Home | History | Annotate | Line # | Download | only in pci
if_wm.c revision 1.94
      1 /*	$NetBSD: if_wm.c,v 1.94 2005/02/20 15:55:54 jdolecek Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
     40  *
     41  * TODO (in order of importance):
     42  *
     43  *	- Rework how parameters are loaded from the EEPROM.
     44  *	- Figure out what to do with the i82545GM and i82546GB
     45  *	  SERDES controllers.
     46  *	- Fix hw VLAN assist.
     47  */
     48 
     49 #include <sys/cdefs.h>
     50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.94 2005/02/20 15:55:54 jdolecek Exp $");
     51 
     52 #include "bpfilter.h"
     53 #include "rnd.h"
     54 
     55 #include <sys/param.h>
     56 #include <sys/systm.h>
     57 #include <sys/callout.h>
     58 #include <sys/mbuf.h>
     59 #include <sys/malloc.h>
     60 #include <sys/kernel.h>
     61 #include <sys/socket.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/errno.h>
     64 #include <sys/device.h>
     65 #include <sys/queue.h>
     66 #include <sys/syslog.h>
     67 
     68 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     69 
     70 #if NRND > 0
     71 #include <sys/rnd.h>
     72 #endif
     73 
     74 #include <net/if.h>
     75 #include <net/if_dl.h>
     76 #include <net/if_media.h>
     77 #include <net/if_ether.h>
     78 
     79 #if NBPFILTER > 0
     80 #include <net/bpf.h>
     81 #endif
     82 
     83 #include <netinet/in.h>			/* XXX for struct ip */
     84 #include <netinet/in_systm.h>		/* XXX for struct ip */
     85 #include <netinet/ip.h>			/* XXX for struct ip */
     86 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
     87 
     88 #include <machine/bus.h>
     89 #include <machine/intr.h>
     90 #include <machine/endian.h>
     91 
     92 #include <dev/mii/mii.h>
     93 #include <dev/mii/miivar.h>
     94 #include <dev/mii/mii_bitbang.h>
     95 
     96 #include <dev/pci/pcireg.h>
     97 #include <dev/pci/pcivar.h>
     98 #include <dev/pci/pcidevs.h>
     99 
    100 #include <dev/pci/if_wmreg.h>
    101 
    102 #ifdef WM_DEBUG
    103 #define	WM_DEBUG_LINK		0x01
    104 #define	WM_DEBUG_TX		0x02
    105 #define	WM_DEBUG_RX		0x04
    106 #define	WM_DEBUG_GMII		0x08
    107 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
    108 
    109 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
    110 #else
    111 #define	DPRINTF(x, y)	/* nothing */
    112 #endif /* WM_DEBUG */
    113 
    114 /*
    115  * Transmit descriptor list size.  Due to errata, we can only have
    116  * 256 hardware descriptors in the ring on < 82544, but we use 4096
    117  * on >= 82544.  We tell the upper layers that they can queue a lot
    118  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
    119  * of them at a time.
    120  *
    121  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
    122  * chains containing many small mbufs have been observed in zero-copy
    123  * situations with jumbo frames.
    124  */
    125 #define	WM_NTXSEGS		256
    126 #define	WM_IFQUEUELEN		256
    127 #define	WM_TXQUEUELEN_MAX	64
    128 #define	WM_TXQUEUELEN_MAX_82547	16
    129 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
    130 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
    131 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
    132 #define	WM_NTXDESC_82542	256
    133 #define	WM_NTXDESC_82544	4096
    134 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
    135 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
    136 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
    137 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
    138 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
    139 
    140 #define	WM_MAXTXDMA		ETHER_MAX_LEN_JUMBO
    141 
    142 /*
    143  * Receive descriptor list size.  We have one Rx buffer for normal
    144  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
    145  * packet.  We allocate 256 receive descriptors, each with a 2k
    146  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
    147  */
    148 #define	WM_NRXDESC		256
    149 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
    150 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
    151 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
    152 
    153 /*
    154  * Control structures are DMA'd to the i82542 chip.  We allocate them in
    155  * a single clump that maps to a single DMA segment to make serveral things
    156  * easier.
    157  */
    158 struct wm_control_data_82544 {
    159 	/*
    160 	 * The receive descriptors.
    161 	 */
    162 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    163 
    164 	/*
    165 	 * The transmit descriptors.  Put these at the end, because
    166 	 * we might use a smaller number of them.
    167 	 */
    168 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
    169 };
    170 
    171 struct wm_control_data_82542 {
    172 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    173 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
    174 };
    175 
    176 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
    177 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
    178 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
    179 
    180 /*
    181  * Software state for transmit jobs.
    182  */
    183 struct wm_txsoft {
    184 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    185 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    186 	int txs_firstdesc;		/* first descriptor in packet */
    187 	int txs_lastdesc;		/* last descriptor in packet */
    188 	int txs_ndesc;			/* # of descriptors used */
    189 };
    190 
    191 /*
    192  * Software state for receive buffers.  Each descriptor gets a
    193  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    194  * more than one buffer, we chain them together.
    195  */
    196 struct wm_rxsoft {
    197 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    198 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    199 };
    200 
    201 typedef enum {
    202 	WM_T_unknown		= 0,
    203 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
    204 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
    205 	WM_T_82543,			/* i82543 */
    206 	WM_T_82544,			/* i82544 */
    207 	WM_T_82540,			/* i82540 */
    208 	WM_T_82545,			/* i82545 */
    209 	WM_T_82545_3,			/* i82545 3.0+ */
    210 	WM_T_82546,			/* i82546 */
    211 	WM_T_82546_3,			/* i82546 3.0+ */
    212 	WM_T_82541,			/* i82541 */
    213 	WM_T_82541_2,			/* i82541 2.0+ */
    214 	WM_T_82547,			/* i82547 */
    215 	WM_T_82547_2,			/* i82547 2.0+ */
    216 } wm_chip_type;
    217 
    218 /*
    219  * Software state per device.
    220  */
    221 struct wm_softc {
    222 	struct device sc_dev;		/* generic device information */
    223 	bus_space_tag_t sc_st;		/* bus space tag */
    224 	bus_space_handle_t sc_sh;	/* bus space handle */
    225 	bus_space_tag_t sc_iot;		/* I/O space tag */
    226 	bus_space_handle_t sc_ioh;	/* I/O space handle */
    227 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    228 	struct ethercom sc_ethercom;	/* ethernet common data */
    229 	void *sc_sdhook;		/* shutdown hook */
    230 
    231 	wm_chip_type sc_type;		/* chip type */
    232 	int sc_flags;			/* flags; see below */
    233 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    234 	int sc_pcix_offset;		/* PCIX capability register offset */
    235 	int sc_flowflags;		/* 802.3x flow control flags */
    236 
    237 	void *sc_ih;			/* interrupt cookie */
    238 
    239 	int sc_ee_addrbits;		/* EEPROM address bits */
    240 
    241 	struct mii_data sc_mii;		/* MII/media information */
    242 
    243 	struct callout sc_tick_ch;	/* tick callout */
    244 
    245 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    246 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    247 
    248 	int		sc_align_tweak;
    249 
    250 	/*
    251 	 * Software state for the transmit and receive descriptors.
    252 	 */
    253 	int			sc_txnum;	/* must be a power of two */
    254 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
    255 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
    256 
    257 	/*
    258 	 * Control data structures.
    259 	 */
    260 	int			sc_ntxdesc;	/* must be a power of two */
    261 	struct wm_control_data_82544 *sc_control_data;
    262 #define	sc_txdescs	sc_control_data->wcd_txdescs
    263 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    264 
    265 #ifdef WM_EVENT_COUNTERS
    266 	/* Event counters. */
    267 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    268 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    269 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
    270 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    271 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    272 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    273 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    274 
    275 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    276 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    277 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    278 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    279 
    280 			/* m_pullup() needed for Tx offload */
    281 	struct evcnt sc_ev_txpullup_needed;
    282 			/* ...failed due to no memory */
    283 	struct evcnt sc_ev_txpullup_nomem;
    284 			/* ...failed due to lack of space in first mbuf */
    285 	struct evcnt sc_ev_txpullup_fail;
    286 
    287 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
    288 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    289 
    290 	struct evcnt sc_ev_tu;		/* Tx underrun */
    291 
    292 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
    293 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
    294 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
    295 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
    296 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
    297 #endif /* WM_EVENT_COUNTERS */
    298 
    299 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
    300 
    301 	int	sc_txfree;		/* number of free Tx descriptors */
    302 	int	sc_txnext;		/* next ready Tx descriptor */
    303 
    304 	int	sc_txsfree;		/* number of free Tx jobs */
    305 	int	sc_txsnext;		/* next free Tx job */
    306 	int	sc_txsdirty;		/* dirty Tx jobs */
    307 
    308 	/* These 5 variables are used only on the 82547. */
    309 	int	sc_txfifo_size;		/* Tx FIFO size */
    310 	int	sc_txfifo_head;		/* current head of FIFO */
    311 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
    312 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
    313 	struct callout sc_txfifo_ch;	/* Tx FIFO stall work-around timer */
    314 
    315 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
    316 
    317 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    318 	int	sc_rxdiscard;
    319 	int	sc_rxlen;
    320 	struct mbuf *sc_rxhead;
    321 	struct mbuf *sc_rxtail;
    322 	struct mbuf **sc_rxtailp;
    323 
    324 	uint32_t sc_ctrl;		/* prototype CTRL register */
    325 #if 0
    326 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
    327 #endif
    328 	uint32_t sc_icr;		/* prototype interrupt bits */
    329 	uint32_t sc_itr;		/* prototype intr throttling reg */
    330 	uint32_t sc_tctl;		/* prototype TCTL register */
    331 	uint32_t sc_rctl;		/* prototype RCTL register */
    332 	uint32_t sc_txcw;		/* prototype TXCW register */
    333 	uint32_t sc_tipg;		/* prototype TIPG register */
    334 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
    335 	uint32_t sc_pba;		/* prototype PBA register */
    336 
    337 	int sc_tbi_linkup;		/* TBI link status */
    338 	int sc_tbi_anstate;		/* autonegotiation state */
    339 
    340 	int sc_mchash_type;		/* multicast filter offset */
    341 
    342 #if NRND > 0
    343 	rndsource_element_t rnd_source;	/* random source */
    344 #endif
    345 };
    346 
    347 #define	WM_RXCHAIN_RESET(sc)						\
    348 do {									\
    349 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    350 	*(sc)->sc_rxtailp = NULL;					\
    351 	(sc)->sc_rxlen = 0;						\
    352 } while (/*CONSTCOND*/0)
    353 
    354 #define	WM_RXCHAIN_LINK(sc, m)						\
    355 do {									\
    356 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    357 	(sc)->sc_rxtailp = &(m)->m_next;				\
    358 } while (/*CONSTCOND*/0)
    359 
    360 /* sc_flags */
    361 #define	WM_F_HAS_MII		0x01	/* has MII */
    362 #define	WM_F_EEPROM_HANDSHAKE	0x02	/* requires EEPROM handshake */
    363 #define	WM_F_EEPROM_SPI		0x04	/* EEPROM is SPI */
    364 #define	WM_F_IOH_VALID		0x10	/* I/O handle is valid */
    365 #define	WM_F_BUS64		0x20	/* bus is 64-bit */
    366 #define	WM_F_PCIX		0x40	/* bus is PCI-X */
    367 #define	WM_F_CSA		0x80	/* bus is CSA */
    368 
    369 #ifdef WM_EVENT_COUNTERS
    370 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
    371 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
    372 #else
    373 #define	WM_EVCNT_INCR(ev)	/* nothing */
    374 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
    375 #endif
    376 
    377 #define	CSR_READ(sc, reg)						\
    378 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    379 #define	CSR_WRITE(sc, reg, val)						\
    380 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    381 #define	CSR_WRITE_FLUSH(sc)						\
    382 	(void) CSR_READ((sc), WMREG_STATUS)
    383 
    384 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
    385 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
    386 
    387 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
    388 #define	WM_CDTXADDR_HI(sc, x)						\
    389 	(sizeof(bus_addr_t) == 8 ?					\
    390 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
    391 
    392 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
    393 #define	WM_CDRXADDR_HI(sc, x)						\
    394 	(sizeof(bus_addr_t) == 8 ?					\
    395 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
    396 
    397 #define	WM_CDTXSYNC(sc, x, n, ops)					\
    398 do {									\
    399 	int __x, __n;							\
    400 									\
    401 	__x = (x);							\
    402 	__n = (n);							\
    403 									\
    404 	/* If it will wrap around, sync to the end of the ring. */	\
    405 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
    406 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    407 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
    408 		    (WM_NTXDESC(sc) - __x), (ops));			\
    409 		__n -= (WM_NTXDESC(sc) - __x);				\
    410 		__x = 0;						\
    411 	}								\
    412 									\
    413 	/* Now sync whatever is left. */				\
    414 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    415 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
    416 } while (/*CONSTCOND*/0)
    417 
    418 #define	WM_CDRXSYNC(sc, x, ops)						\
    419 do {									\
    420 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    421 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
    422 } while (/*CONSTCOND*/0)
    423 
    424 #define	WM_INIT_RXDESC(sc, x)						\
    425 do {									\
    426 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    427 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
    428 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    429 									\
    430 	/*								\
    431 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    432 	 * so that the payload after the Ethernet header is aligned	\
    433 	 * to a 4-byte boundary.					\
    434 	 *								\
    435 	 * XXX BRAINDAMAGE ALERT!					\
    436 	 * The stupid chip uses the same size for every buffer, which	\
    437 	 * is set in the Receive Control register.  We are using the 2K	\
    438 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    439 	 * reason, we can't "scoot" packets longer than the standard	\
    440 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    441 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    442 	 * the upper layer copy the headers.				\
    443 	 */								\
    444 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    445 									\
    446 	wm_set_dma_addr(&__rxd->wrx_addr,				\
    447 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
    448 	__rxd->wrx_len = 0;						\
    449 	__rxd->wrx_cksum = 0;						\
    450 	__rxd->wrx_status = 0;						\
    451 	__rxd->wrx_errors = 0;						\
    452 	__rxd->wrx_special = 0;						\
    453 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    454 									\
    455 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
    456 } while (/*CONSTCOND*/0)
    457 
    458 static void	wm_start(struct ifnet *);
    459 static void	wm_watchdog(struct ifnet *);
    460 static int	wm_ioctl(struct ifnet *, u_long, caddr_t);
    461 static int	wm_init(struct ifnet *);
    462 static void	wm_stop(struct ifnet *, int);
    463 
    464 static void	wm_shutdown(void *);
    465 
    466 static void	wm_reset(struct wm_softc *);
    467 static void	wm_rxdrain(struct wm_softc *);
    468 static int	wm_add_rxbuf(struct wm_softc *, int);
    469 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
    470 static void	wm_tick(void *);
    471 
    472 static void	wm_set_filter(struct wm_softc *);
    473 
    474 static int	wm_intr(void *);
    475 static void	wm_txintr(struct wm_softc *);
    476 static void	wm_rxintr(struct wm_softc *);
    477 static void	wm_linkintr(struct wm_softc *, uint32_t);
    478 
    479 static void	wm_tbi_mediainit(struct wm_softc *);
    480 static int	wm_tbi_mediachange(struct ifnet *);
    481 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
    482 
    483 static void	wm_tbi_set_linkled(struct wm_softc *);
    484 static void	wm_tbi_check_link(struct wm_softc *);
    485 
    486 static void	wm_gmii_reset(struct wm_softc *);
    487 
    488 static int	wm_gmii_i82543_readreg(struct device *, int, int);
    489 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
    490 
    491 static int	wm_gmii_i82544_readreg(struct device *, int, int);
    492 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
    493 
    494 static void	wm_gmii_statchg(struct device *);
    495 
    496 static void	wm_gmii_mediainit(struct wm_softc *);
    497 static int	wm_gmii_mediachange(struct ifnet *);
    498 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
    499 
    500 static int	wm_match(struct device *, struct cfdata *, void *);
    501 static void	wm_attach(struct device *, struct device *, void *);
    502 
    503 CFATTACH_DECL(wm, sizeof(struct wm_softc),
    504     wm_match, wm_attach, NULL, NULL);
    505 
    506 static void	wm_82547_txfifo_stall(void *);
    507 
    508 /*
    509  * Devices supported by this driver.
    510  */
    511 static const struct wm_product {
    512 	pci_vendor_id_t		wmp_vendor;
    513 	pci_product_id_t	wmp_product;
    514 	const char		*wmp_name;
    515 	wm_chip_type		wmp_type;
    516 	int			wmp_flags;
    517 #define	WMP_F_1000X		0x01
    518 #define	WMP_F_1000T		0x02
    519 } wm_products[] = {
    520 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
    521 	  "Intel i82542 1000BASE-X Ethernet",
    522 	  WM_T_82542_2_1,	WMP_F_1000X },
    523 
    524 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
    525 	  "Intel i82543GC 1000BASE-X Ethernet",
    526 	  WM_T_82543,		WMP_F_1000X },
    527 
    528 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
    529 	  "Intel i82543GC 1000BASE-T Ethernet",
    530 	  WM_T_82543,		WMP_F_1000T },
    531 
    532 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
    533 	  "Intel i82544EI 1000BASE-T Ethernet",
    534 	  WM_T_82544,		WMP_F_1000T },
    535 
    536 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
    537 	  "Intel i82544EI 1000BASE-X Ethernet",
    538 	  WM_T_82544,		WMP_F_1000X },
    539 
    540 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
    541 	  "Intel i82544GC 1000BASE-T Ethernet",
    542 	  WM_T_82544,		WMP_F_1000T },
    543 
    544 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
    545 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
    546 	  WM_T_82544,		WMP_F_1000T },
    547 
    548 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
    549 	  "Intel i82540EM 1000BASE-T Ethernet",
    550 	  WM_T_82540,		WMP_F_1000T },
    551 
    552 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
    553 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
    554 	  WM_T_82540,		WMP_F_1000T },
    555 
    556 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
    557 	  "Intel i82540EP 1000BASE-T Ethernet",
    558 	  WM_T_82540,		WMP_F_1000T },
    559 
    560 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
    561 	  "Intel i82540EP 1000BASE-T Ethernet",
    562 	  WM_T_82540,		WMP_F_1000T },
    563 
    564 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
    565 	  "Intel i82540EP 1000BASE-T Ethernet",
    566 	  WM_T_82540,		WMP_F_1000T },
    567 
    568 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
    569 	  "Intel i82545EM 1000BASE-T Ethernet",
    570 	  WM_T_82545,		WMP_F_1000T },
    571 
    572 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
    573 	  "Intel i82545GM 1000BASE-T Ethernet",
    574 	  WM_T_82545_3,		WMP_F_1000T },
    575 
    576 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
    577 	  "Intel i82545GM 1000BASE-X Ethernet",
    578 	  WM_T_82545_3,		WMP_F_1000X },
    579 #if 0
    580 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
    581 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
    582 	  WM_T_82545_3,		WMP_F_SERDES },
    583 #endif
    584 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
    585 	  "Intel i82546EB 1000BASE-T Ethernet",
    586 	  WM_T_82546,		WMP_F_1000T },
    587 
    588 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
    589 	  "Intel i82546EB 1000BASE-T Ethernet",
    590 	  WM_T_82546,		WMP_F_1000T },
    591 
    592 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
    593 	  "Intel i82545EM 1000BASE-X Ethernet",
    594 	  WM_T_82545,		WMP_F_1000X },
    595 
    596 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
    597 	  "Intel i82546EB 1000BASE-X Ethernet",
    598 	  WM_T_82546,		WMP_F_1000X },
    599 
    600 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
    601 	  "Intel i82546GB 1000BASE-T Ethernet",
    602 	  WM_T_82546_3,		WMP_F_1000T },
    603 
    604 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
    605 	  "Intel i82546GB 1000BASE-X Ethernet",
    606 	  WM_T_82546_3,		WMP_F_1000X },
    607 #if 0
    608 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
    609 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
    610 	  WM_T_82546_3,		WMP_F_SERDES },
    611 #endif
    612 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
    613 	  "Intel i82541EI 1000BASE-T Ethernet",
    614 	  WM_T_82541,		WMP_F_1000T },
    615 
    616 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
    617 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
    618 	  WM_T_82541,		WMP_F_1000T },
    619 
    620 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
    621 	  "Intel i82541ER 1000BASE-T Ethernet",
    622 	  WM_T_82541_2,		WMP_F_1000T },
    623 
    624 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
    625 	  "Intel i82541GI 1000BASE-T Ethernet",
    626 	  WM_T_82541_2,		WMP_F_1000T },
    627 
    628 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
    629 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
    630 	  WM_T_82541_2,		WMP_F_1000T },
    631 
    632 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
    633 	  "Intel i82547EI 1000BASE-T Ethernet",
    634 	  WM_T_82547,		WMP_F_1000T },
    635 
    636 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
    637 	  "Intel i82547GI 1000BASE-T Ethernet",
    638 	  WM_T_82547_2,		WMP_F_1000T },
    639 	{ 0,			0,
    640 	  NULL,
    641 	  0,			0 },
    642 };
    643 
    644 #ifdef WM_EVENT_COUNTERS
    645 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
    646 #endif /* WM_EVENT_COUNTERS */
    647 
    648 #if 0 /* Not currently used */
    649 static __inline uint32_t
    650 wm_io_read(struct wm_softc *sc, int reg)
    651 {
    652 
    653 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    654 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
    655 }
    656 #endif
    657 
    658 static __inline void
    659 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
    660 {
    661 
    662 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    663 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
    664 }
    665 
    666 static __inline void
    667 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
    668 {
    669 	wa->wa_low = htole32(v & 0xffffffffU);
    670 	if (sizeof(bus_addr_t) == 8)
    671 		wa->wa_high = htole32((uint64_t) v >> 32);
    672 	else
    673 		wa->wa_high = 0;
    674 }
    675 
    676 static const struct wm_product *
    677 wm_lookup(const struct pci_attach_args *pa)
    678 {
    679 	const struct wm_product *wmp;
    680 
    681 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
    682 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
    683 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
    684 			return (wmp);
    685 	}
    686 	return (NULL);
    687 }
    688 
    689 static int
    690 wm_match(struct device *parent, struct cfdata *cf, void *aux)
    691 {
    692 	struct pci_attach_args *pa = aux;
    693 
    694 	if (wm_lookup(pa) != NULL)
    695 		return (1);
    696 
    697 	return (0);
    698 }
    699 
    700 static void
    701 wm_attach(struct device *parent, struct device *self, void *aux)
    702 {
    703 	struct wm_softc *sc = (void *) self;
    704 	struct pci_attach_args *pa = aux;
    705 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    706 	pci_chipset_tag_t pc = pa->pa_pc;
    707 	pci_intr_handle_t ih;
    708 	size_t cdata_size;
    709 	const char *intrstr = NULL;
    710 	const char *eetype;
    711 	bus_space_tag_t memt;
    712 	bus_space_handle_t memh;
    713 	bus_dma_segment_t seg;
    714 	int memh_valid;
    715 	int i, rseg, error;
    716 	const struct wm_product *wmp;
    717 	uint8_t enaddr[ETHER_ADDR_LEN];
    718 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
    719 	pcireg_t preg, memtype;
    720 	uint32_t reg;
    721 	int pmreg;
    722 
    723 	callout_init(&sc->sc_tick_ch);
    724 
    725 	wmp = wm_lookup(pa);
    726 	if (wmp == NULL) {
    727 		printf("\n");
    728 		panic("wm_attach: impossible");
    729 	}
    730 
    731 	if (pci_dma64_available(pa))
    732 		sc->sc_dmat = pa->pa_dmat64;
    733 	else
    734 		sc->sc_dmat = pa->pa_dmat;
    735 
    736 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    737 	aprint_naive(": Ethernet controller\n");
    738 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
    739 
    740 	sc->sc_type = wmp->wmp_type;
    741 	if (sc->sc_type < WM_T_82543) {
    742 		if (preg < 2) {
    743 			aprint_error("%s: i82542 must be at least rev. 2\n",
    744 			    sc->sc_dev.dv_xname);
    745 			return;
    746 		}
    747 		if (preg < 3)
    748 			sc->sc_type = WM_T_82542_2_0;
    749 	}
    750 
    751 	/*
    752 	 * Map the device.  All devices support memory-mapped acccess,
    753 	 * and it is really required for normal operation.
    754 	 */
    755 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
    756 	switch (memtype) {
    757 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    758 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    759 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
    760 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    761 		break;
    762 	default:
    763 		memh_valid = 0;
    764 	}
    765 
    766 	if (memh_valid) {
    767 		sc->sc_st = memt;
    768 		sc->sc_sh = memh;
    769 	} else {
    770 		aprint_error("%s: unable to map device registers\n",
    771 		    sc->sc_dev.dv_xname);
    772 		return;
    773 	}
    774 
    775 	/*
    776 	 * In addition, i82544 and later support I/O mapped indirect
    777 	 * register access.  It is not desirable (nor supported in
    778 	 * this driver) to use it for normal operation, though it is
    779 	 * required to work around bugs in some chip versions.
    780 	 */
    781 	if (sc->sc_type >= WM_T_82544) {
    782 		/* First we have to find the I/O BAR. */
    783 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
    784 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
    785 			    PCI_MAPREG_TYPE_IO)
    786 				break;
    787 		}
    788 		if (i == PCI_MAPREG_END)
    789 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
    790 			    sc->sc_dev.dv_xname);
    791 		else {
    792 			/*
    793 			 * The i8254x doesn't apparently respond when the
    794 			 * I/O BAR is 0, which looks somewhat like it's not
    795 			 * been configured.
    796 			 */
    797 			preg = pci_conf_read(pc, pa->pa_tag, i);
    798 			if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
    799 				aprint_error("%s: WARNING: I/O BAR at zero.\n",
    800 				    sc->sc_dev.dv_xname);
    801 			} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
    802 					0, &sc->sc_iot, &sc->sc_ioh,
    803 					NULL, NULL) == 0) {
    804 				sc->sc_flags |= WM_F_IOH_VALID;
    805 			} else {
    806 				aprint_error("%s: WARNING: unable to map "
    807 				    "I/O space\n", sc->sc_dev.dv_xname);
    808 			}
    809 		}
    810 
    811 	}
    812 
    813 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
    814 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    815 	preg |= PCI_COMMAND_MASTER_ENABLE;
    816 	if (sc->sc_type < WM_T_82542_2_1)
    817 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
    818 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    819 
    820 	/* Get it out of power save mode, if needed. */
    821 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    822 		preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    823 		    PCI_PMCSR_STATE_MASK;
    824 		if (preg == PCI_PMCSR_STATE_D3) {
    825 			/*
    826 			 * The card has lost all configuration data in
    827 			 * this state, so punt.
    828 			 */
    829 			aprint_error("%s: unable to wake from power state D3\n",
    830 			    sc->sc_dev.dv_xname);
    831 			return;
    832 		}
    833 		if (preg != PCI_PMCSR_STATE_D0) {
    834 			aprint_normal("%s: waking up from power state D%d\n",
    835 			    sc->sc_dev.dv_xname, preg);
    836 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    837 			    PCI_PMCSR_STATE_D0);
    838 		}
    839 	}
    840 
    841 	/*
    842 	 * Map and establish our interrupt.
    843 	 */
    844 	if (pci_intr_map(pa, &ih)) {
    845 		aprint_error("%s: unable to map interrupt\n",
    846 		    sc->sc_dev.dv_xname);
    847 		return;
    848 	}
    849 	intrstr = pci_intr_string(pc, ih);
    850 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
    851 	if (sc->sc_ih == NULL) {
    852 		aprint_error("%s: unable to establish interrupt",
    853 		    sc->sc_dev.dv_xname);
    854 		if (intrstr != NULL)
    855 			aprint_normal(" at %s", intrstr);
    856 		aprint_normal("\n");
    857 		return;
    858 	}
    859 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    860 
    861 	/*
    862 	 * Determine a few things about the bus we're connected to.
    863 	 */
    864 	if (sc->sc_type < WM_T_82543) {
    865 		/* We don't really know the bus characteristics here. */
    866 		sc->sc_bus_speed = 33;
    867 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
    868 		/*
    869 		 * CSA (Communication Streaming Architecture) is about as fast
    870 		 * a 32-bit 66MHz PCI Bus.
    871 		 */
    872 		sc->sc_flags |= WM_F_CSA;
    873 		sc->sc_bus_speed = 66;
    874 		aprint_verbose("%s: Communication Streaming Architecture\n",
    875 		    sc->sc_dev.dv_xname);
    876 		if (sc->sc_type == WM_T_82547) {
    877 			callout_init(&sc->sc_txfifo_ch);
    878 			callout_setfunc(&sc->sc_txfifo_ch,
    879 					wm_82547_txfifo_stall, sc);
    880 			aprint_verbose("%s: using 82547 Tx FIFO stall "
    881 				       "work-around\n", sc->sc_dev.dv_xname);
    882 		}
    883 	} else {
    884 		reg = CSR_READ(sc, WMREG_STATUS);
    885 		if (reg & STATUS_BUS64)
    886 			sc->sc_flags |= WM_F_BUS64;
    887 		if (sc->sc_type >= WM_T_82544 &&
    888 		    (reg & STATUS_PCIX_MODE) != 0) {
    889 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
    890 
    891 			sc->sc_flags |= WM_F_PCIX;
    892 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    893 					       PCI_CAP_PCIX,
    894 					       &sc->sc_pcix_offset, NULL) == 0)
    895 				aprint_error("%s: unable to find PCIX "
    896 				    "capability\n", sc->sc_dev.dv_xname);
    897 			else if (sc->sc_type != WM_T_82545_3 &&
    898 				 sc->sc_type != WM_T_82546_3) {
    899 				/*
    900 				 * Work around a problem caused by the BIOS
    901 				 * setting the max memory read byte count
    902 				 * incorrectly.
    903 				 */
    904 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
    905 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
    906 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
    907 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
    908 
    909 				bytecnt =
    910 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
    911 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
    912 				maxb =
    913 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
    914 				    PCI_PCIX_STATUS_MAXB_SHIFT;
    915 				if (bytecnt > maxb) {
    916 					aprint_verbose("%s: resetting PCI-X "
    917 					    "MMRBC: %d -> %d\n",
    918 					    sc->sc_dev.dv_xname,
    919 					    512 << bytecnt, 512 << maxb);
    920 					pcix_cmd = (pcix_cmd &
    921 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
    922 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
    923 					pci_conf_write(pa->pa_pc, pa->pa_tag,
    924 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
    925 					    pcix_cmd);
    926 				}
    927 			}
    928 		}
    929 		/*
    930 		 * The quad port adapter is special; it has a PCIX-PCIX
    931 		 * bridge on the board, and can run the secondary bus at
    932 		 * a higher speed.
    933 		 */
    934 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
    935 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
    936 								      : 66;
    937 		} else if (sc->sc_flags & WM_F_PCIX) {
    938 			switch (reg & STATUS_PCIXSPD_MASK) {
    939 			case STATUS_PCIXSPD_50_66:
    940 				sc->sc_bus_speed = 66;
    941 				break;
    942 			case STATUS_PCIXSPD_66_100:
    943 				sc->sc_bus_speed = 100;
    944 				break;
    945 			case STATUS_PCIXSPD_100_133:
    946 				sc->sc_bus_speed = 133;
    947 				break;
    948 			default:
    949 				aprint_error(
    950 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
    951 				    sc->sc_dev.dv_xname,
    952 				    reg & STATUS_PCIXSPD_MASK);
    953 				sc->sc_bus_speed = 66;
    954 			}
    955 		} else
    956 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
    957 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
    958 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
    959 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
    960 	}
    961 
    962 	/*
    963 	 * Allocate the control data structures, and create and load the
    964 	 * DMA map for it.
    965 	 *
    966 	 * NOTE: All Tx descriptors must be in the same 4G segment of
    967 	 * memory.  So must Rx descriptors.  We simplify by allocating
    968 	 * both sets within the same 4G segment.
    969 	 */
    970 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
    971 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
    972 	cdata_size = sc->sc_type < WM_T_82544 ?
    973 	    sizeof(struct wm_control_data_82542) :
    974 	    sizeof(struct wm_control_data_82544);
    975 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
    976 				      (bus_size_t) 0x100000000ULL,
    977 				      &seg, 1, &rseg, 0)) != 0) {
    978 		aprint_error(
    979 		    "%s: unable to allocate control data, error = %d\n",
    980 		    sc->sc_dev.dv_xname, error);
    981 		goto fail_0;
    982 	}
    983 
    984 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
    985 				    (caddr_t *)&sc->sc_control_data, 0)) != 0) {
    986 		aprint_error("%s: unable to map control data, error = %d\n",
    987 		    sc->sc_dev.dv_xname, error);
    988 		goto fail_1;
    989 	}
    990 
    991 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
    992 				       0, 0, &sc->sc_cddmamap)) != 0) {
    993 		aprint_error("%s: unable to create control data DMA map, "
    994 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    995 		goto fail_2;
    996 	}
    997 
    998 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    999 				     sc->sc_control_data, cdata_size, NULL,
   1000 				     0)) != 0) {
   1001 		aprint_error(
   1002 		    "%s: unable to load control data DMA map, error = %d\n",
   1003 		    sc->sc_dev.dv_xname, error);
   1004 		goto fail_3;
   1005 	}
   1006 
   1007 
   1008 	/*
   1009 	 * Create the transmit buffer DMA maps.
   1010 	 */
   1011 	WM_TXQUEUELEN(sc) =
   1012 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
   1013 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
   1014 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1015 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
   1016 					       WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
   1017 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1018 			aprint_error("%s: unable to create Tx DMA map %d, "
   1019 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1020 			goto fail_4;
   1021 		}
   1022 	}
   1023 
   1024 	/*
   1025 	 * Create the receive buffer DMA maps.
   1026 	 */
   1027 	for (i = 0; i < WM_NRXDESC; i++) {
   1028 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1029 					       MCLBYTES, 0, 0,
   1030 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1031 			aprint_error("%s: unable to create Rx DMA map %d, "
   1032 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1033 			goto fail_5;
   1034 		}
   1035 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1036 	}
   1037 
   1038 	/*
   1039 	 * Reset the chip to a known state.
   1040 	 */
   1041 	wm_reset(sc);
   1042 
   1043 	/*
   1044 	 * Get some information about the EEPROM.
   1045 	 */
   1046 	if (sc->sc_type >= WM_T_82540)
   1047 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
   1048 	if (sc->sc_type <= WM_T_82544)
   1049 		sc->sc_ee_addrbits = 6;
   1050 	else if (sc->sc_type <= WM_T_82546_3) {
   1051 		reg = CSR_READ(sc, WMREG_EECD);
   1052 		if (reg & EECD_EE_SIZE)
   1053 			sc->sc_ee_addrbits = 8;
   1054 		else
   1055 			sc->sc_ee_addrbits = 6;
   1056 	} else if (sc->sc_type <= WM_T_82547_2) {
   1057 		reg = CSR_READ(sc, WMREG_EECD);
   1058 		if (reg & EECD_EE_TYPE) {
   1059 			sc->sc_flags |= WM_F_EEPROM_SPI;
   1060 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1061 		} else
   1062 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
   1063 	} else {
   1064 		/* Assume everything else is SPI. */
   1065 		reg = CSR_READ(sc, WMREG_EECD);
   1066 		sc->sc_flags |= WM_F_EEPROM_SPI;
   1067 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1068 	}
   1069 	if (sc->sc_flags & WM_F_EEPROM_SPI)
   1070 		eetype = "SPI";
   1071 	else
   1072 		eetype = "MicroWire";
   1073 	aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
   1074 	    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
   1075 	    sc->sc_ee_addrbits, eetype);
   1076 
   1077 	/*
   1078 	 * Read the Ethernet address from the EEPROM.
   1079 	 */
   1080 	if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
   1081 	    sizeof(myea) / sizeof(myea[0]), myea)) {
   1082 		aprint_error("%s: unable to read Ethernet address\n",
   1083 		    sc->sc_dev.dv_xname);
   1084 		return;
   1085 	}
   1086 	enaddr[0] = myea[0] & 0xff;
   1087 	enaddr[1] = myea[0] >> 8;
   1088 	enaddr[2] = myea[1] & 0xff;
   1089 	enaddr[3] = myea[1] >> 8;
   1090 	enaddr[4] = myea[2] & 0xff;
   1091 	enaddr[5] = myea[2] >> 8;
   1092 
   1093 	/*
   1094 	 * Toggle the LSB of the MAC address on the second port
   1095 	 * of the i82546.
   1096 	 */
   1097 	if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
   1098 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
   1099 			enaddr[5] ^= 1;
   1100 	}
   1101 
   1102 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
   1103 	    ether_sprintf(enaddr));
   1104 
   1105 	/*
   1106 	 * Read the config info from the EEPROM, and set up various
   1107 	 * bits in the control registers based on their contents.
   1108 	 */
   1109 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
   1110 		aprint_error("%s: unable to read CFG1 from EEPROM\n",
   1111 		    sc->sc_dev.dv_xname);
   1112 		return;
   1113 	}
   1114 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
   1115 		aprint_error("%s: unable to read CFG2 from EEPROM\n",
   1116 		    sc->sc_dev.dv_xname);
   1117 		return;
   1118 	}
   1119 	if (sc->sc_type >= WM_T_82544) {
   1120 		if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
   1121 			aprint_error("%s: unable to read SWDPIN from EEPROM\n",
   1122 			    sc->sc_dev.dv_xname);
   1123 			return;
   1124 		}
   1125 	}
   1126 
   1127 	if (cfg1 & EEPROM_CFG1_ILOS)
   1128 		sc->sc_ctrl |= CTRL_ILOS;
   1129 	if (sc->sc_type >= WM_T_82544) {
   1130 		sc->sc_ctrl |=
   1131 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
   1132 		    CTRL_SWDPIO_SHIFT;
   1133 		sc->sc_ctrl |=
   1134 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
   1135 		    CTRL_SWDPINS_SHIFT;
   1136 	} else {
   1137 		sc->sc_ctrl |=
   1138 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
   1139 		    CTRL_SWDPIO_SHIFT;
   1140 	}
   1141 
   1142 #if 0
   1143 	if (sc->sc_type >= WM_T_82544) {
   1144 		if (cfg1 & EEPROM_CFG1_IPS0)
   1145 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
   1146 		if (cfg1 & EEPROM_CFG1_IPS1)
   1147 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
   1148 		sc->sc_ctrl_ext |=
   1149 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
   1150 		    CTRL_EXT_SWDPIO_SHIFT;
   1151 		sc->sc_ctrl_ext |=
   1152 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
   1153 		    CTRL_EXT_SWDPINS_SHIFT;
   1154 	} else {
   1155 		sc->sc_ctrl_ext |=
   1156 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
   1157 		    CTRL_EXT_SWDPIO_SHIFT;
   1158 	}
   1159 #endif
   1160 
   1161 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   1162 #if 0
   1163 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   1164 #endif
   1165 
   1166 	/*
   1167 	 * Set up some register offsets that are different between
   1168 	 * the i82542 and the i82543 and later chips.
   1169 	 */
   1170 	if (sc->sc_type < WM_T_82543) {
   1171 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
   1172 		sc->sc_tdt_reg = WMREG_OLD_TDT;
   1173 	} else {
   1174 		sc->sc_rdt_reg = WMREG_RDT;
   1175 		sc->sc_tdt_reg = WMREG_TDT;
   1176 	}
   1177 
   1178 	/*
   1179 	 * Determine if we're TBI or GMII mode, and initialize the
   1180 	 * media structures accordingly.
   1181 	 */
   1182 	if (sc->sc_type < WM_T_82543 ||
   1183 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
   1184 		if (wmp->wmp_flags & WMP_F_1000T)
   1185 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
   1186 			    "product!\n", sc->sc_dev.dv_xname);
   1187 		wm_tbi_mediainit(sc);
   1188 	} else {
   1189 		if (wmp->wmp_flags & WMP_F_1000X)
   1190 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
   1191 			    "product!\n", sc->sc_dev.dv_xname);
   1192 		wm_gmii_mediainit(sc);
   1193 	}
   1194 
   1195 	ifp = &sc->sc_ethercom.ec_if;
   1196 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
   1197 	ifp->if_softc = sc;
   1198 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1199 	ifp->if_ioctl = wm_ioctl;
   1200 	ifp->if_start = wm_start;
   1201 	ifp->if_watchdog = wm_watchdog;
   1202 	ifp->if_init = wm_init;
   1203 	ifp->if_stop = wm_stop;
   1204 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
   1205 	IFQ_SET_READY(&ifp->if_snd);
   1206 
   1207 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1208 
   1209 	/*
   1210 	 * If we're a i82543 or greater, we can support VLANs.
   1211 	 */
   1212 	if (sc->sc_type >= WM_T_82543)
   1213 		sc->sc_ethercom.ec_capabilities |=
   1214 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
   1215 
   1216 	/*
   1217 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
   1218 	 * on i82543 and later.
   1219 	 */
   1220 	if (sc->sc_type >= WM_T_82543)
   1221 		ifp->if_capabilities |=
   1222 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
   1223 
   1224 	/*
   1225 	 * Attach the interface.
   1226 	 */
   1227 	if_attach(ifp);
   1228 	ether_ifattach(ifp, enaddr);
   1229 #if NRND > 0
   1230 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1231 	    RND_TYPE_NET, 0);
   1232 #endif
   1233 
   1234 #ifdef WM_EVENT_COUNTERS
   1235 	/* Attach event counters. */
   1236 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1237 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1238 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1239 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1240 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
   1241 	    NULL, sc->sc_dev.dv_xname, "txfifo_stall");
   1242 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
   1243 	    NULL, sc->sc_dev.dv_xname, "txdw");
   1244 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
   1245 	    NULL, sc->sc_dev.dv_xname, "txqe");
   1246 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1247 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1248 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
   1249 	    NULL, sc->sc_dev.dv_xname, "linkintr");
   1250 
   1251 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1252 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1253 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
   1254 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
   1255 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1256 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1257 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
   1258 	    NULL, sc->sc_dev.dv_xname, "txtusum");
   1259 
   1260 	evcnt_attach_dynamic(&sc->sc_ev_txpullup_needed, EVCNT_TYPE_MISC,
   1261 	    NULL, sc->sc_dev.dv_xname, "txpullup needed");
   1262 	evcnt_attach_dynamic(&sc->sc_ev_txpullup_nomem, EVCNT_TYPE_MISC,
   1263 	    NULL, sc->sc_dev.dv_xname, "txpullup nomem");
   1264 	evcnt_attach_dynamic(&sc->sc_ev_txpullup_fail, EVCNT_TYPE_MISC,
   1265 	    NULL, sc->sc_dev.dv_xname, "txpullup fail");
   1266 
   1267 	for (i = 0; i < WM_NTXSEGS; i++) {
   1268 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
   1269 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
   1270 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
   1271 	}
   1272 
   1273 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
   1274 	    NULL, sc->sc_dev.dv_xname, "txdrop");
   1275 
   1276 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
   1277 	    NULL, sc->sc_dev.dv_xname, "tu");
   1278 
   1279 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
   1280 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
   1281 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
   1282 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
   1283 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
   1284 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
   1285 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
   1286 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
   1287 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
   1288 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
   1289 #endif /* WM_EVENT_COUNTERS */
   1290 
   1291 	/*
   1292 	 * Make sure the interface is shutdown during reboot.
   1293 	 */
   1294 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
   1295 	if (sc->sc_sdhook == NULL)
   1296 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
   1297 		    sc->sc_dev.dv_xname);
   1298 	return;
   1299 
   1300 	/*
   1301 	 * Free any resources we've allocated during the failed attach
   1302 	 * attempt.  Do this in reverse order and fall through.
   1303 	 */
   1304  fail_5:
   1305 	for (i = 0; i < WM_NRXDESC; i++) {
   1306 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1307 			bus_dmamap_destroy(sc->sc_dmat,
   1308 			    sc->sc_rxsoft[i].rxs_dmamap);
   1309 	}
   1310  fail_4:
   1311 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1312 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1313 			bus_dmamap_destroy(sc->sc_dmat,
   1314 			    sc->sc_txsoft[i].txs_dmamap);
   1315 	}
   1316 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1317  fail_3:
   1318 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1319  fail_2:
   1320 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1321 	    cdata_size);
   1322  fail_1:
   1323 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1324  fail_0:
   1325 	return;
   1326 }
   1327 
   1328 /*
   1329  * wm_shutdown:
   1330  *
   1331  *	Make sure the interface is stopped at reboot time.
   1332  */
   1333 static void
   1334 wm_shutdown(void *arg)
   1335 {
   1336 	struct wm_softc *sc = arg;
   1337 
   1338 	wm_stop(&sc->sc_ethercom.ec_if, 1);
   1339 }
   1340 
   1341 /*
   1342  * wm_tx_offload:
   1343  *
   1344  *	Set up TCP/IP checksumming parameters for the
   1345  *	specified packet.
   1346  */
   1347 static int
   1348 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
   1349     uint8_t *fieldsp)
   1350 {
   1351 	struct mbuf *m0 = txs->txs_mbuf;
   1352 	struct livengood_tcpip_ctxdesc *t;
   1353 	uint32_t ipcs, tucs;
   1354 	struct ether_header *eh;
   1355 	int offset, iphl;
   1356 	uint8_t fields = 0;
   1357 
   1358 	/*
   1359 	 * XXX It would be nice if the mbuf pkthdr had offset
   1360 	 * fields for the protocol headers.
   1361 	 */
   1362 
   1363 	eh = mtod(m0, struct ether_header *);
   1364 	switch (htons(eh->ether_type)) {
   1365 	case ETHERTYPE_IP:
   1366 		offset = ETHER_HDR_LEN;
   1367 		break;
   1368 
   1369 	case ETHERTYPE_VLAN:
   1370 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1371 		break;
   1372 
   1373 	default:
   1374 		/*
   1375 		 * Don't support this protocol or encapsulation.
   1376 		 */
   1377 		*fieldsp = 0;
   1378 		*cmdp = 0;
   1379 		return (0);
   1380 	}
   1381 
   1382 	iphl = m0->m_pkthdr.csum_data >> 16;
   1383 
   1384 	/*
   1385 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1386 	 * offload feature, if we load the context descriptor, we
   1387 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1388 	 */
   1389 
   1390 	ipcs = WTX_TCPIP_IPCSS(offset) |
   1391 	    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1392 	    WTX_TCPIP_IPCSE(offset + iphl - 1);
   1393 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1394 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
   1395 		fields |= WTX_IXSM;
   1396 	}
   1397 
   1398 	offset += iphl;
   1399 
   1400 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1401 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
   1402 		fields |= WTX_TXSM;
   1403 		tucs = WTX_TCPIP_TUCSS(offset) |
   1404 		   WTX_TCPIP_TUCSO(offset + (m0->m_pkthdr.csum_data & 0xffff)) |
   1405 		   WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1406 	} else {
   1407 		/* Just initialize it to a valid TCP context. */
   1408 		tucs = WTX_TCPIP_TUCSS(offset) |
   1409 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1410 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1411 	}
   1412 
   1413 	/* Fill in the context descriptor. */
   1414 	t = (struct livengood_tcpip_ctxdesc *)
   1415 	    &sc->sc_txdescs[sc->sc_txnext];
   1416 	t->tcpip_ipcs = htole32(ipcs);
   1417 	t->tcpip_tucs = htole32(tucs);
   1418 	t->tcpip_cmdlen = htole32(WTX_CMD_DEXT | WTX_DTYP_C);
   1419 	t->tcpip_seg = 0;
   1420 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1421 
   1422 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
   1423 	txs->txs_ndesc++;
   1424 
   1425 	*cmdp = WTX_CMD_DEXT | WTX_DTYP_D;
   1426 	*fieldsp = fields;
   1427 
   1428 	return (0);
   1429 }
   1430 
   1431 static void
   1432 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
   1433 {
   1434 	struct mbuf *m;
   1435 	int i;
   1436 
   1437 	log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
   1438 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
   1439 		log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
   1440 		    "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
   1441 		    m->m_data, m->m_len, m->m_flags);
   1442 	log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
   1443 	    i, i == 1 ? "" : "s");
   1444 }
   1445 
   1446 /*
   1447  * wm_82547_txfifo_stall:
   1448  *
   1449  *	Callout used to wait for the 82547 Tx FIFO to drain,
   1450  *	reset the FIFO pointers, and restart packet transmission.
   1451  */
   1452 static void
   1453 wm_82547_txfifo_stall(void *arg)
   1454 {
   1455 	struct wm_softc *sc = arg;
   1456 	int s;
   1457 
   1458 	s = splnet();
   1459 
   1460 	if (sc->sc_txfifo_stall) {
   1461 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
   1462 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
   1463 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
   1464 			/*
   1465 			 * Packets have drained.  Stop transmitter, reset
   1466 			 * FIFO pointers, restart transmitter, and kick
   1467 			 * the packet queue.
   1468 			 */
   1469 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
   1470 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
   1471 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
   1472 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
   1473 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
   1474 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
   1475 			CSR_WRITE(sc, WMREG_TCTL, tctl);
   1476 			CSR_WRITE_FLUSH(sc);
   1477 
   1478 			sc->sc_txfifo_head = 0;
   1479 			sc->sc_txfifo_stall = 0;
   1480 			wm_start(&sc->sc_ethercom.ec_if);
   1481 		} else {
   1482 			/*
   1483 			 * Still waiting for packets to drain; try again in
   1484 			 * another tick.
   1485 			 */
   1486 			callout_schedule(&sc->sc_txfifo_ch, 1);
   1487 		}
   1488 	}
   1489 
   1490 	splx(s);
   1491 }
   1492 
   1493 /*
   1494  * wm_82547_txfifo_bugchk:
   1495  *
   1496  *	Check for bug condition in the 82547 Tx FIFO.  We need to
   1497  *	prevent enqueueing a packet that would wrap around the end
   1498  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
   1499  *
   1500  *	We do this by checking the amount of space before the end
   1501  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
   1502  *	the Tx FIFO, wait for all remaining packets to drain, reset
   1503  *	the internal FIFO pointers to the beginning, and restart
   1504  *	transmission on the interface.
   1505  */
   1506 #define	WM_FIFO_HDR		0x10
   1507 #define	WM_82547_PAD_LEN	0x3e0
   1508 static int
   1509 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
   1510 {
   1511 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
   1512 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
   1513 
   1514 	/* Just return if already stalled. */
   1515 	if (sc->sc_txfifo_stall)
   1516 		return (1);
   1517 
   1518 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1519 		/* Stall only occurs in half-duplex mode. */
   1520 		goto send_packet;
   1521 	}
   1522 
   1523 	if (len >= WM_82547_PAD_LEN + space) {
   1524 		sc->sc_txfifo_stall = 1;
   1525 		callout_schedule(&sc->sc_txfifo_ch, 1);
   1526 		return (1);
   1527 	}
   1528 
   1529  send_packet:
   1530 	sc->sc_txfifo_head += len;
   1531 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
   1532 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
   1533 
   1534 	return (0);
   1535 }
   1536 
   1537 /*
   1538  * wm_start:		[ifnet interface function]
   1539  *
   1540  *	Start packet transmission on the interface.
   1541  */
   1542 static void
   1543 wm_start(struct ifnet *ifp)
   1544 {
   1545 	struct wm_softc *sc = ifp->if_softc;
   1546 	struct mbuf *m0;
   1547 #if 0 /* XXXJRT */
   1548 	struct m_tag *mtag;
   1549 #endif
   1550 	struct wm_txsoft *txs;
   1551 	bus_dmamap_t dmamap;
   1552 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed;
   1553 	bus_addr_t curaddr;
   1554 	bus_size_t seglen, curlen;
   1555 	uint32_t cksumcmd;
   1556 	uint8_t cksumfields;
   1557 
   1558 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1559 		return;
   1560 
   1561 	/*
   1562 	 * Remember the previous number of free descriptors.
   1563 	 */
   1564 	ofree = sc->sc_txfree;
   1565 
   1566 	/*
   1567 	 * Loop through the send queue, setting up transmit descriptors
   1568 	 * until we drain the queue, or use up all available transmit
   1569 	 * descriptors.
   1570 	 */
   1571 	for (;;) {
   1572 		/* Grab a packet off the queue. */
   1573 		IFQ_POLL(&ifp->if_snd, m0);
   1574 		if (m0 == NULL)
   1575 			break;
   1576 
   1577 		DPRINTF(WM_DEBUG_TX,
   1578 		    ("%s: TX: have packet to transmit: %p\n",
   1579 		    sc->sc_dev.dv_xname, m0));
   1580 
   1581 		/* Get a work queue entry. */
   1582 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
   1583 			wm_txintr(sc);
   1584 			if (sc->sc_txsfree == 0) {
   1585 				DPRINTF(WM_DEBUG_TX,
   1586 				    ("%s: TX: no free job descriptors\n",
   1587 					sc->sc_dev.dv_xname));
   1588 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   1589 				break;
   1590 			}
   1591 		}
   1592 
   1593 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1594 		dmamap = txs->txs_dmamap;
   1595 
   1596 		/*
   1597 		 * Load the DMA map.  If this fails, the packet either
   1598 		 * didn't fit in the allotted number of segments, or we
   1599 		 * were short on resources.  For the too-many-segments
   1600 		 * case, we simply report an error and drop the packet,
   1601 		 * since we can't sanely copy a jumbo packet to a single
   1602 		 * buffer.
   1603 		 */
   1604 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1605 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1606 		if (error) {
   1607 			if (error == EFBIG) {
   1608 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   1609 				log(LOG_ERR, "%s: Tx packet consumes too many "
   1610 				    "DMA segments, dropping...\n",
   1611 				    sc->sc_dev.dv_xname);
   1612 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1613 				wm_dump_mbuf_chain(sc, m0);
   1614 				m_freem(m0);
   1615 				continue;
   1616 			}
   1617 			/*
   1618 			 * Short on resources, just stop for now.
   1619 			 */
   1620 			DPRINTF(WM_DEBUG_TX,
   1621 			    ("%s: TX: dmamap load failed: %d\n",
   1622 			    sc->sc_dev.dv_xname, error));
   1623 			break;
   1624 		}
   1625 
   1626 		segs_needed = dmamap->dm_nsegs;
   1627 
   1628 		/*
   1629 		 * Ensure we have enough descriptors free to describe
   1630 		 * the packet.  Note, we always reserve one descriptor
   1631 		 * at the end of the ring due to the semantics of the
   1632 		 * TDT register, plus one more in the event we need
   1633 		 * to load offload context.
   1634 		 */
   1635 		if (segs_needed > sc->sc_txfree - 2) {
   1636 			/*
   1637 			 * Not enough free descriptors to transmit this
   1638 			 * packet.  We haven't committed anything yet,
   1639 			 * so just unload the DMA map, put the packet
   1640 			 * pack on the queue, and punt.  Notify the upper
   1641 			 * layer that there are no more slots left.
   1642 			 */
   1643 			DPRINTF(WM_DEBUG_TX,
   1644 			    ("%s: TX: need %d (%) descriptors, have %d\n",
   1645 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
   1646 			    sc->sc_txfree - 1));
   1647 			ifp->if_flags |= IFF_OACTIVE;
   1648 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1649 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   1650 			break;
   1651 		}
   1652 
   1653 		/*
   1654 		 * Check for 82547 Tx FIFO bug.  We need to do this
   1655 		 * once we know we can transmit the packet, since we
   1656 		 * do some internal FIFO space accounting here.
   1657 		 */
   1658 		if (sc->sc_type == WM_T_82547 &&
   1659 		    wm_82547_txfifo_bugchk(sc, m0)) {
   1660 			DPRINTF(WM_DEBUG_TX,
   1661 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
   1662 			    sc->sc_dev.dv_xname));
   1663 			ifp->if_flags |= IFF_OACTIVE;
   1664 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1665 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
   1666 			break;
   1667 		}
   1668 
   1669 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1670 
   1671 		/*
   1672 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1673 		 */
   1674 
   1675 		DPRINTF(WM_DEBUG_TX,
   1676 		    ("%s: TX: packet has %d (%d) DMA segments\n",
   1677 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
   1678 
   1679 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1680 
   1681 		/*
   1682 		 * Store a pointer to the packet so that we can free it
   1683 		 * later.
   1684 		 *
   1685 		 * Initially, we consider the number of descriptors the
   1686 		 * packet uses the number of DMA segments.  This may be
   1687 		 * incremented by 1 if we do checksum offload (a descriptor
   1688 		 * is used to set the checksum context).
   1689 		 */
   1690 		txs->txs_mbuf = m0;
   1691 		txs->txs_firstdesc = sc->sc_txnext;
   1692 		txs->txs_ndesc = segs_needed;
   1693 
   1694 		/* Set up offload parameters for this packet. */
   1695 		if (m0->m_pkthdr.csum_flags &
   1696 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1697 			if (wm_tx_offload(sc, txs, &cksumcmd,
   1698 					  &cksumfields) != 0) {
   1699 				/* Error message already displayed. */
   1700 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1701 				continue;
   1702 			}
   1703 		} else {
   1704 			cksumcmd = 0;
   1705 			cksumfields = 0;
   1706 		}
   1707 
   1708 		cksumcmd |= WTX_CMD_IDE;
   1709 
   1710 		/* Sync the DMA map. */
   1711 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1712 		    BUS_DMASYNC_PREWRITE);
   1713 
   1714 		/*
   1715 		 * Initialize the transmit descriptor.
   1716 		 */
   1717 		for (nexttx = sc->sc_txnext, seg = 0;
   1718 		     seg < dmamap->dm_nsegs; seg++) {
   1719 			for (seglen = dmamap->dm_segs[seg].ds_len,
   1720 			     curaddr = dmamap->dm_segs[seg].ds_addr;
   1721 			     seglen != 0;
   1722 			     curaddr += curlen, seglen -= curlen,
   1723 			     nexttx = WM_NEXTTX(sc, nexttx)) {
   1724 				curlen = seglen;
   1725 
   1726 				wm_set_dma_addr(
   1727 				    &sc->sc_txdescs[nexttx].wtx_addr,
   1728 				    curaddr);
   1729 				sc->sc_txdescs[nexttx].wtx_cmdlen =
   1730 				    htole32(cksumcmd | curlen);
   1731 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
   1732 				    0;
   1733 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
   1734 				    cksumfields;
   1735 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
   1736 				lasttx = nexttx;
   1737 
   1738 				DPRINTF(WM_DEBUG_TX,
   1739 				    ("%s: TX: desc %d: low 0x%08x, "
   1740 				     "len 0x%04x\n",
   1741 				    sc->sc_dev.dv_xname, nexttx,
   1742 				    curaddr & 0xffffffffU, curlen, curlen));
   1743 			}
   1744 		}
   1745 
   1746 		KASSERT(lasttx != -1);
   1747 
   1748 		/*
   1749 		 * Set up the command byte on the last descriptor of
   1750 		 * the packet.  If we're in the interrupt delay window,
   1751 		 * delay the interrupt.
   1752 		 */
   1753 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1754 		    htole32(WTX_CMD_EOP | WTX_CMD_IFCS | WTX_CMD_RS);
   1755 
   1756 #if 0 /* XXXJRT */
   1757 		/*
   1758 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1759 		 * up the descriptor to encapsulate the packet for us.
   1760 		 *
   1761 		 * This is only valid on the last descriptor of the packet.
   1762 		 */
   1763 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   1764 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1765 			    htole32(WTX_CMD_VLE);
   1766 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
   1767 			    = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
   1768 		}
   1769 #endif /* XXXJRT */
   1770 
   1771 		txs->txs_lastdesc = lasttx;
   1772 
   1773 		DPRINTF(WM_DEBUG_TX,
   1774 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   1775 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
   1776 
   1777 		/* Sync the descriptors we're using. */
   1778 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
   1779 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1780 
   1781 		/* Give the packet to the chip. */
   1782 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   1783 
   1784 		DPRINTF(WM_DEBUG_TX,
   1785 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   1786 
   1787 		DPRINTF(WM_DEBUG_TX,
   1788 		    ("%s: TX: finished transmitting packet, job %d\n",
   1789 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   1790 
   1791 		/* Advance the tx pointer. */
   1792 		sc->sc_txfree -= txs->txs_ndesc;
   1793 		sc->sc_txnext = nexttx;
   1794 
   1795 		sc->sc_txsfree--;
   1796 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
   1797 
   1798 #if NBPFILTER > 0
   1799 		/* Pass the packet to any BPF listeners. */
   1800 		if (ifp->if_bpf)
   1801 			bpf_mtap(ifp->if_bpf, m0);
   1802 #endif /* NBPFILTER > 0 */
   1803 	}
   1804 
   1805 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1806 		/* No more slots; notify upper layer. */
   1807 		ifp->if_flags |= IFF_OACTIVE;
   1808 	}
   1809 
   1810 	if (sc->sc_txfree != ofree) {
   1811 		/* Set a watchdog timer in case the chip flakes out. */
   1812 		ifp->if_timer = 5;
   1813 	}
   1814 }
   1815 
   1816 /*
   1817  * wm_watchdog:		[ifnet interface function]
   1818  *
   1819  *	Watchdog timer handler.
   1820  */
   1821 static void
   1822 wm_watchdog(struct ifnet *ifp)
   1823 {
   1824 	struct wm_softc *sc = ifp->if_softc;
   1825 
   1826 	/*
   1827 	 * Since we're using delayed interrupts, sweep up
   1828 	 * before we report an error.
   1829 	 */
   1830 	wm_txintr(sc);
   1831 
   1832 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
   1833 		log(LOG_ERR,
   1834 		    "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1835 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   1836 		    sc->sc_txnext);
   1837 		ifp->if_oerrors++;
   1838 
   1839 		/* Reset the interface. */
   1840 		(void) wm_init(ifp);
   1841 	}
   1842 
   1843 	/* Try to get more packets going. */
   1844 	wm_start(ifp);
   1845 }
   1846 
   1847 /*
   1848  * wm_ioctl:		[ifnet interface function]
   1849  *
   1850  *	Handle control requests from the operator.
   1851  */
   1852 static int
   1853 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1854 {
   1855 	struct wm_softc *sc = ifp->if_softc;
   1856 	struct ifreq *ifr = (struct ifreq *) data;
   1857 	int s, error;
   1858 
   1859 	s = splnet();
   1860 
   1861 	switch (cmd) {
   1862 	case SIOCSIFMEDIA:
   1863 	case SIOCGIFMEDIA:
   1864 		/* Flow control requires full-duplex mode. */
   1865 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1866 		    (ifr->ifr_media & IFM_FDX) == 0)
   1867 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1868 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1869 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1870 				/* We can do both TXPAUSE and RXPAUSE. */
   1871 				ifr->ifr_media |=
   1872 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1873 			}
   1874 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1875 		}
   1876 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1877 		break;
   1878 	default:
   1879 		error = ether_ioctl(ifp, cmd, data);
   1880 		if (error == ENETRESET) {
   1881 			/*
   1882 			 * Multicast list has changed; set the hardware filter
   1883 			 * accordingly.
   1884 			 */
   1885 			if (ifp->if_flags & IFF_RUNNING)
   1886 				wm_set_filter(sc);
   1887 			error = 0;
   1888 		}
   1889 		break;
   1890 	}
   1891 
   1892 	/* Try to get more packets going. */
   1893 	wm_start(ifp);
   1894 
   1895 	splx(s);
   1896 	return (error);
   1897 }
   1898 
   1899 /*
   1900  * wm_intr:
   1901  *
   1902  *	Interrupt service routine.
   1903  */
   1904 static int
   1905 wm_intr(void *arg)
   1906 {
   1907 	struct wm_softc *sc = arg;
   1908 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1909 	uint32_t icr;
   1910 	int wantinit, handled = 0;
   1911 
   1912 	for (wantinit = 0; wantinit == 0;) {
   1913 		icr = CSR_READ(sc, WMREG_ICR);
   1914 		if ((icr & sc->sc_icr) == 0)
   1915 			break;
   1916 
   1917 #if 0 /*NRND > 0*/
   1918 		if (RND_ENABLED(&sc->rnd_source))
   1919 			rnd_add_uint32(&sc->rnd_source, icr);
   1920 #endif
   1921 
   1922 		handled = 1;
   1923 
   1924 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   1925 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1926 			DPRINTF(WM_DEBUG_RX,
   1927 			    ("%s: RX: got Rx intr 0x%08x\n",
   1928 			    sc->sc_dev.dv_xname,
   1929 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1930 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
   1931 		}
   1932 #endif
   1933 		wm_rxintr(sc);
   1934 
   1935 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   1936 		if (icr & ICR_TXDW) {
   1937 			DPRINTF(WM_DEBUG_TX,
   1938 			    ("%s: TX: got TXDW interrupt\n",
   1939 			    sc->sc_dev.dv_xname));
   1940 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
   1941 		}
   1942 #endif
   1943 		wm_txintr(sc);
   1944 
   1945 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
   1946 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
   1947 			wm_linkintr(sc, icr);
   1948 		}
   1949 
   1950 		if (icr & ICR_RXO) {
   1951 			log(LOG_WARNING, "%s: Receive overrun\n",
   1952 			    sc->sc_dev.dv_xname);
   1953 			wantinit = 1;
   1954 		}
   1955 	}
   1956 
   1957 	if (handled) {
   1958 		if (wantinit)
   1959 			wm_init(ifp);
   1960 
   1961 		/* Try to get more packets going. */
   1962 		wm_start(ifp);
   1963 	}
   1964 
   1965 	return (handled);
   1966 }
   1967 
   1968 /*
   1969  * wm_txintr:
   1970  *
   1971  *	Helper; handle transmit interrupts.
   1972  */
   1973 static void
   1974 wm_txintr(struct wm_softc *sc)
   1975 {
   1976 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1977 	struct wm_txsoft *txs;
   1978 	uint8_t status;
   1979 	int i;
   1980 
   1981 	ifp->if_flags &= ~IFF_OACTIVE;
   1982 
   1983 	/*
   1984 	 * Go through the Tx list and free mbufs for those
   1985 	 * frames which have been transmitted.
   1986 	 */
   1987 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
   1988 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
   1989 		txs = &sc->sc_txsoft[i];
   1990 
   1991 		DPRINTF(WM_DEBUG_TX,
   1992 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   1993 
   1994 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   1995 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1996 
   1997 		status =
   1998 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
   1999 		if ((status & WTX_ST_DD) == 0) {
   2000 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   2001 			    BUS_DMASYNC_PREREAD);
   2002 			break;
   2003 		}
   2004 
   2005 		DPRINTF(WM_DEBUG_TX,
   2006 		    ("%s: TX: job %d done: descs %d..%d\n",
   2007 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   2008 		    txs->txs_lastdesc));
   2009 
   2010 		/*
   2011 		 * XXX We should probably be using the statistics
   2012 		 * XXX registers, but I don't know if they exist
   2013 		 * XXX on chips before the i82544.
   2014 		 */
   2015 
   2016 #ifdef WM_EVENT_COUNTERS
   2017 		if (status & WTX_ST_TU)
   2018 			WM_EVCNT_INCR(&sc->sc_ev_tu);
   2019 #endif /* WM_EVENT_COUNTERS */
   2020 
   2021 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
   2022 			ifp->if_oerrors++;
   2023 			if (status & WTX_ST_LC)
   2024 				log(LOG_WARNING, "%s: late collision\n",
   2025 				    sc->sc_dev.dv_xname);
   2026 			else if (status & WTX_ST_EC) {
   2027 				ifp->if_collisions += 16;
   2028 				log(LOG_WARNING, "%s: excessive collisions\n",
   2029 				    sc->sc_dev.dv_xname);
   2030 			}
   2031 		} else
   2032 			ifp->if_opackets++;
   2033 
   2034 		sc->sc_txfree += txs->txs_ndesc;
   2035 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   2036 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2037 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2038 		m_freem(txs->txs_mbuf);
   2039 		txs->txs_mbuf = NULL;
   2040 	}
   2041 
   2042 	/* Update the dirty transmit buffer pointer. */
   2043 	sc->sc_txsdirty = i;
   2044 	DPRINTF(WM_DEBUG_TX,
   2045 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   2046 
   2047 	/*
   2048 	 * If there are no more pending transmissions, cancel the watchdog
   2049 	 * timer.
   2050 	 */
   2051 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
   2052 		ifp->if_timer = 0;
   2053 }
   2054 
   2055 /*
   2056  * wm_rxintr:
   2057  *
   2058  *	Helper; handle receive interrupts.
   2059  */
   2060 static void
   2061 wm_rxintr(struct wm_softc *sc)
   2062 {
   2063 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2064 	struct wm_rxsoft *rxs;
   2065 	struct mbuf *m;
   2066 	int i, len;
   2067 	uint8_t status, errors;
   2068 
   2069 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
   2070 		rxs = &sc->sc_rxsoft[i];
   2071 
   2072 		DPRINTF(WM_DEBUG_RX,
   2073 		    ("%s: RX: checking descriptor %d\n",
   2074 		    sc->sc_dev.dv_xname, i));
   2075 
   2076 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2077 
   2078 		status = sc->sc_rxdescs[i].wrx_status;
   2079 		errors = sc->sc_rxdescs[i].wrx_errors;
   2080 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
   2081 
   2082 		if ((status & WRX_ST_DD) == 0) {
   2083 			/*
   2084 			 * We have processed all of the receive descriptors.
   2085 			 */
   2086 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   2087 			break;
   2088 		}
   2089 
   2090 		if (__predict_false(sc->sc_rxdiscard)) {
   2091 			DPRINTF(WM_DEBUG_RX,
   2092 			    ("%s: RX: discarding contents of descriptor %d\n",
   2093 			    sc->sc_dev.dv_xname, i));
   2094 			WM_INIT_RXDESC(sc, i);
   2095 			if (status & WRX_ST_EOP) {
   2096 				/* Reset our state. */
   2097 				DPRINTF(WM_DEBUG_RX,
   2098 				    ("%s: RX: resetting rxdiscard -> 0\n",
   2099 				    sc->sc_dev.dv_xname));
   2100 				sc->sc_rxdiscard = 0;
   2101 			}
   2102 			continue;
   2103 		}
   2104 
   2105 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2106 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2107 
   2108 		m = rxs->rxs_mbuf;
   2109 
   2110 		/*
   2111 		 * Add a new receive buffer to the ring.
   2112 		 */
   2113 		if (wm_add_rxbuf(sc, i) != 0) {
   2114 			/*
   2115 			 * Failed, throw away what we've done so
   2116 			 * far, and discard the rest of the packet.
   2117 			 */
   2118 			ifp->if_ierrors++;
   2119 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2120 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2121 			WM_INIT_RXDESC(sc, i);
   2122 			if ((status & WRX_ST_EOP) == 0)
   2123 				sc->sc_rxdiscard = 1;
   2124 			if (sc->sc_rxhead != NULL)
   2125 				m_freem(sc->sc_rxhead);
   2126 			WM_RXCHAIN_RESET(sc);
   2127 			DPRINTF(WM_DEBUG_RX,
   2128 			    ("%s: RX: Rx buffer allocation failed, "
   2129 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   2130 			    sc->sc_rxdiscard ? " (discard)" : ""));
   2131 			continue;
   2132 		}
   2133 
   2134 		WM_RXCHAIN_LINK(sc, m);
   2135 
   2136 		m->m_len = len;
   2137 
   2138 		DPRINTF(WM_DEBUG_RX,
   2139 		    ("%s: RX: buffer at %p len %d\n",
   2140 		    sc->sc_dev.dv_xname, m->m_data, len));
   2141 
   2142 		/*
   2143 		 * If this is not the end of the packet, keep
   2144 		 * looking.
   2145 		 */
   2146 		if ((status & WRX_ST_EOP) == 0) {
   2147 			sc->sc_rxlen += len;
   2148 			DPRINTF(WM_DEBUG_RX,
   2149 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   2150 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   2151 			continue;
   2152 		}
   2153 
   2154 		/*
   2155 		 * Okay, we have the entire packet now.  The chip is
   2156 		 * configured to include the FCS (not all chips can
   2157 		 * be configured to strip it), so we need to trim it.
   2158 		 */
   2159 		m->m_len -= ETHER_CRC_LEN;
   2160 
   2161 		*sc->sc_rxtailp = NULL;
   2162 		m = sc->sc_rxhead;
   2163 		len = m->m_len + sc->sc_rxlen;
   2164 
   2165 		WM_RXCHAIN_RESET(sc);
   2166 
   2167 		DPRINTF(WM_DEBUG_RX,
   2168 		    ("%s: RX: have entire packet, len -> %d\n",
   2169 		    sc->sc_dev.dv_xname, len));
   2170 
   2171 		/*
   2172 		 * If an error occurred, update stats and drop the packet.
   2173 		 */
   2174 		if (errors &
   2175 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
   2176 			ifp->if_ierrors++;
   2177 			if (errors & WRX_ER_SE)
   2178 				log(LOG_WARNING, "%s: symbol error\n",
   2179 				    sc->sc_dev.dv_xname);
   2180 			else if (errors & WRX_ER_SEQ)
   2181 				log(LOG_WARNING, "%s: receive sequence error\n",
   2182 				    sc->sc_dev.dv_xname);
   2183 			else if (errors & WRX_ER_CE)
   2184 				log(LOG_WARNING, "%s: CRC error\n",
   2185 				    sc->sc_dev.dv_xname);
   2186 			m_freem(m);
   2187 			continue;
   2188 		}
   2189 
   2190 		/*
   2191 		 * No errors.  Receive the packet.
   2192 		 */
   2193 		m->m_pkthdr.rcvif = ifp;
   2194 		m->m_pkthdr.len = len;
   2195 
   2196 #if 0 /* XXXJRT */
   2197 		/*
   2198 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2199 		 * for us.  Associate the tag with the packet.
   2200 		 */
   2201 		if ((status & WRX_ST_VP) != 0) {
   2202 			VLAN_INPUT_TAG(ifp, m,
   2203 			    le16toh(sc->sc_rxdescs[i].wrx_special,
   2204 			    continue);
   2205 		}
   2206 #endif /* XXXJRT */
   2207 
   2208 		/*
   2209 		 * Set up checksum info for this packet.
   2210 		 */
   2211 		if (status & WRX_ST_IPCS) {
   2212 			WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2213 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2214 			if (errors & WRX_ER_IPE)
   2215 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2216 		}
   2217 		if (status & WRX_ST_TCPCS) {
   2218 			/*
   2219 			 * Note: we don't know if this was TCP or UDP,
   2220 			 * so we just set both bits, and expect the
   2221 			 * upper layers to deal.
   2222 			 */
   2223 			WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
   2224 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   2225 			if (errors & WRX_ER_TCPE)
   2226 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   2227 		}
   2228 
   2229 		ifp->if_ipackets++;
   2230 
   2231 #if NBPFILTER > 0
   2232 		/* Pass this up to any BPF listeners. */
   2233 		if (ifp->if_bpf)
   2234 			bpf_mtap(ifp->if_bpf, m);
   2235 #endif /* NBPFILTER > 0 */
   2236 
   2237 		/* Pass it on. */
   2238 		(*ifp->if_input)(ifp, m);
   2239 	}
   2240 
   2241 	/* Update the receive pointer. */
   2242 	sc->sc_rxptr = i;
   2243 
   2244 	DPRINTF(WM_DEBUG_RX,
   2245 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   2246 }
   2247 
   2248 /*
   2249  * wm_linkintr:
   2250  *
   2251  *	Helper; handle link interrupts.
   2252  */
   2253 static void
   2254 wm_linkintr(struct wm_softc *sc, uint32_t icr)
   2255 {
   2256 	uint32_t status;
   2257 
   2258 	/*
   2259 	 * If we get a link status interrupt on a 1000BASE-T
   2260 	 * device, just fall into the normal MII tick path.
   2261 	 */
   2262 	if (sc->sc_flags & WM_F_HAS_MII) {
   2263 		if (icr & ICR_LSC) {
   2264 			DPRINTF(WM_DEBUG_LINK,
   2265 			    ("%s: LINK: LSC -> mii_tick\n",
   2266 			    sc->sc_dev.dv_xname));
   2267 			mii_tick(&sc->sc_mii);
   2268 		} else if (icr & ICR_RXSEQ) {
   2269 			DPRINTF(WM_DEBUG_LINK,
   2270 			    ("%s: LINK Receive sequence error\n",
   2271 			    sc->sc_dev.dv_xname));
   2272 		}
   2273 		return;
   2274 	}
   2275 
   2276 	/*
   2277 	 * If we are now receiving /C/, check for link again in
   2278 	 * a couple of link clock ticks.
   2279 	 */
   2280 	if (icr & ICR_RXCFG) {
   2281 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
   2282 		    sc->sc_dev.dv_xname));
   2283 		sc->sc_tbi_anstate = 2;
   2284 	}
   2285 
   2286 	if (icr & ICR_LSC) {
   2287 		status = CSR_READ(sc, WMREG_STATUS);
   2288 		if (status & STATUS_LU) {
   2289 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
   2290 			    sc->sc_dev.dv_xname,
   2291 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   2292 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2293 			sc->sc_fcrtl &= ~FCRTL_XONE;
   2294 			if (status & STATUS_FD)
   2295 				sc->sc_tctl |=
   2296 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2297 			else
   2298 				sc->sc_tctl |=
   2299 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2300 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   2301 				sc->sc_fcrtl |= FCRTL_XONE;
   2302 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2303 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   2304 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   2305 				      sc->sc_fcrtl);
   2306 			sc->sc_tbi_linkup = 1;
   2307 		} else {
   2308 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   2309 			    sc->sc_dev.dv_xname));
   2310 			sc->sc_tbi_linkup = 0;
   2311 		}
   2312 		sc->sc_tbi_anstate = 2;
   2313 		wm_tbi_set_linkled(sc);
   2314 	} else if (icr & ICR_RXSEQ) {
   2315 		DPRINTF(WM_DEBUG_LINK,
   2316 		    ("%s: LINK: Receive sequence error\n",
   2317 		    sc->sc_dev.dv_xname));
   2318 	}
   2319 }
   2320 
   2321 /*
   2322  * wm_tick:
   2323  *
   2324  *	One second timer, used to check link status, sweep up
   2325  *	completed transmit jobs, etc.
   2326  */
   2327 static void
   2328 wm_tick(void *arg)
   2329 {
   2330 	struct wm_softc *sc = arg;
   2331 	int s;
   2332 
   2333 	s = splnet();
   2334 
   2335 	if (sc->sc_type >= WM_T_82542_2_1) {
   2336 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
   2337 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
   2338 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
   2339 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
   2340 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
   2341 	}
   2342 
   2343 	if (sc->sc_flags & WM_F_HAS_MII)
   2344 		mii_tick(&sc->sc_mii);
   2345 	else
   2346 		wm_tbi_check_link(sc);
   2347 
   2348 	splx(s);
   2349 
   2350 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2351 }
   2352 
   2353 /*
   2354  * wm_reset:
   2355  *
   2356  *	Reset the i82542 chip.
   2357  */
   2358 static void
   2359 wm_reset(struct wm_softc *sc)
   2360 {
   2361 	int i;
   2362 
   2363 	/*
   2364 	 * Allocate on-chip memory according to the MTU size.
   2365 	 * The Packet Buffer Allocation register must be written
   2366 	 * before the chip is reset.
   2367 	 */
   2368 	if (sc->sc_type < WM_T_82547) {
   2369 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2370 		    PBA_40K : PBA_48K;
   2371 	} else {
   2372 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2373 		    PBA_22K : PBA_30K;
   2374 		sc->sc_txfifo_head = 0;
   2375 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
   2376 		sc->sc_txfifo_size =
   2377 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
   2378 		sc->sc_txfifo_stall = 0;
   2379 	}
   2380 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
   2381 
   2382 	switch (sc->sc_type) {
   2383 	case WM_T_82544:
   2384 	case WM_T_82540:
   2385 	case WM_T_82545:
   2386 	case WM_T_82546:
   2387 	case WM_T_82541:
   2388 	case WM_T_82541_2:
   2389 		/*
   2390 		 * On some chipsets, a reset through a memory-mapped write
   2391 		 * cycle can cause the chip to reset before completing the
   2392 		 * write cycle.  This causes major headache that can be
   2393 		 * avoided by issuing the reset via indirect register writes
   2394 		 * through I/O space.
   2395 		 *
   2396 		 * So, if we successfully mapped the I/O BAR at attach time,
   2397 		 * use that.  Otherwise, try our luck with a memory-mapped
   2398 		 * reset.
   2399 		 */
   2400 		if (sc->sc_flags & WM_F_IOH_VALID)
   2401 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
   2402 		else
   2403 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2404 		break;
   2405 
   2406 	case WM_T_82545_3:
   2407 	case WM_T_82546_3:
   2408 		/* Use the shadow control register on these chips. */
   2409 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
   2410 		break;
   2411 
   2412 	default:
   2413 		/* Everything else can safely use the documented method. */
   2414 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2415 		break;
   2416 	}
   2417 	delay(10000);
   2418 
   2419 	for (i = 0; i < 1000; i++) {
   2420 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
   2421 			return;
   2422 		delay(20);
   2423 	}
   2424 
   2425 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
   2426 		log(LOG_ERR, "%s: reset failed to complete\n",
   2427 		    sc->sc_dev.dv_xname);
   2428 }
   2429 
   2430 /*
   2431  * wm_init:		[ifnet interface function]
   2432  *
   2433  *	Initialize the interface.  Must be called at splnet().
   2434  */
   2435 static int
   2436 wm_init(struct ifnet *ifp)
   2437 {
   2438 	struct wm_softc *sc = ifp->if_softc;
   2439 	struct wm_rxsoft *rxs;
   2440 	int i, error = 0;
   2441 	uint32_t reg;
   2442 
   2443 	/*
   2444 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   2445 	 * There is a small but measurable benefit to avoiding the adjusment
   2446 	 * of the descriptor so that the headers are aligned, for normal mtu,
   2447 	 * on such platforms.  One possibility is that the DMA itself is
   2448 	 * slightly more efficient if the front of the entire packet (instead
   2449 	 * of the front of the headers) is aligned.
   2450 	 *
   2451 	 * Note we must always set align_tweak to 0 if we are using
   2452 	 * jumbo frames.
   2453 	 */
   2454 #ifdef __NO_STRICT_ALIGNMENT
   2455 	sc->sc_align_tweak = 0;
   2456 #else
   2457 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   2458 		sc->sc_align_tweak = 0;
   2459 	else
   2460 		sc->sc_align_tweak = 2;
   2461 #endif /* __NO_STRICT_ALIGNMENT */
   2462 
   2463 	/* Cancel any pending I/O. */
   2464 	wm_stop(ifp, 0);
   2465 
   2466 	/* Reset the chip to a known state. */
   2467 	wm_reset(sc);
   2468 
   2469 	/* Initialize the transmit descriptor ring. */
   2470 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
   2471 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
   2472 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2473 	sc->sc_txfree = WM_NTXDESC(sc);
   2474 	sc->sc_txnext = 0;
   2475 
   2476 	if (sc->sc_type < WM_T_82543) {
   2477 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
   2478 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
   2479 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
   2480 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
   2481 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
   2482 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
   2483 	} else {
   2484 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
   2485 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
   2486 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
   2487 		CSR_WRITE(sc, WMREG_TDH, 0);
   2488 		CSR_WRITE(sc, WMREG_TDT, 0);
   2489 		CSR_WRITE(sc, WMREG_TIDV, 64);
   2490 		CSR_WRITE(sc, WMREG_TADV, 128);
   2491 
   2492 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
   2493 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   2494 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
   2495 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
   2496 	}
   2497 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
   2498 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
   2499 
   2500 	/* Initialize the transmit job descriptors. */
   2501 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
   2502 		sc->sc_txsoft[i].txs_mbuf = NULL;
   2503 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
   2504 	sc->sc_txsnext = 0;
   2505 	sc->sc_txsdirty = 0;
   2506 
   2507 	/*
   2508 	 * Initialize the receive descriptor and receive job
   2509 	 * descriptor rings.
   2510 	 */
   2511 	if (sc->sc_type < WM_T_82543) {
   2512 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
   2513 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
   2514 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
   2515 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
   2516 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
   2517 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
   2518 
   2519 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
   2520 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
   2521 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
   2522 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
   2523 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
   2524 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
   2525 	} else {
   2526 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
   2527 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
   2528 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
   2529 		CSR_WRITE(sc, WMREG_RDH, 0);
   2530 		CSR_WRITE(sc, WMREG_RDT, 0);
   2531 		CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
   2532 		CSR_WRITE(sc, WMREG_RADV, 128);
   2533 	}
   2534 	for (i = 0; i < WM_NRXDESC; i++) {
   2535 		rxs = &sc->sc_rxsoft[i];
   2536 		if (rxs->rxs_mbuf == NULL) {
   2537 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
   2538 				log(LOG_ERR, "%s: unable to allocate or map rx "
   2539 				    "buffer %d, error = %d\n",
   2540 				    sc->sc_dev.dv_xname, i, error);
   2541 				/*
   2542 				 * XXX Should attempt to run with fewer receive
   2543 				 * XXX buffers instead of just failing.
   2544 				 */
   2545 				wm_rxdrain(sc);
   2546 				goto out;
   2547 			}
   2548 		} else
   2549 			WM_INIT_RXDESC(sc, i);
   2550 	}
   2551 	sc->sc_rxptr = 0;
   2552 	sc->sc_rxdiscard = 0;
   2553 	WM_RXCHAIN_RESET(sc);
   2554 
   2555 	/*
   2556 	 * Clear out the VLAN table -- we don't use it (yet).
   2557 	 */
   2558 	CSR_WRITE(sc, WMREG_VET, 0);
   2559 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
   2560 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
   2561 
   2562 	/*
   2563 	 * Set up flow-control parameters.
   2564 	 *
   2565 	 * XXX Values could probably stand some tuning.
   2566 	 */
   2567 	CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
   2568 	CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
   2569 	CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
   2570 
   2571 	sc->sc_fcrtl = FCRTL_DFLT;
   2572 	if (sc->sc_type < WM_T_82543) {
   2573 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
   2574 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
   2575 	} else {
   2576 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
   2577 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
   2578 	}
   2579 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
   2580 
   2581 #if 0 /* XXXJRT */
   2582 	/* Deal with VLAN enables. */
   2583 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2584 		sc->sc_ctrl |= CTRL_VME;
   2585 	else
   2586 #endif /* XXXJRT */
   2587 		sc->sc_ctrl &= ~CTRL_VME;
   2588 
   2589 	/* Write the control registers. */
   2590 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2591 #if 0
   2592 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   2593 #endif
   2594 
   2595 	/*
   2596 	 * Set up checksum offload parameters.
   2597 	 */
   2598 	reg = CSR_READ(sc, WMREG_RXCSUM);
   2599 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
   2600 		reg |= RXCSUM_IPOFL;
   2601 	else
   2602 		reg &= ~RXCSUM_IPOFL;
   2603 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
   2604 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   2605 	else {
   2606 		reg &= ~RXCSUM_TUOFL;
   2607 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
   2608 			reg &= ~RXCSUM_IPOFL;
   2609 	}
   2610 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
   2611 
   2612 	/*
   2613 	 * Set up the interrupt registers.
   2614 	 */
   2615 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   2616 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   2617 	    ICR_RXO | ICR_RXT0;
   2618 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
   2619 		sc->sc_icr |= ICR_RXCFG;
   2620 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
   2621 
   2622 	/* Set up the inter-packet gap. */
   2623 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   2624 
   2625 	if (sc->sc_type >= WM_T_82543) {
   2626 		/* Set up the interrupt throttling register (units of 256ns) */
   2627 		sc->sc_itr = 1000000000 / (7000 * 256);
   2628 		CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
   2629 	}
   2630 
   2631 #if 0 /* XXXJRT */
   2632 	/* Set the VLAN ethernetype. */
   2633 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
   2634 #endif
   2635 
   2636 	/*
   2637 	 * Set up the transmit control register; we start out with
   2638 	 * a collision distance suitable for FDX, but update it whe
   2639 	 * we resolve the media type.
   2640 	 */
   2641 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
   2642 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2643 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2644 
   2645 	/* Set the media. */
   2646 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
   2647 
   2648 	/*
   2649 	 * Set up the receive control register; we actually program
   2650 	 * the register when we set the receive filter.  Use multicast
   2651 	 * address offset type 0.
   2652 	 *
   2653 	 * Only the i82544 has the ability to strip the incoming
   2654 	 * CRC, so we don't enable that feature.
   2655 	 */
   2656 	sc->sc_mchash_type = 0;
   2657 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
   2658 	    RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
   2659 
   2660 	if(MCLBYTES == 2048) {
   2661 		sc->sc_rctl |= RCTL_2k;
   2662 	} else {
   2663 		if(sc->sc_type >= WM_T_82543) {
   2664 			switch(MCLBYTES) {
   2665 			case 4096:
   2666 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
   2667 				break;
   2668 			case 8192:
   2669 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
   2670 				break;
   2671 			case 16384:
   2672 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
   2673 				break;
   2674 			default:
   2675 				panic("wm_init: MCLBYTES %d unsupported",
   2676 				    MCLBYTES);
   2677 				break;
   2678 			}
   2679 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
   2680 	}
   2681 
   2682 	/* Set the receive filter. */
   2683 	wm_set_filter(sc);
   2684 
   2685 	/* Start the one second link check clock. */
   2686 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2687 
   2688 	/* ...all done! */
   2689 	ifp->if_flags |= IFF_RUNNING;
   2690 	ifp->if_flags &= ~IFF_OACTIVE;
   2691 
   2692  out:
   2693 	if (error)
   2694 		log(LOG_ERR, "%s: interface not running\n",
   2695 		    sc->sc_dev.dv_xname);
   2696 	return (error);
   2697 }
   2698 
   2699 /*
   2700  * wm_rxdrain:
   2701  *
   2702  *	Drain the receive queue.
   2703  */
   2704 static void
   2705 wm_rxdrain(struct wm_softc *sc)
   2706 {
   2707 	struct wm_rxsoft *rxs;
   2708 	int i;
   2709 
   2710 	for (i = 0; i < WM_NRXDESC; i++) {
   2711 		rxs = &sc->sc_rxsoft[i];
   2712 		if (rxs->rxs_mbuf != NULL) {
   2713 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2714 			m_freem(rxs->rxs_mbuf);
   2715 			rxs->rxs_mbuf = NULL;
   2716 		}
   2717 	}
   2718 }
   2719 
   2720 /*
   2721  * wm_stop:		[ifnet interface function]
   2722  *
   2723  *	Stop transmission on the interface.
   2724  */
   2725 static void
   2726 wm_stop(struct ifnet *ifp, int disable)
   2727 {
   2728 	struct wm_softc *sc = ifp->if_softc;
   2729 	struct wm_txsoft *txs;
   2730 	int i;
   2731 
   2732 	/* Stop the one second clock. */
   2733 	callout_stop(&sc->sc_tick_ch);
   2734 
   2735 	/* Stop the 82547 Tx FIFO stall check timer. */
   2736 	if (sc->sc_type == WM_T_82547)
   2737 		callout_stop(&sc->sc_txfifo_ch);
   2738 
   2739 	if (sc->sc_flags & WM_F_HAS_MII) {
   2740 		/* Down the MII. */
   2741 		mii_down(&sc->sc_mii);
   2742 	}
   2743 
   2744 	/* Stop the transmit and receive processes. */
   2745 	CSR_WRITE(sc, WMREG_TCTL, 0);
   2746 	CSR_WRITE(sc, WMREG_RCTL, 0);
   2747 
   2748 	/* Release any queued transmit buffers. */
   2749 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   2750 		txs = &sc->sc_txsoft[i];
   2751 		if (txs->txs_mbuf != NULL) {
   2752 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2753 			m_freem(txs->txs_mbuf);
   2754 			txs->txs_mbuf = NULL;
   2755 		}
   2756 	}
   2757 
   2758 	if (disable)
   2759 		wm_rxdrain(sc);
   2760 
   2761 	/* Mark the interface as down and cancel the watchdog timer. */
   2762 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2763 	ifp->if_timer = 0;
   2764 }
   2765 
   2766 /*
   2767  * wm_acquire_eeprom:
   2768  *
   2769  *	Perform the EEPROM handshake required on some chips.
   2770  */
   2771 static int
   2772 wm_acquire_eeprom(struct wm_softc *sc)
   2773 {
   2774 	uint32_t reg;
   2775 	int x;
   2776 
   2777 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
   2778 		reg = CSR_READ(sc, WMREG_EECD);
   2779 
   2780 		/* Request EEPROM access. */
   2781 		reg |= EECD_EE_REQ;
   2782 		CSR_WRITE(sc, WMREG_EECD, reg);
   2783 
   2784 		/* ..and wait for it to be granted. */
   2785 		for (x = 0; x < 100; x++) {
   2786 			reg = CSR_READ(sc, WMREG_EECD);
   2787 			if (reg & EECD_EE_GNT)
   2788 				break;
   2789 			delay(5);
   2790 		}
   2791 		if ((reg & EECD_EE_GNT) == 0) {
   2792 			aprint_error("%s: could not acquire EEPROM GNT\n",
   2793 			    sc->sc_dev.dv_xname);
   2794 			reg &= ~EECD_EE_REQ;
   2795 			CSR_WRITE(sc, WMREG_EECD, reg);
   2796 			return (1);
   2797 		}
   2798 	}
   2799 
   2800 	return (0);
   2801 }
   2802 
   2803 /*
   2804  * wm_release_eeprom:
   2805  *
   2806  *	Release the EEPROM mutex.
   2807  */
   2808 static void
   2809 wm_release_eeprom(struct wm_softc *sc)
   2810 {
   2811 	uint32_t reg;
   2812 
   2813 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
   2814 		reg = CSR_READ(sc, WMREG_EECD);
   2815 		reg &= ~EECD_EE_REQ;
   2816 		CSR_WRITE(sc, WMREG_EECD, reg);
   2817 	}
   2818 }
   2819 
   2820 /*
   2821  * wm_eeprom_sendbits:
   2822  *
   2823  *	Send a series of bits to the EEPROM.
   2824  */
   2825 static void
   2826 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
   2827 {
   2828 	uint32_t reg;
   2829 	int x;
   2830 
   2831 	reg = CSR_READ(sc, WMREG_EECD);
   2832 
   2833 	for (x = nbits; x > 0; x--) {
   2834 		if (bits & (1U << (x - 1)))
   2835 			reg |= EECD_DI;
   2836 		else
   2837 			reg &= ~EECD_DI;
   2838 		CSR_WRITE(sc, WMREG_EECD, reg);
   2839 		delay(2);
   2840 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2841 		delay(2);
   2842 		CSR_WRITE(sc, WMREG_EECD, reg);
   2843 		delay(2);
   2844 	}
   2845 }
   2846 
   2847 /*
   2848  * wm_eeprom_recvbits:
   2849  *
   2850  *	Receive a series of bits from the EEPROM.
   2851  */
   2852 static void
   2853 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
   2854 {
   2855 	uint32_t reg, val;
   2856 	int x;
   2857 
   2858 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
   2859 
   2860 	val = 0;
   2861 	for (x = nbits; x > 0; x--) {
   2862 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2863 		delay(2);
   2864 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
   2865 			val |= (1U << (x - 1));
   2866 		CSR_WRITE(sc, WMREG_EECD, reg);
   2867 		delay(2);
   2868 	}
   2869 	*valp = val;
   2870 }
   2871 
   2872 /*
   2873  * wm_read_eeprom_uwire:
   2874  *
   2875  *	Read a word from the EEPROM using the MicroWire protocol.
   2876  */
   2877 static int
   2878 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   2879 {
   2880 	uint32_t reg, val;
   2881 	int i;
   2882 
   2883 	for (i = 0; i < wordcnt; i++) {
   2884 		/* Clear SK and DI. */
   2885 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
   2886 		CSR_WRITE(sc, WMREG_EECD, reg);
   2887 
   2888 		/* Set CHIP SELECT. */
   2889 		reg |= EECD_CS;
   2890 		CSR_WRITE(sc, WMREG_EECD, reg);
   2891 		delay(2);
   2892 
   2893 		/* Shift in the READ command. */
   2894 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
   2895 
   2896 		/* Shift in address. */
   2897 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
   2898 
   2899 		/* Shift out the data. */
   2900 		wm_eeprom_recvbits(sc, &val, 16);
   2901 		data[i] = val & 0xffff;
   2902 
   2903 		/* Clear CHIP SELECT. */
   2904 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
   2905 		CSR_WRITE(sc, WMREG_EECD, reg);
   2906 		delay(2);
   2907 	}
   2908 
   2909 	return (0);
   2910 }
   2911 
   2912 /*
   2913  * wm_spi_eeprom_ready:
   2914  *
   2915  *	Wait for a SPI EEPROM to be ready for commands.
   2916  */
   2917 static int
   2918 wm_spi_eeprom_ready(struct wm_softc *sc)
   2919 {
   2920 	uint32_t val;
   2921 	int usec;
   2922 
   2923 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
   2924 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
   2925 		wm_eeprom_recvbits(sc, &val, 8);
   2926 		if ((val & SPI_SR_RDY) == 0)
   2927 			break;
   2928 	}
   2929 	if (usec >= SPI_MAX_RETRIES) {
   2930 		aprint_error("%s: EEPROM failed to become ready\n",
   2931 		    sc->sc_dev.dv_xname);
   2932 		return (1);
   2933 	}
   2934 	return (0);
   2935 }
   2936 
   2937 /*
   2938  * wm_read_eeprom_spi:
   2939  *
   2940  *	Read a work from the EEPROM using the SPI protocol.
   2941  */
   2942 static int
   2943 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   2944 {
   2945 	uint32_t reg, val;
   2946 	int i;
   2947 	uint8_t opc;
   2948 
   2949 	/* Clear SK and CS. */
   2950 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
   2951 	CSR_WRITE(sc, WMREG_EECD, reg);
   2952 	delay(2);
   2953 
   2954 	if (wm_spi_eeprom_ready(sc))
   2955 		return (1);
   2956 
   2957 	/* Toggle CS to flush commands. */
   2958 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
   2959 	delay(2);
   2960 	CSR_WRITE(sc, WMREG_EECD, reg);
   2961 	delay(2);
   2962 
   2963 	opc = SPI_OPC_READ;
   2964 	if (sc->sc_ee_addrbits == 8 && word >= 128)
   2965 		opc |= SPI_OPC_A8;
   2966 
   2967 	wm_eeprom_sendbits(sc, opc, 8);
   2968 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
   2969 
   2970 	for (i = 0; i < wordcnt; i++) {
   2971 		wm_eeprom_recvbits(sc, &val, 16);
   2972 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
   2973 	}
   2974 
   2975 	/* Raise CS and clear SK. */
   2976 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
   2977 	CSR_WRITE(sc, WMREG_EECD, reg);
   2978 	delay(2);
   2979 
   2980 	return (0);
   2981 }
   2982 
   2983 /*
   2984  * wm_read_eeprom:
   2985  *
   2986  *	Read data from the serial EEPROM.
   2987  */
   2988 static int
   2989 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   2990 {
   2991 	int rv;
   2992 
   2993 	if (wm_acquire_eeprom(sc))
   2994 		return (1);
   2995 
   2996 	if (sc->sc_flags & WM_F_EEPROM_SPI)
   2997 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
   2998 	else
   2999 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
   3000 
   3001 	wm_release_eeprom(sc);
   3002 	return (rv);
   3003 }
   3004 
   3005 /*
   3006  * wm_add_rxbuf:
   3007  *
   3008  *	Add a receive buffer to the indiciated descriptor.
   3009  */
   3010 static int
   3011 wm_add_rxbuf(struct wm_softc *sc, int idx)
   3012 {
   3013 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
   3014 	struct mbuf *m;
   3015 	int error;
   3016 
   3017 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3018 	if (m == NULL)
   3019 		return (ENOBUFS);
   3020 
   3021 	MCLGET(m, M_DONTWAIT);
   3022 	if ((m->m_flags & M_EXT) == 0) {
   3023 		m_freem(m);
   3024 		return (ENOBUFS);
   3025 	}
   3026 
   3027 	if (rxs->rxs_mbuf != NULL)
   3028 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3029 
   3030 	rxs->rxs_mbuf = m;
   3031 
   3032 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   3033 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   3034 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   3035 	if (error) {
   3036 		/* XXX XXX XXX */
   3037 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   3038 		    sc->sc_dev.dv_xname, idx, error);
   3039 		panic("wm_add_rxbuf");
   3040 	}
   3041 
   3042 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3043 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3044 
   3045 	WM_INIT_RXDESC(sc, idx);
   3046 
   3047 	return (0);
   3048 }
   3049 
   3050 /*
   3051  * wm_set_ral:
   3052  *
   3053  *	Set an entery in the receive address list.
   3054  */
   3055 static void
   3056 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
   3057 {
   3058 	uint32_t ral_lo, ral_hi;
   3059 
   3060 	if (enaddr != NULL) {
   3061 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   3062 		    (enaddr[3] << 24);
   3063 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   3064 		ral_hi |= RAL_AV;
   3065 	} else {
   3066 		ral_lo = 0;
   3067 		ral_hi = 0;
   3068 	}
   3069 
   3070 	if (sc->sc_type >= WM_T_82544) {
   3071 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
   3072 		    ral_lo);
   3073 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
   3074 		    ral_hi);
   3075 	} else {
   3076 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
   3077 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
   3078 	}
   3079 }
   3080 
   3081 /*
   3082  * wm_mchash:
   3083  *
   3084  *	Compute the hash of the multicast address for the 4096-bit
   3085  *	multicast filter.
   3086  */
   3087 static uint32_t
   3088 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
   3089 {
   3090 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   3091 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   3092 	uint32_t hash;
   3093 
   3094 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   3095 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   3096 
   3097 	return (hash & 0xfff);
   3098 }
   3099 
   3100 /*
   3101  * wm_set_filter:
   3102  *
   3103  *	Set up the receive filter.
   3104  */
   3105 static void
   3106 wm_set_filter(struct wm_softc *sc)
   3107 {
   3108 	struct ethercom *ec = &sc->sc_ethercom;
   3109 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3110 	struct ether_multi *enm;
   3111 	struct ether_multistep step;
   3112 	bus_addr_t mta_reg;
   3113 	uint32_t hash, reg, bit;
   3114 	int i;
   3115 
   3116 	if (sc->sc_type >= WM_T_82544)
   3117 		mta_reg = WMREG_CORDOVA_MTA;
   3118 	else
   3119 		mta_reg = WMREG_MTA;
   3120 
   3121 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   3122 
   3123 	if (ifp->if_flags & IFF_BROADCAST)
   3124 		sc->sc_rctl |= RCTL_BAM;
   3125 	if (ifp->if_flags & IFF_PROMISC) {
   3126 		sc->sc_rctl |= RCTL_UPE;
   3127 		goto allmulti;
   3128 	}
   3129 
   3130 	/*
   3131 	 * Set the station address in the first RAL slot, and
   3132 	 * clear the remaining slots.
   3133 	 */
   3134 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
   3135 	for (i = 1; i < WM_RAL_TABSIZE; i++)
   3136 		wm_set_ral(sc, NULL, i);
   3137 
   3138 	/* Clear out the multicast table. */
   3139 	for (i = 0; i < WM_MC_TABSIZE; i++)
   3140 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
   3141 
   3142 	ETHER_FIRST_MULTI(step, ec, enm);
   3143 	while (enm != NULL) {
   3144 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3145 			/*
   3146 			 * We must listen to a range of multicast addresses.
   3147 			 * For now, just accept all multicasts, rather than
   3148 			 * trying to set only those filter bits needed to match
   3149 			 * the range.  (At this time, the only use of address
   3150 			 * ranges is for IP multicast routing, for which the
   3151 			 * range is big enough to require all bits set.)
   3152 			 */
   3153 			goto allmulti;
   3154 		}
   3155 
   3156 		hash = wm_mchash(sc, enm->enm_addrlo);
   3157 
   3158 		reg = (hash >> 5) & 0x7f;
   3159 		bit = hash & 0x1f;
   3160 
   3161 		hash = CSR_READ(sc, mta_reg + (reg << 2));
   3162 		hash |= 1U << bit;
   3163 
   3164 		/* XXX Hardware bug?? */
   3165 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
   3166 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
   3167 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3168 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
   3169 		} else
   3170 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3171 
   3172 		ETHER_NEXT_MULTI(step, enm);
   3173 	}
   3174 
   3175 	ifp->if_flags &= ~IFF_ALLMULTI;
   3176 	goto setit;
   3177 
   3178  allmulti:
   3179 	ifp->if_flags |= IFF_ALLMULTI;
   3180 	sc->sc_rctl |= RCTL_MPE;
   3181 
   3182  setit:
   3183 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
   3184 }
   3185 
   3186 /*
   3187  * wm_tbi_mediainit:
   3188  *
   3189  *	Initialize media for use on 1000BASE-X devices.
   3190  */
   3191 static void
   3192 wm_tbi_mediainit(struct wm_softc *sc)
   3193 {
   3194 	const char *sep = "";
   3195 
   3196 	if (sc->sc_type < WM_T_82543)
   3197 		sc->sc_tipg = TIPG_WM_DFLT;
   3198 	else
   3199 		sc->sc_tipg = TIPG_LG_DFLT;
   3200 
   3201 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
   3202 	    wm_tbi_mediastatus);
   3203 
   3204 	/*
   3205 	 * SWD Pins:
   3206 	 *
   3207 	 *	0 = Link LED (output)
   3208 	 *	1 = Loss Of Signal (input)
   3209 	 */
   3210 	sc->sc_ctrl |= CTRL_SWDPIO(0);
   3211 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
   3212 
   3213 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3214 
   3215 #define	ADD(ss, mm, dd)							\
   3216 do {									\
   3217 	aprint_normal("%s%s", sep, ss);					\
   3218 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
   3219 	sep = ", ";							\
   3220 } while (/*CONSTCOND*/0)
   3221 
   3222 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
   3223 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
   3224 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
   3225 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
   3226 	aprint_normal("\n");
   3227 
   3228 #undef ADD
   3229 
   3230 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   3231 }
   3232 
   3233 /*
   3234  * wm_tbi_mediastatus:	[ifmedia interface function]
   3235  *
   3236  *	Get the current interface media status on a 1000BASE-X device.
   3237  */
   3238 static void
   3239 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3240 {
   3241 	struct wm_softc *sc = ifp->if_softc;
   3242 	uint32_t ctrl;
   3243 
   3244 	ifmr->ifm_status = IFM_AVALID;
   3245 	ifmr->ifm_active = IFM_ETHER;
   3246 
   3247 	if (sc->sc_tbi_linkup == 0) {
   3248 		ifmr->ifm_active |= IFM_NONE;
   3249 		return;
   3250 	}
   3251 
   3252 	ifmr->ifm_status |= IFM_ACTIVE;
   3253 	ifmr->ifm_active |= IFM_1000_SX;
   3254 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
   3255 		ifmr->ifm_active |= IFM_FDX;
   3256 	ctrl = CSR_READ(sc, WMREG_CTRL);
   3257 	if (ctrl & CTRL_RFCE)
   3258 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   3259 	if (ctrl & CTRL_TFCE)
   3260 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   3261 }
   3262 
   3263 /*
   3264  * wm_tbi_mediachange:	[ifmedia interface function]
   3265  *
   3266  *	Set hardware to newly-selected media on a 1000BASE-X device.
   3267  */
   3268 static int
   3269 wm_tbi_mediachange(struct ifnet *ifp)
   3270 {
   3271 	struct wm_softc *sc = ifp->if_softc;
   3272 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   3273 	uint32_t status;
   3274 	int i;
   3275 
   3276 	sc->sc_txcw = ife->ifm_data;
   3277 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
   3278 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
   3279 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
   3280 	sc->sc_txcw |= TXCW_ANE;
   3281 
   3282 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   3283 	delay(10000);
   3284 
   3285 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
   3286 
   3287 	sc->sc_tbi_anstate = 0;
   3288 
   3289 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
   3290 		/* Have signal; wait for the link to come up. */
   3291 		for (i = 0; i < 50; i++) {
   3292 			delay(10000);
   3293 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
   3294 				break;
   3295 		}
   3296 
   3297 		status = CSR_READ(sc, WMREG_STATUS);
   3298 		if (status & STATUS_LU) {
   3299 			/* Link is up. */
   3300 			DPRINTF(WM_DEBUG_LINK,
   3301 			    ("%s: LINK: set media -> link up %s\n",
   3302 			    sc->sc_dev.dv_xname,
   3303 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   3304 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3305 			sc->sc_fcrtl &= ~FCRTL_XONE;
   3306 			if (status & STATUS_FD)
   3307 				sc->sc_tctl |=
   3308 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3309 			else
   3310 				sc->sc_tctl |=
   3311 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3312 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   3313 				sc->sc_fcrtl |= FCRTL_XONE;
   3314 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3315 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   3316 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   3317 				      sc->sc_fcrtl);
   3318 			sc->sc_tbi_linkup = 1;
   3319 		} else {
   3320 			/* Link is down. */
   3321 			DPRINTF(WM_DEBUG_LINK,
   3322 			    ("%s: LINK: set media -> link down\n",
   3323 			    sc->sc_dev.dv_xname));
   3324 			sc->sc_tbi_linkup = 0;
   3325 		}
   3326 	} else {
   3327 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
   3328 		    sc->sc_dev.dv_xname));
   3329 		sc->sc_tbi_linkup = 0;
   3330 	}
   3331 
   3332 	wm_tbi_set_linkled(sc);
   3333 
   3334 	return (0);
   3335 }
   3336 
   3337 /*
   3338  * wm_tbi_set_linkled:
   3339  *
   3340  *	Update the link LED on 1000BASE-X devices.
   3341  */
   3342 static void
   3343 wm_tbi_set_linkled(struct wm_softc *sc)
   3344 {
   3345 
   3346 	if (sc->sc_tbi_linkup)
   3347 		sc->sc_ctrl |= CTRL_SWDPIN(0);
   3348 	else
   3349 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
   3350 
   3351 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3352 }
   3353 
   3354 /*
   3355  * wm_tbi_check_link:
   3356  *
   3357  *	Check the link on 1000BASE-X devices.
   3358  */
   3359 static void
   3360 wm_tbi_check_link(struct wm_softc *sc)
   3361 {
   3362 	uint32_t rxcw, ctrl, status;
   3363 
   3364 	if (sc->sc_tbi_anstate == 0)
   3365 		return;
   3366 	else if (sc->sc_tbi_anstate > 1) {
   3367 		DPRINTF(WM_DEBUG_LINK,
   3368 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
   3369 		    sc->sc_tbi_anstate));
   3370 		sc->sc_tbi_anstate--;
   3371 		return;
   3372 	}
   3373 
   3374 	sc->sc_tbi_anstate = 0;
   3375 
   3376 	rxcw = CSR_READ(sc, WMREG_RXCW);
   3377 	ctrl = CSR_READ(sc, WMREG_CTRL);
   3378 	status = CSR_READ(sc, WMREG_STATUS);
   3379 
   3380 	if ((status & STATUS_LU) == 0) {
   3381 		DPRINTF(WM_DEBUG_LINK,
   3382 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
   3383 		sc->sc_tbi_linkup = 0;
   3384 	} else {
   3385 		DPRINTF(WM_DEBUG_LINK,
   3386 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
   3387 		    (status & STATUS_FD) ? "FDX" : "HDX"));
   3388 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3389 		sc->sc_fcrtl &= ~FCRTL_XONE;
   3390 		if (status & STATUS_FD)
   3391 			sc->sc_tctl |=
   3392 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3393 		else
   3394 			sc->sc_tctl |=
   3395 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3396 		if (ctrl & CTRL_TFCE)
   3397 			sc->sc_fcrtl |= FCRTL_XONE;
   3398 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3399 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   3400 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
   3401 			      sc->sc_fcrtl);
   3402 		sc->sc_tbi_linkup = 1;
   3403 	}
   3404 
   3405 	wm_tbi_set_linkled(sc);
   3406 }
   3407 
   3408 /*
   3409  * wm_gmii_reset:
   3410  *
   3411  *	Reset the PHY.
   3412  */
   3413 static void
   3414 wm_gmii_reset(struct wm_softc *sc)
   3415 {
   3416 	uint32_t reg;
   3417 
   3418 	if (sc->sc_type >= WM_T_82544) {
   3419 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   3420 		delay(20000);
   3421 
   3422 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3423 		delay(20000);
   3424 	} else {
   3425 		/* The PHY reset pin is active-low. */
   3426 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   3427 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
   3428 		    CTRL_EXT_SWDPIN(4));
   3429 		reg |= CTRL_EXT_SWDPIO(4);
   3430 
   3431 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   3432 		delay(10);
   3433 
   3434 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   3435 		delay(10);
   3436 
   3437 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   3438 		delay(10);
   3439 #if 0
   3440 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
   3441 #endif
   3442 	}
   3443 }
   3444 
   3445 /*
   3446  * wm_gmii_mediainit:
   3447  *
   3448  *	Initialize media for use on 1000BASE-T devices.
   3449  */
   3450 static void
   3451 wm_gmii_mediainit(struct wm_softc *sc)
   3452 {
   3453 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3454 
   3455 	/* We have MII. */
   3456 	sc->sc_flags |= WM_F_HAS_MII;
   3457 
   3458 	sc->sc_tipg = TIPG_1000T_DFLT;
   3459 
   3460 	/*
   3461 	 * Let the chip set speed/duplex on its own based on
   3462 	 * signals from the PHY.
   3463 	 */
   3464 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
   3465 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3466 
   3467 	/* Initialize our media structures and probe the GMII. */
   3468 	sc->sc_mii.mii_ifp = ifp;
   3469 
   3470 	if (sc->sc_type >= WM_T_82544) {
   3471 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
   3472 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
   3473 	} else {
   3474 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
   3475 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
   3476 	}
   3477 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
   3478 
   3479 	wm_gmii_reset(sc);
   3480 
   3481 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
   3482 	    wm_gmii_mediastatus);
   3483 
   3484 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   3485 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
   3486 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   3487 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   3488 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   3489 	} else
   3490 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   3491 }
   3492 
   3493 /*
   3494  * wm_gmii_mediastatus:	[ifmedia interface function]
   3495  *
   3496  *	Get the current interface media status on a 1000BASE-T device.
   3497  */
   3498 static void
   3499 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3500 {
   3501 	struct wm_softc *sc = ifp->if_softc;
   3502 
   3503 	mii_pollstat(&sc->sc_mii);
   3504 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3505 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
   3506 			   sc->sc_flowflags;
   3507 }
   3508 
   3509 /*
   3510  * wm_gmii_mediachange:	[ifmedia interface function]
   3511  *
   3512  *	Set hardware to newly-selected media on a 1000BASE-T device.
   3513  */
   3514 static int
   3515 wm_gmii_mediachange(struct ifnet *ifp)
   3516 {
   3517 	struct wm_softc *sc = ifp->if_softc;
   3518 
   3519 	if (ifp->if_flags & IFF_UP)
   3520 		mii_mediachg(&sc->sc_mii);
   3521 	return (0);
   3522 }
   3523 
   3524 #define	MDI_IO		CTRL_SWDPIN(2)
   3525 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
   3526 #define	MDI_CLK		CTRL_SWDPIN(3)
   3527 
   3528 static void
   3529 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
   3530 {
   3531 	uint32_t i, v;
   3532 
   3533 	v = CSR_READ(sc, WMREG_CTRL);
   3534 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   3535 	v |= MDI_DIR | CTRL_SWDPIO(3);
   3536 
   3537 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
   3538 		if (data & i)
   3539 			v |= MDI_IO;
   3540 		else
   3541 			v &= ~MDI_IO;
   3542 		CSR_WRITE(sc, WMREG_CTRL, v);
   3543 		delay(10);
   3544 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3545 		delay(10);
   3546 		CSR_WRITE(sc, WMREG_CTRL, v);
   3547 		delay(10);
   3548 	}
   3549 }
   3550 
   3551 static uint32_t
   3552 i82543_mii_recvbits(struct wm_softc *sc)
   3553 {
   3554 	uint32_t v, i, data = 0;
   3555 
   3556 	v = CSR_READ(sc, WMREG_CTRL);
   3557 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   3558 	v |= CTRL_SWDPIO(3);
   3559 
   3560 	CSR_WRITE(sc, WMREG_CTRL, v);
   3561 	delay(10);
   3562 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3563 	delay(10);
   3564 	CSR_WRITE(sc, WMREG_CTRL, v);
   3565 	delay(10);
   3566 
   3567 	for (i = 0; i < 16; i++) {
   3568 		data <<= 1;
   3569 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3570 		delay(10);
   3571 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
   3572 			data |= 1;
   3573 		CSR_WRITE(sc, WMREG_CTRL, v);
   3574 		delay(10);
   3575 	}
   3576 
   3577 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3578 	delay(10);
   3579 	CSR_WRITE(sc, WMREG_CTRL, v);
   3580 	delay(10);
   3581 
   3582 	return (data);
   3583 }
   3584 
   3585 #undef MDI_IO
   3586 #undef MDI_DIR
   3587 #undef MDI_CLK
   3588 
   3589 /*
   3590  * wm_gmii_i82543_readreg:	[mii interface function]
   3591  *
   3592  *	Read a PHY register on the GMII (i82543 version).
   3593  */
   3594 static int
   3595 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
   3596 {
   3597 	struct wm_softc *sc = (void *) self;
   3598 	int rv;
   3599 
   3600 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   3601 	i82543_mii_sendbits(sc, reg | (phy << 5) |
   3602 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
   3603 	rv = i82543_mii_recvbits(sc) & 0xffff;
   3604 
   3605 	DPRINTF(WM_DEBUG_GMII,
   3606 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
   3607 	    sc->sc_dev.dv_xname, phy, reg, rv));
   3608 
   3609 	return (rv);
   3610 }
   3611 
   3612 /*
   3613  * wm_gmii_i82543_writereg:	[mii interface function]
   3614  *
   3615  *	Write a PHY register on the GMII (i82543 version).
   3616  */
   3617 static void
   3618 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
   3619 {
   3620 	struct wm_softc *sc = (void *) self;
   3621 
   3622 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   3623 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
   3624 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
   3625 	    (MII_COMMAND_START << 30), 32);
   3626 }
   3627 
   3628 /*
   3629  * wm_gmii_i82544_readreg:	[mii interface function]
   3630  *
   3631  *	Read a PHY register on the GMII.
   3632  */
   3633 static int
   3634 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
   3635 {
   3636 	struct wm_softc *sc = (void *) self;
   3637 	uint32_t mdic = 0;
   3638 	int i, rv;
   3639 
   3640 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
   3641 	    MDIC_REGADD(reg));
   3642 
   3643 	for (i = 0; i < 100; i++) {
   3644 		mdic = CSR_READ(sc, WMREG_MDIC);
   3645 		if (mdic & MDIC_READY)
   3646 			break;
   3647 		delay(10);
   3648 	}
   3649 
   3650 	if ((mdic & MDIC_READY) == 0) {
   3651 		log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
   3652 		    sc->sc_dev.dv_xname, phy, reg);
   3653 		rv = 0;
   3654 	} else if (mdic & MDIC_E) {
   3655 #if 0 /* This is normal if no PHY is present. */
   3656 		log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
   3657 		    sc->sc_dev.dv_xname, phy, reg);
   3658 #endif
   3659 		rv = 0;
   3660 	} else {
   3661 		rv = MDIC_DATA(mdic);
   3662 		if (rv == 0xffff)
   3663 			rv = 0;
   3664 	}
   3665 
   3666 	return (rv);
   3667 }
   3668 
   3669 /*
   3670  * wm_gmii_i82544_writereg:	[mii interface function]
   3671  *
   3672  *	Write a PHY register on the GMII.
   3673  */
   3674 static void
   3675 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
   3676 {
   3677 	struct wm_softc *sc = (void *) self;
   3678 	uint32_t mdic = 0;
   3679 	int i;
   3680 
   3681 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
   3682 	    MDIC_REGADD(reg) | MDIC_DATA(val));
   3683 
   3684 	for (i = 0; i < 100; i++) {
   3685 		mdic = CSR_READ(sc, WMREG_MDIC);
   3686 		if (mdic & MDIC_READY)
   3687 			break;
   3688 		delay(10);
   3689 	}
   3690 
   3691 	if ((mdic & MDIC_READY) == 0)
   3692 		log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
   3693 		    sc->sc_dev.dv_xname, phy, reg);
   3694 	else if (mdic & MDIC_E)
   3695 		log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
   3696 		    sc->sc_dev.dv_xname, phy, reg);
   3697 }
   3698 
   3699 /*
   3700  * wm_gmii_statchg:	[mii interface function]
   3701  *
   3702  *	Callback from MII layer when media changes.
   3703  */
   3704 static void
   3705 wm_gmii_statchg(struct device *self)
   3706 {
   3707 	struct wm_softc *sc = (void *) self;
   3708 	struct mii_data *mii = &sc->sc_mii;
   3709 
   3710 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
   3711 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3712 	sc->sc_fcrtl &= ~FCRTL_XONE;
   3713 
   3714 	/*
   3715 	 * Get flow control negotiation result.
   3716 	 */
   3717 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3718 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3719 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3720 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3721 	}
   3722 
   3723 	if (sc->sc_flowflags & IFM_FLOW) {
   3724 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
   3725 			sc->sc_ctrl |= CTRL_TFCE;
   3726 			sc->sc_fcrtl |= FCRTL_XONE;
   3727 		}
   3728 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3729 			sc->sc_ctrl |= CTRL_RFCE;
   3730 	}
   3731 
   3732 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   3733 		DPRINTF(WM_DEBUG_LINK,
   3734 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
   3735 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3736 	} else  {
   3737 		DPRINTF(WM_DEBUG_LINK,
   3738 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
   3739 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3740 	}
   3741 
   3742 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3743 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3744 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
   3745 						 : WMREG_FCRTL, sc->sc_fcrtl);
   3746 }
   3747