if_wpi.c revision 1.85 1 1.85 maxv /* $NetBSD: if_wpi.c,v 1.85 2018/12/22 14:07:53 maxv Exp $ */
2 1.1 simonb
3 1.1 simonb /*-
4 1.12 degroote * Copyright (c) 2006, 2007
5 1.1 simonb * Damien Bergamini <damien.bergamini (at) free.fr>
6 1.1 simonb *
7 1.1 simonb * Permission to use, copy, modify, and distribute this software for any
8 1.1 simonb * purpose with or without fee is hereby granted, provided that the above
9 1.1 simonb * copyright notice and this permission notice appear in all copies.
10 1.1 simonb *
11 1.1 simonb * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 1.1 simonb * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 1.1 simonb * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 1.1 simonb * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 1.1 simonb * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 1.1 simonb * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 1.1 simonb * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 1.1 simonb */
19 1.1 simonb
20 1.1 simonb #include <sys/cdefs.h>
21 1.85 maxv __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.85 2018/12/22 14:07:53 maxv Exp $");
22 1.1 simonb
23 1.1 simonb /*
24 1.1 simonb * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 1.1 simonb */
26 1.1 simonb
27 1.1 simonb
28 1.1 simonb #include <sys/param.h>
29 1.1 simonb #include <sys/sockio.h>
30 1.1 simonb #include <sys/sysctl.h>
31 1.1 simonb #include <sys/mbuf.h>
32 1.1 simonb #include <sys/kernel.h>
33 1.1 simonb #include <sys/socket.h>
34 1.1 simonb #include <sys/systm.h>
35 1.1 simonb #include <sys/malloc.h>
36 1.39 cube #include <sys/mutex.h>
37 1.41 joerg #include <sys/once.h>
38 1.1 simonb #include <sys/conf.h>
39 1.1 simonb #include <sys/kauth.h>
40 1.7 degroote #include <sys/callout.h>
41 1.48 uebayasi #include <sys/proc.h>
42 1.70 bouyer #include <sys/kthread.h>
43 1.1 simonb
44 1.25 ad #include <sys/bus.h>
45 1.1 simonb #include <machine/endian.h>
46 1.25 ad #include <sys/intr.h>
47 1.1 simonb
48 1.1 simonb #include <dev/pci/pcireg.h>
49 1.1 simonb #include <dev/pci/pcivar.h>
50 1.1 simonb #include <dev/pci/pcidevs.h>
51 1.1 simonb
52 1.70 bouyer #include <dev/sysmon/sysmonvar.h>
53 1.70 bouyer
54 1.1 simonb #include <net/bpf.h>
55 1.1 simonb #include <net/if.h>
56 1.1 simonb #include <net/if_arp.h>
57 1.1 simonb #include <net/if_dl.h>
58 1.1 simonb #include <net/if_ether.h>
59 1.1 simonb #include <net/if_media.h>
60 1.1 simonb #include <net/if_types.h>
61 1.1 simonb
62 1.1 simonb #include <netinet/in.h>
63 1.1 simonb #include <netinet/in_systm.h>
64 1.1 simonb #include <netinet/in_var.h>
65 1.1 simonb #include <netinet/ip.h>
66 1.1 simonb
67 1.61 jakllsch #include <net80211/ieee80211_var.h>
68 1.61 jakllsch #include <net80211/ieee80211_amrr.h>
69 1.61 jakllsch #include <net80211/ieee80211_radiotap.h>
70 1.61 jakllsch
71 1.1 simonb #include <dev/firmload.h>
72 1.1 simonb
73 1.1 simonb #include <dev/pci/if_wpireg.h>
74 1.1 simonb #include <dev/pci/if_wpivar.h>
75 1.1 simonb
76 1.54 riastrad static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
77 1.41 joerg static once_t wpi_firmware_init;
78 1.41 joerg static kmutex_t wpi_firmware_mutex;
79 1.41 joerg static size_t wpi_firmware_users;
80 1.41 joerg static uint8_t *wpi_firmware_image;
81 1.41 joerg static size_t wpi_firmware_size;
82 1.41 joerg
83 1.61 jakllsch static int wpi_match(device_t, cfdata_t, void *);
84 1.61 jakllsch static void wpi_attach(device_t, device_t, void *);
85 1.61 jakllsch static int wpi_detach(device_t , int);
86 1.61 jakllsch static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
87 1.61 jakllsch void **, bus_size_t, bus_size_t, int);
88 1.61 jakllsch static void wpi_dma_contig_free(struct wpi_dma_info *);
89 1.61 jakllsch static int wpi_alloc_shared(struct wpi_softc *);
90 1.61 jakllsch static void wpi_free_shared(struct wpi_softc *);
91 1.61 jakllsch static int wpi_alloc_fwmem(struct wpi_softc *);
92 1.61 jakllsch static void wpi_free_fwmem(struct wpi_softc *);
93 1.61 jakllsch static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
94 1.61 jakllsch static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
95 1.61 jakllsch static int wpi_alloc_rpool(struct wpi_softc *);
96 1.61 jakllsch static void wpi_free_rpool(struct wpi_softc *);
97 1.61 jakllsch static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
98 1.61 jakllsch static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
99 1.61 jakllsch static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
100 1.61 jakllsch static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
101 1.61 jakllsch int, int);
102 1.61 jakllsch static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
103 1.61 jakllsch static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
104 1.61 jakllsch static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
105 1.61 jakllsch static void wpi_newassoc(struct ieee80211_node *, int);
106 1.61 jakllsch static int wpi_media_change(struct ifnet *);
107 1.61 jakllsch static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
108 1.61 jakllsch static void wpi_mem_lock(struct wpi_softc *);
109 1.61 jakllsch static void wpi_mem_unlock(struct wpi_softc *);
110 1.61 jakllsch static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
111 1.61 jakllsch static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
112 1.61 jakllsch static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
113 1.61 jakllsch const uint32_t *, int);
114 1.61 jakllsch static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
115 1.61 jakllsch static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
116 1.61 jakllsch static int wpi_cache_firmware(struct wpi_softc *);
117 1.61 jakllsch static void wpi_release_firmware(void);
118 1.61 jakllsch static int wpi_load_firmware(struct wpi_softc *);
119 1.61 jakllsch static void wpi_calib_timeout(void *);
120 1.61 jakllsch static void wpi_iter_func(void *, struct ieee80211_node *);
121 1.61 jakllsch static void wpi_power_calibration(struct wpi_softc *, int);
122 1.61 jakllsch static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
123 1.61 jakllsch struct wpi_rx_data *);
124 1.61 jakllsch static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
125 1.61 jakllsch static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
126 1.61 jakllsch static void wpi_notif_intr(struct wpi_softc *);
127 1.61 jakllsch static int wpi_intr(void *);
128 1.77 nonaka static void wpi_softintr(void *);
129 1.61 jakllsch static void wpi_read_eeprom(struct wpi_softc *);
130 1.61 jakllsch static void wpi_read_eeprom_channels(struct wpi_softc *, int);
131 1.61 jakllsch static void wpi_read_eeprom_group(struct wpi_softc *, int);
132 1.61 jakllsch static uint8_t wpi_plcp_signal(int);
133 1.61 jakllsch static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
134 1.61 jakllsch struct ieee80211_node *, int);
135 1.61 jakllsch static void wpi_start(struct ifnet *);
136 1.61 jakllsch static void wpi_watchdog(struct ifnet *);
137 1.61 jakllsch static int wpi_ioctl(struct ifnet *, u_long, void *);
138 1.61 jakllsch static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
139 1.61 jakllsch static int wpi_wme_update(struct ieee80211com *);
140 1.61 jakllsch static int wpi_mrr_setup(struct wpi_softc *);
141 1.61 jakllsch static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
142 1.61 jakllsch static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
143 1.61 jakllsch static int wpi_set_txpower(struct wpi_softc *,
144 1.61 jakllsch struct ieee80211_channel *, int);
145 1.61 jakllsch static int wpi_get_power_index(struct wpi_softc *,
146 1.61 jakllsch struct wpi_power_group *, struct ieee80211_channel *, int);
147 1.61 jakllsch static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
148 1.61 jakllsch static int wpi_auth(struct wpi_softc *);
149 1.67 jmcneill static int wpi_scan(struct wpi_softc *);
150 1.61 jakllsch static int wpi_config(struct wpi_softc *);
151 1.61 jakllsch static void wpi_stop_master(struct wpi_softc *);
152 1.61 jakllsch static int wpi_power_up(struct wpi_softc *);
153 1.61 jakllsch static int wpi_reset(struct wpi_softc *);
154 1.61 jakllsch static void wpi_hw_config(struct wpi_softc *);
155 1.61 jakllsch static int wpi_init(struct ifnet *);
156 1.61 jakllsch static void wpi_stop(struct ifnet *, int);
157 1.61 jakllsch static bool wpi_resume(device_t, const pmf_qual_t *);
158 1.34 degroote static int wpi_getrfkill(struct wpi_softc *);
159 1.61 jakllsch static void wpi_sysctlattach(struct wpi_softc *);
160 1.70 bouyer static void wpi_rsw_thread(void *);
161 1.61 jakllsch
162 1.61 jakllsch #ifdef WPI_DEBUG
163 1.61 jakllsch #define DPRINTF(x) do { if (wpi_debug > 0) printf x; } while (0)
164 1.61 jakllsch #define DPRINTFN(n, x) do { if (wpi_debug >= (n)) printf x; } while (0)
165 1.61 jakllsch int wpi_debug = 1;
166 1.61 jakllsch #else
167 1.61 jakllsch #define DPRINTF(x)
168 1.61 jakllsch #define DPRINTFN(n, x)
169 1.61 jakllsch #endif
170 1.1 simonb
171 1.28 degroote CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
172 1.1 simonb wpi_detach, NULL);
173 1.1 simonb
174 1.1 simonb static int
175 1.42 cegger wpi_match(device_t parent, cfdata_t match __unused, void *aux)
176 1.1 simonb {
177 1.1 simonb struct pci_attach_args *pa = aux;
178 1.1 simonb
179 1.1 simonb if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
180 1.1 simonb return 0;
181 1.1 simonb
182 1.1 simonb if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
183 1.7 degroote PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
184 1.1 simonb return 1;
185 1.1 simonb
186 1.1 simonb return 0;
187 1.1 simonb }
188 1.1 simonb
189 1.1 simonb /* Base Address Register */
190 1.1 simonb #define WPI_PCI_BAR0 0x10
191 1.1 simonb
192 1.41 joerg static int
193 1.41 joerg wpi_attach_once(void)
194 1.41 joerg {
195 1.54 riastrad
196 1.41 joerg mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
197 1.41 joerg return 0;
198 1.41 joerg }
199 1.41 joerg
200 1.1 simonb static void
201 1.28 degroote wpi_attach(device_t parent __unused, device_t self, void *aux)
202 1.1 simonb {
203 1.28 degroote struct wpi_softc *sc = device_private(self);
204 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
205 1.1 simonb struct ifnet *ifp = &sc->sc_ec.ec_if;
206 1.1 simonb struct pci_attach_args *pa = aux;
207 1.1 simonb const char *intrstr;
208 1.1 simonb bus_space_tag_t memt;
209 1.1 simonb bus_space_handle_t memh;
210 1.1 simonb pcireg_t data;
211 1.61 jakllsch int ac, error;
212 1.58 christos char intrbuf[PCI_INTRSTR_LEN];
213 1.1 simonb
214 1.41 joerg RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
215 1.41 joerg sc->fw_used = false;
216 1.41 joerg
217 1.30 plunky sc->sc_dev = self;
218 1.1 simonb sc->sc_pct = pa->pa_pc;
219 1.1 simonb sc->sc_pcitag = pa->pa_tag;
220 1.1 simonb
221 1.70 bouyer sc->sc_rsw_status = WPI_RSW_UNKNOWN;
222 1.70 bouyer sc->sc_rsw.smpsw_name = device_xname(self);
223 1.70 bouyer sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO;
224 1.70 bouyer error = sysmon_pswitch_register(&sc->sc_rsw);
225 1.70 bouyer if (error) {
226 1.70 bouyer aprint_error_dev(self,
227 1.70 bouyer "unable to register radio switch with sysmon\n");
228 1.70 bouyer return;
229 1.70 bouyer }
230 1.70 bouyer mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE);
231 1.70 bouyer cv_init(&sc->sc_rsw_cv, "wpirsw");
232 1.82 riastrad sc->sc_rsw_suspend = false;
233 1.82 riastrad sc->sc_rsw_suspended = false;
234 1.70 bouyer if (kthread_create(PRI_NONE, 0, NULL,
235 1.70 bouyer wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) {
236 1.70 bouyer aprint_error_dev(self, "couldn't create switch thread\n");
237 1.70 bouyer }
238 1.70 bouyer
239 1.14 ad callout_init(&sc->calib_to, 0);
240 1.28 degroote callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
241 1.1 simonb
242 1.50 drochner pci_aprint_devinfo(pa, NULL);
243 1.1 simonb
244 1.1 simonb /* enable bus-mastering */
245 1.1 simonb data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
246 1.1 simonb data |= PCI_COMMAND_MASTER_ENABLE;
247 1.1 simonb pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
248 1.1 simonb
249 1.1 simonb /* map the register window */
250 1.1 simonb error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
251 1.59 jakllsch PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
252 1.1 simonb if (error != 0) {
253 1.28 degroote aprint_error_dev(self, "could not map memory space\n");
254 1.1 simonb return;
255 1.1 simonb }
256 1.1 simonb
257 1.1 simonb sc->sc_st = memt;
258 1.1 simonb sc->sc_sh = memh;
259 1.1 simonb sc->sc_dmat = pa->pa_dmat;
260 1.1 simonb
261 1.77 nonaka sc->sc_soft_ih = softint_establish(SOFTINT_NET, wpi_softintr, sc);
262 1.77 nonaka if (sc->sc_soft_ih == NULL) {
263 1.77 nonaka aprint_error_dev(self, "could not establish softint\n");
264 1.77 nonaka goto unmap;
265 1.77 nonaka }
266 1.77 nonaka
267 1.76 jakllsch if (pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0)) {
268 1.28 degroote aprint_error_dev(self, "could not map interrupt\n");
269 1.77 nonaka goto failsi;
270 1.1 simonb }
271 1.1 simonb
272 1.76 jakllsch intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
273 1.76 jakllsch sizeof(intrbuf));
274 1.84 jdolecek sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
275 1.84 jdolecek IPL_NET, wpi_intr, sc, device_xname(self));
276 1.1 simonb if (sc->sc_ih == NULL) {
277 1.28 degroote aprint_error_dev(self, "could not establish interrupt");
278 1.1 simonb if (intrstr != NULL)
279 1.1 simonb aprint_error(" at %s", intrstr);
280 1.1 simonb aprint_error("\n");
281 1.77 nonaka goto failia;
282 1.1 simonb }
283 1.28 degroote aprint_normal_dev(self, "interrupting at %s\n", intrstr);
284 1.1 simonb
285 1.61 jakllsch /*
286 1.61 jakllsch * Put adapter into a known state.
287 1.61 jakllsch */
288 1.61 jakllsch if ((error = wpi_reset(sc)) != 0) {
289 1.28 degroote aprint_error_dev(self, "could not reset adapter\n");
290 1.77 nonaka goto failih;
291 1.1 simonb }
292 1.1 simonb
293 1.59 jakllsch /*
294 1.12 degroote * Allocate DMA memory for firmware transfers.
295 1.12 degroote */
296 1.61 jakllsch if ((error = wpi_alloc_fwmem(sc)) != 0) {
297 1.61 jakllsch aprint_error_dev(self, "could not allocate firmware memory\n");
298 1.77 nonaka goto failih;
299 1.61 jakllsch }
300 1.12 degroote
301 1.1 simonb /*
302 1.1 simonb * Allocate shared page and Tx/Rx rings.
303 1.1 simonb */
304 1.1 simonb if ((error = wpi_alloc_shared(sc)) != 0) {
305 1.28 degroote aprint_error_dev(self, "could not allocate shared area\n");
306 1.12 degroote goto fail1;
307 1.1 simonb }
308 1.1 simonb
309 1.7 degroote if ((error = wpi_alloc_rpool(sc)) != 0) {
310 1.28 degroote aprint_error_dev(self, "could not allocate Rx buffers\n");
311 1.12 degroote goto fail2;
312 1.7 degroote }
313 1.7 degroote
314 1.1 simonb for (ac = 0; ac < 4; ac++) {
315 1.61 jakllsch error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
316 1.61 jakllsch ac);
317 1.1 simonb if (error != 0) {
318 1.61 jakllsch aprint_error_dev(self,
319 1.61 jakllsch "could not allocate Tx ring %d\n", ac);
320 1.12 degroote goto fail3;
321 1.1 simonb }
322 1.1 simonb }
323 1.1 simonb
324 1.1 simonb error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
325 1.1 simonb if (error != 0) {
326 1.28 degroote aprint_error_dev(self, "could not allocate command ring\n");
327 1.12 degroote goto fail3;
328 1.1 simonb }
329 1.1 simonb
330 1.61 jakllsch error = wpi_alloc_rx_ring(sc, &sc->rxq);
331 1.61 jakllsch if (error != 0) {
332 1.28 degroote aprint_error_dev(self, "could not allocate Rx ring\n");
333 1.24 degroote goto fail4;
334 1.1 simonb }
335 1.1 simonb
336 1.1 simonb ic->ic_ifp = ifp;
337 1.61 jakllsch ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
338 1.61 jakllsch ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
339 1.1 simonb ic->ic_state = IEEE80211_S_INIT;
340 1.1 simonb
341 1.1 simonb /* set device capabilities */
342 1.1 simonb ic->ic_caps =
343 1.59 jakllsch IEEE80211_C_WPA | /* 802.11i */
344 1.59 jakllsch IEEE80211_C_MONITOR | /* monitor mode supported */
345 1.59 jakllsch IEEE80211_C_TXPMGT | /* tx power management */
346 1.59 jakllsch IEEE80211_C_SHSLOT | /* short slot time supported */
347 1.59 jakllsch IEEE80211_C_SHPREAMBLE | /* short preamble supported */
348 1.59 jakllsch IEEE80211_C_WME; /* 802.11e */
349 1.1 simonb
350 1.12 degroote /* read supported channels and MAC address from EEPROM */
351 1.1 simonb wpi_read_eeprom(sc);
352 1.1 simonb
353 1.59 jakllsch /* set supported .11a, .11b and .11g rates */
354 1.59 jakllsch ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
355 1.59 jakllsch ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
356 1.59 jakllsch ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
357 1.1 simonb
358 1.59 jakllsch /* IBSS channel undefined for now */
359 1.1 simonb ic->ic_ibss_chan = &ic->ic_channels[0];
360 1.1 simonb
361 1.1 simonb ifp->if_softc = sc;
362 1.1 simonb ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
363 1.1 simonb ifp->if_init = wpi_init;
364 1.1 simonb ifp->if_stop = wpi_stop;
365 1.1 simonb ifp->if_ioctl = wpi_ioctl;
366 1.1 simonb ifp->if_start = wpi_start;
367 1.1 simonb ifp->if_watchdog = wpi_watchdog;
368 1.1 simonb IFQ_SET_READY(&ifp->if_snd);
369 1.28 degroote memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
370 1.1 simonb
371 1.79 msaitoh error = if_initialize(ifp);
372 1.79 msaitoh if (error != 0) {
373 1.79 msaitoh aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
374 1.79 msaitoh error);
375 1.79 msaitoh goto fail5;
376 1.79 msaitoh }
377 1.1 simonb ieee80211_ifattach(ic);
378 1.77 nonaka /* Use common softint-based if_input */
379 1.77 nonaka ifp->if_percpuq = if_percpuq_create(ifp);
380 1.77 nonaka if_register(ifp);
381 1.77 nonaka
382 1.1 simonb /* override default methods */
383 1.1 simonb ic->ic_node_alloc = wpi_node_alloc;
384 1.5 joerg ic->ic_newassoc = wpi_newassoc;
385 1.1 simonb ic->ic_wme.wme_update = wpi_wme_update;
386 1.1 simonb
387 1.1 simonb /* override state transition machine */
388 1.1 simonb sc->sc_newstate = ic->ic_newstate;
389 1.1 simonb ic->ic_newstate = wpi_newstate;
390 1.1 simonb ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
391 1.1 simonb
392 1.59 jakllsch sc->amrr.amrr_min_success_threshold = 1;
393 1.5 joerg sc->amrr.amrr_max_success_threshold = 15;
394 1.5 joerg
395 1.34 degroote wpi_sysctlattach(sc);
396 1.34 degroote
397 1.43 tsutsui if (pmf_device_register(self, NULL, wpi_resume))
398 1.43 tsutsui pmf_class_network_register(self, ifp);
399 1.43 tsutsui else
400 1.33 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
401 1.1 simonb
402 1.47 joerg bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
403 1.45 pooka sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
404 1.45 pooka &sc->sc_drvbpf);
405 1.1 simonb
406 1.1 simonb sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
407 1.1 simonb sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
408 1.1 simonb sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
409 1.1 simonb
410 1.1 simonb sc->sc_txtap_len = sizeof sc->sc_txtapu;
411 1.1 simonb sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
412 1.1 simonb sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
413 1.1 simonb
414 1.1 simonb ieee80211_announce(ic);
415 1.1 simonb
416 1.1 simonb return;
417 1.1 simonb
418 1.61 jakllsch /* free allocated memory if something failed during attachment */
419 1.79 msaitoh fail5: wpi_free_rx_ring(sc, &sc->rxq);
420 1.61 jakllsch fail4: wpi_free_tx_ring(sc, &sc->cmdq);
421 1.61 jakllsch fail3: while (--ac >= 0)
422 1.61 jakllsch wpi_free_tx_ring(sc, &sc->txq[ac]);
423 1.7 degroote wpi_free_rpool(sc);
424 1.12 degroote fail2: wpi_free_shared(sc);
425 1.12 degroote fail1: wpi_free_fwmem(sc);
426 1.77 nonaka failih: pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
427 1.77 nonaka sc->sc_ih = NULL;
428 1.77 nonaka failia: pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
429 1.77 nonaka sc->sc_pihp = NULL;
430 1.77 nonaka failsi: softint_disestablish(sc->sc_soft_ih);
431 1.77 nonaka sc->sc_soft_ih = NULL;
432 1.77 nonaka unmap: bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
433 1.1 simonb }
434 1.1 simonb
435 1.1 simonb static int
436 1.28 degroote wpi_detach(device_t self, int flags __unused)
437 1.1 simonb {
438 1.28 degroote struct wpi_softc *sc = device_private(self);
439 1.7 degroote struct ifnet *ifp = sc->sc_ic.ic_ifp;
440 1.1 simonb int ac;
441 1.1 simonb
442 1.1 simonb wpi_stop(ifp, 1);
443 1.1 simonb
444 1.1 simonb if (ifp != NULL)
445 1.47 joerg bpf_detach(ifp);
446 1.1 simonb ieee80211_ifdetach(&sc->sc_ic);
447 1.1 simonb if (ifp != NULL)
448 1.1 simonb if_detach(ifp);
449 1.1 simonb
450 1.1 simonb for (ac = 0; ac < 4; ac++)
451 1.1 simonb wpi_free_tx_ring(sc, &sc->txq[ac]);
452 1.1 simonb wpi_free_tx_ring(sc, &sc->cmdq);
453 1.1 simonb wpi_free_rx_ring(sc, &sc->rxq);
454 1.7 degroote wpi_free_rpool(sc);
455 1.1 simonb wpi_free_shared(sc);
456 1.1 simonb
457 1.1 simonb if (sc->sc_ih != NULL) {
458 1.1 simonb pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
459 1.1 simonb sc->sc_ih = NULL;
460 1.1 simonb }
461 1.76 jakllsch if (sc->sc_pihp != NULL) {
462 1.76 jakllsch pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
463 1.76 jakllsch sc->sc_pihp = NULL;
464 1.76 jakllsch }
465 1.77 nonaka if (sc->sc_soft_ih != NULL) {
466 1.77 nonaka softint_disestablish(sc->sc_soft_ih);
467 1.77 nonaka sc->sc_soft_ih = NULL;
468 1.77 nonaka }
469 1.77 nonaka
470 1.70 bouyer mutex_enter(&sc->sc_rsw_mtx);
471 1.70 bouyer sc->sc_dying = 1;
472 1.70 bouyer cv_signal(&sc->sc_rsw_cv);
473 1.70 bouyer while (sc->sc_rsw_lwp != NULL)
474 1.70 bouyer cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
475 1.70 bouyer mutex_exit(&sc->sc_rsw_mtx);
476 1.70 bouyer sysmon_pswitch_unregister(&sc->sc_rsw);
477 1.1 simonb
478 1.1 simonb bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
479 1.1 simonb
480 1.41 joerg if (sc->fw_used) {
481 1.54 riastrad sc->fw_used = false;
482 1.54 riastrad wpi_release_firmware();
483 1.41 joerg }
484 1.70 bouyer cv_destroy(&sc->sc_rsw_cv);
485 1.70 bouyer mutex_destroy(&sc->sc_rsw_mtx);
486 1.1 simonb return 0;
487 1.1 simonb }
488 1.1 simonb
489 1.1 simonb static int
490 1.61 jakllsch wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
491 1.61 jakllsch bus_size_t size, bus_size_t alignment, int flags)
492 1.1 simonb {
493 1.1 simonb int nsegs, error;
494 1.1 simonb
495 1.7 degroote dma->tag = tag;
496 1.1 simonb dma->size = size;
497 1.1 simonb
498 1.7 degroote error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
499 1.7 degroote if (error != 0)
500 1.1 simonb goto fail;
501 1.1 simonb
502 1.7 degroote error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
503 1.7 degroote flags);
504 1.7 degroote if (error != 0)
505 1.1 simonb goto fail;
506 1.1 simonb
507 1.7 degroote error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
508 1.7 degroote if (error != 0)
509 1.1 simonb goto fail;
510 1.1 simonb
511 1.7 degroote error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
512 1.7 degroote if (error != 0)
513 1.1 simonb goto fail;
514 1.1 simonb
515 1.1 simonb memset(dma->vaddr, 0, size);
516 1.63 jmcneill bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
517 1.1 simonb
518 1.1 simonb dma->paddr = dma->map->dm_segs[0].ds_addr;
519 1.7 degroote if (kvap != NULL)
520 1.7 degroote *kvap = dma->vaddr;
521 1.1 simonb
522 1.1 simonb return 0;
523 1.1 simonb
524 1.61 jakllsch fail: wpi_dma_contig_free(dma);
525 1.1 simonb return error;
526 1.1 simonb }
527 1.1 simonb
528 1.1 simonb static void
529 1.7 degroote wpi_dma_contig_free(struct wpi_dma_info *dma)
530 1.1 simonb {
531 1.1 simonb if (dma->map != NULL) {
532 1.1 simonb if (dma->vaddr != NULL) {
533 1.7 degroote bus_dmamap_unload(dma->tag, dma->map);
534 1.7 degroote bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
535 1.7 degroote bus_dmamem_free(dma->tag, &dma->seg, 1);
536 1.1 simonb dma->vaddr = NULL;
537 1.1 simonb }
538 1.7 degroote bus_dmamap_destroy(dma->tag, dma->map);
539 1.1 simonb dma->map = NULL;
540 1.1 simonb }
541 1.1 simonb }
542 1.1 simonb
543 1.1 simonb /*
544 1.1 simonb * Allocate a shared page between host and NIC.
545 1.1 simonb */
546 1.1 simonb static int
547 1.1 simonb wpi_alloc_shared(struct wpi_softc *sc)
548 1.1 simonb {
549 1.1 simonb int error;
550 1.61 jakllsch
551 1.1 simonb /* must be aligned on a 4K-page boundary */
552 1.7 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
553 1.61 jakllsch (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
554 1.61 jakllsch BUS_DMA_NOWAIT);
555 1.1 simonb if (error != 0)
556 1.28 degroote aprint_error_dev(sc->sc_dev,
557 1.61 jakllsch "could not allocate shared area DMA memory\n");
558 1.1 simonb
559 1.1 simonb return error;
560 1.1 simonb }
561 1.1 simonb
562 1.1 simonb static void
563 1.1 simonb wpi_free_shared(struct wpi_softc *sc)
564 1.1 simonb {
565 1.7 degroote wpi_dma_contig_free(&sc->shared_dma);
566 1.7 degroote }
567 1.7 degroote
568 1.12 degroote /*
569 1.12 degroote * Allocate DMA-safe memory for firmware transfer.
570 1.12 degroote */
571 1.12 degroote static int
572 1.12 degroote wpi_alloc_fwmem(struct wpi_softc *sc)
573 1.12 degroote {
574 1.12 degroote int error;
575 1.61 jakllsch
576 1.12 degroote /* allocate enough contiguous space to store text and data */
577 1.12 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
578 1.12 degroote WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
579 1.12 degroote BUS_DMA_NOWAIT);
580 1.12 degroote
581 1.12 degroote if (error != 0)
582 1.28 degroote aprint_error_dev(sc->sc_dev,
583 1.61 jakllsch "could not allocate firmware transfer area DMA memory\n");
584 1.12 degroote return error;
585 1.12 degroote }
586 1.12 degroote
587 1.12 degroote static void
588 1.12 degroote wpi_free_fwmem(struct wpi_softc *sc)
589 1.12 degroote {
590 1.12 degroote wpi_dma_contig_free(&sc->fw_dma);
591 1.12 degroote }
592 1.12 degroote
593 1.7 degroote static struct wpi_rbuf *
594 1.7 degroote wpi_alloc_rbuf(struct wpi_softc *sc)
595 1.7 degroote {
596 1.7 degroote struct wpi_rbuf *rbuf;
597 1.7 degroote
598 1.39 cube mutex_enter(&sc->rxq.freelist_mtx);
599 1.7 degroote rbuf = SLIST_FIRST(&sc->rxq.freelist);
600 1.39 cube if (rbuf != NULL) {
601 1.39 cube SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
602 1.39 cube }
603 1.39 cube mutex_exit(&sc->rxq.freelist_mtx);
604 1.10 degroote
605 1.7 degroote return rbuf;
606 1.7 degroote }
607 1.7 degroote
608 1.7 degroote /*
609 1.7 degroote * This is called automatically by the network stack when the mbuf to which our
610 1.7 degroote * Rx buffer is attached is freed.
611 1.7 degroote */
612 1.7 degroote static void
613 1.9 christos wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
614 1.7 degroote {
615 1.7 degroote struct wpi_rbuf *rbuf = arg;
616 1.7 degroote struct wpi_softc *sc = rbuf->sc;
617 1.7 degroote
618 1.7 degroote /* put the buffer back in the free list */
619 1.10 degroote
620 1.39 cube mutex_enter(&sc->rxq.freelist_mtx);
621 1.7 degroote SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
622 1.39 cube mutex_exit(&sc->rxq.freelist_mtx);
623 1.7 degroote
624 1.27 ad if (__predict_true(m != NULL))
625 1.27 ad pool_cache_put(mb_cache, m);
626 1.7 degroote }
627 1.7 degroote
628 1.7 degroote static int
629 1.7 degroote wpi_alloc_rpool(struct wpi_softc *sc)
630 1.7 degroote {
631 1.7 degroote struct wpi_rx_ring *ring = &sc->rxq;
632 1.7 degroote int i, error;
633 1.7 degroote
634 1.7 degroote /* allocate a big chunk of DMA'able memory.. */
635 1.7 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
636 1.7 degroote WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
637 1.7 degroote if (error != 0) {
638 1.61 jakllsch aprint_normal_dev(sc->sc_dev,
639 1.61 jakllsch "could not allocate Rx buffers DMA memory\n");
640 1.28 degroote return error;
641 1.7 degroote }
642 1.7 degroote
643 1.7 degroote /* ..and split it into 3KB chunks */
644 1.39 cube mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
645 1.7 degroote SLIST_INIT(&ring->freelist);
646 1.7 degroote for (i = 0; i < WPI_RBUF_COUNT; i++) {
647 1.61 jakllsch struct wpi_rbuf *rbuf = &ring->rbuf[i];
648 1.61 jakllsch
649 1.7 degroote rbuf->sc = sc; /* backpointer for callbacks */
650 1.9 christos rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
651 1.7 degroote rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
652 1.7 degroote
653 1.7 degroote SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
654 1.7 degroote }
655 1.10 degroote
656 1.7 degroote return 0;
657 1.7 degroote }
658 1.7 degroote
659 1.7 degroote static void
660 1.7 degroote wpi_free_rpool(struct wpi_softc *sc)
661 1.7 degroote {
662 1.81 riastrad mutex_destroy(&sc->rxq.freelist_mtx);
663 1.7 degroote wpi_dma_contig_free(&sc->rxq.buf_dma);
664 1.1 simonb }
665 1.1 simonb
666 1.1 simonb static int
667 1.1 simonb wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
668 1.1 simonb {
669 1.63 jmcneill bus_size_t size;
670 1.1 simonb int i, error;
671 1.1 simonb
672 1.1 simonb ring->cur = 0;
673 1.1 simonb
674 1.63 jmcneill size = WPI_RX_RING_COUNT * sizeof (uint32_t);
675 1.7 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
676 1.63 jmcneill (void **)&ring->desc, size,
677 1.59 jakllsch WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
678 1.1 simonb if (error != 0) {
679 1.61 jakllsch aprint_error_dev(sc->sc_dev,
680 1.61 jakllsch "could not allocate rx ring DMA memory\n");
681 1.1 simonb goto fail;
682 1.1 simonb }
683 1.1 simonb
684 1.1 simonb /*
685 1.7 degroote * Setup Rx buffers.
686 1.1 simonb */
687 1.1 simonb for (i = 0; i < WPI_RX_RING_COUNT; i++) {
688 1.61 jakllsch struct wpi_rx_data *data = &ring->data[i];
689 1.61 jakllsch struct wpi_rbuf *rbuf;
690 1.1 simonb
691 1.64 jmcneill error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
692 1.64 jmcneill WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
693 1.64 jmcneill if (error) {
694 1.64 jmcneill aprint_error_dev(sc->sc_dev,
695 1.64 jmcneill "could not allocate rx dma map\n");
696 1.64 jmcneill goto fail;
697 1.64 jmcneill }
698 1.64 jmcneill
699 1.1 simonb MGETHDR(data->m, M_DONTWAIT, MT_DATA);
700 1.1 simonb if (data->m == NULL) {
701 1.61 jakllsch aprint_error_dev(sc->sc_dev,
702 1.61 jakllsch "could not allocate rx mbuf\n");
703 1.1 simonb error = ENOMEM;
704 1.1 simonb goto fail;
705 1.1 simonb }
706 1.7 degroote if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
707 1.1 simonb m_freem(data->m);
708 1.1 simonb data->m = NULL;
709 1.61 jakllsch aprint_error_dev(sc->sc_dev,
710 1.61 jakllsch "could not allocate rx cluster\n");
711 1.1 simonb error = ENOMEM;
712 1.1 simonb goto fail;
713 1.1 simonb }
714 1.7 degroote /* attach Rx buffer to mbuf */
715 1.7 degroote MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
716 1.7 degroote rbuf);
717 1.7 degroote data->m->m_flags |= M_EXT_RW;
718 1.1 simonb
719 1.64 jmcneill error = bus_dmamap_load(sc->sc_dmat, data->map,
720 1.64 jmcneill mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
721 1.64 jmcneill BUS_DMA_NOWAIT | BUS_DMA_READ);
722 1.64 jmcneill if (error) {
723 1.64 jmcneill aprint_error_dev(sc->sc_dev,
724 1.64 jmcneill "could not load mbuf: %d\n", error);
725 1.64 jmcneill goto fail;
726 1.64 jmcneill }
727 1.64 jmcneill
728 1.7 degroote ring->desc[i] = htole32(rbuf->paddr);
729 1.1 simonb }
730 1.1 simonb
731 1.63 jmcneill bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
732 1.63 jmcneill BUS_DMASYNC_PREWRITE);
733 1.63 jmcneill
734 1.1 simonb return 0;
735 1.1 simonb
736 1.1 simonb fail: wpi_free_rx_ring(sc, ring);
737 1.1 simonb return error;
738 1.1 simonb }
739 1.1 simonb
740 1.1 simonb static void
741 1.1 simonb wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
742 1.1 simonb {
743 1.1 simonb int ntries;
744 1.1 simonb
745 1.1 simonb wpi_mem_lock(sc);
746 1.1 simonb
747 1.1 simonb WPI_WRITE(sc, WPI_RX_CONFIG, 0);
748 1.1 simonb for (ntries = 0; ntries < 100; ntries++) {
749 1.1 simonb if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
750 1.1 simonb break;
751 1.1 simonb DELAY(10);
752 1.1 simonb }
753 1.1 simonb #ifdef WPI_DEBUG
754 1.1 simonb if (ntries == 100 && wpi_debug > 0)
755 1.28 degroote aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
756 1.1 simonb #endif
757 1.1 simonb wpi_mem_unlock(sc);
758 1.1 simonb
759 1.1 simonb ring->cur = 0;
760 1.1 simonb }
761 1.1 simonb
762 1.1 simonb static void
763 1.1 simonb wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
764 1.1 simonb {
765 1.1 simonb int i;
766 1.1 simonb
767 1.7 degroote wpi_dma_contig_free(&ring->desc_dma);
768 1.1 simonb
769 1.1 simonb for (i = 0; i < WPI_RX_RING_COUNT; i++) {
770 1.64 jmcneill if (ring->data[i].m != NULL) {
771 1.64 jmcneill bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
772 1.7 degroote m_freem(ring->data[i].m);
773 1.64 jmcneill }
774 1.64 jmcneill if (ring->data[i].map != NULL) {
775 1.64 jmcneill bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
776 1.64 jmcneill }
777 1.1 simonb }
778 1.1 simonb }
779 1.1 simonb
780 1.1 simonb static int
781 1.1 simonb wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
782 1.61 jakllsch int qid)
783 1.1 simonb {
784 1.1 simonb int i, error;
785 1.1 simonb
786 1.1 simonb ring->qid = qid;
787 1.1 simonb ring->count = count;
788 1.1 simonb ring->queued = 0;
789 1.1 simonb ring->cur = 0;
790 1.1 simonb
791 1.7 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
792 1.61 jakllsch (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
793 1.61 jakllsch WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
794 1.1 simonb if (error != 0) {
795 1.61 jakllsch aprint_error_dev(sc->sc_dev,
796 1.61 jakllsch "could not allocate tx ring DMA memory\n");
797 1.1 simonb goto fail;
798 1.1 simonb }
799 1.1 simonb
800 1.1 simonb /* update shared page with ring's base address */
801 1.1 simonb sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
802 1.63 jmcneill bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
803 1.63 jmcneill sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
804 1.1 simonb
805 1.7 degroote error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
806 1.61 jakllsch (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
807 1.61 jakllsch BUS_DMA_NOWAIT);
808 1.1 simonb if (error != 0) {
809 1.61 jakllsch aprint_error_dev(sc->sc_dev,
810 1.61 jakllsch "could not allocate tx cmd DMA memory\n");
811 1.1 simonb goto fail;
812 1.1 simonb }
813 1.1 simonb
814 1.1 simonb ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
815 1.62 jakllsch M_NOWAIT | M_ZERO);
816 1.1 simonb if (ring->data == NULL) {
817 1.61 jakllsch aprint_error_dev(sc->sc_dev,
818 1.61 jakllsch "could not allocate tx data slots\n");
819 1.1 simonb goto fail;
820 1.1 simonb }
821 1.1 simonb
822 1.1 simonb for (i = 0; i < count; i++) {
823 1.61 jakllsch struct wpi_tx_data *data = &ring->data[i];
824 1.1 simonb
825 1.1 simonb error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
826 1.61 jakllsch WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
827 1.61 jakllsch &data->map);
828 1.1 simonb if (error != 0) {
829 1.61 jakllsch aprint_error_dev(sc->sc_dev,
830 1.61 jakllsch "could not create tx buf DMA map\n");
831 1.1 simonb goto fail;
832 1.1 simonb }
833 1.1 simonb }
834 1.1 simonb
835 1.1 simonb return 0;
836 1.1 simonb
837 1.1 simonb fail: wpi_free_tx_ring(sc, ring);
838 1.1 simonb return error;
839 1.1 simonb }
840 1.1 simonb
841 1.1 simonb static void
842 1.1 simonb wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
843 1.1 simonb {
844 1.1 simonb int i, ntries;
845 1.1 simonb
846 1.1 simonb wpi_mem_lock(sc);
847 1.1 simonb
848 1.1 simonb WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
849 1.1 simonb for (ntries = 0; ntries < 100; ntries++) {
850 1.1 simonb if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
851 1.1 simonb break;
852 1.1 simonb DELAY(10);
853 1.1 simonb }
854 1.1 simonb #ifdef WPI_DEBUG
855 1.1 simonb if (ntries == 100 && wpi_debug > 0) {
856 1.28 degroote aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
857 1.59 jakllsch ring->qid);
858 1.1 simonb }
859 1.1 simonb #endif
860 1.1 simonb wpi_mem_unlock(sc);
861 1.1 simonb
862 1.1 simonb for (i = 0; i < ring->count; i++) {
863 1.61 jakllsch struct wpi_tx_data *data = &ring->data[i];
864 1.1 simonb
865 1.1 simonb if (data->m != NULL) {
866 1.1 simonb bus_dmamap_unload(sc->sc_dmat, data->map);
867 1.1 simonb m_freem(data->m);
868 1.1 simonb data->m = NULL;
869 1.1 simonb }
870 1.1 simonb }
871 1.1 simonb
872 1.1 simonb ring->queued = 0;
873 1.1 simonb ring->cur = 0;
874 1.1 simonb }
875 1.1 simonb
876 1.1 simonb static void
877 1.1 simonb wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
878 1.1 simonb {
879 1.1 simonb int i;
880 1.1 simonb
881 1.7 degroote wpi_dma_contig_free(&ring->desc_dma);
882 1.7 degroote wpi_dma_contig_free(&ring->cmd_dma);
883 1.1 simonb
884 1.1 simonb if (ring->data != NULL) {
885 1.1 simonb for (i = 0; i < ring->count; i++) {
886 1.61 jakllsch struct wpi_tx_data *data = &ring->data[i];
887 1.1 simonb
888 1.1 simonb if (data->m != NULL) {
889 1.1 simonb bus_dmamap_unload(sc->sc_dmat, data->map);
890 1.1 simonb m_freem(data->m);
891 1.1 simonb }
892 1.1 simonb }
893 1.1 simonb free(ring->data, M_DEVBUF);
894 1.1 simonb }
895 1.1 simonb }
896 1.1 simonb
897 1.1 simonb /*ARGUSED*/
898 1.1 simonb static struct ieee80211_node *
899 1.7 degroote wpi_node_alloc(struct ieee80211_node_table *nt __unused)
900 1.1 simonb {
901 1.5 joerg struct wpi_node *wn;
902 1.1 simonb
903 1.35 simonb wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
904 1.5 joerg
905 1.5 joerg return (struct ieee80211_node *)wn;
906 1.1 simonb }
907 1.1 simonb
908 1.12 degroote static void
909 1.12 degroote wpi_newassoc(struct ieee80211_node *ni, int isnew)
910 1.12 degroote {
911 1.12 degroote struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
912 1.12 degroote int i;
913 1.12 degroote
914 1.12 degroote ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
915 1.12 degroote
916 1.12 degroote /* set rate to some reasonable initial value */
917 1.12 degroote for (i = ni->ni_rates.rs_nrates - 1;
918 1.12 degroote i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
919 1.12 degroote i--);
920 1.12 degroote ni->ni_txrate = i;
921 1.12 degroote }
922 1.12 degroote
923 1.1 simonb static int
924 1.1 simonb wpi_media_change(struct ifnet *ifp)
925 1.1 simonb {
926 1.1 simonb int error;
927 1.1 simonb
928 1.1 simonb error = ieee80211_media_change(ifp);
929 1.1 simonb if (error != ENETRESET)
930 1.1 simonb return error;
931 1.1 simonb
932 1.1 simonb if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
933 1.1 simonb wpi_init(ifp);
934 1.1 simonb
935 1.1 simonb return 0;
936 1.1 simonb }
937 1.1 simonb
938 1.1 simonb static int
939 1.1 simonb wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
940 1.1 simonb {
941 1.1 simonb struct ifnet *ifp = ic->ic_ifp;
942 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
943 1.12 degroote struct ieee80211_node *ni;
944 1.67 jmcneill enum ieee80211_state ostate = ic->ic_state;
945 1.1 simonb int error;
946 1.1 simonb
947 1.12 degroote callout_stop(&sc->calib_to);
948 1.1 simonb
949 1.1 simonb switch (nstate) {
950 1.1 simonb case IEEE80211_S_SCAN:
951 1.55 christos
952 1.23 degroote if (sc->is_scanning)
953 1.23 degroote break;
954 1.23 degroote
955 1.23 degroote sc->is_scanning = true;
956 1.1 simonb
957 1.67 jmcneill if (ostate != IEEE80211_S_SCAN) {
958 1.67 jmcneill /* make the link LED blink while we're scanning */
959 1.67 jmcneill wpi_set_led(sc, WPI_LED_LINK, 20, 2);
960 1.67 jmcneill }
961 1.1 simonb
962 1.67 jmcneill if ((error = wpi_scan(sc)) != 0) {
963 1.61 jakllsch aprint_error_dev(sc->sc_dev,
964 1.61 jakllsch "could not initiate scan\n");
965 1.1 simonb return error;
966 1.1 simonb }
967 1.67 jmcneill break;
968 1.1 simonb
969 1.7 degroote case IEEE80211_S_ASSOC:
970 1.7 degroote if (ic->ic_state != IEEE80211_S_RUN)
971 1.7 degroote break;
972 1.7 degroote /* FALLTHROUGH */
973 1.1 simonb case IEEE80211_S_AUTH:
974 1.61 jakllsch /* reset state to handle reassociations correctly */
975 1.12 degroote sc->config.associd = 0;
976 1.1 simonb sc->config.filter &= ~htole32(WPI_FILTER_BSS);
977 1.61 jakllsch
978 1.1 simonb if ((error = wpi_auth(sc)) != 0) {
979 1.55 christos aprint_error_dev(sc->sc_dev,
980 1.59 jakllsch "could not send authentication request\n");
981 1.1 simonb return error;
982 1.1 simonb }
983 1.1 simonb break;
984 1.1 simonb
985 1.1 simonb case IEEE80211_S_RUN:
986 1.1 simonb if (ic->ic_opmode == IEEE80211_M_MONITOR) {
987 1.1 simonb /* link LED blinks while monitoring */
988 1.1 simonb wpi_set_led(sc, WPI_LED_LINK, 5, 5);
989 1.1 simonb break;
990 1.1 simonb }
991 1.12 degroote ni = ic->ic_bss;
992 1.1 simonb
993 1.1 simonb if (ic->ic_opmode != IEEE80211_M_STA) {
994 1.1 simonb (void) wpi_auth(sc); /* XXX */
995 1.12 degroote wpi_setup_beacon(sc, ni);
996 1.1 simonb }
997 1.1 simonb
998 1.12 degroote wpi_enable_tsf(sc, ni);
999 1.1 simonb
1000 1.1 simonb /* update adapter's configuration */
1001 1.12 degroote sc->config.associd = htole16(ni->ni_associd & ~0xc000);
1002 1.1 simonb /* short preamble/slot time are negotiated when associating */
1003 1.1 simonb sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
1004 1.61 jakllsch WPI_CONFIG_SHSLOT);
1005 1.1 simonb if (ic->ic_flags & IEEE80211_F_SHSLOT)
1006 1.1 simonb sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
1007 1.1 simonb if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1008 1.1 simonb sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
1009 1.1 simonb sc->config.filter |= htole32(WPI_FILTER_BSS);
1010 1.1 simonb if (ic->ic_opmode != IEEE80211_M_STA)
1011 1.1 simonb sc->config.filter |= htole32(WPI_FILTER_BEACON);
1012 1.1 simonb
1013 1.1 simonb /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
1014 1.1 simonb
1015 1.1 simonb DPRINTF(("config chan %d flags %x\n", sc->config.chan,
1016 1.61 jakllsch sc->config.flags));
1017 1.1 simonb error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
1018 1.61 jakllsch sizeof (struct wpi_config), 1);
1019 1.1 simonb if (error != 0) {
1020 1.61 jakllsch aprint_error_dev(sc->sc_dev,
1021 1.61 jakllsch "could not update configuration\n");
1022 1.1 simonb return error;
1023 1.1 simonb }
1024 1.1 simonb
1025 1.12 degroote /* configuration has changed, set Tx power accordingly */
1026 1.66 jmcneill if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
1027 1.61 jakllsch aprint_error_dev(sc->sc_dev,
1028 1.61 jakllsch "could not set Tx power\n");
1029 1.12 degroote return error;
1030 1.12 degroote }
1031 1.12 degroote
1032 1.5 joerg if (ic->ic_opmode == IEEE80211_M_STA) {
1033 1.5 joerg /* fake a join to init the tx rate */
1034 1.12 degroote wpi_newassoc(ni, 1);
1035 1.5 joerg }
1036 1.5 joerg
1037 1.12 degroote /* start periodic calibration timer */
1038 1.12 degroote sc->calib_cnt = 0;
1039 1.28 degroote callout_schedule(&sc->calib_to, hz/2);
1040 1.1 simonb
1041 1.1 simonb /* link LED always on while associated */
1042 1.1 simonb wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1043 1.1 simonb break;
1044 1.1 simonb
1045 1.1 simonb case IEEE80211_S_INIT:
1046 1.23 degroote sc->is_scanning = false;
1047 1.1 simonb break;
1048 1.1 simonb }
1049 1.1 simonb
1050 1.1 simonb return sc->sc_newstate(ic, nstate, arg);
1051 1.1 simonb }
1052 1.1 simonb
1053 1.1 simonb /*
1054 1.1 simonb * Grab exclusive access to NIC memory.
1055 1.1 simonb */
1056 1.1 simonb static void
1057 1.1 simonb wpi_mem_lock(struct wpi_softc *sc)
1058 1.1 simonb {
1059 1.1 simonb uint32_t tmp;
1060 1.1 simonb int ntries;
1061 1.1 simonb
1062 1.1 simonb tmp = WPI_READ(sc, WPI_GPIO_CTL);
1063 1.1 simonb WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1064 1.1 simonb
1065 1.1 simonb /* spin until we actually get the lock */
1066 1.1 simonb for (ntries = 0; ntries < 1000; ntries++) {
1067 1.1 simonb if ((WPI_READ(sc, WPI_GPIO_CTL) &
1068 1.61 jakllsch (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1069 1.1 simonb break;
1070 1.1 simonb DELAY(10);
1071 1.1 simonb }
1072 1.1 simonb if (ntries == 1000)
1073 1.28 degroote aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1074 1.1 simonb }
1075 1.1 simonb
1076 1.1 simonb /*
1077 1.1 simonb * Release lock on NIC memory.
1078 1.1 simonb */
1079 1.1 simonb static void
1080 1.1 simonb wpi_mem_unlock(struct wpi_softc *sc)
1081 1.1 simonb {
1082 1.1 simonb uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1083 1.1 simonb WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1084 1.1 simonb }
1085 1.1 simonb
1086 1.1 simonb static uint32_t
1087 1.1 simonb wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1088 1.1 simonb {
1089 1.1 simonb WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1090 1.1 simonb return WPI_READ(sc, WPI_READ_MEM_DATA);
1091 1.1 simonb }
1092 1.1 simonb
1093 1.1 simonb static void
1094 1.1 simonb wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1095 1.1 simonb {
1096 1.1 simonb WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1097 1.1 simonb WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1098 1.1 simonb }
1099 1.1 simonb
1100 1.17 degroote static void
1101 1.17 degroote wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1102 1.59 jakllsch const uint32_t *data, int wlen)
1103 1.17 degroote {
1104 1.17 degroote for (; wlen > 0; wlen--, data++, addr += 4)
1105 1.17 degroote wpi_mem_write(sc, addr, *data);
1106 1.17 degroote }
1107 1.59 jakllsch
1108 1.1 simonb /*
1109 1.12 degroote * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1110 1.12 degroote * instead of using the traditional bit-bang method.
1111 1.1 simonb */
1112 1.12 degroote static int
1113 1.12 degroote wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1114 1.1 simonb {
1115 1.12 degroote uint8_t *out = data;
1116 1.12 degroote uint32_t val;
1117 1.1 simonb int ntries;
1118 1.1 simonb
1119 1.12 degroote wpi_mem_lock(sc);
1120 1.12 degroote for (; len > 0; len -= 2, addr++) {
1121 1.12 degroote WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1122 1.1 simonb
1123 1.12 degroote for (ntries = 0; ntries < 10; ntries++) {
1124 1.12 degroote if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1125 1.12 degroote WPI_EEPROM_READY)
1126 1.12 degroote break;
1127 1.12 degroote DELAY(5);
1128 1.12 degroote }
1129 1.12 degroote if (ntries == 10) {
1130 1.28 degroote aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1131 1.12 degroote return ETIMEDOUT;
1132 1.12 degroote }
1133 1.12 degroote *out++ = val >> 16;
1134 1.12 degroote if (len > 1)
1135 1.12 degroote *out++ = val >> 24;
1136 1.1 simonb }
1137 1.1 simonb wpi_mem_unlock(sc);
1138 1.1 simonb
1139 1.12 degroote return 0;
1140 1.1 simonb }
1141 1.1 simonb
1142 1.17 degroote /*
1143 1.17 degroote * The firmware boot code is small and is intended to be copied directly into
1144 1.17 degroote * the NIC internal memory.
1145 1.17 degroote */
1146 1.17 degroote int
1147 1.17 degroote wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1148 1.1 simonb {
1149 1.17 degroote int ntries;
1150 1.1 simonb
1151 1.17 degroote size /= sizeof (uint32_t);
1152 1.1 simonb
1153 1.17 degroote wpi_mem_lock(sc);
1154 1.12 degroote
1155 1.17 degroote /* copy microcode image into NIC memory */
1156 1.17 degroote wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1157 1.17 degroote (const uint32_t *)ucode, size);
1158 1.17 degroote
1159 1.17 degroote wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1160 1.17 degroote wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1161 1.17 degroote wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1162 1.12 degroote
1163 1.17 degroote /* run microcode */
1164 1.17 degroote wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1165 1.12 degroote
1166 1.17 degroote /* wait for transfer to complete */
1167 1.17 degroote for (ntries = 0; ntries < 1000; ntries++) {
1168 1.17 degroote if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1169 1.12 degroote break;
1170 1.17 degroote DELAY(10);
1171 1.12 degroote }
1172 1.17 degroote if (ntries == 1000) {
1173 1.17 degroote wpi_mem_unlock(sc);
1174 1.28 degroote aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1175 1.17 degroote return ETIMEDOUT;
1176 1.12 degroote }
1177 1.17 degroote wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1178 1.12 degroote
1179 1.17 degroote wpi_mem_unlock(sc);
1180 1.1 simonb
1181 1.17 degroote return 0;
1182 1.1 simonb }
1183 1.1 simonb
1184 1.1 simonb static int
1185 1.41 joerg wpi_cache_firmware(struct wpi_softc *sc)
1186 1.1 simonb {
1187 1.54 riastrad const char *const fwname = wpi_firmware_name;
1188 1.12 degroote firmware_handle_t fw;
1189 1.12 degroote int error;
1190 1.1 simonb
1191 1.54 riastrad /* sc is used here only to report error messages. */
1192 1.41 joerg
1193 1.41 joerg mutex_enter(&wpi_firmware_mutex);
1194 1.54 riastrad
1195 1.54 riastrad if (wpi_firmware_users == SIZE_MAX) {
1196 1.54 riastrad mutex_exit(&wpi_firmware_mutex);
1197 1.54 riastrad return ENFILE; /* Too many of something in the system... */
1198 1.54 riastrad }
1199 1.41 joerg if (wpi_firmware_users++) {
1200 1.54 riastrad KASSERT(wpi_firmware_image != NULL);
1201 1.54 riastrad KASSERT(wpi_firmware_size > 0);
1202 1.41 joerg mutex_exit(&wpi_firmware_mutex);
1203 1.54 riastrad return 0; /* Already good to go. */
1204 1.41 joerg }
1205 1.41 joerg
1206 1.54 riastrad KASSERT(wpi_firmware_image == NULL);
1207 1.54 riastrad KASSERT(wpi_firmware_size == 0);
1208 1.54 riastrad
1209 1.12 degroote /* load firmware image from disk */
1210 1.54 riastrad if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1211 1.54 riastrad aprint_error_dev(sc->sc_dev,
1212 1.54 riastrad "could not open firmware file %s: %d\n", fwname, error);
1213 1.53 riastrad goto fail0;
1214 1.1 simonb }
1215 1.12 degroote
1216 1.41 joerg wpi_firmware_size = firmware_get_size(fw);
1217 1.41 joerg
1218 1.41 joerg if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1219 1.41 joerg WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1220 1.41 joerg WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1221 1.41 joerg WPI_FW_BOOT_TEXT_MAXSZ) {
1222 1.54 riastrad aprint_error_dev(sc->sc_dev,
1223 1.54 riastrad "firmware file %s too large: %zu bytes\n",
1224 1.54 riastrad fwname, wpi_firmware_size);
1225 1.41 joerg error = EFBIG;
1226 1.41 joerg goto fail1;
1227 1.41 joerg }
1228 1.41 joerg
1229 1.41 joerg if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1230 1.41 joerg aprint_error_dev(sc->sc_dev,
1231 1.54 riastrad "firmware file %s too small: %zu bytes\n",
1232 1.54 riastrad fwname, wpi_firmware_size);
1233 1.12 degroote error = EINVAL;
1234 1.54 riastrad goto fail1;
1235 1.12 degroote }
1236 1.1 simonb
1237 1.41 joerg wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1238 1.41 joerg if (wpi_firmware_image == NULL) {
1239 1.54 riastrad aprint_error_dev(sc->sc_dev,
1240 1.54 riastrad "not enough memory for firmware file %s\n", fwname);
1241 1.41 joerg error = ENOMEM;
1242 1.41 joerg goto fail1;
1243 1.41 joerg }
1244 1.41 joerg
1245 1.54 riastrad error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1246 1.54 riastrad if (error != 0) {
1247 1.54 riastrad aprint_error_dev(sc->sc_dev,
1248 1.54 riastrad "error reading firmware file %s: %d\n", fwname, error);
1249 1.1 simonb goto fail2;
1250 1.1 simonb }
1251 1.1 simonb
1252 1.54 riastrad /* Success! */
1253 1.41 joerg firmware_close(fw);
1254 1.41 joerg mutex_exit(&wpi_firmware_mutex);
1255 1.41 joerg return 0;
1256 1.41 joerg
1257 1.41 joerg fail2:
1258 1.41 joerg firmware_free(wpi_firmware_image, wpi_firmware_size);
1259 1.54 riastrad wpi_firmware_image = NULL;
1260 1.41 joerg fail1:
1261 1.54 riastrad wpi_firmware_size = 0;
1262 1.41 joerg firmware_close(fw);
1263 1.53 riastrad fail0:
1264 1.54 riastrad KASSERT(wpi_firmware_users == 1);
1265 1.54 riastrad wpi_firmware_users = 0;
1266 1.54 riastrad KASSERT(wpi_firmware_image == NULL);
1267 1.54 riastrad KASSERT(wpi_firmware_size == 0);
1268 1.54 riastrad
1269 1.41 joerg mutex_exit(&wpi_firmware_mutex);
1270 1.41 joerg return error;
1271 1.41 joerg }
1272 1.41 joerg
1273 1.54 riastrad static void
1274 1.54 riastrad wpi_release_firmware(void)
1275 1.54 riastrad {
1276 1.54 riastrad
1277 1.54 riastrad mutex_enter(&wpi_firmware_mutex);
1278 1.54 riastrad
1279 1.54 riastrad KASSERT(wpi_firmware_users > 0);
1280 1.54 riastrad KASSERT(wpi_firmware_image != NULL);
1281 1.54 riastrad KASSERT(wpi_firmware_size != 0);
1282 1.54 riastrad
1283 1.54 riastrad if (--wpi_firmware_users == 0) {
1284 1.54 riastrad firmware_free(wpi_firmware_image, wpi_firmware_size);
1285 1.54 riastrad wpi_firmware_image = NULL;
1286 1.54 riastrad wpi_firmware_size = 0;
1287 1.54 riastrad }
1288 1.54 riastrad
1289 1.54 riastrad mutex_exit(&wpi_firmware_mutex);
1290 1.54 riastrad }
1291 1.54 riastrad
1292 1.41 joerg static int
1293 1.41 joerg wpi_load_firmware(struct wpi_softc *sc)
1294 1.41 joerg {
1295 1.41 joerg struct wpi_dma_info *dma = &sc->fw_dma;
1296 1.41 joerg struct wpi_firmware_hdr hdr;
1297 1.41 joerg const uint8_t *init_text, *init_data, *main_text, *main_data;
1298 1.41 joerg const uint8_t *boot_text;
1299 1.41 joerg uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1300 1.41 joerg uint32_t boot_textsz;
1301 1.54 riastrad size_t size;
1302 1.41 joerg int error;
1303 1.41 joerg
1304 1.54 riastrad if (!sc->fw_used) {
1305 1.54 riastrad if ((error = wpi_cache_firmware(sc)) != 0)
1306 1.54 riastrad return error;
1307 1.54 riastrad sc->fw_used = true;
1308 1.54 riastrad }
1309 1.54 riastrad
1310 1.54 riastrad KASSERT(sc->fw_used);
1311 1.54 riastrad KASSERT(wpi_firmware_image != NULL);
1312 1.54 riastrad KASSERT(wpi_firmware_size > sizeof(hdr));
1313 1.41 joerg
1314 1.41 joerg memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1315 1.41 joerg
1316 1.12 degroote main_textsz = le32toh(hdr.main_textsz);
1317 1.12 degroote main_datasz = le32toh(hdr.main_datasz);
1318 1.17 degroote init_textsz = le32toh(hdr.init_textsz);
1319 1.17 degroote init_datasz = le32toh(hdr.init_datasz);
1320 1.12 degroote boot_textsz = le32toh(hdr.boot_textsz);
1321 1.12 degroote
1322 1.17 degroote /* sanity-check firmware segments sizes */
1323 1.17 degroote if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1324 1.17 degroote main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1325 1.17 degroote init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1326 1.17 degroote init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1327 1.17 degroote boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1328 1.17 degroote (boot_textsz & 3) != 0) {
1329 1.28 degroote aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1330 1.12 degroote error = EINVAL;
1331 1.41 joerg goto free_firmware;
1332 1.12 degroote }
1333 1.12 degroote
1334 1.12 degroote /* check that all firmware segments are present */
1335 1.54 riastrad size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1336 1.54 riastrad main_datasz + init_textsz + init_datasz + boot_textsz;
1337 1.54 riastrad if (wpi_firmware_size < size) {
1338 1.41 joerg aprint_error_dev(sc->sc_dev,
1339 1.54 riastrad "firmware file truncated: %zu bytes, expected %zu bytes\n",
1340 1.54 riastrad wpi_firmware_size, size);
1341 1.12 degroote error = EINVAL;
1342 1.41 joerg goto free_firmware;
1343 1.1 simonb }
1344 1.1 simonb
1345 1.12 degroote /* get pointers to firmware segments */
1346 1.41 joerg main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1347 1.12 degroote main_data = main_text + main_textsz;
1348 1.17 degroote init_text = main_data + main_datasz;
1349 1.17 degroote init_data = init_text + init_textsz;
1350 1.17 degroote boot_text = init_data + init_datasz;
1351 1.17 degroote
1352 1.17 degroote /* copy initialization images into pre-allocated DMA-safe memory */
1353 1.17 degroote memcpy(dma->vaddr, init_data, init_datasz);
1354 1.54 riastrad memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1355 1.54 riastrad init_textsz);
1356 1.17 degroote
1357 1.63 jmcneill bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1358 1.63 jmcneill
1359 1.17 degroote /* tell adapter where to find initialization images */
1360 1.17 degroote wpi_mem_lock(sc);
1361 1.17 degroote wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1362 1.17 degroote wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1363 1.17 degroote wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1364 1.17 degroote dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1365 1.17 degroote wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1366 1.17 degroote wpi_mem_unlock(sc);
1367 1.1 simonb
1368 1.17 degroote /* load firmware boot code */
1369 1.17 degroote if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1370 1.28 degroote aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1371 1.41 joerg return error;
1372 1.12 degroote }
1373 1.1 simonb
1374 1.17 degroote /* now press "execute" ;-) */
1375 1.17 degroote WPI_WRITE(sc, WPI_RESET, 0);
1376 1.17 degroote
1377 1.59 jakllsch /* wait at most one second for first alive notification */
1378 1.17 degroote if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1379 1.17 degroote /* this isn't what was supposed to happen.. */
1380 1.54 riastrad aprint_error_dev(sc->sc_dev,
1381 1.41 joerg "timeout waiting for adapter to initialize\n");
1382 1.1 simonb }
1383 1.1 simonb
1384 1.17 degroote /* copy runtime images into pre-allocated DMA-safe memory */
1385 1.17 degroote memcpy(dma->vaddr, main_data, main_datasz);
1386 1.54 riastrad memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1387 1.54 riastrad main_textsz);
1388 1.12 degroote
1389 1.63 jmcneill bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1390 1.63 jmcneill
1391 1.17 degroote /* tell adapter where to find runtime images */
1392 1.1 simonb wpi_mem_lock(sc);
1393 1.17 degroote wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1394 1.17 degroote wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1395 1.17 degroote wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1396 1.17 degroote dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1397 1.17 degroote wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1398 1.12 degroote wpi_mem_unlock(sc);
1399 1.12 degroote
1400 1.17 degroote /* wait at most one second for second alive notification */
1401 1.12 degroote if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1402 1.12 degroote /* this isn't what was supposed to happen.. */
1403 1.54 riastrad aprint_error_dev(sc->sc_dev,
1404 1.41 joerg "timeout waiting for adapter to initialize\n");
1405 1.12 degroote }
1406 1.12 degroote
1407 1.41 joerg return error;
1408 1.17 degroote
1409 1.41 joerg free_firmware:
1410 1.41 joerg sc->fw_used = false;
1411 1.54 riastrad wpi_release_firmware();
1412 1.41 joerg return error;
1413 1.12 degroote }
1414 1.1 simonb
1415 1.12 degroote static void
1416 1.12 degroote wpi_calib_timeout(void *arg)
1417 1.12 degroote {
1418 1.12 degroote struct wpi_softc *sc = arg;
1419 1.12 degroote struct ieee80211com *ic = &sc->sc_ic;
1420 1.12 degroote int temp, s;
1421 1.1 simonb
1422 1.12 degroote /* automatic rate control triggered every 500ms */
1423 1.12 degroote if (ic->ic_fixed_rate == -1) {
1424 1.12 degroote s = splnet();
1425 1.12 degroote if (ic->ic_opmode == IEEE80211_M_STA)
1426 1.12 degroote wpi_iter_func(sc, ic->ic_bss);
1427 1.12 degroote else
1428 1.59 jakllsch ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1429 1.12 degroote splx(s);
1430 1.12 degroote }
1431 1.1 simonb
1432 1.12 degroote /* update sensor data */
1433 1.12 degroote temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1434 1.1 simonb
1435 1.12 degroote /* automatic power calibration every 60s */
1436 1.12 degroote if (++sc->calib_cnt >= 120) {
1437 1.12 degroote wpi_power_calibration(sc, temp);
1438 1.12 degroote sc->calib_cnt = 0;
1439 1.1 simonb }
1440 1.12 degroote
1441 1.28 degroote callout_schedule(&sc->calib_to, hz/2);
1442 1.12 degroote }
1443 1.12 degroote
1444 1.12 degroote static void
1445 1.12 degroote wpi_iter_func(void *arg, struct ieee80211_node *ni)
1446 1.12 degroote {
1447 1.12 degroote struct wpi_softc *sc = arg;
1448 1.12 degroote struct wpi_node *wn = (struct wpi_node *)ni;
1449 1.12 degroote
1450 1.12 degroote ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1451 1.12 degroote }
1452 1.12 degroote
1453 1.12 degroote /*
1454 1.12 degroote * This function is called periodically (every 60 seconds) to adjust output
1455 1.12 degroote * power to temperature changes.
1456 1.12 degroote */
1457 1.12 degroote void
1458 1.12 degroote wpi_power_calibration(struct wpi_softc *sc, int temp)
1459 1.12 degroote {
1460 1.12 degroote /* sanity-check read value */
1461 1.12 degroote if (temp < -260 || temp > 25) {
1462 1.12 degroote /* this can't be correct, ignore */
1463 1.12 degroote DPRINTF(("out-of-range temperature reported: %d\n", temp));
1464 1.12 degroote return;
1465 1.1 simonb }
1466 1.1 simonb
1467 1.12 degroote DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1468 1.12 degroote
1469 1.12 degroote /* adjust Tx power if need be */
1470 1.12 degroote if (abs(temp - sc->temp) <= 6)
1471 1.12 degroote return;
1472 1.1 simonb
1473 1.12 degroote sc->temp = temp;
1474 1.1 simonb
1475 1.66 jmcneill if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
1476 1.12 degroote /* just warn, too bad for the automatic calibration... */
1477 1.28 degroote aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1478 1.12 degroote }
1479 1.1 simonb }
1480 1.1 simonb
1481 1.1 simonb static void
1482 1.1 simonb wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1483 1.61 jakllsch struct wpi_rx_data *data)
1484 1.1 simonb {
1485 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
1486 1.1 simonb struct ifnet *ifp = ic->ic_ifp;
1487 1.1 simonb struct wpi_rx_ring *ring = &sc->rxq;
1488 1.1 simonb struct wpi_rx_stat *stat;
1489 1.1 simonb struct wpi_rx_head *head;
1490 1.1 simonb struct wpi_rx_tail *tail;
1491 1.7 degroote struct wpi_rbuf *rbuf;
1492 1.1 simonb struct ieee80211_frame *wh;
1493 1.1 simonb struct ieee80211_node *ni;
1494 1.1 simonb struct mbuf *m, *mnew;
1495 1.77 nonaka int data_off, error, s;
1496 1.1 simonb
1497 1.64 jmcneill bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1498 1.64 jmcneill BUS_DMASYNC_POSTREAD);
1499 1.1 simonb stat = (struct wpi_rx_stat *)(desc + 1);
1500 1.1 simonb
1501 1.1 simonb if (stat->len > WPI_STAT_MAXLEN) {
1502 1.28 degroote aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1503 1.1 simonb ifp->if_ierrors++;
1504 1.1 simonb return;
1505 1.1 simonb }
1506 1.1 simonb
1507 1.9 christos head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1508 1.9 christos tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1509 1.1 simonb
1510 1.1 simonb DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1511 1.61 jakllsch "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
1512 1.61 jakllsch le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1513 1.61 jakllsch le64toh(tail->tstamp)));
1514 1.1 simonb
1515 1.1 simonb /*
1516 1.1 simonb * Discard Rx frames with bad CRC early (XXX we may want to pass them
1517 1.1 simonb * to radiotap in monitor mode).
1518 1.1 simonb */
1519 1.1 simonb if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1520 1.61 jakllsch DPRINTF(("rx tail flags error %x\n",
1521 1.61 jakllsch le32toh(tail->flags)));
1522 1.1 simonb ifp->if_ierrors++;
1523 1.1 simonb return;
1524 1.1 simonb }
1525 1.1 simonb
1526 1.19 degroote /* Compute where are the useful datas */
1527 1.55 christos data_off = (char*)(head + 1) - mtod(data->m, char*);
1528 1.55 christos
1529 1.65 jmcneill MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1530 1.65 jmcneill if (mnew == NULL) {
1531 1.65 jmcneill ifp->if_ierrors++;
1532 1.65 jmcneill return;
1533 1.65 jmcneill }
1534 1.19 degroote
1535 1.65 jmcneill rbuf = wpi_alloc_rbuf(sc);
1536 1.65 jmcneill if (rbuf == NULL) {
1537 1.65 jmcneill m_freem(mnew);
1538 1.65 jmcneill ifp->if_ierrors++;
1539 1.65 jmcneill return;
1540 1.65 jmcneill }
1541 1.19 degroote
1542 1.65 jmcneill /* attach Rx buffer to mbuf */
1543 1.65 jmcneill MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1544 1.65 jmcneill rbuf);
1545 1.65 jmcneill mnew->m_flags |= M_EXT_RW;
1546 1.19 degroote
1547 1.65 jmcneill bus_dmamap_unload(sc->sc_dmat, data->map);
1548 1.10 degroote
1549 1.65 jmcneill error = bus_dmamap_load(sc->sc_dmat, data->map,
1550 1.65 jmcneill mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
1551 1.65 jmcneill BUS_DMA_NOWAIT | BUS_DMA_READ);
1552 1.65 jmcneill if (error) {
1553 1.65 jmcneill device_printf(sc->sc_dev,
1554 1.65 jmcneill "couldn't load rx mbuf: %d\n", error);
1555 1.65 jmcneill m_freem(mnew);
1556 1.65 jmcneill ifp->if_ierrors++;
1557 1.1 simonb
1558 1.64 jmcneill error = bus_dmamap_load(sc->sc_dmat, data->map,
1559 1.64 jmcneill mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1560 1.64 jmcneill BUS_DMA_NOWAIT | BUS_DMA_READ);
1561 1.65 jmcneill if (error)
1562 1.64 jmcneill panic("%s: bus_dmamap_load failed: %d\n",
1563 1.64 jmcneill device_xname(sc->sc_dev), error);
1564 1.65 jmcneill return;
1565 1.65 jmcneill }
1566 1.65 jmcneill
1567 1.65 jmcneill /* new mbuf loaded successfully */
1568 1.65 jmcneill m = data->m;
1569 1.65 jmcneill data->m = mnew;
1570 1.64 jmcneill
1571 1.65 jmcneill /* update Rx descriptor */
1572 1.65 jmcneill ring->desc[ring->cur] = htole32(rbuf->paddr);
1573 1.65 jmcneill bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1574 1.65 jmcneill ring->desc_dma.size,
1575 1.65 jmcneill BUS_DMASYNC_PREWRITE);
1576 1.19 degroote
1577 1.65 jmcneill m->m_data = (char*)m->m_data + data_off;
1578 1.65 jmcneill m->m_pkthdr.len = m->m_len = le16toh(head->len);
1579 1.1 simonb
1580 1.1 simonb /* finalize mbuf */
1581 1.74 ozaki m_set_rcvif(m, ifp);
1582 1.1 simonb
1583 1.77 nonaka s = splnet();
1584 1.77 nonaka
1585 1.1 simonb if (sc->sc_drvbpf != NULL) {
1586 1.1 simonb struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1587 1.1 simonb
1588 1.1 simonb tap->wr_flags = 0;
1589 1.1 simonb tap->wr_chan_freq =
1590 1.61 jakllsch htole16(ic->ic_channels[head->chan].ic_freq);
1591 1.1 simonb tap->wr_chan_flags =
1592 1.61 jakllsch htole16(ic->ic_channels[head->chan].ic_flags);
1593 1.1 simonb tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1594 1.1 simonb tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1595 1.1 simonb tap->wr_tsft = tail->tstamp;
1596 1.1 simonb tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1597 1.1 simonb switch (head->rate) {
1598 1.1 simonb /* CCK rates */
1599 1.1 simonb case 10: tap->wr_rate = 2; break;
1600 1.1 simonb case 20: tap->wr_rate = 4; break;
1601 1.1 simonb case 55: tap->wr_rate = 11; break;
1602 1.1 simonb case 110: tap->wr_rate = 22; break;
1603 1.1 simonb /* OFDM rates */
1604 1.1 simonb case 0xd: tap->wr_rate = 12; break;
1605 1.1 simonb case 0xf: tap->wr_rate = 18; break;
1606 1.1 simonb case 0x5: tap->wr_rate = 24; break;
1607 1.1 simonb case 0x7: tap->wr_rate = 36; break;
1608 1.1 simonb case 0x9: tap->wr_rate = 48; break;
1609 1.1 simonb case 0xb: tap->wr_rate = 72; break;
1610 1.1 simonb case 0x1: tap->wr_rate = 96; break;
1611 1.1 simonb case 0x3: tap->wr_rate = 108; break;
1612 1.1 simonb /* unknown rate: should not happen */
1613 1.1 simonb default: tap->wr_rate = 0;
1614 1.1 simonb }
1615 1.1 simonb if (le16toh(head->flags) & 0x4)
1616 1.1 simonb tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1617 1.1 simonb
1618 1.80 msaitoh bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1619 1.1 simonb }
1620 1.1 simonb
1621 1.1 simonb /* grab a reference to the source node */
1622 1.1 simonb wh = mtod(m, struct ieee80211_frame *);
1623 1.1 simonb ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1624 1.1 simonb
1625 1.1 simonb /* send the frame to the 802.11 layer */
1626 1.1 simonb ieee80211_input(ic, m, ni, stat->rssi, 0);
1627 1.1 simonb
1628 1.1 simonb /* release node reference */
1629 1.1 simonb ieee80211_free_node(ni);
1630 1.77 nonaka
1631 1.77 nonaka splx(s);
1632 1.1 simonb }
1633 1.1 simonb
1634 1.1 simonb static void
1635 1.1 simonb wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1636 1.1 simonb {
1637 1.1 simonb struct ifnet *ifp = sc->sc_ic.ic_ifp;
1638 1.1 simonb struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1639 1.61 jakllsch struct wpi_tx_data *data = &ring->data[desc->idx];
1640 1.1 simonb struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1641 1.61 jakllsch struct wpi_node *wn = (struct wpi_node *)data->ni;
1642 1.77 nonaka int s;
1643 1.1 simonb
1644 1.1 simonb DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1645 1.61 jakllsch "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1646 1.61 jakllsch stat->nkill, stat->rate, le32toh(stat->duration),
1647 1.61 jakllsch le32toh(stat->status)));
1648 1.1 simonb
1649 1.77 nonaka s = splnet();
1650 1.77 nonaka
1651 1.1 simonb /*
1652 1.1 simonb * Update rate control statistics for the node.
1653 1.1 simonb * XXX we should not count mgmt frames since they're always sent at
1654 1.1 simonb * the lowest available bit-rate.
1655 1.1 simonb */
1656 1.5 joerg wn->amn.amn_txcnt++;
1657 1.1 simonb if (stat->ntries > 0) {
1658 1.1 simonb DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1659 1.5 joerg wn->amn.amn_retrycnt++;
1660 1.1 simonb }
1661 1.1 simonb
1662 1.2 oster if ((le32toh(stat->status) & 0xff) != 1)
1663 1.2 oster ifp->if_oerrors++;
1664 1.2 oster else
1665 1.2 oster ifp->if_opackets++;
1666 1.2 oster
1667 1.61 jakllsch bus_dmamap_unload(sc->sc_dmat, data->map);
1668 1.61 jakllsch m_freem(data->m);
1669 1.61 jakllsch data->m = NULL;
1670 1.61 jakllsch ieee80211_free_node(data->ni);
1671 1.61 jakllsch data->ni = NULL;
1672 1.1 simonb
1673 1.1 simonb ring->queued--;
1674 1.1 simonb
1675 1.1 simonb sc->sc_tx_timer = 0;
1676 1.1 simonb ifp->if_flags &= ~IFF_OACTIVE;
1677 1.78 ozaki wpi_start(ifp); /* in softint */
1678 1.77 nonaka
1679 1.77 nonaka splx(s);
1680 1.1 simonb }
1681 1.1 simonb
1682 1.1 simonb static void
1683 1.1 simonb wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1684 1.1 simonb {
1685 1.1 simonb struct wpi_tx_ring *ring = &sc->cmdq;
1686 1.1 simonb struct wpi_tx_data *data;
1687 1.1 simonb
1688 1.1 simonb if ((desc->qid & 7) != 4)
1689 1.1 simonb return; /* not a command ack */
1690 1.1 simonb
1691 1.1 simonb data = &ring->data[desc->idx];
1692 1.1 simonb
1693 1.1 simonb /* if the command was mapped in a mbuf, free it */
1694 1.1 simonb if (data->m != NULL) {
1695 1.1 simonb bus_dmamap_unload(sc->sc_dmat, data->map);
1696 1.1 simonb m_freem(data->m);
1697 1.1 simonb data->m = NULL;
1698 1.1 simonb }
1699 1.1 simonb
1700 1.1 simonb wakeup(&ring->cmd[desc->idx]);
1701 1.1 simonb }
1702 1.1 simonb
1703 1.1 simonb static void
1704 1.1 simonb wpi_notif_intr(struct wpi_softc *sc)
1705 1.1 simonb {
1706 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
1707 1.7 degroote struct ifnet *ifp = ic->ic_ifp;
1708 1.1 simonb uint32_t hw;
1709 1.77 nonaka int s;
1710 1.1 simonb
1711 1.64 jmcneill bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1712 1.64 jmcneill sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
1713 1.64 jmcneill
1714 1.1 simonb hw = le32toh(sc->shared->next);
1715 1.1 simonb while (sc->rxq.cur != hw) {
1716 1.61 jakllsch struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1717 1.65 jmcneill struct wpi_rx_desc *desc;
1718 1.1 simonb
1719 1.64 jmcneill bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1720 1.64 jmcneill BUS_DMASYNC_POSTREAD);
1721 1.65 jmcneill desc = mtod(data->m, struct wpi_rx_desc *);
1722 1.64 jmcneill
1723 1.1 simonb DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1724 1.61 jakllsch "len=%d\n", desc->qid, desc->idx, desc->flags,
1725 1.61 jakllsch desc->type, le32toh(desc->len)));
1726 1.1 simonb
1727 1.1 simonb if (!(desc->qid & 0x80)) /* reply to a command */
1728 1.1 simonb wpi_cmd_intr(sc, desc);
1729 1.1 simonb
1730 1.1 simonb switch (desc->type) {
1731 1.1 simonb case WPI_RX_DONE:
1732 1.1 simonb /* a 802.11 frame was received */
1733 1.1 simonb wpi_rx_intr(sc, desc, data);
1734 1.1 simonb break;
1735 1.1 simonb
1736 1.1 simonb case WPI_TX_DONE:
1737 1.1 simonb /* a 802.11 frame has been transmitted */
1738 1.1 simonb wpi_tx_intr(sc, desc);
1739 1.1 simonb break;
1740 1.1 simonb
1741 1.1 simonb case WPI_UC_READY:
1742 1.1 simonb {
1743 1.1 simonb struct wpi_ucode_info *uc =
1744 1.59 jakllsch (struct wpi_ucode_info *)(desc + 1);
1745 1.1 simonb
1746 1.1 simonb /* the microcontroller is ready */
1747 1.1 simonb DPRINTF(("microcode alive notification version %x "
1748 1.61 jakllsch "alive %x\n", le32toh(uc->version),
1749 1.61 jakllsch le32toh(uc->valid)));
1750 1.1 simonb
1751 1.1 simonb if (le32toh(uc->valid) != 1) {
1752 1.55 christos aprint_error_dev(sc->sc_dev,
1753 1.61 jakllsch "microcontroller initialization failed\n");
1754 1.1 simonb }
1755 1.1 simonb break;
1756 1.1 simonb }
1757 1.1 simonb case WPI_STATE_CHANGED:
1758 1.1 simonb {
1759 1.1 simonb uint32_t *status = (uint32_t *)(desc + 1);
1760 1.1 simonb
1761 1.1 simonb /* enabled/disabled notification */
1762 1.1 simonb DPRINTF(("state changed to %x\n", le32toh(*status)));
1763 1.1 simonb
1764 1.1 simonb if (le32toh(*status) & 1) {
1765 1.77 nonaka s = splnet();
1766 1.1 simonb /* the radio button has to be pushed */
1767 1.70 bouyer /* wake up thread to signal powerd */
1768 1.70 bouyer cv_signal(&sc->sc_rsw_cv);
1769 1.61 jakllsch aprint_error_dev(sc->sc_dev,
1770 1.61 jakllsch "Radio transmitter is off\n");
1771 1.7 degroote /* turn the interface down */
1772 1.7 degroote ifp->if_flags &= ~IFF_UP;
1773 1.7 degroote wpi_stop(ifp, 1);
1774 1.77 nonaka splx(s);
1775 1.7 degroote return; /* no further processing */
1776 1.1 simonb }
1777 1.1 simonb break;
1778 1.1 simonb }
1779 1.1 simonb case WPI_START_SCAN:
1780 1.1 simonb {
1781 1.66 jmcneill #if 0
1782 1.1 simonb struct wpi_start_scan *scan =
1783 1.59 jakllsch (struct wpi_start_scan *)(desc + 1);
1784 1.1 simonb
1785 1.1 simonb DPRINTFN(2, ("scanning channel %d status %x\n",
1786 1.61 jakllsch scan->chan, le32toh(scan->status)));
1787 1.1 simonb
1788 1.1 simonb /* fix current channel */
1789 1.67 jmcneill ic->ic_curchan = &ic->ic_channels[scan->chan];
1790 1.66 jmcneill #endif
1791 1.1 simonb break;
1792 1.1 simonb }
1793 1.1 simonb case WPI_STOP_SCAN:
1794 1.1 simonb {
1795 1.67 jmcneill #ifdef WPI_DEBUG
1796 1.1 simonb struct wpi_stop_scan *scan =
1797 1.59 jakllsch (struct wpi_stop_scan *)(desc + 1);
1798 1.67 jmcneill #endif
1799 1.1 simonb
1800 1.1 simonb DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1801 1.61 jakllsch scan->nchan, scan->status, scan->chan));
1802 1.1 simonb
1803 1.77 nonaka s = splnet();
1804 1.23 degroote sc->is_scanning = false;
1805 1.67 jmcneill if (ic->ic_state == IEEE80211_S_SCAN)
1806 1.67 jmcneill ieee80211_next_scan(ic);
1807 1.77 nonaka splx(s);
1808 1.1 simonb break;
1809 1.1 simonb }
1810 1.1 simonb }
1811 1.1 simonb
1812 1.1 simonb sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1813 1.1 simonb }
1814 1.1 simonb
1815 1.1 simonb /* tell the firmware what we have processed */
1816 1.1 simonb hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1817 1.1 simonb WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1818 1.1 simonb }
1819 1.1 simonb
1820 1.1 simonb static int
1821 1.1 simonb wpi_intr(void *arg)
1822 1.1 simonb {
1823 1.1 simonb struct wpi_softc *sc = arg;
1824 1.1 simonb uint32_t r;
1825 1.1 simonb
1826 1.1 simonb r = WPI_READ(sc, WPI_INTR);
1827 1.1 simonb if (r == 0 || r == 0xffffffff)
1828 1.1 simonb return 0; /* not for us */
1829 1.1 simonb
1830 1.61 jakllsch DPRINTFN(6, ("interrupt reg %x\n", r));
1831 1.1 simonb
1832 1.1 simonb /* disable interrupts */
1833 1.1 simonb WPI_WRITE(sc, WPI_MASK, 0);
1834 1.77 nonaka
1835 1.77 nonaka softint_schedule(sc->sc_soft_ih);
1836 1.77 nonaka return 1;
1837 1.77 nonaka }
1838 1.77 nonaka
1839 1.77 nonaka static void
1840 1.77 nonaka wpi_softintr(void *arg)
1841 1.77 nonaka {
1842 1.77 nonaka struct wpi_softc *sc = arg;
1843 1.77 nonaka struct ifnet *ifp = sc->sc_ic.ic_ifp;
1844 1.77 nonaka uint32_t r;
1845 1.77 nonaka
1846 1.77 nonaka r = WPI_READ(sc, WPI_INTR);
1847 1.77 nonaka if (r == 0 || r == 0xffffffff)
1848 1.77 nonaka goto out;
1849 1.77 nonaka
1850 1.1 simonb /* ack interrupts */
1851 1.1 simonb WPI_WRITE(sc, WPI_INTR, r);
1852 1.1 simonb
1853 1.1 simonb if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1854 1.61 jakllsch /* SYSTEM FAILURE, SYSTEM FAILURE */
1855 1.28 degroote aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1856 1.61 jakllsch ifp->if_flags &= ~IFF_UP;
1857 1.61 jakllsch wpi_stop(ifp, 1);
1858 1.77 nonaka return;
1859 1.1 simonb }
1860 1.1 simonb
1861 1.1 simonb if (r & WPI_RX_INTR)
1862 1.1 simonb wpi_notif_intr(sc);
1863 1.1 simonb
1864 1.1 simonb if (r & WPI_ALIVE_INTR) /* firmware initialized */
1865 1.1 simonb wakeup(sc);
1866 1.1 simonb
1867 1.77 nonaka out:
1868 1.1 simonb /* re-enable interrupts */
1869 1.7 degroote if (ifp->if_flags & IFF_UP)
1870 1.7 degroote WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1871 1.1 simonb }
1872 1.1 simonb
1873 1.1 simonb static uint8_t
1874 1.1 simonb wpi_plcp_signal(int rate)
1875 1.1 simonb {
1876 1.1 simonb switch (rate) {
1877 1.1 simonb /* CCK rates (returned values are device-dependent) */
1878 1.1 simonb case 2: return 10;
1879 1.1 simonb case 4: return 20;
1880 1.1 simonb case 11: return 55;
1881 1.1 simonb case 22: return 110;
1882 1.1 simonb
1883 1.1 simonb /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1884 1.1 simonb /* R1-R4, (u)ral is R4-R1 */
1885 1.1 simonb case 12: return 0xd;
1886 1.1 simonb case 18: return 0xf;
1887 1.1 simonb case 24: return 0x5;
1888 1.1 simonb case 36: return 0x7;
1889 1.1 simonb case 48: return 0x9;
1890 1.1 simonb case 72: return 0xb;
1891 1.1 simonb case 96: return 0x1;
1892 1.1 simonb case 108: return 0x3;
1893 1.1 simonb
1894 1.1 simonb /* unsupported rates (should not get there) */
1895 1.1 simonb default: return 0;
1896 1.1 simonb }
1897 1.1 simonb }
1898 1.1 simonb
1899 1.1 simonb /* quickly determine if a given rate is CCK or OFDM */
1900 1.1 simonb #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1901 1.1 simonb
1902 1.1 simonb static int
1903 1.1 simonb wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1904 1.61 jakllsch int ac)
1905 1.1 simonb {
1906 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
1907 1.1 simonb struct wpi_tx_ring *ring = &sc->txq[ac];
1908 1.1 simonb struct wpi_tx_desc *desc;
1909 1.1 simonb struct wpi_tx_data *data;
1910 1.1 simonb struct wpi_tx_cmd *cmd;
1911 1.1 simonb struct wpi_cmd_data *tx;
1912 1.1 simonb struct ieee80211_frame *wh;
1913 1.1 simonb struct ieee80211_key *k;
1914 1.1 simonb const struct chanAccParams *cap;
1915 1.1 simonb struct mbuf *mnew;
1916 1.61 jakllsch int i, rate, error, hdrlen, noack = 0;
1917 1.1 simonb
1918 1.1 simonb desc = &ring->desc[ring->cur];
1919 1.1 simonb data = &ring->data[ring->cur];
1920 1.1 simonb
1921 1.1 simonb wh = mtod(m0, struct ieee80211_frame *);
1922 1.1 simonb
1923 1.56 christos if (ieee80211_has_qos(wh)) {
1924 1.1 simonb cap = &ic->ic_wme.wme_chanParams;
1925 1.1 simonb noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1926 1.26 degroote }
1927 1.1 simonb
1928 1.1 simonb if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1929 1.1 simonb k = ieee80211_crypto_encap(ic, ni, m0);
1930 1.1 simonb if (k == NULL) {
1931 1.1 simonb m_freem(m0);
1932 1.1 simonb return ENOBUFS;
1933 1.1 simonb }
1934 1.1 simonb
1935 1.1 simonb /* packet header may have moved, reset our local pointer */
1936 1.1 simonb wh = mtod(m0, struct ieee80211_frame *);
1937 1.1 simonb }
1938 1.1 simonb
1939 1.26 degroote hdrlen = ieee80211_anyhdrsize(wh);
1940 1.26 degroote
1941 1.1 simonb /* pickup a rate */
1942 1.1 simonb if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1943 1.61 jakllsch IEEE80211_FC0_TYPE_MGT) {
1944 1.1 simonb /* mgmt frames are sent at the lowest available bit-rate */
1945 1.1 simonb rate = ni->ni_rates.rs_rates[0];
1946 1.1 simonb } else {
1947 1.1 simonb if (ic->ic_fixed_rate != -1) {
1948 1.1 simonb rate = ic->ic_sup_rates[ic->ic_curmode].
1949 1.61 jakllsch rs_rates[ic->ic_fixed_rate];
1950 1.1 simonb } else
1951 1.1 simonb rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1952 1.1 simonb }
1953 1.1 simonb rate &= IEEE80211_RATE_VAL;
1954 1.1 simonb
1955 1.1 simonb if (sc->sc_drvbpf != NULL) {
1956 1.1 simonb struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1957 1.1 simonb
1958 1.1 simonb tap->wt_flags = 0;
1959 1.1 simonb tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1960 1.1 simonb tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1961 1.1 simonb tap->wt_rate = rate;
1962 1.1 simonb tap->wt_hwqueue = ac;
1963 1.1 simonb if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1964 1.1 simonb tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1965 1.1 simonb
1966 1.80 msaitoh bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1967 1.1 simonb }
1968 1.1 simonb
1969 1.1 simonb cmd = &ring->cmd[ring->cur];
1970 1.1 simonb cmd->code = WPI_CMD_TX_DATA;
1971 1.1 simonb cmd->flags = 0;
1972 1.1 simonb cmd->qid = ring->qid;
1973 1.1 simonb cmd->idx = ring->cur;
1974 1.1 simonb
1975 1.1 simonb tx = (struct wpi_cmd_data *)cmd->data;
1976 1.61 jakllsch /* no need to zero tx, all fields are reinitialized here */
1977 1.1 simonb tx->flags = 0;
1978 1.1 simonb
1979 1.1 simonb if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1980 1.1 simonb tx->flags |= htole32(WPI_TX_NEED_ACK);
1981 1.7 degroote } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1982 1.7 degroote tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1983 1.1 simonb
1984 1.1 simonb tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1985 1.1 simonb
1986 1.7 degroote /* retrieve destination node's id */
1987 1.7 degroote tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1988 1.7 degroote WPI_ID_BSS;
1989 1.7 degroote
1990 1.1 simonb if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1991 1.61 jakllsch IEEE80211_FC0_TYPE_MGT) {
1992 1.1 simonb /* tell h/w to set timestamp in probe responses */
1993 1.1 simonb if ((wh->i_fc[0] &
1994 1.1 simonb (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1995 1.1 simonb (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1996 1.1 simonb tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1997 1.1 simonb
1998 1.1 simonb if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1999 1.1 simonb IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
2000 1.1 simonb ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2001 1.1 simonb IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
2002 1.1 simonb tx->timeout = htole16(3);
2003 1.1 simonb else
2004 1.1 simonb tx->timeout = htole16(2);
2005 1.1 simonb } else
2006 1.1 simonb tx->timeout = htole16(0);
2007 1.1 simonb
2008 1.1 simonb tx->rate = wpi_plcp_signal(rate);
2009 1.1 simonb
2010 1.1 simonb /* be very persistant at sending frames out */
2011 1.1 simonb tx->rts_ntries = 7;
2012 1.1 simonb tx->data_ntries = 15;
2013 1.1 simonb
2014 1.1 simonb tx->ofdm_mask = 0xff;
2015 1.61 jakllsch tx->cck_mask = 0x0f;
2016 1.12 degroote tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2017 1.1 simonb
2018 1.1 simonb tx->len = htole16(m0->m_pkthdr.len);
2019 1.1 simonb
2020 1.1 simonb /* save and trim IEEE802.11 header */
2021 1.26 degroote memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2022 1.1 simonb m_adj(m0, hdrlen);
2023 1.1 simonb
2024 1.1 simonb error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2025 1.61 jakllsch BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2026 1.1 simonb if (error != 0 && error != EFBIG) {
2027 1.61 jakllsch aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2028 1.61 jakllsch error);
2029 1.1 simonb m_freem(m0);
2030 1.1 simonb return error;
2031 1.1 simonb }
2032 1.1 simonb if (error != 0) {
2033 1.1 simonb /* too many fragments, linearize */
2034 1.61 jakllsch
2035 1.1 simonb MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2036 1.1 simonb if (mnew == NULL) {
2037 1.1 simonb m_freem(m0);
2038 1.1 simonb return ENOMEM;
2039 1.1 simonb }
2040 1.85 maxv m_copy_pkthdr(mnew, m0);
2041 1.1 simonb if (m0->m_pkthdr.len > MHLEN) {
2042 1.1 simonb MCLGET(mnew, M_DONTWAIT);
2043 1.1 simonb if (!(mnew->m_flags & M_EXT)) {
2044 1.1 simonb m_freem(m0);
2045 1.1 simonb m_freem(mnew);
2046 1.1 simonb return ENOMEM;
2047 1.1 simonb }
2048 1.1 simonb }
2049 1.1 simonb
2050 1.9 christos m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2051 1.1 simonb m_freem(m0);
2052 1.1 simonb mnew->m_len = mnew->m_pkthdr.len;
2053 1.1 simonb m0 = mnew;
2054 1.1 simonb
2055 1.1 simonb error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2056 1.61 jakllsch BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2057 1.1 simonb if (error != 0) {
2058 1.61 jakllsch aprint_error_dev(sc->sc_dev,
2059 1.61 jakllsch "could not map mbuf (error %d)\n", error);
2060 1.1 simonb m_freem(m0);
2061 1.1 simonb return error;
2062 1.1 simonb }
2063 1.1 simonb }
2064 1.1 simonb
2065 1.1 simonb data->m = m0;
2066 1.1 simonb data->ni = ni;
2067 1.1 simonb
2068 1.1 simonb DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2069 1.61 jakllsch ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
2070 1.1 simonb
2071 1.1 simonb /* first scatter/gather segment is used by the tx data command */
2072 1.1 simonb desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2073 1.61 jakllsch (1 + data->map->dm_nsegs) << 24);
2074 1.1 simonb desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2075 1.61 jakllsch ring->cur * sizeof (struct wpi_tx_cmd));
2076 1.55 christos desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
2077 1.61 jakllsch ((hdrlen + 3) & ~3));
2078 1.1 simonb for (i = 1; i <= data->map->dm_nsegs; i++) {
2079 1.1 simonb desc->segs[i].addr =
2080 1.61 jakllsch htole32(data->map->dm_segs[i - 1].ds_addr);
2081 1.1 simonb desc->segs[i].len =
2082 1.61 jakllsch htole32(data->map->dm_segs[i - 1].ds_len);
2083 1.1 simonb }
2084 1.1 simonb
2085 1.1 simonb ring->queued++;
2086 1.1 simonb
2087 1.63 jmcneill bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2088 1.63 jmcneill data->map->dm_mapsize,
2089 1.63 jmcneill BUS_DMASYNC_PREWRITE);
2090 1.63 jmcneill bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
2091 1.63 jmcneill ring->cmd_dma.size,
2092 1.63 jmcneill BUS_DMASYNC_PREWRITE);
2093 1.63 jmcneill bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2094 1.63 jmcneill ring->desc_dma.size,
2095 1.63 jmcneill BUS_DMASYNC_PREWRITE);
2096 1.63 jmcneill
2097 1.1 simonb /* kick ring */
2098 1.1 simonb ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2099 1.1 simonb WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2100 1.1 simonb
2101 1.1 simonb return 0;
2102 1.1 simonb }
2103 1.1 simonb
2104 1.1 simonb static void
2105 1.1 simonb wpi_start(struct ifnet *ifp)
2106 1.1 simonb {
2107 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
2108 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2109 1.1 simonb struct ieee80211_node *ni;
2110 1.1 simonb struct ether_header *eh;
2111 1.1 simonb struct mbuf *m0;
2112 1.1 simonb int ac;
2113 1.1 simonb
2114 1.1 simonb /*
2115 1.1 simonb * net80211 may still try to send management frames even if the
2116 1.1 simonb * IFF_RUNNING flag is not set...
2117 1.1 simonb */
2118 1.1 simonb if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2119 1.1 simonb return;
2120 1.1 simonb
2121 1.1 simonb for (;;) {
2122 1.22 dyoung IF_DEQUEUE(&ic->ic_mgtq, m0);
2123 1.1 simonb if (m0 != NULL) {
2124 1.1 simonb
2125 1.72 ozaki ni = M_GETCTX(m0, struct ieee80211_node *);
2126 1.73 ozaki M_CLEARCTX(m0);
2127 1.1 simonb
2128 1.1 simonb /* management frames go into ring 0 */
2129 1.1 simonb if (sc->txq[0].queued > sc->txq[0].count - 8) {
2130 1.1 simonb ifp->if_oerrors++;
2131 1.1 simonb continue;
2132 1.1 simonb }
2133 1.80 msaitoh bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2134 1.1 simonb if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2135 1.1 simonb ifp->if_oerrors++;
2136 1.1 simonb break;
2137 1.1 simonb }
2138 1.1 simonb } else {
2139 1.1 simonb if (ic->ic_state != IEEE80211_S_RUN)
2140 1.1 simonb break;
2141 1.7 degroote IFQ_POLL(&ifp->if_snd, m0);
2142 1.1 simonb if (m0 == NULL)
2143 1.1 simonb break;
2144 1.1 simonb
2145 1.1 simonb if (m0->m_len < sizeof (*eh) &&
2146 1.38 drochner (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2147 1.1 simonb ifp->if_oerrors++;
2148 1.1 simonb continue;
2149 1.1 simonb }
2150 1.1 simonb eh = mtod(m0, struct ether_header *);
2151 1.1 simonb ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2152 1.1 simonb if (ni == NULL) {
2153 1.1 simonb m_freem(m0);
2154 1.1 simonb ifp->if_oerrors++;
2155 1.1 simonb continue;
2156 1.1 simonb }
2157 1.1 simonb
2158 1.1 simonb /* classify mbuf so we can find which tx ring to use */
2159 1.1 simonb if (ieee80211_classify(ic, m0, ni) != 0) {
2160 1.1 simonb m_freem(m0);
2161 1.1 simonb ieee80211_free_node(ni);
2162 1.1 simonb ifp->if_oerrors++;
2163 1.1 simonb continue;
2164 1.1 simonb }
2165 1.1 simonb
2166 1.1 simonb /* no QoS encapsulation for EAPOL frames */
2167 1.1 simonb ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2168 1.1 simonb M_WME_GETAC(m0) : WME_AC_BE;
2169 1.1 simonb
2170 1.1 simonb if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2171 1.1 simonb /* there is no place left in this ring */
2172 1.1 simonb ifp->if_flags |= IFF_OACTIVE;
2173 1.1 simonb break;
2174 1.1 simonb }
2175 1.7 degroote IFQ_DEQUEUE(&ifp->if_snd, m0);
2176 1.80 msaitoh bpf_mtap(ifp, m0, BPF_D_OUT);
2177 1.1 simonb m0 = ieee80211_encap(ic, m0, ni);
2178 1.1 simonb if (m0 == NULL) {
2179 1.1 simonb ieee80211_free_node(ni);
2180 1.1 simonb ifp->if_oerrors++;
2181 1.1 simonb continue;
2182 1.1 simonb }
2183 1.80 msaitoh bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2184 1.1 simonb if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2185 1.1 simonb ieee80211_free_node(ni);
2186 1.1 simonb ifp->if_oerrors++;
2187 1.1 simonb break;
2188 1.1 simonb }
2189 1.1 simonb }
2190 1.1 simonb
2191 1.1 simonb sc->sc_tx_timer = 5;
2192 1.1 simonb ifp->if_timer = 1;
2193 1.1 simonb }
2194 1.1 simonb }
2195 1.1 simonb
2196 1.1 simonb static void
2197 1.1 simonb wpi_watchdog(struct ifnet *ifp)
2198 1.1 simonb {
2199 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
2200 1.1 simonb
2201 1.1 simonb ifp->if_timer = 0;
2202 1.1 simonb
2203 1.1 simonb if (sc->sc_tx_timer > 0) {
2204 1.1 simonb if (--sc->sc_tx_timer == 0) {
2205 1.28 degroote aprint_error_dev(sc->sc_dev, "device timeout\n");
2206 1.1 simonb ifp->if_flags &= ~IFF_UP;
2207 1.1 simonb wpi_stop(ifp, 1);
2208 1.61 jakllsch ifp->if_oerrors++;
2209 1.1 simonb return;
2210 1.1 simonb }
2211 1.1 simonb ifp->if_timer = 1;
2212 1.1 simonb }
2213 1.1 simonb
2214 1.1 simonb ieee80211_watchdog(&sc->sc_ic);
2215 1.1 simonb }
2216 1.1 simonb
2217 1.1 simonb static int
2218 1.9 christos wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2219 1.1 simonb {
2220 1.1 simonb #define IS_RUNNING(ifp) \
2221 1.1 simonb ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2222 1.1 simonb
2223 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
2224 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2225 1.1 simonb int s, error = 0;
2226 1.1 simonb
2227 1.1 simonb s = splnet();
2228 1.1 simonb
2229 1.1 simonb switch (cmd) {
2230 1.1 simonb case SIOCSIFFLAGS:
2231 1.40 dyoung if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2232 1.40 dyoung break;
2233 1.1 simonb if (ifp->if_flags & IFF_UP) {
2234 1.1 simonb if (!(ifp->if_flags & IFF_RUNNING))
2235 1.1 simonb wpi_init(ifp);
2236 1.1 simonb } else {
2237 1.1 simonb if (ifp->if_flags & IFF_RUNNING)
2238 1.1 simonb wpi_stop(ifp, 1);
2239 1.1 simonb }
2240 1.1 simonb break;
2241 1.1 simonb
2242 1.1 simonb case SIOCADDMULTI:
2243 1.1 simonb case SIOCDELMULTI:
2244 1.21 dyoung /* XXX no h/w multicast filter? --dyoung */
2245 1.21 dyoung if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2246 1.1 simonb /* setup multicast filter, etc */
2247 1.1 simonb error = 0;
2248 1.1 simonb }
2249 1.1 simonb break;
2250 1.1 simonb
2251 1.1 simonb default:
2252 1.7 degroote error = ieee80211_ioctl(ic, cmd, data);
2253 1.1 simonb }
2254 1.1 simonb
2255 1.1 simonb if (error == ENETRESET) {
2256 1.1 simonb if (IS_RUNNING(ifp) &&
2257 1.1 simonb (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2258 1.1 simonb wpi_init(ifp);
2259 1.1 simonb error = 0;
2260 1.1 simonb }
2261 1.1 simonb
2262 1.1 simonb splx(s);
2263 1.1 simonb return error;
2264 1.1 simonb
2265 1.1 simonb #undef IS_RUNNING
2266 1.1 simonb }
2267 1.1 simonb
2268 1.1 simonb /*
2269 1.1 simonb * Extract various information from EEPROM.
2270 1.1 simonb */
2271 1.1 simonb static void
2272 1.1 simonb wpi_read_eeprom(struct wpi_softc *sc)
2273 1.1 simonb {
2274 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2275 1.12 degroote char domain[4];
2276 1.1 simonb int i;
2277 1.1 simonb
2278 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2279 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2280 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2281 1.12 degroote
2282 1.12 degroote DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2283 1.12 degroote sc->type));
2284 1.12 degroote
2285 1.12 degroote /* read and print regulatory domain */
2286 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2287 1.32 jmcneill aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2288 1.12 degroote
2289 1.12 degroote /* read and print MAC address */
2290 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2291 1.12 degroote aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2292 1.12 degroote
2293 1.12 degroote /* read the list of authorized channels */
2294 1.12 degroote for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2295 1.12 degroote wpi_read_eeprom_channels(sc, i);
2296 1.12 degroote
2297 1.12 degroote /* read the list of power groups */
2298 1.12 degroote for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2299 1.12 degroote wpi_read_eeprom_group(sc, i);
2300 1.12 degroote }
2301 1.12 degroote
2302 1.12 degroote static void
2303 1.12 degroote wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2304 1.12 degroote {
2305 1.12 degroote struct ieee80211com *ic = &sc->sc_ic;
2306 1.12 degroote const struct wpi_chan_band *band = &wpi_bands[n];
2307 1.12 degroote struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2308 1.12 degroote int chan, i;
2309 1.12 degroote
2310 1.12 degroote wpi_read_prom_data(sc, band->addr, channels,
2311 1.12 degroote band->nchan * sizeof (struct wpi_eeprom_chan));
2312 1.12 degroote
2313 1.12 degroote for (i = 0; i < band->nchan; i++) {
2314 1.12 degroote if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2315 1.12 degroote continue;
2316 1.12 degroote
2317 1.12 degroote chan = band->chan[i];
2318 1.12 degroote
2319 1.12 degroote if (n == 0) { /* 2GHz band */
2320 1.12 degroote ic->ic_channels[chan].ic_freq =
2321 1.12 degroote ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2322 1.12 degroote ic->ic_channels[chan].ic_flags =
2323 1.12 degroote IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2324 1.12 degroote IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2325 1.12 degroote
2326 1.12 degroote } else { /* 5GHz band */
2327 1.12 degroote /*
2328 1.61 jakllsch * Some 3945ABG adapters support channels 7, 8, 11
2329 1.12 degroote * and 12 in the 2GHz *and* 5GHz bands.
2330 1.12 degroote * Because of limitations in our net80211(9) stack,
2331 1.12 degroote * we can't support these channels in 5GHz band.
2332 1.12 degroote */
2333 1.12 degroote if (chan <= 14)
2334 1.12 degroote continue;
2335 1.12 degroote
2336 1.12 degroote ic->ic_channels[chan].ic_freq =
2337 1.12 degroote ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2338 1.12 degroote ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2339 1.12 degroote }
2340 1.12 degroote
2341 1.12 degroote /* is active scan allowed on this channel? */
2342 1.12 degroote if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2343 1.12 degroote ic->ic_channels[chan].ic_flags |=
2344 1.12 degroote IEEE80211_CHAN_PASSIVE;
2345 1.12 degroote }
2346 1.12 degroote
2347 1.12 degroote /* save maximum allowed power for this channel */
2348 1.12 degroote sc->maxpwr[chan] = channels[i].maxpwr;
2349 1.12 degroote
2350 1.12 degroote DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2351 1.12 degroote chan, channels[i].flags, sc->maxpwr[chan]));
2352 1.12 degroote }
2353 1.12 degroote }
2354 1.12 degroote
2355 1.12 degroote static void
2356 1.12 degroote wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2357 1.12 degroote {
2358 1.12 degroote struct wpi_power_group *group = &sc->groups[n];
2359 1.12 degroote struct wpi_eeprom_group rgroup;
2360 1.12 degroote int i;
2361 1.12 degroote
2362 1.12 degroote wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2363 1.12 degroote sizeof rgroup);
2364 1.12 degroote
2365 1.12 degroote /* save power group information */
2366 1.12 degroote group->chan = rgroup.chan;
2367 1.12 degroote group->maxpwr = rgroup.maxpwr;
2368 1.12 degroote /* temperature at which the samples were taken */
2369 1.12 degroote group->temp = (int16_t)le16toh(rgroup.temp);
2370 1.12 degroote
2371 1.12 degroote DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2372 1.12 degroote group->chan, group->maxpwr, group->temp));
2373 1.12 degroote
2374 1.12 degroote for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2375 1.12 degroote group->samples[i].index = rgroup.samples[i].index;
2376 1.12 degroote group->samples[i].power = rgroup.samples[i].power;
2377 1.12 degroote
2378 1.12 degroote DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2379 1.12 degroote group->samples[i].index, group->samples[i].power));
2380 1.1 simonb }
2381 1.1 simonb }
2382 1.1 simonb
2383 1.1 simonb /*
2384 1.1 simonb * Send a command to the firmware.
2385 1.1 simonb */
2386 1.1 simonb static int
2387 1.1 simonb wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2388 1.1 simonb {
2389 1.1 simonb struct wpi_tx_ring *ring = &sc->cmdq;
2390 1.1 simonb struct wpi_tx_desc *desc;
2391 1.1 simonb struct wpi_tx_cmd *cmd;
2392 1.63 jmcneill struct wpi_dma_info *dma;
2393 1.1 simonb
2394 1.1 simonb KASSERT(size <= sizeof cmd->data);
2395 1.1 simonb
2396 1.1 simonb desc = &ring->desc[ring->cur];
2397 1.1 simonb cmd = &ring->cmd[ring->cur];
2398 1.1 simonb
2399 1.1 simonb cmd->code = code;
2400 1.1 simonb cmd->flags = 0;
2401 1.1 simonb cmd->qid = ring->qid;
2402 1.1 simonb cmd->idx = ring->cur;
2403 1.1 simonb memcpy(cmd->data, buf, size);
2404 1.1 simonb
2405 1.63 jmcneill dma = &ring->cmd_dma;
2406 1.63 jmcneill bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2407 1.63 jmcneill
2408 1.1 simonb desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2409 1.1 simonb desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2410 1.61 jakllsch ring->cur * sizeof (struct wpi_tx_cmd));
2411 1.1 simonb desc->segs[0].len = htole32(4 + size);
2412 1.1 simonb
2413 1.63 jmcneill dma = &ring->desc_dma;
2414 1.63 jmcneill bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2415 1.63 jmcneill
2416 1.1 simonb /* kick cmd ring */
2417 1.1 simonb ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2418 1.1 simonb WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2419 1.1 simonb
2420 1.1 simonb return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2421 1.1 simonb }
2422 1.1 simonb
2423 1.1 simonb static int
2424 1.1 simonb wpi_wme_update(struct ieee80211com *ic)
2425 1.1 simonb {
2426 1.1 simonb #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2427 1.1 simonb #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2428 1.1 simonb struct wpi_softc *sc = ic->ic_ifp->if_softc;
2429 1.1 simonb const struct wmeParams *wmep;
2430 1.1 simonb struct wpi_wme_setup wme;
2431 1.1 simonb int ac;
2432 1.1 simonb
2433 1.1 simonb /* don't override default WME values if WME is not actually enabled */
2434 1.1 simonb if (!(ic->ic_flags & IEEE80211_F_WME))
2435 1.1 simonb return 0;
2436 1.1 simonb
2437 1.1 simonb wme.flags = 0;
2438 1.1 simonb for (ac = 0; ac < WME_NUM_AC; ac++) {
2439 1.1 simonb wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2440 1.1 simonb wme.ac[ac].aifsn = wmep->wmep_aifsn;
2441 1.1 simonb wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2442 1.1 simonb wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2443 1.1 simonb wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2444 1.1 simonb
2445 1.1 simonb DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2446 1.1 simonb "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2447 1.1 simonb wme.ac[ac].cwmax, wme.ac[ac].txop));
2448 1.1 simonb }
2449 1.1 simonb
2450 1.1 simonb return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2451 1.1 simonb #undef WPI_USEC
2452 1.1 simonb #undef WPI_EXP2
2453 1.1 simonb }
2454 1.1 simonb
2455 1.1 simonb /*
2456 1.1 simonb * Configure h/w multi-rate retries.
2457 1.1 simonb */
2458 1.1 simonb static int
2459 1.1 simonb wpi_mrr_setup(struct wpi_softc *sc)
2460 1.1 simonb {
2461 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2462 1.1 simonb struct wpi_mrr_setup mrr;
2463 1.1 simonb int i, error;
2464 1.1 simonb
2465 1.1 simonb /* CCK rates (not used with 802.11a) */
2466 1.1 simonb for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2467 1.1 simonb mrr.rates[i].flags = 0;
2468 1.1 simonb mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2469 1.1 simonb /* fallback to the immediate lower CCK rate (if any) */
2470 1.1 simonb mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2471 1.1 simonb /* try one time at this rate before falling back to "next" */
2472 1.1 simonb mrr.rates[i].ntries = 1;
2473 1.1 simonb }
2474 1.1 simonb
2475 1.1 simonb /* OFDM rates (not used with 802.11b) */
2476 1.1 simonb for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2477 1.1 simonb mrr.rates[i].flags = 0;
2478 1.1 simonb mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2479 1.1 simonb /* fallback to the immediate lower rate (if any) */
2480 1.1 simonb /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2481 1.1 simonb mrr.rates[i].next = (i == WPI_OFDM6) ?
2482 1.1 simonb ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2483 1.1 simonb WPI_OFDM6 : WPI_CCK2) :
2484 1.1 simonb i - 1;
2485 1.1 simonb /* try one time at this rate before falling back to "next" */
2486 1.1 simonb mrr.rates[i].ntries = 1;
2487 1.1 simonb }
2488 1.1 simonb
2489 1.1 simonb /* setup MRR for control frames */
2490 1.1 simonb mrr.which = htole32(WPI_MRR_CTL);
2491 1.12 degroote error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2492 1.1 simonb if (error != 0) {
2493 1.61 jakllsch aprint_error_dev(sc->sc_dev,
2494 1.61 jakllsch "could not setup MRR for control frames\n");
2495 1.1 simonb return error;
2496 1.1 simonb }
2497 1.1 simonb
2498 1.1 simonb /* setup MRR for data frames */
2499 1.1 simonb mrr.which = htole32(WPI_MRR_DATA);
2500 1.12 degroote error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2501 1.1 simonb if (error != 0) {
2502 1.61 jakllsch aprint_error_dev(sc->sc_dev,
2503 1.61 jakllsch "could not setup MRR for data frames\n");
2504 1.1 simonb return error;
2505 1.1 simonb }
2506 1.1 simonb
2507 1.1 simonb return 0;
2508 1.1 simonb }
2509 1.1 simonb
2510 1.1 simonb static void
2511 1.1 simonb wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2512 1.1 simonb {
2513 1.1 simonb struct wpi_cmd_led led;
2514 1.1 simonb
2515 1.1 simonb led.which = which;
2516 1.1 simonb led.unit = htole32(100000); /* on/off in unit of 100ms */
2517 1.1 simonb led.off = off;
2518 1.1 simonb led.on = on;
2519 1.1 simonb
2520 1.1 simonb (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2521 1.1 simonb }
2522 1.1 simonb
2523 1.1 simonb static void
2524 1.1 simonb wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2525 1.1 simonb {
2526 1.1 simonb struct wpi_cmd_tsf tsf;
2527 1.1 simonb uint64_t val, mod;
2528 1.1 simonb
2529 1.1 simonb memset(&tsf, 0, sizeof tsf);
2530 1.61 jakllsch memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2531 1.1 simonb tsf.bintval = htole16(ni->ni_intval);
2532 1.1 simonb tsf.lintval = htole16(10);
2533 1.1 simonb
2534 1.1 simonb /* compute remaining time until next beacon */
2535 1.61 jakllsch val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2536 1.1 simonb mod = le64toh(tsf.tstamp) % val;
2537 1.1 simonb tsf.binitval = htole32((uint32_t)(val - mod));
2538 1.1 simonb
2539 1.61 jakllsch DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
2540 1.1 simonb ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2541 1.1 simonb
2542 1.1 simonb if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2543 1.28 degroote aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2544 1.1 simonb }
2545 1.1 simonb
2546 1.1 simonb /*
2547 1.12 degroote * Update Tx power to match what is defined for channel `c'.
2548 1.12 degroote */
2549 1.12 degroote static int
2550 1.12 degroote wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2551 1.12 degroote {
2552 1.12 degroote struct ieee80211com *ic = &sc->sc_ic;
2553 1.12 degroote struct wpi_power_group *group;
2554 1.12 degroote struct wpi_cmd_txpower txpower;
2555 1.12 degroote u_int chan;
2556 1.12 degroote int i;
2557 1.12 degroote
2558 1.12 degroote /* get channel number */
2559 1.12 degroote chan = ieee80211_chan2ieee(ic, c);
2560 1.12 degroote
2561 1.12 degroote /* find the power group to which this channel belongs */
2562 1.12 degroote if (IEEE80211_IS_CHAN_5GHZ(c)) {
2563 1.12 degroote for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2564 1.12 degroote if (chan <= group->chan)
2565 1.12 degroote break;
2566 1.12 degroote } else
2567 1.12 degroote group = &sc->groups[0];
2568 1.12 degroote
2569 1.12 degroote memset(&txpower, 0, sizeof txpower);
2570 1.12 degroote txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2571 1.12 degroote txpower.chan = htole16(chan);
2572 1.12 degroote
2573 1.12 degroote /* set Tx power for all OFDM and CCK rates */
2574 1.12 degroote for (i = 0; i <= 11 ; i++) {
2575 1.12 degroote /* retrieve Tx power for this channel/rate combination */
2576 1.12 degroote int idx = wpi_get_power_index(sc, group, c,
2577 1.12 degroote wpi_ridx_to_rate[i]);
2578 1.12 degroote
2579 1.12 degroote txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2580 1.12 degroote
2581 1.12 degroote if (IEEE80211_IS_CHAN_5GHZ(c)) {
2582 1.12 degroote txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2583 1.12 degroote txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2584 1.12 degroote } else {
2585 1.12 degroote txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2586 1.12 degroote txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2587 1.12 degroote }
2588 1.12 degroote DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2589 1.12 degroote wpi_ridx_to_rate[i], idx));
2590 1.12 degroote }
2591 1.12 degroote
2592 1.12 degroote return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2593 1.12 degroote }
2594 1.12 degroote
2595 1.12 degroote /*
2596 1.12 degroote * Determine Tx power index for a given channel/rate combination.
2597 1.12 degroote * This takes into account the regulatory information from EEPROM and the
2598 1.12 degroote * current temperature.
2599 1.12 degroote */
2600 1.12 degroote static int
2601 1.12 degroote wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2602 1.12 degroote struct ieee80211_channel *c, int rate)
2603 1.12 degroote {
2604 1.12 degroote /* fixed-point arithmetic division using a n-bit fractional part */
2605 1.12 degroote #define fdivround(a, b, n) \
2606 1.12 degroote ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2607 1.12 degroote
2608 1.12 degroote /* linear interpolation */
2609 1.12 degroote #define interpolate(x, x1, y1, x2, y2, n) \
2610 1.12 degroote ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2611 1.12 degroote
2612 1.12 degroote struct ieee80211com *ic = &sc->sc_ic;
2613 1.12 degroote struct wpi_power_sample *sample;
2614 1.12 degroote int pwr, idx;
2615 1.12 degroote u_int chan;
2616 1.12 degroote
2617 1.12 degroote /* get channel number */
2618 1.12 degroote chan = ieee80211_chan2ieee(ic, c);
2619 1.12 degroote
2620 1.12 degroote /* default power is group's maximum power - 3dB */
2621 1.12 degroote pwr = group->maxpwr / 2;
2622 1.12 degroote
2623 1.12 degroote /* decrease power for highest OFDM rates to reduce distortion */
2624 1.12 degroote switch (rate) {
2625 1.12 degroote case 72: /* 36Mb/s */
2626 1.12 degroote pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2627 1.12 degroote break;
2628 1.12 degroote case 96: /* 48Mb/s */
2629 1.12 degroote pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2630 1.12 degroote break;
2631 1.12 degroote case 108: /* 54Mb/s */
2632 1.12 degroote pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2633 1.12 degroote break;
2634 1.12 degroote }
2635 1.12 degroote
2636 1.12 degroote /* never exceed channel's maximum allowed Tx power */
2637 1.83 riastrad pwr = uimin(pwr, sc->maxpwr[chan]);
2638 1.12 degroote
2639 1.12 degroote /* retrieve power index into gain tables from samples */
2640 1.12 degroote for (sample = group->samples; sample < &group->samples[3]; sample++)
2641 1.12 degroote if (pwr > sample[1].power)
2642 1.12 degroote break;
2643 1.12 degroote /* fixed-point linear interpolation using a 19-bit fractional part */
2644 1.12 degroote idx = interpolate(pwr, sample[0].power, sample[0].index,
2645 1.12 degroote sample[1].power, sample[1].index, 19);
2646 1.12 degroote
2647 1.61 jakllsch /*-
2648 1.12 degroote * Adjust power index based on current temperature:
2649 1.12 degroote * - if cooler than factory-calibrated: decrease output power
2650 1.12 degroote * - if warmer than factory-calibrated: increase output power
2651 1.12 degroote */
2652 1.12 degroote idx -= (sc->temp - group->temp) * 11 / 100;
2653 1.12 degroote
2654 1.12 degroote /* decrease power for CCK rates (-5dB) */
2655 1.12 degroote if (!WPI_RATE_IS_OFDM(rate))
2656 1.12 degroote idx += 10;
2657 1.12 degroote
2658 1.12 degroote /* keep power index in a valid range */
2659 1.12 degroote if (idx < 0)
2660 1.12 degroote return 0;
2661 1.12 degroote if (idx > WPI_MAX_PWR_INDEX)
2662 1.12 degroote return WPI_MAX_PWR_INDEX;
2663 1.12 degroote return idx;
2664 1.12 degroote
2665 1.12 degroote #undef interpolate
2666 1.12 degroote #undef fdivround
2667 1.12 degroote }
2668 1.12 degroote
2669 1.12 degroote /*
2670 1.1 simonb * Build a beacon frame that the firmware will broadcast periodically in
2671 1.1 simonb * IBSS or HostAP modes.
2672 1.1 simonb */
2673 1.1 simonb static int
2674 1.1 simonb wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2675 1.1 simonb {
2676 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2677 1.1 simonb struct wpi_tx_ring *ring = &sc->cmdq;
2678 1.1 simonb struct wpi_tx_desc *desc;
2679 1.1 simonb struct wpi_tx_data *data;
2680 1.1 simonb struct wpi_tx_cmd *cmd;
2681 1.1 simonb struct wpi_cmd_beacon *bcn;
2682 1.1 simonb struct ieee80211_beacon_offsets bo;
2683 1.1 simonb struct mbuf *m0;
2684 1.1 simonb int error;
2685 1.1 simonb
2686 1.1 simonb desc = &ring->desc[ring->cur];
2687 1.1 simonb data = &ring->data[ring->cur];
2688 1.1 simonb
2689 1.1 simonb m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2690 1.1 simonb if (m0 == NULL) {
2691 1.61 jakllsch aprint_error_dev(sc->sc_dev,
2692 1.61 jakllsch "could not allocate beacon frame\n");
2693 1.1 simonb return ENOMEM;
2694 1.1 simonb }
2695 1.1 simonb
2696 1.1 simonb cmd = &ring->cmd[ring->cur];
2697 1.1 simonb cmd->code = WPI_CMD_SET_BEACON;
2698 1.1 simonb cmd->flags = 0;
2699 1.1 simonb cmd->qid = ring->qid;
2700 1.1 simonb cmd->idx = ring->cur;
2701 1.1 simonb
2702 1.1 simonb bcn = (struct wpi_cmd_beacon *)cmd->data;
2703 1.1 simonb memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2704 1.1 simonb bcn->id = WPI_ID_BROADCAST;
2705 1.1 simonb bcn->ofdm_mask = 0xff;
2706 1.1 simonb bcn->cck_mask = 0x0f;
2707 1.12 degroote bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2708 1.1 simonb bcn->len = htole16(m0->m_pkthdr.len);
2709 1.1 simonb bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2710 1.61 jakllsch wpi_plcp_signal(12) : wpi_plcp_signal(2);
2711 1.1 simonb bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2712 1.1 simonb
2713 1.1 simonb /* save and trim IEEE802.11 header */
2714 1.9 christos m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2715 1.1 simonb m_adj(m0, sizeof (struct ieee80211_frame));
2716 1.1 simonb
2717 1.1 simonb /* assume beacon frame is contiguous */
2718 1.1 simonb error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2719 1.61 jakllsch BUS_DMA_READ | BUS_DMA_NOWAIT);
2720 1.61 jakllsch if (error != 0) {
2721 1.55 christos aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2722 1.1 simonb m_freem(m0);
2723 1.1 simonb return error;
2724 1.1 simonb }
2725 1.1 simonb
2726 1.1 simonb data->m = m0;
2727 1.1 simonb
2728 1.1 simonb /* first scatter/gather segment is used by the beacon command */
2729 1.1 simonb desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2730 1.1 simonb desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2731 1.61 jakllsch ring->cur * sizeof (struct wpi_tx_cmd));
2732 1.1 simonb desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2733 1.1 simonb desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2734 1.1 simonb desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2735 1.1 simonb
2736 1.65 jmcneill bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2737 1.65 jmcneill ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2738 1.63 jmcneill bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2739 1.63 jmcneill BUS_DMASYNC_PREWRITE);
2740 1.63 jmcneill
2741 1.1 simonb /* kick cmd ring */
2742 1.1 simonb ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2743 1.1 simonb WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2744 1.1 simonb
2745 1.1 simonb return 0;
2746 1.1 simonb }
2747 1.1 simonb
2748 1.1 simonb static int
2749 1.1 simonb wpi_auth(struct wpi_softc *sc)
2750 1.1 simonb {
2751 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2752 1.1 simonb struct ieee80211_node *ni = ic->ic_bss;
2753 1.5 joerg struct wpi_node_info node;
2754 1.1 simonb int error;
2755 1.1 simonb
2756 1.1 simonb /* update adapter's configuration */
2757 1.1 simonb IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2758 1.1 simonb sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2759 1.1 simonb sc->config.flags = htole32(WPI_CONFIG_TSF);
2760 1.1 simonb if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2761 1.1 simonb sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2762 1.1 simonb WPI_CONFIG_24GHZ);
2763 1.1 simonb }
2764 1.1 simonb switch (ic->ic_curmode) {
2765 1.1 simonb case IEEE80211_MODE_11A:
2766 1.1 simonb sc->config.cck_mask = 0;
2767 1.1 simonb sc->config.ofdm_mask = 0x15;
2768 1.1 simonb break;
2769 1.1 simonb case IEEE80211_MODE_11B:
2770 1.1 simonb sc->config.cck_mask = 0x03;
2771 1.1 simonb sc->config.ofdm_mask = 0;
2772 1.1 simonb break;
2773 1.1 simonb default: /* assume 802.11b/g */
2774 1.1 simonb sc->config.cck_mask = 0x0f;
2775 1.1 simonb sc->config.ofdm_mask = 0x15;
2776 1.1 simonb }
2777 1.1 simonb DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2778 1.61 jakllsch sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2779 1.1 simonb error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2780 1.61 jakllsch sizeof (struct wpi_config), 1);
2781 1.1 simonb if (error != 0) {
2782 1.55 christos aprint_error_dev(sc->sc_dev, "could not configure\n");
2783 1.1 simonb return error;
2784 1.1 simonb }
2785 1.1 simonb
2786 1.12 degroote /* configuration has changed, set Tx power accordingly */
2787 1.12 degroote if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2788 1.28 degroote aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2789 1.12 degroote return error;
2790 1.12 degroote }
2791 1.12 degroote
2792 1.1 simonb /* add default node */
2793 1.1 simonb memset(&node, 0, sizeof node);
2794 1.1 simonb IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2795 1.1 simonb node.id = WPI_ID_BSS;
2796 1.1 simonb node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2797 1.1 simonb wpi_plcp_signal(12) : wpi_plcp_signal(2);
2798 1.12 degroote node.action = htole32(WPI_ACTION_SET_RATE);
2799 1.12 degroote node.antenna = WPI_ANTENNA_BOTH;
2800 1.1 simonb error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2801 1.1 simonb if (error != 0) {
2802 1.55 christos aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2803 1.1 simonb return error;
2804 1.1 simonb }
2805 1.1 simonb
2806 1.1 simonb return 0;
2807 1.1 simonb }
2808 1.1 simonb
2809 1.1 simonb /*
2810 1.1 simonb * Send a scan request to the firmware. Since this command is huge, we map it
2811 1.1 simonb * into a mbuf instead of using the pre-allocated set of commands.
2812 1.1 simonb */
2813 1.1 simonb static int
2814 1.67 jmcneill wpi_scan(struct wpi_softc *sc)
2815 1.1 simonb {
2816 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2817 1.1 simonb struct wpi_tx_ring *ring = &sc->cmdq;
2818 1.1 simonb struct wpi_tx_desc *desc;
2819 1.1 simonb struct wpi_tx_data *data;
2820 1.1 simonb struct wpi_tx_cmd *cmd;
2821 1.1 simonb struct wpi_scan_hdr *hdr;
2822 1.1 simonb struct wpi_scan_chan *chan;
2823 1.1 simonb struct ieee80211_frame *wh;
2824 1.1 simonb struct ieee80211_rateset *rs;
2825 1.1 simonb struct ieee80211_channel *c;
2826 1.1 simonb uint8_t *frm;
2827 1.61 jakllsch int pktlen, error, nrates;
2828 1.1 simonb
2829 1.67 jmcneill if (ic->ic_curchan == NULL)
2830 1.67 jmcneill return EIO;
2831 1.67 jmcneill
2832 1.1 simonb desc = &ring->desc[ring->cur];
2833 1.1 simonb data = &ring->data[ring->cur];
2834 1.1 simonb
2835 1.1 simonb MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2836 1.1 simonb if (data->m == NULL) {
2837 1.55 christos aprint_error_dev(sc->sc_dev,
2838 1.59 jakllsch "could not allocate mbuf for scan command\n");
2839 1.1 simonb return ENOMEM;
2840 1.1 simonb }
2841 1.1 simonb MCLGET(data->m, M_DONTWAIT);
2842 1.1 simonb if (!(data->m->m_flags & M_EXT)) {
2843 1.1 simonb m_freem(data->m);
2844 1.1 simonb data->m = NULL;
2845 1.55 christos aprint_error_dev(sc->sc_dev,
2846 1.59 jakllsch "could not allocate mbuf for scan command\n");
2847 1.1 simonb return ENOMEM;
2848 1.1 simonb }
2849 1.1 simonb
2850 1.1 simonb cmd = mtod(data->m, struct wpi_tx_cmd *);
2851 1.1 simonb cmd->code = WPI_CMD_SCAN;
2852 1.1 simonb cmd->flags = 0;
2853 1.1 simonb cmd->qid = ring->qid;
2854 1.1 simonb cmd->idx = ring->cur;
2855 1.1 simonb
2856 1.1 simonb hdr = (struct wpi_scan_hdr *)cmd->data;
2857 1.1 simonb memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2858 1.60 jakllsch hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
2859 1.60 jakllsch hdr->cmd.id = WPI_ID_BROADCAST;
2860 1.60 jakllsch hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
2861 1.1 simonb /*
2862 1.67 jmcneill * Move to the next channel if no packets are received within 5 msecs
2863 1.1 simonb * after sending the probe request (this helps to reduce the duration
2864 1.1 simonb * of active scans).
2865 1.1 simonb */
2866 1.67 jmcneill hdr->quiet = htole16(5); /* timeout in milliseconds */
2867 1.12 degroote hdr->plcp_threshold = htole16(1); /* min # of packets */
2868 1.1 simonb
2869 1.67 jmcneill if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
2870 1.12 degroote hdr->crc_threshold = htole16(1);
2871 1.1 simonb /* send probe requests at 6Mbps */
2872 1.60 jakllsch hdr->cmd.rate = wpi_plcp_signal(12);
2873 1.66 jmcneill rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2874 1.1 simonb } else {
2875 1.1 simonb hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2876 1.1 simonb /* send probe requests at 1Mbps */
2877 1.60 jakllsch hdr->cmd.rate = wpi_plcp_signal(2);
2878 1.66 jmcneill rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2879 1.1 simonb }
2880 1.1 simonb
2881 1.12 degroote /* for directed scans, firmware inserts the essid IE itself */
2882 1.66 jmcneill if (ic->ic_des_esslen != 0) {
2883 1.66 jmcneill hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2884 1.66 jmcneill hdr->essid[0].len = ic->ic_des_esslen;
2885 1.66 jmcneill memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2886 1.66 jmcneill }
2887 1.1 simonb
2888 1.1 simonb /*
2889 1.1 simonb * Build a probe request frame. Most of the following code is a
2890 1.1 simonb * copy & paste of what is done in net80211.
2891 1.1 simonb */
2892 1.1 simonb wh = (struct ieee80211_frame *)(hdr + 1);
2893 1.1 simonb wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2894 1.61 jakllsch IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2895 1.1 simonb wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2896 1.1 simonb IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2897 1.1 simonb IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2898 1.1 simonb IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2899 1.1 simonb *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2900 1.1 simonb *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2901 1.1 simonb
2902 1.1 simonb frm = (uint8_t *)(wh + 1);
2903 1.1 simonb
2904 1.12 degroote /* add empty essid IE (firmware generates it for directed scans) */
2905 1.12 degroote *frm++ = IEEE80211_ELEMID_SSID;
2906 1.12 degroote *frm++ = 0;
2907 1.1 simonb
2908 1.1 simonb /* add supported rates IE */
2909 1.1 simonb *frm++ = IEEE80211_ELEMID_RATES;
2910 1.1 simonb nrates = rs->rs_nrates;
2911 1.1 simonb if (nrates > IEEE80211_RATE_SIZE)
2912 1.1 simonb nrates = IEEE80211_RATE_SIZE;
2913 1.1 simonb *frm++ = nrates;
2914 1.1 simonb memcpy(frm, rs->rs_rates, nrates);
2915 1.1 simonb frm += nrates;
2916 1.1 simonb
2917 1.1 simonb /* add supported xrates IE */
2918 1.1 simonb if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2919 1.1 simonb nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2920 1.1 simonb *frm++ = IEEE80211_ELEMID_XRATES;
2921 1.1 simonb *frm++ = nrates;
2922 1.1 simonb memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2923 1.1 simonb frm += nrates;
2924 1.1 simonb }
2925 1.1 simonb
2926 1.1 simonb /* setup length of probe request */
2927 1.60 jakllsch hdr->cmd.len = htole16(frm - (uint8_t *)wh);
2928 1.1 simonb
2929 1.1 simonb chan = (struct wpi_scan_chan *)frm;
2930 1.67 jmcneill c = ic->ic_curchan;
2931 1.1 simonb
2932 1.67 jmcneill chan->chan = ieee80211_chan2ieee(ic, c);
2933 1.67 jmcneill chan->flags = 0;
2934 1.67 jmcneill if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2935 1.67 jmcneill chan->flags |= WPI_CHAN_ACTIVE;
2936 1.66 jmcneill if (ic->ic_des_esslen != 0)
2937 1.66 jmcneill chan->flags |= WPI_CHAN_DIRECT;
2938 1.67 jmcneill }
2939 1.67 jmcneill chan->dsp_gain = 0x6e;
2940 1.67 jmcneill if (IEEE80211_IS_CHAN_5GHZ(c)) {
2941 1.67 jmcneill chan->rf_gain = 0x3b;
2942 1.67 jmcneill chan->active = htole16(10);
2943 1.67 jmcneill chan->passive = htole16(110);
2944 1.67 jmcneill } else {
2945 1.67 jmcneill chan->rf_gain = 0x28;
2946 1.67 jmcneill chan->active = htole16(20);
2947 1.67 jmcneill chan->passive = htole16(120);
2948 1.67 jmcneill }
2949 1.67 jmcneill hdr->nchan++;
2950 1.67 jmcneill chan++;
2951 1.1 simonb
2952 1.67 jmcneill frm += sizeof (struct wpi_scan_chan);
2953 1.61 jakllsch
2954 1.12 degroote hdr->len = htole16(frm - (uint8_t *)hdr);
2955 1.12 degroote pktlen = frm - (uint8_t *)cmd;
2956 1.1 simonb
2957 1.61 jakllsch error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
2958 1.61 jakllsch BUS_DMA_NOWAIT);
2959 1.61 jakllsch if (error != 0) {
2960 1.28 degroote aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2961 1.1 simonb m_freem(data->m);
2962 1.1 simonb data->m = NULL;
2963 1.1 simonb return error;
2964 1.1 simonb }
2965 1.1 simonb
2966 1.1 simonb desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2967 1.1 simonb desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2968 1.1 simonb desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2969 1.1 simonb
2970 1.65 jmcneill bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2971 1.65 jmcneill ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2972 1.63 jmcneill bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2973 1.63 jmcneill BUS_DMASYNC_PREWRITE);
2974 1.63 jmcneill
2975 1.1 simonb /* kick cmd ring */
2976 1.1 simonb ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2977 1.1 simonb WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2978 1.1 simonb
2979 1.1 simonb return 0; /* will be notified async. of failure/success */
2980 1.1 simonb }
2981 1.1 simonb
2982 1.1 simonb static int
2983 1.1 simonb wpi_config(struct wpi_softc *sc)
2984 1.1 simonb {
2985 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
2986 1.1 simonb struct ifnet *ifp = ic->ic_ifp;
2987 1.1 simonb struct wpi_power power;
2988 1.1 simonb struct wpi_bluetooth bluetooth;
2989 1.5 joerg struct wpi_node_info node;
2990 1.1 simonb int error;
2991 1.1 simonb
2992 1.1 simonb memset(&power, 0, sizeof power);
2993 1.12 degroote power.flags = htole32(WPI_POWER_CAM | 0x8);
2994 1.1 simonb error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2995 1.1 simonb if (error != 0) {
2996 1.28 degroote aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2997 1.1 simonb return error;
2998 1.1 simonb }
2999 1.1 simonb
3000 1.1 simonb /* configure bluetooth coexistence */
3001 1.1 simonb memset(&bluetooth, 0, sizeof bluetooth);
3002 1.1 simonb bluetooth.flags = 3;
3003 1.1 simonb bluetooth.lead = 0xaa;
3004 1.1 simonb bluetooth.kill = 1;
3005 1.1 simonb error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
3006 1.61 jakllsch 0);
3007 1.1 simonb if (error != 0) {
3008 1.28 degroote aprint_error_dev(sc->sc_dev,
3009 1.28 degroote "could not configure bluetooth coexistence\n");
3010 1.1 simonb return error;
3011 1.1 simonb }
3012 1.1 simonb
3013 1.1 simonb /* configure adapter */
3014 1.1 simonb memset(&sc->config, 0, sizeof (struct wpi_config));
3015 1.20 dyoung IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
3016 1.1 simonb IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
3017 1.61 jakllsch /* set default channel */
3018 1.66 jmcneill sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3019 1.1 simonb sc->config.flags = htole32(WPI_CONFIG_TSF);
3020 1.66 jmcneill if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
3021 1.1 simonb sc->config.flags |= htole32(WPI_CONFIG_AUTO |
3022 1.1 simonb WPI_CONFIG_24GHZ);
3023 1.1 simonb }
3024 1.1 simonb sc->config.filter = 0;
3025 1.1 simonb switch (ic->ic_opmode) {
3026 1.1 simonb case IEEE80211_M_STA:
3027 1.1 simonb sc->config.mode = WPI_MODE_STA;
3028 1.1 simonb sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
3029 1.1 simonb break;
3030 1.1 simonb case IEEE80211_M_IBSS:
3031 1.1 simonb case IEEE80211_M_AHDEMO:
3032 1.1 simonb sc->config.mode = WPI_MODE_IBSS;
3033 1.1 simonb break;
3034 1.1 simonb case IEEE80211_M_HOSTAP:
3035 1.1 simonb sc->config.mode = WPI_MODE_HOSTAP;
3036 1.1 simonb break;
3037 1.1 simonb case IEEE80211_M_MONITOR:
3038 1.1 simonb sc->config.mode = WPI_MODE_MONITOR;
3039 1.1 simonb sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
3040 1.61 jakllsch WPI_FILTER_CTL | WPI_FILTER_PROMISC);
3041 1.1 simonb break;
3042 1.1 simonb }
3043 1.1 simonb sc->config.cck_mask = 0x0f; /* not yet negotiated */
3044 1.1 simonb sc->config.ofdm_mask = 0xff; /* not yet negotiated */
3045 1.1 simonb error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
3046 1.61 jakllsch sizeof (struct wpi_config), 0);
3047 1.1 simonb if (error != 0) {
3048 1.28 degroote aprint_error_dev(sc->sc_dev, "configure command failed\n");
3049 1.1 simonb return error;
3050 1.1 simonb }
3051 1.1 simonb
3052 1.12 degroote /* configuration has changed, set Tx power accordingly */
3053 1.66 jmcneill if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
3054 1.28 degroote aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
3055 1.12 degroote return error;
3056 1.12 degroote }
3057 1.12 degroote
3058 1.1 simonb /* add broadcast node */
3059 1.1 simonb memset(&node, 0, sizeof node);
3060 1.1 simonb IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
3061 1.1 simonb node.id = WPI_ID_BROADCAST;
3062 1.1 simonb node.rate = wpi_plcp_signal(2);
3063 1.12 degroote node.action = htole32(WPI_ACTION_SET_RATE);
3064 1.55 christos node.antenna = WPI_ANTENNA_BOTH;
3065 1.1 simonb error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
3066 1.1 simonb if (error != 0) {
3067 1.28 degroote aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
3068 1.1 simonb return error;
3069 1.1 simonb }
3070 1.1 simonb
3071 1.12 degroote if ((error = wpi_mrr_setup(sc)) != 0) {
3072 1.28 degroote aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
3073 1.12 degroote return error;
3074 1.12 degroote }
3075 1.12 degroote
3076 1.1 simonb return 0;
3077 1.1 simonb }
3078 1.1 simonb
3079 1.1 simonb static void
3080 1.1 simonb wpi_stop_master(struct wpi_softc *sc)
3081 1.1 simonb {
3082 1.1 simonb uint32_t tmp;
3083 1.1 simonb int ntries;
3084 1.1 simonb
3085 1.1 simonb tmp = WPI_READ(sc, WPI_RESET);
3086 1.1 simonb WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3087 1.1 simonb
3088 1.1 simonb tmp = WPI_READ(sc, WPI_GPIO_CTL);
3089 1.1 simonb if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3090 1.1 simonb return; /* already asleep */
3091 1.1 simonb
3092 1.1 simonb for (ntries = 0; ntries < 100; ntries++) {
3093 1.1 simonb if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3094 1.1 simonb break;
3095 1.1 simonb DELAY(10);
3096 1.1 simonb }
3097 1.1 simonb if (ntries == 100) {
3098 1.28 degroote aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
3099 1.1 simonb }
3100 1.1 simonb }
3101 1.1 simonb
3102 1.1 simonb static int
3103 1.1 simonb wpi_power_up(struct wpi_softc *sc)
3104 1.1 simonb {
3105 1.1 simonb uint32_t tmp;
3106 1.1 simonb int ntries;
3107 1.1 simonb
3108 1.1 simonb wpi_mem_lock(sc);
3109 1.1 simonb tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3110 1.1 simonb wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3111 1.1 simonb wpi_mem_unlock(sc);
3112 1.1 simonb
3113 1.1 simonb for (ntries = 0; ntries < 5000; ntries++) {
3114 1.1 simonb if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3115 1.1 simonb break;
3116 1.1 simonb DELAY(10);
3117 1.1 simonb }
3118 1.1 simonb if (ntries == 5000) {
3119 1.61 jakllsch aprint_error_dev(sc->sc_dev,
3120 1.61 jakllsch "timeout waiting for NIC to power up\n");
3121 1.1 simonb return ETIMEDOUT;
3122 1.1 simonb }
3123 1.1 simonb return 0;
3124 1.1 simonb }
3125 1.1 simonb
3126 1.1 simonb static int
3127 1.1 simonb wpi_reset(struct wpi_softc *sc)
3128 1.1 simonb {
3129 1.1 simonb uint32_t tmp;
3130 1.1 simonb int ntries;
3131 1.1 simonb
3132 1.1 simonb /* clear any pending interrupts */
3133 1.1 simonb WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3134 1.1 simonb
3135 1.1 simonb tmp = WPI_READ(sc, WPI_PLL_CTL);
3136 1.1 simonb WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3137 1.1 simonb
3138 1.1 simonb tmp = WPI_READ(sc, WPI_CHICKEN);
3139 1.1 simonb WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3140 1.1 simonb
3141 1.1 simonb tmp = WPI_READ(sc, WPI_GPIO_CTL);
3142 1.1 simonb WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3143 1.1 simonb
3144 1.1 simonb /* wait for clock stabilization */
3145 1.1 simonb for (ntries = 0; ntries < 1000; ntries++) {
3146 1.1 simonb if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3147 1.1 simonb break;
3148 1.1 simonb DELAY(10);
3149 1.1 simonb }
3150 1.1 simonb if (ntries == 1000) {
3151 1.55 christos aprint_error_dev(sc->sc_dev,
3152 1.61 jakllsch "timeout waiting for clock stabilization\n");
3153 1.1 simonb return ETIMEDOUT;
3154 1.1 simonb }
3155 1.1 simonb
3156 1.1 simonb /* initialize EEPROM */
3157 1.1 simonb tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3158 1.1 simonb if ((tmp & WPI_EEPROM_VERSION) == 0) {
3159 1.28 degroote aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3160 1.1 simonb return EIO;
3161 1.1 simonb }
3162 1.1 simonb WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3163 1.1 simonb
3164 1.1 simonb return 0;
3165 1.1 simonb }
3166 1.1 simonb
3167 1.1 simonb static void
3168 1.1 simonb wpi_hw_config(struct wpi_softc *sc)
3169 1.1 simonb {
3170 1.1 simonb uint32_t rev, hw;
3171 1.1 simonb
3172 1.12 degroote /* voodoo from the reference driver */
3173 1.1 simonb hw = WPI_READ(sc, WPI_HWCONFIG);
3174 1.1 simonb
3175 1.1 simonb rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3176 1.1 simonb rev = PCI_REVISION(rev);
3177 1.1 simonb if ((rev & 0xc0) == 0x40)
3178 1.1 simonb hw |= WPI_HW_ALM_MB;
3179 1.1 simonb else if (!(rev & 0x80))
3180 1.1 simonb hw |= WPI_HW_ALM_MM;
3181 1.1 simonb
3182 1.12 degroote if (sc->cap == 0x80)
3183 1.1 simonb hw |= WPI_HW_SKU_MRC;
3184 1.1 simonb
3185 1.1 simonb hw &= ~WPI_HW_REV_D;
3186 1.55 christos if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3187 1.1 simonb hw |= WPI_HW_REV_D;
3188 1.1 simonb
3189 1.12 degroote if (sc->type > 1)
3190 1.1 simonb hw |= WPI_HW_TYPE_B;
3191 1.1 simonb
3192 1.1 simonb DPRINTF(("setting h/w config %x\n", hw));
3193 1.1 simonb WPI_WRITE(sc, WPI_HWCONFIG, hw);
3194 1.1 simonb }
3195 1.1 simonb
3196 1.1 simonb static int
3197 1.1 simonb wpi_init(struct ifnet *ifp)
3198 1.1 simonb {
3199 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
3200 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
3201 1.1 simonb uint32_t tmp;
3202 1.1 simonb int qid, ntries, error;
3203 1.1 simonb
3204 1.18 degroote wpi_stop(ifp,1);
3205 1.1 simonb (void)wpi_reset(sc);
3206 1.1 simonb
3207 1.1 simonb wpi_mem_lock(sc);
3208 1.1 simonb wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3209 1.1 simonb DELAY(20);
3210 1.1 simonb tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3211 1.1 simonb wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3212 1.1 simonb wpi_mem_unlock(sc);
3213 1.1 simonb
3214 1.1 simonb (void)wpi_power_up(sc);
3215 1.1 simonb wpi_hw_config(sc);
3216 1.1 simonb
3217 1.1 simonb /* init Rx ring */
3218 1.1 simonb wpi_mem_lock(sc);
3219 1.1 simonb WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3220 1.1 simonb WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3221 1.1 simonb offsetof(struct wpi_shared, next));
3222 1.1 simonb WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3223 1.1 simonb WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3224 1.1 simonb wpi_mem_unlock(sc);
3225 1.1 simonb
3226 1.1 simonb /* init Tx rings */
3227 1.1 simonb wpi_mem_lock(sc);
3228 1.61 jakllsch wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3229 1.61 jakllsch wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3230 1.61 jakllsch wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3231 1.1 simonb wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3232 1.1 simonb wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3233 1.1 simonb wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3234 1.1 simonb wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3235 1.1 simonb
3236 1.1 simonb WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3237 1.1 simonb WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3238 1.1 simonb
3239 1.1 simonb for (qid = 0; qid < 6; qid++) {
3240 1.1 simonb WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3241 1.1 simonb WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3242 1.1 simonb WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3243 1.1 simonb }
3244 1.1 simonb wpi_mem_unlock(sc);
3245 1.1 simonb
3246 1.1 simonb /* clear "radio off" and "disable command" bits (reversed logic) */
3247 1.1 simonb WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3248 1.1 simonb WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3249 1.1 simonb
3250 1.1 simonb /* clear any pending interrupts */
3251 1.1 simonb WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3252 1.1 simonb /* enable interrupts */
3253 1.1 simonb WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3254 1.1 simonb
3255 1.12 degroote /* not sure why/if this is necessary... */
3256 1.12 degroote WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3257 1.12 degroote WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3258 1.1 simonb
3259 1.54 riastrad if ((error = wpi_load_firmware(sc)) != 0)
3260 1.54 riastrad /* wpi_load_firmware prints error messages for us. */
3261 1.1 simonb goto fail1;
3262 1.1 simonb
3263 1.31 degroote /* Check the status of the radio switch */
3264 1.71 bouyer mutex_enter(&sc->sc_rsw_mtx);
3265 1.34 degroote if (wpi_getrfkill(sc)) {
3266 1.71 bouyer mutex_exit(&sc->sc_rsw_mtx);
3267 1.54 riastrad aprint_error_dev(sc->sc_dev,
3268 1.54 riastrad "radio is disabled by hardware switch\n");
3269 1.69 bouyer ifp->if_flags &= ~IFF_UP;
3270 1.54 riastrad error = EBUSY;
3271 1.31 degroote goto fail1;
3272 1.31 degroote }
3273 1.82 riastrad sc->sc_rsw_suspend = false;
3274 1.82 riastrad cv_broadcast(&sc->sc_rsw_cv);
3275 1.82 riastrad while (sc->sc_rsw_suspend)
3276 1.82 riastrad cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
3277 1.71 bouyer mutex_exit(&sc->sc_rsw_mtx);
3278 1.31 degroote
3279 1.1 simonb /* wait for thermal sensors to calibrate */
3280 1.1 simonb for (ntries = 0; ntries < 1000; ntries++) {
3281 1.55 christos if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3282 1.1 simonb break;
3283 1.1 simonb DELAY(10);
3284 1.1 simonb }
3285 1.1 simonb if (ntries == 1000) {
3286 1.54 riastrad aprint_error_dev(sc->sc_dev,
3287 1.54 riastrad "timeout waiting for thermal sensors calibration\n");
3288 1.1 simonb error = ETIMEDOUT;
3289 1.1 simonb goto fail1;
3290 1.1 simonb }
3291 1.12 degroote DPRINTF(("temperature %d\n", sc->temp));
3292 1.1 simonb
3293 1.1 simonb if ((error = wpi_config(sc)) != 0) {
3294 1.28 degroote aprint_error_dev(sc->sc_dev, "could not configure device\n");
3295 1.1 simonb goto fail1;
3296 1.1 simonb }
3297 1.1 simonb
3298 1.1 simonb ifp->if_flags &= ~IFF_OACTIVE;
3299 1.1 simonb ifp->if_flags |= IFF_RUNNING;
3300 1.1 simonb
3301 1.1 simonb if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3302 1.1 simonb if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3303 1.1 simonb ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3304 1.1 simonb }
3305 1.1 simonb else
3306 1.1 simonb ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3307 1.1 simonb
3308 1.1 simonb return 0;
3309 1.1 simonb
3310 1.1 simonb fail1: wpi_stop(ifp, 1);
3311 1.1 simonb return error;
3312 1.1 simonb }
3313 1.1 simonb
3314 1.1 simonb static void
3315 1.6 christos wpi_stop(struct ifnet *ifp, int disable)
3316 1.1 simonb {
3317 1.1 simonb struct wpi_softc *sc = ifp->if_softc;
3318 1.1 simonb struct ieee80211com *ic = &sc->sc_ic;
3319 1.1 simonb uint32_t tmp;
3320 1.1 simonb int ac;
3321 1.1 simonb
3322 1.1 simonb ifp->if_timer = sc->sc_tx_timer = 0;
3323 1.1 simonb ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3324 1.1 simonb
3325 1.1 simonb ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3326 1.1 simonb
3327 1.82 riastrad /* suspend rfkill test thread */
3328 1.82 riastrad mutex_enter(&sc->sc_rsw_mtx);
3329 1.82 riastrad sc->sc_rsw_suspend = true;
3330 1.82 riastrad cv_broadcast(&sc->sc_rsw_cv);
3331 1.82 riastrad while (!sc->sc_rsw_suspended)
3332 1.82 riastrad cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
3333 1.82 riastrad mutex_exit(&sc->sc_rsw_mtx);
3334 1.82 riastrad
3335 1.1 simonb /* disable interrupts */
3336 1.1 simonb WPI_WRITE(sc, WPI_MASK, 0);
3337 1.1 simonb WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3338 1.1 simonb WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3339 1.1 simonb WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3340 1.1 simonb
3341 1.1 simonb wpi_mem_lock(sc);
3342 1.1 simonb wpi_mem_write(sc, WPI_MEM_MODE, 0);
3343 1.1 simonb wpi_mem_unlock(sc);
3344 1.1 simonb
3345 1.1 simonb /* reset all Tx rings */
3346 1.1 simonb for (ac = 0; ac < 4; ac++)
3347 1.1 simonb wpi_reset_tx_ring(sc, &sc->txq[ac]);
3348 1.1 simonb wpi_reset_tx_ring(sc, &sc->cmdq);
3349 1.1 simonb
3350 1.1 simonb /* reset Rx ring */
3351 1.1 simonb wpi_reset_rx_ring(sc, &sc->rxq);
3352 1.55 christos
3353 1.1 simonb wpi_mem_lock(sc);
3354 1.1 simonb wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3355 1.1 simonb wpi_mem_unlock(sc);
3356 1.1 simonb
3357 1.1 simonb DELAY(5);
3358 1.1 simonb
3359 1.1 simonb wpi_stop_master(sc);
3360 1.1 simonb
3361 1.1 simonb tmp = WPI_READ(sc, WPI_RESET);
3362 1.1 simonb WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3363 1.1 simonb }
3364 1.33 jmcneill
3365 1.33 jmcneill static bool
3366 1.46 dyoung wpi_resume(device_t dv, const pmf_qual_t *qual)
3367 1.33 jmcneill {
3368 1.33 jmcneill struct wpi_softc *sc = device_private(dv);
3369 1.33 jmcneill
3370 1.33 jmcneill (void)wpi_reset(sc);
3371 1.33 jmcneill
3372 1.33 jmcneill return true;
3373 1.33 jmcneill }
3374 1.34 degroote
3375 1.34 degroote /*
3376 1.34 degroote * Return whether or not the radio is enabled in hardware
3377 1.34 degroote * (i.e. the rfkill switch is "off").
3378 1.34 degroote */
3379 1.34 degroote static int
3380 1.34 degroote wpi_getrfkill(struct wpi_softc *sc)
3381 1.34 degroote {
3382 1.34 degroote uint32_t tmp;
3383 1.34 degroote
3384 1.34 degroote wpi_mem_lock(sc);
3385 1.34 degroote tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3386 1.34 degroote wpi_mem_unlock(sc);
3387 1.34 degroote
3388 1.70 bouyer KASSERT(mutex_owned(&sc->sc_rsw_mtx));
3389 1.70 bouyer if (tmp & 0x01) {
3390 1.70 bouyer /* switch is on */
3391 1.70 bouyer if (sc->sc_rsw_status != WPI_RSW_ON) {
3392 1.70 bouyer sc->sc_rsw_status = WPI_RSW_ON;
3393 1.70 bouyer sysmon_pswitch_event(&sc->sc_rsw,
3394 1.70 bouyer PSWITCH_EVENT_PRESSED);
3395 1.70 bouyer }
3396 1.70 bouyer } else {
3397 1.70 bouyer /* switch is off */
3398 1.70 bouyer if (sc->sc_rsw_status != WPI_RSW_OFF) {
3399 1.70 bouyer sc->sc_rsw_status = WPI_RSW_OFF;
3400 1.70 bouyer sysmon_pswitch_event(&sc->sc_rsw,
3401 1.70 bouyer PSWITCH_EVENT_RELEASED);
3402 1.70 bouyer }
3403 1.70 bouyer }
3404 1.70 bouyer
3405 1.34 degroote return !(tmp & 0x01);
3406 1.34 degroote }
3407 1.34 degroote
3408 1.34 degroote static int
3409 1.34 degroote wpi_sysctl_radio(SYSCTLFN_ARGS)
3410 1.34 degroote {
3411 1.34 degroote struct sysctlnode node;
3412 1.34 degroote struct wpi_softc *sc;
3413 1.34 degroote int val, error;
3414 1.34 degroote
3415 1.34 degroote node = *rnode;
3416 1.34 degroote sc = (struct wpi_softc *)node.sysctl_data;
3417 1.34 degroote
3418 1.70 bouyer mutex_enter(&sc->sc_rsw_mtx);
3419 1.34 degroote val = !wpi_getrfkill(sc);
3420 1.70 bouyer mutex_exit(&sc->sc_rsw_mtx);
3421 1.34 degroote
3422 1.34 degroote node.sysctl_data = &val;
3423 1.34 degroote error = sysctl_lookup(SYSCTLFN_CALL(&node));
3424 1.34 degroote
3425 1.34 degroote if (error || newp == NULL)
3426 1.34 degroote return error;
3427 1.34 degroote
3428 1.34 degroote return 0;
3429 1.34 degroote }
3430 1.34 degroote
3431 1.34 degroote static void
3432 1.34 degroote wpi_sysctlattach(struct wpi_softc *sc)
3433 1.34 degroote {
3434 1.34 degroote int rc;
3435 1.34 degroote const struct sysctlnode *rnode;
3436 1.34 degroote const struct sysctlnode *cnode;
3437 1.34 degroote
3438 1.34 degroote struct sysctllog **clog = &sc->sc_sysctllog;
3439 1.34 degroote
3440 1.34 degroote if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3441 1.34 degroote CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3442 1.34 degroote SYSCTL_DESCR("wpi controls and statistics"),
3443 1.57 pooka NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
3444 1.34 degroote goto err;
3445 1.34 degroote
3446 1.34 degroote if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3447 1.34 degroote CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3448 1.34 degroote SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3449 1.52 dsl wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3450 1.34 degroote goto err;
3451 1.34 degroote
3452 1.34 degroote #ifdef WPI_DEBUG
3453 1.34 degroote /* control debugging printfs */
3454 1.34 degroote if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3455 1.34 degroote CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3456 1.34 degroote "debug", SYSCTL_DESCR("Enable debugging output"),
3457 1.34 degroote NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3458 1.34 degroote goto err;
3459 1.34 degroote #endif
3460 1.34 degroote
3461 1.34 degroote return;
3462 1.34 degroote err:
3463 1.34 degroote aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3464 1.34 degroote }
3465 1.70 bouyer
3466 1.70 bouyer static void
3467 1.70 bouyer wpi_rsw_thread(void *arg)
3468 1.70 bouyer {
3469 1.70 bouyer struct wpi_softc *sc = (struct wpi_softc *)arg;
3470 1.70 bouyer
3471 1.70 bouyer mutex_enter(&sc->sc_rsw_mtx);
3472 1.70 bouyer for (;;) {
3473 1.70 bouyer cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz);
3474 1.70 bouyer if (sc->sc_dying) {
3475 1.70 bouyer sc->sc_rsw_lwp = NULL;
3476 1.70 bouyer cv_broadcast(&sc->sc_rsw_cv);
3477 1.70 bouyer mutex_exit(&sc->sc_rsw_mtx);
3478 1.70 bouyer kthread_exit(0);
3479 1.70 bouyer }
3480 1.82 riastrad if (sc->sc_rsw_suspend) {
3481 1.82 riastrad sc->sc_rsw_suspended = true;
3482 1.82 riastrad cv_broadcast(&sc->sc_rsw_cv);
3483 1.82 riastrad while (sc->sc_rsw_suspend || sc->sc_dying)
3484 1.82 riastrad cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
3485 1.82 riastrad sc->sc_rsw_suspended = false;
3486 1.82 riastrad cv_broadcast(&sc->sc_rsw_cv);
3487 1.82 riastrad }
3488 1.70 bouyer wpi_getrfkill(sc);
3489 1.70 bouyer }
3490 1.70 bouyer }
3491