Home | History | Annotate | Line # | Download | only in pci
if_wm.c revision 1.98
      1 /*	$NetBSD: if_wm.c,v 1.98 2005/03/05 21:37:07 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
     40  *
     41  * TODO (in order of importance):
     42  *
     43  *	- Rework how parameters are loaded from the EEPROM.
     44  *	- Figure out what to do with the i82545GM and i82546GB
     45  *	  SERDES controllers.
     46  *	- Fix hw VLAN assist.
     47  */
     48 
     49 #include <sys/cdefs.h>
     50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.98 2005/03/05 21:37:07 thorpej Exp $");
     51 
     52 #include "bpfilter.h"
     53 #include "rnd.h"
     54 
     55 #include <sys/param.h>
     56 #include <sys/systm.h>
     57 #include <sys/callout.h>
     58 #include <sys/mbuf.h>
     59 #include <sys/malloc.h>
     60 #include <sys/kernel.h>
     61 #include <sys/socket.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/errno.h>
     64 #include <sys/device.h>
     65 #include <sys/queue.h>
     66 #include <sys/syslog.h>
     67 
     68 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     69 
     70 #if NRND > 0
     71 #include <sys/rnd.h>
     72 #endif
     73 
     74 #include <net/if.h>
     75 #include <net/if_dl.h>
     76 #include <net/if_media.h>
     77 #include <net/if_ether.h>
     78 
     79 #if NBPFILTER > 0
     80 #include <net/bpf.h>
     81 #endif
     82 
     83 #include <netinet/in.h>			/* XXX for struct ip */
     84 #include <netinet/in_systm.h>		/* XXX for struct ip */
     85 #include <netinet/ip.h>			/* XXX for struct ip */
     86 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
     87 
     88 #include <machine/bus.h>
     89 #include <machine/intr.h>
     90 #include <machine/endian.h>
     91 
     92 #include <dev/mii/mii.h>
     93 #include <dev/mii/miivar.h>
     94 #include <dev/mii/mii_bitbang.h>
     95 
     96 #include <dev/pci/pcireg.h>
     97 #include <dev/pci/pcivar.h>
     98 #include <dev/pci/pcidevs.h>
     99 
    100 #include <dev/pci/if_wmreg.h>
    101 
    102 #ifdef WM_DEBUG
    103 #define	WM_DEBUG_LINK		0x01
    104 #define	WM_DEBUG_TX		0x02
    105 #define	WM_DEBUG_RX		0x04
    106 #define	WM_DEBUG_GMII		0x08
    107 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
    108 
    109 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
    110 #else
    111 #define	DPRINTF(x, y)	/* nothing */
    112 #endif /* WM_DEBUG */
    113 
    114 /*
    115  * Transmit descriptor list size.  Due to errata, we can only have
    116  * 256 hardware descriptors in the ring on < 82544, but we use 4096
    117  * on >= 82544.  We tell the upper layers that they can queue a lot
    118  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
    119  * of them at a time.
    120  *
    121  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
    122  * chains containing many small mbufs have been observed in zero-copy
    123  * situations with jumbo frames.
    124  */
    125 #define	WM_NTXSEGS		256
    126 #define	WM_IFQUEUELEN		256
    127 #define	WM_TXQUEUELEN_MAX	64
    128 #define	WM_TXQUEUELEN_MAX_82547	16
    129 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
    130 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
    131 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
    132 #define	WM_NTXDESC_82542	256
    133 #define	WM_NTXDESC_82544	4096
    134 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
    135 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
    136 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
    137 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
    138 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
    139 
    140 #define	WM_MAXTXDMA		ETHER_MAX_LEN_JUMBO
    141 
    142 /*
    143  * Receive descriptor list size.  We have one Rx buffer for normal
    144  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
    145  * packet.  We allocate 256 receive descriptors, each with a 2k
    146  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
    147  */
    148 #define	WM_NRXDESC		256
    149 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
    150 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
    151 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
    152 
    153 /*
    154  * Control structures are DMA'd to the i82542 chip.  We allocate them in
    155  * a single clump that maps to a single DMA segment to make serveral things
    156  * easier.
    157  */
    158 struct wm_control_data_82544 {
    159 	/*
    160 	 * The receive descriptors.
    161 	 */
    162 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    163 
    164 	/*
    165 	 * The transmit descriptors.  Put these at the end, because
    166 	 * we might use a smaller number of them.
    167 	 */
    168 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
    169 };
    170 
    171 struct wm_control_data_82542 {
    172 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    173 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
    174 };
    175 
    176 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
    177 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
    178 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
    179 
    180 /*
    181  * Software state for transmit jobs.
    182  */
    183 struct wm_txsoft {
    184 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    185 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    186 	int txs_firstdesc;		/* first descriptor in packet */
    187 	int txs_lastdesc;		/* last descriptor in packet */
    188 	int txs_ndesc;			/* # of descriptors used */
    189 };
    190 
    191 /*
    192  * Software state for receive buffers.  Each descriptor gets a
    193  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    194  * more than one buffer, we chain them together.
    195  */
    196 struct wm_rxsoft {
    197 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    198 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    199 };
    200 
    201 typedef enum {
    202 	WM_T_unknown		= 0,
    203 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
    204 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
    205 	WM_T_82543,			/* i82543 */
    206 	WM_T_82544,			/* i82544 */
    207 	WM_T_82540,			/* i82540 */
    208 	WM_T_82545,			/* i82545 */
    209 	WM_T_82545_3,			/* i82545 3.0+ */
    210 	WM_T_82546,			/* i82546 */
    211 	WM_T_82546_3,			/* i82546 3.0+ */
    212 	WM_T_82541,			/* i82541 */
    213 	WM_T_82541_2,			/* i82541 2.0+ */
    214 	WM_T_82547,			/* i82547 */
    215 	WM_T_82547_2,			/* i82547 2.0+ */
    216 } wm_chip_type;
    217 
    218 /*
    219  * Software state per device.
    220  */
    221 struct wm_softc {
    222 	struct device sc_dev;		/* generic device information */
    223 	bus_space_tag_t sc_st;		/* bus space tag */
    224 	bus_space_handle_t sc_sh;	/* bus space handle */
    225 	bus_space_tag_t sc_iot;		/* I/O space tag */
    226 	bus_space_handle_t sc_ioh;	/* I/O space handle */
    227 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    228 	struct ethercom sc_ethercom;	/* ethernet common data */
    229 	void *sc_sdhook;		/* shutdown hook */
    230 
    231 	wm_chip_type sc_type;		/* chip type */
    232 	int sc_flags;			/* flags; see below */
    233 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    234 	int sc_pcix_offset;		/* PCIX capability register offset */
    235 	int sc_flowflags;		/* 802.3x flow control flags */
    236 
    237 	void *sc_ih;			/* interrupt cookie */
    238 
    239 	int sc_ee_addrbits;		/* EEPROM address bits */
    240 
    241 	struct mii_data sc_mii;		/* MII/media information */
    242 
    243 	struct callout sc_tick_ch;	/* tick callout */
    244 
    245 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    246 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    247 
    248 	int		sc_align_tweak;
    249 
    250 	/*
    251 	 * Software state for the transmit and receive descriptors.
    252 	 */
    253 	int			sc_txnum;	/* must be a power of two */
    254 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
    255 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
    256 
    257 	/*
    258 	 * Control data structures.
    259 	 */
    260 	int			sc_ntxdesc;	/* must be a power of two */
    261 	struct wm_control_data_82544 *sc_control_data;
    262 #define	sc_txdescs	sc_control_data->wcd_txdescs
    263 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    264 
    265 #ifdef WM_EVENT_COUNTERS
    266 	/* Event counters. */
    267 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    268 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    269 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
    270 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    271 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    272 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    273 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    274 
    275 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    276 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    277 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    278 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    279 
    280 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
    281 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    282 
    283 	struct evcnt sc_ev_tu;		/* Tx underrun */
    284 
    285 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
    286 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
    287 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
    288 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
    289 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
    290 #endif /* WM_EVENT_COUNTERS */
    291 
    292 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
    293 
    294 	int	sc_txfree;		/* number of free Tx descriptors */
    295 	int	sc_txnext;		/* next ready Tx descriptor */
    296 
    297 	int	sc_txsfree;		/* number of free Tx jobs */
    298 	int	sc_txsnext;		/* next free Tx job */
    299 	int	sc_txsdirty;		/* dirty Tx jobs */
    300 
    301 	/* These 5 variables are used only on the 82547. */
    302 	int	sc_txfifo_size;		/* Tx FIFO size */
    303 	int	sc_txfifo_head;		/* current head of FIFO */
    304 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
    305 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
    306 	struct callout sc_txfifo_ch;	/* Tx FIFO stall work-around timer */
    307 
    308 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
    309 
    310 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    311 	int	sc_rxdiscard;
    312 	int	sc_rxlen;
    313 	struct mbuf *sc_rxhead;
    314 	struct mbuf *sc_rxtail;
    315 	struct mbuf **sc_rxtailp;
    316 
    317 	uint32_t sc_ctrl;		/* prototype CTRL register */
    318 #if 0
    319 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
    320 #endif
    321 	uint32_t sc_icr;		/* prototype interrupt bits */
    322 	uint32_t sc_itr;		/* prototype intr throttling reg */
    323 	uint32_t sc_tctl;		/* prototype TCTL register */
    324 	uint32_t sc_rctl;		/* prototype RCTL register */
    325 	uint32_t sc_txcw;		/* prototype TXCW register */
    326 	uint32_t sc_tipg;		/* prototype TIPG register */
    327 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
    328 	uint32_t sc_pba;		/* prototype PBA register */
    329 
    330 	int sc_tbi_linkup;		/* TBI link status */
    331 	int sc_tbi_anstate;		/* autonegotiation state */
    332 
    333 	int sc_mchash_type;		/* multicast filter offset */
    334 
    335 #if NRND > 0
    336 	rndsource_element_t rnd_source;	/* random source */
    337 #endif
    338 };
    339 
    340 #define	WM_RXCHAIN_RESET(sc)						\
    341 do {									\
    342 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    343 	*(sc)->sc_rxtailp = NULL;					\
    344 	(sc)->sc_rxlen = 0;						\
    345 } while (/*CONSTCOND*/0)
    346 
    347 #define	WM_RXCHAIN_LINK(sc, m)						\
    348 do {									\
    349 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    350 	(sc)->sc_rxtailp = &(m)->m_next;				\
    351 } while (/*CONSTCOND*/0)
    352 
    353 /* sc_flags */
    354 #define	WM_F_HAS_MII		0x01	/* has MII */
    355 #define	WM_F_EEPROM_HANDSHAKE	0x02	/* requires EEPROM handshake */
    356 #define	WM_F_EEPROM_SPI		0x04	/* EEPROM is SPI */
    357 #define	WM_F_IOH_VALID		0x10	/* I/O handle is valid */
    358 #define	WM_F_BUS64		0x20	/* bus is 64-bit */
    359 #define	WM_F_PCIX		0x40	/* bus is PCI-X */
    360 #define	WM_F_CSA		0x80	/* bus is CSA */
    361 
    362 #ifdef WM_EVENT_COUNTERS
    363 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
    364 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
    365 #else
    366 #define	WM_EVCNT_INCR(ev)	/* nothing */
    367 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
    368 #endif
    369 
    370 #define	CSR_READ(sc, reg)						\
    371 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    372 #define	CSR_WRITE(sc, reg, val)						\
    373 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    374 #define	CSR_WRITE_FLUSH(sc)						\
    375 	(void) CSR_READ((sc), WMREG_STATUS)
    376 
    377 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
    378 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
    379 
    380 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
    381 #define	WM_CDTXADDR_HI(sc, x)						\
    382 	(sizeof(bus_addr_t) == 8 ?					\
    383 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
    384 
    385 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
    386 #define	WM_CDRXADDR_HI(sc, x)						\
    387 	(sizeof(bus_addr_t) == 8 ?					\
    388 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
    389 
    390 #define	WM_CDTXSYNC(sc, x, n, ops)					\
    391 do {									\
    392 	int __x, __n;							\
    393 									\
    394 	__x = (x);							\
    395 	__n = (n);							\
    396 									\
    397 	/* If it will wrap around, sync to the end of the ring. */	\
    398 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
    399 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    400 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
    401 		    (WM_NTXDESC(sc) - __x), (ops));			\
    402 		__n -= (WM_NTXDESC(sc) - __x);				\
    403 		__x = 0;						\
    404 	}								\
    405 									\
    406 	/* Now sync whatever is left. */				\
    407 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    408 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
    409 } while (/*CONSTCOND*/0)
    410 
    411 #define	WM_CDRXSYNC(sc, x, ops)						\
    412 do {									\
    413 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    414 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
    415 } while (/*CONSTCOND*/0)
    416 
    417 #define	WM_INIT_RXDESC(sc, x)						\
    418 do {									\
    419 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    420 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
    421 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    422 									\
    423 	/*								\
    424 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    425 	 * so that the payload after the Ethernet header is aligned	\
    426 	 * to a 4-byte boundary.					\
    427 	 *								\
    428 	 * XXX BRAINDAMAGE ALERT!					\
    429 	 * The stupid chip uses the same size for every buffer, which	\
    430 	 * is set in the Receive Control register.  We are using the 2K	\
    431 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    432 	 * reason, we can't "scoot" packets longer than the standard	\
    433 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    434 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    435 	 * the upper layer copy the headers.				\
    436 	 */								\
    437 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    438 									\
    439 	wm_set_dma_addr(&__rxd->wrx_addr,				\
    440 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
    441 	__rxd->wrx_len = 0;						\
    442 	__rxd->wrx_cksum = 0;						\
    443 	__rxd->wrx_status = 0;						\
    444 	__rxd->wrx_errors = 0;						\
    445 	__rxd->wrx_special = 0;						\
    446 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    447 									\
    448 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
    449 } while (/*CONSTCOND*/0)
    450 
    451 static void	wm_start(struct ifnet *);
    452 static void	wm_watchdog(struct ifnet *);
    453 static int	wm_ioctl(struct ifnet *, u_long, caddr_t);
    454 static int	wm_init(struct ifnet *);
    455 static void	wm_stop(struct ifnet *, int);
    456 
    457 static void	wm_shutdown(void *);
    458 
    459 static void	wm_reset(struct wm_softc *);
    460 static void	wm_rxdrain(struct wm_softc *);
    461 static int	wm_add_rxbuf(struct wm_softc *, int);
    462 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
    463 static void	wm_tick(void *);
    464 
    465 static void	wm_set_filter(struct wm_softc *);
    466 
    467 static int	wm_intr(void *);
    468 static void	wm_txintr(struct wm_softc *);
    469 static void	wm_rxintr(struct wm_softc *);
    470 static void	wm_linkintr(struct wm_softc *, uint32_t);
    471 
    472 static void	wm_tbi_mediainit(struct wm_softc *);
    473 static int	wm_tbi_mediachange(struct ifnet *);
    474 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
    475 
    476 static void	wm_tbi_set_linkled(struct wm_softc *);
    477 static void	wm_tbi_check_link(struct wm_softc *);
    478 
    479 static void	wm_gmii_reset(struct wm_softc *);
    480 
    481 static int	wm_gmii_i82543_readreg(struct device *, int, int);
    482 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
    483 
    484 static int	wm_gmii_i82544_readreg(struct device *, int, int);
    485 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
    486 
    487 static void	wm_gmii_statchg(struct device *);
    488 
    489 static void	wm_gmii_mediainit(struct wm_softc *);
    490 static int	wm_gmii_mediachange(struct ifnet *);
    491 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
    492 
    493 static int	wm_match(struct device *, struct cfdata *, void *);
    494 static void	wm_attach(struct device *, struct device *, void *);
    495 
    496 CFATTACH_DECL(wm, sizeof(struct wm_softc),
    497     wm_match, wm_attach, NULL, NULL);
    498 
    499 static void	wm_82547_txfifo_stall(void *);
    500 
    501 /*
    502  * Devices supported by this driver.
    503  */
    504 static const struct wm_product {
    505 	pci_vendor_id_t		wmp_vendor;
    506 	pci_product_id_t	wmp_product;
    507 	const char		*wmp_name;
    508 	wm_chip_type		wmp_type;
    509 	int			wmp_flags;
    510 #define	WMP_F_1000X		0x01
    511 #define	WMP_F_1000T		0x02
    512 } wm_products[] = {
    513 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
    514 	  "Intel i82542 1000BASE-X Ethernet",
    515 	  WM_T_82542_2_1,	WMP_F_1000X },
    516 
    517 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
    518 	  "Intel i82543GC 1000BASE-X Ethernet",
    519 	  WM_T_82543,		WMP_F_1000X },
    520 
    521 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
    522 	  "Intel i82543GC 1000BASE-T Ethernet",
    523 	  WM_T_82543,		WMP_F_1000T },
    524 
    525 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
    526 	  "Intel i82544EI 1000BASE-T Ethernet",
    527 	  WM_T_82544,		WMP_F_1000T },
    528 
    529 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
    530 	  "Intel i82544EI 1000BASE-X Ethernet",
    531 	  WM_T_82544,		WMP_F_1000X },
    532 
    533 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
    534 	  "Intel i82544GC 1000BASE-T Ethernet",
    535 	  WM_T_82544,		WMP_F_1000T },
    536 
    537 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
    538 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
    539 	  WM_T_82544,		WMP_F_1000T },
    540 
    541 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
    542 	  "Intel i82540EM 1000BASE-T Ethernet",
    543 	  WM_T_82540,		WMP_F_1000T },
    544 
    545 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
    546 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
    547 	  WM_T_82540,		WMP_F_1000T },
    548 
    549 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
    550 	  "Intel i82540EP 1000BASE-T Ethernet",
    551 	  WM_T_82540,		WMP_F_1000T },
    552 
    553 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
    554 	  "Intel i82540EP 1000BASE-T Ethernet",
    555 	  WM_T_82540,		WMP_F_1000T },
    556 
    557 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
    558 	  "Intel i82540EP 1000BASE-T Ethernet",
    559 	  WM_T_82540,		WMP_F_1000T },
    560 
    561 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
    562 	  "Intel i82545EM 1000BASE-T Ethernet",
    563 	  WM_T_82545,		WMP_F_1000T },
    564 
    565 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
    566 	  "Intel i82545GM 1000BASE-T Ethernet",
    567 	  WM_T_82545_3,		WMP_F_1000T },
    568 
    569 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
    570 	  "Intel i82545GM 1000BASE-X Ethernet",
    571 	  WM_T_82545_3,		WMP_F_1000X },
    572 #if 0
    573 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
    574 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
    575 	  WM_T_82545_3,		WMP_F_SERDES },
    576 #endif
    577 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
    578 	  "Intel i82546EB 1000BASE-T Ethernet",
    579 	  WM_T_82546,		WMP_F_1000T },
    580 
    581 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
    582 	  "Intel i82546EB 1000BASE-T Ethernet",
    583 	  WM_T_82546,		WMP_F_1000T },
    584 
    585 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
    586 	  "Intel i82545EM 1000BASE-X Ethernet",
    587 	  WM_T_82545,		WMP_F_1000X },
    588 
    589 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
    590 	  "Intel i82546EB 1000BASE-X Ethernet",
    591 	  WM_T_82546,		WMP_F_1000X },
    592 
    593 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
    594 	  "Intel i82546GB 1000BASE-T Ethernet",
    595 	  WM_T_82546_3,		WMP_F_1000T },
    596 
    597 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
    598 	  "Intel i82546GB 1000BASE-X Ethernet",
    599 	  WM_T_82546_3,		WMP_F_1000X },
    600 #if 0
    601 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
    602 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
    603 	  WM_T_82546_3,		WMP_F_SERDES },
    604 #endif
    605 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
    606 	  "Intel i82541EI 1000BASE-T Ethernet",
    607 	  WM_T_82541,		WMP_F_1000T },
    608 
    609 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
    610 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
    611 	  WM_T_82541,		WMP_F_1000T },
    612 
    613 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
    614 	  "Intel i82541ER 1000BASE-T Ethernet",
    615 	  WM_T_82541_2,		WMP_F_1000T },
    616 
    617 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
    618 	  "Intel i82541GI 1000BASE-T Ethernet",
    619 	  WM_T_82541_2,		WMP_F_1000T },
    620 
    621 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
    622 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
    623 	  WM_T_82541_2,		WMP_F_1000T },
    624 
    625 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
    626 	  "Intel i82547EI 1000BASE-T Ethernet",
    627 	  WM_T_82547,		WMP_F_1000T },
    628 
    629 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
    630 	  "Intel i82547GI 1000BASE-T Ethernet",
    631 	  WM_T_82547_2,		WMP_F_1000T },
    632 	{ 0,			0,
    633 	  NULL,
    634 	  0,			0 },
    635 };
    636 
    637 #ifdef WM_EVENT_COUNTERS
    638 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
    639 #endif /* WM_EVENT_COUNTERS */
    640 
    641 #if 0 /* Not currently used */
    642 static __inline uint32_t
    643 wm_io_read(struct wm_softc *sc, int reg)
    644 {
    645 
    646 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    647 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
    648 }
    649 #endif
    650 
    651 static __inline void
    652 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
    653 {
    654 
    655 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    656 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
    657 }
    658 
    659 static __inline void
    660 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
    661 {
    662 	wa->wa_low = htole32(v & 0xffffffffU);
    663 	if (sizeof(bus_addr_t) == 8)
    664 		wa->wa_high = htole32((uint64_t) v >> 32);
    665 	else
    666 		wa->wa_high = 0;
    667 }
    668 
    669 static const struct wm_product *
    670 wm_lookup(const struct pci_attach_args *pa)
    671 {
    672 	const struct wm_product *wmp;
    673 
    674 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
    675 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
    676 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
    677 			return (wmp);
    678 	}
    679 	return (NULL);
    680 }
    681 
    682 static int
    683 wm_match(struct device *parent, struct cfdata *cf, void *aux)
    684 {
    685 	struct pci_attach_args *pa = aux;
    686 
    687 	if (wm_lookup(pa) != NULL)
    688 		return (1);
    689 
    690 	return (0);
    691 }
    692 
    693 static void
    694 wm_attach(struct device *parent, struct device *self, void *aux)
    695 {
    696 	struct wm_softc *sc = (void *) self;
    697 	struct pci_attach_args *pa = aux;
    698 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    699 	pci_chipset_tag_t pc = pa->pa_pc;
    700 	pci_intr_handle_t ih;
    701 	size_t cdata_size;
    702 	const char *intrstr = NULL;
    703 	const char *eetype;
    704 	bus_space_tag_t memt;
    705 	bus_space_handle_t memh;
    706 	bus_dma_segment_t seg;
    707 	int memh_valid;
    708 	int i, rseg, error;
    709 	const struct wm_product *wmp;
    710 	uint8_t enaddr[ETHER_ADDR_LEN];
    711 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
    712 	pcireg_t preg, memtype;
    713 	uint32_t reg;
    714 	int pmreg;
    715 
    716 	callout_init(&sc->sc_tick_ch);
    717 
    718 	wmp = wm_lookup(pa);
    719 	if (wmp == NULL) {
    720 		printf("\n");
    721 		panic("wm_attach: impossible");
    722 	}
    723 
    724 	if (pci_dma64_available(pa))
    725 		sc->sc_dmat = pa->pa_dmat64;
    726 	else
    727 		sc->sc_dmat = pa->pa_dmat;
    728 
    729 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    730 	aprint_naive(": Ethernet controller\n");
    731 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
    732 
    733 	sc->sc_type = wmp->wmp_type;
    734 	if (sc->sc_type < WM_T_82543) {
    735 		if (preg < 2) {
    736 			aprint_error("%s: i82542 must be at least rev. 2\n",
    737 			    sc->sc_dev.dv_xname);
    738 			return;
    739 		}
    740 		if (preg < 3)
    741 			sc->sc_type = WM_T_82542_2_0;
    742 	}
    743 
    744 	/*
    745 	 * Map the device.  All devices support memory-mapped acccess,
    746 	 * and it is really required for normal operation.
    747 	 */
    748 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
    749 	switch (memtype) {
    750 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    751 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    752 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
    753 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    754 		break;
    755 	default:
    756 		memh_valid = 0;
    757 	}
    758 
    759 	if (memh_valid) {
    760 		sc->sc_st = memt;
    761 		sc->sc_sh = memh;
    762 	} else {
    763 		aprint_error("%s: unable to map device registers\n",
    764 		    sc->sc_dev.dv_xname);
    765 		return;
    766 	}
    767 
    768 	/*
    769 	 * In addition, i82544 and later support I/O mapped indirect
    770 	 * register access.  It is not desirable (nor supported in
    771 	 * this driver) to use it for normal operation, though it is
    772 	 * required to work around bugs in some chip versions.
    773 	 */
    774 	if (sc->sc_type >= WM_T_82544) {
    775 		/* First we have to find the I/O BAR. */
    776 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
    777 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
    778 			    PCI_MAPREG_TYPE_IO)
    779 				break;
    780 		}
    781 		if (i == PCI_MAPREG_END)
    782 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
    783 			    sc->sc_dev.dv_xname);
    784 		else {
    785 			/*
    786 			 * The i8254x doesn't apparently respond when the
    787 			 * I/O BAR is 0, which looks somewhat like it's not
    788 			 * been configured.
    789 			 */
    790 			preg = pci_conf_read(pc, pa->pa_tag, i);
    791 			if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
    792 				aprint_error("%s: WARNING: I/O BAR at zero.\n",
    793 				    sc->sc_dev.dv_xname);
    794 			} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
    795 					0, &sc->sc_iot, &sc->sc_ioh,
    796 					NULL, NULL) == 0) {
    797 				sc->sc_flags |= WM_F_IOH_VALID;
    798 			} else {
    799 				aprint_error("%s: WARNING: unable to map "
    800 				    "I/O space\n", sc->sc_dev.dv_xname);
    801 			}
    802 		}
    803 
    804 	}
    805 
    806 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
    807 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    808 	preg |= PCI_COMMAND_MASTER_ENABLE;
    809 	if (sc->sc_type < WM_T_82542_2_1)
    810 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
    811 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    812 
    813 	/* Get it out of power save mode, if needed. */
    814 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    815 		preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    816 		    PCI_PMCSR_STATE_MASK;
    817 		if (preg == PCI_PMCSR_STATE_D3) {
    818 			/*
    819 			 * The card has lost all configuration data in
    820 			 * this state, so punt.
    821 			 */
    822 			aprint_error("%s: unable to wake from power state D3\n",
    823 			    sc->sc_dev.dv_xname);
    824 			return;
    825 		}
    826 		if (preg != PCI_PMCSR_STATE_D0) {
    827 			aprint_normal("%s: waking up from power state D%d\n",
    828 			    sc->sc_dev.dv_xname, preg);
    829 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    830 			    PCI_PMCSR_STATE_D0);
    831 		}
    832 	}
    833 
    834 	/*
    835 	 * Map and establish our interrupt.
    836 	 */
    837 	if (pci_intr_map(pa, &ih)) {
    838 		aprint_error("%s: unable to map interrupt\n",
    839 		    sc->sc_dev.dv_xname);
    840 		return;
    841 	}
    842 	intrstr = pci_intr_string(pc, ih);
    843 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
    844 	if (sc->sc_ih == NULL) {
    845 		aprint_error("%s: unable to establish interrupt",
    846 		    sc->sc_dev.dv_xname);
    847 		if (intrstr != NULL)
    848 			aprint_normal(" at %s", intrstr);
    849 		aprint_normal("\n");
    850 		return;
    851 	}
    852 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    853 
    854 	/*
    855 	 * Determine a few things about the bus we're connected to.
    856 	 */
    857 	if (sc->sc_type < WM_T_82543) {
    858 		/* We don't really know the bus characteristics here. */
    859 		sc->sc_bus_speed = 33;
    860 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
    861 		/*
    862 		 * CSA (Communication Streaming Architecture) is about as fast
    863 		 * a 32-bit 66MHz PCI Bus.
    864 		 */
    865 		sc->sc_flags |= WM_F_CSA;
    866 		sc->sc_bus_speed = 66;
    867 		aprint_verbose("%s: Communication Streaming Architecture\n",
    868 		    sc->sc_dev.dv_xname);
    869 		if (sc->sc_type == WM_T_82547) {
    870 			callout_init(&sc->sc_txfifo_ch);
    871 			callout_setfunc(&sc->sc_txfifo_ch,
    872 					wm_82547_txfifo_stall, sc);
    873 			aprint_verbose("%s: using 82547 Tx FIFO stall "
    874 				       "work-around\n", sc->sc_dev.dv_xname);
    875 		}
    876 	} else {
    877 		reg = CSR_READ(sc, WMREG_STATUS);
    878 		if (reg & STATUS_BUS64)
    879 			sc->sc_flags |= WM_F_BUS64;
    880 		if (sc->sc_type >= WM_T_82544 &&
    881 		    (reg & STATUS_PCIX_MODE) != 0) {
    882 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
    883 
    884 			sc->sc_flags |= WM_F_PCIX;
    885 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    886 					       PCI_CAP_PCIX,
    887 					       &sc->sc_pcix_offset, NULL) == 0)
    888 				aprint_error("%s: unable to find PCIX "
    889 				    "capability\n", sc->sc_dev.dv_xname);
    890 			else if (sc->sc_type != WM_T_82545_3 &&
    891 				 sc->sc_type != WM_T_82546_3) {
    892 				/*
    893 				 * Work around a problem caused by the BIOS
    894 				 * setting the max memory read byte count
    895 				 * incorrectly.
    896 				 */
    897 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
    898 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
    899 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
    900 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
    901 
    902 				bytecnt =
    903 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
    904 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
    905 				maxb =
    906 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
    907 				    PCI_PCIX_STATUS_MAXB_SHIFT;
    908 				if (bytecnt > maxb) {
    909 					aprint_verbose("%s: resetting PCI-X "
    910 					    "MMRBC: %d -> %d\n",
    911 					    sc->sc_dev.dv_xname,
    912 					    512 << bytecnt, 512 << maxb);
    913 					pcix_cmd = (pcix_cmd &
    914 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
    915 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
    916 					pci_conf_write(pa->pa_pc, pa->pa_tag,
    917 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
    918 					    pcix_cmd);
    919 				}
    920 			}
    921 		}
    922 		/*
    923 		 * The quad port adapter is special; it has a PCIX-PCIX
    924 		 * bridge on the board, and can run the secondary bus at
    925 		 * a higher speed.
    926 		 */
    927 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
    928 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
    929 								      : 66;
    930 		} else if (sc->sc_flags & WM_F_PCIX) {
    931 			switch (reg & STATUS_PCIXSPD_MASK) {
    932 			case STATUS_PCIXSPD_50_66:
    933 				sc->sc_bus_speed = 66;
    934 				break;
    935 			case STATUS_PCIXSPD_66_100:
    936 				sc->sc_bus_speed = 100;
    937 				break;
    938 			case STATUS_PCIXSPD_100_133:
    939 				sc->sc_bus_speed = 133;
    940 				break;
    941 			default:
    942 				aprint_error(
    943 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
    944 				    sc->sc_dev.dv_xname,
    945 				    reg & STATUS_PCIXSPD_MASK);
    946 				sc->sc_bus_speed = 66;
    947 			}
    948 		} else
    949 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
    950 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
    951 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
    952 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
    953 	}
    954 
    955 	/*
    956 	 * Allocate the control data structures, and create and load the
    957 	 * DMA map for it.
    958 	 *
    959 	 * NOTE: All Tx descriptors must be in the same 4G segment of
    960 	 * memory.  So must Rx descriptors.  We simplify by allocating
    961 	 * both sets within the same 4G segment.
    962 	 */
    963 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
    964 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
    965 	cdata_size = sc->sc_type < WM_T_82544 ?
    966 	    sizeof(struct wm_control_data_82542) :
    967 	    sizeof(struct wm_control_data_82544);
    968 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
    969 				      (bus_size_t) 0x100000000ULL,
    970 				      &seg, 1, &rseg, 0)) != 0) {
    971 		aprint_error(
    972 		    "%s: unable to allocate control data, error = %d\n",
    973 		    sc->sc_dev.dv_xname, error);
    974 		goto fail_0;
    975 	}
    976 
    977 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
    978 				    (caddr_t *)&sc->sc_control_data, 0)) != 0) {
    979 		aprint_error("%s: unable to map control data, error = %d\n",
    980 		    sc->sc_dev.dv_xname, error);
    981 		goto fail_1;
    982 	}
    983 
    984 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
    985 				       0, 0, &sc->sc_cddmamap)) != 0) {
    986 		aprint_error("%s: unable to create control data DMA map, "
    987 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    988 		goto fail_2;
    989 	}
    990 
    991 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    992 				     sc->sc_control_data, cdata_size, NULL,
    993 				     0)) != 0) {
    994 		aprint_error(
    995 		    "%s: unable to load control data DMA map, error = %d\n",
    996 		    sc->sc_dev.dv_xname, error);
    997 		goto fail_3;
    998 	}
    999 
   1000 
   1001 	/*
   1002 	 * Create the transmit buffer DMA maps.
   1003 	 */
   1004 	WM_TXQUEUELEN(sc) =
   1005 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
   1006 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
   1007 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1008 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
   1009 					       WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
   1010 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1011 			aprint_error("%s: unable to create Tx DMA map %d, "
   1012 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1013 			goto fail_4;
   1014 		}
   1015 	}
   1016 
   1017 	/*
   1018 	 * Create the receive buffer DMA maps.
   1019 	 */
   1020 	for (i = 0; i < WM_NRXDESC; i++) {
   1021 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1022 					       MCLBYTES, 0, 0,
   1023 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1024 			aprint_error("%s: unable to create Rx DMA map %d, "
   1025 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1026 			goto fail_5;
   1027 		}
   1028 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1029 	}
   1030 
   1031 	/*
   1032 	 * Reset the chip to a known state.
   1033 	 */
   1034 	wm_reset(sc);
   1035 
   1036 	/*
   1037 	 * Get some information about the EEPROM.
   1038 	 */
   1039 	if (sc->sc_type >= WM_T_82540)
   1040 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
   1041 	if (sc->sc_type <= WM_T_82544)
   1042 		sc->sc_ee_addrbits = 6;
   1043 	else if (sc->sc_type <= WM_T_82546_3) {
   1044 		reg = CSR_READ(sc, WMREG_EECD);
   1045 		if (reg & EECD_EE_SIZE)
   1046 			sc->sc_ee_addrbits = 8;
   1047 		else
   1048 			sc->sc_ee_addrbits = 6;
   1049 	} else if (sc->sc_type <= WM_T_82547_2) {
   1050 		reg = CSR_READ(sc, WMREG_EECD);
   1051 		if (reg & EECD_EE_TYPE) {
   1052 			sc->sc_flags |= WM_F_EEPROM_SPI;
   1053 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1054 		} else
   1055 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
   1056 	} else {
   1057 		/* Assume everything else is SPI. */
   1058 		reg = CSR_READ(sc, WMREG_EECD);
   1059 		sc->sc_flags |= WM_F_EEPROM_SPI;
   1060 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1061 	}
   1062 	if (sc->sc_flags & WM_F_EEPROM_SPI)
   1063 		eetype = "SPI";
   1064 	else
   1065 		eetype = "MicroWire";
   1066 	aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
   1067 	    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
   1068 	    sc->sc_ee_addrbits, eetype);
   1069 
   1070 	/*
   1071 	 * Read the Ethernet address from the EEPROM.
   1072 	 */
   1073 	if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
   1074 	    sizeof(myea) / sizeof(myea[0]), myea)) {
   1075 		aprint_error("%s: unable to read Ethernet address\n",
   1076 		    sc->sc_dev.dv_xname);
   1077 		return;
   1078 	}
   1079 	enaddr[0] = myea[0] & 0xff;
   1080 	enaddr[1] = myea[0] >> 8;
   1081 	enaddr[2] = myea[1] & 0xff;
   1082 	enaddr[3] = myea[1] >> 8;
   1083 	enaddr[4] = myea[2] & 0xff;
   1084 	enaddr[5] = myea[2] >> 8;
   1085 
   1086 	/*
   1087 	 * Toggle the LSB of the MAC address on the second port
   1088 	 * of the i82546.
   1089 	 */
   1090 	if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
   1091 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
   1092 			enaddr[5] ^= 1;
   1093 	}
   1094 
   1095 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
   1096 	    ether_sprintf(enaddr));
   1097 
   1098 	/*
   1099 	 * Read the config info from the EEPROM, and set up various
   1100 	 * bits in the control registers based on their contents.
   1101 	 */
   1102 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
   1103 		aprint_error("%s: unable to read CFG1 from EEPROM\n",
   1104 		    sc->sc_dev.dv_xname);
   1105 		return;
   1106 	}
   1107 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
   1108 		aprint_error("%s: unable to read CFG2 from EEPROM\n",
   1109 		    sc->sc_dev.dv_xname);
   1110 		return;
   1111 	}
   1112 	if (sc->sc_type >= WM_T_82544) {
   1113 		if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
   1114 			aprint_error("%s: unable to read SWDPIN from EEPROM\n",
   1115 			    sc->sc_dev.dv_xname);
   1116 			return;
   1117 		}
   1118 	}
   1119 
   1120 	if (cfg1 & EEPROM_CFG1_ILOS)
   1121 		sc->sc_ctrl |= CTRL_ILOS;
   1122 	if (sc->sc_type >= WM_T_82544) {
   1123 		sc->sc_ctrl |=
   1124 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
   1125 		    CTRL_SWDPIO_SHIFT;
   1126 		sc->sc_ctrl |=
   1127 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
   1128 		    CTRL_SWDPINS_SHIFT;
   1129 	} else {
   1130 		sc->sc_ctrl |=
   1131 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
   1132 		    CTRL_SWDPIO_SHIFT;
   1133 	}
   1134 
   1135 #if 0
   1136 	if (sc->sc_type >= WM_T_82544) {
   1137 		if (cfg1 & EEPROM_CFG1_IPS0)
   1138 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
   1139 		if (cfg1 & EEPROM_CFG1_IPS1)
   1140 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
   1141 		sc->sc_ctrl_ext |=
   1142 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
   1143 		    CTRL_EXT_SWDPIO_SHIFT;
   1144 		sc->sc_ctrl_ext |=
   1145 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
   1146 		    CTRL_EXT_SWDPINS_SHIFT;
   1147 	} else {
   1148 		sc->sc_ctrl_ext |=
   1149 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
   1150 		    CTRL_EXT_SWDPIO_SHIFT;
   1151 	}
   1152 #endif
   1153 
   1154 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   1155 #if 0
   1156 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   1157 #endif
   1158 
   1159 	/*
   1160 	 * Set up some register offsets that are different between
   1161 	 * the i82542 and the i82543 and later chips.
   1162 	 */
   1163 	if (sc->sc_type < WM_T_82543) {
   1164 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
   1165 		sc->sc_tdt_reg = WMREG_OLD_TDT;
   1166 	} else {
   1167 		sc->sc_rdt_reg = WMREG_RDT;
   1168 		sc->sc_tdt_reg = WMREG_TDT;
   1169 	}
   1170 
   1171 	/*
   1172 	 * Determine if we're TBI or GMII mode, and initialize the
   1173 	 * media structures accordingly.
   1174 	 */
   1175 	if (sc->sc_type < WM_T_82543 ||
   1176 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
   1177 		if (wmp->wmp_flags & WMP_F_1000T)
   1178 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
   1179 			    "product!\n", sc->sc_dev.dv_xname);
   1180 		wm_tbi_mediainit(sc);
   1181 	} else {
   1182 		if (wmp->wmp_flags & WMP_F_1000X)
   1183 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
   1184 			    "product!\n", sc->sc_dev.dv_xname);
   1185 		wm_gmii_mediainit(sc);
   1186 	}
   1187 
   1188 	ifp = &sc->sc_ethercom.ec_if;
   1189 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
   1190 	ifp->if_softc = sc;
   1191 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1192 	ifp->if_ioctl = wm_ioctl;
   1193 	ifp->if_start = wm_start;
   1194 	ifp->if_watchdog = wm_watchdog;
   1195 	ifp->if_init = wm_init;
   1196 	ifp->if_stop = wm_stop;
   1197 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
   1198 	IFQ_SET_READY(&ifp->if_snd);
   1199 
   1200 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1201 
   1202 	/*
   1203 	 * If we're a i82543 or greater, we can support VLANs.
   1204 	 */
   1205 	if (sc->sc_type >= WM_T_82543)
   1206 		sc->sc_ethercom.ec_capabilities |=
   1207 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
   1208 
   1209 	/*
   1210 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
   1211 	 * on i82543 and later.
   1212 	 */
   1213 	if (sc->sc_type >= WM_T_82543)
   1214 		ifp->if_capabilities |=
   1215 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
   1216 
   1217 	/*
   1218 	 * Attach the interface.
   1219 	 */
   1220 	if_attach(ifp);
   1221 	ether_ifattach(ifp, enaddr);
   1222 #if NRND > 0
   1223 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1224 	    RND_TYPE_NET, 0);
   1225 #endif
   1226 
   1227 #ifdef WM_EVENT_COUNTERS
   1228 	/* Attach event counters. */
   1229 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1230 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1231 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1232 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1233 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
   1234 	    NULL, sc->sc_dev.dv_xname, "txfifo_stall");
   1235 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
   1236 	    NULL, sc->sc_dev.dv_xname, "txdw");
   1237 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
   1238 	    NULL, sc->sc_dev.dv_xname, "txqe");
   1239 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1240 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1241 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
   1242 	    NULL, sc->sc_dev.dv_xname, "linkintr");
   1243 
   1244 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1245 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1246 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
   1247 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
   1248 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1249 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1250 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
   1251 	    NULL, sc->sc_dev.dv_xname, "txtusum");
   1252 
   1253 	for (i = 0; i < WM_NTXSEGS; i++) {
   1254 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
   1255 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
   1256 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
   1257 	}
   1258 
   1259 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
   1260 	    NULL, sc->sc_dev.dv_xname, "txdrop");
   1261 
   1262 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
   1263 	    NULL, sc->sc_dev.dv_xname, "tu");
   1264 
   1265 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
   1266 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
   1267 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
   1268 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
   1269 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
   1270 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
   1271 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
   1272 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
   1273 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
   1274 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
   1275 #endif /* WM_EVENT_COUNTERS */
   1276 
   1277 	/*
   1278 	 * Make sure the interface is shutdown during reboot.
   1279 	 */
   1280 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
   1281 	if (sc->sc_sdhook == NULL)
   1282 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
   1283 		    sc->sc_dev.dv_xname);
   1284 	return;
   1285 
   1286 	/*
   1287 	 * Free any resources we've allocated during the failed attach
   1288 	 * attempt.  Do this in reverse order and fall through.
   1289 	 */
   1290  fail_5:
   1291 	for (i = 0; i < WM_NRXDESC; i++) {
   1292 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1293 			bus_dmamap_destroy(sc->sc_dmat,
   1294 			    sc->sc_rxsoft[i].rxs_dmamap);
   1295 	}
   1296  fail_4:
   1297 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1298 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1299 			bus_dmamap_destroy(sc->sc_dmat,
   1300 			    sc->sc_txsoft[i].txs_dmamap);
   1301 	}
   1302 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1303  fail_3:
   1304 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1305  fail_2:
   1306 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1307 	    cdata_size);
   1308  fail_1:
   1309 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1310  fail_0:
   1311 	return;
   1312 }
   1313 
   1314 /*
   1315  * wm_shutdown:
   1316  *
   1317  *	Make sure the interface is stopped at reboot time.
   1318  */
   1319 static void
   1320 wm_shutdown(void *arg)
   1321 {
   1322 	struct wm_softc *sc = arg;
   1323 
   1324 	wm_stop(&sc->sc_ethercom.ec_if, 1);
   1325 }
   1326 
   1327 /*
   1328  * wm_tx_offload:
   1329  *
   1330  *	Set up TCP/IP checksumming parameters for the
   1331  *	specified packet.
   1332  */
   1333 static int
   1334 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
   1335     uint8_t *fieldsp)
   1336 {
   1337 	struct mbuf *m0 = txs->txs_mbuf;
   1338 	struct livengood_tcpip_ctxdesc *t;
   1339 	uint32_t ipcs, tucs, cmd, cmdlen, seg;
   1340 	struct ether_header *eh;
   1341 	int offset, iphl;
   1342 	uint8_t fields;
   1343 
   1344 	/*
   1345 	 * XXX It would be nice if the mbuf pkthdr had offset
   1346 	 * fields for the protocol headers.
   1347 	 */
   1348 
   1349 	eh = mtod(m0, struct ether_header *);
   1350 	switch (htons(eh->ether_type)) {
   1351 	case ETHERTYPE_IP:
   1352 		offset = ETHER_HDR_LEN;
   1353 		break;
   1354 
   1355 	case ETHERTYPE_VLAN:
   1356 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1357 		break;
   1358 
   1359 	default:
   1360 		/*
   1361 		 * Don't support this protocol or encapsulation.
   1362 		 */
   1363 		*fieldsp = 0;
   1364 		*cmdp = 0;
   1365 		return (0);
   1366 	}
   1367 
   1368 	iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1369 
   1370 	cmd = WTX_CMD_DEXT | WTX_DTYP_D;
   1371 	cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
   1372 	seg = 0;
   1373 	fields = 0;
   1374 
   1375 	/*
   1376 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1377 	 * offload feature, if we load the context descriptor, we
   1378 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1379 	 */
   1380 
   1381 	ipcs = WTX_TCPIP_IPCSS(offset) |
   1382 	    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1383 	    WTX_TCPIP_IPCSE(offset + iphl - 1);
   1384 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1385 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
   1386 		fields |= WTX_IXSM;
   1387 	}
   1388 
   1389 	offset += iphl;
   1390 
   1391 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1392 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
   1393 		fields |= WTX_TXSM;
   1394 		tucs = WTX_TCPIP_TUCSS(offset) |
   1395 		   WTX_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
   1396 		   WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1397 	} else {
   1398 		/* Just initialize it to a valid TCP context. */
   1399 		tucs = WTX_TCPIP_TUCSS(offset) |
   1400 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1401 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1402 	}
   1403 
   1404 	/* Fill in the context descriptor. */
   1405 	t = (struct livengood_tcpip_ctxdesc *)
   1406 	    &sc->sc_txdescs[sc->sc_txnext];
   1407 	t->tcpip_ipcs = htole32(ipcs);
   1408 	t->tcpip_tucs = htole32(tucs);
   1409 	t->tcpip_cmdlen = htole32(cmdlen);
   1410 	t->tcpip_seg = htole32(seg);
   1411 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1412 
   1413 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
   1414 	txs->txs_ndesc++;
   1415 
   1416 	*cmdp = cmd;
   1417 	*fieldsp = fields;
   1418 
   1419 	return (0);
   1420 }
   1421 
   1422 static void
   1423 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
   1424 {
   1425 	struct mbuf *m;
   1426 	int i;
   1427 
   1428 	log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
   1429 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
   1430 		log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
   1431 		    "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
   1432 		    m->m_data, m->m_len, m->m_flags);
   1433 	log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
   1434 	    i, i == 1 ? "" : "s");
   1435 }
   1436 
   1437 /*
   1438  * wm_82547_txfifo_stall:
   1439  *
   1440  *	Callout used to wait for the 82547 Tx FIFO to drain,
   1441  *	reset the FIFO pointers, and restart packet transmission.
   1442  */
   1443 static void
   1444 wm_82547_txfifo_stall(void *arg)
   1445 {
   1446 	struct wm_softc *sc = arg;
   1447 	int s;
   1448 
   1449 	s = splnet();
   1450 
   1451 	if (sc->sc_txfifo_stall) {
   1452 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
   1453 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
   1454 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
   1455 			/*
   1456 			 * Packets have drained.  Stop transmitter, reset
   1457 			 * FIFO pointers, restart transmitter, and kick
   1458 			 * the packet queue.
   1459 			 */
   1460 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
   1461 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
   1462 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
   1463 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
   1464 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
   1465 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
   1466 			CSR_WRITE(sc, WMREG_TCTL, tctl);
   1467 			CSR_WRITE_FLUSH(sc);
   1468 
   1469 			sc->sc_txfifo_head = 0;
   1470 			sc->sc_txfifo_stall = 0;
   1471 			wm_start(&sc->sc_ethercom.ec_if);
   1472 		} else {
   1473 			/*
   1474 			 * Still waiting for packets to drain; try again in
   1475 			 * another tick.
   1476 			 */
   1477 			callout_schedule(&sc->sc_txfifo_ch, 1);
   1478 		}
   1479 	}
   1480 
   1481 	splx(s);
   1482 }
   1483 
   1484 /*
   1485  * wm_82547_txfifo_bugchk:
   1486  *
   1487  *	Check for bug condition in the 82547 Tx FIFO.  We need to
   1488  *	prevent enqueueing a packet that would wrap around the end
   1489  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
   1490  *
   1491  *	We do this by checking the amount of space before the end
   1492  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
   1493  *	the Tx FIFO, wait for all remaining packets to drain, reset
   1494  *	the internal FIFO pointers to the beginning, and restart
   1495  *	transmission on the interface.
   1496  */
   1497 #define	WM_FIFO_HDR		0x10
   1498 #define	WM_82547_PAD_LEN	0x3e0
   1499 static int
   1500 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
   1501 {
   1502 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
   1503 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
   1504 
   1505 	/* Just return if already stalled. */
   1506 	if (sc->sc_txfifo_stall)
   1507 		return (1);
   1508 
   1509 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1510 		/* Stall only occurs in half-duplex mode. */
   1511 		goto send_packet;
   1512 	}
   1513 
   1514 	if (len >= WM_82547_PAD_LEN + space) {
   1515 		sc->sc_txfifo_stall = 1;
   1516 		callout_schedule(&sc->sc_txfifo_ch, 1);
   1517 		return (1);
   1518 	}
   1519 
   1520  send_packet:
   1521 	sc->sc_txfifo_head += len;
   1522 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
   1523 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
   1524 
   1525 	return (0);
   1526 }
   1527 
   1528 /*
   1529  * wm_start:		[ifnet interface function]
   1530  *
   1531  *	Start packet transmission on the interface.
   1532  */
   1533 static void
   1534 wm_start(struct ifnet *ifp)
   1535 {
   1536 	struct wm_softc *sc = ifp->if_softc;
   1537 	struct mbuf *m0;
   1538 #if 0 /* XXXJRT */
   1539 	struct m_tag *mtag;
   1540 #endif
   1541 	struct wm_txsoft *txs;
   1542 	bus_dmamap_t dmamap;
   1543 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed;
   1544 	bus_addr_t curaddr;
   1545 	bus_size_t seglen, curlen;
   1546 	uint32_t cksumcmd;
   1547 	uint8_t cksumfields;
   1548 
   1549 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1550 		return;
   1551 
   1552 	/*
   1553 	 * Remember the previous number of free descriptors.
   1554 	 */
   1555 	ofree = sc->sc_txfree;
   1556 
   1557 	/*
   1558 	 * Loop through the send queue, setting up transmit descriptors
   1559 	 * until we drain the queue, or use up all available transmit
   1560 	 * descriptors.
   1561 	 */
   1562 	for (;;) {
   1563 		/* Grab a packet off the queue. */
   1564 		IFQ_POLL(&ifp->if_snd, m0);
   1565 		if (m0 == NULL)
   1566 			break;
   1567 
   1568 		DPRINTF(WM_DEBUG_TX,
   1569 		    ("%s: TX: have packet to transmit: %p\n",
   1570 		    sc->sc_dev.dv_xname, m0));
   1571 
   1572 		/* Get a work queue entry. */
   1573 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
   1574 			wm_txintr(sc);
   1575 			if (sc->sc_txsfree == 0) {
   1576 				DPRINTF(WM_DEBUG_TX,
   1577 				    ("%s: TX: no free job descriptors\n",
   1578 					sc->sc_dev.dv_xname));
   1579 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   1580 				break;
   1581 			}
   1582 		}
   1583 
   1584 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1585 		dmamap = txs->txs_dmamap;
   1586 
   1587 		/*
   1588 		 * Load the DMA map.  If this fails, the packet either
   1589 		 * didn't fit in the allotted number of segments, or we
   1590 		 * were short on resources.  For the too-many-segments
   1591 		 * case, we simply report an error and drop the packet,
   1592 		 * since we can't sanely copy a jumbo packet to a single
   1593 		 * buffer.
   1594 		 */
   1595 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1596 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1597 		if (error) {
   1598 			if (error == EFBIG) {
   1599 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   1600 				log(LOG_ERR, "%s: Tx packet consumes too many "
   1601 				    "DMA segments, dropping...\n",
   1602 				    sc->sc_dev.dv_xname);
   1603 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1604 				wm_dump_mbuf_chain(sc, m0);
   1605 				m_freem(m0);
   1606 				continue;
   1607 			}
   1608 			/*
   1609 			 * Short on resources, just stop for now.
   1610 			 */
   1611 			DPRINTF(WM_DEBUG_TX,
   1612 			    ("%s: TX: dmamap load failed: %d\n",
   1613 			    sc->sc_dev.dv_xname, error));
   1614 			break;
   1615 		}
   1616 
   1617 		segs_needed = dmamap->dm_nsegs;
   1618 
   1619 		/*
   1620 		 * Ensure we have enough descriptors free to describe
   1621 		 * the packet.  Note, we always reserve one descriptor
   1622 		 * at the end of the ring due to the semantics of the
   1623 		 * TDT register, plus one more in the event we need
   1624 		 * to load offload context.
   1625 		 */
   1626 		if (segs_needed > sc->sc_txfree - 2) {
   1627 			/*
   1628 			 * Not enough free descriptors to transmit this
   1629 			 * packet.  We haven't committed anything yet,
   1630 			 * so just unload the DMA map, put the packet
   1631 			 * pack on the queue, and punt.  Notify the upper
   1632 			 * layer that there are no more slots left.
   1633 			 */
   1634 			DPRINTF(WM_DEBUG_TX,
   1635 			    ("%s: TX: need %d (%) descriptors, have %d\n",
   1636 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
   1637 			    sc->sc_txfree - 1));
   1638 			ifp->if_flags |= IFF_OACTIVE;
   1639 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1640 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   1641 			break;
   1642 		}
   1643 
   1644 		/*
   1645 		 * Check for 82547 Tx FIFO bug.  We need to do this
   1646 		 * once we know we can transmit the packet, since we
   1647 		 * do some internal FIFO space accounting here.
   1648 		 */
   1649 		if (sc->sc_type == WM_T_82547 &&
   1650 		    wm_82547_txfifo_bugchk(sc, m0)) {
   1651 			DPRINTF(WM_DEBUG_TX,
   1652 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
   1653 			    sc->sc_dev.dv_xname));
   1654 			ifp->if_flags |= IFF_OACTIVE;
   1655 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1656 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
   1657 			break;
   1658 		}
   1659 
   1660 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1661 
   1662 		/*
   1663 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1664 		 */
   1665 
   1666 		DPRINTF(WM_DEBUG_TX,
   1667 		    ("%s: TX: packet has %d (%d) DMA segments\n",
   1668 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
   1669 
   1670 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1671 
   1672 		/*
   1673 		 * Store a pointer to the packet so that we can free it
   1674 		 * later.
   1675 		 *
   1676 		 * Initially, we consider the number of descriptors the
   1677 		 * packet uses the number of DMA segments.  This may be
   1678 		 * incremented by 1 if we do checksum offload (a descriptor
   1679 		 * is used to set the checksum context).
   1680 		 */
   1681 		txs->txs_mbuf = m0;
   1682 		txs->txs_firstdesc = sc->sc_txnext;
   1683 		txs->txs_ndesc = segs_needed;
   1684 
   1685 		/* Set up offload parameters for this packet. */
   1686 		if (m0->m_pkthdr.csum_flags &
   1687 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1688 			if (wm_tx_offload(sc, txs, &cksumcmd,
   1689 					  &cksumfields) != 0) {
   1690 				/* Error message already displayed. */
   1691 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1692 				continue;
   1693 			}
   1694 		} else {
   1695 			cksumcmd = 0;
   1696 			cksumfields = 0;
   1697 		}
   1698 
   1699 		cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
   1700 
   1701 		/* Sync the DMA map. */
   1702 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1703 		    BUS_DMASYNC_PREWRITE);
   1704 
   1705 		/*
   1706 		 * Initialize the transmit descriptor.
   1707 		 */
   1708 		for (nexttx = sc->sc_txnext, seg = 0;
   1709 		     seg < dmamap->dm_nsegs; seg++) {
   1710 			for (seglen = dmamap->dm_segs[seg].ds_len,
   1711 			     curaddr = dmamap->dm_segs[seg].ds_addr;
   1712 			     seglen != 0;
   1713 			     curaddr += curlen, seglen -= curlen,
   1714 			     nexttx = WM_NEXTTX(sc, nexttx)) {
   1715 				curlen = seglen;
   1716 
   1717 				wm_set_dma_addr(
   1718 				    &sc->sc_txdescs[nexttx].wtx_addr,
   1719 				    curaddr);
   1720 				sc->sc_txdescs[nexttx].wtx_cmdlen =
   1721 				    htole32(cksumcmd | curlen);
   1722 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
   1723 				    0;
   1724 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
   1725 				    cksumfields;
   1726 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
   1727 				lasttx = nexttx;
   1728 
   1729 				DPRINTF(WM_DEBUG_TX,
   1730 				    ("%s: TX: desc %d: low 0x%08x, "
   1731 				     "len 0x%04x\n",
   1732 				    sc->sc_dev.dv_xname, nexttx,
   1733 				    curaddr & 0xffffffffU, curlen, curlen));
   1734 			}
   1735 		}
   1736 
   1737 		KASSERT(lasttx != -1);
   1738 
   1739 		/*
   1740 		 * Set up the command byte on the last descriptor of
   1741 		 * the packet.  If we're in the interrupt delay window,
   1742 		 * delay the interrupt.
   1743 		 */
   1744 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1745 		    htole32(WTX_CMD_EOP | WTX_CMD_RS);
   1746 
   1747 #if 0 /* XXXJRT */
   1748 		/*
   1749 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1750 		 * up the descriptor to encapsulate the packet for us.
   1751 		 *
   1752 		 * This is only valid on the last descriptor of the packet.
   1753 		 */
   1754 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   1755 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1756 			    htole32(WTX_CMD_VLE);
   1757 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
   1758 			    = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
   1759 		}
   1760 #endif /* XXXJRT */
   1761 
   1762 		txs->txs_lastdesc = lasttx;
   1763 
   1764 		DPRINTF(WM_DEBUG_TX,
   1765 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   1766 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
   1767 
   1768 		/* Sync the descriptors we're using. */
   1769 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
   1770 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1771 
   1772 		/* Give the packet to the chip. */
   1773 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   1774 
   1775 		DPRINTF(WM_DEBUG_TX,
   1776 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   1777 
   1778 		DPRINTF(WM_DEBUG_TX,
   1779 		    ("%s: TX: finished transmitting packet, job %d\n",
   1780 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   1781 
   1782 		/* Advance the tx pointer. */
   1783 		sc->sc_txfree -= txs->txs_ndesc;
   1784 		sc->sc_txnext = nexttx;
   1785 
   1786 		sc->sc_txsfree--;
   1787 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
   1788 
   1789 #if NBPFILTER > 0
   1790 		/* Pass the packet to any BPF listeners. */
   1791 		if (ifp->if_bpf)
   1792 			bpf_mtap(ifp->if_bpf, m0);
   1793 #endif /* NBPFILTER > 0 */
   1794 	}
   1795 
   1796 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1797 		/* No more slots; notify upper layer. */
   1798 		ifp->if_flags |= IFF_OACTIVE;
   1799 	}
   1800 
   1801 	if (sc->sc_txfree != ofree) {
   1802 		/* Set a watchdog timer in case the chip flakes out. */
   1803 		ifp->if_timer = 5;
   1804 	}
   1805 }
   1806 
   1807 /*
   1808  * wm_watchdog:		[ifnet interface function]
   1809  *
   1810  *	Watchdog timer handler.
   1811  */
   1812 static void
   1813 wm_watchdog(struct ifnet *ifp)
   1814 {
   1815 	struct wm_softc *sc = ifp->if_softc;
   1816 
   1817 	/*
   1818 	 * Since we're using delayed interrupts, sweep up
   1819 	 * before we report an error.
   1820 	 */
   1821 	wm_txintr(sc);
   1822 
   1823 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
   1824 		log(LOG_ERR,
   1825 		    "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1826 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   1827 		    sc->sc_txnext);
   1828 		ifp->if_oerrors++;
   1829 
   1830 		/* Reset the interface. */
   1831 		(void) wm_init(ifp);
   1832 	}
   1833 
   1834 	/* Try to get more packets going. */
   1835 	wm_start(ifp);
   1836 }
   1837 
   1838 /*
   1839  * wm_ioctl:		[ifnet interface function]
   1840  *
   1841  *	Handle control requests from the operator.
   1842  */
   1843 static int
   1844 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1845 {
   1846 	struct wm_softc *sc = ifp->if_softc;
   1847 	struct ifreq *ifr = (struct ifreq *) data;
   1848 	int s, error;
   1849 
   1850 	s = splnet();
   1851 
   1852 	switch (cmd) {
   1853 	case SIOCSIFMEDIA:
   1854 	case SIOCGIFMEDIA:
   1855 		/* Flow control requires full-duplex mode. */
   1856 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1857 		    (ifr->ifr_media & IFM_FDX) == 0)
   1858 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1859 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1860 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1861 				/* We can do both TXPAUSE and RXPAUSE. */
   1862 				ifr->ifr_media |=
   1863 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1864 			}
   1865 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1866 		}
   1867 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1868 		break;
   1869 	default:
   1870 		error = ether_ioctl(ifp, cmd, data);
   1871 		if (error == ENETRESET) {
   1872 			/*
   1873 			 * Multicast list has changed; set the hardware filter
   1874 			 * accordingly.
   1875 			 */
   1876 			if (ifp->if_flags & IFF_RUNNING)
   1877 				wm_set_filter(sc);
   1878 			error = 0;
   1879 		}
   1880 		break;
   1881 	}
   1882 
   1883 	/* Try to get more packets going. */
   1884 	wm_start(ifp);
   1885 
   1886 	splx(s);
   1887 	return (error);
   1888 }
   1889 
   1890 /*
   1891  * wm_intr:
   1892  *
   1893  *	Interrupt service routine.
   1894  */
   1895 static int
   1896 wm_intr(void *arg)
   1897 {
   1898 	struct wm_softc *sc = arg;
   1899 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1900 	uint32_t icr;
   1901 	int wantinit, handled = 0;
   1902 
   1903 	for (wantinit = 0; wantinit == 0;) {
   1904 		icr = CSR_READ(sc, WMREG_ICR);
   1905 		if ((icr & sc->sc_icr) == 0)
   1906 			break;
   1907 
   1908 #if 0 /*NRND > 0*/
   1909 		if (RND_ENABLED(&sc->rnd_source))
   1910 			rnd_add_uint32(&sc->rnd_source, icr);
   1911 #endif
   1912 
   1913 		handled = 1;
   1914 
   1915 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   1916 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1917 			DPRINTF(WM_DEBUG_RX,
   1918 			    ("%s: RX: got Rx intr 0x%08x\n",
   1919 			    sc->sc_dev.dv_xname,
   1920 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1921 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
   1922 		}
   1923 #endif
   1924 		wm_rxintr(sc);
   1925 
   1926 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   1927 		if (icr & ICR_TXDW) {
   1928 			DPRINTF(WM_DEBUG_TX,
   1929 			    ("%s: TX: got TXDW interrupt\n",
   1930 			    sc->sc_dev.dv_xname));
   1931 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
   1932 		}
   1933 #endif
   1934 		wm_txintr(sc);
   1935 
   1936 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
   1937 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
   1938 			wm_linkintr(sc, icr);
   1939 		}
   1940 
   1941 		if (icr & ICR_RXO) {
   1942 			log(LOG_WARNING, "%s: Receive overrun\n",
   1943 			    sc->sc_dev.dv_xname);
   1944 			wantinit = 1;
   1945 		}
   1946 	}
   1947 
   1948 	if (handled) {
   1949 		if (wantinit)
   1950 			wm_init(ifp);
   1951 
   1952 		/* Try to get more packets going. */
   1953 		wm_start(ifp);
   1954 	}
   1955 
   1956 	return (handled);
   1957 }
   1958 
   1959 /*
   1960  * wm_txintr:
   1961  *
   1962  *	Helper; handle transmit interrupts.
   1963  */
   1964 static void
   1965 wm_txintr(struct wm_softc *sc)
   1966 {
   1967 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1968 	struct wm_txsoft *txs;
   1969 	uint8_t status;
   1970 	int i;
   1971 
   1972 	ifp->if_flags &= ~IFF_OACTIVE;
   1973 
   1974 	/*
   1975 	 * Go through the Tx list and free mbufs for those
   1976 	 * frames which have been transmitted.
   1977 	 */
   1978 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
   1979 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
   1980 		txs = &sc->sc_txsoft[i];
   1981 
   1982 		DPRINTF(WM_DEBUG_TX,
   1983 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   1984 
   1985 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   1986 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1987 
   1988 		status =
   1989 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
   1990 		if ((status & WTX_ST_DD) == 0) {
   1991 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   1992 			    BUS_DMASYNC_PREREAD);
   1993 			break;
   1994 		}
   1995 
   1996 		DPRINTF(WM_DEBUG_TX,
   1997 		    ("%s: TX: job %d done: descs %d..%d\n",
   1998 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   1999 		    txs->txs_lastdesc));
   2000 
   2001 		/*
   2002 		 * XXX We should probably be using the statistics
   2003 		 * XXX registers, but I don't know if they exist
   2004 		 * XXX on chips before the i82544.
   2005 		 */
   2006 
   2007 #ifdef WM_EVENT_COUNTERS
   2008 		if (status & WTX_ST_TU)
   2009 			WM_EVCNT_INCR(&sc->sc_ev_tu);
   2010 #endif /* WM_EVENT_COUNTERS */
   2011 
   2012 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
   2013 			ifp->if_oerrors++;
   2014 			if (status & WTX_ST_LC)
   2015 				log(LOG_WARNING, "%s: late collision\n",
   2016 				    sc->sc_dev.dv_xname);
   2017 			else if (status & WTX_ST_EC) {
   2018 				ifp->if_collisions += 16;
   2019 				log(LOG_WARNING, "%s: excessive collisions\n",
   2020 				    sc->sc_dev.dv_xname);
   2021 			}
   2022 		} else
   2023 			ifp->if_opackets++;
   2024 
   2025 		sc->sc_txfree += txs->txs_ndesc;
   2026 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   2027 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2028 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2029 		m_freem(txs->txs_mbuf);
   2030 		txs->txs_mbuf = NULL;
   2031 	}
   2032 
   2033 	/* Update the dirty transmit buffer pointer. */
   2034 	sc->sc_txsdirty = i;
   2035 	DPRINTF(WM_DEBUG_TX,
   2036 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   2037 
   2038 	/*
   2039 	 * If there are no more pending transmissions, cancel the watchdog
   2040 	 * timer.
   2041 	 */
   2042 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
   2043 		ifp->if_timer = 0;
   2044 }
   2045 
   2046 /*
   2047  * wm_rxintr:
   2048  *
   2049  *	Helper; handle receive interrupts.
   2050  */
   2051 static void
   2052 wm_rxintr(struct wm_softc *sc)
   2053 {
   2054 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2055 	struct wm_rxsoft *rxs;
   2056 	struct mbuf *m;
   2057 	int i, len;
   2058 	uint8_t status, errors;
   2059 
   2060 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
   2061 		rxs = &sc->sc_rxsoft[i];
   2062 
   2063 		DPRINTF(WM_DEBUG_RX,
   2064 		    ("%s: RX: checking descriptor %d\n",
   2065 		    sc->sc_dev.dv_xname, i));
   2066 
   2067 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2068 
   2069 		status = sc->sc_rxdescs[i].wrx_status;
   2070 		errors = sc->sc_rxdescs[i].wrx_errors;
   2071 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
   2072 
   2073 		if ((status & WRX_ST_DD) == 0) {
   2074 			/*
   2075 			 * We have processed all of the receive descriptors.
   2076 			 */
   2077 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   2078 			break;
   2079 		}
   2080 
   2081 		if (__predict_false(sc->sc_rxdiscard)) {
   2082 			DPRINTF(WM_DEBUG_RX,
   2083 			    ("%s: RX: discarding contents of descriptor %d\n",
   2084 			    sc->sc_dev.dv_xname, i));
   2085 			WM_INIT_RXDESC(sc, i);
   2086 			if (status & WRX_ST_EOP) {
   2087 				/* Reset our state. */
   2088 				DPRINTF(WM_DEBUG_RX,
   2089 				    ("%s: RX: resetting rxdiscard -> 0\n",
   2090 				    sc->sc_dev.dv_xname));
   2091 				sc->sc_rxdiscard = 0;
   2092 			}
   2093 			continue;
   2094 		}
   2095 
   2096 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2097 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2098 
   2099 		m = rxs->rxs_mbuf;
   2100 
   2101 		/*
   2102 		 * Add a new receive buffer to the ring.
   2103 		 */
   2104 		if (wm_add_rxbuf(sc, i) != 0) {
   2105 			/*
   2106 			 * Failed, throw away what we've done so
   2107 			 * far, and discard the rest of the packet.
   2108 			 */
   2109 			ifp->if_ierrors++;
   2110 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2111 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2112 			WM_INIT_RXDESC(sc, i);
   2113 			if ((status & WRX_ST_EOP) == 0)
   2114 				sc->sc_rxdiscard = 1;
   2115 			if (sc->sc_rxhead != NULL)
   2116 				m_freem(sc->sc_rxhead);
   2117 			WM_RXCHAIN_RESET(sc);
   2118 			DPRINTF(WM_DEBUG_RX,
   2119 			    ("%s: RX: Rx buffer allocation failed, "
   2120 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   2121 			    sc->sc_rxdiscard ? " (discard)" : ""));
   2122 			continue;
   2123 		}
   2124 
   2125 		WM_RXCHAIN_LINK(sc, m);
   2126 
   2127 		m->m_len = len;
   2128 
   2129 		DPRINTF(WM_DEBUG_RX,
   2130 		    ("%s: RX: buffer at %p len %d\n",
   2131 		    sc->sc_dev.dv_xname, m->m_data, len));
   2132 
   2133 		/*
   2134 		 * If this is not the end of the packet, keep
   2135 		 * looking.
   2136 		 */
   2137 		if ((status & WRX_ST_EOP) == 0) {
   2138 			sc->sc_rxlen += len;
   2139 			DPRINTF(WM_DEBUG_RX,
   2140 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   2141 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   2142 			continue;
   2143 		}
   2144 
   2145 		/*
   2146 		 * Okay, we have the entire packet now.  The chip is
   2147 		 * configured to include the FCS (not all chips can
   2148 		 * be configured to strip it), so we need to trim it.
   2149 		 */
   2150 		m->m_len -= ETHER_CRC_LEN;
   2151 
   2152 		*sc->sc_rxtailp = NULL;
   2153 		m = sc->sc_rxhead;
   2154 		len = m->m_len + sc->sc_rxlen;
   2155 
   2156 		WM_RXCHAIN_RESET(sc);
   2157 
   2158 		DPRINTF(WM_DEBUG_RX,
   2159 		    ("%s: RX: have entire packet, len -> %d\n",
   2160 		    sc->sc_dev.dv_xname, len));
   2161 
   2162 		/*
   2163 		 * If an error occurred, update stats and drop the packet.
   2164 		 */
   2165 		if (errors &
   2166 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
   2167 			ifp->if_ierrors++;
   2168 			if (errors & WRX_ER_SE)
   2169 				log(LOG_WARNING, "%s: symbol error\n",
   2170 				    sc->sc_dev.dv_xname);
   2171 			else if (errors & WRX_ER_SEQ)
   2172 				log(LOG_WARNING, "%s: receive sequence error\n",
   2173 				    sc->sc_dev.dv_xname);
   2174 			else if (errors & WRX_ER_CE)
   2175 				log(LOG_WARNING, "%s: CRC error\n",
   2176 				    sc->sc_dev.dv_xname);
   2177 			m_freem(m);
   2178 			continue;
   2179 		}
   2180 
   2181 		/*
   2182 		 * No errors.  Receive the packet.
   2183 		 */
   2184 		m->m_pkthdr.rcvif = ifp;
   2185 		m->m_pkthdr.len = len;
   2186 
   2187 #if 0 /* XXXJRT */
   2188 		/*
   2189 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2190 		 * for us.  Associate the tag with the packet.
   2191 		 */
   2192 		if ((status & WRX_ST_VP) != 0) {
   2193 			VLAN_INPUT_TAG(ifp, m,
   2194 			    le16toh(sc->sc_rxdescs[i].wrx_special,
   2195 			    continue);
   2196 		}
   2197 #endif /* XXXJRT */
   2198 
   2199 		/*
   2200 		 * Set up checksum info for this packet.
   2201 		 */
   2202 		if (status & WRX_ST_IPCS) {
   2203 			WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2204 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2205 			if (errors & WRX_ER_IPE)
   2206 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2207 		}
   2208 		if (status & WRX_ST_TCPCS) {
   2209 			/*
   2210 			 * Note: we don't know if this was TCP or UDP,
   2211 			 * so we just set both bits, and expect the
   2212 			 * upper layers to deal.
   2213 			 */
   2214 			WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
   2215 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   2216 			if (errors & WRX_ER_TCPE)
   2217 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   2218 		}
   2219 
   2220 		ifp->if_ipackets++;
   2221 
   2222 #if NBPFILTER > 0
   2223 		/* Pass this up to any BPF listeners. */
   2224 		if (ifp->if_bpf)
   2225 			bpf_mtap(ifp->if_bpf, m);
   2226 #endif /* NBPFILTER > 0 */
   2227 
   2228 		/* Pass it on. */
   2229 		(*ifp->if_input)(ifp, m);
   2230 	}
   2231 
   2232 	/* Update the receive pointer. */
   2233 	sc->sc_rxptr = i;
   2234 
   2235 	DPRINTF(WM_DEBUG_RX,
   2236 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   2237 }
   2238 
   2239 /*
   2240  * wm_linkintr:
   2241  *
   2242  *	Helper; handle link interrupts.
   2243  */
   2244 static void
   2245 wm_linkintr(struct wm_softc *sc, uint32_t icr)
   2246 {
   2247 	uint32_t status;
   2248 
   2249 	/*
   2250 	 * If we get a link status interrupt on a 1000BASE-T
   2251 	 * device, just fall into the normal MII tick path.
   2252 	 */
   2253 	if (sc->sc_flags & WM_F_HAS_MII) {
   2254 		if (icr & ICR_LSC) {
   2255 			DPRINTF(WM_DEBUG_LINK,
   2256 			    ("%s: LINK: LSC -> mii_tick\n",
   2257 			    sc->sc_dev.dv_xname));
   2258 			mii_tick(&sc->sc_mii);
   2259 		} else if (icr & ICR_RXSEQ) {
   2260 			DPRINTF(WM_DEBUG_LINK,
   2261 			    ("%s: LINK Receive sequence error\n",
   2262 			    sc->sc_dev.dv_xname));
   2263 		}
   2264 		return;
   2265 	}
   2266 
   2267 	/*
   2268 	 * If we are now receiving /C/, check for link again in
   2269 	 * a couple of link clock ticks.
   2270 	 */
   2271 	if (icr & ICR_RXCFG) {
   2272 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
   2273 		    sc->sc_dev.dv_xname));
   2274 		sc->sc_tbi_anstate = 2;
   2275 	}
   2276 
   2277 	if (icr & ICR_LSC) {
   2278 		status = CSR_READ(sc, WMREG_STATUS);
   2279 		if (status & STATUS_LU) {
   2280 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
   2281 			    sc->sc_dev.dv_xname,
   2282 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   2283 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2284 			sc->sc_fcrtl &= ~FCRTL_XONE;
   2285 			if (status & STATUS_FD)
   2286 				sc->sc_tctl |=
   2287 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2288 			else
   2289 				sc->sc_tctl |=
   2290 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2291 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   2292 				sc->sc_fcrtl |= FCRTL_XONE;
   2293 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2294 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   2295 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   2296 				      sc->sc_fcrtl);
   2297 			sc->sc_tbi_linkup = 1;
   2298 		} else {
   2299 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   2300 			    sc->sc_dev.dv_xname));
   2301 			sc->sc_tbi_linkup = 0;
   2302 		}
   2303 		sc->sc_tbi_anstate = 2;
   2304 		wm_tbi_set_linkled(sc);
   2305 	} else if (icr & ICR_RXSEQ) {
   2306 		DPRINTF(WM_DEBUG_LINK,
   2307 		    ("%s: LINK: Receive sequence error\n",
   2308 		    sc->sc_dev.dv_xname));
   2309 	}
   2310 }
   2311 
   2312 /*
   2313  * wm_tick:
   2314  *
   2315  *	One second timer, used to check link status, sweep up
   2316  *	completed transmit jobs, etc.
   2317  */
   2318 static void
   2319 wm_tick(void *arg)
   2320 {
   2321 	struct wm_softc *sc = arg;
   2322 	int s;
   2323 
   2324 	s = splnet();
   2325 
   2326 	if (sc->sc_type >= WM_T_82542_2_1) {
   2327 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
   2328 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
   2329 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
   2330 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
   2331 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
   2332 	}
   2333 
   2334 	if (sc->sc_flags & WM_F_HAS_MII)
   2335 		mii_tick(&sc->sc_mii);
   2336 	else
   2337 		wm_tbi_check_link(sc);
   2338 
   2339 	splx(s);
   2340 
   2341 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2342 }
   2343 
   2344 /*
   2345  * wm_reset:
   2346  *
   2347  *	Reset the i82542 chip.
   2348  */
   2349 static void
   2350 wm_reset(struct wm_softc *sc)
   2351 {
   2352 	int i;
   2353 
   2354 	/*
   2355 	 * Allocate on-chip memory according to the MTU size.
   2356 	 * The Packet Buffer Allocation register must be written
   2357 	 * before the chip is reset.
   2358 	 */
   2359 	if (sc->sc_type < WM_T_82547) {
   2360 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2361 		    PBA_40K : PBA_48K;
   2362 	} else {
   2363 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2364 		    PBA_22K : PBA_30K;
   2365 		sc->sc_txfifo_head = 0;
   2366 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
   2367 		sc->sc_txfifo_size =
   2368 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
   2369 		sc->sc_txfifo_stall = 0;
   2370 	}
   2371 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
   2372 
   2373 	switch (sc->sc_type) {
   2374 	case WM_T_82544:
   2375 	case WM_T_82540:
   2376 	case WM_T_82545:
   2377 	case WM_T_82546:
   2378 	case WM_T_82541:
   2379 	case WM_T_82541_2:
   2380 		/*
   2381 		 * On some chipsets, a reset through a memory-mapped write
   2382 		 * cycle can cause the chip to reset before completing the
   2383 		 * write cycle.  This causes major headache that can be
   2384 		 * avoided by issuing the reset via indirect register writes
   2385 		 * through I/O space.
   2386 		 *
   2387 		 * So, if we successfully mapped the I/O BAR at attach time,
   2388 		 * use that.  Otherwise, try our luck with a memory-mapped
   2389 		 * reset.
   2390 		 */
   2391 		if (sc->sc_flags & WM_F_IOH_VALID)
   2392 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
   2393 		else
   2394 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2395 		break;
   2396 
   2397 	case WM_T_82545_3:
   2398 	case WM_T_82546_3:
   2399 		/* Use the shadow control register on these chips. */
   2400 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
   2401 		break;
   2402 
   2403 	default:
   2404 		/* Everything else can safely use the documented method. */
   2405 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2406 		break;
   2407 	}
   2408 	delay(10000);
   2409 
   2410 	for (i = 0; i < 1000; i++) {
   2411 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
   2412 			return;
   2413 		delay(20);
   2414 	}
   2415 
   2416 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
   2417 		log(LOG_ERR, "%s: reset failed to complete\n",
   2418 		    sc->sc_dev.dv_xname);
   2419 }
   2420 
   2421 /*
   2422  * wm_init:		[ifnet interface function]
   2423  *
   2424  *	Initialize the interface.  Must be called at splnet().
   2425  */
   2426 static int
   2427 wm_init(struct ifnet *ifp)
   2428 {
   2429 	struct wm_softc *sc = ifp->if_softc;
   2430 	struct wm_rxsoft *rxs;
   2431 	int i, error = 0;
   2432 	uint32_t reg;
   2433 
   2434 	/*
   2435 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   2436 	 * There is a small but measurable benefit to avoiding the adjusment
   2437 	 * of the descriptor so that the headers are aligned, for normal mtu,
   2438 	 * on such platforms.  One possibility is that the DMA itself is
   2439 	 * slightly more efficient if the front of the entire packet (instead
   2440 	 * of the front of the headers) is aligned.
   2441 	 *
   2442 	 * Note we must always set align_tweak to 0 if we are using
   2443 	 * jumbo frames.
   2444 	 */
   2445 #ifdef __NO_STRICT_ALIGNMENT
   2446 	sc->sc_align_tweak = 0;
   2447 #else
   2448 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   2449 		sc->sc_align_tweak = 0;
   2450 	else
   2451 		sc->sc_align_tweak = 2;
   2452 #endif /* __NO_STRICT_ALIGNMENT */
   2453 
   2454 	/* Cancel any pending I/O. */
   2455 	wm_stop(ifp, 0);
   2456 
   2457 	/* Reset the chip to a known state. */
   2458 	wm_reset(sc);
   2459 
   2460 	/* Initialize the transmit descriptor ring. */
   2461 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
   2462 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
   2463 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2464 	sc->sc_txfree = WM_NTXDESC(sc);
   2465 	sc->sc_txnext = 0;
   2466 
   2467 	if (sc->sc_type < WM_T_82543) {
   2468 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
   2469 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
   2470 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
   2471 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
   2472 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
   2473 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
   2474 	} else {
   2475 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
   2476 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
   2477 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
   2478 		CSR_WRITE(sc, WMREG_TDH, 0);
   2479 		CSR_WRITE(sc, WMREG_TDT, 0);
   2480 		CSR_WRITE(sc, WMREG_TIDV, 64);
   2481 		CSR_WRITE(sc, WMREG_TADV, 128);
   2482 
   2483 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
   2484 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   2485 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
   2486 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
   2487 	}
   2488 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
   2489 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
   2490 
   2491 	/* Initialize the transmit job descriptors. */
   2492 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
   2493 		sc->sc_txsoft[i].txs_mbuf = NULL;
   2494 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
   2495 	sc->sc_txsnext = 0;
   2496 	sc->sc_txsdirty = 0;
   2497 
   2498 	/*
   2499 	 * Initialize the receive descriptor and receive job
   2500 	 * descriptor rings.
   2501 	 */
   2502 	if (sc->sc_type < WM_T_82543) {
   2503 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
   2504 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
   2505 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
   2506 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
   2507 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
   2508 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
   2509 
   2510 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
   2511 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
   2512 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
   2513 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
   2514 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
   2515 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
   2516 	} else {
   2517 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
   2518 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
   2519 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
   2520 		CSR_WRITE(sc, WMREG_RDH, 0);
   2521 		CSR_WRITE(sc, WMREG_RDT, 0);
   2522 		CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
   2523 		CSR_WRITE(sc, WMREG_RADV, 128);
   2524 	}
   2525 	for (i = 0; i < WM_NRXDESC; i++) {
   2526 		rxs = &sc->sc_rxsoft[i];
   2527 		if (rxs->rxs_mbuf == NULL) {
   2528 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
   2529 				log(LOG_ERR, "%s: unable to allocate or map rx "
   2530 				    "buffer %d, error = %d\n",
   2531 				    sc->sc_dev.dv_xname, i, error);
   2532 				/*
   2533 				 * XXX Should attempt to run with fewer receive
   2534 				 * XXX buffers instead of just failing.
   2535 				 */
   2536 				wm_rxdrain(sc);
   2537 				goto out;
   2538 			}
   2539 		} else
   2540 			WM_INIT_RXDESC(sc, i);
   2541 	}
   2542 	sc->sc_rxptr = 0;
   2543 	sc->sc_rxdiscard = 0;
   2544 	WM_RXCHAIN_RESET(sc);
   2545 
   2546 	/*
   2547 	 * Clear out the VLAN table -- we don't use it (yet).
   2548 	 */
   2549 	CSR_WRITE(sc, WMREG_VET, 0);
   2550 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
   2551 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
   2552 
   2553 	/*
   2554 	 * Set up flow-control parameters.
   2555 	 *
   2556 	 * XXX Values could probably stand some tuning.
   2557 	 */
   2558 	CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
   2559 	CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
   2560 	CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
   2561 
   2562 	sc->sc_fcrtl = FCRTL_DFLT;
   2563 	if (sc->sc_type < WM_T_82543) {
   2564 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
   2565 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
   2566 	} else {
   2567 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
   2568 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
   2569 	}
   2570 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
   2571 
   2572 #if 0 /* XXXJRT */
   2573 	/* Deal with VLAN enables. */
   2574 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2575 		sc->sc_ctrl |= CTRL_VME;
   2576 	else
   2577 #endif /* XXXJRT */
   2578 		sc->sc_ctrl &= ~CTRL_VME;
   2579 
   2580 	/* Write the control registers. */
   2581 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2582 #if 0
   2583 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   2584 #endif
   2585 
   2586 	/*
   2587 	 * Set up checksum offload parameters.
   2588 	 */
   2589 	reg = CSR_READ(sc, WMREG_RXCSUM);
   2590 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
   2591 		reg |= RXCSUM_IPOFL;
   2592 	else
   2593 		reg &= ~RXCSUM_IPOFL;
   2594 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
   2595 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   2596 	else {
   2597 		reg &= ~RXCSUM_TUOFL;
   2598 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
   2599 			reg &= ~RXCSUM_IPOFL;
   2600 	}
   2601 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
   2602 
   2603 	/*
   2604 	 * Set up the interrupt registers.
   2605 	 */
   2606 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   2607 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   2608 	    ICR_RXO | ICR_RXT0;
   2609 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
   2610 		sc->sc_icr |= ICR_RXCFG;
   2611 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
   2612 
   2613 	/* Set up the inter-packet gap. */
   2614 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   2615 
   2616 	if (sc->sc_type >= WM_T_82543) {
   2617 		/* Set up the interrupt throttling register (units of 256ns) */
   2618 		sc->sc_itr = 1000000000 / (7000 * 256);
   2619 		CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
   2620 	}
   2621 
   2622 #if 0 /* XXXJRT */
   2623 	/* Set the VLAN ethernetype. */
   2624 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
   2625 #endif
   2626 
   2627 	/*
   2628 	 * Set up the transmit control register; we start out with
   2629 	 * a collision distance suitable for FDX, but update it whe
   2630 	 * we resolve the media type.
   2631 	 */
   2632 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
   2633 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2634 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2635 
   2636 	/* Set the media. */
   2637 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
   2638 
   2639 	/*
   2640 	 * Set up the receive control register; we actually program
   2641 	 * the register when we set the receive filter.  Use multicast
   2642 	 * address offset type 0.
   2643 	 *
   2644 	 * Only the i82544 has the ability to strip the incoming
   2645 	 * CRC, so we don't enable that feature.
   2646 	 */
   2647 	sc->sc_mchash_type = 0;
   2648 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
   2649 	    RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
   2650 
   2651 	if(MCLBYTES == 2048) {
   2652 		sc->sc_rctl |= RCTL_2k;
   2653 	} else {
   2654 		if(sc->sc_type >= WM_T_82543) {
   2655 			switch(MCLBYTES) {
   2656 			case 4096:
   2657 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
   2658 				break;
   2659 			case 8192:
   2660 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
   2661 				break;
   2662 			case 16384:
   2663 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
   2664 				break;
   2665 			default:
   2666 				panic("wm_init: MCLBYTES %d unsupported",
   2667 				    MCLBYTES);
   2668 				break;
   2669 			}
   2670 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
   2671 	}
   2672 
   2673 	/* Set the receive filter. */
   2674 	wm_set_filter(sc);
   2675 
   2676 	/* Start the one second link check clock. */
   2677 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2678 
   2679 	/* ...all done! */
   2680 	ifp->if_flags |= IFF_RUNNING;
   2681 	ifp->if_flags &= ~IFF_OACTIVE;
   2682 
   2683  out:
   2684 	if (error)
   2685 		log(LOG_ERR, "%s: interface not running\n",
   2686 		    sc->sc_dev.dv_xname);
   2687 	return (error);
   2688 }
   2689 
   2690 /*
   2691  * wm_rxdrain:
   2692  *
   2693  *	Drain the receive queue.
   2694  */
   2695 static void
   2696 wm_rxdrain(struct wm_softc *sc)
   2697 {
   2698 	struct wm_rxsoft *rxs;
   2699 	int i;
   2700 
   2701 	for (i = 0; i < WM_NRXDESC; i++) {
   2702 		rxs = &sc->sc_rxsoft[i];
   2703 		if (rxs->rxs_mbuf != NULL) {
   2704 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2705 			m_freem(rxs->rxs_mbuf);
   2706 			rxs->rxs_mbuf = NULL;
   2707 		}
   2708 	}
   2709 }
   2710 
   2711 /*
   2712  * wm_stop:		[ifnet interface function]
   2713  *
   2714  *	Stop transmission on the interface.
   2715  */
   2716 static void
   2717 wm_stop(struct ifnet *ifp, int disable)
   2718 {
   2719 	struct wm_softc *sc = ifp->if_softc;
   2720 	struct wm_txsoft *txs;
   2721 	int i;
   2722 
   2723 	/* Stop the one second clock. */
   2724 	callout_stop(&sc->sc_tick_ch);
   2725 
   2726 	/* Stop the 82547 Tx FIFO stall check timer. */
   2727 	if (sc->sc_type == WM_T_82547)
   2728 		callout_stop(&sc->sc_txfifo_ch);
   2729 
   2730 	if (sc->sc_flags & WM_F_HAS_MII) {
   2731 		/* Down the MII. */
   2732 		mii_down(&sc->sc_mii);
   2733 	}
   2734 
   2735 	/* Stop the transmit and receive processes. */
   2736 	CSR_WRITE(sc, WMREG_TCTL, 0);
   2737 	CSR_WRITE(sc, WMREG_RCTL, 0);
   2738 
   2739 	/* Release any queued transmit buffers. */
   2740 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   2741 		txs = &sc->sc_txsoft[i];
   2742 		if (txs->txs_mbuf != NULL) {
   2743 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2744 			m_freem(txs->txs_mbuf);
   2745 			txs->txs_mbuf = NULL;
   2746 		}
   2747 	}
   2748 
   2749 	if (disable)
   2750 		wm_rxdrain(sc);
   2751 
   2752 	/* Mark the interface as down and cancel the watchdog timer. */
   2753 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2754 	ifp->if_timer = 0;
   2755 }
   2756 
   2757 /*
   2758  * wm_acquire_eeprom:
   2759  *
   2760  *	Perform the EEPROM handshake required on some chips.
   2761  */
   2762 static int
   2763 wm_acquire_eeprom(struct wm_softc *sc)
   2764 {
   2765 	uint32_t reg;
   2766 	int x;
   2767 
   2768 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
   2769 		reg = CSR_READ(sc, WMREG_EECD);
   2770 
   2771 		/* Request EEPROM access. */
   2772 		reg |= EECD_EE_REQ;
   2773 		CSR_WRITE(sc, WMREG_EECD, reg);
   2774 
   2775 		/* ..and wait for it to be granted. */
   2776 		for (x = 0; x < 100; x++) {
   2777 			reg = CSR_READ(sc, WMREG_EECD);
   2778 			if (reg & EECD_EE_GNT)
   2779 				break;
   2780 			delay(5);
   2781 		}
   2782 		if ((reg & EECD_EE_GNT) == 0) {
   2783 			aprint_error("%s: could not acquire EEPROM GNT\n",
   2784 			    sc->sc_dev.dv_xname);
   2785 			reg &= ~EECD_EE_REQ;
   2786 			CSR_WRITE(sc, WMREG_EECD, reg);
   2787 			return (1);
   2788 		}
   2789 	}
   2790 
   2791 	return (0);
   2792 }
   2793 
   2794 /*
   2795  * wm_release_eeprom:
   2796  *
   2797  *	Release the EEPROM mutex.
   2798  */
   2799 static void
   2800 wm_release_eeprom(struct wm_softc *sc)
   2801 {
   2802 	uint32_t reg;
   2803 
   2804 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
   2805 		reg = CSR_READ(sc, WMREG_EECD);
   2806 		reg &= ~EECD_EE_REQ;
   2807 		CSR_WRITE(sc, WMREG_EECD, reg);
   2808 	}
   2809 }
   2810 
   2811 /*
   2812  * wm_eeprom_sendbits:
   2813  *
   2814  *	Send a series of bits to the EEPROM.
   2815  */
   2816 static void
   2817 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
   2818 {
   2819 	uint32_t reg;
   2820 	int x;
   2821 
   2822 	reg = CSR_READ(sc, WMREG_EECD);
   2823 
   2824 	for (x = nbits; x > 0; x--) {
   2825 		if (bits & (1U << (x - 1)))
   2826 			reg |= EECD_DI;
   2827 		else
   2828 			reg &= ~EECD_DI;
   2829 		CSR_WRITE(sc, WMREG_EECD, reg);
   2830 		delay(2);
   2831 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2832 		delay(2);
   2833 		CSR_WRITE(sc, WMREG_EECD, reg);
   2834 		delay(2);
   2835 	}
   2836 }
   2837 
   2838 /*
   2839  * wm_eeprom_recvbits:
   2840  *
   2841  *	Receive a series of bits from the EEPROM.
   2842  */
   2843 static void
   2844 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
   2845 {
   2846 	uint32_t reg, val;
   2847 	int x;
   2848 
   2849 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
   2850 
   2851 	val = 0;
   2852 	for (x = nbits; x > 0; x--) {
   2853 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2854 		delay(2);
   2855 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
   2856 			val |= (1U << (x - 1));
   2857 		CSR_WRITE(sc, WMREG_EECD, reg);
   2858 		delay(2);
   2859 	}
   2860 	*valp = val;
   2861 }
   2862 
   2863 /*
   2864  * wm_read_eeprom_uwire:
   2865  *
   2866  *	Read a word from the EEPROM using the MicroWire protocol.
   2867  */
   2868 static int
   2869 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   2870 {
   2871 	uint32_t reg, val;
   2872 	int i;
   2873 
   2874 	for (i = 0; i < wordcnt; i++) {
   2875 		/* Clear SK and DI. */
   2876 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
   2877 		CSR_WRITE(sc, WMREG_EECD, reg);
   2878 
   2879 		/* Set CHIP SELECT. */
   2880 		reg |= EECD_CS;
   2881 		CSR_WRITE(sc, WMREG_EECD, reg);
   2882 		delay(2);
   2883 
   2884 		/* Shift in the READ command. */
   2885 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
   2886 
   2887 		/* Shift in address. */
   2888 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
   2889 
   2890 		/* Shift out the data. */
   2891 		wm_eeprom_recvbits(sc, &val, 16);
   2892 		data[i] = val & 0xffff;
   2893 
   2894 		/* Clear CHIP SELECT. */
   2895 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
   2896 		CSR_WRITE(sc, WMREG_EECD, reg);
   2897 		delay(2);
   2898 	}
   2899 
   2900 	return (0);
   2901 }
   2902 
   2903 /*
   2904  * wm_spi_eeprom_ready:
   2905  *
   2906  *	Wait for a SPI EEPROM to be ready for commands.
   2907  */
   2908 static int
   2909 wm_spi_eeprom_ready(struct wm_softc *sc)
   2910 {
   2911 	uint32_t val;
   2912 	int usec;
   2913 
   2914 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
   2915 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
   2916 		wm_eeprom_recvbits(sc, &val, 8);
   2917 		if ((val & SPI_SR_RDY) == 0)
   2918 			break;
   2919 	}
   2920 	if (usec >= SPI_MAX_RETRIES) {
   2921 		aprint_error("%s: EEPROM failed to become ready\n",
   2922 		    sc->sc_dev.dv_xname);
   2923 		return (1);
   2924 	}
   2925 	return (0);
   2926 }
   2927 
   2928 /*
   2929  * wm_read_eeprom_spi:
   2930  *
   2931  *	Read a work from the EEPROM using the SPI protocol.
   2932  */
   2933 static int
   2934 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   2935 {
   2936 	uint32_t reg, val;
   2937 	int i;
   2938 	uint8_t opc;
   2939 
   2940 	/* Clear SK and CS. */
   2941 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
   2942 	CSR_WRITE(sc, WMREG_EECD, reg);
   2943 	delay(2);
   2944 
   2945 	if (wm_spi_eeprom_ready(sc))
   2946 		return (1);
   2947 
   2948 	/* Toggle CS to flush commands. */
   2949 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
   2950 	delay(2);
   2951 	CSR_WRITE(sc, WMREG_EECD, reg);
   2952 	delay(2);
   2953 
   2954 	opc = SPI_OPC_READ;
   2955 	if (sc->sc_ee_addrbits == 8 && word >= 128)
   2956 		opc |= SPI_OPC_A8;
   2957 
   2958 	wm_eeprom_sendbits(sc, opc, 8);
   2959 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
   2960 
   2961 	for (i = 0; i < wordcnt; i++) {
   2962 		wm_eeprom_recvbits(sc, &val, 16);
   2963 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
   2964 	}
   2965 
   2966 	/* Raise CS and clear SK. */
   2967 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
   2968 	CSR_WRITE(sc, WMREG_EECD, reg);
   2969 	delay(2);
   2970 
   2971 	return (0);
   2972 }
   2973 
   2974 /*
   2975  * wm_read_eeprom:
   2976  *
   2977  *	Read data from the serial EEPROM.
   2978  */
   2979 static int
   2980 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   2981 {
   2982 	int rv;
   2983 
   2984 	if (wm_acquire_eeprom(sc))
   2985 		return (1);
   2986 
   2987 	if (sc->sc_flags & WM_F_EEPROM_SPI)
   2988 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
   2989 	else
   2990 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
   2991 
   2992 	wm_release_eeprom(sc);
   2993 	return (rv);
   2994 }
   2995 
   2996 /*
   2997  * wm_add_rxbuf:
   2998  *
   2999  *	Add a receive buffer to the indiciated descriptor.
   3000  */
   3001 static int
   3002 wm_add_rxbuf(struct wm_softc *sc, int idx)
   3003 {
   3004 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
   3005 	struct mbuf *m;
   3006 	int error;
   3007 
   3008 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3009 	if (m == NULL)
   3010 		return (ENOBUFS);
   3011 
   3012 	MCLGET(m, M_DONTWAIT);
   3013 	if ((m->m_flags & M_EXT) == 0) {
   3014 		m_freem(m);
   3015 		return (ENOBUFS);
   3016 	}
   3017 
   3018 	if (rxs->rxs_mbuf != NULL)
   3019 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3020 
   3021 	rxs->rxs_mbuf = m;
   3022 
   3023 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   3024 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   3025 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   3026 	if (error) {
   3027 		/* XXX XXX XXX */
   3028 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   3029 		    sc->sc_dev.dv_xname, idx, error);
   3030 		panic("wm_add_rxbuf");
   3031 	}
   3032 
   3033 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3034 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3035 
   3036 	WM_INIT_RXDESC(sc, idx);
   3037 
   3038 	return (0);
   3039 }
   3040 
   3041 /*
   3042  * wm_set_ral:
   3043  *
   3044  *	Set an entery in the receive address list.
   3045  */
   3046 static void
   3047 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
   3048 {
   3049 	uint32_t ral_lo, ral_hi;
   3050 
   3051 	if (enaddr != NULL) {
   3052 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   3053 		    (enaddr[3] << 24);
   3054 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   3055 		ral_hi |= RAL_AV;
   3056 	} else {
   3057 		ral_lo = 0;
   3058 		ral_hi = 0;
   3059 	}
   3060 
   3061 	if (sc->sc_type >= WM_T_82544) {
   3062 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
   3063 		    ral_lo);
   3064 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
   3065 		    ral_hi);
   3066 	} else {
   3067 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
   3068 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
   3069 	}
   3070 }
   3071 
   3072 /*
   3073  * wm_mchash:
   3074  *
   3075  *	Compute the hash of the multicast address for the 4096-bit
   3076  *	multicast filter.
   3077  */
   3078 static uint32_t
   3079 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
   3080 {
   3081 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   3082 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   3083 	uint32_t hash;
   3084 
   3085 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   3086 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   3087 
   3088 	return (hash & 0xfff);
   3089 }
   3090 
   3091 /*
   3092  * wm_set_filter:
   3093  *
   3094  *	Set up the receive filter.
   3095  */
   3096 static void
   3097 wm_set_filter(struct wm_softc *sc)
   3098 {
   3099 	struct ethercom *ec = &sc->sc_ethercom;
   3100 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3101 	struct ether_multi *enm;
   3102 	struct ether_multistep step;
   3103 	bus_addr_t mta_reg;
   3104 	uint32_t hash, reg, bit;
   3105 	int i;
   3106 
   3107 	if (sc->sc_type >= WM_T_82544)
   3108 		mta_reg = WMREG_CORDOVA_MTA;
   3109 	else
   3110 		mta_reg = WMREG_MTA;
   3111 
   3112 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   3113 
   3114 	if (ifp->if_flags & IFF_BROADCAST)
   3115 		sc->sc_rctl |= RCTL_BAM;
   3116 	if (ifp->if_flags & IFF_PROMISC) {
   3117 		sc->sc_rctl |= RCTL_UPE;
   3118 		goto allmulti;
   3119 	}
   3120 
   3121 	/*
   3122 	 * Set the station address in the first RAL slot, and
   3123 	 * clear the remaining slots.
   3124 	 */
   3125 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
   3126 	for (i = 1; i < WM_RAL_TABSIZE; i++)
   3127 		wm_set_ral(sc, NULL, i);
   3128 
   3129 	/* Clear out the multicast table. */
   3130 	for (i = 0; i < WM_MC_TABSIZE; i++)
   3131 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
   3132 
   3133 	ETHER_FIRST_MULTI(step, ec, enm);
   3134 	while (enm != NULL) {
   3135 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3136 			/*
   3137 			 * We must listen to a range of multicast addresses.
   3138 			 * For now, just accept all multicasts, rather than
   3139 			 * trying to set only those filter bits needed to match
   3140 			 * the range.  (At this time, the only use of address
   3141 			 * ranges is for IP multicast routing, for which the
   3142 			 * range is big enough to require all bits set.)
   3143 			 */
   3144 			goto allmulti;
   3145 		}
   3146 
   3147 		hash = wm_mchash(sc, enm->enm_addrlo);
   3148 
   3149 		reg = (hash >> 5) & 0x7f;
   3150 		bit = hash & 0x1f;
   3151 
   3152 		hash = CSR_READ(sc, mta_reg + (reg << 2));
   3153 		hash |= 1U << bit;
   3154 
   3155 		/* XXX Hardware bug?? */
   3156 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
   3157 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
   3158 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3159 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
   3160 		} else
   3161 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3162 
   3163 		ETHER_NEXT_MULTI(step, enm);
   3164 	}
   3165 
   3166 	ifp->if_flags &= ~IFF_ALLMULTI;
   3167 	goto setit;
   3168 
   3169  allmulti:
   3170 	ifp->if_flags |= IFF_ALLMULTI;
   3171 	sc->sc_rctl |= RCTL_MPE;
   3172 
   3173  setit:
   3174 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
   3175 }
   3176 
   3177 /*
   3178  * wm_tbi_mediainit:
   3179  *
   3180  *	Initialize media for use on 1000BASE-X devices.
   3181  */
   3182 static void
   3183 wm_tbi_mediainit(struct wm_softc *sc)
   3184 {
   3185 	const char *sep = "";
   3186 
   3187 	if (sc->sc_type < WM_T_82543)
   3188 		sc->sc_tipg = TIPG_WM_DFLT;
   3189 	else
   3190 		sc->sc_tipg = TIPG_LG_DFLT;
   3191 
   3192 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
   3193 	    wm_tbi_mediastatus);
   3194 
   3195 	/*
   3196 	 * SWD Pins:
   3197 	 *
   3198 	 *	0 = Link LED (output)
   3199 	 *	1 = Loss Of Signal (input)
   3200 	 */
   3201 	sc->sc_ctrl |= CTRL_SWDPIO(0);
   3202 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
   3203 
   3204 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3205 
   3206 #define	ADD(ss, mm, dd)							\
   3207 do {									\
   3208 	aprint_normal("%s%s", sep, ss);					\
   3209 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
   3210 	sep = ", ";							\
   3211 } while (/*CONSTCOND*/0)
   3212 
   3213 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
   3214 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
   3215 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
   3216 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
   3217 	aprint_normal("\n");
   3218 
   3219 #undef ADD
   3220 
   3221 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   3222 }
   3223 
   3224 /*
   3225  * wm_tbi_mediastatus:	[ifmedia interface function]
   3226  *
   3227  *	Get the current interface media status on a 1000BASE-X device.
   3228  */
   3229 static void
   3230 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3231 {
   3232 	struct wm_softc *sc = ifp->if_softc;
   3233 	uint32_t ctrl;
   3234 
   3235 	ifmr->ifm_status = IFM_AVALID;
   3236 	ifmr->ifm_active = IFM_ETHER;
   3237 
   3238 	if (sc->sc_tbi_linkup == 0) {
   3239 		ifmr->ifm_active |= IFM_NONE;
   3240 		return;
   3241 	}
   3242 
   3243 	ifmr->ifm_status |= IFM_ACTIVE;
   3244 	ifmr->ifm_active |= IFM_1000_SX;
   3245 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
   3246 		ifmr->ifm_active |= IFM_FDX;
   3247 	ctrl = CSR_READ(sc, WMREG_CTRL);
   3248 	if (ctrl & CTRL_RFCE)
   3249 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   3250 	if (ctrl & CTRL_TFCE)
   3251 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   3252 }
   3253 
   3254 /*
   3255  * wm_tbi_mediachange:	[ifmedia interface function]
   3256  *
   3257  *	Set hardware to newly-selected media on a 1000BASE-X device.
   3258  */
   3259 static int
   3260 wm_tbi_mediachange(struct ifnet *ifp)
   3261 {
   3262 	struct wm_softc *sc = ifp->if_softc;
   3263 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   3264 	uint32_t status;
   3265 	int i;
   3266 
   3267 	sc->sc_txcw = ife->ifm_data;
   3268 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
   3269 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
   3270 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
   3271 	sc->sc_txcw |= TXCW_ANE;
   3272 
   3273 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   3274 	delay(10000);
   3275 
   3276 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
   3277 
   3278 	sc->sc_tbi_anstate = 0;
   3279 
   3280 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
   3281 		/* Have signal; wait for the link to come up. */
   3282 		for (i = 0; i < 50; i++) {
   3283 			delay(10000);
   3284 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
   3285 				break;
   3286 		}
   3287 
   3288 		status = CSR_READ(sc, WMREG_STATUS);
   3289 		if (status & STATUS_LU) {
   3290 			/* Link is up. */
   3291 			DPRINTF(WM_DEBUG_LINK,
   3292 			    ("%s: LINK: set media -> link up %s\n",
   3293 			    sc->sc_dev.dv_xname,
   3294 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   3295 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3296 			sc->sc_fcrtl &= ~FCRTL_XONE;
   3297 			if (status & STATUS_FD)
   3298 				sc->sc_tctl |=
   3299 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3300 			else
   3301 				sc->sc_tctl |=
   3302 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3303 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   3304 				sc->sc_fcrtl |= FCRTL_XONE;
   3305 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3306 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   3307 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   3308 				      sc->sc_fcrtl);
   3309 			sc->sc_tbi_linkup = 1;
   3310 		} else {
   3311 			/* Link is down. */
   3312 			DPRINTF(WM_DEBUG_LINK,
   3313 			    ("%s: LINK: set media -> link down\n",
   3314 			    sc->sc_dev.dv_xname));
   3315 			sc->sc_tbi_linkup = 0;
   3316 		}
   3317 	} else {
   3318 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
   3319 		    sc->sc_dev.dv_xname));
   3320 		sc->sc_tbi_linkup = 0;
   3321 	}
   3322 
   3323 	wm_tbi_set_linkled(sc);
   3324 
   3325 	return (0);
   3326 }
   3327 
   3328 /*
   3329  * wm_tbi_set_linkled:
   3330  *
   3331  *	Update the link LED on 1000BASE-X devices.
   3332  */
   3333 static void
   3334 wm_tbi_set_linkled(struct wm_softc *sc)
   3335 {
   3336 
   3337 	if (sc->sc_tbi_linkup)
   3338 		sc->sc_ctrl |= CTRL_SWDPIN(0);
   3339 	else
   3340 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
   3341 
   3342 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3343 }
   3344 
   3345 /*
   3346  * wm_tbi_check_link:
   3347  *
   3348  *	Check the link on 1000BASE-X devices.
   3349  */
   3350 static void
   3351 wm_tbi_check_link(struct wm_softc *sc)
   3352 {
   3353 	uint32_t rxcw, ctrl, status;
   3354 
   3355 	if (sc->sc_tbi_anstate == 0)
   3356 		return;
   3357 	else if (sc->sc_tbi_anstate > 1) {
   3358 		DPRINTF(WM_DEBUG_LINK,
   3359 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
   3360 		    sc->sc_tbi_anstate));
   3361 		sc->sc_tbi_anstate--;
   3362 		return;
   3363 	}
   3364 
   3365 	sc->sc_tbi_anstate = 0;
   3366 
   3367 	rxcw = CSR_READ(sc, WMREG_RXCW);
   3368 	ctrl = CSR_READ(sc, WMREG_CTRL);
   3369 	status = CSR_READ(sc, WMREG_STATUS);
   3370 
   3371 	if ((status & STATUS_LU) == 0) {
   3372 		DPRINTF(WM_DEBUG_LINK,
   3373 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
   3374 		sc->sc_tbi_linkup = 0;
   3375 	} else {
   3376 		DPRINTF(WM_DEBUG_LINK,
   3377 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
   3378 		    (status & STATUS_FD) ? "FDX" : "HDX"));
   3379 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3380 		sc->sc_fcrtl &= ~FCRTL_XONE;
   3381 		if (status & STATUS_FD)
   3382 			sc->sc_tctl |=
   3383 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3384 		else
   3385 			sc->sc_tctl |=
   3386 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3387 		if (ctrl & CTRL_TFCE)
   3388 			sc->sc_fcrtl |= FCRTL_XONE;
   3389 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3390 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   3391 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
   3392 			      sc->sc_fcrtl);
   3393 		sc->sc_tbi_linkup = 1;
   3394 	}
   3395 
   3396 	wm_tbi_set_linkled(sc);
   3397 }
   3398 
   3399 /*
   3400  * wm_gmii_reset:
   3401  *
   3402  *	Reset the PHY.
   3403  */
   3404 static void
   3405 wm_gmii_reset(struct wm_softc *sc)
   3406 {
   3407 	uint32_t reg;
   3408 
   3409 	if (sc->sc_type >= WM_T_82544) {
   3410 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   3411 		delay(20000);
   3412 
   3413 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3414 		delay(20000);
   3415 	} else {
   3416 		/* The PHY reset pin is active-low. */
   3417 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   3418 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
   3419 		    CTRL_EXT_SWDPIN(4));
   3420 		reg |= CTRL_EXT_SWDPIO(4);
   3421 
   3422 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   3423 		delay(10);
   3424 
   3425 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   3426 		delay(10);
   3427 
   3428 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   3429 		delay(10);
   3430 #if 0
   3431 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
   3432 #endif
   3433 	}
   3434 }
   3435 
   3436 /*
   3437  * wm_gmii_mediainit:
   3438  *
   3439  *	Initialize media for use on 1000BASE-T devices.
   3440  */
   3441 static void
   3442 wm_gmii_mediainit(struct wm_softc *sc)
   3443 {
   3444 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3445 
   3446 	/* We have MII. */
   3447 	sc->sc_flags |= WM_F_HAS_MII;
   3448 
   3449 	sc->sc_tipg = TIPG_1000T_DFLT;
   3450 
   3451 	/*
   3452 	 * Let the chip set speed/duplex on its own based on
   3453 	 * signals from the PHY.
   3454 	 */
   3455 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
   3456 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3457 
   3458 	/* Initialize our media structures and probe the GMII. */
   3459 	sc->sc_mii.mii_ifp = ifp;
   3460 
   3461 	if (sc->sc_type >= WM_T_82544) {
   3462 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
   3463 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
   3464 	} else {
   3465 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
   3466 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
   3467 	}
   3468 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
   3469 
   3470 	wm_gmii_reset(sc);
   3471 
   3472 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
   3473 	    wm_gmii_mediastatus);
   3474 
   3475 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   3476 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
   3477 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   3478 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   3479 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   3480 	} else
   3481 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   3482 }
   3483 
   3484 /*
   3485  * wm_gmii_mediastatus:	[ifmedia interface function]
   3486  *
   3487  *	Get the current interface media status on a 1000BASE-T device.
   3488  */
   3489 static void
   3490 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3491 {
   3492 	struct wm_softc *sc = ifp->if_softc;
   3493 
   3494 	mii_pollstat(&sc->sc_mii);
   3495 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3496 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
   3497 			   sc->sc_flowflags;
   3498 }
   3499 
   3500 /*
   3501  * wm_gmii_mediachange:	[ifmedia interface function]
   3502  *
   3503  *	Set hardware to newly-selected media on a 1000BASE-T device.
   3504  */
   3505 static int
   3506 wm_gmii_mediachange(struct ifnet *ifp)
   3507 {
   3508 	struct wm_softc *sc = ifp->if_softc;
   3509 
   3510 	if (ifp->if_flags & IFF_UP)
   3511 		mii_mediachg(&sc->sc_mii);
   3512 	return (0);
   3513 }
   3514 
   3515 #define	MDI_IO		CTRL_SWDPIN(2)
   3516 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
   3517 #define	MDI_CLK		CTRL_SWDPIN(3)
   3518 
   3519 static void
   3520 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
   3521 {
   3522 	uint32_t i, v;
   3523 
   3524 	v = CSR_READ(sc, WMREG_CTRL);
   3525 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   3526 	v |= MDI_DIR | CTRL_SWDPIO(3);
   3527 
   3528 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
   3529 		if (data & i)
   3530 			v |= MDI_IO;
   3531 		else
   3532 			v &= ~MDI_IO;
   3533 		CSR_WRITE(sc, WMREG_CTRL, v);
   3534 		delay(10);
   3535 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3536 		delay(10);
   3537 		CSR_WRITE(sc, WMREG_CTRL, v);
   3538 		delay(10);
   3539 	}
   3540 }
   3541 
   3542 static uint32_t
   3543 i82543_mii_recvbits(struct wm_softc *sc)
   3544 {
   3545 	uint32_t v, i, data = 0;
   3546 
   3547 	v = CSR_READ(sc, WMREG_CTRL);
   3548 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   3549 	v |= CTRL_SWDPIO(3);
   3550 
   3551 	CSR_WRITE(sc, WMREG_CTRL, v);
   3552 	delay(10);
   3553 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3554 	delay(10);
   3555 	CSR_WRITE(sc, WMREG_CTRL, v);
   3556 	delay(10);
   3557 
   3558 	for (i = 0; i < 16; i++) {
   3559 		data <<= 1;
   3560 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3561 		delay(10);
   3562 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
   3563 			data |= 1;
   3564 		CSR_WRITE(sc, WMREG_CTRL, v);
   3565 		delay(10);
   3566 	}
   3567 
   3568 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3569 	delay(10);
   3570 	CSR_WRITE(sc, WMREG_CTRL, v);
   3571 	delay(10);
   3572 
   3573 	return (data);
   3574 }
   3575 
   3576 #undef MDI_IO
   3577 #undef MDI_DIR
   3578 #undef MDI_CLK
   3579 
   3580 /*
   3581  * wm_gmii_i82543_readreg:	[mii interface function]
   3582  *
   3583  *	Read a PHY register on the GMII (i82543 version).
   3584  */
   3585 static int
   3586 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
   3587 {
   3588 	struct wm_softc *sc = (void *) self;
   3589 	int rv;
   3590 
   3591 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   3592 	i82543_mii_sendbits(sc, reg | (phy << 5) |
   3593 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
   3594 	rv = i82543_mii_recvbits(sc) & 0xffff;
   3595 
   3596 	DPRINTF(WM_DEBUG_GMII,
   3597 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
   3598 	    sc->sc_dev.dv_xname, phy, reg, rv));
   3599 
   3600 	return (rv);
   3601 }
   3602 
   3603 /*
   3604  * wm_gmii_i82543_writereg:	[mii interface function]
   3605  *
   3606  *	Write a PHY register on the GMII (i82543 version).
   3607  */
   3608 static void
   3609 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
   3610 {
   3611 	struct wm_softc *sc = (void *) self;
   3612 
   3613 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   3614 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
   3615 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
   3616 	    (MII_COMMAND_START << 30), 32);
   3617 }
   3618 
   3619 /*
   3620  * wm_gmii_i82544_readreg:	[mii interface function]
   3621  *
   3622  *	Read a PHY register on the GMII.
   3623  */
   3624 static int
   3625 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
   3626 {
   3627 	struct wm_softc *sc = (void *) self;
   3628 	uint32_t mdic = 0;
   3629 	int i, rv;
   3630 
   3631 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
   3632 	    MDIC_REGADD(reg));
   3633 
   3634 	for (i = 0; i < 100; i++) {
   3635 		mdic = CSR_READ(sc, WMREG_MDIC);
   3636 		if (mdic & MDIC_READY)
   3637 			break;
   3638 		delay(10);
   3639 	}
   3640 
   3641 	if ((mdic & MDIC_READY) == 0) {
   3642 		log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
   3643 		    sc->sc_dev.dv_xname, phy, reg);
   3644 		rv = 0;
   3645 	} else if (mdic & MDIC_E) {
   3646 #if 0 /* This is normal if no PHY is present. */
   3647 		log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
   3648 		    sc->sc_dev.dv_xname, phy, reg);
   3649 #endif
   3650 		rv = 0;
   3651 	} else {
   3652 		rv = MDIC_DATA(mdic);
   3653 		if (rv == 0xffff)
   3654 			rv = 0;
   3655 	}
   3656 
   3657 	return (rv);
   3658 }
   3659 
   3660 /*
   3661  * wm_gmii_i82544_writereg:	[mii interface function]
   3662  *
   3663  *	Write a PHY register on the GMII.
   3664  */
   3665 static void
   3666 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
   3667 {
   3668 	struct wm_softc *sc = (void *) self;
   3669 	uint32_t mdic = 0;
   3670 	int i;
   3671 
   3672 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
   3673 	    MDIC_REGADD(reg) | MDIC_DATA(val));
   3674 
   3675 	for (i = 0; i < 100; i++) {
   3676 		mdic = CSR_READ(sc, WMREG_MDIC);
   3677 		if (mdic & MDIC_READY)
   3678 			break;
   3679 		delay(10);
   3680 	}
   3681 
   3682 	if ((mdic & MDIC_READY) == 0)
   3683 		log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
   3684 		    sc->sc_dev.dv_xname, phy, reg);
   3685 	else if (mdic & MDIC_E)
   3686 		log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
   3687 		    sc->sc_dev.dv_xname, phy, reg);
   3688 }
   3689 
   3690 /*
   3691  * wm_gmii_statchg:	[mii interface function]
   3692  *
   3693  *	Callback from MII layer when media changes.
   3694  */
   3695 static void
   3696 wm_gmii_statchg(struct device *self)
   3697 {
   3698 	struct wm_softc *sc = (void *) self;
   3699 	struct mii_data *mii = &sc->sc_mii;
   3700 
   3701 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
   3702 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3703 	sc->sc_fcrtl &= ~FCRTL_XONE;
   3704 
   3705 	/*
   3706 	 * Get flow control negotiation result.
   3707 	 */
   3708 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3709 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3710 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3711 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3712 	}
   3713 
   3714 	if (sc->sc_flowflags & IFM_FLOW) {
   3715 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
   3716 			sc->sc_ctrl |= CTRL_TFCE;
   3717 			sc->sc_fcrtl |= FCRTL_XONE;
   3718 		}
   3719 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3720 			sc->sc_ctrl |= CTRL_RFCE;
   3721 	}
   3722 
   3723 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   3724 		DPRINTF(WM_DEBUG_LINK,
   3725 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
   3726 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3727 	} else  {
   3728 		DPRINTF(WM_DEBUG_LINK,
   3729 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
   3730 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3731 	}
   3732 
   3733 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3734 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3735 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
   3736 						 : WMREG_FCRTL, sc->sc_fcrtl);
   3737 }
   3738