx_addr,
1762 curaddr);
1763 sc->sc_txdescs[nexttx].wtx_cmdlen =
1764 htole32(cksumcmd | curlen);
1765 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
1766 0;
1767 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1768 cksumfields;
1769 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1770 lasttx = nexttx;
1771
1772 DPRINTF(WM_DEBUG_TX,
1773 ("%s: TX: desc %d: low 0x%08x, "
1774 "len 0x%04x\n",
1775 sc->sc_dev.dv_xname, nexttx,
1776 curaddr & 0xffffffffU, curlen, curlen));
1777 }
1778 }
1779
1780 KASSERT(lasttx != -1);
1781
1782 /*
1783 * Set up the command byte on the last descriptor of
1784 * the packet. If we're in the interrupt delay window,
1785 * delay the interrupt.
1786 */
1787 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1788 htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS);
1789
1790 #if 0 /* XXXJRT */
1791 /*
1792 * If VLANs are enabled and the packet has a VLAN tag, set
1793 * up the descriptor to encapsulate the packet for us.
1794 *
1795 * This is only valid on the last descriptor of the packet.
1796 */
1797 if (sc->sc_ethercom.ec_nvlans != 0 &&
1798 (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1799 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1800 htole32(WTX_CMD_VLE);
1801 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
1802 = htole16(*(u_int *)(mtag + 1) & 0xffff);
1803 }
1804 #endif /* XXXJRT */
1805
1806 txs->txs_lastdesc = lasttx;
1807
1808 DPRINTF(WM_DEBUG_TX,
1809 ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1810 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
1811
1812 /* Sync the descriptors we're using. */
1813 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
1814 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1815
1816 /* Give the packet to the chip. */
1817 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1818
1819 DPRINTF(WM_DEBUG_TX,
1820 ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1821
1822 DPRINTF(WM_DEBUG_TX,
1823 ("%s: TX: finished transmitting packet, job %d\n",
1824 sc->sc_dev.dv_xname, sc->sc_txsnext));
1825
1826 /* Advance the tx pointer. */
1827 sc->sc_txfree -= txs->txs_ndesc;
1828 sc->sc_txnext = nexttx;
1829
1830 sc->sc_txsfree--;
1831 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
1832
1833 #if NBPFILTER > 0
1834 /* Pass the packet to any BPF listeners. */
1835 if (ifp->if_bpf)
1836 bpf_mtap(ifp->if_bpf, m0);
1837 #endif /* NBPFILTER > 0 */
1838 }
1839
1840 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1841 /* No more slots; notify upper layer. */
1842 ifp->if_flags |= IFF_OACTIVE;
1843 }
1844
1845 if (sc->sc_txfree != ofree) {
1846 /* Set a watchdog timer in case the chip flakes out. */
1847 ifp->if_timer = 5;
1848 }
1849 }
1850
1851 /*
1852 * wm_watchdog: [ifnet interface function]
1853 *
1854 * Watchdog timer handler.
1855 */
1856 static void
1857 wm_watchdog(struct ifnet *ifp)
1858 {
1859 struct wm_softc *sc = ifp->if_softc;
1860
1861 /*
1862 * Since we're using delayed interrupts, sweep up
1863 * before we report an error.
1864 */
1865 wm_txintr(sc);
1866
1867 if (sc->sc_txfree != WM_NTXDESC(sc)) {
1868 log(LOG_ERR,
1869 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1870 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1871 sc->sc_txnext);
1872 ifp->if_oerrors++;
1873
1874 /* Reset the interface. */
1875 (void) wm_init(ifp);
1876 }
1877
1878 /* Try to get more packets going. */
1879 wm_start(ifp);
1880 }
1881
1882 /*
1883 * wm_ioctl: [ifnet interface function]
1884 *
1885 * Handle control requests from the operator.
1886 */
1887 static int
1888 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1889 {
1890 struct wm_softc *sc = ifp->if_softc;
1891 struct ifreq *ifr = (struct ifreq *) data;
1892 int s, error;
1893
1894 s = splnet();
1895
1896 switch (cmd) {
1897 case SIOCSIFMEDIA:
1898 case SIOCGIFMEDIA:
1899 /* Flow control requires full-duplex mode. */
1900 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1901 (ifr->ifr_media & IFM_FDX) == 0)
1902 ifr->ifr_media &= ~IFM_ETH_FMASK;
1903 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1904 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1905 /* We can do both TXPAUSE and RXPAUSE. */
1906 ifr->ifr_media |=
1907 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1908 }
1909 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1910 }
1911 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1912 break;
1913 default:
1914 error = ether_ioctl(ifp, cmd, data);
1915 if (error == ENETRESET) {
1916 /*
1917 * Multicast list has changed; set the hardware filter
1918 * accordingly.
1919 */
1920 if (ifp->if_flags & IFF_RUNNING)
1921 wm_set_filter(sc);
1922 error = 0;
1923 }
1924 break;
1925 }
1926
1927 /* Try to get more packets going. */
1928 wm_start(ifp);
1929
1930 splx(s);
1931 return (error);
1932 }
1933
1934 /*
1935 * wm_intr:
1936 *
1937 * Interrupt service routine.
1938 */
1939 static int
1940 wm_intr(void *arg)
1941 {
1942 struct wm_softc *sc = arg;
1943 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1944 uint32_t icr;
1945 int wantinit, handled = 0;
1946
1947 for (wantinit = 0; wantinit == 0;) {
1948 icr = CSR_READ(sc, WMREG_ICR);
1949 if ((icr & sc->sc_icr) == 0)
1950 break;
1951
1952 #if 0 /*NRND > 0*/
1953 if (RND_ENABLED(&sc->rnd_source))
1954 rnd_add_uint32(&sc->rnd_source, icr);
1955 #endif
1956
1957 handled = 1;
1958
1959 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1960 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1961 DPRINTF(WM_DEBUG_RX,
1962 ("%s: RX: got Rx intr 0x%08x\n",
1963 sc->sc_dev.dv_xname,
1964 icr & (ICR_RXDMT0|ICR_RXT0)));
1965 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
1966 }
1967 #endif
1968 wm_rxintr(sc);
1969
1970 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1971 if (icr & ICR_TXDW) {
1972 DPRINTF(WM_DEBUG_TX,
1973 ("%s: TX: got TXDW interrupt\n",
1974 sc->sc_dev.dv_xname));
1975 WM_EVCNT_INCR(&sc->sc_ev_txdw);
1976 }
1977 #endif
1978 wm_txintr(sc);
1979
1980 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
1981 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
1982 wm_linkintr(sc, icr);
1983 }
1984
1985 if (icr & ICR_RXO) {
1986 log(LOG_WARNING, "%s: Receive overrun\n",
1987 sc->sc_dev.dv_xname);
1988 wantinit = 1;
1989 }
1990 }
1991
1992 if (handled) {
1993 if (wantinit)
1994 wm_init(ifp);
1995
1996 /* Try to get more packets going. */
1997 wm_start(ifp);
1998 }
1999
2000 return (handled);
2001 }
2002
2003 /*
2004 * wm_txintr:
2005 *
2006 * Helper; handle transmit interrupts.
2007 */
2008 static void
2009 wm_txintr(struct wm_softc *sc)
2010 {
2011 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2012 struct wm_txsoft *txs;
2013 uint8_t status;
2014 int i;
2015
2016 ifp->if_flags &= ~IFF_OACTIVE;
2017
2018 /*
2019 * Go through the Tx list and free mbufs for those
2020 * frames which have been transmitted.
2021 */
2022 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
2023 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
2024 txs = &sc->sc_txsoft[i];
2025
2026 DPRINTF(WM_DEBUG_TX,
2027 ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
2028
2029 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
2030 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2031
2032 status =
2033 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2034 if ((status & WTX_ST_DD) == 0) {
2035 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2036 BUS_DMASYNC_PREREAD);
2037 break;
2038 }
2039
2040 DPRINTF(WM_DEBUG_TX,
2041 ("%s: TX: job %d done: descs %d..%d\n",
2042 sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2043 txs->txs_lastdesc));
2044
2045 /*
2046 * XXX We should probably be using the statistics
2047 * XXX registers, but I don't know if they exist
2048 * XXX on chips before the i82544.
2049 */
2050
2051 #ifdef WM_EVENT_COUNTERS
2052 if (status & WTX_ST_TU)
2053 WM_EVCNT_INCR(&sc->sc_ev_tu);
2054 #endif /* WM_EVENT_COUNTERS */
2055
2056 if (status & (WTX_ST_EC|WTX_ST_LC)) {
2057 ifp->if_oerrors++;
2058 if (status & WTX_ST_LC)
2059 log(LOG_WARNING, "%s: late collision\n",
2060 sc->sc_dev.dv_xname);
2061 else if (status & WTX_ST_EC) {
2062 ifp->if_collisions += 16;
2063 log(LOG_WARNING, "%s: excessive collisions\n",
2064 sc->sc_dev.dv_xname);
2065 }
2066 } else
2067 ifp->if_opackets++;
2068
2069 sc->sc_txfree += txs->txs_ndesc;
2070 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2071 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2072 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2073 m_freem(txs->txs_mbuf);
2074 txs->txs_mbuf = NULL;
2075 }
2076
2077 /* Update the dirty transmit buffer pointer. */
2078 sc->sc_txsdirty = i;
2079 DPRINTF(WM_DEBUG_TX,
2080 ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2081
2082 /*
2083 * If there are no more pending transmissions, cancel the watchdog
2084 * timer.
2085 */
2086 if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2087 ifp->if_timer = 0;
2088 }
2089
2090 /*
2091 * wm_rxintr:
2092 *
2093 * Helper; handle receive interrupts.
2094 */
2095 static void
2096 wm_rxintr(struct wm_softc *sc)
2097 {
2098 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2099 struct wm_rxsoft *rxs;
2100 struct mbuf *m;
2101 int i, len;
2102 uint8_t status, errors;
2103
2104 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2105 rxs = &sc->sc_rxsoft[i];
2106
2107 DPRINTF(WM_DEBUG_RX,
2108 ("%s: RX: checking descriptor %d\n",
2109 sc->sc_dev.dv_xname, i));
2110
2111 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2112
2113 status = sc->sc_rxdescs[i].wrx_status;
2114 errors = sc->sc_rxdescs[i].wrx_errors;
2115 len = le16toh(sc->sc_rxdescs[i].wrx_len);
2116
2117 if ((status & WRX_ST_DD) == 0) {
2118 /*
2119 * We have processed all of the receive descriptors.
2120 */
2121 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2122 break;
2123 }
2124
2125 if (__predict_false(sc->sc_rxdiscard)) {
2126 DPRINTF(WM_DEBUG_RX,
2127 ("%s: RX: discarding contents of descriptor %d\n",
2128 sc->sc_dev.dv_xname, i));
2129 WM_INIT_RXDESC(sc, i);
2130 if (status & WRX_ST_EOP) {
2131 /* Reset our state. */
2132 DPRINTF(WM_DEBUG_RX,
2133 ("%s: RX: resetting rxdiscard -> 0\n",
2134 sc->sc_dev.dv_xname));
2135 sc->sc_rxdiscard = 0;
2136 }
2137 continue;
2138 }
2139
2140 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2141 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2142
2143 m = rxs->rxs_mbuf;
2144
2145 /*
2146 * Add a new receive buffer to the ring.
2147 */
2148 if (wm_add_rxbuf(sc, i) != 0) {
2149 /*
2150 * Failed, throw away what we've done so
2151 * far, and discard the rest of the packet.
2152 */
2153 ifp->if_ierrors++;
2154 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2155 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2156 WM_INIT_RXDESC(sc, i);
2157 if ((status & WRX_ST_EOP) == 0)
2158 sc->sc_rxdiscard = 1;
2159 if (sc->sc_rxhead != NULL)
2160 m_freem(sc->sc_rxhead);
2161 WM_RXCHAIN_RESET(sc);
2162 DPRINTF(WM_DEBUG_RX,
2163 ("%s: RX: Rx buffer allocation failed, "
2164 "dropping packet%s\n", sc->sc_dev.dv_xname,
2165 sc->sc_rxdiscard ? " (discard)" : ""));
2166 continue;
2167 }
2168
2169 WM_RXCHAIN_LINK(sc, m);
2170
2171 m->m_len = len;
2172
2173 DPRINTF(WM_DEBUG_RX,
2174 ("%s: RX: buffer at %p len %d\n",
2175 sc->sc_dev.dv_xname, m->m_data, len));
2176
2177 /*
2178 * If this is not the end of the packet, keep
2179 * looking.
2180 */
2181 if ((status & WRX_ST_EOP) == 0) {
2182 sc->sc_rxlen += len;
2183 DPRINTF(WM_DEBUG_RX,
2184 ("%s: RX: not yet EOP, rxlen -> %d\n",
2185 sc->sc_dev.dv_xname, sc->sc_rxlen));
2186 continue;
2187 }
2188
2189 /*
2190 * Okay, we have the entire packet now...
2191 */
2192 *sc->sc_rxtailp = NULL;
2193 m = sc->sc_rxhead;
2194 len += sc->sc_rxlen;
2195
2196 WM_RXCHAIN_RESET(sc);
2197
2198 DPRINTF(WM_DEBUG_RX,
2199 ("%s: RX: have entire packet, len -> %d\n",
2200 sc->sc_dev.dv_xname, len));
2201
2202 /*
2203 * If an error occurred, update stats and drop the packet.
2204 */
2205 if (errors &
2206 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2207 ifp->if_ierrors++;
2208 if (errors & WRX_ER_SE)
2209 log(LOG_WARNING, "%s: symbol error\n",
2210 sc->sc_dev.dv_xname);
2211 else if (errors & WRX_ER_SEQ)
2212 log(LOG_WARNING, "%s: receive sequence error\n",
2213 sc->sc_dev.dv_xname);
2214 else if (errors & WRX_ER_CE)
2215 log(LOG_WARNING, "%s: CRC error\n",
2216 sc->sc_dev.dv_xname);
2217 m_freem(m);
2218 continue;
2219 }
2220
2221 /*
2222 * No errors. Receive the packet.
2223 *
2224 * Note, we have configured the chip to include the
2225 * CRC with every packet.
2226 */
2227 m->m_flags |= M_HASFCS;
2228 m->m_pkthdr.rcvif = ifp;
2229 m->m_pkthdr.len = len;
2230
2231 #if 0 /* XXXJRT */
2232 /*
2233 * If VLANs are enabled, VLAN packets have been unwrapped
2234 * for us. Associate the tag with the packet.
2235 */
2236 if (sc->sc_ethercom.ec_nvlans != 0 &&
2237 (status & WRX_ST_VP) != 0) {
2238 struct m_tag *vtag;
2239
2240 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2241 M_NOWAIT);
2242 if (vtag == NULL) {
2243 ifp->if_ierrors++;
2244 log(LOG_ERR,
2245 "%s: unable to allocate VLAN tag\n",
2246 sc->sc_dev.dv_xname);
2247 m_freem(m);
2248 continue;
2249 }
2250
2251 *(u_int *)(vtag + 1) =
2252 le16toh(sc->sc_rxdescs[i].wrx_special);
2253 }
2254 #endif /* XXXJRT */
2255
2256 /*
2257 * Set up checksum info for this packet.
2258 */
2259 if (status & WRX_ST_IPCS) {
2260 WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2261 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2262 if (errors & WRX_ER_IPE)
2263 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2264 }
2265 if (status & WRX_ST_TCPCS) {
2266 /*
2267 * Note: we don't know if this was TCP or UDP,
2268 * so we just set both bits, and expect the
2269 * upper layers to deal.
2270 */
2271 WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2272 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
2273 if (errors & WRX_ER_TCPE)
2274 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
2275 }
2276
2277 ifp->if_ipackets++;
2278
2279 #if NBPFILTER > 0
2280 /* Pass this up to any BPF listeners. */
2281 if (ifp->if_bpf)
2282 bpf_mtap(ifp->if_bpf, m);
2283 #endif /* NBPFILTER > 0 */
2284
2285 /* Pass it on. */
2286 (*ifp->if_input)(ifp, m);
2287 }
2288
2289 /* Update the receive pointer. */
2290 sc->sc_rxptr = i;
2291
2292 DPRINTF(WM_DEBUG_RX,
2293 ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2294 }
2295
2296 /*
2297 * wm_linkintr:
2298 *
2299 * Helper; handle link interrupts.
2300 */
2301 static void
2302 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2303 {
2304 uint32_t status;
2305
2306 /*
2307 * If we get a link status interrupt on a 1000BASE-T
2308 * device, just fall into the normal MII tick path.
2309 */
2310 if (sc->sc_flags & WM_F_HAS_MII) {
2311 if (icr & ICR_LSC) {
2312 DPRINTF(WM_DEBUG_LINK,
2313 ("%s: LINK: LSC -> mii_tick\n",
2314 sc->sc_dev.dv_xname));
2315 mii_tick(&sc->sc_mii);
2316 } else if (icr & ICR_RXSEQ) {
2317 DPRINTF(WM_DEBUG_LINK,
2318 ("%s: LINK Receive sequence error\n",
2319 sc->sc_dev.dv_xname));
2320 }
2321 return;
2322 }
2323
2324 /*
2325 * If we are now receiving /C/, check for link again in
2326 * a couple of link clock ticks.
2327 */
2328 if (icr & ICR_RXCFG) {
2329 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2330 sc->sc_dev.dv_xname));
2331 sc->sc_tbi_anstate = 2;
2332 }
2333
2334 if (icr & ICR_LSC) {
2335 status = CSR_READ(sc, WMREG_STATUS);
2336 if (status & STATUS_LU) {
2337 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2338 sc->sc_dev.dv_xname,
2339 (status & STATUS_FD) ? "FDX" : "HDX"));
2340 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2341 sc->sc_fcrtl &= ~FCRTL_XONE;
2342 if (status & STATUS_FD)
2343 sc->sc_tctl |=
2344 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2345 else
2346 sc->sc_tctl |=
2347 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2348 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2349 sc->sc_fcrtl |= FCRTL_XONE;
2350 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2351 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2352 WMREG_OLD_FCRTL : WMREG_FCRTL,
2353 sc->sc_fcrtl);
2354 sc->sc_tbi_linkup = 1;
2355 } else {
2356 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2357 sc->sc_dev.dv_xname));
2358 sc->sc_tbi_linkup = 0;
2359 }
2360 sc->sc_tbi_anstate = 2;
2361 wm_tbi_set_linkled(sc);
2362 } else if (icr & ICR_RXSEQ) {
2363 DPRINTF(WM_DEBUG_LINK,
2364 ("%s: LINK: Receive sequence error\n",
2365 sc->sc_dev.dv_xname));
2366 }
2367 }
2368
2369 /*
2370 * wm_tick:
2371 *
2372 * One second timer, used to check link status, sweep up
2373 * completed transmit jobs, etc.
2374 */
2375 static void
2376 wm_tick(void *arg)
2377 {
2378 struct wm_softc *sc = arg;
2379 int s;
2380
2381 s = splnet();
2382
2383 if (sc->sc_type >= WM_T_82542_2_1) {
2384 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2385 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2386 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2387 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2388 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2389 }
2390
2391 if (sc->sc_flags & WM_F_HAS_MII)
2392 mii_tick(&sc->sc_mii);
2393 else
2394 wm_tbi_check_link(sc);
2395
2396 splx(s);
2397
2398 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2399 }
2400
2401 /*
2402 * wm_reset:
2403 *
2404 * Reset the i82542 chip.
2405 */
2406 static void
2407 wm_reset(struct wm_softc *sc)
2408 {
2409 int i;
2410
2411 /*
2412 * Allocate on-chip memory according to the MTU size.
2413 * The Packet Buffer Allocation register must be written
2414 * before the chip is reset.
2415 */
2416 if (sc->sc_type < WM_T_82547) {
2417 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2418 PBA_40K : PBA_48K;
2419 } else {
2420 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2421 PBA_22K : PBA_30K;
2422 sc->sc_txfifo_head = 0;
2423 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2424 sc->sc_txfifo_size =
2425 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2426 sc->sc_txfifo_stall = 0;
2427 }
2428 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2429
2430 switch (sc->sc_type) {
2431 case WM_T_82544:
2432 case WM_T_82540:
2433 case WM_T_82545:
2434 case WM_T_82546:
2435 case WM_T_82541:
2436 case WM_T_82541_2:
2437 /*
2438 * On some chipsets, a reset through a memory-mapped write
2439 * cycle can cause the chip to reset before completing the
2440 * write cycle. This causes major headache that can be
2441 * avoided by issuing the reset via indirect register writes
2442 * through I/O space.
2443 *
2444 * So, if we successfully mapped the I/O BAR at attach time,
2445 * use that. Otherwise, try our luck with a memory-mapped
2446 * reset.
2447 */
2448 if (sc->sc_flags & WM_F_IOH_VALID)
2449 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2450 else
2451 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2452 break;
2453
2454 case WM_T_82545_3:
2455 case WM_T_82546_3:
2456 /* Use the shadow control register on these chips. */
2457 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2458 break;
2459
2460 default:
2461 /* Everything else can safely use the documented method. */
2462 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2463 break;
2464 }
2465 delay(10000);
2466
2467 for (i = 0; i < 1000; i++) {
2468 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2469 return;
2470 delay(20);
2471 }
2472
2473 if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2474 log(LOG_ERR, "%s: reset failed to complete\n",
2475 sc->sc_dev.dv_xname);
2476 }
2477
2478 /*
2479 * wm_init: [ifnet interface function]
2480 *
2481 * Initialize the interface. Must be called at splnet().
2482 */
2483 static int
2484 wm_init(struct ifnet *ifp)
2485 {
2486 struct wm_softc *sc = ifp->if_softc;
2487 struct wm_rxsoft *rxs;
2488 int i, error = 0;
2489 uint32_t reg;
2490
2491 /*
2492 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2493 * There is a small but measurable benefit to avoiding the adjusment
2494 * of the descriptor so that the headers are aligned, for normal mtu,
2495 * on such platforms. One possibility is that the DMA itself is
2496 * slightly more efficient if the front of the entire packet (instead
2497 * of the front of the headers) is aligned.
2498 *
2499 * Note we must always set align_tweak to 0 if we are using
2500 * jumbo frames.
2501 */
2502 #ifdef __NO_STRICT_ALIGNMENT
2503 sc->sc_align_tweak = 0;
2504 #else
2505 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2506 sc->sc_align_tweak = 0;
2507 else
2508 sc->sc_align_tweak = 2;
2509 #endif /* __NO_STRICT_ALIGNMENT */
2510
2511 /* Cancel any pending I/O. */
2512 wm_stop(ifp, 0);
2513
2514 /* Reset the chip to a known state. */
2515 wm_reset(sc);
2516
2517 /* Initialize the transmit descriptor ring. */
2518 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2519 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2520 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2521 sc->sc_txfree = WM_NTXDESC(sc);
2522 sc->sc_txnext = 0;
2523
2524 if (sc->sc_type < WM_T_82543) {
2525 CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2526 CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2527 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2528 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2529 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2530 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2531 } else {
2532 CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2533 CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2534 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2535 CSR_WRITE(sc, WMREG_TDH, 0);
2536 CSR_WRITE(sc, WMREG_TDT, 0);
2537 CSR_WRITE(sc, WMREG_TIDV, 64);
2538 CSR_WRITE(sc, WMREG_TADV, 128);
2539
2540 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2541 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2542 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2543 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2544 }
2545 CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2546 CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2547
2548 /* Initialize the transmit job descriptors. */
2549 for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2550 sc->sc_txsoft[i].txs_mbuf = NULL;
2551 sc->sc_txsfree = WM_TXQUEUELEN(sc);
2552 sc->sc_txsnext = 0;
2553 sc->sc_txsdirty = 0;
2554
2555 /*
2556 * Initialize the receive descriptor and receive job
2557 * descriptor rings.
2558 */
2559 if (sc->sc_type < WM_T_82543) {
2560 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2561 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2562 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2563 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2564 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2565 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2566
2567 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2568 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2569 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2570 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2571 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2572 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2573 } else {
2574 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2575 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2576 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2577 CSR_WRITE(sc, WMREG_RDH, 0);
2578 CSR_WRITE(sc, WMREG_RDT, 0);
2579 CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
2580 CSR_WRITE(sc, WMREG_RADV, 128);
2581 }
2582 for (i = 0; i < WM_NRXDESC; i++) {
2583 rxs = &sc->sc_rxsoft[i];
2584 if (rxs->rxs_mbuf == NULL) {
2585 if ((error = wm_add_rxbuf(sc, i)) != 0) {
2586 log(LOG_ERR, "%s: unable to allocate or map rx "
2587 "buffer %d, error = %d\n",
2588 sc->sc_dev.dv_xname, i, error);
2589 /*
2590 * XXX Should attempt to run with fewer receive
2591 * XXX buffers instead of just failing.
2592 */
2593 wm_rxdrain(sc);
2594 goto out;
2595 }
2596 } else
2597 WM_INIT_RXDESC(sc, i);
2598 }
2599 sc->sc_rxptr = 0;
2600 sc->sc_rxdiscard = 0;
2601 WM_RXCHAIN_RESET(sc);
2602
2603 /*
2604 * Clear out the VLAN table -- we don't use it (yet).
2605 */
2606 CSR_WRITE(sc, WMREG_VET, 0);
2607 for (i = 0; i < WM_VLAN_TABSIZE; i++)
2608 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2609
2610 /*
2611 * Set up flow-control parameters.
2612 *
2613 * XXX Values could probably stand some tuning.
2614 */
2615 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2616 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2617 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2618
2619 sc->sc_fcrtl = FCRTL_DFLT;
2620 if (sc->sc_type < WM_T_82543) {
2621 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2622 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2623 } else {
2624 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2625 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2626 }
2627 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2628
2629 #if 0 /* XXXJRT */
2630 /* Deal with VLAN enables. */
2631 if (sc->sc_ethercom.ec_nvlans != 0)
2632 sc->sc_ctrl |= CTRL_VME;
2633 else
2634 #endif /* XXXJRT */
2635 sc->sc_ctrl &= ~CTRL_VME;
2636
2637 /* Write the control registers. */
2638 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2639 #if 0
2640 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2641 #endif
2642
2643 /*
2644 * Set up checksum offload parameters.
2645 */
2646 reg = CSR_READ(sc, WMREG_RXCSUM);
2647 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
2648 reg |= RXCSUM_IPOFL;
2649 else
2650 reg &= ~RXCSUM_IPOFL;
2651 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
2652 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2653 else {
2654 reg &= ~RXCSUM_TUOFL;
2655 if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
2656 reg &= ~RXCSUM_IPOFL;
2657 }
2658 CSR_WRITE(sc, WMREG_RXCSUM, reg);
2659
2660 /*
2661 * Set up the interrupt registers.
2662 */
2663 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2664 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2665 ICR_RXO | ICR_RXT0;
2666 if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2667 sc->sc_icr |= ICR_RXCFG;
2668 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2669
2670 /* Set up the inter-packet gap. */
2671 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2672
2673 if (sc->sc_type >= WM_T_82543) {
2674 /* Set up the interrupt throttling register (units of 256ns) */
2675 sc->sc_itr = 1000000000 / (7000 * 256);
2676 CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
2677 }
2678
2679 #if 0 /* XXXJRT */
2680 /* Set the VLAN ethernetype. */
2681 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2682 #endif
2683
2684 /*
2685 * Set up the transmit control register; we start out with
2686 * a collision distance suitable for FDX, but update it whe
2687 * we resolve the media type.
2688 */
2689 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2690 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2691 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2692
2693 /* Set the media. */
2694 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2695
2696 /*
2697 * Set up the receive control register; we actually program
2698 * the register when we set the receive filter. Use multicast
2699 * address offset type 0.
2700 *
2701 * Only the i82544 has the ability to strip the incoming
2702 * CRC, so we don't enable that feature.
2703 */
2704 sc->sc_mchash_type = 0;
2705 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
2706 RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2707
2708 if(MCLBYTES == 2048) {
2709 sc->sc_rctl |= RCTL_2k;
2710 } else {
2711 if(sc->sc_type >= WM_T_82543) {
2712 switch(MCLBYTES) {
2713 case 4096:
2714 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2715 break;
2716 case 8192:
2717 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2718 break;
2719 case 16384:
2720 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2721 break;
2722 default:
2723 panic("wm_init: MCLBYTES %d unsupported",
2724 MCLBYTES);
2725 break;
2726 }
2727 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
2728 }
2729
2730 /* Set the receive filter. */
2731 wm_set_filter(sc);
2732
2733 /* Start the one second link check clock. */
2734 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2735
2736 /* ...all done! */
2737 ifp->if_flags |= IFF_RUNNING;
2738 ifp->if_flags &= ~IFF_OACTIVE;
2739
2740 out:
2741 if (error)
2742 log(LOG_ERR, "%s: interface not running\n",
2743 sc->sc_dev.dv_xname);
2744 return (error);
2745 }
2746
2747 /*
2748 * wm_rxdrain:
2749 *
2750 * Drain the receive queue.
2751 */
2752 static void
2753 wm_rxdrain(struct wm_softc *sc)
2754 {
2755 struct wm_rxsoft *rxs;
2756 int i;
2757
2758 for (i = 0; i < WM_NRXDESC; i++) {
2759 rxs = &sc->sc_rxsoft[i];
2760 if (rxs->rxs_mbuf != NULL) {
2761 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2762 m_freem(rxs->rxs_mbuf);
2763 rxs->rxs_mbuf = NULL;
2764 }
2765 }
2766 }
2767
2768 /*
2769 * wm_stop: [ifnet interface function]
2770 *
2771 * Stop transmission on the interface.
2772 */
2773 static void
2774 wm_stop(struct ifnet *ifp, int disable)
2775 {
2776 struct wm_softc *sc = ifp->if_softc;
2777 struct wm_txsoft *txs;
2778 int i;
2779
2780 /* Stop the one second clock. */
2781 callout_stop(&sc->sc_tick_ch);
2782
2783 /* Stop the 82547 Tx FIFO stall check timer. */
2784 if (sc->sc_type == WM_T_82547)
2785 callout_stop(&sc->sc_txfifo_ch);
2786
2787 if (sc->sc_flags & WM_F_HAS_MII) {
2788 /* Down the MII. */
2789 mii_down(&sc->sc_mii);
2790 }
2791
2792 /* Stop the transmit and receive processes. */
2793 CSR_WRITE(sc, WMREG_TCTL, 0);
2794 CSR_WRITE(sc, WMREG_RCTL, 0);
2795
2796 /* Release any queued transmit buffers. */
2797 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2798 txs = &sc->sc_txsoft[i];
2799 if (txs->txs_mbuf != NULL) {
2800 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2801 m_freem(txs->txs_mbuf);
2802 txs->txs_mbuf = NULL;
2803 }
2804 }
2805
2806 if (disable)
2807 wm_rxdrain(sc);
2808
2809 /* Mark the interface as down and cancel the watchdog timer. */
2810 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2811 ifp->if_timer = 0;
2812 }
2813
2814 /*
2815 * wm_acquire_eeprom:
2816 *
2817 * Perform the EEPROM handshake required on some chips.
2818 */
2819 static int
2820 wm_acquire_eeprom(struct wm_softc *sc)
2821 {
2822 uint32_t reg;
2823 int x;
2824
2825 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2826 reg = CSR_READ(sc, WMREG_EECD);
2827
2828 /* Request EEPROM access. */
2829 reg |= EECD_EE_REQ;
2830 CSR_WRITE(sc, WMREG_EECD, reg);
2831
2832 /* ..and wait for it to be granted. */
2833 for (x = 0; x < 100; x++) {
2834 reg = CSR_READ(sc, WMREG_EECD);
2835 if (reg & EECD_EE_GNT)
2836 break;
2837 delay(5);
2838 }
2839 if ((reg & EECD_EE_GNT) == 0) {
2840 aprint_error("%s: could not acquire EEPROM GNT\n",
2841 sc->sc_dev.dv_xname);
2842 reg &= ~EECD_EE_REQ;
2843 CSR_WRITE(sc, WMREG_EECD, reg);
2844 return (1);
2845 }
2846 }
2847
2848 return (0);
2849 }
2850
2851 /*
2852 * wm_release_eeprom:
2853 *
2854 * Release the EEPROM mutex.
2855 */
2856 static void
2857 wm_release_eeprom(struct wm_softc *sc)
2858 {
2859 uint32_t reg;
2860
2861 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2862 reg = CSR_READ(sc, WMREG_EECD);
2863 reg &= ~EECD_EE_REQ;
2864 CSR_WRITE(sc, WMREG_EECD, reg);
2865 }
2866 }
2867
2868 /*
2869 * wm_eeprom_sendbits:
2870 *
2871 * Send a series of bits to the EEPROM.
2872 */
2873 static void
2874 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
2875 {
2876 uint32_t reg;
2877 int x;
2878
2879 reg = CSR_READ(sc, WMREG_EECD);
2880
2881 for (x = nbits; x > 0; x--) {
2882 if (bits & (1U << (x - 1)))
2883 reg |= EECD_DI;
2884 else
2885 reg &= ~EECD_DI;
2886 CSR_WRITE(sc, WMREG_EECD, reg);
2887 delay(2);
2888 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2889 delay(2);
2890 CSR_WRITE(sc, WMREG_EECD, reg);
2891 delay(2);
2892 }
2893 }
2894
2895 /*
2896 * wm_eeprom_recvbits:
2897 *
2898 * Receive a series of bits from the EEPROM.
2899 */
2900 static void
2901 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
2902 {
2903 uint32_t reg, val;
2904 int x;
2905
2906 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
2907
2908 val = 0;
2909 for (x = nbits; x > 0; x--) {
2910 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2911 delay(2);
2912 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
2913 val |= (1U << (x - 1));
2914 CSR_WRITE(sc, WMREG_EECD, reg);
2915 delay(2);
2916 }
2917 *valp = val;
2918 }
2919
2920 /*
2921 * wm_read_eeprom_uwire:
2922 *
2923 * Read a word from the EEPROM using the MicroWire protocol.
2924 */
2925 static int
2926 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2927 {
2928 uint32_t reg, val;
2929 int i;
2930
2931 for (i = 0; i < wordcnt; i++) {
2932 /* Clear SK and DI. */
2933 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
2934 CSR_WRITE(sc, WMREG_EECD, reg);
2935
2936 /* Set CHIP SELECT. */
2937 reg |= EECD_CS;
2938 CSR_WRITE(sc, WMREG_EECD, reg);
2939 delay(2);
2940
2941 /* Shift in the READ command. */
2942 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
2943
2944 /* Shift in address. */
2945 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
2946
2947 /* Shift out the data. */
2948 wm_eeprom_recvbits(sc, &val, 16);
2949 data[i] = val & 0xffff;
2950
2951 /* Clear CHIP SELECT. */
2952 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
2953 CSR_WRITE(sc, WMREG_EECD, reg);
2954 delay(2);
2955 }
2956
2957 return (0);
2958 }
2959
2960 /*
2961 * wm_spi_eeprom_ready:
2962 *
2963 * Wait for a SPI EEPROM to be ready for commands.
2964 */
2965 static int
2966 wm_spi_eeprom_ready(struct wm_softc *sc)
2967 {
2968 uint32_t val;
2969 int usec;
2970
2971 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
2972 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
2973 wm_eeprom_recvbits(sc, &val, 8);
2974 if ((val & SPI_SR_RDY) == 0)
2975 break;
2976 }
2977 if (usec >= SPI_MAX_RETRIES) {
2978 aprint_error("%s: EEPROM failed to become ready\n",
2979 sc->sc_dev.dv_xname);
2980 return (1);
2981 }
2982 return (0);
2983 }
2984
2985 /*
2986 * wm_read_eeprom_spi:
2987 *
2988 * Read a work from the EEPROM using the SPI protocol.
2989 */
2990 static int
2991 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2992 {
2993 uint32_t reg, val;
2994 int i;
2995 uint8_t opc;
2996
2997 /* Clear SK and CS. */
2998 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
2999 CSR_WRITE(sc, WMREG_EECD, reg);
3000 delay(2);
3001
3002 if (wm_spi_eeprom_ready(sc))
3003 return (1);
3004
3005 /* Toggle CS to flush commands. */
3006 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
3007 delay(2);
3008 CSR_WRITE(sc, WMREG_EECD, reg);
3009 delay(2);
3010
3011 opc = SPI_OPC_READ;
3012 if (sc->sc_ee_addrbits == 8 && word >= 128)
3013 opc |= SPI_OPC_A8;
3014
3015 wm_eeprom_sendbits(sc, opc, 8);
3016 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
3017
3018 for (i = 0; i < wordcnt; i++) {
3019 wm_eeprom_recvbits(sc, &val, 16);
3020 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
3021 }
3022
3023 /* Raise CS and clear SK. */
3024 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
3025 CSR_WRITE(sc, WMREG_EECD, reg);
3026 delay(2);
3027
3028 return (0);
3029 }
3030
3031 /*
3032 * wm_read_eeprom:
3033 *
3034 * Read data from the serial EEPROM.
3035 */
3036 static int
3037 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3038 {
3039 int rv;
3040
3041 if (wm_acquire_eeprom(sc))
3042 return (1);
3043
3044 if (sc->sc_flags & WM_F_EEPROM_SPI)
3045 rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3046 else
3047 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3048
3049 wm_release_eeprom(sc);
3050 return (rv);
3051 }
3052
3053 /*
3054 * wm_add_rxbuf:
3055 *
3056 * Add a receive buffer to the indiciated descriptor.
3057 */
3058 static int
3059 wm_add_rxbuf(struct wm_softc *sc, int idx)
3060 {
3061 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3062 struct mbuf *m;
3063 int error;
3064
3065 MGETHDR(m, M_DONTWAIT, MT_DATA);
3066 if (m == NULL)
3067 return (ENOBUFS);
3068
3069 MCLGET(m, M_DONTWAIT);
3070 if ((m->m_flags & M_EXT) == 0) {
3071 m_freem(m);
3072 return (ENOBUFS);
3073 }
3074
3075 if (rxs->rxs_mbuf != NULL)
3076 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3077
3078 rxs->rxs_mbuf = m;
3079
3080 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3081 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3082 BUS_DMA_READ|BUS_DMA_NOWAIT);
3083 if (error) {
3084 /* XXX XXX XXX */
3085 printf("%s: unable to load rx DMA map %d, error = %d\n",
3086 sc->sc_dev.dv_xname, idx, error);
3087 panic("wm_add_rxbuf");
3088 }
3089
3090 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3091 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3092
3093 WM_INIT_RXDESC(sc, idx);
3094
3095 return (0);
3096 }
3097
3098 /*
3099 * wm_set_ral:
3100 *
3101 * Set an entery in the receive address list.
3102 */
3103 static void
3104 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3105 {
3106 uint32_t ral_lo, ral_hi;
3107
3108 if (enaddr != NULL) {
3109 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3110 (enaddr[3] << 24);
3111 ral_hi = enaddr[4] | (enaddr[5] << 8);
3112 ral_hi |= RAL_AV;
3113 } else {
3114 ral_lo = 0;
3115 ral_hi = 0;
3116 }
3117
3118 if (sc->sc_type >= WM_T_82544) {
3119 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3120 ral_lo);
3121 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3122 ral_hi);
3123 } else {
3124 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3125 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3126 }
3127 }
3128
3129 /*
3130 * wm_mchash:
3131 *
3132 * Compute the hash of the multicast address for the 4096-bit
3133 * multicast filter.
3134 */
3135 static uint32_t
3136 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3137 {
3138 static const int lo_shift[4] = { 4, 3, 2, 0 };
3139 static const int hi_shift[4] = { 4, 5, 6, 8 };
3140 uint32_t hash;
3141
3142 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3143 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3144
3145 return (hash & 0xfff);
3146 }
3147
3148 /*
3149 * wm_set_filter:
3150 *
3151 * Set up the receive filter.
3152 */
3153 static void
3154 wm_set_filter(struct wm_softc *sc)
3155 {
3156 struct ethercom *ec = &sc->sc_ethercom;
3157 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3158 struct ether_multi *enm;
3159 struct ether_multistep step;
3160 bus_addr_t mta_reg;
3161 uint32_t hash, reg, bit;
3162 int i;
3163
3164 if (sc->sc_type >= WM_T_82544)
3165 mta_reg = WMREG_CORDOVA_MTA;
3166 else
3167 mta_reg = WMREG_MTA;
3168
3169 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3170
3171 if (ifp->if_flags & IFF_BROADCAST)
3172 sc->sc_rctl |= RCTL_BAM;
3173 if (ifp->if_flags & IFF_PROMISC) {
3174 sc->sc_rctl |= RCTL_UPE;
3175 goto allmulti;
3176 }
3177
3178 /*
3179 * Set the station address in the first RAL slot, and
3180 * clear the remaining slots.
3181 */
3182 wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3183 for (i = 1; i < WM_RAL_TABSIZE; i++)
3184 wm_set_ral(sc, NULL, i);
3185
3186 /* Clear out the multicast table. */
3187 for (i = 0; i < WM_MC_TABSIZE; i++)
3188 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3189
3190 ETHER_FIRST_MULTI(step, ec, enm);
3191 while (enm != NULL) {
3192 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3193 /*
3194 * We must listen to a range of multicast addresses.
3195 * For now, just accept all multicasts, rather than
3196 * trying to set only those filter bits needed to match
3197 * the range. (At this time, the only use of address
3198 * ranges is for IP multicast routing, for which the
3199 * range is big enough to require all bits set.)
3200 */
3201 goto allmulti;
3202 }
3203
3204 hash = wm_mchash(sc, enm->enm_addrlo);
3205
3206 reg = (hash >> 5) & 0x7f;
3207 bit = hash & 0x1f;
3208
3209 hash = CSR_READ(sc, mta_reg + (reg << 2));
3210 hash |= 1U << bit;
3211
3212 /* XXX Hardware bug?? */
3213 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3214 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3215 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3216 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3217 } else
3218 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3219
3220 ETHER_NEXT_MULTI(step, enm);
3221 }
3222
3223 ifp->if_flags &= ~IFF_ALLMULTI;
3224 goto setit;
3225
3226 allmulti:
3227 ifp->if_flags |= IFF_ALLMULTI;
3228 sc->sc_rctl |= RCTL_MPE;
3229
3230 setit:
3231 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3232 }
3233
3234 /*
3235 * wm_tbi_mediainit:
3236 *
3237 * Initialize media for use on 1000BASE-X devices.
3238 */
3239 static void
3240 wm_tbi_mediainit(struct wm_softc *sc)
3241 {
3242 const char *sep = "";
3243
3244 if (sc->sc_type < WM_T_82543)
3245 sc->sc_tipg = TIPG_WM_DFLT;
3246 else
3247 sc->sc_tipg = TIPG_LG_DFLT;
3248
3249 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3250 wm_tbi_mediastatus);
3251
3252 /*
3253 * SWD Pins:
3254 *
3255 * 0 = Link LED (output)
3256 * 1 = Loss Of Signal (input)
3257 */
3258 sc->sc_ctrl |= CTRL_SWDPIO(0);
3259 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3260
3261 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3262
3263 #define ADD(ss, mm, dd) \
3264 do { \
3265 aprint_normal("%s%s", sep, ss); \
3266 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
3267 sep = ", "; \
3268 } while (/*CONSTCOND*/0)
3269
3270 aprint_normal("%s: ", sc->sc_dev.dv_xname);
3271 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3272 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3273 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3274 aprint_normal("\n");
3275
3276 #undef ADD
3277
3278 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3279 }
3280
3281 /*
3282 * wm_tbi_mediastatus: [ifmedia interface function]
3283 *
3284 * Get the current interface media status on a 1000BASE-X device.
3285 */
3286 static void
3287 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3288 {
3289 struct wm_softc *sc = ifp->if_softc;
3290 uint32_t ctrl;
3291
3292 ifmr->ifm_status = IFM_AVALID;
3293 ifmr->ifm_active = IFM_ETHER;
3294
3295 if (sc->sc_tbi_linkup == 0) {
3296 ifmr->ifm_active |= IFM_NONE;
3297 return;
3298 }
3299
3300 ifmr->ifm_status |= IFM_ACTIVE;
3301 ifmr->ifm_active |= IFM_1000_SX;
3302 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3303 ifmr->ifm_active |= IFM_FDX;
3304 ctrl = CSR_READ(sc, WMREG_CTRL);
3305 if (ctrl & CTRL_RFCE)
3306 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3307 if (ctrl & CTRL_TFCE)
3308 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3309 }
3310
3311 /*
3312 * wm_tbi_mediachange: [ifmedia interface function]
3313 *
3314 * Set hardware to newly-selected media on a 1000BASE-X device.
3315 */
3316 static int
3317 wm_tbi_mediachange(struct ifnet *ifp)
3318 {
3319 struct wm_softc *sc = ifp->if_softc;
3320 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3321 uint32_t status;
3322 int i;
3323
3324 sc->sc_txcw = ife->ifm_data;
3325 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3326 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3327 sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3328 sc->sc_txcw |= TXCW_ANE;
3329
3330 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3331 delay(10000);
3332
3333 /* NOTE: CTRL will update TFCE and RFCE automatically. */
3334
3335 sc->sc_tbi_anstate = 0;
3336
3337 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3338 /* Have signal; wait for the link to come up. */
3339 for (i = 0; i < 50; i++) {
3340 delay(10000);
3341 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3342 break;
3343 }
3344
3345 status = CSR_READ(sc, WMREG_STATUS);
3346 if (status & STATUS_LU) {
3347 /* Link is up. */
3348 DPRINTF(WM_DEBUG_LINK,
3349 ("%s: LINK: set media -> link up %s\n",
3350 sc->sc_dev.dv_xname,
3351 (status & STATUS_FD) ? "FDX" : "HDX"));
3352 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3353 sc->sc_fcrtl &= ~FCRTL_XONE;
3354 if (status & STATUS_FD)
3355 sc->sc_tctl |=
3356 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3357 else
3358 sc->sc_tctl |=
3359 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3360 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3361 sc->sc_fcrtl |= FCRTL_XONE;
3362 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3363 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3364 WMREG_OLD_FCRTL : WMREG_FCRTL,
3365 sc->sc_fcrtl);
3366 sc->sc_tbi_linkup = 1;
3367 } else {
3368 /* Link is down. */
3369 DPRINTF(WM_DEBUG_LINK,
3370 ("%s: LINK: set media -> link down\n",
3371 sc->sc_dev.dv_xname));
3372 sc->sc_tbi_linkup = 0;
3373 }
3374 } else {
3375 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3376 sc->sc_dev.dv_xname));
3377 sc->sc_tbi_linkup = 0;
3378 }
3379
3380 wm_tbi_set_linkled(sc);
3381
3382 return (0);
3383 }
3384
3385 /*
3386 * wm_tbi_set_linkled:
3387 *
3388 * Update the link LED on 1000BASE-X devices.
3389 */
3390 static void
3391 wm_tbi_set_linkled(struct wm_softc *sc)
3392 {
3393
3394 if (sc->sc_tbi_linkup)
3395 sc->sc_ctrl |= CTRL_SWDPIN(0);
3396 else
3397 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3398
3399 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3400 }
3401
3402 /*
3403 * wm_tbi_check_link:
3404 *
3405 * Check the link on 1000BASE-X devices.
3406 */
3407 static void
3408 wm_tbi_check_link(struct wm_softc *sc)
3409 {
3410 uint32_t rxcw, ctrl, status;
3411
3412 if (sc->sc_tbi_anstate == 0)
3413 return;
3414 else if (sc->sc_tbi_anstate > 1) {
3415 DPRINTF(WM_DEBUG_LINK,
3416 ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3417 sc->sc_tbi_anstate));
3418 sc->sc_tbi_anstate--;
3419 return;
3420 }
3421
3422 sc->sc_tbi_anstate = 0;
3423
3424 rxcw = CSR_READ(sc, WMREG_RXCW);
3425 ctrl = CSR_READ(sc, WMREG_CTRL);
3426 status = CSR_READ(sc, WMREG_STATUS);
3427
3428 if ((status & STATUS_LU) == 0) {
3429 DPRINTF(WM_DEBUG_LINK,
3430 ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3431 sc->sc_tbi_linkup = 0;
3432 } else {
3433 DPRINTF(WM_DEBUG_LINK,
3434 ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3435 (status & STATUS_FD) ? "FDX" : "HDX"));
3436 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3437 sc->sc_fcrtl &= ~FCRTL_XONE;
3438 if (status & STATUS_FD)
3439 sc->sc_tctl |=
3440 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3441 else
3442 sc->sc_tctl |=
3443 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3444 if (ctrl & CTRL_TFCE)
3445 sc->sc_fcrtl |= FCRTL_XONE;
3446 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3447 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3448 WMREG_OLD_FCRTL : WMREG_FCRTL,
3449 sc->sc_fcrtl);
3450 sc->sc_tbi_linkup = 1;
3451 }
3452
3453 wm_tbi_set_linkled(sc);
3454 }
3455
3456 /*
3457 * wm_gmii_reset:
3458 *
3459 * Reset the PHY.
3460 */
3461 static void
3462 wm_gmii_reset(struct wm_softc *sc)
3463 {
3464 uint32_t reg;
3465
3466 if (sc->sc_type >= WM_T_82544) {
3467 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3468 delay(20000);
3469
3470 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3471 delay(20000);
3472 } else {
3473 /* The PHY reset pin is active-low. */
3474 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3475 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3476 CTRL_EXT_SWDPIN(4));
3477 reg |= CTRL_EXT_SWDPIO(4);
3478
3479 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3480 delay(10);
3481
3482 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3483 delay(10);
3484
3485 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3486 delay(10);
3487 #if 0
3488 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3489 #endif
3490 }
3491 }
3492
3493 /*
3494 * wm_gmii_mediainit:
3495 *
3496 * Initialize media for use on 1000BASE-T devices.
3497 */
3498 static void
3499 wm_gmii_mediainit(struct wm_softc *sc)
3500 {
3501 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3502
3503 /* We have MII. */
3504 sc->sc_flags |= WM_F_HAS_MII;
3505
3506 sc->sc_tipg = TIPG_1000T_DFLT;
3507
3508 /*
3509 * Let the chip set speed/duplex on its own based on
3510 * signals from the PHY.
3511 */
3512 sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3513 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3514
3515 /* Initialize our media structures and probe the GMII. */
3516 sc->sc_mii.mii_ifp = ifp;
3517
3518 if (sc->sc_type >= WM_T_82544) {
3519 sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3520 sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3521 } else {
3522 sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3523 sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3524 }
3525 sc->sc_mii.mii_statchg = wm_gmii_statchg;
3526
3527 wm_gmii_reset(sc);
3528
3529 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3530 wm_gmii_mediastatus);
3531
3532 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3533 MII_OFFSET_ANY, MIIF_DOPAUSE);
3534 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3535 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3536 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3537 } else
3538 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3539 }
3540
3541 /*
3542 * wm_gmii_mediastatus: [ifmedia interface function]
3543 *
3544 * Get the current interface media status on a 1000BASE-T device.
3545 */
3546 static void
3547 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3548 {
3549 struct wm_softc *sc = ifp->if_softc;
3550
3551 mii_pollstat(&sc->sc_mii);
3552 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3553 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3554 sc->sc_flowflags;
3555 }
3556
3557 /*
3558 * wm_gmii_mediachange: [ifmedia interface function]
3559 *
3560 * Set hardware to newly-selected media on a 1000BASE-T device.
3561 */
3562 static int
3563 wm_gmii_mediachange(struct ifnet *ifp)
3564 {
3565 struct wm_softc *sc = ifp->if_softc;
3566
3567 if (ifp->if_flags & IFF_UP)
3568 mii_mediachg(&sc->sc_mii);
3569 return (0);
3570 }
3571
3572 #define MDI_IO CTRL_SWDPIN(2)
3573 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
3574 #define MDI_CLK CTRL_SWDPIN(3)
3575
3576 static void
3577 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3578 {
3579 uint32_t i, v;
3580
3581 v = CSR_READ(sc, WMREG_CTRL);
3582 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3583 v |= MDI_DIR | CTRL_SWDPIO(3);
3584
3585 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3586 if (data & i)
3587 v |= MDI_IO;
3588 else
3589 v &= ~MDI_IO;
3590 CSR_WRITE(sc, WMREG_CTRL, v);
3591 delay(10);
3592 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3593 delay(10);
3594 CSR_WRITE(sc, WMREG_CTRL, v);
3595 delay(10);
3596 }
3597 }
3598
3599 static uint32_t
3600 i82543_mii_recvbits(struct wm_softc *sc)
3601 {
3602 uint32_t v, i, data = 0;
3603
3604 v = CSR_READ(sc, WMREG_CTRL);
3605 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3606 v |= CTRL_SWDPIO(3);
3607
3608 CSR_WRITE(sc, WMREG_CTRL, v);
3609 delay(10);
3610 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3611 delay(10);
3612 CSR_WRITE(sc, WMREG_CTRL, v);
3613 delay(10);
3614
3615 for (i = 0; i < 16; i++) {
3616 data <<= 1;
3617 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3618 delay(10);
3619 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3620 data |= 1;
3621 CSR_WRITE(sc, WMREG_CTRL, v);
3622 delay(10);
3623 }
3624
3625 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3626 delay(10);
3627 CSR_WRITE(sc, WMREG_CTRL, v);
3628 delay(10);
3629
3630 return (data);
3631 }
3632
3633 #undef MDI_IO
3634 #undef MDI_DIR
3635 #undef MDI_CLK
3636
3637 /*
3638 * wm_gmii_i82543_readreg: [mii interface function]
3639 *
3640 * Read a PHY register on the GMII (i82543 version).
3641 */
3642 static int
3643 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3644 {
3645 struct wm_softc *sc = (void *) self;
3646 int rv;
3647
3648 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3649 i82543_mii_sendbits(sc, reg | (phy << 5) |
3650 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3651 rv = i82543_mii_recvbits(sc) & 0xffff;
3652
3653 DPRINTF(WM_DEBUG_GMII,
3654 ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3655 sc->sc_dev.dv_xname, phy, reg, rv));
3656
3657 return (rv);
3658 }
3659
3660 /*
3661 * wm_gmii_i82543_writereg: [mii interface function]
3662 *
3663 * Write a PHY register on the GMII (i82543 version).
3664 */
3665 static void
3666 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3667 {
3668 struct wm_softc *sc = (void *) self;
3669
3670 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3671 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3672 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3673 (MII_COMMAND_START << 30), 32);
3674 }
3675
3676 /*
3677 * wm_gmii_i82544_readreg: [mii interface function]
3678 *
3679 * Read a PHY register on the GMII.
3680 */
3681 static int
3682 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
3683 {
3684 struct wm_softc *sc = (void *) self;
3685 uint32_t mdic = 0;
3686 int i, rv;
3687
3688 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
3689 MDIC_REGADD(reg));
3690
3691 for (i = 0; i < 100; i++) {
3692 mdic = CSR_READ(sc, WMREG_MDIC);
3693 if (mdic & MDIC_READY)
3694 break;
3695 delay(10);
3696 }
3697
3698 if ((mdic & MDIC_READY) == 0) {
3699 log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
3700 sc->sc_dev.dv_xname, phy, reg);
3701 rv = 0;
3702 } else if (mdic & MDIC_E) {
3703 #if 0 /* This is normal if no PHY is present. */
3704 log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
3705 sc->sc_dev.dv_xname, phy, reg);
3706 #endif
3707 rv = 0;
3708 } else {
3709 rv = MDIC_DATA(mdic);
3710 if (rv == 0xffff)
3711 rv = 0;
3712 }
3713
3714 return (rv);
3715 }
3716
3717 /*
3718 * wm_gmii_i82544_writereg: [mii interface function]
3719 *
3720 * Write a PHY register on the GMII.
3721 */
3722 static void
3723 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
3724 {
3725 struct wm_softc *sc = (void *) self;
3726 uint32_t mdic = 0;
3727 int i;
3728
3729 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
3730 MDIC_REGADD(reg) | MDIC_DATA(val));
3731
3732 for (i = 0; i < 100; i++) {
3733 mdic = CSR_READ(sc, WMREG_MDIC);
3734 if (mdic & MDIC_READY)
3735 break;
3736 delay(10);
3737 }
3738
3739 if ((mdic & MDIC_READY) == 0)
3740 log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
3741 sc->sc_dev.dv_xname, phy, reg);
3742 else if (mdic & MDIC_E)
3743 log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
3744 sc->sc_dev.dv_xname, phy, reg);
3745 }
3746
3747 /*
3748 * wm_gmii_statchg: [mii interface function]
3749 *
3750 * Callback from MII layer when media changes.
3751 */
3752 static void
3753 wm_gmii_statchg(struct device *self)
3754 {
3755 struct wm_softc *sc = (void *) self;
3756 struct mii_data *mii = &sc->sc_mii;
3757
3758 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
3759 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3760 sc->sc_fcrtl &= ~FCRTL_XONE;
3761
3762 /*
3763 * Get flow control negotiation result.
3764 */
3765 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3766 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3767 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3768 mii->mii_media_active &= ~IFM_ETH_FMASK;
3769 }
3770
3771 if (sc->sc_flowflags & IFM_FLOW) {
3772 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
3773 sc->sc_ctrl |= CTRL_TFCE;
3774 sc->sc_fcrtl |= FCRTL_XONE;
3775 }
3776 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3777 sc->sc_ctrl |= CTRL_RFCE;
3778 }
3779
3780 if (sc->sc_mii.mii_media_active & IFM_FDX) {
3781 DPRINTF(WM_DEBUG_LINK,
3782 ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3783 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3784 } else {
3785 DPRINTF(WM_DEBUG_LINK,
3786 ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3787 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3788 }
3789
3790 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3791 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3792 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
3793 : WMREG_FCRTL, sc->sc_fcrtl);
3794 }
3795