if_wm.c revision 1.93 1 /* $NetBSD: if_wm.c,v 1.93 2005/02/18 05:58:31 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40 *
41 * TODO (in order of importance):
42 *
43 * - Rework how parameters are loaded from the EEPROM.
44 * - Figure out what to do with the i82545GM and i82546GB
45 * SERDES controllers.
46 * - Fix hw VLAN assist.
47 */
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.93 2005/02/18 05:58:31 thorpej Exp $");
51
52 #include "bpfilter.h"
53 #include "rnd.h"
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67
68 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
69
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82
83 #include <netinet/in.h> /* XXX for struct ip */
84 #include <netinet/in_systm.h> /* XXX for struct ip */
85 #include <netinet/ip.h> /* XXX for struct ip */
86 #include <netinet/tcp.h> /* XXX for struct tcphdr */
87
88 #include <machine/bus.h>
89 #include <machine/intr.h>
90 #include <machine/endian.h>
91
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99
100 #include <dev/pci/if_wmreg.h>
101
102 #ifdef WM_DEBUG
103 #define WM_DEBUG_LINK 0x01
104 #define WM_DEBUG_TX 0x02
105 #define WM_DEBUG_RX 0x04
106 #define WM_DEBUG_GMII 0x08
107 int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
108
109 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
110 #else
111 #define DPRINTF(x, y) /* nothing */
112 #endif /* WM_DEBUG */
113
114 /*
115 * Transmit descriptor list size. Due to errata, we can only have
116 * 256 hardware descriptors in the ring on < 82544, but we use 4096
117 * on >= 82544. We tell the upper layers that they can queue a lot
118 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
119 * of them at a time.
120 *
121 * We allow up to 256 (!) DMA segments per packet. Pathological packet
122 * chains containing many small mbufs have been observed in zero-copy
123 * situations with jumbo frames.
124 */
125 #define WM_NTXSEGS 256
126 #define WM_IFQUEUELEN 256
127 #define WM_TXQUEUELEN_MAX 64
128 #define WM_TXQUEUELEN_MAX_82547 16
129 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
130 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
131 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
132 #define WM_NTXDESC_82542 256
133 #define WM_NTXDESC_82544 4096
134 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
135 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
136 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
137 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
138 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
139
140 #define WM_MAXTXDMA ETHER_MAX_LEN_JUMBO
141
142 /*
143 * Receive descriptor list size. We have one Rx buffer for normal
144 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
145 * packet. We allocate 256 receive descriptors, each with a 2k
146 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
147 */
148 #define WM_NRXDESC 256
149 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
150 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
151 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
152
153 /*
154 * Control structures are DMA'd to the i82542 chip. We allocate them in
155 * a single clump that maps to a single DMA segment to make serveral things
156 * easier.
157 */
158 struct wm_control_data_82544 {
159 /*
160 * The receive descriptors.
161 */
162 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
163
164 /*
165 * The transmit descriptors. Put these at the end, because
166 * we might use a smaller number of them.
167 */
168 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
169 };
170
171 struct wm_control_data_82542 {
172 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
173 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
174 };
175
176 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
177 #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)])
178 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
179
180 /*
181 * Software state for transmit jobs.
182 */
183 struct wm_txsoft {
184 struct mbuf *txs_mbuf; /* head of our mbuf chain */
185 bus_dmamap_t txs_dmamap; /* our DMA map */
186 int txs_firstdesc; /* first descriptor in packet */
187 int txs_lastdesc; /* last descriptor in packet */
188 int txs_ndesc; /* # of descriptors used */
189 };
190
191 /*
192 * Software state for receive buffers. Each descriptor gets a
193 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
194 * more than one buffer, we chain them together.
195 */
196 struct wm_rxsoft {
197 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
198 bus_dmamap_t rxs_dmamap; /* our DMA map */
199 };
200
201 typedef enum {
202 WM_T_unknown = 0,
203 WM_T_82542_2_0, /* i82542 2.0 (really old) */
204 WM_T_82542_2_1, /* i82542 2.1+ (old) */
205 WM_T_82543, /* i82543 */
206 WM_T_82544, /* i82544 */
207 WM_T_82540, /* i82540 */
208 WM_T_82545, /* i82545 */
209 WM_T_82545_3, /* i82545 3.0+ */
210 WM_T_82546, /* i82546 */
211 WM_T_82546_3, /* i82546 3.0+ */
212 WM_T_82541, /* i82541 */
213 WM_T_82541_2, /* i82541 2.0+ */
214 WM_T_82547, /* i82547 */
215 WM_T_82547_2, /* i82547 2.0+ */
216 } wm_chip_type;
217
218 /*
219 * Software state per device.
220 */
221 struct wm_softc {
222 struct device sc_dev; /* generic device information */
223 bus_space_tag_t sc_st; /* bus space tag */
224 bus_space_handle_t sc_sh; /* bus space handle */
225 bus_space_tag_t sc_iot; /* I/O space tag */
226 bus_space_handle_t sc_ioh; /* I/O space handle */
227 bus_dma_tag_t sc_dmat; /* bus DMA tag */
228 struct ethercom sc_ethercom; /* ethernet common data */
229 void *sc_sdhook; /* shutdown hook */
230
231 wm_chip_type sc_type; /* chip type */
232 int sc_flags; /* flags; see below */
233 int sc_bus_speed; /* PCI/PCIX bus speed */
234 int sc_pcix_offset; /* PCIX capability register offset */
235 int sc_flowflags; /* 802.3x flow control flags */
236
237 void *sc_ih; /* interrupt cookie */
238
239 int sc_ee_addrbits; /* EEPROM address bits */
240
241 struct mii_data sc_mii; /* MII/media information */
242
243 struct callout sc_tick_ch; /* tick callout */
244
245 bus_dmamap_t sc_cddmamap; /* control data DMA map */
246 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
247
248 int sc_align_tweak;
249
250 /*
251 * Software state for the transmit and receive descriptors.
252 */
253 int sc_txnum; /* must be a power of two */
254 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
255 struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
256
257 /*
258 * Control data structures.
259 */
260 int sc_ntxdesc; /* must be a power of two */
261 struct wm_control_data_82544 *sc_control_data;
262 #define sc_txdescs sc_control_data->wcd_txdescs
263 #define sc_rxdescs sc_control_data->wcd_rxdescs
264
265 #ifdef WM_EVENT_COUNTERS
266 /* Event counters. */
267 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
268 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
269 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
270 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
271 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
272 struct evcnt sc_ev_rxintr; /* Rx interrupts */
273 struct evcnt sc_ev_linkintr; /* Link interrupts */
274
275 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
276 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
277 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
278 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
279
280 /* m_pullup() needed for Tx offload */
281 struct evcnt sc_ev_txpullup_needed;
282 /* ...failed due to no memory */
283 struct evcnt sc_ev_txpullup_nomem;
284 /* ...failed due to lack of space in first mbuf */
285 struct evcnt sc_ev_txpullup_fail;
286
287 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
288 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
289
290 struct evcnt sc_ev_tu; /* Tx underrun */
291
292 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
293 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
294 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
295 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
296 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
297 #endif /* WM_EVENT_COUNTERS */
298
299 bus_addr_t sc_tdt_reg; /* offset of TDT register */
300
301 int sc_txfree; /* number of free Tx descriptors */
302 int sc_txnext; /* next ready Tx descriptor */
303
304 int sc_txsfree; /* number of free Tx jobs */
305 int sc_txsnext; /* next free Tx job */
306 int sc_txsdirty; /* dirty Tx jobs */
307
308 /* These 5 variables are used only on the 82547. */
309 int sc_txfifo_size; /* Tx FIFO size */
310 int sc_txfifo_head; /* current head of FIFO */
311 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
312 int sc_txfifo_stall; /* Tx FIFO is stalled */
313 struct callout sc_txfifo_ch; /* Tx FIFO stall work-around timer */
314
315 bus_addr_t sc_rdt_reg; /* offset of RDT register */
316
317 int sc_rxptr; /* next ready Rx descriptor/queue ent */
318 int sc_rxdiscard;
319 int sc_rxlen;
320 struct mbuf *sc_rxhead;
321 struct mbuf *sc_rxtail;
322 struct mbuf **sc_rxtailp;
323
324 uint32_t sc_ctrl; /* prototype CTRL register */
325 #if 0
326 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
327 #endif
328 uint32_t sc_icr; /* prototype interrupt bits */
329 uint32_t sc_itr; /* prototype intr throttling reg */
330 uint32_t sc_tctl; /* prototype TCTL register */
331 uint32_t sc_rctl; /* prototype RCTL register */
332 uint32_t sc_txcw; /* prototype TXCW register */
333 uint32_t sc_tipg; /* prototype TIPG register */
334 uint32_t sc_fcrtl; /* prototype FCRTL register */
335 uint32_t sc_pba; /* prototype PBA register */
336
337 int sc_tbi_linkup; /* TBI link status */
338 int sc_tbi_anstate; /* autonegotiation state */
339
340 int sc_mchash_type; /* multicast filter offset */
341
342 #if NRND > 0
343 rndsource_element_t rnd_source; /* random source */
344 #endif
345 };
346
347 #define WM_RXCHAIN_RESET(sc) \
348 do { \
349 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
350 *(sc)->sc_rxtailp = NULL; \
351 (sc)->sc_rxlen = 0; \
352 } while (/*CONSTCOND*/0)
353
354 #define WM_RXCHAIN_LINK(sc, m) \
355 do { \
356 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
357 (sc)->sc_rxtailp = &(m)->m_next; \
358 } while (/*CONSTCOND*/0)
359
360 /* sc_flags */
361 #define WM_F_HAS_MII 0x01 /* has MII */
362 #define WM_F_EEPROM_HANDSHAKE 0x02 /* requires EEPROM handshake */
363 #define WM_F_EEPROM_SPI 0x04 /* EEPROM is SPI */
364 #define WM_F_IOH_VALID 0x10 /* I/O handle is valid */
365 #define WM_F_BUS64 0x20 /* bus is 64-bit */
366 #define WM_F_PCIX 0x40 /* bus is PCI-X */
367 #define WM_F_CSA 0x80 /* bus is CSA */
368
369 #ifdef WM_EVENT_COUNTERS
370 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
371 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
372 #else
373 #define WM_EVCNT_INCR(ev) /* nothing */
374 #define WM_EVCNT_ADD(ev, val) /* nothing */
375 #endif
376
377 #define CSR_READ(sc, reg) \
378 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
379 #define CSR_WRITE(sc, reg, val) \
380 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
381 #define CSR_WRITE_FLUSH(sc) \
382 (void) CSR_READ((sc), WMREG_STATUS)
383
384 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
385 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
386
387 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
388 #define WM_CDTXADDR_HI(sc, x) \
389 (sizeof(bus_addr_t) == 8 ? \
390 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
391
392 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
393 #define WM_CDRXADDR_HI(sc, x) \
394 (sizeof(bus_addr_t) == 8 ? \
395 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
396
397 #define WM_CDTXSYNC(sc, x, n, ops) \
398 do { \
399 int __x, __n; \
400 \
401 __x = (x); \
402 __n = (n); \
403 \
404 /* If it will wrap around, sync to the end of the ring. */ \
405 if ((__x + __n) > WM_NTXDESC(sc)) { \
406 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
407 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
408 (WM_NTXDESC(sc) - __x), (ops)); \
409 __n -= (WM_NTXDESC(sc) - __x); \
410 __x = 0; \
411 } \
412 \
413 /* Now sync whatever is left. */ \
414 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
415 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
416 } while (/*CONSTCOND*/0)
417
418 #define WM_CDRXSYNC(sc, x, ops) \
419 do { \
420 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
421 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
422 } while (/*CONSTCOND*/0)
423
424 #define WM_INIT_RXDESC(sc, x) \
425 do { \
426 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
427 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
428 struct mbuf *__m = __rxs->rxs_mbuf; \
429 \
430 /* \
431 * Note: We scoot the packet forward 2 bytes in the buffer \
432 * so that the payload after the Ethernet header is aligned \
433 * to a 4-byte boundary. \
434 * \
435 * XXX BRAINDAMAGE ALERT! \
436 * The stupid chip uses the same size for every buffer, which \
437 * is set in the Receive Control register. We are using the 2K \
438 * size option, but what we REALLY want is (2K - 2)! For this \
439 * reason, we can't "scoot" packets longer than the standard \
440 * Ethernet MTU. On strict-alignment platforms, if the total \
441 * size exceeds (2K - 2) we set align_tweak to 0 and let \
442 * the upper layer copy the headers. \
443 */ \
444 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
445 \
446 wm_set_dma_addr(&__rxd->wrx_addr, \
447 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
448 __rxd->wrx_len = 0; \
449 __rxd->wrx_cksum = 0; \
450 __rxd->wrx_status = 0; \
451 __rxd->wrx_errors = 0; \
452 __rxd->wrx_special = 0; \
453 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
454 \
455 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
456 } while (/*CONSTCOND*/0)
457
458 static void wm_start(struct ifnet *);
459 static void wm_watchdog(struct ifnet *);
460 static int wm_ioctl(struct ifnet *, u_long, caddr_t);
461 static int wm_init(struct ifnet *);
462 static void wm_stop(struct ifnet *, int);
463
464 static void wm_shutdown(void *);
465
466 static void wm_reset(struct wm_softc *);
467 static void wm_rxdrain(struct wm_softc *);
468 static int wm_add_rxbuf(struct wm_softc *, int);
469 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
470 static void wm_tick(void *);
471
472 static void wm_set_filter(struct wm_softc *);
473
474 static int wm_intr(void *);
475 static void wm_txintr(struct wm_softc *);
476 static void wm_rxintr(struct wm_softc *);
477 static void wm_linkintr(struct wm_softc *, uint32_t);
478
479 static void wm_tbi_mediainit(struct wm_softc *);
480 static int wm_tbi_mediachange(struct ifnet *);
481 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
482
483 static void wm_tbi_set_linkled(struct wm_softc *);
484 static void wm_tbi_check_link(struct wm_softc *);
485
486 static void wm_gmii_reset(struct wm_softc *);
487
488 static int wm_gmii_i82543_readreg(struct device *, int, int);
489 static void wm_gmii_i82543_writereg(struct device *, int, int, int);
490
491 static int wm_gmii_i82544_readreg(struct device *, int, int);
492 static void wm_gmii_i82544_writereg(struct device *, int, int, int);
493
494 static void wm_gmii_statchg(struct device *);
495
496 static void wm_gmii_mediainit(struct wm_softc *);
497 static int wm_gmii_mediachange(struct ifnet *);
498 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
499
500 static int wm_match(struct device *, struct cfdata *, void *);
501 static void wm_attach(struct device *, struct device *, void *);
502
503 CFATTACH_DECL(wm, sizeof(struct wm_softc),
504 wm_match, wm_attach, NULL, NULL);
505
506 static void wm_82547_txfifo_stall(void *);
507
508 /*
509 * Devices supported by this driver.
510 */
511 static const struct wm_product {
512 pci_vendor_id_t wmp_vendor;
513 pci_product_id_t wmp_product;
514 const char *wmp_name;
515 wm_chip_type wmp_type;
516 int wmp_flags;
517 #define WMP_F_1000X 0x01
518 #define WMP_F_1000T 0x02
519 } wm_products[] = {
520 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
521 "Intel i82542 1000BASE-X Ethernet",
522 WM_T_82542_2_1, WMP_F_1000X },
523
524 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
525 "Intel i82543GC 1000BASE-X Ethernet",
526 WM_T_82543, WMP_F_1000X },
527
528 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
529 "Intel i82543GC 1000BASE-T Ethernet",
530 WM_T_82543, WMP_F_1000T },
531
532 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
533 "Intel i82544EI 1000BASE-T Ethernet",
534 WM_T_82544, WMP_F_1000T },
535
536 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
537 "Intel i82544EI 1000BASE-X Ethernet",
538 WM_T_82544, WMP_F_1000X },
539
540 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
541 "Intel i82544GC 1000BASE-T Ethernet",
542 WM_T_82544, WMP_F_1000T },
543
544 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
545 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
546 WM_T_82544, WMP_F_1000T },
547
548 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
549 "Intel i82540EM 1000BASE-T Ethernet",
550 WM_T_82540, WMP_F_1000T },
551
552 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
553 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
554 WM_T_82540, WMP_F_1000T },
555
556 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
557 "Intel i82540EP 1000BASE-T Ethernet",
558 WM_T_82540, WMP_F_1000T },
559
560 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
561 "Intel i82540EP 1000BASE-T Ethernet",
562 WM_T_82540, WMP_F_1000T },
563
564 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
565 "Intel i82540EP 1000BASE-T Ethernet",
566 WM_T_82540, WMP_F_1000T },
567
568 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
569 "Intel i82545EM 1000BASE-T Ethernet",
570 WM_T_82545, WMP_F_1000T },
571
572 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
573 "Intel i82545GM 1000BASE-T Ethernet",
574 WM_T_82545_3, WMP_F_1000T },
575
576 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
577 "Intel i82545GM 1000BASE-X Ethernet",
578 WM_T_82545_3, WMP_F_1000X },
579 #if 0
580 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
581 "Intel i82545GM Gigabit Ethernet (SERDES)",
582 WM_T_82545_3, WMP_F_SERDES },
583 #endif
584 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
585 "Intel i82546EB 1000BASE-T Ethernet",
586 WM_T_82546, WMP_F_1000T },
587
588 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
589 "Intel i82546EB 1000BASE-T Ethernet",
590 WM_T_82546, WMP_F_1000T },
591
592 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
593 "Intel i82545EM 1000BASE-X Ethernet",
594 WM_T_82545, WMP_F_1000X },
595
596 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
597 "Intel i82546EB 1000BASE-X Ethernet",
598 WM_T_82546, WMP_F_1000X },
599
600 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
601 "Intel i82546GB 1000BASE-T Ethernet",
602 WM_T_82546_3, WMP_F_1000T },
603
604 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
605 "Intel i82546GB 1000BASE-X Ethernet",
606 WM_T_82546_3, WMP_F_1000X },
607 #if 0
608 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
609 "Intel i82546GB Gigabit Ethernet (SERDES)",
610 WM_T_82546_3, WMP_F_SERDES },
611 #endif
612 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
613 "Intel i82541EI 1000BASE-T Ethernet",
614 WM_T_82541, WMP_F_1000T },
615
616 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
617 "Intel i82541EI Mobile 1000BASE-T Ethernet",
618 WM_T_82541, WMP_F_1000T },
619
620 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
621 "Intel i82541ER 1000BASE-T Ethernet",
622 WM_T_82541_2, WMP_F_1000T },
623
624 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
625 "Intel i82541GI 1000BASE-T Ethernet",
626 WM_T_82541_2, WMP_F_1000T },
627
628 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
629 "Intel i82541GI Mobile 1000BASE-T Ethernet",
630 WM_T_82541_2, WMP_F_1000T },
631
632 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
633 "Intel i82547EI 1000BASE-T Ethernet",
634 WM_T_82547, WMP_F_1000T },
635
636 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
637 "Intel i82547GI 1000BASE-T Ethernet",
638 WM_T_82547_2, WMP_F_1000T },
639 { 0, 0,
640 NULL,
641 0, 0 },
642 };
643
644 #ifdef WM_EVENT_COUNTERS
645 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
646 #endif /* WM_EVENT_COUNTERS */
647
648 #if 0 /* Not currently used */
649 static __inline uint32_t
650 wm_io_read(struct wm_softc *sc, int reg)
651 {
652
653 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
654 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
655 }
656 #endif
657
658 static __inline void
659 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
660 {
661
662 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
663 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
664 }
665
666 static __inline void
667 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
668 {
669 wa->wa_low = htole32(v & 0xffffffffU);
670 if (sizeof(bus_addr_t) == 8)
671 wa->wa_high = htole32((uint64_t) v >> 32);
672 else
673 wa->wa_high = 0;
674 }
675
676 static const struct wm_product *
677 wm_lookup(const struct pci_attach_args *pa)
678 {
679 const struct wm_product *wmp;
680
681 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
682 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
683 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
684 return (wmp);
685 }
686 return (NULL);
687 }
688
689 static int
690 wm_match(struct device *parent, struct cfdata *cf, void *aux)
691 {
692 struct pci_attach_args *pa = aux;
693
694 if (wm_lookup(pa) != NULL)
695 return (1);
696
697 return (0);
698 }
699
700 static void
701 wm_attach(struct device *parent, struct device *self, void *aux)
702 {
703 struct wm_softc *sc = (void *) self;
704 struct pci_attach_args *pa = aux;
705 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
706 pci_chipset_tag_t pc = pa->pa_pc;
707 pci_intr_handle_t ih;
708 size_t cdata_size;
709 const char *intrstr = NULL;
710 const char *eetype;
711 bus_space_tag_t memt;
712 bus_space_handle_t memh;
713 bus_dma_segment_t seg;
714 int memh_valid;
715 int i, rseg, error;
716 const struct wm_product *wmp;
717 uint8_t enaddr[ETHER_ADDR_LEN];
718 uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
719 pcireg_t preg, memtype;
720 uint32_t reg;
721 int pmreg;
722
723 callout_init(&sc->sc_tick_ch);
724
725 wmp = wm_lookup(pa);
726 if (wmp == NULL) {
727 printf("\n");
728 panic("wm_attach: impossible");
729 }
730
731 if (pci_dma64_available(pa))
732 sc->sc_dmat = pa->pa_dmat64;
733 else
734 sc->sc_dmat = pa->pa_dmat;
735
736 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
737 aprint_naive(": Ethernet controller\n");
738 aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
739
740 sc->sc_type = wmp->wmp_type;
741 if (sc->sc_type < WM_T_82543) {
742 if (preg < 2) {
743 aprint_error("%s: i82542 must be at least rev. 2\n",
744 sc->sc_dev.dv_xname);
745 return;
746 }
747 if (preg < 3)
748 sc->sc_type = WM_T_82542_2_0;
749 }
750
751 /*
752 * Map the device. All devices support memory-mapped acccess,
753 * and it is really required for normal operation.
754 */
755 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
756 switch (memtype) {
757 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
758 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
759 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
760 memtype, 0, &memt, &memh, NULL, NULL) == 0);
761 break;
762 default:
763 memh_valid = 0;
764 }
765
766 if (memh_valid) {
767 sc->sc_st = memt;
768 sc->sc_sh = memh;
769 } else {
770 aprint_error("%s: unable to map device registers\n",
771 sc->sc_dev.dv_xname);
772 return;
773 }
774
775 /*
776 * In addition, i82544 and later support I/O mapped indirect
777 * register access. It is not desirable (nor supported in
778 * this driver) to use it for normal operation, though it is
779 * required to work around bugs in some chip versions.
780 */
781 if (sc->sc_type >= WM_T_82544) {
782 /* First we have to find the I/O BAR. */
783 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
784 if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
785 PCI_MAPREG_TYPE_IO)
786 break;
787 }
788 if (i == PCI_MAPREG_END)
789 aprint_error("%s: WARNING: unable to find I/O BAR\n",
790 sc->sc_dev.dv_xname);
791 else {
792 /*
793 * The i8254x doesn't apparently respond when the
794 * I/O BAR is 0, which looks somewhat like it's not
795 * been configured.
796 */
797 preg = pci_conf_read(pc, pa->pa_tag, i);
798 if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
799 aprint_error("%s: WARNING: I/O BAR at zero.\n",
800 sc->sc_dev.dv_xname);
801 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
802 0, &sc->sc_iot, &sc->sc_ioh,
803 NULL, NULL) == 0) {
804 sc->sc_flags |= WM_F_IOH_VALID;
805 } else {
806 aprint_error("%s: WARNING: unable to map "
807 "I/O space\n", sc->sc_dev.dv_xname);
808 }
809 }
810
811 }
812
813 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
814 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
815 preg |= PCI_COMMAND_MASTER_ENABLE;
816 if (sc->sc_type < WM_T_82542_2_1)
817 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
818 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
819
820 /* Get it out of power save mode, if needed. */
821 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
822 preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
823 PCI_PMCSR_STATE_MASK;
824 if (preg == PCI_PMCSR_STATE_D3) {
825 /*
826 * The card has lost all configuration data in
827 * this state, so punt.
828 */
829 aprint_error("%s: unable to wake from power state D3\n",
830 sc->sc_dev.dv_xname);
831 return;
832 }
833 if (preg != PCI_PMCSR_STATE_D0) {
834 aprint_normal("%s: waking up from power state D%d\n",
835 sc->sc_dev.dv_xname, preg);
836 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
837 PCI_PMCSR_STATE_D0);
838 }
839 }
840
841 /*
842 * Map and establish our interrupt.
843 */
844 if (pci_intr_map(pa, &ih)) {
845 aprint_error("%s: unable to map interrupt\n",
846 sc->sc_dev.dv_xname);
847 return;
848 }
849 intrstr = pci_intr_string(pc, ih);
850 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
851 if (sc->sc_ih == NULL) {
852 aprint_error("%s: unable to establish interrupt",
853 sc->sc_dev.dv_xname);
854 if (intrstr != NULL)
855 aprint_normal(" at %s", intrstr);
856 aprint_normal("\n");
857 return;
858 }
859 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
860
861 /*
862 * Determine a few things about the bus we're connected to.
863 */
864 if (sc->sc_type < WM_T_82543) {
865 /* We don't really know the bus characteristics here. */
866 sc->sc_bus_speed = 33;
867 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
868 /*
869 * CSA (Communication Streaming Architecture) is about as fast
870 * a 32-bit 66MHz PCI Bus.
871 */
872 sc->sc_flags |= WM_F_CSA;
873 sc->sc_bus_speed = 66;
874 aprint_verbose("%s: Communication Streaming Architecture\n",
875 sc->sc_dev.dv_xname);
876 if (sc->sc_type == WM_T_82547) {
877 callout_init(&sc->sc_txfifo_ch);
878 callout_setfunc(&sc->sc_txfifo_ch,
879 wm_82547_txfifo_stall, sc);
880 aprint_verbose("%s: using 82547 Tx FIFO stall "
881 "work-around\n", sc->sc_dev.dv_xname);
882 }
883 } else {
884 reg = CSR_READ(sc, WMREG_STATUS);
885 if (reg & STATUS_BUS64)
886 sc->sc_flags |= WM_F_BUS64;
887 if (sc->sc_type >= WM_T_82544 &&
888 (reg & STATUS_PCIX_MODE) != 0) {
889 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
890
891 sc->sc_flags |= WM_F_PCIX;
892 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
893 PCI_CAP_PCIX,
894 &sc->sc_pcix_offset, NULL) == 0)
895 aprint_error("%s: unable to find PCIX "
896 "capability\n", sc->sc_dev.dv_xname);
897 else if (sc->sc_type != WM_T_82545_3 &&
898 sc->sc_type != WM_T_82546_3) {
899 /*
900 * Work around a problem caused by the BIOS
901 * setting the max memory read byte count
902 * incorrectly.
903 */
904 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
905 sc->sc_pcix_offset + PCI_PCIX_CMD);
906 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
907 sc->sc_pcix_offset + PCI_PCIX_STATUS);
908
909 bytecnt =
910 (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
911 PCI_PCIX_CMD_BYTECNT_SHIFT;
912 maxb =
913 (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
914 PCI_PCIX_STATUS_MAXB_SHIFT;
915 if (bytecnt > maxb) {
916 aprint_verbose("%s: resetting PCI-X "
917 "MMRBC: %d -> %d\n",
918 sc->sc_dev.dv_xname,
919 512 << bytecnt, 512 << maxb);
920 pcix_cmd = (pcix_cmd &
921 ~PCI_PCIX_CMD_BYTECNT_MASK) |
922 (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
923 pci_conf_write(pa->pa_pc, pa->pa_tag,
924 sc->sc_pcix_offset + PCI_PCIX_CMD,
925 pcix_cmd);
926 }
927 }
928 }
929 /*
930 * The quad port adapter is special; it has a PCIX-PCIX
931 * bridge on the board, and can run the secondary bus at
932 * a higher speed.
933 */
934 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
935 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
936 : 66;
937 } else if (sc->sc_flags & WM_F_PCIX) {
938 switch (reg & STATUS_PCIXSPD_MASK) {
939 case STATUS_PCIXSPD_50_66:
940 sc->sc_bus_speed = 66;
941 break;
942 case STATUS_PCIXSPD_66_100:
943 sc->sc_bus_speed = 100;
944 break;
945 case STATUS_PCIXSPD_100_133:
946 sc->sc_bus_speed = 133;
947 break;
948 default:
949 aprint_error(
950 "%s: unknown PCIXSPD %d; assuming 66MHz\n",
951 sc->sc_dev.dv_xname,
952 reg & STATUS_PCIXSPD_MASK);
953 sc->sc_bus_speed = 66;
954 }
955 } else
956 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
957 aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
958 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
959 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
960 }
961
962 /*
963 * Allocate the control data structures, and create and load the
964 * DMA map for it.
965 *
966 * NOTE: All Tx descriptors must be in the same 4G segment of
967 * memory. So must Rx descriptors. We simplify by allocating
968 * both sets within the same 4G segment.
969 */
970 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
971 WM_NTXDESC_82542 : WM_NTXDESC_82544;
972 cdata_size = sc->sc_type < WM_T_82544 ?
973 sizeof(struct wm_control_data_82542) :
974 sizeof(struct wm_control_data_82544);
975 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
976 (bus_size_t) 0x100000000ULL,
977 &seg, 1, &rseg, 0)) != 0) {
978 aprint_error(
979 "%s: unable to allocate control data, error = %d\n",
980 sc->sc_dev.dv_xname, error);
981 goto fail_0;
982 }
983
984 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
985 (caddr_t *)&sc->sc_control_data, 0)) != 0) {
986 aprint_error("%s: unable to map control data, error = %d\n",
987 sc->sc_dev.dv_xname, error);
988 goto fail_1;
989 }
990
991 if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
992 0, 0, &sc->sc_cddmamap)) != 0) {
993 aprint_error("%s: unable to create control data DMA map, "
994 "error = %d\n", sc->sc_dev.dv_xname, error);
995 goto fail_2;
996 }
997
998 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
999 sc->sc_control_data, cdata_size, NULL,
1000 0)) != 0) {
1001 aprint_error(
1002 "%s: unable to load control data DMA map, error = %d\n",
1003 sc->sc_dev.dv_xname, error);
1004 goto fail_3;
1005 }
1006
1007
1008 /*
1009 * Create the transmit buffer DMA maps.
1010 */
1011 WM_TXQUEUELEN(sc) =
1012 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1013 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1014 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1015 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1016 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1017 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1018 aprint_error("%s: unable to create Tx DMA map %d, "
1019 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1020 goto fail_4;
1021 }
1022 }
1023
1024 /*
1025 * Create the receive buffer DMA maps.
1026 */
1027 for (i = 0; i < WM_NRXDESC; i++) {
1028 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1029 MCLBYTES, 0, 0,
1030 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1031 aprint_error("%s: unable to create Rx DMA map %d, "
1032 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1033 goto fail_5;
1034 }
1035 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1036 }
1037
1038 /*
1039 * Reset the chip to a known state.
1040 */
1041 wm_reset(sc);
1042
1043 /*
1044 * Get some information about the EEPROM.
1045 */
1046 if (sc->sc_type >= WM_T_82540)
1047 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1048 if (sc->sc_type <= WM_T_82544)
1049 sc->sc_ee_addrbits = 6;
1050 else if (sc->sc_type <= WM_T_82546_3) {
1051 reg = CSR_READ(sc, WMREG_EECD);
1052 if (reg & EECD_EE_SIZE)
1053 sc->sc_ee_addrbits = 8;
1054 else
1055 sc->sc_ee_addrbits = 6;
1056 } else if (sc->sc_type <= WM_T_82547_2) {
1057 reg = CSR_READ(sc, WMREG_EECD);
1058 if (reg & EECD_EE_TYPE) {
1059 sc->sc_flags |= WM_F_EEPROM_SPI;
1060 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1061 } else
1062 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1063 } else {
1064 /* Assume everything else is SPI. */
1065 reg = CSR_READ(sc, WMREG_EECD);
1066 sc->sc_flags |= WM_F_EEPROM_SPI;
1067 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1068 }
1069 if (sc->sc_flags & WM_F_EEPROM_SPI)
1070 eetype = "SPI";
1071 else
1072 eetype = "MicroWire";
1073 aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1074 sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1075 sc->sc_ee_addrbits, eetype);
1076
1077 /*
1078 * Read the Ethernet address from the EEPROM.
1079 */
1080 if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1081 sizeof(myea) / sizeof(myea[0]), myea)) {
1082 aprint_error("%s: unable to read Ethernet address\n",
1083 sc->sc_dev.dv_xname);
1084 return;
1085 }
1086 enaddr[0] = myea[0] & 0xff;
1087 enaddr[1] = myea[0] >> 8;
1088 enaddr[2] = myea[1] & 0xff;
1089 enaddr[3] = myea[1] >> 8;
1090 enaddr[4] = myea[2] & 0xff;
1091 enaddr[5] = myea[2] >> 8;
1092
1093 /*
1094 * Toggle the LSB of the MAC address on the second port
1095 * of the i82546.
1096 */
1097 if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
1098 if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1099 enaddr[5] ^= 1;
1100 }
1101
1102 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1103 ether_sprintf(enaddr));
1104
1105 /*
1106 * Read the config info from the EEPROM, and set up various
1107 * bits in the control registers based on their contents.
1108 */
1109 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1110 aprint_error("%s: unable to read CFG1 from EEPROM\n",
1111 sc->sc_dev.dv_xname);
1112 return;
1113 }
1114 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1115 aprint_error("%s: unable to read CFG2 from EEPROM\n",
1116 sc->sc_dev.dv_xname);
1117 return;
1118 }
1119 if (sc->sc_type >= WM_T_82544) {
1120 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1121 aprint_error("%s: unable to read SWDPIN from EEPROM\n",
1122 sc->sc_dev.dv_xname);
1123 return;
1124 }
1125 }
1126
1127 if (cfg1 & EEPROM_CFG1_ILOS)
1128 sc->sc_ctrl |= CTRL_ILOS;
1129 if (sc->sc_type >= WM_T_82544) {
1130 sc->sc_ctrl |=
1131 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1132 CTRL_SWDPIO_SHIFT;
1133 sc->sc_ctrl |=
1134 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1135 CTRL_SWDPINS_SHIFT;
1136 } else {
1137 sc->sc_ctrl |=
1138 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1139 CTRL_SWDPIO_SHIFT;
1140 }
1141
1142 #if 0
1143 if (sc->sc_type >= WM_T_82544) {
1144 if (cfg1 & EEPROM_CFG1_IPS0)
1145 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1146 if (cfg1 & EEPROM_CFG1_IPS1)
1147 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1148 sc->sc_ctrl_ext |=
1149 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1150 CTRL_EXT_SWDPIO_SHIFT;
1151 sc->sc_ctrl_ext |=
1152 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1153 CTRL_EXT_SWDPINS_SHIFT;
1154 } else {
1155 sc->sc_ctrl_ext |=
1156 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1157 CTRL_EXT_SWDPIO_SHIFT;
1158 }
1159 #endif
1160
1161 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1162 #if 0
1163 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1164 #endif
1165
1166 /*
1167 * Set up some register offsets that are different between
1168 * the i82542 and the i82543 and later chips.
1169 */
1170 if (sc->sc_type < WM_T_82543) {
1171 sc->sc_rdt_reg = WMREG_OLD_RDT0;
1172 sc->sc_tdt_reg = WMREG_OLD_TDT;
1173 } else {
1174 sc->sc_rdt_reg = WMREG_RDT;
1175 sc->sc_tdt_reg = WMREG_TDT;
1176 }
1177
1178 /*
1179 * Determine if we're TBI or GMII mode, and initialize the
1180 * media structures accordingly.
1181 */
1182 if (sc->sc_type < WM_T_82543 ||
1183 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1184 if (wmp->wmp_flags & WMP_F_1000T)
1185 aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1186 "product!\n", sc->sc_dev.dv_xname);
1187 wm_tbi_mediainit(sc);
1188 } else {
1189 if (wmp->wmp_flags & WMP_F_1000X)
1190 aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1191 "product!\n", sc->sc_dev.dv_xname);
1192 wm_gmii_mediainit(sc);
1193 }
1194
1195 ifp = &sc->sc_ethercom.ec_if;
1196 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1197 ifp->if_softc = sc;
1198 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1199 ifp->if_ioctl = wm_ioctl;
1200 ifp->if_start = wm_start;
1201 ifp->if_watchdog = wm_watchdog;
1202 ifp->if_init = wm_init;
1203 ifp->if_stop = wm_stop;
1204 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1205 IFQ_SET_READY(&ifp->if_snd);
1206
1207 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1208
1209 /*
1210 * If we're a i82543 or greater, we can support VLANs.
1211 */
1212 if (sc->sc_type >= WM_T_82543)
1213 sc->sc_ethercom.ec_capabilities |=
1214 ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1215
1216 /*
1217 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
1218 * on i82543 and later.
1219 */
1220 if (sc->sc_type >= WM_T_82543)
1221 ifp->if_capabilities |=
1222 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
1223
1224 /*
1225 * Attach the interface.
1226 */
1227 if_attach(ifp);
1228 ether_ifattach(ifp, enaddr);
1229 #if NRND > 0
1230 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1231 RND_TYPE_NET, 0);
1232 #endif
1233
1234 #ifdef WM_EVENT_COUNTERS
1235 /* Attach event counters. */
1236 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1237 NULL, sc->sc_dev.dv_xname, "txsstall");
1238 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1239 NULL, sc->sc_dev.dv_xname, "txdstall");
1240 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1241 NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1242 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1243 NULL, sc->sc_dev.dv_xname, "txdw");
1244 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1245 NULL, sc->sc_dev.dv_xname, "txqe");
1246 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1247 NULL, sc->sc_dev.dv_xname, "rxintr");
1248 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1249 NULL, sc->sc_dev.dv_xname, "linkintr");
1250
1251 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1252 NULL, sc->sc_dev.dv_xname, "rxipsum");
1253 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1254 NULL, sc->sc_dev.dv_xname, "rxtusum");
1255 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1256 NULL, sc->sc_dev.dv_xname, "txipsum");
1257 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1258 NULL, sc->sc_dev.dv_xname, "txtusum");
1259
1260 evcnt_attach_dynamic(&sc->sc_ev_txpullup_needed, EVCNT_TYPE_MISC,
1261 NULL, sc->sc_dev.dv_xname, "txpullup needed");
1262 evcnt_attach_dynamic(&sc->sc_ev_txpullup_nomem, EVCNT_TYPE_MISC,
1263 NULL, sc->sc_dev.dv_xname, "txpullup nomem");
1264 evcnt_attach_dynamic(&sc->sc_ev_txpullup_fail, EVCNT_TYPE_MISC,
1265 NULL, sc->sc_dev.dv_xname, "txpullup fail");
1266
1267 for (i = 0; i < WM_NTXSEGS; i++) {
1268 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1269 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1270 NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1271 }
1272
1273 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1274 NULL, sc->sc_dev.dv_xname, "txdrop");
1275
1276 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1277 NULL, sc->sc_dev.dv_xname, "tu");
1278
1279 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1280 NULL, sc->sc_dev.dv_xname, "tx_xoff");
1281 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1282 NULL, sc->sc_dev.dv_xname, "tx_xon");
1283 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1284 NULL, sc->sc_dev.dv_xname, "rx_xoff");
1285 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1286 NULL, sc->sc_dev.dv_xname, "rx_xon");
1287 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1288 NULL, sc->sc_dev.dv_xname, "rx_macctl");
1289 #endif /* WM_EVENT_COUNTERS */
1290
1291 /*
1292 * Make sure the interface is shutdown during reboot.
1293 */
1294 sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1295 if (sc->sc_sdhook == NULL)
1296 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1297 sc->sc_dev.dv_xname);
1298 return;
1299
1300 /*
1301 * Free any resources we've allocated during the failed attach
1302 * attempt. Do this in reverse order and fall through.
1303 */
1304 fail_5:
1305 for (i = 0; i < WM_NRXDESC; i++) {
1306 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1307 bus_dmamap_destroy(sc->sc_dmat,
1308 sc->sc_rxsoft[i].rxs_dmamap);
1309 }
1310 fail_4:
1311 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1312 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1313 bus_dmamap_destroy(sc->sc_dmat,
1314 sc->sc_txsoft[i].txs_dmamap);
1315 }
1316 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1317 fail_3:
1318 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1319 fail_2:
1320 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1321 cdata_size);
1322 fail_1:
1323 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1324 fail_0:
1325 return;
1326 }
1327
1328 /*
1329 * wm_shutdown:
1330 *
1331 * Make sure the interface is stopped at reboot time.
1332 */
1333 static void
1334 wm_shutdown(void *arg)
1335 {
1336 struct wm_softc *sc = arg;
1337
1338 wm_stop(&sc->sc_ethercom.ec_if, 1);
1339 }
1340
1341 /*
1342 * wm_tx_offload:
1343 *
1344 * Set up TCP/IP checksumming parameters for the
1345 * specified packet.
1346 */
1347 static int
1348 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1349 uint8_t *fieldsp)
1350 {
1351 struct mbuf *m0 = txs->txs_mbuf;
1352 struct livengood_tcpip_ctxdesc *t;
1353 uint32_t ipcs, tucs;
1354 struct ether_header *eh;
1355 int offset, iphl;
1356 uint8_t fields = 0;
1357
1358 /*
1359 * XXX It would be nice if the mbuf pkthdr had offset
1360 * fields for the protocol headers.
1361 */
1362
1363 eh = mtod(m0, struct ether_header *);
1364 switch (htons(eh->ether_type)) {
1365 case ETHERTYPE_IP:
1366 offset = ETHER_HDR_LEN;
1367 break;
1368
1369 case ETHERTYPE_VLAN:
1370 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1371 break;
1372
1373 default:
1374 /*
1375 * Don't support this protocol or encapsulation.
1376 */
1377 *fieldsp = 0;
1378 *cmdp = 0;
1379 return (0);
1380 }
1381
1382 iphl = m0->m_pkthdr.csum_data >> 16;
1383
1384 /*
1385 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1386 * offload feature, if we load the context descriptor, we
1387 * MUST provide valid values for IPCSS and TUCSS fields.
1388 */
1389
1390 ipcs = WTX_TCPIP_IPCSS(offset) |
1391 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1392 WTX_TCPIP_IPCSE(offset + iphl - 1);
1393 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1394 WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1395 fields |= WTX_IXSM;
1396 }
1397
1398 offset += iphl;
1399
1400 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1401 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1402 fields |= WTX_TXSM;
1403 tucs = WTX_TCPIP_TUCSS(offset) |
1404 WTX_TCPIP_TUCSO(offset + (m0->m_pkthdr.csum_data & 0xffff)) |
1405 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1406 } else {
1407 /* Just initialize it to a valid TCP context. */
1408 tucs = WTX_TCPIP_TUCSS(offset) |
1409 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1410 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1411 }
1412
1413 /* Fill in the context descriptor. */
1414 t = (struct livengood_tcpip_ctxdesc *)
1415 &sc->sc_txdescs[sc->sc_txnext];
1416 t->tcpip_ipcs = htole32(ipcs);
1417 t->tcpip_tucs = htole32(tucs);
1418 t->tcpip_cmdlen = htole32(WTX_CMD_DEXT | WTX_DTYP_C);
1419 t->tcpip_seg = 0;
1420 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1421
1422 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1423 txs->txs_ndesc++;
1424
1425 *cmdp = WTX_CMD_DEXT | WTX_DTYP_D;
1426 *fieldsp = fields;
1427
1428 return (0);
1429 }
1430
1431 static void
1432 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1433 {
1434 struct mbuf *m;
1435 int i;
1436
1437 log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1438 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1439 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1440 "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1441 m->m_data, m->m_len, m->m_flags);
1442 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1443 i, i == 1 ? "" : "s");
1444 }
1445
1446 /*
1447 * wm_82547_txfifo_stall:
1448 *
1449 * Callout used to wait for the 82547 Tx FIFO to drain,
1450 * reset the FIFO pointers, and restart packet transmission.
1451 */
1452 static void
1453 wm_82547_txfifo_stall(void *arg)
1454 {
1455 struct wm_softc *sc = arg;
1456 int s;
1457
1458 s = splnet();
1459
1460 if (sc->sc_txfifo_stall) {
1461 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1462 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1463 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1464 /*
1465 * Packets have drained. Stop transmitter, reset
1466 * FIFO pointers, restart transmitter, and kick
1467 * the packet queue.
1468 */
1469 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1470 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1471 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1472 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1473 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1474 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1475 CSR_WRITE(sc, WMREG_TCTL, tctl);
1476 CSR_WRITE_FLUSH(sc);
1477
1478 sc->sc_txfifo_head = 0;
1479 sc->sc_txfifo_stall = 0;
1480 wm_start(&sc->sc_ethercom.ec_if);
1481 } else {
1482 /*
1483 * Still waiting for packets to drain; try again in
1484 * another tick.
1485 */
1486 callout_schedule(&sc->sc_txfifo_ch, 1);
1487 }
1488 }
1489
1490 splx(s);
1491 }
1492
1493 /*
1494 * wm_82547_txfifo_bugchk:
1495 *
1496 * Check for bug condition in the 82547 Tx FIFO. We need to
1497 * prevent enqueueing a packet that would wrap around the end
1498 * if the Tx FIFO ring buffer, otherwise the chip will croak.
1499 *
1500 * We do this by checking the amount of space before the end
1501 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
1502 * the Tx FIFO, wait for all remaining packets to drain, reset
1503 * the internal FIFO pointers to the beginning, and restart
1504 * transmission on the interface.
1505 */
1506 #define WM_FIFO_HDR 0x10
1507 #define WM_82547_PAD_LEN 0x3e0
1508 static int
1509 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1510 {
1511 int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1512 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1513
1514 /* Just return if already stalled. */
1515 if (sc->sc_txfifo_stall)
1516 return (1);
1517
1518 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1519 /* Stall only occurs in half-duplex mode. */
1520 goto send_packet;
1521 }
1522
1523 if (len >= WM_82547_PAD_LEN + space) {
1524 sc->sc_txfifo_stall = 1;
1525 callout_schedule(&sc->sc_txfifo_ch, 1);
1526 return (1);
1527 }
1528
1529 send_packet:
1530 sc->sc_txfifo_head += len;
1531 if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1532 sc->sc_txfifo_head -= sc->sc_txfifo_size;
1533
1534 return (0);
1535 }
1536
1537 /*
1538 * wm_start: [ifnet interface function]
1539 *
1540 * Start packet transmission on the interface.
1541 */
1542 static void
1543 wm_start(struct ifnet *ifp)
1544 {
1545 struct wm_softc *sc = ifp->if_softc;
1546 struct mbuf *m0;
1547 #if 0 /* XXXJRT */
1548 struct m_tag *mtag;
1549 #endif
1550 struct wm_txsoft *txs;
1551 bus_dmamap_t dmamap;
1552 int error, nexttx, lasttx = -1, ofree, seg, segs_needed;
1553 bus_addr_t curaddr;
1554 bus_size_t seglen, curlen;
1555 uint32_t cksumcmd;
1556 uint8_t cksumfields;
1557
1558 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1559 return;
1560
1561 /*
1562 * Remember the previous number of free descriptors.
1563 */
1564 ofree = sc->sc_txfree;
1565
1566 /*
1567 * Loop through the send queue, setting up transmit descriptors
1568 * until we drain the queue, or use up all available transmit
1569 * descriptors.
1570 */
1571 for (;;) {
1572 /* Grab a packet off the queue. */
1573 IFQ_POLL(&ifp->if_snd, m0);
1574 if (m0 == NULL)
1575 break;
1576
1577 DPRINTF(WM_DEBUG_TX,
1578 ("%s: TX: have packet to transmit: %p\n",
1579 sc->sc_dev.dv_xname, m0));
1580
1581 /* Get a work queue entry. */
1582 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1583 wm_txintr(sc);
1584 if (sc->sc_txsfree == 0) {
1585 DPRINTF(WM_DEBUG_TX,
1586 ("%s: TX: no free job descriptors\n",
1587 sc->sc_dev.dv_xname));
1588 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1589 break;
1590 }
1591 }
1592
1593 txs = &sc->sc_txsoft[sc->sc_txsnext];
1594 dmamap = txs->txs_dmamap;
1595
1596 /*
1597 * Load the DMA map. If this fails, the packet either
1598 * didn't fit in the allotted number of segments, or we
1599 * were short on resources. For the too-many-segments
1600 * case, we simply report an error and drop the packet,
1601 * since we can't sanely copy a jumbo packet to a single
1602 * buffer.
1603 */
1604 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1605 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1606 if (error) {
1607 if (error == EFBIG) {
1608 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1609 log(LOG_ERR, "%s: Tx packet consumes too many "
1610 "DMA segments, dropping...\n",
1611 sc->sc_dev.dv_xname);
1612 IFQ_DEQUEUE(&ifp->if_snd, m0);
1613 wm_dump_mbuf_chain(sc, m0);
1614 m_freem(m0);
1615 continue;
1616 }
1617 /*
1618 * Short on resources, just stop for now.
1619 */
1620 DPRINTF(WM_DEBUG_TX,
1621 ("%s: TX: dmamap load failed: %d\n",
1622 sc->sc_dev.dv_xname, error));
1623 break;
1624 }
1625
1626 segs_needed = dmamap->dm_nsegs;
1627
1628 /*
1629 * Ensure we have enough descriptors free to describe
1630 * the packet. Note, we always reserve one descriptor
1631 * at the end of the ring due to the semantics of the
1632 * TDT register, plus one more in the event we need
1633 * to load offload context.
1634 */
1635 if (segs_needed > sc->sc_txfree - 2) {
1636 /*
1637 * Not enough free descriptors to transmit this
1638 * packet. We haven't committed anything yet,
1639 * so just unload the DMA map, put the packet
1640 * pack on the queue, and punt. Notify the upper
1641 * layer that there are no more slots left.
1642 */
1643 DPRINTF(WM_DEBUG_TX,
1644 ("%s: TX: need %d (%) descriptors, have %d\n",
1645 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1646 sc->sc_txfree - 1));
1647 ifp->if_flags |= IFF_OACTIVE;
1648 bus_dmamap_unload(sc->sc_dmat, dmamap);
1649 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1650 break;
1651 }
1652
1653 /*
1654 * Check for 82547 Tx FIFO bug. We need to do this
1655 * once we know we can transmit the packet, since we
1656 * do some internal FIFO space accounting here.
1657 */
1658 if (sc->sc_type == WM_T_82547 &&
1659 wm_82547_txfifo_bugchk(sc, m0)) {
1660 DPRINTF(WM_DEBUG_TX,
1661 ("%s: TX: 82547 Tx FIFO bug detected\n",
1662 sc->sc_dev.dv_xname));
1663 ifp->if_flags |= IFF_OACTIVE;
1664 bus_dmamap_unload(sc->sc_dmat, dmamap);
1665 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1666 break;
1667 }
1668
1669 IFQ_DEQUEUE(&ifp->if_snd, m0);
1670
1671 /*
1672 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1673 */
1674
1675 DPRINTF(WM_DEBUG_TX,
1676 ("%s: TX: packet has %d (%d) DMA segments\n",
1677 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1678
1679 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1680
1681 /*
1682 * Store a pointer to the packet so that we can free it
1683 * later.
1684 *
1685 * Initially, we consider the number of descriptors the
1686 * packet uses the number of DMA segments. This may be
1687 * incremented by 1 if we do checksum offload (a descriptor
1688 * is used to set the checksum context).
1689 */
1690 txs->txs_mbuf = m0;
1691 txs->txs_firstdesc = sc->sc_txnext;
1692 txs->txs_ndesc = segs_needed;
1693
1694 /* Set up offload parameters for this packet. */
1695 if (m0->m_pkthdr.csum_flags &
1696 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1697 if (wm_tx_offload(sc, txs, &cksumcmd,
1698 &cksumfields) != 0) {
1699 /* Error message already displayed. */
1700 bus_dmamap_unload(sc->sc_dmat, dmamap);
1701 continue;
1702 }
1703 } else {
1704 cksumcmd = 0;
1705 cksumfields = 0;
1706 }
1707
1708 cksumcmd |= WTX_CMD_IDE;
1709
1710 /* Sync the DMA map. */
1711 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1712 BUS_DMASYNC_PREWRITE);
1713
1714 /*
1715 * Initialize the transmit descriptor.
1716 */
1717 for (nexttx = sc->sc_txnext, seg = 0;
1718 seg < dmamap->dm_nsegs; seg++) {
1719 for (seglen = dmamap->dm_segs[seg].ds_len,
1720 curaddr = dmamap->dm_segs[seg].ds_addr;
1721 seglen != 0;
1722 curaddr += curlen, seglen -= curlen,
1723 nexttx = WM_NEXTTX(sc, nexttx)) {
1724 curlen = seglen;
1725
1726 wm_set_dma_addr(
1727 &sc->sc_txdescs[nexttx].wtx_addr,
1728 curaddr);
1729 sc->sc_txdescs[nexttx].wtx_cmdlen =
1730 htole32(cksumcmd | curlen);
1731 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
1732 0;
1733 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1734 cksumfields;
1735 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1736 lasttx = nexttx;
1737
1738 DPRINTF(WM_DEBUG_TX,
1739 ("%s: TX: desc %d: low 0x%08x, "
1740 "len 0x%04x\n",
1741 sc->sc_dev.dv_xname, nexttx,
1742 curaddr & 0xffffffffU, curlen, curlen));
1743 }
1744 }
1745
1746 KASSERT(lasttx != -1);
1747
1748 /*
1749 * Set up the command byte on the last descriptor of
1750 * the packet. If we're in the interrupt delay window,
1751 * delay the interrupt.
1752 */
1753 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1754 htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS);
1755
1756 #if 0 /* XXXJRT */
1757 /*
1758 * If VLANs are enabled and the packet has a VLAN tag, set
1759 * up the descriptor to encapsulate the packet for us.
1760 *
1761 * This is only valid on the last descriptor of the packet.
1762 */
1763 if (sc->sc_ethercom.ec_nvlans != 0 &&
1764 (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1765 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1766 htole32(WTX_CMD_VLE);
1767 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
1768 = htole16(*(u_int *)(mtag + 1) & 0xffff);
1769 }
1770 #endif /* XXXJRT */
1771
1772 txs->txs_lastdesc = lasttx;
1773
1774 DPRINTF(WM_DEBUG_TX,
1775 ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1776 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
1777
1778 /* Sync the descriptors we're using. */
1779 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
1780 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1781
1782 /* Give the packet to the chip. */
1783 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1784
1785 DPRINTF(WM_DEBUG_TX,
1786 ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1787
1788 DPRINTF(WM_DEBUG_TX,
1789 ("%s: TX: finished transmitting packet, job %d\n",
1790 sc->sc_dev.dv_xname, sc->sc_txsnext));
1791
1792 /* Advance the tx pointer. */
1793 sc->sc_txfree -= txs->txs_ndesc;
1794 sc->sc_txnext = nexttx;
1795
1796 sc->sc_txsfree--;
1797 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
1798
1799 #if NBPFILTER > 0
1800 /* Pass the packet to any BPF listeners. */
1801 if (ifp->if_bpf)
1802 bpf_mtap(ifp->if_bpf, m0);
1803 #endif /* NBPFILTER > 0 */
1804 }
1805
1806 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1807 /* No more slots; notify upper layer. */
1808 ifp->if_flags |= IFF_OACTIVE;
1809 }
1810
1811 if (sc->sc_txfree != ofree) {
1812 /* Set a watchdog timer in case the chip flakes out. */
1813 ifp->if_timer = 5;
1814 }
1815 }
1816
1817 /*
1818 * wm_watchdog: [ifnet interface function]
1819 *
1820 * Watchdog timer handler.
1821 */
1822 static void
1823 wm_watchdog(struct ifnet *ifp)
1824 {
1825 struct wm_softc *sc = ifp->if_softc;
1826
1827 /*
1828 * Since we're using delayed interrupts, sweep up
1829 * before we report an error.
1830 */
1831 wm_txintr(sc);
1832
1833 if (sc->sc_txfree != WM_NTXDESC(sc)) {
1834 log(LOG_ERR,
1835 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1836 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1837 sc->sc_txnext);
1838 ifp->if_oerrors++;
1839
1840 /* Reset the interface. */
1841 (void) wm_init(ifp);
1842 }
1843
1844 /* Try to get more packets going. */
1845 wm_start(ifp);
1846 }
1847
1848 /*
1849 * wm_ioctl: [ifnet interface function]
1850 *
1851 * Handle control requests from the operator.
1852 */
1853 static int
1854 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1855 {
1856 struct wm_softc *sc = ifp->if_softc;
1857 struct ifreq *ifr = (struct ifreq *) data;
1858 int s, error;
1859
1860 s = splnet();
1861
1862 switch (cmd) {
1863 case SIOCSIFMEDIA:
1864 case SIOCGIFMEDIA:
1865 /* Flow control requires full-duplex mode. */
1866 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1867 (ifr->ifr_media & IFM_FDX) == 0)
1868 ifr->ifr_media &= ~IFM_ETH_FMASK;
1869 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1870 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1871 /* We can do both TXPAUSE and RXPAUSE. */
1872 ifr->ifr_media |=
1873 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1874 }
1875 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1876 }
1877 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1878 break;
1879 default:
1880 error = ether_ioctl(ifp, cmd, data);
1881 if (error == ENETRESET) {
1882 /*
1883 * Multicast list has changed; set the hardware filter
1884 * accordingly.
1885 */
1886 if (ifp->if_flags & IFF_RUNNING)
1887 wm_set_filter(sc);
1888 error = 0;
1889 }
1890 break;
1891 }
1892
1893 /* Try to get more packets going. */
1894 wm_start(ifp);
1895
1896 splx(s);
1897 return (error);
1898 }
1899
1900 /*
1901 * wm_intr:
1902 *
1903 * Interrupt service routine.
1904 */
1905 static int
1906 wm_intr(void *arg)
1907 {
1908 struct wm_softc *sc = arg;
1909 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1910 uint32_t icr;
1911 int wantinit, handled = 0;
1912
1913 for (wantinit = 0; wantinit == 0;) {
1914 icr = CSR_READ(sc, WMREG_ICR);
1915 if ((icr & sc->sc_icr) == 0)
1916 break;
1917
1918 #if 0 /*NRND > 0*/
1919 if (RND_ENABLED(&sc->rnd_source))
1920 rnd_add_uint32(&sc->rnd_source, icr);
1921 #endif
1922
1923 handled = 1;
1924
1925 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1926 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1927 DPRINTF(WM_DEBUG_RX,
1928 ("%s: RX: got Rx intr 0x%08x\n",
1929 sc->sc_dev.dv_xname,
1930 icr & (ICR_RXDMT0|ICR_RXT0)));
1931 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
1932 }
1933 #endif
1934 wm_rxintr(sc);
1935
1936 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1937 if (icr & ICR_TXDW) {
1938 DPRINTF(WM_DEBUG_TX,
1939 ("%s: TX: got TXDW interrupt\n",
1940 sc->sc_dev.dv_xname));
1941 WM_EVCNT_INCR(&sc->sc_ev_txdw);
1942 }
1943 #endif
1944 wm_txintr(sc);
1945
1946 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
1947 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
1948 wm_linkintr(sc, icr);
1949 }
1950
1951 if (icr & ICR_RXO) {
1952 log(LOG_WARNING, "%s: Receive overrun\n",
1953 sc->sc_dev.dv_xname);
1954 wantinit = 1;
1955 }
1956 }
1957
1958 if (handled) {
1959 if (wantinit)
1960 wm_init(ifp);
1961
1962 /* Try to get more packets going. */
1963 wm_start(ifp);
1964 }
1965
1966 return (handled);
1967 }
1968
1969 /*
1970 * wm_txintr:
1971 *
1972 * Helper; handle transmit interrupts.
1973 */
1974 static void
1975 wm_txintr(struct wm_softc *sc)
1976 {
1977 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1978 struct wm_txsoft *txs;
1979 uint8_t status;
1980 int i;
1981
1982 ifp->if_flags &= ~IFF_OACTIVE;
1983
1984 /*
1985 * Go through the Tx list and free mbufs for those
1986 * frames which have been transmitted.
1987 */
1988 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
1989 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
1990 txs = &sc->sc_txsoft[i];
1991
1992 DPRINTF(WM_DEBUG_TX,
1993 ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
1994
1995 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1996 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1997
1998 status =
1999 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
2000 if ((status & WTX_ST_DD) == 0) {
2001 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2002 BUS_DMASYNC_PREREAD);
2003 break;
2004 }
2005
2006 DPRINTF(WM_DEBUG_TX,
2007 ("%s: TX: job %d done: descs %d..%d\n",
2008 sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2009 txs->txs_lastdesc));
2010
2011 /*
2012 * XXX We should probably be using the statistics
2013 * XXX registers, but I don't know if they exist
2014 * XXX on chips before the i82544.
2015 */
2016
2017 #ifdef WM_EVENT_COUNTERS
2018 if (status & WTX_ST_TU)
2019 WM_EVCNT_INCR(&sc->sc_ev_tu);
2020 #endif /* WM_EVENT_COUNTERS */
2021
2022 if (status & (WTX_ST_EC|WTX_ST_LC)) {
2023 ifp->if_oerrors++;
2024 if (status & WTX_ST_LC)
2025 log(LOG_WARNING, "%s: late collision\n",
2026 sc->sc_dev.dv_xname);
2027 else if (status & WTX_ST_EC) {
2028 ifp->if_collisions += 16;
2029 log(LOG_WARNING, "%s: excessive collisions\n",
2030 sc->sc_dev.dv_xname);
2031 }
2032 } else
2033 ifp->if_opackets++;
2034
2035 sc->sc_txfree += txs->txs_ndesc;
2036 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2037 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2038 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2039 m_freem(txs->txs_mbuf);
2040 txs->txs_mbuf = NULL;
2041 }
2042
2043 /* Update the dirty transmit buffer pointer. */
2044 sc->sc_txsdirty = i;
2045 DPRINTF(WM_DEBUG_TX,
2046 ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2047
2048 /*
2049 * If there are no more pending transmissions, cancel the watchdog
2050 * timer.
2051 */
2052 if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2053 ifp->if_timer = 0;
2054 }
2055
2056 /*
2057 * wm_rxintr:
2058 *
2059 * Helper; handle receive interrupts.
2060 */
2061 static void
2062 wm_rxintr(struct wm_softc *sc)
2063 {
2064 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2065 struct wm_rxsoft *rxs;
2066 struct mbuf *m;
2067 int i, len;
2068 uint8_t status, errors;
2069
2070 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2071 rxs = &sc->sc_rxsoft[i];
2072
2073 DPRINTF(WM_DEBUG_RX,
2074 ("%s: RX: checking descriptor %d\n",
2075 sc->sc_dev.dv_xname, i));
2076
2077 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2078
2079 status = sc->sc_rxdescs[i].wrx_status;
2080 errors = sc->sc_rxdescs[i].wrx_errors;
2081 len = le16toh(sc->sc_rxdescs[i].wrx_len);
2082
2083 if ((status & WRX_ST_DD) == 0) {
2084 /*
2085 * We have processed all of the receive descriptors.
2086 */
2087 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2088 break;
2089 }
2090
2091 if (__predict_false(sc->sc_rxdiscard)) {
2092 DPRINTF(WM_DEBUG_RX,
2093 ("%s: RX: discarding contents of descriptor %d\n",
2094 sc->sc_dev.dv_xname, i));
2095 WM_INIT_RXDESC(sc, i);
2096 if (status & WRX_ST_EOP) {
2097 /* Reset our state. */
2098 DPRINTF(WM_DEBUG_RX,
2099 ("%s: RX: resetting rxdiscard -> 0\n",
2100 sc->sc_dev.dv_xname));
2101 sc->sc_rxdiscard = 0;
2102 }
2103 continue;
2104 }
2105
2106 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2107 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2108
2109 m = rxs->rxs_mbuf;
2110
2111 /*
2112 * Add a new receive buffer to the ring.
2113 */
2114 if (wm_add_rxbuf(sc, i) != 0) {
2115 /*
2116 * Failed, throw away what we've done so
2117 * far, and discard the rest of the packet.
2118 */
2119 ifp->if_ierrors++;
2120 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2121 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2122 WM_INIT_RXDESC(sc, i);
2123 if ((status & WRX_ST_EOP) == 0)
2124 sc->sc_rxdiscard = 1;
2125 if (sc->sc_rxhead != NULL)
2126 m_freem(sc->sc_rxhead);
2127 WM_RXCHAIN_RESET(sc);
2128 DPRINTF(WM_DEBUG_RX,
2129 ("%s: RX: Rx buffer allocation failed, "
2130 "dropping packet%s\n", sc->sc_dev.dv_xname,
2131 sc->sc_rxdiscard ? " (discard)" : ""));
2132 continue;
2133 }
2134
2135 WM_RXCHAIN_LINK(sc, m);
2136
2137 m->m_len = len;
2138
2139 DPRINTF(WM_DEBUG_RX,
2140 ("%s: RX: buffer at %p len %d\n",
2141 sc->sc_dev.dv_xname, m->m_data, len));
2142
2143 /*
2144 * If this is not the end of the packet, keep
2145 * looking.
2146 */
2147 if ((status & WRX_ST_EOP) == 0) {
2148 sc->sc_rxlen += len;
2149 DPRINTF(WM_DEBUG_RX,
2150 ("%s: RX: not yet EOP, rxlen -> %d\n",
2151 sc->sc_dev.dv_xname, sc->sc_rxlen));
2152 continue;
2153 }
2154
2155 /*
2156 * Okay, we have the entire packet now. The chip is
2157 * configured to include the FCS (not all chips can
2158 * be configured to strip it), so we need to trim it.
2159 */
2160 m->m_len -= ETHER_CRC_LEN;
2161
2162 *sc->sc_rxtailp = NULL;
2163 m = sc->sc_rxhead;
2164 len = m->m_len + sc->sc_rxlen;
2165
2166 WM_RXCHAIN_RESET(sc);
2167
2168 DPRINTF(WM_DEBUG_RX,
2169 ("%s: RX: have entire packet, len -> %d\n",
2170 sc->sc_dev.dv_xname, len));
2171
2172 /*
2173 * If an error occurred, update stats and drop the packet.
2174 */
2175 if (errors &
2176 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2177 ifp->if_ierrors++;
2178 if (errors & WRX_ER_SE)
2179 log(LOG_WARNING, "%s: symbol error\n",
2180 sc->sc_dev.dv_xname);
2181 else if (errors & WRX_ER_SEQ)
2182 log(LOG_WARNING, "%s: receive sequence error\n",
2183 sc->sc_dev.dv_xname);
2184 else if (errors & WRX_ER_CE)
2185 log(LOG_WARNING, "%s: CRC error\n",
2186 sc->sc_dev.dv_xname);
2187 m_freem(m);
2188 continue;
2189 }
2190
2191 /*
2192 * No errors. Receive the packet.
2193 */
2194 m->m_pkthdr.rcvif = ifp;
2195 m->m_pkthdr.len = len;
2196
2197 #if 0 /* XXXJRT */
2198 /*
2199 * If VLANs are enabled, VLAN packets have been unwrapped
2200 * for us. Associate the tag with the packet.
2201 */
2202 if (sc->sc_ethercom.ec_nvlans != 0 &&
2203 (status & WRX_ST_VP) != 0) {
2204 struct m_tag *vtag;
2205
2206 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2207 M_NOWAIT);
2208 if (vtag == NULL) {
2209 ifp->if_ierrors++;
2210 log(LOG_ERR,
2211 "%s: unable to allocate VLAN tag\n",
2212 sc->sc_dev.dv_xname);
2213 m_freem(m);
2214 continue;
2215 }
2216
2217 *(u_int *)(vtag + 1) =
2218 le16toh(sc->sc_rxdescs[i].wrx_special);
2219 }
2220 #endif /* XXXJRT */
2221
2222 /*
2223 * Set up checksum info for this packet.
2224 */
2225 if (status & WRX_ST_IPCS) {
2226 WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2227 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2228 if (errors & WRX_ER_IPE)
2229 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2230 }
2231 if (status & WRX_ST_TCPCS) {
2232 /*
2233 * Note: we don't know if this was TCP or UDP,
2234 * so we just set both bits, and expect the
2235 * upper layers to deal.
2236 */
2237 WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2238 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
2239 if (errors & WRX_ER_TCPE)
2240 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
2241 }
2242
2243 ifp->if_ipackets++;
2244
2245 #if NBPFILTER > 0
2246 /* Pass this up to any BPF listeners. */
2247 if (ifp->if_bpf)
2248 bpf_mtap(ifp->if_bpf, m);
2249 #endif /* NBPFILTER > 0 */
2250
2251 /* Pass it on. */
2252 (*ifp->if_input)(ifp, m);
2253 }
2254
2255 /* Update the receive pointer. */
2256 sc->sc_rxptr = i;
2257
2258 DPRINTF(WM_DEBUG_RX,
2259 ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2260 }
2261
2262 /*
2263 * wm_linkintr:
2264 *
2265 * Helper; handle link interrupts.
2266 */
2267 static void
2268 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2269 {
2270 uint32_t status;
2271
2272 /*
2273 * If we get a link status interrupt on a 1000BASE-T
2274 * device, just fall into the normal MII tick path.
2275 */
2276 if (sc->sc_flags & WM_F_HAS_MII) {
2277 if (icr & ICR_LSC) {
2278 DPRINTF(WM_DEBUG_LINK,
2279 ("%s: LINK: LSC -> mii_tick\n",
2280 sc->sc_dev.dv_xname));
2281 mii_tick(&sc->sc_mii);
2282 } else if (icr & ICR_RXSEQ) {
2283 DPRINTF(WM_DEBUG_LINK,
2284 ("%s: LINK Receive sequence error\n",
2285 sc->sc_dev.dv_xname));
2286 }
2287 return;
2288 }
2289
2290 /*
2291 * If we are now receiving /C/, check for link again in
2292 * a couple of link clock ticks.
2293 */
2294 if (icr & ICR_RXCFG) {
2295 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2296 sc->sc_dev.dv_xname));
2297 sc->sc_tbi_anstate = 2;
2298 }
2299
2300 if (icr & ICR_LSC) {
2301 status = CSR_READ(sc, WMREG_STATUS);
2302 if (status & STATUS_LU) {
2303 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2304 sc->sc_dev.dv_xname,
2305 (status & STATUS_FD) ? "FDX" : "HDX"));
2306 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2307 sc->sc_fcrtl &= ~FCRTL_XONE;
2308 if (status & STATUS_FD)
2309 sc->sc_tctl |=
2310 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2311 else
2312 sc->sc_tctl |=
2313 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2314 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2315 sc->sc_fcrtl |= FCRTL_XONE;
2316 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2317 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2318 WMREG_OLD_FCRTL : WMREG_FCRTL,
2319 sc->sc_fcrtl);
2320 sc->sc_tbi_linkup = 1;
2321 } else {
2322 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2323 sc->sc_dev.dv_xname));
2324 sc->sc_tbi_linkup = 0;
2325 }
2326 sc->sc_tbi_anstate = 2;
2327 wm_tbi_set_linkled(sc);
2328 } else if (icr & ICR_RXSEQ) {
2329 DPRINTF(WM_DEBUG_LINK,
2330 ("%s: LINK: Receive sequence error\n",
2331 sc->sc_dev.dv_xname));
2332 }
2333 }
2334
2335 /*
2336 * wm_tick:
2337 *
2338 * One second timer, used to check link status, sweep up
2339 * completed transmit jobs, etc.
2340 */
2341 static void
2342 wm_tick(void *arg)
2343 {
2344 struct wm_softc *sc = arg;
2345 int s;
2346
2347 s = splnet();
2348
2349 if (sc->sc_type >= WM_T_82542_2_1) {
2350 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2351 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2352 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2353 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2354 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2355 }
2356
2357 if (sc->sc_flags & WM_F_HAS_MII)
2358 mii_tick(&sc->sc_mii);
2359 else
2360 wm_tbi_check_link(sc);
2361
2362 splx(s);
2363
2364 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2365 }
2366
2367 /*
2368 * wm_reset:
2369 *
2370 * Reset the i82542 chip.
2371 */
2372 static void
2373 wm_reset(struct wm_softc *sc)
2374 {
2375 int i;
2376
2377 /*
2378 * Allocate on-chip memory according to the MTU size.
2379 * The Packet Buffer Allocation register must be written
2380 * before the chip is reset.
2381 */
2382 if (sc->sc_type < WM_T_82547) {
2383 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2384 PBA_40K : PBA_48K;
2385 } else {
2386 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2387 PBA_22K : PBA_30K;
2388 sc->sc_txfifo_head = 0;
2389 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2390 sc->sc_txfifo_size =
2391 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2392 sc->sc_txfifo_stall = 0;
2393 }
2394 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2395
2396 switch (sc->sc_type) {
2397 case WM_T_82544:
2398 case WM_T_82540:
2399 case WM_T_82545:
2400 case WM_T_82546:
2401 case WM_T_82541:
2402 case WM_T_82541_2:
2403 /*
2404 * On some chipsets, a reset through a memory-mapped write
2405 * cycle can cause the chip to reset before completing the
2406 * write cycle. This causes major headache that can be
2407 * avoided by issuing the reset via indirect register writes
2408 * through I/O space.
2409 *
2410 * So, if we successfully mapped the I/O BAR at attach time,
2411 * use that. Otherwise, try our luck with a memory-mapped
2412 * reset.
2413 */
2414 if (sc->sc_flags & WM_F_IOH_VALID)
2415 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2416 else
2417 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2418 break;
2419
2420 case WM_T_82545_3:
2421 case WM_T_82546_3:
2422 /* Use the shadow control register on these chips. */
2423 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2424 break;
2425
2426 default:
2427 /* Everything else can safely use the documented method. */
2428 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2429 break;
2430 }
2431 delay(10000);
2432
2433 for (i = 0; i < 1000; i++) {
2434 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2435 return;
2436 delay(20);
2437 }
2438
2439 if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2440 log(LOG_ERR, "%s: reset failed to complete\n",
2441 sc->sc_dev.dv_xname);
2442 }
2443
2444 /*
2445 * wm_init: [ifnet interface function]
2446 *
2447 * Initialize the interface. Must be called at splnet().
2448 */
2449 static int
2450 wm_init(struct ifnet *ifp)
2451 {
2452 struct wm_softc *sc = ifp->if_softc;
2453 struct wm_rxsoft *rxs;
2454 int i, error = 0;
2455 uint32_t reg;
2456
2457 /*
2458 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2459 * There is a small but measurable benefit to avoiding the adjusment
2460 * of the descriptor so that the headers are aligned, for normal mtu,
2461 * on such platforms. One possibility is that the DMA itself is
2462 * slightly more efficient if the front of the entire packet (instead
2463 * of the front of the headers) is aligned.
2464 *
2465 * Note we must always set align_tweak to 0 if we are using
2466 * jumbo frames.
2467 */
2468 #ifdef __NO_STRICT_ALIGNMENT
2469 sc->sc_align_tweak = 0;
2470 #else
2471 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2472 sc->sc_align_tweak = 0;
2473 else
2474 sc->sc_align_tweak = 2;
2475 #endif /* __NO_STRICT_ALIGNMENT */
2476
2477 /* Cancel any pending I/O. */
2478 wm_stop(ifp, 0);
2479
2480 /* Reset the chip to a known state. */
2481 wm_reset(sc);
2482
2483 /* Initialize the transmit descriptor ring. */
2484 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2485 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2486 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2487 sc->sc_txfree = WM_NTXDESC(sc);
2488 sc->sc_txnext = 0;
2489
2490 if (sc->sc_type < WM_T_82543) {
2491 CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2492 CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2493 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2494 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2495 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2496 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2497 } else {
2498 CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2499 CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2500 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2501 CSR_WRITE(sc, WMREG_TDH, 0);
2502 CSR_WRITE(sc, WMREG_TDT, 0);
2503 CSR_WRITE(sc, WMREG_TIDV, 64);
2504 CSR_WRITE(sc, WMREG_TADV, 128);
2505
2506 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2507 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2508 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2509 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2510 }
2511 CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2512 CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2513
2514 /* Initialize the transmit job descriptors. */
2515 for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2516 sc->sc_txsoft[i].txs_mbuf = NULL;
2517 sc->sc_txsfree = WM_TXQUEUELEN(sc);
2518 sc->sc_txsnext = 0;
2519 sc->sc_txsdirty = 0;
2520
2521 /*
2522 * Initialize the receive descriptor and receive job
2523 * descriptor rings.
2524 */
2525 if (sc->sc_type < WM_T_82543) {
2526 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2527 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2528 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2529 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2530 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2531 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2532
2533 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2534 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2535 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2536 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2537 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2538 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2539 } else {
2540 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2541 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2542 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2543 CSR_WRITE(sc, WMREG_RDH, 0);
2544 CSR_WRITE(sc, WMREG_RDT, 0);
2545 CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
2546 CSR_WRITE(sc, WMREG_RADV, 128);
2547 }
2548 for (i = 0; i < WM_NRXDESC; i++) {
2549 rxs = &sc->sc_rxsoft[i];
2550 if (rxs->rxs_mbuf == NULL) {
2551 if ((error = wm_add_rxbuf(sc, i)) != 0) {
2552 log(LOG_ERR, "%s: unable to allocate or map rx "
2553 "buffer %d, error = %d\n",
2554 sc->sc_dev.dv_xname, i, error);
2555 /*
2556 * XXX Should attempt to run with fewer receive
2557 * XXX buffers instead of just failing.
2558 */
2559 wm_rxdrain(sc);
2560 goto out;
2561 }
2562 } else
2563 WM_INIT_RXDESC(sc, i);
2564 }
2565 sc->sc_rxptr = 0;
2566 sc->sc_rxdiscard = 0;
2567 WM_RXCHAIN_RESET(sc);
2568
2569 /*
2570 * Clear out the VLAN table -- we don't use it (yet).
2571 */
2572 CSR_WRITE(sc, WMREG_VET, 0);
2573 for (i = 0; i < WM_VLAN_TABSIZE; i++)
2574 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2575
2576 /*
2577 * Set up flow-control parameters.
2578 *
2579 * XXX Values could probably stand some tuning.
2580 */
2581 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2582 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2583 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2584
2585 sc->sc_fcrtl = FCRTL_DFLT;
2586 if (sc->sc_type < WM_T_82543) {
2587 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2588 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2589 } else {
2590 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2591 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2592 }
2593 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2594
2595 #if 0 /* XXXJRT */
2596 /* Deal with VLAN enables. */
2597 if (sc->sc_ethercom.ec_nvlans != 0)
2598 sc->sc_ctrl |= CTRL_VME;
2599 else
2600 #endif /* XXXJRT */
2601 sc->sc_ctrl &= ~CTRL_VME;
2602
2603 /* Write the control registers. */
2604 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2605 #if 0
2606 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2607 #endif
2608
2609 /*
2610 * Set up checksum offload parameters.
2611 */
2612 reg = CSR_READ(sc, WMREG_RXCSUM);
2613 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
2614 reg |= RXCSUM_IPOFL;
2615 else
2616 reg &= ~RXCSUM_IPOFL;
2617 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
2618 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2619 else {
2620 reg &= ~RXCSUM_TUOFL;
2621 if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
2622 reg &= ~RXCSUM_IPOFL;
2623 }
2624 CSR_WRITE(sc, WMREG_RXCSUM, reg);
2625
2626 /*
2627 * Set up the interrupt registers.
2628 */
2629 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2630 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2631 ICR_RXO | ICR_RXT0;
2632 if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2633 sc->sc_icr |= ICR_RXCFG;
2634 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2635
2636 /* Set up the inter-packet gap. */
2637 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2638
2639 if (sc->sc_type >= WM_T_82543) {
2640 /* Set up the interrupt throttling register (units of 256ns) */
2641 sc->sc_itr = 1000000000 / (7000 * 256);
2642 CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
2643 }
2644
2645 #if 0 /* XXXJRT */
2646 /* Set the VLAN ethernetype. */
2647 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2648 #endif
2649
2650 /*
2651 * Set up the transmit control register; we start out with
2652 * a collision distance suitable for FDX, but update it whe
2653 * we resolve the media type.
2654 */
2655 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2656 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2657 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2658
2659 /* Set the media. */
2660 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2661
2662 /*
2663 * Set up the receive control register; we actually program
2664 * the register when we set the receive filter. Use multicast
2665 * address offset type 0.
2666 *
2667 * Only the i82544 has the ability to strip the incoming
2668 * CRC, so we don't enable that feature.
2669 */
2670 sc->sc_mchash_type = 0;
2671 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
2672 RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2673
2674 if(MCLBYTES == 2048) {
2675 sc->sc_rctl |= RCTL_2k;
2676 } else {
2677 if(sc->sc_type >= WM_T_82543) {
2678 switch(MCLBYTES) {
2679 case 4096:
2680 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2681 break;
2682 case 8192:
2683 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2684 break;
2685 case 16384:
2686 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2687 break;
2688 default:
2689 panic("wm_init: MCLBYTES %d unsupported",
2690 MCLBYTES);
2691 break;
2692 }
2693 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
2694 }
2695
2696 /* Set the receive filter. */
2697 wm_set_filter(sc);
2698
2699 /* Start the one second link check clock. */
2700 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2701
2702 /* ...all done! */
2703 ifp->if_flags |= IFF_RUNNING;
2704 ifp->if_flags &= ~IFF_OACTIVE;
2705
2706 out:
2707 if (error)
2708 log(LOG_ERR, "%s: interface not running\n",
2709 sc->sc_dev.dv_xname);
2710 return (error);
2711 }
2712
2713 /*
2714 * wm_rxdrain:
2715 *
2716 * Drain the receive queue.
2717 */
2718 static void
2719 wm_rxdrain(struct wm_softc *sc)
2720 {
2721 struct wm_rxsoft *rxs;
2722 int i;
2723
2724 for (i = 0; i < WM_NRXDESC; i++) {
2725 rxs = &sc->sc_rxsoft[i];
2726 if (rxs->rxs_mbuf != NULL) {
2727 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2728 m_freem(rxs->rxs_mbuf);
2729 rxs->rxs_mbuf = NULL;
2730 }
2731 }
2732 }
2733
2734 /*
2735 * wm_stop: [ifnet interface function]
2736 *
2737 * Stop transmission on the interface.
2738 */
2739 static void
2740 wm_stop(struct ifnet *ifp, int disable)
2741 {
2742 struct wm_softc *sc = ifp->if_softc;
2743 struct wm_txsoft *txs;
2744 int i;
2745
2746 /* Stop the one second clock. */
2747 callout_stop(&sc->sc_tick_ch);
2748
2749 /* Stop the 82547 Tx FIFO stall check timer. */
2750 if (sc->sc_type == WM_T_82547)
2751 callout_stop(&sc->sc_txfifo_ch);
2752
2753 if (sc->sc_flags & WM_F_HAS_MII) {
2754 /* Down the MII. */
2755 mii_down(&sc->sc_mii);
2756 }
2757
2758 /* Stop the transmit and receive processes. */
2759 CSR_WRITE(sc, WMREG_TCTL, 0);
2760 CSR_WRITE(sc, WMREG_RCTL, 0);
2761
2762 /* Release any queued transmit buffers. */
2763 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2764 txs = &sc->sc_txsoft[i];
2765 if (txs->txs_mbuf != NULL) {
2766 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2767 m_freem(txs->txs_mbuf);
2768 txs->txs_mbuf = NULL;
2769 }
2770 }
2771
2772 if (disable)
2773 wm_rxdrain(sc);
2774
2775 /* Mark the interface as down and cancel the watchdog timer. */
2776 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2777 ifp->if_timer = 0;
2778 }
2779
2780 /*
2781 * wm_acquire_eeprom:
2782 *
2783 * Perform the EEPROM handshake required on some chips.
2784 */
2785 static int
2786 wm_acquire_eeprom(struct wm_softc *sc)
2787 {
2788 uint32_t reg;
2789 int x;
2790
2791 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2792 reg = CSR_READ(sc, WMREG_EECD);
2793
2794 /* Request EEPROM access. */
2795 reg |= EECD_EE_REQ;
2796 CSR_WRITE(sc, WMREG_EECD, reg);
2797
2798 /* ..and wait for it to be granted. */
2799 for (x = 0; x < 100; x++) {
2800 reg = CSR_READ(sc, WMREG_EECD);
2801 if (reg & EECD_EE_GNT)
2802 break;
2803 delay(5);
2804 }
2805 if ((reg & EECD_EE_GNT) == 0) {
2806 aprint_error("%s: could not acquire EEPROM GNT\n",
2807 sc->sc_dev.dv_xname);
2808 reg &= ~EECD_EE_REQ;
2809 CSR_WRITE(sc, WMREG_EECD, reg);
2810 return (1);
2811 }
2812 }
2813
2814 return (0);
2815 }
2816
2817 /*
2818 * wm_release_eeprom:
2819 *
2820 * Release the EEPROM mutex.
2821 */
2822 static void
2823 wm_release_eeprom(struct wm_softc *sc)
2824 {
2825 uint32_t reg;
2826
2827 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2828 reg = CSR_READ(sc, WMREG_EECD);
2829 reg &= ~EECD_EE_REQ;
2830 CSR_WRITE(sc, WMREG_EECD, reg);
2831 }
2832 }
2833
2834 /*
2835 * wm_eeprom_sendbits:
2836 *
2837 * Send a series of bits to the EEPROM.
2838 */
2839 static void
2840 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
2841 {
2842 uint32_t reg;
2843 int x;
2844
2845 reg = CSR_READ(sc, WMREG_EECD);
2846
2847 for (x = nbits; x > 0; x--) {
2848 if (bits & (1U << (x - 1)))
2849 reg |= EECD_DI;
2850 else
2851 reg &= ~EECD_DI;
2852 CSR_WRITE(sc, WMREG_EECD, reg);
2853 delay(2);
2854 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2855 delay(2);
2856 CSR_WRITE(sc, WMREG_EECD, reg);
2857 delay(2);
2858 }
2859 }
2860
2861 /*
2862 * wm_eeprom_recvbits:
2863 *
2864 * Receive a series of bits from the EEPROM.
2865 */
2866 static void
2867 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
2868 {
2869 uint32_t reg, val;
2870 int x;
2871
2872 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
2873
2874 val = 0;
2875 for (x = nbits; x > 0; x--) {
2876 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2877 delay(2);
2878 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
2879 val |= (1U << (x - 1));
2880 CSR_WRITE(sc, WMREG_EECD, reg);
2881 delay(2);
2882 }
2883 *valp = val;
2884 }
2885
2886 /*
2887 * wm_read_eeprom_uwire:
2888 *
2889 * Read a word from the EEPROM using the MicroWire protocol.
2890 */
2891 static int
2892 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2893 {
2894 uint32_t reg, val;
2895 int i;
2896
2897 for (i = 0; i < wordcnt; i++) {
2898 /* Clear SK and DI. */
2899 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
2900 CSR_WRITE(sc, WMREG_EECD, reg);
2901
2902 /* Set CHIP SELECT. */
2903 reg |= EECD_CS;
2904 CSR_WRITE(sc, WMREG_EECD, reg);
2905 delay(2);
2906
2907 /* Shift in the READ command. */
2908 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
2909
2910 /* Shift in address. */
2911 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
2912
2913 /* Shift out the data. */
2914 wm_eeprom_recvbits(sc, &val, 16);
2915 data[i] = val & 0xffff;
2916
2917 /* Clear CHIP SELECT. */
2918 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
2919 CSR_WRITE(sc, WMREG_EECD, reg);
2920 delay(2);
2921 }
2922
2923 return (0);
2924 }
2925
2926 /*
2927 * wm_spi_eeprom_ready:
2928 *
2929 * Wait for a SPI EEPROM to be ready for commands.
2930 */
2931 static int
2932 wm_spi_eeprom_ready(struct wm_softc *sc)
2933 {
2934 uint32_t val;
2935 int usec;
2936
2937 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
2938 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
2939 wm_eeprom_recvbits(sc, &val, 8);
2940 if ((val & SPI_SR_RDY) == 0)
2941 break;
2942 }
2943 if (usec >= SPI_MAX_RETRIES) {
2944 aprint_error("%s: EEPROM failed to become ready\n",
2945 sc->sc_dev.dv_xname);
2946 return (1);
2947 }
2948 return (0);
2949 }
2950
2951 /*
2952 * wm_read_eeprom_spi:
2953 *
2954 * Read a work from the EEPROM using the SPI protocol.
2955 */
2956 static int
2957 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2958 {
2959 uint32_t reg, val;
2960 int i;
2961 uint8_t opc;
2962
2963 /* Clear SK and CS. */
2964 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
2965 CSR_WRITE(sc, WMREG_EECD, reg);
2966 delay(2);
2967
2968 if (wm_spi_eeprom_ready(sc))
2969 return (1);
2970
2971 /* Toggle CS to flush commands. */
2972 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
2973 delay(2);
2974 CSR_WRITE(sc, WMREG_EECD, reg);
2975 delay(2);
2976
2977 opc = SPI_OPC_READ;
2978 if (sc->sc_ee_addrbits == 8 && word >= 128)
2979 opc |= SPI_OPC_A8;
2980
2981 wm_eeprom_sendbits(sc, opc, 8);
2982 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
2983
2984 for (i = 0; i < wordcnt; i++) {
2985 wm_eeprom_recvbits(sc, &val, 16);
2986 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
2987 }
2988
2989 /* Raise CS and clear SK. */
2990 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
2991 CSR_WRITE(sc, WMREG_EECD, reg);
2992 delay(2);
2993
2994 return (0);
2995 }
2996
2997 /*
2998 * wm_read_eeprom:
2999 *
3000 * Read data from the serial EEPROM.
3001 */
3002 static int
3003 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
3004 {
3005 int rv;
3006
3007 if (wm_acquire_eeprom(sc))
3008 return (1);
3009
3010 if (sc->sc_flags & WM_F_EEPROM_SPI)
3011 rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
3012 else
3013 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3014
3015 wm_release_eeprom(sc);
3016 return (rv);
3017 }
3018
3019 /*
3020 * wm_add_rxbuf:
3021 *
3022 * Add a receive buffer to the indiciated descriptor.
3023 */
3024 static int
3025 wm_add_rxbuf(struct wm_softc *sc, int idx)
3026 {
3027 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3028 struct mbuf *m;
3029 int error;
3030
3031 MGETHDR(m, M_DONTWAIT, MT_DATA);
3032 if (m == NULL)
3033 return (ENOBUFS);
3034
3035 MCLGET(m, M_DONTWAIT);
3036 if ((m->m_flags & M_EXT) == 0) {
3037 m_freem(m);
3038 return (ENOBUFS);
3039 }
3040
3041 if (rxs->rxs_mbuf != NULL)
3042 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3043
3044 rxs->rxs_mbuf = m;
3045
3046 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3047 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3048 BUS_DMA_READ|BUS_DMA_NOWAIT);
3049 if (error) {
3050 /* XXX XXX XXX */
3051 printf("%s: unable to load rx DMA map %d, error = %d\n",
3052 sc->sc_dev.dv_xname, idx, error);
3053 panic("wm_add_rxbuf");
3054 }
3055
3056 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3057 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3058
3059 WM_INIT_RXDESC(sc, idx);
3060
3061 return (0);
3062 }
3063
3064 /*
3065 * wm_set_ral:
3066 *
3067 * Set an entery in the receive address list.
3068 */
3069 static void
3070 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3071 {
3072 uint32_t ral_lo, ral_hi;
3073
3074 if (enaddr != NULL) {
3075 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3076 (enaddr[3] << 24);
3077 ral_hi = enaddr[4] | (enaddr[5] << 8);
3078 ral_hi |= RAL_AV;
3079 } else {
3080 ral_lo = 0;
3081 ral_hi = 0;
3082 }
3083
3084 if (sc->sc_type >= WM_T_82544) {
3085 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3086 ral_lo);
3087 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3088 ral_hi);
3089 } else {
3090 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3091 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3092 }
3093 }
3094
3095 /*
3096 * wm_mchash:
3097 *
3098 * Compute the hash of the multicast address for the 4096-bit
3099 * multicast filter.
3100 */
3101 static uint32_t
3102 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3103 {
3104 static const int lo_shift[4] = { 4, 3, 2, 0 };
3105 static const int hi_shift[4] = { 4, 5, 6, 8 };
3106 uint32_t hash;
3107
3108 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3109 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3110
3111 return (hash & 0xfff);
3112 }
3113
3114 /*
3115 * wm_set_filter:
3116 *
3117 * Set up the receive filter.
3118 */
3119 static void
3120 wm_set_filter(struct wm_softc *sc)
3121 {
3122 struct ethercom *ec = &sc->sc_ethercom;
3123 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3124 struct ether_multi *enm;
3125 struct ether_multistep step;
3126 bus_addr_t mta_reg;
3127 uint32_t hash, reg, bit;
3128 int i;
3129
3130 if (sc->sc_type >= WM_T_82544)
3131 mta_reg = WMREG_CORDOVA_MTA;
3132 else
3133 mta_reg = WMREG_MTA;
3134
3135 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3136
3137 if (ifp->if_flags & IFF_BROADCAST)
3138 sc->sc_rctl |= RCTL_BAM;
3139 if (ifp->if_flags & IFF_PROMISC) {
3140 sc->sc_rctl |= RCTL_UPE;
3141 goto allmulti;
3142 }
3143
3144 /*
3145 * Set the station address in the first RAL slot, and
3146 * clear the remaining slots.
3147 */
3148 wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3149 for (i = 1; i < WM_RAL_TABSIZE; i++)
3150 wm_set_ral(sc, NULL, i);
3151
3152 /* Clear out the multicast table. */
3153 for (i = 0; i < WM_MC_TABSIZE; i++)
3154 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3155
3156 ETHER_FIRST_MULTI(step, ec, enm);
3157 while (enm != NULL) {
3158 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3159 /*
3160 * We must listen to a range of multicast addresses.
3161 * For now, just accept all multicasts, rather than
3162 * trying to set only those filter bits needed to match
3163 * the range. (At this time, the only use of address
3164 * ranges is for IP multicast routing, for which the
3165 * range is big enough to require all bits set.)
3166 */
3167 goto allmulti;
3168 }
3169
3170 hash = wm_mchash(sc, enm->enm_addrlo);
3171
3172 reg = (hash >> 5) & 0x7f;
3173 bit = hash & 0x1f;
3174
3175 hash = CSR_READ(sc, mta_reg + (reg << 2));
3176 hash |= 1U << bit;
3177
3178 /* XXX Hardware bug?? */
3179 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3180 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3181 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3182 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3183 } else
3184 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3185
3186 ETHER_NEXT_MULTI(step, enm);
3187 }
3188
3189 ifp->if_flags &= ~IFF_ALLMULTI;
3190 goto setit;
3191
3192 allmulti:
3193 ifp->if_flags |= IFF_ALLMULTI;
3194 sc->sc_rctl |= RCTL_MPE;
3195
3196 setit:
3197 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3198 }
3199
3200 /*
3201 * wm_tbi_mediainit:
3202 *
3203 * Initialize media for use on 1000BASE-X devices.
3204 */
3205 static void
3206 wm_tbi_mediainit(struct wm_softc *sc)
3207 {
3208 const char *sep = "";
3209
3210 if (sc->sc_type < WM_T_82543)
3211 sc->sc_tipg = TIPG_WM_DFLT;
3212 else
3213 sc->sc_tipg = TIPG_LG_DFLT;
3214
3215 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3216 wm_tbi_mediastatus);
3217
3218 /*
3219 * SWD Pins:
3220 *
3221 * 0 = Link LED (output)
3222 * 1 = Loss Of Signal (input)
3223 */
3224 sc->sc_ctrl |= CTRL_SWDPIO(0);
3225 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3226
3227 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3228
3229 #define ADD(ss, mm, dd) \
3230 do { \
3231 aprint_normal("%s%s", sep, ss); \
3232 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
3233 sep = ", "; \
3234 } while (/*CONSTCOND*/0)
3235
3236 aprint_normal("%s: ", sc->sc_dev.dv_xname);
3237 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3238 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3239 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3240 aprint_normal("\n");
3241
3242 #undef ADD
3243
3244 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3245 }
3246
3247 /*
3248 * wm_tbi_mediastatus: [ifmedia interface function]
3249 *
3250 * Get the current interface media status on a 1000BASE-X device.
3251 */
3252 static void
3253 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3254 {
3255 struct wm_softc *sc = ifp->if_softc;
3256 uint32_t ctrl;
3257
3258 ifmr->ifm_status = IFM_AVALID;
3259 ifmr->ifm_active = IFM_ETHER;
3260
3261 if (sc->sc_tbi_linkup == 0) {
3262 ifmr->ifm_active |= IFM_NONE;
3263 return;
3264 }
3265
3266 ifmr->ifm_status |= IFM_ACTIVE;
3267 ifmr->ifm_active |= IFM_1000_SX;
3268 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3269 ifmr->ifm_active |= IFM_FDX;
3270 ctrl = CSR_READ(sc, WMREG_CTRL);
3271 if (ctrl & CTRL_RFCE)
3272 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3273 if (ctrl & CTRL_TFCE)
3274 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3275 }
3276
3277 /*
3278 * wm_tbi_mediachange: [ifmedia interface function]
3279 *
3280 * Set hardware to newly-selected media on a 1000BASE-X device.
3281 */
3282 static int
3283 wm_tbi_mediachange(struct ifnet *ifp)
3284 {
3285 struct wm_softc *sc = ifp->if_softc;
3286 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3287 uint32_t status;
3288 int i;
3289
3290 sc->sc_txcw = ife->ifm_data;
3291 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3292 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3293 sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3294 sc->sc_txcw |= TXCW_ANE;
3295
3296 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3297 delay(10000);
3298
3299 /* NOTE: CTRL will update TFCE and RFCE automatically. */
3300
3301 sc->sc_tbi_anstate = 0;
3302
3303 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3304 /* Have signal; wait for the link to come up. */
3305 for (i = 0; i < 50; i++) {
3306 delay(10000);
3307 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3308 break;
3309 }
3310
3311 status = CSR_READ(sc, WMREG_STATUS);
3312 if (status & STATUS_LU) {
3313 /* Link is up. */
3314 DPRINTF(WM_DEBUG_LINK,
3315 ("%s: LINK: set media -> link up %s\n",
3316 sc->sc_dev.dv_xname,
3317 (status & STATUS_FD) ? "FDX" : "HDX"));
3318 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3319 sc->sc_fcrtl &= ~FCRTL_XONE;
3320 if (status & STATUS_FD)
3321 sc->sc_tctl |=
3322 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3323 else
3324 sc->sc_tctl |=
3325 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3326 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3327 sc->sc_fcrtl |= FCRTL_XONE;
3328 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3329 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3330 WMREG_OLD_FCRTL : WMREG_FCRTL,
3331 sc->sc_fcrtl);
3332 sc->sc_tbi_linkup = 1;
3333 } else {
3334 /* Link is down. */
3335 DPRINTF(WM_DEBUG_LINK,
3336 ("%s: LINK: set media -> link down\n",
3337 sc->sc_dev.dv_xname));
3338 sc->sc_tbi_linkup = 0;
3339 }
3340 } else {
3341 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3342 sc->sc_dev.dv_xname));
3343 sc->sc_tbi_linkup = 0;
3344 }
3345
3346 wm_tbi_set_linkled(sc);
3347
3348 return (0);
3349 }
3350
3351 /*
3352 * wm_tbi_set_linkled:
3353 *
3354 * Update the link LED on 1000BASE-X devices.
3355 */
3356 static void
3357 wm_tbi_set_linkled(struct wm_softc *sc)
3358 {
3359
3360 if (sc->sc_tbi_linkup)
3361 sc->sc_ctrl |= CTRL_SWDPIN(0);
3362 else
3363 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3364
3365 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3366 }
3367
3368 /*
3369 * wm_tbi_check_link:
3370 *
3371 * Check the link on 1000BASE-X devices.
3372 */
3373 static void
3374 wm_tbi_check_link(struct wm_softc *sc)
3375 {
3376 uint32_t rxcw, ctrl, status;
3377
3378 if (sc->sc_tbi_anstate == 0)
3379 return;
3380 else if (sc->sc_tbi_anstate > 1) {
3381 DPRINTF(WM_DEBUG_LINK,
3382 ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3383 sc->sc_tbi_anstate));
3384 sc->sc_tbi_anstate--;
3385 return;
3386 }
3387
3388 sc->sc_tbi_anstate = 0;
3389
3390 rxcw = CSR_READ(sc, WMREG_RXCW);
3391 ctrl = CSR_READ(sc, WMREG_CTRL);
3392 status = CSR_READ(sc, WMREG_STATUS);
3393
3394 if ((status & STATUS_LU) == 0) {
3395 DPRINTF(WM_DEBUG_LINK,
3396 ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3397 sc->sc_tbi_linkup = 0;
3398 } else {
3399 DPRINTF(WM_DEBUG_LINK,
3400 ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3401 (status & STATUS_FD) ? "FDX" : "HDX"));
3402 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3403 sc->sc_fcrtl &= ~FCRTL_XONE;
3404 if (status & STATUS_FD)
3405 sc->sc_tctl |=
3406 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3407 else
3408 sc->sc_tctl |=
3409 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3410 if (ctrl & CTRL_TFCE)
3411 sc->sc_fcrtl |= FCRTL_XONE;
3412 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3413 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3414 WMREG_OLD_FCRTL : WMREG_FCRTL,
3415 sc->sc_fcrtl);
3416 sc->sc_tbi_linkup = 1;
3417 }
3418
3419 wm_tbi_set_linkled(sc);
3420 }
3421
3422 /*
3423 * wm_gmii_reset:
3424 *
3425 * Reset the PHY.
3426 */
3427 static void
3428 wm_gmii_reset(struct wm_softc *sc)
3429 {
3430 uint32_t reg;
3431
3432 if (sc->sc_type >= WM_T_82544) {
3433 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3434 delay(20000);
3435
3436 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3437 delay(20000);
3438 } else {
3439 /* The PHY reset pin is active-low. */
3440 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3441 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3442 CTRL_EXT_SWDPIN(4));
3443 reg |= CTRL_EXT_SWDPIO(4);
3444
3445 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3446 delay(10);
3447
3448 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3449 delay(10);
3450
3451 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3452 delay(10);
3453 #if 0
3454 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3455 #endif
3456 }
3457 }
3458
3459 /*
3460 * wm_gmii_mediainit:
3461 *
3462 * Initialize media for use on 1000BASE-T devices.
3463 */
3464 static void
3465 wm_gmii_mediainit(struct wm_softc *sc)
3466 {
3467 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3468
3469 /* We have MII. */
3470 sc->sc_flags |= WM_F_HAS_MII;
3471
3472 sc->sc_tipg = TIPG_1000T_DFLT;
3473
3474 /*
3475 * Let the chip set speed/duplex on its own based on
3476 * signals from the PHY.
3477 */
3478 sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3479 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3480
3481 /* Initialize our media structures and probe the GMII. */
3482 sc->sc_mii.mii_ifp = ifp;
3483
3484 if (sc->sc_type >= WM_T_82544) {
3485 sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3486 sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3487 } else {
3488 sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3489 sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3490 }
3491 sc->sc_mii.mii_statchg = wm_gmii_statchg;
3492
3493 wm_gmii_reset(sc);
3494
3495 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3496 wm_gmii_mediastatus);
3497
3498 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3499 MII_OFFSET_ANY, MIIF_DOPAUSE);
3500 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3501 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3502 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3503 } else
3504 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3505 }
3506
3507 /*
3508 * wm_gmii_mediastatus: [ifmedia interface function]
3509 *
3510 * Get the current interface media status on a 1000BASE-T device.
3511 */
3512 static void
3513 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3514 {
3515 struct wm_softc *sc = ifp->if_softc;
3516
3517 mii_pollstat(&sc->sc_mii);
3518 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3519 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3520 sc->sc_flowflags;
3521 }
3522
3523 /*
3524 * wm_gmii_mediachange: [ifmedia interface function]
3525 *
3526 * Set hardware to newly-selected media on a 1000BASE-T device.
3527 */
3528 static int
3529 wm_gmii_mediachange(struct ifnet *ifp)
3530 {
3531 struct wm_softc *sc = ifp->if_softc;
3532
3533 if (ifp->if_flags & IFF_UP)
3534 mii_mediachg(&sc->sc_mii);
3535 return (0);
3536 }
3537
3538 #define MDI_IO CTRL_SWDPIN(2)
3539 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
3540 #define MDI_CLK CTRL_SWDPIN(3)
3541
3542 static void
3543 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3544 {
3545 uint32_t i, v;
3546
3547 v = CSR_READ(sc, WMREG_CTRL);
3548 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3549 v |= MDI_DIR | CTRL_SWDPIO(3);
3550
3551 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3552 if (data & i)
3553 v |= MDI_IO;
3554 else
3555 v &= ~MDI_IO;
3556 CSR_WRITE(sc, WMREG_CTRL, v);
3557 delay(10);
3558 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3559 delay(10);
3560 CSR_WRITE(sc, WMREG_CTRL, v);
3561 delay(10);
3562 }
3563 }
3564
3565 static uint32_t
3566 i82543_mii_recvbits(struct wm_softc *sc)
3567 {
3568 uint32_t v, i, data = 0;
3569
3570 v = CSR_READ(sc, WMREG_CTRL);
3571 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3572 v |= CTRL_SWDPIO(3);
3573
3574 CSR_WRITE(sc, WMREG_CTRL, v);
3575 delay(10);
3576 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3577 delay(10);
3578 CSR_WRITE(sc, WMREG_CTRL, v);
3579 delay(10);
3580
3581 for (i = 0; i < 16; i++) {
3582 data <<= 1;
3583 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3584 delay(10);
3585 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3586 data |= 1;
3587 CSR_WRITE(sc, WMREG_CTRL, v);
3588 delay(10);
3589 }
3590
3591 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3592 delay(10);
3593 CSR_WRITE(sc, WMREG_CTRL, v);
3594 delay(10);
3595
3596 return (data);
3597 }
3598
3599 #undef MDI_IO
3600 #undef MDI_DIR
3601 #undef MDI_CLK
3602
3603 /*
3604 * wm_gmii_i82543_readreg: [mii interface function]
3605 *
3606 * Read a PHY register on the GMII (i82543 version).
3607 */
3608 static int
3609 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3610 {
3611 struct wm_softc *sc = (void *) self;
3612 int rv;
3613
3614 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3615 i82543_mii_sendbits(sc, reg | (phy << 5) |
3616 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3617 rv = i82543_mii_recvbits(sc) & 0xffff;
3618
3619 DPRINTF(WM_DEBUG_GMII,
3620 ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3621 sc->sc_dev.dv_xname, phy, reg, rv));
3622
3623 return (rv);
3624 }
3625
3626 /*
3627 * wm_gmii_i82543_writereg: [mii interface function]
3628 *
3629 * Write a PHY register on the GMII (i82543 version).
3630 */
3631 static void
3632 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3633 {
3634 struct wm_softc *sc = (void *) self;
3635
3636 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3637 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3638 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3639 (MII_COMMAND_START << 30), 32);
3640 }
3641
3642 /*
3643 * wm_gmii_i82544_readreg: [mii interface function]
3644 *
3645 * Read a PHY register on the GMII.
3646 */
3647 static int
3648 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
3649 {
3650 struct wm_softc *sc = (void *) self;
3651 uint32_t mdic = 0;
3652 int i, rv;
3653
3654 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
3655 MDIC_REGADD(reg));
3656
3657 for (i = 0; i < 100; i++) {
3658 mdic = CSR_READ(sc, WMREG_MDIC);
3659 if (mdic & MDIC_READY)
3660 break;
3661 delay(10);
3662 }
3663
3664 if ((mdic & MDIC_READY) == 0) {
3665 log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
3666 sc->sc_dev.dv_xname, phy, reg);
3667 rv = 0;
3668 } else if (mdic & MDIC_E) {
3669 #if 0 /* This is normal if no PHY is present. */
3670 log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
3671 sc->sc_dev.dv_xname, phy, reg);
3672 #endif
3673 rv = 0;
3674 } else {
3675 rv = MDIC_DATA(mdic);
3676 if (rv == 0xffff)
3677 rv = 0;
3678 }
3679
3680 return (rv);
3681 }
3682
3683 /*
3684 * wm_gmii_i82544_writereg: [mii interface function]
3685 *
3686 * Write a PHY register on the GMII.
3687 */
3688 static void
3689 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
3690 {
3691 struct wm_softc *sc = (void *) self;
3692 uint32_t mdic = 0;
3693 int i;
3694
3695 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
3696 MDIC_REGADD(reg) | MDIC_DATA(val));
3697
3698 for (i = 0; i < 100; i++) {
3699 mdic = CSR_READ(sc, WMREG_MDIC);
3700 if (mdic & MDIC_READY)
3701 break;
3702 delay(10);
3703 }
3704
3705 if ((mdic & MDIC_READY) == 0)
3706 log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
3707 sc->sc_dev.dv_xname, phy, reg);
3708 else if (mdic & MDIC_E)
3709 log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
3710 sc->sc_dev.dv_xname, phy, reg);
3711 }
3712
3713 /*
3714 * wm_gmii_statchg: [mii interface function]
3715 *
3716 * Callback from MII layer when media changes.
3717 */
3718 static void
3719 wm_gmii_statchg(struct device *self)
3720 {
3721 struct wm_softc *sc = (void *) self;
3722 struct mii_data *mii = &sc->sc_mii;
3723
3724 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
3725 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3726 sc->sc_fcrtl &= ~FCRTL_XONE;
3727
3728 /*
3729 * Get flow control negotiation result.
3730 */
3731 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3732 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3733 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3734 mii->mii_media_active &= ~IFM_ETH_FMASK;
3735 }
3736
3737 if (sc->sc_flowflags & IFM_FLOW) {
3738 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
3739 sc->sc_ctrl |= CTRL_TFCE;
3740 sc->sc_fcrtl |= FCRTL_XONE;
3741 }
3742 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3743 sc->sc_ctrl |= CTRL_RFCE;
3744 }
3745
3746 if (sc->sc_mii.mii_media_active & IFM_FDX) {
3747 DPRINTF(WM_DEBUG_LINK,
3748 ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3749 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3750 } else {
3751 DPRINTF(WM_DEBUG_LINK,
3752 ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3753 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3754 }
3755
3756 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3757 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3758 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
3759 : WMREG_FCRTL, sc->sc_fcrtl);
3760 }
3761