if_wm.c revision 1.94 1 /* $NetBSD: if_wm.c,v 1.94 2005/02/20 15:55:54 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
40 *
41 * TODO (in order of importance):
42 *
43 * - Rework how parameters are loaded from the EEPROM.
44 * - Figure out what to do with the i82545GM and i82546GB
45 * SERDES controllers.
46 * - Fix hw VLAN assist.
47 */
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.94 2005/02/20 15:55:54 jdolecek Exp $");
51
52 #include "bpfilter.h"
53 #include "rnd.h"
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/socket.h>
62 #include <sys/ioctl.h>
63 #include <sys/errno.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/syslog.h>
67
68 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
69
70 #if NRND > 0
71 #include <sys/rnd.h>
72 #endif
73
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_ether.h>
78
79 #if NBPFILTER > 0
80 #include <net/bpf.h>
81 #endif
82
83 #include <netinet/in.h> /* XXX for struct ip */
84 #include <netinet/in_systm.h> /* XXX for struct ip */
85 #include <netinet/ip.h> /* XXX for struct ip */
86 #include <netinet/tcp.h> /* XXX for struct tcphdr */
87
88 #include <machine/bus.h>
89 #include <machine/intr.h>
90 #include <machine/endian.h>
91
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99
100 #include <dev/pci/if_wmreg.h>
101
102 #ifdef WM_DEBUG
103 #define WM_DEBUG_LINK 0x01
104 #define WM_DEBUG_TX 0x02
105 #define WM_DEBUG_RX 0x04
106 #define WM_DEBUG_GMII 0x08
107 int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
108
109 #define DPRINTF(x, y) if (wm_debug & (x)) printf y
110 #else
111 #define DPRINTF(x, y) /* nothing */
112 #endif /* WM_DEBUG */
113
114 /*
115 * Transmit descriptor list size. Due to errata, we can only have
116 * 256 hardware descriptors in the ring on < 82544, but we use 4096
117 * on >= 82544. We tell the upper layers that they can queue a lot
118 * of packets, and we go ahead and manage up to 64 (16 for the i82547)
119 * of them at a time.
120 *
121 * We allow up to 256 (!) DMA segments per packet. Pathological packet
122 * chains containing many small mbufs have been observed in zero-copy
123 * situations with jumbo frames.
124 */
125 #define WM_NTXSEGS 256
126 #define WM_IFQUEUELEN 256
127 #define WM_TXQUEUELEN_MAX 64
128 #define WM_TXQUEUELEN_MAX_82547 16
129 #define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
130 #define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
131 #define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
132 #define WM_NTXDESC_82542 256
133 #define WM_NTXDESC_82544 4096
134 #define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
135 #define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
136 #define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
137 #define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
138 #define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
139
140 #define WM_MAXTXDMA ETHER_MAX_LEN_JUMBO
141
142 /*
143 * Receive descriptor list size. We have one Rx buffer for normal
144 * sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
145 * packet. We allocate 256 receive descriptors, each with a 2k
146 * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
147 */
148 #define WM_NRXDESC 256
149 #define WM_NRXDESC_MASK (WM_NRXDESC - 1)
150 #define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
151 #define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
152
153 /*
154 * Control structures are DMA'd to the i82542 chip. We allocate them in
155 * a single clump that maps to a single DMA segment to make serveral things
156 * easier.
157 */
158 struct wm_control_data_82544 {
159 /*
160 * The receive descriptors.
161 */
162 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
163
164 /*
165 * The transmit descriptors. Put these at the end, because
166 * we might use a smaller number of them.
167 */
168 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
169 };
170
171 struct wm_control_data_82542 {
172 wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
173 wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
174 };
175
176 #define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
177 #define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)])
178 #define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
179
180 /*
181 * Software state for transmit jobs.
182 */
183 struct wm_txsoft {
184 struct mbuf *txs_mbuf; /* head of our mbuf chain */
185 bus_dmamap_t txs_dmamap; /* our DMA map */
186 int txs_firstdesc; /* first descriptor in packet */
187 int txs_lastdesc; /* last descriptor in packet */
188 int txs_ndesc; /* # of descriptors used */
189 };
190
191 /*
192 * Software state for receive buffers. Each descriptor gets a
193 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
194 * more than one buffer, we chain them together.
195 */
196 struct wm_rxsoft {
197 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
198 bus_dmamap_t rxs_dmamap; /* our DMA map */
199 };
200
201 typedef enum {
202 WM_T_unknown = 0,
203 WM_T_82542_2_0, /* i82542 2.0 (really old) */
204 WM_T_82542_2_1, /* i82542 2.1+ (old) */
205 WM_T_82543, /* i82543 */
206 WM_T_82544, /* i82544 */
207 WM_T_82540, /* i82540 */
208 WM_T_82545, /* i82545 */
209 WM_T_82545_3, /* i82545 3.0+ */
210 WM_T_82546, /* i82546 */
211 WM_T_82546_3, /* i82546 3.0+ */
212 WM_T_82541, /* i82541 */
213 WM_T_82541_2, /* i82541 2.0+ */
214 WM_T_82547, /* i82547 */
215 WM_T_82547_2, /* i82547 2.0+ */
216 } wm_chip_type;
217
218 /*
219 * Software state per device.
220 */
221 struct wm_softc {
222 struct device sc_dev; /* generic device information */
223 bus_space_tag_t sc_st; /* bus space tag */
224 bus_space_handle_t sc_sh; /* bus space handle */
225 bus_space_tag_t sc_iot; /* I/O space tag */
226 bus_space_handle_t sc_ioh; /* I/O space handle */
227 bus_dma_tag_t sc_dmat; /* bus DMA tag */
228 struct ethercom sc_ethercom; /* ethernet common data */
229 void *sc_sdhook; /* shutdown hook */
230
231 wm_chip_type sc_type; /* chip type */
232 int sc_flags; /* flags; see below */
233 int sc_bus_speed; /* PCI/PCIX bus speed */
234 int sc_pcix_offset; /* PCIX capability register offset */
235 int sc_flowflags; /* 802.3x flow control flags */
236
237 void *sc_ih; /* interrupt cookie */
238
239 int sc_ee_addrbits; /* EEPROM address bits */
240
241 struct mii_data sc_mii; /* MII/media information */
242
243 struct callout sc_tick_ch; /* tick callout */
244
245 bus_dmamap_t sc_cddmamap; /* control data DMA map */
246 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
247
248 int sc_align_tweak;
249
250 /*
251 * Software state for the transmit and receive descriptors.
252 */
253 int sc_txnum; /* must be a power of two */
254 struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
255 struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
256
257 /*
258 * Control data structures.
259 */
260 int sc_ntxdesc; /* must be a power of two */
261 struct wm_control_data_82544 *sc_control_data;
262 #define sc_txdescs sc_control_data->wcd_txdescs
263 #define sc_rxdescs sc_control_data->wcd_rxdescs
264
265 #ifdef WM_EVENT_COUNTERS
266 /* Event counters. */
267 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
268 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
269 struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
270 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
271 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
272 struct evcnt sc_ev_rxintr; /* Rx interrupts */
273 struct evcnt sc_ev_linkintr; /* Link interrupts */
274
275 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
276 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
277 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
278 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
279
280 /* m_pullup() needed for Tx offload */
281 struct evcnt sc_ev_txpullup_needed;
282 /* ...failed due to no memory */
283 struct evcnt sc_ev_txpullup_nomem;
284 /* ...failed due to lack of space in first mbuf */
285 struct evcnt sc_ev_txpullup_fail;
286
287 struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
288 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
289
290 struct evcnt sc_ev_tu; /* Tx underrun */
291
292 struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
293 struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
294 struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
295 struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
296 struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
297 #endif /* WM_EVENT_COUNTERS */
298
299 bus_addr_t sc_tdt_reg; /* offset of TDT register */
300
301 int sc_txfree; /* number of free Tx descriptors */
302 int sc_txnext; /* next ready Tx descriptor */
303
304 int sc_txsfree; /* number of free Tx jobs */
305 int sc_txsnext; /* next free Tx job */
306 int sc_txsdirty; /* dirty Tx jobs */
307
308 /* These 5 variables are used only on the 82547. */
309 int sc_txfifo_size; /* Tx FIFO size */
310 int sc_txfifo_head; /* current head of FIFO */
311 uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
312 int sc_txfifo_stall; /* Tx FIFO is stalled */
313 struct callout sc_txfifo_ch; /* Tx FIFO stall work-around timer */
314
315 bus_addr_t sc_rdt_reg; /* offset of RDT register */
316
317 int sc_rxptr; /* next ready Rx descriptor/queue ent */
318 int sc_rxdiscard;
319 int sc_rxlen;
320 struct mbuf *sc_rxhead;
321 struct mbuf *sc_rxtail;
322 struct mbuf **sc_rxtailp;
323
324 uint32_t sc_ctrl; /* prototype CTRL register */
325 #if 0
326 uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
327 #endif
328 uint32_t sc_icr; /* prototype interrupt bits */
329 uint32_t sc_itr; /* prototype intr throttling reg */
330 uint32_t sc_tctl; /* prototype TCTL register */
331 uint32_t sc_rctl; /* prototype RCTL register */
332 uint32_t sc_txcw; /* prototype TXCW register */
333 uint32_t sc_tipg; /* prototype TIPG register */
334 uint32_t sc_fcrtl; /* prototype FCRTL register */
335 uint32_t sc_pba; /* prototype PBA register */
336
337 int sc_tbi_linkup; /* TBI link status */
338 int sc_tbi_anstate; /* autonegotiation state */
339
340 int sc_mchash_type; /* multicast filter offset */
341
342 #if NRND > 0
343 rndsource_element_t rnd_source; /* random source */
344 #endif
345 };
346
347 #define WM_RXCHAIN_RESET(sc) \
348 do { \
349 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
350 *(sc)->sc_rxtailp = NULL; \
351 (sc)->sc_rxlen = 0; \
352 } while (/*CONSTCOND*/0)
353
354 #define WM_RXCHAIN_LINK(sc, m) \
355 do { \
356 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
357 (sc)->sc_rxtailp = &(m)->m_next; \
358 } while (/*CONSTCOND*/0)
359
360 /* sc_flags */
361 #define WM_F_HAS_MII 0x01 /* has MII */
362 #define WM_F_EEPROM_HANDSHAKE 0x02 /* requires EEPROM handshake */
363 #define WM_F_EEPROM_SPI 0x04 /* EEPROM is SPI */
364 #define WM_F_IOH_VALID 0x10 /* I/O handle is valid */
365 #define WM_F_BUS64 0x20 /* bus is 64-bit */
366 #define WM_F_PCIX 0x40 /* bus is PCI-X */
367 #define WM_F_CSA 0x80 /* bus is CSA */
368
369 #ifdef WM_EVENT_COUNTERS
370 #define WM_EVCNT_INCR(ev) (ev)->ev_count++
371 #define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
372 #else
373 #define WM_EVCNT_INCR(ev) /* nothing */
374 #define WM_EVCNT_ADD(ev, val) /* nothing */
375 #endif
376
377 #define CSR_READ(sc, reg) \
378 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
379 #define CSR_WRITE(sc, reg, val) \
380 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
381 #define CSR_WRITE_FLUSH(sc) \
382 (void) CSR_READ((sc), WMREG_STATUS)
383
384 #define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
385 #define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
386
387 #define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
388 #define WM_CDTXADDR_HI(sc, x) \
389 (sizeof(bus_addr_t) == 8 ? \
390 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
391
392 #define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
393 #define WM_CDRXADDR_HI(sc, x) \
394 (sizeof(bus_addr_t) == 8 ? \
395 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
396
397 #define WM_CDTXSYNC(sc, x, n, ops) \
398 do { \
399 int __x, __n; \
400 \
401 __x = (x); \
402 __n = (n); \
403 \
404 /* If it will wrap around, sync to the end of the ring. */ \
405 if ((__x + __n) > WM_NTXDESC(sc)) { \
406 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
407 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
408 (WM_NTXDESC(sc) - __x), (ops)); \
409 __n -= (WM_NTXDESC(sc) - __x); \
410 __x = 0; \
411 } \
412 \
413 /* Now sync whatever is left. */ \
414 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
415 WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
416 } while (/*CONSTCOND*/0)
417
418 #define WM_CDRXSYNC(sc, x, ops) \
419 do { \
420 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
421 WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
422 } while (/*CONSTCOND*/0)
423
424 #define WM_INIT_RXDESC(sc, x) \
425 do { \
426 struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
427 wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
428 struct mbuf *__m = __rxs->rxs_mbuf; \
429 \
430 /* \
431 * Note: We scoot the packet forward 2 bytes in the buffer \
432 * so that the payload after the Ethernet header is aligned \
433 * to a 4-byte boundary. \
434 * \
435 * XXX BRAINDAMAGE ALERT! \
436 * The stupid chip uses the same size for every buffer, which \
437 * is set in the Receive Control register. We are using the 2K \
438 * size option, but what we REALLY want is (2K - 2)! For this \
439 * reason, we can't "scoot" packets longer than the standard \
440 * Ethernet MTU. On strict-alignment platforms, if the total \
441 * size exceeds (2K - 2) we set align_tweak to 0 and let \
442 * the upper layer copy the headers. \
443 */ \
444 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
445 \
446 wm_set_dma_addr(&__rxd->wrx_addr, \
447 __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
448 __rxd->wrx_len = 0; \
449 __rxd->wrx_cksum = 0; \
450 __rxd->wrx_status = 0; \
451 __rxd->wrx_errors = 0; \
452 __rxd->wrx_special = 0; \
453 WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
454 \
455 CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
456 } while (/*CONSTCOND*/0)
457
458 static void wm_start(struct ifnet *);
459 static void wm_watchdog(struct ifnet *);
460 static int wm_ioctl(struct ifnet *, u_long, caddr_t);
461 static int wm_init(struct ifnet *);
462 static void wm_stop(struct ifnet *, int);
463
464 static void wm_shutdown(void *);
465
466 static void wm_reset(struct wm_softc *);
467 static void wm_rxdrain(struct wm_softc *);
468 static int wm_add_rxbuf(struct wm_softc *, int);
469 static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
470 static void wm_tick(void *);
471
472 static void wm_set_filter(struct wm_softc *);
473
474 static int wm_intr(void *);
475 static void wm_txintr(struct wm_softc *);
476 static void wm_rxintr(struct wm_softc *);
477 static void wm_linkintr(struct wm_softc *, uint32_t);
478
479 static void wm_tbi_mediainit(struct wm_softc *);
480 static int wm_tbi_mediachange(struct ifnet *);
481 static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
482
483 static void wm_tbi_set_linkled(struct wm_softc *);
484 static void wm_tbi_check_link(struct wm_softc *);
485
486 static void wm_gmii_reset(struct wm_softc *);
487
488 static int wm_gmii_i82543_readreg(struct device *, int, int);
489 static void wm_gmii_i82543_writereg(struct device *, int, int, int);
490
491 static int wm_gmii_i82544_readreg(struct device *, int, int);
492 static void wm_gmii_i82544_writereg(struct device *, int, int, int);
493
494 static void wm_gmii_statchg(struct device *);
495
496 static void wm_gmii_mediainit(struct wm_softc *);
497 static int wm_gmii_mediachange(struct ifnet *);
498 static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
499
500 static int wm_match(struct device *, struct cfdata *, void *);
501 static void wm_attach(struct device *, struct device *, void *);
502
503 CFATTACH_DECL(wm, sizeof(struct wm_softc),
504 wm_match, wm_attach, NULL, NULL);
505
506 static void wm_82547_txfifo_stall(void *);
507
508 /*
509 * Devices supported by this driver.
510 */
511 static const struct wm_product {
512 pci_vendor_id_t wmp_vendor;
513 pci_product_id_t wmp_product;
514 const char *wmp_name;
515 wm_chip_type wmp_type;
516 int wmp_flags;
517 #define WMP_F_1000X 0x01
518 #define WMP_F_1000T 0x02
519 } wm_products[] = {
520 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
521 "Intel i82542 1000BASE-X Ethernet",
522 WM_T_82542_2_1, WMP_F_1000X },
523
524 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
525 "Intel i82543GC 1000BASE-X Ethernet",
526 WM_T_82543, WMP_F_1000X },
527
528 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
529 "Intel i82543GC 1000BASE-T Ethernet",
530 WM_T_82543, WMP_F_1000T },
531
532 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
533 "Intel i82544EI 1000BASE-T Ethernet",
534 WM_T_82544, WMP_F_1000T },
535
536 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
537 "Intel i82544EI 1000BASE-X Ethernet",
538 WM_T_82544, WMP_F_1000X },
539
540 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
541 "Intel i82544GC 1000BASE-T Ethernet",
542 WM_T_82544, WMP_F_1000T },
543
544 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
545 "Intel i82544GC (LOM) 1000BASE-T Ethernet",
546 WM_T_82544, WMP_F_1000T },
547
548 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
549 "Intel i82540EM 1000BASE-T Ethernet",
550 WM_T_82540, WMP_F_1000T },
551
552 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
553 "Intel i82540EM (LOM) 1000BASE-T Ethernet",
554 WM_T_82540, WMP_F_1000T },
555
556 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
557 "Intel i82540EP 1000BASE-T Ethernet",
558 WM_T_82540, WMP_F_1000T },
559
560 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
561 "Intel i82540EP 1000BASE-T Ethernet",
562 WM_T_82540, WMP_F_1000T },
563
564 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
565 "Intel i82540EP 1000BASE-T Ethernet",
566 WM_T_82540, WMP_F_1000T },
567
568 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
569 "Intel i82545EM 1000BASE-T Ethernet",
570 WM_T_82545, WMP_F_1000T },
571
572 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
573 "Intel i82545GM 1000BASE-T Ethernet",
574 WM_T_82545_3, WMP_F_1000T },
575
576 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
577 "Intel i82545GM 1000BASE-X Ethernet",
578 WM_T_82545_3, WMP_F_1000X },
579 #if 0
580 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
581 "Intel i82545GM Gigabit Ethernet (SERDES)",
582 WM_T_82545_3, WMP_F_SERDES },
583 #endif
584 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
585 "Intel i82546EB 1000BASE-T Ethernet",
586 WM_T_82546, WMP_F_1000T },
587
588 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
589 "Intel i82546EB 1000BASE-T Ethernet",
590 WM_T_82546, WMP_F_1000T },
591
592 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
593 "Intel i82545EM 1000BASE-X Ethernet",
594 WM_T_82545, WMP_F_1000X },
595
596 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
597 "Intel i82546EB 1000BASE-X Ethernet",
598 WM_T_82546, WMP_F_1000X },
599
600 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
601 "Intel i82546GB 1000BASE-T Ethernet",
602 WM_T_82546_3, WMP_F_1000T },
603
604 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
605 "Intel i82546GB 1000BASE-X Ethernet",
606 WM_T_82546_3, WMP_F_1000X },
607 #if 0
608 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
609 "Intel i82546GB Gigabit Ethernet (SERDES)",
610 WM_T_82546_3, WMP_F_SERDES },
611 #endif
612 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
613 "Intel i82541EI 1000BASE-T Ethernet",
614 WM_T_82541, WMP_F_1000T },
615
616 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
617 "Intel i82541EI Mobile 1000BASE-T Ethernet",
618 WM_T_82541, WMP_F_1000T },
619
620 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
621 "Intel i82541ER 1000BASE-T Ethernet",
622 WM_T_82541_2, WMP_F_1000T },
623
624 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
625 "Intel i82541GI 1000BASE-T Ethernet",
626 WM_T_82541_2, WMP_F_1000T },
627
628 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
629 "Intel i82541GI Mobile 1000BASE-T Ethernet",
630 WM_T_82541_2, WMP_F_1000T },
631
632 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
633 "Intel i82547EI 1000BASE-T Ethernet",
634 WM_T_82547, WMP_F_1000T },
635
636 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
637 "Intel i82547GI 1000BASE-T Ethernet",
638 WM_T_82547_2, WMP_F_1000T },
639 { 0, 0,
640 NULL,
641 0, 0 },
642 };
643
644 #ifdef WM_EVENT_COUNTERS
645 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
646 #endif /* WM_EVENT_COUNTERS */
647
648 #if 0 /* Not currently used */
649 static __inline uint32_t
650 wm_io_read(struct wm_softc *sc, int reg)
651 {
652
653 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
654 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
655 }
656 #endif
657
658 static __inline void
659 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
660 {
661
662 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
663 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
664 }
665
666 static __inline void
667 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
668 {
669 wa->wa_low = htole32(v & 0xffffffffU);
670 if (sizeof(bus_addr_t) == 8)
671 wa->wa_high = htole32((uint64_t) v >> 32);
672 else
673 wa->wa_high = 0;
674 }
675
676 static const struct wm_product *
677 wm_lookup(const struct pci_attach_args *pa)
678 {
679 const struct wm_product *wmp;
680
681 for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
682 if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
683 PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
684 return (wmp);
685 }
686 return (NULL);
687 }
688
689 static int
690 wm_match(struct device *parent, struct cfdata *cf, void *aux)
691 {
692 struct pci_attach_args *pa = aux;
693
694 if (wm_lookup(pa) != NULL)
695 return (1);
696
697 return (0);
698 }
699
700 static void
701 wm_attach(struct device *parent, struct device *self, void *aux)
702 {
703 struct wm_softc *sc = (void *) self;
704 struct pci_attach_args *pa = aux;
705 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
706 pci_chipset_tag_t pc = pa->pa_pc;
707 pci_intr_handle_t ih;
708 size_t cdata_size;
709 const char *intrstr = NULL;
710 const char *eetype;
711 bus_space_tag_t memt;
712 bus_space_handle_t memh;
713 bus_dma_segment_t seg;
714 int memh_valid;
715 int i, rseg, error;
716 const struct wm_product *wmp;
717 uint8_t enaddr[ETHER_ADDR_LEN];
718 uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
719 pcireg_t preg, memtype;
720 uint32_t reg;
721 int pmreg;
722
723 callout_init(&sc->sc_tick_ch);
724
725 wmp = wm_lookup(pa);
726 if (wmp == NULL) {
727 printf("\n");
728 panic("wm_attach: impossible");
729 }
730
731 if (pci_dma64_available(pa))
732 sc->sc_dmat = pa->pa_dmat64;
733 else
734 sc->sc_dmat = pa->pa_dmat;
735
736 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
737 aprint_naive(": Ethernet controller\n");
738 aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
739
740 sc->sc_type = wmp->wmp_type;
741 if (sc->sc_type < WM_T_82543) {
742 if (preg < 2) {
743 aprint_error("%s: i82542 must be at least rev. 2\n",
744 sc->sc_dev.dv_xname);
745 return;
746 }
747 if (preg < 3)
748 sc->sc_type = WM_T_82542_2_0;
749 }
750
751 /*
752 * Map the device. All devices support memory-mapped acccess,
753 * and it is really required for normal operation.
754 */
755 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
756 switch (memtype) {
757 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
758 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
759 memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
760 memtype, 0, &memt, &memh, NULL, NULL) == 0);
761 break;
762 default:
763 memh_valid = 0;
764 }
765
766 if (memh_valid) {
767 sc->sc_st = memt;
768 sc->sc_sh = memh;
769 } else {
770 aprint_error("%s: unable to map device registers\n",
771 sc->sc_dev.dv_xname);
772 return;
773 }
774
775 /*
776 * In addition, i82544 and later support I/O mapped indirect
777 * register access. It is not desirable (nor supported in
778 * this driver) to use it for normal operation, though it is
779 * required to work around bugs in some chip versions.
780 */
781 if (sc->sc_type >= WM_T_82544) {
782 /* First we have to find the I/O BAR. */
783 for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
784 if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
785 PCI_MAPREG_TYPE_IO)
786 break;
787 }
788 if (i == PCI_MAPREG_END)
789 aprint_error("%s: WARNING: unable to find I/O BAR\n",
790 sc->sc_dev.dv_xname);
791 else {
792 /*
793 * The i8254x doesn't apparently respond when the
794 * I/O BAR is 0, which looks somewhat like it's not
795 * been configured.
796 */
797 preg = pci_conf_read(pc, pa->pa_tag, i);
798 if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
799 aprint_error("%s: WARNING: I/O BAR at zero.\n",
800 sc->sc_dev.dv_xname);
801 } else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
802 0, &sc->sc_iot, &sc->sc_ioh,
803 NULL, NULL) == 0) {
804 sc->sc_flags |= WM_F_IOH_VALID;
805 } else {
806 aprint_error("%s: WARNING: unable to map "
807 "I/O space\n", sc->sc_dev.dv_xname);
808 }
809 }
810
811 }
812
813 /* Enable bus mastering. Disable MWI on the i82542 2.0. */
814 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
815 preg |= PCI_COMMAND_MASTER_ENABLE;
816 if (sc->sc_type < WM_T_82542_2_1)
817 preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
818 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
819
820 /* Get it out of power save mode, if needed. */
821 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
822 preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
823 PCI_PMCSR_STATE_MASK;
824 if (preg == PCI_PMCSR_STATE_D3) {
825 /*
826 * The card has lost all configuration data in
827 * this state, so punt.
828 */
829 aprint_error("%s: unable to wake from power state D3\n",
830 sc->sc_dev.dv_xname);
831 return;
832 }
833 if (preg != PCI_PMCSR_STATE_D0) {
834 aprint_normal("%s: waking up from power state D%d\n",
835 sc->sc_dev.dv_xname, preg);
836 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
837 PCI_PMCSR_STATE_D0);
838 }
839 }
840
841 /*
842 * Map and establish our interrupt.
843 */
844 if (pci_intr_map(pa, &ih)) {
845 aprint_error("%s: unable to map interrupt\n",
846 sc->sc_dev.dv_xname);
847 return;
848 }
849 intrstr = pci_intr_string(pc, ih);
850 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
851 if (sc->sc_ih == NULL) {
852 aprint_error("%s: unable to establish interrupt",
853 sc->sc_dev.dv_xname);
854 if (intrstr != NULL)
855 aprint_normal(" at %s", intrstr);
856 aprint_normal("\n");
857 return;
858 }
859 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
860
861 /*
862 * Determine a few things about the bus we're connected to.
863 */
864 if (sc->sc_type < WM_T_82543) {
865 /* We don't really know the bus characteristics here. */
866 sc->sc_bus_speed = 33;
867 } else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
868 /*
869 * CSA (Communication Streaming Architecture) is about as fast
870 * a 32-bit 66MHz PCI Bus.
871 */
872 sc->sc_flags |= WM_F_CSA;
873 sc->sc_bus_speed = 66;
874 aprint_verbose("%s: Communication Streaming Architecture\n",
875 sc->sc_dev.dv_xname);
876 if (sc->sc_type == WM_T_82547) {
877 callout_init(&sc->sc_txfifo_ch);
878 callout_setfunc(&sc->sc_txfifo_ch,
879 wm_82547_txfifo_stall, sc);
880 aprint_verbose("%s: using 82547 Tx FIFO stall "
881 "work-around\n", sc->sc_dev.dv_xname);
882 }
883 } else {
884 reg = CSR_READ(sc, WMREG_STATUS);
885 if (reg & STATUS_BUS64)
886 sc->sc_flags |= WM_F_BUS64;
887 if (sc->sc_type >= WM_T_82544 &&
888 (reg & STATUS_PCIX_MODE) != 0) {
889 pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
890
891 sc->sc_flags |= WM_F_PCIX;
892 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
893 PCI_CAP_PCIX,
894 &sc->sc_pcix_offset, NULL) == 0)
895 aprint_error("%s: unable to find PCIX "
896 "capability\n", sc->sc_dev.dv_xname);
897 else if (sc->sc_type != WM_T_82545_3 &&
898 sc->sc_type != WM_T_82546_3) {
899 /*
900 * Work around a problem caused by the BIOS
901 * setting the max memory read byte count
902 * incorrectly.
903 */
904 pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
905 sc->sc_pcix_offset + PCI_PCIX_CMD);
906 pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
907 sc->sc_pcix_offset + PCI_PCIX_STATUS);
908
909 bytecnt =
910 (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
911 PCI_PCIX_CMD_BYTECNT_SHIFT;
912 maxb =
913 (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
914 PCI_PCIX_STATUS_MAXB_SHIFT;
915 if (bytecnt > maxb) {
916 aprint_verbose("%s: resetting PCI-X "
917 "MMRBC: %d -> %d\n",
918 sc->sc_dev.dv_xname,
919 512 << bytecnt, 512 << maxb);
920 pcix_cmd = (pcix_cmd &
921 ~PCI_PCIX_CMD_BYTECNT_MASK) |
922 (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
923 pci_conf_write(pa->pa_pc, pa->pa_tag,
924 sc->sc_pcix_offset + PCI_PCIX_CMD,
925 pcix_cmd);
926 }
927 }
928 }
929 /*
930 * The quad port adapter is special; it has a PCIX-PCIX
931 * bridge on the board, and can run the secondary bus at
932 * a higher speed.
933 */
934 if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
935 sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
936 : 66;
937 } else if (sc->sc_flags & WM_F_PCIX) {
938 switch (reg & STATUS_PCIXSPD_MASK) {
939 case STATUS_PCIXSPD_50_66:
940 sc->sc_bus_speed = 66;
941 break;
942 case STATUS_PCIXSPD_66_100:
943 sc->sc_bus_speed = 100;
944 break;
945 case STATUS_PCIXSPD_100_133:
946 sc->sc_bus_speed = 133;
947 break;
948 default:
949 aprint_error(
950 "%s: unknown PCIXSPD %d; assuming 66MHz\n",
951 sc->sc_dev.dv_xname,
952 reg & STATUS_PCIXSPD_MASK);
953 sc->sc_bus_speed = 66;
954 }
955 } else
956 sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
957 aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
958 (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
959 (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
960 }
961
962 /*
963 * Allocate the control data structures, and create and load the
964 * DMA map for it.
965 *
966 * NOTE: All Tx descriptors must be in the same 4G segment of
967 * memory. So must Rx descriptors. We simplify by allocating
968 * both sets within the same 4G segment.
969 */
970 WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
971 WM_NTXDESC_82542 : WM_NTXDESC_82544;
972 cdata_size = sc->sc_type < WM_T_82544 ?
973 sizeof(struct wm_control_data_82542) :
974 sizeof(struct wm_control_data_82544);
975 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
976 (bus_size_t) 0x100000000ULL,
977 &seg, 1, &rseg, 0)) != 0) {
978 aprint_error(
979 "%s: unable to allocate control data, error = %d\n",
980 sc->sc_dev.dv_xname, error);
981 goto fail_0;
982 }
983
984 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
985 (caddr_t *)&sc->sc_control_data, 0)) != 0) {
986 aprint_error("%s: unable to map control data, error = %d\n",
987 sc->sc_dev.dv_xname, error);
988 goto fail_1;
989 }
990
991 if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
992 0, 0, &sc->sc_cddmamap)) != 0) {
993 aprint_error("%s: unable to create control data DMA map, "
994 "error = %d\n", sc->sc_dev.dv_xname, error);
995 goto fail_2;
996 }
997
998 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
999 sc->sc_control_data, cdata_size, NULL,
1000 0)) != 0) {
1001 aprint_error(
1002 "%s: unable to load control data DMA map, error = %d\n",
1003 sc->sc_dev.dv_xname, error);
1004 goto fail_3;
1005 }
1006
1007
1008 /*
1009 * Create the transmit buffer DMA maps.
1010 */
1011 WM_TXQUEUELEN(sc) =
1012 (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
1013 WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
1014 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1015 if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
1016 WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
1017 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1018 aprint_error("%s: unable to create Tx DMA map %d, "
1019 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1020 goto fail_4;
1021 }
1022 }
1023
1024 /*
1025 * Create the receive buffer DMA maps.
1026 */
1027 for (i = 0; i < WM_NRXDESC; i++) {
1028 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1029 MCLBYTES, 0, 0,
1030 &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1031 aprint_error("%s: unable to create Rx DMA map %d, "
1032 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1033 goto fail_5;
1034 }
1035 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1036 }
1037
1038 /*
1039 * Reset the chip to a known state.
1040 */
1041 wm_reset(sc);
1042
1043 /*
1044 * Get some information about the EEPROM.
1045 */
1046 if (sc->sc_type >= WM_T_82540)
1047 sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
1048 if (sc->sc_type <= WM_T_82544)
1049 sc->sc_ee_addrbits = 6;
1050 else if (sc->sc_type <= WM_T_82546_3) {
1051 reg = CSR_READ(sc, WMREG_EECD);
1052 if (reg & EECD_EE_SIZE)
1053 sc->sc_ee_addrbits = 8;
1054 else
1055 sc->sc_ee_addrbits = 6;
1056 } else if (sc->sc_type <= WM_T_82547_2) {
1057 reg = CSR_READ(sc, WMREG_EECD);
1058 if (reg & EECD_EE_TYPE) {
1059 sc->sc_flags |= WM_F_EEPROM_SPI;
1060 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1061 } else
1062 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
1063 } else {
1064 /* Assume everything else is SPI. */
1065 reg = CSR_READ(sc, WMREG_EECD);
1066 sc->sc_flags |= WM_F_EEPROM_SPI;
1067 sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
1068 }
1069 if (sc->sc_flags & WM_F_EEPROM_SPI)
1070 eetype = "SPI";
1071 else
1072 eetype = "MicroWire";
1073 aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
1074 sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
1075 sc->sc_ee_addrbits, eetype);
1076
1077 /*
1078 * Read the Ethernet address from the EEPROM.
1079 */
1080 if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
1081 sizeof(myea) / sizeof(myea[0]), myea)) {
1082 aprint_error("%s: unable to read Ethernet address\n",
1083 sc->sc_dev.dv_xname);
1084 return;
1085 }
1086 enaddr[0] = myea[0] & 0xff;
1087 enaddr[1] = myea[0] >> 8;
1088 enaddr[2] = myea[1] & 0xff;
1089 enaddr[3] = myea[1] >> 8;
1090 enaddr[4] = myea[2] & 0xff;
1091 enaddr[5] = myea[2] >> 8;
1092
1093 /*
1094 * Toggle the LSB of the MAC address on the second port
1095 * of the i82546.
1096 */
1097 if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
1098 if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
1099 enaddr[5] ^= 1;
1100 }
1101
1102 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1103 ether_sprintf(enaddr));
1104
1105 /*
1106 * Read the config info from the EEPROM, and set up various
1107 * bits in the control registers based on their contents.
1108 */
1109 if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
1110 aprint_error("%s: unable to read CFG1 from EEPROM\n",
1111 sc->sc_dev.dv_xname);
1112 return;
1113 }
1114 if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
1115 aprint_error("%s: unable to read CFG2 from EEPROM\n",
1116 sc->sc_dev.dv_xname);
1117 return;
1118 }
1119 if (sc->sc_type >= WM_T_82544) {
1120 if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
1121 aprint_error("%s: unable to read SWDPIN from EEPROM\n",
1122 sc->sc_dev.dv_xname);
1123 return;
1124 }
1125 }
1126
1127 if (cfg1 & EEPROM_CFG1_ILOS)
1128 sc->sc_ctrl |= CTRL_ILOS;
1129 if (sc->sc_type >= WM_T_82544) {
1130 sc->sc_ctrl |=
1131 ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
1132 CTRL_SWDPIO_SHIFT;
1133 sc->sc_ctrl |=
1134 ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
1135 CTRL_SWDPINS_SHIFT;
1136 } else {
1137 sc->sc_ctrl |=
1138 ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
1139 CTRL_SWDPIO_SHIFT;
1140 }
1141
1142 #if 0
1143 if (sc->sc_type >= WM_T_82544) {
1144 if (cfg1 & EEPROM_CFG1_IPS0)
1145 sc->sc_ctrl_ext |= CTRL_EXT_IPS;
1146 if (cfg1 & EEPROM_CFG1_IPS1)
1147 sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
1148 sc->sc_ctrl_ext |=
1149 ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
1150 CTRL_EXT_SWDPIO_SHIFT;
1151 sc->sc_ctrl_ext |=
1152 ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
1153 CTRL_EXT_SWDPINS_SHIFT;
1154 } else {
1155 sc->sc_ctrl_ext |=
1156 ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
1157 CTRL_EXT_SWDPIO_SHIFT;
1158 }
1159 #endif
1160
1161 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
1162 #if 0
1163 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
1164 #endif
1165
1166 /*
1167 * Set up some register offsets that are different between
1168 * the i82542 and the i82543 and later chips.
1169 */
1170 if (sc->sc_type < WM_T_82543) {
1171 sc->sc_rdt_reg = WMREG_OLD_RDT0;
1172 sc->sc_tdt_reg = WMREG_OLD_TDT;
1173 } else {
1174 sc->sc_rdt_reg = WMREG_RDT;
1175 sc->sc_tdt_reg = WMREG_TDT;
1176 }
1177
1178 /*
1179 * Determine if we're TBI or GMII mode, and initialize the
1180 * media structures accordingly.
1181 */
1182 if (sc->sc_type < WM_T_82543 ||
1183 (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
1184 if (wmp->wmp_flags & WMP_F_1000T)
1185 aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
1186 "product!\n", sc->sc_dev.dv_xname);
1187 wm_tbi_mediainit(sc);
1188 } else {
1189 if (wmp->wmp_flags & WMP_F_1000X)
1190 aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
1191 "product!\n", sc->sc_dev.dv_xname);
1192 wm_gmii_mediainit(sc);
1193 }
1194
1195 ifp = &sc->sc_ethercom.ec_if;
1196 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1197 ifp->if_softc = sc;
1198 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1199 ifp->if_ioctl = wm_ioctl;
1200 ifp->if_start = wm_start;
1201 ifp->if_watchdog = wm_watchdog;
1202 ifp->if_init = wm_init;
1203 ifp->if_stop = wm_stop;
1204 IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
1205 IFQ_SET_READY(&ifp->if_snd);
1206
1207 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1208
1209 /*
1210 * If we're a i82543 or greater, we can support VLANs.
1211 */
1212 if (sc->sc_type >= WM_T_82543)
1213 sc->sc_ethercom.ec_capabilities |=
1214 ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
1215
1216 /*
1217 * We can perform TCPv4 and UDPv4 checkums in-bound. Only
1218 * on i82543 and later.
1219 */
1220 if (sc->sc_type >= WM_T_82543)
1221 ifp->if_capabilities |=
1222 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
1223
1224 /*
1225 * Attach the interface.
1226 */
1227 if_attach(ifp);
1228 ether_ifattach(ifp, enaddr);
1229 #if NRND > 0
1230 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1231 RND_TYPE_NET, 0);
1232 #endif
1233
1234 #ifdef WM_EVENT_COUNTERS
1235 /* Attach event counters. */
1236 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1237 NULL, sc->sc_dev.dv_xname, "txsstall");
1238 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1239 NULL, sc->sc_dev.dv_xname, "txdstall");
1240 evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
1241 NULL, sc->sc_dev.dv_xname, "txfifo_stall");
1242 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
1243 NULL, sc->sc_dev.dv_xname, "txdw");
1244 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
1245 NULL, sc->sc_dev.dv_xname, "txqe");
1246 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1247 NULL, sc->sc_dev.dv_xname, "rxintr");
1248 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
1249 NULL, sc->sc_dev.dv_xname, "linkintr");
1250
1251 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1252 NULL, sc->sc_dev.dv_xname, "rxipsum");
1253 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
1254 NULL, sc->sc_dev.dv_xname, "rxtusum");
1255 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1256 NULL, sc->sc_dev.dv_xname, "txipsum");
1257 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
1258 NULL, sc->sc_dev.dv_xname, "txtusum");
1259
1260 evcnt_attach_dynamic(&sc->sc_ev_txpullup_needed, EVCNT_TYPE_MISC,
1261 NULL, sc->sc_dev.dv_xname, "txpullup needed");
1262 evcnt_attach_dynamic(&sc->sc_ev_txpullup_nomem, EVCNT_TYPE_MISC,
1263 NULL, sc->sc_dev.dv_xname, "txpullup nomem");
1264 evcnt_attach_dynamic(&sc->sc_ev_txpullup_fail, EVCNT_TYPE_MISC,
1265 NULL, sc->sc_dev.dv_xname, "txpullup fail");
1266
1267 for (i = 0; i < WM_NTXSEGS; i++) {
1268 sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
1269 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1270 NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
1271 }
1272
1273 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1274 NULL, sc->sc_dev.dv_xname, "txdrop");
1275
1276 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
1277 NULL, sc->sc_dev.dv_xname, "tu");
1278
1279 evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
1280 NULL, sc->sc_dev.dv_xname, "tx_xoff");
1281 evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
1282 NULL, sc->sc_dev.dv_xname, "tx_xon");
1283 evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
1284 NULL, sc->sc_dev.dv_xname, "rx_xoff");
1285 evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
1286 NULL, sc->sc_dev.dv_xname, "rx_xon");
1287 evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
1288 NULL, sc->sc_dev.dv_xname, "rx_macctl");
1289 #endif /* WM_EVENT_COUNTERS */
1290
1291 /*
1292 * Make sure the interface is shutdown during reboot.
1293 */
1294 sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
1295 if (sc->sc_sdhook == NULL)
1296 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1297 sc->sc_dev.dv_xname);
1298 return;
1299
1300 /*
1301 * Free any resources we've allocated during the failed attach
1302 * attempt. Do this in reverse order and fall through.
1303 */
1304 fail_5:
1305 for (i = 0; i < WM_NRXDESC; i++) {
1306 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1307 bus_dmamap_destroy(sc->sc_dmat,
1308 sc->sc_rxsoft[i].rxs_dmamap);
1309 }
1310 fail_4:
1311 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
1312 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1313 bus_dmamap_destroy(sc->sc_dmat,
1314 sc->sc_txsoft[i].txs_dmamap);
1315 }
1316 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1317 fail_3:
1318 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1319 fail_2:
1320 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1321 cdata_size);
1322 fail_1:
1323 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1324 fail_0:
1325 return;
1326 }
1327
1328 /*
1329 * wm_shutdown:
1330 *
1331 * Make sure the interface is stopped at reboot time.
1332 */
1333 static void
1334 wm_shutdown(void *arg)
1335 {
1336 struct wm_softc *sc = arg;
1337
1338 wm_stop(&sc->sc_ethercom.ec_if, 1);
1339 }
1340
1341 /*
1342 * wm_tx_offload:
1343 *
1344 * Set up TCP/IP checksumming parameters for the
1345 * specified packet.
1346 */
1347 static int
1348 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
1349 uint8_t *fieldsp)
1350 {
1351 struct mbuf *m0 = txs->txs_mbuf;
1352 struct livengood_tcpip_ctxdesc *t;
1353 uint32_t ipcs, tucs;
1354 struct ether_header *eh;
1355 int offset, iphl;
1356 uint8_t fields = 0;
1357
1358 /*
1359 * XXX It would be nice if the mbuf pkthdr had offset
1360 * fields for the protocol headers.
1361 */
1362
1363 eh = mtod(m0, struct ether_header *);
1364 switch (htons(eh->ether_type)) {
1365 case ETHERTYPE_IP:
1366 offset = ETHER_HDR_LEN;
1367 break;
1368
1369 case ETHERTYPE_VLAN:
1370 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1371 break;
1372
1373 default:
1374 /*
1375 * Don't support this protocol or encapsulation.
1376 */
1377 *fieldsp = 0;
1378 *cmdp = 0;
1379 return (0);
1380 }
1381
1382 iphl = m0->m_pkthdr.csum_data >> 16;
1383
1384 /*
1385 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1386 * offload feature, if we load the context descriptor, we
1387 * MUST provide valid values for IPCSS and TUCSS fields.
1388 */
1389
1390 ipcs = WTX_TCPIP_IPCSS(offset) |
1391 WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1392 WTX_TCPIP_IPCSE(offset + iphl - 1);
1393 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1394 WM_EVCNT_INCR(&sc->sc_ev_txipsum);
1395 fields |= WTX_IXSM;
1396 }
1397
1398 offset += iphl;
1399
1400 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1401 WM_EVCNT_INCR(&sc->sc_ev_txtusum);
1402 fields |= WTX_TXSM;
1403 tucs = WTX_TCPIP_TUCSS(offset) |
1404 WTX_TCPIP_TUCSO(offset + (m0->m_pkthdr.csum_data & 0xffff)) |
1405 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1406 } else {
1407 /* Just initialize it to a valid TCP context. */
1408 tucs = WTX_TCPIP_TUCSS(offset) |
1409 WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1410 WTX_TCPIP_TUCSE(0) /* rest of packet */;
1411 }
1412
1413 /* Fill in the context descriptor. */
1414 t = (struct livengood_tcpip_ctxdesc *)
1415 &sc->sc_txdescs[sc->sc_txnext];
1416 t->tcpip_ipcs = htole32(ipcs);
1417 t->tcpip_tucs = htole32(tucs);
1418 t->tcpip_cmdlen = htole32(WTX_CMD_DEXT | WTX_DTYP_C);
1419 t->tcpip_seg = 0;
1420 WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1421
1422 sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
1423 txs->txs_ndesc++;
1424
1425 *cmdp = WTX_CMD_DEXT | WTX_DTYP_D;
1426 *fieldsp = fields;
1427
1428 return (0);
1429 }
1430
1431 static void
1432 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
1433 {
1434 struct mbuf *m;
1435 int i;
1436
1437 log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
1438 for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
1439 log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
1440 "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
1441 m->m_data, m->m_len, m->m_flags);
1442 log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
1443 i, i == 1 ? "" : "s");
1444 }
1445
1446 /*
1447 * wm_82547_txfifo_stall:
1448 *
1449 * Callout used to wait for the 82547 Tx FIFO to drain,
1450 * reset the FIFO pointers, and restart packet transmission.
1451 */
1452 static void
1453 wm_82547_txfifo_stall(void *arg)
1454 {
1455 struct wm_softc *sc = arg;
1456 int s;
1457
1458 s = splnet();
1459
1460 if (sc->sc_txfifo_stall) {
1461 if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
1462 CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
1463 CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
1464 /*
1465 * Packets have drained. Stop transmitter, reset
1466 * FIFO pointers, restart transmitter, and kick
1467 * the packet queue.
1468 */
1469 uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
1470 CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
1471 CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
1472 CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
1473 CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
1474 CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
1475 CSR_WRITE(sc, WMREG_TCTL, tctl);
1476 CSR_WRITE_FLUSH(sc);
1477
1478 sc->sc_txfifo_head = 0;
1479 sc->sc_txfifo_stall = 0;
1480 wm_start(&sc->sc_ethercom.ec_if);
1481 } else {
1482 /*
1483 * Still waiting for packets to drain; try again in
1484 * another tick.
1485 */
1486 callout_schedule(&sc->sc_txfifo_ch, 1);
1487 }
1488 }
1489
1490 splx(s);
1491 }
1492
1493 /*
1494 * wm_82547_txfifo_bugchk:
1495 *
1496 * Check for bug condition in the 82547 Tx FIFO. We need to
1497 * prevent enqueueing a packet that would wrap around the end
1498 * if the Tx FIFO ring buffer, otherwise the chip will croak.
1499 *
1500 * We do this by checking the amount of space before the end
1501 * of the Tx FIFO buffer. If the packet will not fit, we "stall"
1502 * the Tx FIFO, wait for all remaining packets to drain, reset
1503 * the internal FIFO pointers to the beginning, and restart
1504 * transmission on the interface.
1505 */
1506 #define WM_FIFO_HDR 0x10
1507 #define WM_82547_PAD_LEN 0x3e0
1508 static int
1509 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
1510 {
1511 int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
1512 int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
1513
1514 /* Just return if already stalled. */
1515 if (sc->sc_txfifo_stall)
1516 return (1);
1517
1518 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1519 /* Stall only occurs in half-duplex mode. */
1520 goto send_packet;
1521 }
1522
1523 if (len >= WM_82547_PAD_LEN + space) {
1524 sc->sc_txfifo_stall = 1;
1525 callout_schedule(&sc->sc_txfifo_ch, 1);
1526 return (1);
1527 }
1528
1529 send_packet:
1530 sc->sc_txfifo_head += len;
1531 if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
1532 sc->sc_txfifo_head -= sc->sc_txfifo_size;
1533
1534 return (0);
1535 }
1536
1537 /*
1538 * wm_start: [ifnet interface function]
1539 *
1540 * Start packet transmission on the interface.
1541 */
1542 static void
1543 wm_start(struct ifnet *ifp)
1544 {
1545 struct wm_softc *sc = ifp->if_softc;
1546 struct mbuf *m0;
1547 #if 0 /* XXXJRT */
1548 struct m_tag *mtag;
1549 #endif
1550 struct wm_txsoft *txs;
1551 bus_dmamap_t dmamap;
1552 int error, nexttx, lasttx = -1, ofree, seg, segs_needed;
1553 bus_addr_t curaddr;
1554 bus_size_t seglen, curlen;
1555 uint32_t cksumcmd;
1556 uint8_t cksumfields;
1557
1558 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1559 return;
1560
1561 /*
1562 * Remember the previous number of free descriptors.
1563 */
1564 ofree = sc->sc_txfree;
1565
1566 /*
1567 * Loop through the send queue, setting up transmit descriptors
1568 * until we drain the queue, or use up all available transmit
1569 * descriptors.
1570 */
1571 for (;;) {
1572 /* Grab a packet off the queue. */
1573 IFQ_POLL(&ifp->if_snd, m0);
1574 if (m0 == NULL)
1575 break;
1576
1577 DPRINTF(WM_DEBUG_TX,
1578 ("%s: TX: have packet to transmit: %p\n",
1579 sc->sc_dev.dv_xname, m0));
1580
1581 /* Get a work queue entry. */
1582 if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
1583 wm_txintr(sc);
1584 if (sc->sc_txsfree == 0) {
1585 DPRINTF(WM_DEBUG_TX,
1586 ("%s: TX: no free job descriptors\n",
1587 sc->sc_dev.dv_xname));
1588 WM_EVCNT_INCR(&sc->sc_ev_txsstall);
1589 break;
1590 }
1591 }
1592
1593 txs = &sc->sc_txsoft[sc->sc_txsnext];
1594 dmamap = txs->txs_dmamap;
1595
1596 /*
1597 * Load the DMA map. If this fails, the packet either
1598 * didn't fit in the allotted number of segments, or we
1599 * were short on resources. For the too-many-segments
1600 * case, we simply report an error and drop the packet,
1601 * since we can't sanely copy a jumbo packet to a single
1602 * buffer.
1603 */
1604 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1605 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1606 if (error) {
1607 if (error == EFBIG) {
1608 WM_EVCNT_INCR(&sc->sc_ev_txdrop);
1609 log(LOG_ERR, "%s: Tx packet consumes too many "
1610 "DMA segments, dropping...\n",
1611 sc->sc_dev.dv_xname);
1612 IFQ_DEQUEUE(&ifp->if_snd, m0);
1613 wm_dump_mbuf_chain(sc, m0);
1614 m_freem(m0);
1615 continue;
1616 }
1617 /*
1618 * Short on resources, just stop for now.
1619 */
1620 DPRINTF(WM_DEBUG_TX,
1621 ("%s: TX: dmamap load failed: %d\n",
1622 sc->sc_dev.dv_xname, error));
1623 break;
1624 }
1625
1626 segs_needed = dmamap->dm_nsegs;
1627
1628 /*
1629 * Ensure we have enough descriptors free to describe
1630 * the packet. Note, we always reserve one descriptor
1631 * at the end of the ring due to the semantics of the
1632 * TDT register, plus one more in the event we need
1633 * to load offload context.
1634 */
1635 if (segs_needed > sc->sc_txfree - 2) {
1636 /*
1637 * Not enough free descriptors to transmit this
1638 * packet. We haven't committed anything yet,
1639 * so just unload the DMA map, put the packet
1640 * pack on the queue, and punt. Notify the upper
1641 * layer that there are no more slots left.
1642 */
1643 DPRINTF(WM_DEBUG_TX,
1644 ("%s: TX: need %d (%) descriptors, have %d\n",
1645 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
1646 sc->sc_txfree - 1));
1647 ifp->if_flags |= IFF_OACTIVE;
1648 bus_dmamap_unload(sc->sc_dmat, dmamap);
1649 WM_EVCNT_INCR(&sc->sc_ev_txdstall);
1650 break;
1651 }
1652
1653 /*
1654 * Check for 82547 Tx FIFO bug. We need to do this
1655 * once we know we can transmit the packet, since we
1656 * do some internal FIFO space accounting here.
1657 */
1658 if (sc->sc_type == WM_T_82547 &&
1659 wm_82547_txfifo_bugchk(sc, m0)) {
1660 DPRINTF(WM_DEBUG_TX,
1661 ("%s: TX: 82547 Tx FIFO bug detected\n",
1662 sc->sc_dev.dv_xname));
1663 ifp->if_flags |= IFF_OACTIVE;
1664 bus_dmamap_unload(sc->sc_dmat, dmamap);
1665 WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
1666 break;
1667 }
1668
1669 IFQ_DEQUEUE(&ifp->if_snd, m0);
1670
1671 /*
1672 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1673 */
1674
1675 DPRINTF(WM_DEBUG_TX,
1676 ("%s: TX: packet has %d (%d) DMA segments\n",
1677 sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
1678
1679 WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1680
1681 /*
1682 * Store a pointer to the packet so that we can free it
1683 * later.
1684 *
1685 * Initially, we consider the number of descriptors the
1686 * packet uses the number of DMA segments. This may be
1687 * incremented by 1 if we do checksum offload (a descriptor
1688 * is used to set the checksum context).
1689 */
1690 txs->txs_mbuf = m0;
1691 txs->txs_firstdesc = sc->sc_txnext;
1692 txs->txs_ndesc = segs_needed;
1693
1694 /* Set up offload parameters for this packet. */
1695 if (m0->m_pkthdr.csum_flags &
1696 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1697 if (wm_tx_offload(sc, txs, &cksumcmd,
1698 &cksumfields) != 0) {
1699 /* Error message already displayed. */
1700 bus_dmamap_unload(sc->sc_dmat, dmamap);
1701 continue;
1702 }
1703 } else {
1704 cksumcmd = 0;
1705 cksumfields = 0;
1706 }
1707
1708 cksumcmd |= WTX_CMD_IDE;
1709
1710 /* Sync the DMA map. */
1711 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1712 BUS_DMASYNC_PREWRITE);
1713
1714 /*
1715 * Initialize the transmit descriptor.
1716 */
1717 for (nexttx = sc->sc_txnext, seg = 0;
1718 seg < dmamap->dm_nsegs; seg++) {
1719 for (seglen = dmamap->dm_segs[seg].ds_len,
1720 curaddr = dmamap->dm_segs[seg].ds_addr;
1721 seglen != 0;
1722 curaddr += curlen, seglen -= curlen,
1723 nexttx = WM_NEXTTX(sc, nexttx)) {
1724 curlen = seglen;
1725
1726 wm_set_dma_addr(
1727 &sc->sc_txdescs[nexttx].wtx_addr,
1728 curaddr);
1729 sc->sc_txdescs[nexttx].wtx_cmdlen =
1730 htole32(cksumcmd | curlen);
1731 sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
1732 0;
1733 sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
1734 cksumfields;
1735 sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
1736 lasttx = nexttx;
1737
1738 DPRINTF(WM_DEBUG_TX,
1739 ("%s: TX: desc %d: low 0x%08x, "
1740 "len 0x%04x\n",
1741 sc->sc_dev.dv_xname, nexttx,
1742 curaddr & 0xffffffffU, curlen, curlen));
1743 }
1744 }
1745
1746 KASSERT(lasttx != -1);
1747
1748 /*
1749 * Set up the command byte on the last descriptor of
1750 * the packet. If we're in the interrupt delay window,
1751 * delay the interrupt.
1752 */
1753 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1754 htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS);
1755
1756 #if 0 /* XXXJRT */
1757 /*
1758 * If VLANs are enabled and the packet has a VLAN tag, set
1759 * up the descriptor to encapsulate the packet for us.
1760 *
1761 * This is only valid on the last descriptor of the packet.
1762 */
1763 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1764 sc->sc_txdescs[lasttx].wtx_cmdlen |=
1765 htole32(WTX_CMD_VLE);
1766 sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
1767 = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
1768 }
1769 #endif /* XXXJRT */
1770
1771 txs->txs_lastdesc = lasttx;
1772
1773 DPRINTF(WM_DEBUG_TX,
1774 ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1775 lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
1776
1777 /* Sync the descriptors we're using. */
1778 WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
1779 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1780
1781 /* Give the packet to the chip. */
1782 CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
1783
1784 DPRINTF(WM_DEBUG_TX,
1785 ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1786
1787 DPRINTF(WM_DEBUG_TX,
1788 ("%s: TX: finished transmitting packet, job %d\n",
1789 sc->sc_dev.dv_xname, sc->sc_txsnext));
1790
1791 /* Advance the tx pointer. */
1792 sc->sc_txfree -= txs->txs_ndesc;
1793 sc->sc_txnext = nexttx;
1794
1795 sc->sc_txsfree--;
1796 sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
1797
1798 #if NBPFILTER > 0
1799 /* Pass the packet to any BPF listeners. */
1800 if (ifp->if_bpf)
1801 bpf_mtap(ifp->if_bpf, m0);
1802 #endif /* NBPFILTER > 0 */
1803 }
1804
1805 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1806 /* No more slots; notify upper layer. */
1807 ifp->if_flags |= IFF_OACTIVE;
1808 }
1809
1810 if (sc->sc_txfree != ofree) {
1811 /* Set a watchdog timer in case the chip flakes out. */
1812 ifp->if_timer = 5;
1813 }
1814 }
1815
1816 /*
1817 * wm_watchdog: [ifnet interface function]
1818 *
1819 * Watchdog timer handler.
1820 */
1821 static void
1822 wm_watchdog(struct ifnet *ifp)
1823 {
1824 struct wm_softc *sc = ifp->if_softc;
1825
1826 /*
1827 * Since we're using delayed interrupts, sweep up
1828 * before we report an error.
1829 */
1830 wm_txintr(sc);
1831
1832 if (sc->sc_txfree != WM_NTXDESC(sc)) {
1833 log(LOG_ERR,
1834 "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1835 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1836 sc->sc_txnext);
1837 ifp->if_oerrors++;
1838
1839 /* Reset the interface. */
1840 (void) wm_init(ifp);
1841 }
1842
1843 /* Try to get more packets going. */
1844 wm_start(ifp);
1845 }
1846
1847 /*
1848 * wm_ioctl: [ifnet interface function]
1849 *
1850 * Handle control requests from the operator.
1851 */
1852 static int
1853 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1854 {
1855 struct wm_softc *sc = ifp->if_softc;
1856 struct ifreq *ifr = (struct ifreq *) data;
1857 int s, error;
1858
1859 s = splnet();
1860
1861 switch (cmd) {
1862 case SIOCSIFMEDIA:
1863 case SIOCGIFMEDIA:
1864 /* Flow control requires full-duplex mode. */
1865 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1866 (ifr->ifr_media & IFM_FDX) == 0)
1867 ifr->ifr_media &= ~IFM_ETH_FMASK;
1868 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1869 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1870 /* We can do both TXPAUSE and RXPAUSE. */
1871 ifr->ifr_media |=
1872 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1873 }
1874 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1875 }
1876 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1877 break;
1878 default:
1879 error = ether_ioctl(ifp, cmd, data);
1880 if (error == ENETRESET) {
1881 /*
1882 * Multicast list has changed; set the hardware filter
1883 * accordingly.
1884 */
1885 if (ifp->if_flags & IFF_RUNNING)
1886 wm_set_filter(sc);
1887 error = 0;
1888 }
1889 break;
1890 }
1891
1892 /* Try to get more packets going. */
1893 wm_start(ifp);
1894
1895 splx(s);
1896 return (error);
1897 }
1898
1899 /*
1900 * wm_intr:
1901 *
1902 * Interrupt service routine.
1903 */
1904 static int
1905 wm_intr(void *arg)
1906 {
1907 struct wm_softc *sc = arg;
1908 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1909 uint32_t icr;
1910 int wantinit, handled = 0;
1911
1912 for (wantinit = 0; wantinit == 0;) {
1913 icr = CSR_READ(sc, WMREG_ICR);
1914 if ((icr & sc->sc_icr) == 0)
1915 break;
1916
1917 #if 0 /*NRND > 0*/
1918 if (RND_ENABLED(&sc->rnd_source))
1919 rnd_add_uint32(&sc->rnd_source, icr);
1920 #endif
1921
1922 handled = 1;
1923
1924 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1925 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1926 DPRINTF(WM_DEBUG_RX,
1927 ("%s: RX: got Rx intr 0x%08x\n",
1928 sc->sc_dev.dv_xname,
1929 icr & (ICR_RXDMT0|ICR_RXT0)));
1930 WM_EVCNT_INCR(&sc->sc_ev_rxintr);
1931 }
1932 #endif
1933 wm_rxintr(sc);
1934
1935 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
1936 if (icr & ICR_TXDW) {
1937 DPRINTF(WM_DEBUG_TX,
1938 ("%s: TX: got TXDW interrupt\n",
1939 sc->sc_dev.dv_xname));
1940 WM_EVCNT_INCR(&sc->sc_ev_txdw);
1941 }
1942 #endif
1943 wm_txintr(sc);
1944
1945 if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
1946 WM_EVCNT_INCR(&sc->sc_ev_linkintr);
1947 wm_linkintr(sc, icr);
1948 }
1949
1950 if (icr & ICR_RXO) {
1951 log(LOG_WARNING, "%s: Receive overrun\n",
1952 sc->sc_dev.dv_xname);
1953 wantinit = 1;
1954 }
1955 }
1956
1957 if (handled) {
1958 if (wantinit)
1959 wm_init(ifp);
1960
1961 /* Try to get more packets going. */
1962 wm_start(ifp);
1963 }
1964
1965 return (handled);
1966 }
1967
1968 /*
1969 * wm_txintr:
1970 *
1971 * Helper; handle transmit interrupts.
1972 */
1973 static void
1974 wm_txintr(struct wm_softc *sc)
1975 {
1976 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1977 struct wm_txsoft *txs;
1978 uint8_t status;
1979 int i;
1980
1981 ifp->if_flags &= ~IFF_OACTIVE;
1982
1983 /*
1984 * Go through the Tx list and free mbufs for those
1985 * frames which have been transmitted.
1986 */
1987 for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
1988 i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
1989 txs = &sc->sc_txsoft[i];
1990
1991 DPRINTF(WM_DEBUG_TX,
1992 ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
1993
1994 WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1995 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1996
1997 status =
1998 sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
1999 if ((status & WTX_ST_DD) == 0) {
2000 WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
2001 BUS_DMASYNC_PREREAD);
2002 break;
2003 }
2004
2005 DPRINTF(WM_DEBUG_TX,
2006 ("%s: TX: job %d done: descs %d..%d\n",
2007 sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
2008 txs->txs_lastdesc));
2009
2010 /*
2011 * XXX We should probably be using the statistics
2012 * XXX registers, but I don't know if they exist
2013 * XXX on chips before the i82544.
2014 */
2015
2016 #ifdef WM_EVENT_COUNTERS
2017 if (status & WTX_ST_TU)
2018 WM_EVCNT_INCR(&sc->sc_ev_tu);
2019 #endif /* WM_EVENT_COUNTERS */
2020
2021 if (status & (WTX_ST_EC|WTX_ST_LC)) {
2022 ifp->if_oerrors++;
2023 if (status & WTX_ST_LC)
2024 log(LOG_WARNING, "%s: late collision\n",
2025 sc->sc_dev.dv_xname);
2026 else if (status & WTX_ST_EC) {
2027 ifp->if_collisions += 16;
2028 log(LOG_WARNING, "%s: excessive collisions\n",
2029 sc->sc_dev.dv_xname);
2030 }
2031 } else
2032 ifp->if_opackets++;
2033
2034 sc->sc_txfree += txs->txs_ndesc;
2035 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2036 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2037 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2038 m_freem(txs->txs_mbuf);
2039 txs->txs_mbuf = NULL;
2040 }
2041
2042 /* Update the dirty transmit buffer pointer. */
2043 sc->sc_txsdirty = i;
2044 DPRINTF(WM_DEBUG_TX,
2045 ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
2046
2047 /*
2048 * If there are no more pending transmissions, cancel the watchdog
2049 * timer.
2050 */
2051 if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
2052 ifp->if_timer = 0;
2053 }
2054
2055 /*
2056 * wm_rxintr:
2057 *
2058 * Helper; handle receive interrupts.
2059 */
2060 static void
2061 wm_rxintr(struct wm_softc *sc)
2062 {
2063 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2064 struct wm_rxsoft *rxs;
2065 struct mbuf *m;
2066 int i, len;
2067 uint8_t status, errors;
2068
2069 for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
2070 rxs = &sc->sc_rxsoft[i];
2071
2072 DPRINTF(WM_DEBUG_RX,
2073 ("%s: RX: checking descriptor %d\n",
2074 sc->sc_dev.dv_xname, i));
2075
2076 WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2077
2078 status = sc->sc_rxdescs[i].wrx_status;
2079 errors = sc->sc_rxdescs[i].wrx_errors;
2080 len = le16toh(sc->sc_rxdescs[i].wrx_len);
2081
2082 if ((status & WRX_ST_DD) == 0) {
2083 /*
2084 * We have processed all of the receive descriptors.
2085 */
2086 WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
2087 break;
2088 }
2089
2090 if (__predict_false(sc->sc_rxdiscard)) {
2091 DPRINTF(WM_DEBUG_RX,
2092 ("%s: RX: discarding contents of descriptor %d\n",
2093 sc->sc_dev.dv_xname, i));
2094 WM_INIT_RXDESC(sc, i);
2095 if (status & WRX_ST_EOP) {
2096 /* Reset our state. */
2097 DPRINTF(WM_DEBUG_RX,
2098 ("%s: RX: resetting rxdiscard -> 0\n",
2099 sc->sc_dev.dv_xname));
2100 sc->sc_rxdiscard = 0;
2101 }
2102 continue;
2103 }
2104
2105 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2106 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2107
2108 m = rxs->rxs_mbuf;
2109
2110 /*
2111 * Add a new receive buffer to the ring.
2112 */
2113 if (wm_add_rxbuf(sc, i) != 0) {
2114 /*
2115 * Failed, throw away what we've done so
2116 * far, and discard the rest of the packet.
2117 */
2118 ifp->if_ierrors++;
2119 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2120 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2121 WM_INIT_RXDESC(sc, i);
2122 if ((status & WRX_ST_EOP) == 0)
2123 sc->sc_rxdiscard = 1;
2124 if (sc->sc_rxhead != NULL)
2125 m_freem(sc->sc_rxhead);
2126 WM_RXCHAIN_RESET(sc);
2127 DPRINTF(WM_DEBUG_RX,
2128 ("%s: RX: Rx buffer allocation failed, "
2129 "dropping packet%s\n", sc->sc_dev.dv_xname,
2130 sc->sc_rxdiscard ? " (discard)" : ""));
2131 continue;
2132 }
2133
2134 WM_RXCHAIN_LINK(sc, m);
2135
2136 m->m_len = len;
2137
2138 DPRINTF(WM_DEBUG_RX,
2139 ("%s: RX: buffer at %p len %d\n",
2140 sc->sc_dev.dv_xname, m->m_data, len));
2141
2142 /*
2143 * If this is not the end of the packet, keep
2144 * looking.
2145 */
2146 if ((status & WRX_ST_EOP) == 0) {
2147 sc->sc_rxlen += len;
2148 DPRINTF(WM_DEBUG_RX,
2149 ("%s: RX: not yet EOP, rxlen -> %d\n",
2150 sc->sc_dev.dv_xname, sc->sc_rxlen));
2151 continue;
2152 }
2153
2154 /*
2155 * Okay, we have the entire packet now. The chip is
2156 * configured to include the FCS (not all chips can
2157 * be configured to strip it), so we need to trim it.
2158 */
2159 m->m_len -= ETHER_CRC_LEN;
2160
2161 *sc->sc_rxtailp = NULL;
2162 m = sc->sc_rxhead;
2163 len = m->m_len + sc->sc_rxlen;
2164
2165 WM_RXCHAIN_RESET(sc);
2166
2167 DPRINTF(WM_DEBUG_RX,
2168 ("%s: RX: have entire packet, len -> %d\n",
2169 sc->sc_dev.dv_xname, len));
2170
2171 /*
2172 * If an error occurred, update stats and drop the packet.
2173 */
2174 if (errors &
2175 (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
2176 ifp->if_ierrors++;
2177 if (errors & WRX_ER_SE)
2178 log(LOG_WARNING, "%s: symbol error\n",
2179 sc->sc_dev.dv_xname);
2180 else if (errors & WRX_ER_SEQ)
2181 log(LOG_WARNING, "%s: receive sequence error\n",
2182 sc->sc_dev.dv_xname);
2183 else if (errors & WRX_ER_CE)
2184 log(LOG_WARNING, "%s: CRC error\n",
2185 sc->sc_dev.dv_xname);
2186 m_freem(m);
2187 continue;
2188 }
2189
2190 /*
2191 * No errors. Receive the packet.
2192 */
2193 m->m_pkthdr.rcvif = ifp;
2194 m->m_pkthdr.len = len;
2195
2196 #if 0 /* XXXJRT */
2197 /*
2198 * If VLANs are enabled, VLAN packets have been unwrapped
2199 * for us. Associate the tag with the packet.
2200 */
2201 if ((status & WRX_ST_VP) != 0) {
2202 VLAN_INPUT_TAG(ifp, m,
2203 le16toh(sc->sc_rxdescs[i].wrx_special,
2204 continue);
2205 }
2206 #endif /* XXXJRT */
2207
2208 /*
2209 * Set up checksum info for this packet.
2210 */
2211 if (status & WRX_ST_IPCS) {
2212 WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
2213 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2214 if (errors & WRX_ER_IPE)
2215 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2216 }
2217 if (status & WRX_ST_TCPCS) {
2218 /*
2219 * Note: we don't know if this was TCP or UDP,
2220 * so we just set both bits, and expect the
2221 * upper layers to deal.
2222 */
2223 WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
2224 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
2225 if (errors & WRX_ER_TCPE)
2226 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
2227 }
2228
2229 ifp->if_ipackets++;
2230
2231 #if NBPFILTER > 0
2232 /* Pass this up to any BPF listeners. */
2233 if (ifp->if_bpf)
2234 bpf_mtap(ifp->if_bpf, m);
2235 #endif /* NBPFILTER > 0 */
2236
2237 /* Pass it on. */
2238 (*ifp->if_input)(ifp, m);
2239 }
2240
2241 /* Update the receive pointer. */
2242 sc->sc_rxptr = i;
2243
2244 DPRINTF(WM_DEBUG_RX,
2245 ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
2246 }
2247
2248 /*
2249 * wm_linkintr:
2250 *
2251 * Helper; handle link interrupts.
2252 */
2253 static void
2254 wm_linkintr(struct wm_softc *sc, uint32_t icr)
2255 {
2256 uint32_t status;
2257
2258 /*
2259 * If we get a link status interrupt on a 1000BASE-T
2260 * device, just fall into the normal MII tick path.
2261 */
2262 if (sc->sc_flags & WM_F_HAS_MII) {
2263 if (icr & ICR_LSC) {
2264 DPRINTF(WM_DEBUG_LINK,
2265 ("%s: LINK: LSC -> mii_tick\n",
2266 sc->sc_dev.dv_xname));
2267 mii_tick(&sc->sc_mii);
2268 } else if (icr & ICR_RXSEQ) {
2269 DPRINTF(WM_DEBUG_LINK,
2270 ("%s: LINK Receive sequence error\n",
2271 sc->sc_dev.dv_xname));
2272 }
2273 return;
2274 }
2275
2276 /*
2277 * If we are now receiving /C/, check for link again in
2278 * a couple of link clock ticks.
2279 */
2280 if (icr & ICR_RXCFG) {
2281 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
2282 sc->sc_dev.dv_xname));
2283 sc->sc_tbi_anstate = 2;
2284 }
2285
2286 if (icr & ICR_LSC) {
2287 status = CSR_READ(sc, WMREG_STATUS);
2288 if (status & STATUS_LU) {
2289 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
2290 sc->sc_dev.dv_xname,
2291 (status & STATUS_FD) ? "FDX" : "HDX"));
2292 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
2293 sc->sc_fcrtl &= ~FCRTL_XONE;
2294 if (status & STATUS_FD)
2295 sc->sc_tctl |=
2296 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2297 else
2298 sc->sc_tctl |=
2299 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
2300 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
2301 sc->sc_fcrtl |= FCRTL_XONE;
2302 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2303 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
2304 WMREG_OLD_FCRTL : WMREG_FCRTL,
2305 sc->sc_fcrtl);
2306 sc->sc_tbi_linkup = 1;
2307 } else {
2308 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
2309 sc->sc_dev.dv_xname));
2310 sc->sc_tbi_linkup = 0;
2311 }
2312 sc->sc_tbi_anstate = 2;
2313 wm_tbi_set_linkled(sc);
2314 } else if (icr & ICR_RXSEQ) {
2315 DPRINTF(WM_DEBUG_LINK,
2316 ("%s: LINK: Receive sequence error\n",
2317 sc->sc_dev.dv_xname));
2318 }
2319 }
2320
2321 /*
2322 * wm_tick:
2323 *
2324 * One second timer, used to check link status, sweep up
2325 * completed transmit jobs, etc.
2326 */
2327 static void
2328 wm_tick(void *arg)
2329 {
2330 struct wm_softc *sc = arg;
2331 int s;
2332
2333 s = splnet();
2334
2335 if (sc->sc_type >= WM_T_82542_2_1) {
2336 WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
2337 WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
2338 WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
2339 WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
2340 WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
2341 }
2342
2343 if (sc->sc_flags & WM_F_HAS_MII)
2344 mii_tick(&sc->sc_mii);
2345 else
2346 wm_tbi_check_link(sc);
2347
2348 splx(s);
2349
2350 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2351 }
2352
2353 /*
2354 * wm_reset:
2355 *
2356 * Reset the i82542 chip.
2357 */
2358 static void
2359 wm_reset(struct wm_softc *sc)
2360 {
2361 int i;
2362
2363 /*
2364 * Allocate on-chip memory according to the MTU size.
2365 * The Packet Buffer Allocation register must be written
2366 * before the chip is reset.
2367 */
2368 if (sc->sc_type < WM_T_82547) {
2369 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2370 PBA_40K : PBA_48K;
2371 } else {
2372 sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
2373 PBA_22K : PBA_30K;
2374 sc->sc_txfifo_head = 0;
2375 sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
2376 sc->sc_txfifo_size =
2377 (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
2378 sc->sc_txfifo_stall = 0;
2379 }
2380 CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
2381
2382 switch (sc->sc_type) {
2383 case WM_T_82544:
2384 case WM_T_82540:
2385 case WM_T_82545:
2386 case WM_T_82546:
2387 case WM_T_82541:
2388 case WM_T_82541_2:
2389 /*
2390 * On some chipsets, a reset through a memory-mapped write
2391 * cycle can cause the chip to reset before completing the
2392 * write cycle. This causes major headache that can be
2393 * avoided by issuing the reset via indirect register writes
2394 * through I/O space.
2395 *
2396 * So, if we successfully mapped the I/O BAR at attach time,
2397 * use that. Otherwise, try our luck with a memory-mapped
2398 * reset.
2399 */
2400 if (sc->sc_flags & WM_F_IOH_VALID)
2401 wm_io_write(sc, WMREG_CTRL, CTRL_RST);
2402 else
2403 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2404 break;
2405
2406 case WM_T_82545_3:
2407 case WM_T_82546_3:
2408 /* Use the shadow control register on these chips. */
2409 CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
2410 break;
2411
2412 default:
2413 /* Everything else can safely use the documented method. */
2414 CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
2415 break;
2416 }
2417 delay(10000);
2418
2419 for (i = 0; i < 1000; i++) {
2420 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
2421 return;
2422 delay(20);
2423 }
2424
2425 if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
2426 log(LOG_ERR, "%s: reset failed to complete\n",
2427 sc->sc_dev.dv_xname);
2428 }
2429
2430 /*
2431 * wm_init: [ifnet interface function]
2432 *
2433 * Initialize the interface. Must be called at splnet().
2434 */
2435 static int
2436 wm_init(struct ifnet *ifp)
2437 {
2438 struct wm_softc *sc = ifp->if_softc;
2439 struct wm_rxsoft *rxs;
2440 int i, error = 0;
2441 uint32_t reg;
2442
2443 /*
2444 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
2445 * There is a small but measurable benefit to avoiding the adjusment
2446 * of the descriptor so that the headers are aligned, for normal mtu,
2447 * on such platforms. One possibility is that the DMA itself is
2448 * slightly more efficient if the front of the entire packet (instead
2449 * of the front of the headers) is aligned.
2450 *
2451 * Note we must always set align_tweak to 0 if we are using
2452 * jumbo frames.
2453 */
2454 #ifdef __NO_STRICT_ALIGNMENT
2455 sc->sc_align_tweak = 0;
2456 #else
2457 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
2458 sc->sc_align_tweak = 0;
2459 else
2460 sc->sc_align_tweak = 2;
2461 #endif /* __NO_STRICT_ALIGNMENT */
2462
2463 /* Cancel any pending I/O. */
2464 wm_stop(ifp, 0);
2465
2466 /* Reset the chip to a known state. */
2467 wm_reset(sc);
2468
2469 /* Initialize the transmit descriptor ring. */
2470 memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
2471 WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
2472 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2473 sc->sc_txfree = WM_NTXDESC(sc);
2474 sc->sc_txnext = 0;
2475
2476 if (sc->sc_type < WM_T_82543) {
2477 CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
2478 CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
2479 CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
2480 CSR_WRITE(sc, WMREG_OLD_TDH, 0);
2481 CSR_WRITE(sc, WMREG_OLD_TDT, 0);
2482 CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
2483 } else {
2484 CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
2485 CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
2486 CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
2487 CSR_WRITE(sc, WMREG_TDH, 0);
2488 CSR_WRITE(sc, WMREG_TDT, 0);
2489 CSR_WRITE(sc, WMREG_TIDV, 64);
2490 CSR_WRITE(sc, WMREG_TADV, 128);
2491
2492 CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
2493 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
2494 CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
2495 RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
2496 }
2497 CSR_WRITE(sc, WMREG_TQSA_LO, 0);
2498 CSR_WRITE(sc, WMREG_TQSA_HI, 0);
2499
2500 /* Initialize the transmit job descriptors. */
2501 for (i = 0; i < WM_TXQUEUELEN(sc); i++)
2502 sc->sc_txsoft[i].txs_mbuf = NULL;
2503 sc->sc_txsfree = WM_TXQUEUELEN(sc);
2504 sc->sc_txsnext = 0;
2505 sc->sc_txsdirty = 0;
2506
2507 /*
2508 * Initialize the receive descriptor and receive job
2509 * descriptor rings.
2510 */
2511 if (sc->sc_type < WM_T_82543) {
2512 CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
2513 CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
2514 CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
2515 CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
2516 CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
2517 CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
2518
2519 CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
2520 CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
2521 CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
2522 CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
2523 CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
2524 CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
2525 } else {
2526 CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
2527 CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
2528 CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
2529 CSR_WRITE(sc, WMREG_RDH, 0);
2530 CSR_WRITE(sc, WMREG_RDT, 0);
2531 CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
2532 CSR_WRITE(sc, WMREG_RADV, 128);
2533 }
2534 for (i = 0; i < WM_NRXDESC; i++) {
2535 rxs = &sc->sc_rxsoft[i];
2536 if (rxs->rxs_mbuf == NULL) {
2537 if ((error = wm_add_rxbuf(sc, i)) != 0) {
2538 log(LOG_ERR, "%s: unable to allocate or map rx "
2539 "buffer %d, error = %d\n",
2540 sc->sc_dev.dv_xname, i, error);
2541 /*
2542 * XXX Should attempt to run with fewer receive
2543 * XXX buffers instead of just failing.
2544 */
2545 wm_rxdrain(sc);
2546 goto out;
2547 }
2548 } else
2549 WM_INIT_RXDESC(sc, i);
2550 }
2551 sc->sc_rxptr = 0;
2552 sc->sc_rxdiscard = 0;
2553 WM_RXCHAIN_RESET(sc);
2554
2555 /*
2556 * Clear out the VLAN table -- we don't use it (yet).
2557 */
2558 CSR_WRITE(sc, WMREG_VET, 0);
2559 for (i = 0; i < WM_VLAN_TABSIZE; i++)
2560 CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
2561
2562 /*
2563 * Set up flow-control parameters.
2564 *
2565 * XXX Values could probably stand some tuning.
2566 */
2567 CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
2568 CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
2569 CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
2570
2571 sc->sc_fcrtl = FCRTL_DFLT;
2572 if (sc->sc_type < WM_T_82543) {
2573 CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
2574 CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
2575 } else {
2576 CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
2577 CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
2578 }
2579 CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
2580
2581 #if 0 /* XXXJRT */
2582 /* Deal with VLAN enables. */
2583 if (VLAN_ATTACHED(&sc->sc_ethercom))
2584 sc->sc_ctrl |= CTRL_VME;
2585 else
2586 #endif /* XXXJRT */
2587 sc->sc_ctrl &= ~CTRL_VME;
2588
2589 /* Write the control registers. */
2590 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
2591 #if 0
2592 CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
2593 #endif
2594
2595 /*
2596 * Set up checksum offload parameters.
2597 */
2598 reg = CSR_READ(sc, WMREG_RXCSUM);
2599 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
2600 reg |= RXCSUM_IPOFL;
2601 else
2602 reg &= ~RXCSUM_IPOFL;
2603 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
2604 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2605 else {
2606 reg &= ~RXCSUM_TUOFL;
2607 if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
2608 reg &= ~RXCSUM_IPOFL;
2609 }
2610 CSR_WRITE(sc, WMREG_RXCSUM, reg);
2611
2612 /*
2613 * Set up the interrupt registers.
2614 */
2615 CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
2616 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2617 ICR_RXO | ICR_RXT0;
2618 if ((sc->sc_flags & WM_F_HAS_MII) == 0)
2619 sc->sc_icr |= ICR_RXCFG;
2620 CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
2621
2622 /* Set up the inter-packet gap. */
2623 CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
2624
2625 if (sc->sc_type >= WM_T_82543) {
2626 /* Set up the interrupt throttling register (units of 256ns) */
2627 sc->sc_itr = 1000000000 / (7000 * 256);
2628 CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
2629 }
2630
2631 #if 0 /* XXXJRT */
2632 /* Set the VLAN ethernetype. */
2633 CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
2634 #endif
2635
2636 /*
2637 * Set up the transmit control register; we start out with
2638 * a collision distance suitable for FDX, but update it whe
2639 * we resolve the media type.
2640 */
2641 sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
2642 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
2643 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
2644
2645 /* Set the media. */
2646 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
2647
2648 /*
2649 * Set up the receive control register; we actually program
2650 * the register when we set the receive filter. Use multicast
2651 * address offset type 0.
2652 *
2653 * Only the i82544 has the ability to strip the incoming
2654 * CRC, so we don't enable that feature.
2655 */
2656 sc->sc_mchash_type = 0;
2657 sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
2658 RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
2659
2660 if(MCLBYTES == 2048) {
2661 sc->sc_rctl |= RCTL_2k;
2662 } else {
2663 if(sc->sc_type >= WM_T_82543) {
2664 switch(MCLBYTES) {
2665 case 4096:
2666 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
2667 break;
2668 case 8192:
2669 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
2670 break;
2671 case 16384:
2672 sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
2673 break;
2674 default:
2675 panic("wm_init: MCLBYTES %d unsupported",
2676 MCLBYTES);
2677 break;
2678 }
2679 } else panic("wm_init: i82542 requires MCLBYTES = 2048");
2680 }
2681
2682 /* Set the receive filter. */
2683 wm_set_filter(sc);
2684
2685 /* Start the one second link check clock. */
2686 callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
2687
2688 /* ...all done! */
2689 ifp->if_flags |= IFF_RUNNING;
2690 ifp->if_flags &= ~IFF_OACTIVE;
2691
2692 out:
2693 if (error)
2694 log(LOG_ERR, "%s: interface not running\n",
2695 sc->sc_dev.dv_xname);
2696 return (error);
2697 }
2698
2699 /*
2700 * wm_rxdrain:
2701 *
2702 * Drain the receive queue.
2703 */
2704 static void
2705 wm_rxdrain(struct wm_softc *sc)
2706 {
2707 struct wm_rxsoft *rxs;
2708 int i;
2709
2710 for (i = 0; i < WM_NRXDESC; i++) {
2711 rxs = &sc->sc_rxsoft[i];
2712 if (rxs->rxs_mbuf != NULL) {
2713 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2714 m_freem(rxs->rxs_mbuf);
2715 rxs->rxs_mbuf = NULL;
2716 }
2717 }
2718 }
2719
2720 /*
2721 * wm_stop: [ifnet interface function]
2722 *
2723 * Stop transmission on the interface.
2724 */
2725 static void
2726 wm_stop(struct ifnet *ifp, int disable)
2727 {
2728 struct wm_softc *sc = ifp->if_softc;
2729 struct wm_txsoft *txs;
2730 int i;
2731
2732 /* Stop the one second clock. */
2733 callout_stop(&sc->sc_tick_ch);
2734
2735 /* Stop the 82547 Tx FIFO stall check timer. */
2736 if (sc->sc_type == WM_T_82547)
2737 callout_stop(&sc->sc_txfifo_ch);
2738
2739 if (sc->sc_flags & WM_F_HAS_MII) {
2740 /* Down the MII. */
2741 mii_down(&sc->sc_mii);
2742 }
2743
2744 /* Stop the transmit and receive processes. */
2745 CSR_WRITE(sc, WMREG_TCTL, 0);
2746 CSR_WRITE(sc, WMREG_RCTL, 0);
2747
2748 /* Release any queued transmit buffers. */
2749 for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
2750 txs = &sc->sc_txsoft[i];
2751 if (txs->txs_mbuf != NULL) {
2752 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2753 m_freem(txs->txs_mbuf);
2754 txs->txs_mbuf = NULL;
2755 }
2756 }
2757
2758 if (disable)
2759 wm_rxdrain(sc);
2760
2761 /* Mark the interface as down and cancel the watchdog timer. */
2762 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2763 ifp->if_timer = 0;
2764 }
2765
2766 /*
2767 * wm_acquire_eeprom:
2768 *
2769 * Perform the EEPROM handshake required on some chips.
2770 */
2771 static int
2772 wm_acquire_eeprom(struct wm_softc *sc)
2773 {
2774 uint32_t reg;
2775 int x;
2776
2777 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2778 reg = CSR_READ(sc, WMREG_EECD);
2779
2780 /* Request EEPROM access. */
2781 reg |= EECD_EE_REQ;
2782 CSR_WRITE(sc, WMREG_EECD, reg);
2783
2784 /* ..and wait for it to be granted. */
2785 for (x = 0; x < 100; x++) {
2786 reg = CSR_READ(sc, WMREG_EECD);
2787 if (reg & EECD_EE_GNT)
2788 break;
2789 delay(5);
2790 }
2791 if ((reg & EECD_EE_GNT) == 0) {
2792 aprint_error("%s: could not acquire EEPROM GNT\n",
2793 sc->sc_dev.dv_xname);
2794 reg &= ~EECD_EE_REQ;
2795 CSR_WRITE(sc, WMREG_EECD, reg);
2796 return (1);
2797 }
2798 }
2799
2800 return (0);
2801 }
2802
2803 /*
2804 * wm_release_eeprom:
2805 *
2806 * Release the EEPROM mutex.
2807 */
2808 static void
2809 wm_release_eeprom(struct wm_softc *sc)
2810 {
2811 uint32_t reg;
2812
2813 if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
2814 reg = CSR_READ(sc, WMREG_EECD);
2815 reg &= ~EECD_EE_REQ;
2816 CSR_WRITE(sc, WMREG_EECD, reg);
2817 }
2818 }
2819
2820 /*
2821 * wm_eeprom_sendbits:
2822 *
2823 * Send a series of bits to the EEPROM.
2824 */
2825 static void
2826 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
2827 {
2828 uint32_t reg;
2829 int x;
2830
2831 reg = CSR_READ(sc, WMREG_EECD);
2832
2833 for (x = nbits; x > 0; x--) {
2834 if (bits & (1U << (x - 1)))
2835 reg |= EECD_DI;
2836 else
2837 reg &= ~EECD_DI;
2838 CSR_WRITE(sc, WMREG_EECD, reg);
2839 delay(2);
2840 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2841 delay(2);
2842 CSR_WRITE(sc, WMREG_EECD, reg);
2843 delay(2);
2844 }
2845 }
2846
2847 /*
2848 * wm_eeprom_recvbits:
2849 *
2850 * Receive a series of bits from the EEPROM.
2851 */
2852 static void
2853 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
2854 {
2855 uint32_t reg, val;
2856 int x;
2857
2858 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
2859
2860 val = 0;
2861 for (x = nbits; x > 0; x--) {
2862 CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
2863 delay(2);
2864 if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
2865 val |= (1U << (x - 1));
2866 CSR_WRITE(sc, WMREG_EECD, reg);
2867 delay(2);
2868 }
2869 *valp = val;
2870 }
2871
2872 /*
2873 * wm_read_eeprom_uwire:
2874 *
2875 * Read a word from the EEPROM using the MicroWire protocol.
2876 */
2877 static int
2878 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2879 {
2880 uint32_t reg, val;
2881 int i;
2882
2883 for (i = 0; i < wordcnt; i++) {
2884 /* Clear SK and DI. */
2885 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
2886 CSR_WRITE(sc, WMREG_EECD, reg);
2887
2888 /* Set CHIP SELECT. */
2889 reg |= EECD_CS;
2890 CSR_WRITE(sc, WMREG_EECD, reg);
2891 delay(2);
2892
2893 /* Shift in the READ command. */
2894 wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
2895
2896 /* Shift in address. */
2897 wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
2898
2899 /* Shift out the data. */
2900 wm_eeprom_recvbits(sc, &val, 16);
2901 data[i] = val & 0xffff;
2902
2903 /* Clear CHIP SELECT. */
2904 reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
2905 CSR_WRITE(sc, WMREG_EECD, reg);
2906 delay(2);
2907 }
2908
2909 return (0);
2910 }
2911
2912 /*
2913 * wm_spi_eeprom_ready:
2914 *
2915 * Wait for a SPI EEPROM to be ready for commands.
2916 */
2917 static int
2918 wm_spi_eeprom_ready(struct wm_softc *sc)
2919 {
2920 uint32_t val;
2921 int usec;
2922
2923 for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
2924 wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
2925 wm_eeprom_recvbits(sc, &val, 8);
2926 if ((val & SPI_SR_RDY) == 0)
2927 break;
2928 }
2929 if (usec >= SPI_MAX_RETRIES) {
2930 aprint_error("%s: EEPROM failed to become ready\n",
2931 sc->sc_dev.dv_xname);
2932 return (1);
2933 }
2934 return (0);
2935 }
2936
2937 /*
2938 * wm_read_eeprom_spi:
2939 *
2940 * Read a work from the EEPROM using the SPI protocol.
2941 */
2942 static int
2943 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2944 {
2945 uint32_t reg, val;
2946 int i;
2947 uint8_t opc;
2948
2949 /* Clear SK and CS. */
2950 reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
2951 CSR_WRITE(sc, WMREG_EECD, reg);
2952 delay(2);
2953
2954 if (wm_spi_eeprom_ready(sc))
2955 return (1);
2956
2957 /* Toggle CS to flush commands. */
2958 CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
2959 delay(2);
2960 CSR_WRITE(sc, WMREG_EECD, reg);
2961 delay(2);
2962
2963 opc = SPI_OPC_READ;
2964 if (sc->sc_ee_addrbits == 8 && word >= 128)
2965 opc |= SPI_OPC_A8;
2966
2967 wm_eeprom_sendbits(sc, opc, 8);
2968 wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
2969
2970 for (i = 0; i < wordcnt; i++) {
2971 wm_eeprom_recvbits(sc, &val, 16);
2972 data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
2973 }
2974
2975 /* Raise CS and clear SK. */
2976 reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
2977 CSR_WRITE(sc, WMREG_EECD, reg);
2978 delay(2);
2979
2980 return (0);
2981 }
2982
2983 /*
2984 * wm_read_eeprom:
2985 *
2986 * Read data from the serial EEPROM.
2987 */
2988 static int
2989 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
2990 {
2991 int rv;
2992
2993 if (wm_acquire_eeprom(sc))
2994 return (1);
2995
2996 if (sc->sc_flags & WM_F_EEPROM_SPI)
2997 rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
2998 else
2999 rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
3000
3001 wm_release_eeprom(sc);
3002 return (rv);
3003 }
3004
3005 /*
3006 * wm_add_rxbuf:
3007 *
3008 * Add a receive buffer to the indiciated descriptor.
3009 */
3010 static int
3011 wm_add_rxbuf(struct wm_softc *sc, int idx)
3012 {
3013 struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
3014 struct mbuf *m;
3015 int error;
3016
3017 MGETHDR(m, M_DONTWAIT, MT_DATA);
3018 if (m == NULL)
3019 return (ENOBUFS);
3020
3021 MCLGET(m, M_DONTWAIT);
3022 if ((m->m_flags & M_EXT) == 0) {
3023 m_freem(m);
3024 return (ENOBUFS);
3025 }
3026
3027 if (rxs->rxs_mbuf != NULL)
3028 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3029
3030 rxs->rxs_mbuf = m;
3031
3032 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3033 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
3034 BUS_DMA_READ|BUS_DMA_NOWAIT);
3035 if (error) {
3036 /* XXX XXX XXX */
3037 printf("%s: unable to load rx DMA map %d, error = %d\n",
3038 sc->sc_dev.dv_xname, idx, error);
3039 panic("wm_add_rxbuf");
3040 }
3041
3042 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3043 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3044
3045 WM_INIT_RXDESC(sc, idx);
3046
3047 return (0);
3048 }
3049
3050 /*
3051 * wm_set_ral:
3052 *
3053 * Set an entery in the receive address list.
3054 */
3055 static void
3056 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
3057 {
3058 uint32_t ral_lo, ral_hi;
3059
3060 if (enaddr != NULL) {
3061 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
3062 (enaddr[3] << 24);
3063 ral_hi = enaddr[4] | (enaddr[5] << 8);
3064 ral_hi |= RAL_AV;
3065 } else {
3066 ral_lo = 0;
3067 ral_hi = 0;
3068 }
3069
3070 if (sc->sc_type >= WM_T_82544) {
3071 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
3072 ral_lo);
3073 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
3074 ral_hi);
3075 } else {
3076 CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
3077 CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
3078 }
3079 }
3080
3081 /*
3082 * wm_mchash:
3083 *
3084 * Compute the hash of the multicast address for the 4096-bit
3085 * multicast filter.
3086 */
3087 static uint32_t
3088 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
3089 {
3090 static const int lo_shift[4] = { 4, 3, 2, 0 };
3091 static const int hi_shift[4] = { 4, 5, 6, 8 };
3092 uint32_t hash;
3093
3094 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
3095 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
3096
3097 return (hash & 0xfff);
3098 }
3099
3100 /*
3101 * wm_set_filter:
3102 *
3103 * Set up the receive filter.
3104 */
3105 static void
3106 wm_set_filter(struct wm_softc *sc)
3107 {
3108 struct ethercom *ec = &sc->sc_ethercom;
3109 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3110 struct ether_multi *enm;
3111 struct ether_multistep step;
3112 bus_addr_t mta_reg;
3113 uint32_t hash, reg, bit;
3114 int i;
3115
3116 if (sc->sc_type >= WM_T_82544)
3117 mta_reg = WMREG_CORDOVA_MTA;
3118 else
3119 mta_reg = WMREG_MTA;
3120
3121 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
3122
3123 if (ifp->if_flags & IFF_BROADCAST)
3124 sc->sc_rctl |= RCTL_BAM;
3125 if (ifp->if_flags & IFF_PROMISC) {
3126 sc->sc_rctl |= RCTL_UPE;
3127 goto allmulti;
3128 }
3129
3130 /*
3131 * Set the station address in the first RAL slot, and
3132 * clear the remaining slots.
3133 */
3134 wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
3135 for (i = 1; i < WM_RAL_TABSIZE; i++)
3136 wm_set_ral(sc, NULL, i);
3137
3138 /* Clear out the multicast table. */
3139 for (i = 0; i < WM_MC_TABSIZE; i++)
3140 CSR_WRITE(sc, mta_reg + (i << 2), 0);
3141
3142 ETHER_FIRST_MULTI(step, ec, enm);
3143 while (enm != NULL) {
3144 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3145 /*
3146 * We must listen to a range of multicast addresses.
3147 * For now, just accept all multicasts, rather than
3148 * trying to set only those filter bits needed to match
3149 * the range. (At this time, the only use of address
3150 * ranges is for IP multicast routing, for which the
3151 * range is big enough to require all bits set.)
3152 */
3153 goto allmulti;
3154 }
3155
3156 hash = wm_mchash(sc, enm->enm_addrlo);
3157
3158 reg = (hash >> 5) & 0x7f;
3159 bit = hash & 0x1f;
3160
3161 hash = CSR_READ(sc, mta_reg + (reg << 2));
3162 hash |= 1U << bit;
3163
3164 /* XXX Hardware bug?? */
3165 if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
3166 bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
3167 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3168 CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
3169 } else
3170 CSR_WRITE(sc, mta_reg + (reg << 2), hash);
3171
3172 ETHER_NEXT_MULTI(step, enm);
3173 }
3174
3175 ifp->if_flags &= ~IFF_ALLMULTI;
3176 goto setit;
3177
3178 allmulti:
3179 ifp->if_flags |= IFF_ALLMULTI;
3180 sc->sc_rctl |= RCTL_MPE;
3181
3182 setit:
3183 CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
3184 }
3185
3186 /*
3187 * wm_tbi_mediainit:
3188 *
3189 * Initialize media for use on 1000BASE-X devices.
3190 */
3191 static void
3192 wm_tbi_mediainit(struct wm_softc *sc)
3193 {
3194 const char *sep = "";
3195
3196 if (sc->sc_type < WM_T_82543)
3197 sc->sc_tipg = TIPG_WM_DFLT;
3198 else
3199 sc->sc_tipg = TIPG_LG_DFLT;
3200
3201 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
3202 wm_tbi_mediastatus);
3203
3204 /*
3205 * SWD Pins:
3206 *
3207 * 0 = Link LED (output)
3208 * 1 = Loss Of Signal (input)
3209 */
3210 sc->sc_ctrl |= CTRL_SWDPIO(0);
3211 sc->sc_ctrl &= ~CTRL_SWDPIO(1);
3212
3213 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3214
3215 #define ADD(ss, mm, dd) \
3216 do { \
3217 aprint_normal("%s%s", sep, ss); \
3218 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
3219 sep = ", "; \
3220 } while (/*CONSTCOND*/0)
3221
3222 aprint_normal("%s: ", sc->sc_dev.dv_xname);
3223 ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
3224 ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
3225 ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
3226 aprint_normal("\n");
3227
3228 #undef ADD
3229
3230 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3231 }
3232
3233 /*
3234 * wm_tbi_mediastatus: [ifmedia interface function]
3235 *
3236 * Get the current interface media status on a 1000BASE-X device.
3237 */
3238 static void
3239 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3240 {
3241 struct wm_softc *sc = ifp->if_softc;
3242 uint32_t ctrl;
3243
3244 ifmr->ifm_status = IFM_AVALID;
3245 ifmr->ifm_active = IFM_ETHER;
3246
3247 if (sc->sc_tbi_linkup == 0) {
3248 ifmr->ifm_active |= IFM_NONE;
3249 return;
3250 }
3251
3252 ifmr->ifm_status |= IFM_ACTIVE;
3253 ifmr->ifm_active |= IFM_1000_SX;
3254 if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
3255 ifmr->ifm_active |= IFM_FDX;
3256 ctrl = CSR_READ(sc, WMREG_CTRL);
3257 if (ctrl & CTRL_RFCE)
3258 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
3259 if (ctrl & CTRL_TFCE)
3260 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
3261 }
3262
3263 /*
3264 * wm_tbi_mediachange: [ifmedia interface function]
3265 *
3266 * Set hardware to newly-selected media on a 1000BASE-X device.
3267 */
3268 static int
3269 wm_tbi_mediachange(struct ifnet *ifp)
3270 {
3271 struct wm_softc *sc = ifp->if_softc;
3272 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3273 uint32_t status;
3274 int i;
3275
3276 sc->sc_txcw = ife->ifm_data;
3277 if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
3278 (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
3279 sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
3280 sc->sc_txcw |= TXCW_ANE;
3281
3282 CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
3283 delay(10000);
3284
3285 /* NOTE: CTRL will update TFCE and RFCE automatically. */
3286
3287 sc->sc_tbi_anstate = 0;
3288
3289 if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
3290 /* Have signal; wait for the link to come up. */
3291 for (i = 0; i < 50; i++) {
3292 delay(10000);
3293 if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
3294 break;
3295 }
3296
3297 status = CSR_READ(sc, WMREG_STATUS);
3298 if (status & STATUS_LU) {
3299 /* Link is up. */
3300 DPRINTF(WM_DEBUG_LINK,
3301 ("%s: LINK: set media -> link up %s\n",
3302 sc->sc_dev.dv_xname,
3303 (status & STATUS_FD) ? "FDX" : "HDX"));
3304 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3305 sc->sc_fcrtl &= ~FCRTL_XONE;
3306 if (status & STATUS_FD)
3307 sc->sc_tctl |=
3308 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3309 else
3310 sc->sc_tctl |=
3311 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3312 if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
3313 sc->sc_fcrtl |= FCRTL_XONE;
3314 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3315 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3316 WMREG_OLD_FCRTL : WMREG_FCRTL,
3317 sc->sc_fcrtl);
3318 sc->sc_tbi_linkup = 1;
3319 } else {
3320 /* Link is down. */
3321 DPRINTF(WM_DEBUG_LINK,
3322 ("%s: LINK: set media -> link down\n",
3323 sc->sc_dev.dv_xname));
3324 sc->sc_tbi_linkup = 0;
3325 }
3326 } else {
3327 DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
3328 sc->sc_dev.dv_xname));
3329 sc->sc_tbi_linkup = 0;
3330 }
3331
3332 wm_tbi_set_linkled(sc);
3333
3334 return (0);
3335 }
3336
3337 /*
3338 * wm_tbi_set_linkled:
3339 *
3340 * Update the link LED on 1000BASE-X devices.
3341 */
3342 static void
3343 wm_tbi_set_linkled(struct wm_softc *sc)
3344 {
3345
3346 if (sc->sc_tbi_linkup)
3347 sc->sc_ctrl |= CTRL_SWDPIN(0);
3348 else
3349 sc->sc_ctrl &= ~CTRL_SWDPIN(0);
3350
3351 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3352 }
3353
3354 /*
3355 * wm_tbi_check_link:
3356 *
3357 * Check the link on 1000BASE-X devices.
3358 */
3359 static void
3360 wm_tbi_check_link(struct wm_softc *sc)
3361 {
3362 uint32_t rxcw, ctrl, status;
3363
3364 if (sc->sc_tbi_anstate == 0)
3365 return;
3366 else if (sc->sc_tbi_anstate > 1) {
3367 DPRINTF(WM_DEBUG_LINK,
3368 ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
3369 sc->sc_tbi_anstate));
3370 sc->sc_tbi_anstate--;
3371 return;
3372 }
3373
3374 sc->sc_tbi_anstate = 0;
3375
3376 rxcw = CSR_READ(sc, WMREG_RXCW);
3377 ctrl = CSR_READ(sc, WMREG_CTRL);
3378 status = CSR_READ(sc, WMREG_STATUS);
3379
3380 if ((status & STATUS_LU) == 0) {
3381 DPRINTF(WM_DEBUG_LINK,
3382 ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
3383 sc->sc_tbi_linkup = 0;
3384 } else {
3385 DPRINTF(WM_DEBUG_LINK,
3386 ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
3387 (status & STATUS_FD) ? "FDX" : "HDX"));
3388 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3389 sc->sc_fcrtl &= ~FCRTL_XONE;
3390 if (status & STATUS_FD)
3391 sc->sc_tctl |=
3392 TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3393 else
3394 sc->sc_tctl |=
3395 TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3396 if (ctrl & CTRL_TFCE)
3397 sc->sc_fcrtl |= FCRTL_XONE;
3398 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3399 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
3400 WMREG_OLD_FCRTL : WMREG_FCRTL,
3401 sc->sc_fcrtl);
3402 sc->sc_tbi_linkup = 1;
3403 }
3404
3405 wm_tbi_set_linkled(sc);
3406 }
3407
3408 /*
3409 * wm_gmii_reset:
3410 *
3411 * Reset the PHY.
3412 */
3413 static void
3414 wm_gmii_reset(struct wm_softc *sc)
3415 {
3416 uint32_t reg;
3417
3418 if (sc->sc_type >= WM_T_82544) {
3419 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
3420 delay(20000);
3421
3422 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3423 delay(20000);
3424 } else {
3425 /* The PHY reset pin is active-low. */
3426 reg = CSR_READ(sc, WMREG_CTRL_EXT);
3427 reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
3428 CTRL_EXT_SWDPIN(4));
3429 reg |= CTRL_EXT_SWDPIO(4);
3430
3431 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3432 delay(10);
3433
3434 CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
3435 delay(10);
3436
3437 CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
3438 delay(10);
3439 #if 0
3440 sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
3441 #endif
3442 }
3443 }
3444
3445 /*
3446 * wm_gmii_mediainit:
3447 *
3448 * Initialize media for use on 1000BASE-T devices.
3449 */
3450 static void
3451 wm_gmii_mediainit(struct wm_softc *sc)
3452 {
3453 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3454
3455 /* We have MII. */
3456 sc->sc_flags |= WM_F_HAS_MII;
3457
3458 sc->sc_tipg = TIPG_1000T_DFLT;
3459
3460 /*
3461 * Let the chip set speed/duplex on its own based on
3462 * signals from the PHY.
3463 */
3464 sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
3465 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3466
3467 /* Initialize our media structures and probe the GMII. */
3468 sc->sc_mii.mii_ifp = ifp;
3469
3470 if (sc->sc_type >= WM_T_82544) {
3471 sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
3472 sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
3473 } else {
3474 sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
3475 sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
3476 }
3477 sc->sc_mii.mii_statchg = wm_gmii_statchg;
3478
3479 wm_gmii_reset(sc);
3480
3481 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
3482 wm_gmii_mediastatus);
3483
3484 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
3485 MII_OFFSET_ANY, MIIF_DOPAUSE);
3486 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
3487 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
3488 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
3489 } else
3490 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
3491 }
3492
3493 /*
3494 * wm_gmii_mediastatus: [ifmedia interface function]
3495 *
3496 * Get the current interface media status on a 1000BASE-T device.
3497 */
3498 static void
3499 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3500 {
3501 struct wm_softc *sc = ifp->if_softc;
3502
3503 mii_pollstat(&sc->sc_mii);
3504 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3505 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3506 sc->sc_flowflags;
3507 }
3508
3509 /*
3510 * wm_gmii_mediachange: [ifmedia interface function]
3511 *
3512 * Set hardware to newly-selected media on a 1000BASE-T device.
3513 */
3514 static int
3515 wm_gmii_mediachange(struct ifnet *ifp)
3516 {
3517 struct wm_softc *sc = ifp->if_softc;
3518
3519 if (ifp->if_flags & IFF_UP)
3520 mii_mediachg(&sc->sc_mii);
3521 return (0);
3522 }
3523
3524 #define MDI_IO CTRL_SWDPIN(2)
3525 #define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
3526 #define MDI_CLK CTRL_SWDPIN(3)
3527
3528 static void
3529 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
3530 {
3531 uint32_t i, v;
3532
3533 v = CSR_READ(sc, WMREG_CTRL);
3534 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3535 v |= MDI_DIR | CTRL_SWDPIO(3);
3536
3537 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
3538 if (data & i)
3539 v |= MDI_IO;
3540 else
3541 v &= ~MDI_IO;
3542 CSR_WRITE(sc, WMREG_CTRL, v);
3543 delay(10);
3544 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3545 delay(10);
3546 CSR_WRITE(sc, WMREG_CTRL, v);
3547 delay(10);
3548 }
3549 }
3550
3551 static uint32_t
3552 i82543_mii_recvbits(struct wm_softc *sc)
3553 {
3554 uint32_t v, i, data = 0;
3555
3556 v = CSR_READ(sc, WMREG_CTRL);
3557 v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
3558 v |= CTRL_SWDPIO(3);
3559
3560 CSR_WRITE(sc, WMREG_CTRL, v);
3561 delay(10);
3562 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3563 delay(10);
3564 CSR_WRITE(sc, WMREG_CTRL, v);
3565 delay(10);
3566
3567 for (i = 0; i < 16; i++) {
3568 data <<= 1;
3569 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3570 delay(10);
3571 if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
3572 data |= 1;
3573 CSR_WRITE(sc, WMREG_CTRL, v);
3574 delay(10);
3575 }
3576
3577 CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
3578 delay(10);
3579 CSR_WRITE(sc, WMREG_CTRL, v);
3580 delay(10);
3581
3582 return (data);
3583 }
3584
3585 #undef MDI_IO
3586 #undef MDI_DIR
3587 #undef MDI_CLK
3588
3589 /*
3590 * wm_gmii_i82543_readreg: [mii interface function]
3591 *
3592 * Read a PHY register on the GMII (i82543 version).
3593 */
3594 static int
3595 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
3596 {
3597 struct wm_softc *sc = (void *) self;
3598 int rv;
3599
3600 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3601 i82543_mii_sendbits(sc, reg | (phy << 5) |
3602 (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
3603 rv = i82543_mii_recvbits(sc) & 0xffff;
3604
3605 DPRINTF(WM_DEBUG_GMII,
3606 ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
3607 sc->sc_dev.dv_xname, phy, reg, rv));
3608
3609 return (rv);
3610 }
3611
3612 /*
3613 * wm_gmii_i82543_writereg: [mii interface function]
3614 *
3615 * Write a PHY register on the GMII (i82543 version).
3616 */
3617 static void
3618 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
3619 {
3620 struct wm_softc *sc = (void *) self;
3621
3622 i82543_mii_sendbits(sc, 0xffffffffU, 32);
3623 i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
3624 (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
3625 (MII_COMMAND_START << 30), 32);
3626 }
3627
3628 /*
3629 * wm_gmii_i82544_readreg: [mii interface function]
3630 *
3631 * Read a PHY register on the GMII.
3632 */
3633 static int
3634 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
3635 {
3636 struct wm_softc *sc = (void *) self;
3637 uint32_t mdic = 0;
3638 int i, rv;
3639
3640 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
3641 MDIC_REGADD(reg));
3642
3643 for (i = 0; i < 100; i++) {
3644 mdic = CSR_READ(sc, WMREG_MDIC);
3645 if (mdic & MDIC_READY)
3646 break;
3647 delay(10);
3648 }
3649
3650 if ((mdic & MDIC_READY) == 0) {
3651 log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
3652 sc->sc_dev.dv_xname, phy, reg);
3653 rv = 0;
3654 } else if (mdic & MDIC_E) {
3655 #if 0 /* This is normal if no PHY is present. */
3656 log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
3657 sc->sc_dev.dv_xname, phy, reg);
3658 #endif
3659 rv = 0;
3660 } else {
3661 rv = MDIC_DATA(mdic);
3662 if (rv == 0xffff)
3663 rv = 0;
3664 }
3665
3666 return (rv);
3667 }
3668
3669 /*
3670 * wm_gmii_i82544_writereg: [mii interface function]
3671 *
3672 * Write a PHY register on the GMII.
3673 */
3674 static void
3675 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
3676 {
3677 struct wm_softc *sc = (void *) self;
3678 uint32_t mdic = 0;
3679 int i;
3680
3681 CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
3682 MDIC_REGADD(reg) | MDIC_DATA(val));
3683
3684 for (i = 0; i < 100; i++) {
3685 mdic = CSR_READ(sc, WMREG_MDIC);
3686 if (mdic & MDIC_READY)
3687 break;
3688 delay(10);
3689 }
3690
3691 if ((mdic & MDIC_READY) == 0)
3692 log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
3693 sc->sc_dev.dv_xname, phy, reg);
3694 else if (mdic & MDIC_E)
3695 log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
3696 sc->sc_dev.dv_xname, phy, reg);
3697 }
3698
3699 /*
3700 * wm_gmii_statchg: [mii interface function]
3701 *
3702 * Callback from MII layer when media changes.
3703 */
3704 static void
3705 wm_gmii_statchg(struct device *self)
3706 {
3707 struct wm_softc *sc = (void *) self;
3708 struct mii_data *mii = &sc->sc_mii;
3709
3710 sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
3711 sc->sc_tctl &= ~TCTL_COLD(0x3ff);
3712 sc->sc_fcrtl &= ~FCRTL_XONE;
3713
3714 /*
3715 * Get flow control negotiation result.
3716 */
3717 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3718 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3719 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3720 mii->mii_media_active &= ~IFM_ETH_FMASK;
3721 }
3722
3723 if (sc->sc_flowflags & IFM_FLOW) {
3724 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
3725 sc->sc_ctrl |= CTRL_TFCE;
3726 sc->sc_fcrtl |= FCRTL_XONE;
3727 }
3728 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3729 sc->sc_ctrl |= CTRL_RFCE;
3730 }
3731
3732 if (sc->sc_mii.mii_media_active & IFM_FDX) {
3733 DPRINTF(WM_DEBUG_LINK,
3734 ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
3735 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
3736 } else {
3737 DPRINTF(WM_DEBUG_LINK,
3738 ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
3739 sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
3740 }
3741
3742 CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
3743 CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
3744 CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
3745 : WMREG_FCRTL, sc->sc_fcrtl);
3746 }
3747