if_wpi.c revision 1.17.4.4 1 1.17.4.4 jmcneill /* $NetBSD: if_wpi.c,v 1.17.4.4 2007/09/02 12:50:36 jmcneill Exp $ */
2 1.1 simonb
3 1.1 simonb /*-
4 1.12 degroote * Copyright (c) 2006, 2007
5 1.1 simonb * Damien Bergamini <damien.bergamini (at) free.fr>
6 1.1 simonb *
7 1.1 simonb * Permission to use, copy, modify, and distribute this software for any
8 1.1 simonb * purpose with or without fee is hereby granted, provided that the above
9 1.1 simonb * copyright notice and this permission notice appear in all copies.
10 1.1 simonb *
11 1.1 simonb * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 1.1 simonb * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 1.1 simonb * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 1.1 simonb * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 1.1 simonb * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 1.1 simonb * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 1.1 simonb * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 1.1 simonb */
19 1.1 simonb
20 1.1 simonb #include <sys/cdefs.h>
21 1.17.4.4 jmcneill __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.17.4.4 2007/09/02 12:50:36 jmcneill Exp $");
22 1.1 simonb
23 1.1 simonb /*
24 1.1 simonb * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 1.1 simonb */
26 1.1 simonb
27 1.1 simonb #include "bpfilter.h"
28 1.1 simonb
29 1.1 simonb #include <sys/param.h>
30 1.1 simonb #include <sys/sockio.h>
31 1.1 simonb #include <sys/sysctl.h>
32 1.1 simonb #include <sys/mbuf.h>
33 1.1 simonb #include <sys/kernel.h>
34 1.1 simonb #include <sys/socket.h>
35 1.1 simonb #include <sys/systm.h>
36 1.1 simonb #include <sys/malloc.h>
37 1.1 simonb #include <sys/conf.h>
38 1.1 simonb #include <sys/kauth.h>
39 1.7 degroote #include <sys/callout.h>
40 1.1 simonb
41 1.1 simonb #include <machine/bus.h>
42 1.1 simonb #include <machine/endian.h>
43 1.1 simonb #include <machine/intr.h>
44 1.1 simonb
45 1.1 simonb #include <dev/pci/pcireg.h>
46 1.1 simonb #include <dev/pci/pcivar.h>
47 1.1 simonb #include <dev/pci/pcidevs.h>
48 1.1 simonb
49 1.1 simonb #if NBPFILTER > 0
50 1.1 simonb #include <net/bpf.h>
51 1.1 simonb #endif
52 1.1 simonb #include <net/if.h>
53 1.1 simonb #include <net/if_arp.h>
54 1.1 simonb #include <net/if_dl.h>
55 1.1 simonb #include <net/if_ether.h>
56 1.1 simonb #include <net/if_media.h>
57 1.1 simonb #include <net/if_types.h>
58 1.1 simonb
59 1.1 simonb #include <net80211/ieee80211_var.h>
60 1.5 joerg #include <net80211/ieee80211_amrr.h>
61 1.1 simonb #include <net80211/ieee80211_radiotap.h>
62 1.1 simonb
63 1.1 simonb #include <netinet/in.h>
64 1.1 simonb #include <netinet/in_systm.h>
65 1.1 simonb #include <netinet/in_var.h>
66 1.1 simonb #include <netinet/ip.h>
67 1.1 simonb
68 1.1 simonb #include <dev/firmload.h>
69 1.1 simonb
70 1.1 simonb #include <dev/pci/if_wpireg.h>
71 1.1 simonb #include <dev/pci/if_wpivar.h>
72 1.1 simonb
73 1.1 simonb #ifdef WPI_DEBUG
74 1.1 simonb #define DPRINTF(x) if (wpi_debug > 0) printf x
75 1.1 simonb #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x
76 1.1 simonb int wpi_debug = 1;
77 1.1 simonb #else
78 1.1 simonb #define DPRINTF(x)
79 1.1 simonb #define DPRINTFN(n, x)
80 1.1 simonb #endif
81 1.1 simonb
82 1.1 simonb /*
83 1.1 simonb * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84 1.1 simonb */
85 1.1 simonb static const struct ieee80211_rateset wpi_rateset_11a =
86 1.1 simonb { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87 1.1 simonb
88 1.1 simonb static const struct ieee80211_rateset wpi_rateset_11b =
89 1.1 simonb { 4, { 2, 4, 11, 22 } };
90 1.1 simonb
91 1.1 simonb static const struct ieee80211_rateset wpi_rateset_11g =
92 1.1 simonb { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93 1.1 simonb
94 1.1 simonb static int wpi_match(struct device *, struct cfdata *, void *);
95 1.1 simonb static void wpi_attach(struct device *, struct device *, void *);
96 1.1 simonb static int wpi_detach(struct device*, int);
97 1.17.4.1 jmcneill static pnp_status_t wpi_power(device_t, pnp_request_t, void *);
98 1.7 degroote static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
99 1.1 simonb void **, bus_size_t, bus_size_t, int);
100 1.7 degroote static void wpi_dma_contig_free(struct wpi_dma_info *);
101 1.1 simonb static int wpi_alloc_shared(struct wpi_softc *);
102 1.1 simonb static void wpi_free_shared(struct wpi_softc *);
103 1.12 degroote static int wpi_alloc_fwmem(struct wpi_softc *);
104 1.12 degroote static void wpi_free_fwmem(struct wpi_softc *);
105 1.7 degroote static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
106 1.9 christos static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
107 1.7 degroote static int wpi_alloc_rpool(struct wpi_softc *);
108 1.7 degroote static void wpi_free_rpool(struct wpi_softc *);
109 1.1 simonb static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
110 1.1 simonb static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
111 1.1 simonb static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
112 1.1 simonb static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
113 1.1 simonb int);
114 1.1 simonb static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
115 1.1 simonb static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
116 1.1 simonb static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
117 1.12 degroote static void wpi_newassoc(struct ieee80211_node *, int);
118 1.1 simonb static int wpi_media_change(struct ifnet *);
119 1.1 simonb static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
120 1.17.4.4 jmcneill static void wpi_fix_channel(struct ieee80211com *, struct mbuf *);
121 1.1 simonb static void wpi_mem_lock(struct wpi_softc *);
122 1.1 simonb static void wpi_mem_unlock(struct wpi_softc *);
123 1.1 simonb static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
124 1.1 simonb static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
125 1.17 degroote static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
126 1.17 degroote const uint32_t *, int);
127 1.12 degroote static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
128 1.17 degroote static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
129 1.12 degroote static int wpi_load_firmware(struct wpi_softc *);
130 1.12 degroote static void wpi_calib_timeout(void *);
131 1.12 degroote static void wpi_iter_func(void *, struct ieee80211_node *);
132 1.12 degroote static void wpi_power_calibration(struct wpi_softc *, int);
133 1.1 simonb static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
134 1.1 simonb struct wpi_rx_data *);
135 1.1 simonb static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
136 1.1 simonb static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
137 1.1 simonb static void wpi_notif_intr(struct wpi_softc *);
138 1.1 simonb static int wpi_intr(void *);
139 1.12 degroote static void wpi_read_eeprom(struct wpi_softc *);
140 1.12 degroote static void wpi_read_eeprom_channels(struct wpi_softc *, int);
141 1.12 degroote static void wpi_read_eeprom_group(struct wpi_softc *, int);
142 1.1 simonb static uint8_t wpi_plcp_signal(int);
143 1.1 simonb static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
144 1.1 simonb struct ieee80211_node *, int);
145 1.1 simonb static void wpi_start(struct ifnet *);
146 1.1 simonb static void wpi_watchdog(struct ifnet *);
147 1.9 christos static int wpi_ioctl(struct ifnet *, u_long, void *);
148 1.1 simonb static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
149 1.1 simonb static int wpi_wme_update(struct ieee80211com *);
150 1.1 simonb static int wpi_mrr_setup(struct wpi_softc *);
151 1.1 simonb static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
152 1.1 simonb static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
153 1.12 degroote static int wpi_set_txpower(struct wpi_softc *,
154 1.12 degroote struct ieee80211_channel *, int);
155 1.12 degroote static int wpi_get_power_index(struct wpi_softc *,
156 1.12 degroote struct wpi_power_group *, struct ieee80211_channel *, int);
157 1.1 simonb static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
158 1.1 simonb static int wpi_auth(struct wpi_softc *);
159 1.1 simonb static int wpi_scan(struct wpi_softc *, uint16_t);
160 1.1 simonb static int wpi_config(struct wpi_softc *);
161 1.1 simonb static void wpi_stop_master(struct wpi_softc *);
162 1.1 simonb static int wpi_power_up(struct wpi_softc *);
163 1.1 simonb static int wpi_reset(struct wpi_softc *);
164 1.1 simonb static void wpi_hw_config(struct wpi_softc *);
165 1.1 simonb static int wpi_init(struct ifnet *);
166 1.1 simonb static void wpi_stop(struct ifnet *, int);
167 1.1 simonb
168 1.1 simonb CFATTACH_DECL(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
169 1.1 simonb wpi_detach, NULL);
170 1.1 simonb
171 1.1 simonb static int
172 1.7 degroote wpi_match(struct device *parent, struct cfdata *match __unused, void *aux)
173 1.1 simonb {
174 1.1 simonb struct pci_attach_args *pa = aux;
175 1.1 simonb
176 1.1 simonb if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
177 1.1 simonb return 0;
178 1.1 simonb
179 1.1 simonb if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
180 1.7 degroote PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
181 1.1 simonb return 1;
182 1.1 simonb
183 1.1 simonb return 0;
184 1.1 simonb }
185 1.1 simonb
186 1.1 simonb /* Base Address Register */
187 1.1 simonb #define WPI_PCI_BAR0 0x10
188 1.1 simonb
189 1.1 simonb static void
190 1.7 degroote wpi_attach(struct device *parent __unused, struct device *self, void *aux)
191 1.1 simonb {
192 1.1 simonb struct wpi_softc *sc = (struct wpi_softc *)self;
193 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
194 1.1 simonb struct ifnet *ifp = &sc->sc_ec.ec_if;
195 1.1 simonb struct pci_attach_args *pa = aux;
196 1.1 simonb const char *intrstr;
197 1.1 simonb char devinfo[256];
198 1.1 simonb bus_space_tag_t memt;
199 1.1 simonb bus_space_handle_t memh;
200 1.1 simonb pci_intr_handle_t ih;
201 1.1 simonb pcireg_t data;
202 1.12 degroote int error, ac, revision;
203 1.1 simonb
204 1.1 simonb sc->sc_pct = pa->pa_pc;
205 1.1 simonb sc->sc_pcitag = pa->pa_tag;
206 1.1 simonb
207 1.14 ad callout_init(&sc->calib_to, 0);
208 1.1 simonb
209 1.1 simonb pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
210 1.1 simonb revision = PCI_REVISION(pa->pa_class);
211 1.1 simonb aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
212 1.1 simonb
213 1.1 simonb /* clear device specific PCI configuration register 0x41 */
214 1.1 simonb data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
215 1.1 simonb data &= ~0x0000ff00;
216 1.1 simonb pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
217 1.1 simonb
218 1.1 simonb /* enable bus-mastering */
219 1.1 simonb data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
220 1.1 simonb data |= PCI_COMMAND_MASTER_ENABLE;
221 1.1 simonb pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
222 1.1 simonb
223 1.1 simonb /* map the register window */
224 1.1 simonb error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
225 1.7 degroote PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
226 1.1 simonb if (error != 0) {
227 1.1 simonb aprint_error("%s: could not map memory space\n",
228 1.1 simonb sc->sc_dev.dv_xname);
229 1.1 simonb return;
230 1.1 simonb }
231 1.1 simonb
232 1.1 simonb sc->sc_st = memt;
233 1.1 simonb sc->sc_sh = memh;
234 1.1 simonb sc->sc_dmat = pa->pa_dmat;
235 1.1 simonb
236 1.1 simonb if (pci_intr_map(pa, &ih) != 0) {
237 1.1 simonb aprint_error("%s: could not map interrupt\n",
238 1.1 simonb sc->sc_dev.dv_xname);
239 1.1 simonb return;
240 1.1 simonb }
241 1.1 simonb
242 1.1 simonb intrstr = pci_intr_string(sc->sc_pct, ih);
243 1.1 simonb sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
244 1.1 simonb if (sc->sc_ih == NULL) {
245 1.1 simonb aprint_error("%s: could not establish interrupt",
246 1.1 simonb sc->sc_dev.dv_xname);
247 1.1 simonb if (intrstr != NULL)
248 1.1 simonb aprint_error(" at %s", intrstr);
249 1.1 simonb aprint_error("\n");
250 1.1 simonb return;
251 1.1 simonb }
252 1.1 simonb aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
253 1.1 simonb
254 1.1 simonb if (wpi_reset(sc) != 0) {
255 1.1 simonb aprint_error("%s: could not reset adapter\n",
256 1.1 simonb sc->sc_dev.dv_xname);
257 1.1 simonb return;
258 1.1 simonb }
259 1.1 simonb
260 1.12 degroote /*
261 1.12 degroote * Allocate DMA memory for firmware transfers.
262 1.12 degroote */
263 1.12 degroote if ((error = wpi_alloc_fwmem(sc)) != 0) {
264 1.12 degroote aprint_error(": could not allocate firmware memory\n");
265 1.12 degroote return;
266 1.12 degroote }
267 1.12 degroote
268 1.1 simonb /*
269 1.1 simonb * Allocate shared page and Tx/Rx rings.
270 1.1 simonb */
271 1.1 simonb if ((error = wpi_alloc_shared(sc)) != 0) {
272 1.1 simonb aprint_error("%s: could not allocate shared area\n",
273 1.1 simonb sc->sc_dev.dv_xname);
274 1.12 degroote goto fail1;
275 1.1 simonb }
276 1.1 simonb
277 1.7 degroote if ((error = wpi_alloc_rpool(sc)) != 0) {
278 1.7 degroote aprint_error("%s: could not allocate Rx buffers\n",
279 1.7 degroote sc->sc_dev.dv_xname);
280 1.12 degroote goto fail2;
281 1.7 degroote }
282 1.7 degroote
283 1.1 simonb for (ac = 0; ac < 4; ac++) {
284 1.1 simonb error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
285 1.1 simonb if (error != 0) {
286 1.1 simonb aprint_error("%s: could not allocate Tx ring %d\n",
287 1.1 simonb sc->sc_dev.dv_xname, ac);
288 1.12 degroote goto fail3;
289 1.1 simonb }
290 1.1 simonb }
291 1.1 simonb
292 1.1 simonb error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
293 1.1 simonb if (error != 0) {
294 1.1 simonb aprint_error("%s: could not allocate command ring\n",
295 1.1 simonb sc->sc_dev.dv_xname);
296 1.12 degroote goto fail3;
297 1.1 simonb }
298 1.1 simonb
299 1.1 simonb error = wpi_alloc_tx_ring(sc, &sc->svcq, WPI_SVC_RING_COUNT, 5);
300 1.1 simonb if (error != 0) {
301 1.1 simonb aprint_error("%s: could not allocate service ring\n",
302 1.1 simonb sc->sc_dev.dv_xname);
303 1.12 degroote goto fail4;
304 1.1 simonb }
305 1.1 simonb
306 1.1 simonb if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
307 1.1 simonb aprint_error("%s: could not allocate Rx ring\n",
308 1.1 simonb sc->sc_dev.dv_xname);
309 1.12 degroote goto fail5;
310 1.1 simonb }
311 1.1 simonb
312 1.1 simonb ic->ic_ifp = ifp;
313 1.1 simonb ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
314 1.1 simonb ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
315 1.1 simonb ic->ic_state = IEEE80211_S_INIT;
316 1.1 simonb
317 1.1 simonb /* set device capabilities */
318 1.1 simonb ic->ic_caps =
319 1.1 simonb IEEE80211_C_IBSS | /* IBSS mode support */
320 1.1 simonb IEEE80211_C_WPA | /* 802.11i */
321 1.1 simonb IEEE80211_C_MONITOR | /* monitor mode supported */
322 1.1 simonb IEEE80211_C_TXPMGT | /* tx power management */
323 1.1 simonb IEEE80211_C_SHSLOT | /* short slot time supported */
324 1.1 simonb IEEE80211_C_SHPREAMBLE | /* short preamble supported */
325 1.1 simonb IEEE80211_C_WME; /* 802.11e */
326 1.1 simonb
327 1.12 degroote /* read supported channels and MAC address from EEPROM */
328 1.1 simonb wpi_read_eeprom(sc);
329 1.1 simonb
330 1.12 degroote /* set supported .11a, .11b, .11g rates */
331 1.7 degroote ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
332 1.1 simonb ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
333 1.1 simonb ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
334 1.1 simonb
335 1.1 simonb ic->ic_ibss_chan = &ic->ic_channels[0];
336 1.1 simonb
337 1.1 simonb ifp->if_softc = sc;
338 1.1 simonb ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
339 1.1 simonb ifp->if_init = wpi_init;
340 1.1 simonb ifp->if_stop = wpi_stop;
341 1.1 simonb ifp->if_ioctl = wpi_ioctl;
342 1.1 simonb ifp->if_start = wpi_start;
343 1.1 simonb ifp->if_watchdog = wpi_watchdog;
344 1.1 simonb IFQ_SET_READY(&ifp->if_snd);
345 1.1 simonb memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
346 1.1 simonb
347 1.1 simonb if_attach(ifp);
348 1.1 simonb ieee80211_ifattach(ic);
349 1.1 simonb /* override default methods */
350 1.1 simonb ic->ic_node_alloc = wpi_node_alloc;
351 1.5 joerg ic->ic_newassoc = wpi_newassoc;
352 1.1 simonb ic->ic_wme.wme_update = wpi_wme_update;
353 1.1 simonb
354 1.1 simonb /* override state transition machine */
355 1.1 simonb sc->sc_newstate = ic->ic_newstate;
356 1.1 simonb ic->ic_newstate = wpi_newstate;
357 1.1 simonb ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
358 1.1 simonb
359 1.5 joerg sc->amrr.amrr_min_success_threshold = 1;
360 1.5 joerg sc->amrr.amrr_max_success_threshold = 15;
361 1.5 joerg
362 1.17.4.1 jmcneill /* set power handler */
363 1.17.4.1 jmcneill if (pnp_register(self, wpi_power) != PNP_STATUS_SUCCESS)
364 1.17.4.1 jmcneill aprint_error("%s: couldn't establish power handler\n",
365 1.17.4.1 jmcneill device_xname(self));
366 1.1 simonb
367 1.1 simonb #if NBPFILTER > 0
368 1.1 simonb bpfattach2(ifp, DLT_IEEE802_11_RADIO,
369 1.1 simonb sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
370 1.1 simonb &sc->sc_drvbpf);
371 1.1 simonb
372 1.1 simonb sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
373 1.1 simonb sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
374 1.1 simonb sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
375 1.1 simonb
376 1.1 simonb sc->sc_txtap_len = sizeof sc->sc_txtapu;
377 1.1 simonb sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
378 1.1 simonb sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
379 1.1 simonb #endif
380 1.1 simonb
381 1.1 simonb ieee80211_announce(ic);
382 1.1 simonb
383 1.1 simonb return;
384 1.1 simonb
385 1.12 degroote fail5: wpi_free_tx_ring(sc, &sc->svcq);
386 1.12 degroote fail4: wpi_free_tx_ring(sc, &sc->cmdq);
387 1.12 degroote fail3: while (--ac >= 0)
388 1.1 simonb wpi_free_tx_ring(sc, &sc->txq[ac]);
389 1.7 degroote wpi_free_rpool(sc);
390 1.12 degroote fail2: wpi_free_shared(sc);
391 1.12 degroote fail1: wpi_free_fwmem(sc);
392 1.1 simonb }
393 1.1 simonb
394 1.1 simonb static int
395 1.7 degroote wpi_detach(struct device* self, int flags __unused)
396 1.1 simonb {
397 1.1 simonb struct wpi_softc *sc = (struct wpi_softc *)self;
398 1.7 degroote struct ifnet *ifp = sc->sc_ic.ic_ifp;
399 1.1 simonb int ac;
400 1.1 simonb
401 1.1 simonb wpi_stop(ifp, 1);
402 1.1 simonb
403 1.1 simonb #if NBPFILTER > 0
404 1.1 simonb if (ifp != NULL)
405 1.1 simonb bpfdetach(ifp);
406 1.1 simonb #endif
407 1.1 simonb ieee80211_ifdetach(&sc->sc_ic);
408 1.1 simonb if (ifp != NULL)
409 1.1 simonb if_detach(ifp);
410 1.1 simonb
411 1.1 simonb for (ac = 0; ac < 4; ac++)
412 1.1 simonb wpi_free_tx_ring(sc, &sc->txq[ac]);
413 1.1 simonb wpi_free_tx_ring(sc, &sc->cmdq);
414 1.1 simonb wpi_free_tx_ring(sc, &sc->svcq);
415 1.1 simonb wpi_free_rx_ring(sc, &sc->rxq);
416 1.7 degroote wpi_free_rpool(sc);
417 1.1 simonb wpi_free_shared(sc);
418 1.1 simonb
419 1.1 simonb if (sc->sc_ih != NULL) {
420 1.1 simonb pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
421 1.1 simonb sc->sc_ih = NULL;
422 1.1 simonb }
423 1.1 simonb
424 1.1 simonb bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
425 1.1 simonb
426 1.1 simonb return 0;
427 1.1 simonb }
428 1.1 simonb
429 1.17.4.1 jmcneill static pnp_status_t
430 1.17.4.1 jmcneill wpi_power(device_t dv, pnp_request_t req, void *opaque)
431 1.1 simonb {
432 1.17.4.1 jmcneill struct wpi_softc *sc = (struct wpi_softc *)dv;
433 1.17.4.1 jmcneill pnp_capabilities_t *pcaps;
434 1.17.4.1 jmcneill pnp_state_t *pstate;
435 1.1 simonb struct ifnet *ifp;
436 1.1 simonb pcireg_t data;
437 1.1 simonb int s;
438 1.1 simonb
439 1.17.4.1 jmcneill switch (req) {
440 1.17.4.1 jmcneill case PNP_REQUEST_GET_CAPABILITIES:
441 1.17.4.1 jmcneill pcaps = opaque;
442 1.17.4.1 jmcneill pcaps->state = PNP_STATE_D0 | PNP_STATE_D3;
443 1.17.4.1 jmcneill break;
444 1.17.4.1 jmcneill case PNP_REQUEST_GET_STATE:
445 1.17.4.1 jmcneill pstate = opaque;
446 1.17.4.1 jmcneill *pstate = PNP_STATE_D0;
447 1.17.4.1 jmcneill break;
448 1.17.4.1 jmcneill case PNP_REQUEST_SET_STATE:
449 1.17.4.1 jmcneill pstate = opaque;
450 1.17.4.1 jmcneill switch (*pstate) {
451 1.17.4.1 jmcneill case PNP_STATE_D0:
452 1.17.4.1 jmcneill /* clear device specific PCI conf reg 0x41 */
453 1.17.4.1 jmcneill data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
454 1.17.4.1 jmcneill data &= ~0x0000ff00;
455 1.17.4.1 jmcneill pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
456 1.1 simonb
457 1.17.4.1 jmcneill pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0xe8,
458 1.17.4.1 jmcneill sc->sc_pmstate_e8);
459 1.17.4.1 jmcneill
460 1.17.4.1 jmcneill s = splnet();
461 1.17.4.1 jmcneill ifp = sc->sc_ic.ic_ifp;
462 1.17.4.1 jmcneill if (ifp->if_flags & IFF_UP) {
463 1.17.4.1 jmcneill ifp->if_init(ifp);
464 1.17.4.1 jmcneill if (ifp->if_flags & IFF_RUNNING)
465 1.17.4.1 jmcneill ifp->if_start(ifp);
466 1.17.4.1 jmcneill }
467 1.17.4.1 jmcneill splx(s);
468 1.17.4.1 jmcneill break;
469 1.17.4.1 jmcneill case PNP_STATE_D3:
470 1.17.4.1 jmcneill sc->sc_pmstate_e8 = pci_conf_read(
471 1.17.4.1 jmcneill sc->sc_pct, sc->sc_pcitag, 0xe8);
472 1.17.4.1 jmcneill break;
473 1.17.4.1 jmcneill default:
474 1.17.4.1 jmcneill return PNP_STATUS_UNSUPPORTED;
475 1.17.4.1 jmcneill }
476 1.17.4.1 jmcneill break;
477 1.17.4.1 jmcneill default:
478 1.17.4.1 jmcneill return PNP_STATUS_UNSUPPORTED;
479 1.1 simonb }
480 1.17.4.1 jmcneill
481 1.17.4.1 jmcneill return PNP_STATUS_SUCCESS;
482 1.1 simonb }
483 1.1 simonb
484 1.1 simonb static int
485 1.7 degroote wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
486 1.1 simonb void **kvap, bus_size_t size, bus_size_t alignment, int flags)
487 1.1 simonb {
488 1.1 simonb int nsegs, error;
489 1.1 simonb
490 1.7 degroote dma->tag = tag;
491 1.1 simonb dma->size = size;
492 1.1 simonb
493 1.7 degroote error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
494 1.7 degroote if (error != 0)
495 1.1 simonb goto fail;
496 1.1 simonb
497 1.7 degroote error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
498 1.7 degroote flags);
499 1.7 degroote if (error != 0)
500 1.1 simonb goto fail;
501 1.1 simonb
502 1.7 degroote error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
503 1.7 degroote if (error != 0)
504 1.1 simonb goto fail;
505 1.1 simonb
506 1.7 degroote error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
507 1.7 degroote if (error != 0)
508 1.1 simonb goto fail;
509 1.1 simonb
510 1.1 simonb memset(dma->vaddr, 0, size);
511 1.1 simonb
512 1.1 simonb dma->paddr = dma->map->dm_segs[0].ds_addr;
513 1.7 degroote if (kvap != NULL)
514 1.7 degroote *kvap = dma->vaddr;
515 1.1 simonb
516 1.1 simonb return 0;
517 1.1 simonb
518 1.7 degroote fail: wpi_dma_contig_free(dma);
519 1.1 simonb return error;
520 1.1 simonb }
521 1.1 simonb
522 1.1 simonb static void
523 1.7 degroote wpi_dma_contig_free(struct wpi_dma_info *dma)
524 1.1 simonb {
525 1.1 simonb if (dma->map != NULL) {
526 1.1 simonb if (dma->vaddr != NULL) {
527 1.7 degroote bus_dmamap_unload(dma->tag, dma->map);
528 1.7 degroote bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
529 1.7 degroote bus_dmamem_free(dma->tag, &dma->seg, 1);
530 1.1 simonb dma->vaddr = NULL;
531 1.1 simonb }
532 1.7 degroote bus_dmamap_destroy(dma->tag, dma->map);
533 1.1 simonb dma->map = NULL;
534 1.1 simonb }
535 1.1 simonb }
536 1.1 simonb
537 1.1 simonb /*
538 1.1 simonb * Allocate a shared page between host and NIC.
539 1.1 simonb */
540 1.1 simonb static int
541 1.1 simonb wpi_alloc_shared(struct wpi_softc *sc)
542 1.1 simonb {
543 1.1 simonb int error;
544 1.1 simonb /* must be aligned on a 4K-page boundary */
545 1.7 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
546 1.12 degroote (void **)&sc->shared, sizeof (struct wpi_shared),
547 1.12 degroote WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
548 1.1 simonb if (error != 0)
549 1.12 degroote aprint_error(
550 1.12 degroote "%s: could not allocate shared area DMA memory\n",
551 1.1 simonb sc->sc_dev.dv_xname);
552 1.1 simonb
553 1.1 simonb return error;
554 1.1 simonb }
555 1.1 simonb
556 1.1 simonb static void
557 1.1 simonb wpi_free_shared(struct wpi_softc *sc)
558 1.1 simonb {
559 1.7 degroote wpi_dma_contig_free(&sc->shared_dma);
560 1.7 degroote }
561 1.7 degroote
562 1.12 degroote /*
563 1.12 degroote * Allocate DMA-safe memory for firmware transfer.
564 1.12 degroote */
565 1.12 degroote static int
566 1.12 degroote wpi_alloc_fwmem(struct wpi_softc *sc)
567 1.12 degroote {
568 1.12 degroote int error;
569 1.12 degroote /* allocate enough contiguous space to store text and data */
570 1.12 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
571 1.12 degroote WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
572 1.12 degroote BUS_DMA_NOWAIT);
573 1.12 degroote
574 1.12 degroote if (error != 0)
575 1.12 degroote aprint_error(
576 1.12 degroote "%s: could not allocate firmware transfer area"
577 1.12 degroote "DMA memory\n", sc->sc_dev.dv_xname);
578 1.12 degroote return error;
579 1.12 degroote }
580 1.12 degroote
581 1.12 degroote static void
582 1.12 degroote wpi_free_fwmem(struct wpi_softc *sc)
583 1.12 degroote {
584 1.12 degroote wpi_dma_contig_free(&sc->fw_dma);
585 1.12 degroote }
586 1.12 degroote
587 1.12 degroote
588 1.7 degroote static struct wpi_rbuf *
589 1.7 degroote wpi_alloc_rbuf(struct wpi_softc *sc)
590 1.7 degroote {
591 1.7 degroote struct wpi_rbuf *rbuf;
592 1.7 degroote
593 1.7 degroote rbuf = SLIST_FIRST(&sc->rxq.freelist);
594 1.7 degroote if (rbuf == NULL)
595 1.7 degroote return NULL;
596 1.7 degroote SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
597 1.10 degroote sc->rxq.nb_free_entries --;
598 1.10 degroote
599 1.7 degroote return rbuf;
600 1.7 degroote }
601 1.7 degroote
602 1.7 degroote /*
603 1.7 degroote * This is called automatically by the network stack when the mbuf to which our
604 1.7 degroote * Rx buffer is attached is freed.
605 1.7 degroote */
606 1.7 degroote static void
607 1.9 christos wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
608 1.7 degroote {
609 1.7 degroote struct wpi_rbuf *rbuf = arg;
610 1.7 degroote struct wpi_softc *sc = rbuf->sc;
611 1.7 degroote int s;
612 1.7 degroote
613 1.7 degroote /* put the buffer back in the free list */
614 1.10 degroote
615 1.7 degroote SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
616 1.10 degroote sc->rxq.nb_free_entries ++;
617 1.7 degroote
618 1.7 degroote if (__predict_true(m != NULL)) {
619 1.7 degroote s = splvm();
620 1.7 degroote pool_cache_put(&mbpool_cache, m);
621 1.7 degroote splx(s);
622 1.7 degroote }
623 1.7 degroote }
624 1.7 degroote
625 1.7 degroote static int
626 1.7 degroote wpi_alloc_rpool(struct wpi_softc *sc)
627 1.7 degroote {
628 1.7 degroote struct wpi_rx_ring *ring = &sc->rxq;
629 1.7 degroote struct wpi_rbuf *rbuf;
630 1.7 degroote int i, error;
631 1.7 degroote
632 1.7 degroote /* allocate a big chunk of DMA'able memory.. */
633 1.7 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
634 1.7 degroote WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
635 1.7 degroote if (error != 0) {
636 1.7 degroote aprint_normal("%s: could not allocate Rx buffers DMA memory\n",
637 1.7 degroote sc->sc_dev.dv_xname);
638 1.7 degroote return error;
639 1.7 degroote }
640 1.7 degroote
641 1.7 degroote /* ..and split it into 3KB chunks */
642 1.7 degroote SLIST_INIT(&ring->freelist);
643 1.7 degroote for (i = 0; i < WPI_RBUF_COUNT; i++) {
644 1.7 degroote rbuf = &ring->rbuf[i];
645 1.7 degroote rbuf->sc = sc; /* backpointer for callbacks */
646 1.9 christos rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
647 1.7 degroote rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
648 1.7 degroote
649 1.7 degroote SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
650 1.7 degroote }
651 1.10 degroote
652 1.10 degroote ring->nb_free_entries = WPI_RBUF_COUNT;
653 1.7 degroote return 0;
654 1.7 degroote }
655 1.7 degroote
656 1.7 degroote static void
657 1.7 degroote wpi_free_rpool(struct wpi_softc *sc)
658 1.7 degroote {
659 1.7 degroote wpi_dma_contig_free(&sc->rxq.buf_dma);
660 1.1 simonb }
661 1.1 simonb
662 1.1 simonb static int
663 1.1 simonb wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
664 1.1 simonb {
665 1.1 simonb struct wpi_rx_data *data;
666 1.7 degroote struct wpi_rbuf *rbuf;
667 1.1 simonb int i, error;
668 1.1 simonb
669 1.1 simonb ring->cur = 0;
670 1.1 simonb
671 1.7 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
672 1.1 simonb (void **)&ring->desc,
673 1.1 simonb WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
674 1.1 simonb WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
675 1.1 simonb if (error != 0) {
676 1.1 simonb aprint_error("%s: could not allocate rx ring DMA memory\n",
677 1.1 simonb sc->sc_dev.dv_xname);
678 1.1 simonb goto fail;
679 1.1 simonb }
680 1.1 simonb
681 1.1 simonb /*
682 1.7 degroote * Setup Rx buffers.
683 1.1 simonb */
684 1.1 simonb for (i = 0; i < WPI_RX_RING_COUNT; i++) {
685 1.1 simonb data = &ring->data[i];
686 1.1 simonb
687 1.1 simonb MGETHDR(data->m, M_DONTWAIT, MT_DATA);
688 1.1 simonb if (data->m == NULL) {
689 1.1 simonb aprint_error("%s: could not allocate rx mbuf\n",
690 1.1 simonb sc->sc_dev.dv_xname);
691 1.1 simonb error = ENOMEM;
692 1.1 simonb goto fail;
693 1.1 simonb }
694 1.7 degroote if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
695 1.1 simonb m_freem(data->m);
696 1.1 simonb data->m = NULL;
697 1.7 degroote aprint_error("%s: could not allocate rx cluster\n",
698 1.1 simonb sc->sc_dev.dv_xname);
699 1.1 simonb error = ENOMEM;
700 1.1 simonb goto fail;
701 1.1 simonb }
702 1.7 degroote /* attach Rx buffer to mbuf */
703 1.7 degroote MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
704 1.7 degroote rbuf);
705 1.7 degroote data->m->m_flags |= M_EXT_RW;
706 1.1 simonb
707 1.7 degroote ring->desc[i] = htole32(rbuf->paddr);
708 1.1 simonb }
709 1.1 simonb
710 1.1 simonb return 0;
711 1.1 simonb
712 1.1 simonb fail: wpi_free_rx_ring(sc, ring);
713 1.1 simonb return error;
714 1.1 simonb }
715 1.1 simonb
716 1.1 simonb static void
717 1.1 simonb wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
718 1.1 simonb {
719 1.1 simonb int ntries;
720 1.1 simonb
721 1.1 simonb wpi_mem_lock(sc);
722 1.1 simonb
723 1.1 simonb WPI_WRITE(sc, WPI_RX_CONFIG, 0);
724 1.1 simonb for (ntries = 0; ntries < 100; ntries++) {
725 1.1 simonb if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
726 1.1 simonb break;
727 1.1 simonb DELAY(10);
728 1.1 simonb }
729 1.1 simonb #ifdef WPI_DEBUG
730 1.1 simonb if (ntries == 100 && wpi_debug > 0)
731 1.1 simonb aprint_error("%s: timeout resetting Rx ring\n",
732 1.1 simonb sc->sc_dev.dv_xname);
733 1.1 simonb #endif
734 1.1 simonb wpi_mem_unlock(sc);
735 1.1 simonb
736 1.1 simonb ring->cur = 0;
737 1.1 simonb }
738 1.1 simonb
739 1.1 simonb static void
740 1.1 simonb wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
741 1.1 simonb {
742 1.1 simonb int i;
743 1.1 simonb
744 1.7 degroote wpi_dma_contig_free(&ring->desc_dma);
745 1.1 simonb
746 1.1 simonb for (i = 0; i < WPI_RX_RING_COUNT; i++) {
747 1.7 degroote if (ring->data[i].m != NULL)
748 1.7 degroote m_freem(ring->data[i].m);
749 1.1 simonb }
750 1.1 simonb }
751 1.1 simonb
752 1.1 simonb static int
753 1.1 simonb wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
754 1.1 simonb int qid)
755 1.1 simonb {
756 1.1 simonb struct wpi_tx_data *data;
757 1.1 simonb int i, error;
758 1.1 simonb
759 1.1 simonb ring->qid = qid;
760 1.1 simonb ring->count = count;
761 1.1 simonb ring->queued = 0;
762 1.1 simonb ring->cur = 0;
763 1.1 simonb
764 1.7 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
765 1.1 simonb (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
766 1.1 simonb WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
767 1.1 simonb if (error != 0) {
768 1.1 simonb aprint_error("%s: could not allocate tx ring DMA memory\n",
769 1.1 simonb sc->sc_dev.dv_xname);
770 1.1 simonb goto fail;
771 1.1 simonb }
772 1.1 simonb
773 1.1 simonb /* update shared page with ring's base address */
774 1.1 simonb sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
775 1.1 simonb
776 1.7 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
777 1.7 degroote (void **)&ring->cmd,
778 1.1 simonb count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
779 1.1 simonb if (error != 0) {
780 1.1 simonb aprint_error("%s: could not allocate tx cmd DMA memory\n",
781 1.1 simonb sc->sc_dev.dv_xname);
782 1.1 simonb goto fail;
783 1.1 simonb }
784 1.1 simonb
785 1.1 simonb ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
786 1.1 simonb M_NOWAIT);
787 1.1 simonb if (ring->data == NULL) {
788 1.1 simonb aprint_error("%s: could not allocate tx data slots\n",
789 1.1 simonb sc->sc_dev.dv_xname);
790 1.1 simonb goto fail;
791 1.1 simonb }
792 1.1 simonb
793 1.1 simonb memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
794 1.1 simonb
795 1.1 simonb for (i = 0; i < count; i++) {
796 1.1 simonb data = &ring->data[i];
797 1.1 simonb
798 1.1 simonb error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
799 1.1 simonb WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
800 1.1 simonb &data->map);
801 1.1 simonb if (error != 0) {
802 1.1 simonb aprint_error("%s: could not create tx buf DMA map\n",
803 1.1 simonb sc->sc_dev.dv_xname);
804 1.1 simonb goto fail;
805 1.1 simonb }
806 1.1 simonb }
807 1.1 simonb
808 1.1 simonb return 0;
809 1.1 simonb
810 1.1 simonb fail: wpi_free_tx_ring(sc, ring);
811 1.1 simonb return error;
812 1.1 simonb }
813 1.1 simonb
814 1.1 simonb static void
815 1.1 simonb wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
816 1.1 simonb {
817 1.1 simonb struct wpi_tx_data *data;
818 1.1 simonb int i, ntries;
819 1.1 simonb
820 1.1 simonb wpi_mem_lock(sc);
821 1.1 simonb
822 1.1 simonb WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
823 1.1 simonb for (ntries = 0; ntries < 100; ntries++) {
824 1.1 simonb if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
825 1.1 simonb break;
826 1.1 simonb DELAY(10);
827 1.1 simonb }
828 1.1 simonb #ifdef WPI_DEBUG
829 1.1 simonb if (ntries == 100 && wpi_debug > 0) {
830 1.1 simonb aprint_error("%s: timeout resetting Tx ring %d\n",
831 1.1 simonb sc->sc_dev.dv_xname, ring->qid);
832 1.1 simonb }
833 1.1 simonb #endif
834 1.1 simonb wpi_mem_unlock(sc);
835 1.1 simonb
836 1.1 simonb for (i = 0; i < ring->count; i++) {
837 1.1 simonb data = &ring->data[i];
838 1.1 simonb
839 1.1 simonb if (data->m != NULL) {
840 1.1 simonb bus_dmamap_unload(sc->sc_dmat, data->map);
841 1.1 simonb m_freem(data->m);
842 1.1 simonb data->m = NULL;
843 1.1 simonb }
844 1.1 simonb }
845 1.1 simonb
846 1.1 simonb ring->queued = 0;
847 1.1 simonb ring->cur = 0;
848 1.1 simonb }
849 1.1 simonb
850 1.1 simonb static void
851 1.1 simonb wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
852 1.1 simonb {
853 1.1 simonb struct wpi_tx_data *data;
854 1.1 simonb int i;
855 1.1 simonb
856 1.7 degroote wpi_dma_contig_free(&ring->desc_dma);
857 1.7 degroote wpi_dma_contig_free(&ring->cmd_dma);
858 1.1 simonb
859 1.1 simonb if (ring->data != NULL) {
860 1.1 simonb for (i = 0; i < ring->count; i++) {
861 1.1 simonb data = &ring->data[i];
862 1.1 simonb
863 1.1 simonb if (data->m != NULL) {
864 1.1 simonb bus_dmamap_unload(sc->sc_dmat, data->map);
865 1.1 simonb m_freem(data->m);
866 1.1 simonb }
867 1.1 simonb }
868 1.1 simonb free(ring->data, M_DEVBUF);
869 1.1 simonb }
870 1.1 simonb }
871 1.1 simonb
872 1.1 simonb /*ARGUSED*/
873 1.1 simonb static struct ieee80211_node *
874 1.7 degroote wpi_node_alloc(struct ieee80211_node_table *nt __unused)
875 1.1 simonb {
876 1.5 joerg struct wpi_node *wn;
877 1.1 simonb
878 1.5 joerg wn = malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT);
879 1.5 joerg
880 1.5 joerg if (wn != NULL)
881 1.5 joerg memset(wn, 0, sizeof (struct wpi_node));
882 1.5 joerg return (struct ieee80211_node *)wn;
883 1.1 simonb }
884 1.1 simonb
885 1.12 degroote static void
886 1.12 degroote wpi_newassoc(struct ieee80211_node *ni, int isnew)
887 1.12 degroote {
888 1.12 degroote struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
889 1.12 degroote int i;
890 1.12 degroote
891 1.12 degroote ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
892 1.12 degroote
893 1.12 degroote /* set rate to some reasonable initial value */
894 1.12 degroote for (i = ni->ni_rates.rs_nrates - 1;
895 1.12 degroote i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
896 1.12 degroote i--);
897 1.12 degroote ni->ni_txrate = i;
898 1.12 degroote }
899 1.12 degroote
900 1.1 simonb static int
901 1.1 simonb wpi_media_change(struct ifnet *ifp)
902 1.1 simonb {
903 1.1 simonb int error;
904 1.1 simonb
905 1.1 simonb error = ieee80211_media_change(ifp);
906 1.1 simonb if (error != ENETRESET)
907 1.1 simonb return error;
908 1.1 simonb
909 1.1 simonb if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
910 1.1 simonb wpi_init(ifp);
911 1.1 simonb
912 1.1 simonb return 0;
913 1.1 simonb }
914 1.1 simonb
915 1.1 simonb static int
916 1.1 simonb wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
917 1.1 simonb {
918 1.1 simonb struct ifnet *ifp = ic->ic_ifp;
919 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
920 1.12 degroote struct ieee80211_node *ni;
921 1.1 simonb int error;
922 1.1 simonb
923 1.12 degroote callout_stop(&sc->calib_to);
924 1.1 simonb
925 1.1 simonb switch (nstate) {
926 1.1 simonb case IEEE80211_S_SCAN:
927 1.17.4.4 jmcneill
928 1.17.4.4 jmcneill if (sc->is_scanning)
929 1.17.4.4 jmcneill break;
930 1.17.4.4 jmcneill
931 1.17.4.4 jmcneill sc->is_scanning = true;
932 1.1 simonb ieee80211_node_table_reset(&ic->ic_scan);
933 1.1 simonb ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
934 1.1 simonb
935 1.1 simonb /* make the link LED blink while we're scanning */
936 1.1 simonb wpi_set_led(sc, WPI_LED_LINK, 20, 2);
937 1.1 simonb
938 1.1 simonb if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
939 1.1 simonb aprint_error("%s: could not initiate scan\n",
940 1.1 simonb sc->sc_dev.dv_xname);
941 1.1 simonb ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
942 1.1 simonb return error;
943 1.1 simonb }
944 1.1 simonb
945 1.1 simonb ic->ic_state = nstate;
946 1.1 simonb return 0;
947 1.1 simonb
948 1.7 degroote case IEEE80211_S_ASSOC:
949 1.7 degroote if (ic->ic_state != IEEE80211_S_RUN)
950 1.7 degroote break;
951 1.7 degroote /* FALLTHROUGH */
952 1.1 simonb case IEEE80211_S_AUTH:
953 1.12 degroote sc->config.associd = 0;
954 1.1 simonb sc->config.filter &= ~htole32(WPI_FILTER_BSS);
955 1.1 simonb if ((error = wpi_auth(sc)) != 0) {
956 1.1 simonb aprint_error("%s: could not send authentication request\n",
957 1.1 simonb sc->sc_dev.dv_xname);
958 1.1 simonb return error;
959 1.1 simonb }
960 1.1 simonb break;
961 1.1 simonb
962 1.1 simonb case IEEE80211_S_RUN:
963 1.1 simonb if (ic->ic_opmode == IEEE80211_M_MONITOR) {
964 1.1 simonb /* link LED blinks while monitoring */
965 1.1 simonb wpi_set_led(sc, WPI_LED_LINK, 5, 5);
966 1.1 simonb break;
967 1.1 simonb }
968 1.12 degroote
969 1.12 degroote ni = ic->ic_bss;
970 1.1 simonb
971 1.1 simonb if (ic->ic_opmode != IEEE80211_M_STA) {
972 1.1 simonb (void) wpi_auth(sc); /* XXX */
973 1.12 degroote wpi_setup_beacon(sc, ni);
974 1.1 simonb }
975 1.1 simonb
976 1.12 degroote wpi_enable_tsf(sc, ni);
977 1.1 simonb
978 1.1 simonb /* update adapter's configuration */
979 1.12 degroote sc->config.associd = htole16(ni->ni_associd & ~0xc000);
980 1.1 simonb /* short preamble/slot time are negotiated when associating */
981 1.1 simonb sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
982 1.1 simonb WPI_CONFIG_SHSLOT);
983 1.1 simonb if (ic->ic_flags & IEEE80211_F_SHSLOT)
984 1.1 simonb sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
985 1.1 simonb if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
986 1.1 simonb sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
987 1.1 simonb sc->config.filter |= htole32(WPI_FILTER_BSS);
988 1.1 simonb if (ic->ic_opmode != IEEE80211_M_STA)
989 1.1 simonb sc->config.filter |= htole32(WPI_FILTER_BEACON);
990 1.1 simonb
991 1.1 simonb /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
992 1.1 simonb
993 1.1 simonb DPRINTF(("config chan %d flags %x\n", sc->config.chan,
994 1.1 simonb sc->config.flags));
995 1.1 simonb error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
996 1.1 simonb sizeof (struct wpi_config), 1);
997 1.1 simonb if (error != 0) {
998 1.1 simonb aprint_error("%s: could not update configuration\n",
999 1.1 simonb sc->sc_dev.dv_xname);
1000 1.1 simonb return error;
1001 1.1 simonb }
1002 1.1 simonb
1003 1.12 degroote /* configuration has changed, set Tx power accordingly */
1004 1.12 degroote if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
1005 1.12 degroote aprint_error("%s: could not set Tx power\n",
1006 1.12 degroote sc->sc_dev.dv_xname);
1007 1.12 degroote return error;
1008 1.12 degroote }
1009 1.12 degroote
1010 1.5 joerg if (ic->ic_opmode == IEEE80211_M_STA) {
1011 1.5 joerg /* fake a join to init the tx rate */
1012 1.12 degroote wpi_newassoc(ni, 1);
1013 1.5 joerg }
1014 1.5 joerg
1015 1.12 degroote /* start periodic calibration timer */
1016 1.12 degroote sc->calib_cnt = 0;
1017 1.12 degroote callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
1018 1.1 simonb
1019 1.1 simonb /* link LED always on while associated */
1020 1.1 simonb wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1021 1.1 simonb break;
1022 1.1 simonb
1023 1.1 simonb case IEEE80211_S_INIT:
1024 1.17.4.4 jmcneill sc->is_scanning = false;
1025 1.1 simonb break;
1026 1.1 simonb }
1027 1.1 simonb
1028 1.1 simonb return sc->sc_newstate(ic, nstate, arg);
1029 1.1 simonb }
1030 1.1 simonb
1031 1.1 simonb /*
1032 1.17.4.4 jmcneill * XXX: Hack to set the current channel to the value advertised in beacons or
1033 1.17.4.4 jmcneill * probe responses. Only used during AP detection.
1034 1.17.4.4 jmcneill * XXX: Duplicated from if_iwi.c
1035 1.17.4.4 jmcneill */
1036 1.17.4.4 jmcneill static void
1037 1.17.4.4 jmcneill wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
1038 1.17.4.4 jmcneill {
1039 1.17.4.4 jmcneill struct ieee80211_frame *wh;
1040 1.17.4.4 jmcneill uint8_t subtype;
1041 1.17.4.4 jmcneill uint8_t *frm, *efrm;
1042 1.17.4.4 jmcneill
1043 1.17.4.4 jmcneill wh = mtod(m, struct ieee80211_frame *);
1044 1.17.4.4 jmcneill
1045 1.17.4.4 jmcneill if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
1046 1.17.4.4 jmcneill return;
1047 1.17.4.4 jmcneill
1048 1.17.4.4 jmcneill subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1049 1.17.4.4 jmcneill
1050 1.17.4.4 jmcneill if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
1051 1.17.4.4 jmcneill subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1052 1.17.4.4 jmcneill return;
1053 1.17.4.4 jmcneill
1054 1.17.4.4 jmcneill frm = (uint8_t *)(wh + 1);
1055 1.17.4.4 jmcneill efrm = mtod(m, uint8_t *) + m->m_len;
1056 1.17.4.4 jmcneill
1057 1.17.4.4 jmcneill frm += 12; /* skip tstamp, bintval and capinfo fields */
1058 1.17.4.4 jmcneill while (frm < efrm) {
1059 1.17.4.4 jmcneill if (*frm == IEEE80211_ELEMID_DSPARMS)
1060 1.17.4.4 jmcneill #if IEEE80211_CHAN_MAX < 255
1061 1.17.4.4 jmcneill if (frm[2] <= IEEE80211_CHAN_MAX)
1062 1.17.4.4 jmcneill #endif
1063 1.17.4.4 jmcneill ic->ic_curchan = &ic->ic_channels[frm[2]];
1064 1.17.4.4 jmcneill
1065 1.17.4.4 jmcneill frm += frm[1] + 2;
1066 1.17.4.4 jmcneill }
1067 1.17.4.4 jmcneill }
1068 1.17.4.4 jmcneill
1069 1.17.4.4 jmcneill /*
1070 1.1 simonb * Grab exclusive access to NIC memory.
1071 1.1 simonb */
1072 1.1 simonb static void
1073 1.1 simonb wpi_mem_lock(struct wpi_softc *sc)
1074 1.1 simonb {
1075 1.1 simonb uint32_t tmp;
1076 1.1 simonb int ntries;
1077 1.1 simonb
1078 1.1 simonb tmp = WPI_READ(sc, WPI_GPIO_CTL);
1079 1.1 simonb WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1080 1.1 simonb
1081 1.1 simonb /* spin until we actually get the lock */
1082 1.1 simonb for (ntries = 0; ntries < 1000; ntries++) {
1083 1.1 simonb if ((WPI_READ(sc, WPI_GPIO_CTL) &
1084 1.1 simonb (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1085 1.1 simonb break;
1086 1.1 simonb DELAY(10);
1087 1.1 simonb }
1088 1.1 simonb if (ntries == 1000)
1089 1.1 simonb aprint_error("%s: could not lock memory\n", sc->sc_dev.dv_xname);
1090 1.1 simonb }
1091 1.1 simonb
1092 1.1 simonb /*
1093 1.1 simonb * Release lock on NIC memory.
1094 1.1 simonb */
1095 1.1 simonb static void
1096 1.1 simonb wpi_mem_unlock(struct wpi_softc *sc)
1097 1.1 simonb {
1098 1.1 simonb uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1099 1.1 simonb WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1100 1.1 simonb }
1101 1.1 simonb
1102 1.1 simonb static uint32_t
1103 1.1 simonb wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1104 1.1 simonb {
1105 1.1 simonb WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1106 1.1 simonb return WPI_READ(sc, WPI_READ_MEM_DATA);
1107 1.1 simonb }
1108 1.1 simonb
1109 1.1 simonb static void
1110 1.1 simonb wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1111 1.1 simonb {
1112 1.1 simonb WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1113 1.1 simonb WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1114 1.1 simonb }
1115 1.1 simonb
1116 1.17 degroote static void
1117 1.17 degroote wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1118 1.17 degroote const uint32_t *data, int wlen)
1119 1.17 degroote {
1120 1.17 degroote for (; wlen > 0; wlen--, data++, addr += 4)
1121 1.17 degroote wpi_mem_write(sc, addr, *data);
1122 1.17 degroote }
1123 1.17 degroote
1124 1.17 degroote
1125 1.1 simonb /*
1126 1.12 degroote * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1127 1.12 degroote * instead of using the traditional bit-bang method.
1128 1.1 simonb */
1129 1.12 degroote static int
1130 1.12 degroote wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1131 1.1 simonb {
1132 1.12 degroote uint8_t *out = data;
1133 1.12 degroote uint32_t val;
1134 1.1 simonb int ntries;
1135 1.1 simonb
1136 1.12 degroote wpi_mem_lock(sc);
1137 1.12 degroote for (; len > 0; len -= 2, addr++) {
1138 1.12 degroote WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1139 1.1 simonb
1140 1.12 degroote for (ntries = 0; ntries < 10; ntries++) {
1141 1.12 degroote if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1142 1.12 degroote WPI_EEPROM_READY)
1143 1.12 degroote break;
1144 1.12 degroote DELAY(5);
1145 1.12 degroote }
1146 1.12 degroote if (ntries == 10) {
1147 1.12 degroote aprint_error("%s: could not read EEPROM\n",
1148 1.12 degroote sc->sc_dev.dv_xname);
1149 1.12 degroote return ETIMEDOUT;
1150 1.12 degroote }
1151 1.12 degroote *out++ = val >> 16;
1152 1.12 degroote if (len > 1)
1153 1.12 degroote *out++ = val >> 24;
1154 1.1 simonb }
1155 1.1 simonb wpi_mem_unlock(sc);
1156 1.1 simonb
1157 1.12 degroote return 0;
1158 1.1 simonb }
1159 1.1 simonb
1160 1.17 degroote /*
1161 1.17 degroote * The firmware boot code is small and is intended to be copied directly into
1162 1.17 degroote * the NIC internal memory.
1163 1.17 degroote */
1164 1.17 degroote int
1165 1.17 degroote wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1166 1.1 simonb {
1167 1.17 degroote int ntries;
1168 1.1 simonb
1169 1.17 degroote size /= sizeof (uint32_t);
1170 1.1 simonb
1171 1.17 degroote wpi_mem_lock(sc);
1172 1.12 degroote
1173 1.17 degroote /* copy microcode image into NIC memory */
1174 1.17 degroote wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1175 1.17 degroote (const uint32_t *)ucode, size);
1176 1.17 degroote
1177 1.17 degroote wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1178 1.17 degroote wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1179 1.17 degroote wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1180 1.12 degroote
1181 1.17 degroote /* run microcode */
1182 1.17 degroote wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1183 1.12 degroote
1184 1.17 degroote /* wait for transfer to complete */
1185 1.17 degroote for (ntries = 0; ntries < 1000; ntries++) {
1186 1.17 degroote if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1187 1.12 degroote break;
1188 1.17 degroote DELAY(10);
1189 1.12 degroote }
1190 1.17 degroote if (ntries == 1000) {
1191 1.17 degroote wpi_mem_unlock(sc);
1192 1.17 degroote printf("%s: could not load boot firmware\n",
1193 1.12 degroote sc->sc_dev.dv_xname);
1194 1.17 degroote return ETIMEDOUT;
1195 1.12 degroote }
1196 1.17 degroote wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1197 1.12 degroote
1198 1.17 degroote wpi_mem_unlock(sc);
1199 1.1 simonb
1200 1.17 degroote return 0;
1201 1.1 simonb }
1202 1.1 simonb
1203 1.1 simonb static int
1204 1.12 degroote wpi_load_firmware(struct wpi_softc *sc)
1205 1.1 simonb {
1206 1.12 degroote struct wpi_dma_info *dma = &sc->fw_dma;
1207 1.12 degroote struct wpi_firmware_hdr hdr;
1208 1.17 degroote const uint8_t *init_text, *init_data, *main_text, *main_data;
1209 1.17 degroote const uint8_t *boot_text;
1210 1.17 degroote uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1211 1.17 degroote uint32_t boot_textsz;
1212 1.12 degroote firmware_handle_t fw;
1213 1.12 degroote u_char *dfw;
1214 1.12 degroote size_t size;
1215 1.12 degroote int error;
1216 1.1 simonb
1217 1.12 degroote /* load firmware image from disk */
1218 1.12 degroote if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1219 1.12 degroote aprint_error("%s: could not read firmware file\n",
1220 1.12 degroote sc->sc_dev.dv_xname);
1221 1.1 simonb goto fail1;
1222 1.1 simonb }
1223 1.12 degroote
1224 1.12 degroote size = firmware_get_size(fw);
1225 1.12 degroote
1226 1.12 degroote /* extract firmware header information */
1227 1.12 degroote if (size < sizeof (struct wpi_firmware_hdr)) {
1228 1.15 xtraeme aprint_error("%s: truncated firmware header: %zu bytes\n",
1229 1.12 degroote sc->sc_dev.dv_xname, size);
1230 1.12 degroote error = EINVAL;
1231 1.12 degroote goto fail2;
1232 1.12 degroote }
1233 1.1 simonb
1234 1.12 degroote if ((error = firmware_read(fw, 0, &hdr,
1235 1.12 degroote sizeof (struct wpi_firmware_hdr))) != 0) {
1236 1.12 degroote aprint_error("%s: can't get firmware header\n",
1237 1.1 simonb sc->sc_dev.dv_xname);
1238 1.1 simonb goto fail2;
1239 1.1 simonb }
1240 1.1 simonb
1241 1.12 degroote main_textsz = le32toh(hdr.main_textsz);
1242 1.12 degroote main_datasz = le32toh(hdr.main_datasz);
1243 1.17 degroote init_textsz = le32toh(hdr.init_textsz);
1244 1.17 degroote init_datasz = le32toh(hdr.init_datasz);
1245 1.12 degroote boot_textsz = le32toh(hdr.boot_textsz);
1246 1.12 degroote
1247 1.17 degroote /* sanity-check firmware segments sizes */
1248 1.17 degroote if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1249 1.17 degroote main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1250 1.17 degroote init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1251 1.17 degroote init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1252 1.17 degroote boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1253 1.17 degroote (boot_textsz & 3) != 0) {
1254 1.17 degroote printf("%s: invalid firmware header\n", sc->sc_dev.dv_xname);
1255 1.12 degroote error = EINVAL;
1256 1.12 degroote goto fail2;
1257 1.12 degroote }
1258 1.12 degroote
1259 1.12 degroote /* check that all firmware segments are present */
1260 1.12 degroote if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
1261 1.17 degroote main_datasz + init_textsz + init_datasz + boot_textsz) {
1262 1.15 xtraeme aprint_error("%s: firmware file too short: %zu bytes\n",
1263 1.12 degroote sc->sc_dev.dv_xname, size);
1264 1.12 degroote error = EINVAL;
1265 1.12 degroote goto fail2;
1266 1.12 degroote }
1267 1.12 degroote
1268 1.12 degroote dfw = firmware_malloc(size);
1269 1.12 degroote if (dfw == NULL) {
1270 1.12 degroote aprint_error("%s: not enough memory to stock firmware\n",
1271 1.1 simonb sc->sc_dev.dv_xname);
1272 1.12 degroote error = ENOMEM;
1273 1.12 degroote goto fail2;
1274 1.1 simonb }
1275 1.1 simonb
1276 1.12 degroote if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
1277 1.12 degroote aprint_error("%s: can't get firmware\n",
1278 1.1 simonb sc->sc_dev.dv_xname);
1279 1.12 degroote goto fail2;
1280 1.1 simonb }
1281 1.1 simonb
1282 1.12 degroote /* get pointers to firmware segments */
1283 1.12 degroote main_text = dfw + sizeof (struct wpi_firmware_hdr);
1284 1.12 degroote main_data = main_text + main_textsz;
1285 1.17 degroote init_text = main_data + main_datasz;
1286 1.17 degroote init_data = init_text + init_textsz;
1287 1.17 degroote boot_text = init_data + init_datasz;
1288 1.17 degroote
1289 1.17 degroote /* copy initialization images into pre-allocated DMA-safe memory */
1290 1.17 degroote memcpy(dma->vaddr, init_data, init_datasz);
1291 1.17 degroote memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1292 1.17 degroote
1293 1.17 degroote /* tell adapter where to find initialization images */
1294 1.17 degroote wpi_mem_lock(sc);
1295 1.17 degroote wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1296 1.17 degroote wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1297 1.17 degroote wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1298 1.17 degroote dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1299 1.17 degroote wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1300 1.17 degroote wpi_mem_unlock(sc);
1301 1.1 simonb
1302 1.17 degroote /* load firmware boot code */
1303 1.17 degroote if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1304 1.17 degroote printf("%s: could not load boot firmware\n",
1305 1.12 degroote sc->sc_dev.dv_xname);
1306 1.12 degroote goto fail3;
1307 1.12 degroote }
1308 1.1 simonb
1309 1.17 degroote /* now press "execute" ;-) */
1310 1.17 degroote WPI_WRITE(sc, WPI_RESET, 0);
1311 1.17 degroote
1312 1.17 degroote /* ..and wait at most one second for adapter to initialize */
1313 1.17 degroote if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1314 1.17 degroote /* this isn't what was supposed to happen.. */
1315 1.17 degroote aprint_error("%s: timeout waiting for adapter to initialize\n",
1316 1.12 degroote sc->sc_dev.dv_xname);
1317 1.1 simonb }
1318 1.1 simonb
1319 1.17 degroote /* copy runtime images into pre-allocated DMA-safe memory */
1320 1.17 degroote memcpy(dma->vaddr, main_data, main_datasz);
1321 1.17 degroote memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1322 1.12 degroote
1323 1.17 degroote /* tell adapter where to find runtime images */
1324 1.1 simonb wpi_mem_lock(sc);
1325 1.17 degroote wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1326 1.17 degroote wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1327 1.17 degroote wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1328 1.17 degroote dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1329 1.17 degroote wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1330 1.12 degroote wpi_mem_unlock(sc);
1331 1.12 degroote
1332 1.17 degroote /* wait at most one second for second alive notification */
1333 1.12 degroote if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1334 1.12 degroote /* this isn't what was supposed to happen.. */
1335 1.17 degroote printf("%s: timeout waiting for adapter to initialize\n",
1336 1.12 degroote sc->sc_dev.dv_xname);
1337 1.12 degroote }
1338 1.12 degroote
1339 1.17 degroote
1340 1.12 degroote fail3: firmware_free(dfw,size);
1341 1.12 degroote fail2: firmware_close(fw);
1342 1.12 degroote fail1: return error;
1343 1.12 degroote }
1344 1.1 simonb
1345 1.12 degroote static void
1346 1.12 degroote wpi_calib_timeout(void *arg)
1347 1.12 degroote {
1348 1.12 degroote struct wpi_softc *sc = arg;
1349 1.12 degroote struct ieee80211com *ic = &sc->sc_ic;
1350 1.12 degroote int temp, s;
1351 1.1 simonb
1352 1.12 degroote /* automatic rate control triggered every 500ms */
1353 1.12 degroote if (ic->ic_fixed_rate == -1) {
1354 1.12 degroote s = splnet();
1355 1.12 degroote if (ic->ic_opmode == IEEE80211_M_STA)
1356 1.12 degroote wpi_iter_func(sc, ic->ic_bss);
1357 1.12 degroote else
1358 1.12 degroote ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1359 1.12 degroote splx(s);
1360 1.12 degroote }
1361 1.1 simonb
1362 1.12 degroote /* update sensor data */
1363 1.12 degroote temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1364 1.1 simonb
1365 1.12 degroote /* automatic power calibration every 60s */
1366 1.12 degroote if (++sc->calib_cnt >= 120) {
1367 1.12 degroote wpi_power_calibration(sc, temp);
1368 1.12 degroote sc->calib_cnt = 0;
1369 1.1 simonb }
1370 1.12 degroote
1371 1.12 degroote callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
1372 1.12 degroote }
1373 1.12 degroote
1374 1.12 degroote static void
1375 1.12 degroote wpi_iter_func(void *arg, struct ieee80211_node *ni)
1376 1.12 degroote {
1377 1.12 degroote struct wpi_softc *sc = arg;
1378 1.12 degroote struct wpi_node *wn = (struct wpi_node *)ni;
1379 1.12 degroote
1380 1.12 degroote ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1381 1.12 degroote }
1382 1.12 degroote
1383 1.12 degroote /*
1384 1.12 degroote * This function is called periodically (every 60 seconds) to adjust output
1385 1.12 degroote * power to temperature changes.
1386 1.12 degroote */
1387 1.12 degroote void
1388 1.12 degroote wpi_power_calibration(struct wpi_softc *sc, int temp)
1389 1.12 degroote {
1390 1.12 degroote /* sanity-check read value */
1391 1.12 degroote if (temp < -260 || temp > 25) {
1392 1.12 degroote /* this can't be correct, ignore */
1393 1.12 degroote DPRINTF(("out-of-range temperature reported: %d\n", temp));
1394 1.12 degroote return;
1395 1.1 simonb }
1396 1.1 simonb
1397 1.12 degroote DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1398 1.12 degroote
1399 1.12 degroote /* adjust Tx power if need be */
1400 1.12 degroote if (abs(temp - sc->temp) <= 6)
1401 1.12 degroote return;
1402 1.1 simonb
1403 1.12 degroote sc->temp = temp;
1404 1.1 simonb
1405 1.12 degroote if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1406 1.12 degroote /* just warn, too bad for the automatic calibration... */
1407 1.12 degroote aprint_error("%s: could not adjust Tx power\n",
1408 1.12 degroote sc->sc_dev.dv_xname);
1409 1.12 degroote }
1410 1.1 simonb }
1411 1.1 simonb
1412 1.1 simonb static void
1413 1.1 simonb wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1414 1.1 simonb struct wpi_rx_data *data)
1415 1.1 simonb {
1416 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
1417 1.1 simonb struct ifnet *ifp = ic->ic_ifp;
1418 1.1 simonb struct wpi_rx_ring *ring = &sc->rxq;
1419 1.1 simonb struct wpi_rx_stat *stat;
1420 1.1 simonb struct wpi_rx_head *head;
1421 1.1 simonb struct wpi_rx_tail *tail;
1422 1.7 degroote struct wpi_rbuf *rbuf;
1423 1.1 simonb struct ieee80211_frame *wh;
1424 1.1 simonb struct ieee80211_node *ni;
1425 1.1 simonb struct mbuf *m, *mnew;
1426 1.17.4.3 jmcneill int data_off ;
1427 1.1 simonb
1428 1.1 simonb stat = (struct wpi_rx_stat *)(desc + 1);
1429 1.1 simonb
1430 1.1 simonb if (stat->len > WPI_STAT_MAXLEN) {
1431 1.1 simonb aprint_error("%s: invalid rx statistic header\n",
1432 1.1 simonb sc->sc_dev.dv_xname);
1433 1.1 simonb ifp->if_ierrors++;
1434 1.1 simonb return;
1435 1.1 simonb }
1436 1.1 simonb
1437 1.9 christos head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1438 1.9 christos tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1439 1.1 simonb
1440 1.1 simonb DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1441 1.16 degroote "chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1442 1.1 simonb le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1443 1.1 simonb le64toh(tail->tstamp)));
1444 1.1 simonb
1445 1.1 simonb /*
1446 1.1 simonb * Discard Rx frames with bad CRC early (XXX we may want to pass them
1447 1.1 simonb * to radiotap in monitor mode).
1448 1.1 simonb */
1449 1.1 simonb if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1450 1.1 simonb DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1451 1.1 simonb ifp->if_ierrors++;
1452 1.1 simonb return;
1453 1.1 simonb }
1454 1.1 simonb
1455 1.17.4.3 jmcneill /* Compute where are the useful datas */
1456 1.17.4.3 jmcneill data_off = (char*)(head + 1) - mtod(data->m, char*);
1457 1.17.4.3 jmcneill
1458 1.10 degroote /*
1459 1.10 degroote * If the number of free entry is too low
1460 1.10 degroote * just dup the data->m socket and reuse the same rbuf entry
1461 1.10 degroote */
1462 1.10 degroote if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1463 1.10 degroote
1464 1.17.4.3 jmcneill /* Prepare the mbuf for the m_dup */
1465 1.10 degroote data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1466 1.17.4.3 jmcneill data->m->m_data = (char*) data->m->m_data + data_off;
1467 1.17.4.3 jmcneill
1468 1.10 degroote m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1469 1.17.4.3 jmcneill
1470 1.17.4.3 jmcneill /* Restore the m_data pointer for future use */
1471 1.17.4.3 jmcneill data->m->m_data = (char*) data->m->m_data - data_off;
1472 1.17.4.3 jmcneill
1473 1.17.4.3 jmcneill if (m == NULL) {
1474 1.17.4.3 jmcneill ifp->if_ierrors++;
1475 1.17.4.3 jmcneill return;
1476 1.17.4.3 jmcneill }
1477 1.10 degroote } else {
1478 1.10 degroote
1479 1.10 degroote MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1480 1.10 degroote if (mnew == NULL) {
1481 1.10 degroote ifp->if_ierrors++;
1482 1.10 degroote return;
1483 1.10 degroote }
1484 1.10 degroote
1485 1.10 degroote rbuf = wpi_alloc_rbuf(sc);
1486 1.10 degroote KASSERT(rbuf != NULL);
1487 1.1 simonb
1488 1.10 degroote /* attach Rx buffer to mbuf */
1489 1.10 degroote MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1490 1.10 degroote rbuf);
1491 1.10 degroote mnew->m_flags |= M_EXT_RW;
1492 1.1 simonb
1493 1.10 degroote m = data->m;
1494 1.10 degroote data->m = mnew;
1495 1.1 simonb
1496 1.10 degroote /* update Rx descriptor */
1497 1.10 degroote ring->desc[ring->cur] = htole32(rbuf->paddr);
1498 1.17.4.3 jmcneill
1499 1.17.4.3 jmcneill m->m_data = (char*)m->m_data + data_off;
1500 1.17.4.3 jmcneill m->m_pkthdr.len = m->m_len = le16toh(head->len);
1501 1.10 degroote }
1502 1.1 simonb
1503 1.1 simonb /* finalize mbuf */
1504 1.1 simonb m->m_pkthdr.rcvif = ifp;
1505 1.1 simonb
1506 1.17.4.4 jmcneill if (ic->ic_state == IEEE80211_S_SCAN)
1507 1.17.4.4 jmcneill wpi_fix_channel(ic, m);
1508 1.17.4.4 jmcneill
1509 1.1 simonb #if NBPFILTER > 0
1510 1.1 simonb if (sc->sc_drvbpf != NULL) {
1511 1.1 simonb struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1512 1.1 simonb
1513 1.1 simonb tap->wr_flags = 0;
1514 1.1 simonb tap->wr_chan_freq =
1515 1.1 simonb htole16(ic->ic_channels[head->chan].ic_freq);
1516 1.1 simonb tap->wr_chan_flags =
1517 1.1 simonb htole16(ic->ic_channels[head->chan].ic_flags);
1518 1.1 simonb tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1519 1.1 simonb tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1520 1.1 simonb tap->wr_tsft = tail->tstamp;
1521 1.1 simonb tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1522 1.1 simonb switch (head->rate) {
1523 1.1 simonb /* CCK rates */
1524 1.1 simonb case 10: tap->wr_rate = 2; break;
1525 1.1 simonb case 20: tap->wr_rate = 4; break;
1526 1.1 simonb case 55: tap->wr_rate = 11; break;
1527 1.1 simonb case 110: tap->wr_rate = 22; break;
1528 1.1 simonb /* OFDM rates */
1529 1.1 simonb case 0xd: tap->wr_rate = 12; break;
1530 1.1 simonb case 0xf: tap->wr_rate = 18; break;
1531 1.1 simonb case 0x5: tap->wr_rate = 24; break;
1532 1.1 simonb case 0x7: tap->wr_rate = 36; break;
1533 1.1 simonb case 0x9: tap->wr_rate = 48; break;
1534 1.1 simonb case 0xb: tap->wr_rate = 72; break;
1535 1.1 simonb case 0x1: tap->wr_rate = 96; break;
1536 1.1 simonb case 0x3: tap->wr_rate = 108; break;
1537 1.1 simonb /* unknown rate: should not happen */
1538 1.1 simonb default: tap->wr_rate = 0;
1539 1.1 simonb }
1540 1.1 simonb if (le16toh(head->flags) & 0x4)
1541 1.1 simonb tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1542 1.1 simonb
1543 1.1 simonb bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1544 1.1 simonb }
1545 1.1 simonb #endif
1546 1.1 simonb
1547 1.1 simonb /* grab a reference to the source node */
1548 1.1 simonb wh = mtod(m, struct ieee80211_frame *);
1549 1.1 simonb ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1550 1.1 simonb
1551 1.1 simonb /* send the frame to the 802.11 layer */
1552 1.1 simonb ieee80211_input(ic, m, ni, stat->rssi, 0);
1553 1.1 simonb
1554 1.1 simonb /* release node reference */
1555 1.1 simonb ieee80211_free_node(ni);
1556 1.1 simonb }
1557 1.1 simonb
1558 1.1 simonb static void
1559 1.1 simonb wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1560 1.1 simonb {
1561 1.1 simonb struct ifnet *ifp = sc->sc_ic.ic_ifp;
1562 1.1 simonb struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1563 1.1 simonb struct wpi_tx_data *txdata = &ring->data[desc->idx];
1564 1.1 simonb struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1565 1.5 joerg struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1566 1.1 simonb
1567 1.1 simonb DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1568 1.1 simonb "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1569 1.1 simonb stat->nkill, stat->rate, le32toh(stat->duration),
1570 1.1 simonb le32toh(stat->status)));
1571 1.1 simonb
1572 1.1 simonb /*
1573 1.1 simonb * Update rate control statistics for the node.
1574 1.1 simonb * XXX we should not count mgmt frames since they're always sent at
1575 1.1 simonb * the lowest available bit-rate.
1576 1.1 simonb */
1577 1.5 joerg wn->amn.amn_txcnt++;
1578 1.1 simonb if (stat->ntries > 0) {
1579 1.1 simonb DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1580 1.5 joerg wn->amn.amn_retrycnt++;
1581 1.1 simonb }
1582 1.1 simonb
1583 1.2 oster if ((le32toh(stat->status) & 0xff) != 1)
1584 1.2 oster ifp->if_oerrors++;
1585 1.2 oster else
1586 1.2 oster ifp->if_opackets++;
1587 1.2 oster
1588 1.1 simonb bus_dmamap_unload(sc->sc_dmat, txdata->map);
1589 1.1 simonb m_freem(txdata->m);
1590 1.1 simonb txdata->m = NULL;
1591 1.1 simonb ieee80211_free_node(txdata->ni);
1592 1.1 simonb txdata->ni = NULL;
1593 1.1 simonb
1594 1.1 simonb ring->queued--;
1595 1.1 simonb
1596 1.1 simonb sc->sc_tx_timer = 0;
1597 1.1 simonb ifp->if_flags &= ~IFF_OACTIVE;
1598 1.1 simonb wpi_start(ifp);
1599 1.1 simonb }
1600 1.1 simonb
1601 1.1 simonb static void
1602 1.1 simonb wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1603 1.1 simonb {
1604 1.1 simonb struct wpi_tx_ring *ring = &sc->cmdq;
1605 1.1 simonb struct wpi_tx_data *data;
1606 1.1 simonb
1607 1.1 simonb if ((desc->qid & 7) != 4)
1608 1.1 simonb return; /* not a command ack */
1609 1.1 simonb
1610 1.1 simonb data = &ring->data[desc->idx];
1611 1.1 simonb
1612 1.1 simonb /* if the command was mapped in a mbuf, free it */
1613 1.1 simonb if (data->m != NULL) {
1614 1.1 simonb bus_dmamap_unload(sc->sc_dmat, data->map);
1615 1.1 simonb m_freem(data->m);
1616 1.1 simonb data->m = NULL;
1617 1.1 simonb }
1618 1.1 simonb
1619 1.1 simonb wakeup(&ring->cmd[desc->idx]);
1620 1.1 simonb }
1621 1.1 simonb
1622 1.1 simonb static void
1623 1.1 simonb wpi_notif_intr(struct wpi_softc *sc)
1624 1.1 simonb {
1625 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
1626 1.7 degroote struct ifnet *ifp = ic->ic_ifp;
1627 1.1 simonb struct wpi_rx_desc *desc;
1628 1.1 simonb struct wpi_rx_data *data;
1629 1.1 simonb uint32_t hw;
1630 1.1 simonb
1631 1.1 simonb hw = le32toh(sc->shared->next);
1632 1.1 simonb while (sc->rxq.cur != hw) {
1633 1.1 simonb data = &sc->rxq.data[sc->rxq.cur];
1634 1.1 simonb
1635 1.1 simonb desc = mtod(data->m, struct wpi_rx_desc *);
1636 1.1 simonb
1637 1.1 simonb DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1638 1.1 simonb "len=%d\n", desc->qid, desc->idx, desc->flags,
1639 1.1 simonb desc->type, le32toh(desc->len)));
1640 1.1 simonb
1641 1.1 simonb if (!(desc->qid & 0x80)) /* reply to a command */
1642 1.1 simonb wpi_cmd_intr(sc, desc);
1643 1.1 simonb
1644 1.1 simonb switch (desc->type) {
1645 1.1 simonb case WPI_RX_DONE:
1646 1.1 simonb /* a 802.11 frame was received */
1647 1.1 simonb wpi_rx_intr(sc, desc, data);
1648 1.1 simonb break;
1649 1.1 simonb
1650 1.1 simonb case WPI_TX_DONE:
1651 1.1 simonb /* a 802.11 frame has been transmitted */
1652 1.1 simonb wpi_tx_intr(sc, desc);
1653 1.1 simonb break;
1654 1.1 simonb
1655 1.1 simonb case WPI_UC_READY:
1656 1.1 simonb {
1657 1.1 simonb struct wpi_ucode_info *uc =
1658 1.1 simonb (struct wpi_ucode_info *)(desc + 1);
1659 1.1 simonb
1660 1.1 simonb /* the microcontroller is ready */
1661 1.1 simonb DPRINTF(("microcode alive notification version %x "
1662 1.1 simonb "alive %x\n", le32toh(uc->version),
1663 1.1 simonb le32toh(uc->valid)));
1664 1.1 simonb
1665 1.1 simonb if (le32toh(uc->valid) != 1) {
1666 1.1 simonb aprint_error("%s: microcontroller "
1667 1.1 simonb "initialization failed\n",
1668 1.1 simonb sc->sc_dev.dv_xname);
1669 1.1 simonb }
1670 1.1 simonb break;
1671 1.1 simonb }
1672 1.1 simonb case WPI_STATE_CHANGED:
1673 1.1 simonb {
1674 1.1 simonb uint32_t *status = (uint32_t *)(desc + 1);
1675 1.1 simonb
1676 1.1 simonb /* enabled/disabled notification */
1677 1.1 simonb DPRINTF(("state changed to %x\n", le32toh(*status)));
1678 1.1 simonb
1679 1.1 simonb if (le32toh(*status) & 1) {
1680 1.1 simonb /* the radio button has to be pushed */
1681 1.1 simonb aprint_error("%s: Radio transmitter is off\n",
1682 1.1 simonb sc->sc_dev.dv_xname);
1683 1.7 degroote /* turn the interface down */
1684 1.7 degroote ifp->if_flags &= ~IFF_UP;
1685 1.7 degroote wpi_stop(ifp, 1);
1686 1.7 degroote return; /* no further processing */
1687 1.1 simonb }
1688 1.1 simonb break;
1689 1.1 simonb }
1690 1.1 simonb case WPI_START_SCAN:
1691 1.1 simonb {
1692 1.1 simonb struct wpi_start_scan *scan =
1693 1.1 simonb (struct wpi_start_scan *)(desc + 1);
1694 1.1 simonb
1695 1.1 simonb DPRINTFN(2, ("scanning channel %d status %x\n",
1696 1.1 simonb scan->chan, le32toh(scan->status)));
1697 1.1 simonb
1698 1.1 simonb /* fix current channel */
1699 1.1 simonb ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1700 1.1 simonb break;
1701 1.1 simonb }
1702 1.1 simonb case WPI_STOP_SCAN:
1703 1.1 simonb {
1704 1.1 simonb struct wpi_stop_scan *scan =
1705 1.1 simonb (struct wpi_stop_scan *)(desc + 1);
1706 1.1 simonb
1707 1.1 simonb DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1708 1.1 simonb scan->nchan, scan->status, scan->chan));
1709 1.1 simonb
1710 1.1 simonb if (scan->status == 1 && scan->chan <= 14) {
1711 1.1 simonb /*
1712 1.1 simonb * We just finished scanning 802.11g channels,
1713 1.1 simonb * start scanning 802.11a ones.
1714 1.1 simonb */
1715 1.1 simonb if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1716 1.1 simonb break;
1717 1.1 simonb }
1718 1.17.4.4 jmcneill sc->is_scanning = false;
1719 1.1 simonb ieee80211_end_scan(ic);
1720 1.1 simonb break;
1721 1.1 simonb }
1722 1.1 simonb }
1723 1.1 simonb
1724 1.1 simonb sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1725 1.1 simonb }
1726 1.1 simonb
1727 1.1 simonb /* tell the firmware what we have processed */
1728 1.1 simonb hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1729 1.1 simonb WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1730 1.1 simonb }
1731 1.1 simonb
1732 1.1 simonb static int
1733 1.1 simonb wpi_intr(void *arg)
1734 1.1 simonb {
1735 1.1 simonb struct wpi_softc *sc = arg;
1736 1.7 degroote struct ifnet *ifp = sc->sc_ic.ic_ifp;
1737 1.1 simonb uint32_t r;
1738 1.1 simonb
1739 1.1 simonb r = WPI_READ(sc, WPI_INTR);
1740 1.1 simonb if (r == 0 || r == 0xffffffff)
1741 1.1 simonb return 0; /* not for us */
1742 1.1 simonb
1743 1.1 simonb DPRINTFN(5, ("interrupt reg %x\n", r));
1744 1.1 simonb
1745 1.1 simonb /* disable interrupts */
1746 1.1 simonb WPI_WRITE(sc, WPI_MASK, 0);
1747 1.1 simonb /* ack interrupts */
1748 1.1 simonb WPI_WRITE(sc, WPI_INTR, r);
1749 1.1 simonb
1750 1.1 simonb if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1751 1.1 simonb aprint_error("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
1752 1.1 simonb sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1753 1.7 degroote wpi_stop(sc->sc_ic.ic_ifp, 1);
1754 1.1 simonb return 1;
1755 1.1 simonb }
1756 1.1 simonb
1757 1.1 simonb if (r & WPI_RX_INTR)
1758 1.1 simonb wpi_notif_intr(sc);
1759 1.1 simonb
1760 1.1 simonb if (r & WPI_ALIVE_INTR) /* firmware initialized */
1761 1.1 simonb wakeup(sc);
1762 1.1 simonb
1763 1.1 simonb /* re-enable interrupts */
1764 1.7 degroote if (ifp->if_flags & IFF_UP)
1765 1.7 degroote WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1766 1.1 simonb
1767 1.1 simonb return 1;
1768 1.1 simonb }
1769 1.1 simonb
1770 1.1 simonb static uint8_t
1771 1.1 simonb wpi_plcp_signal(int rate)
1772 1.1 simonb {
1773 1.1 simonb switch (rate) {
1774 1.1 simonb /* CCK rates (returned values are device-dependent) */
1775 1.1 simonb case 2: return 10;
1776 1.1 simonb case 4: return 20;
1777 1.1 simonb case 11: return 55;
1778 1.1 simonb case 22: return 110;
1779 1.1 simonb
1780 1.1 simonb /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1781 1.1 simonb /* R1-R4, (u)ral is R4-R1 */
1782 1.1 simonb case 12: return 0xd;
1783 1.1 simonb case 18: return 0xf;
1784 1.1 simonb case 24: return 0x5;
1785 1.1 simonb case 36: return 0x7;
1786 1.1 simonb case 48: return 0x9;
1787 1.1 simonb case 72: return 0xb;
1788 1.1 simonb case 96: return 0x1;
1789 1.1 simonb case 108: return 0x3;
1790 1.1 simonb
1791 1.1 simonb /* unsupported rates (should not get there) */
1792 1.1 simonb default: return 0;
1793 1.1 simonb }
1794 1.1 simonb }
1795 1.1 simonb
1796 1.1 simonb /* quickly determine if a given rate is CCK or OFDM */
1797 1.1 simonb #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1798 1.1 simonb
1799 1.1 simonb static int
1800 1.1 simonb wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1801 1.1 simonb int ac)
1802 1.1 simonb {
1803 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
1804 1.1 simonb struct wpi_tx_ring *ring = &sc->txq[ac];
1805 1.1 simonb struct wpi_tx_desc *desc;
1806 1.1 simonb struct wpi_tx_data *data;
1807 1.1 simonb struct wpi_tx_cmd *cmd;
1808 1.1 simonb struct wpi_cmd_data *tx;
1809 1.1 simonb struct ieee80211_frame *wh;
1810 1.1 simonb struct ieee80211_key *k;
1811 1.1 simonb const struct chanAccParams *cap;
1812 1.1 simonb struct mbuf *mnew;
1813 1.1 simonb int i, error, rate, hdrlen, noack = 0;
1814 1.1 simonb
1815 1.1 simonb desc = &ring->desc[ring->cur];
1816 1.1 simonb data = &ring->data[ring->cur];
1817 1.1 simonb
1818 1.1 simonb wh = mtod(m0, struct ieee80211_frame *);
1819 1.1 simonb
1820 1.1 simonb if (IEEE80211_QOS_HAS_SEQ(wh)) {
1821 1.1 simonb hdrlen = sizeof (struct ieee80211_qosframe);
1822 1.1 simonb cap = &ic->ic_wme.wme_chanParams;
1823 1.1 simonb noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1824 1.1 simonb } else
1825 1.1 simonb hdrlen = sizeof (struct ieee80211_frame);
1826 1.1 simonb
1827 1.1 simonb if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1828 1.1 simonb k = ieee80211_crypto_encap(ic, ni, m0);
1829 1.1 simonb if (k == NULL) {
1830 1.1 simonb m_freem(m0);
1831 1.1 simonb return ENOBUFS;
1832 1.1 simonb }
1833 1.1 simonb
1834 1.1 simonb /* packet header may have moved, reset our local pointer */
1835 1.1 simonb wh = mtod(m0, struct ieee80211_frame *);
1836 1.1 simonb }
1837 1.1 simonb
1838 1.1 simonb /* pickup a rate */
1839 1.1 simonb if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1840 1.1 simonb IEEE80211_FC0_TYPE_MGT) {
1841 1.1 simonb /* mgmt frames are sent at the lowest available bit-rate */
1842 1.1 simonb rate = ni->ni_rates.rs_rates[0];
1843 1.1 simonb } else {
1844 1.1 simonb if (ic->ic_fixed_rate != -1) {
1845 1.1 simonb rate = ic->ic_sup_rates[ic->ic_curmode].
1846 1.1 simonb rs_rates[ic->ic_fixed_rate];
1847 1.1 simonb } else
1848 1.1 simonb rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1849 1.1 simonb }
1850 1.1 simonb rate &= IEEE80211_RATE_VAL;
1851 1.1 simonb
1852 1.1 simonb
1853 1.1 simonb #if NBPFILTER > 0
1854 1.1 simonb if (sc->sc_drvbpf != NULL) {
1855 1.1 simonb struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1856 1.1 simonb
1857 1.1 simonb tap->wt_flags = 0;
1858 1.1 simonb tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1859 1.1 simonb tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1860 1.1 simonb tap->wt_rate = rate;
1861 1.1 simonb tap->wt_hwqueue = ac;
1862 1.1 simonb if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1863 1.1 simonb tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1864 1.1 simonb
1865 1.1 simonb bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1866 1.1 simonb }
1867 1.1 simonb #endif
1868 1.1 simonb
1869 1.1 simonb cmd = &ring->cmd[ring->cur];
1870 1.1 simonb cmd->code = WPI_CMD_TX_DATA;
1871 1.1 simonb cmd->flags = 0;
1872 1.1 simonb cmd->qid = ring->qid;
1873 1.1 simonb cmd->idx = ring->cur;
1874 1.1 simonb
1875 1.1 simonb tx = (struct wpi_cmd_data *)cmd->data;
1876 1.1 simonb tx->flags = 0;
1877 1.1 simonb
1878 1.1 simonb if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1879 1.1 simonb tx->flags |= htole32(WPI_TX_NEED_ACK);
1880 1.7 degroote } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1881 1.7 degroote tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1882 1.1 simonb
1883 1.1 simonb tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1884 1.1 simonb
1885 1.7 degroote /* retrieve destination node's id */
1886 1.7 degroote tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1887 1.7 degroote WPI_ID_BSS;
1888 1.7 degroote
1889 1.1 simonb if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1890 1.1 simonb IEEE80211_FC0_TYPE_MGT) {
1891 1.1 simonb /* tell h/w to set timestamp in probe responses */
1892 1.1 simonb if ((wh->i_fc[0] &
1893 1.1 simonb (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1894 1.1 simonb (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1895 1.1 simonb tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1896 1.1 simonb
1897 1.1 simonb if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1898 1.1 simonb IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1899 1.1 simonb ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1900 1.1 simonb IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1901 1.1 simonb tx->timeout = htole16(3);
1902 1.1 simonb else
1903 1.1 simonb tx->timeout = htole16(2);
1904 1.1 simonb } else
1905 1.1 simonb tx->timeout = htole16(0);
1906 1.1 simonb
1907 1.1 simonb tx->rate = wpi_plcp_signal(rate);
1908 1.1 simonb
1909 1.1 simonb /* be very persistant at sending frames out */
1910 1.1 simonb tx->rts_ntries = 7;
1911 1.1 simonb tx->data_ntries = 15;
1912 1.1 simonb
1913 1.1 simonb tx->ofdm_mask = 0xff;
1914 1.1 simonb tx->cck_mask = 0xf;
1915 1.12 degroote tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1916 1.1 simonb
1917 1.1 simonb tx->len = htole16(m0->m_pkthdr.len);
1918 1.1 simonb
1919 1.1 simonb /* save and trim IEEE802.11 header */
1920 1.9 christos m_copydata(m0, 0, hdrlen, (void *)&tx->wh);
1921 1.1 simonb m_adj(m0, hdrlen);
1922 1.1 simonb
1923 1.1 simonb error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1924 1.1 simonb BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1925 1.1 simonb if (error != 0 && error != EFBIG) {
1926 1.1 simonb aprint_error("%s: could not map mbuf (error %d)\n",
1927 1.1 simonb sc->sc_dev.dv_xname, error);
1928 1.1 simonb m_freem(m0);
1929 1.1 simonb return error;
1930 1.1 simonb }
1931 1.1 simonb if (error != 0) {
1932 1.1 simonb /* too many fragments, linearize */
1933 1.1 simonb MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1934 1.1 simonb if (mnew == NULL) {
1935 1.1 simonb m_freem(m0);
1936 1.1 simonb return ENOMEM;
1937 1.1 simonb }
1938 1.1 simonb
1939 1.1 simonb M_COPY_PKTHDR(mnew, m0);
1940 1.1 simonb if (m0->m_pkthdr.len > MHLEN) {
1941 1.1 simonb MCLGET(mnew, M_DONTWAIT);
1942 1.1 simonb if (!(mnew->m_flags & M_EXT)) {
1943 1.1 simonb m_freem(m0);
1944 1.1 simonb m_freem(mnew);
1945 1.1 simonb return ENOMEM;
1946 1.1 simonb }
1947 1.1 simonb }
1948 1.1 simonb
1949 1.9 christos m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1950 1.1 simonb m_freem(m0);
1951 1.1 simonb mnew->m_len = mnew->m_pkthdr.len;
1952 1.1 simonb m0 = mnew;
1953 1.1 simonb
1954 1.1 simonb error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1955 1.1 simonb BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1956 1.1 simonb if (error != 0) {
1957 1.1 simonb aprint_error("%s: could not map mbuf (error %d)\n",
1958 1.1 simonb sc->sc_dev.dv_xname, error);
1959 1.1 simonb m_freem(m0);
1960 1.1 simonb return error;
1961 1.1 simonb }
1962 1.1 simonb }
1963 1.1 simonb
1964 1.1 simonb data->m = m0;
1965 1.1 simonb data->ni = ni;
1966 1.1 simonb
1967 1.1 simonb DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1968 1.1 simonb ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1969 1.1 simonb
1970 1.1 simonb /* first scatter/gather segment is used by the tx data command */
1971 1.1 simonb desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1972 1.1 simonb (1 + data->map->dm_nsegs) << 24);
1973 1.1 simonb desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1974 1.1 simonb ring->cur * sizeof (struct wpi_tx_cmd));
1975 1.1 simonb /*XXX The next line might be wrong. I don't use hdrlen*/
1976 1.1 simonb desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data));
1977 1.1 simonb
1978 1.1 simonb for (i = 1; i <= data->map->dm_nsegs; i++) {
1979 1.1 simonb desc->segs[i].addr =
1980 1.1 simonb htole32(data->map->dm_segs[i - 1].ds_addr);
1981 1.1 simonb desc->segs[i].len =
1982 1.1 simonb htole32(data->map->dm_segs[i - 1].ds_len);
1983 1.1 simonb }
1984 1.1 simonb
1985 1.1 simonb ring->queued++;
1986 1.1 simonb
1987 1.1 simonb /* kick ring */
1988 1.1 simonb ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1989 1.1 simonb WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1990 1.1 simonb
1991 1.1 simonb return 0;
1992 1.1 simonb }
1993 1.1 simonb
1994 1.1 simonb static void
1995 1.1 simonb wpi_start(struct ifnet *ifp)
1996 1.1 simonb {
1997 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
1998 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
1999 1.1 simonb struct ieee80211_node *ni;
2000 1.1 simonb struct ether_header *eh;
2001 1.1 simonb struct mbuf *m0;
2002 1.1 simonb int ac;
2003 1.1 simonb
2004 1.1 simonb /*
2005 1.1 simonb * net80211 may still try to send management frames even if the
2006 1.1 simonb * IFF_RUNNING flag is not set...
2007 1.1 simonb */
2008 1.1 simonb if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2009 1.1 simonb return;
2010 1.1 simonb
2011 1.1 simonb for (;;) {
2012 1.1 simonb IF_POLL(&ic->ic_mgtq, m0);
2013 1.1 simonb if (m0 != NULL) {
2014 1.1 simonb IF_DEQUEUE(&ic->ic_mgtq, m0);
2015 1.1 simonb
2016 1.1 simonb ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2017 1.1 simonb m0->m_pkthdr.rcvif = NULL;
2018 1.1 simonb
2019 1.1 simonb /* management frames go into ring 0 */
2020 1.1 simonb if (sc->txq[0].queued > sc->txq[0].count - 8) {
2021 1.1 simonb ifp->if_oerrors++;
2022 1.1 simonb continue;
2023 1.1 simonb }
2024 1.1 simonb #if NBPFILTER > 0
2025 1.1 simonb if (ic->ic_rawbpf != NULL)
2026 1.1 simonb bpf_mtap(ic->ic_rawbpf, m0);
2027 1.1 simonb #endif
2028 1.1 simonb if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2029 1.1 simonb ifp->if_oerrors++;
2030 1.1 simonb break;
2031 1.1 simonb }
2032 1.1 simonb } else {
2033 1.1 simonb if (ic->ic_state != IEEE80211_S_RUN)
2034 1.1 simonb break;
2035 1.7 degroote IFQ_POLL(&ifp->if_snd, m0);
2036 1.1 simonb if (m0 == NULL)
2037 1.1 simonb break;
2038 1.1 simonb
2039 1.1 simonb if (m0->m_len < sizeof (*eh) &&
2040 1.1 simonb (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
2041 1.1 simonb ifp->if_oerrors++;
2042 1.1 simonb continue;
2043 1.1 simonb }
2044 1.1 simonb eh = mtod(m0, struct ether_header *);
2045 1.1 simonb ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2046 1.1 simonb if (ni == NULL) {
2047 1.1 simonb m_freem(m0);
2048 1.1 simonb ifp->if_oerrors++;
2049 1.1 simonb continue;
2050 1.1 simonb }
2051 1.1 simonb
2052 1.1 simonb /* classify mbuf so we can find which tx ring to use */
2053 1.1 simonb if (ieee80211_classify(ic, m0, ni) != 0) {
2054 1.1 simonb m_freem(m0);
2055 1.1 simonb ieee80211_free_node(ni);
2056 1.1 simonb ifp->if_oerrors++;
2057 1.1 simonb continue;
2058 1.1 simonb }
2059 1.1 simonb
2060 1.1 simonb /* no QoS encapsulation for EAPOL frames */
2061 1.1 simonb ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2062 1.1 simonb M_WME_GETAC(m0) : WME_AC_BE;
2063 1.1 simonb
2064 1.1 simonb if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2065 1.1 simonb /* there is no place left in this ring */
2066 1.1 simonb ifp->if_flags |= IFF_OACTIVE;
2067 1.1 simonb break;
2068 1.1 simonb }
2069 1.7 degroote IFQ_DEQUEUE(&ifp->if_snd, m0);
2070 1.1 simonb #if NBPFILTER > 0
2071 1.1 simonb if (ifp->if_bpf != NULL)
2072 1.1 simonb bpf_mtap(ifp->if_bpf, m0);
2073 1.1 simonb #endif
2074 1.1 simonb m0 = ieee80211_encap(ic, m0, ni);
2075 1.1 simonb if (m0 == NULL) {
2076 1.1 simonb ieee80211_free_node(ni);
2077 1.1 simonb ifp->if_oerrors++;
2078 1.1 simonb continue;
2079 1.1 simonb }
2080 1.1 simonb #if NBPFILTER > 0
2081 1.1 simonb if (ic->ic_rawbpf != NULL)
2082 1.1 simonb bpf_mtap(ic->ic_rawbpf, m0);
2083 1.1 simonb #endif
2084 1.1 simonb if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2085 1.1 simonb ieee80211_free_node(ni);
2086 1.1 simonb ifp->if_oerrors++;
2087 1.1 simonb break;
2088 1.1 simonb }
2089 1.1 simonb }
2090 1.1 simonb
2091 1.1 simonb sc->sc_tx_timer = 5;
2092 1.1 simonb ifp->if_timer = 1;
2093 1.1 simonb }
2094 1.1 simonb }
2095 1.1 simonb
2096 1.1 simonb static void
2097 1.1 simonb wpi_watchdog(struct ifnet *ifp)
2098 1.1 simonb {
2099 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
2100 1.1 simonb
2101 1.1 simonb ifp->if_timer = 0;
2102 1.1 simonb
2103 1.1 simonb if (sc->sc_tx_timer > 0) {
2104 1.1 simonb if (--sc->sc_tx_timer == 0) {
2105 1.1 simonb aprint_error("%s: device timeout\n",
2106 1.1 simonb sc->sc_dev.dv_xname);
2107 1.1 simonb ifp->if_oerrors++;
2108 1.1 simonb ifp->if_flags &= ~IFF_UP;
2109 1.1 simonb wpi_stop(ifp, 1);
2110 1.1 simonb return;
2111 1.1 simonb }
2112 1.1 simonb ifp->if_timer = 1;
2113 1.1 simonb }
2114 1.1 simonb
2115 1.1 simonb ieee80211_watchdog(&sc->sc_ic);
2116 1.1 simonb }
2117 1.1 simonb
2118 1.1 simonb static int
2119 1.9 christos wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2120 1.1 simonb {
2121 1.1 simonb #define IS_RUNNING(ifp) \
2122 1.1 simonb ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2123 1.1 simonb
2124 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
2125 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2126 1.1 simonb struct ifreq *ifr = (struct ifreq *)data;
2127 1.1 simonb int s, error = 0;
2128 1.1 simonb
2129 1.1 simonb s = splnet();
2130 1.1 simonb
2131 1.1 simonb switch (cmd) {
2132 1.1 simonb case SIOCSIFFLAGS:
2133 1.1 simonb if (ifp->if_flags & IFF_UP) {
2134 1.1 simonb if (!(ifp->if_flags & IFF_RUNNING))
2135 1.1 simonb wpi_init(ifp);
2136 1.1 simonb } else {
2137 1.1 simonb if (ifp->if_flags & IFF_RUNNING)
2138 1.1 simonb wpi_stop(ifp, 1);
2139 1.1 simonb }
2140 1.1 simonb break;
2141 1.1 simonb
2142 1.1 simonb case SIOCADDMULTI:
2143 1.1 simonb case SIOCDELMULTI:
2144 1.1 simonb error = (cmd == SIOCADDMULTI) ?
2145 1.1 simonb ether_addmulti(ifr, &sc->sc_ec) :
2146 1.1 simonb ether_delmulti(ifr, &sc->sc_ec);
2147 1.1 simonb if (error == ENETRESET) {
2148 1.1 simonb /* setup multicast filter, etc */
2149 1.1 simonb error = 0;
2150 1.1 simonb }
2151 1.1 simonb break;
2152 1.1 simonb
2153 1.1 simonb default:
2154 1.7 degroote error = ieee80211_ioctl(ic, cmd, data);
2155 1.1 simonb }
2156 1.1 simonb
2157 1.1 simonb if (error == ENETRESET) {
2158 1.1 simonb if (IS_RUNNING(ifp) &&
2159 1.1 simonb (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2160 1.1 simonb wpi_init(ifp);
2161 1.1 simonb error = 0;
2162 1.1 simonb }
2163 1.1 simonb
2164 1.1 simonb splx(s);
2165 1.1 simonb return error;
2166 1.1 simonb
2167 1.1 simonb #undef IS_RUNNING
2168 1.1 simonb }
2169 1.1 simonb
2170 1.1 simonb /*
2171 1.1 simonb * Extract various information from EEPROM.
2172 1.1 simonb */
2173 1.1 simonb static void
2174 1.1 simonb wpi_read_eeprom(struct wpi_softc *sc)
2175 1.1 simonb {
2176 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2177 1.12 degroote char domain[4];
2178 1.1 simonb int i;
2179 1.1 simonb
2180 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2181 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2182 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2183 1.12 degroote
2184 1.12 degroote DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2185 1.12 degroote sc->type));
2186 1.12 degroote
2187 1.12 degroote /* read and print regulatory domain */
2188 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2189 1.12 degroote aprint_normal(", %.4s", domain);
2190 1.12 degroote
2191 1.12 degroote /* read and print MAC address */
2192 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2193 1.12 degroote aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2194 1.12 degroote
2195 1.12 degroote /* read the list of authorized channels */
2196 1.12 degroote for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2197 1.12 degroote wpi_read_eeprom_channels(sc, i);
2198 1.12 degroote
2199 1.12 degroote /* read the list of power groups */
2200 1.12 degroote for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2201 1.12 degroote wpi_read_eeprom_group(sc, i);
2202 1.12 degroote }
2203 1.12 degroote
2204 1.12 degroote static void
2205 1.12 degroote wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2206 1.12 degroote {
2207 1.12 degroote struct ieee80211com *ic = &sc->sc_ic;
2208 1.12 degroote const struct wpi_chan_band *band = &wpi_bands[n];
2209 1.12 degroote struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2210 1.12 degroote int chan, i;
2211 1.12 degroote
2212 1.12 degroote wpi_read_prom_data(sc, band->addr, channels,
2213 1.12 degroote band->nchan * sizeof (struct wpi_eeprom_chan));
2214 1.12 degroote
2215 1.12 degroote for (i = 0; i < band->nchan; i++) {
2216 1.12 degroote if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2217 1.12 degroote continue;
2218 1.12 degroote
2219 1.12 degroote chan = band->chan[i];
2220 1.12 degroote
2221 1.12 degroote if (n == 0) { /* 2GHz band */
2222 1.12 degroote ic->ic_channels[chan].ic_freq =
2223 1.12 degroote ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2224 1.12 degroote ic->ic_channels[chan].ic_flags =
2225 1.12 degroote IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2226 1.12 degroote IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2227 1.12 degroote
2228 1.12 degroote } else { /* 5GHz band */
2229 1.12 degroote /*
2230 1.12 degroote * Some 3945abg adapters support channels 7, 8, 11
2231 1.12 degroote * and 12 in the 2GHz *and* 5GHz bands.
2232 1.12 degroote * Because of limitations in our net80211(9) stack,
2233 1.12 degroote * we can't support these channels in 5GHz band.
2234 1.12 degroote */
2235 1.12 degroote if (chan <= 14)
2236 1.12 degroote continue;
2237 1.12 degroote
2238 1.12 degroote ic->ic_channels[chan].ic_freq =
2239 1.12 degroote ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2240 1.12 degroote ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2241 1.12 degroote }
2242 1.12 degroote
2243 1.12 degroote /* is active scan allowed on this channel? */
2244 1.12 degroote if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2245 1.12 degroote ic->ic_channels[chan].ic_flags |=
2246 1.12 degroote IEEE80211_CHAN_PASSIVE;
2247 1.12 degroote }
2248 1.12 degroote
2249 1.12 degroote /* save maximum allowed power for this channel */
2250 1.12 degroote sc->maxpwr[chan] = channels[i].maxpwr;
2251 1.12 degroote
2252 1.12 degroote DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2253 1.12 degroote chan, channels[i].flags, sc->maxpwr[chan]));
2254 1.12 degroote }
2255 1.12 degroote }
2256 1.12 degroote
2257 1.12 degroote static void
2258 1.12 degroote wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2259 1.12 degroote {
2260 1.12 degroote struct wpi_power_group *group = &sc->groups[n];
2261 1.12 degroote struct wpi_eeprom_group rgroup;
2262 1.12 degroote int i;
2263 1.12 degroote
2264 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2265 1.12 degroote sizeof rgroup);
2266 1.12 degroote
2267 1.12 degroote /* save power group information */
2268 1.12 degroote group->chan = rgroup.chan;
2269 1.12 degroote group->maxpwr = rgroup.maxpwr;
2270 1.12 degroote /* temperature at which the samples were taken */
2271 1.12 degroote group->temp = (int16_t)le16toh(rgroup.temp);
2272 1.12 degroote
2273 1.12 degroote DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2274 1.12 degroote group->chan, group->maxpwr, group->temp));
2275 1.12 degroote
2276 1.12 degroote for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2277 1.12 degroote group->samples[i].index = rgroup.samples[i].index;
2278 1.12 degroote group->samples[i].power = rgroup.samples[i].power;
2279 1.12 degroote
2280 1.12 degroote DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2281 1.12 degroote group->samples[i].index, group->samples[i].power));
2282 1.1 simonb }
2283 1.1 simonb }
2284 1.1 simonb
2285 1.1 simonb /*
2286 1.1 simonb * Send a command to the firmware.
2287 1.1 simonb */
2288 1.1 simonb static int
2289 1.1 simonb wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2290 1.1 simonb {
2291 1.1 simonb struct wpi_tx_ring *ring = &sc->cmdq;
2292 1.1 simonb struct wpi_tx_desc *desc;
2293 1.1 simonb struct wpi_tx_cmd *cmd;
2294 1.1 simonb
2295 1.1 simonb KASSERT(size <= sizeof cmd->data);
2296 1.1 simonb
2297 1.1 simonb desc = &ring->desc[ring->cur];
2298 1.1 simonb cmd = &ring->cmd[ring->cur];
2299 1.1 simonb
2300 1.1 simonb cmd->code = code;
2301 1.1 simonb cmd->flags = 0;
2302 1.1 simonb cmd->qid = ring->qid;
2303 1.1 simonb cmd->idx = ring->cur;
2304 1.1 simonb memcpy(cmd->data, buf, size);
2305 1.1 simonb
2306 1.1 simonb desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2307 1.1 simonb desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2308 1.1 simonb ring->cur * sizeof (struct wpi_tx_cmd));
2309 1.1 simonb desc->segs[0].len = htole32(4 + size);
2310 1.1 simonb
2311 1.1 simonb /* kick cmd ring */
2312 1.1 simonb ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2313 1.1 simonb WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2314 1.1 simonb
2315 1.1 simonb return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2316 1.1 simonb }
2317 1.1 simonb
2318 1.1 simonb static int
2319 1.1 simonb wpi_wme_update(struct ieee80211com *ic)
2320 1.1 simonb {
2321 1.1 simonb #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2322 1.1 simonb #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2323 1.1 simonb struct wpi_softc *sc = ic->ic_ifp->if_softc;
2324 1.1 simonb const struct wmeParams *wmep;
2325 1.1 simonb struct wpi_wme_setup wme;
2326 1.1 simonb int ac;
2327 1.1 simonb
2328 1.1 simonb /* don't override default WME values if WME is not actually enabled */
2329 1.1 simonb if (!(ic->ic_flags & IEEE80211_F_WME))
2330 1.1 simonb return 0;
2331 1.1 simonb
2332 1.1 simonb wme.flags = 0;
2333 1.1 simonb for (ac = 0; ac < WME_NUM_AC; ac++) {
2334 1.1 simonb wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2335 1.1 simonb wme.ac[ac].aifsn = wmep->wmep_aifsn;
2336 1.1 simonb wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2337 1.1 simonb wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2338 1.1 simonb wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2339 1.1 simonb
2340 1.1 simonb DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2341 1.1 simonb "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2342 1.1 simonb wme.ac[ac].cwmax, wme.ac[ac].txop));
2343 1.1 simonb }
2344 1.1 simonb
2345 1.1 simonb return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2346 1.1 simonb #undef WPI_USEC
2347 1.1 simonb #undef WPI_EXP2
2348 1.1 simonb }
2349 1.1 simonb
2350 1.1 simonb /*
2351 1.1 simonb * Configure h/w multi-rate retries.
2352 1.1 simonb */
2353 1.1 simonb static int
2354 1.1 simonb wpi_mrr_setup(struct wpi_softc *sc)
2355 1.1 simonb {
2356 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2357 1.1 simonb struct wpi_mrr_setup mrr;
2358 1.1 simonb int i, error;
2359 1.1 simonb
2360 1.1 simonb /* CCK rates (not used with 802.11a) */
2361 1.1 simonb for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2362 1.1 simonb mrr.rates[i].flags = 0;
2363 1.1 simonb mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2364 1.1 simonb /* fallback to the immediate lower CCK rate (if any) */
2365 1.1 simonb mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2366 1.1 simonb /* try one time at this rate before falling back to "next" */
2367 1.1 simonb mrr.rates[i].ntries = 1;
2368 1.1 simonb }
2369 1.1 simonb
2370 1.1 simonb /* OFDM rates (not used with 802.11b) */
2371 1.1 simonb for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2372 1.1 simonb mrr.rates[i].flags = 0;
2373 1.1 simonb mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2374 1.1 simonb /* fallback to the immediate lower rate (if any) */
2375 1.1 simonb /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2376 1.1 simonb mrr.rates[i].next = (i == WPI_OFDM6) ?
2377 1.1 simonb ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2378 1.1 simonb WPI_OFDM6 : WPI_CCK2) :
2379 1.1 simonb i - 1;
2380 1.1 simonb /* try one time at this rate before falling back to "next" */
2381 1.1 simonb mrr.rates[i].ntries = 1;
2382 1.1 simonb }
2383 1.1 simonb
2384 1.1 simonb /* setup MRR for control frames */
2385 1.1 simonb mrr.which = htole32(WPI_MRR_CTL);
2386 1.12 degroote error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2387 1.1 simonb if (error != 0) {
2388 1.1 simonb aprint_error("%s: could not setup MRR for control frames\n",
2389 1.1 simonb sc->sc_dev.dv_xname);
2390 1.1 simonb return error;
2391 1.1 simonb }
2392 1.1 simonb
2393 1.1 simonb /* setup MRR for data frames */
2394 1.1 simonb mrr.which = htole32(WPI_MRR_DATA);
2395 1.12 degroote error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2396 1.1 simonb if (error != 0) {
2397 1.1 simonb aprint_error("%s: could not setup MRR for data frames\n",
2398 1.1 simonb sc->sc_dev.dv_xname);
2399 1.1 simonb return error;
2400 1.1 simonb }
2401 1.1 simonb
2402 1.1 simonb return 0;
2403 1.1 simonb }
2404 1.1 simonb
2405 1.1 simonb static void
2406 1.1 simonb wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2407 1.1 simonb {
2408 1.1 simonb struct wpi_cmd_led led;
2409 1.1 simonb
2410 1.1 simonb led.which = which;
2411 1.1 simonb led.unit = htole32(100000); /* on/off in unit of 100ms */
2412 1.1 simonb led.off = off;
2413 1.1 simonb led.on = on;
2414 1.1 simonb
2415 1.1 simonb (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2416 1.1 simonb }
2417 1.1 simonb
2418 1.1 simonb static void
2419 1.1 simonb wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2420 1.1 simonb {
2421 1.1 simonb struct wpi_cmd_tsf tsf;
2422 1.1 simonb uint64_t val, mod;
2423 1.1 simonb
2424 1.1 simonb memset(&tsf, 0, sizeof tsf);
2425 1.1 simonb memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2426 1.1 simonb tsf.bintval = htole16(ni->ni_intval);
2427 1.1 simonb tsf.lintval = htole16(10);
2428 1.1 simonb
2429 1.1 simonb /* compute remaining time until next beacon */
2430 1.1 simonb val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2431 1.1 simonb mod = le64toh(tsf.tstamp) % val;
2432 1.1 simonb tsf.binitval = htole32((uint32_t)(val - mod));
2433 1.1 simonb
2434 1.16 degroote DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2435 1.1 simonb ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2436 1.1 simonb
2437 1.1 simonb if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2438 1.1 simonb aprint_error("%s: could not enable TSF\n", sc->sc_dev.dv_xname);
2439 1.1 simonb }
2440 1.1 simonb
2441 1.1 simonb /*
2442 1.12 degroote * Update Tx power to match what is defined for channel `c'.
2443 1.12 degroote */
2444 1.12 degroote static int
2445 1.12 degroote wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2446 1.12 degroote {
2447 1.12 degroote struct ieee80211com *ic = &sc->sc_ic;
2448 1.12 degroote struct wpi_power_group *group;
2449 1.12 degroote struct wpi_cmd_txpower txpower;
2450 1.12 degroote u_int chan;
2451 1.12 degroote int i;
2452 1.12 degroote
2453 1.12 degroote /* get channel number */
2454 1.12 degroote chan = ieee80211_chan2ieee(ic, c);
2455 1.12 degroote
2456 1.12 degroote /* find the power group to which this channel belongs */
2457 1.12 degroote if (IEEE80211_IS_CHAN_5GHZ(c)) {
2458 1.12 degroote for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2459 1.12 degroote if (chan <= group->chan)
2460 1.12 degroote break;
2461 1.12 degroote } else
2462 1.12 degroote group = &sc->groups[0];
2463 1.12 degroote
2464 1.12 degroote memset(&txpower, 0, sizeof txpower);
2465 1.12 degroote txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2466 1.12 degroote txpower.chan = htole16(chan);
2467 1.12 degroote
2468 1.12 degroote /* set Tx power for all OFDM and CCK rates */
2469 1.12 degroote for (i = 0; i <= 11 ; i++) {
2470 1.12 degroote /* retrieve Tx power for this channel/rate combination */
2471 1.12 degroote int idx = wpi_get_power_index(sc, group, c,
2472 1.12 degroote wpi_ridx_to_rate[i]);
2473 1.12 degroote
2474 1.12 degroote txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2475 1.12 degroote
2476 1.12 degroote if (IEEE80211_IS_CHAN_5GHZ(c)) {
2477 1.12 degroote txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2478 1.12 degroote txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2479 1.12 degroote } else {
2480 1.12 degroote txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2481 1.12 degroote txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2482 1.12 degroote }
2483 1.12 degroote DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2484 1.12 degroote wpi_ridx_to_rate[i], idx));
2485 1.12 degroote }
2486 1.12 degroote
2487 1.12 degroote return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2488 1.12 degroote }
2489 1.12 degroote
2490 1.12 degroote /*
2491 1.12 degroote * Determine Tx power index for a given channel/rate combination.
2492 1.12 degroote * This takes into account the regulatory information from EEPROM and the
2493 1.12 degroote * current temperature.
2494 1.12 degroote */
2495 1.12 degroote static int
2496 1.12 degroote wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2497 1.12 degroote struct ieee80211_channel *c, int rate)
2498 1.12 degroote {
2499 1.12 degroote /* fixed-point arithmetic division using a n-bit fractional part */
2500 1.12 degroote #define fdivround(a, b, n) \
2501 1.12 degroote ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2502 1.12 degroote
2503 1.12 degroote /* linear interpolation */
2504 1.12 degroote #define interpolate(x, x1, y1, x2, y2, n) \
2505 1.12 degroote ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2506 1.12 degroote
2507 1.12 degroote struct ieee80211com *ic = &sc->sc_ic;
2508 1.12 degroote struct wpi_power_sample *sample;
2509 1.12 degroote int pwr, idx;
2510 1.12 degroote u_int chan;
2511 1.12 degroote
2512 1.12 degroote /* get channel number */
2513 1.12 degroote chan = ieee80211_chan2ieee(ic, c);
2514 1.12 degroote
2515 1.12 degroote /* default power is group's maximum power - 3dB */
2516 1.12 degroote pwr = group->maxpwr / 2;
2517 1.12 degroote
2518 1.12 degroote /* decrease power for highest OFDM rates to reduce distortion */
2519 1.12 degroote switch (rate) {
2520 1.12 degroote case 72: /* 36Mb/s */
2521 1.12 degroote pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2522 1.12 degroote break;
2523 1.12 degroote case 96: /* 48Mb/s */
2524 1.12 degroote pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2525 1.12 degroote break;
2526 1.12 degroote case 108: /* 54Mb/s */
2527 1.12 degroote pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2528 1.12 degroote break;
2529 1.12 degroote }
2530 1.12 degroote
2531 1.12 degroote /* never exceed channel's maximum allowed Tx power */
2532 1.12 degroote pwr = min(pwr, sc->maxpwr[chan]);
2533 1.12 degroote
2534 1.12 degroote /* retrieve power index into gain tables from samples */
2535 1.12 degroote for (sample = group->samples; sample < &group->samples[3]; sample++)
2536 1.12 degroote if (pwr > sample[1].power)
2537 1.12 degroote break;
2538 1.12 degroote /* fixed-point linear interpolation using a 19-bit fractional part */
2539 1.12 degroote idx = interpolate(pwr, sample[0].power, sample[0].index,
2540 1.12 degroote sample[1].power, sample[1].index, 19);
2541 1.12 degroote
2542 1.12 degroote /*
2543 1.12 degroote * Adjust power index based on current temperature:
2544 1.12 degroote * - if cooler than factory-calibrated: decrease output power
2545 1.12 degroote * - if warmer than factory-calibrated: increase output power
2546 1.12 degroote */
2547 1.12 degroote idx -= (sc->temp - group->temp) * 11 / 100;
2548 1.12 degroote
2549 1.12 degroote /* decrease power for CCK rates (-5dB) */
2550 1.12 degroote if (!WPI_RATE_IS_OFDM(rate))
2551 1.12 degroote idx += 10;
2552 1.12 degroote
2553 1.12 degroote /* keep power index in a valid range */
2554 1.12 degroote if (idx < 0)
2555 1.12 degroote return 0;
2556 1.12 degroote if (idx > WPI_MAX_PWR_INDEX)
2557 1.12 degroote return WPI_MAX_PWR_INDEX;
2558 1.12 degroote return idx;
2559 1.12 degroote
2560 1.12 degroote #undef interpolate
2561 1.12 degroote #undef fdivround
2562 1.12 degroote }
2563 1.12 degroote
2564 1.12 degroote /*
2565 1.1 simonb * Build a beacon frame that the firmware will broadcast periodically in
2566 1.1 simonb * IBSS or HostAP modes.
2567 1.1 simonb */
2568 1.1 simonb static int
2569 1.1 simonb wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2570 1.1 simonb {
2571 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2572 1.1 simonb struct wpi_tx_ring *ring = &sc->cmdq;
2573 1.1 simonb struct wpi_tx_desc *desc;
2574 1.1 simonb struct wpi_tx_data *data;
2575 1.1 simonb struct wpi_tx_cmd *cmd;
2576 1.1 simonb struct wpi_cmd_beacon *bcn;
2577 1.1 simonb struct ieee80211_beacon_offsets bo;
2578 1.1 simonb struct mbuf *m0;
2579 1.1 simonb int error;
2580 1.1 simonb
2581 1.1 simonb desc = &ring->desc[ring->cur];
2582 1.1 simonb data = &ring->data[ring->cur];
2583 1.1 simonb
2584 1.1 simonb m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2585 1.1 simonb if (m0 == NULL) {
2586 1.1 simonb aprint_error("%s: could not allocate beacon frame\n",
2587 1.1 simonb sc->sc_dev.dv_xname);
2588 1.1 simonb return ENOMEM;
2589 1.1 simonb }
2590 1.1 simonb
2591 1.1 simonb cmd = &ring->cmd[ring->cur];
2592 1.1 simonb cmd->code = WPI_CMD_SET_BEACON;
2593 1.1 simonb cmd->flags = 0;
2594 1.1 simonb cmd->qid = ring->qid;
2595 1.1 simonb cmd->idx = ring->cur;
2596 1.1 simonb
2597 1.1 simonb bcn = (struct wpi_cmd_beacon *)cmd->data;
2598 1.1 simonb memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2599 1.1 simonb bcn->id = WPI_ID_BROADCAST;
2600 1.1 simonb bcn->ofdm_mask = 0xff;
2601 1.1 simonb bcn->cck_mask = 0x0f;
2602 1.12 degroote bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2603 1.1 simonb bcn->len = htole16(m0->m_pkthdr.len);
2604 1.1 simonb bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2605 1.1 simonb wpi_plcp_signal(12) : wpi_plcp_signal(2);
2606 1.1 simonb bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2607 1.1 simonb
2608 1.1 simonb /* save and trim IEEE802.11 header */
2609 1.9 christos m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2610 1.1 simonb m_adj(m0, sizeof (struct ieee80211_frame));
2611 1.1 simonb
2612 1.1 simonb /* assume beacon frame is contiguous */
2613 1.1 simonb error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2614 1.1 simonb BUS_DMA_READ | BUS_DMA_NOWAIT);
2615 1.1 simonb if (error) {
2616 1.1 simonb aprint_error("%s: could not map beacon\n", sc->sc_dev.dv_xname);
2617 1.1 simonb m_freem(m0);
2618 1.1 simonb return error;
2619 1.1 simonb }
2620 1.1 simonb
2621 1.1 simonb data->m = m0;
2622 1.1 simonb
2623 1.1 simonb /* first scatter/gather segment is used by the beacon command */
2624 1.1 simonb desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2625 1.1 simonb desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2626 1.1 simonb ring->cur * sizeof (struct wpi_tx_cmd));
2627 1.1 simonb desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2628 1.1 simonb desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2629 1.1 simonb desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2630 1.1 simonb
2631 1.1 simonb /* kick cmd ring */
2632 1.1 simonb ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2633 1.1 simonb WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2634 1.1 simonb
2635 1.1 simonb return 0;
2636 1.1 simonb }
2637 1.1 simonb
2638 1.1 simonb static int
2639 1.1 simonb wpi_auth(struct wpi_softc *sc)
2640 1.1 simonb {
2641 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2642 1.1 simonb struct ieee80211_node *ni = ic->ic_bss;
2643 1.5 joerg struct wpi_node_info node;
2644 1.1 simonb int error;
2645 1.1 simonb
2646 1.1 simonb /* update adapter's configuration */
2647 1.1 simonb IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2648 1.1 simonb sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2649 1.1 simonb sc->config.flags = htole32(WPI_CONFIG_TSF);
2650 1.1 simonb if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2651 1.1 simonb sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2652 1.1 simonb WPI_CONFIG_24GHZ);
2653 1.1 simonb }
2654 1.1 simonb switch (ic->ic_curmode) {
2655 1.1 simonb case IEEE80211_MODE_11A:
2656 1.1 simonb sc->config.cck_mask = 0;
2657 1.1 simonb sc->config.ofdm_mask = 0x15;
2658 1.1 simonb break;
2659 1.1 simonb case IEEE80211_MODE_11B:
2660 1.1 simonb sc->config.cck_mask = 0x03;
2661 1.1 simonb sc->config.ofdm_mask = 0;
2662 1.1 simonb break;
2663 1.1 simonb default: /* assume 802.11b/g */
2664 1.1 simonb sc->config.cck_mask = 0x0f;
2665 1.1 simonb sc->config.ofdm_mask = 0x15;
2666 1.1 simonb }
2667 1.1 simonb
2668 1.1 simonb DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2669 1.1 simonb sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2670 1.1 simonb error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2671 1.1 simonb sizeof (struct wpi_config), 1);
2672 1.1 simonb if (error != 0) {
2673 1.1 simonb aprint_error("%s: could not configure\n", sc->sc_dev.dv_xname);
2674 1.1 simonb return error;
2675 1.1 simonb }
2676 1.1 simonb
2677 1.12 degroote /* configuration has changed, set Tx power accordingly */
2678 1.12 degroote if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2679 1.12 degroote aprint_error("%s: could not set Tx power\n", sc->sc_dev.dv_xname);
2680 1.12 degroote return error;
2681 1.12 degroote }
2682 1.12 degroote
2683 1.1 simonb /* add default node */
2684 1.1 simonb memset(&node, 0, sizeof node);
2685 1.1 simonb IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2686 1.1 simonb node.id = WPI_ID_BSS;
2687 1.1 simonb node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2688 1.1 simonb wpi_plcp_signal(12) : wpi_plcp_signal(2);
2689 1.12 degroote node.action = htole32(WPI_ACTION_SET_RATE);
2690 1.12 degroote node.antenna = WPI_ANTENNA_BOTH;
2691 1.1 simonb error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2692 1.1 simonb if (error != 0) {
2693 1.1 simonb aprint_error("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
2694 1.1 simonb return error;
2695 1.1 simonb }
2696 1.1 simonb
2697 1.1 simonb return 0;
2698 1.1 simonb }
2699 1.1 simonb
2700 1.1 simonb /*
2701 1.1 simonb * Send a scan request to the firmware. Since this command is huge, we map it
2702 1.1 simonb * into a mbuf instead of using the pre-allocated set of commands.
2703 1.1 simonb */
2704 1.1 simonb static int
2705 1.1 simonb wpi_scan(struct wpi_softc *sc, uint16_t flags)
2706 1.1 simonb {
2707 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2708 1.1 simonb struct wpi_tx_ring *ring = &sc->cmdq;
2709 1.1 simonb struct wpi_tx_desc *desc;
2710 1.1 simonb struct wpi_tx_data *data;
2711 1.1 simonb struct wpi_tx_cmd *cmd;
2712 1.1 simonb struct wpi_scan_hdr *hdr;
2713 1.1 simonb struct wpi_scan_chan *chan;
2714 1.1 simonb struct ieee80211_frame *wh;
2715 1.1 simonb struct ieee80211_rateset *rs;
2716 1.1 simonb struct ieee80211_channel *c;
2717 1.1 simonb enum ieee80211_phymode mode;
2718 1.1 simonb uint8_t *frm;
2719 1.1 simonb int nrates, pktlen, error;
2720 1.1 simonb
2721 1.1 simonb desc = &ring->desc[ring->cur];
2722 1.1 simonb data = &ring->data[ring->cur];
2723 1.1 simonb
2724 1.1 simonb MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2725 1.1 simonb if (data->m == NULL) {
2726 1.1 simonb aprint_error("%s: could not allocate mbuf for scan command\n",
2727 1.1 simonb sc->sc_dev.dv_xname);
2728 1.1 simonb return ENOMEM;
2729 1.1 simonb }
2730 1.1 simonb
2731 1.1 simonb MCLGET(data->m, M_DONTWAIT);
2732 1.1 simonb if (!(data->m->m_flags & M_EXT)) {
2733 1.1 simonb m_freem(data->m);
2734 1.1 simonb data->m = NULL;
2735 1.1 simonb aprint_error("%s: could not allocate mbuf for scan command\n",
2736 1.1 simonb sc->sc_dev.dv_xname);
2737 1.1 simonb return ENOMEM;
2738 1.1 simonb }
2739 1.1 simonb
2740 1.1 simonb cmd = mtod(data->m, struct wpi_tx_cmd *);
2741 1.1 simonb cmd->code = WPI_CMD_SCAN;
2742 1.1 simonb cmd->flags = 0;
2743 1.1 simonb cmd->qid = ring->qid;
2744 1.1 simonb cmd->idx = ring->cur;
2745 1.1 simonb
2746 1.1 simonb hdr = (struct wpi_scan_hdr *)cmd->data;
2747 1.1 simonb memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2748 1.12 degroote hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2749 1.12 degroote hdr->id = WPI_ID_BROADCAST;
2750 1.12 degroote hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2751 1.12 degroote
2752 1.1 simonb /*
2753 1.1 simonb * Move to the next channel if no packets are received within 5 msecs
2754 1.1 simonb * after sending the probe request (this helps to reduce the duration
2755 1.1 simonb * of active scans).
2756 1.1 simonb */
2757 1.1 simonb hdr->quiet = htole16(5); /* timeout in milliseconds */
2758 1.12 degroote hdr->plcp_threshold = htole16(1); /* min # of packets */
2759 1.1 simonb
2760 1.1 simonb if (flags & IEEE80211_CHAN_A) {
2761 1.12 degroote hdr->crc_threshold = htole16(1);
2762 1.1 simonb /* send probe requests at 6Mbps */
2763 1.1 simonb hdr->rate = wpi_plcp_signal(12);
2764 1.1 simonb } else {
2765 1.1 simonb hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2766 1.1 simonb /* send probe requests at 1Mbps */
2767 1.1 simonb hdr->rate = wpi_plcp_signal(2);
2768 1.1 simonb }
2769 1.1 simonb
2770 1.12 degroote /* for directed scans, firmware inserts the essid IE itself */
2771 1.12 degroote hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2772 1.12 degroote hdr->essid[0].len = ic->ic_des_esslen;
2773 1.12 degroote memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2774 1.1 simonb
2775 1.1 simonb /*
2776 1.1 simonb * Build a probe request frame. Most of the following code is a
2777 1.1 simonb * copy & paste of what is done in net80211.
2778 1.1 simonb */
2779 1.1 simonb wh = (struct ieee80211_frame *)(hdr + 1);
2780 1.1 simonb wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2781 1.1 simonb IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2782 1.1 simonb wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2783 1.1 simonb IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2784 1.1 simonb IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2785 1.1 simonb IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2786 1.1 simonb *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2787 1.1 simonb *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2788 1.1 simonb
2789 1.1 simonb frm = (uint8_t *)(wh + 1);
2790 1.1 simonb
2791 1.12 degroote /* add empty essid IE (firmware generates it for directed scans) */
2792 1.12 degroote *frm++ = IEEE80211_ELEMID_SSID;
2793 1.12 degroote *frm++ = 0;
2794 1.1 simonb
2795 1.1 simonb mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2796 1.1 simonb rs = &ic->ic_sup_rates[mode];
2797 1.1 simonb
2798 1.1 simonb /* add supported rates IE */
2799 1.1 simonb *frm++ = IEEE80211_ELEMID_RATES;
2800 1.1 simonb nrates = rs->rs_nrates;
2801 1.1 simonb if (nrates > IEEE80211_RATE_SIZE)
2802 1.1 simonb nrates = IEEE80211_RATE_SIZE;
2803 1.1 simonb *frm++ = nrates;
2804 1.1 simonb memcpy(frm, rs->rs_rates, nrates);
2805 1.1 simonb frm += nrates;
2806 1.1 simonb
2807 1.1 simonb /* add supported xrates IE */
2808 1.1 simonb if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2809 1.1 simonb nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2810 1.1 simonb *frm++ = IEEE80211_ELEMID_XRATES;
2811 1.1 simonb *frm++ = nrates;
2812 1.1 simonb memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2813 1.1 simonb frm += nrates;
2814 1.1 simonb }
2815 1.1 simonb
2816 1.1 simonb /* setup length of probe request */
2817 1.12 degroote hdr->paylen = htole16(frm - (uint8_t *)wh);
2818 1.1 simonb
2819 1.1 simonb chan = (struct wpi_scan_chan *)frm;
2820 1.1 simonb for (c = &ic->ic_channels[1];
2821 1.1 simonb c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2822 1.1 simonb if ((c->ic_flags & flags) != flags)
2823 1.1 simonb continue;
2824 1.1 simonb
2825 1.1 simonb chan->chan = ieee80211_chan2ieee(ic, c);
2826 1.12 degroote chan->flags = 0;
2827 1.12 degroote if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2828 1.12 degroote chan->flags |= WPI_CHAN_ACTIVE;
2829 1.12 degroote if (ic->ic_des_esslen != 0)
2830 1.12 degroote chan->flags |= WPI_CHAN_DIRECT;
2831 1.12 degroote }
2832 1.12 degroote chan->dsp_gain = 0x6e;
2833 1.1 simonb if (IEEE80211_IS_CHAN_5GHZ(c)) {
2834 1.12 degroote chan->rf_gain = 0x3b;
2835 1.1 simonb chan->active = htole16(10);
2836 1.1 simonb chan->passive = htole16(110);
2837 1.1 simonb } else {
2838 1.12 degroote chan->rf_gain = 0x28;
2839 1.1 simonb chan->active = htole16(20);
2840 1.1 simonb chan->passive = htole16(120);
2841 1.1 simonb }
2842 1.1 simonb hdr->nchan++;
2843 1.1 simonb chan++;
2844 1.1 simonb
2845 1.1 simonb frm += sizeof (struct wpi_scan_chan);
2846 1.1 simonb }
2847 1.12 degroote hdr->len = htole16(frm - (uint8_t *)hdr);
2848 1.12 degroote pktlen = frm - (uint8_t *)cmd;
2849 1.1 simonb
2850 1.1 simonb error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2851 1.1 simonb NULL, BUS_DMA_NOWAIT);
2852 1.1 simonb if (error) {
2853 1.1 simonb aprint_error("%s: could not map scan command\n",
2854 1.1 simonb sc->sc_dev.dv_xname);
2855 1.1 simonb m_freem(data->m);
2856 1.1 simonb data->m = NULL;
2857 1.1 simonb return error;
2858 1.1 simonb }
2859 1.1 simonb
2860 1.1 simonb desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2861 1.1 simonb desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2862 1.1 simonb desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2863 1.1 simonb
2864 1.1 simonb /* kick cmd ring */
2865 1.1 simonb ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2866 1.1 simonb WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2867 1.1 simonb
2868 1.1 simonb return 0; /* will be notified async. of failure/success */
2869 1.1 simonb }
2870 1.1 simonb
2871 1.1 simonb static int
2872 1.1 simonb wpi_config(struct wpi_softc *sc)
2873 1.1 simonb {
2874 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2875 1.1 simonb struct ifnet *ifp = ic->ic_ifp;
2876 1.1 simonb struct wpi_power power;
2877 1.1 simonb struct wpi_bluetooth bluetooth;
2878 1.5 joerg struct wpi_node_info node;
2879 1.1 simonb int error;
2880 1.1 simonb
2881 1.1 simonb memset(&power, 0, sizeof power);
2882 1.12 degroote power.flags = htole32(WPI_POWER_CAM | 0x8);
2883 1.1 simonb error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2884 1.1 simonb if (error != 0) {
2885 1.1 simonb aprint_error("%s: could not set power mode\n",
2886 1.1 simonb sc->sc_dev.dv_xname);
2887 1.1 simonb return error;
2888 1.1 simonb }
2889 1.1 simonb
2890 1.1 simonb /* configure bluetooth coexistence */
2891 1.1 simonb memset(&bluetooth, 0, sizeof bluetooth);
2892 1.1 simonb bluetooth.flags = 3;
2893 1.1 simonb bluetooth.lead = 0xaa;
2894 1.1 simonb bluetooth.kill = 1;
2895 1.1 simonb error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2896 1.1 simonb 0);
2897 1.1 simonb if (error != 0) {
2898 1.1 simonb aprint_error(
2899 1.1 simonb "%s: could not configure bluetooth coexistence\n",
2900 1.1 simonb sc->sc_dev.dv_xname);
2901 1.1 simonb return error;
2902 1.1 simonb }
2903 1.1 simonb
2904 1.1 simonb /* configure adapter */
2905 1.1 simonb memset(&sc->config, 0, sizeof (struct wpi_config));
2906 1.1 simonb IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2907 1.1 simonb IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2908 1.1 simonb /*set default channel*/
2909 1.1 simonb sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2910 1.1 simonb sc->config.flags = htole32(WPI_CONFIG_TSF);
2911 1.1 simonb if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2912 1.1 simonb sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2913 1.1 simonb WPI_CONFIG_24GHZ);
2914 1.1 simonb }
2915 1.1 simonb sc->config.filter = 0;
2916 1.1 simonb switch (ic->ic_opmode) {
2917 1.1 simonb case IEEE80211_M_STA:
2918 1.1 simonb sc->config.mode = WPI_MODE_STA;
2919 1.1 simonb sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2920 1.1 simonb break;
2921 1.1 simonb case IEEE80211_M_IBSS:
2922 1.1 simonb case IEEE80211_M_AHDEMO:
2923 1.1 simonb sc->config.mode = WPI_MODE_IBSS;
2924 1.1 simonb break;
2925 1.1 simonb case IEEE80211_M_HOSTAP:
2926 1.1 simonb sc->config.mode = WPI_MODE_HOSTAP;
2927 1.1 simonb break;
2928 1.1 simonb case IEEE80211_M_MONITOR:
2929 1.1 simonb sc->config.mode = WPI_MODE_MONITOR;
2930 1.1 simonb sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2931 1.1 simonb WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2932 1.1 simonb break;
2933 1.1 simonb }
2934 1.1 simonb sc->config.cck_mask = 0x0f; /* not yet negotiated */
2935 1.1 simonb sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2936 1.1 simonb error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2937 1.1 simonb sizeof (struct wpi_config), 0);
2938 1.1 simonb if (error != 0) {
2939 1.1 simonb aprint_error("%s: configure command failed\n",
2940 1.1 simonb sc->sc_dev.dv_xname);
2941 1.1 simonb return error;
2942 1.1 simonb }
2943 1.1 simonb
2944 1.12 degroote /* configuration has changed, set Tx power accordingly */
2945 1.12 degroote if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2946 1.12 degroote aprint_error("%s: could not set Tx power\n", sc->sc_dev.dv_xname);
2947 1.12 degroote return error;
2948 1.12 degroote }
2949 1.12 degroote
2950 1.1 simonb /* add broadcast node */
2951 1.1 simonb memset(&node, 0, sizeof node);
2952 1.1 simonb IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2953 1.1 simonb node.id = WPI_ID_BROADCAST;
2954 1.1 simonb node.rate = wpi_plcp_signal(2);
2955 1.12 degroote node.action = htole32(WPI_ACTION_SET_RATE);
2956 1.12 degroote node.antenna = WPI_ANTENNA_BOTH;
2957 1.1 simonb error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2958 1.1 simonb if (error != 0) {
2959 1.1 simonb aprint_error("%s: could not add broadcast node\n",
2960 1.1 simonb sc->sc_dev.dv_xname);
2961 1.1 simonb return error;
2962 1.1 simonb }
2963 1.1 simonb
2964 1.12 degroote if ((error = wpi_mrr_setup(sc)) != 0) {
2965 1.12 degroote aprint_error("%s: could not setup MRR\n", sc->sc_dev.dv_xname);
2966 1.12 degroote return error;
2967 1.12 degroote }
2968 1.12 degroote
2969 1.1 simonb return 0;
2970 1.1 simonb }
2971 1.1 simonb
2972 1.1 simonb static void
2973 1.1 simonb wpi_stop_master(struct wpi_softc *sc)
2974 1.1 simonb {
2975 1.1 simonb uint32_t tmp;
2976 1.1 simonb int ntries;
2977 1.1 simonb
2978 1.1 simonb tmp = WPI_READ(sc, WPI_RESET);
2979 1.1 simonb WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2980 1.1 simonb
2981 1.1 simonb tmp = WPI_READ(sc, WPI_GPIO_CTL);
2982 1.1 simonb if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2983 1.1 simonb return; /* already asleep */
2984 1.1 simonb
2985 1.1 simonb for (ntries = 0; ntries < 100; ntries++) {
2986 1.1 simonb if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2987 1.1 simonb break;
2988 1.1 simonb DELAY(10);
2989 1.1 simonb }
2990 1.1 simonb if (ntries == 100) {
2991 1.1 simonb aprint_error("%s: timeout waiting for master\n",
2992 1.1 simonb sc->sc_dev.dv_xname);
2993 1.1 simonb }
2994 1.1 simonb }
2995 1.1 simonb
2996 1.1 simonb static int
2997 1.1 simonb wpi_power_up(struct wpi_softc *sc)
2998 1.1 simonb {
2999 1.1 simonb uint32_t tmp;
3000 1.1 simonb int ntries;
3001 1.1 simonb
3002 1.1 simonb wpi_mem_lock(sc);
3003 1.1 simonb tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3004 1.1 simonb wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3005 1.1 simonb wpi_mem_unlock(sc);
3006 1.1 simonb
3007 1.1 simonb for (ntries = 0; ntries < 5000; ntries++) {
3008 1.1 simonb if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3009 1.1 simonb break;
3010 1.1 simonb DELAY(10);
3011 1.1 simonb }
3012 1.1 simonb if (ntries == 5000) {
3013 1.1 simonb aprint_error("%s: timeout waiting for NIC to power up\n",
3014 1.1 simonb sc->sc_dev.dv_xname);
3015 1.1 simonb return ETIMEDOUT;
3016 1.1 simonb }
3017 1.1 simonb return 0;
3018 1.1 simonb }
3019 1.1 simonb
3020 1.1 simonb static int
3021 1.1 simonb wpi_reset(struct wpi_softc *sc)
3022 1.1 simonb {
3023 1.1 simonb uint32_t tmp;
3024 1.1 simonb int ntries;
3025 1.1 simonb
3026 1.1 simonb /* clear any pending interrupts */
3027 1.1 simonb WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3028 1.1 simonb
3029 1.1 simonb tmp = WPI_READ(sc, WPI_PLL_CTL);
3030 1.1 simonb WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3031 1.1 simonb
3032 1.1 simonb tmp = WPI_READ(sc, WPI_CHICKEN);
3033 1.1 simonb WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3034 1.1 simonb
3035 1.1 simonb tmp = WPI_READ(sc, WPI_GPIO_CTL);
3036 1.1 simonb WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3037 1.1 simonb
3038 1.1 simonb /* wait for clock stabilization */
3039 1.1 simonb for (ntries = 0; ntries < 1000; ntries++) {
3040 1.1 simonb if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3041 1.1 simonb break;
3042 1.1 simonb DELAY(10);
3043 1.1 simonb }
3044 1.1 simonb if (ntries == 1000) {
3045 1.1 simonb aprint_error("%s: timeout waiting for clock stabilization\n",
3046 1.1 simonb sc->sc_dev.dv_xname);
3047 1.1 simonb return ETIMEDOUT;
3048 1.1 simonb }
3049 1.1 simonb
3050 1.1 simonb /* initialize EEPROM */
3051 1.1 simonb tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3052 1.1 simonb if ((tmp & WPI_EEPROM_VERSION) == 0) {
3053 1.1 simonb aprint_error("%s: EEPROM not found\n", sc->sc_dev.dv_xname);
3054 1.1 simonb return EIO;
3055 1.1 simonb }
3056 1.1 simonb WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3057 1.1 simonb
3058 1.1 simonb return 0;
3059 1.1 simonb }
3060 1.1 simonb
3061 1.1 simonb static void
3062 1.1 simonb wpi_hw_config(struct wpi_softc *sc)
3063 1.1 simonb {
3064 1.1 simonb uint32_t rev, hw;
3065 1.1 simonb
3066 1.12 degroote /* voodoo from the reference driver */
3067 1.1 simonb hw = WPI_READ(sc, WPI_HWCONFIG);
3068 1.1 simonb
3069 1.1 simonb rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3070 1.1 simonb rev = PCI_REVISION(rev);
3071 1.1 simonb if ((rev & 0xc0) == 0x40)
3072 1.1 simonb hw |= WPI_HW_ALM_MB;
3073 1.1 simonb else if (!(rev & 0x80))
3074 1.1 simonb hw |= WPI_HW_ALM_MM;
3075 1.1 simonb
3076 1.12 degroote if (sc->cap == 0x80)
3077 1.1 simonb hw |= WPI_HW_SKU_MRC;
3078 1.1 simonb
3079 1.1 simonb hw &= ~WPI_HW_REV_D;
3080 1.12 degroote if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3081 1.1 simonb hw |= WPI_HW_REV_D;
3082 1.1 simonb
3083 1.12 degroote if (sc->type > 1)
3084 1.1 simonb hw |= WPI_HW_TYPE_B;
3085 1.1 simonb
3086 1.1 simonb DPRINTF(("setting h/w config %x\n", hw));
3087 1.1 simonb WPI_WRITE(sc, WPI_HWCONFIG, hw);
3088 1.1 simonb }
3089 1.1 simonb
3090 1.1 simonb static int
3091 1.1 simonb wpi_init(struct ifnet *ifp)
3092 1.1 simonb {
3093 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
3094 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
3095 1.1 simonb uint32_t tmp;
3096 1.1 simonb int qid, ntries, error;
3097 1.1 simonb
3098 1.17.4.2 jmcneill wpi_stop(ifp,1);
3099 1.1 simonb (void)wpi_reset(sc);
3100 1.1 simonb
3101 1.1 simonb wpi_mem_lock(sc);
3102 1.1 simonb wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3103 1.1 simonb DELAY(20);
3104 1.1 simonb tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3105 1.1 simonb wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3106 1.1 simonb wpi_mem_unlock(sc);
3107 1.1 simonb
3108 1.1 simonb (void)wpi_power_up(sc);
3109 1.1 simonb wpi_hw_config(sc);
3110 1.1 simonb
3111 1.1 simonb /* init Rx ring */
3112 1.1 simonb wpi_mem_lock(sc);
3113 1.1 simonb WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3114 1.1 simonb WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3115 1.1 simonb offsetof(struct wpi_shared, next));
3116 1.1 simonb WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3117 1.1 simonb WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3118 1.1 simonb wpi_mem_unlock(sc);
3119 1.1 simonb
3120 1.1 simonb /* init Tx rings */
3121 1.1 simonb wpi_mem_lock(sc);
3122 1.1 simonb wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3123 1.1 simonb wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3124 1.1 simonb wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3125 1.1 simonb wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3126 1.1 simonb wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3127 1.1 simonb wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3128 1.1 simonb wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3129 1.1 simonb
3130 1.1 simonb WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3131 1.1 simonb WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3132 1.1 simonb
3133 1.1 simonb for (qid = 0; qid < 6; qid++) {
3134 1.1 simonb WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3135 1.1 simonb WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3136 1.1 simonb WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3137 1.1 simonb }
3138 1.1 simonb wpi_mem_unlock(sc);
3139 1.1 simonb
3140 1.1 simonb /* clear "radio off" and "disable command" bits (reversed logic) */
3141 1.1 simonb WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3142 1.1 simonb WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3143 1.1 simonb
3144 1.1 simonb /* clear any pending interrupts */
3145 1.1 simonb WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3146 1.1 simonb /* enable interrupts */
3147 1.1 simonb WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3148 1.1 simonb
3149 1.12 degroote /* not sure why/if this is necessary... */
3150 1.12 degroote WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3151 1.12 degroote WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3152 1.1 simonb
3153 1.12 degroote if ((error = wpi_load_firmware(sc)) != 0) {
3154 1.12 degroote aprint_error("%s: could not load firmware\n", sc->sc_dev.dv_xname);
3155 1.1 simonb goto fail1;
3156 1.1 simonb }
3157 1.1 simonb
3158 1.1 simonb /* wait for thermal sensors to calibrate */
3159 1.1 simonb for (ntries = 0; ntries < 1000; ntries++) {
3160 1.12 degroote if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3161 1.1 simonb break;
3162 1.1 simonb DELAY(10);
3163 1.1 simonb }
3164 1.1 simonb if (ntries == 1000) {
3165 1.1 simonb aprint_error("%s: timeout waiting for thermal sensors calibration\n",
3166 1.1 simonb sc->sc_dev.dv_xname);
3167 1.1 simonb error = ETIMEDOUT;
3168 1.1 simonb goto fail1;
3169 1.1 simonb }
3170 1.12 degroote
3171 1.12 degroote DPRINTF(("temperature %d\n", sc->temp));
3172 1.1 simonb
3173 1.1 simonb if ((error = wpi_config(sc)) != 0) {
3174 1.1 simonb aprint_error("%s: could not configure device\n",
3175 1.1 simonb sc->sc_dev.dv_xname);
3176 1.1 simonb goto fail1;
3177 1.1 simonb }
3178 1.1 simonb
3179 1.1 simonb ifp->if_flags &= ~IFF_OACTIVE;
3180 1.1 simonb ifp->if_flags |= IFF_RUNNING;
3181 1.1 simonb
3182 1.1 simonb if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3183 1.1 simonb if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3184 1.1 simonb ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3185 1.1 simonb }
3186 1.1 simonb else
3187 1.1 simonb ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3188 1.1 simonb
3189 1.1 simonb return 0;
3190 1.1 simonb
3191 1.1 simonb fail1: wpi_stop(ifp, 1);
3192 1.1 simonb return error;
3193 1.1 simonb }
3194 1.1 simonb
3195 1.1 simonb
3196 1.1 simonb static void
3197 1.6 christos wpi_stop(struct ifnet *ifp, int disable)
3198 1.1 simonb {
3199 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
3200 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
3201 1.1 simonb uint32_t tmp;
3202 1.1 simonb int ac;
3203 1.1 simonb
3204 1.1 simonb ifp->if_timer = sc->sc_tx_timer = 0;
3205 1.1 simonb ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3206 1.1 simonb
3207 1.1 simonb ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3208 1.1 simonb
3209 1.1 simonb /* disable interrupts */
3210 1.1 simonb WPI_WRITE(sc, WPI_MASK, 0);
3211 1.1 simonb WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3212 1.1 simonb WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3213 1.1 simonb WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3214 1.1 simonb
3215 1.1 simonb wpi_mem_lock(sc);
3216 1.1 simonb wpi_mem_write(sc, WPI_MEM_MODE, 0);
3217 1.1 simonb wpi_mem_unlock(sc);
3218 1.1 simonb
3219 1.1 simonb /* reset all Tx rings */
3220 1.1 simonb for (ac = 0; ac < 4; ac++)
3221 1.1 simonb wpi_reset_tx_ring(sc, &sc->txq[ac]);
3222 1.1 simonb wpi_reset_tx_ring(sc, &sc->cmdq);
3223 1.1 simonb wpi_reset_tx_ring(sc, &sc->svcq);
3224 1.1 simonb
3225 1.1 simonb /* reset Rx ring */
3226 1.1 simonb wpi_reset_rx_ring(sc, &sc->rxq);
3227 1.12 degroote
3228 1.1 simonb wpi_mem_lock(sc);
3229 1.1 simonb wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3230 1.1 simonb wpi_mem_unlock(sc);
3231 1.1 simonb
3232 1.1 simonb DELAY(5);
3233 1.1 simonb
3234 1.1 simonb wpi_stop_master(sc);
3235 1.1 simonb
3236 1.1 simonb tmp = WPI_READ(sc, WPI_RESET);
3237 1.1 simonb WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3238 1.1 simonb }
3239