Home | History | Annotate | Line # | Download | only in pci
if_wm.c revision 1.99
      1 /*	$NetBSD: if_wm.c,v 1.99 2005/03/09 19:06:19 matt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Device driver for the Intel i8254x family of Gigabit Ethernet chips.
     40  *
     41  * TODO (in order of importance):
     42  *
     43  *	- Rework how parameters are loaded from the EEPROM.
     44  *	- Figure out what to do with the i82545GM and i82546GB
     45  *	  SERDES controllers.
     46  *	- Fix hw VLAN assist.
     47  */
     48 
     49 #include <sys/cdefs.h>
     50 __KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.99 2005/03/09 19:06:19 matt Exp $");
     51 
     52 #include "bpfilter.h"
     53 #include "rnd.h"
     54 
     55 #include <sys/param.h>
     56 #include <sys/systm.h>
     57 #include <sys/callout.h>
     58 #include <sys/mbuf.h>
     59 #include <sys/malloc.h>
     60 #include <sys/kernel.h>
     61 #include <sys/socket.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/errno.h>
     64 #include <sys/device.h>
     65 #include <sys/queue.h>
     66 #include <sys/syslog.h>
     67 
     68 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     69 
     70 #if NRND > 0
     71 #include <sys/rnd.h>
     72 #endif
     73 
     74 #include <net/if.h>
     75 #include <net/if_dl.h>
     76 #include <net/if_media.h>
     77 #include <net/if_ether.h>
     78 
     79 #if NBPFILTER > 0
     80 #include <net/bpf.h>
     81 #endif
     82 
     83 #include <netinet/in.h>			/* XXX for struct ip */
     84 #include <netinet/in_systm.h>		/* XXX for struct ip */
     85 #include <netinet/ip.h>			/* XXX for struct ip */
     86 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
     87 
     88 #include <machine/bus.h>
     89 #include <machine/intr.h>
     90 #include <machine/endian.h>
     91 
     92 #include <dev/mii/mii.h>
     93 #include <dev/mii/miivar.h>
     94 #include <dev/mii/mii_bitbang.h>
     95 
     96 #include <dev/pci/pcireg.h>
     97 #include <dev/pci/pcivar.h>
     98 #include <dev/pci/pcidevs.h>
     99 
    100 #include <dev/pci/if_wmreg.h>
    101 
    102 #ifdef WM_DEBUG
    103 #define	WM_DEBUG_LINK		0x01
    104 #define	WM_DEBUG_TX		0x02
    105 #define	WM_DEBUG_RX		0x04
    106 #define	WM_DEBUG_GMII		0x08
    107 int	wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK;
    108 
    109 #define	DPRINTF(x, y)	if (wm_debug & (x)) printf y
    110 #else
    111 #define	DPRINTF(x, y)	/* nothing */
    112 #endif /* WM_DEBUG */
    113 
    114 /*
    115  * Transmit descriptor list size.  Due to errata, we can only have
    116  * 256 hardware descriptors in the ring on < 82544, but we use 4096
    117  * on >= 82544.  We tell the upper layers that they can queue a lot
    118  * of packets, and we go ahead and manage up to 64 (16 for the i82547)
    119  * of them at a time.
    120  *
    121  * We allow up to 256 (!) DMA segments per packet.  Pathological packet
    122  * chains containing many small mbufs have been observed in zero-copy
    123  * situations with jumbo frames.
    124  */
    125 #define	WM_NTXSEGS		256
    126 #define	WM_IFQUEUELEN		256
    127 #define	WM_TXQUEUELEN_MAX	64
    128 #define	WM_TXQUEUELEN_MAX_82547	16
    129 #define	WM_TXQUEUELEN(sc)	((sc)->sc_txnum)
    130 #define	WM_TXQUEUELEN_MASK(sc)	(WM_TXQUEUELEN(sc) - 1)
    131 #define	WM_TXQUEUE_GC(sc)	(WM_TXQUEUELEN(sc) / 8)
    132 #define	WM_NTXDESC_82542	256
    133 #define	WM_NTXDESC_82544	4096
    134 #define	WM_NTXDESC(sc)		((sc)->sc_ntxdesc)
    135 #define	WM_NTXDESC_MASK(sc)	(WM_NTXDESC(sc) - 1)
    136 #define	WM_TXDESCSIZE(sc)	(WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
    137 #define	WM_NEXTTX(sc, x)	(((x) + 1) & WM_NTXDESC_MASK(sc))
    138 #define	WM_NEXTTXS(sc, x)	(((x) + 1) & WM_TXQUEUELEN_MASK(sc))
    139 
    140 #define	WM_MAXTXDMA		round_page(IP_MAXPACKET) /* for TSO */
    141 
    142 /*
    143  * Receive descriptor list size.  We have one Rx buffer for normal
    144  * sized packets.  Jumbo packets consume 5 Rx buffers for a full-sized
    145  * packet.  We allocate 256 receive descriptors, each with a 2k
    146  * buffer (MCLBYTES), which gives us room for 50 jumbo packets.
    147  */
    148 #define	WM_NRXDESC		256
    149 #define	WM_NRXDESC_MASK		(WM_NRXDESC - 1)
    150 #define	WM_NEXTRX(x)		(((x) + 1) & WM_NRXDESC_MASK)
    151 #define	WM_PREVRX(x)		(((x) - 1) & WM_NRXDESC_MASK)
    152 
    153 /*
    154  * Control structures are DMA'd to the i82542 chip.  We allocate them in
    155  * a single clump that maps to a single DMA segment to make serveral things
    156  * easier.
    157  */
    158 struct wm_control_data_82544 {
    159 	/*
    160 	 * The receive descriptors.
    161 	 */
    162 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    163 
    164 	/*
    165 	 * The transmit descriptors.  Put these at the end, because
    166 	 * we might use a smaller number of them.
    167 	 */
    168 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
    169 };
    170 
    171 struct wm_control_data_82542 {
    172 	wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
    173 	wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
    174 };
    175 
    176 #define	WM_CDOFF(x)	offsetof(struct wm_control_data_82544, x)
    177 #define	WM_CDTXOFF(x)	WM_CDOFF(wcd_txdescs[(x)])
    178 #define	WM_CDRXOFF(x)	WM_CDOFF(wcd_rxdescs[(x)])
    179 
    180 /*
    181  * Software state for transmit jobs.
    182  */
    183 struct wm_txsoft {
    184 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    185 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    186 	int txs_firstdesc;		/* first descriptor in packet */
    187 	int txs_lastdesc;		/* last descriptor in packet */
    188 	int txs_ndesc;			/* # of descriptors used */
    189 };
    190 
    191 /*
    192  * Software state for receive buffers.  Each descriptor gets a
    193  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    194  * more than one buffer, we chain them together.
    195  */
    196 struct wm_rxsoft {
    197 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    198 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    199 };
    200 
    201 typedef enum {
    202 	WM_T_unknown		= 0,
    203 	WM_T_82542_2_0,			/* i82542 2.0 (really old) */
    204 	WM_T_82542_2_1,			/* i82542 2.1+ (old) */
    205 	WM_T_82543,			/* i82543 */
    206 	WM_T_82544,			/* i82544 */
    207 	WM_T_82540,			/* i82540 */
    208 	WM_T_82545,			/* i82545 */
    209 	WM_T_82545_3,			/* i82545 3.0+ */
    210 	WM_T_82546,			/* i82546 */
    211 	WM_T_82546_3,			/* i82546 3.0+ */
    212 	WM_T_82541,			/* i82541 */
    213 	WM_T_82541_2,			/* i82541 2.0+ */
    214 	WM_T_82547,			/* i82547 */
    215 	WM_T_82547_2,			/* i82547 2.0+ */
    216 } wm_chip_type;
    217 
    218 /*
    219  * Software state per device.
    220  */
    221 struct wm_softc {
    222 	struct device sc_dev;		/* generic device information */
    223 	bus_space_tag_t sc_st;		/* bus space tag */
    224 	bus_space_handle_t sc_sh;	/* bus space handle */
    225 	bus_space_tag_t sc_iot;		/* I/O space tag */
    226 	bus_space_handle_t sc_ioh;	/* I/O space handle */
    227 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    228 	struct ethercom sc_ethercom;	/* ethernet common data */
    229 	void *sc_sdhook;		/* shutdown hook */
    230 
    231 	wm_chip_type sc_type;		/* chip type */
    232 	int sc_flags;			/* flags; see below */
    233 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    234 	int sc_pcix_offset;		/* PCIX capability register offset */
    235 	int sc_flowflags;		/* 802.3x flow control flags */
    236 
    237 	void *sc_ih;			/* interrupt cookie */
    238 
    239 	int sc_ee_addrbits;		/* EEPROM address bits */
    240 
    241 	struct mii_data sc_mii;		/* MII/media information */
    242 
    243 	struct callout sc_tick_ch;	/* tick callout */
    244 
    245 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    246 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    247 
    248 	int		sc_align_tweak;
    249 
    250 	/*
    251 	 * Software state for the transmit and receive descriptors.
    252 	 */
    253 	int			sc_txnum;	/* must be a power of two */
    254 	struct wm_txsoft	sc_txsoft[WM_TXQUEUELEN_MAX];
    255 	struct wm_rxsoft	sc_rxsoft[WM_NRXDESC];
    256 
    257 	/*
    258 	 * Control data structures.
    259 	 */
    260 	int			sc_ntxdesc;	/* must be a power of two */
    261 	struct wm_control_data_82544 *sc_control_data;
    262 #define	sc_txdescs	sc_control_data->wcd_txdescs
    263 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    264 
    265 #ifdef WM_EVENT_COUNTERS
    266 	/* Event counters. */
    267 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    268 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    269 	struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
    270 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    271 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    272 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    273 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    274 
    275 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    276 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    277 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    278 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    279 	struct evcnt sc_ev_txtso;	/* TCP seg offload out-bound */
    280 	struct evcnt sc_ev_txtsopain;	/* painful header manip. for TSO */
    281 
    282 	struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
    283 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    284 
    285 	struct evcnt sc_ev_tu;		/* Tx underrun */
    286 
    287 	struct evcnt sc_ev_tx_xoff;	/* Tx PAUSE(!0) frames */
    288 	struct evcnt sc_ev_tx_xon;	/* Tx PAUSE(0) frames */
    289 	struct evcnt sc_ev_rx_xoff;	/* Rx PAUSE(!0) frames */
    290 	struct evcnt sc_ev_rx_xon;	/* Rx PAUSE(0) frames */
    291 	struct evcnt sc_ev_rx_macctl;	/* Rx Unsupported */
    292 #endif /* WM_EVENT_COUNTERS */
    293 
    294 	bus_addr_t sc_tdt_reg;		/* offset of TDT register */
    295 
    296 	int	sc_txfree;		/* number of free Tx descriptors */
    297 	int	sc_txnext;		/* next ready Tx descriptor */
    298 
    299 	int	sc_txsfree;		/* number of free Tx jobs */
    300 	int	sc_txsnext;		/* next free Tx job */
    301 	int	sc_txsdirty;		/* dirty Tx jobs */
    302 
    303 	/* These 5 variables are used only on the 82547. */
    304 	int	sc_txfifo_size;		/* Tx FIFO size */
    305 	int	sc_txfifo_head;		/* current head of FIFO */
    306 	uint32_t sc_txfifo_addr;	/* internal address of start of FIFO */
    307 	int	sc_txfifo_stall;	/* Tx FIFO is stalled */
    308 	struct callout sc_txfifo_ch;	/* Tx FIFO stall work-around timer */
    309 
    310 	bus_addr_t sc_rdt_reg;		/* offset of RDT register */
    311 
    312 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    313 	int	sc_rxdiscard;
    314 	int	sc_rxlen;
    315 	struct mbuf *sc_rxhead;
    316 	struct mbuf *sc_rxtail;
    317 	struct mbuf **sc_rxtailp;
    318 
    319 	uint32_t sc_ctrl;		/* prototype CTRL register */
    320 #if 0
    321 	uint32_t sc_ctrl_ext;		/* prototype CTRL_EXT register */
    322 #endif
    323 	uint32_t sc_icr;		/* prototype interrupt bits */
    324 	uint32_t sc_itr;		/* prototype intr throttling reg */
    325 	uint32_t sc_tctl;		/* prototype TCTL register */
    326 	uint32_t sc_rctl;		/* prototype RCTL register */
    327 	uint32_t sc_txcw;		/* prototype TXCW register */
    328 	uint32_t sc_tipg;		/* prototype TIPG register */
    329 	uint32_t sc_fcrtl;		/* prototype FCRTL register */
    330 	uint32_t sc_pba;		/* prototype PBA register */
    331 
    332 	int sc_tbi_linkup;		/* TBI link status */
    333 	int sc_tbi_anstate;		/* autonegotiation state */
    334 
    335 	int sc_mchash_type;		/* multicast filter offset */
    336 
    337 #if NRND > 0
    338 	rndsource_element_t rnd_source;	/* random source */
    339 #endif
    340 };
    341 
    342 #define	WM_RXCHAIN_RESET(sc)						\
    343 do {									\
    344 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    345 	*(sc)->sc_rxtailp = NULL;					\
    346 	(sc)->sc_rxlen = 0;						\
    347 } while (/*CONSTCOND*/0)
    348 
    349 #define	WM_RXCHAIN_LINK(sc, m)						\
    350 do {									\
    351 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    352 	(sc)->sc_rxtailp = &(m)->m_next;				\
    353 } while (/*CONSTCOND*/0)
    354 
    355 /* sc_flags */
    356 #define	WM_F_HAS_MII		0x01	/* has MII */
    357 #define	WM_F_EEPROM_HANDSHAKE	0x02	/* requires EEPROM handshake */
    358 #define	WM_F_EEPROM_SPI		0x04	/* EEPROM is SPI */
    359 #define	WM_F_IOH_VALID		0x10	/* I/O handle is valid */
    360 #define	WM_F_BUS64		0x20	/* bus is 64-bit */
    361 #define	WM_F_PCIX		0x40	/* bus is PCI-X */
    362 #define	WM_F_CSA		0x80	/* bus is CSA */
    363 
    364 #ifdef WM_EVENT_COUNTERS
    365 #define	WM_EVCNT_INCR(ev)	(ev)->ev_count++
    366 #define	WM_EVCNT_ADD(ev, val)	(ev)->ev_count += (val)
    367 #else
    368 #define	WM_EVCNT_INCR(ev)	/* nothing */
    369 #define	WM_EVCNT_ADD(ev, val)	/* nothing */
    370 #endif
    371 
    372 #define	CSR_READ(sc, reg)						\
    373 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    374 #define	CSR_WRITE(sc, reg, val)						\
    375 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    376 #define	CSR_WRITE_FLUSH(sc)						\
    377 	(void) CSR_READ((sc), WMREG_STATUS)
    378 
    379 #define	WM_CDTXADDR(sc, x)	((sc)->sc_cddma + WM_CDTXOFF((x)))
    380 #define	WM_CDRXADDR(sc, x)	((sc)->sc_cddma + WM_CDRXOFF((x)))
    381 
    382 #define	WM_CDTXADDR_LO(sc, x)	(WM_CDTXADDR((sc), (x)) & 0xffffffffU)
    383 #define	WM_CDTXADDR_HI(sc, x)						\
    384 	(sizeof(bus_addr_t) == 8 ?					\
    385 	 (uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
    386 
    387 #define	WM_CDRXADDR_LO(sc, x)	(WM_CDRXADDR((sc), (x)) & 0xffffffffU)
    388 #define	WM_CDRXADDR_HI(sc, x)						\
    389 	(sizeof(bus_addr_t) == 8 ?					\
    390 	 (uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
    391 
    392 #define	WM_CDTXSYNC(sc, x, n, ops)					\
    393 do {									\
    394 	int __x, __n;							\
    395 									\
    396 	__x = (x);							\
    397 	__n = (n);							\
    398 									\
    399 	/* If it will wrap around, sync to the end of the ring. */	\
    400 	if ((__x + __n) > WM_NTXDESC(sc)) {				\
    401 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    402 		    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) *		\
    403 		    (WM_NTXDESC(sc) - __x), (ops));			\
    404 		__n -= (WM_NTXDESC(sc) - __x);				\
    405 		__x = 0;						\
    406 	}								\
    407 									\
    408 	/* Now sync whatever is left. */				\
    409 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    410 	    WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops));	\
    411 } while (/*CONSTCOND*/0)
    412 
    413 #define	WM_CDRXSYNC(sc, x, ops)						\
    414 do {									\
    415 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    416 	   WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops));		\
    417 } while (/*CONSTCOND*/0)
    418 
    419 #define	WM_INIT_RXDESC(sc, x)						\
    420 do {									\
    421 	struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    422 	wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)];		\
    423 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    424 									\
    425 	/*								\
    426 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    427 	 * so that the payload after the Ethernet header is aligned	\
    428 	 * to a 4-byte boundary.					\
    429 	 *								\
    430 	 * XXX BRAINDAMAGE ALERT!					\
    431 	 * The stupid chip uses the same size for every buffer, which	\
    432 	 * is set in the Receive Control register.  We are using the 2K	\
    433 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    434 	 * reason, we can't "scoot" packets longer than the standard	\
    435 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    436 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    437 	 * the upper layer copy the headers.				\
    438 	 */								\
    439 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    440 									\
    441 	wm_set_dma_addr(&__rxd->wrx_addr,				\
    442 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
    443 	__rxd->wrx_len = 0;						\
    444 	__rxd->wrx_cksum = 0;						\
    445 	__rxd->wrx_status = 0;						\
    446 	__rxd->wrx_errors = 0;						\
    447 	__rxd->wrx_special = 0;						\
    448 	WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    449 									\
    450 	CSR_WRITE((sc), (sc)->sc_rdt_reg, (x));				\
    451 } while (/*CONSTCOND*/0)
    452 
    453 static void	wm_start(struct ifnet *);
    454 static void	wm_watchdog(struct ifnet *);
    455 static int	wm_ioctl(struct ifnet *, u_long, caddr_t);
    456 static int	wm_init(struct ifnet *);
    457 static void	wm_stop(struct ifnet *, int);
    458 
    459 static void	wm_shutdown(void *);
    460 
    461 static void	wm_reset(struct wm_softc *);
    462 static void	wm_rxdrain(struct wm_softc *);
    463 static int	wm_add_rxbuf(struct wm_softc *, int);
    464 static int	wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
    465 static void	wm_tick(void *);
    466 
    467 static void	wm_set_filter(struct wm_softc *);
    468 
    469 static int	wm_intr(void *);
    470 static void	wm_txintr(struct wm_softc *);
    471 static void	wm_rxintr(struct wm_softc *);
    472 static void	wm_linkintr(struct wm_softc *, uint32_t);
    473 
    474 static void	wm_tbi_mediainit(struct wm_softc *);
    475 static int	wm_tbi_mediachange(struct ifnet *);
    476 static void	wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
    477 
    478 static void	wm_tbi_set_linkled(struct wm_softc *);
    479 static void	wm_tbi_check_link(struct wm_softc *);
    480 
    481 static void	wm_gmii_reset(struct wm_softc *);
    482 
    483 static int	wm_gmii_i82543_readreg(struct device *, int, int);
    484 static void	wm_gmii_i82543_writereg(struct device *, int, int, int);
    485 
    486 static int	wm_gmii_i82544_readreg(struct device *, int, int);
    487 static void	wm_gmii_i82544_writereg(struct device *, int, int, int);
    488 
    489 static void	wm_gmii_statchg(struct device *);
    490 
    491 static void	wm_gmii_mediainit(struct wm_softc *);
    492 static int	wm_gmii_mediachange(struct ifnet *);
    493 static void	wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
    494 
    495 static int	wm_match(struct device *, struct cfdata *, void *);
    496 static void	wm_attach(struct device *, struct device *, void *);
    497 
    498 CFATTACH_DECL(wm, sizeof(struct wm_softc),
    499     wm_match, wm_attach, NULL, NULL);
    500 
    501 static void	wm_82547_txfifo_stall(void *);
    502 
    503 /*
    504  * Devices supported by this driver.
    505  */
    506 static const struct wm_product {
    507 	pci_vendor_id_t		wmp_vendor;
    508 	pci_product_id_t	wmp_product;
    509 	const char		*wmp_name;
    510 	wm_chip_type		wmp_type;
    511 	int			wmp_flags;
    512 #define	WMP_F_1000X		0x01
    513 #define	WMP_F_1000T		0x02
    514 } wm_products[] = {
    515 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82542,
    516 	  "Intel i82542 1000BASE-X Ethernet",
    517 	  WM_T_82542_2_1,	WMP_F_1000X },
    518 
    519 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_FIBER,
    520 	  "Intel i82543GC 1000BASE-X Ethernet",
    521 	  WM_T_82543,		WMP_F_1000X },
    522 
    523 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82543GC_COPPER,
    524 	  "Intel i82543GC 1000BASE-T Ethernet",
    525 	  WM_T_82543,		WMP_F_1000T },
    526 
    527 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_COPPER,
    528 	  "Intel i82544EI 1000BASE-T Ethernet",
    529 	  WM_T_82544,		WMP_F_1000T },
    530 
    531 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544EI_FIBER,
    532 	  "Intel i82544EI 1000BASE-X Ethernet",
    533 	  WM_T_82544,		WMP_F_1000X },
    534 
    535 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_COPPER,
    536 	  "Intel i82544GC 1000BASE-T Ethernet",
    537 	  WM_T_82544,		WMP_F_1000T },
    538 
    539 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82544GC_LOM,
    540 	  "Intel i82544GC (LOM) 1000BASE-T Ethernet",
    541 	  WM_T_82544,		WMP_F_1000T },
    542 
    543 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM,
    544 	  "Intel i82540EM 1000BASE-T Ethernet",
    545 	  WM_T_82540,		WMP_F_1000T },
    546 
    547 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EM_LOM,
    548 	  "Intel i82540EM (LOM) 1000BASE-T Ethernet",
    549 	  WM_T_82540,		WMP_F_1000T },
    550 
    551 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LOM,
    552 	  "Intel i82540EP 1000BASE-T Ethernet",
    553 	  WM_T_82540,		WMP_F_1000T },
    554 
    555 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP,
    556 	  "Intel i82540EP 1000BASE-T Ethernet",
    557 	  WM_T_82540,		WMP_F_1000T },
    558 
    559 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82540EP_LP,
    560 	  "Intel i82540EP 1000BASE-T Ethernet",
    561 	  WM_T_82540,		WMP_F_1000T },
    562 
    563 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_COPPER,
    564 	  "Intel i82545EM 1000BASE-T Ethernet",
    565 	  WM_T_82545,		WMP_F_1000T },
    566 
    567 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_COPPER,
    568 	  "Intel i82545GM 1000BASE-T Ethernet",
    569 	  WM_T_82545_3,		WMP_F_1000T },
    570 
    571 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_FIBER,
    572 	  "Intel i82545GM 1000BASE-X Ethernet",
    573 	  WM_T_82545_3,		WMP_F_1000X },
    574 #if 0
    575 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545GM_SERDES,
    576 	  "Intel i82545GM Gigabit Ethernet (SERDES)",
    577 	  WM_T_82545_3,		WMP_F_SERDES },
    578 #endif
    579 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_COPPER,
    580 	  "Intel i82546EB 1000BASE-T Ethernet",
    581 	  WM_T_82546,		WMP_F_1000T },
    582 
    583 	{ PCI_VENDOR_INTEL,     PCI_PRODUCT_INTEL_82546EB_QUAD,
    584 	  "Intel i82546EB 1000BASE-T Ethernet",
    585 	  WM_T_82546,		WMP_F_1000T },
    586 
    587 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82545EM_FIBER,
    588 	  "Intel i82545EM 1000BASE-X Ethernet",
    589 	  WM_T_82545,		WMP_F_1000X },
    590 
    591 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546EB_FIBER,
    592 	  "Intel i82546EB 1000BASE-X Ethernet",
    593 	  WM_T_82546,		WMP_F_1000X },
    594 
    595 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_COPPER,
    596 	  "Intel i82546GB 1000BASE-T Ethernet",
    597 	  WM_T_82546_3,		WMP_F_1000T },
    598 
    599 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_FIBER,
    600 	  "Intel i82546GB 1000BASE-X Ethernet",
    601 	  WM_T_82546_3,		WMP_F_1000X },
    602 #if 0
    603 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82546GB_SERDES,
    604 	  "Intel i82546GB Gigabit Ethernet (SERDES)",
    605 	  WM_T_82546_3,		WMP_F_SERDES },
    606 #endif
    607 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI,
    608 	  "Intel i82541EI 1000BASE-T Ethernet",
    609 	  WM_T_82541,		WMP_F_1000T },
    610 
    611 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541EI_MOBILE,
    612 	  "Intel i82541EI Mobile 1000BASE-T Ethernet",
    613 	  WM_T_82541,		WMP_F_1000T },
    614 
    615 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541ER,
    616 	  "Intel i82541ER 1000BASE-T Ethernet",
    617 	  WM_T_82541_2,		WMP_F_1000T },
    618 
    619 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI,
    620 	  "Intel i82541GI 1000BASE-T Ethernet",
    621 	  WM_T_82541_2,		WMP_F_1000T },
    622 
    623 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82541GI_MOBILE,
    624 	  "Intel i82541GI Mobile 1000BASE-T Ethernet",
    625 	  WM_T_82541_2,		WMP_F_1000T },
    626 
    627 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547EI,
    628 	  "Intel i82547EI 1000BASE-T Ethernet",
    629 	  WM_T_82547,		WMP_F_1000T },
    630 
    631 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82547GI,
    632 	  "Intel i82547GI 1000BASE-T Ethernet",
    633 	  WM_T_82547_2,		WMP_F_1000T },
    634 	{ 0,			0,
    635 	  NULL,
    636 	  0,			0 },
    637 };
    638 
    639 #ifdef WM_EVENT_COUNTERS
    640 static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
    641 #endif /* WM_EVENT_COUNTERS */
    642 
    643 #if 0 /* Not currently used */
    644 static __inline uint32_t
    645 wm_io_read(struct wm_softc *sc, int reg)
    646 {
    647 
    648 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    649 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
    650 }
    651 #endif
    652 
    653 static __inline void
    654 wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
    655 {
    656 
    657 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
    658 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
    659 }
    660 
    661 static __inline void
    662 wm_set_dma_addr(__volatile wiseman_addr_t *wa, bus_addr_t v)
    663 {
    664 	wa->wa_low = htole32(v & 0xffffffffU);
    665 	if (sizeof(bus_addr_t) == 8)
    666 		wa->wa_high = htole32((uint64_t) v >> 32);
    667 	else
    668 		wa->wa_high = 0;
    669 }
    670 
    671 static const struct wm_product *
    672 wm_lookup(const struct pci_attach_args *pa)
    673 {
    674 	const struct wm_product *wmp;
    675 
    676 	for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
    677 		if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
    678 		    PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
    679 			return (wmp);
    680 	}
    681 	return (NULL);
    682 }
    683 
    684 static int
    685 wm_match(struct device *parent, struct cfdata *cf, void *aux)
    686 {
    687 	struct pci_attach_args *pa = aux;
    688 
    689 	if (wm_lookup(pa) != NULL)
    690 		return (1);
    691 
    692 	return (0);
    693 }
    694 
    695 static void
    696 wm_attach(struct device *parent, struct device *self, void *aux)
    697 {
    698 	struct wm_softc *sc = (void *) self;
    699 	struct pci_attach_args *pa = aux;
    700 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    701 	pci_chipset_tag_t pc = pa->pa_pc;
    702 	pci_intr_handle_t ih;
    703 	size_t cdata_size;
    704 	const char *intrstr = NULL;
    705 	const char *eetype;
    706 	bus_space_tag_t memt;
    707 	bus_space_handle_t memh;
    708 	bus_dma_segment_t seg;
    709 	int memh_valid;
    710 	int i, rseg, error;
    711 	const struct wm_product *wmp;
    712 	uint8_t enaddr[ETHER_ADDR_LEN];
    713 	uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
    714 	pcireg_t preg, memtype;
    715 	uint32_t reg;
    716 	int pmreg;
    717 
    718 	callout_init(&sc->sc_tick_ch);
    719 
    720 	wmp = wm_lookup(pa);
    721 	if (wmp == NULL) {
    722 		printf("\n");
    723 		panic("wm_attach: impossible");
    724 	}
    725 
    726 	if (pci_dma64_available(pa))
    727 		sc->sc_dmat = pa->pa_dmat64;
    728 	else
    729 		sc->sc_dmat = pa->pa_dmat;
    730 
    731 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    732 	aprint_naive(": Ethernet controller\n");
    733 	aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
    734 
    735 	sc->sc_type = wmp->wmp_type;
    736 	if (sc->sc_type < WM_T_82543) {
    737 		if (preg < 2) {
    738 			aprint_error("%s: i82542 must be at least rev. 2\n",
    739 			    sc->sc_dev.dv_xname);
    740 			return;
    741 		}
    742 		if (preg < 3)
    743 			sc->sc_type = WM_T_82542_2_0;
    744 	}
    745 
    746 	/*
    747 	 * Map the device.  All devices support memory-mapped acccess,
    748 	 * and it is really required for normal operation.
    749 	 */
    750 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
    751 	switch (memtype) {
    752 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    753 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    754 		memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
    755 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    756 		break;
    757 	default:
    758 		memh_valid = 0;
    759 	}
    760 
    761 	if (memh_valid) {
    762 		sc->sc_st = memt;
    763 		sc->sc_sh = memh;
    764 	} else {
    765 		aprint_error("%s: unable to map device registers\n",
    766 		    sc->sc_dev.dv_xname);
    767 		return;
    768 	}
    769 
    770 	/*
    771 	 * In addition, i82544 and later support I/O mapped indirect
    772 	 * register access.  It is not desirable (nor supported in
    773 	 * this driver) to use it for normal operation, though it is
    774 	 * required to work around bugs in some chip versions.
    775 	 */
    776 	if (sc->sc_type >= WM_T_82544) {
    777 		/* First we have to find the I/O BAR. */
    778 		for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
    779 			if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
    780 			    PCI_MAPREG_TYPE_IO)
    781 				break;
    782 		}
    783 		if (i == PCI_MAPREG_END)
    784 			aprint_error("%s: WARNING: unable to find I/O BAR\n",
    785 			    sc->sc_dev.dv_xname);
    786 		else {
    787 			/*
    788 			 * The i8254x doesn't apparently respond when the
    789 			 * I/O BAR is 0, which looks somewhat like it's not
    790 			 * been configured.
    791 			 */
    792 			preg = pci_conf_read(pc, pa->pa_tag, i);
    793 			if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
    794 				aprint_error("%s: WARNING: I/O BAR at zero.\n",
    795 				    sc->sc_dev.dv_xname);
    796 			} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
    797 					0, &sc->sc_iot, &sc->sc_ioh,
    798 					NULL, NULL) == 0) {
    799 				sc->sc_flags |= WM_F_IOH_VALID;
    800 			} else {
    801 				aprint_error("%s: WARNING: unable to map "
    802 				    "I/O space\n", sc->sc_dev.dv_xname);
    803 			}
    804 		}
    805 
    806 	}
    807 
    808 	/* Enable bus mastering.  Disable MWI on the i82542 2.0. */
    809 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    810 	preg |= PCI_COMMAND_MASTER_ENABLE;
    811 	if (sc->sc_type < WM_T_82542_2_1)
    812 		preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
    813 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    814 
    815 	/* Get it out of power save mode, if needed. */
    816 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    817 		preg = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    818 		    PCI_PMCSR_STATE_MASK;
    819 		if (preg == PCI_PMCSR_STATE_D3) {
    820 			/*
    821 			 * The card has lost all configuration data in
    822 			 * this state, so punt.
    823 			 */
    824 			aprint_error("%s: unable to wake from power state D3\n",
    825 			    sc->sc_dev.dv_xname);
    826 			return;
    827 		}
    828 		if (preg != PCI_PMCSR_STATE_D0) {
    829 			aprint_normal("%s: waking up from power state D%d\n",
    830 			    sc->sc_dev.dv_xname, preg);
    831 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    832 			    PCI_PMCSR_STATE_D0);
    833 		}
    834 	}
    835 
    836 	/*
    837 	 * Map and establish our interrupt.
    838 	 */
    839 	if (pci_intr_map(pa, &ih)) {
    840 		aprint_error("%s: unable to map interrupt\n",
    841 		    sc->sc_dev.dv_xname);
    842 		return;
    843 	}
    844 	intrstr = pci_intr_string(pc, ih);
    845 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
    846 	if (sc->sc_ih == NULL) {
    847 		aprint_error("%s: unable to establish interrupt",
    848 		    sc->sc_dev.dv_xname);
    849 		if (intrstr != NULL)
    850 			aprint_normal(" at %s", intrstr);
    851 		aprint_normal("\n");
    852 		return;
    853 	}
    854 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    855 
    856 	/*
    857 	 * Determine a few things about the bus we're connected to.
    858 	 */
    859 	if (sc->sc_type < WM_T_82543) {
    860 		/* We don't really know the bus characteristics here. */
    861 		sc->sc_bus_speed = 33;
    862 	} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
    863 		/*
    864 		 * CSA (Communication Streaming Architecture) is about as fast
    865 		 * a 32-bit 66MHz PCI Bus.
    866 		 */
    867 		sc->sc_flags |= WM_F_CSA;
    868 		sc->sc_bus_speed = 66;
    869 		aprint_verbose("%s: Communication Streaming Architecture\n",
    870 		    sc->sc_dev.dv_xname);
    871 		if (sc->sc_type == WM_T_82547) {
    872 			callout_init(&sc->sc_txfifo_ch);
    873 			callout_setfunc(&sc->sc_txfifo_ch,
    874 					wm_82547_txfifo_stall, sc);
    875 			aprint_verbose("%s: using 82547 Tx FIFO stall "
    876 				       "work-around\n", sc->sc_dev.dv_xname);
    877 		}
    878 	} else {
    879 		reg = CSR_READ(sc, WMREG_STATUS);
    880 		if (reg & STATUS_BUS64)
    881 			sc->sc_flags |= WM_F_BUS64;
    882 		if (sc->sc_type >= WM_T_82544 &&
    883 		    (reg & STATUS_PCIX_MODE) != 0) {
    884 			pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
    885 
    886 			sc->sc_flags |= WM_F_PCIX;
    887 			if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    888 					       PCI_CAP_PCIX,
    889 					       &sc->sc_pcix_offset, NULL) == 0)
    890 				aprint_error("%s: unable to find PCIX "
    891 				    "capability\n", sc->sc_dev.dv_xname);
    892 			else if (sc->sc_type != WM_T_82545_3 &&
    893 				 sc->sc_type != WM_T_82546_3) {
    894 				/*
    895 				 * Work around a problem caused by the BIOS
    896 				 * setting the max memory read byte count
    897 				 * incorrectly.
    898 				 */
    899 				pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
    900 				    sc->sc_pcix_offset + PCI_PCIX_CMD);
    901 				pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
    902 				    sc->sc_pcix_offset + PCI_PCIX_STATUS);
    903 
    904 				bytecnt =
    905 				    (pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
    906 				    PCI_PCIX_CMD_BYTECNT_SHIFT;
    907 				maxb =
    908 				    (pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
    909 				    PCI_PCIX_STATUS_MAXB_SHIFT;
    910 				if (bytecnt > maxb) {
    911 					aprint_verbose("%s: resetting PCI-X "
    912 					    "MMRBC: %d -> %d\n",
    913 					    sc->sc_dev.dv_xname,
    914 					    512 << bytecnt, 512 << maxb);
    915 					pcix_cmd = (pcix_cmd &
    916 					    ~PCI_PCIX_CMD_BYTECNT_MASK) |
    917 					   (maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
    918 					pci_conf_write(pa->pa_pc, pa->pa_tag,
    919 					    sc->sc_pcix_offset + PCI_PCIX_CMD,
    920 					    pcix_cmd);
    921 				}
    922 			}
    923 		}
    924 		/*
    925 		 * The quad port adapter is special; it has a PCIX-PCIX
    926 		 * bridge on the board, and can run the secondary bus at
    927 		 * a higher speed.
    928 		 */
    929 		if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
    930 			sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
    931 								      : 66;
    932 		} else if (sc->sc_flags & WM_F_PCIX) {
    933 			switch (reg & STATUS_PCIXSPD_MASK) {
    934 			case STATUS_PCIXSPD_50_66:
    935 				sc->sc_bus_speed = 66;
    936 				break;
    937 			case STATUS_PCIXSPD_66_100:
    938 				sc->sc_bus_speed = 100;
    939 				break;
    940 			case STATUS_PCIXSPD_100_133:
    941 				sc->sc_bus_speed = 133;
    942 				break;
    943 			default:
    944 				aprint_error(
    945 				    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
    946 				    sc->sc_dev.dv_xname,
    947 				    reg & STATUS_PCIXSPD_MASK);
    948 				sc->sc_bus_speed = 66;
    949 			}
    950 		} else
    951 			sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
    952 		aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
    953 		    (sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
    954 		    (sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
    955 	}
    956 
    957 	/*
    958 	 * Allocate the control data structures, and create and load the
    959 	 * DMA map for it.
    960 	 *
    961 	 * NOTE: All Tx descriptors must be in the same 4G segment of
    962 	 * memory.  So must Rx descriptors.  We simplify by allocating
    963 	 * both sets within the same 4G segment.
    964 	 */
    965 	WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
    966 	    WM_NTXDESC_82542 : WM_NTXDESC_82544;
    967 	cdata_size = sc->sc_type < WM_T_82544 ?
    968 	    sizeof(struct wm_control_data_82542) :
    969 	    sizeof(struct wm_control_data_82544);
    970 	if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
    971 				      (bus_size_t) 0x100000000ULL,
    972 				      &seg, 1, &rseg, 0)) != 0) {
    973 		aprint_error(
    974 		    "%s: unable to allocate control data, error = %d\n",
    975 		    sc->sc_dev.dv_xname, error);
    976 		goto fail_0;
    977 	}
    978 
    979 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
    980 				    (caddr_t *)&sc->sc_control_data, 0)) != 0) {
    981 		aprint_error("%s: unable to map control data, error = %d\n",
    982 		    sc->sc_dev.dv_xname, error);
    983 		goto fail_1;
    984 	}
    985 
    986 	if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
    987 				       0, 0, &sc->sc_cddmamap)) != 0) {
    988 		aprint_error("%s: unable to create control data DMA map, "
    989 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    990 		goto fail_2;
    991 	}
    992 
    993 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    994 				     sc->sc_control_data, cdata_size, NULL,
    995 				     0)) != 0) {
    996 		aprint_error(
    997 		    "%s: unable to load control data DMA map, error = %d\n",
    998 		    sc->sc_dev.dv_xname, error);
    999 		goto fail_3;
   1000 	}
   1001 
   1002 
   1003 	/*
   1004 	 * Create the transmit buffer DMA maps.
   1005 	 */
   1006 	WM_TXQUEUELEN(sc) =
   1007 	    (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
   1008 	    WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
   1009 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1010 		if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
   1011 					       WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
   1012 					  &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1013 			aprint_error("%s: unable to create Tx DMA map %d, "
   1014 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1015 			goto fail_4;
   1016 		}
   1017 	}
   1018 
   1019 	/*
   1020 	 * Create the receive buffer DMA maps.
   1021 	 */
   1022 	for (i = 0; i < WM_NRXDESC; i++) {
   1023 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1024 					       MCLBYTES, 0, 0,
   1025 					  &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1026 			aprint_error("%s: unable to create Rx DMA map %d, "
   1027 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1028 			goto fail_5;
   1029 		}
   1030 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1031 	}
   1032 
   1033 	/*
   1034 	 * Reset the chip to a known state.
   1035 	 */
   1036 	wm_reset(sc);
   1037 
   1038 	/*
   1039 	 * Get some information about the EEPROM.
   1040 	 */
   1041 	if (sc->sc_type >= WM_T_82540)
   1042 		sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
   1043 	if (sc->sc_type <= WM_T_82544)
   1044 		sc->sc_ee_addrbits = 6;
   1045 	else if (sc->sc_type <= WM_T_82546_3) {
   1046 		reg = CSR_READ(sc, WMREG_EECD);
   1047 		if (reg & EECD_EE_SIZE)
   1048 			sc->sc_ee_addrbits = 8;
   1049 		else
   1050 			sc->sc_ee_addrbits = 6;
   1051 	} else if (sc->sc_type <= WM_T_82547_2) {
   1052 		reg = CSR_READ(sc, WMREG_EECD);
   1053 		if (reg & EECD_EE_TYPE) {
   1054 			sc->sc_flags |= WM_F_EEPROM_SPI;
   1055 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1056 		} else
   1057 			sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
   1058 	} else {
   1059 		/* Assume everything else is SPI. */
   1060 		reg = CSR_READ(sc, WMREG_EECD);
   1061 		sc->sc_flags |= WM_F_EEPROM_SPI;
   1062 		sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
   1063 	}
   1064 	if (sc->sc_flags & WM_F_EEPROM_SPI)
   1065 		eetype = "SPI";
   1066 	else
   1067 		eetype = "MicroWire";
   1068 	aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
   1069 	    sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
   1070 	    sc->sc_ee_addrbits, eetype);
   1071 
   1072 	/*
   1073 	 * Read the Ethernet address from the EEPROM.
   1074 	 */
   1075 	if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
   1076 	    sizeof(myea) / sizeof(myea[0]), myea)) {
   1077 		aprint_error("%s: unable to read Ethernet address\n",
   1078 		    sc->sc_dev.dv_xname);
   1079 		return;
   1080 	}
   1081 	enaddr[0] = myea[0] & 0xff;
   1082 	enaddr[1] = myea[0] >> 8;
   1083 	enaddr[2] = myea[1] & 0xff;
   1084 	enaddr[3] = myea[1] >> 8;
   1085 	enaddr[4] = myea[2] & 0xff;
   1086 	enaddr[5] = myea[2] >> 8;
   1087 
   1088 	/*
   1089 	 * Toggle the LSB of the MAC address on the second port
   1090 	 * of the i82546.
   1091 	 */
   1092 	if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3) {
   1093 		if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
   1094 			enaddr[5] ^= 1;
   1095 	}
   1096 
   1097 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
   1098 	    ether_sprintf(enaddr));
   1099 
   1100 	/*
   1101 	 * Read the config info from the EEPROM, and set up various
   1102 	 * bits in the control registers based on their contents.
   1103 	 */
   1104 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
   1105 		aprint_error("%s: unable to read CFG1 from EEPROM\n",
   1106 		    sc->sc_dev.dv_xname);
   1107 		return;
   1108 	}
   1109 	if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
   1110 		aprint_error("%s: unable to read CFG2 from EEPROM\n",
   1111 		    sc->sc_dev.dv_xname);
   1112 		return;
   1113 	}
   1114 	if (sc->sc_type >= WM_T_82544) {
   1115 		if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
   1116 			aprint_error("%s: unable to read SWDPIN from EEPROM\n",
   1117 			    sc->sc_dev.dv_xname);
   1118 			return;
   1119 		}
   1120 	}
   1121 
   1122 	if (cfg1 & EEPROM_CFG1_ILOS)
   1123 		sc->sc_ctrl |= CTRL_ILOS;
   1124 	if (sc->sc_type >= WM_T_82544) {
   1125 		sc->sc_ctrl |=
   1126 		    ((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
   1127 		    CTRL_SWDPIO_SHIFT;
   1128 		sc->sc_ctrl |=
   1129 		    ((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
   1130 		    CTRL_SWDPINS_SHIFT;
   1131 	} else {
   1132 		sc->sc_ctrl |=
   1133 		    ((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
   1134 		    CTRL_SWDPIO_SHIFT;
   1135 	}
   1136 
   1137 #if 0
   1138 	if (sc->sc_type >= WM_T_82544) {
   1139 		if (cfg1 & EEPROM_CFG1_IPS0)
   1140 			sc->sc_ctrl_ext |= CTRL_EXT_IPS;
   1141 		if (cfg1 & EEPROM_CFG1_IPS1)
   1142 			sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
   1143 		sc->sc_ctrl_ext |=
   1144 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
   1145 		    CTRL_EXT_SWDPIO_SHIFT;
   1146 		sc->sc_ctrl_ext |=
   1147 		    ((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
   1148 		    CTRL_EXT_SWDPINS_SHIFT;
   1149 	} else {
   1150 		sc->sc_ctrl_ext |=
   1151 		    ((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
   1152 		    CTRL_EXT_SWDPIO_SHIFT;
   1153 	}
   1154 #endif
   1155 
   1156 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   1157 #if 0
   1158 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   1159 #endif
   1160 
   1161 	/*
   1162 	 * Set up some register offsets that are different between
   1163 	 * the i82542 and the i82543 and later chips.
   1164 	 */
   1165 	if (sc->sc_type < WM_T_82543) {
   1166 		sc->sc_rdt_reg = WMREG_OLD_RDT0;
   1167 		sc->sc_tdt_reg = WMREG_OLD_TDT;
   1168 	} else {
   1169 		sc->sc_rdt_reg = WMREG_RDT;
   1170 		sc->sc_tdt_reg = WMREG_TDT;
   1171 	}
   1172 
   1173 	/*
   1174 	 * Determine if we're TBI or GMII mode, and initialize the
   1175 	 * media structures accordingly.
   1176 	 */
   1177 	if (sc->sc_type < WM_T_82543 ||
   1178 	    (CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
   1179 		if (wmp->wmp_flags & WMP_F_1000T)
   1180 			aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
   1181 			    "product!\n", sc->sc_dev.dv_xname);
   1182 		wm_tbi_mediainit(sc);
   1183 	} else {
   1184 		if (wmp->wmp_flags & WMP_F_1000X)
   1185 			aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
   1186 			    "product!\n", sc->sc_dev.dv_xname);
   1187 		wm_gmii_mediainit(sc);
   1188 	}
   1189 
   1190 	ifp = &sc->sc_ethercom.ec_if;
   1191 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
   1192 	ifp->if_softc = sc;
   1193 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1194 	ifp->if_ioctl = wm_ioctl;
   1195 	ifp->if_start = wm_start;
   1196 	ifp->if_watchdog = wm_watchdog;
   1197 	ifp->if_init = wm_init;
   1198 	ifp->if_stop = wm_stop;
   1199 	IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
   1200 	IFQ_SET_READY(&ifp->if_snd);
   1201 
   1202 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1203 
   1204 	/*
   1205 	 * If we're a i82543 or greater, we can support VLANs.
   1206 	 */
   1207 	if (sc->sc_type >= WM_T_82543)
   1208 		sc->sc_ethercom.ec_capabilities |=
   1209 		    ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
   1210 
   1211 	/*
   1212 	 * We can perform TCPv4 and UDPv4 checkums in-bound.  Only
   1213 	 * on i82543 and later.
   1214 	 */
   1215 	if (sc->sc_type >= WM_T_82543)
   1216 		ifp->if_capabilities |=
   1217 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
   1218 
   1219 	/*
   1220 	 * If we're a i82544 or greater (except i82547), we can do
   1221 	 * TCP segmentation offload.
   1222 	 */
   1223 	if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547)
   1224 		ifp->if_capabilities |= IFCAP_TSOv4;
   1225 
   1226 	/*
   1227 	 * Attach the interface.
   1228 	 */
   1229 	if_attach(ifp);
   1230 	ether_ifattach(ifp, enaddr);
   1231 #if NRND > 0
   1232 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1233 	    RND_TYPE_NET, 0);
   1234 #endif
   1235 
   1236 #ifdef WM_EVENT_COUNTERS
   1237 	/* Attach event counters. */
   1238 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1239 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1240 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1241 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1242 	evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
   1243 	    NULL, sc->sc_dev.dv_xname, "txfifo_stall");
   1244 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
   1245 	    NULL, sc->sc_dev.dv_xname, "txdw");
   1246 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
   1247 	    NULL, sc->sc_dev.dv_xname, "txqe");
   1248 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1249 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1250 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
   1251 	    NULL, sc->sc_dev.dv_xname, "linkintr");
   1252 
   1253 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1254 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1255 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
   1256 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
   1257 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1258 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1259 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
   1260 	    NULL, sc->sc_dev.dv_xname, "txtusum");
   1261 
   1262 	evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
   1263 	    NULL, sc->sc_dev.dv_xname, "txtso");
   1264 	evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
   1265 	    NULL, sc->sc_dev.dv_xname, "txtsopain");
   1266 
   1267 	for (i = 0; i < WM_NTXSEGS; i++) {
   1268 		sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
   1269 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
   1270 		    NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
   1271 	}
   1272 
   1273 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
   1274 	    NULL, sc->sc_dev.dv_xname, "txdrop");
   1275 
   1276 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
   1277 	    NULL, sc->sc_dev.dv_xname, "tu");
   1278 
   1279 	evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
   1280 	    NULL, sc->sc_dev.dv_xname, "tx_xoff");
   1281 	evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
   1282 	    NULL, sc->sc_dev.dv_xname, "tx_xon");
   1283 	evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
   1284 	    NULL, sc->sc_dev.dv_xname, "rx_xoff");
   1285 	evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
   1286 	    NULL, sc->sc_dev.dv_xname, "rx_xon");
   1287 	evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
   1288 	    NULL, sc->sc_dev.dv_xname, "rx_macctl");
   1289 #endif /* WM_EVENT_COUNTERS */
   1290 
   1291 	/*
   1292 	 * Make sure the interface is shutdown during reboot.
   1293 	 */
   1294 	sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
   1295 	if (sc->sc_sdhook == NULL)
   1296 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
   1297 		    sc->sc_dev.dv_xname);
   1298 	return;
   1299 
   1300 	/*
   1301 	 * Free any resources we've allocated during the failed attach
   1302 	 * attempt.  Do this in reverse order and fall through.
   1303 	 */
   1304  fail_5:
   1305 	for (i = 0; i < WM_NRXDESC; i++) {
   1306 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1307 			bus_dmamap_destroy(sc->sc_dmat,
   1308 			    sc->sc_rxsoft[i].rxs_dmamap);
   1309 	}
   1310  fail_4:
   1311 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   1312 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1313 			bus_dmamap_destroy(sc->sc_dmat,
   1314 			    sc->sc_txsoft[i].txs_dmamap);
   1315 	}
   1316 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1317  fail_3:
   1318 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1319  fail_2:
   1320 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1321 	    cdata_size);
   1322  fail_1:
   1323 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1324  fail_0:
   1325 	return;
   1326 }
   1327 
   1328 /*
   1329  * wm_shutdown:
   1330  *
   1331  *	Make sure the interface is stopped at reboot time.
   1332  */
   1333 static void
   1334 wm_shutdown(void *arg)
   1335 {
   1336 	struct wm_softc *sc = arg;
   1337 
   1338 	wm_stop(&sc->sc_ethercom.ec_if, 1);
   1339 }
   1340 
   1341 /*
   1342  * wm_tx_offload:
   1343  *
   1344  *	Set up TCP/IP checksumming parameters for the
   1345  *	specified packet.
   1346  */
   1347 static int
   1348 wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
   1349     uint8_t *fieldsp)
   1350 {
   1351 	struct mbuf *m0 = txs->txs_mbuf;
   1352 	struct livengood_tcpip_ctxdesc *t;
   1353 	uint32_t ipcs, tucs, cmd, cmdlen, seg;
   1354 	struct ether_header *eh;
   1355 	int offset, iphl;
   1356 	uint8_t fields;
   1357 
   1358 	/*
   1359 	 * XXX It would be nice if the mbuf pkthdr had offset
   1360 	 * fields for the protocol headers.
   1361 	 */
   1362 
   1363 	eh = mtod(m0, struct ether_header *);
   1364 	switch (htons(eh->ether_type)) {
   1365 	case ETHERTYPE_IP:
   1366 		offset = ETHER_HDR_LEN;
   1367 		break;
   1368 
   1369 	case ETHERTYPE_VLAN:
   1370 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1371 		break;
   1372 
   1373 	default:
   1374 		/*
   1375 		 * Don't support this protocol or encapsulation.
   1376 		 */
   1377 		*fieldsp = 0;
   1378 		*cmdp = 0;
   1379 		return (0);
   1380 	}
   1381 
   1382 	iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1383 
   1384 	cmd = WTX_CMD_DEXT | WTX_DTYP_D;
   1385 	cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
   1386 	seg = 0;
   1387 	fields = 0;
   1388 
   1389 	if (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
   1390 		int hlen = offset + iphl;
   1391 		WM_EVCNT_INCR(&sc->sc_ev_txtso);
   1392 		if (__predict_false(m0->m_len <
   1393 				    (hlen + sizeof(struct tcphdr)))) {
   1394 			/*
   1395 			 * TCP/IP headers are not in the first mbuf; we need
   1396 			 * to do this the slow and painful way.  Let's just
   1397 			 * hope this doesn't happen very often.
   1398 			 */
   1399 			struct ip ip;
   1400 			struct tcphdr th;
   1401 
   1402 			WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
   1403 
   1404 			m_copydata(m0, offset, sizeof(ip), &ip);
   1405 			m_copydata(m0, hlen, sizeof(th), &th);
   1406 
   1407 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   1408 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   1409 
   1410 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   1411 			    sizeof(th.th_sum), &th.th_sum);
   1412 
   1413 			hlen += th.th_off << 2;
   1414 		} else {
   1415 			/*
   1416 			 * TCP/IP headers are in the first mbuf; we can do
   1417 			 * this the easy way.
   1418 			 */
   1419 			struct ip *ip =
   1420 			    (struct ip *) (mtod(m0, caddr_t) + offset);
   1421 			struct tcphdr *th =
   1422 			    (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
   1423 
   1424 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   1425 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   1426 
   1427 			hlen += th->th_off << 2;
   1428 		}
   1429 
   1430 		cmd |= WTX_TCPIP_CMD_TSE;
   1431 		cmdlen |= WTX_TCPIP_CMD_TSE | WTX_TCPIP_CMD_IP |
   1432 		    WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
   1433 		seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
   1434 		    WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
   1435 	}
   1436 
   1437 	/*
   1438 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1439 	 * offload feature, if we load the context descriptor, we
   1440 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1441 	 */
   1442 
   1443 	ipcs = WTX_TCPIP_IPCSS(offset) |
   1444 	    WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1445 	    WTX_TCPIP_IPCSE(offset + iphl - 1);
   1446 	if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
   1447 		WM_EVCNT_INCR(&sc->sc_ev_txipsum);
   1448 		fields |= WTX_IXSM;
   1449 	}
   1450 
   1451 	offset += iphl;
   1452 
   1453 	if (m0->m_pkthdr.csum_flags &
   1454 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
   1455 		WM_EVCNT_INCR(&sc->sc_ev_txtusum);
   1456 		fields |= WTX_TXSM;
   1457 		tucs = WTX_TCPIP_TUCSS(offset) |
   1458 		   WTX_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
   1459 		   WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1460 	} else {
   1461 		/* Just initialize it to a valid TCP context. */
   1462 		tucs = WTX_TCPIP_TUCSS(offset) |
   1463 		    WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1464 		    WTX_TCPIP_TUCSE(0) /* rest of packet */;
   1465 	}
   1466 
   1467 	/* Fill in the context descriptor. */
   1468 	t = (struct livengood_tcpip_ctxdesc *)
   1469 	    &sc->sc_txdescs[sc->sc_txnext];
   1470 	t->tcpip_ipcs = htole32(ipcs);
   1471 	t->tcpip_tucs = htole32(tucs);
   1472 	t->tcpip_cmdlen = htole32(cmdlen);
   1473 	t->tcpip_seg = htole32(seg);
   1474 	WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1475 
   1476 	sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
   1477 	txs->txs_ndesc++;
   1478 
   1479 	*cmdp = cmd;
   1480 	*fieldsp = fields;
   1481 
   1482 	return (0);
   1483 }
   1484 
   1485 static void
   1486 wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
   1487 {
   1488 	struct mbuf *m;
   1489 	int i;
   1490 
   1491 	log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
   1492 	for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
   1493 		log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
   1494 		    "m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
   1495 		    m->m_data, m->m_len, m->m_flags);
   1496 	log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
   1497 	    i, i == 1 ? "" : "s");
   1498 }
   1499 
   1500 /*
   1501  * wm_82547_txfifo_stall:
   1502  *
   1503  *	Callout used to wait for the 82547 Tx FIFO to drain,
   1504  *	reset the FIFO pointers, and restart packet transmission.
   1505  */
   1506 static void
   1507 wm_82547_txfifo_stall(void *arg)
   1508 {
   1509 	struct wm_softc *sc = arg;
   1510 	int s;
   1511 
   1512 	s = splnet();
   1513 
   1514 	if (sc->sc_txfifo_stall) {
   1515 		if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
   1516 		    CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
   1517 		    CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
   1518 			/*
   1519 			 * Packets have drained.  Stop transmitter, reset
   1520 			 * FIFO pointers, restart transmitter, and kick
   1521 			 * the packet queue.
   1522 			 */
   1523 			uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
   1524 			CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
   1525 			CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
   1526 			CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
   1527 			CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
   1528 			CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
   1529 			CSR_WRITE(sc, WMREG_TCTL, tctl);
   1530 			CSR_WRITE_FLUSH(sc);
   1531 
   1532 			sc->sc_txfifo_head = 0;
   1533 			sc->sc_txfifo_stall = 0;
   1534 			wm_start(&sc->sc_ethercom.ec_if);
   1535 		} else {
   1536 			/*
   1537 			 * Still waiting for packets to drain; try again in
   1538 			 * another tick.
   1539 			 */
   1540 			callout_schedule(&sc->sc_txfifo_ch, 1);
   1541 		}
   1542 	}
   1543 
   1544 	splx(s);
   1545 }
   1546 
   1547 /*
   1548  * wm_82547_txfifo_bugchk:
   1549  *
   1550  *	Check for bug condition in the 82547 Tx FIFO.  We need to
   1551  *	prevent enqueueing a packet that would wrap around the end
   1552  *	if the Tx FIFO ring buffer, otherwise the chip will croak.
   1553  *
   1554  *	We do this by checking the amount of space before the end
   1555  *	of the Tx FIFO buffer.  If the packet will not fit, we "stall"
   1556  *	the Tx FIFO, wait for all remaining packets to drain, reset
   1557  *	the internal FIFO pointers to the beginning, and restart
   1558  *	transmission on the interface.
   1559  */
   1560 #define	WM_FIFO_HDR		0x10
   1561 #define	WM_82547_PAD_LEN	0x3e0
   1562 static int
   1563 wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
   1564 {
   1565 	int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
   1566 	int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
   1567 
   1568 	/* Just return if already stalled. */
   1569 	if (sc->sc_txfifo_stall)
   1570 		return (1);
   1571 
   1572 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1573 		/* Stall only occurs in half-duplex mode. */
   1574 		goto send_packet;
   1575 	}
   1576 
   1577 	if (len >= WM_82547_PAD_LEN + space) {
   1578 		sc->sc_txfifo_stall = 1;
   1579 		callout_schedule(&sc->sc_txfifo_ch, 1);
   1580 		return (1);
   1581 	}
   1582 
   1583  send_packet:
   1584 	sc->sc_txfifo_head += len;
   1585 	if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
   1586 		sc->sc_txfifo_head -= sc->sc_txfifo_size;
   1587 
   1588 	return (0);
   1589 }
   1590 
   1591 /*
   1592  * wm_start:		[ifnet interface function]
   1593  *
   1594  *	Start packet transmission on the interface.
   1595  */
   1596 static void
   1597 wm_start(struct ifnet *ifp)
   1598 {
   1599 	struct wm_softc *sc = ifp->if_softc;
   1600 	struct mbuf *m0;
   1601 #if 0 /* XXXJRT */
   1602 	struct m_tag *mtag;
   1603 #endif
   1604 	struct wm_txsoft *txs;
   1605 	bus_dmamap_t dmamap;
   1606 	int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
   1607 	bus_addr_t curaddr;
   1608 	bus_size_t seglen, curlen;
   1609 	uint32_t cksumcmd;
   1610 	uint8_t cksumfields;
   1611 
   1612 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1613 		return;
   1614 
   1615 	/*
   1616 	 * Remember the previous number of free descriptors.
   1617 	 */
   1618 	ofree = sc->sc_txfree;
   1619 
   1620 	/*
   1621 	 * Loop through the send queue, setting up transmit descriptors
   1622 	 * until we drain the queue, or use up all available transmit
   1623 	 * descriptors.
   1624 	 */
   1625 	for (;;) {
   1626 		/* Grab a packet off the queue. */
   1627 		IFQ_POLL(&ifp->if_snd, m0);
   1628 		if (m0 == NULL)
   1629 			break;
   1630 
   1631 		DPRINTF(WM_DEBUG_TX,
   1632 		    ("%s: TX: have packet to transmit: %p\n",
   1633 		    sc->sc_dev.dv_xname, m0));
   1634 
   1635 		/* Get a work queue entry. */
   1636 		if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
   1637 			wm_txintr(sc);
   1638 			if (sc->sc_txsfree == 0) {
   1639 				DPRINTF(WM_DEBUG_TX,
   1640 				    ("%s: TX: no free job descriptors\n",
   1641 					sc->sc_dev.dv_xname));
   1642 				WM_EVCNT_INCR(&sc->sc_ev_txsstall);
   1643 				break;
   1644 			}
   1645 		}
   1646 
   1647 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1648 		dmamap = txs->txs_dmamap;
   1649 
   1650 		use_tso = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   1651 
   1652 		/*
   1653 		 * So says the Linux driver:
   1654 		 * The controller does a simple calculation to make sure
   1655 		 * there is enough room in the FIFO before initiating the
   1656 		 * DMA for each buffer.  The calc is:
   1657 		 *	4 = ceil(buffer len / MSS)
   1658 		 * To make sure we don't overrun the FIFO, adjust the max
   1659 		 * buffer len if the MSS drops.
   1660 		 */
   1661 		dmamap->dm_maxsegsz =
   1662 		    (use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
   1663 		    ? m0->m_pkthdr.segsz << 2
   1664 		    : WTX_MAX_LEN;
   1665 
   1666 		/*
   1667 		 * Load the DMA map.  If this fails, the packet either
   1668 		 * didn't fit in the allotted number of segments, or we
   1669 		 * were short on resources.  For the too-many-segments
   1670 		 * case, we simply report an error and drop the packet,
   1671 		 * since we can't sanely copy a jumbo packet to a single
   1672 		 * buffer.
   1673 		 */
   1674 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1675 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1676 		if (error) {
   1677 			if (error == EFBIG) {
   1678 				WM_EVCNT_INCR(&sc->sc_ev_txdrop);
   1679 				log(LOG_ERR, "%s: Tx packet consumes too many "
   1680 				    "DMA segments, dropping...\n",
   1681 				    sc->sc_dev.dv_xname);
   1682 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1683 				wm_dump_mbuf_chain(sc, m0);
   1684 				m_freem(m0);
   1685 				continue;
   1686 			}
   1687 			/*
   1688 			 * Short on resources, just stop for now.
   1689 			 */
   1690 			DPRINTF(WM_DEBUG_TX,
   1691 			    ("%s: TX: dmamap load failed: %d\n",
   1692 			    sc->sc_dev.dv_xname, error));
   1693 			break;
   1694 		}
   1695 
   1696 		segs_needed = dmamap->dm_nsegs;
   1697 		if (use_tso) {
   1698 			/* For sentinel descriptor; see below. */
   1699 			segs_needed++;
   1700 		}
   1701 
   1702 		/*
   1703 		 * Ensure we have enough descriptors free to describe
   1704 		 * the packet.  Note, we always reserve one descriptor
   1705 		 * at the end of the ring due to the semantics of the
   1706 		 * TDT register, plus one more in the event we need
   1707 		 * to load offload context.
   1708 		 */
   1709 		if (segs_needed > sc->sc_txfree - 2) {
   1710 			/*
   1711 			 * Not enough free descriptors to transmit this
   1712 			 * packet.  We haven't committed anything yet,
   1713 			 * so just unload the DMA map, put the packet
   1714 			 * pack on the queue, and punt.  Notify the upper
   1715 			 * layer that there are no more slots left.
   1716 			 */
   1717 			DPRINTF(WM_DEBUG_TX,
   1718 			    ("%s: TX: need %d (%) descriptors, have %d\n",
   1719 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
   1720 			    sc->sc_txfree - 1));
   1721 			ifp->if_flags |= IFF_OACTIVE;
   1722 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1723 			WM_EVCNT_INCR(&sc->sc_ev_txdstall);
   1724 			break;
   1725 		}
   1726 
   1727 		/*
   1728 		 * Check for 82547 Tx FIFO bug.  We need to do this
   1729 		 * once we know we can transmit the packet, since we
   1730 		 * do some internal FIFO space accounting here.
   1731 		 */
   1732 		if (sc->sc_type == WM_T_82547 &&
   1733 		    wm_82547_txfifo_bugchk(sc, m0)) {
   1734 			DPRINTF(WM_DEBUG_TX,
   1735 			    ("%s: TX: 82547 Tx FIFO bug detected\n",
   1736 			    sc->sc_dev.dv_xname));
   1737 			ifp->if_flags |= IFF_OACTIVE;
   1738 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1739 			WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
   1740 			break;
   1741 		}
   1742 
   1743 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1744 
   1745 		/*
   1746 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1747 		 */
   1748 
   1749 		DPRINTF(WM_DEBUG_TX,
   1750 		    ("%s: TX: packet has %d (%d) DMA segments\n",
   1751 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
   1752 
   1753 		WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1754 
   1755 		/*
   1756 		 * Store a pointer to the packet so that we can free it
   1757 		 * later.
   1758 		 *
   1759 		 * Initially, we consider the number of descriptors the
   1760 		 * packet uses the number of DMA segments.  This may be
   1761 		 * incremented by 1 if we do checksum offload (a descriptor
   1762 		 * is used to set the checksum context).
   1763 		 */
   1764 		txs->txs_mbuf = m0;
   1765 		txs->txs_firstdesc = sc->sc_txnext;
   1766 		txs->txs_ndesc = segs_needed;
   1767 
   1768 		/* Set up offload parameters for this packet. */
   1769 		if (m0->m_pkthdr.csum_flags &
   1770 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1771 			if (wm_tx_offload(sc, txs, &cksumcmd,
   1772 					  &cksumfields) != 0) {
   1773 				/* Error message already displayed. */
   1774 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1775 				continue;
   1776 			}
   1777 		} else {
   1778 			cksumcmd = 0;
   1779 			cksumfields = 0;
   1780 		}
   1781 
   1782 		cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
   1783 
   1784 		/* Sync the DMA map. */
   1785 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1786 		    BUS_DMASYNC_PREWRITE);
   1787 
   1788 		/*
   1789 		 * Initialize the transmit descriptor.
   1790 		 */
   1791 		for (nexttx = sc->sc_txnext, seg = 0;
   1792 		     seg < dmamap->dm_nsegs; seg++) {
   1793 			for (seglen = dmamap->dm_segs[seg].ds_len,
   1794 			     curaddr = dmamap->dm_segs[seg].ds_addr;
   1795 			     seglen != 0;
   1796 			     curaddr += curlen, seglen -= curlen,
   1797 			     nexttx = WM_NEXTTX(sc, nexttx)) {
   1798 				curlen = seglen;
   1799 
   1800 				/*
   1801 				 * So says the Linux driver:
   1802 				 * Work around for premature descriptor
   1803 				 * write-backs in TSO mode.  Append a
   1804 				 * 4-byte sentinel descriptor.
   1805 				 */
   1806 				if (use_tso &&
   1807 				    seg == dmamap->dm_nsegs - 1 &&
   1808 				    curlen > 8)
   1809 					curlen -= 4;
   1810 
   1811 				wm_set_dma_addr(
   1812 				    &sc->sc_txdescs[nexttx].wtx_addr,
   1813 				    curaddr);
   1814 				sc->sc_txdescs[nexttx].wtx_cmdlen =
   1815 				    htole32(cksumcmd | curlen);
   1816 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
   1817 				    0;
   1818 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
   1819 				    cksumfields;
   1820 				sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
   1821 				lasttx = nexttx;
   1822 
   1823 				DPRINTF(WM_DEBUG_TX,
   1824 				    ("%s: TX: desc %d: low 0x%08x, "
   1825 				     "len 0x%04x\n",
   1826 				    sc->sc_dev.dv_xname, nexttx,
   1827 				    curaddr & 0xffffffffU, curlen, curlen));
   1828 			}
   1829 		}
   1830 
   1831 		KASSERT(lasttx != -1);
   1832 
   1833 		/*
   1834 		 * Set up the command byte on the last descriptor of
   1835 		 * the packet.  If we're in the interrupt delay window,
   1836 		 * delay the interrupt.
   1837 		 */
   1838 		sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1839 		    htole32(WTX_CMD_EOP | WTX_CMD_RS);
   1840 
   1841 #if 0 /* XXXJRT */
   1842 		/*
   1843 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1844 		 * up the descriptor to encapsulate the packet for us.
   1845 		 *
   1846 		 * This is only valid on the last descriptor of the packet.
   1847 		 */
   1848 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   1849 			sc->sc_txdescs[lasttx].wtx_cmdlen |=
   1850 			    htole32(WTX_CMD_VLE);
   1851 			sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
   1852 			    = htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
   1853 		}
   1854 #endif /* XXXJRT */
   1855 
   1856 		txs->txs_lastdesc = lasttx;
   1857 
   1858 		DPRINTF(WM_DEBUG_TX,
   1859 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   1860 		    lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
   1861 
   1862 		/* Sync the descriptors we're using. */
   1863 		WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
   1864 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1865 
   1866 		/* Give the packet to the chip. */
   1867 		CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
   1868 
   1869 		DPRINTF(WM_DEBUG_TX,
   1870 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   1871 
   1872 		DPRINTF(WM_DEBUG_TX,
   1873 		    ("%s: TX: finished transmitting packet, job %d\n",
   1874 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   1875 
   1876 		/* Advance the tx pointer. */
   1877 		sc->sc_txfree -= txs->txs_ndesc;
   1878 		sc->sc_txnext = nexttx;
   1879 
   1880 		sc->sc_txsfree--;
   1881 		sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
   1882 
   1883 #if NBPFILTER > 0
   1884 		/* Pass the packet to any BPF listeners. */
   1885 		if (ifp->if_bpf)
   1886 			bpf_mtap(ifp->if_bpf, m0);
   1887 #endif /* NBPFILTER > 0 */
   1888 	}
   1889 
   1890 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1891 		/* No more slots; notify upper layer. */
   1892 		ifp->if_flags |= IFF_OACTIVE;
   1893 	}
   1894 
   1895 	if (sc->sc_txfree != ofree) {
   1896 		/* Set a watchdog timer in case the chip flakes out. */
   1897 		ifp->if_timer = 5;
   1898 	}
   1899 }
   1900 
   1901 /*
   1902  * wm_watchdog:		[ifnet interface function]
   1903  *
   1904  *	Watchdog timer handler.
   1905  */
   1906 static void
   1907 wm_watchdog(struct ifnet *ifp)
   1908 {
   1909 	struct wm_softc *sc = ifp->if_softc;
   1910 
   1911 	/*
   1912 	 * Since we're using delayed interrupts, sweep up
   1913 	 * before we report an error.
   1914 	 */
   1915 	wm_txintr(sc);
   1916 
   1917 	if (sc->sc_txfree != WM_NTXDESC(sc)) {
   1918 		log(LOG_ERR,
   1919 		    "%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1920 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   1921 		    sc->sc_txnext);
   1922 		ifp->if_oerrors++;
   1923 
   1924 		/* Reset the interface. */
   1925 		(void) wm_init(ifp);
   1926 	}
   1927 
   1928 	/* Try to get more packets going. */
   1929 	wm_start(ifp);
   1930 }
   1931 
   1932 /*
   1933  * wm_ioctl:		[ifnet interface function]
   1934  *
   1935  *	Handle control requests from the operator.
   1936  */
   1937 static int
   1938 wm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1939 {
   1940 	struct wm_softc *sc = ifp->if_softc;
   1941 	struct ifreq *ifr = (struct ifreq *) data;
   1942 	int s, error;
   1943 
   1944 	s = splnet();
   1945 
   1946 	switch (cmd) {
   1947 	case SIOCSIFMEDIA:
   1948 	case SIOCGIFMEDIA:
   1949 		/* Flow control requires full-duplex mode. */
   1950 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1951 		    (ifr->ifr_media & IFM_FDX) == 0)
   1952 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1953 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1954 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1955 				/* We can do both TXPAUSE and RXPAUSE. */
   1956 				ifr->ifr_media |=
   1957 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1958 			}
   1959 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1960 		}
   1961 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1962 		break;
   1963 	default:
   1964 		error = ether_ioctl(ifp, cmd, data);
   1965 		if (error == ENETRESET) {
   1966 			/*
   1967 			 * Multicast list has changed; set the hardware filter
   1968 			 * accordingly.
   1969 			 */
   1970 			if (ifp->if_flags & IFF_RUNNING)
   1971 				wm_set_filter(sc);
   1972 			error = 0;
   1973 		}
   1974 		break;
   1975 	}
   1976 
   1977 	/* Try to get more packets going. */
   1978 	wm_start(ifp);
   1979 
   1980 	splx(s);
   1981 	return (error);
   1982 }
   1983 
   1984 /*
   1985  * wm_intr:
   1986  *
   1987  *	Interrupt service routine.
   1988  */
   1989 static int
   1990 wm_intr(void *arg)
   1991 {
   1992 	struct wm_softc *sc = arg;
   1993 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1994 	uint32_t icr;
   1995 	int wantinit, handled = 0;
   1996 
   1997 	for (wantinit = 0; wantinit == 0;) {
   1998 		icr = CSR_READ(sc, WMREG_ICR);
   1999 		if ((icr & sc->sc_icr) == 0)
   2000 			break;
   2001 
   2002 #if 0 /*NRND > 0*/
   2003 		if (RND_ENABLED(&sc->rnd_source))
   2004 			rnd_add_uint32(&sc->rnd_source, icr);
   2005 #endif
   2006 
   2007 		handled = 1;
   2008 
   2009 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   2010 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   2011 			DPRINTF(WM_DEBUG_RX,
   2012 			    ("%s: RX: got Rx intr 0x%08x\n",
   2013 			    sc->sc_dev.dv_xname,
   2014 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   2015 			WM_EVCNT_INCR(&sc->sc_ev_rxintr);
   2016 		}
   2017 #endif
   2018 		wm_rxintr(sc);
   2019 
   2020 #if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
   2021 		if (icr & ICR_TXDW) {
   2022 			DPRINTF(WM_DEBUG_TX,
   2023 			    ("%s: TX: got TXDW interrupt\n",
   2024 			    sc->sc_dev.dv_xname));
   2025 			WM_EVCNT_INCR(&sc->sc_ev_txdw);
   2026 		}
   2027 #endif
   2028 		wm_txintr(sc);
   2029 
   2030 		if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
   2031 			WM_EVCNT_INCR(&sc->sc_ev_linkintr);
   2032 			wm_linkintr(sc, icr);
   2033 		}
   2034 
   2035 		if (icr & ICR_RXO) {
   2036 			log(LOG_WARNING, "%s: Receive overrun\n",
   2037 			    sc->sc_dev.dv_xname);
   2038 			wantinit = 1;
   2039 		}
   2040 	}
   2041 
   2042 	if (handled) {
   2043 		if (wantinit)
   2044 			wm_init(ifp);
   2045 
   2046 		/* Try to get more packets going. */
   2047 		wm_start(ifp);
   2048 	}
   2049 
   2050 	return (handled);
   2051 }
   2052 
   2053 /*
   2054  * wm_txintr:
   2055  *
   2056  *	Helper; handle transmit interrupts.
   2057  */
   2058 static void
   2059 wm_txintr(struct wm_softc *sc)
   2060 {
   2061 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2062 	struct wm_txsoft *txs;
   2063 	uint8_t status;
   2064 	int i;
   2065 
   2066 	ifp->if_flags &= ~IFF_OACTIVE;
   2067 
   2068 	/*
   2069 	 * Go through the Tx list and free mbufs for those
   2070 	 * frames which have been transmitted.
   2071 	 */
   2072 	for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
   2073 	     i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
   2074 		txs = &sc->sc_txsoft[i];
   2075 
   2076 		DPRINTF(WM_DEBUG_TX,
   2077 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   2078 
   2079 		WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   2080 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2081 
   2082 		status =
   2083 		    sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
   2084 		if ((status & WTX_ST_DD) == 0) {
   2085 			WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   2086 			    BUS_DMASYNC_PREREAD);
   2087 			break;
   2088 		}
   2089 
   2090 		DPRINTF(WM_DEBUG_TX,
   2091 		    ("%s: TX: job %d done: descs %d..%d\n",
   2092 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   2093 		    txs->txs_lastdesc));
   2094 
   2095 		/*
   2096 		 * XXX We should probably be using the statistics
   2097 		 * XXX registers, but I don't know if they exist
   2098 		 * XXX on chips before the i82544.
   2099 		 */
   2100 
   2101 #ifdef WM_EVENT_COUNTERS
   2102 		if (status & WTX_ST_TU)
   2103 			WM_EVCNT_INCR(&sc->sc_ev_tu);
   2104 #endif /* WM_EVENT_COUNTERS */
   2105 
   2106 		if (status & (WTX_ST_EC|WTX_ST_LC)) {
   2107 			ifp->if_oerrors++;
   2108 			if (status & WTX_ST_LC)
   2109 				log(LOG_WARNING, "%s: late collision\n",
   2110 				    sc->sc_dev.dv_xname);
   2111 			else if (status & WTX_ST_EC) {
   2112 				ifp->if_collisions += 16;
   2113 				log(LOG_WARNING, "%s: excessive collisions\n",
   2114 				    sc->sc_dev.dv_xname);
   2115 			}
   2116 		} else
   2117 			ifp->if_opackets++;
   2118 
   2119 		sc->sc_txfree += txs->txs_ndesc;
   2120 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   2121 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2122 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2123 		m_freem(txs->txs_mbuf);
   2124 		txs->txs_mbuf = NULL;
   2125 	}
   2126 
   2127 	/* Update the dirty transmit buffer pointer. */
   2128 	sc->sc_txsdirty = i;
   2129 	DPRINTF(WM_DEBUG_TX,
   2130 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   2131 
   2132 	/*
   2133 	 * If there are no more pending transmissions, cancel the watchdog
   2134 	 * timer.
   2135 	 */
   2136 	if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
   2137 		ifp->if_timer = 0;
   2138 }
   2139 
   2140 /*
   2141  * wm_rxintr:
   2142  *
   2143  *	Helper; handle receive interrupts.
   2144  */
   2145 static void
   2146 wm_rxintr(struct wm_softc *sc)
   2147 {
   2148 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2149 	struct wm_rxsoft *rxs;
   2150 	struct mbuf *m;
   2151 	int i, len;
   2152 	uint8_t status, errors;
   2153 
   2154 	for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
   2155 		rxs = &sc->sc_rxsoft[i];
   2156 
   2157 		DPRINTF(WM_DEBUG_RX,
   2158 		    ("%s: RX: checking descriptor %d\n",
   2159 		    sc->sc_dev.dv_xname, i));
   2160 
   2161 		WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2162 
   2163 		status = sc->sc_rxdescs[i].wrx_status;
   2164 		errors = sc->sc_rxdescs[i].wrx_errors;
   2165 		len = le16toh(sc->sc_rxdescs[i].wrx_len);
   2166 
   2167 		if ((status & WRX_ST_DD) == 0) {
   2168 			/*
   2169 			 * We have processed all of the receive descriptors.
   2170 			 */
   2171 			WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   2172 			break;
   2173 		}
   2174 
   2175 		if (__predict_false(sc->sc_rxdiscard)) {
   2176 			DPRINTF(WM_DEBUG_RX,
   2177 			    ("%s: RX: discarding contents of descriptor %d\n",
   2178 			    sc->sc_dev.dv_xname, i));
   2179 			WM_INIT_RXDESC(sc, i);
   2180 			if (status & WRX_ST_EOP) {
   2181 				/* Reset our state. */
   2182 				DPRINTF(WM_DEBUG_RX,
   2183 				    ("%s: RX: resetting rxdiscard -> 0\n",
   2184 				    sc->sc_dev.dv_xname));
   2185 				sc->sc_rxdiscard = 0;
   2186 			}
   2187 			continue;
   2188 		}
   2189 
   2190 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2191 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2192 
   2193 		m = rxs->rxs_mbuf;
   2194 
   2195 		/*
   2196 		 * Add a new receive buffer to the ring.
   2197 		 */
   2198 		if (wm_add_rxbuf(sc, i) != 0) {
   2199 			/*
   2200 			 * Failed, throw away what we've done so
   2201 			 * far, and discard the rest of the packet.
   2202 			 */
   2203 			ifp->if_ierrors++;
   2204 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2205 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2206 			WM_INIT_RXDESC(sc, i);
   2207 			if ((status & WRX_ST_EOP) == 0)
   2208 				sc->sc_rxdiscard = 1;
   2209 			if (sc->sc_rxhead != NULL)
   2210 				m_freem(sc->sc_rxhead);
   2211 			WM_RXCHAIN_RESET(sc);
   2212 			DPRINTF(WM_DEBUG_RX,
   2213 			    ("%s: RX: Rx buffer allocation failed, "
   2214 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   2215 			    sc->sc_rxdiscard ? " (discard)" : ""));
   2216 			continue;
   2217 		}
   2218 
   2219 		WM_RXCHAIN_LINK(sc, m);
   2220 
   2221 		m->m_len = len;
   2222 
   2223 		DPRINTF(WM_DEBUG_RX,
   2224 		    ("%s: RX: buffer at %p len %d\n",
   2225 		    sc->sc_dev.dv_xname, m->m_data, len));
   2226 
   2227 		/*
   2228 		 * If this is not the end of the packet, keep
   2229 		 * looking.
   2230 		 */
   2231 		if ((status & WRX_ST_EOP) == 0) {
   2232 			sc->sc_rxlen += len;
   2233 			DPRINTF(WM_DEBUG_RX,
   2234 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   2235 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   2236 			continue;
   2237 		}
   2238 
   2239 		/*
   2240 		 * Okay, we have the entire packet now.  The chip is
   2241 		 * configured to include the FCS (not all chips can
   2242 		 * be configured to strip it), so we need to trim it.
   2243 		 */
   2244 		m->m_len -= ETHER_CRC_LEN;
   2245 
   2246 		*sc->sc_rxtailp = NULL;
   2247 		m = sc->sc_rxhead;
   2248 		len = m->m_len + sc->sc_rxlen;
   2249 
   2250 		WM_RXCHAIN_RESET(sc);
   2251 
   2252 		DPRINTF(WM_DEBUG_RX,
   2253 		    ("%s: RX: have entire packet, len -> %d\n",
   2254 		    sc->sc_dev.dv_xname, len));
   2255 
   2256 		/*
   2257 		 * If an error occurred, update stats and drop the packet.
   2258 		 */
   2259 		if (errors &
   2260 		     (WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
   2261 			ifp->if_ierrors++;
   2262 			if (errors & WRX_ER_SE)
   2263 				log(LOG_WARNING, "%s: symbol error\n",
   2264 				    sc->sc_dev.dv_xname);
   2265 			else if (errors & WRX_ER_SEQ)
   2266 				log(LOG_WARNING, "%s: receive sequence error\n",
   2267 				    sc->sc_dev.dv_xname);
   2268 			else if (errors & WRX_ER_CE)
   2269 				log(LOG_WARNING, "%s: CRC error\n",
   2270 				    sc->sc_dev.dv_xname);
   2271 			m_freem(m);
   2272 			continue;
   2273 		}
   2274 
   2275 		/*
   2276 		 * No errors.  Receive the packet.
   2277 		 */
   2278 		m->m_pkthdr.rcvif = ifp;
   2279 		m->m_pkthdr.len = len;
   2280 
   2281 #if 0 /* XXXJRT */
   2282 		/*
   2283 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2284 		 * for us.  Associate the tag with the packet.
   2285 		 */
   2286 		if ((status & WRX_ST_VP) != 0) {
   2287 			VLAN_INPUT_TAG(ifp, m,
   2288 			    le16toh(sc->sc_rxdescs[i].wrx_special,
   2289 			    continue);
   2290 		}
   2291 #endif /* XXXJRT */
   2292 
   2293 		/*
   2294 		 * Set up checksum info for this packet.
   2295 		 */
   2296 		if (status & WRX_ST_IPCS) {
   2297 			WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2298 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2299 			if (errors & WRX_ER_IPE)
   2300 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2301 		}
   2302 		if (status & WRX_ST_TCPCS) {
   2303 			/*
   2304 			 * Note: we don't know if this was TCP or UDP,
   2305 			 * so we just set both bits, and expect the
   2306 			 * upper layers to deal.
   2307 			 */
   2308 			WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
   2309 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   2310 			if (errors & WRX_ER_TCPE)
   2311 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   2312 		}
   2313 
   2314 		ifp->if_ipackets++;
   2315 
   2316 #if NBPFILTER > 0
   2317 		/* Pass this up to any BPF listeners. */
   2318 		if (ifp->if_bpf)
   2319 			bpf_mtap(ifp->if_bpf, m);
   2320 #endif /* NBPFILTER > 0 */
   2321 
   2322 		/* Pass it on. */
   2323 		(*ifp->if_input)(ifp, m);
   2324 	}
   2325 
   2326 	/* Update the receive pointer. */
   2327 	sc->sc_rxptr = i;
   2328 
   2329 	DPRINTF(WM_DEBUG_RX,
   2330 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   2331 }
   2332 
   2333 /*
   2334  * wm_linkintr:
   2335  *
   2336  *	Helper; handle link interrupts.
   2337  */
   2338 static void
   2339 wm_linkintr(struct wm_softc *sc, uint32_t icr)
   2340 {
   2341 	uint32_t status;
   2342 
   2343 	/*
   2344 	 * If we get a link status interrupt on a 1000BASE-T
   2345 	 * device, just fall into the normal MII tick path.
   2346 	 */
   2347 	if (sc->sc_flags & WM_F_HAS_MII) {
   2348 		if (icr & ICR_LSC) {
   2349 			DPRINTF(WM_DEBUG_LINK,
   2350 			    ("%s: LINK: LSC -> mii_tick\n",
   2351 			    sc->sc_dev.dv_xname));
   2352 			mii_tick(&sc->sc_mii);
   2353 		} else if (icr & ICR_RXSEQ) {
   2354 			DPRINTF(WM_DEBUG_LINK,
   2355 			    ("%s: LINK Receive sequence error\n",
   2356 			    sc->sc_dev.dv_xname));
   2357 		}
   2358 		return;
   2359 	}
   2360 
   2361 	/*
   2362 	 * If we are now receiving /C/, check for link again in
   2363 	 * a couple of link clock ticks.
   2364 	 */
   2365 	if (icr & ICR_RXCFG) {
   2366 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
   2367 		    sc->sc_dev.dv_xname));
   2368 		sc->sc_tbi_anstate = 2;
   2369 	}
   2370 
   2371 	if (icr & ICR_LSC) {
   2372 		status = CSR_READ(sc, WMREG_STATUS);
   2373 		if (status & STATUS_LU) {
   2374 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
   2375 			    sc->sc_dev.dv_xname,
   2376 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   2377 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   2378 			sc->sc_fcrtl &= ~FCRTL_XONE;
   2379 			if (status & STATUS_FD)
   2380 				sc->sc_tctl |=
   2381 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2382 			else
   2383 				sc->sc_tctl |=
   2384 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   2385 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   2386 				sc->sc_fcrtl |= FCRTL_XONE;
   2387 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2388 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   2389 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   2390 				      sc->sc_fcrtl);
   2391 			sc->sc_tbi_linkup = 1;
   2392 		} else {
   2393 			DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   2394 			    sc->sc_dev.dv_xname));
   2395 			sc->sc_tbi_linkup = 0;
   2396 		}
   2397 		sc->sc_tbi_anstate = 2;
   2398 		wm_tbi_set_linkled(sc);
   2399 	} else if (icr & ICR_RXSEQ) {
   2400 		DPRINTF(WM_DEBUG_LINK,
   2401 		    ("%s: LINK: Receive sequence error\n",
   2402 		    sc->sc_dev.dv_xname));
   2403 	}
   2404 }
   2405 
   2406 /*
   2407  * wm_tick:
   2408  *
   2409  *	One second timer, used to check link status, sweep up
   2410  *	completed transmit jobs, etc.
   2411  */
   2412 static void
   2413 wm_tick(void *arg)
   2414 {
   2415 	struct wm_softc *sc = arg;
   2416 	int s;
   2417 
   2418 	s = splnet();
   2419 
   2420 	if (sc->sc_type >= WM_T_82542_2_1) {
   2421 		WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
   2422 		WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
   2423 		WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
   2424 		WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
   2425 		WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
   2426 	}
   2427 
   2428 	if (sc->sc_flags & WM_F_HAS_MII)
   2429 		mii_tick(&sc->sc_mii);
   2430 	else
   2431 		wm_tbi_check_link(sc);
   2432 
   2433 	splx(s);
   2434 
   2435 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2436 }
   2437 
   2438 /*
   2439  * wm_reset:
   2440  *
   2441  *	Reset the i82542 chip.
   2442  */
   2443 static void
   2444 wm_reset(struct wm_softc *sc)
   2445 {
   2446 	int i;
   2447 
   2448 	/*
   2449 	 * Allocate on-chip memory according to the MTU size.
   2450 	 * The Packet Buffer Allocation register must be written
   2451 	 * before the chip is reset.
   2452 	 */
   2453 	if (sc->sc_type < WM_T_82547) {
   2454 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2455 		    PBA_40K : PBA_48K;
   2456 	} else {
   2457 		sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
   2458 		    PBA_22K : PBA_30K;
   2459 		sc->sc_txfifo_head = 0;
   2460 		sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
   2461 		sc->sc_txfifo_size =
   2462 		    (PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
   2463 		sc->sc_txfifo_stall = 0;
   2464 	}
   2465 	CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
   2466 
   2467 	switch (sc->sc_type) {
   2468 	case WM_T_82544:
   2469 	case WM_T_82540:
   2470 	case WM_T_82545:
   2471 	case WM_T_82546:
   2472 	case WM_T_82541:
   2473 	case WM_T_82541_2:
   2474 		/*
   2475 		 * On some chipsets, a reset through a memory-mapped write
   2476 		 * cycle can cause the chip to reset before completing the
   2477 		 * write cycle.  This causes major headache that can be
   2478 		 * avoided by issuing the reset via indirect register writes
   2479 		 * through I/O space.
   2480 		 *
   2481 		 * So, if we successfully mapped the I/O BAR at attach time,
   2482 		 * use that.  Otherwise, try our luck with a memory-mapped
   2483 		 * reset.
   2484 		 */
   2485 		if (sc->sc_flags & WM_F_IOH_VALID)
   2486 			wm_io_write(sc, WMREG_CTRL, CTRL_RST);
   2487 		else
   2488 			CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2489 		break;
   2490 
   2491 	case WM_T_82545_3:
   2492 	case WM_T_82546_3:
   2493 		/* Use the shadow control register on these chips. */
   2494 		CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
   2495 		break;
   2496 
   2497 	default:
   2498 		/* Everything else can safely use the documented method. */
   2499 		CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
   2500 		break;
   2501 	}
   2502 	delay(10000);
   2503 
   2504 	for (i = 0; i < 1000; i++) {
   2505 		if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
   2506 			return;
   2507 		delay(20);
   2508 	}
   2509 
   2510 	if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
   2511 		log(LOG_ERR, "%s: reset failed to complete\n",
   2512 		    sc->sc_dev.dv_xname);
   2513 }
   2514 
   2515 /*
   2516  * wm_init:		[ifnet interface function]
   2517  *
   2518  *	Initialize the interface.  Must be called at splnet().
   2519  */
   2520 static int
   2521 wm_init(struct ifnet *ifp)
   2522 {
   2523 	struct wm_softc *sc = ifp->if_softc;
   2524 	struct wm_rxsoft *rxs;
   2525 	int i, error = 0;
   2526 	uint32_t reg;
   2527 
   2528 	/*
   2529 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   2530 	 * There is a small but measurable benefit to avoiding the adjusment
   2531 	 * of the descriptor so that the headers are aligned, for normal mtu,
   2532 	 * on such platforms.  One possibility is that the DMA itself is
   2533 	 * slightly more efficient if the front of the entire packet (instead
   2534 	 * of the front of the headers) is aligned.
   2535 	 *
   2536 	 * Note we must always set align_tweak to 0 if we are using
   2537 	 * jumbo frames.
   2538 	 */
   2539 #ifdef __NO_STRICT_ALIGNMENT
   2540 	sc->sc_align_tweak = 0;
   2541 #else
   2542 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   2543 		sc->sc_align_tweak = 0;
   2544 	else
   2545 		sc->sc_align_tweak = 2;
   2546 #endif /* __NO_STRICT_ALIGNMENT */
   2547 
   2548 	/* Cancel any pending I/O. */
   2549 	wm_stop(ifp, 0);
   2550 
   2551 	/* Reset the chip to a known state. */
   2552 	wm_reset(sc);
   2553 
   2554 	/* Initialize the transmit descriptor ring. */
   2555 	memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
   2556 	WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
   2557 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2558 	sc->sc_txfree = WM_NTXDESC(sc);
   2559 	sc->sc_txnext = 0;
   2560 
   2561 	if (sc->sc_type < WM_T_82543) {
   2562 		CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
   2563 		CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
   2564 		CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
   2565 		CSR_WRITE(sc, WMREG_OLD_TDH, 0);
   2566 		CSR_WRITE(sc, WMREG_OLD_TDT, 0);
   2567 		CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
   2568 	} else {
   2569 		CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
   2570 		CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
   2571 		CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
   2572 		CSR_WRITE(sc, WMREG_TDH, 0);
   2573 		CSR_WRITE(sc, WMREG_TDT, 0);
   2574 		CSR_WRITE(sc, WMREG_TIDV, 64);
   2575 		CSR_WRITE(sc, WMREG_TADV, 128);
   2576 
   2577 		CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
   2578 		    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   2579 		CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
   2580 		    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
   2581 	}
   2582 	CSR_WRITE(sc, WMREG_TQSA_LO, 0);
   2583 	CSR_WRITE(sc, WMREG_TQSA_HI, 0);
   2584 
   2585 	/* Initialize the transmit job descriptors. */
   2586 	for (i = 0; i < WM_TXQUEUELEN(sc); i++)
   2587 		sc->sc_txsoft[i].txs_mbuf = NULL;
   2588 	sc->sc_txsfree = WM_TXQUEUELEN(sc);
   2589 	sc->sc_txsnext = 0;
   2590 	sc->sc_txsdirty = 0;
   2591 
   2592 	/*
   2593 	 * Initialize the receive descriptor and receive job
   2594 	 * descriptor rings.
   2595 	 */
   2596 	if (sc->sc_type < WM_T_82543) {
   2597 		CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
   2598 		CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
   2599 		CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
   2600 		CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
   2601 		CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
   2602 		CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
   2603 
   2604 		CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
   2605 		CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
   2606 		CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
   2607 		CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
   2608 		CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
   2609 		CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
   2610 	} else {
   2611 		CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
   2612 		CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
   2613 		CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
   2614 		CSR_WRITE(sc, WMREG_RDH, 0);
   2615 		CSR_WRITE(sc, WMREG_RDT, 0);
   2616 		CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
   2617 		CSR_WRITE(sc, WMREG_RADV, 128);
   2618 	}
   2619 	for (i = 0; i < WM_NRXDESC; i++) {
   2620 		rxs = &sc->sc_rxsoft[i];
   2621 		if (rxs->rxs_mbuf == NULL) {
   2622 			if ((error = wm_add_rxbuf(sc, i)) != 0) {
   2623 				log(LOG_ERR, "%s: unable to allocate or map rx "
   2624 				    "buffer %d, error = %d\n",
   2625 				    sc->sc_dev.dv_xname, i, error);
   2626 				/*
   2627 				 * XXX Should attempt to run with fewer receive
   2628 				 * XXX buffers instead of just failing.
   2629 				 */
   2630 				wm_rxdrain(sc);
   2631 				goto out;
   2632 			}
   2633 		} else
   2634 			WM_INIT_RXDESC(sc, i);
   2635 	}
   2636 	sc->sc_rxptr = 0;
   2637 	sc->sc_rxdiscard = 0;
   2638 	WM_RXCHAIN_RESET(sc);
   2639 
   2640 	/*
   2641 	 * Clear out the VLAN table -- we don't use it (yet).
   2642 	 */
   2643 	CSR_WRITE(sc, WMREG_VET, 0);
   2644 	for (i = 0; i < WM_VLAN_TABSIZE; i++)
   2645 		CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
   2646 
   2647 	/*
   2648 	 * Set up flow-control parameters.
   2649 	 *
   2650 	 * XXX Values could probably stand some tuning.
   2651 	 */
   2652 	CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
   2653 	CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
   2654 	CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
   2655 
   2656 	sc->sc_fcrtl = FCRTL_DFLT;
   2657 	if (sc->sc_type < WM_T_82543) {
   2658 		CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
   2659 		CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
   2660 	} else {
   2661 		CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
   2662 		CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
   2663 	}
   2664 	CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
   2665 
   2666 #if 0 /* XXXJRT */
   2667 	/* Deal with VLAN enables. */
   2668 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2669 		sc->sc_ctrl |= CTRL_VME;
   2670 	else
   2671 #endif /* XXXJRT */
   2672 		sc->sc_ctrl &= ~CTRL_VME;
   2673 
   2674 	/* Write the control registers. */
   2675 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   2676 #if 0
   2677 	CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
   2678 #endif
   2679 
   2680 	/*
   2681 	 * Set up checksum offload parameters.
   2682 	 */
   2683 	reg = CSR_READ(sc, WMREG_RXCSUM);
   2684 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
   2685 		reg |= RXCSUM_IPOFL;
   2686 	else
   2687 		reg &= ~RXCSUM_IPOFL;
   2688 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
   2689 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   2690 	else {
   2691 		reg &= ~RXCSUM_TUOFL;
   2692 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
   2693 			reg &= ~RXCSUM_IPOFL;
   2694 	}
   2695 	CSR_WRITE(sc, WMREG_RXCSUM, reg);
   2696 
   2697 	/*
   2698 	 * Set up the interrupt registers.
   2699 	 */
   2700 	CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
   2701 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   2702 	    ICR_RXO | ICR_RXT0;
   2703 	if ((sc->sc_flags & WM_F_HAS_MII) == 0)
   2704 		sc->sc_icr |= ICR_RXCFG;
   2705 	CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
   2706 
   2707 	/* Set up the inter-packet gap. */
   2708 	CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
   2709 
   2710 	if (sc->sc_type >= WM_T_82543) {
   2711 		/* Set up the interrupt throttling register (units of 256ns) */
   2712 		sc->sc_itr = 1000000000 / (7000 * 256);
   2713 		CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
   2714 	}
   2715 
   2716 #if 0 /* XXXJRT */
   2717 	/* Set the VLAN ethernetype. */
   2718 	CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
   2719 #endif
   2720 
   2721 	/*
   2722 	 * Set up the transmit control register; we start out with
   2723 	 * a collision distance suitable for FDX, but update it whe
   2724 	 * we resolve the media type.
   2725 	 */
   2726 	sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
   2727 	    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   2728 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   2729 
   2730 	/* Set the media. */
   2731 	(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
   2732 
   2733 	/*
   2734 	 * Set up the receive control register; we actually program
   2735 	 * the register when we set the receive filter.  Use multicast
   2736 	 * address offset type 0.
   2737 	 *
   2738 	 * Only the i82544 has the ability to strip the incoming
   2739 	 * CRC, so we don't enable that feature.
   2740 	 */
   2741 	sc->sc_mchash_type = 0;
   2742 	sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_LPE |
   2743 	    RCTL_DPF | RCTL_MO(sc->sc_mchash_type);
   2744 
   2745 	if(MCLBYTES == 2048) {
   2746 		sc->sc_rctl |= RCTL_2k;
   2747 	} else {
   2748 		if(sc->sc_type >= WM_T_82543) {
   2749 			switch(MCLBYTES) {
   2750 			case 4096:
   2751 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
   2752 				break;
   2753 			case 8192:
   2754 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
   2755 				break;
   2756 			case 16384:
   2757 				sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
   2758 				break;
   2759 			default:
   2760 				panic("wm_init: MCLBYTES %d unsupported",
   2761 				    MCLBYTES);
   2762 				break;
   2763 			}
   2764 		} else panic("wm_init: i82542 requires MCLBYTES = 2048");
   2765 	}
   2766 
   2767 	/* Set the receive filter. */
   2768 	wm_set_filter(sc);
   2769 
   2770 	/* Start the one second link check clock. */
   2771 	callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
   2772 
   2773 	/* ...all done! */
   2774 	ifp->if_flags |= IFF_RUNNING;
   2775 	ifp->if_flags &= ~IFF_OACTIVE;
   2776 
   2777  out:
   2778 	if (error)
   2779 		log(LOG_ERR, "%s: interface not running\n",
   2780 		    sc->sc_dev.dv_xname);
   2781 	return (error);
   2782 }
   2783 
   2784 /*
   2785  * wm_rxdrain:
   2786  *
   2787  *	Drain the receive queue.
   2788  */
   2789 static void
   2790 wm_rxdrain(struct wm_softc *sc)
   2791 {
   2792 	struct wm_rxsoft *rxs;
   2793 	int i;
   2794 
   2795 	for (i = 0; i < WM_NRXDESC; i++) {
   2796 		rxs = &sc->sc_rxsoft[i];
   2797 		if (rxs->rxs_mbuf != NULL) {
   2798 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2799 			m_freem(rxs->rxs_mbuf);
   2800 			rxs->rxs_mbuf = NULL;
   2801 		}
   2802 	}
   2803 }
   2804 
   2805 /*
   2806  * wm_stop:		[ifnet interface function]
   2807  *
   2808  *	Stop transmission on the interface.
   2809  */
   2810 static void
   2811 wm_stop(struct ifnet *ifp, int disable)
   2812 {
   2813 	struct wm_softc *sc = ifp->if_softc;
   2814 	struct wm_txsoft *txs;
   2815 	int i;
   2816 
   2817 	/* Stop the one second clock. */
   2818 	callout_stop(&sc->sc_tick_ch);
   2819 
   2820 	/* Stop the 82547 Tx FIFO stall check timer. */
   2821 	if (sc->sc_type == WM_T_82547)
   2822 		callout_stop(&sc->sc_txfifo_ch);
   2823 
   2824 	if (sc->sc_flags & WM_F_HAS_MII) {
   2825 		/* Down the MII. */
   2826 		mii_down(&sc->sc_mii);
   2827 	}
   2828 
   2829 	/* Stop the transmit and receive processes. */
   2830 	CSR_WRITE(sc, WMREG_TCTL, 0);
   2831 	CSR_WRITE(sc, WMREG_RCTL, 0);
   2832 
   2833 	/* Release any queued transmit buffers. */
   2834 	for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
   2835 		txs = &sc->sc_txsoft[i];
   2836 		if (txs->txs_mbuf != NULL) {
   2837 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2838 			m_freem(txs->txs_mbuf);
   2839 			txs->txs_mbuf = NULL;
   2840 		}
   2841 	}
   2842 
   2843 	if (disable)
   2844 		wm_rxdrain(sc);
   2845 
   2846 	/* Mark the interface as down and cancel the watchdog timer. */
   2847 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2848 	ifp->if_timer = 0;
   2849 }
   2850 
   2851 /*
   2852  * wm_acquire_eeprom:
   2853  *
   2854  *	Perform the EEPROM handshake required on some chips.
   2855  */
   2856 static int
   2857 wm_acquire_eeprom(struct wm_softc *sc)
   2858 {
   2859 	uint32_t reg;
   2860 	int x;
   2861 
   2862 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE)  {
   2863 		reg = CSR_READ(sc, WMREG_EECD);
   2864 
   2865 		/* Request EEPROM access. */
   2866 		reg |= EECD_EE_REQ;
   2867 		CSR_WRITE(sc, WMREG_EECD, reg);
   2868 
   2869 		/* ..and wait for it to be granted. */
   2870 		for (x = 0; x < 100; x++) {
   2871 			reg = CSR_READ(sc, WMREG_EECD);
   2872 			if (reg & EECD_EE_GNT)
   2873 				break;
   2874 			delay(5);
   2875 		}
   2876 		if ((reg & EECD_EE_GNT) == 0) {
   2877 			aprint_error("%s: could not acquire EEPROM GNT\n",
   2878 			    sc->sc_dev.dv_xname);
   2879 			reg &= ~EECD_EE_REQ;
   2880 			CSR_WRITE(sc, WMREG_EECD, reg);
   2881 			return (1);
   2882 		}
   2883 	}
   2884 
   2885 	return (0);
   2886 }
   2887 
   2888 /*
   2889  * wm_release_eeprom:
   2890  *
   2891  *	Release the EEPROM mutex.
   2892  */
   2893 static void
   2894 wm_release_eeprom(struct wm_softc *sc)
   2895 {
   2896 	uint32_t reg;
   2897 
   2898 	if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
   2899 		reg = CSR_READ(sc, WMREG_EECD);
   2900 		reg &= ~EECD_EE_REQ;
   2901 		CSR_WRITE(sc, WMREG_EECD, reg);
   2902 	}
   2903 }
   2904 
   2905 /*
   2906  * wm_eeprom_sendbits:
   2907  *
   2908  *	Send a series of bits to the EEPROM.
   2909  */
   2910 static void
   2911 wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
   2912 {
   2913 	uint32_t reg;
   2914 	int x;
   2915 
   2916 	reg = CSR_READ(sc, WMREG_EECD);
   2917 
   2918 	for (x = nbits; x > 0; x--) {
   2919 		if (bits & (1U << (x - 1)))
   2920 			reg |= EECD_DI;
   2921 		else
   2922 			reg &= ~EECD_DI;
   2923 		CSR_WRITE(sc, WMREG_EECD, reg);
   2924 		delay(2);
   2925 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2926 		delay(2);
   2927 		CSR_WRITE(sc, WMREG_EECD, reg);
   2928 		delay(2);
   2929 	}
   2930 }
   2931 
   2932 /*
   2933  * wm_eeprom_recvbits:
   2934  *
   2935  *	Receive a series of bits from the EEPROM.
   2936  */
   2937 static void
   2938 wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
   2939 {
   2940 	uint32_t reg, val;
   2941 	int x;
   2942 
   2943 	reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
   2944 
   2945 	val = 0;
   2946 	for (x = nbits; x > 0; x--) {
   2947 		CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
   2948 		delay(2);
   2949 		if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
   2950 			val |= (1U << (x - 1));
   2951 		CSR_WRITE(sc, WMREG_EECD, reg);
   2952 		delay(2);
   2953 	}
   2954 	*valp = val;
   2955 }
   2956 
   2957 /*
   2958  * wm_read_eeprom_uwire:
   2959  *
   2960  *	Read a word from the EEPROM using the MicroWire protocol.
   2961  */
   2962 static int
   2963 wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   2964 {
   2965 	uint32_t reg, val;
   2966 	int i;
   2967 
   2968 	for (i = 0; i < wordcnt; i++) {
   2969 		/* Clear SK and DI. */
   2970 		reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
   2971 		CSR_WRITE(sc, WMREG_EECD, reg);
   2972 
   2973 		/* Set CHIP SELECT. */
   2974 		reg |= EECD_CS;
   2975 		CSR_WRITE(sc, WMREG_EECD, reg);
   2976 		delay(2);
   2977 
   2978 		/* Shift in the READ command. */
   2979 		wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
   2980 
   2981 		/* Shift in address. */
   2982 		wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
   2983 
   2984 		/* Shift out the data. */
   2985 		wm_eeprom_recvbits(sc, &val, 16);
   2986 		data[i] = val & 0xffff;
   2987 
   2988 		/* Clear CHIP SELECT. */
   2989 		reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
   2990 		CSR_WRITE(sc, WMREG_EECD, reg);
   2991 		delay(2);
   2992 	}
   2993 
   2994 	return (0);
   2995 }
   2996 
   2997 /*
   2998  * wm_spi_eeprom_ready:
   2999  *
   3000  *	Wait for a SPI EEPROM to be ready for commands.
   3001  */
   3002 static int
   3003 wm_spi_eeprom_ready(struct wm_softc *sc)
   3004 {
   3005 	uint32_t val;
   3006 	int usec;
   3007 
   3008 	for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
   3009 		wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
   3010 		wm_eeprom_recvbits(sc, &val, 8);
   3011 		if ((val & SPI_SR_RDY) == 0)
   3012 			break;
   3013 	}
   3014 	if (usec >= SPI_MAX_RETRIES) {
   3015 		aprint_error("%s: EEPROM failed to become ready\n",
   3016 		    sc->sc_dev.dv_xname);
   3017 		return (1);
   3018 	}
   3019 	return (0);
   3020 }
   3021 
   3022 /*
   3023  * wm_read_eeprom_spi:
   3024  *
   3025  *	Read a work from the EEPROM using the SPI protocol.
   3026  */
   3027 static int
   3028 wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3029 {
   3030 	uint32_t reg, val;
   3031 	int i;
   3032 	uint8_t opc;
   3033 
   3034 	/* Clear SK and CS. */
   3035 	reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
   3036 	CSR_WRITE(sc, WMREG_EECD, reg);
   3037 	delay(2);
   3038 
   3039 	if (wm_spi_eeprom_ready(sc))
   3040 		return (1);
   3041 
   3042 	/* Toggle CS to flush commands. */
   3043 	CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
   3044 	delay(2);
   3045 	CSR_WRITE(sc, WMREG_EECD, reg);
   3046 	delay(2);
   3047 
   3048 	opc = SPI_OPC_READ;
   3049 	if (sc->sc_ee_addrbits == 8 && word >= 128)
   3050 		opc |= SPI_OPC_A8;
   3051 
   3052 	wm_eeprom_sendbits(sc, opc, 8);
   3053 	wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
   3054 
   3055 	for (i = 0; i < wordcnt; i++) {
   3056 		wm_eeprom_recvbits(sc, &val, 16);
   3057 		data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
   3058 	}
   3059 
   3060 	/* Raise CS and clear SK. */
   3061 	reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
   3062 	CSR_WRITE(sc, WMREG_EECD, reg);
   3063 	delay(2);
   3064 
   3065 	return (0);
   3066 }
   3067 
   3068 /*
   3069  * wm_read_eeprom:
   3070  *
   3071  *	Read data from the serial EEPROM.
   3072  */
   3073 static int
   3074 wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
   3075 {
   3076 	int rv;
   3077 
   3078 	if (wm_acquire_eeprom(sc))
   3079 		return (1);
   3080 
   3081 	if (sc->sc_flags & WM_F_EEPROM_SPI)
   3082 		rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
   3083 	else
   3084 		rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
   3085 
   3086 	wm_release_eeprom(sc);
   3087 	return (rv);
   3088 }
   3089 
   3090 /*
   3091  * wm_add_rxbuf:
   3092  *
   3093  *	Add a receive buffer to the indiciated descriptor.
   3094  */
   3095 static int
   3096 wm_add_rxbuf(struct wm_softc *sc, int idx)
   3097 {
   3098 	struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
   3099 	struct mbuf *m;
   3100 	int error;
   3101 
   3102 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3103 	if (m == NULL)
   3104 		return (ENOBUFS);
   3105 
   3106 	MCLGET(m, M_DONTWAIT);
   3107 	if ((m->m_flags & M_EXT) == 0) {
   3108 		m_freem(m);
   3109 		return (ENOBUFS);
   3110 	}
   3111 
   3112 	if (rxs->rxs_mbuf != NULL)
   3113 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3114 
   3115 	rxs->rxs_mbuf = m;
   3116 
   3117 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   3118 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   3119 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   3120 	if (error) {
   3121 		/* XXX XXX XXX */
   3122 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   3123 		    sc->sc_dev.dv_xname, idx, error);
   3124 		panic("wm_add_rxbuf");
   3125 	}
   3126 
   3127 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3128 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3129 
   3130 	WM_INIT_RXDESC(sc, idx);
   3131 
   3132 	return (0);
   3133 }
   3134 
   3135 /*
   3136  * wm_set_ral:
   3137  *
   3138  *	Set an entery in the receive address list.
   3139  */
   3140 static void
   3141 wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
   3142 {
   3143 	uint32_t ral_lo, ral_hi;
   3144 
   3145 	if (enaddr != NULL) {
   3146 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   3147 		    (enaddr[3] << 24);
   3148 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   3149 		ral_hi |= RAL_AV;
   3150 	} else {
   3151 		ral_lo = 0;
   3152 		ral_hi = 0;
   3153 	}
   3154 
   3155 	if (sc->sc_type >= WM_T_82544) {
   3156 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
   3157 		    ral_lo);
   3158 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
   3159 		    ral_hi);
   3160 	} else {
   3161 		CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
   3162 		CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
   3163 	}
   3164 }
   3165 
   3166 /*
   3167  * wm_mchash:
   3168  *
   3169  *	Compute the hash of the multicast address for the 4096-bit
   3170  *	multicast filter.
   3171  */
   3172 static uint32_t
   3173 wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
   3174 {
   3175 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   3176 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   3177 	uint32_t hash;
   3178 
   3179 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   3180 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   3181 
   3182 	return (hash & 0xfff);
   3183 }
   3184 
   3185 /*
   3186  * wm_set_filter:
   3187  *
   3188  *	Set up the receive filter.
   3189  */
   3190 static void
   3191 wm_set_filter(struct wm_softc *sc)
   3192 {
   3193 	struct ethercom *ec = &sc->sc_ethercom;
   3194 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3195 	struct ether_multi *enm;
   3196 	struct ether_multistep step;
   3197 	bus_addr_t mta_reg;
   3198 	uint32_t hash, reg, bit;
   3199 	int i;
   3200 
   3201 	if (sc->sc_type >= WM_T_82544)
   3202 		mta_reg = WMREG_CORDOVA_MTA;
   3203 	else
   3204 		mta_reg = WMREG_MTA;
   3205 
   3206 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   3207 
   3208 	if (ifp->if_flags & IFF_BROADCAST)
   3209 		sc->sc_rctl |= RCTL_BAM;
   3210 	if (ifp->if_flags & IFF_PROMISC) {
   3211 		sc->sc_rctl |= RCTL_UPE;
   3212 		goto allmulti;
   3213 	}
   3214 
   3215 	/*
   3216 	 * Set the station address in the first RAL slot, and
   3217 	 * clear the remaining slots.
   3218 	 */
   3219 	wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
   3220 	for (i = 1; i < WM_RAL_TABSIZE; i++)
   3221 		wm_set_ral(sc, NULL, i);
   3222 
   3223 	/* Clear out the multicast table. */
   3224 	for (i = 0; i < WM_MC_TABSIZE; i++)
   3225 		CSR_WRITE(sc, mta_reg + (i << 2), 0);
   3226 
   3227 	ETHER_FIRST_MULTI(step, ec, enm);
   3228 	while (enm != NULL) {
   3229 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3230 			/*
   3231 			 * We must listen to a range of multicast addresses.
   3232 			 * For now, just accept all multicasts, rather than
   3233 			 * trying to set only those filter bits needed to match
   3234 			 * the range.  (At this time, the only use of address
   3235 			 * ranges is for IP multicast routing, for which the
   3236 			 * range is big enough to require all bits set.)
   3237 			 */
   3238 			goto allmulti;
   3239 		}
   3240 
   3241 		hash = wm_mchash(sc, enm->enm_addrlo);
   3242 
   3243 		reg = (hash >> 5) & 0x7f;
   3244 		bit = hash & 0x1f;
   3245 
   3246 		hash = CSR_READ(sc, mta_reg + (reg << 2));
   3247 		hash |= 1U << bit;
   3248 
   3249 		/* XXX Hardware bug?? */
   3250 		if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
   3251 			bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
   3252 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3253 			CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
   3254 		} else
   3255 			CSR_WRITE(sc, mta_reg + (reg << 2), hash);
   3256 
   3257 		ETHER_NEXT_MULTI(step, enm);
   3258 	}
   3259 
   3260 	ifp->if_flags &= ~IFF_ALLMULTI;
   3261 	goto setit;
   3262 
   3263  allmulti:
   3264 	ifp->if_flags |= IFF_ALLMULTI;
   3265 	sc->sc_rctl |= RCTL_MPE;
   3266 
   3267  setit:
   3268 	CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
   3269 }
   3270 
   3271 /*
   3272  * wm_tbi_mediainit:
   3273  *
   3274  *	Initialize media for use on 1000BASE-X devices.
   3275  */
   3276 static void
   3277 wm_tbi_mediainit(struct wm_softc *sc)
   3278 {
   3279 	const char *sep = "";
   3280 
   3281 	if (sc->sc_type < WM_T_82543)
   3282 		sc->sc_tipg = TIPG_WM_DFLT;
   3283 	else
   3284 		sc->sc_tipg = TIPG_LG_DFLT;
   3285 
   3286 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
   3287 	    wm_tbi_mediastatus);
   3288 
   3289 	/*
   3290 	 * SWD Pins:
   3291 	 *
   3292 	 *	0 = Link LED (output)
   3293 	 *	1 = Loss Of Signal (input)
   3294 	 */
   3295 	sc->sc_ctrl |= CTRL_SWDPIO(0);
   3296 	sc->sc_ctrl &= ~CTRL_SWDPIO(1);
   3297 
   3298 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3299 
   3300 #define	ADD(ss, mm, dd)							\
   3301 do {									\
   3302 	aprint_normal("%s%s", sep, ss);					\
   3303 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL);	\
   3304 	sep = ", ";							\
   3305 } while (/*CONSTCOND*/0)
   3306 
   3307 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
   3308 	ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
   3309 	ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
   3310 	ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
   3311 	aprint_normal("\n");
   3312 
   3313 #undef ADD
   3314 
   3315 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   3316 }
   3317 
   3318 /*
   3319  * wm_tbi_mediastatus:	[ifmedia interface function]
   3320  *
   3321  *	Get the current interface media status on a 1000BASE-X device.
   3322  */
   3323 static void
   3324 wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3325 {
   3326 	struct wm_softc *sc = ifp->if_softc;
   3327 	uint32_t ctrl;
   3328 
   3329 	ifmr->ifm_status = IFM_AVALID;
   3330 	ifmr->ifm_active = IFM_ETHER;
   3331 
   3332 	if (sc->sc_tbi_linkup == 0) {
   3333 		ifmr->ifm_active |= IFM_NONE;
   3334 		return;
   3335 	}
   3336 
   3337 	ifmr->ifm_status |= IFM_ACTIVE;
   3338 	ifmr->ifm_active |= IFM_1000_SX;
   3339 	if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
   3340 		ifmr->ifm_active |= IFM_FDX;
   3341 	ctrl = CSR_READ(sc, WMREG_CTRL);
   3342 	if (ctrl & CTRL_RFCE)
   3343 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   3344 	if (ctrl & CTRL_TFCE)
   3345 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   3346 }
   3347 
   3348 /*
   3349  * wm_tbi_mediachange:	[ifmedia interface function]
   3350  *
   3351  *	Set hardware to newly-selected media on a 1000BASE-X device.
   3352  */
   3353 static int
   3354 wm_tbi_mediachange(struct ifnet *ifp)
   3355 {
   3356 	struct wm_softc *sc = ifp->if_softc;
   3357 	struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
   3358 	uint32_t status;
   3359 	int i;
   3360 
   3361 	sc->sc_txcw = ife->ifm_data;
   3362 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
   3363 	    (sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
   3364 		sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
   3365 	sc->sc_txcw |= TXCW_ANE;
   3366 
   3367 	CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
   3368 	delay(10000);
   3369 
   3370 	/* NOTE: CTRL will update TFCE and RFCE automatically. */
   3371 
   3372 	sc->sc_tbi_anstate = 0;
   3373 
   3374 	if ((CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1)) == 0) {
   3375 		/* Have signal; wait for the link to come up. */
   3376 		for (i = 0; i < 50; i++) {
   3377 			delay(10000);
   3378 			if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
   3379 				break;
   3380 		}
   3381 
   3382 		status = CSR_READ(sc, WMREG_STATUS);
   3383 		if (status & STATUS_LU) {
   3384 			/* Link is up. */
   3385 			DPRINTF(WM_DEBUG_LINK,
   3386 			    ("%s: LINK: set media -> link up %s\n",
   3387 			    sc->sc_dev.dv_xname,
   3388 			    (status & STATUS_FD) ? "FDX" : "HDX"));
   3389 			sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3390 			sc->sc_fcrtl &= ~FCRTL_XONE;
   3391 			if (status & STATUS_FD)
   3392 				sc->sc_tctl |=
   3393 				    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3394 			else
   3395 				sc->sc_tctl |=
   3396 				    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3397 			if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
   3398 				sc->sc_fcrtl |= FCRTL_XONE;
   3399 			CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3400 			CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   3401 				      WMREG_OLD_FCRTL : WMREG_FCRTL,
   3402 				      sc->sc_fcrtl);
   3403 			sc->sc_tbi_linkup = 1;
   3404 		} else {
   3405 			/* Link is down. */
   3406 			DPRINTF(WM_DEBUG_LINK,
   3407 			    ("%s: LINK: set media -> link down\n",
   3408 			    sc->sc_dev.dv_xname));
   3409 			sc->sc_tbi_linkup = 0;
   3410 		}
   3411 	} else {
   3412 		DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
   3413 		    sc->sc_dev.dv_xname));
   3414 		sc->sc_tbi_linkup = 0;
   3415 	}
   3416 
   3417 	wm_tbi_set_linkled(sc);
   3418 
   3419 	return (0);
   3420 }
   3421 
   3422 /*
   3423  * wm_tbi_set_linkled:
   3424  *
   3425  *	Update the link LED on 1000BASE-X devices.
   3426  */
   3427 static void
   3428 wm_tbi_set_linkled(struct wm_softc *sc)
   3429 {
   3430 
   3431 	if (sc->sc_tbi_linkup)
   3432 		sc->sc_ctrl |= CTRL_SWDPIN(0);
   3433 	else
   3434 		sc->sc_ctrl &= ~CTRL_SWDPIN(0);
   3435 
   3436 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3437 }
   3438 
   3439 /*
   3440  * wm_tbi_check_link:
   3441  *
   3442  *	Check the link on 1000BASE-X devices.
   3443  */
   3444 static void
   3445 wm_tbi_check_link(struct wm_softc *sc)
   3446 {
   3447 	uint32_t rxcw, ctrl, status;
   3448 
   3449 	if (sc->sc_tbi_anstate == 0)
   3450 		return;
   3451 	else if (sc->sc_tbi_anstate > 1) {
   3452 		DPRINTF(WM_DEBUG_LINK,
   3453 		    ("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
   3454 		    sc->sc_tbi_anstate));
   3455 		sc->sc_tbi_anstate--;
   3456 		return;
   3457 	}
   3458 
   3459 	sc->sc_tbi_anstate = 0;
   3460 
   3461 	rxcw = CSR_READ(sc, WMREG_RXCW);
   3462 	ctrl = CSR_READ(sc, WMREG_CTRL);
   3463 	status = CSR_READ(sc, WMREG_STATUS);
   3464 
   3465 	if ((status & STATUS_LU) == 0) {
   3466 		DPRINTF(WM_DEBUG_LINK,
   3467 		    ("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
   3468 		sc->sc_tbi_linkup = 0;
   3469 	} else {
   3470 		DPRINTF(WM_DEBUG_LINK,
   3471 		    ("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
   3472 		    (status & STATUS_FD) ? "FDX" : "HDX"));
   3473 		sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3474 		sc->sc_fcrtl &= ~FCRTL_XONE;
   3475 		if (status & STATUS_FD)
   3476 			sc->sc_tctl |=
   3477 			    TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3478 		else
   3479 			sc->sc_tctl |=
   3480 			    TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3481 		if (ctrl & CTRL_TFCE)
   3482 			sc->sc_fcrtl |= FCRTL_XONE;
   3483 		CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3484 		CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
   3485 			      WMREG_OLD_FCRTL : WMREG_FCRTL,
   3486 			      sc->sc_fcrtl);
   3487 		sc->sc_tbi_linkup = 1;
   3488 	}
   3489 
   3490 	wm_tbi_set_linkled(sc);
   3491 }
   3492 
   3493 /*
   3494  * wm_gmii_reset:
   3495  *
   3496  *	Reset the PHY.
   3497  */
   3498 static void
   3499 wm_gmii_reset(struct wm_softc *sc)
   3500 {
   3501 	uint32_t reg;
   3502 
   3503 	if (sc->sc_type >= WM_T_82544) {
   3504 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
   3505 		delay(20000);
   3506 
   3507 		CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3508 		delay(20000);
   3509 	} else {
   3510 		/* The PHY reset pin is active-low. */
   3511 		reg = CSR_READ(sc, WMREG_CTRL_EXT);
   3512 		reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
   3513 		    CTRL_EXT_SWDPIN(4));
   3514 		reg |= CTRL_EXT_SWDPIO(4);
   3515 
   3516 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   3517 		delay(10);
   3518 
   3519 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
   3520 		delay(10);
   3521 
   3522 		CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
   3523 		delay(10);
   3524 #if 0
   3525 		sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
   3526 #endif
   3527 	}
   3528 }
   3529 
   3530 /*
   3531  * wm_gmii_mediainit:
   3532  *
   3533  *	Initialize media for use on 1000BASE-T devices.
   3534  */
   3535 static void
   3536 wm_gmii_mediainit(struct wm_softc *sc)
   3537 {
   3538 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3539 
   3540 	/* We have MII. */
   3541 	sc->sc_flags |= WM_F_HAS_MII;
   3542 
   3543 	sc->sc_tipg = TIPG_1000T_DFLT;
   3544 
   3545 	/*
   3546 	 * Let the chip set speed/duplex on its own based on
   3547 	 * signals from the PHY.
   3548 	 */
   3549 	sc->sc_ctrl |= CTRL_SLU | CTRL_ASDE;
   3550 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3551 
   3552 	/* Initialize our media structures and probe the GMII. */
   3553 	sc->sc_mii.mii_ifp = ifp;
   3554 
   3555 	if (sc->sc_type >= WM_T_82544) {
   3556 		sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
   3557 		sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
   3558 	} else {
   3559 		sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
   3560 		sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
   3561 	}
   3562 	sc->sc_mii.mii_statchg = wm_gmii_statchg;
   3563 
   3564 	wm_gmii_reset(sc);
   3565 
   3566 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
   3567 	    wm_gmii_mediastatus);
   3568 
   3569 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   3570 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
   3571 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   3572 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   3573 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   3574 	} else
   3575 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   3576 }
   3577 
   3578 /*
   3579  * wm_gmii_mediastatus:	[ifmedia interface function]
   3580  *
   3581  *	Get the current interface media status on a 1000BASE-T device.
   3582  */
   3583 static void
   3584 wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3585 {
   3586 	struct wm_softc *sc = ifp->if_softc;
   3587 
   3588 	mii_pollstat(&sc->sc_mii);
   3589 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3590 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
   3591 			   sc->sc_flowflags;
   3592 }
   3593 
   3594 /*
   3595  * wm_gmii_mediachange:	[ifmedia interface function]
   3596  *
   3597  *	Set hardware to newly-selected media on a 1000BASE-T device.
   3598  */
   3599 static int
   3600 wm_gmii_mediachange(struct ifnet *ifp)
   3601 {
   3602 	struct wm_softc *sc = ifp->if_softc;
   3603 
   3604 	if (ifp->if_flags & IFF_UP)
   3605 		mii_mediachg(&sc->sc_mii);
   3606 	return (0);
   3607 }
   3608 
   3609 #define	MDI_IO		CTRL_SWDPIN(2)
   3610 #define	MDI_DIR		CTRL_SWDPIO(2)	/* host -> PHY */
   3611 #define	MDI_CLK		CTRL_SWDPIN(3)
   3612 
   3613 static void
   3614 i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
   3615 {
   3616 	uint32_t i, v;
   3617 
   3618 	v = CSR_READ(sc, WMREG_CTRL);
   3619 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   3620 	v |= MDI_DIR | CTRL_SWDPIO(3);
   3621 
   3622 	for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
   3623 		if (data & i)
   3624 			v |= MDI_IO;
   3625 		else
   3626 			v &= ~MDI_IO;
   3627 		CSR_WRITE(sc, WMREG_CTRL, v);
   3628 		delay(10);
   3629 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3630 		delay(10);
   3631 		CSR_WRITE(sc, WMREG_CTRL, v);
   3632 		delay(10);
   3633 	}
   3634 }
   3635 
   3636 static uint32_t
   3637 i82543_mii_recvbits(struct wm_softc *sc)
   3638 {
   3639 	uint32_t v, i, data = 0;
   3640 
   3641 	v = CSR_READ(sc, WMREG_CTRL);
   3642 	v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
   3643 	v |= CTRL_SWDPIO(3);
   3644 
   3645 	CSR_WRITE(sc, WMREG_CTRL, v);
   3646 	delay(10);
   3647 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3648 	delay(10);
   3649 	CSR_WRITE(sc, WMREG_CTRL, v);
   3650 	delay(10);
   3651 
   3652 	for (i = 0; i < 16; i++) {
   3653 		data <<= 1;
   3654 		CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3655 		delay(10);
   3656 		if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
   3657 			data |= 1;
   3658 		CSR_WRITE(sc, WMREG_CTRL, v);
   3659 		delay(10);
   3660 	}
   3661 
   3662 	CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
   3663 	delay(10);
   3664 	CSR_WRITE(sc, WMREG_CTRL, v);
   3665 	delay(10);
   3666 
   3667 	return (data);
   3668 }
   3669 
   3670 #undef MDI_IO
   3671 #undef MDI_DIR
   3672 #undef MDI_CLK
   3673 
   3674 /*
   3675  * wm_gmii_i82543_readreg:	[mii interface function]
   3676  *
   3677  *	Read a PHY register on the GMII (i82543 version).
   3678  */
   3679 static int
   3680 wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
   3681 {
   3682 	struct wm_softc *sc = (void *) self;
   3683 	int rv;
   3684 
   3685 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   3686 	i82543_mii_sendbits(sc, reg | (phy << 5) |
   3687 	    (MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
   3688 	rv = i82543_mii_recvbits(sc) & 0xffff;
   3689 
   3690 	DPRINTF(WM_DEBUG_GMII,
   3691 	    ("%s: GMII: read phy %d reg %d -> 0x%04x\n",
   3692 	    sc->sc_dev.dv_xname, phy, reg, rv));
   3693 
   3694 	return (rv);
   3695 }
   3696 
   3697 /*
   3698  * wm_gmii_i82543_writereg:	[mii interface function]
   3699  *
   3700  *	Write a PHY register on the GMII (i82543 version).
   3701  */
   3702 static void
   3703 wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
   3704 {
   3705 	struct wm_softc *sc = (void *) self;
   3706 
   3707 	i82543_mii_sendbits(sc, 0xffffffffU, 32);
   3708 	i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
   3709 	    (reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
   3710 	    (MII_COMMAND_START << 30), 32);
   3711 }
   3712 
   3713 /*
   3714  * wm_gmii_i82544_readreg:	[mii interface function]
   3715  *
   3716  *	Read a PHY register on the GMII.
   3717  */
   3718 static int
   3719 wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
   3720 {
   3721 	struct wm_softc *sc = (void *) self;
   3722 	uint32_t mdic = 0;
   3723 	int i, rv;
   3724 
   3725 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
   3726 	    MDIC_REGADD(reg));
   3727 
   3728 	for (i = 0; i < 100; i++) {
   3729 		mdic = CSR_READ(sc, WMREG_MDIC);
   3730 		if (mdic & MDIC_READY)
   3731 			break;
   3732 		delay(10);
   3733 	}
   3734 
   3735 	if ((mdic & MDIC_READY) == 0) {
   3736 		log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
   3737 		    sc->sc_dev.dv_xname, phy, reg);
   3738 		rv = 0;
   3739 	} else if (mdic & MDIC_E) {
   3740 #if 0 /* This is normal if no PHY is present. */
   3741 		log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
   3742 		    sc->sc_dev.dv_xname, phy, reg);
   3743 #endif
   3744 		rv = 0;
   3745 	} else {
   3746 		rv = MDIC_DATA(mdic);
   3747 		if (rv == 0xffff)
   3748 			rv = 0;
   3749 	}
   3750 
   3751 	return (rv);
   3752 }
   3753 
   3754 /*
   3755  * wm_gmii_i82544_writereg:	[mii interface function]
   3756  *
   3757  *	Write a PHY register on the GMII.
   3758  */
   3759 static void
   3760 wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
   3761 {
   3762 	struct wm_softc *sc = (void *) self;
   3763 	uint32_t mdic = 0;
   3764 	int i;
   3765 
   3766 	CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
   3767 	    MDIC_REGADD(reg) | MDIC_DATA(val));
   3768 
   3769 	for (i = 0; i < 100; i++) {
   3770 		mdic = CSR_READ(sc, WMREG_MDIC);
   3771 		if (mdic & MDIC_READY)
   3772 			break;
   3773 		delay(10);
   3774 	}
   3775 
   3776 	if ((mdic & MDIC_READY) == 0)
   3777 		log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
   3778 		    sc->sc_dev.dv_xname, phy, reg);
   3779 	else if (mdic & MDIC_E)
   3780 		log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
   3781 		    sc->sc_dev.dv_xname, phy, reg);
   3782 }
   3783 
   3784 /*
   3785  * wm_gmii_statchg:	[mii interface function]
   3786  *
   3787  *	Callback from MII layer when media changes.
   3788  */
   3789 static void
   3790 wm_gmii_statchg(struct device *self)
   3791 {
   3792 	struct wm_softc *sc = (void *) self;
   3793 	struct mii_data *mii = &sc->sc_mii;
   3794 
   3795 	sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
   3796 	sc->sc_tctl &= ~TCTL_COLD(0x3ff);
   3797 	sc->sc_fcrtl &= ~FCRTL_XONE;
   3798 
   3799 	/*
   3800 	 * Get flow control negotiation result.
   3801 	 */
   3802 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3803 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3804 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3805 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3806 	}
   3807 
   3808 	if (sc->sc_flowflags & IFM_FLOW) {
   3809 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
   3810 			sc->sc_ctrl |= CTRL_TFCE;
   3811 			sc->sc_fcrtl |= FCRTL_XONE;
   3812 		}
   3813 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3814 			sc->sc_ctrl |= CTRL_RFCE;
   3815 	}
   3816 
   3817 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   3818 		DPRINTF(WM_DEBUG_LINK,
   3819 		    ("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
   3820 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
   3821 	} else  {
   3822 		DPRINTF(WM_DEBUG_LINK,
   3823 		    ("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
   3824 		sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
   3825 	}
   3826 
   3827 	CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
   3828 	CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
   3829 	CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
   3830 						 : WMREG_FCRTL, sc->sc_fcrtl);
   3831 }
   3832