if_wpi.c revision 1.40 1 1.40 dyoung /* $NetBSD: if_wpi.c,v 1.40 2008/11/07 00:20:07 dyoung Exp $ */
2 1.1 simonb
3 1.1 simonb /*-
4 1.12 degroote * Copyright (c) 2006, 2007
5 1.1 simonb * Damien Bergamini <damien.bergamini (at) free.fr>
6 1.1 simonb *
7 1.1 simonb * Permission to use, copy, modify, and distribute this software for any
8 1.1 simonb * purpose with or without fee is hereby granted, provided that the above
9 1.1 simonb * copyright notice and this permission notice appear in all copies.
10 1.1 simonb *
11 1.1 simonb * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 1.1 simonb * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 1.1 simonb * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 1.1 simonb * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 1.1 simonb * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 1.1 simonb * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 1.1 simonb * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 1.1 simonb */
19 1.1 simonb
20 1.1 simonb #include <sys/cdefs.h>
21 1.40 dyoung __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.40 2008/11/07 00:20:07 dyoung Exp $");
22 1.1 simonb
23 1.1 simonb /*
24 1.1 simonb * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 1.1 simonb */
26 1.1 simonb
27 1.1 simonb #include "bpfilter.h"
28 1.1 simonb
29 1.1 simonb #include <sys/param.h>
30 1.1 simonb #include <sys/sockio.h>
31 1.1 simonb #include <sys/sysctl.h>
32 1.1 simonb #include <sys/mbuf.h>
33 1.1 simonb #include <sys/kernel.h>
34 1.1 simonb #include <sys/socket.h>
35 1.1 simonb #include <sys/systm.h>
36 1.1 simonb #include <sys/malloc.h>
37 1.39 cube #include <sys/mutex.h>
38 1.1 simonb #include <sys/conf.h>
39 1.1 simonb #include <sys/kauth.h>
40 1.7 degroote #include <sys/callout.h>
41 1.1 simonb
42 1.25 ad #include <sys/bus.h>
43 1.1 simonb #include <machine/endian.h>
44 1.25 ad #include <sys/intr.h>
45 1.1 simonb
46 1.1 simonb #include <dev/pci/pcireg.h>
47 1.1 simonb #include <dev/pci/pcivar.h>
48 1.1 simonb #include <dev/pci/pcidevs.h>
49 1.1 simonb
50 1.1 simonb #if NBPFILTER > 0
51 1.1 simonb #include <net/bpf.h>
52 1.1 simonb #endif
53 1.1 simonb #include <net/if.h>
54 1.1 simonb #include <net/if_arp.h>
55 1.1 simonb #include <net/if_dl.h>
56 1.1 simonb #include <net/if_ether.h>
57 1.1 simonb #include <net/if_media.h>
58 1.1 simonb #include <net/if_types.h>
59 1.1 simonb
60 1.1 simonb #include <net80211/ieee80211_var.h>
61 1.5 joerg #include <net80211/ieee80211_amrr.h>
62 1.1 simonb #include <net80211/ieee80211_radiotap.h>
63 1.1 simonb
64 1.1 simonb #include <netinet/in.h>
65 1.1 simonb #include <netinet/in_systm.h>
66 1.1 simonb #include <netinet/in_var.h>
67 1.1 simonb #include <netinet/ip.h>
68 1.1 simonb
69 1.1 simonb #include <dev/firmload.h>
70 1.1 simonb
71 1.1 simonb #include <dev/pci/if_wpireg.h>
72 1.1 simonb #include <dev/pci/if_wpivar.h>
73 1.1 simonb
74 1.1 simonb #ifdef WPI_DEBUG
75 1.1 simonb #define DPRINTF(x) if (wpi_debug > 0) printf x
76 1.1 simonb #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x
77 1.1 simonb int wpi_debug = 1;
78 1.1 simonb #else
79 1.1 simonb #define DPRINTF(x)
80 1.1 simonb #define DPRINTFN(n, x)
81 1.1 simonb #endif
82 1.1 simonb
83 1.1 simonb /*
84 1.1 simonb * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
85 1.1 simonb */
86 1.1 simonb static const struct ieee80211_rateset wpi_rateset_11a =
87 1.1 simonb { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
88 1.1 simonb
89 1.1 simonb static const struct ieee80211_rateset wpi_rateset_11b =
90 1.1 simonb { 4, { 2, 4, 11, 22 } };
91 1.1 simonb
92 1.1 simonb static const struct ieee80211_rateset wpi_rateset_11g =
93 1.1 simonb { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
94 1.1 simonb
95 1.28 degroote static int wpi_match(device_t, struct cfdata *, void *);
96 1.28 degroote static void wpi_attach(device_t, device_t, void *);
97 1.28 degroote static int wpi_detach(device_t , int);
98 1.7 degroote static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
99 1.1 simonb void **, bus_size_t, bus_size_t, int);
100 1.7 degroote static void wpi_dma_contig_free(struct wpi_dma_info *);
101 1.1 simonb static int wpi_alloc_shared(struct wpi_softc *);
102 1.1 simonb static void wpi_free_shared(struct wpi_softc *);
103 1.12 degroote static int wpi_alloc_fwmem(struct wpi_softc *);
104 1.12 degroote static void wpi_free_fwmem(struct wpi_softc *);
105 1.7 degroote static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
106 1.9 christos static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
107 1.7 degroote static int wpi_alloc_rpool(struct wpi_softc *);
108 1.7 degroote static void wpi_free_rpool(struct wpi_softc *);
109 1.1 simonb static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
110 1.1 simonb static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
111 1.1 simonb static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
112 1.1 simonb static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
113 1.1 simonb int);
114 1.1 simonb static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
115 1.1 simonb static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
116 1.1 simonb static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
117 1.12 degroote static void wpi_newassoc(struct ieee80211_node *, int);
118 1.1 simonb static int wpi_media_change(struct ifnet *);
119 1.1 simonb static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
120 1.23 degroote static void wpi_fix_channel(struct ieee80211com *, struct mbuf *);
121 1.1 simonb static void wpi_mem_lock(struct wpi_softc *);
122 1.1 simonb static void wpi_mem_unlock(struct wpi_softc *);
123 1.1 simonb static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
124 1.1 simonb static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
125 1.17 degroote static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
126 1.17 degroote const uint32_t *, int);
127 1.12 degroote static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
128 1.17 degroote static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
129 1.12 degroote static int wpi_load_firmware(struct wpi_softc *);
130 1.12 degroote static void wpi_calib_timeout(void *);
131 1.12 degroote static void wpi_iter_func(void *, struct ieee80211_node *);
132 1.12 degroote static void wpi_power_calibration(struct wpi_softc *, int);
133 1.1 simonb static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
134 1.1 simonb struct wpi_rx_data *);
135 1.1 simonb static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
136 1.1 simonb static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
137 1.1 simonb static void wpi_notif_intr(struct wpi_softc *);
138 1.1 simonb static int wpi_intr(void *);
139 1.12 degroote static void wpi_read_eeprom(struct wpi_softc *);
140 1.12 degroote static void wpi_read_eeprom_channels(struct wpi_softc *, int);
141 1.12 degroote static void wpi_read_eeprom_group(struct wpi_softc *, int);
142 1.1 simonb static uint8_t wpi_plcp_signal(int);
143 1.1 simonb static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
144 1.1 simonb struct ieee80211_node *, int);
145 1.1 simonb static void wpi_start(struct ifnet *);
146 1.1 simonb static void wpi_watchdog(struct ifnet *);
147 1.9 christos static int wpi_ioctl(struct ifnet *, u_long, void *);
148 1.1 simonb static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
149 1.1 simonb static int wpi_wme_update(struct ieee80211com *);
150 1.1 simonb static int wpi_mrr_setup(struct wpi_softc *);
151 1.1 simonb static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
152 1.1 simonb static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
153 1.12 degroote static int wpi_set_txpower(struct wpi_softc *,
154 1.12 degroote struct ieee80211_channel *, int);
155 1.12 degroote static int wpi_get_power_index(struct wpi_softc *,
156 1.12 degroote struct wpi_power_group *, struct ieee80211_channel *, int);
157 1.1 simonb static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
158 1.1 simonb static int wpi_auth(struct wpi_softc *);
159 1.1 simonb static int wpi_scan(struct wpi_softc *, uint16_t);
160 1.1 simonb static int wpi_config(struct wpi_softc *);
161 1.1 simonb static void wpi_stop_master(struct wpi_softc *);
162 1.1 simonb static int wpi_power_up(struct wpi_softc *);
163 1.1 simonb static int wpi_reset(struct wpi_softc *);
164 1.1 simonb static void wpi_hw_config(struct wpi_softc *);
165 1.1 simonb static int wpi_init(struct ifnet *);
166 1.1 simonb static void wpi_stop(struct ifnet *, int);
167 1.36 dyoung static bool wpi_resume(device_t PMF_FN_PROTO);
168 1.34 degroote static int wpi_getrfkill(struct wpi_softc *);
169 1.34 degroote static void wpi_sysctlattach(struct wpi_softc *);
170 1.1 simonb
171 1.28 degroote CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
172 1.1 simonb wpi_detach, NULL);
173 1.1 simonb
174 1.1 simonb static int
175 1.28 degroote wpi_match(device_t parent, struct cfdata *match __unused, void *aux)
176 1.1 simonb {
177 1.1 simonb struct pci_attach_args *pa = aux;
178 1.1 simonb
179 1.1 simonb if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
180 1.1 simonb return 0;
181 1.1 simonb
182 1.1 simonb if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
183 1.7 degroote PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
184 1.1 simonb return 1;
185 1.1 simonb
186 1.1 simonb return 0;
187 1.1 simonb }
188 1.1 simonb
189 1.1 simonb /* Base Address Register */
190 1.1 simonb #define WPI_PCI_BAR0 0x10
191 1.1 simonb
192 1.1 simonb static void
193 1.28 degroote wpi_attach(device_t parent __unused, device_t self, void *aux)
194 1.1 simonb {
195 1.28 degroote struct wpi_softc *sc = device_private(self);
196 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
197 1.1 simonb struct ifnet *ifp = &sc->sc_ec.ec_if;
198 1.1 simonb struct pci_attach_args *pa = aux;
199 1.1 simonb const char *intrstr;
200 1.1 simonb char devinfo[256];
201 1.1 simonb bus_space_tag_t memt;
202 1.1 simonb bus_space_handle_t memh;
203 1.1 simonb pci_intr_handle_t ih;
204 1.1 simonb pcireg_t data;
205 1.12 degroote int error, ac, revision;
206 1.1 simonb
207 1.30 plunky sc->sc_dev = self;
208 1.1 simonb sc->sc_pct = pa->pa_pc;
209 1.1 simonb sc->sc_pcitag = pa->pa_tag;
210 1.1 simonb
211 1.14 ad callout_init(&sc->calib_to, 0);
212 1.28 degroote callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
213 1.1 simonb
214 1.1 simonb pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
215 1.1 simonb revision = PCI_REVISION(pa->pa_class);
216 1.1 simonb aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
217 1.1 simonb
218 1.1 simonb /* enable bus-mastering */
219 1.1 simonb data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
220 1.1 simonb data |= PCI_COMMAND_MASTER_ENABLE;
221 1.1 simonb pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
222 1.1 simonb
223 1.1 simonb /* map the register window */
224 1.1 simonb error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
225 1.7 degroote PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
226 1.1 simonb if (error != 0) {
227 1.28 degroote aprint_error_dev(self, "could not map memory space\n");
228 1.1 simonb return;
229 1.1 simonb }
230 1.1 simonb
231 1.1 simonb sc->sc_st = memt;
232 1.1 simonb sc->sc_sh = memh;
233 1.1 simonb sc->sc_dmat = pa->pa_dmat;
234 1.1 simonb
235 1.1 simonb if (pci_intr_map(pa, &ih) != 0) {
236 1.28 degroote aprint_error_dev(self, "could not map interrupt\n");
237 1.1 simonb return;
238 1.1 simonb }
239 1.1 simonb
240 1.1 simonb intrstr = pci_intr_string(sc->sc_pct, ih);
241 1.1 simonb sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
242 1.1 simonb if (sc->sc_ih == NULL) {
243 1.28 degroote aprint_error_dev(self, "could not establish interrupt");
244 1.1 simonb if (intrstr != NULL)
245 1.1 simonb aprint_error(" at %s", intrstr);
246 1.1 simonb aprint_error("\n");
247 1.1 simonb return;
248 1.1 simonb }
249 1.28 degroote aprint_normal_dev(self, "interrupting at %s\n", intrstr);
250 1.1 simonb
251 1.1 simonb if (wpi_reset(sc) != 0) {
252 1.28 degroote aprint_error_dev(self, "could not reset adapter\n");
253 1.1 simonb return;
254 1.1 simonb }
255 1.1 simonb
256 1.12 degroote /*
257 1.12 degroote * Allocate DMA memory for firmware transfers.
258 1.12 degroote */
259 1.29 joerg if ((error = wpi_alloc_fwmem(sc)) != 0)
260 1.12 degroote return;
261 1.12 degroote
262 1.1 simonb /*
263 1.1 simonb * Allocate shared page and Tx/Rx rings.
264 1.1 simonb */
265 1.1 simonb if ((error = wpi_alloc_shared(sc)) != 0) {
266 1.28 degroote aprint_error_dev(self, "could not allocate shared area\n");
267 1.12 degroote goto fail1;
268 1.1 simonb }
269 1.1 simonb
270 1.7 degroote if ((error = wpi_alloc_rpool(sc)) != 0) {
271 1.28 degroote aprint_error_dev(self, "could not allocate Rx buffers\n");
272 1.12 degroote goto fail2;
273 1.7 degroote }
274 1.7 degroote
275 1.1 simonb for (ac = 0; ac < 4; ac++) {
276 1.1 simonb error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
277 1.1 simonb if (error != 0) {
278 1.28 degroote aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
279 1.12 degroote goto fail3;
280 1.1 simonb }
281 1.1 simonb }
282 1.1 simonb
283 1.1 simonb error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
284 1.1 simonb if (error != 0) {
285 1.28 degroote aprint_error_dev(self, "could not allocate command ring\n");
286 1.12 degroote goto fail3;
287 1.1 simonb }
288 1.1 simonb
289 1.1 simonb if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
290 1.28 degroote aprint_error_dev(self, "could not allocate Rx ring\n");
291 1.24 degroote goto fail4;
292 1.1 simonb }
293 1.1 simonb
294 1.1 simonb ic->ic_ifp = ifp;
295 1.1 simonb ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
296 1.1 simonb ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
297 1.1 simonb ic->ic_state = IEEE80211_S_INIT;
298 1.1 simonb
299 1.1 simonb /* set device capabilities */
300 1.1 simonb ic->ic_caps =
301 1.1 simonb IEEE80211_C_IBSS | /* IBSS mode support */
302 1.1 simonb IEEE80211_C_WPA | /* 802.11i */
303 1.1 simonb IEEE80211_C_MONITOR | /* monitor mode supported */
304 1.1 simonb IEEE80211_C_TXPMGT | /* tx power management */
305 1.1 simonb IEEE80211_C_SHSLOT | /* short slot time supported */
306 1.1 simonb IEEE80211_C_SHPREAMBLE | /* short preamble supported */
307 1.1 simonb IEEE80211_C_WME; /* 802.11e */
308 1.1 simonb
309 1.12 degroote /* read supported channels and MAC address from EEPROM */
310 1.1 simonb wpi_read_eeprom(sc);
311 1.1 simonb
312 1.12 degroote /* set supported .11a, .11b, .11g rates */
313 1.7 degroote ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
314 1.1 simonb ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
315 1.1 simonb ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
316 1.1 simonb
317 1.1 simonb ic->ic_ibss_chan = &ic->ic_channels[0];
318 1.1 simonb
319 1.1 simonb ifp->if_softc = sc;
320 1.1 simonb ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
321 1.1 simonb ifp->if_init = wpi_init;
322 1.1 simonb ifp->if_stop = wpi_stop;
323 1.1 simonb ifp->if_ioctl = wpi_ioctl;
324 1.1 simonb ifp->if_start = wpi_start;
325 1.1 simonb ifp->if_watchdog = wpi_watchdog;
326 1.1 simonb IFQ_SET_READY(&ifp->if_snd);
327 1.28 degroote memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
328 1.1 simonb
329 1.1 simonb if_attach(ifp);
330 1.1 simonb ieee80211_ifattach(ic);
331 1.1 simonb /* override default methods */
332 1.1 simonb ic->ic_node_alloc = wpi_node_alloc;
333 1.5 joerg ic->ic_newassoc = wpi_newassoc;
334 1.1 simonb ic->ic_wme.wme_update = wpi_wme_update;
335 1.1 simonb
336 1.1 simonb /* override state transition machine */
337 1.1 simonb sc->sc_newstate = ic->ic_newstate;
338 1.1 simonb ic->ic_newstate = wpi_newstate;
339 1.1 simonb ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
340 1.1 simonb
341 1.5 joerg sc->amrr.amrr_min_success_threshold = 1;
342 1.5 joerg sc->amrr.amrr_max_success_threshold = 15;
343 1.5 joerg
344 1.34 degroote wpi_sysctlattach(sc);
345 1.34 degroote
346 1.33 jmcneill if (!pmf_device_register(self, NULL, wpi_resume))
347 1.33 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
348 1.33 jmcneill else
349 1.33 jmcneill pmf_class_network_register(self, ifp);
350 1.1 simonb
351 1.1 simonb #if NBPFILTER > 0
352 1.1 simonb bpfattach2(ifp, DLT_IEEE802_11_RADIO,
353 1.1 simonb sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
354 1.1 simonb &sc->sc_drvbpf);
355 1.1 simonb
356 1.1 simonb sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
357 1.1 simonb sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
358 1.1 simonb sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
359 1.1 simonb
360 1.1 simonb sc->sc_txtap_len = sizeof sc->sc_txtapu;
361 1.1 simonb sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
362 1.1 simonb sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
363 1.1 simonb #endif
364 1.1 simonb
365 1.1 simonb ieee80211_announce(ic);
366 1.1 simonb
367 1.1 simonb return;
368 1.1 simonb
369 1.12 degroote fail4: wpi_free_tx_ring(sc, &sc->cmdq);
370 1.12 degroote fail3: while (--ac >= 0)
371 1.1 simonb wpi_free_tx_ring(sc, &sc->txq[ac]);
372 1.7 degroote wpi_free_rpool(sc);
373 1.12 degroote fail2: wpi_free_shared(sc);
374 1.12 degroote fail1: wpi_free_fwmem(sc);
375 1.1 simonb }
376 1.1 simonb
377 1.1 simonb static int
378 1.28 degroote wpi_detach(device_t self, int flags __unused)
379 1.1 simonb {
380 1.28 degroote struct wpi_softc *sc = device_private(self);
381 1.7 degroote struct ifnet *ifp = sc->sc_ic.ic_ifp;
382 1.1 simonb int ac;
383 1.1 simonb
384 1.1 simonb wpi_stop(ifp, 1);
385 1.1 simonb
386 1.1 simonb #if NBPFILTER > 0
387 1.1 simonb if (ifp != NULL)
388 1.1 simonb bpfdetach(ifp);
389 1.1 simonb #endif
390 1.1 simonb ieee80211_ifdetach(&sc->sc_ic);
391 1.1 simonb if (ifp != NULL)
392 1.1 simonb if_detach(ifp);
393 1.1 simonb
394 1.1 simonb for (ac = 0; ac < 4; ac++)
395 1.1 simonb wpi_free_tx_ring(sc, &sc->txq[ac]);
396 1.1 simonb wpi_free_tx_ring(sc, &sc->cmdq);
397 1.1 simonb wpi_free_rx_ring(sc, &sc->rxq);
398 1.7 degroote wpi_free_rpool(sc);
399 1.1 simonb wpi_free_shared(sc);
400 1.1 simonb
401 1.1 simonb if (sc->sc_ih != NULL) {
402 1.1 simonb pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
403 1.1 simonb sc->sc_ih = NULL;
404 1.1 simonb }
405 1.1 simonb
406 1.1 simonb bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
407 1.1 simonb
408 1.1 simonb return 0;
409 1.1 simonb }
410 1.1 simonb
411 1.1 simonb static int
412 1.7 degroote wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
413 1.1 simonb void **kvap, bus_size_t size, bus_size_t alignment, int flags)
414 1.1 simonb {
415 1.1 simonb int nsegs, error;
416 1.1 simonb
417 1.7 degroote dma->tag = tag;
418 1.1 simonb dma->size = size;
419 1.1 simonb
420 1.7 degroote error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
421 1.7 degroote if (error != 0)
422 1.1 simonb goto fail;
423 1.1 simonb
424 1.7 degroote error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
425 1.7 degroote flags);
426 1.7 degroote if (error != 0)
427 1.1 simonb goto fail;
428 1.1 simonb
429 1.7 degroote error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
430 1.7 degroote if (error != 0)
431 1.1 simonb goto fail;
432 1.1 simonb
433 1.7 degroote error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
434 1.7 degroote if (error != 0)
435 1.1 simonb goto fail;
436 1.1 simonb
437 1.1 simonb memset(dma->vaddr, 0, size);
438 1.1 simonb
439 1.1 simonb dma->paddr = dma->map->dm_segs[0].ds_addr;
440 1.7 degroote if (kvap != NULL)
441 1.7 degroote *kvap = dma->vaddr;
442 1.1 simonb
443 1.1 simonb return 0;
444 1.1 simonb
445 1.7 degroote fail: wpi_dma_contig_free(dma);
446 1.1 simonb return error;
447 1.1 simonb }
448 1.1 simonb
449 1.1 simonb static void
450 1.7 degroote wpi_dma_contig_free(struct wpi_dma_info *dma)
451 1.1 simonb {
452 1.1 simonb if (dma->map != NULL) {
453 1.1 simonb if (dma->vaddr != NULL) {
454 1.7 degroote bus_dmamap_unload(dma->tag, dma->map);
455 1.7 degroote bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
456 1.7 degroote bus_dmamem_free(dma->tag, &dma->seg, 1);
457 1.1 simonb dma->vaddr = NULL;
458 1.1 simonb }
459 1.7 degroote bus_dmamap_destroy(dma->tag, dma->map);
460 1.1 simonb dma->map = NULL;
461 1.1 simonb }
462 1.1 simonb }
463 1.1 simonb
464 1.1 simonb /*
465 1.1 simonb * Allocate a shared page between host and NIC.
466 1.1 simonb */
467 1.1 simonb static int
468 1.1 simonb wpi_alloc_shared(struct wpi_softc *sc)
469 1.1 simonb {
470 1.1 simonb int error;
471 1.1 simonb /* must be aligned on a 4K-page boundary */
472 1.7 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
473 1.12 degroote (void **)&sc->shared, sizeof (struct wpi_shared),
474 1.12 degroote WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
475 1.1 simonb if (error != 0)
476 1.28 degroote aprint_error_dev(sc->sc_dev,
477 1.28 degroote "could not allocate shared area DMA memory\n");
478 1.1 simonb
479 1.1 simonb return error;
480 1.1 simonb }
481 1.1 simonb
482 1.1 simonb static void
483 1.1 simonb wpi_free_shared(struct wpi_softc *sc)
484 1.1 simonb {
485 1.7 degroote wpi_dma_contig_free(&sc->shared_dma);
486 1.7 degroote }
487 1.7 degroote
488 1.12 degroote /*
489 1.12 degroote * Allocate DMA-safe memory for firmware transfer.
490 1.12 degroote */
491 1.12 degroote static int
492 1.12 degroote wpi_alloc_fwmem(struct wpi_softc *sc)
493 1.12 degroote {
494 1.12 degroote int error;
495 1.12 degroote /* allocate enough contiguous space to store text and data */
496 1.12 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
497 1.12 degroote WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
498 1.12 degroote BUS_DMA_NOWAIT);
499 1.12 degroote
500 1.12 degroote if (error != 0)
501 1.28 degroote aprint_error_dev(sc->sc_dev,
502 1.28 degroote "could not allocate firmware transfer area"
503 1.28 degroote "DMA memory\n");
504 1.12 degroote return error;
505 1.12 degroote }
506 1.12 degroote
507 1.12 degroote static void
508 1.12 degroote wpi_free_fwmem(struct wpi_softc *sc)
509 1.12 degroote {
510 1.12 degroote wpi_dma_contig_free(&sc->fw_dma);
511 1.12 degroote }
512 1.12 degroote
513 1.12 degroote
514 1.7 degroote static struct wpi_rbuf *
515 1.7 degroote wpi_alloc_rbuf(struct wpi_softc *sc)
516 1.7 degroote {
517 1.7 degroote struct wpi_rbuf *rbuf;
518 1.7 degroote
519 1.39 cube mutex_enter(&sc->rxq.freelist_mtx);
520 1.7 degroote rbuf = SLIST_FIRST(&sc->rxq.freelist);
521 1.39 cube if (rbuf != NULL) {
522 1.39 cube SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
523 1.39 cube sc->rxq.nb_free_entries --;
524 1.39 cube }
525 1.39 cube mutex_exit(&sc->rxq.freelist_mtx);
526 1.10 degroote
527 1.7 degroote return rbuf;
528 1.7 degroote }
529 1.7 degroote
530 1.7 degroote /*
531 1.7 degroote * This is called automatically by the network stack when the mbuf to which our
532 1.7 degroote * Rx buffer is attached is freed.
533 1.7 degroote */
534 1.7 degroote static void
535 1.9 christos wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
536 1.7 degroote {
537 1.7 degroote struct wpi_rbuf *rbuf = arg;
538 1.7 degroote struct wpi_softc *sc = rbuf->sc;
539 1.7 degroote
540 1.7 degroote /* put the buffer back in the free list */
541 1.10 degroote
542 1.39 cube mutex_enter(&sc->rxq.freelist_mtx);
543 1.7 degroote SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
544 1.39 cube mutex_exit(&sc->rxq.freelist_mtx);
545 1.39 cube /* No need to protect this with a mutex, see wpi_rx_intr */
546 1.10 degroote sc->rxq.nb_free_entries ++;
547 1.7 degroote
548 1.27 ad if (__predict_true(m != NULL))
549 1.27 ad pool_cache_put(mb_cache, m);
550 1.7 degroote }
551 1.7 degroote
552 1.7 degroote static int
553 1.7 degroote wpi_alloc_rpool(struct wpi_softc *sc)
554 1.7 degroote {
555 1.7 degroote struct wpi_rx_ring *ring = &sc->rxq;
556 1.7 degroote struct wpi_rbuf *rbuf;
557 1.7 degroote int i, error;
558 1.7 degroote
559 1.7 degroote /* allocate a big chunk of DMA'able memory.. */
560 1.7 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
561 1.7 degroote WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
562 1.7 degroote if (error != 0) {
563 1.28 degroote aprint_normal_dev(sc->sc_dev,
564 1.28 degroote "could not allocate Rx buffers DMA memory\n");
565 1.28 degroote return error;
566 1.7 degroote }
567 1.7 degroote
568 1.7 degroote /* ..and split it into 3KB chunks */
569 1.39 cube mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
570 1.7 degroote SLIST_INIT(&ring->freelist);
571 1.7 degroote for (i = 0; i < WPI_RBUF_COUNT; i++) {
572 1.7 degroote rbuf = &ring->rbuf[i];
573 1.7 degroote rbuf->sc = sc; /* backpointer for callbacks */
574 1.9 christos rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
575 1.7 degroote rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
576 1.7 degroote
577 1.7 degroote SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
578 1.7 degroote }
579 1.10 degroote
580 1.10 degroote ring->nb_free_entries = WPI_RBUF_COUNT;
581 1.7 degroote return 0;
582 1.7 degroote }
583 1.7 degroote
584 1.7 degroote static void
585 1.7 degroote wpi_free_rpool(struct wpi_softc *sc)
586 1.7 degroote {
587 1.7 degroote wpi_dma_contig_free(&sc->rxq.buf_dma);
588 1.1 simonb }
589 1.1 simonb
590 1.1 simonb static int
591 1.1 simonb wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
592 1.1 simonb {
593 1.1 simonb struct wpi_rx_data *data;
594 1.7 degroote struct wpi_rbuf *rbuf;
595 1.1 simonb int i, error;
596 1.1 simonb
597 1.1 simonb ring->cur = 0;
598 1.1 simonb
599 1.7 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
600 1.1 simonb (void **)&ring->desc,
601 1.1 simonb WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
602 1.1 simonb WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
603 1.1 simonb if (error != 0) {
604 1.28 degroote aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
605 1.1 simonb goto fail;
606 1.1 simonb }
607 1.1 simonb
608 1.1 simonb /*
609 1.7 degroote * Setup Rx buffers.
610 1.1 simonb */
611 1.1 simonb for (i = 0; i < WPI_RX_RING_COUNT; i++) {
612 1.1 simonb data = &ring->data[i];
613 1.1 simonb
614 1.1 simonb MGETHDR(data->m, M_DONTWAIT, MT_DATA);
615 1.1 simonb if (data->m == NULL) {
616 1.28 degroote aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
617 1.1 simonb error = ENOMEM;
618 1.1 simonb goto fail;
619 1.1 simonb }
620 1.7 degroote if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
621 1.1 simonb m_freem(data->m);
622 1.1 simonb data->m = NULL;
623 1.28 degroote aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
624 1.1 simonb error = ENOMEM;
625 1.1 simonb goto fail;
626 1.1 simonb }
627 1.7 degroote /* attach Rx buffer to mbuf */
628 1.7 degroote MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
629 1.7 degroote rbuf);
630 1.7 degroote data->m->m_flags |= M_EXT_RW;
631 1.1 simonb
632 1.7 degroote ring->desc[i] = htole32(rbuf->paddr);
633 1.1 simonb }
634 1.1 simonb
635 1.1 simonb return 0;
636 1.1 simonb
637 1.1 simonb fail: wpi_free_rx_ring(sc, ring);
638 1.1 simonb return error;
639 1.1 simonb }
640 1.1 simonb
641 1.1 simonb static void
642 1.1 simonb wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
643 1.1 simonb {
644 1.1 simonb int ntries;
645 1.1 simonb
646 1.1 simonb wpi_mem_lock(sc);
647 1.1 simonb
648 1.1 simonb WPI_WRITE(sc, WPI_RX_CONFIG, 0);
649 1.1 simonb for (ntries = 0; ntries < 100; ntries++) {
650 1.1 simonb if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
651 1.1 simonb break;
652 1.1 simonb DELAY(10);
653 1.1 simonb }
654 1.1 simonb #ifdef WPI_DEBUG
655 1.1 simonb if (ntries == 100 && wpi_debug > 0)
656 1.28 degroote aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
657 1.1 simonb #endif
658 1.1 simonb wpi_mem_unlock(sc);
659 1.1 simonb
660 1.1 simonb ring->cur = 0;
661 1.1 simonb }
662 1.1 simonb
663 1.1 simonb static void
664 1.1 simonb wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
665 1.1 simonb {
666 1.1 simonb int i;
667 1.1 simonb
668 1.7 degroote wpi_dma_contig_free(&ring->desc_dma);
669 1.1 simonb
670 1.1 simonb for (i = 0; i < WPI_RX_RING_COUNT; i++) {
671 1.7 degroote if (ring->data[i].m != NULL)
672 1.7 degroote m_freem(ring->data[i].m);
673 1.1 simonb }
674 1.1 simonb }
675 1.1 simonb
676 1.1 simonb static int
677 1.1 simonb wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
678 1.1 simonb int qid)
679 1.1 simonb {
680 1.1 simonb struct wpi_tx_data *data;
681 1.1 simonb int i, error;
682 1.1 simonb
683 1.1 simonb ring->qid = qid;
684 1.1 simonb ring->count = count;
685 1.1 simonb ring->queued = 0;
686 1.1 simonb ring->cur = 0;
687 1.1 simonb
688 1.7 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
689 1.1 simonb (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
690 1.1 simonb WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
691 1.1 simonb if (error != 0) {
692 1.28 degroote aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
693 1.1 simonb goto fail;
694 1.1 simonb }
695 1.1 simonb
696 1.1 simonb /* update shared page with ring's base address */
697 1.1 simonb sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
698 1.1 simonb
699 1.7 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
700 1.7 degroote (void **)&ring->cmd,
701 1.1 simonb count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
702 1.1 simonb if (error != 0) {
703 1.28 degroote aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
704 1.1 simonb goto fail;
705 1.1 simonb }
706 1.1 simonb
707 1.1 simonb ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
708 1.1 simonb M_NOWAIT);
709 1.1 simonb if (ring->data == NULL) {
710 1.28 degroote aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
711 1.1 simonb goto fail;
712 1.1 simonb }
713 1.1 simonb
714 1.1 simonb memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
715 1.1 simonb
716 1.1 simonb for (i = 0; i < count; i++) {
717 1.1 simonb data = &ring->data[i];
718 1.1 simonb
719 1.1 simonb error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
720 1.1 simonb WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
721 1.1 simonb &data->map);
722 1.1 simonb if (error != 0) {
723 1.28 degroote aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
724 1.1 simonb goto fail;
725 1.1 simonb }
726 1.1 simonb }
727 1.1 simonb
728 1.1 simonb return 0;
729 1.1 simonb
730 1.1 simonb fail: wpi_free_tx_ring(sc, ring);
731 1.1 simonb return error;
732 1.1 simonb }
733 1.1 simonb
734 1.1 simonb static void
735 1.1 simonb wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
736 1.1 simonb {
737 1.1 simonb struct wpi_tx_data *data;
738 1.1 simonb int i, ntries;
739 1.1 simonb
740 1.1 simonb wpi_mem_lock(sc);
741 1.1 simonb
742 1.1 simonb WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
743 1.1 simonb for (ntries = 0; ntries < 100; ntries++) {
744 1.1 simonb if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
745 1.1 simonb break;
746 1.1 simonb DELAY(10);
747 1.1 simonb }
748 1.1 simonb #ifdef WPI_DEBUG
749 1.1 simonb if (ntries == 100 && wpi_debug > 0) {
750 1.28 degroote aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
751 1.28 degroote ring->qid);
752 1.1 simonb }
753 1.1 simonb #endif
754 1.1 simonb wpi_mem_unlock(sc);
755 1.1 simonb
756 1.1 simonb for (i = 0; i < ring->count; i++) {
757 1.1 simonb data = &ring->data[i];
758 1.1 simonb
759 1.1 simonb if (data->m != NULL) {
760 1.1 simonb bus_dmamap_unload(sc->sc_dmat, data->map);
761 1.1 simonb m_freem(data->m);
762 1.1 simonb data->m = NULL;
763 1.1 simonb }
764 1.1 simonb }
765 1.1 simonb
766 1.1 simonb ring->queued = 0;
767 1.1 simonb ring->cur = 0;
768 1.1 simonb }
769 1.1 simonb
770 1.1 simonb static void
771 1.1 simonb wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
772 1.1 simonb {
773 1.1 simonb struct wpi_tx_data *data;
774 1.1 simonb int i;
775 1.1 simonb
776 1.7 degroote wpi_dma_contig_free(&ring->desc_dma);
777 1.7 degroote wpi_dma_contig_free(&ring->cmd_dma);
778 1.1 simonb
779 1.1 simonb if (ring->data != NULL) {
780 1.1 simonb for (i = 0; i < ring->count; i++) {
781 1.1 simonb data = &ring->data[i];
782 1.1 simonb
783 1.1 simonb if (data->m != NULL) {
784 1.1 simonb bus_dmamap_unload(sc->sc_dmat, data->map);
785 1.1 simonb m_freem(data->m);
786 1.1 simonb }
787 1.1 simonb }
788 1.1 simonb free(ring->data, M_DEVBUF);
789 1.1 simonb }
790 1.1 simonb }
791 1.1 simonb
792 1.1 simonb /*ARGUSED*/
793 1.1 simonb static struct ieee80211_node *
794 1.7 degroote wpi_node_alloc(struct ieee80211_node_table *nt __unused)
795 1.1 simonb {
796 1.5 joerg struct wpi_node *wn;
797 1.1 simonb
798 1.35 simonb wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
799 1.5 joerg
800 1.5 joerg return (struct ieee80211_node *)wn;
801 1.1 simonb }
802 1.1 simonb
803 1.12 degroote static void
804 1.12 degroote wpi_newassoc(struct ieee80211_node *ni, int isnew)
805 1.12 degroote {
806 1.12 degroote struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
807 1.12 degroote int i;
808 1.12 degroote
809 1.12 degroote ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
810 1.12 degroote
811 1.12 degroote /* set rate to some reasonable initial value */
812 1.12 degroote for (i = ni->ni_rates.rs_nrates - 1;
813 1.12 degroote i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
814 1.12 degroote i--);
815 1.12 degroote ni->ni_txrate = i;
816 1.12 degroote }
817 1.12 degroote
818 1.1 simonb static int
819 1.1 simonb wpi_media_change(struct ifnet *ifp)
820 1.1 simonb {
821 1.1 simonb int error;
822 1.1 simonb
823 1.1 simonb error = ieee80211_media_change(ifp);
824 1.1 simonb if (error != ENETRESET)
825 1.1 simonb return error;
826 1.1 simonb
827 1.1 simonb if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
828 1.1 simonb wpi_init(ifp);
829 1.1 simonb
830 1.1 simonb return 0;
831 1.1 simonb }
832 1.1 simonb
833 1.1 simonb static int
834 1.1 simonb wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
835 1.1 simonb {
836 1.1 simonb struct ifnet *ifp = ic->ic_ifp;
837 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
838 1.12 degroote struct ieee80211_node *ni;
839 1.1 simonb int error;
840 1.1 simonb
841 1.12 degroote callout_stop(&sc->calib_to);
842 1.1 simonb
843 1.1 simonb switch (nstate) {
844 1.1 simonb case IEEE80211_S_SCAN:
845 1.23 degroote
846 1.23 degroote if (sc->is_scanning)
847 1.23 degroote break;
848 1.23 degroote
849 1.23 degroote sc->is_scanning = true;
850 1.1 simonb ieee80211_node_table_reset(&ic->ic_scan);
851 1.1 simonb ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
852 1.1 simonb
853 1.1 simonb /* make the link LED blink while we're scanning */
854 1.1 simonb wpi_set_led(sc, WPI_LED_LINK, 20, 2);
855 1.1 simonb
856 1.1 simonb if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
857 1.28 degroote aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
858 1.1 simonb ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
859 1.1 simonb return error;
860 1.1 simonb }
861 1.1 simonb
862 1.1 simonb ic->ic_state = nstate;
863 1.1 simonb return 0;
864 1.1 simonb
865 1.7 degroote case IEEE80211_S_ASSOC:
866 1.7 degroote if (ic->ic_state != IEEE80211_S_RUN)
867 1.7 degroote break;
868 1.7 degroote /* FALLTHROUGH */
869 1.1 simonb case IEEE80211_S_AUTH:
870 1.12 degroote sc->config.associd = 0;
871 1.1 simonb sc->config.filter &= ~htole32(WPI_FILTER_BSS);
872 1.1 simonb if ((error = wpi_auth(sc)) != 0) {
873 1.28 degroote aprint_error_dev(sc->sc_dev,
874 1.28 degroote "could not send authentication request\n");
875 1.1 simonb return error;
876 1.1 simonb }
877 1.1 simonb break;
878 1.1 simonb
879 1.1 simonb case IEEE80211_S_RUN:
880 1.1 simonb if (ic->ic_opmode == IEEE80211_M_MONITOR) {
881 1.1 simonb /* link LED blinks while monitoring */
882 1.1 simonb wpi_set_led(sc, WPI_LED_LINK, 5, 5);
883 1.1 simonb break;
884 1.1 simonb }
885 1.12 degroote
886 1.12 degroote ni = ic->ic_bss;
887 1.1 simonb
888 1.1 simonb if (ic->ic_opmode != IEEE80211_M_STA) {
889 1.1 simonb (void) wpi_auth(sc); /* XXX */
890 1.12 degroote wpi_setup_beacon(sc, ni);
891 1.1 simonb }
892 1.1 simonb
893 1.12 degroote wpi_enable_tsf(sc, ni);
894 1.1 simonb
895 1.1 simonb /* update adapter's configuration */
896 1.12 degroote sc->config.associd = htole16(ni->ni_associd & ~0xc000);
897 1.1 simonb /* short preamble/slot time are negotiated when associating */
898 1.1 simonb sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
899 1.1 simonb WPI_CONFIG_SHSLOT);
900 1.1 simonb if (ic->ic_flags & IEEE80211_F_SHSLOT)
901 1.1 simonb sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
902 1.1 simonb if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
903 1.1 simonb sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
904 1.1 simonb sc->config.filter |= htole32(WPI_FILTER_BSS);
905 1.1 simonb if (ic->ic_opmode != IEEE80211_M_STA)
906 1.1 simonb sc->config.filter |= htole32(WPI_FILTER_BEACON);
907 1.1 simonb
908 1.1 simonb /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
909 1.1 simonb
910 1.1 simonb DPRINTF(("config chan %d flags %x\n", sc->config.chan,
911 1.1 simonb sc->config.flags));
912 1.1 simonb error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
913 1.1 simonb sizeof (struct wpi_config), 1);
914 1.1 simonb if (error != 0) {
915 1.28 degroote aprint_error_dev(sc->sc_dev, "could not update configuration\n");
916 1.1 simonb return error;
917 1.1 simonb }
918 1.1 simonb
919 1.12 degroote /* configuration has changed, set Tx power accordingly */
920 1.12 degroote if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
921 1.28 degroote aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
922 1.12 degroote return error;
923 1.12 degroote }
924 1.12 degroote
925 1.5 joerg if (ic->ic_opmode == IEEE80211_M_STA) {
926 1.5 joerg /* fake a join to init the tx rate */
927 1.12 degroote wpi_newassoc(ni, 1);
928 1.5 joerg }
929 1.5 joerg
930 1.12 degroote /* start periodic calibration timer */
931 1.12 degroote sc->calib_cnt = 0;
932 1.28 degroote callout_schedule(&sc->calib_to, hz/2);
933 1.1 simonb
934 1.1 simonb /* link LED always on while associated */
935 1.1 simonb wpi_set_led(sc, WPI_LED_LINK, 0, 1);
936 1.1 simonb break;
937 1.1 simonb
938 1.1 simonb case IEEE80211_S_INIT:
939 1.23 degroote sc->is_scanning = false;
940 1.1 simonb break;
941 1.1 simonb }
942 1.1 simonb
943 1.1 simonb return sc->sc_newstate(ic, nstate, arg);
944 1.1 simonb }
945 1.1 simonb
946 1.1 simonb /*
947 1.23 degroote * XXX: Hack to set the current channel to the value advertised in beacons or
948 1.23 degroote * probe responses. Only used during AP detection.
949 1.23 degroote * XXX: Duplicated from if_iwi.c
950 1.23 degroote */
951 1.23 degroote static void
952 1.23 degroote wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
953 1.23 degroote {
954 1.23 degroote struct ieee80211_frame *wh;
955 1.23 degroote uint8_t subtype;
956 1.23 degroote uint8_t *frm, *efrm;
957 1.23 degroote
958 1.23 degroote wh = mtod(m, struct ieee80211_frame *);
959 1.23 degroote
960 1.23 degroote if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
961 1.23 degroote return;
962 1.23 degroote
963 1.23 degroote subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
964 1.23 degroote
965 1.23 degroote if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
966 1.23 degroote subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
967 1.23 degroote return;
968 1.23 degroote
969 1.23 degroote frm = (uint8_t *)(wh + 1);
970 1.23 degroote efrm = mtod(m, uint8_t *) + m->m_len;
971 1.23 degroote
972 1.23 degroote frm += 12; /* skip tstamp, bintval and capinfo fields */
973 1.23 degroote while (frm < efrm) {
974 1.23 degroote if (*frm == IEEE80211_ELEMID_DSPARMS)
975 1.23 degroote #if IEEE80211_CHAN_MAX < 255
976 1.23 degroote if (frm[2] <= IEEE80211_CHAN_MAX)
977 1.23 degroote #endif
978 1.23 degroote ic->ic_curchan = &ic->ic_channels[frm[2]];
979 1.23 degroote
980 1.23 degroote frm += frm[1] + 2;
981 1.23 degroote }
982 1.23 degroote }
983 1.23 degroote
984 1.23 degroote /*
985 1.1 simonb * Grab exclusive access to NIC memory.
986 1.1 simonb */
987 1.1 simonb static void
988 1.1 simonb wpi_mem_lock(struct wpi_softc *sc)
989 1.1 simonb {
990 1.1 simonb uint32_t tmp;
991 1.1 simonb int ntries;
992 1.1 simonb
993 1.1 simonb tmp = WPI_READ(sc, WPI_GPIO_CTL);
994 1.1 simonb WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
995 1.1 simonb
996 1.1 simonb /* spin until we actually get the lock */
997 1.1 simonb for (ntries = 0; ntries < 1000; ntries++) {
998 1.1 simonb if ((WPI_READ(sc, WPI_GPIO_CTL) &
999 1.1 simonb (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1000 1.1 simonb break;
1001 1.1 simonb DELAY(10);
1002 1.1 simonb }
1003 1.1 simonb if (ntries == 1000)
1004 1.28 degroote aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1005 1.1 simonb }
1006 1.1 simonb
1007 1.1 simonb /*
1008 1.1 simonb * Release lock on NIC memory.
1009 1.1 simonb */
1010 1.1 simonb static void
1011 1.1 simonb wpi_mem_unlock(struct wpi_softc *sc)
1012 1.1 simonb {
1013 1.1 simonb uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1014 1.1 simonb WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1015 1.1 simonb }
1016 1.1 simonb
1017 1.1 simonb static uint32_t
1018 1.1 simonb wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1019 1.1 simonb {
1020 1.1 simonb WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1021 1.1 simonb return WPI_READ(sc, WPI_READ_MEM_DATA);
1022 1.1 simonb }
1023 1.1 simonb
1024 1.1 simonb static void
1025 1.1 simonb wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1026 1.1 simonb {
1027 1.1 simonb WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1028 1.1 simonb WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1029 1.1 simonb }
1030 1.1 simonb
1031 1.17 degroote static void
1032 1.17 degroote wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1033 1.17 degroote const uint32_t *data, int wlen)
1034 1.17 degroote {
1035 1.17 degroote for (; wlen > 0; wlen--, data++, addr += 4)
1036 1.17 degroote wpi_mem_write(sc, addr, *data);
1037 1.17 degroote }
1038 1.17 degroote
1039 1.17 degroote
1040 1.1 simonb /*
1041 1.12 degroote * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1042 1.12 degroote * instead of using the traditional bit-bang method.
1043 1.1 simonb */
1044 1.12 degroote static int
1045 1.12 degroote wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1046 1.1 simonb {
1047 1.12 degroote uint8_t *out = data;
1048 1.12 degroote uint32_t val;
1049 1.1 simonb int ntries;
1050 1.1 simonb
1051 1.12 degroote wpi_mem_lock(sc);
1052 1.12 degroote for (; len > 0; len -= 2, addr++) {
1053 1.12 degroote WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1054 1.1 simonb
1055 1.12 degroote for (ntries = 0; ntries < 10; ntries++) {
1056 1.12 degroote if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1057 1.12 degroote WPI_EEPROM_READY)
1058 1.12 degroote break;
1059 1.12 degroote DELAY(5);
1060 1.12 degroote }
1061 1.12 degroote if (ntries == 10) {
1062 1.28 degroote aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1063 1.12 degroote return ETIMEDOUT;
1064 1.12 degroote }
1065 1.12 degroote *out++ = val >> 16;
1066 1.12 degroote if (len > 1)
1067 1.12 degroote *out++ = val >> 24;
1068 1.1 simonb }
1069 1.1 simonb wpi_mem_unlock(sc);
1070 1.1 simonb
1071 1.12 degroote return 0;
1072 1.1 simonb }
1073 1.1 simonb
1074 1.17 degroote /*
1075 1.17 degroote * The firmware boot code is small and is intended to be copied directly into
1076 1.17 degroote * the NIC internal memory.
1077 1.17 degroote */
1078 1.17 degroote int
1079 1.17 degroote wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1080 1.1 simonb {
1081 1.17 degroote int ntries;
1082 1.1 simonb
1083 1.17 degroote size /= sizeof (uint32_t);
1084 1.1 simonb
1085 1.17 degroote wpi_mem_lock(sc);
1086 1.12 degroote
1087 1.17 degroote /* copy microcode image into NIC memory */
1088 1.17 degroote wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1089 1.17 degroote (const uint32_t *)ucode, size);
1090 1.17 degroote
1091 1.17 degroote wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1092 1.17 degroote wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1093 1.17 degroote wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1094 1.12 degroote
1095 1.17 degroote /* run microcode */
1096 1.17 degroote wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1097 1.12 degroote
1098 1.17 degroote /* wait for transfer to complete */
1099 1.17 degroote for (ntries = 0; ntries < 1000; ntries++) {
1100 1.17 degroote if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1101 1.12 degroote break;
1102 1.17 degroote DELAY(10);
1103 1.12 degroote }
1104 1.17 degroote if (ntries == 1000) {
1105 1.17 degroote wpi_mem_unlock(sc);
1106 1.28 degroote aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1107 1.17 degroote return ETIMEDOUT;
1108 1.12 degroote }
1109 1.17 degroote wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1110 1.12 degroote
1111 1.17 degroote wpi_mem_unlock(sc);
1112 1.1 simonb
1113 1.17 degroote return 0;
1114 1.1 simonb }
1115 1.1 simonb
1116 1.1 simonb static int
1117 1.12 degroote wpi_load_firmware(struct wpi_softc *sc)
1118 1.1 simonb {
1119 1.12 degroote struct wpi_dma_info *dma = &sc->fw_dma;
1120 1.12 degroote struct wpi_firmware_hdr hdr;
1121 1.17 degroote const uint8_t *init_text, *init_data, *main_text, *main_data;
1122 1.17 degroote const uint8_t *boot_text;
1123 1.17 degroote uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1124 1.17 degroote uint32_t boot_textsz;
1125 1.12 degroote firmware_handle_t fw;
1126 1.12 degroote u_char *dfw;
1127 1.12 degroote size_t size;
1128 1.12 degroote int error;
1129 1.1 simonb
1130 1.12 degroote /* load firmware image from disk */
1131 1.12 degroote if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1132 1.28 degroote aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1133 1.1 simonb goto fail1;
1134 1.1 simonb }
1135 1.12 degroote
1136 1.12 degroote size = firmware_get_size(fw);
1137 1.12 degroote
1138 1.12 degroote /* extract firmware header information */
1139 1.12 degroote if (size < sizeof (struct wpi_firmware_hdr)) {
1140 1.28 degroote aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n",
1141 1.28 degroote size);
1142 1.12 degroote error = EINVAL;
1143 1.12 degroote goto fail2;
1144 1.12 degroote }
1145 1.1 simonb
1146 1.12 degroote if ((error = firmware_read(fw, 0, &hdr,
1147 1.12 degroote sizeof (struct wpi_firmware_hdr))) != 0) {
1148 1.28 degroote aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
1149 1.1 simonb goto fail2;
1150 1.1 simonb }
1151 1.1 simonb
1152 1.12 degroote main_textsz = le32toh(hdr.main_textsz);
1153 1.12 degroote main_datasz = le32toh(hdr.main_datasz);
1154 1.17 degroote init_textsz = le32toh(hdr.init_textsz);
1155 1.17 degroote init_datasz = le32toh(hdr.init_datasz);
1156 1.12 degroote boot_textsz = le32toh(hdr.boot_textsz);
1157 1.12 degroote
1158 1.17 degroote /* sanity-check firmware segments sizes */
1159 1.17 degroote if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1160 1.17 degroote main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1161 1.17 degroote init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1162 1.17 degroote init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1163 1.17 degroote boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1164 1.17 degroote (boot_textsz & 3) != 0) {
1165 1.28 degroote aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1166 1.12 degroote error = EINVAL;
1167 1.12 degroote goto fail2;
1168 1.12 degroote }
1169 1.12 degroote
1170 1.12 degroote /* check that all firmware segments are present */
1171 1.12 degroote if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
1172 1.17 degroote main_datasz + init_textsz + init_datasz + boot_textsz) {
1173 1.28 degroote aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n",
1174 1.28 degroote size);
1175 1.12 degroote error = EINVAL;
1176 1.12 degroote goto fail2;
1177 1.12 degroote }
1178 1.12 degroote
1179 1.12 degroote dfw = firmware_malloc(size);
1180 1.12 degroote if (dfw == NULL) {
1181 1.28 degroote aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1182 1.12 degroote error = ENOMEM;
1183 1.12 degroote goto fail2;
1184 1.1 simonb }
1185 1.1 simonb
1186 1.12 degroote if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
1187 1.28 degroote aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1188 1.12 degroote goto fail2;
1189 1.1 simonb }
1190 1.1 simonb
1191 1.12 degroote /* get pointers to firmware segments */
1192 1.12 degroote main_text = dfw + sizeof (struct wpi_firmware_hdr);
1193 1.12 degroote main_data = main_text + main_textsz;
1194 1.17 degroote init_text = main_data + main_datasz;
1195 1.17 degroote init_data = init_text + init_textsz;
1196 1.17 degroote boot_text = init_data + init_datasz;
1197 1.17 degroote
1198 1.17 degroote /* copy initialization images into pre-allocated DMA-safe memory */
1199 1.17 degroote memcpy(dma->vaddr, init_data, init_datasz);
1200 1.17 degroote memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1201 1.17 degroote
1202 1.17 degroote /* tell adapter where to find initialization images */
1203 1.17 degroote wpi_mem_lock(sc);
1204 1.17 degroote wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1205 1.17 degroote wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1206 1.17 degroote wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1207 1.17 degroote dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1208 1.17 degroote wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1209 1.17 degroote wpi_mem_unlock(sc);
1210 1.1 simonb
1211 1.17 degroote /* load firmware boot code */
1212 1.17 degroote if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1213 1.28 degroote aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1214 1.12 degroote goto fail3;
1215 1.12 degroote }
1216 1.1 simonb
1217 1.17 degroote /* now press "execute" ;-) */
1218 1.17 degroote WPI_WRITE(sc, WPI_RESET, 0);
1219 1.17 degroote
1220 1.17 degroote /* ..and wait at most one second for adapter to initialize */
1221 1.17 degroote if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1222 1.17 degroote /* this isn't what was supposed to happen.. */
1223 1.28 degroote aprint_error_dev(sc->sc_dev,
1224 1.28 degroote "timeout waiting for adapter to initialize\n");
1225 1.1 simonb }
1226 1.1 simonb
1227 1.17 degroote /* copy runtime images into pre-allocated DMA-safe memory */
1228 1.17 degroote memcpy(dma->vaddr, main_data, main_datasz);
1229 1.17 degroote memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1230 1.12 degroote
1231 1.17 degroote /* tell adapter where to find runtime images */
1232 1.1 simonb wpi_mem_lock(sc);
1233 1.17 degroote wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1234 1.17 degroote wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1235 1.17 degroote wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1236 1.17 degroote dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1237 1.17 degroote wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1238 1.12 degroote wpi_mem_unlock(sc);
1239 1.12 degroote
1240 1.17 degroote /* wait at most one second for second alive notification */
1241 1.12 degroote if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1242 1.12 degroote /* this isn't what was supposed to happen.. */
1243 1.28 degroote aprint_error_dev(sc->sc_dev,
1244 1.28 degroote "timeout waiting for adapter to initialize\n");
1245 1.12 degroote }
1246 1.12 degroote
1247 1.17 degroote
1248 1.12 degroote fail3: firmware_free(dfw,size);
1249 1.12 degroote fail2: firmware_close(fw);
1250 1.12 degroote fail1: return error;
1251 1.12 degroote }
1252 1.1 simonb
1253 1.12 degroote static void
1254 1.12 degroote wpi_calib_timeout(void *arg)
1255 1.12 degroote {
1256 1.12 degroote struct wpi_softc *sc = arg;
1257 1.12 degroote struct ieee80211com *ic = &sc->sc_ic;
1258 1.12 degroote int temp, s;
1259 1.1 simonb
1260 1.12 degroote /* automatic rate control triggered every 500ms */
1261 1.12 degroote if (ic->ic_fixed_rate == -1) {
1262 1.12 degroote s = splnet();
1263 1.12 degroote if (ic->ic_opmode == IEEE80211_M_STA)
1264 1.12 degroote wpi_iter_func(sc, ic->ic_bss);
1265 1.12 degroote else
1266 1.12 degroote ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1267 1.12 degroote splx(s);
1268 1.12 degroote }
1269 1.1 simonb
1270 1.12 degroote /* update sensor data */
1271 1.12 degroote temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1272 1.1 simonb
1273 1.12 degroote /* automatic power calibration every 60s */
1274 1.12 degroote if (++sc->calib_cnt >= 120) {
1275 1.12 degroote wpi_power_calibration(sc, temp);
1276 1.12 degroote sc->calib_cnt = 0;
1277 1.1 simonb }
1278 1.12 degroote
1279 1.28 degroote callout_schedule(&sc->calib_to, hz/2);
1280 1.12 degroote }
1281 1.12 degroote
1282 1.12 degroote static void
1283 1.12 degroote wpi_iter_func(void *arg, struct ieee80211_node *ni)
1284 1.12 degroote {
1285 1.12 degroote struct wpi_softc *sc = arg;
1286 1.12 degroote struct wpi_node *wn = (struct wpi_node *)ni;
1287 1.12 degroote
1288 1.12 degroote ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1289 1.12 degroote }
1290 1.12 degroote
1291 1.12 degroote /*
1292 1.12 degroote * This function is called periodically (every 60 seconds) to adjust output
1293 1.12 degroote * power to temperature changes.
1294 1.12 degroote */
1295 1.12 degroote void
1296 1.12 degroote wpi_power_calibration(struct wpi_softc *sc, int temp)
1297 1.12 degroote {
1298 1.12 degroote /* sanity-check read value */
1299 1.12 degroote if (temp < -260 || temp > 25) {
1300 1.12 degroote /* this can't be correct, ignore */
1301 1.12 degroote DPRINTF(("out-of-range temperature reported: %d\n", temp));
1302 1.12 degroote return;
1303 1.1 simonb }
1304 1.1 simonb
1305 1.12 degroote DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1306 1.12 degroote
1307 1.12 degroote /* adjust Tx power if need be */
1308 1.12 degroote if (abs(temp - sc->temp) <= 6)
1309 1.12 degroote return;
1310 1.1 simonb
1311 1.12 degroote sc->temp = temp;
1312 1.1 simonb
1313 1.12 degroote if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1314 1.12 degroote /* just warn, too bad for the automatic calibration... */
1315 1.28 degroote aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1316 1.12 degroote }
1317 1.1 simonb }
1318 1.1 simonb
1319 1.1 simonb static void
1320 1.1 simonb wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1321 1.1 simonb struct wpi_rx_data *data)
1322 1.1 simonb {
1323 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
1324 1.1 simonb struct ifnet *ifp = ic->ic_ifp;
1325 1.1 simonb struct wpi_rx_ring *ring = &sc->rxq;
1326 1.1 simonb struct wpi_rx_stat *stat;
1327 1.1 simonb struct wpi_rx_head *head;
1328 1.1 simonb struct wpi_rx_tail *tail;
1329 1.7 degroote struct wpi_rbuf *rbuf;
1330 1.1 simonb struct ieee80211_frame *wh;
1331 1.1 simonb struct ieee80211_node *ni;
1332 1.1 simonb struct mbuf *m, *mnew;
1333 1.19 degroote int data_off ;
1334 1.1 simonb
1335 1.1 simonb stat = (struct wpi_rx_stat *)(desc + 1);
1336 1.1 simonb
1337 1.1 simonb if (stat->len > WPI_STAT_MAXLEN) {
1338 1.28 degroote aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1339 1.1 simonb ifp->if_ierrors++;
1340 1.1 simonb return;
1341 1.1 simonb }
1342 1.1 simonb
1343 1.9 christos head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1344 1.9 christos tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1345 1.1 simonb
1346 1.1 simonb DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1347 1.16 degroote "chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1348 1.1 simonb le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1349 1.1 simonb le64toh(tail->tstamp)));
1350 1.1 simonb
1351 1.1 simonb /*
1352 1.1 simonb * Discard Rx frames with bad CRC early (XXX we may want to pass them
1353 1.1 simonb * to radiotap in monitor mode).
1354 1.1 simonb */
1355 1.1 simonb if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1356 1.1 simonb DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1357 1.1 simonb ifp->if_ierrors++;
1358 1.1 simonb return;
1359 1.1 simonb }
1360 1.1 simonb
1361 1.19 degroote /* Compute where are the useful datas */
1362 1.19 degroote data_off = (char*)(head + 1) - mtod(data->m, char*);
1363 1.19 degroote
1364 1.10 degroote /*
1365 1.10 degroote * If the number of free entry is too low
1366 1.10 degroote * just dup the data->m socket and reuse the same rbuf entry
1367 1.39 cube * Note that thi test is not protected by a mutex because the
1368 1.39 cube * only path that causes nb_free_entries to decrease is through
1369 1.39 cube * this interrupt routine, which is not re-entrent.
1370 1.39 cube * What may not be obvious is that the safe path is if that test
1371 1.39 cube * evaluates as true, so nb_free_entries can grow any time.
1372 1.10 degroote */
1373 1.10 degroote if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1374 1.10 degroote
1375 1.19 degroote /* Prepare the mbuf for the m_dup */
1376 1.10 degroote data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1377 1.19 degroote data->m->m_data = (char*) data->m->m_data + data_off;
1378 1.19 degroote
1379 1.10 degroote m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1380 1.19 degroote
1381 1.19 degroote /* Restore the m_data pointer for future use */
1382 1.19 degroote data->m->m_data = (char*) data->m->m_data - data_off;
1383 1.19 degroote
1384 1.19 degroote if (m == NULL) {
1385 1.19 degroote ifp->if_ierrors++;
1386 1.19 degroote return;
1387 1.19 degroote }
1388 1.10 degroote } else {
1389 1.10 degroote
1390 1.10 degroote MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1391 1.10 degroote if (mnew == NULL) {
1392 1.10 degroote ifp->if_ierrors++;
1393 1.10 degroote return;
1394 1.10 degroote }
1395 1.10 degroote
1396 1.10 degroote rbuf = wpi_alloc_rbuf(sc);
1397 1.10 degroote KASSERT(rbuf != NULL);
1398 1.1 simonb
1399 1.10 degroote /* attach Rx buffer to mbuf */
1400 1.10 degroote MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1401 1.10 degroote rbuf);
1402 1.10 degroote mnew->m_flags |= M_EXT_RW;
1403 1.1 simonb
1404 1.10 degroote m = data->m;
1405 1.10 degroote data->m = mnew;
1406 1.1 simonb
1407 1.10 degroote /* update Rx descriptor */
1408 1.10 degroote ring->desc[ring->cur] = htole32(rbuf->paddr);
1409 1.19 degroote
1410 1.19 degroote m->m_data = (char*)m->m_data + data_off;
1411 1.19 degroote m->m_pkthdr.len = m->m_len = le16toh(head->len);
1412 1.10 degroote }
1413 1.1 simonb
1414 1.1 simonb /* finalize mbuf */
1415 1.1 simonb m->m_pkthdr.rcvif = ifp;
1416 1.1 simonb
1417 1.23 degroote if (ic->ic_state == IEEE80211_S_SCAN)
1418 1.23 degroote wpi_fix_channel(ic, m);
1419 1.23 degroote
1420 1.1 simonb #if NBPFILTER > 0
1421 1.1 simonb if (sc->sc_drvbpf != NULL) {
1422 1.1 simonb struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1423 1.1 simonb
1424 1.1 simonb tap->wr_flags = 0;
1425 1.1 simonb tap->wr_chan_freq =
1426 1.1 simonb htole16(ic->ic_channels[head->chan].ic_freq);
1427 1.1 simonb tap->wr_chan_flags =
1428 1.1 simonb htole16(ic->ic_channels[head->chan].ic_flags);
1429 1.1 simonb tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1430 1.1 simonb tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1431 1.1 simonb tap->wr_tsft = tail->tstamp;
1432 1.1 simonb tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1433 1.1 simonb switch (head->rate) {
1434 1.1 simonb /* CCK rates */
1435 1.1 simonb case 10: tap->wr_rate = 2; break;
1436 1.1 simonb case 20: tap->wr_rate = 4; break;
1437 1.1 simonb case 55: tap->wr_rate = 11; break;
1438 1.1 simonb case 110: tap->wr_rate = 22; break;
1439 1.1 simonb /* OFDM rates */
1440 1.1 simonb case 0xd: tap->wr_rate = 12; break;
1441 1.1 simonb case 0xf: tap->wr_rate = 18; break;
1442 1.1 simonb case 0x5: tap->wr_rate = 24; break;
1443 1.1 simonb case 0x7: tap->wr_rate = 36; break;
1444 1.1 simonb case 0x9: tap->wr_rate = 48; break;
1445 1.1 simonb case 0xb: tap->wr_rate = 72; break;
1446 1.1 simonb case 0x1: tap->wr_rate = 96; break;
1447 1.1 simonb case 0x3: tap->wr_rate = 108; break;
1448 1.1 simonb /* unknown rate: should not happen */
1449 1.1 simonb default: tap->wr_rate = 0;
1450 1.1 simonb }
1451 1.1 simonb if (le16toh(head->flags) & 0x4)
1452 1.1 simonb tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1453 1.1 simonb
1454 1.1 simonb bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1455 1.1 simonb }
1456 1.1 simonb #endif
1457 1.1 simonb
1458 1.1 simonb /* grab a reference to the source node */
1459 1.1 simonb wh = mtod(m, struct ieee80211_frame *);
1460 1.1 simonb ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1461 1.1 simonb
1462 1.1 simonb /* send the frame to the 802.11 layer */
1463 1.1 simonb ieee80211_input(ic, m, ni, stat->rssi, 0);
1464 1.1 simonb
1465 1.1 simonb /* release node reference */
1466 1.1 simonb ieee80211_free_node(ni);
1467 1.1 simonb }
1468 1.1 simonb
1469 1.1 simonb static void
1470 1.1 simonb wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1471 1.1 simonb {
1472 1.1 simonb struct ifnet *ifp = sc->sc_ic.ic_ifp;
1473 1.1 simonb struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1474 1.1 simonb struct wpi_tx_data *txdata = &ring->data[desc->idx];
1475 1.1 simonb struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1476 1.5 joerg struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1477 1.1 simonb
1478 1.1 simonb DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1479 1.1 simonb "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1480 1.1 simonb stat->nkill, stat->rate, le32toh(stat->duration),
1481 1.1 simonb le32toh(stat->status)));
1482 1.1 simonb
1483 1.1 simonb /*
1484 1.1 simonb * Update rate control statistics for the node.
1485 1.1 simonb * XXX we should not count mgmt frames since they're always sent at
1486 1.1 simonb * the lowest available bit-rate.
1487 1.1 simonb */
1488 1.5 joerg wn->amn.amn_txcnt++;
1489 1.1 simonb if (stat->ntries > 0) {
1490 1.1 simonb DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1491 1.5 joerg wn->amn.amn_retrycnt++;
1492 1.1 simonb }
1493 1.1 simonb
1494 1.2 oster if ((le32toh(stat->status) & 0xff) != 1)
1495 1.2 oster ifp->if_oerrors++;
1496 1.2 oster else
1497 1.2 oster ifp->if_opackets++;
1498 1.2 oster
1499 1.1 simonb bus_dmamap_unload(sc->sc_dmat, txdata->map);
1500 1.1 simonb m_freem(txdata->m);
1501 1.1 simonb txdata->m = NULL;
1502 1.1 simonb ieee80211_free_node(txdata->ni);
1503 1.1 simonb txdata->ni = NULL;
1504 1.1 simonb
1505 1.1 simonb ring->queued--;
1506 1.1 simonb
1507 1.1 simonb sc->sc_tx_timer = 0;
1508 1.1 simonb ifp->if_flags &= ~IFF_OACTIVE;
1509 1.1 simonb wpi_start(ifp);
1510 1.1 simonb }
1511 1.1 simonb
1512 1.1 simonb static void
1513 1.1 simonb wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1514 1.1 simonb {
1515 1.1 simonb struct wpi_tx_ring *ring = &sc->cmdq;
1516 1.1 simonb struct wpi_tx_data *data;
1517 1.1 simonb
1518 1.1 simonb if ((desc->qid & 7) != 4)
1519 1.1 simonb return; /* not a command ack */
1520 1.1 simonb
1521 1.1 simonb data = &ring->data[desc->idx];
1522 1.1 simonb
1523 1.1 simonb /* if the command was mapped in a mbuf, free it */
1524 1.1 simonb if (data->m != NULL) {
1525 1.1 simonb bus_dmamap_unload(sc->sc_dmat, data->map);
1526 1.1 simonb m_freem(data->m);
1527 1.1 simonb data->m = NULL;
1528 1.1 simonb }
1529 1.1 simonb
1530 1.1 simonb wakeup(&ring->cmd[desc->idx]);
1531 1.1 simonb }
1532 1.1 simonb
1533 1.1 simonb static void
1534 1.1 simonb wpi_notif_intr(struct wpi_softc *sc)
1535 1.1 simonb {
1536 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
1537 1.7 degroote struct ifnet *ifp = ic->ic_ifp;
1538 1.1 simonb struct wpi_rx_desc *desc;
1539 1.1 simonb struct wpi_rx_data *data;
1540 1.1 simonb uint32_t hw;
1541 1.1 simonb
1542 1.1 simonb hw = le32toh(sc->shared->next);
1543 1.1 simonb while (sc->rxq.cur != hw) {
1544 1.1 simonb data = &sc->rxq.data[sc->rxq.cur];
1545 1.1 simonb
1546 1.1 simonb desc = mtod(data->m, struct wpi_rx_desc *);
1547 1.1 simonb
1548 1.1 simonb DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1549 1.1 simonb "len=%d\n", desc->qid, desc->idx, desc->flags,
1550 1.1 simonb desc->type, le32toh(desc->len)));
1551 1.1 simonb
1552 1.1 simonb if (!(desc->qid & 0x80)) /* reply to a command */
1553 1.1 simonb wpi_cmd_intr(sc, desc);
1554 1.1 simonb
1555 1.1 simonb switch (desc->type) {
1556 1.1 simonb case WPI_RX_DONE:
1557 1.1 simonb /* a 802.11 frame was received */
1558 1.1 simonb wpi_rx_intr(sc, desc, data);
1559 1.1 simonb break;
1560 1.1 simonb
1561 1.1 simonb case WPI_TX_DONE:
1562 1.1 simonb /* a 802.11 frame has been transmitted */
1563 1.1 simonb wpi_tx_intr(sc, desc);
1564 1.1 simonb break;
1565 1.1 simonb
1566 1.1 simonb case WPI_UC_READY:
1567 1.1 simonb {
1568 1.1 simonb struct wpi_ucode_info *uc =
1569 1.1 simonb (struct wpi_ucode_info *)(desc + 1);
1570 1.1 simonb
1571 1.1 simonb /* the microcontroller is ready */
1572 1.1 simonb DPRINTF(("microcode alive notification version %x "
1573 1.1 simonb "alive %x\n", le32toh(uc->version),
1574 1.1 simonb le32toh(uc->valid)));
1575 1.1 simonb
1576 1.1 simonb if (le32toh(uc->valid) != 1) {
1577 1.28 degroote aprint_error_dev(sc->sc_dev,
1578 1.28 degroote "microcontroller initialization failed\n");
1579 1.1 simonb }
1580 1.1 simonb break;
1581 1.1 simonb }
1582 1.1 simonb case WPI_STATE_CHANGED:
1583 1.1 simonb {
1584 1.1 simonb uint32_t *status = (uint32_t *)(desc + 1);
1585 1.1 simonb
1586 1.1 simonb /* enabled/disabled notification */
1587 1.1 simonb DPRINTF(("state changed to %x\n", le32toh(*status)));
1588 1.1 simonb
1589 1.1 simonb if (le32toh(*status) & 1) {
1590 1.1 simonb /* the radio button has to be pushed */
1591 1.28 degroote aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1592 1.7 degroote /* turn the interface down */
1593 1.7 degroote ifp->if_flags &= ~IFF_UP;
1594 1.7 degroote wpi_stop(ifp, 1);
1595 1.7 degroote return; /* no further processing */
1596 1.1 simonb }
1597 1.1 simonb break;
1598 1.1 simonb }
1599 1.1 simonb case WPI_START_SCAN:
1600 1.1 simonb {
1601 1.1 simonb struct wpi_start_scan *scan =
1602 1.1 simonb (struct wpi_start_scan *)(desc + 1);
1603 1.1 simonb
1604 1.1 simonb DPRINTFN(2, ("scanning channel %d status %x\n",
1605 1.1 simonb scan->chan, le32toh(scan->status)));
1606 1.1 simonb
1607 1.1 simonb /* fix current channel */
1608 1.1 simonb ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1609 1.1 simonb break;
1610 1.1 simonb }
1611 1.1 simonb case WPI_STOP_SCAN:
1612 1.1 simonb {
1613 1.1 simonb struct wpi_stop_scan *scan =
1614 1.1 simonb (struct wpi_stop_scan *)(desc + 1);
1615 1.1 simonb
1616 1.1 simonb DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1617 1.1 simonb scan->nchan, scan->status, scan->chan));
1618 1.1 simonb
1619 1.1 simonb if (scan->status == 1 && scan->chan <= 14) {
1620 1.1 simonb /*
1621 1.1 simonb * We just finished scanning 802.11g channels,
1622 1.1 simonb * start scanning 802.11a ones.
1623 1.1 simonb */
1624 1.1 simonb if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1625 1.1 simonb break;
1626 1.1 simonb }
1627 1.23 degroote sc->is_scanning = false;
1628 1.1 simonb ieee80211_end_scan(ic);
1629 1.1 simonb break;
1630 1.1 simonb }
1631 1.1 simonb }
1632 1.1 simonb
1633 1.1 simonb sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1634 1.1 simonb }
1635 1.1 simonb
1636 1.1 simonb /* tell the firmware what we have processed */
1637 1.1 simonb hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1638 1.1 simonb WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1639 1.1 simonb }
1640 1.1 simonb
1641 1.1 simonb static int
1642 1.1 simonb wpi_intr(void *arg)
1643 1.1 simonb {
1644 1.1 simonb struct wpi_softc *sc = arg;
1645 1.7 degroote struct ifnet *ifp = sc->sc_ic.ic_ifp;
1646 1.1 simonb uint32_t r;
1647 1.1 simonb
1648 1.1 simonb r = WPI_READ(sc, WPI_INTR);
1649 1.1 simonb if (r == 0 || r == 0xffffffff)
1650 1.1 simonb return 0; /* not for us */
1651 1.1 simonb
1652 1.1 simonb DPRINTFN(5, ("interrupt reg %x\n", r));
1653 1.1 simonb
1654 1.1 simonb /* disable interrupts */
1655 1.1 simonb WPI_WRITE(sc, WPI_MASK, 0);
1656 1.1 simonb /* ack interrupts */
1657 1.1 simonb WPI_WRITE(sc, WPI_INTR, r);
1658 1.1 simonb
1659 1.1 simonb if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1660 1.28 degroote aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1661 1.1 simonb sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1662 1.7 degroote wpi_stop(sc->sc_ic.ic_ifp, 1);
1663 1.1 simonb return 1;
1664 1.1 simonb }
1665 1.1 simonb
1666 1.1 simonb if (r & WPI_RX_INTR)
1667 1.1 simonb wpi_notif_intr(sc);
1668 1.1 simonb
1669 1.1 simonb if (r & WPI_ALIVE_INTR) /* firmware initialized */
1670 1.1 simonb wakeup(sc);
1671 1.1 simonb
1672 1.1 simonb /* re-enable interrupts */
1673 1.7 degroote if (ifp->if_flags & IFF_UP)
1674 1.7 degroote WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1675 1.1 simonb
1676 1.1 simonb return 1;
1677 1.1 simonb }
1678 1.1 simonb
1679 1.1 simonb static uint8_t
1680 1.1 simonb wpi_plcp_signal(int rate)
1681 1.1 simonb {
1682 1.1 simonb switch (rate) {
1683 1.1 simonb /* CCK rates (returned values are device-dependent) */
1684 1.1 simonb case 2: return 10;
1685 1.1 simonb case 4: return 20;
1686 1.1 simonb case 11: return 55;
1687 1.1 simonb case 22: return 110;
1688 1.1 simonb
1689 1.1 simonb /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1690 1.1 simonb /* R1-R4, (u)ral is R4-R1 */
1691 1.1 simonb case 12: return 0xd;
1692 1.1 simonb case 18: return 0xf;
1693 1.1 simonb case 24: return 0x5;
1694 1.1 simonb case 36: return 0x7;
1695 1.1 simonb case 48: return 0x9;
1696 1.1 simonb case 72: return 0xb;
1697 1.1 simonb case 96: return 0x1;
1698 1.1 simonb case 108: return 0x3;
1699 1.1 simonb
1700 1.1 simonb /* unsupported rates (should not get there) */
1701 1.1 simonb default: return 0;
1702 1.1 simonb }
1703 1.1 simonb }
1704 1.1 simonb
1705 1.1 simonb /* quickly determine if a given rate is CCK or OFDM */
1706 1.1 simonb #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1707 1.1 simonb
1708 1.1 simonb static int
1709 1.1 simonb wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1710 1.1 simonb int ac)
1711 1.1 simonb {
1712 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
1713 1.1 simonb struct wpi_tx_ring *ring = &sc->txq[ac];
1714 1.1 simonb struct wpi_tx_desc *desc;
1715 1.1 simonb struct wpi_tx_data *data;
1716 1.1 simonb struct wpi_tx_cmd *cmd;
1717 1.1 simonb struct wpi_cmd_data *tx;
1718 1.1 simonb struct ieee80211_frame *wh;
1719 1.1 simonb struct ieee80211_key *k;
1720 1.1 simonb const struct chanAccParams *cap;
1721 1.1 simonb struct mbuf *mnew;
1722 1.1 simonb int i, error, rate, hdrlen, noack = 0;
1723 1.1 simonb
1724 1.1 simonb desc = &ring->desc[ring->cur];
1725 1.1 simonb data = &ring->data[ring->cur];
1726 1.1 simonb
1727 1.1 simonb wh = mtod(m0, struct ieee80211_frame *);
1728 1.1 simonb
1729 1.1 simonb if (IEEE80211_QOS_HAS_SEQ(wh)) {
1730 1.1 simonb cap = &ic->ic_wme.wme_chanParams;
1731 1.1 simonb noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1732 1.26 degroote }
1733 1.1 simonb
1734 1.1 simonb if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1735 1.1 simonb k = ieee80211_crypto_encap(ic, ni, m0);
1736 1.1 simonb if (k == NULL) {
1737 1.1 simonb m_freem(m0);
1738 1.1 simonb return ENOBUFS;
1739 1.1 simonb }
1740 1.1 simonb
1741 1.1 simonb /* packet header may have moved, reset our local pointer */
1742 1.1 simonb wh = mtod(m0, struct ieee80211_frame *);
1743 1.1 simonb }
1744 1.1 simonb
1745 1.26 degroote hdrlen = ieee80211_anyhdrsize(wh);
1746 1.26 degroote
1747 1.1 simonb /* pickup a rate */
1748 1.1 simonb if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1749 1.1 simonb IEEE80211_FC0_TYPE_MGT) {
1750 1.1 simonb /* mgmt frames are sent at the lowest available bit-rate */
1751 1.1 simonb rate = ni->ni_rates.rs_rates[0];
1752 1.1 simonb } else {
1753 1.1 simonb if (ic->ic_fixed_rate != -1) {
1754 1.1 simonb rate = ic->ic_sup_rates[ic->ic_curmode].
1755 1.1 simonb rs_rates[ic->ic_fixed_rate];
1756 1.1 simonb } else
1757 1.1 simonb rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1758 1.1 simonb }
1759 1.1 simonb rate &= IEEE80211_RATE_VAL;
1760 1.1 simonb
1761 1.1 simonb
1762 1.1 simonb #if NBPFILTER > 0
1763 1.1 simonb if (sc->sc_drvbpf != NULL) {
1764 1.1 simonb struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1765 1.1 simonb
1766 1.1 simonb tap->wt_flags = 0;
1767 1.1 simonb tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1768 1.1 simonb tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1769 1.1 simonb tap->wt_rate = rate;
1770 1.1 simonb tap->wt_hwqueue = ac;
1771 1.1 simonb if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1772 1.1 simonb tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1773 1.1 simonb
1774 1.1 simonb bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1775 1.1 simonb }
1776 1.1 simonb #endif
1777 1.1 simonb
1778 1.1 simonb cmd = &ring->cmd[ring->cur];
1779 1.1 simonb cmd->code = WPI_CMD_TX_DATA;
1780 1.1 simonb cmd->flags = 0;
1781 1.1 simonb cmd->qid = ring->qid;
1782 1.1 simonb cmd->idx = ring->cur;
1783 1.1 simonb
1784 1.1 simonb tx = (struct wpi_cmd_data *)cmd->data;
1785 1.1 simonb tx->flags = 0;
1786 1.1 simonb
1787 1.1 simonb if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1788 1.1 simonb tx->flags |= htole32(WPI_TX_NEED_ACK);
1789 1.7 degroote } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1790 1.7 degroote tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1791 1.1 simonb
1792 1.1 simonb tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1793 1.1 simonb
1794 1.7 degroote /* retrieve destination node's id */
1795 1.7 degroote tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1796 1.7 degroote WPI_ID_BSS;
1797 1.7 degroote
1798 1.1 simonb if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1799 1.1 simonb IEEE80211_FC0_TYPE_MGT) {
1800 1.1 simonb /* tell h/w to set timestamp in probe responses */
1801 1.1 simonb if ((wh->i_fc[0] &
1802 1.1 simonb (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1803 1.1 simonb (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1804 1.1 simonb tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1805 1.1 simonb
1806 1.1 simonb if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1807 1.1 simonb IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1808 1.1 simonb ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1809 1.1 simonb IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1810 1.1 simonb tx->timeout = htole16(3);
1811 1.1 simonb else
1812 1.1 simonb tx->timeout = htole16(2);
1813 1.1 simonb } else
1814 1.1 simonb tx->timeout = htole16(0);
1815 1.1 simonb
1816 1.1 simonb tx->rate = wpi_plcp_signal(rate);
1817 1.1 simonb
1818 1.1 simonb /* be very persistant at sending frames out */
1819 1.1 simonb tx->rts_ntries = 7;
1820 1.1 simonb tx->data_ntries = 15;
1821 1.1 simonb
1822 1.1 simonb tx->ofdm_mask = 0xff;
1823 1.1 simonb tx->cck_mask = 0xf;
1824 1.12 degroote tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1825 1.1 simonb
1826 1.1 simonb tx->len = htole16(m0->m_pkthdr.len);
1827 1.1 simonb
1828 1.1 simonb /* save and trim IEEE802.11 header */
1829 1.26 degroote memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1830 1.1 simonb m_adj(m0, hdrlen);
1831 1.1 simonb
1832 1.1 simonb error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1833 1.1 simonb BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1834 1.1 simonb if (error != 0 && error != EFBIG) {
1835 1.28 degroote aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1836 1.1 simonb m_freem(m0);
1837 1.1 simonb return error;
1838 1.1 simonb }
1839 1.1 simonb if (error != 0) {
1840 1.1 simonb /* too many fragments, linearize */
1841 1.1 simonb MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1842 1.1 simonb if (mnew == NULL) {
1843 1.1 simonb m_freem(m0);
1844 1.1 simonb return ENOMEM;
1845 1.1 simonb }
1846 1.1 simonb
1847 1.1 simonb M_COPY_PKTHDR(mnew, m0);
1848 1.1 simonb if (m0->m_pkthdr.len > MHLEN) {
1849 1.1 simonb MCLGET(mnew, M_DONTWAIT);
1850 1.1 simonb if (!(mnew->m_flags & M_EXT)) {
1851 1.1 simonb m_freem(m0);
1852 1.1 simonb m_freem(mnew);
1853 1.1 simonb return ENOMEM;
1854 1.1 simonb }
1855 1.1 simonb }
1856 1.1 simonb
1857 1.9 christos m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1858 1.1 simonb m_freem(m0);
1859 1.1 simonb mnew->m_len = mnew->m_pkthdr.len;
1860 1.1 simonb m0 = mnew;
1861 1.1 simonb
1862 1.1 simonb error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1863 1.1 simonb BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1864 1.1 simonb if (error != 0) {
1865 1.28 degroote aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1866 1.28 degroote error);
1867 1.1 simonb m_freem(m0);
1868 1.1 simonb return error;
1869 1.1 simonb }
1870 1.1 simonb }
1871 1.1 simonb
1872 1.1 simonb data->m = m0;
1873 1.1 simonb data->ni = ni;
1874 1.1 simonb
1875 1.1 simonb DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1876 1.1 simonb ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1877 1.1 simonb
1878 1.1 simonb /* first scatter/gather segment is used by the tx data command */
1879 1.1 simonb desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1880 1.1 simonb (1 + data->map->dm_nsegs) << 24);
1881 1.1 simonb desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1882 1.1 simonb ring->cur * sizeof (struct wpi_tx_cmd));
1883 1.26 degroote desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
1884 1.26 degroote ((hdrlen + 3) & ~3));
1885 1.1 simonb
1886 1.1 simonb for (i = 1; i <= data->map->dm_nsegs; i++) {
1887 1.1 simonb desc->segs[i].addr =
1888 1.1 simonb htole32(data->map->dm_segs[i - 1].ds_addr);
1889 1.1 simonb desc->segs[i].len =
1890 1.1 simonb htole32(data->map->dm_segs[i - 1].ds_len);
1891 1.1 simonb }
1892 1.1 simonb
1893 1.1 simonb ring->queued++;
1894 1.1 simonb
1895 1.1 simonb /* kick ring */
1896 1.1 simonb ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1897 1.1 simonb WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1898 1.1 simonb
1899 1.1 simonb return 0;
1900 1.1 simonb }
1901 1.1 simonb
1902 1.1 simonb static void
1903 1.1 simonb wpi_start(struct ifnet *ifp)
1904 1.1 simonb {
1905 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
1906 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
1907 1.1 simonb struct ieee80211_node *ni;
1908 1.1 simonb struct ether_header *eh;
1909 1.1 simonb struct mbuf *m0;
1910 1.1 simonb int ac;
1911 1.1 simonb
1912 1.1 simonb /*
1913 1.1 simonb * net80211 may still try to send management frames even if the
1914 1.1 simonb * IFF_RUNNING flag is not set...
1915 1.1 simonb */
1916 1.1 simonb if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1917 1.1 simonb return;
1918 1.1 simonb
1919 1.1 simonb for (;;) {
1920 1.22 dyoung IF_DEQUEUE(&ic->ic_mgtq, m0);
1921 1.1 simonb if (m0 != NULL) {
1922 1.1 simonb
1923 1.1 simonb ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1924 1.1 simonb m0->m_pkthdr.rcvif = NULL;
1925 1.1 simonb
1926 1.1 simonb /* management frames go into ring 0 */
1927 1.1 simonb if (sc->txq[0].queued > sc->txq[0].count - 8) {
1928 1.1 simonb ifp->if_oerrors++;
1929 1.1 simonb continue;
1930 1.1 simonb }
1931 1.1 simonb #if NBPFILTER > 0
1932 1.1 simonb if (ic->ic_rawbpf != NULL)
1933 1.1 simonb bpf_mtap(ic->ic_rawbpf, m0);
1934 1.1 simonb #endif
1935 1.1 simonb if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1936 1.1 simonb ifp->if_oerrors++;
1937 1.1 simonb break;
1938 1.1 simonb }
1939 1.1 simonb } else {
1940 1.1 simonb if (ic->ic_state != IEEE80211_S_RUN)
1941 1.1 simonb break;
1942 1.7 degroote IFQ_POLL(&ifp->if_snd, m0);
1943 1.1 simonb if (m0 == NULL)
1944 1.1 simonb break;
1945 1.1 simonb
1946 1.1 simonb if (m0->m_len < sizeof (*eh) &&
1947 1.38 drochner (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
1948 1.1 simonb ifp->if_oerrors++;
1949 1.1 simonb continue;
1950 1.1 simonb }
1951 1.1 simonb eh = mtod(m0, struct ether_header *);
1952 1.1 simonb ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1953 1.1 simonb if (ni == NULL) {
1954 1.1 simonb m_freem(m0);
1955 1.1 simonb ifp->if_oerrors++;
1956 1.1 simonb continue;
1957 1.1 simonb }
1958 1.1 simonb
1959 1.1 simonb /* classify mbuf so we can find which tx ring to use */
1960 1.1 simonb if (ieee80211_classify(ic, m0, ni) != 0) {
1961 1.1 simonb m_freem(m0);
1962 1.1 simonb ieee80211_free_node(ni);
1963 1.1 simonb ifp->if_oerrors++;
1964 1.1 simonb continue;
1965 1.1 simonb }
1966 1.1 simonb
1967 1.1 simonb /* no QoS encapsulation for EAPOL frames */
1968 1.1 simonb ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1969 1.1 simonb M_WME_GETAC(m0) : WME_AC_BE;
1970 1.1 simonb
1971 1.1 simonb if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1972 1.1 simonb /* there is no place left in this ring */
1973 1.1 simonb ifp->if_flags |= IFF_OACTIVE;
1974 1.1 simonb break;
1975 1.1 simonb }
1976 1.7 degroote IFQ_DEQUEUE(&ifp->if_snd, m0);
1977 1.1 simonb #if NBPFILTER > 0
1978 1.1 simonb if (ifp->if_bpf != NULL)
1979 1.1 simonb bpf_mtap(ifp->if_bpf, m0);
1980 1.1 simonb #endif
1981 1.1 simonb m0 = ieee80211_encap(ic, m0, ni);
1982 1.1 simonb if (m0 == NULL) {
1983 1.1 simonb ieee80211_free_node(ni);
1984 1.1 simonb ifp->if_oerrors++;
1985 1.1 simonb continue;
1986 1.1 simonb }
1987 1.1 simonb #if NBPFILTER > 0
1988 1.1 simonb if (ic->ic_rawbpf != NULL)
1989 1.1 simonb bpf_mtap(ic->ic_rawbpf, m0);
1990 1.1 simonb #endif
1991 1.1 simonb if (wpi_tx_data(sc, m0, ni, ac) != 0) {
1992 1.1 simonb ieee80211_free_node(ni);
1993 1.1 simonb ifp->if_oerrors++;
1994 1.1 simonb break;
1995 1.1 simonb }
1996 1.1 simonb }
1997 1.1 simonb
1998 1.1 simonb sc->sc_tx_timer = 5;
1999 1.1 simonb ifp->if_timer = 1;
2000 1.1 simonb }
2001 1.1 simonb }
2002 1.1 simonb
2003 1.1 simonb static void
2004 1.1 simonb wpi_watchdog(struct ifnet *ifp)
2005 1.1 simonb {
2006 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
2007 1.1 simonb
2008 1.1 simonb ifp->if_timer = 0;
2009 1.1 simonb
2010 1.1 simonb if (sc->sc_tx_timer > 0) {
2011 1.1 simonb if (--sc->sc_tx_timer == 0) {
2012 1.28 degroote aprint_error_dev(sc->sc_dev, "device timeout\n");
2013 1.1 simonb ifp->if_oerrors++;
2014 1.1 simonb ifp->if_flags &= ~IFF_UP;
2015 1.1 simonb wpi_stop(ifp, 1);
2016 1.1 simonb return;
2017 1.1 simonb }
2018 1.1 simonb ifp->if_timer = 1;
2019 1.1 simonb }
2020 1.1 simonb
2021 1.1 simonb ieee80211_watchdog(&sc->sc_ic);
2022 1.1 simonb }
2023 1.1 simonb
2024 1.1 simonb static int
2025 1.9 christos wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2026 1.1 simonb {
2027 1.1 simonb #define IS_RUNNING(ifp) \
2028 1.1 simonb ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2029 1.1 simonb
2030 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
2031 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2032 1.1 simonb int s, error = 0;
2033 1.1 simonb
2034 1.1 simonb s = splnet();
2035 1.1 simonb
2036 1.1 simonb switch (cmd) {
2037 1.1 simonb case SIOCSIFFLAGS:
2038 1.40 dyoung if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2039 1.40 dyoung break;
2040 1.1 simonb if (ifp->if_flags & IFF_UP) {
2041 1.1 simonb if (!(ifp->if_flags & IFF_RUNNING))
2042 1.1 simonb wpi_init(ifp);
2043 1.1 simonb } else {
2044 1.1 simonb if (ifp->if_flags & IFF_RUNNING)
2045 1.1 simonb wpi_stop(ifp, 1);
2046 1.1 simonb }
2047 1.1 simonb break;
2048 1.1 simonb
2049 1.1 simonb case SIOCADDMULTI:
2050 1.1 simonb case SIOCDELMULTI:
2051 1.21 dyoung /* XXX no h/w multicast filter? --dyoung */
2052 1.21 dyoung if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2053 1.1 simonb /* setup multicast filter, etc */
2054 1.1 simonb error = 0;
2055 1.1 simonb }
2056 1.1 simonb break;
2057 1.1 simonb
2058 1.1 simonb default:
2059 1.7 degroote error = ieee80211_ioctl(ic, cmd, data);
2060 1.1 simonb }
2061 1.1 simonb
2062 1.1 simonb if (error == ENETRESET) {
2063 1.1 simonb if (IS_RUNNING(ifp) &&
2064 1.1 simonb (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2065 1.1 simonb wpi_init(ifp);
2066 1.1 simonb error = 0;
2067 1.1 simonb }
2068 1.1 simonb
2069 1.1 simonb splx(s);
2070 1.1 simonb return error;
2071 1.1 simonb
2072 1.1 simonb #undef IS_RUNNING
2073 1.1 simonb }
2074 1.1 simonb
2075 1.1 simonb /*
2076 1.1 simonb * Extract various information from EEPROM.
2077 1.1 simonb */
2078 1.1 simonb static void
2079 1.1 simonb wpi_read_eeprom(struct wpi_softc *sc)
2080 1.1 simonb {
2081 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2082 1.12 degroote char domain[4];
2083 1.1 simonb int i;
2084 1.1 simonb
2085 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2086 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2087 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2088 1.12 degroote
2089 1.12 degroote DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2090 1.12 degroote sc->type));
2091 1.12 degroote
2092 1.12 degroote /* read and print regulatory domain */
2093 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2094 1.32 jmcneill aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2095 1.12 degroote
2096 1.12 degroote /* read and print MAC address */
2097 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2098 1.12 degroote aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2099 1.12 degroote
2100 1.12 degroote /* read the list of authorized channels */
2101 1.12 degroote for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2102 1.12 degroote wpi_read_eeprom_channels(sc, i);
2103 1.12 degroote
2104 1.12 degroote /* read the list of power groups */
2105 1.12 degroote for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2106 1.12 degroote wpi_read_eeprom_group(sc, i);
2107 1.12 degroote }
2108 1.12 degroote
2109 1.12 degroote static void
2110 1.12 degroote wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2111 1.12 degroote {
2112 1.12 degroote struct ieee80211com *ic = &sc->sc_ic;
2113 1.12 degroote const struct wpi_chan_band *band = &wpi_bands[n];
2114 1.12 degroote struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2115 1.12 degroote int chan, i;
2116 1.12 degroote
2117 1.12 degroote wpi_read_prom_data(sc, band->addr, channels,
2118 1.12 degroote band->nchan * sizeof (struct wpi_eeprom_chan));
2119 1.12 degroote
2120 1.12 degroote for (i = 0; i < band->nchan; i++) {
2121 1.12 degroote if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2122 1.12 degroote continue;
2123 1.12 degroote
2124 1.12 degroote chan = band->chan[i];
2125 1.12 degroote
2126 1.12 degroote if (n == 0) { /* 2GHz band */
2127 1.12 degroote ic->ic_channels[chan].ic_freq =
2128 1.12 degroote ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2129 1.12 degroote ic->ic_channels[chan].ic_flags =
2130 1.12 degroote IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2131 1.12 degroote IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2132 1.12 degroote
2133 1.12 degroote } else { /* 5GHz band */
2134 1.12 degroote /*
2135 1.12 degroote * Some 3945abg adapters support channels 7, 8, 11
2136 1.12 degroote * and 12 in the 2GHz *and* 5GHz bands.
2137 1.12 degroote * Because of limitations in our net80211(9) stack,
2138 1.12 degroote * we can't support these channels in 5GHz band.
2139 1.12 degroote */
2140 1.12 degroote if (chan <= 14)
2141 1.12 degroote continue;
2142 1.12 degroote
2143 1.12 degroote ic->ic_channels[chan].ic_freq =
2144 1.12 degroote ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2145 1.12 degroote ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2146 1.12 degroote }
2147 1.12 degroote
2148 1.12 degroote /* is active scan allowed on this channel? */
2149 1.12 degroote if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2150 1.12 degroote ic->ic_channels[chan].ic_flags |=
2151 1.12 degroote IEEE80211_CHAN_PASSIVE;
2152 1.12 degroote }
2153 1.12 degroote
2154 1.12 degroote /* save maximum allowed power for this channel */
2155 1.12 degroote sc->maxpwr[chan] = channels[i].maxpwr;
2156 1.12 degroote
2157 1.12 degroote DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2158 1.12 degroote chan, channels[i].flags, sc->maxpwr[chan]));
2159 1.12 degroote }
2160 1.12 degroote }
2161 1.12 degroote
2162 1.12 degroote static void
2163 1.12 degroote wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2164 1.12 degroote {
2165 1.12 degroote struct wpi_power_group *group = &sc->groups[n];
2166 1.12 degroote struct wpi_eeprom_group rgroup;
2167 1.12 degroote int i;
2168 1.12 degroote
2169 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2170 1.12 degroote sizeof rgroup);
2171 1.12 degroote
2172 1.12 degroote /* save power group information */
2173 1.12 degroote group->chan = rgroup.chan;
2174 1.12 degroote group->maxpwr = rgroup.maxpwr;
2175 1.12 degroote /* temperature at which the samples were taken */
2176 1.12 degroote group->temp = (int16_t)le16toh(rgroup.temp);
2177 1.12 degroote
2178 1.12 degroote DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2179 1.12 degroote group->chan, group->maxpwr, group->temp));
2180 1.12 degroote
2181 1.12 degroote for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2182 1.12 degroote group->samples[i].index = rgroup.samples[i].index;
2183 1.12 degroote group->samples[i].power = rgroup.samples[i].power;
2184 1.12 degroote
2185 1.12 degroote DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2186 1.12 degroote group->samples[i].index, group->samples[i].power));
2187 1.1 simonb }
2188 1.1 simonb }
2189 1.1 simonb
2190 1.1 simonb /*
2191 1.1 simonb * Send a command to the firmware.
2192 1.1 simonb */
2193 1.1 simonb static int
2194 1.1 simonb wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2195 1.1 simonb {
2196 1.1 simonb struct wpi_tx_ring *ring = &sc->cmdq;
2197 1.1 simonb struct wpi_tx_desc *desc;
2198 1.1 simonb struct wpi_tx_cmd *cmd;
2199 1.1 simonb
2200 1.1 simonb KASSERT(size <= sizeof cmd->data);
2201 1.1 simonb
2202 1.1 simonb desc = &ring->desc[ring->cur];
2203 1.1 simonb cmd = &ring->cmd[ring->cur];
2204 1.1 simonb
2205 1.1 simonb cmd->code = code;
2206 1.1 simonb cmd->flags = 0;
2207 1.1 simonb cmd->qid = ring->qid;
2208 1.1 simonb cmd->idx = ring->cur;
2209 1.1 simonb memcpy(cmd->data, buf, size);
2210 1.1 simonb
2211 1.1 simonb desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2212 1.1 simonb desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2213 1.1 simonb ring->cur * sizeof (struct wpi_tx_cmd));
2214 1.1 simonb desc->segs[0].len = htole32(4 + size);
2215 1.1 simonb
2216 1.1 simonb /* kick cmd ring */
2217 1.1 simonb ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2218 1.1 simonb WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2219 1.1 simonb
2220 1.1 simonb return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2221 1.1 simonb }
2222 1.1 simonb
2223 1.1 simonb static int
2224 1.1 simonb wpi_wme_update(struct ieee80211com *ic)
2225 1.1 simonb {
2226 1.1 simonb #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2227 1.1 simonb #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2228 1.1 simonb struct wpi_softc *sc = ic->ic_ifp->if_softc;
2229 1.1 simonb const struct wmeParams *wmep;
2230 1.1 simonb struct wpi_wme_setup wme;
2231 1.1 simonb int ac;
2232 1.1 simonb
2233 1.1 simonb /* don't override default WME values if WME is not actually enabled */
2234 1.1 simonb if (!(ic->ic_flags & IEEE80211_F_WME))
2235 1.1 simonb return 0;
2236 1.1 simonb
2237 1.1 simonb wme.flags = 0;
2238 1.1 simonb for (ac = 0; ac < WME_NUM_AC; ac++) {
2239 1.1 simonb wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2240 1.1 simonb wme.ac[ac].aifsn = wmep->wmep_aifsn;
2241 1.1 simonb wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2242 1.1 simonb wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2243 1.1 simonb wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2244 1.1 simonb
2245 1.1 simonb DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2246 1.1 simonb "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2247 1.1 simonb wme.ac[ac].cwmax, wme.ac[ac].txop));
2248 1.1 simonb }
2249 1.1 simonb
2250 1.1 simonb return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2251 1.1 simonb #undef WPI_USEC
2252 1.1 simonb #undef WPI_EXP2
2253 1.1 simonb }
2254 1.1 simonb
2255 1.1 simonb /*
2256 1.1 simonb * Configure h/w multi-rate retries.
2257 1.1 simonb */
2258 1.1 simonb static int
2259 1.1 simonb wpi_mrr_setup(struct wpi_softc *sc)
2260 1.1 simonb {
2261 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2262 1.1 simonb struct wpi_mrr_setup mrr;
2263 1.1 simonb int i, error;
2264 1.1 simonb
2265 1.1 simonb /* CCK rates (not used with 802.11a) */
2266 1.1 simonb for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2267 1.1 simonb mrr.rates[i].flags = 0;
2268 1.1 simonb mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2269 1.1 simonb /* fallback to the immediate lower CCK rate (if any) */
2270 1.1 simonb mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2271 1.1 simonb /* try one time at this rate before falling back to "next" */
2272 1.1 simonb mrr.rates[i].ntries = 1;
2273 1.1 simonb }
2274 1.1 simonb
2275 1.1 simonb /* OFDM rates (not used with 802.11b) */
2276 1.1 simonb for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2277 1.1 simonb mrr.rates[i].flags = 0;
2278 1.1 simonb mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2279 1.1 simonb /* fallback to the immediate lower rate (if any) */
2280 1.1 simonb /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2281 1.1 simonb mrr.rates[i].next = (i == WPI_OFDM6) ?
2282 1.1 simonb ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2283 1.1 simonb WPI_OFDM6 : WPI_CCK2) :
2284 1.1 simonb i - 1;
2285 1.1 simonb /* try one time at this rate before falling back to "next" */
2286 1.1 simonb mrr.rates[i].ntries = 1;
2287 1.1 simonb }
2288 1.1 simonb
2289 1.1 simonb /* setup MRR for control frames */
2290 1.1 simonb mrr.which = htole32(WPI_MRR_CTL);
2291 1.12 degroote error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2292 1.1 simonb if (error != 0) {
2293 1.28 degroote aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2294 1.1 simonb return error;
2295 1.1 simonb }
2296 1.1 simonb
2297 1.1 simonb /* setup MRR for data frames */
2298 1.1 simonb mrr.which = htole32(WPI_MRR_DATA);
2299 1.12 degroote error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2300 1.1 simonb if (error != 0) {
2301 1.28 degroote aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2302 1.1 simonb return error;
2303 1.1 simonb }
2304 1.1 simonb
2305 1.1 simonb return 0;
2306 1.1 simonb }
2307 1.1 simonb
2308 1.1 simonb static void
2309 1.1 simonb wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2310 1.1 simonb {
2311 1.1 simonb struct wpi_cmd_led led;
2312 1.1 simonb
2313 1.1 simonb led.which = which;
2314 1.1 simonb led.unit = htole32(100000); /* on/off in unit of 100ms */
2315 1.1 simonb led.off = off;
2316 1.1 simonb led.on = on;
2317 1.1 simonb
2318 1.1 simonb (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2319 1.1 simonb }
2320 1.1 simonb
2321 1.1 simonb static void
2322 1.1 simonb wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2323 1.1 simonb {
2324 1.1 simonb struct wpi_cmd_tsf tsf;
2325 1.1 simonb uint64_t val, mod;
2326 1.1 simonb
2327 1.1 simonb memset(&tsf, 0, sizeof tsf);
2328 1.1 simonb memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2329 1.1 simonb tsf.bintval = htole16(ni->ni_intval);
2330 1.1 simonb tsf.lintval = htole16(10);
2331 1.1 simonb
2332 1.1 simonb /* compute remaining time until next beacon */
2333 1.1 simonb val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2334 1.1 simonb mod = le64toh(tsf.tstamp) % val;
2335 1.1 simonb tsf.binitval = htole32((uint32_t)(val - mod));
2336 1.1 simonb
2337 1.16 degroote DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2338 1.1 simonb ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2339 1.1 simonb
2340 1.1 simonb if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2341 1.28 degroote aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2342 1.1 simonb }
2343 1.1 simonb
2344 1.1 simonb /*
2345 1.12 degroote * Update Tx power to match what is defined for channel `c'.
2346 1.12 degroote */
2347 1.12 degroote static int
2348 1.12 degroote wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2349 1.12 degroote {
2350 1.12 degroote struct ieee80211com *ic = &sc->sc_ic;
2351 1.12 degroote struct wpi_power_group *group;
2352 1.12 degroote struct wpi_cmd_txpower txpower;
2353 1.12 degroote u_int chan;
2354 1.12 degroote int i;
2355 1.12 degroote
2356 1.12 degroote /* get channel number */
2357 1.12 degroote chan = ieee80211_chan2ieee(ic, c);
2358 1.12 degroote
2359 1.12 degroote /* find the power group to which this channel belongs */
2360 1.12 degroote if (IEEE80211_IS_CHAN_5GHZ(c)) {
2361 1.12 degroote for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2362 1.12 degroote if (chan <= group->chan)
2363 1.12 degroote break;
2364 1.12 degroote } else
2365 1.12 degroote group = &sc->groups[0];
2366 1.12 degroote
2367 1.12 degroote memset(&txpower, 0, sizeof txpower);
2368 1.12 degroote txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2369 1.12 degroote txpower.chan = htole16(chan);
2370 1.12 degroote
2371 1.12 degroote /* set Tx power for all OFDM and CCK rates */
2372 1.12 degroote for (i = 0; i <= 11 ; i++) {
2373 1.12 degroote /* retrieve Tx power for this channel/rate combination */
2374 1.12 degroote int idx = wpi_get_power_index(sc, group, c,
2375 1.12 degroote wpi_ridx_to_rate[i]);
2376 1.12 degroote
2377 1.12 degroote txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2378 1.12 degroote
2379 1.12 degroote if (IEEE80211_IS_CHAN_5GHZ(c)) {
2380 1.12 degroote txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2381 1.12 degroote txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2382 1.12 degroote } else {
2383 1.12 degroote txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2384 1.12 degroote txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2385 1.12 degroote }
2386 1.12 degroote DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2387 1.12 degroote wpi_ridx_to_rate[i], idx));
2388 1.12 degroote }
2389 1.12 degroote
2390 1.12 degroote return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2391 1.12 degroote }
2392 1.12 degroote
2393 1.12 degroote /*
2394 1.12 degroote * Determine Tx power index for a given channel/rate combination.
2395 1.12 degroote * This takes into account the regulatory information from EEPROM and the
2396 1.12 degroote * current temperature.
2397 1.12 degroote */
2398 1.12 degroote static int
2399 1.12 degroote wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2400 1.12 degroote struct ieee80211_channel *c, int rate)
2401 1.12 degroote {
2402 1.12 degroote /* fixed-point arithmetic division using a n-bit fractional part */
2403 1.12 degroote #define fdivround(a, b, n) \
2404 1.12 degroote ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2405 1.12 degroote
2406 1.12 degroote /* linear interpolation */
2407 1.12 degroote #define interpolate(x, x1, y1, x2, y2, n) \
2408 1.12 degroote ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2409 1.12 degroote
2410 1.12 degroote struct ieee80211com *ic = &sc->sc_ic;
2411 1.12 degroote struct wpi_power_sample *sample;
2412 1.12 degroote int pwr, idx;
2413 1.12 degroote u_int chan;
2414 1.12 degroote
2415 1.12 degroote /* get channel number */
2416 1.12 degroote chan = ieee80211_chan2ieee(ic, c);
2417 1.12 degroote
2418 1.12 degroote /* default power is group's maximum power - 3dB */
2419 1.12 degroote pwr = group->maxpwr / 2;
2420 1.12 degroote
2421 1.12 degroote /* decrease power for highest OFDM rates to reduce distortion */
2422 1.12 degroote switch (rate) {
2423 1.12 degroote case 72: /* 36Mb/s */
2424 1.12 degroote pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2425 1.12 degroote break;
2426 1.12 degroote case 96: /* 48Mb/s */
2427 1.12 degroote pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2428 1.12 degroote break;
2429 1.12 degroote case 108: /* 54Mb/s */
2430 1.12 degroote pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2431 1.12 degroote break;
2432 1.12 degroote }
2433 1.12 degroote
2434 1.12 degroote /* never exceed channel's maximum allowed Tx power */
2435 1.12 degroote pwr = min(pwr, sc->maxpwr[chan]);
2436 1.12 degroote
2437 1.12 degroote /* retrieve power index into gain tables from samples */
2438 1.12 degroote for (sample = group->samples; sample < &group->samples[3]; sample++)
2439 1.12 degroote if (pwr > sample[1].power)
2440 1.12 degroote break;
2441 1.12 degroote /* fixed-point linear interpolation using a 19-bit fractional part */
2442 1.12 degroote idx = interpolate(pwr, sample[0].power, sample[0].index,
2443 1.12 degroote sample[1].power, sample[1].index, 19);
2444 1.12 degroote
2445 1.12 degroote /*
2446 1.12 degroote * Adjust power index based on current temperature:
2447 1.12 degroote * - if cooler than factory-calibrated: decrease output power
2448 1.12 degroote * - if warmer than factory-calibrated: increase output power
2449 1.12 degroote */
2450 1.12 degroote idx -= (sc->temp - group->temp) * 11 / 100;
2451 1.12 degroote
2452 1.12 degroote /* decrease power for CCK rates (-5dB) */
2453 1.12 degroote if (!WPI_RATE_IS_OFDM(rate))
2454 1.12 degroote idx += 10;
2455 1.12 degroote
2456 1.12 degroote /* keep power index in a valid range */
2457 1.12 degroote if (idx < 0)
2458 1.12 degroote return 0;
2459 1.12 degroote if (idx > WPI_MAX_PWR_INDEX)
2460 1.12 degroote return WPI_MAX_PWR_INDEX;
2461 1.12 degroote return idx;
2462 1.12 degroote
2463 1.12 degroote #undef interpolate
2464 1.12 degroote #undef fdivround
2465 1.12 degroote }
2466 1.12 degroote
2467 1.12 degroote /*
2468 1.1 simonb * Build a beacon frame that the firmware will broadcast periodically in
2469 1.1 simonb * IBSS or HostAP modes.
2470 1.1 simonb */
2471 1.1 simonb static int
2472 1.1 simonb wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2473 1.1 simonb {
2474 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2475 1.1 simonb struct wpi_tx_ring *ring = &sc->cmdq;
2476 1.1 simonb struct wpi_tx_desc *desc;
2477 1.1 simonb struct wpi_tx_data *data;
2478 1.1 simonb struct wpi_tx_cmd *cmd;
2479 1.1 simonb struct wpi_cmd_beacon *bcn;
2480 1.1 simonb struct ieee80211_beacon_offsets bo;
2481 1.1 simonb struct mbuf *m0;
2482 1.1 simonb int error;
2483 1.1 simonb
2484 1.1 simonb desc = &ring->desc[ring->cur];
2485 1.1 simonb data = &ring->data[ring->cur];
2486 1.1 simonb
2487 1.1 simonb m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2488 1.1 simonb if (m0 == NULL) {
2489 1.28 degroote aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2490 1.1 simonb return ENOMEM;
2491 1.1 simonb }
2492 1.1 simonb
2493 1.1 simonb cmd = &ring->cmd[ring->cur];
2494 1.1 simonb cmd->code = WPI_CMD_SET_BEACON;
2495 1.1 simonb cmd->flags = 0;
2496 1.1 simonb cmd->qid = ring->qid;
2497 1.1 simonb cmd->idx = ring->cur;
2498 1.1 simonb
2499 1.1 simonb bcn = (struct wpi_cmd_beacon *)cmd->data;
2500 1.1 simonb memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2501 1.1 simonb bcn->id = WPI_ID_BROADCAST;
2502 1.1 simonb bcn->ofdm_mask = 0xff;
2503 1.1 simonb bcn->cck_mask = 0x0f;
2504 1.12 degroote bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2505 1.1 simonb bcn->len = htole16(m0->m_pkthdr.len);
2506 1.1 simonb bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2507 1.1 simonb wpi_plcp_signal(12) : wpi_plcp_signal(2);
2508 1.1 simonb bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2509 1.1 simonb
2510 1.1 simonb /* save and trim IEEE802.11 header */
2511 1.9 christos m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2512 1.1 simonb m_adj(m0, sizeof (struct ieee80211_frame));
2513 1.1 simonb
2514 1.1 simonb /* assume beacon frame is contiguous */
2515 1.1 simonb error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2516 1.1 simonb BUS_DMA_READ | BUS_DMA_NOWAIT);
2517 1.1 simonb if (error) {
2518 1.28 degroote aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2519 1.1 simonb m_freem(m0);
2520 1.1 simonb return error;
2521 1.1 simonb }
2522 1.1 simonb
2523 1.1 simonb data->m = m0;
2524 1.1 simonb
2525 1.1 simonb /* first scatter/gather segment is used by the beacon command */
2526 1.1 simonb desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2527 1.1 simonb desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2528 1.1 simonb ring->cur * sizeof (struct wpi_tx_cmd));
2529 1.1 simonb desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2530 1.1 simonb desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2531 1.1 simonb desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2532 1.1 simonb
2533 1.1 simonb /* kick cmd ring */
2534 1.1 simonb ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2535 1.1 simonb WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2536 1.1 simonb
2537 1.1 simonb return 0;
2538 1.1 simonb }
2539 1.1 simonb
2540 1.1 simonb static int
2541 1.1 simonb wpi_auth(struct wpi_softc *sc)
2542 1.1 simonb {
2543 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2544 1.1 simonb struct ieee80211_node *ni = ic->ic_bss;
2545 1.5 joerg struct wpi_node_info node;
2546 1.1 simonb int error;
2547 1.1 simonb
2548 1.1 simonb /* update adapter's configuration */
2549 1.1 simonb IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2550 1.1 simonb sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2551 1.1 simonb sc->config.flags = htole32(WPI_CONFIG_TSF);
2552 1.1 simonb if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2553 1.1 simonb sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2554 1.1 simonb WPI_CONFIG_24GHZ);
2555 1.1 simonb }
2556 1.1 simonb switch (ic->ic_curmode) {
2557 1.1 simonb case IEEE80211_MODE_11A:
2558 1.1 simonb sc->config.cck_mask = 0;
2559 1.1 simonb sc->config.ofdm_mask = 0x15;
2560 1.1 simonb break;
2561 1.1 simonb case IEEE80211_MODE_11B:
2562 1.1 simonb sc->config.cck_mask = 0x03;
2563 1.1 simonb sc->config.ofdm_mask = 0;
2564 1.1 simonb break;
2565 1.1 simonb default: /* assume 802.11b/g */
2566 1.1 simonb sc->config.cck_mask = 0x0f;
2567 1.1 simonb sc->config.ofdm_mask = 0x15;
2568 1.1 simonb }
2569 1.1 simonb
2570 1.1 simonb DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2571 1.1 simonb sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2572 1.1 simonb error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2573 1.1 simonb sizeof (struct wpi_config), 1);
2574 1.1 simonb if (error != 0) {
2575 1.28 degroote aprint_error_dev(sc->sc_dev, "could not configure\n");
2576 1.1 simonb return error;
2577 1.1 simonb }
2578 1.1 simonb
2579 1.12 degroote /* configuration has changed, set Tx power accordingly */
2580 1.12 degroote if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2581 1.28 degroote aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2582 1.12 degroote return error;
2583 1.12 degroote }
2584 1.12 degroote
2585 1.1 simonb /* add default node */
2586 1.1 simonb memset(&node, 0, sizeof node);
2587 1.1 simonb IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2588 1.1 simonb node.id = WPI_ID_BSS;
2589 1.1 simonb node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2590 1.1 simonb wpi_plcp_signal(12) : wpi_plcp_signal(2);
2591 1.12 degroote node.action = htole32(WPI_ACTION_SET_RATE);
2592 1.12 degroote node.antenna = WPI_ANTENNA_BOTH;
2593 1.1 simonb error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2594 1.1 simonb if (error != 0) {
2595 1.28 degroote aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2596 1.1 simonb return error;
2597 1.1 simonb }
2598 1.1 simonb
2599 1.1 simonb return 0;
2600 1.1 simonb }
2601 1.1 simonb
2602 1.1 simonb /*
2603 1.1 simonb * Send a scan request to the firmware. Since this command is huge, we map it
2604 1.1 simonb * into a mbuf instead of using the pre-allocated set of commands.
2605 1.1 simonb */
2606 1.1 simonb static int
2607 1.1 simonb wpi_scan(struct wpi_softc *sc, uint16_t flags)
2608 1.1 simonb {
2609 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2610 1.1 simonb struct wpi_tx_ring *ring = &sc->cmdq;
2611 1.1 simonb struct wpi_tx_desc *desc;
2612 1.1 simonb struct wpi_tx_data *data;
2613 1.1 simonb struct wpi_tx_cmd *cmd;
2614 1.1 simonb struct wpi_scan_hdr *hdr;
2615 1.1 simonb struct wpi_scan_chan *chan;
2616 1.1 simonb struct ieee80211_frame *wh;
2617 1.1 simonb struct ieee80211_rateset *rs;
2618 1.1 simonb struct ieee80211_channel *c;
2619 1.1 simonb enum ieee80211_phymode mode;
2620 1.1 simonb uint8_t *frm;
2621 1.1 simonb int nrates, pktlen, error;
2622 1.1 simonb
2623 1.1 simonb desc = &ring->desc[ring->cur];
2624 1.1 simonb data = &ring->data[ring->cur];
2625 1.1 simonb
2626 1.1 simonb MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2627 1.1 simonb if (data->m == NULL) {
2628 1.28 degroote aprint_error_dev(sc->sc_dev,
2629 1.28 degroote "could not allocate mbuf for scan command\n");
2630 1.1 simonb return ENOMEM;
2631 1.1 simonb }
2632 1.1 simonb
2633 1.1 simonb MCLGET(data->m, M_DONTWAIT);
2634 1.1 simonb if (!(data->m->m_flags & M_EXT)) {
2635 1.1 simonb m_freem(data->m);
2636 1.1 simonb data->m = NULL;
2637 1.28 degroote aprint_error_dev(sc->sc_dev,
2638 1.28 degroote "could not allocate mbuf for scan command\n");
2639 1.1 simonb return ENOMEM;
2640 1.1 simonb }
2641 1.1 simonb
2642 1.1 simonb cmd = mtod(data->m, struct wpi_tx_cmd *);
2643 1.1 simonb cmd->code = WPI_CMD_SCAN;
2644 1.1 simonb cmd->flags = 0;
2645 1.1 simonb cmd->qid = ring->qid;
2646 1.1 simonb cmd->idx = ring->cur;
2647 1.1 simonb
2648 1.1 simonb hdr = (struct wpi_scan_hdr *)cmd->data;
2649 1.1 simonb memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2650 1.12 degroote hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2651 1.12 degroote hdr->id = WPI_ID_BROADCAST;
2652 1.12 degroote hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2653 1.12 degroote
2654 1.1 simonb /*
2655 1.1 simonb * Move to the next channel if no packets are received within 5 msecs
2656 1.1 simonb * after sending the probe request (this helps to reduce the duration
2657 1.1 simonb * of active scans).
2658 1.1 simonb */
2659 1.1 simonb hdr->quiet = htole16(5); /* timeout in milliseconds */
2660 1.12 degroote hdr->plcp_threshold = htole16(1); /* min # of packets */
2661 1.1 simonb
2662 1.1 simonb if (flags & IEEE80211_CHAN_A) {
2663 1.12 degroote hdr->crc_threshold = htole16(1);
2664 1.1 simonb /* send probe requests at 6Mbps */
2665 1.1 simonb hdr->rate = wpi_plcp_signal(12);
2666 1.1 simonb } else {
2667 1.1 simonb hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2668 1.1 simonb /* send probe requests at 1Mbps */
2669 1.1 simonb hdr->rate = wpi_plcp_signal(2);
2670 1.1 simonb }
2671 1.1 simonb
2672 1.12 degroote /* for directed scans, firmware inserts the essid IE itself */
2673 1.12 degroote hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2674 1.12 degroote hdr->essid[0].len = ic->ic_des_esslen;
2675 1.12 degroote memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2676 1.1 simonb
2677 1.1 simonb /*
2678 1.1 simonb * Build a probe request frame. Most of the following code is a
2679 1.1 simonb * copy & paste of what is done in net80211.
2680 1.1 simonb */
2681 1.1 simonb wh = (struct ieee80211_frame *)(hdr + 1);
2682 1.1 simonb wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2683 1.1 simonb IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2684 1.1 simonb wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2685 1.1 simonb IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2686 1.1 simonb IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2687 1.1 simonb IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2688 1.1 simonb *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2689 1.1 simonb *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2690 1.1 simonb
2691 1.1 simonb frm = (uint8_t *)(wh + 1);
2692 1.1 simonb
2693 1.12 degroote /* add empty essid IE (firmware generates it for directed scans) */
2694 1.12 degroote *frm++ = IEEE80211_ELEMID_SSID;
2695 1.12 degroote *frm++ = 0;
2696 1.1 simonb
2697 1.1 simonb mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2698 1.1 simonb rs = &ic->ic_sup_rates[mode];
2699 1.1 simonb
2700 1.1 simonb /* add supported rates IE */
2701 1.1 simonb *frm++ = IEEE80211_ELEMID_RATES;
2702 1.1 simonb nrates = rs->rs_nrates;
2703 1.1 simonb if (nrates > IEEE80211_RATE_SIZE)
2704 1.1 simonb nrates = IEEE80211_RATE_SIZE;
2705 1.1 simonb *frm++ = nrates;
2706 1.1 simonb memcpy(frm, rs->rs_rates, nrates);
2707 1.1 simonb frm += nrates;
2708 1.1 simonb
2709 1.1 simonb /* add supported xrates IE */
2710 1.1 simonb if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2711 1.1 simonb nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2712 1.1 simonb *frm++ = IEEE80211_ELEMID_XRATES;
2713 1.1 simonb *frm++ = nrates;
2714 1.1 simonb memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2715 1.1 simonb frm += nrates;
2716 1.1 simonb }
2717 1.1 simonb
2718 1.1 simonb /* setup length of probe request */
2719 1.12 degroote hdr->paylen = htole16(frm - (uint8_t *)wh);
2720 1.1 simonb
2721 1.1 simonb chan = (struct wpi_scan_chan *)frm;
2722 1.1 simonb for (c = &ic->ic_channels[1];
2723 1.1 simonb c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2724 1.1 simonb if ((c->ic_flags & flags) != flags)
2725 1.1 simonb continue;
2726 1.1 simonb
2727 1.1 simonb chan->chan = ieee80211_chan2ieee(ic, c);
2728 1.12 degroote chan->flags = 0;
2729 1.12 degroote if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2730 1.12 degroote chan->flags |= WPI_CHAN_ACTIVE;
2731 1.12 degroote if (ic->ic_des_esslen != 0)
2732 1.12 degroote chan->flags |= WPI_CHAN_DIRECT;
2733 1.12 degroote }
2734 1.12 degroote chan->dsp_gain = 0x6e;
2735 1.1 simonb if (IEEE80211_IS_CHAN_5GHZ(c)) {
2736 1.12 degroote chan->rf_gain = 0x3b;
2737 1.1 simonb chan->active = htole16(10);
2738 1.1 simonb chan->passive = htole16(110);
2739 1.1 simonb } else {
2740 1.12 degroote chan->rf_gain = 0x28;
2741 1.1 simonb chan->active = htole16(20);
2742 1.1 simonb chan->passive = htole16(120);
2743 1.1 simonb }
2744 1.1 simonb hdr->nchan++;
2745 1.1 simonb chan++;
2746 1.1 simonb
2747 1.1 simonb frm += sizeof (struct wpi_scan_chan);
2748 1.1 simonb }
2749 1.12 degroote hdr->len = htole16(frm - (uint8_t *)hdr);
2750 1.12 degroote pktlen = frm - (uint8_t *)cmd;
2751 1.1 simonb
2752 1.1 simonb error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2753 1.1 simonb NULL, BUS_DMA_NOWAIT);
2754 1.1 simonb if (error) {
2755 1.28 degroote aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2756 1.1 simonb m_freem(data->m);
2757 1.1 simonb data->m = NULL;
2758 1.1 simonb return error;
2759 1.1 simonb }
2760 1.1 simonb
2761 1.1 simonb desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2762 1.1 simonb desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2763 1.1 simonb desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2764 1.1 simonb
2765 1.1 simonb /* kick cmd ring */
2766 1.1 simonb ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2767 1.1 simonb WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2768 1.1 simonb
2769 1.1 simonb return 0; /* will be notified async. of failure/success */
2770 1.1 simonb }
2771 1.1 simonb
2772 1.1 simonb static int
2773 1.1 simonb wpi_config(struct wpi_softc *sc)
2774 1.1 simonb {
2775 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2776 1.1 simonb struct ifnet *ifp = ic->ic_ifp;
2777 1.1 simonb struct wpi_power power;
2778 1.1 simonb struct wpi_bluetooth bluetooth;
2779 1.5 joerg struct wpi_node_info node;
2780 1.1 simonb int error;
2781 1.1 simonb
2782 1.1 simonb memset(&power, 0, sizeof power);
2783 1.12 degroote power.flags = htole32(WPI_POWER_CAM | 0x8);
2784 1.1 simonb error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2785 1.1 simonb if (error != 0) {
2786 1.28 degroote aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2787 1.1 simonb return error;
2788 1.1 simonb }
2789 1.1 simonb
2790 1.1 simonb /* configure bluetooth coexistence */
2791 1.1 simonb memset(&bluetooth, 0, sizeof bluetooth);
2792 1.1 simonb bluetooth.flags = 3;
2793 1.1 simonb bluetooth.lead = 0xaa;
2794 1.1 simonb bluetooth.kill = 1;
2795 1.1 simonb error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2796 1.1 simonb 0);
2797 1.1 simonb if (error != 0) {
2798 1.28 degroote aprint_error_dev(sc->sc_dev,
2799 1.28 degroote "could not configure bluetooth coexistence\n");
2800 1.1 simonb return error;
2801 1.1 simonb }
2802 1.1 simonb
2803 1.1 simonb /* configure adapter */
2804 1.1 simonb memset(&sc->config, 0, sizeof (struct wpi_config));
2805 1.20 dyoung IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2806 1.1 simonb IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2807 1.1 simonb /*set default channel*/
2808 1.1 simonb sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2809 1.1 simonb sc->config.flags = htole32(WPI_CONFIG_TSF);
2810 1.1 simonb if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2811 1.1 simonb sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2812 1.1 simonb WPI_CONFIG_24GHZ);
2813 1.1 simonb }
2814 1.1 simonb sc->config.filter = 0;
2815 1.1 simonb switch (ic->ic_opmode) {
2816 1.1 simonb case IEEE80211_M_STA:
2817 1.1 simonb sc->config.mode = WPI_MODE_STA;
2818 1.1 simonb sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2819 1.1 simonb break;
2820 1.1 simonb case IEEE80211_M_IBSS:
2821 1.1 simonb case IEEE80211_M_AHDEMO:
2822 1.1 simonb sc->config.mode = WPI_MODE_IBSS;
2823 1.1 simonb break;
2824 1.1 simonb case IEEE80211_M_HOSTAP:
2825 1.1 simonb sc->config.mode = WPI_MODE_HOSTAP;
2826 1.1 simonb break;
2827 1.1 simonb case IEEE80211_M_MONITOR:
2828 1.1 simonb sc->config.mode = WPI_MODE_MONITOR;
2829 1.1 simonb sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2830 1.1 simonb WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2831 1.1 simonb break;
2832 1.1 simonb }
2833 1.1 simonb sc->config.cck_mask = 0x0f; /* not yet negotiated */
2834 1.1 simonb sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2835 1.1 simonb error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2836 1.1 simonb sizeof (struct wpi_config), 0);
2837 1.1 simonb if (error != 0) {
2838 1.28 degroote aprint_error_dev(sc->sc_dev, "configure command failed\n");
2839 1.1 simonb return error;
2840 1.1 simonb }
2841 1.1 simonb
2842 1.12 degroote /* configuration has changed, set Tx power accordingly */
2843 1.12 degroote if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2844 1.28 degroote aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2845 1.12 degroote return error;
2846 1.12 degroote }
2847 1.12 degroote
2848 1.1 simonb /* add broadcast node */
2849 1.1 simonb memset(&node, 0, sizeof node);
2850 1.1 simonb IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2851 1.1 simonb node.id = WPI_ID_BROADCAST;
2852 1.1 simonb node.rate = wpi_plcp_signal(2);
2853 1.12 degroote node.action = htole32(WPI_ACTION_SET_RATE);
2854 1.12 degroote node.antenna = WPI_ANTENNA_BOTH;
2855 1.1 simonb error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2856 1.1 simonb if (error != 0) {
2857 1.28 degroote aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2858 1.1 simonb return error;
2859 1.1 simonb }
2860 1.1 simonb
2861 1.12 degroote if ((error = wpi_mrr_setup(sc)) != 0) {
2862 1.28 degroote aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2863 1.12 degroote return error;
2864 1.12 degroote }
2865 1.12 degroote
2866 1.1 simonb return 0;
2867 1.1 simonb }
2868 1.1 simonb
2869 1.1 simonb static void
2870 1.1 simonb wpi_stop_master(struct wpi_softc *sc)
2871 1.1 simonb {
2872 1.1 simonb uint32_t tmp;
2873 1.1 simonb int ntries;
2874 1.1 simonb
2875 1.1 simonb tmp = WPI_READ(sc, WPI_RESET);
2876 1.1 simonb WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2877 1.1 simonb
2878 1.1 simonb tmp = WPI_READ(sc, WPI_GPIO_CTL);
2879 1.1 simonb if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2880 1.1 simonb return; /* already asleep */
2881 1.1 simonb
2882 1.1 simonb for (ntries = 0; ntries < 100; ntries++) {
2883 1.1 simonb if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2884 1.1 simonb break;
2885 1.1 simonb DELAY(10);
2886 1.1 simonb }
2887 1.1 simonb if (ntries == 100) {
2888 1.28 degroote aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2889 1.1 simonb }
2890 1.1 simonb }
2891 1.1 simonb
2892 1.1 simonb static int
2893 1.1 simonb wpi_power_up(struct wpi_softc *sc)
2894 1.1 simonb {
2895 1.1 simonb uint32_t tmp;
2896 1.1 simonb int ntries;
2897 1.1 simonb
2898 1.1 simonb wpi_mem_lock(sc);
2899 1.1 simonb tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2900 1.1 simonb wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2901 1.1 simonb wpi_mem_unlock(sc);
2902 1.1 simonb
2903 1.1 simonb for (ntries = 0; ntries < 5000; ntries++) {
2904 1.1 simonb if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2905 1.1 simonb break;
2906 1.1 simonb DELAY(10);
2907 1.1 simonb }
2908 1.1 simonb if (ntries == 5000) {
2909 1.28 degroote aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2910 1.1 simonb return ETIMEDOUT;
2911 1.1 simonb }
2912 1.1 simonb return 0;
2913 1.1 simonb }
2914 1.1 simonb
2915 1.1 simonb static int
2916 1.1 simonb wpi_reset(struct wpi_softc *sc)
2917 1.1 simonb {
2918 1.1 simonb uint32_t tmp;
2919 1.1 simonb int ntries;
2920 1.1 simonb
2921 1.1 simonb /* clear any pending interrupts */
2922 1.1 simonb WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2923 1.1 simonb
2924 1.1 simonb tmp = WPI_READ(sc, WPI_PLL_CTL);
2925 1.1 simonb WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2926 1.1 simonb
2927 1.1 simonb tmp = WPI_READ(sc, WPI_CHICKEN);
2928 1.1 simonb WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2929 1.1 simonb
2930 1.1 simonb tmp = WPI_READ(sc, WPI_GPIO_CTL);
2931 1.1 simonb WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2932 1.1 simonb
2933 1.1 simonb /* wait for clock stabilization */
2934 1.1 simonb for (ntries = 0; ntries < 1000; ntries++) {
2935 1.1 simonb if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2936 1.1 simonb break;
2937 1.1 simonb DELAY(10);
2938 1.1 simonb }
2939 1.1 simonb if (ntries == 1000) {
2940 1.28 degroote aprint_error_dev(sc->sc_dev,
2941 1.28 degroote "timeout waiting for clock stabilization\n");
2942 1.1 simonb return ETIMEDOUT;
2943 1.1 simonb }
2944 1.1 simonb
2945 1.1 simonb /* initialize EEPROM */
2946 1.1 simonb tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2947 1.1 simonb if ((tmp & WPI_EEPROM_VERSION) == 0) {
2948 1.28 degroote aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
2949 1.1 simonb return EIO;
2950 1.1 simonb }
2951 1.1 simonb WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2952 1.1 simonb
2953 1.1 simonb return 0;
2954 1.1 simonb }
2955 1.1 simonb
2956 1.1 simonb static void
2957 1.1 simonb wpi_hw_config(struct wpi_softc *sc)
2958 1.1 simonb {
2959 1.1 simonb uint32_t rev, hw;
2960 1.1 simonb
2961 1.12 degroote /* voodoo from the reference driver */
2962 1.1 simonb hw = WPI_READ(sc, WPI_HWCONFIG);
2963 1.1 simonb
2964 1.1 simonb rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
2965 1.1 simonb rev = PCI_REVISION(rev);
2966 1.1 simonb if ((rev & 0xc0) == 0x40)
2967 1.1 simonb hw |= WPI_HW_ALM_MB;
2968 1.1 simonb else if (!(rev & 0x80))
2969 1.1 simonb hw |= WPI_HW_ALM_MM;
2970 1.1 simonb
2971 1.12 degroote if (sc->cap == 0x80)
2972 1.1 simonb hw |= WPI_HW_SKU_MRC;
2973 1.1 simonb
2974 1.1 simonb hw &= ~WPI_HW_REV_D;
2975 1.12 degroote if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2976 1.1 simonb hw |= WPI_HW_REV_D;
2977 1.1 simonb
2978 1.12 degroote if (sc->type > 1)
2979 1.1 simonb hw |= WPI_HW_TYPE_B;
2980 1.1 simonb
2981 1.1 simonb DPRINTF(("setting h/w config %x\n", hw));
2982 1.1 simonb WPI_WRITE(sc, WPI_HWCONFIG, hw);
2983 1.1 simonb }
2984 1.1 simonb
2985 1.1 simonb static int
2986 1.1 simonb wpi_init(struct ifnet *ifp)
2987 1.1 simonb {
2988 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
2989 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2990 1.1 simonb uint32_t tmp;
2991 1.1 simonb int qid, ntries, error;
2992 1.1 simonb
2993 1.18 degroote wpi_stop(ifp,1);
2994 1.1 simonb (void)wpi_reset(sc);
2995 1.1 simonb
2996 1.1 simonb wpi_mem_lock(sc);
2997 1.1 simonb wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
2998 1.1 simonb DELAY(20);
2999 1.1 simonb tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3000 1.1 simonb wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3001 1.1 simonb wpi_mem_unlock(sc);
3002 1.1 simonb
3003 1.1 simonb (void)wpi_power_up(sc);
3004 1.1 simonb wpi_hw_config(sc);
3005 1.1 simonb
3006 1.1 simonb /* init Rx ring */
3007 1.1 simonb wpi_mem_lock(sc);
3008 1.1 simonb WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3009 1.1 simonb WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3010 1.1 simonb offsetof(struct wpi_shared, next));
3011 1.1 simonb WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3012 1.1 simonb WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3013 1.1 simonb wpi_mem_unlock(sc);
3014 1.1 simonb
3015 1.1 simonb /* init Tx rings */
3016 1.1 simonb wpi_mem_lock(sc);
3017 1.1 simonb wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3018 1.1 simonb wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3019 1.1 simonb wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3020 1.1 simonb wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3021 1.1 simonb wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3022 1.1 simonb wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3023 1.1 simonb wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3024 1.1 simonb
3025 1.1 simonb WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3026 1.1 simonb WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3027 1.1 simonb
3028 1.1 simonb for (qid = 0; qid < 6; qid++) {
3029 1.1 simonb WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3030 1.1 simonb WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3031 1.1 simonb WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3032 1.1 simonb }
3033 1.1 simonb wpi_mem_unlock(sc);
3034 1.1 simonb
3035 1.1 simonb /* clear "radio off" and "disable command" bits (reversed logic) */
3036 1.1 simonb WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3037 1.1 simonb WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3038 1.1 simonb
3039 1.1 simonb /* clear any pending interrupts */
3040 1.1 simonb WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3041 1.1 simonb /* enable interrupts */
3042 1.1 simonb WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3043 1.1 simonb
3044 1.12 degroote /* not sure why/if this is necessary... */
3045 1.12 degroote WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3046 1.12 degroote WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3047 1.1 simonb
3048 1.12 degroote if ((error = wpi_load_firmware(sc)) != 0) {
3049 1.28 degroote aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3050 1.1 simonb goto fail1;
3051 1.1 simonb }
3052 1.1 simonb
3053 1.31 degroote /* Check the status of the radio switch */
3054 1.34 degroote if (wpi_getrfkill(sc)) {
3055 1.31 degroote aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
3056 1.34 degroote error = EBUSY;
3057 1.31 degroote goto fail1;
3058 1.31 degroote }
3059 1.31 degroote
3060 1.1 simonb /* wait for thermal sensors to calibrate */
3061 1.1 simonb for (ntries = 0; ntries < 1000; ntries++) {
3062 1.12 degroote if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3063 1.1 simonb break;
3064 1.1 simonb DELAY(10);
3065 1.1 simonb }
3066 1.1 simonb if (ntries == 1000) {
3067 1.28 degroote aprint_error_dev(sc->sc_dev,
3068 1.28 degroote "timeout waiting for thermal sensors calibration\n");
3069 1.1 simonb error = ETIMEDOUT;
3070 1.1 simonb goto fail1;
3071 1.1 simonb }
3072 1.12 degroote
3073 1.12 degroote DPRINTF(("temperature %d\n", sc->temp));
3074 1.1 simonb
3075 1.1 simonb if ((error = wpi_config(sc)) != 0) {
3076 1.28 degroote aprint_error_dev(sc->sc_dev, "could not configure device\n");
3077 1.1 simonb goto fail1;
3078 1.1 simonb }
3079 1.1 simonb
3080 1.1 simonb ifp->if_flags &= ~IFF_OACTIVE;
3081 1.1 simonb ifp->if_flags |= IFF_RUNNING;
3082 1.1 simonb
3083 1.1 simonb if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3084 1.1 simonb if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3085 1.1 simonb ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3086 1.1 simonb }
3087 1.1 simonb else
3088 1.1 simonb ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3089 1.1 simonb
3090 1.1 simonb return 0;
3091 1.1 simonb
3092 1.1 simonb fail1: wpi_stop(ifp, 1);
3093 1.1 simonb return error;
3094 1.1 simonb }
3095 1.1 simonb
3096 1.1 simonb
3097 1.1 simonb static void
3098 1.6 christos wpi_stop(struct ifnet *ifp, int disable)
3099 1.1 simonb {
3100 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
3101 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
3102 1.1 simonb uint32_t tmp;
3103 1.1 simonb int ac;
3104 1.1 simonb
3105 1.1 simonb ifp->if_timer = sc->sc_tx_timer = 0;
3106 1.1 simonb ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3107 1.1 simonb
3108 1.1 simonb ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3109 1.1 simonb
3110 1.1 simonb /* disable interrupts */
3111 1.1 simonb WPI_WRITE(sc, WPI_MASK, 0);
3112 1.1 simonb WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3113 1.1 simonb WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3114 1.1 simonb WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3115 1.1 simonb
3116 1.1 simonb wpi_mem_lock(sc);
3117 1.1 simonb wpi_mem_write(sc, WPI_MEM_MODE, 0);
3118 1.1 simonb wpi_mem_unlock(sc);
3119 1.1 simonb
3120 1.1 simonb /* reset all Tx rings */
3121 1.1 simonb for (ac = 0; ac < 4; ac++)
3122 1.1 simonb wpi_reset_tx_ring(sc, &sc->txq[ac]);
3123 1.1 simonb wpi_reset_tx_ring(sc, &sc->cmdq);
3124 1.1 simonb
3125 1.1 simonb /* reset Rx ring */
3126 1.1 simonb wpi_reset_rx_ring(sc, &sc->rxq);
3127 1.12 degroote
3128 1.1 simonb wpi_mem_lock(sc);
3129 1.1 simonb wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3130 1.1 simonb wpi_mem_unlock(sc);
3131 1.1 simonb
3132 1.1 simonb DELAY(5);
3133 1.1 simonb
3134 1.1 simonb wpi_stop_master(sc);
3135 1.1 simonb
3136 1.1 simonb tmp = WPI_READ(sc, WPI_RESET);
3137 1.1 simonb WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3138 1.1 simonb }
3139 1.33 jmcneill
3140 1.33 jmcneill static bool
3141 1.36 dyoung wpi_resume(device_t dv PMF_FN_ARGS)
3142 1.33 jmcneill {
3143 1.33 jmcneill struct wpi_softc *sc = device_private(dv);
3144 1.33 jmcneill
3145 1.33 jmcneill (void)wpi_reset(sc);
3146 1.33 jmcneill
3147 1.33 jmcneill return true;
3148 1.33 jmcneill }
3149 1.34 degroote
3150 1.34 degroote /*
3151 1.34 degroote * Return whether or not the radio is enabled in hardware
3152 1.34 degroote * (i.e. the rfkill switch is "off").
3153 1.34 degroote */
3154 1.34 degroote static int
3155 1.34 degroote wpi_getrfkill(struct wpi_softc *sc)
3156 1.34 degroote {
3157 1.34 degroote uint32_t tmp;
3158 1.34 degroote
3159 1.34 degroote wpi_mem_lock(sc);
3160 1.34 degroote tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3161 1.34 degroote wpi_mem_unlock(sc);
3162 1.34 degroote
3163 1.34 degroote return !(tmp & 0x01);
3164 1.34 degroote }
3165 1.34 degroote
3166 1.34 degroote static int
3167 1.34 degroote wpi_sysctl_radio(SYSCTLFN_ARGS)
3168 1.34 degroote {
3169 1.34 degroote struct sysctlnode node;
3170 1.34 degroote struct wpi_softc *sc;
3171 1.34 degroote int val, error;
3172 1.34 degroote
3173 1.34 degroote node = *rnode;
3174 1.34 degroote sc = (struct wpi_softc *)node.sysctl_data;
3175 1.34 degroote
3176 1.34 degroote val = !wpi_getrfkill(sc);
3177 1.34 degroote
3178 1.34 degroote node.sysctl_data = &val;
3179 1.34 degroote error = sysctl_lookup(SYSCTLFN_CALL(&node));
3180 1.34 degroote
3181 1.34 degroote if (error || newp == NULL)
3182 1.34 degroote return error;
3183 1.34 degroote
3184 1.34 degroote return 0;
3185 1.34 degroote }
3186 1.34 degroote
3187 1.34 degroote static void
3188 1.34 degroote wpi_sysctlattach(struct wpi_softc *sc)
3189 1.34 degroote {
3190 1.34 degroote int rc;
3191 1.34 degroote const struct sysctlnode *rnode;
3192 1.34 degroote const struct sysctlnode *cnode;
3193 1.34 degroote
3194 1.34 degroote struct sysctllog **clog = &sc->sc_sysctllog;
3195 1.34 degroote
3196 1.34 degroote if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3197 1.34 degroote CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3198 1.34 degroote NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
3199 1.34 degroote goto err;
3200 1.34 degroote
3201 1.34 degroote if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
3202 1.34 degroote CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3203 1.34 degroote SYSCTL_DESCR("wpi controls and statistics"),
3204 1.34 degroote NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
3205 1.34 degroote goto err;
3206 1.34 degroote
3207 1.34 degroote if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3208 1.34 degroote CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3209 1.34 degroote SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3210 1.34 degroote wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3211 1.34 degroote goto err;
3212 1.34 degroote
3213 1.34 degroote #ifdef WPI_DEBUG
3214 1.34 degroote /* control debugging printfs */
3215 1.34 degroote if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3216 1.34 degroote CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3217 1.34 degroote "debug", SYSCTL_DESCR("Enable debugging output"),
3218 1.34 degroote NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3219 1.34 degroote goto err;
3220 1.34 degroote #endif
3221 1.34 degroote
3222 1.34 degroote return;
3223 1.34 degroote err:
3224 1.34 degroote aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3225 1.34 degroote }
3226