Home | History | Annotate | Line # | Download | only in pci
if_wpi.c revision 1.73
      1  1.73     ozaki /*	$NetBSD: if_wpi.c,v 1.73 2016/05/26 05:04:46 ozaki-r Exp $	*/
      2   1.1    simonb 
      3   1.1    simonb /*-
      4  1.12  degroote  * Copyright (c) 2006, 2007
      5   1.1    simonb  *	Damien Bergamini <damien.bergamini (at) free.fr>
      6   1.1    simonb  *
      7   1.1    simonb  * Permission to use, copy, modify, and distribute this software for any
      8   1.1    simonb  * purpose with or without fee is hereby granted, provided that the above
      9   1.1    simonb  * copyright notice and this permission notice appear in all copies.
     10   1.1    simonb  *
     11   1.1    simonb  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12   1.1    simonb  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13   1.1    simonb  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14   1.1    simonb  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15   1.1    simonb  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16   1.1    simonb  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17   1.1    simonb  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18   1.1    simonb  */
     19   1.1    simonb 
     20   1.1    simonb #include <sys/cdefs.h>
     21  1.73     ozaki __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.73 2016/05/26 05:04:46 ozaki-r Exp $");
     22   1.1    simonb 
     23   1.1    simonb /*
     24   1.1    simonb  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
     25   1.1    simonb  */
     26   1.1    simonb 
     27   1.1    simonb 
     28   1.1    simonb #include <sys/param.h>
     29   1.1    simonb #include <sys/sockio.h>
     30   1.1    simonb #include <sys/sysctl.h>
     31   1.1    simonb #include <sys/mbuf.h>
     32   1.1    simonb #include <sys/kernel.h>
     33   1.1    simonb #include <sys/socket.h>
     34   1.1    simonb #include <sys/systm.h>
     35   1.1    simonb #include <sys/malloc.h>
     36  1.39      cube #include <sys/mutex.h>
     37  1.41     joerg #include <sys/once.h>
     38   1.1    simonb #include <sys/conf.h>
     39   1.1    simonb #include <sys/kauth.h>
     40   1.7  degroote #include <sys/callout.h>
     41  1.48  uebayasi #include <sys/proc.h>
     42  1.70    bouyer #include <sys/kthread.h>
     43   1.1    simonb 
     44  1.25        ad #include <sys/bus.h>
     45   1.1    simonb #include <machine/endian.h>
     46  1.25        ad #include <sys/intr.h>
     47   1.1    simonb 
     48   1.1    simonb #include <dev/pci/pcireg.h>
     49   1.1    simonb #include <dev/pci/pcivar.h>
     50   1.1    simonb #include <dev/pci/pcidevs.h>
     51   1.1    simonb 
     52  1.70    bouyer #include <dev/sysmon/sysmonvar.h>
     53  1.70    bouyer 
     54   1.1    simonb #include <net/bpf.h>
     55   1.1    simonb #include <net/if.h>
     56   1.1    simonb #include <net/if_arp.h>
     57   1.1    simonb #include <net/if_dl.h>
     58   1.1    simonb #include <net/if_ether.h>
     59   1.1    simonb #include <net/if_media.h>
     60   1.1    simonb #include <net/if_types.h>
     61   1.1    simonb 
     62   1.1    simonb #include <netinet/in.h>
     63   1.1    simonb #include <netinet/in_systm.h>
     64   1.1    simonb #include <netinet/in_var.h>
     65   1.1    simonb #include <netinet/ip.h>
     66   1.1    simonb 
     67  1.61  jakllsch #include <net80211/ieee80211_var.h>
     68  1.61  jakllsch #include <net80211/ieee80211_amrr.h>
     69  1.61  jakllsch #include <net80211/ieee80211_radiotap.h>
     70  1.61  jakllsch 
     71   1.1    simonb #include <dev/firmload.h>
     72   1.1    simonb 
     73   1.1    simonb #include <dev/pci/if_wpireg.h>
     74   1.1    simonb #include <dev/pci/if_wpivar.h>
     75   1.1    simonb 
     76  1.54  riastrad static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
     77  1.41     joerg static once_t wpi_firmware_init;
     78  1.41     joerg static kmutex_t wpi_firmware_mutex;
     79  1.41     joerg static size_t wpi_firmware_users;
     80  1.41     joerg static uint8_t *wpi_firmware_image;
     81  1.41     joerg static size_t wpi_firmware_size;
     82  1.41     joerg 
     83  1.61  jakllsch static int	wpi_match(device_t, cfdata_t, void *);
     84  1.61  jakllsch static void	wpi_attach(device_t, device_t, void *);
     85  1.61  jakllsch static int	wpi_detach(device_t , int);
     86  1.61  jakllsch static int	wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
     87  1.61  jakllsch 		    void **, bus_size_t, bus_size_t, int);
     88  1.61  jakllsch static void	wpi_dma_contig_free(struct wpi_dma_info *);
     89  1.61  jakllsch static int	wpi_alloc_shared(struct wpi_softc *);
     90  1.61  jakllsch static void	wpi_free_shared(struct wpi_softc *);
     91  1.61  jakllsch static int	wpi_alloc_fwmem(struct wpi_softc *);
     92  1.61  jakllsch static void	wpi_free_fwmem(struct wpi_softc *);
     93  1.61  jakllsch static struct	wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
     94  1.61  jakllsch static void	wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
     95  1.61  jakllsch static int	wpi_alloc_rpool(struct wpi_softc *);
     96  1.61  jakllsch static void	wpi_free_rpool(struct wpi_softc *);
     97  1.61  jakllsch static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
     98  1.61  jakllsch static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
     99  1.61  jakllsch static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    100  1.61  jakllsch static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
    101  1.61  jakllsch 		    int, int);
    102  1.61  jakllsch static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    103  1.61  jakllsch static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    104  1.61  jakllsch static struct	ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
    105  1.61  jakllsch static void	wpi_newassoc(struct ieee80211_node *, int);
    106  1.61  jakllsch static int	wpi_media_change(struct ifnet *);
    107  1.61  jakllsch static int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
    108  1.61  jakllsch static void	wpi_mem_lock(struct wpi_softc *);
    109  1.61  jakllsch static void	wpi_mem_unlock(struct wpi_softc *);
    110  1.61  jakllsch static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
    111  1.61  jakllsch static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
    112  1.61  jakllsch static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
    113  1.61  jakllsch 		    const uint32_t *, int);
    114  1.61  jakllsch static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
    115  1.61  jakllsch static int	wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
    116  1.61  jakllsch static int	wpi_cache_firmware(struct wpi_softc *);
    117  1.61  jakllsch static void	wpi_release_firmware(void);
    118  1.61  jakllsch static int	wpi_load_firmware(struct wpi_softc *);
    119  1.61  jakllsch static void	wpi_calib_timeout(void *);
    120  1.61  jakllsch static void	wpi_iter_func(void *, struct ieee80211_node *);
    121  1.61  jakllsch static void	wpi_power_calibration(struct wpi_softc *, int);
    122  1.61  jakllsch static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
    123  1.61  jakllsch 		    struct wpi_rx_data *);
    124  1.61  jakllsch static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
    125  1.61  jakllsch static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
    126  1.61  jakllsch static void	wpi_notif_intr(struct wpi_softc *);
    127  1.61  jakllsch static int	wpi_intr(void *);
    128  1.61  jakllsch static void	wpi_read_eeprom(struct wpi_softc *);
    129  1.61  jakllsch static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
    130  1.61  jakllsch static void	wpi_read_eeprom_group(struct wpi_softc *, int);
    131  1.61  jakllsch static uint8_t	wpi_plcp_signal(int);
    132  1.61  jakllsch static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
    133  1.61  jakllsch 		    struct ieee80211_node *, int);
    134  1.61  jakllsch static void	wpi_start(struct ifnet *);
    135  1.61  jakllsch static void	wpi_watchdog(struct ifnet *);
    136  1.61  jakllsch static int	wpi_ioctl(struct ifnet *, u_long, void *);
    137  1.61  jakllsch static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
    138  1.61  jakllsch static int	wpi_wme_update(struct ieee80211com *);
    139  1.61  jakllsch static int	wpi_mrr_setup(struct wpi_softc *);
    140  1.61  jakllsch static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
    141  1.61  jakllsch static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
    142  1.61  jakllsch static int	wpi_set_txpower(struct wpi_softc *,
    143  1.61  jakllsch 		    struct ieee80211_channel *, int);
    144  1.61  jakllsch static int	wpi_get_power_index(struct wpi_softc *,
    145  1.61  jakllsch 		    struct wpi_power_group *, struct ieee80211_channel *, int);
    146  1.61  jakllsch static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
    147  1.61  jakllsch static int	wpi_auth(struct wpi_softc *);
    148  1.67  jmcneill static int	wpi_scan(struct wpi_softc *);
    149  1.61  jakllsch static int	wpi_config(struct wpi_softc *);
    150  1.61  jakllsch static void	wpi_stop_master(struct wpi_softc *);
    151  1.61  jakllsch static int	wpi_power_up(struct wpi_softc *);
    152  1.61  jakllsch static int	wpi_reset(struct wpi_softc *);
    153  1.61  jakllsch static void	wpi_hw_config(struct wpi_softc *);
    154  1.61  jakllsch static int	wpi_init(struct ifnet *);
    155  1.61  jakllsch static void	wpi_stop(struct ifnet *, int);
    156  1.61  jakllsch static bool	wpi_resume(device_t, const pmf_qual_t *);
    157  1.34  degroote static int	wpi_getrfkill(struct wpi_softc *);
    158  1.61  jakllsch static void	wpi_sysctlattach(struct wpi_softc *);
    159  1.70    bouyer static void	wpi_rsw_thread(void *);
    160  1.61  jakllsch 
    161  1.61  jakllsch #ifdef WPI_DEBUG
    162  1.61  jakllsch #define DPRINTF(x)	do { if (wpi_debug > 0) printf x; } while (0)
    163  1.61  jakllsch #define DPRINTFN(n, x)	do { if (wpi_debug >= (n)) printf x; } while (0)
    164  1.61  jakllsch int wpi_debug = 1;
    165  1.61  jakllsch #else
    166  1.61  jakllsch #define DPRINTF(x)
    167  1.61  jakllsch #define DPRINTFN(n, x)
    168  1.61  jakllsch #endif
    169   1.1    simonb 
    170  1.28  degroote CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
    171   1.1    simonb 	wpi_detach, NULL);
    172   1.1    simonb 
    173   1.1    simonb static int
    174  1.42    cegger wpi_match(device_t parent, cfdata_t match __unused, void *aux)
    175   1.1    simonb {
    176   1.1    simonb 	struct pci_attach_args *pa = aux;
    177   1.1    simonb 
    178   1.1    simonb 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    179   1.1    simonb 		return 0;
    180   1.1    simonb 
    181   1.1    simonb 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
    182   1.7  degroote 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
    183   1.1    simonb 		return 1;
    184   1.1    simonb 
    185   1.1    simonb 	return 0;
    186   1.1    simonb }
    187   1.1    simonb 
    188   1.1    simonb /* Base Address Register */
    189   1.1    simonb #define WPI_PCI_BAR0	0x10
    190   1.1    simonb 
    191  1.41     joerg static int
    192  1.41     joerg wpi_attach_once(void)
    193  1.41     joerg {
    194  1.54  riastrad 
    195  1.41     joerg 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
    196  1.41     joerg 	return 0;
    197  1.41     joerg }
    198  1.41     joerg 
    199   1.1    simonb static void
    200  1.28  degroote wpi_attach(device_t parent __unused, device_t self, void *aux)
    201   1.1    simonb {
    202  1.28  degroote 	struct wpi_softc *sc = device_private(self);
    203   1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
    204   1.1    simonb 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    205   1.1    simonb 	struct pci_attach_args *pa = aux;
    206   1.1    simonb 	const char *intrstr;
    207   1.1    simonb 	bus_space_tag_t memt;
    208   1.1    simonb 	bus_space_handle_t memh;
    209   1.1    simonb 	pci_intr_handle_t ih;
    210   1.1    simonb 	pcireg_t data;
    211  1.61  jakllsch 	int ac, error;
    212  1.58  christos 	char intrbuf[PCI_INTRSTR_LEN];
    213   1.1    simonb 
    214  1.41     joerg 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
    215  1.41     joerg 	sc->fw_used = false;
    216  1.41     joerg 
    217  1.30    plunky 	sc->sc_dev = self;
    218   1.1    simonb 	sc->sc_pct = pa->pa_pc;
    219   1.1    simonb 	sc->sc_pcitag = pa->pa_tag;
    220   1.1    simonb 
    221  1.70    bouyer 	sc->sc_rsw_status = WPI_RSW_UNKNOWN;
    222  1.70    bouyer 	sc->sc_rsw.smpsw_name = device_xname(self);
    223  1.70    bouyer 	sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO;
    224  1.70    bouyer 	error = sysmon_pswitch_register(&sc->sc_rsw);
    225  1.70    bouyer 	if (error) {
    226  1.70    bouyer 		aprint_error_dev(self,
    227  1.70    bouyer 		    "unable to register radio switch with sysmon\n");
    228  1.70    bouyer 		return;
    229  1.70    bouyer 	}
    230  1.70    bouyer 	mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE);
    231  1.70    bouyer 	cv_init(&sc->sc_rsw_cv, "wpirsw");
    232  1.70    bouyer 	if (kthread_create(PRI_NONE, 0, NULL,
    233  1.70    bouyer 	    wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) {
    234  1.70    bouyer 		aprint_error_dev(self, "couldn't create switch thread\n");
    235  1.70    bouyer 	}
    236  1.70    bouyer 
    237  1.14        ad 	callout_init(&sc->calib_to, 0);
    238  1.28  degroote 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
    239   1.1    simonb 
    240  1.50  drochner 	pci_aprint_devinfo(pa, NULL);
    241   1.1    simonb 
    242   1.1    simonb 	/* enable bus-mastering */
    243   1.1    simonb 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    244   1.1    simonb 	data |= PCI_COMMAND_MASTER_ENABLE;
    245   1.1    simonb 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
    246   1.1    simonb 
    247   1.1    simonb 	/* map the register window */
    248   1.1    simonb 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
    249  1.59  jakllsch 	    PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
    250   1.1    simonb 	if (error != 0) {
    251  1.28  degroote 		aprint_error_dev(self, "could not map memory space\n");
    252   1.1    simonb 		return;
    253   1.1    simonb 	}
    254   1.1    simonb 
    255   1.1    simonb 	sc->sc_st = memt;
    256   1.1    simonb 	sc->sc_sh = memh;
    257   1.1    simonb 	sc->sc_dmat = pa->pa_dmat;
    258   1.1    simonb 
    259   1.1    simonb 	if (pci_intr_map(pa, &ih) != 0) {
    260  1.28  degroote 		aprint_error_dev(self, "could not map interrupt\n");
    261   1.1    simonb 		return;
    262   1.1    simonb 	}
    263   1.1    simonb 
    264  1.58  christos 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
    265   1.1    simonb 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
    266   1.1    simonb 	if (sc->sc_ih == NULL) {
    267  1.28  degroote 		aprint_error_dev(self, "could not establish interrupt");
    268   1.1    simonb 		if (intrstr != NULL)
    269   1.1    simonb 			aprint_error(" at %s", intrstr);
    270   1.1    simonb 		aprint_error("\n");
    271   1.1    simonb 		return;
    272   1.1    simonb 	}
    273  1.28  degroote 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    274   1.1    simonb 
    275  1.61  jakllsch 	/*
    276  1.61  jakllsch 	 * Put adapter into a known state.
    277  1.61  jakllsch 	 */
    278  1.61  jakllsch 	if ((error = wpi_reset(sc)) != 0) {
    279  1.28  degroote 		aprint_error_dev(self, "could not reset adapter\n");
    280   1.1    simonb 		return;
    281   1.1    simonb 	}
    282   1.1    simonb 
    283  1.59  jakllsch 	/*
    284  1.12  degroote 	 * Allocate DMA memory for firmware transfers.
    285  1.12  degroote 	 */
    286  1.61  jakllsch 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
    287  1.61  jakllsch 		aprint_error_dev(self, "could not allocate firmware memory\n");
    288  1.12  degroote 		return;
    289  1.61  jakllsch 	}
    290  1.12  degroote 
    291   1.1    simonb 	/*
    292   1.1    simonb 	 * Allocate shared page and Tx/Rx rings.
    293   1.1    simonb 	 */
    294   1.1    simonb 	if ((error = wpi_alloc_shared(sc)) != 0) {
    295  1.28  degroote 		aprint_error_dev(self, "could not allocate shared area\n");
    296  1.12  degroote 		goto fail1;
    297   1.1    simonb 	}
    298   1.1    simonb 
    299   1.7  degroote 	if ((error = wpi_alloc_rpool(sc)) != 0) {
    300  1.28  degroote 		aprint_error_dev(self, "could not allocate Rx buffers\n");
    301  1.12  degroote 		goto fail2;
    302   1.7  degroote 	}
    303   1.7  degroote 
    304   1.1    simonb 	for (ac = 0; ac < 4; ac++) {
    305  1.61  jakllsch 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
    306  1.61  jakllsch 		    ac);
    307   1.1    simonb 		if (error != 0) {
    308  1.61  jakllsch 			aprint_error_dev(self,
    309  1.61  jakllsch 			    "could not allocate Tx ring %d\n", ac);
    310  1.12  degroote 			goto fail3;
    311   1.1    simonb 		}
    312   1.1    simonb 	}
    313   1.1    simonb 
    314   1.1    simonb 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
    315   1.1    simonb 	if (error != 0) {
    316  1.28  degroote 		aprint_error_dev(self, "could not allocate command ring\n");
    317  1.12  degroote 		goto fail3;
    318   1.1    simonb 	}
    319   1.1    simonb 
    320  1.61  jakllsch 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
    321  1.61  jakllsch 	if (error != 0) {
    322  1.28  degroote 		aprint_error_dev(self, "could not allocate Rx ring\n");
    323  1.24  degroote 		goto fail4;
    324   1.1    simonb 	}
    325   1.1    simonb 
    326   1.1    simonb 	ic->ic_ifp = ifp;
    327  1.61  jakllsch 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    328  1.61  jakllsch 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    329   1.1    simonb 	ic->ic_state = IEEE80211_S_INIT;
    330   1.1    simonb 
    331   1.1    simonb 	/* set device capabilities */
    332   1.1    simonb 	ic->ic_caps =
    333  1.59  jakllsch 	    IEEE80211_C_WPA |		/* 802.11i */
    334  1.59  jakllsch 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    335  1.59  jakllsch 	    IEEE80211_C_TXPMGT |	/* tx power management */
    336  1.59  jakllsch 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    337  1.59  jakllsch 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    338  1.59  jakllsch 	    IEEE80211_C_WME;		/* 802.11e */
    339   1.1    simonb 
    340  1.12  degroote 	/* read supported channels and MAC address from EEPROM */
    341   1.1    simonb 	wpi_read_eeprom(sc);
    342   1.1    simonb 
    343  1.59  jakllsch 	/* set supported .11a, .11b and .11g rates */
    344  1.59  jakllsch 	ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
    345  1.59  jakllsch 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
    346  1.59  jakllsch 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
    347   1.1    simonb 
    348  1.59  jakllsch 	/* IBSS channel undefined for now */
    349   1.1    simonb 	ic->ic_ibss_chan = &ic->ic_channels[0];
    350   1.1    simonb 
    351   1.1    simonb 	ifp->if_softc = sc;
    352   1.1    simonb 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    353   1.1    simonb 	ifp->if_init = wpi_init;
    354   1.1    simonb 	ifp->if_stop = wpi_stop;
    355   1.1    simonb 	ifp->if_ioctl = wpi_ioctl;
    356   1.1    simonb 	ifp->if_start = wpi_start;
    357   1.1    simonb 	ifp->if_watchdog = wpi_watchdog;
    358   1.1    simonb 	IFQ_SET_READY(&ifp->if_snd);
    359  1.28  degroote 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    360   1.1    simonb 
    361   1.1    simonb 	if_attach(ifp);
    362   1.1    simonb 	ieee80211_ifattach(ic);
    363   1.1    simonb 	/* override default methods */
    364   1.1    simonb 	ic->ic_node_alloc = wpi_node_alloc;
    365   1.5     joerg 	ic->ic_newassoc = wpi_newassoc;
    366   1.1    simonb 	ic->ic_wme.wme_update = wpi_wme_update;
    367   1.1    simonb 
    368   1.1    simonb 	/* override state transition machine */
    369   1.1    simonb 	sc->sc_newstate = ic->ic_newstate;
    370   1.1    simonb 	ic->ic_newstate = wpi_newstate;
    371   1.1    simonb 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
    372   1.1    simonb 
    373  1.59  jakllsch 	sc->amrr.amrr_min_success_threshold =  1;
    374   1.5     joerg 	sc->amrr.amrr_max_success_threshold = 15;
    375   1.5     joerg 
    376  1.34  degroote 	wpi_sysctlattach(sc);
    377  1.34  degroote 
    378  1.43   tsutsui 	if (pmf_device_register(self, NULL, wpi_resume))
    379  1.43   tsutsui 		pmf_class_network_register(self, ifp);
    380  1.43   tsutsui 	else
    381  1.33  jmcneill 		aprint_error_dev(self, "couldn't establish power handler\n");
    382   1.1    simonb 
    383  1.47     joerg 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    384  1.45     pooka 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    385  1.45     pooka 	    &sc->sc_drvbpf);
    386   1.1    simonb 
    387   1.1    simonb 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    388   1.1    simonb 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    389   1.1    simonb 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
    390   1.1    simonb 
    391   1.1    simonb 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    392   1.1    simonb 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    393   1.1    simonb 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
    394   1.1    simonb 
    395   1.1    simonb 	ieee80211_announce(ic);
    396   1.1    simonb 
    397   1.1    simonb 	return;
    398   1.1    simonb 
    399  1.61  jakllsch 	/* free allocated memory if something failed during attachment */
    400  1.61  jakllsch fail4:	wpi_free_tx_ring(sc, &sc->cmdq);
    401  1.61  jakllsch fail3:	while (--ac >= 0)
    402  1.61  jakllsch 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    403   1.7  degroote 	wpi_free_rpool(sc);
    404  1.12  degroote fail2:	wpi_free_shared(sc);
    405  1.12  degroote fail1:	wpi_free_fwmem(sc);
    406   1.1    simonb }
    407   1.1    simonb 
    408   1.1    simonb static int
    409  1.28  degroote wpi_detach(device_t self, int flags __unused)
    410   1.1    simonb {
    411  1.28  degroote 	struct wpi_softc *sc = device_private(self);
    412   1.7  degroote 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    413   1.1    simonb 	int ac;
    414   1.1    simonb 
    415   1.1    simonb 	wpi_stop(ifp, 1);
    416   1.1    simonb 
    417   1.1    simonb 	if (ifp != NULL)
    418  1.47     joerg 		bpf_detach(ifp);
    419   1.1    simonb 	ieee80211_ifdetach(&sc->sc_ic);
    420   1.1    simonb 	if (ifp != NULL)
    421   1.1    simonb 		if_detach(ifp);
    422   1.1    simonb 
    423   1.1    simonb 	for (ac = 0; ac < 4; ac++)
    424   1.1    simonb 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    425   1.1    simonb 	wpi_free_tx_ring(sc, &sc->cmdq);
    426   1.1    simonb 	wpi_free_rx_ring(sc, &sc->rxq);
    427   1.7  degroote 	wpi_free_rpool(sc);
    428   1.1    simonb 	wpi_free_shared(sc);
    429   1.1    simonb 
    430   1.1    simonb 	if (sc->sc_ih != NULL) {
    431   1.1    simonb 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    432   1.1    simonb 		sc->sc_ih = NULL;
    433   1.1    simonb 	}
    434  1.70    bouyer 	mutex_enter(&sc->sc_rsw_mtx);
    435  1.70    bouyer 	sc->sc_dying = 1;
    436  1.70    bouyer 	cv_signal(&sc->sc_rsw_cv);
    437  1.70    bouyer 	while (sc->sc_rsw_lwp != NULL)
    438  1.70    bouyer 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
    439  1.70    bouyer 	mutex_exit(&sc->sc_rsw_mtx);
    440  1.70    bouyer 	sysmon_pswitch_unregister(&sc->sc_rsw);
    441   1.1    simonb 
    442   1.1    simonb 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    443   1.1    simonb 
    444  1.41     joerg 	if (sc->fw_used) {
    445  1.54  riastrad 		sc->fw_used = false;
    446  1.54  riastrad 		wpi_release_firmware();
    447  1.41     joerg 	}
    448  1.70    bouyer 	cv_destroy(&sc->sc_rsw_cv);
    449  1.70    bouyer 	mutex_destroy(&sc->sc_rsw_mtx);
    450   1.1    simonb 	return 0;
    451   1.1    simonb }
    452   1.1    simonb 
    453   1.1    simonb static int
    454  1.61  jakllsch wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
    455  1.61  jakllsch     bus_size_t size, bus_size_t alignment, int flags)
    456   1.1    simonb {
    457   1.1    simonb 	int nsegs, error;
    458   1.1    simonb 
    459   1.7  degroote 	dma->tag = tag;
    460   1.1    simonb 	dma->size = size;
    461   1.1    simonb 
    462   1.7  degroote 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
    463   1.7  degroote 	if (error != 0)
    464   1.1    simonb 		goto fail;
    465   1.1    simonb 
    466   1.7  degroote 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
    467   1.7  degroote 	    flags);
    468   1.7  degroote 	if (error != 0)
    469   1.1    simonb 		goto fail;
    470   1.1    simonb 
    471   1.7  degroote 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
    472   1.7  degroote 	if (error != 0)
    473   1.1    simonb 		goto fail;
    474   1.1    simonb 
    475   1.7  degroote 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
    476   1.7  degroote 	if (error != 0)
    477   1.1    simonb 		goto fail;
    478   1.1    simonb 
    479   1.1    simonb 	memset(dma->vaddr, 0, size);
    480  1.63  jmcneill 	bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
    481   1.1    simonb 
    482   1.1    simonb 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    483   1.7  degroote 	if (kvap != NULL)
    484   1.7  degroote 		*kvap = dma->vaddr;
    485   1.1    simonb 
    486   1.1    simonb 	return 0;
    487   1.1    simonb 
    488  1.61  jakllsch fail:	wpi_dma_contig_free(dma);
    489   1.1    simonb 	return error;
    490   1.1    simonb }
    491   1.1    simonb 
    492   1.1    simonb static void
    493   1.7  degroote wpi_dma_contig_free(struct wpi_dma_info *dma)
    494   1.1    simonb {
    495   1.1    simonb 	if (dma->map != NULL) {
    496   1.1    simonb 		if (dma->vaddr != NULL) {
    497   1.7  degroote 			bus_dmamap_unload(dma->tag, dma->map);
    498   1.7  degroote 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
    499   1.7  degroote 			bus_dmamem_free(dma->tag, &dma->seg, 1);
    500   1.1    simonb 			dma->vaddr = NULL;
    501   1.1    simonb 		}
    502   1.7  degroote 		bus_dmamap_destroy(dma->tag, dma->map);
    503   1.1    simonb 		dma->map = NULL;
    504   1.1    simonb 	}
    505   1.1    simonb }
    506   1.1    simonb 
    507   1.1    simonb /*
    508   1.1    simonb  * Allocate a shared page between host and NIC.
    509   1.1    simonb  */
    510   1.1    simonb static int
    511   1.1    simonb wpi_alloc_shared(struct wpi_softc *sc)
    512   1.1    simonb {
    513   1.1    simonb 	int error;
    514  1.61  jakllsch 
    515   1.1    simonb 	/* must be aligned on a 4K-page boundary */
    516   1.7  degroote 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
    517  1.61  jakllsch 	    (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
    518  1.61  jakllsch 	    BUS_DMA_NOWAIT);
    519   1.1    simonb 	if (error != 0)
    520  1.28  degroote 		aprint_error_dev(sc->sc_dev,
    521  1.61  jakllsch 		    "could not allocate shared area DMA memory\n");
    522   1.1    simonb 
    523   1.1    simonb 	return error;
    524   1.1    simonb }
    525   1.1    simonb 
    526   1.1    simonb static void
    527   1.1    simonb wpi_free_shared(struct wpi_softc *sc)
    528   1.1    simonb {
    529   1.7  degroote 	wpi_dma_contig_free(&sc->shared_dma);
    530   1.7  degroote }
    531   1.7  degroote 
    532  1.12  degroote /*
    533  1.12  degroote  * Allocate DMA-safe memory for firmware transfer.
    534  1.12  degroote  */
    535  1.12  degroote static int
    536  1.12  degroote wpi_alloc_fwmem(struct wpi_softc *sc)
    537  1.12  degroote {
    538  1.12  degroote 	int error;
    539  1.61  jakllsch 
    540  1.12  degroote 	/* allocate enough contiguous space to store text and data */
    541  1.12  degroote 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
    542  1.12  degroote 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
    543  1.12  degroote 	    BUS_DMA_NOWAIT);
    544  1.12  degroote 
    545  1.12  degroote 	if (error != 0)
    546  1.28  degroote 		aprint_error_dev(sc->sc_dev,
    547  1.61  jakllsch 		    "could not allocate firmware transfer area DMA memory\n");
    548  1.12  degroote 	return error;
    549  1.12  degroote }
    550  1.12  degroote 
    551  1.12  degroote static void
    552  1.12  degroote wpi_free_fwmem(struct wpi_softc *sc)
    553  1.12  degroote {
    554  1.12  degroote 	wpi_dma_contig_free(&sc->fw_dma);
    555  1.12  degroote }
    556  1.12  degroote 
    557   1.7  degroote static struct wpi_rbuf *
    558   1.7  degroote wpi_alloc_rbuf(struct wpi_softc *sc)
    559   1.7  degroote {
    560   1.7  degroote 	struct wpi_rbuf *rbuf;
    561   1.7  degroote 
    562  1.39      cube 	mutex_enter(&sc->rxq.freelist_mtx);
    563   1.7  degroote 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
    564  1.39      cube 	if (rbuf != NULL) {
    565  1.39      cube 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
    566  1.39      cube 	}
    567  1.39      cube 	mutex_exit(&sc->rxq.freelist_mtx);
    568  1.10  degroote 
    569   1.7  degroote 	return rbuf;
    570   1.7  degroote }
    571   1.7  degroote 
    572   1.7  degroote /*
    573   1.7  degroote  * This is called automatically by the network stack when the mbuf to which our
    574   1.7  degroote  * Rx buffer is attached is freed.
    575   1.7  degroote  */
    576   1.7  degroote static void
    577   1.9  christos wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
    578   1.7  degroote {
    579   1.7  degroote 	struct wpi_rbuf *rbuf = arg;
    580   1.7  degroote 	struct wpi_softc *sc = rbuf->sc;
    581   1.7  degroote 
    582   1.7  degroote 	/* put the buffer back in the free list */
    583  1.10  degroote 
    584  1.39      cube 	mutex_enter(&sc->rxq.freelist_mtx);
    585   1.7  degroote 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
    586  1.39      cube 	mutex_exit(&sc->rxq.freelist_mtx);
    587   1.7  degroote 
    588  1.27        ad 	if (__predict_true(m != NULL))
    589  1.27        ad 		pool_cache_put(mb_cache, m);
    590   1.7  degroote }
    591   1.7  degroote 
    592   1.7  degroote static int
    593   1.7  degroote wpi_alloc_rpool(struct wpi_softc *sc)
    594   1.7  degroote {
    595   1.7  degroote 	struct wpi_rx_ring *ring = &sc->rxq;
    596   1.7  degroote 	int i, error;
    597   1.7  degroote 
    598   1.7  degroote 	/* allocate a big chunk of DMA'able memory.. */
    599   1.7  degroote 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
    600   1.7  degroote 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
    601   1.7  degroote 	if (error != 0) {
    602  1.61  jakllsch 		aprint_normal_dev(sc->sc_dev,
    603  1.61  jakllsch 		    "could not allocate Rx buffers DMA memory\n");
    604  1.28  degroote 		return error;
    605   1.7  degroote 	}
    606   1.7  degroote 
    607   1.7  degroote 	/* ..and split it into 3KB chunks */
    608  1.39      cube 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
    609   1.7  degroote 	SLIST_INIT(&ring->freelist);
    610   1.7  degroote 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
    611  1.61  jakllsch 		struct wpi_rbuf *rbuf = &ring->rbuf[i];
    612  1.61  jakllsch 
    613   1.7  degroote 		rbuf->sc = sc;	/* backpointer for callbacks */
    614   1.9  christos 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
    615   1.7  degroote 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
    616   1.7  degroote 
    617   1.7  degroote 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
    618   1.7  degroote 	}
    619  1.10  degroote 
    620   1.7  degroote 	return 0;
    621   1.7  degroote }
    622   1.7  degroote 
    623   1.7  degroote static void
    624   1.7  degroote wpi_free_rpool(struct wpi_softc *sc)
    625   1.7  degroote {
    626   1.7  degroote 	wpi_dma_contig_free(&sc->rxq.buf_dma);
    627   1.1    simonb }
    628   1.1    simonb 
    629   1.1    simonb static int
    630   1.1    simonb wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    631   1.1    simonb {
    632  1.63  jmcneill 	bus_size_t size;
    633   1.1    simonb 	int i, error;
    634   1.1    simonb 
    635   1.1    simonb 	ring->cur = 0;
    636   1.1    simonb 
    637  1.63  jmcneill 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
    638   1.7  degroote 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    639  1.63  jmcneill 	    (void **)&ring->desc, size,
    640  1.59  jakllsch 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    641   1.1    simonb 	if (error != 0) {
    642  1.61  jakllsch 		aprint_error_dev(sc->sc_dev,
    643  1.61  jakllsch 		    "could not allocate rx ring DMA memory\n");
    644   1.1    simonb 		goto fail;
    645   1.1    simonb 	}
    646   1.1    simonb 
    647   1.1    simonb 	/*
    648   1.7  degroote 	 * Setup Rx buffers.
    649   1.1    simonb 	 */
    650   1.1    simonb 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    651  1.61  jakllsch 		struct wpi_rx_data *data = &ring->data[i];
    652  1.61  jakllsch 		struct wpi_rbuf *rbuf;
    653   1.1    simonb 
    654  1.64  jmcneill 		error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
    655  1.64  jmcneill 		    WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
    656  1.64  jmcneill 		if (error) {
    657  1.64  jmcneill 			aprint_error_dev(sc->sc_dev,
    658  1.64  jmcneill 			    "could not allocate rx dma map\n");
    659  1.64  jmcneill 			goto fail;
    660  1.64  jmcneill 		}
    661  1.64  jmcneill 
    662   1.1    simonb 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    663   1.1    simonb 		if (data->m == NULL) {
    664  1.61  jakllsch 			aprint_error_dev(sc->sc_dev,
    665  1.61  jakllsch 			    "could not allocate rx mbuf\n");
    666   1.1    simonb 			error = ENOMEM;
    667   1.1    simonb 			goto fail;
    668   1.1    simonb 		}
    669   1.7  degroote 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
    670   1.1    simonb 			m_freem(data->m);
    671   1.1    simonb 			data->m = NULL;
    672  1.61  jakllsch 			aprint_error_dev(sc->sc_dev,
    673  1.61  jakllsch 			    "could not allocate rx cluster\n");
    674   1.1    simonb 			error = ENOMEM;
    675   1.1    simonb 			goto fail;
    676   1.1    simonb 		}
    677   1.7  degroote 		/* attach Rx buffer to mbuf */
    678   1.7  degroote 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
    679   1.7  degroote 		    rbuf);
    680   1.7  degroote 		data->m->m_flags |= M_EXT_RW;
    681   1.1    simonb 
    682  1.64  jmcneill 		error = bus_dmamap_load(sc->sc_dmat, data->map,
    683  1.64  jmcneill 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
    684  1.64  jmcneill 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
    685  1.64  jmcneill 		if (error) {
    686  1.64  jmcneill 			aprint_error_dev(sc->sc_dev,
    687  1.64  jmcneill 			    "could not load mbuf: %d\n", error);
    688  1.64  jmcneill 			goto fail;
    689  1.64  jmcneill 		}
    690  1.64  jmcneill 
    691   1.7  degroote 		ring->desc[i] = htole32(rbuf->paddr);
    692   1.1    simonb 	}
    693   1.1    simonb 
    694  1.63  jmcneill 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
    695  1.63  jmcneill 	    BUS_DMASYNC_PREWRITE);
    696  1.63  jmcneill 
    697   1.1    simonb 	return 0;
    698   1.1    simonb 
    699   1.1    simonb fail:	wpi_free_rx_ring(sc, ring);
    700   1.1    simonb 	return error;
    701   1.1    simonb }
    702   1.1    simonb 
    703   1.1    simonb static void
    704   1.1    simonb wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    705   1.1    simonb {
    706   1.1    simonb 	int ntries;
    707   1.1    simonb 
    708   1.1    simonb 	wpi_mem_lock(sc);
    709   1.1    simonb 
    710   1.1    simonb 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
    711   1.1    simonb 	for (ntries = 0; ntries < 100; ntries++) {
    712   1.1    simonb 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
    713   1.1    simonb 			break;
    714   1.1    simonb 		DELAY(10);
    715   1.1    simonb 	}
    716   1.1    simonb #ifdef WPI_DEBUG
    717   1.1    simonb 	if (ntries == 100 && wpi_debug > 0)
    718  1.28  degroote 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
    719   1.1    simonb #endif
    720   1.1    simonb 	wpi_mem_unlock(sc);
    721   1.1    simonb 
    722   1.1    simonb 	ring->cur = 0;
    723   1.1    simonb }
    724   1.1    simonb 
    725   1.1    simonb static void
    726   1.1    simonb wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    727   1.1    simonb {
    728   1.1    simonb 	int i;
    729   1.1    simonb 
    730   1.7  degroote 	wpi_dma_contig_free(&ring->desc_dma);
    731   1.1    simonb 
    732   1.1    simonb 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    733  1.64  jmcneill 		if (ring->data[i].m != NULL) {
    734  1.64  jmcneill 			bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
    735   1.7  degroote 			m_freem(ring->data[i].m);
    736  1.64  jmcneill 		}
    737  1.64  jmcneill 		if (ring->data[i].map != NULL) {
    738  1.64  jmcneill 			bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
    739  1.64  jmcneill 		}
    740   1.1    simonb 	}
    741   1.1    simonb }
    742   1.1    simonb 
    743   1.1    simonb static int
    744   1.1    simonb wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
    745  1.61  jakllsch     int qid)
    746   1.1    simonb {
    747   1.1    simonb 	int i, error;
    748   1.1    simonb 
    749   1.1    simonb 	ring->qid = qid;
    750   1.1    simonb 	ring->count = count;
    751   1.1    simonb 	ring->queued = 0;
    752   1.1    simonb 	ring->cur = 0;
    753   1.1    simonb 
    754   1.7  degroote 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    755  1.61  jakllsch 	    (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
    756  1.61  jakllsch 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    757   1.1    simonb 	if (error != 0) {
    758  1.61  jakllsch 		aprint_error_dev(sc->sc_dev,
    759  1.61  jakllsch 		    "could not allocate tx ring DMA memory\n");
    760   1.1    simonb 		goto fail;
    761   1.1    simonb 	}
    762   1.1    simonb 
    763   1.1    simonb 	/* update shared page with ring's base address */
    764   1.1    simonb 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
    765  1.63  jmcneill 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
    766  1.63  jmcneill 	    sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
    767   1.1    simonb 
    768   1.7  degroote 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
    769  1.61  jakllsch 	    (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
    770  1.61  jakllsch 	    BUS_DMA_NOWAIT);
    771   1.1    simonb 	if (error != 0) {
    772  1.61  jakllsch 		aprint_error_dev(sc->sc_dev,
    773  1.61  jakllsch 		    "could not allocate tx cmd DMA memory\n");
    774   1.1    simonb 		goto fail;
    775   1.1    simonb 	}
    776   1.1    simonb 
    777   1.1    simonb 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
    778  1.62  jakllsch 	    M_NOWAIT | M_ZERO);
    779   1.1    simonb 	if (ring->data == NULL) {
    780  1.61  jakllsch 		aprint_error_dev(sc->sc_dev,
    781  1.61  jakllsch 		    "could not allocate tx data slots\n");
    782   1.1    simonb 		goto fail;
    783   1.1    simonb 	}
    784   1.1    simonb 
    785   1.1    simonb 	for (i = 0; i < count; i++) {
    786  1.61  jakllsch 		struct wpi_tx_data *data = &ring->data[i];
    787   1.1    simonb 
    788   1.1    simonb 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    789  1.61  jakllsch 		    WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    790  1.61  jakllsch 		    &data->map);
    791   1.1    simonb 		if (error != 0) {
    792  1.61  jakllsch 			aprint_error_dev(sc->sc_dev,
    793  1.61  jakllsch 			    "could not create tx buf DMA map\n");
    794   1.1    simonb 			goto fail;
    795   1.1    simonb 		}
    796   1.1    simonb 	}
    797   1.1    simonb 
    798   1.1    simonb 	return 0;
    799   1.1    simonb 
    800   1.1    simonb fail:	wpi_free_tx_ring(sc, ring);
    801   1.1    simonb 	return error;
    802   1.1    simonb }
    803   1.1    simonb 
    804   1.1    simonb static void
    805   1.1    simonb wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    806   1.1    simonb {
    807   1.1    simonb 	int i, ntries;
    808   1.1    simonb 
    809   1.1    simonb 	wpi_mem_lock(sc);
    810   1.1    simonb 
    811   1.1    simonb 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
    812   1.1    simonb 	for (ntries = 0; ntries < 100; ntries++) {
    813   1.1    simonb 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
    814   1.1    simonb 			break;
    815   1.1    simonb 		DELAY(10);
    816   1.1    simonb 	}
    817   1.1    simonb #ifdef WPI_DEBUG
    818   1.1    simonb 	if (ntries == 100 && wpi_debug > 0) {
    819  1.28  degroote 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
    820  1.59  jakllsch 		    ring->qid);
    821   1.1    simonb 	}
    822   1.1    simonb #endif
    823   1.1    simonb 	wpi_mem_unlock(sc);
    824   1.1    simonb 
    825   1.1    simonb 	for (i = 0; i < ring->count; i++) {
    826  1.61  jakllsch 		struct wpi_tx_data *data = &ring->data[i];
    827   1.1    simonb 
    828   1.1    simonb 		if (data->m != NULL) {
    829   1.1    simonb 			bus_dmamap_unload(sc->sc_dmat, data->map);
    830   1.1    simonb 			m_freem(data->m);
    831   1.1    simonb 			data->m = NULL;
    832   1.1    simonb 		}
    833   1.1    simonb 	}
    834   1.1    simonb 
    835   1.1    simonb 	ring->queued = 0;
    836   1.1    simonb 	ring->cur = 0;
    837   1.1    simonb }
    838   1.1    simonb 
    839   1.1    simonb static void
    840   1.1    simonb wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    841   1.1    simonb {
    842   1.1    simonb 	int i;
    843   1.1    simonb 
    844   1.7  degroote 	wpi_dma_contig_free(&ring->desc_dma);
    845   1.7  degroote 	wpi_dma_contig_free(&ring->cmd_dma);
    846   1.1    simonb 
    847   1.1    simonb 	if (ring->data != NULL) {
    848   1.1    simonb 		for (i = 0; i < ring->count; i++) {
    849  1.61  jakllsch 			struct wpi_tx_data *data = &ring->data[i];
    850   1.1    simonb 
    851   1.1    simonb 			if (data->m != NULL) {
    852   1.1    simonb 				bus_dmamap_unload(sc->sc_dmat, data->map);
    853   1.1    simonb 				m_freem(data->m);
    854   1.1    simonb 			}
    855   1.1    simonb 		}
    856   1.1    simonb 		free(ring->data, M_DEVBUF);
    857   1.1    simonb 	}
    858   1.1    simonb }
    859   1.1    simonb 
    860   1.1    simonb /*ARGUSED*/
    861   1.1    simonb static struct ieee80211_node *
    862   1.7  degroote wpi_node_alloc(struct ieee80211_node_table *nt __unused)
    863   1.1    simonb {
    864   1.5     joerg 	struct wpi_node *wn;
    865   1.1    simonb 
    866  1.35    simonb 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
    867   1.5     joerg 
    868   1.5     joerg 	return (struct ieee80211_node *)wn;
    869   1.1    simonb }
    870   1.1    simonb 
    871  1.12  degroote static void
    872  1.12  degroote wpi_newassoc(struct ieee80211_node *ni, int isnew)
    873  1.12  degroote {
    874  1.12  degroote 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
    875  1.12  degroote 	int i;
    876  1.12  degroote 
    877  1.12  degroote 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
    878  1.12  degroote 
    879  1.12  degroote 	/* set rate to some reasonable initial value */
    880  1.12  degroote 	for (i = ni->ni_rates.rs_nrates - 1;
    881  1.12  degroote 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
    882  1.12  degroote 	     i--);
    883  1.12  degroote 	ni->ni_txrate = i;
    884  1.12  degroote }
    885  1.12  degroote 
    886   1.1    simonb static int
    887   1.1    simonb wpi_media_change(struct ifnet *ifp)
    888   1.1    simonb {
    889   1.1    simonb 	int error;
    890   1.1    simonb 
    891   1.1    simonb 	error = ieee80211_media_change(ifp);
    892   1.1    simonb 	if (error != ENETRESET)
    893   1.1    simonb 		return error;
    894   1.1    simonb 
    895   1.1    simonb 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    896   1.1    simonb 		wpi_init(ifp);
    897   1.1    simonb 
    898   1.1    simonb 	return 0;
    899   1.1    simonb }
    900   1.1    simonb 
    901   1.1    simonb static int
    902   1.1    simonb wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    903   1.1    simonb {
    904   1.1    simonb 	struct ifnet *ifp = ic->ic_ifp;
    905   1.1    simonb 	struct wpi_softc *sc = ifp->if_softc;
    906  1.12  degroote 	struct ieee80211_node *ni;
    907  1.67  jmcneill 	enum ieee80211_state ostate = ic->ic_state;
    908   1.1    simonb 	int error;
    909   1.1    simonb 
    910  1.12  degroote 	callout_stop(&sc->calib_to);
    911   1.1    simonb 
    912   1.1    simonb 	switch (nstate) {
    913   1.1    simonb 	case IEEE80211_S_SCAN:
    914  1.55  christos 
    915  1.23  degroote 		if (sc->is_scanning)
    916  1.23  degroote 			break;
    917  1.23  degroote 
    918  1.23  degroote 		sc->is_scanning = true;
    919   1.1    simonb 
    920  1.67  jmcneill 		if (ostate != IEEE80211_S_SCAN) {
    921  1.67  jmcneill 			/* make the link LED blink while we're scanning */
    922  1.67  jmcneill 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
    923  1.67  jmcneill 		}
    924   1.1    simonb 
    925  1.67  jmcneill 		if ((error = wpi_scan(sc)) != 0) {
    926  1.61  jakllsch 			aprint_error_dev(sc->sc_dev,
    927  1.61  jakllsch 			    "could not initiate scan\n");
    928   1.1    simonb 			return error;
    929   1.1    simonb 		}
    930  1.67  jmcneill 		break;
    931   1.1    simonb 
    932   1.7  degroote 	case IEEE80211_S_ASSOC:
    933   1.7  degroote 		if (ic->ic_state != IEEE80211_S_RUN)
    934   1.7  degroote 			break;
    935   1.7  degroote 		/* FALLTHROUGH */
    936   1.1    simonb 	case IEEE80211_S_AUTH:
    937  1.61  jakllsch 		/* reset state to handle reassociations correctly */
    938  1.12  degroote 		sc->config.associd = 0;
    939   1.1    simonb 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
    940  1.61  jakllsch 
    941   1.1    simonb 		if ((error = wpi_auth(sc)) != 0) {
    942  1.55  christos 			aprint_error_dev(sc->sc_dev,
    943  1.59  jakllsch 			    "could not send authentication request\n");
    944   1.1    simonb 			return error;
    945   1.1    simonb 		}
    946   1.1    simonb 		break;
    947   1.1    simonb 
    948   1.1    simonb 	case IEEE80211_S_RUN:
    949   1.1    simonb 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
    950   1.1    simonb 			/* link LED blinks while monitoring */
    951   1.1    simonb 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
    952   1.1    simonb 			break;
    953   1.1    simonb 		}
    954  1.12  degroote 		ni = ic->ic_bss;
    955   1.1    simonb 
    956   1.1    simonb 		if (ic->ic_opmode != IEEE80211_M_STA) {
    957   1.1    simonb 			(void) wpi_auth(sc);    /* XXX */
    958  1.12  degroote 			wpi_setup_beacon(sc, ni);
    959   1.1    simonb 		}
    960   1.1    simonb 
    961  1.12  degroote 		wpi_enable_tsf(sc, ni);
    962   1.1    simonb 
    963   1.1    simonb 		/* update adapter's configuration */
    964  1.12  degroote 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
    965   1.1    simonb 		/* short preamble/slot time are negotiated when associating */
    966   1.1    simonb 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
    967  1.61  jakllsch 		    WPI_CONFIG_SHSLOT);
    968   1.1    simonb 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
    969   1.1    simonb 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
    970   1.1    simonb 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
    971   1.1    simonb 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
    972   1.1    simonb 		sc->config.filter |= htole32(WPI_FILTER_BSS);
    973   1.1    simonb 		if (ic->ic_opmode != IEEE80211_M_STA)
    974   1.1    simonb 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
    975   1.1    simonb 
    976   1.1    simonb /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
    977   1.1    simonb 
    978   1.1    simonb 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
    979  1.61  jakllsch 		    sc->config.flags));
    980   1.1    simonb 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
    981  1.61  jakllsch 		    sizeof (struct wpi_config), 1);
    982   1.1    simonb 		if (error != 0) {
    983  1.61  jakllsch 			aprint_error_dev(sc->sc_dev,
    984  1.61  jakllsch 			    "could not update configuration\n");
    985   1.1    simonb 			return error;
    986   1.1    simonb 		}
    987   1.1    simonb 
    988  1.12  degroote 		/* configuration has changed, set Tx power accordingly */
    989  1.66  jmcneill 		if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
    990  1.61  jakllsch 			aprint_error_dev(sc->sc_dev,
    991  1.61  jakllsch 			    "could not set Tx power\n");
    992  1.12  degroote 			return error;
    993  1.12  degroote 		}
    994  1.12  degroote 
    995   1.5     joerg 		if (ic->ic_opmode == IEEE80211_M_STA) {
    996   1.5     joerg 			/* fake a join to init the tx rate */
    997  1.12  degroote 			wpi_newassoc(ni, 1);
    998   1.5     joerg 		}
    999   1.5     joerg 
   1000  1.12  degroote 		/* start periodic calibration timer */
   1001  1.12  degroote 		sc->calib_cnt = 0;
   1002  1.28  degroote 		callout_schedule(&sc->calib_to, hz/2);
   1003   1.1    simonb 
   1004   1.1    simonb 		/* link LED always on while associated */
   1005   1.1    simonb 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
   1006   1.1    simonb 		break;
   1007   1.1    simonb 
   1008   1.1    simonb 	case IEEE80211_S_INIT:
   1009  1.23  degroote 		sc->is_scanning = false;
   1010   1.1    simonb 		break;
   1011   1.1    simonb 	}
   1012   1.1    simonb 
   1013   1.1    simonb 	return sc->sc_newstate(ic, nstate, arg);
   1014   1.1    simonb }
   1015   1.1    simonb 
   1016   1.1    simonb /*
   1017   1.1    simonb  * Grab exclusive access to NIC memory.
   1018   1.1    simonb  */
   1019   1.1    simonb static void
   1020   1.1    simonb wpi_mem_lock(struct wpi_softc *sc)
   1021   1.1    simonb {
   1022   1.1    simonb 	uint32_t tmp;
   1023   1.1    simonb 	int ntries;
   1024   1.1    simonb 
   1025   1.1    simonb 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1026   1.1    simonb 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
   1027   1.1    simonb 
   1028   1.1    simonb 	/* spin until we actually get the lock */
   1029   1.1    simonb 	for (ntries = 0; ntries < 1000; ntries++) {
   1030   1.1    simonb 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
   1031  1.61  jakllsch 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
   1032   1.1    simonb 			break;
   1033   1.1    simonb 		DELAY(10);
   1034   1.1    simonb 	}
   1035   1.1    simonb 	if (ntries == 1000)
   1036  1.28  degroote 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
   1037   1.1    simonb }
   1038   1.1    simonb 
   1039   1.1    simonb /*
   1040   1.1    simonb  * Release lock on NIC memory.
   1041   1.1    simonb  */
   1042   1.1    simonb static void
   1043   1.1    simonb wpi_mem_unlock(struct wpi_softc *sc)
   1044   1.1    simonb {
   1045   1.1    simonb 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1046   1.1    simonb 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
   1047   1.1    simonb }
   1048   1.1    simonb 
   1049   1.1    simonb static uint32_t
   1050   1.1    simonb wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
   1051   1.1    simonb {
   1052   1.1    simonb 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
   1053   1.1    simonb 	return WPI_READ(sc, WPI_READ_MEM_DATA);
   1054   1.1    simonb }
   1055   1.1    simonb 
   1056   1.1    simonb static void
   1057   1.1    simonb wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
   1058   1.1    simonb {
   1059   1.1    simonb 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
   1060   1.1    simonb 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
   1061   1.1    simonb }
   1062   1.1    simonb 
   1063  1.17  degroote static void
   1064  1.17  degroote wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
   1065  1.59  jakllsch     const uint32_t *data, int wlen)
   1066  1.17  degroote {
   1067  1.17  degroote 	for (; wlen > 0; wlen--, data++, addr += 4)
   1068  1.17  degroote 		wpi_mem_write(sc, addr, *data);
   1069  1.17  degroote }
   1070  1.59  jakllsch 
   1071   1.1    simonb /*
   1072  1.12  degroote  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
   1073  1.12  degroote  * instead of using the traditional bit-bang method.
   1074   1.1    simonb  */
   1075  1.12  degroote static int
   1076  1.12  degroote wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
   1077   1.1    simonb {
   1078  1.12  degroote 	uint8_t *out = data;
   1079  1.12  degroote 	uint32_t val;
   1080   1.1    simonb 	int ntries;
   1081   1.1    simonb 
   1082  1.12  degroote 	wpi_mem_lock(sc);
   1083  1.12  degroote 	for (; len > 0; len -= 2, addr++) {
   1084  1.12  degroote 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
   1085   1.1    simonb 
   1086  1.12  degroote 		for (ntries = 0; ntries < 10; ntries++) {
   1087  1.12  degroote 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
   1088  1.12  degroote 			    WPI_EEPROM_READY)
   1089  1.12  degroote 				break;
   1090  1.12  degroote 			DELAY(5);
   1091  1.12  degroote 		}
   1092  1.12  degroote 		if (ntries == 10) {
   1093  1.28  degroote 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
   1094  1.12  degroote 			return ETIMEDOUT;
   1095  1.12  degroote 		}
   1096  1.12  degroote 		*out++ = val >> 16;
   1097  1.12  degroote 		if (len > 1)
   1098  1.12  degroote 			*out++ = val >> 24;
   1099   1.1    simonb 	}
   1100   1.1    simonb 	wpi_mem_unlock(sc);
   1101   1.1    simonb 
   1102  1.12  degroote 	return 0;
   1103   1.1    simonb }
   1104   1.1    simonb 
   1105  1.17  degroote /*
   1106  1.17  degroote  * The firmware boot code is small and is intended to be copied directly into
   1107  1.17  degroote  * the NIC internal memory.
   1108  1.17  degroote  */
   1109  1.17  degroote int
   1110  1.17  degroote wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
   1111   1.1    simonb {
   1112  1.17  degroote 	int ntries;
   1113   1.1    simonb 
   1114  1.17  degroote 	size /= sizeof (uint32_t);
   1115   1.1    simonb 
   1116  1.17  degroote 	wpi_mem_lock(sc);
   1117  1.12  degroote 
   1118  1.17  degroote 	/* copy microcode image into NIC memory */
   1119  1.17  degroote 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
   1120  1.17  degroote 	    (const uint32_t *)ucode, size);
   1121  1.17  degroote 
   1122  1.17  degroote 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
   1123  1.17  degroote 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
   1124  1.17  degroote 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
   1125  1.12  degroote 
   1126  1.17  degroote 	/* run microcode */
   1127  1.17  degroote 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
   1128  1.12  degroote 
   1129  1.17  degroote 	/* wait for transfer to complete */
   1130  1.17  degroote 	for (ntries = 0; ntries < 1000; ntries++) {
   1131  1.17  degroote 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
   1132  1.12  degroote 			break;
   1133  1.17  degroote 		DELAY(10);
   1134  1.12  degroote 	}
   1135  1.17  degroote 	if (ntries == 1000) {
   1136  1.17  degroote 		wpi_mem_unlock(sc);
   1137  1.28  degroote 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1138  1.17  degroote 		return ETIMEDOUT;
   1139  1.12  degroote 	}
   1140  1.17  degroote 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
   1141  1.12  degroote 
   1142  1.17  degroote 	wpi_mem_unlock(sc);
   1143   1.1    simonb 
   1144  1.17  degroote 	return 0;
   1145   1.1    simonb }
   1146   1.1    simonb 
   1147   1.1    simonb static int
   1148  1.41     joerg wpi_cache_firmware(struct wpi_softc *sc)
   1149   1.1    simonb {
   1150  1.54  riastrad 	const char *const fwname = wpi_firmware_name;
   1151  1.12  degroote 	firmware_handle_t fw;
   1152  1.12  degroote 	int error;
   1153   1.1    simonb 
   1154  1.54  riastrad 	/* sc is used here only to report error messages.  */
   1155  1.41     joerg 
   1156  1.41     joerg 	mutex_enter(&wpi_firmware_mutex);
   1157  1.54  riastrad 
   1158  1.54  riastrad 	if (wpi_firmware_users == SIZE_MAX) {
   1159  1.54  riastrad 		mutex_exit(&wpi_firmware_mutex);
   1160  1.54  riastrad 		return ENFILE;	/* Too many of something in the system...  */
   1161  1.54  riastrad 	}
   1162  1.41     joerg 	if (wpi_firmware_users++) {
   1163  1.54  riastrad 		KASSERT(wpi_firmware_image != NULL);
   1164  1.54  riastrad 		KASSERT(wpi_firmware_size > 0);
   1165  1.41     joerg 		mutex_exit(&wpi_firmware_mutex);
   1166  1.54  riastrad 		return 0;	/* Already good to go.  */
   1167  1.41     joerg 	}
   1168  1.41     joerg 
   1169  1.54  riastrad 	KASSERT(wpi_firmware_image == NULL);
   1170  1.54  riastrad 	KASSERT(wpi_firmware_size == 0);
   1171  1.54  riastrad 
   1172  1.12  degroote 	/* load firmware image from disk */
   1173  1.54  riastrad 	if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
   1174  1.54  riastrad 		aprint_error_dev(sc->sc_dev,
   1175  1.54  riastrad 		    "could not open firmware file %s: %d\n", fwname, error);
   1176  1.53  riastrad 		goto fail0;
   1177   1.1    simonb 	}
   1178  1.12  degroote 
   1179  1.41     joerg 	wpi_firmware_size = firmware_get_size(fw);
   1180  1.41     joerg 
   1181  1.41     joerg 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
   1182  1.41     joerg 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
   1183  1.41     joerg 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
   1184  1.41     joerg 	    WPI_FW_BOOT_TEXT_MAXSZ) {
   1185  1.54  riastrad 		aprint_error_dev(sc->sc_dev,
   1186  1.54  riastrad 		    "firmware file %s too large: %zu bytes\n",
   1187  1.54  riastrad 		    fwname, wpi_firmware_size);
   1188  1.41     joerg 		error = EFBIG;
   1189  1.41     joerg 		goto fail1;
   1190  1.41     joerg 	}
   1191  1.41     joerg 
   1192  1.41     joerg 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
   1193  1.41     joerg 		aprint_error_dev(sc->sc_dev,
   1194  1.54  riastrad 		    "firmware file %s too small: %zu bytes\n",
   1195  1.54  riastrad 		    fwname, wpi_firmware_size);
   1196  1.12  degroote 		error = EINVAL;
   1197  1.54  riastrad 		goto fail1;
   1198  1.12  degroote 	}
   1199   1.1    simonb 
   1200  1.41     joerg 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
   1201  1.41     joerg 	if (wpi_firmware_image == NULL) {
   1202  1.54  riastrad 		aprint_error_dev(sc->sc_dev,
   1203  1.54  riastrad 		    "not enough memory for firmware file %s\n", fwname);
   1204  1.41     joerg 		error = ENOMEM;
   1205  1.41     joerg 		goto fail1;
   1206  1.41     joerg 	}
   1207  1.41     joerg 
   1208  1.54  riastrad 	error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
   1209  1.54  riastrad 	if (error != 0) {
   1210  1.54  riastrad 		aprint_error_dev(sc->sc_dev,
   1211  1.54  riastrad 		    "error reading firmware file %s: %d\n", fwname, error);
   1212   1.1    simonb 		goto fail2;
   1213   1.1    simonb 	}
   1214   1.1    simonb 
   1215  1.54  riastrad 	/* Success!  */
   1216  1.41     joerg 	firmware_close(fw);
   1217  1.41     joerg 	mutex_exit(&wpi_firmware_mutex);
   1218  1.41     joerg 	return 0;
   1219  1.41     joerg 
   1220  1.41     joerg fail2:
   1221  1.41     joerg 	firmware_free(wpi_firmware_image, wpi_firmware_size);
   1222  1.54  riastrad 	wpi_firmware_image = NULL;
   1223  1.41     joerg fail1:
   1224  1.54  riastrad 	wpi_firmware_size = 0;
   1225  1.41     joerg 	firmware_close(fw);
   1226  1.53  riastrad fail0:
   1227  1.54  riastrad 	KASSERT(wpi_firmware_users == 1);
   1228  1.54  riastrad 	wpi_firmware_users = 0;
   1229  1.54  riastrad 	KASSERT(wpi_firmware_image == NULL);
   1230  1.54  riastrad 	KASSERT(wpi_firmware_size == 0);
   1231  1.54  riastrad 
   1232  1.41     joerg 	mutex_exit(&wpi_firmware_mutex);
   1233  1.41     joerg 	return error;
   1234  1.41     joerg }
   1235  1.41     joerg 
   1236  1.54  riastrad static void
   1237  1.54  riastrad wpi_release_firmware(void)
   1238  1.54  riastrad {
   1239  1.54  riastrad 
   1240  1.54  riastrad 	mutex_enter(&wpi_firmware_mutex);
   1241  1.54  riastrad 
   1242  1.54  riastrad 	KASSERT(wpi_firmware_users > 0);
   1243  1.54  riastrad 	KASSERT(wpi_firmware_image != NULL);
   1244  1.54  riastrad 	KASSERT(wpi_firmware_size != 0);
   1245  1.54  riastrad 
   1246  1.54  riastrad 	if (--wpi_firmware_users == 0) {
   1247  1.54  riastrad 		firmware_free(wpi_firmware_image, wpi_firmware_size);
   1248  1.54  riastrad 		wpi_firmware_image = NULL;
   1249  1.54  riastrad 		wpi_firmware_size = 0;
   1250  1.54  riastrad 	}
   1251  1.54  riastrad 
   1252  1.54  riastrad 	mutex_exit(&wpi_firmware_mutex);
   1253  1.54  riastrad }
   1254  1.54  riastrad 
   1255  1.41     joerg static int
   1256  1.41     joerg wpi_load_firmware(struct wpi_softc *sc)
   1257  1.41     joerg {
   1258  1.41     joerg 	struct wpi_dma_info *dma = &sc->fw_dma;
   1259  1.41     joerg 	struct wpi_firmware_hdr hdr;
   1260  1.41     joerg 	const uint8_t *init_text, *init_data, *main_text, *main_data;
   1261  1.41     joerg 	const uint8_t *boot_text;
   1262  1.41     joerg 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
   1263  1.41     joerg 	uint32_t boot_textsz;
   1264  1.54  riastrad 	size_t size;
   1265  1.41     joerg 	int error;
   1266  1.41     joerg 
   1267  1.54  riastrad 	if (!sc->fw_used) {
   1268  1.54  riastrad 		if ((error = wpi_cache_firmware(sc)) != 0)
   1269  1.54  riastrad 			return error;
   1270  1.54  riastrad 		sc->fw_used = true;
   1271  1.54  riastrad 	}
   1272  1.54  riastrad 
   1273  1.54  riastrad 	KASSERT(sc->fw_used);
   1274  1.54  riastrad 	KASSERT(wpi_firmware_image != NULL);
   1275  1.54  riastrad 	KASSERT(wpi_firmware_size > sizeof(hdr));
   1276  1.41     joerg 
   1277  1.41     joerg 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
   1278  1.41     joerg 
   1279  1.12  degroote 	main_textsz = le32toh(hdr.main_textsz);
   1280  1.12  degroote 	main_datasz = le32toh(hdr.main_datasz);
   1281  1.17  degroote 	init_textsz = le32toh(hdr.init_textsz);
   1282  1.17  degroote 	init_datasz = le32toh(hdr.init_datasz);
   1283  1.12  degroote 	boot_textsz = le32toh(hdr.boot_textsz);
   1284  1.12  degroote 
   1285  1.17  degroote 	/* sanity-check firmware segments sizes */
   1286  1.17  degroote 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
   1287  1.17  degroote 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
   1288  1.17  degroote 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
   1289  1.17  degroote 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
   1290  1.17  degroote 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
   1291  1.17  degroote 	    (boot_textsz & 3) != 0) {
   1292  1.28  degroote 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
   1293  1.12  degroote 		error = EINVAL;
   1294  1.41     joerg 		goto free_firmware;
   1295  1.12  degroote 	}
   1296  1.12  degroote 
   1297  1.12  degroote 	/* check that all firmware segments are present */
   1298  1.54  riastrad 	size = sizeof (struct wpi_firmware_hdr) + main_textsz +
   1299  1.54  riastrad 	    main_datasz + init_textsz + init_datasz + boot_textsz;
   1300  1.54  riastrad 	if (wpi_firmware_size < size) {
   1301  1.41     joerg 		aprint_error_dev(sc->sc_dev,
   1302  1.54  riastrad 		    "firmware file truncated: %zu bytes, expected %zu bytes\n",
   1303  1.54  riastrad 		    wpi_firmware_size, size);
   1304  1.12  degroote 		error = EINVAL;
   1305  1.41     joerg 		goto free_firmware;
   1306   1.1    simonb 	}
   1307   1.1    simonb 
   1308  1.12  degroote 	/* get pointers to firmware segments */
   1309  1.41     joerg 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
   1310  1.12  degroote 	main_data = main_text + main_textsz;
   1311  1.17  degroote 	init_text = main_data + main_datasz;
   1312  1.17  degroote 	init_data = init_text + init_textsz;
   1313  1.17  degroote 	boot_text = init_data + init_datasz;
   1314  1.17  degroote 
   1315  1.17  degroote 	/* copy initialization images into pre-allocated DMA-safe memory */
   1316  1.17  degroote 	memcpy(dma->vaddr, init_data, init_datasz);
   1317  1.54  riastrad 	memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
   1318  1.54  riastrad 	    init_textsz);
   1319  1.17  degroote 
   1320  1.63  jmcneill 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   1321  1.63  jmcneill 
   1322  1.17  degroote 	/* tell adapter where to find initialization images */
   1323  1.17  degroote 	wpi_mem_lock(sc);
   1324  1.17  degroote 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1325  1.17  degroote 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
   1326  1.17  degroote 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1327  1.17  degroote 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
   1328  1.17  degroote 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
   1329  1.17  degroote 	wpi_mem_unlock(sc);
   1330   1.1    simonb 
   1331  1.17  degroote 	/* load firmware boot code */
   1332  1.17  degroote 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
   1333  1.28  degroote 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1334  1.41     joerg 		return error;
   1335  1.12  degroote 	}
   1336   1.1    simonb 
   1337  1.17  degroote 	/* now press "execute" ;-) */
   1338  1.17  degroote 	WPI_WRITE(sc, WPI_RESET, 0);
   1339  1.17  degroote 
   1340  1.59  jakllsch 	/* wait at most one second for first alive notification */
   1341  1.17  degroote 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1342  1.17  degroote 		/* this isn't what was supposed to happen.. */
   1343  1.54  riastrad 		aprint_error_dev(sc->sc_dev,
   1344  1.41     joerg 		    "timeout waiting for adapter to initialize\n");
   1345   1.1    simonb 	}
   1346   1.1    simonb 
   1347  1.17  degroote 	/* copy runtime images into pre-allocated DMA-safe memory */
   1348  1.17  degroote 	memcpy(dma->vaddr, main_data, main_datasz);
   1349  1.54  riastrad 	memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
   1350  1.54  riastrad 	    main_textsz);
   1351  1.12  degroote 
   1352  1.63  jmcneill 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   1353  1.63  jmcneill 
   1354  1.17  degroote 	/* tell adapter where to find runtime images */
   1355   1.1    simonb 	wpi_mem_lock(sc);
   1356  1.17  degroote 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1357  1.17  degroote 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
   1358  1.17  degroote 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1359  1.17  degroote 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
   1360  1.17  degroote 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
   1361  1.12  degroote 	wpi_mem_unlock(sc);
   1362  1.12  degroote 
   1363  1.17  degroote 	/* wait at most one second for second alive notification */
   1364  1.12  degroote 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1365  1.12  degroote 		/* this isn't what was supposed to happen.. */
   1366  1.54  riastrad 		aprint_error_dev(sc->sc_dev,
   1367  1.41     joerg 		    "timeout waiting for adapter to initialize\n");
   1368  1.12  degroote 	}
   1369  1.12  degroote 
   1370  1.41     joerg 	return error;
   1371  1.17  degroote 
   1372  1.41     joerg free_firmware:
   1373  1.41     joerg 	sc->fw_used = false;
   1374  1.54  riastrad 	wpi_release_firmware();
   1375  1.41     joerg 	return error;
   1376  1.12  degroote }
   1377   1.1    simonb 
   1378  1.12  degroote static void
   1379  1.12  degroote wpi_calib_timeout(void *arg)
   1380  1.12  degroote {
   1381  1.12  degroote 	struct wpi_softc *sc = arg;
   1382  1.12  degroote 	struct ieee80211com *ic = &sc->sc_ic;
   1383  1.12  degroote 	int temp, s;
   1384   1.1    simonb 
   1385  1.12  degroote 	/* automatic rate control triggered every 500ms */
   1386  1.12  degroote 	if (ic->ic_fixed_rate == -1) {
   1387  1.12  degroote 		s = splnet();
   1388  1.12  degroote 		if (ic->ic_opmode == IEEE80211_M_STA)
   1389  1.12  degroote 			wpi_iter_func(sc, ic->ic_bss);
   1390  1.12  degroote 		else
   1391  1.59  jakllsch 			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
   1392  1.12  degroote 		splx(s);
   1393  1.12  degroote 	}
   1394   1.1    simonb 
   1395  1.12  degroote 	/* update sensor data */
   1396  1.12  degroote 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
   1397   1.1    simonb 
   1398  1.12  degroote 	/* automatic power calibration every 60s */
   1399  1.12  degroote 	if (++sc->calib_cnt >= 120) {
   1400  1.12  degroote 		wpi_power_calibration(sc, temp);
   1401  1.12  degroote 		sc->calib_cnt = 0;
   1402   1.1    simonb 	}
   1403  1.12  degroote 
   1404  1.28  degroote 	callout_schedule(&sc->calib_to, hz/2);
   1405  1.12  degroote }
   1406  1.12  degroote 
   1407  1.12  degroote static void
   1408  1.12  degroote wpi_iter_func(void *arg, struct ieee80211_node *ni)
   1409  1.12  degroote {
   1410  1.12  degroote 	struct wpi_softc *sc = arg;
   1411  1.12  degroote 	struct wpi_node *wn = (struct wpi_node *)ni;
   1412  1.12  degroote 
   1413  1.12  degroote 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1414  1.12  degroote }
   1415  1.12  degroote 
   1416  1.12  degroote /*
   1417  1.12  degroote  * This function is called periodically (every 60 seconds) to adjust output
   1418  1.12  degroote  * power to temperature changes.
   1419  1.12  degroote  */
   1420  1.12  degroote void
   1421  1.12  degroote wpi_power_calibration(struct wpi_softc *sc, int temp)
   1422  1.12  degroote {
   1423  1.12  degroote 	/* sanity-check read value */
   1424  1.12  degroote 	if (temp < -260 || temp > 25) {
   1425  1.12  degroote 		/* this can't be correct, ignore */
   1426  1.12  degroote 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
   1427  1.12  degroote 		return;
   1428   1.1    simonb 	}
   1429   1.1    simonb 
   1430  1.12  degroote 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   1431  1.12  degroote 
   1432  1.12  degroote 	/* adjust Tx power if need be */
   1433  1.12  degroote 	if (abs(temp - sc->temp) <= 6)
   1434  1.12  degroote 		return;
   1435   1.1    simonb 
   1436  1.12  degroote 	sc->temp = temp;
   1437   1.1    simonb 
   1438  1.66  jmcneill 	if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
   1439  1.12  degroote 		/* just warn, too bad for the automatic calibration... */
   1440  1.28  degroote 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
   1441  1.12  degroote 	}
   1442   1.1    simonb }
   1443   1.1    simonb 
   1444   1.1    simonb static void
   1445   1.1    simonb wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
   1446  1.61  jakllsch     struct wpi_rx_data *data)
   1447   1.1    simonb {
   1448   1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   1449   1.1    simonb 	struct ifnet *ifp = ic->ic_ifp;
   1450   1.1    simonb 	struct wpi_rx_ring *ring = &sc->rxq;
   1451   1.1    simonb 	struct wpi_rx_stat *stat;
   1452   1.1    simonb 	struct wpi_rx_head *head;
   1453   1.1    simonb 	struct wpi_rx_tail *tail;
   1454   1.7  degroote 	struct wpi_rbuf *rbuf;
   1455   1.1    simonb 	struct ieee80211_frame *wh;
   1456   1.1    simonb 	struct ieee80211_node *ni;
   1457   1.1    simonb 	struct mbuf *m, *mnew;
   1458  1.65  jmcneill 	int data_off, error;
   1459   1.1    simonb 
   1460  1.64  jmcneill 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1461  1.64  jmcneill 	    BUS_DMASYNC_POSTREAD);
   1462   1.1    simonb 	stat = (struct wpi_rx_stat *)(desc + 1);
   1463   1.1    simonb 
   1464   1.1    simonb 	if (stat->len > WPI_STAT_MAXLEN) {
   1465  1.28  degroote 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
   1466   1.1    simonb 		ifp->if_ierrors++;
   1467   1.1    simonb 		return;
   1468   1.1    simonb 	}
   1469   1.1    simonb 
   1470   1.9  christos 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
   1471   1.9  christos 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
   1472   1.1    simonb 
   1473   1.1    simonb 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
   1474  1.61  jakllsch 	    "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
   1475  1.61  jakllsch 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
   1476  1.61  jakllsch 	    le64toh(tail->tstamp)));
   1477   1.1    simonb 
   1478   1.1    simonb 	/*
   1479   1.1    simonb 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
   1480   1.1    simonb 	 * to radiotap in monitor mode).
   1481   1.1    simonb 	 */
   1482   1.1    simonb 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
   1483  1.61  jakllsch 		DPRINTF(("rx tail flags error %x\n",
   1484  1.61  jakllsch 		    le32toh(tail->flags)));
   1485   1.1    simonb 		ifp->if_ierrors++;
   1486   1.1    simonb 		return;
   1487   1.1    simonb 	}
   1488   1.1    simonb 
   1489  1.19  degroote 	/* Compute where are the useful datas */
   1490  1.55  christos 	data_off = (char*)(head + 1) - mtod(data->m, char*);
   1491  1.55  christos 
   1492  1.65  jmcneill 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1493  1.65  jmcneill 	if (mnew == NULL) {
   1494  1.65  jmcneill 		ifp->if_ierrors++;
   1495  1.65  jmcneill 		return;
   1496  1.65  jmcneill 	}
   1497  1.19  degroote 
   1498  1.65  jmcneill 	rbuf = wpi_alloc_rbuf(sc);
   1499  1.65  jmcneill 	if (rbuf == NULL) {
   1500  1.65  jmcneill 		m_freem(mnew);
   1501  1.65  jmcneill 		ifp->if_ierrors++;
   1502  1.65  jmcneill 		return;
   1503  1.65  jmcneill 	}
   1504  1.19  degroote 
   1505  1.65  jmcneill 	/* attach Rx buffer to mbuf */
   1506  1.65  jmcneill 	MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
   1507  1.65  jmcneill 		rbuf);
   1508  1.65  jmcneill 	mnew->m_flags |= M_EXT_RW;
   1509  1.19  degroote 
   1510  1.65  jmcneill 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1511  1.10  degroote 
   1512  1.65  jmcneill 	error = bus_dmamap_load(sc->sc_dmat, data->map,
   1513  1.65  jmcneill 	    mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
   1514  1.65  jmcneill 	    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1515  1.65  jmcneill 	if (error) {
   1516  1.65  jmcneill 		device_printf(sc->sc_dev,
   1517  1.65  jmcneill 		    "couldn't load rx mbuf: %d\n", error);
   1518  1.65  jmcneill 		m_freem(mnew);
   1519  1.65  jmcneill 		ifp->if_ierrors++;
   1520   1.1    simonb 
   1521  1.64  jmcneill 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1522  1.64  jmcneill 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
   1523  1.64  jmcneill 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1524  1.65  jmcneill 		if (error)
   1525  1.64  jmcneill 			panic("%s: bus_dmamap_load failed: %d\n",
   1526  1.64  jmcneill 			    device_xname(sc->sc_dev), error);
   1527  1.65  jmcneill 		return;
   1528  1.65  jmcneill 	}
   1529  1.65  jmcneill 
   1530  1.65  jmcneill 	/* new mbuf loaded successfully */
   1531  1.65  jmcneill 	m = data->m;
   1532  1.65  jmcneill 	data->m = mnew;
   1533  1.64  jmcneill 
   1534  1.65  jmcneill 	/* update Rx descriptor */
   1535  1.65  jmcneill 	ring->desc[ring->cur] = htole32(rbuf->paddr);
   1536  1.65  jmcneill 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1537  1.65  jmcneill 	    ring->desc_dma.size,
   1538  1.65  jmcneill 	    BUS_DMASYNC_PREWRITE);
   1539  1.19  degroote 
   1540  1.65  jmcneill 	m->m_data = (char*)m->m_data + data_off;
   1541  1.65  jmcneill 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
   1542   1.1    simonb 
   1543   1.1    simonb 	/* finalize mbuf */
   1544   1.1    simonb 	m->m_pkthdr.rcvif = ifp;
   1545   1.1    simonb 
   1546   1.1    simonb 	if (sc->sc_drvbpf != NULL) {
   1547   1.1    simonb 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
   1548   1.1    simonb 
   1549   1.1    simonb 		tap->wr_flags = 0;
   1550   1.1    simonb 		tap->wr_chan_freq =
   1551  1.61  jakllsch 		    htole16(ic->ic_channels[head->chan].ic_freq);
   1552   1.1    simonb 		tap->wr_chan_flags =
   1553  1.61  jakllsch 		    htole16(ic->ic_channels[head->chan].ic_flags);
   1554   1.1    simonb 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
   1555   1.1    simonb 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
   1556   1.1    simonb 		tap->wr_tsft = tail->tstamp;
   1557   1.1    simonb 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
   1558   1.1    simonb 		switch (head->rate) {
   1559   1.1    simonb 		/* CCK rates */
   1560   1.1    simonb 		case  10: tap->wr_rate =   2; break;
   1561   1.1    simonb 		case  20: tap->wr_rate =   4; break;
   1562   1.1    simonb 		case  55: tap->wr_rate =  11; break;
   1563   1.1    simonb 		case 110: tap->wr_rate =  22; break;
   1564   1.1    simonb 		/* OFDM rates */
   1565   1.1    simonb 		case 0xd: tap->wr_rate =  12; break;
   1566   1.1    simonb 		case 0xf: tap->wr_rate =  18; break;
   1567   1.1    simonb 		case 0x5: tap->wr_rate =  24; break;
   1568   1.1    simonb 		case 0x7: tap->wr_rate =  36; break;
   1569   1.1    simonb 		case 0x9: tap->wr_rate =  48; break;
   1570   1.1    simonb 		case 0xb: tap->wr_rate =  72; break;
   1571   1.1    simonb 		case 0x1: tap->wr_rate =  96; break;
   1572   1.1    simonb 		case 0x3: tap->wr_rate = 108; break;
   1573   1.1    simonb 		/* unknown rate: should not happen */
   1574   1.1    simonb 		default:  tap->wr_rate =   0;
   1575   1.1    simonb 		}
   1576   1.1    simonb 		if (le16toh(head->flags) & 0x4)
   1577   1.1    simonb 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   1578   1.1    simonb 
   1579  1.47     joerg 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1580   1.1    simonb 	}
   1581   1.1    simonb 
   1582   1.1    simonb 	/* grab a reference to the source node */
   1583   1.1    simonb 	wh = mtod(m, struct ieee80211_frame *);
   1584   1.1    simonb 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1585   1.1    simonb 
   1586   1.1    simonb 	/* send the frame to the 802.11 layer */
   1587   1.1    simonb 	ieee80211_input(ic, m, ni, stat->rssi, 0);
   1588   1.1    simonb 
   1589   1.1    simonb 	/* release node reference */
   1590   1.1    simonb 	ieee80211_free_node(ni);
   1591   1.1    simonb }
   1592   1.1    simonb 
   1593   1.1    simonb static void
   1594   1.1    simonb wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1595   1.1    simonb {
   1596   1.1    simonb 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1597   1.1    simonb 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
   1598  1.61  jakllsch 	struct wpi_tx_data *data = &ring->data[desc->idx];
   1599   1.1    simonb 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
   1600  1.61  jakllsch 	struct wpi_node *wn = (struct wpi_node *)data->ni;
   1601   1.1    simonb 
   1602   1.1    simonb 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
   1603  1.61  jakllsch 	    "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
   1604  1.61  jakllsch 	    stat->nkill, stat->rate, le32toh(stat->duration),
   1605  1.61  jakllsch 	    le32toh(stat->status)));
   1606   1.1    simonb 
   1607   1.1    simonb 	/*
   1608   1.1    simonb 	 * Update rate control statistics for the node.
   1609   1.1    simonb 	 * XXX we should not count mgmt frames since they're always sent at
   1610   1.1    simonb 	 * the lowest available bit-rate.
   1611   1.1    simonb 	 */
   1612   1.5     joerg 	wn->amn.amn_txcnt++;
   1613   1.1    simonb 	if (stat->ntries > 0) {
   1614   1.1    simonb 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
   1615   1.5     joerg 		wn->amn.amn_retrycnt++;
   1616   1.1    simonb 	}
   1617   1.1    simonb 
   1618   1.2     oster 	if ((le32toh(stat->status) & 0xff) != 1)
   1619   1.2     oster 		ifp->if_oerrors++;
   1620   1.2     oster 	else
   1621   1.2     oster 		ifp->if_opackets++;
   1622   1.2     oster 
   1623  1.61  jakllsch 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1624  1.61  jakllsch 	m_freem(data->m);
   1625  1.61  jakllsch 	data->m = NULL;
   1626  1.61  jakllsch 	ieee80211_free_node(data->ni);
   1627  1.61  jakllsch 	data->ni = NULL;
   1628   1.1    simonb 
   1629   1.1    simonb 	ring->queued--;
   1630   1.1    simonb 
   1631   1.1    simonb 	sc->sc_tx_timer = 0;
   1632   1.1    simonb 	ifp->if_flags &= ~IFF_OACTIVE;
   1633   1.1    simonb 	wpi_start(ifp);
   1634   1.1    simonb }
   1635   1.1    simonb 
   1636   1.1    simonb static void
   1637   1.1    simonb wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1638   1.1    simonb {
   1639   1.1    simonb 	struct wpi_tx_ring *ring = &sc->cmdq;
   1640   1.1    simonb 	struct wpi_tx_data *data;
   1641   1.1    simonb 
   1642   1.1    simonb 	if ((desc->qid & 7) != 4)
   1643   1.1    simonb 		return;	/* not a command ack */
   1644   1.1    simonb 
   1645   1.1    simonb 	data = &ring->data[desc->idx];
   1646   1.1    simonb 
   1647   1.1    simonb 	/* if the command was mapped in a mbuf, free it */
   1648   1.1    simonb 	if (data->m != NULL) {
   1649   1.1    simonb 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1650   1.1    simonb 		m_freem(data->m);
   1651   1.1    simonb 		data->m = NULL;
   1652   1.1    simonb 	}
   1653   1.1    simonb 
   1654   1.1    simonb 	wakeup(&ring->cmd[desc->idx]);
   1655   1.1    simonb }
   1656   1.1    simonb 
   1657   1.1    simonb static void
   1658   1.1    simonb wpi_notif_intr(struct wpi_softc *sc)
   1659   1.1    simonb {
   1660   1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   1661   1.7  degroote 	struct ifnet *ifp =  ic->ic_ifp;
   1662   1.1    simonb 	uint32_t hw;
   1663   1.1    simonb 
   1664  1.64  jmcneill 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
   1665  1.64  jmcneill 	    sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
   1666  1.64  jmcneill 
   1667   1.1    simonb 	hw = le32toh(sc->shared->next);
   1668   1.1    simonb 	while (sc->rxq.cur != hw) {
   1669  1.61  jakllsch 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   1670  1.65  jmcneill 		struct wpi_rx_desc *desc;
   1671   1.1    simonb 
   1672  1.64  jmcneill 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1673  1.64  jmcneill 		    BUS_DMASYNC_POSTREAD);
   1674  1.65  jmcneill 		desc = mtod(data->m, struct wpi_rx_desc *);
   1675  1.64  jmcneill 
   1676   1.1    simonb 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
   1677  1.61  jakllsch 		    "len=%d\n", desc->qid, desc->idx, desc->flags,
   1678  1.61  jakllsch 		    desc->type, le32toh(desc->len)));
   1679   1.1    simonb 
   1680   1.1    simonb 		if (!(desc->qid & 0x80))	/* reply to a command */
   1681   1.1    simonb 			wpi_cmd_intr(sc, desc);
   1682   1.1    simonb 
   1683   1.1    simonb 		switch (desc->type) {
   1684   1.1    simonb 		case WPI_RX_DONE:
   1685   1.1    simonb 			/* a 802.11 frame was received */
   1686   1.1    simonb 			wpi_rx_intr(sc, desc, data);
   1687   1.1    simonb 			break;
   1688   1.1    simonb 
   1689   1.1    simonb 		case WPI_TX_DONE:
   1690   1.1    simonb 			/* a 802.11 frame has been transmitted */
   1691   1.1    simonb 			wpi_tx_intr(sc, desc);
   1692   1.1    simonb 			break;
   1693   1.1    simonb 
   1694   1.1    simonb 		case WPI_UC_READY:
   1695   1.1    simonb 		{
   1696   1.1    simonb 			struct wpi_ucode_info *uc =
   1697  1.59  jakllsch 			    (struct wpi_ucode_info *)(desc + 1);
   1698   1.1    simonb 
   1699   1.1    simonb 			/* the microcontroller is ready */
   1700   1.1    simonb 			DPRINTF(("microcode alive notification version %x "
   1701  1.61  jakllsch 			    "alive %x\n", le32toh(uc->version),
   1702  1.61  jakllsch 			    le32toh(uc->valid)));
   1703   1.1    simonb 
   1704   1.1    simonb 			if (le32toh(uc->valid) != 1) {
   1705  1.55  christos 				aprint_error_dev(sc->sc_dev,
   1706  1.61  jakllsch 				    "microcontroller initialization failed\n");
   1707   1.1    simonb 			}
   1708   1.1    simonb 			break;
   1709   1.1    simonb 		}
   1710   1.1    simonb 		case WPI_STATE_CHANGED:
   1711   1.1    simonb 		{
   1712   1.1    simonb 			uint32_t *status = (uint32_t *)(desc + 1);
   1713   1.1    simonb 
   1714   1.1    simonb 			/* enabled/disabled notification */
   1715   1.1    simonb 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   1716   1.1    simonb 
   1717   1.1    simonb 			if (le32toh(*status) & 1) {
   1718   1.1    simonb 				/* the radio button has to be pushed */
   1719  1.70    bouyer 				/* wake up thread to signal powerd */
   1720  1.70    bouyer 				cv_signal(&sc->sc_rsw_cv);
   1721  1.61  jakllsch 				aprint_error_dev(sc->sc_dev,
   1722  1.61  jakllsch 				    "Radio transmitter is off\n");
   1723   1.7  degroote 				/* turn the interface down */
   1724   1.7  degroote 				ifp->if_flags &= ~IFF_UP;
   1725   1.7  degroote 				wpi_stop(ifp, 1);
   1726   1.7  degroote 				return;	/* no further processing */
   1727   1.1    simonb 			}
   1728   1.1    simonb 			break;
   1729   1.1    simonb 		}
   1730   1.1    simonb 		case WPI_START_SCAN:
   1731   1.1    simonb 		{
   1732  1.66  jmcneill #if 0
   1733   1.1    simonb 			struct wpi_start_scan *scan =
   1734  1.59  jakllsch 			    (struct wpi_start_scan *)(desc + 1);
   1735   1.1    simonb 
   1736   1.1    simonb 			DPRINTFN(2, ("scanning channel %d status %x\n",
   1737  1.61  jakllsch 			    scan->chan, le32toh(scan->status)));
   1738   1.1    simonb 
   1739   1.1    simonb 			/* fix current channel */
   1740  1.67  jmcneill 			ic->ic_curchan = &ic->ic_channels[scan->chan];
   1741  1.66  jmcneill #endif
   1742   1.1    simonb 			break;
   1743   1.1    simonb 		}
   1744   1.1    simonb 		case WPI_STOP_SCAN:
   1745   1.1    simonb 		{
   1746  1.67  jmcneill #ifdef WPI_DEBUG
   1747   1.1    simonb 			struct wpi_stop_scan *scan =
   1748  1.59  jakllsch 			    (struct wpi_stop_scan *)(desc + 1);
   1749  1.67  jmcneill #endif
   1750   1.1    simonb 
   1751   1.1    simonb 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   1752  1.61  jakllsch 			    scan->nchan, scan->status, scan->chan));
   1753   1.1    simonb 
   1754  1.23  degroote 			sc->is_scanning = false;
   1755  1.67  jmcneill 			if (ic->ic_state == IEEE80211_S_SCAN)
   1756  1.67  jmcneill 				ieee80211_next_scan(ic);
   1757  1.67  jmcneill 
   1758   1.1    simonb 			break;
   1759   1.1    simonb 		}
   1760   1.1    simonb 		}
   1761   1.1    simonb 
   1762   1.1    simonb 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
   1763   1.1    simonb 	}
   1764   1.1    simonb 
   1765   1.1    simonb 	/* tell the firmware what we have processed */
   1766   1.1    simonb 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
   1767   1.1    simonb 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
   1768   1.1    simonb }
   1769   1.1    simonb 
   1770   1.1    simonb static int
   1771   1.1    simonb wpi_intr(void *arg)
   1772   1.1    simonb {
   1773   1.1    simonb 	struct wpi_softc *sc = arg;
   1774   1.7  degroote 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1775   1.1    simonb 	uint32_t r;
   1776   1.1    simonb 
   1777   1.1    simonb 	r = WPI_READ(sc, WPI_INTR);
   1778   1.1    simonb 	if (r == 0 || r == 0xffffffff)
   1779   1.1    simonb 		return 0;	/* not for us */
   1780   1.1    simonb 
   1781  1.61  jakllsch 	DPRINTFN(6, ("interrupt reg %x\n", r));
   1782   1.1    simonb 
   1783   1.1    simonb 	/* disable interrupts */
   1784   1.1    simonb 	WPI_WRITE(sc, WPI_MASK, 0);
   1785   1.1    simonb 	/* ack interrupts */
   1786   1.1    simonb 	WPI_WRITE(sc, WPI_INTR, r);
   1787   1.1    simonb 
   1788   1.1    simonb 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
   1789  1.61  jakllsch 		/* SYSTEM FAILURE, SYSTEM FAILURE */
   1790  1.28  degroote 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
   1791  1.61  jakllsch 		ifp->if_flags &= ~IFF_UP;
   1792  1.61  jakllsch 		wpi_stop(ifp, 1);
   1793   1.1    simonb 		return 1;
   1794   1.1    simonb 	}
   1795   1.1    simonb 
   1796   1.1    simonb 	if (r & WPI_RX_INTR)
   1797   1.1    simonb 		wpi_notif_intr(sc);
   1798   1.1    simonb 
   1799   1.1    simonb 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
   1800   1.1    simonb 		wakeup(sc);
   1801   1.1    simonb 
   1802   1.1    simonb 	/* re-enable interrupts */
   1803   1.7  degroote 	if (ifp->if_flags & IFF_UP)
   1804   1.7  degroote 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   1805   1.1    simonb 
   1806   1.1    simonb 	return 1;
   1807   1.1    simonb }
   1808   1.1    simonb 
   1809   1.1    simonb static uint8_t
   1810   1.1    simonb wpi_plcp_signal(int rate)
   1811   1.1    simonb {
   1812   1.1    simonb 	switch (rate) {
   1813   1.1    simonb 	/* CCK rates (returned values are device-dependent) */
   1814   1.1    simonb 	case 2:		return 10;
   1815   1.1    simonb 	case 4:		return 20;
   1816   1.1    simonb 	case 11:	return 55;
   1817   1.1    simonb 	case 22:	return 110;
   1818   1.1    simonb 
   1819   1.1    simonb 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1820   1.1    simonb 	/* R1-R4, (u)ral is R4-R1 */
   1821   1.1    simonb 	case 12:	return 0xd;
   1822   1.1    simonb 	case 18:	return 0xf;
   1823   1.1    simonb 	case 24:	return 0x5;
   1824   1.1    simonb 	case 36:	return 0x7;
   1825   1.1    simonb 	case 48:	return 0x9;
   1826   1.1    simonb 	case 72:	return 0xb;
   1827   1.1    simonb 	case 96:	return 0x1;
   1828   1.1    simonb 	case 108:	return 0x3;
   1829   1.1    simonb 
   1830   1.1    simonb 	/* unsupported rates (should not get there) */
   1831   1.1    simonb 	default:	return 0;
   1832   1.1    simonb 	}
   1833   1.1    simonb }
   1834   1.1    simonb 
   1835   1.1    simonb /* quickly determine if a given rate is CCK or OFDM */
   1836   1.1    simonb #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1837   1.1    simonb 
   1838   1.1    simonb static int
   1839   1.1    simonb wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
   1840  1.61  jakllsch     int ac)
   1841   1.1    simonb {
   1842   1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   1843   1.1    simonb 	struct wpi_tx_ring *ring = &sc->txq[ac];
   1844   1.1    simonb 	struct wpi_tx_desc *desc;
   1845   1.1    simonb 	struct wpi_tx_data *data;
   1846   1.1    simonb 	struct wpi_tx_cmd *cmd;
   1847   1.1    simonb 	struct wpi_cmd_data *tx;
   1848   1.1    simonb 	struct ieee80211_frame *wh;
   1849   1.1    simonb 	struct ieee80211_key *k;
   1850   1.1    simonb 	const struct chanAccParams *cap;
   1851   1.1    simonb 	struct mbuf *mnew;
   1852  1.61  jakllsch 	int i, rate, error, hdrlen, noack = 0;
   1853   1.1    simonb 
   1854   1.1    simonb 	desc = &ring->desc[ring->cur];
   1855   1.1    simonb 	data = &ring->data[ring->cur];
   1856   1.1    simonb 
   1857   1.1    simonb 	wh = mtod(m0, struct ieee80211_frame *);
   1858   1.1    simonb 
   1859  1.56  christos 	if (ieee80211_has_qos(wh)) {
   1860   1.1    simonb 		cap = &ic->ic_wme.wme_chanParams;
   1861   1.1    simonb 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   1862  1.26  degroote 	}
   1863   1.1    simonb 
   1864   1.1    simonb 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1865   1.1    simonb 		k = ieee80211_crypto_encap(ic, ni, m0);
   1866   1.1    simonb 		if (k == NULL) {
   1867   1.1    simonb 			m_freem(m0);
   1868   1.1    simonb 			return ENOBUFS;
   1869   1.1    simonb 		}
   1870   1.1    simonb 
   1871   1.1    simonb 		/* packet header may have moved, reset our local pointer */
   1872   1.1    simonb 		wh = mtod(m0, struct ieee80211_frame *);
   1873   1.1    simonb 	}
   1874   1.1    simonb 
   1875  1.26  degroote 	hdrlen = ieee80211_anyhdrsize(wh);
   1876  1.26  degroote 
   1877   1.1    simonb 	/* pickup a rate */
   1878   1.1    simonb 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1879  1.61  jakllsch 	    IEEE80211_FC0_TYPE_MGT) {
   1880   1.1    simonb 		/* mgmt frames are sent at the lowest available bit-rate */
   1881   1.1    simonb 		rate = ni->ni_rates.rs_rates[0];
   1882   1.1    simonb 	} else {
   1883   1.1    simonb 		if (ic->ic_fixed_rate != -1) {
   1884   1.1    simonb 			rate = ic->ic_sup_rates[ic->ic_curmode].
   1885  1.61  jakllsch 			    rs_rates[ic->ic_fixed_rate];
   1886   1.1    simonb 		} else
   1887   1.1    simonb 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1888   1.1    simonb 	}
   1889   1.1    simonb 	rate &= IEEE80211_RATE_VAL;
   1890   1.1    simonb 
   1891   1.1    simonb 	if (sc->sc_drvbpf != NULL) {
   1892   1.1    simonb 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
   1893   1.1    simonb 
   1894   1.1    simonb 		tap->wt_flags = 0;
   1895   1.1    simonb 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   1896   1.1    simonb 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   1897   1.1    simonb 		tap->wt_rate = rate;
   1898   1.1    simonb 		tap->wt_hwqueue = ac;
   1899   1.1    simonb 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   1900   1.1    simonb 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   1901   1.1    simonb 
   1902  1.47     joerg 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1903   1.1    simonb 	}
   1904   1.1    simonb 
   1905   1.1    simonb 	cmd = &ring->cmd[ring->cur];
   1906   1.1    simonb 	cmd->code = WPI_CMD_TX_DATA;
   1907   1.1    simonb 	cmd->flags = 0;
   1908   1.1    simonb 	cmd->qid = ring->qid;
   1909   1.1    simonb 	cmd->idx = ring->cur;
   1910   1.1    simonb 
   1911   1.1    simonb 	tx = (struct wpi_cmd_data *)cmd->data;
   1912  1.61  jakllsch 	/* no need to zero tx, all fields are reinitialized here */
   1913   1.1    simonb 	tx->flags = 0;
   1914   1.1    simonb 
   1915   1.1    simonb 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1916   1.1    simonb 		tx->flags |= htole32(WPI_TX_NEED_ACK);
   1917   1.7  degroote 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
   1918   1.7  degroote 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
   1919   1.1    simonb 
   1920   1.1    simonb 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
   1921   1.1    simonb 
   1922   1.7  degroote 	/* retrieve destination node's id */
   1923   1.7  degroote 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
   1924   1.7  degroote 		WPI_ID_BSS;
   1925   1.7  degroote 
   1926   1.1    simonb 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1927  1.61  jakllsch 	    IEEE80211_FC0_TYPE_MGT) {
   1928   1.1    simonb 		/* tell h/w to set timestamp in probe responses */
   1929   1.1    simonb 		if ((wh->i_fc[0] &
   1930   1.1    simonb 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1931   1.1    simonb 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1932   1.1    simonb 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
   1933   1.1    simonb 
   1934   1.1    simonb 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1935   1.1    simonb 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
   1936   1.1    simonb 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1937   1.1    simonb 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
   1938   1.1    simonb 			tx->timeout = htole16(3);
   1939   1.1    simonb 		else
   1940   1.1    simonb 			tx->timeout = htole16(2);
   1941   1.1    simonb 	} else
   1942   1.1    simonb 		tx->timeout = htole16(0);
   1943   1.1    simonb 
   1944   1.1    simonb 	tx->rate = wpi_plcp_signal(rate);
   1945   1.1    simonb 
   1946   1.1    simonb 	/* be very persistant at sending frames out */
   1947   1.1    simonb 	tx->rts_ntries = 7;
   1948   1.1    simonb 	tx->data_ntries = 15;
   1949   1.1    simonb 
   1950   1.1    simonb 	tx->ofdm_mask = 0xff;
   1951  1.61  jakllsch 	tx->cck_mask = 0x0f;
   1952  1.12  degroote 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
   1953   1.1    simonb 
   1954   1.1    simonb 	tx->len = htole16(m0->m_pkthdr.len);
   1955   1.1    simonb 
   1956   1.1    simonb 	/* save and trim IEEE802.11 header */
   1957  1.26  degroote 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
   1958   1.1    simonb 	m_adj(m0, hdrlen);
   1959   1.1    simonb 
   1960   1.1    simonb 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1961  1.61  jakllsch 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1962   1.1    simonb 	if (error != 0 && error != EFBIG) {
   1963  1.61  jakllsch 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1964  1.61  jakllsch 		    error);
   1965   1.1    simonb 		m_freem(m0);
   1966   1.1    simonb 		return error;
   1967   1.1    simonb 	}
   1968   1.1    simonb 	if (error != 0) {
   1969   1.1    simonb 		/* too many fragments, linearize */
   1970  1.61  jakllsch 
   1971   1.1    simonb 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1972   1.1    simonb 		if (mnew == NULL) {
   1973   1.1    simonb 			m_freem(m0);
   1974   1.1    simonb 			return ENOMEM;
   1975   1.1    simonb 		}
   1976   1.1    simonb 		M_COPY_PKTHDR(mnew, m0);
   1977   1.1    simonb 		if (m0->m_pkthdr.len > MHLEN) {
   1978   1.1    simonb 			MCLGET(mnew, M_DONTWAIT);
   1979   1.1    simonb 			if (!(mnew->m_flags & M_EXT)) {
   1980   1.1    simonb 				m_freem(m0);
   1981   1.1    simonb 				m_freem(mnew);
   1982   1.1    simonb 				return ENOMEM;
   1983   1.1    simonb 			}
   1984   1.1    simonb 		}
   1985   1.1    simonb 
   1986   1.9  christos 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   1987   1.1    simonb 		m_freem(m0);
   1988   1.1    simonb 		mnew->m_len = mnew->m_pkthdr.len;
   1989   1.1    simonb 		m0 = mnew;
   1990   1.1    simonb 
   1991   1.1    simonb 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1992  1.61  jakllsch 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1993   1.1    simonb 		if (error != 0) {
   1994  1.61  jakllsch 			aprint_error_dev(sc->sc_dev,
   1995  1.61  jakllsch 			    "could not map mbuf (error %d)\n", error);
   1996   1.1    simonb 			m_freem(m0);
   1997   1.1    simonb 			return error;
   1998   1.1    simonb 		}
   1999   1.1    simonb 	}
   2000   1.1    simonb 
   2001   1.1    simonb 	data->m = m0;
   2002   1.1    simonb 	data->ni = ni;
   2003   1.1    simonb 
   2004   1.1    simonb 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   2005  1.61  jakllsch 	    ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
   2006   1.1    simonb 
   2007   1.1    simonb 	/* first scatter/gather segment is used by the tx data command */
   2008   1.1    simonb 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
   2009  1.61  jakllsch 	    (1 + data->map->dm_nsegs) << 24);
   2010   1.1    simonb 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2011  1.61  jakllsch 	    ring->cur * sizeof (struct wpi_tx_cmd));
   2012  1.55  christos 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
   2013  1.61  jakllsch 	    ((hdrlen + 3) & ~3));
   2014   1.1    simonb 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   2015   1.1    simonb 		desc->segs[i].addr =
   2016  1.61  jakllsch 		    htole32(data->map->dm_segs[i - 1].ds_addr);
   2017   1.1    simonb 		desc->segs[i].len  =
   2018  1.61  jakllsch 		    htole32(data->map->dm_segs[i - 1].ds_len);
   2019   1.1    simonb 	}
   2020   1.1    simonb 
   2021   1.1    simonb 	ring->queued++;
   2022   1.1    simonb 
   2023  1.63  jmcneill 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2024  1.63  jmcneill 	    data->map->dm_mapsize,
   2025  1.63  jmcneill 	    BUS_DMASYNC_PREWRITE);
   2026  1.63  jmcneill 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
   2027  1.63  jmcneill 	    ring->cmd_dma.size,
   2028  1.63  jmcneill 	    BUS_DMASYNC_PREWRITE);
   2029  1.63  jmcneill 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   2030  1.63  jmcneill 	    ring->desc_dma.size,
   2031  1.63  jmcneill 	    BUS_DMASYNC_PREWRITE);
   2032  1.63  jmcneill 
   2033   1.1    simonb 	/* kick ring */
   2034   1.1    simonb 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
   2035   1.1    simonb 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2036   1.1    simonb 
   2037   1.1    simonb 	return 0;
   2038   1.1    simonb }
   2039   1.1    simonb 
   2040   1.1    simonb static void
   2041   1.1    simonb wpi_start(struct ifnet *ifp)
   2042   1.1    simonb {
   2043   1.1    simonb 	struct wpi_softc *sc = ifp->if_softc;
   2044   1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   2045   1.1    simonb 	struct ieee80211_node *ni;
   2046   1.1    simonb 	struct ether_header *eh;
   2047   1.1    simonb 	struct mbuf *m0;
   2048   1.1    simonb 	int ac;
   2049   1.1    simonb 
   2050   1.1    simonb 	/*
   2051   1.1    simonb 	 * net80211 may still try to send management frames even if the
   2052   1.1    simonb 	 * IFF_RUNNING flag is not set...
   2053   1.1    simonb 	 */
   2054   1.1    simonb 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   2055   1.1    simonb 		return;
   2056   1.1    simonb 
   2057   1.1    simonb 	for (;;) {
   2058  1.22    dyoung 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   2059   1.1    simonb 		if (m0 != NULL) {
   2060   1.1    simonb 
   2061  1.72     ozaki 			ni = M_GETCTX(m0, struct ieee80211_node *);
   2062  1.73     ozaki 			M_CLEARCTX(m0);
   2063   1.1    simonb 
   2064   1.1    simonb 			/* management frames go into ring 0 */
   2065   1.1    simonb 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
   2066   1.1    simonb 				ifp->if_oerrors++;
   2067   1.1    simonb 				continue;
   2068   1.1    simonb 			}
   2069  1.47     joerg 			bpf_mtap3(ic->ic_rawbpf, m0);
   2070   1.1    simonb 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
   2071   1.1    simonb 				ifp->if_oerrors++;
   2072   1.1    simonb 				break;
   2073   1.1    simonb 			}
   2074   1.1    simonb 		} else {
   2075   1.1    simonb 			if (ic->ic_state != IEEE80211_S_RUN)
   2076   1.1    simonb 				break;
   2077   1.7  degroote 			IFQ_POLL(&ifp->if_snd, m0);
   2078   1.1    simonb 			if (m0 == NULL)
   2079   1.1    simonb 				break;
   2080   1.1    simonb 
   2081   1.1    simonb 			if (m0->m_len < sizeof (*eh) &&
   2082  1.38  drochner 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
   2083   1.1    simonb 				ifp->if_oerrors++;
   2084   1.1    simonb 				continue;
   2085   1.1    simonb 			}
   2086   1.1    simonb 			eh = mtod(m0, struct ether_header *);
   2087   1.1    simonb 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   2088   1.1    simonb 			if (ni == NULL) {
   2089   1.1    simonb 				m_freem(m0);
   2090   1.1    simonb 				ifp->if_oerrors++;
   2091   1.1    simonb 				continue;
   2092   1.1    simonb 			}
   2093   1.1    simonb 
   2094   1.1    simonb 			/* classify mbuf so we can find which tx ring to use */
   2095   1.1    simonb 			if (ieee80211_classify(ic, m0, ni) != 0) {
   2096   1.1    simonb 				m_freem(m0);
   2097   1.1    simonb 				ieee80211_free_node(ni);
   2098   1.1    simonb 				ifp->if_oerrors++;
   2099   1.1    simonb 				continue;
   2100   1.1    simonb 			}
   2101   1.1    simonb 
   2102   1.1    simonb 			/* no QoS encapsulation for EAPOL frames */
   2103   1.1    simonb 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   2104   1.1    simonb 			    M_WME_GETAC(m0) : WME_AC_BE;
   2105   1.1    simonb 
   2106   1.1    simonb 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
   2107   1.1    simonb 				/* there is no place left in this ring */
   2108   1.1    simonb 				ifp->if_flags |= IFF_OACTIVE;
   2109   1.1    simonb 				break;
   2110   1.1    simonb 			}
   2111   1.7  degroote 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   2112  1.47     joerg 			bpf_mtap(ifp, m0);
   2113   1.1    simonb 			m0 = ieee80211_encap(ic, m0, ni);
   2114   1.1    simonb 			if (m0 == NULL) {
   2115   1.1    simonb 				ieee80211_free_node(ni);
   2116   1.1    simonb 				ifp->if_oerrors++;
   2117   1.1    simonb 				continue;
   2118   1.1    simonb 			}
   2119  1.47     joerg 			bpf_mtap3(ic->ic_rawbpf, m0);
   2120   1.1    simonb 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
   2121   1.1    simonb 				ieee80211_free_node(ni);
   2122   1.1    simonb 				ifp->if_oerrors++;
   2123   1.1    simonb 				break;
   2124   1.1    simonb 			}
   2125   1.1    simonb 		}
   2126   1.1    simonb 
   2127   1.1    simonb 		sc->sc_tx_timer = 5;
   2128   1.1    simonb 		ifp->if_timer = 1;
   2129   1.1    simonb 	}
   2130   1.1    simonb }
   2131   1.1    simonb 
   2132   1.1    simonb static void
   2133   1.1    simonb wpi_watchdog(struct ifnet *ifp)
   2134   1.1    simonb {
   2135   1.1    simonb 	struct wpi_softc *sc = ifp->if_softc;
   2136   1.1    simonb 
   2137   1.1    simonb 	ifp->if_timer = 0;
   2138   1.1    simonb 
   2139   1.1    simonb 	if (sc->sc_tx_timer > 0) {
   2140   1.1    simonb 		if (--sc->sc_tx_timer == 0) {
   2141  1.28  degroote 			aprint_error_dev(sc->sc_dev, "device timeout\n");
   2142   1.1    simonb 			ifp->if_flags &= ~IFF_UP;
   2143   1.1    simonb 			wpi_stop(ifp, 1);
   2144  1.61  jakllsch 			ifp->if_oerrors++;
   2145   1.1    simonb 			return;
   2146   1.1    simonb 		}
   2147   1.1    simonb 		ifp->if_timer = 1;
   2148   1.1    simonb 	}
   2149   1.1    simonb 
   2150   1.1    simonb 	ieee80211_watchdog(&sc->sc_ic);
   2151   1.1    simonb }
   2152   1.1    simonb 
   2153   1.1    simonb static int
   2154   1.9  christos wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2155   1.1    simonb {
   2156   1.1    simonb #define IS_RUNNING(ifp) \
   2157   1.1    simonb 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   2158   1.1    simonb 
   2159   1.1    simonb 	struct wpi_softc *sc = ifp->if_softc;
   2160   1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   2161   1.1    simonb 	int s, error = 0;
   2162   1.1    simonb 
   2163   1.1    simonb 	s = splnet();
   2164   1.1    simonb 
   2165   1.1    simonb 	switch (cmd) {
   2166   1.1    simonb 	case SIOCSIFFLAGS:
   2167  1.40    dyoung 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   2168  1.40    dyoung 			break;
   2169   1.1    simonb 		if (ifp->if_flags & IFF_UP) {
   2170   1.1    simonb 			if (!(ifp->if_flags & IFF_RUNNING))
   2171   1.1    simonb 				wpi_init(ifp);
   2172   1.1    simonb 		} else {
   2173   1.1    simonb 			if (ifp->if_flags & IFF_RUNNING)
   2174   1.1    simonb 				wpi_stop(ifp, 1);
   2175   1.1    simonb 		}
   2176   1.1    simonb 		break;
   2177   1.1    simonb 
   2178   1.1    simonb 	case SIOCADDMULTI:
   2179   1.1    simonb 	case SIOCDELMULTI:
   2180  1.21    dyoung 		/* XXX no h/w multicast filter? --dyoung */
   2181  1.21    dyoung 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2182   1.1    simonb 			/* setup multicast filter, etc */
   2183   1.1    simonb 			error = 0;
   2184   1.1    simonb 		}
   2185   1.1    simonb 		break;
   2186   1.1    simonb 
   2187   1.1    simonb 	default:
   2188   1.7  degroote 		error = ieee80211_ioctl(ic, cmd, data);
   2189   1.1    simonb 	}
   2190   1.1    simonb 
   2191   1.1    simonb 	if (error == ENETRESET) {
   2192   1.1    simonb 		if (IS_RUNNING(ifp) &&
   2193   1.1    simonb 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   2194   1.1    simonb 			wpi_init(ifp);
   2195   1.1    simonb 		error = 0;
   2196   1.1    simonb 	}
   2197   1.1    simonb 
   2198   1.1    simonb 	splx(s);
   2199   1.1    simonb 	return error;
   2200   1.1    simonb 
   2201   1.1    simonb #undef IS_RUNNING
   2202   1.1    simonb }
   2203   1.1    simonb 
   2204   1.1    simonb /*
   2205   1.1    simonb  * Extract various information from EEPROM.
   2206   1.1    simonb  */
   2207   1.1    simonb static void
   2208   1.1    simonb wpi_read_eeprom(struct wpi_softc *sc)
   2209   1.1    simonb {
   2210   1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   2211  1.12  degroote 	char domain[4];
   2212   1.1    simonb 	int i;
   2213   1.1    simonb 
   2214  1.12  degroote 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
   2215  1.12  degroote 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
   2216  1.12  degroote 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
   2217  1.12  degroote 
   2218  1.12  degroote 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
   2219  1.12  degroote 	    sc->type));
   2220  1.12  degroote 
   2221  1.12  degroote 	/* read and print regulatory domain */
   2222  1.12  degroote 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
   2223  1.32  jmcneill 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
   2224  1.12  degroote 
   2225  1.12  degroote 	/* read and print MAC address */
   2226  1.12  degroote 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
   2227  1.12  degroote 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
   2228  1.12  degroote 
   2229  1.12  degroote 	/* read the list of authorized channels */
   2230  1.12  degroote 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
   2231  1.12  degroote 		wpi_read_eeprom_channels(sc, i);
   2232  1.12  degroote 
   2233  1.12  degroote 	/* read the list of power groups */
   2234  1.12  degroote 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
   2235  1.12  degroote 		wpi_read_eeprom_group(sc, i);
   2236  1.12  degroote }
   2237  1.12  degroote 
   2238  1.12  degroote static void
   2239  1.12  degroote wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
   2240  1.12  degroote {
   2241  1.12  degroote 	struct ieee80211com *ic = &sc->sc_ic;
   2242  1.12  degroote 	const struct wpi_chan_band *band = &wpi_bands[n];
   2243  1.12  degroote 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
   2244  1.12  degroote 	int chan, i;
   2245  1.12  degroote 
   2246  1.12  degroote 	wpi_read_prom_data(sc, band->addr, channels,
   2247  1.12  degroote 	    band->nchan * sizeof (struct wpi_eeprom_chan));
   2248  1.12  degroote 
   2249  1.12  degroote 	for (i = 0; i < band->nchan; i++) {
   2250  1.12  degroote 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
   2251  1.12  degroote 			continue;
   2252  1.12  degroote 
   2253  1.12  degroote 		chan = band->chan[i];
   2254  1.12  degroote 
   2255  1.12  degroote 		if (n == 0) {	/* 2GHz band */
   2256  1.12  degroote 			ic->ic_channels[chan].ic_freq =
   2257  1.12  degroote 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   2258  1.12  degroote 			ic->ic_channels[chan].ic_flags =
   2259  1.12  degroote 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   2260  1.12  degroote 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   2261  1.12  degroote 
   2262  1.12  degroote 		} else {	/* 5GHz band */
   2263  1.12  degroote 			/*
   2264  1.61  jakllsch 			 * Some 3945ABG adapters support channels 7, 8, 11
   2265  1.12  degroote 			 * and 12 in the 2GHz *and* 5GHz bands.
   2266  1.12  degroote 			 * Because of limitations in our net80211(9) stack,
   2267  1.12  degroote 			 * we can't support these channels in 5GHz band.
   2268  1.12  degroote 			 */
   2269  1.12  degroote 			if (chan <= 14)
   2270  1.12  degroote 				continue;
   2271  1.12  degroote 
   2272  1.12  degroote 			ic->ic_channels[chan].ic_freq =
   2273  1.12  degroote 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   2274  1.12  degroote 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   2275  1.12  degroote 		}
   2276  1.12  degroote 
   2277  1.12  degroote 		/* is active scan allowed on this channel? */
   2278  1.12  degroote 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
   2279  1.12  degroote 			ic->ic_channels[chan].ic_flags |=
   2280  1.12  degroote 			    IEEE80211_CHAN_PASSIVE;
   2281  1.12  degroote 		}
   2282  1.12  degroote 
   2283  1.12  degroote 		/* save maximum allowed power for this channel */
   2284  1.12  degroote 		sc->maxpwr[chan] = channels[i].maxpwr;
   2285  1.12  degroote 
   2286  1.12  degroote 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   2287  1.12  degroote 		    chan, channels[i].flags, sc->maxpwr[chan]));
   2288  1.12  degroote 	}
   2289  1.12  degroote }
   2290  1.12  degroote 
   2291  1.12  degroote static void
   2292  1.12  degroote wpi_read_eeprom_group(struct wpi_softc *sc, int n)
   2293  1.12  degroote {
   2294  1.12  degroote 	struct wpi_power_group *group = &sc->groups[n];
   2295  1.12  degroote 	struct wpi_eeprom_group rgroup;
   2296  1.12  degroote 	int i;
   2297  1.12  degroote 
   2298  1.12  degroote 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
   2299  1.12  degroote 	    sizeof rgroup);
   2300  1.12  degroote 
   2301  1.12  degroote 	/* save power group information */
   2302  1.12  degroote 	group->chan   = rgroup.chan;
   2303  1.12  degroote 	group->maxpwr = rgroup.maxpwr;
   2304  1.12  degroote 	/* temperature at which the samples were taken */
   2305  1.12  degroote 	group->temp   = (int16_t)le16toh(rgroup.temp);
   2306  1.12  degroote 
   2307  1.12  degroote 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
   2308  1.12  degroote 	    group->chan, group->maxpwr, group->temp));
   2309  1.12  degroote 
   2310  1.12  degroote 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
   2311  1.12  degroote 		group->samples[i].index = rgroup.samples[i].index;
   2312  1.12  degroote 		group->samples[i].power = rgroup.samples[i].power;
   2313  1.12  degroote 
   2314  1.12  degroote 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
   2315  1.12  degroote 		    group->samples[i].index, group->samples[i].power));
   2316   1.1    simonb 	}
   2317   1.1    simonb }
   2318   1.1    simonb 
   2319   1.1    simonb /*
   2320   1.1    simonb  * Send a command to the firmware.
   2321   1.1    simonb  */
   2322   1.1    simonb static int
   2323   1.1    simonb wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
   2324   1.1    simonb {
   2325   1.1    simonb 	struct wpi_tx_ring *ring = &sc->cmdq;
   2326   1.1    simonb 	struct wpi_tx_desc *desc;
   2327   1.1    simonb 	struct wpi_tx_cmd *cmd;
   2328  1.63  jmcneill 	struct wpi_dma_info *dma;
   2329   1.1    simonb 
   2330   1.1    simonb 	KASSERT(size <= sizeof cmd->data);
   2331   1.1    simonb 
   2332   1.1    simonb 	desc = &ring->desc[ring->cur];
   2333   1.1    simonb 	cmd = &ring->cmd[ring->cur];
   2334   1.1    simonb 
   2335   1.1    simonb 	cmd->code = code;
   2336   1.1    simonb 	cmd->flags = 0;
   2337   1.1    simonb 	cmd->qid = ring->qid;
   2338   1.1    simonb 	cmd->idx = ring->cur;
   2339   1.1    simonb 	memcpy(cmd->data, buf, size);
   2340   1.1    simonb 
   2341  1.63  jmcneill 	dma = &ring->cmd_dma;
   2342  1.63  jmcneill 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   2343  1.63  jmcneill 
   2344   1.1    simonb 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
   2345   1.1    simonb 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2346  1.61  jakllsch 	    ring->cur * sizeof (struct wpi_tx_cmd));
   2347   1.1    simonb 	desc->segs[0].len  = htole32(4 + size);
   2348   1.1    simonb 
   2349  1.63  jmcneill 	dma = &ring->desc_dma;
   2350  1.63  jmcneill 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   2351  1.63  jmcneill 
   2352   1.1    simonb 	/* kick cmd ring */
   2353   1.1    simonb 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2354   1.1    simonb 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2355   1.1    simonb 
   2356   1.1    simonb 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
   2357   1.1    simonb }
   2358   1.1    simonb 
   2359   1.1    simonb static int
   2360   1.1    simonb wpi_wme_update(struct ieee80211com *ic)
   2361   1.1    simonb {
   2362   1.1    simonb #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
   2363   1.1    simonb #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
   2364   1.1    simonb 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
   2365   1.1    simonb 	const struct wmeParams *wmep;
   2366   1.1    simonb 	struct wpi_wme_setup wme;
   2367   1.1    simonb 	int ac;
   2368   1.1    simonb 
   2369   1.1    simonb 	/* don't override default WME values if WME is not actually enabled */
   2370   1.1    simonb 	if (!(ic->ic_flags & IEEE80211_F_WME))
   2371   1.1    simonb 		return 0;
   2372   1.1    simonb 
   2373   1.1    simonb 	wme.flags = 0;
   2374   1.1    simonb 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   2375   1.1    simonb 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   2376   1.1    simonb 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
   2377   1.1    simonb 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
   2378   1.1    simonb 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
   2379   1.1    simonb 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
   2380   1.1    simonb 
   2381   1.1    simonb 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   2382   1.1    simonb 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
   2383   1.1    simonb 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
   2384   1.1    simonb 	}
   2385   1.1    simonb 
   2386   1.1    simonb 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
   2387   1.1    simonb #undef WPI_USEC
   2388   1.1    simonb #undef WPI_EXP2
   2389   1.1    simonb }
   2390   1.1    simonb 
   2391   1.1    simonb /*
   2392   1.1    simonb  * Configure h/w multi-rate retries.
   2393   1.1    simonb  */
   2394   1.1    simonb static int
   2395   1.1    simonb wpi_mrr_setup(struct wpi_softc *sc)
   2396   1.1    simonb {
   2397   1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   2398   1.1    simonb 	struct wpi_mrr_setup mrr;
   2399   1.1    simonb 	int i, error;
   2400   1.1    simonb 
   2401   1.1    simonb 	/* CCK rates (not used with 802.11a) */
   2402   1.1    simonb 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
   2403   1.1    simonb 		mrr.rates[i].flags = 0;
   2404   1.1    simonb 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2405   1.1    simonb 		/* fallback to the immediate lower CCK rate (if any) */
   2406   1.1    simonb 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
   2407   1.1    simonb 		/* try one time at this rate before falling back to "next" */
   2408   1.1    simonb 		mrr.rates[i].ntries = 1;
   2409   1.1    simonb 	}
   2410   1.1    simonb 
   2411   1.1    simonb 	/* OFDM rates (not used with 802.11b) */
   2412   1.1    simonb 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
   2413   1.1    simonb 		mrr.rates[i].flags = 0;
   2414   1.1    simonb 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2415   1.1    simonb 		/* fallback to the immediate lower rate (if any) */
   2416   1.1    simonb 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
   2417   1.1    simonb 		mrr.rates[i].next = (i == WPI_OFDM6) ?
   2418   1.1    simonb 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
   2419   1.1    simonb 			WPI_OFDM6 : WPI_CCK2) :
   2420   1.1    simonb 		    i - 1;
   2421   1.1    simonb 		/* try one time at this rate before falling back to "next" */
   2422   1.1    simonb 		mrr.rates[i].ntries = 1;
   2423   1.1    simonb 	}
   2424   1.1    simonb 
   2425   1.1    simonb 	/* setup MRR for control frames */
   2426   1.1    simonb 	mrr.which = htole32(WPI_MRR_CTL);
   2427  1.12  degroote 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2428   1.1    simonb 	if (error != 0) {
   2429  1.61  jakllsch 		aprint_error_dev(sc->sc_dev,
   2430  1.61  jakllsch 		    "could not setup MRR for control frames\n");
   2431   1.1    simonb 		return error;
   2432   1.1    simonb 	}
   2433   1.1    simonb 
   2434   1.1    simonb 	/* setup MRR for data frames */
   2435   1.1    simonb 	mrr.which = htole32(WPI_MRR_DATA);
   2436  1.12  degroote 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2437   1.1    simonb 	if (error != 0) {
   2438  1.61  jakllsch 		aprint_error_dev(sc->sc_dev,
   2439  1.61  jakllsch 		    "could not setup MRR for data frames\n");
   2440   1.1    simonb 		return error;
   2441   1.1    simonb 	}
   2442   1.1    simonb 
   2443   1.1    simonb 	return 0;
   2444   1.1    simonb }
   2445   1.1    simonb 
   2446   1.1    simonb static void
   2447   1.1    simonb wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   2448   1.1    simonb {
   2449   1.1    simonb 	struct wpi_cmd_led led;
   2450   1.1    simonb 
   2451   1.1    simonb 	led.which = which;
   2452   1.1    simonb 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
   2453   1.1    simonb 	led.off = off;
   2454   1.1    simonb 	led.on = on;
   2455   1.1    simonb 
   2456   1.1    simonb 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
   2457   1.1    simonb }
   2458   1.1    simonb 
   2459   1.1    simonb static void
   2460   1.1    simonb wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
   2461   1.1    simonb {
   2462   1.1    simonb 	struct wpi_cmd_tsf tsf;
   2463   1.1    simonb 	uint64_t val, mod;
   2464   1.1    simonb 
   2465   1.1    simonb 	memset(&tsf, 0, sizeof tsf);
   2466  1.61  jakllsch 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   2467   1.1    simonb 	tsf.bintval = htole16(ni->ni_intval);
   2468   1.1    simonb 	tsf.lintval = htole16(10);
   2469   1.1    simonb 
   2470   1.1    simonb 	/* compute remaining time until next beacon */
   2471  1.61  jakllsch 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   2472   1.1    simonb 	mod = le64toh(tsf.tstamp) % val;
   2473   1.1    simonb 	tsf.binitval = htole32((uint32_t)(val - mod));
   2474   1.1    simonb 
   2475  1.61  jakllsch 	DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
   2476   1.1    simonb 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
   2477   1.1    simonb 
   2478   1.1    simonb 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
   2479  1.28  degroote 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
   2480   1.1    simonb }
   2481   1.1    simonb 
   2482   1.1    simonb /*
   2483  1.12  degroote  * Update Tx power to match what is defined for channel `c'.
   2484  1.12  degroote  */
   2485  1.12  degroote static int
   2486  1.12  degroote wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
   2487  1.12  degroote {
   2488  1.12  degroote 	struct ieee80211com *ic = &sc->sc_ic;
   2489  1.12  degroote 	struct wpi_power_group *group;
   2490  1.12  degroote 	struct wpi_cmd_txpower txpower;
   2491  1.12  degroote 	u_int chan;
   2492  1.12  degroote 	int i;
   2493  1.12  degroote 
   2494  1.12  degroote 	/* get channel number */
   2495  1.12  degroote 	chan = ieee80211_chan2ieee(ic, c);
   2496  1.12  degroote 
   2497  1.12  degroote 	/* find the power group to which this channel belongs */
   2498  1.12  degroote 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2499  1.12  degroote 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
   2500  1.12  degroote 			if (chan <= group->chan)
   2501  1.12  degroote 				break;
   2502  1.12  degroote 	} else
   2503  1.12  degroote 		group = &sc->groups[0];
   2504  1.12  degroote 
   2505  1.12  degroote 	memset(&txpower, 0, sizeof txpower);
   2506  1.12  degroote 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
   2507  1.12  degroote 	txpower.chan = htole16(chan);
   2508  1.12  degroote 
   2509  1.12  degroote 	/* set Tx power for all OFDM and CCK rates */
   2510  1.12  degroote 	for (i = 0; i <= 11 ; i++) {
   2511  1.12  degroote 		/* retrieve Tx power for this channel/rate combination */
   2512  1.12  degroote 		int idx = wpi_get_power_index(sc, group, c,
   2513  1.12  degroote 		    wpi_ridx_to_rate[i]);
   2514  1.12  degroote 
   2515  1.12  degroote 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
   2516  1.12  degroote 
   2517  1.12  degroote 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2518  1.12  degroote 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
   2519  1.12  degroote 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
   2520  1.12  degroote 		} else {
   2521  1.12  degroote 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
   2522  1.12  degroote 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
   2523  1.12  degroote 		}
   2524  1.12  degroote 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
   2525  1.12  degroote 		    wpi_ridx_to_rate[i], idx));
   2526  1.12  degroote 	}
   2527  1.12  degroote 
   2528  1.12  degroote 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
   2529  1.12  degroote }
   2530  1.12  degroote 
   2531  1.12  degroote /*
   2532  1.12  degroote  * Determine Tx power index for a given channel/rate combination.
   2533  1.12  degroote  * This takes into account the regulatory information from EEPROM and the
   2534  1.12  degroote  * current temperature.
   2535  1.12  degroote  */
   2536  1.12  degroote static int
   2537  1.12  degroote wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
   2538  1.12  degroote     struct ieee80211_channel *c, int rate)
   2539  1.12  degroote {
   2540  1.12  degroote /* fixed-point arithmetic division using a n-bit fractional part */
   2541  1.12  degroote #define fdivround(a, b, n)	\
   2542  1.12  degroote 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   2543  1.12  degroote 
   2544  1.12  degroote /* linear interpolation */
   2545  1.12  degroote #define interpolate(x, x1, y1, x2, y2, n)	\
   2546  1.12  degroote 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   2547  1.12  degroote 
   2548  1.12  degroote 	struct ieee80211com *ic = &sc->sc_ic;
   2549  1.12  degroote 	struct wpi_power_sample *sample;
   2550  1.12  degroote 	int pwr, idx;
   2551  1.12  degroote 	u_int chan;
   2552  1.12  degroote 
   2553  1.12  degroote 	/* get channel number */
   2554  1.12  degroote 	chan = ieee80211_chan2ieee(ic, c);
   2555  1.12  degroote 
   2556  1.12  degroote 	/* default power is group's maximum power - 3dB */
   2557  1.12  degroote 	pwr = group->maxpwr / 2;
   2558  1.12  degroote 
   2559  1.12  degroote 	/* decrease power for highest OFDM rates to reduce distortion */
   2560  1.12  degroote 	switch (rate) {
   2561  1.12  degroote 	case 72:	/* 36Mb/s */
   2562  1.12  degroote 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
   2563  1.12  degroote 		break;
   2564  1.12  degroote 	case 96:	/* 48Mb/s */
   2565  1.12  degroote 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
   2566  1.12  degroote 		break;
   2567  1.12  degroote 	case 108:	/* 54Mb/s */
   2568  1.12  degroote 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
   2569  1.12  degroote 		break;
   2570  1.12  degroote 	}
   2571  1.12  degroote 
   2572  1.12  degroote 	/* never exceed channel's maximum allowed Tx power */
   2573  1.12  degroote 	pwr = min(pwr, sc->maxpwr[chan]);
   2574  1.12  degroote 
   2575  1.12  degroote 	/* retrieve power index into gain tables from samples */
   2576  1.12  degroote 	for (sample = group->samples; sample < &group->samples[3]; sample++)
   2577  1.12  degroote 		if (pwr > sample[1].power)
   2578  1.12  degroote 			break;
   2579  1.12  degroote 	/* fixed-point linear interpolation using a 19-bit fractional part */
   2580  1.12  degroote 	idx = interpolate(pwr, sample[0].power, sample[0].index,
   2581  1.12  degroote 	    sample[1].power, sample[1].index, 19);
   2582  1.12  degroote 
   2583  1.61  jakllsch 	/*-
   2584  1.12  degroote 	 * Adjust power index based on current temperature:
   2585  1.12  degroote 	 * - if cooler than factory-calibrated: decrease output power
   2586  1.12  degroote 	 * - if warmer than factory-calibrated: increase output power
   2587  1.12  degroote 	 */
   2588  1.12  degroote 	idx -= (sc->temp - group->temp) * 11 / 100;
   2589  1.12  degroote 
   2590  1.12  degroote 	/* decrease power for CCK rates (-5dB) */
   2591  1.12  degroote 	if (!WPI_RATE_IS_OFDM(rate))
   2592  1.12  degroote 		idx += 10;
   2593  1.12  degroote 
   2594  1.12  degroote 	/* keep power index in a valid range */
   2595  1.12  degroote 	if (idx < 0)
   2596  1.12  degroote 		return 0;
   2597  1.12  degroote 	if (idx > WPI_MAX_PWR_INDEX)
   2598  1.12  degroote 		return WPI_MAX_PWR_INDEX;
   2599  1.12  degroote 	return idx;
   2600  1.12  degroote 
   2601  1.12  degroote #undef interpolate
   2602  1.12  degroote #undef fdivround
   2603  1.12  degroote }
   2604  1.12  degroote 
   2605  1.12  degroote /*
   2606   1.1    simonb  * Build a beacon frame that the firmware will broadcast periodically in
   2607   1.1    simonb  * IBSS or HostAP modes.
   2608   1.1    simonb  */
   2609   1.1    simonb static int
   2610   1.1    simonb wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
   2611   1.1    simonb {
   2612   1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   2613   1.1    simonb 	struct wpi_tx_ring *ring = &sc->cmdq;
   2614   1.1    simonb 	struct wpi_tx_desc *desc;
   2615   1.1    simonb 	struct wpi_tx_data *data;
   2616   1.1    simonb 	struct wpi_tx_cmd *cmd;
   2617   1.1    simonb 	struct wpi_cmd_beacon *bcn;
   2618   1.1    simonb 	struct ieee80211_beacon_offsets bo;
   2619   1.1    simonb 	struct mbuf *m0;
   2620   1.1    simonb 	int error;
   2621   1.1    simonb 
   2622   1.1    simonb 	desc = &ring->desc[ring->cur];
   2623   1.1    simonb 	data = &ring->data[ring->cur];
   2624   1.1    simonb 
   2625   1.1    simonb 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
   2626   1.1    simonb 	if (m0 == NULL) {
   2627  1.61  jakllsch 		aprint_error_dev(sc->sc_dev,
   2628  1.61  jakllsch 		    "could not allocate beacon frame\n");
   2629   1.1    simonb 		return ENOMEM;
   2630   1.1    simonb 	}
   2631   1.1    simonb 
   2632   1.1    simonb 	cmd = &ring->cmd[ring->cur];
   2633   1.1    simonb 	cmd->code = WPI_CMD_SET_BEACON;
   2634   1.1    simonb 	cmd->flags = 0;
   2635   1.1    simonb 	cmd->qid = ring->qid;
   2636   1.1    simonb 	cmd->idx = ring->cur;
   2637   1.1    simonb 
   2638   1.1    simonb 	bcn = (struct wpi_cmd_beacon *)cmd->data;
   2639   1.1    simonb 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
   2640   1.1    simonb 	bcn->id = WPI_ID_BROADCAST;
   2641   1.1    simonb 	bcn->ofdm_mask = 0xff;
   2642   1.1    simonb 	bcn->cck_mask = 0x0f;
   2643  1.12  degroote 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2644   1.1    simonb 	bcn->len = htole16(m0->m_pkthdr.len);
   2645   1.1    simonb 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2646  1.61  jakllsch 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2647   1.1    simonb 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
   2648   1.1    simonb 
   2649   1.1    simonb 	/* save and trim IEEE802.11 header */
   2650   1.9  christos 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
   2651   1.1    simonb 	m_adj(m0, sizeof (struct ieee80211_frame));
   2652   1.1    simonb 
   2653   1.1    simonb 	/* assume beacon frame is contiguous */
   2654   1.1    simonb 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2655  1.61  jakllsch 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   2656  1.61  jakllsch 	if (error != 0) {
   2657  1.55  christos 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
   2658   1.1    simonb 		m_freem(m0);
   2659   1.1    simonb 		return error;
   2660   1.1    simonb 	}
   2661   1.1    simonb 
   2662   1.1    simonb 	data->m = m0;
   2663   1.1    simonb 
   2664   1.1    simonb 	/* first scatter/gather segment is used by the beacon command */
   2665   1.1    simonb 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
   2666   1.1    simonb 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2667  1.61  jakllsch 	    ring->cur * sizeof (struct wpi_tx_cmd));
   2668   1.1    simonb 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
   2669   1.1    simonb 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
   2670   1.1    simonb 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
   2671   1.1    simonb 
   2672  1.65  jmcneill 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   2673  1.65  jmcneill 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2674  1.63  jmcneill 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2675  1.63  jmcneill 	    BUS_DMASYNC_PREWRITE);
   2676  1.63  jmcneill 
   2677   1.1    simonb 	/* kick cmd ring */
   2678   1.1    simonb 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2679   1.1    simonb 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2680   1.1    simonb 
   2681   1.1    simonb 	return 0;
   2682   1.1    simonb }
   2683   1.1    simonb 
   2684   1.1    simonb static int
   2685   1.1    simonb wpi_auth(struct wpi_softc *sc)
   2686   1.1    simonb {
   2687   1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   2688   1.1    simonb 	struct ieee80211_node *ni = ic->ic_bss;
   2689   1.5     joerg 	struct wpi_node_info node;
   2690   1.1    simonb 	int error;
   2691   1.1    simonb 
   2692   1.1    simonb 	/* update adapter's configuration */
   2693   1.1    simonb 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
   2694   1.1    simonb 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   2695   1.1    simonb 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2696   1.1    simonb 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
   2697   1.1    simonb 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2698   1.1    simonb 		    WPI_CONFIG_24GHZ);
   2699   1.1    simonb 	}
   2700   1.1    simonb 	switch (ic->ic_curmode) {
   2701   1.1    simonb 	case IEEE80211_MODE_11A:
   2702   1.1    simonb 		sc->config.cck_mask  = 0;
   2703   1.1    simonb 		sc->config.ofdm_mask = 0x15;
   2704   1.1    simonb 		break;
   2705   1.1    simonb 	case IEEE80211_MODE_11B:
   2706   1.1    simonb 		sc->config.cck_mask  = 0x03;
   2707   1.1    simonb 		sc->config.ofdm_mask = 0;
   2708   1.1    simonb 		break;
   2709   1.1    simonb 	default:	/* assume 802.11b/g */
   2710   1.1    simonb 		sc->config.cck_mask  = 0x0f;
   2711   1.1    simonb 		sc->config.ofdm_mask = 0x15;
   2712   1.1    simonb 	}
   2713   1.1    simonb 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
   2714  1.61  jakllsch 	    sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
   2715   1.1    simonb 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2716  1.61  jakllsch 	    sizeof (struct wpi_config), 1);
   2717   1.1    simonb 	if (error != 0) {
   2718  1.55  christos 		aprint_error_dev(sc->sc_dev, "could not configure\n");
   2719   1.1    simonb 		return error;
   2720   1.1    simonb 	}
   2721   1.1    simonb 
   2722  1.12  degroote 	/* configuration has changed, set Tx power accordingly */
   2723  1.12  degroote 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
   2724  1.28  degroote 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2725  1.12  degroote 		return error;
   2726  1.12  degroote 	}
   2727  1.12  degroote 
   2728   1.1    simonb 	/* add default node */
   2729   1.1    simonb 	memset(&node, 0, sizeof node);
   2730   1.1    simonb 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
   2731   1.1    simonb 	node.id = WPI_ID_BSS;
   2732   1.1    simonb 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2733   1.1    simonb 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2734  1.12  degroote 	node.action = htole32(WPI_ACTION_SET_RATE);
   2735  1.12  degroote 	node.antenna = WPI_ANTENNA_BOTH;
   2736   1.1    simonb 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
   2737   1.1    simonb 	if (error != 0) {
   2738  1.55  christos 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
   2739   1.1    simonb 		return error;
   2740   1.1    simonb 	}
   2741   1.1    simonb 
   2742   1.1    simonb 	return 0;
   2743   1.1    simonb }
   2744   1.1    simonb 
   2745   1.1    simonb /*
   2746   1.1    simonb  * Send a scan request to the firmware.  Since this command is huge, we map it
   2747   1.1    simonb  * into a mbuf instead of using the pre-allocated set of commands.
   2748   1.1    simonb  */
   2749   1.1    simonb static int
   2750  1.67  jmcneill wpi_scan(struct wpi_softc *sc)
   2751   1.1    simonb {
   2752   1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   2753   1.1    simonb 	struct wpi_tx_ring *ring = &sc->cmdq;
   2754   1.1    simonb 	struct wpi_tx_desc *desc;
   2755   1.1    simonb 	struct wpi_tx_data *data;
   2756   1.1    simonb 	struct wpi_tx_cmd *cmd;
   2757   1.1    simonb 	struct wpi_scan_hdr *hdr;
   2758   1.1    simonb 	struct wpi_scan_chan *chan;
   2759   1.1    simonb 	struct ieee80211_frame *wh;
   2760   1.1    simonb 	struct ieee80211_rateset *rs;
   2761   1.1    simonb 	struct ieee80211_channel *c;
   2762   1.1    simonb 	uint8_t *frm;
   2763  1.61  jakllsch 	int pktlen, error, nrates;
   2764   1.1    simonb 
   2765  1.67  jmcneill 	if (ic->ic_curchan == NULL)
   2766  1.67  jmcneill 		return EIO;
   2767  1.67  jmcneill 
   2768   1.1    simonb 	desc = &ring->desc[ring->cur];
   2769   1.1    simonb 	data = &ring->data[ring->cur];
   2770   1.1    simonb 
   2771   1.1    simonb 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   2772   1.1    simonb 	if (data->m == NULL) {
   2773  1.55  christos 		aprint_error_dev(sc->sc_dev,
   2774  1.59  jakllsch 		    "could not allocate mbuf for scan command\n");
   2775   1.1    simonb 		return ENOMEM;
   2776   1.1    simonb 	}
   2777   1.1    simonb 	MCLGET(data->m, M_DONTWAIT);
   2778   1.1    simonb 	if (!(data->m->m_flags & M_EXT)) {
   2779   1.1    simonb 		m_freem(data->m);
   2780   1.1    simonb 		data->m = NULL;
   2781  1.55  christos 		aprint_error_dev(sc->sc_dev,
   2782  1.59  jakllsch 		    "could not allocate mbuf for scan command\n");
   2783   1.1    simonb 		return ENOMEM;
   2784   1.1    simonb 	}
   2785   1.1    simonb 
   2786   1.1    simonb 	cmd = mtod(data->m, struct wpi_tx_cmd *);
   2787   1.1    simonb 	cmd->code = WPI_CMD_SCAN;
   2788   1.1    simonb 	cmd->flags = 0;
   2789   1.1    simonb 	cmd->qid = ring->qid;
   2790   1.1    simonb 	cmd->idx = ring->cur;
   2791   1.1    simonb 
   2792   1.1    simonb 	hdr = (struct wpi_scan_hdr *)cmd->data;
   2793   1.1    simonb 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
   2794  1.60  jakllsch 	hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
   2795  1.60  jakllsch 	hdr->cmd.id = WPI_ID_BROADCAST;
   2796  1.60  jakllsch 	hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
   2797   1.1    simonb 	/*
   2798  1.67  jmcneill 	 * Move to the next channel if no packets are received within 5 msecs
   2799   1.1    simonb 	 * after sending the probe request (this helps to reduce the duration
   2800   1.1    simonb 	 * of active scans).
   2801   1.1    simonb 	 */
   2802  1.67  jmcneill 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
   2803  1.12  degroote 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
   2804   1.1    simonb 
   2805  1.67  jmcneill 	if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
   2806  1.12  degroote 		hdr->crc_threshold = htole16(1);
   2807   1.1    simonb 		/* send probe requests at 6Mbps */
   2808  1.60  jakllsch 		hdr->cmd.rate = wpi_plcp_signal(12);
   2809  1.66  jmcneill 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   2810   1.1    simonb 	} else {
   2811   1.1    simonb 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
   2812   1.1    simonb 		/* send probe requests at 1Mbps */
   2813  1.60  jakllsch 		hdr->cmd.rate = wpi_plcp_signal(2);
   2814  1.66  jmcneill 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   2815   1.1    simonb 	}
   2816   1.1    simonb 
   2817  1.12  degroote 	/* for directed scans, firmware inserts the essid IE itself */
   2818  1.66  jmcneill 	if (ic->ic_des_esslen != 0) {
   2819  1.66  jmcneill 		hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
   2820  1.66  jmcneill 		hdr->essid[0].len = ic->ic_des_esslen;
   2821  1.66  jmcneill 		memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   2822  1.66  jmcneill 	}
   2823   1.1    simonb 
   2824   1.1    simonb 	/*
   2825   1.1    simonb 	 * Build a probe request frame.  Most of the following code is a
   2826   1.1    simonb 	 * copy & paste of what is done in net80211.
   2827   1.1    simonb 	 */
   2828   1.1    simonb 	wh = (struct ieee80211_frame *)(hdr + 1);
   2829   1.1    simonb 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   2830  1.61  jakllsch 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   2831   1.1    simonb 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   2832   1.1    simonb 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   2833   1.1    simonb 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   2834   1.1    simonb 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   2835   1.1    simonb 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
   2836   1.1    simonb 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
   2837   1.1    simonb 
   2838   1.1    simonb 	frm = (uint8_t *)(wh + 1);
   2839   1.1    simonb 
   2840  1.12  degroote 	/* add empty essid IE (firmware generates it for directed scans) */
   2841  1.12  degroote 	*frm++ = IEEE80211_ELEMID_SSID;
   2842  1.12  degroote 	*frm++ = 0;
   2843   1.1    simonb 
   2844   1.1    simonb 	/* add supported rates IE */
   2845   1.1    simonb 	*frm++ = IEEE80211_ELEMID_RATES;
   2846   1.1    simonb 	nrates = rs->rs_nrates;
   2847   1.1    simonb 	if (nrates > IEEE80211_RATE_SIZE)
   2848   1.1    simonb 		nrates = IEEE80211_RATE_SIZE;
   2849   1.1    simonb 	*frm++ = nrates;
   2850   1.1    simonb 	memcpy(frm, rs->rs_rates, nrates);
   2851   1.1    simonb 	frm += nrates;
   2852   1.1    simonb 
   2853   1.1    simonb 	/* add supported xrates IE */
   2854   1.1    simonb 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
   2855   1.1    simonb 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   2856   1.1    simonb 		*frm++ = IEEE80211_ELEMID_XRATES;
   2857   1.1    simonb 		*frm++ = nrates;
   2858   1.1    simonb 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   2859   1.1    simonb 		frm += nrates;
   2860   1.1    simonb 	}
   2861   1.1    simonb 
   2862   1.1    simonb 	/* setup length of probe request */
   2863  1.60  jakllsch 	hdr->cmd.len = htole16(frm - (uint8_t *)wh);
   2864   1.1    simonb 
   2865   1.1    simonb 	chan = (struct wpi_scan_chan *)frm;
   2866  1.67  jmcneill 	c = ic->ic_curchan;
   2867   1.1    simonb 
   2868  1.67  jmcneill 	chan->chan = ieee80211_chan2ieee(ic, c);
   2869  1.67  jmcneill 	chan->flags = 0;
   2870  1.67  jmcneill 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
   2871  1.67  jmcneill 		chan->flags |= WPI_CHAN_ACTIVE;
   2872  1.66  jmcneill 		if (ic->ic_des_esslen != 0)
   2873  1.66  jmcneill 			chan->flags |= WPI_CHAN_DIRECT;
   2874  1.67  jmcneill 	}
   2875  1.67  jmcneill 	chan->dsp_gain = 0x6e;
   2876  1.67  jmcneill 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2877  1.67  jmcneill 		chan->rf_gain = 0x3b;
   2878  1.67  jmcneill 		chan->active  = htole16(10);
   2879  1.67  jmcneill 		chan->passive = htole16(110);
   2880  1.67  jmcneill 	} else {
   2881  1.67  jmcneill 		chan->rf_gain = 0x28;
   2882  1.67  jmcneill 		chan->active  = htole16(20);
   2883  1.67  jmcneill 		chan->passive = htole16(120);
   2884  1.67  jmcneill 	}
   2885  1.67  jmcneill 	hdr->nchan++;
   2886  1.67  jmcneill 	chan++;
   2887   1.1    simonb 
   2888  1.67  jmcneill 	frm += sizeof (struct wpi_scan_chan);
   2889  1.61  jakllsch 
   2890  1.12  degroote 	hdr->len = htole16(frm - (uint8_t *)hdr);
   2891  1.12  degroote 	pktlen = frm - (uint8_t *)cmd;
   2892   1.1    simonb 
   2893  1.61  jakllsch 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
   2894  1.61  jakllsch 	    BUS_DMA_NOWAIT);
   2895  1.61  jakllsch 	if (error != 0) {
   2896  1.28  degroote 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
   2897   1.1    simonb 		m_freem(data->m);
   2898   1.1    simonb 		data->m = NULL;
   2899   1.1    simonb 		return error;
   2900   1.1    simonb 	}
   2901   1.1    simonb 
   2902   1.1    simonb 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
   2903   1.1    simonb 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
   2904   1.1    simonb 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
   2905   1.1    simonb 
   2906  1.65  jmcneill 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   2907  1.65  jmcneill 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2908  1.63  jmcneill 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2909  1.63  jmcneill 	    BUS_DMASYNC_PREWRITE);
   2910  1.63  jmcneill 
   2911   1.1    simonb 	/* kick cmd ring */
   2912   1.1    simonb 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2913   1.1    simonb 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2914   1.1    simonb 
   2915   1.1    simonb 	return 0;	/* will be notified async. of failure/success */
   2916   1.1    simonb }
   2917   1.1    simonb 
   2918   1.1    simonb static int
   2919   1.1    simonb wpi_config(struct wpi_softc *sc)
   2920   1.1    simonb {
   2921   1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   2922   1.1    simonb 	struct ifnet *ifp = ic->ic_ifp;
   2923   1.1    simonb 	struct wpi_power power;
   2924   1.1    simonb 	struct wpi_bluetooth bluetooth;
   2925   1.5     joerg 	struct wpi_node_info node;
   2926   1.1    simonb 	int error;
   2927   1.1    simonb 
   2928   1.1    simonb 	memset(&power, 0, sizeof power);
   2929  1.12  degroote 	power.flags = htole32(WPI_POWER_CAM | 0x8);
   2930   1.1    simonb 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
   2931   1.1    simonb 	if (error != 0) {
   2932  1.28  degroote 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
   2933   1.1    simonb 		return error;
   2934   1.1    simonb 	}
   2935   1.1    simonb 
   2936   1.1    simonb 	/* configure bluetooth coexistence */
   2937   1.1    simonb 	memset(&bluetooth, 0, sizeof bluetooth);
   2938   1.1    simonb 	bluetooth.flags = 3;
   2939   1.1    simonb 	bluetooth.lead = 0xaa;
   2940   1.1    simonb 	bluetooth.kill = 1;
   2941   1.1    simonb 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
   2942  1.61  jakllsch 	    0);
   2943   1.1    simonb 	if (error != 0) {
   2944  1.28  degroote 		aprint_error_dev(sc->sc_dev,
   2945  1.28  degroote 			"could not configure bluetooth coexistence\n");
   2946   1.1    simonb 		return error;
   2947   1.1    simonb 	}
   2948   1.1    simonb 
   2949   1.1    simonb 	/* configure adapter */
   2950   1.1    simonb 	memset(&sc->config, 0, sizeof (struct wpi_config));
   2951  1.20    dyoung 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   2952   1.1    simonb 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
   2953  1.61  jakllsch 	/* set default channel */
   2954  1.66  jmcneill 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
   2955   1.1    simonb 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2956  1.66  jmcneill 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
   2957   1.1    simonb 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2958   1.1    simonb 		    WPI_CONFIG_24GHZ);
   2959   1.1    simonb 	}
   2960   1.1    simonb 	sc->config.filter = 0;
   2961   1.1    simonb 	switch (ic->ic_opmode) {
   2962   1.1    simonb 	case IEEE80211_M_STA:
   2963   1.1    simonb 		sc->config.mode = WPI_MODE_STA;
   2964   1.1    simonb 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
   2965   1.1    simonb 		break;
   2966   1.1    simonb 	case IEEE80211_M_IBSS:
   2967   1.1    simonb 	case IEEE80211_M_AHDEMO:
   2968   1.1    simonb 		sc->config.mode = WPI_MODE_IBSS;
   2969   1.1    simonb 		break;
   2970   1.1    simonb 	case IEEE80211_M_HOSTAP:
   2971   1.1    simonb 		sc->config.mode = WPI_MODE_HOSTAP;
   2972   1.1    simonb 		break;
   2973   1.1    simonb 	case IEEE80211_M_MONITOR:
   2974   1.1    simonb 		sc->config.mode = WPI_MODE_MONITOR;
   2975   1.1    simonb 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
   2976  1.61  jakllsch 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
   2977   1.1    simonb 		break;
   2978   1.1    simonb 	}
   2979   1.1    simonb 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
   2980   1.1    simonb 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
   2981   1.1    simonb 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2982  1.61  jakllsch 	    sizeof (struct wpi_config), 0);
   2983   1.1    simonb 	if (error != 0) {
   2984  1.28  degroote 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
   2985   1.1    simonb 		return error;
   2986   1.1    simonb 	}
   2987   1.1    simonb 
   2988  1.12  degroote 	/* configuration has changed, set Tx power accordingly */
   2989  1.66  jmcneill 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
   2990  1.28  degroote 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2991  1.12  degroote 		return error;
   2992  1.12  degroote 	}
   2993  1.12  degroote 
   2994   1.1    simonb 	/* add broadcast node */
   2995   1.1    simonb 	memset(&node, 0, sizeof node);
   2996   1.1    simonb 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
   2997   1.1    simonb 	node.id = WPI_ID_BROADCAST;
   2998   1.1    simonb 	node.rate = wpi_plcp_signal(2);
   2999  1.12  degroote 	node.action = htole32(WPI_ACTION_SET_RATE);
   3000  1.55  christos 	node.antenna = WPI_ANTENNA_BOTH;
   3001   1.1    simonb 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
   3002   1.1    simonb 	if (error != 0) {
   3003  1.28  degroote 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
   3004   1.1    simonb 		return error;
   3005   1.1    simonb 	}
   3006   1.1    simonb 
   3007  1.12  degroote 	if ((error = wpi_mrr_setup(sc)) != 0) {
   3008  1.28  degroote 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
   3009  1.12  degroote 		return error;
   3010  1.12  degroote 	}
   3011  1.12  degroote 
   3012   1.1    simonb 	return 0;
   3013   1.1    simonb }
   3014   1.1    simonb 
   3015   1.1    simonb static void
   3016   1.1    simonb wpi_stop_master(struct wpi_softc *sc)
   3017   1.1    simonb {
   3018   1.1    simonb 	uint32_t tmp;
   3019   1.1    simonb 	int ntries;
   3020   1.1    simonb 
   3021   1.1    simonb 	tmp = WPI_READ(sc, WPI_RESET);
   3022   1.1    simonb 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
   3023   1.1    simonb 
   3024   1.1    simonb 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   3025   1.1    simonb 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
   3026   1.1    simonb 		return;	/* already asleep */
   3027   1.1    simonb 
   3028   1.1    simonb 	for (ntries = 0; ntries < 100; ntries++) {
   3029   1.1    simonb 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
   3030   1.1    simonb 			break;
   3031   1.1    simonb 		DELAY(10);
   3032   1.1    simonb 	}
   3033   1.1    simonb 	if (ntries == 100) {
   3034  1.28  degroote 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   3035   1.1    simonb 	}
   3036   1.1    simonb }
   3037   1.1    simonb 
   3038   1.1    simonb static int
   3039   1.1    simonb wpi_power_up(struct wpi_softc *sc)
   3040   1.1    simonb {
   3041   1.1    simonb 	uint32_t tmp;
   3042   1.1    simonb 	int ntries;
   3043   1.1    simonb 
   3044   1.1    simonb 	wpi_mem_lock(sc);
   3045   1.1    simonb 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
   3046   1.1    simonb 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
   3047   1.1    simonb 	wpi_mem_unlock(sc);
   3048   1.1    simonb 
   3049   1.1    simonb 	for (ntries = 0; ntries < 5000; ntries++) {
   3050   1.1    simonb 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
   3051   1.1    simonb 			break;
   3052   1.1    simonb 		DELAY(10);
   3053   1.1    simonb 	}
   3054   1.1    simonb 	if (ntries == 5000) {
   3055  1.61  jakllsch 		aprint_error_dev(sc->sc_dev,
   3056  1.61  jakllsch 		    "timeout waiting for NIC to power up\n");
   3057   1.1    simonb 		return ETIMEDOUT;
   3058   1.1    simonb 	}
   3059   1.1    simonb 	return 0;
   3060   1.1    simonb }
   3061   1.1    simonb 
   3062   1.1    simonb static int
   3063   1.1    simonb wpi_reset(struct wpi_softc *sc)
   3064   1.1    simonb {
   3065   1.1    simonb 	uint32_t tmp;
   3066   1.1    simonb 	int ntries;
   3067   1.1    simonb 
   3068   1.1    simonb 	/* clear any pending interrupts */
   3069   1.1    simonb 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3070   1.1    simonb 
   3071   1.1    simonb 	tmp = WPI_READ(sc, WPI_PLL_CTL);
   3072   1.1    simonb 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
   3073   1.1    simonb 
   3074   1.1    simonb 	tmp = WPI_READ(sc, WPI_CHICKEN);
   3075   1.1    simonb 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
   3076   1.1    simonb 
   3077   1.1    simonb 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   3078   1.1    simonb 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
   3079   1.1    simonb 
   3080   1.1    simonb 	/* wait for clock stabilization */
   3081   1.1    simonb 	for (ntries = 0; ntries < 1000; ntries++) {
   3082   1.1    simonb 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
   3083   1.1    simonb 			break;
   3084   1.1    simonb 		DELAY(10);
   3085   1.1    simonb 	}
   3086   1.1    simonb 	if (ntries == 1000) {
   3087  1.55  christos 		aprint_error_dev(sc->sc_dev,
   3088  1.61  jakllsch 		    "timeout waiting for clock stabilization\n");
   3089   1.1    simonb 		return ETIMEDOUT;
   3090   1.1    simonb 	}
   3091   1.1    simonb 
   3092   1.1    simonb 	/* initialize EEPROM */
   3093   1.1    simonb 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
   3094   1.1    simonb 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
   3095  1.28  degroote 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
   3096   1.1    simonb 		return EIO;
   3097   1.1    simonb 	}
   3098   1.1    simonb 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
   3099   1.1    simonb 
   3100   1.1    simonb 	return 0;
   3101   1.1    simonb }
   3102   1.1    simonb 
   3103   1.1    simonb static void
   3104   1.1    simonb wpi_hw_config(struct wpi_softc *sc)
   3105   1.1    simonb {
   3106   1.1    simonb 	uint32_t rev, hw;
   3107   1.1    simonb 
   3108  1.12  degroote 	/* voodoo from the reference driver */
   3109   1.1    simonb 	hw = WPI_READ(sc, WPI_HWCONFIG);
   3110   1.1    simonb 
   3111   1.1    simonb 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
   3112   1.1    simonb 	rev = PCI_REVISION(rev);
   3113   1.1    simonb 	if ((rev & 0xc0) == 0x40)
   3114   1.1    simonb 		hw |= WPI_HW_ALM_MB;
   3115   1.1    simonb 	else if (!(rev & 0x80))
   3116   1.1    simonb 		hw |= WPI_HW_ALM_MM;
   3117   1.1    simonb 
   3118  1.12  degroote 	if (sc->cap == 0x80)
   3119   1.1    simonb 		hw |= WPI_HW_SKU_MRC;
   3120   1.1    simonb 
   3121   1.1    simonb 	hw &= ~WPI_HW_REV_D;
   3122  1.55  christos 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
   3123   1.1    simonb 		hw |= WPI_HW_REV_D;
   3124   1.1    simonb 
   3125  1.12  degroote 	if (sc->type > 1)
   3126   1.1    simonb 		hw |= WPI_HW_TYPE_B;
   3127   1.1    simonb 
   3128   1.1    simonb 	DPRINTF(("setting h/w config %x\n", hw));
   3129   1.1    simonb 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
   3130   1.1    simonb }
   3131   1.1    simonb 
   3132   1.1    simonb static int
   3133   1.1    simonb wpi_init(struct ifnet *ifp)
   3134   1.1    simonb {
   3135   1.1    simonb 	struct wpi_softc *sc = ifp->if_softc;
   3136   1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   3137   1.1    simonb 	uint32_t tmp;
   3138   1.1    simonb 	int qid, ntries, error;
   3139   1.1    simonb 
   3140  1.18  degroote 	wpi_stop(ifp,1);
   3141   1.1    simonb 	(void)wpi_reset(sc);
   3142   1.1    simonb 
   3143   1.1    simonb 	wpi_mem_lock(sc);
   3144   1.1    simonb 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
   3145   1.1    simonb 	DELAY(20);
   3146   1.1    simonb 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
   3147   1.1    simonb 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
   3148   1.1    simonb 	wpi_mem_unlock(sc);
   3149   1.1    simonb 
   3150   1.1    simonb 	(void)wpi_power_up(sc);
   3151   1.1    simonb 	wpi_hw_config(sc);
   3152   1.1    simonb 
   3153   1.1    simonb 	/* init Rx ring */
   3154   1.1    simonb 	wpi_mem_lock(sc);
   3155   1.1    simonb 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
   3156   1.1    simonb 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
   3157   1.1    simonb 	    offsetof(struct wpi_shared, next));
   3158   1.1    simonb 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
   3159   1.1    simonb 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
   3160   1.1    simonb 	wpi_mem_unlock(sc);
   3161   1.1    simonb 
   3162   1.1    simonb 	/* init Tx rings */
   3163   1.1    simonb 	wpi_mem_lock(sc);
   3164  1.61  jakllsch 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
   3165  1.61  jakllsch 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
   3166  1.61  jakllsch 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
   3167   1.1    simonb 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
   3168   1.1    simonb 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
   3169   1.1    simonb 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
   3170   1.1    simonb 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
   3171   1.1    simonb 
   3172   1.1    simonb 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
   3173   1.1    simonb 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
   3174   1.1    simonb 
   3175   1.1    simonb 	for (qid = 0; qid < 6; qid++) {
   3176   1.1    simonb 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
   3177   1.1    simonb 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
   3178   1.1    simonb 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
   3179   1.1    simonb 	}
   3180   1.1    simonb 	wpi_mem_unlock(sc);
   3181   1.1    simonb 
   3182   1.1    simonb 	/* clear "radio off" and "disable command" bits (reversed logic) */
   3183   1.1    simonb 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3184   1.1    simonb 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
   3185   1.1    simonb 
   3186   1.1    simonb 	/* clear any pending interrupts */
   3187   1.1    simonb 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3188   1.1    simonb 	/* enable interrupts */
   3189   1.1    simonb 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   3190   1.1    simonb 
   3191  1.12  degroote 	/* not sure why/if this is necessary... */
   3192  1.12  degroote 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3193  1.12  degroote 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3194   1.1    simonb 
   3195  1.54  riastrad 	if ((error = wpi_load_firmware(sc)) != 0)
   3196  1.54  riastrad 		/* wpi_load_firmware prints error messages for us.  */
   3197   1.1    simonb 		goto fail1;
   3198   1.1    simonb 
   3199  1.31  degroote 	/* Check the status of the radio switch */
   3200  1.71    bouyer 	mutex_enter(&sc->sc_rsw_mtx);
   3201  1.34  degroote 	if (wpi_getrfkill(sc)) {
   3202  1.71    bouyer 		mutex_exit(&sc->sc_rsw_mtx);
   3203  1.54  riastrad 		aprint_error_dev(sc->sc_dev,
   3204  1.54  riastrad 		    "radio is disabled by hardware switch\n");
   3205  1.69    bouyer 		ifp->if_flags &= ~IFF_UP;
   3206  1.54  riastrad 		error = EBUSY;
   3207  1.31  degroote 		goto fail1;
   3208  1.31  degroote 	}
   3209  1.71    bouyer 	mutex_exit(&sc->sc_rsw_mtx);
   3210  1.31  degroote 
   3211   1.1    simonb 	/* wait for thermal sensors to calibrate */
   3212   1.1    simonb 	for (ntries = 0; ntries < 1000; ntries++) {
   3213  1.55  christos 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
   3214   1.1    simonb 			break;
   3215   1.1    simonb 		DELAY(10);
   3216   1.1    simonb 	}
   3217   1.1    simonb 	if (ntries == 1000) {
   3218  1.54  riastrad 		aprint_error_dev(sc->sc_dev,
   3219  1.54  riastrad 		    "timeout waiting for thermal sensors calibration\n");
   3220   1.1    simonb 		error = ETIMEDOUT;
   3221   1.1    simonb 		goto fail1;
   3222   1.1    simonb 	}
   3223  1.12  degroote 	DPRINTF(("temperature %d\n", sc->temp));
   3224   1.1    simonb 
   3225   1.1    simonb 	if ((error = wpi_config(sc)) != 0) {
   3226  1.28  degroote 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
   3227   1.1    simonb 		goto fail1;
   3228   1.1    simonb 	}
   3229   1.1    simonb 
   3230   1.1    simonb 	ifp->if_flags &= ~IFF_OACTIVE;
   3231   1.1    simonb 	ifp->if_flags |= IFF_RUNNING;
   3232   1.1    simonb 
   3233   1.1    simonb 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3234   1.1    simonb 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   3235   1.1    simonb 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3236   1.1    simonb 	}
   3237   1.1    simonb 	else
   3238   1.1    simonb 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   3239   1.1    simonb 
   3240   1.1    simonb 	return 0;
   3241   1.1    simonb 
   3242   1.1    simonb fail1:	wpi_stop(ifp, 1);
   3243   1.1    simonb 	return error;
   3244   1.1    simonb }
   3245   1.1    simonb 
   3246   1.1    simonb static void
   3247   1.6  christos wpi_stop(struct ifnet *ifp, int disable)
   3248   1.1    simonb {
   3249   1.1    simonb 	struct wpi_softc *sc = ifp->if_softc;
   3250   1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   3251   1.1    simonb 	uint32_t tmp;
   3252   1.1    simonb 	int ac;
   3253   1.1    simonb 
   3254   1.1    simonb 	ifp->if_timer = sc->sc_tx_timer = 0;
   3255   1.1    simonb 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3256   1.1    simonb 
   3257   1.1    simonb 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   3258   1.1    simonb 
   3259   1.1    simonb 	/* disable interrupts */
   3260   1.1    simonb 	WPI_WRITE(sc, WPI_MASK, 0);
   3261   1.1    simonb 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
   3262   1.1    simonb 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
   3263   1.1    simonb 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
   3264   1.1    simonb 
   3265   1.1    simonb 	wpi_mem_lock(sc);
   3266   1.1    simonb 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
   3267   1.1    simonb 	wpi_mem_unlock(sc);
   3268   1.1    simonb 
   3269   1.1    simonb 	/* reset all Tx rings */
   3270   1.1    simonb 	for (ac = 0; ac < 4; ac++)
   3271   1.1    simonb 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
   3272   1.1    simonb 	wpi_reset_tx_ring(sc, &sc->cmdq);
   3273   1.1    simonb 
   3274   1.1    simonb 	/* reset Rx ring */
   3275   1.1    simonb 	wpi_reset_rx_ring(sc, &sc->rxq);
   3276  1.55  christos 
   3277   1.1    simonb 	wpi_mem_lock(sc);
   3278   1.1    simonb 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
   3279   1.1    simonb 	wpi_mem_unlock(sc);
   3280   1.1    simonb 
   3281   1.1    simonb 	DELAY(5);
   3282   1.1    simonb 
   3283   1.1    simonb 	wpi_stop_master(sc);
   3284   1.1    simonb 
   3285   1.1    simonb 	tmp = WPI_READ(sc, WPI_RESET);
   3286   1.1    simonb 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
   3287   1.1    simonb }
   3288  1.33  jmcneill 
   3289  1.33  jmcneill static bool
   3290  1.46    dyoung wpi_resume(device_t dv, const pmf_qual_t *qual)
   3291  1.33  jmcneill {
   3292  1.33  jmcneill 	struct wpi_softc *sc = device_private(dv);
   3293  1.33  jmcneill 
   3294  1.33  jmcneill 	(void)wpi_reset(sc);
   3295  1.33  jmcneill 
   3296  1.33  jmcneill 	return true;
   3297  1.33  jmcneill }
   3298  1.34  degroote 
   3299  1.34  degroote /*
   3300  1.34  degroote  * Return whether or not the radio is enabled in hardware
   3301  1.34  degroote  * (i.e. the rfkill switch is "off").
   3302  1.34  degroote  */
   3303  1.34  degroote static int
   3304  1.34  degroote wpi_getrfkill(struct wpi_softc *sc)
   3305  1.34  degroote {
   3306  1.34  degroote 	uint32_t tmp;
   3307  1.34  degroote 
   3308  1.34  degroote 	wpi_mem_lock(sc);
   3309  1.34  degroote 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
   3310  1.34  degroote 	wpi_mem_unlock(sc);
   3311  1.34  degroote 
   3312  1.70    bouyer 	KASSERT(mutex_owned(&sc->sc_rsw_mtx));
   3313  1.70    bouyer 	if (tmp & 0x01) {
   3314  1.70    bouyer 		/* switch is on */
   3315  1.70    bouyer 		if (sc->sc_rsw_status != WPI_RSW_ON) {
   3316  1.70    bouyer 			sc->sc_rsw_status = WPI_RSW_ON;
   3317  1.70    bouyer 			sysmon_pswitch_event(&sc->sc_rsw,
   3318  1.70    bouyer 			    PSWITCH_EVENT_PRESSED);
   3319  1.70    bouyer 		}
   3320  1.70    bouyer 	} else {
   3321  1.70    bouyer 		/* switch is off */
   3322  1.70    bouyer 		if (sc->sc_rsw_status != WPI_RSW_OFF) {
   3323  1.70    bouyer 			sc->sc_rsw_status = WPI_RSW_OFF;
   3324  1.70    bouyer 			sysmon_pswitch_event(&sc->sc_rsw,
   3325  1.70    bouyer 			    PSWITCH_EVENT_RELEASED);
   3326  1.70    bouyer 		}
   3327  1.70    bouyer 	}
   3328  1.70    bouyer 
   3329  1.34  degroote 	return !(tmp & 0x01);
   3330  1.34  degroote }
   3331  1.34  degroote 
   3332  1.34  degroote static int
   3333  1.34  degroote wpi_sysctl_radio(SYSCTLFN_ARGS)
   3334  1.34  degroote {
   3335  1.34  degroote 	struct sysctlnode node;
   3336  1.34  degroote 	struct wpi_softc *sc;
   3337  1.34  degroote 	int val, error;
   3338  1.34  degroote 
   3339  1.34  degroote 	node = *rnode;
   3340  1.34  degroote 	sc = (struct wpi_softc *)node.sysctl_data;
   3341  1.34  degroote 
   3342  1.70    bouyer 	mutex_enter(&sc->sc_rsw_mtx);
   3343  1.34  degroote 	val = !wpi_getrfkill(sc);
   3344  1.70    bouyer 	mutex_exit(&sc->sc_rsw_mtx);
   3345  1.34  degroote 
   3346  1.34  degroote 	node.sysctl_data = &val;
   3347  1.34  degroote 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3348  1.34  degroote 
   3349  1.34  degroote 	if (error || newp == NULL)
   3350  1.34  degroote 		return error;
   3351  1.34  degroote 
   3352  1.34  degroote 	return 0;
   3353  1.34  degroote }
   3354  1.34  degroote 
   3355  1.34  degroote static void
   3356  1.34  degroote wpi_sysctlattach(struct wpi_softc *sc)
   3357  1.34  degroote {
   3358  1.34  degroote 	int rc;
   3359  1.34  degroote 	const struct sysctlnode *rnode;
   3360  1.34  degroote 	const struct sysctlnode *cnode;
   3361  1.34  degroote 
   3362  1.34  degroote 	struct sysctllog **clog = &sc->sc_sysctllog;
   3363  1.34  degroote 
   3364  1.34  degroote 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
   3365  1.34  degroote 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
   3366  1.34  degroote 	    SYSCTL_DESCR("wpi controls and statistics"),
   3367  1.57     pooka 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
   3368  1.34  degroote 		goto err;
   3369  1.34  degroote 
   3370  1.34  degroote 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3371  1.34  degroote 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
   3372  1.34  degroote 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
   3373  1.52       dsl 	    wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
   3374  1.34  degroote 		goto err;
   3375  1.34  degroote 
   3376  1.34  degroote #ifdef WPI_DEBUG
   3377  1.34  degroote 	/* control debugging printfs */
   3378  1.34  degroote 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3379  1.34  degroote 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
   3380  1.34  degroote 	    "debug", SYSCTL_DESCR("Enable debugging output"),
   3381  1.34  degroote 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
   3382  1.34  degroote 		goto err;
   3383  1.34  degroote #endif
   3384  1.34  degroote 
   3385  1.34  degroote 	return;
   3386  1.34  degroote err:
   3387  1.34  degroote 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   3388  1.34  degroote }
   3389  1.70    bouyer 
   3390  1.70    bouyer static void
   3391  1.70    bouyer wpi_rsw_thread(void *arg)
   3392  1.70    bouyer {
   3393  1.70    bouyer 	struct wpi_softc *sc = (struct wpi_softc *)arg;
   3394  1.70    bouyer 
   3395  1.70    bouyer 	mutex_enter(&sc->sc_rsw_mtx);
   3396  1.70    bouyer 	for (;;) {
   3397  1.70    bouyer 		cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz);
   3398  1.70    bouyer 		if (sc->sc_dying) {
   3399  1.70    bouyer 			sc->sc_rsw_lwp = NULL;
   3400  1.70    bouyer 			cv_broadcast(&sc->sc_rsw_cv);
   3401  1.70    bouyer 			mutex_exit(&sc->sc_rsw_mtx);
   3402  1.70    bouyer 			kthread_exit(0);
   3403  1.70    bouyer 		}
   3404  1.70    bouyer 		wpi_getrfkill(sc);
   3405  1.70    bouyer 	}
   3406  1.70    bouyer }
   3407  1.70    bouyer 
   3408