if_wpi.c revision 1.72 1 1.72 ozaki /* $NetBSD: if_wpi.c,v 1.72 2016/05/26 05:01:12 ozaki-r Exp $ */
2 1.1 simonb
3 1.1 simonb /*-
4 1.12 degroote * Copyright (c) 2006, 2007
5 1.1 simonb * Damien Bergamini <damien.bergamini (at) free.fr>
6 1.1 simonb *
7 1.1 simonb * Permission to use, copy, modify, and distribute this software for any
8 1.1 simonb * purpose with or without fee is hereby granted, provided that the above
9 1.1 simonb * copyright notice and this permission notice appear in all copies.
10 1.1 simonb *
11 1.1 simonb * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 1.1 simonb * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 1.1 simonb * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 1.1 simonb * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 1.1 simonb * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 1.1 simonb * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 1.1 simonb * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 1.1 simonb */
19 1.1 simonb
20 1.1 simonb #include <sys/cdefs.h>
21 1.72 ozaki __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.72 2016/05/26 05:01:12 ozaki-r Exp $");
22 1.1 simonb
23 1.1 simonb /*
24 1.1 simonb * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 1.1 simonb */
26 1.1 simonb
27 1.1 simonb
28 1.1 simonb #include <sys/param.h>
29 1.1 simonb #include <sys/sockio.h>
30 1.1 simonb #include <sys/sysctl.h>
31 1.1 simonb #include <sys/mbuf.h>
32 1.1 simonb #include <sys/kernel.h>
33 1.1 simonb #include <sys/socket.h>
34 1.1 simonb #include <sys/systm.h>
35 1.1 simonb #include <sys/malloc.h>
36 1.39 cube #include <sys/mutex.h>
37 1.41 joerg #include <sys/once.h>
38 1.1 simonb #include <sys/conf.h>
39 1.1 simonb #include <sys/kauth.h>
40 1.7 degroote #include <sys/callout.h>
41 1.48 uebayasi #include <sys/proc.h>
42 1.70 bouyer #include <sys/kthread.h>
43 1.1 simonb
44 1.25 ad #include <sys/bus.h>
45 1.1 simonb #include <machine/endian.h>
46 1.25 ad #include <sys/intr.h>
47 1.1 simonb
48 1.1 simonb #include <dev/pci/pcireg.h>
49 1.1 simonb #include <dev/pci/pcivar.h>
50 1.1 simonb #include <dev/pci/pcidevs.h>
51 1.1 simonb
52 1.70 bouyer #include <dev/sysmon/sysmonvar.h>
53 1.70 bouyer
54 1.1 simonb #include <net/bpf.h>
55 1.1 simonb #include <net/if.h>
56 1.1 simonb #include <net/if_arp.h>
57 1.1 simonb #include <net/if_dl.h>
58 1.1 simonb #include <net/if_ether.h>
59 1.1 simonb #include <net/if_media.h>
60 1.1 simonb #include <net/if_types.h>
61 1.1 simonb
62 1.1 simonb #include <netinet/in.h>
63 1.1 simonb #include <netinet/in_systm.h>
64 1.1 simonb #include <netinet/in_var.h>
65 1.1 simonb #include <netinet/ip.h>
66 1.1 simonb
67 1.61 jakllsch #include <net80211/ieee80211_var.h>
68 1.61 jakllsch #include <net80211/ieee80211_amrr.h>
69 1.61 jakllsch #include <net80211/ieee80211_radiotap.h>
70 1.61 jakllsch
71 1.1 simonb #include <dev/firmload.h>
72 1.1 simonb
73 1.1 simonb #include <dev/pci/if_wpireg.h>
74 1.1 simonb #include <dev/pci/if_wpivar.h>
75 1.1 simonb
76 1.54 riastrad static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
77 1.41 joerg static once_t wpi_firmware_init;
78 1.41 joerg static kmutex_t wpi_firmware_mutex;
79 1.41 joerg static size_t wpi_firmware_users;
80 1.41 joerg static uint8_t *wpi_firmware_image;
81 1.41 joerg static size_t wpi_firmware_size;
82 1.41 joerg
83 1.61 jakllsch static int wpi_match(device_t, cfdata_t, void *);
84 1.61 jakllsch static void wpi_attach(device_t, device_t, void *);
85 1.61 jakllsch static int wpi_detach(device_t , int);
86 1.61 jakllsch static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
87 1.61 jakllsch void **, bus_size_t, bus_size_t, int);
88 1.61 jakllsch static void wpi_dma_contig_free(struct wpi_dma_info *);
89 1.61 jakllsch static int wpi_alloc_shared(struct wpi_softc *);
90 1.61 jakllsch static void wpi_free_shared(struct wpi_softc *);
91 1.61 jakllsch static int wpi_alloc_fwmem(struct wpi_softc *);
92 1.61 jakllsch static void wpi_free_fwmem(struct wpi_softc *);
93 1.61 jakllsch static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
94 1.61 jakllsch static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
95 1.61 jakllsch static int wpi_alloc_rpool(struct wpi_softc *);
96 1.61 jakllsch static void wpi_free_rpool(struct wpi_softc *);
97 1.61 jakllsch static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
98 1.61 jakllsch static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
99 1.61 jakllsch static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
100 1.61 jakllsch static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
101 1.61 jakllsch int, int);
102 1.61 jakllsch static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
103 1.61 jakllsch static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
104 1.61 jakllsch static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
105 1.61 jakllsch static void wpi_newassoc(struct ieee80211_node *, int);
106 1.61 jakllsch static int wpi_media_change(struct ifnet *);
107 1.61 jakllsch static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
108 1.61 jakllsch static void wpi_mem_lock(struct wpi_softc *);
109 1.61 jakllsch static void wpi_mem_unlock(struct wpi_softc *);
110 1.61 jakllsch static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
111 1.61 jakllsch static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
112 1.61 jakllsch static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
113 1.61 jakllsch const uint32_t *, int);
114 1.61 jakllsch static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
115 1.61 jakllsch static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
116 1.61 jakllsch static int wpi_cache_firmware(struct wpi_softc *);
117 1.61 jakllsch static void wpi_release_firmware(void);
118 1.61 jakllsch static int wpi_load_firmware(struct wpi_softc *);
119 1.61 jakllsch static void wpi_calib_timeout(void *);
120 1.61 jakllsch static void wpi_iter_func(void *, struct ieee80211_node *);
121 1.61 jakllsch static void wpi_power_calibration(struct wpi_softc *, int);
122 1.61 jakllsch static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
123 1.61 jakllsch struct wpi_rx_data *);
124 1.61 jakllsch static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
125 1.61 jakllsch static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
126 1.61 jakllsch static void wpi_notif_intr(struct wpi_softc *);
127 1.61 jakllsch static int wpi_intr(void *);
128 1.61 jakllsch static void wpi_read_eeprom(struct wpi_softc *);
129 1.61 jakllsch static void wpi_read_eeprom_channels(struct wpi_softc *, int);
130 1.61 jakllsch static void wpi_read_eeprom_group(struct wpi_softc *, int);
131 1.61 jakllsch static uint8_t wpi_plcp_signal(int);
132 1.61 jakllsch static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
133 1.61 jakllsch struct ieee80211_node *, int);
134 1.61 jakllsch static void wpi_start(struct ifnet *);
135 1.61 jakllsch static void wpi_watchdog(struct ifnet *);
136 1.61 jakllsch static int wpi_ioctl(struct ifnet *, u_long, void *);
137 1.61 jakllsch static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
138 1.61 jakllsch static int wpi_wme_update(struct ieee80211com *);
139 1.61 jakllsch static int wpi_mrr_setup(struct wpi_softc *);
140 1.61 jakllsch static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
141 1.61 jakllsch static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
142 1.61 jakllsch static int wpi_set_txpower(struct wpi_softc *,
143 1.61 jakllsch struct ieee80211_channel *, int);
144 1.61 jakllsch static int wpi_get_power_index(struct wpi_softc *,
145 1.61 jakllsch struct wpi_power_group *, struct ieee80211_channel *, int);
146 1.61 jakllsch static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
147 1.61 jakllsch static int wpi_auth(struct wpi_softc *);
148 1.67 jmcneill static int wpi_scan(struct wpi_softc *);
149 1.61 jakllsch static int wpi_config(struct wpi_softc *);
150 1.61 jakllsch static void wpi_stop_master(struct wpi_softc *);
151 1.61 jakllsch static int wpi_power_up(struct wpi_softc *);
152 1.61 jakllsch static int wpi_reset(struct wpi_softc *);
153 1.61 jakllsch static void wpi_hw_config(struct wpi_softc *);
154 1.61 jakllsch static int wpi_init(struct ifnet *);
155 1.61 jakllsch static void wpi_stop(struct ifnet *, int);
156 1.61 jakllsch static bool wpi_resume(device_t, const pmf_qual_t *);
157 1.34 degroote static int wpi_getrfkill(struct wpi_softc *);
158 1.61 jakllsch static void wpi_sysctlattach(struct wpi_softc *);
159 1.70 bouyer static void wpi_rsw_thread(void *);
160 1.61 jakllsch
161 1.61 jakllsch #ifdef WPI_DEBUG
162 1.61 jakllsch #define DPRINTF(x) do { if (wpi_debug > 0) printf x; } while (0)
163 1.61 jakllsch #define DPRINTFN(n, x) do { if (wpi_debug >= (n)) printf x; } while (0)
164 1.61 jakllsch int wpi_debug = 1;
165 1.61 jakllsch #else
166 1.61 jakllsch #define DPRINTF(x)
167 1.61 jakllsch #define DPRINTFN(n, x)
168 1.61 jakllsch #endif
169 1.1 simonb
170 1.28 degroote CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
171 1.1 simonb wpi_detach, NULL);
172 1.1 simonb
173 1.1 simonb static int
174 1.42 cegger wpi_match(device_t parent, cfdata_t match __unused, void *aux)
175 1.1 simonb {
176 1.1 simonb struct pci_attach_args *pa = aux;
177 1.1 simonb
178 1.1 simonb if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
179 1.1 simonb return 0;
180 1.1 simonb
181 1.1 simonb if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
182 1.7 degroote PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
183 1.1 simonb return 1;
184 1.1 simonb
185 1.1 simonb return 0;
186 1.1 simonb }
187 1.1 simonb
188 1.1 simonb /* Base Address Register */
189 1.1 simonb #define WPI_PCI_BAR0 0x10
190 1.1 simonb
191 1.41 joerg static int
192 1.41 joerg wpi_attach_once(void)
193 1.41 joerg {
194 1.54 riastrad
195 1.41 joerg mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
196 1.41 joerg return 0;
197 1.41 joerg }
198 1.41 joerg
199 1.1 simonb static void
200 1.28 degroote wpi_attach(device_t parent __unused, device_t self, void *aux)
201 1.1 simonb {
202 1.28 degroote struct wpi_softc *sc = device_private(self);
203 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
204 1.1 simonb struct ifnet *ifp = &sc->sc_ec.ec_if;
205 1.1 simonb struct pci_attach_args *pa = aux;
206 1.1 simonb const char *intrstr;
207 1.1 simonb bus_space_tag_t memt;
208 1.1 simonb bus_space_handle_t memh;
209 1.1 simonb pci_intr_handle_t ih;
210 1.1 simonb pcireg_t data;
211 1.61 jakllsch int ac, error;
212 1.58 christos char intrbuf[PCI_INTRSTR_LEN];
213 1.1 simonb
214 1.41 joerg RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
215 1.41 joerg sc->fw_used = false;
216 1.41 joerg
217 1.30 plunky sc->sc_dev = self;
218 1.1 simonb sc->sc_pct = pa->pa_pc;
219 1.1 simonb sc->sc_pcitag = pa->pa_tag;
220 1.1 simonb
221 1.70 bouyer sc->sc_rsw_status = WPI_RSW_UNKNOWN;
222 1.70 bouyer sc->sc_rsw.smpsw_name = device_xname(self);
223 1.70 bouyer sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO;
224 1.70 bouyer error = sysmon_pswitch_register(&sc->sc_rsw);
225 1.70 bouyer if (error) {
226 1.70 bouyer aprint_error_dev(self,
227 1.70 bouyer "unable to register radio switch with sysmon\n");
228 1.70 bouyer return;
229 1.70 bouyer }
230 1.70 bouyer mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE);
231 1.70 bouyer cv_init(&sc->sc_rsw_cv, "wpirsw");
232 1.70 bouyer if (kthread_create(PRI_NONE, 0, NULL,
233 1.70 bouyer wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) {
234 1.70 bouyer aprint_error_dev(self, "couldn't create switch thread\n");
235 1.70 bouyer }
236 1.70 bouyer
237 1.14 ad callout_init(&sc->calib_to, 0);
238 1.28 degroote callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
239 1.1 simonb
240 1.50 drochner pci_aprint_devinfo(pa, NULL);
241 1.1 simonb
242 1.1 simonb /* enable bus-mastering */
243 1.1 simonb data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
244 1.1 simonb data |= PCI_COMMAND_MASTER_ENABLE;
245 1.1 simonb pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
246 1.1 simonb
247 1.1 simonb /* map the register window */
248 1.1 simonb error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
249 1.59 jakllsch PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
250 1.1 simonb if (error != 0) {
251 1.28 degroote aprint_error_dev(self, "could not map memory space\n");
252 1.1 simonb return;
253 1.1 simonb }
254 1.1 simonb
255 1.1 simonb sc->sc_st = memt;
256 1.1 simonb sc->sc_sh = memh;
257 1.1 simonb sc->sc_dmat = pa->pa_dmat;
258 1.1 simonb
259 1.1 simonb if (pci_intr_map(pa, &ih) != 0) {
260 1.28 degroote aprint_error_dev(self, "could not map interrupt\n");
261 1.1 simonb return;
262 1.1 simonb }
263 1.1 simonb
264 1.58 christos intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
265 1.1 simonb sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
266 1.1 simonb if (sc->sc_ih == NULL) {
267 1.28 degroote aprint_error_dev(self, "could not establish interrupt");
268 1.1 simonb if (intrstr != NULL)
269 1.1 simonb aprint_error(" at %s", intrstr);
270 1.1 simonb aprint_error("\n");
271 1.1 simonb return;
272 1.1 simonb }
273 1.28 degroote aprint_normal_dev(self, "interrupting at %s\n", intrstr);
274 1.1 simonb
275 1.61 jakllsch /*
276 1.61 jakllsch * Put adapter into a known state.
277 1.61 jakllsch */
278 1.61 jakllsch if ((error = wpi_reset(sc)) != 0) {
279 1.28 degroote aprint_error_dev(self, "could not reset adapter\n");
280 1.1 simonb return;
281 1.1 simonb }
282 1.1 simonb
283 1.59 jakllsch /*
284 1.12 degroote * Allocate DMA memory for firmware transfers.
285 1.12 degroote */
286 1.61 jakllsch if ((error = wpi_alloc_fwmem(sc)) != 0) {
287 1.61 jakllsch aprint_error_dev(self, "could not allocate firmware memory\n");
288 1.12 degroote return;
289 1.61 jakllsch }
290 1.12 degroote
291 1.1 simonb /*
292 1.1 simonb * Allocate shared page and Tx/Rx rings.
293 1.1 simonb */
294 1.1 simonb if ((error = wpi_alloc_shared(sc)) != 0) {
295 1.28 degroote aprint_error_dev(self, "could not allocate shared area\n");
296 1.12 degroote goto fail1;
297 1.1 simonb }
298 1.1 simonb
299 1.7 degroote if ((error = wpi_alloc_rpool(sc)) != 0) {
300 1.28 degroote aprint_error_dev(self, "could not allocate Rx buffers\n");
301 1.12 degroote goto fail2;
302 1.7 degroote }
303 1.7 degroote
304 1.1 simonb for (ac = 0; ac < 4; ac++) {
305 1.61 jakllsch error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
306 1.61 jakllsch ac);
307 1.1 simonb if (error != 0) {
308 1.61 jakllsch aprint_error_dev(self,
309 1.61 jakllsch "could not allocate Tx ring %d\n", ac);
310 1.12 degroote goto fail3;
311 1.1 simonb }
312 1.1 simonb }
313 1.1 simonb
314 1.1 simonb error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
315 1.1 simonb if (error != 0) {
316 1.28 degroote aprint_error_dev(self, "could not allocate command ring\n");
317 1.12 degroote goto fail3;
318 1.1 simonb }
319 1.1 simonb
320 1.61 jakllsch error = wpi_alloc_rx_ring(sc, &sc->rxq);
321 1.61 jakllsch if (error != 0) {
322 1.28 degroote aprint_error_dev(self, "could not allocate Rx ring\n");
323 1.24 degroote goto fail4;
324 1.1 simonb }
325 1.1 simonb
326 1.1 simonb ic->ic_ifp = ifp;
327 1.61 jakllsch ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
328 1.61 jakllsch ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
329 1.1 simonb ic->ic_state = IEEE80211_S_INIT;
330 1.1 simonb
331 1.1 simonb /* set device capabilities */
332 1.1 simonb ic->ic_caps =
333 1.59 jakllsch IEEE80211_C_WPA | /* 802.11i */
334 1.59 jakllsch IEEE80211_C_MONITOR | /* monitor mode supported */
335 1.59 jakllsch IEEE80211_C_TXPMGT | /* tx power management */
336 1.59 jakllsch IEEE80211_C_SHSLOT | /* short slot time supported */
337 1.59 jakllsch IEEE80211_C_SHPREAMBLE | /* short preamble supported */
338 1.59 jakllsch IEEE80211_C_WME; /* 802.11e */
339 1.1 simonb
340 1.12 degroote /* read supported channels and MAC address from EEPROM */
341 1.1 simonb wpi_read_eeprom(sc);
342 1.1 simonb
343 1.59 jakllsch /* set supported .11a, .11b and .11g rates */
344 1.59 jakllsch ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
345 1.59 jakllsch ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
346 1.59 jakllsch ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
347 1.1 simonb
348 1.59 jakllsch /* IBSS channel undefined for now */
349 1.1 simonb ic->ic_ibss_chan = &ic->ic_channels[0];
350 1.1 simonb
351 1.1 simonb ifp->if_softc = sc;
352 1.1 simonb ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
353 1.1 simonb ifp->if_init = wpi_init;
354 1.1 simonb ifp->if_stop = wpi_stop;
355 1.1 simonb ifp->if_ioctl = wpi_ioctl;
356 1.1 simonb ifp->if_start = wpi_start;
357 1.1 simonb ifp->if_watchdog = wpi_watchdog;
358 1.1 simonb IFQ_SET_READY(&ifp->if_snd);
359 1.28 degroote memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
360 1.1 simonb
361 1.1 simonb if_attach(ifp);
362 1.1 simonb ieee80211_ifattach(ic);
363 1.1 simonb /* override default methods */
364 1.1 simonb ic->ic_node_alloc = wpi_node_alloc;
365 1.5 joerg ic->ic_newassoc = wpi_newassoc;
366 1.1 simonb ic->ic_wme.wme_update = wpi_wme_update;
367 1.1 simonb
368 1.1 simonb /* override state transition machine */
369 1.1 simonb sc->sc_newstate = ic->ic_newstate;
370 1.1 simonb ic->ic_newstate = wpi_newstate;
371 1.1 simonb ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
372 1.1 simonb
373 1.59 jakllsch sc->amrr.amrr_min_success_threshold = 1;
374 1.5 joerg sc->amrr.amrr_max_success_threshold = 15;
375 1.5 joerg
376 1.34 degroote wpi_sysctlattach(sc);
377 1.34 degroote
378 1.43 tsutsui if (pmf_device_register(self, NULL, wpi_resume))
379 1.43 tsutsui pmf_class_network_register(self, ifp);
380 1.43 tsutsui else
381 1.33 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
382 1.1 simonb
383 1.47 joerg bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
384 1.45 pooka sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
385 1.45 pooka &sc->sc_drvbpf);
386 1.1 simonb
387 1.1 simonb sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
388 1.1 simonb sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
389 1.1 simonb sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
390 1.1 simonb
391 1.1 simonb sc->sc_txtap_len = sizeof sc->sc_txtapu;
392 1.1 simonb sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
393 1.1 simonb sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
394 1.1 simonb
395 1.1 simonb ieee80211_announce(ic);
396 1.1 simonb
397 1.1 simonb return;
398 1.1 simonb
399 1.61 jakllsch /* free allocated memory if something failed during attachment */
400 1.61 jakllsch fail4: wpi_free_tx_ring(sc, &sc->cmdq);
401 1.61 jakllsch fail3: while (--ac >= 0)
402 1.61 jakllsch wpi_free_tx_ring(sc, &sc->txq[ac]);
403 1.7 degroote wpi_free_rpool(sc);
404 1.12 degroote fail2: wpi_free_shared(sc);
405 1.12 degroote fail1: wpi_free_fwmem(sc);
406 1.1 simonb }
407 1.1 simonb
408 1.1 simonb static int
409 1.28 degroote wpi_detach(device_t self, int flags __unused)
410 1.1 simonb {
411 1.28 degroote struct wpi_softc *sc = device_private(self);
412 1.7 degroote struct ifnet *ifp = sc->sc_ic.ic_ifp;
413 1.1 simonb int ac;
414 1.1 simonb
415 1.1 simonb wpi_stop(ifp, 1);
416 1.1 simonb
417 1.1 simonb if (ifp != NULL)
418 1.47 joerg bpf_detach(ifp);
419 1.1 simonb ieee80211_ifdetach(&sc->sc_ic);
420 1.1 simonb if (ifp != NULL)
421 1.1 simonb if_detach(ifp);
422 1.1 simonb
423 1.1 simonb for (ac = 0; ac < 4; ac++)
424 1.1 simonb wpi_free_tx_ring(sc, &sc->txq[ac]);
425 1.1 simonb wpi_free_tx_ring(sc, &sc->cmdq);
426 1.1 simonb wpi_free_rx_ring(sc, &sc->rxq);
427 1.7 degroote wpi_free_rpool(sc);
428 1.1 simonb wpi_free_shared(sc);
429 1.1 simonb
430 1.1 simonb if (sc->sc_ih != NULL) {
431 1.1 simonb pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
432 1.1 simonb sc->sc_ih = NULL;
433 1.1 simonb }
434 1.70 bouyer mutex_enter(&sc->sc_rsw_mtx);
435 1.70 bouyer sc->sc_dying = 1;
436 1.70 bouyer cv_signal(&sc->sc_rsw_cv);
437 1.70 bouyer while (sc->sc_rsw_lwp != NULL)
438 1.70 bouyer cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
439 1.70 bouyer mutex_exit(&sc->sc_rsw_mtx);
440 1.70 bouyer sysmon_pswitch_unregister(&sc->sc_rsw);
441 1.1 simonb
442 1.1 simonb bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
443 1.1 simonb
444 1.41 joerg if (sc->fw_used) {
445 1.54 riastrad sc->fw_used = false;
446 1.54 riastrad wpi_release_firmware();
447 1.41 joerg }
448 1.70 bouyer cv_destroy(&sc->sc_rsw_cv);
449 1.70 bouyer mutex_destroy(&sc->sc_rsw_mtx);
450 1.1 simonb return 0;
451 1.1 simonb }
452 1.1 simonb
453 1.1 simonb static int
454 1.61 jakllsch wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
455 1.61 jakllsch bus_size_t size, bus_size_t alignment, int flags)
456 1.1 simonb {
457 1.1 simonb int nsegs, error;
458 1.1 simonb
459 1.7 degroote dma->tag = tag;
460 1.1 simonb dma->size = size;
461 1.1 simonb
462 1.7 degroote error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
463 1.7 degroote if (error != 0)
464 1.1 simonb goto fail;
465 1.1 simonb
466 1.7 degroote error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
467 1.7 degroote flags);
468 1.7 degroote if (error != 0)
469 1.1 simonb goto fail;
470 1.1 simonb
471 1.7 degroote error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
472 1.7 degroote if (error != 0)
473 1.1 simonb goto fail;
474 1.1 simonb
475 1.7 degroote error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
476 1.7 degroote if (error != 0)
477 1.1 simonb goto fail;
478 1.1 simonb
479 1.1 simonb memset(dma->vaddr, 0, size);
480 1.63 jmcneill bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
481 1.1 simonb
482 1.1 simonb dma->paddr = dma->map->dm_segs[0].ds_addr;
483 1.7 degroote if (kvap != NULL)
484 1.7 degroote *kvap = dma->vaddr;
485 1.1 simonb
486 1.1 simonb return 0;
487 1.1 simonb
488 1.61 jakllsch fail: wpi_dma_contig_free(dma);
489 1.1 simonb return error;
490 1.1 simonb }
491 1.1 simonb
492 1.1 simonb static void
493 1.7 degroote wpi_dma_contig_free(struct wpi_dma_info *dma)
494 1.1 simonb {
495 1.1 simonb if (dma->map != NULL) {
496 1.1 simonb if (dma->vaddr != NULL) {
497 1.7 degroote bus_dmamap_unload(dma->tag, dma->map);
498 1.7 degroote bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
499 1.7 degroote bus_dmamem_free(dma->tag, &dma->seg, 1);
500 1.1 simonb dma->vaddr = NULL;
501 1.1 simonb }
502 1.7 degroote bus_dmamap_destroy(dma->tag, dma->map);
503 1.1 simonb dma->map = NULL;
504 1.1 simonb }
505 1.1 simonb }
506 1.1 simonb
507 1.1 simonb /*
508 1.1 simonb * Allocate a shared page between host and NIC.
509 1.1 simonb */
510 1.1 simonb static int
511 1.1 simonb wpi_alloc_shared(struct wpi_softc *sc)
512 1.1 simonb {
513 1.1 simonb int error;
514 1.61 jakllsch
515 1.1 simonb /* must be aligned on a 4K-page boundary */
516 1.7 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
517 1.61 jakllsch (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
518 1.61 jakllsch BUS_DMA_NOWAIT);
519 1.1 simonb if (error != 0)
520 1.28 degroote aprint_error_dev(sc->sc_dev,
521 1.61 jakllsch "could not allocate shared area DMA memory\n");
522 1.1 simonb
523 1.1 simonb return error;
524 1.1 simonb }
525 1.1 simonb
526 1.1 simonb static void
527 1.1 simonb wpi_free_shared(struct wpi_softc *sc)
528 1.1 simonb {
529 1.7 degroote wpi_dma_contig_free(&sc->shared_dma);
530 1.7 degroote }
531 1.7 degroote
532 1.12 degroote /*
533 1.12 degroote * Allocate DMA-safe memory for firmware transfer.
534 1.12 degroote */
535 1.12 degroote static int
536 1.12 degroote wpi_alloc_fwmem(struct wpi_softc *sc)
537 1.12 degroote {
538 1.12 degroote int error;
539 1.61 jakllsch
540 1.12 degroote /* allocate enough contiguous space to store text and data */
541 1.12 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
542 1.12 degroote WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
543 1.12 degroote BUS_DMA_NOWAIT);
544 1.12 degroote
545 1.12 degroote if (error != 0)
546 1.28 degroote aprint_error_dev(sc->sc_dev,
547 1.61 jakllsch "could not allocate firmware transfer area DMA memory\n");
548 1.12 degroote return error;
549 1.12 degroote }
550 1.12 degroote
551 1.12 degroote static void
552 1.12 degroote wpi_free_fwmem(struct wpi_softc *sc)
553 1.12 degroote {
554 1.12 degroote wpi_dma_contig_free(&sc->fw_dma);
555 1.12 degroote }
556 1.12 degroote
557 1.7 degroote static struct wpi_rbuf *
558 1.7 degroote wpi_alloc_rbuf(struct wpi_softc *sc)
559 1.7 degroote {
560 1.7 degroote struct wpi_rbuf *rbuf;
561 1.7 degroote
562 1.39 cube mutex_enter(&sc->rxq.freelist_mtx);
563 1.7 degroote rbuf = SLIST_FIRST(&sc->rxq.freelist);
564 1.39 cube if (rbuf != NULL) {
565 1.39 cube SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
566 1.39 cube }
567 1.39 cube mutex_exit(&sc->rxq.freelist_mtx);
568 1.10 degroote
569 1.7 degroote return rbuf;
570 1.7 degroote }
571 1.7 degroote
572 1.7 degroote /*
573 1.7 degroote * This is called automatically by the network stack when the mbuf to which our
574 1.7 degroote * Rx buffer is attached is freed.
575 1.7 degroote */
576 1.7 degroote static void
577 1.9 christos wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
578 1.7 degroote {
579 1.7 degroote struct wpi_rbuf *rbuf = arg;
580 1.7 degroote struct wpi_softc *sc = rbuf->sc;
581 1.7 degroote
582 1.7 degroote /* put the buffer back in the free list */
583 1.10 degroote
584 1.39 cube mutex_enter(&sc->rxq.freelist_mtx);
585 1.7 degroote SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
586 1.39 cube mutex_exit(&sc->rxq.freelist_mtx);
587 1.7 degroote
588 1.27 ad if (__predict_true(m != NULL))
589 1.27 ad pool_cache_put(mb_cache, m);
590 1.7 degroote }
591 1.7 degroote
592 1.7 degroote static int
593 1.7 degroote wpi_alloc_rpool(struct wpi_softc *sc)
594 1.7 degroote {
595 1.7 degroote struct wpi_rx_ring *ring = &sc->rxq;
596 1.7 degroote int i, error;
597 1.7 degroote
598 1.7 degroote /* allocate a big chunk of DMA'able memory.. */
599 1.7 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
600 1.7 degroote WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
601 1.7 degroote if (error != 0) {
602 1.61 jakllsch aprint_normal_dev(sc->sc_dev,
603 1.61 jakllsch "could not allocate Rx buffers DMA memory\n");
604 1.28 degroote return error;
605 1.7 degroote }
606 1.7 degroote
607 1.7 degroote /* ..and split it into 3KB chunks */
608 1.39 cube mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
609 1.7 degroote SLIST_INIT(&ring->freelist);
610 1.7 degroote for (i = 0; i < WPI_RBUF_COUNT; i++) {
611 1.61 jakllsch struct wpi_rbuf *rbuf = &ring->rbuf[i];
612 1.61 jakllsch
613 1.7 degroote rbuf->sc = sc; /* backpointer for callbacks */
614 1.9 christos rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
615 1.7 degroote rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
616 1.7 degroote
617 1.7 degroote SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
618 1.7 degroote }
619 1.10 degroote
620 1.7 degroote return 0;
621 1.7 degroote }
622 1.7 degroote
623 1.7 degroote static void
624 1.7 degroote wpi_free_rpool(struct wpi_softc *sc)
625 1.7 degroote {
626 1.7 degroote wpi_dma_contig_free(&sc->rxq.buf_dma);
627 1.1 simonb }
628 1.1 simonb
629 1.1 simonb static int
630 1.1 simonb wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
631 1.1 simonb {
632 1.63 jmcneill bus_size_t size;
633 1.1 simonb int i, error;
634 1.1 simonb
635 1.1 simonb ring->cur = 0;
636 1.1 simonb
637 1.63 jmcneill size = WPI_RX_RING_COUNT * sizeof (uint32_t);
638 1.7 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
639 1.63 jmcneill (void **)&ring->desc, size,
640 1.59 jakllsch WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
641 1.1 simonb if (error != 0) {
642 1.61 jakllsch aprint_error_dev(sc->sc_dev,
643 1.61 jakllsch "could not allocate rx ring DMA memory\n");
644 1.1 simonb goto fail;
645 1.1 simonb }
646 1.1 simonb
647 1.1 simonb /*
648 1.7 degroote * Setup Rx buffers.
649 1.1 simonb */
650 1.1 simonb for (i = 0; i < WPI_RX_RING_COUNT; i++) {
651 1.61 jakllsch struct wpi_rx_data *data = &ring->data[i];
652 1.61 jakllsch struct wpi_rbuf *rbuf;
653 1.1 simonb
654 1.64 jmcneill error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
655 1.64 jmcneill WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
656 1.64 jmcneill if (error) {
657 1.64 jmcneill aprint_error_dev(sc->sc_dev,
658 1.64 jmcneill "could not allocate rx dma map\n");
659 1.64 jmcneill goto fail;
660 1.64 jmcneill }
661 1.64 jmcneill
662 1.1 simonb MGETHDR(data->m, M_DONTWAIT, MT_DATA);
663 1.1 simonb if (data->m == NULL) {
664 1.61 jakllsch aprint_error_dev(sc->sc_dev,
665 1.61 jakllsch "could not allocate rx mbuf\n");
666 1.1 simonb error = ENOMEM;
667 1.1 simonb goto fail;
668 1.1 simonb }
669 1.7 degroote if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
670 1.1 simonb m_freem(data->m);
671 1.1 simonb data->m = NULL;
672 1.61 jakllsch aprint_error_dev(sc->sc_dev,
673 1.61 jakllsch "could not allocate rx cluster\n");
674 1.1 simonb error = ENOMEM;
675 1.1 simonb goto fail;
676 1.1 simonb }
677 1.7 degroote /* attach Rx buffer to mbuf */
678 1.7 degroote MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
679 1.7 degroote rbuf);
680 1.7 degroote data->m->m_flags |= M_EXT_RW;
681 1.1 simonb
682 1.64 jmcneill error = bus_dmamap_load(sc->sc_dmat, data->map,
683 1.64 jmcneill mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
684 1.64 jmcneill BUS_DMA_NOWAIT | BUS_DMA_READ);
685 1.64 jmcneill if (error) {
686 1.64 jmcneill aprint_error_dev(sc->sc_dev,
687 1.64 jmcneill "could not load mbuf: %d\n", error);
688 1.64 jmcneill goto fail;
689 1.64 jmcneill }
690 1.64 jmcneill
691 1.7 degroote ring->desc[i] = htole32(rbuf->paddr);
692 1.1 simonb }
693 1.1 simonb
694 1.63 jmcneill bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
695 1.63 jmcneill BUS_DMASYNC_PREWRITE);
696 1.63 jmcneill
697 1.1 simonb return 0;
698 1.1 simonb
699 1.1 simonb fail: wpi_free_rx_ring(sc, ring);
700 1.1 simonb return error;
701 1.1 simonb }
702 1.1 simonb
703 1.1 simonb static void
704 1.1 simonb wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
705 1.1 simonb {
706 1.1 simonb int ntries;
707 1.1 simonb
708 1.1 simonb wpi_mem_lock(sc);
709 1.1 simonb
710 1.1 simonb WPI_WRITE(sc, WPI_RX_CONFIG, 0);
711 1.1 simonb for (ntries = 0; ntries < 100; ntries++) {
712 1.1 simonb if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
713 1.1 simonb break;
714 1.1 simonb DELAY(10);
715 1.1 simonb }
716 1.1 simonb #ifdef WPI_DEBUG
717 1.1 simonb if (ntries == 100 && wpi_debug > 0)
718 1.28 degroote aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
719 1.1 simonb #endif
720 1.1 simonb wpi_mem_unlock(sc);
721 1.1 simonb
722 1.1 simonb ring->cur = 0;
723 1.1 simonb }
724 1.1 simonb
725 1.1 simonb static void
726 1.1 simonb wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
727 1.1 simonb {
728 1.1 simonb int i;
729 1.1 simonb
730 1.7 degroote wpi_dma_contig_free(&ring->desc_dma);
731 1.1 simonb
732 1.1 simonb for (i = 0; i < WPI_RX_RING_COUNT; i++) {
733 1.64 jmcneill if (ring->data[i].m != NULL) {
734 1.64 jmcneill bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
735 1.7 degroote m_freem(ring->data[i].m);
736 1.64 jmcneill }
737 1.64 jmcneill if (ring->data[i].map != NULL) {
738 1.64 jmcneill bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
739 1.64 jmcneill }
740 1.1 simonb }
741 1.1 simonb }
742 1.1 simonb
743 1.1 simonb static int
744 1.1 simonb wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
745 1.61 jakllsch int qid)
746 1.1 simonb {
747 1.1 simonb int i, error;
748 1.1 simonb
749 1.1 simonb ring->qid = qid;
750 1.1 simonb ring->count = count;
751 1.1 simonb ring->queued = 0;
752 1.1 simonb ring->cur = 0;
753 1.1 simonb
754 1.7 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
755 1.61 jakllsch (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
756 1.61 jakllsch WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
757 1.1 simonb if (error != 0) {
758 1.61 jakllsch aprint_error_dev(sc->sc_dev,
759 1.61 jakllsch "could not allocate tx ring DMA memory\n");
760 1.1 simonb goto fail;
761 1.1 simonb }
762 1.1 simonb
763 1.1 simonb /* update shared page with ring's base address */
764 1.1 simonb sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
765 1.63 jmcneill bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
766 1.63 jmcneill sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
767 1.1 simonb
768 1.7 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
769 1.61 jakllsch (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
770 1.61 jakllsch BUS_DMA_NOWAIT);
771 1.1 simonb if (error != 0) {
772 1.61 jakllsch aprint_error_dev(sc->sc_dev,
773 1.61 jakllsch "could not allocate tx cmd DMA memory\n");
774 1.1 simonb goto fail;
775 1.1 simonb }
776 1.1 simonb
777 1.1 simonb ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
778 1.62 jakllsch M_NOWAIT | M_ZERO);
779 1.1 simonb if (ring->data == NULL) {
780 1.61 jakllsch aprint_error_dev(sc->sc_dev,
781 1.61 jakllsch "could not allocate tx data slots\n");
782 1.1 simonb goto fail;
783 1.1 simonb }
784 1.1 simonb
785 1.1 simonb for (i = 0; i < count; i++) {
786 1.61 jakllsch struct wpi_tx_data *data = &ring->data[i];
787 1.1 simonb
788 1.1 simonb error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
789 1.61 jakllsch WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
790 1.61 jakllsch &data->map);
791 1.1 simonb if (error != 0) {
792 1.61 jakllsch aprint_error_dev(sc->sc_dev,
793 1.61 jakllsch "could not create tx buf DMA map\n");
794 1.1 simonb goto fail;
795 1.1 simonb }
796 1.1 simonb }
797 1.1 simonb
798 1.1 simonb return 0;
799 1.1 simonb
800 1.1 simonb fail: wpi_free_tx_ring(sc, ring);
801 1.1 simonb return error;
802 1.1 simonb }
803 1.1 simonb
804 1.1 simonb static void
805 1.1 simonb wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
806 1.1 simonb {
807 1.1 simonb int i, ntries;
808 1.1 simonb
809 1.1 simonb wpi_mem_lock(sc);
810 1.1 simonb
811 1.1 simonb WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
812 1.1 simonb for (ntries = 0; ntries < 100; ntries++) {
813 1.1 simonb if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
814 1.1 simonb break;
815 1.1 simonb DELAY(10);
816 1.1 simonb }
817 1.1 simonb #ifdef WPI_DEBUG
818 1.1 simonb if (ntries == 100 && wpi_debug > 0) {
819 1.28 degroote aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
820 1.59 jakllsch ring->qid);
821 1.1 simonb }
822 1.1 simonb #endif
823 1.1 simonb wpi_mem_unlock(sc);
824 1.1 simonb
825 1.1 simonb for (i = 0; i < ring->count; i++) {
826 1.61 jakllsch struct wpi_tx_data *data = &ring->data[i];
827 1.1 simonb
828 1.1 simonb if (data->m != NULL) {
829 1.1 simonb bus_dmamap_unload(sc->sc_dmat, data->map);
830 1.1 simonb m_freem(data->m);
831 1.1 simonb data->m = NULL;
832 1.1 simonb }
833 1.1 simonb }
834 1.1 simonb
835 1.1 simonb ring->queued = 0;
836 1.1 simonb ring->cur = 0;
837 1.1 simonb }
838 1.1 simonb
839 1.1 simonb static void
840 1.1 simonb wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
841 1.1 simonb {
842 1.1 simonb int i;
843 1.1 simonb
844 1.7 degroote wpi_dma_contig_free(&ring->desc_dma);
845 1.7 degroote wpi_dma_contig_free(&ring->cmd_dma);
846 1.1 simonb
847 1.1 simonb if (ring->data != NULL) {
848 1.1 simonb for (i = 0; i < ring->count; i++) {
849 1.61 jakllsch struct wpi_tx_data *data = &ring->data[i];
850 1.1 simonb
851 1.1 simonb if (data->m != NULL) {
852 1.1 simonb bus_dmamap_unload(sc->sc_dmat, data->map);
853 1.1 simonb m_freem(data->m);
854 1.1 simonb }
855 1.1 simonb }
856 1.1 simonb free(ring->data, M_DEVBUF);
857 1.1 simonb }
858 1.1 simonb }
859 1.1 simonb
860 1.1 simonb /*ARGUSED*/
861 1.1 simonb static struct ieee80211_node *
862 1.7 degroote wpi_node_alloc(struct ieee80211_node_table *nt __unused)
863 1.1 simonb {
864 1.5 joerg struct wpi_node *wn;
865 1.1 simonb
866 1.35 simonb wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
867 1.5 joerg
868 1.5 joerg return (struct ieee80211_node *)wn;
869 1.1 simonb }
870 1.1 simonb
871 1.12 degroote static void
872 1.12 degroote wpi_newassoc(struct ieee80211_node *ni, int isnew)
873 1.12 degroote {
874 1.12 degroote struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
875 1.12 degroote int i;
876 1.12 degroote
877 1.12 degroote ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
878 1.12 degroote
879 1.12 degroote /* set rate to some reasonable initial value */
880 1.12 degroote for (i = ni->ni_rates.rs_nrates - 1;
881 1.12 degroote i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
882 1.12 degroote i--);
883 1.12 degroote ni->ni_txrate = i;
884 1.12 degroote }
885 1.12 degroote
886 1.1 simonb static int
887 1.1 simonb wpi_media_change(struct ifnet *ifp)
888 1.1 simonb {
889 1.1 simonb int error;
890 1.1 simonb
891 1.1 simonb error = ieee80211_media_change(ifp);
892 1.1 simonb if (error != ENETRESET)
893 1.1 simonb return error;
894 1.1 simonb
895 1.1 simonb if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
896 1.1 simonb wpi_init(ifp);
897 1.1 simonb
898 1.1 simonb return 0;
899 1.1 simonb }
900 1.1 simonb
901 1.1 simonb static int
902 1.1 simonb wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
903 1.1 simonb {
904 1.1 simonb struct ifnet *ifp = ic->ic_ifp;
905 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
906 1.12 degroote struct ieee80211_node *ni;
907 1.67 jmcneill enum ieee80211_state ostate = ic->ic_state;
908 1.1 simonb int error;
909 1.1 simonb
910 1.12 degroote callout_stop(&sc->calib_to);
911 1.1 simonb
912 1.1 simonb switch (nstate) {
913 1.1 simonb case IEEE80211_S_SCAN:
914 1.55 christos
915 1.23 degroote if (sc->is_scanning)
916 1.23 degroote break;
917 1.23 degroote
918 1.23 degroote sc->is_scanning = true;
919 1.1 simonb
920 1.67 jmcneill if (ostate != IEEE80211_S_SCAN) {
921 1.67 jmcneill /* make the link LED blink while we're scanning */
922 1.67 jmcneill wpi_set_led(sc, WPI_LED_LINK, 20, 2);
923 1.67 jmcneill }
924 1.1 simonb
925 1.67 jmcneill if ((error = wpi_scan(sc)) != 0) {
926 1.61 jakllsch aprint_error_dev(sc->sc_dev,
927 1.61 jakllsch "could not initiate scan\n");
928 1.1 simonb return error;
929 1.1 simonb }
930 1.67 jmcneill break;
931 1.1 simonb
932 1.7 degroote case IEEE80211_S_ASSOC:
933 1.7 degroote if (ic->ic_state != IEEE80211_S_RUN)
934 1.7 degroote break;
935 1.7 degroote /* FALLTHROUGH */
936 1.1 simonb case IEEE80211_S_AUTH:
937 1.61 jakllsch /* reset state to handle reassociations correctly */
938 1.12 degroote sc->config.associd = 0;
939 1.1 simonb sc->config.filter &= ~htole32(WPI_FILTER_BSS);
940 1.61 jakllsch
941 1.1 simonb if ((error = wpi_auth(sc)) != 0) {
942 1.55 christos aprint_error_dev(sc->sc_dev,
943 1.59 jakllsch "could not send authentication request\n");
944 1.1 simonb return error;
945 1.1 simonb }
946 1.1 simonb break;
947 1.1 simonb
948 1.1 simonb case IEEE80211_S_RUN:
949 1.1 simonb if (ic->ic_opmode == IEEE80211_M_MONITOR) {
950 1.1 simonb /* link LED blinks while monitoring */
951 1.1 simonb wpi_set_led(sc, WPI_LED_LINK, 5, 5);
952 1.1 simonb break;
953 1.1 simonb }
954 1.12 degroote ni = ic->ic_bss;
955 1.1 simonb
956 1.1 simonb if (ic->ic_opmode != IEEE80211_M_STA) {
957 1.1 simonb (void) wpi_auth(sc); /* XXX */
958 1.12 degroote wpi_setup_beacon(sc, ni);
959 1.1 simonb }
960 1.1 simonb
961 1.12 degroote wpi_enable_tsf(sc, ni);
962 1.1 simonb
963 1.1 simonb /* update adapter's configuration */
964 1.12 degroote sc->config.associd = htole16(ni->ni_associd & ~0xc000);
965 1.1 simonb /* short preamble/slot time are negotiated when associating */
966 1.1 simonb sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
967 1.61 jakllsch WPI_CONFIG_SHSLOT);
968 1.1 simonb if (ic->ic_flags & IEEE80211_F_SHSLOT)
969 1.1 simonb sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
970 1.1 simonb if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
971 1.1 simonb sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
972 1.1 simonb sc->config.filter |= htole32(WPI_FILTER_BSS);
973 1.1 simonb if (ic->ic_opmode != IEEE80211_M_STA)
974 1.1 simonb sc->config.filter |= htole32(WPI_FILTER_BEACON);
975 1.1 simonb
976 1.1 simonb /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
977 1.1 simonb
978 1.1 simonb DPRINTF(("config chan %d flags %x\n", sc->config.chan,
979 1.61 jakllsch sc->config.flags));
980 1.1 simonb error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
981 1.61 jakllsch sizeof (struct wpi_config), 1);
982 1.1 simonb if (error != 0) {
983 1.61 jakllsch aprint_error_dev(sc->sc_dev,
984 1.61 jakllsch "could not update configuration\n");
985 1.1 simonb return error;
986 1.1 simonb }
987 1.1 simonb
988 1.12 degroote /* configuration has changed, set Tx power accordingly */
989 1.66 jmcneill if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
990 1.61 jakllsch aprint_error_dev(sc->sc_dev,
991 1.61 jakllsch "could not set Tx power\n");
992 1.12 degroote return error;
993 1.12 degroote }
994 1.12 degroote
995 1.5 joerg if (ic->ic_opmode == IEEE80211_M_STA) {
996 1.5 joerg /* fake a join to init the tx rate */
997 1.12 degroote wpi_newassoc(ni, 1);
998 1.5 joerg }
999 1.5 joerg
1000 1.12 degroote /* start periodic calibration timer */
1001 1.12 degroote sc->calib_cnt = 0;
1002 1.28 degroote callout_schedule(&sc->calib_to, hz/2);
1003 1.1 simonb
1004 1.1 simonb /* link LED always on while associated */
1005 1.1 simonb wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1006 1.1 simonb break;
1007 1.1 simonb
1008 1.1 simonb case IEEE80211_S_INIT:
1009 1.23 degroote sc->is_scanning = false;
1010 1.1 simonb break;
1011 1.1 simonb }
1012 1.1 simonb
1013 1.1 simonb return sc->sc_newstate(ic, nstate, arg);
1014 1.1 simonb }
1015 1.1 simonb
1016 1.1 simonb /*
1017 1.1 simonb * Grab exclusive access to NIC memory.
1018 1.1 simonb */
1019 1.1 simonb static void
1020 1.1 simonb wpi_mem_lock(struct wpi_softc *sc)
1021 1.1 simonb {
1022 1.1 simonb uint32_t tmp;
1023 1.1 simonb int ntries;
1024 1.1 simonb
1025 1.1 simonb tmp = WPI_READ(sc, WPI_GPIO_CTL);
1026 1.1 simonb WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1027 1.1 simonb
1028 1.1 simonb /* spin until we actually get the lock */
1029 1.1 simonb for (ntries = 0; ntries < 1000; ntries++) {
1030 1.1 simonb if ((WPI_READ(sc, WPI_GPIO_CTL) &
1031 1.61 jakllsch (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1032 1.1 simonb break;
1033 1.1 simonb DELAY(10);
1034 1.1 simonb }
1035 1.1 simonb if (ntries == 1000)
1036 1.28 degroote aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1037 1.1 simonb }
1038 1.1 simonb
1039 1.1 simonb /*
1040 1.1 simonb * Release lock on NIC memory.
1041 1.1 simonb */
1042 1.1 simonb static void
1043 1.1 simonb wpi_mem_unlock(struct wpi_softc *sc)
1044 1.1 simonb {
1045 1.1 simonb uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1046 1.1 simonb WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1047 1.1 simonb }
1048 1.1 simonb
1049 1.1 simonb static uint32_t
1050 1.1 simonb wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1051 1.1 simonb {
1052 1.1 simonb WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1053 1.1 simonb return WPI_READ(sc, WPI_READ_MEM_DATA);
1054 1.1 simonb }
1055 1.1 simonb
1056 1.1 simonb static void
1057 1.1 simonb wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1058 1.1 simonb {
1059 1.1 simonb WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1060 1.1 simonb WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1061 1.1 simonb }
1062 1.1 simonb
1063 1.17 degroote static void
1064 1.17 degroote wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1065 1.59 jakllsch const uint32_t *data, int wlen)
1066 1.17 degroote {
1067 1.17 degroote for (; wlen > 0; wlen--, data++, addr += 4)
1068 1.17 degroote wpi_mem_write(sc, addr, *data);
1069 1.17 degroote }
1070 1.59 jakllsch
1071 1.1 simonb /*
1072 1.12 degroote * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1073 1.12 degroote * instead of using the traditional bit-bang method.
1074 1.1 simonb */
1075 1.12 degroote static int
1076 1.12 degroote wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1077 1.1 simonb {
1078 1.12 degroote uint8_t *out = data;
1079 1.12 degroote uint32_t val;
1080 1.1 simonb int ntries;
1081 1.1 simonb
1082 1.12 degroote wpi_mem_lock(sc);
1083 1.12 degroote for (; len > 0; len -= 2, addr++) {
1084 1.12 degroote WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1085 1.1 simonb
1086 1.12 degroote for (ntries = 0; ntries < 10; ntries++) {
1087 1.12 degroote if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1088 1.12 degroote WPI_EEPROM_READY)
1089 1.12 degroote break;
1090 1.12 degroote DELAY(5);
1091 1.12 degroote }
1092 1.12 degroote if (ntries == 10) {
1093 1.28 degroote aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1094 1.12 degroote return ETIMEDOUT;
1095 1.12 degroote }
1096 1.12 degroote *out++ = val >> 16;
1097 1.12 degroote if (len > 1)
1098 1.12 degroote *out++ = val >> 24;
1099 1.1 simonb }
1100 1.1 simonb wpi_mem_unlock(sc);
1101 1.1 simonb
1102 1.12 degroote return 0;
1103 1.1 simonb }
1104 1.1 simonb
1105 1.17 degroote /*
1106 1.17 degroote * The firmware boot code is small and is intended to be copied directly into
1107 1.17 degroote * the NIC internal memory.
1108 1.17 degroote */
1109 1.17 degroote int
1110 1.17 degroote wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1111 1.1 simonb {
1112 1.17 degroote int ntries;
1113 1.1 simonb
1114 1.17 degroote size /= sizeof (uint32_t);
1115 1.1 simonb
1116 1.17 degroote wpi_mem_lock(sc);
1117 1.12 degroote
1118 1.17 degroote /* copy microcode image into NIC memory */
1119 1.17 degroote wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1120 1.17 degroote (const uint32_t *)ucode, size);
1121 1.17 degroote
1122 1.17 degroote wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1123 1.17 degroote wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1124 1.17 degroote wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1125 1.12 degroote
1126 1.17 degroote /* run microcode */
1127 1.17 degroote wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1128 1.12 degroote
1129 1.17 degroote /* wait for transfer to complete */
1130 1.17 degroote for (ntries = 0; ntries < 1000; ntries++) {
1131 1.17 degroote if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1132 1.12 degroote break;
1133 1.17 degroote DELAY(10);
1134 1.12 degroote }
1135 1.17 degroote if (ntries == 1000) {
1136 1.17 degroote wpi_mem_unlock(sc);
1137 1.28 degroote aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1138 1.17 degroote return ETIMEDOUT;
1139 1.12 degroote }
1140 1.17 degroote wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1141 1.12 degroote
1142 1.17 degroote wpi_mem_unlock(sc);
1143 1.1 simonb
1144 1.17 degroote return 0;
1145 1.1 simonb }
1146 1.1 simonb
1147 1.1 simonb static int
1148 1.41 joerg wpi_cache_firmware(struct wpi_softc *sc)
1149 1.1 simonb {
1150 1.54 riastrad const char *const fwname = wpi_firmware_name;
1151 1.12 degroote firmware_handle_t fw;
1152 1.12 degroote int error;
1153 1.1 simonb
1154 1.54 riastrad /* sc is used here only to report error messages. */
1155 1.41 joerg
1156 1.41 joerg mutex_enter(&wpi_firmware_mutex);
1157 1.54 riastrad
1158 1.54 riastrad if (wpi_firmware_users == SIZE_MAX) {
1159 1.54 riastrad mutex_exit(&wpi_firmware_mutex);
1160 1.54 riastrad return ENFILE; /* Too many of something in the system... */
1161 1.54 riastrad }
1162 1.41 joerg if (wpi_firmware_users++) {
1163 1.54 riastrad KASSERT(wpi_firmware_image != NULL);
1164 1.54 riastrad KASSERT(wpi_firmware_size > 0);
1165 1.41 joerg mutex_exit(&wpi_firmware_mutex);
1166 1.54 riastrad return 0; /* Already good to go. */
1167 1.41 joerg }
1168 1.41 joerg
1169 1.54 riastrad KASSERT(wpi_firmware_image == NULL);
1170 1.54 riastrad KASSERT(wpi_firmware_size == 0);
1171 1.54 riastrad
1172 1.12 degroote /* load firmware image from disk */
1173 1.54 riastrad if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1174 1.54 riastrad aprint_error_dev(sc->sc_dev,
1175 1.54 riastrad "could not open firmware file %s: %d\n", fwname, error);
1176 1.53 riastrad goto fail0;
1177 1.1 simonb }
1178 1.12 degroote
1179 1.41 joerg wpi_firmware_size = firmware_get_size(fw);
1180 1.41 joerg
1181 1.41 joerg if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1182 1.41 joerg WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1183 1.41 joerg WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1184 1.41 joerg WPI_FW_BOOT_TEXT_MAXSZ) {
1185 1.54 riastrad aprint_error_dev(sc->sc_dev,
1186 1.54 riastrad "firmware file %s too large: %zu bytes\n",
1187 1.54 riastrad fwname, wpi_firmware_size);
1188 1.41 joerg error = EFBIG;
1189 1.41 joerg goto fail1;
1190 1.41 joerg }
1191 1.41 joerg
1192 1.41 joerg if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1193 1.41 joerg aprint_error_dev(sc->sc_dev,
1194 1.54 riastrad "firmware file %s too small: %zu bytes\n",
1195 1.54 riastrad fwname, wpi_firmware_size);
1196 1.12 degroote error = EINVAL;
1197 1.54 riastrad goto fail1;
1198 1.12 degroote }
1199 1.1 simonb
1200 1.41 joerg wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1201 1.41 joerg if (wpi_firmware_image == NULL) {
1202 1.54 riastrad aprint_error_dev(sc->sc_dev,
1203 1.54 riastrad "not enough memory for firmware file %s\n", fwname);
1204 1.41 joerg error = ENOMEM;
1205 1.41 joerg goto fail1;
1206 1.41 joerg }
1207 1.41 joerg
1208 1.54 riastrad error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1209 1.54 riastrad if (error != 0) {
1210 1.54 riastrad aprint_error_dev(sc->sc_dev,
1211 1.54 riastrad "error reading firmware file %s: %d\n", fwname, error);
1212 1.1 simonb goto fail2;
1213 1.1 simonb }
1214 1.1 simonb
1215 1.54 riastrad /* Success! */
1216 1.41 joerg firmware_close(fw);
1217 1.41 joerg mutex_exit(&wpi_firmware_mutex);
1218 1.41 joerg return 0;
1219 1.41 joerg
1220 1.41 joerg fail2:
1221 1.41 joerg firmware_free(wpi_firmware_image, wpi_firmware_size);
1222 1.54 riastrad wpi_firmware_image = NULL;
1223 1.41 joerg fail1:
1224 1.54 riastrad wpi_firmware_size = 0;
1225 1.41 joerg firmware_close(fw);
1226 1.53 riastrad fail0:
1227 1.54 riastrad KASSERT(wpi_firmware_users == 1);
1228 1.54 riastrad wpi_firmware_users = 0;
1229 1.54 riastrad KASSERT(wpi_firmware_image == NULL);
1230 1.54 riastrad KASSERT(wpi_firmware_size == 0);
1231 1.54 riastrad
1232 1.41 joerg mutex_exit(&wpi_firmware_mutex);
1233 1.41 joerg return error;
1234 1.41 joerg }
1235 1.41 joerg
1236 1.54 riastrad static void
1237 1.54 riastrad wpi_release_firmware(void)
1238 1.54 riastrad {
1239 1.54 riastrad
1240 1.54 riastrad mutex_enter(&wpi_firmware_mutex);
1241 1.54 riastrad
1242 1.54 riastrad KASSERT(wpi_firmware_users > 0);
1243 1.54 riastrad KASSERT(wpi_firmware_image != NULL);
1244 1.54 riastrad KASSERT(wpi_firmware_size != 0);
1245 1.54 riastrad
1246 1.54 riastrad if (--wpi_firmware_users == 0) {
1247 1.54 riastrad firmware_free(wpi_firmware_image, wpi_firmware_size);
1248 1.54 riastrad wpi_firmware_image = NULL;
1249 1.54 riastrad wpi_firmware_size = 0;
1250 1.54 riastrad }
1251 1.54 riastrad
1252 1.54 riastrad mutex_exit(&wpi_firmware_mutex);
1253 1.54 riastrad }
1254 1.54 riastrad
1255 1.41 joerg static int
1256 1.41 joerg wpi_load_firmware(struct wpi_softc *sc)
1257 1.41 joerg {
1258 1.41 joerg struct wpi_dma_info *dma = &sc->fw_dma;
1259 1.41 joerg struct wpi_firmware_hdr hdr;
1260 1.41 joerg const uint8_t *init_text, *init_data, *main_text, *main_data;
1261 1.41 joerg const uint8_t *boot_text;
1262 1.41 joerg uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1263 1.41 joerg uint32_t boot_textsz;
1264 1.54 riastrad size_t size;
1265 1.41 joerg int error;
1266 1.41 joerg
1267 1.54 riastrad if (!sc->fw_used) {
1268 1.54 riastrad if ((error = wpi_cache_firmware(sc)) != 0)
1269 1.54 riastrad return error;
1270 1.54 riastrad sc->fw_used = true;
1271 1.54 riastrad }
1272 1.54 riastrad
1273 1.54 riastrad KASSERT(sc->fw_used);
1274 1.54 riastrad KASSERT(wpi_firmware_image != NULL);
1275 1.54 riastrad KASSERT(wpi_firmware_size > sizeof(hdr));
1276 1.41 joerg
1277 1.41 joerg memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1278 1.41 joerg
1279 1.12 degroote main_textsz = le32toh(hdr.main_textsz);
1280 1.12 degroote main_datasz = le32toh(hdr.main_datasz);
1281 1.17 degroote init_textsz = le32toh(hdr.init_textsz);
1282 1.17 degroote init_datasz = le32toh(hdr.init_datasz);
1283 1.12 degroote boot_textsz = le32toh(hdr.boot_textsz);
1284 1.12 degroote
1285 1.17 degroote /* sanity-check firmware segments sizes */
1286 1.17 degroote if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1287 1.17 degroote main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1288 1.17 degroote init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1289 1.17 degroote init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1290 1.17 degroote boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1291 1.17 degroote (boot_textsz & 3) != 0) {
1292 1.28 degroote aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1293 1.12 degroote error = EINVAL;
1294 1.41 joerg goto free_firmware;
1295 1.12 degroote }
1296 1.12 degroote
1297 1.12 degroote /* check that all firmware segments are present */
1298 1.54 riastrad size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1299 1.54 riastrad main_datasz + init_textsz + init_datasz + boot_textsz;
1300 1.54 riastrad if (wpi_firmware_size < size) {
1301 1.41 joerg aprint_error_dev(sc->sc_dev,
1302 1.54 riastrad "firmware file truncated: %zu bytes, expected %zu bytes\n",
1303 1.54 riastrad wpi_firmware_size, size);
1304 1.12 degroote error = EINVAL;
1305 1.41 joerg goto free_firmware;
1306 1.1 simonb }
1307 1.1 simonb
1308 1.12 degroote /* get pointers to firmware segments */
1309 1.41 joerg main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1310 1.12 degroote main_data = main_text + main_textsz;
1311 1.17 degroote init_text = main_data + main_datasz;
1312 1.17 degroote init_data = init_text + init_textsz;
1313 1.17 degroote boot_text = init_data + init_datasz;
1314 1.17 degroote
1315 1.17 degroote /* copy initialization images into pre-allocated DMA-safe memory */
1316 1.17 degroote memcpy(dma->vaddr, init_data, init_datasz);
1317 1.54 riastrad memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1318 1.54 riastrad init_textsz);
1319 1.17 degroote
1320 1.63 jmcneill bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1321 1.63 jmcneill
1322 1.17 degroote /* tell adapter where to find initialization images */
1323 1.17 degroote wpi_mem_lock(sc);
1324 1.17 degroote wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1325 1.17 degroote wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1326 1.17 degroote wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1327 1.17 degroote dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1328 1.17 degroote wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1329 1.17 degroote wpi_mem_unlock(sc);
1330 1.1 simonb
1331 1.17 degroote /* load firmware boot code */
1332 1.17 degroote if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1333 1.28 degroote aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1334 1.41 joerg return error;
1335 1.12 degroote }
1336 1.1 simonb
1337 1.17 degroote /* now press "execute" ;-) */
1338 1.17 degroote WPI_WRITE(sc, WPI_RESET, 0);
1339 1.17 degroote
1340 1.59 jakllsch /* wait at most one second for first alive notification */
1341 1.17 degroote if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1342 1.17 degroote /* this isn't what was supposed to happen.. */
1343 1.54 riastrad aprint_error_dev(sc->sc_dev,
1344 1.41 joerg "timeout waiting for adapter to initialize\n");
1345 1.1 simonb }
1346 1.1 simonb
1347 1.17 degroote /* copy runtime images into pre-allocated DMA-safe memory */
1348 1.17 degroote memcpy(dma->vaddr, main_data, main_datasz);
1349 1.54 riastrad memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1350 1.54 riastrad main_textsz);
1351 1.12 degroote
1352 1.63 jmcneill bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1353 1.63 jmcneill
1354 1.17 degroote /* tell adapter where to find runtime images */
1355 1.1 simonb wpi_mem_lock(sc);
1356 1.17 degroote wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1357 1.17 degroote wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1358 1.17 degroote wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1359 1.17 degroote dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1360 1.17 degroote wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1361 1.12 degroote wpi_mem_unlock(sc);
1362 1.12 degroote
1363 1.17 degroote /* wait at most one second for second alive notification */
1364 1.12 degroote if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1365 1.12 degroote /* this isn't what was supposed to happen.. */
1366 1.54 riastrad aprint_error_dev(sc->sc_dev,
1367 1.41 joerg "timeout waiting for adapter to initialize\n");
1368 1.12 degroote }
1369 1.12 degroote
1370 1.41 joerg return error;
1371 1.17 degroote
1372 1.41 joerg free_firmware:
1373 1.41 joerg sc->fw_used = false;
1374 1.54 riastrad wpi_release_firmware();
1375 1.41 joerg return error;
1376 1.12 degroote }
1377 1.1 simonb
1378 1.12 degroote static void
1379 1.12 degroote wpi_calib_timeout(void *arg)
1380 1.12 degroote {
1381 1.12 degroote struct wpi_softc *sc = arg;
1382 1.12 degroote struct ieee80211com *ic = &sc->sc_ic;
1383 1.12 degroote int temp, s;
1384 1.1 simonb
1385 1.12 degroote /* automatic rate control triggered every 500ms */
1386 1.12 degroote if (ic->ic_fixed_rate == -1) {
1387 1.12 degroote s = splnet();
1388 1.12 degroote if (ic->ic_opmode == IEEE80211_M_STA)
1389 1.12 degroote wpi_iter_func(sc, ic->ic_bss);
1390 1.12 degroote else
1391 1.59 jakllsch ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1392 1.12 degroote splx(s);
1393 1.12 degroote }
1394 1.1 simonb
1395 1.12 degroote /* update sensor data */
1396 1.12 degroote temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1397 1.1 simonb
1398 1.12 degroote /* automatic power calibration every 60s */
1399 1.12 degroote if (++sc->calib_cnt >= 120) {
1400 1.12 degroote wpi_power_calibration(sc, temp);
1401 1.12 degroote sc->calib_cnt = 0;
1402 1.1 simonb }
1403 1.12 degroote
1404 1.28 degroote callout_schedule(&sc->calib_to, hz/2);
1405 1.12 degroote }
1406 1.12 degroote
1407 1.12 degroote static void
1408 1.12 degroote wpi_iter_func(void *arg, struct ieee80211_node *ni)
1409 1.12 degroote {
1410 1.12 degroote struct wpi_softc *sc = arg;
1411 1.12 degroote struct wpi_node *wn = (struct wpi_node *)ni;
1412 1.12 degroote
1413 1.12 degroote ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1414 1.12 degroote }
1415 1.12 degroote
1416 1.12 degroote /*
1417 1.12 degroote * This function is called periodically (every 60 seconds) to adjust output
1418 1.12 degroote * power to temperature changes.
1419 1.12 degroote */
1420 1.12 degroote void
1421 1.12 degroote wpi_power_calibration(struct wpi_softc *sc, int temp)
1422 1.12 degroote {
1423 1.12 degroote /* sanity-check read value */
1424 1.12 degroote if (temp < -260 || temp > 25) {
1425 1.12 degroote /* this can't be correct, ignore */
1426 1.12 degroote DPRINTF(("out-of-range temperature reported: %d\n", temp));
1427 1.12 degroote return;
1428 1.1 simonb }
1429 1.1 simonb
1430 1.12 degroote DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1431 1.12 degroote
1432 1.12 degroote /* adjust Tx power if need be */
1433 1.12 degroote if (abs(temp - sc->temp) <= 6)
1434 1.12 degroote return;
1435 1.1 simonb
1436 1.12 degroote sc->temp = temp;
1437 1.1 simonb
1438 1.66 jmcneill if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
1439 1.12 degroote /* just warn, too bad for the automatic calibration... */
1440 1.28 degroote aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1441 1.12 degroote }
1442 1.1 simonb }
1443 1.1 simonb
1444 1.1 simonb static void
1445 1.1 simonb wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1446 1.61 jakllsch struct wpi_rx_data *data)
1447 1.1 simonb {
1448 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
1449 1.1 simonb struct ifnet *ifp = ic->ic_ifp;
1450 1.1 simonb struct wpi_rx_ring *ring = &sc->rxq;
1451 1.1 simonb struct wpi_rx_stat *stat;
1452 1.1 simonb struct wpi_rx_head *head;
1453 1.1 simonb struct wpi_rx_tail *tail;
1454 1.7 degroote struct wpi_rbuf *rbuf;
1455 1.1 simonb struct ieee80211_frame *wh;
1456 1.1 simonb struct ieee80211_node *ni;
1457 1.1 simonb struct mbuf *m, *mnew;
1458 1.65 jmcneill int data_off, error;
1459 1.1 simonb
1460 1.64 jmcneill bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1461 1.64 jmcneill BUS_DMASYNC_POSTREAD);
1462 1.1 simonb stat = (struct wpi_rx_stat *)(desc + 1);
1463 1.1 simonb
1464 1.1 simonb if (stat->len > WPI_STAT_MAXLEN) {
1465 1.28 degroote aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1466 1.1 simonb ifp->if_ierrors++;
1467 1.1 simonb return;
1468 1.1 simonb }
1469 1.1 simonb
1470 1.9 christos head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1471 1.9 christos tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1472 1.1 simonb
1473 1.1 simonb DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1474 1.61 jakllsch "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
1475 1.61 jakllsch le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1476 1.61 jakllsch le64toh(tail->tstamp)));
1477 1.1 simonb
1478 1.1 simonb /*
1479 1.1 simonb * Discard Rx frames with bad CRC early (XXX we may want to pass them
1480 1.1 simonb * to radiotap in monitor mode).
1481 1.1 simonb */
1482 1.1 simonb if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1483 1.61 jakllsch DPRINTF(("rx tail flags error %x\n",
1484 1.61 jakllsch le32toh(tail->flags)));
1485 1.1 simonb ifp->if_ierrors++;
1486 1.1 simonb return;
1487 1.1 simonb }
1488 1.1 simonb
1489 1.19 degroote /* Compute where are the useful datas */
1490 1.55 christos data_off = (char*)(head + 1) - mtod(data->m, char*);
1491 1.55 christos
1492 1.65 jmcneill MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1493 1.65 jmcneill if (mnew == NULL) {
1494 1.65 jmcneill ifp->if_ierrors++;
1495 1.65 jmcneill return;
1496 1.65 jmcneill }
1497 1.19 degroote
1498 1.65 jmcneill rbuf = wpi_alloc_rbuf(sc);
1499 1.65 jmcneill if (rbuf == NULL) {
1500 1.65 jmcneill m_freem(mnew);
1501 1.65 jmcneill ifp->if_ierrors++;
1502 1.65 jmcneill return;
1503 1.65 jmcneill }
1504 1.19 degroote
1505 1.65 jmcneill /* attach Rx buffer to mbuf */
1506 1.65 jmcneill MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1507 1.65 jmcneill rbuf);
1508 1.65 jmcneill mnew->m_flags |= M_EXT_RW;
1509 1.19 degroote
1510 1.65 jmcneill bus_dmamap_unload(sc->sc_dmat, data->map);
1511 1.10 degroote
1512 1.65 jmcneill error = bus_dmamap_load(sc->sc_dmat, data->map,
1513 1.65 jmcneill mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
1514 1.65 jmcneill BUS_DMA_NOWAIT | BUS_DMA_READ);
1515 1.65 jmcneill if (error) {
1516 1.65 jmcneill device_printf(sc->sc_dev,
1517 1.65 jmcneill "couldn't load rx mbuf: %d\n", error);
1518 1.65 jmcneill m_freem(mnew);
1519 1.65 jmcneill ifp->if_ierrors++;
1520 1.1 simonb
1521 1.64 jmcneill error = bus_dmamap_load(sc->sc_dmat, data->map,
1522 1.64 jmcneill mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1523 1.64 jmcneill BUS_DMA_NOWAIT | BUS_DMA_READ);
1524 1.65 jmcneill if (error)
1525 1.64 jmcneill panic("%s: bus_dmamap_load failed: %d\n",
1526 1.64 jmcneill device_xname(sc->sc_dev), error);
1527 1.65 jmcneill return;
1528 1.65 jmcneill }
1529 1.65 jmcneill
1530 1.65 jmcneill /* new mbuf loaded successfully */
1531 1.65 jmcneill m = data->m;
1532 1.65 jmcneill data->m = mnew;
1533 1.64 jmcneill
1534 1.65 jmcneill /* update Rx descriptor */
1535 1.65 jmcneill ring->desc[ring->cur] = htole32(rbuf->paddr);
1536 1.65 jmcneill bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1537 1.65 jmcneill ring->desc_dma.size,
1538 1.65 jmcneill BUS_DMASYNC_PREWRITE);
1539 1.19 degroote
1540 1.65 jmcneill m->m_data = (char*)m->m_data + data_off;
1541 1.65 jmcneill m->m_pkthdr.len = m->m_len = le16toh(head->len);
1542 1.1 simonb
1543 1.1 simonb /* finalize mbuf */
1544 1.1 simonb m->m_pkthdr.rcvif = ifp;
1545 1.1 simonb
1546 1.1 simonb if (sc->sc_drvbpf != NULL) {
1547 1.1 simonb struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1548 1.1 simonb
1549 1.1 simonb tap->wr_flags = 0;
1550 1.1 simonb tap->wr_chan_freq =
1551 1.61 jakllsch htole16(ic->ic_channels[head->chan].ic_freq);
1552 1.1 simonb tap->wr_chan_flags =
1553 1.61 jakllsch htole16(ic->ic_channels[head->chan].ic_flags);
1554 1.1 simonb tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1555 1.1 simonb tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1556 1.1 simonb tap->wr_tsft = tail->tstamp;
1557 1.1 simonb tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1558 1.1 simonb switch (head->rate) {
1559 1.1 simonb /* CCK rates */
1560 1.1 simonb case 10: tap->wr_rate = 2; break;
1561 1.1 simonb case 20: tap->wr_rate = 4; break;
1562 1.1 simonb case 55: tap->wr_rate = 11; break;
1563 1.1 simonb case 110: tap->wr_rate = 22; break;
1564 1.1 simonb /* OFDM rates */
1565 1.1 simonb case 0xd: tap->wr_rate = 12; break;
1566 1.1 simonb case 0xf: tap->wr_rate = 18; break;
1567 1.1 simonb case 0x5: tap->wr_rate = 24; break;
1568 1.1 simonb case 0x7: tap->wr_rate = 36; break;
1569 1.1 simonb case 0x9: tap->wr_rate = 48; break;
1570 1.1 simonb case 0xb: tap->wr_rate = 72; break;
1571 1.1 simonb case 0x1: tap->wr_rate = 96; break;
1572 1.1 simonb case 0x3: tap->wr_rate = 108; break;
1573 1.1 simonb /* unknown rate: should not happen */
1574 1.1 simonb default: tap->wr_rate = 0;
1575 1.1 simonb }
1576 1.1 simonb if (le16toh(head->flags) & 0x4)
1577 1.1 simonb tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1578 1.1 simonb
1579 1.47 joerg bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1580 1.1 simonb }
1581 1.1 simonb
1582 1.1 simonb /* grab a reference to the source node */
1583 1.1 simonb wh = mtod(m, struct ieee80211_frame *);
1584 1.1 simonb ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1585 1.1 simonb
1586 1.1 simonb /* send the frame to the 802.11 layer */
1587 1.1 simonb ieee80211_input(ic, m, ni, stat->rssi, 0);
1588 1.1 simonb
1589 1.1 simonb /* release node reference */
1590 1.1 simonb ieee80211_free_node(ni);
1591 1.1 simonb }
1592 1.1 simonb
1593 1.1 simonb static void
1594 1.1 simonb wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1595 1.1 simonb {
1596 1.1 simonb struct ifnet *ifp = sc->sc_ic.ic_ifp;
1597 1.1 simonb struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1598 1.61 jakllsch struct wpi_tx_data *data = &ring->data[desc->idx];
1599 1.1 simonb struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1600 1.61 jakllsch struct wpi_node *wn = (struct wpi_node *)data->ni;
1601 1.1 simonb
1602 1.1 simonb DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1603 1.61 jakllsch "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1604 1.61 jakllsch stat->nkill, stat->rate, le32toh(stat->duration),
1605 1.61 jakllsch le32toh(stat->status)));
1606 1.1 simonb
1607 1.1 simonb /*
1608 1.1 simonb * Update rate control statistics for the node.
1609 1.1 simonb * XXX we should not count mgmt frames since they're always sent at
1610 1.1 simonb * the lowest available bit-rate.
1611 1.1 simonb */
1612 1.5 joerg wn->amn.amn_txcnt++;
1613 1.1 simonb if (stat->ntries > 0) {
1614 1.1 simonb DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1615 1.5 joerg wn->amn.amn_retrycnt++;
1616 1.1 simonb }
1617 1.1 simonb
1618 1.2 oster if ((le32toh(stat->status) & 0xff) != 1)
1619 1.2 oster ifp->if_oerrors++;
1620 1.2 oster else
1621 1.2 oster ifp->if_opackets++;
1622 1.2 oster
1623 1.61 jakllsch bus_dmamap_unload(sc->sc_dmat, data->map);
1624 1.61 jakllsch m_freem(data->m);
1625 1.61 jakllsch data->m = NULL;
1626 1.61 jakllsch ieee80211_free_node(data->ni);
1627 1.61 jakllsch data->ni = NULL;
1628 1.1 simonb
1629 1.1 simonb ring->queued--;
1630 1.1 simonb
1631 1.1 simonb sc->sc_tx_timer = 0;
1632 1.1 simonb ifp->if_flags &= ~IFF_OACTIVE;
1633 1.1 simonb wpi_start(ifp);
1634 1.1 simonb }
1635 1.1 simonb
1636 1.1 simonb static void
1637 1.1 simonb wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1638 1.1 simonb {
1639 1.1 simonb struct wpi_tx_ring *ring = &sc->cmdq;
1640 1.1 simonb struct wpi_tx_data *data;
1641 1.1 simonb
1642 1.1 simonb if ((desc->qid & 7) != 4)
1643 1.1 simonb return; /* not a command ack */
1644 1.1 simonb
1645 1.1 simonb data = &ring->data[desc->idx];
1646 1.1 simonb
1647 1.1 simonb /* if the command was mapped in a mbuf, free it */
1648 1.1 simonb if (data->m != NULL) {
1649 1.1 simonb bus_dmamap_unload(sc->sc_dmat, data->map);
1650 1.1 simonb m_freem(data->m);
1651 1.1 simonb data->m = NULL;
1652 1.1 simonb }
1653 1.1 simonb
1654 1.1 simonb wakeup(&ring->cmd[desc->idx]);
1655 1.1 simonb }
1656 1.1 simonb
1657 1.1 simonb static void
1658 1.1 simonb wpi_notif_intr(struct wpi_softc *sc)
1659 1.1 simonb {
1660 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
1661 1.7 degroote struct ifnet *ifp = ic->ic_ifp;
1662 1.1 simonb uint32_t hw;
1663 1.1 simonb
1664 1.64 jmcneill bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1665 1.64 jmcneill sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
1666 1.64 jmcneill
1667 1.1 simonb hw = le32toh(sc->shared->next);
1668 1.1 simonb while (sc->rxq.cur != hw) {
1669 1.61 jakllsch struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1670 1.65 jmcneill struct wpi_rx_desc *desc;
1671 1.1 simonb
1672 1.64 jmcneill bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1673 1.64 jmcneill BUS_DMASYNC_POSTREAD);
1674 1.65 jmcneill desc = mtod(data->m, struct wpi_rx_desc *);
1675 1.64 jmcneill
1676 1.1 simonb DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1677 1.61 jakllsch "len=%d\n", desc->qid, desc->idx, desc->flags,
1678 1.61 jakllsch desc->type, le32toh(desc->len)));
1679 1.1 simonb
1680 1.1 simonb if (!(desc->qid & 0x80)) /* reply to a command */
1681 1.1 simonb wpi_cmd_intr(sc, desc);
1682 1.1 simonb
1683 1.1 simonb switch (desc->type) {
1684 1.1 simonb case WPI_RX_DONE:
1685 1.1 simonb /* a 802.11 frame was received */
1686 1.1 simonb wpi_rx_intr(sc, desc, data);
1687 1.1 simonb break;
1688 1.1 simonb
1689 1.1 simonb case WPI_TX_DONE:
1690 1.1 simonb /* a 802.11 frame has been transmitted */
1691 1.1 simonb wpi_tx_intr(sc, desc);
1692 1.1 simonb break;
1693 1.1 simonb
1694 1.1 simonb case WPI_UC_READY:
1695 1.1 simonb {
1696 1.1 simonb struct wpi_ucode_info *uc =
1697 1.59 jakllsch (struct wpi_ucode_info *)(desc + 1);
1698 1.1 simonb
1699 1.1 simonb /* the microcontroller is ready */
1700 1.1 simonb DPRINTF(("microcode alive notification version %x "
1701 1.61 jakllsch "alive %x\n", le32toh(uc->version),
1702 1.61 jakllsch le32toh(uc->valid)));
1703 1.1 simonb
1704 1.1 simonb if (le32toh(uc->valid) != 1) {
1705 1.55 christos aprint_error_dev(sc->sc_dev,
1706 1.61 jakllsch "microcontroller initialization failed\n");
1707 1.1 simonb }
1708 1.1 simonb break;
1709 1.1 simonb }
1710 1.1 simonb case WPI_STATE_CHANGED:
1711 1.1 simonb {
1712 1.1 simonb uint32_t *status = (uint32_t *)(desc + 1);
1713 1.1 simonb
1714 1.1 simonb /* enabled/disabled notification */
1715 1.1 simonb DPRINTF(("state changed to %x\n", le32toh(*status)));
1716 1.1 simonb
1717 1.1 simonb if (le32toh(*status) & 1) {
1718 1.1 simonb /* the radio button has to be pushed */
1719 1.70 bouyer /* wake up thread to signal powerd */
1720 1.70 bouyer cv_signal(&sc->sc_rsw_cv);
1721 1.61 jakllsch aprint_error_dev(sc->sc_dev,
1722 1.61 jakllsch "Radio transmitter is off\n");
1723 1.7 degroote /* turn the interface down */
1724 1.7 degroote ifp->if_flags &= ~IFF_UP;
1725 1.7 degroote wpi_stop(ifp, 1);
1726 1.7 degroote return; /* no further processing */
1727 1.1 simonb }
1728 1.1 simonb break;
1729 1.1 simonb }
1730 1.1 simonb case WPI_START_SCAN:
1731 1.1 simonb {
1732 1.66 jmcneill #if 0
1733 1.1 simonb struct wpi_start_scan *scan =
1734 1.59 jakllsch (struct wpi_start_scan *)(desc + 1);
1735 1.1 simonb
1736 1.1 simonb DPRINTFN(2, ("scanning channel %d status %x\n",
1737 1.61 jakllsch scan->chan, le32toh(scan->status)));
1738 1.1 simonb
1739 1.1 simonb /* fix current channel */
1740 1.67 jmcneill ic->ic_curchan = &ic->ic_channels[scan->chan];
1741 1.66 jmcneill #endif
1742 1.1 simonb break;
1743 1.1 simonb }
1744 1.1 simonb case WPI_STOP_SCAN:
1745 1.1 simonb {
1746 1.67 jmcneill #ifdef WPI_DEBUG
1747 1.1 simonb struct wpi_stop_scan *scan =
1748 1.59 jakllsch (struct wpi_stop_scan *)(desc + 1);
1749 1.67 jmcneill #endif
1750 1.1 simonb
1751 1.1 simonb DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1752 1.61 jakllsch scan->nchan, scan->status, scan->chan));
1753 1.1 simonb
1754 1.23 degroote sc->is_scanning = false;
1755 1.67 jmcneill if (ic->ic_state == IEEE80211_S_SCAN)
1756 1.67 jmcneill ieee80211_next_scan(ic);
1757 1.67 jmcneill
1758 1.1 simonb break;
1759 1.1 simonb }
1760 1.1 simonb }
1761 1.1 simonb
1762 1.1 simonb sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1763 1.1 simonb }
1764 1.1 simonb
1765 1.1 simonb /* tell the firmware what we have processed */
1766 1.1 simonb hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1767 1.1 simonb WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1768 1.1 simonb }
1769 1.1 simonb
1770 1.1 simonb static int
1771 1.1 simonb wpi_intr(void *arg)
1772 1.1 simonb {
1773 1.1 simonb struct wpi_softc *sc = arg;
1774 1.7 degroote struct ifnet *ifp = sc->sc_ic.ic_ifp;
1775 1.1 simonb uint32_t r;
1776 1.1 simonb
1777 1.1 simonb r = WPI_READ(sc, WPI_INTR);
1778 1.1 simonb if (r == 0 || r == 0xffffffff)
1779 1.1 simonb return 0; /* not for us */
1780 1.1 simonb
1781 1.61 jakllsch DPRINTFN(6, ("interrupt reg %x\n", r));
1782 1.1 simonb
1783 1.1 simonb /* disable interrupts */
1784 1.1 simonb WPI_WRITE(sc, WPI_MASK, 0);
1785 1.1 simonb /* ack interrupts */
1786 1.1 simonb WPI_WRITE(sc, WPI_INTR, r);
1787 1.1 simonb
1788 1.1 simonb if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1789 1.61 jakllsch /* SYSTEM FAILURE, SYSTEM FAILURE */
1790 1.28 degroote aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1791 1.61 jakllsch ifp->if_flags &= ~IFF_UP;
1792 1.61 jakllsch wpi_stop(ifp, 1);
1793 1.1 simonb return 1;
1794 1.1 simonb }
1795 1.1 simonb
1796 1.1 simonb if (r & WPI_RX_INTR)
1797 1.1 simonb wpi_notif_intr(sc);
1798 1.1 simonb
1799 1.1 simonb if (r & WPI_ALIVE_INTR) /* firmware initialized */
1800 1.1 simonb wakeup(sc);
1801 1.1 simonb
1802 1.1 simonb /* re-enable interrupts */
1803 1.7 degroote if (ifp->if_flags & IFF_UP)
1804 1.7 degroote WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1805 1.1 simonb
1806 1.1 simonb return 1;
1807 1.1 simonb }
1808 1.1 simonb
1809 1.1 simonb static uint8_t
1810 1.1 simonb wpi_plcp_signal(int rate)
1811 1.1 simonb {
1812 1.1 simonb switch (rate) {
1813 1.1 simonb /* CCK rates (returned values are device-dependent) */
1814 1.1 simonb case 2: return 10;
1815 1.1 simonb case 4: return 20;
1816 1.1 simonb case 11: return 55;
1817 1.1 simonb case 22: return 110;
1818 1.1 simonb
1819 1.1 simonb /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1820 1.1 simonb /* R1-R4, (u)ral is R4-R1 */
1821 1.1 simonb case 12: return 0xd;
1822 1.1 simonb case 18: return 0xf;
1823 1.1 simonb case 24: return 0x5;
1824 1.1 simonb case 36: return 0x7;
1825 1.1 simonb case 48: return 0x9;
1826 1.1 simonb case 72: return 0xb;
1827 1.1 simonb case 96: return 0x1;
1828 1.1 simonb case 108: return 0x3;
1829 1.1 simonb
1830 1.1 simonb /* unsupported rates (should not get there) */
1831 1.1 simonb default: return 0;
1832 1.1 simonb }
1833 1.1 simonb }
1834 1.1 simonb
1835 1.1 simonb /* quickly determine if a given rate is CCK or OFDM */
1836 1.1 simonb #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1837 1.1 simonb
1838 1.1 simonb static int
1839 1.1 simonb wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1840 1.61 jakllsch int ac)
1841 1.1 simonb {
1842 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
1843 1.1 simonb struct wpi_tx_ring *ring = &sc->txq[ac];
1844 1.1 simonb struct wpi_tx_desc *desc;
1845 1.1 simonb struct wpi_tx_data *data;
1846 1.1 simonb struct wpi_tx_cmd *cmd;
1847 1.1 simonb struct wpi_cmd_data *tx;
1848 1.1 simonb struct ieee80211_frame *wh;
1849 1.1 simonb struct ieee80211_key *k;
1850 1.1 simonb const struct chanAccParams *cap;
1851 1.1 simonb struct mbuf *mnew;
1852 1.61 jakllsch int i, rate, error, hdrlen, noack = 0;
1853 1.1 simonb
1854 1.1 simonb desc = &ring->desc[ring->cur];
1855 1.1 simonb data = &ring->data[ring->cur];
1856 1.1 simonb
1857 1.1 simonb wh = mtod(m0, struct ieee80211_frame *);
1858 1.1 simonb
1859 1.56 christos if (ieee80211_has_qos(wh)) {
1860 1.1 simonb cap = &ic->ic_wme.wme_chanParams;
1861 1.1 simonb noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1862 1.26 degroote }
1863 1.1 simonb
1864 1.1 simonb if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1865 1.1 simonb k = ieee80211_crypto_encap(ic, ni, m0);
1866 1.1 simonb if (k == NULL) {
1867 1.1 simonb m_freem(m0);
1868 1.1 simonb return ENOBUFS;
1869 1.1 simonb }
1870 1.1 simonb
1871 1.1 simonb /* packet header may have moved, reset our local pointer */
1872 1.1 simonb wh = mtod(m0, struct ieee80211_frame *);
1873 1.1 simonb }
1874 1.1 simonb
1875 1.26 degroote hdrlen = ieee80211_anyhdrsize(wh);
1876 1.26 degroote
1877 1.1 simonb /* pickup a rate */
1878 1.1 simonb if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1879 1.61 jakllsch IEEE80211_FC0_TYPE_MGT) {
1880 1.1 simonb /* mgmt frames are sent at the lowest available bit-rate */
1881 1.1 simonb rate = ni->ni_rates.rs_rates[0];
1882 1.1 simonb } else {
1883 1.1 simonb if (ic->ic_fixed_rate != -1) {
1884 1.1 simonb rate = ic->ic_sup_rates[ic->ic_curmode].
1885 1.61 jakllsch rs_rates[ic->ic_fixed_rate];
1886 1.1 simonb } else
1887 1.1 simonb rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1888 1.1 simonb }
1889 1.1 simonb rate &= IEEE80211_RATE_VAL;
1890 1.1 simonb
1891 1.1 simonb if (sc->sc_drvbpf != NULL) {
1892 1.1 simonb struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1893 1.1 simonb
1894 1.1 simonb tap->wt_flags = 0;
1895 1.1 simonb tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1896 1.1 simonb tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1897 1.1 simonb tap->wt_rate = rate;
1898 1.1 simonb tap->wt_hwqueue = ac;
1899 1.1 simonb if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1900 1.1 simonb tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1901 1.1 simonb
1902 1.47 joerg bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1903 1.1 simonb }
1904 1.1 simonb
1905 1.1 simonb cmd = &ring->cmd[ring->cur];
1906 1.1 simonb cmd->code = WPI_CMD_TX_DATA;
1907 1.1 simonb cmd->flags = 0;
1908 1.1 simonb cmd->qid = ring->qid;
1909 1.1 simonb cmd->idx = ring->cur;
1910 1.1 simonb
1911 1.1 simonb tx = (struct wpi_cmd_data *)cmd->data;
1912 1.61 jakllsch /* no need to zero tx, all fields are reinitialized here */
1913 1.1 simonb tx->flags = 0;
1914 1.1 simonb
1915 1.1 simonb if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1916 1.1 simonb tx->flags |= htole32(WPI_TX_NEED_ACK);
1917 1.7 degroote } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1918 1.7 degroote tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1919 1.1 simonb
1920 1.1 simonb tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1921 1.1 simonb
1922 1.7 degroote /* retrieve destination node's id */
1923 1.7 degroote tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1924 1.7 degroote WPI_ID_BSS;
1925 1.7 degroote
1926 1.1 simonb if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1927 1.61 jakllsch IEEE80211_FC0_TYPE_MGT) {
1928 1.1 simonb /* tell h/w to set timestamp in probe responses */
1929 1.1 simonb if ((wh->i_fc[0] &
1930 1.1 simonb (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1931 1.1 simonb (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1932 1.1 simonb tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1933 1.1 simonb
1934 1.1 simonb if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1935 1.1 simonb IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1936 1.1 simonb ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1937 1.1 simonb IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1938 1.1 simonb tx->timeout = htole16(3);
1939 1.1 simonb else
1940 1.1 simonb tx->timeout = htole16(2);
1941 1.1 simonb } else
1942 1.1 simonb tx->timeout = htole16(0);
1943 1.1 simonb
1944 1.1 simonb tx->rate = wpi_plcp_signal(rate);
1945 1.1 simonb
1946 1.1 simonb /* be very persistant at sending frames out */
1947 1.1 simonb tx->rts_ntries = 7;
1948 1.1 simonb tx->data_ntries = 15;
1949 1.1 simonb
1950 1.1 simonb tx->ofdm_mask = 0xff;
1951 1.61 jakllsch tx->cck_mask = 0x0f;
1952 1.12 degroote tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1953 1.1 simonb
1954 1.1 simonb tx->len = htole16(m0->m_pkthdr.len);
1955 1.1 simonb
1956 1.1 simonb /* save and trim IEEE802.11 header */
1957 1.26 degroote memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1958 1.1 simonb m_adj(m0, hdrlen);
1959 1.1 simonb
1960 1.1 simonb error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1961 1.61 jakllsch BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1962 1.1 simonb if (error != 0 && error != EFBIG) {
1963 1.61 jakllsch aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1964 1.61 jakllsch error);
1965 1.1 simonb m_freem(m0);
1966 1.1 simonb return error;
1967 1.1 simonb }
1968 1.1 simonb if (error != 0) {
1969 1.1 simonb /* too many fragments, linearize */
1970 1.61 jakllsch
1971 1.1 simonb MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1972 1.1 simonb if (mnew == NULL) {
1973 1.1 simonb m_freem(m0);
1974 1.1 simonb return ENOMEM;
1975 1.1 simonb }
1976 1.1 simonb M_COPY_PKTHDR(mnew, m0);
1977 1.1 simonb if (m0->m_pkthdr.len > MHLEN) {
1978 1.1 simonb MCLGET(mnew, M_DONTWAIT);
1979 1.1 simonb if (!(mnew->m_flags & M_EXT)) {
1980 1.1 simonb m_freem(m0);
1981 1.1 simonb m_freem(mnew);
1982 1.1 simonb return ENOMEM;
1983 1.1 simonb }
1984 1.1 simonb }
1985 1.1 simonb
1986 1.9 christos m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1987 1.1 simonb m_freem(m0);
1988 1.1 simonb mnew->m_len = mnew->m_pkthdr.len;
1989 1.1 simonb m0 = mnew;
1990 1.1 simonb
1991 1.1 simonb error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1992 1.61 jakllsch BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1993 1.1 simonb if (error != 0) {
1994 1.61 jakllsch aprint_error_dev(sc->sc_dev,
1995 1.61 jakllsch "could not map mbuf (error %d)\n", error);
1996 1.1 simonb m_freem(m0);
1997 1.1 simonb return error;
1998 1.1 simonb }
1999 1.1 simonb }
2000 1.1 simonb
2001 1.1 simonb data->m = m0;
2002 1.1 simonb data->ni = ni;
2003 1.1 simonb
2004 1.1 simonb DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2005 1.61 jakllsch ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
2006 1.1 simonb
2007 1.1 simonb /* first scatter/gather segment is used by the tx data command */
2008 1.1 simonb desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2009 1.61 jakllsch (1 + data->map->dm_nsegs) << 24);
2010 1.1 simonb desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2011 1.61 jakllsch ring->cur * sizeof (struct wpi_tx_cmd));
2012 1.55 christos desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
2013 1.61 jakllsch ((hdrlen + 3) & ~3));
2014 1.1 simonb for (i = 1; i <= data->map->dm_nsegs; i++) {
2015 1.1 simonb desc->segs[i].addr =
2016 1.61 jakllsch htole32(data->map->dm_segs[i - 1].ds_addr);
2017 1.1 simonb desc->segs[i].len =
2018 1.61 jakllsch htole32(data->map->dm_segs[i - 1].ds_len);
2019 1.1 simonb }
2020 1.1 simonb
2021 1.1 simonb ring->queued++;
2022 1.1 simonb
2023 1.63 jmcneill bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2024 1.63 jmcneill data->map->dm_mapsize,
2025 1.63 jmcneill BUS_DMASYNC_PREWRITE);
2026 1.63 jmcneill bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
2027 1.63 jmcneill ring->cmd_dma.size,
2028 1.63 jmcneill BUS_DMASYNC_PREWRITE);
2029 1.63 jmcneill bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2030 1.63 jmcneill ring->desc_dma.size,
2031 1.63 jmcneill BUS_DMASYNC_PREWRITE);
2032 1.63 jmcneill
2033 1.1 simonb /* kick ring */
2034 1.1 simonb ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2035 1.1 simonb WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2036 1.1 simonb
2037 1.1 simonb return 0;
2038 1.1 simonb }
2039 1.1 simonb
2040 1.1 simonb static void
2041 1.1 simonb wpi_start(struct ifnet *ifp)
2042 1.1 simonb {
2043 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
2044 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2045 1.1 simonb struct ieee80211_node *ni;
2046 1.1 simonb struct ether_header *eh;
2047 1.1 simonb struct mbuf *m0;
2048 1.1 simonb int ac;
2049 1.1 simonb
2050 1.1 simonb /*
2051 1.1 simonb * net80211 may still try to send management frames even if the
2052 1.1 simonb * IFF_RUNNING flag is not set...
2053 1.1 simonb */
2054 1.1 simonb if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2055 1.1 simonb return;
2056 1.1 simonb
2057 1.1 simonb for (;;) {
2058 1.22 dyoung IF_DEQUEUE(&ic->ic_mgtq, m0);
2059 1.1 simonb if (m0 != NULL) {
2060 1.1 simonb
2061 1.72 ozaki ni = M_GETCTX(m0, struct ieee80211_node *);
2062 1.1 simonb m0->m_pkthdr.rcvif = NULL;
2063 1.1 simonb
2064 1.1 simonb /* management frames go into ring 0 */
2065 1.1 simonb if (sc->txq[0].queued > sc->txq[0].count - 8) {
2066 1.1 simonb ifp->if_oerrors++;
2067 1.1 simonb continue;
2068 1.1 simonb }
2069 1.47 joerg bpf_mtap3(ic->ic_rawbpf, m0);
2070 1.1 simonb if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2071 1.1 simonb ifp->if_oerrors++;
2072 1.1 simonb break;
2073 1.1 simonb }
2074 1.1 simonb } else {
2075 1.1 simonb if (ic->ic_state != IEEE80211_S_RUN)
2076 1.1 simonb break;
2077 1.7 degroote IFQ_POLL(&ifp->if_snd, m0);
2078 1.1 simonb if (m0 == NULL)
2079 1.1 simonb break;
2080 1.1 simonb
2081 1.1 simonb if (m0->m_len < sizeof (*eh) &&
2082 1.38 drochner (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2083 1.1 simonb ifp->if_oerrors++;
2084 1.1 simonb continue;
2085 1.1 simonb }
2086 1.1 simonb eh = mtod(m0, struct ether_header *);
2087 1.1 simonb ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2088 1.1 simonb if (ni == NULL) {
2089 1.1 simonb m_freem(m0);
2090 1.1 simonb ifp->if_oerrors++;
2091 1.1 simonb continue;
2092 1.1 simonb }
2093 1.1 simonb
2094 1.1 simonb /* classify mbuf so we can find which tx ring to use */
2095 1.1 simonb if (ieee80211_classify(ic, m0, ni) != 0) {
2096 1.1 simonb m_freem(m0);
2097 1.1 simonb ieee80211_free_node(ni);
2098 1.1 simonb ifp->if_oerrors++;
2099 1.1 simonb continue;
2100 1.1 simonb }
2101 1.1 simonb
2102 1.1 simonb /* no QoS encapsulation for EAPOL frames */
2103 1.1 simonb ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2104 1.1 simonb M_WME_GETAC(m0) : WME_AC_BE;
2105 1.1 simonb
2106 1.1 simonb if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2107 1.1 simonb /* there is no place left in this ring */
2108 1.1 simonb ifp->if_flags |= IFF_OACTIVE;
2109 1.1 simonb break;
2110 1.1 simonb }
2111 1.7 degroote IFQ_DEQUEUE(&ifp->if_snd, m0);
2112 1.47 joerg bpf_mtap(ifp, m0);
2113 1.1 simonb m0 = ieee80211_encap(ic, m0, ni);
2114 1.1 simonb if (m0 == NULL) {
2115 1.1 simonb ieee80211_free_node(ni);
2116 1.1 simonb ifp->if_oerrors++;
2117 1.1 simonb continue;
2118 1.1 simonb }
2119 1.47 joerg bpf_mtap3(ic->ic_rawbpf, m0);
2120 1.1 simonb if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2121 1.1 simonb ieee80211_free_node(ni);
2122 1.1 simonb ifp->if_oerrors++;
2123 1.1 simonb break;
2124 1.1 simonb }
2125 1.1 simonb }
2126 1.1 simonb
2127 1.1 simonb sc->sc_tx_timer = 5;
2128 1.1 simonb ifp->if_timer = 1;
2129 1.1 simonb }
2130 1.1 simonb }
2131 1.1 simonb
2132 1.1 simonb static void
2133 1.1 simonb wpi_watchdog(struct ifnet *ifp)
2134 1.1 simonb {
2135 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
2136 1.1 simonb
2137 1.1 simonb ifp->if_timer = 0;
2138 1.1 simonb
2139 1.1 simonb if (sc->sc_tx_timer > 0) {
2140 1.1 simonb if (--sc->sc_tx_timer == 0) {
2141 1.28 degroote aprint_error_dev(sc->sc_dev, "device timeout\n");
2142 1.1 simonb ifp->if_flags &= ~IFF_UP;
2143 1.1 simonb wpi_stop(ifp, 1);
2144 1.61 jakllsch ifp->if_oerrors++;
2145 1.1 simonb return;
2146 1.1 simonb }
2147 1.1 simonb ifp->if_timer = 1;
2148 1.1 simonb }
2149 1.1 simonb
2150 1.1 simonb ieee80211_watchdog(&sc->sc_ic);
2151 1.1 simonb }
2152 1.1 simonb
2153 1.1 simonb static int
2154 1.9 christos wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2155 1.1 simonb {
2156 1.1 simonb #define IS_RUNNING(ifp) \
2157 1.1 simonb ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2158 1.1 simonb
2159 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
2160 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2161 1.1 simonb int s, error = 0;
2162 1.1 simonb
2163 1.1 simonb s = splnet();
2164 1.1 simonb
2165 1.1 simonb switch (cmd) {
2166 1.1 simonb case SIOCSIFFLAGS:
2167 1.40 dyoung if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2168 1.40 dyoung break;
2169 1.1 simonb if (ifp->if_flags & IFF_UP) {
2170 1.1 simonb if (!(ifp->if_flags & IFF_RUNNING))
2171 1.1 simonb wpi_init(ifp);
2172 1.1 simonb } else {
2173 1.1 simonb if (ifp->if_flags & IFF_RUNNING)
2174 1.1 simonb wpi_stop(ifp, 1);
2175 1.1 simonb }
2176 1.1 simonb break;
2177 1.1 simonb
2178 1.1 simonb case SIOCADDMULTI:
2179 1.1 simonb case SIOCDELMULTI:
2180 1.21 dyoung /* XXX no h/w multicast filter? --dyoung */
2181 1.21 dyoung if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2182 1.1 simonb /* setup multicast filter, etc */
2183 1.1 simonb error = 0;
2184 1.1 simonb }
2185 1.1 simonb break;
2186 1.1 simonb
2187 1.1 simonb default:
2188 1.7 degroote error = ieee80211_ioctl(ic, cmd, data);
2189 1.1 simonb }
2190 1.1 simonb
2191 1.1 simonb if (error == ENETRESET) {
2192 1.1 simonb if (IS_RUNNING(ifp) &&
2193 1.1 simonb (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2194 1.1 simonb wpi_init(ifp);
2195 1.1 simonb error = 0;
2196 1.1 simonb }
2197 1.1 simonb
2198 1.1 simonb splx(s);
2199 1.1 simonb return error;
2200 1.1 simonb
2201 1.1 simonb #undef IS_RUNNING
2202 1.1 simonb }
2203 1.1 simonb
2204 1.1 simonb /*
2205 1.1 simonb * Extract various information from EEPROM.
2206 1.1 simonb */
2207 1.1 simonb static void
2208 1.1 simonb wpi_read_eeprom(struct wpi_softc *sc)
2209 1.1 simonb {
2210 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2211 1.12 degroote char domain[4];
2212 1.1 simonb int i;
2213 1.1 simonb
2214 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2215 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2216 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2217 1.12 degroote
2218 1.12 degroote DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2219 1.12 degroote sc->type));
2220 1.12 degroote
2221 1.12 degroote /* read and print regulatory domain */
2222 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2223 1.32 jmcneill aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2224 1.12 degroote
2225 1.12 degroote /* read and print MAC address */
2226 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2227 1.12 degroote aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2228 1.12 degroote
2229 1.12 degroote /* read the list of authorized channels */
2230 1.12 degroote for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2231 1.12 degroote wpi_read_eeprom_channels(sc, i);
2232 1.12 degroote
2233 1.12 degroote /* read the list of power groups */
2234 1.12 degroote for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2235 1.12 degroote wpi_read_eeprom_group(sc, i);
2236 1.12 degroote }
2237 1.12 degroote
2238 1.12 degroote static void
2239 1.12 degroote wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2240 1.12 degroote {
2241 1.12 degroote struct ieee80211com *ic = &sc->sc_ic;
2242 1.12 degroote const struct wpi_chan_band *band = &wpi_bands[n];
2243 1.12 degroote struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2244 1.12 degroote int chan, i;
2245 1.12 degroote
2246 1.12 degroote wpi_read_prom_data(sc, band->addr, channels,
2247 1.12 degroote band->nchan * sizeof (struct wpi_eeprom_chan));
2248 1.12 degroote
2249 1.12 degroote for (i = 0; i < band->nchan; i++) {
2250 1.12 degroote if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2251 1.12 degroote continue;
2252 1.12 degroote
2253 1.12 degroote chan = band->chan[i];
2254 1.12 degroote
2255 1.12 degroote if (n == 0) { /* 2GHz band */
2256 1.12 degroote ic->ic_channels[chan].ic_freq =
2257 1.12 degroote ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2258 1.12 degroote ic->ic_channels[chan].ic_flags =
2259 1.12 degroote IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2260 1.12 degroote IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2261 1.12 degroote
2262 1.12 degroote } else { /* 5GHz band */
2263 1.12 degroote /*
2264 1.61 jakllsch * Some 3945ABG adapters support channels 7, 8, 11
2265 1.12 degroote * and 12 in the 2GHz *and* 5GHz bands.
2266 1.12 degroote * Because of limitations in our net80211(9) stack,
2267 1.12 degroote * we can't support these channels in 5GHz band.
2268 1.12 degroote */
2269 1.12 degroote if (chan <= 14)
2270 1.12 degroote continue;
2271 1.12 degroote
2272 1.12 degroote ic->ic_channels[chan].ic_freq =
2273 1.12 degroote ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2274 1.12 degroote ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2275 1.12 degroote }
2276 1.12 degroote
2277 1.12 degroote /* is active scan allowed on this channel? */
2278 1.12 degroote if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2279 1.12 degroote ic->ic_channels[chan].ic_flags |=
2280 1.12 degroote IEEE80211_CHAN_PASSIVE;
2281 1.12 degroote }
2282 1.12 degroote
2283 1.12 degroote /* save maximum allowed power for this channel */
2284 1.12 degroote sc->maxpwr[chan] = channels[i].maxpwr;
2285 1.12 degroote
2286 1.12 degroote DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2287 1.12 degroote chan, channels[i].flags, sc->maxpwr[chan]));
2288 1.12 degroote }
2289 1.12 degroote }
2290 1.12 degroote
2291 1.12 degroote static void
2292 1.12 degroote wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2293 1.12 degroote {
2294 1.12 degroote struct wpi_power_group *group = &sc->groups[n];
2295 1.12 degroote struct wpi_eeprom_group rgroup;
2296 1.12 degroote int i;
2297 1.12 degroote
2298 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2299 1.12 degroote sizeof rgroup);
2300 1.12 degroote
2301 1.12 degroote /* save power group information */
2302 1.12 degroote group->chan = rgroup.chan;
2303 1.12 degroote group->maxpwr = rgroup.maxpwr;
2304 1.12 degroote /* temperature at which the samples were taken */
2305 1.12 degroote group->temp = (int16_t)le16toh(rgroup.temp);
2306 1.12 degroote
2307 1.12 degroote DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2308 1.12 degroote group->chan, group->maxpwr, group->temp));
2309 1.12 degroote
2310 1.12 degroote for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2311 1.12 degroote group->samples[i].index = rgroup.samples[i].index;
2312 1.12 degroote group->samples[i].power = rgroup.samples[i].power;
2313 1.12 degroote
2314 1.12 degroote DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2315 1.12 degroote group->samples[i].index, group->samples[i].power));
2316 1.1 simonb }
2317 1.1 simonb }
2318 1.1 simonb
2319 1.1 simonb /*
2320 1.1 simonb * Send a command to the firmware.
2321 1.1 simonb */
2322 1.1 simonb static int
2323 1.1 simonb wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2324 1.1 simonb {
2325 1.1 simonb struct wpi_tx_ring *ring = &sc->cmdq;
2326 1.1 simonb struct wpi_tx_desc *desc;
2327 1.1 simonb struct wpi_tx_cmd *cmd;
2328 1.63 jmcneill struct wpi_dma_info *dma;
2329 1.1 simonb
2330 1.1 simonb KASSERT(size <= sizeof cmd->data);
2331 1.1 simonb
2332 1.1 simonb desc = &ring->desc[ring->cur];
2333 1.1 simonb cmd = &ring->cmd[ring->cur];
2334 1.1 simonb
2335 1.1 simonb cmd->code = code;
2336 1.1 simonb cmd->flags = 0;
2337 1.1 simonb cmd->qid = ring->qid;
2338 1.1 simonb cmd->idx = ring->cur;
2339 1.1 simonb memcpy(cmd->data, buf, size);
2340 1.1 simonb
2341 1.63 jmcneill dma = &ring->cmd_dma;
2342 1.63 jmcneill bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2343 1.63 jmcneill
2344 1.1 simonb desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2345 1.1 simonb desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2346 1.61 jakllsch ring->cur * sizeof (struct wpi_tx_cmd));
2347 1.1 simonb desc->segs[0].len = htole32(4 + size);
2348 1.1 simonb
2349 1.63 jmcneill dma = &ring->desc_dma;
2350 1.63 jmcneill bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2351 1.63 jmcneill
2352 1.1 simonb /* kick cmd ring */
2353 1.1 simonb ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2354 1.1 simonb WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2355 1.1 simonb
2356 1.1 simonb return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2357 1.1 simonb }
2358 1.1 simonb
2359 1.1 simonb static int
2360 1.1 simonb wpi_wme_update(struct ieee80211com *ic)
2361 1.1 simonb {
2362 1.1 simonb #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2363 1.1 simonb #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2364 1.1 simonb struct wpi_softc *sc = ic->ic_ifp->if_softc;
2365 1.1 simonb const struct wmeParams *wmep;
2366 1.1 simonb struct wpi_wme_setup wme;
2367 1.1 simonb int ac;
2368 1.1 simonb
2369 1.1 simonb /* don't override default WME values if WME is not actually enabled */
2370 1.1 simonb if (!(ic->ic_flags & IEEE80211_F_WME))
2371 1.1 simonb return 0;
2372 1.1 simonb
2373 1.1 simonb wme.flags = 0;
2374 1.1 simonb for (ac = 0; ac < WME_NUM_AC; ac++) {
2375 1.1 simonb wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2376 1.1 simonb wme.ac[ac].aifsn = wmep->wmep_aifsn;
2377 1.1 simonb wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2378 1.1 simonb wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2379 1.1 simonb wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2380 1.1 simonb
2381 1.1 simonb DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2382 1.1 simonb "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2383 1.1 simonb wme.ac[ac].cwmax, wme.ac[ac].txop));
2384 1.1 simonb }
2385 1.1 simonb
2386 1.1 simonb return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2387 1.1 simonb #undef WPI_USEC
2388 1.1 simonb #undef WPI_EXP2
2389 1.1 simonb }
2390 1.1 simonb
2391 1.1 simonb /*
2392 1.1 simonb * Configure h/w multi-rate retries.
2393 1.1 simonb */
2394 1.1 simonb static int
2395 1.1 simonb wpi_mrr_setup(struct wpi_softc *sc)
2396 1.1 simonb {
2397 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2398 1.1 simonb struct wpi_mrr_setup mrr;
2399 1.1 simonb int i, error;
2400 1.1 simonb
2401 1.1 simonb /* CCK rates (not used with 802.11a) */
2402 1.1 simonb for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2403 1.1 simonb mrr.rates[i].flags = 0;
2404 1.1 simonb mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2405 1.1 simonb /* fallback to the immediate lower CCK rate (if any) */
2406 1.1 simonb mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2407 1.1 simonb /* try one time at this rate before falling back to "next" */
2408 1.1 simonb mrr.rates[i].ntries = 1;
2409 1.1 simonb }
2410 1.1 simonb
2411 1.1 simonb /* OFDM rates (not used with 802.11b) */
2412 1.1 simonb for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2413 1.1 simonb mrr.rates[i].flags = 0;
2414 1.1 simonb mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2415 1.1 simonb /* fallback to the immediate lower rate (if any) */
2416 1.1 simonb /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2417 1.1 simonb mrr.rates[i].next = (i == WPI_OFDM6) ?
2418 1.1 simonb ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2419 1.1 simonb WPI_OFDM6 : WPI_CCK2) :
2420 1.1 simonb i - 1;
2421 1.1 simonb /* try one time at this rate before falling back to "next" */
2422 1.1 simonb mrr.rates[i].ntries = 1;
2423 1.1 simonb }
2424 1.1 simonb
2425 1.1 simonb /* setup MRR for control frames */
2426 1.1 simonb mrr.which = htole32(WPI_MRR_CTL);
2427 1.12 degroote error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2428 1.1 simonb if (error != 0) {
2429 1.61 jakllsch aprint_error_dev(sc->sc_dev,
2430 1.61 jakllsch "could not setup MRR for control frames\n");
2431 1.1 simonb return error;
2432 1.1 simonb }
2433 1.1 simonb
2434 1.1 simonb /* setup MRR for data frames */
2435 1.1 simonb mrr.which = htole32(WPI_MRR_DATA);
2436 1.12 degroote error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2437 1.1 simonb if (error != 0) {
2438 1.61 jakllsch aprint_error_dev(sc->sc_dev,
2439 1.61 jakllsch "could not setup MRR for data frames\n");
2440 1.1 simonb return error;
2441 1.1 simonb }
2442 1.1 simonb
2443 1.1 simonb return 0;
2444 1.1 simonb }
2445 1.1 simonb
2446 1.1 simonb static void
2447 1.1 simonb wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2448 1.1 simonb {
2449 1.1 simonb struct wpi_cmd_led led;
2450 1.1 simonb
2451 1.1 simonb led.which = which;
2452 1.1 simonb led.unit = htole32(100000); /* on/off in unit of 100ms */
2453 1.1 simonb led.off = off;
2454 1.1 simonb led.on = on;
2455 1.1 simonb
2456 1.1 simonb (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2457 1.1 simonb }
2458 1.1 simonb
2459 1.1 simonb static void
2460 1.1 simonb wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2461 1.1 simonb {
2462 1.1 simonb struct wpi_cmd_tsf tsf;
2463 1.1 simonb uint64_t val, mod;
2464 1.1 simonb
2465 1.1 simonb memset(&tsf, 0, sizeof tsf);
2466 1.61 jakllsch memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2467 1.1 simonb tsf.bintval = htole16(ni->ni_intval);
2468 1.1 simonb tsf.lintval = htole16(10);
2469 1.1 simonb
2470 1.1 simonb /* compute remaining time until next beacon */
2471 1.61 jakllsch val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2472 1.1 simonb mod = le64toh(tsf.tstamp) % val;
2473 1.1 simonb tsf.binitval = htole32((uint32_t)(val - mod));
2474 1.1 simonb
2475 1.61 jakllsch DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
2476 1.1 simonb ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2477 1.1 simonb
2478 1.1 simonb if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2479 1.28 degroote aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2480 1.1 simonb }
2481 1.1 simonb
2482 1.1 simonb /*
2483 1.12 degroote * Update Tx power to match what is defined for channel `c'.
2484 1.12 degroote */
2485 1.12 degroote static int
2486 1.12 degroote wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2487 1.12 degroote {
2488 1.12 degroote struct ieee80211com *ic = &sc->sc_ic;
2489 1.12 degroote struct wpi_power_group *group;
2490 1.12 degroote struct wpi_cmd_txpower txpower;
2491 1.12 degroote u_int chan;
2492 1.12 degroote int i;
2493 1.12 degroote
2494 1.12 degroote /* get channel number */
2495 1.12 degroote chan = ieee80211_chan2ieee(ic, c);
2496 1.12 degroote
2497 1.12 degroote /* find the power group to which this channel belongs */
2498 1.12 degroote if (IEEE80211_IS_CHAN_5GHZ(c)) {
2499 1.12 degroote for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2500 1.12 degroote if (chan <= group->chan)
2501 1.12 degroote break;
2502 1.12 degroote } else
2503 1.12 degroote group = &sc->groups[0];
2504 1.12 degroote
2505 1.12 degroote memset(&txpower, 0, sizeof txpower);
2506 1.12 degroote txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2507 1.12 degroote txpower.chan = htole16(chan);
2508 1.12 degroote
2509 1.12 degroote /* set Tx power for all OFDM and CCK rates */
2510 1.12 degroote for (i = 0; i <= 11 ; i++) {
2511 1.12 degroote /* retrieve Tx power for this channel/rate combination */
2512 1.12 degroote int idx = wpi_get_power_index(sc, group, c,
2513 1.12 degroote wpi_ridx_to_rate[i]);
2514 1.12 degroote
2515 1.12 degroote txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2516 1.12 degroote
2517 1.12 degroote if (IEEE80211_IS_CHAN_5GHZ(c)) {
2518 1.12 degroote txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2519 1.12 degroote txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2520 1.12 degroote } else {
2521 1.12 degroote txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2522 1.12 degroote txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2523 1.12 degroote }
2524 1.12 degroote DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2525 1.12 degroote wpi_ridx_to_rate[i], idx));
2526 1.12 degroote }
2527 1.12 degroote
2528 1.12 degroote return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2529 1.12 degroote }
2530 1.12 degroote
2531 1.12 degroote /*
2532 1.12 degroote * Determine Tx power index for a given channel/rate combination.
2533 1.12 degroote * This takes into account the regulatory information from EEPROM and the
2534 1.12 degroote * current temperature.
2535 1.12 degroote */
2536 1.12 degroote static int
2537 1.12 degroote wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2538 1.12 degroote struct ieee80211_channel *c, int rate)
2539 1.12 degroote {
2540 1.12 degroote /* fixed-point arithmetic division using a n-bit fractional part */
2541 1.12 degroote #define fdivround(a, b, n) \
2542 1.12 degroote ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2543 1.12 degroote
2544 1.12 degroote /* linear interpolation */
2545 1.12 degroote #define interpolate(x, x1, y1, x2, y2, n) \
2546 1.12 degroote ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2547 1.12 degroote
2548 1.12 degroote struct ieee80211com *ic = &sc->sc_ic;
2549 1.12 degroote struct wpi_power_sample *sample;
2550 1.12 degroote int pwr, idx;
2551 1.12 degroote u_int chan;
2552 1.12 degroote
2553 1.12 degroote /* get channel number */
2554 1.12 degroote chan = ieee80211_chan2ieee(ic, c);
2555 1.12 degroote
2556 1.12 degroote /* default power is group's maximum power - 3dB */
2557 1.12 degroote pwr = group->maxpwr / 2;
2558 1.12 degroote
2559 1.12 degroote /* decrease power for highest OFDM rates to reduce distortion */
2560 1.12 degroote switch (rate) {
2561 1.12 degroote case 72: /* 36Mb/s */
2562 1.12 degroote pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2563 1.12 degroote break;
2564 1.12 degroote case 96: /* 48Mb/s */
2565 1.12 degroote pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2566 1.12 degroote break;
2567 1.12 degroote case 108: /* 54Mb/s */
2568 1.12 degroote pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2569 1.12 degroote break;
2570 1.12 degroote }
2571 1.12 degroote
2572 1.12 degroote /* never exceed channel's maximum allowed Tx power */
2573 1.12 degroote pwr = min(pwr, sc->maxpwr[chan]);
2574 1.12 degroote
2575 1.12 degroote /* retrieve power index into gain tables from samples */
2576 1.12 degroote for (sample = group->samples; sample < &group->samples[3]; sample++)
2577 1.12 degroote if (pwr > sample[1].power)
2578 1.12 degroote break;
2579 1.12 degroote /* fixed-point linear interpolation using a 19-bit fractional part */
2580 1.12 degroote idx = interpolate(pwr, sample[0].power, sample[0].index,
2581 1.12 degroote sample[1].power, sample[1].index, 19);
2582 1.12 degroote
2583 1.61 jakllsch /*-
2584 1.12 degroote * Adjust power index based on current temperature:
2585 1.12 degroote * - if cooler than factory-calibrated: decrease output power
2586 1.12 degroote * - if warmer than factory-calibrated: increase output power
2587 1.12 degroote */
2588 1.12 degroote idx -= (sc->temp - group->temp) * 11 / 100;
2589 1.12 degroote
2590 1.12 degroote /* decrease power for CCK rates (-5dB) */
2591 1.12 degroote if (!WPI_RATE_IS_OFDM(rate))
2592 1.12 degroote idx += 10;
2593 1.12 degroote
2594 1.12 degroote /* keep power index in a valid range */
2595 1.12 degroote if (idx < 0)
2596 1.12 degroote return 0;
2597 1.12 degroote if (idx > WPI_MAX_PWR_INDEX)
2598 1.12 degroote return WPI_MAX_PWR_INDEX;
2599 1.12 degroote return idx;
2600 1.12 degroote
2601 1.12 degroote #undef interpolate
2602 1.12 degroote #undef fdivround
2603 1.12 degroote }
2604 1.12 degroote
2605 1.12 degroote /*
2606 1.1 simonb * Build a beacon frame that the firmware will broadcast periodically in
2607 1.1 simonb * IBSS or HostAP modes.
2608 1.1 simonb */
2609 1.1 simonb static int
2610 1.1 simonb wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2611 1.1 simonb {
2612 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2613 1.1 simonb struct wpi_tx_ring *ring = &sc->cmdq;
2614 1.1 simonb struct wpi_tx_desc *desc;
2615 1.1 simonb struct wpi_tx_data *data;
2616 1.1 simonb struct wpi_tx_cmd *cmd;
2617 1.1 simonb struct wpi_cmd_beacon *bcn;
2618 1.1 simonb struct ieee80211_beacon_offsets bo;
2619 1.1 simonb struct mbuf *m0;
2620 1.1 simonb int error;
2621 1.1 simonb
2622 1.1 simonb desc = &ring->desc[ring->cur];
2623 1.1 simonb data = &ring->data[ring->cur];
2624 1.1 simonb
2625 1.1 simonb m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2626 1.1 simonb if (m0 == NULL) {
2627 1.61 jakllsch aprint_error_dev(sc->sc_dev,
2628 1.61 jakllsch "could not allocate beacon frame\n");
2629 1.1 simonb return ENOMEM;
2630 1.1 simonb }
2631 1.1 simonb
2632 1.1 simonb cmd = &ring->cmd[ring->cur];
2633 1.1 simonb cmd->code = WPI_CMD_SET_BEACON;
2634 1.1 simonb cmd->flags = 0;
2635 1.1 simonb cmd->qid = ring->qid;
2636 1.1 simonb cmd->idx = ring->cur;
2637 1.1 simonb
2638 1.1 simonb bcn = (struct wpi_cmd_beacon *)cmd->data;
2639 1.1 simonb memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2640 1.1 simonb bcn->id = WPI_ID_BROADCAST;
2641 1.1 simonb bcn->ofdm_mask = 0xff;
2642 1.1 simonb bcn->cck_mask = 0x0f;
2643 1.12 degroote bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2644 1.1 simonb bcn->len = htole16(m0->m_pkthdr.len);
2645 1.1 simonb bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2646 1.61 jakllsch wpi_plcp_signal(12) : wpi_plcp_signal(2);
2647 1.1 simonb bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2648 1.1 simonb
2649 1.1 simonb /* save and trim IEEE802.11 header */
2650 1.9 christos m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2651 1.1 simonb m_adj(m0, sizeof (struct ieee80211_frame));
2652 1.1 simonb
2653 1.1 simonb /* assume beacon frame is contiguous */
2654 1.1 simonb error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2655 1.61 jakllsch BUS_DMA_READ | BUS_DMA_NOWAIT);
2656 1.61 jakllsch if (error != 0) {
2657 1.55 christos aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2658 1.1 simonb m_freem(m0);
2659 1.1 simonb return error;
2660 1.1 simonb }
2661 1.1 simonb
2662 1.1 simonb data->m = m0;
2663 1.1 simonb
2664 1.1 simonb /* first scatter/gather segment is used by the beacon command */
2665 1.1 simonb desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2666 1.1 simonb desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2667 1.61 jakllsch ring->cur * sizeof (struct wpi_tx_cmd));
2668 1.1 simonb desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2669 1.1 simonb desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2670 1.1 simonb desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2671 1.1 simonb
2672 1.65 jmcneill bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2673 1.65 jmcneill ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2674 1.63 jmcneill bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2675 1.63 jmcneill BUS_DMASYNC_PREWRITE);
2676 1.63 jmcneill
2677 1.1 simonb /* kick cmd ring */
2678 1.1 simonb ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2679 1.1 simonb WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2680 1.1 simonb
2681 1.1 simonb return 0;
2682 1.1 simonb }
2683 1.1 simonb
2684 1.1 simonb static int
2685 1.1 simonb wpi_auth(struct wpi_softc *sc)
2686 1.1 simonb {
2687 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2688 1.1 simonb struct ieee80211_node *ni = ic->ic_bss;
2689 1.5 joerg struct wpi_node_info node;
2690 1.1 simonb int error;
2691 1.1 simonb
2692 1.1 simonb /* update adapter's configuration */
2693 1.1 simonb IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2694 1.1 simonb sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2695 1.1 simonb sc->config.flags = htole32(WPI_CONFIG_TSF);
2696 1.1 simonb if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2697 1.1 simonb sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2698 1.1 simonb WPI_CONFIG_24GHZ);
2699 1.1 simonb }
2700 1.1 simonb switch (ic->ic_curmode) {
2701 1.1 simonb case IEEE80211_MODE_11A:
2702 1.1 simonb sc->config.cck_mask = 0;
2703 1.1 simonb sc->config.ofdm_mask = 0x15;
2704 1.1 simonb break;
2705 1.1 simonb case IEEE80211_MODE_11B:
2706 1.1 simonb sc->config.cck_mask = 0x03;
2707 1.1 simonb sc->config.ofdm_mask = 0;
2708 1.1 simonb break;
2709 1.1 simonb default: /* assume 802.11b/g */
2710 1.1 simonb sc->config.cck_mask = 0x0f;
2711 1.1 simonb sc->config.ofdm_mask = 0x15;
2712 1.1 simonb }
2713 1.1 simonb DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2714 1.61 jakllsch sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2715 1.1 simonb error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2716 1.61 jakllsch sizeof (struct wpi_config), 1);
2717 1.1 simonb if (error != 0) {
2718 1.55 christos aprint_error_dev(sc->sc_dev, "could not configure\n");
2719 1.1 simonb return error;
2720 1.1 simonb }
2721 1.1 simonb
2722 1.12 degroote /* configuration has changed, set Tx power accordingly */
2723 1.12 degroote if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2724 1.28 degroote aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2725 1.12 degroote return error;
2726 1.12 degroote }
2727 1.12 degroote
2728 1.1 simonb /* add default node */
2729 1.1 simonb memset(&node, 0, sizeof node);
2730 1.1 simonb IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2731 1.1 simonb node.id = WPI_ID_BSS;
2732 1.1 simonb node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2733 1.1 simonb wpi_plcp_signal(12) : wpi_plcp_signal(2);
2734 1.12 degroote node.action = htole32(WPI_ACTION_SET_RATE);
2735 1.12 degroote node.antenna = WPI_ANTENNA_BOTH;
2736 1.1 simonb error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2737 1.1 simonb if (error != 0) {
2738 1.55 christos aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2739 1.1 simonb return error;
2740 1.1 simonb }
2741 1.1 simonb
2742 1.1 simonb return 0;
2743 1.1 simonb }
2744 1.1 simonb
2745 1.1 simonb /*
2746 1.1 simonb * Send a scan request to the firmware. Since this command is huge, we map it
2747 1.1 simonb * into a mbuf instead of using the pre-allocated set of commands.
2748 1.1 simonb */
2749 1.1 simonb static int
2750 1.67 jmcneill wpi_scan(struct wpi_softc *sc)
2751 1.1 simonb {
2752 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2753 1.1 simonb struct wpi_tx_ring *ring = &sc->cmdq;
2754 1.1 simonb struct wpi_tx_desc *desc;
2755 1.1 simonb struct wpi_tx_data *data;
2756 1.1 simonb struct wpi_tx_cmd *cmd;
2757 1.1 simonb struct wpi_scan_hdr *hdr;
2758 1.1 simonb struct wpi_scan_chan *chan;
2759 1.1 simonb struct ieee80211_frame *wh;
2760 1.1 simonb struct ieee80211_rateset *rs;
2761 1.1 simonb struct ieee80211_channel *c;
2762 1.1 simonb uint8_t *frm;
2763 1.61 jakllsch int pktlen, error, nrates;
2764 1.1 simonb
2765 1.67 jmcneill if (ic->ic_curchan == NULL)
2766 1.67 jmcneill return EIO;
2767 1.67 jmcneill
2768 1.1 simonb desc = &ring->desc[ring->cur];
2769 1.1 simonb data = &ring->data[ring->cur];
2770 1.1 simonb
2771 1.1 simonb MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2772 1.1 simonb if (data->m == NULL) {
2773 1.55 christos aprint_error_dev(sc->sc_dev,
2774 1.59 jakllsch "could not allocate mbuf for scan command\n");
2775 1.1 simonb return ENOMEM;
2776 1.1 simonb }
2777 1.1 simonb MCLGET(data->m, M_DONTWAIT);
2778 1.1 simonb if (!(data->m->m_flags & M_EXT)) {
2779 1.1 simonb m_freem(data->m);
2780 1.1 simonb data->m = NULL;
2781 1.55 christos aprint_error_dev(sc->sc_dev,
2782 1.59 jakllsch "could not allocate mbuf for scan command\n");
2783 1.1 simonb return ENOMEM;
2784 1.1 simonb }
2785 1.1 simonb
2786 1.1 simonb cmd = mtod(data->m, struct wpi_tx_cmd *);
2787 1.1 simonb cmd->code = WPI_CMD_SCAN;
2788 1.1 simonb cmd->flags = 0;
2789 1.1 simonb cmd->qid = ring->qid;
2790 1.1 simonb cmd->idx = ring->cur;
2791 1.1 simonb
2792 1.1 simonb hdr = (struct wpi_scan_hdr *)cmd->data;
2793 1.1 simonb memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2794 1.60 jakllsch hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
2795 1.60 jakllsch hdr->cmd.id = WPI_ID_BROADCAST;
2796 1.60 jakllsch hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
2797 1.1 simonb /*
2798 1.67 jmcneill * Move to the next channel if no packets are received within 5 msecs
2799 1.1 simonb * after sending the probe request (this helps to reduce the duration
2800 1.1 simonb * of active scans).
2801 1.1 simonb */
2802 1.67 jmcneill hdr->quiet = htole16(5); /* timeout in milliseconds */
2803 1.12 degroote hdr->plcp_threshold = htole16(1); /* min # of packets */
2804 1.1 simonb
2805 1.67 jmcneill if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
2806 1.12 degroote hdr->crc_threshold = htole16(1);
2807 1.1 simonb /* send probe requests at 6Mbps */
2808 1.60 jakllsch hdr->cmd.rate = wpi_plcp_signal(12);
2809 1.66 jmcneill rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2810 1.1 simonb } else {
2811 1.1 simonb hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2812 1.1 simonb /* send probe requests at 1Mbps */
2813 1.60 jakllsch hdr->cmd.rate = wpi_plcp_signal(2);
2814 1.66 jmcneill rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2815 1.1 simonb }
2816 1.1 simonb
2817 1.12 degroote /* for directed scans, firmware inserts the essid IE itself */
2818 1.66 jmcneill if (ic->ic_des_esslen != 0) {
2819 1.66 jmcneill hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2820 1.66 jmcneill hdr->essid[0].len = ic->ic_des_esslen;
2821 1.66 jmcneill memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2822 1.66 jmcneill }
2823 1.1 simonb
2824 1.1 simonb /*
2825 1.1 simonb * Build a probe request frame. Most of the following code is a
2826 1.1 simonb * copy & paste of what is done in net80211.
2827 1.1 simonb */
2828 1.1 simonb wh = (struct ieee80211_frame *)(hdr + 1);
2829 1.1 simonb wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2830 1.61 jakllsch IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2831 1.1 simonb wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2832 1.1 simonb IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2833 1.1 simonb IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2834 1.1 simonb IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2835 1.1 simonb *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2836 1.1 simonb *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2837 1.1 simonb
2838 1.1 simonb frm = (uint8_t *)(wh + 1);
2839 1.1 simonb
2840 1.12 degroote /* add empty essid IE (firmware generates it for directed scans) */
2841 1.12 degroote *frm++ = IEEE80211_ELEMID_SSID;
2842 1.12 degroote *frm++ = 0;
2843 1.1 simonb
2844 1.1 simonb /* add supported rates IE */
2845 1.1 simonb *frm++ = IEEE80211_ELEMID_RATES;
2846 1.1 simonb nrates = rs->rs_nrates;
2847 1.1 simonb if (nrates > IEEE80211_RATE_SIZE)
2848 1.1 simonb nrates = IEEE80211_RATE_SIZE;
2849 1.1 simonb *frm++ = nrates;
2850 1.1 simonb memcpy(frm, rs->rs_rates, nrates);
2851 1.1 simonb frm += nrates;
2852 1.1 simonb
2853 1.1 simonb /* add supported xrates IE */
2854 1.1 simonb if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2855 1.1 simonb nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2856 1.1 simonb *frm++ = IEEE80211_ELEMID_XRATES;
2857 1.1 simonb *frm++ = nrates;
2858 1.1 simonb memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2859 1.1 simonb frm += nrates;
2860 1.1 simonb }
2861 1.1 simonb
2862 1.1 simonb /* setup length of probe request */
2863 1.60 jakllsch hdr->cmd.len = htole16(frm - (uint8_t *)wh);
2864 1.1 simonb
2865 1.1 simonb chan = (struct wpi_scan_chan *)frm;
2866 1.67 jmcneill c = ic->ic_curchan;
2867 1.1 simonb
2868 1.67 jmcneill chan->chan = ieee80211_chan2ieee(ic, c);
2869 1.67 jmcneill chan->flags = 0;
2870 1.67 jmcneill if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2871 1.67 jmcneill chan->flags |= WPI_CHAN_ACTIVE;
2872 1.66 jmcneill if (ic->ic_des_esslen != 0)
2873 1.66 jmcneill chan->flags |= WPI_CHAN_DIRECT;
2874 1.67 jmcneill }
2875 1.67 jmcneill chan->dsp_gain = 0x6e;
2876 1.67 jmcneill if (IEEE80211_IS_CHAN_5GHZ(c)) {
2877 1.67 jmcneill chan->rf_gain = 0x3b;
2878 1.67 jmcneill chan->active = htole16(10);
2879 1.67 jmcneill chan->passive = htole16(110);
2880 1.67 jmcneill } else {
2881 1.67 jmcneill chan->rf_gain = 0x28;
2882 1.67 jmcneill chan->active = htole16(20);
2883 1.67 jmcneill chan->passive = htole16(120);
2884 1.67 jmcneill }
2885 1.67 jmcneill hdr->nchan++;
2886 1.67 jmcneill chan++;
2887 1.1 simonb
2888 1.67 jmcneill frm += sizeof (struct wpi_scan_chan);
2889 1.61 jakllsch
2890 1.12 degroote hdr->len = htole16(frm - (uint8_t *)hdr);
2891 1.12 degroote pktlen = frm - (uint8_t *)cmd;
2892 1.1 simonb
2893 1.61 jakllsch error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
2894 1.61 jakllsch BUS_DMA_NOWAIT);
2895 1.61 jakllsch if (error != 0) {
2896 1.28 degroote aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2897 1.1 simonb m_freem(data->m);
2898 1.1 simonb data->m = NULL;
2899 1.1 simonb return error;
2900 1.1 simonb }
2901 1.1 simonb
2902 1.1 simonb desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2903 1.1 simonb desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2904 1.1 simonb desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2905 1.1 simonb
2906 1.65 jmcneill bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2907 1.65 jmcneill ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2908 1.63 jmcneill bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2909 1.63 jmcneill BUS_DMASYNC_PREWRITE);
2910 1.63 jmcneill
2911 1.1 simonb /* kick cmd ring */
2912 1.1 simonb ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2913 1.1 simonb WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2914 1.1 simonb
2915 1.1 simonb return 0; /* will be notified async. of failure/success */
2916 1.1 simonb }
2917 1.1 simonb
2918 1.1 simonb static int
2919 1.1 simonb wpi_config(struct wpi_softc *sc)
2920 1.1 simonb {
2921 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2922 1.1 simonb struct ifnet *ifp = ic->ic_ifp;
2923 1.1 simonb struct wpi_power power;
2924 1.1 simonb struct wpi_bluetooth bluetooth;
2925 1.5 joerg struct wpi_node_info node;
2926 1.1 simonb int error;
2927 1.1 simonb
2928 1.1 simonb memset(&power, 0, sizeof power);
2929 1.12 degroote power.flags = htole32(WPI_POWER_CAM | 0x8);
2930 1.1 simonb error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2931 1.1 simonb if (error != 0) {
2932 1.28 degroote aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2933 1.1 simonb return error;
2934 1.1 simonb }
2935 1.1 simonb
2936 1.1 simonb /* configure bluetooth coexistence */
2937 1.1 simonb memset(&bluetooth, 0, sizeof bluetooth);
2938 1.1 simonb bluetooth.flags = 3;
2939 1.1 simonb bluetooth.lead = 0xaa;
2940 1.1 simonb bluetooth.kill = 1;
2941 1.1 simonb error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2942 1.61 jakllsch 0);
2943 1.1 simonb if (error != 0) {
2944 1.28 degroote aprint_error_dev(sc->sc_dev,
2945 1.28 degroote "could not configure bluetooth coexistence\n");
2946 1.1 simonb return error;
2947 1.1 simonb }
2948 1.1 simonb
2949 1.1 simonb /* configure adapter */
2950 1.1 simonb memset(&sc->config, 0, sizeof (struct wpi_config));
2951 1.20 dyoung IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2952 1.1 simonb IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2953 1.61 jakllsch /* set default channel */
2954 1.66 jmcneill sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2955 1.1 simonb sc->config.flags = htole32(WPI_CONFIG_TSF);
2956 1.66 jmcneill if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2957 1.1 simonb sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2958 1.1 simonb WPI_CONFIG_24GHZ);
2959 1.1 simonb }
2960 1.1 simonb sc->config.filter = 0;
2961 1.1 simonb switch (ic->ic_opmode) {
2962 1.1 simonb case IEEE80211_M_STA:
2963 1.1 simonb sc->config.mode = WPI_MODE_STA;
2964 1.1 simonb sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2965 1.1 simonb break;
2966 1.1 simonb case IEEE80211_M_IBSS:
2967 1.1 simonb case IEEE80211_M_AHDEMO:
2968 1.1 simonb sc->config.mode = WPI_MODE_IBSS;
2969 1.1 simonb break;
2970 1.1 simonb case IEEE80211_M_HOSTAP:
2971 1.1 simonb sc->config.mode = WPI_MODE_HOSTAP;
2972 1.1 simonb break;
2973 1.1 simonb case IEEE80211_M_MONITOR:
2974 1.1 simonb sc->config.mode = WPI_MODE_MONITOR;
2975 1.1 simonb sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2976 1.61 jakllsch WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2977 1.1 simonb break;
2978 1.1 simonb }
2979 1.1 simonb sc->config.cck_mask = 0x0f; /* not yet negotiated */
2980 1.1 simonb sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2981 1.1 simonb error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2982 1.61 jakllsch sizeof (struct wpi_config), 0);
2983 1.1 simonb if (error != 0) {
2984 1.28 degroote aprint_error_dev(sc->sc_dev, "configure command failed\n");
2985 1.1 simonb return error;
2986 1.1 simonb }
2987 1.1 simonb
2988 1.12 degroote /* configuration has changed, set Tx power accordingly */
2989 1.66 jmcneill if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2990 1.28 degroote aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2991 1.12 degroote return error;
2992 1.12 degroote }
2993 1.12 degroote
2994 1.1 simonb /* add broadcast node */
2995 1.1 simonb memset(&node, 0, sizeof node);
2996 1.1 simonb IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2997 1.1 simonb node.id = WPI_ID_BROADCAST;
2998 1.1 simonb node.rate = wpi_plcp_signal(2);
2999 1.12 degroote node.action = htole32(WPI_ACTION_SET_RATE);
3000 1.55 christos node.antenna = WPI_ANTENNA_BOTH;
3001 1.1 simonb error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
3002 1.1 simonb if (error != 0) {
3003 1.28 degroote aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
3004 1.1 simonb return error;
3005 1.1 simonb }
3006 1.1 simonb
3007 1.12 degroote if ((error = wpi_mrr_setup(sc)) != 0) {
3008 1.28 degroote aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
3009 1.12 degroote return error;
3010 1.12 degroote }
3011 1.12 degroote
3012 1.1 simonb return 0;
3013 1.1 simonb }
3014 1.1 simonb
3015 1.1 simonb static void
3016 1.1 simonb wpi_stop_master(struct wpi_softc *sc)
3017 1.1 simonb {
3018 1.1 simonb uint32_t tmp;
3019 1.1 simonb int ntries;
3020 1.1 simonb
3021 1.1 simonb tmp = WPI_READ(sc, WPI_RESET);
3022 1.1 simonb WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3023 1.1 simonb
3024 1.1 simonb tmp = WPI_READ(sc, WPI_GPIO_CTL);
3025 1.1 simonb if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3026 1.1 simonb return; /* already asleep */
3027 1.1 simonb
3028 1.1 simonb for (ntries = 0; ntries < 100; ntries++) {
3029 1.1 simonb if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3030 1.1 simonb break;
3031 1.1 simonb DELAY(10);
3032 1.1 simonb }
3033 1.1 simonb if (ntries == 100) {
3034 1.28 degroote aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
3035 1.1 simonb }
3036 1.1 simonb }
3037 1.1 simonb
3038 1.1 simonb static int
3039 1.1 simonb wpi_power_up(struct wpi_softc *sc)
3040 1.1 simonb {
3041 1.1 simonb uint32_t tmp;
3042 1.1 simonb int ntries;
3043 1.1 simonb
3044 1.1 simonb wpi_mem_lock(sc);
3045 1.1 simonb tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3046 1.1 simonb wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3047 1.1 simonb wpi_mem_unlock(sc);
3048 1.1 simonb
3049 1.1 simonb for (ntries = 0; ntries < 5000; ntries++) {
3050 1.1 simonb if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3051 1.1 simonb break;
3052 1.1 simonb DELAY(10);
3053 1.1 simonb }
3054 1.1 simonb if (ntries == 5000) {
3055 1.61 jakllsch aprint_error_dev(sc->sc_dev,
3056 1.61 jakllsch "timeout waiting for NIC to power up\n");
3057 1.1 simonb return ETIMEDOUT;
3058 1.1 simonb }
3059 1.1 simonb return 0;
3060 1.1 simonb }
3061 1.1 simonb
3062 1.1 simonb static int
3063 1.1 simonb wpi_reset(struct wpi_softc *sc)
3064 1.1 simonb {
3065 1.1 simonb uint32_t tmp;
3066 1.1 simonb int ntries;
3067 1.1 simonb
3068 1.1 simonb /* clear any pending interrupts */
3069 1.1 simonb WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3070 1.1 simonb
3071 1.1 simonb tmp = WPI_READ(sc, WPI_PLL_CTL);
3072 1.1 simonb WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3073 1.1 simonb
3074 1.1 simonb tmp = WPI_READ(sc, WPI_CHICKEN);
3075 1.1 simonb WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3076 1.1 simonb
3077 1.1 simonb tmp = WPI_READ(sc, WPI_GPIO_CTL);
3078 1.1 simonb WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3079 1.1 simonb
3080 1.1 simonb /* wait for clock stabilization */
3081 1.1 simonb for (ntries = 0; ntries < 1000; ntries++) {
3082 1.1 simonb if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3083 1.1 simonb break;
3084 1.1 simonb DELAY(10);
3085 1.1 simonb }
3086 1.1 simonb if (ntries == 1000) {
3087 1.55 christos aprint_error_dev(sc->sc_dev,
3088 1.61 jakllsch "timeout waiting for clock stabilization\n");
3089 1.1 simonb return ETIMEDOUT;
3090 1.1 simonb }
3091 1.1 simonb
3092 1.1 simonb /* initialize EEPROM */
3093 1.1 simonb tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3094 1.1 simonb if ((tmp & WPI_EEPROM_VERSION) == 0) {
3095 1.28 degroote aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3096 1.1 simonb return EIO;
3097 1.1 simonb }
3098 1.1 simonb WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3099 1.1 simonb
3100 1.1 simonb return 0;
3101 1.1 simonb }
3102 1.1 simonb
3103 1.1 simonb static void
3104 1.1 simonb wpi_hw_config(struct wpi_softc *sc)
3105 1.1 simonb {
3106 1.1 simonb uint32_t rev, hw;
3107 1.1 simonb
3108 1.12 degroote /* voodoo from the reference driver */
3109 1.1 simonb hw = WPI_READ(sc, WPI_HWCONFIG);
3110 1.1 simonb
3111 1.1 simonb rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3112 1.1 simonb rev = PCI_REVISION(rev);
3113 1.1 simonb if ((rev & 0xc0) == 0x40)
3114 1.1 simonb hw |= WPI_HW_ALM_MB;
3115 1.1 simonb else if (!(rev & 0x80))
3116 1.1 simonb hw |= WPI_HW_ALM_MM;
3117 1.1 simonb
3118 1.12 degroote if (sc->cap == 0x80)
3119 1.1 simonb hw |= WPI_HW_SKU_MRC;
3120 1.1 simonb
3121 1.1 simonb hw &= ~WPI_HW_REV_D;
3122 1.55 christos if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3123 1.1 simonb hw |= WPI_HW_REV_D;
3124 1.1 simonb
3125 1.12 degroote if (sc->type > 1)
3126 1.1 simonb hw |= WPI_HW_TYPE_B;
3127 1.1 simonb
3128 1.1 simonb DPRINTF(("setting h/w config %x\n", hw));
3129 1.1 simonb WPI_WRITE(sc, WPI_HWCONFIG, hw);
3130 1.1 simonb }
3131 1.1 simonb
3132 1.1 simonb static int
3133 1.1 simonb wpi_init(struct ifnet *ifp)
3134 1.1 simonb {
3135 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
3136 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
3137 1.1 simonb uint32_t tmp;
3138 1.1 simonb int qid, ntries, error;
3139 1.1 simonb
3140 1.18 degroote wpi_stop(ifp,1);
3141 1.1 simonb (void)wpi_reset(sc);
3142 1.1 simonb
3143 1.1 simonb wpi_mem_lock(sc);
3144 1.1 simonb wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3145 1.1 simonb DELAY(20);
3146 1.1 simonb tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3147 1.1 simonb wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3148 1.1 simonb wpi_mem_unlock(sc);
3149 1.1 simonb
3150 1.1 simonb (void)wpi_power_up(sc);
3151 1.1 simonb wpi_hw_config(sc);
3152 1.1 simonb
3153 1.1 simonb /* init Rx ring */
3154 1.1 simonb wpi_mem_lock(sc);
3155 1.1 simonb WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3156 1.1 simonb WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3157 1.1 simonb offsetof(struct wpi_shared, next));
3158 1.1 simonb WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3159 1.1 simonb WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3160 1.1 simonb wpi_mem_unlock(sc);
3161 1.1 simonb
3162 1.1 simonb /* init Tx rings */
3163 1.1 simonb wpi_mem_lock(sc);
3164 1.61 jakllsch wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3165 1.61 jakllsch wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3166 1.61 jakllsch wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3167 1.1 simonb wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3168 1.1 simonb wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3169 1.1 simonb wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3170 1.1 simonb wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3171 1.1 simonb
3172 1.1 simonb WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3173 1.1 simonb WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3174 1.1 simonb
3175 1.1 simonb for (qid = 0; qid < 6; qid++) {
3176 1.1 simonb WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3177 1.1 simonb WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3178 1.1 simonb WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3179 1.1 simonb }
3180 1.1 simonb wpi_mem_unlock(sc);
3181 1.1 simonb
3182 1.1 simonb /* clear "radio off" and "disable command" bits (reversed logic) */
3183 1.1 simonb WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3184 1.1 simonb WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3185 1.1 simonb
3186 1.1 simonb /* clear any pending interrupts */
3187 1.1 simonb WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3188 1.1 simonb /* enable interrupts */
3189 1.1 simonb WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3190 1.1 simonb
3191 1.12 degroote /* not sure why/if this is necessary... */
3192 1.12 degroote WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3193 1.12 degroote WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3194 1.1 simonb
3195 1.54 riastrad if ((error = wpi_load_firmware(sc)) != 0)
3196 1.54 riastrad /* wpi_load_firmware prints error messages for us. */
3197 1.1 simonb goto fail1;
3198 1.1 simonb
3199 1.31 degroote /* Check the status of the radio switch */
3200 1.71 bouyer mutex_enter(&sc->sc_rsw_mtx);
3201 1.34 degroote if (wpi_getrfkill(sc)) {
3202 1.71 bouyer mutex_exit(&sc->sc_rsw_mtx);
3203 1.54 riastrad aprint_error_dev(sc->sc_dev,
3204 1.54 riastrad "radio is disabled by hardware switch\n");
3205 1.69 bouyer ifp->if_flags &= ~IFF_UP;
3206 1.54 riastrad error = EBUSY;
3207 1.31 degroote goto fail1;
3208 1.31 degroote }
3209 1.71 bouyer mutex_exit(&sc->sc_rsw_mtx);
3210 1.31 degroote
3211 1.1 simonb /* wait for thermal sensors to calibrate */
3212 1.1 simonb for (ntries = 0; ntries < 1000; ntries++) {
3213 1.55 christos if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3214 1.1 simonb break;
3215 1.1 simonb DELAY(10);
3216 1.1 simonb }
3217 1.1 simonb if (ntries == 1000) {
3218 1.54 riastrad aprint_error_dev(sc->sc_dev,
3219 1.54 riastrad "timeout waiting for thermal sensors calibration\n");
3220 1.1 simonb error = ETIMEDOUT;
3221 1.1 simonb goto fail1;
3222 1.1 simonb }
3223 1.12 degroote DPRINTF(("temperature %d\n", sc->temp));
3224 1.1 simonb
3225 1.1 simonb if ((error = wpi_config(sc)) != 0) {
3226 1.28 degroote aprint_error_dev(sc->sc_dev, "could not configure device\n");
3227 1.1 simonb goto fail1;
3228 1.1 simonb }
3229 1.1 simonb
3230 1.1 simonb ifp->if_flags &= ~IFF_OACTIVE;
3231 1.1 simonb ifp->if_flags |= IFF_RUNNING;
3232 1.1 simonb
3233 1.1 simonb if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3234 1.1 simonb if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3235 1.1 simonb ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3236 1.1 simonb }
3237 1.1 simonb else
3238 1.1 simonb ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3239 1.1 simonb
3240 1.1 simonb return 0;
3241 1.1 simonb
3242 1.1 simonb fail1: wpi_stop(ifp, 1);
3243 1.1 simonb return error;
3244 1.1 simonb }
3245 1.1 simonb
3246 1.1 simonb static void
3247 1.6 christos wpi_stop(struct ifnet *ifp, int disable)
3248 1.1 simonb {
3249 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
3250 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
3251 1.1 simonb uint32_t tmp;
3252 1.1 simonb int ac;
3253 1.1 simonb
3254 1.1 simonb ifp->if_timer = sc->sc_tx_timer = 0;
3255 1.1 simonb ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3256 1.1 simonb
3257 1.1 simonb ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3258 1.1 simonb
3259 1.1 simonb /* disable interrupts */
3260 1.1 simonb WPI_WRITE(sc, WPI_MASK, 0);
3261 1.1 simonb WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3262 1.1 simonb WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3263 1.1 simonb WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3264 1.1 simonb
3265 1.1 simonb wpi_mem_lock(sc);
3266 1.1 simonb wpi_mem_write(sc, WPI_MEM_MODE, 0);
3267 1.1 simonb wpi_mem_unlock(sc);
3268 1.1 simonb
3269 1.1 simonb /* reset all Tx rings */
3270 1.1 simonb for (ac = 0; ac < 4; ac++)
3271 1.1 simonb wpi_reset_tx_ring(sc, &sc->txq[ac]);
3272 1.1 simonb wpi_reset_tx_ring(sc, &sc->cmdq);
3273 1.1 simonb
3274 1.1 simonb /* reset Rx ring */
3275 1.1 simonb wpi_reset_rx_ring(sc, &sc->rxq);
3276 1.55 christos
3277 1.1 simonb wpi_mem_lock(sc);
3278 1.1 simonb wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3279 1.1 simonb wpi_mem_unlock(sc);
3280 1.1 simonb
3281 1.1 simonb DELAY(5);
3282 1.1 simonb
3283 1.1 simonb wpi_stop_master(sc);
3284 1.1 simonb
3285 1.1 simonb tmp = WPI_READ(sc, WPI_RESET);
3286 1.1 simonb WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3287 1.1 simonb }
3288 1.33 jmcneill
3289 1.33 jmcneill static bool
3290 1.46 dyoung wpi_resume(device_t dv, const pmf_qual_t *qual)
3291 1.33 jmcneill {
3292 1.33 jmcneill struct wpi_softc *sc = device_private(dv);
3293 1.33 jmcneill
3294 1.33 jmcneill (void)wpi_reset(sc);
3295 1.33 jmcneill
3296 1.33 jmcneill return true;
3297 1.33 jmcneill }
3298 1.34 degroote
3299 1.34 degroote /*
3300 1.34 degroote * Return whether or not the radio is enabled in hardware
3301 1.34 degroote * (i.e. the rfkill switch is "off").
3302 1.34 degroote */
3303 1.34 degroote static int
3304 1.34 degroote wpi_getrfkill(struct wpi_softc *sc)
3305 1.34 degroote {
3306 1.34 degroote uint32_t tmp;
3307 1.34 degroote
3308 1.34 degroote wpi_mem_lock(sc);
3309 1.34 degroote tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3310 1.34 degroote wpi_mem_unlock(sc);
3311 1.34 degroote
3312 1.70 bouyer KASSERT(mutex_owned(&sc->sc_rsw_mtx));
3313 1.70 bouyer if (tmp & 0x01) {
3314 1.70 bouyer /* switch is on */
3315 1.70 bouyer if (sc->sc_rsw_status != WPI_RSW_ON) {
3316 1.70 bouyer sc->sc_rsw_status = WPI_RSW_ON;
3317 1.70 bouyer sysmon_pswitch_event(&sc->sc_rsw,
3318 1.70 bouyer PSWITCH_EVENT_PRESSED);
3319 1.70 bouyer }
3320 1.70 bouyer } else {
3321 1.70 bouyer /* switch is off */
3322 1.70 bouyer if (sc->sc_rsw_status != WPI_RSW_OFF) {
3323 1.70 bouyer sc->sc_rsw_status = WPI_RSW_OFF;
3324 1.70 bouyer sysmon_pswitch_event(&sc->sc_rsw,
3325 1.70 bouyer PSWITCH_EVENT_RELEASED);
3326 1.70 bouyer }
3327 1.70 bouyer }
3328 1.70 bouyer
3329 1.34 degroote return !(tmp & 0x01);
3330 1.34 degroote }
3331 1.34 degroote
3332 1.34 degroote static int
3333 1.34 degroote wpi_sysctl_radio(SYSCTLFN_ARGS)
3334 1.34 degroote {
3335 1.34 degroote struct sysctlnode node;
3336 1.34 degroote struct wpi_softc *sc;
3337 1.34 degroote int val, error;
3338 1.34 degroote
3339 1.34 degroote node = *rnode;
3340 1.34 degroote sc = (struct wpi_softc *)node.sysctl_data;
3341 1.34 degroote
3342 1.70 bouyer mutex_enter(&sc->sc_rsw_mtx);
3343 1.34 degroote val = !wpi_getrfkill(sc);
3344 1.70 bouyer mutex_exit(&sc->sc_rsw_mtx);
3345 1.34 degroote
3346 1.34 degroote node.sysctl_data = &val;
3347 1.34 degroote error = sysctl_lookup(SYSCTLFN_CALL(&node));
3348 1.34 degroote
3349 1.34 degroote if (error || newp == NULL)
3350 1.34 degroote return error;
3351 1.34 degroote
3352 1.34 degroote return 0;
3353 1.34 degroote }
3354 1.34 degroote
3355 1.34 degroote static void
3356 1.34 degroote wpi_sysctlattach(struct wpi_softc *sc)
3357 1.34 degroote {
3358 1.34 degroote int rc;
3359 1.34 degroote const struct sysctlnode *rnode;
3360 1.34 degroote const struct sysctlnode *cnode;
3361 1.34 degroote
3362 1.34 degroote struct sysctllog **clog = &sc->sc_sysctllog;
3363 1.34 degroote
3364 1.34 degroote if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3365 1.34 degroote CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3366 1.34 degroote SYSCTL_DESCR("wpi controls and statistics"),
3367 1.57 pooka NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
3368 1.34 degroote goto err;
3369 1.34 degroote
3370 1.34 degroote if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3371 1.34 degroote CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3372 1.34 degroote SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3373 1.52 dsl wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3374 1.34 degroote goto err;
3375 1.34 degroote
3376 1.34 degroote #ifdef WPI_DEBUG
3377 1.34 degroote /* control debugging printfs */
3378 1.34 degroote if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3379 1.34 degroote CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3380 1.34 degroote "debug", SYSCTL_DESCR("Enable debugging output"),
3381 1.34 degroote NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3382 1.34 degroote goto err;
3383 1.34 degroote #endif
3384 1.34 degroote
3385 1.34 degroote return;
3386 1.34 degroote err:
3387 1.34 degroote aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3388 1.34 degroote }
3389 1.70 bouyer
3390 1.70 bouyer static void
3391 1.70 bouyer wpi_rsw_thread(void *arg)
3392 1.70 bouyer {
3393 1.70 bouyer struct wpi_softc *sc = (struct wpi_softc *)arg;
3394 1.70 bouyer
3395 1.70 bouyer mutex_enter(&sc->sc_rsw_mtx);
3396 1.70 bouyer for (;;) {
3397 1.70 bouyer cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz);
3398 1.70 bouyer if (sc->sc_dying) {
3399 1.70 bouyer sc->sc_rsw_lwp = NULL;
3400 1.70 bouyer cv_broadcast(&sc->sc_rsw_cv);
3401 1.70 bouyer mutex_exit(&sc->sc_rsw_mtx);
3402 1.70 bouyer kthread_exit(0);
3403 1.70 bouyer }
3404 1.70 bouyer wpi_getrfkill(sc);
3405 1.70 bouyer }
3406 1.70 bouyer }
3407 1.70 bouyer
3408